

Mastering Puppet
Second Edition

Master Puppet for configuration management of your
systems in an enterprise deployment

Thomas Uphill

BIRMINGHAM - MUMBAI

Mastering Puppet
Second Edition

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2014

Second edition: February 2016

Production reference: 1220216

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-810-6

www.packtpub.com

www.packtpub.com

Credits

Author
Thomas Uphill

Reviewer
Bas Grolleman

Commissioning Editor
Priya Singh

Acquisition Editor
Nadeem Bagban

Content Development Editor
Mehvash Fatima

Technical Editor
Taabish Khan

Copy Editors
Ting Baker

Sneha Singh

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Thomas Uphill is a long-time user of Puppet. He has presented Puppet tutorials
at LOPSA-East, Cascada, and PuppetConf. He has also been a system administrator
for over 20 years, working primarily with RedHat systems; he is currently a RedHat
Certified Architect (RHCA). When not running the Puppet User Group of Seattle
(PUGS), he volunteers for the LOPSA board and his local LOPSA chapter, SASAG.
He blogs at http://ramblings.narrabilis.com.

http://ramblings.narrabilis.com

About the Reviewer

Bas Grolleman works as a self-taught freelance Puppet professional in the
Netherlands, he has his name in the code of many large-scale deployments. He
learned the pain of scaling Puppet the hard way, that is, trial and error and spending
hours going through a maze of dependencies. Now, he mostly tells people to take
the time to do it right.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

[i]

Table of Contents
Preface	 v
Chapter 1: Dealing with Load/Scale	 1

Divide and conquer	 1
Certificate signing	 2
Reporting	 2
Storeconfigs	 2
Catalog compilation	 2
puppetserver	 3
Building a Puppet master	 3

Certificates	 5
systemd	 6
Creating a load balancer	 7
Keeping the code consistent	 14

One more split	 17
One last split or maybe a few more	 18

Conquer by dividing	 21
Creating an rpm	 22

Using Puppet resource to configure cron	 24
Creating the yum repository	 25

Summary	 27
Chapter 2: Organizing Your Nodes and Data	 29

Getting started	 29
Organizing the nodes with an ENC	 29

A simple example	 30
Hostname strategy	 33
Modified ENC using hostname strategy	 35

LDAP backend	 39
OpenLDAP configuration	 39

Table of Contents

[ii]

Hiera	 44
Configuring Hiera	 45
Using hiera_include	 48

Summary	 54
Chapter 3: Git and Environments	 55

Environments	 55
Environments and Hiera	 58

Multiple hierarchies	 58
Single hierarchy for all environments	 60

Directory environments	 61
Git	 64

Why Git?	 65
A simple Git workflow	 66
Git hooks	 75

Using post-receive to set up environments	 76
Puppet-sync	 79

Using Git hooks to play nice with other developers	 82
Not playing nice with others via Git hooks	 85

Git for everyone	 89
Summary	 92

Chapter 4: Public Modules	 93
Getting modules	 93
Using GitHub for public modules	 93

Updating the local repository	 95
Modules from the Forge	 96
Using Librarian	 98
Using r10k	 100
Using Puppet-supported modules	 106

concat	 106
inifile	 112
firewall	 117
Logical volume manager	 121
Standard library	 124

Summary	 126
Chapter 5: Custom Facts and Modules	 127

Module manifest files	 128
Module files and templates	 131
Naming a module	 132
Creating modules with a Puppet module	 133

Comments in modules	 135
Multiple definitions	 138

Table of Contents

[iii]

Custom facts	 141
Creating custom facts	 141
Creating a custom fact for use in Hiera	 148

CFacter	 150
Summary	 151

Chapter 6: Custom Types	 153
Parameterized classes	 153

Data types	 154
Defined types	 155
Types and providers	 166

Creating a new type	 167
Summary	 174

Chapter 7: Reporting and Orchestration	 175
Turning on reporting	 175
Store	 176
Logback	 177
Internet relay chat	 177
Foreman	 182

Installing Foreman	 182
Attaching Foreman to Puppet	 183
Using Foreman	 185

Puppet GUIs	 187
mcollective	 187

Installing ActiveMQ	 189
Configuring nodes to use ActiveMQ	 192
Connecting a client to ActiveMQ	 195
Using mcollective	 198

Ansible	 199
Summary	 199

Chapter 8: Exported Resources	 201
Configuring PuppetDB – using the Forge module	 201
Manually installing PuppetDB	 205

Installing Puppet and PuppetDB	 205
Installing and configuring PostgreSQL	 206
Configuring puppetdb to use PostgreSQL	 207
Configuring Puppet to use PuppetDB	 208

Exported resource concepts	 209
Declaring exported resources	 210
Collecting exported resources	 210
Simple example – a host entry	 210

Table of Contents

[iv]

Resource tags	 212
Exported SSH keys	 213

sshkey collection for laptops	 214
Putting it all together	 217
Summary	 226

Chapter 9: Roles and Profiles	 227
Design pattern	 227
Creating an example CDN role	 228

Creating a sub-CDN role	 232
Dealing with exceptions	 234
Summary	 235

Chapter 10: Troubleshooting	 237
Connectivity issues	 238
Catalog failures	 241

Full trace on a catalog compilation	 244
The classes.txt file	 245

Debugging	 246
Personal and bugfix branches	 247

Echo statements	 247
Scope	 248
Profiling and summarizing	 249

Summary	 250
Index	 251

[v]

Preface
The complexity of your installation will increase with the number of nodes in your
organization. Working on a small deployment with a few developers is much
simpler than working on a large installation with many developers.

Mastering Puppet Second Edition deals with the issues faced by larger deployments,
such as scaling and versioning. This book will show you how to fit Puppet into your
organization and keep everyone working. The concepts presented can be adopted
to suit any size organization.

What this book covers
Chapter 1, Dealing with Load/Scale, will show you how to scale your Puppet
infrastructure as your node count increases.

Chapter 2, Organizing Your Nodes and Data, is where we show different methods of
applying modules to nodes. We look at Hiera and external node classifiers (ENCs).

Chapter 3, Git and Environments, introduces Git and how to use Git as an integral
component of your Puppet infrastructure.

Chapter 4, Public Modules, shows how to use Puppet Forge as a source of modules
and how to use several popular modules in your organization.

Chapter 5, Custom Facts and Modules, is where we extend Puppet with custom facts
and start writing our own modules.

Chapter 6, Custom Types, is where we introduce defined types and show how to
extend the Puppet language with our own custom types and providers.

Chapter 7, Reporting and Orchestration, is where we configure reporting to help track
down errors in our Puppet deployments.

Preface

[vi]

Chapter 8, Exported Resources, explains how useful it is to have resources on one node
that can be applied to other nodes in your organization.

Chapter 9, Roles and Profiles, shows a popular design pattern in Puppet node
deployments. Here we present the concept and show example usage.

Chapter 10, Troubleshooting, is where we show some common errors found in
Puppet deployments, as well as possible solutions.

What you need for this book
All the examples in this book were written and tested using an Enterprise Linux
7 derived installation, such as CentOS 7, Scientific Linux 7, or Springdale Linux 7.
Additional repositories used were EPEL (Extra Packages for Enterprise Linux), the
Software Collections (SCL) repository, the Foreman repository, and the Puppet Labs
repository. The version of Puppet used was the latest 4.2 series at the time of writing.

Who this book is for
This book is for those who have intermediate knowledge of Puppet and are looking
to deploy it in their environment. Some idea of how to write simple modules for
configuration management with Puppet is a prerequisite for this book.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Now sign the certificate using the puppet cert sign command."

A block of code is set as follows:

yumrepo { 'example.com-puppet':
 baseurl => 'http://puppet.example.com/noarch',
 descr => 'example.com Puppet Code Repository',
 enabled => '1',
 gpgcheck => '0',
}

Preface

[vii]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

node_terminus = ldap
ldapserver = ldap.example.com
ldapbase = ou=hosts,dc=example,dc=com

Any command-line input or output is written as follows:

puppetserver gem install jruby-ldap

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "You can
also navigate to the Monitor | Reports section to see the latest reports."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[viii]

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[ix]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Dealing with Load/Scale
A large deployment will have a large number of nodes. If you are growing your
installation from scratch, you might have to start with a single Puppet master. At a
certain point in your deployment, a single Puppet master just won't cut it—the load
will become too great. In my experience, this limit is around 600 nodes. Puppet agent
runs begin to fail on the nodes and catalogs fail to compile. There are two ways to
deal with this problem: divide and conquer or conquer by dividing.

That is, we can either split up our Puppet master, dividing the workload among
several machines, or we can make each of our nodes apply our code directly using
Puppet agent (this is known as a masterless configuration). We'll examine each of
these solutions separately.

Divide and conquer
When you start to think about dividing up your puppetserver, the main thing to
realize is that many parts of Puppet are simply HTTP TLS transactions. If you treat
these things as a web service, you can scale up to any size required, using HTTP load
balancing techniques.

Puppet is a web service. There are several different components supporting that web
service, as shown in the following diagram:

Dealing with Load/Scale

[2]

Each of the different components in your Puppet infrastructure (SSL CA, reporting,
storeconfigs, and catalog) compilation can be split up into their own server or
servers, as explained in the following sections.

Certificate signing
Unless you are having issues with certificate signing consuming too many resources,
it's simpler to keep the signing machine as a single instance, possibly with a hot
spare. Having multiple certificate signing machines means that you have to keep
certificate revocation lists synchronized.

Reporting
Reporting should be done on a single instance if possible. Reporting options will be
covered in Chapter 7, Reporting and Orchestration.

Storeconfigs
Storeconfigs should be run on a single server; storeconfigs allows for exported
resources and is optional. The recommended configuration for storeconfigs is
PuppetDB, which can handle several thousand nodes in a single installation.

Catalog compilation
Catalog compilation is one task that can really bog down your Puppet installation.
Splitting compilation among a pool of workers is the biggest win to scale your
deployment. The idea here is to have a primary point of contact for all your nodes—
the load balancer. Then, using proxying techniques, the load balancer will direct
requests to specific worker machines within your Puppet infrastructure. From the
perspective of the nodes checking into Puppet master, all the interaction appears to
come from the main load balancing machine.

When nodes contact the Puppet master, they do so using an HTTP REST API,
which is TLS encrypted. The resource being requested by a node may be any of
the accepted REST API calls, such as catalog, certificate, resource, report, file_
metadata, or file_content. A complete list of the HTTP APIs is available at
http://docs.puppetlabs.com/guides/rest_api.html.

http://docs.puppetlabs.com/guides/rest_api.html

Chapter 1

[3]

When nodes connect to the Puppet master, they connect to the master service.
In prior versions of Puppet (versions 3.6 and older), the accepted method to run
the Puppet master service was through the Passenger framework. In Puppet 3.7
and above, this was replaced with a new server, puppetserver. Puppet version 4
and above have deprecated Passenger; support for Passenger may be completely
removed in a future release. puppetserver runs Puppet as a JRuby process within
a JVM that is wrapped by a Jetty web server. There are many moving parts in the
new puppetserver service, but the important thing is that Puppet Labs built this
service to achieve better performance than the older Passenger implementation.
A Puppet master running the puppetserver service can typically handle around
5,000 individual nodes; this is a vast improvement.

A quick word on versions, Puppet has now changed how they distribute
Puppet. Puppet is now distributed as an all-in-one package. This package
includes the required Ruby dependencies all bundled together. This new
packaging has resulted in a new package naming scheme, named Puppet
collections or PC. Numbering begins at 1 for the PC packages, so you
will see PC1 as the package and repository name, the version of Puppet
contained within those packages is version 4. Additionally, Puppet
Enterprise has changed its name to a year based system; the first release of
that series was 2015.1, which had a PC release of 1.2.7. More information
on Puppet collections can be found at https://puppetlabs.com/
blog/welcome-puppet-collections.

puppetserver
The puppetserver uses the same design principles as PuppetDB. PuppetDB uses
a new framework named Trapperkeeper. Trapperkeeper is written in Clojure and
is responsible for managing the HTTP/TLS endpoints that are required to serve as
a Puppet master server. More information about Trapperkeeper is available at the
project website at https://github.com/puppetlabs/trapperkeeper.

Building a Puppet master
To build a split Puppet master configuration, we will first start with an empty
machine running an enterprise Linux distribution, such as CentOS, RedHat
Enterprise Linux, or Springdale Linux. I will be using Springdale Linux 7 for my
example machines. More information on Springdale is available at https://
springdale.math.ias.edu/. I will start by building a machine named lb (load
balancer), as my first Puppet master. The puppetserver process uses a lot of
memory; the lb machine needs to have at least 2.5GB of memory to allow the
puppetserver process to run.

https://puppetlabs.com/blog/welcome-puppet-collections
https://puppetlabs.com/blog/welcome-puppet-collections
https://github.com/puppetlabs/trapperkeeper
https://springdale.math.ias.edu/
https://springdale.math.ias.edu/

Dealing with Load/Scale

[4]

If you are setting up a lab environment where you won't run a large
number of nodes, you can reconfigure puppetserver to use less
memory. More information is available at http://docs.puppetlabs.
com/puppetserver/latest/install_from_packages.
html#memory-allocation.

To enable the puppetserver service on a node, install the Puppet Labs yum
repository rpm onto the machine. At the time of writing, the latest release rpm is
puppetlabs-release-pc1-0.9.2-1.el7.noarch.rpm, which is available from
Puppet Labs at http://yum.puppetlabs.com/el/7/PC1/x86_64/puppetlabs-
release-pc1-0.9.2-1.el7.noarch.rpm.

This is to be installed using the following yum command:

[thomas@lb ~]$ sudo yum install http://yum.puppetlabs.com/el/7/PC1/
x86_64/puppetlabs-release-pc1-0.9.2-1.el7.noarch.rpm

puppetlabs-release-pc1-0.9.2-1.el7.noarch.rpm | 4.1 kB
00:00:00

...

Installed:

puppetlabs-release-pc1.noarch 0:0.9.2-1.el7

Complete!

After installing the puppetlabs-release-pc1 rpm, install the puppetserver rpm.
This can be done with the following command:

[thomas@lb ~]$ sudo yum install puppetserver

Installing puppetserver will automatically install a few Java dependencies.
Installing puppetserver will also install the puppet-agent rpm onto your system.
This places the Puppet and Facter applications into /opt/puppetlabs/bin. This
path may not be in your PATH environment variable, so you need to add this to
your PATH variable either by adding a script to the /etc/profile.d directory or
appending the path to your shell initialization files.

If you are using sudo, then you will have to add /opt/puppetlabs/
bin to your secure_path setting in /etc/sudoers, as well.

Now that the server is installed, we'll need to generate new X.509 certificates for our
Puppet infrastructure.

http://docs.puppetlabs.com/puppetserver/latest/install_from_packages.html#memory-allocation
http://docs.puppetlabs.com/puppetserver/latest/install_from_packages.html#memory-allocation
http://docs.puppetlabs.com/puppetserver/latest/install_from_packages.html#memory-allocation
http://yum.puppetlabs.com/el/7/PC1/x86_64/puppetlabs-release-pc1-0.9.2-1.el7.noarch.rpm
http://yum.puppetlabs.com/el/7/PC1/x86_64/puppetlabs-release-pc1-0.9.2-1.el7.noarch.rpm

Chapter 1

[5]

Certificates
To generate certificates, we need to initialize a new CA on the lb machine. This can
be done easily using the puppet cert subcommand, as shown here:

[thomas@lb ~]$ sudo /opt/puppetlabs/bin/puppet cert list -a

Notice: Signed certificate request for ca

With the CA certificate generated, we can now create a new certificate for the master.
When nodes connect to Puppet, they will search for a machine named puppet. Since
the name of my test machine is lb, I will alter Puppet configuration to have Puppet
believe that the name of the machine is puppet. This is done by adding the following
to the puppet.conf file in either the [main] or [master] sections. The file is located
in /etc/puppetlabs/puppet/puppet.conf:

certname = puppet.example.com

The domain of my test machine is example.com and I will generate the certificate for
lb with the example.com domain defined. To generate this new certificate, we will
use the puppet certificate generate subcommand, as shown here:

[thomas@lb ~]$ sudo /opt/puppetlabs/bin/puppet certificate generate
--dns-alt-names puppet,puppet.example.com,puppet.dev.example.com puppet.
example.com --ca-location local

Notice: puppet.example.com has a waiting certificate request

true

Now, since the certificate has been generated, we need to sign the certificate, as
shown here:

[thomas@lb ~]$ sudo /opt/puppetlabs/bin/puppet cert sign puppet.example.
com --allow-dns-alt-names

Notice: Signed certificate request for puppet.example.com

Notice: Removing file Puppet::SSL::CertificateRequestpuppet.example.com
at '/etc/puppetlabs/puppet/ssl/ca/requests/puppet.example.com.pem'

The signed certificate will be placed into the /etc/puppetlabs/puppet/ssl/ca/
signed directory; we need to place the certificate in the /etc/puppetlabs/puppet/
ssl/certs directory. This can be done with the puppet certificate find
command, as shown here:

[thomas@lb ~]$ sudo puppet certificate find puppet.example.com --ca-
location local

-----BEGIN CERTIFICATE-----

MIIFvDCCA6SgAwIBAgIBAjANBgkqhkiG9w0BAQsFADAoMSYwJAYDVQQDDB1QdXBw

Dealing with Load/Scale

[6]

...

9ZLNFwdQ4iMxenffcEQErMfkT6fjcvdSIjShoIe3Myk=

-----END CERTIFICATE-----

In addition to displaying the certificate, the puppet cert sign command will also
place the certificate into the correct directory.

With the certificate in place, we are ready to start the puppetserver process.

systemd
Enterprise Linux 7 (EL7) based distributions now use systemd to control the starting
and stopping of processes. EL7 distributions still support the service command to
start and stop services. However, using the equivalent systemd commands is the
preferred method and will be used in this book. systemd is a complete rewrite of
the System V init process and includes many changes from traditional UNIX init
systems. More information on systemd can be found on the freedesktop website
at http://www.freedesktop.org/wiki/Software/systemd/.

To start the puppetserver service using systemd, use the systemctl command,
as shown here:

[thomas@lb ~]$ sudo systemctl start puppetserver

puppetserver will start after a lengthy process of creating JVMs. To verify that
puppetserver is running, verify that the Puppet master port (TCP port 8140) is
listening for connections with the following command:

[thomas@lb ~]$ sudo lsof -i :8140

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

java 4299 puppet 28u IPv6 37899 0t0 TCP *:8140 (LISTEN)

At this point, your server will be ready to accept connections from Puppet agents.
To ensure that the puppetserver service is started when our machine is rebooted,
use the enable option with systemctl, as shown here:

[root@puppet ~]# sudo systemctl enable puppetserver.service

ln -s '/usr/lib/systemd/system/puppetserver.service' '/etc/systemd/
system/multi-user.target.wants/puppetserver.service'

With Puppet master running, we can now begin to configure a load balancer for
our workload.

http://www.freedesktop.org/wiki/Software/systemd/

Chapter 1

[7]

Creating a load balancer
At this point, the lb machine is acting as a Puppet master running the puppetserver
service. Puppet agents will not be able to connect to this service. By default, EL7
machines are configured with a firewall service that will prevent access to port 8140.
At this point, you can either configure the firewall using firewalld to allow the
connection, or disable the firewall.

Host based firewalls can be useful; by disabling the firewall, any
service that is started on our server will be accessible from outside
machines. This may potentially expose services we do not wish to
expose from our server.

To disable the firewall, issue the following commands:

[thomas@client ~]$ sudosystemctl disable firewalld.service

rm '/etc/systemd/system/dbus-org.fedoraproject.FirewallD1.service'

rm '/etc/systemd/system/basic.target.wants/firewalld.service'

[thomas@client ~]$ sudosystemctl stop firewalld.service

Alternatively, to allow access to port 8140, issue the following commands:

[thomas@lb ~]$ sudo firewall-cmd --add-port=8140/tcp

success

[thomas@lb ~]$ sudo firewall-cmd --add-port=8140/tcp --permanent

success

We will now create a load balancing configuration with three servers: our first lb
machine and two machines running puppetserver and acting as Puppet masters.
I will name these puppetmaster1 and puppetmaster2.

To configure the lb machine as a load balancer, we need to reconfigure
puppetserver in order to listen on an alternate port. We will configure Apache
to listen on the default Puppet master port of 8140. To make this change, edit the
webserver.conf file in the /etc/puppetlabs/puppetserver/conf.d directory,
so that its contents are the following:

webserver: {
 access-log-config = /etc/puppetlabs/puppetserver/request-logging.xml
 client-auth = want
 ssl-host = 0.0.0.0
 ssl-port = 8141
 host = 0.0.0.0
 port = 18140
}

Dealing with Load/Scale

[8]

This will configure puppetserver to listen on port 8141 for TLS encrypted traffic
and port 18140 for unencrypted traffic. After making this change, we need to restart
the puppetserver service using systemctl, as follows:

[thomas@lb ~]$ sudo systemctl restart puppetserver.service

Next, we will configure Apache to listen on the master port and act as a proxy to the
puppetserver process.

Apache proxy
To configure Apache to act as a proxy service for our load balancer, we will need to
install httpd, the Apache server. We will also need to install the mod_ssl package to
support encryption on our load balancer. To install both these packages, issue the
following yum command:

[thomas@lb~]$ sudo yum install httpd mod_ssl

Next, create a configuration file for the load balancer that uses the puppet.example.
com certificates, which we created earlier. Create a file named puppet_lb.conf in the
/etc/httpd/conf.d directory with the following contents:

Listen 8140
<VirtualHost *:8140>
 ServerNamepuppet.example.com
 SSLEngine on
 SSLProtocol -ALL +TLSv1 +TLSv1.1 +TLSv1.2
 SSLCipherSuite ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:-LOW:-SSLv2:-EXP
 SSLCertificateFile /etc/puppetlabs/puppet/ssl/certs/puppet.example.
com.pem
 SSLCertificateKeyFile /etc/puppetlabs/puppet/ssl/private_keys/
puppet.example.com.pem
 SSLCertificateChainFile /etc/puppetlabs/puppet/ssl/ca/ca_crt.pem
 SSLCACertificateFile /etc/puppetlabs/puppet/ssl/ca/ca_crt.pem
 # If Apache complains about invalid signatures on the CRL, you can
try disabling
 # CRL checking by commenting the next line, but this is not
recommended.
 SSLCARevocationFile /etc/puppetlabs/puppet/ssl/ca/ca_crl.pem
 SSLVerifyClient optional
 SSLVerifyDepth 1
 # The `ExportCertData` option is needed for agent certificate
expiration warnings
 SSLOptions +StdEnvVars +ExportCertData
 # This header needs to be set if using a loadbalancer or proxy
 RequestHeader unset X-Forwarded-For

Chapter 1

[9]

 RequestHeader set X-SSL-Subject %{SSL_CLIENT_S_DN}e
 RequestHeader set X-Client-DN %{SSL_CLIENT_S_DN}e
 RequestHeader set X-Client-Verify %{SSL_CLIENT_VERIFY}e

 ProxyPassMatch ^/(puppet-ca/v[123]/.*)$ balancer://puppetca/$1
 ProxyPass / balancer://puppetworker/
 ProxyPassReverse / balancer://puppetworker

 <Proxy balancer://puppetca>
 BalancerMember http://127.0.0.1:18140
 </Proxy>
 <Proxy balancer://puppetworker>
 BalancerMember http://192.168.0.100:18140
 BalancerMember http://192.168.0.101:18140
 </Proxy>

</VirtualHost>

This configuration creates an Apache VirtualHost that will listen for connections
on port 8140 and redirect traffic to one of the three puppetserver instances. One
puppetserver instance is the instance running on the load balancer machine lb. The
other two are Puppet master servers, which we have not built yet. To continue with
our configuration, create two new machines and install puppetserver, as we did on
the lb machine; name these servers, as puppetmaster1 and puppetmaster2.

In our load balancing configuration, communication between the lb machine and the
Puppet masters will be unencrypted. To maintain security, a private network should
be established between the lb machine and the Puppet masters. In my configuration,
I gave the two Puppet masters IP addresses 192.168.0.100 and 192.168.0.101,
respectively. The lb machine was given the IP address 192.168.0.110.

The following lines in the Apache configuration are used to create two proxy
balancer locations, using Apache's built-in proxying engine:

<Proxy balancer://puppetca>
 BalancerMember http://127.0.0.1:18140
</Proxy>
<Proxy balancer://puppetworker>
 BalancerMember http://192.168.0.100:18140
 BalancerMember http://192.168.0.101:18140
</Proxy>

The puppetca balancer points to the local puppetserver running on lb. The
puppetworker balancer points to both puppetmaster1 and puppetmaster2
and will round robin between the two machines.

Dealing with Load/Scale

[10]

The following ProxyPass and ProxyPassMatch configuration lines direct traffic
between the two balancer endpoints:

ProxyPassMatch ^/(puppet-ca/v[123]/.*)$ balancer://puppetca/$1
ProxyPass / balancer://puppetworker/
ProxyPassReverse / balancer://puppetworker

These lines take advantage of the API redesign in Puppet 4. In previous versions of
Puppet, the Puppet REST API defined the endpoints using the following syntax:

environment/endpoint/value

The first part of the path is the environment used by the node. The second part
is the endpoint. The endpoint may be one of certificate, file, or catalog (there are
other endpoints, but these are the important ones here). All traffic concerned with
certificate signing and retrieval will have the word "certificate" as the endpoint.
To redirect all certificate related traffic to a specific machine, the following
ProxyPassMatch directive can be used:

ProxyPassMatch ^/([^/]+/certificate.*)$ balancer://puppetca/$1

Indeed, this was the ProxyPassMatch line that I used when working with Puppet
3 in the previous version of this book. Starting with Puppet 4, the REST API URLs
have been changed, such that all certificate or certificate authority (CA) traffic is
directed to the puppet-ca endpoint. In Puppet 4, the API endpoints are defined,
as follows:

/puppet-ca/version/endpoint/value?environment=environment

Or, as follows:

puppet/version/endpoint/value?environment=environment

The environment is now placed as an argument to the URL after ?. All CA related
traffic is directed to the /puppet-ca URL and everything else to the /puppet URL.

To take advantage of this, we use the following ProxyPassMatch directive:

ProxyPassMatch ^/(puppet-ca/v[123]/.*)$ balancer://puppetca/$1

With this configuration in place, all certificate traffic is directed to the puppetca
balancer.

In the next section, we will discuss how TLS encryption information is handled
by our load balancer.

Chapter 1

[11]

TLS headers
When a Puppet agent connects to a Puppet master, the communication is
authenticated with X.509 certificates. In our load balancing configuration, we are
interjecting ourselves between the nodes and the puppetserver processes on the
Puppet master servers. To allow the TLS communication to flow, we configure
Apache to place the TLS information into headers, as shown in the following
configuration lines:

This header needs to be set if using a loadbalancer or proxy
RequestHeader unset X-Forwarded-For
RequestHeader set X-SSL-Subject %{SSL_CLIENT_S_DN}e
RequestHeader set X-Client-DN %{SSL_CLIENT_S_DN}e
RequestHeader set X-Client-Verify %{SSL_CLIENT_VERIFY}e

These lines take information from the connecting nodes and place them into HTTP
headers that are then passed to the puppetserver processes. We can now start
Apache and begin answering requests on port 8140.

SELinux
Security-Enhanced Linux (SELinux) is a system for Linux that provides support
for mandatory access controls (MAC). If your servers are running with SELinux
enabled, great! You will need to enable an SELinux Boolean to allow Apache to
connect to the puppetserver servers on port 18140. This Boolean is httpd_can_
network_connect. To set this Boolean, use the setsebool command, as shown here:

[thomas@lb ~]$ sudo setsebool -P httpd_can_network_connect=1

SELinux provides an extra level of security. For this load balancer configuration, the
Boolean is the only SELinux configuration change that was required. If you have
unexplained errors, you can check for SELinux AVC messages in /var/log/audit/
audit.log. To allow any access that SELinux is denying, you use the setenforce
command, as shown here:

[thomas@lb ~]$ sudo setenforce 0

More information on SELinux is available at http://selinuxproject.org/page/
Main_Page.

Now a configuration change must be made for the puppetserver processes to access
certificate information passed in headers. The master.conf file must be created in
the /etc/puppetlabs/puppetserver/conf.d directory with the following content:

master: {
 allow-header-cert-info: true
}

http://selinuxproject.org/page/Main_Page
http://selinuxproject.org/page/Main_Page

Dealing with Load/Scale

[12]

After making this change, puppetserver must be restarted.

At this point, there will be three puppetserver processes running; there will be one
on each of the Puppet masters and another on the lb machine.

Before we can use the new master servers, we need to copy the certificate
information from the lb machine. The quickest way to do this is to copy the entire
/etc/puppetlabs/puppet/ssl directory to the masters. I did this by creating a
TAR file of the directory and copying the TAR file using the following commands:

[root@lb puppet]# cd /etc/puppetlabs/puppet

[root@lb puppet]# tar cf ssl.tar ssl

With the certificates in place, the next step is to configure Puppet on the Puppet
masters.

Configuring masters
To test the configuration of the load balancer, create site.pp manifests in the
code production directory /etc/puppetlabs/code/environments/production/
manifests with the following content:

node default {
 notify { "compiled on puppetmaster1": }
}

Create the corresponding file on puppetmaster2:

node default {
 notify { "compiled on puppetmaster2": }
}

With these files in place and the puppetserver processes running on all three
machines, we can now test our infrastructure. You can begin by creating a client
node and installing the puppetlabs release package and then the puppet-agent
package. With Puppet installed, you will need to either configure DNS, such that
the lb machine is known as puppet or add the IP address of the lb machine to
/etc/hosts as the puppet machine, as shown here:

192.168.0.110 puppet.example.com puppet

Next, start the Puppet agent on the client machine. This will create a certificate for
the machine on the lb machine, as shown here:

[thomas@client ~]$ sudo puppet agent -t

Info: Creating a new SSL key for client

Chapter 1

[13]

Info: csr_attributes file loading from /etc/puppetlabs/puppet/csr_
attributes.yaml

Info: Creating a new SSL certificate request for client

Info: Certificate Request fingerprint (SHA256): FE:D1:6D:70:90:10:9E:C9:0
E:D7:3B:BA:3D:2C:71:93:59:40:02:64:0C:FC:D4:DD:8E:92:EF:02:7F:EE:28:52

Exiting; no certificate found and waitforcert is disabled

On the lb machine, list the unsigned certificates with the puppet cert list
command, as shown here:

[thomas@lb ~]$ sudo puppet cert list

 "client" (SHA256) FE:D1:6D:70:90:10:9E:C9:0E:D7:3B:BA:3D:2C:71:93:59:40
:02:64:0C:FC:D4:DD:8E:92:EF:02:7F:EE:28:52

Now sign the certificate using the puppet cert sign command, as shown:

[thomas@lb ~]$ sudo puppet cert sign client

Notice: Signed certificate request for client

Notice: Removing file Puppet::SSL::CertificateRequest client at '/etc/
puppetlabs/puppet/ssl/ca/requests/client.pem'

With the certificate signed, we can run puppet agent again on the client machine
and verify the output:

[thomas@client ~]$ sudo puppet agent -t

Info: Retrieving pluginfacts

Info: Retrieving plugin

Info: Caching catalog for client

Info: Applying configuration version '1441254717'

Notice: compiled on puppetserver1

Notice: /Stage[main]/Main/Node[default]/Notify[compiled on
puppetmaster1]/message: defined 'message' as 'compiled on puppetmaster1'

Notice: Applied catalog in 0.04 seconds

If we run the agent again, we might see another message from the other
Puppet master:

[thomas@client ~]$ sudo puppet agent -t

Info: Retrieving pluginfacts

Info: Retrieving plugin

Info: Caching catalog for client

Info: Applying configuration version '1441256532'

Notice: compiled on puppetmaster2

Dealing with Load/Scale

[14]

Notice: /Stage[main]/Main/Node[default]/Notify[compiled on
puppetmaster2]/message: defined 'message' as 'compiled on puppetmaster2'

Notice: Applied catalog in 0.02 seconds

An important thing to note here is that the certificate for our client machine is
only available on the lb machine. When we list all the certificates available on
puppetmaster1, we only see the puppet.localdomain certificate, as shown in
the following output:

[thomas@puppet ~]$ sudo puppet cert list -a

+ "puppet.example.com" (SHA256) 9B:C8:43:46:71:1E:0A:E0:63:E8:A7:B5:C2
:BF:4D:6E:68:4C:67:57:87:4C:7A:77:08:FC:5A:A6:62:E9:13:2E (alt names:
"DNS:puppet", "DNS:puppet.dev.example.com", "DNS:puppet.example.com")

However, running the same command on the lb machine returns the certificate we
were expecting:

[thomas@lb ~]$ sudo puppet cert list -a

+ "client" (SHA256) E6:38:60:C9:78:F8:B1:88:EF:3C:58:17:88:81
:72:86:1B:05:C4:00:B2:A2:99:CD:E1:FE:37:F2:36:6E:8E:8B

+ "puppet.example.com" (SHA256) 9B:C8:43:46:71:1E:0A:E0:63:E8:A7:B5:C2
:BF:4D:6E:68:4C:67:57:87:4C:7A:77:08:FC:5A:A6:62:E9:13:2E (alt names:
"DNS:puppet", "DNS:puppet.dev.example.com", "DNS:puppet.example.com")

So at this point, when the nodes connect to our lb machine, all the certificate traffic
is directed to the puppetserver process running locally on the lb machine. The
catalog requests will be shared between puppetmaster1 and puppetmaster2, using
the Apache proxy module. We now have a load balancing puppet infrastructure. To
scale out by adding more Puppet masters, we only need to add them to the proxy
balancer in the Apache configuration. In the next section, we'll discuss how to keep
the code on the various machines up to date.

Keeping the code consistent
At this point, we are can scale out our catalog compilation to as many servers as we
need. However, we've neglected one important thing: we need to make sure that
Puppet code on all the workers remains in sync. There are a few ways in which we
can do this and when we cover integration with Git in Chapter 3, Git and Environments,
we will see how to use Git to distribute the code.

rsync
A simple method to distribute the code is with rsync. This isn't the best solution, but
for example, you will need to run rsync whenever you change the code. This will
require changing the Puppet user's shell from /sbin/nologin to /bin/bash or /
bin/rbash, which is a potential security risk.

Chapter 1

[15]

If your Puppet code is on a filesystem that supports ACLs, then
creating an rsync user and giving that user the rights to specific
directories within that filesystem is a better option. Using setfacl, it
is possible to grant write access to the filesystem for a user other than
Puppet. For more information on ACLs on Enterprise Linux, visit the
Red Hat documentation page at https://access.redhat.com/
documentation/en-US/Red_Hat_Enterprise_Linux/7/html/
Storage_Administration_Guide/ch-acls.html.

First, we create an SSH key for rsync to use to SSH between the Puppet master
nodes and the load balancer. We then copy the key into the authorized_keys file of
the Puppet user on the Puppet masters, using the ssh-copy-id command. We start
by generating the certificate on the load balancer, as shown here:

lb# ssh-keygen -f puppet_rsync

Generating public/private rsa key pair.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in puppet_rsync.

Your public key has been saved in puppet_rsync.pub.

This creates puppet_rsync.pub and puppet_rsync. Now, on the Puppet masters,
configure the Puppet user on those machines to allow access using this key using
the following commands:

[thomas@puppet ~]$ sudo mkdir ~puppet/.ssh

[thomas@puppet ~]$ sudo cp puppet_rsync.pub ~puppet/.ssh/authorized_keys

[thomas@puppet ~]$ sudo chown -R puppet:puppet ~puppet/.ssh

[thomas@puppet ~]$ sudo chmod 750 ~puppet

[thomas@puppet ~]$ sudo chmod 700 ~puppet/.ssh

[thomas@puppet ~]$ sudo chmod 600 ~puppet/.ssh/authorized_keys

[thomas@puppet ~]$ sudo chsh -s /bin/bash puppet

Changing shell for puppet.

Shell changed.

[thomas@puppet ~]$ sudo chown -R puppet:puppet /etc/puppetlabs/code

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-acls.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-acls.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-acls.html

Dealing with Load/Scale

[16]

The changes made here allow us to access the Puppet master server from the load
balancer machine, using the SSH key. We can now use rsync to copy our code from
the load balancer machine to each of the Puppet masters, as shown here:

[thomas@lb ~]$ rsync -e 'ssh -i puppet_rsync' -az /etc/puppetlabs/code/
puppet@puppetmaster1:/etc/puppetlabs/code

Creating SSH keys and using rsync
The trailing slash in the first part /etc/puppetlabs/code/ and the
absence of the slash in the second part puppet@puppetmaster1:/etc/
puppetlabs/code is by design. In this manner, we get the contents
of /etc/puppetlabs/code on the load balancer placed into /etc/
puppetlabs/code on the Puppet master.

Using rsync is not a good enterprise solution. The concept of using the SSH keys
and transferring the files as the Puppet user is useful. In Chapter 2, Organizing Your
Nodes and Data, we will use this same concept when triggering code updates via Git.

NFS
A second option to keep the code consistent is to use NFS. If you already have an
NAS appliance, then using the NAS to share Puppet code may be the simplest
solution. If not, using Puppet master as an NFS server is another. However, this
makes your Puppet master a big, single point of failure. NFS is not the best solution
for this sort of problem.

Clustered filesystem
Using a clustered filesystem, such as gfs2 or glusterfs is a good way to maintain
consistency between nodes. This also removes the problem of the single point of
failure with NFS. A cluster of three machines makes it far less likely that the failure
of a single machine will render the Puppet code unavailable.

Git
The third option is to have your version control system keep the files in sync with
a post-commit hook or scripts that call Git directly such as r10k or puppet-sync.
We will cover how to configure Git to do some housekeeping for us in Chapter 2,
Organizing Your Nodes and Data. Using Git to distribute the code is a popular
solution, since it only updates the code when a commit is made. This is the
continuous delivery model. If your organization would rather push code at
certain points (not automatically), then I would suggest using the scripts
mentioned earlier on a routine basis.

Chapter 1

[17]

One more split
Now that we have our Puppet infrastructure running on two Puppet masters and
the load balancer, you might notice that the load balancer and the certificate signing
machine need not be the same machine.

To split off the Puppet certificate authority (puppetca) from the load balancing
machine, make another Puppet master machine, similar to the previous Puppet
master machines (complete with the master.conf configuration file in the /etc/
puppetlabs/puppetserver/conf.d directory). Give this new machine the following
IP address 192.168.0.111.

Now, modify the puppet_lb.conf file in the /etc/httpd/conf.d directory such
that the proxy balancer for puppetca points to this new machine, as shown here:

<Proxy balancer://puppetca>
 BalancerMember http://192.168.0.111:18140
</Proxy>

Now restart Apache on the load balancer and verify that the certificate signing
is now taking place on the new puppetca machine. This can be done by running
Puppet on our client machine with the --certname option to specify an alternate
name for our node, as shown here:

[thomas@client ~]$ puppet agent -t --certname split

Info: Creating a new SSL key for split

Info: csr_attributes file loading from /home/thomas/.puppetlabs/etc/
puppet/csr_attributes.yaml

Info: Creating a new SSL certificate request for split

Info: Certificate Request fingerprint (SHA256): 98:41:F6:7C:44:FE:35:E5:B
9:B5:86:87:A1:BE:3A:FD:4A:D4:50:B8:3A:3A:69:00:87:12:0D:9A:2B:B0:94:CF

Exiting; no certificate found and waitforcert is disabled

Now on the puppetca machine, run the puppet cert list command to see the
certificate waiting to be signed:

[thomas@puppet ~]$ sudo puppet cert list

 "split" (SHA256) 98:41:F6:7C:44:FE:35:E5:B9:B5:86:87:A1:BE:3A:FD:4A:D4:
50:B8:3A:3A:69:00:87:12:0D:9A:2B:B0:94:CF

Dealing with Load/Scale

[18]

When we run the puppet cert list command on the load balancer, we see that the
split certificate is not shown:

thomas@lb ~]$sudo puppet cert list -a

+ "client" (SHA256) E6:38:60:C9:78:F8:B1:88:EF:3C:58:17:88:81
:72:86:1B:05:C4:00:B2:A2:99:CD:E1:FE:37:F2:36:6E:8E:8B

+ "puppet.example.com" (SHA256) 9B:C8:43:46:71:1E:0A:E0:63:E8:A7:B5:C2
:BF:4D:6E:68:4C:67:57:87:4C:7A:77:08:FC:5A:A6:62:E9:13:2E (alt names:
"DNS:puppet", "DNS:puppet.dev.example.com", "DNS:puppet.example.com")

With this split we have streamlined the load balancer to the point where it is
only running Apache. In the next section, we'll look at how else we can split
up our workload.

One last split or maybe a few more
We have already split our workload into a certificate-signing machine (puppetca)
and a pool of catalog compiling machines (Puppet masters). We can also create a
report processing machine and split-off report processing to that machine with the
report_server setting. What is interesting as an exercise at this point is that we
can also serve up files using our load balancing machine.

Based on what we know about the Puppet HTTP API, we know that requests for
file_buckets and files have specific URIs, which we can serve directly from the
load balancer without using puppetserver, or Apache or even Puppet. To test the
configuration, alter the definition of the default node to include a file, as follows:

node default {
 include file_example
}

Create the file_example module and the following class manifest:

class file_example {
 file {'/tmp/example':
 mode=>'644',
 owner =>'100',
 group =>'100',
 source => 'puppet:///modules/file_example/example',
 }
}

Create the example file in the files subdirectory of the module. In this file, place the
following content:

This file is in the code directory.

Chapter 1

[19]

Now, we need to edit the Apache configuration on the load balancer to redirect file
requests to another VirtualHost on the load balancer. Modify the puppet_lb.conf
file so that the rewrite balancer lines are, as follows:

ProxyPassMatch ^/(puppet-ca/v[123]/.*)$ balancer://puppetca/$1
ProxyPassMatch ^/puppet/v[123]/file_content/(.*)$ balancer://
puppetfile/$1

ProxyPass / balancer://puppetworker/
ProxyPassReverse / balancer://puppetworker

<Proxy balancer://puppetca>
 BalancerMember http://192.168.0.111:18140
</Proxy>
<Proxy balancer://puppetfile>
 BalancerMember http://127.0.0.1:8080
</Proxy>
<Proxy balancer://puppetworker>
 BalancerMember http://192.168.0.100:18140
 BalancerMember http://192.168.0.101:18140
</Proxy>

This configuration will redirect any requests to /puppet/v3/file_content to port
8080 on the same machine. We now need to configure Apache to listen on port 8080,
create the files.conf file in the /etc/httpd/conf.d directory:

Listen 8080
<VirtualHost *:8080>
 DocumentRoot /var/www/html/puppet
 LogLevel debug
 RewriteEngine on
 RewriteCond %{QUERY_STRING} ^environment=(.*)&.*$ [NC]
 RewriteRule^(.*)$ /%1/$1 [NC,L]
</VirtualHost>

In version 4 of Puppet, the environment is encoded as a parameter to the request
URL. The URL requested by the node for the example file is /puppet/v3/
file_content/modules/file_example/example?environment=production&.
The files.conf configuration's RewriteCond line will capture the environment
production into %1. The RewriteRule line will take the requested URL and rewrite
it into /production/modules/file_example/example. To ensure that the file is
available, create the following directory on the load balancer machine:

/var/www/html/puppet/production/modules/file_example

Dealing with Load/Scale

[20]

Create the example file in this directory with the following content:

This came from the load balancer

Now, restart the Apache process on the load balancer. At this point we can run the
Puppet agent on the client node to have the /tmp/example file created on the client
node, as shown here:

[thomas@client ~]$ sudo puppet agent -t

Info: Retrieving pluginfacts

Info: Retrieving plugin

Info: Caching catalog for client

Info: Applying configuration version '1441338020'

Notice: compiled on puppetmaster1 -- does that work?

Notice: /Stage[main]/Main/Node[default]/Notify[compiled on puppetmaster1
-- does that work?]/message: defined 'message' as 'compiled on
puppetmaster1 -- does that work?'

Notice: /Stage[main]/File_example/File[/tmp/example]/content:

Info: Computing checksum on file /tmp/example

Info: /Stage[main]/File_example/File[/tmp/example]: Filebucketed /tmp/
example to puppet with sum accaac1654696edf141baeeab9d15198

Notice: /Stage[main]/File_example/File[/tmp/example]/content: content
changed '{md5}accaac1654696edf141baeeab9d15198' to '{md5}1a7b177fb5017e17
daf9522e741b2f9b'

Notice: Applied catalog in 0.23 seconds

[thomas@client ~]$ cat /tmp/example

This came from the load balancer

The contents of the file have now been placed on the client machine and, as we
can see, the contents of the file are coming from the file that is in the subdirectory
of /var/www/html.

One important thing to be considered is security, as any configured client
can retrieve files from our gateway machine. In production, you might
want to add ACLs to the file location.

As we have seen, once the basic proxying is configured, further splitting up of the
workload becomes a routine task. We can split the workload to scale to handle as
many nodes as we require.

Chapter 1

[21]

Conquer by dividing
Depending on the size of your deployment and the way you connect to all your
nodes, a masterless solution may be a good fit. In a masterless configuration, you
don't run the Puppet agent; rather, you push Puppet code to a node and then run
the puppet apply command. There are a few benefits to this method and a few
drawbacks, as stated in the following table:

Benefits Drawbacks
No single point of failure Can't use built-in reporting tools, such as

dashboard
Simpler configuration Exported resources require nodes having

write access to the database.
Finer-grained control on where the code is
deployed

Each node has access to all the code

Multiple simultaneous runs do not affect
each other (reduces contention)

More difficult to know when a node is
failing to apply a catalog correctly

Connection to Puppet master not required
(offline possible)

No certificate management

No certificate management

The idea with a masterless configuration is that you distribute Puppet code to each
node individually and then kick off a Puppet run to apply that code. One of the
benefits of Puppet is that it keeps your system in a good state; so when choosing
masterless, it is important to build your solution with this in mind. A cron job
configured by your deployment mechanism that can apply Puppet to the node
on a routine schedule will suffice.

The key parts of a masterless configuration are: distributing the code, pushing updates
to the code, and ensuring that the code is applied routinely to the nodes. Pushing a
bunch of files to a machine is best done with some sort of package management.

Many masterless configurations use Git to have clients pull the files, this has the
advantage of clients pulling changes. For Linux systems, the big players are rpm
and dpkg, whereas for Mac OS, installer package files can be used. It is also possible
to configure the nodes to download the code themselves from a web location. Some
large installations use Git to update the code, as well.

The solution I will outline is that of using an rpm deployed through yum to install
and run Puppet on a node. Once deployed, we can have the nodes pull updated
code from a central repository rather than rebuild the rpm for every change.

Dealing with Load/Scale

[22]

Creating an rpm
To start our rpm, we will make an rpm spec file. We can make this anywhere since
we don't have a master in this example. Start by installing rpm-build, which will
allow us to build the rpm.

yum install rpm-build

Installing

 rpm-build-4.8.0-37.el6.x86_64

Later, it is important to have a user to manage the repository, so create a user called
builder at this point. We'll do this on the Puppet master machine we built earlier.
Create an rpmbuild directory with the appropriate subdirectories and then create
our example code in this location:

sudo -iu builder

$ mkdir -p rpmbuild/{SPECS,SOURCES}

$ cd SOURCES

$ mkdir -p modules/example/manifests

$ cat <<EOF> modules/example/manifests/init.pp

class example {

 notify {"This is an example.": }

 file {'/tmp/example':

 mode => '0644',

 owner => '0',

 group => '0',

 content => 'This is also an example.'

 }

}

EOF

$ tar cjf example.com-puppet-1.0.tar.bz2 modules

Next, create a spec file for our rpm in rpmbuild/SPECS as shown here:

Name: example.com-puppet

Version: 1.0

Release: 1%{?dist}

Summary: Puppet Apply for example.com

Chapter 1

[23]

Group: System/Utilities

License: GNU

Source0: example.com-puppet-%{version}.tar.bz2

BuildRoot: %(mktemp -ud %{_tmppath}/%{name}-%{version}-%{release}-XXXXXX)

Requires: puppet

BuildArch: noarch

%description

This package installs example.com's puppet configuration

and applies that configuration on the machine.

%prep

%setup -q -c

%install

mkdir -p $RPM_BUILD_ROOT/%{_localstatedir}/local/puppet

cp -a . $RPM_BUILD_ROOT/%{_localstatedir}/local/puppet

%clean

rm -rf %{buildroot}

%files

%defattr(-,root,root,-)

%{_localstatedir}/local/puppet

%post

run puppet apply

/bin/env puppet apply --logdest syslog --modulepath=%{_localstatedir}/
local/puppet/modules %{_localstatedir}/local/puppet/manifests/site.pp

%changelog

* Fri Dec 6 2013 Thomas Uphill <thomas@narrabilis.com> - 1.0-1

- initial build

Dealing with Load/Scale

[24]

Then use the rpmbuild command to build the rpm based on this spec, as shown here:

$ rpmbuild -baexample.com-puppet.spec

…

Wrote: /home/builder/rpmbuild/SRPMS/example.com-puppet-1.0-1.el6.src.rpm

Wrote: /home/builder/rpmbuild/RPMS/noarch/example.com-puppet-1.0-1.el6.
noarch.rpm

Now, deploy a node and copy the rpm onto that node. Verify that the node installs
Puppet and then does a Puppet apply run.

yum install example.com-puppet-1.0-1.el6.noarch.rpm

Loaded plugins: downloadonly

…

Installed:

example.com-puppet.noarch 0:1.0-1.el6

Dependency Installed:

augeas-libs.x86_64 0:1.0.0-5.el6

...

puppet-3.3.2-1.el6.noarch

…

Complete!

Verify that the file we specified in our package has been created using the following
command:

cat /tmp/example

This is also an example.

Now, if we are going to rely on this system of pushing Puppet to nodes, we have to
make sure that we can update the rpm on the clients and we have to ensure that the
nodes still run Puppet regularly, so as to avoid configuration drift (the whole point
of Puppet).

Using Puppet resource to configure cron
There are many ways to accomplish these two tasks. We can put the cron definition
into the post section of our rpm, as follows:

%post

install cron job

/bin/env puppet resource cron 'example.com-puppet' command='/bin/
env puppet apply --logdest syslog --modulepath=%{_localstatedir}/

Chapter 1

[25]

local/puppet/modules %{_localstatedir}/local/puppet/manifests/site.pp'
minute='*/30' ensure='present'

We can have a cron job be part of our site.pp, as shown here:

cron { 'example.com-puppet':
 ensure => 'present',
 command => '/bin/env puppet apply --logdest syslog --modulepath=/
var/local/puppet/modules /var/local/puppet/manifests/site.pp',
 minute => ['*/30'],
 target => 'root',
 user => 'root',
}

To ensure that the nodes have the latest versions of the code, we can define our
package in site.pp:

package {'example.com-puppet': ensure => 'latest' }

In order for that to work as expected, we need to have a yum repository for the
package and have the nodes looking at that repository for packages.

Creating the yum repository
Creating a yum repository is a very straightforward task. Install the createrepo rpm
and then run createrepo on each directory you wish to make into a repository:

mkdir /var/www/html/puppet

yum install createrepo

…

Installed:

createrepo.noarch 0:0.9.9-18.el6

chown builder /var/www/html/puppet

sudo -iu builder

$ mkdir /var/www/html/puppet/{noarch,SRPMS}

$ cp /home/builder/rpmbuild/RPMS/noarch/example.com-puppet-1.0-1.el6.
noarch.rpm /var/www/html/puppet/noarch

$ cp rpmbuild/SRPMS/example.com-puppet-1.0-1.el6.src.rpm /var/www/html/
puppet/SRPMS

$ cd /var/www/html/puppet

$ createrepo noarch

$ createrepo SRPMS

Dealing with Load/Scale

[26]

Our repository is ready, but we need to export it with the web server to make it
available to our nodes. This rpm contains all our Puppet code, so we need to ensure
that only the clients we wish get an access to the files. We'll create a simple listener
on port 80 for our Puppet repository:

Listen 80
<VirtualHost *:80>
 DocumentRoot /var/www/html/puppet
</VirtualHost>

Now, the nodes need to have the repository defined on them so that they can
download the updates when they are made available via the repository. The idea
here is that we push the rpm to the nodes and have them install the rpm. Once the
rpm is installed, the yum repository pointing to updates is defined and the nodes
continue updating themselves:

yumrepo { 'example.com-puppet':
 baseurl => 'http://puppet.example.com/noarch',
 descr => 'example.com Puppet Code Repository',
 enabled => '1',
 gpgcheck => '0',
}

So, to ensure that our nodes operate properly, we have to make sure of the
following things:

1.	 Install code.
2.	 Define repository.
3.	 Define cron job to run Puppet apply routinely.
4.	 Define package with latest tag to ensure it is updated.

A default node in our masterless configuration requires that the cron task and the
repository be defined. If you wish to segregate your nodes into different production
zones (such as development, production, and sandbox), I would use a repository
management system, such as Pulp. Pulp allows you to define repositories based
on other repositories and keeps all your repositories consistent.

You should also set up a gpg key on the builder account that can sign
the packages it creates. You will then distribute the gpg public key to all
your nodes and enable gpgcheck on the repository definition.

Chapter 1

[27]

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.
You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address
and password.

2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the

code files.
6. Choose from the drop-down menu where you purchased this

book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or
extract the folder using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

Summary
Dealing with scale is a very important task in enterprise deployments. In the first
section, we configured a Puppet master with puppetserver. We then expanded
the configuration with load balancing and proxying techniques realizing that
Puppet is simply a web service. Understanding how nodes request files, catalogs,
and certificates allows you to modify the configurations and bypass or alleviate
bottlenecks.

In the last section, we explored masterless configuration, wherein instead of checking
into Puppet to retrieve new code, the nodes check out the code first and then run
against it on a schedule.

Now that we have dealt with the load issue, we need to turn our attention to
managing the modules to be applied to nodes. We will cover the organization
of the nodes in the next chapter.

http://www.packtpub.com
http://www.packtpub.com/support

[29]

Organizing Your Nodes
and Data

Now that we can deal with a large number of nodes in our installation, we need
a way to organize the classes we apply to each node.

There are a few solutions to the problem of attaching classes to nodes. In this chapter,
we will examine the following node organization methods:

•	 An external node classifier (ENC)
•	 LDAP backend
•	 Hiera

Getting started
For the remainder of this chapter, we will assume that your Puppet infrastructure
is configured with a single Puppet master running puppetserver. We will name
this server puppet and give it the IP address 192.168.1.1. Any Puppet master
configuration will be sufficient for this chapter; the configuration from the previous
chapter was used in the examples of this chapter.

Organizing the nodes with an ENC
An ENC is a process that is run on the Puppet master or the host compiling the catalog,
to determine which classes are applied to the node. The most common form of ENC is
a script run through the exec node terminus. When using the exec node terminus, the
script can be written in any language and it receives certname (certificate name) from
the node, as a command-line argument. In most cases, this will be the Fully Qualified
Domain Name (FQDN) of the node. We will assume that the certname setting has not
been explicitly set and that the FQDN of our nodes is being used.

Organizing Your Nodes and Data

[30]

We will only use the hostname portion, as the FQDN can be unreliable in some
instances. Across your enterprise, the naming convention of the host should not
allow multiple machines to have the same hostname. The FQDN is determined by
a fact; this fact is the union of the hostname fact and the domain fact. The domain
fact on Linux is determined by running the hostname –f command. If DNS is not
configured correctly or reverse records do not exist, the domain fact will not be set
and the FQDN will also not be set, as shown:

facter domain

example.com

facter fqdn

node1.example.com

mv /etc/resolv.conf /etc/resolv.conf.bak

facter domain

facter fqdn

#

The output of the ENC script is a YAML file that defines the classes, variables, and
environment for the node.

Unlike site.pp, the ENC script can only assign classes, make top-scope variables,
and set the environment of the node. The environment is only set from ENC on
versions 3 and above of Puppet.

A simple example
To use an ENC, we need to make one small change in our Puppet master machine.
We'll have to add the node_terminus and external_nodes lines to the [master]
section of puppet.conf, as shown in the following code (we only need make this
change on the master machines, as this is concerned with catalog compilation only):

[master]
 node_terminus = exec
 external_nodes = /usr/local/bin/simple_node_classifier

The puppet.conf files need not be the same across our installation;
Puppet masters and CA machines can have different settings. Having
different configuration settings is advantageous in a Master-of-Master
(MoM) configuration. MoM is a configuration where a top level Puppet
master machine is used to provision all of the Puppet master machines.

Chapter 2

[31]

Our first example, as shown in the following code snippet, will be written in Ruby
and live in the file /usr/local/bin/simple_node_classifier, as shown:

#!/bin/env ruby
require 'yaml'

create an empty hash to contain everything
@enc = Hash.new
@enc["classes"] = Hash.new
@enc["classes"]["base"] = Hash.new
@enc["parameters"] = Hash.new
@enc["environment"] = 'production'
#convert the hash to yaml and print
puts @enc.to_yaml
exit(0)

Make this script executable and test it on the command line, as shown in the
following example:

chmod 755 /usr/local/bin/simple_node_classifier

/usr/local/bin/simple_node_classifier

classes:

 base: {}

environment: production

parameters: {}

Puppet version 4 no longer requires the Ruby system package; Ruby is installed in
/opt/puppetlabs/puppet/bin. The preceding script relies on Ruby being found
in the current $PATH. If Ruby is not in the current $PATH, either modify your $PATH
to include /opt/puppetlabs/puppet/bin or install the Ruby system package.

The previous script returns a properly formatted YAML file.

YAML files start with three dashes (---); they use colons (:) to separate parameters
from values and hyphens (-) to separate multiple values (arrays). For more
information on YAML, visit http://www.yaml.org/.

If you use a language such as Ruby or Python, you do not need to know the syntax
of YAML, as the built-in libraries take care of the formatting for you. The following
is the same example in Python. To use the Python example, you will need to install
PyYAML, which is the Python YAML interpreter, using the following command:

yum install PyYAML

Installed:

 PyYAML.x86_64 0:3.10-3.el6

http://www.yaml.org/

Organizing Your Nodes and Data

[32]

The Python version starts with an empty dictionary. We then use sub-dictionaries
to hold the classes, parameters, and environment. We will call our Python example
/usr/local/bin/simple_node_classifier_2. The following is our example:

#!/bin/env python
import yaml
import sys
create an empty hash
enc = {}
enc["classes"] = {}
enc["classes"]["base"] = {}
enc["parameters"] = {}
enc["environment"] = 'production'
output the ENC as yaml
print "---"
print yaml.dump(enc)
sys.exit(0)

Make /usr/local/bin/simple_node_classifier_2 executable and run it using
the following commands:

worker1# chmod 755 /usr/local/bin/simple_node_classifier_2

worker1# /usr/local/bin/simple_node_classifier_2

classes:

 base: {}

environment: production

parameters: {}

The order of the lines following --- may be different on your machine; the order is
not specified when Python dumps the hash of values.

The Python script outputs the same YAML, as the Ruby code. We will now define
the base class referenced in our ENC script, as follows:

class base {
 file {'/etc/motd':
 mode => '0644',
 owner => '0',
 group => '0',
 content => inline_template("Managed Node: <%= @hostname %>\
nManaged by Puppet version <%= @puppetversion %>\n"),
 }
}

Chapter 2

[33]

Now that our base class is defined, modify the external_nodes setting to point at the
Python ENC script. Restart puppetserver to ensure that the change is implemented.

Now, run Puppet on the client node. Notice that the message of the day
(/etc/motd) has been updated using an inline template, as shown in the
following command-line output:

[thomas@client ~]$ sudo puppet agent -t

Info: Retrieving pluginfacts

Info: Retrieving plugin

Info: Caching catalog for client

Info: Applying configuration version '1441950102'

Notice: /Stage[main]/Base/File[/etc/motd]/ensure: defined content as
'{md5}df3dfe6fe2367e36f0505b486aa24da5'

Notice: Applied catalog in 0.05 seconds

[thomas@client ~]$ cat /etc/motd

Managed Node: client

Managed by Puppet version 4.2.1

Since the ENC is only given one piece of data, the certname (FQDN), we need to
create a naming convention that provides us with enough information to determine
the classes that should be applied to the node.

Hostname strategy
In an enterprise, it's important that your hostnames are meaningful. By meaningful,
I mean that the hostname should give you as much information as possible about
the machine. When you encounter a machine in a large installation, it is likely that
you did not build the machine. You need to be able to know as much as possible
about the machine just from its name. The following key points should be readily
determined from the hostname:

•	 Operating system
•	 Application/role
•	 Location
•	 Environment
•	 Instance

Organizing Your Nodes and Data

[34]

It is important that the convention should be standardized and consistent. In our
example, let us suppose that the application is the most important component for
our organization, so we put that first and the physical location comes next (which
data center), followed by the operating system, environment, and instance number.
The instance number will be used when you have more than one machine with the
same role, location, environment, and operating system. Since we know that the
instance number will always be a number, we can omit the underscore between the
operating system and environment; thus, making the hostname a little easier to type
and remember.

Your enterprise may have more or less information, but the principle will remain the
same. To delineate our components, we will use underscores(_). Some companies
rely on a fixed length for each component of the hostname, so as to mark the
individual components of the hostname by position alone.

In our example, we have the following environments:

•	 p: This stands for production
•	 n: This stands for non-production
•	 d: This stands for development/testing/lab

Our applications will be of the following types:

•	 web

•	 db

Our operating system will be Linux, which we will shorten to just l and our location
will be our main datacenter (main). So, a production web server on Linux in the main
datacenter will have the hostname web_main_lp01.

If you think you are going to have more than 99 instances of any single
service, you might want to have another leading zero to the instance
number (001).

Based only on the hostname, we know that this is a web server in our main
datacenter. It's running on Linux and it's the first such machine in production.
Now that we have this nice convention, we need to modify our ENC to utilize
this convention to glean all the information from the hostname.

Chapter 2

[35]

Modified ENC using hostname strategy
We'll build our Python ENC script (/usr/local/bin/simple_node_classifier_2)
and update it to use the new hostname strategy, as follows:

#!/bin/env python
Python ENC
receives fqdn as argument

import yaml
import sys
"""output_yaml renders the hash as yaml and exits cleanly"""
def output_yaml(enc):
 # output the ENC as yaml
 print "---"
 print yaml.dump(enc)
 quit()

Python is very particular about spacing; if you are new to Python, take care to copy
the indentations exactly as given in the previous snippet.

We define a function to print the YAML and exit the script. We'll exit the script early
if the hostname doesn't match our naming standards, as shown in the following
example:

create an empty hash
enc = {}
enc["classes"] = {}
enc["classes"]["base"] = {}
enc["parameters"] = {}

try:
 hostname=sys.argv[1]
except:
 # need a hostname
 sys.exit(10)

Exit the script early if the hostname is not defined. This is the minimum requirement
and we should never reach this point.

Organizing Your Nodes and Data

[36]

We first split the hostname using underscores (_) into an array called parts and
then assign indexes of parts to role, location, os, environment, and instance,
as shown in the following code snippet:

split hostname on _
try:
 parts = hostname.split('_')
 role = parts[0]
 location = parts[1]
 os = parts[2][0]
 environment = parts[2][1]
 instance = parts[2][2:]

We are expecting hostnames to conform to the standard. If you cannot guarantee
this, then you will have to use something similar to the regular expression module
to deal with the exceptions to the naming standard:

except:
 # hostname didn't conform to our standard
 # include a class which notifies us of the problem
 enc["classes"]["hostname_problem"] = {'enc_hostname': hostname}
 output_yaml(enc)
 raise SystemExit

We wrapped the previous assignments in a try statement. In this except statement,
we exit printing the YAML and assign a class named hostname_problem. This class
will be used to alert us in the console or report to the system that the host has a
problem. We send the enc_hostname parameter to the hostname_problem class
with the {'enc_hostname': hostname} code.

The environment is a single character in the hostname; hence, we use a dictionary
to assign a full name to the environment, as shown here:

map environment from hostname into environment
environments = {}
environments['p'] = 'production'
environments['n'] = 'nonprod'
environments['d'] = 'devel'
environments['s'] = 'sbx'
try:
 enc["environment"] = environments[environment]
except:
 enc["environment"] = 'undef'

Chapter 2

[37]

The following is used to map a role from hostname into role:

map role from hostname into role
enc["classes"][role] = {}

Next, we assign top scope variables to the node based on the values we obtained
from the parts array previously:

set top scope variables
enc["parameters"]["enc_hostname"] = hostname
enc["parameters"]["role"] = role
enc["parameters"]["location"] = location
enc["parameters"]["os"] = os
enc["parameters"]["instance"] = instance

output_yaml(enc)

We will have to define the web class to be able to run the Puppet agent on our
web_main_lp01 machine, as shown in the following code:

class web {
 package {'httpd':
 ensure => 'installed'
 }
 service {'httpd':
 ensure => true,
 enable => true,
 require => Package['httpd'],
 }
}

Heading back to web_main_lp01, we run Puppet, sign the certificate on our
puppetca machine, and then run Puppet again to verify that the web class is
applied, as shown here:

[thomas@web_main_lp01 ~]$ sudo puppet agent -t

Info: Retrieving pluginfacts

Info: Retrieving plugin

Info: Caching catalog for web_main_lp01.example.com

Info: Applying configuration version '1441951808'

Notice: /Stage[main]/Web/Package[httpd]/ensure: created

Notice: /Stage[main]/Web/Service[httpd]/ensure: ensure changed 'stopped'
to 'running'

Info: /Stage[main]/Web/Service[httpd]: Unscheduling refresh on
Service[httpd]

Notice: Applied catalog in 16.03 seconds

Organizing Your Nodes and Data

[38]

Our machine has been installed as a web server without any intervention on our
part. The system knew which classes were to be applied to the machine based solely
on the hostname. Now, if we try to run Puppet against our client machine created
earlier, our ENC will include the hostname_problem class with the parameter of the
hostname passed to it. We can create this class to capture the problem and notify
us. Create the hostname_problem module in /etc/puppet/modules/hostname_
problem/manifests/init.pp, as shown in the following snippet:

class hostname_problem ($enc_hostname) {
 notify {"WARNING: $enc_hostname ($::ipaddress) doesn't conform to
naming standards": }
}

Now, when we run Puppet on our node1 machine, we will get a useful warning
that node1 isn't a good hostname for our enterprise, as shown here:

[thomas@client ~]$ sudo puppet agent -t

Info: Retrieving pluginfacts

Info: Retrieving plugin

Info: Caching catalog for client.example.com

Info: Applying configuration version '1442120036'

Notice: WARNING: client.example.com (10.0.2.15) doesn't conform to naming
standards

Notice: /Stage[main]/Hostname_problem/Notify[WARNING: client.example.
com (10.0.2.15) doesn't conform to naming standards]/message: defined
'message' as 'WARNING: client.example.com (10.0.2.15) doesn't conform to
naming standards'

Notice: Applied catalog in 0.03 seconds

Your ENC can be customized much further than this simple example. You have the
power of Python, Ruby, or any other language you wish to use. You could connect
to a database and run some queries to determine the classes to be installed. For
example, if you have a CMDB in your enterprise, you could connect to the CMDB
and retrieve information based on the FQDN of the node and apply classes based on
that information. You could connect to a URI and retrieve a catalog (dashboard and
foreman do something similar). There are many ways to expand this concept.

In the next section, we'll look at using LDAP to store class information.

Chapter 2

[39]

LDAP backend
If you already have an LDAP implementation in which you can extend the schema,
then you can use the LDAP node terminus that is shipped with Puppet. The support
for this backend for puppetserver has not been maintained as well as it was in
the previous releases of Puppet. I still feel that this backend is useful for certain
installations. I will outline the steps to be taken to have this backend operate with
a puppetserver installation. Using this schema adds a new objectclass called
puppetclass. Using this objectclass, you can set the environment, set top scope
variables, and include classes. The LDAP schema that is shipped with Puppet
includes puppetClass, parentNode, environment, and puppetVar attributes that
are assigned to the objectclass named puppetClient. The LDAP experts should
note that all four of these attributes are marked as optional and the objectclass
named puppetClient is non-structural. To use the LDAP terminus, you must have
a working LDAP implementation; apply the Puppet schema to that installation and
add the ruby-ldap package to your Puppet masters (to allow the master to query
for node information).

OpenLDAP configuration
We'll begin by setting up a fresh OpenLDAP implementation and adding a
Puppet schema. Create a new machine and install openldap-servers. My
installation installed the openldap-servers-2.4.39-6.el7.x86_64 version. This
version requires configuration with OLC (OpenLDAP configuration or runtime
configuration). Further information on OLC can be obtained at http://www.
openldap.org/doc/admin24/slapdconf2.html. OLC configures LDAP using LDAP.

After installing openldap-servers, your configuration will be in /etc/openldap/
slapd.d/cn=config. There is a file named olcDatabase={2}.hdb.ldif in this
directory; edit the file and change the following lines:

olcSuffix: dc=example,dc=com
olcRootDN: cn=Manager,dc=example,dc=com
olcRootPW: packtpub

Note that the olcRootPW line is not present in the default file, so you will have to
add it here. If you're going into production with LDAP, you should set olcDbConfig
parameters as outlined at http://www.openldap.org/doc/admin24/slapdconf2.
html.

http://www.openldap.org/doc/admin24/slapdconf2.html
http://www.openldap.org/doc/admin24/slapdconf2.html
http://www.openldap.org/doc/admin24/slapdconf2.html
http://www.openldap.org/doc/admin24/slapdconf2.html

Organizing Your Nodes and Data

[40]

These lines set the top-level location for your LDAP and the password for RootDN.
This password is in plain text; a production installation would use SSHA encryption.
You will be making schema changes, so you must also edit olcDatabase={0}
config.ldif and set RootDN and RootPW. For our example, we will use the default
RootDN value and set the password to packtpub, as shown here:

olcRootDN: cn=config
olcRootPW: packtpub

These two lines will not exist in the default configuration file provided by the rpm.
You might want to keep this RootDN value and the previous RootDN values separate
so that this RootDN value is the only one that can modify the schema and top-level
configuration parameters.

Next, use ldapsearch (provided by the openldap-clients package, which has to
be installed separately) to verify that LDAP is working properly. Start slapd with
the systemctl start slapd.service command and then verify with the following
ldapsearch command:

ldapsearch -LLL -x -b'dc=example,dc=com'

No such object (32)

This result indicates that LDAP is running but the directory is empty. To import
the Puppet schema into this version of OpenLDAP, copy the puppet.schema from
https://github.com/puppetlabs/puppet/blob/master/ext/ldap/puppet.
schema to /etc/openldap/schema.

To download the file from the command line directly, use the
following command:
curl -O https://raw.githubusercontent.com/
puppetlabs/puppet/master/ext/ldap/puppet.schema

Then create a configuration file named /tmp/puppet-ldap.conf with an include
line pointing to that schema, as shown in the following snippet:

include /etc/openldap/schema/puppet.schema

Then run slaptest against that configuration file, specifying a temporary directory
as storage for the configuration files created by slaptest, as shown here:

mkdir /tmp/puppet-ldap

slaptest -f puppet-ldap.conf -F /tmp/puppet-ldap/

config file testing succeeded

https://github.com/puppetlabs/puppet/blob/master/ext/ldap/puppet.schema
https://github.com/puppetlabs/puppet/blob/master/ext/ldap/puppet.schema

Chapter 2

[41]

This will create an OLC structure in /tmp/puppet-ldap. The file we need is in
/tmp/puppet-ldap/cn=config/cn=schema/cn={0}puppet.ldif. To import this
file into our LDAP instance, we need to remove the ordering information (the braces
and numbers ({0},{1},…) in this file). We also need to set the location for our
schema, cn=schema,cn=config. All the lines after structuralObjectClass should
be removed. The final version of the file will be in /tmp/puppet-ldap/cn=config/
cn=schema/cn={0}puppet.ldif and will be as follows:

dn: cn=puppet,cn=schema,cn=config
objectClass: olcSchemaConfig
cn: puppet
olcAttributeTypes: (1.3.6.1.4.1.34380.1.1.3.10 NAME 'puppetClass'
DESC 'Puppet Node Class' EQUALITY caseIgnoreIA5Match SYNTAX
1.3.6.1.4.1.1466.115.121.1.26)
olcAttributeTypes: (1.3.6.1.4.1.34380.1.1.3.9 NAME 'parentNode'
DESC 'Puppet Parent Node' EQUALITY caseIgnoreIA5Match SYNTAX
1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)
olcAttributeTypes: (1.3.6.1.4.1.34380.1.1.3.11 NAME 'environment'
DESC 'Puppet Node Environment' EQUALITY caseIgnoreIA5Match SYNTAX
1.3.6.1.4.1.1466.115.121.1.26)
olcAttributeTypes: (1.3.6.1.4.1.34380.1.1.3.12 NAME 'puppetVar' DESC
'A variable setting for puppet' EQUALITY caseIgnoreIA5Match SYNTAX
1.3.6.1.4.1.1466.115.121.1.26)
olcObjectClasses: (1.3.6.1.4.1.34380.1.1.1.2 NAME 'puppetClient' DESC
'Puppet Client objectclass' SUP top AUXILIARY MAY (puppetclass $
parentnode $ environment $ puppetvar))

Now add this new schema to our instance using ldapadd, as follows using the
RootDN value cn=config:

ldapadd -x -f cn\=\{0\}puppet.ldif -D'cn=config' -W

Enter LDAP Password: packtpub

adding new entry "cn=puppet,cn=schema,cn=config"

Now we can start adding nodes to our LDAP installation. We'll need to add some
containers and a top-level organization to the database before we can do that. Create
a file named start.ldif with the following contents:

dn: dc=example,dc=com
objectclass: dcObject
objectclass: organization
o: Example
dc: example

dn: ou=hosts,dc=example,dc=com
objectclass: organizationalUnit

Organizing Your Nodes and Data

[42]

ou: hosts

dn: ou=production,ou=hosts,dc=example,dc=com
objectclass: organizationalUnit
ou: production

If you are unfamiliar with how LDAP is organized, review the information at
http://en.wikipedia.org/wiki/Lightweight_Directory_Access_
Protocol#Directory_structure.

Now add the contents of start.ldif to the directory using ldapadd, as follows:

ldapadd -x -f start.ldif -D'cn=manager,dc=example,dc=com' -W

Enter LDAP Password: packtpub

adding new entry "dc=example,dc=com"

adding new entry "ou=hosts,dc=example,dc=com"

adding new entry "ou=production,ou=hosts,dc=example,dc=com"

At this point, we have a container for our nodes at ou=production,ou=hosts,dc=e
xample,dc=com. We can add an entry to our LDAP with the following LDIF, which
we will name web_main_lp01.ldif:

dn: cn=web_main_lp01,ou=production,ou=hosts,dc=example,dc=com
objectclass: puppetClient
objectclass: device
puppetClass: web
puppetClass: base
puppetvar: role='Production Web Server'

We then add this LDIF to the directory using ldapadd again, as shown here:

ldapadd -x -f web_main_lp01.ldif -D'cn=manager,dc=example,dc=com' -W

Enter LDAP Password: packtpub

adding new entry "cn=web_main_lp01,ou=production,ou=hosts,dc=example,dc=c
om"

With our entry in LDAP, we are ready to configure our worker nodes to look in
LDAP for node definitions. Change /etc/puppetlabs/puppet/puppet.conf to
have the following lines in the [master] section:

node_terminus = ldap
ldapserver = ldap.example.com
ldapbase = ou=hosts,dc=example,dc=com

http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol#Directory_structure
http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol#Directory_structure

Chapter 2

[43]

We are almost ready; puppetserver runs Ruby within a Java process. To have
this process access our LDAP server, we need to install the jruby-ldap gem.
puppetserver includes a gem installer for this purpose, as shown here:

puppetserver gem install jruby-ldap

Fetching: jruby-ldap-0.0.2.gem (100%)

Successfully installed jruby-ldap-0.0.2

1 gem installed

There is a bug in the jruby-ldap that we just installed; it was discovered by my
colleague Steve Huston on the following Google group: https://groups.google.
com/forum/#!topic/puppet-users/DKu4e7dzhvE. To patch the jruby-ldap
module, edit the conn.rb file in /opt/puppetlabs/server/data/puppetserver/
jruby-gems/gems/jruby-ldap-0.0.2/lib/ldap and add the following lines to
the beginning:

if RUBY_PLATFORM =~ /^java.*/i
 class LDAP::Entry
 def to_hash
 h = {}
 get_attributes.each { |a| h[a.downcase.to_sym] = self[a] }
 h[:dn] = [dn]
 h
 end
 end
end

Restart the puppetserver process after making this modification with the
systemctl restart puppetserver.service command.

The LDAP backend is clearly not a priority project for Puppet. There
are still a few unresolved bugs with using this backend. If you wish
to integrate with your LDAP infrastructure, I believe writing your
own script that references LDAP will be more stable and easier for
you to support.

To convince yourself that the node definition is now coming from LDAP, modify the
base class in /etc/puppet/modules/base/manifests/init.pp to include the role
variable, as shown in the following snippet:

class base {
 file {'/etc/motd':
 mode => '0644',
 owner => '0',

https://groups.google.com/forum/#!topic/puppet-users/DKu4e7dzhvE
https://groups.google.com/forum/#!topic/puppet-users/DKu4e7dzhvE

Organizing Your Nodes and Data

[44]

 group => '0',
 content => inline_template("Role: <%= @role %>\nManaged Node: <%=
@hostname %>\nManaged by Puppet version <%= @puppetversion %>\n"),
 }
}

You will also need to open port 389, the standard LDAP port, on your LDAP server,
ldap.example.com, to allow Puppet masters to query the LDAP machine.

Then, run Puppet on web_main_lp01 and verify the contents of /etc/motd using
the following command:

cat /etc/motd

Role: 'Production Web Server'

Managed Node: web_main_lp01

Managed by Puppet version 4.2.1

Keeping your class and variable information in LDAP makes sense if you already
have all your nodes in LDAP for other purposes, such as DNS or DHCP. One
potential drawback of this is that all the class information for the node has to be
stored within a single LDAP entry. It is useful to be able to apply classes to machines
based on criteria. In the next section, we will look at Hiera, a system that can be used
for this type of criteria-based application.

Before starting the next section, comment out the LDAP ENC lines in
/etc/puppetlabs/puppet/puppet.conf as follows:

node_terminus = ldap
ldapserver = puppet.example.com
ldapbase = ou=hosts,dc=example,dc=com

Hiera
Hiera allows you to create a hierarchy of node information. Using Hiera, you can
separate your variables and data from your modules. You start by defining what that
hierarchy will be, by ordering lookups in the main configuration file, hiera.yaml.
The hierarchy is based on facts. Any fact can be used, even your own custom facts
may be used. The values of the facts are then used as values for the YAML files stored
in a directory, usually called hieradata. More information on Hiera can be found on
the Puppet Labs website at http://docs.puppetlabs.com/hiera/latest.

Facts are case sensitive in Hiera and templates. This could be important
when writing your hiera.yaml script.

http://docs.puppetlabs.com/hiera/latest

Chapter 2

[45]

Configuring Hiera
Hiera only needs to be installed on your Puppet master nodes. Using the Puppet
Labs repo, Hiera is installed by the puppet-agent package. Our installation pulled
down puppet-agent-1.2.2-1.el7.x86_64, which installs Hiera version 3.0.1,
as shown here:

[thomas@stand ~]$ hiera --version

3.0.1

Previous versions of the command-line Hiera tool would expect the Hiera
configuration file, hiera.yaml, in /etc/hiera.yaml. The previous versions of
Puppet would expect the configuration file in /etc/puppet/hiera.yaml or /etc/
puppetlabs/puppet/hiera.yaml, depending on the version of Puppet. This caused
some confusion, as the command-line utility will, by default, search in a different file
than Puppet. This problem has been corrected in Puppet 4; the Hiera configuration
file is now located in the /etc/puppetlabs/code directory. The default location for
the hieradata directory includes the value of the current environment and is located
at /etc/puppetlabs/code/environments/%{environment}/hieradata.

Now, we can create a simple hiera.yaml in /etc/puppet/hiera.yaml to show how
the hierarchy is applied to a node, as shown here:

:hierarchy:
 - "hosts/%{::hostname}"
 - "roles/%{::role}"
 - "%{::kernel}/%{::os.family}/%{:os.release.major}"
 - "is_virtual/%{::is_virtual}"
 - common
:backends:
 - yaml
:yaml:
 :datadir:

This hierarchy is quite basic. Hiera will look for a variable starting with the
hostname of the node in the host's directory and then move to the top scope
variable role in the directory roles. If a value is not found in the roles, it will look
in the /etc/puppet/hieradata/kernel/osfamily/ directory (where kernel
and osfamily will be replaced with the Facter values for these two facts) for a file
named lsbmajdistrelease.yaml. On my test node, this would be /etc/puppet/
hieradata/Linux/RedHat/6.yaml. If the value is not found there, then Hiera will
continue to look in hieradata/is_virtual/true.yaml (as my node is a virtual
machine, the value of is_virtual will be true). If the value is still not found, then
the default file common.yaml will be tried. If the value is not found in common, then
the command-line utility will return nil.

Organizing Your Nodes and Data

[46]

When using the hiera function in manifests, always set a default value, as failure
to find anything in Hiera will lead to a failed catalog (although having the node fail
when this happens is often used intentionally as an indicator of a problem).

As an example, we will set a variable syslogpkg to indicate which syslog package
is used on our nodes. The syslog package is responsible for system logging. For EL7
and EL6 machines, the package is rsyslog; for EL5, the package is syslog. Create
three YAML files, one for EL6 and EL7 at /etc/puppetlabs/code/environments/
production/hieradata/Linux/RedHat/7.yaml using the following code:

syslogpkg: rsyslog

Create another YAML file for EL5 at /etc/puppetlabs/code/environments/
production/hieradata/Linux/RedHat/5.yaml using the following code:

syslogpkg: syslog

With these files in place, we can test our Hiera by setting top scope variables (facts),
using a YAML file. Create a facts.yaml file with the following content:

is_virtual: true
kernel: Linux
os:
 family: RedHat
 release:
 major: "7"

We run Hiera three times, changing the value of os.release.major from 7 to 5 to 4
and observe the following results:

[thomas@stand ~]$ hiera syslogpkg -y facts.yaml environment=production

rsyslog

[thomas@stand ~]$ hiera syslogpkg -y facts.yaml environment=production

syslog

[thomas@stand ~]$ hiera syslogpkg -y facts.yaml environment=production

nil

In the previous commands, we change the value of os.release.major from 7 to 5 to
4 to simulate the nodes running on EL7, EL5 and EL4. We do not have a 4.yaml file,
so there is no setting of syslogpkg and hiera that returns nil.

Chapter 2

[47]

Now to use Hiera in our manifests, we can use the hiera function inline or set a
variable using Hiera. When using Hiera, the syntax is hiera('variable',
'default'). The variable value is the key you are interested in looking at; the
default value is the value to use when nothing is found in the hierarchy. Create a
syslog module in /etc/puppet/modules/syslog/manifest/init.pp that starts
syslog and makes sure the correct syslog is installed, as shown here:

class syslog {
 $syslogpkg = hiera('syslogpkg','syslog')
 package {"$syslogpkg":
 ensure => 'installed',
 }
 service {"$syslogpkg":
 ensure => true,
 enable => true,
 }
}

Then create an empty /etc/puppet/manifests/site.pp file that includes syslog,
as shown here:

node default {
 include syslog
}

In this code, we set our default node to include the syslog module and then
we define the syslog module. The syslog module looks for the Hiera variable
syslogpkg to know which syslog package to install. Running this on our client
node, we see that rsyslog is started as we are running EL7, as shown here:

[thomas@client ~]$ sudo puppet agent -t

Info: Retrieving pluginfacts

Info: Retrieving plugin

Info: Caching catalog for client.example.com

Info: Applying configuration version '1442381098'

Notice: /Stage[main]/Syslog/Package[rsyslog]/ensure: created

Notice: /Stage[main]/Syslog/Service[rsyslog]/ensure: ensure changed
'stopped' to 'running'

Info: /Stage[main]/Syslog/Service[rsyslog]: Unscheduling refresh on
Service[rsyslog]

Notice: Applied catalog in 7.83 seconds

Organizing Your Nodes and Data

[48]

If you haven't already disable the LDAP ENC, which we configured in
the previous section, the instructions are provided at the end of the LDAP
backend section of this chapter.

In the enterprise, you want a way to automatically apply classes to nodes based on
facts. This is part of a larger issue of separating the code of your modules from the
data used to apply them. We will examine this issue in greater depth in Chapter 9,
Roles and Profiles. Hiera has a function that makes this very easy—hiera_include.
Using hiera_include, you can have Hiera apply classes to a node based upon
the hierarchy.

Using hiera_include
To use hiera_include, we set a Hiera variable to hold the name of the classes we
would like to apply to the nodes. By convention, this is called classes, but it could
be anything. We'll also set a variable role that we'll use in our new base class. We
modify site.pp to include all the classes defined in the Hiera variable classes. We
also set a default value if no values are found; this way we can guarantee that the
catalogs will compile and all the nodes receive at least the base class. Edit /etc/
puppetlabs/code/environments/production/manifest/site.pp, as follows:

node default {
 hiera_include('classes', 'base')
}

For the base class, we'll just set the motd file, as we've done previously. We'll also set
a welcome string in Hiera. In common.yaml, we'll set this to something generic and
override the value in a hostname-specific YAML file. Edit the base class in /etc/
puppetlabs/code/environments/production/modules/base/manifests/init.pp,
as follows:

class base {
 $welcome = hiera('welcome','Welcome')
 file {'/etc/motd':
 mode => '0644',
 owner => '0',
 group => '0',
 content => inline_template("<%= @welcome %>\nManaged Node: <%= @
hostname %>\nManaged by Puppet version <%= @puppetversion %>\n"),
 }
}

Chapter 2

[49]

This is our base class; it uses an inline template to set up the message of the day file
(/etc/motd). We then need to set the welcome information in hieradata; edit
/etc/puppet/hieradata/common.yaml to include the default welcome message,
as shown here:

welcome: 'Welcome to Example.com'
classes:
 - 'base'
syslogpkg: 'nothing'

Now we can run Puppet on our node1 machine. After the successful run,
our /etc/motd file has the following content:

Welcome to Example.com
Managed Node: client
Managed by Puppet version 4.2.1

Now, to test if our hierarchy is working as expected, we'll create a YAML file
specifically for client, /etc/puppetlabs/code/environments/production/
hieradata/hosts/client.yaml, as follows:

welcome: 'Welcome to our default node'

Again, we run Puppet on client and examine the contents of /etc/motd,
as shown here:

[thomas@client ~]$ cat /etc/motd

Welcome to our default node

Managed Node: client

Managed by Puppet version 4.2.1

Now that we have verified that our hierarchy performs as we expect, we can use
Hiera to apply a class to all the nodes based on a fact. In this example, we'll use the
is_virtual fact to do some performance tuning on our virtual machines. We'll
create a virtual class in /etc/puppet/modules/virtual/manifests/init.pp,
which installs the tuned package. It then sets the tuned profile to virtual-guest
and starts the tuned service, as shown here:

class virtual {
 # performance tuning for virtual machine
 package {'tuned':
 ensure => 'present',
 }

Organizing Your Nodes and Data

[50]

 service {'tuned':
 enable => true,
 ensure => true,
 require => Package['tuned']
 }
 exec {'set tuned profile':
 command => '/usr/sbin/tuned-adm profile virtual-guest',
 unless => '/bin/grep -q virtual-guest /etc/tune-profiles/
activeprofile',
 }
}

In a real-world example, we'd verify that we only apply this to nodes
running on EL6 or EL7.

This module ensures that the tuned package is installed and the tuned service is
started. It then verifies that the current tuned profile is set to virtual-guest (using
a grep statement in the unless parameter to the exec). If the current profile is not
virtual-guest, the profile is changed to virtual-guest using tuned-adm.

Tuned is a tuning daemon included on enterprise Linux systems,
which configures several kernel parameters related to scheduling
and I/O operations.

To ensure that this class is applied to all virtual machines, we simply need to add it
to the classes Hiera variable in /etc/puppet/hieradata/is_virtual/true.yaml,
as shown here:

classes:
 - 'virtual'

Now our test node client is indeed virtual, so if we run Puppet now, the virtual
class will be applied to the node and we will see that the tuned profile is set to
virtual-guest. Running tuned-adm active on the host returns the currently
active profile. When we run it initially, the command is not available as the tuned
rpm has not been installed yet, as you can see here:

[thomas@client ~]$ sudo tuned-adm active

sudo: tuned-adm: command not found

Chapter 2

[51]

Next, we run puppet agent to set the active profile (tuned is installed by default on
EL7 systems):

[thomas@client ~]$ sudo puppet agent -t

Info: Retrieving pluginfacts

Info: Retrieving plugin

Info: Caching catalog for client.example.com

Info: Applying configuration version '1442383469'

Notice: /Stage[main]/Virtual/Exec[set tuned profile]/returns: executed
successfully

Notice: Applied catalog in 1.15 seconds

Now, when we run tuned-adm active we see that the active profile has been
changed accordingly:

[thomas@client ~]$ sudo tuned-adm active

Current active profile: virtual-guest

This example shows the power of using Hiera, with hiera_include and a
well-organized hierarchy. Using this method, we can have classes applied to nodes
based on facts and reduce the need for custom classes on nodes. We do, however,
have the option of adding classes per node since we have a hosts/%{hostname}
entry in our hierarchy. If you had, for instance, a module that only needed to
be installed on 32-bit systems, you could make an entry in hiera.yaml for
%{architecture} and only create an i686.yaml file that contained the class in
question. Building up your classes in this fashion reduces the complexity of your
individual node configurations.

In fact, in Puppet version 3, architecture is available as both architecture and
os.architecture.

Another great feature of Hiera is its ability to automatically fill in values for
parameterized class attributes. For this example, we will create a class called
resolver and set the search parameter for our /etc/resolv.conf file using Augeas.

Augeas is a tool to modify configuration files as though they were
objects. For more information on Augeas, visit the project website
at http://augeas.net. In this example, we will use Augeas to
modify only a section of the /etc/resolv.conf file.

http://augeas.net

Organizing Your Nodes and Data

[52]

First, we will create a resolver class as follows in /etc/puppetlabs/code/
environments/production/modules/resolver/manifests/init.pp:

class resolver($search = "example.com") {
 augeas { 'set resolv.conf search':
 context => '/files/etc/resolv.conf',
 changes => [
 "set search/domain '${search}'"
],
 }
}

Then we add resolver to our classes in /etc/puppetlabs/code/environments/
production/hieradata/hosts/client.yaml, so as to have resolver applied
to our node, as shown here:

welcome: 'Welcome to our default node'
classes:
 - resolver

Now we run Puppet on the client; Augeas will change the resolv.conf file
to have the search domain set to the default example.com:

[thomas@client ~]$ sudo puppet agent -t

Info: Retrieving pluginfacts

Info: Retrieving plugin

Info: Caching catalog for client.example.com

Info: Applying configuration version '1442411609'

Notice: Augeas[set resolv.conf search](provider=augeas):

--- /etc/resolv.conf 2015-09-16 09:53:15.727804673 -0400

+++ /etc/resolv.conf.augnew 2015-09-16 09:53:28.108995714 -0400

@@ -2,3 +2,4 @@

 nameserver 8.8.8.8

 nameserver 8.8.4.4

 domain example.com

+search example.com

Notice: /Stage[main]/Resolver/Augeas[set resolv.conf search]/returns:
executed successfully

Notice: Applied catalog in 1.41 seconds

Chapter 2

[53]

Now, to get Hiera to override the default parameter for the parameterized class
resolver, we simply set the Hiera variable resolver::search in our /etc/
puppetlabs/code/environments/production/hieradata/hosts/client.yaml
file, as shown here:

welcome: 'Welcome to our default node'
classes:
 - resolver
resolver::search: 'devel.example.com'

Running puppet agent another time on node1 will change the search from
example.com to devel.example.com, using the value from the Hiera hierarchy
file, as you can see here:

[thomas@client ~]$ sudo puppet agent -t

Info: Retrieving pluginfacts

Info: Retrieving plugin

Info: Caching catalog for client.example.com

Info: Applying configuration version '1442411732'

Notice: Augeas[set resolv.conf search](provider=augeas):

--- /etc/resolv.conf	 2015-09-16 09:53:28.155509013 -0400

+++ /etc/resolv.conf.augnew	 2015-09-16 09:55:30.656393427 -0400

@@ -2,4 +2,4 @@

 nameserver 8.8.8.8

 nameserver 8.8.4.4

 domain example.com

-search example.com

+search devel.example.com

Notice: /Stage[main]/Resolver/Augeas[set resolv.conf search]/returns:
executed successfully

Notice: Applied catalog in 0.94 seconds

By building up your catalog in this fashion, it's possible to override parameters
of any class. At this point, our client machine has the virtual, resolver and
base classes, but our site manifest (/etc/puppet/manifests/site.pp) only
has a hiera_include line, as shown here:

node default {
 hiera_include('classes',base)
}

Organizing Your Nodes and Data

[54]

In the enterprise, this means that you can add new hosts without modifying your site
manifest and that you can customize the classes and any parameters to those classes.

Using hiera_include to specify the classes assigned to a node
ensures that the node cannot assign itself to a different role. Some
site.pp manifests will use a fact to determine the classes to be
applied, this will allow anyone who can control facts on the node to
change the classes on the node and potentially access configurations
for different types of nodes.

Two other functions exist for using Hiera; they are hiera_array and hiera_hash.
These functions do not stop at the first match found in Hiera and instead return
either an array or hash of all the matches. This can also be used in powerful ways to
build up definitions of variables. One good use of this is in setting the name servers a
node will query. Using hiera_array instead of the hiera function, you can not only
set nameservers based on the hostname of the node or some other facts, but also have
the default nameservers from your common.yaml file applied to the node.

Summary
The classes that are applied to nodes should be as automatic as possible. Using
a hostname convention and an ENC script, it is possible to have classes applied
to nodes without any node-level configuration.

Using LDAP as a backend for class information may be a viable alternative at your
enterprise. The LDAP schema included with Puppet can be successfully applied
to an OpenLDAP instance or integrated into your existing LDAP infrastructure.

Hiera is a powerful tool to separate data from your module definitions. By utilizing
a hierarchy of facts, it is possible to dynamically apply classes to nodes based on
their facts.

The important concept in the enterprise is to minimize the customization required in
the modules and push that customization up into the node declaration, to separate
the code required to deploy your nodes from the specific data, through either LDAP,
a custom ENC, or clever use of Hiera. If starting from scratch, Hiera is the most
powerful and flexible solution to this problem.

In the next chapter, we will see how we can utilize Puppet environments to make
Hiera even more flexible. We will cover using Git to keep our modules under
version control.

[55]

Git and Environments
When working in a large organization, changes can break things. Every developer
will need a sandbox to test their code. A single developer may have to work on
two or three issues independently, throughout the day, but they may not apply the
working code to any node. It would be great if you could work on a module and
verify it in a development environment or even on a single node, before pushing it
to the rest of your fleet. Environments allow you to carve up your fleet into as many
development environments, as needed. Environments allow nodes to work from
different versions of your code. Keeping track of the different versions with Git
allows for some streamlined workflows. Other versioning systems can be used,
but the bulk of integration in Puppet is done with Git.

Environments
When every node requests an object from the Puppet master, they inform the
Puppet master of their environment. Depending on how the master is configured,
the environment can change the set of modules, the contents of Hiera, or the site
manifest (site.pp). The environment is set on the agent in their puppet.conf file
or on the command line using the puppet agent –environment command.

In addition, environment may also be set from the ENC node terminus. In Puppet 4,
setting the environment from the ENC overrides the setting in puppet.conf. If no
environment is set, then production, which is the default environment, is applied.

Git and Environments

[56]

In previous versions of Puppet, environments could be configured using section
names in puppet.conf ([production] for example). In version 4 the only valid
sections in puppet.conf are: main, master, agent, and user. Directory environments
are now the only supported mechanism to configure environments. To configure
directory environments, specify the environmentpath option in puppet.conf.
The default environmentpath is /etc/puppetlabs/code/environments. The
production environment is created by Puppet automatically. To create a development
environment, create the development directory in /etc/puppetlabs/code/
environments, as shown here:

[thomas@stand environments]$ sudo mkdir -p development/manifests
development/modules

Now, to use the development environment, copy the base module from production
to development, as shown here:

[thomas@stand environments]$ sudo cp -a production/modules/base
development/modules

In the remainder of this chapter, we will not use the ENC script we
configured in Chapter 2, Organizing Your Nodes and Data. Modify
/etc/puppetlabs/puppet/puppet.conf on stand, and
comment out the two ENC-related settings which we configured in
Chapter 2, Organizing Your Nodes and Data. My examples will be run
on a standalone puppetserver machine named stand.

Next, modify the class definition in /etc/puppetlabs/code/environments/
development/modules/base/manifests/init.pp, as follows:

class base {
 $welcome = hiera('welcome','Unwelcome')
 file {'/etc/motd':
 mode => '0644',
 owner => '0',
 group => '0',
 content => inline_template("<%= @environment %>\n<%= @welcome
 %>\nManaged Node: <%= @hostname %>\nManaged by Puppet
 version <%= @puppetversion %>\n"),
 }
}

Chapter 3

[57]

Now, run the puppet agent command on client and verify whether the production
module is being used, as shown here:

[thomas@client ~]$ sudo puppet agent -t

Info: Retrieving pluginfacts

Info: Retrieving plugin

Info: Caching catalog for client.example.com

Info: Applying configuration version '1442861899'

Notice: /Stage[main]/Base/File[/etc/motd]/ensure: defined content as '{md
5}56289627b792b8ea3065b44c03b848a4'

Notice: Applied catalog in 0.84 seconds

[thomas@client ~]$ cat /etc/motd

Welcome to Example.com

Managed Node: client

Managed by Puppet version 4.2.1

Now, run the puppet agent command again with the environment option set to
development, as shown here:

[thomas@stand ~]$ sudo puppet agent -t --environment=development

Info: Retrieving pluginfacts

Info: Retrieving plugin

Info: Caching catalog for stand.example.com

Info: Applying configuration version '1442862701'

Notice: /Stage[main]/Base/File[/etc/motd]/content:

--- /etc/motd 2015-09-21 14:58:23.648809785 -0400

+++ /tmp/puppet-file20150921-3787-1aus09m 2015-09-21
15:11:41.753703780 -0400

@@ -1,3 +1,4 @@

-Welcome to Example.com

+development

+Unwelcome

 Managed Node: stand

 Managed by Puppet version 4.2.1

Info: Computing checksum on file /etc/motd

Info: /Stage[main]/Base/File[/etc/motd]: Filebucketed /etc/motd to puppet
with sum 56289627b792b8ea3065b44c03b848a4

Git and Environments

[58]

Notice: /Stage[main]/Base/File[/etc/motd]/content: content
changed '{md5}56289627b792b8ea3065b44c03b848a4' to '{md5}
dd682631bcd240a08669c2c87a7e328d'

Notice: Applied catalog in 0.05 seconds

[thomas@stand ~]$ cat /etc/motd

development

Unwelcome

Managed Node: stand

Managed by Puppet version 4.2.1

This will perform a one-time compilation in the development environment. In the next
Puppet run, when the environment is not explicitly set, this will default to production
again. To permanently move the node to the development environment, edit /etc/
puppetlabs/puppet/puppet.conf and set the environment, as shown here:

[agent]
 environment = development

Environments and Hiera
Hiera's main configuration file can also use environment, as a variable. This leads
us to two options: a single hierarchy with the environment as a hierarchy item and
multiple hierarchies where the path to the hieradata directory comes from the
environment setting. To have separate hieradata trees, you can use environment
in the datadir setting for the backend, or to have parts of the hierarchy tied to your
environment, put %{::environment} in the hierarchy.

Multiple hierarchies
To have a separate data tree, we will first copy the existing hieradata directory into
the production and development directories, using the following commands:

Stand# cd /etc/puppetlabs/code/environments

stand# cp -a production/hieradata development

Now, edit /etc/puppetlabs/puppet/hiera.yaml and change :datadir, as follows:

:yaml:
 :datadir: '/etc/puppetlabs/code/environments/%{::environment}/
hieradata'

Chapter 3

[59]

Now, edit the welcome message in the client.yaml file of the production
hieradata tree (/etc/puppetlabs/code/environments/production/hieradata/
hosts/client.yaml), as shown here:

welcome: 'Production Node: watch your step.'

Also, edit the development hieradata tree (/etc/puppetlabs/code/
environments/development/hieradata/hosts/client.yaml) to reflect the
different environments, as shown here:

welcome: "Development Node: it can't rain all the time."

Now, run Puppet on client to see the /etc/motd file change according to the
environment. First, we will run the agent without setting an environment
so that the default setting of production is applied, as shown here:

[root@client ~]# puppet agent -t

…

Notice: /Stage[main]/Base/File[/etc/motd]/ensure: defined content as '{md
5}8147bf5dbb04eba29d5efb7e0fa28ce2'

Notice: Applied catalog in 0.83 seconds

[root@client ~]# cat /etc/motd

Production Node: watch your step.

Managed Node: client

Managed by Puppet version 4.2.2

If you have already set the environment value to development by adding
environment=development in puppet.conf, remove that setting.

Then, we run the agent with environment set to development to see the change,
as shown here:

[root@client ~]# puppet agent -t --environment=development

…

Notice: /Stage[main]/Base/File[/etc/motd]/content:

--- /etc/motd 2015-09-30 21:35:59.523156901 -0700

+++ /tmp/puppet-file20150930-3185-1vyeusl 2015-09-30
21:45:18.444186406 -0700

@@ -1,3 +1,3 @@

Git and Environments

[60]

-Production Node: watch your step.

+Development Node: it can't rain all the time.

 Managed Node: client

 Managed by Puppet version 4.2.2

Info: Computing checksum on file /etc/motd

Info: /Stage[main]/Base/File[/etc/motd]: Filebucketed /etc/motd to puppet
with sum 8147bf5dbb04eba29d5efb7e0fa28ce2

Notice: /Stage[main]/Base/File[/etc/motd]/content: content
changed '{md5}8147bf5dbb04eba29d5efb7e0fa28ce2' to '{md5}
dc504aeaeb934ad078db900a97360964'

Notice: Applied catalog in 0.04 seconds

Configuring Hiera in this fashion will let you keep completely distinct hieradata
trees, for each environment. You can, however, configure Hiera to look for
environment-specific information in a single tree.

Single hierarchy for all environments
To have one hierarchy for all environments, edit hiera.yaml as follows:

:hierarchy:
 - "environments/%{environment}"
 - "hosts/%{hostname}"
 - "roles/%{role}"
 - "%{kernel}/%{os.family}/%{os.release.major}"
 - "is_virtual/%{is_virtual}"
 - common
:backends:
 - yaml
:yaml:
 :datadir: '/etc/puppetlabs/code/hieradata'

Next, create an environments directory in /etc/puppetlabs/code/hieradata and
create the following two YAML files: one for production (/etc/puppetlabs/code/
hieradata/environments/production.yaml) and another for development (/etc/
puppetlabs/code/hieradata/environments/development.yaml). The following
will be the welcome message for the production file:

welcome: 'Single tree production welcome'

Chapter 3

[61]

The following will be the welcome message for the development file:

welcome: 'Development in Single Tree'

Restart httpd on stand and run Puppet on node1 again to see the new motd for
production, as shown here:

[root@client ~]# puppet agent -t

…

Notice: /Stage[main]/Base/File[/etc/motd]/content:

--- /etc/motd 2015-09-30 21:45:18.465186407 -0700

+++ /tmp/puppet-file20150930-3221-bh9ik5 2015-09-30
21:53:43.283213056 -0700

@@ -1,3 +1,3 @@

-Development Node: it can't rain all the time.

+Single tree production welcome

…

Notice: Applied catalog in 0.67 seconds

Having the production and development environments may be sufficient for a small
operation (a manageable amount of nodes, typically less than a thousand), but in
an enterprise, you will need many more such environments to help admins avoid
stumbling upon one another.

Previous versions of Puppet required special configuration to work with arbitrary
environment names; this is no longer the case. The current state of environments is
directory environments; any subdirectory within the environmentpath configuration
variable is a valid environment. To create new environments, you need to only create
the directory within the environmentpath directory. By default, the environmentpath
variable is set to /etc/puppetlabs/code/environments. The code directory is meant
to be a catchall location for your code. This change was made to help us separate code
from configuration data.

Directory environments
Our configuration for Hiera did not specify production or development environments
in hiera.yaml. We used the environment value to fill in a path on the filesystem. The
directory environments in Puppet function the same way. Directory environments
are the preferred method for configuring environments. When using directory
environments, it is important to always account for the production environment,
since it is the default setting for any node, when environment is not explicitly set.

Git and Environments

[62]

Puppet determines where to look for directory environments, based on the
environmentpath configuration variable. In Puppet 4, the default environmentpath is
/etc/puppetlabs/code. Within each environment, an environment.conf file can be
used to specify modulepath, manifest, config_version and environment_timeout
per environment. When Puppet compiles a catalog, it will run the script specified by
config_version and use the output as the config version of the catalog. This provides
a mechanism to determine which code was used to compile a specific catalog.

Versions 3.7 and above of Puppet also support a parser setting, which determines
which parser (current or future) is used to compile the catalog in each environment.
In version 4 and above, the future parser is the only available parser. Using the
parser setting, it is possible to test your code against the future parser before
upgrading from Puppet 3.x to 4. The usage scenario for the parser option will be to
upgrade your development environments to the future parser and fix any problems
you encounter along the way. You will then promote your code up to production
and enable the future parser in production.

Using the manifest option in environment.conf, it is possible to have a per
environment site manifests. If your enterprise requires a site manifest to be consistent
between environments, you can set disable_per_environment_manifest = true
in puppet.conf to use the same site manifest for all environments.

If an environment does not specify a manifest in environment.conf, the manifest
specified in default_manifest is used. A good use of this setting is to specify a
default manifest and not specify one within your environment.conf files. You can
then test a new site manifest in an environment by adding it to the environment.
conf within that environment.

The modulepath within environment.conf may have relative paths and absolute
paths. To illustrate, consider the environment named mastering. In the mastering
directory within environmentpath (/etc/puppetlabs/code/environments), the
environment.conf file has modulepath set to modules:public:/etc/puppetlabs/
code/modules. When searching for modules in the mastering environment, Puppet
will search the following locations:

•	 /etc/puppetlabs/code/environments/mastering/modules

•	 /etc/puppetlabs/code/environments/mastering/public

•	 /etc/puppetlabs/code/modules

Chapter 3

[63]

Another useful setting in puppet.conf is basemodulepath. You may configure
basemodulepath to a set of directories containing your enterprise wide modules
or modules that are shared across multiple environments. The $basemodulepath
variable is available within environment.conf. A typical usage scenario is to have
modulepath within environment.conf configured with $basemodulepath, defined
first in the list of directories, as shown here:

modulepath=$basemodulepath:modules:site:/etc/puppetlabs/code/modules

A great use of directory environments is to create test environments where you
can experiment with modifications to your site manifest without affecting other
environments. (provided you haven't used the disable_per_environment_
manifest setting). As an example, we'll create a sandbox environment and modify
the manifest within that environment.

Create the sandbox directory and environment.conf with the following contents:

manifest=/etc/puppetlabs/code/test

Now, create the site manifest at /etc/puppetlabs/code/test/site.pp with the
following code:

node default {
 notify {"Trouble in the Henhouse": }
}

Now when you do an agent run on the client node against the sandbox environment,
the site manifest in /etc/puppetlabs/code/test will be used, as shown here:

[root@client ~]# puppet agent -t --environment sandbox

Info: Retrieving pluginfacts

Info: Retrieving plugin

Info: Caching catalog for client.local

Info: Applying configuration version '1443285153'

Notice: Trouble in the Henhouse

Notice: /Stage[main]/Main/Node[default]/Notify[Trouble in the Henhouse]/
message: defined 'message' as 'Trouble in the Henhouse'

Notice: Applied catalog in 0.02 seconds

Git and Environments

[64]

This type of playing around with environments is great for a single developer,
but when you are working in a large team, you'll need some version control and
automation to convert this to a workable solution. With a large team, it is important
that admins do not interfere with each other when making changes to the /etc/
puppetlabs/code directory. In the next section, we'll use Git to automatically
create environments and share environments between developers.

For further reading on environments, refer to the Puppet Labs website at
http://docs.puppetlabs.com/guides/environment.html.

Git
Git is a version control system written by Linus Torvalds, which is used to
collaborate development on the Linux kernel source code. Its support for rapid
branching and merging makes it the perfect choice for a Puppet implementation.
In Git, each source code commit has references to its parent commit; to reconstruct
a branch, you only need to follow the commit trail back. We will be exploiting the
rapid branch support to have environments defined from Git branches.

It is possible to use Git without a server and to make copies of repositories
using only local Git commands.

In your organization, you are likely to have some version control software. The
software in question isn't too important, but the methodology used is important.

Remember that passwords and sensitive information stored in version
control will be available to anyone with access to your repository. Also,
once stored in version control, it will always be available.

Long running branches or a stable trunk are the terms used in the industry to
describe the development cycle. In our implementation, we will assume that
development and production are long running branches. By long running, we mean
that these branches will persist throughout the lifetime of the repository. Most of the
other branches are dead ends—they solve an immediate issue and then get merged
into the long running branches and cease to exist, or they fail to solve the issue and
are destroyed.

http://docs.puppetlabs.com/guides/environment.html

Chapter 3

[65]

Why Git?
Git is the de facto version control software with Puppet because of its
implementation of rapid branching. There are numerous other reasons for using Git
in general. Each user of Git is given a complete copy of the revision history whenever
they clone a Git repository. Each developer is capable of acting as a backup for the
repository, should the need arise. Git allows each developer to work independently
from the master repository; thus, allowing developers to work offsite and even
without network connectivity.

This section isn't intended to be an exhaustive guide of using Git. We'll cover enough
commands to get your job done, but I recommend that you do some reading on the
subject to get well acquainted with the tool.

The main page for Git documentation is http://git-scm.com/
documentation. Also worth reading is the information on getting
started with Git by GitHub at http://try.github.io or the Git for
Ages 4 and Up video available at http://mirror.int.linux.conf.
au/linux.conf.au/2013/ogv/Git_For_Ages_4_And_Up.ogv.

To get started with Git, we need to create a bare repository. By bare, we mean that
only the meta information and checksums will be stored; the files will be in the
repository but only in the checksum form. Only the main location for the repository
needs to be stored in this fashion.

In the enterprise, you want the Git server to be a separate machine, independent
of your Puppet master. Perhaps, your Git server isn't even specific for your Puppet
implementation. The great thing about Git is that it doesn't really matter at this point;
we can put the repository wherever we wish.

To make things easier to understand, we'll work on our single worker machine
for now, and in the final section, we will create a new Git server to hold our Git
repository.

GitHub or GitHub Enterprise can also be used to host Git repositories.
GitHub is a public service but it also has pay account services. GitHub
Enterprise is an appliance solution to host the same services as GitHub
internally, within your organization.

http://git-scm.com/documentation
http://git-scm.com/documentation
http://try.github.io
http://mirror.int.linux.conf.au/linux.conf.au/2013/ogv/Git_For_Ages_4_And_Up.ogv
http://mirror.int.linux.conf.au/linux.conf.au/2013/ogv/Git_For_Ages_4_And_Up.ogv

Git and Environments

[66]

A simple Git workflow
On our standalone machine, install Git using yum, as shown here:

[root@stand ~]# yum install -y git

...

Installed: git.x86_64 0:1.8.3.1-5.el7

Now, decide on a directory to hold all your Git repositories. We'll use /var/lib/git
in this example.

A directory under /srv may be more appropriate for your organization.
Several organizations have adopted the /apps directory for application
specific data, as well and using these locations may have SELinux context
considerations. The targeted policy on RedHat systems provides for the
/var/lib/git and /var/www/git locations for Git repository data.

The /var/lib/git path closely resembles the paths used by other EL packages.
Since running everything as root is unnecessary, we will create a Git user and make
that user the owner of the Git repositories.

Create the directory to contain our repository first (/var/lib/git) and then create
an empty Git repository (using the git init –bare command) in that location, as
shown in the following code:

[root@stand ~]# useradd git -c 'Git Repository Owner' -d /var/lib/git

[root@stand ~]# sudo -iu git

[git@stand ~]$ pwd

/var/lib/git

[git@stand ~]$ chmod 755 /var/lib/git

[git@stand ~]$ git init --bare control.git

Initialized empty Git repository in /var/lib/git/control.git/

[git@stand ~]$ cd /tmp

[git@stand tmp]$ git clone /var/lib/git/control.git

Cloning into 'control'...

warning: You appear to have cloned an empty repository.

done.

[git@stand tmp]$ cd control

[git@stand control]$ git status

Chapter 3

[67]

On branch master

#

Initial commit

#

nothing to commit (create/copy files and use "git add" to track)

Using git --bare will create a special copy of the repository where
the code is not checked out; it is known as bare because it is without a
working copy of the code. A normal copy of a Git repository will have
the code available at the top-level directory and the Git internal files in a
.git directory. A bare repository has the contents of the .git directory
located in the top level directory.

Now that our repository is created, we should start adding files to the repository.
However, we should first configure Git. Git will store our username and e-mail
address with each commit. These settings are controlled with the git config
command. We will add the --global option to ensure that the config file in ~/.git
is modified, as shown in the following example:

[git@stand ~]$ git config --global user.name 'Git Repository Owner'

[git@stand ~]$ git config --global user.email 'git@example.com'

Now, we'll copy in our production modules and commit them. We'll copy the
files from the /etc/puppet/environments/production directory of our worker
machines and then add them to the repository using the git add command, as
shown here:

[git@stand ~]$ cd /tmp/control/

[git@stand control]$ cp -a /etc/puppetlabs/code/environments/production/*
.

[git@stand control]$ ls environment.conf hieradata manifests modules

[git@stand control]$ git status

On branch master

#

Initial commit

#

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

environment.conf

Git and Environments

[68]

hieradata/

manifests/

modules/

nothing added to commit but untracked files present (use "git add" to
track)

We've copied our hieradata, manifests, and modules directories, but Git doesn't
know anything about them. We now need to add them to the Git repository and
commit to the default branch master. This is done with two Git commands, first
using git add and then using git commit, as shown in the following code:

[git@stand control]$ git add hieradata manifests modules environment.conf

[git@stand control]$ git commit -m "initial commit"

[master (root-commit) 316a391] initial commit
 14 files changed, 98 insertions(+)
…

 create mode 100644 modules/web/manifests/init.pp

To see the files that will be committed when you issue git commit, use
git status after the git add command. It is possible to commit in
a single command using git commit –a. This will commit all staged
files (these are the files that have changed since the last commit). I prefer
to execute the commands separately to specifically add the files, which I
would like to add in the commit. If you are editing a file with vim, you
may inadvertently commit a swap file using git commit –a.

At this point, we've committed our changes to our local copy of the repository. To
ensure that we understand what is happening, we'll clone the initial location again
into another directory (/tmp/control2), using the following commands:

[git@stand control]$ cd /tmp

[git@stand tmp]$ mkdir control2

[git@stand tmp]$ git clone /var/lib/git/control.git .
fatal: destination path '.' already exists and is not an empty directory.

[git@stand tmp]$ cd control2

[git@stand control2]$ git clone /var/lib/git/control.git .
Cloning into '.'...
warning: You appear to have cloned an empty repository.
done.

[git@stand control2]$ ls

Chapter 3

[69]

Our second copy doesn't have the files we just committed, and they only exist in the
first local copy of the repository. One of the most powerful features of Git is that it is
a self-contained environment. Going back to our first clone (/tmp/control), examine
the contents of the .git/config file. The url setting for remote "origin" points to
the remote master that our repository is based on (/var/lib/git/control.git), as
shown in the following code:

[core]
 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = true
[remote "origin"]
 url = /var/lib/git/control.git
 fetch = +refs/heads/*:refs/remotes/origin/*
[branch "master"]
 remote = origin
 merge = refs/heads/master

In Git, origin is where the original remote repository lives. In this example, it is a
local location (/var/lib/git/control.git), but it can also be an HTTPS URI or
SSH URI.

To push the local changes to the remote repository, we use git push; the default
push operation is to push it to the first [remote] repository (named origin by
default) to the currently selected branch (the current branch is given in the output
from git status). The default branch in Git is named master, as we can see in the
[branch "master"] section. To emphasize what we are doing, we'll type in the full
arguments to push (although git push will achieve the same result in this case), as
you can see here:

[git@stand control]$ cd

[git@stand ~]$ cd /tmp/control

[git@stand control]$ git push origin master

Counting objects: 34, done.

Compressing objects: 100% (15/15), done.

Writing objects: 100% (34/34), 3.11 KiB | 0 bytes/s, done.

Total 34 (delta 0), reused 0 (delta 0)

To /var/lib/git/control.git

 * [new branch] master -> master

Git and Environments

[70]

Now, even though our remote repository has the updates, they are still not available
in our second copy (/tmp/control2). We must now pull the changes from the origin
to our second copy using git pull. Again, we will type in the full argument list
(this time, git pull will do the same thing), as shown here:

[git@stand ~]$ cd /tmp/control

[git@stand control]$ git push origin master

Counting objects: 34, done.

Compressing objects: 100% (15/15), done.

Writing objects: 100% (34/34), 3.11 KiB | 0 bytes/s, done.

Total 34 (delta 0), reused 0 (delta 0)

To /var/lib/git/control.git

 * [new branch] master -> master

[git@stand control]$ cd

[git@stand ~]$ cd /tmp/control2

[git@stand control2]$ git status

On branch master

#

Initial commit

#

nothing to commit (create/copy files and use "git add" to track)

[git@stand control2]$ ls

[git@stand control2]$ git pull origin master

remote: Counting objects: 34, done.

remote: Compressing objects: 100% (15/15), done.

remote: Total 34 (delta 0), reused 0 (delta 0)

Unpacking objects: 100% (34/34), done.

From /var/lib/git/control

 * branch master -> FETCH_HEAD

[git@stand control2]$ ls

environment.conf hieradata manifests modules

Two useful commands that you should know at this point are git log and git
show. The git log command will show you the log entries from Git commits.
Using the log entries, you can run git show to piece together what your fellow
developers have been doing. The following snippet shows the use of the following
two commands in our example:

[git@stand control2]$ git log

commit 316a391e2641dd9e44d2b366769a64e88cc9c557

Author: Git Repository Owner <git@example.com>

Chapter 3

[71]

Date: Sat Sep 26 19:13:41 2015 -0400

 initial commit

[git@stand control2]$ git show 316a391e2641dd9e44d2b366769a64e88cc9c557

commit 316a391e2641dd9e44d2b366769a64e88cc9c557

Author: Git Repository Owner <git@example.com>

Date: Sat Sep 26 19:13:41 2015 -0400

 initial commit

diff --git a/environment.conf b/environment.conf

new file mode 100644

index 0000000..c39193f

--- /dev/null

+++ b/environment.conf

@@ -0,0 +1,18 @@

+# Each environment can have an environment.conf file. Its settings will
only

+# affect its own environment. See docs for more info:

+# https://docs.puppetlabs.com/puppet/latest/reference/config_file_
environment.html

...

The git show command takes the commit hash as an optional argument and returns
all the changes that were made with that hash.

Now that we have our code in the repository, we need to create a production branch
for our production code. Branches are created using git branch. The important
concept to be noted is that they are local until they are pushed to the origin. When
git branch is run without arguments, it returns the list of available branches with
the currently selected branch highlighted with an asterisk, as shown here:

[git@stand ~]$ cd /tmp/control

[git@stand control]$ git branch

* master

[git@stand control]$ git branch production

[git@stand control]$ git branch

* master

 production

Git and Environments

[72]

This sometimes confuses people. You have to checkout the newly created branch
after creating it. You can do this in one step using the git checkout -b <branch_
name> command, but I believe using this shorthand command initially leads to
confusion. We'll now check our production branch and make a change. We will
then commit to the local repository and push to the remote, as shown here:

[git@stand control]$ git checkout production

Switched to branch 'production'

[git@stand control]$ git branch

 master

* production

[git@stand control]$ cd hieradata/hosts/

[git@stand hosts]$ sed -i -e 's/watch your step/best behaviour/' client.
yaml

[git@stand hosts]$ git add client.yaml

[git@stand hosts]$ git commit -m "modifying welcome message on client"

[production 74d2ff5] modifying welcome message on client

 1 file changed, 1 insertion(+), 1 deletion(-)

[git@stand hosts]$ git push origin production

Counting objects: 9, done.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (5/5), 569 bytes | 0 bytes/s, done.

Total 5 (delta 1), reused 0 (delta 0)

To /var/lib/git/control.git

 * [new branch] production -> production n

Now, in our second copy of the repository, let's confirm that the production branch
has been added to the origin, using git fetch to retrieve the latest metadata from
the remote origin, as shown here:

[git@stand hosts]$ cd /tmp/control2/

[git@stand control2]$ git branch -a

* master

[git@stand control2]$ git fetch

remote: Counting objects: 9, done.

remote: Compressing objects: 100% (4/4), done.

remote: Total 5 (delta 1), reused 0 (delta 0)

Unpacking objects: 100% (5/5), done.

From /var/lib/git/control

Chapter 3

[73]

 * [new branch] master -> origin/master

 * [new branch] production -> origin/production

[git@stand control2]$ git branch -a

* master

 remotes/origin/master

 remotes/origin/production

It is important to run git fetch routinely, to take a look at the changes that your
teammates may have made and branches that they may have created. Now, we can
verify whether the production branch has the change we made. The –a option to
git branch instructs Git to include remote branches in the output. We'll display the
current contents of client.yaml and then run git checkout production to see
the production version, as shown here:

[git@stand control2]$ grep welcome hieradata/hosts/client.yaml

welcome: 'Production Node: watch your step.'

[git@stand control2]$ git checkout production

Branch production set up to track remote branch production from origin.

Switched to a new branch 'production'

[git@stand control2]$ grep welcome hieradata/hosts/client.yaml

welcome: 'Production Node: best behaviour.'

As we can see, the welcome message in the production branch is different from
that of the master branch. At this point, we'd like to have the production branch in
/etc/puppetlabs/code/environments/production and the master branch in
/etc/puppetlabs/code/environments/master. We'll perform these commands,
as the root user, for now:

[root@stand ~]# cd /etc/puppetlabs/code/

[root@stand code]# mv environments environments.orig

[root@stand code]# mkdir environments

[root@stand code]# cd environments

[root@stand environments]# for branch in production master

> do

> git clone -b $branch /var/lib/git/control.git $branch

> done

Cloning into 'production'...

done.

Cloning into 'master'...

done.

Git and Environments

[74]

Now that our production branch is synchronized with the remote, we can do
the same for the master branch and verify whether the branches differ, using the
following command:

[root@stand environments]# diff production/hieradata/hosts/client.yaml
master/hieradata/hosts/client.yaml

2c2

< welcome: 'Production Node: best behaviour.'

> welcome: 'Production Node: watch your step.'

Running Puppet on client in the production environment will now produce the
change we expect in /etc/motd, as follows:

Production Node: best behaviour.

Managed Node: client

Managed by Puppet version 4.2.2

If you changed hiera.yaml for the single tree example, change
it to the following:

:datadir: "/etc/puppetlabs/code/
environments/%{::environment}/hieradata"

Run the agent again with the master environment, to change motd, as shown here:

[root@client ~]# puppet agent -t --environment master

Info: Retrieving pluginfacts

Info: Retrieving plugin

Info: Caching catalog for client.example.com

Info: Applying configuration version '1443313038'

Notice: /Stage[main]/Virtual/Exec[set tuned profile]/returns: executed
successfully

Notice: /Stage[main]/Base/File[/etc/motd]/content:

--- /etc/motd 2015-10-01 22:23:02.786866895 -0700

+++ /tmp/puppet-file20151001-12407-16iuoej 2015-10-01
22:24:02.999870073 -0700

@@ -1,3 +1,3 @@

-Production Node: best behaviour.

+Production Node: watch your step.

 Managed Node: client

 Managed by Puppet version 4.2.2

Chapter 3

[75]

Info: Computing checksum on file /etc/motd

Info: /Stage[main]/Base/File[/etc/motd]: Filebucketed /etc/motd to puppet
with sum 490af0a672e3c3fdc9a3b6e1bf1f1c7b

Notice: /Stage[main]/Base/File[/etc/motd]/content: content changed '{md5}
490af0a672e3c3fdc9a3b6e1bf1f1c7b' to '{md5}8147bf5dbb04eba29d5efb7e0fa28
ce2'

Notice: Applied catalog in 1.07 seconds

Our standalone Puppet master is now configured such that each branch of our
control repository is mapped to a separate Puppet environment. As new branches
are added, we have to set up the directory manually and push the contents to the
new directory. If we were working in a small environment, this arrangement of Git
pulls will be fine; but, in an enterprise, we would want this to be automatic. In a
large environment, you would also want to define your branching model to ensure
that all your team members are working with branches in the same way. Good places
to look for branching models are http://nvie.com/posts/a-successful-git-
branching-model/ and https://git-scm.com/book/en/v2/Git-Branching-
Branching-Workflows. Git can run scripts at various points in the commitment
of code to the repository—these scripts are called hooks.

Git hooks
Git provides several hook locations that are documented in the githooks man page.
The hooks of interest are post-receive and pre-receive. A post-receive hook
is run after a successful commit to the repository and a pre-receive hook is run
before any commit is attempted. Git hooks can be written in any language; the only
requirement is that they should be executable.

Each time you commit to a Git repository, Git will create a hash that is used to
reference the state of the repository after the commit. These hashes are used as
references to the state of the repository. A branch in Git refers to a specific hash,
you can view this hash by looking at the contents of .git/HEAD, as shown here:

[root@stand production]# cat .git/HEAD

ref: refs/heads/production

The hash will be in the file located at .git/refs/heads/production, as shown here:

[root@stand production]# cat .git/refs/heads/production

74d2ff58470d009e96d9ea11b9c126099c9e435a

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
https://git-scm.com/book/en/v2/Git-Branching-Branching-Workflows
https://git-scm.com/book/en/v2/Git-Branching-Branching-Workflows

Git and Environments

[76]

The post-receive and pre-receive hooks are both passed three parameters via
stdin: the first is the commit hash that you are starting from (oldrev), the second is
the new commit hash that you are creating (newrev), and the third is a reference to
the type of change that was made to the repository, where the reference is the branch
that was updated. Using these hooks, we can automate our workflow. We'll start
using the post-receive hook to set up our environments for us.

Using post-receive to set up environments
What we would like to happen at this point is a series of steps discussed as follows:

1.	 A developer works on a file in a branch.
2.	 The developer commits the change and pushes it to the origin.
3.	 If the branch doesn't exist, create it in /etc/puppetlabs/code/

environments/<branch>.
4.	 Pull the updates for the branch into /etc/puppetlabs/code/

environments/<branch>.

In our initial configuration, we will write a post-receive hook that will implement
steps 3 and 4 mentioned previously. Later, we'll ensure that only the correct
developers commit to the correct branch with a pre-receive hook. To ensure that
our Puppet user has access to the files in /etc/puppetlabs/code/environments,
we will use the sudo utility to run the commits, as the Puppet user.

Our hook doesn't need to do anything with the reference other than extract the name
of the branch and then update /etc/puppetlabs/code/environments, as necessary.
To maintain the simplicity, this hook will be written in bash. Create the script in
/var/lib/git/control.git/hooks/post-receive, as follows:

#!/bin/bash
PUPPETDIR=/etc/puppetlabs/code/environments
REPOHOME=/var/lib/git/control.git
GIT=/bin/git
umask 0002
unset GIT_DIR

We will start by setting some variables for the Git repository location and Puppet
environments directory location. It will become clear later why we set umask at
this point, we want the files created by our script to be group writable. The unset
GIT_DIR line is important; the hook will be run by Git after a successful commit,
and during the commit GIT_DIR is set to ".". We unset the variable so that Git
doesn't get confused.

Chapter 3

[77]

Next, we will read the variables oldrev, newrev, and refname from stdin (not
command-line arguments), as shown in the following code:

read oldrev newrev refname
branch=${refname#*\/*\/}
if [-z $branch]; then
 echo "ERROR: Updating $PUPPETDIR"
 echo " Branch undefined"
 exit 10
fi

After extracting the branch from the third argument, we will verify whether we were
able to extract a branch. If we are unable to parse out the branch name, we will quit
the script and warn the user.

Now, we have three scenarios that we will account for in the script. The first is that
the directory exists in /etc/puppetlabs/code/environments and that it is a Git
repository, as shown:

if directory exists, check it is a git repository
if [-d "$PUPPETDIR/$branch/.git"]; then
 cd $PUPPETDIR/$branch
 echo "Updating $branch in $PUPPETDIR"
 sudo -u puppet $GIT pull origin $branch
 exit=$?

In this case, we will cd to the directory and issue a git pull origin <branchname>
command to update the directory. We will run the git pull command using sudo
with -u puppet to ensure that the files are created as the Puppet user.

The second scenario is that the directory exists but it was not created via a Git
checkout. We will quit early if we run into this option, as shown in the following
snippet:

elif [-d "$PUPPETDIR/$branch"]; then
 # directory exists but is not in git
 echo "ERROR: Updating $PUPPETDIR"
 echo " $PUPPETDIR/$branch is not a git repository"
 exit=20

The third option is that the directory doesn't exist yet. In this case, we will clone
the branch using the git clone command in a new directory, as the Puppet user
(using sudo again), as shown in the following snippet:

else
 # directory does not exist, create
 cd $PUPPETDIR

Git and Environments

[78]

 echo "Creating new branch $branch in $PUPPETDIR"
 sudo -u puppet $GIT clone -b $branch $REPOHOME $branch
 exit=$?
fi

In each case, we retained the return value from Git so that we can exit the script with
the appropriate exit code at this point, as follows:

exit $exit

Now, let's see this in action. Change the permissions on the post-receive script to
make it executable (chmod 755 post-receive). Now, to ensure that our Git user
can run the Git commands as the Puppet user, we need to create a sudoers file. We
need the Git user to run /usr/bin/git; so, we put in a rule to allow this in a new
file called /etc/sudoers.d/sudoers-puppet, as follows:

git ALL = (puppet) NOPASSWD: /bin/git *

In this example, we'll create a new local branch, make a change in the branch, and
then push the change to the origin. Our hook will be called and a new directory
will be created in /etc/puppet/environments.

[root@stand ~]# chown puppet /etc/puppetlabs/code/environments

[root@stand ~]# sudo -iu git

[git@stand ~]$ ls /etc/puppetlabs/code/environments

master production

[git@stand ~]$ cd /tmp/control

[git@stand control]$ git branch thomas

[git@stand control]$ git checkout thomas

Switched to branch 'thomas'

 1 files changed, 1 insertions(+), 1 deletions(-)

[git@stand control]$ sed -i hieradata/hosts/client.yaml -e "s/welcome:.*/
welcome: 'Thomas Branch'/"

[git@stand control]$ git add hieradata/hosts/client.yaml

[git@stand control]$ git commit -m "Creating thomas branch"

[thomas 598d13b] Creating Thomas branch

 1 file changed, 1 insertion(+)

[git@stand control]$ git push origin thomas

Counting objects: 9, done.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (5/5), 501 bytes | 0 bytes/s, done.

Total 5 (delta 2), reused 0 (delta 0)

Chapter 3

[79]

To /var/lib/git/control.git

 * [new branch] thomas -> thomas

remote: Creating new branch thomas in /etc/puppetlabs/code/environments

remote: Cloning into 'thomas'...

remote: done.

To /var/lib/git/control.git

 b0fc881..598d13b thomas -> thomas

[git@stand control]$ ls /etc/puppetlabs/code/environments

master production thomas

Our Git hook has now created a new environment, without our intervention.
We'll now run puppet agent on the node to see the new environment in action,
as shown here:

[root@client ~]# puppet agent -t --environment thomas

…

Notice: /Stage[main]/Base/File[/etc/motd]/content:

--- /etc/motd 2015-10-01 22:24:03.057870076 -0700

+++ /tmp/puppet-file20151001-12501-1y5tl02 2015-10-01
22:55:59.132971224 -0700

@@ -1,3 +1,3 @@

-Production Node: watch your step.

+Thomas Branch

…

Notice: Applied catalog in 1.78 seconds

Our post-receive hook is very simple, but it illustrates the power of automating
your code updates. When working in an enterprise, it's important to automate all the
processes that take your code from development to production. In the next section,
we'll look at a community solution to the Git hook problem.

Puppet-sync
The problem of synchronizing Git repositories for Puppet is common enough that a
script exists on GitHub that can be used for this purpose. The puppet-sync script is
available at https://github.com/pdxcat/puppet-sync.

https://github.com/pdxcat/puppet-sync

Git and Environments

[80]

To quickly install the script, download the file from GitHub using curl, and redirect
the output to a file, as shown here:

[root@stand ~]# curl https://raw.githubusercontent.com/pdxcat/puppet-syn
c/4201dbe7af4ca354363975563e056edf89728dd0/puppet-sync >/usr/bin/puppet-
sync

 % Total % Received % Xferd Average Speed Time Time Time
Current

 Dload Upload Total Spent Left
Speed

100 7246 100 7246 0 0 9382 0 --:--:-- --:--:-- --:--:-
- 9373

[root@stand ~]# chmod 755 /usr/bin/puppet-sync

To use puppet-sync, you need to install the script on your master machine and
edit the post-receive hook to run puppet-sync with appropriate arguments.
The updated post-receive hook will have the following lines:

#!/bin/bash
PUPPETDIR=/etc/puppetlabs/code/environments
REPOHOME=/var/lib/git/control.git

read oldrev newrev refname
branch=${refname#*\/*\/}
if [-z "$branch"]; then
 echo "ERROR: Updating $PUPPETDIR"
 echo " Branch undefined"
 exit 10
fi

["$newrev" -eq 0] 2> /dev/null && DELETE='--delete' || DELETE=''
sudo -u puppet /usr/bin/puppet-sync \
 --branch "$branch" \
 --repository "$REPOHOME" \
 --deploy "$PUPPETDIR" \
 $DELETE

To use this script, we will need to modify our sudoers file to allow Git to run
puppet-sync as the Puppet user, as shown:

git ALL = (puppet) NOPASSWD: /bin/git *, /usr/bin/puppet-sync *

This process can be extended, as a solution, to push across multiple Puppet masters
by placing a call to puppet-sync within a for loop, which SSHes to each worker
and then runs puppet-sync on each of them.

Chapter 3

[81]

This can be extended further by replacing the call to puppet-sync with a call to
Ansible, to update a group of Puppet workers defined in your Ansible host's file.
More information on Ansible is available at http://docs.ansible.com/.

To check whether puppet-sync is working as expected, create another branch and
push it back to the origin, as shown:

[root@stand hooks]# sudo -iu git

[git@stand ~]$ cd /tmp/control

[git@stand control]$ git branch puppet_sync

[git@stand control]$ git checkout puppet_sync

Switched to branch 'puppet_sync'

[git@stand control]$ sed -i hieradata/hosts/client.yaml -e "s/welcome:.*/
welcome: 'Puppet_Sync Branch, underscores are cool.'/"

[git@stand control]$ git add hieradata/hosts/client.yaml

[git@stand control]$ git commit -m "creating puppet_sync branch"

[puppet_sync e3dd4a8] creating puppet_sync branch

 1 file changed, 1 insertion(+), 1 deletion(-)

[git@stand control]$ git push origin puppet_sync

Counting objects: 9, done.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (5/5), 499 bytes | 0 bytes/s, done.

Total 5 (delta 2), reused 0 (delta 0)

remote: .--- PuppetSync ---

remote: | Host : stand.example.com

remote: | Branch : puppet_sync

remote: | Deploy To : /etc/puppetlabs/code/environments/puppet_sync

remote: | Repository : /var/lib/git/control.git

remote: `--

To /var/lib/git/control.git

 e96c344..6efa315 puppet_sync -> puppet_sync

In a production environment, this level of detail for every commit will become
cumbersome, puppet-sync has a quiet option for this purpose; add –q to your
post-receive call to puppet-sync to enable the quiet mode.

Puppet environments must start with an alphabetic character and only contain
alphabetic characters, numbers, and the underscore. If we name our branch
puppet-sync, it will produce an error when attempting to execute puppet
agent -t –environment puppet-sync.

http://docs.ansible.com/

Git and Environments

[82]

Using Git hooks to play nice with other
developers
Up to this point, we've been working with the Git account to make our changes. In
the real world, we want the developers to work with their own user account. We
need to worry about permissions at this point. When each developer commits their
code, the commit will run as their user; so, the files will get created with them as the
owner, which might prevent other developers from pushing additional updates. Our
post-receive hook will run as their user, so they need to be able to use sudo just
like the Git user. To mitigate some of these issues, we'll use Git's sharedrepository
setting to ensure that the files are group readable in /var/lib/git/control.git,
and use sudo to ensure that the files in /etc/puppetlabs/code/environments are
created and owned by the Puppet user.

We can use Git's built-in sharedrepository setting to ensure that all members of
the group have access to the repository, but the user's umask setting might prevent
files from being created with group-write permissions. Putting a umask setting in
our script and running Git using sudo is a more reliable way of ensuring access. To
create a Git repository as a shared repository, use shared=group while creating the
bare repository, as shown here:

git@stand$ cd /var/lib/git

git@stand$ git init --bare --shared=group newrepo.git

Initialized empty shared Git repository in /var/lib/git/newrepo.git/

First, we'll modify our control.git bare repository to enable shared access, and
then we'll have to retroactively change the permissions to ensure that group access
is granted. We'll edit /var/lib/git/control.git/config, as follows:

[core]
 repositoryformatversion = 0
 filemode = true
 bare = true
 sharedrepository = 1

To illustrate our workflow, we'll create a new group and add a user to that group, as
shown here:

[root@stand ~]# groupadd pupdevs

[root@stand ~]# useradd -g pupdevs -c "Sample Developer" samdev [root@
stand ~]# id samdev

uid=1002(samdev) gid=1002(pupdevs) groups=1002(pupdevs)

Chapter 3

[83]

Now, we need to retroactively go back and change the ownership of files in
/var/lib/git/control.git to ensure that the pupdevs group has write access
to the repository. We'll also set the setgid bit on that directory so that new files
are group owned by pupdevs, as shown here:

[root@stand ~]# cd /var/lib/git

[root@stand git]# find control.git -type d -exec chmod g+rwxs {} \;

[root@stand git]# find control.git -type f -exec chmod g+rw {} \;

[root@stand git]# chgrp -R pupdevs control.git

Now, the repository will be accessible to anyone in the pupdevs group. We now need
to add a rule to our sudoers file to allow anyone in the pupdevs group to run Git as
the Puppet user, using the following code:

%pupdevs ALL = (puppet) NOPASSWD: /bin/git *, /usr/bin/puppet-sync *

If your repo is still configured to use puppet-sync to push updates, then you need
to remove the production directory from /etc/puppetlabs/code/environments
before proceeding. puppet-sync creates a timestamp file (.puppet-sync-stamp)
in the base of the directories it controls and will not update an existing directory
by default.

With this sudo rule in place, sudo to samdev, clone the repository and modify the
production branch, as shown:

[root@stand git]# sudo -iu samdev

[samdev@stand ~]$ git clone /var/lib/git/control.git/

Cloning into 'control'...

done.

[samdev@stand ~]$ cd control/

[samdev@stand control]$ git config --global user.name "Sample Developer"

[samdev@stand control]$ git config --global user.email "samdev@example.
com"

[samdev@stand control]$ git checkout production

Branch production set up to track remote branch production from origin.

Switched to a new branch 'production'

[samdev@stand control]$ sed -i hieradata/hosts/client.yaml -e "s/welcome:
.*/welcome: 'Sample Developer made this change'/"

[samdev@stand control]$ echo "Example.com Puppet Control Repository"
>README

[samdev@stand control]$ git add hieradata/hosts/client.yaml README

Git and Environments

[84]

[samdev@stand control]$ git commit -m "Sample Developer changing welcome"

[production 49b7367] Sample Developer changing welcome

 2 files changed, 2 insertions(+), 1 deletion(-)

 create mode 100644 README

[samdev@stand control]$ git push origin production

Counting objects: 10, done.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (6/6), 725 bytes | 0 bytes/s, done.

Total 6 (delta 0), reused 0 (delta 0)

To /var/lib/git/control.git/

 74d2ff5..49b7367 production -> production

We've updated our production branch. Our changes were automatically propagated
to the Puppet environments directory. Now, we can run Puppet on a client (in the
production environment) to see the changes, as shown:

[root@client ~]# puppet agent -t

Notice: /Stage[main]/Base/File[/etc/motd]/content:

--- /etc/motd 2015-10-01 23:59:39.289172885 -0700

+++ /tmp/puppet-file20151002-12893-1pbrr8a 2015-10-02
00:01:24.552178442 -0700

@@ -1,3 +1,3 @@

-Production Node: best behaviour.

+Sample Developer made this change

…

Notice: Applied catalog in 0.95 seconds

Now, any user we add to the pupdevs group will be able to update our Puppet
code and have it pushed to any branch. If we look in /etc/puppetlabs/code/
environments, we can see that the owner of the files is also the Puppet user due
to the use of sudo, as shown here:

[samdev@stand ~]$ ls -l /etc/puppetlabs/code/environments

total 12

drwxr-xr-x. 6 root root 86 Sep 26 19:46 master

drwxr-xr-x. 6 puppet puppet 4096 Sep 26 22:02 production

drwxr-xr-x. 6 root root 86 Sep 26 19:46 production.orig

drwxr-xr-x. 6 puppet puppet 4096 Sep 26 21:42 puppet_sync

drwxr-xr-x. 6 puppet puppet 4096 Sep 26 21:47 quiet

drwxr-xr-x. 6 puppet puppet 86 Sep 26 20:48 thomas

Chapter 3

[85]

Not playing nice with others via Git hooks
Our configuration at this point gives all users in the pupdevs group the ability to push
changes to all branches. A usual complaint about Git is that it lacks a good system of
access control. Using filesystem ACLs, it is possible to allow only certain users to push
changes to specific branches. Another way to control commits is to use a pre-receive
hook and verify if access will be granted before accepting the commit.

The pre-receive hook receives the same information as the post-receive
hook. The hook runs as the user performing the commit so that we can use that
information to block a user from committing to a branch or even doing certain types
of commits. Merges, for instance, can be denied. To illustrate how this works, we'll
create a new user called newbie and add them to the pupdevs group, using the
following commands:

[root@stand ~]# useradd -g pupdevs -c "Rookie Developer" newbie

[root@stand ~]# sudo -iu newbie

We'll have newbie check our production code, make a commit, and then push the
change to production, using the following commands:

[newbie@stand ~]$ git clone /var/lib/git/control.git

Cloning into 'control'...

done.

[newbie@stand ~]$ cd control

[newbie@stand control]$ git config --global user.name "Newbie"

[newbie@stand control]$ git config --global user.email "newbie@example.
com"

[newbie@stand control]$ git checkout production

Branch production set up to track remote branch production from origin.

Switched to a new branch 'production'

[newbie@stand control]$ echo Rookie mistake >README

[newbie@stand control]$ git add README

[newbie@stand control]$ git commit -m "Rookie happens"

[production 23e0605] Rookie happens

 1 file changed, 1 insertion(+), 2 deletions(-)

Our rookie managed to wipe out the README file in the production branch. If this was
an important file, then the deletion may have caused problems. It would be better if
the rookie couldn't make changes to production. Note that this change hasn't been
pushed up to the origin yet; it's only a local change.

Git and Environments

[86]

We'll create a pre-receive hook that only allows certain users to commit to the
production branch. Again, we'll use bash for simplicity. We will start by defining
who will be allowed to commit and we are interested in protecting which branch,
as shown in the following snippet:

#!/bin/bash

ALLOWED_USERS="samdev git root"
PROTECTED_BRANCH="production"

We will then use whoami to determine who has run the script (the developer who
performed the commit), as follows:

user=$(whoami)

Now, just like we did in post-receive, we'll parse out the branch name and exit the
script if we cannot determine the branch name, as shown in the following code:

read oldrev newrev refname
branch=${refname#*\/*\/}
if [-z $branch]; then
 echo "ERROR: Branch undefined"
 exit 10
fi

We compare the $branch variable against our protected branch and exit cleanly if
this isn't a branch we are protecting, as shown in the following code. Exiting with
an exit code of 0 informs Git that the commit should proceed:

if ["$branch" != "$PROTECTED_BRANCH"]; then
 # branch not protected, exit cleanly
 exit 0
fi

If we make it to this point in the script, we are on the protected branch and the
$user variable has our username. So, we will just loop through the $ALLOWED_USERS
variable looking for a user who is allowed to commit to the protected branch. If we
find a match, we will exit cleanly, as shown in the following code:

for allowed in $ALLOWED_USERS
do
 if ["$user" == "$allowed"]; then
 # user allowed, exit cleanly
 echo "$PROTECTED_BRANCH change for $user"
 exit 0
 fi
done

Chapter 3

[87]

If the user was not in the $ALLOWED_USERS variable, then their commit is denied
and we exit with a non-zero exit code to inform Git that the commit should not
be allowed, as shown in the following code:

not an allowed user
echo "Error: Changes to $PROTECTED_BRANCH must be made by $ALLOWED_
USERS"
exit 10

Save this file with the name pre-receive in /var/lib/git/puppet.git/hooks/
and then change the ownership to git. Make it executable using the following
commands:

[root@stand ~]# chmod 755 /var/lib/git/control.git/hooks/pre-receive

[root@stand ~]# chown git:git /var/lib/git/control.git/hooks/pre-receive

Now, we'll go back and make a simple change to the repository as root. It is
important to always get in the habit of running git fetch and git pull origin
<branch> when you start working on a branch. You need to do this to ensure that
you have the latest version of the branch from your origin:

[root@stand ~]# sudo -iu samdev

[samdev@stand ~]$ pwd

/home/samdev

[samdev@stand ~]$ ls

control

[samdev@stand ~]$ cd control

[samdev@stand control]$ git branch

 master

* production

[samdev@stand control]$ git fetch

[samdev@stand control]$ git pull origin production

From /var/lib/git/control

 * branch production -> FETCH_HEAD

Already up-to-date.

[samdev@stand control]$ echo root >>README

[samdev@stand control]$ git add README

[samdev@stand control]$ git commit -m README

[production cd1be0f] README

 1 file changed, 1 insertion(+)

Git and Environments

[88]

Now, with the simple changes made (we appended our username to the README file),
we can push the change to the origin using the following command:

[samdev@stand control]$ git push origin production

Counting objects: 5, done.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 324 bytes | 0 bytes/s, done.

Total 3 (delta 1), reused 0 (delta 0)

To /var/lib/git/control.git/

 b387c00..cd1be0f production -> production

As expected, there are no errors and the README file is updated in the production
branch by our post-receive hook. Now, we will attempt a similar change, as the
newbie user. We haven't pushed our earlier change, so we'll try to push the change
now, but first we have to merge the changes that samdev made by using git pull,
as shown here:

[newbie@stand control]$ git pull origin production

remote: Counting objects: 5, done.

remote: Compressing objects: 100% (3/3), done.

remote: Total 3 (delta 1), reused 0 (delta 0)

Unpacking objects: 100% (3/3), done.

From /var/lib/git/control

 * branch production -> FETCH_HEAD

Auto-merging README

CONFLICT (content): Merge conflict in README

Automatic merge failed; fix conflicts and then commit the result.

Our newbie user has wiped out the README file. They meant to append it to the
file using two less than (>>) signs but instead used a single less than (>) sign and
clobbered the file. Now, newbie needs to resolve the problems with the README file
before they can attempt to push the change to production, as shown here:

[newbie@stand control]$ git add README

[newbie@stand control]$ git commit -m "fixing README"

[production 4ab787c] fixing README

Chapter 3

[89]

Now newbie will attempt to push their changes up to the origin, as shown in the
following example:

[newbie@stand control]$ git push origin production

Counting objects: 5, done.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 324 bytes | 0 bytes/s, done.

Total 3 (delta 1), reused 0 (delta 0)

remote: ERROR: Changes to production must be made by samdev git root

To /var/lib/git/control.git

 ! [remote rejected] production -> production (pre-receive hook declined)

error: failed to push some refs to '/var/lib/git/control.git'

We see the commit beginning—the changes from the local production branch in
newbie are sent to the origin. However, before working with the changes, Git runs
the pre-receive hook and denies the commit. So, from the origin's perspective,
the commit never took place. The commit only exists in the newbie user's directory.
If the newbie user wishes this change to be propagated, he'll need to contact either
samdev, git, or root.

Git for everyone
At this point, we've shown how to have Git work from one of the worker machines.
In a real enterprise solution, the workers will have some sort of shared storage
configured or another method of having Puppet code updated automatically. In
that scenario, the Git repository wouldn't live on a worker but instead be pushed
to a worker. Git has a workflow for this, which uses SSH keys to grant access to the
repository. With minor changes to the shown solution, it is possible to have users
SSH to a machine as the Git user to make commits.

First, we will have our developer generate an SSH key using the following
commands:

[root@client ~]# sudo -iu remotedev

[remotedev@client ~]$ ssh-keygen

Generating public/private rsa key pair.

…

Your identification has been saved in /home/remotedev/.ssh/id_rsa.

Your public key has been saved in /home/remotedev/.ssh/id_rsa.pub.

The key fingerprint is:

18:52:85:e2:d7:cc:4d:b2:00:e1:5e:6b:25:70:ac:d6 remotedev@client.example.
com

Git and Environments

[90]

Then, copy the key into the authorized_keys file, for the Git user, as shown here:

remotedev@host $ ssh-copy-id -i ~/.ssh/id_rsa git@stand

/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to
filter out any that are already installed

/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are
prompted now it is to install the new keys

Number of key(s) added: 1

Now try logging into the machine, with ssh 'git@stand' and then check to make
sure that only the key(s) you wanted were added:

[remotedev@client ~]$ ssh -i .ssh/id_rsa git@stand

Last login: Sat Sep 26 22:54:05 2015 from client

Welcome to Example.com

Managed Node: stand

Managed by Puppet version 4.2.1

If all is well, you should not be prompted for a password. If you are still being
prompted for a password, check the permissions on /var/lib/git on the stand
machine. The permissions should be 750 on the directory. Another issue may be
SELinux security contexts; /var/lib/git is not a normal home directory location,
so the contexts will be incorrect on the git user's .ssh directory. A quick way to fix
this is to copy the context from the root user's .ssh directory, as shown here:

[root@stand git]# chcon -R --reference /root/.ssh .ssh

If you are copying the keys manually, remember that permissions are
important here. They must be restrictive for SSH to allow access. SSH
requires that ~git (Git's home directory) should not be group writable,
that ~git/.ssh be 700, and also that ~git/.ssh/authorized_keys
be no more than 600. Check in /var/log/secure for messages from
SSH if your remote user cannot SSH successfully as the Git user.

Git also ships with a restricted shell, git-shell, which can be used to only allow a
user to update Git repositories. In our configuration, we will change the git user's
shell to git-shell using chsh, as shown here:

[root@stand ~]# chsh -s $(which git-shell) git

Changing shell for git.

chsh: Warning: "/bin/git-shell" is not listed in /etc/shells.

Shell changed.

Chapter 3

[91]

When a user attempts to connect to our machine as the git user, they will not be able
to log in, as you can see here:

[remotedev@client ~]$ ssh -i .ssh/id_rsa git@stand

Last login: Sat Sep 26 23:13:39 2015 from client

Welcome to Example.com

Managed Node: stand

Managed by Puppet version 4.2.1

fatal: Interactive git shell is not enabled.

hint: ~/git-shell-commands should exist and have read and execute access.

Connection to stand closed.

However, they will succeed if they attempted to use Git commands, as shown here:

[remotedev@client ~]$ git clone git@stand:control.git

Cloning into 'control'...

remote: Counting objects: 102, done.

remote: Compressing objects: 100% (71/71), done.

remote: Total 102 (delta 24), reused 0 (delta 0)

Receiving objects: 100% (102/102), 9.33 KiB | 0 bytes/s, done.

Resolving deltas: 100% (24/24), done.

Now, when a remote user executes a commit, it will run as the git user. We need to
modify our sudoers file to allow sudo to run remotely. Add the following line at the
top of /etc/sudoers.d/sudoers-puppet (possibly using visudo):

Defaults !requiretty

At this point, our sudo rule for the post-receive hook will work as expected,
but we will lose the restrictiveness of our pre-receive hook since everything
will be running as the git user. SSH has a solution to this problem, we can set an
environment variable in the authorized_keys file that is the name of our remote
user. Edit ~git/.ssh/authorized_keys, as follows:

environment="USER=remotedev" ssh-rsa AAAA...b remotedev@client.
example.com

Finally, edit the pre-receive hook, by changing the user=$(whoami) line to
user=$USER.

Now, when we use our SSH key to commit remotely, the environment variable
set in the SSH key is used to determine who ran the commit.

Running an enterprise-level Git server is a complex task in itself. The scenario
presented here can be used as a road map to develop your solution.

Git and Environments

[92]

Summary
In this chapter, we have seen how to configure Puppet to work in different
environments. We have seen how having hieradata in different environments
can allow developers to work independently.

By leveraging the utility of Git and Git hooks, we can have custom-built
environments for each developer, built automatically when the code is checked into
our Git repository. This will allow us to greatly increase our developers' productivity
and allow a team of system administrators to work simultaneously on the same
code base.

In the next chapter, we'll see how public modules from Puppet Forge can be used
to accomplish complex configurations on our nodes.

[93]

Public Modules
The default types shipped with Puppet can be used to do almost everything you
need to do to configure your nodes. When you need to perform more tasks than
the defaults can provide, you can either write your own custom modules or turn
to the Forge (http://forge.puppetlabs.com/) and use a public module. Puppet
Forge is a public repository of shared modules. Several of these modules enhance
the functionality of Puppet, provide a new type, or solve a specific problem. In this
chapter, we will first cover how to keep your public modules organized for your
enterprise then we will go over specific use cases for some popular modules.

Getting modules
Modules are just files and a directory structure. They can be packaged as a ZIP
archive or shared via a Git repository. Indeed, most modules are hosted on GitHub
in addition to Puppet Forge. You will find most public modules on the Forge, and
the preferred method to keep your modules up to date is to retrieve them from
the Forge.

Using GitHub for public modules
If you have a module you wish to use and that is only hosted on GitHub (which is
an online Git service for sharing code using Git), you can create a local Git repository
and make the GitHub module a submodule of your modules. Another use for a local
copy is if the public module does not work entirely as you require, you can modify
the public module in your local copy.

http://forge.puppetlabs.com/

Public Modules

[94]

This workflow has issues; submodules are local to each working copy of a module.
When working in an enterprise, the internal servers do not usually have access to
public Internet services such as GitHub. To get around this access problem, you
can create an internal Git repository that is a clone of the public GitHub repository
(the machine which is performing the clone operation will need to have access
to GitHub).

We'll start by cloning the public repository as our git user:

[root@stand git]# sudo -u git bash

[git@stand ~]$ pwd

/var/lib/git

[git@stand ~]$ git clone --bare https://github.com/uphillian/
masteringpuppet.git

Cloning into bare repository 'masteringpuppet.git'...

remote: Counting objects: 4, done.

remote: Compressing objects: 100% (3/3), done.

remote: Total 4 (delta 0), reused 0 (delta 0), pack-reused 0

Unpacking objects: 100% (4/4), done.

We now have a local copy of our public repository. We'll create a checkout of this
repository as our remotedev user on the client machine as shown here:

[remotedev@client ~]$ git clone git@stand:masteringpuppet.git

Cloning into 'masteringpuppet'...

remote: Counting objects: 4, done.

remote: Compressing objects: 100% (3/3), done.

remote: Total 4 (delta 0), reused 0 (delta 0)

Receiving objects: 100% (4/4), 4.14 KiB | 0 bytes/s, done.

Now we'll create a local branch to track our internal changes to the module and
name this branch local, as shown here:

[remotedev@client ~]$ cd masteringpuppet/

[remotedev@client masteringpuppet]$ git branch local

[remotedev@client masteringpuppet]$ git checkout local

Switched to branch 'local'

Chapter 4

[95]

Now we will make our change to the local branch and add the modified README.md
file to the repository. We then push our local branch back to the server (stand):

[remotedev@client masteringpuppet]$ git add README.md

[remotedev@client masteringpuppet]$ git commit -m "local changes"

[local 148ff2f] local changes

 1 file changed, 1 insertion(+), 1 deletion(-)

[remotedev@client masteringpuppet]$git push origin local

Counting objects: 8, done.

Compressing objects: 100% (6/6), done.

Writing objects: 100% (6/6), 584 bytes | 0 bytes/s, done.

Total 6 (delta 1), reused 0 (delta 0)

To git@stand:masteringpuppet.git

 * [new branch] local -> local

We now have a local branch that we can use internally. There are two issues with
this configuration. When the public module is updated, we want to be able to pull
those updates into our own module. We also want to be able to use our local branch
wherever we want the module installed.

Updating the local repository
To pull in updates from the public module, you have to use the git pull command.
First, add the public repository as a remote repository for our local clone as
shown here:

[remotedev@client masteringpuppet]$ git remote add upstream git@github.
com:uphillian/masteringpuppet.git

[remotedev@client masteringpuppet]$ git fetch upstream

The git fetch command is used to grab the latest data from the remote repository.
With the latest version of the data available, we now use the git pull command
to pull the latest changes into our current local branch as shown here:

[remotedev@client masteringpuppet]$ git pull upstream master

From github.com:uphillian/masteringpuppet

 * branch master -> FETCH_HEAD

Merge made by the 'recursive' strategy.

manifests/init.pp | 3 +++

 1 file changed, 3 insertions(+)

create mode 100644 manifests/init.pp

Public Modules

[96]

This will create an automatic merge of the upstream master branch in the local
branch (provided there are no merge conflicts). Using the git tag command can
be useful in this workflow. After each merge from the upstream public repository
you can create a tag to refer to the current release of the repository. Using this local
copy method we can use public modules within our organization without relying on
direct connections to the public Internet. We are also able to make local modifications
to our copy of the repository and maintain those changes independent of changes
in the upstream module. This can become a problem if the upstream module makes
changes that are incompatible with your changes. Any changes you make that can be
pushed back to the upstream project are encouraged. Submitting a pull request on
GitHub is a pain free way to share your improvements and modifications with the
original developer.

Modules from the Forge
Modules on Puppet Forge can be installed using Puppet's built-in module command.
The modules on the Forge have files named Modulefile, which define their
dependencies; so, if you download modules from the Forge using puppet module
install, then their dependencies will be resolved in a way similar to how yum
resolves dependencies for rpm packages.

To install the puppetlabs-puppetdb module, we will simply issue a puppet module
install command in the appropriate directory. We'll create a new directory in tmp;
for our example, this will be /tmp/public_modules, as shown here:

[git@stand ~]$ cd /tmp

[git@stand tmp]$ mkdir public_modules

[git@stand tmp]$ cd public_modules/

[git@stand public_modules]$

Then, we'll inform Puppet that our modulepath is /tmp/public_modules and install
the puppetdb module using the following command:

[git@stand public_modules]$ puppet module install --modulepath=/tmp/
public_modules puppetlabs-puppetdb

Notice: Preparing to install into /tmp/public_modules ...

Notice: Downloading from https://forgeapi.puppetlabs.com ...

Notice: Installing -- do not interrupt ...

/tmp/public_modules

└─┬ puppetlabs-puppetdb (v5.0.0)

 ├── puppetlabs-firewall (v1.7.1)

Chapter 4

[97]

 ├── puppetlabs-inifile (v1.4.2)

 └─┬ puppetlabs-postgresql (v4.6.0)

 ├── puppetlabs-apt (v2.2.0)

 ├── puppetlabs-concat (v1.2.4)

 └── puppetlabs-stdlib (v4.9.0)

Using module install, we retrieved puppetlabs-firewall, puppetlabs-inifile,
puppetlabs-postgresql, puppetlabs-apt, puppetlabs-concat, and puppetlabs-
stdlib all at once. So, not only have we satisfied dependencies automatically, but we
also have retrieved release versions of the modules as opposed to the development
code. We can, at this point, add these modules to a local repository and guarantee
that our fellow developers will be using the same versions that we have checked out.
Otherwise, we can inform our developers about the version we are using and have
them check out the modules using the same versions.

You can specify the version with puppet module install as follows:

[git@stand public_modules]$ \rm -r stdlib

[git@stand public_modules]$ puppet module install --modulepath=/tmp/
public_modules puppetlabs-stdlib --version 4.8.0

Notice: Preparing to install into /tmp/public_modules ...

Notice: Downloading from https://forgeapi.puppetlabs.com ...

Notice: Installing -- do not interrupt ...

/tmp/public_modules

└── puppetlabs-stdlib (v4.8.0)

The \rm in the previous example is a shorthand in UNIX to
disable shell expansion of variables. rm is usually aliased to rm
-i, which would have prompted us when we wanted to delete
the directory.

Keeping track of the installed versions can become troublesome; a more stable
approach is to use librarian-puppet to pull in the modules you require for
your site.

Public Modules

[98]

Using Librarian
Librarian is a bundler for Ruby. It handles dependency checking for you. The project
for using Librarian with Puppet is called librarian-puppet and is available at
http://rubygems.org/gems/librarian-puppet. To install librarian-puppet,
we'll use RubyGems since no rpm packages exist in public repositories at this time.
To make our instructions platform agnostic, we'll use Puppet to install the package
as shown here:

[root@stand ~]# puppet resource package librarian-puppet ensure=installed
provider=gem

Notice: /Package[librarian-puppet]/ensure: created

package { 'librarian-puppet':

ensure => ['2.2.1'],

}

We can now run librarian-puppet as follows:

[root@stand ~]# librarian-puppet version

librarian-puppet v2.2.1

The librarian-puppet project uses a Puppetfile to define the modules that will
be installed. The syntax is the name of the module followed by a comma and the
version to install. Modules may be pulled in from Git repositories or directly from
Puppet Forge. You can override the location of Puppet Forge using a forge line as
well. Our initial Puppetfile would be the following:

forge "http://forge.puppetlabs.com"
mod 'puppetlabs/puppetdb', '5.0.0'
mod 'puppetlabs/stdlib', '4.9.0'

We'll create a new public directory in /tmp/public4 and include the Puppetfile in
that directory, as shown here:

[git@stand ~]$ cd /tmp

[git@stand tmp]$ mkdir public4 && cd public4

[git@stand public4]$ cat<<EOF>Puppetfile

> forge "https://forgeapi.puppetlabs.com"

>mod 'puppetlabs/puppetdb', '5.0.0'

>mod 'puppetlabs/stdlib', '4.9.0'

> EOF

http://rubygems.org/gems/librarian-puppet

Chapter 4

[99]

Next, we'll tell librarian-puppet to install everything we've listed in the
Puppetfile as follows:

[git@stand public4]$ librarian-puppet update

[git@stand public4]$ ls

modules Puppetfile Puppetfile.lock

The Puppetfile.lock file is a file used by librarian-puppet to keep track of
installed versions and dependencies; in our example, it contains the following:

FORGE
remote: https://forgeapi.puppetlabs.com
specs:
puppetlabs-apt (2.2.0)
puppetlabs-stdlib (< 5.0.0, >= 4.5.0)
puppetlabs-concat (1.2.4)
puppetlabs-stdlib (< 5.0.0, >= 3.2.0)
puppetlabs-firewall (1.7.1)
puppetlabs-inifile (1.4.2)
puppetlabs-postgresql (4.6.0)
puppetlabs-apt (< 3.0.0, >= 1.8.0)
puppetlabs-concat (< 2.0.0, >= 1.1.0)
puppetlabs-stdlib (~> 4.0)
puppetlabs-puppetdb (5.0.0)
puppetlabs-firewall (< 2.0.0, >= 1.1.3)
puppetlabs-inifile (< 2.0.0, >= 1.1.3)
puppetlabs-postgresql (< 5.0.0, >= 4.0.0)
puppetlabs-stdlib (< 5.0.0, >= 4.2.2)
puppetlabs-stdlib (4.9.0)

DEPENDENCIES
puppetlabs-puppetdb (= 5.0.0)
puppetlabs-stdlib (= 4.9.0)

Our modules are installed in /tmp/public4/modules. Now, we can go back and
add all these modules to our initial Puppetfile to lockdown the versions of the
modules for all our developers. The process for a developer to clone our working
tree would be to install librarian-puppet and then pull down our Puppetfile. We
will add the Puppetfile to our Git repository to complete the workflow. Thus, each
developer will be guaranteed to have the same public module structure.

Public Modules

[100]

We can then move these modules to /etc/puppetlabs/code/modules and change
permissions for the Puppet user using the following commands:

[root@stand ~]# cd /tmp/public4/modules/

[root@stand modules]# cp -a . /etc/puppetlabs/code/modules/

[root@stand modules]# chown -R puppet:puppet /etc/puppetlabs/code/modules

[root@stand modules]# ls /etc/puppetlabs/code/modules/

apt concat firewall inifile postgresql puppetdb stdlib

This method works fairly well, but we still need to update the modules
independently of our Git updates; we need to do these two actions together.
This is where r10k comes into play.

Using r10k
r10k is an automation tool for Puppet environments. It is hosted on GitHub
at https://github.com/puppetlabs/r10k. The project is used to speed up
deployments when there are many environments and many Git repositories in
use. From what we've covered so far, we can think of it as librarian-puppet and
Git hooks in a single package. r10k takes the Git repositories specified in /etc/
puppetlabs/r10k/r10k.yaml and checks out each branch of the repositories into
a subdirectory of the environment directory (the environment directory is also
specified in /etc/puppetlabs/r10k/r10k.yaml). If there is a Puppetfile in the
root of the branch, then r10k parses the file in the same way that librarian-puppet
does and it installs the specified modules in a directory named modules under the
environment directory.

To use r10k, we'll replace our post-receive Git hook from the previous chapter
with a call to r10k and we'll move our librarian-puppet configuration to a place
where r10k is expecting it. We'll be running r10k as the puppet user, so we'll set up
the puppet user with a normal shell and login files, as shown here:

[root@stand ~]# chsh -s /bin/bash puppet

Changing shell for puppet.

Shell changed.

[root@stand ~]# cp /etc/skel/.bash* ~puppet/

[root@stand ~]# chown puppet ~puppet/.bash*

[root@stand ~]# sudo -iu puppet

[puppet@stand ~]$

https://github.com/puppetlabs/r10k

Chapter 4

[101]

Now, install the r10k gem as shown here:

[root@stand ~]# puppet resource package r10k ensure=present provider=gem

Notice: /Package[r10k]/ensure: created

package { 'r10k':

ensure => ['2.0.3'],

}

Next, we'll create a /etc/puppetlabs/r10k/r10k.yaml file to point to our local Git
repository. We will also specify that our Puppet environments will reside in /etc/
puppetlabs/code/environments, as shown in the following snippet:

cachedir: '/var/cache/r10k'
sources:
control:
remote: '/var/lib/git/control.git'
basedir: '/etc/puppetlabs/code/environments'

Now, we need to create the cache directory and make it owned by the puppet user.
We will use the following commands to do so:

[root@stand ~]# mkdir /var/cache/r10k

[root@stand ~]# chown puppet:puppet /var/cache/r10k

Now, we need to check out our code and add a Puppetfile to the root of the
checkout. In each environment, create a Puppetfile that contains which modules
you want installed in that environment; we'll copy the previous Puppetfile as
shown in the following code:

forge "http://forge.puppetlabs.com"
mod 'puppetlabs/puppetdb', '5.0.0'
mod 'puppetlabs/stdlib', '4.9.0'

We'll check the syntax of our Puppetfile using r10k as shown here:

[samdev@stand control]$ cat Puppetfile

forge "http://forge.puppetlabs.com"

mod 'puppetlabs/puppetdb', '5.0.0'

mod 'puppetlabs/stdlib', '4.9.0'

[samdev@stand control]$ r10k puppetfile check

Syntax OK

Public Modules

[102]

Now, add the Puppetfile to the Git repository using the following commands:

[samdev@stand control]$ git add Puppetfile

[samdev@stand control]$ git commit -m "adding Puppetfile"

[production 17d53ad] adding Puppetfile

 1 file changed, 3 insertions(+)

create mode 100644 Puppetfile

Now, r10k expects that the modules specified in the Puppetfile will get installed
in $environment/modules, but we already have modules in that location. Move
the existing modules into another directory using the following commands; dist
or local are commonly used:

[samdev@stand control]$ git mv modules dist

[samdev@stand control]$ git commit -m "moving modules to dist"

[production d3909a3] moving modules to dist

 6 files changed, 0 insertions(+), 0 deletions(-)

rename {modules => dist}/base/manifests/init.pp (100%)

rename {modules => dist}/hostname_problem/manifests/init.pp (100%)

rename {modules => dist}/resolver/manifests/init.pp (100%)

rename {modules => dist}/syslog/manifests/init.pp (100%)

rename {modules => dist}/virtual/manifests/init.pp (100%)

rename {modules => dist}/web/manifests/init.pp (100%)

Now that our modules are out of the way, we don't want a modules directory to be
tracked by Git, so add modules to .gitignore using the following commands:

[samdev@stand control]$ echo "modules/" >>.gitignore

[samdev@stand control]$ git add .gitignore

[samdev@stand control]$ git commit -m "adding .gitignore"

[production e6a5a4a] adding .gitignore

 1 file changed, 1 insertion(+)

create mode 100644 .gitignore

Ok, we are finally ready to test. Well almost. We want to test r10k, so we need to
disable our post-receive hook; just disable the execute bit on the script using
the following commands:

[root@stand ~]# sudo -u git bash

[git@stand ~]$ cd /var/lib/git/control.git/hooks

[git@stand hooks]$ chmod -x post-receive

Chapter 4

[103]

Now we can finally add our changes to the Git repository, using the following
commands:

[git@stand hooks]$ exit

exit

[root@stand ~]# sudo -iu samdev

[samdev@stand ~]$ cd control

[samdev@stand control]$ git push origin production

Counting objects: 9, done.

Compressing objects: 100% (7/7), done.

Writing objects: 100% (8/8), 946 bytes | 0 bytes/s, done.

Total 8 (delta 2), reused 0 (delta 0)

remote: production

remote: production change for samdev

To /var/lib/git/control.git/

 0d5cf62..e6a5a4a production -> production

Note that the only remote lines in the output are related to our pre-receive hook
since we no longer have a post-receive hook running.

We will be running r10k as the puppet user, so we'll need to ensure that the puppet
user can access files in the /var/lib/git directory; we'll use Filesystem Access
Control Lists (FACLs) to achieve this access as shown here:

[root@stand ~]# setfacl -m 'g:puppet:rwx' -R /var/lib/git

[root@stand ~]# setfacl -m 'g:puppet:rwx' -R -d /var/lib/git

Before we can use r10k, we need to clean out the environments directory using the
following commands:

[samdev@stand control]$ exit

logout

[root@stand ~]# sudo chown puppet /etc/puppetlabs/code

[root@stand ~]# sudo -iu puppet

[puppet@stand ~]$ cd /etc/puppetlabs/code

[puppet@stand code]$ mv environments environments.b4-r10k

[puppet@stand code]$ mkdir environments

Now we can test r10k using r10k deploy as follows:

[puppet@stand code]$ r10k deploy environment -p

[puppet@stand code]$ ls environments

master production puppet_sync quiet thomas

Public Modules

[104]

As we can see, r10k did a Git checkout of our code in the master, thomas, quiet, and
production branches. We added a Puppetfile to the production branch; so, when
we look in /etc/puppetlabs/code/environments/production/modules, we will
see the puppetdb and stdlib modules defined in the Puppetfile:

[puppet@stand code]$ ls environments/production/modules

puppetdb stdlib

We have now used r10k to deploy not only our code but the puppetdb and stdlib
modules as well. We'll now switch our workflow to use r10k and change our
post-receive hook to use r10k. Our post-receive hook will be greatly simplified;
we'll just call r10k with the name of the branch and exit. Alternatively, we can
have r10k run on every environment if we choose to; this way, it will only update
a specific branch each time. To make the hook work again, we'll first need to enable
the execute bit on the file, using the following commands:

[root@stand ~]# sudo -u git bash

[git@stand root]$ cd /var/lib/git/control.git/hooks/

[git@stand hooks]$ chmod +x post-receive

Next, we'll replace the contents of post-receive with the following script:

logout
#!/bin/bash
r10k=/usr/local/bin/r10k
read oldrev newrev refname
branch=${refname#*\/*\/}
if [-z "$branch"]; then
 echo "ERROR: Branch undefined"
 exit 10
fi

exec sudo -u puppet $r10k deploy environment $branch –p

Now, we need to edit our sudoers file to allow Git to run r10k as puppet,
as shown here:

Defaults !requiretty
git ALL = (puppet) NOPASSWD: /bin/git *, /usr/bin/puppet-sync *,/usr/
local/bin/r10k *
%pupdevs ALL = (puppet) NOPASSWD: /bin/git *, /usr/bin/puppet-sync *,
/usr/local/bin/r10k *

Chapter 4

[105]

Now, to test whether everything is working, remove a module from the production
environment using the following command:

[root@stand ~]# \rm -rf /etc/puppetlabs/code/environments/production/
modules/stdlib

Now, make a change in production and push that change to the origin to trigger an
r10k run, as shown here:

[root@stand ~]# sudo -iu samdev

[samdev@stand ~]$ cd control/

[samdev@stand control]$ echo "Using r10k in post-receive" >>README

[samdev@stand control]$ git add README

[samdev@stand control]$ git commit -m "triggering r10k rebuild"

[production bab33bd] triggering r10k rebuild

 1 file changed, 1 insertion(+)

[samdev@stand control]$ git push origin production

Counting objects: 5, done.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 295 bytes | 0 bytes/s, done.

Total 3 (delta 2), reused 0 (delta 0)

remote: production

remote: production change for samdev

To /var/lib/git/control.git/

 422de2d..bab33bd production -> production

Finally, verify whether the stdlib module was recreated or not using the following
command:

[samdev@stand control]$ ls /etc/puppetlabs/code/environments/production/
modules/

puppetdb stdlib

Keeping everything in r10k allows us to have mini labs for developers to work
on a copy of our entire infrastructure with a few commands. They will only need
a copy of our Git repository and our r10k.yaml file to recreate the configuration
on a private Puppet master.

Public Modules

[106]

Using Puppet-supported modules
Many of the modules found on the public Forge are of high quality and have good
documentation. The modules we will cover in this section are well-documented.
What we will do is use concrete examples to show how to use these modules to solve
real-world problems. Though I have covered only those modules I personally found
useful, there are many excellent modules that can be found on the Forge. I encourage
you to have a look at them first before starting to write your own modules.

The modules that we will cover are as follows:

•	 concat

•	 inifile

•	 firewall

•	 lvm

•	 stdlib

These modules extend Puppet with custom types and, therefore, require that
pluginsync be enabled on our nodes. pluginsync copies Ruby libraries from the
modules to /opt/puppetlabs/puppet/cache/lib/puppet and /opt/puppetlabs/
puppet/cache/lib/facter.

pluginsync is enabled by default in Puppet versions 3.0 and higher;
no configuration is required. If you are using a version prior to 3.0,
you will need to enable pluginsync in your puppet.conf.

concat
When we distribute files with Puppet, we either send the whole file as is or we send
over a template that has references to variables. The concat module offers us a
chance to build up a file from fragments and have it reassembled on the node. Using
concat, we can have files which live locally on the node incorporated into the final
file as sections. More importantly, while working in a complex system, we can have
more than one module adding sections to the file. In a simple example, we can have
four modules, all of which operate on /etc/issue. The modules are as follows:

•	 issue: This is the base module that puts a header on /etc/issue
•	 issue_confidential: This module adds a confidential warning to

/etc/issue

•	 issue_secret: This module adds a secret level warning to /etc/issue
•	 issue_topsecret: This module adds a top secret level warning to /etc/issue

Chapter 4

[107]

Using either the file or the template method to distribute the file won't work here
because all of the four modules are modifying the same file. What makes this harder
still is that we will have machines in our organization that require one, two, three,
or all four of the modules to be applied. The concat module allows us to solve this
problem in an organized fashion (not a haphazard series of execs with awk and sed).
To use concat, you first define the container, which is the file that will be populated
with the fragments. concat calls the sections of the file fragments. The fragments are
assembled based on their order. The order value is assigned to the fragments and
should have the same number of digits, that is, if you have 100 fragments then your
first fragment should have 001, and not 1, as the order value. Our first module issue
will have the following init.pp manifest file:

class issue {
 concat { 'issue':
 path => '/etc/issue',
 }
 concat::fragment {'issue_top':
 target => 'issue',
 content => "Example.com\n",
 order => '01',
 }
}

This defines /etc/issue as a concat container and also creates a fragment to be
placed at the top of the file (order01). When applied to a node, the /etc/issue
container will simply contain Example.com.

Our next module is issue_confidential. This includes the issue module to ensure
that the container for /etc/issue is defined and we have our header. We then define
a new fragment to contain the confidential warning, as shown in the following code:

class issue_confidential {
 include issue
 concat::fragment {'issue_confidential':
 target => 'issue',
 content => "Unauthorised access to this machine is strictly
 prohibited. Use of this system is limited to authorised
 parties only.\n",
 order => '05',
 }
}

Public Modules

[108]

This fragment has order05, so it will always appear after the header. The next two
modules are issue_secret and issue_topsecret. They both perform the same
function as issue_confidential but with different messages and orders, as you
can see in the following code:

class issue_secret {
 include issue
 concat::fragment {'issue_secret':
 target => 'issue',
 content => "All information contained on this system is
 protected, no information may be removed from the system
 unless authorised.\n",
 order => '10',
 }
}
class issue_topsecret {
 include issue
 concat::fragment {'issue_topsecret':
 target => 'issue',
 content => "You should forget you even know about this
 system.\n",
 order => '15',
 }
}

We'll now add all these modules to the control repository in the dist directory.
We also update the Puppetfile to include the location of the concat module,
as shown here:

mod 'puppetlabs/concat'

We next need to update our environment.conf file to include the dist directory as
shown here:

modulepath = modules:$basemodulepath:dist

Using our Hiera configuration from the previous chapter, we will modify the
client.yaml file to contain the issue_confidential class as shown here:

welcome: 'Sample Developer made this change'
classes:
 - issue_confidential

Chapter 4

[109]

This configuration will cause the /etc/issue file to contain the header and the
confidential warning. To have these changes applied to our /etc/puppetlabs/
code/environments directory by r10k, we'll need to add all the files to the Git
repository and push the changes, as shown here:

[samdev@stand control]$ git status

On branch production

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: Puppetfile

new file: dist/issue/manifests/init.pp

new file: dist/issue_confidential/manifests/init.pp

new file: dist/issue_secret/manifests/init.pp

new file: dist/issue_topsecret/manifests/init.pp

modified: environment.conf

modified: hieradata/hosts/client.yaml

#

[samdev@stand control]$ git commit -m "concat example"

[production 6b3e7ae] concat example

 7 files changed, 39 insertions(+), 1 deletion(-)

create mode 100644 dist/issue/manifests/init.pp

create mode 100644 dist/issue_confidential/manifests/init.pp

create mode 100644 dist/issue_secret/manifests/init.pp

create mode 100644 dist/issue_topsecret/manifests/init.pp

[samdev@stand control]$ git push origin production

Counting objects: 27, done.

Compressing objects: 100% (11/11), done.

Writing objects: 100% (20/20), 2.16 KiB | 0 bytes/s, done.

Total 20 (delta 2), reused 0 (delta 0)

remote: production

remote: production change for samdev

To /var/lib/git/control.git/

 bab33bd..6b3e7ae production -> production

Public Modules

[110]

Since concat was defined in our Puppetfile, we will now see the concat module in
/etc/puppetlabs/code/environments/production/modules as shown here:

[samdev@stand control]$ ls /etc/puppetlabs/code/environments/production/
modules/

concat puppetdb stdlib

We are now ready to run Puppet agent on client, after a successful Puppet agent run
we see the following while attempting to log in to the system:

Example.com

Unauthorised access to this machine is strictly

prohibited. Use of this system is limited to authorized

parties only.

client login:

Now, we will go back to our client.yaml file and add issue_secret, as shown in
the following snippet:

welcome: 'Sample Developer Made this change'
classes: - issue_confidential
 - issue_secret

After a successful Puppet run, the login looks like the following:

Example.com

Unauthorised access to this machine is strictly

prohibited. Use of this system is limited to authorised

parties only.

All information contained on this system is protected, no information may
be removed from the system unless authorised.

client login:

Adding the issue_topsecret module is left as an exercise, but we can see the utility
of being able to have several modules modify a file. We can also have a fragment
defined from a file on the node. We'll create another module called issue_local and
add a local fragment. To specify a local file resource, we will use the source attribute
of concat::fragment, as shown in the following code:

class issue_local {
 include issue
 concat::fragment {'issue_local':
 target => 'issue',

Chapter 4

[111]

 source => '/etc/issue.local',
 order => '99',
 }
}

Now, we add issue_local to client.yaml, but before we can run Puppet agent
on client, we have to create /etc/issue.local, or the catalog will fail. This is a
shortcoming of the concat module—if you specify a local path, then it has to exist.
You can overcome this by having a file resource defined that creates an empty file if
the local path doesn't exist, as shown in the following snippet:

file {'issue_local':
 path => '/etc/issue.local',
 ensure => 'file',
}

Then, modify the concat::fragment to require the file resource, as shown in the
following snippet:

concat::fragment {'issue_local':
 target => 'issue',
 source => '/etc/issue.local',
 order => '99',
 require => File['issue_local'],
}

Now, we can run Puppet agent on node1; nothing will happen but the catalog will
compile. Next, add some content to /etc/issue.local as shown here:

node1# echo "This is an example node, avoid storing protected material
here" >/etc/issue.local

Now after running Puppet, our login prompt will look like this:

Example.com

Unauthorised access to this machine is strictly

prohibited. Use of this system is limited to authorised

parties only.

All information contained on this system is protected, no information may
be removed from the system unless authorised.

This is an example node, avoid storing protected material here

client login:

Public Modules

[112]

There are many places where you would like to have multiple modules modify a
file. When the structure of the file isn't easily determined, concat is the only viable
solution. If the file is highly structured, then other mechanisms such as augeas
can be used. When the file has a syntax of the inifile type, there is a module
specifically made for inifiles.

inifile
The inifile module modifies the ini-style configuration files, such as those used by
Samba, System Security Services Daemon (SSSD), yum, tuned, and many others,
including Puppet. The module uses the ini_setting type to modify settings based
on their section, name, and value. We'll add inifile to our Puppetfile and push
the change to our production branch to ensure that the inifile module is pulled
down to our client node on the next Puppet agent run. Begin by adding the inifile
to the Puppetfile as shown here:

mod 'puppetlabs/inifile'

With the module in the Puppetfile and pushed to the repository, r10k will
download the module as we can see from the listing of the production/modules
directory:

[samdev@stand control]$ ls/etc/puppetlabs/code/environments/production/
modules/

concat inifile puppetdb stdlib

To get started with inifile, we'll look at an example in the yum.conf configuration
file (which uses ini syntax). Consider the gpgcheck setting in the following /etc/
yum.conf file:

[main]
cachedir=/var/cache/yum/$basearch/$releasever
keepcache=0
debuglevel=2
logfile=/var/log/yum.log
exactarch=1
obsoletes=1
gpgcheck=1
plugins=1
installonly_limit=3

Chapter 4

[113]

As an example, we will modify that setting using puppet resource, as shown here:

[root@client ~]# puppet resource ini_setting dummy_name path=/etc/yum.
conf section=main setting=gpgcheck value=0

Notice: /Ini_setting[dummy_name]/value: value changed '1' to '0'

ini_setting { 'dummy_name':

 ensure => 'present',

 value => '0',

}

When we look at the file, we will see that the value was indeed changed:

[main]
cachedir=/var/cache/yum/$basearch/$releasever
keepcache=0
debuglevel=2
logfile=/var/log/yum.log
exactarch=1
obsoletes=1
gpgcheck=0

The power of this module is the ability to change only part of a file and not clobber
the work of another module. To show how this can work, we'll modify the SSSD
configuration file. SSSD manages access to remote directories and authentication
systems. It supports talking to multiple sources; we can exploit this to create
modules that only define their own section of the configuration file. In this example,
we'll assume there are production and development authentication LDAP directories
called prod and devel. We'll create modules called sssd_prod and sssd_devel to
modify the configuration file. Starting with sssd, we'll create a module which creates
the /etc/sssd directory:

class sssd {
 file { '/etc/sssd':
 ensure => 'directory',
 mode => '0755',
 }
}

Next we'll create sssd_prod and add a [domain/PROD] section to the file, as shown
in the following snippet:

class sssd_prod {
 include sssd
 Ini_setting { require => File['/etc/sssd'] }
 ini_setting {'krb5_realm_prod':

Public Modules

[114]

 path => '/etc/sssd/sssd.conf',
 section => 'domain/PROD',
 setting => 'krb5_realm',
 value => 'PROD',
 }
 ini_setting {'ldap_search_base_prod':
 path => '/etc/sssd/sssd.conf',
 section => 'domain/PROD',
 setting => 'ldap_search_base',
 value => 'ou=prod,dc=example,dc=com',
 }
 ini_setting {'ldap_uri_prod':
 path => '/etc/sssd/sssd.conf',
 section => 'domain/PROD',
 setting => 'ldap_uri',
 value => 'ldaps://ldap.prod.example.com',
 }
ini_setting {'krb5_kpasswd_prod':
 path => '/etc/sssd/sssd.conf',
 section => 'domain/PROD',
 setting => 'krb5_kpasswd',
 value => 'secret!',
 }
 ini_setting {'krb5_server_prod':
 path => '/etc/sssd/sssd.conf',
 section => 'domain/PROD',
 setting => 'krb5_server',
 value => 'kdc.prod.example.com',
}

These ini_setting resources will create five lines within the [domain/PROD] section
of the configuration file. We need to add PROD to the list of domains; for this, we'll
use ini_subsetting as shown in the following snippet. The ini_subsetting type
allows us to add sub settings to a single setting:

ini_subsetting {'domains_prod':
 path => '/etc/sssd/sssd.conf',
 section => 'sssd',
 setting => 'domains',
 subsetting => 'PROD',
}

Chapter 4

[115]

Now, we'll add sssd_prod to our client.yaml file and run puppet agent on client
to see the changes, as shown here:

[root@client ~]# puppet agent -t

…

Info: Applying configuration version '1443519502'

Notice: /Stage[main]/Sssd_prod/File[/etc/sssd]/ensure: created

…

Notice: /Stage[main]/Sssd_prod/Ini_setting[krb5_server_prod]/ensure:
created

Notice: /Stage[main]/Sssd_prod/Ini_subsetting[domains_prod]/ensure:
created

Notice: Applied catalog in 1.07 seconds

Now when we look at /etc/sssd/sssd.conf, we will see the [sssd] and [domain/
PROD] sections are created (they are incomplete for this example; you will need many
more settings to make SSSD work properly), as shown in the following snippet:

[sssd]
domains = PROD

[domain/PROD]
krb5_server = kdc.prod.example.com
krb5_kpasswd = secret!
ldap_search_base = ou=prod,dc=example,dc=com
ldap_uri = ldaps://ldap.prod.example.com
krb5_realm = PROD

Now, we can create our sssd_devel module and add the same setting as that we
did for PROD, changing their values for DEVEL, as shown in the following code:

class sssd_devel {
 include sssd
 Ini_setting { require => File['/etc/sssd'] }
 ini_setting {'krb5_realm_devel':
 path => '/etc/sssd/sssd.conf',
 section => 'domain/DEVEL',
 setting => 'krb5_realm',
 value => 'DEVEL',
 }
 ini_setting {'ldap_search_base_devel':
 path => '/etc/sssd/sssd.conf',
 section => 'domain/DEVEL',
 setting => 'ldap_search_base',

Public Modules

[116]

 value => 'ou=devel,dc=example,dc=com',
 }
 ini_setting {'ldap_uri_devel':
 path => '/etc/sssd/sssd.conf',
 section => 'domain/DEVEL',
 setting => 'ldap_uri',
 value => 'ldaps://ldap.devel.example.com',
 }
 ini_setting {'krb5_kpasswd_devel':
 path => '/etc/sssd/sssd.conf',
 section => 'domain/DEVEL',
 setting => 'krb5_kpasswd',
 value => 'DevelopersDevelopersDevelopers',
 }
 ini_setting {'krb5_server_devel':
 path => '/etc/sssd/sssd.conf',
 section => 'domain/DEVEL',
 setting => 'krb5_server',
 value => 'dev1.devel.example.com',
 }

Again, we will add DEVEL to the list of domains using ini_subsetting, as shown in
the following code:

ini_subsetting {'domains_devel':
 path => '/etc/sssd/sssd.conf',
 section => 'sssd',
 setting => 'domains',
 subsetting => 'DEVEL',
}

Now, after adding sssd_devel to client.yaml, we run Puppet agent on client
and examine the /etc/sssd/sssd.conf file after, which is shown in the following
snippet:

[sssd]
domains = PROD DEVEL

[domain/PROD]
krb5_server = kdc.prod.example.com
krb5_kpasswd = secret!
ldap_search_base = ou=prod,dc=example,dc=com
ldap_uri = ldaps://ldap.prod.example.com
krb5_realm = PROD

Chapter 4

[117]

[domain/DEVEL]
krb5_realm = DEVEL
ldap_uri = ldaps://ldap.devel.example.com
ldap_search_base = ou=devel,dc=example,dc=com
krb5_server = dev1.devel.example.com
krb5_kpasswd = DevelopersDevelopersDevelopers

As we can see, both realms have been added to the domains section and each realm
has had its own configuration section created. To complete this example, we will
need to enhance the SSSD module that each of these modules calls with include
sssd. In that module, we will define the SSSD service and have our changes send
a notify signal to the service. I would place the notify signal in the domain's
ini_subsetting resource.

Having multiple modules work on the same files simultaneously can make your
Puppet implementation a lot simpler. It's counterintuitive, but having the modules
coexist means you don't need as many exceptions in your code. For example, the
Samba configuration file can be managed by a Samba module, but shares can be added
by other modules using inifile and not interfere with the main Samba module.

firewall
If your organization uses host-based firewalls, filters that run on each node
filtering network traffic, then the firewall module will soon become a friend. On
enterprise Linux systems, the firewall module can be used to configure iptables
automatically. Effective use of this module requires having all your iptables rules
in Puppet.

The firewall module has some limitations—if your systems require large
rulesets, your agent runs may take some time to complete. EL7 systems use
firewalld to manage iptables, firewalld is not supported by the firewall
module. Currently, this will cause execution of the following code to error
on EL7 systems, but the iptables rules will be modified as expected.

The default configuration can be a little confusing; there are ordering issues that
have to be dealt with while working with the firewall rules. The idea here is to
ensure that there are no rules at the start. This is achieved with purge, as shown
in the following code:

resources { "firewall":
 purge => true
}

Public Modules

[118]

Next, we need to make sure that any firewall rules we define are inserted after our
initial configuration rules and before our final deny rule. To ensure this, we use a
resource default definition. Resource defaults are made by capitalizing the resource
type. In our example, firewall becomes Firewall, and we define the before and
require attributes such that they point to the location where we will keep our setup
rules (pre) and our final deny statement (post), as shown in the following snippet:

Firewall {
 before => Class['example_fw::post'],
 require => Class['example_fw::pre'],
}

Because we are referencing example_fw::pre and example_fw::post, we'll need to
include them at this point. The module also defines a firewall class that we should
include. Rolling all that together, we have our example_fw class as the following:

class example_fw {
 include example_fw::post
 include example_fw::pre
 include firewall

 resources { "firewall":
 purge => true
 }
 Firewall {
 before => Class['example_fw::post'],
 require => Class['example_fw::pre'],
 }
}

Now we need to define our default rules to go to example_fw::pre. We will allow
all ICMP traffic, all established and related TCP traffic, and all SSH traffic. Since we
are defining example_fw::pre, we need to override our earlier require attribute at
the beginning of this class, as shown in the following code:

class example_fw::pre {
 Firewall {
 require => undef,
 }

Then, we can add our rules using the firewall type provided by the module. When
we define the firewall resources, it is important to start the name of the resource with
a number, as shown in the following snippet. The numbers are used for ordering by
the firewall module:

firewall { '000 accept all icmp':
 proto => 'icmp',

Chapter 4

[119]

 action => 'accept',
}
firewall { '001 accept all to lo':
 proto => 'all',
 iniface => 'lo',
 action => 'accept',
}
firewall { '002 accept related established':
 proto => 'all',
 state => ['RELATED', 'ESTABLISHED'],
 action => 'accept',
}
firewall { '022 accept ssh':
 proto => 'tcp',
 dport => '22',
 action => 'accept',
}

Now, if we finished at this point, our rules would be a series of allow statements.
Without a final deny statement, everything is allowed. We need to define a drop
statement in our post class. Again, since this is example_fw::post, we need to
override the earlier setting to before, as shown in the following code:

class example_fw::post {
 firewall { '999 drop all':
 proto => 'all',
 action => 'drop',
 before => undef,
 }
}

Now, we can apply this class in our node1.yaml file and run Puppet to see the
firewall rules getting rewritten by our module. The first thing we will see is the
current firewall rules being purged.

Next, our pre section will apply our initial allow rules:

Notice: /Stage[main]/Example_fw::Pre/Firewall[002 accept related
established]/ensure: created

Notice: /Stage[main]/Example_fw::Pre/Firewall[000 accept all icmp]/
ensure: created

Notice: /Stage[main]/Example_fw::Pre/Firewall[022 accept ssh]/ensure:
created

Notice: /Stage[main]/Example_fw::Pre/Firewall[001 accept all to lo]/
ensure: created

Public Modules

[120]

Finally, our post section adds a drop statement to the end of the rules, as shown
here:

Notice: /Stage[main]/Example_fw::Post/Firewall[999 drop all]/ensure:
created

Notice: Finished catalog run in 5.90 seconds

Earlier versions of this module did not save the rules; you would need to execute
iptables-save after the post section. The module now takes care of this so that
when we examine /etc/sysconfig/iptables, we see our current rules saved,
as shown in the following snippet:

*filter
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [1:180]
-A INPUT -p icmp -m comment --comment "000 accept all icmp" -j ACCEPT
-A INPUT -i lo -m comment --comment "001 accept all to lo" -j ACCEPT
-A INPUT -m comment --comment "002 accept related established" -m
state --state RELATED,ESTABLISHED -j ACCEPT
-A INPUT -p tcp -m multiport --dports 22 -m comment --comment "022
accept ssh" -j ACCEPT
-A INPUT -m comment --comment "999 drop all" -j DROP
COMMIT

Now that we have our firewall controlled by Puppet, when we apply our web
module to our node, we can have it open port 80 on the node as well, as shown in
the following code. Our earlier web module can just use include example_fw and
define a firewall resource:

class web {
 package {'httpd':
 ensure => 'installed'
 }
 service {'httpd':
 ensure => true,
 enable => true,
 require => Package['httpd'],
 }
 include example_fw
 firewall {'080 web server':
 proto => 'tcp',
 port => '80',
 action => 'accept',
 }
}

Chapter 4

[121]

Now when we apply this class to an EL6 node, el6, we will see that port 80 is
applied after our SSH rule and before our deny rule as expected:

*filter
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [1:164]
-A INPUT -p icmp -m comment --comment "000 accept all icmp" -j ACCEPT
-A INPUT -i lo -m comment --comment "001 accept all to lo" -j ACCEPT
-A INPUT -m comment --comment "002 accept related established" -m
state --state RELATED,ESTABLISHED -j ACCEPT
-A INPUT -p tcp -m multiport --dports 22 -m comment --comment "022
accept ssh" -j ACCEPT
-A INPUT -p tcp -m multiport --dports 80 -m comment --comment "080 web
server" -j ACCEPT
-A INPUT -m comment --comment "999 drop all" -j DROP
COMMIT

Using this module, it's possible to have very tight host-based firewalls on your
systems that are flexible and easy to manage.

Logical volume manager
The logical volume manager module allows you to create volume groups, logical
volumes, and filesystems with Puppet using the logical volume manager (lvm)
tools in Linux.

Having Puppet automatically configure your logical volumes can be a
great benefit, but it can also cause problems. The module is very good at
not shrinking filesystems, but you may experience catalog failures when
physical volumes do not have sufficient free space.

If you are not comfortable with LVM, then I suggest you do not start with this
module. This module can be of great help if you have products that require their
own filesystems or auditing requirements that require application logs to be on
separate filesystems. The only caveat here is that you need to know where your
physical volumes reside, that is, which device contains the physical volumes for your
nodes. If you are lucky and have the same disk layout for all nodes, then creating a
new filesystem for your audit logs, /var/log/audit, is very simple. Assuming that
we have an empty disk at /dev/sdb, we can create a new volume group for audit
items and a logical volume to contain our filesystem. The module takes care of all
the steps that have to be performed. It creates the physical volume and creates the
volume group using the physical volume. Then, it creates the logical volume and
creates a filesystem on that logical volume.

Public Modules

[122]

To show the lvm module in action, we'll create an lvm node that has a boot device
and a second drive. On my system, the first device is /dev/sda and the second drive
is /dev/sdb. We can see the disk layout using lsblk as shown in the following
screenshot:

We can see that /dev/sdb is available on the system but nothing is installed on it.
We'll create a new module called lvm_web, which will create a logical volume of
4 GB, and format it with an ext4 filesystem, as shown in the following code:

class lvm_web {
 lvm::volume {"lv_var_www":
 ensure => present,
 vg => "vg_web",
 pv => "/dev/sdb",
 fstype => "ext4",
 size => "4G",
 }
}

Now we'll create an lvm.yaml file in hieradata/hosts/lvm.yaml:

welcome: 'lvm node'
classes:
 - lvm_web

Now when we run Puppet agent on lvm, we will see that the vg_web volume group
is created, followed by the lv_var_www logical volume, and the filesystem after that:

Notice: /Stage[main]/Lvm_web/Lvm::Volume[lv_var_www]/Physical_volume[/
dev/sdb]/ensure: created

Notice: /Stage[main]/Lvm_web/Lvm::Volume[lv_var_www]/Volume_group[vg_
web]/ensure: created

Notice: /Stage[main]/Lvm_web/Lvm::Volume[lv_var_www]/Logical_volume[lv_
var_www]/ensure: created

Notice: /Stage[main]/Lvm_web/Lvm::Volume[lv_var_www]/Filesystem[/dev/vg_
web/lv_var_www]/ensure: created

Chapter 4

[123]

Now when we run lsblk again, we will see that the filesystem was created:

Note that the filesystem is not mounted yet, only created. To make this a fully
functional class, we would need to add the mount location for the filesystem and
ensure that the mount point exists, as shown in the following code:

file {'/var/www/html':
 ensure => 'directory',
 owner => '48',
 group => '48',
 mode => '0755',
}
mount {'lvm_web_var_www':
 name => '/var/www/html',
 ensure => 'mounted',
 device => "/dev/vg_web/lv_var_www",
 dump => '1',
 fstype => "ext4",
 options => "defaults",
 pass => '2',
 target => '/etc/fstab',
 require => [Lvm::Volume["lv_var_www"],File["/var/www/html"]],
}

Now when we run Puppet again, we can see that the directories are created and the
filesystem is mounted:

[root@lvm ~]# puppet agent -t

…

Info: Applying configuration version '1443524661'

Notice: /Stage[main]/Lvm_web/File[/var/www/html]/ensure: created

Notice: /Stage[main]/Lvm_web/Mount[lvm_web_var_www]/ensure: defined
'ensure' as 'mounted'

Info: /Stage[main]/Lvm_web/Mount[lvm_web_var_www]: Scheduling refresh of
Mount[lvm_web_var_www]

Public Modules

[124]

Info: Mount[lvm_web_var_www](provider=parsed): Remounting

Notice: /Stage[main]/Lvm_web/Mount[lvm_web_var_www]: Triggered 'refresh'
from 1 events

Info: /Stage[main]/Lvm_web/Mount[lvm_web_var_www]: Scheduling refresh of
Mount[lvm_web_var_www]

Notice: Finished catalog run in 1.53 seconds

Now when we run lsblk, we see the filesystem is mounted, as shown in the
following screenshot:

This module can save you a lot of time. The steps required to set up a new volume
group, add a logical volume, format the filesystem correctly, and then mount the
filesystem can all be reduced to including a single class on a node.

Standard library
The standard library (stdlib) is a collection of useful facts, functions, types, and
providers not included with the base language. Even if you do not use the items
within stdlib directly, reading about how they are defined is useful to figure out
how to write your own modules.

Several functions are provided by stdlib; these can be found at https://forge.
puppetlabs.com/puppetlabs/stdlib. Also, several string-handling functions
are provided by it, such as capitalize, chomp, and strip. There are functions for
array manipulation and some arithmetic operations such as absolute value (abs) and
minimum (min). When you start building complex modules, the functions provided
by stdlib can occasionally reduce your code complexity.

https://forge.puppetlabs.com/puppetlabs/stdlib
https://forge.puppetlabs.com/puppetlabs/stdlib

Chapter 4

[125]

Many parts of stdlib have been merged into Facter and Puppet. One useful
capability originally provided by stdlib is the ability to define custom facts based
on text files or scripts on the node. This allows processes that run on nodes to
supply facts to Puppet to alter the behavior of the agent. To enable this feature,
we have to create a directory called /etc/facter/facts.d (Puppet enterprise
uses /etc/puppetlabs/facter/facts.d), as shown here:

[root@client ~]# facter -p myfact

[root@client ~]# mkdir -p /etc/facter/facts.d

[root@client ~]# echo "myfact=myvalue" >/etc/facter/facts.d/myfact.txt

[root@client ~]# facter -p myfact

myvalue

The facter_dot_d mechanism can use text files, YAML, or JSON files based on
the extension, .txt, .yaml or .json. If you create an executable file, then it will
be executed and the results parsed for fact values as though you had a .txt file
(fact = value).

If you are using a Facter version earlier than 1.7, then you will need
the facter.d mechanism provided by stdlib. This was removed
in stdlib version 3 and higher; the latest stable stdlib version that
provides facter.d is 2.6.0. You will also need to enable pluginsync on
your nodes (the default setting on Puppet 2.7 and higher).

To illustrate the usefulness, we will create a fact that returns the gems installed on
the system. I'll run this on a host with a few gems to illustrate the point. Place the
following script in /etc/facter/facts.d/gems.sh and make it executable (chmod
+x gems.sh):

#!/bin/bash

gems=$(/usr/bin/gem list --no-versions | /bin/grep -v "^$" | /usr/bin/
paste -sd ",")
echo "gems=$gems"

Now make the script executable (chmod 755 /etc/facter/facts.d/gem.sh) and
run Facter to see the output from the fact:

[root@client ~]# facter -p gems

bigdecimal,commander,highline,io-console,json,json_pure,psych,puppet-
lint,rdoc

Public Modules

[126]

We can now use these gems fact in our manifests to ensure that the gems we require
are available. Another use of this fact mechanism could be to obtain the version of an
installed application that doesn't use normal package-management methods. We can
create a script that queries the application for its installed version and returns this
as a fact. We will cover this in more detail when we build our own custom facts in
a later chapter.

Summary
In this chapter, we have explored how to pull in modules from Puppet Forge and
other locations. We looked at methods for keeping our public modules in order such
as librarian-puppet and r10k. We revised our Git hooks to use r10k and created
an automatic system to update public modules. We then examined a selection of the
Forge modules that are useful in the enterprise.

In the next chapter, we will start writing our own custom modules.

[127]

Custom Facts and Modules
We created and used modules up to this point when we installed and configured
tuned using the is_virtual fact. We created a module called virtual in the
process. Modules are nothing more than organizational tools, manifests, and
plugin files that are grouped together.

We mentioned pluginsync in the previous chapter. By default, in Puppet 3.0 and
higher, plugins in modules are synchronized from the master to the nodes. Plugins
are special directories in modules that contain Ruby code.

Plugins are contained within the /lib subdirectory of a module, and there can
be four possible subdirectories defined: files, manifests, templates, and lib.
The manifests directory holds our manifests, as we know files has our files,
templates has the templates, and lib is where we extend Augeas, Hiera, Facter,
and/or Puppet depending on the files we place there.

You may also see a spec directory in modules downloaded from Puppet
Forge. This directory holds the files used in testing Puppet code.

In this chapter, we will cover how to use the modulename/lib/facter directory to
create custom facts, and in subsequent chapters, we will see how to use the /lib/
puppet directory to create custom types.

Custom Facts and Modules

[128]

The structure of a module is shown in the following diagram:

A module is a directory within the modulepath setting of Puppet, which is
searched when a module is included by name in a node manifest. If the module
name is base and our modulepath is $codedir/environments/$environment/
modules:$codedir/environments/$environment/dist:$codedir/environments/
production/modules, then the search is done as follows (assuming codedir is
/etc/puppetlabs/code):

/etc/puppetlabs/code/environments/$environment/modules/base/manifests/
init.pp
/etc/puppetlabs/code/environments/$environment/modules/dist/base/
manifests/init.pp
/etc/puppetlabs/code/environments/production/modules/base/manifests/
init.pp

Module manifest files
Each module is expected to have an init.pp file defined, which has the top-level
class definition; in the case of our base example, init.pp is expected to contain
class base { }.

Now, if we include base::subitem in our node manifest, then the file that Puppet
will search for will be base/manifests/subitem.pp, and that file should contain
class base::subitem { }.

Chapter 5

[129]

It is also possible to have subdirectories of the manifests directory defined to split
up the manifests even more. As a rule, a manifest within a module should only
contain a single class. If we wish to define base::subitem::subsetting, then the
file will be base/manifests/subitem/subsetting.pp, and it would contain class
base::subitem::subsetting { }.

Naming your files correctly means that they will be loaded automatically when
needed, and you won't have to use the import function (the import function is
deprecated in version 3 and completely removed in version 4). By creating multiple
subclasses, it becomes easy to separate a module into its various components; this
is important later when you need to include only parts of the module in another
module. As an example, say we have a database system called judy, and judy
requires the judy-server package to run. The judy service requires the users judy
and judyadm to run. Users judy and judyadm require the judygrp group, and they
all require a filesystem to contain the database. We will split up these various tasks
into separate manifests. We'll sketch the contents of this fictional module, as follows:

•	 In judy/manifests/groups.pp, we'll have the following code:
class judy::groups {
 group {'judygrp': }

}

•	 In judy/manifests/users.pp, we'll have the following code:
class judy::users {
 include judy::groups
 user {'judy':
 require => Group['judygrp']
 }
 user {'judyadm':
 require => Group['judygrp']
 }
}

•	 In judy/manifests/packages.pp, we'll have the following code:
class judy::packages {
 package {'judy-server':
 require => User['judy','judyadm']
 }
}

Custom Facts and Modules

[130]

•	 In judy/manifests/filesystem.pp, we'll have the following code:
class judy::filesystem {
 lvm {'/opt/judy':
 require => File['/opt/judy']
 }
 file {'/opt/judy': }
}

•	 Finally, our service starts from judy/manifests/service.pp:
class judy::service {
 service {'judy':
 require => [
 Package['judy-server'],
 File['/opt/judy'],
 Lvm['/opt/judy'],
 User['judy','judyadm']
],
 }
}

Now, we can include each one of these components separately, and our node can
contain judy::packages or judy::service without using the entire judy module.
We will define our top level module (init.pp) to include all these components,
as shown here:

class judy {
 include judy::users
 include judy::group
 include judy::packages
 include judy::filesystem
 include judy::service
}

Thus, a node that uses include judy will receive all of those classes, but if we have
a node that only needs the judy and judyadm users, then we need to include only
judy::users in the code.

Chapter 5

[131]

Module files and templates
Transferring files with Puppet is something that is best done within modules. When
you define a file resource, you can either use content => "something" or you
can push a file from the Puppet master using source. For example, using our
judy database, we can have judy::config with the following file definition:

class judy::config {
 file {'/etc/judy/judy.conf':
 source => 'puppet:///modules/judy/judy.conf'
 }
}

Now, Puppet will search for this file in the [modulepath]/judy/files directory. It
is also possible to add full paths and have your module mimic the filesystem. Hence,
the previous source line will be changed to source => 'puppet:///modules/judy/
etc/judy/judy.conf', and the file will be found at [modulepath]/judy/files/
etc/judy/judy.conf.

The puppet:/// URI source line mentioned earlier has three backslashes; optionally,
the name of a puppetserver may appear between the second and third backslash. If
this field is left blank, the puppetserver that performs the catalog compilation will
be used to retrieve the file. You can alternatively specify the server using source =>
'puppet://puppetfile.example.com/modules/judy/judy.conf'.

Having files that come from specific puppetservers can
make maintenance difficult. If you change the name of your
puppetserver, you have to change all references to that name
as well. Puppet is not ideal for transferring large files, if you need
to move large files onto your machines, consider using the native
packaging system of your client nodes.

Templates are searched in a similar fashion. In this example, to specify the template
in judy/templates, you will use content =>template('judy/template.erb')
to have Puppet look for the template in your modules' templates directory. For
example, another config file for judy can be defined, as follows:

file {'/etc/judy/judyadm.conf':
 content => template('judy/judyadm.conf.erb')
}

Custom Facts and Modules

[132]

Puppet will look for the 'judy/judyadm.conf.erb' file at [modulepath]/judy/
templates/judyadm.conf.erb. We haven't covered the Embedded Ruby (ERB)
templates up to this point; templates are files that are parsed according to the ERB
syntax rules. If you need to distribute a file where you need to change some settings
based on variables, then a template can help. The ERB syntax is covered in detail at
http://docs.puppetlabs.com/guides/templating.html. Puppet 4 (and Puppet
3 with the future parser enabled) supports EPP templates as well. EPP templates are
Embedded Puppet templates that use Puppet language syntax rather than Ruby.

ERB templates were used by many people to overcome the inability to
perform iteration with Puppet. EPP is the newer templating engine that
doesn't rely on Ruby. EPP is the currently recommended templating
engine. If you are starting from scratch, I would recommend using EPP
syntax templates.

Modules can also include custom facts, as we've already seen in this chapter. Using
the lib subdirectory, it is possible to modify both Facter and Puppet. In the next
section, we will discuss module implementations in a large organization before
writing custom modules.

Naming a module
Modules must begin with a lowercase letter and only contain lowercase letters,
numbers, and the underscore (_) symbol. No other characters should be used. While
writing modules that will be shared across the organization, use names that are
obvious and won't interfere with other groups' modules or modules from the Forge.
A good rule of thumb is to insert your corporation's name at the beginning of the
module name and, possibly, your group name.

While uploading to the Forge, your Forge username will be prepended to
the module (username-modulename).

While designing modules, each module should have a specific purpose and not
pull in manifests from other modules and each one of them should be autonomous.
Classes should be used within the module to organize functionality. For instance,
a module named example_foo installs a package and configures a service. Now,
separating these two functions and their supporting resources into two classes,
example_foo::pkg and example_foo::svc, will make it easier to find the code you
need to work on, when you need to modify these different components. In addition,
when you have all the service accounts and groups in another file, it makes it easier
to find them, as well.

http://docs.puppetlabs.com/guides/templating.html

Chapter 5

[133]

Creating modules with a Puppet module
To start with a simple example, we will use Puppet's module command to
generate empty module files with comments. The module name will be example_
phpmyadmin, and the generate command expects the generated argument to be
[our username]-[module name]; thus, using our sample developer, samdev, the
argument will be samdev-example_phpmyadmin, as shown here:

[samdev@stand ~]$ cd control/dist/

[samdev@standdist]$ puppet module generate samdev-example_phpmyadmin

We need to create a metadata.json file for this module. Please answer
the

following questions; if the question is not applicable to this module,
feel free

to leave it blank.

Puppet uses Semantic Versioning (semver.org) to version modules.

What version is this module? [0.1.0]

--> 0.0.1

Who wrote this module? [samdev]

-->

What license does this module code fall under? [Apache-2.0]

-->

How would you describe this module in a single sentence?

--> An Example Module to install PHPMyAdmin

Where is this module's source code repository?

--> https://github.com/uphillian

Where can others go to learn more about this module? [https://github.
com/uphillian]

-->

Where can others go to file issues about this module? [https://github.
com/uphillian/issues]

-->

Custom Facts and Modules

[134]

--

{

 "name": "samdev-example_phpmyadmin",

"version": "0.0.1",

 "author": "samdev",

 "summary": "An Example Module to install PHPMyAdmin",

 "license": "Apache-2.0",

 "source": "https://github.com/uphillian",

 "project_page": "https://github.com/uphillian",

 "issues_url": "https://github.com/uphillian/issues",

 "dependencies": [

 {"name":"puppetlabs-stdlib","version_requirement":">= 1.0.0"}

]

}

--

About to generate this metadata; continue? [n/Y]

-->y

Notice: Generating module at /home/samdev/control/dist/example_
phpmyadmin...

Notice: Populating templates...

Finished; module generated in example_phpmyadmin.

example_phpmyadmin/manifests

example_phpmyadmin/manifests/init.pp

example_phpmyadmin/spec

example_phpmyadmin/spec/classes

example_phpmyadmin/spec/classes/init_spec.rb

example_phpmyadmin/spec/spec_helper.rb

example_phpmyadmin/tests

example_phpmyadmin/tests/init.pp

example_phpmyadmin/Gemfile

example_phpmyadmin/Rakefile

example_phpmyadmin/README.md

example_phpmyadmin/metadata.json

Chapter 5

[135]

If you plan to upload your module to the Forge or GitHub, use your
Forge or GitHub account name for the user portion of the module
name (in the example, replace samdev with your GitHub account).

Comments in modules
The previous command generates metadata.json and README.md files that can be
modified for your use as and when required. The metadata.json file is where you
specify who wrote the module and which license it is released under. If your module
depends on any other module, you can specify the modules in the dependencies
section of this file. In addition to the README.md file, an init.pp template is created
in the manifests directory.

Our phpmyadmin package needs to install Apache (httpd) and configure the httpd
service, so we'll create two new files in the manifests directory, pkg.pp and svc.pp.

It's important to be consistent from the beginning; if you choose to use
package.pp and service.pp, use that everywhere to save yourself
time later.

In init.pp, we'll include our example_phpmyadmin::pkg and example_
phpmyadmin::svc classes, as shown in the following code:

class example_phpmyadmin {
 include example_phpmyadmin::pkg
 include example_phpmyadmin::svc
}

The pkg.pp file will define example_phpmyadmin::pkg, as shown in the following
code:

class example_phpmyadmin::pkg {
 package {'httpd':
 ensure => 'installed',
 alias => 'apache'
 }
}

Custom Facts and Modules

[136]

The svc.pp file will define example_phpmyadmin::svc, as shown in the following
code:

class example_phpmyadmin::svc {
 service {'httpd':
 ensure => 'running',
 enable => true
 }
}

Now, we'll define another module called example_phpldapadmin using the puppet
module command, as shown here:

[samdev@standdist]$ puppet module generate samdev-example_phpldapadmin

We need to create a metadata.json file for this module. Please answer
the

following questions; if the question is not applicable to this module,
feel free

to leave it blank.

…

Notice: Generating module at /home/samdev/control/dist/example_
phpldapadmin...

Notice: Populating templates...

Finished; module generated in example_phpldapadmin.

example_phpldapadmin/manifests

example_phpldapadmin/manifests/init.pp

example_phpldapadmin/spec

example_phpldapadmin/spec/classes

example_phpldapadmin/spec/classes/init_spec.rb

example_phpldapadmin/spec/spec_helper.rb

example_phpldapadmin/tests

example_phpldapadmin/tests/init.pp

example_phpldapadmin/Gemfile

example_phpldapadmin/Rakefile

example_phpldapadmin/README.md

example_phpldapadmin/metadata.json

Chapter 5

[137]

We'll define the init.pp, pkg.pp, and svc.pp files in this new module just as we did
in our last module so that our three class files contain the following code:

class example_phpldapadmin {
 include example_phpldapadmin::pkg
 include example_phpldapadmin::svc
}

class example_phpldapadmin::pkg {
 package {'httpd':
 ensure => 'installed',
 alias => 'apache'
 }
}

class example_phpldapadmin::svc {
 service {'httpd':
 ensure => 'running',
 enable => true
 }
}

Now we have a problem, phpldapadmin uses the httpd package and so does
phpmyadmin, and it's quite likely that these two modules may be included in the
same node.

Remember to add the two modules to your control repository and push
the changes to Git. Your Git hook should trigger an update to Puppet
module directories.

We'll include both of them on our client by editing client.yaml and then we will
run Puppet using the following command:

[root@client ~]# puppet agent -t

Info: Retrieving pluginfacts

Info: Retrieving plugin

Info: Loading facts

Error: Could not retrieve catalog from remote server: Error 400 on
SERVER: Evaluation Error: Error while evaluating a Resource Statement,
Duplicate declaration: Package[httpd] is already declared in file /
etc/puppetlabs/code/environments/production/dist/example_phpmyadmin/
manifests/pkg.pp:2; cannot redeclare at /etc/puppetlabs/code/
environments/production/dist/example_phpldapadmin/manifests/pkg.pp:2 at
/etc/puppetlabs/code/environments/production/dist/example_phpldapadmin/

Custom Facts and Modules

[138]

manifests/pkg.pp:2:3 on node client.example.com

Warning: Not using cache on failed catalog

Error: Could not retrieve catalog; skipping run

Multiple definitions
A resource in Puppet can only be defined once per node. What this means is
that if our module defines the httpd package, no other module can define httpd.
There are several ways to deal with this problem and we will work through two
different solutions.

The first solution is the more difficult option—use virtual resources to define the
package and then realize the package in each place you need. Virtual resources are
similar to a placeholder for a resource; you define the resource but you don't use
it. This means that Puppet master knows about the Puppet definition when you
virtualize it, but it doesn't include the resource in the catalog at that point. Resources
are included when you realize them later; the idea being that you can virtualize
the resources multiple times and not have them interfere with each other. Working
through our example, we will use the @ (at) symbol to virtualize our package and
service resources. To use this model, it's helpful to create a container for the resources
you are going to virtualize. In this case, we'll make modules for example_packages
and example_services using Puppet module's generate command again.

The init.pp file for example_packages will contain the following:

class example_packages {
 @package {'httpd':
 ensure => 'installed',
 alias => 'apache',
 }
}

The init.pp file for example_services will contain the following:

class example_services {
 @service {'httpd':
 ensure =>'running',
 enable => true,
 require => Package['httpd'],
 }
}

Chapter 5

[139]

These two classes define the package and service for httpd as virtual. We then need
to include these classes in our example_phpmyadmin and example_phpldapadmin
classes. The modified example_phpmyadmin::pkg class will now be, as follows:

class example_phpmyadmin::pkg {
 include example_packages
 realize(Package['httpd'])
}

And the example_phpmyadmin::svc class will now be the following:

class example_phpmyadmin::svc {
 include example_services
 realize(Service['httpd'])
}

We will modify the example_phpldapadmin class in the same way and then
attempt another Puppet run on client (which still has example_phpldapadmin
and example_phpmyadmin classes), as shown here:

[root@client ~]# puppet agent -t

Info: Retrieving pluginfacts

Info: Retrieving plugin

Info: Loading facts

Info: Caching catalog for client.example.com

Info: Applying configuration version '1443928369'

Notice: /Stage[main]/Example_packages/Package[httpd]/ensure: created

Notice: /Stage[main]/Example_services/Service[httpd]/ensure: ensure
changed 'stopped' to 'running'

Info: /Stage[main]/Example_services/Service[httpd]: Unscheduling refresh
on Service[httpd]

Notice: Applied catalog in 11.17 seconds

For this solution to work, you need to migrate the resources that may be used by
multiple modules to your top-level resource module and include the resource
module wherever you need to realize the resource.

In addition to the realize function, used previously, a collector exists for virtual
resources. A collector is a kind of glob that can be applied to virtual resources to
realize resources based on a tag. A tag in Puppet is just a meta attribute of a resource
that can be used for searching later. Tags are only used by collectors (for both virtual
and exported resources, the exported resources will be explored in a later chapter)
and they do not affect the resource.

Custom Facts and Modules

[140]

To use a collector in the previous example, we will have to define a tag in the virtual
resources, for the httpd package this will be, as follows:

class example_packages {
 @package {'httpd':
 ensure => 'installed',
 alias => 'apache',
 tag => 'apache',
 }
}

And then to realize the package using the collector, we will use the following code:

class example_phpldapadmin::pkg {
 include example_packages
 Package <| tag == 'apache' |>
}

The second solution will be to move the resource definitions into their own class
and include that class whenever you need to realize the resource. This is considered
to be a more appropriate way of solving the problem. Using the virtual resources
described previously splits the definition of the package away from its use area.

For the previous example, instead of a class for all package resources, we will create
one specifically for Apache and include that wherever we need to use Apache. We'll
create the example_apache module monolithically with a single class for the package
and the service, as shown in the following code:

class example_apache {
 package {'httpd':
 ensure => 'installed',
 alias => 'apache'
 }
 service {'httpd':
 ensure => 'running',
 enable => true,
 require=> Package['httpd'],
 }
}

Chapter 5

[141]

Now, in example_phpldapadmin::pkg and example_phpldapadmin::svc,
we only need to include example_apache. This is because we can include a
class any number of times in a catalog compilation without error. So, both our
example_phpldapadmin::pkg and example_phpldapadmin::svc classes are going
to receive definitions for the package and service of httpd; however, this doesn't
matter, as they only get included once in the catalog, as shown in the following code:

class example_phpldapadmin::pkg {
 include example_apache
}

Both these methods solve the issue of using a resource in multiple packages. The
rule is that a resource can only be defined once per catalog, but you should think
of that rule as once per organization so that your modules won't interfere with
those of another group within your organization.

Custom facts
While managing a complex environment, facts can be used to bring order out of
chaos. If your manifests have large case statements or nested if statements, a
custom fact might help in reducing the complexity or allow you to change your logic.

When you work in a large organization, keeping the number of facts to a minimum
is important, as several groups may be working on the same system and thus
interaction between the users may adversely affect one another's work or they
may find it difficult to understand how everything fits together.

As we have already seen in the previous chapter, if our facts are simple text values
that are node specific, we can just use the facts.d directory of stdlib to create
static facts that are node specific.

This facts.d mechanism is included, by default, on Facter versions 1.7 and higher
and is referred to as external fact.

Creating custom facts
We will be creating some custom facts; therefore, we will create our Ruby files in the
module_name/lib/facter directory. While designing your facts, choose names that
are specific to your organization. Unless you plan on releasing your modules on the
Forge, avoid calling your fact something similar to a predefined fact or using a name
that another developer might use. The names should be meaningful and specific—a
fact named foo is probably not a good idea. Facts should be placed in the specific
module that requires them. Keeping the fact name related to the module name will
make it easier to determine where the fact is being set later.

Custom Facts and Modules

[142]

For our example.com organization, we'll create a module named example_facts
and place our first fact in there. As the first example, we'll create a fact that returns 1
(true) if the node is running the latest installed kernel or 0 (false) if not. As we don't
expect this fact to become widely adopted, we'll call it example_latestkernel.
The idea here is that we can apply modules to nodes that are not running the latest
installed kernel, such as locking them down or logging them more closely.

To begin writing the fact, we'll start writing a Ruby script; you can also work in IRB
while you're developing your fact. Interactive Ruby (IRB) is like a shell to write
the Ruby code, where you can test your code instantly. Version 4 of Puppet installs
its own Ruby, so our fact will need to use the Ruby installed by Puppet (/opt/
puppetlabs/puppet/bin/ruby). Our fact will use a function from Puppet, so we
will require puppet and facter. The fact scripts are run from within Facter so that
the require lines are removed once we are done with our development work. The
script is written, as follows:

#!/opt/puppetlabs/puppet/bin/ruby
require 'puppet'
require 'facter'
drop alpha numeric endings
def sanitize_version (version)
temp = version.gsub(/.(el5|el6|el7|fc19|fc20)/,'')
return temp.gsub(/.(x86_64|i686|i586|i386)/,'')
end

We define a function to remove textual endings on kernel versions and architectures.
Textual endings, such as el5 and el6 will make our version comparison return
incorrect results. For example, 2.6.32-431.3.1.el6 is less than 2.6.32-431.el6
because the e in el6 is higher in ASCII than 3. Our script will get simplified greatly, if
we simply remove known endings. We then obtain a list of installed kernel packages;
the easiest way to do so is with rpm, as shown here:

kernels = %x(rpm -q kernel --qf '%{version}-%{release}\n')
kernels = sanitize_version(kernels)
latest = ''

We will then set the latest variable to empty and we'll loop through the installed
kernels by comparing them to latest. If their values are greater than latest, then
we convert latest such that it is equal to the value of the kernels. At the end of the
loop, we will have the latest (largest version number) kernel in the variable. For
kernel in kernels, we will use the following commands:

for kernel in kernels.split('\n')
 kernel=kernel.chomp()
 if latest == ''

Chapter 5

[143]

 latest = kernel
 end
 if Puppet::Util::Package.versioncmp(kernel,latest) > 0
 latest = kernel
 end
end

We use versioncmp from puppet::util::package to compare the versions. I've
included a debugging statement in the following code that we will remove later.
At the end of this loop, the latest variable contains the largest version number
and the latest installed kernel:

kernelrelease = Facter.value('kernelrelease')
kernelrelease = sanitize_version(kernelrelease)

Now, we will ask Facter for the value of kernelrelease. We don't need to run
uname or a similar tool, as we'll rely on Facter to get the value using the Facter.
value('kernelrelease') command. Here, Facter.value() returns the value
of a known fact. We will also run the result of Facter.value() through our
sanitize_version function to remove textual endings. We will then compare
the value of kernelrelease with latest and update the kernellatest variable
accordingly:

if Puppet::Util::Package.versioncmp(kernelrelease,latest) == 0
 kernellatest = 1
else
 kernellatest = 0
end

At this point, kernellatest will contain the value 1 if the system is running the
installed kernel with latest and 0 if not. We will then print some debugging
information to confirm whether our script is doing the right thing, as shown here:

print "running kernel = %s\n" % kernelrelease
print "latest installed kernel = %s\n" % latest
print "kernellatest = %s\n" % kernellatest

We'll now run the script on node1 and compare the results with the output of rpm -q
kernel to check whether our fact is calculating the correct value:

[samdev@standfacter]$ rpm -q kernel

kernel-3.10.0-229.11.1.el7.x86_64

kernel-3.10.0-229.14.1.el7.x86_64

[samdev@standfacter]$./latestkernel.rb

3.10.0-229.11.1.el7

Custom Facts and Modules

[144]

3.10.0-229.14.1.el7

running kernel = 3.10.0-229.11.1.el7

latest installed kernel = 3.10.0-229.11.1.el7

3.10.0-229.14.1.el7

kernellatest = 0

Now that we've verified that our fact is doing the right thing, we need to call
Facter.add() to add a fact to Facter. The reason behind this will become clear in a
moment, but we will place all our code within the Facter.add section, as shown in
the following code:

Facter.add("example_latestkernel") do
 kernels = %x(rpm -q kernel --qf '%{version}-%{release}\n')
 ...
end
Facter.add("example_latestkernelinstalled") do
 setcode do latest end
end

This will add two new facts to Facter. We now need to go back and remove our
require lines and print statements. The complete fact should look similar to the
following script:

drop alpha numeric endings
def sanitize_version (version)
 temp = version.gsub(/.(el5|el6|el7|fc19|fc20)/,'')
 return temp.gsub(/.(x86_64|i686|i586|i386)/,'')
end
Facter.add("example_latestkernel") do
 kernels = %x(rpm -q kernel --qf '%{version}-%{release}\n')
 kernels = sanitize_version(kernels)
 latest = ''
 for kernel in kernels do
 kernel=kernel.chomp()
 if latest == ''
 latest = kernel
 end
 if Puppet::Util::Package.versioncmp(kernel,latest) > 0
 latest = kernel
 end
 end
kernelrelease = Facter.value('kernelrelease')
kernelrelease = sanitize_version(kernelrelease)

Chapter 5

[145]

 if Puppet::Util::Package.versioncmp(kernelrelease,latest) == 0
 kernellatest = 1
 else
 kernellatest = 0
 end
 setcode do kernellatest end
 Facter.add("example_latestkernelinstalled") do
 setcode do latest end
 end
end

Now, we need to create a module of our Git repository on stand and have that
checked out by client to see the fact in action. Switch back to the samdev account
to add the fact to Git as follows:

[Thomas@stand ~]$ sudo –iu samdev

[samdev@stand]$ cd control/dist

[samdev@stand]$ mkdir -p example_facts/lib/facter

[samdev@stand]$ cd example_facts/lib/facter

[samdev@stand]$ cp ~/latestkernel.rbexample_latestkernel.rb

[samdev@stand]$ git add example_latestkernel.rb

[samdev@stand]$ git commit -m "adding first fact to example_facts"

[masterd42bc22] adding first fact to example_facts

 1 files changed, 33 insertions(+), 0 deletions(-)

create mode 100755 dist/example_facts/lib/facter/example_latestkernel.rb

[samdev@stand]$ git push origin

…

To /var/lib/git/control.git/

fc4f2e5..55305d8 production -> production

Now, we will go back to client, run Puppet agent, and see that example_
latestkernel.rb is placed in /opt/puppetlabs/puppet/cache/lib/facter/
example_latestkernel.rb so that Facter can now use the new fact.

This fact will be in the /dist folder of the environment. In the previous chapter,
we added /etc/puppet/environments/$environment/dist to modulepath in
puppet.conf; if you haven't done this already, do so now:

[root@client ~]# puppet agent -t

…

Notice: /File[/opt/puppetlabs/puppet/cache/lib/facter/example_
latestkernel.rb]/ensure: defined content as '{md5}579a2f06068d4a9f40d1dad

Custom Facts and Modules

[146]

cd2159527'…

Notice: Finished catalog run in 1.18 seconds

[root@client ~]# facter -p |grep ^example

example_latestkernel => 1

example_latestkernelinstalled => 3.10.0-123

Now, this fact works fine for systems that use rpm for package management; it will
not work on an apt system. To ensure that our fact doesn't fail on these systems, we
can use a confine statement to confine the fact calculation to systems where it will
succeed. We can assume that our script will work on all systems that report RedHat
for the osfamily fact, so we will confine ourselves to that fact.

For instance, if we run Puppet on a Debian-based node to apply our custom fact, it
fails when we run Facter, as shown here:

cat /etc/debian_version

wheezy/sid

facter -p example_latestkernelinstalled

sh: 1: rpm: not found

Could not retrieve example_latestkernelinstalled: undefined local
variable or method `latest' for #<Facter::Util::Resolution:0xb6bd386c>

Now, if we add a confine statement to confine the fact to nodes in which osfamily
is RedHat, it doesn't happen, as shown here:

Facter.add("example_latestkernel") do
 confine :osfamily => 'RedHat'
 …
end
Facter.add("example_latestkernelinstalled") do
 confine :osfamily => 'RedHat'
 setcode do latest end
end

When we run Facter on the Debian node again, we will see that the fact is simply not
defined, as shown here:

facter -p example_latestkernelinstalled

##

In the previous command, the prompt is returned without an error,
and the confine statements prevent the fact from being defined, so
there is no error to return.

Chapter 5

[147]

This simple example creates two facts that can be used in modules. Based on this fact
you can, for instance, add a warning to motd to say that the node needs to reboot.

If you want to become really popular at work, have the node turn off SSH
until it's running the latest kernel in the name of security.

While implementing a custom fact such as this, every effort should be made to
ensure that the fact doesn't break Facter compilation on any OSes within your
organization. Using confine statements is one way to ensure your facts stay
where you designed them.

So, why not just use the external fact (/etc/facter/facts.d) mechanism all
the time? We could have easily written the previous fact script in bash and put
the executable script in /etc/facter/facts.d. Indeed, there is no problem in
doing it that way. The problem with using the external fact mechanism is timing
and precedence. The fact files placed in lib/facter are synced to nodes when
pluginsync is set to true, so the custom fact is available for use during the initial
catalog compilation. If you use the external fact mechanism, you have to send your
script or text file to the node during the agent run so that the fact isn't available until
after the file has been placed there (after the first run, any logic built around that
fact will be broken until the next Puppet run). The second problem is preference.
External facts are given a very high weight by default. Weight in the Facter world is
used to determine when a fact is calculated and facts with low weight are calculated
first and cannot be overridden by facts with higher weight.

Weights are often used when a fact can be determined by one of the
several methods. The preferred method is given the lowest weight. If the
preferred method is unavailable (due to a confine), then the next higher
weight fact is tried.

One great use case for external facts is having a system task (something that runs
out of cron perhaps) that generates the text file in /etc/facter/facts.d. Initial
runs of Puppet agent won't see the fact until after cron runs the script, so you can
use this to trigger further configuration by having your manifests key off the new
fact. As a concrete example, you can have your node installed as a web server for a
load-balancing cluster as a part of the modules that run a script from cron to ensure
that your web server is up and functioning and ready to take a part of the load.
The cron script will then define a load_balancer_ready=true fact. It will then be
possible to have the next Puppet agent run and add the node to the load balancer
configuration.

Custom Facts and Modules

[148]

Creating a custom fact for use in Hiera
The most useful custom facts are those that return a calculated value that you can
use to organize your nodes. Such facts allow you to group your nodes into smaller
groups or create groups with similar functionality or locality. These facts allow you
to separate the data component of your modules from the logic or code components.
This is a common theme that will be addressed again in Chapter 9, Roles and Profiles.
This can be used in your hiera.yaml file to add a level to the hierarchy. One aspect
of the system that can be used to determine information about the node is the IP
address. Assuming that you do not reuse the IP addresses within your organization,
the IP address can be used to determine where or in which part a node resides on a
network, specifically, the zone. In this example, we will define three zones in which
the machines reside: production, development, and sandbox. The IP addresses in
each zone are on different subnets. We'll start by building a script to calculate the
zone and then turn it into a fact similar to our last example. Our script will need to
calculate IP ranges using netmasks, so we'll import the ipaddr library and use the
IPAddr objects to calculate ranges:

require('ipaddr')
require('facter')
require('puppet')

Next, we'll define a function that takes an IP address as the argument and returns the
zone to which that IP address belongs:

def zone(ip)
zones = {
 'production' => [IPAddr.new('10.0.2.0/24'),IPAddr.
new('192.168.124.0/23')],
 'development' => [IPAddr.new('192.168.123.0/24'),IPAddr.
new('192.168.126.0/23')],
 'sandbox' => [IPAddr.new('192.168.128.0/22')]
}
 for zone in zones.keys do
 for subnet in zones[zone] do
 ifsubnet.include?(ip)
 return zone
 end
 end
 end
 return 'undef'
end

Chapter 5

[149]

This function will loop through the zones looking for a match on the IP address. If no
match is found, the value of undef is returned. We then obtain an IP address for the
machine that is using the IP address fact from Facter:

ip = IPAddr.new(Facter.value('ipaddress'))

Then, we will call the zone function with this IP address to obtain the zone:

print zone(ip),"\n"

Now, we can make this script executable and test it:

[root@client ~]# facter ipaddress

10.0.2.15

[root@client ~]# ./example_zone.rb

production

Now, all we have to do is replace print zone(ip),"\n" with the following code to
define the fact:

Facter.add('example_zone') do
 setcode do zone(ip) end
end

Now, when we insert this code into our example_facts module and run Puppet on
our nodes, the custom fact is available:

[root@client ~]# facter -p example_zone

production

Now that we can define a zone based on a custom fact, we can go back to our hiera.
yaml file and add %{::example_zone} to the hierarchy. The hiera.yaml hierarchy
will now contain the following:

:hierarchy:
 - "zones/%{::example_zone}"
 - "hosts/%{::hostname}"
 - "roles/%{::role}"
 - "%{::kernel}/%{::osfamily}/%{::lsbmajdistrelease}"
 - "is_virtual/%{::is_virtual}"
 - common

Custom Facts and Modules

[150]

After restarting puppetserver to have the hiera.yaml file reread, we create a zones
directory in hieradata and add production.yaml with the following content:

welcome: "example_zone - production"

Now when we run Puppet on our node1, we will see motd updated with the new
welcome message, as follows:

[root@client ~]# cat /etc/motd

example_zone - production

Managed Node: client

Managed by Puppet version 4.2.2

Creating a few key facts that can be used to build up your hierarchy can greatly
reduce the complexity of your modules. There are several workflows available,
in addition to the custom fact we described earlier. You can use the /etc/facter/
facts.d (or /etc/puppetlabs/facter/facts.d) directory with static files
or scripts, or you can have tasks run from other tools that dump files into that
directory to create custom facts.

While writing Ruby scripts, you can use any other fact by calling Facter.
value('factname'). If you write your script in Ruby, you can access any Ruby
library using require. Your custom fact can query the system using lspci or lsusb
to determine which hardware is specifically installed on that node. As an example,
you can use lspci to determine the make and model of graphics card on the
machine and return that as a fact, such as videocard.

CFacter
Facter was earlier written in Ruby and collecting facts about the system through
Ruby was a slow process. CFacter is a project to rewrite Facter using C++. To enable
CFacter in versions of Puppet prior to 4, the cfacter=true option will need to be
added to puppet.conf (this requires Facter version 2.4). As of Facter version 3.0,
CFacter is now the default Facter implementation. In my experience, the speedup
of Facter is remarkable. On my test system, the Ruby version of Facter takes just
under 3 seconds to run. The C++ version of Facter runs in just over 200 milliseconds.
Custom Ruby facts are still supported via the Ruby API, as well as facts written in
any language via the executable script method.

Chapter 5

[151]

Summary
In this chapter, we used Ruby to extend Facter and define custom facts. Custom
facts can be used in Hiera hierarchies to reduce complexity and organize our nodes.
We then began writing our own custom modules and ran into a few problems with
multiple defined resources. Two solutions were presented: virtual resources and
refactoring the code.

In the next chapter, we will be making our custom modules more useful with
custom types.

[153]

Custom Types
Puppet is about configuration management. As you write more and more code in
Puppet, patterns will begin to emerge—sections of code that repeat with minor
differences. If you were writing your code in a regular scripting language, you'd
reach for a function or subroutine definition at this point. Puppet, similar to other
languages, supports the blocking of code in multiple ways; when you reach for
functions, you can use defined types; when you overload an operator, you can
use a parameterized class, and so on. In this chapter, we will show you how to use
parameterized classes and introduce the define function to define new user-defined
types; following that, we will introduce custom types written in Ruby.

Parameterized classes
Parameterized classes are classes in which you have defined several parameters that
can be overridden when you instantiate the class for your node. The use case for
parameterized classes is when you have something that won't be repeated within
a single node. You cannot define the same parameterized class more than once per
node. As a simple example, we'll create a class that installs a database program and
starts that database's service. We'll call this class example::db; the definition will
live in modules/example/manifests/db.pp, as follows:

class example::db ($db) {
 case $db {
 'mysql': {
 $dbpackage = 'mysql-server'
 $dbservice = 'mysqld'
 }
 'postgresql': {
 $dbpackage = 'postgresql-server'
 $dbservice = 'postgresql'
 }

Custom Types

[154]

 }
 package { "$dbpackage": }
 service { "$dbservice":
 ensure => true,
 enable => true,
 require => Package["$dbpackage"]
 }
}

This class takes a single parameter ($db) that specifies the type of the database: in
this case either postgresql or mysql. To use this class, we have to instantiate it,
as follows:

class { 'example::db':
 db => 'mysql'
}

Now, when we apply this to a node, we see that mysql-server is installed and
mysqld is started and enabled at boot. This works great for something similar to a
database, since we don't think we will have more than one type of database server on
a single node. If we try to instantiate the example::db class with postgresql on our
node, we'll get an error, as shown in the following screenshot:

This fails because we cannot reuse a class on the same node. We'll need to use
another structure, the defined type that we'll cover shortly. But first, we'll look
at one of the language improvements in Puppet 4.

Data types
The preceding example's parameterized class does not take advantage of the new
Puppet language features in version 4. Version 4 of the Puppet language supports
explicit data types. Data types in previous versions had to be determined by
comparing items and often hoping for the best. This led to some bad practices, such
as using the string value true to represent the Boolean value True. Using the version
4 syntax, we can change the preceding class to require the $db parameter to be a
string, as shown:

class example::db (String $db) {
 case $db {

Chapter 6

[155]

 'mysql': {
 $dbpackage = 'mysql-server'
 $dbservice = 'mysqld'
 }
 'postgresql': {
 $dbpackage = 'postgresql-server'
 $dbservice = 'postgresql'
 }
 }
 package { "$dbpackage": }
 service { "$dbservice":
 ensure => true,
 enable => true,
 require => Package["$dbpackage"]
 }
}

The ability to know the type of a parameter has been a long-standing bug with
Puppet, particularly when dealing with Boolean values. For more information on
the data types supported by Puppet 4, refer to the documentation page at https://
docs.puppetlabs.com/puppet/latest/reference/lang_data_type.html.

Defined types
A situation where you have a block of code that is repeated within a single node
can be managed with defined types. You can create a defined type with a call to
define. You can use define to refer to a block of Puppet code that receives a set of
parameters when instantiated. Our previous database example could be rewritten
as a defined type to allow more than one type of database server to be installed on
a single node.

Another example of where a defined type is useful is in building filesystems with
the LVM module. When we used the LVM module to build a filesystem, there were
three things required: we needed a filesystem (a logical volume or LVM resource), a
location to mount the filesystem (a file resource), and a mount command (a mount
resource). Every time we want to mount a filesystem, we'll need these. To make our
code cleaner, we'll create a defined type for a filesystem. Since we don't believe this
will be used outside our example organization, we'll call it example::fs.

https://docs.puppetlabs.com/puppet/latest/reference/lang_data_type.html
https://docs.puppetlabs.com/puppet/latest/reference/lang_data_type.html

Custom Types

[156]

Defined types start with the keyword define followed by the name of the defined
type and the parameters wrapped in parentheses, as shown in the following code:

define example::fs
(
 String $mnt = "$title", # where to mount the filesystem
 String $vg = 'VolGroup', # which volume group
 String $pv, # which physical volume
 String $lv, # which logical volume
Enum['ext4','ext3','xfs'] $fs_type = 'ext4', # the filesystem type
 Number $size, # how big
 String $owner = '0', # who owns the mount point
 String $group = '0', # which group owns the mount point
 Integer $mode = '0755' # permissions on mount point
)

These are all the parameters for our defined type. Every defined type has to have a
$title variable defined. An optional $name variable can also be defined.

Both $title and $name are available within the attribute list, so you can specify
other attributes using these variables. This is why we can specify our $mnt
attributes using $title. In this case, we'll use the mount point for the filesystem
as $title, as it should be unique on the node. Any of the previous parameters
that are not given a default value, with = syntax, must be provided or Puppet will
fail catalog compilation with the following error message: must pass param to
Example::Fs[title]at /path/to/fs.pp:lineno on node nodename.

Providing sane defaults for parameters means that most of the time you won't have
to pass parameters to your defined types, making your code cleaner and easier
to read.

Now that we've defined all the parameters required for our filesystem and mounted
the combination type, we need to define the type; we can use any of the variables
we've asked for as parameters. The definition follows the same syntax as a class
definition, as shown:

{
 # create the filesystem
 lvm::volume {"$lv":
 ensure => 'present',
 vg => "$vg",
 pv => "$pv",
 fstype => "$fs_type",
 size => "$size",
 }

Chapter 6

[157]

 # create the mount point (mnt)
 file {"$mnt":
 ensure => 'directory',
 owner => "$owner",
 group => "$group",
 mode => "$mode",
 }
 # mount the filesystem $lv on the mount point $mnt
 mount {"$lv":
 name => "$mnt",
 ensure => 'mounted',
 device => "/dev/$vg/$lv",
 dump => '1',
 fstype => "$fs_type",
 options => "defaults",
 pass => '2',
 target => '/etc/fstab',
 require => [Lvm::Volume["$lv"],File["$mnt"]],
 }
}

Note that we use the CamelCase notation for requiring Lvm::Volume for the mount.
CamelCase is the practice of capitalizing each word of a compound word or phrase.
This will become useful in the next example where we have nested filesystems that
depend on one another. Now, we can redefine our lvm_web class using the new
define to make our intention much clearer, as shown:

classlvm_web {
 example::fs {'/var/www/html':
 vg => 'vg_web',
 lv => 'lv_var_www',
 pv => '/dev/sda',
 owner => '48',
 group => '48',
 size => '4G',
 mode => '0755',
 require => File['/var/www'],
 }
 file {'/var/www':
 ensure => 'directory',
 mode => '0755',
 }
}

Custom Types

[158]

Now, it's clear that we are making sure that the /var/www exists for our /var/www/
html directory to exist and then creating and mounting our filesystem at that point.
Now, when we need to make another filesystem on top of /var/www/html, we will
need to require the first example::fs resource. To illustrate this, we will define a
subdirectory /var/www/html/drupal and require /var/www/html Example::Fs;
hence, the code becomes easier to follow, as follows:

example::fs {'/var/www/html/drupal':
 vg => 'vg_web',
 lv => 'lv_drupal',
 pv => '/dev/sda',
 owner => '48',
 group => '48',
 size => '2G',
 mode => '0755',
 require => Example::Fs['/var/www/html']
}

The capitalization of Example::Fs is important; it needs to be Example::Fs for
Puppet to recognize this as a reference to the defined type example::fs.

Encapsulation makes this sort of chaining much simpler. Also, any enhancements
that we make to our defined type are then added to all the instances of it. This keeps
our code modular and makes it more flexible. For instance, what if we want to use
our example::fs type for a directory that may be defined somewhere else in the
catalog? We can add a parameter to our definition and set the default value so that
the previous uses of the type doesn't cause compilation errors, as shown in the
following code:

define example::fs
(
...
$managed = true, # do we create the file resource or not.
…
)

Now, we can use the if condition to create the file and require it (or not),
as shown in the following code:

if ($managed) {
 file {"$mnt":
 ensure => 'directory',
 owner => "$owner",
 group => "$group",
 mode => "$mode",
 }

Chapter 6

[159]

 mount {"$lv":
 name => "$mnt",
 ensure => 'mounted',
 device => "/dev/$vg/$lv",
 dump => '1',
 fstype => "$fs_type",
 options => "defaults",
 pass => '2',
 target => '/etc/fstab',
 require => [Lvm::Volume["$lv"],File["$mnt"]],
 }
} else {
 mount {"$lv":
 name => "$mnt",
 ensure => 'mounted',
 device => "/dev/$vg/$lv",
 dump => '1',
 fstype => "$fs_type",
 options => "defaults",
 pass => '2',
 target => '/etc/fstab',
 require =>Lvm::Volume["$lv"],
 }
}

None of our existing uses of the example::fs type will need modification, but
cases where we only want the filesystem to be created and mounted can use
this type.

For any portion of code that has repeatable parts, defined types can help abstract
your classes to make your meaning more obvious. As another example, we'll develop
the idea of an admin user—a user that should be in certain groups, have certain
files in their home directory defined, and SSH keys added to their account. The idea
here is that your admin users can be defined outside your enterprise authentication
system, and only on the nodes to which they have admin rights.

We'll start small using the file and user types to create the users and their home
directories. The user has a managehome parameter, which creates the home directory
but with default permissions and ownership; we'll be modifying those in our type.

Custom Types

[160]

If you rely on managehome, do understand that managehome just passes
an argument to the user provider asking the OS-specific tool to create the
directory using the default permissions that are provided by that tool. In
the case of useradd on Linux, the -m option is added.

We'll define ~/.bashrc and ~/.bash_profile for our user, so we'll need parameters
to hold those. An SSH key is useful for admin users, so we'll include a mechanism to
include that as well. This isn't an exhaustive solution, just an outline of how you can
use define to simplify your life. In real world admin scenarios, I've seen the admin
define a sudoers file for the admin user and also set up command logging with the
audit daemon. Taking all the information we need to define an admin user, we get
the following list of parameters:

define example::admin
(
 $user = $title,
 $ensure = 'present',
 $uid,
 $home = "/var/home/$title",
 $mode = '0750',
 $shell = "/bin/bash",
 $bashrc = undef,
 $bash_profile = undef,
 $groups = ['wheel','bin'],
 $comment = "$title Admin User",
 $expiry = 'absent',
 $forcelocal = true,
 $key,
 $keytype = 'ssh-rsa',
)

Now, since define will be called multiple times and we need the admin group
to exist before we start defining our admin users, we put the group into a separate
class and include it, as follows:

include example::admin::group

The definition of example::admin::group is, as follows:

class example::admin::group {
 group {'admin':
 gid => 1001,
 }
}

Chapter 6

[161]

With example::admin::group included, we move on to define our user, being
careful to require the group, as follows:

user { "$user":
 ensure => $ensure,
 allowdupe => 'true',
 comment => "$comment",
 expiry => $expiry,
 forcelocal => $forcelocal,
 groups => $groups,
 home => $home,
 shell => $shell,
 uid => $uid,
 gid => 1001,
 require => Group['admin']
}

Now, our problem turns to ensuring that the directory containing the home directory
exists; the logic here could get very confusing. Since we are defining our admin
group by name rather than by gid, we need to ensure that the group exists before we
create the home directory (so that the permissions can be applied correctly). We are
also allowing the home directory location not to exist, so we need to make sure that
the directory containing our home directory exists using the following code:

ensure the home directory location exists
 $grouprequire = Group['admin']
 $dirhome = dirname($home)

We are accounting for a scenario where admin users have their home directories under
/var/home. This example complicates the code somewhat but also shows the usefulness
of a defined type.

Since we require the group in all cases, we make a variable hold a copy of that
resource definition, as shown in the following code:

case $dirhome {
 '/var/home': {
 include example::admin::varhome
 $homerequire = [$grouprequire,File['/var/home']]
 }

Custom Types

[162]

If the home directory is under /var/home, we know that the home directory requires
the class example::admin::varhome and also File['/var/home']. Next, if the
home directory is under /home, then the home directory only needs the group
require, as shown in the following code:

 '/home': {
 # do nothing, included by lsb
 $homerequire = $grouprequire
 }

As the default option for our case statement, we assume that the home directory
needs to require that the directory ($dirhome) exists, but the user of this define
will have to create that resource themselves (File[$dirhome]), as follows:

 default: {
 # rely on definition elsewhere
 $homerequire = [$grouprequire,File[$dirhome]]
 }
}

Now, we create the home directory using our $homerequire variable to define
require for the resource, as shown:

file {"$home":
 ensure => 'directory',
 owner => "$uid",
 group => 'admin',
 mode => "$mode",
 require => $homerequire
}

Next, we create the .ssh directory, as shown:

ensure the .ssh directory exists
file {"$home/.ssh":
 ensure => 'directory',
 owner => "$uid",
 group => 'admin',
 mode => "0700",
 require => File["$home"]
}

Chapter 6

[163]

Then, we create an SSH key for the admin user; we require the .ssh directory,
which requires the home directory, thus making a nice chain of existence. The home
directory has to be made first, then the .ssh directory, and then the key is added to
authorized_keys, as shown in the following code:

ssh_authorized_key{ "$user-admin":
 user => "$user",
 ensure => present,
 type => "$keytype",
 key => "$key",
 require => [User[$user],File["$home/.ssh"]]
}

Now we can do something fancy. We know that not every admin likes to work in
the same way, so we can have them add custom code to their .bashrc and .bash_
profile files using a concat for the two files. In each case, we'll include the system
default file from /etc/skel and then permit the instance of the admin user to add to
the files using concat, as shown in the following code:

build up the bashrc from a concat
concat { "$home/.bashrc":
 owner => $uid,
 group => $gid,
}
concat::fragment { "bashrc_header_$user":
 target => "$home/.bashrc",
 source => '/etc/skel/.bashrc',
 order => '01',
}
if $bashrc != undef {
 concat::fragment { "bashrc_user_$user":
 target => "$home/.bashrc",
 content => $bashrc,
 order => '10',
 }
}

Custom Types

[164]

And the same goes for .bash_profile, as shown in the following code:

#build up the bash_profile from a concat as well
concat { "$home/.bash_profile":
 owner => $uid,
 group => $gid,
}
concat::fragment { "bash_profile_header_$user":
 target => "$home/.bash_profile",
 source => '/etc/skel/.bash_profile',
 order => '01',
}
if $bash_profile != undef {
 concat::fragment { "bash_profile_user_$user":
 target => "$home/.bash_profile",
 content => $bash_profile,
 order => '10',
 }
}

We then close our definition with a right brace:

}

Now, to define an admin user, we call our defined type as shown in the following
code and let the type do all the work.

example::admin {'theresa':
 uid => 1002,
 home => '/home/theresa',
 key => 'BBBB...z',
}

We can also add another user easily using the following code:

example::admin {'nate':
 uid => 1001,
 key => 'AAAA...z',
 bashrc => "alias vi=vim\nexport EDITOR=vim\n"
}

Chapter 6

[165]

Now when we add these resources to a node and run Puppet, we can see the
users created:

In this example, we defined a type that created a user and a group, created the user's
home directory, added an SSH key to the user, and created their dotfiles. There are
many examples where a defined type can streamline your code. Some common
examples of defined types include Apache vhosts and Git repositories.

Custom Types

[166]

Defined types work well when you can express the thing you are trying to create
with the types that are already defined. If the new type can be expressed better with
Ruby, then you might have to create your own type by extending Puppet with a
custom type.

Types and providers
Puppet separates the implementation of a type into the type definition and any one
of the many providers for that type. For instance, the package type in Puppet has
multiple providers depending on the platform in use (apt, yum, rpm, gem, and
others). Early on in Puppet development there were only a few core types defined.
Since then, the core types have expanded to the point where anything that I feel
should be a type is already defined by core Puppet. The modules presented in
Chapter 5, Custom Facts and Modules, created their own types using this mechanism.
The LVM module created a type for defining logical volumes, and the concat
module created types for defining file fragments. The firewall module created
a type for defining firewall rules. Each of these types represents something on the
system with the following properties:

•	 Unique
•	 Searchable
•	 Atomic
•	 Destroyable
•	 Creatable

When creating a new type, you have to make sure your new type has these
properties. The resource defined by the type has to be unique, which is why the file
type uses the path to a file as the naming variable (namevar). A system may have
files with the same name (not unique), but it cannot have more than one file with
an identical path. As an example, the ldap configuration file for openldap is /etc/
openldap/ldap.conf, the ldap configuration file for the name services library is
/etc/ldap.conf. If you used a filename, then they would both be the same resource.
Resources must be unique. By atomic, I mean it is indivisible; it cannot be made of
smaller components. For instance, the firewall module creates a type for single
iptables rules. Creating a type for the tables (INPUT, OUTPUT, FORWARD) within
iptables wouldn't be atomic—each table is made up of multiple smaller parts, the
rules. Your type has to be searchable so that Puppet can determine the state of the
thing you are modifying. A mechanism has to exist to know what the current state is
of the thing in question. The last two properties are equally important. Puppet must
be able to remove the thing, destroy it, and likewise Puppet must be able to create the
thing anew.

Chapter 6

[167]

Given these criteria, there are several modules that define new types, with examples
including types that manage:

•	 Git repositories
•	 Apache virtual hosts
•	 LDAP entries
•	 Network routes
•	 Gem modules
•	 Perl CPAN modules
•	 Databases
•	 Drupal multisites

Creating a new type
As an example, we will create a gem type for managing Ruby gems installed for a
user. Ruby gems are packages for Ruby that are installed on the system and can be
queried like packages.

Installing gems with Puppet can already be done using the gem, pe_gem,
or pe_puppetserver_gem providers for the package type.

Creating a custom type requires some knowledge of Ruby. In this example, we
assume the reader is fairly literate in Ruby. We start by defining our type in the
lib/puppet/type directory of our module. We'll do this in our example module,
modules/example/lib/puppet/type/gem.rb.

The file will contain the newtype method and a single property for our type,
version, as shown in the following code:

Puppet::Type.newtype(:gem) do
 ensurable
 newparam(:name, :namevar => true) do
 desc 'The name of the gem'
 end
 newproperty(:version) do
 desc 'version of the gem'
 validate do |value|
 fail("Invalid gem version #{value}") unless value =~
/^[0-9]+[0-9A-Za-z\.-]+$/
 end
 end
end

Custom Types

[168]

The ensurable keyword creates the ensure property for our new type, allowing the
type to be either present or absent. The only thing we require of the version is that it
starts with a number and only contain numbers, letters, periods, or dashes.

A more thorough regular expression here could save you time later, such
as checking that the version ends with a number or letter.

Now we need to start making our provider. The name of the provider is the name of
the command used to manipulate the type. For packages, the providers have names
such as yum, apt, and dpkg. In our case we'll be using the gem command to manage
gems, which makes our path seem a little redundant. Our provider will live at
modules/example/lib/puppet/provider/gem/gem.rb.

We'll start our provider with a description of the provider and the commands it will
use are, as shown here:

Puppet::Type.type(:gem).provide :gem do
desc "Manages gems using gem"

Then we'll define a method to list all the gems installed on the system as shown here,
which defines the self.instances method:

def self.instances
 gems = []
 command = 'gem list -l'
 begin
 stdin, stdout, stderr = Open3.popen3(command)
 for line in stdout.readlines
 (name,version) = line.split(' ')
 gem = {}
 gem[:provider] = self.name
 gem[:name] = name
 gem[:ensure] = :present
 gem[:version] = version.tr('()','')
 gems<< new(gem)
 end
 rescue
 raise Puppet::Error, "Failed to list gems using '#{command}'"
 end
 gems
end

Chapter 6

[169]

This method runs gem list -l and then parses the output, looking for lines
such as gemname (version). The output from the gem command is written to
the variable stdout. We then use readlines on stdout to create an array that
we iterate over with a for loop. Within the for loop we split the lines of output
based on a space character into the gem name and version. The version will be
wrapped in parentheses at this point; we use the tr (translate) method to remove
the parentheses. We create a local hash of these values and then append the hash to
the gems hash. The gems hash is returned and then Puppet knows all about the gems
installed on the system.

Puppet needs two more methods at this point, a method to determine if a gem
exists (is installed), and, if it does exist, one to tell us which version is installed. We
already populated the ensure parameter, so as to use that to define our exists
method as follows:

def exists?
 @property_hash[:ensure] == :present
end

To determine the version of an installed gem, we can use the property_hash
variable, as follows:

def version
 @property_hash[:version] || :absent
end

To test this, add the module to a node and pluginsync the module over to the node,
as shown:

[root@client ~]# puppet plugin download

Notice: /File[/opt/puppetlabs/puppet/cache/lib/puppet/provider/gem]/
ensure: created

Notice: /File[/opt/puppetlabs/puppet/cache/lib/puppet/provider/gem/gem.
rb]/ensure: defined content as '{md5}4379c3d0bd6c696fc9f9593a984926d3'

Notice: /File[/opt/puppetlabs/puppet/cache/lib/puppet/
provider/gem/gem.rb.orig]/ensure: defined content as '{md5}
c6024c240262f4097c0361ca53c7bab0'

Notice: /File[/opt/puppetlabs/puppet/cache/lib/puppet/type/gem.rb]/
ensure: defined content as '{md5}48749efcd33ce06b401d5c008d10166c'

Downloaded these plugins: /opt/puppetlabs/puppet/cache/lib/puppet/
provider/gem, /opt/puppetlabs/puppet/cache/lib/puppet/provider/gem/gem.
rb, /opt/puppetlabs/puppet/cache/lib/puppet/provider/gem/gem.rb.orig, /
opt/puppetlabs/puppet/cache/lib/puppet/type/gem.rb

Custom Types

[170]

This will install our type/gem.rb and provider/gem/gem.rb files into /opt/
puppetlabs/puppet/cache/lib/puppet on the node. After that, we are free
to run puppet resource on our new type to list the available gems, as shown:

[root@client ~]# puppet resource gem

gem { 'bigdecimal':

 ensure => 'present',

 version => '1.2.0',

}

gem { 'bropages':

 ensure => 'present',

 version => '0.1.0',

}

gem{ 'commander':

 ensure => 'present',

 version => '4.1.5',

}

gem { 'highline':

 ensure => 'present',

 version => '1.6.20',

}

…

Now, if we want to manage gems, we'll need to create and destroy them, and we'll
need to provide methods for those operations. If we try at this point, Puppet will fail,
as we can see from the following output:

[root@client ~]# puppet resource gem bropages

gem { 'bropages':

 ensure => 'present',

 version => '0.1.0',

}

[root@client ~]# puppet resource gem bropages ensure=absent

gem { 'bropages':

 ensure => 'absent',

}

[root@client ~]# puppet resource gem bropages ensure=absent

Chapter 6

[171]

gem { 'bropages':

 ensure => 'absent',

}

When we run puppet resource, there is no destroy method, so Puppet returns that
the gem was removed but doesn't actually do anything. To get Puppet to actually
remove the gem, we'll need a method to destroy (remove) gems; gem uninstall
should do the trick, as shown in the following code:

def destroy
 g = @resource[:version] ? [@resource[:name], '--version', @
resource[:version]] : @resource[:name]
 command = "gem uninstall #{g} -q -x"
 begin
 system command
 rescue
 raise Puppet::Error, "Failed to remove #{@resource[:name]}
'#{command}'"
 end
 @property_hash.clear
end

Using the ternary operator, we either run gem uninstall name -q -x if no version
is defined, or gem uninstall name --version version -q -x if a version is
defined. We finish by calling @property_hash.clear to remove the gem from the
property_hash since the gem is now removed.

Now we need to let Puppet know about the state of the bropages gem using the
instances method we defined earlier; we'll need to write a new method to prefetch
all the available gems. This is done with self.prefetch, as shown here:

def self.prefetch(resources)
 gems = instances
 resources.keys.each do |name|
 if provider = gems.find{ |gem| gem.name == name }
 resources[name].provider = provider
 end
 end
end

We can see this in action using puppet resource as shown here:

[root@client ~]# puppet resource gem bropages ensure=absent

Removing bro

Successfully uninstalled bropages-0.1.0

Custom Types

[172]

Notice: /Gem[bropages]/ensure: removed

gem { 'bropages':

 ensure => 'absent',

}

Almost there! Now we want to add bropages back, we'll need a create method,
as shown here:

def create
 g = @resource[:version] ? [@resource[:name], '--version', @
resource[:version]] : @resource[:name]
 command = "gem install #{g} -q"
 begin
 system command
 @property_hash[:ensure] = :present
 rescue
 raise Puppet::Error, "Failed to install #{@resource[:name]}
'#{command}'"
 end
end

Now, when we run puppet resource to create the gem, we see the installation, as
shown here:

[root@client ~]# puppet resource gem bropages ensure=present

Successfully installed bropages-0.1.0

Parsing documentation for bropages-0.1.0

Installing ri documentation for bropages-0.1.0

1 gem installed

Notice: /Gem[bropages]/ensure: created

gem { 'bropages':

 ensure => 'present',

}

Nearly done! Now, we need to handle versions. If we want to install a specific
version of the gem, we'll need to define methods to deal with versions.

def version=(value)
 command = "gem install #{@resource[:name]} --version #{@
resource[:version]}"
 begin
 system command

Chapter 6

[173]

 @property_hash[:version] = value
 rescue
 raise Puppet::Error, "Failed to install gem #{resource[:name]}
using #{command}"
 end
end

Now, we can tell Puppet to install a specific version of the gem and have the correct
results as shown in the following output:

[root@client ~]# puppet resource gem bropages version='0.0.9'

Fetching: highline-1.7.8.gem (100%)

Successfully installed highline-1.7.8

Fetching: bropages-0.0.9.gem (100%)

Successfully installed bropages-0.0.9

Parsing documentation for highline-1.7.8

Installing ri documentation for highline-1.7.8

Parsing documentation for bropages-0.0.9

Installing ri documentation for bropages-0.0.9

2 gems installed

Notice: /Gem[bropages]/version: version changed '0.1.0' to '0.0.9'

gem { 'bropages':

 ensure => 'present',

 version => '0.0.9',

}

This is where our choice of gem as an example breaks down as gem provides for
multiple versions of a gem to be installed. Our gem provider, however, works well
enough for use at this point. We can specify the gem type in our manifests and
have gems installed or removed from the node. This type and provider are only
an example; the gem provider for the package type provides the same features
in a standard way. When considering creating a new type and provider, search
Puppet Forge for existing modules first.

Custom Types

[174]

Summary
It is possible to increase the readability and resiliency of your code using
parameterized classes and defined types. Encapsulating sections of your code within a
defined type makes your code more modular and easier to support. When the defined
types are not enough, you can extend Puppet with custom types and providers
written in Ruby. The details of writing providers are best learned by reading the
already written providers and referring to the documentation on the Puppet Labs
website. The public modules covered in an earlier chapter make use of defined types,
custom types and providers, and can also serve as a starting point to write your own
types. The augeasproviders module is another module to read when looking to
write your own types and providers.

In the next chapter, we will set up reporting and look at Puppet Dashboard and
the Foreman.

[175]

Reporting and Orchestration
Reports return all the log messages from Puppet nodes to the master. In addition
to log messages, reports send other useful metrics such as timing (time spent
performing different operations) and statistical information (counts of resources
and the number of failed resources). With reports, you can know when your Puppet
runs fail and, most importantly, why. In this chapter, we will cover the following
reporting mechanisms:

•	 Syslog
•	 Store (YAML)
•	 IRC
•	 Foreman
•	 Puppet Dashboard

In addition to reporting, we will configure the marionette collective (mcollective)
system to allow for orchestration tasks. In the course of configuring reporting, we
will show different methods of signing and transferring SSL keys for systems that
are subordinate to our master, puppet.example.com.

Turning on reporting
To turn on reporting, set report = true in the [agent] section of puppet.conf on
all your nodes.

Once you have done that, you need to configure the master to deal with reports.
There are several report types included with Puppet; they are listed at: http://
docs.puppetlabs.com/references/latest/report.html. Puppet Labs
documentation on reporting can be found at: http://docs.puppetlabs.com/
guides/reporting.html.

http://docs.puppetlabs.com/references/latest/report.html
http://docs.puppetlabs.com/references/latest/report.html
http://docs.puppetlabs.com/guides/reporting.html
http://docs.puppetlabs.com/guides/reporting.html

Reporting and Orchestration

[176]

There are three simple reporting options included with Puppet: http, log, and
store. The http option will send the report as a YAML file via a POST operation to
the HTTP or HTTPS URL pointed to by the reporturl setting in puppet.conf. The
log option uses syslog to send reports from the nodes via syslog on the master; this
method will only work with the WEBrick and Passenger implementations of Puppet.
puppetserver sends syslog messages via the Logback mechanism, which is covered
in a following section. The last option is store, which simply stores the report as a
file in reportdir of the master.

To use a report, add it by name to the reports section on the master. This is a
comma-separated list of reports. You can have many different report handlers.
Report handlers are stored at site_ruby/[version]/puppet/reports/ and
/var/lib/puppet/lib/puppet/reports. The latter directory is where modules can
send report definitions to be installed on clients (using the pluginsync mechanism;
remember that things get purged from the pluginsync directories so, unless you are
placing files there with Puppet, they will be removed).

Store
To enable the store mechanism, use reports = store. We'll add this to our log
destination in this example, as shown in the following snippet:

[main]
reports = store

The default location for reports is reportdir. To see your current reportdir
directory, use the --configprint option on the master, as shown in the
following snippet:

[root@stand ~]# puppetconfig print reportdir

/opt/puppetlabs/server/data/puppetserver/reports

The store option is on by default; however, once you specify the reports setting as
anything in the main section of puppet.conf, you disable the implicit store option.
Remember that report files will start accumulating on the master. It's a good idea
to enable purging of those reports. In our multiple-master scenario, it's a good idea
to set report_server in the agent section of the nodes if you are using store, as
shown in the following commands. The default setting for report_server is the
same as the server parameter:

[root@client ~]# puppetconfig print report_server server

report_server = puppet

server = puppet

Chapter 7

[177]

After enabling reports on the client and reports = store on the server, you will
begin seeing reports in the reportdir directory, as shown here:

[root@stand ~]# puppetconfig print reportdir

/opt/puppetlabs/server/data/puppetserver/reports

[root@stand ~]# ls /opt/puppetlabs/server/data/puppetserver/reports/
client.example.com/

201509130433.yaml201509160551.yaml201509252128.yaml201510031025.
yaml201510040502.yaml

…

In the next section, we will look at the logging configuration of puppetserver.

Logback
Due to puppetserver running as a JRuby instance within a JVM, Java's logback
mechanism is used for logging. Logback is configured in the logback.xml file in
the /etc/puppetlabs/puppetserver directory. The default log level is INFO and
is specified within the <logger> XML entity; it may be changed to DEBUG or TRACE
for more information. puppetserver directs its logs to the /var/log/puppetlabs/
puppetserver/puppetserver.log file, as specified in the <appender> XML entity.
More information on logback is available at http://logback.qos.ch/.

In the next section we will look at one of the community-supported reporting
plugins, a plugin for IRC.

Internet relay chat
If you have an internal Internet Relay Chat (IRC) server, using the IRC report plugin
can be useful. This report sends failed catalog compilations to an IRC chat room.
You can have this plugin installed on all your catalog workers; each catalog worker
will log in to the IRC server and send failed reports. That works very well, but in
this example we'll configure a new worker called reports.example.com. It will be
configured as though it were a standalone master; the reports machine will need
the same package as a regular master (puppetserver). We'll enable the IRC logging
mechanism on this server. That way we only have to install the dependencies for the
IRC reporter on one master.

http://logback.qos.ch/

Reporting and Orchestration

[178]

The reports server will need certificates signed by puppet.example.com. There are
two ways you can have the keys created; the simplest way is to make your reports
server a client node of puppet.example.com and have Puppet generate the keys. We
will show how to use the puppet certificate generate command to manually
create and download keys for our reports server.

First, generate certificates for this new server on puppet.example.com using puppet
certificate generate.

The puppet certificate generate command may be issued from
either puppet.example.com or reports.example.com. When
running from puppet.example.com, the command looks as follows:
puppet certificate generate --ca-location local
reports.example.com

When running from reports.example.com, the command looks as
follows:
puppet certificate generate --ca-location remote
--server puppet.example.com reports.example.com

You will then need to sign the certificate on puppet.example.com using the
following command:

[root@stand ~]# puppet cert sign reports.example.com

Log.newmessage notice 2015-11-15 20:42:03 -0500 Signed certificate
request for reports.example.com

Notice: Signed certificate request for reports.example.com

Log.newmessage notice 2015-11-15 20:42:03 -0500 Removing file Puppet::SS
L::CertificateRequestreports.example.com at '/etc/puppetlabs/puppet/ssl/
ca/requests/reports.example.com.pem'

Notice: Removing file Puppet::SSL::CertificateRequestreports.example.com
at '/etc/puppetlabs/puppet/ssl/ca/requests/reports.example.com.pem'

If you used puppet certificate generate, then you will need to download the
public and private keys from puppet.example.com to reports.example.com. The
private key will be in /etc/puppetlabs/puppet/ssl/private_keys/reports.
example.com.pem, and the public key will be in /etc/puppetlabs/puppet/ssl/
ca/signed/reports.example.com.pem.

Chapter 7

[179]

We can use puppet certificate to do this as well. On the reports machine, run the
following command:

[root@reports ~]# puppet certificate find reports.example.com --ca-
location remote --server puppet.example.com

-----BEGIN CERTIFICATE-----

…

eCXSPKRz/0mzOq/xDD+Zy8yU

-----END CERTIFICATE-----

The report machine will need the certificate authority files as well (/etc/
puppetlabs/puppet/ssl/ca/ca_crt.pem and /etc/puppetlabs/puppet/ssl/ca/
ca_crl.pem); the Certificate Revokation List (CRL) should be kept in sync using
an automated mechanism. The CRL is used when certificates are invalidated with
the puppet certificate destroy, puppet cert clean, or puppet cert revoke
commands.

To download the CA from puppet.example.com, use the following command:

[root@reports ~]# puppet certificate find ca --ca-location remote
--server puppet.example.com

-----BEGIN CERTIFICATE-----

…

The CRL will have to be downloaded manually.

By default, the puppetserver service will attempt to run the built-in CA and sign
certificates; we don't want our report server to do this, so we need to disable the
CA service in /etc/puppetlabs/puppetserver/bootstrap.cfg by following the
instructions given in the file as shown here:

To enable the CA service, leave the following line uncommented
#puppetlabs.services.ca.certificate-authority-service/certificate-
authority-service
To disable the CA service, comment out the above line and uncomment
the line below
puppetlabs.services.ca.certificate-authority-disabled-service/
certificate-authority-disabled-service

Next we need to add some certificate settings to the webserver.conf file within the
/etc/puppetlabs/puppetserver/conf.d directory, as shown here:

ssl-cert = /etc/puppetlabs/puppet/ssl/certs/reports.example.com.pem
ssl-key = /etc/puppetlabs/puppet/ssl/private_keys/reports.example.com.
pem
ssl-ca-cert = /etc/puppetlabs/puppet/ssl/certs/ca.pem

Reporting and Orchestration

[180]

Now you can run Puppet on your nodes that are configured to send reports
to report_server=reports.example.com, and the reports will show up in
$reportdir. With report forwarding in place, we'll turn to installing the IRC
plugin. First use puppet module to install the module:

[root@reports ~]# puppet module install jamtur01/irc

Log.newmessage notice 2015-11-15 22:19:53 -0500 Preparing to install into
/etc/puppetlabs/code/environments/production/modules ...

Notice: Preparing to install into /etc/puppetlabs/code/environments/
production/modules ...

Log.newmessage notice 2015-11-15 22:19:53 -0500 Downloading from https://
forgeapi.puppetlabs.com ...

Notice: Downloading from https://forgeapi.puppetlabs.com ...

Log.newmessage notice 2015-11-15 22:19:56 -0500 Installing -- do not
interrupt ...

Notice: Installing -- do not interrupt ...

/etc/puppetlabs/code/environments/production/modules

└─┬ jamtur01-irc (v0.0.7)

 └── puppetlabs-stdlib (v4.9.0)

[root@reports ~]# cp /etc/puppetlabs/code/environments/production/
modules/irc/lib/puppet/reports/irc.rb /opt/puppetlabs/puppet/lib/ruby/
vendor_ruby/puppet/reports/

Search for puppet/reports to find the reports directory.

Now copy the irc.yaml configuration file into /etc/puppetlabs, and edit it
as appropriate. Our IRC server is irc.example.com. We'll use the username
puppetbot and password PacktPubBot, as shown in the following snippet:

:irc_server: 'irc://puppetbot:PacktPubBot@irc.example.com:6667#puppet'
:irc_ssl: false
:irc_register_first: false
:irc_join: true
:report_url: 'http://foreman.example.com/hosts/%h/reports/last'

Chapter 7

[181]

We are almost ready; the IRC report plugin uses the carrier-pigeon Ruby gem
to do the IRC work, so we'll need to install that now. Since reports run within
the puppetserver process, we need to install the gem within puppetserver,
as shown here:

[root@reports ~]# puppetserver gem install carrier-pigeon

Fetching: addressable-2.3.8.gem (100%)

Successfully installed addressable-2.3.8

Fetching: carrier-pigeon-0.7.0.gem (100%)

Successfully installed carrier-pigeon-0.7.0

2 gems installed

Now we can restart puppetserver on our reports worker and create a catalog
compilation problem on the client. To ensure the catalog fails to compile, I've
edited site.pp and added the following line to the default node definition:

fail('fail for no good reason')

This causes the catalog to fail compilation on our client node as shown in the
following screenshot:

Whenever a catalog fails to compile, the IRC report processor will log in to our
#puppet channel as the puppetbot user and let us know, as shown in the following
IRSSI (IRC client) screenshot:

Now for our next task, the given URL requires that Foreman is configured; we'll set
up that now.

Reporting and Orchestration

[182]

Foreman
Foreman is more than just a Puppet reporting tool; it bills itself as a complete life
cycle management platform. Foreman can act as the external node classifier (ENC)
for your entire installation and configure DHCP, DNS, and PXE booting. It's a
one-stop shop. We'll configure Foreman to be our report backend in this example.

Installing Foreman
To install Foreman, we'll need Extra Packages for Enterprise Linux (EPEL)
(https://fedoraproject.org/wiki/EPEL) and Software Collections (SCL)
(https://fedorahosted.org/SoftwareCollections/), which are the yum
repositories for Ruby 1.9.3 and its dependencies. We have previously used the EPEL
repository; the SCL repository is used for updated versions of packages that already
exist on the system, in this case, Ruby 1.9.3 (Ruby 2.0 is the default on Enterprise
Linux 7). The SCL repositories have updated versions of other packages as well.
To install EPEL and SCL, use the following package locations:

•	 https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.
noarch.rpm

•	 http://yum.theforeman.org/releases/1.9/el7/x86_64/rhscl-
ruby193-epel-7-x86_64-1-2.noarch.rpm

With these two repositories enabled, we can install Foreman using the Foreman yum
repository as shown here:

yum -y install http://yum.theforeman.org/releases/latest/el7/x86_64/
foreman-release.rpm

yum -y install foreman-installer

The foreman-installer command uses puppet apply to configure Foreman on the
server. Since we will only be using Foreman for reporting in this example, we can
just use the installer, as shown here:

[root@foreman ca]# foreman-installer --no-enable-foreman-proxy --no-
enable-puppet --puppet-ca-server puppet.example.com

WARN: Unresolved specs during Gem::Specification.reset:

multi_json(>= 1.8.4)

WARN: Clearing out unresolved specs.

Please report a bug if this causes problems.

Installing Done
[100%] [...........]

 Success!

https://fedoraproject.org/wiki/EPEL
https://fedorahosted.org/SoftwareCollections/
https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
http://yum.theforeman.org/releases/1.9/el7/x86_64/rhscl-ruby193-epel-7-x86_64-1-2.noarch.rpm
http://yum.theforeman.org/releases/1.9/el7/x86_64/rhscl-ruby193-epel-7-x86_64-1-2.noarch.rpm

Chapter 7

[183]

 * Foreman is running at https://foreman.example.com

 Initial credentials are admin / ppNmZefciG6HxU4q

 The full log is at /var/log/foreman-installer/foreman-installer.log

The installer will pull down all the Ruby gems required for Foreman and install
and configure PostgreSQL by default. The database will be populated and started
using puppet apply. The Foreman web application will be configured using
mod_passenger and Apache.

At this point, you can connect to Foreman and log in using the credentials given in
the output. The password is automatically created and is unique to each installation.
The main screen of Foreman is shown in the following screenshot:

Attaching Foreman to Puppet
With Foreman installed and configured, create certificates for foreman.example.com
on puppet.example.com, and copy the keys over to Foreman; they will go in /var/
lib/puppet/ssl using the same procedure as we did for reports.example.com at
the beginning of the chapter.

Reporting and Orchestration

[184]

We need our report server to send reports to Foreman, so we need the foreman-
report file. You can download this from https://raw.githubusercontent.com/
theforeman/puppet-foreman/master/files/foreman-report_v2.rb or use the
one that foreman-installer installed for you. This file will be located in: /usr/
share/foreman-installer/modules/foreman/files/foreman-report_v2.rb.

Copy this file to reports.example.com in /opt/puppetlabs/puppet/lib/ruby/
vendor_ruby/puppet/reports/foreman.rb. Create the Foreman configuration file
in /etc/puppet/foreman.yaml, and create the /etc/puppet directory if it does not
exist. The contents of foreman.yaml should be the following:

Update for your Foreman and Puppet master hostname(s)
:url: "https://foreman.example.com"
:ssl_ca: "/etc/puppetlabs/puppet/ssl/certs/ca.pem"
:ssl_cert: "/etc/puppetlabs/puppet/ssl/certs/reports.example.com.pem"
:ssl_key: "/etc/puppetlabs/puppet/ssl/private_keys/reports.example.
com.pem"

Advanced settings
:puppetdir: "/opt/puppetlabs/puppet/cache"
:puppetuser: "puppet"
:facts: true
:timeout: 10
:threads: null

Next, add Foreman to the reports line in puppet.conf and restart puppetserver.
So far we have our Puppet nodes sending reports to our reporting server, which is in
turn sending reports to Foreman. Foreman will reject the reports at this point until
we allow reports.example.com. Log in to https://foreman.example.com using
the admin account and password.

Then navigate to the Settings section under Administer as shown in the following
screenshot:

https://raw.githubusercontent.com/theforeman/puppet-foreman/master/files/foreman-report_v2.rb
https://raw.githubusercontent.com/theforeman/puppet-foreman/master/files/foreman-report_v2.rb

Chapter 7

[185]

Click on the Auth tab, and update the trusted_puppetmaster_hosts setting:

Note that this must be an array, so keep the [] brackets around reports.example.
com, as shown in the following screenshot:

With all this in place, when a node compiles a catalog, it will send the report to
reports.example.com, which will send the report on to foreman.example.com.
After a few reports arrive, our Foreman homepage will list hosts and reports.

Using Foreman
Let's first look at the Hosts window shown in the following screenshot:

Reporting and Orchestration

[186]

The icons next to the hostnames indicate the status of the last Puppet run. You can
also navigate to the Monitor | Reports section to see the latest reports, as shown
in the following screenshot:

Clicking on client.example.com shows the failed catalog run and the contents of
the error message, as shown in the following screenshot:

Another great feature of Foreman is that, when a file is changed by Puppet, Foreman
will show the diff file for the change in a pop-up window. When we configured our
IRC bot to inform us of failed Puppet runs in the last section, the bot presented URLs
for reports; those URLs were Foreman-specific and will now work as intended. The
Foreman maintainers recommend purging your Puppet reports to avoid filling the
database and slowing down Foreman. They have provided a rakefile that can be run
with foreman-rake to delete old reports, as shown here:

[root@foreman ~]# foreman-rake reports:expire days=7

To complete this example, we will have our master facts sent to Foreman. This is
something that can be run from cron. Copy the node.rb ENC script from https://
raw.githubusercontent.com/theforeman/puppet-foreman/2.2.3/files/
external_node_v2.rb to the stand.example.com Puppet master.

https://raw.githubusercontent.com/theforeman/puppet-foreman/2.2.3/files/external_node_v2.rb
https://raw.githubusercontent.com/theforeman/puppet-foreman/2.2.3/files/external_node_v2.rb
https://raw.githubusercontent.com/theforeman/puppet-foreman/2.2.3/files/external_node_v2.rb

Chapter 7

[187]

Copy the foreman.yaml configuration file from reports.example.com to stand.
example.com. Again, go back into the Foreman GUI and add stand.example.com
to trusted_puppetmaster_hosts. Then, from stand run the node.rb script with
--push-facts to push all the facts to Foreman, as shown here:

[root@stand ~]# /etc/puppet/node.rb --push-facts

Now, when you view hosts in Foreman, they will have their facts displayed.
Foreman also includes rakefiles to produce e-mail reports on a regular basis.
Information on configuring these is available at: http://projects.theforeman.
org/projects/foreman/wiki/Mail_Notifications.

With this configuration, Foreman is only showing us the reports. Foreman can be
used as a full ENC implementation and take over the entire life cycle of provisioning
hosts. I recommend looking at the documentation and exploring the GUI to see if
you might benefit from using more of Foreman's features.

Puppet GUIs
Representing Puppet report information in a web GUI is a useful idea. There are
several GUIs available; Puppet Labs has Puppet Enterprise and its console interface.
Other open source alternatives are Puppetboard (https://github.com/voxpupuli/
puppetboard), PanoPuppet (https://github.com/propyless/panopuppet), and
Puppet Explorer (https://github.com/spotify/puppetexplorer). All these tools
rely on PuppetDB for their data. These tools are developing quickly and changing,
so I suggest trying each one and finding the one that offers the features best suited
to your needs.

mcollective
mcollective is an orchestration tool created by Puppet Labs that is not specific
to Puppet. Plugins exist to work with other configuration management systems.
mcollective uses a Message Queue (MQ) tool with active connections from all
active nodes to enable parallel job execution on a large numbers of nodes.

To understand how mcollective works, we'll consider the following high-level
diagram and work through various components. The configuration of mcollective is
somewhat involved and prone to errors. Still, once mcollective is working properly,
the power it provides can become addictive. It will be worth the effort, I promise.

http://projects.theforeman.org/projects/foreman/wiki/Mail_Notifications
http://projects.theforeman.org/projects/foreman/wiki/Mail_Notifications
https://github.com/voxpupuli/puppetboard
https://github.com/voxpupuli/puppetboard
https://github.com/propyless/panopuppet
https://github.com/spotify/puppetexplorer

Reporting and Orchestration

[188]

In the following diagram, we see that the client executing the mcollective
command communicates with the MQ server. The MQ server then sends the
query to each of the nodes connected to the queue.

The default MQ installation for marionette uses activemq. The activemq package
provided by the Puppet Labs repository is known to work.

mcollective uses a generic message queue and can be
configured to use your existing message queue infrastructure.

If using activemq, a single server can handle 800 nodes. After that, you'll need to
spread out to multiple MQ servers. We'll cover the standard mcollective installation
using Puppet's certificate authority to provide SSL security to mcollective. The theory
here is that we trust Puppet to configure the machines already; we can trust it a little
more to run arbitrary commands. We'll also require that users of mcollective have
proper SSL authentication.

You can install mcollective using the mcollective module from
Forge (https://forge.puppetlabs.com/puppetlabs/
mcollective). In this section, we will install mcollective
manually to explain the various components.

https://forge.puppetlabs.com/puppetlabs/mcollective
https://forge.puppetlabs.com/puppetlabs/mcollective

Chapter 7

[189]

Installing ActiveMQ
ActiveMQ is the recommended messaging server for mcollective. If you already have
a messaging server in your infrastructure, you can use your existing server and just
create a message queue for mcollective. To install ActiveMQ, we'll use a different
Puppet Labs repository than we used to install Puppet; this repository is located
at http://yum.puppetlabs.com/puppetlabs-release-el-7.noarch.rpm:

1.	 We install ActiveMQ from the Puppet Labs repository to puppet.example.
com using the following command:
yum install activemq

...

Installed:

activemq.noarch0:5.9.1-2.el7

2.	 Next, download the sample ActiveMQ config file using the following
commands:
[root@stand ~]# cd /etc/activemq

[root@standactivemq]# mvactivemq.xmlactivemq.xml.orig

[root@standactivemq]# curl –O https://raw.githubusercontent.com/
puppetlabs/marionette-collective/master/ext/activemq/examples/
single-broker/activemq.xml

3.	 This will create activemq.xml. This file needs to be owned by the user
activemq and, since we will be adding passwords to the file shortly,
we'll set its access permissions to user-only:
[root@standactivemq]# chown activemq activemq.xml

[root@standactivemq]# chmod 0600 activemq.xml

4.	 Now create an mcollective password and admin password for your message
queue using the following code. The defaults in this file are marionette and
secret respectively:
<simpleAuthenticationPlugin>
<users>
<authenticationUser username="mcollective"
password="PacktPubSecret" groups="mcollective,everyone"/>
<authenticationUser username="admin"
password="PacktPubSuperSecret" groups="mcollective,admins,everyo
ne"/>
</users>
</simpleAuthenticationPlugin>

http://yum.puppetlabs.com/puppetlabs-release-el-7.noarch.rpm

Reporting and Orchestration

[190]

5.	 Next, change the transportConnectors section to use SSL, as shown in the
following snippet:
<transportConnectors>
<transportConnector name="openwire" uri="tcp://0.0.0.0:61616"/>
<transportConnector name="stomp+ssl" uri="stomp+ssl://0.0.0.0:6161
4?needClientAuth=true"/>
</transportConnectors>

6.	 Immediately following the transportConnectors, we'll define an
sslContext, which will contain the SSL keys from our Puppet master
in a format compatible with ActiveMQ (keystores):
<sslContext>
 <sslContext
keyStore="keystore.jks" keyStorePassword="PacktPubKeystore"
trustStore="truststore.jks" trustStorePassword="PacktPubTrust"
 />
</sslContext>

This section should be within the <broker> definition. For simplicity, just
stick it right after the <transportConnectors> section.

7.	 Now we need to create keystore.jks and truststore.jks. Start
by copying the certificates from Puppet into a temporary directory,
as shown here:
[root@stand ~]# cd /etc/activemq

[root@standactivemq]# mkdir tmp

[root@standactivemq]# cd tmp

[root@standtmp]# cp /etc/puppetlabs/puppet/ssl/certs/ca.pem .

[root@standtmp]# cp /etc/puppetlabs/puppet/ssl/certs/puppet.
example.com.pem .

[root@standtmp]# cp /etc/puppetlabs/puppet/ssl/private_keys/
puppet.example.com.pempuppet.example.com.private.pem

[root@standtmp]# keytool -import -alias "Example CA" -file ca.pem
-keystore truststore.jks

Enter keystore password: PacktPubTrust

Re-enter new password: PacktPubTrust

Owner: CN=Puppet CA: puppet.example.com

Issuer: CN=Puppet CA: puppet.example.com

...

Trust this certificate? [no]: yes

Certificate was added to keystore

Chapter 7

[191]

8.	 Now that the truststore.jks keystore is complete, we need to create
the keystore.jks keystore. We start by combining the public and private
portions of the puppetserver certificate. The combined file is then fed to
OpenSSL's pkcs12 command to create a pkcs12 file suitable for import
using keytool:
[root@standtmp]# catpuppet.example.com.pempuppet.example.com.
private.pem>puppet.pem

[root@standtmp]# opensslpkcs12 -export -in puppet.pem -out
activemq.p12 -name puppet.example.com

Enter Export Password: PacktPubKeystore

Verifying - Enter Export Password: PacktPubKeystore

[root@standtmp]# keytool -importkeystore -destkeystore keystore.
jks -srckeystore activemq.p12 -srcstoretype PKCS12 -alias puppet.
example.com

Enter destination keystore password: PacktPubKeystore

Re-enter new password: PacktPubKeystore

Enter source keystore password: PacktPubKeystore

9.	 Now these files are created, so move them into /etc/activemq, and make
sure they have the appropriate permissions:
[root@standtmp]# chown activemq truststore.jks keystore.jks

[root@standtmp]# chmod 0600 truststore.jks keystore.jks

[root@standtmp]# mv truststore.jks keystore.jks /etc/activemq/

The ActiveMQ rpm is missing a required symlink; ActiveMQ will not
start until /usr/share/activemq/activemq-data is symlinked to
/var/cache/activemq/data.

10.	 We can now start activemq using the following command; make sure that
your firewall allows connections inbound on port 61614, which is the port
specified in the transportConnector line in activemq.xml:
[root@stand ~]# systemctl start activemq

11.	 Verify that the broker is listening on 61614 using lsof:
[root@stand ~]# lsof -i :61614

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

java 7404 activemq 122 uIPv6 54270 0t0 TCP *:61614
(LISTEN)

Reporting and Orchestration

[192]

Configuring nodes to use ActiveMQ
Now we need to create a module to install mcollective on every node and have the
nodes' mcollective configuration point back to our message broker. Each node will
use a shared key, which we will now generate and sign on our Puppet master as
shown here:

[root@stand ~]# puppet certificate generate mcollective-servers --ca-
location local

Log.newmessage notice 2015-11-19 15:53:16 -0500 mcollective-servers has a
waiting certificate request

Notice: mcollective-servers has a waiting certificate request

true

[root@stand ~]# puppet cert sign mcollective-servers

Log.newmessage notice 2015-11-19 15:53:29 -0500 Signed certificate
request for mcollective-servers

Notice: Signed certificate request for mcollective-servers

Log.newmessage notice 2015-11-19 15:53:29 -0500 Removing file Puppet::SS
L::CertificateRequestmcollective-servers at '/etc/puppetlabs/puppet/ssl/
ca/requests/mcollective-servers.pem'

Notice: Removing file Puppet::SSL::CertificateRequestmcollective-servers
at '/etc/puppetlabs/puppet/ssl/ca/requests/mcollective-servers.pem'

We'll now copy the certificate and private keys for this new certificate into our
modules files directory and add these files to our module definition. The certificate
will be in /etc/puppetlabs/puppet/ssl/ca/signed/mcollective-servers.
pem and the private key will be in /etc/puppetlabs/puppet/ssl/private_keys/
mcollective-servers.pem. The definitions for these files will be as shown in
the following snippet:

file {'mcollective_server_cert':
 path => '/etc/mcollective/ssl/mcollective_public.pem',
 owner => 0,
 group => 0,
 mode => 0640,
 source => 'puppet:///modules/example/mcollective/mcollective_public.
pem',
}
file {'mcollective_server_private':
 path => '/etc/mcollective/ssl/mcollective_private.pem',
 owner => 0,
 group => 0,

Chapter 7

[193]

 mode => 0600,
 source => 'puppet:///modules/example/mcollective/mcollective_
private.pem',
}

With the certificates in place, we'll move on to the configuration of the service,
as shown in the following snippet:

class example::mcollective {
 $mcollective_server = 'puppet.example.com'
 package {'mcollective':
 ensure => true,
 }
 service {'mcollective':
 ensure => true,
 enable => true,
 require => [Package['mcollective'],File['mcollective_server_
config']]
 }
 file {'mcollective_server_config':
 path => '/etc/mcollective/server.cfg',
 owner => 0,
 group => 0,
 mode => 0640,
 content => template('example/mcollective/server.cfg.erb'),
 require => Package['mcollective'],
 notify => Service['mcollective'],
 }
}

This is a pretty clean package-file-service relationship. We need to define the
mcollective server.cfg configuration file. We'll define this with a template as
shown in the following code:

main_collective = mcollective
collectives = mcollective
libdir = /usr/libexec/mcollective
daemonize = 1

logging
logger_type = file
logfile = /var/log/mcollective.log
loglevel = info
logfile = /var/log/mcollective.log
logfacility = user

Reporting and Orchestration

[194]

keeplogs = 5
max_log_size = 2097152

activemq
connector = activemq
plugin.activemq.pool.size = 1
plugin.activemq.pool.1.host = <%= mcollective_server %>
plugin.activemq.pool.1.port = 61614
plugin.activemq.pool.1.user = mcollective
plugin.activemq.pool.1.password = PacktPubSecret
plugin.activemq.pool.1.ssl = 1
plugin.activemq.pool.1.ssl.ca = /var/lib/puppet/ssl/certs/ca.pem
plugin.activemq.pool.1.ssl.cert = /var/lib/puppet/ssl/certs/<%= @fqdn
%>.pem
plugin.activemq.pool.1.ssl.key = /var/lib/puppet/ssl/private_keys/<%=
@fqdn %>.pem
plugin.activemq.pool.1.ssl.fallback = 0

SSL security plugin settings:
securityprovider = ssl
plugin.ssl_client_cert_dir = /etc/mcollective/ssl/clients
plugin.ssl_server_private = /etc/mcollective/ssl/mcollective_private.
pem
plugin.ssl_server_public = /etc/mcollective/ssl/mcollective_public.pem

Facts, identity, and classes:
identity = <%= @fqdn %>
factsource = yaml
plugin.yaml = /etc/mcollective/facts.yaml
classesfile = /var/lib/puppet/state/classes.txt

registerinterval = 600

The next thing we need is a populated facts.yaml file, as shown in the following
snippet, so that we can query facts on the nodes and filter results:

file {'facts.yaml':
 path => '/etc/mcollective/facts.yaml',
 owner => 0,
 group => 0,
 mode => 0640,
 loglevel => debug,

Chapter 7

[195]

 content =>inline_template("---\n<% scope.to_hash.reject { |k,v|
k.to_s =~ /(uptime_seconds|timestamp|free)/ }.sort.each do |k, v|
%><%= k %>: \"<%= v %>\"\n<% end %>\n"),
 require => Package['mcollective'],

}

In the previous example, the inline_template uses a call to sort due to
random ordering in the hash. Without the sort, the resulting facts.yaml
file is completely different on each Puppet run, resulting in the entire file
being rewritten every time.

Now we're almost there; we have all our nodes pointing to our ActiveMQ server.
We need to configure a client to connect to the server.

Connecting a client to ActiveMQ
Clients would normally be installed on the admin user's desktop. We will use
puppet certificate generate here just as we have in previous examples.
We will now outline the steps needed to have a new client connect to mcollective:

1.	 Create certificates for Thomas and name his certificates thomas:
[thomas@client ~]$ puppet certificate generate --ssldir
~/.mcollective.d/credentials/ --ca-location remote --ca_server
puppet.example.com --certname thomas thomas

2.	 Sign the cert on puppet.example.com (our SSL master):
[root@stand ~]# puppet cert sign thomas

Log.newmessage notice 2015-11-21 00:50:41 -0500 Signed certificate
request for thomas

Notice: Signed certificate request for thomas

Log.newmessage notice 2015-11-21 00:50:41 -0500 Removing file Pupp
et::SSL::CertificateRequestthomas at '/etc/puppetlabs/puppet/ssl/
ca/requests/thomas.pem'

Notice: Removing file Puppet::SSL::CertificateRequestthomas at '/
etc/puppetlabs/puppet/ssl/ca/requests/thomas.pem'

Reporting and Orchestration

[196]

3.	 Retrieve the signed certificate:
[root@stand ~]# puppet certificate find thomas --ca-location
remote --ca_server puppet.example.com

-----BEGIN CERTIFICATE-----

MIIFcTCCA1mgAwIBAgIBGjANBgkqhkiG9w0BAQsFADAoMSYwJAYDVQQDDB1QdXBw

…

-----END CERTIFICATE-----

4.	 Copy this certificate to: ~/.mcollective.d/credentials/certs/thomas.
pem.

5.	 Download the mcollective-servers key:
[root@stand ~]# puppet certificate find mcollective-servers --ca-
location remote --ca_server puppet.example.com

-----BEGIN CERTIFICATE-----

MIIFWzCCA0OgAwIBAgIBEzANBgkqhkiG9w0BAQsFADAoMSYwJAYDVQQDDB1QdXBw

...

Vd5M0lfdYSDKOA+b1AXXoMaAn9n9j7AyBhQhie52Og==

-----END CERTIFICATE-----

Move this into ~/.mcollective.d/credentials/certs/mcollective-
servers.pem.

6.	 Download our main CA for certificate verification purposes using the
following command:
[root@stand ~]# puppet certificate find ca --ca-location remote
--ca_server puppet.example.com

-----BEGIN CERTIFICATE-----

MIIFfjCCA2agAwIBAgIBATANBgkqhkiG9w0BAQsFADAoMSYwJAYDVQQDDB1QdXBw

...

XO+dgA5aAhUUMg==

-----END CERTIFICATE-----

Move this into ~/.mcollective.d/credentials/certs/ca.pem.

7.	 Now we need to create the configuration file of mco at ~/.mcollective:
connector = activemq
direct_addressing = 1
ActiveMQ connector settings:
plugin.activemq.pool.size = 1

Chapter 7

[197]

plugin.activemq.pool.1.host = puppet.example.com
plugin.activemq.pool.1.port = 61614
plugin.activemq.pool.1.user = mcollective
plugin.activemq.pool.1.password = PacktPubSecret
plugin.activemq.pool.1.ssl = 1
plugin.activemq.pool.1.ssl.ca = /home/thomas/.mcollective.d/
credentials/certs/ca.pem
plugin.activemq.pool.1.ssl.cert = /home/thomas/.mcollective.d/
credentials/certs/thomas.pem
plugin.activemq.pool.1.ssl.key = /home/thomas/.mcollective.d/
credentials/private_keys/thomas.pem
plugin.activemq.pool.1.ssl.fallback = 0
securityprovider = ssl
plugin.ssl_server_public = /home/thomas/.mcollective.d/
credentials/certs/mcollective-servers.pem
plugin.ssl_client_private = /home/thomas/.mcollective.d/
credentials/private_keys/thomas.pem
plugin.ssl_client_public = /home/thomas/.mcollective.d/
credentials/certs/thomas.pem
default_discovery_method = mc
direct_addressing_threshold = 10
ttl = 60
color = 1
rpclimitmethod = first
libdir = /usr/libexec/mcollective
logger_type = console
loglevel = warn
main_collective = mcollective

8.	 Now, we need to add our public key to all the nodes so that they will accept
our signed messages. We do this by copying our public key into example/
files/mcollective/clients and creating a file resource to manage that
directory with recurse => true, as shown in the following snippet:
file {'mcollective_clients':
 ensure => 'directory',
 path => '/etc/mcollective/ssl/clients',
 mode => '0700',
 owner => 0,
 group => 0,
 recurse => true,
 source => 'puppet:///modules/example/mcollective/clients',
}

Reporting and Orchestration

[198]

Using mcollective
With everything in place, our client will now pass messages that will be accepted
by the nodes, and we in turn will accept the messages signed by the mcollective-
servers key:

[thomas@client ~]$ mco find -v

Discovering hosts using the mc method for 2 second(s) 2

client.example.com

puppet.example.com

Discovered 2 nodes in 2.06 seconds using the mc discovery plugin

Any admin that you wish to add to your team will need to generate a certificate
for themselves and have the Puppet CA sign the key. Then they can copy your
.mcollective file and change the keys to their own. After adding their public key
to the example/mcollective/clients directory, the nodes will start to accept
their messages. You can also add a key for scripts to use; in those cases, using the
hostname of the machine, running the scripts will make it easier to distinguish the
host that is running the mco queries.

Now that mco is finally configured, we can use it to generate reports as shown here.
The inventory service is a good place to start.

[thomas@client ~]$mco inventory client.example.com

Inventory for client.example.com:

 Server Statistics:

 Version: 2.8.6

 Start Time: 2015-11-20 23:12:13 -0800

Config File: /etc/puppetlabs/mcollective/server.cfg

 Collectives: mcollective

 Main Collective: mcollective

 Process ID: 13665

 Total Messages: 2

 Messages Passed Filters: 2

 Messages Filtered: 0

 Expired Messages: 0

 Replies Sent: 1

 Total Processor Time: 0.21 seconds

 System Time: 0.01 seconds

Chapter 7

[199]

The facts returned in the inventory command, and in fact, in any
mco command, are the redacted facts from the /etc/puppetlabs/
mcollective/facts.yaml file we created.

Other common uses of mco are to find nodes that have classes applied to them,
as shown here:

[thomas@client ~]$ mco find --wc webserver

www.example.com

Another use of mco is to find nodes that have a certain value for a fact. You can use
regular expression matching using the /something/ notation, as shown here:

[thomas@client ~]$ mco find --wf hostname=/^node/

node2.example.com

node1.example.com

Using the built-in modules, it's possible to start and stop services. Check file contents
and write your own modules to perform tasks.

Ansible
When you need to orchestrate changes across a large number of servers, some of
which may not currently be functioning, mcollective is a very good tool. When
running Puppet in a large organization there are several tasks that need to be
performed in an orchestrated fashion with a small number of machines. In my
opinion, Ansible is a great tool for these small changes across multiple machines.
I've used Ansible through Git hook scripts to deploy updated code across a set
of Puppet master machines. More information on Ansible can be found at
http://docs.ansible.com/.

Summary
Reports help you understand when things go wrong. Using some of the built-in
report types, it's possible to alert your admins to Puppet failures. The GUIs
mentioned here allow you to review Puppet run logs. Foreman has the most polished
feel and makes it easier to link directly to reports and search for reports. mcollective
is an orchestration utility that allows you to actively query and modify all the nodes
in an organized manner interactively via a message broker.

In the next chapter, we will be installing PuppetDB and creating exported resources.

http://docs.ansible.com/

[201]

Exported Resources
When automating tasks among many servers, information from one node may affect
the configuration of another node or nodes. For example, if you configure DNS
servers using Puppet, then you can have Puppet tell the rest of your nodes where
all the DNS servers are located. This sharing of information is called catalog storage
and searching in Puppet.

Catalog storage and searching was previously known as storeconfigs and enabled
using the storeconfig option in puppet.conf. Storeconfigs was able to use SQLite,
MySQL, and PostgreSQL; it is now deprecated in favor of PuppetDB.

The current method of supporting exported resources is PuppetDB, which uses
Java and PostgreSQL and can support hundreds to thousands of nodes with a
single PuppetDB instance. Most scaling issues with PuppetDB can be solved
by beefing up the PostgreSQL server, either adding a faster disk or more CPU,
depending on the bottleneck.

We will begin our discussion of exported resources by configuring PuppetDB.
We will then discuss exported resource concepts and some example usage.

Configuring PuppetDB – using the Forge
module
The easy way to configure PuppetDB is to use the puppetdb Puppet module on
Puppet Forge at https://forge.puppetlabs.com/puppetlabs/puppetdb. We
will install PuppetDB using the module first to show how quickly you can deploy
PuppetDB. In the subsequent section, we'll configure PuppetDB manually to show
how all the components fit together.

https://forge.puppetlabs.com/puppetlabs/puppetdb

Exported Resources

[202]

The steps to install and use PuppetDB that we will outline are as follows:

1.	 Install the puppetdb module on Puppet master (stand).
2.	 Install puppetlabs-repo and Puppet on PuppetDB host.
3.	 Deploy the puppetdb module onto PuppetDB host.
4.	 Update the configuration of the Puppet master to use PuppetDB.

We will start with a vanilla EL6 machine and install PuppetDB using the puppetdb
module. In Chapter 4, Public Modules, we used a Puppetfile in combination
with librarian-puppet or r10k to download modules. We used the puppetdb
module since it was a good example of dependencies; we will rely on PuppetDB
being available to our catalog worker for this example. If you do not already have
PuppetDB downloaded, do it using one of those methods or simply use puppet
module install puppetlabs-puppetdb as shown in the following screenshot:

After installing the puppetdb module, we need to install the puppetlabs repo on our
PuppetDB machine and install Puppet using the following command:

[root@puppetdb ~]# yum -y install http://yum.puppetlabs.com/puppetlabs-
release-pc1-el-7.noarch.rpm

puppetlabs-release-pc1-el-7.noarch.rpm | 5.1 kB
00:00:00

Examining /var/tmp/yum-root-dfBZAN/puppetlabs-release-pc1-el-7.noarch.
rpm: puppetlabs-release-pc1-1.0.0-1.el6.noarch

Marking /var/tmp/yum-root-dfBZAN/puppetlabs-release-pc1-el-7.noarch.rpm
as an update to puppetlabs-release-pc1-0.9.2-1.el7.noarch

Resolving Dependencies

--> Running transaction check

...

root@puppetdb ~]# yum -y install puppetdb

Chapter 8

[203]

Resolving Dependencies

--> Running transaction check

---> Package puppetdb.noarch 0:3.2.0-1.el7 will be installed

-->Processing Dependency: net-tools for package: puppetdb-3.2.0-1.el7.
noarch

--> Processing Dependency: java-1.8.0-openjdk-headless for package:
puppetdb-3.2.0-1.el7.noarch

--> Running transaction check

---> Package java-1.8.0-openjdk-headless.x86_64 1:1.8.0.65-2.b17.el7_1
will be installed

-->Processing Dependency: jpackage-utils for package: 1:java-1.8.0-
openjdk-headless-1.8.0.65-2.b17.el7_1.x86_64

...

Our next step is to deploy PuppetDB on the PuppetDB machine using Puppet.
We'll create a wrapper class to install and configure PuppetDB on our master, as
shown in the following code (in the next chapter this will become a profile). Wrapper
classes, or profiles, are classes that bundle lower-level classes (building blocks) into
higher-level classes.

classpdb {
 # puppetdb class
 class { 'puppetdb::server': }
 class { 'puppetdb::database::postgresql': listen_addresses => '*' }
}

At this point, the PuppetDB server also needs network ports opened in iptables;
the two ports are 5432 (postgresql) and 8081 (puppetdb). Using our knowledge
of the firewall module, we could do this with the following snippet included in
our pdb class:

firewall {'5432 postgresql':
 action => 'accept',
 proto => 'tcp',
 dport => '5432',
}
firewall {'8081 puppetdb':
 action => 'accept',
 proto => 'tcp',
 dport => '8081',
}

Exported Resources

[204]

We then apply this pdb class to our PuppetDB machine. For this example, I used the
hiera_include method and the following puppetdb.yaml file:

classes: pdb

Now we run Puppet agent on PuppetDB to have PuppetDB installed (running
Puppet agent creates the SSL keys for our PuppetDB server as well; remember to
sign those on the master).

Back on our workers, we need to tell Puppet to use PuppetDB; we can do this by
defining a puppet::master class that configures Puppet and applying it to our
workers:

class puppet::master {
 class {'puppetdb::master::config':
 puppetdb_server => 'puppetdb.example.com',
 puppet_service_name => 'httpd',
 }
}

Now we configure our stand.yaml file to include the previous class as follows:

classes: puppet::master

The Puppet master will need to be able to resolve puppetdb.example.com, either
through DNS or static entries in /etc/hosts. Now run Puppet on our Puppet master
to have puppetserver configured to use PuppetDB. The master will attempt to
communicate with the PuppetDB machine over port 8081. You'll need the firewall
(iptables) rules to allow this access at this point.

Now we can test that PuppetDB is operating by using the puppet node status
command as follows:

[root@stand ~]# puppet node status puppetdb.example.com

Currently active

Last catalog: 2015-11-27T10:43:42.243Z

Last facts: 2015-11-27T10:43:26.539Z

Chapter 8

[205]

Manually installing PuppetDB
The puppetlabs/puppetdb module does a great job of installing PuppetDB and
getting you running quickly. Unfortunately, it also obscures a lot of the configuration
details. In the enterprise, you'll need to know how all the parts fit together. We will
now install PuppetDB manually using the following five steps:

1.	 Install Puppet and PuppetDB.
2.	 Install and configure PostgreSQL.
3.	 Configure PuppetDB to use PostgreSQL.
4.	 Start PuppetDB and open firewall ports.
5.	 Configure the Puppet master to use PuppetDB.

Installing Puppet and PuppetDB
To manually install PuppetDB, start with a fresh machine and install the
puppetlabs-pc1 repository, as in previous examples. We'll call this new server
puppetdb-manual.example.com to differentiate it from our automatically installed
PuppetDB instance (puppetdb.example.com).

Install Puppet, do a Puppet agent run using the following command to generate
certificates, and sign them on the master as we did when we used the puppetlabs/
puppetdb module. Alternatively, use puppet certificate generate as we did
in previous chapters:

[root@puppetdb-manual ~]# yum -y install http://yum.puppetlabs.com/
puppetlabs-release-pc1-el-6.noarch.rpm

[root@puppetdb-manual ~]# yum install puppet-agent

[root@puppetdb-manual ~]# puppet agent -t

Sign the certificate on the master as follows:

[root@stand ~]# puppet cert list

 "puppetdb-manual.example.com" (SHA256) 90:5E:9B:D5:28:50:E0:43:82:F4:F5
:D9:21:0D:C3:82:1B:7F:4D:BB:DC:C0:E5:ED:A1:EB:24:85:3C:01:F4:AC

[root@stand ~]# puppet cert sign puppetdb-manual.example.com

Notice: Signed certificate request for puppetdb-manual.example.com

Notice: Removing file Puppet::SSL::CertificateRequestpuppetdb-manual.
example.com at '/etc/puppetlabs/puppet/ssl/ca/requests/puppetdb-manual.
example.com.pem'

Back on puppetdb-manual, install puppetdb as follows:
[root@puppetdb-manual ~]# yum -q -y install puppetdb

Exported Resources

[206]

Installing and configuring PostgreSQL
If you already have an enterprise PostgreSQL server configured, you can simply
point PuppetDB at that instance. PuppetDB 3.2 only supports PostgreSQL versions
9.4 and higher. To install PostgreSQL, install the postgresql-server package and
initialize the database as follows:

[root@puppetdb-manual ~]# yum install http://yum.postgresql.org/9.4/
redhat/rhel-7-x86_64/pgdg-redhat94-9.4-2.noarch.rpm -q -y

[root@puppetdb-manual ~]# yum -q -y install postgresql94-server

[root@puppetdb-manual ~]# postgresql-setup initdb

Initializing database ... OK

[root@puppetdb-manual ~]# systemctl start postgresql-9.4

Next create the puppetdb database (allowing the puppetdb user to access that
database) as follows:

[root@puppetdb-manual ~]# sudo -iu postgres

$ createuser -DRSP puppetdb

Enter password for new role: PacktPub

Enter it again: PacktPub

$ createdb -E UTF8 -O puppetdb puppetdb

Allow PuppetDB to connect to the PostgreSQL server using md5 on the localhost
since we'll keep PuppetDB and the PostgreSQL server on the same machine
(puppetdb-manual.example.com).

You will need to change the allowed address rules from 127.0.0.1/32
to that of the PuppetDB server if PuppetDB is on a different server than
the PostgreSQL server.

Edit /var/lib/pgsql/9.4/data/pg_hba.conf and add the following:

local puppetdb puppetdb md5
host puppetdb puppetdb 127.0.0.1/32 md5
host puppetdb puppetdb ::1/128 md5

The default configuration uses ident authentication; you must remove
the following lines:

local all all ident
host all all 127.0.0.1/32 ident
host all all ::1/128 ident

Chapter 8

[207]

Restart PostgreSQL and test connectivity as follows:

[root@puppetdb-manual ~]# systemctl restart postgresql-9.4

[root@puppetdb-manual ~]# psql -h localhost puppetdb puppetdb

Password for user puppetdb: PacktPub

psql (9.4.5)

Type "help" for help.

puppetdb=> \d

No relations found.

puppetdb=> \q

Now that we've verified that PostgreSQL is working, we need to configure
PuppetDB to use PostgreSQL.

Configuring puppetdb to use PostgreSQL
Locate the database.ini file in /etc/puppetlabs/puppetdb/conf.d and replace
it with the following code snippet:

[database]
classname = org.postgresql.Driver
subprotocol = postgresql
subname = //localhost:5432/puppetdb
username = puppetdb
password = PacktPub

If it's not present in your file, configure automatic tasks of PuppetDB such as garbage
collection (gc-interval), as shown in the following code. PuppetDB will remove
stale nodes every 60 minutes. For more information on the other settings, refer to the
Puppet Labs documentation at http://docs.puppetlabs.com/puppetdb/latest/
configure.html:

gc-interval = 60
log-slow-statements = 10
report-ttl = 14d
syntax_pgs = true
conn-keep-alive = 45
node-ttl = 0s
conn-lifetime = 0
node-purge-ttl = 0s
conn-max-age = 60

Start PuppetDB using the following command:
[root@puppetdb_manual ~]# systemctl start puppetdb

http://docs.puppetlabs.com/puppetdb/latest/configure.html
http://docs.puppetlabs.com/puppetdb/latest/configure.html

Exported Resources

[208]

Configuring Puppet to use PuppetDB
Perform the following steps to configure Puppet to use PuppetDB.

To use PuppetDB, the worker will need the puppetdb node terminus package; we'll
install that first by using the following command:

yum -y install puppetdb-termini

Create /etc/puppetlabs/puppet/puppetdb.conf and point PuppetDB at
puppetdb-manual.example.com:

[main]
server_urls = https://puppetdb-manual.example.com:8081/
soft_write_failure = false

Tell Puppet to use PuppetDB for storeconfigs by adding the following in the
[master] section of /etc/puppetlabs/puppet/puppet.conf:

[master]
storeconfigs = true
storeconfigs_backend = puppetdb

Next, create a routes.yaml file in the /etc/puppetlabs/puppet directory that will
make Puppet use PuppetDB for inventory purposes:

master:
facts:
terminus: puppetdb
cache: yaml

Restart puppetserver and verify that PuppetDB is working by running puppet
agent again on puppetdb-manual.example.com. After the second puppet agent
runs, you can inspect the PostgreSQL database for a new catalog as follows:

[root@puppetdb-manual ~]# psql -h localhostpuppetdbpuppetdb

Password for user puppetdb:

psql (9.4.5)

Type "help" for help.

puppetdb=> \x

Expanded display is on.

puppetdb=> SELECT * from catalogs;

Chapter 8

[209]

-[RECORD 1]------+---

id| 1

hash | \x13980e07b72cf8e02ea247c3954efdc2cdabbbe0

transaction_uuid | 9ce673db-6af2-49c7-b4c1-6eb83980ac57

certname | puppetdb-manual.example.com

producer_timestamp | 2015-12-04 01:27:19.211-05

api_version | 1

timestamp | 2015-12-04 01:27:19.613-05

catalog_version | 1449210436

environment_id | 1

code_id |

Exported resource concepts
Now that we have PuppetDB configured, we can begin exporting resources into
PuppetDB. In Chapter 5, Custom Facts and Modules, we introduced virtual resources.
Virtual resources are resources that are defined but not instantiated. The concept
with virtual resources is that a node has several resources defined, but only one
or a few resources are instantiated. Instantiated resources are not used in catalog
compilation. This is one method of overcoming some "duplicate definition" type
problems. The concept with exported resources is quite similar; the difference is
that exported resources are published to PuppetDB and made available to any node
in the enterprise. In this way, resources defined on one node can be instantiated
(realized) on another node.

What actually happens is quite simple. Exported resources are put into the
catalog_resources table in the PostgreSQL backend of PuppetDB. The table
contains a column named exported. This column is set to true for exported
resources. When trying to understand exported resources, just remember that
exported resources are just entries in a database.

To illustrate exported resources, we will walk through a few simple examples.
Before we start, you need to know two terms used with exported resources:
declaring and collecting.

Exported Resources

[210]

Declaring exported resources
Exported resources are declared with the @@ operator. You define the resource as
you normally would, but prepend the definition with @@. For example, consider
the following host resource:

host {'exported':
 host_aliases => 'exported-resources',
 ip => '1.1.1.1',
}

It can be declared as an exported resource as follows:

@@host {'exported':
 host_aliases => 'exported-resources',
 ip => '1.1.1.1',
}

Any resource can be declared as an exported resource. The process of realizing
exported resources is known as collecting.

Collecting exported resources
Collecting is performed using a special form of the collecting syntax. When we
collected virtual resources, we used <||> to collect the resources. For exported
resources, we use <<||>>. To collect the previous host resource, we use the following:

Host <<| |>>

To take advantage of exported resources, we need to think about what we are trying
to accomplish. We'll start with a simplified example.

Simple example – a host entry
It makes sense to have static host entries in /etc/hosts for some nodes, since DNS
outages may disrupt the services provided by those nodes. Examples of such services
are backups, authentication, and Kerberos. We'll use LDAP (authentication) in this
example. In this scenario, we'll apply the ldap::server class to any LDAP server
and add a collector for Host entries to our base class (the base class will be a default
applied to all nodes). First, declare the exported resource in ldap::server, as shown
in the following code snippet:

classldap::server {
 @@host {"ldap-$::hostname":
 host_aliases => ["$::fqdn",'ldap'],

Chapter 8

[211]

 ip => "$::ipaddress",
 }
}

This will create an exported entry on any host to which we apply the ldap::server
class. We'll apply this class to node2 and then run Puppet to have the resource
exported. After running Puppet agent on ldapserver1, we will examine the
contents of PuppetDB, as shown in the following screenshot:

The catalog_resources table holds the catalog resource mapping information.
Using the resource ID from this table, we can retrieve the contents of the resource
from the resource_params table, as shown in the following screenshot:

As we can see, the ldapserver1 host entry has been made available in PuppetDB.
The host_aliases and ip information has been stored in PuppetDB.

To use this exported resource, we will need to add a collector to our base class
as follows:

class base {
 Host <<| |>>
}

Exported Resources

[212]

Now, when we run puppet agent on any host in our network (any host that has the
base class applied), we will see the following host entry:

[root@client ~]# grepldap /etc/hosts

10.0.2.15 ldap-ldapserver1 ldapserver1.example.comldap

The problem with this example is that every host with ldap::server applied will
be sent to every node in the enterprise. To make things worse, any exported host
resource will be picked up by our collector. We need a method to be specific when
collecting our resources. Puppet provides tags for this purpose.

Resource tags
Resource tags are metaparameters available to all resources in Puppet. They are used
in collecting only and do not affect the definition of resources.

Metaparameters are part of how Puppet compiles the catalog and not
part of the resource to which they are attached. Metaparameters include
before, notify, require, and subscribe. More information on
metaparameters is available at http://docs.puppetlabs.com/
references/latest/metaparameter.html.

Any tags explicitly set on a resource will be appended to the array of tags. In our
previous example, we saw the tags for our host entry in the PostgreSQL output
as follows, but we didn't address what the tags meant:

{server,ldap,host,class,ldap::server,default,node,ldap-ldapserver1}

All these tags are defaults set by Puppet. To illustrate how tags are used, we can
create multiple exported host entries with different tags. We'll start with adding
a tag search to our Host collector in the base class as follows:

Host <<| tag == 'ldap-server' |>>

Then we'll add an ldap-client exported host resource to the base class with the
tag 'ldap-client' as follows:

@@host {"ldap-client-$::hostname":
 host_aliases => ["$::fqdn","another-$::hostname"],
 ip => "$::ipaddress",
 tag => 'ldap-client',
}

http://docs.puppetlabs.com/references/latest/metaparameter.html
http://docs.puppetlabs.com/references/latest/metaparameter.html

Chapter 8

[213]

Now all nodes will only collect Host resources marked as ldap-server. Every node
will create an ldap-client exported host resource; we'll add a collector for those to
the ldap::server class:

Host <<| tag == 'ldap-client' |>>

One last change: we need to make our ldap-server resource-specific, so we'll add a
tag to it in ldap::server as follows:

@@host {"ldap-$::hostname":
 host_aliases => ["$::fqdn",'ldap'],
 ip => "$::ipaddress",
 tag => 'ldap-server',
}

Now every node with the ldap::server class exports a host resource tagged
with ldap-server and collects all host resources tagged with ldap-client. After
running Puppet on master and client nodes 1 and 2, we see the following on our
ldapserver1 as the host resources tagged with ldap-client get defined:

Exported SSH keys
Most exported resource documentation starts with an SSH key example. sshkey
is a Puppet type that creates or destroys entries in the ssh_known_hosts file used
by SSH to verify the validity of remote servers. The sshkey example is a great use
of exported resources, but since most examples put the declaration and collecting
phases in the same class, it may be a confusing example for those starting out
learning exported resources. It's important to remember that exporting and
collecting are different operations.

Exported Resources

[214]

sshkey collection for laptops
We'll outline an enterprise application of the sshkey example and define a class
for login servers—any server that allows users to log in directly. Using that class to
define exported resources for ssh_host_keys, we'll then create an ssh_client class
that collects all the login server ssh_keys. In this way, we can apply the ssh_client
class to any laptops that might connect and have them get updated SSH host keys.
To make this an interesting example, we'll run Puppet as non-root on the laptop
and have Puppet update the user's known_hosts file ~/.ssh/known_hosts instead
of the system file. This is a slightly novel approach to running Puppet without
root privileges.

We'll begin by defining an example::login_server class that exports the RSA and
DSA SSH host keys. RSA and DSA are the two types of encryption keys that can be
used by the SSH daemon; the name refers to the encryption algorithm used by
each key type. We will need to check if a key of each type is defined as it is only
a requirement that one type of key be defined for the SSH server to function, as
shown in the following code:

class example::login_server {
 if ($::sshrsakey != undef) {
 @@sshkey {"$::fqdn-rsa":
 host_aliases => ["$::hostname","$::ipaddress"],
 key => "$::sshrsakey",
 type => 'rsa',
 tag => 'example::login_server',
 }
 }
 if ($::sshdsakey != undef) {
 @@sshkey {"$::fqdn-dsa":
 host_aliases => ["$::hostname","$::ipaddress"],
 key => "$::sshdsakey",
 type => 'dsa',
 tag => 'example::login_server',
 }
 }
}

This class will export two SSH key entries, one for the rsa key and another for the
dsa key. It's important to populate the host_aliases array as we have done so that
both the IP address and short hostname are verified with the key when using SSH.

Chapter 8

[215]

Now we could define an example::laptop class that simply collects the keys and
applies them to the system-wide ssh_known_hosts file. Instead, we will define
a new fact, homedir in base/lib/facter/homedir.rb, to determine if Puppet
is being run by a non-root user, as follows:

Facter.add(:homedir) do
 if Process.uid != 0 and ENV['HOME'] != nil
 setcode do
 begin
 ENV['HOME']
 rescue LoadError
 nil
 end
 end
 end
end

This simple fact checks the UID of the running Puppet process; if it is not 0 (root),
it looks for the environment variable HOME and sets the fact homedir equal to the
value of that environment variable.

Now we can key off this fact as a top scope variable in our definition of the
example::laptop class as follows:

class example::laptop {
 # collect all the ssh keys
 if $::homedir != undef {
 Sshkey<<| tag == 'login_server' |>> {
 target => "$::homedir/.ssh/known_hosts"
 }
 } else {
 Sshkey<<| tag == 'login_server' |>>
 }
}

Depending on the value of the $::homedir fact, we either define system-wide SSH
keys or userdir keys. The SSH key collector (Sshkey<<| tag == 'login_server'
|>>) uses the tag login_server to restrict the SSH key resources to those defined
by our example::login_server class.

To test this module, we apply the example::login_server class to two servers,
ssh1 and ssh2, thereby creating the exported resources. Now on our laptop, we
run Puppet as ourselves and sign the key on Puppet master.

Exported Resources

[216]

If Puppet has already run as root or another user, the certificate may have
already been generated for your laptop hostname; use the --certname
option to puppet agent to request a new key.

We add the example::laptop class to our laptop machine and examine the output
of our Puppet run.

Our laptop is likely not a normal client of our Puppet master, so when calling Puppet
agent, we define the puppetserver and environment as follows:

t@mylaptop ~ $ puppet agent -t --environment production --server puppet.
example.com --waitforcert 60

Info: Creating a new SSL key for mylaptop.example.com

Info: Caching certificate for ca

Info: csr_attributes file loading from /home/thomas/.puppetlabs/etc/
puppet/csr_attributes.yaml

Info: Creating a new SSLcertificate request for mylaptop.example.com

Info: Certificate Request fingerprint (SHA256): 97:86:BF:BD:79:FB:B2:AC:0
C:8E:80:D0:5E:D0:18:F9:42:BD:25:CC:A9:25:44:7B:30:7B:F9:C6:A2:11:6E:61

Info: Caching certificate for ca

Info: Caching certificate for mylaptop.example.com

Info: Caching certificate_revocation_list for ca

Info: Retrieving pluginfacts

...

Info: Loading facts

Info: Caching catalog for mylaptop.example.com

Info: Applying configuration version '1449337295'

Notice: /Stage[main]/Example::Laptop/Sshkey[ssh1.example.com-rsa]/ensure:
created

Info: Computing checksum on file /home/thomas/.ssh/known_hosts

Notice: /Stage[main]/Example::Laptop/Sshkey[ssh2.example.com-rsa]/ensure:
created

Info: Stage[main]: Unscheduling all events on Stage[main]

Notice: Applied catalog in 0.12 seconds

Since we ran the agent as non-root, the system-wide SSH keys in ssh_known_hosts
cannot have been modified. Looking at ~/.ssh/known_hosts, we see the new entries
at the bottom of the file as follows:

ssh1.example.com-rsa,ssh1,10.0.2.15ssh-rsaAAAAB3NzaC1yc2...
ssh2.example.com-rsa,ssh2,10.0.2.15ssh-rsaAAAAbd3dz56c2E...

Chapter 8

[217]

Putting it all together
Any resource can be exported, including defined types and your own custom types.
Tags may be used to limit the set of exported resources collected by a collector.
Tags may include local variables, facts, and custom facts. Using exported resources,
defined types, and custom facts, it is possible to have Puppet generate complete
interactions without intervention (automatically).

As an abstract example, think of any clustered service where members of a cluster
need to know about the other members of the cluster. You could define a custom
fact, clustername, that defines the name of the cluster based on information either
on the node or in a central Configuration Management Database (CMDB).

CMDBs are the data warehouses of an organization. Examples of CMDBs
include OneCMDB, Itop, or BMC Atrium.

You would then create a cluster module, which would export firewall rules to allow
access from each node. The nodes in the cluster would collect all the exported rules
based on the relationship tag=="clustername". Without any interaction, a complex
firewall rule relationship would be built up between cluster members. If a new
member is added to the cluster, the rules will be exported and, with the next
Puppet run, the node will be permitted access to the other cluster members.

Another useful scenario is where there are multiple slave nodes that need to be
accessed by a master node, such as with backup software or a software distribution
system. The master node needs the slave nodes to allow access to them. The slave
nodes need to know which node is the master node. In this relationship, you would
define a master and a slave module and apply them accordingly. The slave node
would export its host configuration information, and the master would export both
its firewall access rule and master configuration information. The master would
collect all the slave configuration resources. The slaves would each collect the
firewall and configuration information from the master. The great thing about this
sort of configuration is that you can easily migrate the master service to a new node.
As slaves check into Puppet, they will receive the new master configuration and
begin pointing at the new master node.

Exported Resources

[218]

To illustrate this concept, we will go through a DNS configuration example. We
will configure a DNS server with the example::dns::server class. We will then
configure clients using a example::dns::client class. DNS servers are configured
with zone files. Zone files come in two forms: forward zones map hostnames to
IP addresses and reverse zones map IP address to hostnames. To make a fully
functioning DNS implementation, our clients will export a concat::fragment
resource, which will be collected on the master and used to build both the forward
and reverse DNS zone files.

The following diagram outlines the process where two nodes export concat::
fragment resources that are assembled with a header into a zone file on the DNS
server node:

To start, we will define two custom facts that produce the reverse of the IP address
suitable for use in a DNS reverse zone, and the network in Classless Inter-Domain
Routing (CIDR) notation used to define the reverse zone file, as follows:

reverse.rb
Set a fact for the reverse lookup of the network
require 'ipaddr'
require 'puppet/util/ipcidr'

define 2 facts for each interface passed in
def reverse(dev)
 # network of device
 ip = IPAddr.new(Facter.value("network_#{dev}"))
 # network in cidr notation (uuu.vvv.www.xxx/yy)
 nm = Puppet::Util::IPCidr.new(Facter.value("network_#{dev}")).
mask(Facter.value("netmask_#{dev}"))
 cidr = nm.cidr

Chapter 8

[219]

 # set fact for network in reverse vvv.www.uuu.in-addr.arpa
 Facter.add("reverse_#{dev}") do
 setcode do ip.reverse.to_s[2..-1] end
 end

 # set fact for network in cidr notation
 Facter.add("network_cidr_#{dev}") do
 #
 setcode do cidr end
 end
end

We put these two fact definitions into a Ruby function so that we can loop through
the interfaces on the machine and define the facts for each interface as follows:

loop through the interfaces, defining the two facts for each
interfaces = Facter.value('interfaces').split(',')
interfaces.each do
 |eth| reverse(eth)
end

Save this definition in example/lib/facter/reverse.rb and then run Puppet to
synchronize the fact definition down to the nodes. After the fact definition has been
transferred, we can see its output for dns1 (IP address 192.168.1.54) as follows:

[root@dns1 ~]# facter -p interfaces

enp0s3,enp0s8,lo

[root@dns1 ~]# facter -p ipaddress_enp0s8

192.168.1.54

[root@dns1 ~]# facter -p reverse_enp0s8network_cidr_enp0s8

network_cidr_enp0s8 => 192.168.1.0/24

reverse_enp0s8 =>1.168.192.in-addr.arpa

In our earlier custom fact example, we built a custom fact for the zone based on
the IP address. We could use the fact here to generate zone-specific DNS zone
files. To keep this example simple, we will skip this step. With our fact in place,
we can export our client's DNS information in the form of concat::fragments
that can be picked up by our master later. To define the clients, we'll create an
example::dns::client class as follows:

class example::dns::client
 (
 String $domain = 'example.com',
 String $search = prod.example.comexample.com'
) {

Exported Resources

[220]

We start by defining the search and domain settings and providing defaults. If we
need to override the settings, we can do so from Hiera. These two settings would be
defined as the following in a Hiera YAML file:

example::dns::client::domain: 'subdomain.example.com'
example::dns::client::search: 'sub.example.comprod.example.com'

Be careful when modifying /etc/resolv.conf. This can change
the way Puppet defines certname used to verify the nodes' identity
to the puppetserver. If you change your domain, a new certificate
will be requested and you will have to sign the new certificate before
you can proceed.

We then define a concat container for /etc/resolv.conf as follows:

concat {'/etc/resolv.conf':
 mode => '0644',
}

search and domain settings
concat::fragment{'resolv.conf search/domain':
 target => '/etc/resolv.conf',
 content => "search $search\ndomain $domain\n",
 order => 07,
}

The concat::fragment will be used to populate the /etc/resolv.conf file on
the client machines. We then move on to collect the nameserver entries, which we
will later export in our example::dns::server class using the tag 'resolv.conf'.
We use the tag to make sure we only receive fragments related to resolv.conf
as follows:

Concat::Fragment <<| tag == 'resolv.conf' |>> {
 target => '/etc/resolv.conf'
}

We use a piece of syntax we haven't used yet for exported resources called modify
on collect. With modify on collect, we override settings in the exported resource
when we collect. In this case, we are utilizing modify on collect to modify the
exported concat::fragment to include a target. When we define the exported
resource, we leave the target off so that we do not need to define a concat container
on the server. We'll be using this same trick when we export our DNS entries to
the server.

Chapter 8

[221]

Next we export our zone file entries as concat::fragments and close the class
definition as follows:

@@concat::fragment {"zone example $::hostname":
 content => "$::hostname A $::ipaddress\n",
 order => 10,
 tag => 'zone.example.com',
}
$lastoctet = regsubst($::ipaddress_enp0s8,'^([0-9]+)[.]([0-9]+)[.]([0-
9]+)[.]([0-9]+)$','\4')
@@concat::fragment {"zone reverse $::reverse_enp0s8 $::hostname":
 content => "$lastoctetPTR $::fqdn.\n",
 order => 10,
 tag => "reverse.$::reverse_enp0s8",
 }
}

In the previous code, we used the regsubst function to grab the last octet from
the nodes' IP address. We could have made another custom fact for this, but the
regsubst function is sufficient for this usage.

Now we move on to the DNS server to install and configure binds named daemon;
we need to configure the named.conf file and the zone files. We'll define the
named.conf file from a template first as follows:

class example::dns::server {

 # setup bind
 package {'bind': }
 service {'named': require => Package['bind'] }

 # configure bind
 file {'/etc/named.conf':
 content => template('example/dns/named.conf.erb'),
 owner => 0,
 group => 'named',
 require => Package['bind'],
 notify => Service['named']
 }

Exported Resources

[222]

Next we'll define an exec that reloads named whenever the zone files are altered
as follows:

exec {'named reload':
 refreshonly => true,
 command => 'systemctl reload named',
 path => '/bin:/sbin',
 require => Package['bind'],
}

At this point, we'll export an entry from the server, defining it as nameserver as
follows (we already defined the collection of this resource in the client class):

@@concat::fragment {"resolv.confnameserver $::hostname":
 content => "nameserver $::ipaddress\n",
 order => 10,
 tag => 'resolv.conf',
}

Now for the zone files; we'll define concat containers for the forward and reverse
zone files and then header fragments for each as follows:

concat {'/var/named/zone.example.com':
 mode => '0644',
 notify => Exec['named reload'],
}
concat {'/var/named/reverse.122.168.192.in-addr.arpa':
 mode => '0644',
 notify => Exec['named reload'],
}
concat::fragment {'zone.example header':
 target => '/var/named/zone.example.com',
 content => template('example/dns/zone.example.com.erb'),
 order => 01,
}
concat::fragment {'reverse.122.168.192.in-addr.arpa header':
 target => '/var/named/reverse.122.168.192.in-addr.arpa',
 content => template('example/dns/reverse.122.168.192.in-addr.arpa.
erb'),
 order => 01,
}

Chapter 8

[223]

Our clients exported concat::fragments for each of the previous zone files. We
collect them here and use the same modify on collect syntax as we did for the client
as follows:

Concat::Fragment <<| tag == "zone.example.com" |>> {
 target => '/var/named/zone.example.com'
}
Concat::Fragment <<| tag == "reverse.122.168.192.in-addr.arpa" |>> {
 target => '/var/named/reverse.122.168.192.in-addr.arpa'
}

The server class is now defined. We only need to create the template and header files
to complete our module. The named.conf.erb template makes use of our custom
facts as well, as shown in the following code:

options {
 listen-on port 53 { 127.0.0.1; <%= @ipaddress_enp0s8 -%>;};
 listen-on-v6 port 53 { ::1; };
 directory "/var/named";
 dump-file "/var/named/data/cache_dump.db";
 statistics-file "/var/named/data/named_stats.txt";
 memstatistics-file "/var/named/data/named_mem_stats.txt";
 allow-query { localhost; <%- @interfaces.split(',').each do
|eth| if has_variable?("network_cidr_#{eth}") then -%><%= scope.
lookupvar("network_cidr_#{eth}") -%>;<%- end end -%> };
 recursion yes;

 dnssec-enable yes;
 dnssec-validation yes;
 dnssec-lookaside auto;

 /* Path to ISC DLV key */
 bindkeys-file "/etc/named.iscdlv.key";

 managed-keys-directory "/var/named/dynamic";
};

This is a fairly typical DNS configuration file. The allow-query setting makes use
of the network_cidr_enp0s8 fact to allow hosts in the same subnet as the server
to query the server.

Exported Resources

[224]

The named.conf file then includes definitions for the various zones handled by the
server, as shown in the following code:

zone "." IN {
 type hint;
 file "named.ca";
};

zone "example.com" IN {
 type master;
 file "zone.example.com";
 allow-update { none; };
};
zone "<%= @reverse_enp0s8 -%>" {
 type master;
 file "reverse.<%= @reverse_enp0s8 -%>";
};

The zone file headers are defined from templates that use the local time to update the
zone serial number.

DNS zone files must contain a Start of Authority (SOA) record that
contains a timestamp used by downstream DNS servers to determine
if they have the most recent version of the zone file. Our template will
use the Ruby function Time.now.gmtime to append a timestamp to
our zone file.

The zone for example.com is as follows:

$ORIGIN example.com.
$TTL1D
@ IN SOA root hostmaster (
<%= Time.now.gmtime.strftime("%Y%m%d%H") %> ; serial
8H ; refresh
4H ; retry
4W ; expire
1D) ; minimum
 NS ns1
 MX 10 ns1
;
; just in case someone asks for localhost.example.com
localhost A 127.0.0.1
ns1 A 192.168.122.1
; exported resources below this point

Chapter 8

[225]

The definition of the reverse zone file template contains a similar SOA record and is
defined as follows:

$ORIGIN 1.168.192.in-addr.arpa.
$TTL1D
@ IN SOAdns.example. hostmaster.example. (
<%= Time.now.gmtime.strftime("%Y%m%d%H") %> ; serial
 28800 ; refresh (8 hours)
 14400 ; retry (4 hours)
 2419200 ; expire (4 weeks)
 86400 ; minimum (1 day)
)
NS ns.example.
; exported resources below this point

With all this in place, we only need to apply the example::dns::server class
to a machine to turn it into a DNS server for example.com. As more and more
nodes are given the example::dns::client class, the DNS server receives their
exported resources and builds up zone files. Eventually, when all the nodes have
the example::dns::client class applied, the DNS server knows about all the nodes
under Puppet control within the enterprise. As shown in the following output, the
DNS server is reporting our stand node's address:

[root@stand ~]# nslookup dns1.example.com 192.168.1.54

Server: 192.168.1.54

Address: 192.168.1.54#53

Name: dns1.example.com

Address: 192.168.1.54

[root@stand ~]# nslookup stand.example.com 192.168.1.54

Server: 192.168.1.54

Address: 192.168.1.54#53

Name: stand.example.com

Address: 192.168.1.1

Although this is a simplified example, the usefulness of this technique is obvious;
it is applicable to many situations.

Exported Resources

[226]

Summary
In this chapter, we installed and configured PuppetDB. Once installed, we used
PuppetDB as our storeconfigs container for exported resources. We then showed
how to use exported resources to manage relationships between nodes. Finally,
we used many of the concepts from earlier chapters to build up a complex node
relationship for the configuration of DNS services.

In the next chapter, we will explore a design paradigm that reduces clutter in node
configuration and makes understanding the ways in which your modules interact
easier to digest.

[227]

Roles and Profiles
In Chapter 2, Organizing Your Nodes and Data, we showed you how to organize your
nodes using an ENC or Hiera, or ideally both. At that point, we didn't cover the Forge
modules or writing your own modules, as we did in Chapter 4, Public Modules, and
Chapter 5, Custom Facts and Modules. In this chapter, we will cover a popular design
concept employed in large installations of Puppet. The idea was originally made
popular by Craig Dunn in his blog, which can be found at http://www.craigdunn.
org/2012/05/239/. Garry Larizza also wrote a useful post on the subject at
http://garylarizza.com/blog/2014/02/17/puppet-workflow-part-2/.

Design pattern
The concept put forth by Craig Dunn in his blog is the one at which most Puppet
masters arrive independently. Modules should be nested in such a way that common
components can be shared among nodes. The naming convention that is generally
accepted is that roles contain one or more profiles. Profiles in turn contain one or more
modules. You can have a node-level logic that is very clean and elegant using the
roles and profile design patterns, together with an ENC and Hiera,. The ENC and/or
Hiera can also be used to enforce standards on your nodes without interfering with
the roles and profiles. As we discussed in Chapter 2, Organizing Your Nodes and Data,
with the virtual module it is possible to have Hiera apply classes automatically to any
system where the is_virtual fact is true. Applying the same logic to facts such as
osfamily, we can ensure that all the nodes for which osfamily is RedHat, receive
an appropriate module.

http://www.craigdunn.org/2012/05/239/
http://www.craigdunn.org/2012/05/239/
http://garylarizza.com/blog/2014/02/17/puppet-workflow-part-2/

Roles and Profiles

[228]

Putting all these elements together, we arrive at the following diagram showing
how modules are applied to a node:

Roles are the high-level abstraction of what a node will do.

Creating an example CDN role
We will start by constructing a module for a web server (this example is a cliché).
What is a web server? Is a web server an Apache server or a Tomcat server or both,
or maybe even Nginx? What file systems are required? What firewall rules should
be applied, always? The design problem is figuring out what the commonalities
are going to be and where to divide them. In most enterprises, creating a blanket
"web server" module won't solve any problems and will potentially generate huge
case statements. If your modules follow the roles-and-profiles design pattern, you
shouldn't need huge case statements keyed off $::hostname; nodes shouldn't be
mentioned in your role module. To elaborate this point further, let's take a look at
an example of our companies' Content Delivery Network (CDN) implementation.
The nodes in the CDN will be running Nginx.

The use of Nginx for CDN is only given as an example. This in no way
constitutes an endorsement of Nginx for this purpose.

We'll create an Nginx module, but we'll keep it simple so that it just performs the
following functions:

1.	 Install Nginx.
2.	 Configure the service to start.
3.	 Start the service.

Chapter 9

[229]

To configure Nginx, we need to create the global configuration file, /etc/nginx/
nginx.conf. We also need to create site configuration files for any site that we
wish to include in /etc/nginx/conf.d/<sitename>.conf. Changes to either of
these files need to trigger the Nginx service to refresh. This is a great use case for
a parameterized class. We'll make the nginx.conf file into a template and allow
some settings to be overridden, as shown in the following code:

class nginx (
 Integer $worker_connections = 1024,
 Integer $worker_processes = 1,
 Integer $keepalive_timeout = 60,
Enum['installed','absent'] $nginx_version = 'installed',
) {
 file {'nginx.conf':
 path => '/etc/nginx/nginx.conf',
 content => template('nginx/nginx.conf.erb'),
 mode => '0644',
 owner => '0',
 group => '0',
 notify => Service['nginx'],
 require => Package['nginx'],
 }
 package {'nginx':
 ensure => $nginx_version,
 }
 service {'nginx':
 require => Package['nginx'],
 ensure => true,
 enable => true,
 }
}

The class shown here uses the newer Puppet type syntax and will result
in syntax errors on Puppet versions lower than 4.

The nginx.conf.erb template will be very simple, as shown in the following code:

HEADER: created by puppet
HEADER: do not edit, contact puppetdevs@example.com for changes
user nginx;
worker_processes<%= @worker_processes -%>;

Roles and Profiles

[230]

error_log /var/log/nginx/error.log;
pid /var/run/nginx.pid;

events {
 worker_connections<%= @worker_connections -%>;
}
http {
 include /etc/nginx/mime.types;
 default_type application/octet-stream;
 log_format main '$remote_addr - $remote_user [$time_local]
"$request" '
 '$status $body_bytes_sent "$http_referer" '
 '"$http_user_agent" "$http_x_forwarded_for"';
 access_log /var/log/nginx/access.log main;
 sendfile on;
 keepalive_timeout<%= @keepalive_timeout -%>;
 include /etc/nginx/conf.d/*.conf;
}

Now, we need to create the define function for an Nginx server (not specific to the
CDN implementation), as shown in the following code:

define nginx::server (
 $server_name,
 $error_log,
 $access_log,
 $root,
 $listen = 80,
) {
 include nginx
 file {"nginx::server::$server_name":
 path => "/etc/nginx/conf.d/${server_name}.conf",
 content => template('nginx/server.conf.erb'),
 mode => '0644',
 owner => '0',
 group => '0',
 notify => Service['nginx'],
 require => Package['nginx']
 }
}

Chapter 9

[231]

To ensure that the autoloader finds this file, we put the definition in a file called
server.pp, within the manifests directory of the Nginx module (nginx/manifests/
server.pp). With the defined type for nginx::server in hand, we will create a
CDN profile to automatically configure a node with Nginx and create some static
content, as follows:

class profile::cdn{
 (
 Integer $listen = 80,
) {

 nginx::server {"profile::nginx::cdn::$::fqdn":
 server_name => "${::hostname}.cdn.example.com",
 error_log => "/var/log/nginx/cdn-${::hostname}-error.log",
 access_log => "/var/log/nginx/cdn-${::hostname}-access.log",
 root => "/srv/www",
 listen => $listen,
 }
 file {'/srv/www':
 ensure => 'directory',
 owner => 'nginx',
 group => 'nginx',
 require => Package['nginx'],
 }
 file {'/srv/www/index.html':
 mode => '0644',
 owner => 'nginx',
 group => 'nginx',
 content => @("INDEXHTML"/L)
 <html>
 <head><title>${::hostname} cdn node</title></head>
 <body>
 <h1>${::hostname} cdn node</h1>
 <h2>Sample Content</h2>
 </body>
 </html>
 | INDEXHTML
 ,
require => [Package['nginx'],File['/srv/www']],
 }
}

Roles and Profiles

[232]

The preceding code uses the newer Heredocs syntax of Puppet 4.
This is a more compact way to represent multiline strings in Puppet
code. More information on Heredocs is available at http://docs.
puppetlabs.com/puppet/latest/reference/lang_data_
string.html#heredocs.

Now all that is left is to define the role is to include this profile definition, as follows:

class role::cdn {
 include profile::cdn
}

Now, the node definition for a CDN node will only contain the role::cdn class,
shown as follows:

nodefirstcdn {
 include role::cdn
}

Creating a sub-CDN role
Now that we have a role::cdn class to configure a CDN node, we will configure
some nodes to run Varnish in front of Nginx.

Varnish is a web accelerator (caching HTTP reverse proxy). More
information on Varnish is available at http://www.varnish-
cache.org. In our implementation, Varnish will be provided by
the EPEL repository.

In this configuration, we will need to change Nginx to only listen on 127.0.0.1 port
80 so that Varnish can attach to port 80 on the default IP address. Varnish will accept
incoming connections and retrieve content from Nginx. It will also cache any data it
retrieves and only retrieve data from Nginx when it needs to update its cache. We
will start by defining a module for Varnish that installs the package, updates the
configuration, and starts the service, as shown in the following code:

class varnish
 (
 String $varnish_listen_address = "$::ipaddress_eth0",
 Integer $varnish_listen_port = 80,
 String $backend_host = '127.0.0.1',
 Integer $backend_port = 80,
) {

http://docs.puppetlabs.com/puppet/latest/reference/lang_data_string.html#heredocs
http://docs.puppetlabs.com/puppet/latest/reference/lang_data_string.html#heredocs
http://docs.puppetlabs.com/puppet/latest/reference/lang_data_string.html#heredocs
http://www.varnish-cache.org
http://www.varnish-cache.org

Chapter 9

[233]

 package {'varnish':
 ensure => 'installed'
 }
 service {'varnish':
 ensure => 'running',
 enable => true,
 require => Package['varnish'],
 }
 file {'/etc/sysconfig/varnish':
 mode => '0644',
 owner => 0,
 group => 0,
 content => template('varnish/sysconfig-varnish.erb'),
 notify => Service['varnish']
 }

 file {'/etc/varnish/default.vcl':
 mode => '0644',
 owner =>0,
 group => 0,
 content => template('varnish/default.vcl.erb'),
 notify => Service['varnish'],
 }
}

Now, we need to create a profile for Varnish, as shown in the following code. In this
example, it will only contain the varnish class, but adding this level allows us to add
extra modules to the profile later:

profile::varnish
default is to listen on 80 and use 127.0.0.1:80 as backend
class profile::varnish{
 include ::varnish
}

We need to specify ::varnish to include the module called varnish.
Puppet will look for Varnish at the current scope (profile) and find
profile::varnish.

Next, we will create the role cdn::varnish, which will use role::cdn as a base
class, as shown in the following code:

class role::cdn::varnish inherits role::cdn {
 include profile::varnish
}

Roles and Profiles

[234]

One last thing we need to do is to tell Nginx to only listen on the loopback device
(127.0.0.1). We can do that with Hiera; we'll assign a top scope variable called
role to our node. You can do this through your ENC or in site.pp, as follows:

$role = hiera('role','none')
node default {
 hiera_include('classes',base)
}

Now, create a YAML file for our cdn::varnish role at hieradata/roles/
role::cdn::varnish.yaml with the following content:

profile::cdn::listen: '127.0.0.1:80'

We declared a parameter named listen in profile::cdn so that we could override
the value. Now if we apply the role::cdn::varnish role to a node, the node will
be configured with Nginx to listen only to the loopback device; Varnish will listen
on the public IP address (::ipaddress_eth0) on port 80. Moreover, it will cache the
content that it retrieves from Nginx.

We didn't need to modify role::cdn, and we made role::cdn::varnish inherit
role::cdn. This model allows you to create multiple sub-roles to fit all the use
cases. Using Hiera to override certain values for different roles removes any ugly
conditional logic from these definitions.

Dealing with exceptions
In a pristine environment, all your nodes with a certain role would be identical in
every way and there would be no exceptions. Unfortunately, dealing with exceptions
is a large part of the day-to-day business of running Puppet. It is possible to remove
node level data from your code using roles and profiles together with Hiera, (roles,
profiles, and modules).

Hiera can be used to achieve this separation of code from data. In Chapter 2,
Organizing Your Nodes and Data, we configured hiera.yaml with roles/%{::role}
in the hierarchy. The defaults for any role will be put in hieradata/roles/
[rolename].yaml. The hierarchy determines the order in which files are searched
for Hiera data. Our configuration is as follows:

:hierarchy:
 - "zones/%{::example_zone}"
 - "hosts/%{::hostname}"
 - "roles/%{::role}"

Chapter 9

[235]

 - "%{::kernel}/%{::osfamily}/%{::lsbmajdistrelease}"
 - "is_virtual/%{::is_virtual}"
 - common

Any single host that requires an exception to the default value from the roles level
YAML file can be put in either the hosts level or zones level YAML files.

The idea here is to keep the top-level role definition as clean as possible; it should
only include profiles. Any ancillary modules (such as the virtual module) that need
to be applied to specific nodes will be handled by either Hiera (via hiera_include)
or the ENC.

Summary
In this chapter, we explored a design concept that aims to reduce complexity at
the topmost level, making your node definitions cleaner. Breaking up module
application into multiple layers forces your Puppeteers to compartmentalize their
definitions. If all the contributors to your code base consider this, collisions will be
kept to a minimum and exceptions can be handled with host-level Hiera definitions.

In the next chapter, we will look at how to diagnose inevitable problems with catalog
compilation and execution.

[237]

Troubleshooting
Inevitably, you will run into problems with your Puppet runs but having a good
reporting mechanism is the key to knowing when failures occur. The IRC report
mechanism we discussed in Chapter 7, Reporting and Orchestration, is useful to detect
errors quickly, when most of your Puppet runs are error-free.

If you have more than the occasional error, then the IRC report
will just become a noise that you'll learn to ignore. If you are
having multiple failures in your code, you should start looking at
the acceptance testing procedures. Puppet Labs provides a testing
framework known as Puppet beaker. More information on Puppet
beaker is available at https://github.com/puppetlabs/beaker.
A simpler option is rspec-puppet. More information on rspec-puppet
is available at http://rspec-puppet.com/tutorial/.

Most of the Puppet failures I've come across end up in two buckets. These buckets
are, as follows:

•	 Connectivity to Puppet and certificates
•	 Catalog failure

We'll examine these separately and provide some methods to diagnose issues.
We will also be covering debugging in detail.

https://github.com/puppetlabs/beaker
http://rspec-puppet.com/tutorial/

Troubleshooting

[238]

Connectivity issues
As we have seen in Chapter 1, Dealing with Load/Scale, at its core, Puppet
communication is done using a web service. Hence, whenever troubleshooting
problems with Puppet infrastructure, we should always start with that mindset.
Assuming you are having trouble accessing the Puppet master, Puppet should be
listening on port 8140, by default.

This port is configurable; you should verify the port is 8140 by running
the following command:
puppet config print masterport

8140

Previous versions of Puppet were run as Passenger processes, under Apache. If you
cannot reach your puppetserver on port 8140, you may need to check that Apache
is at least running.

You should be able to successfully connect to masterport and check that you get
a successful connection using Netcat (nc):

Netcat can be used to check the connectivity of TCP and UDP sockets.
If you do not have Netcat (nc) available, you can use Telnet for the
same purpose. To exit Telnet, issue Control-] followed by quit.

To exit Netcat after the successful connection, type Control+D. If you don't see
succeeded! in the output, then you are having trouble reaching the puppetserver
on port 8140. For this type of error, you'll need to check your network settings and
diagnose the connection issue. The common tools for that are ping, which uses ICMP
ECHO messages, and mtr, which mimics the traceroute functionality. Don't forget
your host-based firewall (iptables) rules; you'll need to allow the inbound connection
on port 8140.

Chapter 10

[239]

Assuming that the previous connection was successful, the next thing you can do is
use wget or curl to try to retrieve the CA certificate from the Puppet master.

wget and curl are simple tools that are used to download information
using the HTTP protocol. Any tool that can communicate using HTTP
with SSL encryption can be used for our purpose.

Retrieving the CA certificate and requesting a certificate to be signed are two
operations that can occur without having certificates. Your nodes need to be able
to verify the Puppet master and request the certificates before they have had their
certificates issued. We will use wget to download the CA certificate, as shown in
the following screenshot:

Another option is using gnutls-cli or the OpenSSL s_client client programs.
Each of these tools will help you diagnose certificate issues, for example, if you
want to verify that the Puppet master is sending the certificate you think it should.

To use gnutls-cli, you need to install the gnutls-utils package. To connect
to your Puppet master on port 8140, use the following command:

gnutls-cli -p 8140 puppet.example.com --no-ca-verification

Resolving 'puppet.example.com'...

Connecting to '192.168.1.1:8140'...

- Successfully sent 0 certificate(s) to server.

...

- Simple Client Mode:

You will then have an SSL-encrypted connection to the server, and you can issue
standard HTTP commands, such as GET. Attempt to download the CA certificate
by typing the following command:

GET /puppet-ca/,v1/certificate/ca HTTP/1.0

Accept: text/plain

Troubleshooting

[240]

The CA certificate will be returned as text, so we need to specify that we will accept
a response that is not HTML. We will use Accept: text/plain to do this. The CA
certificate should be exported following the HTTP response header, as shown in the
following screenshot:

Using OpenSSL's s_client program is similar to using gnutls-cli. You will need
to specify the host and port using the -host and -port parameters or (-connect
hostname:port), as follows (s_client has a less verbose mode, -quiet, which
we'll use to make our screenshot smaller):

Chapter 10

[241]

Catalog failures
When the client requests a catalog, it is compiled on the master and sent down to
the client. If the catalog fails to compile, the error is printed and can, most likely,
be corrected easily. For example, the following base class has an obvious error:

class base {
 file {'one':
 path => '/tmp/one',
 ensure => 'directory',
 }
 file {'one':
 path => '/tmp/one',
 ensure => 'file',
 }
}

Troubleshooting

[242]

The file resource is defined twice with the same name. The error appears when we
run Puppet, as shown in the following screenshot:

Fixing this type of duplicate declaration is very straightforward; the line numbers
of each declaration are printed in the error message. Simply locate the two files
and remove one of the entries.

A more perplexing issue is when the catalog compiles cleanly but fails to apply
on the node. The catalog is stored in the agent's client_data directory (current
versions use JSON files, earlier versions used YAML files). In this case, the file is
stored in /opt/puppetlabs/puppet/cache/client_data/catalog/client.
example.com.json. Using jq, we can examine the JSON file and find the problem
definitions.

jq is a JSON processor and is available in the EPEL repository on enterprise
Linux installations.

[root@client catalog]# jq .resources[].title <client.example.com.json

"main"

"Settings"

"Main"

"default"

"Base"

"one"

You can always just read the JSON file directly, but using jq on extremely
large files is useful. You can use jq as you would use grep on a file, thus
making searching within a JSON file much easier. More information on
jq can be found at http://stedolan.github.io/jq/.

Now, to look at our problem definition, we'll select the resource whose title is "one",
as shown here:

[root@client catalog]# jq '.resources[] | select(.title=="one")' <client.
example.com.json

{

 "type": "File",

http://stedolan.github.io/jq/

Chapter 10

[243]

 "title": "one",

 "tags": [

 "file",

 "one",

 "class",

 "base",

 "node",

 "default"

],

 "file": "/etc/puppetlabs/code/environments/production/modules/base/
manifests/init.pp", `

 "line": 17,

 "exported": false,

 "parameters": {

 "path": "/tmp/one",

 "ensure": "directory"

 }

}

You may force a master to compile a catalog for a node, as follows (Puppet will print
out the catalog, in JSON format, to the terminal):

[root@stand ~]# puppet master --compile client.example.com

Notice: Compiled catalog for client.example.com in environment production
in 0.60 seconds

{

 "tags": ["settings","default","base","node","class"],

 "name": "client.example.com",

 "version": 1450506795,

 "environment": "production",

 "resources": [

...

Troubleshooting

[244]

Full trace on a catalog compilation
Using puppet master --compile, you can also select to run a full trace on the
compilation with the --trace option. This option will show which providers were
run and a much higher level of detail than the debug output. To do so, specify the
log destination as well. Running a full trace will generate a lot of data and you'll
want to store that in a log file.

The following output shows that we can see a lot more information than what the
normal --debug flag will show. The log file will also compile the catalog in the
production environment by default:

Chapter 10

[245]

To compile for another environment, specify the environment with –environment,
as shown in the following command:

[root@stand ~]# puppet master --compile client.example.com --debug
--trace

--logdest /var/log/puppetlabs/client.example.com.log --environment
sandbox

The classes.txt file
The /opt/puppetlabs/puppet/cache/state/classes.txt file contains a list of
classes applied to the machine. If you are having trouble with a node, you can search
here for the last set of classes that were successfully applied to a node. But, when you
are having trouble, you are most interested in the classes in the current catalog and
the classes that are different or missing. We can use jq again to query the JSON of
the current catalog, as shown in the following command:

[root@client ~]# jq .classes[] </opt/puppetlabs/puppet/cache/client_data/
catalog/client.example.com.json

"settings"

"default"

"base"

Settings and default are classes that are internal to Puppet and
not user-defined. In this output, only the base was defined by
our manifests.

We can compare the list of classes returned by jq to those listed in classes.txt.
The classes shown in classes.txt are from the last successful run of Puppet. The
file is created at the end of the Puppet agent run. The classes returned by jq are from
the catalog, which just fails to apply if we are debugging. These two lists will be
consistent on a node with a successful Puppet agent run.

Troubleshooting

[246]

Debugging
Turning on the debugging option on your Puppet master isn't such a big deal with a
few hundred nodes. However, in an environment with thousands of nodes, it isn't a
viable option. Nevertheless, you sometimes need to enable debugging to figure out
where catalog compilation is failing. Our proxy configuration comes to the rescue
here. The idea is to have one Puppet master dedicated to debugging. The debugging
server will have debugging turned on, by changing the puppetserver logging
settings in the logback.xml file. The advantage of this method over that of running
puppet master –compile, as we showed earlier, is that, while you are debugging
your node, you place it in a debugging environment (problem for instance). While
the node is in the debugging environment, it will be removed from your reporting
infrastructure and not continue to alert you to failures.

To do this, we go back to our proxy.conf file on our Puppet master and define a
new balancer named puppetproblem that goes to our debugging worker. We'll use
worker2 (192.168.100.102) in the following example:

<Proxy balancer://puppetproblem>
BalancerMember http://192.168.100.102:18140
</Proxy>

We now add a new ProxyPassMatch line to our VirtualHost right after the
certificate matching line:

ProxyPassMatch^/(problem/.*)$ balancer://puppetproblem/$1

Whenever we add a new ProxyPassMatch line to the proxy.conf file,
make sure that the first entry is always the certificate matching line. If you
place anything before the certificate line, certificate requests will not be
routed to your CA machines.

Restart httpd on the master to make the change effective. With this in place, we edit
logback.xml on our debugging Puppet master and change the LOGLEVEL to DEBUG.

Restart puppetserver on the debugging Puppet master to make the change
effective. Now, when you have a problem with a node, you can send it to worker2
by specifying the environment "problem" when running the agent. The steps to
diagnose a problem are, as follows:

1.	 Create the problem branch in Git.
2.	 Work on the issue.
3.	 Set the environment of a test node to the new environment.

Chapter 10

[247]

4.	 Solve the problem.
5.	 Merge that branch back into the working branch or production.

Using this method, you can also tie the catalog compilation to a specific worker, which
makes tracking down bugs much easier. Without this, your catalog might compile on
any one of your workers and some large installations have several workers.

Personal and bugfix branches
When working through a catalog compilation issue, it is sometimes useful to start
attacking the problem and changing things on-the-fly. To avoid problems with other
nodes, you should work in a new branch (which will create a new environment, just
as we configured our Puppet masters to have dynamic environments in Chapter 3,
Git and Environments). If you are frequently creating branches, you can create one
named after yourself or your username, for instance. In an example in Chapter 3, Git
and Environments, we created a thomas branch and worked in the thomas branch by
specifying --environment thomas when running puppet agent. Working through
problems in a personal branch is a great troubleshooting technique that allows the
rest of the nodes to continue working against the main branch or master. If multiple
members of your team are working on an issue, it is useful to create a working
branch for your team, possibly named either after the issue or more likely after
the trouble ticket created by the issue.

Echo statements
When working on a problem branch, you are free to add any number of debugging
print or echo statements to your code. In Puppet, these take the form of notice or
notify lines. I prefer notify lines, since notify lines will be printed when I run
puppet agent -t on a node. Usually, I place all the variables of the affected module
in a single notify statement to make sure that the variables are getting set to the
values I believe they should. This method is very useful when working with data
from Hiera, where you would like to know if the value returned by Hiera is correct,
as shown in the following example:

$importantSetting = hiera('importantSetting','defaultValue')
notify {"importantSetting is $importantSetting": }

It is not uncommon to have many notify lines throughout a module during the
development phase.

Troubleshooting

[248]

Scope
Occasionally, you will have naming conflicts with variables or modules when
working on a large code base. For variables, using a notify statement can
quickly determine if your code is using the variable you believe it should. For
modules, it can sometimes be difficult to determine if the module you intended
is being included. For example, you have two modules called packages and
example::ntp::packages. The packages module contains a single notify
statement in packages/manifests/init.pp, as shown in the following code:

class packages {

 notify {"this is packages":}

}

The example::ntp::packages module has a similar notify statement in
example/manifests/ntp/packages.pp, as shown in the following code:

class example::ntp::packages {
 notify {"this is example::ntp::packages": }
}

Now, in example/manifest/ntp.pp, we use include packages, as shown in the
following code:

class example::ntp {
 include packages
}

You may be surprised by the following result from puppet agent:

puppet agent -t

...

Notice: this is example::ntp::packages

Notice: /Stage[main]/Example::Ntp::Packages/Notify[this is
example::ntp::packages]/message: defined 'message' as 'this is
example::ntp::packages'

Chapter 10

[249]

We might have expected include packages to use the top-scope packages class,
but it actually searched the local scope and used example::ntp::packages instead.
When working in a large environment, it is advisable to use very specific names for
classes or always specify the scope. We can achieve the result we expected using the
following code for the definition of example::ntp:

class example::ntp {
 include ::packages
}

If we run puppet agent against this version, we see the notification we were
expecting, as follows:

puppet agent -t

...

Notice: this is packages

Notice: /Stage[main]/Packages/Notify[this is packages]/message: defined
'message' as 'this is packages'

Profiling and summarizing
If your Puppet runs are taking a long time to complete, it is useful to see where
there are bottlenecks. From the command line, you can pass the --evaltrace
--summarize option to puppet agent to tell the agent to keep a track of how long
the operations took to complete and display a summary at the end of compilation,
as shown in the following screenshot:

Troubleshooting

[250]

puppetserver also has the ability to send profiling information to a graphite server.
Information on configuring puppetserver to communicate with a graphite server
is available at http://docs.puppetlabs.com/pe/latest/puppet_server_
metrics.html.

Summary
In this chapter, we examined a few troubleshooting techniques that are useful in
the enterprise. Troubleshooting basic network and system connectivity is the first
thing to be checked. Using Puppet's Rest API, we were able to talk directly to the
master with the help of HTTP tools, such as wget and gnutls-cli. We learned
how to read the catalog and use jq to search the catalog on the client. Finally, we
showed a method of enabling the expensive debugging feature for specific nodes
by creating a debugging worker and directing nodes to that specific worker.

In this book, we took advantage of Puppet's Rest API to scale out our Puppet
infrastructure in order to accommodate a large number of nodes. Working in the
enterprise, the division of code from data is important to allow modules to be reused
and to reduce complexity. A large number of nodes will introduce its own set of
complexities. Working to reduce the complexity in your environment will allow you
to grow and adapt quickly. Keeping your code as simple as possible will make it
easier to find problems when they appear. A large number of nodes creates a level of
complexity on its own. As you grow your environment, you should continually look
for ways to reduce the quantity and complexity of your code.

http://docs.puppetlabs.com/pe/latest/puppet_server_metrics.html
http://docs.puppetlabs.com/pe/latest/puppet_server_metrics.html

[251]

Index
A
ACLs

reference link 15
ActiveMQ

client, connecting to 195, 196
installing 189-191

Ansible
about 199
URL 81

Apache proxy 8-10
Augeas

about 51
URL 51

B
branching models

URL 75
branching workflow

URL 75
bugfix branch 247

C
catalog compilation

about 2, 3
full trace 244

catalog failures 241-243
catalog storage 201
certificate authority (CA) 10
Certificate Revokation List (CRL) 179
certificate signing 2
CFacter 150
classes.txt file 245

Classless Inter-Domain Routing (CIDR) 218
client

connecting, to ActiveMQ 195, 196
clustered filesystem

using 16
collector 139
comments

in modules 135-137
concat module 106-111
Configuration Management Database

(CMDB) 217
connectivity issues 238-240
Content Delivery Network (CDN) 228
cron

configuring, Puppet resource used 24, 25
curl 239
custom facts

about 141
creating 141-147
creating, for use in Hiera 148-150

D
data types

about 154, 155
reference link 155

debugging 246
defined types 155-166
design pattern 227, 228
directory environments

defining 61-64

[252]

E
echo statements 247
Embedded Ruby (ERB)

about 132
reference link 132

ENC
about 29, 182
example 30-33
LDAP backend 39
nodes, organizing with 29, 30

Enterprise Linux 7 (EL7) 6
environments

about 55-58
and Hiera 58
multiple hierarchies 58, 59
setting up, post-receive used 76-79
single hierarchy 60

example CDN role
creating 228-232

example, ENC
hostname strategy 33, 34

exceptions
dealing with 234

exported resource
about 209
collecting 210
declaring 210

exported SSH keys 213
external node classifier. See ENC
Extra Packages for Enterprise Linux (EPEL)

URL 182

F
Facter 150
filesystem access control lists (FACLs) 103
firewalld 117
firewall module 117-121
Foreman

about 182
attaching, to Puppet 183-185
installing 182
using 185, 186

foreman-report file
download link 184

Forge module
about 96, 97
URL 93
using 201-204

full trace, of catalog compile 244
Fully Qualified Domain Name (FQDN) 29

G
gfs2 16
Git

about 16, 64
defining 65
documentation, URL 65
URL 65
using 89-91

Git hooks
about 75
commits, controlling 85-88
post-receive used, for setting up

environments 76-79
puppet-sync 79-81
used, with developers 82-84

GitHub
using, for public modules 93-95

Git workflow 66-75
glusterfs 16

H
Heredocs

reference link 232
Hiera

about 44
and environments 58
configuring 45-48
hiera_include, using 48-54
URL 44

host entry 210-212
hostname strategy

used, for modified ENC 35-38
HTTP APIs

reference link 2
httpd 8

[253]

I
inifile module 112-117
installing

ActiveMQ 189-191
Foreman 182
PostgreSQL 206
Puppet 205
PuppetDB 205

Interactive Ruby (IRB) 142
Internet Relay Chat (IRC) 177-181
iptables 117

J
jq

reference link 242
jruby-ldap module

reference 43

L
LDAP

reference 42
LDAP backend

about 39
OpenLDAP configuration 39-44

Librarian
about 98
using 98-100

librarian-puppet
reference link 98

load balancing machine
Puppet certificate authority, splitting off

from 17
local repository

updating 95
logback

about 177
reference link 177

logical volume manager (lvm) 121-123

M
mandatory access controls (MAC) 11
marionette collective (mcollective)

about 175, 188

reference link 188
using 198, 199

masterless configuration 1, 21
Master-of-Master (MoM) 30
masters

configuring 12-14
Message Queue (MQ) 187
metaparameters

about 212
reference link 212

modify on collect 220
mod_ssl package 8
module files 131
module manifest files 128-130
modules

about 128
creating, with Puppet module 133-135
from Forge 96, 97
naming 132
obtaining 93

mtr 238
multiple definitions 138-140

N
Netcat 238
NFS 16
node.rb ENC script

reference link 186
nodes

configuring, for ActiveMQ usage 192-194

O
OpenLDAP configuration (OLC)

about 39
defining 39-44
URL 39

P
PanoPuppet

URL 187
parameterized classes 153, 154
personal branch 247
ping 238

[254]

plugins 127
PostgreSQL

configuring 206
installing 206

profiling 249, 250
providers 166
public modules

GitHub, using for 93-95
Puppet

about 1
configuring, for PuppetDB usage 208
Foreman, attaching to 183-185
installing 205

Puppet beaker
about 237
reference link 237

Puppetboard
URL 187

Puppet certificate authority
splitting off, from load balancing

machine 17
Puppet collections

reference link 3
puppetdb

configuring, for PostgreSQL usage 207
reference link 201

PuppetDB
about 201
configuring 201-204
installing 205
installing, manually 205

Puppet Explorer
URL 187

Puppet GUIs 187
Puppet Labs

URL, for documentation 207
puppetlabs-release-pc1-0.9.2-1.el7.noarch.

rpm
reference link 4

Puppet Labs website
URL 64

Puppet master
about 29
building 3, 4
certificates, generating 5, 6
code consistent, keeping 14

load balancer, using 7, 8
systemd, using 6

Puppet module
modules, creating with 133-135

Puppet resource
used, for configuring cron 24, 25

puppet.schema
reference 40

puppetserver
about 3
dividing 1
reference link 4

Puppet-supported modules
concat 106-111
firewall 117-121
inifile 112-117
logical volume manager (lvm) 121-123
standard library (stdlib) 124-126
using 106

puppet-sync
about 79-81
URL 79

R
r10k

about 100
reference link 100
using 100-105

reporting
about 2
turning on 175, 176

reporting, Puppet Labs
reference link 175

report types, Puppet
reference link 175

resource tags 212
rpm

creating 22-24
rspec-puppet

about 237
reference link 237

rsync
about 14, 15
using 16

[255]

S
scope 248, 249
searching 201
Security-Enhanced Linux (SELinux)

about 11, 12
reference link 11

slapd
reference 39

Software Collections (SCL)
URL 182

Springdale
reference link 3

sshkey collection, for laptops 214-216
SSH keys

creating 16
standard library (stdlib)

about 124-126
reference link 124

Start of Authority (SOA) 224
storeconfigs 2, 201
store mechanism

enabling 176, 177
sub-CDN role

creating 232-234
summarizing 249, 250
systemd

reference link 6
using 6

System Security Services Daemon
(SSSD) 112

T
templates 131
TLS headers 11
Trapperkeeper

reference link 3
types

about 166
creating 167-173

V
Varnish

reference link 232
virtual resources 138

W
wget 239
workload

splitting 18-20

Y
YAML

URL 31
yum repository

creating 25, 26

Thank you for buying
Mastering Puppet

Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning Puppet
ISBN: 978-1-78439-983-2 Paperback: 304 pages

Build intelligent software stacks with the Puppet
configuration management suite

1.	 Extends your skills beyond the built-in
functionalities of Puppet, in a stepwise manner.

2.	 This seasoned systems developer will give you
a plethora of knowledge to build intelligent
software stacks, with tips and tricks.

3.	 Helps troubleshooting commonly occurring
problems.

Puppet Cookbook
Third Edition
ISBN: 978-1-78439-488-2 Paperback: 336 pages

Jump-start your Puppet deployment using engaging
and practical recipes

1.	 Engaging and practical recipes with images.

2.	 This book covers distributed and centralized
Puppet deployments.

3.	 The authors have worked on Puppet since the
0.24 version and thus are just the right people
to teach the essentials of Puppet.

Please check www.PacktPub.com for information on our titles

Extending Puppet
ISBN: 978-1-78398-144-1 Paperback: 328 pages

Design, manage, and deploy your Puppet architecture
with the help of real-world scenarios

1.	 This book gives you the latest trends and best
practices of extending Puppet.

2.	 The author is highly experienced in using
Puppet and thus is excellent at teaching the
under-the-hood concepts of Puppet.

3.	 Several examples of strategies and patterns
of Puppet automation.

Advanced Penetration Testing
for Highly-Secured Environments
[Video]
ISBN: 978-1-78216-450-0 Duration: 02:50 hours

An intensive hands-on course to perform professional
penetration testing

1.	 The video has hands on examples and
is task-based.

2.	 This video covers all security tools.

3.	 The author is highly experienced in business
networks and security policies and teaches
under-the-hood concepts of penetration testing.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Dealing with Load/Scale
	Divide and conquer
	Certificate signing
	Reporting
	Storeconfigs
	Catalog compilation
	puppetserver
	Building a Puppet master
	Certificates
	systemd
	Creating a load balancer
	Keeping the code consistent

	One more split
	One last split or maybe a few more

	Conquer by dividing
	Creating an rpm
	Using Puppet resource to configure cron

	Creating the yum repository

	Summary

	Chapter 2: Organizing Your Nodes
and Data
	Getting started
	Organizing the nodes with an ENC
	A simple example
	Hostname strategy
	Modified ENC using hostname strategy

	LDAP backend
	OpenLDAP configuration

	Hiera
	Configuring Hiera
	Using hiera_include

	Summary

	Chapter 3: Git and Environments
	Environments
	Environments and Hiera
	Multiple hierarchies
	Single hierarchy for all environments

	Directory environments

	Git
	Why Git?
	A simple Git workflow
	Git hooks
	Using post-receive to set up environments
	Puppet-sync

	Using Git hooks to play nice with other developers
	Not playing nice with others via Git hooks

	Git for everyone
	Summary

	Chapter 4: Public Modules
	Getting modules
	Using GitHub for public modules
	Updating the local repository

	Modules from the Forge
	Using Librarian
	Using r10k
	Using Puppet-supported modules
	concat
	inifile
	firewall
	Logical volume manager
	Standard library

	Summary

	Chapter 5: Custom Facts and Modules
	Module manifest files
	Module files and templates
	Naming a module
	Creating modules with a Puppet module
	Comments in modules

	Multiple definitions

	Custom facts
	Creating custom facts
	Creating a custom fact for use in Hiera

	CFacter
	Summary

	Chapter 6: Custom Types
	Parameterized classes
	Data types

	Defined types
	Types and providers
	Creating a new type

	Summary

	Chapter 7: Reporting and Orchestration
	Turning on reporting
	Store
	Logback
	Internet relay chat
	Foreman
	Installing Foreman
	Attaching Foreman to Puppet
	Using Foreman

	Puppet GUIs
	mcollective
	Installing ActiveMQ
	Configuring nodes to use ActiveMQ
	Connecting a client to ActiveMQ
	Using mcollective

	Ansible
	Summary

	Chapter 8: Exported Resources
	Configuring PuppetDB – using the Forge module
	Manually installing PuppetDB
	Installing Puppet and PuppetDB
	Installing and configuring PostgreSQL
	Configuring puppetdb to use PostgreSQL
	Configuring Puppet to use PuppetDB

	Exported resource concepts
	Declaring exported resources
	Collecting exported resources
	Simple example – a host entry

	Resource tags
	Exported SSH keys
	sshkey collection for laptops

	Putting it all together
	Summary

	Chapter 9: Roles and Profiles
	Design pattern
	Creating an example CDN role
	Creating a sub-CDN role

	Dealing with exceptions
	Summary

	Chapter 10: Troubleshooting
	Connectivity issues
	Catalog failures
	Full trace on a catalog compilation
	The classes.txt file

	Debugging
	Personal and bugfix branches
	Echo statements

	Scope
	Profiling and summarizing

	Summary

	Index

