

Learning	Puppet	Security

Table	of	Contents

Learning	Puppet	Security

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Convention

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Puppet	as	a	Security	Tool

What	is	Puppet?

Declarative	versus	imperative	approaches

The	Puppet	client-server	model

Other	Puppet	components

PuppetDB

Hiera

Installing	and	configuring	Puppet

Installing	the	Puppet	Labs	Yum	repository

Installing	the	Puppet	Master

Installing	the	Puppet	agent

Configuring	Puppet

Puppet	services

Preparing	the	environment	for	examples

Installing	Vagrant	and	VirtualBox

Creating	our	first	Vagrantfile

Puppet	for	security	and	compliance

Example	–	using	Puppet	to	secure	openssh

Starting	the	Vagrant	virtual	machine

Connecting	to	our	virtual	machine

Creating	the	module

Building	the	module

The	openssh	configuration	file

The	site.pp	file

Running	our	new	code

Summary

2.	Tracking	Changes	to	Objects

Change	tracking	with	Puppet

The	audit	meta-parameter

How	it	works

What	can	be	audited

Using	audit	on	files

Available	attributes

Auditing	the	password	file

Preparation

Creating	the	manifest

First	run	of	the	manifest

Changing	the	password	file	and	rerunning	Puppet

Audit	on	other	resource	types

Auditing	a	package

Modifying	the	module	to	audit

Things	to	know	about	audit

Alternatives	to	auditing

The	noop	meta-parameter

Purging	resources

Using	noop

Summary

3.	Puppet	for	Compliance

Using	manifests	to	document	the	system	state

Tracking	history	with	version	control

Using	git	to	track	Puppet	configuration

Tracking	modules	separately

Facts	for	compliance

The	Puppet	role’s	pattern

Using	custom	facts

The	PCI	DSS	and	how	Puppet	can	help

Network-based	PCI	requirements

Vendor-supplied	defaults	and	the	PCI

Protecting	the	system	against	malware

Maintaining	secure	systems

Authenticating	access	to	systems

Summary

4.	Security	Reporting	with	Puppet

Basic	Puppet	reporting

The	store	processors

Example	–	showing	the	last	node	runtime

PuppetDB	and	reporting

Example	–	getting	recent	reports

Example	–	getting	event	counts

Example	–	a	simple	PuppetDB	dashboard

Reporting	for	compliance

Example	–	finding	heartbleed-vulnerable	systems

Summary

5.	Securing	Puppet

Puppet	security	related	configuration

The	auth.conf	file

Example	–	Puppet	authentication

Adding	our	second	Vagrant	host

Working	with	hostmanager

The	fileserver.conf	file

Example	–	adding	a	restricted	file	mount

SSL	and	Puppet

Signing	certificates

Revoking	certificates

Alternative	SSL	configurations

Autosigning	certificates

Naïve	autosign

Basic	autosign

Policy-based	autosign

Summary

6.	Community	Modules	for	Security

The	Puppet	Forge

The	herculesteam/augeasproviders	series	of	modules

Managing	SSH	with	augeasproviders

The	arildjensen/cis	module

The	saz/sudo	module

The	hiera-eyaml	gem

Summary

7.	Network	Security	and	Puppet

Introducing	the	firewall	module

The	firewall	type

The	firewallchain	type

Creating	pre	and	post	rules

Adding	firewall	rules	to	other	modules

Is	allowing	all	to	NTP	dangerous?

Summary

8.	Centralized	Logging

Welcome	to	logging	happiness

Installing	the	ELK	stack

Logstash	and	Puppet

Installing	Elasticsearch

Installing	Logstash

Reporting	on	log	data

Installing	Kibana

Configuring	hosts	to	report	log	data

Summary

9.	Puppet	and	OS	Security	Tools

Introducing	SELinux	and	auditd

The	SELinux	framework

The	auditd	framework	for	audit	logging

SELinux	and	Puppet

The	selboolean	type

The	selmodule	type

File	parameters	for	SELinux

Configuring	SELinux	with	community	modules

Configuring	auditd	with	community	modules

Summary

A.	Going	Forward

What	we’ve	learned

Where	to	go	next

Writing	and	testing	Puppet	modules

Puppet	device	management

Additional	reporting	resources

Other	Puppet	resources

The	Puppet	community

Final	thoughts

Index

Learning	Puppet	Security

Learning	Puppet	Security
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	March	2015

Production	reference:	1240315

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-775-3

www.packtpub.com

http://www.packtpub.com

Credits
Author

Jason	Slagle

Reviewers

Vlastimil	Holer

Jeroen	Hooyberghs

Michael	J.	Ladd

Stephen	McNally

Marcus	Young

Commissioning	Editor

Dipika	Gaonkar

Acquisition	Editor

Meeta	Rajani

Content	Development	Editor

Akshay	Nair

Technical	Editors

Tanmayee	Patil

Sebastian	Rodrigues

Copy	Editors

Sonia	Michelle	Cheema

Rashmi	Sawant

Wishva	Shah

Project	Coordinator

Mary	Alex

Proofreaders

Simran	Bhogal

Maria	Gould

Paul	Hindle

Linda	Morris

Indexer

Tejal	Soni

Production	Coordinator

Shantanu	N.	Zagade

Cover	Work

Shantanu	N.	Zagade

About	the	Author
Jason	Slagle	is	a	veteran	of	systems	and	network	administration	of	18	years.	Having
worked	on	everything	from	Linux	systems	to	Cisco	networks	and	SAN	storage,	he	is
always	looking	for	ways	to	make	his	work	repeatable	and	automated.	When	he	is	not
hacking	a	computer	for	work	or	pleasure,	he	enjoys	running,	cycling,	and	occasionally,
geocaching.

Jason	is	a	graduate	of	the	University	of	Toledo	from	the	computer	science	and	engineering
technology	program	with	a	bachelor’s	degree	in	science.	He	is	currently	employed	by
CNWR,	an	IT	and	infrastructure	consulting	company	in	his	hometown	of	Toledo,	Ohio.
There,	he	supports	several	prominent	customers	in	their	quest	to	automate	and	improve
their	infrastructure	and	development	operations.	He	occasionally	serves	as	a	part-time
instructor	at	the	University	of	Toledo.

Jason	has	previously	worked	as	a	technical	reviewer	on	Puppet	3:	Beginner’s	Guide	and
Puppet	Monitoring	and	Reporting.

I	would	like	to	thank	my	wife,	Heather,	and	my	son,	Jacob.	They’ve	been	greatly
supportive	during	this	process.

Additionally	I’d	like	to	thank	my	mentor,	Allen	Rioux.	Without	you,	none	of	this	would
have	been	possible.

About	the	Reviewers
Vlastimil	Holer	is	a	systems	engineer,	with	focus	on	automation.	He	has	worked	with
Unix-like	systems	for	more	than	a	decade,	and	first	used	Puppet	in	2008	while	preparing
and	managing	the	growing	deployment	of	the	GoodData	cloud	BI	on	Amazon	EC2.
Currently,	he	works	on	the	CERIT	Scientific	Cloud	project	at	Masaryk	University,	where
he	manages	and	automates	their	computing,	cloud,	and	storage	infrastructure.

Jeroen	Hooyberghs	is	an	open	source	and	Linux	consultant,	working	for	Open	Future	in
Belgium.	In	this	position	as	well	as	in	his	earlier	roles	in	Linux	system	administration,	he
obtained	technical	expertise	through	a	lot	of	open	source	solutions,	such	as	Puppet.	In
2014,	he	became	a	Puppet	Certified	Professional	and	Official	Puppet	Trainer.	As	a
reviewer,	he	contributed	to	Mastering	Puppet	and	Puppet	Cookbook,	Third	Edition.

Michael	J.	Ladd	is	a	senior	manager	of	systems	engineering	at	Leapfrog	Online	LLC	of
Evanston,	Illinois.	He	has	been	working	with	Linux	systems	for	more	than	15	years,	and
has	been	using	Puppet	for	over	5	years.	In	addition	to	wrangling	computers,	Michael
enjoys	writing	music	and	working	through	an	ever-growing	list	of	books	to	read.	He
writes	very	occasionally	at	www.mjladd.com,	and	can	be	reached	at	<mjladd@gmail.com>.

I	would	like	to	thank	my	admirable	wife,	Jen,	for	her	support	and	encouragement,	and	my
spirited	daughter,	Piper.

Stephen	McNally	received	his	MBA	from	Tennessee	Technological	University	in	2013
with	focus	on	management	information	systems.	Stephen	has	experience	in	procuring,
deploying,	maintaining,	administering,	and	decommissioning	some	of	the	world’s	fastest
supercomputers.	Most	notably,	his	team	deployed	the	first	academic	petascale
supercomputer,	Kraken.	Stephen	has	IT	experience	in	multiple	industries,	including
automotive	manufacturing,	healthcare,	and	research	computing.	He	oversees	all	aspects	of
HPC	operations	as	the	group	leader	for	some	of	the	world’s	brightest	and	most	talented
administrators	and	programmers.

I	would	like	to	thank	my	wife,	Christina,	and	my	son,	Sutton,	for	providing	their	love	and
support	during	this	process.

Marcus	Young	recently	graduated	with	a	degree	in	computer	science	and	mathematics,
before	getting	involved	in	system	administration	and	DevOps.	He	currently	works	in
software	automation	using	open	source	tools	and	technologies.	His	hobbies	include
playing	ice	hockey	and	brewing	beer.	He	also	enjoys	hardware	projects	based	on
microcontrollers	and	single-board	computers.	He	is	currently	working	on	Implementing
Cloud	Design	Patterns	for	AWS.

http://www.mjladd.com
mailto:mjladd@gmail.com

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Using	Puppet	is	currently	one	of	the	hottest	trends	right	now	in	the	IT	industry.	As	the
industry	moves	away	from	manual	provisioning	towards	automation,	the	usage	of	Puppet
and	its	associated	tools	will	only	continue	to	grow.

With	the	rise	of	automation,	and	the	repetitive	tasks	that	security	often	entails,	it	makes
perfect	sense	for	Puppet	to	be	a	strong	security	tool.	With	proper	configuration,	Puppet
can	assist	in	securing	your	servers,	showing	compliance	with	various	standards,	and
generally	easing	the	workload	of	security-related	personnel.

This	book	is	a	practical	introduction	to	Puppet	for	security	professionals.	It	will	guide	you
into	the	world	of	automation,	showing	you	how	to	make	repetitive	tasks	a	breeze.	With	the
knowledge	learned	here,	you	can	begin	the	process	of	bringing	your	system	configurations
into	code,	where	they	can	be	audited	and	treated	much	like	you	would	treat	a	code	base.

Starting	with	the	beginning,	and	assuming	that	you	only	have	the	knowledge	of	Linux
operating	systems,	we	will	explore	the	basics	of	Puppet.	From	there	on,	we	will	cover
examples	and	concepts	of	increasing	complexity	and	skill	until	you	are	ready	to	start	on
your	own.	In	doing	this,	we	will	cover	using	the	Puppet	code	for	auditing,	as	well	as	using
reports	and	other	data	to	show	compliance.	We’ll	explore	centralized	logging,	and	learn
how	you	can	use	Puppet	to	make	your	SELinux	tasks	easier.

What	this	book	covers
Chapter	1,	Puppet	as	a	Security	Tool,	provides	an	introduction	to	Puppet.	We’ll	build	a
development	environment	that	we’ll	use	in	all	the	chapters,	and	explore	some	simple
examples	with	Puppet.

Chapter	2,	Tracking	Changes	to	Objects,	explores	various	ways	to	audit	changes	to
resources,	such	as	files.	Puppet	provides	a	number	of	ways	to	handle	this,	and	we’ll
review	their	pros	and	cons.

Chapter	3,	Puppet	for	Compliance,	looks	at	the	use	of	Puppet	for	compliance	purposes.
Version	control	for	our	manifests	will	be	introduced,	and	it	will	explain	how	the	manifests
can	be	used	for	auditing	and	compliance	purposes.	We’ll	also	review	some	specific
examples	of	how	Puppet	can	help	with	the	PCI	DSS.

Chapter	4,	Security	Reporting	with	Puppet,	looks	at	how	to	report	on	some	of	the	things
we	covered	in	the	previous	chapters.	We’ll	build	reporting	on	various	system	facts,	as	well
as	some	simple	reporting	covering	when	Puppet	last	ran	on	our	hosts.

Chapter	5,	Securing	Puppet,	covers	what	it	takes	to	secure	Puppet	itself.	Since	Puppet	is	in
charge	of	all	of	your	systems,	ensuring	that	it	is	secure	is	important.	We’ll	cover	the
various	security	configuration	files	Puppet	uses,	as	well	as	how	it	uses	SSL	to	ensure
security.

Chapter	6,	Community	Modules	for	Security,	takes	a	look	at	various	modules	that	are
available	at	the	Puppet	Forge.	We’ll	explore	modules	to	make	managing	various
configuration	files	easier,	as	well	as	modules	that	provide	some	security	hardening	of
hosts.

Chapter	7,	Network	Security	and	Puppet,	will	explore	using	Puppet	to	manage	the	firewall
of	the	local	host.	We’ll	primarily	be	concentrating	on	the	Puppet	module,	which	manages
iptables	and	its	associated	set	of	tools	that	are	used	to	manage	firewall	rules.	We’ll	also
cover	how	to	extend	your	modules	to	handle	firewall	resources.

Chapter	8,	Centralized	Logging,	introduces	the	use	of	Puppet	to	manage	centralized
logging	using	Logstash.	We’ll	cover	the	installation	of	Logstash	as	well	as	its	dashboard
component,	Kibana.	We’ll	then	build	a	simple	module	to	ship	logs	to	a	central	server.

Chapter	9,	Puppet	and	OS	Security	Tools,	covers	using	Puppet	to	manage	SELinux	and
auditd.	We’ll	cover	the	options	available	for	Puppet	for	SELinux,	as	well	as	community
modules	for	both	SELinux	and	auditd.

Appendix,	Going	Further,	covers	information	on	developing	good	modules,	an	analysis	of
Puppet	device	management,	useful	reporting	tools,	and	a	brief	discussion	on	the	Puppet
community.

What	you	need	for	this	book
The	examples	in	this	book	are	all	written	using	CentOS	6.	The	source	present	in	this	book
uses	Vagrant	to	run	the	examples.	Vagrant	is	a	wonderful	tool	to	use	for	development,	as	it
allows	you	to	specify	how	full	virtual	machines	should	be	configured.

To	use	Vagrant,	you’ll	need	the	following	software:

VirtualBox:	This	is	the	virtualization	container	we’ll	use.	You	can	find	it	at
http://www.virtualbox.org.
Vagrant:	This	tool	is	what	we’ll	use	to	manage	our	virtual	machines.	You	can	get	it
at	http://www.vagrantup.com.

http://www.virtualbox.org
http://www.vagrantup.com

Who	this	book	is	for
This	book	is	targeted	at	experienced	system	administrators	who	focus	on	security,	and	it
also	targets	security	professionals.	It	assumes	an	intermediate	to	advanced	level	of	system
administration	ability,	but	does	not	require	any	previous	experience	with	Puppet.

Convention
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“If	not
specified,	this	defaults	to	$vardir/reports,	so	/var/lib/puppet/reports	on	CentOS.”

A	block	of	code	is	set	as	follows:

node	default	{

								include	openssh

								include	users

								include	clamav

								include	puppetdb

								include	puppetdb::master::config

}

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

node	default	{

								include	openssh

								include	users

								include	clamav

								include	puppetdb

								include	puppetdb::master::config

}

Any	command-line	input	or	output	is	written	as	follows:

#	sudo	service	puppetmaster	restart

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	Puppet	as	a	Security	Tool
Imagine	you’re	sitting	at	home	one	day	after	a	long	day	of	work.	Suddenly,	you	get	a
phone	call	that	a	new	security	vulnerability	was	found	and	all	300	of	your	servers	will
need	to	be	patched.	How	would	you	handle	it?

With	Puppet,	finding	which	one	of	your	servers	was	vulnerable	would	be	an	easier	task
than	doing	so	by	hand.	Furthermore,	with	a	little	additional	work,	you	could	ensure	that
every	one	of	your	servers	is	running	a	newer	nonvulnerable	version	of	the	Puppet	package.

In	this	chapter,	we	will	touch	on	the	following	concepts:

What	is	Puppet?
Declarative	versus	imperative	systems
The	Puppet	client-server	model
Other	components	of	the	Puppet	ecosystem	used	for	security
Installing	Puppet
How	Puppet	fits	into	a	security	role

Once	this	is	complete,	we	will	build	the	environment	we’ll	use	to	run	examples	in	this
book	and	then	run	our	first	example.

Much	of	the	information	in	this	chapter	is	presented	as	a	guide	to	what	we	will	accomplish
later	on	in	this	book.

What	is	Puppet?
The	Puppet	Labs	website	describes	open	source	Puppet	as	follows:

Open	source	Puppet	is	a	configuration	management	system	that	allows	you	to	define
the	state	of	your	IT	infrastructure,	then	automatically	enforces	the	correct	state.

What	does	this	mean,	though?

Puppet	is	a	configuration	management	tool.	A	configuration	management	tool	is	a	tool	that
helps	the	user	specify	how	to	put	a	computer	system	in	a	desired	state.	Other	popular	tools
that	are	considered	as	configuration	management	tools	are	Chef	and	CFEngine.	There	are
also	a	variety	of	other	options	that	are	gaining	a	user	base,	such	as	Bcfg2	and	Salt.

Chef	is	another	configuration	management	tool.	It	uses	pure	Ruby	Domain-specific
Language	(DSL)	similar	to	Puppet.	We’ll	cover	what	a	domain-specific	language	is
shortly.	This	difference	allows	you	to	write	the	desired	state	of	your	systems	in	Ruby.
Doing	so	allows	one	to	use	the	features	of	the	Ruby	language,	such	as	iteration,	to	solve
some	problems	that	can	be	more	difficult	to	solve	in	the	stricter	domain-specific	language
of	Puppet.	However,	it	also	requires	you	to	be	familiar	with	Ruby	programming.	More
information	on	Chef	can	be	found	at	http://www.getchef.com.

CFEngine	is	the	oldest	of	the	three	main	tools	mentioned	here.	It	has	grown	into	a	very
mature	platform	as	it	has	expanded.	Puppet	was	created	out	of	some	frustrations	with
CFEngine.	One	example	of	this	is	that	the	CFEngine	community	was	formally	quite
closed,	that	is,	they	didn’t	accept	user	input	on	design	decisions.	Additionally,	there	was	a
focus	in	CFEngine	on	the	methods	used	to	configure	systems.	Puppet	aimed	to	be	a	more
open	system	that	was	community-focused.	It	also	aimed	to	make	the	resource	the	primary
actor,	and	relied	on	the	engine	to	make	necessary	changes	instead	of	relying	on	scripts	in
most	cases.

Note
Many	of	these	issues	were	addressed	in	CFEngine	3,	and	it	retains	a	very	large	user	base.
More	information	on	CFEngine	can	be	found	at	http://www.cfengine.com.

Bcfg2	and	Salt	are	both	tools	that	are	gaining	a	user	base.	Both	written	in	Python,	they
provide	another	option	for	a	user	who	may	be	more	familiar	with	Python	than	other
languages.	Information	on	these	tools,	as	well	as	a	list	of	others	that	are	available,	can	be
found	at	https://en.wikipedia.org/wiki/Comparison_of_open-
source_configuration_management_software.

Configuration	management	tools	were	brought	about	by	a	desire	to	make	system
administration	work	repeatable,	as	well	as	automate	it.

In	the	early	days	of	system	administration,	it	was	very	common	for	an	administrator	to
install	the	operating	system	needed	as	well	as	install	any	necessary	software	packages.
When	systems	were	simple	and	few	in	number,	this	was	a	low	effort	way	of	managing
them.

http://www.getchef.com
http://www.cfengine.com
https://en.wikipedia.org/wiki/Comparison_of_open-source_configuration_management_software

As	systems	grew	more	complex	and	greater	numbers	of	them	were	installed,	this	became
much	more	difficult.	Troubleshooting	an	application	as	it	began	to	run	on	multiple	systems
also	became	difficult.	The	difference	in	software	versions	on	installed	nodes	and	other
configuration	differences	created	inconsistencies	in	the	behavior	of	multiple	systems	that
were	running	the	same	application.	Installation	manuals,	run	books,	and	other	forms	of
documentation	were	often	deployed	to	try	to	remedy	this,	but	it	was	clear	that	we	needed	a
better	way.

As	time	moved	on,	system	administrators	realized	that	they	needed	a	better	way	to	manage
their	systems.	A	variety	of	methods	were	born,	but	many	of	them	were	home	built.	They
often	used	SSH	to	manage	remote	hosts.	I	also	built	several	such	systems	at	various	places
before	coming	across	Puppet.

Puppet	sought	to	ease	the	pain	and	shortcomings	of	the	early	days.	It	was	a	big	change
from	anything	that	was	present	at	the	time.	A	large	part	of	this	was	because	of	its
declarative	nature.

Declarative	versus	imperative	approaches
At	the	core	of	Puppet	is	software	that	allows	you	to	specify	the	state	of	the	system	and	let
Puppet	get	the	system	there.	It	differs	from	many	of	the	other	products	in	the	configuration
management	space	due	to	its	declarative	nature.

In	a	declarative	system,	we	model	the	desired	state	of	the	resources	(things	being
managed).

Declarative	systems	have	the	following	properties:

Desired	state	is	expressed,	not	steps	used	to	get	there
Usually	no	flow	control,	such	as	loops;	it	may	contain	conditional	statements
Actions	are	normally	idempotent
Dependency	is	usually	explicitly	declared

Tip
The	concept	of	actions	being	idempotent	is	a	very	important	one	in	Puppet.	It	means	that
actions	can	be	repeated	without	causing	unnecessary	side	effects.	For	example,	removing	a
user	is	idempotent,	because	removing	it	when	it	doesn’t	exist	causes	no	side	effects.
Running	a	script	that	increments	to	the	next	user	ID	and	creates	a	user	may	not	be
idempotent,	because	the	user	ID	might	change.

Imperative	systems,	on	the	other	hand,	use	algorithms	and	steps	to	express	their	desired
state.	Most	traditional	programming	languages,	such	as	C	and	Java,	are	considered
imperative.	Imperative	systems	have	the	following	properties:

They	use	algorithms	to	describe	the	steps	to	the	solution
They	use	flow	control	to	add	conditionals	and	loops
Actions	may	not	be	idempotent
Dependency	is	normally	executed	by	ordering

In	Puppet,	which	is	declarative,	the	users	can	describe	how	they	want	the	system	to	look	in
the	end,	and	leave	the	implementation	details	of	how	to	get	there	up	to	the	types	and
providers	within	Puppet.	Puppet	uses	types,	which	represent	resources,	such	as	files	or
packages.	Each	type	can	optionally	be	implemented	by	one	or	more	provider.

Types	provide	the	core	functionality	available	in	Puppet.	The	type	system	is	extensible,
and	additional	types	can	be	added	using	pure	Ruby	code.	Later	on	in	this	chapter,	we’ll
use	the	file	and	package	types	in	our	example.

Providers	include	the	code	for	the	type	that	actually	does	the	low	level	implementation	of
a	resource.	Many	types	have	several	providers	that	implement	their	functionality	in
different	ways.	An	example	of	this	is	the	package	type.	It	has	providers	for	RPM,	Yum,
dpkg,	Windows	using	MSI,	and	several	others.	While	it	is	not	a	requirement	that	all	types
have	multiple	providers,	it	is	not	uncommon	to	see	them,	especially	for	resources	that
have	different	implementation	details	across	operating	systems.

This	system	of	types	and	providers	isolates	the	user	from	having	to	have	specific

knowledge	of	how	a	given	task	is	done.	This	allows	them	to	focus	on	how	the	system
should	be	configured,	and	leave	specific	implementation	details,	such	as	how	to	put	it	in
that	state,	to	Puppet.

A	few	tools,	such	as	Chef,	actually	use	more	of	a	hybrid	approach.	They	can	be	used	in	a
declarative	state,	but	also	allow	the	use	of	loops	and	other	flow	control	structures	that	are
imperative.	Puppet	is	slowly	starting	to	gain	some	support	for	this	in	their	new	future
parser,	however	these	are	experimental	and	advanced	features	at	this	point.

While	the	declarative	approach	may	have	a	larger	learning	curve,	especially	around
dependency	management,	many	sysadmins	find	it	a	much	better	fit	with	their	way	of
thinking	once	they	learn	how	it	works.

The	Puppet	client-server	model
Puppet	uses	a	client-server	model	in	the	most	common	configurations.	In	this	mode,	one
or	more	systems,	called	Puppet	Masters,	contain	files	called	manifests.	Manifests	are	code
written	in	the	Puppet	DSL.	A	DSL	is	a	language	designed	to	be	used	for	a	specific
application.	In	this	case,	the	language	is	used	to	describe	the	desired	state	of	a	system.
This	differs	from	more	general	purpose	languages,	such	as	C	and	Ruby,	in	that	it	contains
specialized	constructs	for	the	problem	being	solved.	In	this	case,	the	resources	in	the
language	are	specific	to	the	configuration	management	domain.

Manifests	contain	the	classes	and	resources	which	Puppet	uses	to	describe	the	state	of	the
system.	They	also	contain	declarations	of	the	dependencies	between	these	resources.

Classes	are	often	bundled	up	into	modules	which	package	up	classes	into	reusable	chunks
that	can	be	managed	separately.	As	your	system	becomes	more	complicated,	using
modules	helps	you	manage	each	subsystem	independently	of	the	others.

The	client	systems	contain	the	Puppet	agent,	which	is	the	component	that	communicates
with	the	master.	At	specified	run	intervals	(30	minutes	by	default),	the	agent	will	run	and
the	following	actions	will	take	place:

1.	 Custom	plugins,	such	as	facts,	types,	and	providers,	are	sent	to	the	client,	if
configured.

2.	 The	client	collects	facts	and	sends	them	to	the	master.
3.	 The	master	compiles	a	catalog	and	sends	it	to	the	client.
4.	 The	client	processes	the	catalog	sent	by	the	master.
5.	 The	client	sends	the	reporting	data	to	the	master,	if	configured.

The	catalog,	sent	to	the	client	by	the	master,	contains	a	compiled	state	of	the	system
resources	of	the	client.	The	client	then	applies	this	information	using	types	and	providers
to	bring	the	system	into	the	desired	state.	The	following	illustration	shows	how	data	flows
between	the	components:

It	is	also	possible	to	run	Puppet	in	a	masterless	mode.	In	this	mode,	the	Puppet	manifests
and	other	needed	components,	such	as	custom	facts,	types,	and	providers,	are	distributed
to	each	system	using	an	out	of	band	method,	such	as	scp	or	rsync.	Puppet	is	then	applied
on	the	local	node	using	cron	or	some	other	tool.

cron	has	the	advantage	of	not	requiring	the	server	setup	with	open	ports	that	the	master-
based	setup	has.	In	some	organizations,	this	makes	it	easier	to	get	past	information
security	teams.	However,	many	of	the	reporting	and	other	benefits	we	will	explore	in	this
book	are	less	effective	when	run	in	this	fashion.	The	book	Puppet	3:	Beginners	Guide,
John	Arundel,	Packt	Publishing,	has	a	good	amount	of	information	about	such	a
masterless	setup.

Other	Puppet	components
Puppet	has	a	number	of	other	components	that	form	part	of	the	Puppet	ecosystem,	which
are	worth	exploring	due	to	their	use	as	security	tools.	The	specific	components	we	are
going	to	explore	here	include	PuppetDB	and	Hiera.

PuppetDB
PuppetDB	is	an	application	used	to	store	information	on	the	Puppet	infrastructure.
Released	in	2012,	PuppetDB	solved	performance	issues	present	in	the	older	storeconfigs
method	that	stored	information	about	Puppet	runs.

PuppetDB	allows	you	to	store	facts,	catalogs,	reports,	and	resource	information	(via
exported	resources).	Mining	this	data,	using	one	of	the	reporting	APIs,	is	an	easy	and
powerful	way	to	get	a	view	of	your	infrastructure.	More	information	on	PuppetDB	will	be
presented	in	Chapter	3,	Puppet	for	Compliance,	as	well	as	Chapter	4,	Security	Reporting
with	Puppet.

Hiera
Hiera	was	a	new	feature	introduced	in	Puppet	3.	It	is	a	hierarchal	data	store,	which	helps
to	keep	information	about	your	environment.	This	allows	you	to	separate	data	about	the
environment	from	code	that	acts	on	the	environment.	By	doing	so,	you	can	apply	separate
security	policies	to	the	code	that	drives	the	environment	and	data	about	the	systems.

Before	Hiera,	it	was	not	uncommon	to	see	large	sections	of	Puppet	code	dedicated	to
maintaining	sites	or	installation	of	specific	information	on	the	systems	under	management.
This	area	was	often	difficult	to	maintain	if	the	ability	to	override	parameters	using	many
different	factors	was	needed.

By	adding	a	hierarchy	that	can	depend	on	any	facts,	it	becomes	much	easier	to	store	the
data	needed	for	the	systems	under	management.	A	model	of	most	specific	to	least	specific
can	then	be	applied,	which	makes	it	much	easier	to	override	the	default	data	at	a	site,
environment,	or	system	level.

For	example,	let’s	say	you	had	a	set	of	development	environments	where	a	certain	group
of	development	accounts	needed	to	get	created,	and	SSH	access	to	those	accounts	was
granted.	However,	these	accounts	and	the	access	granted	should	only	exist	in	the
development	machines,	and	not	in	production.	Without	Hiera,	there	would	likely	be	site-
specific	information	in	the	modules	to	manage	the	SSH	configuration,	and	perhaps	in	the
user	creation	module	to	manage	the	users.	Using	Hiera,	we	can	add	a	fact	for	the	type	of
system	(production	or	development)	and	store	which	users	get	created	there,	or	have
access.	This	moves	the	list	of	users	with	access	to	the	system	out	of	the	code	itself,	and
into	a	data	file.

As	our	examples	get	more	complicated	later	in	this	book,	we	will	explore	using	Hiera	to
store	some	system	data.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Installing	and	configuring	Puppet
Puppet	can	be	installed	in	a	variety	of	ways.	Since	this	book	is	focused	on	the	security-
related	aspects	of	Puppet	and	is	not	a	beginner’s	guide,	we	will	cover	the	most	common
way	it	is	installed	on	our	target	system.	There	are	many	good	reference	books	available	for
more	in-depth	information	on	installing	Puppet,	including	Puppet	3:	Beginner’s	Guide,
John	Arundel,	Packt	Publishing.

In	our	examples,	we’ll	be	using	CentOS	6	as	our	operating	system.	If	you	are	using	a
different	operating	system	and	following	along	on	your	own,	please	see	the	installation
instructions	for	your	operating	system	at	http://www.puppetlabs.com,	or	follow	along
using	Vagrant	as	outlined	later.

Since	we	will	be	using	Vagrant	for	our	examples,	the	base	box	we	are	using	already	has
the	Puppet	repository	installed	on	it	as	well	as	the	Puppet	agent.	We’ll	provide	instructions
for	the	installation	of	these	elements	for	those	who	wish	to	use	CentOS	without	using
Vagrant.

http://www.puppetlabs.com

Installing	the	Puppet	Labs	Yum	repository
The	currently	recommended	way	to	install	Puppet	on	CentOS	machines	is	to	use	the
Puppet	Labs	Yum	repository.	This	repository,	which	can	be	found	at
https://yum.puppetlabs.com,	contains	all	the	Puppet	Labs	software	as	well	as	the
dependencies	required	to	install	them,	such	as	several	Ruby	gems	not	present	in	the	main
CentOS	repository.	On	installation,	Ruby	and	these	dependencies	will	also	be	installed.

Adding	this	repository	is	relatively	simple.	Execute	the	following	command	as	a	root	(or
using	sudo,	as	shown	here):

sudo	rpm	-ivh	https://yum.puppetlabs.com/puppetlabs-release-el-6.noarch.rpm

After	running	this	command,	you	will	see	an	output	similar	to	this:

Retrieving	https://yum.puppetlabs.com/puppetlabs-release-el-6.noarch.rpm

Preparing…																###	

[100%]

			1:puppetlabs-release					###	

[100%]

Once	this	is	complete,	you’re	done!	The	Puppet	Labs	repository	is	added	and	we	can	use	it
to	install	the	current	version	of	any	of	the	Puppet	Labs	products.

https://yum.puppetlabs.com

Installing	the	Puppet	Master
The	next	step	is	to	install	the	Puppet	Master.	As	mentioned	earlier,	this	system	acts	as	the
controller	that	all	of	your	client	agents	will	then	use	to	communicate	with	to	receive
catalog	information.	This	package	is	normally	installed	on	only	a	few	systems	that	act	as
servers	for	configuration	management	information.

Installing	the	master	with	the	repository	is	as	easy	as	executing	the	following	command:

sudo	yum	-y	install	puppet-server

This	will	instruct	yum	to	install	the	Puppet	server	without	confirmation.	The	output	will	be
as	follows:

Installing	the	Puppet	agent
On	all	the	systems	that	we	wish	to	manage	by	using	Puppet,	we’ll	need	to	install	the
Puppet	agent.	This	agent	is	a	piece	of	software	that	is	responsible	for	communicating	with
the	master	and	applying	changes.

Installing	the	Puppet	agent	is	very	easy	and	similar	to	installing	the	master	in	the
preceding	section.	You	simply	run	the	following:

sudo	yum	-y	install	puppet

After	this	is	complete,	you’ll	see	that	the	the	Puppet	agent	is	installed	on	the	local	machine
and	is	ready	to	talk	to	the	master.

Configuring	Puppet
Now	that	we	have	a	perfectly	working	Puppet	Master,	we	need	to	configure	it.	Installation
of	the	packages	will	include	a	base	level	configuration.	There	are	some	changes	we	will
want	to	make	to	the	base	Puppet	configuration	to	enable	some	features	that	we’ll	use	in
the	future.	As	we	go	through	this	book,	we’ll	make	changes	to	these	files	several	times.

The	main	configuration	files	in	use	by	Puppet	are	present	in	the	/etc/puppet	directory.

In	this	directory,	there	are	a	number	of	configuration	files	that	control	how	Puppet
behaves.	Information	on	these	files	can	be	found	at
https://docs.puppetlabs.com/puppet/3.7/reference/config_about_settings.html.	For	now,	we
only	need	to	concern	ourselves	with	the	Puppet	configuration	file.

Open	the	/etc/puppet/puppet.conf	file	with	your	favorite	editor	(make	sure	that	you	use
sudo)	and	edit	it	to	look	similar	to	the	following:

[main]

				#	The	Puppet	log	directory.

				#	The	default	value	is	'$vardir/log'.

				logdir	=	/var/log/puppet

				#	Where	Puppet	PID	files	are	kept.

				#	The	default	value	is	'$vardir/run'.

				rundir	=	/var/run/puppet

				#	Where	SSL	certificates	are	kept.

				#	The	default	value	is	'$confdir/ssl'.

				ssldir	=	$vardir/ssl

[agent]

				#	The	file	in	which	puppetd	stores	a	list	of	the	classes

				#	associated	with	the	retrieved	configuratiion.		Can	be	loaded	in

				#	the	separate	``puppet``	executable	using	the	``--loadclasses``

				#	option.

				#	The	default	value	is	'$confdir/classes.txt'.

				classfile	=	$vardir/classes.txt

				#	Where	puppetd	caches	the	local	configuration.		An

				#	extension	indicating	the	cache	format	is	added	automatically.

				#	The	default	value	is	'$confdir/localconfig'.

				localconfig	=	$vardir/localconfig

				report	=	true

				pluginsync	=	true

[master]

				reports	=	store

We’ve	made	a	handful	of	changes	to	the	file	from	the	default	version	and	will	cover	them
here.

The	first	change	is	adding	the	report	=	true	section	to	the	agent	configuration	section.
This	will	cause	clients	to	send	reports	containing	information	about	the	Puppet	run.	We’ll
use	these	reports	for	later	analysis	in	Chapter	4,	Security	Reporting	with	Puppet.

https://docs.puppetlabs.com/puppet/3.7/reference/config_about_settings.html

The	second	change	is	to	add	pluginsync	=	true	to	the	agent	section.	While	this	has
become	the	default	in	the	more	recent	versions	of	Puppet,	it	does	not	hurt	to	add	it	in.	This
causes	the	clients	to	sync	custom	facts,	providers,	and	other	Puppet	libraries	from	the
master.	We	will	see	how	this	is	used	in	later	chapters.

The	final	change	we	have	made	is	to	add	the	master	section	and	add	reports	=	store.
This	causes	the	master	to	save	reports	to	the	local	filesystem	on	the	Puppet	Master.	We’ll
use	this	later	to	do	analysis	of	our	Puppet	runs	for	security-related	purposes.

Puppet	services
Both	the	Puppet	Master	and	the	agent	are	usually	run	as	services.	This	allows	the	agent	to
check	its	run	frequency	and	apply	any	changes.	We’ve	not	explicitly	started	the	services
here,	although	we’ll	need	to	start	the	master	in	order	to	use	it	from	our	agent.	To	do	this,
we	run	the	following	command:

sudo	service	puppetmaster	start

In	order	for	the	Puppet	Master	to	start	at	boot,	we’ll	also	issue	the	following	command	to
enable	it	to	autostart:

sudo	chkconfig	puppetmaster	on

It’s	pretty	common	to	use	Puppet	to	manage	Puppet,	and	in	a	later	chapter,	we’ll	do	this	to
show	how	we	can	use	Puppet	to	secure	the	Puppet	Master.

Note
It’s	worth	noting	that	Puppet	running	with	a	default	web	server	configuration	will	not
scale	beyond	a	few	dozen	hosts.	Scaling	Puppet	is	outside	the	scope	of	this	book.	More
information	on	scaling	Puppet	can	be	found	at
http://docs.puppetlabs.com/guides/scaling.html.

http://docs.puppetlabs.com/guides/scaling.html

Preparing	the	environment	for	examples
As	mentioned	in	the	preface,	we’re	going	to	use	Vagrant	to	run	our	examples.	In	case	you
missed	it,	Vagrant	is	a	tool	that	helps	you	automate	the	creation	of	virtual	machines	for
testing.	In	this	case,	it’s	a	great	tool	for	us	to	use	to	quickly	build-out	our	build	and
example	environments.

We’ll	be	using	CentOS	6	in	these	examples,	but	most	of	them	should	run	without	much
modification	on	other	platforms.	You	will	need	to	adjust	the	package	names	and	perhaps
configure	the	filenames	for	other	operating	systems.	Many	community	modules,	which	we
will	explore	in	later	chapters,	support	multiple	flavors	of	Linux	as	well	as	other	Unix-like
systems.	The	powerful	descriptive	language	of	Puppet	makes	this	easy	to	do.

While	the	use	of	Vagrant	is	not	required,	it	will	help	us	to	maintain	a	clean	environment
for	each	of	the	examples	we	run,	and	will	also	ease	the	creation	of	virtual	machines.	If	you
choose	not	to	use	Vagrant	for	this,	you	can	still	run	the	examples	using	the	manifests	and
modules	provided	with	the	source	accompanying	this	book.

Installing	Vagrant	and	VirtualBox
In	order	for	us	to	use	Vagrant,	we	must	first	install	it.	To	do	this,	we	need	to	install	the
required	dependencies	followed	by	Vagrant	itself.	We’ll	be	using	VirtualBox	to	host	the
virtual	machines	in	these	examples,	since	it	is	the	most	supported	virtual	machine
provider.

VirtualBox	can	be	downloaded	from	http://www.virtualbox.org.	On	this	site,	you	will	find
packages	for	installing	a	variety	of	operating	systems.	You	simply	need	to	pick	the
package	for	your	chosen	operating	system	and	install	it	using	the	instructions	found	on	the
site.

Once	we	have	VirtualBox	installed,	we	can	approach	installing	Vagrant.	Vagrant	has
several	methods	of	installation.	These	methods	include	OS	packages	for	Linux,	as	well	as
installers	for	OS	X	and	Windows.	Older	versions	of	Vagrant	supported	installation	via	the
Ruby	gem	utility,	but	this	has	been	removed	in	later	versions.

Vagrant	can	be	found	at	http://www.vagrantup.com.	Once	you’re	there,	you	can	download
the	package	or	installer	for	your	OS.	Once	downloaded,	you	can	install	the	package	using
your	operating	system’s	package	manager,	or	by	executing	the	downloaded	package.	In
Windows	and	OS	X,	this	is	sufficient	to	have	a	working	installation	of	Vagrant.

More	in-depth	installation	instructions	can	be	found	on	the	Documentation	tab	on	the
Vagrant	website;	however,	the	package	or	installer	will	do	most	of	the	work.

It	is	worth	noting	that	if	you	are	using	Windows,	you	will	perform	most	of	the	work	we’re
doing	in	a	command	shell	on	the	DOS	command	box.	However,	if	you	use	a	local	editor,
you	should	be	able	to	follow	along	with	no	issues.

Creating	our	first	Vagrantfile
Now	that	we	have	Vagrant	installed,	we’ll	create	our	first	Vagrant	configuration.	Vagrant
uses	a	file	called	Vagrantfile	to	control	its	operation.

First,	we	start	by	creating	a	directory	for	our	project.	In	this	case,	we’ll	call	it	puppetbook.
We’ll	end	up	building	on	this	setup	in	later	chapters	to	automate	configuration	of	our
examples.	This	will	allow	us	to	focus	on	the	Puppet	tasks,	and	not	so	much	on	getting	our
test	systems	into	the	desired	state.

Inside	this	directory,	we’ll	create	a	directory	called	master_manifests.	The	purpose	of
this	directory	is	to	hold	the	Puppet	manifests	that	we’ll	use	to	provision	the	base	VM.

We’ll	be	using	the	Puppet	provisioner	to	do	our	work.	This	is	one	of	a	handful	of	methods
you	can	use	to	provision	a	Vagrant	virtual	machine.	Using	this	provisioner,	we’ll	write	a
Puppet	manifest	that	will	describe	the	desired	state	of	our	machine.	Vagrant	will	then	use
this	manifest	to	run	Puppet	locally	and	configure	the	system.

Next,	we’ll	create	a	Vagrantfile.	In	your	favorite	editor,	go	ahead	and	open
Vagrantfile.	Add	the	following	contents.	We’ll	cover	what	each	one	does	in	a	moment:

Vagrant.configure(2)	do	|config|

http://www.virtualbox.org
http://www.vagrantup.com

		config.vm.define	:puppetmaster	do	|master|

				master.vm.box	=	"centos65-x64-puppet"

				master.vm.box_url	=	"http://puppet-vagrant-boxes.puppetlabs.com/centos-

65-x64-virtualbox-puppet.box"

				master.vm.hostname	=	"puppet.book.local"

				master.vm.network	"private_network",	ip:	"10.78.78.30",	netmask:	

"255.255.255.0"

				master.vm.provision	"shell",	inline:	"yum	–y	update	puppet"

				master.vm.provision	"puppet"	do	|puppet|

						puppet.manifests_path	=	"master_manifests"

						puppet.manifest_file	=	"init.pp"

				end

		end

end

Note
It’s	possible	that	by	the	time	you	read	this,	the	Vagrant	box	referenced	in	the	preceding
code	will	be	deprecated.	This	book	was	written	using	the	Puppet	Labs	CentOS	6	machine
images.	You	can	go	to	http://puppet-vagrant-boxes.puppetlabs.com/	and	find	a
replacement.	You	want	a	CentOS	6	x86_64	box	with	Puppet	(called	plain	there)	and
VirtualBox	addons.

Go	ahead	and	save	the	file.	We’ll	cover	what	each	file	does	here:

Vagrant.configure(2)	do	|config|

This	line	sets	up	Vagrant	using	configuration	version	2.	It	uses	Ruby	blocks	to	create	a
Vagrant	configuration	with	the	config	variable:

config.vm.define	:puppetmaster	do	|master|

This	line	defines	a	virtual	machine	called	puppetmaster.	Vagrant	supports	multimachine
setups,	which	is	a	feature	we’ll	use	later	on	in	the	book.	For	now,	we’ll	define	a	single
machine.	Much	like	the	preceding	code,	we	use	a	block	called	master:

master.vm.box	=	"centos65-x64-puppet"

This	defines	the	box	we’ll	use	for	our	Puppet	Master.	It	is	a	symbolic	name,	but	it	makes
sense	to	name	it	according	to	what	it	is.	If	you	refer	to	the	same	box	later,	it’ll	use	the
same	base	and	not	download	the	box	files	an	additional	time:

master.vm.box_url	=	"http://puppet-vagrant-boxes.puppetlabs.com/centos-65-

x64-virtualbox-puppet.box"

This	defines	the	URL	we’ll	download	our	box	file	from.	In	this	case,	we’re	grabbing	it
from	the	hosted	Puppet	Vagrant	boxes	on	Puppet	Labs.	We	could	get	a	box	from	any
number	of	other	places,	but	the	Puppet	Labs	boxes	come	with	the	Puppet	agent
preinstalled	and	the	Puppet	repository	is	already	available	and	ready	for	use.	If	you	wish
to	explore	other	box	options,	there	is	a	directory	of	them	available	at

http://puppet-vagrant-boxes.puppetlabs.com/

http://www.vagrantcloud.com:

master.vm.hostname	=	"puppet.book.local"

This	command	simply	sets	the	host	name	of	our	machine.	It	is	important	for	the	master	as
it	influences	the	certificate	name	that	gets	created	at	installation:

master.vm.network	"private_network",	ip:	"10.78.78.30",	netmask:	

"255.255.255.0"

This	line	creates	a	private	network	for	our	virtual	machines	to	use.	We	assign	it	the	IP
address	10.78.78.30/24	(78	is	PU	on	a	phone	dial	pad):

master.vm.provision	"shell",	inline:	"yum	–y	update	puppet

“Wait,”	you	say,	“I	thought	we	were	using	the	Puppet	provisioner?”

As	it	turns	out,	the	Puppet	Labs	base	box	comes	with	Puppet	3.4	installed.	The	current
version	we	wish	to	use	in	this	book	is	3.7.3.	We	use	the	yum	statement	to	upgrade	Puppet
before	the	provisioner	starts.	Otherwise,	we	get	issues	when	the	Puppet	run	updates	the
agent:

master.vm.provision	"puppet"	do	|puppet|

Here,	we	tell	Vagrant	we’re	going	to	use	the	Puppet	provisioner,	and	open	a	block	called
puppet	to	do	so:

puppet.manifests_path	=	"master_manifests"

Here,	we	give	the	path	to	the	manifest	directory.	This	is	relative	to	the	path	that	the
Vagrantfile	is	in.	As	you	can	recall,	we	created	this	directory	earlier:

puppet.manifest_file	=	"init.pp"

We	define	the	Puppet	manifest	to	be	called	init.pp.	This	is	the	default	name	of	a	Puppet
manifest.	Vagrant	defaults	to	default.pp	if	it’s	not	specified:

end

end

end

These	lines	undo	each	of	the	preceding	blocks	and	close	out	the	file.

If	we	run	Vagrant	now,	it	will	throw	an	error	because	it	cannot	find	the	init.pp	file,	so
let’s	go	ahead	and	create	it	inside	the	master_manifests	directory.	To	save	space,	we’ll
call	out	each	block	and	describe	its	function	rather	than	giving	the	entire	file	and
explaining	it:

package	{	'puppet-server':

		ensure	=>	'present',

}

The	preceding	resource	declaration	will	install	the	Puppet	Master.	By	specifying	the
ensure	value	of	present,	we	make	sure	it’s	installed;	however,	we	tell	Puppet	that	we	do
not	care	about	the	version	and	do	not	wish	to	upgrade	it:

http://www.vagrantcloud.com

file	{	'/etc/puppet/puppet.conf':

		ensure		=>	'present',

		owner			=>	'root',

		group			=>	'root',

		mode				=>	'0644',

		source		=>	'/vagrant/master_manifests/files/puppet.conf',

		require	=>	Package['puppet-server'],

}

The	preceding	resource	declaration	has	a	good	amount	more	going	on.	Here,	we’re	going
to	manage	a	file	called	/etc/puppet/puppet.conf.	We	ensure	that	it	is	present,	then	set
the	owner,	group,	and	mode	to	set	the	values.	Using	the	source	parameter,	we	source	the
file	from	the	local	filesystem.	Vagrant,	by	default,	will	mount	the	directory	containing	the
Vagrantfile	as	/vagrant,	so	we	can	take	advantage	of	that	mount	to	get	the	file	without
otherwise	copying	it.

The	last	line	here	shows	off	the	explicit	dependency	management	of	Puppet.	We	require
that	the	puppet-server	package	is	installed	before	we	install	the	configuration	file.	This
will	ensure	that	the	directory	is	created,	and	the	package	installation	does	not	overwrite	the
configuration	file:

service	{	'puppetmaster':

		ensure		=>	'running',

		require	=>	File['/etc/puppet/puppet.conf'],

}

This	last	resource	declaration	ensures	that	the	Puppet	Master	service	is	running.	It	depends
on	the	configuration	file	being	there.

In	a	real-world	example,	we’re	likely	to	use	subscribe	instead	of	require	here.	This
would	restart	the	service	if	the	configuration	file	changed.	However,	since	we’re	using	the
local	Puppet	provisioner	and	not	running	this	code	under	a	Puppet	Master,	this	code	will
only	be	run	once,	so	it	is	unnecessary	to	use	subscribe.

We	need	one	last	file	to	make	the	system	work.	The	file	resource	depends	on	a	file	called
master_manifests/files/puppet.conf.	We’ve	covered	the	contents	of	this	file	in	the
Puppet	installation	section,	so	we	will	not	repeat	them	here.	You	simply	need	to	copy	the
file	to	the	directory	for	the	provisioner	to	use.

When	we’re	done,	the	complete	directory	structure	of	this	setup	will	look	as	follows:

.

├──	Vagrantfile

└──	master_manifests

				├──	files

				│			└──	puppet.conf

				└──	init.pp

Once	we’re	set	up,	we’re	in	a	good	position	to	run	the	examples	that	we’ll	present	in	this
book.	As	these	examples	get	more	complex,	we’ll	add	the	necessary	data	to	this	structure
to	add	things	such	as	client	machines.

Puppet	for	security	and	compliance
Puppet	is	a	perfect	tool	for	security	and	compliance.	So	much	security	work	involves
ensuring	that	a	given	version	of	a	service	is	on	every	server,	or	whether	a	user	account
exists	or	not.

Much	of	this	work	is	also	very	tedious	and	repetitive.	When	work	such	as	this	is	done
across	many	servers,	the	likelihood	that	some	of	them	will	be	different	grows.	These
snowflakes,	or	systems	that	are	unique	and	unlike	other	systems,	can	cause	security	issues
or	can	be	hard	to	troubleshoot.

On	top	of	being	able	to	maintain	a	system	in	a	fixed	state,	we	can	use	some	Puppet
resources,	such	as	PuppetDB,	to	do	some	fairly	in-depth	reporting.	Using	custom	facts,
you	can	collect	any	information	you	wish	to	send	to	a	central	place.	This	can	include
things	such	as	software	versions,	hardware	configuration,	and	much	more.	By	using	this
information,	we	can	start	to	work	toward	creating	a	full	configuration	management	and
security	platform.

Through	Puppet,	you	will	be	able	to	centrally	manage	the	major	configuration	aspects	of
all	of	your	systems.	Keeping	this	configuration	in	version	control	and	treating	it	as	code
gives	you	all	the	benefits	that	developers	have	been	able	to	enjoy	for	years.	You’ll	quickly
be	able	to	see	how	the	state	of	a	system	has	evolved	over	time,	as	well	as	look	where	bugs
might	have	been	introduced	and	have	caused	security	issues.

Additionally,	there	is	an	increasing	movement	to	use	Puppet	for	compliance	and	auditing.
By	demonstrating	that	Puppet	is	indeed	running	on	a	system	and	showing	the	manifests
running	on	it,	you	can	ensure	that	a	system	is	in	a	given	state.	This	information	can	be
shown	to	auditors	as	documentation	on	how	systems	are	configured.

Getting	to	the	point	of	100-percent	coverage	in	system	configuration	using	Puppet
requires	commitment	and	time.	Using	community	modules,	as	we’ll	explore	later,	can
lessen	that	work.	However,	the	results	of	doing	this	are	very	high.	Disaster	recovery	can
be	made	simpler	because	systems	can	quickly	be	rebuilt.	Installing	the	latest	tripwire	on
all	systems	becomes	as	simple	as	updating	the	manifests	and	letting	the	systems	check	in.
These	benefits	can	make	the	job	of	a	security	professional	much	easier.

As	we	progress	through	this	book,	we	will	explore	many	of	these	abilities	in-depth,	but	for
now,	let’s	look	at	a	simple	example	we	can	use	to	learn	some	of	the	Puppet	concepts	and
language.

Example	–	using	Puppet	to	secure	openssh
Now	that	we’ve	got	the	system	set	up	for	our	use,	we	can	finally	approach	the	main
example	for	this	chapter.	In	this	example,	we’re	going	to	use	what	has	traditionally	been
one	of	the	first	things	used	to	show	off	Puppet	and	install	SSH.	However,	in	this	case,
we’re	going	to	use	a	hardened	configuration	utilizing	some	options	recommended	by	the
security	community.

The	example	of	securing	SSH	is	one	that	we	will	return	to	several	times	in	this	book	as	we
expand	upon	our	configuration	management	toolkit	and	branch	out	into	things	such	as
firewall	management.

Starting	the	Vagrant	virtual	machine
Since	this	is	our	first	time	using	Vagrant,	we’ll	cover	how	to	start	a	virtual	machine.	In	the
directory	with	the	Vagrantfile,	run	the	following	command:

vagrant	up

Once	this	is	done,	you’ll	see	the	output	from	Vagrant	indicating	the	actions	it’s	taking,	as
well	as	output	from	the	commands	it	runs—this	includes	the	Shell	provisioner	and	the
Puppet	provisioner.	When	it’s	done,	you’ll	end	up	with	something	that	is	similar	to	the
following:

You’ll	notice	some	warnings	on	the	screen	here.	These	are	options	that	are	changing	with
the	newer	version	of	Puppet.	Our	manifest	could	add	an	allow_virtual	setting	to	get	rid
of	the	second	warning.	The	first	warning,	however,	is	a	result	of	how	Vagrant	is	calling
Puppet.

Connecting	to	our	virtual	machine
Once	your	machine	has	booted,	simply	issue	the	following	command	to	connect:

vagrant	ssh

This	will	connect	you	to	the	machine	using	ssh.	Once	this	is	complete,	we	can	start
working	on	our	module.

Creating	the	module
We’ll	be	using	a	Puppet	module	to	secure	SSH.	As	such,	we	should	go	ahead	and	create
the	directory	to	hold	our	module.	You	can	issue	the	following	commands	to	create	the
module	skeleton	on	the	guest	virtual	machine:

sudo	mkdir	–p	/etc/puppet/modules/openssh/manifests

sudo	mkdir	–p	/etc/puppet/modules/openssh/files

These	directories	will	hold	the	manifests	for	Puppet	to	compile	as	well	as	our
configuration	file.	For	our	first	simplistic	example,	we	will	use	a	static	SSH	configuration
file.	In	later	chapters,	we	will	build	upon	it	and	make	it	dynamic	with	the	various	options
that	are	available.

Tip
It’s	also	possible	to	make	the	/etc/puppet/modules/openssh	directory	a	symlink	to	a
directory	in	/vagrant.	If	you	create	the	directory	in	/vagrant,	you	can	use	any	editor	on
your	host	system	to	edit	the	files	and	have	it	immediately	available	in	the	guest.	This	saves
you	the	trouble	of	having	to	configure	a	good	editing	environment	on	the	guest	machine.

Building	the	module
Now	that	we	have	the	framework,	we’ll	build	our	first	module.	Much	like	the	preceding
code,	we’ll	go	through	it	section	by	section	covering	what	each	resource	does.	The
manifest	we’re	building	will	be	very	similar	to	the	one	we	used	to	provision	the	Puppet
Master	for	the	use	of.

First,	we’ll	edit	the	/etc/puppet/modules/openssh/manifests/init.pp	file	to	create	the
module’s	main	manifest.	This	manifest	is	the	main	unit	of	the	Puppet	code,	which	is
invoked	when	we	include	the	module.	As	we	go	through	each	of	the	sections,	we’ll	go
through	what	they	do.	A	complete	manifest	file	can	be	found	on	this	book’s	website,	but
you	should	really	build	it	along	with	us.	This	will	help	you	with	understanding	and
memorization:

class	openssh	{

The	preceding	line	defines	the	class.	The	class	in	the	init.pp	file	is	always	named	after
the	module.	It’s	a	new	construct	we’ve	not	seen	before	that	is	unique	to	creating	modules:

		package	{	'openssh-server':

				ensure	=>	'latest',

		}

The	preceding	section	is	similar	to	the	puppetmaster	section.	The	only	difference	is	that
we’re	using	latest	instead	of	present.	Being	a	security-related	package,	it	may	make
sense	to	make	sure	that	you	keep	openssh	up	to	date.

Alternatively,	if	your	environment	requires	it,	you	could	specify	a	fixed	version	to	install.
This	might	be	useful	if	you	require	pretested	versions	or	have	validated	versions.	You
must	weigh	the	benefits,	ensuring	that	you	run	the	most	recent	version	of	the	software,
including	the	risk	of	almost	immediately	installing	it	when	it	is	available,	and	that	you’re
using	the	latest	tag:

		file	{	'/etc/ssh/sshd_config':

				ensure	=>	'present',

				owner		=>	'root',

				group		=>	'root',

				mode			=>	'0600',

				source	=>	'puppet:///modules/openssh/sshd_config',

		}

Tip
As	your	Puppet	code	becomes	more	complex,	care	must	be	taken	on	how	you	name	your
files	inside	your	module.	It	can	sometimes	be	useful	to	create	the	full	path	to	the	file	under
the	modules	directory,	so	there	is	no	confusion	as	to	the	destination	of	the	time.	We	omit
these	here	only	because	our	modules	are	simple,	and	it	makes	the	examples	easier	to
follow.

This	is	similar	to	the	Puppet	Master	configuration	file,	but	we	introduced	a	new	construct
here.	We’re	sourcing	the	file	from	puppet	master	by	using	the	special	puppet://	uniform

resource	identifier	(URL).	When	Puppet	runs,	it	will	fetch	the	file	from	the	master	for	use
on	the	agent.	The	source	file	should	be	present	in	the
/etc/puppet/modules/openssh/files	directory	on	the	master:

		service	{	'sshd':

				ensure	=>	'running',

		}

Here,	as	before,	we	ensure	that	ssh	is	running	when	we	run	Puppet:

		Package['openssh-server']	

		->	File['/etc/ssh/sshd_config']

		~>	Service['sshd']

}

This	is	also	a	new	construct	called	resource	chaining.	It	is	an	alternative	way	to	specify
that	we	do	things	in	the	order	listed:	first,	the	package,	followed	by	the	file,	and	then	the
service.	Note	the	tilde	on	the	service	dependency.	This	shows	that	we’re	notifying	the
service.	It	means	that	if	the	configuration	file	changes,	the	service	will	be	restarted.

Tip
In	a	declarative	system,	there	needs	to	be	a	way	to	ensure	that	things	are	run	in	the	correct
order.	One	of	the	more	difficult	things	for	new	Puppet	users	is	to	grasp	the	concept	that
their	manifests	don’t	necessarily	run	in	a	top-down	order.	This	concept	is	so	hard	that	in
recent	versions	of	Puppet,	the	default	has	been	changed	to	a	process	in	the	manifest	order
by	default.	More	information	on	resource	ordering	and	this	change	can	be	found	at
http://puppetlabs.com/blog/introducing-manifest-ordered-resources.

http://puppetlabs.com/blog/introducing-manifest-ordered-resources

The	openssh	configuration	file
To	build	the	configuration	file	we’re	going	to	use,	we’ll	start	with	the	openssh
configuration	file	shipped	with	CentOS	and	make	a	few	changes.	First,	we’ll	copy	the
existing	configuration	file	with	the	following	command:

sudo	cp	/etc/ssh/sshd_config	/etc/puppet/modules/openssh/files/

Next,	we’ll	edit	the	file	with	your	favorite	editor.	Make	sure	you	run	it	in	sudo	as	you
won’t	have	permission	to	edit	the	file.	We’ll	uncomment	and	change	the	following	lines	in
the	file:

PermitRootLogin	no

MaxAuthTries	3

We’ll	start	with	these	changes	to	demonstrate	how	the	process	works.	Then,	save	the	file.

Next,	we	need	to	make	sure	the	Puppet	agent	can	read	it.	We’ll	set	the	permissions	in	such
a	manner	that	the	Puppet	user	can	read	it.	Execute	the	following:

sudo	chgrp	puppet	/etc/puppet/modules/openssh/files/sshd_config

sudo	chmod	640	/etc/puppet/modules/openssh/files/sshd_config

The	site.pp	file
Now,	we	need	to	bring	it	all	together	to	tell	Puppet	to	use	our	module.	By	default,	Puppet
runs	a	file	called	site.pp	on	the	master	to	determine	what	actions	to	take	when	a	node
checks	in.	We	need	to	add	the	new	module	to	the	file	for	Puppet	to	run	it.

The	file	lives	in	/etc/puppet/manifests	on	our	Vagrant	guest.	Go	ahead	and	open	it	in
your	favorite	editor	and	add	the	following	section:

node	default	{

		include	openssh

}

This	adds	a	default	node	declaration	and	includes	our	openssh	module	on	that	node.	It	will
ensure	that	our	new	module	gets	used.

Running	our	new	code
Now	that	we’ve	got	it	all	built,	let’s	go	ahead	and	see	the	fruits	of	our	labor.	Execute	the
following	command:

sudo	puppet	agent	--test

You	should	see	the	output	as	follows:

Note
If	you’re	running	these	examples	outside	Vagrant,	you	will	have	a	bit	more	work	to	do.
We’re	using	Vagrant	to	set	our	hostname	to	Puppet,	and	the	master	by	default	has	its	own
certificate	signed.	If	you	are	running	without	Vagrant,	you	will	need	to	add	a	host	file
entry	or	DNS	pointing	to	your	master,	and	you	may	need	to	sign	the	certificate.	We’ll
cover	certificate	singing	in	Chapter	5,	Securing	Puppet.

Victory!	You	can	see	that	Puppet	changed	the	file	to	disallow	root	logins	and	change	the
maximum	authentication	attempts	to	3.

As	with	any	new	technology,	the	learning	curve	can	seem	somewhat	overwhelming	at
first.	We’ve	now	gone	through	a	rather	lengthy	example	to	effectively	make	a	two-line	edit

to	a	configuration	file	on	a	single	machine.	This	was	a	short	and	simple	example	to
explore	some	base	concepts	of	Puppet.	Using	this	concept,	we	could	apply	this	same	edit
to	hundreds	or	even	thousands	of	machines	in	our	infrastructure	with	very	little	additional
effort.	We’ll	also	be	exploring	more	in-depth	examples	as	we	gain	a	skillset.	With	some
practice,	you	will	find	that	applying	changes	across	one	of	many	machines	becomes
second	nature	with	Puppet.

Summary
In	this	chapter,	we	built	a	foundation	for	things	we	will	do	in	chapters	to	come.	First,	we
covered	what	Puppet	is,	and	how	it	differs	from	other	tools	in	its	space.	We	gave	a	brief
introduction	to	some	of	the	other	Puppet	components	we’ll	be	using	in	this	book	as	well.

Moving	on	from	this,	we	covered	how	to	install	Puppet	on	CentOS.	We	went	through	a
full	installation	example	and	covered	the	basics	of	configuration	files.

Then,	we	covered	the	configuration	and	installation	of	Vagrant	and	used	it	to	run	our	first
example.	In	this	example,	we	configured	SSH	with	a	secure	configuration	file.

Finally,	we	introduced	how	Puppet	fits	into	a	security	ecosystem.	While	keeping	with	the
basics,	we’ve	begun	exploring	how	Puppet	can	be	used	to	process	simple	configuration
tasks	to	secure	your	systems.

This	chapter	focused	on	several	high-level	concepts.	As	we	get	further	into	the	book,	we’ll
go	more	in-depth	in	examples	and	they	will	get	much	more	powerful.	As	an	introductory
chapter,	the	hope	was	to	get	you	up	and	running	with	a	working	manifest.	In	future
chapters,	we	will	assume	a	base	level	of	knowledge	and	link	to	references	you	can	use	if
needed.

Additionally,	if	you	wish	to	get	some	more	information	on	the	base	Puppet	language
before	we	proceed,	there	are	several	books	available.	Some	of	them	were	mentioned
earlier	in	this	chapter,	and	we’ll	cover	more	as	we	proceed	through	the	book.	The
documentation	at	http://docs.puppetlabs.com	is	also	very	informative,	if	a	little	dry	at
times.

In	the	next	chapter,	we’ll	begin	to	use	our	knowledge	gained	here	to	explore	how	Puppet
can	be	used	to	track	changes	to	resources	on	our	filesystems.

http://docs.puppetlabs.com

Chapter	2.	Tracking	Changes	to	Objects
Have	you	ever	wanted	to	know	whether	the	content	of	the	files	on	your	server	has	changed
or	whether	the	packages	installed	on	the	server	have	changed?	Perhaps	you	have
developers	who	have	access	to	edit	files.	Maybe	you	need	to	gather	information	on	what
has	changed	for	production	use.

If	you	have	changed	the	tracking	requirements	that	require	you	to	report	on	specific	items
changing	on	our	system,	then	the	Puppet	auditing	and	change	tracking	system	can	be	a
great	solution.

Change	tracking	is	the	act	of	monitoring	systems	for	changes	and	reporting	on	them.	It	is	a
component	of	more	comprehensive	auditing,	which	includes	the	reporting	and	other
activities	surrounding	it,	ensuring	that	a	system	is	in	compliance.	There	are	numerous
software	packages	available	that	do	this.	Many	of	them	are	special-purpose	tools,	such	as
Tripwire,	OSSEC,	and	AIDE.	Puppet	can	be	used	to	configure	many	of	these	tools,	which
often	require	fairly	extensive	setups.	Additionally,	some	of	these	tools	require	commercial
licenses	to	obtain	the	full	feature	set.

With	proper	configuration,	you	can	use	Puppet	to	do	change	tracking.	Beyond	this,	Puppet
can	be	used	to	make	sure	that	changed	resources	return	to	their	expected	states,	including
correcting	the	content,	owner,	or	mode	of	the	file.

In	this	chapter,	we	will	cover	the	following	topics:

How	change	tracking	works	in	Puppet
An	overview	of	the	audit	meta-parameter
Examples	of	using	the	audit	meta-parameter
Caveats	of	the	audit	meta-parameter
Using	noop	to	get	a	similar	workflow	to	the	audit	meta-parameter

Change	tracking	with	Puppet
Puppet	has	a	variety	of	ways	to	track	changes.	In	its	normal	mode	of	operation,	Puppet
will	track	(and	correct)	changes	to	any	resources	in	its	catalog.	This	is	by	its	nature	what
it’s	designed	for.	This	can	let	you	know	that	items	have	changed,	but	at	the	same	time	let
you	know	that	you	can	correct	them	to	be	the	way	you	want	them	to	be	specified.

If	you	don’t	have	a	set	state	for	your	resources	and	you	just	want	to	know	whether	they
have	changed,	you	can	use	the	audit	meta-parameter.	There	is	some	evidence	that	this	will
be	deprecated	in	Puppet	4;	however,	it	is	currently	still	available	as	this	book	is	being
written.

Finally,	one	can	use	noop	to	monitor	changes.	In	this	mode,	Puppet	will	report	on	any
changes	to	a	resource	from	its	baseline;	however,	it	will	not	make	an	effort	to	change	them
back.

Noop	can	be	used	in	a	variety	of	fashions	and	will	be	covered	at	the	end	of	the	chapter.

The	following	table	summarizes	the	available	change	tracking	options:

	 Declared	resources Audit Noop

Requires	definition	of	the	baseline	of	a
resource Yes No Yes

Corrects	the	resource	if	it	becomes	out
of	compliance Yes No No	(although	you	can	run	without

noop	to	do	so)

Allows	you	to	specify	what	parameters
are	monitored

No,	only	what’s	in	the	baseline	is
monitored Yes No,	see	declared	resources

Supported	in	later	Puppet	versions Yes No Yes

We’ll	cover	the	audit	and	noop	methodologies	later	in	the	section.	We’ve	already	covered
what	can	be	done	with	declared	resources	in	the	previous	chapter,	and	we	will	continue	to
build	on	it	in	the	later	chapters.

The	audit	meta-parameter
The	audit	meta-parameter	is	the	primary	change	tracking	method	currently	in	Puppet.	It
was	introduced	in	Puppet	2.6,	and	it	provides	a	way	to	monitor	a	resource	without
enforcing	a	state	on	it.

With	the	introduction	of	Puppet	Enterprise	1.2,	Puppet	Enterprise	gained	a	compliance
dashboard	that	allowed	you	to	configure	and	track	file	changes.	This	dashboard	has	since
been	removed,	but	it	relied	heavily	on	the	audit	meta-parameter	and	allowed	you	to
quickly	set	up	auditing.

The	audit	meta-parameter	is	a	bit	of	a	divergence	in	the	Puppet	world.	The	declarative
nature	of	Puppet	is	to	model	the	desired	state	of	a	resource	and	allow	Puppet	to	get	it
there.	The	audit	meta-parameter	can	allow	you	to	say	that	you	may	not	care	about	the	state
of	an	item,	but	you	want	to	know	if	it	changes.

How	it	works
The	audit	system	works	by	keeping	track	of	the	state	of	the	attributes	you	monitor.	At	the
end	of	every	run,	it	persists	the	state	of	those	objects.

If	at	the	start	of	a	run	Puppet	notices	that	the	current	state	of	an	object	changes,	it	raises	an
alert.	Additionally,	information	on	these	changes	is	reported	back	to	the	master	as	part	of
any	reports.	This	report	data	can	be	used	to	generate	logs	of	changes	to	attributes.

Internally,	Puppet	implements	auditing	by	persisting	the	state	of	the	audited	objects	to	a
YAML	file.	This	data	is	stored	on	each	of	the	agent	nodes,	and	not	on	the	master	server.
On	each	Puppet	run,	YAML	is	read	and	the	state	in	the	file	is	compared	to	the	existing
state.

Tip
What	is	YAML?

YAML	is	a	markup	language.	Originally,	it	was	called	“Yet	another	markup	language”.	It
is	now	known	as	“YAML	Ain’t	Markup	Language”.	YAML	is	a	way	to	store	data	in	a	file
similar	to	formats	such	as	JSON.	Puppet	stores	much	of	its	internal	data	in	the	YAML
format,	and	as	we	approach	reporting	and	other	processing	of	Puppet	data,	we	will	need	to
parse	and	create	YAML	files.

What	can	be	audited
Being	a	meta-parameter,	audit	can	be	applied	to	any	resource.	The	code	to	handle	the	audit
meta-parameter	is	present	in	the	Puppet	core.	In	theory,	any	attribute	on	any	resource
should	be	permitted	to	be	audited,	but	there	are	likely	cases	that	are	untested	and	do	not
work	well.

Files,	users,	and	packages	are	the	most	common	use	cases	for	auditing	since	they	tend	to
be	the	resources	that	are	critical	security-wise.

Using	audit	on	files
The	most	common	use	case	for	audit	is	auditing	whether	a	given	file	has	changed.	The
audit	system	was	designed	for	a	particular	customer’s	needs	by	Puppet.	Indications	are
that	this	need	was	largely	around	auditing	files.	For	this	reason,	support	around	auditing
files	as	well	as	documentation	is	the	strongest	for	auditing	the	file	type.

To	use	audit	on	a	file,	we	add	the	audit	meta-parameter	to	its	declaration.	For	example:

file	{	'/etc/shells':

		audit	=>	'all',

}

This	tells	Puppet	that	it	should	audit	every	attribute	on	the	file	/etc/shells.	If	anything
on	this	file	changes,	it	will	log	messages	in	the	local	log	file	as	well	as	generate	report
events	indicating	the	changes.

Available	attributes
On	paper,	any	attribute	is	available	to	be	audited.	However,	some	attributes	do	not	make
sense.	The	Puppet	language	reference	as	of	version	3.6	lists	many	available	attributes	for
the	file	type.	A	current	available	list	can	be	found	at
https://docs.puppetlabs.com/references/latest/type.html#file.	The	attributes	that	directly
change	the	files	and	represent	their	state	on	the	system	are	listed	in	the	following	table,
along	with	a	brief	description	of	what	they	do:

Attribute Purpose

content This	is	the	md5sum	checksum	of	the	content.	This	changes	whenever	the	file	content	changes.

ctime This	denotes	the	creation	time	of	the	file	per	the	Unix	operating	system’s	stat	system	call.

ensure This	contains	the	type	of	file,	directory,	or	link	if	managed	by	Puppet.

group This	denotes	the	Unix	group	of	the	file.

mode This	is	the	file’s	Unix	mode.

mtime This	denotes	the	last	modification	of	the	file	per	the	Unix	operating	system’s	stat	system	call.

owner This	denotes	the	Unix	user	who	owns	the	file.

selrange This	denotes	the	SELinux	range	component	of	the	file	on	systems	supporting	SELinux.

selrole This	denotes	the	SELinux	role	of	the	file	on	systems	supporting	SELinux.

seltype This	denotes	the	SELinux	type	of	the	file	for	systems	supporting	SELinux.

seluser This	denotes	the	SELinux	user	of	the	file	for	systems	supporting	SELinux.

type This	contains	the	type	of	the	file—typically,	the	same	as	ensure	if	managed.

Some	of	these	attributes	will	not	be	present	on	all	systems.	For	instance,	on	a	non-Linux
system,	the	SELinux	attributes	will	not	be	present.	Additionally,	on	a	Windows	system,
there	is	an	underlying	mapping	in	place	to	turn	the	Windows	concepts	of	file	security	into
a	fake	Unix	mode.

https://docs.puppetlabs.com/references/latest/type.html#file

Auditing	the	password	file
Now	that	we’ve	seen	how	the	audit	resource	works	on	files,	it’s	time	to	perform	an
example.	Building	on	our	last	exercise,	we	will	audit	the	password	file	and	see	the	results.

Preparation
The	following	steps	need	to	be	performed	to	audit	the	password	file:

1.	 If	you’re	following	along	from	the	last	example,	go	ahead	and	start	the	virtual
machine	with	the	following	command:

vagrant	up

2.	 Once	the	system	is	up,	go	ahead	and	SSH	into	it	using	the	following	command:

vagrant	ssh

You	should	now	be	logged	in	to	the	system.

Creating	the	manifest
Unlike	the	last	chapter,	we	are	going	to	build	this	manifest	straight	into	the
/etc/puppet/manifests/site.pp	file.	Since	the	example	is	short	and	for	demonstration
purposes,	it	does	not	make	sense	to	create	an	entire	module	to	hold	it.

Note
As	previously	mentioned,	it	is	considered	bad	form	to	add	Puppet	resources	directly	to	the
main	manifest	in	most	cases.	We	do	so	here	to	keep	the	length	of	the	examples	to	a
minimum	since	we’ll	have	plenty	of	opportunities	to	create	modules.	For	this	and	other
best	practice	information	on	writing	Puppet	code,	see
https://docs.puppetlabs.com/guides/style_guide.html.

Inside	the	/etc/puppet/manifests	directory,	we’ll	edit	the	site.pp	file.	Once	we	are	in
the	file,	edit	the	default	node	to	have	an	additional	file	resource	as	follows:

node	default	{

		include	openssh

		file	{	'/etc/passwd':

				audit	=>	'all',

		}

}

https://docs.puppetlabs.com/guides/style_guide.html

First	run	of	the	manifest
Once	this	is	done,	execute	Puppet.	To	do	so,	run	the	following	command:

sudo	puppet	agent	–test

The	output	should	be	as	follows:

In	the	preceding	screenshot,	Puppet	records	the	initial	value	of	all	of	the	elements	of	the
file.	It	will	use	this	data	later	to	determine	whether	any	of	it	changes.

Changing	the	password	file	and	rerunning	Puppet
After	we	confirm	that	things	look	good,	we’ll	go	ahead	and	add	a	user.	This	will	have	the
effect	of	changing	the	password	file.	We	can	also	change	a	user	password	or	perform	any
number	of	other	operations	on	user	accounts.

We’re	going	to	add	a	puppettest	user.	To	do	so,	execute	the	following	command:

sudo	useradd	puppettest

Once	this	is	complete,	we	will	need	to	run	Puppet	again	to	see	the	outcome.	Run	the
following	command:

sudo	puppet	agent	-test

Again,	observe	the	output,	as	shown	in	the	following	screenshot:

In	the	preceding	screenshot,	we	can	see	that	three	different	attributes	have	changed.	The
first	attribute	is	the	content	attribute.	This	makes	perfect	sense	since	we	changed	the	file.

The	second	attribute	that	has	changed	is	the	ctime	attribute.	This	tells	us	that	something
rewrote	the	entire	file.

The	final	attribute	that	has	changed	is	mtime.	We	would	expect	this	also	since	the	file	was
changed.

The	Puppet	agent	logs	these	changes	in	its	local	log	file,	but	this	data	is	also	present	in	the
report	output.	We’ll	cover	how	we	can	use	this	data	in	Chapter	4,	Security	Reporting	with
Puppet.

Audit	on	other	resource	types
While	a	file	is	the	most	common	resource	that	can	be	audited,	any	resource	can	be	audited.
This	even	includes	custom	types.	Additionally,	even	classes	and	defines	can	be	audited;
however,	the	mechanism	is	a	bit	different.	In	the	case	of	defines	and	classes,	the	meta-
parameter	is	inherited	by	all	of	the	resources	contained	in	that	class	or	define,	but	not	in
any	that	are	included	inside	it.

The	basic	mechanism	of	the	audit	parameter	works	in	the	same	way	as	it	does	in	the	file
case.	You	need	to	specify	a	list	of	attributes	to	monitor	and	Puppet	will	persist	their	state.
If	the	state	changes	between	runs,	then	it	will	trigger	an	audit	alert.	An	example	of
auditing	just	the	owner	and	mtime	(modified	time)	attributes	of	the	sshd	daemon	in
/usr/sbin	is	as	follows:

file	{	'/usr/sbin/ssh':

		audit	=>	['owner',	'mtime'],

}

However,	as	one	would	expect,	the	attributes	to	be	audited	differ	for	each	type.	The
package	type,	for	example,	only	supports	auditing	the	ensure	value.	This	makes	sense
since	it’s	the	only	value	that	has	a	concrete	state	on	the	system.	In	this	case,	it	represents
the	currently	installed	version	of	the	package.

Determining	the	attributes	that	can	be	audited	for	a	given	resource	requires	some	trial	and
error.	The	following	table	shows	some	of	the	more	prevalent	resource	types	and	the
auditable	resources:

Resource Auditable	attributes

cron ensure,	command,	environment,	hour,	minute,	month,	monthday,	special,	target,	user,	and	weekday

group ensure,	attributes,	gid,	and	members

mount ensure,	atboot,	blockdevice,	device,	dump,	fstype,	options,	pass,	and	target

package ensure,	package_settings

service ensure,	enable,	and	flags

user ensure,	attributes,	auths,	comment,	expiry,	gid,	groups,	home,	iterations,	keys,	password,
password_max_age,	password_min_age,	profiles,	project,	roles,	salt,	shell,	and	uid

Not	all	of	these	resources	can	be	audited	in	all	cases.	For	instance,	many	of	the	user
resources	are	only	appropriate	on	Solaris	systems.

Determining	what	resources	can	be	audited	on	other	resources	can	be	done	by	reviewing
https://docs.puppetlabs.com/references/latest/type.html.	Look	for	the	entries	that	say	they
represent	the	concrete	state	on	the	system.	These	attributes	are	usually	able	to	be	audited.
One	can	also	use	the	output	of	the	Puppet	resource	command	on	a	resource	to	get	an	idea.
For	more	information	on	the	Puppet	resource	command,	see

https://docs.puppetlabs.com/references/latest/type.html

https://docs.puppetlabs.com/references/3.7.latest/man/resource.html.

https://docs.puppetlabs.com/references/3.7.latest/man/resource.html

Auditing	a	package
In	this	example,	we’ll	extend	our	openssh	module	to	audit	the	version	installed.	We’ll	then
downgrade	the	package	so	that	the	version	changes.	Afterwards,	we	can	verify	whether	the
audit	worked	as	expected.

Tip
In	a	production	environment,	it	would	make	sense	to	audit	at	least	the	sshd	binary	along
with	the	package.	It’s	quite	possible	for	the	attacker	to	change	the	binary	without	even
touching	the	package.	Auditing	the	package	is	more	useful	to	find	system	administrators
upgrading	packages	to	unauthorized	versions	by	accident.

Modifying	the	module	to	audit
First,	make	sure	the	Vagrant	machine	is	running.	If	you	need	to	restart	your	Vagrant
machine,	see	the	first	exercise	to	get	it	running.

Once	it	is	running,	go	ahead	and	SSH	it	into	the	machine.	Again,	if	you	need	a	reference,
refer	to	the	earlier	chapter.

Now	we’ll	edit	the	openssh	manifest	and	add	the	audit	parameter.	Edit	the
/etc/puppet/modules/openssh/manifests/init.pp	file	with	your	favorite	editor.	Make
sure	to	use	sudo	if	you	are	working	on	the	live	file.

Locate	the	package	declaration	and	change	it	to	look	like	the	following:

		package	{	'openssh-server':

				ensure	=>	'latest',

				audit		=>	'all',

		}

Go	ahead	and	save	the	file.	Once	complete,	run	Puppet	using	the	following	command:

sudo	puppet	agent	--test

The	output	of	the	command	should	be	as	follows:

As	you	can	see,	it	recorded	the	ensure	value,	setting	it	to	the	currently	installed	package
version.

Now	that	we	have	done	this,	let’s	downgrade	the	package	and	see	what	the	outcome	is
like.

To	downgrade	openssh-server,	run	the	following	command:

sudo	rpm	-Uvh	–-oldpackage	\	

http://vault.centos.org/6.4/os/x86_64/Packages/openssh-server-5.3p1-

84.1.el6.x86_64.rpm	\	

http://vault.centos.org/6.4/os/x86_64/Packages/openssh-5.3p1-

84.1.el6.x86_64.rpm	\	

http://vault.centos.org/6.4/os/x86_64/Packages/openssh-clients-5.3p1-

84.1.el6.x86_64.rpm

Note
The	preceding	command	is	all	on	one	line.

The	output	of	the	preceding	command	is	shown	in	the	following	screenshot:

Tip
The	preceding	command	is	a	handful.	Due	to	the	nature	of	openssh,	it	doesn’t	seem	to	get
many	updates.	Because	of	dependencies,	we	need	to	downgrade	multiple	packages,
resulting	in	the	large	command.

When	we	run	Puppet	next,	it	will	re-upgrade	openssh	since	we	have	set	it	to	the	latest
version.	This	will	ensure	that	we’re	not	running	an	old	version	of	important	software	such
as	openssh.

Now	we	want	to	run	Puppet	again	and	observe	the	output.	We’ll	once	again	run	a
command	that	should	be	familiar	to	you	by	now:

sudo	puppet	agent	-test

Once	it’s	complete,	go	ahead	and	run	it	again	to	demonstrate	that	Puppet	did	indeed
update	the	package	for	us	based	on	the	latest	attribute	in	the	openssh	module.

After	both	the	runs	are	complete,	the	output	should	look	something	like	the	following:

Note
Notice	that	we	have	two	different	audit-like	outputs	here.	The	first	one	shows	that	the
package	has	been	changed,	and	the	second	one	shows	that	it	has	been	changed	again	from
the	original	value.

This	is	one	of	the	caveats	of	audit.	If	we	audit	managed	resources	and	they	are	changed,
we	end	up	generating	two	audit	records.	This	happens	because	the	audit	checks	are
performed	at	the	beginning	of	the	run	before	Puppet	runs.	This	means	that	the	next	time
Puppet	runs,	the	audit	still	has	the	original	value	stored	and	reports	that	it	changed	again.
We’ll	cover	some	of	the	other	caveats	of	audits	in	the	next	section.

Things	to	know	about	audit
The	audit	meta-parameter	is	a	weird	fit	in	the	Puppet	world.	Puppet	is	about	defining	the
state	of	your	machines,	and	the	audit	parameter	doesn’t	do	that.	Over	its	lifespan	of
several	years,	it	has	been	fairly	controversial.	Based	on	the	discussion	happening	on	the
mailing	list	as	well	as	comments	on	the	blog	post	announcing	the	feature,	some	users	felt
that	the	idea	was	good,	but	having	it	in	the	manifest	was	a	bad	idea.

Audit	was	a	key	part	of	the	Puppet	Compliance	dashboard,	which	existed	in	Puppet
Enterprise.	This	dashboard	provided	a	GUI	around	running	audit	and	also	allowed	you	to
convert	the	rules	to	baseline	Puppet	manifests.	This	made	compliance	a	breeze	under	light
workloads.

In	Puppet	Enterprise	3.0,	the	Compliance	dashboard,	which	relied	on	this	technology,	was
deprecated	and	removed	from	Puppet	Enterprise.	A	page	at
https://docs.puppetlabs.com/pe/latest/compliance_alt.html	suggests	that	a	noop	approach
be	used	instead,	which	we’ll	cover	in	a	later	section.

Additionally,	the	Puppet	Labs	ticket	seems	to	indicate	that	the	audit	functionality	is	going
to	be	deprecated	in	Puppet	4	(https://tickets.puppetlabs.com/browse/PUP-893).

This	does	not	necessarily	indicate	that	you	should	not	use	the	audit	meta-parameter.	If	you
have	small	compliance	needs,	it’s	a	good	way	to	get	started	as	you	work	to	build	a
baseline	for	use	in	alternative	workflows.

We’ll	explore	some	of	these	possible	workflows	in	the	next	section.

https://docs.puppetlabs.com/pe/latest/compliance_alt.html
https://tickets.puppetlabs.com/browse/PUP-893

Alternatives	to	auditing
The	Puppet	audit	feature	essentially	works	by	creating	a	baseline	of	a	resource.	It	then
monitors	that	the	resource	does	not	change	from	that	baseline.

Using	the	tools	Puppet	provides	us,	we	can	manually	build	a	baseline	and	have	Puppet	run
against	it.	This	will	allow	us	to	accomplish	the	same	goal	as	auditing.

We	can	then	apply	the	baseline	we	create	to	either	ensure	that	the	resource	stays	in	the
baseline	state	or	to	monitor	that	it	has	left	it	without	changing	it	back.

We	do	this	using	the	Puppet	resource	face	to	give	us	information	on	the	resource	in
question.	A	face	is	what	Puppet	calls	the	mechanism	to	extend	its	command-line	objects.

We	call	the	Puppet	face	with	the	Puppet	resource	command.	Go	ahead	and	request	for
help	using	the	following	command:

puppet	help	resource

You’ll	get	an	output	that	will	list	all	of	the	possible	arguments—almost	like	a	man	page.

The	Puppet	resource	face	allows	us	to	export	the	current	state	of	any	object	as	a	baseline.
For	example,	consider	the	openssh	package	from	the	earlier	section.	Try	running	the
following	command:

puppet	resource	package	openssh-server

The	output	of	the	preceding	command	should	look	something	like	the	following:

package	{	'openssh-server':

		ensure	=>	'5.3p1-94.el6',

}

This	is	the	full	representation	needed	to	put	the	package	in	the	state	it	is	currently	in.	In	the
case	of	a	package,	this	is	only	the	version	that	is	necessary.

Using	this	Puppet	resource	command,	you	can	very	quickly	build	a	baseline	of	all	of	the
objects	you	care	about.	However,	once	it’s	done,	how	do	we	use	it?

The	noop	meta-parameter
Puppet	has	a	built-in	mechanism	to	indicate	that	a	resource	should	be	checked	but	not
acted	on.	This	is	called	the	noop	mode.	Noop	is	supported	in	two	modes.	In	the	first	mode,
the	entire	run	can	be	considered	a	noop	run.	This	is	accomplished	by	adding	the	--noop
flag	on	the	run.	In	the	second	method,	we	use	the	noop	meta-parameter.

The	noop	meta-parameter	is	very	similar	to	the	audit	one.	You	can	add	the	parameter	to
any	resource.	It	supports	a	true	and	a	false	value	to	indicate	whether	noop	is	on	or	off.

It’s	worth	noting	that	the	noop	meta-parameter	overrides	the	command-line	setting.	In
other	words,	even	if	you	have	noop	set	to	false	in	the	manifest	and	execute	Puppet	with
the	noop	setting	as	true,	the	resource	will	still	be	applied.

One	last	tool	in	the	noop	tool	chain	is	the	resource	default.	Suppose	you	have	a	class	for
your	baseline	data	and	you	want	to	ensure	that	all	of	the	resources	in	that	class	are	set	with
noop	as	true.	We	can	use	the	concept	of	a	resource	default	to	do	this.

To	add	a	resource	default,	you	can	use	the	type	of	resource	with	a	capital	letter.	You	can
then	set	the	parameter	defaults	for	resources	in	that	scope.	In	Puppet,	a	scope	defines	the
search	order	and	set	of	area	in	the	manifest	searched	while	attempting	to	resolve	a	default
or	variable.	In	past	versions,	scoping	was	much	more	complicated	due	to	the	widespread
use	of	variable	inheritance,	but	that	has	largely	been	replaced	due	to	the	difficulties	in
understanding	how	it	worked.

Note
Defining	how	Puppet	scopes	work	is	outside	the	scope	of	this	book	(isn’t	that	funny?);
however,	if	you’re	interested	in	learning	more	you	can	find	the	details	at
https://docs.puppetlabs.com/puppet/latest/reference/lang_scope.html#scope-lookup-rules.

For	our	purposes	here,	we’ll	consider	the	class	to	be	in	the	scope	since	that	is	the	most
likely	area	for	you	to	declare	the	parameter	defaults.	In	the	next	example,	we’ll	show	the
use	of	parameter	defaults	in	our	auditing	class.

https://docs.puppetlabs.com/puppet/latest/reference/lang_scope.html#scope-lookup-rules

Purging	resources
In	our	giant	bag	of	tricks	around	monitoring	change,	we	have	one	final	trick.	We	call	this
resource	purging.

If	you	consider	the	earlier	example	in	this	chapter,	where	we	monitor	the	password	file,
you	might	see	an	issue.	While	we	can	monitor	the	password	file,	or	enforce	the	state	of
particular	users,	we	do	not	have	a	good	way	to	stop	a	user	from	getting	added.

Puppet	contains	a	special	type	called	resources	to	manage	this.	The	resources	type
supports	relatively	few	parameters,	which	are	as	follows:

Parameter Description

name The	resource	type	to	manage

purge A	true/false	value	indicating	whether	to	purge	unmanaged	resources

unless_system_user A	user-specific	flag	indicating	to	skip	the	system	users

unless_uid A	user-specific	flag	indicating	to	skip	the	given	uid	values

The	resources	type	also	accepts	meta-parameters.	This	means	we	can	manage	users,	for
instance,	with	purge	and	noop	as	true.	This	has	the	effect	of	logging	any	users	that	which
we	are	not	explicitly	managing.	In	effect,	it	lets	us	audit	the	password	file	in	a	much	more
granular	way.

We	can	do	a	similar	thing	with	packages	that	will	give	us	the	ability	to	log	or	remove	any
packages	that	we	have	not	explicitly	targeted	for	installation.

In	the	next	section,	we’ll	go	through	an	example	of	using	noop	to	emulate	the	audit	meta-
parameter.

Using	noop
So,	what	do	all	of	the	previous	examples	look	like	in	action?	In	this	section,	we’ll	set	up
auditing	on	the	password	file	using	the	preceding	noop	parameters	and	the	resources.

First,	start	your	Vagrant	machine	and	SSH	into	it.

We’ll	create	a	module	to	hold	this	called	useraudit.	To	do	this,	let’s	first	create	the
skeleton	of	our	module	much	like	in	Chapter	1,	Puppet	as	a	Security	Tool.	On	your	virtual
machine,	run	the	following	command:

sudo	mkdir	–p	/etc/puppet/modules/useraudit/manifests

This	module	is	only	going	to	have	manifests,	so	it’s	the	only	directory	we’ll	make.

Tip
For	brevity	in	this	book,	we’re	creating	bare	bones	skeleton	example	modules.	The
module	format	is	very	powerful	and	contains	metadata	such	as	versioning	and	dependency
data.	See	https://docs.puppetlabs.com/puppet/latest/reference/modules_fundamentals.html
or	check	out	the	book	Extending	Puppet	by	Alessandro	Franceschi	for	more	information.

Now	that	we	have	a	module	structure,	let’s	make	the	manifest.	Create	the
/etc/puppet/modules/useraudit/manifests/init.pp	file	and	set	the	content	to	be	as
follows:

class	useraudit	{

		User	{

				noop	=>	true,

		}

		user	{	'bob':

				ensure					=>	present,

				noop							=>	false,

				managehome	=>	true,

		}

		resources	{	'user':

				purge														=>	true,

				unless_system_user	=>	true,

				unless_uid									=>	500,

				noop															=>	true,

		}

}

We’re	doing	a	number	of	things	here.	First,	we’re	setting	the	user	default	to	enable	noop.
Then,	we	create	a	bob	user.	This	is	to	demonstrate	that	we	can	override	noop	with	the
meta-parameter.	Finally,	we’re	using	the	resources	type	to	purge	any	users	in	the	noop
mode.	This	essentially	reports	on	any	users	that	are	not	system	users	or	users	who	were
manually	exempted	from	this	check	with	the	unless_uid	parameter.

Now,	we	need	to	add	our	new	class	to	the	sitewide	manifest	so	that	it	gets	included	in	our
test	system.	To	do	this,	we	edit	the	/etc/puppet/manifests/site.pp	file.	Make	it	look	as
follows:

https://docs.puppetlabs.com/puppet/latest/reference/modules_fundamentals.html

node	default	{

								include	openssh

								include	useraudit

}

Once	this	is	done,	go	ahead	and	run	Puppet	with	the	following	command:

sudo	puppet	agent	-test

Observe	the	output,	which	should	be	similar	to	the	following	screenshot:

As	you	can	see,	a	number	of	things	happened.	The	first	is	that	Puppet	noticed	that	the
nfsnobody	user	existed	but	wasn’t	managed.	When	we	created	the	manifest,	we	essentially
told	it	to	skip	all	the	users	below	user	500	as	well	as	user	500.	The	nfsnobody	user	is	the
uid	value	65534,	so	it	was	not	skipped.	We	would	also	want	to	exempt	it	from	checks	by
modifying	the	unless_uid	line	in	the	preceding	code	as	follows:

unless_uid	=>	[500,	65534],

We	can	specify	a	user	ID	there	as	well	as	an	array	of	user	IDs	or	a	range	of	user	IDs	in	the
format	low-high.	This	gives	us	a	good	amount	of	flexibility	in	exempting	users	from	the
audit.

The	second	thing	this	did	is	create	the	bob	user,	which	was	called	out	in	our	manifest.

Now,	much	like	we	did	earlier,	let’s	create	ourselves	another	user	without	Puppet	and	see
what	happens.

Run	the	following	command	to	make	a	dummy	user:

sudo	useradd	dummy

Now	let’s	run	Puppet	again.	Go	ahead	and	run	the	following	command:

sudo	puppet	agent	-test

You	should	see	an	output	like	the	following	screenshot:

And	success!	The	output	looks	very	similar	to	the	audit	output.

Summary
In	this	chapter,	we	looked	at	the	available	change	tracking	methodologies	in	Puppet.	We
started	by	exploring	the	audit	meta-parameter.	We	looked	at	how	it	can	be	used	to	manage
file	and	package	change	tracking.

After	this,	we	looked	at	some	of	the	limitations	of	the	audit	subsystem.	It	serves	a	purpose,
but	has	some	issues	and	doesn’t	quite	fit	into	the	Puppet	paradigm	since	it	doesn’t	model
state.

Finally,	we	looked	at	how	we	can	replicate	the	workflow	using	other	tools	Puppet	provides
us.	By	creating	our	own	baseline	and	using	noop,	we	can	duplicate	the	functionality	audit
provides,	and	even	pull	the	system	back	to	the	baseline	as	desired.

In	the	next	chapter,	we’ll	explore	how	to	use	these	change	tracking	tools	and	more	to
make	the	compliance	department	happy.	After	that,	we’ll	see	how	we	can	report	on	all	of
this	data	we’ve	been	collecting.

Chapter	3.	Puppet	for	Compliance
Whether	you	run	one,	five,	or	10,000	machines;	if	you’re	in	the	business	world,	you	have
some	level	of	necessary	compliance.	Compliance	issues	can	be	complicated.	There	is
nothing	most	system	administrators	hate	more	than	dealing	with	an	auditor	for	several
days.	What	if	there	was	a	way	in	which	your	systems	would	be	self-documenting?	These
documents	would	show	the	system	state	and	can	be	given	to	the	auditor.	With	Puppet,	this
is	possible.

In	this	chapter,	we	will	explore	how	to	do	the	previously	mentioned	points.	We’ll	cover
the	following	topics	before	we	wrap	it	up:

Using	manifests	to	document	the	system	state
How	version	control	helps	show	history
PCI	DSS	and	Puppet
How	we	can	use	facts	to	show	system	information

What	is	the	PCI	DSS?	The	Payment	Card	Industry	Data	Security	Standard	(PCI	DSS)
is	a	set	of	standards	created	for	the	credit	card	industry,	to	address	the	cardholder	security
information.	The	author	of	this	book	has	personal	experience	with	the	PCI	DSS	in	his
work	with	companies	that	process	credit	card	information.	Much	of	the	information	that
we’ll	cover	that	is	specific	to	PCI	applies	to	other	compliance	frameworks,	such	as
Sarbanes-Oxley,	as	well.

As	the	master	of	the	current	state	of	a	system,	Puppet	is	in	an	ideal	position	to	help	you
with	compliance	issues.	With	some	education	and	demonstration,	many	auditors	will
accept	Puppet	manifests,	as	showing	the	state	a	system	is	in,	if	accompanied	by	reporting,
showing	that	Puppet	has	run.

Using	manifests	to	document	the	system
state
One	of	the	strongest	tools	in	the	Puppet	compliance	tool	chest	is	the	concept	of	the
manifest.	Since	the	manifest	represents	the	system’s	desired	state,	we	can	use	the	data
found	in	it	to	show	what	the	system	looks	like.

Consider	the	following	example:	you	have	an	audit	requirement	that	says	key	security-
related	services	and	software	must	be	kept	up	to	date.	Working	with	your	security	team,
you’ve	identified	a	list	of	packages	that	fall	under	this.	For	the	purposes	of	our	example,
we’ll	say	they’re	openssh,	kerberos,	and	openssl.

We	can	write	a	manifest	that	looks	like	the	following,	to	ensure	that	this	is	the	case:

class	compliance(

		$ensure			=	latest,

		$packages	=	['openssh',	'kerberos',	'openssl']

)		{

		package	{	$packages:

				ensure	=>	$ensure,

		}

}

Note
As	we	noted	earlier,	normal	practice	would	dictate	that	to	use	the	preceding	pattern,	you
would	be	sourcing	these	packages	from	your	own	local	repository	and	would	promote
them	after	testing.	Puppet	can	even	help	manage	your	local	yum	repository	configuration
with	the	yumrepo	resource.

The	preceding	class	should	seem	familiar,	but	we’ve	introduced	a	few	new	concepts.	First,
we	will	pass	an	array	of	resources.	Arrays	of	resources	are	a	quick	way	to	create	similar
resources,	while	only	sacrificing	a	bit	of	readability.	Second,	we	will	list	the	packages	as
class	parameters.	Class	parameters	are	a	way	of	passing	data	to	a	class.	In	this	case,	we
can	define	the	class	with	no	parameters	and	it’d	handle	the	default	packages.	For	example,
consider	the	following	declaration	of	the	class:

include	compliance

Using	this	command,	we’d	get	the	openssh,	kerberos,	and	openssl	packages	set	to	the
latest	version.	However,	we	have	a	system	where	we	need	to	also	do	the	openldap
package.	In	this	case,	you	can	do	the	following:

class	{	'compliance':

		packages	=>	['openssh',	'kerberos',	'openssl',	'openldap'].

}

Using	this	syntax,	we	make	the	class	more	flexible.	With	Hiera,	which	we	will	cover	in	a
future	chapter,	this	becomes	even	more	powerful.

We	can	then	apply	the	compliance	class	to	any	system	that	we	want	to	ensure	compliance

on.	This	will	have	the	effect	of	upgrading	any	of	these	packages,	as	the	updates	become
available	whenever	Puppet	runs.

If	we	combine	this	with	a	report	showing	when	Puppet	last	ran	on	each	of	the	machines	in
the	environment,	we	essentially	produce	a	documentation	showing	that	our	environment
must	be	in	the	state	the	manifest	describes	it	to	be	in.

We’ve	seen	a	lot	of	examples	using	packages,	but	we	can	also	use	these	methods	with	any
other	resource,	such	as	services	or	files.	Often	times,	in	compliance	situations,	we	need	to
ensure	that	insecure	services	are	not	installed	or	running.

Keeping	insecure	packages	uninstalled	is	just	an	extension	of	the	preceding	package
example,	so	we	won’t	show	it	here.	However,	we	can	see	how	to	prevent	the	service	from
running.	We’ll	use	xinetd	(which	handles	telnet	and	more)	and	tftpd	in	our	examples.

The	manifest	to	do	this	would	be	similar	to	the	following:

class	compliance(

		$services	=	['xinetd',	'tftpd']

)		{

		service	{	$services:

				ensure	=>	stopped,

				enable	=>	false,

		}

}

This	is	somewhat	similar	to	our	preceding	example.	However,	in	this	case,	we	make	sure
the	services	are	stopped.	We	also	use	the	enable	attribute	to	ensure	that	the	service	is	set
to	not	start	on	boot.

Tip
What	about	other	non-managed	services?

These	examples	deal	with	services	the	OS	knows	about.	It	is	certainly	possible	to	start	the
service	outside	the	control	of	Puppet	and	it	may	not	be	detected	with	this	methodology.
There	are	ways	to	handle	this,	but	they	can	quickly	become	complex	and	very	case-
specific.	In	most	cases,	you	would	use	an	exec	resource	to	ensure	that	running	processes
are	acceptable.

Tracking	history	with	version	control
If	we’re	using	Puppet	manifests	and	data	for	compliance	purposes,	we	will	want	to	track
the	history	of	the	manifests	and	data.	There	are	many	version	control	systems	out	there,
and	a	comparison	of	them	is	beyond	the	scope	of	this	book.	However,	most	of	the	Puppet
communities	have	standardized	on	using	git.

While	we	do	not	aim	to	be	a	comprehensive	resource	on	git,	or	the	use	of	git	with	Puppet,
for	the	sake	of	compliance,	it	makes	sense	to	explore	the	common	workflow	that	will	aid	a
security	professional	in	their	everyday	work.

Note
If	you	want	more	details	than	this	book	provides	on	git	and	Puppet,	I	recommend	that	you
read	Mastering	Puppet,	Thomas	Uphill,	Packt	Publishing	for	a	Puppet-specific	view,	or
http://git-scm.com/book	for	a	more	general	overview	of	git.

http://git-scm.com/book

Using	git	to	track	Puppet	configuration
We’ll	start	with	the	simplest	use	case.	In	this	case,	we’ll	just	track	the	entire	contents	of
the	Puppet	configuration	directory	under	git.	This	is	how	many	users	begin	their
deployments,	and	it	can	work	while	they	are	small.

We’ll	start	by	making	sure	git	is	installed.	Run	the	following	command	in	your	Vagrant
virtual	machine:

sudo	yum	-y	install	git		

Now	that’s	done,	let’s	go	ahead	and	set	git	up	to	track	our	installation.

We’re	going	to	assume	that	you’re	leaving	off	where	we	left	off	in	Chapter	2,	Tracking
Changes	to	Objects.	If	you’re	dealing	with	a	system	in	a	different	state,	the	output	of	the
various	commands	may	be	different,	but	the	concept	is	identical.	We	need	to	perform	the
following	steps:

1.	 Move	into	the	puppet	directory	with	the	following	command:

cd	/etc/puppet

2.	 Then,	let’s	go	ahead	and	create	our	git	repository:

sudo	git	init

You’ll	be	greeted	with	the	output,	as	follows:

Initialized	empty	Git	repository	in	/etc/puppet/.git/

3.	 Now,	we	have	a	git	repository	created.	However,	it’s	not	very	interesting.	Let’s	see
what	git	currently	thinks	with	the	git	status	command:

[vagrant@puppet	puppet]$	git	status

#	On	branch	master

#

#	Initial	commit

#

#	Untracked	files:

#			(use	"git	add	<file>..."	to	include	in	what	will	be	committed)

#

#		auth.conf

#		environments/

#		fileserver.conf

#		manifests/

#		modules/

#		puppet.conf

nothing	added	to	commit	but	untracked	files	present	(use	"git	add"	to	

track)

4.	 As	you	can	see,	everything	is	untracked.	We	can	go	ahead	and	solve	this.	In	our	very
simplistic	case,	we’ll	just	add	the	entire	Puppet	directory	with	the	following
command:

sudo	git	add	.

5.	 Now,	we’ll	commit	it	to	the	git	repository,	as	follows:

sudo	git	commit	-m	"Initial	Commit"

We’ll	see	an	interesting	output	showing	the	files	and	directories	that	were	added,
along	with	some	administrative	information:

[vagrant@puppet	puppet]$	sudo	git	commit	-m	"Initial	Commit"

[master	(root-commit)	7c38a9b]	Initial	Commit

	Committer:	root	<root@puppet.book.local>

Your	name	and	email	address	were	configured	automatically	based

on	your	username	and	hostname.	Please	check	that	they	are	accurate.

You	can	suppress	this	message	by	setting	them	explicitly:

				git	config	--global	user.name	"Your	Name"

				git	config	--global	user.email	you@example.com

If	the	identity	used	for	this	commit	is	wrong,	you	can	fix	it	with:

				git	commit	--amend	--author='Your	Name	<you@example.com>'

	10	files	changed,	390	insertions(+),	0	deletions(-)

	create	mode	100644	auth.conf

	create	mode	100644	environments/example_env/README.environment

	create	mode	100644	fileserver.conf

	create	mode	100644	manifests/example1/site.pp

	create	mode	100644	manifests/example3/site.pp

	create	mode	100644	manifests/site.pp

	create	mode	100644	modules/openssh/files/sshd_config

	create	mode	100644	modules/openssh/manifests/init.pp

	create	mode	100644	modules/useraudit.full/manifests/init.pp

	create	mode	100644	puppet.conf

We’d	probably	want	to	follow	the	instructions	to	set	a	username	and	e-mail	and	amend	the
commit.	This	will	make	it	easier	to	track	who	made	the	changes.	Note	that	the	-m
command-line	argument	sets	the	commit	message	on	the	command	line.	If	you	omit	this,	it
will	open	your	default	editor	(which	is	usually	vi)	to	prompt	you	for	a	commit	message.

In	a	real	production	environment,	we’d	likely	want	to	use	a	git	server	solution.	This	can	be
as	simple	as	a	directory,	where	we	store	the	common	git	information,	or	as	complex	as	an
an	online	service	designed	to	handle	git.	When	doing	this,	each	user	would	make	changes
as	their	own	user,	and	we	would	use	a	method	(manual,	hook,	script,	and	so	on)	to	check
out	a	read-only	copy	on	the	Puppet	Master.	This	will	allow	us	to	audit	and	track	who	made
what	changes	to	the	Puppet	environment.	This	helps	you	with	auditing	by	showing	the
users	who	made	the	changes,	which	can	then	be	compared	to	an	authorized	users	list.

Our	workflow	from	this	point	on	is	the	same.	We	make	changes	to	files,	use	git	add	to
add	the	files	to	the	git	repository,	then	use	git	commit	to	commit	them	with	a	message.

We	can	then	use	a	variety	of	commands	in	git	to	review	the	history	of	the	repository	at	any
given	point.	The	simplest	just	being	git	log.	The	output	of	this	would	be	as	follows:

[vagrant@puppet	puppet]$	git	log

commit	7c38a9b721e40b1f7ce556e3876f1b087cd1c42d

Author:	root	<root@puppet.book.local>

Date:			Tue	Aug	19	17:36:33	2014	-0700

				Initial	Commit

If	there	were	more	commits,	you	would	see	multiple	entries.	However,	as	you	can	see,	it
tracks	the	author,	when	the	change	was	made,	and	the	comment.

Note
For	more	information	on	git	and	the	various	commands,	please	check	out	the	git	website	at
http://git-scm.org.

http://git-scm.org

Tracking	modules	separately
As	the	complexity	of	your	git	environment	increases,	there	comes	a	desire	to	track	the
state	of	modules	separately	from	the	main	repository.	This	lets	you	use	different	life	cycles
for	the	various	modules.	It	also	lets	individual	groups	work	on	various	modules.

There	are	several	solutions	available	to	solve	this	problem.	The	first	one	that	many	users
attempted	to	use	was	git	submodules.	The	git	submodules	provide	a	methodology	to	store
a	link	from	one	git	repository	inside	another.	The	inside	version	can	be	pinned	to	a	specific
revision,	allowing	you	to	independently	set	the	version	of	the	module.

However,	while	this	seems	like	a	workable	solution,	it	presents	a	number	of	challenges.
As	the	number	of	modules	you	track	grows,	a	lot	of	spurious	commits	get	made	to	the
main	repository,	simply	to	update	the	submodules	to	the	new	versions.	Additionally,	the
steps	to	do	this	usually	entail	no	less	than	three	or	four	git	commands.	This	is	cumbersome
and	hard	to	manage	with	many	frequently	changing	submodules.

Several	custom	solutions	to	this	problem	have	been	developed.	The	most	popular	currently
are	librarian-puppet	and	r10k.

Both	librarian-puppet	and	r10k	handle	installation	of	modules	from	both	the	Puppet	Forge
and	version	control.	The	Puppet	Forge	is	an	online	resource	of	community	modules	used
for	installation.	We’ll	see	how	to	use	it,	and	highlight	some	security-related	modules,	in
Chapter	6,	Community	Modules	for	Security.

Librarian-puppet	and	r10k	both	use	a	file	called	puppetfile	to	handle	the	installation	of
modules.	In	this	file,	we	list	modules	to	be	installed	and	the	source	we	want	to	get	them
from.	This	is	normally	either	version	control	or	the	Puppet	Forge.

R10k	differs	from	librarian-puppet	in	having	built-in	support	for	dynamic	environments.
Dynamic	environments	let	you	create	a	separate	full	set	of	Puppet	code	for	different	life
cycles	of	code.	This	allows	you	to	quickly	and	easily	develop	Puppet	code	without
impacting	on	production.	More	information	on	this	feature	can	be	found	on	the	link	at	the
end	of	this	section.

Once	we	have	our	puppetfile	configured,	we	execute	the	program	of	our	choice,	and	it
downloads	the	modules	and	links	them	into	the	modules	directory.	In	this	way,	we	do	not
have	to	track	the	modules	in	our	main	version	control	repository.

We’ll	go	over	a	quick	example	showing	how	to	install	the	stdlib	module	using	r10k.	We
don’t	use	it	in	the	later	examples	in	the	book,	but	in	cases,	where	we	use	the	puppet
module	command	in	later	examples,	you	can	just	substitute	the	appropriate	r10k
configuration.	We	won’t	be	doing	dynamic	environments,	or	any	of	the	other	advanced
features	of	r10k,	but	we	will	cover	the	basic	use	case	of	installing	modules.	We	need	to
perform	the	following	steps	to	install	modules:

1.	 We’ll	start	by	installing	r10k.	This	is	packaged	as	a	Ruby	gem.	We	need	to	have	the
gem	command	installed.	We	can	install	it	with	the	following	command:

sudo	gem	install	r10k

2.	 Now,	we	need	to	make	a	puppetfile.	In	our	case,	the	file	is	very	simple,	since	we’re
simply	installing	one	module.	Create	the	/etc/puppet/puppetfile	file	and	add	the
following	line:

mod	'puppetlabs/stdlib',	'4.5.1'

3.	 Once	that’s	done,	we	just	need	to	run	r10k	in	the	proper	mode	with	the	following
command:

sudo	r10k	puppetfile	install

The	command	won’t	give	any	output.	However,	when	it	completes	running,	you	will	find
that	the	modules/stdlib	directory	exists.

These	programs	will	become	invaluable	as	you	grow	your	Puppet	environment,	and	start
to	treat	your	infrastructure	as	code.

Note
For	more	information	on	librarian-puppet,	check	out	its	website	at	http://librarian-
puppet.com/.	Likewise,	for	more	information	on	r10k,	check	out	its	website	at
https://github.com/adrienthebo/r10k.

http://librarian-puppet.com/
https://github.com/adrienthebo/r10k

Facts	for	compliance
In	addition	to	using	Puppet,	to	show	the	system	state	and	reporting	on	that,	we	can	use	the
powerful	fact	system	to	report	information	on	the	system.	Using	this	information	and
reporting	mechanisms,	we	can	quickly	build	the	documentation	on	our	systems	for	use	in
our	compliance	audits.

Additionally,	the	power	of	creating	custom	facts	really	shines	here.	As	we’ll	see	in
Chapter	6,	Community	Modules	for	Security,	Puppet	makes	it	very	easy	to	grab
information	on	your	systems	and	store	it	in	a	common	place.	With	PuppetDB	and	some
reporting	glue,	you	can	turn	this	data	into	fairly	comprehensive	compliance	documents.
We’ll	explore	some	simple	cases	here	and	see	how	we	can	use	this	data	in	future	chapters.

The	Puppet	role’s	pattern
Before	we	continue	discussing	facts,	we’re	going	to	take	a	short	detour	to	discuss	a	best
practice.

One	of	the	common	patterns	used	in	the	Puppet	world	is	the	concept	of	a	role.

In	this	pattern,	a	role	defines	what	we	expect	a	system	to	do	from	a	business	perspective.	It
becomes	a	larger	part	of	what’s	known	as	the	roles	and	profiles	pattern.	We	use	roles	to
group	together	specific	configurations	for	a	service	that	is	required	to	deliver	a	business
function.

In	some	cases,	the	role	is	determined	from	the	hostname.	In	others,	it’s	determined	from
the	data	passed	into	the	instance	of	a	virtual	machine.	However,	the	role	is	obtained,	it	is
very	often	used	to	determine	what	set	of	modules	and	manifests	gets	applied	to	a	system.

Let’s	consider	an	example.	Say,	we	have	a	three-tier	web	application.	In	this	system,	we
have	frontend	web	servers,	application	servers,	and	database	servers.

Configuration	of	these	servers	is	going	to	differ,	as	per	their	compliance	needs.	Perhaps,
the	database	server	stores	credit	card	data,	so	it	needs	to	ensure	that	disk	encryption	is
used.	Using	the	role	fact,	we	can	get	a	quick	inventory	of	what	each	system	type	is,	along
with	the	other	data	on	the	system.	This	is	all	with	just	the	addition	of	one	custom	fact.

We	can	extend	the	roles	pattern	to	cover	other	logical	systems.	In	this	case,	we’ll	explore
the	role	of	the	Puppet	Master.

Using	custom	facts
Puppet	uses	facter	as	its	method	for	providing	state	information	about	the	system.	In
addition	to	the	large	number	of	built-in	facts	about	the	system,	it’s	also	possible	to	create
your	own.	There	are	a	couple	of	ways	to	do	this.	One	way,	is	to	create	Ruby	plugins,
which	provide	fact	information.	The	second	way,	is	to	use	the	facter	external	fact
methodology.	We’ll	cover	this	in	the	following	steps:

1.	 Let’s	go	ahead	and	implement	the	simplest	form	of	custom	fact,	using	the	built-in
facter	external	fact	mechanism.	First,	let’s	create	the	external	fact	directory:

sudo	mkdir	-p	/etc/facter/facts.d

2.	 Then,	edit	the	/etc/facter/facts.d/role.yaml	file	with	your	favorite	editor	and
make	it	look	exactly	as	follows	(YAML	can	be	picky	about	formatting):

role:	puppetmaster

3.	 Once	we’re	done,	run	the	following	command:

sudo	facter	-p	role

The	-p	flag	tells	facter	to	behave	in	a	similar	manner	to	a	Puppet	run.	This	emits
some	Puppet-specific	facts,	as	well	as	loading	any	custom	plugins	that	have	been
synced	over	by	Puppet.	If	all	goes	well,	you	should	see	the	output	similar	to	the
following:

[vagrant@puppet	~]$	sudo	facter	-p	role

puppetmaster

This	data	would	then	be	available	in	any	Puppet	manifests	as	::role,	as	well	as	for	use	in
Hiera.	Furthermore,	it	will	be	stored	in	PuppetDB	and	any	other	report	processor	for	later
use.	As	mentioned	earlier,	we’ll	explore	the	reporting	aspect	of	this	in	the	next	chapter.

This	is	a	very	simple	case	of	extending	facter.	However,	as	mentioned	earlier,	the	facter
library	will	allow	a	user	to	implement	custom	facts	in	Ruby,	as	shell	scripts	or	as
structured	data	files	(YAML,	JSON,	and	specially	formatted	text	files).	With	the	recent
version	of	Puppet	(Puppet	3.4	and	later	and	Facter	2.0.1	and	later),	one	can	even	sync
external	facts	straight	to	the	client	via	the	plugin	sync	mechanism.	Before	this,	we’d	have
to	write	the	facts	in	Ruby	to	have	plugin	sync	distribute	them.	This	makes	it	much	easier
for	system	administrators	who	may	not	know	Ruby	to	create	and	use	custom	facts.

Let’s	consider	a	somewhat	more	in-depth	example	using	a	shell	script.

A	common	compliance	(and	general	security)	practice,	is	to	ensure	that	no	accounts	exist
without	passwords.	We	can	use	an	external	fact	to	expose	a	count	of	accounts	without
passwords.

Edit	/etc/facter/facts.d/passwordlesscount.sh	with	your	favorite	editor.	Add	the
following	contents:

#!/bin/sh

echo	-n	"passwordlesscount="

getent	shadow	|	cut	-d:	-f2	|	grep	-x	''	|	wc	-l

Go	ahead	and	save	the	file	and	make	it	executable	by	executing	the	command:

sudo	chmod	a+x	/etc/facter/facts.d/passwordlesscount.sh

Finally,	let’s	execute	the	facter	command	again:

sudo	facter	-p	passwordlesscount

The	output	should	be	0.	If	you	add	a	passwordless	account,	the	count	increases	to	1.

While	this	is	more	complicated	than	our	first	example,	it	is	still	pretty	simplistic.
However,	it	shows	the	power	of	using	facts.	With	some	thought,	you	can	report	quite	a	lot
of	information	using	the	fact	system,	such	as	the	number	of	accounts,	whether	things	have
passwords.	You	can	also	report	the	SELinux	state,	out-of-date	package	count,	and	many
more.	With	this	information,	you	can	build	reports	that	make	showing	compliance	much
easier	than	collecting	the	information	by	hand.

In	the	next	section,	we’ll	show	specific	examples	for	using	Puppet	to	deal	with	compliance
challenges	that	the	PCI	DSS	brings	about.

The	PCI	DSS	and	how	Puppet	can	help
The	PCI	DSS	is	a	set	of	standards	for	security,	created	by	the	Payment	Card	Industry.	It
provides	a	framework	on	how	computer	systems	handling	credit	card	transactions	should
be	configured.	With	recent	high	profile	intrusions,	including	the	Target	intrusion	of	late
2013	resulting	in	the	theft	of	over	40	million	cards,	as	well	as	the	more	recent	Home
Depot	attack;	it	has	become	even	more	important	that	any	company,	processing	credit	card
information,	ensures	that	they	are	secure.	In	this	section,	we’ll	approach	some	specific
controls	of	the	PCI	DSS	standard,	and	see	how	you	can	configure	Puppet	to	remain	in
compliance.	In	some	cases,	we’ll	provide	concrete	examples,	and	in	others,	we’ll	provide
references	to	other	sections	of	the	book,	where	these	specific	problems	are	solved.

While	we	will	be	approaching	several	key	areas	of	the	PCI	DSS,	this	section	is	not
intended	to	be	a	comprehensive	list	of	tutorials	on	how	to	do	all	PCI	DSS-related
hardening.	There	are	many	other	areas	that	Puppet	can	assist	with,	if	configured	correctly.
Additionally,	one	should	engage	a	qualified	assessor	if	there	are	any	questions	about	any
of	the	sections	of	the	PCI	DSS.

Note
A	good	overview	of	the	PCI	DSS	standard	can	be	found	on	Wikipedia	at
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard.

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard

Network-based	PCI	requirements
The	PCI	DSS	contains	a	wealth	of	requirements	surrounding	secure	networks.	While
many	of	them	(and	indeed	many	of	the	PCI	DSS	requirements)	are	around	policy,	there
are	a	few	concrete	ones	that	Puppet	can	help	you	with.

Several	of	the	requirements	are	surrounding	limiting	host	access	to	required	services.	In
Chapter	7,	Network	Security	and	Puppet,	we	will	see	how	to	manage	the	host	firewall	with
Puppet.	Using	this	methodology,	one	can	configure	the	firewall	to	only	allow	access	to
individual	services.	As	mentioned	earlier,	the	manifest	that	allows	this	shows	that	the
process	is	in	place	and	alleviated	needing	to	check	each	individual	host.

Additionally,	Puppet	contains	support	to	manage	a	variety	of	network	devices	directly.
There	are	modules	to	support	Juniper,	Cisco,	and	F5	devices	in	various	stages	of	their	life
cycles.	Support	for	these	modules	continues	to	build.

As	this	ecosystem	develops,	it	opens	the	opportunity	to	expand	management	of	your
devices	with	a	configuration	management	system.	This	will	bring	many	of	your
configuration	items	into	one	place,	further	lowering	the	burden	of	providing	compliance
information	to	auditors.

We’ll	briefly	touch	on	the	device	management	aspects	in	Appendix,	Going	Forward.

Vendor-supplied	defaults	and	the	PCI
The	second	major	section	of	the	PCI	DSS	deals	with	vendor-supplied	security	parameters.
Again,	this	is	an	area	that	Puppet	can	help	you	with.	We’ll	build	on	some	earlier	examples
and	give	a	more	complete	example	of	some	of	the	concepts	in	this	section.

In	the	simplest	sense,	we	can	use	use	ensure	=>	'absent'	to	guarantee	that	the	vendor-
supplied	user	resources	are	not	enabled	whenever	we	come	across	them.	However,	this	is
really	a	default	allow	value.	We’ll	only	remove	accounts	that	we	explicitly	remove.	A
better	course	of	action	is	to	use	a	default	deny	value—if	we	don’t	manage	or	know	a	user,
we	will	remove	it.	This	requires	a	bit	more	work	to	maintain,	but	it’s	more	secure.

To	do	this,	we’ll	write	a	somewhat	more	complicated	user	module.	Some	of	the	features
we’ll	use	here	are	more	in-depth	than	the	features	we’ve	discussed.	We’ll	explain	some	of
them	and	use	references	for	others.

We’re	going	to	create	a	module	to	handle	the	user	creation.	However,	this	time	we’ll	use
the	Puppet	method	of	generating	a	template.	This	is	a	better	practice	for	modules	you	may
need	to	manage	with	librarian-puppet	or	r10k.

To	begin,	let’s	go	ahead	and	create	our	module.	We	can	do	this	in	our	home	directory
because	we	can	link	it	in,	or	add	it	to	our	local	librarian-puppet	or	r10k,	and	install	it	later.

Let’s	run	the	following	command	to	create	the	module:

puppet	module	generate	pupbook/users

You	can	replace	pupbook	with	another	username	if	you’d	like.

Once	we	do	this,	Puppet	will	ask	us	for	a	series	of	questions	to	help	write	our	metadata.	It
looks	as	follows—go	ahead	and	answer	similarly:

Note
Your	output	can	vary	a	bit	depending	on	the	version	of	Puppet	you	are	running	this	on.

When	you	get	to	this	point,	go	ahead	and	answer	yes	to	generate	your	module	template.

You’ll	see	that	several	files	and	directories	were	created.	Some	are	familiar,	such	as	the
manifests	directory.	I’ll	briefly	explain	the	others	here.

Rakefile:	This	contains	a	set	of	instructions	for	Ruby	to	run	tasks.	In	this	case,	tests.
README.md:	This	is	a	general	README	for	the	module.	In	a	real	module,	you	would
describe	it	here.
metadata.json:	This	file	contains	the	metadata	generated.	The	metadata	in	this	file	is
parsed	by	tools,	such	as	the	puppet	module	tool,	librarian-puppet,	and	r10k	to	install
dependencies	and	other	actions.
tests/init.pp:	This	contains	a	simple	class	intended	to	test	the	module.
spec/*:	This	contains	the	directory	and	its	files	hold	spec	tests	for	the	module.	It’s	a
good	idea	to	write	spec	tests	on	anything	more	than	a	simple	module.

Note

An	entire	book	can	be	written	on	Puppet	testing.	We’ll	not	cover	the	concept	of	spec	tests
here	other	than	mentioning	them.	You	can	find	more	information	on	rspec	at
http://rspec.info/,	and	on	spec	tests	for	Puppet	at	http://puppetlabs.com/blog/the-next-
generation-of-puppet-module-testing.	The	source	that	accompanies	this	book	contains	a
working,	but	basic,	spec	test	for	this	module.	It’s	how	the	code	was	tested	to	ensure	that	it
works.

Now,	we’ll	go	ahead	and	create	our	define.	In	puppet,	a	define	is	like	a	macro.	It’s
intended	to	hold	reusable	code	that	can	be	used	to	build	other	things.	This	is	different	from
how	we	use,	and	create,	a	class	that	is	intended	to	hold	resources	that	are	only	declared
once.

Let’s	create	the	manifests/users.pp	file.	In	this	file,	we’ll	create	a	define	that	both	this
module	and	other	modules	can	use	to	create	users.	Open	the	file	and	make	it	look	like	the
following:

define	users::user	(

		$userid,

		$password			=	'!!',

		$username			=	$title,

		$managehome	=	true

)	{

		group	{	$username:

				ensure	=>	present,

		}

		user	{	$username:

				ensure			=>	present,

				password	=>	$password,

				uid						=>	$userid,

				gid						=>	$username,

		}

		if	($managehome)	{

					file	{	"/home/${username}":

							ensure		=>	'directory',

							owner			=>	$username,

							group			=>	$username,

							mode				=>	'0750',

				}

		}

}

We’ll	use	this	structure	to	manage	users	we	create.	We	do	this	instead	of	the	user	type
directly,	because	we	can	extend	this	to	manage	other	resources.	Notice	that	we	can	handle
the	creation	of	the	users	group	(the	OS	would	do	this	too	in	most	cases,	but	this	way,	it’s
explicit).	We	can	also	manage	their	home	directory.	We	can	extend	this	to	manage
anything	else	we	want	about	the	user.

There	are	a	handful	of	community	modules	that	perform	the	preceding	functions,	as	well
as	manage	things,	such	as	additional	groups	and	SSH	keys.	The	ones	that	are	of	particular

http://rspec.info/
http://puppetlabs.com/blog/the-next-generation-of-puppet-module-testing

interest	are	the	camptocamp/accounts	and	torrancew/accounts	modules,	which	seem	to
be	popular.	Also,	Puppet	Enterprise	comes	with	the	pe_accounts	module	that	handles	all
these	things.	For	more	information,	see	http://forge.puppetlabs.com	and	search	for	the
account	or	user.

Next,	we’ll	create	a	params	class.	This	is	a	very	common	pattern	in	the	Puppet	module
community.	It	separates	the	OS-specific	data	from	the	core	module	functionality.	This	also
puts	us	in	a	great	position	to	override	the	functionality	on	systems,	where	we	need	to	make
it	different.	A	good	description	of	this	pattern	can	be	found	at
https://docs.puppetlabs.com/guides/module_guides/bgtm.html.

Edit	the	manifests/params.pp	file	and	insert	the	following	CentOS	6	specific	logic:

class	users::params	{

		case	$::osfamily	{

				'RedHat':	{

						$verarray	=	split($::operatingsystemrelease,'[.]')

						$majver	=	$verarray[0]

						case	$majver	{

								'6':	{

										$systemusers	=	

[0,1,2,3,4,5,6,7,8,10,11,12,13,14,99,81,69,173,68,38,499,89,74,72,32,29,52,

498,65534]

								}

								default:	{

										fail("OS	Version	${majver}	not	supported")

								}

						}

				}

				default:	{

						fail"OS	${::osfamily}	not	supported")

				}

		}

}

Note	that	the	users	array	is	all	on	one	line.	As	you	can	see,	we	set	some	defaults	based	on
the	family	of	the	OS	(it’s	better	to	use	the	family	than	the	version	since	the	Red	Hat
family,	for	instance,	has	a	ton	of	OS	releases,	such	as	Scientific	and	CentOS.	Watch	out
for	Fedora	though,	which	is	also	in	that	family).	Then,	we	use	some	Puppet	logic	to	split
the	operatingsystemrelease	fact.	If	you	have	the	lsb-release	package	installed,	you
get	a	lsbmajdistrelease	fact,	but	it’s	not	hard	to	just	split,	and	it	works	with	other
operating	systems,	as	well	as	the	older	version	of	Puppet.	Puppet	3.3+	ships	with	the
osmajversion	fact	that	does	the	same	thing.	We	use	this	to	define	a	huge	array	of	default
system	users	that	we	want	to	allow	to	exist.	We	can	also	choose	to	represent	this	array
using	a	custom	fact.	However,	an	array	support	in	facts	is	still	somewhat	new.	The	list	has
a	couple	of	VirtualBox-/Vagrant-specific	users,	so	if	you	use	this	in	your	environment,	you
should	verify	and	update	the	preceding	list.

Now,	we’ll	create	the	structure	to	use	the	resources	type	to	purge	the	users	while	ignoring
all	the	system	users.	Edit	manifests/init.pp:

http://forge.puppetlabs.com
https://docs.puppetlabs.com/guides/module_guides/bgtm.html

I’ve	cut	the	screen	to	make	the	screenshot	look	smaller.	Notice	how	the	Puppet	module
generate	command	includes	some	documentation	to	fill	out.	This	can	be	used	by	some
tools	to	generate	the	module	documentation	for	the	user.	To	keep	our	example	short,	we’ll
just	remove	it.	So,	go	ahead	and	remove	all	of	the	content	and	replace	it	with	the
following:

class	users	(

		$systemusers	=	$users::params::systemusers

)	inherits	users::params	{

		validate_array($systemusers)

		resources	{	'user':

				purge														=>	true,

				unless_system_user	=>	1,

				unless_uid									=>	$systemusers,

		}

		users::user	{	'vagrant':

				userid			=>	500,

				password	=>	'1WZR2vRP.$tHmVAmIwW1bxpSfZ7y8k3.',

		}

}

Notice	how	we	can	use	inheritance	and	the	params	pattern	to	set	the	default	value	of	the
system	users.	You	can	override	this	with	Hiera,	or	an	explicit	resource	declaration	on	a

per-instance	basis.

We	can	also	create	the	Vagrant	user	for	our	VirtualBox	here.	I	used	the	password	hash
from	the	VirtualBox	here	locally.

To	use	this	module,	first,	we	have	to	include	it	in	our	modules.	In	a	production
environment,	you’d	likely	use	r10k	or	librarian-puppet	for	this,	however,	in	our	case,	it’s
sufficient	to	just	copy	it.	Go	ahead	and	copy	the	pupbook-users	directory	to
/etc/puppet/modules/users.

We’re	using	the	module	to	validate	that	we	are,	indeed,	being	passed	an	array	as	the
argument	to	the	user’s	command.	We	need	to	install	it	in	the	puppetmaster	directory.	To
do	so,	run	the	following	command:

sudo	puppet	module	install	puppetlabs/stdlib

This	command	downloads	the	module	from	the	Puppet	Forge	and	installs	it	in	your
module	path.

Finally,	we	need	to	include	the	new	module	we	created	in	your	node	declaration.	In
/etc/puppet/manifests/site.pp,	modify	the	declaration	to	look	like	the	following:

node	default	{

		include	openssh

		include	users

}

Tip
The	puppetlabs-stdlib	module	contains	a	large	number	of	utility	functions,	such	as	the
preceding	validators.	It	also	contains	glue	such	as	run	stages	that	can	simplify	your
environment’s	dependencies.	Nearly	every	module	you	write	will	end	up	using	some
function	from	stdlib,	so	it’s	useful	to	study.	You	can	find	more	information	at
https://forge.puppetlabs.com/puppetlabs/stdlib.

Now,	go	ahead	and	run	Puppet	with	the	normal	sudo	puppet	agent	-test	command.
You	should	see	the	output	similar	to	the	following	screenshot:

https://forge.puppetlabs.com/puppetlabs/stdlib

You	might	also	see	some	other	users	if	you	created	them	in	the	previous	chapters,	as	well
as	the	custom	facts	from	the	stdlib	module	syncing	over.	However,	the	final	output
should	look	generally,	as	shown	in	the	preceding	screenshot.

As	you	can	see,	the	only	change	here	was	to	change	the	mode	on	our	Vagrant	user’s	home
directory.

Tip
At	the	time	of	writing,	there	was	a	bug	present	in	the	Puppet	core	preventing	this	example
from	working	properly.	It’s	been	filed	at	https://tickets.puppetlabs.com/browse/PUP-3132,
and	its	progress	can	be	tracked	here.	The	edits	necessary	to	make	this	work	are	also
present	in	this	ticket.	In	our	case,	the	output	should	look,	as	shown	in	the	preceding
screenshot,	but	in	reality,	due	to	the	bug,	we	end	up	matching	many	of	the	users	in	the
system’s	user	list.

For	the	production	use	of	this	module,	you	must	define	all	of	your	users	in	Puppet.	This
goes	for	system	users,	such	as	Apache	if	you	need	Apache	installed.	However,	if	this	is
done	correctly,	it	is	a	very	powerful	tool	to	ensure	that	no	errant	users	are	on	the	machine,
and	once	again,	shows	compliance	with	a	number	of	the	PCI	DSS	requirements.

There	are	a	number	of	other	pieces	of	this	section	of	the	PCI	DSS	that	can	be	addressed
with	Puppet.	There	is	a	large	section	of	requirements	having	to	do	with	managing
configuration	standards	for	systems.	This	includes	things,	such	as	disabling	services,
keeping	documentation	of	the	system	state,	and	so	on.	These	tasks	can	all	be	easily
accomplished	with	Puppet.	We’ll	cover	a	community	module	that	covers	the	CIS	standard
(which	is	called	out	specifically	as	a	standard	to	use)	in	Chapter	6,	Community	Modules

https://tickets.puppetlabs.com/browse/PUP-3132

for	Security.	We	can	also	use	an	approach,	very	similar	to	the	earlier	one,	to	manage	both
the	packages	and	services.	The	modules	to	manage	packages	in	particular	will	be	quite
large,	since	it	would	need	to	list	every	permitted	package,	but	it	is	possible.	Use	of	the
puppet	resource	command,	covered	in	the	last	chapter,	will	make	automating	the
creation	of	a	baseline	package	much	simpler.

Protecting	the	system	against	malware
The	next	area	where	Puppet	can	be	a	big	help	is	in	protecting	the	system	against	viruses
and	malware.	By	Puppetizing	your	anti-virus	agent,	you	can	ensure	that	all	systems
contain	an	anti-virus.	To	handle	keeping	the	anti-virus	up	to	date,	we	can	either	Puppetize
the	updates,	or	expose	a	fact	with	the	current	anti-virus	version.

There	are	a	number	of	well-developed	community	modules	targeting	installation	and
configuration	of	the	ClamAV	virus	scanner.	We	will	cover	these	in	Chapter	6,	Community
Modules	for	Security.	Instead	of	covering	how	to	write	a	module	to	install	and	configure
ClamAV,	we’ll	focus	on	exposing	a	fact	for	the	currently	installed	ClamAV	database.

Before	we	can	do	that,	we	need	to	get	ClamAV	installed.	We	can	just	use	yum	to	do	this,
but	there’s	not	a	task	too	small	to	create	the	Puppet	module	to	handle	this	for	us,	as	this
will	improve	our	skills	and	be	reusable	across	multiple	machines.

In	doing	this,	we	will	need	to	use	Fedora	EPEL—Extra	Packages	for	Enterprise	Linux.
Luckily,	there’s	a	wonderful	community	module	to	help	us—stahnma/epel,	as	shown	in
the	following	steps:

1.	 Go	ahead	and	install	it	with	the	following	command:

sudo	puppet	module	install	stahnma/epel

Tip
What’s	with	the	software	repositories?

Software	repositories	are	very	important	when	using	Puppet,	as	the	best	practice	is	to
install	packages	using	the	operating	system	package	manager	whenever	possible.
Ideally,	one	would	run	a	local	mirror	of	all	of	the	repositories	in	question	that	would
allow	you	to	precisely	control	the	versions	of	packages	that	get	installed	on	systems.
This	would	include	repositories,	such	as	EPEL,	as	mentioned	earlier,	as	well	as	the
base	operating	system	repositories.	Using	the	yumrepo	resource	type,	it	is	possible	to
use	Puppet	to	manage	all	of	your	configured	repositories	on	Red	Hat	machines.

2.	 Now	that	we’ve	got	this	installed,	cd	back	to	your	home	directory,	and	we’ll	make	a
module	to	hold	our	ClamAV	resources.	Run	the	following	command:

puppet	module	generate	pupbook/clamav

3.	 Answer	the	questions,	as	we	did	in	the	earlier	example	on	compliance,	and	we’ll	get
started.	First,	we’ll	need	to	create	the	resource	that	installs	ClamAV.	From	the
pupbook-clamav	directory,	edit	the	manifests/init.pp	file.	In	this	file,	we’ll	include
EPEL	to	ensure	that	it’s	installed,	as	well	as	add	our	package	declaration.	When
you’re	done,	it	should	look	as	follows:

class	clamav	{

		require	epel

		package	{	'clamav':

				ensure	=>	present,

		}

		users::user	{	'clam':

				managehome	=>	false,

				require				=>	Package['clamav']=

		}

}

4.	 Save	it,	and	add	include	clamav	to	the	default	node	definition	in	the
/etc/puppet/manifests/site.pp	file.

A	thing	to	note	here,	is	that	ClamAV	creates	a	user,	so	we	create	that	user	in	our	manifest,
doing	it	after	the	package.	If	we	do	not,	our	earlier	module	will	purge	the	user	created	by
the	package.	By	putting	it	in	the	module	that	installs	ClamAV,	it	keeps	it	close	to	the
source.	This	ties	into	the	roles	and	profiles	pattern	we	briefly	introduced	earlier,	and	we
will	touch	on	in	a	later	chapter.

Then,	we	need	to	copy	the	pupbook-clamav	directory	to	/etc/puppet/modules/clamav.

After	that,	we’ll	go	ahead	and	run	Puppet.	This	will	have	the	effect	of	installing	ClamAV.
So,	run	Puppet	using	the	following	command	(you	should	be	getting	used	to	this	by	now!):

sudo	puppet	agent	--test

The	output	will	look	like	the	following	screenshot:

Again,	if	this	is	your	first	run,	you	may	see	some	more	outputs,	as	some	of	the	EPEL-
related	items	are	synchronized	over.	In	general,	the	output	should	be	similar	though.

Now	that	we	have	ClamAV	installed,	we	can	go	ahead	and	create	our	fact.	We	can	use	the
output	of	the	clamscan	-V	command	within	a	facter	fact	to	give	us	the	version
information.	We’ll	create	a	fact	in	our	clamav	module	to	give	us	the	information.

In	our	module,	we	create	the	lib/facter	directory	inside	our	module.	You	can	use	the
mkdir	-p	~/pupbook-clamav/lib/facter	command	to	do	this.

Inside	this	directory,	we’re	going	to	create	a	file	called	clamversion.rb.	Go	ahead	and
open	this	file	with	your	favorite	editor.	We	want	it	to	look	like	the	following:

Facter.add(:clamversion)	do

		confine	:kernel	=>	"Linux"

		setcode	do

				Facter	::Core::Execution.exec	('/usr/bin/clamscan	-V	2>/dev/null')

		end

end

Save	the	file,	and	recopy	your	module	into	/etc/puppet/modules.	Once	complete,	we’ll
rerun	Puppet	with	sudo	puppet	agent	--test.	We	should	see	the	output	like	the
following:

We	can	see	that	it	copied	our	plugin	to	the	master.	The	md5sum	may	vary	depending	on
spacing	and	so	on.

Then,	we	run	the	following	command:

sudo	facter	-p	clamversion

We’ll	get	the	output	similar	to	the	following:

[vagrant@puppet	~]$	sudo	facter	-p	clamversion

ClamAV	0.98.4/19120/Sat	Jun	21	04:57:20	2014

Success!	Now,	we	can	report	this	data	with	our	favorite	reporting	mechanism.

We	also	learned	how	to	write	custom	facts	using	a	Puppet	module.	These	will
automatically	get	synced	to	all	of	your	agents.

Maintaining	secure	systems
There	is	a	section	of	the	DSS	that	handles	maintaining	secure	systems.	One	of	the
objectives	in	this	section,	is	that	we	keep	our	system	patched	and	up	to	date.

By	using	manifests,	such	as	those	we	saw	in	Chapter	1,	Puppet	as	a	Security	Tool,	we	can
identify	security-related	packages	and	make	sure	they	are	kept	at	a	given	version,	or	that
we	keep	them	at	the	latest.	This	will	ensure	that	the	security	patches	are	installed.

Authenticating	access	to	systems
A	later	section	of	the	PCI	DSS	standard	covers	authentication	best	practices.	Using	many
of	the	same	methods	we	used	in	the	vendor	defaults	section,	we	can	ensure	that	only
permitted	and	documented	users	have	access	to	systems.

In	this	section,	there	are	also	controls	around	authentication	lockouts	and	timeouts.	We	can
use	some	of	the	same	methods	we	learned	here	to	secure	openssh	to	do	some	of	these
things.	We’ll	explore	some	of	these	examples	in	Chapter	6,	Community	Modules	for
Security,	when	we	take	a	look	at	using	augeasproviders	to	manage	the	SSH
configuration.

Summary
In	this	chapter,	we	looked	at	how	to	use	Puppet	to	solve	various	compliance	challenges.
We	looked	at	how	to	use	Puppet	manifests	to	document	the	system	state.	This	can	be
unbelievably	helpful	in	showing	how	a	system	is	configured.

Additionally,	we	then	looked	at	how	version	control	can	help	you	show	the	history	of	the
system	configuration,	when	various	things	changed,	as	well	as	possibly	help	us	show	who
made	the	changes.

Finally,	we	looked	at	specific	challenges	that	the	PCI	DSS	creates,	and	how	we	can	use
Puppet	to	solve	them,	including	several	examples	of	the	use	of	Puppet	to	automate	some
of	the	PCI	DSS	requirements.

Compliance	is	a	journey,	not	a	destination.	As	we	learn	more	and	get	more	familiar	with
the	Puppet	ecosystem,	we	will	learn	many	more	ways	to	use	Puppet	to	assist	us	in	our
compliance	needs.	We’ll	explore	some	additional	resources	to	review	in	Appendix,	Going
Forward.

In	the	meantime,	in	the	next	chapter,	we’ll	move	on	and	explore	how	we	can	use	Puppet	to
generate	security	and	compliance-related	reporting.

Chapter	4.	Security	Reporting	with
Puppet
By	now,	we’ve	been	over	a	lot	of	use	cases	involving	using	Puppet	for	security.	However,
we	have	a	recurring	theme.	We’ve	gathered	data,	written	manifests,	and	created	facts.
However,	what	do	we	do	to	turn	this	into	proven	security	and	compliance	information?

We	need	to	take	the	data	and	information	from	our	runs	and	turn	it	into	reports.	Puppet	has
a	comprehensive	system	to	store	data,	and	we’ll	use	this	to	create	reports	showing	the	state
of	our	system	and	to	show	compliance.

In	this	chapter,	we	plan	to	cover	the	following	topics:

Basic	reporting	in	Puppet
Using	PuppetDB	to	create	reports
Reporting	on	compliance

We’ll	use	several	examples	to	show	how	these	topics	will	help	us	on	our	security	journey.
By	the	end	of	this	chapter,	you	should	be	comfortable	creating	reports	using	the	basic
Puppet	data,	as	well	as	reporting	via	PuppetDB.	There	are	additional	resources	that	we’ll
then	direct	you,	to	expand	your	skills.

Basic	Puppet	reporting
Puppet	has	several	methods	that	can	be	used	for	low	end	reporting	needs.	Some	of	these
methods,	such	as	parsing	the	local	run	output	data	files	or	logs,	can	be	performed	on	the
client,	but	most	of	them	rely	on	the	Puppet	Master	to	properly	perform.

Puppet’s	reporting	system	is	based	on	a	concept	of	report	processors.	Many	different
report	processors	exist.	A	summary	of	some	of	the	most	common	ones	are	listed	in	the
following	table:

Processor Description

HTTP This	posts	the	report	information	to	the	URL	given	as	a	configuration	parameter.

Store This	stores	the	completed	Puppet	reports	in	files	on	the	filesystem.	These	can	then	be	post-processed	to	do
reporting.

Tagmail This	report	processor	can	be	configured	to	send	e-mails	based	on	“tags”,	which	can	be	applied	to	classes.

PuppetDB This	stores	the	reports	in	the	PuppetDB	database.	This	can	then	be	queried	to	create	reports.

Report	processors	can	also	be	written	in	Ruby	to	handle	custom	requirements,	as	needed.
There	are	community	report	processors	readily	available	that	use	this	report	customization
support	to	allow	reporting	to	IRC,	Nagios	(an	open	source	reporting	system),	Twitter,
SNMP,	and	many	others.	There	are	also	other	products,	such	as	The	Foreman	that	enables
reporting,	as	well	as	other	functions.

In	this	chapter,	we	will	explore	the	use	of	store	and	the	PuppetDB	report	processors.	We’ll
take	a	look	at	what	we	can	do	with	these	processors	to	create	relevant	security	reports.

Another	common	report	processor	that	is	in	wide	use	is	the	HTTP	processor.	This
processor	allows	you	to	post	the	report	results	to	an	application	listening	on	a	given	URL.
Your	application	can	be	configured	to	receive	the	Puppet	reports	and	update	the
information	accordingly.	Using	this	method	requires	software	development	that	is	out	of
the	scope	for	this	book.	However,	an	excellent	resource	on	Puppet	reporting	that	covers
many	of	the	concepts	in	this	chapter	is	the	book	Puppet	Reporting	and	Monitoring,
Michael	Duffy,	Packt	Publishing,	available	at	https://www.packtpub.com/networking-and-
servers/puppet-reporting-and-monitoring.

Note
A	complete	list	of	built-in	processors	can	be	found	at
https://docs.puppetlabs.com/references/latest/report.html.	Additionally,	much	more
information	on	reporting,	including	links	to	some	of	the	community	processors	mentioned
earlier	can	be	found	at	https://docs.puppetlabs.com/guides/reporting.html.

https://www.packtpub.com/networking-and-servers/puppet-reporting-and-monitoring
https://docs.puppetlabs.com/references/latest/report.html
https://docs.puppetlabs.com/guides/reporting.html

The	store	processors
The	simplest	report	processor	available	within	Puppet	is	the	store	processor.	As	mentioned
earlier,	this	processor	simply	stores	the	report	data	as	a	file	on	the	Puppet	Master.

This	file	is	in	a	YAML	format.	This	is	a	human-readable	text	format	that	is	also
systematically	parsable.	It	contains	information	on	the	entire	Puppet	run,	in	a	format	called
internally	Puppet::Transaction::Report.

Note
This	report	format	is	versioned	and	has	been	through	five	versions	at	the	time	of	writing
(the	first	version	was	0).	Since	we	are	concentrating	on	more	recent	Puppet	versions,	we
will	explore	Version	4.	Information	on	each	of	the	individual	versions	that	have	existed
can	be	found	at	https://docs.puppetlabs.com/guides/reporting.html#report-formats.

The	report	information	contains	a	wealth	of	useful	information	for	security	reporting,	such
as	when	Puppet	last	ran,	the	status	of	resources,	and	so	on.

When	we	initially	configured	Puppet	way	back	in	Chapter	1,	Puppet	as	a	Security	Tool,
we	configured	it	to	enable	the	store	processor.	As	such,	if	you’ve	been	following	along,
we	should	already	have	some	reports	that	we	can	examine.	Let’s	go	ahead	and	take	a	look
at	some	of	the	elements	of	one	of	the	stored	reports.

We’ll	take	a	look	at	a	report	for	a	run	that	installed	the	ClamAV	virus	scanning	software.
This	is	one	of	the	last	runs	we	did	in	the	last	chapter,	and	it	does	a	good	job	of	showing
what	a	successful	run	looks	like.

Tip
What	if	the	Puppet	report	directory	is	owned	by	root?

There	is	some	chance	that	the	Puppet	report	directory	ended	up	owned	by	root	due	to	the
Vagrant	configuration	of	your	virtual	machine.	If	this	is	the	case,	execute	the	following
command:

sudo	chown	puppet	/var/lib/puppet/reports/puppet.book.local

Once	complete,	if	you	wish	to	follow	along,	remove	the	clamav	package	with	sudo	yum	–
y	remove	clamav	and	rerun	Puppet	with	sudo	puppet	agent	-test.	This	will	regenerate
the	report	and	allow	you	to	follow	along.	Managing	the	ownership	of	the	report	directory
seems	like	a	good	job	for	Puppet!

The	reports	get	dropped	to	the	directory	specified	by	the	reportdir	configuration	option
in	the	puppet.conf	configuration	file.	If	not	specified,	this	defaults	to	$vardir/reports,
so	/var/lib/puppet/reports	on	CentOS.

We’ll	go	ahead	and	pop	into	this	directory	and	take	a	look	at	the	files.	There	should	be	one
for	each	run	we’ve	done.	They	add	up	quickly,	and	there	are	community	modules	to
manage	this	data,	such	as	the	one	at	https://forge.puppetlabs.com/rcoleman/puppet_maint.
If	you	only	see	one,	see	the	earlier	note.	The	YAML	file	we’re	looking	at	has	also	been

https://docs.puppetlabs.com/guides/reporting.html#report-formats
https://forge.puppetlabs.com/rcoleman/puppet_maint

included	with	the	source	code	for	this	chapter.	The	filename	is	201409080013.yaml.

First,	let’s	take	a	look	at	the	top-level	elements.	The	contents	should	look	as	follows:

Note
The	preceding	screenshot	was	captured	in	an	editor	on	the	host	system.	However,	you	can
get	Vim	to	do	a	similar	thing	with	the	following	Vim	commands:

:set	shiftwidth=2

:set	foldlevel=1

:set	fdm=indent

:set	number

Immediately,	we	can	see	some	useful	things.	Notice	that	the	report_format	value	is	4,
which	is	consistent	with	what	we	expected	it	to	be	based	on	the	version	of	Puppet	we’re
running.

We	can	also	see	the	hostname	of	the	machine	we’re	running	on.	In	this	case,	it’s
puppet.book.local.	You	can	use	this	if	you	consume	reports	from	many	hosts.

Next,	we	can	see	the	general	status	of	the	run.	In	this	case,	it	is	changed.	This	status	can	be
one	of	the	three	options:	changed,	failed,	or	unchanged.	Changed	indicates	that	work	was
done	during	this	run.	Since	we	installed	ClamAV,	we	would	expect	this	to	be	changed.

If,	however,	we	notice	that	it	was	failed,	we	might	want	to	flag	the	host	for	further
inspection,	or	parse	the	logs	section	of	the	report	to	find	out	why	it	has	failed.

Now,	we’ll	move	on	to	examine	the	kind	parameter.	This	covers	what	type	of	run	we	did

this	time.	This	can	be	“inspect”	if	we’re	running	an	inspection	run	for	auditing,	or	an
“apply”	run	if	we’re	running	normally.	We	can	use	this	to	differentiate	our	audit	runs	and
report	on	just	them.

There	are	two	final	pieces	of	information	we	want	to	consider.	The	first	is
configuration_version	and	the	second	is	time.	These	both	will	assist	us	in	determining
when	we	last	ran.	The	configuration_version	value	is	a	string	that	contains,	by	default,
the	epoch	time	that	the	configuration	was	parsed.	This	will	often	be	cached	and	is	a	good
indication	of	when	the	configuration	was	last	considered.	We	can	also	set	a	custom	script
to	set	this	data	in	our	configuration	file.	We	can,	for	instance,	set	this	as	a	version	control
commit	ID,	or	any	other	data.

The	time	data	is	quite	straightforward.	It	is	the	time	when	the	run	was	started.	We	can	use
this	data	to	determine	whether	we	have	a	recent	run.	We	can	also,	for	instance,	set	up
alerting	of	a	run	we	do	not	see	for	a	given	host,	at	least,	so	often.

Example	–	showing	the	last	node	runtime
In	our	very	simple	case,	let’s	whip	together	a	really	simple	shell	script	that	can	parse
through	a	directory	of	reports	and	output	the	last	run	time	and	status	for	each	of	our	hosts
in	a	nice	table.

I’ll	do	this	in	a	shell	script	to	demonstrate	how	flexible	the	YAML	report	format	is.	If	you
go	more	in-depth	with	reporting	this	way,	you	would	likely	want	to	use	a	programming
language	that	supports	YAML	natively.	However,	for	simple	cases,	we	can	take	advantage
of	the	fact	that	they’re	just	text	files	and	do	the	limited	amount	of	parsing	we	need	to	do.

Let’s	edit	a	file	called	report.sh	in	your	home	directory,	and	make	the	content	look	as
follows:

#!/bin/bash

if	[$#	-eq	1];	then

		DIR=$1

else

		DIR="."

fi

cat	<<	EOF

<!doctype	html>

<html	lang="en">

<head>

<title>Puppet	Run	Report</title>

</head>

<body>

<table	border=1>

<tr><th>Hostname</th><th>Last	Run</th><th>Status</th></tr>

EOF

for	i	in	$(find	${DIR}	-mindepth	1	-maxdepth	1	-type	d)	

do

		FILE=$(ls	-t	$i/*.yaml|head	-n	1)

		if	[-f	${FILE}];	then

				HOST=$(grep	"^		host:"	$FILE	|cut	-c	9-)

				RUN=$(grep	"^		time:"	$FILE	|	cut	-c	9-)

				STATE=$(grep	"^		status:"	$FILE	|	cut	-c	11-)

		fi

		echo	"<tr><td>${HOST}</td><td>${RUN}</td><td>${STATE}</td></tr>"

done

cat	<<	EOF

</table>

</body>

</html>

EOF

Taking	a	look	at	the	code,	it’s	pretty	simplistic.	First,	we	set	a	variable	for	the	directory	to
process.	We	process	the	current	directory	if	one	is	not	passed.

Then,	we	output	a	header	for	the	HTML.	We	use	a	bash	syntax	that	lets	us	read	until	a	tag

to	make	this	easier.

After	this,	we	get	on	to	the	meat	of	the	script.	We	go	through	each	subdirectory	in	the
directory	we’re	processing	and	look	for	the	most	recent	YAML	file.	In	each	of	these	files,
we	grab	the	three	pieces	of	information	that	we’re	outputting.	We	use	a	simple
combination	of	grep	and	cut	to	grab	that	information,	since	we’re	dealing	with	text	files.

We	then	output	a	line	about	the	host	we	read	from	the	file	and	loop.	This	should	give	an
output	of	one	line	for	each	host.

Finally,	we	output	some	trailing	footer	information	to	make	a	complete	HTML	file.

While	I	am	not	an	HTML	whiz,	this	is	a	perfectly	serviceable	output,	albeit	a	bit	plain.
The	output	from	our	example	will	look	something	like	the	following:

If	you	had	more	hosts,	we’d	expect	to	see	more	information	there.

There	is	considerably	more	information	that	we	can	gather	from	the	reports.	The	reports
contain	logs	from	the	runs	that	were	performed,	as	well	as	information	on	all	of	the
resources	contained	within	the	catalog.

Note
A	wealth	of	information	on	the	Version	4	report	format	can	be	found	at
https://docs.puppetlabs.com/puppet/3/reference/format_report.html#report-format-4.

Now,	let’s	move	on	and	see	how	we	can	scale	this	to	more	easily	gather	information	about
our	hosts.

https://docs.puppetlabs.com/puppet/3/reference/format_report.html#report-format-4

PuppetDB	and	reporting
We	briefly	touched	on	what	PuppetDB	was	in	Chapter	1,	Puppet	as	a	Security	Tool.	It	is	a
backend	database	engine	that	stores	information	on	your	Puppet	environment.

We	can	query	this	information	directly	to	see	the	current	status	of	a	host,	get	information
on	its	current	resources,	and	more.	Additionally,	it	contains	a	complete	set	of	reports	if
configured	to	do	so.

PuppetDB	contains	a	very	rich	API	allowing	us	to	use	RESTful	API	calls	via	HTTP	to
retrieve	information.

Note
REST,	which	is	shorthand	for	Representational	State	Transfer,	is	a	method	of	laying	out	an
API	using	representations	of	a	given	resource.	In	this	case,	the	resources	will	be
information	about	Puppet.	It	makes	querying	and	modifying	information	using	HTTP
fairly	straightforward.

Before	we	can	play	with	PuppetDB,	we	need	to	install	it.	Luckily,	there’s	a	handy	Puppet
module	provided	by	Puppet	Labs	that	can	help	us.

Go	ahead	and	spin	up	your	machine	(refer	to	Chapter	1,	Puppet	as	a	Security	Tool	or
Chapter	2,	Tracking	Changes	to	Objects	if	you	need	a	refresher),	and	let’s	get	PuppetDB
installed	so	that	we	can	explore	it.

First,	let’s	get	the	PuppetDB	module	installed.	To	do	so,	run	the	following	command:

sudo	puppet	module	install	puppetlabs-puppetdb

This	will	install	the	PuppetDB	module,	as	well	as	several	prerequisites	we	will	need	to	run
it.	These	include	modules	to	manage	PostgreSQL,	and	a	number	of	utility	modules.	It’ll
also	bring	in	a	module	to	manage	the	local	firewall.	We’ll	use	the	same	module	in	Chapter
7,	Network	Security	and	Puppet.

Now,	we	need	to	add	the	module	to	our	manifest,	so	Puppet	will	install	it	(and	even
configure	it)	for	us.

We’ll	use	all	of	the	defaults	for	a	single	host	installation.	since	that	is	sufficient	for	our
local	testing.	Let’s	edit	our	site.pp	file	in	/etc/puppet/manifests	and	add	lines	so	that
it	looks	like	the	following:

node	default	{

		include	openssh

		include	users

		include	clamav

		include	puppetdb

		include	puppetdb::master::config

}

We	added	the	two	include	lines	at	the	bottom.	The	first	will	install	PuppetDB	and	all	of
its	prerequisites,	such	as	Java	and	PostgreSQL.	The	second	will	configure	your	Puppet

Master	to	use	PuppetDB.

Now,	let’s	run	Puppet	with	our	usual	sudo	puppet	agent	--test	command.	It	will	scroll
a	ton	of	stuff	on	your	screen	as	it	synchronizes	the	types	and	providers—copying	the
needed	libraries	to	the	client	system.	It’ll	then	get	to	the	meat	of	installing	PuppetDB	and
configuring	the	master.	In	the	end,	it	should	give	the	output	like	the	following:

We	can	notice	that	we	receive	a	broken	pipe	error.	This	is	due	to	the	Puppet	Master
restarting	during	our	run;	hence,	it	is	unavailable	to	receive	the	report.	If	you	run	Puppet
again,	you’ll	notice	that	it	runs	fine.	However,	if	you’re	still	running	the	user	audit	code
from	the	last	chapter,	the	users	module	tries	to	delete	the	PuppetDB	and	Postgres	users.
For	now,	we’ll	just	remove	this	manifest	by	removing	the	line	from	the	site.pp	file.	Edit
/etc/puppet/manifests/site.pp	and	remove	the	include	users	line,	as	well	as	the
include	clamav	line.	Removing	the	clamav	line	is	necessary	because	it	uses	our	users
module.	You	can	also	modify	the	module	to	handle	the	new	users	by	either	adding	the	user
definition	or	adding	the	new	users	to	the	system	user’s	parameter.

We	need	to	make	one	last	change.	The	PuppetDB	module	doesn’t	configure	our	master	to
store	reports	in	PuppetDB,	and	we	need	this	to	do	our	work.	We’ll	fix	that	now.

Edit	the	/etc/puppet/puppet.conf	file.	In	this	file,	in	the	[master]	section,	find	the	line,
as	follows

reports	=	store

Replace	that	line	with	the	following:

reports	=	store,	puppetdb

Then,	restart	the	puppetmaster	service	with	the	following	command:

sudo	service	puppetmaster	restart

Once	this	is	done	and	you	run	Puppet,	it	should	run	normally.	In	fact,	you	likely	won’t
even	notice	that	PuppetDB	is	there.	However,	it	is	there	and	it’s	waiting	to	assist	you.

As	was	previously	mentioned,	PuppetDB	uses	a	RESTful	API	for	access.	In	a	nutshell,
that	means	we’ll	be	making	HTTP	queries	to	get	the	report	information.

To	get	that	information,	we’ll	need	to	use	a	query	API.	The	query	API	supports	a	large
number	of	endpoints,	or	URLs	available	to	serve	the	information,	and	covering	them	all
would	quickly	turn	our	book	into	an	entire	book	on	reporting,	so	we’ll	focus	on	specific
ones	to	get	some	quick	reports.

Note
If	you	want	to	explore	the	APIs	more	in-depth,	the	earlier	mentioned	Puppet	Reporting
and	Monitoring	book	is	a	wonderful	resource.	You	can	also	find	information	on	the	query
API	at	https://docs.puppetlabs.com/puppetdb/2.2/api/query/v3/query.html.

Let’s	go	ahead	and	duplicate	the	information	in	the	basic	report	in	the	last	section	via
PuppetDB	to	show	a	basic	report.	We’ll	explore	some	additional	endpoints	later	in	this
chapter.

First,	we	need	to	get	our	interesting	report	into	PuppetDB.	To	do	that,	we’ll	simply,
manually	remove	the	clamav	package	and	let	Puppet	reinstall	it.	To	do	so,	run	the
following	commands:

sudo	yum	-y	remove	clamav

sudo	puppet	agent	--test

We	should	go	ahead	and	create	a	report	showing	ClamAV	being	installed.	This	is	similar
to	our	earlier	report.

Now,	we’ll	use	the	report’s	endpoint	to	get	information	about	the	reports	on	a	node.
However,	we’ll	want	to	approach	this	in	a	slightly	different	way	than	we	did	earlier.

First,	we’ll	use	the	node’s	endpoint	to	get	a	list	of	nodes.	We	can	do	this	on	the	command
line	using	curl,	as	follows:

curl	-Gs	'http://localhost:8080/v3/nodes'

This	will	give	the	output	similar	to	the	following:

[{

		"name"	:	"puppet.book.local",

		"deactivated"	:	null,

		"catalog_timestamp"	:	"2014-09-08T02:31:52.988Z",

		"facts_timestamp"	:	"2014-09-08T02:31:45.760Z",

		"report_timestamp"	:	"2014-09-08T02:32:17.916Z"

}]

This	output	is	in	JSON.	It’s	a	bit	harder	to	parse	in	bash,	but	we	can	use	a	helper	library	to
assist	us.	This	is	present	in	EPEL,	so	we	can	install	it	as	follows:

https://docs.puppetlabs.com/puppetdb/2.2/api/query/v3/query.html

sudo	yum	-y	install	jq

We	can	then	use	the	jq	program	to	process	this	JSON	output	in	bash.

Tip
Why	all	this	bash	scripting?

In	reality,	you	wouldn’t	likely	use	bash	to	do	this	work.	While	it’s	possible	using	tools,
such	as	jq,	we’d	be	better	served	with	a	more	fully	featured	language.	I	have	used	bash
here,	since	it’s	something	most	Linux	admins	will	know	offhand,	and	since	the	previous
example	is	bash.	There	even	exists	helper	libraries	in	languages,	such	as	Ruby	and	Python
to	assist	you	with	these	reporting	queries.

If	we	pipe	the	previous	output	to	jq	with	a	specially	formatted	query	string,	we	can	get	the
information	we’re	after.	The	command	is	as	follows:

curl	-Gs	'http://localhost:8080/v3/nodes'	|jq	-r	'.[].name'

The	jq	command	will	return	the	name	tag	of	each	of	the	elements	of	the	array.	This	is	the
list	of	hostnames	we	care	about.

Example	–	getting	recent	reports
For	each	hostname,	we	need	to	get	the	most	recent	report.	To	do	this,	we’ll	use	the	report’s
endpoint	in	PuppetDB	and	restrict	it	to	the	node	we	care	about.	This	is	a	bit	more
complicated	as	a	curl	command,	because	we	need	to	filter	the	data	we	are	querying	to	just
a	single	node.

We’ll	start	by	statically	listing	our	host,	and	then	we’ll	build	the	pieces	into	a	script.

The	command	to	do	this	is	a	doozy.	We’ll	run	the	command	and	then	break	it	into	usable
chunks:

curl	-Gs	'http://localhost:8080/v3/reports'	--data-urlencode	'order-by=

[{"field":	"end-time",	"order":	"desc"}]'	--data-urlencode	'query=["=",	

"certname",	"puppet.book.local"]'	--data-urlencode	'limit=1'

Note
If	your	output	is	a	blank	set	([]),	make	sure	you’re	reporting	to	PuppetDB,	and	that
you’ve	completed	a	run.	See	the	previous	section	for	details.

The	preceding	command	should	be	on	one	single	line.

We	use	a	handful	of	PuppetDB	arguments	here.	We	pass	these	to	curl	with	-data-
urlencode	and	curl	turns	them	into	the	POST	or	GET	arguments,	as	needed.	The	first	one,
order-by,	lets	us	order	our	output.	In	this	case,	we	order	by	the	end	time	of	the	run	in	a
descending	order.

The	second	argument	is	a	query	argument.	There	exists	a	very	powerful	set	of	operators
available	for	use	in	the	PuppetDB	query	language.	A	complete	document	explaining	the
syntax	can	be	found	at	https://docs.puppetlabs.com/puppetdb/2.2/api/query/v3/query.html.
In	this	case,	what	we’re	after	is	quite	simple.	We	want	the	reports	of	a	given	host.	In	this
case,	our	host	would	be,	puppet.book.local.

The	final	argument	is	a	limit.	This	simply	limits	the	number	of	results	we	get	back.	In	this
case,	we’re	limiting	to	1.

Together,	this	will	return	the	output	like	the	following:

[{

		"hash"	:	"0081fb5b58c05c1a24bfc4893f035f6f6ccd9ad3",

		"puppet-version"	:	"3.7.0",

		"receive-time"	:	"2014-09-08T02:51:40.951Z",

		"report-format"	:	4,

		"start-time"	:	"2014-09-08T02:51:18.863Z",

		"end-time"	:	"2014-09-08T02:51:38.248Z",

		"transaction-uuid"	:	"cb40f17e-dd9a-4246-991e-29390d2cc663",

		"configuration-version"	:	"1410143505",

		"certname"	:	"puppet.book.local"

}]

This	returns	a	good	amount	of	information	on	the	run.	Already,	you	can	see	that	we	have
the	start	and	end	time	of	the	run.	As	a	matter	of	fact,	the	only	data	we’re	missing	is	the	run

https://docs.puppetlabs.com/puppetdb/2.2/api/query/v3/query.html

status.

As	it	would	turn	out,	PuppetDB	doesn’t	actually	store	that	status	like	a	stored	report	does.
There	is	currently	a	feature	request	in	it	to	add	this	information	to	the	PuppetDB	backend.
You	can	track	that	request	at	https://tickets.puppetlabs.com/browse/PDB-36.

PuppetDB	instead	stores	the	status	of	each	individual	event	that	happened	on	the	node.	We
can	use	this	information	to	display	an	even	more	useful	summary	in	our	example	report.

https://tickets.puppetlabs.com/browse/PDB-36

Example	–	getting	event	counts
We’ll	now	take	a	look	at	how	we	can	use	the	individual	event	data	to	create	reporting	on
aggregate	event	counts.

To	do	this,	we’ll	use	one	final	endpoint,	the	event-counts	endpoint.	This	endpoint,	as	you
might	imagine,	provides	information	on	event	counts	from	a	run.	We’ll	query	it	based	on
the	hash	of	the	report	returned	earlier.	This	will	give	us	information	on	an	individual	run.

We	need	to	summarize	these	events	by	some	value.	In	this	case,	we	can	use	the	node
certname	since	we’re	querying	an	individual	report.

The	command	to	get	the	information	is	as	follows:

curl	-Gs	'http://localhost:8080/v3/event-counts'	--data-urlencode	'query=

["=",	"report",	"0081fb5b58c05c1a24bfc4893f035f6f6ccd9ad3"]'	--data-

urlencode	'summarize-by=certname'

Once	again,	that	is	all	on	one	line	and	be	sure	to	use	the	hash	of	the	report	you	ran	in	the
previous	section,	or	you	will	get	no	data.

It	should	return	the	results,	as	follows:

[{

		"subject"	:	{

				"title"	:	"puppet.book.local"

		},

		"subject-type"	:	"certname",

		"failures"	:	0,

		"successes"	:	1,

		"noops"	:	0,

		"skips"	:	0

}]

However,	there’s	our	information,	even	containing	information	on	skipped	resources
(resources	are	skipped	if	a	resource	it	depends	on	fails)	and	noop	resources.	If	there	was
no	report,	or	if	there	were	no	changed	resources,	you	would	receive	an	empty	hash.

Example	–	a	simple	PuppetDB	dashboard
We	can	use	the	information	obtained	to	this	point,	in	order	to	build	a	script	such	as	our
earlier	one.	The	script	will	be	somewhat	more	complicated	but	can	report	on	more	data.	In
the	simplest	case	here,	we’ll	report	on	the	number	of	successful	and	failed	resources,	or
simply	return	unchanged	if	no	resources	changed.	If	there	are	no	changed	resources,	the
preceding	event	counts	will	return	null.

The	script	to	do	this	is	as	follows:

#!/bin/bash

cat	<<	EOF

<!doctype	html>

<html	lang="en">

<head>

<title>Puppet	Run	Report</title>

</head>

<body>

<table	border=1>

<tr><th>Hostname</th><th>Last	Run</th><th>Status</th></tr>

EOF

HOSTS=$(curl	-Gs	'http://localhost:8080/v3/nodes'	|jq	–r	\	'.[].name')

for	H	in	${HOSTS}

do

		REPINFO=$(curl	-Gs	'http://localhost:8080/v3/reports'	\

--data-urlencode	'order-by=[{"field":	"end-time",	"order":	\	"desc"}]'	--

data-urlencode	"query=[\"=\",	\"certname\",	\

\"${H}\"]"	--data-urlencode	'limit=1')

		REPHASH=$(echo	${REPINFO}|jq	-r	'.[0].hash')

		START=$(echo	${REPINFO}|jq	-r	'.[0]|.["start-time"]')

		ECOUNT=$(curl	-Gs	'http://localhost:8080/v3/event-counts'	\

--data-urlencode	"query=[\"=\",	\"report\",	\"${REPHASH}\"]"	\

--data-urlencode	'summarize-by=certname')

		ELEN=$(echo	${ECOUNT}|jq	'.|length')

		if	[$ELEN	-eq	0];	then

				STATUS="unchanged"

		else

				SUC=$(echo	${ECOUNT}|jq	'.[0].successes')

				FAIL=$(echo	${ECOUNT}|jq	'.[0].failures')

				STATUS="${SUC}	successes,	${FAIL}	failures"

		fi

		echo	"<tr><td>${h}</td><td>${START}</td><td>${STATUS}</td></tr>"

done

cat	<<	EOF

</table>

</body>

</html>

EOF

I’ve	noted	the	wrapped	lines	with	\	at	the	end.

As	you	can	see,	the	shell	of	the	script	is	very	similar	to	what	we	found	earlier.	However,
the	main	loop	has	changed.	In	this	case,	we	build	a	list	of	hosts	by	querying	the	node’s
endpoint.	We	then	take	this	list	and	gather	information	about	each	using	first,	the	report’s
endpoint	and	then,	the	event-count’s	endpoint.	We	use	some	jq	magic	to	format	it,	and
then	finally	we	output	the	information	line.

The	output	to	this	command,	when	run,	is	very	similar	to	the	earlier	output,	with	the
addition	of	the	number	of	successful	or	failed	resources	when	ran.	The	output	is	shown	in
the	following	screenshot:

As	you	can	see,	PuppetDB	provides	a	very	powerful	base	to	report	from.	We’ve	not	even
scratched	the	surface	of	what’s	possible.	We’ll	take	a	look	at	some	other	things	we	can	do
next.

Reporting	for	compliance
When	we	consider	compliance,	there	are	a	number	of	common	areas	we	can	report	on.	To
do	the	actual	reporting,	we	can	use	whatever	method	we	choose.	This	could	be	one	of	the
previously	discussed	ways,	such	as	processing	the	stored	reports	or	using	PuppetDB.

We	already	looked	at	the	first	big	piece	in	showing	compliance.	That	is,	demonstrating
when	the	Puppet	run	last	happened	on	each	of	our	hosts.	We	have	shown	an	easy	way	to
accomplish	this	with	both	PuppetDB	and	stored	reports,	earlier	in	this	chapter.	The
information	on	the	last	run	status	exists	in	all	of	the	report	formats	and	can	easily	be
reported	on.	Setting	up	alerts	on	that	data	is	also	easily	done	using	concepts,	shown	earlier
wrapped	up	with	some	alerting	logic.

However,	we’ve	not	approached	reporting	on	the	auditing	data.	Luckily,	reporting	on	that
is	not	much	more	difficult.

The	report	format	contains	a	wealth	of	information	on	the	run,	as	well	as	data	on	the	facts
present	on	a	host	that	can	be	used	to	report	on	the	current	state	of	the	system.	It	can	also	be
parsed	to	show	what	is	changing	and	when.	When	put	together	with	the	manifest
documentation,	it	can	produce	a	complete	history	of	all	the	changes	that	Puppet	made	to
your	host	over	time.

We’ll	use	an	example	of	auditing	the	openssl	package	and	using	it	to	report	on	the
heartbleed-vulnerable	version	of	openssl,	as	our	compliance	example	here.

Note
More	information	on	heartbleed	can	be	found	at	https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-0160.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160

Example	–	finding	heartbleed-vulnerable	systems
Heartbleed	became	a	big	issue	in	mid-2014.	It	was	discovered	that	certain	default	versions
of	openssl	were	shipped	in	such	a	way	that	they	left	a	remote	vulnerability	open.	Using
this	vulnerability,	one	could	potentially	discover	the	private	SSL	key,	along	with	other
memory	data.

Sysadmins	scrambled	to	patch	their	systems	and	ensure	that	heartbleed	was	no	longer
present.	For	those	using	Puppet,	this	became	a	case	of	using	an	ensure	value	on	the
resource,	as	well	as	some	dependency	logic	to	ensure	that	it	was	updated,	and	applications
using	openssl	were	restarted.	We’ll	show	how	to	use	a	noop	resource	to	report	on	the
currently	installed	version	of	openssl.	One	can	then	extend	this	to	look	for	the	heartbleed
vulnerability.

There	are	a	couple	of	ways	in	which	we	can	approach	this.	One	way	is	to	expose	the
openssl	version	as	a	fact.	For	certain	very	critical	items,	we	may	go	down	this	route.
However,	if	you	are	managing	many	packages	in	this	manner,	it	quickly	becomes
overwhelming	to	try	to	maintain	facts	for	each	package.	It	is,	however,	fairly	easy	to
report	on	this	data	if	these	facts	are	created	using	the	PuppetDB	fact’s	endpoint.

Another	methodology	is	to	use	the	audit	meta-parameter.	This	makes	sense	since	what	we
are	essentially	doing	is	auditing	the	version	of	openssl	installed.	This	does,	however,
depend	on	the	deprecated	audit	meta-parameter,	so	let’s	examine	one	last	method.

The	first	step	in	doing	this,	is	to	create	our	noop	resource.	To	do	that,	we	will	create	a
noop	resource	set	to	pin	openssl	to	the	latest	version.	In	this	case,	we’re	asserting	that	we
always	want	openssl	to	be	the	latest,	but	we	want	to	know	if	it’s	going	to	change,	rather
than	Puppet	updating	it.

This	example	will	somewhat	follow	the	package	auditing	example	in	Chapter	2,	Tracking
Changes	to	Objects.	I’ll	abbreviate	the	example	here	and	you	can	refer	to	it	if	you	need
more	in-depth	instructions.

First,	let’s	go	ahead	and	set	up	the	openssl	package	for	audit,	with	ensure	=>	'latest'.
To	do	so,	we’ll	edit	/etc/puppet/manifests/site.pp	and	add	the	following	command	to
our	default	node	definition:

								package	{	'openssl':

										ensure	=>	'latest',

										noop			=>	'true',

								}

This	should	run	without	any	issues,	auditing	the	first	version	installed.	The	output	when
running	Puppet	should	be	similar	to	the	following	screenshot:

As	you	can	see,	on	our	test	box,	we	have	an	update	available	but	not	installed.

To	report	on	this	data,	we’ll	use	PuppetDB.	We’ll	explore	the	endpoint	required	to	get	the
information,	as	well	as	the	commands	needed	to	do	it.	However,	to	save	space,	we	won’t
show	the	entire	script.	The	script	to	report	on	this	data	will	be	found	with	the	book	source
for	reference.

The	endpoint	we’ll	use	to	do	this	is	the	events	endpoint.	The	resources	endpoint
contains	information	about	the	resource,	but	it	does	not	contain	information	about	its
current	state.	If	you	did	this	via	stored	reports,	or	your	own	report	processor,	you	could
retrieve	the	information	needed	to	do	it	from	the	Puppet::Resource::Status	class,	and
look	for,	and	examine,	the	child	events.

We	can	query	the	events	endpoint	for	the	information	required	with	the	following
command:

curl	-sG	'http://localhost:8080/v3/events'	--data-urlencode	'query=["and",	

["=",	"certname",	"puppet.book.local"],	["=",	"resource-title",	

"openssl"]]'

We’ll	get	the	output	similar	to	the	following:

[{

		"containment-path"	:	["Stage[main]",	"Main",	"Node[default]",	

"Package[openssl]"],

		"new-value"	:	"latest",

		"containing-class"	:	"Main",

		"report-receive-time"	:	"2014-09-08T23:27:32.576Z",

		"report"	:	"05b824e576a703dc76b34670cead9e3e3d8b8070",

		"resource-title"	:	"openssl",

		"property"	:	"ensure",

		"file"	:	"/etc/puppet/manifests/site.pp",

		"old-value"	:	"1.0.1e-15.el6",

		"run-start-time"	:	"2014-09-08T23:27:08.314Z",

		"line"	:	9,

		"status"	:	"noop",

		"run-end-time"	:	"2014-09-08T23:27:29.863Z",

		"resource-type"	:	"Package",

		"timestamp"	:	"2014-09-08T23:27:29.973Z",

		"configuration-version"	:	"1410218830",

		"certname"	:	"puppet.book.local",

		"message"	:	"current_value	1.0.1e-15.el6,	should	be	0:1.0.1e-16.el6_5.15	

(noop)"

}]

Notice	right	away	that	we	see	the	current	version,	and	the	message	tells	us	the	version	we
expect.	We	can	use	our	jq	command	to	spit	out	the	current	version.	The	command	to	do
that	would	be	as	follows:

jq	-r	'.[0]	|	.["old-value"]'

By	piping	the	first	curl	value	to	it,	we	get	the	output	of	just	the	version.	This	could	be
used	in	whatever	reporting	we’re	using.

It’s	worth	noting,	however,	that	the	preceding	command	will	return	all	of	the	events	for
the	openssl	resource	title.	In	reality,	we’d	need	to	include	this	in	a	loop	like	our	former
script	to	ensure	that	we	only	look	at	the	most	recent	report	for	each	box.	Additionally,	if
openssl	is	the	latest	version,	the	event	would	be	missing.	In	that	case,	much	like	we	did
with	the	unchanged	resources	in	the	earlier	PuppetDB	script,	we’d	just	need	to	return	that
we	have	the	latest	version	of	OpenSSL	installed.

The	final	step	would	be	to	look	for	vulnerable	versions.	Looking	at	the	CentOS	advisory
at	http://lists.centos.org/pipermail/centos-announce/2014-April/020249.html,	we	can	see
that	versions	before	1.0.1e-16	are	vulnerable.	As	you	can	see,	our	system	is	indeed
vulnerable.	We	can	add	the	vulnerability	status	to	our	report	if	we	knew	the	vulnerable
versions	on	the	various	operating	systems	we	run.

With	some	creativity	and	the	PuppetDB	API	guide,	we	can	produce	a	rich	set	of	reports	on
our	systems.

http://lists.centos.org/pipermail/centos-announce/2014-April/020249.html

Summary
Reporting	is	something	that	seems	to	constantly	be	a	work	in	progress.	We	can	always
make	our	reports	more	comprehensive	and	thorough.	In	much	the	same	way,	the
PuppetDB	library	and	the	Puppet	reporting	engine	itself	has	seen	a	large	amount	of
progress	recently.

An	entire	book	could	be	dedicated	to	the	topic	of	reporting	with	Puppet	(in	fact,	as
mentioned	earlier,	one	has	been!).	We’ve	only	touched	on	the	beginnings	of	building	a
rich	reporting	environment	to	get	you	started	with	your	reporting	needs.

Using	either	stored	reports	or	PuppetDB,	we	can	fairly	quickly	build	in-depth	reports	on
our	environment	and	the	resources	in	them.	We	can	do	this	in	any	number	of	languages.

There	exists	a	good	number	of	available	off-the-shelf	tools	that	can	also	be	installed	and
help	us	with	this.	Puppetboard	is	a	great	example	of	one	that	can	provide	a	lot	of	quick
insights	into	your	Puppet	environment	from	a	security	standpoint.	We’ll	touch	briefly	on
Puppetboard	in	Appendix,	Going	Forward.

We’ve	now	spent	time	exploring	basic	reporting	on	reports	using	the	store	endpoint	and
some	simple	shell	scripting.	We	also	expanded	on	that	knowledge	to	handle	reporting	from
PuppetDB,	including	a	good	number	of	examples	useful	to	build	a	very	quick	reporting
dashboard.	Using	this	information,	we’re	armed	to	start	using	the	data	Puppet	provides	for
reporting	purposes.

Now	that	we’ve	got	the	basics	behind	us	in	setting	up	Puppet	for	security	and	reporting	on
the	data,	we’ll	spend	some	time	in	the	next	chapter	talking	about	how	to	secure	Puppet
itself	before	moving	on	to	more	advanced	topics.

Chapter	5.	Securing	Puppet
As	your	Puppet	Master	is	a	tool	that	configures	your	systems,	ensuring	that	it	is	secure	is
very	important.	Puppet	can	change	any	facet	of	the	systems	under	management.	Since	it
can	cause	great	damage	to	systems	as	well	as	create	numerous	security	issues	if
compromised,	it	is	very	important	to	ensure	that	your	Puppet	Master	is	properly	secured.
For	instance,	if	your	Puppet	Master	is	compromised,	it	is	easy	to	add	a	user	to	every
system	under	management,	add	that	user	to	sudoers,	and	reconfigure	SSH	to	allow	the
user	to	log	in.

Luckily,	Puppet	has	a	fairly	secure,	out-of-the-box	configuration.	However,	as	your
environment	grows	and	you	use	more	advanced	features,	you’d	want	to	review	how	to
secure	your	Puppet	environment.

In	this	chapter,	we’ll	explore	the	following	aspects	of	securing	your	Puppet	installation:

Puppet	security	related	configuration	files
Puppet	SSL	configuration
Autosigning	Puppet	client	certificates

At	the	end	of	this	chapter,	you	should	have	a	good	understanding	of	the	various	Puppet
configuration	settings	that	you	will	require	to	secure	Puppet.	Additionally,	you	should
have	a	good	grasp	of	how	Puppet	uses	SSL	and	autosigning.

Puppet	security	related	configuration
Present	in	the	Puppet	core	are	several	configuration	files	that	control	the	security	and
access	control	of	the	base	Puppet	Master.	Over	time,	these	configuration	files	have
evolved	to	add	more	functionality	and	more	fine-grained	access	controls.	In	addition	to	the
main	Puppet	configuration	file,	puppet.conf,	the	primary	configuration	files	we’ll
examine	are	the	files	related	to	the	authentication,	file	server,	and	autosigning
configurations.

We’ll	cover	autosigning	later	on	in	this	chapter.	For	now,	let’s	look	at	the	other
authentication	and	file	server	configurations.

The	auth.conf	file
The	auth.conf	configuration	file	is	the	main	file	controlling	access	to	the	Puppet	API
resources.	Internally,	it	is	called	the	rest_authconfig	file	because	it	controls	access	to	the
RESTful	API	that	the	various	Puppet	commands	utilize	to	perform	their	functions.

Using	this	configuration	file,	you	can	lock	down	access	to	various	endpoints.	The	default
configuration	settings	used	by	Puppet	are	sufficient	in	most	cases.	These	defaults	can	be
found	at	https://docs.puppetlabs.com/guides/rest_auth_conf.html#default-acls	if	you	wish
to	review	them.	If	you	have	special	security	needs,	such	as	the	need	to	allow	off-host
systems	to	use	a	subsystem,	you	may	consider	modifying	the	settings	in	this	file	to	handle
them.	We’ll	cover	an	example	of	one	such	situation	at	the	end	of	this	section.

The	auth	configuration	file	is	made	up	of	a	series	of	stanzas	that	describe	paths.	Here	is	a
brief	example	of	one	of	these	stanzas:

path	~	^/catalog/([^/]+)$

method	find

allow	$1

The	paths	found	in	these	configuration	sections	correspond	to	URLs	in	the	Puppet	API.
The	options	available	in	each	stanza	are	as	follows:

Option Description

path
This	is	required.	It	contains	the	path	component	of	the	URL	in	question.	When	prefixed	with	~,	it	is
assumed	to	be	a	regular	expression.

Environment This	is	an	optional	list	of	environments	that	the	path	refers	to.

method This	is	an	optional	method	to	which	the	path	applies.	It	can	be	any	one	of	find,	search,	save,	or	destroy.

Auth
This	defines	whether	authentication	is	required.	It	can	be	set	to	yes	to	indicate	that	authentication	is
required,	no	to	forbid	authenticated	requests,	or	any	to	allow	both	authenticated	and	non-authenticated
requests.

allow
This	shows	a	comma-separated	list	of	hosts	allowing	regular	expressions.	Capture	arguments	are	allowed
for	regular	expressions	allowing	very	complex	directives.

allow_ip
New	in	version	3.0,	this	directive	permits	IP	addresses.	They	can	be	specified	as	whole	IPs,	IPs	with
asterisks	in	them,	or	CIDR	ranges.

Puppet	maintains	a	default	internal	set	of	authentication	parameters	that	are	utilized	if
there	is	no	entry	with	the	same	path.	In	the	case	of	a	specific	entry	with	the	same	path	as	a
default	entry,	the	default	entry	is	not	applied.

Note
More	information	on	the	auth.conf	file	and	the	default	permissions	can	be	found	at
https://docs.puppetlabs.com/guides/rest_auth_conf.html.

Additionally,	the	file	is	consulted	in	a	top-down	manner.	This	means	that	typically,	you

https://docs.puppetlabs.com/guides/rest_auth_conf.html#default-acls
https://docs.puppetlabs.com/guides/rest_auth_conf.html

would	put	the	most	specific	entries	at	the	top,	while	leaving	the	more	general	entries	lower
in	the	file.

Example	–	Puppet	authentication
Now	let’s	examine	an	example	of	limiting	access	using	the	auth.conf	file.	However,	to	do
this,	we	first	need	to	make	some	changes	to	our	Vagrant	environment,	and	then	we’ll	move
on	to	the	example.

Adding	our	second	Vagrant	host
Before	we	can	undertake	the	examples	in	this	chapter,	we	need	to	extend	our	Vagrant
setup	to	add	a	second	host.	In	doing	this,	we’ll	have	a	host	to	test	some	of	our
configuration	items	from	so	that	we	can	see	an	allowed	case	and	a	disallowed	case.

One	of	the	challenges	of	doing	that	is	getting	the	resolution	of	the	Puppet-related
hostnames	right.	There	are	a	handful	of	Puppet-specific	Vagrant	solutions,	such	as	Beaker,
that	are	used	for	specific	tasks.	Beaker	is	worth	mentioning	because	of	its	value	in	testing,
but	we	will	not	be	using	it	in	any	of	our	examples.

Beaker	is	an	acceptance	test	framework	that	can	configure	virtual	Vagrant	machines	using
specifications.	This	can	include	installing	specific	versions	of	Ruby	or	Puppet.	It	can	also
be	used	to	generically	provision	a	set	of	Vagrant	machines	using	somewhat	simplified
configuration	syntax.

Note
If	you	get	into	testing	the	modules	you	write	(and	you	should),	you	should	really	look	at
using	Beaker.	More	information	on	Beaker	can	be	found	on	its	website	at
https://github.com/puppetlabs/beaker/.

Beaker	is	a	bit	heavy	for	our	usage.	We’re	going	to	stick	to	a	smaller	subset	of	the	features
we	require	for	our	use,	and	use	a	Vagrant	plugin.	The	plugin	we’re	going	to	use	is	called
hostmanager.	Its	website	can	be	found	at	https://github.com/smdahlen/vagrant-
hostmanager.

Working	with	hostmanager

The	hostmanager	plugin	lets	us	add	some	logic	to	the	Vagrantfile	that	results	in	the
/etc/hosts	file	being	written	with	the	IPs	of	all	the	other	machines.	We’ll	use	this	so	that
our	Puppet	agents	can	find	the	master:

1.	 To	use	the	plugin,	we	first	need	to	install	it.	This	can	be	done	with	the	following
command:

vagrant	plugin	install	vagrant-hostmanager

This	will	make	the	hostmanager	plugin	available	for	our	use.

Tip
Are	plugins	safe?

We	use	the	hostmaster	plugin	for	Vagrant	here	for	ease	of	use.	For	a	development
environment,	this	is	fine.	However,	for	a	production	environment,	it	is	best	to	have	a

https://github.com/puppetlabs/beaker/
https://github.com/smdahlen/vagrant-hostmanager

properly	functioning	DNS	that	will	eliminate	the	need	for	a	plugin	such	as
hostmanager.

2.	 Next,	we	need	to	add	some	default	configuration	options	to	our	Vagrantfile.	If
you’re	following	along	with	us,	you’ll	note	that	we’re	starting	from	the	base	files
again,	as	opposed	to	starting	from	where	we	left	off	in	Chapter	4,	Security	Reporting
with	Puppet.	You	can	use	the	VM	covered	in	Chapter	4,	Security	Reporting	with
Puppet	but	that’s	not	required,	as	this	example	does	not	build	upon	it.	If	you’re	using
the	source	included	with	the	book,	the	Vagrantfile	already	has	the	required
modifications.

3.	 In	the	Vagrantfile,	we’ll	add	some	options	to	tell	hostmanager	to	run,	and	give	it
some	necessary	instructions.	At	the	top	of	the	file,	right	below	the
Vagrant.configure	line,	add	the	following:

		config.hostmanager.enabled	=	true

		config.hostmanager.ignore_private_ip	=	false

		config.hostmanager.include_offline	=	true

This	enables	the	hostmanager	plugin.	It	also	includes	the	private	IPs	of	our	VMs	and
the	IPs	of	any	offline	VMs.	These	are	useful	options	for	our	testing	setup	as	they
allow	us	to	ping	offline	hosts,	and	so	on.

4.	 Now,	under	the	master	configuration	section,	add	the	following:

				master.hostmanager.aliases	=	%w(puppet)

This	will	add	an	alias	for	Puppet	with	no	domain.	This	may	not	be	necessary	in	your
environment,	but	depending	on	how	your	local	DNS	is	configured,	your	hosts	may
end	up	utilizing	the	wrong	host	as	the	Puppet	Master.	We	want	them	to	use	our	local
Vagrant	master,	and	it’s	possible	that	they	hit	our	production	master	if	we	do	not
make	this	change.

Now	that	this	is	complete,	we’ll	add	our	second	VM.	If	we	need	to	add	a	third	VM,	it
will	look	very	similar	to	this.

5.	 Below	the	end	line	of	the	master	configuration,	we	need	to	add	a	section	for	our	new
agentone	VM.	Add	the	following	lines:

		config.vm.define	:agentone	do	|ao|

				ao.vm.box	=	"centos65-x64-puppet"

				ao.vm.box_url	=	"http://puppet-vagrant-boxes.puppetlabs.com/centos-

65-x64-virtualbox-puppet.box"

				ao.vm.hostname	=	"agentone.book.local"

				ao.vm.network	"private_network",	ip:	"10.78.78.50",	netmask:	

"255.255.255.0"

				ao.vm.provision	"shell",	inline:	"yum	–y	update	puppet"	

		end

Note
The	included	source	has	an	additional	line	in	the	file	we	just	saw.	That	line	is	meant
for	a	later	example.	You	can	safely	delete	it	for	now.

The	box	URL	and	the	network	line	should	be	on	one	line.	This	is	very	similar	to	the
existing	master	configuration.	The	only	difference	is	we	only	currently	have	the	shell
provisioner,	which	will	use	the	shell	to	update	Puppet	since	we’re	not	setting	up	the
master.	We	may	need	to	add	another	provisioner	later,	but	for	now,	this	is	sufficient	for	our
use.	The	complete	file,	including	the	additions	we	just	made,	is	shown	here	for	reference:

Vagrant.configure(2)	do	|config|

		config.hostmanager.enabled	=	true

		config.hostmanager.ignore_private_ip	=	false

		config.hostmanager.include_offline	=	true

		config.vm.define	:puppetmaster	do	|master|

				master.vm.box	=	"centos65-x64-puppet"

				master.vm.box_url	=	"http://puppet-vagrant-boxes.puppetlabs.com/centos-

65-x64-virtualbox-puppet

.box"

				master.vm.hostname	=	"puppet.book.local"

				master.vm.network	"private_network",	ip:	"10.78.78.30",	netmask:	

"255.255.255.0"

				master.hostmanager.aliases	=	%w(puppet)

				master.vm.provision	"shell",	inline:	"yum	update	puppet	-y"

				master.vm.provision	"puppet"	do	|puppet|

						puppet.manifests_path	=	"master_manifests"

						puppet.manifest_file	=	"init.pp"

				end

		end

		config.vm.define	:agentone	do	|ao|

				ao.vm.box	=	"centos65-x64-puppet"

				ao.vm.box_url	=	"http://puppet-vagrant-boxes.puppetlabs.com/centos-65-

x64-virtualbox-puppet.box"

				ao.vm.hostname	=	"agentone.book.local"

				ao.vm.network	"private_network",	ip:	"10.78.78.50",	netmask:	

"255.255.255.0"

				ao.vm.provision	"shell",	inline:	"yum	–y	update	puppet"

		end

As	you	can	see	here,	the	URL	and	the	network	lines	should	not	wrap.

Now	that	this	is	complete,	we	can	go	ahead	and	begin	the	example.

The	fileserver.conf	file
The	second	configuration	file	we’ll	review	is	fileserver.conf.	This	file	contains	the
configuration	for	Puppet’s	built-in	file	server.

Much	like	the	auth.conf	file,	in	most	cases,	the	default	configuration	is	sufficient.	In	this
section,	we’ll	cover	what	the	options	currently	are,	what	the	file	used	to	do,	and	the
occasions	when	we	might	want	to	move	away	from	the	default	configuration.

By	default,	Puppet	will	serve	files	under	the	/files	API	endpoint	to	clients.	This	also
handles	serving	files	that	are	contained	within	the	files	directory	of	individual	modules.
These	files	are	accessed	with	the	puppet:///modules/modulename/filename	URL	within
Puppet.

The	fileserver.conf	file	allows	you	to	create	additional	file	“mount	points”.	These
mount	points	can	serve	other	directories	on	the	filesystem	to	Puppet	clients.	Each	mount
point	can	have	individual	policies	and	authentication	parameters	associated	with	it.	This
allows	you	to	create,	for	instance,	an	area	for	secured	files	that	can	only	be	accessed	by	a
single	host.	It	also	lets	you	create	a	set	of	directories	that	each	host	can	access,	but	other
hosts	cannot	access	the	directory.

Much	like	the	auth.conf	file	before	it,	the	fileserver.conf	file	is	made	up	of	a	series	of
stanzas.	These	files	are	similar	in	nature	to	ini	files	on	a	Windows	machine.	Here	is	an
example	of	one	of	these	entries:

[ourfiles]

				path	/path/to/ourfiles

				allow	*

The	following	is	a	table	of	the	possible	values,	for	reference:

Option Description

[mountpoint]
This	is	the	name	of	the	file	mount.	This	is	the	way	you	reference	files	in	this	location.	Replace
mountpoint	with	the	actual	mount	name	you	want.

path This	is	the	path	to	the	file	on	the	Puppet	Master	filesystem.

allow	or	deny
This	denotes	allowing	or	denying	access	to	the	hosts.	It	can	include	asterisks.	In	almost	all	cases,	you
should	use	allow	*	and	use	the	auth.conf	file	to	manage	access.	See	the	notes	that	follow	for	more
details	on	this.

Individual	mount	point	entries	start	with	a	header	like	[secretfiles].	In	this	case,
secretfiles	is	the	name	of	our	mount	point,	and	it	can	be	accessed	via	our	Puppet
module	by	specifying	the	source	as	puppet:	///secretfiles/<file>.

Under	each	mount	point,	you	must	specify	a	path	using	the	path	directive.	This	is	the	path
to	the	files	on	the	local	filesystem.	This	can	allow	you	to	move	files	out	of	your	primary
version	control	for	security-related	purposes.	For	instance,	you	can	move	private	SSL	keys
to	a	file	share	that	only	the	hosts	that	need	to	use	the	keys	can	access.

The	final	directive	is	an	authorization	directive.	It	can	be	either	allow	or	deny.	At	the	first
glance,	this	seems	like	a	way	to	limit	what	can	access	the	files,	and	indeed,	this	used	to	be
the	case.	However,	in	recent	versions	of	Puppet,	it	is	recommended	that	you	use	the
auth.conf	file	to	limit	access,	and	therefore,	simply	use	allow	*	in	this	file.	We’ll	explore
how	to	limit	access	via	the	auth.conf	file	in	the	next	example.

Example	–	adding	a	restricted	file	mount
In	this	example,	we’ll	add	a	file	mount	that	only	allows	access	from	the	agentone	host.
This	is	a	common	request	for	things	such	as	keys	that	you	don’t	want	compromised:

1.	 We’ll	be	working	on	our	Vagrant	Puppet	Master	here,	so	use	vagrant	up	and
vagrant	ssh	to	connect	to	it.

2.	 To	begin,	let’s	edit	the	/etc/puppet/fileserver.conf	file	on	the	Puppet	Master	file
to	add	support	for	our	additional	file	server	mount.	We’ll	store	the	data	in
/srv/secret,	so	let’s	start	by	creating	a	directory	structure	there.	We’ll	also	store
some	secret	data	in	the	directory.	To	do	so,	issue	the	following	commands:

sudo	mkdir	-p	/srv/secret/agentone.book.local

echo	"sup3r	s3kr37"	|sudo	tee	/srv/secret/agentone.book.local/secret

sudo	chown	puppet	/srv/secret/agentone.book.local/secret

3.	 Once	that’s	done,	we’ll	configure	our	new	file	server.	Go	ahead	and	edit	the
/etc/puppet/fileserver.conf	file.	In	it,	you	will	find	a	bunch	of	documentation
and	comments.	At	the	end	of	the	file,	add	this:

[agentone]

				path	/srv/secret/agentone.book.local

				allow	*

This	will	create	the	file	server	mount	and	allow	anything.	Remember	that	we’re
going	to	use	auth.conf	to	limit	access	to	the	host	resources.

4.	 With	that,	we	should	configure	auth.conf.	When	you	edit	/etc/puppet/auth.conf,
you	will	notice	that	it	has	all	the	default	authentication	permissions.

In	this	case,	we	need	to	make	sure	we	insert	our	new	data	into	the	correct	place	in	the
file.	We’ll	insert	it	right	before	the	file	stanza,	which	should	be	near	line	88.

Locate	the	section	that	looks	like	this:

#	Allow	all	nodes	to	access	all	file	services;	this	is	necessary	for

#	pluginsync,	file	serving	from	modules,	and	file	serving	from	custom

#	mount	points	(see	fileserver.conf).	Note	that	the	`/file`	prefix	

matches

#	requests	to	both	the	file_metadata	and	file_content	paths.	See	

"Examples"

#	above	if	you	need	more	granular	access	control	for	custom	mount	

points.

path	/file

allow	*

We’ll	insert	our	changes	above	it.	The	changes	are	as	follows:

path	~	^/file_(metadata|content)s?/agentone/

allow	agentone.book.local

5.	 This	should	allow	only	agentone	to	access	that	resource.	Next,	we	need	to	restart	the
Puppet	service:

sudo	service	puppetmaster	restart

6.	 Finally	comes	the	fun	part.	Let’s	go	ahead	and	create	a	node	definition	referencing
the	file,	and	see	what	happens.

We’ll	do	this	in	the	site.pp	file	since	this	is	simple	and	it’s	a	test.	As	a	reminder,
typically	you’d	use	a	module	for	all	of	the	manifest	code.	However,	for	our	testing
purposes,	we’ll	use	site.pp	to	keep	the	length	of	this	book	reasonable.

Edit	/etc/puppet/manifests/site.pp	and	make	it	look	as	follows:

node	default	{

		file	{	'/tmp/secret':

				ensure	=>	file,

				source	=>	'puppet:///agentone/secret',

		}

}

7.	 Save	it	and	run	Puppet	on	agentone	and	the	master.	First,	we’ll	go	for	agentone.	Run
Puppet	there	with	sudo	puppet	agent	-test.	First,	we’ll	need	to	sign	the	certificate.
We’ll	cover	signing	in	more	detail	in	the	next	section,	so	I’ll	just	explain	it	in	brief
here.

The	first	time	you	run	the	agent	on	agentone,	you’ll	receive	a	message	that	indicates
that	the	certificate	was	created	and	waitforcert	is	disabled.	This	means	that	the
master	has	a	certificate	request	for	the	agent.

8.	 We	need	to	process	the	certificate	request	on	the	master.	As	I	said	before,	we’ll	cover
this	in	more	detail	in	the	next	section.	For	now,	let’s	just	go	ahead	and	sign	it	with	the
following	command	on	the	master:

sudo	puppet	cert	sign	agentone.book.local

Now	that	it’s	done,	we	should	be	able	to	rerun	the	agent	on	agentone,	and	you	should
see	the	output	as	shown	in	the	following	screenshot:

As	you	can	see,	this	has	successfully	created	the	file	in	question.

9.	 We’ll	also	run	this	on	the	Puppet	Master	to	see	how	it	behaves	there.	Once	you	do	so,
you	should	see	the	following	output:

You	can	see	here	that	we’re	not	allowed	to	access	the	resource.

This	example	shows	some	of	the	power	that	auth.conf	can	provide.	With	some	work,	you
can	extend	this	pattern	to	allow	a	host	to	only	access	its	own	resources,	for	instance.	You
can	also	allow	access	from	a	management	host	to	some	resources	for	monitoring	or
reporting.

Let’s	move	on	and	explore	how	Puppet	uses	SSL	for	encryption	and	authentication.

SSL	and	Puppet
SSL	is	a	core	component	of	Puppet.	The	Puppet	Master	uses	SSL	certificates	to
authenticate	client	systems.	Proper	management	of	SSL	is	vitally	important	to	ensure	that
your	Puppet	system	is	secure	and	behaves	properly.

Note
This	section	assumes	you	have	some	knowledge	about	the	working	of	SSL.	If	you	require
a	primer	on	SSL,	a	good	reference	is	https://info.ssl.com/ssl-made-easy-for-beginners/.

By	default,	the	Puppet	Master	will	act	as	an	SSL	Certificate	Authority	(CA).	As	part	of
the	SSL	CA,	the	master	will	accept	certificate	requests	from	new	agents.	You	can	then
choose	whether	to	sign	the	certificate	on	the	master.	There	is	also	a	methodology	to	enable
autosigning.	We’ll	cover	this	in	the	next	section.

Puppet	can	also	support	use	of	an	external	certificate	authority.	You	might	want	to	do	this
if	you	already	have	a	certificate	authority	configured	to	allow	you	to	utilize	existing
certificates.	This	avoids	the	overhead	of	needing	two	separate	certificate	authorities.	At
the	end	of	this	section,	we	will	cover	some	more	information	about	external	CAs	and	the
configurations	supported	for	them.

https://info.ssl.com/ssl-made-easy-for-beginners/

Signing	certificates
Puppet	uses	the	cert	face	command	(as	a	reminder,	face	is	a	Puppet	command)	to
manage	signing	and	revoking	of	certificates.	By	default,	when	a	node	starts	up	for	the	first
time	and	does	not	have	a	certificate,	it	will	create	a	Certificate	Signing	Request	(CSR).
A	CSR	is	the	agent’s	way	of	registering	itself	with	the	master	and	requesting	access	to
resources.	We’ll	demonstrate	this	now.

If	you	did	the	last	example,	issue	this	command	to	clean	up,	and	we’ll	start	over:

vagrant	destroy	-f

Once	the	cleanup	is	complete,	restart	the	Vagrant	hosts	with	the	following	command:

vagrant	up

Once	they	boot,	use	vagrant	ssh	agentone	to	connect	to	the	agent	guest.	Once	there,
we’ll	run	Puppet	in	our	normal	way,	using	sudo	puppet	agent	-test.

When	a	host	is	new	and	Puppet	is	run	for	the	first	time,	you’ll	see	output	like	this:

As	you	can	see,	we	created	an	SSL	certificate	request,	and	we	sent	it	to	the	master.	We
also	exited	because,	by	default,	we	will	not	wait	for	the	certificate	to	be	signed.

On	the	master,	we	should	now	be	able	to	see	the	certificate	if	we	check	with	the	Puppet
cert	face	command.	Open	a	new	terminal,	and	connect	to	the	master	with	vagrant	ssh
puppetmaster.	Once	logged	in,	we’ll	issue	this	command:

sudo	puppet	cert	list

We	should	see	an	output	like	what	is	shown	in	the	following	screenshot:

As	you	can	see,	the	certificate	request	is	now	present	on	the	master.	The	next	step	is	to
sign	it.	The	command	to	do	so	is	as	follows:

sudo	puppet	cert	sign	agentone.book.local

The	Puppet	Master	will	return	some	information	indicating	that	the	certificate	is	signed
and	the	request	has	been	removed.

Once	this	is	done,	go	ahead	and	run	the	agent	on	the	agentone	machine	again.	You	should
now	see	the	normal	output.	In	this	case,	since	our	site.pp	file	is	empty,	we	won’t	have
any	output	other	than	the	run	being	successful.	If	you	happen	to	still	be	using	the	example
from	Chapter	4,	Security	Reporting	with	Puppet,	you	should	see	it	apply	all	of	the	same
manifests	you	have	in	your	default	node	to	the	machine.

Revoking	certificates
Now	that	you	know	how	to	sign	a	certificate,	we	may	want	to	ask	for	the	opposite.	What
happens	if	we	need	to	get	rid	of	a	host?	Perhaps	we’ve	decommissioned	it,	or	perhaps	the
host	is	doing	bad	things	and	we	need	to	lock	it	out	of	the	Puppet	infrastructure.	In	the	SSL
world,	we	do	this	by	revoking	the	certificate.

In	the	Puppet	world,	we	have	two	operations	that	can	be	used	to	do	this.	The	first	is	the
revoke	operation,	and	the	second	is	the	clean	operation.

If	a	host	has	been	compromised	or	is	still	around	but	you	do	not	want	it	checking	into
Puppet,	the	proper	thing	to	do	is	to	revoke	its	certificate.	To	do	this	for	our	example	host,
we	issue	the	following	command:

sudo	puppet	cert	revoke	agentone.book.local

We’ll	do	that,	and	then	we’ll	go	ahead	and	rerun	the	Puppet	agent	on	agentone.	The
output	on	the	master	gives	only	the	serial	number	of	the	revoked	certificate.	Once	this	is
done,	we	actually	have	to	restart	the	master.	To	do	that,	we	run	the	following	on	our
master	node:

sudo	service	puppetmaster	restart

When	we	rerun	the	agent,	the	output	looks	significantly	worse,	as	you	can	see	here:

The	agent	sees	that	its	certificate	is	revoked,	and	it	does	not	run	the	catalog.	It	also	does
not	try	to	request	a	new	certificate.

Now,	we’ll	use	the	clean	command	to	remove	the	certificate.	The	old	certificate	is	still	in
the	Certificate	Revocation	List	(CRL),	however,	so	it’s	dead	forever.	We’ll	have	to	tell
the	master	to	remove	the	certificate	from	itself,	and	then	force	the	agent	to	request	a	new
certificate.	It’s	a	common	mistake	to	try	to	issue	a	new	certificate	request	before	the	old
certificate	is	removed	from	the	master,	and	this	will	fail.

On	the	master,	issue	the	following	command:

sudo	puppet	cert	clean	agentone.book.local

On	the	agent,	go	ahead	and	rerun	Puppet.	You	will	notice	that	the	agent	is	still	showing
errors	about	the	certificate	being	revoked.	At	this	point,	we	need	to	manually	remove	the
local	certificate	so	that	the	agent	requests	a	new	certificate.	We	can	do	that	by	removing
the	SSL	directory	on	the	client	with	the	following	command:

sudo	rm	/var/lib/puppet/ssl	-rf

Once	this	is	complete,	it	should	behave	as	if	it	were	a	new	node,	and	we	should	be
permitted	to	sign	a	certificate	for	the	host	again.

Tip
Care	needs	to	be	taken	when	doing	this	on	the	master.	It	is	possible	that	you	accidentally
remove	all	the	downstream	certificates.	Though	it’s	also	possible	to	recover	from	this,	it’s
not	fun!	I	speak	from	experience	as	I	have	forgotten	more	than	once	that	puppet	cert
clean	-all	doesn’t	only	do	requests.

Alternative	SSL	configurations
In	addition	to	the	normal	mode	of	operation	in	which	the	Puppet	Master	serves	as	the	CA,
it	also	supports	a	mode	where	an	external	certificate	authority	is	used.	The	setup	of	this
particular	mode	is	out	of	the	scope	of	this	book,	as	it	requires	an	external	web	server	to
proxy	requests.	We	will,	however,	discuss	the	various	modes	that	can	be	utilized	for	SSL
configuration.

When	the	external	CA	is	set	up,	the	external	web	server,	usually	Apache	or	Nginx,
authenticates	the	client	with	the	SSL	certificate	and	uses	certain	headers	in	the	request	to
indicate	to	Puppet	that	the	client	is	authenticated,	and	it	also	specifies	what	the	hostname
of	the	client	is.

In	this	case,	you	also	have	to	manage	getting	the	certificates	on	the	client	and	the	master
manually.	Puppet	will	not	provide	certificates	in	the	external	CA	mode.

There	are	three	possible	modes	to	use	in	this	setup.	We’ll	cover	them	in	increasing	order
of	complexity.

The	first	method	is	simply	an	external	root	CA.	This	CA	handles	the	issuing	of	all	the
certificates,	that	is,	for	both	the	master	and	the	agents.	In	this	mode,	you	copy	the	CA	certs
and	the	certificates	to	both	the	agent	and	the	master.	You	then	configure	the	web	server	on
the	master	to	use	the	CA	certificate.	No	changes	are	required	on	the	agent	in	this	mode.

In	the	second	and	third	methods,	we	introduce	intermediate	certificate	authorities.	These
have	their	certificates	signed	by	the	root,	and	they	issue	the	downstream	certificates	for	the
master	and	agents.	In	the	second	scenario,	we	use	one	intermediate	authority	to	serve	both
the	master	and	the	agent.	In	the	third	scenario,	which	is	the	most	complex	scenario,	we	use
a	separate	intermediate	authority	for	the	masters	and	the	agents.

The	server-side	setup	in	this	case	is	nearly	identical.	The	only	change	is	that	you	have	to
give	the	master	the	certificate	bundle.	On	the	client	side,	you	also	need	to	provide	the
certificate	bundle	consisting	of	the	root	and	intermediate	CA	certificates.

Note
As	was	mentioned	earlier,	configuring	Puppet	in	this	manner	is	a	very	advanced	operation.
If	you	wish	to	read	more	about	it	or	attempt	it,	more	information	can	be	found	on	the
Puppet	site	at
https://docs.puppetlabs.com/puppet/3.7/reference/config_ssl_external_ca.html.

https://docs.puppetlabs.com/puppet/3.7/reference/config_ssl_external_ca.html

Autosigning	certificates
As	your	Puppet	environment	grows,	manually	signing	certificates	can	become	an	issue.
This	is	particularly	true	in	cases	where	machines	are	being	created	automatically	due	to
scaling,	or	because	a	cluster	is	expanding.

Puppet	contains	two	primary	methods	to	assist	with	this.	They	are	basic	autosign	and
policy-based	autosign.	In	basic	autosign,	we	give	a	list	of	hosts	that	we	will	sign
certificates	for.	With	policy-based	autosign,	we	call	an	external	script	that	allows	us	to
determine	whether	a	given	certificate	request	is	signed.	We’ll	now	cover	these	types	of
autosign	methodologies	and	their	potential	use	cases.

There	exists	a	third	type	of	autosign,	which	is	used	to	simply	tell	the	master	to	sign	all
certificates.	It	is	known	as	naïve	autosign.	This	should	not	be	used	except	in	certain	test
cases,	so	here,	we’ll	cover	only	how	to	enable	it.	Besides,	we’re	focusing	on	security,	and
in	most	cases,	you	can	use	at	least	basic	autosign.

In	these	examples,	we’re	going	to	need	two	agent	machines	to	successfully	demonstrate
some	concepts.	To	do	so,	we’ll	add	a	construct	to	our	Vagrantfile,	like	this:

		config.vm.define	:agenttwo	do	|at|

				at.vm.box	=	"centos65-x64-puppet"

				at.vm.box_url	=	"http://puppet-vagrant-boxes.puppetlabs.com/centos-65-

x64-virtualbox-puppet.box"

				at.vm.hostname	=	"agenttwo.book.local"

				at.vm.network	"private_network",	ip:	"10.78.78.51",	netmask:	

"255.255.255.0"

				at.vm.provision	"shell",	inline:	"yum	update	puppet	-y"

		end

As	before,	do	not	wrap	the	box	URL	or	the	network	type.	If	you	need	more	assistance	with
this,	refer	back	to	the	earlier	example	on	the	Puppet	configuration.	It	has	more	details	on
how	this	should	work.

Go	ahead!	Destroy	and	recreate	your	environment	so	that	we	can	start	afresh.	To	do	so,
issue	the	following	commands:

vagrant	destroy	-f

vagrant	up

This	will	reset	the	environment	and	allow	us	to	start	over,	with	fresh	machines	to	practice
autosigning.

Naïve	autosign
Enabling	naïve	autosign	is	very	simple.	To	do	so,	you	edit	the	/etc/puppet/puppet.conf
file	and	add	the	following	to	its	master	section:

autosign	=	true

Doing	this	will	cause	Puppet	to	automatically	sign	any	certificate	requests	it	receives.

As	noted	before,	this	has	very	significant	security	implications	and	should	not	be	done
without	specific	reasons	to	do	so.	It’s	usually	only	used	in	test	environments	to	enable
automated	testing	without	the	need	to	do	more	complex	signing.

Basic	autosign
Basic	autosign	has	been	around	for	a	long	time	in	the	Puppet	world.	For	a	long	time,	it
was	the	only	real	method	to	automatically	sign	certificates.	This	resulted	in	a	number	of
third-party	solutions	to	do	this	that	policy-based	autosign	aims	to	supplement	or	replace.

To	perform	basic	autosign,	you	need	to	configure	the	autosign	file.	By	default,	Puppet
runs	with	autosign	=	$confdir/autosign.conf,	which	is	/etc/puppet/autosign.conf
on	Red	Hat	based	operating	systems.	This	file	should	not	be	executable.	In	policy-based
autosign,	the	autosign	file	is	referenced	in	the	configuration	points	to	an	executable
script.	If	your	autosign.conf	file	is	executable,	Puppet	will	attempt	to	run	it	as	a	policy-
based	autosign	script.

The	autosign	file	contains	a	list	of	hostnames	or	host	expressions.	In	this	case,	host
expressions	are	just	hostnames	beginning	with	an	asterisk	(*).	It	does	not	support	more
complex	regular	expressions.

Let’s	give	it	a	try.	On	the	master,	let’s	create	the	/etc/puppet/autosign.conf	file	and	add
agenttwo	to	the	file.	It	should	contain	this:

agenttwo.book.local

Once	this	is	done,	we	can	try	to	run	Puppet	on	both	agents.	First,	we’ll	do	it	on	agentone.
Run	Puppet	using	the	normal	sudo	puppet	agent	-test	command.	You	should	notice
that	the	agent	reports	that	it	requested	a	certificate,	and	then	exits,	since	waitforcert	is
disabled.

Now,	run	the	same	command	on	agenttwo.	This	is	where	the	magic	happens.	The	output
should	be	similar	to	what	is	shown	in	the	following	screenshot:

As	you	can	see,	we’ve	gone	through	an	entire	run	here.	We	made	a	cert	and	it	was
accepted	immediately.	If	you	check	out	/var/log/messages	on	the	master,	you	will	see	a
request	and	then	the	immediate	signing	of	the	certificate.

Now,	if	you	think	about	it	for	a	second,	you’ll	see	a	potential	problem—no	authentication
took	place.	Therefore,	a	client	can	pretend	to	be	any	of	the	listed	hosts	and	get	a	signed
certificate	and	a	compiled	catalog.	This	can	reveal	information	about	the	host.

This	is	somewhat	mitigated	if	you	use	only	full	hostnames	and	remember	to	remove	them
when	the	hosts	are	deprovisioned.	Alternatively,	you	can	use	policy-based	autosigning.
We’ll	cover	that	now.

Policy-based	autosign
Policy-based	autosign	is	a	relatively	new	feature	in	Puppet,	introduced	in	Puppet	3.4.	It
allows	you	to	build	a	custom	executable	that	Puppet	will	call	each	time	it	receives	the
CSR.	That	executable	will	receive	the	common	name	(usually	the	hostname)	as	an
argument,	and	the	CSR	on	standard	input.	The	policy	executable	can	then	make	a	decision
and	return	a	piece	of	code	to	let	the	master	know	whether	to	autosign	or	not.

Configuring	this	requires	a	bit	of	work,	but	when	done	correctly,	it	can	let	you	use	special
metadata	to	authenticate	requests.

For	this	example,	we’re	going	to	create	a	simple	policy-based	autosign	script.	We’ll	rely
on	our	Vagrant	provisioner	to	ensure	that	one	of	our	hosts	gets	the	necessary	data	and	the
other	doesn’t.	This	will	allow	us	to	see	the	behavior	of	the	autosign	process.

The	first	thing	we	need	to	do	is	to	create	our	policy-based	autosign	script.	This	script
needs	to	take	the	CSR,	decode	it,	and	look	for	any	special	data	we’ve	added.	In	the	case	of
this	script,	we’re	going	to	be	adding	a	special	pre-shared	key	using	a	Puppet	attribute.
Then,	on	the	master,	we’ll	look	for	the	presence	of	the	key	to	indicate	that	the	client	is
authenticated.

This	is	a	simple	key	held	in	a	file,	which	is	the	word	banana.

Let’s	create	our	policy-based	autosign	script	as	/etc/puppet/autosign-policy.rb.	Edit
the	file	on	the	master	by	adding	the	following	content:

#!/usr/bin/env	ruby

require	"openssl"

include	OpenSSL

csr	=	OpenSSL::X509::Request.new	$stdin.read

atts	=	csr.attributes()

if	atts.empty?

		exit	1

end

key	=	nil

atts.each	do	|a|

		if	(a.oid=="extReq")

				val	=	a.value.value.first.value.first.value

				if	val[0].value	==	"1.3.6.1.4.1.34380.1.1.4"

						key	=	val[1].value

				end

		end

end

if	key	==	"banana"

		print	"Match\n"

		exit	0

else

		print	"No	match\n"

		exit	1

end

Now	let	me	give	you	a	bit	of	explanation:	the	beginning	of	the	script	imports	all	the
necessary	pieces.	Once	that’s	done,	we	create	an	internal	openssl	object	from	stdin.
Once	we	have	that,	we	start	the	magic!

If	our	cert	doesn’t	have	any	attributes,	we	exit.	If	it	does,	we	search	for	an	extReq
attribute.	Once	we	find	that,	we	grab	it	using	the	giant	string	gathered	via	trial	and	error.
I’m	actually	surprised	that	Ruby	doesn’t	have	any	helper	methods	to	get	that	data.	The
chained	value	and	the	first	calls	are	really	ugly!

Then	we	check	whether	our	extension	has	the	right	object	ID	(oid).	An	oid	is	an	element
of	the	SSL	certificate	request	that	contains	information.	Every	field	is	contained	within	an
oid.	In	this	case,	it	is	one	of	the	Puppet	oid	values	that	is	used	for	a	pre-shared	key.	We
save	it	in	a	variable.

Finally,	we	compare	that	value	to	our	secret	key,	banana,	and	exit	with	the	exit	code	0	if	it
matches.	This	tells	Puppet	to	sign	the	certificate.	Otherwise,	we	exit	in	a	negative	manner,
which	is	by	using	any	exit	code	other	than	zero;	we	use	1	in	our	case.

Now	that	we	have	a	script,	we	need	to	configure	our	master	to	use	it.	To	do	so,	edit	the
Puppet.conf	file	on	the	master.	Add	the	following	line	under	the	[master]	subsection:

autosign	=	/etc/puppet/autosign-policy.rb

We	also	have	to	make	the	policy	script	executable.	To	do	so,	issue	this:

sudo	chmod	a+x	/etc/puppet/autosign-policy.rb

Now	that	we’ve	set	up	the	master,	let’s	deal	with	some	housekeeping.	Rather	than
reprovision	the	master,	we’ll	simply	clean	the	certificates	off	the	master	and	both	of	the
agents.	To	do	this,	issue	the	following	commands	on	the	master:

sudo	puppet	cert	clean	agentone.book.local

sudo	puppet	cert	clean	agenttwo.book.local

sudo	rm	/var/lib/puppet/ssl/ca/requests/*

sudo	service	puppetmaster	restart

One	or	more	of	these	commands	may	throw	an	error.	That’s	okay;	we’re	just	being
thorough.	Next,	let’s	destroy	the	agents	so	that	our	provisioner	can	add	the	secret	key	to
one	of	them.	Issue	the	following	commands	on	the	host:

vagrant	destroy	agentone

vagrant	destroy	agenttwo

Now,	we’ll	create	the	magic	for	the	agent	systems.	In	the	Vagrant	directory,	create	a	file
called	secret.yaml,	containing	the	following:

extension_requests:

		pp_preshared_key:	banana

Note
More	information	on	the	SSL	extensions	supported	by	Puppet	can	be	found	at
https://docs.puppetlabs.com/puppet/latest/reference/ssl_attributes_extensions.html#data-
location-and-format.

We’ll	modify	our	Vagrant	provisioner	on	one	of	our	hosts	to	copy	that	file	to	the	correct
location	on	the	agent	system.	To	do	so,	modify	the	agentone	(ao)	section	of	the
Vagrantfile,	and	add	the	following	after	the	first	shell	provisioner:

ao.vm.provision	"shell",	inline:	"cp	/vagrant/secret.yaml	

/etc/puppet/csr_attributes.yaml"

Note	that	this	should	be	on	one	line.

Go	ahead	and	start	agentone	and	agenttwo	using	the	following	commands:

vagrant	up	agentone

vagrant	up	agenttwo

Once	they’re	up,	we’ll	need	to	run	Puppet	on	each	of	the	nodes.	When	running	on
agentone,	you	should	see	a	somewhat	more	interesting	output	than	before.	It	should	look
something	like	this:

As	you	can	see,	Puppet	picked	up	our	additional	attributes.	Once	they	were	included,	the
agent	signed	the	certificate.

Now,	run	the	Puppet	agent	on	agenttwo.	You	should	see	the	old,	familiar	waitforcert
message,	as	we	did	not	install	the	extra	attributes	on	agenttwo.

This	is	a	somewhat	simplistic	example,	but	it	shows	all	the	building	blocks	used	to	build	a

https://docs.puppetlabs.com/puppet/latest/reference/ssl_attributes_extensions.html#data-location-and-format

policy-based	signing	system.	The	pre-shared	key	example	can	be	extended	to	have
multiple	keys.

Additionally,	you	could	check	whether	this	is	a	valid	instance	on	the	cloud,	for	example.
We	could	do	this	by	having	our	policy	script	query	our	cloud	provider’s	API	to	look	for
information	on	the	instance	requesting	the	certificate	signing.

Summary
Since	Puppet	is	so	integral	to	the	environment	and	has	the	ability	to	change	the
configuration	of	any	system,	it	is	vital	that	we	protect	it	from	potential	attacks.

Luckily,	the	default	out-of-the-box	configuration	is	very	secure.	However,	if	we	wish	to
approach	advanced	scenarios	or	extend	Puppet,	we	might	get	into	situations	that	warrant
changing	defaults.

Additionally,	as	our	environment	grows	and	becomes	more	complex,	it	makes	sense	to
start	to	investigate	ways	to	automate	Puppet	itself.	Autosign	has	many	tools	available	to
make	this	easier	for	us.

Now	that	we’ve	secured	the	Puppet	Master	software,	in	the	next	chapter,	we’ll	move	on	to
examine	how	community-contributed	modules	can	help	us	with	security,	as	well	as	getting
us	up	to	speed	quicker.	Then	we’ll	move	on	to	cover	network	security,	which	can	be	used
to	further	restrict	access	to	our	Puppet	master,	thus	further	securing	it.

Chapter	6.	Community	Modules	for
Security
An	open	source	tool	is	only	as	good	as	its	community,	and	Puppet	has	a	great	one.	Now
that	we’ve	covered	the	basics	and	you	have	a	functional	Puppet	setup,	including	reporting,
we’ll	move	on	to	how	you	can	quickly	improve	that	infrastructure.	In	many	ways,	the
communities	behind	Puppet,	right	from	the	users	to	the	vendors	and	sponsors,	are	what	set
Puppet	apart	from	its	competitors.

In	this	chapter,	we	will	explore	community-maintained	modules	that	assist	with	security.
There	are	a	great	number	of	modules	available,	so	we’ll	try	to	focus	on	some	that	have
good	benefits	or	a	module	structure	to	model	your	own	modules	on.	In	particular,	we’ll
cover	the	following	in	this	chapter:

The	importance	of	the	Puppet	Forge
The	augeasprovider	module	by	herculesteam,	which	allows	you	to	use	augeas	to
manage	a	variety	of	files	in	a	native	Puppet	manner
The	CIS	module	by	arildjensen,	which	allows	you	to	apply	most	of	the	Center	for
Internet	Security	standards	to	a	machine
The	sudo	module	by	saz,	used	to	manage	sudo
The	hiera-eyaml	gem,	used	to	encrypt	data	in	Hiera

By	the	end	of	this	chapter,	we	should	have	a	good	toolkit	to	harden	our	hosts.
Additionally,	we’ll	have	good	understanding	of	where	to	go	to	look	for	modules.

The	Puppet	Forge
The	Puppet	Forge	is	a	website	run	by	Puppet	Labs.	It	was	born	as	a	methodology	for
system	administrators	and	developers	using	Puppet	to	share	their	Puppet	modules	with
others.	It	can	be	found	at	http://forge.puppetlabs.com.

Over	the	years,	the	Forge	has	seen	many	improvements,	in	both	its	function	as	well	as	the
number	of	modules	available.

At	the	time	of	writing	this	book,	there	are	more	than	3,000	modules	on	the	Forge.	These
modules	include	configuration	of	everything	from	MySQL	to	the	Apache	web	server.	Like
many	community	projects,	however,	the	quality	and	support	of	these	modules	varies.

In	the	early	days	of	the	Forge,	it	was	like	the	wild	west.	Many	modules	were	posted,	but
there	were	very	lax	standards	on	quality,	and	it	was	unknown	whether	a	given	module
would	work	on	your	OS.

On	the	quality	front,	the	community	and	Puppet	Labs	have	done	a	great	job	at	encouraging
the	community	to	adapt	a	set	of	standards	and	design	patterns	around	modules.	This
allows	things	such	as	Hiera	to	work	in	a	predictable	manner,	and	the	old	habit	of	forking	a
module	to	make	very	minor	changes	is	much	less	prevalent.

However,	the	problem	of	compatibility	with	both	Puppet	versions	as	well	as	various
operating	systems	still	existed.	To	solve	that,	the	Puppet	Forge	introduced	additional
module	metadata	that	can	express	those	properties.

With	the	most	recent	modules	on	the	Forge,	you	can	quickly	see	which	versions	of	Puppet
and	operating	systems	are	supported.

We’ll	go	on	a	brief	tour	of	the	Forge	before	looking	at	a	few	select	modules.	The	Forge
itself	is	pretty	easy	to	use,	so	we’ll	keep	this	brief.	The	following	screenshot	shows	the
Forge	home	screen:

http://forge.puppetlabs.com

The	preceding	screenshot	shows	how	the	front	page	of	the	Forge	currently	looks.	We’ll
include	some	additional	features	further	down	the	page	later,	but	this	is	the	meat	of	the
page.

At	the	top	of	the	page,	you’ll	see	a	search	box.	This	allows	you	to	perform	searches	based
on	keywords,	authors,	or	metadata.

The	main	section	of	the	page	on	the	main	site	contains	news	and	other	information.	At	the
time	of	writing	this	book,	it	contained	documentation	about	how	to	write	a	good	module.
This	contains	some	best	practices	and	procedures	used	to	produce	reusable	modules.

The	section	to	the	right	contains	two	new	areas.	They	are	the	Puppet	Supported	and
Puppet	Approved	modules.

The	Puppet	Supported	modules	are	all	the	modules	that	are	maintained	by	Puppet	Labs.
These	are	fully	supported	under	Puppet	Enterprise.	This	means	that	when	issues	are	found
with	these	modules,	you	can	use	the	Puppet	Labs	support	resources	to	assist	you	with
them.

All	of	these	modules	have	very	good	platform	coverage,	as	well	as	good	design	patterns.
Other	than	being	great	modules	overall,	they	serve	as	a	good	place	to	get	guidance	on
design	for	your	own	modules.

The	Puppet	Approved	modules	were	announced	at	PuppetConf	2014.	These	are	modules

that	are	of	exceptional	quality,	and	while	not	officially	supported,	they	are	some	of	the
best	modules	available.	They	tend	to	have	good	platform	support	and	adhere	to	the	current
best	practices.

At	the	bottom	of	the	page	are	sections	that	contain	information	on	recent	releases	as	well
as	a	leaderboard	of	the	top	contributors.

Once	you	search	for	modules,	you’ll	receive	a	results	screen	that	has	some	more	options
worth	pointing	out.	An	example	of	such	a	screen	is	shown	here:

In	the	center	of	this	section,	you’ll	find	the	search	results,	but	the	real	magic	is	to	the	left.

The	filter	area	allows	you	to	narrow	down	your	search	for	modules.	It	currently	works
only	with	modules	that	provide	metadata,	but	it	allows	you	to	filter	by	a	number	of
options.

You	can	also	search	for	modules	using	the	search	command	in	the	modules’	faces	on	the
command	line.	To	do	this,	we	issue	a	command	such	as	the	following:

sudo	puppet	module	search	network

Replace	network	with	whatever	term	you	happen	to	be	searching	for.	When	we	run	this
command,	we’ll	see	something	similar	to	what	is	shown	in	the	following	screenshot,
showing	us	some	details	about	the	modules:

You	can	see	that	the	output	includes	the	name	of	the	module,	a	short	description,	the	name
of	the	author,	and	a	list	of	keywords	that	apply	to	the	module.

Once	you	have	identified	a	module,	we	can	install	it	with	the	puppet	module	face.	We’ve
seen	how	to	do	this	in	previous	chapters,	and	we’ll	show	it	later	in	this	chapter.
Additionally,	instructions	can	also	be	found	on	any	specific	module	page.

Now	that	we’ve	explored	the	Forge,	let’s	start	looking	at	the	modules	we	want	to	focus	on.
First	up	is	the	augeasproviders	suite	of	modules.

The	herculesteam/augeasproviders	series
of	modules
The	first	module	we’ll	explore	is	a	swiss	army	knife	of	sorts.	It	started	as	a	single	module,
but	over	time	has	become	a	series	of	modules.	This	is	the	augeasproviders	module,
originally	by	domcleal,	but	now	maintained	by	herculesteam.

These	modules	use	augeas	to	implement	types	and	providers.	Types	and	providers	are	the
native	Puppet	interfaces	for	managing	resources.	They’re	written	in	Ruby	and	have
considerably	more	power	in	how	they	manage	the	underlying	resources	compared	to	the
built-in	Puppet	types	they	replace.	They	also	add	additional	types	for	many	other
resources	such	as	entries	in	the	SSH	configuration	file,	or	management	of	the	Apache	web
server	configuration	file.

Augeas	is	a	configuration	file	editing	tool.	It	parses	configuration	files	into	an	internal	tree
and	then	allows	you	to	use	commands	to	manipulate	that	tree.	Once	changes	are	made,	the
file	can	then	be	written	back	out.	This	allows	you	to	modify	just	part	of	a	configuration
file	without	internally	parsing	the	entire	file.

Once	in	augeas,	there	are	a	set	of	commands	that	can	be	used	to	modify	the	configuration
in	the	file.	Sections	can	be	added,	deleted,	or	even	rearranged.

The	advantage	over	the	native	method	of	managing	these	resources	as	entire	files	is	that
the	augeas-based	providers	support	editing	a	file	by	several	different	modules.
Additionally,	they	will	leave	the	structure	and	comments	in	the	files	intact,	which	can	ease
readability	and	preserve	OS	defaults	that	you	may	not	intend	to	change	in	your	module.

When	managing	a	file	such	as	the	Puppet	configuration	file,	if	separate	modules	need	to
add	configuration	options,	coordination	between	those	modules	can	become	difficult.	The
file_line	resource	and	other	resources	aim	to	address	some	of	that,	but	augeas	is	a
perfect	solution	to	those	problems.

The	augeasproviders	modules	implement	types	and	providers	for	more	than	15	different
configuration	formats.	Some	of	the	more	important	security-related	ones	are	as	follows:

Provider Description

kernel_parameter This	manages	passing	kernel	parameters	to	the	grub	or	grub2	configuration	files

pam This	manages	pam	authentication	configuration

puppet_auth This	manages	the	Puppet	auth.conf	file

shellvar This	allows	management	of	any	shell	configuration	file

sshd_config This	manages	the	sshd_config	file	sections

sshd_config_subsystem This	manages	the	SSH	subsystems	such	as	SFTP

sysctl This	allows	Linux	sysctl	management

syslog This	allows	management	of	the	syslog	configuration

These	providers	expose	native	Puppet	types	for	the	configuration	in	question.	For
instance,	let’s	look	at	an	example	of	using	the	puppet_auth	type	based	on	work	performed
in	the	last	chapter.	As	you	may	recall,	we	added	the	following	entry	to	auth.conf:

path	~	^/file_(metadata|content)s?/agentone/

allow	agentone.book.local

We	can	handle	that	using	the	augeasproviders	type	by	adding	a	resource	like	the
following	to	a	Puppet	manifest:

puppet_auth	{	'Allow	agentone':

		ensure								=>	present,

		path										=>	'^/file_(metadata|content)s?/agentone/',

		path_regex				=>	true,

		allow									=>	'agentone.book.local',

		authenticated	=>	'yes',

		ins_before				=>	'path[allow][.	=	"/file"]',

}

By	using	these	resources,	you	can	build	the	authentication	configuration	in	a	much	more
automated	fashion	than	managing	the	file	as	a	whole.	Using	the	power	of	exported
resources,	you	could	even	have	various	modules	register	needed	mount	points.

This	and	many	of	the	other	modules	in	this	series	are	very	popular.	Much	more
information	can	be	found	at	the	website	of	the	module,	http://augeasproviders.com.

Let’s	look	at	a	more	complete	example	for	securing	SSH.

http://augeasproviders.com

Managing	SSH	with	augeasproviders
Managing	the	SSH	configuration	of	a	host	is	often	done	with	just	a	template	or	a	flat	file.
However,	as	the	configuration	gets	more	complex,	it	makes	sense	to	try	to	manage	this	in
a	more	organized	fashion.

This	also	has	the	advantage	of	being	more	flexible,	as	noted	earlier.	You	could	have	a
development	server	role	that	allows	users	to	log	in	with	passwords,	while	your	main
production	server	only	allows	for	key-based	login.	Doing	this	with	file-based	management
involves	using	facts	and	variables	to	determine	this	at	the	time	the	template	would	be
written,	which	can	be	very	difficult	to	do	correctly.

To	do	this,	we’ll	use	the	sshd_config	type	and	provider	from	the	augeasproviders
module.	We	perform	the	following	steps:

1.	 Let’s	go	ahead	and	start	up	our	VM.	We	can	start	where	we	left	off	at	the	end	of	the
previous	chapter,	or	use	the	code	included	with	the	book	and	follow	along.

2.	 In	either	case,	let’s	go	ahead	and	use	vagrant	up	to	start	our	three	VMs.
3.	 Now,	we	need	to	get	the	modules	needed	installed	on	the	master.	Let’s	go	ahead	and

install	the	module.	We’ll	only	install	the	sshd_config	module	instead	of	the	entire
suite.

4.	 To	do	so,	on	the	Puppet	Master,	issue	the	following	command:

sudo	puppet	module	install	herculesteam-augeasproviders_ssh

Once	complete,	the	output	is	as	follows:

As	you	can	see,	it	installed	two	additional	modules.	The	first	is	the
augeasproviders_core	module,	which	contains	some	methods	used	by	the	other
modules.	It	also	includes	stdlib,	which	much	like	the	C	standard	library	contains	a	series
of	useful	utility	functions,	such	as	validation	functions	for	parameters	and	various	type
conversion	functions.

Once	these	modules	are	installed,	we	can	start	to	configure	our	sshd_config	module.

Remember	way	back	in	Chapter	1,	Puppet	as	a	Security	Tool,	we	made	some	changes	to

the	sshd_config	file	in	order	to	prevent	root	login	and	set	the	maximum	authentication
attempts.	We’re	going	to	re-implement	these	changes	via	this	module.	This	allows	us	to
more	easily	create	per	host	configurations,	and	use	methods	such	as	exporting	resources	to
manage	the	configuration.

To	begin,	let’s	dust	off	our	old	openssh	module	from	Chapter	1,	Puppet	as	a	Security	Tool.
We’ll	modify	that	module	to	use	the	augeasproviders	module	instead	of	using	the	flat
file.

First,	let’s	go	ahead	and	remove	the	files	directory	from	that	earlier	module	and	start	to
modify	the	init.pp	file	to	manage	this.	As	previously	mentioned,	we’d	usually	use
multiple	files	for	the	manifest.	We	will	look	at	a	complete	example	at	the	end	of	this
section.

Go	ahead	and	edit	the	init.pp	file	from	that	same	module	and	delete	the	file-related
sections	of	the	module,	leaving	the	content	looking	as	follows:

class	openssh	{

		package	{	'openssh-server':

				ensure	=>	'latest',

		}

		service	{	'sshd':

				ensure	=>	'running',

		}

}

Now	we	can	go	ahead	and	start	using	the	augeasproviders	types	to	modify	the	existing
configuration.	Between	the	package	and	the	service,	let’s	add	our	commands	to	the
manifest	to	manage	just	the	SSH	configuration	settings	we	are	concerned	with.

Where	the	file	section	of	the	manifest	was	present,	let’s	add	the	following:

		sshd_config	{	'PermitRootLogin':

				value			=>	'no',

				notify		=>	Service['sshd'],

				require	=>	Package['openssh-server'],

		}

		sshd_config	{	'MaxAuthTries':

				value			=>	'3',

				notify		=>	Service['sshd'],

				require	=>	Package['openssh-server'],

		}

Notice	how	we	also	moved	the	dependency	information	into	our	configuration	stanza.
This	eliminates	the	need	to	use	the	dependency	chain	we	had	in	the	file	before,	which	is
why	it	was	removed	in	the	preceding	code.

Now,	let’s	add	it	to	our	default	manifest	so	it’ll	run	on	our	agent	nodes.	Edit	the
/etc/puppet/manifests/site.pp	file.	Add	the	following	lines:

node	default	{

		include	openssh

}

Now,	we	need	to	run	our	code	on	one	of	our	agent	boxes.	Connect	to	agentone	and	run
Puppet.	Remember	to	sign	the	certificate	if	necessary—see	Chapter	5,	Securing	Puppet,	if
you	need	a	reminder	of	how	that	works.

Once	that	is	complete,	you’ll	see	a	whole	bunch	of	plugins	get	synced	down	to	the	client,
and	when	it	completes,	the	output	will	look	like	the	following:

As	you	can	see,	we’ve	now	made	the	changes	to	the	configuration	file.	As	a	test,	go	ahead
and	modify	one	of	the	other	configuration	items	in	/etc/ssh/sshd_config.	Additionally,
change	MaxAuthTries	to	a	higher	value	such	as	8.	Run	Puppet	again,	and	notice	it	only
changes	the	one	value	back,	like	the	following:

As	you	can	imagine,	that’s	pretty	powerful,	since	we	can	keep	the	OS	level	settings	and
just	change	what	we	need	changed.	You	can	also	move	logic	relating	to	configuration	into
the	module	that	uses	it,	as	opposed	to	trying	to	centralize	it	in	the	module	writing	a
monolithic	configuration	file.	You	can	parameterize	the	values	of	the	various	pieces	of	the
configuration	using	this	method	as	well,	either	using	the	traditional	approach	of	creating	a
parameter	for	each	tunable,	as	I	do	in	the	module	referenced	in	the	following	section,	or
using	the	newer	augeasproviders	instances	class,	which	allows	you	to	pass	an	entire	hash
of	augeas	configuration	data	into	the	module.	More	information	on	that	can	be	found	at
the	URL	for	augeas	provided	in	the	preceding	section.

Note
For	a	more	complete	example	of	a	module	that	manages	this	via	augeasproviders,	see
https://github.com/jmslagle/jslagle-ssh.

https://github.com/jmslagle/jslagle-ssh

The	arildjensen/cis	module
The	next	module	we’ll	take	a	look	at	is	the	CIS	module	by	arildjensen.	This	module
implements	the	Center	for	Internet	Security	benchmark	standard	for	RHEL	6.	In	terms	of
support,	this	module	lags	a	bit	since	it	only	supports	Red	Hat	6-based	operating	systems.
However,	it	can	serve	as	a	great	base	for	building	your	own	module	for	another	Unix-
/Linux-like	operating	system.

The	CIS	benchmarks	are	a	set	of	configuration	standards	that	establish	a	baseline	or
benchmark	for	a	secure	system.	It	is	a	widely	used	and	accepted	set	of	standards,
referenced	in	the	PCI	DSS	standards	and	others.

The	CIS	benchmarks	exist	for	a	variety	of	operating	systems	and	applications,	including
VMware,	Apache	Tomcat,	and	others.

Note
For	more	information	on	the	CIS	benchmarks,	see
http://benchmarks.cisecurity.org/downloads/benchmarks/.

The	arildjensen/cis	module	implements	the	security	benchmark	for	Red	Hat	6	systems.
It	implements	each	of	the	individual	controls	as	facts	or	manifests.	We’ll	look	at	an
example	of	its	use.

Out	of	the	box,	the	module	contains	a	module	that	enables	all	of	the	controls.	This	module
is	called	a	composition	module	that	merely	includes	all	of	the	other	needed	classes	to
enable	the	controls	in	question.	In	many	cases,	this	is	sufficient,	but	it	can	also	be	used	as
a	basis	for	creating	a	custom	limited	set	of	controls	in	your	own	composition	module.	This
is	just	a	normal	Puppet	module	that	includes	the	classes	(in	this	case,	the	individual
controls)	we	are	concerned	with.

We’ll	look	at	an	example	of	doing	that	now.	First	we	need	to	get	the	module	installed.	To
do	that,	we	use	what	should	be	a	familiar	process	by	now.	Issue	the	following	command
on	the	Puppet	Master:

sudo	puppet	module	install	arildjensen-cis

We’ll	see	the	familiar	output:

Now	that	it’s	installed,	we’ll	go	ahead	and	build	our	own	custom	composition	module

http://benchmarks.cisecurity.org/downloads/benchmarks/

using	this	module.

For	our	exercise,	we’ll	choose	just	a	small	handful	of	the	controls.	There	are	nine	different
sections	of	the	benchmark,	each	with	a	varying	number	of	controls.	Going	through	each
one	for	our	exercise	here	would	easily	take	the	rest	of	the	chapter,	so	we’ll	build	a	small
subset.

For	our	example,	we’ll	configure	the	settings	from	section	2	and	section	4.2	of	the	CIS
benchmarks	document.	A	link	to	that	document	is	found	later	in	the	chapter.	This	will	give
us	sufficient	controls	to	see	how	the	module	works	and	see	it	in	action.	In	production,	you
would	want	to	review	the	CIS	benchmarks	and	see	which	of	the	benchmarks	you	would
apply.

We’ll	build	our	own	module	to	do	this.	So,	let’s	start	by	creating	a	module	scaffold.

First,	let’s	create	the	module.	Issue	the	following	command	in	the	Vagrant	home	directory
on	the	master	to	create	a	module	scaffold:

puppet	module	generate	pupbook-ourcis

You	can	accept	the	defaults	for	pretty	much	everything.	You	can	add	a	description	if	you
wish,	and	set	the	other	fields	to	N/A.

Next,	let’s	modify	the	metadata	to	add	the	dependency.	Edit	the	metadata.json	file	and
make	the	dependency	section	look	like	the	following:

		"dependencies":	[

				{"version_requirement":">=	1.0.0","name":"puppetlabs-stdlib"},

				{"version_requirement":">=	0.2.0","name":"arildjensen-cis"}

]

Now,	let’s	handle	our	init.pp	file.	In	this	case,	it’s	just	going	to	include	all	of	the	CIS
module	files	that	we	need.	When	complete,	it	should	look	as	follows:

class	ourcis	{

		include	cis::el6::2_1_1		#	Remove	telnet	server

		include	cis::el6::2_1_2		#	Remove	telnet	client

		include	cis::el6::2_1_3		#	Remove	rsh	server

		include	cis::el6::2_1_4		#	Remove	rsh	client

		include	cis::el6::2_1_5		#	Remove	NFS	client

		include	cis::el6::2_1_6		#	Remove	NIS	server

		include	cis::el6::2_1_7		#	Remove	tftp

		include	cis::el6::2_1_8		#	Remove	tftp	server

		include	cis::el6::2_1_9		#	Remove	talk

		include	cis::el6::2_1_10	#	Remove	talk	server

		include	cis::el6::2_1_11	#	Remove	xinetd

		include	cis::el6::2_1_12	#	Disable	chargen	UDP

		include	cis::el6::2_1_13	#	Disable	chargen	TCP

		include	cis::el6::2_1_14	#	Disable	daytime	UDP

		include	cis::el6::2_1_15	#	Disable	daytime	TCP

		include	cis::el6::2_1_16	#	Disable	echo	UDP

		include	cis::el6::2_1_17	#	Disable	echo	TCP

		include	cis::el6::2_1_18	#	Disable	tcpmux	server

		include	cis::el6::4_2_1		#	Disable	source	routed	packets

		include	cis::el6::4_2_2		#	Disable	ICMP	redirect

		include	cis::el6::4_2_3		#	Disable	Seucure	ICMP	redirect

		include	cis::el6::4_2_4		#	Log	suspicious	packets

		include	cis::el6::4_2_5		#	Ignore	broadcasts

		include	cis::el6::4_2_6		#	Ignore	bogus	ICMP

		include	cis::el6::4_2_7		#	Enable	source	validation

		include	cis::el6::4_2_8		#	Enable	SYN	cookies

}

Save	the	file.	The	preceding	code	just	includes	the	main	module.	Then,	copy	the	entire
module	to	the	modules	tree.	Remember	we’ll	need	to	rename	it	to	just	be	ourcis.	You	can
use	the	following	command	to	do	so:

sudo	cp	-a	pupbook-ourcis	/etc/puppet/modules/ourcis

And	now	let’s	apply	it	to	our	default	node.	Add	an	include	line	for	our	module	there	as
follows:

include	ourcis

Now	for	the	big	reveal.	We’ll	go	ahead	and	run	Puppet	on	one	of	our	agent	nodes	using
sudo	puppet	agent	--test.	It	will	sync	over	a	bunch	of	additional	facts	and	then	run.
Once	it	completes,	the	output	will	look	as	follows:

And	ta-da!	It	has	enforced	the	required	parts	of	the	CIS	benchmarks.

This	module	makes	it	very	quick	to	get	a	system	up	to	speed	with	the	benchmarks.	It	could
fairly	easily	be	extended	to	handle	other	operating	systems	using	the	generic	Linux
controls.	The	abstraction	is	a	bit	odd,	so	it’ll	take	some	work	to	untangle,	but	it’s	much
easier	than	starting	from	scratch.

Note
For	more	information	on	the	puppet-cis	module,	refer	to	the	following	link:

https://forge.puppetlabs.com/arildjensen/cis

Now	we’ll	take	a	look	at	the	sudo	module	to	handle	configuring	your	sudoers	file.

https://forge.puppetlabs.com/arildjensen/cis

The	saz/sudo	module
The	next	module	on	our	module	examination	journey	is	the	saz/sudo	module.	This
module	presents	a	great	methodology	to	manage	the	sudoers	file.	It	is	actually	used	by	a
large	number	of	other	modules	for	sudoers	file	management.

The	module	itself	is	fairly	simple,	so	this	section	will	be	short	as	we	go	over	it.

The	sudo	module	manages	all	aspects	of	your	sudoers	configuration,	which	can	catch
some	people	by	surprise.	The	module	has	options	to	leave	the	system	configuration	alone,
as	well	as	not	purging	unmanaged	sudoers	entries.	The	recommended	path	is	to	manage
all	the	sudoer	resources;	however,	the	options	are	there	if	needed.

To	install	the	sudoers	module,	we’ll	issue	the	following	command:

sudo	puppet	module	install	saz-sudo

We’ll	now	create	a	few	simple	rules.	But,	before	we	do	so,	we	need	to	take	a	look	at	the
/etc/sudoers	file.	If	you	look	at	it,	at	the	very	bottom,	you’ll	see	an	entry	for	Vagrant.	We
must	make	sure	we	preserve	this	entry	or	we	will	cause	Vagrant	to	stop	working.	This
entry	is	what	Vagrant	uses	to	do	system	provisioning.

That	being	said,	the	most	prudent	course	of	action	is	to	implement	the	current	system	rules
before	we	add	anything	custom.

This	is	another	situation	where	normally	we’d	use	a	module.	However,	for	simplicity,
we’re	just	going	to	add	the	rules	into	the	site.pp	file.	This	allows	us	to	quickly	model	the
desired	configuration	for	the	book.	However,	in	production,	that	does	not	scale	very	far,	so
just	don’t	do	it.	Your	co-workers	will	thank	you.

Let’s	edit	our	site.pp	file	and	add	rules	that	match	the	current	sudoers	file.	We	need	to
add	a	single	rule	since	there	is	one	non-default	entry	present	in	the	sudoers	file.	The	first
entry	is	a	default	system	entry	that	allows	root	to	use	sudo.	The	other	is	the	custom	entry
that	Vagrant	uses.	They	are	as	follows:

root				ALL=(ALL)							ALL

vagrant								ALL=(ALL)							NOPASSWD:	ALL

In	addition,	the	Vagrant	configuration	requires	that	we	have	the	required	TTY	setting	set
to	false	for	the	Vagrant	user	using	sudo.	This	is	not	the	default	on	Red	Hat-based	systems
because	it	can	allow	for	unsafe	practices	if	a	user	executes	sudo	over	a	non-interactive
SSH	session.	However,	since	Vagrant	is	relying	on	passwordless	sudo	to	do	its
provisioning,	we	must	allow	that	user	to	use	sudo	with	no	TTY.	We’ll	need	to	account	for
this	in	our	configuration	also.

Recreating	this	in	the	sudo	module	turns	out	to	be	fairly	simple.	Add	the	following	to	the
site.pp	file:

include	sudo

sudo::conf	{	'vagrant':

		content	=>	"Defaults:vagrant	!requiretty\nvagrant	ALL=(ALL)	NOPASSWD:	

ALL",

}

The	Vagrant	content	line	should	be	contained	on	a	single	line.

Once	it’s	done,	run	Puppet.	It	will	change	a	variety	of	files,	and	when	complete,	give
output	similar	to	the	following:

Notice	that	the	Vagrant	entry	was	removed	from	the	file	(see	the	-	entry);	however,	we
added	a	new	file	called	10_vagrant.	This	contained	the	rule	we	created	in	the	preceding
manifest.

It’s	worth	noting	that	we	could	have	used	the	config_file_replace	option	in	the	sudoers
class	to	tell	the	module	to	not	replace	the	default	configuration	file.	In	this	case,	adding
our	entry	for	Vagrant	would	have	been	unnecessary.	Replacing	the	file	has	the	advantage
of	ensuring	that	this	important	security-related	file	is	consistent	on	all	of	your	systems.

Now	that	we	have	the	base	down,	we’ll	add	one	more	sudo	rule	to	the	file.	In	this	case,
we’ll	allow	the	Puppet	user	to	run	puppet	agent	-test	without	a	password.	We	might
use	this	rule	in	the	case	of	having	an	automated	system	that	populates	the	Puppet
repository	once	tests	pass.	In	this	case,	you	would	want	to	be	able	to	force	a	Puppet	run	on
a	child	system.	The	sudo	rule	to	do	this	looks	like	the	following:

puppet	ALL=NOPASSWD:	/usr/bin/puppet,	/usr/local/bin/puppet

To	translate	that	to	a	sudo	manifest	item,	the	content	just	becomes	the	preceding	code.	As
such,	you	end	up	with	the	following:

		sudo::conf	{	'puppet_puppet':

				content		=>	'puppet	ALL=NOPASSWD:	/usr/bin/puppet,	

/usr/local/bin/puppet',

		}

Note	that	the	content	line	should	be	one	line.

When	you	run	it,	you	will	see	the	appropriate	file	appear	under	the	/etc/sudoers.d/
directory.

Using	that	methodology,	we	can	pragmatically	manage	our	sudoers	files	to	ensure	the
records	we	want	on	a	host	are	present,	and	in	most	cases,	only	those	items.	This	is	a	huge
benefit	from	a	compliance	standpoint.	Even	if	someone	adds	an	entry,	it	will	be	removed
at	the	next	Puppet	run.

Note
If	you	want	more	information	on	this	module,	it	can	be	found	at
https://forge.puppetlabs.com/saz/sudo.	It	contains	documentation	on	the	module	as	well	as
some	examples.

https://forge.puppetlabs.com/saz/sudo

The	hiera-eyaml	gem
The	last	module	we’re	going	to	look	at	in	this	chapter	is	not	a	module	at	all.	It’s	actually	a
gem	that	installs	an	extension	for	Hiera.

As	you	recall	from	earlier,	Hiera	is	a	hierarchical	data	store	which	allows	us	to	separate
our	data	from	our	code.	For	instance,	it	lets	us	move	the	NTP	servers	we’re	using	out	of
the	manifests.

It	supports	a	wide	variety	of	methods	to	create	a	hierarchy,	which	allows	us	to	supplement
or	override	configuration	data	needed	by	various	modules.

In	fact,	several	of	the	modules	we’ve	looked	at	earlier	in	this	chapter	have	great	Hiera
bindings.	Modules	with	strong	Hiera	bindings	are	constructed	in	a	manner	that	allows	the
configuration	of	the	main	class	to	be	passed	in	as	parameters.	Puppet	can	query	Hiera	to
get	the	values	of	these	parameters,	allowing	us	to	override	them	without	changing	Puppet
code.

Of	the	modules	covered	in	this	chapter,	CIS	can	use	Hiera	to	configure	items	such	as	log
servers	or	NTP	servers.	The	sudo	module	allows	configuration	of	the	sudoers	file
completely	within	Hiera	by	overriding	and	extending	certain	values.

One	of	the	downfalls	of	Hiera	out	of	the	box	is	that	it	does	not	present	a	good	way	to
handle	secure	data	as	the	value	is	stored	in	files	unencrypted.	A	compromise	of	that	data
store,	which	is	likely	present	in	version	control,	could	lead	to	a	compromise	of	sensitive
data	such	as	keys.

There	have	been	a	couple	of	attempts	to	solve	the	secret	data	problem.	The	first	was
hiera-gpg.	It	allows	you	to	GPG	encrypt	an	entire	Hiera	data	file.

While	this	solved	the	secret	data	problem,	it	came	with	manageability	issues.	Without
decrypting	the	file,	you	couldn’t	easily	tell	what	keys	were	present	in	the	file.	It	also	made
tracking	changes	difficult.	Finally,	it	was	tricky	to	set	up	and	use,	involving	getting	GPG
set	up	and	working	and	manually	encrypting	files.	Additionally,	since	all	of	the	entries
were	encrypted,	it	was	not	easy	to	separate	our	duties.	If	you	had	access	to	decrypt	the	file
to	edit	it,	you	would	be	able	to	edit	every	entry	in	the	file.

The	hiera-eyaml	module	was	created	to	address	some	of	these	issues.	It	uses	an	inline
encryption	algorithm	that	allows	the	non-secret	parts	of	the	files	to	stay	in	plain	text.	It
also	comes	with	utility	commands	to	decrypt	the	file	and	launch	an	editor.	For	these
reasons,	it	is	much	easier	to	use	than	gpg-yaml.

We’ll	show	a	short	example	of	its	use	here,	but	to	do	so	we	need	to	set	up	Hiera	first.

Since	Puppet	3,	Hiera	has	become	a	built-in	default	for	Puppet	data.	Therefore,	to	use	it,
we	only	need	to	create	the	appropriate	data	file.

To	do	so,	let’s	create	the	directory	where	we’ll	store	our	data	files.	Run	the	following
command:

sudo	mkdir	/etc/puppet/hieradata

Now,	we’ll	create	the	configuration	file.	To	do	so,	we’ll	edit	/etc/puppet/hiera.yaml
and	add	the	following	contents:

:backends:

		-	yaml

:yaml:

		:datadir:	/etc/puppet/hieradata

:hierarchy:

		-	"%{::fqdn}"

		-	common

This	will	configure	Puppet	to	use	the	directory	we	created	previously	as	the	data	directory,
and	enable	two	levels	of	the	hierarchy:	they	are	the	FQDN	of	the	host	and	then	a	common
file.	We	now	need	to	restart	the	Puppet	Master	with	sudo	service	puppetmaster
restart.

To	demonstrate	Hiera’s	use,	let’s	make	a	quick	module	that	takes	a	single	parameter.	To
keep	it	brief,	we’ll	just	show	the	command	and	then	the	edits.

First	run	the	following:

puppet	module	generate	pupbook-hieraexample

In	this	case,	we	can	accept	all	the	defaults.	We’ll	edit	the	init.pp	file	and	make	it	look	as
follows:

class	hieraexample($secret	=	'nope'	{

		file	{	'/tmp/secret':

				ensure		=>	present,

				content	=>	$secret,

		}

}

This	will	simply	write	a	file	with	the	content	out.	Copy	the	module	into	the
/etc/puppet/modules	directory	named	hieraexample.	Now	we	need	to	add	it	to	our
site.pp	file.	Edit	the	/etc/puppet/manifests/site.pp	file	and	include	the	new	module
with	include	hieraexample.

Let’s	run	it	on	the	master	and	see	what	happens.	Since	we’ve	not	run	on	the	master	yet,
you’ll	see	a	bunch	of	things	run	when	you	run	it.	Once	complete,	if	you	check	the	content
of	the	/tmp/secret	file,	it	should	contain	our	default,	the	word	nope.

Now,	let’s	make	a	Hiera	common	data	file	to	contain	a	more	appropriate	value.	Edit
/etc/puppet/data/common.yaml	and	make	it	look	like	this:

hieraexample::secret:	"yup"

Now,	rerun	Puppet	again	and	you	should	see	that	it	changed	a	file.	The	contents	of	the	file
will	now	also	contain	the	word	yup.	This	is	really	cool,	as	now	we	don’t	need	to	keep	that
data	in	our	manifests	or	modules.

Moving	on,	we	now	need	to	install	the	hiera-eyaml	plugin	and	configure	it	for	use.	Let’s

start	by	installing	the	gem	on	our	Puppet	Master	machine.	We’ll	use	Puppet	to	install	the
gem	for	us,	additionally	demonstrating	that	Puppet	has	the	ability	to	handle	package
installation	via	gem.	To	do	so,	issue	the	following:

sudo	puppet	resource	package	hiera-eyaml	ensure=installed	provider=gem

Here	we	used	the	Puppet	resource	face	to	create	a	command-line-based	resource	for	our
package,	passing	the	arguments	we	needed	to	get	it	installed.	This	can	be	useful	as	it	can
abstract	away	package	installation	if	you	handle	a	variety	of	operating	systems	such	as
Solaris	and	Linux.	As	long	as	you	know	the	package	name,	and	it’s	present	in	a	default
repository,	Puppet	can	install	it.

When	complete,	this	will	output	information	on	the	package,	which	should	show	the
version	that	was	installed.

We	need	to	do	some	key	generation.	Let’s	go	ahead	and	do	that	using	the	following
commands:

eyaml	createkeys

sudo	cp	-a	keys	/etc/puppet/

sudo	chown	-R	puppet:puppet	/etc/puppet/keys

sudo	chmod	0400	/etc/puppet/keys/*.pem

sudo	chmod	0500	/etc/puppet/keys

This	will	copy	the	keys	to	a	suitable	location	and	then	secure	them.	If	you	were	using
version	control,	you	would	want	to	exclude	the	keys	directory	from	being	added	to	version
control	to	protect	the	private	key.

Now	we	need	to	make	our	Hiera	setup	use	our	new	super	fancy	encrypted	backend.	To	do
so,	edit	/etc/puppet/hiera.yaml	and	make	it	look	as	follows:

:backends:

		-	eyaml

		-	yaml

:yaml:

		:datadir:	/etc/puppet/data

:eyaml:

		:datadir:	/etc/puppet/data

		:pkcs7_private_key:	/etc/puppet/keys/private_key.pkcs7.pem

		:pkcs7_public_key:	/etc/puppet/keys/public_key.pkcs7.pem

		:extension:	'yaml'

:hierarchy:

		-	"%{::fqdn}"

		-	common

The	changes	we	made	here	were	to	include	the	backend.	Then	we	configured	it	to	use	the
data	datadir	as	the	other	backend,	and	to	use	the	yaml	extension.	We	also	had	to	point	it
at	our	private	key.

Now,	remember	we	need	to	bounce	the	Puppet	Master	since	we	made	changes	to	the
hiera.yaml	file.	To	do	that,	issue	sudo	service	puppetmaster	restart.

So	now	let’s	edit	an	encrypted	Hiera	data	file	for	one	of	our	hosts.	We’ll	do	this	in	our

directory	then	copy	it	in.

The	Hiera	editor	doesn’t	seem	to	support	handling	empty	files,	so	first	let’s	just	use	echo
to	get	a	header	on	the	file,	then	edit	it	with	eyaml	by	doing	the	following:

echo	"---"	>agentone.book.local.yaml

eyaml	edit	agentone.book.local.yaml

Now,	in	this	file,	let’s	edit	the	content	to	look	as	follows:

hieraexample::secret:	DEC::PKCS7[sup3rs3kr37]!

Notice	how	we	have	the	DEC::PKCS7	line	with	brackets.	The	eyaml	backend	will	encrypt
anything	present	in	those	brackets.	In	this	case,	we’re	using	the	static	text	sup3rs3kr37.

Note
YAML	and	hiera-eyaml	also	support	multiline	data.	More	information	on	YAML
formatting,	in	particular	how	to	handle	multiline	data,	can	be	found	at
http://www.yaml.org/spec/1.2/spec.html#id2760844.

Once	you	complete	editing	the	file,	take	a	look	at	the	contents.	They	should	look	similar	to
the	following	code	(but	they	are	different	since	we	have	differing	keys):

hieraexample::secret:	

ENC[PKCS7,MIIBeQYJKoZIhvcNAQcDoIIBajCCAWYCAQAxggEhMIIBHQIBADAFMAACAQEwDQYJK

oZIhvcNAQEBBQAEggEAarwvO6zbXQm+8q0L5XLpkffqikvnWHGHTeynEVNiXy/Yf8FpiMItfYPm

0TDJ1AB/L6tOxBngN3Wxg0gG60YwkNhVKi5OOUudOdKP5GNZaU3RcCAuJlRvcwlyZ+jCGQ9V0W7

/nfiQTJ6S2muuq1CoAuqvA9GfaZLkAEUUXGSfu3XYt5k0/adngsQxLShtn5atWgnBW9zUVmI7l2

BL750svc3UUUwWPgpzfmINT4up/OyIkFNG2ykFP0AHcdhLQt2/ALPZUDTOI68w0O0BfPFA5wkwD

PyDZb1PP1hfyzfBfmZztzmB6RNiOaUevsSI12H3HKb8vNHBCWfvPxqMRBF9HjA8BgkqhkiG9w0B

BwEwHQYJYIZIAWUDBAEqBBB98Wid9hcLrsFTbXlth47XgBDmiWtMUMlHo/DG7CS2eLVU]

Notice	how	the	DEC	part	has	become	ENC,	and	the	value	has	become	much	longer.	This	is
the	encrypted	version	of	our	preceding	key.

Now,	copy	the	file	into	/etc/puppet/data.

Let’s	rerun	the	Puppet	agent	on	the	master	to	see	what	happens.	There	should	be	no
changes	to	the	file	since	it’s	still	pulling	its	data	from	the	common	Hiera	data	file.

However,	when	you	run	Puppet	on	agentone	and	check	the	contents	of	the	/tmp/secret
file,	they	should	contain	our	secret	word.

As	you	can	see,	hiera-eyaml	presents	a	good	solution	to	handle	any	data	you	don’t	want
publicly	visible.	You	can	use	it	to	store	things	like	passwords	and	keys	that	you	do	not
want	publicly	visible	in	your	code	repository.

Note
If	you	want	more	information	on	Hiera,	please	see	https://docs.puppetlabs.com/hiera/1/.
More	information	on	hiera-eyaml	can	be	found	at	https://github.com/TomPoulton/hiera-
eyaml.

http://www.yaml.org/spec/1.2/spec.html#id2760844
https://docs.puppetlabs.com/hiera/1/
https://github.com/TomPoulton/hiera-eyaml

Summary
The	Puppet	community	is	a	wonderful	resource	that	can	make	your	life	much	easier.	When
looking	to	automate	a	given	piece	of	your	infrastructure,	it	makes	perfect	sense	to	go	look
at	the	Forge	to	see	if	someone	else	has	made	a	module	to	configure	the	application	or
infrastructure	piece	you	are	looking	to	automate.

Even	if	the	module	does	not	support	your	operating	system,	concentrating	work	on
extending	an	existing	module	to	support	more	operating	systems	or	features	betters	the
community	as	a	whole.

Picking	modules	to	review	here	was	actually	really	difficult.	There	are	so	many	good
modules	to	choose	from	on	the	Forge.

To	summarize,	in	this	chapter,	we	explored	modules	that	provided	types	and	providers	for
use	in	configuring	files.	These	modules	allow	us	to	manage	things	we	would	previously
have	managed	as	files	using	native	Puppet	types.

We	then	looked	at	the	cis	module	to	harden	Red	Hat	6	systems.	This	module	is	an
example	of	some	of	the	things	we	can	use	Puppet	to	harden	on	our	systems.

After	that,	we	used	the	sudo	module	to	manage	your	sudoers	files,	centralizing
configuration	of	the	security-related	sudo	data.

Finally,	we	saw	how	to	use	the	hiera-eyaml	gem	to	store	encrypted	data	on	your	Puppet
Master.

In	the	next	chapter,	we’ll	look	at	using	Puppet	to	handle	your	network	security	needs.
We’ll	see	you	then!

Chapter	7.	Network	Security	and	Puppet
One	of	the	most	important	things	to	be	done	on	a	system,	security-wise,	is	to	ensure	that	it
is	safe	from	network-based	attacks.

Ensuring	that	your	system	only	listens	on	expected	ports	and	controls	access	to	services	at
the	network	level	is	a	tedious,	repetitive	process.	What	if	services	could	automatically
open	the	necessary	firewall	rules?	What	if	the	systems	running	a	cluster	application	could
learn	about	one	another	and	open	access	to	just	the	other	nodes?

With	Puppet,	all	this	is	possible.	We’ll	cover	some	of	these	cases	in	this	chapter.	We’ll
cover	the	following	topics:

Basic	information	in	the	firewall	module
The	firewall	type
The	firewall	chain	type
Pre	and	post	rules—what	they	are	and	how	they’re	used
Adding	firewall	rules	to	your	own	modules	in	an	extensible	way

Let’s	get	rolling	with	our	first	topic!

Introducing	the	firewall	module
The	puppetlabs/firewall	module	is	one	of	the	supported	modules	from	Puppet	Labs.	This
means	that	if	you	run	Puppet	Enterprise,	you	can	officially	get	support	on	the	module	on
operating	systems	it	will	currently	run	on.	At	present,	this	includes	Linux	distributions.
For	this	reason,	this	module	is	one	of	the	best	examples	of	modules	available.

The	module	happens	to	also	be	one	of	the	older	ones.	The	current	incarnation	of	this
module	dates	back	to	early	2011.	It	also	contains	the	code	from	an	earlier	iptables	module
that	dates	all	the	way	back	to	2007.

The	module	manages	firewall	rules	on	your	host.	In	its	current	form,	it	can	manage
iptables	firewalls	for	IPv4	and	IPv6	as	well	as	ebtables	for	Ethernet	bridging	and	filtering
support.	In	this	chapter,	we’ll	cover	the	iptables	IPv4	aspects	of	the	module,	although	the
concepts	will	apply	to	all	of	the	other	types	as	well.

Iptables	is	the	primary	firewall	interface	on	Linux	hosts	since	kernel	Version	2.4.	It	will
eventually	be	replaced	by	nftables,	having	been	merged	into	the	main	Linux	kernel	with
kernel	Version	3.13.	However,	for	the	moment,	iptables	is	the	primary	method	of
implementing	host-level	firewall	services	on	the	Linux	kernel.

We	could	spend	the	rest	of	the	book	covering	iptables	and	host-based	firewalls.	Instead,
we’re	going	to	cover	just	enough	information	to	get	you	started	using	Puppet	to	manage
your	host	base	solution.	More	information	on	iptables	can	be	found	at	http://netfilter.org/.
There	are	also	a	number	of	books	available	on	the	subject,	including	Designing	and
Implementing	Linux	Firewalls	and	QoS	using	netfilter,	iproute2,	NAT	and	l7-filter,	which
can	be	found	at	https://www.packtpub.com/networking-and-servers/designing-and-
implementing-linux-firewalls-and-qos-using-netfilter-iproute2-n.

The	firewall	consists	of	a	series	of	chains.	Each	of	these	chains	contains	rules	with	actions.
The	various	rules	may	match	packets	based	on	a	variety	of	factors.	These	can	be	things
like	source	and	destination	address	or	port,	or	even	things	like	TCP	flags.	Once	a	packet
matches	a	rule,	an	action	is	applied	to	it.	These	actions	are	things	like	forwarding	or
dropping	the	packet.

The	puppetlabs-firewall	module	provides	you	with	a	series	of	Puppet	types	and	providers
around	the	firewall	concept.

If	you	remember,	Puppet	types	are	native	Ruby	implementations	of	functionality	in	the
Puppet	core.	These	are	extensible	using	custom	types,	of	which	the	firewall	module
provides	two.	These	two	types	are	the	firewall	and	firewallchain	types.

Providers	are	particular	implementations	of	a	type.	The	Puppet	firewall	module	types	for
firewall	and	firewall	chains	in	turn	have	providers	that	implement	the	firewall	types	for
both	iptables	and	ip6tables.

These	types	and	providers	enable	you	to	manage	their	firewall	configuration	using	native
puppet	resources	as	opposed	to	using	files	and	exec	resources,	which	was	previously
required.	This	increases	the	flexibility	of	managing	the	firewall	over	using	the	exec	type	or

http://netfilter.org/
https://www.packtpub.com/networking-and-servers/designing-and-implementing-linux-firewalls-and-qos-using-netfilter-iproute2-n

managing	files	with	the	saved	iptables	rules.	With	types	and	providers,	you	do	not	need	to
centralize	your	rules	or	use	exported	resources.	You	can	instead	embed	the	firewall	logic
into	the	modules	that	need	ports	open.

Let’s	take	a	look	at	the	specific	types	along	with	some	examples	of	their	use.

The	firewall	type
The	primary	type	provided	and	used	in	the	firewall	module	is	the	firewall	type.	This	type
contains	a	whole	slew	of	parameters	that	allow	you	to	configure	every	aspect	of	the
firewall	rules.	This	is	necessary	because	the	base	iptables	software	has	many	options	that
you	can	pass	to	rules.	To	model	rules	successfully,	the	underlying	type	and	provider	needs
to	support	all	of	the	features	that	you	can	do	on	the	command	line.	This	results	in	a	very
large	parameter	set.	A	summary	of	some	of	the	most	commonly	used	parameters	as	of
Version	1.2.0	are	described	in	the	following	table:

Parameter Description

action

This	provides	the	action	to	be	taken	on	the	packet.	This	can	be	one	of	the	accept	parameter	that	allows
the	packets,	the	reject	parameter	that	denies	the	packet	and	ends	an	ICMP	unreachable	code,	or	the	drop
parameter	that	silently	drops	the	packet.	These	options	are	lowercase	unlike	in	iptables	where	they	are
uppercase.

chain
This	is	the	iptables	chain	that	this	rule	applies	to.	This	is	only	relevant	to	the	iptables	provider	and
requires	this	feature.

destination
This	specifies	the	destination	address	to	be	matched.	This	can	contain	a	CIDR	range.	You	can	negate	the
range	by	prefixing	it	with	an	exclamation	point	(!).

dport This	contains	the	destination	port	to	match.	This	can	also	be	a	range	or	array	of	ports.

dst_range
This	specifies	the	destination	range.	This	is	in	x.x.x.x-y.y.y.y	format,	such	as	10.20.20.10-
10.20.20.40.

ensure This	specifies	whether	the	given	resource	is	present	or	absent.	It	defaults	to	present.

jump

For	iptables,	this	attribute	specifies	the	jump	value.	This	can	be	LOG,	QUEUE,	RETURN,	DNAT,	SNAT,
MASQUERADE,	REDIRECT,	or	MARK.	The	values	ACCEPT,	DROP,	and	REJECT	are	used	with	the	action
parameter,	not	with	jump	in	this	module.

name

This	provides	the	name	of	the	rule.	When	rules	are	inserted,	they	are	sorted	by	name.	As	such,	they	must
be	prepended	with	numbers	to	ensure	proper	ordering.	For	instance,	rule	10-Allow_ssh	will	be	applied
before	rule	20-Deny_all.

port
This	specifies	the	port	or	range	of	ports	to	match.	This	can	also	be	a	range	or	array	of	ports.	This	will
match	both	the	source	and	destination	port.

proto

This	specifies	the	protocol	to	match.	The	default	value	is	TCP,	however,	UDP.	ICMP	and	many	other
protocols	are	supported.	All	can	also	be	used	to	match	all	the	protocols.	For	more	information,	see	the
documentation	at	the	link	mentioned	later	in	this	section.	These	must	be	lowercase	in	the	manifest.

reject This	is	used	to	set	the	ICMP	type	that	the	packet	is	rejected	with	when	the	action	is	reject.

source This	specifies	the	source	address	of	the	packet	to	match.	It	can	be	a	single	IP	or	a	CIDR	range.

sport This	specifies	the	source	port.	It	can	be	a	port,	a	range	of	ports,	or	an	array	of	ports	to	match.

src_range This	specifies	a	source	IP	range	in	x.x.x.x-y.y.y.y	format.	For	example,	10.30.40.1-10.30.41.23.

state This	matches	the	state	of	a	connection.	It	can	be	ESTABLISHED,	INVALID,	NEW,	or	RELATED.

tcp_flags
This	matches	the	TCP	Flags	set	on	a	packet.	These	can	be	any	valid	TCP	flags	such	as	SYN,	ACK,	PSH,	and
so	on.	See	the	documentation	for	more	values.

Note
The	preceding	attributes	are	just	a	subset	of	the	available	parameters	that	are	most
commonly	used.	A	full	documentation	on	all	of	the	parameters	can	be	found	at
https://forge.puppetlabs.com/puppetlabs/firewall.

As	previously	mentioned	under	the	name	parameter,	the	rules	are	ordered	based	on	the
name	before	being	applied.	The	typical	application	of	the	ruleset	is	that	names	are
prepended	with	a	number.	This	allows	you	to	ensure	that	the	rules	are	applied	in	the	order
that	is	desired.

This	module	is	somewhat	dangerous	compared	to	some	of	the	others	we	looked	at	also.	If
you	misuse	it,	it	is	easy	to	lock	yourself	out	of	a	host.	Care	should	be	taken	to	test	all	the
changes	thoroughly	before	applying	them	to	the	production	hosts.

Let’s	go	through	an	example	using	the	firewall	module.	We’ll	do	a	very	simplistic
example	that	logs	all	the	connections	to	our	host	via	SSH.

For	now,	we’ll	create	a	separate	module	to	manage	our	base	firewall	configuration	and	add
our	rules	there.	Later	in	this	chapter,	we’ll	discuss	how	to	add	rules	to	your	modules.

To	begin,	let’s	go	ahead	and	create	our	firewall	module.	In	this	case,	I’m	not	going	to	use
the	name	firewall	to	avoid	problems	with	namespaces	(it’s	possible	to	do	so,	but	if	we
name	it	something	else,	we	can	avoid	it	completely).

To	do	this,	run	the	following	command	in	your	home	directory	on	the	master.	We’ll	copy	it
over	like	we	previously	have:

puppet	module	generate	pupbook-fw

Go	ahead	and	answer	all	the	questions	or	accept	the	defaults,	and	we’ll	move	on	to	define
some	content	for	this	module.

In	this	case,	we’re	going	to	start	by	adding	a	firewall	rule	that	logs	ssh.	We	won’t	add	any
additional	rules	or	purge	existing	rules.	We’ll	cover	the	functionality	in	the	pre	and	post
rules	sections	since	it	requires	a	fair	amount	of	configuration,	and	we	have	a	full	section
that	will	cover	these	topics.

For	the	moment,	let’s	make	our	pupbook-fw/manifests/init.pp	file	look	like	the
following:

class	fw	{

		include	::firewall

		firewall	{	'050	log	all	ssh':

				ensure	=>	present,

				proto		=>	'tcp',

https://forge.puppetlabs.com/puppetlabs/firewall

				port			=>	'22',

				jump			=>	'LOG',

		}

}

The	preceding	code	contains	our	rule	to	log	all	ssh	traffic.	The	only	other	line	in	the
module	is	an	include	of	the	firewall	class.	The	purpose	of	this	class	is	to	ensure	that	all
the	prerequisites	needed	to	use	iptables	are	met.	On	RHEL	6,	this	handles	installation	of
the	iptables-persistent	package,	which	ensures	that	firewall	rules	are	persisted	across
reboots.

We’ll	be	applying	this	class	to	just	one	of	our	nodes	to	test	it.	So,	add	the	following
command	to	the	/etc/puppet/manifests/site.pp	file:

node	'agentone.book.local'	{

		include	fw

}

Before	we	use	the	firewall	module,	we	obviously	need	to	install	it.	Use	the	following
command	to	do	this:

sudo	puppet	module	install	puppetlabs-firewall

Now	we	need	to	test	it.	Remember	that	you’ll	need	to	sign	the	certificate	if	these	are	new
VMs.	You	can	refer	to	Chapter	5,	Securing	Puppet,	for	a	refresher.

When	that’s	completed,	we	can	go	ahead	and	run	Puppet	on	the	agentone	VM.	When	you
finish,	you	should	get	the	output	as	follows:

As	you	can	see,	the	type	and	provider	got	synced	over	to	our	virtual	machine	and	the	rule
got	created.	We	can	confirm	this	by	running	the	following	command:

sudo	iptables	-L

When	you	run	this,	you	should	see	the	output	like	the	following:

You	can	see	our	rule	in	the	iptables	configuration.	Now	let’s	open	a	second	SSH
connection	and	see	what	the	logs	say.	Open	another	terminal	and	run	a	second	vagrant
ssh	agentone	command	to	get	on	agentone.	Then,	we’ll	take	a	look	at	the	log	file	in
/var/log/messages.

You	should	see	lots	of	messages,	such	as	the	following:

Oct	26	07:41:57	localhost	kernel:	IN=eth0	OUT=	

MAC=08:00:27:73:bf:1c:52:54:00:12:35:02:08:00	SRC=10.0.2.2	DST=10.0.2.15	

LEN=40	TOS=0x00	PREC=0x00	TTL=64	ID=17892	PROTO=TCP	SPT=64974	DPT=22	

WINDOW=65535	RES=0x00	ACK	URGP=0

Oct	26	07:41:58	localhost	kernel:	IN=eth0	OUT=	

MAC=08:00:27:73:bf:1c:52:54:00:12:35:02:08:00	SRC=10.0.2.2	DST=10.0.2.15	

LEN=72	TOS=0x00	PREC=0x00	TTL=64	ID=17893	PROTO=TCP	SPT=64974	DPT=22	

WINDOW=65535	RES=0x00	ACK	PSH	URGP=0

Right	away,	we	can	see	an	improvement	we	want	to	make	to	the	module.	Right	now,	it’s
logging	ALL	SSH	packets.	This	will	very	quickly	result	in	a	large	number	of	log	messages.
To	deal	with	this,	we’ll	add	some	more	options	to	our	rule	in	our	module.

To	do	this,	edit	your	pupbook-fw/manigests/init.pp	file	again,	and	in	the	parameters,
add	the	following:

state	=>	'NEW',

This	will	make	the	rule	only	match	new	packets.

Once	this	is	done,	rerun	Puppet.	You	should	receive	an	output	that	indicates	it’s	updated
your	rule	and	now	state	matches	new.	The	iptables	output	will	now	look	like	the
following:

You	will	also	see	that	the	log	messages	have	reduced	to	just	initial	SSH	connections.

The	example	shows	something	else.	Building	Puppet	modules	is	often	an	iterative	process.
In	this	case,	we	created	a	module	using	what	we	knew	we	wanted—we	wanted	to	log	SSH
traffic.	However,	once	it	was	built,	it	was	determined	that	this	wasn’t	quite	what	we
wanted.	What	we	actually	wanted	was	to	log	NEW	SSH	connections.	Therefore,	we	iterated
on	the	module	and	improved	it	to	meet	the	actual	goal.

This	shows	the	importance	of	testing	your	changes.	When	dealing	with	the	firewall
module	in	particular,	it	is	very	possible	to	lock	yourself	out	of	a	machine.	Therefore,	you
should	always	test	your	changes	prior	to	them	going	to	production.

Fortunately,	if	you’ve	been	following	along,	you	have	a	GREAT	method	to	test	your
changes	using	Vagrant.	In	Appendix,	Going	Forward,	we’ll	explore	some	other	resources,
such	as	rspec-puppet,	that	can	be	used	to	help	test.

For	now,	let’s	take	a	look	at	the	other	firewall	module	type.

The	firewallchain	type
The	firewallchain	type	is	something	that	some	people	may	never	use.	It	allows	you	to
manage	the	firewall	chains	themselves	under	iptables.

If	you	recall	from	the	earlier	section,	the	firewall	rules	are	contained	in	chains.	Firewall
chains	are	groupings	of	related	rules.	By	default,	the	filter	table,	which	handles	packet
filtering,	contains	three	chains	INPUT,	OUTPUT,	and	FORWARD.	These	chains	filter	packet
input	when	they	are	forwarded	and	on	output.	There	are	other	default	chains	present	in
other	tables.

It	is	possible	to	add	your	own	chain	to	better	organize	your	firewall	rules.	You	can	then
use	the	jump	rule	to	send	packets	into	your	new	chain.

You	can	use	this	type	if	you	want	to	change	some	default	parameters	about	a	chain	you
created.

The	parameters	available	to	the	firewall	chain	type	are	as	follows:

Parameter Description

ensure What	happens	to	the	chain?	The	valid	values	are	present	and	absent.

ignore

This	allows	the	user	to	specify	rules	to	be	ignored	when	purging	rules.	It	can	be	used	to	ignore	rules	added
by	other	services	dynamically.	It	takes	a	regular	expression	or	an	array	of	regular	expressions	that	matches
the	iptables-save	output.

name
This	contains	the	name	of	the	chain.	It	should	be	in	chain:table:protocol	format,	such	as
MYCHAIN:filter:IPv4.

policy
This	specifies	the	default	policy	of	the	chain.	This	must	be	one	of	accept,	drop,	queue,	and	return.	See
the	iptables	documentation	for	more	details.	The	value	here	must	be	in	lowercase.

provider
This	is	the	provider	of	the	type.	Usually,	it	is	not	set.	Currently,	only	the	iptables_chain	command	is
supported.

purge This	is	the	boolean	value	indicating	whether	rules	unmanaged	by	Puppet	in	the	chain	are	dropped.

The	most	common	parameters	used	here	are	the	ignore,	policy,	and	purge	parameters.
These	can	be	used	as	an	alternative	method	of	purging	rules	from	what	we	will	see	later	in
the	chapter.	One	can	also	set	the	policy	to	drop,	for	instance,	as	opposed	to	adding	an
explicit	drop	at	the	bottom	of	your	rule	set.

Now	we’ll	explore	a	common	pattern	for	implementing	these	types.

Creating	pre	and	post	rules
Over	the	years,	a	good	pattern	to	deal	with	firewall	rules	has	emerged.	This	pattern	uses
the	concept	of	a	class	that	is	applied	before	and	after	all	other	firewall	rules.	This	allows
us	to	set	up	rules	that	are	in	place	before	any	other—allowing	local	packets,	and	so	on.	We
can	also	add	our	default	rule	to	the	post	rules.

If	you	follow	the	directions	on	the	puppetlabs/firewall	website	at
https://forge.puppetlabs.com/puppetlabs/firewall,	it	instructs	you	on	how	to	set	up	pre	and
post	rules.	We’ll	be	using	a	modified	version	of	this	procedure	since	we’re	not	going	to	be
managing	every	resource	on	our	system.

The	module	instructions	assume	that	you	want	the	module	applied	to	all	hosts.	As	such,
they	will	purge	firewall	rules	off	all	hosts	that	run	Puppet.	In	a	perfect	world,	we’d	reach	a
point	where	our	entire	infrastructure	is	Puppetized	and	this	could	be	the	case.	This	is
where	we	aim	to	get	with	our	Puppet	deployments	as	it	means	all	of	our	resources	can	be
tracked	and	audited.	It	also	makes	systems	easy	to	rebuild.	However,	as	this	book	is
targeted	at	users	just	starting	with	Puppet,	we’re	going	to	assume	that	you’re	retrofitting
an	existing	environment	and	will	not	add	these	default	rules.	In	our	case,	we	will	only
manage	firewall	rules	on	a	host	we	explicitly	apply	our	firewall	module	to.

To	create	this	pattern,	we	will	need	to	create	two	more	classes.	These	classes	will	also	be
in	our	firewall	module,	and	we’ll	call	them	pre	and	post.

The	pre	class	will	contain	all	of	the	firewall	rules	we	want	to	be	applied	before	any	other
rules.	We’ll	use	this	to	set	up	things	like	allowing	established	connections,	permitting
connections	to	a	localhost,	and	so	on.

We’ll	use	the	internal	features	of	Puppet	to	ensure	ordering.	To	make	this	somewhat	easier,
we’ll	use	resource	defaults	to	set	them	up,	so	we	don’t	need	to	add	them	to	each	rule.

In	our	pre	class,	we’ll	do	the	things	we	previously	mentioned,	for	example,	allow
connections	to	a	localhost.	Allow	ICMP	and	established	connections.	To	do	this,	we’ll
make	the	pre	class	look	like	the	following:

class	fw::pre	{

		Firewall	{

				require	=>	undef,	#	Undo	require

		}

		firewall	{	'000	Allow	localhost':

				proto			=>	'all',

				iniface	=>	'lo',

				action		=>	'accept',

		}	->

		firewall	{	'001	Allow	established':

				proto		=>	'all',

				state		=>	['RELATED',	'ESTABLISHED'],

				action	=>	'accept',

		}	->

		firewall	{	'002	Allow	ICMP':

https://forge.puppetlabs.com/puppetlabs/firewall

				proto		=>	'icmp',

				action	=>	'accept',

		}

}

In	this	class,	we	set	a	default	that	unsets	the	require	parameter.	Later	on	in	the	main
firewall	class,	we’ll	set	the	default	we’re	overriding	here.

We	will	go	on	to	create	a	series	of	default	rules.	These	are	modeled	off	by	some	of	the
defaults	that	CentOS	uses	in	its	default	configuration.	They	are	also	similar	to	the	rules	in
the	documentation	for	the	module,	although	they	have	been	reordered	to	an	order	that	I
think	makes	more	sense,	such	as	moving	rules	that	are	commonly	hit	in	the	list.

Next,	we’ll	move	on	to	the	post	class.	As	a	reminder,	this	will	be	applied	after	all	the	other
rules.

The	post	class	should	look	like	the	following:

class	fw::post	{

		firewall	{	'999	accept	all':

				proto		=>	'all',

				action	=>	'accept',

				before	=>	undef,

		}

}

In	a	production	environment,	this	should	be	the	deny	value	with	log	and	not	the	accept
value.	In	our	test	case,	we’ll	accept	all	for	demonstration	purposes.

This	should	seem	pretty	familiar	by	now.	The	only	thing	to	note	here	is	that	we’re
overriding	the	before	parameter	to	be	undef	in	the	resource	so	that	it	gets	applied	after	the
other	rules.

Now	we’ll	revisit	our	main	module	and	use	it	to	pull	all	this	together.	Let’s	go	ahead	and
open	the	init.pp	file	again.	We’ll	edit	it.	The	final	contents	would	look	like	the
following:

class	fw	{

		Firewall	{

				before		=>	Class['fw::post'],

				require	=>	Class['fw::pre'],

		}

		include	fw::pre

		include	fw::post

		require	::firewall

		firewall	{	'050	log	all	ssh':

				ensure	=>	present,

				proto		=>	'tcp',

				port			=>	'22',

				jump			=>	'LOG',

				state		=>	'NEW',

		}

}

Our	SSH	rule	is	still	in	there.	We	just	filled	in	some	things	around	it.	Notice	at	the	top	we
used	class	defaults	as	mentioned	earlier.	In	this	class,	every	rule	will	have	the	before	and
require	lines	applied	to	it.	This	ensures	that	the	ordering	is	applied	correctly,	and	you	don’t
accidentally	lose	connection	while	things	are	applied.	Then,	we	have	to	include	our	pre
and	post	classes.	The	remainder	of	the	class	is	as	it	was	earlier.

Let’s	go	ahead	and	copy	it	back	into	its	place	and	run	it	on	our	agentone	node.

Once	this	is	done,	your	output	should	be	as	follows:

Running	the	sudo	iptables	-L	command	will	show	the	following	output:

And	success!	You	can	see	that	our	rules	were	applied	in	the	order	we	expected.

Now	that	we	understand	the	basics	of	the	firewall	module,	we’ll	explore	how	you	might
add	it	to	the	modules	you	write.

Adding	firewall	rules	to	other	modules
So	far,	we	concentrated	on	using	a	single	firewall	utility	class.	While	this	is	useful	for	site
or	organization	wide	rules,	it	quickly	becomes	unwieldy	to	manage	if	there	are	specific
exceptions	for	given	hosts	or	applications.	As	such,	there	must	be	a	better	way	to	manage
firewall	rules	close	to	the	applications	we’re	installing	via	Puppet.

This	section	will	also	serve	to	introduce	another	common	pattern	that	is	being	applied	in
the	Puppet	world.	This	is	the	roles	and	profiles	pattern.

The	concept	of	the	roles	and	profiles	pattern	is	that	we	have	utility	modules.	These
modules	are	responsible	for	being	generic	enough	to	configure	an	underlying	system.
Consider	modules	to	configure	Apache	or	Samba.	These	modules	will	likely	not	contain
any	site-specific	implementation.	They	are	also	the	modules	that	will	be	reused.

From	these	modules,	we	build	profiles.	These	profiles	use	the	underlying	utility	modules
to	build	more	complete	services.	For	instance,	this	is	where	you	would	use	the	Apache
module	to	define	a	given	website	or	to	define	a	web	server.	You	might	also	create	a	profile
to	create	a	given	set	of	samba	mounts	using	the	Samba	module.

Finally,	there	are	the	roles.	These	roles	become	a	collection	of	profiles	that	build	complete
systems.	The	role	may	be	a	specific	website.	It	includes	profiles	for	the	various	websites.
Perhaps	it	also	includes	a	database	server,	or	a	particular	version	of	Nginx	to	use	for
proxying.	The	profiles	would	configure	these	pieces,	and	the	roles	would	bring	them
together	into	a	complete	system.

This	pattern	was	first	introduced	by	Craig	Dunn	in	a	blog	post	in	2012.	Since	then,	it	has
gained	a	lot	of	popularity	in	the	Puppet	world.	The	original	blog	post	and	more
information	can	be	found	at	http://www.craigdunn.org/2012/05/239/.

The	profile	would	tend	to	be	where	you	would	define	the	firewall	ruleset.	It	is	really
difficult	for	the	underlying	module	to	do	it	in	a	way	that	is	correct	for	all	users.	As	such,
many	modules	include	no	firewall	support	or	only	very	basic	support.	When	you	add	the
firewall	configuration	in	the	profile,	you	can	include	the	correct	class	logic	to	ensure	that
your	ordering	is	right,	and	the	specific	configuration	you	want	is	in	place.

To	demonstrate	this,	we’ll	use	the	profile	pattern	and	the	puppetlabs/ntp	module	to	create
an	Network	Time	Protocol	(NTP)	server	profile.	We’ll	also	create	a	role	for	it	even
though	it	will	contain	only	one	class.

Let’s	start	by	installing	the	ntp	module.	To	do	so,	run	the	following	command	on	the
master:

sudo	puppet	module	install	puppetlabs-ntp

Now	that	we’ve	done	this,	we	need	to	create	two	modules—one	will	hold	our	roles,	and
the	other	will	hold	our	profiles.	The	commands	to	do	these	are	as	follows:

puppet	module	generate	pupbook-roles

puppet	module	generate	pupbook-profiles

http://www.craigdunn.org/2012/05/239/

Go	ahead	and	accept	the	defaults	for	these,	and	add	a	description	as	you	see	fit.

First,	we’ll	configure	the	role.	The	role	we’re	going	to	create	is	for	an	NTP	server,	so	we’ll
call	it	ntpserver.	Let’s	edit	the	manifests/ntpserver.pp	file	inside	our	profiles	module.
We	want	it	to	look	as	follows:

class	profiles::ntpserver	{

		include	::ntp

		include	::fw

		firewall	{	'060	allow	ntp':

				proto			=>	'udp',

				port				=>	'123',

				action		=>	'accept',

				before		=>	[Class['::fw::post'],	Class['::ntp']],

				require	=>	Class['::fw::pre'],

		}		}

}

Is	allowing	all	to	NTP	dangerous?
For	many	years,	it	was	common	practice	to	allow	anything	to	talk	to	NTP,	and	indeed	the
default	configuration	of	most	NTP	servers	would	serve	time	to	any	client.	However,	there
has	been	a	recent	rash	of	amplification	attacks	utilizing	a	deficiency	in	the	default
configuration	of	many	servers.	This	attack	has	generated	multi-gigabit	attacks	against	a
variety	of	targets.	As	such,	it	is	best	to	now	lock	down	NTP	serving	to	the	client	networks
you	wish	to	provide	time	to.

This	is	a	really	simplistic	profile	because	we’re	implementing	a	simple	service.	We
include	the	ntp	module	with	default	options	(although	they	could	be	overriden	by	Hiera,
as	in	the	last	chapter).	We	then	include	the	proper	firewall	configuration	to	ensure	that	port
123	/	UDP	is	open.

The	role	will	be	even	simpler	and	will	look	as	follows:

class	roles::ntpserver	{

		include	profiles::ntpserver

}

The	ntpserver	role	only	contains	the	ntpserver	profile.	In	a	more	complex	service,
you’d	see	it	include	more.	Perhaps	you	have	a	management	server	role	that	also	serves	as
an	NTP	server.	You’d	also	normally	include	a	common	profile	that	includes	everything
common	to	all	systems,	such	as	SSH	rules.

Now,	copy	the	modules	into	the	module	directory	and	we’ll	test	them.

Let’s	apply	the	ntpserver	role	to	agentone	and	test	it.	To	do	so,	we’ll	include	the
ntpserver	role	on	the	node	definition.	It	should	now	look	as	follows:

node	'agentone.book.local'	{

		include	roles::ntpserver

}

Now,	let’s	run	Puppet	on	agentone.	When	complete,	you	should	get	the	output	like	the
following:

Once	again,	we’ll	examine	the	iptables	output	and	see	that	the	rule	was	applied:

You	can	see	the	rule	in	the	table.

Using	this	pattern,	you	can	create	a	complex	system	and	have	the	firewall	rules	follow	the
profiles	that	require	them.	It	also	keeps	site-specific	logic	away	from	modules	that
implement	functionality,	which	promotes	module	reusability.

Summary
Managing	system	firewalls	is	a	repetitive	and	an	error	prone	task.	These	sorts	of	tasks	are
great	for	management	by	Puppet.	Using	the	puppetlabs/firewall	module,	we	can
implement	system	level	firewall	services	with	ease	and	with	configuration,	that	is	easily
read	and	audited.

In	this	last	chapter,	we	learned	how	to	use	the	firewall	type	to	manage	our	firewalls.	Using
the	parameters	of	the	type,	we	can	manage	all	the	aspects	of	the	iptables	configuration.

We	then	learned	a	design	pattern	that	allowed	us	to	ensure	that	our	rules	got	applied	in	a
consistent	order,	and	also	ensure	that	common	rules	are	applied	to	all	hosts	in	our
environment.

Finally,	we	learned	a	pattern	that	allowed	us	to	build	reusable	modules	and	attach	the
firewall	configuration	needed	for	services	to	the	service	definitions.

In	the	next	chapter,	we’ll	explore	centralized	logging,	which	is	very	important	to	utilize	in
a	secure	environment.	We’ll	see	you	there!

Chapter	8.	Centralized	Logging
As	a	security	professional,	one	of	the	key	requirements	is	that	you	centralize	logging	so	it
can	be	analyzed.	This	allows	you	to	maintain	a	single	point	where	all	logs	are	processed
and	acted	upon.

Even	those	not	in	the	security	profession	can	benefit	from	this.	Gathering	all	application
logs	benefits	operations	as	well	as	development	professionals.

There	are	a	large	number	of	products	on	the	market,	both	open	source	and	commercial,
that	can	be	used	to	tackle	this	problem.

On	the	commercial	side,	we	have	offerings	such	as	Splunk	or	Loggly	that	can	be	used	to
gather	your	logs	and	provide	analysis	on	them.	These	are	both	great	products	that	can	be
Puppetized.

On	the	open	source	side,	the	most	common	solution	seems	to	be	converging	around
Logstash,	written	by	Jordan	Sissel	and	now	maintained	by	Elasticsearch.

In	this	chapter,	we’ll	cover	the	installation	of	the	Logstash	environment	using	Puppet.
Some	of	the	concepts	are	similar	to	those	used	by	some	of	the	commercial	products.
However,	these	products	tend	to	be	harder	to	test.	As	such,	we’ll	focus	on	the	open	source
tools.	In	particular,	we	will	cover	the	following	topics:

What	Logstash	is
Installing	Logstash	and	its	prerequisites	with	Puppet
Using	Kibana	to	report	on	log	data
Configuring	hosts	using	Puppet	to	ship	log	data	to	Logstash

When	we’re	complete,	you	should	be	able	to	implement	a	fairly	complete	centralized
logging	host	using	what	we’ve	covered	in	this	chapter.

Let’s	get	to	it!

Welcome	to	logging	happiness
As	previously	mentioned,	logging	presents	a	challenge	to	many	organizations.	Gathering
and	processing	log	files	is	required	for	a	number	of	reasons.	It	is	used	to	watch	for
anomalous	behavior	as	well	as	look	for	unauthorized	activity.

For	many	years,	a	centralized	syslog	host	was	the	most	common	method	used	to
implement	centralized	logging.	All	of	the	hosts	would	ship	their	logs	to	one	place	and
analysis	was	done	there.

This	worked	OK	for	systems	that	used	syslog	for	all	logging.	However,	syslog	has	some
drawbacks.	It	lacks	a	good	way	to	deal	with	multiline	records.	Additionally,	it	only	has	a
limited	number	of	granularity	levels	so	everything	ended	up	logged	in	several	giant	log
files.	Attempts	were	made	with	various	syslog	agents	to	overcome	some	of	these
challenges,	but	there	had	to	be	a	more	complete	way	to	handle	the	problem.

Enter	Logstash.	Logstash	is	nothing	more	than	a	system	that	takes	input	from	multiple
sources,	parses	it,	and	stores	that	output	elsewhere.	However,	this	simplicity	is	what	gives
it	so	much	power.	It	can	parse	data	from	any	number	of	sources,	including	syslog,	files,	or
other	Logstash	instances.	It	can	also	write	to	a	variety	of	places,	including	files,
Elasticsearch,	or	even	systems	such	as	Nagios.	This	is	not	in	any	way	a	comprehensive	list
of	inputs	or	outputs	either.	There	are	dozens	of	them	available	for	various	scenarios.

Logstash	alone	is	a	neat	product,	but	the	real	power	presents	itself	in	what	is	called	the
Elasticsearch,	Logstash,	and	Kibana	(ELK)	and	stack.	This	stack	consists	of
Elasticsearch	on	the	backend	for	searching,	Logstash	for	log	processing,	and	Kibana	for
analytics.

When	used	together,	these	projects	create	a	full	log	management	solution,	complete	with
quick	and	powerful	searching	as	well	as	a	web	interface	to	interact	with	your	logs.	Using
Kibana,	you	can	even	create	dashboards	to	allow	you	to	graph	certain	events	over	time,
plot	them	on	a	map,	or	other	useful	things.

Installing	Logstash	is	simple;	however,	the	agent	or	the	forwarder	must	be	installed	on	all
hosts.	Additionally,	for	optimal	performance,	several	of	the	components	that	run	with
Logstash	are	best	run	on	their	own	instances.

We’ll	quickly	stand	up	Logstash	in	demo	mode	to	show	you	some	of	its	power,	then	we’ll
approach	using	Puppet	to	configure	your	Logstash	environment.

Installing	the	ELK	stack
To	install	the	ELK	stack,	we’ll	use	the	RPM-based	downloads	for	both	Elasticsearch	and
Logstash.	Then,	we’ll	manually	install	Kibana	since	it	does	not	yet	have	a	package.

Packages	for	these	can	be	downloaded	from	Elasticsearch	at
http://www.elasticsearch.org/overview/elkdownloads/.	We’ll	download	the	latest	version
of	Elasticsearch,	Logstash,	and	Kibana.	At	the	time	this	book	was	written,	those	are	1.4.0,
1.4.2,	and	3.1.2	respectively.

We’ll	do	this	work	on	our	agentone	VM,	as	we	should	work	to	keep	our	puppetmaster
standalone.	First,	fire	up	the	agentone	VM.	If	you	need	a	reminder	on	how	to	do	this	using
Vagrant,	refer	to	Chapter	1,	Puppet	as	a	Security	Tool,	to	get	a	quick	refresher	course.

Once	it’s	up,	go	ahead	and	SSH	to	agentone.	Once	it’s	booted,	run	the	following
commands	to	install	Elasticsearch	and	Logstash	on	the	machine:

sudo	yum	install	

https://download.elasticsearch.org/elasticsearch/elasticsearch/elasticsearc

h-1.4.0.noarch.rpm

sudo	yum	install	

https://download.elasticsearch.org/logstash/logstash/packages/centos/logsta

sh-1.4.2-1_2c0f5a1.noarch.rpm

You	may	need	to	adjust	the	versions	to	the	ones	you	got	previously	from	the	downloads
page.

Logstash	will	pull	in	Java	as	it’s	needed	for	the	application	to	run.	Once	it’s	installed,
we’ll	quickly	configure	it	to	consume	our	syslog	data	on	localhost	just	for	testing
purposes.

Once	that’s	installed,	let’s	set	about	configuring	Logstash	and	Elasticsearch.	Elasticsearch
contains	a	large	number	of	configuration	parameters,	but	for	our	simple	example,	the
default	configuration	will	suffice.	As	such,	we’ll	simply	enable	it	and	start	it.	To	do	so,	run
the	following	commands:

sudo	chkconfig	elasticsearch	on

sudo	/sbin/service	elasticsearch	start

Now	we’ll	move	on	to	Logstash.	We’ll	configure	Logstash	to	read	our	messages	file	and
send	it	to	Elasticsearch	for	us	to	use	in	Kibana.

To	do	so,	edit	the	/etc/logstash/conf.d/logstash-example.conf	file	to	contain	the
following:

input	{

		file	{

				path	=>	"/var/log/messages"

				start_position	=>	"beginning"

				type	=>	"syslog"

		}

}

http://www.elasticsearch.org/overview/elkdownloads/

filter	{

		if	[type]	==	"syslog"	{

				grok	{

						match	=>	{	"message"	=>	"%{SYSLOGTIMESTAMP:syslog_timestamp}	%

{SYSLOGHOST:syslog_hostname}	%{DATA:syslog_program}(?:\[%

{POSINT:syslog_pid}\])?:	%{GREEDYDATA:syslog_message}"	}

						add_field	=>	["received_at",	"%{@timestamp}"]

						add_field	=>	["received_from",	"%{host}"]

				}

				syslog_pri	{	}

				date	{

						match	=>	["syslog_timestamp",	"MMM		d	HH:mm:ss",	"MMM	dd	HH:mm:ss"]

				}

		}

}

output	{

		elasticsearch	{	host	=>	localhost	}

}

We’ll	save	this.	This	configuration	file	will	read	the	syslog	data	from	the
/var/log/messages	file	and	process	it	into	elasticsearch.	It	will	read	some	metadata
from	the	syslog_message	parameter	to	create	the	timestamp	and	add	a	host	parameter.
This	is	straight	out	of	the	Logstash	documentation	with	some	modifications	to	read	the
syslog	data	from	a	file	instead	of	syslog.	One	thing	worth	noting	is	that	in	its	default
configuration,	Logstash	does	not	run	as	root.	Therefore,	it	will	not	be	able	to	read	the
messages	file	that	is	readable	only	by	root.	A	simple	solution	is	to	add	the	Logstash	user
to	the	root	group	and	make	the	file	group	readable;	however,	for	simplicity’s	sake,	we’ll
run	the	following	command	to	make	it	readable	by	all:

sudo	chmod	644	/var/log/messages

Tip
You	should	be	careful	to	not	do	the	preceding	actions	in	production.	This	was	applied	on	a
test	system	where	shortcuts	can	be	taken	to	keep	the	examples	to	a	reasonable	length.	This
book	presumes	you	have	the	knowledge	to	properly	configure	the	mode	and	ownership	of
your	log	files	so	that	the	Logstash	user	can	pick	them	up.	More	information	on
permissions	can	be	found	at	https://en.wikipedia.org/wiki/File_system_permissions.

Save	this	file	and	let’s	start	Logstash.	To	do	this,	run	the	following	command:

sudo	chkconfig	logstash	on

sudo	/sbin/service	logstash	start

Give	it	a	few	minutes	to	come	up	and	index	some	events.	You	should	be	able	to	see	that	it
has	events	processed	by	running	the	following	command:

curl	'http://localhost:9200/_search?pretty'

If	it	has	successfully	indexed	events,	you	should	see	something	similar	to	the	following:

https://en.wikipedia.org/wiki/File_system_permissions

Now	that	we	have	some	data,	we’ll	concentrate	on	getting	Kibana	working	so	that	we	can
see	what	it	looks	like.

To	run	Kibana	in	its	current	form	(Version	3),	we	will	need	a	web	server.	We’ll	use
Apache	in	this	example	since	it	ships	with	Red	Hat	and	has	good	Puppet	support.	Let’s	go
ahead	and	install	it.

To	do	so,	run	the	following	command:

sudo	yum	install	httpd	-y Once	this	is	done,	we’ll	download	and	unpack	Kibana.	First,
download	it	with	the	following	command:

cd	/tmp	&&	wget	https://download.elasticsearch.org/kibana/kibana/kibana-

3.1.2.tar.gz

You	may	need	to	adjust	the	preceding	file.

Tip
Kibana	is	in	between	versions.	As	of	time	of	this	writing,	it	is	on	Version	3,	but	Version	4
is	in	beta.	Version	4	contains	a	built-in	web	server,	so	its	setup	will	vary	slightly.

Next,	we’ll	unpack	it	into	the	root	of	our	HTML	tree.	To	do	so,	run	the	following
command:

cd	/var/www/html	&&	sudo	tar	zxvf	/tmp/kibana-3.1.2.tar.gz

Finally,	we	can	start	Apache	and	configure	it	to	start	at	boot	by	running	the	following	two
commands:

sudo	chkconfig	httpd	on

sudo	/sbin/service	httpd	start

We’ll	also	need	to	adjust	some	settings	on	Elasticsearch	to	allow	Kibana	to	connect.	Edit
the	/etc/elasticsearch/elasticsearch.yml	file	and	add	the	following	two	lines	at	the
bottom:

http.cors.enabled:	true

http.cors.allow-origin:	http://10.78.78.50

Now,	restart	elasticsearch	by	running	the	sudo	service	elasticsearch	restart
command.

Now,	Kibana	is	running	on	our	VM	server.	We	should	be	able	to	hit	it	using	the	IP	we
have	for	private	hosts;	in	this	case,	it	is	http://10.78.78.50/kibana-3.1.2.

You	should	be	greeted	with	a	screen	that	looks	like	the	following:

If	you	scroll	down,	you’ll	see	a	Logstash	dashboard.	Go	ahead	and	click	on	it.	It’ll	give

you	a	nice	starting	point	to	configure	a	dashboard.	This	screen	looks	like	the	following
screenshot:

On	this	main	screen,	we	can	see	several	sections.	At	the	top	of	the	page,	there	is	a	query
bar.	If	you	type	in	that	box,	you	can	search	all	of	the	following	events.	For	instance,	typing
yum	will	let	you	search	for	any	event	that	contains	yum.

The	middle	box	contains	a	time	series	histogram	of	events.	It	just	shows	how	many	events
occurred	in	a	given	bucket	of	time.	You	can	zoom	in	and	out	with	your	mouse	and	update
the	bottom	pane.

The	bottom	pane	contains	all	of	the	raw	events	in	a	paginated	format.	Additionally,	it
contains	a	box	on	the	left	that	is	intended	to	help	you	quickly	filter	data.	I	encourage	you
to	explore	and	play	with	this	interface.	It’s	fairly	easy	to	use	and	the	documentation	is
good.

Kibana	and	Logstash	are	complex	enough	that	one	could	write	a	book	about	just	them
(and	indeed,	at	least	one	does	exist).	The	purpose	of	this	section	was	to	give	you	enough
of	an	introduction	to	know	why	you	would	want	to	use	them,	and	what	you	can	do	with
them.	Now	we’ll	move	on	to	managing	them	with	Puppet.

Logstash	and	Puppet
When	configuring	any	service,	especially	a	service	that	is	present	on	many	host,	one
should	look	to	Puppet	for	help.	In	the	case	of	Logstash,	we	can	configure	all	of	its
components	using	Puppet,	and	we	can	configure	our	hosts	to	report	data	as	well.	In	this
section,	we’ll	see	how	to	install	the	base	Logstash	components	using	Puppet.	Depending
on	the	desired	configuration,	this	could	be	repeated	for	each	host,	or	you	could	use	another
system	to	transport	logs,	one	of	which	we’ll	see	in	a	later	section.

We’ll	be	extending	the	roles	and	profiles	concept	we	introduced	in	the	previous	chapter	to
configure	these	services.	As	such,	make	sure	you	still	have	these	modules	available.

Let’s	begin	with	Elasticsearch.

Installing	Elasticsearch
Elasticsearch	has	a	large	variety	of	supported	installation	configurations.	It	can	be
installed	as	a	cluster	that	shares	data	and	allows	searches	to	be	split.	It	can	also	be	installed
in	a	single	node	configuration.	In	each	configuration,	there	are	a	number	of	knobs	that	can
be	tuned	to	set	things,	such	as	the	node	name,	instance	name,	and	so	on.

Elasticsearch	provides	an	official	Puppet	module	to	manage	this	installation.	This	module
is	one	of	the	new	Puppet	approved	modules.	This	means	the	module	has	good	support	and
is	well	designed.

In	our	test	case,	we’ll	be	accepting	most	of	the	defaults	for	the	installation.	In	fact,	we’ll
essentially	be	duplicating	what	we	did	previously	where	we	collocated	the	elasticsearch
server	with	the	logstash	host.	There	will	only	be	a	single	node	in	this	cluster	that	holds
the	data.

In	a	production	situation,	you	might	wish	to	run	multiple	nodes	in	your	cluster	or,
depending	on	your	usage,	even	multiple	clusters.	Fortunately,	using	facts,	this	is	a	fairly
easy	operation.

To	use	the	module,	we	first	have	to	install	it.	To	do	so,	run	the	following	on	the	master:

sudo	puppet	module	install	elasticsearch/elasticsearch

Now	that	we	have	the	module	installed,	we’ll	create	a	profile	for	it.	As	you	can	recall,	we
use	profiles	to	combine	the	utility	module	(in	this	case,	the	Elasticsearch	module)	into	a
module	we	can	use	locally.	As	such,	let’s	create	a	logstash-elasticsearch	profile	that
creates	an	elasticsearch	instance	for	our	Logstash	installation.	To	do	so,	go	to	the
module	directory	for	our	profiles	module,	and	create	a	new	file	called
manifests/logstash-elasticsearch.pp.	We	want	the	contents	to	look	like	the
following:

class	profiles::logstash-elasticsearch	{

		include	elasticsearch

		elasticsearch::instance	{	"${hostname}-ls-es01":

				config	=>	{

						'http.cors.enabled'						=>	'true',

						'http.cors.allow-origin'	=>	"http://${ipaddress_eth1}",

				}

		}

}

Once	that’s	done,	we’ll	create	a	role	that	uses	this	profile.	We’ll	call	the	logstash-server
role.	In	production,	we’d	likely	have	a	separate	logstash-elasticsearch	role	we’d	apply
to	multiple	hosts,	but	for	our	simple	test	(Or	if	you	have	a	smaller	environment—less	than
50	or	so	hosts),	we	can	create	it	all	on	a	single	host.

One	of	the	nice	things	about	Puppetizing	all	of	this	is	that	we	can	parameterize	this	in	such
a	way	that	adding	an	additional	Elasticsearch	node	becomes	simple,	and	reshaping	the
cluster	is	also	easy.

For	now,	let’s	get	our	role	created	and	test	it	out.

To	do	so,	let’s	create	our	role	in	the	roles	module	under	manifests/logstash-server.pp.
We	want	the	content	to	be	as	follows:

class	roles::logstash-server	{

		include	profiles::logstash-elasticsearch

}

Finally,	let’s	apply	the	role	to	our	agentone	node	by	inserting	the	following	into	the
/etc/puppet/manifests/site.pp	file:

node	'agentone.book.local'	{

		include	roles::logstash-server

}

Now	go	ahead	and	run	Puppet	on	agentone.	Remember	that	we’re	going	to	have	to	sign
the	certificate	if	you	restarted	the	VM.	Once	complete,	you	should	see	output	such	as	the
following:

If	you	now	check	the	process	table	with	ps	auxww|grep	elastic,	you’ll	see	that	we	have
two	instances	of	elasticsearch	started	now.	This	is	because	we’ve	created	a	new
instance	of	elasticsearch	with	our	given	name.	At	this	point,	we	should	stop	the	old
elasticsearch	service	and	disable	it.	To	do	so,	run	the	following	commands:

sudo	chkconfig	elasticsearch	off

sudo	/sbin/service	elasticsearch	stop

We	also	then	want	to	restart	our	current	cluster	so	it	gets	the	right	port.	This	is	optional,
but	it	sure	makes	our	lives	easier	in	the	future.	To	do	so,	run	the	following	command:

sudo	/sbin/service	elasticsearch-agentone-ls-es01	restart

Once	complete,	let’s	test	it	using	curl	and	move	on.	Run	the	command	curl
localhost:9200	and	you	should	see	output	like	the	following:

{

		"status"	:	200,

		"name"	:	"agentone-agentone-ls-es01",

		"cluster_name"	:	"elasticsearch",

		"version"	:	{

				"number"	:	"1.4.0",

				"build_hash"	:	"bc94bd81298f81c656893ab1ddddd30a99356066",

				"build_timestamp"	:	"2014-11-05T14:26:12Z",

				"build_snapshot"	:	false,

				"lucene_version"	:	"4.10.2"

		},

		"tagline"	:	"You	Know,	for	Search"

}

You	can	see	our	new	cluster	name,	so	we	know	all	is	good.	It	appended	our	hostname	to
the	instance	name,	so	it’s	present	twice,	but	that	is	the	price	we	pay	for	the	instance	in
Puppet	being	named	well.

Now	let’s	work	on	Logstash.

Installing	Logstash
Much	like	the	elasticsearch	module,	the	logstash	module	is	provided	by	Elasticsearch.
This	module	is	fairly	mature	but	is	not	part	of	the	Puppet	Approved	program.

There	is	a	fairly	tight	coupling	between	the	version	of	the	module	and	the	version	of
Logstash	it	manages.	In	this	case,	we	will	want	a	Version	>	0.5.0	since	we’re	managing
Logstash	1.4.	This	is	the	latest	version	at	the	time	this	book	was	written,	so	we	can	simply
install	it.	If	there	are	newer	versions,	the	install	commands	would	need	to	be	adjusted
accordingly	to	match	the	version	you	wish	to	work	with.

To	install	the	module	on	the	master,	run	the	following	command:

sudo	puppet	module	install	elasticsearch-logstash

This	will	get	the	module	installed	and	should	be	second	nature	by	now.

The	logstash	module	uses	a	concept	of	configuration	file	snippets	to	perform	its	work.
It’s	used	to	rely	on	a	fairly	robust	set	of	defines	to	do	the	work,	however,	as	configurations
became	more	complex,	creating	a	system	of	types	and	plugins	to	manage	all	possibilities
became	more	difficult.	As	such,	the	project	reverted	to	using	file	snippets	that	expose	all
of	the	possible	configuration	functionalities	in	the	logstash	module.

As	mentioned	previously,	we’ll	define	a	profile,	and	then	we’ll	define	a	role	to	use	that.

First,	let’s	create	our	configuration	snippets.	Basically,	we’re	going	to	slice	up	the
configuration	file	we	used	in	the	first	section	into	three	pieces.	We’ll	then	configure
Logstash	to	use	these	pieces	in	a	configuration.

Let’s	create	the	input	from	the	messages	file.	To	do	this,	we’ll	take	the	input	section	of	the
configuration	file	from	earlier	and	put	it	in	a	file	in	the	module	path.	We	can	then	use	the
logstash::configfile	method	to	include	it.

Before	we	can	do	that,	we	need	to	create	the	file	directory	in	our	module.	Inside	the
profiles	module,	run	the	mkdir	files	command	to	create	the	directory	to	hold	static	files
served	by	the	master.

Then,	let’s	edit	the	files/messages-input.conf	file	and	add	the	following	contents:

input	{

		file	{

				path	=>	"/var/log/messages"

				start_position	=>	"beginning"

				type	=>	"syslog"

		}

}

This	should	look	familiar	from	earlier.	We’re	creating	a	file	input	that	will	pick	up	the
messages	file	and	classify	it	as	syslog.	It’ll	also	pick	up	the	entire	file	through	the	first
pass.

Now,	let’s	add	the	second	configuration	file	snippet.	We’ll	call	this	file	files/syslog-
filter.conf.	It	should	look	as	follows:

filter	{

		if	[type]	==	"syslog"	{

				grok	{

						match	=>	{	"message"	=>	"%{SYSLOGTIMESTAMP:syslog_timestamp}	%

{SYSLOGHOST:syslog_hostn

						add_field	=>	["received_at",	"%{@timestamp}"]

						add_field	=>	["received_from",	"%{host}"]

				}

				syslog_pri	{	}

				date	{

						match	=>	["syslog_timestamp",	"MMM		d	HH:mm:ss",	"MMM	dd	HH:mm:ss"]

				}

		}

}

Note	that	the	first	match	line	was	wrapped.	This	should	also	be	reviewed	as	it’s	the	same
match	line	as	the	earlier	one.	It	takes	anything	with	a	syslog	type	and	applies	three	filters.
The	first	one	is	a	grok	filter	that	splits	the	message	into	parts.	The	second	is	a	filter	that
can	parse	the	syslog	priority.	The	final	one	is	a	filter	that	parses	the	syslog	type’s	date	to
set	the	event	timestamp	for	Logstash	internally.

Finally,	let’s	configure	our	output	file.	We’ll	put	this	one	in	the	files/elasticsearch-
output.conf	file.	The	contents	are	as	follows:

output	{

		elasticsearch	{	cluster	=>	"Elasticsearch"	}

}

In	this	case,	we’re	sending	the	output	to	the	elasticsearch	cluster.	This	is	a	bit	different
than	earlier	the	one,	as	it	uses	discovery	instead	of	pointing	to	a	static	host.	Your	use	of
this	depends	on	your	paranoia.	If	your	network	is	well	controlled,	it	is	safe	to	use
discovery.	If	you	are	worried	about	unknown	hosts	joining	the	cluster,	you	should
statically	set	the	hosts	to	connect	to	using	a	template.

Now	that	we	have	our	files	in	place,	we	can	go	ahead	and	create	our	profile.	We’ll	create	it
as	the	manifests/logstash.pp	profile.	We’ll	create	the	contents	to	look	as	follows:

class	profiles::logstash	{

		class	{	'::logstash':

				manage_repo					=>	true,

				repo_version				=>	'1.4',

				purge_configdir	=>	true,

		}

		logstash::configfile	{	'messages-input':

				order		=>	100,

				source	=>	'puppet:///modules/profiles/messages-input.conf',

		}

		logstash::configfile	{	'syslog-filter':

				order		=>	200,

				source	=>	'puppet:///modules/profiles/syslog-filter.conf',

		}

		logstash::configfile	{	'elasticsearch-output':

				order		=>	900,

				source	=>	'puppet:///modules/profiles/elasticsearch-output.conf',

		}

}

Note	that	the	last	source	line	was	wrapped.

This	profile	will	install	Logstash,	telling	it	to	manage	the	repository	on	the	system	and
purge	unmanaged	configuration	files.	It	then	goes	on	to	create	three	configuration	file
resources	for	our	snippets.	We	set	the	order	to	ensure	that	they	get	added	in	the	proper
order,	using	numbers	with	100	to	allow	us	plenty	of	room	to	expand	in	the	future.

Now	we	add	it	to	our	logstash-server	role	in	our	roles	profile,	which	should	now	look
like	the	following:

class	roles::logstash-server	{

		include	profiles::logstash-elasticsearch

		include	profiles::logstash

}

Once	that’s	done,	we	can	go	ahead	and	run	Puppet	on	agentone	again	and	observe	the
output.	It	should	look	as	follows:

Once	this	completes,	run	the	curl	command	from	the	first	section.	It	is	as	follows:

curl	'http://localhost:9200/_search?pretty'

You	should	see	the	results	returned,	so	on	to	Kibana!

Reporting	on	log	data
As	we	saw	earlier,	Kibana	is	the	graphical	dashboard	frontend	in	the	ELK	stack.	It
provides	a	rich	interface	that	allows	you	to	turn	normal	boring	log	data	(or	any	data	in
Elasticsearch	actually),	into	colorful	dashboards	that	contain	operational	data.	We’ll	go
over	to	install	Kibana	via	Puppet	here.	Since	in	Version	3	this	is	just	a	web	application,
this	is	a	fairly	straightforward	procedure.

Installing	Kibana
Since	Kibana	is	just	a	web	application	running	as	static	HTML,	we’ll	configure	it	using	a
local	web	server	as	we	did	in	the	first	section.	Much	like	in	that	section	we’ll	be	using
Apache	to	handle	the	installation	of	Kibana.

This	will	vary	a	bit	from	how	we’ve	handled	the	past	installations.	We’re	going	to	create
an	end-to-end	module	to	handle	this	instead	of	relying	on	a	community	module.

The	first	step	is	to	create	our	module	to	do	it.	We’ll	call	it	the	pupbook-kibana	module.
We’re	doing	this	because	none	of	the	community	modules	present	solve	exactly	what
we’re	looking	to	do,	and	because	it’s	a	good	exercise	in	a	complete	functioning	module.
To	get	started,	run	the	following	command	to	generate	our	module	template:

puppet	module	generate	pupbook-kibana

Now,	we’ll	start	flushing	our	module	out.	First,	we’ll	create	a	class	to	install	Kibana.	We’ll
call	it	the	kibana::install	class.	To	do	so,	let’s	edit	the	manifests/install.pp	file	and
add	the	following	content:

class	kibana::install	(

		$version	=	"3.1.2",

		$site	=	"https://github.com/elasticsearch/kibana/archive/",

		$target	=	"/var/www/kibana",

		$archtarget	=	"/opt/",

)	{

		validate_string($version)

		validate_string($site)

		$archive	=	"v${version}.tar.gz"

		$downloadurl	=	"${site}/${archive}"

		file	{	$archtarget:

				ensure	=>	directory,

		}

		file	{	$target:

				ensure	=>	directory,

		}

		#	We	use	curl	to	download

		package	{	'curl':

				ensure	=>	present,

		}

		exec	{	'download-kibana':

				command	=>	"curl	-L	-s	-S	-k	-o	${archtarget}/${archive}	

${downloadurl}",

				path				=>	"/bin:/usr/bin",

				creates	=>	"${archtarget}/${archive}",

				require	=>	[Package['curl'],	File[$archtarget],	File[$target]],

				notify		=>	Exec['extract-kibana'],

		}

		exec	{	'extract-kibana':

				command					=>	"tar	--strip-components=1	-zxf	${archtarget}/${archive}	

-C	${target}",

				path								=>	"/bin:/usr/bin",

				refreshonly	=>	true,

		}

}

Be	aware	that	a	few	of	the	preceding	lines	were	wrapped.	They	should	be	obvious,	but	if
you	have	questions,	see	the	code	included	with	the	book.

This	is	a	fairly	complete	example	complete	with	some	validation.	We’re	allowing
parameters	to	be	passed	to	the	class	to	change	what	version	we	download,	or	where	we
install.

First,	we	set	some	variables	to	make	our	lives	a	bit	easier,	containing	things	like	our
archive	name	and	the	full	URL	we’re	downloading	from.

Then,	we	go	on	to	ensure	that	the	directories	we	need	are	present,	and	the	curl	package	we
use	to	download	software	is	installed.

Finally,	we	hit	the	interesting	parts.	We	have	two	exec	resources	here	that	do	the	meat	of
the	work.	The	first	one	sets	up	a	download	of	the	kibana	source	to	a	temporary	location
(the	/opt	location	by	default).	This	downloads	the	file	from	GitHub	by	default.	It	then
notifies	the	other	exec	that	will	extract	the	archive	contents	to	our	target	directory.

Ideally,	we’d	like	all	the	software	to	be	distributed	by	package,	and	we	could	easily	use	a
tool	to	create	the	RPM.	We	would	then	need	a	repository	infrastructure	to	hold	it,	and	so
on.	This	is	a	great	goal	if	you	have	multiple	packages	you’re	dealing	with,	but	if	it	ends	up
simply	being	a	single	package,	this	method	will	work.	There	are	even	utility	modules	on
the	forge	that	can	assist.	Use	the	search	term	archive	to	find	them.

Once	this	install	method	runs,	we	will	have	a	fully	installed	and	working	copy	of	Kibana.
We	now	need	to	configure	Apache	to	serve	it.	To	do	this,	we’ll	use	the
puppetlabs/apache	module.

First,	we	need	to	install	it	with	our	now	super	familiar	command	on	the	Puppet	Master:

sudo	puppet	module	install	puppetlabs/apache

Now	that	it’s	installed,	we’ll	create	the	necessary	glue	in	our	kibana	module	to	use	it	to
serve	the	pages.

We	can	do	this	in	our	profile	for	Kibana,	since	that’s	what	the	profile	is	normally	for.
However,	I	find	that	since	Kibana	requires	a	web	server	to	operate,	it’s	a	reasonable	choice
to	go	ahead	and	configure	it	in	that	module.	The	only	reason	you	may	not	want	to	is	if	you
were	to	create	a	reusable	module	where	the	end	user	may	wish	to	use	a	different	web
server	to	serve	up	kibana.

Let’s	edit	the	manifests/apache.pp	file	in	our	kibana	module,	and	we’ll	make	it	look	as
follows:

class	kibana::apache	{

		class	{	'::apache':

				default_vhost	=>	false,

		}

		apache::vhost	{	'kibana':

				docroot	=>	'/var/www/kibana/src/',

				port				=>	'80',

				require	=>	Class['kibana::install'],

		}

}

This	fairly	simple	class	creates	the	apache::vhost	for	our	Kibana	configuration.	If	we	had
to	interact	with	other	apache::vhost,	we’d	need	a	more	flexible	way	to	handle	this
(unless	we	wanted	Kibana	to	be	the	default	vhost),	but	we	shouldn’t	be	mixing	services
that	are	unrelated	anyway.	A	perfectly	reasonable	thing	to	do	is	to	run	this	interface	on	one
of	the	logstash	hosts	as	it	is	very	lightweight.

We	can	create	one	last	class	that	handles	configuring	Kibana.	However,	in	this	case,	the
default	configuration	will	suffice	as	it	did	earlier.

Let’s	glue	it	all	together	by	adding	it	to	the	init.pp	file.	Edit	the	manifests/init.pp	file
and	add	the	following:

class	kibana	{

		include	kibana::install

		include	kibana::apache

}

Continuing	on	this	journey,	we’ll	add	this	class	directly	to	the	role.	Since	it’s	specific	to
the	site,	we	can	skip	the	profile	setup	here	and	add	it	straight	to	the	role.	Edit	the
roles/manifests/logstash-server.pp	file	to	make	it	look	as	follows:

class	roles::logstash-server	{

		include	profiles::logstash-elasticsearch

		include	profiles::logstash

		include	kibana

}

Whew!	That	was	a	lot	of	work	to	get	the	entire	stack	up.	None	of	it	was	difficult,	but	since
we	created	an	entire	module	from	scratch	it	had	some	more	steps.

We’ve	already	applied	the	role	to	our	host,	so	it’s	just	a	matter	of	running	Puppet	on	the
agentone	host	now	to	see	the	results.	When	you	do	so,	the	output	should	be	similar	to	the
following	screenshot:

Now,	hit	http://10.78.78.50	with	a	browser.	You	should	be	greeted	with	the	Kibana
welcome	page	we	saw	in	the	first	section	of	the	chapter.

Now	that	we’ve	got	the	entire	ELK	stack	Puppetized,	let’s	take	a	look	at	how	we	can	use
Puppet	to	automate	collecting	data	from	each	of	our	hosts.

Configuring	hosts	to	report	log	data
Now	that	we’ve	been	through	the	work	of	Puppetizing	the	host	infrastructure	for	Logstash,
let’s	take	a	look	at	how	to	Puppetize	the	collection	on	our	hosts.	There	are	a	large	number
of	ways	to	do	this	that	contain	various	tradeoffs	on	things	such	as	local	parsing	and	the
size	of	the	shipping	solution.

For	this	exercise,	we’ll	use	Redis	as	a	message	queue.	This	is	the	recommended
configuration	if	you	wish	to	use	a	message	queue	based	system,	if	you	wish	to	use	a
message	queue	and	do	not	have	one	installed.	It	has	the	downside	of	having	added
complexity	due	to	needing	Redis	installed.	However,	our	Redis	installation	in	this	example
is	quite	simple	using	a	community	module.

This	is	a	well-supported	and	tested	configuration.	There	are	other	possible	message	queues
one	could	use	instead	of	Redis,	so	if	your	environment	has	one	set	up,	by	all	means	use
that	one.

The	first	step	is	to	get	Redis	installed.	There	are	a	stack	of	community	modules	that	can	do
this.	We’ll	be	using	the	most	popular	one	in	terms	of	downloads,	which	is	the
thomasvandoren/redis	command.	To	do	this,	first	we	must	get	it	installed.	The	all	too
familiar	following	command	does	it:

sudo	puppet	module	install	thomasvandoren/redis

Now,	we’ll	add	a	new	profile	for	a	Redis	server.	This	will	use	a	very	default	configuration,
so	it	will	be	rather	small.	In	our	roles	module,	create	the	manifests/logstash-redis.pp
file.	The	contents	are	as	follows:

class	profiles::logstash-redis	{

		include	redis

}

It’s	that	simple.	We’ll	use	all	of	the	default	redis	configuration,	including	the	password.
In	production,	you’d	likely	want	to	set	authentication	up	for	these	purposes.

Now,	we’ll	create	a	new	redis	input	for	our	indexer.	To	do	this,	let’s	first	create	the
configuration	file	snippet	for	the	input	in	the	profiles	module.	To	do	this,	edit	the
files/redis-input.conf	file	and	add	the	following	contents:

input	{

		redis	{

				host	=>	"localhost"

				data_type	=>	"list"

				key	=>	"logstash"

				type	=>	"redis-input"

		}

}

This	tells	Elasticsearch	that	we	want	a	redis-input	listening	on	localhost.	We’ll	use	the
list	data	type,	which	is	one	of	the	methods	Redis	has	to	move	data.	We’ll	set	our	key	or
queue	to	logstash,	and	the	type	(if	not	specified	on	the	shipper)	to	redis-input.

Now,	we	can	go	ahead	and	configure	our	profile	for	logstash	to	use	this.	To	do	this,	we’ll
add	a	new	stanza	to	the	manifests/logstash.pp	file	to	include	our	redis	configuration
file.	We’ll	place	it	right	after	our	messages	input	and	it	should	look	as	follows:

		logstash::configfile	{	'redis-input':

				order		=>	101,

				source	=>	'puppet:///modules/profiles/redis-input.conf',

		}

Additionally,	we’ll	add	our	new	logstash-redis	profile	to	our	logstash-server	role.	To
do	this,	edit	the	manifests/logstash-server.pp	file	in	our	roles	module	and	make	it
look	as	follows:

class	roles::logstash-server	{

		include	profiles::logstash-elasticsearch

		include	profiles::logstash

		include	kibana

		include	redis

}

Once	done,	go	ahead	and	run	Puppet	on	agentone.	You	should	see	it	install	Redis	and
reconfigure	Logstash.	This	may	take	some	time	as	the	module	we’re	using	actually
compiles	and	installs	Redis.	We’re	going	to	omit	the	screenshot	of	the	output	for	brevity
(we’ve	seen	plenty	of	such	outputs	by	now).

Now	that	we	have	that	we	can	focus	on	the	shipper	side.	To	do	this,	we’ll	create	a	new
profile	called	logstash-shipper.	We’ll	base	it	on	the	logstash	profile.

Tip
There	is	an	opportunity	for	improvement	here	by	bringing	the	common	pieces	of	this
configuration	together.	This	is	a	good	opportunity	for	you	to	practice	what	you’ve	learned.

First,	let’s	make	our	redis-input	file.	For	this	example,	we’ll	hardcode	the	IP	to	send	to.
We’d	want	to	do	this	via	a	template	in	a	bigger	environment,	likely	obtained	from	Hiera.
However,	we’re	once	again	trying	to	keep	these	examples	shorter	and	more	simple.	Edit
the	files/redis-output.conf	file	under	the	profiles	module	and	add	the	following
content:

output	{

		redis	{

				host	=>	'10.78.78.50'

				data_type	=>	'list'

				key	=>	'logstash'

		}

}

This	looks	very	much	like	our	input,	but	in	this	case,	we’re	statically	setting	the	host	to	our
Redis	master.

Now,	let’s	create	the	profile.	Edit	the	manifests/logstash-shipper.pp	file	and	include
the	following	content:

class	profiles::logstash-shipper	{

		class	{	'::logstash':

				manage_repo					=>	true,

				repo_version				=>	'1.4',

				purge_configdir	=>	true,

		}

		logstash::configfile	{	'messages-input':

				order		=>	100,

				source	=>	'puppet:///modules/profiles/messages-input.conf',

		}

		logstash::configfile	{	'syslog-filter':

				order		=>	200,

				source	=>	'puppet:///modules/profiles/syslog-filter.conf',

		}

		logstash::configfile	{	'redis-output':

				order		=>	900,

				source	=>	'puppet:///modules/profiles/redis-output.conf',

		}

}

This	is	very	close	to	our	logstash	profile,	with	only	the	output	changing	to	use	the	new
configuration	we’ve	put	in	place.	Now,	we	can	create	a	logstash-shipper	role	by
creating	the	manifests/logstash-shipper.pp	file	under	the	roles	module,	as	shown	in
the	following	code:

class	roles::logstash-shipper	{

		include	profiles::logstash-shipper

}

This	is	another	case	where	the	role	ends	up	being	very	short	and	only	contains	the	single
module.

Now,	let’s	add	this	as	a	default	configuration	in	our	site.pp	file.	Under	the
/etc/puppet/manifests/site.pp	code,	add	the	following	default	node	definition:

node	default	{

		include	roles::logstash-shipper

}

Finally,	we’re	ready	to	go.	On	the	master,	run	the	sudo	chmod	644	/var/log/messages
command	to	make	our	messages	file	readable	by	Logstash,	then	run	Puppet.

Now,	let’s	return	to	our	Kibana	installation	and	see	what	we	see	there.	We’ll	take	a	short
cut	straight	to	the	Logstash	dashboard	by	going	to
http://10.78.78.50/index.html#/dashboard/file/logstash.json.	Once	there	scroll
down	to	the	filter	section	on	the	left-hand	side	and	click	on	the	host.	You	should	see	the
output	as	follows:

You	can	see	that	we	now	have	data	from	both	our	Puppet	master	as	well	as	agentone.	If
you	start	up	agenttwo,	sign	its	certificate,	and	run	Puppet,	you	would	see	logs	from	that
host	also.

Using	this	method,	we	can	now	ship	logs	from	all	of	our	hosts	to	our	single	centralized
Logstash	server	and	analyze	them	using	Kibana.

Summary
In	this	chapter,	we	explored	centralized	logging.	We’ve	seen	why	one	might	want	to
implement	it	and	what	the	benefits	are.

We	then	looked	at	the	Logstash	environment	and	the	ELK	stack.	This	includes
Elasticsearch,	Logstash,	and	Kibana	that	provide	a	complete	log	management	solution	that
can	scale	to	many	hosts.

After	doing	this,	we	explored	how	to	install	all	of	these	pieces	using	Puppet.	We	went
through	the	acts	of	installing	Elasticsearch,	Logstash,	and	then	Kibana	using	Puppet	to
automate	the	system.

Finally,	we	explored	how	to	use	Puppet	to	manage	your	other	hosts	to	ship	logs	to	this
centralized	logging	solution	and	do	this	in	a	repeatable	manner.

By	doing	all	this,	we	saw	many	examples	of	how	to	implement	solutions	in	Puppet.	The
building	block	of	tools	available	to	you	continues	to	grow.	While	we	didn’t	explore	how	to
bring	every	log	into	this	solution,	we’ve	given	you	enough	knowledge	to	expand	what
we’ve	learned	to	be	used	in	other	situations.

More	information	on	the	ELK	stack	can	be	found	at
http://www.elasticsearch.org/overview/.

In	the	next	chapter,	we’ll	cover	how	to	use	Puppet	to	help	manage	SELinux	and	audited
configurations.

http://www.elasticsearch.org/overview/

Chapter	9.	Puppet	and	OS	Security	Tools
We	learned	a	lot	so	far	about	using	Puppet	to	secure	your	systems	as,	well	as	how	to	use	it
to	make	groups	of	systems	more	secure.	However,	in	all	of	that,	we’ve	not	yet	covered
some	of	the	basic	OS-level	functions	that	are	available	to	secure	a	system.	In	this	chapter,
we’ll	review	several	of	those	functions.

SELinux	is	a	powerful	tool	in	the	security	arsenal.	Most	administrators	experience	with	it,
is	along	the	lines	of	“how	can	I	turn	that	off	?”	This	is	born	out	of	frustration	with	the	poor
documentation	about	the	tool,	as	well	as	the	tedious	nature	of	the	configuration.

While	Puppet	cannot	help	you	with	the	documentation	(which	is	getting	better	all	the
time),	it	can	help	you	with	some	of	the	other	challenges	that	SELinux	can	bring.	That	is,
ensuring	that	the	proper	contexts	and	policies	are	in	place	on	the	systems	being	managed.

In	this	chapter,	we’ll	cover	the	following	topics	related	to	OS-level	security	tools:

A	brief	introduction	to	SELinux	and	auditd
The	built-in	Puppet	support	for	SELinux
Community	modules	for	SELinux
Community	modules	for	auditd

At	the	end	of	this	chapter,	you	should	have	enough	skills	so	that	you	no	longer	need	to
disable	SELinux.	However,	if	you	still	need	to	do	so,	it	is	certainly	possible	to	do	via	the
modules	presented	here.

Introducing	SELinux	and	auditd
During	the	course	of	this	chapter,	we’ll	explore	the	SELinux	framework	for	Linux	and	see
how	to	automate	it	using	Puppet.	As	part	of	the	process,	we’ll	also	review	auditd,	the
logging	and	auditing	framework	for	Linux.	Using	Puppet,	we	can	automate	the
configuration	of	these	often-neglected	security	tools,	and	even	move	the	configuration	of
these	tools	for	various	services	to	the	modules	that	configure	those	services.

The	SELinux	framework
SELinux	is	a	security	system	for	Linux	originally	developed	by	the	United	States
National	Security	Agency	(NSA).	It	is	an	in-kernel	protection	mechanism	designed	to
provide	Mandatory	Access	Controls	(MACs)	to	the	Linux	kernel.

SELinux	isn’t	the	only	MAC	framework	for	Linux.	AppArmor	is	an	alternative	MAC
framework	included	in	the	Linux	kernel	since	Version	2.6.30.	We	choose	to	implement
SELinux;	since	it	is	the	default	framework	used	under	Red	Hat	Linux,	which	we’re	using
for	our	examples.

Note
More	information	on	AppArmor	can	be	found	at
http://wiki.apparmor.net/index.php/Main_Page.

These	access	controls	work	by	confining	processes	to	the	minimal	amount	of	files	and
network	access	that	the	processes	require	to	run.	By	doing	this,	the	controls	limit	the
amount	of	collateral	damage	that	can	be	done	by	a	process,	which	becomes	compromised.

SELinux	was	first	merged	to	the	Linux	mainline	kernel	for	the	2.6.0	release.	It	was
introduced	into	Red	Hat	Enterprise	Linux	with	Version	4,	and	into	Ubuntu	in	Version	8.04.
With	each	successive	release	of	the	operating	systems,	support	for	SELinux	grows,	and	it
becomes	easier	to	use.

SELinux	has	a	couple	of	core	concepts	that	we	need	to	understand	to	properly	configure	it.
The	first	are	the	concepts	of	types	and	contexts.	A	type	in	SELinux	is	a	grouping	of
similar	things.	Files	used	by	Apache	may	be	httpd_sys_content_t,	for	instance,	which	is
a	type	that	all	content	served	by	HTTP	would	have.	The	httpd	process	itself	is	of	type
httpd_t.	These	types	are	applied	to	objects,	which	represent	discrete	things,	such	as	files
and	ports,	and	become	part	of	the	context	of	that	object.	The	context	of	an	object
represents	the	object’s	user,	role,	type,	and	optionally	data	on	multilevel	security.	For	this
discussion,	the	type	is	the	most	important	component	of	the	context.

Using	a	policy,	we	grant	access	from	the	subject,	which	represents	a	running	process,	to
various	objects	that	represent	files,	network	ports,	memory,	and	so	on.	We	do	that	by
creating	a	policy	that	allows	a	subject	to	have	access	to	the	types	it	requires	to	function.

SELinux	has	three	modes	that	it	can	operate	in.	The	first	of	these	modes	is	disabled.	As
the	name	implies,	the	disabled	mode	runs	without	any	SELinux	enforcement.	The	second
mode	is	called	permissive.	In	permissive	mode,	SELinux	will	log	any	access	violations,
but	will	not	act	on	them.	This	is	a	good	way	to	get	an	idea	of	where	you	need	to	modify
your	policy,	or	tune	Booleans	to	get	proper	system	operations.	The	final	mode,	enforcing,
will	deny	actions	that	do	not	have	a	policy	in	place.	Under	Red	Hat	Linux	variants,	this	is
the	default	SELinux	mode.	By	default,	Red	Hat	6	runs	SELinux	with	a	targeted	policy	in
enforcing	mode.	This	means,	that	for	the	targeted	daemons,	SELinux	will	enforce	its
policy	by	default.

An	example	is	in	order	here,	to	explain	this	well.

http://wiki.apparmor.net/index.php/Main_Page

So	far,	we’ve	been	operating	with	SELinux	disabled	on	our	hosts.	The	first	step	in
experimenting	with	SELinux	is	to	turn	it	on.	We’ll	set	it	to	permissive	mode	at	first,	while
we	gather	some	information.	To	do	this,	after	starting	our	master	VM,	we’ll	need	to
modify	the	SELinux	configuration	and	reboot.	While	it’s	possible	to	change	from
enforcing	mode	to	either	permissive	or	disabled	mode	without	a	reboot,	going	back
requires	us	to	reboot.

Let’s	edit	the	/etc/sysconfig/selinux	file	and	set	the	SELINUX	variable	to	permissive	on
our	puppetmaster.	Remember	to	start	the	vagrant	machine	and	SSH	in	as	it	is	necessary.
Once	this	is	done,	the	file	should	look	as	follows:

Once	this	is	complete,	we	need	to	reboot.	To	do	so,	run	the	following	command:

sudo	shutdown	-r	now

Wait	for	the	system	to	come	back	online.

Once	the	machine	is	back	up	and	you	SSH	back	into	it,	run	the	getenforce	command.	It
should	return	permissive,	which	means	SELinux	is	running,	but	not	enforced.

Now,	we	can	make	sure	our	master	is	running	and	take	a	look	at	its	context.	If	it’s	not
running,	you	can	start	the	service	with	the	sudo	service	puppetmaster	start	command.
Now,	we’ll	use	the	-Z	flag	on	the	ps	command	to	examine	the	SELinux	flag.	Many
commands,	such	as	ps	and	ls	use	the	-Z	flag	to	view	the	SELinux	data.	We’ll	go	ahead
and	run	the	following	command	to	view	the	SELinux	data	for	the	running	puppetmaster:

ps	-efZ|grep	puppet

When	you	do	this,	you’ll	see	a	Linux	output,	such	as	follows:

unconfined_u:system_r:initrc_t:s0	puppet		1463					1		1	11:41	?	00:00:29	

/usr/bin/ruby	/usr/bin/puppet	master

If	you	take	a	look	at	the	first	part	of	the	output	line,	you’ll	see	that	Puppet	is	running	in	the
unconfined_u:system_r:initrc_t	context.	This	is	actually	somewhat	of	a	bug	and	a
result	of	the	Puppet	policy	on	CentOS	6	being	out	of	date.	We	should	actually	be	running

under	the	system_u:system_r:puppetmaster_t:s0	context,	but	the	policy	is	for	a	much
older	version	of	Puppet,	so	it	runs	unconfined.

Let’s	take	a	look	at	the	sshd	process	to	see	what	it	looks	like	also.	To	do	so,	we’ll	just
grep	for	sshd	instead:

ps	-efZ|grep	sshd

The	output	is	as	follows:

system_u:system_r:sshd_t:s0-s0:c0.c1023	root	1206		1		0	11:40	?	00:00:00	

/usr/sbin/sshd

This	is	a	more	traditional	output	one	would	expect.	The	sshd	process	is	running	under	the
system_u:system_r:sshd_t	context.	This	actually	corresponds	to	the	system	user,	the
system	role,	and	the	sshd	type.

The	user	and	role	are	SELinux	constructs	that	help	you	allow	role-based	access	controls.
The	users	do	not	map	to	system	users,	but	allow	us	to	set	a	policy	based	on	the	SELinux
user	object.	This	allows	role-based	access	control,	based	on	the	SELinux	user.	Previously
the	unconfined	user	was	a	user	that	will	not	be	enforced.

Now,	we	can	take	a	look	at	some	objects.	Doing	a	ls	-lZ	/etc/ssh	command	results	in
the	following:

As	you	can	see,	each	of	the	files	belongs	to	a	context	that	includes	the	system	user,	as	well
as	the	object	role.	They	are	split	among	the	etc	type	for	configuration	files	and	the
sshd_key	type	for	keys.

The	SSH	policy	allows	the	sshd	process	to	read	both	of	these	file	types.	Other	policies,
say,	for	NTP	,	would	potentially	allow	the	ntpd	process	to	read	the	etc	types,	but	it	would
not	be	able	to	read	the	sshd_key	files.

This	very	fine-grained	control	is	the	power	of	SELinux.	However,	with	great	power	comes
very	complex	configuration.	Configuration	can	be	confusing	to	set	up,	if	it	doesn’t	happen
correctly.	For	instance,	with	Puppet,	the	wrong	type	can	potentially	impact	the	system	if
not	dealt	with.

Fortunately,	in	permissive	mode,	we	will	log	data	that	we	can	use	to	assist	us	with	this.
This	leads	us	into	the	second	half	of	the	system	that	we	wish	to	discuss,	which	is	auditd.

Note
In	the	meantime,	there	is	a	bunch	of	information	on	SELinux	available	on	its	website	at
http://selinuxproject.org/page/Main_Page.	There’s	also	a	very	funny,	but	informative,
resource	available	describing	SELinux	at	https://people.redhat.com/duffy/selinux/selinux-
coloring-book_A4-Stapled.pdf.

http://selinuxproject.org/page/Main_Page
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf

The	auditd	framework	for	audit	logging
SELinux	does	a	great	job	at	limiting	access	to	system	components;	however,	reporting
what	enforcement	took	place	was	not	one	of	its	objectives.

Enter	the	auditd.	The	auditd	is	an	auditing	framework	developed	by	Red	Hat.	It	is	a
complete	auditing	system	using	rules	to	indicate	what	to	audit.	This	can	be	used	to	log
SELinux	events,	as	well	as	much	more.

Under	the	hood,	auditd	has	hooks	into	the	kernel	to	watch	system	calls	and	other
processes.	Using	the	rules,	you	can	configure	logging	for	any	of	these	events.	For
instance,	you	can	create	a	rule	that	monitors	writes	to	the	/etc/passwd	file.	This	would
allow	you	to	see	if	any	users	were	added	to	the	system.	We	can	also	add	monitoring	of
files,	such	as	lastlog	and	wtmp	to	monitor	the	login	activity.	We’ll	explore	this	example
later	when	we	configure	auditd.

To	quickly	see	how	a	rule	works,	we’ll	manually	configure	a	quick	rule	that	will	log	the
time	when	the	wtmp	file	was	edited.	This	will	add	some	system	logging	around	users
logging	in.

To	do	this,	let’s	edit	the	/etc/audit/audit.rules	file	to	add	a	rule	to	monitor	this.	Edit
the	file	and	add	the	following	lines:

-w	/var/log/wtmp	-p	wa	-k	logins

-w	/etc/passwd	–p	wa	–k	password

We’ll	take	a	look	at	what	the	preceding	lines	do.	These	lines	both	start	with	the	–w	clauses.
These	indicate	the	files	that	we	are	monitoring.	Second,	we	have	the	–p	clauses.	This	lets
you	set	what	file	operations	we	monitor.	In	this	case,	it	is	write	and	append	operations.
Finally,	with	the	the	–k	entries,	we’re	setting	a	keyword	that	is	logged	and	can	be	filtered
on.

This	should	go	at	the	end	of	the	file.	Once	it’s	done,	reload	auditd	with	the	following
command:

sudo	service	auditd	restart

Once	this	is	complete,	go	ahead	and	log	another	ssh	session	in.	Once	you	can	simply	log,
back	out.	Once	this	is	done,	take	a	look	at	the	/var/log/audit/audit.log	file.	You
should	see	the	content	like	the	following:

type=SYSCALL	msg=audit(1416795396.816:482):	arch=c000003e	syscall=2	

success=yes	exit=8	a0=7fa983c446aa	a1=1	a2=2	a3=7fff3f7a6590	items=1	

ppid=1206	pid=2202	auid=500	uid=0	gid=0	euid=0	suid=0	fsuid=0	egid=0	sgid=0	

fsgid=0	tty=(none)	ses=51	comm="sshd"	exe="/usr/sbin/sshd"	

subj=system_u:system_r:sshd_t:s0-s0:c0.c1023	key="logins"

type=SYSCALL	msg=audit(1416795420.057:485):	arch=c000003e	syscall=2	

success=yes	exit=7	a0=7fa983c446aa	a1=1	a2=2	a3=8	items=1	ppid=1206	

pid=2202	auid=500	uid=0	gid=0	euid=0	suid=0	fsuid=0	egid=0	sgid=0	fsgid=0	

tty=(none)	ses=51	comm="sshd"	exe="/usr/sbin/sshd"	

subj=system_u:system_r:sshd_t:s0-s0:c0.c1023	key="logins"

There	are	tons	of	fields	in	this	output,	including	the	SELinux	context,	the	userID,	and	so
on.	Of	interest	is	the	auid,	which	is	the	audit	user	ID.	On	commands	run	via	the	sudo
command,	this	will	still	contain	the	user	ID	of	the	user	who	called	sudo.	This	is	a	great
way	to	log	commands	performed	via	sudo.

Auditd	also	logs	SELinux	failures.	They	get	logged	under	the	type	AVC.	These	access
vector	cache	logs	will	be	placed	in	the	auditd	log	file	when	a	SELinux	violation	occurs.

Note
Much	like	SELinux,	auditd	is	somewhat	complicated.	The	intricacies	of	it	are	beyond	the
scope	of	this	book.	You	can	get	more	information	at
http://people.redhat.com/sgrubb/audit/.

http://people.redhat.com/sgrubb/audit/

SELinux	and	Puppet
Puppet	has	direct	support	for	several	features	of	SELinux.	There	are	two	native	Puppet
types	for	SELinux:	selboolean	and	selmodule.	These	types	support	setting	SELinux
Booleans	and	installing	SELinux	policy	modules.

SELinux	Booleans	are	variables	that	impact	on	how	SELinux	behaves.	They	are	set	to
allow	various	functions	to	be	permitted.	For	instance,	you	set	a	SELinux	Boolean	to	true
to	allow	the	httpd	process	to	access	network	ports.

SELinux	modules	are	groupings	of	policies.	They	allow	policies	to	be	loaded	in	a	more
granular	way.	The	Puppet	selmodule	type	allows	Puppet	to	load	these	modules.

Additionally,	there	is	support	in	the	file	type	for	setting	the	SELinux	data	on	files,	as	you
may	recall	from	an	earlier	chapter.

The	selboolean	type
The	targeted	SELinux	policy	that	most	distributions	use	is	based	on	the	SELinux	reference
policy.	One	of	the	features	of	this	policy	is	the	use	of	Boolean	variables	that	control
actions	of	the	policy.

There	are	over	200	of	these	Booleans	on	a	Red	Hat	6-based	machine.	We	can	investigate
them	by	installing	the	policycoreutils-python	package	on	the	operating	system.	You
can	do	this	by	executing	the	following	command:

sudo	yum	install	policycoreutils-python

Once	installed,	we	can	run	the	semanage	boolean	-l	command	to	get	a	list	of	the
Boolean	values,	along	with	their	descriptions.	The	output	of	this	will	look	as	follows:

As	you	can	see,	there	exists	a	very	large	number	of	settings	that	can	be	reconfigured,
simply	by	setting	the	appropriate	Boolean	value.

The	selboolean	Puppet	type	supports	managing	these	Boolean	values.	The	provider	is
fairly	simple,	accepting	the	following	values:

Parameter Description

name This	contains	the	name	of	the	Boolean	to	be	set.	It	defaults	to	the	title.

persistent This	checks	whether	to	write	the	value	to	disk	for	the	next	boot.

provider This	is	the	provider	for	the	type.	Usually,	the	default	getsetsebool	value	is	accepted.

value This	contains	the	value	of	the	Boolean,	true	or	false.

Usage	of	this	type	is	rather	simple.	We’ll	show	an	example	that	will	set	the
puppetmaster_use_db	parameter	to	true	value.	If	we	are	using	the	SELinux	Puppet
policy,	this	would	allow	the	master	to	talk	to	a	database.	For	our	use,	it’s	a	simple	unused
variable	that	we	can	use	for	demonstration	purposes.

As	a	reminder,	the	SElinux	policy	for	Puppet	on	CentOS	6	is	outdated,	so	setting	the
Boolean	does	not	impact	the	version	of	Puppet	we’re	running.	It	does,	however,	serve	to
show	how	a	Boolean	is	set.

To	do	this,	we’ll	create	a	sample	role	and	profile	for	our	puppetmaster.	This	is	something
that	would	likely	exist	in	a	production	environment	to	manage	the	configuration	of	the
master.	In	this	example,	we’ll	simply	build	a	small	profile	and	role	for	the	master.

Let’s	start	with	the	profile.	Copy	over	the	profiles	module	we’ve	slowly	been	building	up,
and	let’s	add	a	puppetmaster.pp	profile.	To	do	so,	edit	the
profiles/manifests/puppetmaster.pp	file	and	make	it	look	as	follows:

class	profiles::puppetmaster	{

		selboolean	{	'puppetmaster_use_db':

				value						=>	on,

				persistent	=>	true,

		}

}

Then,	we’ll	move	on	to	the	role.	Copy	the	roles,	and	edit	the
roles/manifests/puppetmaster.pp	file	there	and	make	it	look	as	follows:

class	roles::puppetmaster	{

		include	profiles::puppetmaster

}

Once	this	is	done,	we	can	apply	it	to	our	host.	Edit	the	/etc/puppet/manifests/site.pp
file.	We’ll	apply	the	puppetmaster	role	to	the	puppetmaster	machine,	as	follows:

node	'puppet.book.local'	{

		include	roles::puppetmaster

}

Now,	we’ll	run	Puppet	and	get	the	output	as	follows:

As	you	can	see,	it	set	the	value	to	on	when	run.	Using	this	method,	we	can	set	any	of	the
SELinux	Boolean	values	we	need	for	our	system	to	operate	properly.

Note
More	information	on	SELinux	Booleans	with	information	on	how	to	obtain	a	list	of	them
can	be	found	at	https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/sect-Security-
Enhanced_Linux-Working_with_SELinux-Booleans.html.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/sect-Security-Enhanced_Linux-Working_with_SELinux-Booleans.html

The	selmodule	type
The	other	native	type	inside	Puppet	is	a	type	to	manage	the	SELinux	modules.	Modules
are	compiled	collections	of	the	SELinux	policy.	They’re	loaded	into	the	kernel	using	the
selmodule	command.	This	Puppet	type	provides	support	for	this	mechanism.

The	available	parameters	are	as	follows:

Parameter Description

name This	contains	the	name	of	the	module—	it	defaults	to	the	title

ensure This	is	the	desired	state—present	or	absent

provider This	specifies	the	provider	for	the	type—it	should	be	selmodule

selmoduledir This	is	the	directory	that	contains	the	module	to	be	installed

selmodulepath This	provides	the	complete	path	to	the	module	to	be	installed	if	not	present	in	selmoduledir

syncversion This	checks	whether	to	resync	the	module	if	a	new	version	is	found,	such	as	ensure	=>	latest

Using	the	module,	we	can	take	our	compiled	module	and	serve	it	onto	the	system	with
Puppet.	We	can	then	use	the	module	to	ensure	that	it	gets	installed	on	the	system.	This	lets
us	centrally	manage	the	module	with	Puppet.

The	community	module	that	we’ll	be	using	to	manage	SELinux	in	a	later	section	uses	this
type	to	load	the	module	into	Puppet.	We’ll	see	an	example	where	this	module	compiles	a
policy	and	then	installs	it,	so	we	won’t	show	a	specific	example	here.	Instead,	we’ll	move
on	to	talk	about	the	last	SELinux-related	component	in	Puppet.

File	parameters	for	SELinux
The	final	internal	support	for	SELinux	types	comes	in	the	form	of	the	file	type.	We
covered	these	options	briefly	in	an	earlier	chapter,	but	really	didn’t	add	any	details,	so
we’ll	do	so	here.

The	file	type	parameters	are	as	follows:

Parameter Description

selinux_ignore_defaults
By	default,	Puppet	will	use	the	matchpathcon	function	to	set	the	context	of	a	file.	This
overrides	that	behavior	if	set	to	true	value.

Selrange
This	sets	the	SELinux	range	component.	We’ve	not	really	covered	this.	It’s	not	used	in
most	mainstream	distributions	at	the	time	this	book	was	written.

Selrole This	sets	the	SELinux	role	on	the	file.

seltype This	sets	the	SELinux	type	on	the	file.

seluser This	sets	the	SELinux	role	on	the	file.

Usually,	if	you	place	files	in	the	correct	location	(the	expected	location	for	a	service)	on
the	filesystem,	Puppet	will	get	the	SELinux	properties	correct	via	its	use	of	the
matchpathcon	function.	This	function	(which	also	has	a	matching	utility)	applies	a	default
context	based	on	the	policy	settings.	Setting	the	context	manually	is	used	in	cases	where
you’re	storing	data	outside	the	normal	location.	For	instance,	you	might	be	storing	web
data	under	the	/opt	file.

The	preceding	types	and	providers	provide	the	basics	that	allow	you	to	manage	SELinux
on	a	system.	We’ll	now	take	a	look	at	a	couple	of	community	modules	that	build	on	these
types	and	create	a	more	in-depth	solution.

Configuring	SELinux	with	community
modules
We	now	looked	at	how	to	get	a	system	up	and	working	using	SELinux	under	Puppet.	We
can	go	ahead	and	build	a	module	to	manage	our	policies	by	hand,	but	why	not	use	a
module	someone	else	has	invested	time	into.	We’re	better	off	contributing	work	back	to
make	an	existing	module	better	if	it	can	be	made	to	work	for	us.

In	this	section,	we’ll	be	looking	at	the	spiette/selinux	module	that	contains	a	more
complete	solution	to	manage	SELinux	on	Puppet.

This	module	can	handle	setting	SELinux	to	any	of	the	three	modes	(disabled,	permissive,
and	enforcing).	It	can	also	handle	compiling	SELinux	policy	modules	and	installing	them
on	hosts.	This	allows	you	to	track	the	more	easily	handled	plain	text	versions	of	the	files
in	version	control	with	your	Puppet	data,	instead	of	the	binary	compiled	policy	modules.

Creating	a	full	policy	is	out	of	the	context	of	this	book,	so	for	our	example	purposes,	we’ll
first	use	the	default	policy	shipped	with	the	module.	Then,	we’ll	create	a	very	simple
policy	module.	I	have	used	the	SELinux	Cookbook,	Sven	Vermeulen,	Packt	Publishing,	at
the	Packt	Publishing	website	as	a	reference	for	creating	an	example	module	for	our	use.

Let’s	get	moving!	First,	we	need	to,	as	usual,	install	the	module	for	our	use.	To	do	so,	run
the	following	command	on	the	master:

sudo	puppet	module	install	spiette-selinux

Now	that	it’s	installed,	let’s	make	a	profile	to	handle	our	resources.	Under	our	profiles
module,	let’s	create	a	manifest	called	profiles/manifests/selinuxtest.pp.	We’ll	use
this	as	the	content	to	begin	with:

class	profiles::selinuxtest	{

		class	{	'selinux':

				mode	=>	'permissive',

		}

		selinux::module	{	'rsynclocal':

				ensure	=>	'present',

		}

}

These	class	and	defined	types	are	largely	out	of	the	module	documentation	for	the
SELinux	module,	but	we’ll	explore	what	they	do.	The	first	declares	the	main	selinux
class.	We	can	pass	one	of	two	parameters	in,	and	accept	the	defaults	with	just	an	include
or	require	parameter	on	the	class.	The	first	parameter	is	the	mode	parameter.	It	specifies
the	mode	we	want	SELinux	to	be	set	to.	In	this	case,	it’s	'permissive'	mode.	If	changing
the	mode	requires	a	reboot,	it	will	log	as	such	in	your	manifest	at	each	run.

The	second	parameter	is	installmake.	This	indicates	if	make	should	be	installed	by	this
module,	or	if	it	is	installed	with	another	module.	One	of	the	downsides	of	compiling	this

locally	is	that	it	requires	make	to	be	installed.	In	many	cases,	this	will	be	set	to	true	value,
which	is	the	default	value.	If	you	happen	to	manage	your	compiler	tools	in	another
manifest,	you	can	set	this	to	false	value	here.

The	second	thing	present	in	this	manifest	is	a	selinux::module	defined	resource.	This
define	is	what	sets	the	system	up	to	compile	and	load	a	module.	In	this	case,	we’re	going
to	load	the	default	example	rsynclocal	module	that	ships	with	the	selinux	module.	This
define	accepts	the	following	parameters:

Parameter Description

ensure
This	contains	one	of	present,	enabled,	disabled,	or	absent	values.	This	sets	the	state	of	the	module	on
the	target	system.

modules_dir
This	specifies	the	directory	on	the	target	system	that	modules	are	stored	in.	The	default	is	under	the
Puppet	var	directory	in	a	directory	called	selinux.

source This	is	the	source	directory	to	the	module.	Defaults	to	puppet:///modules/selinux/${name}.

ignore
This	contains	any	files	that	you	want	ignored	in	the	preceding	directory.	It	is	useful	for	excluding	things,
such	as	swap	files,	VCS	resources,	and	so	on.

Now,	let’s	create	our	role	to	hold	our	profile.	Edit	the	roles/manifests/selinuxtest.pp
file	under	our	roles	module	and	set	the	content	to	the	following:

class	roles::selinuxtest	{

		include	profiles::selinuxtest

}

They	say	repetition	is	the	key	to	learning,	and	by	now	the	roles	and	profiles	pattern	have
become	a	second	nature.	Now,	let’s	make	sure	the	modules	are	present	on	our	system,	and
we’ll	include	the	module	on	our	master	as	a	test.	We’ll	edit	our
/etc/puppet/manifests/site.pp	file	and	add	the	new	role	to	it,	as	follows:

node	'puppet.book.local'	{

		include	roles::puppetmaster

		include	roles::selinuxtest

}

Now,	let’s	run	Puppet	and	see	what	happens!	If	you	need	a	refresher	here	on	how	to	do
this,	you	can	refer	to	any	of	the	previous	chapters.	The	output	should	be	something	similar
to	the	following	screenshot:

Notice	that	it	did	quite	a	bit.	We	can	now	run	the	following	command	and	see	that	our
policy	module	is	loaded:

sudo	semodule	-l|grep	rsynclocal

You	should	see	that	the	rsynclocal	module	is	installed.

We’ll	now	quickly	create	a	small	policy	module	that	we	can	use	for	a	test	to	show	that	it
works.	To	do	this,	we’re	going	to	create	essentially	an	empty	module	–	we’ll	define	types
but	give	them	no	permissions.	We’ll	then	quickly	be	able	to	see	that	it	fails	and	it	gets
logged	as	expected.

To	do	so,	create	a	selinuxtest	directory	under	the	profiles/files	directory.	From	the
root	of	the	profiles	module,	we	can	run	the	following	command	to	do	this:

mkdir	-p	files/selinuxtest

Inside	this	directory,	we’ll	create	our	files/selinuxtest/selinuxtest.te	module	file.
Edit	this	file	and	make	the	contents	look	as	follows:

policy_module(selinuxtest,	0.1)

gen_require(`

		type	unconfined_t;

		class	process	transition;

')

type	selinuxtest_t;

type	selinuxtest_exec_t;

role	unconfined_r	types	selinuxtest_t;

userdom_user_application_domain(selinuxtest_t,	selinuxtest_exec_t)

Note
A	good	high-level	tutorial	of	writing	a	policy	can	be	found	at	http://billauer.co.il/selinux-
policy-module-howto.html.	It	explains	what	the	preceding	command	does.

This	essentially	creates	a	blank	type	and	exec	type	with	no	permissions.	Once	done,	let’s
add	it	to	our	profiles	manifest,	which	should	now	look	as	follows:

class	profiles::selinuxtest	{

		class	{	'selinux':

				mode	=>	'permissive',

		}

		selinux::module	{	'rsynclocal':

				ensure	=>	'present',

		}

		selinux::module	{	'selinuxtest':

				ensure	=>	'present',

				source	=>	'puppet:///modules/profiles/selinuxtest/',

		}

}

Do	notice	how	in	our	new	module,	we	specified	the	source	inside	our	profile.	The	ability
to	do	this	allows	us	to	keep	the	selinux	module	as	a	utility	module	with	no	local	changes.

Now,	if	we	run	Puppet	again,	we	should	see	the	output	like	we	did	previously,	that
indicated	our	module	was	compiled	and	installed.

Now,	to	test	it,	we’ll	just	change	the	context	of	a	binary	to	our	new	selinuxtest_t	type
and	try	to	run	it.	To	do	this,	run	the	following	command:

sudo	chcon	-t	selinuxtest_t	/bin/nano

Now,	start	nano	and	exit	it.	It’ll	run	since	we’re	in	permissive	mode.	Then,	we’ll	grep
nano	from	the	audit	log	to	see	what	happened:

http://billauer.co.il/selinux-policy-module-howto.html

You’ll	note	that	SELinux	would	have	actually	denied	our	attempt	to	use	the	chcon
parameter.	However,	you	can	also	see	that	there	are	several	AVC	denies	on	nano	itself.

As	you	can	see,	this	provides	a	handy	method	to	handle	installation	of	your	own	custom
SELinux	policy	modules.

Note
More	information	on	this	module	can	be	found	on	its	GitHub	page	at
https://forge.puppetlabs.com/spiette/selinux.

https://forge.puppetlabs.com/spiette/selinux

Configuring	auditd	with	community
modules
Auditd	has	many	less	available	community	modules.	This	is	likely	due	to	its	very	simple
nature—configuring	can	be	done	with	a	simple	file	module	and	a	couple	of	packages	in
most	cases.	Nonetheless,	let’s	take	a	look	at	a	community	module	that	will	manage	your
configuration	for	you.	It	even	provides	a	decent	base	ruleset	and	contains	very	powerful
customization	options.

We’ll	be	looking	at	the	evenup/auditd	module	here.	As	mentioned	previously,	it	has	most
of	the	auditd	options	exposed	and	provides	a	decent	default	ruleset	with	the	option	to
override.	We’ll	start	by	installing	it:

sudo	puppet	module	install	evenup-auditd

The	module	contains	a	single	entry	point,	the	main	auditd	class	that	accepts	four
parameters.	They	are	as	follows:

Parameter Description

logagent
The	module	supports	using	Beaver	to	process	auditd	log	files	(Beaver	is	a	log	shipper	for
Logstash).	It	can	be	beaver	or	null.

rules This	is	the	path	to	the	rules	file	–	defaults	to	puppet:///modules/auditd/auditd.

config_override This	is	a	hash	that	contains	values	to	override	the	default	config.	It	is	explained	later	in	the	chapter.

package_name The	auditd	package	name.	Usually,	it	is	determined	automatically.

This	module	uses	a	different	pattern	for	configuration,	where	you	can	supply	a	config
hash	to	override	the	settings.	This	is	as	opposed	to	exposing	the	24	different	values	as
parameters.	The	names	of	these	configuration	variables	can	be	found	in	the	init.pp	file,
as	they	aren’t	documented	very	well.	Submitting	a	better	documentation	is	an	easy	way
new	users	can	give	back	to	community	modules.

For	our	example,	we’ll	simply	accept	all	of	the	defaults.	In	this	case,	they’re	sufficient,	so
customizing	the	parameters	is	less	important.

You	might	ask	why	when	we’ve	not	customized	the	rules	we	pass	auditd	at	all.	As	it
happens,	the	rule	set	that	comes	with	the	auditd	module	is	fairly	comprehensive,	and
includes	the	rules	that	we	used	in	our	previous	example	and	many	more.	If	we	wished	to
customize	the	ruleset	that	got	applied,	we	would	do	so	by	setting	the	rules	parameter	to	the
module	to	a	new	file.	This	would	likely	be	present	in	our	profiles	module	as	to	avoid
modifying	the	base	module.	We	would	then	pass	this	using	either	Hiera	or	a	specific	class
declaration	that	contains	it.

We’ll	create	our	profile	and	our	role	and	then	apply	it	to	the	master.

Tip

We’ve	been	creating	roles	for	most	profiles.	In	reality,	many	of	these	things,	such	as	auditd
would	likely	go	in	a	common	role	to	get	applied	everywhere.	That’s	where	the	roles
pattern	shows	its	real	power.

To	do	so,	let’s	create	the	profiles/manifests/auditd.pp	file	inside	our	profiles	module
with	the	following	content:

class	profiles::auditd	{

		include	::auditd

}

We	use	the	::	here	to	stop	the	circular	dependency	caused	by	how	classes	are	resolved.

If	we	want	to	pass	in	a	custom	rule	set,	let’s	say	in	our	profiles	module,	in	the
profiles/files/etc/auditd/auditd.rules	file,	it	would	look	like	the	following:

class	profiles::auditd	{

		class	{	'auditd':

				rules	=>	'puppet:///modules/profiles/etc/audit/auditd.rules',

		}

}

Either	way,	the	next	step	would	be	as	follows:

Then,	we’ll	create	the	role.	In	the	roles/manifests/auditd.pp	file	in	our	roles,	add	the
following:

class	roles::auditd	{

		include	profiles::auditd

}

Finally,	add	the	auditd	role	to	the	master	in	the	/etc/puppet/manifests/site.pp	file:

node	'puppet.book.local'	{

		include	roles::puppetmaster

		include	roles::selinuxtest

		include	roles::auditd

}

Now,	we’ll	run	Puppet	and	see	what	happens.	It	should	look	like	the	following:

You	can	see	that	it	updated	the	rules	and	reloaded	auditd.	It	added	a	lot	of	rules,	so	the
Puppet	run	itself	should	have	triggered	some	of	them.	Look	at	the
/var/log/audit/audit.log	file,	and	look	for	the	word	key.	Our	new	rules	used
keywords,	so	you	can	find	them	easily.	You	should	see	the	output	like	the	following:

type=SYSCALL	msg=audit(1417268692.615:5661):	arch=c000003e	syscall=87	

success=yes	exit=0	a0=

50dfb10	a1=0	a2=c	a3=617461635f746e65	items=2	ppid=9038	pid=9039	auid=500	

uid=0	gid=0	euid=0

	suid=0	fsuid=0	egid=0	sgid=0	fsgid=0	tty=pts0	ses=679	comm="puppet"	

exe="/usr/bin/ruby"	sub

j=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023	key="delete"

You	can	see	that	it	contains	the	auid,	which	is	the	user	who	did	the	sudo	command.	It’s	a
great	way	to	log	that,	as	was	mentioned	earlier.

By	applying	a	module	like	this	to	all	your	hosts,	you	can	quickly	get	auditd	working
everywhere.	Combine	this	with	Logstash	from	the	last	chapter,	and	you	have	an	excellent
way	to	manage	audit	logging.

Summary
This	chapter	set	out	to	demystify	some	of	the	repetitiveness	of	configuring	SELinux	and
auditd	on	Linux	hosts.	While	it’s	not	possible	to	explain	all	of	the	intricacies	of	them	in	a
book	on	Puppet,	we	hope	that	there	was	enough	information	to	get	you	started	and
perhaps,	reverse	the	trend	of	just	setting	it	to	disabled	or	permissive.

First,	we	looked	at	what	SELinux	and	auditd	were,	and	gave	a	brief	example	of	how	they
can	be	used.	We	looked	at	what	they	can	do,	and	how	they	can	be	used	to	secure	your
systems.

After	this,	we	looked	at	the	specific	support	for	SELinux	in	Puppet.	We	looked	at	the	two
built-in	types	to	support	it,	as	well	as	the	parameters	on	the	file	type.

Then,	we	took	a	look	at	one	of	the	several	community	modules	for	managing	SELinux.
Using	this	module,	we	can	store	the	policies	as	text	instead	of	compiled	blobs.

Finally,	we	looked	at	a	community	module	to	manage	auditd.	While	auditd	is	simple	to
configure,	using	a	module	saves	the	work	of	creating	your	own.	Contributing	back	is	a
good	way	to	support	open	source.

Now,	we’ll	move	on	and	wrap	up	our	time	together,	and	review	what	we	learned	and	see
where	to	go	from	here.

Appendix	A.	Going	Forward
We’ve	finally	reached	the	end	of	our	journey.	It’s	time	to	examine	where	you’ll	go	from
here	as	you	continue	to	expand	your	experience	with	Puppet.	There	exists	a	number	of
resources	to	further	your	education.	In	this	chapter,	we’ll	cover	the	following	topics:

Where	to	get	more	information	on	developing	good	modules
A	brief	discussion	of	Puppet	device	management
Other	useful	reporting	tools
Some	other	useful	Puppet	tools
A	brief	discussion	of	the	Puppet	community
Some	general	thoughts	on	moving	forward

What	we’ve	learned
We’ve	covered	a	lot	in	our	time	together.	In	everything	that	we’ve	covered,	we	learned
some	useful	patterns	that	will	serve	you,	as	you	expand	your	skill	base.	Specific	examples
were	shown	that	are	useful	in	themselves,	but	the	underlying	concepts	being	taught	will
assist	you,	as	you	build	your	own	Puppet	infrastructure.

Just	as	importantly,	we	learned	that	tools	exist	to	make	our	lives	easier.	As	security
professionals,	often	times,	change	can	be	viewed	as	the	enemy.	However,	with	the	right
controls	and	processes	in	place,	change	can	actually	be	a	positive	thing.	Change	drives
business	values.	A	company	that	is	not	moving	forward	is	falling	behind.	Tools,	such	as
Puppet	and	the	others	introduced	in	this	book	can	help	manage	that	change	and	still	satisfy
the	regulatory,	and	other,	requirements	that	are	present	in	our	jobs.

Where	to	go	next
Puppet	is	a	diverse	ecosystem.	The	core	Puppet	tool	itself	is	just	a	single	tool	in	that
system.	When	combined	with	tools,	such	as	Hiera,	PuppetDB,	and	others,	the	real	power
begins	to	shine.	There	are	plenty	of	resources	that	will	help	you	with	these	tools.	In	this
section,	we’ll	briefly	explore	where	to	go	next,	as	you	continue	to	delve	into	the	Puppet
ecosystem.

Writing	and	testing	Puppet	modules
We’ve	written	our	fair	share	of	Puppet	modules	during	this	book.	We	even	explored	some
good	patterns	to	use	in	doing	so.	However,	there	are	several	things	we	just	touched	on	that
should	be	explored	further,	such	as	testing.	Additionally,	we’ll	point	out	some	other
general	resources	that	will	help	you	on	your	way.

Puppet	modules	and	data	in	Hiera	should	be	considered	code,	just	as	any	other	part	of	your
system.	As	such,	they	should	be	tested	thoroughly	to	ensure	that	they	operate	properly.
The	prevailing	method	of	doing	that	is	using	rspec	with	a	number	of	plugins.

The	first	project	is	rspec-puppet.	We	use	rspec-puppet	to	create	behavior-driven	tests	of
our	Puppet	manifests.	These	test	the	catalog	to	ensure	that	the	things	we	are	expecting	to
happen	end	up	in	the	catalog.	This	also	has	a	pleasant	side	effect	of	compiling	the	catalog
when	we	run	them,	so	it	catches	any	silly	syntax	errors.	More	information	on	rspec	can	be
found	at	http://rspec.info/,	and	on	rspec-puppet	at	http://rspec-puppet.com/.

The	second	useful	project	for	testing	is	beaker	and	the	beaker-rspec	gem.	Beaker	is	an
acceptance	testing	system	that	can	use	Vagrant	or	any	number	of	other	systems	to
provision	systems	for	testing.	Along	with	the	beaker-rspec	plugin,	beaker	can	be	used	to
write	rspec	tests	that	describe	the	state	of	the	system.	That	is,	Puppet	runs	and	then	rspec
validates	it.	It	actually	did	what	you	expected	it	to	do	on	the	system.	This	can	sometimes
vary	from	what	you	thought	Puppet	was	going	to	do	in	the	catalog.

In	addition	to	testing,	there	are	a	handful	of	patterns	that	are	considered	useful	when
developing	modules.	We	already	covered	several	patterns	earlier	in	the	book,	such	as	the
roles	and	profiles	pattern.	The	Puppet	Labs	documentation	contains	a	wealth	of	good
resources	on	good	module	development.	For	more	information	on	this,	see
https://docs.puppetlabs.com/guides/module_guides/bgtm.html.

Finally,	there	are	a	number	of	good	books	available	on	Puppet,	and	especially	module
writing.	Extending	Puppet	(https://www.packtpub.com/networking-and-servers/extending-
puppet),	Alessandro	Franceschi,	Packt	Publishing	is	a	resource	written	by	a	very
experienced	community	member	with	a	large	amount	of	experience	writing	reusable
modules	that	are	available	to	the	public.

http://rspec.info/
http://rspec-puppet.com/
https://docs.puppetlabs.com/guides/module_guides/bgtm.html
https://www.packtpub.com/networking-and-servers/extending-puppet

Puppet	device	management
In	the	past	handful	of	years,	there	have	been	a	number	of	initiatives	to	use	Puppet	on
devices	other	than	actual	computers.	The	first	iteration	of	this	came	back	in	2011	with	the
release	of	support	for	managing	F5	load	balancers.	Additional	community	support	exists
for	a	variety	of	devices,	such	as	Cisco	switches	and	routers.	With	some	work,	this	model
can	even	be	extended	to	managing	firewalls.	Imagine	getting	all	of	the	same	auditing
benefits	from	Puppet	being	applied	to	your	network	devices.

The	device	management	solution	uses	the	concept	of	a	proxy	host	that	serves	as	an
intermediary	between	the	host	systems	and	the	devices	being	managed.	This	proxy	host
turns	the	device	configuration	into	resources	and	then	sends	the	changes	back	to	the
device	to	keep	them	in	sync.	The	proxy	host	could	be	the	Puppet	Master,	or	any	node
managed	by	Puppet	and	does	not	require	additional	software.

More	information	for	the	base	device	information	can	be	found	at
https://docs.puppetlabs.com/references/latest/man/device.html,	as	well	as	for	the	f5
module	at	https://forge.puppetlabs.com/puppetlabs/f5	and	for	Cisco	switch	management	at
https://forge.puppetlabs.com/mburger/networkdevice.

The	growing	trend,	however,	seems	to	be	running	Puppet	natively	on	the	devices.	Cisco
and	Juniper	both	support	some	methods	of	running	the	Puppet	agent	on	devices	for	at	least
some	of	their	lines.	Cisco	uses	a	container	that	runs	Puppet	and	can	communicate	with	the
host,	while	Juniper	has	native	packages	for	their	routers	running	newer	versions	of	Junos.

This	has	the	advantage	of	being	a	simpler	configuration,	since	it	does	not	require	the
proxy	hosts.	Additionally,	since	the	agent	is	tightly	coupled	with	the	device,	there	is	better
support	for	that	specific	device	in	the	agent.

A	brief	introduction	to	the	Cisco	method	of	on-device	management	can	be	found	in	the
PuppetConf	talk	at	http://puppetlabs.com/presentations/managing-cisco-devices-using-
puppet.	Information	on	using	Puppet	on	Junos	can	be	found	at
http://puppetlabs.com/solutions/juniper-networks.

https://docs.puppetlabs.com/references/latest/man/device.html
https://forge.puppetlabs.com/puppetlabs/f5
https://forge.puppetlabs.com/mburger/networkdevice
http://puppetlabs.com/presentations/managing-cisco-devices-using-puppet
http://puppetlabs.com/solutions/juniper-networks

Additional	reporting	resources
We	dedicated	a	chapter	to	explore	reporting	in	Puppet,	but	largely	focused	on	internal
tools	that	can	help	you	do	reporting.

There	exists	a	good	reference	book	for	reporting	in	Puppet	specifically,	which	is	Puppet
Reporting	and	Monitoring	at	https://www.packtpub.com/networking-and-servers/puppet-
reporting-and-monitoring	by	Michael	Duffy	(full	disclosure—I	was	a	technical	reviewer	of
this	book).	It	covers	many	of	the	Puppet	reporting	topics	in	much	greater	detail	than	we
can	afford	to	do	here.

We	will,	however,	point	out	a	couple	of	resources	available	that	can	help	with	reporting
out	of	the	box.	These	resources	are	Puppetboard	and	The	Foreman.

Puppetboard	is	a	web-based	user	interface	that	replaces	the	Puppet	Dashboard,	which	was
officially	moved	to	community	support.	It	provides	an	interface	into	the	status	of	your
Puppet	runs,	as	well	as	a	nice	browser	that	lets	you	browse	facts	on	your	hosts	and	other
such	things.	We	wrote	the	custom	code	to	provide	reporting	solutions	for	several	of	the
problems	in	the	reporting	chapter,	which	can	be	run	natively	in	Puppetboard.

Puppetboard	relies	on	PuppetDB	being	installed	as	it	uses	it	as	the	data	backend.	It	uses
data	from	PuppetDB	to	build	rich	dashboards	with	information	about	your	systems.

More	information	on	Puppetboard	can	be	found	at	https://github.com/puppet-
community/puppetboard.

Another	good	reporting-related	tool	for	one	to	review	is	The	Foreman.	The	Foreman	is
more	than	just	a	reporting	tool.	It	aims	to	be	a	complete	life	cycle	management	tool	that
provisions	your	systems	and	then	works	with	Puppet	to	configure	them.	It	can	even	serve
as	an	external	node	classifier	that	holds	information	about	what	classes	get	applied	to	a
node.

In	addition	to	this,	The	Foreman	contains	reporting	features	on	nodes	similar	to	those	of
Puppetboard.	It	can	show	trends	in	systems	by	type,	show	systems	not	completing	Puppet
runs,	and	so	on.

More	information	on	The	Foreman	can	be	found	at	http://theforeman.org/.

These	are	not	the	only	reporting	engines	available	for	Puppet.	Other	options,	such	as
Puppet	Explorer	exist	at	https://github.com/spotify/puppetexplorer	and	more	are	added
everyday.

Finally,	don’t	forget	Kibana.	By	bringing	your	log	data	into	Logstash,	you	can	use	Kibana
to	create	reports.	You	can	even	configure	Logstash	to	send	certain	events	straight	to	an
alerting	system	to	alert	on	certain	values.	This	can	be	used	to	build	reporting,	as	well	as
any	of	the	previously	mentioned	software	packages.

https://www.packtpub.com/networking-and-servers/puppet-reporting-and-monitoring
https://github.com/puppet-community/puppetboard
http://theforeman.org/
https://github.com/spotify/puppetexplorer

Other	Puppet	resources
There	are	a	few	other	Puppet-related	tools	that	don’t	really	fit	elsewhere,	so	we’re	going	to
talk	about	them	briefly	here.

The	first	such	tool	is	Puppet	Enterprise.	In	a	security	role,	it	may	be	important	for	you	to
have	certified	supported	configurations	for	the	tools	managing	your	environment.	Puppet
Enterprise	offers	this,	as	well	as	additional	features	and	capabilities	not	present	in	the	base
open	source	system.

Puppet	Enterprise	contains	prebuilt,	self-contained,	packages	for	a	large	variety	of
operating	systems.	This	includes	all	of	the	expected	Linux	variants,	as	well	as	other
operating	systems,	such	as	AIX	and	Solaris.	This	can	make	it	much	easier	to	deploy
Puppet	on	systems	that	it	might	otherwise	be	difficult	to	get	a	modern	version	of	Ruby	on.

On	top	of	that,	Puppet	Enterprise	contains	a	powerful	dashboard	that	permits	reporting,	as
well	as	system	configuration.	It	serves	as	a	node	classifier,	so	if	you	use	the	roles	and
profiles	pattern,	for	instance,	you	can	apply	profiles	to	the	system	straight	from	the	Puppet
Enterprise	management	dashboard.

More	information	on	Puppet	Enterprise	can	be	found	at
http://puppetlabs.com/puppet/puppet-enterprise.

Another	new	item	of	the	Puppet	community	is	Puppet	Server.	This	is	a	new	rewrite	of	the
Puppet	Master	in	Clojure	that	runs	on	the	JVM.	The	system	then	uses	JRuby	to	run	all	of
the	existing	Puppet	code.	This	allows	you	to	continue	to	write	your	types	in	providers	in
Ruby,	while	using	the	proven	power	of	the	JVM	to	increase	the	performance.	This	allows
the	Puppet	Master	to	take	advantage	of	things,	such	as	multithreading	and	a	much	better
garbage	collection	system.	It	also	simplifies	the	configuration	over	the	old	method	of
using	Apache	and	Passenger.

This,	of	course,	comes	at	the	cost	of	running	the	master	in	the	JVM.	That	may	give	a
certain	amount	of	people	cause	for	concern	as	they	have	previous	bad	experiences	with
Java-based	applications.	However,	from	a	security	standpoint,	the	JVM	is	a	well-
understood	machine.	Many	more	systems	run	in	the	JVM	than	run	under	Apache	with
Passenger.	In	the	end,	this	is	an	adjustment	in	the	server	running	the	core	Puppet	Server
and	not	a	huge	shift	in	paradigm.

Puppet	Enterprise	3.7	is	the	first	version	to	use	this	new	Java-based	Puppet	Server.

More	information	on	Puppet	Server	can	be	found	at	http://puppetlabs.com/blog/puppet-
server-bringing-soa-to-a-puppet-master-near-you.

Finally,	it	should	be	mentioned	that	the	core	Puppet	software	is	also	improving.	Version	4
is	about	to	be	released	that	will	contain	a	new	parser	and	a	good	amount	of	new
functionalities.	It’s	going	to	bring	with	it,	the	ability	to	solve	a	certain	class	of	problems
easier,	with	tools	such	as	iteration,	which	are	missing	in	Puppet	today.

If	you	want	to	try	some	of	these	new	features	out	today,	you	can	use	the	future	parser.	This
is	the	parser	that	is	being	worked	on	for	Puppet	4.	More	information	on	the	future	parser

http://puppetlabs.com/puppet/puppet-enterprise
http://puppetlabs.com/blog/puppet-server-bringing-soa-to-a-puppet-master-near-you

can	be	found	at
https://docs.puppetlabs.com/puppet/latest/reference/experiments_future.html,	and	a
presentation	on	Puppet	4	at	http://puppetlabs.com/presentations/future-goals-puppet-4-
andrew-parker-puppet-labs-kylo-ginsberg.

https://docs.puppetlabs.com/puppet/latest/reference/experiments_future.html
http://puppetlabs.com/presentations/future-goals-puppet-4-andrew-parker-puppet-labs-kylo-ginsberg

The	Puppet	community
No	book	would	be	complete	without	the	mention	of	the	excellent	Puppet	community.	One
of	the	reasons	Puppet	has	been	successful	is	because	the	community	members	are	top
notch	and	very	helpful.	We’ll	explore	a	few	of	the	community	resources	available	to	you	if
you	need	assistance.

The	first	resource	can	be	found	at	http://ask.puppetlabs.com	site.	This	site	is	a	place	where
users	can	go	to	post	questions	for	the	community	to	answer.	It	is	in	the	style	of	various
other	question	and	answer	sites.	As	your	knowledge	of	Puppet	increases,	you	can	earn
badges	to	help	other	users	out,	with	questions	they	might	have.

A	second	resource	is	the	Puppet	mailing	lists.	These	lists	are	hosted	at	Google	Groups.
Lists	exist	for	users	and	development	efforts.	A	reasonable	amount	of	discussion
concerning	future	development	and	direction	of	Puppet	takes	place	on	the	lists.	This	is	a
good	place	to	read	about	development	of	new	patterns	and	discussions	on	the	future	of
Puppet.	It	is	also	a	great	place	to	go	to	ask	questions	if	you	get	stuck	with	a	problem.	You
can	find	the	Puppet	Users	list	at	https://groups.google.com/forum/#!forum/puppet-users.

Finally,	there	is	a	page	that	discusses	general	community.	There	are	many	other
community-based	events	available,	including	the	Puppet	Users	groups	in	some	cities,
Puppet	Camps	that	are	smaller	regional	conferences,	and	the	giant	PuppetConf	that	draws
thousands	of	Puppet	users	to	one	place.	Additionally,	there	is	an	IRC	channel	available	for
use	in	asking	questions	in	a	more	real-time	fashion.	Information	on	all	of	these	resources
can	be	found	at	http://puppetlabs.com/community/get-help.

http://ask.puppetlabs.com%20site
https://groups.google.com/forum/#!forum/puppet-users
http://puppetlabs.com/community/get-help

Final	thoughts
The	journey	to	automation	happiness	is	not	one	that	happens	overnight.	Often	times,	the
tasks	ahead	of	you	can	seem	daunting.	However,	there	is	a	simple	method	that	I	use	to
approach	such	problems	when	they	arise.	Simply,	start	with	your	area	of	greatest	pain.	If
you	spend	a	lot	of	time	reviewing	logs	on	systems,	then	start	using	Puppet	to	implement
centralized	logging.	If	it’s	user	and	account	creation,	then	start	there.

The	operations	industry	as	a	whole	is	beginning	to	embrace	the	concepts	that	were
introduced	in	Japan	after	World	War	II.	The	description	of	the	concepts	often	uses	the
word	lean.	There	are	several	important	concepts	I	will	leave	you	with.

The	first	is	Kata.	Kata	is	the	art	of	practicing	something	to	obtain	mastery.	Growing	up,
you	often	did	this	in	school,	especially	with	math.	As	with	those,	you	must	practice	your
art	to	get	better	at	it.	As	you	engage	in	automating	your	environment	with	Puppet—either
to	make	your	life	easier	or	to	appease	auditors,	you	will	get	better	at	it	with	practice.	Do
not	be	afraid	to	revisit	the	earlier	code	as	you	become	better.	Improving	it,	often	times,	can
make	new	code	development	go	faster.

The	second	and	last	concept	I’d	like	to	introduce	is	Kaizen.	This	is	the	concept	of
continuous	improvement.	You	should	consider	your	environments	as	never	complete.	You
iterate	on	the	work	you’ve	done	to	continuously	improve.	Perhaps	as	earlier,	you	started
with	centralized	logging.	As	you	iterate	on	it,	you’ll	build	improved	grok	patterns,
dashboard,	and	other	things	that	will	make	your	environment	better	and	easier	to	use	and
manage.	Even	in	the	simplest	of	environments,	there	is	always	room	for	improvement.

I	hope	that	you	learned	a	lot	throughout	the	course	of	this	book	and	it	helps	you	move
your	environments	forward.	Go	forth	and	automate!

Index
A

alternative	SSL	configurations	/	Alternative	SSL	configurations
AppArmor

URL	/	The	SELinux	framework
arildjensen/cis	module

about	/	The	arildjensen/cis	module
attributes,	audit

reference	link	/	Available	attributes
content	/	Available	attributes
ctime	/	Available	attributes
ensure	/	Available	attributes
group	/	Available	attributes
mode	/	Available	attributes
mtime	/	Available	attributes
owner	/	Available	attributes
selrange	/	Available	attributes
selrole	/	Available	attributes
seltype	/	Available	attributes
seluser	/	Available	attributes
type	/	Available	attributes

audit
use	cases	/	What	can	be	audited
using,	on	files	/	Using	audit	on	files
attributes	/	Available	attributes
about	/	Things	to	know	about	audit

auditd
about	/	Introducing	SELinux	and	auditd
references	/	The	auditd	framework	for	audit	logging
configuring,	with	community	modules	/	Configuring	auditd	with	community
modules

auditd	class,	parameters
logagent	/	Configuring	auditd	with	community	modules
rules	/	Configuring	auditd	with	community	modules
config_override	/	Configuring	auditd	with	community	modules
package_name	/	Configuring	auditd	with	community	modules

auditd	framework
for	audit	logging	/	The	auditd	framework	for	audit	logging

auditing
alternatives	/	Alternatives	to	auditing

audit	meta-parameter
about	/	The	audit	meta-parameter

audit	system
working	/	How	it	works

augeas	/	The	herculesteam/augeasproviders	series	of	modules
augeasproviders

SSH,	managing	with	/	Managing	SSH	with	augeasproviders
augeasproviders	modules

about	/	The	herculesteam/augeasproviders	series	of	modules
reference	link	/	The	herculesteam/augeasproviders	series	of	modules,	Managing
SSH	with	augeasproviders

auth.conf	file
about	/	The	auth.conf	file
reference	link	/	The	auth.conf	file

autosigning	certificates
about	/	Autosigning	certificates
naïve	autosign	/	Naïve	autosign
basic	autosign	/	Basic	autosign
policy-based	autosign	/	Policy-based	autosign

B
bash	scripting	/	PuppetDB	and	reporting
basic	autosign	/	Basic	autosign
Bcfg2

about	/	What	is	Puppet?
Beaker

reference	link	/	Adding	our	second	Vagrant	host
best	practice,	for	writing	Puppet	code

reference	link	/	Creating	the	manifest
built-in	processors

reference	link	/	Basic	Puppet	reporting

C
CentOS	advisory

reference	link	/	Example	–	finding	heartbleed-vulnerable	systems
Certificate	Authority	(CA)

about	/	SSL	and	Puppet
Certificate	Revocation	List	(CRL)	/	Revoking	certificates
certificates

signing	/	Signing	certificates
revoking	/	Revoking	certificates

Certificate	Signing	Request	(CSR)
about	/	Signing	certificates

CFEngine
about	/	What	is	Puppet?
URL	/	What	is	Puppet?

Chef
about	/	What	is	Puppet?
URL,	for	obtaining	/	What	is	Puppet?

CIS	benchmark
URL	/	The	arildjensen/cis	module

Cisco	method,	on-device	management
reference	link	/	Puppet	device	management

classes
about	/	The	Puppet	client-server	model

client-server	model,	Puppet
about	/	The	Puppet	client-server	model

community	modules
reference	link	/	Vendor-supplied	defaults	and	the	PCI
about	/	Vendor-supplied	defaults	and	the	PCI
SELinux,	configuring	with	/	Configuring	SELinux	with	community	modules
auditd,	configuring	with	/	Configuring	auditd	with	community	modules

community	processors
reference	link	/	Basic	Puppet	reporting

compliance,	Puppet	/	Puppet	for	security	and	compliance
Compliance	dashboard

reference	link	/	Things	to	know	about	audit
components,	Puppet

about	/	Other	Puppet	components
PuppetDB	/	PuppetDB
Hiera	/	Hiera

configuration	management	tool	/	What	is	Puppet?
configuration	options

path	/	The	auth.conf	file
environment	/	The	auth.conf	file

method	/	The	auth.conf	file
auth	/	The	auth.conf	file
allow	/	The	auth.conf	file
allow_ip	/	The	auth.conf	file

contexts
about	/	The	SELinux	framework

cron
about	/	The	Puppet	client-server	model

custom	facts
using	/	Using	custom	facts

D
declarative	systems

versus	imperative	systems	/	Declarative	versus	imperative	approaches
properties	/	Declarative	versus	imperative	approaches

default	configuration	settings,	Puppet
reference	link	/	The	auth.conf	file

Domain-specific	Language	(DSL)
about	/	What	is	Puppet?

E
ebtables

about	/	Introducing	the	firewall	module
Elasticsearch

about	/	Welcome	to	logging	happiness
installing	/	Installing	Elasticsearch

ELK	stack
installing	/	Installing	the	ELK	stack

environment
preparing,	for	examples	/	Preparing	the	environment	for	examples

F
facts

using,	for	compliance	/	Facts	for	compliance
Puppet	roles	pattern	/	The	Puppet	role’s	pattern
custom	facts,	using	/	Using	custom	facts

files
audits,	using	on	/	Using	audit	on	files

fileserver.conf	file
about	/	The	fileserver.conf	file
restricted	file	mount,	adding	/	Example	–	adding	a	restricted	file	mount

file	system	permissions
URL,	for	wiki	/	Installing	the	ELK	stack

file	type	parameters,	SELinux
selinux_ignore_defaults	/	File	parameters	for	SELinux
Selrange	/	File	parameters	for	SELinux
Selrole	/	File	parameters	for	SELinux
seltype	/	File	parameters	for	SELinux
seluser	/	File	parameters	for	SELinux

firewallchain	type
about	/	The	firewallchain	type

firewall	chain	type,	parameters
ensure	/	The	firewallchain	type
ignore	/	The	firewallchain	type
name	/	The	firewallchain	type
policy	/	The	firewallchain	type
provider	/	The	firewallchain	type
purge	/	The	firewallchain	type

firewall	module
about	/	Introducing	the	firewall	module

firewall	rules
adding,	to	modules	/	Adding	firewall	rules	to	other	modules

firewall	type
about	/	The	firewall	type
reference	link	/	The	firewall	type

firewall	type,	parameters
action	/	The	firewall	type
chain	/	The	firewall	type
destination	/	The	firewall	type
dport	/	The	firewall	type
dst_range	/	The	firewall	type
ensure	/	The	firewall	type
jump	/	The	firewall	type
name	/	The	firewall	type

port	/	The	firewall	type
proto	/	The	firewall	type
reject	/	The	firewall	type
source	/	The	firewall	type
sport	/	The	firewall	type
src_range	/	The	firewall	type
state	/	The	firewall	type
tcp_flags	/	The	firewall	type

future	parser
reference	link	/	Other	Puppet	resources

G
git

reference	link	/	Tracking	history	with	version	control
used,	for	tracking	Puppet	configuration	/	Using	git	to	track	Puppet	configuration
URL	/	Using	git	to	track	Puppet	configuration

H
heartbleed

reference	link	/	Reporting	for	compliance
heartbleed-vulnerable	systems

finding	/	Example	–	finding	heartbleed-vulnerable	systems
herculesteam	modules

about	/	The	herculesteam/augeasproviders	series	of	modules
Hiera

about	/	Hiera
reference	link	/	The	hiera-eyaml	gem

hiera-eyaml
reference	link	/	The	hiera-eyaml	gem

hiera-eyaml	gem
about	/	The	hiera-eyaml	gem

hostmanager	plugin
reference	link	/	Adding	our	second	Vagrant	host
working	with	/	Working	with	hostmanager

hosts
configuring,	for	reporting	log	data	/	Configuring	hosts	to	report	log	data

I
imperative	systems

versus	declarative	systems	/	Declarative	versus	imperative	approaches
properties	/	Declarative	versus	imperative	approaches

iptables
about	/	Introducing	the	firewall	module
reference	link	/	Introducing	the	firewall	module

K
Kibana

about	/	Reporting	on	log	data
installing	/	Installing	Kibana

Kibana	(ELK	stack)
about	/	Welcome	to	logging	happiness

L
librarian-puppet

URL	/	Tracking	modules	separately
logging

about	/	Welcome	to	logging	happiness
Logstash

about	/	Welcome	to	logging	happiness
and	Puppet	/	Logstash	and	Puppet
installing	/	Installing	Logstash

M
Mandatory	Access	Controls	(MACs)

about	/	The	SELinux	framework
manifest

creating	/	Creating	the	manifest,	First	run	of	the	manifest
manifests

about	/	The	Puppet	client-server	model
used,	for	documenting	system	state	/	Using	manifests	to	document	the	system
state
history,	tracking	with	version	control	/	Tracking	history	with	version	control

module
modifying,	for	audit	/	Modifying	the	module	to	audit

modules
reference	link	/	Using	noop
tracking,	separately	/	Tracking	modules	separately
firewall	rules,	adding	to	/	Adding	firewall	rules	to	other	modules

N
Nagios

about	/	Welcome	to	logging	happiness
National	Security	Agency	(NSA)

about	/	The	SELinux	framework
naïve	autosign	/	Naïve	autosign
Network	Time	Protocol	(NTP)	/	Adding	firewall	rules	to	other	modules

drawbacks	/	Is	allowing	all	to	NTP	dangerous?
noop

about	/	Change	tracking	with	Puppet
using	/	Using	noop

noop	meta-parameter	/	The	noop	meta-parameter

O
objects

about	/	The	SELinux	framework
open-source	configuration	management	software

URL,	for	comparison	/	What	is	Puppet?
open	source	Puppet

about	/	What	is	Puppet?
openssh	configuration	file	/	The	openssh	configuration	file
options,	fileserver.conf	file

[mountpoint]	/	The	fileserver.conf	file
path	/	The	fileserver.conf	file
allow	/	The	fileserver.conf	file
deny	/	The	fileserver.conf	file

P
package

auditing	/	Auditing	a	package
packages,	ELK	stack

URL,	for	downloading	/	Installing	the	ELK	stack
parameters,	selboolean	type

name	/	The	selboolean	type
persistent	/	The	selboolean	type
provider	/	The	selboolean	type
value	/	The	selboolean	type

parameters,	selmodule	type
name	/	The	selmodule	type
ensure	/	The	selmodule	type
provider	/	The	selmodule	type
selmoduledir	/	The	selmodule	type
selmodulepath	/	The	selmodule	type
syncversion	/	The	selmodule	type

params	class
about	/	Vendor-supplied	defaults	and	the	PCI
reference	link	/	Vendor-supplied	defaults	and	the	PCI

password	file
auditing	/	Auditing	the	password	file
modifying	/	Changing	the	password	file	and	rerunning	Puppet

PCI	DSS
about	/	The	PCI	DSS	and	how	Puppet	can	help
URL	/	The	PCI	DSS	and	how	Puppet	can	help
network-based	PCI	requirements	/	Network-based	PCI	requirements
vendor-supplied	defaults	/	Vendor-supplied	defaults	and	the	PCI
system	protection,	against	malware	/	Protecting	the	system	against	malware
secure	systems,	maintaining	/	Maintaining	secure	systems
authentication,	to	systems	/	Authenticating	access	to	systems

policy
reference	link	/	Configuring	SELinux	with	community	modules

policy-based	autosign	/	Policy-based	autosign
post	rules

creating	/	Creating	pre	and	post	rules
pre	rules

creating	/	Creating	pre	and	post	rules
presentation,	Puppet	4

reference	link	/	Other	Puppet	resources
providers	/	Introducing	the	firewall	module
providers,	augeasproviders	modules

kernel_parameter	/	The	herculesteam/augeasproviders	series	of	modules

pam	/	The	herculesteam/augeasproviders	series	of	modules
puppet_auth	/	The	herculesteam/augeasproviders	series	of	modules
shellvar	/	The	herculesteam/augeasproviders	series	of	modules
sshd_config	/	The	herculesteam/augeasproviders	series	of	modules
sshd_config_subsystem	/	The	herculesteam/augeasproviders	series	of	modules
sysctl	/	The	herculesteam/augeasproviders	series	of	modules
syslog	/	The	herculesteam/augeasproviders	series	of	modules

Puppet
about	/	What	is	Puppet?
declarative,	versus	imperative	approaches	/	Declarative	versus	imperative
approaches
client-server	model	/	The	Puppet	client-server	model
components	/	Other	Puppet	components
installing	/	Installing	and	configuring	Puppet
configuring	/	Installing	and	configuring	Puppet,	Configuring	Puppet
URL,	for	installation	instructions	/	Installing	and	configuring	Puppet
URL,	for	configuration	settings	/	Configuring	Puppet
security	feature	/	Puppet	for	security	and	compliance
compliance	feature	/	Puppet	for	security	and	compliance
used,	for	tracking	changes	/	Change	tracking	with	Puppet
rerunning	/	Changing	the	password	file	and	rerunning	Puppet
and	SSL	/	SSL	and	Puppet
and	Logstash	/	Logstash	and	Puppet
and	SELinux	/	SELinux	and	Puppet
reporting	resources	/	Additional	reporting	resources
resources	/	Other	Puppet	resources

Puppet,	on	Junos
reference	link	/	Puppet	device	management

Puppet,	used	for	securing	openssh
about	/	Example	–	using	Puppet	to	secure	openssh
Vagrant	virtual	machine,	starting	/	Starting	the	Vagrant	virtual	machine
virtual	machine	connection	/	Connecting	to	our	virtual	machine
module,	creating	/	Creating	the	module
module,	building	/	Building	the	module
openssh	configuration	file,	building	/	The	openssh	configuration	file
site.pp	file	/	The	site.pp	file
code,	running	/	Running	our	new	code

puppet-cis	module
reference	link	/	The	arildjensen/cis	module

Puppet	agent
installing	/	Installing	the	Puppet	agent

Puppet	Approved	modules
about	/	The	Puppet	Forge

Puppet	authentication

about	/	Example	–	Puppet	authentication
second	Vagrant	host,	adding	/	Adding	our	second	Vagrant	host

Puppet	community
about	/	The	Puppet	community
references	/	The	Puppet	community

PuppetDB
about	/	PuppetDB
reporting	/	PuppetDB	and	reporting

Puppet	device	management
about	/	Puppet	device	management
references	/	Puppet	device	management

Puppet	Enterprise
URL	/	Other	Puppet	resources

Puppet	Forge
about	/	The	Puppet	Forge
URL	/	The	Puppet	Forge

puppetlabs-firewall	module	/	Introducing	the	firewall	module
puppetlabs-stdlib	module

about	/	Vendor-supplied	defaults	and	the	PCI
URL	/	Vendor-supplied	defaults	and	the	PCI

puppetlabs/firewall	website
reference	link	/	Creating	pre	and	post	rules

Puppet	Labs	ticket
reference	link	/	Things	to	know	about	audit

Puppet	Labs	Yum	repository
installing	/	Installing	the	Puppet	Labs	Yum	repository
URL	/	Installing	the	Puppet	Labs	Yum	repository

Puppet	Master
installing	/	Installing	the	Puppet	Master

Puppet	Masters
about	/	The	Puppet	client-server	model

Puppet	modules
writing	/	Writing	and	testing	Puppet	modules
testing	/	Writing	and	testing	Puppet	modules
references	/	Writing	and	testing	Puppet	modules

Puppet	report	directory	/	The	store	processors
Puppet	reporting

about	/	Basic	Puppet	reporting
references	/	Basic	Puppet	reporting
store	processors	/	The	store	processors
last	node	run	time,	displaying	/	Example	–	showing	the	last	node	runtime

Puppet	roles	pattern
about	/	The	Puppet	role’s	pattern

Puppet	scope

reference	link	/	The	noop	meta-parameter
Puppet	security-related	configuration

about	/	Puppet	security	related	configuration
auth.conf	file	/	The	auth.conf	file
fileserver.conf	file	/	The	fileserver.conf	file

Puppet	Server
URL	/	Other	Puppet	resources

Puppet	services
about	/	Puppet	services

Puppet	Supported	modules
about	/	The	Puppet	Forge

Puppet	versions
reference	link	/	The	store	processors

R
r10k

URL	/	Tracking	modules	separately
reporting,	for	compliance

about	/	Reporting	for	compliance
heartbleed-vulnerable	systems,	finding	/	Example	–	finding	heartbleed-
vulnerable	systems

reporting,	on	log	data
about	/	Reporting	on	log	data

reporting,	PuppetDB
about	/	PuppetDB	and	reporting
recent	reports,	obtaining	/	Example	–	getting	recent	reports
event	counts,	obtaining	/	Example	–	getting	event	counts
simple	PuppetDB	dashboard	example	/	Example	–	a	simple	PuppetDB
dashboard

report	processors
HTTP	/	Basic	Puppet	reporting
Store	/	Basic	Puppet	reporting
Tagmail	/	Basic	Puppet	reporting
PuppetDB	/	Basic	Puppet	reporting
about	/	Basic	Puppet	reporting

resource	chaining	/	Building	the	module
resource	command

reference	link	/	Audit	on	other	resource	types
resource	ordering

reference	link	/	Building	the	module
resources

purging	/	Purging	resources
resources	type

parameters	/	Purging	resources
resource	types

auditing	/	Audit	on	other	resource	types
references	/	Audit	on	other	resource	types

REST
about	/	PuppetDB	and	reporting

rspec
URL	/	Vendor-supplied	defaults	and	the	PCI
reference	link	/	Writing	and	testing	Puppet	modules

rspec-puppet
reference	link	/	Writing	and	testing	Puppet	modules

rsynclocal	module,	parameters
ensure	/	Configuring	SELinux	with	community	modules
modules_dir	/	Configuring	SELinux	with	community	modules

source	/	Configuring	SELinux	with	community	modules
ignore	/	Configuring	SELinux	with	community	modules

S
Salt

about	/	What	is	Puppet?
saz/sudo	module

about	/	The	saz/sudo	module
reference	link	/	The	saz/sudo	module

scaling,	Puppet
reference	link	/	Puppet	services

security,	Puppet	/	Puppet	for	security	and	compliance
selboolean	type

about	/	SELinux	and	Puppet,	The	selboolean	type
parameters	/	The	selboolean	type

SELinux
about	/	Introducing	SELinux	and	auditd
references	/	The	SELinux	framework
and	Puppet	/	SELinux	and	Puppet
file	type	parameters	/	File	parameters	for	SELinux
configuring,	with	community	modules	/	Configuring	SELinux	with	community
modules

SELinux	Booleans
references	/	The	selboolean	type

SELinux	framework
about	/	The	SELinux	framework

SELinux	policy	modules
reference	link	/	Configuring	SELinux	with	community	modules

selmodule	type
about	/	SELinux	and	Puppet,	The	selmodule	type
parameters	/	The	selmodule	type

services,	Puppet
about	/	Puppet	services

site.pp	file	/	The	site.pp	file
software	repositories

about	/	Protecting	the	system	against	malware
spec	tests,	Puppet

reference	link	/	Vendor-supplied	defaults	and	the	PCI
SSH

managing,	with	augeasproviders	/	Managing	SSH	with	augeasproviders
SSL

about	/	SSL	and	Puppet
reference	link	/	SSL	and	Puppet
and	Puppet	/	SSL	and	Puppet

SSL	extensions
reference	link	/	Policy-based	autosign

store	processors
about	/	The	store	processors

subject
about	/	The	SELinux	framework

system	state
documenting,	with	manifests	/	Using	manifests	to	document	the	system	state

T
types

about	/	The	SELinux	framework

V
Vagrant

URL,	for	downloading	/	Installing	Vagrant	and	VirtualBox
installing	/	Installing	Vagrant	and	VirtualBox

Vagrant	Cloud
URL	/	Creating	our	first	Vagrantfile

Vagrantfile
creating	/	Creating	our	first	Vagrantfile

Version	4	report	format,	Puppet
reference	link	/	Example	–	showing	the	last	node	runtime

version	control
used,	for	tracking	manifests	history	/	Tracking	history	with	version	control
Puppet	configuration,	tracking	with	git	/	Using	git	to	track	Puppet	configuration
modules,	tracking	/	Tracking	modules	separately

VirtualBox
URL,	for	downloading	/	Installing	Vagrant	and	VirtualBox
installing	/	Installing	Vagrant	and	VirtualBox

Y
YAML

about	/	How	it	works
YAML	formatting

reference	link	/	The	hiera-eyaml	gem

	Learning Puppet Security
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Convention
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Puppet as a Security Tool
	What is Puppet?
	Declarative versus imperative approaches
	The Puppet client-server model
	Other Puppet components
	PuppetDB
	Hiera
	Installing and configuring Puppet
	Installing the Puppet Labs Yum repository
	Installing the Puppet Master
	Installing the Puppet agent
	Configuring Puppet
	Puppet services
	Preparing the environment for examples
	Installing Vagrant and VirtualBox
	Creating our first Vagrantfile
	Puppet for security and compliance
	Example – using Puppet to secure openssh
	Starting the Vagrant virtual machine
	Connecting to our virtual machine
	Creating the module
	Building the module
	The openssh configuration file
	The site.pp file
	Running our new code
	Summary
	2. Tracking Changes to Objects
	Change tracking with Puppet
	The audit meta-parameter
	How it works
	What can be audited
	Using audit on files
	Available attributes
	Auditing the password file
	Preparation
	Creating the manifest
	First run of the manifest
	Changing the password file and rerunning Puppet
	Audit on other resource types
	Auditing a package
	Modifying the module to audit
	Things to know about audit
	Alternatives to auditing
	The noop meta-parameter
	Purging resources
	Using noop
	Summary
	3. Puppet for Compliance
	Using manifests to document the system state
	Tracking history with version control
	Using git to track Puppet configuration
	Tracking modules separately
	Facts for compliance
	The Puppet role's pattern
	Using custom facts
	The PCI DSS and how Puppet can help
	Network-based PCI requirements
	Vendor-supplied defaults and the PCI
	Protecting the system against malware
	Maintaining secure systems
	Authenticating access to systems
	Summary
	4. Security Reporting with Puppet
	Basic Puppet reporting
	The store processors
	Example – showing the last node runtime
	PuppetDB and reporting
	Example – getting recent reports
	Example – getting event counts
	Example – a simple PuppetDB dashboard
	Reporting for compliance
	Example – finding heartbleed-vulnerable systems
	Summary
	5. Securing Puppet
	Puppet security related configuration
	The auth.conf file
	Example – Puppet authentication
	Adding our second Vagrant host
	Working with hostmanager
	The fileserver.conf file
	Example – adding a restricted file mount
	SSL and Puppet
	Signing certificates
	Revoking certificates
	Alternative SSL configurations
	Autosigning certificates
	Naïve autosign
	Basic autosign
	Policy-based autosign
	Summary
	6. Community Modules for Security
	The Puppet Forge
	The herculesteam/augeasproviders series of modules
	Managing SSH with augeasproviders
	The arildjensen/cis module
	The saz/sudo module
	The hiera-eyaml gem
	Summary
	7. Network Security and Puppet
	Introducing the firewall module
	The firewall type
	The firewallchain type
	Creating pre and post rules
	Adding firewall rules to other modules
	Is allowing all to NTP dangerous?
	Summary
	8. Centralized Logging
	Welcome to logging happiness
	Installing the ELK stack
	Logstash and Puppet
	Installing Elasticsearch
	Installing Logstash
	Reporting on log data
	Installing Kibana
	Configuring hosts to report log data
	Summary
	9. Puppet and OS Security Tools
	Introducing SELinux and auditd
	The SELinux framework
	The auditd framework for audit logging
	SELinux and Puppet
	The selboolean type
	The selmodule type
	File parameters for SELinux
	Configuring SELinux with community modules
	Configuring auditd with community modules
	Summary
	A. Going Forward
	What we've learned
	Where to go next
	Writing and testing Puppet modules
	Puppet device management
	Additional reporting resources
	Other Puppet resources
	The Puppet community
	Final thoughts
	Index

