Learning Puppet Security

Secure your IT environments with the powerful security tools
of Puppet

PACKT 2

Learning Puppet Security

Table of Contents

Learning Puppet Security
Credits

About the Author

About the Reviewers

www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?

Free access for Packt account holders

Preface

What this book covers

What vou need for this book
Who this book is for

Convention

Reader feedback

Customer support
Downloading the example code
Errata
Piracy
Questions

1. Puppet as a Security Tool

What is Puppet?

Declarative versus imperative approaches

The Puppet client-server model

Other Puppet components

PuppetDB

Hiera

Installing and configuring Puppet
Installing the Puppet Labs Yum repository

Installing the Puppet Master

Installing the Puppet agent
Configuring Puppet
Puppet services
Preparing the environment for examples
Installing Vagrant and VirtualBox
Creating our first Vagrantfile
Puppet for security and compliance
Example — using Puppet to secure openssh
Starting the Vagrant virtual machine
Connecting to our virtual machine
Creating the module
Building the module
The openssh configuration file
The site.pp file
Running our new code
Summary
2. Tracking Changes to Objects
Change tracking with Puppet

The audit meta-parameter

How it works

What can be audited

Using audit on files

Available attributes

Auditing the password file

Preparation
Creating the manifest

First run of the manifest

Changing the password file and rerunning Puppet

Audit on other resource types

Auditing a package
Modifying the module to audit

Things to know about audit

Alternatives to auditing
The noop meta-parameter
Purging resources

Using noop

Summary

3. Puppet for Compliance

Using manifests to document the system state

Tracking history with version control
Using git to track Puppet configuration
Tracking modules separately

Facts for compliance
The Puppet role’s pattern
Using custom facts

The PCI DSS and how Puppet can help
Network-based PCI requirements
Vendor-supplied defaults and the PCI

Protecting the system against malware
Maintaining secure systems

Authenticating access to systems

Summary
4. Security Reporting with Puppet

Basic Puppet reporting

The store processors

Example — showing the last node runtime

PuppetDB and reporting

Example — getting recent reports

Example — getting event counts
Example — a simple PuppetDB dashboard

Reporting for compliance

Example — finding heartbleed-vulnerable systems

Summary
5. Securing Puppet

Puppet security related configuration
The auth.conf file

Example — Puppet authentication
Adding our second Vagrant host
Working with hostmanager
The fileserver.conf file
Example — adding a restricted file mount
SSL and Puppet
Signing certificates
Revoking certificates
Alternative SSL configurations
Autosigning certificates
Naive autosign
Basic autosign
Policy-based autosign
Summary

6. Community Modules for Security
The Puppet Forge

The herculesteam/augeasproviders series of modules

Managing SSH with augeasproviders

The arildjensen/cis module

The saz/sudo module

The hiera-eyaml gem

Summary
7. Network Security and Puppet

Introducing the firewall module

The firewall type

The firewallchain type

Creating pre and post rules

Adding firewall rules to other modules

Is allowing all to NTP dangerous?
Summary
8. Centralized Logging
Welcome to logging happiness
Installing the ELK stack
Logstash and Puppet
Installing Elasticsearch
Installing I.ogstash
Reporting on log data
Installing Kibana
Configuring hosts to report log data
Summary
9. Puppet and OS Security Tools
Introducing SELinux and auditd

The SELinux framework

The auditd framework for audit logging

SELinux and Puppet
The selboolean type

The selmodule type

File parameters for SELinux

Configuring SELinux with community modules
Configuring auditd with community modules

Summary
A. Going Forward

What we’ve learned

Where to go next

Writing and testing Puppet modules

Puppet device management

Additional reporting resources

Other Puppet resources

The Puppet community
Final thoughts

Index

Learning Puppet Security

Learning Puppet Security

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2015
Production reference: 1240315
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78439-775-3

www.packtpub.com

http://www.packtpub.com

Credits

Author

Jason Slagle
Reviewers

Vlastimil Holer

Jeroen Hooyberghs
Michael J. Ladd
Stephen McNally
Marcus Young
Commissioning Editor
Dipika Gaonkar
Acquisition Editor
Meeta Rajani

Content Development Editor
Akshay Nair

Technical Editors
Tanmayee Patil
Sebastian Rodrigues
Copy Editors

Sonia Michelle Cheema
Rashmi Sawant

Wishva Shah

Project Coordinator
Mary Alex
Proofreaders

Simran Bhogal

Maria Gould

Paul Hindle

Linda Morris

Indexer

Tejal Soni

Production Coordinator
Shantanu N. Zagade
Cover Work

Shantanu N. Zagade

About the Author

Jason Slagle is a veteran of systems and network administration of 18 years. Having
worked on everything from Linux systems to Cisco networks and SAN storage, he is
always looking for ways to make his work repeatable and automated. When he is not
hacking a computer for work or pleasure, he enjoys running, cycling, and occasionally,
geocaching.

Jason is a graduate of the University of Toledo from the computer science and engineering
technology program with a bachelor’s degree in science. He is currently employed by
CNWR, an IT and infrastructure consulting company in his hometown of Toledo, Ohio.
There, he supports several prominent customers in their quest to automate and improve
their infrastructure and development operations. He occasionally serves as a part-time
instructor at the University of Toledo.

Jason has previously worked as a technical reviewer on Puppet 3: Beginner’s Guide and
Puppet Monitoring and Reporting.

I would like to thank my wife, Heather, and my son, Jacob. They’ve been greatly
supportive during this process.

Additionally I’d like to thank my mentor, Allen Rioux. Without you, none of this would
have been possible.

About the Reviewers

Vlastimil Holer is a systems engineer, with focus on automation. He has worked with
Unix-like systems for more than a decade, and first used Puppet in 2008 while preparing
and managing the growing deployment of the GoodData cloud BI on Amazon EC2.
Currently, he works on the CERIT Scientific Cloud project at Masaryk University, where
he manages and automates their computing, cloud, and storage infrastructure.

Jeroen Hooyberghs is an open source and Linux consultant, working for Open Future in
Belgium. In this position as well as in his earlier roles in Linux system administration, he
obtained technical expertise through a lot of open source solutions, such as Puppet. In
2014, he became a Puppet Certified Professional and Official Puppet Trainer. As a
reviewer, he contributed to Mastering Puppet and Puppet Cookbook, Third Edition.

Michael J. Ladd is a senior manager of systems engineering at Leapfrog Online LLC of
Evanston, Illinois. He has been working with Linux systems for more than 15 years, and
has been using Puppet for over 5 years. In addition to wrangling computers, Michael
enjoys writing music and working through an ever-growing list of books to read. He
writes very occasionally at www.mjladd.com, and can be reached at <mjladd@gmail.com>.

I would like to thank my admirable wife, Jen, for her support and encouragement, and my
spirited daughter, Piper.

Stephen McNally received his MBA from Tennessee Technological University in 2013
with focus on management information systems. Stephen has experience in procuring,
deploying, maintaining, administering, and decommissioning some of the world’s fastest
supercomputers. Most notably, his team deployed the first academic petascale
supercomputer, Kraken. Stephen has I'T experience in multiple industries, including
automotive manufacturing, healthcare, and research computing. He oversees all aspects of
HPC operations as the group leader for some of the world’s brightest and most talented
administrators and programmers.

I would like to thank my wife, Christina, and my son, Sutton, for providing their love and
support during this process.

Marcus Young recently graduated with a degree in computer science and mathematics,
before getting involved in system administration and DevOps. He currently works in
software automation using open source tools and technologies. His hobbies include
playing ice hockey and brewing beer. He also enjoys hardware projects based on
microcontrollers and single-board computers. He is currently working on Implementing
Cloud Design Patterns for AWS.

http://www.mjladd.com
mailto:mjladd@gmail.com

www.PacktPub.com

Support files, eBooks, discount offers, and
more

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[@ PACKT! i 1°

https://www?2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can search, access, and read Packt’s entire library of books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com

Preface

Using Puppet is currently one of the hottest trends right now in the IT industry. As the
industry moves away from manual provisioning towards automation, the usage of Puppet
and its associated tools will only continue to grow.

With the rise of automation, and the repetitive tasks that security often entails, it makes
perfect sense for Puppet to be a strong security tool. With proper configuration, Puppet
can assist in securing your servers, showing compliance with various standards, and
generally easing the workload of security-related personnel.

This book is a practical introduction to Puppet for security professionals. It will guide you
into the world of automation, showing you how to make repetitive tasks a breeze. With the
knowledge learned here, you can begin the process of bringing your system configurations
into code, where they can be audited and treated much like you would treat a code base.

Starting with the beginning, and assuming that you only have the knowledge of Linux
operating systems, we will explore the basics of Puppet. From there on, we will cover
examples and concepts of increasing complexity and skill until you are ready to start on
your own. In doing this, we will cover using the Puppet code for auditing, as well as using
reports and other data to show compliance. We’ll explore centralized logging, and learn
how you can use Puppet to make your SELinux tasks easier.

What this book covers

Chapter 1, Puppet as a Security Tool, provides an introduction to Puppet. We’ll build a
development environment that we’ll use in all the chapters, and explore some simple
examples with Puppet.

Chapter 2, Tracking Changes to Objects, explores various ways to audit changes to
resources, such as files. Puppet provides a number of ways to handle this, and we’ll
review their pros and cons.

Chapter 3, Puppet for Compliance, looks at the use of Puppet for compliance purposes.
Version control for our manifests will be introduced, and it will explain how the manifests
can be used for auditing and compliance purposes. We’ll also review some specific
examples of how Puppet can help with the PCI DSS.

Chapter 4, Security Reporting with Puppet, looks at how to report on some of the things
we covered in the previous chapters. We’ll build reporting on various system facts, as well
as some simple reporting covering when Puppet last ran on our hosts.

Chapter 5, Securing Puppet, covers what it takes to secure Puppet itself. Since Puppet is in
charge of all of your systems, ensuring that it is secure is important. We’ll cover the
various security configuration files Puppet uses, as well as how it uses SSL to ensure
security.

Chapter 6, Community Modules for Security, takes a look at various modules that are
available at the Puppet Forge. We’ll explore modules to make managing various
configuration files easier, as well as modules that provide some security hardening of
hosts.

Chapter 7, Network Security and Puppet, will explore using Puppet to manage the firewall
of the local host. We’ll primarily be concentrating on the Puppet module, which manages
iptables and its associated set of tools that are used to manage firewall rules. We’ll also
cover how to extend your modules to handle firewall resources.

Chapter 8, Centralized Logging, introduces the use of Puppet to manage centralized
logging using Logstash. We’ll cover the installation of Logstash as well as its dashboard
component, Kibana. We’ll then build a simple module to ship logs to a central server.

Chapter 9, Puppet and OS Security Tools, covers using Puppet to manage SELinux and
auditd. We’ll cover the options available for Puppet for SELinux, as well as community
modules for both SELinux and auditd.

Appendix, Going Further, covers information on developing good modules, an analysis of
Puppet device management, useful reporting tools, and a brief discussion on the Puppet
community.

What you need for this book

The examples in this book are all written using CentOS 6. The source present in this book
uses Vagrant to run the examples. Vagrant is a wonderful tool to use for development, as it
allows you to specify how full virtual machines should be configured.

To use Vagrant, you’ll need the following software:

e VirtualBox: This is the virtualization container we’ll use. You can find it at
http://www.virtualbox.org.
e Vagrant: This tool is what we’ll use to manage our virtual machines. You can get it

at http://www.vagrantup.com.

http://www.virtualbox.org
http://www.vagrantup.com

Who this book is for

This book is targeted at experienced system administrators who focus on security, and it
also targets security professionals. It assumes an intermediate to advanced level of system
administration ability, but does not require any previous experience with Puppet.

Convention

In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of their

meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: “If not
specified, this defaults to $vardir/reports, so /var/1lib/puppet/reports on CentOS.”

A block of code is set as follows:

node default {
include
include
include
include
include

}

openssh

users

clamav

puppetdb

puppetdb: :master::config

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

node default {
include
include
include
include
include

}

openssh

users

clamav

puppetdb

puppetdb: :master::config

Any command-line input or output is written as follows:

sudo service puppetmaster restart

Note

Warnings or important notes appear in a box like this.

Tip

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book. If
you find any errata, please report them by visiting http://www.packtpub.com/submit-
errata, selecting your book, clicking on the errata submission form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from

http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.

mailto:copyright@packtpub.com

Questions

You can contact us at <questions@packtpub.com> if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:questions@packtpub.com

Chapter 1. Puppet as a Security Tool

Imagine you’re sitting at home one day after a long day of work. Suddenly, you get a
phone call that a new security vulnerability was found and all 300 of your servers will
need to be patched. How would you handle it?

With Puppet, finding which one of your servers was vulnerable would be an easier task
than doing so by hand. Furthermore, with a little additional work, you could ensure that
every one of your servers is running a newer nonvulnerable version of the Puppet package.

In this chapter, we will touch on the following concepts:

What is Puppet?

Declarative versus imperative systems

The Puppet client-server model

Other components of the Puppet ecosystem used for security
Installing Puppet

How Puppet fits into a security role

Once this is complete, we will build the environment we’ll use to run examples in this
book and then run our first example.

Much of the information in this chapter is presented as a guide to what we will accomplish
later on in this book.

What is Puppet?

The Puppet Labs website describes open source Puppet as follows:

Open source Puppet is a configuration management system that allows you to define
the state of your IT infrastructure, then automatically enforces the correct state.

What does this mean, though?

Puppet is a configuration management tool. A configuration management tool is a tool that
helps the user specify how to put a computer system in a desired state. Other popular tools
that are considered as configuration management tools are Chef and CFEngine. There are
also a variety of other options that are gaining a user base, such as Bcfg2 and Salt.

Chef is another configuration management tool. It uses pure Ruby Domain-specific
Language (DSL) similar to Puppet. We’ll cover what a domain-specific language is
shortly. This difference allows you to write the desired state of your systems in Ruby.
Doing so allows one to use the features of the Ruby language, such as iteration, to solve
some problems that can be more difficult to solve in the stricter domain-specific language
of Puppet. However, it also requires you to be familiar with Ruby programming. More
information on Chef can be found at http://www.getchef.com.

CFEngine is the oldest of the three main tools mentioned here. It has grown into a very
mature platform as it has expanded. Puppet was created out of some frustrations with
CFEngine. One example of this is that the CFEngine community was formally quite
closed, that is, they didn’t accept user input on design decisions. Additionally, there was a
focus in CFEngine on the methods used to configure systems. Puppet aimed to be a more
open system that was community-focused. It also aimed to make the resource the primary
actor, and relied on the engine to make necessary changes instead of relying on scripts in
most cases.

Note

Many of these issues were addressed in CFEngine 3, and it retains a very large user base.
More information on CFEngine can be found at http://www.cfengine.com.

Bcfg2 and Salt are both tools that are gaining a user base. Both written in Python, they
provide another option for a user who may be more familiar with Python than other
languages. Information on these tools, as well as a list of others that are available, can be
found at https://en.wikipedia.org/wiki/Comparison_of_open-
source_configuration_management_software.

Configuration management tools were brought about by a desire to make system
administration work repeatable, as well as automate it.

In the early days of system administration, it was very common for an administrator to
install the operating system needed as well as install any necessary software packages.
When systems were simple and few in number, this was a low effort way of managing
them.

http://www.getchef.com
http://www.cfengine.com
https://en.wikipedia.org/wiki/Comparison_of_open-source_configuration_management_software

As systems grew more complex and greater numbers of them were installed, this became
much more difficult. Troubleshooting an application as it began to run on multiple systems
also became difficult. The difference in software versions on installed nodes and other
configuration differences created inconsistencies in the behavior of multiple systems that
were running the same application. Installation manuals, run books, and other forms of
documentation were often deployed to try to remedy this, but it was clear that we needed a
better way.

As time moved on, system administrators realized that they needed a better way to manage
their systems. A variety of methods were born, but many of them were home built. They
often used SSH to manage remote hosts. I also built several such systems at various places
before coming across Puppet.

Puppet sought to ease the pain and shortcomings of the early days. It was a big change
from anything that was present at the time. A large part of this was because of its
declarative nature.

Declarative versus imperative approaches

At the core of Puppet is software that allows you to specify the state of the system and let
Puppet get the system there. It differs from many of the other products in the configuration
management space due to its declarative nature.

In a declarative system, we model the desired state of the resources (things being
managed).

Declarative systems have the following properties:

Desired state is expressed, not steps used to get there

Usually no flow control, such as loops; it may contain conditional statements
Actions are normally idempotent

Dependency is usually explicitly declared

Tip

The concept of actions being idempotent is a very important one in Puppet. It means that
actions can be repeated without causing unnecessary side effects. For example, removing a
user is idempotent, because removing it when it doesn’t exist causes no side effects.

Running a script that increments to the next user ID and creates a user may not be
idempotent, because the user ID might change.

Imperative systems, on the other hand, use algorithms and steps to express their desired
state. Most traditional programming languages, such as C and Java, are considered
imperative. Imperative systems have the following properties:

They use algorithms to describe the steps to the solution
They use flow control to add conditionals and loops
Actions may not be idempotent

Dependency is normally executed by ordering

In Puppet, which is declarative, the users can describe how they want the system to look in
the end, and leave the implementation details of how to get there up to the types and
providers within Puppet. Puppet uses types, which represent resources, such as files or
packages. Each type can optionally be implemented by one or more provider.

Types provide the core functionality available in Puppet. The type system is extensible,
and additional types can be added using pure Ruby code. Later on in this chapter, we’ll
use the file and package types in our example.

Providers include the code for the type that actually does the low level implementation of
a resource. Many types have several providers that implement their functionality in
different ways. An example of this is the package type. It has providers for RPM, Yum,
dpkg, Windows using MSI, and several others. While it is not a requirement that all types
have multiple providers, it is not uncommon to see them, especially for resources that
have different implementation details across operating systems.

This system of types and providers isolates the user from having to have specific

knowledge of how a given task is done. This allows them to focus on how the system
should be configured, and leave specific implementation details, such as how to put it in
that state, to Puppet.

A few tools, such as Chef, actually use more of a hybrid approach. They can be used in a
declarative state, but also allow the use of loops and other flow control structures that are
imperative. Puppet is slowly starting to gain some support for this in their new future
parser, however these are experimental and advanced features at this point.

While the declarative approach may have a larger learning curve, especially around
dependency management, many sysadmins find it a much better fit with their way of
thinking once they learn how it works.

The Puppet client-server model

Puppet uses a client-server model in the most common configurations. In this mode, one
or more systems, called Puppet Masters, contain files called manifests. Manifests are code
written in the Puppet DSL. A DSL is a language designed to be used for a specific
application. In this case, the language is used to describe the desired state of a system.
This differs from more general purpose languages, such as C and Ruby, in that it contains
specialized constructs for the problem being solved. In this case, the resources in the
language are specific to the configuration management domain.

Manifests contain the classes and resources which Puppet uses to describe the state of the
system. They also contain declarations of the dependencies between these resources.

Classes are often bundled up into modules which package up classes into reusable chunks
that can be managed separately. As your system becomes more complicated, using
modules helps you manage each subsystem independently of the others.

The client systems contain the Puppet agent, which is the component that communicates
with the master. At specified run intervals (30 minutes by default), the agent will run and
the following actions will take place:

1. Custom plugins, such as facts, types, and providers, are sent to the client, if
configured.

The client collects facts and sends them to the master.

The master compiles a catalog and sends it to the client.

The client processes the catalog sent by the master.

The client sends the reporting data to the master, if configured.

oW

The catalog, sent to the client by the master, contains a compiled state of the system
resources of the client. The client then applies this information using types and providers
to bring the system into the desired state. The following illustration shows how data flows
between the components:

Puppet
Master

Agent sends
report

Master send
catalog

It is also possible to run Puppet in a masterless mode. In this mode, the Puppet manifests

and other needed components, such as custom facts, types, and providers, are distributed

to each system using an out of band method, such as scp or rsync. Puppet is then applied
on the local node using cron or some other tool.

cron has the advantage of not requiring the server setup with open ports that the master-
based setup has. In some organizations, this makes it easier to get past information
security teams. However, many of the reporting and other benefits we will explore in this
book are less effective when run in this fashion. The book Puppet 3: Beginners Guide,
John Arundel, Packt Publishing, has a good amount of information about such a

masterless setup.

Other Puppet components

Puppet has a number of other components that form part of the Puppet ecosystem, which
are worth exploring due to their use as security tools. The specific components we are
going to explore here include PuppetDB and Hiera.

PuppetDB

PuppetDB is an application used to store information on the Puppet infrastructure.
Released in 2012, PuppetDB solved performance issues present in the older storeconfigs
method that stored information about Puppet runs.

PuppetDB allows you to store facts, catalogs, reports, and resource information (via
exported resources). Mining this data, using one of the reporting APIs, is an easy and
powerful way to get a view of your infrastructure. More information on PuppetDB will be
presented in Chapter 3, Puppet for Compliance, as well as Chapter 4, Security Reporting
with Puppet.

Hiera

Hiera was a new feature introduced in Puppet 3. It is a hierarchal data store, which helps
to keep information about your environment. This allows you to separate data about the
environment from code that acts on the environment. By doing so, you can apply separate
security policies to the code that drives the environment and data about the systems.

Before Hiera, it was not uncommon to see large sections of Puppet code dedicated to
maintaining sites or installation of specific information on the systems under management.
This area was often difficult to maintain if the ability to override parameters using many
different factors was needed.

By adding a hierarchy that can depend on any facts, it becomes much easier to store the
data needed for the systems under management. A model of most specific to least specific
can then be applied, which makes it much easier to override the default data at a site,
environment, or system level.

For example, let’s say you had a set of development environments where a certain group
of development accounts needed to get created, and SSH access to those accounts was
granted. However, these accounts and the access granted should only exist in the
development machines, and not in production. Without Hiera, there would likely be site-
specific information in the modules to manage the SSH configuration, and perhaps in the
user creation module to manage the users. Using Hiera, we can add a fact for the type of
system (production or development) and store which users get created there, or have
access. This moves the list of users with access to the system out of the code itself, and
into a data file.

As our examples get more complicated later in this book, we will explore using Hiera to
store some system data.

Tip
Downloading the example code

You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Installing and configuring Puppet

Puppet can be installed in a variety of ways. Since this book is focused on the security-
related aspects of Puppet and is not a beginner’s guide, we will cover the most common
way it is installed on our target system. There are many good reference books available for
more in-depth information on installing Puppet, including Puppet 3: Beginner’s Guide,
John Arundel, Packt Publishing.

In our examples, we’ll be using CentOS 6 as our operating system. If you are using a
different operating system and following along on your own, please see the installation
instructions for your operating system at http://www.puppetlabs.com, or follow along
using Vagrant as outlined later.

Since we will be using Vagrant for our examples, the base box we are using already has
the Puppet repository installed on it as well as the Puppet agent. We’ll provide instructions
for the installation of these elements for those who wish to use CentOS without using
Vagrant.

http://www.puppetlabs.com

Installing the Puppet Labs Yum repository

The currently recommended way to install Puppet on CentOS machines is to use the
Puppet Labs Yum repository. This repository, which can be found at
https://yum.puppetlabs.com, contains all the Puppet Labs software as well as the
dependencies required to install them, such as several Ruby gems not present in the main
CentOS repository. On installation, Ruby and these dependencies will also be installed.

Adding this repository is relatively simple. Execute the following command as a root (or
using sudo, as shown here):

sudo rpm -ivh https://yum.puppetlabs.com/puppetlabs-release-el-6.noarch.rpm

After running this command, you will see an output similar to this:

Retrieving https://yum.puppetlabs.com/puppetlabs-release-el-6.noarch.rpm

Preparing.. B
[100%]

1:puppetlabs-release B
[100%]

Once this is complete, you’re done! The Puppet Labs repository is added and we can use it
to install the current version of any of the Puppet Labs products.

https://yum.puppetlabs.com

Installing the Puppet Master

The next step is to install the Puppet Master. As mentioned earlier, this system acts as the
controller that all of your client agents will then use to communicate with to receive
catalog information. This package is normally installed on only a few systems that act as
servers for configuration management information.

Installing the master with the repository is as easy as executing the following command:

sudo yum -y install puppet-server

This will instruct yum to install the Puppet server without confirmation. The output will be
as follows:

& 06 chapl — vagrant@puppet:~ — ssh — 92x40

[vagrant®puppet ~]% sudo yum install puppet-server -y
Loaded plugins: fastestmirror, security
Loading mirror speeds from cached hostfile
* base: mirrors.usinternet.com
* extras: mirrors.maine.edu
* updates: mirror.net.cen.ct.gov
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package puppet-server.noarch @:3.6.2-1.e16 will be installed
--» Finished Dependency Resolution

Dependencies Resolved

Package Version Repository
Installing:
puppet-server noarch 3.6.2-1.el6 puppetlabs-products 24 k

Transaction Summary

Install 1 Package(s)

Total download size: 24 k
Installed size: 24 k
Downleoading Packages:
puppet-server-3.6.2-1.el6.nocarch.rpm | 24 kB @9:00
Running rpm_check_debug
Running Transaction Test
Transaction Test Succeeded
Running Transaction
Installing : puppet-server-3.6.2-1.el6.noarch
Verifying : puppet-server-3.6.2-1.el6.noarch

Installed:
puppet-server.noarch 9:3.6.2-1.el6

Completel
[vagrant@puppet ~]%

Installing the Puppet agent

On all the systems that we wish to manage by using Puppet, we’ll need to install the
Puppet agent. This agent is a piece of software that is responsible for communicating with
the master and applying changes.

Installing the Puppet agent is very easy and similar to installing the master in the
preceding section. You simply run the following:

sudo yum -y install puppet

After this is complete, you’ll see that the the Puppet agent is installed on the local machine
and is ready to talk to the master.

Configuring Puppet

Now that we have a perfectly working Puppet Master, we need to configure it. Installation
of the packages will include a base level configuration. There are some changes we will
want to make to the base Puppet configuration to enable some features that we’ll use in
the future. As we go through this book, we’ll make changes to these files several times.

The main configuration files in use by Puppet are present in the /etc/puppet directory.

In this directory, there are a number of configuration files that control how Puppet
behaves. Information on these files can be found at

https://docs.puppetlabs.com/puppet/3.7/reference/config _about_settings.html. For now, we
only need to concern ourselves with the Puppet configuration file.

Open the /etc/puppet/puppet.conf file with your favorite editor (make sure that you use
sudo) and edit it to look similar to the following:

[main]
The Puppet log directory.
The default value is '$vardir/log'.
logdir = /var/log/puppet

Where Puppet PID files are kept.
The default value is '$vardir/run'.
rundir = /var/run/puppet

Where SSL certificates are kept.
The default value is '$confdir/ssl'.
ssldir = $vardir/ssl

[agent]
The file in which puppetd stores a list of the classes
associated with the retrieved configuratiion. Can be loaded in
the separate "~ “puppet °~ executable using the " --loadclasses
option.
The default value 1is '$confdir/classes.txt'.
classfile = $vardir/classes.txt

Where puppetd caches the local configuration. An
extension indicating the cache format is added automatically.
The default value is '$confdir/localconfig’.
localconfig = $vardir/localconfig
report = true
pluginsync = true
[master]
reports = store

We’ve made a handful of changes to the file from the default version and will cover them
here.

The first change is adding the report = true section to the agent configuration section.
This will cause clients to send reports containing information about the Puppet run. We’ll
use these reports for later analysis in Chapter 4, Security Reporting with Puppet.

https://docs.puppetlabs.com/puppet/3.7/reference/config_about_settings.html

The second change is to add pluginsync = true to the agent section. While this has
become the default in the more recent versions of Puppet, it does not hurt to add it in. This
causes the clients to sync custom facts, providers, and other Puppet libraries from the
master. We will see how this is used in later chapters.

The final change we have made is to add the master section and add reports = store.
This causes the master to save reports to the local filesystem on the Puppet Master. We’ll
use this later to do analysis of our Puppet runs for security-related purposes.

Puppet services

Both the Puppet Master and the agent are usually run as services. This allows the agent to
check its run frequency and apply any changes. We’ve not explicitly started the services
here, although we’ll need to start the master in order to use it from our agent. To do this,
we run the following command:

sudo service puppetmaster start

In order for the Puppet Master to start at boot, we’ll also issue the following command to
enable it to autostart:

sudo chkconfig puppetmaster on

It’s pretty common to use Puppet to manage Puppet, and in a later chapter, we’ll do this to
show how we can use Puppet to secure the Puppet Master.

Note

It’s worth noting that Puppet running with a default web server configuration will not
scale beyond a few dozen hosts. Scaling Puppet is outside the scope of this book. More
information on scaling Puppet can be found at

http://docs.puppetlabs.com/guides/scaling.html.

http://docs.puppetlabs.com/guides/scaling.html

Preparing the environment for examples

As mentioned in the preface, we’re going to use Vagrant to run our examples. In case you
missed it, Vagrant is a tool that helps you automate the creation of virtual machines for
testing. In this case, it’s a great tool for us to use to quickly build-out our build and
example environments.

We’ll be using CentOS 6 in these examples, but most of them should run without much
modification on other platforms. You will need to adjust the package names and perhaps
configure the filenames for other operating systems. Many community modules, which we
will explore in later chapters, support multiple flavors of Linux as well as other Unix-like
systems. The powerful descriptive language of Puppet makes this easy to do.

While the use of Vagrant is not required, it will help us to maintain a clean environment
for each of the examples we run, and will also ease the creation of virtual machines. If you
choose not to use Vagrant for this, you can still run the examples using the manifests and
modules provided with the source accompanying this book.

Installing Vagrant and VirtualBox

In order for us to use Vagrant, we must first install it. To do this, we need to install the
required dependencies followed by Vagrant itself. We’ll be using VirtualBox to host the
virtual machines in these examples, since it is the most supported virtual machine
provider.

VirtualBox can be downloaded from http://www.virtualbox.org. On this site, you will find
packages for installing a variety of operating systems. You simply need to pick the
package for your chosen operating system and install it using the instructions found on the
site.

Once we have VirtualBox installed, we can approach installing Vagrant. Vagrant has
several methods of installation. These methods include OS packages for Linux, as well as
installers for OS X and Windows. Older versions of Vagrant supported installation via the
Ruby gem utility, but this has been removed in later versions.

Vagrant can be found at http://www.vagrantup.com. Once you’re there, you can download
the package or installer for your OS. Once downloaded, you can install the package using
your operating system’s package manager, or by executing the downloaded package. In
Windows and OS X, this is sufficient to have a working installation of Vagrant.

More in-depth installation instructions can be found on the Documentation tab on the
Vagrant website; however, the package or installer will do most of the work.

It is worth noting that if you are using Windows, you will perform most of the work we’re
doing in a command shell on the DOS command box. However, if you use a local editor,
you should be able to follow along with no issues.

Creating our first Vagrantfile

Now that we have Vagrant installed, we’ll create our first Vagrant configuration. Vagrant
uses a file called vagrantfile to control its operation.

First, we start by creating a directory for our project. In this case, we’ll call it puppetbook.
We’ll end up building on this setup in later chapters to automate configuration of our
examples. This will allow us to focus on the Puppet tasks, and not so much on getting our
test systems into the desired state.

Inside this directory, we’ll create a directory called master_manifests. The purpose of
this directory is to hold the Puppet manifests that we’ll use to provision the base VM.

We’ll be using the Puppet provisioner to do our work. This is one of a handful of methods
you can use to provision a Vagrant virtual machine. Using this provisioner, we’ll write a
Puppet manifest that will describe the desired state of our machine. Vagrant will then use
this manifest to run Puppet locally and configure the system.

Next, we’ll create a vagrantfile. In your favorite editor, go ahead and open
vagrantfile. Add the following contents. We’ll cover what each one does in a moment:

Vagrant.configure(2) do |config]|

http://www.virtualbox.org
http://www.vagrantup.com

config.vm.define :puppetmaster do |master|

master.vm.box = "centos65-x64-puppet"

master.vm.box_url = "http://puppet-vagrant-boxes.puppetlabs.com/centos-
65-x64-virtualbox-puppet.box"

master.vm.hostname = "puppet.book.local"

master.vm.network "private_network", ip: "10.78.78.30", netmask:
"255.255.255.0"

master.vm.provision "shell", inline: "yum -y update puppet"

master.vm.provision "puppet" do |puppet|

puppet.manifests_path = "master_manifests"
puppet.manifest_file = "init.pp"
end
end
end
Note

It’s possible that by the time you read this, the Vagrant box referenced in the preceding
code will be deprecated. This book was written using the Puppet Labs CentOS 6 machine
images. You can go to http://puppet-vagrant-boxes.puppetlabs.com/ and find a
replacement. You want a CentOS 6 x86_64 box with Puppet (called plain there) and
VirtualBox addons.

Go ahead and save the file. We’ll cover what each file does here:

Vagrant.configure(2) do |config]|

This line sets up Vagrant using configuration version 2. It uses Ruby blocks to create a
Vagrant configuration with the config variable:

config.vm.define :puppetmaster do |master|

This line defines a virtual machine called puppetmaster. Vagrant supports multimachine
setups, which is a feature we’ll use later on in the book. For now, we’ll define a single
machine. Much like the preceding code, we use a block called master:

master.vm.box = "centos65-x64-puppet"

This defines the box we’ll use for our Puppet Master. It is a symbolic name, but it makes
sense to name it according to what it is. If you refer to the same box later, it’ll use the
same base and not download the box files an additional time:

master.vm.box_url = "http://puppet-vagrant-boxes.puppetlabs.com/centos-65-
Xx64-virtualbox-puppet.box"

This defines the URL we’ll download our box file from. In this case, we’re grabbing it
from the hosted Puppet Vagrant boxes on Puppet Labs. We could get a box from any
number of other places, but the Puppet Labs boxes come with the Puppet agent
preinstalled and the Puppet repository is already available and ready for use. If you wish
to explore other box options, there is a directory of them available at

http://puppet-vagrant-boxes.puppetlabs.com/

http://www.vagrantcloud.com:

master.vm.hostname = "puppet.book.local"

This command simply sets the host name of our machine. It is important for the master as
it influences the certificate name that gets created at installation:

master.vm.network "private_network", ip: "10.78.78.30", netmask:
"255.255.255.0"

This line creates a private network for our virtual machines to use. We assign it the IP
address 10.78.78.30/24 (78 is PU on a phone dial pad):

master.vm.provision "shell", inline: "yum -y update puppet
“Wait,” you say, “I thought we were using the Puppet provisioner?”

As it turns out, the Puppet Labs base box comes with Puppet 3.4 installed. The current
version we wish to use in this book is 3.7.3. We use the yum statement to upgrade Puppet
before the provisioner starts. Otherwise, we get issues when the Puppet run updates the
agent:

master.vm.provision "puppet" do |puppet]

Here, we tell Vagrant we’re going to use the Puppet provisioner, and open a block called
puppet to do so:

puppet.manifests_path = "master_manifests"

Here, we give the path to the manifest directory. This is relative to the path that the
vagrantfile is in. As you can recall, we created this directory earlier:

puppet.manifest_file = "init.pp"

We define the Puppet manifest to be called init.pp. This is the default name of a Puppet
manifest. Vagrant defaults to default.pp if it’s not specified:

end
end
end

These lines undo each of the preceding blocks and close out the file.

If we run Vagrant now, it will throw an error because it cannot find the init.pp file, so
let’s go ahead and create it inside the master_manifests directory. To save space, we’ll
call out each block and describe its function rather than giving the entire file and
explaining it:

package { 'puppet-server':
ensure => 'present',

}

The preceding resource declaration will install the Puppet Master. By specifying the
ensure value of present, we make sure it’s installed; however, we tell Puppet that we do
not care about the version and do not wish to upgrade it:

http://www.vagrantcloud.com

file { '/etc/puppet/puppet.conf':
ensure => 'present',

owner => 'root',
group => 'root',
mode => '0644"',

source => '/vagrant/master_manifests/files/puppet.conf’,

require => Package['puppet-server'],
}
The preceding resource declaration has a good amount more going on. Here, we’re going
to manage a file called /etc/puppet/puppet.conf. We ensure that it is present, then set
the owner, group, and mode to set the values. Using the source parameter, we source the
file from the local filesystem. Vagrant, by default, will mount the directory containing the
Vagrantfile as /vagrant, so we can take advantage of that mount to get the file without
otherwise copying it.

The last line here shows off the explicit dependency management of Puppet. We require
that the puppet-server package is installed before we install the configuration file. This
will ensure that the directory is created, and the package installation does not overwrite the
configuration file:

service { 'puppetmaster':
ensure => 'running',
require => File['/etc/puppet/puppet.conf'],
}
This last resource declaration ensures that the Puppet Master service is running. It depends

on the configuration file being there.

In a real-world example, we’re likely to use subscribe instead of require here. This
would restart the service if the configuration file changed. However, since we’re using the
local Puppet provisioner and not running this code under a Puppet Master, this code will
only be run once, so it is unnecessary to use subscribe.

We need one last file to make the system work. The file resource depends on a file called
master_manifests/files/puppet.conf. We’ve covered the contents of this file in the
Puppet installation section, so we will not repeat them here. You simply need to copy the
file to the directory for the provisioner to use.

When we’re done, the complete directory structure of this setup will look as follows:

— vagrantfile
L— master_manifests

I— files

| L— puppet.conf

L— init.pp
Once we’re set up, we’re in a good position to run the examples that we’ll present in this
book. As these examples get more complex, we’ll add the necessary data to this structure
to add things such as client machines.

Puppet for security and compliance

Puppet is a perfect tool for security and compliance. So much security work involves
ensuring that a given version of a service is on every server, or whether a user account
exists or not.

Much of this work is also very tedious and repetitive. When work such as this is done
across many servers, the likelihood that some of them will be different grows. These
snowflakes, or systems that are unique and unlike other systems, can cause security issues
or can be hard to troubleshoot.

On top of being able to maintain a system in a fixed state, we can use some Puppet
resources, such as PuppetDB, to do some fairly in-depth reporting. Using custom facts,
you can collect any information you wish to send to a central place. This can include
things such as software versions, hardware configuration, and much more. By using this
information, we can start to work toward creating a full configuration management and
security platform.

Through Puppet, you will be able to centrally manage the major configuration aspects of
all of your systems. Keeping this configuration in version control and treating it as code
gives you all the benefits that developers have been able to enjoy for years. You’ll quickly
be able to see how the state of a system has evolved over time, as well as look where bugs
might have been introduced and have caused security issues.

Additionally, there is an increasing movement to use Puppet for compliance and auditing.
By demonstrating that Puppet is indeed running on a system and showing the manifests
running on it, you can ensure that a system is in a given state. This information can be
shown to auditors as documentation on how systems are configured.

Getting to the point of 100-percent coverage in system configuration using Puppet
requires commitment and time. Using community modules, as we’ll explore later, can
lessen that work. However, the results of doing this are very high. Disaster recovery can
be made simpler because systems can quickly be rebuilt. Installing the latest tripwire on
all systems becomes as simple as updating the manifests and letting the systems check in.
These benefits can make the job of a security professional much easier.

As we progress through this book, we will explore many of these abilities in-depth, but for
now, let’s look at a simple example we can use to learn some of the Puppet concepts and
language.

Example — using Puppet to secure openssh

Now that we’ve got the system set up for our use, we can finally approach the main
example for this chapter. In this example, we’re going to use what has traditionally been
one of the first things used to show off Puppet and install SSH. However, in this case,
we’re going to use a hardened configuration utilizing some options recommended by the
security community.

The example of securing SSH is one that we will return to several times in this book as we
expand upon our configuration management toolkit and branch out into things such as
firewall management.

Starting the Vagrant virtual machine

Since this is our first time using Vagrant, we’ll cover how to start a virtual machine. In the
directory with the vagrantfile, run the following command:

vagrant up

Once this is done, you’ll see the output from Vagrant indicating the actions it’s taking, as
well as output from the commands it runs—this includes the Shell provisioner and the
Puppet provisioner. When it’s done, you’ll end up with something that is similar to the
following:

® O O [chapl — jslagle@]asons-MacBook-Pro: ~/pupbook/src/chapl — bash — 92x25 "

==5> puppeimaster: Running provisioner: puppet...
Running Puppet with init.pp...

Notice: Compiled catalog for puppet.book.local in environment production in ©.33 seconds

Motice: /Stage[main]/Main/Package[puppet-server]/ensure: created

Notice: /Stage[main]/Main/File[/etc/puppet/puppet.conf]/content: content changed '{md5}58e2f
9765e2994db8e8ab19a3513356e"’ to '{md5}058756d308081f@8193ea71a1@a9274@"

Notice: /Stage[main]/Main/Service[puppetmaster]/ensure: ensure changed 'stopped’ to 'running

Motice: Finished catalog run in 10.83 seconds
jslagle®lasons-MacBook-Pro: 3

You’ll notice some warnings on the screen here. These are options that are changing with
the newer version of Puppet. Our manifest could add an allow_virtual setting to get rid
of the second warning. The first warning, however, is a result of how Vagrant is calling
Puppet.

Connecting to our virtual machine

Once your machine has booted, simply issue the following command to connect:

vagrant ssh

This will connect you to the machine using ssh. Once this is complete, we can start
working on our module.

Creating the module

We’ll be using a Puppet module to secure SSH. As such, we should go ahead and create
the directory to hold our module. You can issue the following commands to create the
module skeleton on the guest virtual machine:

sudo mkdir -p /etc/puppet/modules/openssh/manifests
sudo mkdir -p /etc/puppet/modules/openssh/files

These directories will hold the manifests for Puppet to compile as well as our
configuration file. For our first simplistic example, we will use a static SSH configuration
file. In later chapters, we will build upon it and make it dynamic with the various options
that are available.

Tip
It’s also possible to make the /etc/puppet/modules/openssh directory a symlink to a
directory in /vagrant. If you create the directory in /vagrant, you can use any editor on

your host system to edit the files and have it immediately available in the guest. This saves
you the trouble of having to configure a good editing environment on the guest machine.

Building the module

Now that we have the framework, we’ll build our first module. Much like the preceding
code, we’ll go through it section by section covering what each resource does. The
manifest we’re building will be very similar to the one we used to provision the Puppet
Master for the use of.

First, we’ll edit the /etc/puppet/modules/openssh/manifests/init.pp file to create the
module’s main manifest. This manifest is the main unit of the Puppet code, which is
invoked when we include the module. As we go through each of the sections, we’ll go
through what they do. A complete manifest file can be found on this book’s website, but
you should really build it along with us. This will help you with understanding and
memorization:

class openssh {

The preceding line defines the class. The class in the init.pp file is always named after
the module. It’s a new construct we’ve not seen before that is unique to creating modules:

package { 'openssh-server':
ensure => 'latest',

}

The preceding section is similar to the puppetmaster section. The only difference is that
we’re using latest instead of present. Being a security-related package, it may make
sense to make sure that you keep openssh up to date.

Alternatively, if your environment requires it, you could specify a fixed version to install.
This might be useful if you require pretested versions or have validated versions. You
must weigh the benefits, ensuring that you run the most recent version of the software,
including the risk of almost immediately installing it when it is available, and that you’re
using the latest tag:

file { '/etc/ssh/sshd_config':
ensure => 'present',
owner => 'root',
group => 'root',
mode => '0600"',
source => 'puppet:///modules/openssh/sshd_config',

3
Tip
As your Puppet code becomes more complex, care must be taken on how you name your
files inside your module. It can sometimes be useful to create the full path to the file under
the modules directory, so there is no confusion as to the destination of the time. We omit

these here only because our modules are simple, and it makes the examples easier to
follow.

This is similar to the Puppet Master configuration file, but we introduced a new construct
here. We’re sourcing the file from puppet master by using the special puppet:// uniform

resource identifier (URL). When Puppet runs, it will fetch the file from the master for use
on the agent. The source file should be present in the
/etc/puppet/modules/openssh/files directory on the master:

service { 'sshd':
ensure => 'running',

}

Here, as before, we ensure that ssh is running when we run Puppet:

Package['openssh-server']
-> File['/etc/ssh/sshd_config']
~> Service['sshd']

}

This is also a new construct called resource chaining. It is an alternative way to specify
that we do things in the order listed: first, the package, followed by the file, and then the
service. Note the tilde on the service dependency. This shows that we’re notifying the
service. It means that if the configuration file changes, the service will be restarted.

Tip

In a declarative system, there needs to be a way to ensure that things are run in the correct
order. One of the more difficult things for new Puppet users is to grasp the concept that
their manifests don’t necessarily run in a top-down order. This concept is so hard that in

recent versions of Puppet, the default has been changed to a process in the manifest order
by default. More information on resource ordering and this change can be found at

http://puppetlabs.com/blog/introducing-manifest-ordered-resources.

http://puppetlabs.com/blog/introducing-manifest-ordered-resources

The openssh configuration file

To build the configuration file we’re going to use, we’ll start with the openssh
configuration file shipped with CentOS and make a few changes. First, we’ll copy the
existing configuration file with the following command:

sudo cp /etc/ssh/sshd_config /etc/puppet/modules/openssh/files/

Next, we’ll edit the file with your favorite editor. Make sure you run it in sudo as you
won’t have permission to edit the file. We’ll uncomment and change the following lines in
the file:

PermitRootLogin no
MaxAuthTries 3

We’ll start with these changes to demonstrate how the process works. Then, save the file.

Next, we need to make sure the Puppet agent can read it. We’ll set the permissions in such
a manner that the Puppet user can read it. Execute the following:

sudo chgrp puppet /etc/puppet/modules/openssh/files/sshd_config
sudo chmod 640 /etc/puppet/modules/openssh/files/sshd_config

The site.pp file

Now, we need to bring it all together to tell Puppet to use our module. By default, Puppet
runs a file called site.pp on the master to determine what actions to take when a node
checks in. We need to add the new module to the file for Puppet to run it.

The file lives in /etc/puppet/manifests on our Vagrant guest. Go ahead and open it in
your favorite editor and add the following section:

node default {
include openssh

}

This adds a default node declaration and includes our openssh module on that node. It will
ensure that our new module gets used.

Running our new code

Now that we’ve got it all built, let’s go ahead and see the fruits of our labor. Execute the
following command:

sudo puppet agent --test

You should see the output as follows:

®& 00 chapl — vagr&nt@buhpet:w — ssh — 92x32 %
[vagrant@puppet ~]% sudo puppet agent --test

Notice: /Stage[main]/Openssh/File[/etc/ssh/sshd_config]/content:

--- fetc/ssh/sshd_config 2014-981-16 ©4:36:24,975584986 -0800

+++ Stmp/puppet-file20140807-3398-f6n71g-0@ 2014-08-07 ©07:04:30.455879230 -0700
2@ -39,9 +39,9 @@

Authentication:

#LoginGraceTime 2m
-#PermitRootLogin yes
| +PermitRootLogin no
#5trictModes yes
-#MaxAuthTries 6
+MaxAuthTries 3
#MaxSessions 19

#RSAAuthentication yes

-I puppet ¥ id7ede8df
Notice: /Stage[main]/Openssh/File[/etc/ssh/sshd_config]/content: content changed '{md5}95f28
9&1ad?e3e&df46@@beb483550@1' to '{mdS}Fee58d9@694394?e41151?33c2:bﬂb68'
sshd_t Lg Scheduldir g i) SBMVLICE| SS
Not1ce fStage[maln]fﬂpensshfServlce[sshd] Trlggered "refresh’ from 1 events
| Notice: Finished catalog run in ©.76 seconds
[vagrant@puppet ~]1%

Note

If you’re running these examples outside Vagrant, you will have a bit more work to do.
We’re using Vagrant to set our hostname to Puppet, and the master by default has its own
certificate signed. If you are running without Vagrant, you will need to add a host file
entry or DNS pointing to your master, and you may need to sign the certificate. We’ll
cover certificate singing in Chapter 5, Securing Puppet.

Victory! You can see that Puppet changed the file to disallow root logins and change the
maximum authentication attempts to 3.

As with any new technology, the learning curve can seem somewhat overwhelming at
first. We’ve now gone through a rather lengthy example to effectively make a two-line edit

to a configuration file on a single machine. This was a short and simple example to
explore some base concepts of Puppet. Using this concept, we could apply this same edit
to hundreds or even thousands of machines in our infrastructure with very little additional
effort. We’ll also be exploring more in-depth examples as we gain a skillset. With some
practice, you will find that applying changes across one of many machines becomes
second nature with Puppet.

Summary

In this chapter, we built a foundation for things we will do in chapters to come. First, we
covered what Puppet is, and how it differs from other tools in its space. We gave a brief
introduction to some of the other Puppet components we’ll be using in this book as well.

Moving on from this, we covered how to install Puppet on CentOS. We went through a
full installation example and covered the basics of configuration files.

Then, we covered the configuration and installation of Vagrant and used it to run our first
example. In this example, we configured SSH with a secure configuration file.

Finally, we introduced how Puppet fits into a security ecosystem. While keeping with the
basics, we’ve begun exploring how Puppet can be used to process simple configuration
tasks to secure your systems.

This chapter focused on several high-level concepts. As we get further into the book, we’ll
go more in-depth in examples and they will get much more powerful. As an introductory
chapter, the hope was to get you up and running with a working manifest. In future
chapters, we will assume a base level of knowledge and link to references you can use if
needed.

Additionally, if you wish to get some more information on the base Puppet language
before we proceed, there are several books available. Some of them were mentioned
earlier in this chapter, and we’ll cover more as we proceed through the book. The
documentation at http://docs.puppetlabs.com is also very informative, if a little dry at
times.

In the next chapter, we’ll begin to use our knowledge gained here to explore how Puppet
can be used to track changes to resources on our filesystems.

http://docs.puppetlabs.com

Chapter 2. Tracking Changes to Objects

Have you ever wanted to know whether the content of the files on your server has changed
or whether the packages installed on the server have changed? Perhaps you have
developers who have access to edit files. Maybe you need to gather information on what
has changed for production use.

If you have changed the tracking requirements that require you to report on specific items
changing on our system, then the Puppet auditing and change tracking system can be a
great solution.

Change tracking is the act of monitoring systems for changes and reporting on them. It is a
component of more comprehensive auditing, which includes the reporting and other
activities surrounding it, ensuring that a system is in compliance. There are numerous
software packages available that do this. Many of them are special-purpose tools, such as
Tripwire, OSSEC, and AIDE. Puppet can be used to configure many of these tools, which
often require fairly extensive setups. Additionally, some of these tools require commercial
licenses to obtain the full feature set.

With proper configuration, you can use Puppet to do change tracking. Beyond this, Puppet
can be used to make sure that changed resources return to their expected states, including
correcting the content, owner, or mode of the file.

In this chapter, we will cover the following topics:

How change tracking works in Puppet

An overview of the audit meta-parameter

Examples of using the audit meta-parameter

Caveats of the audit meta-parameter

Using noop to get a similar workflow to the audit meta-parameter

Change tracking with Puppet

Puppet has a variety of ways to track changes. In its normal mode of operation, Puppet
will track (and correct) changes to any resources in its catalog. This is by its nature what
it’s designed for. This can let you know that items have changed, but at the same time let
you know that you can correct them to be the way you want them to be specified.

If you don’t have a set state for your resources and you just want to know whether they
have changed, you can use the audit meta-parameter. There is some evidence that this will
be deprecated in Puppet 4; however, it is currently still available as this book is being
written.

Finally, one can use noop to monitor changes. In this mode, Puppet will report on any
changes to a resource from its baseline; however, it will not make an effort to change them
back.

Noop can be used in a variety of fashions and will be covered at the end of the chapter.

The following table summarizes the available change tracking options:

Declared resources Audit||Noop
Requires definition of the baseline of a
d Yes No ||Yes
resource
Corrects the resource if it becomes out Ves No No (although you can run without
of compliance noop to do so)

Allows you to specify what parameters
are monitored

No, only what’s in the baseline is

. Yes
monitored

No, see declared resources

Yes No Yes

Supported in later Puppet versions

We’ll cover the audit and noop methodologies later in the section. We’ve already covered
what can be done with declared resources in the previous chapter, and we will continue to
build on it in the later chapters.

The audit meta-parameter

The audit meta-parameter is the primary change tracking method currently in Puppet. It
was introduced in Puppet 2.6, and it provides a way to monitor a resource without
enforcing a state on it.

With the introduction of Puppet Enterprise 1.2, Puppet Enterprise gained a compliance
dashboard that allowed you to configure and track file changes. This dashboard has since
been removed, but it relied heavily on the audit meta-parameter and allowed you to
quickly set up auditing.

The audit meta-parameter is a bit of a divergence in the Puppet world. The declarative
nature of Puppet is to model the desired state of a resource and allow Puppet to get it
there. The audit meta-parameter can allow you to say that you may not care about the state
of an item, but you want to know if it changes.

How it works

The audit system works by keeping track of the state of the attributes you monitor. At the
end of every run, it persists the state of those objects.

If at the start of a run Puppet notices that the current state of an object changes, it raises an
alert. Additionally, information on these changes is reported back to the master as part of
any reports. This report data can be used to generate logs of changes to attributes.

Internally, Puppet implements auditing by persisting the state of the audited objects to a
YAML file. This data is stored on each of the agent nodes, and not on the master server.
On each Puppet run, YAML is read and the state in the file is compared to the existing
state.

Tip

What is YAML?

YAML is a markup language. Originally, it was called “Yet another markup language”. It
is now known as “YAML Ain’t Markup Language”. YAML is a way to store data in a file
similar to formats such as JSON. Puppet stores much of its internal data in the YAML

format, and as we approach reporting and other processing of Puppet data, we will need to
parse and create YAML files.

What can be audited

Being a meta-parameter, audit can be applied to any resource. The code to handle the audit
meta-parameter is present in the Puppet core. In theory, any attribute on any resource
should be permitted to be audited, but there are likely cases that are untested and do not
work well.

Files, users, and packages are the most common use cases for auditing since they tend to
be the resources that are critical security-wise.

Using audit on files

The most common use case for audit is auditing whether a given file has changed. The
audit system was designed for a particular customer’s needs by Puppet. Indications are
that this need was largely around auditing files. For this reason, support around auditing
files as well as documentation is the strongest for auditing the file type.

To use audit on a file, we add the audit meta-parameter to its declaration. For example:

file { '/etc/shells':

audit => 'all',
}
This tells Puppet that it should audit every attribute on the file /etc/shells. If anything
on this file changes, it will log messages in the local log file as well as generate report
events indicating the changes.

Available attributes

On paper, any attribute is available to be audited. However, some attributes do not make
sense. The Puppet language reference as of version 3.6 lists many available attributes for
the file type. A current available list can be found at
https://docs.puppetlabs.com/references/latest/type.html#file. The attributes that directly
change the files and represent their state on the system are listed in the following table,
along with a brief description of what they do:

Attribute

Purpose |

content [IThis is the md5sum checksum of the content. This changes whenever the file content changes.

ctime ||This denotes the creation time of the file per the Unix operating system’s stat system call.

ensure

This contains the type of file, directory, or link if managed by Puppet. |

group ||This denotes the Unix group of the file.

mode ||This is the file’s Unix mode.

mtime ||This denotes the last modification of the file per the Unix operating system’s stat system call.
owner ||This denotes the Unix user who owns the file. |
selrange ||This denotes the SELinux range component of the file on systems supporting SELinux. |
selrole |[This denotes the SELinux role of the file on systems supporting SELinux. |
seltype [IThis denotes the SELinux type of the file for systems supporting SELinux. |
seluser [IThis denotes the SELinux user of the file for systems supporting SELinux. |
type ||This contains the type of the file—typically, the same as ensure if managed. |

Some of these attributes will not be present on all systems. For instance, on a non-Linux
system, the SELinux attributes will not be present. Additionally, on a Windows system,
there is an underlying mapping in place to turn the Windows concepts of file security into
a fake Unix mode.

https://docs.puppetlabs.com/references/latest/type.html#file

Auditing the password file

Now that we’ve seen how the audit resource works on files, it’s time to perform an
example. Building on our last exercise, we will audit the password file and see the results.

Preparation

The following steps need to be performed to audit the password file:

1. If you’re following along from the last example, go ahead and start the virtual
machine with the following command:

vagrant up

2. Once the system is up, go ahead and SSH into it using the following command:

vagrant ssh

You should now be logged in to the system.

Creating the manifest

Unlike the last chapter, we are going to build this manifest straight into the
/etc/puppet/manifests/site.pp file. Since the example is short and for demonstration
purposes, it does not make sense to create an entire module to hold it.

Note

As previously mentioned, it is considered bad form to add Puppet resources directly to the
main manifest in most cases. We do so here to keep the length of the examples to a
minimum since we’ll have plenty of opportunities to create modules. For this and other
best practice information on writing Puppet code, see

https://docs.puppetlabs.com/guides/style_guide.html.

Inside the /etc/puppet/manifests directory, we’ll edit the site.pp file. Once we are in
the file, edit the default node to have an additional file resource as follows:

node default {
include openssh
file { '/etc/passwd':
audit => 'all',
}
}

https://docs.puppetlabs.com/guides/style_guide.html

First run of the manifest
Once this is done, execute Puppet. To do so, run the following command:

sudo puppet agent -test

The output should be as follows:

. chap2 — vagrant@puppet;~ — ssh — 105x27
vagrant@puppet:~ 4

[vagrant@puppet ~]% sudo puppet agent --test

Notice: /S5tage[main]/Openssh/Packageopenssh-server]/ensure: audit change: previously recorded value 5.3p
1-94.el6 has been changed to 5.3pl-184.e16_6.1

Notice: /Stage[main]/Main/Node[default]/File[/etc/passwd]/ensure: audit change: newly-recorded value file
Motice: /Stage[main]/Main/Mode[default]/File[/etc/passwd]/content: oudit change: newly-recorded value {md
51H613d4bo691@5a354674be315902c47a

Motice: /Stage[main]/Main/Mode[default]/File[/etc/passwd]/target: audit change: newly-recorded value notl
ink

Motice: /Stage[main]/Main/Mode[defoult]/File[/etc/passwd]/owner: oudit change: newly-recorded value @
Notice: /Stage[main]/Main/Mode[default]/File[/etc/passwd]/group: oudit change: newly-recorded value @
Motice: /Stage[main]/Main/Mode[default]/File[/etc/passwd]/mode: audit change: newly-recorded value 644
Motice: /Stage[main]/Main/Mode[default]/File[/etc/passwd]/type: audit change: newly-recorded value file
Motice: /Stage[main]/Main/Mode[default]/File[/etc/passwd]/seluser: oudit change: newly-recorded value
Notice: /Stoge[main]/Main/Node[default]/File[/etc/passwd]/selrole: oudit change: newly-recorded value
Motice: /Stage[main]/Main/Mode[default]/File[/etc/passwd]/seltype: oudit change: newly-recorded value
Notice: /Stage[main]/Main/Mode[default]/File[/etc/passwd]/selrange: audit change: newly-recorded value
Motice: /Stage[main]/Main/Mode[default]/File[/etc/passwd]/ctime: audit change: newly-recorded value Thu 1]
an 16 99:37:14 -0B00 2014

Motice: /Stage[main]/Main/Mode[default]/File[/etc/passwd]/mtime: audit change: newly-recorded value Thu J
an 16 89:37:14 -0B08 2014

Hotice: Finished catalog run in @.57 seconds

[wagrant@puppet ~]%

In the preceding screenshot, Puppet records the initial value of all of the elements of the
file. It will use this data later to determine whether any of it changes.

Changing the password file and rerunning Puppet

After we confirm that things look good, we’ll go ahead and add a user. This will have the
effect of changing the password file. We can also change a user password or perform any
number of other operations on user accounts.

We’re going to add a puppettest user. To do so, execute the following command:

sudo useradd puppettest

Once this is complete, we will need to run Puppet again to see the outcome. Run the
following command:

sudo puppet agent -test

Again, observe the output, as shown in the following screenshot:

i ¢ chap2 — vagrant@puppet:~ — ssh — 105x23
vagrant@puppet:~ =+

[vagrant®puppet ~]% sudo useradd puppettest
[vagrant@puppet ~]1% sudo puppet agent --test

Motice: /Stage[main]/Main/Node[default]/File[/etc/passwd]/content: audit change: previously recorded valu
e {md5}f613d4b669f@50354674be315902c47a has been changed to {mdS5}154ac6b?1d6752cd3d2e8PeabfEBZ2694
Notice: /Stage[main]/Main/Node[default]/File[/etc/passwd]/ctime: oudit change: previocusly recorded value
Thu Jan 16 ©9:37:14 -2800 2014 hos been changed to Sun Jan 11 13:14:21 -B80@ 2015

Motice: /Stage[main]/Main/Node[default]/File[/etc/passwd]/mtime: oudit change: previocusly recorded value
Thu Jan 16 @3:37:14 -0800 2014 has been changed to Sun Jan 11 13:14:20 -020@ 2015

Motice: Finished cotalog rum in @.59 seconds

[vogrant@puppet ~1%

In the preceding screenshot, we can see that three different attributes have changed. The
first attribute is the content attribute. This makes perfect sense since we changed the file.

The second attribute that has changed is the ctime attribute. This tells us that something
rewrote the entire file.

The final attribute that has changed is mt ime. We would expect this also since the file was
changed.

The Puppet agent logs these changes in its local log file, but this data is also present in the
report output. We’ll cover how we can use this data in Chapter 4, Security Reporting with
Puppet.

Audit on other resource types

While a file is the most common resource that can be audited, any resource can be audited.
This even includes custom types. Additionally, even classes and defines can be audited;
however, the mechanism is a bit different. In the case of defines and classes, the meta-
parameter is inherited by all of the resources contained in that class or define, but not in
any that are included inside it.

The basic mechanism of the audit parameter works in the same way as it does in the file
case. You need to specify a list of attributes to monitor and Puppet will persist their state.
If the state changes between runs, then it will trigger an audit alert. An example of
auditing just the owner and mtime (modified time) attributes of the sshd daemon in
/usr/sbin is as follows:

file { '/usr/sbin/ssh':
audit => ['owner', 'mtime'],
}

However, as one would expect, the attributes to be audited differ for each type. The
package type, for example, only supports auditing the ensure value. This makes sense
since it’s the only value that has a concrete state on the system. In this case, it represents
the currently installed version of the package.

Determining the attributes that can be audited for a given resource requires some trial and
error. The following table shows some of the more prevalent resource types and the
auditable resources:

Resource||Auditable attributes

cron ensure, command, environment, hour, minute, month, monthday, special, target, user, and weekday

group ensure, attributes, gid, and members
mount ensure, atboot, blockdevice, device, dump, fstype, options, pass, and target
package |[lensure, package_settings

service |lensure, enable, and flags

ensure, attributes, auths, comment, expiry, gid, groups, home, iterations, keys, password,

user
password_max_age, password_min_age, profiles, project, roles, salt, shell, and uid

Not all of these resources can be audited in all cases. For instance, many of the user
resources are only appropriate on Solaris systems.

Determining what resources can be audited on other resources can be done by reviewing
https://docs.puppetlabs.com/references/latest/type.html. Look for the entries that say they
represent the concrete state on the system. These attributes are usually able to be audited.
One can also use the output of the Puppet resource command on a resource to get an idea.
For more information on the Puppet resource command, see

https://docs.puppetlabs.com/references/latest/type.html

https://docs.puppetlabs.com/references/3.7.latest/man/resource.html.

https://docs.puppetlabs.com/references/3.7.latest/man/resource.html

Auditing a package

In this example, we’ll extend our openssh module to audit the version installed. We’ll then
downgrade the package so that the version changes. Afterwards, we can verify whether the
audit worked as expected.

Tip
In a production environment, it would make sense to audit at least the sshd binary along
with the package. It’s quite possible for the attacker to change the binary without even

touching the package. Auditing the package is more useful to find system administrators
upgrading packages to unauthorized versions by accident.

Modifying the module to audit

First, make sure the Vagrant machine is running. If you need to restart your Vagrant
machine, see the first exercise to get it running.

Once it is running, go ahead and SSH it into the machine. Again, if you need a reference,
refer to the earlier chapter.

Now we’ll edit the openssh manifest and add the audit parameter. Edit the
/etc/puppet/modules/openssh/manifests/init.pp file with your favorite editor. Make
sure to use sudo if you are working on the live file.

Locate the package declaration and change it to look like the following:

package { 'openssh-server':
ensure => 'latest',
audit => 'all',

}

Go ahead and save the file. Once complete, run Puppet using the following command:

sudo puppet agent --test

The output of the command should be as follows:

[CHONS)] chapZ2 — vagrant@puppet:~ — ssh — 92x22

Last login: Wed Aug 6 19:59:02 2014 from 10.0.2.2
Welcome to your Packer-built virtual machine,
[vagrant@puppet ~]%

[vagrantBpuppet ~]% ls

[vagrantBpuppet ~]% sudo vi /etc/puppet/

auth.conf fileserver.conf modules/

environments/ manifests/ puppet.conf
[vagrant@puppet ~]1% sudo vi /etc/puppet/modules/openssh/
files/ manifests/

[vagrant@puppet ~]% sudo vi /etc/puppet/modules/openssh/manifests/init.pp
[vagrant@puppet ~]% sudo puppet agent --test

Notice: ?Sfugé[muin /Openssh/Package[openssh-server]/ensure: audit change: newly-recorded va
lue 5.3p1-94.el6
Notice: Finished catalog run in 41.84 seconds

[vagrant@puppet ~]$%

As you can see, it recorded the ensure value, setting it to the currently installed package
version.

Now that we have done this, let’s downgrade the package and see what the outcome is
like.

To downgrade openssh-server, run the following command:

sudo rpm -Uvh --oldpackage \
http://vault.centos.org/6.4/0s/x86_64/Packages/openssh-server-5.3p1-
84.1.e16.x86_64.rpm \
http://vault.centos.org/6.4/0s/x86_64/Packages/openssh-5.3p1-
84.1.e16.x86_64.rpm \
http://vault.centos.org/6.4/0s/x86_64/Packages/openssh-clients-5.3p1-
84.1.e16.x86_64.rpm

Note
The preceding command is all on one line.

The output of the preceding command is shown in the following screenshot:

® 00 chap2 — vagrant@puppet:~ — ssh — 92x26

[vagrant@puppet ~]% sudo rpm -Uvh --oldpackage http://vault.centos.org/6.4/0s5/x86_64/Package
s/openssh-server-5.3pl-84.1.e16.x86_64.rpm http://vault.centos.org/6.4/0s/x86_64/Packages/op
enssh-5.3pl-84.1.el6.x86_64.rpm http://vault.centos.org/6.4/05/x86_64/Packages/openssh-clien
ts-5.3pl-84.1.e16.x86_064.rpm
Retrieving http://vault.centos.org/6.4/0s/x86_64/Packages/openssh-server-5.3p1-84.1.el6.x86_
64.rpm
Retrieving http://vault.centos.org/6.4/0s/x86_64/Packages/openssh-5.3p1-84.1.e16.x86_64.rpm
Retrieving http://vault.centos.org/6.4/0s/x86_64/Packages/openssh-clients-5.3p1-84.1.el6.x86
-64.rpm
Preparing... RS R R R [100%]
1l:openssh WA R R [33%)
2:openssh-server warning: /etc/ssh/sshd_config created as /etc/ssh/sshd_config.rp
mnew

HARBHRRBR BB EARRARRRBR R R BRARURRRR BR[| 67%]
3:openssh-clients RERBEABHUBRARBR R BB BEBBRARHBRAR BB B R [100%]
[vagrant@puppet ~1%

Tip
The preceding command is a handful. Due to the nature of openssh, it doesn’t seem to get

many updates. Because of dependencies, we need to downgrade multiple packages,
resulting in the large command.

When we run Puppet next, it will re-upgrade openssh since we have set it to the latest
version. This will ensure that we’re not running an old version of important software such
as openssh.

Now we want to run Puppet again and observe the output. We’ll once again run a
command that should be familiar to you by now:

sudo puppet agent -test

Once it’s complete, go ahead and run it again to demonstrate that Puppet did indeed
update the package for us based on the latest attribute in the openssh module.

After both the runs are complete, the output should look something like the following:

® OO0 chap2 — vagrant@puppet:~ — ssh — 92x26 e

[vagrant@puppet ~]$ sudo puppet agent --test

Notice: /Stage[main]/Openssh/Package[openssh-server]/ensure: ensure changed '5.3pl-84.1.el6’
to '@:5.3p1-94.el6"' (previously recorded value was 5.3pl-94.el6)

Notice: Finished catalog run in 13,81 seconds

[vagrant@puppet ~]$% sudo puppet agent --test

Notice: /Stage[main]/Openssh/Package[openssh-server]/ensure: audit change: previously record
ed value 5.3pl-84.1.el6é has been changed to 5.3pl-94.elb

Notice: Finished catalog run in 1.78 seconds

[vagrant@puppet ~1%

Note

Notice that we have two different audit-like outputs here. The first one shows that the
package has been changed, and the second one shows that it has been changed again from
the original value.

This is one of the caveats of audit. If we audit managed resources and they are changed,
we end up generating two audit records. This happens because the audit checks are
performed at the beginning of the run before Puppet runs. This means that the next time
Puppet runs, the audit still has the original value stored and reports that it changed again.
We’ll cover some of the other caveats of audits in the next section.

Things to know about audit

The audit meta-parameter is a weird fit in the Puppet world. Puppet is about defining the
state of your machines, and the audit parameter doesn’t do that. Over its lifespan of
several years, it has been fairly controversial. Based on the discussion happening on the
mailing list as well as comments on the blog post announcing the feature, some users felt
that the idea was good, but having it in the manifest was a bad idea.

Audit was a key part of the Puppet Compliance dashboard, which existed in Puppet
Enterprise. This dashboard provided a GUI around running audit and also allowed you to
convert the rules to baseline Puppet manifests. This made compliance a breeze under light
workloads.

In Puppet Enterprise 3.0, the Compliance dashboard, which relied on this technology, was
deprecated and removed from Puppet Enterprise. A page at

https://docs.puppetlabs.com/pe/latest/compliance_alt.html suggests that a noop approach
be used instead, which we’ll cover in a later section.

Additionally, the Puppet Labs ticket seems to indicate that the audit functionality is going
to be deprecated in Puppet 4 (https://tickets.puppetlabs.com/browse/PUP-893).

This does not necessarily indicate that you should not use the audit meta-parameter. If you
have small compliance needs, it’s a good way to get started as you work to build a
baseline for use in alternative workflows.

We’ll explore some of these possible workflows in the next section.

https://docs.puppetlabs.com/pe/latest/compliance_alt.html
https://tickets.puppetlabs.com/browse/PUP-893

Alternatives to auditing

The Puppet audit feature essentially works by creating a baseline of a resource. It then
monitors that the resource does not change from that baseline.

Using the tools Puppet provides us, we can manually build a baseline and have Puppet run
against it. This will allow us to accomplish the same goal as auditing.

We can then apply the baseline we create to either ensure that the resource stays in the
baseline state or to monitor that it has left it without changing it back.

We do this using the Puppet resource face to give us information on the resource in
question. A face is what Puppet calls the mechanism to extend its command-line objects.

We call the Puppet face with the Puppet resource command. Go ahead and request for
help using the following command:

puppet help resource
You’ll get an output that will list all of the possible arguments—almost like a man page.

The Puppet resource face allows us to export the current state of any object as a baseline.
For example, consider the openssh package from the earlier section. Try running the
following command:

puppet resource package openssh-server

The output of the preceding command should look something like the following:

package { 'openssh-server':
ensure => '5.3pl1-94.el6"',
}

This is the full representation needed to put the package in the state it is currently in. In the
case of a package, this is only the version that is necessary.

Using this Puppet resource command, you can very quickly build a baseline of all of the
objects you care about. However, once it’s done, how do we use it?

The noop meta-parameter

Puppet has a built-in mechanism to indicate that a resource should be checked but not
acted on. This is called the noop mode. Noop is supported in two modes. In the first mode,
the entire run can be considered a noop run. This is accomplished by adding the --noop
flag on the run. In the second method, we use the noop meta-parameter.

The noop meta-parameter is very similar to the audit one. You can add the parameter to
any resource. It supports a true and a false value to indicate whether noop is on or off.

It’s worth noting that the noop meta-parameter overrides the command-line setting. In
other words, even if you have noop set to false in the manifest and execute Puppet with
the noop setting as true, the resource will still be applied.

One last tool in the noop tool chain is the resource default. Suppose you have a class for
your baseline data and you want to ensure that all of the resources in that class are set with
noop as true. We can use the concept of a resource default to do this.

To add a resource default, you can use the type of resource with a capital letter. You can
then set the parameter defaults for resources in that scope. In Puppet, a scope defines the
search order and set of area in the manifest searched while attempting to resolve a default
or variable. In past versions, scoping was much more complicated due to the widespread
use of variable inheritance, but that has largely been replaced due to the difficulties in
understanding how it worked.

Note

Defining how Puppet scopes work is outside the scope of this book (isn’t that funny?);
however, if you’re interested in learning more you can find the details at
https://docs.puppetlabs.com/puppet/latest/reference/lang_scope.html#scope-lookup-rules.

For our purposes here, we’ll consider the class to be in the scope since that is the most
likely area for you to declare the parameter defaults. In the next example, we’ll show the
use of parameter defaults in our auditing class.

https://docs.puppetlabs.com/puppet/latest/reference/lang_scope.html#scope-lookup-rules

Purging resources

In our giant bag of tricks around monitoring change, we have one final trick. We call this
resource purging.

If you consider the earlier example in this chapter, where we monitor the password file,
you might see an issue. While we can monitor the password file, or enforce the state of
particular users, we do not have a good way to stop a user from getting added.

Puppet contains a special type called resources to manage this. The resources type
supports relatively few parameters, which are as follows:

Parameter Description |
name The resource type to manage |
purge | A true/false value indicating whether to purge unmanaged resources

unless_system_user||A user-specific flag indicating to skip the system users |

unless_uid A user-specific flag indicating to skip the given uid values |

The resources type also accepts meta-parameters. This means we can manage users, for

instance, with purge and noop as true. This has the effect of logging any users that which

we are not explicitly managing. In effect, it lets us audit the password file in a much more
granular way.

We can do a similar thing with packages that will give us the ability to log or remove any
packages that we have not explicitly targeted for installation.

In the next section, we’ll go through an example of using noop to emulate the audit meta-
parameter.

Using noop

So, what do all of the previous examples look like in action? In this section, we’ll set up
auditing on the password file using the preceding noop parameters and the resources.

First, start your Vagrant machine and SSH into it.

We’ll create a module to hold this called useraudit. To do this, let’s first create the
skeleton of our module much like in Chapter 1, Puppet as a Security Tool. On your virtual
machine, run the following command:

sudo mkdir -p /etc/puppet/modules/useraudit/manifests

This module is only going to have manifests, so it’s the only directory we’ll make.

Tip

For brevity in this book, we’re creating bare bones skeleton example modules. The
module format is very powerful and contains metadata such as versioning and dependency

data. See https://docs.puppetlabs.com/puppet/latest/reference/modules_fundamentals.html
or check out the book Extending Puppet by Alessandro Franceschi for more information.

Now that we have a module structure, let’s make the manifest. Create the
/etc/puppet/modules/useraudit/manifests/init.pp file and set the content to be as
follows:

class useraudit {
User {
noop => true,

}

user { 'bob':
ensure => present,
noop => false,
managehome => true,

}

resources { 'user':
purge => true,
unless_system_user => true,
unless_uid => 500,
noop => true,

}

}

We’re doing a number of things here. First, we’re setting the user default to enable noop.
Then, we create a bob user. This is to demonstrate that we can override noop with the
meta-parameter. Finally, we’re using the resources type to purge any users in the noop
mode. This essentially reports on any users that are not system users or users who were
manually exempted from this check with the unless_uid parameter.

Now, we need to add our new class to the sitewide manifest so that it gets included in our
test system. To do this, we edit the /etc/puppet/manifests/site.pp file. Make it look as
follows:

https://docs.puppetlabs.com/puppet/latest/reference/modules_fundamentals.html

node default {
include openssh
include useraudit

}

Once this is done, go ahead and run Puppet with the following command:

sudo puppet agent -test

Observe the output, which should be similar to the following screenshot:

® 00 chap2 — vagrant@puppet:~ — ssh — 100x15 g

[vagrant@puppet ~]% sudo puppet agent --test

Motice: fStagé[mﬂin]fU5eruuditHUser[nfsnobody]f&n5ure: current_value present, should be absent (noop
)

Notice: /Stage[main]/Useraudit/User[nfsnobody]/uid: audit change: newly-recorded value 65534

Notice: /Stage[main]/Useraudit/User[bob]/ensure: created

Motice: Finished cataleog run in @.89 seconds

[vagrant@puppet ~1%

As you can see, a number of things happened. The first is that Puppet noticed that the
nfsnobody user existed but wasn’t managed. When we created the manifest, we essentially
told it to skip all the users below user 500 as well as user 500. The nfsnobody user is the
uid value 65534, so it was not skipped. We would also want to exempt it from checks by
modifying the unless_uid line in the preceding code as follows:

unless_uid => [500, 65534],

We can specify a user ID there as well as an array of user IDs or a range of user IDs in the
format low-high. This gives us a good amount of flexibility in exempting users from the
audit.

The second thing this did is create the bob user, which was called out in our manifest.

Now, much like we did earlier, let’s create ourselves another user without Puppet and see
what happens.

Run the following command to make a dummy user:
sudo useradd dummy
Now let’s run Puppet again. Go ahead and run the following command:

sudo puppet agent -test

You should see an output like the following screenshot:

® 0 0 chap2 — vagrant@puppet:~ — ssh — 100x19

[vagrant@puppet ~]% sudo puppet agent --test

Hotice:'fsfuge[muin]steraudithser[nanobudy]lensure: current_value present, should be absent (noop
)
Notice: /Stage[main]/Useraudit/User[dummy]/ensure: current_value present, should be absent (noop)
Notice: /Stage[main]/Useraudit/User[dummy]/uid: audit change: newly-recorded wvalue 582

Notice: Finished catalog run in @.82 seconds

[vagrantBpuppet ~]1%

And success! The output looks very similar to the audit output.

Summary

In this chapter, we looked at the available change tracking methodologies in Puppet. We
started by exploring the audit meta-parameter. We looked at how it can be used to manage
file and package change tracking.

After this, we looked at some of the limitations of the audit subsystem. It serves a purpose,
but has some issues and doesn’t quite fit into the Puppet paradigm since it doesn’t model
state.

Finally, we looked at how we can replicate the workflow using other tools Puppet provides
us. By creating our own baseline and using noop, we can duplicate the functionality audit
provides, and even pull the system back to the baseline as desired.

In the next chapter, we’ll explore how to use these change tracking tools and more to
make the compliance department happy. After that, we’ll see how we can report on all of
this data we’ve been collecting.

Chapter 3. Puppet for Compliance

Whether you run one, five, or 10,000 machines; if you’re in the business world, you have
some level of necessary compliance. Compliance issues can be complicated. There is
nothing most system administrators hate more than dealing with an auditor for several
days. What if there was a way in which your systems would be self-documenting? These
documents would show the system state and can be given to the auditor. With Puppet, this
is possible.

In this chapter, we will explore how to do the previously mentioned points. We’ll cover
the following topics before we wrap it up:

e Using manifests to document the system state

e How version control helps show history

e PCI DSS and Puppet

e How we can use facts to show system information

What is the PCI DSS? The Payment Card Industry Data Security Standard (PCI DSS)
is a set of standards created for the credit card industry, to address the cardholder security
information. The author of this book has personal experience with the PCI DSS in his
work with companies that process credit card information. Much of the information that
we’ll cover that is specific to PCI applies to other compliance frameworks, such as
Sarbanes-Oxley, as well.

As the master of the current state of a system, Puppet is in an ideal position to help you
with compliance issues. With some education and demonstration, many auditors will
accept Puppet manifests, as showing the state a system is in, if accompanied by reporting,
showing that Puppet has run.

Using manifests to document the system
State

One of the strongest tools in the Puppet compliance tool chest is the concept of the
manifest. Since the manifest represents the system’s desired state, we can use the data
found in it to show what the system looks like.

Consider the following example: you have an audit requirement that says key security-
related services and software must be kept up to date. Working with your security team,
you’ve identified a list of packages that fall under this. For the purposes of our example,
we’ll say they’re openssh, kerberos, and openssl.

We can write a manifest that looks like the following, to ensure that this is the case:

class compliance(

$ensure = latest,
$packages = ['openssh', 'kerberos', 'openssl']
) o

package { $packages:
ensure => $ensure,

3
}

Note

As we noted earlier, normal practice would dictate that to use the preceding pattern, you
would be sourcing these packages from your own local repository and would promote
them after testing. Puppet can even help manage your local yum repository configuration
with the yumrepo resource.

The preceding class should seem familiar, but we’ve introduced a few new concepts. First,
we will pass an array of resources. Arrays of resources are a quick way to create similar
resources, while only sacrificing a bit of readability. Second, we will list the packages as
class parameters. Class parameters are a way of passing data to a class. In this case, we
can define the class with no parameters and it’d handle the default packages. For example,
consider the following declaration of the class:

include compliance

Using this command, we’d get the openssh, kerberos, and openssl packages set to the
latest version. However, we have a system where we need to also do the openldap
package. In this case, you can do the following:

class { 'compliance':
packages => ['openssh', 'kerberos', 'openssl', 'openldap'].

}

Using this syntax, we make the class more flexible. With Hiera, which we will cover in a
future chapter, this becomes even more powerful.

We can then apply the compliance class to any system that we want to ensure compliance

on. This will have the effect of upgrading any of these packages, as the updates become
available whenever Puppet runs.

If we combine this with a report showing when Puppet last ran on each of the machines in
the environment, we essentially produce a documentation showing that our environment
must be in the state the manifest describes it to be in.

We’ve seen a lot of examples using packages, but we can also use these methods with any
other resource, such as services or files. Often times, in compliance situations, we need to
ensure that insecure services are not installed or running.

Keeping insecure packages uninstalled is just an extension of the preceding package
example, so we won’t show it here. However, we can see how to prevent the service from
running. We’ll use xinetd (which handles telnet and more) and tftpd in our examples.

The manifest to do this would be similar to the following:

class compliance(
$services = ['xinetd', 'tftpd']

) o

service { $services:
ensure => stopped,
enable => false,

}
}
This is somewhat similar to our preceding example. However, in this case, we make sure
the services are stopped. We also use the enable attribute to ensure that the service is set
to not start on boot.

Tip

What about other non-managed services?

These examples deal with services the OS knows about. It is certainly possible to start the
service outside the control of Puppet and it may not be detected with this methodology.
There are ways to handle this, but they can quickly become complex and very case-

specific. In most cases, you would use an exec resource to ensure that running processes
are acceptable.

Tracking history with version control

If we’re using Puppet manifests and data for compliance purposes, we will want to track
the history of the manifests and data. There are many version control systems out there,
and a comparison of them is beyond the scope of this book. However, most of the Puppet
communities have standardized on using git.

While we do not aim to be a comprehensive resource on git, or the use of git with Puppet,
for the sake of compliance, it makes sense to explore the common workflow that will aid a
security professional in their everyday work.

Note

If you want more details than this book provides on git and Puppet, I recommend that you
read Mastering Puppet, Thomas Uphill, Packt Publishing for a Puppet-specific view, or
http://git-scm.com/book for a more general overview of git.

http://git-scm.com/book

Using git to track Puppet configuration

We’ll start with the simplest use case. In this case, we’ll just track the entire contents of
the Puppet configuration directory under git. This is how many users begin their
deployments, and it can work while they are small.

We’ll start by making sure git is installed. Run the following command in your Vagrant
virtual machine:

sudo yum -y install git
Now that’s done, let’s go ahead and set git up to track our installation.

We’re going to assume that you’re leaving off where we left off in Chapter 2, Tracking
Changes to Objects. If you’re dealing with a system in a different state, the output of the
various commands may be different, but the concept is identical. We need to perform the
following steps:

1. Move into the puppet directory with the following command:

cd /etc/puppet

2. Then, let’s go ahead and create our git repository:
sudo git init
You’ll be greeted with the output, as follows:
Initialized empty Git repository in /etc/puppet/.git/

3. Now, we have a git repository created. However, it’s not very interesting. Let’s see
what git currently thinks with the git status command:

[vagrant@puppet puppet]$ git status
On branch master

Initial commit

Untracked files:
(use "git add <file>..." to include in what will be committed)

auth.conf

environments/

fileserver.conf

manifests/

modules/

puppet.conf

nothing added to commit but untracked files present (use "git add" to
track)

HHHEHHFHFHEHEHEREH R

4. Asyou can see, everything is untracked. We can go ahead and solve this. In our very
simplistic case, we’ll just add the entire Puppet directory with the following
command:

sudo git add .

5. Now, we’ll commit it to the git repository, as follows:

sudo git commit -m "Initial Commit"

We’ll see an interesting output showing the files and directories that were added,
along with some administrative information:

[vagrant@puppet puppet]$ sudo git commit -m "Initial Commit"
[master (root-commit) 7c38a9b] Initial Commit

Committer: root <root@puppet.book.local>
Your name and email address were configured automatically based

on your username and hostname. Please check that they are accurate.
You can suppress this message by setting them explicitly:

git config --global user.name "Your Name"
git config --global user.email you@example.com

If the identity used for this commit is wrong, you can fix it with:
git commit --amend --author='Your Name <you@example.com>'

10 files changed, 390 insertions(+), 0 deletions(-)

create mode 100644 auth.conf

create mode 100644 environments/example_env/README.environment
create mode 100644 fileserver.conf

create mode 100644 manifests/examplel/site.pp

create mode 100644 manifests/example3/site.pp

create mode 100644 manifests/site.pp

create mode 100644 modules/openssh/files/sshd_config

create mode 100644 modules/openssh/manifests/init.pp

create mode 100644 modules/useraudit.full/manifests/init.pp
create mode 100644 puppet.conf

We’d probably want to follow the instructions to set a username and e-mail and amend the
commit. This will make it easier to track who made the changes. Note that the -m
command-line argument sets the commit message on the command line. If you omit this, it
will open your default editor (which is usually vi) to prompt you for a commit message.

In a real production environment, we’d likely want to use a git server solution. This can be
as simple as a directory, where we store the common git information, or as complex as an
an online service designed to handle git. When doing this, each user would make changes
as their own user, and we would use a method (manual, hook, script, and so on) to check
out a read-only copy on the Puppet Master. This will allow us to audit and track who made
what changes to the Puppet environment. This helps you with auditing by showing the
users who made the changes, which can then be compared to an authorized users list.

Our workflow from this point on is the same. We make changes to files, use git add to
add the files to the git repository, then use git commit to commit them with a message.

We can then use a variety of commands in git to review the history of the repository at any
given point. The simplest just being git log. The output of this would be as follows:

[vagrant@puppet puppet]$ git log

commit 7c¢38a9b721e40b1f7ce556e3876Ff1b087cdlic42d
Author: root <root@puppet.book.local>
Date: Tue Aug 19 17:36:33 2014 -0700

Initial Commit

If there were more commits, you would see multiple entries. However, as you can see, it
tracks the author, when the change was made, and the comment.

Note

For more information on git and the various commands, please check out the git website at
http://git-scm.org.

http://git-scm.org

Tracking modules separately

As the complexity of your git environment increases, there comes a desire to track the
state of modules separately from the main repository. This lets you use different life cycles
for the various modules. It also lets individual groups work on various modules.

There are several solutions available to solve this problem. The first one that many users
attempted to use was git submodules. The git submodules provide a methodology to store
a link from one git repository inside another. The inside version can be pinned to a specific
revision, allowing you to independently set the version of the module.

However, while this seems like a workable solution, it presents a number of challenges.
As the number of modules you track grows, a lot of spurious commits get made to the
main repository, simply to update the submodules to the new versions. Additionally, the
steps to do this usually entail no less than three or four git commands. This is cumbersome
and hard to manage with many frequently changing submodules.

Several custom solutions to this problem have been developed. The most popular currently
are librarian-puppet and r10k.

Both librarian-puppet and r10k handle installation of modules from both the Puppet Forge
and version control. The Puppet Forge is an online resource of community modules used
for installation. We’ll see how to use it, and highlight some security-related modules, in
Chapter 6, Community Modules for Security.

Librarian-puppet and r10k both use a file called puppetfile to handle the installation of
modules. In this file, we list modules to be installed and the source we want to get them
from. This is normally either version control or the Puppet Forge.

R10k differs from librarian-puppet in having built-in support for dynamic environments.
Dynamic environments let you create a separate full set of Puppet code for different life
cycles of code. This allows you to quickly and easily develop Puppet code without
impacting on production. More information on this feature can be found on the link at the
end of this section.

Once we have our puppetfile configured, we execute the program of our choice, and it
downloads the modules and links them into the modules directory. In this way, we do not
have to track the modules in our main version control repository.

We’ll go over a quick example showing how to install the std1ib module using r10k. We
don’t use it in the later examples in the book, but in cases, where we use the puppet
module command in later examples, you can just substitute the appropriate r10k
configuration. We won’t be doing dynamic environments, or any of the other advanced
features of r10k, but we will cover the basic use case of installing modules. We need to
perform the following steps to install modules:

1. We’ll start by installing r10k. This is packaged as a Ruby gem. We need to have the
gem command installed. We can install it with the following command:

sudo gem install ri10k

2. Now, we need to make a puppetfile. In our case, the file is very simple, since we’re
simply installing one module. Create the /etc/puppet/puppetfile file and add the
following line:

mod 'puppetlabs/stdlib', '4.5.1'

3. Once that’s done, we just need to run r10k in the proper mode with the following
command:

sudo r10k puppetfile install

The command won’t give any output. However, when it completes running, you will find
that the modules/stdlib directory exists.

These programs will become invaluable as you grow your Puppet environment, and start
to treat your infrastructure as code.

Note

For more information on librarian-puppet, check out its website at http://librarian-
puppet.com/. Likewise, for more information on r10k, check out its website at

https://github.com/adrienthebo/r10k.

http://librarian-puppet.com/
https://github.com/adrienthebo/r10k

Facts for compliance

In addition to using Puppet, to show the system state and reporting on that, we can use the
powerful fact system to report information on the system. Using this information and
reporting mechanisms, we can quickly build the documentation on our systems for use in
our compliance audits.

Additionally, the power of creating custom facts really shines here. As we’ll see in
Chapter 6, Community Modules for Security, Puppet makes it very easy to grab
information on your systems and store it in a common place. With PuppetDB and some
reporting glue, you can turn this data into fairly comprehensive compliance documents.
We’ll explore some simple cases here and see how we can use this data in future chapters.

The Puppet role’s pattern

Before we continue discussing facts, we’re going to take a short detour to discuss a best
practice.

One of the common patterns used in the Puppet world is the concept of a role.

In this pattern, a role defines what we expect a system to do from a business perspective. It
becomes a larger part of what’s known as the roles and profiles pattern. We use roles to
group together specific configurations for a service that is required to deliver a business
function.

In some cases, the role is determined from the hostname. In others, it’s determined from
the data passed into the instance of a virtual machine. However, the role is obtained, it is
very often used to determine what set of modules and manifests gets applied to a system.

Let’s consider an example. Say, we have a three-tier web application. In this system, we
have frontend web servers, application servers, and database servers.

Configuration of these servers is going to differ, as per their compliance needs. Perhaps,
the database server stores credit card data, so it needs to ensure that disk encryption is
used. Using the role fact, we can get a quick inventory of what each system type is, along
with the other data on the system. This is all with just the addition of one custom fact.

We can extend the roles pattern to cover other logical systems. In this case, we’ll explore
the role of the Puppet Master.

Using custom facts

Puppet uses facter as its method for providing state information about the system. In
addition to the large number of built-in facts about the system, it’s also possible to create
your own. There are a couple of ways to do this. One way, is to create Ruby plugins,
which provide fact information. The second way, is to use the facter external fact
methodology. We’ll cover this in the following steps:

1. Let’s go ahead and implement the simplest form of custom fact, using the built-in
facter external fact mechanism. First, let’s create the external fact directory:

sudo mkdir -p /etc/facter/facts.d

2. Then, edit the /etc/facter/facts.d/role.yaml file with your favorite editor and
make it look exactly as follows (YAML can be picky about formatting):

role: puppetmaster

3. Once we’re done, run the following command:

sudo facter -p role

The -p flag tells facter to behave in a similar manner to a Puppet run. This emits
some Puppet-specific facts, as well as loading any custom plugins that have been
synced over by Puppet. If all goes well, you should see the output similar to the
following:

[vagrant@puppet ~]$ sudo facter -p role
puppetmaster

This data would then be available in any Puppet manifests as : : role, as well as for use in
Hiera. Furthermore, it will be stored in PuppetDB and any other report processor for later
use. As mentioned earlier, we’ll explore the reporting aspect of this in the next chapter.

This is a very simple case of extending facter. However, as mentioned earlier, the facter
library will allow a user to implement custom facts in Ruby, as shell scripts or as
structured data files (YAML, JSON, and specially formatted text files). With the recent
version of Puppet (Puppet 3.4 and later and Facter 2.0.1 and later), one can even sync
external facts straight to the client via the plugin sync mechanism. Before this, we’d have
to write the facts in Ruby to have plugin sync distribute them. This makes it much easier
for system administrators who may not know Ruby to create and use custom facts.

Let’s consider a somewhat more in-depth example using a shell script.

A common compliance (and general security) practice, is to ensure that no accounts exist
without passwords. We can use an external fact to expose a count of accounts without
passwords.

Edit /etc/facter/facts.d/passwordlesscount.sh with your favorite editor. Add the
following contents:

#!/bin/sh

echo -n "passwordlesscount="
getent shadow | cut -d: -f2 | grep -x "' | wc -1

Go ahead and save the file and make it executable by executing the command:

sudo chmod a+x /etc/facter/facts.d/passwordlesscount.sh

Finally, let’s execute the facter command again:

sudo facter -p passwordlesscount
The output should be 0. If you add a passwordless account, the count increases to 1.

While this is more complicated than our first example, it is still pretty simplistic.
However, it shows the power of using facts. With some thought, you can report quite a lot
of information using the fact system, such as the number of accounts, whether things have
passwords. You can also report the SELinux state, out-of-date package count, and many
more. With this information, you can build reports that make showing compliance much
easier than collecting the information by hand.

In the next section, we’ll show specific examples for using Puppet to deal with compliance
challenges that the PCI DSS brings about.

The PCI DSS and how Puppet can help

The PCI DSS is a set of standards for security, created by the Payment Card Industry. It
provides a framework on how computer systems handling credit card transactions should
be configured. With recent high profile intrusions, including the Target intrusion of late
2013 resulting in the theft of over 40 million cards, as well as the more recent Home
Depot attack; it has become even more important that any company, processing credit card
information, ensures that they are secure. In this section, we’ll approach some specific
controls of the PCI DSS standard, and see how you can configure Puppet to remain in
compliance. In some cases, we’ll provide concrete examples, and in others, we’ll provide
references to other sections of the book, where these specific problems are solved.

While we will be approaching several key areas of the PCI DSS, this section is not
intended to be a comprehensive list of tutorials on how to do all PCI DSS-related
hardening. There are many other areas that Puppet can assist with, if configured correctly.
Additionally, one should engage a qualified assessor if there are any questions about any
of the sections of the PCI DSS.

Note

A good overview of the PCI DSS standard can be found on Wikipedia at
http://en.wikipedia.org/wiki/Payment Card_Industry_Data_Security Standard.

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard

Network-based PCI requirements

The PCI DSS contains a wealth of requirements surrounding secure networks. While
many of them (and indeed many of the PCI DSS requirements) are around policy, there
are a few concrete ones that Puppet can help you with.

Several of the requirements are surrounding limiting host access to required services. In
Chapter 7, Network Security and Puppet, we will see how to manage the host firewall with
Puppet. Using this methodology, one can configure the firewall to only allow access to
individual services. As mentioned earlier, the manifest that allows this shows that the
process is in place and alleviated needing to check each individual host.

Additionally, Puppet contains support to manage a variety of network devices directly.
There are modules to support Juniper, Cisco, and F5 devices in various stages of their life
cycles. Support for these modules continues to build.

As this ecosystem develops, it opens the opportunity to expand management of your
devices with a configuration management system. This will bring many of your
configuration items into one place, further lowering the burden of providing compliance
information to auditors.

We’ll briefly touch on the device management aspects in Appendix, Going Forward.

Vendor-supplied defaults and the PCI

The second major section of the PCI DSS deals with vendor-supplied security parameters.
Again, this is an area that Puppet can help you with. We’ll build on some earlier examples
and give a more complete example of some of the concepts in this section.

In the simplest sense, we can use use ensure => 'absent' to guarantee that the vendor-
supplied user resources are not enabled whenever we come across them. However, this is
really a default allow value. We’ll only remove accounts that we explicitly remove. A
better course of action is to use a default deny value—if we don’t manage or know a user,
we will remove it. This requires a bit more work to maintain, but it’s more secure.

To do this, we’ll write a somewhat more complicated user module. Some of the features
we’ll use here are more in-depth than the features we’ve discussed. We’ll explain some of
them and use references for others.

We’re going to create a module to handle the user creation. However, this time we’ll use
the Puppet method of generating a template. This is a better practice for modules you may
need to manage with librarian-puppet or r10k.

To begin, let’s go ahead and create our module. We can do this in our home directory
because we can link it in, or add it to our local librarian-puppet or r10k, and install it later.

Let’s run the following command to create the module:
puppet module generate pupbook/users
You can replace pupbook with another username if you’d like.

Once we do this, Puppet will ask us for a series of questions to help write our metadata. It
looks as follows—go ahead and answer similarly:

[& Mo

chap3 — vagrant@puppet:~ — ssh — B9x48 : |

[vagrant@puppet ~]3 puppet module generate pupbook/users

We need to create o metodata.json file for this module. Please answer the
following gquestions; if the guestion is not applicable to this module, feel free
to leave it blank.

Puppet

uses Semantic Versioning (semver.org) to version modules.

What version is this module? [8.1.8]

Who wrote this module? [pupbook]
==» jslagle

What license does this module code foll under? [Apache Z.8]

How would you describe this module in o single sentence?
--» Module to manage system users

Where is this module's source code repository?

Where can others go to learn more about this module?

Where can others go to file issues about this module?

"nome” : "pupbook/users”,
"wersion™: "@.1.8",

jslagle”,
"Module to manage system users”,
“Apache 2.8",

": null,
+ mull,

"depen&encies": [

1

"version_range®: "»= 1.8.8",

name”: "puppetlabs-stdlib”

About to generate this metodota; continue? [n/Y]

>

Note

Your

output can vary a bit depending on the version of Puppet you are running this on.

When you get to this point, go ahead and answer yes to generate your module template.

You’ll see that several files and directories were created. Some are familiar, such as the
manifests directory. I’ll briefly explain the others here.

Rakefile: This contains a set of instructions for Ruby to run tasks. In this case, tests.
README . md: This is a general README for the module. In a real module, you would
describe it here.

metadata.json: This file contains the metadata generated. The metadata in this file is
parsed by tools, such as the puppet module tool, librarian-puppet, and r10k to install
dependencies and other actions.

tests/init.pp: This contains a simple class intended to test the module.

spec/*: This contains the directory and its files hold spec tests for the module. It’s a
good idea to write spec tests on anything more than a simple module.

Note

An entire book can be written on Puppet testing. We’ll not cover the concept of spec tests
here other than mentioning them. You can find more information on rspec at
http://rspec.info/, and on spec tests for Puppet at http://puppetlabs.com/blog/the-next-
generation-of-puppet-module-testing. The source that accompanies this book contains a
working, but basic, spec test for this module. It’s how the code was tested to ensure that it
works.

Now, we’ll go ahead and create our define. In puppet, a define is like a macro. It’s
intended to hold reusable code that can be used to build other things. This is different from
how we use, and create, a class that is intended to hold resources that are only declared
once.

Let’s create the manifests/users.pp file. In this file, we’ll create a define that both this
module and other modules can use to create users. Open the file and make it look like the
following:

define users::user (

$userid,
$password = '
$username = $title,
$managehome = true

) {

group { $username:
ensure => present,

}

user { $username:
ensure => present,
password => $password,
uid => $userid,
gid => $username,

}

if ($managehome) {
file { "/home/${username}":
ensure => 'directory',

owner => $username,
group => $username,
mode = '0750"',

}

We’ll use this structure to manage users we create. We do this instead of the user type
directly, because we can extend this to manage other resources. Notice that we can handle
the creation of the users group (the OS would do this too in most cases, but this way, it’s
explicit). We can also manage their home directory. We can extend this to manage
anything else we want about the user.

There are a handful of community modules that perform the preceding functions, as well
as manage things, such as additional groups and SSH keys. The ones that are of particular

http://rspec.info/
http://puppetlabs.com/blog/the-next-generation-of-puppet-module-testing

interest are the camptocamp/accounts and torrancew/accounts modules, which seem to
be popular. Also, Puppet Enterprise comes with the pe_accounts module that handles all
these things. For more information, see http://forge.puppetlabs.com and search for the
account or user.

Next, we’ll create a params class. This is a very common pattern in the Puppet module
community. It separates the OS-specific data from the core module functionality. This also
puts us in a great position to override the functionality on systems, where we need to make
it different. A good description of this pattern can be found at

https://docs.puppetlabs.com/guides/module_guides/bgtm.html.
Edit the manifests/params.pp file and insert the following CentOS 6 specific logic:

class users::params {
case $::osfamily {
'RedHat': {
$verarray = split($::operatingsystemrelease, '[.]")
$majver = $verarray[0]

case $majver {
|6I: {
$systemusers =
[0,1,2,3,4,5,6,7,8,10,11,12,13,14,99,81,69,173,68,38,499,89,74,72,32,29,52,
498, 65534]

3
default: {
fail("0S Version ${majver} not supported")
3
3
3
default: {
fail"0S ${::osfamily} not supported")
3

b
}

Note that the users array is all on one line. As you can see, we set some defaults based on
the family of the OS (it’s better to use the family than the version since the Red Hat
family, for instance, has a ton of OS releases, such as Scientific and CentOS. Watch out
for Fedora though, which is also in that family). Then, we use some Puppet logic to split
the operatingsystemrelease fact. If you have the 1sb-release package installed, you
get a 1sbmajdistrelease fact, but it’s not hard to just split, and it works with other
operating systems, as well as the older version of Puppet. Puppet 3.3+ ships with the
osmajversion fact that does the same thing. We use this to define a huge array of default
system users that we want to allow to exist. We can also choose to represent this array
using a custom fact. However, an array support in facts is still somewhat new. The list has
a couple of VirtualBox-/Vagrant-specific users, so if you use this in your environment, you
should verify and update the preceding list.

Now, we’ll create the structure to use the resources type to purge the users while ignoring
all the system users. Edit manifests/init. pp:

http://forge.puppetlabs.com
https://docs.puppetlabs.com/guides/module_guides/bgtm.html

®& 0O 0O chap3 — vagrant@puppet:~/pupbook-users — ssh — 89x29 v

I’ve cut the screen to make the screenshot look smaller. Notice how the Puppet module
generate command includes some documentation to fill out. This can be used by some
tools to generate the module documentation for the user. To keep our example short, we’ll
just remove it. So, go ahead and remove all of the content and replace it with the
following:

class users (
$systemusers = $users::params::systemusers
) inherits users::params {
validate_array($systemusers)

resources { 'user':

purge => true,

unless_system_user => 1,

unless_uid => $systemusers,
}
users::user { 'vagrant':

userid => 500,

password => '1WZR2VRP.$tHMVAMIwW1lbxpSfz7y8k3."',
}

}

Notice how we can use inheritance and the params pattern to set the default value of the
system users. You can override this with Hiera, or an explicit resource declaration on a

per-instance basis.

We can also create the Vagrant user for our VirtualBox here. I used the password hash
from the VirtualBox here locally.

To use this module, first, we have to include it in our modules. In a production
environment, you’d likely use r10k or librarian-puppet for this, however, in our case, it’s
sufficient to just copy it. Go ahead and copy the pupbook-users directory to
/etc/puppet/modules/users.

We’re using the module to validate that we are, indeed, being passed an array as the
argument to the user’s command. We need to install it in the puppetmaster directory. To
do so, run the following command:

sudo puppet module install puppetlabs/stdlib

This command downloads the module from the Puppet Forge and installs it in your
module path.

Finally, we need to include the new module we created in your node declaration. In
/etc/puppet/manifests/site.pp, modify the declaration to look like the following:

node default {
include openssh
include users

}

Tip

The puppetlabs-stdlib module contains a large number of utility functions, such as the
preceding validators. It also contains glue such as run stages that can simplify your
environment’s dependencies. Nearly every module you write will end up using some

function from stdlib, so it’s useful to study. You can find more information at
https://forge.puppetlabs.com/puppetlabs/stdlib.

Now, go ahead and run Puppet with the normal sudo puppet agent -test command.
You should see the output similar to the following screenshot:

https://forge.puppetlabs.com/puppetlabs/stdlib

® O 0O chap3 — vagrant@puppet:~ — ssh — 89x22 "3
[vagrant@puppet ~]$% sudo puppet agent --test

Notice: /Stage[main]/Users/Users::User[vagrant]/File[/home/vagrant]/mode: mode changed '@
700" to '@750'

Notice: Finished catalog run in 0.77 seconds

[vagrant@puppet ~]1%

You might also see some other users if you created them in the previous chapters, as well
as the custom facts from the std1ib module syncing over. However, the final output
should look generally, as shown in the preceding screenshot.

As you can see, the only change here was to change the mode on our Vagrant user’s home
directory.

Tip

At the time of writing, there was a bug present in the Puppet core preventing this example
from working properly. It’s been filed at https://tickets.puppetlabs.com/browse/PUP-3132,
and its progress can be tracked here. The edits necessary to make this work are also
present in this ticket. In our case, the output should look, as shown in the preceding

screenshot, but in reality, due to the bug, we end up matching many of the users in the
system’s user list.

For the production use of this module, you must define all of your users in Puppet. This
goes for system users, such as Apache if you need Apache installed. However, if this is
done correctly, it is a very powerful tool to ensure that no errant users are on the machine,
and once again, shows compliance with a number of the PCI DSS requirements.

There are a number of other pieces of this section of the PCI DSS that can be addressed
with Puppet. There is a large section of requirements having to do with managing
configuration standards for systems. This includes things, such as disabling services,
keeping documentation of the system state, and so on. These tasks can all be easily
accomplished with Puppet. We’ll cover a community module that covers the CIS standard
(which is called out specifically as a standard to use) in Chapter 6, Community Modules

https://tickets.puppetlabs.com/browse/PUP-3132

for Security. We can also use an approach, very similar to the earlier one, to manage both
the packages and services. The modules to manage packages in particular will be quite
large, since it would need to list every permitted package, but it is possible. Use of the
puppet resource command, covered in the last chapter, will make automating the
creation of a baseline package much simpler.

Protecting the system against malware

The next area where Puppet can be a big help is in protecting the system against viruses
and malware. By Puppetizing your anti-virus agent, you can ensure that all systems
contain an anti-virus. To handle keeping the anti-virus up to date, we can either Puppetize
the updates, or expose a fact with the current anti-virus version.

There are a number of well-developed community modules targeting installation and
configuration of the ClamAV virus scanner. We will cover these in Chapter 6, Community
Modules for Security. Instead of covering how to write a module to install and configure
ClamAYV, we’ll focus on exposing a fact for the currently installed ClamAV database.

Before we can do that, we need to get ClamAYV installed. We can just use yum to do this,
but there’s not a task too small to create the Puppet module to handle this for us, as this
will improve our skills and be reusable across multiple machines.

In doing this, we will need to use Fedora EPEL—Extra Packages for Enterprise Linux.
Luckily, there’s a wonderful community module to help us—stahnma/epel, as shown in
the following steps:

1. Go ahead and install it with the following command:
sudo puppet module install stahnma/epel
Tip
What’s with the software repositories?

Software repositories are very important when using Puppet, as the best practice is to
install packages using the operating system package manager whenever possible.
Ideally, one would run a local mirror of all of the repositories in question that would
allow you to precisely control the versions of packages that get installed on systems.
This would include repositories, such as EPEL, as mentioned earlier, as well as the
base operating system repositories. Using the yumrepo resource type, it is possible to
use Puppet to manage all of your configured repositories on Red Hat machines.

2. Now that we’ve got this installed, cd back to your home directory, and we’ll make a
module to hold our ClamAV resources. Run the following command:

puppet module generate pupbook/clamav

3. Answer the questions, as we did in the earlier example on compliance, and we’ll get
started. First, we’ll need to create the resource that installs ClamAV. From the
pupbook-clamav directory, edit the manifests/init.pp file. In this file, we’ll include
EPEL to ensure that it’s installed, as well as add our package declaration. When
you’re done, it should look as follows:

class clamav {

require epel
package { 'clamav':
ensure => present,

}

users::user { 'clam':
managehome => false,
require => Package['clamav']=
}
}

4. Save it, and add include clamav to the default node definition in the
/etc/puppet/manifests/site.pp file.

A thing to note here, is that ClamAV creates a user, so we create that user in our manifest,
doing it after the package. If we do not, our earlier module will purge the user created by
the package. By putting it in the module that installs ClamAYV, it keeps it close to the
source. This ties into the roles and profiles pattern we briefly introduced earlier, and we
will touch on in a later chapter.

Then, we need to copy the pupbook-clamav directory to /etc/puppet/modules/clamav.

After that, we’ll go ahead and run Puppet. This will have the effect of installing ClamAV.
So, run Puppet using the following command (you should be getting used to this by now!):

sudo puppet agent --test

The output will look like the following screenshot:

® OO chap3 — vagrant@puppet:~ — ssh — B9x25 "
[vagrant@puppet ~]% sudo puppet agent --test

Notice: fFile[fvaFﬂibfpuppet,-"l'ib.ffacter*fus_maj_version.r*b].-’ensur'e: defined content as '{
md5}806fb856251b6@5df379e973c716a41c’

Notice: /Stage[main]/Clamav/Package[clamav]/ensure: created
Notice: Finished catalog rum in 241.65 seconds
[vagrant@puppet ~]$% less /etc/passwd

[vagrant@puppet ~1$%

Again, if this is your first run, you may see some more outputs, as some of the EPEL-
related items are synchronized over. In general, the output should be similar though.

Now that we have ClamAV installed, we can go ahead and create our fact. We can use the
output of the clamscan -V command within a facter fact to give us the version
information. We’ll create a fact in our clamav module to give us the information.

In our module, we create the 1ib/facter directory inside our module. You can use the
mkdir -p ~/pupbook-clamav/lib/facter command to do this.

Inside this directory, we’re going to create a file called clamversion.rb. Go ahead and
open this file with your favorite editor. We want it to look like the following:

Facter.add(:clamversion) do
confine :kernel => "Linux"
setcode do
Facter ::Core::Execution.exec ('/usr/bin/clamscan -V 2>/dev/null')
end
end

Save the file, and recopy your module into /etc/puppet/modules. Once complete, we’ll
rerun Puppet with sudo puppet agent --test. We should see the output like the
following:

CHeNS chap3 — vagrant@puppet:~ — ssh — 89x25 T
[vagrant@puppet ~]$% sudo puppet agent --test B

Notice: /File[fﬁakflibfpuppet!libffacterfclamversion.rb]fensure: defined content as '{md5
}a2ca@@15e6f864e760867d2b2a94b4c2’

Hotice:.FihisHed cutdlog run in 2.@8 seconds
[vagrant@puppet ~]1$%

We can see that it copied our plugin to the master. The md5sum may vary depending on
spacing and so on.

Then, we run the following command:

sudo facter -p clamversion

We’ll get the output similar to the following:

[vagrant@puppet ~]$ sudo facter -p clamversion
ClamAV 0.98.4/19120/Sat Jun 21 04:57:20 2014

Success! Now, we can report this data with our favorite reporting mechanism.

We also learned how to write custom facts using a Puppet module. These will
automatically get synced to all of your agents.

Maintaining secure systems

There is a section of the DSS that handles maintaining secure systems. One of the
objectives in this section, is that we keep our system patched and up to date.

By using manifests, such as those we saw in Chapter 1, Puppet as a Security Tool, we can
identify security-related packages and make sure they are kept at a given version, or that
we keep them at the latest. This will ensure that the security patches are installed.

Authenticating access to systems

A later section of the PCI DSS standard covers authentication best practices. Using many
of the same methods we used in the vendor defaults section, we can ensure that only
permitted and documented users have access to systems.

In this section, there are also controls around authentication lockouts and timeouts. We can
use some of the same methods we learned here to secure openssh to do some of these
things. We’ll explore some of these examples in Chapter 6, Community Modules for
Security, when we take a look at using augeasproviders to manage the SSH
configuration.

Summary

In this chapter, we looked at how to use Puppet to solve various compliance challenges.
We looked at how to use Puppet manifests to document the system state. This can be
unbelievably helpful in showing how a system is configured.

Additionally, we then looked at how version control can help you show the history of the
system configuration, when various things changed, as well as possibly help us show who
made the changes.

Finally, we looked at specific challenges that the PCI DSS creates, and how we can use
Puppet to solve them, including several examples of the use of Puppet to automate some
of the PCI DSS requirements.

Compliance is a journey, not a destination. As we learn more and get more familiar with
the Puppet ecosystem, we will learn many more ways to use Puppet to assist us in our
compliance needs. We’ll explore some additional resources to review in Appendix, Going
Forward.

In the meantime, in the next chapter, we’ll move on and explore how we can use Puppet to
generate security and compliance-related reporting.

Chapter 4. Security Reporting with
Puppet

By now, we’ve been over a lot of use cases involving using Puppet for security. However,
we have a recurring theme. We’ve gathered data, written manifests, and created facts.
However, what do we do to turn this into proven security and compliance information?

We need to take the data and information from our runs and turn it into reports. Puppet has
a comprehensive system to store data, and we’ll use this to create reports showing the state
of our system and to show compliance.

In this chapter, we plan to cover the following topics:

e Basic reporting in Puppet
e Using PuppetDB to create reports
e Reporting on compliance

We’ll use several examples to show how these topics will help us on our security journey.
By the end of this chapter, you should be comfortable creating reports using the basic
Puppet data, as well as reporting via PuppetDB. There are additional resources that we’ll
then direct you, to expand your skills.

Basic Puppet reporting

Puppet has several methods that can be used for low end reporting needs. Some of these
methods, such as parsing the local run output data files or logs, can be performed on the
client, but most of them rely on the Puppet Master to properly perform.

Puppet’s reporting system is based on a concept of report processors. Many different
report processors exist. A summary of some of the most common ones are listed in the
following table:

Processor||Description

HTTP ||This posts the report information to the URL given as a configuration parameter.

Store This stores the completed Puppet reports in files on the filesystem. These can then be post-processed to do
reporting.

Tagmail ||This report processor can be configured to send e-mails based on “tags”, which can be applied to classes.

PuppetDB||This stores the reports in the PuppetDB database. This can then be queried to create reports.

Report processors can also be written in Ruby to handle custom requirements, as needed.
There are community report processors readily available that use this report customization
support to allow reporting to IRC, Nagios (an open source reporting system), Twitter,
SNMP, and many others. There are also other products, such as The Foreman that enables
reporting, as well as other functions.

In this chapter, we will explore the use of store and the PuppetDB report processors. We’ll
take a look at what we can do with these processors to create relevant security reports.

Another common report processor that is in wide use is the HTTP processor. This
processor allows you to post the report results to an application listening on a given URL.
Your application can be configured to receive the Puppet reports and update the
information accordingly. Using this method requires software development that is out of
the scope for this book. However, an excellent resource on Puppet reporting that covers
many of the concepts in this chapter is the book Puppet Reporting and Monitoring,
Michael Duffy, Packt Publishing, available at https://www.packtpub.com/networking-and-
servers/puppet-reporting-and-monitoring.

Note

A complete list of built-in processors can be found at
https://docs.puppetlabs.com/references/latest/report.html. Additionally, much more
information on reporting, including links to some of the community processors mentioned
earlier can be found at https://docs.puppetlabs.com/guides/reporting.html.

https://www.packtpub.com/networking-and-servers/puppet-reporting-and-monitoring
https://docs.puppetlabs.com/references/latest/report.html
https://docs.puppetlabs.com/guides/reporting.html

The store processors

The simplest report processor available within Puppet is the store processor. As mentioned
earlier, this processor simply stores the report data as a file on the Puppet Master.

This file is in a YAML format. This is a human-readable text format that is also
systematically parsable. It contains information on the entire Puppet run, in a format called
internally Puppet::Transaction::Report.

Note

This report format is versioned and has been through five versions at the time of writing
(the first version was 0). Since we are concentrating on more recent Puppet versions, we
will explore Version 4. Information on each of the individual versions that have existed

can be found at https://docs.puppetlabs.com/guides/reporting.html#report-formats.

The report information contains a wealth of useful information for security reporting, such
as when Puppet last ran, the status of resources, and so on.

When we initially configured Puppet way back in Chapter 1, Puppet as a Security Tool,
we configured it to enable the store processor. As such, if you’ve been following along,
we should already have some reports that we can examine. Let’s go ahead and take a look
at some of the elements of one of the stored reports.

We’ll take a look at a report for a run that installed the ClamAYV virus scanning software.
This is one of the last runs we did in the last chapter, and it does a good job of showing
what a successful run looks like.

Tip
What if the Puppet report directory is owned by root?

There is some chance that the Puppet report directory ended up owned by root due to the
Vagrant configuration of your virtual machine. If this is the case, execute the following
command:

sudo chown puppet /var/lib/puppet/reports/puppet.book.local

Once complete, if you wish to follow along, remove the clamav package with sudo yum -
y remove clamav and rerun Puppet with sudo puppet agent -test. This will regenerate
the report and allow you to follow along. Managing the ownership of the report directory
seems like a good job for Puppet!

The reports get dropped to the directory specified by the reportdir configuration option
in the puppet.conf configuration file. If not specified, this defaults to $vardir/reports,
so /var/lib/puppet/reports on CentOS.

We’ll go ahead and pop into this directory and take a look at the files. There should be one
for each run we’ve done. They add up quickly, and there are community modules to

manage this data, such as the one at https://forge.puppetlabs.com/rcoleman/puppet_maint.
If you only see one, see the earlier note. The YAML file we’re looking at has also been

https://docs.puppetlabs.com/guides/reporting.html#report-formats
https://forge.puppetlabs.com/rcoleman/puppet_maint

included with the source code for this chapter. The filename is 201409080013 yaml.

First, let’s take a look at the top-level elements. The contents should look as follows:

8 00 201409080013.yaml - /Users/jslagle/pupbook/src/chap4

.

201409080013.yaml x

1 --- lruby/object:Puppet::Transaction: :Report
: transaction_uuid: f7c41f57-16bb-4325-bee7-becl1b488f3c
kind: apply
puppet_version: "3.7.0"
environment: production
status: changed
configuration_version: 1410134820
host: puppet.book.local

logs: =

resource_statuses: =

time: 2014-09-07 17:13:12.415579 -07:00
report_format: 4

metrics: =

201409080013.yaml 1,1 YAML Send Feedback

Note

The preceding screenshot was captured in an editor on the host system. However, you can
get Vim to do a similar thing with the following Vim commands:

:set shiftwidth=2
:set foldlevel=1
:set fdm=indent
:set number

Immediately, we can see some useful things. Notice that the report_format value is 4,
which is consistent with what we expected it to be based on the version of Puppet we’re
running.

We can also see the hostname of the machine we’re running on. In this case, it’s
puppet .book.local. You can use this if you consume reports from many hosts.

Next, we can see the general status of the run. In this case, it is changed. This status can be
one of the three options: changed, failed, or unchanged. Changed indicates that work was
done during this run. Since we installed ClamAYV, we would expect this to be changed.

If, however, we notice that it was failed, we might want to flag the host for further
inspection, or parse the logs section of the report to find out why it has failed.

Now, we’ll move on to examine the kind parameter. This covers what type of run we did

this time. This can be “inspect” if we’re running an inspection run for auditing, or an
“apply” run if we’re running normally. We can use this to differentiate our audit runs and
report on just them.

There are two final pieces of information we want to consider. The first is
configuration_version and the second is time. These both will assist us in determining
when we last ran. The configuration_version value is a string that contains, by default,
the epoch time that the configuration was parsed. This will often be cached and is a good
indication of when the configuration was last considered. We can also set a custom script
to set this data in our configuration file. We can, for instance, set this as a version control
commit ID, or any other data.

The time data is quite straightforward. It is the time when the run was started. We can use
this data to determine whether we have a recent run. We can also, for instance, set up
alerting of a run we do not see for a given host, at least, so often.

Example — showing the last node runtime

In our very simple case, let’s whip together a really simple shell script that can parse
through a directory of reports and output the last run time and status for each of our hosts
in a nice table.

I’1l do this in a shell script to demonstrate how flexible the YAML report format is. If you
go more in-depth with reporting this way, you would likely want to use a programming
language that supports YAML natively. However, for simple cases, we can take advantage
of the fact that they’re just text files and do the limited amount of parsing we need to do.

Let’s edit a file called report.sh in your home directory, and make the content look as
follows:

#!/bin/bash

if [$# -eq 1]; then

DIR=%1
else
DIR="."
fi
cat << EOF

<!doctype html>

<html lang="en">
<head>
<title>Puppet Run Report</title>
</head>
<body>
<table border=1>
<tr><th>Hostname</th><th>Last Run</th><th>Status</th></tr>
EOF
for 1 in $(find ${DIR} -mindepth 1 -maxdepth 1 -type d)
do
FILE=$(1ls -t $i/*.yaml|head -n 1)
if [-f ${FILE}], then
HOST=$(grep "~ host:" $FILE |cut -c 9-)
RUN=$(grep "N time:" $FILE | cut -c 9-)
STATE=$(grep "N status:" $FILE | cut -c 11-)
fi
echo "<tr><td>${HOST}</td><td>${RUN}</td><td>${STATE}</td></tr>"
done

cat << EOF
</table>
</body>
</html>
EOF

Taking a look at the code, it’s pretty simplistic. First, we set a variable for the directory to
process. We process the current directory if one is not passed.

Then, we output a header for the HTML. We use a bash syntax that lets us read until a tag

to make this easier.

After this, we get on to the meat of the script. We go through each subdirectory in the
directory we’re processing and look for the most recent YAML file. In each of these files,
we grab the three pieces of information that we’re outputting. We use a simple
combination of grep and cut to grab that information, since we’re dealing with text files.

We then output a line about the host we read from the file and loop. This should give an
output of one line for each host.

Finally, we output some trailing footer information to make a complete HTML file.

While I am not an HTML whiz, this is a perfectly serviceable output, albeit a bit plain.
The output from our example will look something like the following:

0 b
® 00 J Puppet Run Report : -.\+ -

k(= | €0 file:///Users/jslagle/pupbook/src/chap4/re (G » =
o

Hostname Last Run | Status
puppet.book.local [2014-09-07 17:13:12.415579 -07:00 |changed

If you had more hosts, we’d expect to see more information there.

There is considerably more information that we can gather from the reports. The reports
contain logs from the runs that were performed, as well as information on all of the
resources contained within the catalog.

Note

A wealth of information on the Version 4 report format can be found at
https://docs.puppetlabs.com/puppet/3/reference/format_report.html#report-format-4.

Now, let’s move on and see how we can scale this to more easily gather information about
our hosts.

https://docs.puppetlabs.com/puppet/3/reference/format_report.html#report-format-4

PuppetDB and reporting

We briefly touched on what PuppetDB was in Chapter 1, Puppet as a Security Tool. It is a
backend database engine that stores information on your Puppet environment.

We can query this information directly to see the current status of a host, get information
on its current resources, and more. Additionally, it contains a complete set of reports if
configured to do so.

PuppetDB contains a very rich API allowing us to use RESTful API calls via HTTP to
retrieve information.

Note

REST, which is shorthand for Representational State Transfer, is a method of laying out an
API using representations of a given resource. In this case, the resources will be
information about Puppet. It makes querying and modifying information using HTTP
fairly straightforward.

Before we can play with PuppetDB, we need to install it. Luckily, there’s a handy Puppet
module provided by Puppet Labs that can help us.

Go ahead and spin up your machine (refer to Chapter 1, Puppet as a Security Tool or
Chapter 2, Tracking Changes to Objects if you need a refresher), and let’s get PuppetDB
installed so that we can explore it.

First, let’s get the PuppetDB module installed. To do so, run the following command:

sudo puppet module install puppetlabs-puppetdb

This will install the PuppetDB module, as well as several prerequisites we will need to run
it. These include modules to manage PostgreSQL, and a number of utility modules. It’1]
also bring in a module to manage the local firewall. We’ll use the same module in Chapter
7, Network Security and Puppet.

Now, we need to add the module to our manifest, so Puppet will install it (and even
configure it) for us.

We’ll use all of the defaults for a single host installation. since that is sufficient for our
local testing. Let’s edit our site.pp file in /etc/puppet/manifests and add lines so that
it looks like the following:

node default {
include openssh
include users
include clamav
include puppetdb
include puppetdb::master::config

}

We added the two include lines at the bottom. The first will install PuppetDB and all of
its prerequisites, such as Java and PostgreSQL. The second will configure your Puppet

Master to use PuppetDB.

Now, let’s run Puppet with our usual sudo puppet agent --test command. It will scroll
a ton of stuff on your screen as it synchronizes the types and providers—copying the
needed libraries to the client system. It’1l then get to the meat of installing PuppetDB and
configuring the master. In the end, it should give the output like the following:

® OO chap4 — vagrant@puppet:~ — ssh — 89x22 "

Notice: Unable to connect to puppetdb server (puppet.book.local:8881): Connection refused &
- connect(2)

Notice: Failed to connect to puppetdb; sleeping 2 seconds before retry

Notice: /S5tage[main]/Puppetdb::Master::Storeconfigs/Ini_setting[puppet.conf/master/storec

onfigs]/ensure: created

Notice: /Stage[main]/Puppetdb::Master::Storeconfigs/Ini_setting[puppet.conf/master/storec

onfigs_backend]/ensure: created

Notice: /Stage[main]/Puppetdb::Master::Routes/File[/etc/puppet/routes.yaml]/ensure: defin

ed content as '{md5}779d47e8d0c320b1@f8c31cd9838fcal’

ThT. FCest

Notice: fStﬁge[m uppetdb::Hustef::?uppetdb_&on ni_setting[puphétdbpor 1/ensure: cr
eated

Notice: /Stage[main]/Puppetdb::Master::Puppetdb_conf/Ini_setting[soft_write_failure]/ensu
re: created

Notice: /Stage[main]/Puppetdb::Master::Puppetdb_conf/Ini_setting[puppetdbserver]/ensure:
created

Notice: fStﬁge[ﬁaln]fPuppatdb::Muster::Confingervice[pﬁppetmuster]: Triggered refresh'.
from 2 events
Notice: Finished catalog run in 239.24 seconds

[vagrant®puppet ~]1%

We can notice that we receive a broken pipe error. This is due to the Puppet Master
restarting during our run; hence, it is unavailable to receive the report. If you run Puppet
again, you’ll notice that it runs fine. However, if you’re still running the user audit code
from the last chapter, the users module tries to delete the PuppetDB and Postgres users.
For now, we’ll just remove this manifest by removing the line from the site.pp file. Edit
/etc/puppet/manifests/site.pp and remove the include users line, as well as the
include clamav line. Removing the clamav line is necessary because it uses our users
module. You can also modify the module to handle the new users by either adding the user
definition or adding the new users to the system user’s parameter.

We need to make one last change. The PuppetDB module doesn’t configure our master to
store reports in PuppetDB, and we need this to do our work. We’ll fix that now.

Edit the /etc/puppet/puppet .conf file. In this file, in the [master] section, find the line,
as follows

reports = store
Replace that line with the following:
reports = store, puppetdb

Then, restart the puppetmaster service with the following command:

sudo service puppetmaster restart

Once this is done and you run Puppet, it should run normally. In fact, you likely won’t
even notice that PuppetDB is there. However, it is there and it’s waiting to assist you.

As was previously mentioned, PuppetDB uses a RESTful API for access. In a nutshell,
that means we’ll be making HTTP queries to get the report information.

To get that information, we’ll need to use a query API. The query API supports a large
number of endpoints, or URLs available to serve the information, and covering them all
would quickly turn our book into an entire book on reporting, so we’ll focus on specific
ones to get some quick reports.

Note

If you want to explore the APIs more in-depth, the earlier mentioned Puppet Reporting
and Monitoring book is a wonderful resource. You can also find information on the query

API at https://docs.puppetlabs.com/puppetdb/2.2/api/query/v3/query.html.

Let’s go ahead and duplicate the information in the basic report in the last section via
PuppetDB to show a basic report. We’ll explore some additional endpoints later in this
chapter.

First, we need to get our interesting report into PuppetDB. To do that, we’ll simply,
manually remove the clamav package and let Puppet reinstall it. To do so, run the
following commands:

sudo yum -y remove clamav
sudo puppet agent --test

We should go ahead and create a report showing ClamAV being installed. This is similar
to our earlier report.

Now, we’ll use the report’s endpoint to get information about the reports on a node.
However, we’ll want to approach this in a slightly different way than we did earlier.

First, we’ll use the node’s endpoint to get a list of nodes. We can do this on the command
line using curl, as follows:

curl -Gs 'http://localhost:8080/v3/nodes'

This will give the output similar to the following:

[{

"name" : "puppet.book.local",

"deactivated" : null,

"catalog_timestamp" : "2014-09-08T02:31:52.988Z",
"facts_timestamp" : "2014-09-08T02:31:45.760Z",
"report_timestamp" : "2014-09-08T02:32:17.916Z"

31

This output is in JSON. It’s a bit harder to parse in bash, but we can use a helper library to
assist us. This is present in EPEL, so we can install it as follows:

https://docs.puppetlabs.com/puppetdb/2.2/api/query/v3/query.html

sudo yum -y install jq

We can then use the jgq program to process this JSON output in bash.
Tip

Why all this bash scripting?

In reality, you wouldn’t likely use bash to do this work. While it’s possible using tools,
such as jq, we’d be better served with a more fully featured language. I have used bash
here, since it’s something most Linux admins will know offhand, and since the previous
example is bash. There even exists helper libraries in languages, such as Ruby and Python
to assist you with these reporting queries.

If we pipe the previous output to jq with a specially formatted query string, we can get the
information we’re after. The command is as follows:

curl -Gs 'http://localhost:8080/v3/nodes' |jq -r '.[].name'

The jq command will return the name tag of each of the elements of the array. This is the
list of hostnames we care about.

Example — getting recent reports

For each hostname, we need to get the most recent report. To do this, we’ll use the report’s
endpoint in PuppetDB and restrict it to the node we care about. This is a bit more
complicated as a curl command, because we need to filter the data we are querying to just
a single node.

We’ll start by statically listing our host, and then we’ll build the pieces into a script.

The command to do this is a doozy. We’ll run the command and then break it into usable
chunks:

curl -Gs 'http://localhost:8080/v3/reports' --data-urlencode 'order-by=

[{"field": "end-time", "order": "desc"}]' --data-urlencode 'query=["=",
"certname", "puppet.book.local"]' --data-urlencode 'limit=1'
Note

If your output is a blank set ([]), make sure you’re reporting to PuppetDB, and that
you’ve completed a run. See the previous section for details.

The preceding command should be on one single line.

We use a handful of PuppetDB arguments here. We pass these to curl with -data-
urlencode and curl turns them into the POST or GET arguments, as needed. The first one,
order -by, lets us order our output. In this case, we order by the end time of the run in a
descending order.

The second argument is a query argument. There exists a very powerful set of operators
available for use in the PuppetDB query language. A complete document explaining the
syntax can be found at https://docs.puppetlabs.com/puppetdb/2.2/api/query/v3/query.html.
In this case, what we’re after is quite simple. We want the reports of a given host. In this
case, our host would be, puppet .book.local.

The final argument is a limit. This simply limits the number of results we get back. In this
case, we’re limiting to 1.

Together, this will return the output like the following:

[
"hash" : "0081fb5b58c05cl1a24bfc4893f035f6f6ccd9ad3”,

"puppet-version" : "3.7.0",

"receive-time" : "2014-09-08T02:51:40.951Z",

"report-format" : 4,

"start-time" : "2014-09-08T02:51:18.863Z",

"end-time" : "2014-09-08T02:51:38.248Z2",

"transaction-uuid" : "cbh40f17e-dd9a-4246-991e-29390d2cc663",
"configuration-version" : "1410143505",

"certname" : "puppet.book.local"

31

This returns a good amount of information on the run. Already, you can see that we have
the start and end time of the run. As a matter of fact, the only data we’re missing is the run

https://docs.puppetlabs.com/puppetdb/2.2/api/query/v3/query.html

status.

As it would turn out, PuppetDB doesn’t actually store that status like a stored report does.
There is currently a feature request in it to add this information to the PuppetDB backend.

You can track that request at https://tickets.puppetlabs.com/browse/PDB-36.

PuppetDB instead stores the status of each individual event that happened on the node. We
can use this information to display an even more useful summary in our example report.

https://tickets.puppetlabs.com/browse/PDB-36

Example — getting event counts

We’ll now take a look at how we can use the individual event data to create reporting on
aggregate event counts.

To do this, we’ll use one final endpoint, the event-counts endpoint. This endpoint, as you
might imagine, provides information on event counts from a run. We’ll query it based on
the hash of the report returned earlier. This will give us information on an individual run.

We need to summarize these events by some value. In this case, we can use the node
certname since we’re querying an individual report.

The command to get the information is as follows:

curl -Gs 'http://localhost:8080/v3/event-counts' --data-urlencode 'query=
["=", "report", "0081fb5hb58c05cla24bfc4893f035f6f6ccd9ad3"]' --data-
urlencode 'summarize-by=certname'

Once again, that is all on one line and be sure to use the hash of the report you ran in the
previous section, or you will get no data.

It should return the results, as follows:

[{
"subject" : {
"title" : "puppet.book.local"
3
"subject-type" : "certname",
"failures" : 0,
"successes" : 1,
"noops" : 0,
"skips" : ©
} 1

However, there’s our information, even containing information on skipped resources
(resources are skipped if a resource it depends on fails) and noop resources. If there was
no report, or if there were no changed resources, you would receive an empty hash.

Example — a simple PuppetDB dashboard

We can use the information obtained to this point, in order to build a script such as our
earlier one. The script will be somewhat more complicated but can report on more data. In
the simplest case here, we’ll report on the number of successful and failed resources, or
simply return unchanged if no resources changed. If there are no changed resources, the
preceding event counts will return null.

The script to do this is as follows:

#!/bin/bash

cat << EOF
<!doctype html>

<html lang="en">

<head>

<title>Puppet Run Report</title>

</head>

<body>

<table border=1>

<tr><th>Hostname</th><th>Last Run</th><th>Status</th></tr>
EOF

HOSTS=$(curl -Gs 'http://localhost:8080/v3/nodes' |jq -r \ '.[].name')
for H in ${HOSTS}
do
REPINFO=$(curl -Gs 'http://localhost:8080/v3/reports' \
--data-urlencode 'order-by=[{"field": "end-time", "order": \ "desc"}]' --
data-urlencode "query=[\"=\", \"certname\", \
\"${H}\"]" --data-urlencode 'limit=1")
REPHASH=$(echo ${REPINFO}|jqg -r '.[0].hash")
START=$(echo ${REPINFO}|jq -r '.[O]]|.["start-time"]")
ECOUNT=$(curl -Gs 'http://localhost:8080/v3/event-counts’' \
--data-urlencode "query=[\"=\", \"report\", \"${REPHASH}\"]" \
--data-urlencode 'summarize-by=certname')
ELEN=$(echo ${ECOUNT}|jqg '.|length')
if [$ELEN -eq 0]; then
STATUS="unchanged"
else
SUC=$(echo ${ECOUNT}|jqg '.[O].successes')
FAIL=$(echo ${ECOUNT}|jq '.[0].failures')
STATUS="${SUC} successes, ${FAIL} failures"
fi
echo "<tr><td>${h}</td><td>${START}</td><td>${STATUS}</td></tr>"
done

cat << EOF
</table>
</body>
</html>
EOF

I’ve noted the wrapped lines with \ at the end.

As you can see, the shell of the script is very similar to what we found earlier. However,
the main loop has changed. In this case, we build a list of hosts by querying the node’s
endpoint. We then take this list and gather information about each using first, the report’s
endpoint and then, the event-count’s endpoint. We use some jgq magic to format it, and
then finally we output the information line.

The output to this command, when run, is very similar to the earlier output, with the
addition of the number of successful or failed resources when ran. The output is shown in
the following screenshot:

@ @ Puppet Run Report X Jason

& e file:///Users/jslagle/pupbook/src/cha... 5.7 iy % M

Hostname Last Run Status
puppet.book.local||2014-09-08T03:42:15.793Z||1 successes, 0 failures

As you can see, PuppetDB provides a very powerful base to report from. We’ve not even
scratched the surface of what’s possible. We’ll take a look at some other things we can do
next.

Reporting for compliance

When we consider compliance, there are a number of common areas we can report on. To
do the actual reporting, we can use whatever method we choose. This could be one of the
previously discussed ways, such as processing the stored reports or using PuppetDB.

We already looked at the first big piece in showing compliance. That is, demonstrating
when the Puppet run last happened on each of our hosts. We have shown an easy way to
accomplish this with both PuppetDB and stored reports, earlier in this chapter. The
information on the last run status exists in all of the report formats and can easily be
reported on. Setting up alerts on that data is also easily done using concepts, shown earlier
wrapped up with some alerting logic.

However, we’ve not approached reporting on the auditing data. Luckily, reporting on that
is not much more difficult.

The report format contains a wealth of information on the run, as well as data on the facts
present on a host that can be used to report on the current state of the system. It can also be
parsed to show what is changing and when. When put together with the manifest
documentation, it can produce a complete history of all the changes that Puppet made to
your host over time.

We’ll use an example of auditing the openss1 package and using it to report on the
heartbleed-vulnerable version of openss1, as our compliance example here.

Note

More information on heartbleed can be found at https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-0160.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160

Example — finding heartbleed-vulnerable systems

Heartbleed became a big issue in mid-2014. It was discovered that certain default versions
of openss1 were shipped in such a way that they left a remote vulnerability open. Using
this vulnerability, one could potentially discover the private SSL key, along with other
memory data.

Sysadmins scrambled to patch their systems and ensure that heartbleed was no longer
present. For those using Puppet, this became a case of using an ensure value on the
resource, as well as some dependency logic to ensure that it was updated, and applications
using openssl were restarted. We’ll show how to use a noop resource to report on the
currently installed version of openssl1. One can then extend this to look for the heartbleed
vulnerability.

There are a couple of ways in which we can approach this. One way is to expose the
openssl version as a fact. For certain very critical items, we may go down this route.
However, if you are managing many packages in this manner, it quickly becomes
overwhelming to try to maintain facts for each package. It is, however, fairly easy to
report on this data if these facts are created using the PuppetDB fact’s endpoint.

Another methodology is to use the audit meta-parameter. This makes sense since what we
are essentially doing is auditing the version of openss1 installed. This does, however,
depend on the deprecated audit meta-parameter, so let’s examine one last method.

The first step in doing this, is to create our noop resource. To do that, we will create a
noop resource set to pin openssl to the latest version. In this case, we’re asserting that we
always want openss1 to be the latest, but we want to know if it’s going to change, rather
than Puppet updating it.

This example will somewhat follow the package auditing example in Chapter 2, Tracking
Changes to Objects. I’1] abbreviate the example here and you can refer to it if you need
more in-depth instructions.

First, let’s go ahead and set up the openss1 package for audit, with ensure => 'latest’.
To do so, we’ll edit /etc/puppet/manifests/site.pp and add the following command to
our default node definition:

package { 'openssl':
ensure => 'latest',
noop => 'true',
3
This should run without any issues, auditing the first version installed. The output when
running Puppet should be similar to the following screenshot:

L & chap4 — vagrant@puppet:~ — ssh — 105x15
vagrant@puppet:~ =

[vagrant@puppet ~]% sudo puppet agent --test

MNotice: /Stage[main]/Main/Node[default]/Package[openssl]/ensure: current_value 1.8.1le-15.el6, should be @
:1.0.1e-30.e16_6.5 (noop)

Notice: MNode[default]: Would have triggered 'refresh' from 1 ewvents

Notice: Class[Main]: Would have triggered 'refresh’' from 1 events

Notice: Stage[main]: Would have triggered 'refresh’' from 1 events

Motice: Finished catalog run in 8.31 seconds

[vagrant@puppet ~]13%

As you can see, on our test box, we have an update available but not installed.

To report on this data, we’ll use PuppetDB. We’ll explore the endpoint required to get the
information, as well as the commands needed to do it. However, to save space, we won’t
show the entire script. The script to report on this data will be found with the book source
for reference.

The endpoint we’ll use to do this is the events endpoint. The resources endpoint
contains information about the resource, but it does not contain information about its
current state. If you did this via stored reports, or your own report processor, you could
retrieve the information needed to do it from the Puppet: :Resource: :Status class, and
look for, and examine, the child events.

We can query the events endpoint for the information required with the following
command:

curl -sG 'http://localhost:8080/v3/events' --data-urlencode 'query=["and",
["=", "certname", "puppet.book.local"], ["=", "resource-title",
"openssl"]]'

We’ll get the output similar to the following:
[{

"containment-path" : ["Stage[main]", "Main", "Node[default]",
"Package[openssl]"],

"new-value" : "latest",

"containing-class" : "Main",

"report-receive-time" : "2014-09-08T23:27:32.576Z2",

"report" : "05b824e576a703dc76h34670cead9e3e3d8h8070",

"resource-title" : "openssl",

"property" : "ensure",

"file" : "/etc/puppet/manifests/site.pp",

"old-value" : "1.0.l1le-15.el6",

"run-start-time" : "2014-09-08T23:27:08.314Z2",

"line" : 9,

"status" : "noop",

"run-end-time" : "2014-09-08T23:27:29.863Z2",

"resource-type" : "Package",

"timestamp" : "2014-09-08T23:27:29.9732",

"configuration-version" : "1410218830",

"certname" : "puppet.book.local",

"message" : "current_value 1.0.l1le-15.el6, should be 0:1.0.1e-16.e16_5.15
(noop) ™
} 1

Notice right away that we see the current version, and the message tells us the version we
expect. We can use our jg command to spit out the current version. The command to do
that would be as follows:

jq -r '.[06] | .["old-value"]'

By piping the first curl value to it, we get the output of just the version. This could be
used in whatever reporting we’re using.

It’s worth noting, however, that the preceding command will return all of the events for
the openssl resource title. In reality, we’d need to include this in a loop like our former
script to ensure that we only look at the most recent report for each box. Additionally, if
openssl is the latest version, the event would be missing. In that case, much like we did
with the unchanged resources in the earlier PuppetDB script, we’d just need to return that
we have the latest version of OpenSSL installed.

The final step would be to look for vulnerable versions. Looking at the CentOS advisory
at http://lists.centos.org/pipermail/centos-announce/2014-April/020249.html, we can see
that versions before 1.0.1e-16 are vulnerable. As you can see, our system is indeed
vulnerable. We can add the vulnerability status to our report if we knew the vulnerable
versions on the various operating systems we run.

With some creativity and the PuppetDB API guide, we can produce a rich set of reports on
our systems.

http://lists.centos.org/pipermail/centos-announce/2014-April/020249.html

Summary

Reporting is something that seems to constantly be a work in progress. We can always
make our reports more comprehensive and thorough. In much the same way, the
PuppetDB library and the Puppet reporting engine itself has seen a large amount of
progress recently.

An entire book could be dedicated to the topic of reporting with Puppet (in fact, as
mentioned earlier, one has been!). We’ve only touched on the beginnings of building a
rich reporting environment to get you started with your reporting needs.

Using either stored reports or PuppetDB, we can fairly quickly build in-depth reports on
our environment and the resources in them. We can do this in any number of languages.

There exists a good number of available off-the-shelf tools that can also be installed and
help us with this. Puppetboard is a great example of one that can provide a lot of quick
insights into your Puppet environment from a security standpoint. We’ll touch briefly on
Puppetboard in Appendix, Going Forward.

We’ve now spent time exploring basic reporting on reports using the store endpoint and
some simple shell scripting. We also expanded on that knowledge to handle reporting from
PuppetDB, including a good number of examples useful to build a very quick reporting
dashboard. Using this information, we’re armed to start using the data Puppet provides for
reporting purposes.

Now that we’ve got the basics behind us in setting up Puppet for security and reporting on
the data, we’ll spend some time in the next chapter talking about how to secure Puppet
itself before moving on to more advanced topics.

Chapter 5. Securing Puppet

As your Puppet Master is a tool that configures your systems, ensuring that it is secure is
very important. Puppet can change any facet of the systems under management. Since it
can cause great damage to systems as well as create numerous security issues if
compromised, it is very important to ensure that your Puppet Master is properly secured.
For instance, if your Puppet Master is compromised, it is easy to add a user to every
system under management, add that user to sudoers, and reconfigure SSH to allow the
user to log in.

Luckily, Puppet has a fairly secure, out-of-the-box configuration. However, as your
environment grows and you use more advanced features, you’d want to review how to
secure your Puppet environment.

In this chapter, we’ll explore the following aspects of securing your Puppet installation:

e Puppet security related configuration files
e Puppet SSL configuration
e Autosigning Puppet client certificates

At the end of this chapter, you should have a good understanding of the various Puppet
configuration settings that you will require to secure Puppet. Additionally, you should
have a good grasp of how Puppet uses SSL and autosigning.

Puppet security related configuration

Present in the Puppet core are several configuration files that control the security and
access control of the base Puppet Master. Over time, these configuration files have
evolved to add more functionality and more fine-grained access controls. In addition to the
main Puppet configuration file, puppet .conf, the primary configuration files we’ll
examine are the files related to the authentication, file server, and autosigning
configurations.

We’ll cover autosigning later on in this chapter. For now, let’s look at the other
authentication and file server configurations.

The auth.conf file

The auth.conf configuration file is the main file controlling access to the Puppet API
resources. Internally, it is called the rest_authconfig file because it controls access to the
RESTful API that the various Puppet commands utilize to perform their functions.

Using this configuration file, you can lock down access to various endpoints. The default
configuration settings used by Puppet are sufficient in most cases. These defaults can be
found at https://docs.puppetlabs.com/guides/rest_auth_conf.html#default-acls if you wish
to review them. If you have special security needs, such as the need to allow off-host
systems to use a subsystem, you may consider modifying the settings in this file to handle
them. We’ll cover an example of one such situation at the end of this section.

The auth configuration file is made up of a series of stanzas that describe paths. Here is a
brief example of one of these stanzas:

path ~ A/catalog/([A/]+)$
method find
allow $1

The paths found in these configuration sections correspond to URLs in the Puppet API.
The options available in each stanza are as follows:

Option Description

path This is required. It contains the path component of the URL in question. When prefixed with ~, it is
assumed to be a regular expression.

Environment||This is an optional list of environments that the path refers to.

method ||This is an optional method to which the path applies. It can be any one of find, search, save, or destroy.
This defines whether authentication is required. It can be set to yes to indicate that authentication is

Auth required, no to forbid authenticated requests, or any to allow both authenticated and non-authenticated
requests.

allow This shows a comma-separated list of hosts allowing regular expressions. Capture arguments are allowed
for regular expressions allowing very complex directives.

allow ip New in version 3.0, this directive permits IP addresses. They can be specified as whole IPs, IPs with

- asterisks in them, or CIDR ranges.

Puppet maintains a default internal set of authentication parameters that are utilized if
there is no entry with the same path. In the case of a specific entry with the same path as a
default entry, the default entry is not applied.

Note

More information on the auth.conf file and the default permissions can be found at
https://docs.puppetlabs.com/guides/rest _auth_conf.html.

Additionally, the file is consulted in a top-down manner. This means that typically, you

https://docs.puppetlabs.com/guides/rest_auth_conf.html#default-acls
https://docs.puppetlabs.com/guides/rest_auth_conf.html

would put the most specific entries at the top, while leaving the more general entries lower
in the file.

Example — Puppet authentication

Now let’s examine an example of limiting access using the auth.conf file. However, to do
this, we first need to make some changes to our Vagrant environment, and then we’ll move
on to the example.

Adding our second Vagrant host

Before we can undertake the examples in this chapter, we need to extend our Vagrant
setup to add a second host. In doing this, we’ll have a host to test some of our
configuration items from so that we can see an allowed case and a disallowed case.

One of the challenges of doing that is getting the resolution of the Puppet-related
hostnames right. There are a handful of Puppet-specific Vagrant solutions, such as Beaker,
that are used for specific tasks. Beaker is worth mentioning because of its value in testing,
but we will not be using it in any of our examples.

Beaker is an acceptance test framework that can configure virtual Vagrant machines using
specifications. This can include installing specific versions of Ruby or Puppet. It can also
be used to generically provision a set of Vagrant machines using somewhat simplified
configuration syntax.

Note

If you get into testing the modules you write (and you should), you should really look at
using Beaker. More information on Beaker can be found on its website at

https://github.com/puppetlabs/beaker/.

Beaker is a bit heavy for our usage. We’re going to stick to a smaller subset of the features
we require for our use, and use a Vagrant plugin. The plugin we’re going to use is called
hostmanager. Its website can be found at https://github.com/smdahlen/vagrant-

hostmanager.

Working with hostmanager

The hostmanager plugin lets us add some logic to the vagrantfile that results in the
/etc/hosts file being written with the IPs of all the other machines. We’ll use this so that
our Puppet agents can find the master:

1. To use the plugin, we first need to install it. This can be done with the following
command:

vagrant plugin install vagrant-hostmanager

This will make the hostmanager plugin available for our use.
Tip

Are plugins safe?

We use the hostmaster plugin for Vagrant here for ease of use. For a development
environment, this is fine. However, for a production environment, it is best to have a

https://github.com/puppetlabs/beaker/
https://github.com/smdahlen/vagrant-hostmanager

properly functioning DNS that will eliminate the need for a plugin such as
hostmanager.

. Next, we need to add some default configuration options to our vagrantfile. If
you’re following along with us, you’ll note that we’re starting from the base files
again, as opposed to starting from where we left off in Chapter 4, Security Reporting
with Puppet. You can use the VM covered in Chapter 4, Security Reporting with
Puppet but that’s not required, as this example does not build upon it. If you’re using
the source included with the book, the vagrantfile already has the required
modifications.

. In the vagrantfile, we’ll add some options to tell hostmanager to run, and give it
some necessary instructions. At the top of the file, right below the
Vagrant.configure line, add the following:

config.hostmanager.enabled = true
config.hostmanager.ignore_private_ip = false
config.hostmanager.include_offline = true

This enables the hostmanager plugin. It also includes the private IPs of our VMs and
the IPs of any offline VMs. These are useful options for our testing setup as they
allow us to ping offline hosts, and so on.

. Now, under the master configuration section, add the following:

master.hostmanager.aliases = %w(puppet)

This will add an alias for Puppet with no domain. This may not be necessary in your
environment, but depending on how your local DNS is configured, your hosts may
end up utilizing the wrong host as the Puppet Master. We want them to use our local
Vagrant master, and it’s possible that they hit our production master if we do not
make this change.

Now that this is complete, we’ll add our second VM. If we need to add a third VM, it
will look very similar to this.

. Below the end line of the master configuration, we need to add a section for our new
agentone VM. Add the following lines:

config.vm.define :agentone do |ao|
ao.vm.box = "centos65-x64-puppet"
ao.vm.box_url = "http://puppet-vagrant-boxes.puppetlabs.com/centos-
65-x64-virtualbox-puppet.box"
ao.vm.hostname = "agentone.book.local"
ao.vm.network "private_network", ip: "10.78.78.50", netmask:
""'255.255.255.0"
ao.vm.provision "shell", inline: "yum -y update puppet"
end

Note

The included source has an additional line in the file we just saw. That line is meant
for a later example. You can safely delete it for now.

The box URL and the network line should be on one line. This is very similar to the
existing master configuration. The only difference is we only currently have the shell
provisioner, which will use the shell to update Puppet since we’re not setting up the
master. We may need to add another provisioner later, but for now, this is sufficient for our
use. The complete file, including the additions we just made, is shown here for reference:

Vagrant.configure(2) do |config]|
config.hostmanager.enabled = true
config.hostmanager.ignore_private_ip = false
config.hostmanager.include_offline = true
config.vm.define :puppetmaster do |master|

master.vm.box = "centos65-x64-puppet"

master.vm.box_url = "http://puppet-vagrant-boxes.puppetlabs.com/centos-
65-x64-virtualbox-puppet
.box"

master.vm.hostname = "puppet.book.local"

master.vm.network "private_network", ip: "10.78.78.30", netmask:
"255.255.255.0"

master.hostmanager.aliases = %w(puppet)

master.vm.provision "shell", inline: "yum update puppet -y"

master.vm.provision "puppet" do |puppet|

puppet.manifests_path = "master_manifests"
puppet.manifest_file = "init.pp"
end
end
config.vm.define :agentone do |ao]
ao.vm.box = '"centos65-x64-puppet"

ao.vm.box_url = "http://puppet-vagrant-boxes.puppetlabs.com/centos-65-
x64-virtualbox-puppet.box"
ao.vm.hostname = "agentone.book.local"
ao.vm.network "private_network", ip: "10.78.78.50", netmask:
"255.255.255.0"
ao.vm.provision "shell", inline: "yum -y update puppet"
end

As you can see here, the URL and the network lines should not wrap.

Now that this is complete, we can go ahead and begin the example.

The fileserver.conf file

The second configuration file we’ll review is fileserver.conf. This file contains the
configuration for Puppet’s built-in file server.

Much like the auth.conf file, in most cases, the default configuration is sufficient. In this
section, we’ll cover what the options currently are, what the file used to do, and the
occasions when we might want to move away from the default configuration.

By default, Puppet will serve files under the /files API endpoint to clients. This also
handles serving files that are contained within the files directory of individual modules.
These files are accessed with the puppet:///modules/modulename/filename URL within
Puppet.

The fileserver.conf file allows you to create additional file “mount points”. These
mount points can serve other directories on the filesystem to Puppet clients. Each mount
point can have individual policies and authentication parameters associated with it. This
allows you to create, for instance, an area for secured files that can only be accessed by a
single host. It also lets you create a set of directories that each host can access, but other
hosts cannot access the directory.

Much like the auth.conf file before it, the fileserver.conf file is made up of a series of
stanzas. These files are similar in nature to ini files on a Windows machine. Here is an
example of one of these entries:

[ourfiles]
path /path/to/ourfiles
allow *

The following is a table of the possible values, for reference:

Option Description

[mountpoint] This is the name of the file mount. This is the way you reference files in this location. Replace
mountpoint with the actual mount name you want.

path ||This is the path to the file on the Puppet Master filesystem.

This denotes allowing or denying access to the hosts. It can include asterisks. In almost all cases, you
allow or deny ||should use allow * and use the auth.conf file to manage access. See the notes that follow for more
details on this.

Individual mount point entries start with a header like [secretfiles]. In this case,
secretfiles is the name of our mount point, and it can be accessed via our Puppet
module by specifying the source as puppet: ///secretfiles/<file>.

Under each mount point, you must specify a path using the path directive. This is the path
to the files on the local filesystem. This can allow you to move files out of your primary
version control for security-related purposes. For instance, you can move private SSL keys
to a file share that only the hosts that need to use the keys can access.

The final directive is an authorization directive. It can be either allow or deny. At the first
glance, this seems like a way to limit what can access the files, and indeed, this used to be
the case. However, in recent versions of Puppet, it is recommended that you use the
auth.conf file to limit access, and therefore, simply use allow * in this file. We’ll explore
how to limit access via the auth.conf file in the next example.

Example — adding a restricted file mount

In this example, we’ll add a file mount that only allows access from the agentone host.
This is a common request for things such as keys that you don’t want compromised:

1.

2.

We’ll be working on our Vagrant Puppet Master here, so use vagrant up and
vagrant ssh to connect to it.

To begin, let’s edit the /etc/puppet/fileserver.conf file on the Puppet Master file
to add support for our additional file server mount. We’ll store the data in
/srv/secret, so let’s start by creating a directory structure there. We’ll also store
some secret data in the directory. To do so, issue the following commands:

sudo mkdir -p /srv/secret/agentone.book.local
echo "sup3r s3kr37" |sudo tee /srv/secret/agentone.book.local/secret
sudo chown puppet /srv/secret/agentone.book.local/secret

Once that’s done, we’ll configure our new file server. Go ahead and edit the
/etc/puppet/fileserver.conf file. In it, you will find a bunch of documentation
and comments. At the end of the file, add this:

[agentone]
path /srv/secret/agentone.book.local
allow *

This will create the file server mount and allow anything. Remember that we’re
going to use auth.conf to limit access to the host resources.

With that, we should configure auth.conf. When you edit /etc/puppet/auth.conf,
you will notice that it has all the default authentication permissions.

In this case, we need to make sure we insert our new data into the correct place in the
file. We’ll insert it right before the file stanza, which should be near line 88.

Locate the section that looks like this:

Allow all nodes to access all file services; this is necessary for
pluginsync, file serving from modules, and file serving from custom
mount points (see fileserver.conf). Note that the “/file prefix
matches

requests to both the file_metadata and file_content paths. See
"Examples"

above if you need more granular access control for custom mount
points.

path /file

allow *

We’ll insert our changes above it. The changes are as follows:

path ~ A/file_(metadata|content)s?/agentone/
allow agentone.book.local

. This should allow only agentone to access that resource. Next, we need to restart the
Puppet service:

sudo service puppetmaster restart

. Finally comes the fun part. Let’s go ahead and create a node definition referencing
the file, and see what happens.

We’ll do this in the site.pp file since this is simple and it’s a test. As a reminder,
typically you’d use a module for all of the manifest code. However, for our testing
purposes, we’ll use site.pp to keep the length of this book reasonable.

Edit /etc/puppet/manifests/site.pp and make it look as follows:

node default {
file { '/tmp/secret':
ensure => file,
source => 'puppet:///agentone/secret’,

}
}

. Save it and run Puppet on agentone and the master. First, we’ll go for agentone. Run
Puppet there with sudo puppet agent -test. First, we’ll need to sign the certificate.
We’ll cover signing in more detail in the next section, so I’ll just explain it in brief
here.

The first time you run the agent on agentone, you’ll receive a message that indicates
that the certificate was created and waitforcert is disabled. This means that the
master has a certificate request for the agent.

. We need to process the certificate request on the master. As I said before, we’ll cover
this in more detail in the next section. For now, let’s just go ahead and sign it with the
following command on the master:

sudo puppet cert sign agentone.book.local

Now that it’s done, we should be able to rerun the agent on agentone, and you should
see the output as shown in the following screenshot:

® OO0 chap5 — vagrant@agentone:~ — ssh — 99x8 e

vagrant@agentone:~ jslagle@J]asons-...pbook/src/chap5 ...

[vagrant@agentone ~]$% sudo puppet agent --test g8

Notice: /Stage[main]/Main/Node[default]/File[/tmp/secret]/ensure: defined content as '{md5}788bd3d6
6f079c8e19d97aa59744c8¢c6’

Notice: Finished catalog run in @.11 seconds

[vagrant®agentone ~]%

As you can see, this has successfully created the file in question.

9. We’ll also run this on the Puppet Master to see how it behaves there. Once you do so,
you should see the following output:

® 00 chap5 — vagrant@puppet:~ — ssh — 99x19
s[vagrant@puppet ~]% sudo puppet agent --test

24

Notice: Finished catalog run in 0.6 seconds
[vagrant@puppet ~]%

You can see here that we’re not allowed to access the resource.

This example shows some of the power that auth.conf can provide. With some work, you
can extend this pattern to allow a host to only access its own resources, for instance. You
can also allow access from a management host to some resources for monitoring or
reporting.

Let’s move on and explore how Puppet uses SSL for encryption and authentication.

SSL and Puppet

SSL is a core component of Puppet. The Puppet Master uses SSL certificates to
authenticate client systems. Proper management of SSL is vitally important to ensure that
your Puppet system is secure and behaves properly.

Note

This section assumes you have some knowledge about the working of SSL. If you require
a primer on SSL, a good reference is https://info.ssl.com/ssl-made-easy-for-beginners/.

By default, the Puppet Master will act as an SSL Certificate Authority (CA). As part of
the SSL. CA, the master will accept certificate requests from new agents. You can then
choose whether to sign the certificate on the master. There is also a methodology to enable
autosigning. We’ll cover this in the next section.

Puppet can also support use of an external certificate authority. You might want to do this
if you already have a certificate authority configured to allow you to utilize existing
certificates. This avoids the overhead of needing two separate certificate authorities. At
the end of this section, we will cover some more information about external CAs and the
configurations supported for them.

https://info.ssl.com/ssl-made-easy-for-beginners/

Signing certificates

Puppet uses the cert face command (as a reminder, face is a Puppet command) to
manage signing and revoking of certificates. By default, when a node starts up for the first
time and does not have a certificate, it will create a Certificate Signing Request (CSR).
A CSR is the agent’s way of registering itself with the master and requesting access to
resources. We’ll demonstrate this now.

If you did the last example, issue this command to clean up, and we’ll start over:
vagrant destroy -f
Once the cleanup is complete, restart the Vagrant hosts with the following command:

vagrant up

Once they boot, use vagrant ssh agentone to connect to the agent guest. Once there,
we’ll run Puppet in our normal way, using sudo puppet agent -test.

When a host is new and Puppet is run for the first time, you’ll see output like this:

® 00 chap5 — vagrant@agentone:~ — ssh — 99x12 o

Last login: Sun Sep 28 14:17:02 2014 from 10.0.2.2
Welcome to your Packer-built virtual machine.
[vagrant@agentone ~]% sudo puppet agent --test

Exiting; no certificate found and waitforcert is disabled
[vagrant@agentone ~]%

As you can see, we created an SSL certificate request, and we sent it to the master. We
also exited because, by default, we will not wait for the certificate to be signed.

On the master, we should now be able to see the certificate if we check with the Puppet
cert face command. Open a new terminal, and connect to the master with vagrant ssh
puppetmaster. Once logged in, we’ll issue this command:

sudo puppet cert list

We should see an output like what is shown in the following screenshot:

® OO0 chap5 — vagrant@puppet:~ — ssh — 99x13 e

jslagle®lasons-MacBook-Pro: $ vagrant ssh puppetmaster
Last login: Sun Sep 28 14:41:08 2014 from 10.0.2.2
Welcome to your Packer-built wvirtual machine.
[vagrant@puppet ~]$ sudo puppet cert list
"agentone.book.local"™ (SHA256) 3B:2E:2E:C4:17:4D:67:1C:F8:25:F7:8D:5B:33:61:2A:85:21:B9:DA:4F:E9:
E7:FZ2:A1:A9:D3:41:6E:9E:5F:82

[vagrant@puppet ~]%

As you can see, the certificate request is now present on the master. The next step is to
sign it. The command to do so is as follows:

sudo puppet cert sign agentone.book.local

The Puppet Master will return some information indicating that the certificate is signed
and the request has been removed.

Once this is done, go ahead and run the agent on the agentone machine again. You should
now see the normal output. In this case, since our site.pp file is empty, we won’t have
any output other than the run being successful. If you happen to still be using the example
from Chapter 4, Security Reporting with Puppet, you should see it apply all of the same
manifests you have in your default node to the machine.

Revoking certificates

Now that you know how to sign a certificate, we may want to ask for the opposite. What
happens if we need to get rid of a host? Perhaps we’ve decommissioned it, or perhaps the
host is doing bad things and we need to lock it out of the Puppet infrastructure. In the SSL
world, we do this by revoking the certificate.

In the Puppet world, we have two operations that can be used to do this. The first is the
revoke operation, and the second is the clean operation.

If a host has been compromised or is still around but you do not want it checking into
Puppet, the proper thing to do is to revoke its certificate. To do this for our example host,
we issue the following command:

sudo puppet cert revoke agentone.book.local

We’ll do that, and then we’ll go ahead and rerun the Puppet agent on agentone. The
output on the master gives only the serial number of the revoked certificate. Once this is
done, we actually have to restart the master. To do that, we run the following on our
master node:

sudo service puppetmaster restart

When we rerun the agent, the output looks significantly worse, as you can see here:

® 006 chap5 — vagrant@agentone:~ — ssh — 99x25 e
[vagrant@agentone ~]$ sudo puppet agent --test

[vagrant@agentone ~]$

The agent sees that its certificate is revoked, and it does not run the catalog. It also does
not try to request a new certificate.

Now, we’ll use the clean command to remove the certificate. The old certificate is still in
the Certificate Revocation List (CRL), however, so it’s dead forever. We’ll have to tell
the master to remove the certificate from itself, and then force the agent to request a new
certificate. It’s a common mistake to try to issue a new certificate request before the old
certificate is removed from the master, and this will fail.

On the master, issue the following command:

sudo puppet cert clean agentone.book.local

On the agent, go ahead and rerun Puppet. You will notice that the agent is still showing
errors about the certificate being revoked. At this point, we need to manually remove the
local certificate so that the agent requests a new certificate. We can do that by removing
the SSL directory on the client with the following command:

sudo rm /var/lib/puppet/ssl -rf

Once this is complete, it should behave as if it were a new node, and we should be
permitted to sign a certificate for the host again.

Tip
Care needs to be taken when doing this on the master. It is possible that you accidentally
remove all the downstream certificates. Though it’s also possible to recover from this, it’s

not fun! I speak from experience as I have forgotten more than once that puppet cert
clean -all doesn’t only do requests.

Alternative SSL configurations

In addition to the normal mode of operation in which the Puppet Master serves as the CA,
it also supports a mode where an external certificate authority is used. The setup of this
particular mode is out of the scope of this book, as it requires an external web server to
proxy requests. We will, however, discuss the various modes that can be utilized for SSL
configuration.

When the external CA is set up, the external web server, usually Apache or Nginx,
authenticates the client with the SSL certificate and uses certain headers in the request to
indicate to Puppet that the client is authenticated, and it also specifies what the hostname
of the client is.

In this case, you also have to manage getting the certificates on the client and the master
manually. Puppet will not provide certificates in the external CA mode.

There are three possible modes to use in this setup. We’ll cover them in increasing order
of complexity.

The first method is simply an external root CA. This CA handles the issuing of all the
certificates, that is, for both the master and the agents. In this mode, you copy the CA certs
and the certificates to both the agent and the master. You then configure the web server on
the master to use the CA certificate. No changes are required on the agent in this mode.

In the second and third methods, we introduce intermediate certificate authorities. These
have their certificates signed by the root, and they issue the downstream certificates for the
master and agents. In the second scenario, we use one intermediate authority to serve both
the master and the agent. In the third scenario, which is the most complex scenario, we use
a separate intermediate authority for the masters and the agents.

The server-side setup in this case is nearly identical. The only change is that you have to
give the master the certificate bundle. On the client side, you also need to provide the
certificate bundle consisting of the root and intermediate CA certificates.

Note

As was mentioned earlier, configuring Puppet in this manner is a very advanced operation.
If you wish to read more about it or attempt it, more information can be found on the
Puppet site at

https://docs.puppetlabs.com/puppet/3.7/reference/config ssl_external ca.html.

https://docs.puppetlabs.com/puppet/3.7/reference/config_ssl_external_ca.html

Autosigning certificates

As your Puppet environment grows, manually signing certificates can become an issue.
This is particularly true in cases where machines are being created automatically due to
scaling, or because a cluster is expanding.

Puppet contains two primary methods to assist with this. They are basic autosign and
policy-based autosign. In basic autosign, we give a list of hosts that we will sign
certificates for. With policy-based autosign, we call an external script that allows us to
determine whether a given certificate request is signed. We’ll now cover these types of
autosign methodologies and their potential use cases.

There exists a third type of autosign, which is used to simply tell the master to sign all
certificates. It is known as naive autosign. This should not be used except in certain test
cases, so here, we’ll cover only how to enable it. Besides, we’re focusing on security, and
in most cases, you can use at least basic autosign.

In these examples, we’re going to need two agent machines to successfully demonstrate
some concepts. To do so, we’ll add a construct to our Vagrantfile, like this:

config.vm.define :agenttwo do |at]
at.vm.box = '"centos65-x64-puppet"
at.vm.box_url = "http://puppet-vagrant-boxes.puppetlabs.com/centos-65-
Xx64-virtualbox-puppet.box"
at.vm.hostname = "agenttwo.book.local"
at.vm.network "private_network", ip: "10.78.78.51", netmask:
"255.255.255.0"
at.vm.provision "shell", inline: "yum update puppet -y"
end

As before, do not wrap the box URL or the network type. If you need more assistance with
this, refer back to the earlier example on the Puppet configuration. It has more details on
how this should work.

Go ahead! Destroy and recreate your environment so that we can start afresh. To do so,
issue the following commands:

vagrant destroy -f
vagrant up

This will reset the environment and allow us to start over, with fresh machines to practice
autosigning.

Naive autosign

Enabling naive autosign is very simple. To do so, you edit the /etc/puppet/puppet.conf
file and add the following to its master section:

autosign = true
Doing this will cause Puppet to automatically sign any certificate requests it receives.

As noted before, this has very significant security implications and should not be done
without specific reasons to do so. It’s usually only used in test environments to enable
automated testing without the need to do more complex signing.

Basic autosign

Basic autosign has been around for a long time in the Puppet world. For a long time, it
was the only real method to automatically sign certificates. This resulted in a number of
third-party solutions to do this that policy-based autosign aims to supplement or replace.

To perform basic autosign, you need to configure the autosign file. By default, Puppet
runs with autosign = $confdir/autosign.conf, which is /etc/puppet/autosign.conf
on Red Hat based operating systems. This file should not be executable. In policy-based
autosign, the autosign file is referenced in the configuration points to an executable
script. If your autosign.conf file is executable, Puppet will attempt to run it as a policy-
based autosign script.

The autosign file contains a list of hostnames or host expressions. In this case, host
expressions are just hostnames beginning with an asterisk (*). It does not support more
complex regular expressions.

Let’s give it a try. On the master, let’s create the /etc/puppet/autosign.conf file and add
agenttwo to the file. It should contain this:

agenttwo.book.local

Once this is done, we can try to run Puppet on both agents. First, we’ll do it on agentone.
Run Puppet using the normal sudo puppet agent -test command. You should notice
that the agent reports that it requested a certificate, and then exits, since waitforcert is
disabled.

Now, run the same command on agenttwo. This is where the magic happens. The output
should be similar to what is shown in the following screenshot:

® O 0O chap5 — vagrant@agenttwo:~ — ssh — 99x21 "

vagrant@agentone:~ vagrant@agenttwo:~

Last login: Sun Sep 28 17:38:00 on ttys@l4
jslagle@lasons-MocBook-Pro: $ vagrant ssh agenttwo
Last login: Thu Jan 16 @9:37:38 2014 from 10.9.2.2

Welcome to your Packer-built virtual machine.

[vagrant@agenttwo ~]$ sudo puppet agent --test

Notice: Fini.sﬁed catalog run in G.Ei sécunds
[vagrant@agenttwo ~]%

As you can see, we’ve gone through an entire run here. We made a cert and it was
accepted immediately. If you check out /var/log/messages on the master, you will see a
request and then the immediate signing of the certificate.

Now, if you think about it for a second, you’ll see a potential problem—no authentication
took place. Therefore, a client can pretend to be any of the listed hosts and get a signed
certificate and a compiled catalog. This can reveal information about the host.

This is somewhat mitigated if you use only full hostnames and remember to remove them
when the hosts are deprovisioned. Alternatively, you can use policy-based autosigning.
We’ll cover that now.

Policy-based autosign

Policy-based autosign is a relatively new feature in Puppet, introduced in Puppet 3.4. It
allows you to build a custom executable that Puppet will call each time it receives the
CSR. That executable will receive the common name (usually the hostname) as an
argument, and the CSR on standard input. The policy executable can then make a decision
and return a piece of code to let the master know whether to autosign or not.

Configuring this requires a bit of work, but when done correctly, it can let you use special
metadata to authenticate requests.

For this example, we’re going to create a simple policy-based autosign script. We’ll rely
on our Vagrant provisioner to ensure that one of our hosts gets the necessary data and the
other doesn’t. This will allow us to see the behavior of the autosign process.

The first thing we need to do is to create our policy-based autosign script. This script
needs to take the CSR, decode it, and look for any special data we’ve added. In the case of
this script, we’re going to be adding a special pre-shared key using a Puppet attribute.
Then, on the master, we’ll look for the presence of the key to indicate that the client is
authenticated.

This is a simple key held in a file, which is the word banana.

Let’s create our policy-based autosign script as /etc/puppet/autosign-policy.rb. Edit
the file on the master by adding the following content:

#1/usr/bin/env ruby

require "openssl"
include OpenSSL

csr = 0OpenSSL: :X509: :Request.new $stdin.read
atts = csr.attributes()

if atts.empty?

exit 1
end
key = nil

atts.each do |a|
if (a.oid=="extReq")
val = a.value.value.first.value.first.value

if val[0].value == "1.3.6.1.4.1.34380.1.1.4"
key = val[1l].value
end
end
end
if key == "banana"

print "Match\n"
exit 0

else
print "No match\n"
exit 1

end

Now let me give you a bit of explanation: the beginning of the script imports all the
necessary pieces. Once that’s done, we create an internal openssl object from stdin.
Once we have that, we start the magic!

If our cert doesn’t have any attributes, we exit. If it does, we search for an extReq
attribute. Once we find that, we grab it using the giant string gathered via trial and error.
I’m actually surprised that Ruby doesn’t have any helper methods to get that data. The
chained value and the first calls are really ugly!

Then we check whether our extension has the right object ID (oid). An oid is an element
of the SSL certificate request that contains information. Every field is contained within an
oid. In this case, it is one of the Puppet oid values that is used for a pre-shared key. We
save it in a variable.

Finally, we compare that value to our secret key, banana, and exit with the exit code o if it
matches. This tells Puppet to sign the certificate. Otherwise, we exit in a negative manner,
which is by using any exit code other than zero; we use 1 in our case.

Now that we have a script, we need to configure our master to use it. To do so, edit the
Puppet .conf file on the master. Add the following line under the [master] subsection:

autosign = /etc/puppet/autosign-policy.rb

We also have to make the policy script executable. To do so, issue this:

sudo chmod a+x /etc/puppet/autosign-policy.rb

Now that we’ve set up the master, let’s deal with some housekeeping. Rather than
reprovision the master, we’ll simply clean the certificates off the master and both of the
agents. To do this, issue the following commands on the master:

sudo puppet cert clean agentone.book.local
sudo puppet cert clean agenttwo.book.local
sudo rm /var/lib/puppet/ssl/ca/requests/*
sudo service puppetmaster restart

One or more of these commands may throw an error. That’s okay; we’re just being
thorough. Next, let’s destroy the agents so that our provisioner can add the secret key to
one of them. Issue the following commands on the host:

vagrant destroy agentone
vagrant destroy agenttwo

Now, we’ll create the magic for the agent systems. In the Vagrant directory, create a file
called secret.yaml, containing the following:

extension_requests:
pp_preshared_key: banana

Note

More information on the SSL extensions supported by Puppet can be found at

https://docs.puppetlabs.com/puppet/latest/reference/ssl_attributes_extensions.html#data-
location-and-format.

We’ll modify our Vagrant provisioner on one of our hosts to copy that file to the correct
location on the agent system. To do so, modify the agentone (ao) section of the
vagrantfile, and add the following after the first shell provisioner:

ao.vm.provision "shell", inline: "cp /vagrant/secret.yaml
/etc/puppet/csr_attributes.yaml"

Note that this should be on one line.

Go ahead and start agentone and agenttwo using the following commands:

vagrant up agentone
vagrant up agenttwo

Once they’re up, we’ll need to run Puppet on each of the nodes. When running on
agentone, you should see a somewhat more interesting output than before. It should look
something like this:

® OO0 chap5 — vagrant@agentone:~ — ssh — 99x21 e

jslagle@Jasons-...pbook/src/chap5 | vagrant@agentone:~

[vagrant@agentone ~]% sudo puppet agent --test

Notice: Finished cutﬁlog run in @.01 seconds
[vagrant®agentone ~]%

As you can see, Puppet picked up our additional attributes. Once they were included, the
agent signed the certificate.

Now, run the Puppet agent on agenttwo. You should see the old, familiar waitforcert
message, as we did not install the extra attributes on agenttwo.

This is a somewhat simplistic example, but it shows all the building blocks used to build a

https://docs.puppetlabs.com/puppet/latest/reference/ssl_attributes_extensions.html#data-location-and-format

policy-based signing system. The pre-shared key example can be extended to have
multiple keys.

Additionally, you could check whether this is a valid instance on the cloud, for example.
We could do this by having our policy script query our cloud provider’s API to look for
information on the instance requesting the certificate signing.

Summary

Since Puppet is so integral to the environment and has the ability to change the
configuration of any system, it is vital that we protect it from potential attacks.

Luckily, the default out-of-the-box configuration is very secure. However, if we wish to
approach advanced scenarios or extend Puppet, we might get into situations that warrant
changing defaults.

Additionally, as our environment grows and becomes more complex, it makes sense to
start to investigate ways to automate Puppet itself. Autosign has many tools available to
make this easier for us.

Now that we’ve secured the Puppet Master software, in the next chapter, we’ll move on to
examine how community-contributed modules can help us with security, as well as getting
us up to speed quicker. Then we’ll move on to cover network security, which can be used
to further restrict access to our Puppet master, thus further securing it.

Chapter 6. Community Modules for
Security

An open source tool is only as good as its community, and Puppet has a great one. Now
that we’ve covered the basics and you have a functional Puppet setup, including reporting,
we’ll move on to how you can quickly improve that infrastructure. In many ways, the
communities behind Puppet, right from the users to the vendors and sponsors, are what set
Puppet apart from its competitors.

In this chapter, we will explore community-maintained modules that assist with security.
There are a great number of modules available, so we’ll try to focus on some that have
good benefits or a module structure to model your own modules on. In particular, we’ll
cover the following in this chapter:

e The importance of the Puppet Forge

e The augeasprovider module by herculesteam, which allows you to use augeas to
manage a variety of files in a native Puppet manner

e The c1s module by arildjensen, which allows you to apply most of the Center for
Internet Security standards to a machine

e The sudo module by saz, used to manage sudo

e The hiera-eyaml gem, used to encrypt data in Hiera

By the end of this chapter, we should have a good toolkit to harden our hosts.
Additionally, we’ll have good understanding of where to go to look for modules.

The Puppet Forge

The Puppet Forge is a website run by Puppet Labs. It was born as a methodology for
system administrators and developers using Puppet to share their Puppet modules with
others. It can be found at http://forge.puppetlabs.com.

Over the years, the Forge has seen many improvements, in both its function as well as the
number of modules available.

At the time of writing this book, there are more than 3,000 modules on the Forge. These
modules include configuration of everything from MySQL to the Apache web server. Like
many community projects, however, the quality and support of these modules varies.

In the early days of the Forge, it was like the wild west. Many modules were posted, but
there were very lax standards on quality, and it was unknown whether a given module
would work on your OS.

On the quality front, the community and Puppet Labs have done a great job at encouraging
the community to adapt a set of standards and design patterns around modules. This
allows things such as Hiera to work in a predictable manner, and the old habit of forking a
module to make very minor changes is much less prevalent.

However, the problem of compatibility with both Puppet versions as well as various
operating systems still existed. To solve that, the Puppet Forge introduced additional
module metadata that can express those properties.

With the most recent modules on the Forge, you can quickly see which versions of Puppet
and operating systems are supported.

We’ll go on a brief tour of the Forge before looking at a few select modules. The Forge
itself is pretty easy to use, so we’ll keep this brief. The following screenshot shows the
Forge home screen:

http://forge.puppetlabs.com

806 APuppel Forge x L3

< c https:/ /forge.puppetlabs.com v B e mo =
2 puppet ' Publish a Module SignUp Logln
/\ forge -

Welcome to the Puppet Forge Papipet

A repository of modules written by our community for Puppet Open Source and Puppet Enterprise Supported

IT automation software
puppetlabs/ntp

Writing Great Modules S ——
Modules are reusable, sharable units of Puppet code. You can use modules to extend Puppet puppetlabs/postgresql
across your infrastructure by automating tasks such as setting up a database, web server, or mail puppetlabs/concat

sServer,
puppetlabs/tomcat

Learn more | View all

Read the Docs Check out Geppetto
If you're new to Puppet, we recommend Geppetto is an integrated development
the following: environment for Puppet. It provides
syntax highlighting, content assistance, Puppet
« Learning Puppet Guide 5 ; PP
error tracing/debugging, and code Approved
« Module Fundamentals cgmp[e‘[ion features.

« Beginner's Guide to Modules - all et

about writing modules TR FTvot ARG Soppetin

razorsedge/cloudera

sensu/sensu

The preceding screenshot shows how the front page of the Forge currently looks. We’ll
include some additional features further down the page later, but this is the meat of the

page.

At the top of the page, you’ll see a search box. This allows you to perform searches based
on keywords, authors, or metadata.

The main section of the page on the main site contains news and other information. At the
time of writing this book, it contained documentation about how to write a good module.
This contains some best practices and procedures used to produce reusable modules.

The section to the right contains two new areas. They are the Puppet Supported and
Puppet Approved modules.

The Puppet Supported modules are all the modules that are maintained by Puppet Labs.
These are fully supported under Puppet Enterprise. This means that when issues are found
with these modules, you can use the Puppet Labs support resources to assist you with
them.

All of these modules have very good platform coverage, as well as good design patterns.
Other than being great modules overall, they serve as a good place to get guidance on
design for your own modules.

The Puppet Approved modules were announced at PuppetConf 2014. These are modules

that are of exceptional quality, and while not officially supported, they are some of the
best modules available. They tend to have good platform support and adhere to the current

best practices.

At the bottom of the page are sections that contain information on recent releases as well
as a leaderboard of the top contributors.

Once you search for modules, you’ll receive a results screen that has some more options

worth pointing out. An example of such a screen is shown here:

'network’

Filters clear

Operating System
- Any =

Puppet Version
- Any -

Puppet Enterprise
Version

- Any -

Supported or
Approved

- Any -

8006 ASearchnemork-PuppE' x W

Found 100 modules matching

= C https://forge.puppetlabs.com/modules?sort=rank&g=network&pop

/\ PUPP

Search - network

adrien/network
Manage non-volatile network configuration
< 10,446
Version 0.4.1 « Aug 17, 2013 Current version: 7,626
attachmentgenie/network
Puppet network Module
<. 1,668

Version 1.1.2 « Jul 3, 2014

Current version: 224
ajjahn/network

Module for provisioning (Physical) Network Interfaces
< 898

Version 0.1.1 « Feb 12, 2013 Current version: 898

Relevancy | Latest release | Most Downloads

h—4
|

hE O RTE

Publish a Module Sign Up Login

Puppet
Supported

puppetlabs/ntp
puppetlabs/inifile
puppetlabs/postgresgl
puppetlabs/concat

puppetlabs/tomcat

Learn more | View all

Puppet
Approved
pdxcat/collectd
razorsedge/cloudera

sensu/sensu

rrvularfianbine

Weq
Spr

In the center of this section, you’ll find the search results, but the real magic is to the left.

The filter area allows you to narrow down your search for modules. It currently works
only with modules that provide metadata, but it allows you to filter by a number of

options.

You can also search for modules using the search command in the modules’ faces on the

command line. To do this, we issue a command such as the following:

sudo puppet module search network

Replace network with whatever term you happen to be searching for. When we run this
command, we’ll see something similar to what is shown in the following screenshot,
showing us some details about the modules:

puppetlabs-boundary
tuxomatic-ovhipfailover
saz-dnsmasq
davidcollom-serf
ingent-bind

thias-npd6

panaman=bro
sebnow-cjdns
gerapeldoorn-nordicedgeotp
jbussdieker-activemq
jbussdieker-mcollective
Flameeyes-gentoo
mthibout-mutual_trust
copperfrog-tinydns
BenoitCottie-keepalived
dcsobral-heartbeat
glarizza-solarisnic
sapfeer@k-ucarp
Flameeyes-udevnet
ajjahn-puppet_dns
ghoneycutt-snmp
ghoneycutt-syslog_ng
ghoneycutt-nmap
ghoneycutt-openfire
ghoneycutt-cobbler
Campadrenalin-cjdns
ghoneycutt-dhcp
ghoneycutt-samba
ghoneycutt-x11
AbbyEdwards-iprouteZfacts
DovidSchmitt-dnsmasq
nico-heartbeat
rismoney-windowsnetwork
strangeloop-sshjump
ghoneycutt-tftp
ajjahn=puppet_dhcp
ajjohn=-puppet_samba

cprice4@4-connection_validator

[vagrantBpuppet ~1%

vagrant@puppet:~

Boundary meter module

Metwork interface and OVH IP faoilov...

UNKNOWN

Manage BIND and its master DNS zones

HNeighbor Proxy Daemon for IPvE module
Module to install Bro Network Secur...
This module installs and configures...
install the NordicEdge OTP server a...

ActiveM) Module

Mcollective Module

General Gentoo Linux configuration
UNKNOWN

Puppet module to instontiate a tiny...

UNKNOWN
UNKNOWN
udev persistent netw
Module for provisioning DNS (bind2)

This module installs and configures...

IP address information from iproute...

Puppet Network Provider and Type fo...

Module for provisioning DHCP
Module for provisioning Somba

Resource type for validating networ...

k names with ...

chapb — vagrant@puppet:~ — ssh — 120x39

@puppetlabs
Btuxomatic
@saz
Bdavidcol lom
Eingent
@thias
Epanaman
Esebnow
@gerapeldoorn
Bjbussdieker
Bjbussdieker
BFlameeyes
@mthibaut
Ecopperfrog
@BenoitCattie
Bdcsobral
8glarizza
Bsapfeerdk
EFlameeyes
Bajjahn
Bghoneycutt
Bghoneycutt
Bghoneycutt
Bghoneycutt
Bghoneycutt
E@Campadrenalin
Bghoneycutt
Eghoneycutt
Bghoneycutt
BAbbyEdwards
@Davidschmitt
Bnico
@rismoney
Bstrangeloop
Bghoneycutt
Bajjahn
Bajjahn
Bcpricedds

18 "k probe
ha ovh network
redhat dns dhcp
serf linux
bind dns initr
centos rhel ipvé
monitor network bro
networking
otp mcafee rhel vpn
ubuntu gueue
uburtu networki
gentoo net
networking security
ubuntu dns
keepalived ipvs
utilities ha
network route
centos ucarp
gentoo network udev
bind dns bind9 name
monitoring snmp
syslog syslog-ng
nmap security
jobber xmpp
pxe dhcp cobbler
dhcp cobbler
samba windows
x x11 headless
facter iproute
dns dhcp dnsmasg
heartbeat

k tepip ip
proxy utilities ssh
xinetd tftp
ubuntu dhcp dhcpd
ubuntu samba smb

k validate

You can see that the output includes the name of the module, a short description, the name
of the author, and a list of keywords that apply to the module.

Once you have identified a module, we can install it with the puppet module face. We’ve
seen how to do this in previous chapters, and we’ll show it later in this chapter.

Additionally, instructions can also be found on any specific module page.

Now that we’ve explored the Forge, let’s start looking at the modules we want to focus on.
First up is the augeasproviders suite of modules.

The herculesteam/augeasproviders series
of modules

The first module we’ll explore is a swiss army knife of sorts. It started as a single module,
but over time has become a series of modules. This is the augeasproviders module,
originally by domcleal, but now maintained by herculesteam.

These modules use augeas to implement types and providers. Types and providers are the
native Puppet interfaces for managing resources. They’re written in Ruby and have
considerably more power in how they manage the underlying resources compared to the
built-in Puppet types they replace. They also add additional types for many other
resources such as entries in the SSH configuration file, or management of the Apache web
server configuration file.

Augeas is a configuration file editing tool. It parses configuration files into an internal tree
and then allows you to use commands to manipulate that tree. Once changes are made, the
file can then be written back out. This allows you to modify just part of a configuration
file without internally parsing the entire file.

Once in augeas, there are a set of commands that can be used to modify the configuration
in the file. Sections can be added, deleted, or even rearranged.

The advantage over the native method of managing these resources as entire files is that
the augeas-based providers support editing a file by several different modules.
Additionally, they will leave the structure and comments in the files intact, which can ease
readability and preserve OS defaults that you may not intend to change in your module.

When managing a file such as the Puppet configuration file, if separate modules need to
add configuration options, coordination between those modules can become difficult. The
file_line resource and other resources aim to address some of that, but augeas is a
perfect solution to those problems.

The augeasproviders modules implement types and providers for more than 15 different
configuration formats. Some of the more important security-related ones are as follows:

Provider

Description |

kernel parameter This manages passing kernel parameters to the grub or grub2 configuration files

pam This manages pam authentication configuration
shellvar This allows management of any shell configuration file

sshd_config

puppet_auth ||This manages the Puppet auth. conf file
||This manages the sshd_config file sections

sshd_config_subsystem|This manages the SSH subsystems such as SFTP

||SySCt1 ||This allows Linux sysctl management |

syslog ||This allows management of the syslog configuration

These providers expose native Puppet types for the configuration in question. For
instance, let’s look at an example of using the puppet_auth type based on work performed
in the last chapter. As you may recall, we added the following entry to auth.conf:

path ~ A/file_(metadata|content)s?/agentone/
allow agentone.book.local

We can handle that using the augeasproviders type by adding a resource like the
following to a Puppet manifest:

puppet_auth { '"Allow agentone':

ensure => present,
path => 'A/file_(metadata|content)s?/agentone/"',
path_regex => true,
allow => 'agentone.book.local',
authenticated => 'yes',
ins_before => 'path[allow][. = "/file"]"',
}

By using these resources, you can build the authentication configuration in a much more
automated fashion than managing the file as a whole. Using the power of exported
resources, you could even have various modules register needed mount points.

This and many of the other modules in this series are very popular. Much more
information can be found at the website of the module, http://augeasproviders.com.

Let’s look at a more complete example for securing SSH.

http://augeasproviders.com

Managing SSH with augeasproviders

Managing the SSH configuration of a host is often done with just a template or a flat file.
However, as the configuration gets more complex, it makes sense to try to manage this in
a more organized fashion.

This also has the advantage of being more flexible, as noted earlier. You could have a
development server role that allows users to log in with passwords, while your main
production server only allows for key-based login. Doing this with file-based management
involves using facts and variables to determine this at the time the template would be
written, which can be very difficult to do correctly.

To do this, we’ll use the sshd_config type and provider from the augeasproviders
module. We perform the following steps:

1. Let’s go ahead and start up our VM. We can start where we left off at the end of the
previous chapter, or use the code included with the book and follow along.

2. In either case, let’s go ahead and use vagrant up to start our three VMs.

3. Now, we need to get the modules needed installed on the master. Let’s go ahead and
install the module. We’ll only install the sshd_config module instead of the entire
suite.

4. To do so, on the Puppet Master, issue the following command:

sudo puppet module install herculesteam-augeasproviders_ssh

Once complete, the output is as follows:

® 00 chap6 — vagrant@puppet:~ — ssh — 99x12 -

Notice: Preparing to install into /etc/puppet/modules ...
Notice: Downloading from https://forgeapi.puppetlabs.com ...
Notice: Installing -- do not interrupt ...
/etc/puppet/modules

L— herculesteam-augeasproviders_ssh (vZ2.0.8)
L~ herculesteam-augeasproviders_core (v2.0.1)

L— puppetlabs-stdlib (v4.3.2)
[vagrant@puppet ~]%

As you can see, it installed two additional modules. The first is the
augeasproviders_core module, which contains some methods used by the other
modules. It also includes std1lib, which much like the C standard library contains a series
of useful utility functions, such as validation functions for parameters and various type
conversion functions.

Once these modules are installed, we can start to configure our sshd_config module.

Remember way back in Chapter 1, Puppet as a Security Tool, we made some changes to

the sshd_config file in order to prevent root login and set the maximum authentication
attempts. We’re going to re-implement these changes via this module. This allows us to
more easily create per host configurations, and use methods such as exporting resources to
manage the configuration.

To begin, let’s dust off our old openssh module from Chapter 1, Puppet as a Security Tool.
We’ll modify that module to use the augeasproviders module instead of using the flat
file.

First, let’s go ahead and remove the files directory from that earlier module and start to
modify the init.pp file to manage this. As previously mentioned, we’d usually use
multiple files for the manifest. We will look at a complete example at the end of this
section.

Go ahead and edit the init.pp file from that same module and delete the file-related
sections of the module, leaving the content looking as follows:

class openssh {
package { 'openssh-server':
ensure => 'latest',
}
service { 'sshd':
ensure => 'running',
}
3

Now we can go ahead and start using the augeasproviders types to modify the existing
configuration. Between the package and the service, let’s add our commands to the
manifest to manage just the SSH configuration settings we are concerned with.

Where the file section of the manifest was present, let’s add the following:

sshd_config { 'PermitRootLogin':
value => 'no',
notify => Service['sshd'],
require => Package['openssh-server'],

3
sshd_config { 'MaxAuthTries':

value = '3',

notify => Service['sshd'],

require => Package['openssh-server'],
¥

Notice how we also moved the dependency information into our configuration stanza.
This eliminates the need to use the dependency chain we had in the file before, which is
why it was removed in the preceding code.

Now, let’s add it to our default manifest so it’ll run on our agent nodes. Edit the
/etc/puppet/manifests/site.pp file. Add the following lines:

node default {
include openssh

}

Now, we need to run our code on one of our agent boxes. Connect to agentone and run
Puppet. Remember to sign the certificate if necessary—see Chapter 5, Securing Puppet, if
you need a reminder of how that works.

Once that is complete, you’ll see a whole bunch of plugins get synced down to the client,
and when it completes, the output will look like the following:

& 0O 0 chapb — vagrant@agentone;~ — ssh — 99x31

vagrant@puppet:. .puppet/modules [_ _‘{qg{r_n_gt_@agg ntone:~ |

' {md5}@94ac110cedf 7a5b16d0cBBabcf2243c" =
Notice: /File[/war/1lib/puppet/lib/puppet/provider/sshd_config]/ensure: created
Motice: /File[/var/lib/puppet/1ib/puppet/provider/sshd_config/augeas.rb]/ensure: defined content as

' {mdS}ec5al197@f4f44e08e266d62d138f0e94’
Notice: /File[/var/lib/puppet/lib/puppet/parser/functions/getvar.rb]/ensure: defined content as '{m
d5}18bf744212947bcba7bfd2c9836dbd23’
Notice: /File[/var/lib/puppet/lib/puppet/parser/functions/strftime.rb]/ensure: defined content as
{md5}e@2e@1a598ca5d7dbeeelba22440304a"
Notice: /File[/war/lib/puppet/1ib/puppet/parser/functions/chop.rb]/ensure: defined content as '{md5
}4691a56e6064b792ed4575e4ad3f3d20"
Notice: /File[/war/1ib/puppet/lib/puppet/parser/functions/is_float.rb]/ensure: defined content as '
{md5}10e@d3ecf75faclSe415aee/Sacf7ddc’
Notice: /File[/var/lib/puppet/lib/puppet/parser/functions/parsejson.rb]/ensure: defined content as
' {md5}e7f968c34928107b84cd@86@dafS5@abl '
Notice: /File[/var/1ib/puppet/1ib/puppet/parser/functions/validate_cmd.rb]/ensure: defined content
as '{md5}78fd21cb3fc52efc3b53baZb3301dels’

L]

Nutic /Stage[maln]fﬂpEHSShISShd con _g[HuxAu Trlesjfensure creuted) .

ﬁcti&e fStage[mainjfﬂpensshf&shd ccnf1g[Permltﬁoothgtn]fensure created
Hotiﬁe fStage[maln]fﬂpensshﬁSePVIce[sshd Trtggered reFresh from 2 events
Notice: F1n15hed catulog run in 1 25 secunds

[vagrant®agentone ~]$

As you can see, we’ve now made the changes to the configuration file. As a test, go ahead
and modify one of the other configuration items in /etc/ssh/sshd_config. Additionally,
change MaxAuthTries to a higher value such as 8. Run Puppet again, and notice it only
changes the one value back, like the following:

® 00 chap6é — vagrant@agentone:~ — ssh — 99x 14 o

vagrant@puppet:...puppet/modules] vagrant@agentone:~ |
[vagrant®agentone ~]% sudo puppet agent --test

thlce .f’Stage[mmn]poensshszhd conF'Lg[l'ﬂaxA.thTrtes].-’value value changed ['8'] to '3‘

Notlce /Stage[mmn]poensshfSer'mce[sshd] Tr-1gger'ed reFresh' Fr'om 1 events
Notice: Finished catalog run in @.66 seconds
[vagrant@agentone ~]%

As you can imagine, that’s pretty powerful, since we can keep the OS level settings and
just change what we need changed. You can also move logic relating to configuration into
the module that uses it, as opposed to trying to centralize it in the module writing a
monolithic configuration file. You can parameterize the values of the various pieces of the
configuration using this method as well, either using the traditional approach of creating a
parameter for each tunable, as I do in the module referenced in the following section, or
using the newer augeasproviders instances class, which allows you to pass an entire hash
of augeas configuration data into the module. More information on that can be found at
the URL for augeas provided in the preceding section.

Note

For a more complete example of a module that manages this via augeasproviders, see
https://github.com/jmslagle/jslagle-ssh.

https://github.com/jmslagle/jslagle-ssh

The arildjensen/cis module

The next module we’ll take a look at is the cIS module by arildjensen. This module
implements the Center for Internet Security benchmark standard for RHEL 6. In terms of
support, this module lags a bit since it only supports Red Hat 6-based operating systems.
However, it can serve as a great base for building your own module for another Unix-
/Linux-like operating system.

The CIS benchmarks are a set of configuration standards that establish a baseline or
benchmark for a secure system. It is a widely used and accepted set of standards,
referenced in the PCI DSS standards and others.

The CIS benchmarks exist for a variety of operating systems and applications, including
VMware, Apache Tomcat, and others.

Note

For more information on the CIS benchmarks, see
http://benchmarks.cisecurity.org/downloads/benchmarks/.

The arildjensen/cis module implements the security benchmark for Red Hat 6 systems.
It implements each of the individual controls as facts or manifests. We’ll look at an
example of its use.

Out of the box, the module contains a module that enables all of the controls. This module
is called a composition module that merely includes all of the other needed classes to
enable the controls in question. In many cases, this is sufficient, but it can also be used as
a basis for creating a custom limited set of controls in your own composition module. This
is just a normal Puppet module that includes the classes (in this case, the individual
controls) we are concerned with.

We’ll look at an example of doing that now. First we need to get the module installed. To
do that, we use what should be a familiar process by now. Issue the following command
on the Puppet Master:

sudo puppet module install arildjensen-cis

We’ll see the familiar output:

® 0O 0O chapb — vagrant@puppet:/etc/puppet/modules — ssh — 99x7 "

vagrant@puppet:...puppet/modules vagrant@agentone:~

[vagrant@puppet modules]$ sudo puppet module install arildjensen/cis B
Notice: Preparing to install into /etc/puppet/modules ...

Notice: Downloading from https://forgeapi.puppetlabs.com ...

Notice: Installing -- do not interrupt ..

/etc/puppet/modules
L— arildjensen-cis (v0.2.8)
[vagrant@puppet modules]$

Now that it’s installed, we’ll go ahead and build our own custom composition module

http://benchmarks.cisecurity.org/downloads/benchmarks/

using this module.

For our exercise, we’ll choose just a small handful of the controls. There are nine different
sections of the benchmark, each with a varying number of controls. Going through each
one for our exercise here would easily take the rest of the chapter, so we’ll build a small
subset.

For our example, we’ll configure the settings from section 2 and section 4.2 of the CIS
benchmarks document. A link to that document is found later in the chapter. This will give
us sufficient controls to see how the module works and see it in action. In production, you
would want to review the CIS benchmarks and see which of the benchmarks you would

apply.
We’ll build our own module to do this. So, let’s start by creating a module scaffold.

First, let’s create the module. Issue the following command in the Vagrant home directory
on the master to create a module scaffold:

puppet module generate pupbook-ourcis

You can accept the defaults for pretty much everything. You can add a description if you
wish, and set the other fields to N/A.

Next, let’s modify the metadata to add the dependency. Edit the metadata. json file and
make the dependency section look like the following:

"dependencies": [
{"version_requirement":">= 1.0.0", "name":"puppetlabs-stdlib"},
{"version_requirement":">= 0.2.0","name":"arildjensen-cis"}

]

Now, let’s handle our init.pp file. In this case, it’s just going to include all of the CIS
module files that we need. When complete, it should look as follows:

class ourcis {

include cis::el6::2_1_1 # Remove telnet server
include cis::el6::2_1_2 # Remove telnet client
include cis::el6::2_1_3 # Remove rsh server
include cis::el6::2_1_4 # Remove rsh client
include cis::el6::2_1_5 # Remove NFS client
include cis::el6::2_1_6 # Remove NIS server
include cis::el6::2_1_7 # Remove tftp

include cis::el6::2_1 8 # Remove tftp server
include cis::el6::2_.1_9 # Remove talk

include cis::el6::2_1_10 # Remove talk server
include cis::el6::2_1_11 # Remove xinetd

include cis::el6::2_1_12 # Disable chargen UDP
include cis::el6::2_1_13 # Disable chargen TCP
include cis::el6::2_1_14 # Disable daytime UDP
include cis::el6::2_1_15 # Disable daytime TCP
include cis::el6::2_1_16 # Disable echo UDP
include cis::el6::2_1_17 # Disable echo TCP
include cis::el6::2_1_18 # Disable tcpmux server
include cis::el6::4_2_1 # Disable source routed packets
include cis::el6::4_2_2 # Disable ICMP redirect

Disable Seucure ICMP redirect
Log suspicious packets

Ignore broadcasts

Ignore bogus ICMP

Enable source validation
Enable SYN cookies

include cis::el6::4
include cis::el6::4
include cis::el6::4
include cis::el6::4
include cis::el6::4
include cis::el6::4

}

Save the file. The preceding code just includes the main module. Then, copy the entire
module to the modules tree. Remember we’ll need to rename it to just be ourcis. You can
use the following command to do so:

H oH OH H HFH

sudo cp -a pupbook-ourcis /etc/puppet/modules/ourcis

And now let’s apply it to our default node. Add an include line for our module there as
follows:

include ourcis

Now for the big reveal. We’ll go ahead and run Puppet on one of our agent nodes using
sudo puppet agent --test. It will sync over a bunch of additional facts and then run.
Once it completes, the output will look as follows:

8 0 6 chapb6 — vagrant@agentone:~ — ssh — 99x32
- vagrant@puppeti~ | vagrant@agentone~ | . =

-kernel .msgmax = 65536

-# Controls the maximum shared segment size, in bytes
-kernel.shmmax = 68719476736

-# Controls the maximum number of shared memory segments, in pages

-kernel.shmall = 4294967296

+fs.suid_dumpable = @

+kernel.exec-shield = 1

+kernel. randomize_va_space = 2
.ipv4.conf.all,send_redirects=0
.ipv4.conf.default.send_redirects=0
.ipv4.conf.all.accept_source_route=0
.ipv4.conf.all.accept_redirects=0
.ipv4.conf.all.secure_redirects=0
.ipv4.conf.all.log_martians=1
.ipv4.conf.default.accept_redirects=0
.ipvé4.conf.default.secure_redirects=0
.ipvé4.icmp_echo_ignore_broadcasts=1
.ipvé4.icmp_ignore_bogus_error_messages=1
.ipvd.conf.all.rp_filter=1
.ipvéd. tcp_max_syn_backlog=4896

::Linuxcontrols: :C@@15/File[/etc/sysctl.conf]/content: content changed '{md
5}c9?3390f??1c844?b9Fc23399b428dﬂF' to "{md5}9b41067bf1924clcd4df7fbelf2c5100"
Notice: /Stage[main]/Cis::Linuxcontrols::(@@15/File[/etc/sysctl.confl/mode: mode changed '@644' to
Iml
Notice: Finished catalog run in 42.42 seconds
[vagrant@agentone ~]3%

And ta-da! It has enforced the required parts of the CIS benchmarks.

This module makes it very quick to get a system up to speed with the benchmarks. It could
fairly easily be extended to handle other operating systems using the generic Linux
controls. The abstraction is a bit odd, so it’ll take some work to untangle, but it’s much
easier than starting from scratch.

Note
For more information on the puppet-cis module, refer to the following link:

https://forge.puppetlabs.com/arildjensen/cis

Now we’ll take a look at the sudo module to handle configuring your sudoers file.

https://forge.puppetlabs.com/arildjensen/cis

The saz/sudo module

The next module on our module examination journey is the saz/sudo module. This
module presents a great methodology to manage the sudoers file. It is actually used by a
large number of other modules for sudoers file management.

The module itself is fairly simple, so this section will be short as we go over it.

The sudo module manages all aspects of your sudoers configuration, which can catch
some people by surprise. The module has options to leave the system configuration alone,
as well as not purging unmanaged sudoers entries. The recommended path is to manage
all the sudoer resources; however, the options are there if needed.

To install the sudoers module, we’ll issue the following command:

sudo puppet module install saz-sudo

We’ll now create a few simple rules. But, before we do so, we need to take a look at the
/etc/sudoers file. If you look at it, at the very bottom, you’ll see an entry for Vagrant. We
must make sure we preserve this entry or we will cause Vagrant to stop working. This
entry is what Vagrant uses to do system provisioning.

That being said, the most prudent course of action is to implement the current system rules
before we add anything custom.

This is another situation where normally we’d use a module. However, for simplicity,
we’re just going to add the rules into the site.pp file. This allows us to quickly model the
desired configuration for the book. However, in production, that does not scale very far, so
just don’t do it. Your co-workers will thank you.

Let’s edit our site.pp file and add rules that match the current sudoers file. We need to
add a single rule since there is one non-default entry present in the sudoers file. The first
entry is a default system entry that allows root to use sudo. The other is the custom entry
that Vagrant uses. They are as follows:

root ALL=(ALL) ALL
vagrant ALL=(ALL) NOPASSWD: ALL

In addition, the Vagrant configuration requires that we have the required TTY setting set
to false for the Vagrant user using sudo. This is not the default on Red Hat-based systems
because it can allow for unsafe practices if a user executes sudo over a non-interactive
SSH session. However, since Vagrant is relying on passwordless sudo to do its
provisioning, we must allow that user to use sudo with no TTY. We’ll need to account for
this in our configuration also.

Recreating this in the sudo module turns out to be fairly simple. Add the following to the
site.pp file:

include sudo
sudo::conf { 'vagrant':
content => "Defaults:vagrant !requiretty\nvagrant ALL=(ALL) NOPASSWD:

ALL",
}

The Vagrant content line should be contained on a single line.

Once it’s done, run Puppet. It will change a variety of files, and when complete, give
output similar to the following:

CHENS) chapb — vagrant@agentone:~ — ssh — 104x32

(O vagrant@agentone~ |

Preserving HOME has security implications since many programs
-# use it when searching for configuration files. Note that HOME
-# is already set when the the env_reset option is enabled, so
-# this option is only effective for configurations where either
-# env_reset is disabled or HOME is present in the env_keep list.
+# use it when searching for configuration files.

#

Defaults always_set_home

vagrant@puppet:~

@@ -116,4 +113,3 @@

Read drop-in files from /etc/sudoers.d (the # here does not mean a comment)
#includedir /etc/sudoers.d
-vagrant ALL=CALL) NOPASSWD: ALL

Notice: /Stage[main]/Sudo/File[/etc/sudoers]/content: content changed '{md5}411c45100714188d6d4@a3298a29
9bb3’ to '{md5}4093e52552d97029d@A3c645F15F9372"

Notice: /Stage[main]/Main/Node[default]/Sudo::Conf[root]/File[10_root]/ensure: created
Notice: /Stage[main]/Mai o: :Conf[vagrant]/File[1@_vagrant]/ensure: created

Motice: /Stage[main]/Main/Node[default]/Sudo: :Conf[vagrant]/Exec[sudo-syntax-check for file /etc/sudoers
.d/1@_vagrant]: Triggered 'refresh' from 1 events

Motice: /Stage[main]/Main/Node[default]/Sudo: :Conf[root]/Exec[sudo-syntax-check for file /etc/sudoers.d/
10_root]: Triggered 'refresh' from 1 events

Motice: Finished catalog run in 1.81 seconds

[vagrant@agentone ~]%

Notice that the Vagrant entry was removed from the file (see the - entry); however, we
added a new file called 10_vagrant. This contained the rule we created in the preceding
manifest.

It’s worth noting that we could have used the config_file_replace option in the sudoers
class to tell the module to not replace the default configuration file. In this case, adding
our entry for Vagrant would have been unnecessary. Replacing the file has the advantage
of ensuring that this important security-related file is consistent on all of your systems.

Now that we have the base down, we’ll add one more sudo rule to the file. In this case,
we’ll allow the Puppet user to run puppet agent -test without a password. We might
use this rule in the case of having an automated system that populates the Puppet
repository once tests pass. In this case, you would want to be able to force a Puppet run on
a child system. The sudo rule to do this looks like the following:

puppet ALL=NOPASSWD: /usr/bin/puppet, /usr/local/bin/puppet

To translate that to a sudo manifest item, the content just becomes the preceding code. As
such, you end up with the following:
sudo: :conf { 'puppet_puppet':

content => 'puppet ALL=NOPASSWD: /usr/bin/puppet,
/usr/local/bin/puppet’',

}

Note that the content line should be one line.

When you run it, you will see the appropriate file appear under the /etc/sudoers.d/
directory.

Using that methodology, we can pragmatically manage our sudoers files to ensure the
records we want on a host are present, and in most cases, only those items. This is a huge
benefit from a compliance standpoint. Even if someone adds an entry, it will be removed
at the next Puppet run.

Note

If you want more information on this module, it can be found at
https://forge.puppetlabs.com/saz/sudo. It contains documentation on the module as well as
some examples.

https://forge.puppetlabs.com/saz/sudo

The hiera-eyaml gem

The last module we’re going to look at in this chapter is not a module at all. It’s actually a
gem that installs an extension for Hiera.

As you recall from earlier, Hiera is a hierarchical data store which allows us to separate
our data from our code. For instance, it lets us move the NTP servers we’re using out of
the manifests.

It supports a wide variety of methods to create a hierarchy, which allows us to supplement
or override configuration data needed by various modules.

In fact, several of the modules we’ve looked at earlier in this chapter have great Hiera
bindings. Modules with strong Hiera bindings are constructed in a manner that allows the
configuration of the main class to be passed in as parameters. Puppet can query Hiera to
get the values of these parameters, allowing us to override them without changing Puppet
code.

Of the modules covered in this chapter, CIS can use Hiera to configure items such as log
servers or NTP servers. The sudo module allows configuration of the sudoers file
completely within Hiera by overriding and extending certain values.

One of the downfalls of Hiera out of the box is that it does not present a good way to
handle secure data as the value is stored in files unencrypted. A compromise of that data
store, which is likely present in version control, could lead to a compromise of sensitive
data such as keys.

There have been a couple of attempts to solve the secret data problem. The first was
hiera-gpg. It allows you to GPG encrypt an entire Hiera data file.

While this solved the secret data problem, it came with manageability issues. Without
decrypting the file, you couldn’t easily tell what keys were present in the file. It also made
tracking changes difficult. Finally, it was tricky to set up and use, involving getting GPG
set up and working and manually encrypting files. Additionally, since all of the entries
were encrypted, it was not easy to separate our duties. If you had access to decrypt the file
to edit it, you would be able to edit every entry in the file.

The hiera-eyaml module was created to address some of these issues. It uses an inline
encryption algorithm that allows the non-secret parts of the files to stay in plain text. It
also comes with utility commands to decrypt the file and launch an editor. For these
reasons, it is much easier to use than gpg-yaml.

We’ll show a short example of its use here, but to do so we need to set up Hiera first.

Since Puppet 3, Hiera has become a built-in default for Puppet data. Therefore, to use it,
we only need to create the appropriate data file.

To do so, let’s create the directory where we’ll store our data files. Run the following
command:

sudo mkdir /etc/puppet/hieradata

Now, we’ll create the configuration file. To do so, we’ll edit /etc/puppet/hiera.yaml
and add the following contents:

:backends:

- yaml
ryaml:

:datadir: /etc/puppet/hieradata
:hierarchy:

- "%{::fqdn}"

- common
This will configure Puppet to use the directory we created previously as the data directory,
and enable two levels of the hierarchy: they are the FQDN of the host and then a common
file. We now need to restart the Puppet Master with sudo service puppetmaster

restart.

To demonstrate Hiera’s use, let’s make a quick module that takes a single parameter. To
keep it brief, we’ll just show the command and then the edits.

First run the following:

puppet module generate pupbook-hieraexample

In this case, we can accept all the defaults. We’ll edit the init.pp file and make it look as
follows:

class hieraexample($secret = 'nope' {
file { '/tmp/secret':
ensure => present,
content => $secret,

}
}
This will simply write a file with the content out. Copy the module into the
/etc/puppet/modules directory named hieraexample. Now we need to add it to our
site.pp file. Edit the /etc/puppet/manifests/site.pp file and include the new module
with include hieraexample.

Let’s run it on the master and see what happens. Since we’ve not run on the master yet,
you’ll see a bunch of things run when you run it. Once complete, if you check the content
of the /tmp/secret file, it should contain our default, the word nope.

Now, let’s make a Hiera common data file to contain a more appropriate value. Edit
/etc/puppet/data/common.yaml and make it look like this:

hieraexample::secret: "yup"

Now, rerun Puppet again and you should see that it changed a file. The contents of the file
will now also contain the word yup. This is really cool, as now we don’t need to keep that
data in our manifests or modules.

Moving on, we now need to install the hiera-eyaml plugin and configure it for use. Let’s

start by installing the gem on our Puppet Master machine. We’ll use Puppet to install the
gem for us, additionally demonstrating that Puppet has the ability to handle package
installation via gem. To do so, issue the following:

sudo puppet resource package hiera-eyaml ensure=installed provider=gem

Here we used the Puppet resource face to create a command-line-based resource for our
package, passing the arguments we needed to get it installed. This can be useful as it can
abstract away package installation if you handle a variety of operating systems such as
Solaris and Linux. As long as you know the package name, and it’s present in a default
repository, Puppet can install it.

When complete, this will output information on the package, which should show the
version that was installed.

We need to do some key generation. Let’s go ahead and do that using the following
commands:

eyaml createkeys

sudo cp -a keys /etc/puppet/

sudo chown -R puppet:puppet /etc/puppet/keys
sudo chmod 0400 /etc/puppet/keys/*.pem

sudo chmod 0500 /etc/puppet/keys

This will copy the keys to a suitable location and then secure them. If you were using
version control, you would want to exclude the keys directory from being added to version
control to protect the private key.

Now we need to make our Hiera setup use our new super fancy encrypted backend. To do
so, edit /etc/puppet/hiera.yaml and make it look as follows:

:backends:
- eyaml
- yaml
ryaml:
:datadir: /etc/puppet/data
reyaml:
:datadir: /etc/puppet/data
:pkcs7_private_key: /etc/puppet/keys/private_key.pkcs7.pem
:pkcs7_public_key: /etc/puppet/keys/public_key.pkcs7.pem
:extension: 'yaml'
:hierarchy:
- "%{::fqdn}"
- common

The changes we made here were to include the backend. Then we configured it to use the
data datadir as the other backend, and to use the yaml extension. We also had to point it
at our private key.

Now, remember we need to bounce the Puppet Master since we made changes to the
hiera.yaml file. To do that, issue sudo service puppetmaster restart.

So now let’s edit an encrypted Hiera data file for one of our hosts. We’ll do this in our

directory then copy it in.

The Hiera editor doesn’t seem to support handling empty files, so first let’s just use echo
to get a header on the file, then edit it with eyaml by doing the following:

echo "---" >agentone.book.local.yaml
eyaml edit agentone.book.local.yaml

Now, in this file, let’s edit the content to look as follows:

hieraexample: :secret: DEC: :PKCS7[sup3rs3kr37]!

Notice how we have the DEC: : PKCS7 line with brackets. The eyaml backend will encrypt
anything present in those brackets. In this case, we’re using the static text sup3rs3kr37.

Note

YAML and hiera-eyaml also support multiline data. More information on YAML
formatting, in particular how to handle multiline data, can be found at

http://www.yaml.org/spec/1.2/spec.html#id2760844.

Once you complete editing the file, take a look at the contents. They should look similar to
the following code (but they are different since we have differing keys):

hieraexample: :secret:
ENC[PKCS7,MIIBeQYJKoZIhvcNAQcDoIIBajCCAWYCAQAXggEhMIIBHQIBADAFMAACAQEWDQY JK
0ZIhvcNAQEBBQAEggEAarwv06zbXQm+8qOL5XLpkffgikvnWHGHTeynEVNiXy/YT8FpiMItfYPm
OTDJ1AB/L6t0OXBngN3Wxg0gG60YWKkNhVKi500UudOdKP5GNZaU3RcCAuJ1RvcwlyZ+jCGQOVOW7
/nfiQTJI6S2muuqlCoAuqvA9GTaZLKAEUUXGSTu3XYt5k0/adngsQxLShtns5atWgnBw9zUVmI712
BL750svc3UUUWWPgpzfmINT4up/0OyIKFNG2ykFPOAHcAhLQt2/ALPZUDTOI68WO00OBTPFASwWkwD
PyDZb1PP1hfyzfBfmZztzmB6RNiOaUevsSI12H3HKb8VvNHBCWTVPXgQMRBFOHjA8BgkghkiGOweB
BWEWHQYJYIZIAWUDBAEQBBB98Wid9hcLrsFThbX1th47XgBDmiwWtMUM1Ho/DG7CS2elLVU]

Notice how the DEC part has become ENC, and the value has become much longer. This is
the encrypted version of our preceding key.

Now, copy the file into /etc/puppet/data.

Let’s rerun the Puppet agent on the master to see what happens. There should be no
changes to the file since it’s still pulling its data from the common Hiera data file.

However, when you run Puppet on agentone and check the contents of the /tmp/secret
file, they should contain our secret word.

As you can see, hiera-eyaml presents a good solution to handle any data you don’t want
publicly visible. You can use it to store things like passwords and keys that you do not
want publicly visible in your code repository.

Note

If you want more information on Hiera, please see https://docs.puppetlabs.com/hiera/1/.
More information on hiera-eyaml can be found at https://github.com/TomPoulton/hiera-

eyaml.

http://www.yaml.org/spec/1.2/spec.html#id2760844
https://docs.puppetlabs.com/hiera/1/
https://github.com/TomPoulton/hiera-eyaml

Summary

The Puppet community is a wonderful resource that can make your life much easier. When
looking to automate a given piece of your infrastructure, it makes perfect sense to go look
at the Forge to see if someone else has made a module to configure the application or
infrastructure piece you are looking to automate.

Even if the module does not support your operating system, concentrating work on
extending an existing module to support more operating systems or features betters the
community as a whole.

Picking modules to review here was actually really difficult. There are so many good
modules to choose from on the Forge.

To summarize, in this chapter, we explored modules that provided types and providers for
use in configuring files. These modules allow us to manage things we would previously
have managed as files using native Puppet types.

We then looked at the cis module to harden Red Hat 6 systems. This module is an
example of some of the things we can use Puppet to harden on our systems.

After that, we used the sudo module to manage your sudoers files, centralizing
configuration of the security-related sudo data.

Finally, we saw how to use the hiera-eyaml gem to store encrypted data on your Puppet
Master.

In the next chapter, we’ll look at using Puppet to handle your network security needs.
We’ll see you then!

Chapter 7. Network Security and Puppet

One of the most important things to be done on a system, security-wise, is to ensure that it
is safe from network-based attacks.

Ensuring that your system only listens on expected ports and controls access to services at
the network level is a tedious, repetitive process. What if services could automatically
open the necessary firewall rules? What if the systems running a cluster application could
learn about one another and open access to just the other nodes?

With Puppet, all this is possible. We’ll cover some of these cases in this chapter. We’ll
cover the following topics:

Basic information in the firewall module

The firewall type

The firewall chain type

Pre and post rules—what they are and how they’re used

Adding firewall rules to your own modules in an extensible way

Let’s get rolling with our first topic!

Introducing the firewall module

The puppetlabs/firewall module is one of the supported modules from Puppet Labs. This
means that if you run Puppet Enterprise, you can officially get support on the module on
operating systems it will currently run on. At present, this includes Linux distributions.
For this reason, this module is one of the best examples of modules available.

The module happens to also be one of the older ones. The current incarnation of this
module dates back to early 2011. It also contains the code from an earlier iptables module
that dates all the way back to 2007.

The module manages firewall rules on your host. In its current form, it can manage
iptables firewalls for IPv4 and IPv6 as well as ebtables for Ethernet bridging and filtering
support. In this chapter, we’ll cover the iptables IPv4 aspects of the module, although the
concepts will apply to all of the other types as well.

Iptables is the primary firewall interface on Linux hosts since kernel Version 2.4. It will
eventually be replaced by nftables, having been merged into the main Linux kernel with
kernel Version 3.13. However, for the moment, iptables is the primary method of
implementing host-level firewall services on the Linux kernel.

We could spend the rest of the book covering iptables and host-based firewalls. Instead,
we’re going to cover just enough information to get you started using Puppet to manage
your host base solution. More information on iptables can be found at http://netfilter.org/.
There are also a number of books available on the subject, including Designing and
Implementing Linux Firewalls and QoS using netfilter, iproute2, NAT and 17-filter, which

can be found at https://www.packtpub.com/networking-and-servers/designing-and-
implementing-linux-firewalls-and-qos-using-netfilter-iproute2-n.

The firewall consists of a series of chains. Each of these chains contains rules with actions.
The various rules may match packets based on a variety of factors. These can be things
like source and destination address or port, or even things like TCP flags. Once a packet
matches a rule, an action is applied to it. These actions are things like forwarding or
dropping the packet.

The puppetlabs-firewall module provides you with a series of Puppet types and providers
around the firewall concept.

If you remember, Puppet types are native Ruby implementations of functionality in the
Puppet core. These are extensible using custom types, of which the firewall module
provides two. These two types are the firewall and firewallchain types.

Providers are particular implementations of a type. The Puppet firewall module types for
firewall and firewall chains in turn have providers that implement the firewall types for
both iptables and ip6tables.

These types and providers enable you to manage their firewall configuration using native
puppet resources as opposed to using files and exec resources, which was previously
required. This increases the flexibility of managing the firewall over using the exec type or

http://netfilter.org/
https://www.packtpub.com/networking-and-servers/designing-and-implementing-linux-firewalls-and-qos-using-netfilter-iproute2-n

managing files with the saved iptables rules. With types and providers, you do not need to
centralize your rules or use exported resources. You can instead embed the firewall logic
into the modules that need ports open.

Let’s take a look at the specific types along with some examples of their use.

The firewall type

The primary type provided and used in the firewall module is the firewall type. This type
contains a whole slew of parameters that allow you to configure every aspect of the
firewall rules. This is necessary because the base iptables software has many options that
you can pass to rules. To model rules successfully, the underlying type and provider needs
to support all of the features that you can do on the command line. This results in a very
large parameter set. A summary of some of the most commonly used parameters as of
Version 1.2.0 are described in the following table:

Parameter [|[Description
This provides the action to be taken on the packet. This can be one of the accept parameter that allows

action the packets, the reject parameter that denies the packet and ends an ICMP unreachable code, or the drop
parameter that silently drops the packet. These options are lowercase unlike in iptables where they are
uppercase.

chain This is the iptables chain that this rule applies to. This is only relevant to the iptables provider and
requires this feature.

destination This specifies the destination address to be matched. This can contain a CIDR range. You can negate the
range by prefixing it with an exclamation point (!).

dport ||This contains the destination port to match. This can also be a range or array of ports.

dst_range This specifies the destination range. This is in x.x.x.x-y.y.y.y format, such as 16.20.20.10-

h 10.20.20.40.

ensure ||This specifies whether the given resource is present or absent. It defaults to present.
For iptables, this attribute specifies the jump value. This can be L0G, QUEUE, RETURN, DNAT, SNAT,

Jump MASQUERADE, REDIRECT, or MARK. The values ACCEPT, DROP, and REJECT are used with the action
parameter, not with jump in this module.
This provides the name of the rule. When rules are inserted, they are sorted by name. As such, they must

name be prepended with numbers to ensure proper ordering. For instance, rule 16-Allow_ssh will be applied
before rule 20-Deny_all.

port This specifies the port or range of ports to match. This can also be a range or array of ports. This will
match both the source and destination port.
This specifies the protocol to match. The default value is TCP, however, UDP. ICMP and many other

proto protocols are supported. All can also be used to match all the protocols. For more information, see the
documentation at the link mentioned later in this section. These must be lowercase in the manifest.

reject ||This is used to set the ICMP type that the packet is rejected with when the action is reject.

source ||This specifies the source address of the packet to match. It can be a single IP or a CIDR range.

sport ||This specifies the source port. It can be a port, a range of ports, or an array of ports to match.

src_range ||This specifies a source IP range in x.x.x.x-y.y.y.y format. For example, 10.30.40.1-10.30.41.23.

]

state "This matches the state of a connection. It can be ESTABLISHED, INVALID, NEW, Or RELATED.

This matches the TCP Flags set on a packet. These can be any valid TCP flags such as SYN, ACK, PSH, and

tcp_flags -
so on. See the documentation for more values.

Note

The preceding attributes are just a subset of the available parameters that are most
commonly used. A full documentation on all of the parameters can be found at

https://forge.puppetlabs.com/puppetlabs/firewall.

As previously mentioned under the name parameter, the rules are ordered based on the
name before being applied. The typical application of the ruleset is that names are
prepended with a number. This allows you to ensure that the rules are applied in the order
that is desired.

This module is somewhat dangerous compared to some of the others we looked at also. If
you misuse it, it is easy to lock yourself out of a host. Care should be taken to test all the
changes thoroughly before applying them to the production hosts.

Let’s go through an example using the firewall module. We’ll do a very simplistic
example that logs all the connections to our host via SSH.

For now, we’ll create a separate module to manage our base firewall configuration and add
our rules there. Later in this chapter, we’ll discuss how to add rules to your modules.

To begin, let’s go ahead and create our firewall module. In this case, I’m not going to use
the name firewall to avoid problems with namespaces (it’s possible to do so, but if we
name it something else, we can avoid it completely).

To do this, run the following command in your home directory on the master. We’ll copy it
over like we previously have:

puppet module generate pupbook-fw

Go ahead and answer all the questions or accept the defaults, and we’ll move on to define
some content for this module.

In this case, we’re going to start by adding a firewall rule that logs ssh. We won’t add any
additional rules or purge existing rules. We’ll cover the functionality in the pre and post
rules sections since it requires a fair amount of configuration, and we have a full section
that will cover these topics.

For the moment, let’s make our pupbook-fw/manifests/init.pp file look like the
following:

class fw {
include ::firewall
firewall { '050 log all ssh':

ensure => present,
proto => 'tcp',

https://forge.puppetlabs.com/puppetlabs/firewall

port => '22"',
jump => 'LOG',
}
}

The preceding code contains our rule to 1log all ssh traffic. The only other line in the
module is an include of the firewall class. The purpose of this class is to ensure that all
the prerequisites needed to use iptables are met. On RHEL 6, this handles installation of
the iptables-persistent package, which ensures that firewall rules are persisted across
reboots.

We’ll be applying this class to just one of our nodes to test it. So, add the following
command to the /etc/puppet/manifests/site.pp file:

node 'agentone.book.local' {
include fw

}

Before we use the firewall module, we obviously need to install it. Use the following
command to do this:

sudo puppet module install puppetlabs-firewall

Now we need to test it. Remember that you’ll need to sign the certificate if these are new
VMs. You can refer to Chapter 5, Securing Puppet, for a refresher.

When that’s completed, we can go ahead and run Puppet on the agentone VM. When you
finish, you should get the output as follows:

® @ chap? — vagrant@agentone:~ — ssh — 90x38
vagrant@puppet:~ vagrant@agentone:~ o o
[vugrant@ngentnne ~]$ sudo puppet agent --test

NDthE: fFllE{fvarfl bfpuppetfl1hfpuppet]fensure created

Notice: /File[/var/lib/puppet/lib/puppet/provider]/ensure: created

Notice: /File[/var/lib/puppet/lib/puppet/util]/ensure: created

Notice: /File[/var/l1ib/puppet/lib/puppet/util/ipcidr.rb]/ensure: defined content as '{md5}

eli16@dfdee?3fcS5ef2bb8abc291fofds’

Notice: /File[/var/1ib/puppet/1ib/puppet/provider/firewall.rb]/ensure: defined content as
'{md5}32d2f5e5dcc@B2986bB2ef260119838b"

Notice: /File[/var/1lib/puppet/1ib/puppet/provider/firewallchain]/ensure: created

Notice: /File[/var/lib/puppet/lib/puppet/provider/firewall]/ensure: created

Notice: /File[/var/lib/puppet/1ib/puppet/provider/firewall/iptables.rb]/ensure: defined co

ntent as '{md5}b50a64e46a8bbcf10063ac4bb3id4ad4l’

Notice: /File[/var/lib/puppet/lib/puppet/type]/ensure: created

Notice: /File[/var/lib/puppet/lib/puppet/type/firewallchain.rb]/ensure: defined content as
' {md5}548676cc7da53598eb24268ebac38add”

Notice: /File[/var/lib/puppet/1ib/puppet/type/firewall.rb]l/ensure: defined content as '{md

5}887309d191642568aab222bca3fb79b8a’

Notice: /File[/var/lib/puppet/1ib/puppet/provider/firewallchain/iptables_chain.rb]/ensure:
defined content as '{md5}98ac7cBa440146810243da2391b@9des’

Motice: /File[/var/lib/puppet/lib/facter]/ensure: created

Notice: /File[/var/1ib/puppet/1ib/facter/ip6tables_version.rb]/ensure: defined content as
"{md5}@91123ad703f1706686bca4398c5bOET’

Notice: /File[/var/lib/puppet/lib/facter/iptables_persistent_version.rb]/ensure: defined c

ontent as '{mdS}b7a47827cd3d3bblacbd526a31da3ach’

Notice: /File[/wvar/lib/puppet/lib/facter/iptables_version.rb]/ensure: defined content as

{md5}facbd76@223f236538b731c1d1fEcfaf"

Notice: /File[/var/lib/puppet/1ib/puppet/provider/firewall/ip6tables.rb]/ensure: defined c

ontent as '{md5}6b9a9e99a50aebcc278337483aa7badf "

Notice: /File[/var/lib/puppet/lib/puppet/util/firewall.rb]/ensure: defined content as '{md

5}6f7667742d9f6d192cd202be®@14dda5"

NﬂthE fStnge[muln]wamerewall[ﬂSB Iug ull ssh]fénsur& crented
Info { gte file at state.yaml
Natxce F1n1shed catalog run in E EE secands

[vagrant®agentone ~]1%

As you can see, the type and provider got synced over to our virtual machine and the rule
got created. We can confirm this by running the following command:

sudo iptables -L

When you run this, you should see the output like the following:

= chap7 — vagrant@agentone:~ — ssh — 90x13
* vagrant@puppet:~ vagrant@agentone:~ 5=

[vagrant@agentone ~]$ sudo iptables -L

Chain INPUT (policy ACCEPT)

target prot opt source destination

LOG tcp -- anywhere anywhere multiport ports ssh /* @5@ lo
g all ssh */ LOG level warning

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OQUTPUT (policy ACCEPT)
target prot opt source destination
[vagrant@agentone ~1$%

You can see our rule in the iptables configuration. Now let’s open a second SSH
connection and see what the logs say. Open another terminal and run a second vagrant
ssh agentone command to get on agentone. Then, we’ll take a look at the log file in
/var/log/messages.

You should see lots of messages, such as the following:

Oct 26 07:41:57 localhost kernel: IN=eth® OUT=
MAC=08:00:27:73:bf:1c:52:54:00:12:35:02:08:00 SRC=10.0.2.2 DST=10.0.2.15
LEN=40 TOS=0x00 PREC=0x00 TTL=64 ID=17892 PROTO=TCP SPT=64974 DPT=22
WINDOW=65535 RES=0x00 ACK URGP=0

Oct 26 07:41:58 localhost kernel: IN=eth® OUT=
MAC=08:00:27:73:bf:1c:52:54:00:12:35:02:08:00 SRC=10.0.2.2 DST=10.0.2.15
LEN=72 TOS=0x00 PREC=0x00 TTL=64 ID=17893 PROTO=TCP SPT=64974 DPT=22
WINDOW=65535 RES=0x00 ACK PSH URGP=0

Right away, we can see an improvement we want to make to the module. Right now, it’s
logging ALL SSH packets. This will very quickly result in a large number of log messages.
To deal with this, we’ll add some more options to our rule in our module.

To do this, edit your pupbook-fw/manigests/init.pp file again, and in the parameters,
add the following:

state => 'NEW',
This will make the rule only match new packets.

Once this is done, rerun Puppet. You should receive an output that indicates it’s updated
your rule and now state matches new. The iptables output will now look like the
following:

- ! chap7 — vagrant@agentone:~ — ssh — 90x12

vagrant@puppet:~ vagrant@agentone:~ &=

[vagrant@agentone ~]$ sudo iptables -L

Chain INPUT (policy ACCEPT)

target prot opt source destination

LOG tcp -- anywhere anywhere multiport ports ssh /* @50 lo
g all ssh */ state NEW LOG level warning

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
[vagrant@agentone ~]%

You will also see that the log messages have reduced to just initial SSH connections.

The example shows something else. Building Puppet modules is often an iterative process.
In this case, we created a module using what we knew we wanted—we wanted to log SSH
traffic. However, once it was built, it was determined that this wasn’t quite what we
wanted. What we actually wanted was to log NEw SSH connections. Therefore, we iterated
on the module and improved it to meet the actual goal.

This shows the importance of testing your changes. When dealing with the firewall
module in particular, it is very possible to lock yourself out of a machine. Therefore, you
should always test your changes prior to them going to production.

Fortunately, if you’ve been following along, you have a GREAT method to test your
changes using Vagrant. In Appendix, Going Forward, we’ll explore some other resources,
such as rspec-puppet, that can be used to help test.

For now, let’s take a look at the other firewall module type.

The firewallchain type

The firewallchain type is something that some people may never use. It allows you to
manage the firewall chains themselves under iptables.

If you recall from the earlier section, the firewall rules are contained in chains. Firewall
chains are groupings of related rules. By default, the filter table, which handles packet
filtering, contains three chains INPUT, OUTPUT, and FORWARD. These chains filter packet
input when they are forwarded and on output. There are other default chains present in
other tables.

It is possible to add your own chain to better organize your firewall rules. You can then
use the jump rule to send packets into your new chain.

You can use this type if you want to change some default parameters about a chain you
created.

The parameters available to the firewall chain type are as follows:

Parameterf|Description

ensure ||What happens to the chain? The valid values are present and absent.

This allows the user to specify rules to be ignored when purging rules. It can be used to ignore rules added
ignore by other services dynamically. It takes a regular expression or an array of regular expressions that matches
the iptables-save output.

This contains the name of the chain. It should be in chain:table:protocol format, such as
MYCHAIN:filter:IPv4.

name

This specifies the default policy of the chain. This must be one of accept, drop, queue, and return. See

policy - . . .
the iptables documentation for more details. The value here must be in lowercase.

provider This is the provider of the type. Usually, it is not set. Currently, only the iptables_chain command is
supported.

purge ||This is the boolean value indicating whether rules unmanaged by Puppet in the chain are dropped.

The most common parameters used here are the ignore, policy, and purge parameters.
These can be used as an alternative method of purging rules from what we will see later in
the chapter. One can also set the policy to drop, for instance, as opposed to adding an
explicit drop at the bottom of your rule set.

Now we’ll explore a common pattern for implementing these types.

Creating pre and post rules

Over the years, a good pattern to deal with firewall rules has emerged. This pattern uses
the concept of a class that is applied before and after all other firewall rules. This allows
us to set up rules that are in place before any other—allowing local packets, and so on. We
can also add our default rule to the post rules.

If you follow the directions on the puppetlabs/firewall website at
https://forge.puppetlabs.com/puppetlabs/firewall, it instructs you on how to set up pre and
post rules. We’ll be using a modified version of this procedure since we’re not going to be
managing every resource on our system.

The module instructions assume that you want the module applied to all hosts. As such,
they will purge firewall rules off all hosts that run Puppet. In a perfect world, we’d reach a
point where our entire infrastructure is Puppetized and this could be the case. This is
where we aim to get with our Puppet deployments as it means all of our resources can be
tracked and audited. It also makes systems easy to rebuild. However, as this book is
targeted at users just starting with Puppet, we’re going to assume that you’re retrofitting
an existing environment and will not add these default rules. In our case, we will only
manage firewall rules on a host we explicitly apply our firewall module to.

To create this pattern, we will need to create two more classes. These classes will also be
in our firewall module, and we’ll call them pre and post.

The pre class will contain all of the firewall rules we want to be applied before any other
rules. We’ll use this to set up things like allowing established connections, permitting
connections to a localhost, and so on.

We’ll use the internal features of Puppet to ensure ordering. To make this somewhat easier,
we’ll use resource defaults to set them up, so we don’t need to add them to each rule.

In our pre class, we’ll do the things we previously mentioned, for example, allow
connections to a localhost. Allow ICMP and established connections. To do this, we’ll
make the pre class look like the following:

class fw::pre {
Firewall {
require => undef, # Undo require
3

firewall { '000 Allow localhost':
proto => 'all',
iniface => 'lo',
action => 'accept',

} ->

firewall { '001 Allow established':
proto => 'all',
state => ['RELATED', 'ESTABLISHED'],
action => 'accept',

} ->

firewall { '002 Allow ICMP':

https://forge.puppetlabs.com/puppetlabs/firewall

proto => 'icmp',
action => 'accept',
}
}

In this class, we set a default that unsets the require parameter. Later on in the main
firewall class, we’ll set the default we’re overriding here.

We will go on to create a series of default rules. These are modeled off by some of the
defaults that CentOS uses in its default configuration. They are also similar to the rules in
the documentation for the module, although they have been reordered to an order that I
think makes more sense, such as moving rules that are commonly hit in the list.

Next, we’ll move on to the post class. As a reminder, this will be applied after all the other
rules.

The post class should look like the following:

class fw::post {
firewall { '999 accept all':
proto => 'all',
action => 'accept',
before => undef,

3
}

In a production environment, this should be the deny value with log and not the accept
value. In our test case, we’ll accept all for demonstration purposes.

This should seem pretty familiar by now. The only thing to note here is that we’re
overriding the before parameter to be undef in the resource so that it gets applied after the
other rules.

Now we’ll revisit our main module and use it to pull all this together. Let’s go ahead and
open the init.pp file again. We’ll edit it. The final contents would look like the
following:

class fw {

Firewall {
before => Class['fw::post'],
require => Class['fw::pre'],

}

include fw::pre
include fw: :post
require ::firewall

firewall { '050 log all ssh':
ensure => present,
proto => 'tcp',
port = '22',
jump => 'LOG',
state => 'NEW',

}

Our SSH rule is still in there. We just filled in some things around it. Notice at the top we
used class defaults as mentioned earlier. In this class, every rule will have the before and
require lines applied to it. This ensures that the ordering is applied correctly, and you don’t
accidentally lose connection while things are applied. Then, we have to include our pre
and post classes. The remainder of the class is as it was earlier.

Let’s go ahead and copy it back into its place and run it on our agentone node.

Once this is done, your output should be as follows:

® chap7 — vagrant@agentone:~ — ssh — 90x17
vagrant@puppet:~/pupbook-fw/manifests vagrant@agentone:~ +
[vagrant®agentone ~]% sudo puppet agent --test

llow localhost]/ensure: created

Notice: /Stage[main]/Fw::Pre/Firewall [@0@
Notice: /Stage[main]/Fw::Pre/Firewall[@01 Allow established]/ensure: created
Notice: /Stage[main]/Fw::Pre/Firewall[@@2 Allow ICMP]/ensure: created
Notice: /Stage[main]/Fw::Post/Firewall[999 accept all]/ensure: created
Notice: Finished catalog run in .95 seconds

[vagrant®agentone ~]%

Running the sudo iptables -L command will show the following output:

@ ' chap7 — vagrant@agentone:~ — ssh — 90x17
vagrant@puppet:~/pupbook-fw/manifests vagrant@agentone:~ -+

[vagrant@agentone ~]$ sudo iptables -L

Chain INPUT (policy ACCEPT)

target prot opt source destination

ACCEPT all -- anywhere anywhere /* 000 Allow localhost */
ACCEPT all -- anywhere anywhere /* 001 Allow established */ s
tate RELATED,ESTABLISHED

ACCEPT icmp -- anywhere anywhere /* 002 Allow ICMP */

LOG tcp -- anywhere anywhere multiport ports ssh /* @5@ lo
g all ssh */ state NEW LOG level warning

ACCEPT all -- anywhere anywhere /* 999 accept all */

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain QUTPUT (policy ACCEPT)
target prot opt source destination
[vagrant®agentone ~]1%

And success! You can see that our rules were applied in the order we expected.

Now that we understand the basics of the firewall module, we’ll explore how you might
add it to the modules you write.

Adding firewall rules to other modules

So far, we concentrated on using a single firewall utility class. While this is useful for site
or organization wide rules, it quickly becomes unwieldy to manage if there are specific
exceptions for given hosts or applications. As such, there must be a better way to manage
firewall rules close to the applications we’re installing via Puppet.

This section will also serve to introduce another common pattern that is being applied in
the Puppet world. This is the roles and profiles pattern.

The concept of the roles and profiles pattern is that we have utility modules. These
modules are responsible for being generic enough to configure an underlying system.
Consider modules to configure Apache or Samba. These modules will likely not contain
any site-specific implementation. They are also the modules that will be reused.

From these modules, we build profiles. These profiles use the underlying utility modules
to build more complete services. For instance, this is where you would use the Apache
module to define a given website or to define a web server. You might also create a profile
to create a given set of samba mounts using the Samba module.

Finally, there are the roles. These roles become a collection of profiles that build complete
systems. The role may be a specific website. It includes profiles for the various websites.
Perhaps it also includes a database server, or a particular version of Nginx to use for
proxying. The profiles would configure these pieces, and the roles would bring them
together into a complete system.

This pattern was first introduced by Craig Dunn in a blog post in 2012. Since then, it has
gained a lot of popularity in the Puppet world. The original blog post and more
information can be found at http://www.craigdunn.org/2012/05/239/.

The profile would tend to be where you would define the firewall ruleset. It is really
difficult for the underlying module to do it in a way that is correct for all users. As such,
many modules include no firewall support or only very basic support. When you add the
firewall configuration in the profile, you can include the correct class logic to ensure that
your ordering is right, and the specific configuration you want is in place.

To demonstrate this, we’ll use the profile pattern and the puppetlabs/ntp module to create
an Network Time Protocol (NTP) server profile. We’ll also create a role for it even
though it will contain only one class.

Let’s start by installing the ntp module. To do so, run the following command on the
master:

sudo puppet module install puppetlabs-ntp

Now that we’ve done this, we need to create two modules—one will hold our roles, and
the other will hold our profiles. The commands to do these are as follows:

puppet module generate pupbook-roles
puppet module generate pupbook-profiles

http://www.craigdunn.org/2012/05/239/

Go ahead and accept the defaults for these, and add a description as you see fit.

First, we’ll configure the role. The role we’re going to create is for an NTP server, so we’ll
call it ntpserver. Let’s edit the manifests/ntpserver.pp file inside our profiles module.
We want it to look as follows:

class profiles::ntpserver {
include ::ntp
include ::fw

firewall { '060 allow ntp':
proto => 'udp',
port => '123"',
action => 'accept',
before => [Class['::fw::post'], Class['::ntp']],
require => Class['::fw::pre'],

o}

Is allowing all to NTP dangerous?

For many years, it was common practice to allow anything to talk to NTP, and indeed the
default configuration of most NTP servers would serve time to any client. However, there
has been a recent rash of amplification attacks utilizing a deficiency in the default
configuration of many servers. This attack has generated multi-gigabit attacks against a
variety of targets. As such, it is best to now lock down NTP serving to the client networks
you wish to provide time to.

This is a really simplistic profile because we’re implementing a simple service. We
include the ntp module with default options (although they could be overriden by Hiera,
as in the last chapter). We then include the proper firewall configuration to ensure that port
123 / UDP is open.

The role will be even simpler and will look as follows:

class roles::ntpserver {
include profiles::ntpserver

}

The ntpserver role only contains the ntpserver profile. In a more complex service,
you’d see it include more. Perhaps you have a management server role that also serves as
an NTP server. You’d also normally include a common profile that includes everything
common to all systems, such as SSH rules.

Now, copy the modules into the module directory and we’ll test them.

Let’s apply the ntpserver role to agentone and test it. To do so, we’ll include the
ntpserver role on the node definition. It should now look as follows:

node 'agentone.book.local' {
include roles::ntpserver

}

Now, let’s run Puppet on agentone. When complete, you should get the output like the
following:

chap7 — vagrant@agentone:~ — ssh — 90x22
vagrant@puppet:~ vagrant@agentone:~

-# Specify the key identifier to use with the ntpq utility.
-#controlkey 8

+# Driftfile.

+driftfile /var/lib/ntp/drift

+

-# Enable writing of statistics records.

-#statistics clockstats cryptostats loopstats peerstats

Info: Computing checksum on file /etc/ntp.conf

Info: /Stage[main]/Ntp::Config/File[/etc/ntp.conf]: Filebucketed /etc/ntp.conf to puppet w
ith sum 7fda24f62blc7aed51db@f746dctedcc

Notice: /Stage[main]/Ntp::Config/File[/etc/ntp.conf]/content: content changed '{md5}7fda24
f62blc7ae951db@f746dcbedcc’ to '{md5}c9d83653966cle9b8dfbca77b97ff356"

Info: Class[Ntp::Config]: Scheduling refresh of Class[Ntp::Service]

Info: Class[Ntp::Service]: Scheduling refresh of Service[ntp]

Notice: /Stage[main]/Ntp::Service/Service[ntp]/ensure: ensure changed 'stopped' to 'runnin
g'l

Info: /Stage[main]/Ntp::Service/Service[ntp]: Unscheduling refresh on Service[ntp]

Notice: /Stage[main]/Profiles::Ntpserver/Firewall[@6@ allow ntpl/ensure: created

Notice: Finished catalog run in @.66 seconds

[vagrant@agentone ~]%

Once again, we’ll examine the iptables output and see that the rule was applied:

chap? — vagrant@agentone:~ — ssh — 90x19
vagrant@puppet:~ vagrant@agentone:~

[vagrantBagentone ~]% sudo iptables -L

Chain INPUT (policy ACCEPT)

target prot opt source destination

ACCEPT all -- anywhere anywhere /* 00@ Allow localhost */
ACCEPT all -- anywhere anywhere /* 001 Allow established */ s
tate RELATED,ESTABLISHED

ACCEPT icmp -- anywhere anywhere /* 002 Allow ICMP */

LOG tcp -- anywhere anywhere multiport ports ssh /* @50 lo
g all ssh */ state NEW LOG level warning

ACCEPT udp -- anywhere anywhere multiport ports ntp /* @68 al
low ntp */

ACCEPT all -- anywhere anywhere /* 999 accept all */

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OQUTPUT (policy ACCEPT)

target prot opt source destination
[vagrant@agentone ~]%

You can see the rule in the table.

Using this pattern, you can create a complex system and have the firewall rules follow the
profiles that require them. It also keeps site-specific logic away from modules that
implement functionality, which promotes module reusability.

Summary

Managing system firewalls is a repetitive and an error prone task. These sorts of tasks are
great for management by Puppet. Using the puppetlabs/firewall module, we can
implement system level firewall services with ease and with configuration, that is easily
read and audited.

In this last chapter, we learned how to use the firewall type to manage our firewalls. Using
the parameters of the type, we can manage all the aspects of the iptables configuration.

We then learned a design pattern that allowed us to ensure that our rules got applied in a
consistent order, and also ensure that common rules are applied to all hosts in our
environment.

Finally, we learned a pattern that allowed us to build reusable modules and attach the
firewall configuration needed for services to the service definitions.

In the next chapter, we’ll explore centralized logging, which is very important to utilize in
a secure environment. We’ll see you there!

Chapter 8. Centralized Logging

As a security professional, one of the key requirements is that you centralize logging so it
can be analyzed. This allows you to maintain a single point where all logs are processed
and acted upon.

Even those not in the security profession can benefit from this. Gathering all application
logs benefits operations as well as development professionals.

There are a large number of products on the market, both open source and commercial,
that can be used to tackle this problem.

On the commercial side, we have offerings such as Splunk or Loggly that can be used to
gather your logs and provide analysis on them. These are both great products that can be
Puppetized.

On the open source side, the most common solution seems to be converging around
Logstash, written by Jordan Sissel and now maintained by Elasticsearch.

In this chapter, we’ll cover the installation of the Logstash environment using Puppet.
Some of the concepts are similar to those used by some of the commercial products.
However, these products tend to be harder to test. As such, we’ll focus on the open source
tools. In particular, we will cover the following topics:

What Logstash is

Installing Logstash and its prerequisites with Puppet

Using Kibana to report on log data

Configuring hosts using Puppet to ship log data to Logstash

When we’re complete, you should be able to implement a fairly complete centralized
logging host using what we’ve covered in this chapter.

Let’s get to it!

Welcome to logging happiness

As previously mentioned, logging presents a challenge to many organizations. Gathering
and processing log files is required for a number of reasons. It is used to watch for
anomalous behavior as well as look for unauthorized activity.

For many years, a centralized syslog host was the most common method used to
implement centralized logging. All of the hosts would ship their logs to one place and
analysis was done there.

This worked OK for systems that used syslog for all logging. However, syslog has some
drawbacks. It lacks a good way to deal with multiline records. Additionally, it only has a
limited number of granularity levels so everything ended up logged in several giant log
files. Attempts were made with various syslog agents to overcome some of these
challenges, but there had to be a more complete way to handle the problem.

Enter Logstash. Logstash is nothing more than a system that takes input from multiple
sources, parses it, and stores that output elsewhere. However, this simplicity is what gives
it so much power. It can parse data from any number of sources, including syslog, files, or
other Logstash instances. It can also write to a variety of places, including files,
Elasticsearch, or even systems such as Nagios. This is not in any way a comprehensive list
of inputs or outputs either. There are dozens of them available for various scenarios.

Logstash alone is a neat product, but the real power presents itself in what is called the
Elasticsearch, Logstash, and Kibana (ELK) and stack. This stack consists of
Elasticsearch on the backend for searching, Logstash for log processing, and Kibana for
analytics.

When used together, these projects create a full log management solution, complete with
quick and powerful searching as well as a web interface to interact with your logs. Using
Kibana, you can even create dashboards to allow you to graph certain events over time,
plot them on a map, or other useful things.

Installing Logstash is simple; however, the agent or the forwarder must be installed on all
hosts. Additionally, for optimal performance, several of the components that run with
Logstash are best run on their own instances.

We’ll quickly stand up Logstash in demo mode to show you some of its power, then we’ll
approach using Puppet to configure your Logstash environment.

Installing the ELK stack

To install the ELK stack, we’ll use the RPM-based downloads for both Elasticsearch and
Logstash. Then, we’ll manually install Kibana since it does not yet have a package.

Packages for these can be downloaded from Elasticsearch at
http://www.elasticsearch.org/overview/elkdownloads/. We’ll download the latest version
of Elasticsearch, Logstash, and Kibana. At the time this book was written, those are 1.4.0,
1.4.2, and 3.1.2 respectively.

We’ll do this work on our agentone VM, as we should work to keep our puppetmaster
standalone. First, fire up the agentone VM. If you need a reminder on how to do this using
Vagrant, refer to Chapter 1, Puppet as a Security Tool, to get a quick refresher course.

Once it’s up, go ahead and SSH to agentone. Once it’s booted, run the following
commands to install Elasticsearch and Logstash on the machine:

sudo yum install
https://download.elasticsearch.org/elasticsearch/elasticsearch/elasticsearc
h-1.4.0.noarch.rpm

sudo yum install
https://download.elasticsearch.org/logstash/logstash/packages/centos/logsta
sh-1.4.2-1_2c0f5al.noarch.rpm

You may need to adjust the versions to the ones you got previously from the downloads
page.

Logstash will pull in Java as it’s needed for the application to run. Once it’s installed,
we’ll quickly configure it to consume our syslog data on localhost just for testing
purposes.

Once that’s installed, let’s set about configuring Logstash and Elasticsearch. Elasticsearch
contains a large number of configuration parameters, but for our simple example, the
default configuration will suffice. As such, we’ll simply enable it and start it. To do so, run
the following commands:

sudo chkconfig elasticsearch on
sudo /sbin/service elasticsearch start

Now we’ll move on to Logstash. We’ll configure Logstash to read our messages file and
send it to Elasticsearch for us to use in Kibana.

To do so, edit the /etc/logstash/conf.d/logstash-example.conf file to contain the
following:

input {
file {
path => "/var/log/messages"
start_position => "beginning"
type => '"syslog"
}
}

http://www.elasticsearch.org/overview/elkdownloads/

filter {
if [type] == "syslog" {
grok {

match => { "message" => "%{SYSLOGTIMESTAMP:syslog_timestamp} %
{SYSLOGHOST:syslog_hostname} %{DATA:syslog_program}(?:\[%
{POSINT:syslog pid}\])?: %{GREEDYDATA:syslog _message}" }

add_field => ["received_at", "%{@timestamp}"]

add_field => ["received_from", "%{host}"]

3
syslog pri { }
date {
match => ["syslog_timestamp", "MMM d HH:mm:ss", "MMM dd HH:mm:ss"]

b
¥
}

output {
elasticsearch { host => localhost }

}

We’ll save this. This configuration file will read the syslog data from the
/var/log/messages file and process it into elasticsearch. It will read some metadata
from the syslog_message parameter to create the timestamp and add a host parameter.
This is straight out of the Logstash documentation with some modifications to read the
syslog data from a file instead of syslog. One thing worth noting is that in its default
configuration, Logstash does not run as root. Therefore, it will not be able to read the
messages file that is readable only by root. A simple solution is to add the Logstash user
to the root group and make the file group readable; however, for simplicity’s sake, we’ll
run the following command to make it readable by all:

sudo chmod 644 /var/log/messages

Tip

You should be careful to not do the preceding actions in production. This was applied on a
test system where shortcuts can be taken to keep the examples to a reasonable length. This
book presumes you have the knowledge to properly configure the mode and ownership of

your log files so that the Logstash user can pick them up. More information on
permissions can be found at https://en.wikipedia.org/wiki/File_system_permissions.

Save this file and let’s start Logstash. To do this, run the following command:

sudo chkconfig logstash on
sudo /sbin/service logstash start

Give it a few minutes to come up and index some events. You should be able to see that it
has events processed by running the following command:

curl 'http://localhost:9200/_search?pretty'

If it has successfully indexed events, you should see something similar to the following:

https://en.wikipedia.org/wiki/File_system_permissions

-) chap8 — vagrant@agentone:~ — ssh — 92x38

"_type" : "syslog”,

"_id" : "GYVej3UqR4GiKBlwyyblLYg",

"_score” : 1.0,

"_source":{"message":"Jan 16 ©4:36:@3 localhost kernel: (7 early reservations) ==> boo
tmem [GOO2000000 - POLFFFOORA]", "Eversion”:"1","@timestamp”:"2014-01-16T12:36:03.000Z", "type
":"syslog","host": "agentone.book.local”, "path": " /var/log/messages”, "syslog_timestamp”:"Jan 1
6 94:36:03","syslog_hostname"” : "localhost”, "syslog_program”:"kernel”, "syslog_message":"(7 ear
ly reservations) => bootmem [0000000000 - @OLfffORE@]","received_at":"2014-11-89 20:41:13 U
TC", "received_from":"agentone.book.local”, "syslog_severity_code":5, "syslog_facility_code™:1,
"syslog_facility":"user-level”,"syslog_severity":"notice"}

L1

"_index" : "logstash-2014.81.16",

"_type" : "syslog",

" _id" : "bM_joklrRYi49Nt_k2anTg",

"_score” : 1.8,

"_source":{"message":"Jan 16 @4:36:@3 localhost kernel: #0 [0O00000000 - 0000001000]

BIOS daota page => [GQO0000000 - 0OOCQQ100Q]","8version”:"1","@timestamp”:"2014-01-16T12:3
6:03.0002","type":"syslog", "host" : "agentone.book.local"”, "path": " /var/log/messages"”, "syslog_t
imestamp”:"Jan 16 @4:36:03","syslog_hostname":"localhost”, “syslog_program”: “kernel”,"syslog_
message”:" #0 [P000000000 - C0O0L010@0] BIOS data page ==> [DOOODDOOOO - COOROO1LOA]","rec
eived_at":"2014-11-@9 2@:41:13 UTC","received_from": "agentone.book.local”,"syslog_severity_c
ode":5,"syslog_facility_code":1,"syslog_facility":"user-level”,"syslog_severity":"notice"}

}, 1

"_index" : "logstash-2014.81.16",

"_type" : "syslog",

"_id" : "p2pr_lDuRwuX@SCWADE_-A",

" _score” :; 1.0,

"_source":{"message":"Jan 16 ©4:36:03 localhost kernel: #4 [0Q00@9fcO0 - PO0O100000]

BIOS reserved =—> [000005fcO0 - 000010000€]", "Bversion”:"1","@timestamp”:"2014-01-16T12:3
6:93.0002", "type":"syslog", "host" : "agentone.book.local”, "path" : " /var/log/messages”, "syslog_t
imestamp”:"Jan 16 @4:36:03","syslog_hostname”:"localhost”,"syslog_program”:"kernel”,"syslog_
message":" #4 [D0OO09fcOd - 00001000007 BIOS reserved =—> [DO00Q9fcO@ - 0000100000]","rec
eived_at":"2014-11-89 20:41:19 UTC", "received_from":"agentone.book.local", "syslog_severity_c
ode":5,"syslog_facility_code":1,"syslog_facility":"user-level”,"syslog_severity":"notice"}

}1]
}

}
[vagrant®agentone ~]%

Now that we have some data, we’ll concentrate on getting Kibana working so that we can
see what it looks like.

To run Kibana in its current form (Version 3), we will need a web server. We’ll use
Apache in this example since it ships with Red Hat and has good Puppet support. Let’s go
ahead and install it.

To do so, run the following command:

sudo yum install httpd -y Once this is done, we’ll download and unpack Kibana. First,
download it with the following command:

cd /tmp && wget https://download.elasticsearch.org/kibana/kibana/kibana-
3.1.2.tar.gz

You may need to adjust the preceding file.

Tip
Kibana is in between versions. As of time of this writing, it is on Version 3, but Version 4
is in beta. Version 4 contains a built-in web server, so its setup will vary slightly.

Next, we’ll unpack it into the root of our HTML tree. To do so, run the following
command:

cd /var/www/html && sudo tar zxvf /tmp/kibana-3.1.2.tar.gz

Finally, we can start Apache and configure it to start at boot by running the following two
commands:

sudo chkconfig httpd on
sudo /sbin/service httpd start

We’ll also need to adjust some settings on Elasticsearch to allow Kibana to connect. Edit
the /etc/elasticsearch/elasticsearch.yml file and add the following two lines at the
bottom:

http.cors.enabled: true
http.cors.allow-origin: http://10.78.78.50

Now, restart elasticsearch by running the sudo service elasticsearch restart
command.

Now, Kibana is running on our VM server. We should be able to hit it using the IP we
have for private hosts; in this case, it is http://10.78.78.50/kibana-3.1.2.

You should be greeted with a screen that looks like the following:
~nll Introduction

TEXT

+
==y - - Welcome to Kibana.
I On 0 Glad you could make it. Happy to have you heral Lets get started, shall we?

Did you just upgrade? Not expecting Requirements

this screen? + A good browser.

Tha latest varsion of Chrome or Firefox is recommendad. Safari (latest version) and
Internet Explorer 9 and above are also supported.

A webserver.

Just somewhera to host the HTML and Javascript. Basically any websarser will
Setting a global default dashboard Elasticsearch

0.90.9 or above.

If you were using the old default page
you might not be expecting this screen. |
understand, change can be awkward.
Lat me explain.

kibana has always shipped with an
interface for Logstash, still does! You can Configuration
acoess it henz. However, if you want to
r default again, all you need
to do is rename a file! In your Kibana

If Kibana and Elasticssarch are on the same host, and you're using the default
Elasticsearch port, then you're all set. Kibana is configured to use that setup by default!

installation directory: fig.fs and set the elasticsearch parameter with the LIRL

If you scroll down, you’ll see a Logstash dashboard. Go ahead and click on it. It’ll give

you a nice starting point to configure a dashboard. This screen looks like the following
screenshot:

® ® Kibana 3 - Logstash Searc

c 10.78.78.50/kibana-3.1.2/index.html#/dashboard/file/logstash.json Qyl T Ior] DR =

EVENTS OVER TIME

wr | & Zoom Out| @ *(352) count per 30s | (352 hits)

o) |}

21:35:00 21:40:00 21:45:.00 21:50:00 21:55:00 22:00:00 22:05:.00 22:10:00 22:115:00 22:20:00 22:25:.00 22:30:00

ALL EVENTS 0 @ & + x
0 to 100 of 352 available for paging B

Fields @ _source (select columns from the list to the left)

("message”:"Dec 7 19:21:10 localhost yum[3378]: Installed: mailcap-2.1.31-

2.648.noarch”,"@version":"1", "@timestamp":"2014-12-

08T03:21:10.0002","type":"syslog", "host":"agentone.book.local®,"path":"var/log/messages®, "syslog_timestamp®:*D
O @timestar 7 19:21:10","syslog_hostname™:"localhost”,"syslog_program®....

Type to filter...

On this main screen, we can see several sections. At the top of the page, there is a query
bar. If you type in that box, you can search all of the following events. For instance, typing
yum will let you search for any event that contains yum.

The middle box contains a time series histogram of events. It just shows how many events
occurred in a given bucket of time. You can zoom in and out with your mouse and update
the bottom pane.

The bottom pane contains all of the raw events in a paginated format. Additionally, it
contains a box on the left that is intended to help you quickly filter data. I encourage you
to explore and play with this interface. It’s fairly easy to use and the documentation is
good.

Kibana and Logstash are complex enough that one could write a book about just them
(and indeed, at least one does exist). The purpose of this section was to give you enough
of an introduction to know why you would want to use them, and what you can do with
them. Now we’ll move on to managing them with Puppet.

Logstash and Puppet

When configuring any service, especially a service that is present on many host, one
should look to Puppet for help. In the case of Logstash, we can configure all of its
components using Puppet, and we can configure our hosts to report data as well. In this
section, we’ll see how to install the base Logstash components using Puppet. Depending
on the desired configuration, this could be repeated for each host, or you could use another
system to transport logs, one of which we’ll see in a later section.

We’ll be extending the roles and profiles concept we introduced in the previous chapter to
configure these services. As such, make sure you still have these modules available.

Let’s begin with Elasticsearch.

Installing Elasticsearch

Elasticsearch has a large variety of supported installation configurations. It can be
installed as a cluster that shares data and allows searches to be split. It can also be installed
in a single node configuration. In each configuration, there are a number of knobs that can
be tuned to set things, such as the node name, instance name, and so on.

Elasticsearch provides an official Puppet module to manage this installation. This module
is one of the new Puppet approved modules. This means the module has good support and
is well designed.

In our test case, we’ll be accepting most of the defaults for the installation. In fact, we’ll
essentially be duplicating what we did previously where we collocated the elasticsearch
server with the logstash host. There will only be a single node in this cluster that holds
the data.

In a production situation, you might wish to run multiple nodes in your cluster or,
depending on your usage, even multiple clusters. Fortunately, using facts, this is a fairly
easy operation.

To use the module, we first have to install it. To do so, run the following on the master:

sudo puppet module install elasticsearch/elasticsearch

Now that we have the module installed, we’ll create a profile for it. As you can recall, we
use profiles to combine the utility module (in this case, the Elasticsearch module) into a
module we can use locally. As such, let’s create a logstash-elasticsearch profile that
creates an elasticsearch instance for our Logstash installation. To do so, go to the
module directory for our profiles module, and create a new file called
manifests/logstash-elasticsearch.pp. We want the contents to look like the
following:

class profiles::logstash-elasticsearch {
include elasticsearch

elasticsearch::instance { "${hostname}-1ls-es01":
config => {
'"http.cors.enabled' => 'true',
'http.cors.allow-origin' => "http://${ipaddress_eth1}",
b
}
}

Once that’s done, we’ll create a role that uses this profile. We’ll call the logstash-server
role. In production, we’d likely have a separate logstash-elasticsearch role we’d apply

to multiple hosts, but for our simple test (Or if you have a smaller environment—Iess than
50 or so hosts), we can create it all on a single host.

One of the nice things about Puppetizing all of this is that we can parameterize this in such
a way that adding an additional Elasticsearch node becomes simple, and reshaping the
cluster is also easy.

For now, let’s get our role created and test it out.

To do so, let’s create our role in the roles module under manifests/logstash-server.pp.
We want the content to be as follows:

class roles::logstash-server {
include profiles::logstash-elasticsearch

}

Finally, let’s apply the role to our agentone node by inserting the following into the
/etc/puppet/manifests/site.pp file:

node 'agentone.book.local' {
include roles::logstash-server

}

Now go ahead and run Puppet on agentone. Remember that we’re going to have to sign
the certificate if you restarted the VM. Once complete, you should see output such as the
following:

& @ chap8 — vagrant@agentone:~ — ssh — 92x38
vagrant@agentone:~ vagrant@puppet:- jslagle@das...kfsrcichapB -+

@1]/File[/etc/elasticsearch/agentone-1s-es@l/elasticsearch.yml]/ensure: defined content as '
{mdS5}bcfc507a@89f1eBal43cBaB231746Fe9’

Notice: IStage{ﬁn{n]fFrﬂfiles::Lngstash-e1usticsenrch!Elastic&earch::Instnnce[ugentune-ls-es
@1]/File[/etc/elasticsearch/agentone-1s-es@1l/logging.yml]/ensure: defined content as '{md5}2
eabbdSac4bZa3Zelbafabd4@82b8c3b’

Notice: fStage{muin]fFrafiles::Logstash-e1usticsearchKElusticseurch::Instunce[ugentone-ls-es
@1]/Elasticsearch: :Service[ogentone-1s-es@1]/Elasticsearch: :5ervice: :Init[agentone-1s-es@1]/
File[/etc/init.d/elasticsearch-agentone-1s-es@l]/ensure: created

Notice: Augeas[defaults_agentone-ls-es@l1](provider=augeas):

Notice: /Stage[main]/Profiles::Logstash-elasticsearch/Elasticsearch::Instance[agentone-ls-es
@1]/Elasticsearch: :Service[ogentone-1s-es@1]/Elasticsearch: :Service: :Init[agentone-1s-es@1]/
Augeas[defaults_agentone-ls-es@l]/returns: executed successfully

D
Notice: /Stage[main]/Profiles::Logstash-elasticsearch/Elasticsearch::Instance[agentone-1s-es
@1]/Elasticsearch: :Service[agentone-1s-es@1]/Elasticsearch: :Service: :Init[agentone-1s-es@1]/
Service[agentone-1s-es@l]/ensure: ensure changed 'stopped' to 'running'

Notice: Finished catalog run in 1.49 seconds
[vagrant@agentone ~]%

If you now check the process table with ps auxww|grep elastic, you’ll see that we have
two instances of elasticsearch started now. This is because we’ve created a new
instance of elasticsearch with our given name. At this point, we should stop the old
elasticsearch service and disable it. To do so, run the following commands:

sudo chkconfig elasticsearch off
sudo /sbin/service elasticsearch stop

We also then want to restart our current cluster so it gets the right port. This is optional,
but it sure makes our lives easier in the future. To do so, run the following command:

sudo /sbin/service elasticsearch-agentone-ls-es01 restart

Once complete, let’s test it using curl and move on. Run the command curl
localhost:9200 and you should see output like the following:

"status" : 200,

"name" : "agentone-agentone-ls-es01",

"cluster_name" : "elasticsearch",

"version" : {
"number" : "1.4.0",
"build_hash" : "bc94bd81298f81c656893abh1ddddd30a99356066",
"build_timestamp" : "2014-11-05T14:26:122",
"build_snapshot" : false,
"lucene_version" : "4.10.2"

3

"tagline" : "You Know, for Search"

}

You can see our new cluster name, so we know all is good. It appended our hostname to
the instance name, so it’s present twice, but that is the price we pay for the instance in
Puppet being named well.

Now let’s work on Logstash.

Installing Logstash

Much like the elasticsearch module, the logstash module is provided by Elasticsearch.
This module is fairly mature but is not part of the Puppet Approved program.

There is a fairly tight coupling between the version of the module and the version of
Logstash it manages. In this case, we will want a Version > 0.5.0 since we’re managing
Logstash 1.4. This is the latest version at the time this book was written, so we can simply
install it. If there are newer versions, the install commands would need to be adjusted
accordingly to match the version you wish to work with.

To install the module on the master, run the following command:

sudo puppet module install elasticsearch-logstash
This will get the module installed and should be second nature by now.

The logstash module uses a concept of configuration file snippets to perform its work.
It’s used to rely on a fairly robust set of defines to do the work, however, as configurations
became more complex, creating a system of types and plugins to manage all possibilities
became more difficult. As such, the project reverted to using file snippets that expose all
of the possible configuration functionalities in the 1logstash module.

As mentioned previously, we’ll define a profile, and then we’ll define a role to use that.

First, let’s create our configuration snippets. Basically, we’re going to slice up the
configuration file we used in the first section into three pieces. We’ll then configure
Logstash to use these pieces in a configuration.

Let’s create the input from the messages file. To do this, we’ll take the input section of the
configuration file from earlier and put it in a file in the module path. We can then use the
logstash: :configfile method to include it.

Before we can do that, we need to create the file directory in our module. Inside the
profiles module, run the mkdir files command to create the directory to hold static files
served by the master.

Then, let’s edit the files/messages-input.conf file and add the following contents:

input {
file {
path => "/var/log/messages"
start_position => "beginning"
type => '"syslog"
¥
}

This should look familiar from earlier. We’re creating a file input that will pick up the
messages file and classify it as syslog. It’1l also pick up the entire file through the first
pass.

Now, let’s add the second configuration file snippet. We’ll call this file files/syslog-
filter.conf. It should look as follows:

filter {
if [type] == "syslog" {
grok {
match => { "message" => "%{SYSLOGTIMESTAMP:syslog_timestamp} %
{SYSLOGHOST:syslog_hostn
add_field => ["received_at", "%{@timestamp}"]
add_field => ["received_from", "%{host}"]
3
syslog_pri { }
date {
match => ["syslog_timestamp", "MMM d HH:mm:ss", "MMM dd HH:mm:ss"]

b
3
}

Note that the first match line was wrapped. This should also be reviewed as it’s the same
match line as the earlier one. It takes anything with a syslog type and applies three filters.
The first one is a grok filter that splits the message into parts. The second is a filter that
can parse the syslog priority. The final one is a filter that parses the syslog type’s date to
set the event timestamp for Logstash internally.

Finally, let’s configure our output file. We’ll put this one in the files/elasticsearch-
output.conf file. The contents are as follows:

output {
elasticsearch { cluster => "Elasticsearch" }

}

In this case, we’re sending the output to the elasticsearch cluster. This is a bit different
than earlier the one, as it uses discovery instead of pointing to a static host. Your use of
this depends on your paranoia. If your network is well controlled, it is safe to use
discovery. If you are worried about unknown hosts joining the cluster, you should
statically set the hosts to connect to using a template.

Now that we have our files in place, we can go ahead and create our profile. We’ll create it
as the manifests/logstash.pp profile. We’ll create the contents to look as follows:

class profiles::logstash {

class { '::logstash':
manage_repo => true,
repo_version = '1.4"',
purge_configdir => true,

}

logstash::configfile { 'messages-input':

order => 100,

source => 'puppet:///modules/profiles/messages-input.conf’,
}
logstash::configfile { 'syslog-filter':

order => 200,

source => 'puppet:///modules/profiles/syslog-filter.conf"',

}

logstash::configfile { 'elasticsearch-output':

order => 900,
source => 'puppet:///modules/profiles/elasticsearch-output.conf’,

b
}

Note that the last source line was wrapped.

This profile will install Logstash, telling it to manage the repository on the system and
purge unmanaged configuration files. It then goes on to create three configuration file
resources for our snippets. We set the order to ensure that they get added in the proper
order, using numbers with 100 to allow us plenty of room to expand in the future.

Now we add it to our logstash-server role in our roles profile, which should now look
like the following:

class roles::logstash-server {
include profiles::logstash-elasticsearch
include profiles::logstash

}

Once that’s done, we can go ahead and run Puppet on agentone again and observe the
output. It should look as follows:

- chap8 — vagrant@agentone:~ — ssh — 92x29
vagrant@agentone:~ vagrant@pu...les/profiles logstash.pp...fests) - VIM +
[vagrant@agentone ~]% sudo puppet agent --test

Notice: /Stage[main]/Logstash::Repo/Yumrepo[logstash]/ensure: created

Notice: fSﬁagé[muin]fLogstasﬁ::ConfingileEfetcflogstushfpntterns]fensure: created

Notice: /Staoge[main]/Logstash::Config/File[/etc/logstash/plugins]/ensure: created

Notice: /Stage[main]/Logstash::Config/File[/etc/logstash/plugins/logstash]/ensure: created
Notice: /Stoge[main]/Logstash::Config/File[/etc/logstash/plugins/logstash/filters]/ensure: ¢
reated

Notice: /Staoge[main]/Logstash::Config/File[/etc/logstash/plugins/logstash/codecs]/ensure: cr
eated

Notice: /Stage[main]/Logstash::Config/File[/etc/logstash/plugins/logstash/inputs]/ensure: cr
eated

Notice: /Stoge[moin]/Logstash::Config/File[/etc/logstash/plugins/logstash/outputs]/ensure: ¢
reated

Notice: /Stage[main]/Logstash::Config/File_concat[ls-config]/ensure: created

: /Service[logstash]: Téiggered 'refresh' from 1 events
: Finished catalog run in 2.51 seconds

Once this completes, run the curl command from the first section. It is as follows:

curl 'http://localhost:9200/_search?pretty'

You should see the results returned, so on to Kibana!

Reporting on log data

As we saw earlier, Kibana is the graphical dashboard frontend in the ELK stack. It
provides a rich interface that allows you to turn normal boring log data (or any data in
Elasticsearch actually), into colorful dashboards that contain operational data. We’ll go
over to install Kibana via Puppet here. Since in Version 3 this is just a web application,
this is a fairly straightforward procedure.

Installing Kibana

Since Kibana is just a web application running as static HTML, we’ll configure it using a
local web server as we did in the first section. Much like in that section we’ll be using
Apache to handle the installation of Kibana.

This will vary a bit from how we’ve handled the past installations. We’re going to create
an end-to-end module to handle this instead of relying on a community module.

The first step is to create our module to do it. We’ll call it the pupbook-kibana module.
We’re doing this because none of the community modules present solve exactly what
we’re looking to do, and because it’s a good exercise in a complete functioning module.
To get started, run the following command to generate our module template:

puppet module generate pupbook-kibana

Now, we’ll start flushing our module out. First, we’ll create a class to install Kibana. We’ll
call it the kibana: :install class. To do so, let’s edit the manifests/install.pp file and
add the following content:

class kibana::install (
$version = "3.1.2",
$site = "https://github.com/elasticsearch/kibana/archive/",
$target = "/var/www/kibana",
$archtarget = "/opt/",
) {
validate_string($version)
validate_string($site)

$archive = "v${version}.tar.gz"
$downloadurl = "${site}/${archive}"

file { $archtarget:
ensure => directory,
¥

file { $target:
ensure => directory,
¥

We use curl to download
package { 'curl':

ensure => present,
}

exec { 'download-kibana':
command => "curl -L -s -S -k -0 ${archtarget}/${archive}
${downloadurl}",
path => "/bin:/usr/bin",
creates => "${archtarget}/${archive}",
require => [Package['curl'], File[$archtarget], File[$target]],
notify => Exec['extract-kibana'],

exec { 'extract-kibana':

command => "tar --strip-components=1 -zxf ${archtarget}/${archive}
-C ${target}",
path => "/bin:/usr/bin",

refreshonly => true,

3
}

Be aware that a few of the preceding lines were wrapped. They should be obvious, but if
you have questions, see the code included with the book.

This is a fairly complete example complete with some validation. We’re allowing
parameters to be passed to the class to change what version we download, or where we
install.

First, we set some variables to make our lives a bit easier, containing things like our
archive name and the full URL we’re downloading from.

Then, we go on to ensure that the directories we need are present, and the curl package we
use to download software is installed.

Finally, we hit the interesting parts. We have two exec resources here that do the meat of
the work. The first one sets up a download of the kibana source to a temporary location
(the /opt location by default). This downloads the file from GitHub by default. It then
notifies the other exec that will extract the archive contents to our target directory.

Ideally, we’d like all the software to be distributed by package, and we could easily use a
tool to create the RPM. We would then need a repository infrastructure to hold it, and so
on. This is a great goal if you have multiple packages you’re dealing with, but if it ends up
simply being a single package, this method will work. There are even utility modules on
the forge that can assist. Use the search term archive to find them.

Once this install method runs, we will have a fully installed and working copy of Kibana.
We now need to configure Apache to serve it. To do this, we’ll use the
puppetlabs/apache module.

First, we need to install it with our now super familiar command on the Puppet Master:

sudo puppet module install puppetlabs/apache

Now that it’s installed, we’ll create the necessary glue in our kibana module to use it to
serve the pages.

We can do this in our profile for Kibana, since that’s what the profile is normally for.
However, I find that since Kibana requires a web server to operate, it’s a reasonable choice
to go ahead and configure it in that module. The only reason you may not want to is if you
were to create a reusable module where the end user may wish to use a different web
server to serve up kibana.

Let’s edit the manifests/apache.pp file in our kibana module, and we’ll make it look as
follows:

class kibana::apache {
class { '::apache':
default_vhost => false,
}

apache::vhost { 'kibana':
docroot => '/var/www/kibana/src/"',
port = '80',
require => Class['kibana::install'],
}
}

This fairly simple class creates the apache: :vhost for our Kibana configuration. If we had
to interact with other apache: :vhost, we’d need a more flexible way to handle this
(unless we wanted Kibana to be the default vhost), but we shouldn’t be mixing services
that are unrelated anyway. A perfectly reasonable thing to do is to run this interface on one
of the logstash hosts as it is very lightweight.

We can create one last class that handles configuring Kibana. However, in this case, the
default configuration will suffice as it did earlier.

Let’s glue it all together by adding it to the init.pp file. Edit the manifests/init.pp file
and add the following:

class kibana {
include kibana::install
include kibana: :apache

}

Continuing on this journey, we’ll add this class directly to the role. Since it’s specific to
the site, we can skip the profile setup here and add it straight to the role. Edit the
roles/manifests/logstash-server.pp file to make it look as follows:

class roles::logstash-server {
include profiles::logstash-elasticsearch
include profiles::logstash
include kibana

}

Whew! That was a lot of work to get the entire stack up. None of it was difficult, but since
we created an entire module from scratch it had some more steps.

We’ve already applied the role to our host, so it’s just a matter of running Puppet on the
agentone host now to see the results. When you do so, the output should be similar to the
following screenshot:

® chap8 — vagrant@agentone:~ — ssh — 92x35

vagrant@agentone:~ vagrant@puppet:~ logstash-se.. fests) - VIM +

Notice: fﬁtqge[main]prache::Mod::Hime_magicfhpache::Mud[mime_mugic]fFiIe[mime_mugic.luad]fe
nsure: defined content as '{mdS5}cb867@bb2fb352aac7ebf3a85d52094c"
Notice: fStﬂge[mdin]pruche::Hcd:EDnv_stFile[duu_Fs.cnnf]fensure: defined content as '{md5}
899a57534f3dB4efaB81887ec93c9@c9b"

Hdti:e: /Stage[main]/Apache: :Mod: : Cgi/Apache: :Mod[cgil/File[cgi.load]/ensure: defined conten
t as '{md5}acZ@c5c5779b37abbEb480d6485a0881"

Notice: /Stage [mﬂin]fﬁpnchefFi'Le[fetcfhttpdfmnf .d/welcome.conf]/ensure: removed

- fStﬂge[maln]fhpuchefFlle[fetc ttpdfcnnf deEADHE]fensure removed

: fStnge[mmn]lebanu Apuche;‘Apuche vhost[k-Lbunu]f‘Fl'Le[ZS k'Lbana confl/ensure:

Notice: fﬁtﬂge[main]fhpuche::Service!iefvice[httpd]fensure:.Ensﬁré changed 'stopped' to 'run
ning’
Notice: Finished catalog run in 26.34 seconds
[vagrant®agentone ~]%

Now, hit http://10.78.78.50 with a browser. You should be greeted with the Kibana
welcome page we saw in the first section of the chapter.

Now that we’ve got the entire ELK stack Puppetized, let’s take a look at how we can use
Puppet to automate collecting data from each of our hosts.

Configuring hosts to report log data

Now that we’ve been through the work of Puppetizing the host infrastructure for Logstash,
let’s take a look at how to Puppetize the collection on our hosts. There are a large number
of ways to do this that contain various tradeoffs on things such as local parsing and the
size of the shipping solution.

For this exercise, we’ll use Redis as a message queue. This is the recommended
configuration if you wish to use a message queue based system, if you wish to use a
message queue and do not have one installed. It has the downside of having added
complexity due to needing Redis installed. However, our Redis installation in this example
is quite simple using a community module.

This is a well-supported and tested configuration. There are other possible message queues
one could use instead of Redis, so if your environment has one set up, by all means use
that one.

The first step is to get Redis installed. There are a stack of community modules that can do
this. We’ll be using the most popular one in terms of downloads, which is the
thomasvandoren/redis command. To do this, first we must get it installed. The all too
familiar following command does it:

sudo puppet module install thomasvandoren/redis

Now, we’ll add a new profile for a Redis server. This will use a very default configuration,
so it will be rather small. In our roles module, create the manifests/logstash-redis.pp
file. The contents are as follows:

class profiles::logstash-redis {
include redis

}

It’s that simple. We’ll use all of the default redis configuration, including the password.
In production, you’d likely want to set authentication up for these purposes.

Now, we’ll create a new redis input for our indexer. To do this, let’s first create the
configuration file snippet for the input in the profiles module. To do this, edit the
files/redis-input.conf file and add the following contents:

input {
redis {
host => "localhost"
data_type => "list"
key => "logstash"
type => "redis-input"
}
}

This tells Elasticsearch that we want a redis-input listening on localhost. We’ll use the
list data type, which is one of the methods Redis has to move data. We’ll set our key or
queue to logstash, and the type (if not specified on the shipper) to redis-input.

Now, we can go ahead and configure our profile for logstash to use this. To do this, we’ll
add a new stanza to the manifests/logstash.pp file to include our redis configuration
file. We’ll place it right after our messages input and it should look as follows:

logstash::configfile { 'redis-input':
order => 101,
source => 'puppet:///modules/profiles/redis-input.conf’',

}

Additionally, we’ll add our new logstash-redis profile to our logstash-server role. To
do this, edit the manifests/logstash-server.pp file in our roles module and make it
look as follows:

class roles::logstash-server {
include profiles::logstash-elasticsearch
include profiles::logstash
include kibana
include redis

}

Once done, go ahead and run Puppet on agentone. You should see it install Redis and
reconfigure Logstash. This may take some time as the module we’re using actually
compiles and installs Redis. We’re going to omit the screenshot of the output for brevity
(we’ve seen plenty of such outputs by now).

Now that we have that we can focus on the shipper side. To do this, we’ll create a new
profile called logstash-shipper. We’ll base it on the logstash profile.

Tip
There is an opportunity for improvement here by bringing the common pieces of this
configuration together. This is a good opportunity for you to practice what you’ve learned.

First, let’s make our redis-input file. For this example, we’ll hardcode the IP to send to.
We’d want to do this via a template in a bigger environment, likely obtained from Hiera.
However, we’re once again trying to keep these examples shorter and more simple. Edit
the files/redis-output.conf file under the profiles module and add the following
content:

output {
redis {
host => '10.78.78.50'
data_type => 'list'
key => 'logstash'
}
b

This looks very much like our input, but in this case, we’re statically setting the host to our
Redis master.

Now, let’s create the profile. Edit the manifests/logstash-shipper.pp file and include
the following content:

class profiles::logstash-shipper {

class { '::logstash':
manage_repo => true,
repo_version = '1.4"',
purge_configdir => true,

}

logstash::configfile { 'messages-input':
order => 100,
source => 'puppet:///modules/profiles/messages-input.conf',

}
logstash::configfile { 'syslog-filter':
order => 200,
source => 'puppet:///modules/profiles/syslog-filter.conf"',

}
logstash::configfile { 'redis-output':
order => 900,
source => 'puppet:///modules/profiles/redis-output.conf’,

¥
}

This is very close to our logstash profile, with only the output changing to use the new
configuration we’ve put in place. Now, we can create a logstash-shipper role by
creating the manifests/logstash-shipper.pp file under the roles module, as shown in
the following code:

class roles::logstash-shipper {
include profiles::logstash-shipper

}

This is another case where the role ends up being very short and only contains the single
module.

Now, let’s add this as a default configuration in our site.pp file. Under the
/etc/puppet/manifests/site.pp code, add the following default node definition:

node default {
include roles::logstash-shipper

}

Finally, we’re ready to go. On the master, run the sudo chmod 644 /var/log/messages
command to make our messages file readable by Logstash, then run Puppet.

Now, let’s return to our Kibana installation and see what we see there. We’ll take a short
cut straight to the Logstash dashboard by going to
http://10.78.78.50/index.html#/dashboard/file/logstash.json. Once there scroll
down to the filter section on the left-hand side and click on the host. You should see the
output as follows:

& & Kibana 3 - Logstash Searr

e

-1 10.78.78.50/index.html#/dashboard/file/logstash.json

Q@Q@E@E

11-10 -10 =10 11-10 11-10 11-10

e & & + x

0 to 100 of 500 available for paging -

Fields @ _source (select columns from the list to the left)

{*message®:"Nov 10 18:07:14 puppet puppet-agent[24207]:

(/Stage{main}/Logstash::Service/Logstash: :Sarvice::Initlogstash]/Senicellogstash]/ensure) ensure changed 'stopped’ to
‘@timestamp®:"2014-11-11T02:07:14.000Z","type":"syslog®,"host":"puppet. book.local®,"path*: "Aaro...

Type to filter..

Mov 10 18:07:14 puppst puppet-agent[242 i [Logstash::Service]) Scheduling refresh of
rvice::Initlogstash|®, "@version™: "1, "@timestam 014-11-

11T02:07:14.0002° , "type":"sysiog”, "host": "puppet. book.local® , "path arfiog/messages”, "syslog_timestamp®:["Now 10 18:07:1...
Fmessana® *Nov 10 180714 nonnat nunnat-aoantl24207): (/Stagelmain]/Logstash: :Config/File_concat{ls-config)/ensure)
Q. @ Micro Analysis of host (string)

Count /500 &, "path®:*/varlog/messages®,"sysiog_timestamp™:[*Nov 10 18:07:14","Nov 10 18...

Value i events
1. puppset.book.local
2. agentone.booklocal

ﬁ : {/Stage[main]/Logstash: :Config/File_concatfls-config)/ensure)
T (100%), @tirr (100%), 76 (100%), (100%),

t(10 r T (100% faciity (100%),

(100%), stnarme (100%), @ (100%), - sh]) Unscheduling refres

(i 8 a0

00

al*,"path":*varog/messages”, "syslog_timestamp®:[*Nov 10 18:07:14","Nov 10 18...

al*,"path":* varog/messag rslog_timestamp®:[*Nowv 10 18:07:14","Nov 10
18:07:14%..

["'messags":"Nov 10 18:07:14 puppet puppet-agant[24207]:
(/Stage{main]/Logstash::Service/L ogstash::Service: Initfogstash]/Senvicellogstash]/ensure) ensure changed 'stopped’ to

et

You can see that we now have data from both our Puppet master as well as agentone. If
you start up agenttwo, sign its certificate, and run Puppet, you would see logs from that
host also.

Using this method, we can now ship logs from all of our hosts to our single centralized
Logstash server and analyze them using Kibana.

Summary

In this chapter, we explored centralized logging. We’ve seen why one might want to
implement it and what the benefits are.

We then looked at the Logstash environment and the ELK stack. This includes
Elasticsearch, Logstash, and Kibana that provide a complete log management solution that
can scale to many hosts.

After doing this, we explored how to install all of these pieces using Puppet. We went
through the acts of installing Elasticsearch, Logstash, and then Kibana using Puppet to
automate the system.

Finally, we explored how to use Puppet to manage your other hosts to ship logs to this
centralized logging solution and do this in a repeatable manner.

By doing all this, we saw many examples of how to implement solutions in Puppet. The
building block of tools available to you continues to grow. While we didn’t explore how to
bring every log into this solution, we’ve given you enough knowledge to expand what
we’ve learned to be used in other situations.

More information on the ELK stack can be found at
http://www.elasticsearch.org/overview/.

In the next chapter, we’ll cover how to use Puppet to help manage SELinux and audited
configurations.

http://www.elasticsearch.org/overview/

Chapter 9. Puppet and OS Security Tools

We learned a lot so far about using Puppet to secure your systems as, well as how to use it
to make groups of systems more secure. However, in all of that, we’ve not yet covered
some of the basic OS-level functions that are available to secure a system. In this chapter,
we’ll review several of those functions.

SELinux is a powerful tool in the security arsenal. Most administrators experience with it,
is along the lines of “how can I turn that off ?” This is born out of frustration with the poor
documentation about the tool, as well as the tedious nature of the configuration.

While Puppet cannot help you with the documentation (which is getting better all the
time), it can help you with some of the other challenges that SELinux can bring. That is,
ensuring that the proper contexts and policies are in place on the systems being managed.

In this chapter, we’ll cover the following topics related to OS-level security tools:

A brief introduction to SELinux and auditd
The built-in Puppet support for SELinux
Community modules for SELinux
Community modules for auditd

At the end of this chapter, you should have enough skills so that you no longer need to
disable SELinux. However, if you still need to do so, it is certainly possible to do via the
modules presented here.

Introducing SELinux and auditd

During the course of this chapter, we’ll explore the SELinux framework for Linux and see
how to automate it using Puppet. As part of the process, we’ll also review auditd, the
logging and auditing framework for Linux. Using Puppet, we can automate the
configuration of these often-neglected security tools, and even move the configuration of
these tools for various services to the modules that configure those services.

The SELinux framework

SELinux is a security system for Linux originally developed by the United States
National Security Agency (NSA). It is an in-kernel protection mechanism designed to
provide Mandatory Access Controls (MACs) to the Linux kernel.

SELinux isn’t the only MAC framework for Linux. AppArmor is an alternative MAC
framework included in the Linux kernel since Version 2.6.30. We choose to implement
SELinux; since it is the default framework used under Red Hat Linux, which we’re using
for our examples.

Note

More information on AppArmor can be found at
http://wiki.apparmor.net/index.php/Main_Page.

These access controls work by confining processes to the minimal amount of files and
network access that the processes require to run. By doing this, the controls limit the
amount of collateral damage that can be done by a process, which becomes compromised.

SELinux was first merged to the Linux mainline kernel for the 2.6.0 release. It was
introduced into Red Hat Enterprise Linux with Version 4, and into Ubuntu in Version 8.04.
With each successive release of the operating systems, support for SELinux grows, and it
becomes easier to use.

SELinux has a couple of core concepts that we need to understand to properly configure it.
The first are the concepts of types and contexts. A type in SELinux is a grouping of
similar things. Files used by Apache may be httpd_sys_content_t, for instance, which is
a type that all content served by HTTP would have. The httpd process itself is of type
httpd_t. These types are applied to objects, which represent discrete things, such as files
and ports, and become part of the context of that object. The context of an object
represents the object’s user, role, type, and optionally data on multilevel security. For this
discussion, the type is the most important component of the context.

Using a policy, we grant access from the subject, which represents a running process, to
various objects that represent files, network ports, memory, and so on. We do that by
creating a policy that allows a subject to have access to the types it requires to function.

SELinux has three modes that it can operate in. The first of these modes is disabled. As
the name implies, the disabled mode runs without any SELinux enforcement. The second
mode is called permissive. In permissive mode, SELinux will log any access violations,
but will not act on them. This is a good way to get an idea of where you need to modify
your policy, or tune Booleans to get proper system operations. The final mode, enforcing,
will deny actions that do not have a policy in place. Under Red Hat Linux variants, this is
the default SELinux mode. By default, Red Hat 6 runs SELinux with a targeted policy in
enforcing mode. This means, that for the targeted daemons, SELinux will enforce its
policy by default.

An example is in order here, to explain this well.

http://wiki.apparmor.net/index.php/Main_Page

So far, we’ve been operating with SELinux disabled on our hosts. The first step in
experimenting with SELinux is to turn it on. We’ll set it to permissive mode at first, while
we gather some information. To do this, after starting our master VM, we’ll need to
modify the SELinux configuration and reboot. While it’s possible to change from
enforcing mode to either permissive or disabled mode without a reboot, going back
requires us to reboot.

Let’s edit the /etc/sysconfig/selinux file and set the SELINUX variable to permissive on
our puppetmaster. Remember to start the vagrant machine and SSH in as it is necessary.
Once this is done, the file should look as follows:

. chap9 — vagrant@puppet:~ — ssh — 92x14

This file contrpls the state of SELinux on the system.

SELINUX= can taoke one of these three values:

enforcing - SELinux security policy is enforced.

permissive - SELinux prints warnings instead of enforcing.
disabled - SELinux is fully disabled.

SELINUX=permissive

SELINUXTYPE= type of policy in use. Possible wvalues are:

targeted - Only targeted network daemons are protected.

strict - Full SELinux protection.
SELINUXTYPE=targeted

Once this is complete, we need to reboot. To do so, run the following command:

sudo shutdown -r now
Wait for the system to come back online.

Once the machine is back up and you SSH back into it, run the getenforce command. It
should return permissive, which means SELinux is running, but not enforced.

Now, we can make sure our master is running and take a look at its context. If it’s not
running, you can start the service with the sudo service puppetmaster start command.
Now, we’ll use the -z flag on the ps command to examine the SELinux flag. Many
commands, such as ps and 1s use the -z flag to view the SELinux data. We’ll go ahead
and run the following command to view the SELinux data for the running puppetmaster:

ps -efZ|grep puppet
When you do this, you’ll see a Linux output, such as follows:

unconfined_u:system_r:initrc_t:s@ puppet 1463 1 1 11:41 ? 00:00:29
/usr/bin/ruby /usr/bin/puppet master

If you take a look at the first part of the output line, you’ll see that Puppet is running in the
unconfined_u:system_r:initrc_t context. This is actually somewhat of a bug and a
result of the Puppet policy on CentOS 6 being out of date. We should actually be running

under the system_u:system_r:puppetmaster_t:s0 context, but the policy is for a much
older version of Puppet, so it runs unconfined.

Let’s take a look at the sshd process to see what it looks like also. To do so, we’ll just
grep for sshd instead:

ps -efZ|grep sshd
The output is as follows:

system_u:system_r:sshd_t:s0-s0:c0.c1023 root 1206 1 0 11:40 ? 00:00:00
/usr/sbhin/sshd

This is a more traditional output one would expect. The sshd process is running under the
system_u:system_r:sshd_t context. This actually corresponds to the system user, the
system role, and the sshd type.

The user and role are SELinux constructs that help you allow role-based access controls.
The users do not map to system users, but allow us to set a policy based on the SELinux
user object. This allows role-based access control, based on the SELinux user. Previously
the unconfined user was a user that will not be enforced.

Now, we can take a look at some objects. Doing a 1s -1Z /etc/ssh command results in
the following:

- chap9 — vagrant@puppet:~ — ssh — 92x11

[vagrant®puppet ~]% 1s -1Z /etc/ssh

“PW======= . root root system_u:object_r:etc_t:s@ moduli
system_u:object_r:etc_t:s@ ssh_config

——————— . system_u:object_r:etc_t:s@ sshd_config

------- . system_u:object_r:sshd_key_t: ssh_host_dsa_key
system_u:object_r:sshd_key_t: ssh_host_dsa_key.pub

------- i system_u:object_r:sshd_key_t: ssh_host_key

system_u:object_r:sshd_key_t: ssh_host_key.pub
------- . system_u:object_r:sshd_key_t: ssh_host_rsa_key
root system_u:object_r:sshd_key_t: ssh_host_rsa_key.pub
[vagrant®puppet ~]1$%

As you can see, each of the files belongs to a context that includes the system user, as well
as the object role. They are split among the etc type for configuration files and the
sshd_key type for keys.

The SSH policy allows the sshd process to read both of these file types. Other policies,
say, for NTP, would potentially allow the ntpd process to read the etc types, but it would
not be able to read the sshd_key files.

This very fine-grained control is the power of SELinux. However, with great power comes
very complex configuration. Configuration can be confusing to set up, if it doesn’t happen
correctly. For instance, with Puppet, the wrong type can potentially impact the system if
not dealt with.

Fortunately, in permissive mode, we will log data that we can use to assist us with this.
This leads us into the second half of the system that we wish to discuss, which is auditd.

Note

In the meantime, there is a bunch of information on SELinux available on its website at

http://selinuxproject.org/page/Main_Page. There’s also a very funny, but informative,
resource available describing SELinux at https://people.redhat.com/duffy/selinux/selinux-
coloring-book_A4-Stapled.pdf.

http://selinuxproject.org/page/Main_Page
https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf

The auditd framework for audit logging

SELinux does a great job at limiting access to system components; however, reporting
what enforcement took place was not one of its objectives.

Enter the auditd. The auditd is an auditing framework developed by Red Hat. It is a
complete auditing system using rules to indicate what to audit. This can be used to log
SELinux events, as well as much more.

Under the hood, auditd has hooks into the kernel to watch system calls and other
processes. Using the rules, you can configure logging for any of these events. For
instance, you can create a rule that monitors writes to the /etc/passwd file. This would
allow you to see if any users were added to the system. We can also add monitoring of
files, such as lastlog and wtmp to monitor the login activity. We’ll explore this example
later when we configure auditd.

To quickly see how a rule works, we’ll manually configure a quick rule that will log the
time when the wtmp file was edited. This will add some system logging around users
logging in.

To do this, let’s edit the /etc/audit/audit.rules file to add a rule to monitor this. Edit
the file and add the following lines:

-w /var/log/wtmp -p wa -k logins
-w /etc/passwd -p wa -k password

We’ll take a look at what the preceding lines do. These lines both start with the -w clauses.
These indicate the files that we are monitoring. Second, we have the -p clauses. This lets
you set what file operations we monitor. In this case, it is write and append operations.
Finally, with the the -k entries, we’re setting a keyword that is logged and can be filtered
on.

This should go at the end of the file. Once it’s done, reload auditd with the following
command:

sudo service auditd restart

Once this is complete, go ahead and log another ssh session in. Once you can simply log,
back out. Once this is done, take a look at the /var/log/audit/audit.log file. You
should see the content like the following:

type=SYSCALL msg=audit(1416795396.816:482): arch=c000003e syscall=2
success=yes exit=8 a0=7fa983c446aa al=1 a2=2 a3=7fff3f7a6590 items=1
ppid=1206 pid=2202 auid=500 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0
fsgid=0 tty=(none) ses=51 comm="sshd" exe="/usr/sbin/sshd"
subj=system_u:system_r:sshd_t:s0-s0:c0.c1023 key="logins"

type=SYSCALL msg=audit(1416795420.057:485): arch=c000003e syscall=2
success=yes exit=7 a0=7fa983c446aa al=1 a2=2 a3=8 items=1 ppid=1206
pid=2202 auid=500 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0
tty=(none) ses=51 comm="sshd" exe="/usr/sbin/sshd"
subj=system_u:system_r:sshd_t:s0-s0:c0.c1023 key="logins"

There are tons of fields in this output, including the SELinux context, the userID, and so
on. Of interest is the auid, which is the audit user ID. On commands run via the sudo
command, this will still contain the user ID of the user who called sudo. This is a great
way to log commands performed via sudo.

Auditd also logs SELinux failures. They get logged under the type AVC. These access
vector cache logs will be placed in the auditd log file when a SELinux violation occurs.

Note

Much like SELinux, auditd is somewhat complicated. The intricacies of it are beyond the
scope of this book. You can get more information at

http://people.redhat.com/sgrubb/audit/.

http://people.redhat.com/sgrubb/audit/

SELinux and Puppet

Puppet has direct support for several features of SELinux. There are two native Puppet
types for SELinux: selboolean and selmodule. These types support setting SELinux
Booleans and installing SELinux policy modules.

SELinux Booleans are variables that impact on how SELinux behaves. They are set to
allow various functions to be permitted. For instance, you set a SELinux Boolean to true
to allow the httpd process to access network ports.

SELinux modules are groupings of policies. They allow policies to be loaded in a more
granular way. The Puppet selmodule type allows Puppet to load these modules.

Additionally, there is support in the file type for setting the SELinux data on files, as you
may recall from an earlier chapter.

The selboolean type

The targeted SELinux policy that most distributions use is based on the SELinux reference
policy. One of the features of this policy is the use of Boolean variables that control
actions of the policy.

There are over 200 of these Booleans on a Red Hat 6-based machine. We can investigate
them by installing the policycoreutils-python package on the operating system. You
can do this by executing the following command:

sudo yum install policycoreutils-python

Once installed, we can run the semanage boolean -1 command to get a list of the
Boolean values, along with their descriptions. The output of this will look as follows:

. chap8 — vagrant@puppet:~ — ssh — 120x33 J

sonlock_use_samba (off , off) Allow sanlock to manage cifs files

ollow_execmod fon , on) Allow all unconfined executobles to use librories requiring text relocatio

n that are not labeled textrel_shlib_t)

owstots_purge_apache_log_files (off , off) Determine whether awstats can purge httpd log files.

allow_guest_exec_content (off , off) allow_guest exec_content

ollow_gssd_read_tmp fon , on) Allow gssd to read temp directory. For access to kerberos tgt.

webadm_manage_user_files (off , off) Allow webadm to manage files in users home directories

allow_rsync_agnon_write (off , off) Allow rsync to modify public files used for public file transfer services,
Files/Directories must be labeled public_content_rw_t.

git_session_bind_all_unreserved_ports (off |, off) Determine whether Git session doemon con bind TCP sockets to all un

reserved ports.

httpd_ssi_exec (off , off) Allow HTTPD to run 551 executables in the same domain as system (GI script

5

httpd_use_openstack (off , off) Allow httpd to access openstock ports

puppet_manage_all_files (off , off) Allow Puppet client to manoge all file types.

httpd_enable_ftp_server (off , off) Allow httpd to act as a FTP server by listening on the fitp port.

foron_crond (off off) Enaoble extra rules in the cron domain to support fcron.

virt_use_fusefs (off off) Allow virt to read fuse files

ollow_domain_fd_use {on on) Allow all domains to use other domains file descriptors

outhlogin_radius (off off) Allow users to login using a radius server

ssh_chroot_full_access (off off) Allow ssh with chroot env to manoge all files

httpd_setrlimit (of f off) Allow httpd doemon to change system limits

squid_connect_any (on on) Allow squid to connect to all ports, not just HTTP, FTP, and Gopher ports.

virt_use_samba (off off) Allow virt to manage cifs files

cluster_use_execmen (off off) Allow cluster administrative cluster domains memcheck-omdB4- to use execut

able memory

named_write_master_zones (off off) Allow BIND to write the master zone files. Generally this is used for dyna

mic DNS or zone transfers.

exim_manage_user_files (off off) Allow exim to create, read, write, and delete unprivileged user files.

logging_syslog_can_read_tmp (off off) Allow syslogd doemon to reod user tmp content

cron_can_relabel (off off) Allow system cron jobs to relaobel filesystem for restoring file contexts.

git_system_use_cifs (off off) Determine whether Git system doemon can access cifs file systems.

[vagrant@puppet ~]1%

As you can see, there exists a very large number of settings that can be reconfigured,
simply by setting the appropriate Boolean value.

The selboolean Puppet type supports managing these Boolean values. The provider is
fairly simple, accepting the following values:

Parameter

Description |

name ||This contains the name of the Boolean to be set. It defaults to the title. |

persistent

This checks whether to write the value to disk for the next boot. |

provider ||This is the provider for the type. Usually, the default getsetsebool value is accepted.

value ||This contains the value of the Boolean, true or false. |

Usage of this type is rather simple. We’ll show an example that will set the
puppetmaster_use_db parameter to true value. If we are using the SELinux Puppet
policy, this would allow the master to talk to a database. For our use, it’s a simple unused
variable that we can use for demonstration purposes.

As a reminder, the SElinux policy for Puppet on CentOS 6 is outdated, so setting the
Boolean does not impact the version of Puppet we’re running. It does, however, serve to
show how a Boolean is set.

To do this, we’ll create a sample role and profile for our puppetmaster. This is something
that would likely exist in a production environment to manage the configuration of the
master. In this example, we’ll simply build a small profile and role for the master.

Let’s start with the profile. Copy over the profiles module we’ve slowly been building up,
and let’s add a puppetmaster.pp profile. To do so, edit the
profiles/manifests/puppetmaster.pp file and make it look as follows:

class profiles: :puppetmaster {
selboolean { 'puppetmaster_use_db':
value => on,
persistent => true,

}
}
Then, we’ll move on to the role. Copy the roles, and edit the
roles/manifests/puppetmaster.pp file there and make it look as follows:

class roles: :puppetmaster {
include profiles::puppetmaster

}
Once this is done, we can apply it to our host. Edit the /etc/puppet/manifests/site.pp
file. We’ll apply the puppetmaster role to the puppetmaster machine, as follows:

node 'puppet.book.local' {
include roles: :puppetmaster

}

Now, we’ll run Puppet and get the output as follows:

=) chap9 — vagrant@puppet:/etc/puppet/modules — ssh — 120x9
vagrant@puppet:/etc/puppet/modules I

[vogrant@puppet modules]$ sudo puppet agent --test

Motice: r’Stagé[min].—-'PmF'iles::Puppetmsten’Selhoolean[puppetmuster_use_dh]a’\ralue: value changed 'off' to ‘on'
Motice: Finished catalog run in 22.7@ seconds
[vagrant@puppet modules]$

As you can see, it set the value to on when run. Using this method, we can set any of the
SELinux Boolean values we need for our system to operate properly.

Note

More information on SELinux Booleans with information on how to obtain a list of them

can be found at https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/sect-Security-
Enhanced_Linux-Working with_SELinux-Booleans.html.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/sect-Security-Enhanced_Linux-Working_with_SELinux-Booleans.html

The selmodule type

The other native type inside Puppet is a type to manage the SELinux modules. Modules
are compiled collections of the SELinux policy. They’re loaded into the kernel using the
selmodule command. This Puppet type provides support for this mechanism.

The available parameters are as follows:

Parameter Description |
name ||This contains the name of the module— it defaults to the title |
ensure ||This is the desired state—present or absent |
provider ||This specifies the provider for the type—it should be selmodule |
selmoduledir [This is the directory that contains the module to be installed |
selmodulepath|This provides the complete path to the module to be installed if not present in selmoduledir |
syncversion |IThis checks whether to resync the module if a new version is found, such as ensure => latest

Using the module, we can take our compiled module and serve it onto the system with
Puppet. We can then use the module to ensure that it gets installed on the system. This lets
us centrally manage the module with Puppet.

The community module that we’ll be using to manage SELinux in a later section uses this
type to load the module into Puppet. We’ll see an example where this module compiles a
policy and then installs it, so we won’t show a specific example here. Instead, we’ll move
on to talk about the last SELinux-related component in Puppet.

File parameters for SELinux

The final internal support for SELinux types comes in the form of the file type. We
covered these options briefly in an earlier chapter, but really didn’t add any details, so
we’ll do so here.

The file type parameters are as follows:

Parameter Description

By default, Puppet will use the matchpathcon function to set the context of a file. This

selinux_ignore_defaults - .
overrides that behavior if set to true value.

selrange This sets' the SELiqux range componept. Wg’ve not really c.overed this. It’s not used in
most mainstream distributions at the time this book was written.

Selrole ||This sets the SELinux role on the file.

seltype ||This sets the SELinux type on the file.

seluser ||This sets the SELinux role on the file.

Usually, if you place files in the correct location (the expected location for a service) on
the filesystem, Puppet will get the SELinux properties correct via its use of the
matchpathcon function. This function (which also has a matching utility) applies a default
context based on the policy settings. Setting the context manually is used in cases where
you’re storing data outside the normal location. For instance, you might be storing web
data under the /opt file.

The preceding types and providers provide the basics that allow you to manage SELinux
on a system. We’ll now take a look at a couple of community modules that build on these
types and create a more in-depth solution.

Configuring SELinux with community
modules

We now looked at how to get a system up and working using SELinux under Puppet. We
can go ahead and build a module to manage our policies by hand, but why not use a
module someone else has invested time into. We’re better off contributing work back to
make an existing module better if it can be made to work for us.

In this section, we’ll be looking at the spiette/selinux module that contains a more
complete solution to manage SELinux on Puppet.

This module can handle setting SELinux to any of the three modes (disabled, permissive,
and enforcing). It can also handle compiling SELinux policy modules and installing them
on hosts. This allows you to track the more easily handled plain text versions of the files
in version control with your Puppet data, instead of the binary compiled policy modules.

Creating a full policy is out of the context of this book, so for our example purposes, we’ll
first use the default policy shipped with the module. Then, we’ll create a very simple
policy module. I have used the SELinux Cookbook, Sven Vermeulen, Packt Publishing, at
the Packt Publishing website as a reference for creating an example module for our use.

Let’s get moving! First, we need to, as usual, install the module for our use. To do so, run
the following command on the master:

sudo puppet module install spiette-selinux

Now that it’s installed, let’s make a profile to handle our resources. Under our profiles
module, let’s create a manifest called profiles/manifests/selinuxtest.pp. We’ll use
this as the content to begin with:

class profiles::selinuxtest {
class { 'selinux':
mode => 'permissive',

}

selinux::module { 'rsynclocal':
ensure => 'present',

b
}

These class and defined types are largely out of the module documentation for the
SELinux module, but we’ll explore what they do. The first declares the main selinux
class. We can pass one of two parameters in, and accept the defaults with just an include
or require parameter on the class. The first parameter is the mode parameter. It specifies
the mode we want SELinux to be set to. In this case, it’s 'permissive' mode. If changing
the mode requires a reboot, it will log as such in your manifest at each run.

The second parameter is installmake. This indicates if make should be installed by this
module, or if it is installed with another module. One of the downsides of compiling this

locally is that it requires make to be installed. In many cases, this will be set to true value,
which is the default value. If you happen to manage your compiler tools in another
manifest, you can set this to false value here.

The second thing present in this manifest is a selinux: :module defined resource. This
define is what sets the system up to compile and load a module. In this case, we’re going
to load the default example rsynclocal module that ships with the selinux module. This
define accepts the following parameters:

Parameter [|[Description

This contains one of present, enabled, disabled, or absent values. This sets the state of the module on
the target system.

ensure

This specifies the directory on the target system that modules are stored in. The default is under the

modules_dir . - .
Puppet var directory in a directory called selinux.

source ||This is the source directory to the module. Defaults to puppet:///modules/selinux/${name}.

This contains any files that you want ignored in the preceding directory. It is useful for excluding things,

ignore .
such as swap files, VCS resources, and so on.

Now, let’s create our role to hold our profile. Edit the roles/manifests/selinuxtest.pp
file under our roles module and set the content to the following:

class roles::selinuxtest {
include profiles::selinuxtest

}

They say repetition is the key to learning, and by now the roles and profiles pattern have
become a second nature. Now, let’s make sure the modules are present on our system, and
we’ll include the module on our master as a test. We’ll edit our
/etc/puppet/manifests/site.pp file and add the new role to it, as follows:

node 'puppet.book.local' {
include roles: :puppetmaster
include roles::selinuxtest

}

Now, let’s run Puppet and see what happens! If you need a refresher here on how to do
this, you can refer to any of the previous chapters. The output should be something similar
to the following screenshot:

. chap9 — vagrant@puppet:~ — ssh — 92x28
vagrant@puppet:~ islagle@Jasons-Mac.../pupbook/src/chap9 +

-# targeted - Only targeted network doemons are protected.

-# strict - Full SELinux protection.

=SELINUXTYPE=targeted

+# SELINUXTYPE= can take one of these two values:

~# targeted - Targeted processes are protected,

+# minimum - Modification of targeted policy. Only selected processes are protected.
+# mls - Multi Level Security protection.

+SELINUXTYPE=targeted

Notice: /Stage[main]/Selinux::Config/File[/etc/selinux/config]/content: content changed '{md
5}b@73d595403cb@c382a432ddc86bd46f' to '{mdS5}6b@calael34489744a0d5f5d354e35da’

Notice: /Stage[main]/Profiles::Selinuxtest/Selinux::Module[rsynclocal]/File[/var/1lib/puppet/
selinux/rsynclocal]/ensure: created

Notice: /Stage[main]/Profiles::Selinuxtest/Selinux::Module[rsynclocal]/File[/var/1ib/puppet/
selinux/rsynclocal/rsynclocal.te]/ensure: defined content as '{md5}3def84b0@12434040742c96e0
0e63b66’

Notice: /Stage[main]/Profiles::Selinuxtest/Selinux::Module[rsynclocal]/Exec[rsynclocal-makem
od]: Triggered 'refresh’' from 1 events

Notice: /Stage[main]/Profiles::Selinuxtest/Selinux::Module[rsynclocal]/Selmodule[rsynclocal]
/ensure: created

Notice: Finished catalog run in 25.6@ seconds

[vagrant@puppet ~]%

Notice that it did quite a bit. We can now run the following command and see that our
policy module is loaded:

sudo semodule -1l|grep rsynclocal
You should see that the rsynclocal module is installed.

We’ll now quickly create a small policy module that we can use for a test to show that it
works. To do this, we’re going to create essentially an empty module — we’ll define types
but give them no permissions. We’ll then quickly be able to see that it fails and it gets
logged as expected.

To do so, create a selinuxtest directory under the profiles/files directory. From the
root of the profiles module, we can run the following command to do this:

mkdir -p files/selinuxtest

Inside this directory, we’ll create our files/selinuxtest/selinuxtest.te module file.
Edit this file and make the contents look as follows:

policy_module(selinuxtest, 0.1)

gen_require(

type unconfined_t;
class process transition;

Y

type selinuxtest_t;
type selinuxtest_exec_t;

role unconfined_r types selinuxtest_t;
userdom_user_application_domain(selinuxtest_t, selinuxtest_exec_t)

Note

A good high-level tutorial of writing a policy can be found at http://billauer.co.il/selinux-
policy-module-howto.html. It explains what the preceding command does.

This essentially creates a blank type and exec type with no permissions. Once done, let’s
add it to our profiles manifest, which should now look as follows:

class profiles::selinuxtest {
class { 'selinux':
mode => 'permissive',
}

selinux::module { 'rsynclocal':
ensure => 'present',

}

selinux::module { 'selinuxtest':
ensure => 'present',
source => 'puppet:///modules/profiles/selinuxtest/"',

}
}

Do notice how in our new module, we specified the source inside our profile. The ability
to do this allows us to keep the selinux module as a utility module with no local changes.

Now, if we run Puppet again, we should see the output like we did previously, that
indicated our module was compiled and installed.

Now, to test it, we’ll just change the context of a binary to our new selinuxtest_t type
and try to run it. To do this, run the following command:

sudo chcon -t selinuxtest_t /bin/nano

Now, start nano and exit it. It’]l run since we’re in permissive mode. Then, we’ll grep
nano from the audit log to see what happened:

http://billauer.co.il/selinux-policy-module-howto.html

. @& chap9 — vagrant@puppet:~ — ssh — 92x25
vagrant@puppet:~ selinuxtest.pp (~/pu...files/manifests) - VIM

[vagrant®puppet ~]% sudo grep nano /var/log/audit/audit.log

type=AVC msg=oudit(1417232446.274:5124): avc: denied { relabelto } for pid=8170 comm="chc
on" name="nano" dev=dm-@ ino=271960 scontext=unconfined_u:unconfined_r:unconfined_t:s@-s@:c@
.€1023 tcontext=system_u:object_r:selinuxtest_t:s@ tclass=file

type=AVC msg=audit(1417232446.274:5124): avc: denied { associate } for pid=8170 comm="chc
on" name="nano" dev=dm-@ ino=27196@ scontext=system_u:object_r:selinuxtest_t:s@ tcontext=sys
tem_u:object_r:fs_t:s@ tclass=Ffilesystem

type=PATH msg=audit(1417232446.274:5124): item=0 name="/bin/nano” inode=27196@0 dev=fd:@® mod
e=0100755 ouid=@ ogid=0 rdev=00:00 obj=system_u:object_r:bin_t:s@® nametype=NORMAL

type=AVC msg=oudit(1417232469.435:5127): avc: denied { execute } for pid=6532 comm="bash"
name="nano" dev=dm-@ ino=27196@ scontext=unconfined_u:unconfined_r:unconfined_t:s@-s0@:c@.cl
023 tcontext=system_u:object_r:selinuxtest_t:s@ tclass=file

type=PATH msg=0udit(1417232469.435:5127): item=@ name="/bin/nano” inode=271960 dev=fd:0® mod
e=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:selinuxtest_t:s@ nametype=NORMAL
type=AVC msg=audit(1417232469.435:5128): avc: denied { execute_no_trans } for pid=8171 co

mm="bash" path="/bin/nano" dev=dm-@ ino=271960 scontext=unconfined_u:unconfined_r:unconfined
_t:50-50:c0.c1023 tcontext=system_u:object_r:selinuxtest_t:s@ tclass=file

type=SYSCALL msg=0audit(1417232469.435:5128): arch=c0@@0@3e syscall=59 success=yes exit=0 ad=
1df4a3@ al=1dd85e@ aol=1ddala® a3=7fff68e13810 items=2 ppid=6532 pid=8171 auid=500 uid=500 gi
d=500 euid=500 suid=500 fsuid=500 egid=500 sgid=500 fsgid=500 tty=pts@® ses=679 comm="nano" e
xe="/bin/nano" subj=unconfined_u:unconfined_r:unconfined_t:s@-s@:c@.c1023 key=(null)
type=EXECVE msg=audit(1417232469.435:5128): argc=1 a@="nano"

type=PATH msg=audit(1417232469.435:5128): item=@ name="/bin/nano” inode=27196@ dev=fd:0@ mod
e=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:selinuxtest_t:s@ nametype=NORMAL
[vagrant®puppet ~]$%

You’ll note that SELinux would have actually denied our attempt to use the chcon
parameter. However, you can also see that there are several AVC denies on nano itself.

As you can see, this provides a handy method to handle installation of your own custom
SELinux policy modules.

Note

More information on this module can be found on its GitHub page at
https://forge.puppetlabs.com/spiette/selinux.

..|_

https://forge.puppetlabs.com/spiette/selinux

Configuring auditd with community
modules

Auditd has many less available community modules. This is likely due to its very simple
nature—configuring can be done with a simple file module and a couple of packages in
most cases. Nonetheless, let’s take a look at a community module that will manage your
configuration for you. It even provides a decent base ruleset and contains very powerful
customization options.

We’ll be looking at the evenup/auditd module here. As mentioned previously, it has most
of the auditd options exposed and provides a decent default ruleset with the option to
override. We’ll start by installing it:

sudo puppet module install evenup-auditd

The module contains a single entry point, the main auditd class that accepts four
parameters. They are as follows:

Parameter Description

Logagent The module supports using Beaver to process auditd log files (Beaver is a log shipper for
Logstash). It can be beaver or null.

rules "TTﬂsisthE]Daﬂltotheliﬂesfﬂe——defauhsto puppet:///modules/auditd/auditd.

config_override

This is a hash that contains values to override the default config. It is explained later in the chapter.

package_name The auditd package name. Usually, it is determined automatically.

This module uses a different pattern for configuration, where you can supply a config
hash to override the settings. This is as opposed to exposing the 24 different values as
parameters. The names of these configuration variables can be found in the init.pp file,
as they aren’t documented very well. Submitting a better documentation is an easy way
new users can give back to community modules.

For our example, we’ll simply accept all of the defaults. In this case, they’re sufficient, so
customizing the parameters is less important.

You might ask why when we’ve not customized the rules we pass auditd at all. As it
happens, the rule set that comes with the auditd module is fairly comprehensive, and
includes the rules that we used in our previous example and many more. If we wished to
customize the ruleset that got applied, we would do so by setting the rules parameter to the
module to a new file. This would likely be present in our profiles module as to avoid
modifying the base module. We would then pass this using either Hiera or a specific class
declaration that contains it.

We’ll create our profile and our role and then apply it to the master.

Tip

We’ve been creating roles for most profiles. In reality, many of these things, such as auditd
would likely go in a common role to get applied everywhere. That’s where the roles
pattern shows its real power.

To do so, let’s create the profiles/manifests/auditd.pp file inside our profiles module
with the following content:

class profiles::auditd {
include ::auditd

}

We use the : : here to stop the circular dependency caused by how classes are resolved.

If we want to pass in a custom rule set, let’s say in our profiles module, in the
profiles/files/etc/auditd/auditd.rules file, it would look like the following:

class profiles::auditd {
class { 'auditd':
rules => 'puppet:///modules/profiles/etc/audit/auditd.rules’,
}

}

Either way, the next step would be as follows:

Then, we’ll create the role. In the roles/manifests/auditd.pp file in our roles, add the
following:

class roles::auditd {
include profiles::auditd

3
Finally, add the auditd role to the master in the /etc/puppet/manifests/site.pp file:

node 'puppet.book.local' {
include roles: :puppetmaster
include roles::selinuxtest
include roles::auditd

}
Now, we’ll run Puppet and see what happens. It should look like the following:

. & chap9 — vagrant@puppet:~ — ssh — 92x25
vagrant@puppet:~ auditd.pp (~/pupbo...oles/manifests) - VIM -+

+# Files and programs deleted by the user (successful and unsuccessful)

+-a always,exit -F arch=b64 -5 unlink -5 unlinkat -5 rename -5 renameat -F auid>=5@@ -F auid
1=4294967295 -k delete

+

+# Make the configuration immutable - reboot is required to change audit rules

+# @ disable

+# 1 enable

+# 2 imutable - reboot required to change config

+-e 1

Notice: /Stage[main]/Auditd::Config/File[/etc/audit/audit.rules]/content: content changed '{
md5}6317ac90125b85387f74ee4848c0276d" to '{md5}flda23led56d51cc15edcee8?597677¢"

Notice: /Stage[main]/Auditd::Config/File[/etc/audit/audit.rules]/mode: mode changed '06490' t
o '0440'

Notice: fStage[main]fAuditdﬁ:Service!&ekvice[uuditd}: Triggéred 'refresh’ from 1 events
Notice: Finished catalog run in 38.43 seconds
[vagrant®puppet ~]%

You can see that it updated the rules and reloaded auditd. It added a lot of rules, so the
Puppet run itself should have triggered some of them. Look at the
/var/log/audit/audit.log file, and look for the word key. Our new rules used
keywords, so you can find them easily. You should see the output like the following:

type=SYSCALL msg=audit(1417268692.615:5661): arch=c000003e syscall=87
success=yes exit=0 a0=

50dfb10 al=0 a2=c a3=617461635f746e65 items=2 ppid=9038 pid=9039 auid=500
uid=0 gid=0 euid=0

suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=ptsO ses=679 comm="puppet"
exe="/usr/bin/ruby" sub
j=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 key="delete"

You can see that it contains the auid, which is the user who did the sudo command. It’s a
great way to log that, as was mentioned earlier.

By applying a module like this to all your hosts, you can quickly get auditd working
everywhere. Combine this with Logstash from the last chapter, and you have an excellent
way to manage audit logging.

Summary

This chapter set out to demystify some of the repetitiveness of configuring SELinux and
auditd on Linux hosts. While it’s not possible to explain all of the intricacies of them in a
book on Puppet, we hope that there was enough information to get you started and
perhaps, reverse the trend of just setting it to disabled or permissive.

First, we looked at what SELinux and auditd were, and gave a brief example of how they
can be used. We looked at what they can do, and how they can be used to secure your
systems.

After this, we looked at the specific support for SELinux in Puppet. We looked at the two
built-in types to support it, as well as the parameters on the file type.

Then, we took a look at one of the several community modules for managing SELinux.
Using this module, we can store the policies as text instead of compiled blobs.

Finally, we looked at a community module to manage auditd. While auditd is simple to
configure, using a module saves the work of creating your own. Contributing back is a
good way to support open source.

Now, we’ll move on and wrap up our time together, and review what we learned and see
where to go from here.

Appendix A. Going Forward

We’ve finally reached the end of our journey. It’s time to examine where you’ll go from
here as you continue to expand your experience with Puppet. There exists a number of
resources to further your education. In this chapter, we’ll cover the following topics:

Where to get more information on developing good modules
A brief discussion of Puppet device management

Other useful reporting tools

Some other useful Puppet tools

A brief discussion of the Puppet community

Some general thoughts on moving forward

What we’ve learned

We’ve covered a lot in our time together. In everything that we’ve covered, we learned
some useful patterns that will serve you, as you expand your skill base. Specific examples
were shown that are useful in themselves, but the underlying concepts being taught will
assist you, as you build your own Puppet infrastructure.

Just as importantly, we learned that tools exist to make our lives easier. As security
professionals, often times, change can be viewed as the enemy. However, with the right
controls and processes in place, change can actually be a positive thing. Change drives
business values. A company that is not moving forward is falling behind. Tools, such as
Puppet and the others introduced in this book can help manage that change and still satisfy
the regulatory, and other, requirements that are present in our jobs.

Where to go next

Puppet is a diverse ecosystem. The core Puppet tool itself is just a single tool in that
system. When combined with tools, such as Hiera, PuppetDB, and others, the real power
begins to shine. There are plenty of resources that will help you with these tools. In this
section, we’ll briefly explore where to go next, as you continue to delve into the Puppet
ecosystem.

Writing and testing Puppet modules

We’ve written our fair share of Puppet modules during this book. We even explored some
good patterns to use in doing so. However, there are several things we just touched on that
should be explored further, such as testing. Additionally, we’ll point out some other
general resources that will help you on your way.

Puppet modules and data in Hiera should be considered code, just as any other part of your
system. As such, they should be tested thoroughly to ensure that they operate properly.
The prevailing method of doing that is using rspec with a number of plugins.

The first project is rspec-puppet. We use rspec-puppet to create behavior-driven tests of
our Puppet manifests. These test the catalog to ensure that the things we are expecting to
happen end up in the catalog. This also has a pleasant side effect of compiling the catalog
when we run them, so it catches any silly syntax errors. More information on rspec can be

found at http://rspec.info/, and on rspec-puppet at http://rspec-puppet.com/.

The second useful project for testing is beaker and the beaker-rspec gem. Beaker is an
acceptance testing system that can use Vagrant or any number of other systems to
provision systems for testing. Along with the beaker -rspec plugin, beaker can be used to
write rspec tests that describe the state of the system. That is, Puppet runs and then rspec
validates it. It actually did what you expected it to do on the system. This can sometimes
vary from what you thought Puppet was going to do in the catalog.

In addition to testing, there are a handful of patterns that are considered useful when
developing modules. We already covered several patterns earlier in the book, such as the
roles and profiles pattern. The Puppet Labs documentation contains a wealth of good
resources on good module development. For more information on this, see
https://docs.puppetlabs.com/guides/module guides/bgtm.html.

Finally, there are a number of good books available on Puppet, and especially module
writing. Extending Puppet (https://www.packtpub.com/networking-and-servers/extending-
puppet), Alessandro Franceschi, Packt Publishing is a resource written by a very
experienced community member with a large amount of experience writing reusable
modules that are available to the public.

http://rspec.info/
http://rspec-puppet.com/
https://docs.puppetlabs.com/guides/module_guides/bgtm.html
https://www.packtpub.com/networking-and-servers/extending-puppet

Puppet device management

In the past handful of years, there have been a number of initiatives to use Puppet on
devices other than actual computers. The first iteration of this came back in 2011 with the
release of support for managing F5 load balancers. Additional community support exists
for a variety of devices, such as Cisco switches and routers. With some work, this model
can even be extended to managing firewalls. Imagine getting all of the same auditing
benefits from Puppet being applied to your network devices.

The device management solution uses the concept of a proxy host that serves as an
intermediary between the host systems and the devices being managed. This proxy host
turns the device configuration into resources and then sends the changes back to the
device to keep them in sync. The proxy host could be the Puppet Master, or any node
managed by Puppet and does not require additional software.

More information for the base device information can be found at

https://docs.puppetlabs.com/references/latest/man/device.html, as well as for the 5
module at https://forge.puppetlabs.com/puppetlabs/f5 and for Cisco switch management at

https://forge.puppetlabs.com/mburger/networkdevice.

The growing trend, however, seems to be running Puppet natively on the devices. Cisco
and Juniper both support some methods of running the Puppet agent on devices for at least
some of their lines. Cisco uses a container that runs Puppet and can communicate with the
host, while Juniper has native packages for their routers running newer versions of Junos.

This has the advantage of being a simpler configuration, since it does not require the
proxy hosts. Additionally, since the agent is tightly coupled with the device, there is better
support for that specific device in the agent.

A brief introduction to the Cisco method of on-device management can be found in the
PuppetConf talk at http://puppetlabs.com/presentations/managing-cisco-devices-using-
puppet. Information on using Puppet on Junos can be found at
http://puppetlabs.com/solutions/juniper-networks.

https://docs.puppetlabs.com/references/latest/man/device.html
https://forge.puppetlabs.com/puppetlabs/f5
https://forge.puppetlabs.com/mburger/networkdevice
http://puppetlabs.com/presentations/managing-cisco-devices-using-puppet
http://puppetlabs.com/solutions/juniper-networks

Additional reporting resources

We dedicated a chapter to explore reporting in Puppet, but largely focused on internal
tools that can help you do reporting.

There exists a good reference book for reporting in Puppet specifically, which is Puppet
Reporting and Monitoring at https://www.packtpub.com/networking-and-servers/puppet-
reporting-and-monitoring by Michael Duffy (full disclosure—I was a technical reviewer of
this book). It covers many of the Puppet reporting topics in much greater detail than we
can afford to do here.

We will, however, point out a couple of resources available that can help with reporting
out of the box. These resources are Puppetboard and The Foreman.

Puppetboard is a web-based user interface that replaces the Puppet Dashboard, which was
officially moved to community support. It provides an interface into the status of your
Puppet runs, as well as a nice browser that lets you browse facts on your hosts and other
such things. We wrote the custom code to provide reporting solutions for several of the
problems in the reporting chapter, which can be run natively in Puppetboard.

Puppetboard relies on PuppetDB being installed as it uses it as the data backend. It uses
data from PuppetDB to build rich dashboards with information about your systems.

More information on Puppetboard can be found at https://github.com/puppet-
community/puppetboard.

Another good reporting-related tool for one to review is The Foreman. The Foreman is
more than just a reporting tool. It aims to be a complete life cycle management tool that
provisions your systems and then works with Puppet to configure them. It can even serve
as an external node classifier that holds information about what classes get applied to a
node.

In addition to this, The Foreman contains reporting features on nodes similar to those of
Puppetboard. It can show trends in systems by type, show systems not completing Puppet
runs, and so on.

More information on The Foreman can be found at http://theforeman.org/.

These are not the only reporting engines available for Puppet. Other options, such as
Puppet Explorer exist at https://github.com/spotify/puppetexplorer and more are added
everyday.

Finally, don’t forget Kibana. By bringing your log data into Logstash, you can use Kibana
to create reports. You can even configure Logstash to send certain events straight to an
alerting system to alert on certain values. This can be used to build reporting, as well as
any of the previously mentioned software packages.

https://www.packtpub.com/networking-and-servers/puppet-reporting-and-monitoring
https://github.com/puppet-community/puppetboard
http://theforeman.org/
https://github.com/spotify/puppetexplorer

Other Puppet resources

There are a few other Puppet-related tools that don’t really fit elsewhere, so we’re going to
talk about them briefly here.

The first such tool is Puppet Enterprise. In a security role, it may be important for you to
have certified supported configurations for the tools managing your environment. Puppet
Enterprise offers this, as well as additional features and capabilities not present in the base
open source system.

Puppet Enterprise contains prebuilt, self-contained, packages for a large variety of
operating systems. This includes all of the expected Linux variants, as well as other
operating systems, such as AIX and Solaris. This can make it much easier to deploy
Puppet on systems that it might otherwise be difficult to get a modern version of Ruby on.

On top of that, Puppet Enterprise contains a powerful dashboard that permits reporting, as
well as system configuration. It serves as a node classifier, so if you use the roles and
profiles pattern, for instance, you can apply profiles to the system straight from the Puppet
Enterprise management dashboard.

More information on Puppet Enterprise can be found at
http://puppetlabs.com/puppet/puppet-enterprise.

Another new item of the Puppet community is Puppet Server. This is a new rewrite of the
Puppet Master in Clojure that runs on the JVM. The system then uses JRuby to run all of
the existing Puppet code. This allows you to continue to write your types in providers in
Ruby, while using the proven power of the JVM to increase the performance. This allows
the Puppet Master to take advantage of things, such as multithreading and a much better
garbage collection system. It also simplifies the configuration over the old method of
using Apache and Passenger.

This, of course, comes at the cost of running the master in the JVM. That may give a
certain amount of people cause for concern as they have previous bad experiences with
Java-based applications. However, from a security standpoint, the JVM is a well-
understood machine. Many more systems run in the JVM than run under Apache with
Passenger. In the end, this is an adjustment in the server running the core Puppet Server
and not a huge shift in paradigm.

Puppet Enterprise 3.7 is the first version to use this new Java-based Puppet Server.

More information on Puppet Server can be found at http://puppetlabs.com/blog/puppet-
server-bringing-soa-to-a-puppet-master-near-you.

Finally, it should be mentioned that the core Puppet software is also improving. Version 4
is about to be released that will contain a new parser and a good amount of new
functionalities. It’s going to bring with it, the ability to solve a certain class of problems
easier, with tools such as iteration, which are missing in Puppet today.

If you want to try some of these new features out today, you can use the future parser. This
is the parser that is being worked on for Puppet 4. More information on the future parser

http://puppetlabs.com/puppet/puppet-enterprise
http://puppetlabs.com/blog/puppet-server-bringing-soa-to-a-puppet-master-near-you

can be found at

https://docs.puppetlabs.com/puppet/latest/reference/experiments_future.html, and a
presentation on Puppet 4 at http://puppetlabs.com/presentations/future-goals-puppet-4-

andrew-parker-puppet-labs-kylo-ginsberg.

https://docs.puppetlabs.com/puppet/latest/reference/experiments_future.html
http://puppetlabs.com/presentations/future-goals-puppet-4-andrew-parker-puppet-labs-kylo-ginsberg

The Puppet community

No book would be complete without the mention of the excellent Puppet community. One
of the reasons Puppet has been successful is because the community members are top
notch and very helpful. We’ll explore a few of the community resources available to you if
you need assistance.

The first resource can be found at http://ask.puppetlabs.com site. This site is a place where
users can go to post questions for the community to answer. It is in the style of various
other question and answer sites. As your knowledge of Puppet increases, you can earn
badges to help other users out, with questions they might have.

A second resource is the Puppet mailing lists. These lists are hosted at Google Groups.
Lists exist for users and development efforts. A reasonable amount of discussion
concerning future development and direction of Puppet takes place on the lists. This is a
good place to read about development of new patterns and discussions on the future of
Puppet. It is also a great place to go to ask questions if you get stuck with a problem. You

can find the Puppet Users list at https://groups.google.com/forum/#!forum/puppet-users.

Finally, there is a page that discusses general community. There are many other
community-based events available, including the Puppet Users groups in some cities,
Puppet Camps that are smaller regional conferences, and the giant PuppetConf that draws
thousands of Puppet users to one place. Additionally, there is an IRC channel available for
use in asking questions in a more real-time fashion. Information on all of these resources

can be found at http://puppetlabs.com/community/get-help.

http://ask.puppetlabs.com%20site
https://groups.google.com/forum/#!forum/puppet-users
http://puppetlabs.com/community/get-help

Final thoughts

The journey to automation happiness is not one that happens overnight. Often times, the
tasks ahead of you can seem daunting. However, there is a simple method that I use to
approach such problems when they arise. Simply, start with your area of greatest pain. If
you spend a lot of time reviewing logs on systems, then start using Puppet to implement
centralized logging. If it’s user and account creation, then start there.

The operations industry as a whole is beginning to embrace the concepts that were
introduced in Japan after World War II. The description of the concepts often uses the
word lean. There are several important concepts I will leave you with.

The first is Kata. Kata is the art of practicing something to obtain mastery. Growing up,
you often did this in school, especially with math. As with those, you must practice your
art to get better at it. As you engage in automating your environment with Puppet—either
to make your life easier or to appease auditors, you will get better at it with practice. Do
not be afraid to revisit the earlier code as you become better. Improving it, often times, can
make new code development go faster.

The second and last concept I’d like to introduce is Kaizen. This is the concept of
continuous improvement. You should consider your environments as never complete. You
iterate on the work you’ve done to continuously improve. Perhaps as earlier, you started
with centralized logging. As you iterate on it, you’ll build improved grok patterns,
dashboard, and other things that will make your environment better and easier to use and
manage. Even in the simplest of environments, there is always room for improvement.

I hope that you learned a lot throughout the course of this book and it helps you move
your environments forward. Go forth and automate!

Index
A

e alternative SSL configurations / Alternative SSL configurations
e AppArmor
o URL / The SELinux framework
e arildjensen/cis module
o about / The arildjensen/cis module
e attributes, audit
o reference link / Available attributes
content / Available attributes
ctime / Available attributes
ensure / Available attributes
group / Available attributes
mode / Available attributes
mtime / Available attributes
owner / Available attributes
selrange / Available attributes
selrole / Available attributes
seltype / Available attributes
seluser / Available attributes
o type / Available attributes
e audit
o use cases / What can be audited
o using, on files / Using audit on files
attributes / Available attributes
about / Things to know about audit
e auditd
o about / Introducing SELinux and auditd
o references / The auditd framework for audit logging
o configuring, with community modules / Configuring auditd with community
modules
¢ auditd class, parameters

logagent / Configuring auditd with community modules
rules / Configuring auditd with community modules
o config_override / Configuring auditd with community modules

o package_name / Configuring auditd with community modules
e auditd framework

o for audit logging / The auditd framework for audit logging
e auditing

o alternatives / Alternatives to auditing
¢ audit meta-parameter

o about / The audit meta-parameter

O 0O 0O O 0O 0O o o o o o

(e]

(e]

(e]

(e]

audit system
o working / How it works

augeas / The herculesteam/augeasproviders series of modules
augeasproviders

o SSH, managing with / Managing SSH with augeasproviders
augeasproviders modules
o about / The herculesteam/augeasproviders series of modules
o reference link / The herculesteam/augeasproviders series of modules, Managing

SSH with augeasproviders
auth.conf file

o about / The auth.conf file

o reference link / The auth.conf file
autosigning certificates
about / Autosigning certificates
o naive autosign / Naive autosign
o basic autosign / Basic autosign
O

policy-based autosign / Policy-based autosign

(e]

bash scripting / PuppetDB and reporting
basic autosign / Basic autosign

Bcfg2
o about / What is Puppet?
Beaker

o reference link / Adding our second Vagrant host
best practice, for writing Puppet code

o reference link / Creating the manifest
built-in processors

o reference link / Basic Puppet reporting

CentOS advisory

o reference link / Example — finding heartbleed-vulnerable systems
Certificate Authority (CA)

o about / SSL and Puppet
Certificate Revocation List (CRL) / Revoking certificates
certificates

o signing / Signing certificates

o revoking / Revoking certificates
Certificate Signing Request (CSR)

o about / Signing certificates
CFEngine

o about / What is Puppet?

o URL / What is Puppet?
Chef

o about / What is Puppet?

o URL, for obtaining / What is Puppet?
CIS benchmark

o URL / The arildjensen/cis module
Cisco method, on-device management

o reference link / Puppet device management
classes

o about / The Puppet client-server model
client-server model, Puppet

o about / The Puppet client-server model
community modules

o reference link / Vendor-supplied defaults and the PCI
about / Vendor-supplied defaults and the PCI

o SELinux, configuring with / Configuring SELinux with community modules

o auditd, configuring with / Configuring auditd with community modules
community processors

o reference link / Basic Puppet reporting
compliance, Puppet / Puppet for security and compliance
Compliance dashboard

o reference link / Things to know about audit
components, Puppet

o about / Other Puppet components

o PuppetDB / PuppetDB

o Hiera / Hiera
configuration management tool / What is Puppet?
configuration options

o path / The auth.conf file

o environment / The auth.conf file

(e]

O O O

e}

method / The auth.conf file
auth / The auth.conf file
allow / The auth.conf file
allow_ip / The auth.conf file

e contexts

e}

¢ Cron

e}

about / The SELinux framework

about / The Puppet client-server model

e custom facts

e}

using / Using custom facts

D

e declarative systems

o versus imperative systems / Declarative versus imperative approaches

o properties / Declarative versus imperative approaches
e default configuration settings, Puppet

o reference link / The auth.conf file
e Domain-specific Language (DSL)
o about / What is Puppet?

ebtables

o about / Introducing the firewall module
Elasticsearch

o about / Welcome to logging happiness

o installing / Installing Elasticsearch

ELK stack
o installing / Installing the ELK stack
environment

o preparing, for examples / Preparing the environment for examples

facts
o using, for compliance / Facts for compliance
o Puppet roles pattern / The Puppet role’s pattern
o custom facts, using / Using custom facts
files
o audits, using on / Using audit on files
fileserver.conf file
o about / The fileserver.conf file
o restricted file mount, adding / Example — adding a restricted file mount
file system permissions
o URL, for wiki / Installing the ELK stack
file type parameters, SELinux
o selinux_ignore_defaults / File parameters for SELinux

o Selrange / File parameters for SELinux

o Selrole / File parameters for SELinux

o seltype / File parameters for SELinux

o seluser / File parameters for SELinux
firewallchain type

o about / The firewallchain type
firewall chain type, parameters

o ensure / The firewallchain type
ignore / The firewallchain type
name / The firewallchain type

policy / The firewallchain type
provider / The firewallchain type

o purge / The firewallchain type
firewall module
o about / Introducing the firewall module
firewall rules
o adding, to modules / Adding firewall rules to other modules
firewall type
o about / The firewall type
o reference link / The firewall type
firewall type, parameters
o action / The firewall type
chain / The firewall type
destination / The firewall type
dport / The firewall type
dst_range / The firewall type
ensure / The firewall type
jump / The firewall type
name / The firewall type

O O O o

O O O O O o o

O O O O O o o

e}

port / The firewall type
proto / The firewall type
reject / The firewall type
source / The firewall type
sport / The firewall type
src_range / The firewall type
state / The firewall type

tcp_flags / The firewall type

o future parser

e}

reference link / Other Puppet resources

G

e git
o reference link / Tracking history with version control
o used, for tracking Puppet configuration / Using git to track Puppet configuration
o URL / Using git to track Puppet configuration

heartbleed

o reference link / Reporting for compliance
heartbleed-vulnerable systems

o finding / Example — finding heartbleed-vulnerable systems
herculesteam modules

o about / The herculesteam/augeasproviders series of modules
Hiera

o about / Hiera

o reference link / The hiera-eyaml gem
hiera-eyaml

o reference link / The hiera-eyvaml gem
hiera-eyaml gem

o about / The hiera-eyaml gem
hostmanager plugin

o reference link / Adding our second Vagrant host

o working with / Working with hostmanager
hosts

o configuring, for reporting log data / Configuring hosts to report log data

I

e imperative systems

o versus declarative systems / Declarative versus imperative approaches
o properties / Declarative versus imperative approaches
e iptables
o about / Introducing the firewall module
o reference link / Introducing the firewall module

K

e Kibana

o about / Reporting on log data

o installing / Installing Kibana
e Kibana (ELK stack)

o about / Welcome to logging happiness

L

e librarian-puppet
o URL / Tracking modules separately

¢ logging
o about / Welcome to logging happiness
e [ogstash

o about / Welcome to logging happiness
o and Puppet / Logstash and Puppet
o installing / Installing [.ogstash

Mandatory Access Controls (MACs)
o about / The SELinux framework

manifest
o creating / Creating the manifest, First run of the manifest
manifests

o about / The Puppet client-server model
o used, for documenting system state / Using manifests to document the system
state

o history, tracking with version control / Tracking history with version control
module

o modifying, for audit / Modifying the module to audit
modules

o reference link / Using noop

o tracking, separately / Tracking modules separately
o firewall rules, adding to / Adding firewall rules to other modules

Nagios
o about / Welcome to logging happiness
National Security Agency (NSA)
o about / The SELinux framework
naive autosign / Naive autosign
Network Time Protocol (NTP) / Adding firewall rules to other modules
o drawbacks / Is allowing all to NTP dangerous?
noop
o about / Change tracking with Puppet
o using / Using noop
noop meta-parameter / The noop meta-parameter

objects
o about / The SELinux framework
open-source configuration management software
o URL, for comparison / What is Puppet?
open source Puppet

o about / What is Puppet?

openssh configuration file / The openssh configuration file
options, fileserver.conf file

[mountpoint] / The fileserver.conf file
path / The fileserver.conf file

allow / The fileserver.conf file

deny / The fileserver.conf file

(¢]

O O O

package

o auditing / Auditing a package
packages, ELK stack

o URL, for downloading / Installing the ELK stack
parameters, selboolean type

o name / The selboolean type
persistent / The selboolean type
provider / The selboolean type
value / The selboolean type
parameters, selmodule type

o name / The selmodule type
ensure / The selmodule type

provider / The selmodule type
selmoduledir / The selmodule type

selmodulepath / The selmodule type
o syncversion / The selmodule type
params class
o about / Vendor-supplied defaults and the PCI
o reference link / Vendor-supplied defaults and the PCI
password file
o auditing / Auditing the password file
o modifying / Changing the password file and rerunning Puppet
PCI DSS
about / The PCI DSS and how Puppet can help
URL / The PCI DSS and how Puppet can help
network-based PCI requirements / Network-based PCI requirements
vendor-supplied defaults / Vendor-supplied defaults and the PCI
system protection, against malware / Protecting the system against malware
secure systems, maintaining / Maintaining secure systems
o authentication, to systems / Authenticating access to systems
policy
o reference link / Configuring SELinux with community modules
policy-based autosign / Policy-based autosign
post rules
o creating / Creating pre and post rules
pre rules
o creating / Creating pre and post rules
presentation, Puppet 4
o reference link / Other Puppet resources
providers / Introducing the firewall module
providers, augeasproviders modules
o kernel_parameter / The herculesteam/augeasproviders series of modules

o O

(¢]

O O O O

O O O O O O

pam / The herculesteam/augeasproviders series of modules
puppet_auth / The herculesteam/augeasproviders series of modules

shellvar / The herculesteam/augeasproviders series of modules
sshd_config / The herculesteam/augeasproviders series of modules
sshd_config_subsystem / The herculesteam/augeasproviders series of modules
sysctl / The herculesteam/augeasproviders series of modules

o syslog / The herculesteam/augeasproviders series of modules
e Puppet

o about / What is Puppet?

o declarative, versus imperative approaches / Declarative versus imperative
approaches

client-server model / The Puppet client-server model

components / Other Puppet components

installing / Installing and configuring Puppet

configuring / Installing and configuring Puppet, Configuring Puppet
URL, for installation instructions / Installing and configuring Puppet

URL, for configuration settings / Configuring Puppet

security feature / Puppet for security and compliance
compliance feature / Puppet for security and compliance
used, for tracking changes / Change tracking with Puppet
rerunning / Changing the password file and rerunning Puppet
and SSL / SSL and Puppet

and Logstash / Logstash and Puppet

and SELinux / SELinux and Puppet

reporting resources / Additional reporting resources

o resources / Other Puppet resources
e Puppet, on Junos

o reference link / Puppet device management
e Puppet, used for securing openssh
o about / Example — using Puppet to secure openssh
Vagrant virtual machine, starting / Starting the Vagrant virtual machine
virtual machine connection / Connecting to our virtual machine
module, creating / Creating the module
module, building / Building the module
openssh configuration file, building / The openssh configuration file
site.pp file / The site.pp file
o code, running / Running our new code
e puppet-cis module
o reference link / The arildjensen/cis module
Puppet agent
o installing / Installing the Puppet agent
Puppet Approved modules
o about / The Puppet Forge
Puppet authentication

O O O O O O

O 0O 0O O 0O 0O o o o o o o o o

O O O O O O

o about / Example — Puppet authentication

o second Vagrant host, adding / Adding our second Vagrant host

Puppet community

o about / The Puppet community

o references / The Puppet community
PuppetDB

o about / PuppetDB

o reporting / PuppetDB and reporting
Puppet device management

o about / Puppet device management

o references / Puppet device management

Puppet Enterprise
o URL / Other Puppet resources
Puppet Forge

o about / The Puppet Forge
o URL / The Puppet Forge

puppetlabs-firewall module / Introducing the firewall module

puppetlabs-stdlib module

o about / Vendor-supplied defaults and the PCI
o URL / Vendor-supplied defaults and the PCI
puppetlabs/firewall website

o reference link / Creating pre and post rules
Puppet Labs ticket

o reference link / Things to know about audit
Puppet Labs Yum repository

o installing / Installing the Puppet .abs Yum repository

o URL / Installing the Puppet Labs Yum repository
Puppet Master

o installing / Installing the Puppet Master
Puppet Masters

o about / The Puppet client-server model
Puppet modules

o writing / Writing and testing Puppet modules

o testing / Writing and testing Puppet modules

o references / Writing and testing Puppet modules
Puppet report directory / The store processors
Puppet reporting

o about / Basic Puppet reporting

o references / Basic Puppet reporting

o store processors / The store processors

o last node run time, displaying / Example — showing the last node runtime

Puppet roles pattern
o about / The Puppet role’s pattern
Puppet scope

o reference link / The noop meta-parameter
Puppet security-related configuration

o about / Puppet security related configuration

o auth.conf file / The auth.conf file

o fileserver.conf file / The fileserver.conf file
Puppet Server

o URL / Other Puppet resources
Puppet services

o about / Puppet services
Puppet Supported modules

o about / The Puppet Forge
Puppet versions
o reference link / The store processors

r10k

o URL / Tracking modules separately
reporting, for compliance

o about / Reporting for compliance
o heartbleed-vulnerable systems, finding / Example — finding heartbleed-

vulnerable systems
reporting, on log data

o about / Reporting on log data
reporting, PuppetDB
about / PuppetDB and reporting
recent reports, obtaining / Example — getting recent reports

event counts, obtaining / Example — getting event counts
simple PuppetDB dashboard example / Example — a simple PuppetDB

dashboard
report pI‘OCESSOI‘S

HTTP / Basic Puppet reporting
Store / Basic Puppet reporting
Tagmail / Basic Puppet reporting
PuppetDB / Basic Puppet reporting

about / Basic Puppet reporting
resource chaining / Building the module

resource command

o reference link / Audit on other resource types
resource ordering

o reference link / Building the module
resources

o purging / Purging resources
resources type

o parameters / Purging resources
resource types

o auditing / Audit on other resource types

o references / Audit on other resource types
REST

o about / PuppetDB and reporting
rspec

o URL / Vendor-supplied defaults and the PCI

o reference link / Writing and testing Puppet modules
rspec-puppet

o reference link / Writing and testing Puppet modules
rsynclocal module, parameters

o ensure / Configuring SELinux with community modules
o modules_dir / Configuring SELinux with community modules

O O O O

O O O O O

o source / Configuring SELinux with community modules
o ignore / Configuring SELinux with community modules

Salt
o about / What is Puppet?
saz/sudo module
o about / The saz/sudo module
o reference link / The saz/sudo module
scaling, Puppet
o reference link / Puppet services
security, Puppet / Puppet for security and compliance
selboolean type
o about / SELinux and Puppet, The selboolean type
o parameters / The selboolean type
SELinux

about / Introducing SELinux and auditd
references / The SELinux framework
and Puppet / SELinux and Puppet

file type parameters / File parameters for SELinux
configuring, with community modules / Configuring SELinux with community

modules

SELinux Booleans

o references / The selboolean type
SELinux framework

o about / The SELinux framework
SELinux policy modules

o reference link / Configuring SELinux with community modules
selmodule type

o about / SELinux and Puppet, The selmodule type

o parameters / The selmodule type
services, Puppet

o about / Puppet services
site.pp file / The site.pp file
software repositories

o about / Protecting the system against malware
spec tests, Puppet

o reference link / Vendor-supplied defaults and the PCI
SSH

o managing, with augeasproviders / Managing SSH with augeasproviders
SSL

o about / SSL and Puppet

o reference link / SSL and Puppet

o and Puppet / SSL and Puppet
SSL extensions

o reference link / Policy-based autosign

O O O O O

e store processors

o about / The store processors
e subject

o about / The SELinux framework
e system state

o documenting, with manifests / Using manifests to document the system state

T

® types
o about / The SELinux framework

Vagrant
o URL, for downloading / Installing Vagrant and VirtualBox

o installing / Installing Vagrant and VirtualBox
Vagrant Cloud

o URL / Creating our first Vagrantfile
Vagrantfile

o creating / Creating our first Vagrantfile
Version 4 report format, Puppet

o reference link / Example — showing the last node runtime
version control
o used, for tracking manifests history / Tracking history with version control

o Puppet configuration, tracking with git / Using git to track Puppet configuration

o modules, tracking / Tracking modules separately
VirtualBox

o URL, for downloading / Installing Vagrant and VirtualBox
o installing / Installing Vagrant and VirtualBox

Y

e YAML
o about / How it works
e YAML formatting

o reference link / The hiera-eyaml gem

	Learning Puppet Security
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Convention
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Puppet as a Security Tool
	What is Puppet?
	Declarative versus imperative approaches
	The Puppet client-server model
	Other Puppet components
	PuppetDB
	Hiera
	Installing and configuring Puppet
	Installing the Puppet Labs Yum repository
	Installing the Puppet Master
	Installing the Puppet agent
	Configuring Puppet
	Puppet services
	Preparing the environment for examples
	Installing Vagrant and VirtualBox
	Creating our first Vagrantfile
	Puppet for security and compliance
	Example – using Puppet to secure openssh
	Starting the Vagrant virtual machine
	Connecting to our virtual machine
	Creating the module
	Building the module
	The openssh configuration file
	The site.pp file
	Running our new code
	Summary
	2. Tracking Changes to Objects
	Change tracking with Puppet
	The audit meta-parameter
	How it works
	What can be audited
	Using audit on files
	Available attributes
	Auditing the password file
	Preparation
	Creating the manifest
	First run of the manifest
	Changing the password file and rerunning Puppet
	Audit on other resource types
	Auditing a package
	Modifying the module to audit
	Things to know about audit
	Alternatives to auditing
	The noop meta-parameter
	Purging resources
	Using noop
	Summary
	3. Puppet for Compliance
	Using manifests to document the system state
	Tracking history with version control
	Using git to track Puppet configuration
	Tracking modules separately
	Facts for compliance
	The Puppet role's pattern
	Using custom facts
	The PCI DSS and how Puppet can help
	Network-based PCI requirements
	Vendor-supplied defaults and the PCI
	Protecting the system against malware
	Maintaining secure systems
	Authenticating access to systems
	Summary
	4. Security Reporting with Puppet
	Basic Puppet reporting
	The store processors
	Example – showing the last node runtime
	PuppetDB and reporting
	Example – getting recent reports
	Example – getting event counts
	Example – a simple PuppetDB dashboard
	Reporting for compliance
	Example – finding heartbleed-vulnerable systems
	Summary
	5. Securing Puppet
	Puppet security related configuration
	The auth.conf file
	Example – Puppet authentication
	Adding our second Vagrant host
	Working with hostmanager
	The fileserver.conf file
	Example – adding a restricted file mount
	SSL and Puppet
	Signing certificates
	Revoking certificates
	Alternative SSL configurations
	Autosigning certificates
	Naïve autosign
	Basic autosign
	Policy-based autosign
	Summary
	6. Community Modules for Security
	The Puppet Forge
	The herculesteam/augeasproviders series of modules
	Managing SSH with augeasproviders
	The arildjensen/cis module
	The saz/sudo module
	The hiera-eyaml gem
	Summary
	7. Network Security and Puppet
	Introducing the firewall module
	The firewall type
	The firewallchain type
	Creating pre and post rules
	Adding firewall rules to other modules
	Is allowing all to NTP dangerous?
	Summary
	8. Centralized Logging
	Welcome to logging happiness
	Installing the ELK stack
	Logstash and Puppet
	Installing Elasticsearch
	Installing Logstash
	Reporting on log data
	Installing Kibana
	Configuring hosts to report log data
	Summary
	9. Puppet and OS Security Tools
	Introducing SELinux and auditd
	The SELinux framework
	The auditd framework for audit logging
	SELinux and Puppet
	The selboolean type
	The selmodule type
	File parameters for SELinux
	Configuring SELinux with community modules
	Configuring auditd with community modules
	Summary
	A. Going Forward
	What we've learned
	Where to go next
	Writing and testing Puppet modules
	Puppet device management
	Additional reporting resources
	Other Puppet resources
	The Puppet community
	Final thoughts
	Index

