

Beginning OpenVPN 2.0.9

Build and integrate Virtual Private Networks using
OpenVPN

Markus Feilner

Norbert Graf

 BIRMINGHAM - MUMBAI

Beginning OpenVPN 2.0.9

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2009

Production Reference: 1251109

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847197-06-1

www.packtpub.com

Cover Image by Filippo Sarti (filosarti@tiscali.it)

Credits

Author
Markus Feilner

Co-author
Norbert Graf

Reviewers
Chris Buechler

Ralf Hildebrandt

Acquisition Editor
Louay Fatoohi

Development Editor
Swapna Verlekar

Technical Editor
Akash Johari

Copy Editor
Leonard D'silva

Indexer
Hemangini Bari

Editorial Team Leader
Akshara Aware

Project Team Leader
Priya Mukherji

Project Coordinator
Zainab Bagasrawala

Proofreaders
Kevin McGowan

Chris Smith

Graphics
Nilesh R. Mohite

Production Coordinator
Dolly Dasilva

Cover Work
Dolly Dasilva

About the Author

Markus Feilner is a Linux professional from Regensburg, Germany and has been
working with open source software since the mid 1990s. His first contact with Unix
was with a SUN cluster and with SPARC workstations at Regensburg University
during his studies of geography, computer science, and GIS. Since the year 2000,
he has published several documents used in Linux training all over Germany.
In 2001, he founded his own Linux consulting and training company, Feilner IT
(http://www.feilner-it.net). Here, and as trainer, consultant, and systems
engineer at Millenux, Munich, he focused on groupware, collaboration, and
virtualization with Linux-based systems and networks.

He is working as Stellvertretender Chefredakteur at German Linux-Magazine,
where he writes about open source software for both printed and online magazines,
including the Linux Technical Review and the Linux Magazine International
(http://www.linux-magazine.com). He regularly gives speeches and lectures
at conferences in Germany. Security and VPN have never left his focus in his
publications and articles. Together with Packt, he published OpenVPN: Building and
Integrating Virtual Private Networks in 2006 and Scalix: Linux Administrator's Guide
in 2008.

He is interested in anything concerning geography, traveling, photography,
philosophy (especially that of open source software), global politics, soccer,
and literature, but always has too little time for these hobbies.

Markus Feilner supports Linux4afrika—a project bringing Linux computers into
African schools.

For more information, please visit http://www.linux4afrika.de.

Acknowledgement

I'd like to thank all the people from the OpenVPN project and mailing lists. Thanks
to all the developers and especially to James Yonan for creating such a great
software. Thanks to everyone at Packt for working together through the last few
years (however tough they were). Thank you for your patience, your cooperative
style, and innovative ideas.

And, of course, the most important thank you goes to my co-author Norbert Graf,
who always had the right screenshot or configuration at hand.

Thanks to the fantastic staff at the Regensburg University Clinicum, especially at
station 21 who helped me get well again and cured me from Leukemia. Thanks to the
wonderful city of Regensburg and the great African people all over this continent!

About the Co-author

Norbert Graf is a professional IT specialist from Munich with many years of
experience in network security and server virtualization. His special fields of interest
are Linux-based firewalls, VMware, and XEN virtualization.

Since 2002, he has been working as a consultant for an IT company near Munich,
for customers from the healthcare sector like hospitals or pharmaceutical concerns
to small companies.

He made his first experiences with computers with the Commodore C64 learning
to program in basic, followed by an x86 processor PC with DOS and Windows. He
is still working with Windows and Linux networks every day. His field of work
especially includes integrating Linux servers like Proxies or OpenVPN servers in
Microsoft Active Directory infrastructures.

Since 2007, he has published several articles (mostly about Windows and Linux
cooperation) together with Markus Feilner in the German and International
Linux Magazine.

In November 2007, his son Moritz was born and made the whole family very happy.

About the Reviewers

Chris Buechler is the co-founder and Chief Technology Officer of BSD Perimeter
LLC, the corporate arm of the pfSense open source firewall distribution. He has more
than a decade of IT experience and holds numerous industry certifications including
CISSP, SSCP, MCSE, and CCNA among others. He served as the contributing author
on security for the book SharePoint 2007: The Definitive Guide from O'Reilly and is the
primary author of a book on pfSense to be published by Reed Media in 2009. He has
presented on security topics at more than a dozen conferences in the US and Canada.
He can be reached at cmb@chrisbuechler.com.

Ralf Hildebrandt holds a degree in computer science and has been working with
Unix since 1994. His experience with computers dates back to 1984 and a sturdy
old C64. Recently, he changed employer from T-Systems to Charite and became
postmaster@python.org, thus gaining experience in running large listservers.

Ralf is the co-author of The Book of Postfix.

Table of Contents
Preface	 1
Chapter 1: VPN—Virtual Private Network	 7

Broadband Internet access and VPNs	 9
How does a VPN work?	 10
What are VPNs used for?	 12
Networking concepts—protocols and layers	 13
Tunneling and overhead	 16
VPN concepts—overview	 17

A proposed standard for tunneling	 17
Protocols implemented on OSI layer 2	 18
Protocols implemented on OSI layer 3	 19
Protocols implemented on OSI layer 4	 20
OpenVPN—a SSL/TLS-based solution	 21

Summary	 21
Chapter 2: VPN Security	 23

VPN security	 23
Privacy—encrypting traffic	 24

Symmetric encryption and pre-shared keys	 25
Reliability and authentication	 26

The problem of complexity in classic VPNs	 26
Asymmetric encryption with SSL/TLS	 27

SSL/TLS security	 28
HTTPS	 29
Understanding SSL/TLS certificates 	 30
Trusted certificates	 30
Self-signed certificates	 32

Table of Contents

[ii]

SSL/TLS certificates and VPNs	 33
Generating certificates and keys	 34

Summary	 34
Chapter 3: OpenVPN	 35

Advantages of OpenVPN	 35
History of OpenVPN	 37

OpenVPN Version 1	 38
OpenVPN Version 2	 41
The road to version 2.1	 42

Networking with OpenVPN	 44
OpenVPN and firewalls	 46
Configuring OpenVPN	 47
Problems with OpenVPN	 48

OpenVPN compared to IPsec VPN	 49
User space versus kernel space	 51

Sources for help and documentation	 51
The project community	 52

Documentation in the software packages	 52
Summary	 53

Chapter 4: Installing OpenVPN on Windows and Mac	 55
Obtaining the software	 55
Installing OpenVPN on Windows	 56

Downloading and starting installation	 56
Selecting the components and location	 57
Finishing installation	 59
Testing the installation—a first look at the panel applet	 60

Installing OpenVPN on Mac OS X (Tunnelblick)	 62
Testing the installation—the Tunnelblick panel applet	 64

Summary	 65
Chapter 5: Installing OpenVPN on Linux and Unix Systems	 67

Prerequisites	 67
Installing OpenVPN on SuSE Linux	 68

Using YaST to install software	 69
Installing OpenVPN on Red Hat Fedora using yum	 72
Installing OpenVPN on Red Hat Enterprise Linux	 75
Installing OpenVPN on RPM-based systems	 77

Using wget to download OpenVPN RPMs	 78
Installing OpenVPN and the LZO library with wget and RPM	 79
Using rpm to obtain information on the installed OpenVPN version	 80

Table of Contents

[iii]

Installing OpenVPN on Debian and Ubuntu	 82
Installing Debian packages	 84
Using Aptitude to search and install packages	 86
OpenVPN—the files installed on Debian	 88

Installing OpenVPN on FreeBSD	 88
Installing a newer version of OpenVPN on FreeBSD—the ports system	 91

Installing the port system with sysinstall	 91
Downloading and installing a BSD port	 92

Summary	 94
Chapter 6: Advanced OpenVPN Installation	 95

Troubleshooting—advanced installation methods	 95
Installing OpenVPN from source code	 96
Building and distributing .deb packages	 102
Building your own RPM file	 104
Enabling Linux kernel TUN/TAP support	 106

Using menuconfig	 107
Summary	 109

Chapter 7: Configuring an OpenVPN Server—The First Tunnel	 111
OpenVPN on Microsoft Windows	 112

Generating a static OpenVPN key	 113
Creating a sample connection	 115
Adapting the sample configuration file provided by OpenVPN	 117
Starting and testing the tunnel	 119

A brief look at Windows OpenVPN network interfaces	 121
Connecting Windows and Linux	 122

File exchange between Windows and Linux	 123
WinSCP	 123
Transferring the key file from Windows to Linux with WinSCP	 124
 The second pitfall—carriage return/end of line	 126

Configuring the Linux system	 127
Testing the tunnel	 129

A look at the Linux network interfaces	 130
Running OpenVPN automatically	 131

OpenVPN as a server on Windows	 131
OpenVPN as a server on Linux	 133
Runlevels and init scripts on Linux	 133
Using runlevel and init to change and check runlevels	 134
The system control for runlevels	 135
Managing init scripts	 136

Using SuSE's YaST module system services (runlevel)	 137

Table of Contents

[iv]

Troubleshooting firewall issues	 139
Deactivating the Windows XP service pack 2 firewall	 139
Stopping the SuSE firewall	 141

Summary	 142
Chapter 8: Setting Up OpenVPN with X.509 Certificates	 143

Creating certificates	 143
Certificate generation on Windows Server 2008 with easy-rsa	 144

Setting variables—editing vars.bat	 145
Creating the Diffie-Hellman key	 146
Building the certificate authority	 147
Generating server and client keys	 148

Distributing the files to the VPN partners	 152
Configuring OpenVPN to use certificates 	 154
Using easy-rsa on Linux	 157

Preparing variables in vars	 158
Creating the Diffie-Hellman key and the certificate authority	 158
Creating the first server certificate/key pair	 159
Creating further certificates and keys	 161

Troubleshooting	 162
Summary	 163

Chapter 9: The Command openvpn and Its Configuration File	 165
Syntax of openvpn	 166

OpenVPN command-line parameters	 166
Using OpenVPN at the command line 	 167

Parameters used in the standard configuration file for a static key client	 169
Compressing the data	 169
Controlling and restarting the tunnel	 172
Debugging output—troubleshooting	 173

Configuring OpenVPN with certificates—simple TLS mode	 175
Overview of OpenVPN parameters	 176

General tunnel options	 176
Routing	 179
Controlling the tunnel	 181
Scripting	 182
Modules	 182
Logging	 184
Specifying a user and group	 185
The management interface	 186
Proxies	 188
Encryption parameters	 189

Table of Contents

[v]

Testing the crypto system with --test-crypto	 190
SSL information—command line	 191
Server mode	 195

Server mode parameters	 196
--client-config options	 199

Client mode parameters	 201
Push options	 202

Important Windows-specific options	 203
New in Version 2.1	 204

Connection profiles	 204
Topology mode	 205
Script-security	 206
Port-sharing	 206

Test	 206
Summary	 207

Chapter 10: Securing OpenVPN Tunnels and Servers	 209
Securing and stabilizing OpenVPN	 209
Authentication	 212

Using authentication methods	 213
Authentication plugins overview	 216
Authentication with tokens	 217
Individual authentication with Pam-per-user	 218

Linux and Firewalls	 220
Debian Linux and Webmin with Shorewall	 221

Installing Webmin and Shorewall	 221
Looking at Webmin	 222
Preparing Webmin and Shorewall for the first start	 223
Preparing the Shoreline firewall	 224
Troubleshooting Shorewall—editing the configuration files	 225

OpenVPN and SuSEfirewall	 228
Routing and firewalls	 230

Configuring a router without a firewall	 230
iptables—the standard Linux firewall tool	 230

Configuring the Windows Firewall for OpenVPN	 234
Summary	 238

Chapter 11: Advanced Certificate Management	 239
Certificate management and security	 239
Installing xca	 240
Using xca	 240

Creating a database	 240

Table of Contents

[vi]

Importing a CA certificate	 242
Creating and signing a new server/client certificate	 244
Revoking certificates with xca	 248

Using TinyCA2 to manage certificates	 250
Importing our CA	 250
Using TinyCA2 for CA administration	 251
Creating new certificates and keys	 252
Exporting keys and certificates with TinyCA2	 254
Revoking certificates with TinyCA2	 255

Other tools worth mentioning	 255
Summary	 256

Chapter 12: OpenVPN GUI Tools	 257
OpenVPN server administration: Webmin's OpenVPN plugin	 257
Client GUIs for Linux	 260

KVpnc	 260
GAdmin-OpenVPN-Client	 262

NetworkManager	 263
Summary	 264

Chapter 13: Advanced OpenVPN Configuration	 265
Tunneling a proxy server and protecting the proxy	 266
Scripting OpenVPN—an overview	 268
Using a client configuration directory with per‑client configurations	 270
Individual firewall rules for connecting clients	 273
Distributed compilation through VPN tunnels with distcc	 275
Ethernet bridging with OpenVPN	 277
Automatic installation for Windows clients	 279
Clustering and redundancy	 284
Summary	 285

Chapter 14: Mobile Security with OpenVPN	 287
Anonymous and uncensored Internet Access	 287
OpenVPN on Windows Mobile	 289
Embedded Linux – Maemo	 292
Summary	 294

Chapter 15: Troubleshooting and Monitoring	 295
Testing network connectivity	 295
Checking interfaces, routing, and connectivity on the VPN servers	 298
Debugging with tcpdump and IPTraf	 303
Using OpenVPN protocol and status files for debugging	 305
Scanning servers with Nmap	 307

Table of Contents

[vii]

Monitoring tools	 308
ntop	 309
Munin	 310
Nagios	 311

OpenVPNgraph	 312
Summary	 313

Appendix: Internet Resources and More	 315
Index	 325

Preface
OpenVPN is an outstanding piece of software that was invented by James Yonan
in the year 2001 and has steadily been improved since then. No other VPN solution
offers a comparable mixture of enterprise-level security, usability, and feature
richness. We have been working with OpenVPN for many years now, and it has
always proven to be the best solution. This book is intended to introduce OpenVPN
software to network specialists and VPN newbies alike. OpenVPN works where
most other solutions fail and exists on almost any platform. Thus, it is an ideal
solution for problematic setups and an easy approach for the inexperienced.

On the other hand, the complexity of classic VPN solutions, especially IPsec, gives
the impression that VPN technology in general is difficult and a topic only for very
experienced (network and security) specialists. OpenVPN proves that this can be
different, and this book aims to document that.

I want to provide both a concise description of OpenVPN's features and an
easy-to-understand introduction for the inexperienced. Though there may be many
other possible ways to success in the scenarios described, the ones presented have
been tested in many setups and have been selected for simplicity reasons.

What this book covers
Chapter 1, VPN—Virtual Private Network, gives a brief overview about what VPNs
are, what security means here, and similar important basics.

Chapter 2, VPN Security, introduces basic security concepts necessary to understand
VPNs and OpenVPN in particular. We will have a look at encryption matters,
symmetric and asymmetric keying, and certificates.

Chapter 3, OpenVPN, discusses OpenVPN, its development, features, resources,
advantages, and disadvantages compared to other VPN solutions, especially IPsec.

Preface

[2]

Chapter 4, Installing OpenVPN on Windows and Mac, shows step-by-step how to
install OpenVPN on clients using Apple or Microsoft products.

Chapter 5, Installing OpenVPN on Linux and Unix Systems, deals with simple
installation on Linux and Unix.

Chapter 6, Advanced OpenVPN Installation, shows you how to get OpenVPN up and
running even when it gets difficult or non-standard.

Chapter 7, Configuring an OpenVPN Server—The First Tunnel, introduces the use of
OpenVPN to build a first tunnel.

Chapter 8, Setting Up OpenVPN with X.509 Certificates, explains us how to use
OpenVPN to build a tunnel using the safe and easily manageable certificates.

Chapter 9, The Command openvpn and Its Configuration File, groups an abundance of
command-line options that OpenVPN has to offer into several tables, which enable
you to search and find the relevant once far more easily.

Chapter 10, Securing OpenVPN Tunnels and Servers, shows how to use several
Firewalls (Windows and Linux) and security-relevant extensions like Authentication
for OpenVPN.

Chapter 11, Advanced Certificate Management, deals with security issues, and
advanced certificate management tools, such as TinyCA or xca, help us understand
and manage a PKI thoroughly.

Chapter 12, OpenVPN GUI Tools, shows you how to choose a suitable client out of
three GUI-tools for OpenVPN for your setup.

Chapter 13, Advanced OpenVPN Configuration, discusses tunneling proxies, pushing
configurations from the server to the client, and many other examples up to clusters
and redundancy.

Chapter 14, Mobile Security with OpenVPN, teaches us how to connect our mobile
device, be it Windows Mobile, an embedded Linux device, or a laptop, to our VPN
and start communicating privately.

Chapter 15, Troubleshooting and Monitoring, will help you in many cases when you
run into network problems, or if anything doesn't work.

Appendix, Internet Resources and More, holds all abbreviations used and all weblinks
found throughout the whole book.

Preface

[3]

What you need for this book
For learning VPN technologies, it may be helpful to have at least two or four PCs.
Virtualization tools like KVM, XEN, or VMware are very helpful here, especially
if you want to test with different operating systems and switch between varying
configurations easily. However, one PC is completely enough to follow the course of
this book.

Two separate networks (connected by the Internet) can provide a useful setup if you
want to test firewall and advanced OpenVPN setup.

Who this book is for
This book is for Newbies and Admins alike. Anybody interested in security and
privacy in the internet, and anybody who wants to have his or her notebook or
mobile phone connect safely to the Internet will learn how to connect to and how
to set up the server in the main branch of his or her company or at home. You will
learn how to build your own VPN, surf anonymously and without censorship,
connect branches over the Internet in a safe way, and learn all the basics on how to
administer and build Virtual Private Networks.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

A block of code will be set as follows:

remote xxx.dyndns.org
(...)
tls-remote "/C=DE/ST=BY/O=Feilner-IT/CN=VPN-Server/
emailAddress=security@feilner-it.net"
(...)
resolv-retry 86400

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be shown in bold:

suse01:/var/log # ldapwhoami -x -h 10.10.10.1 -D
uid=mfeilner,ou=Feilner-it_Users,dc=feilner-it,dc=home -w correct_
password
dn:uid=mfeilner,ou=Feilner-it_Users,dc=feilner-it,dc=home

suse01: # ldapwhoami -x -h 10.10.10.1 -D uid=mfeilner,ou=Feilner-it_
Users,dc=feilner-it,dc=home -w wrong_password
ldap_bind: Invalid credentials (49)

Any command-line input or output is written as follows:

opensuse01:~ # echo "1" > /proc/sys/net/ipv4/ip_forward

opensuse01:~ #

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in our text like this: "Start YaST
on your SuSE Linux system and change to the Firewall module, which can be found
in Security and Users".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important
for us to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
and mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration, and help us to improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to any list of existing errata. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If
you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or web site name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

VPN—Virtual Private Network
This chapter will start with networking solutions that were used in the past for
connecting several branches of a company. Technological advances, such as
broadband Internet access, brought about new possibilities and new concepts
for this issue, one of them being the Virtual Private Network (VPN). In this chapter,
you will learn what the term VPN means, how it evolved during the last few
decades, why it is a necessity for modern enterprises, and how typical VPNs work.
Basic networking concepts are necessary to understand the variety of possibilities
that VPNs offer.

Historical: In former times, information exchange between branches of a company
was mainly done by mail, telephone, and later by fax. But today there are
five main challenges for modern VPN solutions that are discussed in this chapter.
The challenges faced by companies are as follows:

•	 The general acceleration of business processes and the rising need for fast,
flexible information exchange between all branches of a company have
made 'old-fashioned' mail and even fax services appear to be too slow for
modern requirements.

•	 Technologies, such as Groupware, Customer Relationship Management
(CRM), and Enterprise Resource Planning (ERP) are used to ensure
productive teamwork, and every employee is expected to cooperate.

•	 Almost every enterprise has several branches in different locations and often
has field and home workers. All of these must be enabled to participate in
internal information exchange without delays.

•	 All computer networks have to fulfill security standards to high levels
to ensure data integrity, authenticity, and stability.

•	 Secure and flexible access for mobile devices has to be implemented,
including new strategies for laptops and modern smartphones.

VPN—Virtual Private Network

[8]

These factors have led to the need for sophisticated networking solutions between
companies' offices all over the world. With computer networks connecting all
desktops within a single location, the need for connections between sites has become
more and more urgent.

Many years ago you could only rent dedicated lines between your sites. These lines
were expensive, thus only large companies could afford to connect their branches to
enable worldwide team working. To achieve this fast and expensive connections had
to be installed at every site, costing much more than normal enterprise Internet access.

The concept behind this network design was based on a real network between the
branches of the company. A provider was needed to connect every location and a
physical cable connection between all branches was established. Like the telephone
network, a single dedicated line connecting two partners was used for communication.

Security for this line was achieved by providing a dedicated network—every
connection between branches had to be installed with a leased line. For a company
with four branches (A, B, C, and D), six dedicated lines would then become necessary.

A B

C D

Furthermore, Remote Access Servers (RAS) were used for field or home workers,
who would only connect temporarily to the company's network. These people had
to use special dial-in connections (with a modem or ISDN line) and the company
acted as an Internet provider. For every remote worker, a dial-in account had to
be configured and field workers could only connect over this line. The telephone
company provided one dedicated line for every dial-up and the central branch had
to make sure that enough telephone lines were always available.

Chapter 1

[9]

By protecting the cables and the dial-in server, a real private network was installed
at very high cost. Privacy within the company's network spanning multiple branches
was achieved by securing the lines and providing services only to hard-wired
connection points. Almost all security and availability tasks were handed over to
the service provider at very high cost. But by connecting sites directly, a higher data
transfer speed could be achieved than with 'normal' Internet connections at that time.

Until the middle of the 1990s, expensive dedicated lines and dial-in access servers
were used to enable team work between different branches and field workers of
large companies.

Broadband Internet access and VPNs
In the mid 1990s, the rise of the Internet and the increase in speed of cheap Internet
connections paved the way for new technologies. Many developers, administrators,
and last but not least, managers, had discovered that there might be better solutions
than spending several hundreds of dollars, if not thousands of dollars, on dedicated
and dial-up access lines.

The idea was to use the Internet for communication between branches and at the
same time ensure the safety and secrecy of the data transferred. In short, to provide
secure connections between enterprise branches through low-cost lines using the
Internet. This is a very basic description of what VPNs are all about.

A VPN is:

•	 Virtual: This is because there is no real direct network connection between the
two (or more) communication partners, only a virtual connection provided by
VPN software, realized normally over public Internet connections.

•	 Private: This is because only the members of the company connected by
the VPN software are allowed to read the data that has been transferred.

VPN—Virtual Private Network

[10]

With a VPN, your staff in Sydney can work with the London office as if both were in
the same location. The VPN software provides a virtual network between those sites
using a low-cost Internet connection. This network is called virtual because no real,
dedicated network connection to the partner is being established.

A B

C D

The
Internet

A VPN can also be described as a set of logical connections secured by special
software that establishes privacy by safeguarding the connection endpoints.
Today the Internet is the network medium used, and privacy is achieved by modern
cryptographic methods.

How does a VPN work?
Let's use an example to explain how VPNs work. The Virtual Entity Networks
Inc. (VEN Inc.) has two branches, London and Sydney. If the Australian branch in
Sydney decides to contract a supplier, then the London office might need to know
that immediately. The main part of the IT infrastructure is set up in London. In
Sydney there are twenty people whose work depends on the availability of the data
hosted on London servers.

Chapter 1

[11]

encryption
+

decryption

decryption
+

encryption

The InternetVPN-Server VPN-Server

Local Network Sydney

-------- encrypted connection tunnel

Local Network London

Both sites are equipped with a permanent Internet line. An Internet gateway router
is set up to provide Internet access for the staff. This router is configured to protect
the local network of the site from unauthorized access from the other side—the 'evil'
Internet. Such a router set up to block special traffic can be called a firewall and must
be installed and configured in every branch that is supposed to take part in the VPN.

The VPN software must be installed on this firewall (or a device or server protected
by it). Every modern firewall appliance includes this feature, and there is VPN
software for all hardware and software platforms.

In the next step, the VPN software has to be configured to establish the connection to
the other side. For example, the London VPN server has to accept connections from
the Sydney server, and the Sydney server must connect to London (or vice versa).

If this step is completed successfully, then the company has a working virtual
network. The two branches are connected through the Internet and can work
together as in a real network. Here, we have a VPN without privacy, because
any Internet router between London and Sydney can read the exchanged data.
A competitor gaining control over an Internet router could read all the relevant
business data that is going through the virtual network.

So how do we make this virtual network private? The solution is encryption.
The VPN traffic between the two branches is locked with special keys, and only
computers or persons owning this key can open this lock and look at the data that
has been sent.

VPN—Virtual Private Network

[12]

In fact all encryption technology can be hacked. Decrypting
information without the right key is merely a question of time,
force, and resources. A very good explanation of this is in the book,
Time Based Security by Winn Schwartau.

The Internet
A B

All data that has been sent from Sydney to London or from London to Sydney
must be encrypted before and decrypted after transmission. The encryption
safeguards the data in the connection in the same way the walls of a tunnel protect
a train from the mountain around it. This explains why Virtual Private Networks are
often simply known as tunnels or VPN tunnels, and the technology is often called
tunneling—even if there is no quantum mechanics or other magic involved.

The exact method of encryption and providing the keys to all parties that
are involved makes one of the main distinguishing factors between different
VPN solutions.

A VPN connection is normally built between two Internet access routers that are
equipped with a firewall and VPN software. The software must be set up to connect
to the VPN partner, the firewall must be set up to allow access, and the data that is
exchanged between VPN partners must be secured (by encryption). The encryption
key must be provided to all VPN partners so that the data exchanged can only be
read by authorized VPN partners.

What are VPNs used for?
In the earlier examples, we discussed several possible scenarios for the use of VPN
technology. But one typical VPN solution must be added here. More and more
enterprises offer their customers or business partners a protected access to relevant
data for their business relations such as ordering formulae or stock data. Thus,
we have three typical scenarios for VPN solutions in modern enterprises as follows:

Chapter 1

[13]

•	 An intranet spanning over several locations of a company
•	 A dial-up access for home or field workers with changing IPs, mobile

devices, and centralized protection
•	 An extranet for customers or business partners

Each of these typical scenarios requires special security considerations and setups.
The external home workers will need different access to servers in the company
than the customers and business partners. In fact, access for business partners and
customers must be restricted severely.

Now that we have seen how a VPN can securely interconnect a company in
different ways, we will have a closer look at the way VPNs work. To understand the
functionality, some basic network concepts need to be understood.

All data exchange in computer networks is based on protocols. Protocols are like
languages or rituals that must be used between communication partners in networks.
Without the correct use of the correct protocol, communication fails.

Networking concepts—protocols and
layers
There are a large number of protocols involved in any action you take when you
access the Internet or a PC in your local network. Your Network Interface Card
(NIC) will communicate with a hub, a switch, or a router. Your application
will communicate with its partner on a server on another PC, and many more
protocol-based communication procedures are necessary to exchange data.

Because of this, the Open Systems Interconnection (OSI) specification was created.
Every protocol used in today's networks can be classified by this scheme.

The OSI specification defines seven numbered layers of data exchange which start
at layer 1 (the physical layer) of the underlying network media (electrical, optical,
or radio signals) and span up to layer 7 (the application layer), where applications
on PCs communicate with each other.

The layers of the OSI model are as follows:

•	 Physical layer: Sending and receiving through the hardware
•	 Data link layer: Encoding and decoding data packets into bits
•	 Network layer: Switching, routing, addressing, error handling, and so on
•	 Transport layer: End-to-end error recovery and flow control

VPN—Virtual Private Network

[14]

•	 Session layer: Establishing connections and sessions between applications
•	 Presentation layer: Translating between application data formats and

network formats
•	 Application layer: Application-specific protocols

This set of layers is hierarchical and every layer serves the layer above and the layer
below. If the protocols of the physical layer could communicate successfully, then
the control is handed to the next layer, the data link layer. Only if all layers, 1
through 6, can communicate successfully, can data exchange between applications
(on layer 7) achieved. A good introductory read to the OSI model can be found in
Wikipedia: http://en.wikipedia.org/wiki/OSI_model and a list of OSI protocols
at http://en.wikipedia.org/wiki/OSI_protocols.

In the Internet, however, a slightly different approach is used.

The Internet is mainly based on the Internet Protocol (IP).

The layers of the IP model are as follows:

•	 Link layer: A concatenation of OSI layers 1 and 2 (the physical and data
link layers).

•	 Network layer: Comprising the network layer of the OSI model.
•	 Transport layer: Comprising protocols, such as Transmission Control

Protocol (TCP) and User Datagram Protocol (UDP), which are the basis
for protocols of the application layer.

•	 Application layer: Concatenation of OSI layers 5 through 7 (the session,
presentation, and application layers). The protocols in the transport layer are
the basis for protocols of the application layer (layer 5 through layer 7) such
as HTTP, FTP, or others.

A TCP/IP network packet consists of two parts—header and data. The header
is a sort of label containing metadata on sender, recipient, and administrative
information for the transfer. On the networking level of an Ethernet network these
packets are called frames. In the context of the Internet Protocol these packets are
called datagrams, Internet datagrams, IP datagrams, or simply packets. Again, a
very good introductory article can be found in Wikipedia: http://en.wikipedia.
org/wiki/Internet_Protocol.

Chapter 1

[15]

So what do VPNs do? VPN software takes IP packets or Ethernet frames and wraps
them into another packet. This may sound complicated, but it is a very simple trick,
as the following examples will show:

Example 1: Sending a (not really) anonymous parcel.

You want to send a parcel to a friend who lives in a community with strange people
whom you don't trust. Your parcel has the address label with sender and recipient
data (like an IP packet). If you do not want the community to know that you sent
your friend a parcel, but at the same time you want your friend to realize this before
he opens it, what would you do? Just wrap the whole parcel in another packet
with a different address label (without your sender information) and no one in the
community will know that this parcel is from you. But your friend will unpack the
first layer and see a parcel still unpacked with an address label from you.

Example 2: Sending a locked parcel.

Let's distrust the community still more. Somebody might want to open the parcel in
order to find out what's inside. To prevent this we will use a locked case. There are
only two keys to the lock, one for us and one for our friend. Only we and our friend
can unlock the case and look inside the packet.

VPN software uses a combination of the earlier two examples:

•	 Whole network packets (frames, datagrams) consisting of header and data
are wrapped into new packets

•	 All data, including metadata, such as recipient and sender, are encrypted
•	 The new packets are labeled with new headers containing meta-information

about the VPN and are addressed to the VPN partner

All VPN software systems differ only in the special way of wrapping and locking
the data.

Protocols define the method of data exchange in computer networks.
The OSI model classifies protocols in seven layers, spanning from
network layers to application layers. IP packets consist of headers
with meta-information and data. VPNs wrap and encrypt whole
network packets in new network packets, adding new headers
including address data.

VPN—Virtual Private Network

[16]

Tunneling and overhead
We have already learned that VPN technology is often called tunneling because the
data in a VPN connection is protected from the Internet, as the walls of a road or
rail tunnel protect the traffic in the tunnel from the weight of stone of the mountain
above. Let's now have a closer look at how the VPN software does this.

The Internet
A B

The VPN software in the locations A and B encrypts (locks) and decrypts
(unlocks) the data and sends it through the tunnel. Like cars or trains in a tunnel,
the data cannot go anywhere else but to the other tunnel endpoint (if they are
properly routed).

The following are put together and wrapped into one new package:

•	 Tunnel information (such as the address of the other endpoint)
•	 Encryption data and methods
•	 The original IP packet (or network frame)

The new package is then sent to the other tunnel endpoint. The payload of this
package now holds the complete IP packet (or network frame), but in an encrypted
form. Therefore it is not readable to anyone who does not possess the right key. The
new header of the packet simply contains the addresses of the sender, recipient, and
other metadata that is necessary for and provided by the VPN software that is used.

Perhaps you have noticed that the amount of data that is sent grows during the
process of 'wrapping'. Depending on the VPN software used, this so-called overhead
can become a very important factor. The overhead is the difference between the net
data that is sent to the tunnel software and the gross data that is sent through the
tunnel by the VPN software. If a file of 1MB is sent from user A to user B, and this
file causes 1.5MB traffic in the tunnel, then the overhead would be 50%, a very high
level indeed (note that every protocol that is used causes overhead, so not all of
that 50% might be the fault of the VPN solution.). The overhead caused by the VPN
software depends on the amount of organizational (meta-) data and the encryption
used. Whereas the first depends only on the VPN software used, the latter is simply
a matter of choice between security and speed. In other words, the better the cipher
you use for encryption, the more overhead you will produce. Speed versus security
is your choice.

Chapter 1

[17]

Tunnel
Information

Header

Header

Data

Data

Header

Data

VPN concepts—overview
During the last ten years, many different VPN concepts have evolved. You may have
noticed that I added 'network frames' in parenthesis when I spoke of tunneling IP
packets. This was necessary because, in principle, tunneling can be done on almost
all layers of the OSI model.

A proposed standard for tunneling
The General Routing Encapsulation (GRE) provides a standard for tunneling
data, which was defined in 1994 in Request for Comments (RFCs) 1701 and 1702,
and later in RFCs 2784 and 2890. Perhaps because this definition is not a protocol
definition, but more or less a standard proposal on how to tunnel data, this
implementation has found its way into many devices and has become the basis for
other protocols.

The concept of GRE is pretty simple. A protocol header and a delivery header are
added to the original packet, and its payload is encapsulated in the new packet. If
no encryption is done, then GRE offers no security. The advantages of this model
are obvious—the simplicity offers many possibilities: the transparency enables
administrators and routers to look inside the packets and pass decisions based on
the type of payload that has been sent. By doing so, special applications can receive
privileged treatment by traffic shaping or similar methods.

There are many implementations for GRE tunneling software under Linux. Only
kernel support is necessary, which is fulfilled by most modern distributions. Due
to its flexibility, GRE can also be used in scenarios where IPv4- and IPv6-networks
collide, or for tunneling Netware's or Apple's protocols. GRE is assigned the IP
protocol number 47.

VPN—Virtual Private Network

[18]

Protocols implemented on OSI layer 2
Encapsulating packages on the OSI layer 2 has a significant advantage—the tunnel is
able to transfer non-IP protocols. IP is a standard that is widely used in the Internet
and in Ethernet networks. However there are different standards in use. Netware
Systems, for example, uses the Internetwork Packet Exchange (IPX) protocol to
communicate. VPN technologies residing in layer 2 can theoretically tunnel any kind
of packet. In most cases a virtual Point-to-Point Protocol (PPP) device is established,
which is used to connect to the other tunnel endpoint. A PPP device is normally used
for modem or DSL connections.

Four well known layer 2 VPN technologies, which are defined by RFCs,
use encryption methods and provide user authentication, as follows:

1.	 The Point to Point Tunneling Protocol (PPTP), RFC 2637, which was
developed with the help of Microsoft, is an expansion of the PPP. It is
integrated in all newer Microsoft operating systems. PPTP uses GRE for
encapsulation and can tunnel IP, IPX, and other protocols over the Internet.
The main disadvantage is the restriction that there can only be one tunnel at
a time between communication partners.

2.	 The Layer 2 Forwarding (L2F), RFC 2341, was developed almost at
the same time by other companies, including Cisco, and offers more
possibilities than PPTP, especially regarding tunneling of network frames
and multiple simultaneous tunnels.

3.	 The Layer 2 Tunneling Protocol (L2TP), RFC 2661, is accepted as an industry
standard and is being widely used by Cisco and other manufacturers. Its
success is based on the fact that it combines the advantages of L2F and PPTP
without suffering their drawbacks. Even though it does not provide its own
security mechanisms, it can be combined with technologies offering such
mechanisms, such as IPsec (see the section Protocols Implemented on OSI layer 3).

4.	 The Layer 2 Security Protocol (L2Sec), RFC 2716, was developed to provide
a solution to the security flaws of IPsec. Even though its overhead is rather
big, the security mechanisms that are used are secure, because mainly
SSL/TLS is used.

Chapter 1

[19]

Other distinguishing factors between the mentioned systems and protocols are
as follows:

•	 Availability of authentication mechanisms
•	 Simple and complete support for advanced networking features such as

Network Address Translation (NAT)
•	 Dynamic allocation of IP addresses for tunnel partners in dial-up mode
•	 Support for Public Key Infrastructures (PKI)

These features will be discussed in later chapters.

Protocols implemented on OSI layer 3
IPsec (Internet Protocol Security) is the most widespread tunneling technology.
In fact it is a more complex set of protocols, standards, and mechanisms than a
single technology. The wide range of definitions, specifications, and protocols is
the main problem with IPsec. It is a complicated technology with many different
implementations and many security loopholes. IPsec was a compromise accepted
by a commission, and therefore is something as a least common denominator that
has been agreed upon. This means that IPsec can be used in many different setups
and environments, ensuring compatibility, but almost no aspect of it offers the best
possible solution.

IPsec was developed as an Internet Security Standard on layer 3 and has been
standardized by the Internet Engineering Task Force (IETF) since 1995. IPsec can be
used to encapsulate any traffic of application layers, but no traffic of lower network
layers. Network frames, IPX packets, and broadcast messages cannot be transferred,
and network address translation is only possible with restrictions.

Nevertheless IPsec can use a variety of encryption mechanisms, authentication
protocols, and other security associations. IPsec software exists for almost every
platform. Compatibility with the implementation of other manufacturers' software is
secured in most cases, even though there can be significant problems resulting from
proprietary extensions.

The main advantage of IPsec is the fact that it is being used everywhere.
An administrator can choose from a large number of hardware devices,
software implementations, and administration frontends to provide networks with
a secure tunnel.

VPN—Virtual Private Network

[20]

Basically there are two methods that IPsec uses. They are as follows:

•	 Tunnel mode: The tunnel mode works like the examples listed above. All
the IP packets are encapsulated in a new packet and sent to the other tunnel
endpoint, where the VPN software unpacks them and forwards them to the
recipient. In this way the IP addresses of sender and recipient and all other
metadata are protected.

•	 Transport mode: In transport mode, only the payload of the data section is
encrypted and encapsulated. In this way the overhead becomes significantly
smaller than in tunnel mode, but an attacker can easily read the metadata
and find out who is communicating with whom. However the data is
encrypted and therefore protected, which makes IPsec a real 'private'
VPN solution.

IPsec's security model is probably the most complex of all existing VPN solutions
and will be discussed in brief in the next chapter. It has been specified in several
RFCs. A long list of these together with a good introduction can be found in
Wikipedia: http://en.wikipedia.org/wiki/IPsec.

Protocols implemented on OSI layer 4
It is also possible to establish VPN tunnels using only the application layer. Secure
Sockets Layer (SSL) and Transport Layer Security (TLS) solutions follow this
approach. Secure Shell (SSH) tunnels are a typical example of that, and they are
widespread among Linux/Unix users. Consider the following command:

ssh mfeilner@ssh-server -L 1143:mailserver:143

The user mfeilner has opened a tunnel through the company's firewall to the
remote mailserver to his local port 1143. The only prerequisite is an SSH server
with an appropriate account. More details on this so-called SSH forwarding can
be found here: http://www.ssh.com/support/documentation/online/ssh/
winhelp/32/Tunneling_Explained.html.

A field worker can access a SSL-VPN network using a simple browser connection
between his or her client and the VPN server in the enterprise. This is simply started
by logging into an HTTPS-secured web site with a browser. Meanwhile, there are
several promising products available, such as SSL-Explorer from http://3sp.com/
showSslExplorer.do, and software like this can offer great flexibility when combined
with strong security and easy setup. Using the secure connection that the browser
offers, users can connect network drives and access services in the remote network.
Security is achieved by encrypting traffic using SSL/TLS mechanisms, which have
proven to be very reliable and are permanently being improved and tested.

Chapter 1

[21]

Recently many hardware vendors have developed and integrated such
SSL-VPNs, but none of them are compatible with other vendor versions,
and the security aspect is a matter of trust in the vendor. In most cases it's better to
stick to a standard implementation.

OpenVPN—a SSL/TLS-based solution
OpenVPN is a newer and an outstanding newer VPN solution that combines several
advantages of the previously described technologies. It implements layer 2 or layer 3
connections, uses the industry standard SSL/TLS for encryption, and combines almost
all features of the mentioned VPN solutions. Its main disadvantage is the fact that there
are currently very few hardware manufacturers that are integrating it in their products
but it is becoming more and more interesting for industry grade products such as
MoRoS (http://www.insys-tec.de/moros), which is carrying an embedded Linux
with an OpenVPN solution as a central component for remote access.

Summary
In this chapter, you have learned about techniques that have been, and are, used
in companies that have computer networks spanning over several branches. You
have learned network basics, such as protocols, networking layers, the OSI reference
model, and which VPN solutions work on which layer. You have read what
tunneling is, how it works, and how different VPN solutions implement it.

Furthermore, you have received a first glimpse of where OpenVPN has its strengths
and weaknesses. We will now dive in deeper into OpenVPN in the next chapter.

VPN Security
In this chapter, we will discuss goals and techniques concerning VPN security.
These two terms are linked together very closely. Without security, a VPN is not
private anymore.

Therefore, we will first have a look at basic security issues and guiding measures to
be taken in a company. Information on symmetric and asymmetric keying methods,
key exchange techniques, and the problem of security versus simplicity pave the
way for SSL/TLS security and a closer look at SSL certificates. After having read this
chapter, you will be ready to understand the underlying security concerns
of OpenVPN (and any other VPN solution).

VPN security
IT security, and therefore VPN security, is best described by the three goals that have
to be attained. They are as follows:

•	 Privacy (Confidentiality): The data transferred should only be available to
the authorized

•	 Reliability (Integrity): The data transferred must not be changed between
sender and receiver

•	 Availability: The data transferred must be available when needed

VPN Security

[24]

Furthermore, a VPN solution must offer secure authentication and non-repudiation.
All of these goals have to be achieved using reliable software, hardware, Internet
service providers, and security policies. A security policy defines responsibilities,
standard procedures, and disaster management and recovery scenarios to be
prepared for the worst. Understanding maximum damage and the costs of the worst
possible catastrophe can give an idea of how much effort should be expended on
security issues. Security policies should also define organizational questions such as:

•	 Who has the key to the server room when the administrator is on holiday?
•	 Who is allowed to bring in a private laptop?
•	 How are the cables protected?
•	 How is a wireless LAN (WLAN) protected?

However, discussing all these questions would go far beyond the scope of this book.
There are a number of excellent documents online, where you can read more about
basic security issues that should also be discussed in your company. I only want to
mention two of them here—the IT Baseline Protection (http://www.bsi.bund.de/
english/gshb/index.htm and http://www.cccure.org/Documents/HISM/
ewtoc.html) as published by the German BSI and the IT-Sec Handbook
(http://www.cccure.org/Documents/HISM/ewtoc.html) containing concise
security hints. They are often quoted as the reference material for all security issues
in modern enterprises. The same applies to the Handbook of Information Security
Management (http://www.cccure.org/Documents/HISM/ewtoc.html).

VPN security itself is achieved by protecting traffic with modern, strong encryption
methods, secure authentication techniques, and firewalls controlling traffic into
and out of the tunnels. Simply encrypting traffic is not enough as there are huge
differences in security depending on the methods used. The following sections will
deal with issues concerning confidentiality and integrity, whereas the approach to
ensuring availability is discussed in the following chapter.

Privacy—encrypting traffic
Often passwords or encryption keys are used to encrypt data. If both sides
use the same key to encrypt and decrypt data, it is called symmetric encryption.
The encryption key has to be put on all machines that are supposed to take part in
the VPN connection.

Chapter 2

[25]

Symmetric encryption and pre-shared keys
Anybody who has this key can decrypt the traffic. If an attacker gets hold of this
key, he can decrypt all traffic and compromise all systems that are taking part in
the VPN until all systems are supplied with another key. Furthermore, such a static,
pre-shared key can be guessed, deciphered, or hacked by brute-force attacks. It is
merely a matter of time for an attacker to find out the key to read, or even worse,
change the data.

Message Message

Encryption and Decryption
with pre-shared key

asd 234H
FKNYX

asd 234H
FKNYX

Sydney

transport through tunnel

encrypted message

London

Therefore, VPN software, like IPsec, changes keys at defined intervals. Every key is
only valid for a certain period of time called key lifetime. A good combination of
key lifetime and key length ensures that an attacker cannot decrypt the key while it is
still valid. If the VPN software is changing keys, then the attacker must be quick, or
the acquired key is worthless.

Nevertheless, if the VPN software is permanently changing keys, a method of key
exchange between the communication partners has to be used to ensure that both
sides use the same encryption key at the same time. This key exchange must also
be secured again, following the same principles mentioned earlier. During the last
decade, many key exchange methods have been invented, some very sophisticated,
and lots of them have proven insecure since. Basically, this key exchange adds a layer
of complexity to the VPN software, which is prone to failure or being compromised.

IPsec, the most frequently used VPN technology, brings its own protocol for
exchanging the encryption keys. This protocol is called Internet Key Exchange (IKE)
protocol, and has been in development since the mid-nineties and is still not finished.
Many discussions about the security of this protocol can be found on the Internet
and even though IKE seems to have some security issues, it is used (with IPsec) in
many companies.

VPN Security

[26]

Reliability and authentication
Another danger is the so-called man-in-the-middle (MITM) attack
(http://en.wikipedia.org/wiki/Man-in-the-middle), also known as
eavesdropping. In this scenario, a hacker intercepts all data traffic between sender
and receiver, copies it and forwards it to its true destination. Neither sender nor
receiver would notice that the data is being intercepted. The man-in-the-middle can
store, copy, analyze, and perhaps even modify the captured traffic. This is possible
if the attacker can intercept and decrypt the keys while they are being used
for encryption.

The problem of complexity in classic VPNs
With classical VPNs that use symmetric keying, there are several layers of
authentication, exchange of encryption keys, and encryption/decryption.
The following are the first three steps of VPNs with symmetric encryption:

1.	 The partners have to authenticate each other.
2.	 They have to agree on encryption methods.
3.	 They have to agree on the key exchange methods to be used.

Step 1:
Authentication
of VPN Partners

Step 2:
Encryption
Method

Step 2:
Key Exchange
Method

OK

OK

OK

OK

OK

OK

Sydney

Authentication

Encryption

Key Exchange

Both sides start the tunnel

London

Chapter 2

[27]

This is why VPN technology is often considered complex and difficult. Previous
paragraphs have described more or less the basic way in which many modern VPN
solutions work. In a nutshell, the different approaches to keying, key exchange, and
authentication of VPN partners make the main part of the differences between the
VPN solutions.

Asymmetric encryption with SSL/TLS
SSL/TLS uses one of the best encryption technologies, called asymmetric
encryption, to ensure the identity of the VPN partner. Both encryption partners
own two keys each—one public and the other private. The public key is handed
over to the communication partners who encrypt the data with it. Because of the
selected mathematical algorithm used to create the public/private key pair,
only the recipient's private key can decrypt data encoded by his public key.

Message Message

asd 234H
FKNYX

asd 234H
FKNYX

Sydney

transport through tunnel

encrypted message

London

London's public key

Encryption with
London's public key

Decryption with
London's private key

The private keys have to be kept secret and the public keys have to be exchanged.
In the previous example, a text message is encrypted in Sydney with the public key
of London. The scrambled code is sent to London, where it can be deciphered using
London's private key. This can be done vice versa for data from London to Sydney,
which is encrypted by the Sydney public key in London and can only be decrypted
by the Sydney private key in Sydney.

A similar procedure can also be used for authentication purposes. London sends
a large random number to Sydney, where this number is encoded with the private
key and sent back. In London, the Sydney public key can decode the number.
If the numbers sent and decrypted match, then the sender must be the holder of
the Sydney private key. This is called a digital signature.

VPN Security

[28]

If you want to delve deeper into how OpenVPN and OpenSSL work, then here are
some good reads:

•	 OpenVPN and the SSL Revolution (http://www.sans.org/reading_room/
whitepapers/vpns/1459.php) explains in detail how the keying and
rekeying is done

•	 The cryptographic layer introduced by OpenVPN is explained on the project
web site's security pages, including its reliability layer (http://openvpn.
net/index.php/documentation/security-overview.html)

The book, VPNs Illustrated: Tunnels, VPNs, and IPsec by Jon C. Snader
has a concise and illustrated chapter (8.5) on OpenVPN. It is available
online here: http://fengnet.com/book/VPNs%20Illustrated%20
Tunnels%20%20VPNsand%20IPsec/ch08lev1sec5.html. Snader
studies the security model and shows packet headers, operation codes,
and message formats for almost any datagram that OpenVPN can send.

SSL/TLS security
The SSL/TLS library can be used for authentication and encryption purposes. This
library is part of the OpenSSL software that is installed on any modern operating
system. If available, SSL/TLS certificate-based authentication and encryption should
always be the first choice for any tunnel that you create. The following part of this
chapter takes the user's perspective as the starting point for understanding SSL/TLS
certificate issues.

SSL, also known as TLS, is a protocol originally designed by Netscape
Communications Corporation to ensure easy-to-use data integrity and
authenticity for the fast growing Internet in the 1990s. Anybody using a modern
browser can participate in encrypted communication. SSL/TLS is an outstanding
technology that is being used all over the Web for banking, e-commerce, or any other
application where privacy and security are needed. It is being steadily controlled,
debugged, tested, and improved by both open source and proprietary developers
and many corporations. RFC 2246 specifies SSL, and with regards to Windows
security, there is a good explanation here: http://www.windowsecurity.com/
articles/Secure_Socket_Layer.html. The home of the OpenSSL project is
http://www.openssl.org.

Chapter 2

[29]

HTTPS
As SSL/TLS resides beneath application protocols, it can be used for almost any
application. Every surfer has noticed URLs beginning with https://, instead of
http://. This signifies an encrypted connection. Point your browser to a web site
encrypted with https://, for example, https://packtpub.com. Consider the
following screenshot:

Whenever you point your browser to a page like this for the first time, you have
to validate an SSL certificate. Usually your browser does this for you when the
certificate is trustworthy. The screenshot shows a Firefox 3 warning, which you
receive when there are errors in validating the certificate. Often, with older browsers,
this was a problem. People mostly press one of the available buttons (shown in the
screenshot) while browsing, without further attention.

VPN Security

[30]

Understanding SSL/TLS certificates
By accepting a certificate, that is, by clicking the Confirm Security Exception button
in Firefox, the browser is told to trust the issuer (the web site that provided the
certificate), and you agree to use this certificate for encryption of communication
with this server. When you're using Mozilla, Firefox, or Konqueror, you are
prompted to accept the certificate.

Click on the View... button, and you will see a screen like the one that is shown in
the next screenshot in the section on Trusted certificates.

Trusted certificates
The following window shows the information contained in the SSL certificate.
The information in the fields Issued To and Issued By is probably the most
important. If you find the entries here that you were expecting, then it can be
safe to trust this certificate. Trustworthy means one of several organizations who
sign certificates, thereby guaranteeing the identity of the owner of the certificate.

With a signed certificate, the owner of the certificate can prove that he or she is
who he or she claims to be to anybody who trusts the certificate authority. Every
TLS-enabled browser contains a list of trustworthy organizations that are entitled
to sign certificates and the keys necessary to confirm this.

Chapter 2

[31]

Click on the Close button and have another look at the first window, Secure
Connection Failed. It is in fact a warning. The certificate was originally issued for
www.packtpub.com and not for packtpub.com, from where it was received, and the
Firefox SSL client simply warns about the fact. www.packtpub.com is a sub domain
of packtpub.com, so this difference should not be crucial. However, if you receive a
warning that the certificate for domain A was originally issued for domain B, then
you should become suspicious.

This so-called third party authentication scheme, where a certificate authority
guarantees identity, is pretty common today. The ID cards and passports that we
use work the same way. The government of the state you live in guarantees that you
are who you claim to be. This information is only valid for a certain time and could
be traced back to the issuer. Almost every other person, company, or organization
relies on this information. These principles are also implemented in many modern
authentication mechanisms such as Kerberos or SSL/TLS.

VPN Security

[32]

Self-signed certificates
It is also possible to use certificates that are not signed by the mentioned authorities,
but by a local Certificate Authority (CA).

In real life, if a good friend introduces us to a reliable friend of his, then we tend
to trust him too, simply because of the recommendation. But we would not trust
somebody we do not know. If you point Firefox to a site with a certificate that is
signed only by a local CA, you will receive the following warning:

Firefox reports: The certificate is not trusted because it is self signed. The warning
means, 'Watch out, I do not know the issuer of this certificate, nor do I know
someone who guarantees the identity of the issuer'. Every SSL/TLS client gives
you a warning when a client wants to establish an encrypted connection with
an unsigned private certificate. But where does this certificate come from?

The solution is simple. The OpenSSL software package, which contains the
encryption software, also provides programs to create certificates and to sign them.
Such certificates are called self-signed certificates and can only be considered
trustworthy when the issuer or the CA is known to and trusted by the client.
Later in this book, you will learn how to create, sign, and manage such certificates.

Chapter 2

[33]

Self-signed certificates are often used for testing purposes or in local networks
because registering (signing) certificates at certificate authorities is expensive and
not necessary in many scenarios. However, the security policy of a company should
contain procedures for the use of signed and unsigned certificates on servers.
Web sites, such as http://www.pki-page.org, present long lists of certification
authorities all over the world.

SSL/TLS certificates and VPNs
SSL/TLS certificates work exactly the same way with VPNs—a certificate authority is
defined or created, and all valid certificates issued by this authority are accepted by
the VPN. Every client must have a valid certificate issued by this CA and is therefore
allowed to establish a connection to the VPN.

A Certificate Revocation List (CRL) can be used to revoke certificates that belong to
clients who must not be allowed to connect to the VPN any longer. This can be done
without configuration on any client, simply by creating an appropriate revocation list
on the server. This is very useful when a laptop is stolen or compromised.

An organization using a pre-shared key must put this key on every system that
connects to the VPN server. The key must be changed on all systems if just one single
system or key is lost. But if you are using certificates with revocation lists, you only
have to put the certificate of the stolen laptop on the server's CRL. When this client
tries to connect to the server, access will be denied. There is no need for interaction
with any client.

Connections are refused if:

•	 No certificate is presented
•	 A certificate from an incorrect CA is presented
•	 A revoked certificate is presented

Such certificates can be used for many purposes. HTTPS and OpenVPN are only
two applications of a large variety of possibilities. Other VPN systems (like IPsec),
web servers, mail servers, and almost every other server application can use
these certificates to authenticate clients. If you have understood and applied this
technology correctly, then you have achieved a very high degree of security.

VPN Security

[34]

Generating certificates and keys
Several steps have to be accomplished to create a working setup with certificates for
any kind of VPN. These steps are as follows:

1.	 Create a Certification Authority certificate for your CA, which will sign and
revoke client certificates.

2.	 Create a key and a certificate signing request for the clients (or users), or let
the users create them.

3.	 Sign the requests using the CA certificate, thereby making them valid.
4.	 Provide keys and certificates to the VPN partners.

As you can see, certificate handling can be pretty complex. There are a number of
ways to accomplish these steps, and different partners are involved with different
actions. There are special software packages such as the ones OpenSSL provides,
some of these are really powerful, though they only deal with the topic of handling
certificates and keys in medium and large size companies.

The certificate authorities can or should be organized in chains and organizational
units, which are allowed to sign certificates and keys only for their organization. For
example, in VEN Inc., the administrator of the Sydney branch should be allowed to
produce certificates and keys for the Australian field workers. But these should not
automatically have access to the Munich network. Thus, access to Sydney's VPN is
restricted to certificates of the organizational unit, 'Sydney Branch', and in Germany,
to 'Munich Branch'. If there are some people regularly travelling between the two
cities then they may need VPN-access on both continents, which could be achieved
by having top-level or second-level CA certificates.

Chapters 8 and 11 deal with certificate management in more detail.

Summary
In this chapter, you have learned basic security concepts that are necessary for VPN
technologies. There are several web sites with excellent material on IT security
issues. You have received an overview of basic security and encryption issues and
learnt why complexity is always an enemy of security. With symmetric keying, both
encryption partners use the same key, but when asymmetric keying is used, the
encryption key is different from the one used for decrypting the data. The SSL/TLS
library uses asymmetric keying and provides certificates that are used by millions of
web sites running on https://. The certificates can be signed by official authorities,
in the same way as our passports or ID cards, or self-signed by the local authority
that created them. This is called third-party authentication because a certificate
signed by that third party is trusted.

OpenVPN
In this chapter we will discuss the nature of OpenVPN. We will start with its features
and its release history, followed by its basic networking concepts, and a first brief
look at the configuration. At the end of the chapter, OpenVPN is compared to IPsec,
the quasi-standard in VPN technology.

This chapter will cover the following:

•	 Advantages of OpenVPN
•	 History of OpenVPN
•	 Networking with OpenVPN
•	 OpenVPN and firewalls
•	 Configuring OpenVPN
•	 OpenVPN versus IpSec
•	 Source for documentation

Advantages of OpenVPN
With the advent of OpenVPN a new generation of VPN entered the scene. While
other VPN solutions often use proprietary or non-standard mechanisms, OpenVPN
has a modular concept, both for underlying security and for networking. OpenVPN
uses the secure, stable, and lauded SSL/TLS mechanisms and combines them in
its own reliability layer. It does not suffer from the complexity that characterizes
other VPN implementations like the market leader IPsec. At the same time, it offers
possibilities that go beyond every other VPN implementation's scope.

•	 Layer 2 and Layer 3 VPN: OpenVPN offers two basic modes, which run
either as Layer 2 or Layer 3 VPN. Thus, OpenVPN tunnels on Layer 2 can also
transport Ethernet frames, IPX packets, and Windows Network Browsing
packets (NETBIOS), all of which are problems in most other VPN solutions.

OpenVPN

[36]

•	 Protecting field workers with the internal firewall: A field worker
connected to the central branch of their company with a VPN tunnel can
change the network setup on their laptop so that all of their network traffic
is sent through the tunnel. Once OpenVPN has established a tunnel, the
central firewall in the company's central branch can protect the laptop, even
though it is not a local machine. Only one network port must be opened to
the local (customers') network by the field worker. The employee is protected
by the central firewall whenever he is connected to the VPN. Even better, the
administrator of the central VPN server can force the client to use the central
firewall by imposing configuration options on the clients.

•	 OpenVPN connections can be tunneled through almost every firewall
and proxy: If you have Internet access and can access HTTPS web sites, then
OpenVPN tunnels should work. Setups where OpenVPN tunnels are banned
are very rare. OpenVPN has full proxy support including authentication.

•	 Server and client mode, UDP and TCP support: OpenVPN can be
configured to run as a TCP or UDP service and as a server or client. As a
server, OpenVPN simply waits until a client requests a connection, whereas
a client establishes a connection according to its configuration. A server on
the Internet can be completely shut down from any other machine except the
ones in its virtual private network, which extends the security level of such
systems enormously.

•	 Only one port in the firewall must be opened to allow incoming
connections: Since OpenVPN 2.0, the special server mode allows multiple
incoming connections on the same TCP or UDP port, while still using
different configurations for every single connection.

•	 No problems with NAT: Both OpenVPN server and clients can be within a
network using only private IP addresses. Every firewall can be used to send
the tunnel traffic to the other tunnel endpoint.

•	 Virtual interfaces allow flexible very specific networking and almost every
imaginable firewall rule: All restrictions, mechanisms like forwarding, and
concepts like NAT (Network Address Translation) or package mangling
(changing the metadata of network datagrams, like some firewalls do) can
be used with and within OpenVPN tunnels. Any IP Protocol is possible.
Yes, you can tunnel VPNs, like IPsec, inside an OpenVPN tunnel.

•	 High flexibility with extensive scripting possibilities: OpenVPN offers
numerous points during connection setup to start individual scripts. These
scripts can be used for a great variety of purposes from authentication to
failover and more.

Chapter 3

[37]

•	 Transparent, high-performance support for dynamic IPs: By using
OpenVPN, there is no longer a need to use expensive, static IPs on either
side of the tunnel. Both tunnel endpoints can have cheap DSL access with
dynamic IPs. The users will rarely notice a change of IP on either side,
Windows Terminal Server and Secure Shell (SSH) sessions will only seem to
hang for few seconds, but they will not terminate and will carry on with the
action requested after a short pause. All traffic can be compressed through
the LZO library and OpenVPN continuously checks if the compression
has been successful. So-called adaptive compression merely 'zips' the
uncompressed data to avoid unnecessary overhead.

•	 Simple installation on any platform: Both installation and use are incredibly
simple. Especially, if you have tried to set up IPsec connections with different
implementations, you will find OpenVPN appealing.

•	 Modular Design: The modular design with a high degree of simplicity both
in security and networking is outstanding. No other VPN solution can offer
the same options at this level of security.

•	 Support for mobile and embedded: More and more mobile devices are
supported. Packages for Windows Mobile and Nokia's Maemo platform, and
embedded operating systems like OpenWrt/FreeWrt have all been provided
for recently, and there are many others in development.

•	 Very active community: OpenVPN has acquired a huge amount of fans
in the last few years. There are installations with high volume users with
high availability.

History of OpenVPN
According to an interview on http://linuxsecurity.com published in 2003,
James Yonan was traveling in Central Asia in the days prior to September 11, 2001
and connecting to his office over Asian or Russian Internet Providers.

The fact that these connections were established over servers in countries with
very dubious security made him more and more aware of and concerned about
security issues. His research revealed that there were two main streams in VPN
technology, one promoting security, and the other usability. None of the solutions
available at that time offered an ideal blend of both objectives. IPsec and all of its
implementations were difficult to set up, but offered acceptable security. However,
its complex structure made it vulnerable to attacks, bugs, and security flaws.
Therefore, the networking approach Yonan found in some of the usability camp's
solutions seemed to make more sense to him, leading him to a modular networking
model using the TUN/TAP virtual networking devices that are provided by the
Linux kernel.

OpenVPN

[38]

After some study of the open source VPN field, my conclusion was that the
'usability first' camp had the right ideas about networking and inter-network
tunneling, and the SSH, SSL/TLS, and IPSec camps had the appropriate level of
seriousness toward the deep crypto issues. This was the basic conceptual starting
point for my work on OpenVPN.

James Yonan in a LinuxSecurity.com interview on November 10, 2003.
(http://www.linuxsecurity.com/content/view/117363/49/)

Choosing the TUN/TAP devices as a networking model immediately offered a
flexibility that other VPN solutions could not offer. While other SSL/TLS-based
VPN solutions needed a browser to establish connections, OpenVPN would prepare
almost real (but still virtual) network devices, on which almost all networking
activities can be carried out.

Yonan then chose the name OpenVPN with respect to the libraries and programs
of the OpenSSL project and because of the clear message that this is open source and
free software.

OpenVPN Version 1
OpenVPN entered the scene of VPN solutions on May 13, 2001 with an initial release
that could barely tunnel IP packets over UDP, and could only encrypt with Blowfish
cipher and SHA HMAC signatures (secure encryption and signing methods). This
version was already numbered 0.90, which seemed ambitious, as only one version
(0.91) followed in 2001, offering extended encryption support. For SSL/TLS support,
users would have to wait for almost one year after the first release. Version 1.0
was released in March 2002 and provided SSL/TLS-based authentication and key
exchange. This version was also the first to contain documentation in the form of
a manpage.

Then, OpenVPN development picked up speed. Only five days later, version 1.0.2
was released, which was the first version with added adaptations for RPM-based
systems. From this version onwards, releases were published almost regularly every
four to eight weeks.

The following table gives an overview of the releases and lists the dates and
versions when certain selected features were added to the 1.x version of OpenVPN.
More details can be found in the Change Log sections of the OpenVPN website at
http://openvpn.net/changelog.html and release notes at http://openvpn.net/
relnotes.html.

Chapter 3

[39]

Date Version Important features/changes
May 13,
2001

0.90 The initial release, with only a few functions such as IP over
UDP, and only one encryption mechanism.

December
26, 2001

0.91 More encryption mechanisms were added.

March 23,
2001

1.0 TLS-based authentication and key exchange were added.
First manual page was included.

March 28,
2001

1.0.2 Bug fixes and improvements, especially for RPM-based
systems like Red Hat, were introduced.

April 9,
2002

1.1.0 Extended support for TLS/SSL.
Traffic shaping was added.
First OpenBSD port was included.
Extended replay protection made OpenVPN more secure.
Further improvement of documentation (manpage).

April 22,
2002

1.1.1 Options for automatic configuration of an OpenVPN network.
Inactivity control features were introduced.

May 22,
2002

1.2.0 Configuration file support was added.
SSL/TLS as background process—longer keys were
now possible.
Various ports were added/improved (Solaris, OpenBSD,
Mac OSX, x64).
Website was improved, 'howto' was included.
Installation without automake was now possible.

June 12,
2002

1.2.1 Binary RPM files for installation on Red Hat-based systems
were provided.
Major improvements on signal handling and key management
on restart.
Support for dynamical changes in incoming packages
(such as dynamic IPs).
Added support for identity downgrade after
installation—OpenVPN can be run as non-privileged user.

July 10,
2002

1.3.0
'Housekeeping Releases'—bug fixes, minor improvements,
and new features. Works now with OpenSSL 0.9.7 Beta 2.July 10,

2002
1.3.1

OpenVPN

[40]

Date Version Important features/changes
October
23,2002

1.3.2 NetBSD port was added

Support for inetd/xinetd instantiation under Linux.

Simple building of SSL/TLS certificates was added (easy-rsa
script).

Support for IPv6 over TUN was added.
May
7,2003

1.4.0 Improvement of replay protection (security).

Numerous bug fixes, improvements, and additions.
May
15,2003

1.4.1 Improved support for kernel 2.4.

July
15,2003

1.4.2 First beginnings of Windows port (but still missing Windows
kernel driver).

Gentoo init script.
August
4,2003

1.4.3 Bug fix was released.

November
20,2003

1.5.0 (and
14 beta
versions
before
that)

Certificate revocation lists.

TCP support.

Port to Windows 2000 and XP was added, also included
Win32 installer.

Increased sanity checks in configuration parameters.

Proxy support was added.

Extended routing functions (such as redirect gateway).

Improved TLS support, extended key and cipher features.
May
9,2004

1.6.0
(including
4 release
candidates
and 7 beta
versions)

SOCKS proxy support was added.

Various improvements on Windows networking
behavior—Dynamic Host Configuration Protocol (DHCP)

Various bug fixes were introduced.

Chapter 3

[41]

OpenVPN Version 2
Parallel to the improvement and development of OpenVPN version 1, the test bed
for OpenVPN version 2 was created in November 2003. In February 2004, version
2.0-test3 initially prepared the goal for a multi-client server for OpenVPN. This
multi-client server is one of the most outstanding features of OpenVPN today.
Several clients can connect to the VPN server on the same port. On February 22, 2004,
the two development branches, 1.6-beta7 and 2.0-test3, were merged and further
development was continued in the branch of version 2.

There were fewer than 29 versions labeled as 'test' versions, 20 beta versions,
and 21 release candidates, until on April 17, 2005, OpenVPN version 2.0 was
released. This was only possible because of the great number of developers who
were contributing to the project, fixing bugs, and improving performance and
stability permanently.

The following list will give a brief overview of the new features that were added to
OpenVPN version 2:

•	 Multi-client support: OpenVPN offers a special connection mode, where
TLS-authenticated clients (that are not blacklisted on the CRL) are provided
in DHCP-style with IPs and networking (tunnel) data. This way, several
tunnels (up to 128) can communicate over the same TCP or UDP port.
Obviously, a mode control switch for activating the server mode became
necessary.

•	 Push/pull options: The Network setup of clients can be controlled by the
server. After the successful setup of a tunnel, the server can tell the client
(both Windows and Linux) to use a different network setup instantaneously.

•	 A management interface (Telnet) is added.
•	 The Windows driver and software have been improved extensively.

The current stable version of OpenVPN is version 2.0.9 released on October 1, 2006.
There are many reports on the mailing lists that the release candidates of version
2.1 are very stable and usable in enterprise environments also. Use them at your
own risk.

OpenVPN

[42]

The road to version 2.1
Since the middle of 2005, the developers of OpenVPN have been continuously
working towards the newest version of OpenVPN, that is, 2.1. At the time of
writing (late 2008), the fifteenth release candidate is the most up-to-date version
of OpenVPN. The following table shows the improvements that the programmers
added along the way:

Date Version Important features/changes
June 12, 2005 2.0.1-rc3 Client-side push and pull scripts now support also the

dhcp-options 'DOMAIN' and 'DNS'
June 15, 2005 2.0.1-rc4 LZO2 support
July 15, 2005 2.0.1-rc6 The '@'-character can now be used in client-config-directory

file names
July 21, 2005 2.0.1-rc7 LZO 2.1 support
August 15,
2005

2.0.1 Various security fixes (DOS attacks against error queues and
others), the auth-retry option is added to the management
interface

August 25,
2005

2.0.2 Source code is removed from the Windows installer, bugs,
and security fixes (no changes from 2.0.2-rc1)

September 7,
2005

2.0.2-TO1 New features: --topology , --redirect-gateway
bypass-dhcp for non-local DHCP servers, DHCP client
service becomes a dependency on Windows, Plugin interface
is extended.

September
23, 2005

2.0.2-TO4 Windows-TAP-Adapter can be opened in non-admin-mode,
--redirect-gateway bypass-dns when non-local DNS
servers option is added.

October 1,
2005

2.1.beta1 Compression (LZO) directive can be pushed to the clients,
version merge with 2.0.3-rc1, renaming of several directories
(easy-rsa).

October 16,
2005

2.1.beta3 Support for PKCS#11 key format, several patches around
certificate handling. --bind option is added.

November
12, 2005

2.1.beta7 Certificates and keys can now be specified inline in the
configuration files.
Multiline parameter listings for plugins. Many fixes
and patches.

January 3,
2006

2.1.beta8 --topology subnet also for Macintosh systems, automatic
proxy detection (Windows only), improved network handling
for Windows (both --ip-win32 and --route now have
adaptive as standard, on Windows OpenVPN tries to use the
IP helper API first, then falls back to the route command.

Chapter 3

[43]

Date Version Important features/changes
February 16,
2006

2.1.beta9 Port-sharing allows simultaneous use of a HTTPS-Server
and OpenVPN on the same Port. Adds a management client
option and a bytecount to the management interface.

1899-12-30 2.1.beta10-
16

Numerous Fixes and patches, Topology mode also for BSD,
--route-metric option, Mac address for the virtual interfaces
can now be specified. Windows installer updates,
Easy-RSA-update, PKCS#11 handling updated.

October 31,
2006

2.1_rc1 First release candidate of version 2.1, only minor changes.

February 27,
2007 to April
25, 2007

2.1_rc2-4 First workarounds for common Vista and Windows 64-bit
problems, several fixes and patches. Signatures for Installer,
OpenVPN GUI as installation option on Windows.

January 23,
2008

2.1_rc5 Improved Windows build system including a custom installer
and OpenSSL 0.9.7m.
Unprivileged mode for Linux.

June 11, 2008 2.1_rc8 Client package filtering and authentication capability in the
management interface.
Client-side connection profiles.
Windows version contains OpenSSL 0.9.8h.
NTLMv2 proxy authentication support.
Numerous fixes, patches, and minor feature extensions.

September
10, 2008

2.1_rc10 New server-bridge mode that works like a DHCP-proxy,
-route-gateway dhcp option makes it possible to use the
former default gateway as provided by DHCP.
OpenVPN warns in case of address conflicts, and the
--allow-pull-fqdn directive allows the use of DNS names
instead of IPs for several network options.
Numerous fixes and patches, extensive security hardening.
Scripts exist because rc8 was handled by execve and
CreateProcess instead of system() calls. Rc10 provides
backwards compatibility.

October 7,
2008

2.1.rc13 Openssl 0.9.8i for the Windows package, Domain sockets for
the management interface, Copyright Change to OpenVPN
Technologies, Inc.

May 30, 2009 2.1.rc14-
18

Several bugfixes, especially for Windows Clients.

OpenVPN

[44]

In addition to the stable version of 2.1, a commercial version 3.0 is in progress.
Perhaps you have noticed that from the beginning of October 2008, the copyright
of OpenVPN has changed to OpenVPN Technologies, INC., a company founded by
James Yonan. This company is developing several products based on OpenVPN for
business setups. Both a version with commercial support and a hardware appliance,
services and support, and a web-based management interface shall be available soon.
Since 2008, the OpenVPN website's redesign has reflected a professional approach
towards business customers.

Networking with OpenVPN
The modular structure of OpenVPN can not only be found in its security model, but
also in the networking scheme. James Yonan chose the Universal TUN/TAP driver
for the networking layer of OpenVPN.

The TUN/TAP driver is an open source project that is included in all modern
Linux/Unix distributions, as well as Windows, Solaris, and Mac OS X. Like
SSL/TLS, it is used in many projects, and therefore it is steadily being improved,
and new features are being added. Using the TUN/TAP devices takes away a lot
of complexity from the structure of OpenVPN. Its simple structure brings increased
security when compared to other VPN solutions. Complexity is always the main
enemy of security. For example, IPsec has a complex structure with complex
modifications in the kernel and the IP stack, thereby creating many possible
security loopholes.

The Universal TUN/TAP driver was developed to provide Linux kernel support for
tunneling IP traffic. It is a virtual network interface, which appears as authentic to
all applications and users. Only the name tunX or tapX distinguishes it from other
devices. Every application that is capable of using a network interface can use the
tunnel interface. Every technology that you are running in your network can be run
on a TUN or TAP interface too.

This driver is one of the main factors that makes OpenVPN very easy to understand,
easy to configure, and at the same time, very secure.

Chapter 3

[45]

The following figure depicts OpenVPN using standard interfaces:

Network
Applications

Kernel
Network
Drivers

tunX, tapX

ethX

pppX, dslX

VPN Software

Network (LAN)

Modem, ISDN

A TUN device can be used like a virtual point-to-point interface, like a modem or
DSL link. This is called routed mode because routes are set up to the VPN partner.

However, a TAP device can be used like a virtual Ethernet adapter. This enables the
daemon listening on the interface to capture Ethernet frames, which is not possible
with TUN devices. This mode is called bridging mode because the networks are
connected as if over a hardware bridge. Applications can read/write to this interface.
Software (the tunnel driver) will take all the data and use the cryptographic libraries
of SSL/TLS to encrypt them. The data is packaged and sent to the other end of the
tunnel. This packaging is done with standardized UDP or optional TCP packets.
UDP should be the first choice, but TCP can be helpful in some cases. You are almost
completely free to choose the configuration parameters such as protocol or port
numbers, as long as both tunnel ends agree on the same figures.

OpenVPN listens on TUN/TAP devices, takes the traffic, encrypts it,
and sends it to the other VPN partner, where another OpenVPN process
receives the data, decrypts it, and hands it over to the virtual network
device, where the application might already be waiting for the data.

OpenVPN

[46]

But there's more. As the network interface is a standardized Linux network interface
(either TUN or TAP), anything possible on an Ethernet NIC can also be done on VPN
tunnels. Consider the following:

•	 Firewalls can restrict and control traffic
•	 Traffic shaping is not only possible, but it is also a feature incorporated

in OpenVPN

Also, if you want to use DSL lines with frequent reconnects and dynamically
assigned IPs, OpenVPN will be your first choice. The reconnect is much faster than
that of any other VPN software that we have tested. A Windows terminal server or
SSH session does not terminate when one of the VPN partners changes its IP. The
session just freezes for a few seconds and then you can continue. Can your VPN
accomplish that?

OpenVPN and firewalls
OpenVPN works perfectly with firewalls. There are a few VPN solutions that can
claim to have similar firewall support, but none can offer the same level of security.

What is a firewall? There is a famous and simple definition. A firewall is a router
that does not route. If you consider this to be not very helpful, then here is a more
refined definition:

A firewall is a router that routes only selected Internet data. Firewall rules define
how to handle specific data and traffic.

Firewalls can be devices or software on PCs, servers, or on other devices. A firewall
takes care of the data that has been received and has a closer look at it. Modern
firewalls are so-called packet filtering, stateful inspection firewalls. Depending on
the OSI layer it is operating in, the firewall can pass decisions based on the data that
is found in the headers of the packets or application data. Packet filtering firewalls
usually operate by reading the IP data header. Stateful inspection is a mechanism
to remember the connection states. In this way, internal networks can be protected
from external networks. While Internet connections initiated from the inside can be
allowed, all unwanted unauthorized connections from the outside can be rejected.
At the same time, incoming data requested by a member of the local net is passed
through (because the firewall remembers the state of the request).

Chapter 3

[47]

Under Linux, most firewalls are based on the program iptables. This is a user-space
interface to the Linux kernel's netfilter firewall functionality, and offers everything
that modern firewalls should. Probably the best way to protect your LAN is by
writing a set of iptables rules with a shell script. However, the usability of such a
script is not perfect. Most administrators want a Graphical User Interface (GUI) for
firewall control and all the hardware firewalls offer this. Enterprise Distributions,
such as RHEL or SLES come with sophisticated firewall tools, but there are also
several open source projects. Outstanding tools for this purpose and Linux (iptables)
firewalls are as follows:

•	 The Shorewall (Shoreline Firewall) project that integrates into the Webmin
suite—a web-based frontend to administer Linux systems from a browser.
People from the Shorewall project, namely, Simon Matter and Tom Eastep,
have written a very useful guideline for the integration of OpenVPN tunnels
into Shorewall and more at http://www.shorewall.net/OPENVPN.html.

•	 IPCop (http://www.ipcop.org) is a promising standalone,
easy-to-configure Linux firewall system that is also equipped with a
professional GUI. It has had great success in third-world projects like
Linux4africa (http://www.linux4africa.de) and in other medium-size
professional setups. Standardized installation, simple structures, and
modular add-ons make this a fast-growing project, and with the help of
OpenVPN, the IPCop firewall becomes a true VPN server.

•	 Tools like Fwbuilder (http://www.fwbuilder.org) help you build, manage,
and distribute your iptables scripts on your own. Fwbuilder does even more.
It can work independently from your platform and is able to translate Linux
rules into Cisco, BSD, or other firewall languages. This is really worth a look.

Configuring OpenVPN
Up till now, you have seen that OpenVPN has a secure and easy-to-use security
approach and a flexible networking model. Consequently, very simple configuration
syntax and good documentation characterize the user interface of OpenVPN.
Configuration is done by editing a simple text file. The syntax is the same on every
operating system. Here is an example of a simple configuration file with 13 lines.

remote feilner-it.dynalias.net
float
dev tun
tun-mtu 1500
ifconfig 10.79.10.1 10.79.10.2

OpenVPN

[48]

secret my_secret_key.txt
port 5050
route 10.94.0.0 255.255.0.0 10.79.10.2
comp-lzo
keepalive 120 600
resolv-retry 86400
route-up "/sbin/firewall restart"
log-append /var/log/openvpn/ultrino.log

A command-line interface allows you to start temporary tunnels at will, which is
very useful when testing setups. The same parameters as in the configuration file
are added to the command line, and the tunnels are started.

In the so called server mode, OpenVPN can push various configuration data to the
clients through the tunnel. Multiple tunnels can be run on one singular port, either
UDP or TCP. OpenVPN can be tunneled through firewalls and proxies, if they allow
HTTPS connections, and the server can tell the client to use the tunnel as the default
route to the Internet.

This offers a huge variety of possibilities. You can have your field workers open only
one port to whatever network they are connected to. This is the port OpenVPN uses
to connect to your company's VPN server. Once connected, all Internet traffic from
this laptop is routed through the network of the company to which the VPN tunnel
is connected. In this way, your company's firewall can also protect the road warriors.
A road warrior is a member of a company (or a company's network), who is
working outside the company's walls and connects to the network frequently
through different connections. A typical road warrior may be a salesman with his
or her laptop, who needs to access the company's resources using his or her
customer's network.

Problems with OpenVPN
OpenVPN has a few weaknesses:

•	 It is not IPsec compatible, and IPsec is the standard VPN solution. Lots
of devices such as Cisco or Bintec routers use IPsec and can connect to
applications of other manufacturers or software IPsec clients. At least they
should be able to, because in practice many manufacturers tend to develop
their own proprietary extensions to IPsec, which make their implementations
practically incompatible with other IPsec devices.

•	 OpenVPN is not defined by any RFC. But for the future, Yonan has posted
several times that RFC 4347 (DTLS—Datagram Transport Layer Security)
offers a very promising specification with compatible modules taken
into account.

Chapter 3

[49]

•	 There are still relatively few people who know how to use OpenVPN,
especially in difficult scenarios (though those tend to be rare). So if you read
on, you can acquire a valuable qualification.

•	 There is no enterprise class GUI for administration, but there are some
promising projects.

•	 Today you can only connect to other computers. But this is changing, there
are companies working on devices with integrated OpenVPN clients.

•	 OpenVPN runs in user space and all network traffic needs to go from kernel
space to user space and back.

As you can see, the main weaknesses of OpenVPN are incompatibility to IPsec and
lack of public knowledge about its features and hardware manufacturers. The first
will probably never change because the architectures differ too much, but the latter is
already changing.

OpenVPN compared to IPsec VPN
Even though IPsec is the de facto standard, there are many arguments for using
OpenVPN. If you want to convince your management about why your branches
should be connected through OpenVPN instead of IPsec VPN, then the following
table can help your argument (points that are preceded by '+' are advantages and
points that are preceded by '-' are disadvantages):

IPsec VPN OpenVPN
+ The standard VPN technology - Still rather unknown, not compatible with

 IPsec, perhaps will soon be standardized
 in part by usage of DTLS.

+ Hardware platforms (devices,
 appliances)

- Only on computers, but on all operating
 systems. Exceptions are devices, where
 embedded Unixs are running such as
 OpenWrt and similar.

+ Well-known technology - New technology, still growing and rising.
+ Many GUIs for administration - No professional GUI, however, there are

 some interesting and promising projects.
- Complex modification of IP stack + Simple technology.
- Critical modification of kernel necessary + Standardized network interfaces and

 packets.
- Administrator privileges are necessary + OpenVPN Software can run in user space,

 and can be chroot-ed.

OpenVPN

[50]

IPsec VPN OpenVPN
Different IPsec implementations
from different manufacturers can be
incompatible

+ Standardized encryption technologies.

- Complex configuration,
 complex technology

+ Easy well-structured modular technology
 and easy configuration.

- Steep learning curve for newbies + Easy to learn, fast success for newbies.
- Several ports and protocols in firewall
 is necessary

+ Only one port in firewall is necessary.

- Complex modification of IP stack + Simple technology.
- Problems with dynamic addresses
 on both sides

+ DynDNS works flawlessly, and reconnects
 faster.

- Security problems with
 IPsec technologies

+SSL/TLS as industry-standard cryptographic
 layer.
+ Traffic shaping.
+ Speed (up to 20 Mbps on a 1Ghz machine).
+ Compatibility with firewalls and proxies.
+ No problems with NAT (both sides can be in
 NATed networks).
+ Possibilities for road warriors.

Probably the best argument is that you can use both VPN solutions in parallel,
as long as you're using Linux or a Linux-based application. Due to the different
approaches to networking, there are no conflicts between the two systems. Moreover,
you can tunnel IPsec over OpenVPN.

Chapter 3

[51]

User space versus kernel space
How do the two solutions compare when it comes to speed and latency? Latency
is a parameter that defines the responsiveness of a line. The less latency, the faster
the roundtrip for IP packets, and communication gets faster. A very interesting
study by Nejc Skoberne from Ljubliana University (http://stuff.skoberne.net/
IPSec_and_OpenVPN_Performance.pdf) demonstrates the expected. OpenVPN runs
in user space, whereas IPsec runs in kernel space. That's why many Linux systems
need specially patched kernels or add-ons for IPsec. As the technology of this VPN
is very close to the network stack and is implemented directly in or at least close to
the kernel, it will be faster than OpenVPN in most setups. With any VPN solution
running in user space, the operating system's kernel has to perform significantly
more context switches than with a technology running in kernel space, which results
in a higher latency of the connection. As the OpenVPN server has to do slightly more
work than the IPsec variant, its latency will always be a little higher.

Here comes the interesting part. OpenVPN beats IPsec when the number
of connected clients rises. Although the author has no explanation for this
phenomenon, he documents very well how ten OpenVPN clients are able to draw
more bandwidth from the server than a single client or ten IPsec clients. Thus, from
the perspective of performance, IPsec may be the better choice, if there are protocols
involved that need small latencies such as Samba. However, as the number of clients
rises, OpenVPN becomes better and better.

Sources for help and documentation
If you want to learn more about OpenVPN, there are numerous resources on the
Internet. Web sites, mailing lists, forums, and private pages of OpenVPN fans can be
found in abundance. Google finds more than seven million hits for 'open vpn'. This
list of course cannot be complete, but here you will find links to web sites that were
helpful to me when I started using OpenVPN and where I still look for help today.

OpenVPN

[52]

The project community
OpenVPN project has its own web site, including downloads of new versions and
updates, documentation, how-to's, mailing lists, and links to various VPN-related
pages. The OpenVPN project page could not be bettered. You'll find it at
http://www.openvpn.net.

The most important source of help is the mailing list: http://www.openvpn.net/
index.php/documentation/miscellaneous/mailing-lists.html.

As we are using SSL/TLS for encryption purposes, you will certainly
want to understand this toolkit. The SSL/TLS Cryptographic library's web site
provides detailed documentation and mailing lists, which can be found at
http://www.openssl.org.

The website of the TLS Charter by the TLS Working Group provides a list with many
related RFCs and Internet drafts you might consider helpful at http://www.ietf.
org/html.charters/tls-charter.html. The promising DTLS RFC 4347 can be
found at http://www.ietf.org/rfc/rfc4347.txt

The Universal TUN/TAP driver can be downloaded from the following page:
http://vtun.sourceforge.net/tun. Nevertheless, this should not be necessary,
as every modern distribution (and kernel) should have this feature built-in.
However, the FAQ of this project may be helpful for various questions.

Documentation in the software packages
If you install OpenVPN from the binary packages for your distribution, then you will
have the standard documentation in the following directories:

Distribution Path to documentation
Debian /usr/share/doc/openvpn

SuSE /usr/share/doc/packages/openvpn

Red Hat /usr/share/doc/openvpn-2.x

Windows online documentation only

Other distributions may have different locations. Check your package management
system for details. RPM-based systems give a list of all the files belonging to a
specific package when you type rpm -ql openvpn as the super user. Debian-based
systems (like Ubuntu) should give the same information when root enters
dpkg -L openvpn. Other systems that use ipkg as a manager will respond to ipkg
files openvpn. Replace openvpn with the name of the package you had installed.

Chapter 3

[53]

The source code package (tarball) contains several READMEs and documentation
files. Just browse through the directories from which you had extracted OpenVPN.
If you're interested, have a look at some of the source code files. The developer's
comments can be of great help to understand the depths of the software.

Summary
OpenVPN offers great possibilities. The networking concept allows very transparent
setups with firewalls or in road warrior configurations. James Yonan, the founder,
has made very good decisions when trusting the TUN/TAP network drivers and the
SSL/TLS libraries. OpenVPN was first published in 2001, version 2 came out in 2005
and offers many more advanced features than the versions before. The current stable
version is 2.0.9, but there are already 15 release candidates for 2.1, and a commercial
version 3 is on the way. Multi-client support, Vista support, the push/pull options, a
management interface, and the advanced port sharing are only some of the features.
OpenVPN is easy to configure and has only a few weaknesses, the most serious of
which is its incompatibility with IPsec by design. But to name this as a weakness is
harsh if it is compared to IPsec, as was done earlier in this chapter. IPsec is still the
standard, but OpenVPN has many more features at a much better security level.
So now let's install our first tunnel.

Installing OpenVPN on
Windows and Mac

Installing OpenVPN is easy and platform independent. In this chapter, we will
see how to install it on Windows Server, Vista, and Mac OS X. For both operating
systems, there are software packages available that can be downloaded very easily
from the relevant web sites.

Obtaining the software
There are only a few prerequisites that have to be met if you want to install
OpenVPN on Windows, if you are running versions later than Windows 2000. Mac
OS X is required on Apple platforms. Installation of OpenVPN can be done in one of
the following ways:

•	 For Microsoft Windows operating systems, you have to download the
binary .exe file from http://openvpn.net/index.php/open-source/
downloads.html or the package containing a graphical user interface from
http://openvpn.se/. Those who dare to use the release candidate of
version 2.1, or a forthcoming version 2.1 will find that the Windows GUI
is already integrated (since OpenVPN 2.1rc13 from October 2008).

•	 On Macintosh systems running Mac OS X, there is a graphical installation
wizard and management tool called Tunnelblick.

Note that OpenVPN versions that are not tagged as stable
should never be used in the production environment. There may be
security issues and bugs that cause the code to crash or open your
complete network to intruders. The stable versions have been tested
for stability and security flaws, and will not be published as stable
until they meet the developer team's requirements.

Installing OpenVPN on Windows and Mac

[56]

Installing OpenVPN on Windows
If you want to install OpenVPN on Windows, you have to make a choice before
downloading. You can install the original OpenVPN software from a link such as
http://www.openvpn.net/release/openvpn-2.0.9-install.exe (this is still
my preferred suggestion) or install the OpenVPN GUI from http://openvpn.
se/files/install_packages/openvpn-2.0.9-gui-1.0.3-install.exe. This
package contains the OpenVPN software plus a GUI to bring up or close down
tunnels. Especially, if you set up an OpenVPN client—be it a laptop or desktop
PC for a home worker, which is only connecting temporarily to your VPN—the
Windows user will want to have an easy-to-use, clickable interface. However, if you
do not want the users to interact with the VPN tunnels, then the original OpenVPN
software will do, and, as mentioned, beginning with release candidate 13 of version
2.1, the GUI is integrated.

OpenVPN can be made to run as a service on the Windows PC, which means
it is started automatically on startup. It can be configured to enable the
tunnel automatically or forced by a click of a mouse. The installation is pretty
straightforward and should not pose any problem to the experienced Windows user.
The following sections show you a guided installation process. If you are prompted
that the driver has not passed Windows Logo testing, click on Install.

Downloading and starting installation
Download the newest version of the OpenVPN GUI from http://openvpn.se/ to
your local drive. Log in as the administrator or a privileged user, and double-click
on the downloaded file to start the Setup Wizard. If you are using a desktop firewall,
you will be prompted to allow OpenVPN to be installed and connected to the
Internet later.

Chapter 4

[57]

The OpenVPN GUI installation wizard, probably the most convenient way to install
OpenVPN on Windows, is started. Click on Next to proceed and agree to the terms
of the license agreement (I Agree). Even though OpenVPN and the OpenVPN GUI
are freely available under the open source General Public License (GPL), you still
have to accept a license agreement. You should read the license to make sure that
your planned use of OpenVPN conforms to it. Click on I Agree to proceed.

Selecting the components and location
The next dialog window offers a choice on the top of OpenVPN components that you
may want to install. The standard selection of components change makes sense to is
suitable for most cases.

Installing OpenVPN on Windows and Mac

[58]

In this dialog, you have several options to choose from. Even if you normally don't
need to make changes here, the following table gives you an overview of the entries
and when you should install which feature. The Client Install is a system that only
connects to another OpenVPN system, whereas the Server Install is an OpenVPN
system that allows incoming connections.

Option Feature Client
Install

Server
Install

OpenVPN User-Space
Components

The OpenVPN program x x

OpenVPN RSA Certificate
Management Scripts

easy-rsa for Windows x

OpenVPN GUI The graphical user interface x
AutoStart OpenVPN GUI Link for auto start x
My Certificate Wizard Certificate requests for a

certificate authority
x

Hide the TAP-Win32 VEA Interface is not shown in
network setup

OpenVPN Service Configure OpenVPN as a
service

x

OpenVPN File Associations Configuration files (*.ovpn)
are associated with OpenVPN

x x

OpenSSL DLLs Dynamic link libraries x x
OpenSSL Utilities Various Programs for OpenSSL x x
TAP-WIN32 Virtual Ethernet
Adapter

Virtual network interface x x

Add OpenVPN to PATH Openvpn.exe is in the path of
every user's command line

x x

Add Shortcuts to Start Menu Shortcut to the start menu x x

As you can see, the only differences are the RSA management and the option to run
OpenVPN as a service. Both can be configured using different methods later, such as
the configuration file, the Windows system management, or software like xca that we
will use to generate and administer certificates.

Press Next to continue installation and choose the path that you want to install
OpenVPN to. This normally defaults to C:\Program Files\OpenVPN, and there are
usually very few reasons to change that. Click on Install to confirm.

Chapter 4

[59]

Finishing installation
While OpenVPN is installing, you can read its output in the installation window
and follow the creation of folders, files, and shortcuts and the installation of drivers
(TAP) for networking.

Recent Windows systems will warn you about the TUN/TAP driver that is about
to be installed. As Microsoft can't validate the origin of the driver, its security
subsystem warns you with the following dialog (Windows Server 2008):

Installing OpenVPN on Windows and Mac

[60]

Click on Install this driver software anyway and see the OpenVPN installer
complete the installation. If you've made it so far, you have successfully installed
OpenVPN on your Windows system. If you want to read the Readme file,
then activate the checkbox Show Readme before you click on Finish.

Testing the installation—a first look at the
panel applet
After the installation of OpenVPN GUI, OpenVPN is started and a panel applet is
created. In the following screenshot, it is the icon close to the left, with the two red
computer screens connected with a globe. Although this image is from Windows
Server 2008, it looks pretty much the same on other Windows systems:

Chapter 4

[61]

The applet provides a convenient method for Windows users to control and
configure (partly) OpenVPN. However, as there is no interface for configuration
yet, the configuration file can only be edited by using an editor, and until a first
configuration is created, the context menu may look rather poor. Right-click on the
panel applet as shown in the following screenshot:

Later, when we have configured the first connection, this menu will be populated
with new entries. With entries showing, such as Connect and Disconnect, you can
start and stop the configured tunnels. At the same time, the start menu is populated
with new entries. Consider the following screenshot:

Installing OpenVPN on Windows and Mac

[62]

The rest of the configuration setup is done within a text editor like Notepad.
The following image shows the file C:\Windows\Program Files\openVPN\
sample-config\client:

Installing OpenVPN on Mac OS X
(Tunnelblick)
Of course there is also OpenVPN software for Mac OS X. Its name is
Tunnelblick and it is free open source software, released under the GPLv2 license,
and it contains a graphical installation wizard. You can download it from
http://code.google.com/p/tunnelblick/. It comes as a disk image file (.dmg),
including the command-line application (by the OpenVPN project) and the
Tunnelblick GUI for Macintosh computers. It works on all Mac OS X later than
Tiger (10.4).

Chapter 4

[63]

If you need more detailed information on installing and uninstalling Tunnelblick,
the online readme http://www.tunnelblick.net/README.txt file is the best place
to look. It contains a full list of the files that are installed on your system. For version
3.0, these files are as follows:

/System/Library/Extensions/tap.kext
/System/Library/Extensions/tun.kext
/System/Library/StartupItems/tap
/System/Library/StartupItems/tun
/usr/local/sbin/openvpn
/usr/local/sbin/openvpnstop
/usr/local/sbin/openvpnstart
/Applications/Tunnelblick.app

To uninstall Tunnelblick from your system, you just need to delete these files and
reboot your machine.

But before that, let's install Tunnelblick. The installation is started simply by
double-clicking on the file Tunnelblick-Complete.mpkg to start the
installation wizard.

An installation wizard will guide you through five steps. Simply choose the
installation location and type and the wizard will solve all your questions. The file
README.txt contains information on installing, uninstalling, and the configuration of
OpenVPN with special regards to Macintosh and OS X 10.3 or later.

Installing OpenVPN on Windows and Mac

[64]

Testing the installation—the Tunnelblick panel
applet
After installation, you will find the Tunnelblick icon in the system tray of your panel.

If you select the menu entry Edit Config File…, then you will be presented with the
standard configuration file in a text editor, as shown in the following screenshot:

Chapter 4

[65]

If you need more information on OpenVPN on Macintosh, the following links are
good places to visit:

•	 Detailed installation instructions for Mac OS X 10.3: http://www.helsinki.
fi/atk/english/hy-ppp/hy-vpn/hy-vpn-mac.html

•	 Homepage of the Tunnelblick OpenVPN wrtGUI for Macintosh:
http://www.tunnelblick.net/

Summary
This chapter showed that installation of OpenVPN is very easy on both Windows
and Mac. There are working and very reliable software packages , and installation
GUIs for both platforms.

Installing OpenVPN on Linux
and Unix Systems

Installing OpenVPN is easy and platform independent. In this chapter, we will
install it on different Linux versions and FreeBSD.

Prerequisites
All Linux/Unix systems must meet the following requirements to install
OpenVPN successfully:

•	 Your system must provide support for the Universal TUN/TAP driver.
The kernels newer than version 2.4 of almost all modern Linux distributions
provide support for TUN/TAP devices. Only if you are using an old
distribution or if you have built your own kernel, will you have to add this
support to your configuration. The section of this chapter, Enabling Linux
kernel support for TUN/TAP devices, deals with this problem. This project's
web site can be found at http://vtun.sourceforge.net/tun/.

•	 OpenSSL libraries have to be installed on your system. I have never
encountered any modern Linux/Unix system that does not meet this
requirement. However, if you want to compile OpenVPN from
source code, the SSL development package may be necessary. The web site
is: http://www.openssl.org/.

•	 The Lempel-Ziv-Oberhumer (LZO) Compression library has to be installed.
Again, most modern Linux/Unix systems provide these packages, so there
shouldn't be any problem. LZO is a real-time compression library that is
used by OpenVPN to compress data before sending. Packages can be found
on http://openvpn.net/download.html, and the web site of this project is
http://www.oberhumer.com/opensource/lzo/.

Installing OpenVPN on Linux and Unix Systems

[68]

•	 Most Linux/Unix systems' installation tools are able to resolve these
so-called dependencies on their own, but it might be helpful to know
where to get the required software.

•	 Most commercial Linux systems, like SuSE, provide installation tools,
like Yet another Setup Tool (YaST), and contain up-to-date versions of
OpenVPN on their installation media (CD or DVD). Furthermore, systems
based on RPM software can also install and manage OpenVPN software
at the command line.

•	 Linux systems, like Debian, use sophisticated package management tools
that can install software that is provided by repositories on web servers.
No local media is needed, the package management will resolve potential
dependencies by itself, and install the newest and safest possible version
of OpenVPN.

•	 FreeBSD and other BSD-style systems use their package management tools
such as pkg_add or the ports system.

•	 Like all open source projects, OpenVPN source code is available for
download. These compressed tar.gz or tar.bz2 archives can be
downloaded from http://openvpn.net/download.html and unpacked
to a local directory. This source code has to be configured and translated
(compiled) for your operating system.

•	 You can also install unstable, developer, or older versions of OpenVPN
from http://openvpn.net/download.html. This may be interesting if you
want to test new features of forthcoming versions.

•	 Daily (unstable!) OpenVPN source code extracts can be obtained from
http://sourceforge.net/cvs/?group_id=48978. Here you find the
Concurrent Versions System (CVS) repository, where all OpenVPN
developers post their changes to the project files.

Installing OpenVPN on SuSE Linux
Installing OpenVPN on SuSE Linux is almost as easy as installing under Windows
or Mac OS X. Linux users may consider it even easier. On SuSE Linux almost all
administrative tasks can be carried out using the administration interface YaST.
OpenVPN can be installed completely using this. The people distributing SuSE
have always tried to include up-to-date software in their distribution. Thus, the
installation media of OpenSuSE 11 already contains version 2.0.9 of OpenVPN, and
both the Enterprise editions SLES 10 and the forthcoming SLES 11 that offer five
years of support. Updates include up-to-date versions of OpenVPN. Both OpenSuSE
and SLES use YaST for installing software.

Chapter 5

[69]

Using YaST to install software
Start YaST. Under both GNOME and the K Desktop Environment (KDE—the
standard desktop under SuSE Linux), you will find YaST in the main menu under
System | YaST, or as an icon on the Desktop. If you are logged in as a normal user,
you will be prompted to enter your root password and confirm the same. The YaST
control center is started.

This administration interface consists of many different modules, which are
represented by symbols in the right half of the window and grouped by the labels
on the left.

After starting YaST, click on the symbol labeled Software Management in the right
column to start the software management interface of YaST.

Installing OpenVPN on Linux and Unix Systems

[70]

The software management tool in YaST is very powerful. Under SuSE, data about the
installed and installable software is kept in a database, which can be searched very
easily. Select the entry Search in the drop-down list Filter: and enter openvpn in the
Search field.

YaST will find at least one entry that matches your search value openvpn.
Depending on the (online) installation sources that you have configured, various
add-ons and tools for OpenVPN will be found. If you chose to add the community
repositories like I did on this system, then OpenSuSE will list more than 10 hits.

Select the entry openvpn by checking the box besides the entry in the first column.
If you want to obtain information about the OpenVPN package, have a look at the
lower half of the right side—here you will find the software Description, Technical
Data, Dependencies, and more information about the package that you have
selected. Click on the Accept button to start the OpenVPN installation.

Chapter 5

[71]

If you installed from a local medium, then put your CD or DVD in your local drive
now. YaST will retrieve the OpenVPN files from your installation media. If you have
configured your system to use one of the web/FTP servers of SuSE for installation,
then this might take a while. The files are unpacked and installed on your system,
and YaST updates the configuration. This is managed by the script SuSEconfig and
other scripts that are called by it.

SuSEconfig and YaST were once very infamous for deleting local configuration
created by the local administrator or omitting relevant changes. This problem only
occurred when updating and re-installing software that was previously installed.
However, the latest SuSE versions have proven very reliable, and the system
configuration tools never delete configuration files that you have added manually.
Instead, the standard configuration files installed with the new software package
may be renamed to <file>.rpmnew or similar, and your configuration is loaded.

During installation, SuSEconfig calls several helper scripts and updates your
configuration, and informs you of the progress in a separate window. After
successful software installation, you are prompted if you want to install more
packages or exit the installation. Click on the Finish button.

The Novell/OpenSuSE teams have added a very handy tool called zypper to
their package management. From version 10.1 onwards, you can simply install
software from a root console by typing zypper in openvpn. Of course this only
works if you know the exact name of the package that you want to install. If not,
then you will have to search for it, for example, by using zypper search vpn.

Installing OpenVPN on Linux and Unix Systems

[72]

Installing OpenVPN on Red Hat Fedora
using yum
If you are using Red Hat Fedora, the Yellow dog Updater, Modified (yum) is probably
the easiest way to install software. It can be found on http://linux.duke.edu/
projects/yum/, and provides many interesting features, such as automatic updates,
solving dependency problems, and managing installation of software packages.

Even though OpenVPN installation on Fedora can only be done on the command
line, it still is a very easy task. The installation makes use of the commands
wget, rpm, and yum.

•	 wget: A command-line download manager suitable for ftp or
http downloads.

•	 rpm: The Red Hat Package Manager is a software management system used
by distributions like SuSE or Red Hat. It keeps track of changes and can solve
dependencies between programs.

•	 yum: This provides a simple installation program for RPM-based software.

To use yum, you have to adapt its configuration file as follows:

•	 Log in as administrator (root).
•	 Change to Fedora's configuration directory /etc.
•	 Save the old, probably original, configurations file yum.conf by

renaming or moving it. You can use commands such as mv yum.conf yum.
conf_fedora_org to accomplish this.

•	 The web site http://www.fedorafaq.org/ provides a suitable
configuration file for yum. Download the file http://www.fedorafaq.org/
samples/yum.conf using wget. The command-line syntax is:
wget http://www.fedorafaq.org/samples/yum.conf

•	 At the same web site a sophisticated yum configuration is available for
downloading. Install this as well:

rpm -Uvh http://www.fedorafaq.org/yum

The following excerpt shows the output of these five steps on the system:

[root@fedora ~]# cd /etc
[root@fedora etc]# mv yum.conf yum.conf.org
[root@fedora etc]# wget http://www.fedorafaq.org/samples/yum.conf
--11:33:25-- http://www.fedorafaq.org/samples/yum.conf

Chapter 5

[73]

 => `yum.conf'
Resolving www.fedorafaq.org... 70.84.209.18
Connecting to www.fedorafaq.org[70.84.209.18]:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 595 [text/plain]

100%[==
==>] 595 --.-
-K/s

11:33:25 (405.20 KB/s) - `yum.conf' saved [595/595]

[root@fedora etc]# rpm -Uvh http://www.fedorafaq.org/yum
Retrieving http://www.fedorafaq.org/yum
Preparing... ###
[100%]
 1:yum-fedorafaq ###
[100%]
[root@fedora etc]#

The rest of the OpenVPN installation is very simple. Just enter yum install openvpn
in your root shell. Now yum will start and give you a lot of output. We will have a
short look at the things yum does.

[root@fedora ~]#yum install openvpn
Setting up Install Process
Setting up repositories
livna 100% |=========================| 951 B
00:00
updates-released 100% |=========================| 951 B
00:00
base 100% |=========================| 1.1 kB
00:00
extras 100% |=========================| 1.1 kB
00:00
Reading repository metadata in from local files
primary.xml.gz 100% |=========================| 127 kB
00:00
livna : ## 380/380
Added 380 new packages, deleted 0 old in 1.36 seconds
primary.xml.gz 100% |=========================| 371 kB
00:00
updates-re: ##
1053/1053
Added 0 new packages, deleted 13 old in 0.93 seconds

Installing OpenVPN on Linux and Unix Systems

[74]

yum has set up the installation process and integrated online repositories for the
installation of software. This feature is the reason why Fedora does not need a URL
source for installing OpenVPN. The repository metadata contains information
about location, availability, and dependencies between packages. Resolving the
dependencies is the next step.

Parsing package install arguments
Resolving Dependencies
--> Populating transaction set with selected packages. Please wait.
---> Downloading header for openvpn to pack into transaction set.
openvpn-2.0.9-1.fc5.i386. 100% |=========================| 18 kB
00:00
---> Package openvpn.i386 0:2.0.9-1.fc5 set to be updated
--> Running transaction check
--> Processing Dependency: liblzo.so.1 for package: openvpn
--> Restarting Dependency Resolution with new changes.
--> Populating transaction set with selected packages. Please wait.
---> Downloading header for lzo to pack into transaction set.
lzo-1.08-4.i386.rpm 100% |=========================| 3.2 kB
00:00
---> Package lzo.i386 0:1.08-4 set to be updated
--> Running transaction check

Dependencies Resolved

OpenVPN needs the LZO library for installation, and yum is about to resolve
this dependency. As a next step, yum tests whether this library has unresolved
dependencies. If this is not the case, we are presented with an overview of the
packages to be installed. Confirm by entering y and press the Enter key. yum
will start downloading the required packages.

If the RPM process that yum is using to install the software packages
encounters a missing encryption key, then confirm the import of this key from
http://www.fedoraproject.org by entering y and pressing the Enter key. This
GPG key is used to control the authenticity of the packages selected for installation.

Key imported successfully
Running Transaction Test
Finished Transaction Test
Transaction Test Succeeded
Running Transaction
 Installing: lzo #########################
[1/2]
 Installing: openvpn #########################
[2/2]

Installed: openvpn.i386 0:2.0.9-1.fc5

Chapter 5

[75]

Dependency Installed: lzo.i386 0:1.08-4
Complete!
[root@fedora etc]#

That's all! yum has been downloaded, checked, and has installed OpenVPN and the
LZO libraries.

Installing OpenVPN on Red Hat
Enterprise Linux
SuSE Linux Enterprise Server's competitor, Red Hat Enterprise Linux (RHEL),
comes without a central management tool like YaST. Nevertheless, Red Hat has
proven to be the system of choice for many setups with high expectations. Due to
its more conservative approach, the OpenVPN package for RHEL 5 is not in the
standard repositories. As administrator, you have to download the descriptions for
the Fedora EPEL (Extra Packages for Enterprise Linux) repositories before you type
yum install openvpn.

[root@rhel ~]# rpm -ivh http://download.fedora.redhat.com/pub/epel/5/
x86_64/epel-release-5-3.noarch.rpm
Empfange http://download.fedora.redhat.com/pub/epel/5/x86_64/epel-
release-5-3.noarch.rpm
Warnung: /var/tmp/rpm-xfer.IFMGoW: Header V3 DSA-Signatur: NOKEY, key
ID 217521f6
Vorbereiten... ###
[100%]
 1:epel-release ###
[100%]
[root@rhel ~]# yum install openvpn
Loading "rhnplugin" plugin
Loading "security" plugin
epel 100% |=========================| 2.1 kB
00:00
primary.sqlite.bz2 100% |=========================| 1.9 MB
00:02
rhel-i386-server-vt-5 100% |=========================| 1.4 kB
00:00
rhel-i386-server-5 100% |=========================| 1.4 kB
00:00
rhn-tools-rhel-i386-serve 100% |=========================| 1.2 kB
00:00
Setting up Install Process

Installing OpenVPN on Linux and Unix Systems

[76]

Parsing package install arguments
Resolving Dependencies
--> Running transaction check
---> Package openvpn.i386 0:2.1-0.27.rc9.el5 set to be updated
--> Processing Dependency: liblzo2.so.2 for package: openvpn
--> Running transaction check
---> Package lzo.i386 0:2.02-2.el5.1 set to be updated
--> Finished Dependency Resolution

Dependencies Resolved

===
========
 Package Arch Version Repository
Size
===
========
Installing:
 openvpn i386 2.1-0.27.rc9.el5 epel
353 k
Installing for dependencies:
 lzo i386 2.02-2.el5.1 epel
63 k

Transaction Summary
===
========
Install 2 Package(s)
Update 0 Package(s)
Remove 0 Package(s)

Total download size: 416 k
Is this ok [y/N]:y
Downloading Packages:
(1/2): openvpn-2.1-0.27.r 100% |=========================| 353 kB
00:00
(2/2): lzo-2.02-2.el5.1.i 100% |=========================| 63 kB
00:00
warning: rpmts_HdrFromFdno: Header V3 DSA signature: NOKEY, key ID
217521f6
Importing GPG key 0x217521F6 "Fedora EPEL <epel@fedoraproject.org>"
from
/etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL
Is this ok [y/N]: y
Running rpm_check_debug
Running Transaction Test
Finished Transaction Test
Transaction Test Succeeded

Chapter 5

[77]

Running Transaction
 Installing: lzo #########################
[1/2]
 Installing: openvpn #########################
[2/2]

Installed: openvpn.i386 0:2.1-0.27.rc9.el5
Dependency Installed: lzo.i386 0:2.02-2.el5.1
Complete!
[root@rhel ~]#

As you can see, the EPEL repositories provided the current (but officially still
unstable) Release Candidate 9 of OpenVPN (Version 2.1). yum also installed the
necessary LZO libraries.

Installing OpenVPN on RPM-based
systems
On both SuSE and Fedora, there is another possible way to install OpenVPN.
The command-line interface rpm is available on all systems that are using the
Red Hat package management system. rpm is a very powerful command that can
install, remove, update, test, and query software packages. Installing software with
rpm is carried out using the following three steps:

1.	 Downloading the software.
2.	 Testing installation and resolving dependencies.
3.	 Installing the RPM files with the appropriate rpm command.

Whenever you run into problems with RPM, its man page is the best reference for
all of its abundant options.

The best place to look for the right version of OpenVPN under SuSE is
ftp://ftp.suse.com/. Fedora RPMs can be obtained from Dag Wieers' web site
http://dag.wieers.com/packages/openvpn/. The command-line extract in the
following section shows the typical process of obtaining and installing OpenVPN
on OpenSuSE 11, but this procedure will work in exactly the same way on Fedora
or any other RPM-based system.

Installing OpenVPN on Linux and Unix Systems

[78]

Using wget to download OpenVPN RPMs
Enter wget 'ftp://ftp.suse.com/pub/suse/i386/9.3/suse/i586/openvpn-2.0-
5.i586.rpm' on your SuSE system to download OpenVPN in version 2.0.5.

One of the most interesting features of the Red Hat Package Manager, rpm,
is that it allows for a dry run to test the installation. This is done with the
following command:

rpm -ivh --test openvpn-2.0.9-96.1.i586.rpm

The options are simple:

•	 -i stands for install
•	 -v means verbose output
•	 -h prints a progress bar
•	 --test lets rpm do a dry run to test the installation of the package

In almost all the cases, you will receive the following output:

opensuse11:~ # rpm -ivh --test openvpn-2.0-9.-96.1.i586.rpm
Preparing... ###
[100%]
opensuse11:~ #

OK, rpm reports no errors, so we can install OpenVPN without the following
test switch:

opensuse11:~ # rpm -ivh --test openvpn-2.0-9.-96.1.i586.rpm

Chapter 5

[79]

Installing OpenVPN and the LZO library with
wget and RPM
If your system is still missing the LZO library, our test installation will fail. rpm
reports an error, already pointing you to the solution. We have to download the
RPM and install it. Again, wget is a good choice for this issue.

opensuse11:~ # wget 'ftp://sunsite.informatik.rwth-aachen.de/pub/
linux/opensuse/distribution/11.0/repo/oss/suse/i586/lzo-2.02-
113.1.i586.rpm'

A good idea may be creating a local directory and downloading both RPM files to
this directory and install them both in one go:

opensuse11:~ # mkdir openvpn-rpms
opensuse11:~ # cd openvpn-rpms
opensuse11:~ # wget 'ftp://sunsite.informatik.rwth-aachen.de/pub/
linux/opensuse/distribution/11.0/repo/oss/suse/i586/lzo-2.02-
113.1.i586.rpm'
(...)
opensuse11:~/openvpn-rpms # wget 'ftp://sunsite.informatik.rwth-
aachen.de/pub/linux/opensuse/distribution/11.0/repo/oss/suse/i586/
openvpn-2.0.9-96.1.i586.rpm'
(...)
opensuse11:~/openvpn-rpms # rpm -ivh *rpm
Preparing... ###
[100%]
 1:openvpn ###
[50%]
 2:lzo ###
[100%]
opensuse11:~/openvpn-rpms #

As the last command shows, you can call RPM with wildcards and instruct it to
install all the RPM files it finds in this directory at once.

RPM can also use a remote location for the package to be installed, but this only
works if there are no dependencies. As this can only be checked after download, you
may have to try several times. This is why wget is the better choice in most cases.

opensuse11:~ # rpm -Uvh 'ftp://sunsite.informatik.rwth-aachen.de/pub/
linux/opensuse/distribution/11.0/repo/oss/suse/i586/openvpn-2.0.9-
96.1.i586.rpm'

Installing OpenVPN on Linux and Unix Systems

[80]

Using rpm to obtain information on the
installed OpenVPN version
You can use rpm to query the software database by adding options that begin with -q
to the command.

Whereas rpm -qi provides information about the installed version, rpm -qli
will print all files that have been installed by this software package, including their
full path.

[root@fedora ~]# rpm -ql openvpn
/etc/openvpn
/etc/rc.d/init.d/openvpn
/usr/lib/openvpn
/usr/lib/openvpn/plugin
/usr/lib/openvpn/plugin/lib
/usr/lib/openvpn/plugin/lib/openvpn-auth-pam.so

Chapter 5

[81]

/usr/lib/openvpn/plugin/lib/openvpn-down-root.so
/usr/sbin/openvpn
/usr/share/doc/openvpn-2.0.9
/usr/share/doc/openvpn-2.0.9/AUTHORS
/usr/share/doc/openvpn-2.0.9/COPYING
/usr/share/doc/openvpn-2.0.9/COPYRIGHT.GPL
/usr/share/doc/openvpn-2.0.9/INSTALL

The following table shows the function of the most important directories and files in
this list:

Full path and files Installed by OpenVPN Function
/etc/openvpn Directory containing configuration files
/etc/init.d/openvpn/usr/sbin/
rcopenvpn Start/stop script for services

/usr/sbin/openvpn The binary
/usr/share/doc/openvpn Documentation files
/usr/share/man/man8/openvpn.8.gz Manual page
/usr/share/doc/openvpn/examples/
sample-config-files

Example configuration files

/usr/share/doc/openvpn/examples/
sample-keys

Example keys and certificates

/usr/share/doc/openvpn/examples/
easy-rsa

easy-rsa—a collection of scripts useful
for creating tunnels

/usr/share/doc/openvpn/
changelog.Debian.gz

/usr/share/doc/openvpn/changelog.gz

Version history

/usr/share/openvpn/verify-cn verify-cn function (revoke command)
/usr/lib/openvpn/openvpn-auth-pam.
so

/usr/lib/openvpn/openvpn-down-root.
so

Libraries for PAM-Authentication and
chroot mode

/usr/share/doc/packages/openvpn/
suse

/usr/share/doc/packages/openvpn/
suse/
openvpn.init

SuSE-specific start/stop scripts

/var/run/openvpn Process ID of the running OpenVPN
process

Installing OpenVPN on Linux and Unix Systems

[82]

Installing OpenVPN on Debian and
Ubuntu
Probably the easiest distribution on which to install OpenVPN is Debian and its
derivates like Ubuntu. Just type apt-get install openvpn, answer two questions,
and OpenVPN is installed and ready to be used.

The Debian package management system is capable of solving all the issues that
might occur during the installation. If your system is configured correctly, then the
automatic installation will cover the following steps:

1.	 The installation helper apt-get will find the software on the
installation servers.

2.	 The helper will then download the chosen package and unpack it to your
local system.

3.	 An interactive configuration script is executed, which configures your
system and the newly installed software for later use with the parameters
that you enter.

The following code extract is the standard output of apt-get install openvpn
on a Debian system. This output may vary depending on your previous software
selection, and in many cases the LZO compression library will have to be installed.
On some systems apt will install OpenSSL libraries, but in most cases, apt-get is
able to solve all problems for you.

debian01:~# apt-get install openvpn
Reading Package Lists... Done
Building Dependency Tree... Done
The following NEW packages will be installed:
 openvpn
0 upgraded, 1 newly installed, 0 to remove and 7 not upgraded.
Need to get 293kB of archives.
After unpacking 762kB of additional disk space will be used.
Get:1 http://ftp.uni-erlangen.de testing/main openvpn 2.0.9 [293kB]
Fetched 298kB in 1s (247kB/s)
Preconfiguring packages ...
Selecting previously deselected package openvpn.
(Reading database ... 9727 files and directories currently installed.)
Unpacking openvpn (from .../openvpn_2.0-9_i386.deb) ...
Setting up openvpn (2.0-9) ...
Restarting virtual private network daemon:.
debian01:~#

Chapter 5

[83]

During this process, you will be prompted to answer the following two questions:

•	 You have to allow apt to create a TUN/TAP device for use by OpenVPN
software. If you select No, your tunnels will not be created and your tunnel
software won't work.

•	 The second question raises a security issue. OpenVPN software should be
stopped during an update, so you have to select YES and hit return.

You have to stop the old tunnel software when an update is running. All tunneling
will be stopped, and your users will not be able to connect to your system during this
time. From then on, all tunnels are created by the new OpenVPN software, including
patches and bug fixes. This is the safe way to go.

Installing OpenVPN on Linux and Unix Systems

[84]

However, if you choose No, you risk that the old software and libraries are still
running, even after the installation of new OpenVPN software. Bug fixes and patches
of the new version may not apply to existing tunnels until they are started again. You
may run into serious inconsistencies in your system, if you have several tunnels and
they are running different versions of your software. Thus, it is safer to have a short
time when users will not be able to connect.

Installing Debian packages
Software packages for Debian systems are provided in the so-called .deb file format.
DEB files are usually stored in online repositories on FTP or web servers, and every
Debian system holds a list of repositories that can be used for installation. You will
find this list in /etc/apt/sources.list. The setup program base-config provides
a menu-based configuration interface for apt.

Chapter 5

[85]

If you want to add source repositories to your Debian installation, type
base-config and change to the menu configure apt. Select the country
you live in and the repository of your choice. Select Ok. Now all the software
packages of this server can automatically be installed on your system, simply by
typing apt-get install <package>.

A Debian package contains the software and information about it, such as name,
version, description, contents, prerequisites, dependencies, and configuration scripts
that are to be started after installation.

Debian systems offer some very powerful programs with which you can control
software installation very specifically. Listing all programs and options would go far
beyond the scope of this book, but here is a short overview of some handy package
management commands.

Command Function
apt-get remove
<package>

Removes the selected package from your system

apt-get update Updates the list of packages available on the repositories
listed in /etc/apt/sources.list

apt-get upgrade Installs the latest available versions of all your installed
software

apt-get dist-upgrade Installs the latest available software related to your
configuration

dpkg-reconfigure Restarts/Starts the configuration script inside the package,
which will bring up the menu-based dialogs in the same
way as after installation

apt-cache show
<package>

Prints detailed information about the software package

dpkg -l <package> Prints information on the installed software package
dpkg -L <package> Lists all files installed by the software package
dpkg -i <file> Installs a local (.deb) file to your system
dpkg -S <file> Prints information about the software package owning

<file>

apt-cache search
<string>

Searches apt database for packages containing <string> in
their name and description

Installing OpenVPN on Linux and Unix Systems

[86]

These programs should solve all possible questions, issues, and problems
concerning the installation of software on Debian systems. Just try these commands
with the freshly installed OpenVPN package on your system. Type the command
apt-cache show openvpn to receive information about the installed package.

Using Aptitude to search and install packages
Although the Debian command-line tools are very powerful, there are more
programs that help you to retrieve and install software. Probably the most common
software for this purpose is Aptitude. Type aptitude in a command line in order
to start the menu-based installation interface. If Aptitude is not installed on your
system, type apt-get install aptitude. If you prefer aptitude, you can use it at
the command line in the same way as apt-get.

Chapter 5

[87]

Aptitude consists of a menu at the top of the screen, a list of packages, and a window
showing details on the software selected in the package list. If you have console
mouse support, you can click on menu entries.

Click on the menu entry Search, or hit the F10 key and navigate through the Search
menu. Select the entry Find. You will be prompted with a search mask. Enter
openvpn. While you are typing, Aptitude is steadily updating the main window.
Click on OK and have a look at the output.

Aptitude will find the OpenVPN version that you had installed previously,
and the entries in the menus Actions and Package help you to select and install
software. Depending on the selection of repositories that you have added to your
sources.list during installation, Aptitude can also help you to choose different
versions of OpenVPN.

Installing OpenVPN on Linux and Unix Systems

[88]

OpenVPN—the files installed on Debian
The following table gives an overview of the files that were installed by the Debian
package management system. Some of these files will be used in later chapters.

Full path and file Installed by OpenVPN Function
/etc/openvpn Directory containing configuration files
/etc/network/if-up.d/openvpn

/etc/network/if-down.d

/etc/network/if-down.d/openvpn

Start/stop openvpn when the network
goes up/down

/etc/init.d/openvpn Start/stop script for services
/sbin/openvpn The binary
/usr/share/doc/openvpn Documentation files
/usr/share/man/man8/openvpn.8.gz Manual page
/usr/share/doc/openvpn/examples/
sample-config-files

Example configuration files

/usr/share/doc/openvpn/examples/
sample-keys

Example keys

/usr/share/doc/openvpn/examples/
easy-rsa

easy-rsa—a collection of scripts useful
for creating tunnels

/usr/share/doc/openvpn/
changelog.Debian.gz

/usr/share/doc/openvpn/
changelog.gz

Version history

/usr/share/openvpn/verify-cn verify-cn function (revoke command)
/usr/lib/openvpn/
openvpn-auth-pam.so

/usr/lib/openvpn/
openvpn-down-root.so

Libraries for PAM-Authentication and
chroot mode

Installing OpenVPN on FreeBSD
FreeBSD and BSD in general are Unix systems of outstanding stability and security,
and are therefore very popular among network administrators. In practice, with
FreeBSD, you do not have to worry much about security issues of the software that
you install, but you may not always get up-to-date versions.

FreeBSD also has a modern software management system. Simply type pkg_add -vr
openvpn and OpenVPN software is installed on your system. Calling pkg_add with
the parameter -r installs software from remote servers, similar to apt-get or rpm.
If you run into problems, increasing verbosity with the parameter -v can be helpful.

Chapter 5

[89]

The following excerpt shows the output of pkg_add:

freebsd# pkg_add -vr openvpn
looking up ftp.freebsd.org
connecting to ftp.freebsd.org:21
setting passive mode
opening data connection
initiating transfer
Fetching ftp://ftp.freebsd.org/pub/FreeBSD/ports/i386/packages-5.4-
release/Latest/openvpn.tbz...x +CONTENTS
x +COMMENT
(...)
x share/doc/openvpn/sample-scripts/verify-cn
tar command returns 0 status
 Done.
Package 'openvpn-1.6.0' depends on 'lzo-1.08_1' with 'archivers/lzo'
origin.
setting passive mode
opening data connection
initiating transfer
Fetching ftp://ftp.freebsd.org/pub/FreeBSD/ports/i386/packages-5.4-
release/All/lzo-1.08_1.tbz...x +CONTENTS
(...)
tar command returns 0 status
 Done.
Finished loading lzo-1.08_1 over FTP.
extract: Package name is lzo-1.08_1
(...)
 'lzo-1.08_1' loaded successfully.
(...)
extract: Package name is openvpn-1.6.0
(...)
Package openvpn-1.6.0 registered in /var/db/pkg/openvpn-1.6.0

----- ###
To use the tap driver, you may need to do: kldload if_tap
###
See ${PREFIX}/etc/rc.d/openvpn.sh.sample for how to do this
###
automatically at system boot-up time.
###

----- ###
To retain backwards compatibility of OpenVPN 1.3.0 with OpenVPN
peers ###
that run older versions (back to 1.1.0), you will have to set the
MTU ###
explicitly by command line options since OpenVPN 1.3.0.
###

Installing OpenVPN on Linux and Unix Systems

[90]

###
When connecting to 1.4.X or older peers with a TAP-style tunnel,
set ###
--tun-mtu 1500 --tun-mtu-extra 32 on the peer.
###

###
When using TLS security and your peer runs OpenVPN 1.3.X, the
PEER ###
must use --disable-occ. This version of OpenVPN cannot use TLS
mode ###
to peers running OpenVPN 1.2.x or older.
###

###
Note: use at most --verb 4 for regular use, --verb 5 is for
debugging ###

----- ###

freebsd#

The pkg_add looks for an appropriate installation candidate, downloads it, and
checks for dependencies. As LZO is required, but not installed, pkg_add starts by
downloading this package first. After successful installation of LZO, OpenVPN is
installed. When called with the parameter -v, pkg_add also gives you a list of all the
installed files.

After this installation, there are four issues to be considered.

•	 The OpenVPN binary may not be found in the standard path. Call OpenVPN
with the full path, or add its path to your startup file.

•	 In our example OpenVPN version 1.6.0 was installed. There are some
features of version 2.0 that cannot be used. The section that follows shows
how you can install a newer version on your system.

•	 The standard configuration file path is /usr/local/etc/openvpn/.
•	 The init script that is used to start OpenVPN and its tunnels at system boot

must be edited before we can use it.

The OpenVPN installation on FreeBSD provides a sample startup script (normally
in /etc/rc.d, but in some installations it may be found in /usr/local/etc/
rc.d/) that needs a little editing after which it can be used at system boot. To start
OpenVPN at boot time, we have to change three entries in the file /etc/rc.conf,
containing the startup configuration for the services.

Chapter 5

[91]

Simply add or edit the following lines in your /etc/rc.conf to these values:
openvpn_enable="YES"
openvpn_if=tun
openvpn-dir=/etc/openvpn

If you have set the correct paths in your init script, OpenVPN will be started the
next time you boot your system.

Installing a newer version of OpenVPN on
FreeBSD—the ports system
If you want to install OpenVPN version 2.0 on FreeBSD, you can install a FreeBSD
port of OpenVPN. But before that, we should uninstall the version of OpenVPN that
we have just installed. Just type pkg_delete openvpn-1.6.0.
freebsd# pkg_delete openvpn-1.6.0

Then browse to the FreeBSD web site http://www.freebsd.org, which is the best
place to look for documentation, help, and software for FreeBSD. Click on the Ports
under the SHORTCUTS section, which will take you to http://www.freebsd.org/
ports/index.html. The ports are patches to the original source code of
applications, as well as download routines and information for the software
installation management.

Installing the port system with sysinstall
To make use of these ports, the so-called port system has to be installed on your
machine. This can easily be done with the setup tool for FreeBSD called sysinstall.
Start by typing sysinstall.

Installing OpenVPN on Linux and Unix Systems

[92]

Use the up/down arrow keys to select the entry Configure and press Enter.
In the following window called, 'FreeBSD Configuration Menu', change to the
module Distributions:

The distributions dialog contains many different distributions to install, but only
The FreeBSD Ports collection is relevant for our purpose. Activate this entry with
your spacebar and hit Enter. You will be asked to choose a source from which you
want to install these ports. Just confirm with Enter three times. The port system is
then downloaded and installed.

Downloading and installing a BSD port
Now we must download the port package from the BSD web site and extract it to a
local folder. Point your browser to http://www.freebsd.org/ports/index.html,
enter openvpn in the search field, and click on the Submit button.

As result from this search, you will be presented with OpenVPN in version 2.0.2
or newer, in the security section. Click on the download link and save the tarball
(.tar file) to a local directory.

Chapter 5

[93]

Enter this directory and type make. The port system will fetch the appropriate
sources for this port, patch them, and start the compilation process. When make is
ready, type make install to install the binaries in your system.

freebsd# make install
===> Installing for openvpn-2.0.2
===> openvpn-2.0.2 depends on shared library: lzo.1 - found
===> Generating temporary packing list
===> Checking if security/openvpn already installed
test -z "/usr/local/sbin" || /root/openvpn/work/openvpn-2.0.2/install-
sh -d "/usr/local/sbin"
 install -s -o root -g wheel -m 555 'openvpn' '/usr/local/sbin/
openvpn'
(...)
 This port has installed the following files which may act as
network
 servers and may therefore pose a remote security risk to the
system.
/usr/local/sbin/openvpn

 This port has installed the following startup scripts which may
cause
 these network services to be started at boot time.
/usr/local/etc/rc.d/openvpn.sh

 If there are vulnerabilities in these programs there may be a
security
 risk to the system. FreeBSD makes no guarantee about the
security of
 ports included in the Ports Collection. Please type 'make
deinstall'
 to deinstall the port if this is a concern.

 For more information, and contact details about the security
 status of this software, see the following webpage:
http://openvpn.sourceforge.net/
freebsd#

That's it! A new version of OpenVPN has successfully been installed on your system.
You can test it with /usr/local/sbin/openvpn –version.

Installing OpenVPN on Linux and Unix Systems

[94]

Summary
In this chapter, we have seen with numerous installations on different Linux systems
that installing OpenVPN is very easy. Modern Linux systems, such as SuSE, Red
Hat, Debian, Ubuntu, or FreeBSD, provide sophisticated installation and package
management systems, and still offer other ways to install the software.

Advanced OpenVPN
Installation

In most cases installing OpenVPN is easy. In this chapter, however, we will discuss
non-standard and advanced methods of installing OpenVPN by compiling the
source code that is provided by the OpenVPN project. When building OpenVPN
from sources, it is also possible to produce RPM files for your SuSE or Red
Hat systems or Debian packages, or for example, Ubuntu machines. The last
troubleshooting hint may be useful for anybody who is running self-compiled
kernels, and also for those who need to activate the TUN/TAP driver in the kernel,
which should seldom be necessary.

Troubleshooting—advanced installation
methods
Our next installation example—installing from source code—will cover a procedure
that is possible on every platform and enables the administrator to change the
basic behavior of OpenVPN. Many developers and administrators consider that
this should be the standard installation procedure for all systems. There are some
advantages regarding stability and performance that can only be optimized for your
individual system by compiling as much relevant software as possible, by yourself
(the so-called Gentoo approach). In most cases, however, the installation tools
provided with the systems are much easier to use, but if you are looking for detailed
debugging information, the source code will be the first choice.

Advanced OpenVPN Installation

[96]

Installing OpenVPN from source code
Your system needs several basic development tools such as make and a C compiler
on a typical Debian system. You can find most of them in the package build-essential,
which installs this on an Intrepid Ibex (Ubuntu 8.10) command line as follows:

root@ubuntu810:/home/mfeilner# aptitude install build-essential
Reading package lists... Done
Building dependency tree
Reading state information... Done
Reading extended state information
Initializing package states... Done
The following NEW packages will be installed:
 build-essential dpkg-dev{a} g++{a} g++-4.3{a} libstdc++6-4.3-dev{a}
patch{a}
0 packages upgraded, 6 newly installed, 0 to remove and 0 not
upgraded.
Need to get 6203kB of archives. After unpacking 21.3MB will be used.
Do you want to continue? [Y/n/?] Y
(...)
Setting up patch (2.5.9-5) ...
Setting up dpkg-dev (1.14.20ubuntu6) ...
Setting up libstdc++6-4.3-dev (4.3.2-1ubuntu11) ...
Setting up g++-4.3 (4.3.2-1ubuntu11) ...
Setting up g++ (4:4.3.1-1ubuntu2) ...
Setting up build-essential (11.4) ...
Reading package lists... Done
Building dependency tree
Reading state information... Done
Reading extended state information
Initializing package states... Done
Writing extended state information... Done

root@ubuntu810:/home/mfeilner#

Although you can now can compile most open source software packages ('tarballs'),
OpenVPN development has some more prerequisites. You have to install
the compression library liblzo1, the corresponding development package
liblzo-devel, and the headers of OpenSSL, libssl-devel. On Debian with kernel
2.6, simply type aptitude install liblzo-dev libssl-dev, and the package
management will solve the necessary dependencies for you.

root@ubuntu810:/home/mfeilner# aptitude install liblzo-dev libssl-dev
Reading package lists... Done
Building dependency tree
Reading state information... Done

Chapter 6

[97]

Reading extended state information
Initializing package states... Done
The following NEW packages will be installed:
 liblzo-dev liblzo1{a} libssl-dev zlib1g-dev{a}
0 packages upgraded, 4 newly installed, 0 to remove and 0 not
upgraded.
Need to get 2308kB of archives. After unpacking 6808kB will be used.
Do you want to continue? [Y/n/?] Y
(...)
Setting up liblzo1 (1.08-3) ...
Setting up liblzo-dev (1.08-3) ...
Setting up zlib1g-dev (1:1.2.3.3.dfsg-12ubuntu1) ...
Setting up libssl-dev (0.9.8g-10.1ubuntu2) ...
Processing triggers for libc6 ...
ldconfig deferred processing now taking place
Reading package lists... Done
Building dependency tree
Reading state information... Done
Reading extended state information
Initializing package states... Done
Writing extended state information... Done
root@ubuntu810:/home/mfeilner#

As the next step we have to download the OpenVPN source code, in this example
from a release candidate of version 2.1.

root@ubuntu810:/home/mfeilner# wget http://openvpn.net/release/
openvpn-2.1_rc15.tar.gz
--2008-11-23 00:04:14-- http://openvpn.net/release/openvpn-2.1_rc15.
tar.gz
Resolving openvpn.net... 74.54.73.229
Connecting to openvpn.net|74.54.73.229|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 833429 (814K) [application/x-gzip]
Saving to: `openvpn-2.1_rc15.tar.gz'

100%[===================================>] 833,429 182K/s in
5.1s

2008-11-23 00:04:19 (159 KB/s) - `openvpn-2.1_rc15.tar.gz' saved
[833429/833429]

root@ubuntu810:/home/mfeilner#

Advanced OpenVPN Installation

[98]

We have to untar the tar.gz archive to a local directory.

root@ubuntu810:/home/mfeilner# tar -xzf openvpn-2.1_rc15.tar.gz
root@ubuntu810:/home/mfeilner# ls -l
total 852
drwxr-xr-x 2 mfeilner mfeilner 4096 2008-11-22 22:35 Desktop
drwxr-xr-x 2 mfeilner mfeilner 4096 2008-11-22 22:33 Documents
drwxrwxrwx 14 mfeilner mfeilner 4096 2008-11-19 19:19 openvpn-2.1_
rc15
-rw-r--r-- 1 root root 833429 2008-11-19 18:19 openvpn-2.1_
rc15.tar.gz
(...)
root@ubuntu810:/home/mfeilner#

A directory called openvpn-x is created, with 'x' as the version number of the tarball
that you chose to download. Move to this directory and type: /configure.

root@ubuntu810:/home/mfeilner/openvpn-2.1_rc15# ./configure
checking build system type... i686-pc-linux-gnu
checking host system type... i686-pc-linux-gnu
checking target system type... i686-pc-linux-gnu
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for gawk... no
checking for mawk... mawk
checking whether make sets $(MAKE)... yes
checking for ifconfig... /sbin/ifconfig
checking for ip... /sbin/ip
checking for route... /sbin/route
checking for gcc... gcc
checking for C compiler default output file name... a.out
checking whether the C compiler works... yes
checking whether we are cross compiling... no
checking for suffix of executables...
checking for suffix of object files... o
checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes
checking for gcc option to accept ISO C89... none needed
checking for style of include used by make... GNU
checking dependency style of gcc... gcc3
checking for a BSD-compatible install... /usr/bin/install -c
checking how to run the C preprocessor... gcc -E
checking for grep that handles long lines and -e... /bin/grep
checking for egrep... /bin/grep -E
checking whether gcc needs -traditional... no
checking for ANSI C header files... yes
(...)
pkcs11-helper headers not found.
configure: creating ./config.status

Chapter 6

[99]

config.status: creating Makefile
config.status: creating openvpn.spec
config.status: creating config-win32.h
config.status: creating images/Makefile
config.status: creating service-win32/Makefile
config.status: creating install-win32/Makefile
config.status: creating install-win32/settings
config.status: creating config.h
config.status: executing depfiles commands
root@ubuntu810:/home/mfeilner/openvpn-2.1_rc15#

You will receive few screens full of output. The configure script checks for software
dependencies and the compatibility of the source code with your system and
then creates a so-called makefile, which is used as a sort of guideline for later
compilation. In the example above, configure found no pkcs11-helper headers
on your system, so you won't be able to use those in your later configuration. But
configure can do much more for you, you can specify paths, options, and many
parameters for OpenVPN at this command line. If you don't want the openvpn
binary to reside in /usr/local/sbin/ or /usr/sbin/, here is the place to change
that. The following screenshot shows the optional features and packages that can be
used with the configure command of OpenVPN:

Advanced OpenVPN Installation

[100]

In the next step, the command make interprets the makefile, and compiles
the program and all the necessary libraries. Type make to start this process.

root@ubuntu810:/home/mfeilner/openvpn-2.1_rc15# make
make all-recursive
make[1]: Entering directory `/home/mfeilner/openvpn-2.1_rc15'
(...)
if gcc -DHAVE_CONFIG_H -I. -I. -I. -I. -g -O2 -MT manage.o -MD
-MP -MF ".deps/manage.Tpo" -c -o manage.o manage.c; \
 then mv -f ".deps/manage.Tpo" ".deps/manage.Po"; else rm -f
".deps/manage.Tpo"; exit 1; fi
if gcc -DHAVE_CONFIG_H -I. -I. -I. -I. -g -O2 -MT mbuf.o -MD -MP
-MF ".deps/mbuf.Tpo" -c -o mbuf.o mbuf.c; \
 then mv -f ".deps/mbuf.Tpo" ".deps/mbuf.Po"; else rm -f
".deps/mbuf.Tpo"; exit 1; fi
if gcc -DHAVE_CONFIG_H -I. -I. -I. -I. -g -O2 -MT misc.o -MD -MP
-MF ".deps/misc.Tpo" -c -o misc.o misc.c; \
(…)
if gcc -DHAVE_CONFIG_H -I. -I. -I. -I. -g -O2 -MT cryptoapi.o -MD
-MP -MF ".deps/cryptoapi.Tpo" -c -o cryptoapi.o cryptoapi.c; \
 then mv -f ".deps/cryptoapi.Tpo" ".deps/cryptoapi.Po"; else rm
-f ".deps/cryptoapi.Tpo"; exit 1; fi
gcc -g -O2 -o openvpn base64.o buffer.o crypto.o dhcp.o error.o
event.o fdmisc.o forward.o fragment.o gremlin.o helper.o lladdr.o
init.o interval.o list.o lzo.o manage.o mbuf.o misc.o mroute.o mss.o
mtcp.o mtu.o mudp.o multi.o ntlm.o occ.o pkcs11.o openvpn.o options.o
otime.o packet_id.o perf.o pf.o ping.o plugin.o pool.o proto.o proxy.o
ieproxy.o ps.o push.o reliable.o route.o schedule.o session_id.o
shaper.o sig.o socket.o socks.o ssl.o status.o thread.o tun.o win32.o
cryptoapi.o -lssl -lcrypto -llzo -ldl
make[2]: Leaving directory `/home/mfeilner/openvpn-2.1_rc15'
make[1]: Leaving directory `/home/mfeilner/openvpn-2.1_rc15'
root@ubuntu810:/home/mfeilner/openvpn-2.1_rc15#

On a modern PC, this will take a few minutes, on slow systems, you can have
a coffee now. OpenVPN and its components are compiled. Make calls gcc with
parameters according to the makefile that configure has created. gcc compiles the
source code files to binary files that you (or your operating system) can execute.

root@ubuntu810:/home/mfeilner/openvpn-2.1_rc15# ls -l openvpn
-rwxr-xr-x 1 root root 1805104 2008-11-23 00:23 openvpn
root@ubuntu810:/home/mfeilner/openvpn-2.1_rc15#

Chapter 6

[101]

These binary files have to be installed to the proper places in your system. Type make
install to accomplish that.

The make install is the only stage of this process (besides aptitude)
that requires root privileges. Many admins recommend not to invoke
configure and make as root, and I guess as many others say this is
paranoid. However, if you want to work on a secure basis, open two shell
windows in parallel, one for root and one for a 'normal' user.

We see that only a few files are installed: /usr/local/sbin/openvpn, and two
manual pages. OpenVPN is now ready to be used on your system. If you don't
believe, just type openvpn –version.

root@ubuntu810:/home/mfeilner/openvpn-2.1_rc15# openvpn --version
OpenVPN 2.1_rc15 i686-pc-linux-gnu [SSL] [LZO1] [EPOLL] built on Nov
23 2008
Developed by James Yonan
Copyright (C) 2002-2008 OpenVPN Technologies, Inc. <sales@openvpn.net>
root@ubuntu810:/home/mfeilner/openvpn-2.1_rc15#

The OpenVPN binary that was used was compiled (built) on November 23, 2008, and
is available in your path.

Advanced OpenVPN Installation

[102]

Building and distributing .deb packages
One great feature of the Debian package management is automatic installation
and update of software packages. If you have built your own Debian package
from the source code, you can easily update all your servers automatically with an
individually configured, improved, and tested OpenVPN version, simply by placing
a file in your own repository.

There are several ways to build a .deb package. The following is the shortest one
that I found reasonable, and the example works on Ubuntu. Needless to say, these
instructions will work on any Debian machine. If you already have the build-
essential package installed, you need to start by adding three packages to your
system. As root, type the following:

aptitude install autotools-dev fakeroot dh-make

Then get the source code, extract it, and move the directory to one named
openvpn-2.1.15 because dh_make is somewhat sensitive to the name of the directory.

cd openvpn-2.1.15

Now, type dh_make to generate a so-called control file for the Debian package that is
going to be built. Use the option -f to specify the tarball that you want to use.

root@ubuntu810:/home/mfeilner/openvpn-2.1.15# dh_make -f ../
openvpn-2.1_rc15.tar.gz

Type of package: single binary, multiple binary, library, kernel
module or cdbs?
 [s/m/l/k/b] s

Maintainer name : root
Email-Address : root@unknown
Date : Sun, 23 Nov 2008 01:36:47 +0100
Package Name : openvpn
Version : 2.1.15
License : blank
Using dpatch : no
Type of Package : Single
Hit <enter> to confirm:
Done. Please edit the files in the debian/ subdirectory now. openvpn
uses a configure script, so you probably don't have to edit the
Makefiles.
root@ubuntu810:/home/mfeilner/openvpn-2.1.15#

Chapter 6

[103]

You can edit the data in the file debian/control below your working directory.
Now you can build the package by invoking dpkg-buildpackage.

root@ubuntu810:~/openvpn-2.1.15$ dpkg-buildpackage
dpkg-buildpackage: set CFLAGS to default value: -g -O2
dpkg-buildpackage: set CPPFLAGS to default value:
(...)
if gcc -DHAVE_CONFIG_H -I. -I. -I. -I. -g -O2 -MT ssl.o -MD -MP
-MF ".deps/ssl.Tpo" -c -o ssl.o ssl.c; \
 then mv -f ".deps/ssl.Tpo" ".deps/ssl.Po"; else rm -f ".deps/
ssl.Tpo"; exit 1; fi
if gcc -DHAVE_CONFIG_H -I. -I. -I. -I. -g -O2 -MT status.o -MD
-MP -MF ".deps/status.Tpo" -c -o status.o status.c; \
 then mv -f ".deps/status.Tpo" ".deps/status.Po"; else rm -f
".deps/status.Tpo"; exit 1; fi
(...)
make[1]: Leaving directory `/home/mfeilner/openvpn-2.1.15'
(...)
dh_md5sums
dh_builddeb
dpkg-deb: building package `openvpn' in `../openvpn_2.1.15-1_i386.
deb'.
 dpkg-genchanges >../openvpn_2.1.15-1_i386.changes
dpkg-genchanges: including full source code in upload
dpkg-buildpackage: full upload (original source is included)
root@ubuntu810:/home/mfeilner/openvpn-2.1.15#

Dpkg-buildpackage runs the usual configure and make processes. If it runs
without errors, you will find the appropriate .deb file in a directory that is above
the source code directory. As a final test, you should install it, and call the binary
to control the following version:

root@ubuntu810:/home/mfeilner# dpkg -i openvpn_2.1.15-1_i386.deb
Selecting previously deselected package openvpn.
(Reading database ... 102636 files and directories currently
installed.)
Unpacking openvpn (from openvpn_2.1.15-1_i386.deb) ...
Setting up openvpn (2.1.15-1) ...
Processing triggers for man-db ...
root@ubuntu810:/home/mfeilner# openvpn --version
OpenVPN 2.1_rc15 i686-pc-linux-gnu [SSL] [LZO1] [EPOLL] built on Nov
23 2008
Developed by James Yonan
Copyright (C) 2002-2008 OpenVPN Technologies, Inc. <sales@openvpn.net>
root@ubuntu810:/home/mfeilner#

Advanced OpenVPN Installation

[104]

Building your own RPM file
As you may have seen in the section on Red Hat and SuSE, RPM files are quite
handy. You can copy them to any other system of the same type and have them
installed automatically. If you need to use a specific version of OpenVPN, you may
want to create your own RPM files from a source code file, and distribute them to
your servers. This may sound complicated, but it is done with one single command,
if your system meets some prerequisites. The first step is downloading the source
code of OpenVPN. The second step is installing some dependencies such as the
mentioned lzo-devel packages and the pkcs-helper package.

On most standard SuSE systems, only these two libraries are missing for building
this RPM. On OpenSuSE, you simply install them with YaST, or with a simple
zypper in lzo-devel pkcs11-helper-devel. On Red Hat systems you can use
yum. After installing them, start rpmbuild.

opensuse110:/home/mfeilner # rpmbuild -tb openvpn-2.0.9.tar.gz
Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.53657
+ umask 022
+ cd /usr/src/packages/BUILD
+ cd /usr/src/packages/BUILD
+ rm -rf openvpn-2.0.9
+ /usr/bin/gzip -dc /home/mfeilner/openvpn-2.0.9.tar.gz
+ tar -xf -

Chapter 6

[105]

+ STATUS=0
(…)
checking for ifconfig... /sbin/ifconfig
checking for ip... /sbin/ip
checking for route... /sbin/route
checking build system type... i686-pc-linux-gnu
checking host system type... i686-pc-linux-gnu
checking target system type... i586-suse-linux
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane...
(...)
Wrote: /usr/src/packages/RPMS/i586/openvpn-2.0.9-1.i586.rpm
Executing(%clean): /bin/sh -e /var/tmp/rpm-tmp.31583
+ umask 022
+ cd /usr/src/packages/BUILD
+ cd openvpn-2.0.9
+ '[' /var/tmp/openvpn-root '!=' / ']'
+ rm -rf /var/tmp/openvpn-root
+ rm -rf filelists
opensuse110:/home/mfeilner #

While you receive several screens of output, the OpenVPN source code is configured
and compiled automatically. At the end, the RPM file is placed in /usr/src/
packages/RPMS/i586/, and can be installed with RPM from the following location:

opensuse110:/home/mfeilner # rpm -Uvh /usr/src/packages/RPMS/i586/
openvpn-2.0.9-1.i586.rpm
Preparing... ###
[100%]
 1:openvpn ###
[100%]
openvpn 0:off 1:off 2:off 3:on 4:off 5:on
6:off
Shutting down openvpn:
done
Starting openvpn:
done
opensuse110:/home/mfeilner #

Advanced OpenVPN Installation

[106]

No matter whether you have a RPM or Debian-based distribution, for a working
repository server, there is still some organizational work that is left to be done:

•	 Configure one of your HTTP or FTP servers to act as a Debian
or a SuSE repository. Howtos for both cases can be found here:
http://www.debian.org/doc/manuals/repository-howto/repository-
howto (Debian) and http://www.charlescurley.com/yum/repository.
html (Red Hat), or simply mirror an online repository (SuSE).

•	 Add your repository to the list of installation sources of all the systems in
which you want to automatically install your software.

•	 Add a cronjob to your systems that runs aptitude update and aptitude
upgrade, yum update or zypper up on a regular basis.

•	 Place your binaries on the server.

The next time your servers run the software update, it will automatically download
the new OpenVPN software.

Enabling Linux kernel TUN/TAP support
If your kernel does not support TUN/TAP devices, you have to enable it in the
kernel configuration. All modern Linux/UNIX distributions support TUN/TAP
devices, so it is very unlikely for you to run into this problem. Probably, this will
only usually happen if you have built your own kernel. In this case, you will already
guess how to enable TUN/TAP support.

If you are not running your own kernel, but your system does not support TUN/
TAP devices, you have to build a kernel of your own. Even though this process is not
that complicated, the documentation would go beyond the scope of this book.

The process of kernel compilation is documented at http://tldp.org/
LDP/tlk/tlk.html and the Linux kernel source code can be obtained
from http://www.kernel.org/.

In short you have to do the following:

•	 Install the sources of the kernel of your choice.
•	 Change to the directory where you installed the sources. In most cases they

can be found in /usr/src/linux.
•	 Configure the kernel with one of the appropriate configuration tools such as

menuconfig or Xconfig.
•	 Compile the kernel and the modules using make and make modules.
•	 Install the kernel and configure your boot manager's settings.

Chapter 6

[107]

If you want TUN/TAP device support, you have to select the driver during the
process of kernel configuration. This can be done with various tools such as Xconfig
or menuconfig. The Xconfig tool is probably best if you have a workstation with a
running X-Server, whereas menuconfig is best on a simple command line.

Using menuconfig
The following three steps show you how to enable module support for your Linux
kernel before building it. Type make menuconfig to configure the sources of your
kernel, on an Ubuntu standard system with build-essential installed, you will
still need the package ncurses-dev. You can navigate through menuconfig using
the up/down and Tab keys. Select an entry by highlighting it with your cursor and
pressing Enter.

•	 Select the entry Device Drivers and press Enter to receive the list of
available devices that the kernel source code supports.

Advanced OpenVPN Installation

[108]

•	 Select Network device support and press Enter.

•	 In the list of available network drivers, you will see the entry Universal
TUN/TAP driver support. By pressing the spacebar, you can select if the
driver is loaded permanently, as a module, or not at all. In the first column, a
letter will show your selection. (M is for 'module', * is for 'permanent', empty
is for 'not to be installed').

Chapter 6

[109]

In the previous screenshot the driver is selected as a module, which means the driver
is only loaded when needed. This is probably the best selection because the tunnel
driver is unloaded when it is not needed, and system's resources are set free.

Now you can continue your kernel configuration. After compilation, installation, and
reboot, your system should be able to provide TUN/TAP devices.

Summary
In this chapter, we learned about the advanced options that an installation from
source code offers. OpenVPN can be configured in detail using this method, and by
building Debian or RPM binary files the administrator does not lose the flexibility
that modern package management has to offer.

Configuring an OpenVPN
Server—The First Tunnel

In this chapter, we will create an encryption key for OpenVPN and use it to set up
our first OpenVPN tunnel between two Windows systems in the same network.
By doing so, we have a test-bed environment where no problems with firewalls or
routers will interfere with our OpenVPN setup, and we can concentrate on learning
how to create tunnels.

A little work on the configuration file needs to be done and the key has to be
exchanged between these systems. After this, the tunnel will be started and tested
with the ping command. We will then copy the key on a Linux system and connect
this system with a tunnel to the first Windows machine. Finally, we will ensure
that OpenVPN is run automatically on both systems and have a look at the Service
Manager on Windows and the init system on Linux.

Configuring an OpenVPN Server—The First Tunnel

[112]

OpenVPN on Microsoft Windows
During the installation process, OpenVPN creates the following entries in Windows'
main menu, as shown on Windows XP:

On Windows Server 2008 with OpenVPN 2.1_rc15, the following entries are created:

Chapter 7

[113]

As you can see, depending on your Windows and OpenVPN version, the exact
location in the menu can vary.

At this point, only the following five entries in this menu are relevant:

Title Function
Generate a static OpenVPN key Creates a static encryption key that can be used for

creating tunnels
OpenVPN configuration file
directory

Opens an Explorer window in the directory
C:\Program Files\OpenVPN\config, where
the configuration data for OpenVPN is stored

OpenVPN GUI Starts the OpenVPN GUI that plugs in the system
tray of the taskbar

OpenVPN log file directory Opens an Explorer window in the directory
C:\Program Files\OpenVPN\log, where the log
files for OpenVPN are kept

OpenVPN Sample
Configuration Files

Opens an Explorer window in the directory
C:\Program Files\OpenVPN\sample-config,
where example configuration files for OpenVPN can
be found

Apart from these entries, you will find information on OpenVPN in the online
manual page, a readme file, a link to the web site, and some entries helping you
manage the network interfaces that OpenVPN creates. In OpenVPN 2.1, the entry for
quick key generation can be found under Utilities.

Generating a static OpenVPN key
Before we can connect two systems with an OpenVPN tunnel, we have to create a
static key that will be used for encryption of the traffic. This key must be provided
to both systems because in this case of symmetric encryption, both sides will use the
same key.

Select the entry Generate a static OpenVPN key in Windows' OpenVPN menu:

Configuring an OpenVPN Server—The First Tunnel

[114]

OpenVPN will open a command-line window and generate a 2048 bit encryption
key. This key is saved in the standard configuration directory with the name
key.txt. This key should only be used for testing and learning purposes. However,
for our small test setup it is necessary.

This process is also executed by the openvpn.exe program. The shortcut calls
the following:

"C:\Program Files\OpenVPN\bin\openvpn.exe" --pause-exit --verb 3
--genkey --secret "C:\Program Files\OpenVPN\config\key.txt"

Do not use this key for anything but testing OpenVPN connections.

In the next chapter, we will explain the use of the OpenVPN command-line interface.

The menu entry OpenVPN GUI starts the OpenVPN panel applet. If there is no
such entry on your system, then you can find the program in C:\Program Files\
OpenVPN\bin\openvpn-gui.exe. After the installation, this applet runs in the
background, so clicking this menu entry will only bring up the window stating,
OpenVPN GUI is already running. If you stop the GUI, then this entry will restart
the panel applet.

The other three menu entries open Explorer windows in three different directories:

•	 The directory C:\Program Files\OpenVPN\config\ is the default place
where OpenVPN will look for configuration and key files. Have a look at the
screenshot of the key generation, and you will see that the key that we have
generated is written to C:\Program Files\OpenVPN\config\key.txt.

•	 In the directory C:\Program Files\OpenVPN\sample-config\, we find
configuration files for standard setup. These files need to be changed slightly
and can be then used to test VPN functionality.

•	 The output of the tunnel software is written to text files in the directory
C:\Program Files\OpenVPN\log\.

Chapter 7

[115]

The following screenshot shows an arrangement of Explorer windows of the four
most important OpenVPN directories:

Creating a sample connection
We will now create a sample VPN connection to see how the OpenVPN GUI works.
Open all three directories by clicking on their entries in the main menu. Copy the
sample configuration file sample.ovpn from the sample configuration directory
into the configuration directory. On Windows, the standard filename extension for
OpenVPN configuration files is .ovpn, whereas on Linux it is .conf.

You can use drag‑and‑drop to accomplish that. That's all! Your new OpenVPN
configuration can be started through the panel applet—if your network matches the
needs of the sample configuration.

Configuring an OpenVPN Server—The First Tunnel

[116]

Right-click on the panel applet. You will see the context menu has more entries now.
Select the entry Edit Config to view the sample file in notepad.exe, and click on
Connect to start the sample configuration.

The window OpenVPN Connection (sample) is opened. In this window, the
protocol output of the sample connection, which is also written to a logfile in the
log directory, is shown. You can see that there is still some configuration work to be
done. In the sample configuration, OpenVPN is advised to connect to a remote server
called myremote. If you don't happen to have an OpenVPN server with this name in
your local network, then you should see a window exactly like the one that follows.
This means that your Windows OpenVPN software is up and running, but it cannot
create a tunnel.

Chapter 7

[117]

Adapting the sample configuration file provided
by OpenVPN
Obviously, we have to change our configuration a little. Select the entry OpenVPN
configuration file directory from the Windows main menu, and double-click on
the sample configuration file we copied here. Notepad starts up and shows us the
sample configuration file.

In this file we have to change or enter the following three settings:

•	 The name or IP address of the other VPN host
•	 The name of the key file
•	 The IP addresses for the VPN and the host

OpenVPN needs the IP address of the other tunnel endpoint in order to know
where to connect to. To make sure both sides are using the same encryption key,
we must specify the file in which the key is kept. Last but not least, the tunnel net
itself must be equipped with IP addresses. These IP addresses are the ones assigned
to the virtual network adapter. Every tunnel has one virtual network adapter on
either side, and both sides can only communicate with each other if they are in
the same network segment. Thus, we have to choose an IP address for each host. In
my example I use the IP addresses provided by the sample file set, namely, 10.3.0.1
and 10.3.0.2.

Configuring an OpenVPN Server—The First Tunnel

[118]

Once you have chosen the appropriate parameters for these settings, you can easily
connect two systems. Just keep in mind that you need to have the settings for the IP
addresses mirrored.

The following table shows my OpenVPN configuration file entries for two hosts
connected through OpenVPN that are in the same subnet, namely 10.10.10.0:

Host A (10.10.10.103) Host B (10.10.10.104)
remote 10.10.10.104 remote 10.10.10.103
ifconfig 10.3.0.1
255.255.255.0

ifconfig 10.3.0.2
255.255.255.0

secret key.txt secret key.txt

These are the only configuration parameters in OpenVPN configuration files which
are important when setting up our example tunnel:

•	 remote: It defines the other end of the tunnel. Here you can use IP addresses
or DNS entries.

•	 ifconfig: It sets the local IP and netmask for the tunnel interface. secret tells
OpenVPN which key file to use, relative to the configuration directory.

The following graphic should help to clarify this a little:

The Internet
A B

IP of Virtual (tunnel)
Ethernet device:

10.3.0.1

IP of Virtual (tunnel)
Ethernet device:

10.3.0.2

IP of real
Ethernet device:
10.10.10.104

IP of real
Ethernet device:
10.10.10.103

For an OpenVPN tunnel, there are four network devices involved. Two of them are
real Ethernet cards and the other two are virtual tunnel devices (TUN or TAP). The
real network devices have IP addresses assigned to them under which the system is
reachable in its local net. The virtual network devices have IP addresses assigned to
them that are used to set up the tunnel.

Chapter 7

[119]

In our little example, Host A with the LAN IP 10.10.10.103 tries to connect to Host B
with the LAN IP 10.10.10.104. The IP of the virtual network interface (in the tunnel
network) for Host A is 10.3.0.1, and for Host B is 10.3.0.2. The name of the key file is
key.txt on both systems.

OpenVPN can have either IP addresses or DNS names as options
to the configuration parameter remote. If you use DNS names,
you have to make sure that domain name resolution on your system
is configured properly. In any case, you must make sure the other host
is reachable—check DNS, routing, and firewall configuration.

You may have noticed that the two hosts in our example are in the same subnet.
This is a simple setup where no routing, DNS, or firewall issues will interfere with
our tunnels. All we need are two PCs running OpenVPN. The option remote is the
only option that needs to be changed later when we set up a tunnel between two
Internet sites. OpenVPN allows both DNS names and IP addresses here.

Now, copy the key file key.txt to the second system and edit this system's
configuration file. An easy way to do this is by creating a shared folder on one
system and mapping it as a network drive on the other system.

Starting and testing the tunnel
When both systems are prepared, start the OpenVPN GUI (or make sure it is
running) and select the entry Connect from its context menu on both systems.

If everything has worked out fine, the OpenVPN icon on both systems will change to
green like the one here:

If you see a red light then no OpenVPN tunnel is connected. Yellow is shown while a
connection is being set up. Once this process is successful, the icon switches to green.

However, if you are using a local firewall on either system, be sure that it is not
blocking these packets. The Windows XP firewall, like most firewall systems, is per
default not blocking outgoing packets, which means that an OpenVPN connection
should always be established. If you run into connection problems, then check the
section, Troubleshooting Firewall Issues, at the end of this chapter.

Configuring an OpenVPN Server—The First Tunnel

[120]

Select the entry Show Status from the OpenVPN GUI context menu to receive
more detailed information about the process of connecting, as shown in the
following screenshot:

For now, only the last line of this output is important: Initialization Sequence
Completed is OpenVPN's message of success. Your tunnel is up and running and
both systems should show this message in the status log.

Let's now test the tunnel with the ping command. Start a DOS shell by selecting
the Windows main menu Run and entering cmd.exe. You will be presented with a
command-line interface, as shown in the following screenshot. Type ping 10.3.0.2
on Host A to check if the ping packets are correctly transferred to Host B. On Host B,
you will have to enter ping 10.3.0.1 if you used the same network addresses as in
the previously mentioned example.

If you receive output as in the following screenshot, then the ping command has
been successful, and the OpenVPN tunnel is working.

Chapter 7

[121]

A brief look at Windows OpenVPN network
interfaces
On your Windows system, open the Control Panel and change to Network
Connections. As you can see, for every OpenVPN tunnel you configure, a virtual
network interface is added. The following screenshot shows the active interface—the
default when the tunnel is up. This appears like a real network interface and can be
used like any other interface. To verify this have a look at the properties dialog in the
context menu of the interface's icon. Apart from the fact that this interface is presented
as a TAP-Win32 Adapter V8, every setting possible on real network adapters can be
chosen here too. This is what this looks like on Windows XP:

Configuring an OpenVPN Server—The First Tunnel

[122]

On newer systems the TAP-Adapter will be version 9 (V9). You can disable this
interface by simply double-clicking on its icon. But keep in mind that the tunnel
won't be connected automatically when you enable the interface again. You must
reconnect manually by selecting the entry in OpenVPN's context menu.

If you need detailed information on network interfaces, the command ipconfig /
all is very helpful. Open a DOS Shell under Windows and enter ipconfig /all.
Windows will list all available network interfaces, the IPs, and routing data.

Connecting Windows and Linux
Connections between these two operating systems are almost as simple as those
described in the previous section. The steps that need to be taken are exactly the
same. However, there are two pitfalls that you must avoid, and both of the pitfalls
are related to transferring files from Windows to Linux and vice versa.

Chapter 7

[123]

File exchange between Windows and Linux
Windows systems use the Server Message Block (SMB) protocol to communicate
and exchange data. Linux has no native support for this, but there is a powerful
server suite called Samba, which can be used to make Linux machines appear like
Windows PCs (and even integrate them into Active Directory domains). With a little
Linux know-how and the right tools, access to such a samba drive is easy. Just install
the Linux samba client and point a tool such as KDE's konqueror to your Windows
machine, as shown in the following screenshot:

On SuSE systems, for example, only two packages are required, namely, kdebase3-
samba and libsmbclient. After installing them with zypper install kdebase3-
samba libsmbclient, you can enter a URL like smb://User@Windowshost:/Path/
To/Files in Konqueror and easily access and drag-and-drop the relevant files, after
you have allowed remote access to the relevant folder on the Windows system.

WinSCP
But how do we copy the key file from a Windows machine to a Linux server? On
Linux, remote command execution and data exchange through the Secure Shell
SSH is the standard. SSH also uses OpenSSL for encryption in the same way as
OpenVPN. However, Windows has no built-in support for such encrypted data
exchange. We have two possibilities. Either we set up Samba on Linux to act as a
Windows client or server or (this is by far the better choice) we install SSH client
software on Windows. A very simple tool for this purpose is WinSCP, which can
be downloaded freely from http://winscp.net/. WinSCP is an Explorer-style
application that provides drag-and-drop copying over secure connections.

•	 Download WinSCP and double-click on the EXE file.
•	 Select your preferred language, and click on OK.

Configuring an OpenVPN Server—The First Tunnel

[124]

•	 After the welcome, you are asked to accept the free GPL license. Click on
Next twice.

•	 If you want a different location for this program, then enter its path in the
third dialog.

•	 Select a preferred user interface. Probably the best for beginners is the default
one—the Norton Commander Interface.

This dialog lets you choose the default look of WinSCP. If you choose the Norton
Commander interface, you will be presented with a file manager window split into
two parts, namely, a local and a remote directory. This is the default selection and
might be the most useful one. However, if you prefer the Windows Explorer style,
then select the button Explorer-like interface, which presents the remote directory
in one single window.

Finish the installation by clicking on Next and then on Install in the following dialog.
The setup program then extracts and sets up WinSCP. After clicking on Finish,
WinSCP will start automatically.

Transferring the key file from Windows to Linux
with WinSCP
After WinSCP is started, you have to tell it where to connect to. Enter the IP address
or DNS name of your Linux system in the field Host name, the name of the Linux
user (the administrator 'root') in the field User name, and the password in the field
Password. Other options are not necessary at this point. Click on Login to start the
connection. If you are connecting for the first time, WinSCP will ask you if you are
sure of the authenticity of the host you want to connect to. If you click OK here,
then WinSCP will remember this host's signature next time.

Chapter 7

[125]

If you want to save your profile for later use, then click on Save…. Click on Login to
start the connection, and accept the Warning window about the unknown host key.
At first connect, this is normal. But if you receive such a warning later on, then you
should check if you have made a mistake or why your server has a new key.
Has an attacker had the chance to change it?

WinSCP presents a window similar to the following screenshot. On the left-hand
side of the window there should be a local directory listing, while the right-hand
side shows a directory on the remote server. The small drop-down menus above
the listings allow fast selection and change of working directories.

Now let's copy the key file and the configuration file from Windows to the Linux
system. On the Windows machine, change to the directory C:\Program Files\
OpenVPN\config, on the Linux system, change to /etc/openvpn. Drag-and-drop
the key.txt file and the configuration file sample.ovpn to the Linux system.

Configuring an OpenVPN Server—The First Tunnel

[126]

.ovpn is the standard extension for OpenVPN's Windows configuration
files. .conf is the OpenVPN standard extension on Linux.

The second pitfall—carriage return/end of line
Exchanging text files between Linux and Windows always produces another problem.
On Unix systems, the new line character signifies the end of a line. On DOS/Windows,
the characters return and new line are always used together to signify this. In our tests
with Windows Server 2008, this problem seemed to be solved.

Thus text files copied from a DOS system to a Unix system always have superfluous
characters at the end of the lines, and files that are copied the other way always
miss line feeds. Because this problem is very common, the Linux community has
developed the dos2unix and unix2dos utilities. The dos2unix converts text files
from the DOS/Windows format into correct Unix format, and the unix2dos does it
the other way.

In our example, we have to convert both the key file and the configuration file into a
Unix format.

(...)
Change 'myremote' to be your remote host,^M
or comment out to enter a listening^M
server mode.^M
remote 10.10.10.104^M
^M
Uncomment this line to use a different^M
port number than the default of 1194.^M
; port 1194^M
^M
Choose one of three protocols supported by^M
OpenVPN. If left commented out, defaults^M
to udp.^M
(...)

If your sample.ovpn looks like this (as my vi shows it), then you have copied
the file from Windows to Unix. To convert it to Unix format, simply type the
following command:

debian01:~# dos2unix sample.ovpn

Chapter 7

[127]

Have a look at this file again. Everything should be alright now. Repeat this step for
the key file (key.txt). If you forget this step, OpenVPN will find different keys on
both systems and will therefore deny setting up the tunnel.

The dos2unix is contained in the sysutils package of Debian
systems. Run apt-get install sysutils to install these tools.

Configuring the Linux system
In our next step, we have to adapt the Linux configuration, just as we did on the
Windows systems before. We will use exactly the same configuration as in our
first example. Only three lines need to be changed. The following figure gives an
overview on how the interfaces will be set up:

The Internet
Windows Linux

IP of Virtual (tunnel)
Ethernet device:

10.3.0.1

IP of Virtual (tunnel)
Ethernet device:

10.3.0.5

IP of real
Ethernet device:
10.10.10.105

IP of real
Ethernet device:
10.10.10.103

The Linux OpenVPN configuration is as simple as its Windows counterpart.
Just modify the following lines in your sample.ovpn:

•	 remote 10.10.10.103
•	 ifconfig 10.3.0.5 255.255.255.0
•	 secret key.txt

After modifying the previously mentioned lines, adapt them to your needs. The
IP address specified in the line remote 10.10.10.103 must be replaced with that
of your Windows server. The IP address specified in the line ifconfig 10.3.0.5
255.255.255.0 defines the IP address of the virtual tunnel network interface. You
may have noticed that this IP address can be chosen freely in this network segment.

Configuring an OpenVPN Server—The First Tunnel

[128]

Then fire up the tunnel by typing the following command in the
configuration directory:

openvpn –-config sample.ovpn

This command is the main part of OpenVPN. No matter what operating system you
are using, it is the way to start tunnels for testing purposes and is also called by the
scripts that provide OpenVPN services.

You will receive output similar to the following:

Wed Oct 19 00:23:01 2005 us=318267 TUN/TAP device tap0 opened
Wed Oct 19 00:23:01 2005 us=318335 TUN/TAP TX queue length set to 100
Wed Oct 19 00:23:01 2005 us=318372 /sbin/ifconfig tap0 10.3.0.5
netmask 255.255.255.0 mtu 1500 broadcast 10.3.0.255
Wed Oct 19 00:23:01 2005 us=334639 Data Channel MTU parms [L:1577
D:1450 EF:45 EB:135 ET:32 EL:0 AF:3/1]
Wed Oct 19 00:23:01 2005 us=334726 Local Options String: 'V4,dev-
type tap,link-mtu 1577,tun-mtu 1532,proto UDPv4,ifconfig 10.3.0.0
255.255.255.0,comp-lzo,cipher BF-CBC,auth SHA1,keysize 128,secret'
Wed Oct 19 00:23:01 2005 us=334740 Expected Remote Options String:
'V4,dev-type tap,link-mtu 1577,tun-mtu 1532,proto UDPv4,ifconfig
10.3.0.0 255.255.255.0,comp-lzo,cipher BF-CBC,auth SHA1,keysize
128,secret'
Wed Oct 19 00:23:01 2005 us=334806 Local Options hash (VER=V4):
'e08453d7'
Wed Oct 19 00:23:01 2005 us=334831 Expected Remote Options hash
(VER=V4): 'e08453d7'
Wed Oct 19 00:23:01 2005 us=334886 Socket Buffers: R=[109568->131072]
S=[109568->131072]
Wed Oct 19 00:23:01 2005 us=334961 UDPv4 link local (bound):
[undef]:1194
Wed Oct 19 00:23:01 2005 us=334975 UDPv4 link remote:
10.10.10.103:1194
Wed Oct 19 00:23:03 2005 us=513994 Peer Connection Initiated with
10.10.10.103:1194
Wed Oct 19 00:23:03 2005 us=514046 Initialization Sequence Completed

This program is also part of the Windows installation. Start a command line and
change to the directory containing the configuration file. Type the command
openvpn –-config sample.ovpn and press Enter. You will receive to the output
shown in the following screenshot. As you can see, OpenVPN's behavior is almost
identical to Linux version.

Chapter 7

[129]

Unfortunately, if you start a tunnel manually like this, then the OpenVPN GUI will
not be able to notice it.

Testing the tunnel
Now it's time to test the tunnel. Simply use ping again to test the reachability of the
other tunnel endpoint. On our Linux system, the following will be shown:

vpnserver:~# ping 10.3.0.1
PING 10.3.0.1 (10.3.0.1) 56(84) bytes of data.
64 bytes from 10.3.0.1: icmp_seq=1 ttl=128 time=77.7 ms
64 bytes from 10.3.0.1: icmp_seq=2 ttl=128 time=23.2 ms
64 bytes from 10.3.0.1: icmp_seq=3 ttl=128 time=23.5 ms
64 bytes from 10.3.0.1: icmp_seq=4 ttl=128 time=23.4 ms
64 bytes from 10.3.0.1: icmp_seq=5 ttl=128 time=23.5 ms

--- 10.3.0.1 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 3999ms
rtt min/avg/max/mdev = 23.242/34.310/77.730/21.710 ms
vpnserver:~#

Both tunnel endpoints are reachable. Our Windows-Linux tunnel is working!

Configuring an OpenVPN Server—The First Tunnel

[130]

A look at the Linux network interfaces
As we did on Windows, we will have a short look at the Linux network interfaces.
Type ifconfig and Linux will show you all the available interfaces, as shown in the
following block of code:

vpnserver:~# ifconfig
eth1 Protokoll:Ethernet Hardware Adresse 00:16:00:00:00:16
 inet Adresse:WW.XX.YY.ZZ Bcast:WW.XX.YY.ZZ
Maske:255.255.255.248
 inet6 Adresse: fe80::216:ff:fe00:16/64
Gültigkeitsbereich:Verbindung
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:112620 errors:0 dropped:0 overruns:0 frame:0
 TX packets:64662 errors:0 dropped:0 overruns:0 carrier:0
 Kollisionen:0 Sendewarteschlangenlänge:1000
 RX bytes:141835529 (135.2 MiB) TX bytes:4943699 (4.7 MiB)
lo Protokoll:Lokale Schleife
 inet Adresse:127.0.0.1 Maske:255.0.0.0
 inet6 Adresse: ::1/128 Gültigkeitsbereich:Maschine
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:62 errors:0 dropped:0 overruns:0 frame:0
 TX packets:62 errors:0 dropped:0 overruns:0 carrier:0
 Kollisionen:0 Sendewarteschlangenlänge:0
 RX bytes:9432 (9.2 KiB) TX bytes:9432 (9.2 KiB)
tap0 Protokoll:Ethernet Hardware Adresse E2:C4:62:25:03:E5
 inet Adresse:10.3.0.2 Bcast:10.3.0.255 Maske:255.255.255.0
 inet6 Adresse: fe80::e0c4:62ff:fe25:3e5/64
Gültigkeitsbereich:Verbindung
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:308 errors:0 dropped:0 overruns:0 frame:0
 TX packets:72 errors:0 dropped:0 overruns:0 carrier:0
 Kollisionen:0 Sendewarteschlangenlänge:100
 RX bytes:48798 (47.6 KiB) TX bytes:10224 (9.9 KiB)
vpnserver:~#

On this system, there is an Ethernet card eth0 configured with a 'real' IP and a
loopback interface lo. The device tap0 is the TAP device used by OpenVPN and
has the IP 10.3.0.2 assigned. This TAP device is a virtual Ethernet device that runs
OpenVPN's bridging mode. On Unix systems, you can choose between bridging
mode with TAP devices and routing mode with TUN devices, but for Windows
systems only the TAP driver is available.

Chapter 7

[131]

Running OpenVPN automatically
If you want your OpenVPN machine to provide remote access and therefore act
like a VPN server, you simply need to start the OpenVPN process (task) and have it
run permanently. Once a client like those we configured before connects, the tunnel
is up. On Windows, this task is done with the Services module of the Control Panel.

OpenVPN as a server on Windows
From Windows XP main menu, select the entry Control Panel | Administrative
Tools | Services to start the service manager (On Windows Server 2008, you will
find that in Administrative Tools | Services).

Configuring an OpenVPN Server—The First Tunnel

[132]

Scroll down this list until you find the entry OpenVPN Service. The fourth column
shows the Startup Type for OpenVPN and is set to Manual by default. Double-click
on this entry and you will see the following properties window:

Select the entry Automatic from the Startup type drop-down menu to provide
tunnel access from boot time. Confirm by clicking on OK and closing the services
dialog. You have successfully turned your system into a simple VPN server.

To test this, simply reboot your system and have a look at the remote system's log
file. You will find entries saying Connection refused or No route to host, but after
the restart the tunnel will be started automatically, the logfile will show Connection
initiated, and pings will be successful.

Chapter 7

[133]

OpenVPN will try to start a tunnel for every .ovpn file it finds
in the config directory, if it is called through the service manager
(for example, on reboot).

OpenVPN as a server on Linux
During the Linux installation on Debian-based systems, you would have been asked
whether you wanted OpenVPN to be started automatically. This is the standard if
you accepted all the defaults during installation by pressing Enter all the time. On
Windows you have the services dialog, and on Linux there is the directory /etc/
init.d containing start scripts for an abundance of server processes. A typical script
in this directory can be called with the options start and stop (among others) and
therefore starts or stops the server process described in its code. After you have
installed OpenVPN there is a script /etc/init.d/openvpn on your system that you
can use to stop and start your server.

Some examples of calling the OpenVPN script on Linux are as follows:

Script Syntax Function
/etc/init.d/openvpn start Starts the OpenVPN server
/etc/init.d/openvpn stop Stops the OpenVPN server
/etc/init.d/openvpn restart Stops and then restarts the OpenVPN server
/etc/init.d/openvpn reload Forces the OpenVPN server to reload its

configuration, applying changes

Runlevels and init scripts on Linux
Every Linux system can be run at different runlevels. Like the gears of a car that
offer different combinations of speed and power, every runlevel on a Linux system
provides different server processes and possibilities. Runlevel 1, for example, is
normally used for maintenance mode and provides only single-user access, no
networking, and no GUI. Runlevel 5 is usually used for a full‑featured desktop
system with network access. Most servers run in runlevel 3, where no graphical
interface is started, but both networking and multi-user support are available.

Configuring an OpenVPN Server—The First Tunnel

[134]

Of course you can configure exactly which service is to be run on which runlevel.
The following description explains how:

A tree of directories with start/stop scripts is used to configure the starting and
stopping of services during boot time or runlevel change. On Debian systems you
find this tree under /etc in the directories rc0.d through rc6.d. On SuSE and Red
Hat these directories can be found under /etc/init.d. Each of these directories
contains links to the /etc/init.d/ service files. The links have names starting with
K or S indicating that this service is to be stopped (K—killed) or started (S) for this
runlevel, while the number after the K or S is used to order the services. Thus, all
necessary processes for a server can be started in the correct order before the server
process starts itself. For example, OpenVPN needs network and syslog support
to work correctly. Therefore, the link has a number higher than the link files of the
network and syslog daemons. On a SuSE Linux system, for example, network
services are started through S05network, then S06syslog starts the logging facilities,
and OpenVPN is started with S12openvpn.

For each runlevel, a directory exists containing a collection of links following the
scheme explained before. The links in the directory /etc/rc3.d, for example, on a
Debian system start and stop the services for runlevel 3. An OpenVPN starts script
that has been called through the link S20openvpn in the directory /etc/rc3.d will
be started on entering runlevel 3 after all scripts with names from S1 through S19
are started.

Three command line programs are relevant for management of system
services on Linux—init, runlevel, and update-rc.d. The following table gives
us an overview:

The Program Used For
init <runlevel> Change to runlevel number <runlevel>
runlevel Lists the active (and the last) runlevel
update-rc.d <options> Helps you arrange the processes automatically

Using runlevel and init to change and
check runlevels
Both runlevel and init are very easy-to-use programs. The init 1 switches
your system to runlevel 1—mostly configured as single user mode for maintenance.
The init 5 switches to runlevel 5, which is the desktop user mode.

In the following example, we will first find out at which runlevel our system is
at, and as the next step, switch to runlevel 5. Again, we check if the runlevel was
changed successfully and then change back to runlevel 3, where we were before.

Chapter 7

[135]

vpnserver:~# runlevel
N 2
vpnserver:~#init 5
INIT: Switching to runlevel: 5
(...)
vpnserver:~# runlevel
2 5
vpnserver:~#init 3
INIT: Switching to runlevel: 3
(...)
vpnserver:~# runlevel
5 3
vpnserver:~#

The system control for runlevels
The configuration file /etc/inittab contains the information the program init
uses to determine:

•	 The standard runlevel (the runlevel in which the system after boot)
•	 Which directories are to be used for which runlevel
•	 Many other useful options (for example, what happens when you press

Ctrl+Alt+Delete)

Here is an extract from the inittab file on Debian systems:

/etc/inittab: init(8) configuration.
$Id: inittab,v 1.91 2002/01/25 13:35:21 miquels Exp $

The default runlevel.
id:2:initdefault:

(...)

The last line defines the standard runlevel after reboot—on this system it is runlevel
2, and the following comments indicate where init shows how the runlevels on this
Debian system are supposed to work:

(...)
/etc/init.d executes the S and K scripts upon change
of runlevel.
#
Runlevel 0 is halt.
Runlevel 1 is single-user.
Runlevels 2-5 are multi-user.
Runlevel 6 is reboot.

(...)

Configuring an OpenVPN Server—The First Tunnel

[136]

Managing init scripts
The third important tool for managing server processes on Debian Linux is
update-rc.d. This Perl script can check, create, and delete init scripts that are
suitable for your system configuration.

Options for update-rc.d Explanation
update-rc.d <service> <options>
<action>

Configures the links in your init directories
to your needs (according to the options
passed)

update-rc.d -n <options> Dry-run mode, only shows what it would do
update-rc.d <options> remove Removes the start/stop scripts listed in

options

update-rc.d -f <options> Ignore warnings

Let's do some examples. The command update-rc.d -n openvpn remove removes
all links to OpenVPN, but not really, only in a dry run to test if there would be
problems. After this command, OpenVPN would not be started again in any
runlevel. In our example, we encounter a little problem, which can easily be fixed by
the 'force' switch -f. The update-rc.d -n -f openvpn remove gives us a list of files
that would be deleted.

vpnserver:/etc/rc3.d# update-rc.d -n openvpn remove
update-rc.d: /etc/init.d/openvpn exists during rc.d purge (use -f to
force)
vpnserver:/etc/rc3.d# update-rc.d -n -f openvpn remove
update-rc.d: /etc/init.d/openvpn exists during rc.d purge (continuing)
 Removing any system startup links for /etc/init.d/openvpn ...
 /etc/rc0.d/K20openvpn
 /etc/rc1.d/K20openvpn
 /etc/rc2.d/S16openvpn
 /etc/rc3.d/S16openvpn
 /etc/rc4.d/S16openvpn
 /etc/rc5.d/S16openvpn
 /etc/rc6.d/K20openvpn
vpnserver:/etc/rc3.d# ls -l /etc/rc2.d/S16openvpn

lrwxrwxrwx 1 root root 17 2005-09-04 16:23 /etc/rc2.d/S16openvpn ->
../init.d/openvpn

vpnserver:/etc/rc3.d#

As you can see in the last line, the files are still there. Repeat these steps without the
option -n, and the links will be deleted permanently.

Chapter 7

[137]

update-rc.d can also create the links for you. Its syntax is easy, as shown:

update-rc.d <options> <service name><start/stop><service
number><runlevel>

Thus the following command is supposed to start openvpn with service number 16
in runlevel 3:

vpnserver:/etc/rc3.d# update-rc.d -f openvpn start 16 3 .
 Adding system startup for /etc/init.d/openvpn ...
 /etc/rc3.d/S16openvpn -> ../init.d/openvpn
vpnserver:/etc/rc3.d# ls -l /etc/rc3.d/S16openvpn
lrwxrwxrwx 1 root root 17 2005-10-21 12:37 /etc/rc3.d/S16openvpn ->
../init.d/openvpn
vpnserver:/etc/rc3.d#

Now try to create the links that you have deleted above.

If you want to revert to the default configuration of OpenVPN—like
that after installation—simply enter dpkg-reconfigure openvpn.
This program starts the post-install configuration dialog and process
again and installs the default links to your runlevel directories.

Using SuSE's YaST module system services
(runlevel)
SuSE systems have a sophisticated tool within YaST for the maintenance of your
server's processes. The System Services editor can be found in the YaST module
System|System Services (Runlevel), here on OpenSuSE 11:

Configuring an OpenVPN Server—The First Tunnel

[138]

This runlevel editor can be run in two modes: Simple Mode and Expert Mode. In the
standard Simple Mode you can simply switch services on or off, and YaST takes care
of all considerations necessary for you. You are presented with a list of all available
services, and two buttons, Enable and Disable.

If you want to enable openvpn, then simply highlight it in the list and press Enable.
The entry in the second column of the line openvpn in the list will change to Yes,
and a status window reports OpenVPN started. Try to activate or deactivate the
service openvpn several times.

Even though the Simple Mode is a convenient and fast method to retrieve an
overview of the running services, there may be some disadvantages caused by the
standard settings. In Expert Mode you can explicitly define the runlevels in which
the different services will be started. You will see a separate column for each runlevel
and a list of checkboxes with which you can easily activate the service in a single
runlevel. Select openvpn in the list and activate it in runlevel 3 by activating the
checkbox. Do this with the mouse or by simply entering Alt+3.

In either mode, click on Finish to activate your changes.

Chapter 7

[139]

Troubleshooting firewall issues
Windows XP and SuSE Linux have firewall systems installed that are activated
automatically after installation. Like most (personal or desktop) firewalls, these
are configured to allow traffic originating from the local system and destined for
the Internet or the local network. This configuration is sufficient for OpenVPN in
almost every case. However, if your tunnels won't start and you receive messages
announcing connection problems, it may be the fault of a misconfigured desktop
firewall. As only SuSE Linux and Windows XP come with preinstalled firewalls
which may conflict with OpenVPN, we will learn how to quickly deactivate them
for testing purposes.

Deactivating the Windows XP service pack 2
firewall
On Windows XP with service pack 2, you will find the firewall configuration as an
entry in the Control Panel. If you have service pack 2 installed, you will find an icon
Windows Firewall in the list of available control panel modules, as shown in the
following screenshot:

Configuring an OpenVPN Server—The First Tunnel

[140]

Double-click on the Windows Firewall icon to start the firewall configuration dialog.
A window like this will appear:

Activate the button Off (not recommended) to deactivate the Windows Firewall.
Click on OK to finish the setup. Your Windows system is unprotected now.

It is considered unwise to have a running Windows system without
a firewall. But for our OpenVPN test-bed, this is acceptable. Please
do not use this in production environments. In Chapter 8,
we will deal with the correct firewall setup for an OpenVPN host.

If you do not want to deactivate your Windows firewall, then you can explicitly
allow OpenVPN access to the Internet. If you start an OpenVPN connection, then
you may be asked by your firewall software:

Chapter 7

[141]

This Windows Security Alert dialog informs you that a local program called
openvpn (strange, isn't it?) wants to accept connections from the Internet. Click on
Unblock here and OpenVPN should work fine with the Windows firewall.

Stopping the SuSE firewall
On SuSE Linux you can use YaST to deactivate your desktop firewall. Start YaST
from the main menu and enter your root password. Change to the Security and
Users module, and left-click on the Firewall icon. The following dialog is opened:

Configuring an OpenVPN Server—The First Tunnel

[142]

This window will show the current state of your firewall. Depending on your settings
(and your selections during installation), it may be active or inactive and can be
started manually or automatically. Set your firewall configuration as in the previous
screenshot, which means that it is not started automatically, and it is not running:

•	 Click on the Stop Firewall Now button to stop the firewall on your
SuSE system.

•	 Activate the button Disable Firewall Automatic Starting to prevent the
firewall from being started at boot time.

Even though there are no viruses and fewer security issues
related to Linux systems, you should always protect your
systems with a firewall. Consider the deactivation of the
firewall only reasonable for testing purposes.

If you have a different firewall system running on your OpenVPN host, you will
have to check the software documentation. The following hint may be helpful.

Standard OpenVPN configuration initializes connections on
UDP port 1194. If you want your system to answer OpenVPN
connection requests, then you have to allow this port.

Summary
In this chapter we have successfully configured our first tunnel. We have connected
Windows and Linux systems and safely transferred the necessary encryption keys
using WinSCP. We have learnt to use the tool dos2unix to correct the plaintext files
exchanged. After that, we tested the tunnels and activated them at boot time on both
systems, including a short introduction to the Linux init system and runlevels. The
last topic we discussed was Windows and SuSE Linux firewall issues, including
stopping and deactivating these firewalls.

Setting Up OpenVPN with
X.509 Certificates

In this chapter, we will create X.509 server and client certificates for use with
OpenVPN. We will create a certificate authority, and sign and distribute new
certificates. We will use easy-rsa, which comes with OpenVPN and exists for both
Windows and Linux. This tool allows creation and administration of certificates that
have to be transferred to the machines that are supposed to take part in the VPN.

Creating certificates
In the last chapter we successfully set up our first tunnels using pre-shared keys with
static encryption, but in the initial chapters we learned why X.509 certificates provide
a much better level of security than pre-shared keys do. There is, however, slightly
more work to be done to set up and connect two systems with certificate-based
authentication. The following five steps have to be accomplished:

1.	 Create a CA certificate for your CA with which we will sign and revoke
client certificates.

2.	 Create a key and a certificate request for the clients.
3.	 Sign the certificate request using the CA certificate thereby making it valid.
4.	 Provide keys and certificates to the VPN partners.
5.	 Change the OpenVPN configuration so that OpenVPN will use the

certificates and keys, and restart OpenVPN.

Setting Up OpenVPN with X509 Certificates

[144]

There are several ways to accomplish these steps. The easy-rsa is a
command-line tool that comes with OpenVPN, and exists on both Linux and
Windows. On Windows systems you could create certificates by clicking on the
batch files in the Windows Explorer, but starting the batch files at the command-line
prompt should be the better solution. On Linux you type the full path of the scripts,
which share the same name as on Windows, simply without the extension .bat.

Certificate generation on Windows
Server 2008 with easy-rsa
The following description has been tested on Windows 2000, Windows Vista,
and Windows Server 2008. Open the Windows Explorer and change to the directory
C:\Program Files\OpenVPN\easy-rsa\. The Windows version of easy-rsa
consists of thirteen files. On Linux systems, you will have to check your package
management tools to find the right path to the easy-rsa scripts. On Debian Linux,
you will find them in /usr/share/doc/openvpn/examples/easy-rsa/, SuSE users
may want to have a look in /usr/share/openvpn/easy-rsa.

Chapter 8

[145]

You find there are eight batch files, four configuration files, and a README (which is
actually not that helpful). However, we must now create a directory called keys, copy
the files serial.start and index.txt.start into it, and rename them to serial
and index.txt respectively. The keys and certificates created by easy-rsa will be
stored in this directory. These files are used as a database for certificate generation.

Now we let easy-rsa prepare the standard configuration for our certificates.
Double-click on the file C:\Program Files\ OpenVPN\easy-rsa\init-config.bat
or start this batch file at a command-line prompt. It simply copies the template files
vars.bat.sample to vars.bat and openssl.cnf.sample to openvpn.ssl. While
the file openssl is a standard OpenSSL configuration, the file vars.bat contains
variables used by OpenVPN's scripts to create our certificates, and needs some
editing in the next step.

Setting variables—editing vars.bat
Right-click on the vars.bat file's icon and select Edit from the menu.

Setting Up OpenVPN with X509 Certificates

[146]

In this file, several parameters are set that are used by the certificate generation
scripts later. The following table gives a quick overview of the entries in the file:

Entry in vars.bat Function
set HOME=%ProgramFiles%\OpenVPN\
easy-rsa

The path to the directory where
easy-rsa resides.

set KEY_CONFIG=openssl.cnf The name of the OpenSSL
configuration file.

set KEY_DIR=keys The path to the directory where
the newly generated keys are
stored—relative to $HOME as set above.

set KEY_SIZE=1024 The length of the SSL key. It often
makes sense to increase this to 2048.

Setting the last five entries to your needs might be very helpful later. Every time we
generate a certificate, easy-rsa will ask (among others) for these five parameters,
and give a suggestion that could be accepted simply by pressing Enter. The better the
default values set here in vars.bat fit our needs, the less typing work we will have
later. I leave it up to you to change these settings here.

The next step is easy. Run vars.bat to set the variables. Even though you could
simply double‑click on its explorer icon, I recommend that you run it in a shell
window. Select the entry Run from Windows' main menu, type cmd.exe, and change
to the easy-rsa directory by typing cd "C:\Program Files\OpenVPN\easy-rsa\"
and pressing Enter. As next step, proceed in exactly the same way as we would do on
a Linux system (except for the .bat extensions).

Creating the Diffie-Hellman key
Now it is time to create the keys that will be used for encryption, authentication, and
key exchange. For the latter, a Diffie-Hellman key is used by OpenVPN. The Diffie-
Hellman key agreement protocol enables two communication partners to exchange
a secret key safely. No prior secrets or safe lines are needed. A special mathematical
algorithm guarantees that only the two partners know the used shared key. If you
would like to know exactly what this algebra is about, have a look at this web site:
http://www.rsasecurity.com/rsalabs/node.asp?id=2248.

The easy-rsa provides a script (batch) file that generates the key for
you: C:\Program Files\OpenVPN\easy-rsa\build-dh.bat. Start it by typing
build-dh.bat. A Diffie-Hellman key is being generated. The batch file tells you,
This is going to take a long time, which is only true if your system is really old
or if you are not patient enough. However, on modern systems some minutes
may be a horribly long time span!

Chapter 8

[147]

Building the certificate authority
OK, now it's time to generate our first CA.

Enter build-ca.bat. This script generates a self-signed certificate for a CA. Such a
certificate can be used to create and sign client certificates and thereby authenticate
other machines. Depending on the data you entered in your vars.bat file, build-
ca.bat will suggest different default parameters during the process of generating
this certificate. Five of the seven listed lines are taken from the variables set in vars.
bat. If you edited these parameters, a simple return will do here and the certificate
for the CA is generated in the keys directory. Let's now have a look there. Point your
Windows Explorer to it and you will see that the following files have been created:

Setting Up OpenVPN with X509 Certificates

[148]

The build-ca.bat script of easy-rsa has created a certificate file ca.crt and a CA
key file ca.key. The build-dh.bat script has built a dh1024.pem Diffie-Hellman
key file, where the length of this key is part of the filename—if you use 2048-bit keys,
this file will be named dh2048.pem. Really paranoid (but patient) readers may find a
dh4096.pem file.

The file ca.crt is needed by all machines that are supposed to connect to your
server, whereas the dh2048.pem file must only be available on the server.

Please note that whoever owns the file ca.key (and ca.crt)
 is able to sign requests for your CA. Therefore, this file must be
kept absolutely secret and should never leave the CA server. This
file is essential and is the central key to your VPN. It should be kept
protected on one computer strictly. Many experts advise you to use
a dedicated machine without network connection (local login only)
and strict access rules for this purpose.

Generating server and client keys
Our next step is to provide a VPN server certificate and a key, and have it signed
from the CA. Or, to be more precise, we will create a certificate request that will
be signed by the CA. An unsigned request cannot be used. Like a passport
not stamped or unsigned by your local authority, there is no use for an
unsigned certificate request. Again, batch files are provided to fulfill this task.
Start build-key-server.bat VPN-Server at your command-line prompt. The
parameter you give to this script is the template name used for the files. In this
example, we will use VPN-Server as an example.

A 2048-bit private RSA key is generated. Again, the values derived from the
parameters in your vars.bat are provided as default and can be accepted by
simply pressing Enter. However, in the field Common Name, you should be very
specific and enter a distinguished name for your VPN server. Every time you
generate a certificate/key pair, you should enter the name for the machine you want
to use this certificate/key pair on. It makes sense to use the same name you chose
as command-line argument. As we will see later in this book, OpenVPN can have
different configurations based on and distinguished by the value that you enter here,
and choosing names skillfully here can save a lot of work later.

Chapter 8

[149]

If you want, you can also enter some extra attributes, like a password that needs to
be entered every time the certificate is used or an optional company name. However,
if you enter a password here, no one (including no service) can set up a connection
without this password. I leave it up to you to decide if this makes sense, if you are a
little inclined to paranoia it will.

Even though on Windows Server 2008 the Release Candidate of OpenVPN reports
an error (/usr/local/ssl/openssl.conf not found), it seems to work without
error. After the certificate request is generated, the batch script asks you if you want
to have it signed by the CA. Simply enter Y twice, and the request is signed.

Setting Up OpenVPN with X509 Certificates

[150]

Let's again have a look at the keys directory. Three files whose name starts with VPN-
Server have been generated: VPN-Server.key, VPN-Server.crt, and VPN-Server.
csr. The file with the extension .key is the server key, the file with the extension
.crt contains the server certificate, and the file VPN-Server.csr holds the certificate
created in the step before.

What does that mean now? Right, we have a certificate/key pair for our VPN server
that tells everybody that the machine owning and using this pair is (or was) trusted
by the CA we created before. With newer Windows systems a user can open the
.crt file and have the information displayed in a nice dialogue:

Chapter 8

[151]

What a pity that nobody else knows about this authority up till now. Let's hurry to
change this and create a certificate for the client.

Not very surprisingly, another batch file will help us here. It's called build-key.
bat and you should give the name of the VPN client as a command-line parameter. I
chose VPN-Client just to have a simple, recognizable name.

Create another (or many) signed certificate(s) for the other
tunnel partner(s) with the batch script build-key.bat.

Setting Up OpenVPN with X509 Certificates

[152]

Distributing the files to the VPN partners
Again, in your keys directory you will find three new files VPN-Client.csr,
VPN-Client.key, and VPN-Client.crt, two of which need to be transferred to
the VPN partner. Do you know which ones, already? The following table gives
an overview of the files we have created up to now and the ones that have to be
transferred to our client.

File Location and purpose
VPN-Server.crt Signed certificate of the VPN-Server, must be on VPN-Server.
VPN-Server.key Private RSA key of the VPN-Server, must be on VPN-Server.
VPN-Server.csr Certificate signing request of VPN-Server, can be deleted.
VPN-Client.crt Signed certificate of the VPN-client, must be on VPN-Client.

VPN-Client.key Private RSA key of the VPN-client, must be on VPN-Client.

VPN-Client.csr Certificate signing request of VPN-Client, can be deleted.

ca.crt CA certificate, must be available on both machines.

ca.key The key to the CA, must be kept only on CA. Must be kept very
secret, as it can be used to sign valid certificates that allow access
to your services and networks.

Chapter 8

[153]

OK, we must transfer three files, VPN-Client.crt, VPN-Client.key, and ca.crt
to our VPN client. Maybe you want to use the PKCS12 file format, which bundles
all three files into one, but the standard consists of three separate files. In any case,
we have to use a secure transfer method to do so. If the client is a Linux machine,
we will use WinSCP to accomplish that. Start WinSCP and change to the remote
directory /etc/openvpn on the Linux machine. Create a directory /etc/openvpn/
keys. Although this is not really necessary, a reasonable directory structure is very
helpful and makes administration much easier.

Copy the three files by drag-and-drop to the remote directory. Then create a local
directory called keys under C:\Program Files\OpenVPN\config\ and copy the
three files VPN-Server.crt, VPN-Server.key, ca.crt, and dh1024.pem into this
directory. These are the files needed on the VPN server.

The following image shows the server's key directory below easy-rsa on the left
and the Linux client's configuration directory /etc/openvpn on the right.

As a last step, we must adapt our configuration files so that OpenVPN uses X.509
certificates and knows where to find them.

Setting Up OpenVPN with X509 Certificates

[154]

Configuring OpenVPN to use certificates
Open the configuration file in your favorite editor, of course you may also
use Notepad.

All you have to do here is put # in front of the entry secret key.txt, which we
adapted in our last chapter, and add the following five entries:

Entry in config file Function
tls-server OpenVPN will run in TLS-server mode (on a

client you will have to add TLS-client)
dh keys/dh2048.pem Use the Diffie-Hellman key stored in keys/

dh2048.pem

ca keys/ca.crt Use the CA certificate in keys/ca.crt
cert keys/VPN-Server.crt Use my certificate in keys/VPN-Server.crt

Chapter 8

[155]

In my test-bed network, where the local net is 10.10.10.0/24 and the tunnel network
is 10.3.0.0/24, the simplest possible configuration file (C:\Program Files\OpenVPN\
config\sample.ovpn on Windows) for an X.509-enabled OpenVPN server is:

dev tap
ifconfig 10.3.0.1 255.255.255.0
tls-server
dh keys/dh1024.pem
ca keys/ca.crt
cert keys/VPN-Server.crt
key keys/VPN-Server.key

If you are using a Linux machine as a server, you should adjust the file permissions
with the command chmod go-x /etc/openvpn/keys/*. This command makes the
keys and certificates only readable for Root. Now let's test this configuration:

vpnserver:/etc/openvpn# openvpn --config cert-server.conf
Tue Feb 17 00:00:00 2009 OpenVPN 2.0.9 i486-pc-linux-gnu [SSL] [LZO]
[EPOLL] built on Sep 20 2007
Tue Feb 17 00:00:00 2009 IMPORTANT: OpenVPN's default port number
is now 1194, based on an official port number assignment by IANA.
OpenVPN 2.0-beta16 and earlier used 5000 as the default port.
Tue Feb 17 00:00:00 2009 TUN/TAP device tap0 opened
Tue Feb 17 00:00:00 2009 ifconfig tap0 10.3.0.1 netmask 255.255.255.0
mtu 1500 broadcast 10.3.0.255
Tue Feb 17 00:00:00 2009 UDPv4 link local (bound): [undef]:1194
Tue Feb 17 00:00:00 2009 UDPv4 link remote: [undef]

Everything is fine, the server is running and waiting for clients to connect.

And the simplest possible configuration file for a client is:

remote 10.10.10.103
dev tap
tls-client
ifconfig 10.3.0.2 255.255.255.0
dh keys/dh2048.pem
ca keys/ca.crt
cert keys/VPN-Client.crt
key keys/VPN-Client.key

Change the OpenVPN configuration on the two systems to the values
above. Rename the Linux file's extension to .conf and make sure
the Windows file's name ends with .ovpn.

Setting Up OpenVPN with X509 Certificates

[156]

It's as simple as that. And the best thing is that this configuration is the same on all
platforms. Simply edit your openvpn configuration file on the Linux machine as in
the previous example, restart your openvpn services, and the tunnels will come up,
but this time safe and secure with X.509 certificates.

vpnserver:/etc/openvpn# openvpn --config cert-server.conf
Tue Feb 17 00:18:24 2009 OpenVPN 2.0.9 i486-pc-linux-gnu [SSL] [LZO]
[EPOLL] built on Sep 20 2007
Tue Feb 17 00:18:24 2009 IMPORTANT: OpenVPN's default port number
is now 1194, based on an official port number assignment by IANA.
OpenVPN 2.0-beta16 and earlier used 5000 as the default port.
Tue Feb 17 00:18:24 2009 TUN/TAP device tap0 opened
Tue Feb 17 00:18:24 2009 ifconfig tap0 10.3.0.1 netmask 255.255.255.0
mtu 1500 broadcast 10.3.0.255
Tue Feb 17 00:18:24 2009 UDPv4 link local (bound): [undef]:1194
Tue Feb 17 00:18:24 2009 UDPv4 link remote: [undef]
Tue Feb 17 00:18:26 2009 [VPN-Client] Peer Connection Initiated with
10.10.10.111:1194
Tue Feb 17 00:18:27 2009 Initialization Sequence Completed

If you do not believe, check it by the command ping on either side of the tunnel.

mfeilner@vpnserver:~$ ping 10.3.0.2
PING 10.3.0.2 (10.3.0.2) 56(84) bytes of data.
64 bytes from 10.3.0.2: icmp_seq=1 ttl=128 time=27.0 ms
64 bytes from 10.3.0.2: icmp_seq=2 ttl=128 time=26.7 ms
64 bytes from 10.3.0.2: icmp_seq=3 ttl=128 time=26.9 ms
64 bytes from 10.3.0.2: icmp_seq=4 ttl=128 time=25.7 ms
64 bytes from 10.3.0.2: icmp_seq=5 ttl=128 time=29.2 ms

--- 10.3.0.2 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4000ms
rtt min/avg/max/mdev = 25.701/27.151/29.253/1.164 ms
mfeilner@vpnserver:~$

Use ping to test the tunnel once OpenVPN reports
'Peer Connection Initiated'.

Chapter 8

[157]

Using easy-rsa on Linux
We have learned earlier that easy-rsa is a part of OpenVPN and available on
all platforms. Because we have worked through the generation of certificates on
Windows, we will now have a look at the same process on a Linux system. On
Debian Linux, easy-rsa can be found in the directory /usr/share/doc/openvpn/
examples/easy-rsa. Start a root shell and change to this directory:

vpnserver:/usr/share/doc/openvpn/examples/easy-rsa# ls -l
insgesamt 80
drwxr-xr-x 2 root root 4096 2008-03-10 00:37 2.0
-rwxr-xr-x 1 root root 242 2005-11-01 11:06 build-ca
-rwxr-xr-x 1 root root 228 2005-11-01 11:06 build-dh
-rwxr-xr-x 1 root root 529 2005-11-01 11:06 build-inter
-rwxr-xr-x 1 root root 516 2005-11-01 11:06 build-key
-rwxr-xr-x 1 root root 424 2005-11-01 11:06 build-key-pass
-rwxr-xr-x 1 root root 695 2005-11-01 11:06 build-key-pkcs12
-rwxr-xr-x 1 root root 662 2005-11-01 11:06 build-key-server
-rwxr-xr-x 1 root root 466 2005-11-01 11:06 build-req
-rwxr-xr-x 1 root root 402 2005-11-01 11:06 build-req-pass
-rwxr-xr-x 1 root root 280 2005-11-01 11:06 clean-all
-rw-r--r-- 1 root root 264 2005-11-01 11:06 list-crl
-rw-r--r-- 1 root root 268 2005-11-01 11:06 make-crl
-rw-r--r-- 1 root root 7487 2005-11-01 11:06 openssl.cnf
-rw-r--r-- 1 root root 2619 2005-11-01 11:06 README.gz
-rw-r--r-- 1 root root 268 2005-11-01 11:06 revoke-crt
-rwxr-xr-x 1 root root 593 2005-11-01 11:06 revoke-full
-rwxr-xr-x 1 root root 411 2005-11-01 11:06 sign-req
-rw-r--r-- 1 root root 1266 2005-11-01 11:06 vars
vpnserver:/usr/share/doc/openvpn/examples/easy-rsa#

As you can see, this directory contains all the scripts that we have used on Windows,
and some more too. On Linux, there is a file called vars, which is a shell script that
contains all the information and variables like its Windows counterpart, vars.bat.

On Debian Linux, easy-rsa is located in /usr/share/doc/openvpn/
examples/easy-rsa. Start a root shell and change to this directory.

Setting Up OpenVPN with X509 Certificates

[158]

Preparing variables in vars
Open vars with your favorite editor and change the certificate values to fit your
needs. Don't forget to point the entry export KEY_DIR to an existing directory or
create the directory /usr/share/doc/openvpn/examples/easy-rsa/keys. Create
the two files index.txt and serial in this directory before proceeding.

On Windows, vars.bat is a batch file that simply is executed, on Linux it is sourced,
which means that the shell reads this file and sets the environment variables
you defined in it—a very common way to read configuration files on Linux. The
command for this purpose is called source, and its abbreviation is simply a dot.

Now type source vars or simply .vars to have your shell read the configuration
variables you edited.

vpnserver:/usr/share/doc/openvpn/examples/easy-rsa# . vars
NOTE: when you run ./clean-all, I will be doing a rm -rf on /usr/
share/doc/openvpn/examples/easy-rsa/keys
vpnserver:/usr/share/doc/openvpn/examples/easy-rsa#

The note you receive is important. In this directory, there is a script called
clean-all, which removes all old configurations and keys you created previously
from the keys directory you enter in vars. If you want to execute clean-all, be sure
to back up all files you might need later on. Normally there should be no need to run
clean-all.

Creating the Diffie-Hellman key and the
certificate authority
As our next step we will create a Diffie-Hellman key with the script build-dh.
On most Linux systems, the working directory is not in the path of the user root,
so you have to invoke it with ./build-dh.

vpnserver:/usr/share/doc/openvpn/examples/easy-rsa# ./build-dh
Generating DH parameters, 1024 bit long safe prime, generator 2
This is going to take a long time
....+........+.+......+.......................+.......................
.....................+.
(...)

Chapter 8

[159]

Now your system might be occupied for some time, busily calculating a 1024-bit
prime number. If you want to set the key size to 2048, have a look in /usr/share/
doc/openvpn/examples/easy-rsa/vars, as we did on Windows. And once we're
ready again, create the certificate for the CA.

vpnserver:/usr/share/doc/openvpn/examples/easy-rsa# ./build-ca
Generating a 2048 bit RSA private key
...++++++
.............++++++
writing new private key to 'ca.key'

You are about to be asked to enter information that will be
incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or
a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [DE]:
State or Province Name (full name) [BY]:
Locality Name (eg, city) [Regensburg]:
Organization Name (eg, company) [Feilner-IT]:
Organizational Unit Name (eg, section) []:
Common Name (eg, your name or your server's hostname) []:CA-Server
Email Address [security@feilner-it.net]:
vpnserver:/usr/share/doc/openvpn/examples/easy-rsa# ls -l keys
total 12
-rw-r--r-- 1 root root 1245 2005-11-20 00:17 ca.crt
-rw------- 1 root root 887 2005-11-20 00:17 ca.key
-rw-r--r-- 1 root root 245 2005-11-20 00:14 dh1024.pem
vpnserver:/usr/share/doc/openvpn/examples/easy-rsa#

Certificate and key have been created in the directory /usr/share/doc/openvpn/
examples/easy-rsa/keys.

Creating the first server certificate/key pair
Now we can create the first certificate/key pair for our first VPN server. Remember,
that the Common Name can be used to recognize a client authenticating with this
certificate, so choose a distinguishing name here. After generation of the certificate,
we are asked if we want to sign the certificate using the CA's certificate.

Setting Up OpenVPN with X509 Certificates

[160]

Start creation of a certificate/key pair called VPN-Server with the command
/build-key VPN-Server.

vpnserver:/usr/share/doc/openvpn/examples/easy-rsa# ./build-key VPN-
Server
Generating a 1024 bit RSA private key
......++++++
...++++++
writing new private key to 'VPN-Server.key'

You are about to be asked to enter information that will be
incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or
a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [DE]:
State or Province Name (full name) [BY]:
Locality Name (eg, city) [Regensburg]:
Organization Name (eg, company) [Feilner-IT]:
Organizational Unit Name (eg, section) []:
Common Name (eg, your name or your server's hostname) []:VPN-Server
Email Address [security@feilner-it.net]:

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
Using configuration from /usr/share/doc/openvpn/examples/easy-rsa/
openssl.cnf
Check that the request matches the signature
Signature ok
The Subject's Distinguished Name is as follows
countryName :PRINTABLE:'DE'
stateOrProvinceName :PRINTABLE:'BY'
localityName :PRINTABLE:'Regensburg'
organizationName :PRINTABLE:'Feilner-IT'
commonName :PRINTABLE:'VPN-Server'
emailAddress :IA5STRING:'security@feilner-it.net'
Certificate is to be certified until Nov 17 23:40:04 2015 GMT (3650
days)
Sign the certificate? [y/n]:y

Chapter 8

[161]

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated
vpnserver:/usr/share/doc/openvpn/examples/easy-rsa#

Enter a distinguishing Common Name and enter Y twice to have the certificate signed.
The certificate and key file are created in /usr/share/doc/openvpn/examples/
easy-rsa/keys.

vpnserver:/usr/share/doc/openvpn/examples/easy-rsa# ls -l keys/
total 44
-rw-r--r-- 1 root root 3653 2005-11-20 00:40 01.pem
-rw-r--r-- 1 root root 1233 2005-11-20 00:39 ca.crt
-rw------- 1 root root 887 2005-11-20 00:39 ca.key
-rw-r--r-- 1 root root 245 2005-11-20 00:37 dh1024.pem
-rw-r--r-- 1 root root 104 2005-11-20 00:40 index.txt
-rw-r--r-- 1 root root 21 2005-11-20 00:40 index.txt.attr
-rw-r--r-- 1 root root 0 2005-11-20 00:31 index.txt.old
-rw-r--r-- 1 root root 3 2005-11-20 00:40 serial
-rw-r--r-- 1 root root 3 2005-11-20 00:31 serial.old
-rw-r--r-- 1 root root 3653 2005-11-20 00:40 VPN-Server.crt
-rw-r--r-- 1 root root 688 2005-11-20 00:40 VPN-Server.csr
-rw------- 1 root root 887 2005-11-20 00:40 VPN-Server.key
vpnserver:/usr/share/doc/openvpn/examples/easy-rsa#

Now we have the certificate for the CA and a certificate and key for the first
OpenVPN machine.

Creating further certificates and keys
Let's repeat the last step for a second machine, which is called VPN-client:

vpnserver:/usr/share/doc/openvpn/examples/easy-rsa# ./build-key-server
VPN-Client
Generating a 1024 bit RSA private key
.........................++++++
(...)

That's it! Repeat the last command for every machine you want to equip with a
certificate. You will find the certificate, key, and CA certificate in /usr/share/doc/
openvpn/examples/easy-rsa/keys (or the path you specified in the file vars).
Transfer these files to the machines involved in your VPN using a secure method.
WinSCP works perfectly here, if you have Windows clients, the command-line tool
scp (from the sshd package) is the best choice for data exchange between systems
with SSH servers (most Linux/Unix systems).

Setting Up OpenVPN with X509 Certificates

[162]

Troubleshooting
If you run into problems, check the following:

•	 Ensure basic network connectivity between the two systems. Can they ping
each other without problems? Are there firewalls involved between them?

•	 Disable all firewalls on both systems during testing the tunnels. We will later
set them up properly. Remember that both Windows XP and SuSE activate
their firewall solutions by default.

•	 OpenVPN and X.509 certificates need synchronized time on both systems
for reasonable validity checks. For testing purposes you can set the time by
hand. On Linux, the commands date and hwclock will help you. For the
production environment a time server client should be set up. On Linux,
ntp is probably the most common one, its homepage offers documentation:
http://www.eecis.udel.edu/~ntp/.

•	 If you copy the files from a Windows machine to a Linux machine, remember
to have dos2unix run and convert the end-of-line characters. The same
applies to configuration files, certificates, and keys created on Linux and
transferred to Windows—apply unix2dos before transfer. Depending on
your Linux system and OpenVPN version, it may be necessary to change the
file access permissions in the keys directory as follows:

vpnserver:~# cd /etc/openvpn/keys
vpnserver:/etc/openvpn/keys# ls -l
total 16
-rw------- 1 root root 1606 2005-11-05 09:54 ca.crt
-rw------- 1 root root 4948 2005-11-05 09:55 VPN-Client.crt
-rw------- 1 root root 1679 2005-11-05 09:55 VPN-Client.key
vpnserver:/etc/openvpn/keys#

•	 If file permissions are set less restrictively, some OpenVPN versions may
refuse to start.

•	 Check the data you enter during the process of creating the certificates.
Ensure that you have not misspelled anything and that there are no typos.
Any character different in the certificates can cause the process of connecting
the systems to fail.

If you have checked this, repeat the process of certificate generation with
easy-rsa and enter your data carefully. Analyze the logfile entries in the
Windows main menu and context menu of the OpenVPN GUI or have a look
at the output of openvpn at the command line when invoked manually.

Chapter 8

[163]

Summary
In this chapter we have used the scripts in the easy-rsa directory, provided
with OpenVPN, to create a CA, a Diffie-Hellman key, and both keys, certificate
requests, and keys for the two VPN partners. The client and server certificates were
automatically signed during creation. After having them transferred to the VPN
partner (Windows or Linux), we started the new, secure tunnel.

The Command openvpn and
Its Configuration File

In this chapter we will have a look at the syntax of the command-line tool openvpn,
which enables us to build tunnels quickly. By analyzing the standard configuration
file we used to set up a tunnel with a pre-shared key, we will now dive into the
depths of the configuration options of openvpn. This way, we will learn about basic
tunnel network setup and control, compression, and debug output.

As a next step, the configuration file containing the certificate-based tunnel created
in Chapter 8 will be in our focus. From then on we will go through several groups
of parameters that can be given to openvpn (be it in a configuration file or at the
command-line prompt). We will deal with examples for many of these parameters
and look at scenarios where they might prove helpful. Parameters available in server
and client mode, encryption, and Windows-specific options are explained.

Many of the following options are explained in detail on the manual page of
OpenVPN. The explanations (especially in the tables) are close to the explanations in
the man page, some details and examples have been added, some removed. If you
feel unsure about some options, have a closer look at the man page, which is updated
regularly on the web site.

A subsection at the end of this chapter deals with new features of version 2.1
of OpenVPN.

The Command openvpn and its Configuration File

[166]

Syntax of openvpn
In the previous chapters we have invoked openvpn at the command line several
times. On Windows, this is an easy way to get more detailed output during
troubleshooting, on Linux it is the normal way to set up a tunnel quickly. And on
both systems this is what lies beneath the services layer or the GUI tools.

OpenVPN on both Windows and Linux is called by start scripts that add special
parameters to the command openvpn. Normally, there is (among others) the
parameter --config (followed by a filename), which lets openvpn read a
configuration file, on Linux normally a file in /etc/openvpn/. On Windows
configuration files have the extension .ovpn and on Linux, .conf. The start scripts
will read all configuration files in the configuration file directory and start the
tunnels described in them. If you have three .conf files in your Linux configuration
directory, openvpn will try to start three tunnels. The same applies for .ovpn files on
Windows and if you double-click such a file on Windows, a tunnel should be started.

OpenVPN command-line parameters
Our first tunnel from the Linux system was configured in a configuration file
transferred from the Windows VPN partner. OpenVPN had to be told where this
configuration file is to be found, so we started it with openvpn --config sample.
ovpn. We now know that the extension .ovpn is typical for the Windows version
of OpenVPN. Basically, you could use any extension you like, but only tunnels
described in .ovpn and .conf files will be started automatically. The Linux system
would not start a tunnel described in this file automatically until you rename the file
to a .conf extension (and restart the service).

Although, this was the first time we called openvpn, it already shows its syntax:

openvpn <option1> <parameter(s)> ... <optionn> <parameter(s)>

Parameters and options for OpenVPN are either stored in a configuration file or
entered at the command-line prompt. Normally there is no difference between the
name of the command-line option and the configuration file parameter, of course
with the exception of the following parameters:

•	 --config <file>: Directs to the location of the configuration file
•	 --help: Gives you a brief introduction to the syntax of openvpn
•	 --version: Prints the installed version and copyright information

Chapter 9

[167]

Parameter Options Function Usage
config <file> Directs openvpn to the location of

the configuration file
Command line only

help - Prints help and a list of options Command line only
version - Prints the version of OpenVPN Command line only

The following code extract shows the first lines of the output of openvpn --help:

vpnserver:/root# openvpn --help
OpenVPN 2.0.9 i486-pc-linux-gnu [SSL] [LZO] [EPOLL] built on Sep 20 20
07

General Options:
--config file : Read configuration options from file.
--help : Show options.
--version : Show copyright and version information.
(...)

Using OpenVPN at the command line
In the course of this book we have already invoked openvpn several times from a
command line. As a first example, we built a tunnel with a pre-shared key and a
rather simple configuration file. Even though there are some other parameters set in
the standard configuration file we used, the easiest command to start a tunnel with a
static key is:

vpnserver:/etc/openvpn# openvpn --remote <IP of System B> --dev tun1
--ifconfig 10.3.0.1 10.3.0.2 --secret /etc/openvpn/key.txt

You see, it's very easy to connect two systems with an openvpn tunnel, when we
know their IPs. All we need is a pre-shared key, a tunnel IP, and a decision on which
device type to use.

If the second tunnel endpoint is a Linux system already provided with the
pre-shared key /etc/openvpn/key.txt, then all we need to do to start our
tunnel is enter the aforementioned command on system A, and enter the following
command on system B:

/etc/openvpn# openvpn --remote <IP of System A> --dev tun1 --ifconfig
10.3.0.2 10.3.0.1 --secret /etc/openvpn/key.txt

That's all. Your tunnel is up and running. However, this tunnel is rather temporary
and will be closed when you exit the shell around it. Nevertheless, you may consider
it a convenient method to start and stop quick tunnels, especially for testing purposes.

The Command openvpn and its Configuration File

[168]

The following table gives an overview on the parameters used here:

Parameter Options Function Usage Example
remote <hostname>

<IP>
Points to the
other tunnel
endpoint

Command
line and
config file

--remote vpn.
dyndns.org

dev <device> Tells openvpn
which network
device (type) to
use

Command
line and
config file

--dev tun
--dev tap

ifconfig For TUN devices:
 <local IP>
<remote IP>
For TAP devices:
<local IP>
<subnet mask>

Sets tunnel
endpoints'
virtual IPs and
netmasks in the
tunnel

Command
line and
config file

--ifconfig
10.3.0.2
10.3.0.1
--ifconfig
10.3.0.2
255.255.255.0

secret File containing
the pre-shared
key

Tells openvpn
the location of
the pre-shared
key

Command
line and
config file

--secret key.txt

The parameter remote specifies the machine on which the OpenVPN
software is running and takes IPs or DNS entries as parameters.

In combination with DynDNS entries, we can build VPNs between dial-up network
lines based on cheap DSL lines, on both sides of the tunnel!

Depending on the device type we select, ifconfig must set the IP/netmask
combination differently. TUN devices are virtual point-to-point devices, and
therefore ifconfig must be provided with the virtual IP of the other point-to-point
partner. TAP devices, however, are virtual network devices and thus ifconfig
needs a netmask for this virtual network segment.

In our above example, openvpn is called in tun mode and the parameter ifconfig is
used with the options 10.3.0.2 10.3.0.1. This means that a virtual point-to-point
network is created between the two OpenVPN servers, with 10.3.0.1 and 10.3.0.2
as virtual endpoints.

The example below shows the correct ifconfig syntax for a tap device: --ifconfig
10.3.0.2 255.255.255.0. Since TAP devices provide virtual Ethernet segments,
a netmask is needed.

Chapter 9

[169]

TUN devices provide routing mode and start a virtual point-to-point
connection, TAP devices provide bridging mode and start a virtual
network segment. The parameter ifconfig needs the two tunnel
IPs when we are using tun devices, and the local IP along with
netmask, when we are using tap devices.

Parameters used in the standard
configuration file for a static key client
When we want to connect a Linux system to a Windows XP system with the
standard configuration file that we used (and adapted slightly) in Chapter 5,
we have to change this command a little bit:

vpnserver:/etc/openvpn# openvpn --remote 10.10.10.103 --dev tap
--ifconfig 10.3.0.2 255.255.255.0 --secret key.txt --comp-lzo

Fri Nov 18 22:35:15 2005 OpenVPN 2.0.9 i486-pc-linux-gnu [SSL] [LZO]
[EPOLL] built on Sep 20 2007

Fri Nov 18 22:35:15 2005 LZO compression initialized

Fri Nov 18 22:35:15 2005 TUN/TAP device tap0 opened

Fri Nov 18 22:35:15 2005 /sbin/ifconfig tap0 10.3.0.3 netmask
255.255.255.0 mtu 1500 broadcast 10.3.0.255

Fri Nov 18 22:35:15 2005 UDPv4 link local (bound): [undef]:1194

Fri Nov 18 22:35:15 2005 UDPv4 link remote: 10.10.10.103:1194

Compressing the data
Until OpenVPN 1.5, Windows needed TAP devices, thus the option --dev
has the parameter tap instead of tun, and in the standard configuration file
the lzo compression is activated, that's why I typed –comp-lzo at the end of my
command line.

Parameter Options Function Usage Example
comp-lzo <yes>

<no>
<adaptive>
(default)

openvpn uses
lzo library to
compress tunnel
traffic

Command
line and
configuration file

--comp-lzo

Normally, we do not need any option to this parameter, unless you want to control
compression of tunnel data more specifically (such as switching compression on/off
on the fly in server mode), the manual page will provide detailed information here too.

The Command openvpn and its Configuration File

[170]

The parameter comp-lzo activates compression of tunnel data.

Without further options, comp-lzo will use its adaptive algorithm. OpenVPN
checks compression efficiency regularly and adapts it to the results. By doing so,
compressed data will very likely not be compressed again, but other data have a high
probability of being compressed.

Now let's have a look at the other parameters used in the OpenVPN standard
configuration files. In Chapter 5, we adapted the configuration file for a client that
uses static keys.

On Windows, open the file C:\Program Files\OpenVPN\sample-config\
sample.ovpn in Notepad. On Linux, open the configuration file copied from the
Windows system.

In this file, there are some more parameters that we did not talk about. Some of them
are commented, either by a semi-colon or by a hash mark at the beginning of a line.
The following table gives an overview of ports, protocols, and network devices:

Parameter Options Function Usage Example
port <port number> Specifies the port

(both local and remote)
which OpenVPN
will use.

Command line and
configuration file

--port 5001

proto <udp>
<tcp-client>
<tcp-server>

Sets the protocol
OpenVPN uses.
A TCP client will try to
start connections, while
a TCP server only waits
for clients.

Command line and
configuration file

--proto udp
--proto tcp-
client
--proto tcp-
server

tun-mtu <mtu size> Sets the maximum
transmission units.

Command line and
configuration file

--tun-mtu 1200

dev <interface
name>

Specifies the name
of the interface to be
used. (Linux)

Command line and
configuration file

--devopenvpn1

dev-node <node name> Specifies the name
of an existing device
node to use. (Windows)

Command line and
configuration file

--dev node
tap9

dev-type tun or tap Specifies the type of
devices explicitly.

Command line and
configuration file

--dev-type tap

Chapter 9

[171]

You may have noticed that I left out two parameters: fragment and mssfix.
These two are relevant if you run into problems with Maximum Transmission
Units (MTUs) and datagram sizes when you are using UDP. I never ran into such
problems, but if you need more information, the online man page is very detailed,
and there are many reports of people who could solve speed issues by cutting down
the MTU.

With the parameter dev-node, you can tell openvpn to use a specific network device.
In the aforementioned example, I have entered openvpn1 as name of the device. This
is the name I gave the network adapter in the Network Connections module of the
Windows Control Panel. On Linux you can also simply set the name of the device as
an option to the parameter dev:

vpnserver:/etc/openvpn# openvpn --remote 10.10.10.103 –dev-type tap
--dev openvpn0 --ifconfig 10.3.0.2 255.255.255.0 --secret key.txt
--verb 1 --comp-lzo

A brief check with ifconfig shows that this command will have the tunnel created
over the network device openvpn0:

mfeilner@vpnserver:~$ /sbin/ifconfig
eth1 Protocol:Ethernet Hardware Address 06:1C:ED:9D:12:56
(…)
openvpn0 Protocol:Ethernet Hardware Address 06:1C:ED:9D:12:51
 inet Adresse:10.3.0.2 Bcast:10.3.0.255
Maske:255.255.255.0

On Windows you would need to add the parameter --dev-node followed by the
name of the network device you want to use.

The Command openvpn and its Configuration File

[172]

Controlling and restarting the tunnel
The following parameters from our standard file can be used by OpenVPN to
determine whether a tunnel is still up or already down.

Parameter Options Function Usage Example
ping <seconds> Sends a ping to

the other tunnel
partner through
the tunnel after
<seconds>
without traffic

Command
line and
configuration
file

--ping 10

ping-restart <seconds> After <seconds>
without receiving
any packet from
remote, the tunnel
will be restarted

Command
line and
configuration
file

--ping-
restart 60

ping-timer-
rem

- ping-restart
runs only when a
remote address is
given

Command
line and
configuration
file

--ping-
timer-rem

persist-tun - Keeps tun/
tap devices up
when openvpn is
restarted

Command
line and
configuration
file

--persist-
tun

persist-key - openvpn will not
re-read the keys on
a restart

Command
line and
configuration
file

--persist-
key

resolv-
retry

<seconds> This sets the time
for which openvpn
will try to resolve
a hostname before
giving up

Command
line and
configuration
file

--resolv-
retry 86400

OpenVPN brings some sophisticated tools to check tunnels and restart them, if they
are not working anymore.

•	 ping: This parameter is used to send ping packages through the tunnel to the
tunnel partner on a regular schedule.

•	 ping-restart: If the sender does not receive any traffic for the time span
defined by the parameter, openvpn assumes that this tunnel is dead and will
try to establish it again by restarting it.

Chapter 9

[173]

•	 ping-timer-rem: If you add the parameter ping-timer-rem, openvpn will
only start a tunnel if a remote address for the tunnel is given—thus a server
only listening for clients will not try to reconnect. If the option persist-tun
is set, openvpn will keep up the network devices used.

•	 persist-key: This parameter will prevent openvpn from re-reading
the key files on a restart. This should only be necessary when openvpn runs
as a non-privileged user without access to the key files.

Debugging output—troubleshooting
And last but not least, the parameters that define the verbosity and debugging
output of OpenVPN:

Parameter Options Function Usage Example
verb <verbosity

level>
Sets level of
verbosity, 0 is
lowest, 11 is
maximum detail
level

Command
line and
configuration
file

--verb 4

mute <number of
messages>

openvpn will print
only 10 consecutive
messages from the
same category

Command
line and
configuration
file

--mute 10

The parameter verb offers a range from 0 to 11 for the verbosity of the output
openvpn provides. Default for this parameter is 1, which should provide enough
output in most cases. Selecting 0 here will make openvpn provide messages only
when fatal errors occur. While levels 1-4 provide an increasing level of verbosity,
which is useful for administration, levels 5 and above are ideal only for debugging.
Following is an example for the output of openvpn concerning the successful
initialization of our sample connection:

vpnserver:/etc/openvpn# openvpn --remote 10.10.10.103 --dev tap
--ifconfig 10.3.0.2 255.255.255.0 --secret key.txt --verb 1 --comp-lzo
--dev tap1 --verb 11
(...)
t Nov 19 01:07:21 2005 us=949416 UDPv4 read returned 60
Sat Nov 19 01:07:21 2005 us=949642 UDPv4 READ [60] from
10.10.10.103:1194: DATA 01edfefe f6ed7f34 019f0f09 9c560481 084241cc
63d35cfd 71f001d8 d640fbe[more...]
Sat Nov 19 01:07:21 2005 us=949815 DECRYPT IV: 63d35cfd 71f001d8

The Command openvpn and its Configuration File

[174]

Sat Nov 19 01:07:21 2005 us=950033 DECRYPT TO: 00000220 43844441
fa2a187b f3641eb4 cb07ed2d 0a981fc7 48
Sat Nov 19 01:07:21 2005 us=950197 PID TEST 0:0 1132741697:544
Sat Nov 19 01:07:21 2005 us=950378 Peer Connection Initiated with
10.10.10.103:1194
Sat Nov 19 01:07:21 2005 us=950687 RECEIVED PING PACKET
Sat Nov 19 01:07:21 2005 us=950709 Initialization Sequence Completed
Sat Nov 19 01:07:21 2005 us=950724 TIMER: coarse timer wakeup 1
seconds
Sat Nov 19 01:07:21 2005 us=950741 PO_CTL rwflags=0x0001 ev=3
arg=0x08090424
Sat Nov 19 01:07:21 2005 us=950768 PO_CTL rwflags=0x0001 ev=4
arg=0x08090420
Sat Nov 19 01:07:21 2005 us=950788 I/O WAIT TR|Tw|SR|Sw [1/185372]
Sat Nov 19 01:07:23 2005 us=150719 event_wait returned 0
Sat Nov 19 01:07:23 2005 us=150773 I/O WAIT status=0x0020
Sat Nov 19 01:07:23 2005 us=150791 TIMER: coarse timer wakeup 5
seconds
Sat Nov 19 01:07:23 2005 us=150813 PO_CTL rwflags=0x0001 ev=3
arg=0x08090424
Sat Nov 19 01:07:23 2005 us=150851 PO_CTL rwflags=0x0001 ev=4
arg=0x08090420
Sat Nov 19 01:07:23 2005 us=150870 I/O WAIT TR|Tw|SR|Sw [5/185372]

A very helpful level of verbosity can be set by using --verb 5:
vpnserver:/etc/openvpn# openvpn --remote 10.10.10.103 --dev tap
--ifconfig 10.3.0.2 255.255.255.0 --secret key.txt --verb 1 --comp-lzo
--dev tap1 --verb 5
(...)
Sat Nov 19 01:38:53 2005 us=827058 UDPv4 link local (bound):
[undef]:1194
Sat Nov 19 01:38:53 2005 us=827200 UDPv4 link remote:
10.10.10.103:1194
RSat Nov 19 01:39:01 2005 us=970557 Peer Connection Initiated with
10.10.10.103:1194
Sat Nov 19 01:39:01 2005 us=970938 Initialization Sequence Completed
WRRwrWRwrWRwrWrWRwRw

As you can see in the last line, OpenVPN prints w's and r's for each packet
travelling through the tunnel. A capital letter stands for a packet read or written
to the TUN/TAP adapter, a small letter stands for a packet written or read in the
tunnel. This is really very useful, because you can easily track packets (like pings)
and find out how far they come. Set up your tunnel with verb 5 on both sides, ping
the other host from either side, and watch the debug output—there are four letters
for each ping: RwrW.

Chapter 9

[175]

Configuring OpenVPN with
certificates—simple TLS mode
In Chapter 8, we worked with a configuration file like the following:

remote 10.10.10.103
dev tap
tls-client
ifconfig 10.3.0.2 255.255.255.0
dh keys/dh2048.pem
ca keys/ca.crt
cert keys/VPN-Client.crt
key keys/VPN-Client.key

In the third line of our little configuration file, we find the parameter tls-client, on
our VPN-server we entered tls-server here. These entries cause openvpn to start
TLS to protect the data transferred. All machines involved in the VPN need the same
CA certificate and a local certificate and key pair issued by this CA. On connection,
the two partners exchange their local certificates and validate the partner's certificate
by checking if it was signed by the common CA. OpenVPN must know which files
contain the CA and local certificate and key.

The following table shows the main parameters that we need to adapt for use
with certificates:

Parameter Options Function Usage Example
dh <file> Defines

the Diffie-
Hellmann key

Command
line and
configuration
file

--dh keys/
dh2048.pem

ca <file> Defines the
certificate file of
the CA

Command
line and
configuration
file

--ca keys/
ca.crt

cert <file> Defines the
local machine's
certificate file

Command
line and
configuration
file

--cert keys/
VPN-Client.
crt

The Command openvpn and its Configuration File

[176]

Parameter Options Function Usage Example
key <file> Defines the

local machine's
key file

Command
line and
configuration file

--key keys/
VPN-Client.
key

tls-server - Local machine
acts as TLS
server

Command
line and
configuration file

--tls-server

tls-client - Local machine
acts as TLS
client

Command
line and
configuration file

--tls-client

The options tls-server and tls-client affect only the way in which the TLS
handshake is dealt with and have no further consequences for OpenVPN. The
section below called Encryption parameters lists further options, for example how to
use Keys stored in PKCS formats.

Overview of OpenVPN parameters
The table in the following section is a detailed list of all parameters OpenVPN offers
concerning basic tunnel options. They can be used both at the command line and in
configuration files.

General tunnel options
Most of these options are used to determine the way in which openvpn connects to
the tunnel partner and how it deals with connections not responding or changing.

Parameter Options Function Usage
local <host> Binds local service to the address of

<host>. Useful if you want openvpn
to run only on one interface of a host,
with multiple home sites.

--local
192.168.0.50

remote <host> Connects to the host. IP or DNS are
equivalent, DynDNS is possible.

--remote
feilner-it.net

remote-
random

Simple load balancing, specify
multiple --remote addresses and
openvpn will randomly connect to
one of them.

--remote-
random

float Allows the remote VPN partner to
change the remote IP address (for
example with DynDNS).

--float

Chapter 9

[177]

Parameter Options Function Usage
ipchange <cmd> Calls the program <cmd> if the IP

address has changed.
--ipchange /
script-ip.sh

connect-
retry

<seconds> Retries to connect for <seconds> if
connection fails.

--connect-
retry 60

connect-
retry-
max

<n> n is the maximum number of retries
that can be done if the connection can't
be established.

--connect-
retry-max

resolv-
retry

<seconds> If openvpn can't resolve the hostname
of the tunnel partner, it will try to
reconnect after n seconds.

--resolv-retry
86400

proto <tcp/udp> Protocol to use. --proto udp
port <port> Uses this port for connections (both

local and remote).
--port 5493

lport <port> Uses this local port to bind OpenVPN. --lport 1194
rport <port> Uses this remote port to bind

OpenVPN.
--rport 5000

nobind Uses dynamic port to connect (only
client).

--nobind

shaper <Bytes> Throttles the outgoing data bandwidth
of your tunnel (only client; only
outgoing bandwidth).

--shaper 10000

ip-win32 <method> Sets the Windows network adapter's
IP and netmask using <method>.

--ip-win32
ipapi

tun-ipv6 - Sets up a tunnel (TUN or TAP) capable
of IPv6 traffic.

--tun-ipv6

Unfortunately, it's impossible to deal with all options in detail within the scope of
this book. Nevertheless, we will have a close look at various parameters that have
proven useful.

•	 If your system has several NICs or several IP addresses, you may want
OpenVPN to run only on one of them. This can easily be done with the
parameter --local followed by the IP you want to bind OpenVPN to.
This option might be very interesting for routers or firewalls providing
VPN services, too.

•	 We have learned about the option remote, and that it supports DNS entries
(and therefore DynDNS), but we need to set the float parameter to allow
the other tunnel endpoint change its IP without needing to restart the tunnel.
The parameter ipchange specifies a command that can be executed on such
an event.

The Command openvpn and its Configuration File

[178]

With the option float, OpenVPN does not need to restart tunnels
when the IP of a partner changes.

•	 If you specify multiple --remote addresses, the parameter remote-random
enables automatic load balancing between the hosts by choosing randomly
which to connect to.

Multiple entries in the remote addresses' field enable simple load
balancing or redundancy.

•	 The options connect-retry, connect-retry-max, and resolv-retry define
how (often and long) OpenVPN will try to establish a connection when
errors occur. (86400 seconds are one day).

•	 The parameter proto switches udp and tcp mode within OpenVPN. UDP
should always be preferred, as there are some problems with TCP.

•	 Furthermore, the options port, lport, rport, and nobind give us the
possibility to define exactly from which local port to which remote port our
tunnel shall be connected. And if we like, --nobind will use dynamically
assigned ports—almost randomly.

•	 Probably the handiest parameter in this section is --shaper. Using --shaper
10000 will limit outgoing bandwidth of the openvpn tunnel to 10000 byte/
sec. Only outgoing traffic can be shaped (do you know why?), so if you want
your tunnel to use 10k of bandwidth as a maximum, you have to set this on
both sides!

The option shaper offers simple bandwidth management, also
known as traffic shaping.

And the last parameter is the one that I have not used till today: --ip-win32 lets
you decide the method with which the Windows network adapter receives its IP and
netmask. This method may be one of adaptive, IPAPI, Netsh, Dynamic, or Manual.
More information on this can be found in the manual page.

The following example shows an excerpt from a configuration file. Can you explain
what openvpn is supposed to do according to this file?

(...)
local 192.168.0.150
remote feilner-it.net
remote openvpn.dyndns.org

Chapter 9

[179]

remote-random
float
resolv-retry 86400
proto tcp-client
lport 22222
rport 22223
connect-retry 86400
shaper 10000
(...)

These lines make openvpn set up a tunnel:

•	 Listening only on the local IP 192.168.0.150
•	 Trying to connect randomly to feilner-it.net and openvpn.dyndns.org
•	 Ignoring changing IP of the other tunnel partner, as long as encryption is OK
•	 Running as tcp-client on local port 22222
•	 Trying to connect to remote port 22223
•	 If the connection fails, retrying for a day
•	 Outgoing traffic is limited to 10000 bytes/sec

Routing
The parameters in this section deal with routing of the traffic inside, to, and from
the tunnel. We have already learned about the parameter ifconfig and that it
needs different parameters for TAP or TUN devices. A second important point in
this section is the parameter route. Many people seem to have difficulties with
connecting networks over OpenVPN, but it's really easy.

Parameter Options Function Usage
ifconfig <local

remote>
Sets the IP address and netmask
for the tunnel on TAP devices,
sets the local and remote IP
address for the tunnel on TUN
devices

--ifconfig
10.1.0.1
10.1.0.2
--ifconfig
10.1.0.1
255.255.255.0

route <network> Sets a specific route on the
VPN host when openvpn has
successfully started the tunnel

--route
10.0.10.0
255.255.255.252

The Command openvpn and its Configuration File

[180]

Parameter Options Function Usage
route-
gateway

<IP> Sets the gateway on the VPN host --route-
gateway
192.168.0.22

route-
delay

<seconds> Waits n seconds before setting the
routes

--route-delay
5

route-up <cmd> Calls a program if the routes are
up

--route-up /
script.sh

redirect-
gateway

Sets default route through the
tunnel

--redirect-
gateway

•	 --ifconfig: Sets the IPs of the tunnel. Here you need to give the two IPs
of a point-to-point VPN, based on TUN devices, or the IP and netmask of a
TAP-based VPN-bridge.

•	 --route, --route-gateway, and --redirect-gateway: Affect the routing
of packets on the VPN host. After our tunnel is set up correctly, we have to
make sure that both VPN servers are forwarding traffic (perhaps we need a
firewall?), and that the connected networks are routed correctly on the other
side. A later example will deal with this setup. --redirect-gateway is an
excellent feature, for example, for notebooks of road warriors.

•	 --route-up: Enables us to run scripts when the routes are set up.
•	 --route-delay: Tells openvpn to wait a little before setting the routes when

the tunnel is set up.

There are many possibilities to use ifconfig, route, and route-up commands for
an openvpn tunnel:

(...)
ifconfig 10.3.0.1 10.3.0.2
route 192.168.0.0 255.255.255.0 10.3.0.2
route-up "/sbin/firewall_openvpn_1 start"
route-up "route add -net 192.168.1.0 netmask 255.255.255.0 gw
192.168.0.1"
route-delay 2
(...)

This example provides a tunnel, where a firewall script (/sbin/firewall_openvpn_1)
is started after routing is set up. A route is defined into a subnet 192.168.0.0 behind
the other tunnel endpoint. Another route is defined into a third subnet on the other
side of the tunnel using the route-up parameter and the Linux system tool route.
And last but not least, openvpn waits 2 seconds between setting up the tunnel and
configuring routing.

Chapter 9

[181]

Controlling the tunnel
Parameter Options Function Usage
inactive <seconds> The TUN/TAP device is closed

after <seconds> of inactivity
--inactive 120

ping-exit <seconds> After <seconds> with no packet
received, shutdown OpenVPN

--ping-exit 120

keepalive <seconds> Simply ping and ping-restart --keep-alive
10 60

persist-
local-ip

<IP> Keeps local IP over restarts

persist-
remote-ip

<IP> You can't restart the tunnel if the
IP was changed

- -persist-
remote-ip
62.184.232.1

In this context the parameters --ping, --ping-restart, --ping-timer-rem,
--persist-tun, and --persist-key should also be mentioned. We met them as
part of the standard configuration.

All these parameters influence the behavior of openvpn concerning testing
and restarting a tunnel. If there is no traffic in the tunnel for the number of
seconds specified by the ping parameter, openvpn will send a ping packet through
the tunnel. If no packet is received for the amount of seconds defined with
--ping-restart, the tunnel is started over.

The parameter --keepalive is a shortcut for a combination of ping and
ping-restart, you can express:

ping 100
ping-restart 200

by the simple directive:

keepalive 100 200

The parameters --ping, --ping-restart, --ping-exit, and --inactive can be
combined in many ways, depending on your setup and goals. Can you imagine
what the following example does?

(...)
ping 20
ping-restart 120
inactive 3600
(...)

The Command openvpn and its Configuration File

[182]

These directives cause openvpn to send pings after 20 seconds of inactivity. After
two minutes of inactivity, openvpn will restart the tunnel. After an hour without
tunnel data being exchanged, openvpn will exit.

Scripting
OpenVPN has several points of time when scripts can be executed. We have already
learned about one of them, --route-up <command>. Here is a list of more parameters
that allow scripts to be run:

Parameter Options Function Usage
up <command> Calls program when the TUN/TAP

device is up
--up script-
up.sh

up-delay <seconds> Waits n seconds after connect for
the up-script

--up-delay 5

down <command> Calls program when the TUN/TAP
device is down

--down script-
down.sh

down-pre <command> Calls script before TUN/TAP shuts
down

--down-pre

up-restart <command> Calls script after every reconnect --up-restart

route-up <command> Calls a program when the routes
are up

--route-up
script.sh

ipchange <command> Calls script when the IP changes -- ipchange
script.sh

With openvpn we can have our own scripts executed before
and after the interface is brought up or down, when we are
reconnected, when the routes are set up, and when our IP changes.

Modules
Apart from the flexible scripting hooks, OpenVPN also brings a handy plugin
architecture. Invoked with the parameter --plugin, an administrator can use
an abundance of precompiled modules that the community offers. The plugin
architecture follows the following syntax:

--plugin module-pathname [init-string]

Chapter 9

[183]

module-pathname should be replaced with the full path to the module program,
and init-string can be an argument to initialize the module. On SuSE systems, a
good read to start with is /usr/share/doc/packages/openvpn/README.plugins, a
Readme that is not present on Debian systems, where you will have to refer to /usr/
include/openvpn/openvpn-plugin.h for details.

You can use several modules in a row and combine them with the scripting hooks.
OpenVPN can call modules at 9 stages of the tunnel creation:

•	 up: The tunnel is started
•	 down: The tunnel is stopped
•	 route-up: Routing is set up
•	 ipchange: The IP address of the system has changed
•	 tls-verify: The certificate is being verified
•	 auth-user-pass-verify: User Authentication is in progress
•	 client-connect: A client connects
•	 client-disconnect: A client disconnects
•	 learn-address: OpenVPN learns the address from a VPN server

OpenVPN comes with three plugins that prove very helpful:

•	 auth-pam can only be used on Linux and enables OpenVPN to use the
underlying Pluggable Authentication Modules (PAM) as source for user
credential verification.

•	 down-root allows down-scripts to be run with root privileges, even when
--user or --group has been activated for the tunnel. Also not for Windows.

•	 An example plugin (example) that you can use to learn and try editing your
own plugins.

An example on using modules for flexible authentication can be found in
Chapter 13—Advanced Configuration.

The Command openvpn and its Configuration File

[184]

Logging
Besides the debugging parameters --verb and --mute that we learned about when
dealing with our standard configuration file, there are several parameters useful for
directing the output of openvpn:

Parameter Options Function Usage
log <file> Defines the log file which the

output of messages for this tunnel is
supposed to be written

--log /var/
log/vpn.log

log-append <file> Appends messages to the log
file—does not overwrite it

--log-append /
var/log/
openvpn/
messages.log

status <file> Writes a status file of the connections
to <file>

--status /var/
log/openvpn/
status.log

You should add the following two lines to every tunnel you configure:

log-append /var/log/openvpn/packt.log
status /var/log/openvpn/packt.status

The first entry in a configuration file will cause openvpn to write debug information
and messages in the specified file. The latter will print status information like the
following in a status logfile:

vpnserver:/etc/openvpn # cat /var/log/openvpn/packt.status
OpenVPN STATISTICS
Updated,Thu Nov 24 09:11:02 2005
TUN/TAP read bytes,3189334
TUN/TAP write bytes,3783482
TCP/UDP read bytes,4847840
TCP/UDP write bytes,4248748
Auth read bytes,3801636
pre-compress bytes,579459
post-compress bytes,546430
pre-decompress bytes,489729
post-decompress bytes,678607
END

Chapter 9

[185]

These data are updated automatically and can be very helpful for statistic programs
such as Nagios, Munin, or Cacti. Depending on the function of your VPN machine,
the statistics will look different. A server in TLS mode will collect the data grouped
by client:

vpnserver:/var/log # cat openvpn/openvpn-stats.log
OpenVPN CLIENT LIST
Updated,Mon Mar 30 18:47:07 2009
Common Name,Real Address,Bytes Received,Bytes Sent,Connected Since
Client1,78.47.XX.XX:54723,3240337,3354489,Tue Mar 24 21:45:12 2009
Client2,84.57.XX.XX:25694,741856,587295,Mon Mar 30 14:58:03 2009
Client3,78.47.XX.XX:58053,342703146,27997912,Tue Mar 24 21:45:12 2009
WRT,84.57.XX.XX:1026,3199634,3345205,Tue Mar 24 21:45:12 2009
ROUTING TABLE
Virtual Address,Common Name,Real Address,Last Ref
10.10.11.12,WRT,84.57.XX.XX:1026,Tue Mar 24 21:45:14 2009
10.10.11.10,Client1,78.47.XX.XX:54723,Tue Mar 24 21:45:12 2009
10.10.11.8,Client3,78.47.XX.XX:58053,Mon Mar 30 17:25:49 2009
10.10.11.6,Client2,84.57.XX.XX:25694,Mon Mar 30 18:47:06 2009
GLOBAL STATS
Max bcast/mcast queue length,0
END

Specifying a user and group
On Linux, we can specify a certain user and group under whose privileges openvpn
shall run—a good idea to reduce the number of processes running with root
privileges and increase security:

Parameter Options Function Usage
user Unix Account For more security --user nobody
group Unix Account For more security --group nogroup

Please note that openvpn will be started with root privileges, but once a tunnel
configured with --user nobody is started, it switches to the environment of this user.
This may lead to problems, when key or certificate files are not readable to the user
you defined in your configuration, as root openvpn can read the key files and start
the tunnel. Later, this tunnel is restarted due to some parameter passed (like --ping-
restart), and now, openvpn will try to re-read the key files. If the unprivileged user
(nobody) has no right to read these files, this will fail and the tunnel won't be set up.
You can avoid this by using the parameter --persist-key. The same applies to the
network devices—you can avoid this problem with the parameter --persist-tun.

The Command openvpn and its Configuration File

[186]

The management interface
OpenVPN provides a management interface available through Telnet. This interface
is designed for use by management tools like OpenVPN-Admin that allow GUI
management of tunnels.

Parameter Options Function Usage
management <IP> <port>

<pw-file>
Management interface of
OpenVPN

--management
127.0.0.1 5702

--management-
hold

- The tunnel will not be set
up until the command
hold release is entered
in the management console

--management-
hold

--management-
log-cache

<number> Caches the number of
lines for use with the
management interface

--management-
log-cache 10

If you want to activate the management interface, you simply need to add a line like
the following to your configuration file:

management 10.10.10.105 5702

Or invoke OpenVPN with a command like:

vpnserver:/etc/openvpn# openvpn --remote 10.10.10.103 --dev-type tap
--dev openvpn0 --ifconfig 10.3.0.2 255.255.255.0 --secret key.txt
--verb 1 --comp-lzo --management 127.0.0.1 5702

To connect to the management interface is easy—just type telnet <IP> <Port> and
replace IP and Port with the values you placed in the configuration file. After you
have connected, type help to get a list of available commands:

vpnserver:/home/mfeilner# telnet localhost 5702
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
>INFO:OpenVPN Management Interface Version 1 -- type 'help' for more
info
help
Management Interface for OpenVPN 2.0.9 i486-pc-linux-gnu [SSL] [LZO]
[EPOLL] built on Sep 20 2007
Commands:
auth-retry t : Auth failure retry mode
(none,interact,nointeract).
echo [on|off] [N|all] : Like log, but only show messages in echo
buffer.

Chapter 9

[187]

exit|quit : Close management session.
help : Print this message.
hold [on|off|release] : Set/show hold flag to on/off state, or
 release current hold and start tunnel.
kill cn : Kill the client instance(s) having common
name cn.
kill IP:port : Kill the client instance connecting from
IP:port.
log [on|off] [N|all] : Turn on/off realtime log display
 + show last N lines or 'all' for entire
history.
mute [n] : Set log mute level to n, or show level if n
is absent.
net : (Windows only) Show network info and routing
table.
password type p : Enter password p for a queried OpenVPN
password.
signal s : Send signal s to daemon,
 s = SIGHUP|SIGTERM|SIGUSR1|SIGUSR2.
state [on|off] [N|all] : Like log, but show state history.
status [n] : Show current daemon status info using format
#n.
test n : Produce n lines of output for testing/
debugging.
username type u : Enter username u for a queried OpenVPN
username.
verb [n] : Set log verbosity level to n, or show if n is
absent.
version : Show current version number.
END
status
OpenVPN STATISTICS
Updated,Mon Mar 30 16:55:01 2009
TUN/TAP read bytes,468
TUN/TAP write bytes,0
TCP/UDP read bytes,0
TCP/UDP write bytes,1004
Auth read bytes,0
pre-compress bytes,0
post-compress bytes,0
pre-decompress bytes,0
post-decompress bytes,0
END

The Command openvpn and its Configuration File

[188]

Every output of the management console ends with the string END, in this example
the user entered status as a second command. If you have set the verbosity level
to any level higher than 2, you will receive entries in your log file like the following
every time a client connects.

Mar 30 16:54:06 2009 us=571960 MANAGEMENT: Client connected from
127.0.0.1:5702
Mar 30 16:54:28 2009 us=521860 MANAGEMENT: Client disconnected

•	 The management console can be password-protected, simply put your
password in a file and add the path to this file in your configuration file.

•	 Tunnels can be started in suspended mode, which means that they are
only started after a command sent from the management console. Just add
--management-hold to the configuration. The tunnel will not be started until
you log in to this tunnel's management interface and type hold release.

Proxies
Because OpenVPN uses SSL/TLS for encryption, and UDP or TCP as transport
protocol, it can be easily tunneled through an HTTP-proxy. Similarly, we can
have our tunnels proxied over a SOCKetS (SOCKS) proxy server. The following
parameters are available for proxy support:

Parameter Options Function Usage
http-proxy <server

port
[auth]>

OpenVPN can tunnel through
proxies. Specify the proxy
and the port here. Optionally,
authentication is supported.

--http-proxy
192.168.0.12
8080

http-
proxy-
retry

- Retries indefinitely if connection
fails.

--http-proxy-
retry

http-
proxy-
timeout

<seconds> Considers connection to proxy as
failed after <seconds> inactivity.

--http-proxy-
timeout 5

socks-
proxy

<server
port>

Tunneling through a socks5
gateway.

--socks-proxy
192.168.0.12
8080

socks-
proxy-
retry

- Retries indefinitely if connection
fails.

--socks-proxy-
retry

auto-proxy Tries to determine the proxy
automatically, needs OpenVPN 2.1
or higher.

--auto-proxy

Chapter 9

[189]

OpenVPN tunnels can be tunneled through both HTTP and SOCKS proxies.

Encryption parameters
Chapter 10 in this book deals with security options for OpenVPN, but we will
have a short (introductory) look at the parameters OpenVPN's cryptographic layer
provides. The most important ones are here in the following table, and we already
know many of them:

Parameter Options Function Usage
secret <file> Points to the file with the static key --secret /kex.

txt

cipher <alg> Specifies the algorithm to use for
encryption of packets

--cipher AES-
256-CBC

keysize <n> Specifies the size of the cipher key in bits --keysize 128
auth <alg> Defines the message digest

algorithm <alg> used by the HMAC
authentication algorithm

--auth SHA1

tls-
server

Uses SSL certificates and acts as TLS
server during TLS handshake

--tls-server

tls-
client

Uses SSL certificates and act as TLS
client during TLS handshake

--tls-client

ca <file> Your generated CA file --ca /CA.crt
dh <file> Your generated Diffie-Hellman key --dh /DH.pem
cert <file> Your server's local certificate file --cert /

SERVER.crt

key <file> Your server's local key file --key /SERVER/
key.pem

pkcs12 <file> PKCS12 file (containing certificate, key,
and CA in one file)

--pkcs12 /file

crl-
verify

<file> Certificate revocation list --tls-verify /
revoke.crl

no-
replay

Disables OpenVPN's protection against
replay attacks

--no-replay

no-iv Disables OpenVPN's use of Cipher
Initialization Vector (IV)

--no-iv

The Command openvpn and its Configuration File

[190]

The following parameters may be new to you. In most cases you do not need to
make any changes here:

•	 cipher: Here you can specify a different algorithm for transport
encryption. Have a look at the option --show-ciphers later to receive a list
of available algorithms.

•	 keysize: You can specify a different key size for the cipher algorithm that
you chose with the --cipher parameter. The option --show-ciphers (later)
shows the default key sizes.

•	 auth: OpenVPN uses SHA1 with HMAC to authenticate packets. No changes
should be necessary here, but with the option auth none you could disable
authentication.

•	 pkcs12: This is a file format in which CA certificate, server certificate, and
local key are packed together. Using such a file would replace the directives
--ca, --cert, and --key.

•	 no-replay and no-iv: These disable basic security mechanisms that
OpenVPN provides. Do not deactivate these unless you know what you are
doing. These parameters switch off basic security functions and will leave
your system insecure.

•	 crl-verify: This defines the file in which a certificate revocation list is
stored. Such a list contains certificates that are no longer valid for use with
our OpenVPN tunnels.

The parameter crl-revoke <file> specifies the file containing
the certificate revocation list.

Testing the crypto system with --test-crypto
With the command-line parameter --test-crypto we will now test the
cryptographic system of our VPN server with a static key.

Parameter Options Function Usage
test-crypto Command line only. Do a self-test

of OpenVPN's crypto options by
encrypting and decrypting test
packets using the data channel
encryption options specified above.

--test-crypto

Chapter 9

[191]

vpnserver:/etc/openvpn# openvpn --test-crypto --secret key.txt
Mon Mar 30 16:59:39 2009 OpenVPN 2.0.9 i486-pc-linux-gnu [SSL] [LZO]
[EPOLL] built on Sep 20 2007
Mon Mar 30 16:59:39 2009 OpenVPN 2.0.9 i486-pc-linux-gnu [SSL] [LZO]
[EPOLL] built on Sep 20 2007
Mon Mar 30 16:59:39 2009 Entering OpenVPN crypto self-test mode.
Mon Mar 30 16:59:39 2009 TESTING ENCRYPT/DECRYPT of packet length=1
Mon Mar 30 16:59:39 2009 TESTING ENCRYPT/DECRYPT of packet length=2
Mon Mar 30 16:59:39 2009 TESTING ENCRYPT/DECRYPT of packet length=3
Mon Mar 30 16:59:39 2009 TESTING ENCRYPT/DECRYPT of packet length=4
Mon Mar 30 16:59:39 2009 TESTING ENCRYPT/DECRYPT of packet length=5

(..)

Mon Mar 30 17:00:33 2009 TESTING ENCRYPT/DECRYPT of packet length=1495
Mon Mar 30 17:00:33 2009 TESTING ENCRYPT/DECRYPT of packet length=1496
Mon Mar 30 17:00:33 2009 TESTING ENCRYPT/DECRYPT of packet length=1497
Mon Mar 30 17:00:33 2009 TESTING ENCRYPT/DECRYPT of packet length=1498
Mon Mar 30 17:00:34 2009 TESTING ENCRYPT/DECRYPT of packet length=1499
Mon Mar 30 17:00:34 2009 TESTING ENCRYPT/DECRYPT of packet length=1500
Mon Mar 30 17:00:34 2009 OpenVPN crypto self-test mode SUCCEEDED.

Everything looks fine, the crypto system is working well. It has successfully
encrypted and decrypted 1500 packets with our pre-shared key without any errors.

SSL information—command line
Parameter Function
openvpn --show-ciphers Shows all available cipher algorithms for use with the

--cipher option
openvpn --show-digests Shows all available message digest algorithms to use

with the --auth option
openvpn --show-tls Shows the available TLS ciphers in a list sorted from

highest preference and security to lowest
openvpn --engine Uses a specific SSL-based hardware encryption engine
openvpn --show-engines Shows available hardware-based crypto engines

The Command openvpn and its Configuration File

[192]

The following examples give an overview of the standard output of OpenVPN's
cryptographic engines. First, we will ask for a list of the cipher algorithms that can be
used for transport encryption, which can be set using the --cipher parameter:

vpnserver:/etc/openvpn# openvpn --show-ciphers
(...)

DES-CBC 64 bit default key (fixed)
RC2-CBC 128 bit default key (variable)
DES-EDE-CBC 128 bit default key (fixed)
DES-EDE3-CBC 192 bit default key (fixed)
DESX-CBC 192 bit default key (fixed)
BF-CBC 128 bit default key (variable)
RC2-40-CBC 40 bit default key (variable)
CAST5-CBC 128 bit default key (variable)
RC2-64-CBC 64 bit default key (variable)
AES-128-CBC 128 bit default key (fixed)
AES-192-CBC 192 bit default key (fixed)
AES-256-CBC 256 bit default key (fixed)

The last entry, AES-256-CBC 256, is the safest one, BF-CBC 128 is the default.
Remember that using safer algorithms causes more traffic overhead—maybe a price
to pay. It may be interesting for the paranoid or cautious user that the differences
between the underlying operating systems and SSL-libraries are very big here.
Whereas the previous example is from a Debian (Lenny) system, this is the output
from a more up-to-date machine running OpenSuSE 11.0:

opensuse11:/home/mfeilner # openvpn --show-ciphers
(...)

DES-CBC 64 bit default key (fixed)
RC2-CBC 128 bit default key (variable)
DES-EDE-CBC 128 bit default key (fixed)
DES-EDE3-CBC 192 bit default key (fixed)
DESX-CBC 192 bit default key (fixed)
BF-CBC 128 bit default key (variable)
RC2-40-CBC 40 bit default key (variable)
CAST5-CBC 128 bit default key (variable)
RC2-64-CBC 64 bit default key (variable)
AES-128-CBC 128 bit default key (fixed)
AES-192-CBC 192 bit default key (fixed)
AES-256-CBC 256 bit default key (fixed)
CAMELLIA-128-CBC 128 bit default key (fixed)
CAMELLIA-192-CBC 192 bit default key (fixed)
CAMELLIA-256-CBC 256 bit default key (fixed)

Chapter 9

[193]

The SuSE system offers also the Camellia algorithms. However, this could not be
used together with the Debian server mentioned before.

The same applies for the parameter --show-digests that lists all available digest
methods for use with the --auth parameter in the configuration file. However, the
differences here are not that big.

vpnserver:/etc/openvpn# openvpn --show-digests
(...)

MD2 128 bit digest size
MD5 128 bit digest size
RSA-MD2 128 bit digest size
RSA-MD5 128 bit digest size
SHA 160 bit digest size
RSA-SHA 160 bit digest size
SHA1 160 bit digest size
RSA-SHA1 160 bit digest size
DSA-SHA 160 bit digest size
DSA-SHA1-old 160 bit digest size
DSA-SHA1 160 bit digest size
RSA-SHA1-2 160 bit digest size
DSA 160 bit digest size
RIPEMD160 160 bit digest size
RSA-RIPEMD160 160 bit digest size
MD4 128 bit digest size
RSA-MD4 128 bit digest size
ecdsa-with-SHA1 160 bit digest size
RSA-SHA256 256 bit digest size
RSA-SHA384 384 bit digest size
RSA-SHA512 512 bit digest size
RSA-SHA224 224 bit digest size
SHA256 256 bit digest size
SHA384 384 bit digest size
SHA512 512 bit digest size
SHA224 224 bit digest size

The standard is SHA 160. The entries in this list rank from insecure (but fast) to safe
and slow.

The Command openvpn and its Configuration File

[194]

This does not apply for the list of TLS methods available. This list is in order of
preference, which means the first method is the safest (and slowest) one.

Available TLS-methods of Debian Lenny... … and of Opensuse 11.0
vpnserver:/etc/openvpn# openvpn
--show-tls

Available TLS Ciphers, listed in order
of preference:

opensuse11:/home/mfeilner #
openvpn --show-tls

Available TLS Ciphers, listed in order
of preference:

DHE-RSA-AES256-SHA
DHE-DSS-AES256-SHA
AES256-SHA
EDH-RSA-DES-CBC3-SHA
EDH-DSS-DES-CBC3-SHA
DES-CBC3-SHA
DHE-RSA-AES128-SHA
DHE-DSS-AES128-SHA
AES128-SHA
RC4-SHA
RC4-MD5
EDH-RSA-DES-CBC-SHA
EDH-DSS-DES-CBC-SHA
DES-CBC-SHA
EXP-EDH-RSA-DES-CBC-SHA
EXP-EDH-DSS-DES-CBC-SHA
EXP-DES-CBC-SHA
EXP-RC2-CBC-MD5
EXP-RC4-MD5

DHE-RSA-AES256-SHA
DHE-DSS-AES256-SHA
AES256-SHA
DHE-RSA-CAMELLIA256-SHA
DHE-DSS-CAMELLIA256-SHA
CAMELLIA256-SHA
EDH-RSA-DES-CBC3-SHA
EDH-DSS-DES-CBC3-SHA
DES-CBC3-SHA
DHE-RSA-AES128-SHA
DHE-DSS-AES128-SHA
AES128-SHA
DHE-RSA-CAMELLIA128-SHA
DHE-DSS-CAMELLIA128-SHA
CAMELLIA128-SHA
RC4-SHA
RC4-MD5
EDH-RSA-DES-CBC-SHA
EDH-DSS-DES-CBC-SHA
DES-CBC-SHA
EXP-EDH-RSA-DES-CBC-SHA
EXP-EDH-DSS-DES-CBC-SHA
EXP-DES-CBC-SHA
EXP-RC2-CBC-MD5
EXP-RC4-MD5

Chapter 9

[195]

And last, but not least, OpenVPN (and SSL/TLS in particular) can support
hardware encryption devices. The parameter --show-engines lists available engines
for such devices.

opensuse11:/home/mfeilner # openvpn --show-engines
OpenSSL Crypto Engines

VIA PadLock (no-RNG, no-ACE) [padlock]
Dynamic engine loading support [dynamic]

In our configuration file or at the command line, such an engine can be specified for
usage with the --engine parameter.

OpenVPN provides several tools that list available cryptographic
algorithms: --show-tls, --show-ciphers, and --show-digests.
OpenVPN can be instructed to use a specific mechanism in the
configuration file or at the command line.

Server mode
A very powerful parameter has been available since OpenVPN version 2: --server.
This parameter can replace the ifconfig directive that is used to set up networking
over TUN/TAP devices, and provide IP addresses and network configuration
dynamically for clients.

Parameter Options Function Usage
server <network>

<mask>
Sets the network addresses that
are assigned to clients

--server
10.3.0.0
255.255.255.0

We must notice that --server implies TLS mode automatically, thus a directive like
--server 10.3.0.0 255.255.255.0 implies the following:

•	 The VPN software on this machine acts as a server for the tunnel described in
this configuration (or in this command)

•	 This tunnel will be run in TLS-server mode— certificates are required
•	 Clients logging into this tunnel will be provided with an IP address from the

network mask specified as option

The Command openvpn and its Configuration File

[196]

In our previous example, TLS-certified clients will receive IP addresses between
10.3.0.1 and 10.3.0.254. With TUN devices (running a virtual point-to-point
connection), a /30 subnet is necessary for every connection, thus 128 clients can
connect to this server. If we need a bridged network, the directive server-bridge
is very helpful:

Parameter Options Function Usage
server-
bridge

gateway
mask pool

Server mode for bridging devices
(TAP)

--server
bridge
10.3.0.1
255.255.255.0
10.3.0.128
10.3.0.254

The example would provide addresses from 10.3.0.128 to 10.3.0.254 and
tell the (TLS-authenticated only) clients to use 10.3.0.1 as gateway in a bridged
tunnel setup.

To be honest, --server is only a sort of shortcut for the directives setting server
mode, TLS server, and network addresses. We will deal with these parameters in the
next section, just note that there is a parameter called --mode that can be called with
an option server.

Parameter Options Function Usage
<mode> <server>

<p2p>
(default)

Switches on openvpn server mode
(since version 2)

mode p2p is not necessary

--mode server

--mode p2p

--mode server switches on server mode in an OpenVPN tunnel.
The directives --server and --server-bridge are handier, since
they allow setting relevant data easily and switch on TLS automatically.

Server mode parameters
You may have noticed that there are several functions included in the parameter
--server that we have not dealt with, like defining an IP range for clients logging
into the VPN. The following table gives an overview of parameters useful for
such issues:

Chapter 9

[197]

Parameter Options Function Usage
push <options> Allows pushing of configuration

data to the client. (See later section
for further options)

--push route
192.168.0.0
255.255.255.0

ifconfig-
pool

<start-IP>
<end-IP>
<mask>

Defines a range of IP addresses to
be used for the tunnel subnet.

--ifconfig-
pool 10.1.0.1
10.1.0.10
255.255.255.0

ifconfig-
pool-
persist

<file>
<seconds>

Ensures IP associations for
clients—so that clients will always
(hopefully) be assigned the same
IP. IP-to-client associations will
be written to <file> every
<seconds>.

--ifconfig-
pool-persist /
etc/openvpn/
IPs 100

client-to-
client

- All clients are allowed to connect
to each other.

--client-to-
client

tmp-dir <directory> Specifies a directory for temporary
files.

--tmp-dir /
etc/openvpn/
tmp

max-
clients

<number> Maximum number of clients
allowed to connect.

--max-clients
5

max-
routes-
per-client

<number> Maximum number of routes
possible for a single client.

--max-routes-
per-client 5

connect-
freq

<number>
<seconds>

A client is allowed to connect
this <number> of connections
per specified <seconds> as
maximum.

--connect-freq
5 120

learn-
address

<cmd> Shell script command <script>
to validate client virtual addresses
or routes.

--learn-
address /
etc/openvpn/
script.sh

auth-user-
pass-
verify

<script>
<method>

OpenVPN will execute script as
a shell command to validate the
username/password provided by
the client.

--auth-user-
pass

client-
cert-not-
required

Doesn't require client certificate,
client will authenticate using
username/password only.

--client-cert-
not-required

duplicate-
cn

- Uses one client certificate for
several (or all) clients.

--duplicate.cn

The Command openvpn and its Configuration File

[198]

The following parameters are my favorites in server mode:

•	 --push: A complete new scope of VPN functionality is opened up here.
The table in the section Push options shows how you can push configuration
options to clients connecting to the VPN on initialization of the connection.

•	 --ifconfig-pool and --ifconfig-pool-persist: Define in detail how and
which IP addresses the server is supposed to provide to clients connecting.

•	 --client-to-client: If your VPN clients need connections between them,
this option will help.
(...)

client-to-client

(...)

Simply adding the previous code snippet to the configuration file will enable
clients to connect to each other through the tunnels.

•	 --max-clients and --max-routes-per-client: Restrict the number of
clients that are allowed to connect to the VPN server and the number of
routes that are allowed to be set to one client.

•	 --client-cert-not-required and --duplicate-cn: You may loosen
certificate restrictions a little, but this may be dangerous!

•	 --auth-user-pass-verify <script><method>: This is really handy.
A script is called for authentication, the method specified is used to pass
authentication data received from the client to this script.

The method via-env, for example, calls a script with the parameters username and
password, expecting a return code of 0 for success, 1 for failure. Can you imagine
what a simple Perl script can do here? Authentication against Active Directory,
Lightweight Directory Access Protocol (LDAP), and many more are possible.
Sample scripts can be found in the source-code package of OpenVPN, in the file
sample-scripts/auth-pam.pl.

The file /usr/share/doc/openvpn/README.auth-pam holds information on the
usage of the Linux Authentication Standard Pluggable Authentication Modules
(PAM) for authentication of VPN clients. PAM itself is built on a modular basis,
so that none of your wishes should be unfulfilled.

Chapter 9

[199]

OpenVPN in server mode can assign IP addresses dynamically to
clients, but you can specify exceptions. Client-to-client connections are
possible, and certificates can be used for multiple clients. The parameter
--auth-user-pass-verify can be used to verify passwords and
usernames against PAM or arbitrary scripts.

--client-config options
We have learned by now that TLS clients can be assigned individual configurations
based on the common name of their certificates. For this purpose, we only need to
create a client configuration directory, tell openvpn where this directory is to be
found, and put our client configurations in this directory. The name of the client
configuration file must be identical with the common name of the certificate the
client uses. This is very important: Only with this field in the certificate can openvpn
distinguish the clients. A client with the common name server1 in its certificate
must be configured with server1.conf in the client configuration directory.
The name of this file cannot be chosen.

The parameter -client-config-dir is used to tell openvpn where to look for the
clients' configurations:

Parameter Options Function Usage
client-
config-dir

<directory> The path to our client
configuration directory

--client-
config-dir /
etc/openvpn/
clients

ccd-
exclusive

Requires, as a condition of
authentication that a connecting
client has a --client-
config-dir file

--ccd-
exclusive

The parameter ccd-exclusive allows connections only for clients that have a client
configuration file in the client configuration directory.

The Command openvpn and its Configuration File

[200]

In a client configuration file almost all parameters and options used in a normal
configuration file can be used along with the following parameters, which are only
valid in a client configuration file:

Parameter Options Function Usage
client-
connect

<script> Runs script when a client
connects successfully

--client-
connect /file.
sh

client-
disconnect

<script> Runs script when a client
disconnects successfully

--client-
disconnect

ifconfig-
push

<IP> <IP> Pushes IP endpoints for client
tunnels, overriding the settings
from ifconfig-pool—useful in
client-specific configurations (on
the server)

iroute <network>
<netmask>

Generates an internal route to a
specific network through a VPN
client

--iroute
10.94.0.0
255.255.255.0

•	 --client-connect and –client-disconnect: Allow execution of scripts
on connection or disconnection of a client of our VPN—another handy
possibility for solving many interesting issues.

•	 --ifconfig-push: Sets the IP of the tunnel endpoints for this connection to
different values than specified with ifconfig-pool, a convenient method of
specifying a fixed IP for a client.

•	 --iroute: Allows setting an internal route to a network behind a VPN client,
enabling partners on the server side to access the network behind the tunnel
(on the client's side). This parameter is very interesting in a scenario like the
following: Mr. Smith connects to the VPN server of his company from the
LAN at his home with the network address 10.94.0.0/24. He is working on
the terminal server in the central branch of his company. Now he wants to
print a document, but on a network printer 10.94.0.200 in his home LAN.
To fulfill this, the terminal server must have configured this network printer,
and therefore it needs to know how to route to 10.94.0.200. Besides setting the
route on the company's default gateway pointing to the VPN server, the VPN
server itself must also know that this network address is behind the VPN
client. All machines that act as routers in this scenario must be configured
to do forwarding, including correct firewall setup and access rights to the
printer. In our scenario, both VPN partners (also the VPN client machine)
must have forwarding enabled!

Chapter 9

[201]

Client mode parameters
The following table shows parameters that are relevant if your VPN machine acts
as a TLS client to a VPN server. --client stands here, similarly to --server, as
a shortcut for two parameters: --tls-client and –pull. We have talked about
--tls-client, but not about –pull, which simply tells openvpn to try to get routes
and network configuration from the VPN server.

Parameter Options Function Usage
client Simply pull TLS server option. --client

pull Gets pushed routes and more from
the server.

--pull

auth-
user-
pass

<file> Authenticates to the server using
the username/password pair
specified on two lines in <file>.

--auth-user-
pass /etc/
openvpn/
passes

auth-
retry

<interact>

<noninteract>

<none>

Determines the client's behavior on
authentication failure.

<interact>: The client will
prompt the user.
<non-interact>: The client will
keep on trying.
<none>: The client will exit with
an error message.

--auth-retry
noninteract

•	 auth-user-pass and auth-retry: These are the client's settings for
authentication with a password, where auth-user-pass simply wants a
file with a username/password pair in it. If called as –auth-user-pass up,
openvpn will prompt for the username/password pair. All of this will only
work if the server has –auth-user-pass-verify configured properly.

•	 auth-retry: With this parameter, we can specify how OpenVPN clients
deal with authorization errors or failures. Unattended systems should be set
to --non-interactive because otherwise they would stop connecting if a
connection error occurs. A road warrior's laptop can be configured to prompt
the user because there might be other problems that prevent the tunnel (like
a firewall). And none is the best solution for the paranoid—If authentication
fails just once, no further attempt to set up a tunnel will be made, the
openvpn process exits.

The Command openvpn and its Configuration File

[202]

Push options
Pushing configuration parameters to clients is one of the really great features
of openvpn.

Parameter Options Function Usage
push <configuration

options>
Push the <configuration
options> to the client.

push "route
192.168.20.0
255.255.255.0"

An OpenVPN server (running in server mode) can push the following settings to a
client (that has the pull parameter enabled). You should know most of them by now.
Can you imagine how they work without looking in the right column? (Only the last
two are new.)

Push Parameter Option Function
--route The client will set a route.
--route-gateway The client will set its gateway.
--route-delay The client will wait a little before setting its

routes.
--redirect-gateway The client will redirect its gateway through

the VPN.
--inactive The client will exit after a specified time.
--ping, --ping-exit, --ping-restart The client will change its ping behavior.
--persist-key, --persist-tun The client will change its behavior on

restart.
--comp-lzo The client will use compression.
--dhcp-option The client will use specific DHCP options

(Windows only, see later).
--ip-win32 The client will use the method specified to

set IPs and network addresses (Windows
only, see later).

It's very important to set the quotation marks correctly. Anything between them will
be sent to the client as a configuration directive.

A VPN server can push routing, network, and DHCP options to a client.
Ping behavior and other features can be controlled by the server and set
on connection initialization.

Chapter 9

[203]

Important Windows-specific options
A fast-growing number of options can only be used on Windows clients because
other systems can't deal with the methods used. The following table gives an
overview of these:

Parameter Options Function Usage
dhcp-
option

WINS <IP>
DNS <IP>
DOMAIN
<name>
NBDD <IP>
NTP <IP>
NBT <type>
NBS <scope-
id>
DISABLE-NBT

Sets specific DHCP data over the
VPN for Windows clients.
Sets a specific DNS or WINS server
through DHCP, sets domain name,
NetBIOS server address, network
time server, and more.

--push "dhcp-
option DNS
10.94.46.11"

route-
method

ipapi
exe

Sets the method Windows uses to
set routes, either by executing the
route command (exe) or by using
the IPAPI interface.

--route-method
ipapi

ip-win32 <method> Sets the Windows Network
adapter's IP and netmask using
<method>.

--ip-win32
ipapi

If you are running Microsoft Vista or Server 2008, OpenVPN versions earlier than 2.1
will need the following two commands to work properly:

route-method exe
route-delay 2

There are several other options for the Windows user, but only few of them will
come in your way. Here is a short glance at them:

•	 --win-sys path: Define a different directory for your Windows' system
binaries.

•	 --tap-sleep: Sets the TAP device to sleep for a specified amount of time.
Sometimes this solves some problems with the Windows IP helper API.

•	 --show-net-up: Echoes OpenVPN's networking setup to syslog.
•	 --dhcp-renew: Tells Windows to initialize the DHCP client for the TAP

device. --dhcp-release frees the adapter.

The Command openvpn and its Configuration File

[204]

•	 --service exit-event 0/1: Useful if OpenVPN is running in the
background. Multiple OpenVPN processes can listen on this Windows event
and, for example, shut down simultaneously without user interaction.

•	 --show-adapters: Works on Windows systems similar to the ifconfig
command on Linux and shows all available network adapters.

•	 --allow-nonadmin <device>: Enable users without administrative
privileges to activate the named adapter. Without a device specified,
all adapters are accessible for non-administrators.

•	 --show-net: Shows the network from OpenVPN's point of view.

New in Version 2.1
OpenVPN's newest version comes with four new major concepts:

•	 Connection profiles
•	 Topology modes
•	 Script-security
•	 Port-sharing

Connection profiles
In a client's OpenVPN configuration file, administrators can now specify whole
groups of configuration parameters, each of which describes one connection, to a
VPN server. The connection profiles can be seen as an extension to several remote
options with the advantage that you can specify different ports, options, and
parameters. Once the client has unsuccessfully tried the first connection with its
block of options, and fails, it proceeds to the next block, until a VPN connection can
be established.

This can be very handy, for example, when your client notebook is regularly located
in unknown networks and you want OpenVPN to try all possible ways of contacting
your server. Just have your server listen on the ports 21, 80, and 443 and then create
one connection block for each of these ports. Your client will try each of them, until it
(hopefully) manages to establish the connection.

The syntax for this example is simple. Each connection is specified by an opening
<connection> and a final </connection>:

<connection>
remote myvpnserver.org 21
</connection>

Chapter 9

[205]

<connection>
remote myvpnserver.org 80
</connection>
<connection>
remote myvpnserver.org 443
</connection>
<connection>
remote myvpnserver.org 443
http-proxy 192.168.0.1 3128
</connection>

As you see in the last profile, other options like those regarding proxies can also be
used. According to the man page, allowed options in connection profiles include:
bind, connect-retry, connect-retry-max, connect-timeout, float, http-
proxy, http-proxy-option, http-proxy-retry, http-proxy-timeout, local,
lport, nobind, port, proto, remote, rport, socks-proxy, and socks-proxy-
retry. --Remote-Random can be helpful outside a connection statement to make
OpenVPN randomly choose from the list of connection profiles.

Topology mode
If you are using TUN devices, and the point-to-point-topology of the standard
TUN-device handling doesn't suit your needs, here is the solution. Especially,
administrators having trouble with the fact that in standard TUN mode OpenVPN
needs two IP addresses per client, will be happy about topology subnet. Starting
with OpenVPN 2.1, an admin can choose whether a TUN device will use one of the
following network topology modes:

•	 net30: The default behaviour of OpenVPN 2.0, using a /30 subnet, and two
IP addresses per client.

•	 p2p: One single IP address is used per client, the remote endpoint always
points to the local endpoint. Only works with Windows.

•	 subnet: Use a topology similar to the TAP interfaces. Only one IP address
per client is needed, but the client must support a subnet instead of a remote
endpoint address.

With topology subnet in your tls-server configuration file with TUN devices,
your clients will get consecutive IP addresses, whereas without the topology
directive, each client needs two IP addresses.

The Command openvpn and its Configuration File

[206]

Script-security
The directive script-security is followed by a level of your choice and introduces
the beginnings of security policies to OpenVPN. Its syntax is:

--script-security level method

The level ranges from 0 to 3, a script security level of '0' forbids all calling of external
programs, with '1' only built-in executables are allowed. If you want your own
scripts to work, you will need at least level '2'. Administrators that need passwords
being passed on through environmental variables must use script security level '3',
as this is considered extremely unsafe. However, older versions did not have such a
control tool, and thus for compatibility reasons '3' is the default.

The method parameter can either be execve or system and describes how OpenVPN
calls external commands. execve is the default, and makes use of the execve()
function on Unix and CreateProcess() on Windows. system instead calls the
system() function and is considered less safe.

Port-sharing
Last but not least, a very simple but handy new feature is port sharing. In TCP Mode,
OpenVPN can share its port with another program. This can be an almost perfect
camouflage, if you are running an HTTPS server like Apache on the same port.
OpenVPN automatically proxies all non-OpenVPN traffic to the specified host and
port. OpenVPN-traffic is handled as usual. The syntax is:

--port-share host port

It's as simple as that. Replace host with the IP or DNS name of your web server,
and port with the port to which you want to proxy the connections.

Test
Are you ready for an example? Read the following command line and write down
what it does:

openvpn --port 5001 --proto udp --dev tun --ca ca1.crt --cert opteron.
crt --key opteron.pem /
--crl-verify revoke.crl --dh dh2048.pem --server 10.79.2.0
255.255.255.0 /
--push "route 10.19.46.0 255.255.255.0" --push "route 10.18.46.0
255.255.255.0" /
--push "dhcp-option DNS 10.19.46.15" --push "dhcp-option WINS
10.19.46.12" /
--client-to-client --keepalive 10 60 --comp-lzo /

Chapter 9

[207]

--status /var/log/openvpn/openvpn-road-status2.log /
--log-append /var/log/openvpn/openvpn-road2.log --verb 4

Here is the solution:

This openvpn command starts a TLS server listening on port UDP 5001 with the
specified certificates, key, and revoked list files. The virtual network has the address
10.79.2.0/24, clients are pushed several routes and DHCP options, (which means
they are probably Windows clients), clients are allowed to connect to each other,
the traffic is compressed, and log and status messages are written to files in
/varlog/openvpn at a verbosity of 4.

Summary
In this chapter we started with explaining the syntax of openvpn and its
configuration file. Parameters that are in our standard configuration file were
followed by the ones used during setup of a certificate-based tunnel. From then on
we traveled through the basic tunnel parameters, encryption, server mode and client
mode. We finished this chapter with parameters that are only available on Windows
systems and new features of the forthcoming version 2.1 of OpenVPN.

Securing OpenVPN Tunnels
and Servers

In this chapter, we will learn how to make the example tunnels we created safer and
more persistent by choosing a safe combination of configuration file parameters.
We will then discuss authentication and plugins, and how to install and use a
firewall with a convenient web-based configuration interface on a standard Linux
system, namely Shorewall on a Debian system. After that we will have a look at
the SuSEfirewall 2 that comes with OpenSuSE. A short look will deal with how to
configure the Windows XP firewall for use with OpenVPN. Last but not least, we
will discuss the possibilities that the Linux command line offers (especially with the
examples that come with OpenVPN).

Securing and stabilizing OpenVPN
Up to now, we have built several tunnels and all of them were built with simple
mechanisms and focused on simplicity. In this chapter, we will set up an OpenVPN
server and tunnels that can be used in a production environment. For this purpose
we will use strong encryption layers, which OpenVPN offers, and set some
parameters in our configuration file to make sure that OpenVPN keeps running.
This will be our first task.

Securing OpenVPN Tunnels and Servers

[210]

Here is a configuration file for our VPN server for enabling access only for one client.
Perhaps it's a good idea that you have a look at the following options and parameters
before you read on. This is far from perfect, especially because there is a constant
development concerning security going on and hence I do not try to give an example
with the highest possible security. Nevertheless, there are some features enabled in
this configuration that have proven very helpful.

float
dev tunVPN0
tun-mtu 1500
ifconfig 10.179.10.1 10.179.10.2
port 5000
route 10.194.0.0 255.255.0.0 10.179.10.2
comp-lzo
auth SHA512
cipher AES-256-CBC
tls-cipher DHE-RSA-AES256-SHA
tls-auth keys/tls-key.txt
tls-server
tls-remote "/C=DE/ST=BY/O=Feilner-IT/CN=VPN-
Client/emailAddress=security@feilner-it.net"
ca certs/ca.crt
cert certs/server.crt
key certs/server.key
dh dh2048.pem
keepalive 10 60
shaper 20000
route-up "/sbin/firewall restart"
log-append /var/log/openvpn/feilner-it.log
status /var/log/openvpn/feilner-it.status 5

An explanation of the options and parameters of the configuration file is as follows:

•	 float: The VPN server accepts connections from clients even if their IP
addresses change.

•	 dev tunVPN0: We will use the network device tunVPN0 for connections.
Because the name of the device can be chosen freely, it may be a good idea to
use a significant name.

•	 ifconfig: These are the virtual IP addresses of our tunnel network.
•	 port: We will use port 5000 for the VPN communication.
•	 route: This server is told that the subnet 10.194.0.0 is behind the other end

of the tunnel.
•	 comp-lzo: All traffic will be compressed before transport.

•	 We tell OpenVPN to use stronger encryption methods than the
standard methods:

Chapter 10

[211]

auth SHA512
cipher AES-256-CBC
tls-cipher DHE-RSA-AES256-SHA

Use the commands openvpn --show-ciphers, openvpn --show-digests,
and openvpn --show-tls to find out the encryption mechanisms available on
both systems. There will be differences depending on the operating systems
and software versions used. You must use methods that both systems are
capable of.
The values in the file listed are merely examples that will differ from your
real setup.

•	 tls-auth: This provides a simple Denial of Service (DOS) protection.
DOS is a kind of attack where somebody tries to flood your machine and
thereby slow down (or stop) regular connections. An OpenVPN machine
with tls-auth activated will only accept packets encrypted with the correct
HMAC signature generated from the key specified in the file (for example,
tls-key.txt). The OpenVPN man page speaks of an 'HMAC Firewall'. This
option should always be applied when your system is accepting connections
from varying IP adresses.

•	 tls-server: This specifies the role that the OpenVPN machine will take for
setting up the tunnel and exchanging certificates.

•	 tls-remote"/C=DE/ST=BY/O=Feilner-IT/CN=server2/
emailAddress=security@feilner-it.net": This specifies the exact subject
line of the VPN partner's certificate. This line makes sure that only the
VPN partner presenting this certificate is allowed to connect to our VPN.
You can extract this line from your certificate file. At a verbosity level of 5
or higher, you will also find this 'subject' line explicitly in the logfile of your
VPN machines.

•	 The following lines specify the location of TLS certificates and keys and the
Diffie-Hellman key:
ca certs/ca.crt

cert certs/server.crt

key certs/server.key

dh dh2048.pem

•	 keepalive 10 60: We add these parameters ensuring that the tunnel will be
restarted automatically.

•	 shaper: This option must be used on both sides, and limits the traffic
through this tunnel to about 20K.

•	 The last three lines define a firewall script that is run when the tunnel is set
up and the location of log and status files.

Securing OpenVPN Tunnels and Servers

[212]

Our VPN client should receive basically the same configuration, with changes only
to the location and names of files and certificates. We will need to type the subject
line of the certificate of the server here and we will need a remote directive telling
our client where to connect to and that our system will be trying to resolve the other
hostname for one day before giving up.

remote xxx.dyndns.org
(...)
tls-remote "/C=DE/ST=BY/O=Feilner-IT/CN=VPN-Server/
emailAddress=security@feilner-it.net"
(...)
resolv-retry 86400

So how can we sum this up in a nutshell?

With the configuration above:
Our OpenVPN server will only start the connection setup process from
an OpenVPN client that authenticates with the correct HMAC signature
generated by a static, pre-shared key. The connection process will only
be successful if both partners know and can handle the correct ciphers
and encryption methods specified. Only the machine offering the X.509
certificate specified in the line starting with tls-remote will be accepted.

Some lines of this configuration help re-establishing the tunnel after connection
errors and make sure that the systems will try to resolve DNS for one day before
giving up.

I guess this configuration is not yet paranoid, but already quite secure, as long as we
are careful with our keys and certificates.

Authentication
What we have done until now is securing the tunnel by using strong encryption and
client and server certificates. However, these certificates do only secure the machine
they were created for. You may argue, what about password protection? That is a
fair point, but today central authentication is an important focus of any IT. Thus, a
password stored in a certificate created years ago may be difficult to remember. I
prefer the two-stage scenario of client and server certificates plus authentication of
the client user at logon. All of the GUIs presented in the next chapter support these
methods. Let's roll!

Chapter 10

[213]

Using authentication methods
We have learned before that OpenVPN can be used with authentication based
on shared secrets (static keys) and X.509 certificates. Another useful option for
authentication is authentication plugins called with the configuration parameter
auth-user-pass-verify, which can be used together with both methods mentioned
before. For example, in a certificate-based VPN, we can use an authentication
plugin to make sure that only a user knowing the appropriate username/password
combination can start the tunnel. This may be a convenient additional level of
security for laptops or other road-warrior machines.

While certificates in this context tend to protect and authenticate machines rather
than users, username/password combinations are useful for VPNs that are started
by a human. The Windows GUI will pop up a small authentication window where
the user must enter a username and password. The VPN client takes these values
and sends them to the VPN server, which starts the plugin program (as configured in
auth-user-pass-verify) to validate the combination. If the authentication program
returns an OK, authentication was successful, and the tunnel is created. The tunnel
will only be established if the password is correct.

For this purpose, the following configuration parameters must be added. In
the server configuration file, add auth-user-pass-verify /path/to/your/
auth/script to your server configuration and auth-user-pass to your client's
configuration. The following table shows the usage of these parameters:

Parameter Allowed options Usage Function
--auth-user-
pass-verify

<script>
<method>

Server configuration Activates server's
authentication and
defines the name of the
authentication script
and the method to use
for username/password
handling

--auth-user-
pass

<file> Client configuration Activates client's
authentication and
optionally defines a file
where username and
password are stored

Securing OpenVPN Tunnels and Servers

[214]

On SuSE systems, there are some example scripts (like auth_pam.pl) provided with
OpenVPN, which can be found in /usr/share/doc/packages/openvpn/sample-
scripts. But a typical scenario for such an authentication may be a local LDAP
server. LDAP is the system-independent state of the art for all modern directory
services, both in open source servers and also in Microsoft's Active Directory Service.
The following overview will give you some hints on how to create an authentication
plugin using your own LDAP authentication for OpenVPN.

On a Linux system with the LDAP client tools installed, the command ldapwhoami
can be used for testing username/password pairs against an LDAP server. In the
following examples the LDAP server is 10.10.10.1, the user mfeilner, and the
password is correct_password. The string uid=mfeilner,ou=Feilner-it_
Users,dc=feilner-it,dc=home must be adapted to the settings on your LDAP
server. Here is the output of the ldapwhoami command:

suse01:/var/log # ldapwhoami -x -h 10.10.10.1 -D
uid=mfeilner,ou=Feilner-it_Users,dc=feilner-it,dc=home -w correct_
password
dn:uid=mfeilner,ou=Feilner-it_Users,dc=feilner-it,dc=home

suse01: # ldapwhoami -x -h 10.10.10.1 -D uid=mfeilner,ou=Feilner-it_
Users,dc=feilner-it,dc=home -w wrong_password
ldap_bind: Invalid credentials (49)

The first command will give a return code of '0', whereas the second command,
resulting in a failed authentication returns a value of '1'. Creating a little script, that
implements the aforementioned LDAP command and returns 0 if authentication was
successful and 1 if authentication has failed, is easy and I leave this up to you. An
example for such an LDAP authentication plugin script for OpenVPN can be found
at http://www.indato.ch/openvpn/openvpn.html.

Even though this web site is in German, the LDAP script found here is documented
in English. You can find it if you scroll down until the heading Optionale
Authentisierung mit LDAP. An English web site with an OpenVPN Auth-LDAP
Plugin can be found at http://code.google.com/p/openvpn-auth-ldap/.

Chapter 10

[215]

The phpLDAPadmin tools is probably one of the best LDAP administration tools.
If you are thinking of setting up an LDAP server (which can be used for a variety
of purposes), have a look at this screenshot of phpLDAPadmin on an LDAP server
with the entry uid=mfeilner,ou=Feilner-it_Users,dc=feilner-it,dc=home,
which was used for authentication in the example earlier.

On the left is the LDAP directory tree, on the right the properties of the selected
object. Here we can change, for example, the password for the OpenVPN account,
create and delete accounts, and thus manage access to our VPN on the basis of the
selected authentication plugins.

Securing OpenVPN Tunnels and Servers

[216]

Authentication plugins overview
A very good read is the web site of the European OpenVPN Club Openvpn e.V.,
a registered club with the goal of supporting and providing contact between the
various OpenVPN users and specialists. The forum of this club holds a great list of
plugins for OpenVPN authentication modules. This table can only show an excerpt
from that. The maintainers are busily working on translating all content that is not
available in English up to now.

Plugin Code How-to and
documentation

LDAP http://code.google.
com/p/openvpn-auth-
ldap/

Readme included

Radius http://www.nongnu.
org/radiusplugin/

http://forum.
openvpn.eu/
viewtopic.php?t=2116

and http://www.
howtoforge.
com/openvpn_
wikid_strong_
authentication

POP3 http://popauth.
kimballstuff.com/
source.html

http://www.
wenzk.net/bbs/
thread-221-1-1.html

SQLite http://www.trooth.
cc/projects/
authsqlite/

http://www.vpnforum.
de/openvpn-forum/
viewtopic.php?t=3178

MySQL Locally through PAM http://www.vpnforum.
de/openvpn-forum/
viewtopic.php?t=3591

USBAuth Locally through PAM http://usbauth.
delta-xi.net/doku.
php

Samba (Windows domains) Locally through Samba and
PAM

http://www.vpnforum.
de/openvpn-forum/
viewtopic.php?t=1748

Local User/Password (PAM) http://auth-passwd.
sourceforge.net/

Pam—How-to

Strong auth with WIKID Through Radius and
Wikid Server

http://www.
howtoforge.
com/openvpn_
wikid_strong_
authentication

Chapter 10

[217]

Plugin Code How-to and
documentation

Universal Plugin http://frost.ath.cx/
software/openvpn_
auth/

(Supports almost all
existing authentication
backends)

openvpn_authd and
openvpnClientConnectLDAP

OpenVPN authentication
server and client—perhaps
a dead link:
http://frost.ath.cx/
software/openvpn_
auth/

http://openvpn.net/
archive/openvpn-
users/2007-03/
msg00256.html

Authentication with tokens
If you want to use Hardware tokens such as those of Aladdin Software, here is
a brief how-to.

Thanks to Daniel Salcher of OpenVPN e.V. for this submission!

This setup is running in several offices in Germany, at prosecutors and other legal
companies with high security needs. It is used for remote administration and home
work for the lawyers, and allows access to FTP, SSH, and VNC. Aladdin's Tokens
can be received from Aladdin at http://www.aladdin.de/how/resellers.aspx,
with the hardware for about 40 Euro and Support for 16 Euro. The working of the
Aladdin software is very simple. The USB-token is merely a safe place to store your
certificate. So there is no need to make any changes to your server, just generate
certificates, export them to your client, and have Aladdin's programs store and
encrypt them on the USB stick.

All the client needs is Aladdin's software (or similar) installed, and the location and
libraries/programs for accessing the Token. With OpenVPN, this is specified in the
configuration file:

This is an example (Windows) client configuration file:

tls-client
client
dev tap
proto udp
tun-mtu 1500
ip 1194
ca CA.pem

Securing OpenVPN Tunnels and Servers

[218]

cryptoapicert "THUMB:0b 58 43 44 3d 45 xx bb e5 55 22 xx 2b 2f 26 ba
56
89 7c 36"
cipher BF-CBC
comp-lzo
verb 3
ns-cert-type server
pull

And this is a working configuration for a Linux client:

dev tap
tls-client
client
proto udp
tun-mtu 1500
remote test.org 1194
ca ./CA.pem
pkcs11-providers /usr/lib/libeTPkcs11.so
pkcs11-slot-type label
pkcs11-slot "Daniel Salcher"
pkcs11-id-type subject
pkcs11-id "/C=DE/ST=BY/O=xy/CN=SAVATEC e.K. - Daniel
Salcher/emailAddress=info@xy.de"
cipher BF-CBC
comp-lzo
verb 3
ns-cert-type server
pull

If this list still is not enough, then you will be happy with Pam-per-user.

Individual authentication with Pam-per-user
If this long list is not enough for you, the small tool pam-per-user will help you.
With it you can tell your Linux system which authentication source to use for a
specific user. You may, for example, have 10 VPN users authenticating against
Active Directory, 10 others against LDAP, and 10 against some proprietary IMAP
server, while the rest are POSIX standard Linux users. However, don't try this on
Windows, it won't work there, you'll need a Linux server.

A big 'Thank you' to Ralf Hildebrandt and the folks from the Charité
Hospital of Berlin University for showing me this great tool!
Pam-per-user is really great, not just for OpenVPN.

Chapter 10

[219]

Pam-per-user is a PAM module that simply delegates PAM authentication to other
services. In the file /etc/pam_per_user.map you may define the service that will
be used for a user. But before that an entry in /etc/pam.d/openvpn is necessary:

auth required pam_per_user.so.1
account required pam_permit.so

The next step is an entry in /etc/pam_per_user.map:

userA : openvpn‑ldap
userB : openvpn‑krb5
userC : openvpn-winbind
userD : openvpn‑imap

What happens here is that userA authenticates against LDAP while the server uses a
Kerberos server for userB, Winbind for UserC (which is a client for Windows servers,
like Active Directory or NT LAN Manager NTLM), and IMAP for UserD.

The file openvpn-ldap for userA should reside in the directory /etc/pam.d and
have a content like:

auth required pam_env.so
auth required pam_ldap.so
account required pam_ldap.so

The appropriate configuration for userB in /etc/pam.d/openvpn-krb5 would
look like:

auth requisite pam_krb5.so no_cache
account required pam_permit.so

An interesting thing here is the link to the Kerberos library pam_krb5.so whose
configuration file /etc/krb5.conf will need further work. The same applies to
the Samba Winbind configuration, especially if you want to do Active Directory.
This is done in four steps very well documented at the Samba project, for example
at http://wiki.samba.org/index.php/Samba_&_Active_Directory. The four
steps are:

•	 Install Samba, Winbind, and all relevant services including the Samba client
package for testing.

•	 Configure your samba.conf for domain membership.
•	 Enter your domain with your domain administrator's password.

The command is net join -U Adminstrator, if you want to use your admin.

•	 Create a pam_winbind.so for your needs. The Samba packages (especially
those of Winbind) bring samples.

Securing OpenVPN Tunnels and Servers

[220]

More universal and easier to set up is the IMAP trick. UserD has to authenticate
against an IMAP server. If you have an Exchange server, take his or her IMAP Login
and you have single sign-on against your Active Directory. It won't get simpler!

The file /etc/pam.d/openvpn-imap looks like:

auth required pam_imap.so conf=/etc/pam.d/pam_imap.conf
account required pam_imap.so conf=/etc/pam.d/pam_imap.conf

And in /etc/pam.d/pam_imap.conf, the information about the server, his or her
SSL certificate, and more.

PAM_PasswordString = Password:U
CertificateFile /usr/share/ssl/certs/U
imapd.pem
PAM_Server0 = imapserver.example.com:143
PAM_BlockList = root, admin, Administrator,U
apache
PAM_HashEnable = no
PAM_HashFile = /etc/pam_imap.gdbm
PAM_HashDelta = 20

With this, you can use many kinds of authentication for your VPN: Novell
Groupwise? Scalix? No Problem. Almost every proprietary solution has an IMAP
server authenticating against it. Seems perfect, doesn't it?

However, don't forget the two small steps:

1.	 On the VPN server, add plugin/usr/lib/openvpn/ openvpn-auth-pam.so
openvpn to your OpenVPN configuration.

2.	 On the client, add, auth‑user‑pass.

Linux and Firewalls
Now that OpenVPN is configured safely, how about the system that it runs on? On
Linux there are several excellent firewall solutions that can be used with OpenVPN.
On the following pages we will deal with two firewalls, which offer graphical
interfaces for configuration—Shorewall (with Webmin) and the SuSEfirewall as
delivered with OpenSuSE 10.

Chapter 10

[221]

Debian Linux and Webmin with Shorewall
Webmin is an excellent GUI for Linux system management, if your preference is for
web-based administration. Webmin can be found on http://www.webmin.com and
offers almost full control over your Linux systems. It brings a small web server of
its own and supports SSL encryption, user management, and more. However, I do
not want to conceal the fact that there are Perl scripts that set system variables in
files at /etc, which is not considered best practice. However, as always, security and
usability are enemies and the compromises may vary. If we use Webmin, we must
secure access to it. A good idea is a separate OpenVPN tunnel for it.

Installing Webmin and Shorewall
Besides Webmin, we will enable SSH access to our Debian system.

vpnserver:/home/mfeilner# wget http://switch.dl.sourceforge.net/
sourceforge/webadmin/webmin_1.470_all.deb
--01:22:51-- http://switch.dl.sourceforge.net/sourceforge/webadmin/
webmin_1.470_all.deb
 => `webmin_1.470_all.deb'
(…)
Length: 13.760.140 (13M) [application/x-debian-package]

100%[===
=========>] 13.760.140 5.66M/s

01:22:54 (5.66 MB/s) - »webmin_1.470_all.deb« saved
[13760140/13760140]

That should be all! However, on all systems you will need some libraries before
installing Webmin:

vpnserver:/home/mfeilner# aptitude install libnet-ssleay-perl
libauthen-pam-perl libio-pty-perl libmd5-perl
(…)
Fetching: 1 http://ftp.de.debian.org lenny/main libnet-ssleay-perl
1.35-1 [206kB]
Fetching: 2 http://ftp.de.debian.org lenny/main libauthen-pam-perl
0.16-1.1+b1 [32,9kB]
Fetching: 3 http://ftp.de.debian.org lenny/main libio-pty-perl 1:1.07-
1+b1 [40,7kB]
Fetching: 4 http://ftp.de.debian.org lenny/main libmd5-perl 2.03-1
[5700B]

vpnserver:/home/mfeilner# dpkg -i webmin_1.470_all.deb
(...)
Webmin install complete. You can now login to https://vpnserver:10000/
as root with your root password, or as any user who can use sudo
to run commands as root.
vpnserver:/home/mfeilner#

Securing OpenVPN Tunnels and Servers

[222]

You are told that Webmin uses a separate password file in /etc/webmin/miniserv.
users. Confirm this dialog with the OK button. This is important, you should never
send your root password over a web connection.

The Shorewall firewall is also installed with a simple aptitude install shorewall.
Webmin comes with a full-featured and intuitive GUI to control your firewall, but
the configuration files are probably the faster way to edit your rules.

Looking at Webmin
This is the Webmin login screen:

However, there are still some small adjustments that you need to make. Webmin
must be secured and configured. This is what the new GUI looks like, everything is
done by mouse clicks.

Chapter 10

[223]

Preparing Webmin and Shorewall for the first start
After installation, you find Webmin installed in /usr/share/webmin and the
Webmin configuration in /etc/webmin. The file miniserv.conf contains the basic
configuration for access and authentication. The Webmin documentation on the web
site is the best place to look for the meaning of these options. At this point you will
only need to change one line.

Change the line allow=127.0.0.1 /etc/webmin/miniserv.conf
to the address of the client that you want to use for accessing Webmin
and type /etc/init.d/webmin restart.

Webmin can now be reached from the system you specified with a standard browser
(supporting cookies and JavaScript is recommended, but not necessary) on the URL
https://ip-of-our-webmin-server:10000.

There are only two small changes to configuration files in the Shorewall setup that
need editing:

Set the parameter startup=0 to startup=1 in /etc/default/
shorewall.
Enable forwarding in /etc/shorewall/shorewall.conf
by changing the line IP_FORWARDING=Keep to IP_FORWARDING=On.
Create your own certificates for Webmin, either within Webmin or use
your PKI from OpenVPN for that.

Of course we can use the certificates generated by OpenVPN's easy-rsa for Webmin
too, and the best way to do this is generating certificates for Webmin. Perhaps you
type something like webmin-server01 or similar in the Common Name field of the
certificate and key. If you have certificates, you only have to put them on the server
running Webmin and enter the path in the fields in the right dialog. By doing so,
you have certificates nobody else is using, which is definitely not true of the original
Webmin certificates. In the previous example, the keys are placed in /etc/openvpn/
keys, but you can choose the location freely.

Install the Webmin Module for OpenVPN with Webmin | Webmin
Configuration| Webmin Modules | From ftp or http URL from
http://www.openit.it/index.php/openit/content/
download/3566/14482/file/openvpn-2.5.wbm.gz

Now add a user to use with Webmin only for firewall configuration.
Go to Webmin | Webmin Users and click on Create a new Webmin
user hyperlink. Add your username, password, and select the modules
OpenVPN and OpenVPN + CA.

Securing OpenVPN Tunnels and Servers

[224]

Preparing the Shoreline firewall
This is what Webmin with the Shorewall / Shorewall Firewall GUI looks like:

Before we proceed, we need to collect some information:

•	 What port and protocol is OpenVPN running (by default its UDP port is
1149)?

•	 What are the names of the network interfaces?
•	 What is the IP address or DNS name of the VPN partner?

We will now enter this data in our firewall configuration and close all other
access except SSH traffic. Thus our firewall will have only two ports open from
outside—SSH and OpenVPN. What you want or need to open from your internal
network will depend on the other services that you run on this server. I recommend
and assume that no other services are running, thus the firewall will be closed to the
internal network as well, which gives the following firewall rules. Of course, if your
Firewall/VPN server is gateway to the Internet for the local net, there may be some
rules to be added.

Chapter 10

[225]

The Firewall on our OpenVPN server will:

•	 Allow SSH access from everywhere (remote and local)
•	 Allow OpenVPN traffic (UDP port 1194, or whatever you opt for)
•	 Forward traffic between the local network and the remote network

(connected by the VPN)

The typical proceeding to set up such rules is as follows:

1.	 Add network zones: Here we define 'what is outside', 'what is inside',
and so on.

2.	 Define network interfaces and link them to network zones: We bind the
zones 'outside', 'inside', and so on to network cards—real or virtual ones.

3.	 Define default policies: This declares the standard procedure for traffic that
is not defined by rules (see next point).

4.	 Define firewall rules: We define exact rules for the traffic based on its IP,
port, or protocol.

You can see in the previous screenshot that the four icons in the first line are all that
we need, but the Shorewall can do much more. The online help on its homepage is a
very concise description of its capabilities.

Troubleshooting Shorewall—editing the
configuration files
Shorewall is configured by configuration files that are placed in /etc/shorewall.
The GUI tool may be the best for the lazy (Windows) administrator, but editing the
configuration files is the fastest way to adjust Shorewall behavior. The following
table shows the files and the corresponding Webmin modules and functionality of
the Shorewall:

Configuration File Webmin Module Function
zones Network Zones Defines the zones (such as external,

internal, tunnel) for the firewall
interfaces Network Interfaces Links zones and network devices
policy Default Policies How traffic not specified by any firewall

rule is treated
rules Firewall Rules Exact definition of firewall treatment of

traffic

Securing OpenVPN Tunnels and Servers

[226]

If we want to make changes here, we proceed in the same way as we do with Webmin:

•	 Edit the zones.
•	 Bind interfaces to zones.
•	 Define policies for zones.
•	 Define rules that are different than the policies.

The syntax of these files is simple. The rules file created with Webmin looks
like this:

vpnserver:/etc/shorewall# cat rules
#
Accept SSH connections from the local network for
administration
#
SSH/ACCEPT loc $FW
SSH/ACCEPT net $FW

#
Allow Ping from the local network
#
Ping/ACCEPT loc $FW

(...)

That should allow all SSH traffic from outside and the local net plus pings from
inside. The target action is specified in the first column, followed by source zone,
destination zone, protocol, and port number. Almost the same system can be used
to read the policy file:

(...)
$FW net REJECT info
$FW loc REJECT info
$FW all REJECT info

#
Policies for traffic originating from the Internet zone (net)
#
net $FW DROP info
net loc DROP info
net all DROP info

THE FOLLOWING POLICY MUST BE LAST
all all REJECT info
(...)

$FW stands for firewall and all is a shortcut for all interfaces (like the parameter
for Any in Webmin). The first column is the source zone, the second shows the
destination zone, and the third column, a target action. Optional logging is defined
in the fourth column. The policy file shows two new entries at the end, which I have
added to allow traffic from the tunnel to access the OpenVPN firewall.

Chapter 10

[227]

If your interfaces file shows this entry at its end, then Webmin and Shorewall have
already recognized the tunnel as an internal network interface:

###
##########
#ZONE INTERFACE BROADCAST OPTIONS
net eth0 detect dhcp,tcpflags,norfc1918,routef
ilter,nosmurfs,logmartians
loc tun0 detect tcpflags,detectnets,nosmurfs
#LAST LINE -- ADD YOUR ENTRIES BEFORE THIS ONE -- DO NOT REMOVE

The first column shows the short name, the second column the real name of the
network interface in the system, and optional further columns can define other options.

The last file (which was the first we set up with Webmin) is the one that used to
cause problems with some versions of the Shorewall software—the zones file:

#ZONE TYPE OPTIONS IN OUT
OPTIONS
OPTIONS
fw firewall
net ipv4
loc ipv4

This is the content of the file after the editing in Webmin. This configuration works
fine with all versions of Shorewall beginning with 3.0.1.

There is also a command shorewall, which can be used to start, stop, restart,
and check the Shorewall.

Shorewall Command Function
shorewall check Checks the Shorewall configuration files
shorewall start Starts the Shorewall firewall
shorewall stop Stops the Shorewall firewall
shorewall restart Stops and then starts the Shorewall firewall
shorewall show Shows a detailed list of firewall rules, including statistics

Run a shorewall check before you apply any changes
to configuration files!

Securing OpenVPN Tunnels and Servers

[228]

OpenVPN and SuSEfirewall
On SuSE Linux, there is a very sophisticated firewall solution with an administration
GUI embedded in YaST. This firewall can also be set up very easily to work
with OpenVPN. We will configure the SuSEfirewall for use with the OpenVPN
configuration from the beginning of this chapter.

Start YaST on your SuSE Linux system and change to the Firewall module, which
can be found in Security and Users. This is what this looks like on Opensuse 11.1
and 11.0, and it looks pretty similar on SLES 10 and 11:

The YaST firewall setup is very straightforward, in the left part of the window we can
select the dialogs to be set up for the interfaces, services, and some special features like
logging, and so on, and in the right part of the window we enter the parameters and
options for these features. The following list will give a step-by-step configuration:

1.	 Let the SuSEfirewall start at boot time. Enable Firewall Automatic Start in
Firewall Configuration: Start-Up.

2.	 Change to the entry Interfaces in the left part of the window. Look up the
MAC addresses of your network cards, double-click on them in the interface
list, and select the proper entry from the drop-down menu Interface Zone.
Here you must define your internal and external devices.

Chapter 10

[229]

3.	 Click on the entry Allowed Services in the list on the left. Select External
Zone in the drop-down menu Allowed Services for Selected Zone and SSH
from the Service to Allow drop-down menu. Click on the Add button to
confirm your changes. Now SSH access on the external interface is permitted.

4.	 Next, click on the button Advanced to add our OpenVPN service. The UDP
or TCP Port 5000 is not yet part of the standard SuSEfirewall drop-down
menu, so we will have to add it using the advanced dialog. Enter 5000 in the
field UDP or TCP Ports – or 1194 if you decided to keep the standard port.

5.	 Click on OK and on the Next button to finish SuSEfirewall setup. Check the
settings displayed and click on Accept.

6.	 Now we have the SuSEfirewall configured to deny any access through the
external interface except OpenVPN and SSH. What is missing? You may
know it by now: forwarding and network traffic from inside the tunnel.
These options need to be set up with the sysconfig Editor tool of YaST,
in the System category.

7.	 Start the YaST module System | /etc/sysconfig Editor. The sysconfig Editor
is a useful tool on SuSE Linux that enables setting of various configuration
options that otherwise can only be set on the command line. It consists of a
list of variables on the left and fields where our parameters can be entered in
the right half of the window.
We need to enter the following three options:

°° The OpenVPN interface is an interface that should be treated
like the internal network interface.

°° SuSEfirewall must start routing functionality.
°° The firewall must route packets between the two networks

connected with OpenVPN.
8.	 Select the entry Network | Firewall | SuSEfirewall2 in the long list of

variables on the left. We will only need to change the values of the following
three variables:

Variable Value
FW_DEV_INT eth-id-00:0c:29:88:9c:b0 tunVPN0
FW_ROUTE yes
FW_FORWARD 172.16.76.0/24,192.168.250.0/24 192.168.250.0/24,172.16.76.0/24

9.	 In my example network the two networks connected are 172.16.76.0/24
and 192.168.250.0/24. The tunnel interface is tunVPN0, and the MAC address
of my internal network card is eth-id-00:0c:29:88:9c:b0.

Securing OpenVPN Tunnels and Servers

[230]

10.	 Probably the most interesting value in this list is the last line: here we tell the
SuSEfirewall that all traffic from 172.16.76.0/24 to 192.168.250.0/24, and from
192.168.250.0/24 to 172.16.76.0/24 shall be allowed.

11.	 Click on the Finish button. You will be asked to confirm a list of the changes
you have made. Click on OK to commit your changes. Now we must start
the YaST firewall module again and restart the SuSEfirewall. Simply start
YaST and go to Security and Users | Firewall and click on the button Save
settings and restart firewall.

12.	 Your SuSEfirewall is up and running.

Routing and firewalls
We have now successfully connected the two networks. Please note that you always
need two systems that do routing to connect two networks. If you do not need a
firewall on these systems, or if you have problems and do not find the reason for
your problems, it may be helpful to enable forwarding without firewall functionality.

Configuring a router without a firewall
The following command activates forwarding of TCP/IP traffic from one network
interface to another.

opensuse01:~ # echo "1" > /proc/sys/net/ipv4/ip_forward
opensuse01:~ #

If your routing setup is correct, then this is absolutely sufficient to make a Linux
box a temporary router. Temporary router—because this setting will be gone after a
reboot. If you add this command to one of your startup files (or call it from one of the
OpenVPN scripts), then your Linux box can act as a router automatically.

iptables—the standard Linux firewall tool
Almost every Linux firewall uses iptables as the standard tool. It may be very
helpful to know basic features of this tool, not only for debugging, but also to
understand what is happening behind firewall GUIs like Shorewall or YaST.

iptables is a simple command-line tool that controls the kernel's IP tables. In these
tables rules that define how network packets are treated on this system can be stored.
As always, the simple commands offer the best solutions when they are combined
with an abundance of options. There are a number of options and extensions for
iptables, so this short description is far from perfect and far from complete.
However, I hope that it may help in some cases.

Chapter 10

[231]

The iptables syntax is very simple:

iptables <rule command> <chain> <matching extensions><target>

A typical rule command is -A, which means to 'Add the following rule'. As iptables
uses different chains (by default, INPUT, FORWARD, and OUTPUT), we must declare the
chain that this rule is to be added to. The following table shows three examples:

iptables command Function
iptables -A INPUT <rule> Adds a rule to the INPUT chain, which affects all

incoming packets heading for the firewall itself.
iptables -A OUTPUT <rule> Adds a rule to the FORWARD chain, which affects all

packets that are supposed to be forwarded by the
firewall.

iptables -A FORWARD <rule> Adds a rule to the OUTPUT chain, which affects all
outgoing packets originating from the firewall.

Another typical command is -P, which sets the default policy for a chain. This should
always be set to DROP, because then all packets 'arriving' in this chain are dropped if
not specified explicitly by another rule. This is the only way to make sure that only
the traffic allowed by us is handled and any unspecified traffic is dropped.

A typical example for this is:

opensuse01:~ # iptables -P FORWARD DROP
opensuse01:~ #

Then there are the targets of iptables. A target can be DROP, REJECT, or ACCEPT
(among others), and is invoked by the switch -j. Furthermore, so-called 'matching
extensions' are like a filter specifying exactly which packet is meant.

Thus a rule such as iptables -A INPUT <matching extension> -j DROP means:
'Drop every packet that is headed for my firewall and that matches the
<matching extension>'.

Matching Extension Meaning
-i <interface> The incoming interface of the datagram
-o <interface> The outgoing interface of the datagram
-p <protocol> The IP protocol of the datagram
--dport <destination port> The destination port of the datagram
--sport <source port> The source port of the datagram
-s <source IP> The source IP of the sender
-d <destination IP> The destination IP of the recipient

Securing OpenVPN Tunnels and Servers

[232]

There are many other matching extensions, but these here should be sufficient to
understand the basics of iptables. Have a look at these lines:

#!/bin/bash
echo "1" > /proc/sys/net/ipv4/ip_forward

iptables -P INPUT DROP
iptables -P OUTPUT DROP
iptables -P FORWARD DROP

iptables -A INPUT -i eth0 -p tcp --dport 22 -j ACCEPT
iptables -A INPUT -i eth0 -p udp --dport 5000 -j ACCEPT
iptables -A INPUT -i eth0 -j DROP

iptables -A OUTPUT -o eth0 -p tcp --sport 22 -j ACCEPT
iptables -A OUTPUT -o eth0 -p udp --dport 5000 -j ACCEPT
iptables -A OUTPUT -o eth0 -j DROP

iptables -A INPUT -i tun0 -j ACCEPT
iptables -A OUTPUT -o tun0 -j ACCEPT
iptables -A FORWARD -i tun0 -j ACCEPT

iptables -A INPUT -i eth1 -j ACCEPT
iptables -A OUTPUT -o eth1 -j ACCEPT
iptables -A FORWARD -i eth1 -j ACCEPT

Do you already understand them? If you do, congratulations, if not, don't worry,
it's easy. These lines represent a simple shell script that can be used to start a very
simple firewall example. iptables is a command-line tool and therefore is simply
called from a script with parameters such as the following:

Command Meaning
iptables -P INPUT DROP Drop all incoming packets that are not

specified by any other rule
iptables -P OUTPUT DROP Drop all outgoing packets that are not

specified by any other rule
iptables -P FORWARD DROP Do not forward any packets that are not

specified by any other rule
iptables -A INPUT -i eth0 -p tcp
--dport 22 -j ACCEPT

Accept TCP connections for port 22
coming in on network interface eth0

iptables -A INPUT -i eth0 -p udp
--dport 5000 -j ACCEPT

Accept UDP connections for port 5000
coming in on network interface eth0

iptables -A INPUT -i eth0 -j DROP Drop everything (else) incoming on
interface eth0

iptables -A OUTPUT -o eth0 -p tcp
--sport 22 -j ACCEPT

Accept outgoing TCP connections for port
22 going out on network interface eth0

Chapter 10

[233]

Command Meaning
iptables -A OUTPUT -o eth0 -p udp
--dport 5000 -j ACCEPT

Accept outgoing UDP connections for port
5000 going out on network interface eth0

iptables -A OUTPUT -o eth0 -j DROP Drop everything (else) going out on
interface eth0

iptables -A INPUT -i tun0 -j ACCEPT Accept traffic coming from the tunnel
headed for the firewall

iptables -A OUTPUT -o tun0 -j ACCEPT Accept traffic headed for the tunnel
iptables -A FORWARD -i tun0 -j
ACCEPT

Accept traffic to be forwarded coming
from the tunnel

iptables -A INPUT -i eth1 -j ACCEPT Allow incoming traffic from the local
network interface eth1

iptables -A OUTPUT -o eth1 -j ACCEPT Allow outgoing traffic to the local network
interface eth1

iptables -A FORWARD -i eth1 -j
ACCEPT

Accept traffic to be forwarded coming
from the local network eth1

In a nutshell:

•	 eth0 is the external interface, where all traffic except SSH and OpenVPN will
be dropped

•	 tun1 is the tunnel interface, where forwarding to eth1 is allowed
•	 eth1 is the local network, where forwarding into the tunnel is allowed

If you need more information, the manual page of iptables is the best place to look
for help.

The OpenVPN software package contains a sample script that could be adapted for
firewall purposes. The script can be found in /usr/share/doc/openvpn/examples/
sample-config-files/firewall.sh and can be adapted to your needs. However,
this script makes use of some special features of iptables that would go beyond the
scope of this book.

Every Linux system (since kernel 2.4) uses iptables to
set up the rules for its firewall.

Securing OpenVPN Tunnels and Servers

[234]

Configuring the Windows Firewall for
OpenVPN
Microsoft Windows XP with installed service pack 2 offers firewall software too. In
the control panel there is an icon called Windows Firewall. Double-click on this icon.

The Windows Firewall is activated as default, blocking all connections from
outside to the local host. The Windows machine can connect to any host, even
OpenVPN as a client can be run without any changes. If you want to connect to
this Windows machine with OpenVPN, then some changes have to be made. The
Windows Firewall offers the possibility to switch off the firewall service completely
(which should only be done for testing purposes) and as an alternative to add
exceptions to the firewall behavior. This is what we will have a look at later.

Chapter 10

[235]

However, if we want to start an OpenVPN server process that binds to a local port
and expects other machines to connect, then the Windows Firewall causes a security
alert with a dialog box like the one that follows. This is probably the easiest way to
activate OpenVPN in the Windows Firewall:

Click on the Unblock button.

Securing OpenVPN Tunnels and Servers

[236]

As soon as the OpenVPN process is started, another (small) pop-up window will
appear and indicate that the OpenVPN process is ready to accept connections.

What happened when we clicked Unblock? The Windows Firewall has
automatically created a rule (or so-called exception) that allows incoming
connections to the OpenVPN process. Let's click on the Exceptions tab in the
Windows Firewall dialog:

Here is a new rule that was generated when OpenVPN tried to open the port. Click
on the Edit button, if you want to have a closer look at this rule. With the Add Port
button we can add any firewall rule to the Windows Firewall setup.

Chapter 10

[237]

Click on Add Port. The following dialog shows that we have three options to
set up a rule:

We can enter:

•	 Name for the rule—Unblock usually takes the name of the program
•	 Port number
•	 Protocol (UDP or TCP) for the connection

In this example the standard port of OpenVPN is entered—port 1194 and
protocol UDP.

More options can be declared if we click on the Change Scope button.
Another window pops up, where we can define the source of the connection that
is to be allowed.

Three possibilities are offered:

•	 No restrictions—Any computer (including those on the Internet)
•	 The local subnet—My network (subnet) only
•	 A Custom list of IP addresses that are allowed to connect to this process

Securing OpenVPN Tunnels and Servers

[238]

On Microsoft Windows XP with service pack 2 the firewall
can easily be configured with the control panel module
Windows Firewall. In the Exceptions tab, we can enter ports,
protocols, and sources for connections.

Summary
In this chapter, we have set up a secure OpenVPN connection between two partners
based on certificates and using strong encryption plus some non-standard security
features such as sophisticated authentication plugins. In the next step we configured
a Debian system with a firewall, which was Shorewall, which offers a nice GUI
together with Webmin. A short look at the configuration files of the Shorewall
Firewall and possible troubleshooting hints followed before we proceeded with the
SuSEfirewall of OpenSuSE. After that we configured two different firewall networks
that could connect to each other through the secure OpenVPN tunnel. We looked at
iptables, and finally learned how to configure the Windows Firewall on Microsoft
Windows XP.

Advanced Certificate
Management

In this chapter we will learn how to install and use xca, an advanced tool for
Windows with which we can easily manage our X509 certificates. We will also
learn how to use its Linux alternative, TinyCA2, which can even manage multiple
certificate authorities. Both tools can be used to generate certificate revocation lists
that are used to block unwanted connections by formerly authorized clients such as
with stolen notebooks. A brief selection of other free PKI tools that are available will
close this chapter.

Certificate management and security
I think it's quite obvious that a computer that is used to sign certificates and keys,
granting or restricting access to a company's network will deserve special attention
from everybody interested in accessing this network. My recommendation for a
certificate server is to disconnect it from the network. Transfer keys and certificates
with USB sticks or other non-network media.

This advice has been published before very frequently because it is simply
reasonable and true.

However, anybody who really does separate a certificate server computer from
the local net and does not control the network of a secret service like a bank or
similar infrastructure may send me an email. Most people simply wouldn't. In
reality, certificate servers are merely programs running as a background job or as
an application that is run by a non-privileged user. They say that there are even
Windows machines out there that perform certificate management, and that's why
I chose to show two tools in this chapter, one for Windows, and one for Linux
machines. My favorites are xca (for Windows) and TinyCA2 (for Linux).

Advanced Certificate Management

[240]

Installing xca
Installing xca is easy. Just download the .exe file by searching for it on
http://www.sourceforge.net. You will find a .exe file of about 2MB. As of 2007,
the latest version was 0.6.x. Download it and double-click on it to start installation.

In the first step you are asked to accept the BSD-style license. If you are unsure, read
it carefully and then click on the agreement, if it suits your needs. You will then be
asked to select the components to be installed. Click on Next again and xca will ask
you which path to install in.

Using xca
Once you've chosen a directory, xca will install in a few seconds
and will automatically start. Later you can select the main menu entry
Start | Programs | xca | xca to start it. Upon first start, xca may inform you that
its data directory (C:\Documents and Settings\USERNAME\Application Data\xca)
is created. Click on OK to close this window and xca is started. As a first
step when running xca, we need to create a database where xca stores metadata on
the certificates.

Creating a database
Select New DataBase from the File menu of xca.

Chapter 11

[241]

In the Open XCA Database dialog, we can select an existing database. However, as
we have started xca for the first time, there will not be a database and we will have
to create one. For this purpose, we can simply enter a new filename in the field File
name using the filename extension .xdb. This is very important because xca may not
recognize the database correctly later if the extension is missing. Click on the Save
button to confirm the creation of the database.

Now we must define a password for this database. This password will be needed
to encrypt the keys in the database file. If you transfer this database to a different
machine and want to reopen it, you will have to enter it again.

Advanced Certificate Management

[242]

Importing a CA certificate
The main window of xca offers the following five tabs:

•	 RSA Keys
•	 Certificate signing requests
•	 Certificates
•	 Templates
•	 Revocation lists

Except for the Templates tab, we will explain and use all the other tabs.

Let's first import the CA certificate that we had earlier created with easy-rsa.
Change to the Certificates tab and right-click to open the context menu. Select the
entry Import to have xca import a certificate authority.

Chapter 11

[243]

The Import X.509 Certificate window is displayed. Change to the directory
containing your xca keys. According to our examples this is C:/Program Files/
OpenVPN/easy-rsa/keys. Select the ca.crt file and confirm by clicking on the
Open button.

We see a new certificate in our list that is marked with a red question mark. This
signifies the fact that the certificate is still unknown and untrustworthy. Right-click
on the certificate and select the entry Trust to make this certificate a trusted one.

Another pop-up window is displayed, where we have to select Always trust this
certificate and click on OK.

Advanced Certificate Management

[244]

Before we can sign keys and client certificates using this CA certificate, we have to
import the CA key. Switch to the RSA Keys tab and open the context menu with a
right-click of the mouse.

Select Import from this list and choose the ca.key in the Import RSA key dialog. We
now see the key that is imported to xca. It is displayed with a key symbol as shown
in the previous screenshot.

Creating and signing a new server/client
certificate
Now let's create a new certificate for a VPN client. Switch to the Certificates tab and
select the New Certificate entry from the context menu, or click on the button of the
same name. In xca versions up to 0.4, a Certificate Wizard would be started. Recent
versions offer a dialog with six register pages of options and parameters for you.

Chapter 11

[245]

In the following dialog, you can choose from templates for the certificate that is to be
created (you can manage them with the Template tab in the main window of xca),
but the important selection you have to make is choosing the certificate that you
want to use for signing. Select the certificate that you imported in the drop-down
menu Use this Certificate for signing.

In the Template section of this dialog you can choose if your certificate is to be used
by a server or a client. In the Subject dialog, there is room for a common name,
organizational data, generating a key, and more. Click on Generate a new Key to
have the key calculated. As you can see, without templates, there is a lot of work to
be done with Ca-admin when generating new certificates.

Advanced Certificate Management

[246]

Here we can enter the data that easy-rsa has also asked us for. The xca templates
can make this a lot more comfortable. You know by now that a very important part
of this data is the field commonName, which can later be used to distinguish VPN
clients. You should choose a name that would be useful to distinguish your VPN
clients in this field. Click on Extensions to enter a range of dates for the validity of
the certificate.

Chapter 11

[247]

There is a new entry below our CA certificate, with the name of the certificate we
created, and statistical data. In the RSA Keys section we can find a key for this
certificate. The context menus of the RSA Keys and Certificates sections have entries
that allow us to export the keys and certificates to directories from which we can
copy them to our VPN servers and clients.

Of course, we have to repeat these steps for every new certificate that we want to
create. Again, don't forget to use distinguishing names. That's all! Isn't that easy?

PKI management with xca is easy. Import the CA's CA certificate
and declare it as trusted. Then import the CA key and start the
certificate generation. Don't forget to use the right CA certificate and
an appropriate common name for the certificate. Again, use the context
menus to export the keys and certificates.

Advanced Certificate Management

[248]

Revoking certificates with xca
The context menu of a certificate in the Certificates tab of xca offers an entry that is
called Revoke. By clicking on this entry a certificate is immediately made invalid. If
we create a revoke list and put this list on our VPN server, then with this list (and
a suitable configuration), a client trying to connect with this certificate will not be
granted access.

Select a certificate that you have created in xca and click on the entry Revoke in its
right-click context menu.

Chapter 11

[249]

Then right-click on the CA certificate and select the entry CA | Generate CRL to
create a Certificate Revocation List (CRL).

Now switch to the Revocation lists tab and double-click on the newly generated
revocation list to show the details. Close this dialog by clicking on OK. We can now
export this list to the VPN server using the context menu entry Export | PEM, by
right-clicking on the Revocation List button. Copy this file to the VPN server and
add an appropriate entry such as crl-verify <filename> to your configuration.

Create a few certificates and keys, export them to your VPN servers and clients,
and revoke them—some hours of training is very helpful to get a good feeling
here. Especially when combined with a high level of verbosity in the OpenVPN
configuration will help you learn a lot about certificates.

Advanced Certificate Management

[250]

Using TinyCA2 to manage certificates
TinyCA2 is a very handy tool to deal with certificate management. It provides
extended functions and the possibility to influence the behavior of OpenSSL itself.
TinyCA2 is available for OpenSuSE in online repositories. Other distributions must
look on http://tinyca.sm-zone.net/ for appropriate packages or source code.
On OpenSuSE, TinyCA2 can be easily installed using YaST. I also read about a
MAC port on http://tinyca2.darwinports.com/, so there should be a version
for almost every Unix/Linux system, even though the tool has not received much
development work during the last few years.

TinyCA2 can be used to create a CA, to import and export CAs, certificates, keys,
and revocation lists. It can manage several CAs and will offer the choice of which CA
to load on startup, if several CAs are configured.

Importing our CA
After installation, start TinyCA2 from SuSE's main menu. Select Utilities | Security
| tool to manage a Certificate Authority (TinyCA2). TinyCA2 starts and displays
an empty window. The icons in the tool bar offer several options.

•	 Open CA: Open an existing CA—that is a CA that has previously been
imported to TinyCA2

•	 New CA: Create a completely new CA
•	 Import CA: Import a CA (like those we created with easy-rsa) into TinyCA2

Chapter 11

[251]

Click on the Import CA icon to import a previously created CA. The Import CA
dialog is displayed as follows:

Here we must enter the password, location, and filename of the CA certificate and
key file. TinyCA2 offers extended options such as changing the password for the CA
right here or importing the SSL index file. However, entering password, certificate
file, and key are enough to import the CA. Click on OK to start the import.

Using TinyCA2 for CA administration
If you have several CAs to administer, TinyCA2 will present the following window
on startup. This window is also displayed when you select the Open CA icon.

Advanced Certificate Management

[252]

Once you have loaded, created, or imported a CA, the main window of TinyCA2
will be much richer with icons, menus, and features. TinyCA2 offers a lot of details,
information boxes, and history functions that let us manage our certificates and keys
in a very reliable and controllable way.

Like xca, TinyCA2 also presents tabs in its main window, and a lot of work is done
by selecting entries from context menus. The Open CA tab shows some information
on the CA itself, and the Certificates and Keys tabs list the existing certificates and
keys for this CA. The Requests tab is used to create and sign new certificates
and keys.

Creating new certificates and keys
If we want to create and sign a new certificate for our CA with TinyCA2, we have to
create a key signing request first. Change to the Requests tab, right-click, and select
New Request from the context menu. The following window appears:

I don't think that you need an explanation for the fields in this window. They are the
same as in the information that we had provided for easy-rsa and xca on certificate
generation. However, we have to make sure that an appropriate key size is selected
and that the Common Name is distinguishable. Click on OK to create the request.

Chapter 11

[253]

In the previous example we had seen a CA with many certificates and requests.
Now, right-click on your newly generated request and select the menu entry Sign
Request to sign it using the active CA's certificate. Another small menu appears,
asking you whether the request will be signed as a server or a client. This is for
example purposes that we have talked about on the xca pages. For a TLS server's
certificate, choose Sign Request (Server). For all clients choose Sign Request
(Client). Consider the following screenshot:

Now we are asked to enter the CA's password to sign the request. Enter your
password and check again if the validity is suitable for your purposes, and click on
OK to confirm. After a few seconds of calculations, your machine will tell you that
the certificate has successfully been created. Now switch to the Keys section. There is
a new entry for the newly created key/certificate pair, and there is also a new entry
in the list of the available certificates.

Advanced Certificate Management

[254]

Exporting keys and certificates with TinyCA2

With TinyCA2 we can export the CA, the client certificate, and key to a local file.
TinyCA2 recognizes several file formats for the key/certificate pairs. In the previous
screenshot you can see the default .pem key files. Please note that if you do not want to
enter a passphrase every time your OpenVPN tunnel is started, you must activate the
button Without Passphrase (PEM) | Yes. Otherwise, your key is password-protected,
which may be considered as an extra level of security.

Enter a filename or select a directory by clicking on the button Browse, and then click
on the button Save. Repeat these steps for the client certificate (use the standard PEM
Certificate) and the CA certificate (by clicking on the icon Export CA in the toolbar).

Chapter 11

[255]

Revoking certificates with TinyCA2
Creating and exporting a CRL with TinyCA2 is very easy. From the Certificate tab,
right-click on the certificate that you want to revoke. You are prompted for the CA
password and you are given the option to enter a reason for revocation.

Enter the CA Password, select a Revocation Reason, and click on OK to revoke the
selected certificate. Now switch to the CA tab and click on the Export CRL icon in
the toolbar. Again, you have to enter the CA's password and a validity date for this
CRL. Enter a filename and click on the Save button to export the CRL.

Other tools worth mentioning
There are of course a lot of other tools available for PKI management, especially for
X509 certificates.

One of them is OpenSSL itself. If you're not afraid of long command lines, try either
http://www.openssl.org or the recommended German tutorial at http://www.
online-tutorials.net/security/openssl-tutorial/tutorials-t-69-207.
html#beispiel-openvpn.

Advanced Certificate Management

[256]

SuSE's YaST has a special module for PKI management. Simply install the package
yast2-ca-management and restart YaST. You'll find it in the section Security.

For other distributions, Webmin provides quite suitable modules for PKI
management, like the mentioned OpenVPN + CA tool.

OpenCA PKI Research Labs are creating OpenCA, a browser based PKI management
suite that seems very promising (https://www.openca.org).

IDX-PKI is now integrated in a greater structure named OpenTrust and offers an
abundance of options for larger companies (http://www.opentrust.com/content/
view/119/111)

The small Windows tool My Certificate Wizard (http://mycert.sandbox.cz)
is for networks, where users create certificate requests on their own, send them to
the admin, and have them signed. This may be of special interest in well-organized
high-security environments.

Summary
We have created, imported, and exported CA certificates, client and server
certificates and keys, in addition to revocation lists using the tools xca and TinyCA2.
We have seen that there are many features that TinyCA2 offers that are neither in
the scope of easy-rsa nor available in xca. This is the reason why TinyCA2 is my
favorite certificate management tool. A small list of other available tools closes the
chapter. However, all these tools use only the 'toolbox' OpenSSL. If you want to
read more and become a certificate professional, 'man OpenSSL', then the website
http://www.openssl.org is the place to go.

OpenVPN GUI Tools
In this chapter, a lot of images will show several standard GUI tools for OpenVPN.
The best one is the Webmin OpenVPN module, probably the best tool for
administration of an OpenVPN server. The situation of the GUI clients looks worse.
Even though there are at least three interesting projects, none of them seem to work
flawlessly at the moment. Most still contain severe bugs, but I assume that the
community will make them work in a short time. Perhaps, at the time of reading,
everything will be working properly.

We'll start with Webmin's extraordinary frontend that we looked at briefly in the
chapter that dealt with security.

KVpnc is next, and the network manager plugin rounds out the chapter.

OpenVPN server administration:
Webmin's OpenVPN plugin
In Chapter 10, we introduced Webmin and the Shoreline/Shorewall firewall for
securing OpenVPN servers. We added a user that only has permissions to adapt
OpenVPN and firewall rules. That is not enough to control the server, but still more
secure than the root that is administrating it over a web connection.

The three main blocks that are available in this module are as follows:

•	 Certification Authority List
•	 VPN List
•	 Active Connection

OpenVPN GUI Tools

[258]

As this screenshot shows, you can even use Webmin to create your own OpenVPN
CA. Few admins will need the module configuration (which can be reached by
clicking on the text link at the top left)

This is what the OpenVPN plugin looks like:

The VPN list shows the example tunnel that we have created in the course of
this book:

Chapter 12

[259]

Note the links to Logs, Client, Status, Remove, and Actions. Have a look at the link
Client, it enables you to get a suitable client configuration at any time—if your paths
to Tar, Gzip, and your Webmin OpenVPN configuration is correct.

A click on the name of the configuration (in the previous example, this is still
sample) allows detailed configuration:

I think this powerful WebGUI is probably the biggest utility for an OpenVPN admin.
It allows full control of the configuration, all parameters, starting and stopping of
all tunnels, and access to the logfiles. With the client config export, no USB-stick is
needed—of course except for certificates.

OpenVPN GUI Tools

[260]

Client GUIs for Linux
Now let's have a look at how to import and use this configuration into our
clients. Today the number one standard tool on any Linux system is the network
manager that provides a cool systray applet for both KDE and GNOME.
NetworkManager should be installed out of the box on any recent Linux system,
and there are suitable packages for OpenVPN. On SUSE 11.1 and similar platforms,
they are called NetworkManager-openvpn, NetworkManager-openvpn-kde,
 and NetworkManager-openvpn-gnome. On Ubuntu, they are called
network-manager-openvpn, network-manager-openvpn-gnome, and
network-manager-openvpn-kde.

KVpnc
KVpnc seems to be one of the most promising VPN tools for many kinds of VPNs, if
you are running KDE. The only problem (apart from some reported instabilities and
bugs) that I can see is that it has to be run with root privileges. Whoever wants to use
it permanently, for example, on a field worker's laptop, has to be aware of the risks
of giving away the root password to a normal user or the risks of a GUI application
running as root. I prefer not to use these types of applications.

However, the functions it offers are abundant. Once it reaches a really stable version,
it may be a very handy application.

Here are some screenshots and a brief explanation of how it works. After calling
kvpnc on Ubuntu 9.04 (which has version 0.9 in its repositories), you are asked to
enter the root password, then the following window appears:

Chapter 12

[261]

Under the menu entry Settings – Configure kvpnc, you'll find an abundance
of switches and parameters to enter for several kinds of VPNs, as shown in the
following screenshot:

In order to get started, a wizard helps you to generate a new VPN profile,
for example, for OpenVPN.

OpenVPN GUI Tools

[262]

If this is not enough, then kVpnc can do more for you. You can generate a static key
for OpenVPN (Kvpnc – Generate OpenVPN Key), import config files and certificates,
and much more. However, KVpnc seems to ignore some parameters that are set in
the imported files, so you have to go and check for yourself if it meets your needs.
Good luck!

GAdmin-OpenVPN-Client
Compared to KVpnc, the gadmin-openvpn-client is rather small and only has a
few functions. Although it exists only in version 0.0.3, it is already in the standard
Ubuntu repositories and seems to work. Furthermore, it may be a better solution
for GNOME users than the KDE tool KVpnc.

Chapter 12

[263]

As you can see, you can enter or import your configuration, and activate or stop
a tunnel. GAdmin-OpenVPN also allows the monitoring of logfiles or current
connections, but it also has to be run with root privileges.

NetworkManager
The OpenVPN NetworkManager applet is available for for both KDE and GNOME.
You will need, however, to test it yourself. There are still many instabilities and
problems being reported on desktops' bug tracking systems. Both plugins are
included in all standard distributions.

This is how you add a new VPN tunnel connection to GNOME's NetworkManager
applet on Ubuntu 9.04:

1.	 Right-click on the NetworkManager symbol in your system tray
2.	 Choose Edit Connections from the context menu
3.	 Select the register VPN in the window which appears
4.	 In the following dialog, select OpenVPN as VPN type

This is what you should see now:

OpenVPN GUI Tools

[264]

Now perform the following:

•	 Click on Create, and then the Advanced... button

Consider the following screenshot:

As you can see, the network manager applets offer all the basic functions, with
the exception a few key elements. You can't import or export configurations and
unfortunately the applet won't work with symmetric static keys. Bugs have been
filed, and it would be excellent to see this solution work, as it offers the best means
of integration of the two big desktop applications, KDE and GNOME.

Summary
In this chapter, we have discussed some typical GUI-tools for OpenVPN.
Beginning with the Webmin module for the server, we also learnt about KVpnc,
GAdmin-OpenVPN, and the NetworkManager plugins for OpenVPN.

Advanced OpenVPN
Configuration

In this chapter, we will deal with several examples of advanced OpenVPN
configurations such as:

•	 Tunneling through a proxy server like squid
•	 Scripting OpenVPN—an overview
•	 Using a server configuration with specific per-client configurations that are

pushed to clients based on their certificates
•	 Pushing routing commands to clients
•	 Pushing and setting the default route through a tunnel
•	 Protecting clients through a firewall behind the tunnel
•	 Distributed compilation through VPN tunnels with distcc
•	 Automatic installation for Windows clients
•	 Redundancy with clusters and bonding

Some aspects of these configurations can only be covered at a basic level (like
squid proxy or the clustering techniques) because OpenVPN offers an abundance
of possibilities. However, there are hints and links to Internet web sites containing
detailed information about these setups.

Advanced OpenVPN Configuration

[266]

Tunneling a proxy server and protecting
the proxy
OpenVPN can use the HTTP method CONNECT to establish a tunnel between the
client and its VPN server. As this is a standard method used by most banking web
sites or any other security-conscious web sites, most proxies and firewalls are open to
such connections.

A simple OpenVPN configuration entry for use with an HTTP proxy may look like
the following:

(...)
port 443
proto tcp-client
http-proxy proxy 3128
http-proxy-retry
http-proxy-option AGENT Mozilla/4.0 (compatible; MSIE 4.01; Windows NT
5.0)
(...)

We are using port 443 TCP, which will make our VPN tunnel almost invisible to
local administrators. OpenVPN must also know where to find the proxy server and
on which port it is listening. In the aforementioned example, the name of the server
is proxy and its port is 3128. In addition to this, OpenVPN will try indefinitely to
establish a connection and stealthily pretend to be a Mozilla browser on Windows
2000. Pretty nice, isn't it?

I consider this as one of the main advantages of OpenVPN. There are only a few
networks where an OpenVPN tunnel cannot be set up. Don't worry about the
frowning local administrators at your side!

Chapter 13

[267]

The following table shows possible options for the proxy configuration
of OpenVPN:

Parameter Function
--auto-proxy

--http-proxy <IP> <port>
<authfile><auth-method>

--http-proxy-retry

Tries autodetection of proxy settings.
IP and port of proxy server, optionally
with proxy authentication.
<authfile> is a file containing username
and password on two separate lines.
<auth-method> can be ntlm, basic,
or none.

--http-proxy-timeout<n> Retries indefinitely to connect to proxy
Sets proxy timeout manually to n
seconds. The default is 5 (seconds).

--http-proxy-option type<option> Sets user agent (browser version
string) or HTTP version that is used.

--port 443 (HTTPS) is probably the most
inconspicuous selection (remember
to set this on both sides), but most
proxies also permit port 80 (HTTP)
or 21 (FTP).

--socks-proxy <IP> <port> Uses the socks proxy on machine with
<IP> <port>.

--socks-proxy-retry Retries indefinitely.

However, there are possible solutions to prevent OpenVPN tunnels. A secure squid
proxy server configuration might, for example, look like the following:

(...)
acl SSL_ports port 443 563
acl Safe_ports port 80 # http
acl Safe_ports port 21 # ftp
acl Safe_ports port 443 563 # https, snews
(...)
acl CONNECT method CONNECT
http_access allow manager localhost
http_access deny manager
http_access deny !Safe_ports
http_access deny CONNECT !SSL_ports
(...)
acl ADS_WWW_Benutzer external wb_group WWW_User

Advanced OpenVPN Configuration

[268]

acl ADS_WWW_trusted external wb_group WWW_trusted
(...)
http_access allow WWW_User
http_access allow WWW_trusted
http_access allow WWW_trusted !Safe_ports
http_access allow WWW_trusted CONNECT !Safe_ports
http_access deny all
(...)

Squid uses access lists (acl) and access directives (http_access), which can be
found in /etc/squid/squid.conf, to control Internet access. In the configuration
above, access lists are defined for 'SSL Ports' and 'Safe Ports' for HTTPS and FTP.
In lines further down in the file there are http_access directives, which explicitly
allow access to SSL and safe ports for members of the user group WWW_trusted
only. In this configuration an external authentication program, wb_group, is used.
wb_group is a small Perl script that enables squid to ask user information from a
Microsoft Active Directory Server. On this system, Windows administrators can
control the usage of HTTPS or other SSL connections through their proxy server
by simply adding or removing users from the privileged group. As a side effect,
only users in the group WWW_trusted can access https:// web pages. This may be
difficult to communicate in a company, but it is definitely more secure. We have been
using similar setups in recent years, and (after convincing the administrators) have
only had positive experience.

Combine the proxy settings with the connection profiles of OpenVPN 2.1
and you will almost always have an automatic tunnel provided. I have
met only one customer's network in almost ten years where I could not
set up an OpenVPN tunnel to my server. With 2.1, this is even easier.

Scripting OpenVPN—an overview
Another striking feature of OpenVPN is its scripting capabilities. We can create our
own scripts and have them called on changes to the connection state. This makes it
easy to execute a special (for example, Firewall) script any time a client connects, or
on similar occasions. There's no limit. I leave it up to you to imagine the possibilities.

Chapter 13

[269]

The following table gives an overview of the possible interfaces where OpenVPN can
be forced to execute arbitrary scripts:

Option Occurrence
--learn-address
 <cmd>

When the IP address of a VPN partner changes

--ipchange <cmd> When the IP address of the server has changed
--client-connect
 <cmd>

When a client connects

--client-disconnect
 <cmd>

When a client disconnects

--up <cmd>, down <cmd> After configuration (up = starting, down = stopping) of the
TUN/TAP device

--down-pre Before shutting down the TUN/TAP device
--up-restart When tunnels are restarted, up/down scripts are also

executed

In the man page of OpenVPN, http://openvpn.net/man.html, there is a special
section, Environmental Variables, listing all the variables that are passed to
commands. The German website http://www.pronix.de/pronix-991.html shows
a list of the variables that are passed to the command invoked. For non-German
speakers, here is a brief English list of the variables:

•	 learn-address: This option calls a command and hands over three variables.
°° operation: It can be one of 'add', 'update', or 'delete', and

directly refers to the change of the client's address that has
taken place

°° address: It contains the IP address which has been set
or deleted

°° common name: It is the entry from the client's certificate's
subject line

•	 ipchange: This refers to the IP address of the VPN server. The command is
executed after authentication (or remote IP change).

•	 client-connect and client-disconnect: These call commands
immediately after connection or disconnection of a VPN client. These options
can only be used in OpenVPN server mode.

Advanced OpenVPN Configuration

[270]

•	 -- up and --down: These are probably the most interesting scripting interface
options. The scripts defined here are called immediately after starting or
stopping the tunnel interfaces and before an optional --user identity change
takes place. Thus, here root privileges may be available, which allow, setting
routes or similar tasks for example.

Environment
Variable

Contents If DEV = TUN Contents If DEV = TAP

$1 Name of (TUN) interface Name of (TAP) interface
$2 MTU MTU
$3 Link-MTU Link-MTU
$4 Local IP of TUN interface Local IP of TAP interface
$5 Remote IP Netmask of TAP interface
$6 init, if called by --up,

restart if called by --up-
restart

init, if called by --up,
restart if called by --up-
restart

Using a client configuration directory
with per‑client configurations
Another striking feature of OpenVPN is the fact that we can have client
configurations pushed through the tunnel on creation and use client-specific
configurations, which are simply set by the subject line of the client's certificate.
An appropriate server configuration file may look like the following:

port 443
dev tun0FIT
ca /etc/openvpn/certs/ca.crt
cert /etc/openvpn/certs/firewall.crt
key /etc/openvpn/certs/firewall.key
dh /etc/openvpn/certs/dh2048.pem
tls-auth /etc/openvpn/certs/ta.key 0
auth SHA1
cipher AES-256-CBC
tls-cipher DHE-RSA-AES256-SHA
server 10.179.0.0 255.255.0.0
ifconfig-pool-persist /etc/openvpn/ipp.txt
client-config-dir clients
keepalive 10 120
resolv-retry 86400

Chapter 13

[271]

comp-lzo
status /var/log/openvpn/status.log
log /var/log/openvpn/main.log
tls-server
verb 3

There are three lines that are relevant in this context.

•	 server 10.179.0.0 255.255.0.0: This tells OpenVPN on this machine to
act as a server and automatically distribute IP addresses to clients connecting.

•	 ifconfig-pool-persist /etc/openvpn/ipp.txt: This makes OpenVPN
keep a list of certificates to IP relationships so that a client connecting will
(probably) always have the same IP address.

•	 client-config-dir clients: This has OpenVPN look in the directory
'clients' for a client-specific configuration file when a client connects.

A client configuration file must have a name matching the CN in the Subject line
of the certificate.

(...)
Subject: C=DE, ST=Bayern, L=Regensburg, O=Feilner-IT, CN=mfeilner/
emailAddress=mfeilner@feilner-it.net
(...)

If a client connects with a certificate containing the previous subject, the server will
look if the directory, clients contains a configuration file named mfeilner. This file
may contain push options like the following:

ifconfig-push 10.179.0.3 10.179.0.4
push "route 10.1.0.0 255.255.0.0"

In this scenario, the client will always have the IP address 10.179.0.3 and is
told about a network (10.1.0.0) behind the tunnel. Thus, if we use different client
configurations, we can control the routing and network configuration for every
client. But, as we will see later, we can also use the scripting hooks here, thereby
generating per-user-scripts and individual environments (see below).

It's simple to grant access to the network by activating or deactivating a client's
routing on connecting, but we must always remember that this offers no real
protection. This is because every local administrator could also activate this routing
on the client.

On the client configuration, the parameter, client, must be present. If we want to
have the client redirect its default gateway through the tunnel, then we simply need
to add the parameter redirect-gateway.

Advanced OpenVPN Configuration

[272]

The ability to redirect the client's default gateway is another excellent feature of
OpenVPN, especially when combined with HTTP-proxy tunneling. The parameter
redirect-gateway causes the following three actions:

1.	 A static route to the other tunnel partner is created.
2.	 The old default gateway is deleted.
3.	 A new entry for the default gateway is created (pointing to the IP address of

the other tunnel endpoint).

Of course we can enter these steps manually if we like. The following route
command will help us here:

vpnserver:~# route add 172.16.103.2 gw 172.16.247.1
vpnserver:~# route del default
vpnserver:~# route add default gw 10.179.10.2
vpnserver:~# route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref
Use Iface
172.16.103.2 172.16.247.1 255.255.255.255 UGH 0 0
0 eth0
10.179.10.2 0.0.0.0 255.255.255.255 UH 0 0
0 tunVPN0
172.16.247.0 0.0.0.0 255.255.255.0 U 0 0
0 eth0
172.16.76.0 10.179.10.2 255.255.255.0 UG 0 0
0 tunVPN0
192.168.250.0 0.0.0.0 255.255.255.0 U 0 0
0 eth1
0.0.0.0 10.179.10.2 0.0.0.0 UG 0 0
0 tunVPN0
vpnserver:~#

First, we added a static route to the VPN partner (route add 172.16.103.2 gw
172.16.247.1). Then we deleted the old default route (route del default), and as a
last step we created the new default route with route add default gw 10.179.10.2.
From this moment on, all traffic that is not destined to the VPN partner's public
IP address will be routed through the tunnel, as the output of route -n will show.
Because the routing entries will be useless when the VPN partner's IP address
changes, it is a better idea to have OpenVPN set the routing for us.

The next chapter deals with interpreting routing tables in more detail.

Chapter 13

[273]

Individual firewall rules for connecting
clients
One striking possibility that OpenVPN offers is a setup where:

•	 An OpenVPN machine acts as a server that protects the company's
network, admitting access for OpenVPN clients

•	 The clients are automatically assigned IP addresses by the server
•	 The clients are equipped with certificates, and are identified and authorized

by these certificates.

The scripting parameter learn-address in the server's OpenVPN configuration file
will have the server execute a script whenever an authorized client connects to the
VPN and is assigned an address. The following parameter takes the full path to a
script as an option:

learn-address /etc/openvpn/scripts/openvpnFW

In this example, the script openvpnFW will be executed each time a client is assigned
an IP address and will be passed three variables by the OpenVPN server process.

•	 $1: The action taken. This may be one of add, delete, or update.
•	 $2: The IP address assigned to the client connecting.
•	 $3: The common name in the subject line of the client's certificate.

Add the line learn-address /etc/openvpn/scripts/openvpnFW to your OpenVPN
server configuration file and edit the file /etc/openvpn/scripts/openvpnFW
to match the following. The following lines will show how to make use of these
parameters in a short Linux shell script:

#!/bin/sh

LOGFILE= /var/log/openvpn/connections.log
DATE=`/bin/date`
echo $DATE $1 $2 $3 >> $LOGFILE

This script will only export the variables passed to the logfile, including a timestamp
that is added by the command date. Stop and start your tunnel a few times.
Now let's have a look at the file /var/log/openvpn/connections.log:

Mi Feb 1 04:33:53 CET 2006 update 10.99.0.3 mfeilner
Do Feb 2 04:34:33 CET 2006 update 10.99.0.3 mfeilner
Fr Feb 3 04:34:14 CET 2006 update 10.99.0.3 mfeilner
Sa Feb 4 04:34:53 CET 2006 update 10.99.0.3 mfeilner
So Feb 5 04:34:43 CET 2006 update 10.99.0.3 mfeilner

Advanced OpenVPN Configuration

[274]

The preceding example shows my VPN client reconnecting every day. This alone
might be an interesting feature if you want to keep track of your users and their
VPN connections. However, we can do more. Let's add some more lines to our
openvpnFW script.

if [$1 = add]
then
/etc/openvpn/scripts/$2.FW_connect.sh
fi
if [$1 = delete]
then
/etc/openvpn/scripts/$2.FW_disconnect.sh
fi

Two simple tests are run, and depending on the content of the variable $1, different
firewall scripts are executed. Let's express this in brief. If the first variable passed is
add, then the script /etc/openvpn/scripts/$2.FW_connect.sh is run, where $2
will be replaced by the IP address of the connecting client. If, for example, a client
mfeilner connects and is assigned the IP 10.99.0.3, then the variables passed to
this script openvpnFW will be as follows:

add 10.99.0.3 mfeilner

And the script run will be called:
/etc/openvpn/scripts/10.99.0.3.FW_connect.sh.

Consider the following variable:

delete 10.99.0.3

If the preceding variable is passed to openvpnFW, then the script /etc/openvpn/
scripts/10.99.0.3.FW_disconnect.sh will be executed.

I think you have already guessed that these two scripts contain firewall rules (like
iptables statements) for the client with the certificate mfeilner. Even though all
of this could be done within one single script, I prefer to have the tests and firewall
rules split up in several scripts.

This setup can become very powerful and fairly complex. A client that has its default
route set through the tunnel can be allowed selective Internet access, simply by
enabling or disabling, routing or forwarding. Moreover, access to the local servers
can also be easily managed. For example, a SAP server might only be available for
road warriors from 7 am to 6 pm, whereas during the night firewall rules protect
the server.

Chapter 13

[275]

Distributed compilation through VPN
tunnels with distcc
The distcc is a compiler (or a frontend to GNU Compiler Collection (GCC))
designed to split up compiling processes over many machines, which can speed up
the process enormously. The distcc daemon has to be run on all of the systems that
are to participate, then the system starting the process must be informed about the
distcc hosts, and then we can start a compiling process.

On Debian systems, installation is as easy as typing apt-get install distcc.
As a next step, some parameters have to be set in /etc/default/distcc:

•	 Whether distccd should be started on boot
•	 A list of other distcc hosts that are allowed to connect
•	 The interface distcc should listen for incoming connections

The following is the file /etc/default/distcc on a Debian system:

Defaults for distcc initscript
sourced by /etc/init.d/distcc

#
should distcc be started on boot?
#
STARTDISTCC="true"

STARTDISTCC="false"

#
Which networks/hosts should be allowed to connect to the daemon?
You can list multiple hosts/networks separated by spaces.
Networks have to be in CIDR notation, f.e. 192.168.1.0/24
Hosts are represented by a single IP address
#
ALLOWEDNETS="127.0.0.1"

ALLOWEDNETS="127.0.0.1"

#
Which interface should distccd listen on?
You can specify a single interface, identified by it's IP address,
here.
#
LISTENER="127.0.0.1"

LISTENER="127.0.0.1"

Advanced OpenVPN Configuration

[276]

Here we will have to edit the parameters, ALLOWEDNETS, and LISTENER, to our needs,
and repeat this step for every partner that is supposed to take part in the collective
compilation. Then, either edit your startup files to include a system variable
called DISTCC_HOSTS, or create a configuration file, ./distcc/hosts, in your home
directory with a list of the other hosts that are supposed to take part in compiling.
The content of this variable or file should simply be a (space-separated) list of hosts
such as the following:

10.179.0.1 192.168.1.4 10.179.0.3

I think you will already know where this is leading to. We will install OpenVPN
tunnels on each machine taking part in the distcc network and then we
only need to enter the IP address of the tunnel machines in these files.

That's all, now we can use distcc over the tunneled connections. Therefore, the
distcc daemon has to be started with /etc/init.d/disstcc start and then we
can start a compiling process where we use distcc as compiler. For instance, in
the directory /usr/src/linux, simply type make CC=distcc to have the selected
machines in your network compile this machine's kernel together. Or have a look at
the following example where OpenVPN is compiled through distcc:

vpnclient1:~/# make CC=distcc
make all-am
make[1]: Entering directory `/root/openvpn-3.0'
if distcc -DHAVE_CONFIG_H -I. -I. -I. -I. -g -O2 -MT mroute.o -MD
-MP -MF ".deps/mroute.Tpo" -c -o mroute.o mroute.c; \
 then mv -f ".deps/mroute.Tpo" ".deps/mroute.Po"; else rm -f
".deps/mroute.Tpo"; exit 1; fi
if distcc -DHAVE_CONFIG_H -I. -I. -I. -I. -g -O2 -MT mss.o -MD -MP
-MF ".deps/mss.Tpo" -c -o mss.o mss.c; \
 then mv -f ".deps/mss.Tpo" ".deps/mss.Po"; else rm -f ".deps/
mss.Tpo"; exit 1; fi
if distcc -DHAVE_CONFIG_H -I. -I. -I. -I. -g -O2 -MT mtcp.o -MD
-MP -MF ".deps/mtcp.Tpo" -c -o mtcp.o mtcp.c; \
 then mv -f ".deps/mtcp.Tpo" ".deps/mtcp.Po"; else rm -f
".deps/mtcp.Tpo"; exit 1; fi
(...)

Chapter 13

[277]

Ethernet bridging with OpenVPN
On Linux, Windows XP, and Windows 2003, we can use VPN tunnels as one big
logical Ethernet network. By connecting (bridging) a virtual OpenVPN interface and
a real Ethernet interface, we connect (bridge) the networks behind these interfaces
and provide a virtual Ethernet between the hosts in the real networks, including
exchange of Ethernet frames. This feature can be useful for Windows users that
need to exchange broadcast packages through the tunnel, for example, for network
browsing, LAN parties, and more.

Setting up OpenVPN for bridging mode is simple and the same on all operating
systems. We only have to make sure our OpenVPN setup is working and that we
are using TAP devices. I recommend the use of TLS-server setup with clients that
are automatically assigned addresses and configurations.

On Linux, you will need to install the bridge-utils package and follow the
instructions on the web site http://openvpn.net/bridge.html. It is much easier
for Windows users. Just use the network settings of your operating system to
activate bridging mode. Open the Network Connections window and select (mark)
the two network interfaces that you want to bridge. Then select the entry, Bridge
Connections, from the context menu.

Advanced OpenVPN Configuration

[278]

A new icon will appear, called Network Bridge, and the LAN interface will show
Bridged in its name.

This Ethernet bridge can now be configured in a similar way to any other network
device. Select the entry properties from its context menu.

Chapter 13

[279]

As a last step, we have to assign an IP address to this interface or configure
the interface to obtain an IP address automatically, this being the default setting.
Select the entry, Internet Protocol (TCP/IP), from the list, This connection uses the
following items: and click on the button Properties to assign an IP address.

That's it! Your Ethernet bridge is now up and running. If you run into trouble with
your OpenVPN configuration, then check these web sites for examples and guidelines:

http://www.pavelec.net/adam/openvpn/bridge/ and

http://openvpn.net/bridge.html

Automatic installation for Windows clients
If you have to administer a large Windows network, then you will probably
know the pains of having to install software on several clients. There is a convenient
way to install OpenVPN (almost) automatically. The open source Windows
software Nullsoft Scriptable Install System (NSIS) installer is available from
http://www.openvpn.se/files/nsis/nsis205.exe and documented in
http://openvpn.se/files/howto/openvpn-howto_roll_your_own_
installation_package.html. The installer creates an executable file including
configuration and certificate for your client.

Advanced OpenVPN Configuration

[280]

Simply download the NSIS installer and execute it. In most cases, you will not need to
make any changes to the default values during installation except maybe for the path.
Simply click on the Next button three times, agree to the license, and NSIS is installed.

The following window shows the standard dialog of the NSIS installer providing
detailed information on this tool:

If you are interested in more information on the NSIS installer, have a look
at the Websites link here. Your next step will be downloading and extracting
the OpenVPN-GUI source code from http://www.openvpn.se/files/
install_packages_source/.

Chapter 13

[281]

Then copy your OpenVPN configuration and certificates to the directory you
extracted the sources to and open the file openvpn-gui.nsi with Notepad. Here you
only need to enter the name of your files and the path, if it differs from the values in
the file. Search for lines containing <File "${HOME}\config\Office.ovpn"> and
change this according to your needs.

Advanced OpenVPN Configuration

[282]

The section Modifying the script for your own needs of the web site
http://openvpn.se/files/howto/openvpn-howto_roll_your_own_
installation_package.html gives detailed information on possible and necessary
changes for different scenarios. If you want to have configuration files deleted when
OpenVPN is uninstalled, then add the lines similar to the following ones:

Delete "$INSTDIR\config\client.ovpn"
Delete "$INSTDIR\config\client.crt"
Delete "$INSTDIR\config\client.pem"

As a last step, we will now start the compilation progress, which is done with a
simple context menu entry generated by the NSIS installer. Right-click on the file
openvpn-gui.nsi and select the menu entry Compile NSI Script.

You will receive the following status window telling you about the progress.
In the following example, an installer .exe file is created as C:\nsis openvpn\
openvpn-2.0.5-gui-1.0.3-install.exe.

Chapter 13

[283]

You can now transfer this .exe file to all clients and install them automatically
with the configuration that you provided earlier. Installation works exactly like the
standard installation described before.

However, there is a small problem here. We will need to change every client's
certificate once. Otherwise all clients would have the same certificate, which is not
a really safe situation. Thus, all we have to do having completed the steps above is
as follows:

•	 Transfer the .exe file to a client
•	 Have it executed as administrator
•	 Copy the client's certificate to the client

You will need to use the same name for all certificates and configuration files on
all clients, but again this is no problem. This is because the common name of the
certificate's subject line will distinguish the clients.

Advanced OpenVPN Configuration

[284]

Clustering and redundancy
A big topic and a simple solution with OpenVPN. Just set up two or more identical
servers and keep the directory /etc/openvpn and its subdirectories in sync. Then
have your clients use the option remote-random and enter the IP addresses of
the servers, done. From that moment on, your clients will almost always get a
connection, even if you unplug the electricity from one of the servers. But you still
have to keep the servers in sync and will have some administration work. Other
options include the following:

•	 Set up a Heartbeat (http://www.linux-ha.org/) cluster with a shared
filesystem like DRBD (http://www.drbd.org/) or a storage solution behind
it and have two or more machines use the same storage. Your clients won't
notice a failover. The Linux Technical Review, a German high-end Linux
magazine has an article in its edition '04 High Availability' of 2007, on pages
114 through 117 that describe a simple setup for this, but only in German.
There is always an interesting thread in the OpenVPN club's forum that
will surely be translated to English soon: http://forum.openvpn.eu/
viewtopic.php?f=1&t=3183&start=0&hilit=cluster&sid=e238c6598c4a
215de2a3885d1a7dcadd

•	 Set up two tunnels through two dedicated DSL or Modem lines. Use both of
them for normal traffic, for example, one for printing, the other for terminal
services. Have Heartbeat control the tunnels, and switch all to one tunnel
if one of them fails. What you need for that are the tools of the iproute2
packages (http://lartc.org/howto/, http://www.policyrouting.org/
PolicyRoutingBook/ONLINE/TOC.html), namely programs like tc that
allow port-based routing and some sophisticated heartbeat setup. And of
course two DSL lines (or Modems).

•	 As in the last example, use two tunnels and bond your interfaces. Bonding
is a network-layer failover system integrated in the Linux kernel that can
combine two Ethernet devices to one, internally switching in case of errors.
Together with techniques like multipathing (routing to the same destination
through different routers), you can have a network-level redundancy
that other solutions won't achieve. There is an interesting thread in the
OpenVPN club's forum that will surely be translated to English soon,
http://forum.openvpn.eu/viewtopic.php?f=1&t=4857&start=0&hilit=
bonding&sid=e238c6598c4a215de2a3885d1a7dcadd

Chapter 13

[285]

Summary
In this chapter, we have discussed some typical advanced configurations for
OpenVPN that demonstrated some of its advantages. We have tunneled OpenVPN
through an HTTP proxy and then configured a squid proxy so that we could control
who is allowed to do so. Then we had a closer look at the scripting interfaces
that OpenVPN offers, including lists of variables that are passed to the scripts by
OpenVPN on invocation.

As a next step, we configured OpenVPN to use a per-client configuration based on
the client's certificate, which would enable different configurations for different users
connecting. This scenario can be made even more complex when combined with
per-user firewall rules being activated on the VPN server after a client connects.

The distcc, a network-enabled compiler frontend to GCC, can be used together
with OpenVPN tunnels to have remote machines work as a team when compiling
software. Finally, we looked at automatic installation for Windows machines using
the NSIS installer and methods for achieving redundancy.

Mobile Security with
OpenVPN

OpenVPN is not only a server security tool. In this chapter we will learn how to
install and configure it on mobile devices from a standard laptop that is supposed
to have secure and uncensored Internet access, using a Windows Machine at home
connected through DSL or other subscription lines. I will then show you how to
install OpenVPN on Windows Mobile and Smartphones by running embedded
Linux such as Nokia's Maemo platform.

Anonymous and uncensored Internet
Access
Travelers around the world often visit regions where simple data transfer of files
over the web may prove dangerous because some third world countries are known
to filter and analyze all data sent from your notebook. And if the local authorities
censor web access, then you won't be able to see important web sites for your work.
This is where OpenVPN comes into the game. Once a tunnel is set up, no one can
read your data. And if you have configured your default route through the tunnel,
no local censorship authority will know which page you were looking at. For the
following example, a Windows server at home or in your office will do. A PC
connected through, for example, DSL receives a new IP every day (at least with most
of the providers), so an authority might find it hard to block the IP.

Mobile Security with OpenVPN

[288]

The whole setup is done in a few easy steps.

•	 Get yourself one or more accounts from services such as dyndns.org or
no-ip.com. Such web sites help accessing, let's say, a PC that is only
connected over a leased Internet line, which frequently changes its IP. In
Germany, this is normally done by the Provider every 24 hours. Software,
like the one provided by dyndns.org, checks and updates the DNS-Entry
automatically if your IP changes.

•	 Configure your DSL (or whatever kind) router to forward the OpenVPN port
to your Windows machine. Consult your vendor's manual and look for terms
like NAT, Masquerading, or Port Forwarding. Don't forget to specify a static
IP for your VPN server, either in your router or DHCP-server, or simply in
the network configuration of your VPN server on Windows, for example, in
the network configuration dialog (TCP/IP protocol).

•	 Install OpenVPN on your server and create certificates for your server, CA,
and your client. This is described in detail in previous chapters in this book.

•	 In the last step, we have to complete the configuration. This implies a
working OpenVPN configuration file with at least the option "push
"redirect-gateway" " with correct routing and certificate setup. Also, you
have to bridge the VPN-device and your local LAN device, as described in
Chapter 13. Here is a working configuration for your server using the Https
port 443:
port 443
proto tcp-server
dev tap
ca ca.crt
cert server.crt
key server.key
dh dh1024.pem
server-bridge local_address_of_the_Windows_PC 255.255.255.0
192.168.0.240 192.168.0.250
push "redirect-gateway"
push "route 0.0.0.0 0.0.0.0 IP_of_the DSL_router"
push "dhcp-option DNS IP_of_the_DSL_router"
keepalive 10 120
comp-lzo
persist-key
persist-tun

Chapter 14

[289]

And for your client:
client
dev tap
proto tcp-client
remote feilner.dyndns.org 443
resolv-retry infinite
nobind
persist-key
persist-tun
ca ca.crt
cert client.crt
key client.key
comp-lzo
route-up myroute.cmd

Don't forget to adapt your IPs and DNS entries to your needs and provide the
certificates on either client. The route-up command file myroute.cmd should look
like this and resides in your configuration directory:

route delete 0.0.0.0 MASK 0.0.0.0 \ Local_IP_address_of_the_
Windows_computer_behind_DSL

Here you have to enter your server's IP so that the client has the correct routing
setup. That's it! Now you can surf without censorship and without the fear of
unwanted readers. If you want more, then have a look at the possibility of using
several DNS-Names with the remote command, the remote-random command
and especially OpenVPN 2.1 using connection profiles (see Chapter 9). If you want
a more detailed description of the setup described here, go to http://www.linux-
magazine.com/online/features/set_up_openvpn_in_four_steps

OpenVPN on Windows Mobile
The benefits of OpenVPN are not limited to PCs or Macs, many smartphones,
especially those running Windows Mobile, can use it because there is an OpenVPN
client available here: http://ovpnppc.ziggurat29.com/ovpnppc-main.htm.
Although this tool dates from 2007, it still works flawlessly and offers all the basic
functions that a client needs. The Cab files for installation are best downloaded
directly from and to the smartphone.

Mobile Security with OpenVPN

[290]

While installation is simple, it may prove more difficult to transfer your certificates
and configuration files from your PC to the phone. Especially finding the right path
to enter in the GUI's dialogs may become an interesting job, and although all smart
phones seem to store this data in the same place, the path may vary. On the HTC
device we tested, the correct path for the smartphone's configuration was:

cert "\\Memorycard\\Programs\\OpenVPN\\config\\client.crt"

This is a complete example configuration for a German language HTC with a simple
Key and no certificates:

dev tun
proto udp
remote feilner.dyndns.org 1194
ifconfig 10.3.0.1 10.3.0.2
resolv-retry infinite
nobind
persist-key
persist-tun
secret "\\Speicherkarte\\Programme\\OpenVPN\\config\\key.txt"
#pkcs12 "\\Speicherkarte\\Programme\\OpenVPN\\config\\client.p12"
comp-lzo
verb 3

As you can see, there is also an example for pkcs12 certificate files. After
downloading and installing the .cab file, you will find a new icon called
OpenVPN Connection Manager (ovpncmgr) in your Programs section:

Chapter 14

[291]

The rest is simple (assuming that you put your certificates and configuration file in
the right directory). Start ovpncmgr and click on the Menu button:

On our test device, we have two configs for testing, namely, sample and client. The
.ovpn extension is automatically stripped by Ovpncmgr. Once you have started
one of the available connections, it will be listed in the table above, and a new tab
is added to the GUI. In this tab, which is named [vpn_1] or something similar,
Ovpncmgr offers you detailed information about (from left to right) your VPN,
traffic statistics, and your network data:

The Windows mobile port of OpenVPN seems to understand all the features of
its bigger brother, including authentication and receiving pushed configuration
parameters like redirect-gateway and remote-random. However, some
features are more important for mobile phones. For example, the tracking of bytes
transferred, which you will find through the button Status or State, may prove an
ideal cost control for expensive wireless connections such as UMTS or GPRS.

Once configured, the OpenVPN client appears as a small icon in Windows Mobile's
systray, from which you can start and stop your tunnels at will.

Mobile Security with OpenVPN

[292]

Embedded Linux – Maemo
Another widespread platform for mobile smartphones is embedded Linux variants.
Because Nokia's Maemo system has gathered a lot of fans during the last few years,
there are many software available for devices like the small touch-screen,
web applets called N 800, 810, and N 900.

The screenshot shows the OpenVPN client software in action. As on Windows
Mobile, the main problem for the user is in finding out the right path for his/her
certificates, keys, and configuration files. But other than on Microsoft's systems,
you can easily install an SSH server on these smart phones and correct your
configuration from the command line (remotely!).

Chapter 14

[293]

This is a typical debugging SSH-session on a Nokia N 810 which shows the
network setup.

Although you may use the browser to get the OpenVPN-client for Maemo, for
example, from the project's website http://www.maemo.org, you don't need to. Just
open the software management and scroll down until you find the entry OpenVPN
and confirm that you want to have it installed. Repeat this step for the entry
openvpn-applet.

You'll receive a few warnings that Nokia has not certified this software and other
such similar messages, but be brave and continue because it's worth the price. Once
you are through with the installation, a small applet appears on your mini desktop.
If no tunnels are configured, then a click on Open will bring up an empty window,
similar to the following screenshot:

Mobile Security with OpenVPN

[294]

Clicking on New makes the dialog shown in the first screen shot of this section
appear. All you need to do is enter the correct paths to your configuration file(s),
certificates, and keys. If your paths are right, OpenVPN will work like a charm. The
smartphone manages the tunnel, no matter whether you're online through Bluetooth,
WLAN, UMTS, or any other means.

If you run into trouble, use the local terminal application or the SSH access and
look for the logfiles, just like you would do on a big Linux system. Apparently, the
openvpn-applet has no such feature built-in.

Summary
In this chapter we have learnt how to configure our notebook's internet access
and make it safe and private. In order to avoid unwanted men-in-the-middle,
unauthorized readers, and limitations due to censorship by authorities, we used a
PC connected to dial-in Internet access, while regularly changing its IP. We adapted
firewall and router configurations and bridged the remote laptop to our Home LAN,
providing it with uncensored and secure Internet access. We then had a look at the
OpenVPN client for Windows Mobile which offers a lot of handy functions. Last
but not least, Nokia's Maemo platform stands as an example for embedded Linux
variants that can run OpenVPN.

Troubleshooting and
Monitoring

In this chapter we will learn how to use tools to debug and monitor VPN tunnels. We
will also learn how to scan and test the connectivity of a (VPN) server with standard
Linux command-line tools. In the second part we will deal with the following
graphical monitoring tools:

•	 Ntop
•	 Munin
•	 Nagios
•	 OpenVPNgraph

Testing network connectivity
In our typical OpenVPN setup, we have connected two networks (192.168.250.0/24
and 172.16.76.0/24) through two Linux servers that are connected to the Internet
through a default gateway. Between the two Linux servers is a tunnel that uses
virtual interfaces with the IPs 10.179.10.1 and 10.179.10.2.

In the connected local networks there are two Linux machines that we will use
to test our tunnels (perhaps by conveniently accessing them remotely with Secure
Shell). We will now use the tools ifconfig, route, and ping to show and test the
network settings.

Troubleshooting and Monitoring

[296]

In our first step, we will check the local system's network address, default route, and
if the default router is pingable. The command ifconfig will print statistics of all
active network interfaces:

root@sydney:~ #ifconfig
eth0 Link encap:Ethernet HWaddr 00:0C:29:AE:8C:D7
 inet addr:192.168.250.128 Bcast:192.168.250.255
Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:2640 errors:0 dropped:0 overruns:0 frame:0
 TX packets:2290 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:250738 (244.8 KiB) TX bytes:273328 (266.9 KiB)
 Interrupt:10 Base address:0x1080

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:57 errors:0 dropped:0 overruns:0 frame:0
 TX packets:57 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:7907 (7.7 KiB) TX bytes:7907 (7.7 KiB)
root@sydney:~ #

This system has the IP address 192.168.250.128 and its network interface is up
and running. Obviously this machine is located in Sydney, Australia.

Now let's look at its routing entries. The command route prints all routing entries,
including the router to the Internet. A default gateway is a router that is supposed
to handle all traffic not specified by any other routing entries. In our networks,
the OpenVPN server is the only router from the internal network and is therefore
configured as the default gateway for the local network.

Type the command route -n to receive a numeric output of the routing table of your
system. Simply typing route will work in most cases, but the command will try to
resolve the IPs through DNS, which might take a little time.

root@sydney:~ #route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref
Use Iface
192.168.250.0 0.0.0.0 255.255.255.0 U 0 0
0 eth0
0.0.0.0 192.168.250.251 0.0.0.0 UG 0 0
0 eth0
root@sydney:~ #

Chapter 15

[297]

We see a table where destinations, gateways, netmasks, and interfaces are listed.
Every line is a routing entry that can be read like a real sentence. An entry 0.0.0.0
simply matches every address (source or destination, depending on the context)
and is an example used for the default gateway.

Line three shows that the network 192.168.250.0 is directly connected to the
network interface eth0, independently from any gateway.

Line four indicates that all the traffic to any destination will be sent over the default
gateway 192.168.250.251 through interface eth0.

This setup is perfectly OK for a typical network client. Let's now test if the default
gateway is reachable by pinging it from the client:

root@sydney:~ #ping 192.168.250.251
PING 192.168.250.251 (192.168.250.251): 56 data bytes
64 bytes from 192.168.250.251: icmp_seq=0 ttl=64 time=1.3 ms
64 bytes from 192.168.250.251: icmp_seq=1 ttl=64 time=0.6 msw
64 bytes from 192.168.250.251: icmp_seq=2 ttl=64 time=0.4 ms

--- 192.168.250.251 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.4/0.7/1.3 ms
root@sydney:~ #

It works! The default gateway (our OpenVPN server) answers the ping requests from
our client. If it doesn't answer the ping request in your setup, check the firewall rules
on this server to ensure they allow traffic from the internal network to the firewall
itself. If you are unsure, it may be a good idea to temporarily stop the firewall services.

Now let's try the same on the client in the other network (obviously in Germany):

root@munich:~ #ifconfig
eth0 Link encap:Ethernet HWaddr 00:0C:29:21:07:FC
 inet addr:172.16.76.128 Bcast:172.16.76.255
Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:2399 errors:0 dropped:0 overruns:0 frame:0
 TX packets:2715 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:345146 (337.0 KiB) TX bytes:271839 (265.4 KiB)
 Interrupt:10 Base address:0x1080

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1

Troubleshooting and Monitoring

[298]

 RX packets:8 errors:0 dropped:0 overruns:0 frame:0
 TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:772 (772.0 B) TX bytes:772 (772.0 B)

root@munich:~ #route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref
Use Iface
172.16.76.0 0.0.0.0 255.255.255.0 U 0 0
0 eth0
0.0.0.0 172.16.76.251 0.0.0.0 UG 0 0
0 eth0
root@munich:~ #ping 172.16.76.251
PING 172.16.76.251 (172.16.76.251): 56 data bytes
64 bytes from 172.16.76.251: icmp_seq=0 ttl=64 time=2.0 ms
64 bytes from 172.16.76.251: icmp_seq=1 ttl=64 time=0.5 ms
64 bytes from 172.16.76.251: icmp_seq=2 ttl=64 time=0.5 ms

--- 172.16.76.251 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.5/1.0/2.0 ms
root@munich:~ #

The Network configuration and routing are correct, and pinging the VPN
server works.

On Microsoft operating systems you will have to type ping /t
for persistent pings, ipconfig /all for network data, and route print
to display the routing table.

Checking interfaces, routing, and
connectivity on the VPN servers
In our next step, we will have a close look at the network settings on the VPN
servers. We will use the same tools, but the output will be a little more complex.

opensuse01:~ # ifconfig
eth0 Protokoll:Ethernet Hardware Adresse 00:0C:29:13:EC:48
 inet Adresse:172.16.103.2 Bcast:172.16.103.255
Maske:255.255.255.0
 inet6 Adresse: fe80::20c:29ff:fe13:ec48/64
Gültigkeitsbereich:Verbindung
 UP BROADCAST NOTRAILERS RUNNING MULTICAST MTU:1500
Metric:1

Chapter 15

[299]

 RX packets:2900 errors:0 dropped:0 overruns:0 frame:0
 TX packets:4790 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 Sendewarteschlangenlänge:1000
 RX bytes:759578 (741.7 Kb) TX bytes:666545 (650.9 Kb)
 Interrupt:10 Basisadresse:0x1080

eth1 Protokoll:Ethernet Hardware Adresse 00:0C:29:13:EC:52
 inet Adresse:172.16.76.251 Bcast:172.16.76.255
Maske:255.255.255.0
 inet6 Adresse: fe80::20c:29ff:fe13:ec52/64
Gültigkeitsbereich:Verbindung
 UP BROADCAST NOTRAILERS RUNNING MULTICAST MTU:1500
Metric:1
 RX packets:797 errors:0 dropped:0 overruns:0 frame:0
 TX packets:421 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 Sendewarteschlangenlänge:1000
 RX bytes:77682 (75.8 Kb) TX bytes:42404 (41.4 Kb)
 Interrupt:9 Basisadresse:0x1400

lo Protokoll:Lokale Schleife
 inet Adresse:127.0.0.1 Maske:255.0.0.0
 inet6 Adresse: ::1/128 Gültigkeitsbereich:Maschine
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:109 errors:0 dropped:0 overruns:0 frame:0
 TX packets:109 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 Sendewarteschlangenlänge:0
 RX bytes:8380 (8.1 Kb) TX bytes:8380 (8.1 Kb)
tunVPN0 Protokoll:UNSPEC Hardware Adresse 00-00-00-00-00-00-00-00-
00-00-00-00-00-00-00-00
 inet Adresse:10.179.10.2 P-z-P:10.179.10.1
Maske:255.255.255.255
 UP PUNKTZUPUNKT RUNNING NOARP MULTICAST MTU:1500 Metric:1
 RX packets:1337 errors:0 dropped:0 overruns:0 frame:0
 TX packets:1547 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 Sendewarteschlangenlänge:100
 RX bytes:470725 (459.6 Kb) TX bytes:181397 (177.1 Kb)
opensuse01:~ #

This server has two network interface cards eth0 and eth1 (with two networks
172.16.103.0/24 and 172.16.76.0/24) in addition to the OpenVPN tunnel network
tunVPN0 with the network address 10.179.10.2 and the point-to-point partner's IP
10.179.10.1. How about routing?

opensuse01:~ # route -n
Kernel IP routing table
Target Router Genmask Flags Metric Ref Use
Iface
10.179.10.1 0.0.0.0 255.255.255.255 UH 0 0 0
tunVPN0
172.16.103.0 0.0.0.0	 255.255.255.0 U 0 0 0 eth0
172.16.76.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1

Troubleshooting and Monitoring

[300]

192.168.250.0	 10.179.10.1	255.255.255.0	 UG 0 0 0
tunVPN0
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 172.16.103.1 0.0.0.0 UG 0 0 0 eth0
opensuse01:~ #

Routing is a little more complicated here. We have two subnets connected to
eth0 and eth1, and two entries for our tunnel. Everything to the virtual address
10.179.10.1 is routed through the interface tunVPN0, likewise traffic to the subnet
192.168.250.0/24, but this is routed through the gateway 10.179.10.1. Last but not
least, the default gateway of this router has the IP 172.16.103.1. Obviously there is
another network between this firewall and the Internet.

Let's now ping the point-to-point partner of this machine. We could see from the
previous interface list that this machine has the virtual IP 10.179.10.2, and the VPN
partner has the IP 10.179.10.1. If our tunnel is working it should be possible to
ping through the tunnel.

opensuse01:~ # ping 10.179.10.1
PING 10.179.10.1 (10.179.10.1) 56(84) bytes of data.
64 bytes from 10.179.10.1: icmp_seq=1 ttl=64 time=77 ms
64 bytes from 10.179.10.1: icmp_seq=2 ttl=64 time=50 ms
64 bytes from 10.179.10.1: icmp_seq=3 ttl=64 time=42 ms
64 bytes from 10.179.10.1: icmp_seq=4 ttl=64 time=44 ms

--- 10.179.10.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3013ms
rtt min/avg/max/mdev = 1.425/1.535/1.770/0.141 ms
opensuse01:~ #

It's working! Please note that the time taken to answer a ping will be significantly
longer through the tunnel than for a local or direct ping.

Now let's do the same tests the other way around. We will analyze the network and
routing of the Sydney server and try to ping to Munich through the tunnel.

debian01:~# ifconfig
eth0 Link encap:Ethernet HWaddr 00:0C:29:99:7B:CA
 inet addr:172.16.247.2 Bcast:172.16.247.255
Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:7735 errors:0 dropped:0 overruns:0 frame:0
 TX packets:11012 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:924335 (902.6 KiB) TX bytes:1714169 (1.6 MiB)
 Interrupt:18 Base address:0x1080

Chapter 15

[301]

eth1 Link encap:Ethernet HWaddr 00:0C:29:99:7B:D4
 inet addr:192.168.250.251 Bcast:192.168.250.255
Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:490 errors:0 dropped:0 overruns:0 frame:0
 TX packets:468 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:47652 (46.5 KiB) TX bytes:43728 (42.7 KiB)
 Interrupt:19 Base address:0x1400

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

tunVPN0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-
00-00-00-00-00
 inet addr:10.179.10.1 P-t-P:10.179.10.2
Mask:255.255.255.255
 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
 RX packets:1849 errors:0 dropped:0 overruns:0 frame:0
 TX packets:1489 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:206765 (201.9 KiB) TX bytes:483493 (472.1 KiB)

debian01:~# route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use
Iface
10.179.10.2 0.0.0.0 255.255.255.255 UH 0 0 0 tunVPN0
172.16.247.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
172.16.76.0 10.179.10.2 255.255.255.0 UG 0 0 0 tunVPN0
192.168.250 .0 0.0.0.0 255.255.255.0 U 0 0 0 eth1
0.0.0.0 172.16.247.1	0.0.0.0 UG 0 0 0 eth0
debian01:~# ping 10.179.10.1
PING 10.179.10.1 (10.179.10.1) 56(84) bytes of data.
64 bytes from 10.179.10.1: icmp_seq=1 ttl=64 time=21 ms
64 bytes from 10.179.10.1: icmp_seq=2 ttl=64 time=69 ms
64 bytes from 10.179.10.1: icmp_seq=3 ttl=64 time=59 ms

--- 10.179.10.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2005ms
rtt min/avg/max/mdev = 0.059/0.116/0.221/0.074 ms
debian01:~#

Troubleshooting and Monitoring

[302]

It worked! We have now made sure that:

•	 The VPN servers are reachable in their local networks
•	 The OpenVPN tunnel is up and running
•	 The OpenVPN tunnel is working in both directions

Let's now enter another level of testing. We will now test if the Sydney network
is reachable from our VPN server in Munich—still using ICMP packets only.
Furthermore, the program traceroute will help us follow the route the packets take.

opensuse01:~ # ping 192.168.250.128
PING 192.168.250.128 (192.168.250.128) 56(84) bytes of data.
64 bytes from 192.168.250.128: icmp_seq=1 ttl=63 time=19 ms
64 bytes from 192.168.250.128: icmp_seq=2 ttl=63 time=26 ms
64 bytes from 192.168.250.128: icmp_seq=3 ttl=63 time=57 ms

--- 192.168.250.128 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2009ms
rtt min/avg/max/mdev = 1.261/1.577/1.900/0.264 ms
opensuse01:~ # traceroute -n 192.168.250.128
traceroute to 192.168.250.128 (192.168.250.128), 30 hops max, 40 byte
packets
 1 10.179.10.1 1.874 ms 8.949 ms 20.241 ms
 2 192.168.250.128 24.911 ms 35.618 ms 40.988 ms
opensuse01:~ #

Again, pinging worked fine. This indicates correct routing on the Sydney side
and on the Munich VPN server. The output of the program traceroute lists all
servers the packets passed on their way to Sydney, they were thrown into the tunnel
immediately and arrived at the VPN server in Sydney 10.179.10.1, which passed
them on to the local machine. Of course we can also 'traceroute' our packets that go
the other way, provided that the administrator of the Debian server has installed
traceroute (apt-get install traceroute).

On Microsoft operating systems the command tracert offers
the same functionality as traceroute on Linux.

Another very handy tool is 'My traceroute', or mtr, called with mtr -n
192.168.250.128, mtr keeps running traceroute -n 192.168.250.128 command
until you type q or Ctrl+C. The output is displayed in a clear table. With this
command we can easily switch routing entries and view the effect interactively. It is
included in all modern distributions, but by default only available for the root user.

Chapter 15

[303]

Debugging with tcpdump and IPTraf
Another very handy tool to control traffic is tcpdump. As a network sniffer, tcpdump
is often used by administrators or hackers to collect data exchanged on a network.
tcpdump prints all traffic that passes the interface given as a parameter. The
following example demonstrates the use of tcpdump. When called with the options
-n and -i eth1, tcpdump will listen on interface eth1 and give a numeric output
(without resolving DNS):

debian01:~# tcpdump -n -i eth1
tcpdump: verbose output suppressed, use -v or -vv for full protocol
decode
listening on eth1, link-type EN10MB (Ethernet), capture size 96 bytes
21:00:16.640142 IP 192.168.250.128 > 172.16.76.128: ICMP echo request,
id
55298, seq 0, length 64
21:00:16.648116 IP 172.16.76.128 > 192.168.250.128: ICMP echo reply,
id 55298, seq 0, length 64
21:00:17.678429 IP 192.168.250.128 > 172.16.76.128: ICMP echo request,
id 55298, seq 256, length 64
21:00:17.680701 IP 172.16.76.128 > 192.168.250.128: ICMP echo reply,
id 55298, seq 256, length 64
21:00:18.668565 IP 192.168.250.128 > 172.16.76.128: ICMP echo request,
id 55298, seq 512, length 64
21:00:18.670722 IP 172.16.76.128 > 192.168.250.128: ICMP echo reply,
id 55298, seq 512, length 64
21:00:19.688618 IP 192.168.250.128 > 172.16.76.128: ICMP echo request,
id 55298, seq 768, length 64
21:00:19.690836 IP 172.16.76.128 > 192.168.250.128: ICMP echo reply,
id 55298, seq 768, length 64

As we can see, there were four ICMP echo request messages sent from
192.168.250.128 to 172.16.76.128. All of them were answered by the machine
172.16.76.128 with the appropriate 'echo reply' message.

Troubleshooting and Monitoring

[304]

Now we can use tcpdump on every machine in the chain of routers between the two
clients in order to track the ICMP packets. For example, if a firewall is blocking the
ICMP messages, then no PC behind this firewall will receive any of the requests or
replies, whereas the machines before the firewall will.

debian01:~# tcpdump -ni tunVPN0
tcpdump: WARNING: arptype 65534 not supported by libpcap - falling
back to cooked socket
tcpdump: verbose output suppressed, use -v or -vv for full protocol
decode
listening on tunVPN0, link-type LINUX_SLL (Linux cooked), capture size
96 bytes
21:07:53.800707 IP 172.16.76.128 > 192.168.250.128: ICMP echo request,
id 19971, seq 9472, length 64
21:07:53.801608 IP 192.168.250.128 > 172.16.76.128: ICMP echo reply,
id 19971, seq 9472, length 64
21:07:54.799266 IP 172.16.76.128 > 192.168.250.128: ICMP echo request,
id 19971, seq 9728, length 64
21:07:54.800531 IP 192.168.250.128 > 172.16.76.128: ICMP echo reply,
id 19971, seq 9728, length 64
21:07:55.800302 IP 172.16.76.128 > 192.168.250.128: ICMP echo request,
id 19971, seq 9984, length 64
21:07:55.801296 IP 192.168.250.128 > 172.16.76.128: ICMP echo reply,
id 19971, seq 9984, length 64
21:07:56.752248 IP 172.16.76.128 > 192.168.250.128: ICMP echo request,
id 19971, seq 10240, length 64
21:07:56.752876 IP 192.168.250.128 > 172.16.76.128: ICMP echo reply,
id 19971, seq 10240, length 64

8 packets captured
16 packets received by filter
0 packets dropped by kernel
debian01:~#

You see, tcpdump also runs on the tunnel interfaces, but some features won't
work with TUN or TAP interfaces. Also because the network interface will run
in promiscuous mode, tcpdump will need root privileges. Furthermore, the
information returned will be scarce in most switched networks, where only local
packets can be displayed.

Another helpful tool is IPTraf (on Debian it is installed with apt-get install
iptraf). IPTraf collects and displays packets and statistical data on selected
interfaces. IPTraf comes with many options, but we will only focus on its list view.

Chapter 15

[305]

Enter iptraf and hit return four times. You will get a window as depicted in the
following screenshot:

In the upper half of the window, TCP connections are displayed. UDP, ICMP, and
other connections can be found in the lower half. In the preceding example, we see
an SSH session (from which IPTraf was started), ICMP packages between the Sydney
and Munich client PCs, and the UDP packages encapsulating these ICMP packages.

Hit X twice and Enter once to quit IPTraf.

Using OpenVPN protocol and status files
for debugging
A very convenient method to watch tunnel traffic is setting the verbosity of
OpenVPN to the fifth level. This is simply done with the entry verb 5 in its
configuration file. The following output shows an excerpt of OpenVPN's protocol file
(as specified in the OpenVPN configuration file):

Fri Dec 9 21:05:15 2005 us=51912 Data Channel Encrypt: Cipher 'AES-
256-CBC' initialized with 256 bit key
Fri Dec 9 21:05:15 2005 us=51944 Data Channel Encrypt: Using 160 bit
message hash 'SHA1' for HMAC authentication
Fri Dec 9 21:05:15 2005 us=51962 Data Channel Decrypt: Cipher 'AES-
256-CBC' initialized with 256 bit key
Fri Dec 9 21:05:15 2005 us=52033 Data Channel Decrypt: Using 160 bit
message hash 'SHA1' for HMAC authentication

Troubleshooting and Monitoring

[306]

Fri Dec 9 21:05:15 2005 us=131924 Control Channel: TLSv1, cipher
TLSv1/SSLv3 DHE-RSA-AES256-SHA, 2048 bit RSA
WRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWR
wrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwr
WRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWR
wrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrWRwrW (...)

In the last lines, we find the detailed statistics of all tunnel traffic. Upper cased
letters stand for TCP or UDP datagrams on the real interface, encapsulating
OpenVPN traffic, and lower case letters indicate traffic on the TUN/TAP interface.
Unsurprisingly, r is for read and w is for write. Thus a successful ping command
through the tunnel will always cause an entry such as WRwr or vice versa.

Another file that our sample setup writes information to is the status file.
Depending on the time period given as a parameter, OpenVPN will update the
information in this file on a regular basis. In the example the file was /var/log/
openvpn/feilner-it.status, the command cat can show us the content of
this file.

debian01:~# cat /var/log/openvpn/feilner-it.status
OpenVPN STATISTICS
Updated,Fri Dec 9 21:26:53 2005
TUN/TAP read bytes,1102504
TUN/TAP write bytes,806453
TCP/UDP read bytes,1302857
TCP/UDP write bytes,1588558
Auth read bytes,808809
pre-compress bytes,55193
post-compress bytes,53110
pre-decompress bytes,1449
post-decompress bytes,2076
END
debian01:~#

This gives us detailed statistical data. If you run into problems with OpenVPN, it
may be a good idea to check this file to find out if the values make sense, or if there
is either too much or missing traffic on either side, for example, if it gets lost or the
routing is wrong.

Depending on your system and logging setup, there may also be entries in your
system protocol, like those here on this SuSE system:

opensuse01:~ # tail /var/log/messages
Dec 2 17:50:09 opensuse01 openvpn[11661]: Local Options String:
'V4,dev-type tun,link-mtu 1545,tun-mtu 1500,proto UDPv4,ifconfig
10.179.11.1 10.179.11.2,comp-lzo,cipher BF-CBC,auth SHA1,keysize
128,secret'
Dec 2 17:50:09 opensuse01 openvpn[11661]: Expected Remote

Chapter 15

[307]

Options String: 'V4,dev-type tun,link-mtu 1545,tun-mtu 1500,proto
UDPv4,ifconfig 10.179.11.2 10.179.11.1,comp-lzo,cipher BF-CBC,auth
SHA1,keysize 128,secret'
Dec 2 17:50:09 opensuse01 openvpn[11661]: Local Options hash
(VER=V4): '59c313f6'
Dec 2 17:50:09 opensuse01 openvpn[11661]: Expected Remote Options
hash (VER=V4): '36b1f115'
Dec 2 17:50:09 opensuse01 openvpn[11661]: Output Traffic Shaping
initialized at 20000 bytes per second
Dec 2 17:50:09 opensuse01 openvpn[11674]: Socket Buffers: R=[113664-
>131072] S=[113664->131072]
Dec 2 17:50:09 opensuse01 openvpn[11674]: UDPv4 link local (bound):
[undef]:5001
Dec 2 17:50:09 opensuse01 openvpn[11674]: UDPv4 link remote:
172.16.247.2:5001

This shows that another VPN tunnel has been created, OpenVPN is listening on UDP
port 5001.

Scanning servers with Nmap
Nmap is a port scanner that can be used to determine whether a UDP or TCP port on
a machine is open and whether there is a server process accepting connections.

In some countries, including Germany, software like nmap may be
considered as hacker software and thereby its use and possession
may be regulated by local laws. Some courts in Germany are of the
opinion that an administrator using a port scanner to secure his server
is violating recent laws. It's a mad mad world, isn't it?

Nmap can also find out if a firewall is protecting the machine scanned, and Nmap
can scan whole networks. Let's scan the local client PC (which is obviously not
protected by a firewall.).

opensuse01:~ # nmap 172.16.76.128

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2005-12-02
18:02 CET
Interesting ports on localhost (172.16.76.128):
(The 1661 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
22/tcp open ssh
68/tcp open dhcpclient
MAC Address: 00:0C:29:21:07:FC

Nmap finished: 1 IP address (1 host up) scanned in 1.773 seconds

Troubleshooting and Monitoring

[308]

There are two ports open on this system, all the 1661 scanned ports and other
scanned ports are closed. If there were a firewall on this system, scanning would
not be that easy because most firewalls detect scans and can prevent them. But there
are many options to Nmap, including stealth scans, altering sender IPs, and many
more—the manual page is really good.

We will now scan one of our OpenVPN servers to find out if our VPN port (5000) can
be reached. The command nmap -sU <IP> -p <Port> will make Nmap scan only if
the UDP port on the machine with the given IP address is open.

opensuse01:~ # nmap -sU 172.16.247.2 -p 5000

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2005-12-02
18:06 CET
Note: Host seems down. If it is really up, but blocking our ping
probes, try -P0
Nmap finished: 1 IP address (0 hosts up) scanned in 2.067 seconds
opensuse01:~ # nmap -P0 -sU 172.16.247.2 -p 5000

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2005-12-02
18:06 CET
Interesting ports on debian01.feilner-it.home (172.16.247.2):
PORT STATE SERVICE
5000/udp open|filtered UPnP

Nmap finished: 1 IP address (1 host up) scanned in 2.039 seconds
opensuse01:~ #

You saw how our Shorewall firewall did not reveal information about the port when
we scanned it on the first attempt. However, Nmap already gave us a hint—add the
parameter -P0 to act even more stealthily. With this option, Nmap does not ping the
hosts it scans before scanning them. Some firewalls recognize this as typical behavior
of port scanners and block it. The second try, however, revealed that the UDP port
5000 is filtered (by a firewall). This means that firewall rules may be protecting and
limiting access to this port, but it may nevertheless be open.

On Windows, the program 'Angry IP Scanner' will probably
be your first choice for scanning.

Monitoring tools
There are many tools that provide detailed statistics on network interfaces. Two very
easily installed monitoring tools with great functions are ntop and Munin.

Chapter 15

[309]

ntop
ntop monitors a network and may in some states be illegal because it creates detailed
records of connections between IP addresses. Furthermore, it offers a nice browser
GUI and does not need a running web server.The ntop installs easily on Debian.

Enter apt-get install ntop and choose the interface you want to monitor. After
software installation, type ntop -A and enter an administrator password for ntop's
admin account. Now type /etc/init.d/ntop start and point a browser to the
http://IP:3000 of this system (ntop is running on port 3000). You will get a
feature-rich window with a growing amount of information, especially if ntop has
been for running some time:

ntop offers several options. We can save the data to a database, access to
a database can be secured and monitored, interfaces can be switched online,
and many more possibilities.

Troubleshooting and Monitoring

[310]

Munin
Another helpful statistic tool is Munin. Munin consists of a client and a server
process that collect data that is provided from an almost arbitrary source on Linux
(or even Windows) systems. The following example shows the standard Munin
interface after installation as documented on http://munin.sf.net. Unfortunately,
Munin needs a web server like Apache, but apart from this, the installation is very
easy. Munin is configured from files in /etc/munin/, and makes use of a great
number of plugins. Even more can be downloaded.

As there are only a few requirements for a Munin plugin, we can easily create our
own OpenVPN monitoring plugin. Such a plugin must be executable, and should
return data in the format of:

router:/usr/share/munin/plugins # /etc/munin/plugins/if_eth0
down.value 1777836059
up.value 94615124
router:/usr/share/munin/plugins #

Chapter 15

[311]

On http://rodolphe.quiedeville.org/hack/openvpn there is a simple plugin
that reports the number of users connected to an OpenVPN server. I leave it up
to you to imagine the possibilities of such plugins when combined with samba,
iptables, OpenVPN, and more. Just think of the OpenVPN status file and the
information it provides.

Nagios
There is an abundance of networking tools for monitoring, sniffing, and scanning.
Two of my favorites are Cacti and Nagios. Cacti is a monitoring tool similar to
Munin, but it seems more powerful. Nagios is a tool designed to monitor machines
and services.

With Nagios you can not only determine if a server is still answering pings, but
can also check for services by accessing them (as an example, the samba or HTTP
protocols) and trigger actions when the service is not available. You can have
your Nagios machine send you an SMS if your OpenVPN tunnel is down, or if the
management interface is not responding.

A valid configuration file for this complex piece of software could be:

/usr/local/nagios/etc/vpnendpoint
Uses Ping check if host is available
Define the host to check
define host{
 use generic-switch
 host_name vpn01
 alias Netherland - OpenVPN Endpoint
 address 10.99.1.3
 hostgroups vpns
 }

Define a hostgroup
define hostgroup{
 hostgroup_name vpns
 alias VPN Endpoints
 }

Define a Nagios service (add your own services like SSH or SMB here)
define service{
 use generic-service
 host_name vpn01
 service_description PING
 check_command check_ping!200.0,20%!800.0,80%
 normal_check_interval 5
 retry_check_interval 1
 }

Troubleshooting and Monitoring

[312]

Three paragraphs, and that's it. While the first defines a host to check and its name
in the Nagios frontend, the second sets up a host group, and the final a service. For
a VPN a simple ping check of the VPN endpoints should do, but for checking if the
routing to your servers still works, it may make more sense to check the availability
of, for example, the samba services of a file server for Windows behind the other
VPN endpoint.

This is what the configuration in the Nagios web frontend looks like:

OpenVPNgraph
Finally, one last small but efficient tool to look at. Ralf Hildebrandt has
rewritten David Schweickert's mailgraph and adapted it to OpenVPN's needs.
OpenVPNgraph can be downloaded from http://computerbeschimpfung.de/
openvpngraph.tar.gz, a README file with three simple steps for installation is
included. Just make sure that rrdtools is installed on your system and after some
hours, days, weeks, or months you will have statistics like those in the next image.

The following screenshot shows a big OpenVPN server's daily statistics,
the first curve shows a maximum of 75 users connected simultaneously, with only
2 failed and one double login. With this tool the admin can show that most VPN
clients connect around noon and in the evening, while at night the numbers go
down significantly.

The second diagram reveals the amount of received and sent packages over the
VPN interface: More than 7000 KByte/s are possible, as the peak shows, but during
the day a maximum of just 200 Kbyte/s or so are needed, the average is about
54 Kbyte/s. Pretty few, isn't it?

Chapter 15

[313]

By scrolling further down in OpenVPNgraph, this tiny tool (a big thanks to Ralf
Hildebrandt!) reveals weekly, monthly, and yearly statistics. The longer it is running,
the more interesting the diagrams become.

Summary
In this chapter we have learned how to check OpenVPN and networking setup
step‑by‑step using standard Linux tools and evaluating their output. With tools such
as ifconfig, ping, traceroute, and mtr, we could analyze the flow of datagrams
between VPN servers and connected networks. Programs like tcpdump, iptraf,
ntop, munin, nagios, and OpenVPNgraph give us detailed information
about the current state, traffic, or statistical breakdowns of it. The first place
start troubleshooting should always be the log or status file of OpenVPN
itself—especially at a higher level of verbosity.

Internet Resources and More
Chapter 1

A concise but easy explanation of the OSI model can be found in Wikipedia:

http://en.wikipedia.org/wiki/OSI_model

Available OSI protocols:

http://en.wikipedia.org/wiki/OSI_protocols

The Internet Protocol (IP):

http://en.wikipedia.org/wiki/Internet_Protocol

A basic introduction to IPsec:

http://en.wikipedia.org/wiki/IPsec

SSH-Tunneling:

http://www.ssh.com/support/documentation/online/ssh/winhelp/32/
Tunneling_Explained.html.

A very good overview on Layer 2 Forwarding (L2F) can be found here:

http://www.javvin.com/protocolL2F.html.

The Internet Engineering Task Force details can be found at:

http://www.ietf.org.

Internet Resources and More

[316]

Read the IPsec article in Wikipedia:

http://en.wikipedia.org/wiki/IPsec.

The Linux IPsec How to:

http://www.ipsec-howto.org/t1.html.

An example for a TLS/SSL web-based SSL/TLS VPN solution:

http://sourceforge.net/projects/sslexplorer/.

http://3sp.com/showSslExplorer.do.

http://en.wikipedia.org/wiki/Datagram_Transport_Layer_Security.

Chapter 2

Handbook of Information Security Management:

http://www.cccure.org/Documents/HISM/ewtoc.html.

IT Baseline Protection as published by the German BSI (but in English):

http://www.bsi.bund.de/english/gshb/index.htm.

http://www.bsi.bund.de/english/.

The IT-Sec Handbook—concise security hints:

http://www.cccure.org/Documents/HISM/ewtoc.html.

Wikipedia articles are good to start with and contain lots of interesting links:

http://en.wikipedia.org/wiki/Symmetric_encryption.

http://en.wikipedia.org/wiki/Asymmetric_encryption.

http://en.wikipedia.org/wiki/Cryptography.

http://en.wikipedia.org/wiki/Secure_Sockets_Layer.

http://en.wikipedia.org/wiki/Public_key_certificate.

OpenVPN and the SSL revolution:

http://www.sans.org/reading_room/whitepapers/vpns/1459.php

Appendix

[317]

OpenVPN security:

http://openvpn.net/index.php/documentation/security-overview.html

VPNs Illustrated: Tunnels, VPNs, and Ipsec:

http://fengnet.com/book/VPNs%20Illustrated%20Tunnels%20%20VPNsand%20
IPsec/ch08lev1sec5.html

Windows Security and SSL:

http://www.windowsecurity.com/articles/Secure_Socket_Layer.html.

The TLS protocol as specified by the IETF:

http://www.ietf.org/rfc/rfc2246.txt

Openssl Homepage:

http://www.openssl.org

Chapter 3

An interview with James Yonan on Linuxsecurity.com:

http://www.linuxsecurity.com/content/view/117363/49/.

Community: The project web site of OpenVPN

http://openvpn.net/.

OpenVPN changelog and release notes:

http://openvpn.net/changelog.html.

http://openvpn.net/relnotes.html.

Shorewall Firewall:

http://www.shorewall.net/OPENVPN.html.

http://home.arcor.de/u.altinkaynak/openvpn.html.

OpenVPN forum:

http://www.vpnforum.de/.

Internet Resources and More

[318]

The mailing lists:

http://openvpn.net/mail.html.

The SSL/TLS Cryptographic Libraries' web site:

http://www.openssl.org/.

The website of the Transport Layer Security Charter by the TLS Working Group:

http://www.ietf.org/html.charters/tls-charter.html.

The universal TUN/TAP driver:

http://vtun.sourceforge.net/tun/.

Installing the OpenVPN LZO project:

http://www.oberhumer.com/opensource/lzo/.

Chapter 4

OpenVPN Windows client:

http://openvpn.net/index.php/downloads.html

Graphical User Interface for the Windows client:

http://openvpn.se/

Tunnelblick—Client for Mac:

http://www.tunnelblick.net

Tunnelblick—Readme:

http://www.tunnelblick.net/README.txt

Detailed installation instructions for Mac OS 10.3:

http://www.helsinki.fi/atk/english/hy-ppp/hy-vpn/hy-vpn-mac.html

Appendix

[319]

Chapter 5

TUN/TAP devices for Windows:

http://vtun.sourceforge.net/tun/

OpenSSL libraries for Linux and Unix systems:

http://www.openssl.org/

LZO real-time compression library packages:

http://openvpn.net/download.html

LZO real-time compression library—Official web site:

http://www.oberhumer.com/opensource/lzo

Source code for OpenVPN, Developer Versions:

http://openvpn.net/download.html

Concurrent Versions System (CVS) repository (unstable):

http://sourceforge.net/cvs/?group_id=48978

Installing OpenVPN on Red Hat Fedora using yum: Yellow dog Updater,
Modified (yum)

http://linux.duke.edu/projects/yum/

Fedora web site:

http://www.fedorafaq.org/

Yum—suitable configuration:

http://www.fedorafaq.org/samples/yum.conf

OpenVPN packages for SuSE:

ftp://ftp.suse.com/

Fedora RPMs:

http://dag.wieers.com/packages/openvpn/

Internet Resources and More

[320]

Installing OpenVPN on FreeBSD:

http://www.freebsd.org

Ports for FreeBSD:

http://www.freebsd.org/ports/index.html

Chapter 6

Building Your Own RPM File from the OpenVPN Source Code, configure one of
your HTTP or FTP servers to act as a Debian or a SuSE repository:

http://www.debian.org/doc/manuals/repository-howto/repository-howto
(Debian)

http://www.charlescurley.com/yum/repository.html (Red Hat)

Enabling Linux Kernel Support for TUN/TAP devices—the process of
kernel compilation:

http://tldp.org/LDP/tlk/tlk.html

Linux kernel source code:

http://www.kernel.org

Chapter 7

WinSCP website:

http://winscp.net/

Chapter 8

Creating the Diffie-Hellman Key:

http://www.rsasecurity.com/rsalabs/node.asp?id=2248

Xntp website:

http://www.eecis.udel.edu/~ntp/

Appendix

[321]

Chapter 10

OpenVPN Auth-LDAP plugin:

http://code.google.com/p/openvpn-auth-ldap/

German OpenVPN Auth-LDAP How to:

http://www.indato.ch/openvpn/openvpn.html

Radius How to:

http://forum.openvpn.eu/viewtopic.php?t=2116

http://www.howtoforge.com/openvpn_wikid_strong_authentication

Pop-Auth How to:

http://www.wenzk.net/bbs/thread-221-1-1.html

SQLite How to:

http://www.vpnforum.de/openvpn-forum/viewtopic.php?t=3178

MySQL How to:

http://www.vpnforum.de/openvpn-forum/viewtopic.php?t=3591

USB How to:

http://usbauth.delta-xi.net/doku.php

Samba How to:

http://www.vpnforum.de/openvpn-forum/viewtopic.php?t=1748

Via Radius and Wikid-Server How to:

http://www.howtoforge.com/openvpn_wikid_strong_authentication

Aladdin tokens:

http://www.aladdin.de/how/resellers.aspx

Webmin:

http://www.webmin.com

Shorewall:

http://www.shorewall.net

Internet Resources and More

[322]

Chapter 11

XCA on Sourceforge:

http://xca.sourceforge.net/

TinyCA website:

http://tinyca.sm-zone.net

TinyCA for a MAC:

http://tinyca2.darwinports.com/

OpenSSL web site:

http://www.openssl.org

German tutorial for OpenSSL:

http://www.online-tutorials.net/security/openssl-tutorial/
tutorials-t-69-207.html#beispiel-openvpn

A browser-based PKI management suite from OpenCA PKI Research Labs:

https://www.openca.org

OpenTrust PKI:

http://www.opentrust.com/content/view/119/111

My Certificate Wizard:

http://mycert.sandbox.cz

Chapter 12

OpenVPN Server administration: Webmin and its OpenVPN plugin

http://www.webmin.com/

Client GUIs for Linux: KVpnc

http://home.gna.org/kvpnc/en/index.html

Appendix

[323]

Gadmin—OpenVPN client:

http://gadmintools.flippedweb.com/index.php?option=com_content&task=v
iew&id=58&Itemid=40

Chapter 14

Anonymous and uncensored Internet Access: Dynamic DNS Services:

http://www.dyndns.org

http://www.no-ip.com

Detailed article on linux-magazine.com:

http://www.linux-magazine.com/online/features/
set_up_openvpn_in_four_steps

OpenVPN on Windows Mobile (OpenVPN for Pocket PC):

http://ovpnppc.ziggurat29.com/ovpnppc-main.htm

Embedded Linux—Maemo Nokia N800, 810, N900 Client:

http://www.maemo.org

Chapter 15

tcpdump:

http://www.tcpdump.org/

Iptraf:

http://iptraf.seul.org/

Nmap:

http://nmap.org/

Angry IP Scanner:

http://www.angryziber.com

Internet Resources and More

[324]

ntop:

http://www.ntop.org/

munin:

http://munin.sf.net

OpenVPN Plugin for munin:

http://rodolphe.quiedeville.org/hack/openvpn

Abbreviations used

Abbreviation Full Description
VPN Virtual Private Network
CRM Customer Relationship Management
ERP Enterprise Resource Planning
RAS Remote Access Server
NIC Network Interface Card
OSI Open Systems Interconnection
IP Internet Protocol
TCP Transmission Control Protocol
UDP User Datagram Protocol
HTTP Hypertext Transfer Protocol
FTP File Transfer Protocol
GRE General Routing Encapsulation
RFC Request For Comments
IPX Internetwork Packet Exchange
PPP Point-To-Point Protocol
PPTP Point-To-Point-Tunneling Protocol
L2F Layer 2 Forwarding
L2TP Layer 2 Tunneling Protocol
L2sec Layer 2 Security Protoocol
SSL Secure Sockets Layer
TLS Transport Layer Security
IETF Internet Engineering Task Force
IPsec Internet Protocol Security

Index
Symbols
--client-config parameters, OpenVPN

about 199, 200
ccd-exclusive 199
client-config-dir 199
client-connect 200
client-disconnect 200
ifconfig-push 200
iroute 200

.deb packages
building 102, 103
distributing 102, 103

A
Aptitude 86
asymmetric encryption 27
authentication methods, OpenVPN

about 213
parameters 213

authentication, OpenVPN
about 212
methods 213, 214
pam-per-user tool, using 218
plugins overview 216
tokens 217

authentication plugins, OpenVPN
about 216
LDAP 216
Local User/Password 216
MySQL 216
openvpn_authd and

openvpnClientConnectLDAP 217
POP3 216
Samba 216

SQLite 216
Strong auth with WIKID 216
Universal Plugin 217
USBAuth 216

auth-pam plug-in 183

B
bridge-utils package

installing 277-279
bridging mode 45
BSD port

downloading 92
installing 93

C
CA

about 32
building 147, 148

certificate generation, on Windows Server
2008

certificate authority, building 147, 148
client keys, generating 148-150
Diffie-Hellman key, creating 146
server keys, generating 148-150
variables, setting 145, 146
vars.bat, editing 145, 146
with easy-rsa 144, 145

certificate management 239
Certificate Revocation List. See CRL
certificates

generating 34
certificate server 239

[326]

client configuration directory
using, with per-client configurations

270-272
client mode parameters, OpenVPN

about 201
auth-retry 201
auth-user-pass 201
client 201
pull 201
push options 202

clustering, OpenVPN 284
compilation

distributing via VPN tunnels, distcc used
275, 276

connection profiles, OpenVPN 2.1 204
CRL 33, 249
crypto system

testing, test crypto parameter used 190
CVS 68

D
datagram 14
Debian packages

installing 84
package management commands 85

debugging
OpenVPN protocol used 305
status filel used 306

debugging tools
iptraf 305
tcpdump 303

default gateway 296
Diffie-Hellman key

creating 146
digital signature 27
distcc 275
down-root plug-in 183

E
easy-rsa

using, on Linux 157
easy-rsa, on Linux

about 157
certificate authority, creating 158, 159
Diffie-Hellman key, creating 158, 159
server certificate/key pair, creating 159,

161
variables, preparing in vars 158

eavesdropping 26
embedded Linux variants 292
encryption parameters, OpenVPN

about 189, 190
auth 189
ca 189
cert 189
cipher 189
crl-verify 189
dh 189
key 189
keysize 189
no-iv 189
no-replay 189
pkcs12 189
secret 189
tls-client 189
tls-server 189

EPEL 75
example plug-in 183
examples, VPN

eanonymous parcel, sending 15
locked parcel, sending 15
VEN Inc. 10

F
file exchange, between Windows & Linux

about 123
issues 126
key file, transfering 124, 125
WinSCP 123

firewall
about 11, 46
benefits 46

firewall issues, troubleshooting
about 139
SUSE firewall, stopping 141, 142
Windows XP service pack 2 firewall,

deactivating 139-141
frames 14
FreeBSD 88
Fwbuilder 47

[327]

G
gadmin-openvpn-client 262, 263
General Routing Encapsulation. See GRE
Graphical User Interface

url 318
GRE 17
group parameters, OpenVPN

about 185
group 185
user 185

GUI tools
gadmin-openvpn-client 262
Kvpnc 260

H
history, OpenVPN

version 1 38
version 2 41
version 2.1 42

HTTPS 29

I
IETF 19
IKE protocol 25
Information Security Management

url 316
init scripts

managing 136
installation

OpenVPN, on Mac OS X 62
OpenVPN, on Windows 56

Internet datagrams 14
Internet Engineering Task Force

url 315
Internet Key Exchange protocol. See IKE

protocol
Internet Protocol. See IP
IP

about 14
url 315

IPCop 47
IP datagrams 14
IP model layers

application layer 14
link layer 14

network layer 14
transport layer 14

IPsec
about 19
advantages 19
transport mode 20
tunnel mode 20
url 315

IPsec article
url 316

IPsec VPN
about 49
advantages 49, 50
disadvantages 49, 50

iptables 47
iptables tool

about 230, 231
commands 231
matching extension 231
parameters 232, 233

iptraf 305
Iptraf

url 323
IPX protocol 18
IT Baseline Protection

nrl 316
IT-Sec Handbook

url 316

K
key lifetime 25
keys

generating 34
Kvpnc

about 260
calling, on Ubuntu 260
features 260
functions 260, 261

L
L2F

about 18
url 315

L2Sec 18
L2TP 18

[328]

Latency 51
layer 2 VPN technologies

about 18
L2F 18
L2Sec 18
L2TP 18
PPTP 18

Linux
connecting, with Windows 122

Linux firewalls
about 47
Fwbuilder 47
IPCop 47
Shoreline Firewall 47
Shorewall 47

Linux IPsec
url 316

Linux kernel source code
url 320

Linux kernel TUN/TAP support
enabling 106
enabling, menuconfig used 107-109

Linux network interfaces 130
Linux system

configuring 127, 129
runlevels 133

logging parameters, OpenVPN
about 184
log 184
log-append 184
status 184

LZO 67

M
management interface parameters,

OpenVPN
about 186
management 186
--management-hold 186
--management-log-cache 186

MITM attack 26
mode parameter 196
modules, OpenVPN 182
monitoring tools, OpenVPN

about 308
Munin 310

Nagios 311
ntop 309

Munin 310

N
Nagios

about 311
web frontend look 312

network connectivity
testing 295-297

networking concepts 13
Network Interface Card. See NIC
NetworkManager

about 263
VPN tunnel connection, adding 263, 264

NIC 13
Nmap 307
Nokia's Maemo system

about 292
OpenVPN client software, in action 292-294

notebook's internet access
configuring 287, 289
making secure 287, 289

ntop 309
Nullsoft Scriptable Install System 279

O
OpenSSL 255
Openssl homepage

url 317
Open Systems Interconnecton. See OSI
OpenVPN

about 21
advantages 35-50
as server, on Linux 133
as server, on Windows 131
authentication 212
automatic installation 279-283
CA certificate, creating 143
client configuration directory, using

270-272
clustering 284
comparing, to IPsec VPN 49
compilation, distributing via VPN tunnels

275

[329]

configuring 47
configuring, to use certificates 154-156
configuring, with certificates 175
disadvantages 49, 50
ethernet bridging, with 277
firewall solutions, Linux 220
firewalls, routing 230
firewalls, working with 46
GUI tools 260
history 37, 38
individual firewall rules 273, 274
installing, from source code 96-101
installing, on Debian 82
installing, on FreeBSD 88
installing, on Red Hat Enterprise Linux 75
installing, on Red Hat/Fedora using yum

72
installing, on RPM-based systems 77
installing, on SuSE Linux 68
installing, on Ubuntu 82
issues 48
limitations 48
network connectivity, testing 295-297
networking, with 44
NetworkManager 263
on, Windows mobile 289, 290
prerequisites 67, 68
project community 52
redundancy 284
resources 28, 51
router, configuring without firewall 230
scripting 268, 270
securing 209, 210, 212
Shorewall 220
SuSEfirewall 228
troubleshooting 162
version 0.90 39
version 0.91 39
version 1.0 39
version 1.0.2 39
version 1.1.0 39
version 1.1.1 39
version 1.2.0 39
version 1.2.1 39
version 1.3.0 39
version 1.3.1 39
version 1.3.2 40

version 1.4.0 40
version 1.4.1 40
version 1.4.2 40
version 1.4.3 40
version 1.5.0 40
version 1.6.0 40
version 2.0.1 42
version 2.0.1-rc3 42
version 2.0.1-rc4 42
version 2.0.1-rc6 42
version 2.0.1-rc7 42
version 2.0.2 42
version 2.0.2-TO1 42
version 2.0.2-TO4 42
version 2.1.beta1 42
version 2.1.beta3 42
version 2.1.beta7 42
version 2.1.beta8 42
version 2.1.beta9 43
version 2.1.beta10-16 43
version 2.1_rc1 43
version 2.1_rc2-4 43
version 2.1_rc5 43
version 2.1_rc8 43
version 2.1_rc10 43
version 2.1.rc13 43
version 2.1.rc14-18 43
Windows Firewall, configuring 234-237
Windows-specific options 203

OpenVPN 2.1
about 204
connection profiles 204
port-sharing 206
script-security 206
topology mode 205

OpenVPN and the SSL revolution
url 316

OpenVPN changelog
url 317

OpenVPN command-line parameters 166
openvpn command-line tool

about 165
data, compressing 169-171
OpenVPN command-line parameters 166
output, debugging 173
parameters. static key client 169
syntax 166

[330]

testing 206
tunnel, controlling 172
tunnel, restarting 172
usage 167, 168

OpenVPN forum
url 317

OpenVPNgraph 312
OpenVPN installation

Mac OS X (Tunnelblick) 62
on Windows 56
prerequisites 55
testing 60, 64
troubleshooting 95

OpenVPN, installing on Debian and
Ubuntu

about 82-84
Aptitude, using for installing packages 86,

87
Aptitude, using for searching packages 86,

87
Debian packages, installing 84, 85
files, installed on Debian 88

OpenVPN, installing on FreeBSD
about 88, 89
BSD port, downloading 92
issues 90
newer version, installing 91
port system, installing with sysinstall 91, 92

OpenVPN, installing on Mac OS X
about 62
installation, testing 64
Tunnelbick, installing 63
Tunnelbick, uninstalling 63

OpenVPN, installing on Red Hat Enterprise
Linux 75, 77

OpenVPN, installing on Red Hat/Fedora
command line used 72
yum, used 72-74

OpenVPN, installing on RPM-based
systems

about 77
LZO library, installing with wget and RPM

79
OpenVPN RPMs, downloading 78
OpenVPN version information, obtaining

80

OpenVPN, installing on SuSE Linux
about 68
YaST, using 69-71

OpenVPN, installing on Windows
about 56
components, selecting 57, 58
installation, finishing 59
installation, testing 60, 61
location, selecting 58
OpenVPN, installing 57

OpenVPN LZO project
url 318

OpenVPN mailing lists
url 318

OpenVPN, on Microsoft Windows
about 112, 113
static OpenVPN key, generating 113, 114
Windows OpenVPN network interfaces

121, 122
OpenVPN, on Windows mobile 289, 291
OpenVPN panel applet 114
OpenVPN parameters

--client-config parameters 199
client mode parameters 201
encryption parameters 189
general tunnel options 176-178
group 185
logging 184
management interface parameters 186
mode parameter 196
modules 182
overview 176
proxy parameters, OpenVPN 188
routing 179
scripting 182
server mode parameters 196-198
server parameter 195
SSL command line parameters 192
test-crypto parameter 190
tunnel, controlling 181

OpenVPN plugin 258
OpenVPN release notes

url 317
OpenVPN RPMs

downloading, wget used 78

[331]

OpenVPN, running automatically
about 131
init scripts 134
init scripts, managing 136
OpenVPN, as server on Linux 133
OpenVPN, as server on Windows 131, 132
runlevels 133
runlevels, changing 134
runlevels, checking 134
system control, for runlevels 135

OpenVPN security
url 317

OpenVPN server administration 257-259
OpenVPN using standard interfaces

diagrammatic representation 45
OpenVPN version 2

about 41
features 41

OpenVPN version 2.1 38
OSI 13
OSI model

about 13
url 315

OSI model layers
about 13
application layer 14
data link layer 13
network layer 13
physical layer 13
presentation layer 14
session layer 14
transport layer 13

OSI protocols
url 315

overhead 16

P
packets 14
pam-per-user tool 218
parameters, certificates

ca 175
cert 175
dh 175
key 176
tls-client 176
tls-server 176

parameters, configuration file
comp-lzo 210
dev tunVPN0 210
float 210
ifconfig 210
keepalive 10 60 211
port 210
route 210
shaper 211
tls-auth 211
tls-server 211

parameters, troubleshooting
mute 173
verb 173

parameters, tunnel control
persist-key 172
persist-tun 172
ping 172
ping-restart 172
ping-timer-rem 172
resolv-retry 172

parameters, tunnel options
connect-retry 177
connect-retry-max 177
float 176
ipchange 177
ip-win32 177
local 176
lport 177
nobind 177
port 177
proto 177
remote 176
remote-random 176
resolv-retry 177
rport 177
shaper 177
tun-ipv6 177

phpLDAPadmin 215
PKI management 247
ports, FreeBSD

url 320
port-sharing, OpenVPN 2.1 206
PPP 18
PPTP 18

[332]

prerequisites, OpenVPN
CVS 68
Debian 68
FreeBSD 68
Linux/UNIX systems installation tools 68
LZO 67
OpenSSL libraries 67
OpenVPN source code 68
SuSE 68
Universal TUN/TAP driver support 67
YaST 68

privacy, VPN security
about 24
pre-shared keys 25
symmetric encryption 25
traffic, encrypting 24

project community 52
project web site, OPenVPN

url 317
proxy parameters, OpenVPN

about 188
auto-proxy 188
http-proxy 188
http-proxy-retry 188
http-proxy-timeout 188
socks-proxy 188
socks-proxy-retry 188

proxy server
protecting 266-268
tunneling 266-268

push parameters, OpenVPN
about 202
--comp-lzo 202
--dhcp-option 202
--inactive 202
--ip-win32 202
--persist-key 202
--persist-tun 202
--ping 202
--ping-exit 202
--ping-restart 202
push 202
--redirect-gateway 202
--route 202
--route-delay 202
--route-gateway 202

R
RAS 8
redundancy, OpenVPN 284
reliability and authentication, VPN security

about 26
asymmetric encryption 27
complexity issues 26

Remote Access Servers. See RAS
revoke 248
RHEL 75
routed mode 45
routing parameters, OpenVPN

about 179
ifconfig 179
redirect-gateway 180
route 179
route-delay 180
route-gateway 180
route-up 180

rpm command 72
RPM file

building 104, 105
RSA key

generating 148
runlevel editor 138

S
Samba 123
scripting parameters, OpenVPN

about 182
down 182
down-pre 182
ipchange 182
route-up 182
up 182
up-delay 182
up-restart 182

script-security, OpenVPN 2.1 206
Secure Shell 20
self-signed certificates 32
Server Messages Block. See SMB
server mode parameters, OpenVPN

about 196, 198
auth-user-pass-verify 197
client-cert-not-required 197

[333]

--client-config options 199
client-to-client 197
connect-freq 197
duplicate-cn 197
ifconfig-pool 197
ifconfig-pool-persist 197
learn-address 197
max-clients 197
max-routes-per-client 197
push 197
tmp-dir 197

server parameter 195, 196
Shoreline firewall

configuring 224, 225
troubleshooting 225-227

Shorewall
about 47
url 321

Shorewall firewall
about 222
installing 222
url 317

SMB 123
software packages

documentation 52
squid proxy server 267
SSL 20
SSL command line parameters

about 192, 193
openvpn --engine 191
openvpn --show-ciphers 191
openvpn --show-digests 191
openvpn --show-engines 191
openvpn --show-tls 191

SSL/TLS certificates
about 30
working, with VPNs 33

SSL/TLS security
about 28
certificates, generating 34
HTTPS 29
keys, generating 34
self-signed certificates 32
SSL/TLS certificates 30
SSL/TLS certificates, working with VPNs

33
trusted certificates 30

static OpenVPN key generation
about 113, 114
sample configuration file, adapting 117, 118
sample connection, creating 115, 116
tunnel, starting 119, 120
tunnel, testing 120

SuSEconfig 71
SuSEfirewall

configuring 228-230
SUSE firewall

stopping 141, 142
SuSEfirewall 2 209
SUSE systems

about 137
YaST module system 137

symmetric encryption
about 24
steps 26

sysinstall 91

T
TAP device 45
tcpdump 303, 304
TCP/IP network

about 14
data 14
header 14

test-crypto parameter 190
TinyCA2

about 250
CA administration 251
CA, importing 250, 251
certificates, exporting 254
certificates, revoking with 255
keys, creating 252, 253
keys, exporting 254
new certificates, creating 252, 253

TLS 20
TLS protocol

url 317
TLS/SSL web-based SSL/TLS VPN solution

example
url 316

tokens 217
tokens, Aladdin Software 217

[334]

topology mode, OpenVPN 2.1
about 205
net30 205
p2p 205
subnet 205

Transport Layer Security Charter
url 318

troubleshooting
about 162
Shoreline firewall 225-227

trusted certificates 30, 31
TUN device 45
Tunnelblick

installing 63
uninstalling 63

tunnel control parameters, OpenVPN
about 172, 181
inactive 181
keepalive 181
persist-local-ip 181
persist-remote-ip 181
ping-exit 181

tunneling 12, 16
TUN/TAP driver

about 44
features 44
overview 44
url 318

U
user space

versus, kernel space 51

V
vars.bat

editing 145, 146
VEN Inc. example 10
verbosity

setting 305
Virtual Private Network. See VPN
VPN

about 7
challenges 7
examples 15
features 9, 10
history 7, 8

overhead 16
private 9
tunneling 16
uses 12, 13
VEN Inc. example 10-12
virtual 9
working 10-12

VPN concepts
about 17
GRE 17
IPsec 19
OpenVPN 21
overview 17
protocols, on OSI layer 2 18
protocols, on OSI layer 3 19
protocols, on OSI layer 4 20
SSL 20
TLS 20

VPN partners
files, distributing to 152, 153

VPN security
about 23
availability 23
goals 23
privacy 23
reliability 23

VPN servers
connectivity, checking 302
interfaces, checking 298, 299
network settings 298
routing, checking 300
scanning, with Nmap 307, 308

W
Webmin

about 221
configuring 223
installing 221
url 321
webmin login screen 222

Webmin module
about 257
active connection 257
certification authority list 257
main blocks 257
VPN list 257

[335]

wget command 72
Windows

connecting, with Linux 122
Windows Firewall

configuring, for OpenVPN 234-237
Windows OpenVPN network interfaces

121, 122
Windows Security and SSL

url 317
Windows-specific options

about 203
--allow-nonadmin <device> 204
dhcp-option 203
--dhcp-renew 203
ip-win32 203
route-method 203
--service exit-event 0/1 204
--show-adapters 204
--show-net 204
--show-net-up 203
--tap-sleep 203
--win-sys path 203

Windows to Linux connection
about 122
files, exchanging 123
Linux network interfaces 130
Linux system, configuring 127
OpenVPN, running automatically 131
tunnel, testing 129
YaST module System, using 137

Windows XP service pack 2 firewall
deactivating 139, 140

WinSCP 123
WinSCP web site

url 320

X
xca

CA certificate, importing 242, 244
certificates, revoking with 248, 249
database, creating 240, 241
installing 240
PKI management 247
server/client certificate, creating 244-247
server/client certificate, signing in 244, 246
using 240

Xntp web site
url 320

Y
YaST

about 69, 256
features 70
using, for installing software 69

YaST module system
about 137
runlevel editor 138

yum command 72
yum configuration file

adapting 72

Z
zypper 71

Thank you for buying
Learning OpenVPN 2.0.9

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Learning OpenVPN 2.0.9, Packt will have given some of the
money received to the OpenVPN project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

Openswan: Building and
Integrating Virtual Private
Networks
ISBN: 978-1-904811-25-1 Paperback: 360 pages

Learn from the developers of Openswan how
to build industry standard, military grade VPNs
and connect them with Windows, MacOSX, and other
VPN vendors

1.	 Learn everything you need to know about
Openswan from its core developers

2.	 Build VPNs that interoperate with Windows,
MacOS, and other network vendors

3.	 Build your own secure hotspots

SSL VPN : Understanding,
evaluating and planning secure,
web-based remote access
ISBN: 978-1-904811-07-7 Paperback: 212 pages

A comprehensive overview of SSL VPN technologies
and design strategies

1.	 Understand how SSL VPN technology works

2.	 Evaluate how SSL VPN could fit into your
organisation?s security strategy

3.	 Practical advice on educating users,
integrating legacy systems, and eliminating
security loopholes

Please check www.PacktPub.com for information on our titles

Configuring IPCop Firewalls:
Closing Borders with Open Source
ISBN: 978-1-904811-36-7 Paperback: 244 pages

How to setup, configure and manage your Linux
firewall, web proxy, DHCP, DNS, time server, and
VPN with this powerful Open Source solution

1.	 Learn how to install, configure, and set up
IPCop on your Linux servers

2.	 Use IPCop as a web proxy, DHCP, DNS, time
server, and VPN

3.	 Advanced add-on management

Zimbra: Implement, Administer
and Manage
ISBN: 978-1-847192-08-0 Paperback: 220 pages

Get your organization up and running with
Zimbra, fast

1.	 Get your organization up and running with
Zimbra, fast

2.	 Administer the Zimbra server and work with
the Zimbra web client

3.	 Protect your Zimbra installation from hackers,
spammers, and viruses

Please check www.PacktPub.com for information on our titles

	Packt - Beginning OpenVPN 2.0.9 (December 2009) (ATTiCA)
	Table of Contents
	Preface
	Chapter 1: VPN—Virtual Private Network
	Broadband Internet access and VPNs
	How does a VPN work?
	What are VPNs used for?
	Networking concepts—protocols and
layers
	Tunneling and overhead
	VPN concepts—overview
	A proposed standard for tunneling
	Protocols implemented on OSI layer 2
	Protocols implemented on OSI layer 3
	Protocols implemented on OSI layer 4
	OpenVPN—a SSL/TLS-based solution

	Summary

	Chapter 2: VPN Security
	VPN security
	Privacy—encrypting traffic
	Symmetric encryption and pre-shared keys

	Reliability and authentication
	The problem of complexity in classic VPNs
	Asymmetric encryption with SSL/TLS

	SSL/TLS security
	HTTPS
	Understanding SSL/TLS certificates
	Trusted certificates
	Self-signed certificates
	SSL/TLS certificates and VPNs
	Generating certificates and keys

	Summary

	Chapter 3: OpenVPN
	Advantages of OpenVPN
	History of OpenVPN
	OpenVPN Version 1
	OpenVPN Version 2
	The road to version 2.1

	Networking with OpenVPN
	OpenVPN and firewalls
	Configuring OpenVPN
	Problems with OpenVPN

	OpenVPN compared to IPsec VPN
	User space versus kernel space

	Sources for help and documentation
	The project community
	Documentation in the software packages

	Summary

	Chapter 4: Installing OpenVPN on Windows and Mac
	Obtaining the software
	Installing OpenVPN on Windows
	Downloading and starting installation
	Selecting the components and location
	Finishing installation
	Testing the installation—a first look at the panel applet

	Installing OpenVPN on Mac OS X
(Tunnelblick)
	Testing the installation—the Tunnelblick panel applet

	Summary

	Chapter 5: Installing OpenVPN on Linux and Unix Systems
	Prerequisites
	Installing OpenVPN on SuSE Linux
	Using YaST to install software

	Installing OpenVPN on Red Hat Fedora using yum
	Installing OpenVPN on Red Hat
Enterprise Linux
	Installing OpenVPN on RPM-based
systems
	Using wget to download OpenVPN RPMs
	Installing OpenVPN and the LZO library with wget and RPM
	Using rpm to obtain information on the installed OpenVPN version

	Installing OpenVPN on Debian and
Ubuntu
	Installing Debian packages
	Using Aptitude to search and install packages
	OpenVPN—the files installed on Debian

	Installing OpenVPN on FreeBSD
	Installing a newer version of OpenVPN on FreeBSD—the ports system
	Installing the port system with sysinstall
	Downloading and installing a BSD port

	Summary

	Chapter 6: Advanced Installation
	Troubleshooting—advanced installation methods
	Installing OpenVPN from source code
	Building and distributing .deb packages
	Building your own RPM file
	Enabling Linux kernel TUN/TAP support
	Using menuconfig

	Summary

	Chapter 7: Configuring an OpenVPN Server—The First Tunnel
	OpenVPN on Microsoft Windows
	Generating a static OpenVPN key
	Creating a sample connection
	Adapting the sample configuration file provided
by OpenVPN
	Starting and testing the tunnel

	A brief look at Windows OpenVPN network interfaces

	Connecting Windows and Linux
	File exchange between Windows and Linux
	WinSCP
	Transferring the key file from Windows to Linux with WinSCP
	The second pitfall—carriage return/end of line

	Configuring the Linux system
	Testing the tunnel
	A look at the Linux network interfaces

	Running OpenVPN automatically
	OpenVPN as a server on Windows
	OpenVPN as a server on Linux
	Runlevels and init scripts on Linux
	Using runlevel and init to change and
check runlevels
	The system control for runlevels
	Managing init scripts

	Using SuSE's YaST module system services (runlevel)

	Troubleshooting firewall issues
	Deactivating the Windows XP service pack 2 firewall
	Stopping the SuSE firewall

	Summary

	Chapter 8: Setting Up OpenVPN with X.509 Certificates
	Creating certificates
	Certificate generation on Windows
Server 2008 with easy-rsa
	Setting variables—editing vars.bat
	Creating the Diffie-Hellman key
	Building the certificate authority
	Generating server and client keys

	Distributing the files to the VPN partners
	Configuring OpenVPN to use certificates
	Using easy-rsa on Linux
	Preparing variables in vars
	Creating the Diffie-Hellman key and the certificate authority
	Creating the first server certificate/key pair
	Creating further certificates and keys

	Troubleshooting
	Summary

	Chapter 9: The Command openvpn and its Configuration File
	Syntax of openvpn
	OpenVPN command-line parameters

	Using OpenVPN at the command line
	Parameters used in the standard configuration file for a static key client
	Compressing the data
	Controlling and restarting the tunnel
	Debugging output—troubleshooting

	Configuring OpenVPN with
certificates—simple TLS mode
	Overview of OpenVPN parameters
	General tunnel options
	Routing
	Controlling the tunnel
	Scripting
	Modules
	Logging
	Specifying a user and group
	The management interface
	Proxies
	Encryption parameters
	Testing the crypto system with --test-crypto
	SSL information—command line
	Server mode
	Server mode parameters
	--client-config options

	Client mode parameters
	Push options

	Important Windows-specific options
	New in Version 2.1
	Connection profiles
	Topology mode
	Script-security
	Port-sharing

	Test
	Summary

	Chapter 10: Securing OpenVPN Tunnels and Servers
	Securing and stabilizing OpenVPN
	Authentication
	Using authentication methods
	Authentication plugins overview
	Authentication with tokens
	Individual authentication with Pam-per-user

	Linux and Firewalls
	Debian Linux and Webmin with Shorewall
	Installing Webmin and Shorewall
	Looking at Webmin
	Preparing Webmin and Shorewall for the first start
	Preparing the Shoreline firewall
	Troubleshooting Shorewall—editing the configuration files

	OpenVPN and SuSEfirewall
	Routing and firewalls
	Configuring a router without a firewall
	iptables—the standard Linux firewall tool

	Configuring the Windows Firewall for OpenVPN
	Summary

	Chapter 11: Advanced Certificate Management
	Certificate management and security
	Installing xca
	Using xca
	Creating a database

	Importing a CA certificate
	Creating and signing a new server/client certificate
	Revoking certificates with xca

	Using TinyCA2 to manage certificates
	Importing our CA
	Using TinyCA2 for CA administration
	Creating new certificates and keys
	Exporting keys and certificates with TinyCA2
	Revoking certificates with TinyCA2

	Other tools worth mentioning
	Summary

	Chapter 12: OpenVPN GUI Tools
	OpenVPN server administration:
Webmin's OpenVPN plugin
	Client GUIs for Linux
	KVpnc
	GAdmin-OpenVPN-Client

	NetworkManager
	Summary

	Chapter 13: Advanced OpenVPN Configuration
	Tunneling a proxy server and protecting the proxy
	Scripting OpenVPN—an overview
	Using a client configuration directory with per‑client configurations
	Individual firewall rules for connecting clients
	Distributed compilation through VPN
tunnels with distcc
	Ethernet bridging with OpenVPN
	Automatic installation for Windows clients
	Clustering and redundancy
	Summary

	Chapter 14: Mobile Security with OpenVPN
	Anonymous and uncensored Internet
Access
	OpenVPN on Windows Mobile
	Embedded Linux – Maemo
	Summary

	Chapter 15: Troubleshooting and Monitoring
	Testing network connectivity
	Checking interfaces, routing, and
connectivity on the VPN servers
	Debugging with tcpdump and IPTraf
	Using OpenVPN protocol and status files for debugging
	Scanning servers with Nmap
	Monitoring tools
	ntop
	Munin
	Nagios

	OpenVPNgraph
	Summary

	Appendix: Internet Resources and More
	Index

