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Get the most out of MyMathLab®

MyMathLab, Pearson’s online learning management system, creates personalized
experiences for students and provides powerful tools for instructors. With a wealth
of tested and proven resources, each course can be tailored to fit your specific needs.
Talk to your Pearson Representative about ways to integrate MyMathLab into your

course for the best results.

Data-Driven Reporting for

oz Instructors
=i - ENEE w . |+ MyMathlLab’s comprehensive online
= o gradebook automatically tracks
- : ‘-_!_m : - students’ results to tests, quizzes,
e N N homework, and work in the study
wh plan

S . The Reporting Dashboard, found

under More Gradebook Tools,
makes it easier than ever to identify
topics where students are
struggling, or specific students who
may need extra help.

Learning in Any Environment
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« Because classroom formats and e

student needs continually change o T, iz ipsniiad
and evolve, MyMathLab has built-in
flexibility to accommodate various
course designs and formats.

«  With a new, streamlined,
mobile-friendly design, students and
instructors can access courses from
most mobile devices to work
on exercises and review completed assignments.

Visit www.mymathlab.com and click Get Trained to make sure

you're getting the most out of MyMathLab.
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Available in MyMathLab® for Your Course
. Achieve Your Potential

Success in math can make a difference in your life. MyMathLab

is a learning experience with resources to help you achieve your
potential in this course and beyond. MyMathLab will help you
learn the new skills required, and also help you learn the concepts

and make connections for future courses and careers.

Visualization and Conceptual Understanding
These MyMathLab resources will help you think visually and connect the concepts.

Updated Videos

Updated videos are available to support
students outside of the classroom and cover all
topics in the text. Quick Review videos cover ~ OS9G
key definitions and procedures. Example Solution
videos offer a detailed solution process for every
example in the textbook.

oK = (nhio

T Video Assessment Exercises

ROl Cernpie S aumBreEnd el Assignable in MyMathLab, Example Solution
resultant. mz 15 . . .

T Videos present the detailed solution process
for every example in the text. Additional Quick
Reviews cover definitions and procedures for
each section. Assessment exercises check
conceptual understanding of the mathematics.
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www.mymathlab.com
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Preparedness and Study Skills

MyMathLab® gives access to many learning resources which refresh knowledge of
topics previously learned. Integrated Review MyMathLab Courses, Getting Ready
material and Skills for Success Modules are some of the tools available.

Getting Ready

Students refresh prerequisite topics through
skill review quizzes and personalized home-
work integrated in MyMathLab.

With Getting Ready content in MyMathLab
students get just the help they need to be
prepared to learn the new material.

Skills for Success Modules

Skills for Success Modules help foster success in
collegiate courses and prepare students for future
professions. Topics such as “Time Management,”
“Stress Management” and “Financial Literacy” are
available within the MyMathLab course.

For more information on how MyMathLab can help you Achieve Your Potential visit
http://www.pearsonhighered.com/achieve-your-potential/
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Preface

. WELCOME TO THE11TH EDITION

In the eleventh edition of Trigonometry, we continue our ongoing commitment to
providing the best possible text to help instructors teach and students succeed. In
this edition, we have remained true to the pedagogical style of the past while staying
focused on the needs of today’s students. Support for all classroom types (traditional,
hybrid, and online) may be found in this classic text and its supplements backed by
the power of Pearson’s MyMathLab.

In this edition, we have drawn upon the extensive teaching experience of the Lial
team, with special consideration given to reviewer suggestions. General updates include
enhanced readability with improved layout of examples, better use of color in displays,
and language written with students in mind. All calculator screenshots have been updated
and now provide color displays to enhance students’ conceptual understanding. Each
homework section now begins with a group of Concept Preview exercises, assignable in
MyMathLab, which may be used to ensure students’ understanding of vocabulary and
basic concepts prior to beginning the regular homework exercises.

Further enhancements include numerous current data examples and exercises
that have been updated to reflect current information. Additional real-life exercises
have been included to pique student interest; answers to writing exercises have been
provided; better consistency has been achieved between the directions that introduce
examples and those that introduce the corresponding exercises; and better guidance
for rounding of answers has been provided in the exercise sets.

The Lial team believes this to be our best Trigonometry edition yet, and we sin-
cerely hope that you enjoy using it as much as we have enjoyed writing it. Additional
textbooks in this series are as follows:

College Algebra, Twelfth Edition
College Algebra & Trigonometry, Sixth Edition
Precalculus, Sixth Edition

HIGHLIGHTS OF NEW CONTENT

Discussion of the Pythagorean theorem and the distance formula has been
moved from an appendix to Chapter 1.

In Chapter 2, the two sections devoted to applications of right triangles now
begin with short historical vignettes, to provide motivation and illustrate how
trigonometry developed as a tool for astronomers.

The example solutions of applications of angular speed in Chapter 3 have
been rewritten to illustrate the use of unit fractions.

In Chapter 4, we have included new applications of periodic functions. They
involve modeling monthly temperatures of regions in the southern hemisphere
and fractional part of the moon illuminated for each day of a particular month.
The example of addition of ordinates in Section 4.4 has been rewritten, and
a new example of analysis of damped oscillatory motion has been included in
Section 4.5.

Chapter 5 now presents a derivation of the product-to-sum identity for the
product sin A cos B.

In Chapter 6, we include several new screens of periodic function graphs that
differ in appearance from typical ones. They pertain to the music phenomena
of pressure of a plucked spring, beats, and upper harmonics.

xi
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The two sections in Chapter 7 on vectors have been reorganized but still
cover the same material as in the previous edition. Section 7.4 now introduces
geometrically defined vectors and applications, and Section 7.5 follows with
algebraically defined vectors and the dot product.

In Chapter 8, the examples in Section 8.1 have been reordered for a better
flow with respect to solving quadratic equations with complex solutions.

For visual learners, numbered Figure and Example references within the text
are set using the same typeface as the figure number itself and bold print for
the example. This makes it easier for the students to identify and connect
them. We also have increased our use of a “drop down” style, when appropri-
ate, to distinguish between simplifying expressions and solving equations,
and we have added many more explanatory side comments. Guided Visual-
izations, with accompanying exercises and explorations, are now available
and assignable in MyMathLab.

Trigonometry is widely recognized for the quality of its exercises. In the
eleventh edition, nearly 500 are new or modified, and many present updated
real-life data. Furthermore, the MyMathLab course has expanded coverage
of all exercise types appearing in the exercise sets, as well as the mid-chapter
Quizzes and Summary Exercises.

. FEATURES OF THIS TEXT
SUPPORT FOR LEARNING CONCEPTS

We provide a variety of features to support students’ learning of the essential topics
of trigonometry. Explanations that are written in understandable terms, figures and
graphs that illustrate examples and concepts, graphing technology that supports and
enhances algebraic manipulations, and real-life applications that enrich the topics
with meaning all provide opportunities for students to deepen their understanding
of mathematics. These features help students make mathematical connections and
expand their own knowledge base.

Examples Numbered examples that illustrate the techniques for working
exercises are found in every section. We use traditional explanations, side
comments, and pointers to describe the steps taken—and to warn students
about common pitfalls. Some examples provide additional graphing calcula-
tor solutions, although these can be omitted if desired.

Now Try Exercises Following each numbered example, the student is
directed to try a corresponding odd-numbered exercise (or exercises). This
feature allows for quick feedback to determine whether the student has
understood the principles illustrated in the example.

Real-Life Applications We have included hundreds of real-life applica-
tions, many with data updated from the previous edition. They come from fields
such as sports, biology, astronomy, geology, music, and environmental studies.

Function Boxes Special function boxes offer a comprehensive, visual
introduction to each type of trigonometric function and also serve as an
excellent resource for reference and review. Each function box includes a
table of values, traditional and calculator-generated graphs, the domain, the
range, and other special information about the function. These boxes are
assignable in MyMathLab.

Figures and Photos Today’s students are more visually oriented than
ever before, and we have updated the figures and photos in this edition to
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promote visual appeal. Guided Visualizations with accompanying exercises
and explorations are now available and assignable in MyMathLab.

Use of Graphing Technology We have integrated the use of graphing
calculators where appropriate, although this technology is completely op-
tional and can be omitted without loss of continuity. We continue to stress
that graphing calculators support understanding but that students must first
master the underlying mathematical concepts. Exercises that require the use
of a graphing calculator are marked with the icon <.

Cautions and Notes Text that is marked CAUTION warns students of
common errors, and comments point out explanations that should
receive particular attention.

Looking Ahead to Calculus These margin notes offer glimpses of how
the topics currently being studied are used in calculus.

SUPPORT FOR PRACTICING CONCEPTS

This text offers a wide variety of exercises to help students master trigonometry.
The extensive exercise sets provide ample opportunity for practice, and the exercise
problems generally increase in difficulty so that students at every level of under-
standing are challenged. The variety of exercise types promotes understanding of the
concepts and reduces the need for rote memorization.

NEW Concept Preview Each exercise set now begins with a group
of CONCEPT PREVIEW exercises designed to promote understanding of vo-
cabulary and basic concepts of each section. These new exercises are assign-
able in MyMathLab and will provide support especially for hybrid, online,
and flipped courses.

Exercise Sets In addition to traditional drill exercises, this text includes
writing exercises, optional graphing calculator problems i<, and multiple-
choice, matching, true/false, and completion exercises. Concept Check exer-
cises focus on conceptual thinking. Connecting Graphs with Equations
exercises challenge students to write equations that correspond to given graphs.

Relating Concepts Exercises Appearing at the end of selected exer-
cise sets, these groups of exercises are designed so that students who work
them in numerical order will follow a line of reasoning that leads to an un-
derstanding of how various topics and concepts are related. All answers to
these exercises appear in the student answer section, and these exercises are
assignable in MyMathLab.

Complete Solutions to Selected Exercises Complete solutions to
all exercises marked are available in the eText. These are often exercises
that extend the skills and concepts presented in the numbered examples.

SUPPORT FOR REVIEW AND TEST PREP

Ample opportunities for review are found within the chapters and at the ends of
chapters. Quizzes that are interspersed within chapters provide a quick assessment
of students’ understanding of the material presented up to that point in the chapter.
Chapter “Test Preps” provide comprehensive study aids to help students prepare
for tests.

Quizzes Students can periodically check their progress with in-chapter
quizzes that appear in all chapters. All answers, with corresponding section
references, appear in the student answer section. These quizzes are assign-
able in MyMathLab.



xiv

PREFACE

Summary Exercises These sets of in-chapter exercises give students
the all-important opportunity to work mixed review exercises, requiring them
to synthesize concepts and select appropriate solution methods.

End-of-Chapter Test Prep Following the final numbered section
in each chapter, the Test Prep provides a list of Key Terms, a list of New
Symbols (if applicable), and a two-column Quick Review that includes a
section-by-section summary of concepts and examples. This feature con-
cludes with a comprehensive set of Review Exercises and a Chapter
Test. The Test Prep, Review Exercises, and Chapter Test are assignable in
MyMathLab. Additional Cumulative Review homework assignments are
available in MyMathLab, following every chapter.
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Get the most out of

MyMathLab’

MyMathLab is the world’s leading online resource for teaching and learning mathemat-

ics. MyMathLab helps students and instructors improve results, and it provides engag-
ing experiences and personalized learning for each student so learning can happen in
any environment. Plus, it offers flexible and time-saving course management features
to allow instructors to easily manage their classes while remaining in complete control,

regardless of course format.

Personalized Support for Students
* MyMathLab comes with many learning resources—eText, animations, videos, and

more—all designed to support your students as they progress through their course.

* The Adaptive Study Plan acts as a personal tutor, updating in real time based on
student performance to provide personalized recommendations on what to work
on next. With the new Companion Study Plan assignments, instructors can now
assign the Study Plan as a prerequisite to a test or quiz, helping to guide students

through concepts they need to master.

* Personalized Homework enables instructors to create homework assignments
tailored to each student’s specific needs and focused on the topics they have not yet
mastered.

Used by nearly 4 million students each year, the MyMathLab and MyStatLab family of
products delivers consistent, measurable gains in student learning outcomes, retention,

and subsequent course success.

www.mymathlab.com
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Resources for Success
MyMathLab® Online Course for Trigonometry by Lial,

Hornsby, Schneider, and Daniels

MyMathLab delivers proven results in helping individual students succeed. The authors
Lial, Hornsby, Schneider, and Daniels have developed specific content in MyMathLab
to give students the practice they need to develop a conceptual understanding of
Trigonometry and the analytical skills necessary for success in mathematics. The
MyMathLab features described here support Trigonometry students in a variety of
classroom formats (traditional, hybrid, and online).

Concept Preview
Exercises

Exercise sets now begin with a ey
group of Concept Preview Exer-
cises, assignable in MyMathLab and
also available in Learning

Catalytics. These may be used to
ensure that students understand the
related vocabulary and basic
concepts before beginning the regu-
lar homework problems.

Learning Catalytics is a “bring your
own device” system of prebuilt
questions designed to enhance
student engagement and facilitate
assessment.
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Resources for Success

Student Supplements

Student’s Solutions Manual
By Beverly Fusfield

® Provides detailed solutions to all odd-numbered text
exercises

ISBN: 0-13-431021-7 & 978-0-13-431021-3

Video Lectures with Optional

Captioning

® Feature Quick Reviews and Example Solutions:
Quick Reviews cover key definitions and
procedures from each section.
Example Solutions walk students through the
detailed solution process for every example in the
textbook.

® Ideal for distance learning or supplemental

instruction at home or on campus
* Include optional text captioning
* Available in MyMathLab®

MyNotes

® Available in MyMathLab and offer structure for
students as they watch videos or read the text

® Include textbook examples along with ample space
for students to write solutions and notes

® Include key concepts along with prompts for
students to read, write, and reflect on what they
have just learned

® Customizable so that instructors can add their
own examples or remove examples that are not
covered in their courses

MyClassroomExamples

® Auvailable in MyMathLab and offer structure for
classroom lecture

* Include Classroom Examples along with ample space
for students to write solutions and notes

® Include key concepts along with fill in the blank
opportunities to keep students engaged

® Customizable so that instructors can add their
own examples or remove Classroom Examples that
are not covered in their courses

Instructor Supplements

Annotated Instructor’s Edition

® Provides answers in the margins to almost all text
exercises, as well as helpful Teaching Tips and
Classroom Examples

® Includes sample homework assignments indicated by
exercise numbers underlined in blue within each
end-of-section exercise set

® Sample homework exercises assignable in MyMathLab

ISBN: 0-13-421764-0 & 978-0-13-421764-2

Online Instructor’s Solutions Manual
By Beverly Fusfield

* Provides complete solutions to all text exercises
® Available in MyMathLab or downloadable from
Pearson Education’s online catalog

Online Instructor’s Testing Manual
By David Atwood

* Includes diagnostic pretests, chapter tests, final exams,
and additional test items, grouped by section, with
answers provided

® Auvailable in MyMathLab or downloadable from
Pearson Education’s online catalog

TestGen®

® Enables instructors to build, edit, print, and administer
tests

® Features a computerized bank of questions developed
to cover all text objectives

® Available in MyMathLab or downloadable from
Pearson Education’s online catalog

Online PowerPoint Presentation and

Classroom Example PowerPoints

® Written and designed specifically for this text

* Include figures and examples from the text

® Provide Classroom Example PowerPoints that include
full worked-out solutions to all Classroom Examples

® Available in MyMathLab or downloadable from
Pearson Education’s online catalog

www.mymathlab.com
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S

Angles

Basic Terminology
Degree Measure
Standard Position
Coterminal Angles

g g Line AB

r-—e Segment AB
A B

e————o—> RayAB
A B

Figure 1l

Terminal side

Vertex A
Initial side

Angle A

Figure 2

A complete rotation of a ray
gives an angle whose measure

; o L

is 360°. 35 of a complete
rotation gives an angle whose
measure is 1°.

Figure 4

Basic Terminology Two distinct points A and B determine a line called
line AB. The portion of the line between A and B, including points A and B them-
selves, is line segment AB, or simply segment AB. The portion of line AB that
starts at A and continues through B, and on past B, is the ray AB. Point A is the
endpoint of the ray. See Figure 1.

In trigonometry, an angle consists of two rays in a plane with a common
endpoint, or two line segments with a common endpoint. These two rays (or
segments) are the sides of the angle, and the common endpoint is the vertex of the
angle. Associated with an angle is its measure, generated by a rotation about
the vertex. See Figure 2. This measure is determined by rotating a ray starting
at one side of the angle, the initial side, to the position of the other side, the
terminal side. A counterclockwise rotation generates a positive measure, and
a clockwise rotation generates a negative measure. The rotation can consist of
more than one complete revolution.

Figure 3 shows two angles, one positive and one negative.

A
> C / >
B
Positive angle Negative angle

Figure 3

An angle can be named by using the name of its vertex. For example, the
angle on the right in Figure 3 can be named angle C. Alternatively, an angle can
be named using three letters, with the vertex letter in the middle. Thus, the angle
on the right also could be named angle ACB or angle BCA.

Degree Measure The most common unit for measuring angles is the
degree. Degree measure was developed by the Babylonians 4000 yr ago. To
use degree measure, we assign 360 degrees to a complete rotation of a ray.* In
Figure 4, notice that the terminal side of the angle corresponds to its initial side
when it makes a complete rotation.

. 1 .
One degree, written 1°, represents 360 of a complete rotation.

Therefore, 90° represents % = % of a complete rotation, and 180° represents

180 _ 1 :
360 = » Of a complete rotation.

An angle measuring between 0° and 90° is an acute angle. An angle mea-
suring exactly 90° is a right angle. The symbol 71 is often used at the vertex
of a right angle to denote the 90° measure. An angle measuring more than 90°
but less than 180° is an obtuse angle, and an angle of exactly 180° is a straight
angle.

*The Babylonians were the first to subdivide the circumference of a circle into 360 parts. There are
various theories about why the number 360 was chosen. One is that it is approximately the number of
days in a year, and it has many divisors, which makes it convenient to work with in computations.
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The Greek Letters In Figure 5, we use the Greek letter 0 (theta)* to name each angle. The table
A o T in the margin lists the upper- and lowercase Greek letters, which are often used
B B beta in trigonometry.
r 0 gamma
A 0 delta
E e epsilon 0 ; 0
Z 4 zeta :E 0 Y :
H ] eta m
(G) 0 theta Acute angle Right angle Obtuse angle Straight angle
I L iota 0° < 6 < 90° 0 = 90° 90° < 0 < 180° 0 = 180°
K K kappa Figure5
A A lambda
1\1\/11 K E}u If the sum of the measures of two positive angles is 90°, the angles are comple-
= Z i mentary and the angles are complements of each other. Two positive angles with
6 o e measures whose sum is 180° are supplementary, and the angles are supplements.
I1 T pi
g p ﬂ_lo Finding the Complement and the Supplement of an Angle
o sigma
T T tau Find the measure of (a) the complement and (b) the supplement of an angle
Y v upsilon measuring 40°.
) o) phi
X X chi
v ¥ RSl (a) To find the measure of its complement, subtract the measure of the angle
Q @ omega from 90°.
90° — 40° = 50° Complement of 40°
(b) To find the measure of its supplement, subtract the measure of the angle
from 180°.
180° — 40° = 140°  Supplement of 40°
Now Try Exercise 11.
Finding Measures of Complementary and
Supplementary Angles
Find the measure of each marked angle in Figure 6.
~ (a) Because the two angles in Figure 6(a) form a right angle, they are comple-
(a) mentary angles.

6x + 3x =90 Complementary angles sum to 90°.

9x =90 Combine like terms.

\ s
@ve \ (6x) P x=10 Divide by 9.

(b) Be sure to determine the measure of each angle by substituting 10 for x in 6x
Figure 6 and 3x. The two angles have measures of 6(10) = 60° and 3(10) = 30°.

(b) The angles in Figure 6(b) are supplementary, so their sum must be 180°.
4x + 6x = 180 Supplementary angles sum to 180°.
10x = 180 Combine like terms.
x =18  Divide by 10.
The angle measures are 4x = 4(18) = 72° and 6x = 6(18) = 108°.

Now Try Exercises 23 and 25.

* In addition to 6 (theta), other Greek letters such as « (alpha) and B (beta) are used to name angles.



4

CHAPTER1 Trigonometric Functions

y The measure of angle A in Figure 7 is 35°. This measure is often expressed
I by saying that m(angle A) is 35°, where m(angle A) is read “the measure of
+ angle A.” The symbolism m(angle A) = 35° is abbreviated as A = 35°.

T Traditionally, portions of a degree have been measured with minutes and

P Gk seconds. One minute, written 1', is 2g of a degree.

T 0 T T T T
1 1" = lo or 60" =1°
T 60
. One second, 17, is % of a minute.

Figure 7

”_1’_ lo I/ J— ’ n — 10
1 =50 "~ 3600 or 60" = 1" and 3600" = 1

The measure 12° 42’ 38" represents 12 degrees, 42 minutes, 38 seconds.

Calculating with Degrees, Minutes, and Seconds
Perform each calculation.

(a) 51°29" + 32°46' (b) 90° — 73° 12’

(@ 51°29"  Aqd degrees and minutes
+ 32°46"  separately.

83° 75’

The sum 83° 75’ can be rewritten as follows.

83°75'
=83°+1°15" 75 =60"+ 15" =1°15’
= 84° 15’ Add.
(b) 90° 89°60" Write 90° as 89° 60'.
—73°12" canbe written — 73°12’

16° 48’
Now Try Exercises 41 and 45.
An alternative way to measure angles involves decimal degrees. For example,

4238 °
10,000

12.4238°  represents 12

Converting between Angle Measures
(a) Convert 74° 08’ 14" to decimal degrees to the nearest thousandth.

(b) Convert 34.817° to degrees, minutes, and seconds to the nearest second.

(a) 74°08" 14"
8° 14 ° -

=74+ — + —— 08’ -
60 3600

= 74° + 0.1333° + 0.0039°  Divide to express the fractions as decimals.

1° _ 14°

1° _ 8° "
50" = o0 and 14"+ 35567 = 3555

=~ 74.137° Add and round to the nearest thousandth.
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performs the conversions in Example 4.
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Vertex [0

(b) 34.817°

=34°+0.817°

=34° + 0.817(60")

= 34° + 49.02'

= 34° + 49’
= 34° + 49" + 0.02(60")
= 34° + 49’

+0.02'

+1

~ 34°49' 01"

Standard Position

QI

Terminal side

Qu

‘2//

1.1 Angles

Write as a sum.

0.817° - %% =

=0.817(60")
Multiply.

Write 49.02" as a sum.
0.02" - 57+ = 0.02(60")
Multiply.

Approximate to the nearest second.

5

Now Try Exercises 61 and 71.

An angle is in standard position if its vertex is at the
origin and its initial side lies on the positive x-axis. The angles in Figures 8(a)
and 8(b) are in standard position. An angle in standard position is said to lie in the
quadrant in which its terminal side lies. An acute angle is in quadrant I (Figure 8(a))
and an obtuse angle is in quadrant II (Figure 8(b)). Figure 8(c) shows ranges of
angle measures for each quadrant when 0° < § < 360°.

[ 160°

Initial side

Angles in standard position

(a)

Quadrantal Angles

(b)

90°
QI T QI
9()°<0<18()°_: 0° <6 <90°
180° - S
e x QI QIv
n 180° < 6 < 270°4-270° < 6 < 360°

270°
(c)

Figure 8

Angles in standard position whose terminal sides lie on the x-axis or y-axis, such
as angles with measures 90°, 180°, 270°, and so on, are quadrantal angles.

Coterminal Angles
uring 360°. By continuing the rotation, angles of measure larger than 360° can
be produced. The angles in Figure 9 with measures 60° and 420° have the same
initial side and the same terminal side, but different amounts of rotation. Such
angles are coterminal angles. Their measures differ by a multiple of 360°. As

shown in Figure 10, angles with measures 110° and 830° are coterminal.

y

Figure9

Coterminal
angles

y

830°

termmal

angles

X

Figure 10

A complete rotation of a ray results in an angle meas-
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Finding Measures of Coterminal Angles
Find the angle of least positive measure that is coterminal with each angle.

(a) 908° (b) —75° (c) —800°

(a) Subtract 360° as many times as needed to obtain an angle with measure
greater than 0° but less than 360°.

908° — 2 - 360° = 188° Multiply 2 - 360°. Then subtract.

An angle of 188° is coterminal with an angle of 908°. See Figure 11.

Figurell Figure12

(b) Add 360° to the given negative angle measure to obtain the angle of least
positive measure. See Figure 12.

—75° + 360° = 285°
(¢) The least integer multiple of 360° greater than 800° is
3+ 360° = 1080°.
Add 1080° to —800° to obtain

—800° + 1080° = 280°.
Now Try Exercises 81, 91, and 95.

Sometimes it is necessary to find an expression that will generate all angles
coterminal with a given angle. For example, we can obtain any angle coterminal
with 60° by adding an integer multiple of 360° to 60°. Let n represent any inte-
ger. Then the following expression represents all such coterminal angles.

60° + n - 360°  Angles coterminal with 60°

The table below shows a few possibilities.

Examples of Angles Coterminal with 60°
Value of n Angle Coterminal with 60°
60° + 2 - 360° = 780°
1 60° + 1 - 360° = 420°
0 60° + 0 - 360° = 60° (the angle itself)
=] 60° + (—1) - 360° = —300°
=2 60° + (—2) - 360° = —660°

[\S)
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This table shows some examples of coterminal quadrantal angles.

Examples of Coterminal Quadrantal Angles

Quadrantal Angle § | Coterminal with 6
0° +360°, +720°
90° —630°, —270°, 450°
180° —180°, 540°, 900°
270° —450°, —90°, 630°

Analyzing Revolutions of a Disk Drive

A constant angular velocity disk drive spins a disk at a constant speed. Suppose
a disk makes 480 revolutions per min. Through how many degrees will a point
on the edge of the disk move in 2 sec?

. . . . 480 . .
The disk revolves 480 times in 1 min, or -~ times = 8 times per sec

(because 60 sec = 1 min). In 2 sec, the disk will revolve 2 + 8 = 16 times. Each
revolution is 360°, so in 2 sec a point on the edge of the disk will revolve

16 - 360° = 5760°.
A unit analysis expression can also be used.

480 rev y 1min  360°
1 min 60sec 1lrev

X 2 sec = 5760° Divide out common units.

Now Try Exercise 123.

—

Exercises

CONCEPT PREVIEW Fill in the blank(s) to correctly complete each sentence.

1. One degree, written 1°, represents of a complete rotation.

If the measure of an angle is x°, its complement can be expressed as

If the measure of an angle is x°, its supplement can be expressed as

The measure of an angle that is its own complement is

The measure of an angle that is its own supplement is

One minute, written 1, is of a degree.

One second, written 1”, is of a minute.

12° 30" written in decimal degrees is

e F# A AN B WD

55.25° written in degrees and minutes is

et
S

If n represents any integer, then an expression representing all angles coterminal
with 45° is 45° +

Find the measure of (a) the complement and (b) the supplement of an angle with the
given measure. See Examples 1 and 3.

11. 30° 12. 60° 13. 45° 14. 90°
15. 54° 16. 10° 17. 1° 18. 89°
19. 14°20’ 20. 39°50’ 21. 20°10' 30" 22. 50°40' 50"
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Find the measure of each marked angle. See Example 2.

23. 24. 25.
(20x + 10)° (Bx+9)°

(70)° \ (11x)°

(2x)°

(4x)°

26.

27. 28.
A)"

(-14x)° (9x)°

S -

29. supplementary angles with measures 10x + 7 and 7x + 3 degrees

(Bx+5)°

30. supplementary angles with measures 6x — 4 and 8x — 12 degrees
31. complementary angles with measures 9x + 6 and 3x degrees

32. complementary angles with measures 3x — 5 and 6x — 40 degrees

Find the measure of the smaller angle formed by the hands of a clock at the following times.

33.

35. 3:15 36. 9:45 37. 8:20 38. 6:10

Perform each calculation. See Example 3.

39. 62°18' +21°41' 40. 75° 15" + 83°32’ 41. 97°42' + 81°37’
42. 110°25" + 32°55' 43. 47°29" —71° 18’ 44. 47°23" —73°48’
45. 90° — 51° 28’ 46. 90° — 17° 13’ 47. 180° — 119° 26’
48. 180° — 124° 51’ 49. 90° —72°58' 11" 50. 90° — 36° 18" 47"
51. 26°20" + 18° 17" — 14° 10’ 52. 55°30' + 12°44' — 8° 15’

Convert each angle measure to decimal degrees. If applicable, round to the nearest thou-
sandth of a degree. See Example 4(a).

53. 35°30’ 54. 82°30’ 55. 112°15’ 56. 133°45’
57. —60° 12’ 58. —70°48’ 59. 20°54' 36" 60. 38°42' 18"
61. 91°35' 54" 62. 34°51' 35" 63. 274°18' 59" 64. 165°51' 09"

Convert each angle measure to degrees, minutes, and seconds. If applicable, round to the
nearest second. See Example 4(b).

65. 39.25° 66. 46.75° 67. 126.76° 68. 174.255°
69. —18.515° 70. —25.485° 71. 31.4296° 72. 59.0854°
73. 89.9004° 74. 102.3771° 75. 178.5994° 76. 122.6853°
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Find the angle of least positive measure (not equal to the given measure) that is coterminal
with each angle. See Example 5.

77. 32° 78. 86° 79. 26°30’ 80. 58°40’
81. —40° 82. —98° 83. —125°30’ 84. —203°20’
85. 361° 86. 541° 87. —361° 88. —541°
89. 539° 90. 699° 91. 850° 92. 1000°
93. 5280° 94. 8440° 95. —5280° 96. —8440°

Give two positive and two negative angles that are coterminal with the given quadrantal
angle.

97. 90° 98. 180° 99. 0° 100. 270°

Write an expression that generates all angles coterminal with each angle. Let n represent
any integer.

101. 30° 102. 45° 103. 135° 104. 225°
105. —90° 106. —180° 107. 0° 108. 360°
109. Why do the answers to Exercises 107 and 108 give the same set of angles?

110. Concept Check Which two of the following are not coterminal with 7°?
A. 360° + r° B. ° —360° C. 360° — r° D. »° + 180°

Concept Check Sketch each angle in standard position. Draw an arrow representing
the correct amount of rotation. Find the measure of two other angles, one positive and
one negative, that are coterminal with the given angle. Give the quadrant of each angle,
if applicable.

111. 75° 112. 89° 113. 174° 114. 234°
115. 300° 116. 512° 117. —61° 118. —159°
119. 90° 120. 180° 121. —90° 122. —180°

Solve each problem. See Example 6.

123. Revolutions of a Turntable A turntable in a shop makes 45 revolutions per min.
How many revolutions does it make per second?

124. Revolutions of a Windmill A windmill makes 90 revolutions per min. How many
revolutions does it make per second?

125. Rotating Tire A tire is rotating 600 times
per min. Through how many degrees does a

point on the edge of the tire move in % sec?

126. Rotating Airplane Propeller An airplane propeller rotates 1000 times per min.
Find the number of degrees that a point on the edge of the propeller will rotate in
2 sec.

127. Rotating Pulley A pulley rotates through 75° in 1 min. How many rotations does
the pulley make in 1 hr?
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128.

129.

130.

Surveying One student in a surveying
class measures an angle as 74.25°, while
another student measures the same angle
as 74°20’. Find the difference between
these measurements, both to the nearest
minute and to the nearest hundredth of
a degree.

Viewing Field of a Telescope As a consequence of Earth’s rotation, celestial
objects such as the moon and the stars appear to move across the sky, rising in the
east and setting in the west. As a result, if a telescope on Earth remains stationary
while viewing a celestial object, the object will slowly move outside the viewing
field of the telescope. For this reason, a motor is often attached to telescopes so
that the telescope rotates at the same rate as Earth. Determine how long it should
take the motor to turn the telescope through an angle of 1 min in a direction per-
pendicular to Earth’s axis.

Angle Measure of a Star on the American Flag Determine the measure of the
angle in each point of the five-pointed star appearing on the American flag. (Hint:
Inscribe the star in a circle, and use the following theorem from geometry: An
angle whose vertex lies on the circumference of a circle is equal to half the central
angle that cuts off the same arc. See the figure.)

A LAD
-

Angle Relationships and Similar Triangles

Geometric Properties
Triangles

Vertical angles

Figure 13

Geometric Properties In Figure 13, we extended the sides of angle NMP

to form another angle, RMQ. The pair of angles NMP and RMQ are vertical
angles. Another pair of vertical angles, NMQ and PMR, are also formed.
Vertical angles have the following important property.

Vertical Angles

Vertical angles have equal measures.

Parallel lines are lines that lie in the same Transversal q
plane and do not intersect. Figure 14 shows ‘ /
parallel lines m and n. When a line ¢ intersects 1/2 m
two parallel lines, ¢ is called a transversal. / + \pamnel lines
In Figure 14, the transversal intersecting the 5 /6 £ _on

parallel lines forms eight angles, indicated by / 8
numbers.

Figure 14
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We learn in geometry that the degree measures of angles 1 through 8 in
Figure 14 possess some special properties. The following table gives the names
of these angles and rules about their measures.

Angle Pairs of Parallel Lines Intersected by a Transversal
Name Sketch Rule

Alternate interior angles q Angle measures are equal.

(also 3 and 6)

Alternate exterior angles q Angle measures are equal.

m

n

8 (also2and7)

Interior angles on the
same side of a

Angle measures add to 180°.

transversal
Corresponding angles q Angle measures are equal.
m
n
(also 1 and 5, 3 and 7,
4 and 8)
\ Finding Angle Measures
3x +2)° . . . .
( V! m Find the measures of angles 1, 2, 3, and 4 in Figure 15, given that lines m and n

K are parallel.
n

Angles 1 and 4 are alternate exterior angles, so they are equal.

¢ (5x - 40)°
3x +2 =5x —40 Alternate exterior angles have equal measures.
42 = 2x Subtract 3x and add 40.
Flgure 15 20 =x Divide by 2.
Angle 1 has measure Angle 4 has measure
3x+2 S5x —40
=3+21 +2 Substitute 21 for x. =5+21 —40 Substitute 21 for x.
= 65°. Multiply, and then add. = 65°. Multiply, and then
subtract.

Angle 2 is the supplement of a 65° angle, so it has measure
180° — 65° = 115°.

Angle 3 is a vertical angle to angle 1, so its measure is also 65°. (There are other
ways to determine these measures.)
Now Try Exercises 11 and 19.
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AVA

(b)
Figure 16

48° 61°

Figure17

Triangles An important property of triangles, first proved by Greek geom-
eters, deals with the sum of the measures of the angles of any triangle.

Angle Sum of a Triangle

The sum of the measures of the angles of any triangle is 180°.

A rather convincing argument for the truth of this statement uses any size trian-
gle cut from a piece of paper. Tear each corner from the triangle, as suggested in
Figure 16(a). We should be able to rearrange the pieces so that the three angles
form a straight angle, which has measure 180°, as shown in Figure 16(b).

Applying the Angle Sum of a Triangle Property

The measures of two of the angles of a triangle are 48° and 61°. See Figure 17.
Find the measure of the third angle, x.

48° + 61° + x = 180°  The sum of the angles is 180°.
109° + x = 180°  Add.
x=71°  Subtract 109°.

The third angle of the triangle measures 71°.
Now Try Exercises 13 and 23.

Types of Triangles

All acute One right angle One obtuse angle

Angles | Z X

Acute triangle Right triangle Obtuse triangle

All sides equal

Sides { :

Equilateral triangle Isosceles triangle  Scalene triangle

Two sides equal No sides equal

Similar triangles are triangles of exactly the same shape but not neces-
sarily the same size. Figure 18 on the next page shows three pairs of similar
triangles. The two triangles in Figure 18(c) have not only the same shape but
also the same size. Triangles that are both the same size and the same shape are
congruent triangles. If two triangles are congruent, then it is possible to pick
one of them up and place it on top of the other so that they coincide.
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If two triangles are congruent, then they must be similar. However, two
similar triangles need not be congruent.

AN ﬂ< B

()

Figure18

The triangular supports for a child’s swing set are congruent (and thus simi-
lar) triangles, machine-produced with exactly the same dimensions each time.
These supports are just one example of similar triangles. The supports of a long
bridge, all the same shape but increasing in size toward the center of the bridge,
are examples of similar (but not congruent) figures. See the photo.

Consider the correspondence between triangles ABC and DEF in Figure 19.

Angle A corresponds to angle D. B

Angle B corresponds to angle E. C :
Angle C corresponds to angle F. A c
Side AB corresponds to side DE. E

Side BC corresponds to side EF.
Side AC corresponds to side DF.

The small arcs found at the angles in Figure 19 b F
denote the corresponding angles in the triangles. Figure19

Conditions for Similar Triangles

Triangle ABC is similar to triangle DEF if the following conditions hold.
1. Corresponding angles have the same measure.

2. Corresponding sides are proportional. (That is, the ratios of their corre-
sponding sides are equal.)

Finding Angle Measures in Similar Triangles

In Figure 20, triangles ABC and NMP are similar. Find all unknown angle
measures.

First, we find the measure of angle M using the angle sum prop-
erty of a triangle.

104° + 45° + M = 180°  The sum of the angles is 180°.
149° + M = 180° Add.
M =31°  Subtract 149°.

The triangles are similar, so corresponding angles have the same measure.
Because C corresponds to P and P measures 104°, angle C also measures 104°.
Angles B and M correspond, so B measures 31°.

Now Try Exercise 49.
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Finding Side Lengths in Similar Triangles

Given that triangle ABC and triangle DFE in  C

Figure 21 are similar, find the lengths of the 30 E
unknown sides of triangle DFE. 16 K\\\
Similar triangles have corre- A 24 B p E

sponding sides in proportion. Use this fact to
find the unknown side lengths in triangle DFE.

Side DF of triangle DFE corresponds to side AB of triangle ABC, and sides
DE and AC correspond. This leads to the following proportion.

8 _DF
16 24

Figure 21

Recall this property of proportions from algebra.

If % = ‘%, then ad = be.

We use this property to solve the equation for DF.

8 DF o _
- = . Corresponding sides are proportional.

16 24
8+24=16+DF 1f{="9 thenad = bc.
192 =16 - DF Multiply.
12 = DF Divide by 16.

Side DF has length 12.
Side EF corresponds to CB. This leads to another proportion.

§— = E Corresponding sides are proportional.
16 32 '
8:32=16+EF If; =, thenad = bc.
16 = EF Solve for EF.
Side EF has length 16. Now Try Exercise 55.

Finding the Height of a Flagpole

Workers must measure the height of a building flagpole. They find that at the
instant when the shadow of the building is 18 m long, the shadow of the flagpole
is 27 m long. The building is 10 m high. Find the height of the flagpole.

Figure 22 shows the information given in the problem. The two
triangles are similar, so corresponding sides are in proportion.

MN 27
HENE ) - = Corresponding sides are proportional.
li. o8
§§ M = g Write 2. in lowest terms
X 0 2 Ig 1 Jowest terms.

MN +2 =10 +3 Property of proportions

27 M MN = 15 Solve for MN.

Figure 22 The flagpole is 15 m high. Now Try Exercise 59.
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' E Exercises

CONCEPT PREVIEW Fill in the blank(s) to correctly complete each sentence.

1. The sum of the measures of the angles of any triangle is

2. Anisosceles right triangle hasone __ angleand ____ equal sides.

3. Anequilateral triangle has __ equal sides.

4. If two triangles are similar, then their corresponding __ are proportional and
their corresponding __ have equal measure.

CONCEPT PREVIEW [n each figure, find the measures of the numbered angles, given
that lines m and n are parallel.

/ 6. \ /
131/1 1\ 2 (R
2 /3 120°\3 9
4 /5 4\/55°
n n
7

CONCEPT PREVIEW Name the corresponding angles and the corresponding sides of
each pair of similar triangles.

7.

9.

B o 8 B Q
B&”AR ;; ﬁ
c A
P R
A c

(EA is parallel to CD.) 10. (HK is parallel to EF.)
C H K
E
G '
B
A
D
E F

Find the measure of each marked angle. In Exercises 19-22, m and n are parallel. See
Examples 1 and 2.

11.

13.

12.

(5x— 129)°

(11x=37)° X (7x +27)°

14. (x+15)°

(x+5)°

(210 - 3x)°

(10x - 20)°
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15. (2x - 120)° 16. (2x +16)°
(x-30)°
(3x-6)°
\ \
\
(3x+ 15 \ (5x - 50)°
17. (6x +3)° 18. (=5x)2

(4x=3)° _ o
(9x + 12)° (-8x33) 7 1200

19. / 20. /
@5y, " G+ o1 m
A £22° /

/ /(6x— 51)°

21. m n 22, m n

o I)M_SG)D \\(10x+ 1y°
// (15x—54)c\\

The measures of two angles of a triangle are given. Find the measure of the third angle.

See Example 2.

23. 37°,52° 24. 29°, 104° 25. 147°12',30° 19’
26. 136°50',41° 38’ 27. 74.2°,80.4° 28. 29.6°,49.7°

29. 51°20' 14”,106° 10" 12" 30. 17°41' 13”,96° 12’ 10"

31. Concept Check Can a triangle have angles of measures 85° and 100°?

32. Concept Check Can a triangle have two obtuse angles?

Concept Check Classify each triangle as acute, right, or obtuse. Also classify each as
equilateral, isosceles, or scalene. See the discussion following Example 2.

35.
60°
8 8
60° 60°
38. 3
4
8
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39. 40. 41.

14

‘ 60°
42. 43. 44.
60° 5 13
90°
T, r
12
50° 50°

45. Angle Sum of a Triangle Use this figure to dis-
cuss why the measures of the angles of a triangle
must add up to the same sum as the measure of a
straight angle.

m

m and n are parallel.

46. Carpentry Technique The following tech-
nique is used by carpenters to draw a 60° angle
with a straightedge and a compass. Why does

this technique work? (Source: Hamilton, J. E. 60°

and M. S. Hamilton, Math to Build On, Con- -

struction Trades Press.) Point marked Tip placed
on line here

“Draw a straight line segment, and mark a point near the midpoint. Now place
the tip on the marked point, and draw a semicircle. Without changing the setting
of the compass, place the tip at the right intersection of the line and the semicircle,
and then mark a small arc across the semicircle. Finally, draw a line segment from
the marked point on the original segment to the point where the arc crosses the
semicircle. This will form a 60° angle with the original segment.”

Find all unknown angle measures in each pair of similar triangles. See Example 3.

47. A o 48 c

42°

49.
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51. X M 52. P
Y N T
20°,
P 38°
AN 64°
38° o R Vv U
VA

Find the unknown side lengths in each pair of similar triangles. See Example 4.

53. 54. b
a
10 &20
75 25
25 a
3 10
b 6
55. 56.
12 12 6 N
XX ’
15 b
9
57. 58.
' L\ ~
m 12
14
9 X

Solve each problem. See Example 5.

59. Height of a Tree A tree casts a shadow 45 m long. At the same time, the shadow
cast by a vertical 2-m stick is 3 m long. Find the height of the tree.

60. Height of a Lookout Tower A forest fire lookout tower casts a shadow 180 ft long
at the same time that the shadow of a 9-ft truck is 15 ft long. Find the height of the
tower.

61. Lengths of Sides of a Triangle On a photograph of a triangular piece of land, the
lengths of the three sides are 4 cm, 5 cm, and 7 cm, respectively. The shortest side of
the actual piece of land is 400 m long. Find the lengths of the other two sides.

62. Height of a Lighthouse
The Biloxi lighthouse in
the figure casts a shadow
28 m long at 7 A.M. At the
same time, the shadow of
the lighthouse keeper, who
is 1.75 m tall, is 3.5 m long.
How tall is the lighthouse?

NOT TO SCALE
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63. Height of a Building A house is 15 ft tall. Its shadow is 40 ft long at the same time
that the shadow of a nearby building is 300 ft long. Find the height of the building.

64. Height of a Carving of Lincoln Assume
that Lincoln was 6% ft tall and his head
%ft long. Knowing that the carved head
of Lincoln at Mt. Rushmore is 60 ft tall,
find how tall his entire body would be if it
were carved into the mountain.

In each figure, there are two similar triangles. Find the unknown measurement. Give
approximations to the nearest tenth.

65. 66.
60
x
50 1 Y
- ,\
———— 160 40
100 120
67. 68.
m
c
80
% ~ ’
100 4 s
S~ ~
10 90

Solve each problem.

69. Solar Eclipse on Earth The sun has a Sun
diameter of about 865,000 mi with a maxi-
mum distance from Earth’s surface of about
94,500,000 mi. The moon has a smaller diam-
eter of 2159 mi. For a total solar eclipse to
occur, the moon must pass between Earth and  NOT TO SCALE Umbra
the sun. The moon must also be close enough
to Earth for the moon’s umbra (shadow) to reach the surface of Earth. (Source:
Karttunen, H., P. Kroger, H. Oja, M. Putannen, and K. Donners, Editors, Funda-
mental Astronomy, Fourth Edition, Springer-Verlag.)

] Moon Earth

(a) Calculate the maximum distance, to the nearest thousand miles, that the moon
can be from Earth and still have a total solar eclipse occur. (Hint: Use similar
triangles.)

(b) The closest approach of the moon to Earth’s surface was 225,745 mi and the far-
thest was 251,978 mi. (Source: World Almanac and Book of Facts.) Can a total
solar eclipse occur every time the moon is between Earth and the sun?

70. Solar Eclipse on Neptune (Refer to Exercise 69.) The sun’s distance from
Neptune is approximately 2,800,000,000 mi (2.8 billion mi). The largest moon of
Neptune is Triton, with a diameter of approximately 1680 mi. (Source: World
Almanac and Book of Facts.)

(a) Calculate the maximum distance, to the nearest thousand miles, that Triton can
be from Neptune for a total eclipse of the sun to occur on Neptune. (Hint: Use
similar triangles.)

(b) Triton is approximately 220,000 mi from Neptune. Is it possible for Triton to
cause a total eclipse on Neptune?
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71.

72.

73.

74.

Solar Eclipse on Mars (Refer to Exercise 69.) The sun’s distance from the surface
of Mars is approximately 142,000,000 mi. One of Mars’ two moons, Phobos, has a
maximum diameter of 17.4 mi. (Source: World Almanac and Book of Facts.)

(a) Calculate the maximum distance, to the nearest hundred miles, that the moon
Phobos can be from Mars for a total eclipse of the sun to occur on Mars.

(b) Phobos is approximately 5800 mi from Mars. Is it possible for Phobos to cause
a total eclipse on Mars?

Solar Eclipse on Jupiter (Refer to Exercise 69.) The sun’s distance from the sur-
face of Jupiter is approximately 484,000,000 mi. One of Jupiter’s moons, Gany-
mede, has a diameter of 3270 mi. (Source: World Almanac and Book of Facts.)

(a) Calculate the maximum distance, to the nearest thousand miles, that the moon
Ganymede can be from Jupiter for a total eclipse of the sun to occur on Jupiter.

(b) Ganymede is approximately 665,000 mi from Jupiter. Is it possible for Ganymede
to cause a total eclipse on Jupiter?

Sizes and Distances in the Sky Astronomers use degrees, minutes, and seconds to
measure sizes and distances in the sky along an arc from the horizon to the zenith
point directly overhead. An adult observer on Earth can judge distances in the sky
using his or her hand at arm’s length. An outstretched hand will be about 20 arc
degrees wide from the tip of the thumb to the tip of the little finger. A clenched fist
at arm’s length measures about 10 arc degrees, and a thumb corresponds to about
2 arc degrees. (Source: Levy, D. H., Skywatching, The Nature Company.)

o

Y2y
7
7 I 20° I

(a) The apparent size of the moon is about 31 arc minutes. Approximately what part
of your thumb would cover the moon?

(b) If an outstretched hand plus a fist cover the distance between two bright stars,
about how far apart in arc degrees are the stars?

Estimates of Heights There is a relatively simple way to make a reasonable esti-

mate of a vertical height.

Step 1 Hold a 1-ft ruler vertically at arm’s length and approach the object to be
measured.

Step 2 Stop when one end of the ruler lines up with the top of the object and the
other end with its base.

Step 3 Now pace off the distance to the object, taking normal strides. The number
of paces will be the approximate height of the object in feet.
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Furnish the reasons in parts (a)—(d), which refer to the figure. (Assume that the
length of one pace is EF.) Then answer the question in part ().

Reasons
_CG _AG
(a) CG_T_E
AG EG
(b) 4D BD
EG EG EG
© "B 1

(d) CG ft = EG paces
(e) What is the height of the tree in feet?

(o E (Il QuiZ (Sections 1.1-1.2)

1. Find the measure of (a) the complement and (b) the supplement of an angle measur-
ing 19°.

Find the measure of each unknown angle.

2. 3.

(Bx+5)°\ (5x + 15)°

(5x-1)°
(2%)°

4. (Bx+3)° 5.
(—14x + 18)°,

(4x - 8)°

m

(—6x +2)°

(13x +45)° /

m and n are parallel.

Solve each problem.
6. Perform each conversion.

(a) 77°12' 09” to decimal degrees (b) 22.0250° to degrees, minutes, seconds

7. Find the angle of least positive measure (not equal to the given measure) that is
coterminal with each angle.

(a) 410° (b) —60° (c) 890° d 57°
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8. Rotating Flywheel A flywheel rotates 300 times per min. Through how many
degrees does a point on the edge of the flywheel move in 1 sec?

9. Length of a Shadow 1If a vertical antenna 45 ft tall casts a shadow 15 ft long, how
long would the shadow of a 30-ft pole be at the same time and place?

10. Find the values of x and y.

(a) (b) 400
. 15 (10x + 8)°
8| \ 820
i : e

Trigonometric Functions

The Pythagorean
Theorem and the
Distance Formula

Trigonometric

Functions

Quadrantal Angles

R(JQ,_V)_,)
d
Y2=N
l_
P(xy,y) X2—%1 (x5, 1)
0
Figure 23

X

The Pythagorean Theorem and the Distance Formula The distance
between any two points in a plane can be found by using a formula derived from
the Pythagorean theorem.

Pythagorean Theorem

In a right triangle, the sum of the squares of Hypotenuse
the lengths of the legs is equal to the square Legam
of the length of the hypotenuse.

Leg b
a’ + b = c?

To find the distance between two points P(x;, y;) and R(x,, y,), draw a line
segment connecting the points, as shown in Figure 23. Complete a right trian-
gle by drawing a line through (x,, y,) parallel to the x-axis and a line through
(x5, ¥,) parallel to the y-axis. The ordered pair at the right angle is (x5, ;).

The horizontal side of the right triangle in Figure 23 has length x, — x,
while the vertical side has length y, — y,. If d represents the distance between
the two original points, then by the Pythagorean theorem,

d*= (xy — x1)2 + (32— )’1)2-

Solving for d, we obtain the distance formula.

Distance Formula

Suppose that P(x;, y,) and R(x,, y,) are two points in a coordinate plane.
The distance between P and R, written d(P, R), is given by the following
formula.

d(P,R) = V(xz —x)?+ (2 —»)?

That is, the distance between two points in a coordinate plane is the square
root of the sum of the square of the difference between their x-coordinates
and the square of the difference between their y-coordinates.
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Figure 24
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Trigonometric Functions To define the six trigonometric functions, we
start with an angle 6 in standard position and choose any point P having coordi-
nates (x, y) on the terminal side of angle 6. (The point P must not be the vertex
of the angle.) See Figure 24. A perpendicular from P to the x-axis at point Q
determines a right triangle, having vertices at O, P, and Q. We find the distance r
from P(x, y) to the origin, (0, 0), using the distance formula.

d(O,P) = \/(x2 —x1)*+ (y, —y1)* Distance formula

Substitute (x, y) for (x,, y,)
r= \/(x —0)>+ (y - 0)? and (0, 0) for (x;, y,).

r=Vx2+y? Subtract.

Notice that r > 0 because this is the undirected distance.
The six trigonometric functions of angle 6 are

sine, cosine, tangent, cotangent, secant, and cosecant,

abbreviated sin, cos, tan, cot, sec, and csc.

Trigonometric Functions

Let (x,y) be a point other than the origin on the terminal side of an
angle 6 in standard position. The distance from the point to the origin is

r= "V x?+ y2. The six trigonometric functions of 6 are defined as follows.

sin @ = = cos = = tang = 2 (x #0)
r x
cscOd=— (y#0) sechd=—- (x+#0) c0t0=§ (y#0)
Finding Function Values of an Angle
The terminal side of an angle 6 in standard position y
passes through the point (8, 15). Find the values of the
six trigonometric functions of angle 6. (8, 15)
Figure 25 shows angle 6 and the triangle = 8
formed by dropping a perpendicular from the point v 15 y=15
(8, 15) to the x-axis. The point (8, 15) is 8 units to r=17
the right of the y-axis and 15 units above the x-axis, so 0
x=28andy= 15 Nowuse r = Vx2+ y2. o 8
F= V82 + 152 = V64 + 225 = /289 = 17 Figure 25

We can now use these values for x, y, and r to find the values of the six trigono-
metric functions of angle 6.

. y 15 X 8 y 15
sinf) === — cosf =—=— tanf = —= —
ro 17 r 17 X 8
0 r 17 0 r 17 P X 8
csch=—=— sec =—=— cot =—=—
y 15 x 8 y 15

Now Try Exercise 13.
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", y")
OP=r Y

P
OP' =r'
()
P
b O]
o 0 o’
Figure 27

Finding Function Values of an Angle

The terminal side of an angle 0 in standard position passes Yoo,
through the point (—3, —4). Find the values of the six ;;:4
trigonometric functions of angle 6. ol r=75
As shown in Figure26,x = —3and y = —4. =3 /0\ N
r=V(=3)2+ (—4)> r=Va+y -4 A
r= \/2? Simplify the radicand. (3, -4)
r=s> r=0 Figure 26
Now we use the definitions of the trigonometric functions.
- —4 4 0 -3 3 anf = — 4
sinff =—=—— cosf=—=—— anfh =—=—
5 5 5 5 -3 3
0 5 5 0 5 5 P -3 3
csc=—=—— sech=—=—— cot =—=—
—4 4 -3 3 -4 4
Now Try Exercise 17.

We can find the six trigonometric functions using any point other than the
origin on the terminal side of an angle. To see why any point can be used, refer
to Figure 27, which shows an angle 6 and two distinct points on its terminal
side. Point P has coordinates (x, y), and point P’ (read “P-prime”) has coordi-
nates (x',y"). Let r be the length of the hypotenuse of triangle OPQ, and let r’
be the length of the hypotenuse of triangle OP'Q’. Because corresponding sides
of similar triangles are proportional, we have

P 7 Corresponding sides are proportional.
Thus sin 6 = < is the same no matter which point is used to find it. A similar
result holds for the other five trigonometric functions.

We can also find the trigonometric function values of an angle if we know
the equation of the line coinciding with the terminal ray. Recall from algebra
that the graph of the equation

Ax + By =0 Linear equation in two variables

is a line that passes through the origin (0, 0). If we restrict x to have only nonpos-
itive or only nonnegative values, we obtain as the graph a ray with endpoint at the
origin. For example, the graph of x + 2y = 0, x = 0, shown in Figure 28, is a ray
that can serve as the terminal side of an angle 0 in standard position. By choosing
a point on the ray, we can find the trigonometric function values of the angle.

anll
7

x+2y=0,x=0

Figure 28
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2y=0,x=0

Figure 29

X

0
1

Figure 30

1.3 Trigonometric Functions | 25

Finding Function Values of an Angle

Find the six trigonometric function values of an angle 6 in standard position, if
the terminal side of 6 is defined by x + 2y = 0, x = 0.

The angle is shown in Figure 29. We can use any point except (0, 0)
on the terminal side of 6 to find the trigonometric function values. We choose
x = 2 and find the corresponding y-value.

x+2y=0, x=0

2+2y=0 Letx = 2.
2y = =2 Subtract 2.
y=-—1 Divide by 2.

The point (2, —1) lies on the terminal side, and so r = V22 + (—1)? = V5.

Now we use the definitions of the trigonometric functions.
N Vs ooVs
Sin = — = = . = —
r /e
\@ \6 \@ 3 Multiply by % a form of 1,
/d
2 2 \@ 2\@ to rationalize the denominators.

X
cos ) =—= = . =
Y VI VE

-1 1
tan 0 = S
2 2
V5 V5 2
csc(9=f=7=—\@ sech = —=—— cot0=£=7=—2
—1 2 y -1
Now Try Exercise 51.

Recall that when the equation of a line is written in the form
y =mx + b, Slope-intercept form

the coefficient m of x gives the slope of the line. In Example 3, the equation
x + 2y =0 can be written as y = — ]ix, so the slope of this line is — % Notice
that tan 6 = —%.

In general, it is true that m = tan 0.

The trigonometric function values we found in Examples 1-3 are
exact. If we were to use a calculator to approximate these values, the decimal
results would not be acceptable if exact values were required.

Quadrantal Angles  If the terminal side of an angle in standard position
lies along the y-axis, any point on this terminal side has x-coordinate 0. Similarly,
an angle with terminal side on the x-axis has y-coordinate O for any point on the
terminal side. Because the values of x and y appear in the denominators of some
trigonometric functions, and because a fraction is undefined if its denominator
is 0, some trigonometric function values of quadrantal angles (i.e., those with
terminal side on an axis) are undefined.

When determining trigonometric function values of quadrantal angles,
Figure 30 can help find the ratios. Because any point on the terminal side can be
used, it is convenient to choose the point one unit from the origin, with r = 1.
(Later we will extend this idea to the unit circle.)
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x=0
y=-14(0,-1
r=1

Figure 30 (repeated)

HERRAL FLOAT ALTD RS DESEEE HP n

sin{9a) A

st e iiansie

tan({2@) |
Errar

A calculator in degree mode returns the
correct values for sin 90° and cos 90°.
The screen shows an ERROR message
for tan 90°, because 90° is not in the
domain of the tangent function.

To find the function values of a quadrantal angle, determine the position of
the terminal side, choose the one of these four points that lies on this terminal
side, and then use the definitions involving x, y, and r.

Finding Function Values of Quadrantal Angles
Find the values of the six trigonometric functions for each angle.
(a) an angle of 90°

(b) an angle 6 in standard position with terminal side passing through (—3, 0)

(a) Figure 31 shows that the terminal side passes through (0, 1). So x =0,
y =1, and r = 1. Thus, we have the following.

1 0 1
sin 90° = 1 =1 cos90°= 1 =0 tan 90° = 0 Undefined
o 1 (o] 1 (e} O
csc 90° = T =1 sec 90° = 6 Undefined  cot 90° = T =0
y y
, 1)
90° g
+— F—t> At
0 =3,0) OJr
Figure 31 Figure 32

(b) Figure 32 shows the angle. Here, x = —3, y = 0, and r = 3, so the trigono-
metric functions have the following values.

0 - 0
1 = — = = — = —1 t. = — =
sin 6 3 0 cos 6 3 an 0 3 0
3 3 -3
csc = 6 Undefined  sec 6 = _73 =—1 cotfh= T Undefined

Verify that these values can also be found using the point (=1, 0).

Now Try Exercises 23, 67, 69, and 71.

The conditions under which the trigonometric function values of quadrantal
angles are undefined are summarized here.

Conditions for Undefined Function Values

Identify the terminal side of a quadrantal angle.

e If the terminal side of the quadrantal angle lies along the y-axis, then the
tangent and secant functions are undefined.

e If the terminal side of the quadrantal angle lies along the x-axis, then the
cotangent and cosecant functions are undefined.

The function values of some commonly used quadrantal angles, 0°, 90°,
180°, 270°, and 360°, are summarized in the table on the next page. They can be
determined when needed by using Figure 30 and the method of Example 4(a).
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For other quadrantal angles such as —90°, —270°, and 450°, first determine
the coterminal angle that lies between 0° and 360°, and then refer to the table
entries for that particular angle. For example, the function values of a —90°
angle would correspond to those of a 270° angle.

Function Values of Quadrantal Angles

0 sin @ | cos 0 tan 0 cot 0 sec 0 csc 0
0° 0 0 Undefined 1 Undefined
90° 1 0 | Undefined 0 Undefined 1
180° 0 = 0 Undefined =]l Undefined
270° | —1 0 | Undefined 0 Undefined =1l
360° 0 0 Undefined 1 Undefined

The values given in this table can be found with a calculator that has trigo-
nometric function keys. Make sure the calculator is set to degree mode.

HERRAL FLOAT AUTD REEL DESEEE WP n

BT EMG
BLIDNSETEE
i <—

P STl
RLAL L]
AN HORITONTAL GR&MH-TASLE

TI-84 Plus

CAUTION One of the most common errors involving calculators in
trigonometry occurs when the calculator is set for radian measure, rather
than degree measure. Be sure to set your calculator to degree mode. See

Figure 33 Figure 33.

—

Exercises

CONCEPT PREVIEW Fill in the blank(s) to correctly complete each sentence.

1. The Pythagorean theorem for right triangles states that the sum of the squares of the
lengths of the legs is equal to the square of the

2. In the definitions of the sine, cosine, secant, and cosecant functions, r is interpreted
geometrically as the distance from a given point (x, y) on the terminal side of an
angle 6 in standard position to the

3. For any nonquadrantal angle 6, sin 6 and csc 6 will have the sign.

(same/opposite)
4. If cot 6 is undefined, thentan 0 = .

5. If the terminal side of an angle 6 lies in quadrant III, then the values of tan 6 and
cot are , and all other trigonometric function values are

(positive/negative)

(positive/negative)

6. If a quadrantal angle 6 is coterminal with 0° or 180°, then the trigonometric func-

tions and are undefined.

CONCEPT PREVIEW The terminal side of an angle 6 y
in standard position passes through the point (=3, =3).
Use the figure to find the following values. Rationalize
denominators when applicable.

7. r 8. sin 6

10. tan 6 r
(-3,-3)

9. cos 6
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Sketch an angle 0 in standard position such that 0 has the least positive measure, and the
given point is on the terminal side of 6. Then find the values of the six trigonometric func-
tions for each angle. Rationalize denominators when applicable. See Examples 1, 2, and 4.

1. (5, -12) 2. (-12,-5)  13. (3,4) 14. (—4,-3)
(~8, 15) 16. (15, -8) 17. (-7,-24) 18, (=24,-7)
19. (0,2) 20. (0,5) 21. (—4,0) 22. (-5,0)
23. (0, —4) 24. (0, -3) 25. (1, V3) 26. (-1, V/3)
27. (V2. V2) 28 (-V2,-V2) 29, (-2V3,-2) 30, (—2V/3,2)

Concept Check Suppose that the point (x,y) is in the indicated quadrant. Determine

whether the given ratio is positive or negative. Recall that r = \/x* + y2. (Hint: Drawing
a sketch may help.)

3. 3. 1Y 33, 1V, 34, v, 35 1LY
r r X y r

36. 1, > 37 v~ 38. 1V, 39. 1% 40. 1.2
r r r y X

41. L2 42. 1,2 43. 101, - 44, - 45. 1%
X y X y y

46. 1.2 47. 1.2 48. 1% 49. 1,7 50. -
X r r X y

An equation of the terminal side of an angle 0 in standard position is given with a
restriction on x. Sketch the least positive such angle 0, and find the values of the six
trigonometric functions of 6. See Example 3.

51. 2x+y=0,x=0 52. 3x+5y=0,x=0 53, 6x—y=0,x=0

54, —5x—3y=0,x=0 55, —4x+7y=0,x=0 56. 6x—5y=0,x=0

57. x+y=0,x=0 58. x—y=0,x=0 59. - V3ax+y=0,x=0
60. \/§x+y=0,xS0 61. x=0,y=0 62. y=0,x=0

Find the indicated function value. If it is undefined, say so. See Example 4.

63. cos 90° 64. sin 90° 65. tan 180° 66. cot 90°

67. sec 180° 68. csc 270° 69. sin(—270°) 70. cos(—90°)
71. cot 540° 72. tan 450° 73. csc(—450°) 74. sec(—540°)
75. sin 1800° 76. cos 1800° 77. csc 1800°

78. cot 1800° 79. sec 1800° 80. tan 1800°

81. cos(—900°) 82. sin(—900°) 83. tan(—900°)

84. How can the answer to Exercise 83 be given once the answers to Exercises 81 and
82 have been determined?

Use trigonometric function values of quadrantal angles to evaluate each expression. An
expression such as cot? 90° means (cot 90°)%, which is equal to 0* = 0.

85. cos 90° + 3 sin 270° 86. tan 0° — 6 sin 90°

87. 3 sec 180° — 5 tan 360° 88. 4 csc 270° + 3 cos 180°

89. tan 360° + 4 sin 180° + 5 cos? 180° 90. 5 sin?90° + 2 cos? 270° — tan 360°
91. sin? 180° + cos? 180° 92. sin?360° + cos? 360°
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93. sec? 180° — 3 sin” 360° + cos 180° 94. 2 sec 0° + 4 cot? 90° + cos 360°
95. —2sin*0° + 3 tan? 0° 96. —3 sin* 90° + 4 cos’ 180°
97. sin?(—90°) + cos?(—90°) 98. cos?(—180°) + sin?(—180°)
If n is an integer, n - 180° represents an integer multiple of 180°, (2n + 1) + 90° repre-

sents an odd integer multiple of 90°, and so on. Determine whether each expression is
equal to 0, 1, or —1, or is undefined.

99. cos[(2n + 1) - 90°] 100. sin[n - 180°] 101. tan[n - 180°]
102. sin[270° + n - 360°] 103. tan[(2n + 1) - 90°] 104. cot[n - 180°]
105. cot[(2n + 1) * 90°] 106. cos[n * 360°]

107. sec[(2n + 1) - 90°] 108. csc[n - 180°]

Concept Check In later chapters we will study trigonometric functions of angles other
than quadrantal angles, such as 15°, 30°, 60°, 75°, and so on. To prepare for some impor-
tant concepts, provide conjectures in each exercise. Use a calculator set to degree mode.

109. The angles 15° and 75° are complementary. Determine sin 15° and cos 75°. Make
a conjecture about the sines and cosines of complementary angles, and test this
hypothesis with other pairs of complementary angles.

110. The angles 25° and 65° are complementary. Determine tan 25° and cot 65°. Make
a conjecture about the tangents and cotangents of complementary angles, and test
this hypothesis with other pairs of complementary angles.

111. Determine sin 10° and sin(—10°). Make a conjecture about the sine of an angle
and the sine of its negative, and test this hypothesis with other angles.

112. Determine cos 20° and cos(—20°). Make a conjecture about the cosine of an angle
and the cosine of its negative, and test this hypothesis with other angles.

P Set a TI graphing calculator to parametric and degree modes. Use the window values
shown in the first screen, and enter the equations shown in the second screen. The corre-
sponding graph in the third screen is a circle of radius 1. Trace to move a short distance
around the circle. In the third screen, the point on the circle corresponds to the angle
T = 25°. Because r = 1, cos 25° is X = 0.90630779 and sin 25°is Y = 0.42261826.

SEEIAL FLOAT SUTE BERL IRIRED HF

IMDOH Pt Motz Mot Wy recanii 12:{-.. i

Twin=0 sy Beas(Th

Tmax=360 ¥urBainiTh i

Tskepa} = I

Mmif= 1,8 Waem 18 / ! =
Amax=i. A =

¥eclk=1 Yags /
Ymin=-=1.2 ey = |

imax=1.2 Yar= T

Yaclsi’ | foese = I~ Ty S—

Use this information to answer each question.

113. Use the right- and left-arrow keys to move to the point corresponding to 20°
(T = 20). Approximate cos 20° and sin 20° to the nearest thousandth.

114. For what angle T, 0° = T = 90°, is cos T = 0.766?
115. For what angle T, 0° = T = 90°, is sin T = 0.574?
116. For what angle T, 0° = T = 90° does cos T equal sin T?

117. As T increases from 0° to 90°, does the cosine increase or decrease? What about
the sine?

118. As T increases from 90° to 180°, does the cosine increase or decrease? What about
the sine?
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Using the Definitions of the Trigonometric Functions

Reciprocal Identities

Signs and Ranges of
Function Values

Pythagorean
Identities

Quotient Identities

min e 93

i
ot f < LB

{cosd ~1BA1)

(a)

cat{8F)

Error,

(c)
Figure 34

Identities are equations that are true for all values of the variables for which all
expressions are defined.

(x+y)?=x*+2xy + y? 2(x +3) =2x+ 6 Identities

Reciprocal Identities Recall the definition of a reciprocal.
The reciprocal of a nonzero number x is T

Examples: The reciprocal of 2 is %, and the reciprocal of % is %1 There is no
. 1. .
reciprocal for 0 because ; is undefined.

The definitions of the trigonometric functions in the previous section were
written so that functions in the same column were reciprocals of each other.
Because sin 6 = % and csc 0 = §

1 1
sinf =—— and cscf=—, providedsin 6 # 0.
csc O sin 6

Also, cos 0 and sec 6 are reciprocals, as are tan 6 and cot 6. The reciprocal
identities hold for any angle 6 that does not lead to a 0 denominator.

Reciprocal Identities

For all angles 6 for which both functions are defined, the following identi-
ties hold.

1 1 1
inf = 0 = tan 0 =
st csc 6 €08 sec 6 an cot 6
(/] ! 0 ! to !
csc O = sec O = cot O =
sin 0 cos 0 tan 0

<] The screen in Figure 34(a) shows that csc 90° = 1 and sec(—180°) = —1
using appropriate reciprocal identities. The third entry uses the reciprocal func-
tion key x ™! to evaluate sec(—180°). Figure 34(b) shows that attempting to find

sec 90° by entering COSIW produces an ERROR message, indicating that the
reciprocal is undefined. See Figure 34(c). =

CAUTION Be sure not to use the inverse trigonometric function keys to
find reciprocal function values. For example, consider the following.

cos '(—180°) # (cos(—180°)) "

This is the inverse cosine function, This is the reciprocal function, which correctly
which will be discussed later in evaluates sec(—180°), as seen in Figure 34(a).
the text.

0\ \ — 1 o
(cos(—180°))7! = cos(— 807y — sec(—180%)
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The reciprocal identities can be written in different forms. For example,

1
is equivalentto csc® = —— and (sin 0)(csc0) = 1.
csc sin 0

sin 0 =

Using the Reciprocal Identities

Find each function value.

. 5 . . V12
(a) cos 0, given that sec § = 3 (b) sin 6, given that csc 8 = -
(a) We use the fact that cos 6 is the reciprocal of sec 6.
0 ! 1'5133§'1'l‘h lex fracti
cos 0 = =—=1+—=1°+*—==—=Simplify the complex fraction.
sec 6 % 3 5 5 P !
. 1 o .
(b) sinf = sin @ is the reciprocal of csc 6.
csc f
= ! Substitute csc § = — iE
B e s s 7
2
2 N o
= - Simplify the complex fraction as in part (a).
V12
2
=——F Vi2=V4-3=2V3
2V3
1
= —-—— Divide out the common factor 2.
V3
Y _
=——" — Rationalize the denominator.
V3 V3
V3 ,
= —— Multiply.
3 Now Try Exercises 11 and 19.

Signs and Ranges of Function Values In the definitions of the trigo-
nometric functions, r is the distance from the origin to the point (x,y). This
distance is undirected, so r > 0. If we choose a point (x, y) in quadrant I, then
both x and y will be positive, and the values of all six functions will be positive.

A point (x, y) in quadrant II satisfies x < 0 and y > 0. This makes the values
of sine and cosecant positive for quadrant IT angles, while the other four functions
take on negative values. Similar results can be obtained for the other quadrants.

This important information is summarized here.

y
x<0,y>0,r>0 x>0,y>0,r>0

0 in Quadrant | sin@ | cos@ | tan 6O | cot O | sec O | csc O
I 1
1 + + + + + + Sine and cosecant All functions
positive positive
II + = = = = +
0 X
I _ _ + + _ _ x<0,y<0,r>0 x>0,y<0,r>0
11 v
v — + - - + - Tangent and cotangent Cosine and secant
positive positive
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©0.7)
®
r y
A (.0)
0 x T *
(a)
y
0
T\ x G
o |
h y
® ( 0. 7r)
(b)

Figure 35

Determining Signs of Functions of Nonquadrantal
Angles

Determine the signs of the trigonometric functions of an angle in standard posi-
tion with the given measure.

(a) 87° (b) 300° (e) —200°

(a) Anangle of 87° is in the first quadrant, with x, y, and r all positive, so all of its
trigonometric function values are positive.

(b) A 300° angle is in quadrant IV, so the cosine and secant are positive, while
the sine, cosecant, tangent, and cotangent are negative.

(¢) A —200° angle is in quadrant II. The sine and cosecant are positive, and all
other function values are negative.
Now Try Exercises 27, 29, and 33.

Because numbers that are reciprocals always have the same sign,
the sign of a function value automatically determines the sign of the recipro-
cal function value.

Identifying the Quadrant of an Angle

Identify the quadrant (or possible quadrants) of an angle 6 that satisfies the
given conditions.

(a) sinf>0,tan 6 <O (b) cos 0 <0,secH <0

(a) Because sin 6 > 0 in quadrants I and II and tan 6 < 0 in quadrants II and IV,
both conditions are met only in quadrant II.

(b) The cosine and secant functions are both negative in quadrants II and II1, so
in this case 6 could be in either of these two quadrants.

Now Try Exercises 43 and 49.

Figure 35(a) shows an angle 6 as it increases in measure from near 0°
toward 90°. In each case, the value of r is the same. As the measure of the angle
increases, y increases but never exceeds r, so y = r. Dividing both sides by the
positive number r gives % =1

In a similar way, angles in quadrant IV as in Figure 35(b) suggest that

_1 = X’
-
SO -1= Y < 1
r
and —1=<sin@ < 1. 7 =sin0 foranyangle 6.
Similarly, —1=cos =1.

The tangent of an angle is defined as f; It is possible that x <y, x =y, or
x>y. Thus, )y; can take any value, so tan 6 can be any real number, as can
cot 0.
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The functions sec 6 and csc 6 are reciprocals of the functions cos 6 and
sin 0, respectively, making

secl=<—1 or secO=1 and cscO = -1 or csc=1.

In summary, the ranges of the trigonometric functions are as follows.

Ranges of Trigonometric Functions

Trigonometric Range Range
Function of 6 (Set-Builder Notation) (Interval Notation)
sin 6, cos 6 {yllyI =1} [-1,1]
tan 6, cot 6 {y|yis a real number} (—o0, )
sec 6, csc 60 {y|ly| =1} (=0, —=1]U[1, )

Determining Whether a Value Is in the Range
of a Trigonometric Function

Determine whether each statement is possible or impossible.

(a) sinf =2.5 (b) tan 6 = 110.47 (c) secH =0.6

(a) For any value of 6, we know that —1 = sin @ = 1. Because 2.5 > 1, it is
impossible to find a value of 6 that satisfies sin 6 = 2.5.

(b) The tangent function can take on any real number value. Thus, tan § = 110.47
is possible.

(c) Because |sec 8| = 1 for all 6 for which the secant is defined, the statement
sec 6 = 0.6 is impossible.

Now Try Exercises 53,57, and 59.

The six trigonometric functions are defined in terms of x, y, and r, where the
Pythagorean theorem shows that r> = x> + y2 and r > 0. With these relation-
ships, knowing the value of only one function and the quadrant in which the angle
lies makes it possible to find the values of the other trigonometric functions.

Finding All Function Values Given One Value and
the Quadrant

Suppose that angle 6 is in quadrant II and sin § = % Find the values of the five
remaining trigonometric functions.

Choose any point on the terminal side of angle 6. For simplicity,
since sin 6 = '%, choose the point with r = 3.

sin @ = —  Given value

3
_2

3

Substitute } for sin 6.

N <



34 | CHAPTER1 Trigonometric Functions

Because X =3 and r = 3, it follows that y = 2. We must find the value of x.
x>+ y2 =72 Pythagorean theorem
x2+22=232 Substitute.
x2+4=9 Apply exponents.
x2=5 Subtract 4.
(Remember both roots.& Squar . T2 =k
_ \/5 of x = _\@ quare root property: If x= = £,
. then x = \//\ or x = *\ﬂ.
y Because 6 is in quadrant II, x must be negative. Choose x = —\/ 5 so that the
x= 5 point (— \/5, 2) is on the terminal side of 6. See Figure 36.
(7\43 2) 192 y= 2
s 3 , T 3 0 x -\5 Vs
a coshf=—=———"=——
r 3 3
—— \: —
3 2 g3 3 V5 3\Vs —
T sec = = = — ° = - ese nave
X - \@ \@ \/S 5 rationalized
2T denominators.
gt 2 2 V5 2V
an = —_— = = — . = —
Figure 36 X -\V5 V5 s 5
x —-Vs Vs
cot=—=—"—""=———
y 2 2
r 3
csch=—=—
2 Now Try Exercise 75.

Pythagorean Identities We now derive three new identities.

x*+ y2 =72 Pythagorean theorem

X 2 ’,.2

— + = =— Divide by r2.

2
x\2 y\2
(cos 6)2and cos?6 - + -
are equivalent forms.

(cos 0)2+ (sin@)zz 1 cosH:f,sin(i:’:{

~
S
S <

N UH! o a m
1 Power rule for exponents; i (;)

sin? @ + cos>0 =1  Apply exponents; commutative property

Starting again with x> + y? = r? and dividing through by x? gives the following.

x2 y2 r2
— + —-=— Divide by x?.
x?
< > < ) Power rule for exponents
2 — 2 , —Y arp="
1 + (tan 0)* = (sec 0)* tand =" sect ="

tan’0 + 1 = sec?*0 Apply exponents; commutative property
Similarly, dividing through by y? leads to another identity.
1 + cot>0 = csc? 0

These three identities are the Pythagorean identities because the original equa-
tion that led to them, x*> + y? = r2, comes from the Pythagorean theorem.



LOOKING AHEAD TO CALCULUS
The reciprocal, Pythagorean, and
quotient identities are used in calculus
to find derivatives and integrals of
trigonometric functions. A standard
technique of integration called
trigonometric substitution relies

on the Pythagorean identities.
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Pythagorean Identities

For all angles 6 for which the function values are defined, the following
identities hold.

sinf@ + cos?0 =1 tan’0 + 1 =sec2 1 + cot?0 = csc2 0

We give only one form of each identity. However, algebraic transforma-
tions produce equivalent forms. For example, by subtracting sin? 6 from both
sides of sin? @ + cos? # = 1, we obtain an equivalent identity.

cos?@ =1 —sin?6 Alternative form

It is important to be able to transform these identities quickly and also to rec-

ognize their equivalent forms.

QuotientIdentities Consider the quotient of the functions sin 6 and cos 6,
for cos 6 # 0.
. y
sin 6 Y x y r_y
=T=———=—'—=—=tan0
cos @ - r r x X
Similarly, E?If g = cot 0, for sin 0 # 0. Thus, we have the quotient identities.

Quotient Identities
For all angles 6 for which the denominators are not zero, the following
identities hold.
sin 6 cos 6
= tan 0 = cot 0
cos 0 sin 6

Using Identities to Find Function Values

Find sin 6 and tan 6, given that cos 8 = —? and sin 6 > 0.

Start with the Pythagorean identity that includes cos 6.

sin2 @ + cos? 0 =1

Pythagorean identity

in2 \ﬂ ’ . V3
sinc 6 + | — 4 =1 Replace cos 6 with ——=.
2 = e V3
sin“ 0 + =1 Square ——~.
L 13 :
sin 0 = — Subtract ;5.
16
13
sin = *+ T Take square roots.
Choose the correct
sign here. - 13 Choose the positive square root because
smo = ———

sin 6 is positive.
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To find tan 6, use the values of cos 6 and sin 6 and the quotient identity for tan 6.

sing - _\/13(_ 4 )__\/13
cos Vs 4 V3/) 3
4

VB Vi VB
Vi Va3

tan 0 =

Rationalize the denominator.

Now Try Exercise 79.

CAUTION In exercises like Examples 5 and 6, be careful to choose the
correct sign when square roots are taken. Refer as needed to the diagrams
preceding Example 2 that summarize the signs of the functions.

Using Identities to Find Function Values
Find sin 6 and cos 0, given that tan 6 = % and 0 is in quadrant II1.

Because 6 is in quadrant III, sin 6 and cos 6 will both be negative.

It is tempting to say that since tan § = sg:g and tan 0 = %, then sin # = —4 and
cos 6 = —3. This is incorrect, however—both sin 0 and cos 6 must be in the

interval [ —1, 1].
We use the Pythagorean identity tan? @ + 1 = sec? 6 to find sec 6, and then

the reciprocal identity cos 6 = ﬁ to find cos 6.

tan2 0 + 1 = sec? 6 Pythagorean identity
4\? )
<> + 1 =sec?6 tan 6 = 3
3 .
16 5 4
? + 1 =sec6 Square 3.
25 5
— =sec” 0 Add.

Be careful to
choose the correct
sign here.

Choose the negative square root because
sec 6 is negative when 6 is in quadrant III.

njw wWlw P

=secf

=cos 6 Secant and cosine are reciprocals.

Now we use this value of cos 6 to find sin 6.

sin?@ =1 — cos? 0 Pythagorean identity (alternative form)
3\? 5
sinff=1—-—— cosf = —3
5 o
2 = - I 3
sinc =1— Square —=.
25 S
16
sin? @ = — Subtract.
25
Again, be careful.
sinf = — g Choose the negative square root.

Now Try Exercise 77.
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Example 7 can also be worked y
by sketching 6 in standard position in -
quadrant III, finding r to be 5, and then 3L y=-a
using the definitions of sin 6 and cos 6 in 1 r=5
terms of x, y, and r. See Figure 37.

When using this method, be sure to ' 0
choose the correct signs for x and y as
determined by the quadrant in which the 5
terminal side of 0 lies. This is analogous (3, _4)
to choosing the correct signs after apply-
ing the Pythagorean identities. Figure 37

Exercises

CONCEPT PREVIEW Fill in the blank(s) to correctly complete each sentence.
1

1. Given cos 0 = ﬁ, two equivalent forms of this identity are sec 6 = and
cosf-___ =1.

2. Given tan 0 = 5, two equivalent forms of this identity are cot 6 = and
tanf - =1. -

3. For an angle 6 measuring 105°, the trigonometric functions and

are positive, and the remaining trigonometric functions are negative.

4. If sin @ > 0 and tan 6 > 0, then 6 is in quadrant

CONCEPT PREVIEW Determine whether each statement is possible or impossible.

1
5. sin0=5, csch =2 6. tanf =2, cotf = —2 7. sinf >0, cscd <0

8. cosf=15 9. cotf=—1.5 10. sin? 6 + cos?2 6 =2

Use the appropriate reciprocal identity to find each function value. Rationalize denomi-
nators when applicable. See Example 1.

11. sec 6, given that cos 6 = % 12. sec 6, given that cos 6 = %

13. csc 6, given that sin 0 = —% 14. csc 0, given that sin § = —%
15. cot 0, given thattan § = 5 16. cot 6, given that tan § = 18
17. cos 6, given that sec 6 = —% 18. cos 6, given that sec 0 = — 171
19. sin 6, given that csc 6 = % 20. sin 6, given that csc 0 = @
21. tan 6, given that cot 6 = —2.5 22. tan 0, given that cot # = —0.01
23. sin 0, given that csc 6 = 1.25 24. cos 6, given that sec § = 8

25. Concept Check What is wrong with the following item that appears on a trigonom-
etry test?

”

3
“Find sec 6, given that cos 6 = 5

26. Concept Check What is wrong with the statement tan 90° = Cotlw?



38 | CHAPTER1 Trigonometric Functions

Determine the signs of the trigonometric functions of an angle in standard position with
the given measure. See Example 2.

27. 14° 28. 84° 29. 218° 30. 195°
31. 178° 32. 125° 33. —80° 34. —15°
35. 855° 36. 1005° 37. —345° 38. —640°

Identify the quadrant (or possible quadrants) of an angle 6 that satisfies the given condi-
tions. See Example 3.

39. sin0 >0, cscO>0 40. cos6 >0, secf>0 41. cos >0, sinf >0
42. sinf >0, tan6 >0 43. tanH <0, cos <0 44. cos <0, sinf <0
45. sec>0, csc6>0 46. cscH0>0, cotf >0 47. sec0 <0, cscO <0
48. cot0 <0, sec/<0 49. sinf<0, cscH<O0 50. tanf <0, cotfd <O
51. Why are the answers to Exercises 41 and 45 the same?

52. Why is there no angle 0 that satisfies tan 6 > 0, cot < 0?

Determine whether each statement is possible or impossible. See Example 4.

53. sinf =2 54. sinf =3 55. cos 6 = —0.96
56. cos 6 = —0.56 57. tan 0 = 0.93 58. cotf =0.93
59. sec=—03 60. sec = —0.9 61. csch =100
62. csc = —100 63. cotfh = —4 64. coth = —6

Use identities to solve each of the following. Rationalize denominators when applicable.
See Examples 5-7.

65. Find cos 6, given that sin § = g and 0 is in quadrant IL
66. Find sin 6, given that cos § = % and 6 is in quadrant I'V.

67. Find csc 6, given that cot 6 = —% and 6 is in quadrant I'V.

68. Find sec 6, given that tan § = ﬁ and 6 is in quadrant II1.
69. Find tan 0, given that sin § = % and 6 is in quadrant II.

70. Find cot 0, given that csc § = —2 and 0 is in quadrant III.
71. Find cot 0, given that csc § = —1.45 and 0 is in quadrant III.
72. Find tan 0, given that sin @ = 0.6 and 0 is in quadrant IL.

Give all six trigonometric function values for each angle 0. Rationalize denominators
when applicable. See Examples 5-7.

73. tan 0 = —%, and 0 is in quadrant IT 74. cos = — % and 0 is in quadrant III

75. sinf = #, and 6 is in quadrant I 76. tan 6 = \/?j, and 6 is in quadrant III
77. cotf = %, and 0 is in quadrant I 78. csc 6 = 2, and 6 is in quadrant II
79. sin0=%,andcos0<0 80. cos@=§,andtan0<0

81. secH = —4,andsin6 >0 82. csc = —3,and cos 6 >0

83. sinf=1 84. cosf =1
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Work each problem.

85. Derive the identity 1 + cot?> § = csc? by dividing x> + y? = r? by y2.

0

C J—
g = cotf.

0s
sin

86. Derive the quotient identity

87. Concept Check True or false: For all angles 0, sin 6 + cos 6 = 1. If the statement
is false, give an example showing why.

. __cosf
88. Concept Check True or false: Since cot 0 = £,

then cos @ = 1 and sin # = 2. If the statement is false, explain why.

if cot 6 = % with 6 in quadrant I,

Concept Check Suppose that 90° < 6 < 180°. Find the sign of each function value.

89. sin 20 90. csc 260 91. tang 92. cotg

93. cot(f + 180°) 94. tan(@ + 180°)  95. cos(—6) 96. sec(—0)
Concept Check Suppose that —90° < 0 < 90°. Find the sign of each function value.

97. cosg 98. secg 99. sec(f + 180°) 100. cos(6 + 180°)
101. sec(—0) 102. cos(—0) 103. cos(6 — 180°) 104. sec(6 — 180°)

Concept Check Find a solution for each equation.

1 1

105. tan(36 — 4°) = 106. cos(66 + 5°) =

cot(56 — 8°) sec(40 + 15°)
107. sin(46 + 2°) csc(30 +5°) =1 108. sec(260 + 6°) cos(50 + 3°) =1
109. Concept Check The screen below  110. Concept Check The screen below
was obtained with the calculator was obtained with the calculator
in degree mode. Use it to justify in degree mode. In which quadrant
that an angle of 14,879° is a quad- does a 1294° angle lie?

rant II angle.

oz (148791 Eani1294)

) " AEAREER IR o +BTARREG16R,
sind 148743 . iRl 13947 ) ,
SRR 1 1. [ SRR £ 1 s

—
Chapter 1 Test Prep

line negative angle second sine (sin)

line segment degree angle in standard cosine (cos)
(or segment) acute angle position tangent (tan)

ray right angle quadrantal angle cotangent (cot)

endpoint of a ray obtuse angle coterminal angles secant (sec)

angle straight angle vertical angles cosecant (csc)

side of an angle complementary angles parallel lines degree mode

vertex of an angle (complements) transversal reciprocal

initial side supplementary angles similar triangles

terminal side (supplements) congruent triangles

positive angle minute
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7 right angle symbol (for a right triangle) °  degree
0  Greek letter theta " minute
" second
Quick Review
Concepts Examples
B socies
Types of Angles

Two positive angles with a sum of 90° are complementary
angles.

Two positive angles with a sum of 180° are supplementary
angles.

1 degree = 60 minutes (1° = 60")
1 minute = 60 seconds (1’ = 60")
Coterminal angles have measures that differ by a multiple

of 360°. Their terminal sides coincide when in standard
position.

70° and 90° — 70° = 20° are complementary.

70° and 180° — 70° = 110° are supplementary.

15°30" 45"
;10 30°
. 30°  45° 3075y =75 and
60 3600 45" - 3600” = 3600 *
= 15.5125° Decimal degrees

The acute angle 6 in the figure is y
in standard position. If § measures

46°, find the measure of a positive

and a negative coterminal angle.

46° + 360° = 406° 0
46° — 360° = —314°

m Angle Relationships and Similar Triangles

Vertical angles have equal measures.

When a transversal intersects two parallel lines, the follow-
ing angles formed have equal measure:

e alternate interior angles,
e alternate exterior angles, and
e corresponding angles.

Interior angles on the same side of a transversal are
supplementary.

Angle Sum of a Triangle
The sum of the measures of the angles of any triangle is
180°.

Find the measures of angles 1, 2, 3, and 4.

1

2(12x—24)°
3 (4x + 12)°
/"

m and n are parallel lines.

n

12x — 24 + 4x + 12 = 180
16x — 12 =180

Interior angles on the same
side of a transversal are
supplementary.

X =
Angle 2 has measure 12 - 12 — 24 = 120°.
Angle 3 has measure 4 - 12 + 12 = 60°.
Angle 1 is a vertical angle to angle 2, so its measure is 120°.

Angle 4 corresponds to angle 2, so its measure is 120°.

The measures of two angles of a triangle are 42° 20" and
35° 10’. Find the measure of the third angle, x.

42°20" +35° 10" + x = 180° The sum of the
77°30" + x = 180° angles is 180°.

x =102°30’



Concepts

Similar triangles have corresponding angles with the same
measures and corresponding sides proportional.

Congruent triangles are the same size and the same shape.

Trigonometric Functions

Trigonometric Functions

Let (x, y) be a point other than the origin on the terminal
side of an angle 6 in standard position. The distance from
the point to the origin is

r=Vx2+ yz.
The six trigonometric functions of 6 are defined as follows.

x
cos 0 = —

sin 6 =X
r r

csc O = 1(y # 0) sec 0
y

See the summary table of trigonometric function values for

quadrantal angles in this section.

tan 0 =’X(x¢ 0)
x

r x
— 0 to = — 0
x(x=ﬁ ) co y(yaﬁ )
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Examples

Find the unknown side length.

20
Y M
50 15
x _50+15 Corresponding sides of similar
20 50 triangles are proportional.
50x = 1300 Property of proportions
x =126 Divide by 50.

If the point (—2, 3) is on the terminal side of an angle 6
in standard position, find the values of the six trigono-
metric functions of 6.

Here x = =2 and y = 3, so

r=V(=2)2+3=V4+9=\13.
3V13 V13

sin 6 = 3 cos = 13 tan 6 = —5
V13 V13 2
CS(:O:T sech—T cot0=—§

Using the Definitions of the Trigonometric Functions

Reciprocal Identities

1 1 1
in = 0 = tan 0 =
S csc 0 €08 sec 0 an cot 0
1 1 1
0= 0= to =
ese sin 0 se¢ cos 0 €0 tan 0

Pythagorean Identities
sin0 + cos’0 =1 tan’ 0 + 1 = sec? 0

1+ cot?0 = csc2 6

If cot 6 = —%, find tan 6.
1

can 0 1 3
an = — = = ——
cot 0 _% 2

Find sin 6 and tan 6, given that cos 6 = ? and sin 0 < 0.

sin? @ + cos? 6 =1 Pythagorean identity

N \/g z . '\/;
sin® 6 + =1 Replace cos 6 with —=.
5 .
3 /2
) — . V3
sin“f + —=1 Square .
25 s
in? 6 22 Subtract 5
sin“ 0 = — ubtract 5z .
25 -
. V22 .
sin § = ————  Choose the negative root.
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Concepts Examples

Quotient Identities To find tan 6, use the values of sin 0 and cos 6 from the

preceding page and the quotient identity tan 6 = %.
sinf cosf
= tan 0 " = cot 0 N

cos 0 sin 0 sing s \/ﬁ.\@__\/%

tan 6 =

cosf /3 __\/g \@_ 3

5
Simplify the complex fraction, and
rationalize the denominator.

Signs of the Trigonometric Functions

Identify the quadrant(s) of any angle 0 that satisfies

y
x<0,y>0,r>0 x>0,y>0,r>0 sin @ < 0, tan 6 > 0.
I 1 Because sin # <0 in quadrants III and IV, and
Sine and cosecant All functions tan # > 0 in quadrants I and III, both conditions are met
positive positive .
only in quadrant III.
X
x<0,y<0,r>0 0x>0,y<0,r>0
I v
Tangent and cotangent Cosine and secant
positive positive

Chapter 1 il A 5 =) (u (-1

1. Give the measures of the complement and the supplement of an angle measuring 35°.

Find the angle of least positive measure that is coterminal with each angle.

2. —51° 3. —174° 4. 792°

Work each problem.

5. Rotating Propeller The propeller of a speedboat rotates 650 times per min. Through
how many degrees does a point on the edge of the propeller rotate in 2.4 sec?

6. Rotating Pulley A pulley is rotating 320 times per min. Through how many degrees
does a point on the edge of the pulley move in % sec?

Convert decimal degrees to degrees, minutes, seconds, and convert degrees, minutes,
seconds to decimal degrees. If applicable, round to the nearest second or the nearest
thousandth of a degree.

7. 119°08' 03" 8. 47°25" 11" 9. 275.1005° 10. —61.5034°

12.
(9x + 4)°

(12x - 14)°

Find the measure of each marked angle.

11.
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13. 14.
(4x +5)°
\ m
(6x — 45)°\ "

m and n are parallel.

Solve each problem.

15. Length of a Road A camera is located on 1.25 mm
a satellite with its lens positioned at C in ﬁ_/z
the figure. Length PC represents the dis- 150 mm{ 7
tance from the lens to the film PQ, and BA (o
represents a straight road on the ground. Use
the measurements given in the figure to find
the length of the road. (Source: Kastner, B.,
Space Mathematics, NASA.) Not to scale

30 km

16. Express 6 in terms of « and f3. 0

Find all unknown angle measures in each pair of similar triangles.

17. P 18. Z

g
N

M 320 71

QNS A

R X Y Vv U

Find the unknown side lengths in each pair of similar triangles.

19. q 20. 75

|
1
16 16 P;;7

16

50

40 30

In each figure, there are two similar triangles. Find the unknown measurement.

21. 22.

12

|

[

k

23. Length of a Shadow If a tree 20 ft tall casts a shadow 8 ft long, how long would the
shadow of a 30-ft tree be at the same time and place?
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Find the six trigonometric function values for each angle. Rationalize denominators
when applicable.

24. y 26. y

1 Ra,—3) (20,0 *

Find the values of the six trigonometric functions for an angle in standard position having
each given point on its terminal side. Rationalize denominators when applicable.

27. (3, —4) 28. (9, -2) 29. (-8, 15)

30. (1,-5) 31. (6V/3,-6) 32. (-2Vv2,2V2)

An equation of the terminal side of an angle 0 in standard position is given with a
restriction on x. Sketch the least positive such angle 0, and find the values of the six
trigonometric functions of 6.

33. 5x—3y=0,x=0 34. y=-5x, x=0 35. 12x+5y=0,x=0

Complete the table with the appropriate function values of the given quadrantal angles.
If the value is undefined, say so.

0 sin@ | cos® | tan@ | cotO | sech | cscO
36. 180°
37. —90°

38. Concept Check If the terminal side of a quadrantal angle lies along the y-axis,
which of its trigonometric functions are undefined?

Give all six trigonometric function values for each angle 6. Rationalize denominators
when applicable.
39. cosf=— %, and 6 is in quadrant I1I 40. sin 6 = g and cos 6 <0

41. sec O = —\/5, and 0 is in quadrant II ~ 42. tan @ = 2, and 0 is in quadrant III

43. secl = ‘51, and 6 is in quadrant IV 44. sinf = — % and 6 is in quadrant I1I
45. Decide whether each statement is possible or impossible.
(a) sec = —% (b) tan6 = 1.4 (¢) cosf=5

46. Concept Check If, for some particular angle 6, sin # <0 and cos # > 0, in what
quadrant must 6 lie? What is the sign of tan 6?

Solve each problem.

47. Swimmer in Distress A lifeguard ‘
located 20 yd from the water spots a |
swimmer in distress. The swimmer is 5, yd
30 yd from shore and 100 yd east of the I x ON
lifeguard. Suppose the lifeguard runs and N 100-x :
then swims to the swimmer in a direct N 130 yd

|
|

line, as shown in the figure. How far east ~
from his original position will he enter A
the water? (Hint: Find the value of x in the

sketch.)
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48. Angle through Which the Celestial North
Pole Moves At present, the north star Polaris is
located very near the celestial north pole. However,
because Earth is inclined 23.5°, the moon’s gravi-
tational pull on Earth is uneven. As a result, Earth
slowly precesses (moves in) like a spinning top,
and the direction of the celestial north pole traces
out a circular path once every 26,000 yr. See the
figure. For example, in approximately A.D. 14,000
the star Vega—not the star Polaris—will be located
at the celestial north pole. As viewed from the 123.5°
center C of this circular path, calculate the angle :

(to the nearest second) through which the celestial
north pole moves each year. (Source: Zeilik, M., S. Gregory, and E. Smith, Introduc-
tory Astronomy and Astrophysics, Second Edition, Saunders College Publishers.)

49. Depth of a Crater on the Moon The depths of unknown craters on the moon can be
approximated by comparing the lengths of their shadows to the shadows of nearby
craters with known depths. The crater Aristillus is 11,000 ft deep, and its shadow
was measured as 1.5 mm on a photograph. Its companion crater, Autolycus, had a
shadow of 1.3 mm on the same photograph. Use similar triangles to determine the
depth of the crater Autolycus to the nearest hundred feet. (Source: Webb, T., Celestial
Objects for Common Telescopes, Dover Publications.)

50. Height of a Lunar Peak The lunar mountain peak Huygens has a height of 21,000 ft.
The shadow of Huygens on a photograph was 2.8 mm, while the nearby mountain
Bradley had a shadow of 1.8 mm on the same photograph. Calculate the height
of Bradley. (Source: Webb, T., Celestial Objects for Common Telescopes, Dover
Publications.)

Chapter1

1. Give the measures of the complement and the supplement of an angle measuring 67°.

Find the measure of each marked angle.

2. 3.
(7x+19)°7” (2x-1)°

5. / 6. (32 - 2x)° 7. (8x)°

m

(-3x+5)°

(-8x +30)°

/(10x— 10° (12x)°

o 2x + 18)°

(8x + 14) ., (2x+18) (12x + 40)°
m and n are parallel.

Perform each conversion.

8. 74° 18’ 36" to decimal degrees 9. 45.2025° to degrees, minutes, seconds

Solve each problem.

10. Find the angle of least positive measure that is coterminal with each angle.
(a) 390° (b) —80° (c) 810°
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11.

12.

13.

Rotating Tire A tire rotates 450 times per min. Through how many degrees does a
point on the edge of the tire move in 1 sec?

Length of a Shadow 1f a vertical pole 30 ft tall casts a shadow 8 ft long, how long
would the shadow of a 40-ft pole be at the same time and place?

Find the unknown side lengths in this pair
of similar triangles.

25 20

15 y

Sketch an angle 0 in standard position such that 0 has the least positive measure, and
the given point is on the terminal side of 6. Then find the values of the six trigonometric
Sfunctions for the angle. If any of these are undefined, say so.

14. (2,-7) 15. (0, —2)
Work each problem.
16. Draw a sketch of an angle in standard position having the line with the equation

17.

18.

19.

20.

21.
22,

3x — 4y = 0, x = 0, as its terminal side. Indicate the angle of least positive measure
0, and find the values of the six trigonometric functions of 6.

Complete the table with the appropriate function values of the given quadrantal
angles. If the value is undefined, say so.

(7] sin@® | cos® | tan@ | cotd | secH | cscO
90°
—360°
630°

If the terminal side of a quadrantal angle lies along the negative x-axis, which two of
its trigonometric function values are undefined?

Identify the possible quadrant(s) in which 6 must lie under the given conditions.
(@) cos0 >0, tanf >0 (b) sinf <0, cscH<0 (c) cotd>0, cosf<O0

Decide whether each statement is possible or impossible.
(a) sinf = 1.5 (b) sec 6 =4 (¢) tan 6 = 10,000

Find the value of sec 6 if cos 8 = — 177

Find the five remaining trigonometric function values of 6 if sin 6 = % and 6 is in
quadrant II.
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Trigonometric Functions of Acute Angles

Right-Triangle-Based
Definitions of the
Trigonometric

Right-Triangle-Based Definitions of the Trigonometric Functions
Angles in standard position can be used to define the trigonometric functions.

Functions There is also another way to approach them: as ratios of the lengths of the sides
TG of right triangles.

How Function Values Figure 1 shows an acute angle A in standard position. The definitions of
Change as Angles the trigonometric function values of angle A require x, y, and . As drawn in
Change Figure 1, x and y are the lengths of the two legs of the right triangle ABC, and r
Trigonometric is the length of the hypotenuse.

Function Values of The side of length y is the side opposite angle A, and the side of length x is
Special Angles the side adjacent to angle A. We use the lengths of these sides to replace x and

y in the definitions of the trigonometric functions, and the length of the hypot-
y enuse to replace r, to obtain the following right-triangle-based definitions. In
the definitions, we use the standard abbreviations for the sine, cosine, tangent,

B ) cosecant, secant, and cotangent functions.
,
y
( Right-Triangle-Based Definitions of Trigonometric Functions
Ay € ) Let A represent any acute angle in standard position.
Figurel . y  side opposite A r hypotenuse
sihA === ——— cSCA = —= —F——
r hypotenuse y  side opposite A
x  side adjacent to A r hypotenuse
COSA = — = SeCA = — = — =
r hypotenuse x  side adjacent to A
y side opposite A x  side adjacent to A
tan A = — = — = COtA = — = — -
x  side adjacent to A y side opposite A
We will sometimes shorten wording like “side opposite A” to just
“side opposite” when the meaning is obvious.
B Finding Trigonometric Function Values of an Acute Angle
25 ,_‘ 7 Find the sine, cosine, and tangent values for angles A and B in the right triangle
in Figure 2.
24 C . . . .
The length of the side opposite angle A is 7, the length of the side
Figure 2

adjacent to angle A is 24, and the length of the hypotenuse is 25.

side opposite 7 side adjacent 24 side opposite 7

SiNA=—""—"—"—=— Cos A = tan A = — 5 =
hypotenuse 25 hypotenuse 25 side adjacent 24
The length of the side opposite angle B is 24, and the length of the side adjacent
to angle B is 7.
24 7 Use the right-triangle-based
sinB=— cos B = 75 tan B = —  definitions of the trigonometric

S functions.

Now Try Exercise 7.
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The cosecant, secant, and cotangent ratios are reciprocals of the
sine, cosine, and tangent values, respectively, so in Example 1 we have

25 25
CSCA = — seCA = — COtA = —
7 24 7

25 25 7
csc B=— secB=— and cotB=—.
24 7 24

Cofunctions Figure 3 shows a right triangle with acute angles A and B

B . - . .
and a right angle at C. The length of the side opposite angle A is a, and the length
) l_\ of the side opposite angle B is b. The length of the hypotenuse is c. By the pre-
c A ceding definitions, sin A = ? Also, cos B = ? Thus, we have the following.
b
Whenever we use A, B, and C to name sin A = a_ = cos B
angles in a right triangle, C will be the c
right angle. a ¢
Figure 3 Similarly, tan A = b =cotB and secA = b = csc B.

In any right triangle, the sum of the two acute angles is 90°, so they are
complementary. In Figure 3, A and B are thus complementary, and we have
established that sin A = cos B. This can also be written as follows.

sinA =cos(90° —A) B=90"-A
This is an example of a more general relationship between cofunction pairs.

sine, cosine
tangent, cotangent { Cofunction pairs

secant, cosecant

Cofunction Identities

For any acute angle A, the following hold.
csc(90° — A) tan A = cot(90° — A)
sec(90° — A) cotA = tan(90° — A)

sin A = cos(90° — A) secA
sin(90° — A) cscA

cos A

The cofunction identities state the following.

Cofunction values of complementary angles are equal.

Writing Functions in Terms of Cofunctions

Write each function in terms of its cofunction.

(a) cos 52° (b) tan 71° (c) sec 24°

(a) Cofunctions

cos 52° = sin(90° — 52°) = sin 38°  cos A =sin(90° — A)

1

Complementary angles

(b) tan 71° = cot(90° — 71°) = cot 19° (¢) sec 24° = csc 66°
Now Try Exercises 25 and 27.
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Solving Equations Using Cofunction Identities

Find one solution for each equation. Assume all angles involved are acute angles.

(a) cos(f + 4°) = sin(36 + 2°) (b) tan(20 — 18°) = cot(6 + 18°)

(a) Sine and cosine are cofunctions, so cos(6 + 4°) = sin(360 + 2°) is true if
the sum of the angles is 90°.

(6 +4°) + (30 +2°) =90° Complementary angles
46 + 6°=90° Combine like terms.
46 = 84°  Subtract 6° from each side.
0 = 21° Divide by 4.
(b) Tangent and cotangent are cofunctions.
(26 — 18°) + (0 + 18°) =90°  Complementary angles
360 = 90° Combine like terms.
0 = 30° Divide by 3.
Now Try Exercises 31 and 33.

How Function Values Change as Angles Change Figure 4 shows
three right triangles. From left to right, the length of each hypotenuse is the
same, but angle A increases in measure. As angle A increases in measure from
0° to 90°, the length of the side opposite angle A also increases.

/_I r y
y
A ! , A A , A
X X X
sinA = 7
¥

As A increases, y increases. Because r is fixed, sin A increases.

Figure 4

In the ratio

. side opposite y
SinAd = ——m——— ==,
hypotenuse r
as angle A increases, the numerator of this fraction also increases, while the
denominator is fixed. Therefore, sin A increases as A increases from 0° to 90°.
As angle A increases from 0° to 90°, the length of the side adjacent to A
decreases. Because r is fixed, the ratio );C decreases. This ratio gives cos A, showing

that the values of cosine decrease as the angle measure changes from 0° to 90°.
Finally, increasing A from 0° to 90° causes y to increase and x to decrease, making

the values of f; = tan A increase.

A similar discussion shows that as A increases from 0° to 90°, the values of
sec A increase, while the values of cot A and csc A decrease.



60°

2 2

60° 60°
2

Equilateral triangle

(a)
30° |30°
2 2
x| |x
60° 90°| | 90° 60°
1

30°-60° right triangle

(b)
Figure5

60°

Figure 6
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Comparing Function Values of Acute Angles

Determine whether each statement is true or false.

(a) sin 21° > sin 18° (b) sec 56° = sec 49°

(a) In the interval from 0° to 90°, as the angle increases, so does the sine of the
angle. This makes sin 21° > sin 18° a true statement.

(b) For fixed r, increasing an angle from 0° to 90° causes x to decrease. Therefore,
sec @ = fc increases. The statement sec 56° = sec 49° is false.

Now Try Exercises 41 and 47.

Trigonometric Function Values of Special Angles = Certain special
angles, such as 30°, 45°, and 60°, occur so often in trigonometry and in more
advanced mathematics that they deserve special study. We start with an equilateral
triangle, a triangle with all sides of equal length. Each angle of such a triangle
measures 60°. Although the results we will obtain are independent of the length,
for convenience we choose the length of each side to be 2 units. See Figure 5(a).

Bisecting one angle of this equilateral triangle leads to two right triangles,
each of which has angles of 30°, 60°, and 90°, as shown in Figure 5(b). An angle
bisector of an equilateral triangle also bisects the opposite side. Thus the shorter
leg has length 1. Let x represent the length of the longer leg.

22 =124 x2  Pythagorean theorem
4=1+x2 Apply the exponents.
3 =x2 Subtract 1 from each side.

\/ Square root property;
3=x choose the positive root.

Figure 6 summarizes our results using a 30°—60° right triangle. As shown in the
figure, the side opposite the 30° angle has length 1. For the 30° angle,

hypotenuse = 2, side opposite = 1, side adjacent = \/3
Now we use the definitions of the trigonometric functions.

side opposite 1

sin30°=———=—
hypotenuse 2
side adjacent \/%
cos 30° = =
hypotenuse 2
an 30° = side opposite 1 1 V3 B V3
M Side adjacent /3 /3 /3 3
L Ano Rationalize the
csc 30° = denominators.
sec 30° =

cot 30° =
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30°
\3 2
n 60°
1
Figure 6 (repeated)

45°—45° right triangle

Figure 7

Finding Trigonometric Function Values for 60°
Find the six trigonometric function values for a 60° angle.

Refer to Figure 6 to find the following ratios.

1
sin 60° = \gg cos 60° = 5 tan 60° = Tg =

S5

2 2V3 2 1
7=i sec60°=—=2 cot60° =—==
V3o 3 1

V3 o 3

Now Try Exercises 49, 51, and 53.

csc 60° =

The results in Example 5 can also be found using the fact that
cofunction values of the complementary angles 60° and 30° are equal.

We find the values of the trigonometric functions for 45° by starting with
a 45°-45° right triangle, as shown in Figure 7. This triangle is isosceles. For
simplicity, we choose the lengths of the equal sides to be 1 unit. (As before, the
results are independent of the length of the equal sides.) If r represents the length
of the hypotenuse, then we can find its value using the Pythagorean theorem.

124+ 12 =172 Pythagorean theorem
2 =r% Simplify.
\/2 =r Choose the positive root.

Now we use the measures indicated on the 45°—45° right triangle in Figure 7.

[\

sin 45° = = — cos 45° =

2 andse= Lo
= n = — =
2 2 4 1

csc 45° = = \/2 sec 45° =

-|S S
-|S S

1
2\/2 cot45°=1=1

Function values for 30°, 45°, and 60° are summarized in the table that follows.

Function Values of Special Angles

() sin 6 cos 0 tan 6 cot 0 sec 0 csc 0
1 V3 V3 2V3

30° — 2= = 3 Zy- 2
2 2 3 \/_ 3

AR EAK:
V3 1 V3 2V3

60° 2= = 3 2= 2 Zve
2 2 V3 3 3

You will be able to reproduce this table quickly if you learn the
values of sin 30°, sin 45°, and sin 60°. Then you can complete the rest of the
table using the reciprocal, cofunction, and quotient identities.
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A calculator can find trigonometric function values at the touch of a key.
So why do we spend so much time finding values for special angles? We do this
because a calculator gives only approximate values in most cases instead of exact
values. A scientific calculator gives the following approximation for tan 30°.

tan 30° = 0.57735027 = means “is approximately equal to.”

Earlier, however, we found the exact value.

tan 30° = T Exact value

i</ Figure 8 shows mode display options for the TI-84 Plus. Figure 9 displays
the output when evaluating the tangent, sine, and cosine of 30°. (The calculator
should be in degree mode to enter angle measure in degrees.)

HWERFHRL FLOAT ALUTO ECH. BESEEE HF n HERARL FLOAT ALTO REH. DESEEE HF
EN &[T CLACK
tan{2@) [
g g s e D T R
sinl38) |
i L s eosl30) [
[ NONIZONTAC RAPH-TABLE L1 — Y .- -1 r-t= L
O TP rasd |
umwm & FRAC-RPPRON
THED] tnﬁnm YIS
Figure 8 Figure 9 [ ]

Exercises

CONCEPT PREVIEW Match each trigonometric function in Column I with its value in
Column II. Choices may be used once, more than once, or not at all.

I 0|

1

1. sin 30° 2. cos 45° A V3 B. 1 c.

2
3. tan 45° 4. sec 60° D. ﬁ E. ﬁ F ﬁ
2 3 3
2

5. csc 60° 6. cot 30° G.2 H. \2/ L V2

Find exact values or expressions for sin A, cos A, and tan A. See Example 1.

7. 8.

21
53 45
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Suppose ABC is a right triangle with sides of lengths a, b, and ¢ and right angle at C.

B
c
a
A b C

Use the Pythagorean theorem to find the unknown side length. Then find exact values of
the six trigonometric functions for angle B. Rationalize denominators when applicable.
See Example 1.

11. a=5,b=12 12. a=3,b=4 13. a=6,c=17

14. b=7,c=12 15. a=3,c =10

18. a=\V2,c=2

20. Concept Check Give the six cofunction identities.

16. b=28,c=11

17. a=1,c=2 19. b=2,c=5

Write each function in terms of its cofunction. Assume that all angles labeled 6 are acute
angles. See Example 2.

21. cos 30° 22. sin 45° 23. csc 60°

24. cot73° 25. sec 39° 26. tan25.4°

27. sin38.7° 28. cos(6 + 20°) 29. sec(6 + 15°)
30. Concept Check With a calculator, evaluate sin(90° — 6) and cos 6 for various

values of 6. (Check values greater than 90° and less than 0°.) Comment on the results.

Find one solution for each equation. Assume that all angles involved are acute angles.
See Example 3.

31. tan a = cot(a + 10°) 32. cos 6 = sin(26 — 30°)

33.

35.

37.

39.

sin(260 + 10°) = cos(36 — 20°)
tan(3B + 4°) = cot(5B — 10°)
sin(6 — 20°) = cos(26 + 5°)

sec(3B + 10°) = csc(B + 8°)

34. sec(B + 10°) = csc(2B + 20°)
36. cot(56 + 2°) = tan(26 + 4°)
38. cos(26 + 50°) = sin(26 — 20°)

40. csc(B +40°) = sec(B —20°)

Determine whether each statement is true or false. See Example 4.

41.
43.

45.
47.

sin 50° > sin 40°

sin 46° < cos 46°
(Hint: cos 46° = sin 44°)

tan 41° < cot 41°

sec 60° > sec 30°

42. tan 28° < tan 40°

44. cos 28° <sin 28°
(Hint: sin 28° = cos 62°)

46. cot 30° < tan 40°

48. csc 20° < csc 30°

Give the exact value of each expression. See Example 5.

49.

53.

57.

61.

tan 30° 50. cot30°
sec 30° 54. csc30°
cos 45° 58. cot 45°

sin 60° 62. cos 60°

51. sin 30° 52. cos 30°
55. csc45° 56. sec45°
59. tan45° 60. sin45°
63. tan 60° 64. csc 60°
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Concept Check Work each problem.

65. What value of A between 0° and 90° will produce the
output shown on the graphing calculator screen?

66.

67.

68.

69.
70.

71.

72.

o AGGEESA0E |

+ BEERITAATA

A student was asked to give the exact value of sin 45°. Using a calculator, he gave the
answer 0.7071067812. Explain why the teacher did not give him credit.

Find the equation of the line that passes through the origin and makes a 30° angle
with the x-axis.

Find the equation of the line that passes through the origin and makes a 60° angle
with the x-axis.

What angle does the line y = \/3x make with the positive x-axis?

What angle does the line y = %x make with the positive x-axis?

Consider an equilateral triangle with each side having length 2k.

(a)
(b)

(c)
(d

What is the measure of each angle?

Label one angle A. Drop a perpendicular from A to the side

opposite A. Two 30° angles are formed at A, and two right tri-

angles are formed. What is the length of the sides opposite the 2k
30° angles?

What is the length of the perpendicular in part (b)?

From the results of parts (a)—(c), complete the following statement:

In a 30°-60° right triangle, the hypotenuse is always
shorter leg, and the longer leg has a length that is
the shorter leg. Also, the shorter leg is opposite the
leg is opposite the angle.

times as long as the
times as long as that of
angle, and the longer

Consider a square with each side of length k. k

(a)

(b)
(c)

Draw a diagonal of the square. What is the measure of each
angle formed by a side of the square and this diagonal? k k

What is the length of the diagonal?

From the results of parts (a) and (b), complete the following X
statement:

In a 45°-45° right triangle, the hypotenuse has a length that is times as

long as either leg.

Find the exact value of the variables in each figure.

73.

75.
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Find a formula for the area of each figure in terms of s.

77.

A 79.

80.

78.

45° 60

Y

60° 60°
u 45° s
A

With a graphing calculator, find the coordinates of the point of intersection of the
graphs of y =x and y = V1 — x2. These coordinates are the cosine and sine of
what angle between 0° and 90°?

Concept Check Suppose we know the length of one side and one acute angle of a
30°-60° right triangle. Is it possible to determine the measures of all the sides and
angles of the triangle?

Relating Concepts

For individual or collaborative investigation (Exercises 81-84)

The figure shows a 45° central angle in a circle with radius y
4 units. To find the coordinates of point P on the circle,
work Exercises 81-84 in order.

81. Sketch a line segment from P perpendicular to the
X-axis.

()

82. Use the trigonometric ratios for a 45° angle to label
the sides of the right triangle sketched in Exercise 81.

83. Which sides of the right triangle give the coordinates
of point P? What are the coordinates of P? P

84. The figure at the right shows a 60° central angle in
a circle of radius 2 units. Follow the same proce-
dure as in Exercises 81-83 to find the coordinates
of P in the figure.

1
\

m Trigonometric Functions of Non-Acute Angles

m Reference Angles

m Special Angles as
Reference Angles

m Determination of
Angle Measures with
Special Reference
Angles

Reference Angles " Associated with every nonquadrantal angle in stand-
ard position is an acute angle called its reference angle. A reference angle for an
angle 6, written 0, is the acute angle made by the terminal side of angle # and
the x-axis.

NOTE Reference angles are always positive and are between 0° and 90°.

Figure 10 shows several angles 6 (each less than one complete counterclock-

wise revolution) in quadrants 11, III, and IV, respectively, with the reference angle

9/

also shown. In quadrant I, # and 6 are the same. If an angle 6 is negative or has

measure greater than 360°, its reference angle is found by first finding its cotermi-
nal angle that is between 0° and 360°, and then using the diagrams in Figure 10.
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P ) z/ 0\ . HQ\ .
o' L AN0'

0 in quadrant II 0 in quadrant IIT 0 in quadrant IV
Figure 10

CAUTION A common error is to find the reference angle by using the
terminal side of 6 and the y-axis. The reference angle is always found with
reference to the x-axis.

Finding Reference Angles

Find the reference angle for each angle.

(a) 218° (b) 1387°

(a) Asshown in Figure 11(a), the positive acute angle made by the terminal side
of this angle and the x-axis is

218° — 180° = 38°.

For 6 = 218°, the reference angle 6’ = 38°.

y y

ahy

x AR
ST N§

307 L\ /53°
218° - 180° = 38° 360° - 307° = 53°
(a) (b)

Figurell

(b) First find a coterminal angle between 0° and 360°. Divide 1387° by 360° to
obtain a quotient of about 3.9. Begin by subtracting 360° three times (because
of the whole number 3 in 3.9).

1387° — 3 - 360°
= 1387° — 1080° Multiply.
= 307° Subtract.

The reference angle for 307° (and thus for 1387°) is 360° — 307° = 53°. See
Figure 11(b).

Now Try Exercises 5 and 9.
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ek

> X

30° 27
Ye0e 7
x=-3
P y=-
r=2
Figure 12

The preceding example suggests the following table for finding the refer-
ence angle 0’ for any angle 0 between 0° and 360°.

Reference Angle 6’ for 6, where 0° < 0 < 360°*

QI y 6 =180°-6 QI y 0'=6

XD A

QII y 0 =6-180° QIV y 6" =360°-06

~
1%

-
A5 N

Special Angles as Reference Angles  We can now find exact trigono-
metric function values of angles with reference angles of 30°, 45°, or 60°.

Finding Trigonometric Function Values of a
Quadrant III Angle

Find exact values of the six trigonometric functions of 210°.

An angle of 210° is shown in Figure 12. The reference angle is
210° — 180° = 30°.

To find the trigonometric function values of 210°, choose point P on the ter-
minal side of the angle so that the distance from the origin O to P is 2. (Any
positive number would work, but 2 is most convenient.) By the results from

30°-60° right triangles, the coordinates of point P become (—\5, —1), with

x= f\@, y = —1, and » = 2. Then, by the definitions of the trigonometric
functions, we obtain the following.

. -1 1 2
sin210° = —= —— csc210°=——= -2
2 2 -1 Rationalize
denominators
V3 V3 2 23
cos210° = ——= ——— sec 210° = _ as needed.

2 2 3 3
-1 \/3 —\lﬁz\/g

- cot210° = ——

/3 3 -

tan 210° =

Now Try Exercise 19.

*The authors would like to thank Bethany Vaughn and Theresa Matick, of Vincennes Lincoln High
School, for their suggestions concerning this table.
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Notice in Example 2 that the trigonometric function values of 210° cor-
respond in absolute value to those of its reference angle 30°. The signs are
different for the sine, cosine, secant, and cosecant functions because 210° is a
quadrant IIT angle. These results suggest a shortcut for finding the trigonometric
function values of a non-acute angle, using the reference angle.

In Example 2, the reference angle for 210° is 30°. Using the trigonometric
function values of 30°, and choosing the correct signs for a quadrant IIT angle,
we obtain the same results.

We determine the values of the trigonometric functions for any nonquadran-
tal angle 6 as follows. Keep in mind that all function values are positive when the
terminal side is in Quadrant I, the sine and cosecant are positive in Quadrant II,
the tangent and cotangent are positive in Quadrant III, and the cosine and secant
are positive in Quadrant I'V. In other cases, the function values are negative.

Finding Trigonometric Function Values for Any
Nonquadrantal Angle 0

Step 1 Tf 6 > 360°, or if < 0°, then find a coterminal angle by adding or
subtracting 360° as many times as needed to obtain an angle greater
than 0° but less than 360°.

Step 2 Find the reference angle 6'.
Step 3 Find the trigonometric function values for reference angle 6.

Step 4 Determine the correct signs for the values found in Step 3. (Use
the table of signs given earlier in the text or the paragraph above, if
necessary.) This gives the values of the trigonometric functions for
angle 6.

To avoid sign errors when finding the trigonometric function val-
ues of an angle, sketch it in standard position. Include a reference triangle
complete with appropriate values for x, y, and r as done in Figure 12.

Finding Trigonometric Function Values Using
Reference Angles

Find the exact value of each expression.

(a) cos(—240°) (b) tan 675°

(a) Because an angle of —240° is coterminal with an angle of
—240° + 360° = 120°,

the reference angle is 180° — 120° = 60°, as shown in Figure 13(a). The cosine
is negative in quadrant II.

cos(—240°)

cos 120° <— Coterminal angle

—cos 60° <— Reference angle
1

= —— Evaluate.

2
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y (b) Subtract 360° to find an angle between 0° and 360° coterminal with 675°.

675° — 360° = 315°

\ As shown in Figure 13(b), the reference angle is 360° — 315° = 45°. An angle
Q x of 315° is in quadrant IV, so the tangent will be negative.
0= 675&/ 0' = 45°
tan 675°

=tan 315°  Coterminal angle
(b) = —tan 45° Reference angle; quadrant-based sign choice

Figure13 = — Evaluate. Now Try Exercises 37 and 39.

Using Function Values of Special Angles
Evaluate cos 120° + 2 sin?60° — tan?30°

Use the procedure explained earlier to determine cos 120° = —%.
Then use the values cos 120° = — %, sin 60° = #, and tan 30° = é

cos 120° + 2 sinZ260° — tan?30°

VAV (VY
=——+2 — Substitute values.
2 2 3
! + 2( 3) 3 Apply th
= — = — | — = t ts.
> 1 9 pply the exponents

Simplify.

Now Try Exercise 47.

Using Coterminal Angles to Find Function Values

Evaluate each function by first expressing it in terms of a function of an angle
between 0° and 360°.

(a) cos 780° (b) cot(—405°)

(a) Subtract 360° as many times as necessary to obtain an angle between 0° and
360°, which gives the following.

cos 780°
= cos(780° — 2 - 360°)  Subtract 720°, which is 2 - 360°.

= cos 60° Multiply first and then subtract.
1
= 5 Evaluate.

(b) Add 360° twice to obtain —405° + 2(360°) = 315°, which is located in
quadrant IV and has reference angle 45°. The cotangent will be negative.

cot(—405°) = cot 315° = —cot 45° = —1

Now Try Exercises 27 and 31.
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Determination of Angle Measures with Special Reference Angles
The ideas discussed in this section can be used “in reverse” to find the measures
of certain angles, given a trigonometric function value and an interval in which
the angle must lie. We are most often interested in the interval [ 0°, 360°).

Finding Angle Measures Given an Interval and
a Function Value

V2

Find all values of 0, if 6 is in the interval [0°, 360°) and cos 6 = ——~.

The value of cos 6 is negative, so # may lie in either quadrant IT or III.

Because the absolute value of cos 0 is % the reference angle 0’ must be 45°. The

two possible angles 6 are sketched in Figure 14.

180° — 45° = 135° Quadrant IT angle § (from Figure 14 (a))
180° + 45° = 225°  Quadrant Il angle #  (from Figure 14 (b))
y ¥

0 in quadrant II

6 = 135° 6 = 225°

0’ = 45° /\

0

: a x
P

0 in quadrant IIT

(a) (b)
Figure 14

Now Try Exercise 61.

—

Exercises

CONCEPT PREVIEW Fill in the blanks to correctly complete each sentence.

1. The value of sin 240° is because 240° is in quadrant
(positive/negative)

The reference angle is , and the exact value of sin 240° is

2. The value of cos 390° is because 390° is in quadrant
(positive/negative)

The reference angle is , and the exact value of cos 390° is

3. The value of tan(—150°) is because —150° is in quadrant
(positive/negative)

_ . The reference angle is

, and the exact value of tan(—150°) is

4. The value of sec 135°is because 135° is in quadrant
(positive/negative)

The reference angle is , and the exact value of sec 135° is
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Concept Check Match each angle in Column I with its reference angle in Column II.
Choices may be used once, more than once, or not at all. See Example 1.

I II
5. 98° 6. 212° A. 45° B. 60°
7. —135° 8. —60° C. 82° D. 30°
9. 750° 10. 480° E. 38° F. 32°

Complete the table with exact trigonometric function values. Do not use a calculator.

See Examples 2 and 3.
0 sin 0 cos 6 tan 0 cot O sec 0 csc 6
1. 30° 1 V3 2V3 2
2 2 3
12, 45° 1 1
1
13, 60° > V3 2
14, 120° V3 3 2V3
2 3
15.  135° V2 V2 4 N
2 2
16.  150° - ﬁ - ﬁ 2
2 3
7. 210° ! V3 V3 -2
2 3
8 e | V3 _1 —2 _2V3
2 2 3

Find exact values of the six trigonometric functions of each angle. Rationalize denomi-
nators when applicable. See Examples 2, 3, and 5.

19. 300° 20. 315° 21. 405° 22. 420° 23. 480° 24. 495°
25. 570° 26. 750° 27. 1305°  28. 1500°  29. —300° 30. —390°
31. —510°  32. —1020° 33. —1290° 34. —855° 35. —1860° 36. —2205°

Find the exact value of each expression. See Example 3.

37. sin 1305° 38. sin 1500° 39. cos(—510°) 40. tan(—1020°)

41. csc(—855°) 42, sec(—495°) 43. tan 3015° 44. cot 2280°

Evaluate each expression. See Example 4.

45. sin?120° + cos? 120° 46. sin®225° + cos?225°

47. 2 tan>120° + 3 sin? 150° — cos? 180°  48. cot? 135° — sin 30° + 4 tan 45°
49. sin?225° — cos?270° + tan® 60° 50. cot?>90° — sec? 180° + csc? 135°
51. cos?60° + sec? 150° — csc? 210° 52. cot?135° + tan*60° — sin* 180°
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Determine whether each statement is true or false. If false, tell why. See Example 4.

53. cos(30° + 60°) = cos 30° + cos 60°  54. sin 30° + sin 60° = sin(30° + 60°)

55. cos 60° = 2 cos 30° 56. cos 60° =2 cos?30° — 1
57. sin%45° + cos?45° =1 58. tan?60° + 1 = sec? 60°
59. cos(2 - 45°) = 2 cos 45° 60. sin(2 - 30°) = 2 sin 30° - cos 30°

Find all values of 0, if 6 is in the interval [0°, 360°) and has the given function value.
See Example 6.

61. sin9=% 62. c0s0=\§g 63. tan6=—\/3
64. sec=—-\"2 65. c0s0=\f 66. cot¢9=—\§g
67. csc = -2 68. sin0=—\26 69. tan¢9=\§g
7&cm0=—% 71 csc6=—V2 72. cotf = —1

Concept Check Find the coordinates of the point P on the circumference of each circle.
(Hint: Sketch x- and y-axes, and interpret so that the angle is in standard position.)

73. 74.
o)
,,

75. Concept Check Does there exist an angle 6 with the function values cos 6 = 0.6 and
sin § = —0.8?

76. Concept Check Does there exist an angle 6 with the function values cos 6§ = % and
sin 6 =22

Suppose 0 is in the interval (90°, 180°). Find the sign of each of the following.

0 0
77. cos > 78. sing 79. sec(6 + 180°)

80. cot(# + 180°) 81. sin(—0) 82. cos(—0)

Concept Check Work each problem.
83. Why is sin § = sin(0 + n - 360°) true for any angle 6 and any integer n?
84. Why is cos 6 = cos(6 + n + 360°) true for any angle 6 and any integer n?

85. Without using a calculator, determine which of the following numbers is closest to
sin 115°: —0.9, —0.1, 0, 0.1, or 0.9.

86. Without using a calculator, determine which of the following numbers is closest to
cos 115°: —0.6,—0.4, 0, 0.4, or 0.6.

87. For what angles 0 between 0° and 360° is cos 6 = sin 6 true?

88. For what angles 0 between 0° and 360° is cos # = — sin 6 true?
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Approximations of Trigonometric Function Values

Calculator Calculator Approximations of Trigonometric Function Values = We
Approximations of . . .
Trigonometric Function learned how to find exact function values for special angles and for angles having
Values special reference angles earlier in this chapter. In this section we investigate how
e calculators provide approximations for function values of angles that do not sat-
Approximations of Angle isfy these conditions. (Of course, they can also be used to find exact values such
Measures as cos (—240°) and tan 675°, as seen in Figure 15.)

An Application

CAUTION It is important to remember that when we are evaluating trig-
NOBMAL FLORT FRAE NERL CEGECE HF onometric functions of angles given in degrees, the calculator must be in
degree mode. An easy way to check this is to enter sin 90. If the displayed
answer is 1, then the calculator is in degree mode.

Also remember that if the angle or the reference angle is not a special or
quadrantal angle, then the value given by the calculator is an approximation.
And even if the angle or reference angle is a special angle, the value given
Degree mode by the calculator will often be an approximation.

Figure 15

Finding Function Values with a Calculator

Approximate the value of each expression.

o ms o 1 PP
(a) sin49°12 (b) sec 97.977 (c) ot 5LA083° (d) sin(—246°)

See Figure16. We give values to eight decimal places below.

(a) We may begin by converting 49° 12’ to decimal degrees.

sin(49%12')
A i 1 THE9950557 w120
TR 49° 12 —49% =49.2

-7,205879213.

i 1.253948151 However, some calculators allow direct entry of degrees, minutes, and
sini -2456) . . .
9135454576 seconds. (The method of entry varies among models.) Entering either
' sin(49° 12") or sin 49.2° gives the same approximation.
Degree mode sin 49° 12’ = sin 49.2° = 0.75699506
Figure16 (b) There are no dedicated calculator keys for the secant, cosecant, and cotan-

gent functions. However, we can use reciprocal identities to evaluate them.

Recall that sec 0 = ﬁ for all angles 6, where cos 6 # 0. Therefore, we use

the reciprocal of the cosine function to evaluate the secant function.

1
sec 97.977° = —————— = —7.20587921
cos 97.977°

(¢) Use the reciprocal identity ﬁ = tan 0 to simplify the expression first.

1

——————=1tan 51.4283° = 1.25394815
cot 51.4283°

(d) sin(—246°) = 0.91354546
Now Try Exercises 11,13,17, and 21.
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Calculator Approximations of Angle Measures To find the measure
of an angle having a certain trigonometric function value, calculators have three
inverse functions (denoted sin~1, cos™1, and tan™1). If x is an appropriate num-
ber, then sin~'x, cos™!x, or tan~! x gives the measure of an angle whose
sine, cosine, or tangent, respectively, is x. For applications in this chapter, these
functions will return angles in quadrant I.

Using Inverse Trigonometric Functions to Find Angles
Find an angle 6 in the interval [0°, 90°) that satisfies each condition.

(a) sin 6 = 0.96770915 (b) sec 8 = 1.0545829

(a) Using degree mode and the inverse sine function, we find that an angle 6 having
sine value 0.96770915 is 75.399995°. (There are infinitely many such angles,
but the calculator gives only this one.)

6 = sin™! 0.96770915 ~ 75.399995°
See Figure 17.
(b) Use the identity cos § = ——. If sec 0 = 1.0545829, then

1

g=—— .
€08 ¥ = 0545829

Now, find 0 using the inverse cosine function. See Figure 17.
_ 1 °
0 =cos | ———— | = 18.514704

1.0545829
Now Try Exercises 31 and 35.

CAUTION Compare Examples 1(b) and 2(b).

e To determine the secant of an angle, as in Example 1(b), we find the
reciprocal of the cosine of the angle.

e To determine an angle with a given secant value, as in Example 2(b),
we find the inverse cosine of the reciprocal of the value.

An Application

Finding Grade Resistance

‘When an automobile travels uphill or downhill on a highway, it experiences a force
due to gravity. This force F in pounds is the grade resistance and is modeled by
the equation

F = Wsin 0,

where 6 is the grade and W is the weight of the automobile. If the automo-
bile is moving uphill, then 6 > 0°; if downhill, then 6 < 0°. See Figure 18.
(Source: Mannering, F. and W. Kilareski, Principles of Highway Engineering
and Traffic Analysis, Second Edition, John Wiley and Sons.)
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(a)

(b)

(c)

(a)

(b)

(c)

Calculate F to the nearest 10 Ib for a 2500-1b car traveling an uphill grade
with 6 = 2.5°.

Calculate F to the nearest 10 1b for a 5000-1b truck traveling a downhill grade
with = —6.1°.

Calculate F for 6 = 0° and 6 = 90°. Do these answers agree with intuition?

F = Wsin 6 Given model for grade resistance

F = 2500 sin 2.5°  Substitute given values.

F=1101b Evaluate.
F = Wsin 6 = 5000 sin(—6.1°) = —5301b
F is negative because the truck is moving downhill.
F=Wsinf=Wsin0°=W(0)=01Ib
F=Wsinf=Wsin90°=W(1)=WIb
This agrees with intuition because if § = 0°, then there is level ground and
gravity does not cause the vehicle to roll. If # were 90°, the road would be
vertical and the full weight of the vehicle would be pulled downward by

gravity, so F = W.
Now Try Exercises 69 and 71.

e

Exercises

CONCEPT PREVIEW Match each trigonometric function value or angle in Column [
with its appropriate approximation in Column I1.

° X nw o=

I 11
sin 83° 2. cos™' 045 A. 88.09084757° B. 63.25631605°
tan 16° 4. cot27° C. 1.909152433° D. 17.45760312°
sin™! 0.30 6. sec 18° E. 0.2867453858 F. 1.962610506
csc 80° 8. tan"!30 G. 14.47751219° H. 1.015426612
csc 4 10. cot™!30 I. 1.051462224 J. 0.9925461516

Use a calculator to approximate the value of each expression. Give answers to six dec-
imal places. In Exercises 21-28, simplify the expression before using the calculator.
See Example 1.

11.
14.
17.

20.

23.

26.

sin 38° 42’ 12. cos 41°24’ 13. sec 13° 15’
csc 145° 45’ 15. cot 183° 48’ 16. tan 421° 30’
sin(—312°12") 18. tan(—80°06") 19. csc(—317°36")

t(—512°20") S ML 2
€0 " cot23.4° " sec 14.8°
cos 77° sin 33°

24. . ° —4.72°
sin 77° cos 33° 25. col(90° ~ 4.727)
1 1

cos(90° — 3.69°) 27— 28.

csc(90° — 51°) tan(90° — 22°)
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Find a value of 0 in the interval [0°, 90°) that satisfies each statement. Write each
answer in decimal degrees to six decimal places. See Example 2.

29.
32.
35.
38.

tan 6 = 1.4739716 30. tan 6 = 6.4358841 31. sin 6 = 0.27843196
sin 0 = 0.84802194 33. cotf = 1.2575516 34. csc 6 = 1.3861147

sec 0 = 2.7496222 36. sec 6 = 1.1606249 37. cos 0 = 0.70058013
cos 0 = 0.85536428 39. csc 6 =4.7216543 40. cot6 = 0.21563481

Concept Check Answer each question.

41.

42,

43.

44.

A student, wishing to use a calculator to verify the value of sin 30°, enters the infor-
mation correctly but gets a display of —0.98803162. He knows that the display
should be 0.5, and he also knows that his calculator is in good working order. What
might the problem be?

At one time, a certain make of calculator did not allow the input of angles outside
of a particular interval when finding trigonometric function values. For example,
trying to find cos 2000° using the methods of this section gave an error message,
despite the fact that cos 2000° can be evaluated. How would we use this calculator
to find cos 2000°?

What value of A, to the nearest degree, between 0°
and 90° will produce the output in the graphing cal-
culator screen?

1. SATSEOPRT

What value of A will produce the output (in degrees)
in the graphing calculator screen? Give as many sintif)

decimal places as shown on the calculator. =
Use a calculator to evaluate each expression.
45. sin 35° cos 55° + cos 35° sin 55° 46. cos 100° cos 80° — sin 100° sin 80°
47. sin® 36° + cos? 36° 48. 2 sin 25° 13’ cos 25° 13’ —sin 50° 26’
49. cos 75°29’ cos 14° 31’ — sin 75° 29’ sin 14° 31’

50.

sin 28° 14’ cos 61° 46" + cos 28° 14’ sin 61° 46’

Use a calculator to decide whether each statement is true or false. It may be that a true
statement will lead to results that differ in the last decimal place due to rounding error.

51.
53.
55.

57.

59.
61.
62.

sin 10° + sin 10° = sin 20° 52. cos 40° = 2 cos 20°

sin 50° = 2 sin 25° cos 25° 54. cos 70° =2 cos?35° — 1

cos 40° = 1 — 2 sin? 80° 56. 2 cos 38°22" = cos 76°44’

sin 39°48" + cos 39°48' = 1 58. %sin 40° = sin {%(40°)}

1 + cot? 42.5° = csc? 42.5° 60. tan®72°25' + 1 = sec? 72°25’
cos(30° + 20°) = cos 30°cos 20° — sin 30° sin 20°

cos(30° + 20°) = cos 30° + cos 20°

Find two angles in the interval [ 0°, 360°) that satisfy each of the following. Round answers
to the nearest degree.

63.
65.
67.

sin 0 = 0.92718385 64. sin 6 = 0.52991926
cos 6 = 0.71933980 66. cos 0 = 0.10452846
tan 6 = 1.2348971 68. tan 6 = 0.70020753
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(Modeling) Grade Resistance Solve each problem. See Example 3.

69. Find the grade resistance, to the nearest ten pounds,
for a 2100-1b car traveling on a 1.8° uphill grade.

70. Find the grade resistance, to the nearest ten pounds,
for a 2400-1b car traveling on a —2.4° downhill grade.

71. A 2600-1b car traveling downhill has a grade resis-
tance of —130 Ib. Find the angle of the grade to the
nearest tenth of a degree.

72. A 3000-Ib car traveling uphill has a grade resistance
of 150 Ib. Find the angle of the grade to the nearest
tenth of a degree.

73. A car traveling on a 2.7° uphill grade has a grade resistance of 120 Ib. Determine the
weight of the car to the nearest hundred pounds.

74. A car traveling on a —3° downhill grade has a grade resistance of —145 1b. Determine
the weight of the car to the nearest hundred pounds.

75. Which has the greater grade resistance: a 2200-1b car on a 2° uphill grade or a
2000-1b car on a 2.2° uphill grade?

76. Complete the table for values of sin 6, tan 6, and % to four decimal places.

0 0° 0.5° 1° 1.5° 2° 2.5° 3° 3.5° 4°
sin 0
tan 6

0
180

(a) How do sin 0, tan 0, and % compare for small grades 6?

(b) Highway grades are usually small. Give two approximations of the grade resis-
tance ' = W sin 6 that do not use the sine function.

(c) A stretch of highway has a 4-ft vertical rise for every 100 ft of horizontal run.
Use an approximation from part (b) to estimate the grade resistance, to the near-
est pound, for a 2000-Ib car on this stretch of highway.

(d) Without evaluating a trigonometric function, estimate the grade resistance, to the
nearest pound, for an 1800-Ib car on a stretch of highway that has a 3.75° grade.

(Modeling) Design of Highway Curves When highway curves are designed, the outside
of the curve is often slightly elevated or inclined above the inside of the curve. See the
figure. This inclination is the superelevation. For safety reasons, it is important that both
the curve’s radius and superelevation be correct for a given speed limit. If an automobile
is traveling at velocity V (in feet per second), the safe radius R, in feet, for a curve with
superelevation 6 is modeled by the formula

V2
R=—— ",
g(f +tan )

where f and g are constants. (Source: Mannering, F. and W. Kilareski, Principles of
Highway Engineering and Traffic Analysis, Second Edition, John Wiley and Sons.)

77. A roadway is being designed for automobiles traveling at 45 mph. If = 3°, ¢ = 32.2,
and f = 0.14, calculate R to the nearest foot. (Hint: 45 mph = 66 ft per sec)

78. Determine the radius of the curve, to the nearest foot, if the speed in Exercise 77 is
increased to 70 mph.

79. How would increasing angle 0 affect the results? Verify your answer by repeating
Exercises 77 and 78 with 6 = 4°.
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80. Refer to Exercise 77 and use the same values for f and g. A highway curve has
radius R = 1150 ft and a superelevation of § = 2.1°. What should the speed limit
(in miles per hour) be for this curve?

(Modeling) Speed of Light When a light ray Medium 1 | If this medium is
travels from one medium, such as air, to another P : less dense, light
medium, such as water or glass, the speed \<1: travels at a greater
of the light changes, and the light ray is bent, or I speed. ¢

refracted, at the boundary between the two
media. (This is why objects under water appear
to be in a different position from where they
really are.) It can be shown in physics that these
changes are related by Snell’s law

If this medium is
more dense, light
travels at a lesser
speed, c,.

Medium 2

¢y sin#6,

Cy - sin 02 ’
where c is the speed of light in the first medium, c, is the speed of light in the second

medium, and 6, and 6, are the angles shown in the figure. In Exercises 81 and 82,
assume that ¢, = 3 X 108 m per sec.

81. Find the speed of light in the second medium for each of the following.
(a) 0, =46°,6,=31° (b) 6, =39°,6, =28

82. Find 6, for each of the following values of 6, and ¢,. Round to the nearest degree.
(@) 6, =40°, ¢, = 1.5 X 108 mpersec (b) 6, = 62°, ¢, = 2.6 X 108 m per sec

(Modeling) Fish’s View of the World The figure Apparent Ray
shows a fish’s view of the world above the surface horizon from zenith
of the water. (Source: Walker, J., “The Amateur R N\ )

. C L , ay \ ‘Window’s
Scientist,” Scientific American.) Suppose that a from \ center
light ray comes from the horizon, enters the water, horizon 7/‘

and strikes the fish’s eye.

83. Assume that this ray gives a value of 90° for
angle 6, in the formula for Snell’s law. (In a
practical situation, this angle would probably
be a little less than 90°.) The speed of light in
water is about 2.254 X 10% m per sec. Find
angle 6, to the nearest tenth.

84. Refer to Exercise 83. Suppose an object is located at a true angle of 29.6° above the
horizon. Find the apparent angle above the horizon to a fish.

(Modeling) Braking Distance If aerodynamic resistance is ignored, the braking dis-
tance D (in feet) for an automobile to change its velocity from V, to V, (feet per second)
can be modeled using the following equation.

~Lo5(Vi? = W)
" 64.4(K, + K, + sin 6)

K, is a constant determined by the efficiency of the brakes and tires, K, is a constant
determined by the rolling resistance of the automobile, and 0 is the grade of the highway.
(Source: Mannering, F. and W. Kilareski, Principles of Highway Engineering and Traffic
Analysis, Second Edition, John Wiley and Sons.)

85. Compute the number of feet, to the nearest unit, required to slow a car from 55 mph to
30 mph while traveling uphill with a grade of # = 3.5°. Let K; = 0.4 and K, = 0.02.
(Hint: Change miles per hour to feet per second.)
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86. Repeat Exercise 85 with 6 = —2°.
87. How is braking distance affected by grade 6?

88. An automobile is traveling at 90 mph on a highway with a downhill grade of
0 = —3.5°. The driver sees a stalled truck in the road 200 ft away and immediately
applies the brakes. Assuming that a collision cannot be avoided, how fast (in miles
per hour, to the nearest unit) is the car traveling when it hits the truck? (Use the
same values for K; and K, as in Exercise 85.)

(Modeling) Measuring Speed by Radar Any offset
between a stationary radar gun and a moving target
creates a “cosine effect” that reduces the radar read-
ing by the cosine of the angle between the gun and the
vehicle. That is, the radar speed reading is the product
of the actual speed and the cosine of the angle. (Source:
Fischetti, M., “Working Knowledge,” Scientific American.)

89. Find the radar readings, to the nearest unit, for
Auto A and Auto B shown in the figure.

10° angle
Actual speed: 70 mph

Auto B 20° angle
Actual speed: 70 mph

90. The speed reported by a radar gun is reduced by Radar gun
the cosine of angle 6, shown in the figure, where . 0
r represents reduced speed and a represents 9 \
actual speed. Use the figure to show why this Auto a

“cosine effect” occurs.

(Modeling) Length of a Sag Curve When a highway goes downhill and then uphill, it
has a sag curve. Sag curves are designed so that at night, headlights shine sufficiently
far down the road to allow a safe stopping distance. See the figure. S and L are in feet.

The minimum length L of a sag curve is determined by the height h of the car’s head-
lights above the pavement, the downhill grade 0, < 0°, the uphill grade 6, > 0°, and
the safe stopping distance S for a given speed limit. In addition, L is dependent on the
vertical alignment of the headlights. Headlights are usually pointed upward at a slight
angle o above the horizontal of the car. Using these quantities, for a 55 mph speed limit,
L can be modeled by the formula

o (6,-0)8

~ 200(h + Stan @)’
where S < L. (Source: Mannering, F. and W. Kilareski, Principles of Highway Engineer-
ing and Traffic Analysis, Second Edition, John Wiley and Sons.)

91. Compute length L, to the nearest foot, if » = 1.9 ft, « = 0.9°, 6, = —3°, 6, = 4°, and
S =336 ft.

92. Repeat Exercise 91 with a = 1.5°.
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Chapter?2 Quiz (Sections 2.1-2.3)

Solve each problem.

1. Find exact values of the six trigonometric functions for angle A in the right triangle.

.

A 3

2. Complete the table with exact trigonometric function values.

0 sin 6 cos 0 tan 6 cot 6 sec 0 csc 6
30°
45°
60°

3. Find the exact value of each variable in the figure.

y
4. Area of a Solar Cell A solar cell
converts the energy of sunlight AN
directly into electrical energy. The
amount of energy a cell produces h x
depends on its area. Suppose a s
solar cell is hexagonal, as shown in P

the first figure on the right. Express

its area s in terms of sin 6 and any side x. (Hint: Consider one of the six equilateral
triangles from the hexagon. See the second figure on the right.) (Source: Kastner, B.,
Space Mathematics, NASA.)

Find exact values of the six trigonometric functions for each angle. Rationalize denomi-
nators when applicable.

5. 135° 6. —150° 7. 1020°
Find all values of 0, if 0 is in the interval [0°, 360°) and has the given function value.

8. sin0=\f 9. sech=—-\2

Use a calculator to approximate the value of each expression. Give answers to six deci-
mal places.

10. sin42° 18’ 11. sec(—212°12")

Find a value of 0 in the interval [ 0°, 90°) that satisfies each statement. Write each answer
in decimal degrees to six decimal places.

12. tan 6 = 2.6743210 13. csc 6 =2.3861147

Determine whether each statement is true or false.

14. sin(60° + 30°) = sin 60° + sin 30° 15. tan(90° — 35°) = cot 35°
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EI Solutions and Applications of Right Triangles

Significant Digits

[
]
m Solving Triangles
]

Depression

18 ft

Figure 21

Historical Background

Angles of Elevation or

15 ft

Historical Background ' The beginnings of trigonometry can be traced
back to antiquity. Figure 19 shows the Babylonian tablet Plimpton 322, which
provides a table of secant values. The Greek mathematicians Hipparchus and
Claudius Ptolemy developed a table of chords, which gives values of sines of
angles between 0° and 90° in increments of 15 minutes. Until the advent of scien-
tific calculators in the late 20th century, tables were used to find function values
that we now obtain with the stroke of a key.

Applications of spherical trigonometry accompanied the study of astronomy
for these ancient civilizations. Until the mid-20th century, spherical trigonometry
was studied in undergraduate courses. See Figure 20.

An introduction to applications of the plane trigonometry studied in this text
involves applying the ratios to sides of objects that take the shape of right triangles.

Plimpton 322
Figure 19 Figure 20

Significant Digits " A number that represents the result of counting, or a
number that results from theoretical work and is not the result of measurement, is
an exact number. There are 50 states in the United States. In this statement, 50 is
an exact number.

Most values obtained for trigonometric applications are measured values
that are not exact. Suppose we quickly measure a room as 15 ft by 18 ft. See
Figure 21. To calculate the length of a diagonal of the room, we can use the
Pythagorean theorem.

d? =152+ 182  Pythagorean theorem
d?> =549 Apply the exponents and add.

d= \/579 Square root property;
d ~ 23430749 Choose the positive root.

Should this answer be given as the length of the diagonal
of the room? Of course not. The number 23.430749 con-
tains six decimal places, while the original data of 15 ft
and 18 ft are accurate only to the nearest foot. In practice,
the results of a calculation can be no more accurate than
the least accurate number in the calculation. Thus, we
should indicate that the diagonal of the 15-by-18-ft room
is approximately 23 ft.




2.4 Solutions and Applications of Right Triangles | 73

If a wall measured to the nearest foot is 18 ft long, this actually means that
the wall has length between 17.5 ft and 18.5 ft. If the wall is measured more accu-
rately as 18.3 ft long, then its length is really between 18.25 ft and 18.35 ft. The
results of physical measurement are only approximately accurate and depend on
the precision of the measuring instrument as well as the aptness of the observer.
The digits obtained by actual measurement are significant digits. The measure-
ment 18 ft is said to have two significant digits; 18.3 ft has three significant digits.

In the following numbers, the significant digits are identified in color.

408 21.5 18.00 6.700 0.0025 0.09810 7300

Notice the following.

e 18.00 has four significant digits. The zeros in this number represent mea-
sured digits accurate to the nearest hundredth.

e The number 0.0025 has only two significant digits, 2 and 5, because the
zeros here are used only to locate the decimal point.

e The number 7300 causes some confusion because it is impossible to determine
whether the zeros are measured values. The number 7300 may have two, three,
or four significant digits. When presented with this situation, we assume that the
zeros are not significant, unless the context of the problem indicates otherwise.

To determine the number of significant digits for answers in applications of
angle measure, use the following table.

Significant Digits for Angles

Write Answer to
This Number of
Angle Measure to Nearest Examples Significant Digits
Degree 62°, 36° two
Ten minutes, or nearest tenth of a degree | 52°30’, 60.4° three
Minute, or nearest hundredth of a degree | 81°48’,71.25° four
Ten seconds, or nearest thousandth 10° 527 20", 21.264° five
of a degree

To perform calculations with measured numbers, start by identifying the
number with the least number of significant digits. Round the final answer to the
same number of significant digits as this number. Remember that the answer is
no more accurate than the least accurate number in the calculation.

Solving Triangles To solve a triangle means to find the measures of all
the angles and sides of the triangle. As shown in Figure 22, we use a to represent
the length of the side opposite angle A, b for the length of the side opposite angle B,
and so on. In a right triangle, the letter c is reserved for the hypotenuse.

B

c b A

When we are solving triangles,
a labeled sketch is an important
aid.

Figure 22
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34° 30’
A b C

Figure 23

LOOKING AHEAD TO CALCULUS
The derivatives of the parametric
equations x = f(¢) and y = g(¢) often
represent the rate of change of physical
quantities, such as velocities. When x
and y are related by an equation, the
derivatives are related rates because a
change in one causes a related change
in the other. Determining these rates
in calculus often requires solving a
right triangle.

Solving a Right Triangle Given an Angle and a Side
Solve right triangle ABC, if A = 34° 30" and ¢ = 12.7 in.

To solve the triangle, find the measures of the remaining sides and
angles. See Figure 23. To find the value of a, use a trigonometric function
involving the known values of angle A and side c. Because the sine of angle A is
given by the quotient of the side opposite A and the hypotenuse, use sin A.

. a . side opposite
Sin A - — SINA = ~——————
C

hypotenuse

sin 34° 30’ = A=134°30",c=12.7

12.7

a = 12.7 sin 34° 30’ Multiply by 12.7 and rewrite.

a = 12.7 sin 34.5° Convert to decimal degrees.
a = 12.7(0.56640624)  Use a calculator.
a="T7.19in. Three significant digits

Assuming that 34° 30" is given to the nearest ten minutes, we rounded the
answer to three significant digits.

To find the value of b, we could substitute the value of a just calculated and
the given value of c¢ in the Pythagorean theorem. It is better, however, to use the
information given in the problem rather than a result just calculated. If an error
is made in finding a, then b also would be incorrect. And, rounding more than
once may cause the result to be less accurate. To find b, use cos A.

side adjacent

COSA = — cos A =
c

hypotenuse

b
cos 34° 30" = — A=34°30", c =127

12.7
b =12.7 cos 34°30" Multiply by 12.7 and rewrite.
b = 10.5 in. Three significant digits

Once b is found, the Pythagorean theorem can be used to verify the results.
All that remains to solve triangle ABC is to find the measure of angle B.

A+ B=90°
34°30" + B=90°
B =89°60" — 34°30’
B =55°30'

A and B are complementary angles.
A = 34°30'
Rewrite 90°. Subtract 34° 30".

Subtract degrees and minutes separately.

Now Try Exercise 25.

In Example 1, we could have found the measure of angle B first
and then used the trigonometric function values of B to find the lengths of
the unknown sides. A right triangle can usually be solved in several ways,
each producing the correct answer.

To maintain accuracy, always use given information as much as pos-
sible, and avoid rounding in intermediate steps.



a =29.43 cm

¢ =53.58 cm

Figure 24
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Solving a Right Triangle Given Two Sides
Solve right triangle ABC, if a = 29.43 cm and ¢ = 53.58 cm.

We draw a sketch showing the given information, as in Figure 24.
One way to begin is to find angle A using the sine function.

a . .
sinA = = sinA = ‘Ifiifl?!?ﬂfi?
. 29.43
SinA = ——— a=29.43,c=53.58
53.58
sin A = 0.5492721165 Use a calculator.
A = sin”! (0.5492721165)  Use the inverse sine function.
A = 33.32° Four significant digits
A=~33°19 33.32° = 33° + 0.32(60")

The measure of B is approximately
90° — 33° 19" =56°41".  90° = 89° 60
We now find b from the Pythagorean theorem.
a’>+ b>=c? Pythagorean theorem

29.43% + p2 = 53.582 a=29.43,c=53.58
b? = 53.582 — 29.43%2  Subtract 29.43.

V' 2004.6915 Simplify on the right; square root property

b = 4477 cm Choose the
positive square root.

Now Try Exercise 35.

Angles of Elevation or Depression In applications of right triangles, the
angle of elevation from point X to point Y (above X) is the acute angle formed
by ray XY and a horizontal ray with endpoint at X. See Figure 25(a). The angle
of depression from point X to point Y (below X) is the acute angle formed by ray
XY and a horizontal ray with endpoint X. See Figure 25(b).

Y Horizontal

Angle of
depression

Angle of
elevation

X Horizontal
(a) (b)
Figure 25

CAUTION Be careful when interpreting the angle of depression. Both
the angle of elevation and the angle of depression are measured between
the line of sight and a horizontal line.
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To solve applied trigonometry problems, follow the same procedure as solv-
ing a triangle. Drawing a sketch and labeling it correctly in Step 1 is crucial.

Solving an Applied Trigonometry Problem

Step 1 Draw a sketch, and label it with the given information. Label the
quantity to be found with a variable.

George Polya (187—185) B Step 2 Use the sketch to write an equation relating the given quantities to the

Polya, a native of Budapest, variable.

Hungary, wrote more than Step 3 Solve the equation, and check that the answer makes sense.
250 papers and a number of books.

He proposed a general outline for

solving applied problems in his

classic book How to Solve It. . ; .
Finding a Length Given the Angle of Elevation

At a point A, 123 ft from the base of a flagpole, the angle of elevation to the top
of the flagpole is 26° 40’. Find the height of the flagpole.

Step 1 See Figure 26. The length of the side adjacent to A is known, and the

A \260 W length of the side opposite A must be found. We will call it a.
123 ft
. Step 2 The tangent ratio involves the given values. Write an equation.
Figure 26
side opposite
tanA = ——"———"" Tangent ratio
side adjacent
a
tan 26° 40’ = 123 A = 26°40’; side adjacent = 123
Step 3 a = 123 tan 26° 40’ Multiply by 123 and rewrite.
a =~ 123(0.50221888)  Use a calculator.
a =~ 61.8ft Three significant digits
The height of the flagpole is 61.8 ft. Now Try Exercise 53.
Finding an Angle of Depression
From the top of a 210-ft cliff, David observes a lighthouse that is 430 ft oft-
shore. Find the angle of depression from the top of the cliff to the base of the
lighthouse.
A As shown in Figure 27, the angle of depression is measured from
Angle of a horizontal line down to the base of the lighthouse. The angle of depression and

depression angle B, in the right triangle shown, are alternate interior angles whose measures

210
are equal. We use the tangent ratio to solve for angle B.
""""" 210
tan B = —— Tangent ratio
430

Figure 27

210
B = tan‘(430 Use the inverse tangent function.

B = 26° Two significant digits

Now Try Exercise 55.
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EI Exercises

CONCEPT PREVIEW Match each equation in Column I with the appropriate right tri-
angle in Column II. In each case, the goal is to find the value of x.

AU o e

I 1I
x = 5cot 380 A. B. C-
x =15 cos 38° N 5 Y >
x = 5tan 38° u 38° H 38° 38°
x = 5csc 38° 5 *
) D. E. F.
x = 55sin 38°
5 X 5 X
x = 5sec 38°
] 38° ] 38° 38°
X 5

Concept Check Refer to the discussion of accuracy and significant digits in this section
to answer the following.

7.

10.

11.

12.

Lake Ponchartrain Causeway The world’s
longest bridge over a body of water (continu-
ous) is the causeway that joins the north and
south shores of Lake Ponchartrain, a salt-
water lake that lies north of New Orleans,
Louisiana. It consists of two parallel spans.
The longer of the spans measures 23.83 mi.
State the range represented by this number.
(Source: www.worldheritage.org)

Mt. Everest When Mt. Everest was first surveyed, the surveyors obtained a height of
29,000 ft to the nearest foot. State the range represented by this number. (The survey-
ors thought no one would believe a measurement of 29,000 ft, so they reported it as
29,002.) (Source: Dunham, W., The Mathematical Universe, John Wiley and Sons.)

Vehicular Tunnel The E. Johnson Memorial Tunnel in Colorado, which measures
8959 ft, is one of the longest land vehicular tunnels in the United States. What is the
range of this number? (Source: World Almanac and Book of Facts.)

WNBA Scorer Women’s National Basketball Association player Maya Moore of
the Minnesota Lynx received the 2014 award for the most points scored, 812. Is it
appropriate to consider this number between 811.5 and 812.5? Why or why not?
(Source: www.wnba.com)

If £ is the actual height of a building and the height is measured as 58.6 ft, then
|h—586]=___.

If w is the actual weight of a car and the weight is measured as 1542 Ib, then
lw—1542| =

Solve each right triangle. When two sides are given, give angles in degrees and minutes.

See Examples 1 and 2.
13. B 14. Y
964 m
a
89.6 cm x
]
c b A 478 [


http://www.worldheritage.org
http://www.wnba.com
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15.

17.

M 16. B
35.9 km
n P .
A ) c
[ ]
P 124 m N
18. 68.5142°
B
3579.42 m
a
C b A
B c A 20. A b C
4.80 m
153 m
12.5 ft 16.2 ft 3

Concept Check Answer each question.

21.

22,

23.

24.

Can a right triangle be solved if we are given measures of its two acute angles and
no side lengths? Why or why not?

If we are given an acute angle and a side in a right triangle, what unknown part of
the triangle requires the least work to find?

Why can we always solve a right triangle if we know the measures of one side and
one acute angle?

Why can we always solve a right triangle if we know the lengths of two sides?

Solve each right triangle. In each case, C = 90°. If angle information is given in degrees
and minutes, give answers in the same way. If angle information is given in decimal
degrees, do likewise in answers. When two sides are given, give angles in degrees and
minutes. See Examples 1 and 2.

25.
27.
29.
31.
33.
35.
37.
39.

A=28.0°%c=174ft 26. B=46.0°,¢c=29.7m
B=73.0° b= 128 in. 28. A=625°%a=127m
A=61.0°,b=392cm 30. B=51.7°,a=28.1ft
a=13m,c=22m 32. b=321t,c=51ft
a="764yd, b=393yd 34. a=958m,b =489 m
a=189cm, c=46.3cm 36. b=219m,c=647m

A =53°24", ¢ =387.1ft 38. A=13°47",¢c=1285m
B =139°09', ¢ =0.6231 m 40. B=182°51",c=4.825cm

Concept Check Answer each question.

41.
42,

What is the meaning of the term angle of elevation?

Can an angle of elevation be more than 90°?



43.

44.

Solve each problem. See Examples 1-4.
45.

46.

47.

48.

49.

50.
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Why does the angle of depression DAB in the
figure have the same measure as the angle of
elevation ABC?

Why is angle CAB not an angle of depression
in the figure for Exercise 43? -

Height of a Ladder on a Wall A 13.5-m fire truck
ladder is leaning against a wall. Find the distance d
the ladder goes up the wall (above the top of the fire
truck) if the ladder makes an angle of 43° 50" with
the horizontal.

Distance across a Lake To find the

distance RS across a lake, a surveyor lays "
off length RT = 53.1 m, so that angle

T =32°10" and angle S = 57° 50’. Find

length RS.

Height of a Building From a window
30.0 ft above the street, the angle of
elevation to the top of the building

across the street is 50.0° and the

angle of depression to the base of this

building is 20.0°. Find the height of
the building across the street.

=

Diameter of the Sun To determine the diameter of the sun, an astronomer might
sight with a transit (a device used by surveyors for measuring angles) first to one
edge of the sun and then to the other, estimating that the included angle equals 32'.
Assuming that the distance d from Earth to the sun is 92,919,800 mi, approximate
the diameter of the sun.

Sun € ) Earth

NOT TO
SCALE

Side Lengths of a Triangle The length of the base of an isosceles triangle is
42.36 in. Each base angle is 38.12°. Find the length of each of the two equal sides of
the triangle. (Hint: Divide the triangle into two right triangles.)

Altitude of a Triangle Find the altitude of an isosceles triangle having base
184.2 cm if the angle opposite the base is 68°44'.
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Solve each problem. See Examples 3 and 4.

51.

52.

53.

54.

5S.

56.

Height of a Tower The shadow of a vertical tower is 40.6 m long when the angle of
elevation of the sun is 34.6°. Find the height of the tower.

Distance from the Ground to the Top of a Building The angle of depression from
the top of a building to a point on the ground is 32° 30’. How far is the point on the
ground from the top of the building if the building is 252 m high?

Length of a Shadow Suppose that the angle of elevation of the sun is 23.4°. Find
the length of the shadow cast by a person who is 5.75 ft tall.

5.75 ft

23.4° [

Airplane Distance An airplane is flying 10,500 ft above level ground. The angle of
depression from the plane to the base of a tree is 13° 50’. How far horizontally must
the plane fly to be directly over the tree?

A
SETT=

| ~— 150’
10,500 ft | T~

Angle of Depression of a Light A company safety committee has recommended
that a floodlight be mounted in a parking lot so as to illuminate the employee exit,
as shown in the figure. Find the angle of depression of the light to the nearest minute.

A
N

e 39.82 ft
Ve
&
7
/
Employee 51.74 ft

exit

Height of a Building The angle of elevation from the top of a small building to
the top of a nearby taller building is 46° 40’, and the angle of depression to the
bottom is 14° 10’. If the shorter building is 28.0 m high, find the height of the
taller building.

(o
0000000 -~ \1 14° 10’
0000000 28.0 M= =~
] S~




57.

58.

59.

60.

61.

62.
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Angle of Elevation of the Sun The length of the shadow of a building 34.09 m
tall is 37.62 m. Find the angle of elevation of the sun to the nearest hundredth of a
degree.

Angle of Elevation of the Sun The length of the shadow of a flagpole 55.20 ft
tall is 27.65 ft. Find the angle of elevation of the sun to the nearest hundredth of
a degree.

Angle of Elevation of the Pyramid of the !

Sun The Pyramid of the Sun is in the ancient 200 £t} 04 ___
Mexican city of Teotihuacan. The base is - =

a square with sides about 700 ft long. The 700 ft
height of the pyramid is about 200 ft. Find the 700 ft

angle of elevation 6 of the edge indicated in
the figure to two significant digits. (Hint: The base of the triangle in the figure is
half the diagonal of the square base of the pyramid.) (Source: www.britannica.com)

Cloud Ceiling The U.S. Weather Bureau defines a cloud ceiling as the altitude of
the lowest clouds that cover more than half the sky. To determine a cloud ceiling, a
powerful searchlight projects a circle of light vertically on the bottom of the cloud.
An observer sights the circle of light in the crosshairs of a tube called a clinometer.
A pendant hanging vertically from the tube and resting on a protractor gives the
angle of elevation. Find the cloud ceiling if the searchlight is located 1000 ft from
the observer and the angle of elevation is 30.0° as measured with a clinometer at
eye-height 6 ft. (Assume three significant digits.)

Cloud

Height of Mt. Everest The highest mountain peak in the world is Mt. Everest,
located in the Himalayas. The height of this enormous mountain was determined
in 1856 by surveyors using trigonometry long before it was first climbed in 1953.
This difficult measurement had to be done from a great distance. At an altitude of
14,545 ft on a different mountain, the straight-line distance to the peak of Mt. Everest
is 27.0134 mi and its angle of elevation is 8 = 5.82°. (Source: Dunham, W., The
Mathematical Universe, John Wiley and Sons.)

(a) Approximate the height (in feet) of Mt. Everest.

(b) In the actual measurement, Mt. Everest was over 100 mi away and the curvature
of Earth had to be taken into account. Would the curvature of Earth make the
peak appear taller or shorter than it actually is?

Error in Measurement A degree may seem like a very small unit, but an error of
one degree in measuring an angle may be very significant. For example, suppose a
laser beam directed toward the visible center of the moon misses its assigned target
by 30.0". How far is it (in miles) from its assigned target? Take the distance from
the surface of Earth to that of the moon to be 234,000 mi. (Source: A Sourcebook of
Applications of School Mathematics by Donald Bushaw et al.)


http://www.britannica.com
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Further Applications of Right Triangles

Historical Background Historical Background  Johann Miiller, known as Regiomontanus (see
Bearing Figure 28), was a fifteenth-century German astronomer whose best known book
Further Applications is On Triangles of Every Kind. He used the recently-invented printing process of

Gutenberg to promote his research. In his excellent book Trigonometric Delights *,
Eli Maor writes:

Regiomontanus was the first publisher of mathematical and astronomi-
cal books for commercial use. In 1474 he printed his Ephemerides, tables
listing the position of the sun, moon, and planets for each day from 1475
to 1506. This work brought him great acclaim; Christopher Columbus had
a copy of it on his fourth voyage to the New World and used it to predict
the famous lunar eclipse of February 29, 1504. The hostile natives had for
some time refused Columbus’s men food and water, and he warned them
that God would punish them and take away the moon’s light. His admo-
nition was at first ridiculed, but when at the appointed hour the eclipse
began, the terrified natives immediately repented and fell into submission.

Bearing We now investigate navigation problems. Bearing refers to the

Regiomontanus direction of motion of an object, such as a ship or airplane, or the direction of a
Figure 28 second object at a distance relative to the ship or airplane.

We introduce two methods of measuring bearing.

Expressing Bearing (Method 1)

When a single angle is given, it is understood that bearing is measured in a
clockwise direction from due north.

Several sample bearings using Method 1 are shown in Figure 29.

N N N N
32°
Y 164°
229°
304°

Bearings of 32°, 164°, 229°, and 304°

Figure 29

CAUTION A correctly labeled sketch is crucial when solving applica-
tions like those that follow. Some of the necessary information is often not
directly stated in the problem and can be determined only from the sketch.

*Excerpt from Trigonometric Delights by Eli Maor, copyright ©1998 by Princeton University Press.
Used by permission of Princeton University Press.
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Solving a Problem Involving Bearing (Method 1)

Radar stations A and B are on an east-west line, 3.7 km apart. Station A detects a
plane at C, on a bearing of 61°. Station B simultaneously detects the same plane,
on a bearing of 331°. Find the distance from A to C.

Begin with a sketch showing the given information. See Figure 30.
A line drawn due north is perpendicular to an east-west line, so right angles are
formed at A and B. Angles CBA and CAB can be found as follows.

£CBA =331°=270°=61° and ZCAB=90°—61°=29°

A right triangle is formed. The distance from A to C, denoted b in the figure, can
be found using the cosine function for angle CAB.

c08 29° = — Cosine ratio
3.7
b =3.7c0s29° Multiply by 3.7 and rewrite.

b =~ 3.2 km Two significant digits
Now Try Exercise 23.

Expressing Bearing (Method 2)

Start with a north-south line and use an acute angle to show the direction,
either east or west, from this line.

Figure 31 shows several sample bearings using this method. Either N or S
always comes first, followed by an acute angle, and then E or W.

A AN

N42°E S31°E S 40° W N52°W

Figure 31

Solving a Problem Involving Bearing (Method 2)

A ship leaves port and sails on a bearing of N 47° E for 3.5 hr. It then turns and
sails on a bearing of S 43° E for 4.0 hr. If the ship’s rate is 22 knots (nautical miles
per hour), find the distance that the ship is from port.

Draw and label a sketch as in N N
Figure 32. Choose a point C on a bearing of
N 47° E from port at point A. Then choose a gaflti707al mi

a =88
nautical mi

point B on a bearing of S 43° E from point C.
Because north-south lines are parallel,
angle ACD measures 47° by alternate inte-

rior angles. The measure of angle ACB is Poft'

47° + 43° = 90°,

making triangle ABC a right triangle. Figure 32
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b=77

Use the formula relating distance, rate, and time to find the distances in
nautical mi

Figure 32 from A to C and from C to B.

b = 22 X 3.5 = 77 nautical mi
nautical mi

Distance = rate X time
a =22 X 4.0 = 88 nautical mi

Now find c, the distance from port at point A to the ship at point B.
B

a*+ b? = ¢? Pythagorean theorem
5 5 882 + 772 = ¢? a=88,b=17
Figure 32 (repeated)
B 352 1+ 772 If a2+ b2 =c%and c > 0,
€= then ¢ = Va? + b2
¢ = 120 nautical mi ~ Two significant digits
Now Try Exercise 29.
Further Applications

Using Trigonometry to Measure a Distance

The subtense bar method is a method that surveyors use to determine a small
distance d between two points P and Q. The subtense bar with length b is cen-
tered at Q and situated perpendicular to the line of sight between P and Q. See
Figure 33. Angle 6 is measured, and then the distance d can be determined.

e
}b/Z
Figure 33
(a) Find d when 6 = 1°23’ 12" and b = 2.0000 cm.

(b) How much change would there be in the value of d if # measured 1" larger?
(a) From Figure 33, we obtain the following.

> =3 Cotangent ratio
2

> ) Multiply and rewrite.
Let b = 2. To evaluate g, we change 6 to decimal degrees.
1°237 12" = 1.386666667 Usecot6 = gk
to evaluate.
2 1.386666667°
Then

d= ECOtf ~ 82.634110 cm.

(b) If 0 is 1" larger, then 6 = 1° 23" 13" =~ 1.386944444°.

2 1.386944444°
d = —cot

——— =~ 82.617558 cm
2 2

The difference is 82.634110 — 82.617558 = 0.016552 cm.

Now Try Exercise 41.
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Figure 34

Figure 34 shows two unknowns: x, the distance from the center of the
trunk of the tree to the point where the first observation was made,
and /4, the height of the tree. See Figure 35 in the Graphing Calculator
Solution. Because nothing is given about the length of the hypotenuse
of either triangle ABC or triangle BCD, we use a ratio that does not
involve the hypotenuse —namely, the tangent.

h
In triangle ABC, tan 36.7° = o h = x tan 36.7°.
. o h 0
In triangle BCD, tan 22.2° = or h=(50+ x)tan 22.2°.
50 +x

Each expression equals £, so the expressions must be equal.

x tan 36.7° = (50 + x) tan 22.2°

Equate expressions for /.
x tan 36.7° = 50 tan 22.2° + x tan 22.2°
Distributive property
x tan 36.7° — x tan 22.2° = 50 tan 22.2°
Write the x-terms on one side.
x(tan 36.7° — tan 22.2°) = 50 tan 22.2°
Factor out x.

B 50 tan 22.2°
* tan 36.7° — tan 22.2°

Divide by the coefficient of x.

We saw above that 4 = x tan 36.7°. Substitute for x.

< 50 tan 22.2°

tan 36.7° — tan 22_20> tan 36.7

Use a calculator.
tan 36.7° = 0.74537703 and tan 22.2° = 0.40809244
Thus,
tan 36.7° — tan 22.2° = 0.74537703 — 0.40809244 = 0.33728459

<50(0.40809244)
and =\

74537703 = 45.
0.33728459 )O 537703 .

To the nearest foot, the height of the tree is 45 ft.

Solving a Problem Involving Angles of Elevation

Francisco needs to know the height of a tree. From a given point on the ground,
he finds that the angle of elevation to the top of the tree is 36.7°. He then moves
back 50 ft. From the second point, the angle of elevation to the top of the tree is
22.2°. See Figure 34. Find the height of the tree to the nearest foot.

In Figure 35, we have superimposed
Figure 34 on coordinate axes with the
origin at D. By definition, the tangent
of the angle between the x-axis and the
graph of a line with equation y = mx + b
is the slope of the line, m. For line DB,
m = tan 22.2°. Because b equals 0, the
equation of line DB is

y; = (tan 22.2°)x.
The equation of line AB is
v, = (tan 36.7°)x + b.

Because b # 0 here, we use the point
A(50, 0) and the point-slope form to find
the equation.

Yo = Yo = m(x - xo) Point-slope form
v, — 0=m(x — 50)

¥, = tan 36.7°(x — 50)

Xo = 50, Yo = 0

Lines y,; and y, are graphed in Figure 36.
The y-coordinate of the point of intersec-
tion of the graphs gives the length of BC,
or h. Thus, h = 45.

X

Figure 35

i;:l‘:ﬁt Ilili'iﬂi |

75,

o
ST - ——

Yeul.agiaes

—204 #
Iatersection
| RN ATATS

Figure 36

Now Try Exercise 31.

*Source: Reprinted with permission from The Mathematics Teacher, copyright 1995 by the National
Council of Teachers of Mathematics. All rights reserved.
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e

Exercises

CONCEPT PREVIEW Match the measure of bearing in Column I with the appropriate
graph in Column II.

1 11
1. 20° A. N B. N C. N
2. S70°W 20°
3. 160° w E W E W E
20°
4. S20°W 20°
5. N70°W S S S
6. 340° D. N E. N F. N
7. 110°
R 200 700 200
8. 270 W </ E W E W E
9. 180°

10. N70°E S S S

G N H N

70°
w ——>E W E
70°
S S
I N J. N
90°
W<~—1—>E w E
180°
S S

The two methods of expressing bearing can be interpreted using a rectangular coordi-
nate system. Suppose that an observer for a radar station is located at the origin of a
coordinate system. Find the bearing of an airplane located at each point. Express the
bearing using both methods.

11 (—4.,0) 12. (5.0) 13. (0.4) 14. (0,-2)
15. (-5,5) 16. (—3,-3) 17. (2,-2) 18. (2,2)

Solve each problem. See Examples 1 and 2.

19. Distance Flown by a Plane A plane flies 1.3 hr
at 110 mph on a bearing of 38°. It then turns and
flies 1.5 hr at the same speed on a bearing of 128°.
How far is the plane from its starting point?




20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.
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Distance Traveled by a Ship A ship trav-
els 55 km on a bearing of 27° and then
travels on a bearing of 117° for 140 km.
Find the distance from the starting point to
the ending point.

Distance between Two Ships Two ships leave a port at the same time. The first ship
sails on a bearing of 40° at 18 knots (nautical miles per hour) and the second on a
bearing of 130° at 26 knots. How far apart are they after 1.5 hr?

Distance between Two Ships Two ships leave a port at the same time. The first ship
sails on a bearing of 52° at 17 knots and the second on a bearing of 322° at 22 knots.
How far apart are they after 2.5 hr?

Distance between Two Docks Two docks are located on an east-west line 2587 ft
apart. From dock A, the bearing of a coral reef is 58°22". From dock B, the bearing
of the coral reef is 328° 22’. Find the distance from dock A to the coral reef.

Distance between Two Lighthouses Two lighthouses are located on a north-south
line. From lighthouse A, the bearing of a ship 3742 m away is 129° 43’. From light-
house B, the bearing of the ship is 39° 43". Find the distance between the lighthouses.

Distance between Two Ships A ship leaves its
home port and sails on a bearing of S 61°50" E.
Another ship leaves the same port at the same
time and sails on a bearing of N 28°10" E. If the
first ship sails at 24.0 mph and the second sails
at 28.0 mph, find the distance between the two
ships after 4 hr.

Distance between Transmitters Radio direction N Transmitter N
finders are set up at two points A and B, which *

are 2.50 mi apart on an east-west line. From A, it 36° 20/,

is found that the bearing of a signal from a radio 530 40
transmitter is N 36°20" E, and from B the bear-
ing of the same signal is N 53°40" W. Find the
distance of the transmitter from B.

2.50 mi
A B

Flying Distance The bearing from A to C is S 52° E. The bearing from A to B is
N 84° E. The bearing from B to C is S 38° W. A plane flying at 250 mph takes 2.4 hr
to go from A to B. Find the distance from A to C.

Flying Distance The bearing from A to C is N 64° W. The bearing from A to B is
S 82° W. The bearing from B to Cis N 26° E. A plane flying at 350 mph takes 1.8 hr
to go from A to B. Find the distance from B to C.

Distance between Two Cities The bearing from Winston-Salem, North Carolina, to
Danville, Virginia, is N 42° E. The bearing from Danville to Goldsboro, North Carolina,
is S48°E. A car traveling at 65 mph takes 1.1 hr to go from Winston-Salem to
Danville and 1.8 hr to go from Danville to Goldsboro. Find the distance from
Winston-Salem to Goldsboro.

Distance between Two Cities The bearing from Atlanta to Macon is S 27° E, and
the bearing from Macon to Augusta is N 63° E. An automobile traveling at 62 mph

needs li hr to go from Atlanta to Macon and 1%hr to go from Macon to Augusta.
Find the distance from Atlanta to Augusta.
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Solve each problem. See Examples 3 and 4.

31.

32.

33.

34.

35.

37.

38.

Height of a Pyramid The angle of elevation from a point on the ground to the top
of a pyramid is 35° 30’. The angle of elevation from a point 135 ft farther back to
the top of the pyramid is 21° 10". Find the height of the pyramid.

-~
-~
/\\\ \\\
35°30" N 21°107~
[«<—135 ft—>]

Distance between a Whale and a Lighthouse A whale researcher is watching a
whale approach directly toward a lighthouse as she observes from the top of this
lighthouse. When she first begins watching the whale, the angle of depression to
the whale is 15°50. Just as the whale turns away from the lighthouse, the angle
of depression is 35° 40". If the height of the lighthouse is 68.7 m, find the distance
traveled by the whale as it approached the lighthouse.

Height of an Antenna A scanner antenna is on top of the center of a house. The
angle of elevation from a point 28.0 m from the center of the house to the top of
the antenna is 27° 10, and the angle of elevation to the bottom of the antenna is
18° 10’. Find the height of the antenna.

Height of Mt. Whitney The angle of elevation from Lone Pine to the top of
Mt. Whitney is 10° 50’. A hiker, traveling 7.00 km from Lone Pine along a straight,
level road toward Mt. Whitney, finds the angle of elevation to be 22° 40’. Find the
height of the top of Mt. Whitney above the level of the road.

Find £ as indicated in the figure. 36. Find & as indicated in the figure.
h
41.2°/52.5°
F—392 ft— |
168 m
Distance of a Plant from a Fence In one
area, the lowest angle of elevation of the sun
in winter is 23°20’. Find the minimum dis-
tance x that a plant needing full sun can be 165 6
placed from a fence 4.65 ft high. O 23020’

Plant

Distance through a Tunnel A tunnel is to
be built from A to B. Both A and B are visible
from C. If ACis 1.4923 mi and BC is 1.0837 mi,
and if C is 90°, find the measures of angles
A and B.




39.

40.

41.

42.
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Height of a Plane above Earth Find the
minimum height / above the surface of Earth
so that a pilot at point A in the figure can see
an object on the horizon at C, 125 mi away.
Assume 4.00 X 103 mi as the radius of Earth.

Length of a Side of a Piece of Land A piece of
land has the shape shown in the figure. Find the

length x. 198.4 m

X 52°20" 30° 50

(Modeling) Distance between Two Points A variation of the subtense bar method
that surveyors use to determine larger distances d between two points P and Q is
shown in the figure. The subtense bar with length b is placed between points P and Q
so that the bar is centered on and perpendicular to the line of sight between P and Q.
Angles « and 3 are measured from points P and Q, respectively. (Source: Mueller, 1.
and K. Ramsayer, Introduction to Surveying, Frederick Ungar Publishing Co.)

(a) Find a formula for d involving «, B, and b.

(b) Use the formula from part (a) to determine d if « = 37" 48", B = 42" 03", and
b = 2.000 cm.

(Modeling) Distance of a Shot Put A shot-putter trying to improve performance
may wonder whether there is an optimal angle to aim for, or whether the velocity
(speed) at which the ball is thrown is more important. The figure shows the path of
a steel ball thrown by a shot-putter. The distance D depends on initial velocity v,
height 4, and angle 6 when the ball is released.

D

One model developed for this situation gives D as

D_vzsinecosﬂ-l—vcost‘) \V (v sin 0)2 + 64h

32

Typical ranges for the variables are v: 33—46 ft per sec; h: 6-8 ft; and 0: 40°—45°.
(Source: Kreighbaum, E. and K. Barthels, Biomechanics, Allyn & Bacon.)

(a) To see how angle 6 affects distance D, let v = 44 ft per sec and & = 7 ft. Calcu-
late D, to the nearest hundredth, for 8 = 40°, 42°, and 45°. How does distance D
change as 0 increases?

(b) To see how velocity v affects distance D, let 4 = 7 and 6 = 42°. Calculate D, to
the nearest hundredth, for v = 43, 44, and 45 ft per sec. How does distance D
change as v increases?

(¢) Which affects distance D more, v or #? What should the shot-putter do to
improve performance?
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43.

44.

(Modeling) Highway Curves A basic highway
curve connecting two straight sections of road may
be circular. In the figure, the points P and S mark the
beginning and end of the curve. Let O be the point
of intersection where the two straight sections of
highway leading into the curve would meet if
extended. The radius of the curve is R, and the cen-
tral angle 6 denotes how many degrees the curve
turns. (Source: Mannering, F. and W. Kilareski,
Principles of Highway Engineering and Traffic
Analysis, Second Edition, John Wiley and Sons.)

(a) If R =965 ft and 6 = 37°, find the distance d between P and Q.

(b) Find an expression in terms of R and 6 for the distance between points M and N.

(Modeling) Stopping Distance on a
Curve Refer to Exercise 43. When
an automobile travels along a cir-
cular curve, objects like trees and
buildings situated on the inside of
the curve can obstruct the driver’s
vision. These obstructions prevent i
the driver from seeing sufficiently far NOT TO SCALE

down the highway to ensure a safe

stopping distance. In the figure, the minimum distance d that should be cleared on
the inside of the highway is modeled by the equation

0
d=R\(1- - .
( cosz)

(Source: Mannering, F. and W. Kilareski, Principles of Highway Engineering and
Traffic Analysis, Second Edition, John Wiley and Sons.)
57.38

(a) It can be shown that if 6 is measured in degrees, then 6 = =, where S is the
safe stopping distance for the given speed limit. Compute d to the nearest foot
for a 55 mph speed limit if S = 336 ft and R = 600 ft.

(b) Compute d to the nearest foot for a 65 mph speed limit given S = 485 ft and
R = 600 ft.

(¢) How does the speed limit affect the amount of land that should be cleared on the
inside of the curve?

The figure to the right indicates that the equation of a y

line passing through the point (a,0) and making an

angle 0 with the x-axis is
y = (tan 0)(x — a). N
X

45.

46.

47.

48.

49.

50.

Find an equation of the line passing through the
point (25,0) that makes an angle of 35° with the
X-axis.

o
\
B
=)
N

Find an equation of the line passing through the point
(5,0) that makes an angle of 15° with the x-axis.

Show that a line bisecting the first and third quadrants satisfies the equation given in
the instructions.

Show that a line bisecting the second and fourth quadrants satisfies the equation
given in the instructions.

The ray y = x, x = 0, contains the origin and all points in the coordinate system
whose bearing is 45°. Determine an equation of a ray consisting of the origin and all
points whose bearing is 240°.

Repeat Exercise 49 for a bearing of 150°.
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Chapter 2 Test Prep

Key Terms

2.1 side opposite 2.2 reference angle angle of elevation 2.5 bearing
side adjacent 2.4 exact number angle of depression
cofunctions significant digits

Quick Review

Concepts Examples

m Trigonometric Functions of Acute Angles

Right-Triangle-Based Definitions of Trigonometric

Functions
Let A represent any acute angle in standard position. Hypotenuse B sid
1de
. y  side opposite r hypotenuse /%_I 7 opposite
sinA === ——— ¢cA=—= —— A
r hypotenuse y  side opposite A oY) ¢
Side adjacent to A
x  side adjacent r hypotenuse
CSA =—=——""—""—8eCA=—=———""—"— 7 24 7
r hypotenuse X side adjacent GinA = — CosA=— tanA=—
25
tan A y side opposite x  side adjacent 25
amA =—=——"—— ctd = —= — — === == ==
x  side adjacent y  side opposite cscA 5S¢ A 24 cotA 7
Cofunction Identities
For any acute angle A, cofunction values of complementary
angles are equal.
sinA = cos(90° — A) cosA = sin(90° — A) sin 55° = cos(90° — 55°) = cos 35°
secA = ¢sc(90° — A) cscA = sec(90° — A) sec 48° = csc(90° — 48°) = csc 42°
tanA = cot(90° — A) cotA = tan(90° — A) tan 72° = cot (90° — 72°) = cot 18°
Function Values of Special Angles
0 sinf | cos@ | tan@ | cot® | sech | cscO
60°
0 1 V3 V3 2V3 3
30 2 | | T V3| | 2 1 2 1\
45° % % 1 1 V2 | V2 — 30° - 450
3 1
60° | M3 1 V3 | V3 2 | 2B
2 2 3 3 30°—60° right triangle 45°-45° right triangle
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Concepts

Examples

Trigonometric Functions of Non-Acute Angles

Reference Angle 6’ for 6 in (0°, 360°)

9inQuadrant | 1 | W | m | v
0’ is | 6 |180°—0]6—180°|360°—0

Finding Trigonometric Function Values for Any
Nonquadrantal Angle 6

Step 1 Add or subtract 360° as many times as needed to
obtain an angle greater than 0° but less than 360°.

Step 2 Find the reference angle 6'.
Step 3 Find the trigonometric function values for 6’.

Step 4 Determine the correct signs for the values found in
Step 3.

Quadrant I: For 6 = 25°, 6' = 25°
Quadrant II: ~ For # = 152°, ' = 28°
Quadrant IIT:  For 6 = 200°, 8’ = 20°
Quadrant IV:  For 6 = 320°, 0’ = 40°

Find sin 1050°.

Coterminal angle

1050° = 2(3607) = 330° in quadrant IV

The reference angle for 330° is 6’ = 30°.

sin 1050°
= —sin 30°  Sine is negative in quadrant IV.
! 30° =
=—— sin 30° = 5
2 2

Approximations of Trigonometric Function Values

To approximate a trigonometric function value of an angle
in degrees, make sure the calculator is in degree mode.

To find the corresponding angle measure given a trigono-
metric function value, use an appropriate inverse function.

Approximate each value.

cos 50° 15" = cos 50.25° = 0.63943900

1
~ 186115900  cscO = —

csc32.5° = ———; o
sin 32.5 s

Find an angle 6 in the interval [0°, 90°) that satisfies each
condition in color.
cos 6 = 0.73677482
0 = cos1(0.73677482)
0 =~ 42.542600°

csc 0 = 1.04766792
1.04766792 ) esed

sin O =~

|
_
0= sin (1.04766792)
0 ~ 72.65°

Solutions and Applications of Right Triangles

Solving an Applied Trigonometry Problem

Step 1 Draw a sketch, and label it with the given informa-
tion. Label the quantity to be found with a variable.

Find the angle of elevation of the sun if a 48.6-ft flag-
pole casts a shadow 63.1 ft long.

Step 1 See the sketch. We must find 6.

Shadow
63.1 ft
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Step 2 Use the sketch to write an equation relating the given
quantities to the variable.

Step 3 Solve the equation, and check that the answer makes
sense.

Further Applications of Right Triangles

Expressing Bearing

Method 1 When asingle angle is given, bearing is measured
in a clockwise direction from due north.

Method 2  Start with a north-south line and use an acute
angle to show direction, either east or west, from
this line.

Chapter 2 B i{" S\ 5 (=) (=13
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Examples
48.6
Step 2 tanf = ——
P M3
tan 60 = 0.770206
Step 3 6 = tan~10.770206

0 = 37.6°

The angle of elevation rounded to three significant digits
is 37.6°, or 37°40’.

Example: 220° Example: S 40°W
N

| 220° 40°

I VS

Find exact values of the six trigonometric functions for each angle A.

1. A 2.
61
1 o0 "
60
4 A

Find one solution for each equation. Assume that all angles involved are acute angles.

3. sin4B = cos 58

4. sec(26 + 10°) = csc(46 + 20°)

30 760
5. tan(5x + 11°) = cot(6x + 2°) 6. cos (? + 11°> = sin (E + 40°>

Determine whether each statement is true or false. If false, tell why.

7. sin 46° < sin 58°

9. tan 60° = cot 40°

8. cos 47° < cos 58°

10. csc 22° < csc 68°

11. Explain why, in the figure, the cosine of angle A is equal 4

to the sine of angle B.
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12. Which one of the following cannot be exactly determined using the methods of this
chapter?

A. cos 135° B. cot(—45°) C. sin 300° D. tan 140°

Find exact values of the six trigonometric functions for each angle. Do not use a calcu-
lator. Rationalize denominators when applicable.

13. 1020° 14. 120° 15. —1470° 16. —225°

Find all values of 0, if 0 is in the interval [0°, 360°) and 6 has the given function value.

1 1
17. cos@=—5 18. sin0=—§
2V3
19. sec@=—T 20. cotf = —1

Evaluate each expression. Give exact values.
21. tan®120° — 2 cot 240°  22. cos 60° + 2 sin” 30° 23. sec?300° — 2 cos® 150°

24. Find the sine, cosine, and tangent function values for each angle.

(a) y (b) y
s I
5 » X 0 / 7]

(=3,-3)

Use a calculator to approximate the value of each expression. Give answers to six deci-

mal places.
25. sec 222°30' 26. sin 72° 30’ 27. csc78°21'
28. cot 305.6° 29. tan 11.7689° 30. sec 58.9041°

Use a calculator to find each value of 0, where 0 is in the interval [ 0°, 90°) . Give answers
in decimal degrees to six decimal places.

31. sin 0 = 0.82584121 32. cotf = 1.1249386 33. cos 6 = 0.97540415
34. sec = 1.2637891 35. tan § = 1.9633124 36. csc 6 = 9.5670466
Find two angles in the interval [0°, 360°) that satisfy each of the following. Round
answers to the nearest degree.

37. sin 6 = 0.73135370 38. tan 6 = 1.3763819

Determine whether each statement is true or false. If false, tell why. Use a calculator for

Exercises 39 and 42.
39. sin 50° + sin 40° = sin 90° 40. 1 + tan? 60° = sec? 60°
41. sin 240° = 2 sin 120° - cos 120° 42. sin 42° + sin 42° = sin 84°

43. A student wants to use a calculator to find the value of cot 25°. However, instead of
entering ﬁ he enters tan™! 25. Assuming the calculator is in degree mode, will
this produce the correct answer? Explain.

44. Explain the process for using a calculator to find sec™! 10.
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Solve each right triangle. In Exercise 46, give angles to the nearest minute. In Exer-
cises 47 and 48, label the triangle ABC as in Exercises 45 and 46.

45.

47.

B 46. B
c
/|a= 129.7
A bh=368.1 c
C b A
A =39.72°b=3897m 48. B=47°53",b=298.6 m

Solve each problem. (Source for Exercises 49 and 50: Parker, M., Editor, She Does Math,
Mathematical Association of America.)

49. Height of a Tree A civil engineer must determine the vertical height of the tree

50.

51.

shown in the figure. The given angle was measured with a clinometer. Find the
height of the leaning tree to the nearest whole number.

)
2

L)
This is a picture of one type of
clinometer, called an Abney hand
level and clinometer. (Courtesy of
Keuffel & Esser Co.)

50 ft

(Modeling) Double Vision To correct mild double vision, a small amount of prism
is added to a patient’s eyeglasses. The amount of light shift this causes is measured
in prism diopters. A patient needs 12 prism diopters horizontally and 5 prism diop-
ters vertically. A prism that corrects for both requirements should have length r and
be set at angle 6. Find the values of r and 6 in the figure.

12

Height of a Tower The angle of elevation from a point 93.2 ft from the base of a
tower to the top of the tower is 38° 20’. Find the height of the tower.

52. Height of a Tower The angle of depression from a television tower to a point on the

ground 36.0 m from the bottom of the tower is 29.5°. Find the height of the tower.

36.0 m
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53.

54.

5S.

56.

57.

58.

59.
60.

61.

62.

Length of a Diagonal One side of a rectangle measures 15.24 cm. The angle
between the diagonal and that side is 35.65°. Find the length of the diagonal.

Length of Sides of an Isosceles Triangle An isosceles triangle has a base of
length 49.28 m. The angle opposite the base is 58.746°. Find the length of each
of the two equal sides.

Distance between Two Points The bearing of point B from point C is 254°. The
bearing of point A from point C is 344°. The bearing of point A from point B is 32°.
If the distance from A to C is 780 m, find the distance from A to B.

Distance a Ship Sails The bearing from point A to point B is S 55°E, and the
bearing from point B to point C is N 35° E. If a ship sails from A to B, a distance of
81 km, and then from B to C, a distance of 74 km, how far is it from A to C?

Distance between Two Points Two cars leave an intersection at the same time.
One heads due south at 55 mph. The other travels due west. After 2 hr, the bearing
of the car headed west from the car headed south is 324°. How far apart are they at
that time?

Find a formula for 4 in terms of k, A, and B. Assume A < B.

b

k

Create a right triangle problem whose solution is 3 tan 25°.

Create a right triangle problem whose solution can be found by evaluating 6 if
. 3
sinf = 7.

(Modeling) Height of a Satellite Artificial satellites that orbit Earth often use VHF
signals to communicate with the ground. VHF signals travel in straight lines. The
height & of the satellite above Earth and the time 7 that the satellite can communi-
cate with a fixed location on the ground are related by the model

1
h=R< 180T—1>,
COST

where R = 3955 mi is the radius of Earth and P is the period for the satellite to
orbit Earth. (Source: Schlosser, W., T. Schmidt-Kaler, and E. Milone, Challenges of
Astronomy, Springer-Verlag.)

(a) Find A to the nearest mile when 7= 25 min and P = 140 min. (Evaluate the
cosine function in degree mode.)

(b) What is the value of & to the nearest mile if 7 is increased to 30 min?

(Modeling) Fundamental Surveying Problem N
The first fundamental problem of surveying is to
determine the coordinates of a point Q given the
coordinates of a point P, the distance between P
and Q, and the bearing 6 from P to Q. See the
figure. (Source: Mueller, I. and K. Ramsayer,
Introduction to Surveying, Frederick Ungar )
Publishing Co.) P(xp, yp)

0 (xg, y0)

(a) Find a formula for the coordinates (x, yo) of the point Q given 6, the coordinates
(xp, yp) of P, and the distance d between P and Q.

(b) Use the formula found in part (a) to determine the coordinates (xq,yp) if
(xp,yp) = (123.62,337.95),60 = 17°19" 22", and d = 193.86 ft.
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Solve each problem.

1. Find exact values of the six trigonometric functions for angle A in the right

triangle.
A

13

12

2. Find the exact value of each variable in the figure.

3. Find a solution for sin(6 + 15°) = cos(260 + 30°).

4. Determine whether each statement is true or false. If false, tell why.
(a) sin 24° < sin 48° (b) cos 24° < cos 48°
(¢) cos(60° + 30°) = cos 60° - cos 30° — sin 60° + sin 30°

Find exact values of the six trigonometric functions for each angle. Rationalize denomi-
nators when applicable.

5. 240° 6. —135° 7. 990°

Find all values of 0, if 0 is in the interval [0°, 360°) and has the given function value.

V2 2\V3

8. cos¢9=—7 9. csc6=—T 10. tanf =1
Solve each problem.
11. How would we find cot 0 using a calculator, if tan § = 1.6778490? Evaluate cot 6.

12. Use a calculator to approximate the value of each expression. Give answers to six
decimal places.

(a) sin 78° 21’ (b) tan 117.689° (c) sec 58.9041°
13. Find the value of 6 in the interval [0°, 90°] in decimal degrees, if
sin 6 = 0.27843196.
Give the answer to six decimal places.

14. Solve the right triangle.

c758°30'|,

B a =748 C

15. Antenna Mast Guy Wire A guy wire 77.4 m long is attached to the top of an
antenna mast that is 71.3 m high. Find the angle that the wire makes with the
ground.
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16.

17.

18.

19.

20.

Height of a Flagpole To measure the height of a flagpole, Jan Marie found that the
angle of elevation from a point 24.7 ft from the base to the top is 32° 10’. What is
the height of the flagpole?

Altitude of a Mountain The highest point in Texas is Guadalupe Peak. The angle
of depression from the top of this peak to a small miner’s cabin at an approximate
elevation of 2000 ft is 26°. The cabin is located 14,000 ft horizontally from a point
directly under the top of the mountain. Find the altitude of the top of the mountain
to the nearest hundred feet.

Distance between Two Points Two ships leave a port at the same time. The first
ship sails on a bearing of 32° at 16 knots (nautical miles per hour) and the second on
a bearing of 122° at 24 knots. How far apart are they after 2.5 hr?

Distance of a Ship from a Pier A ship leaves a pier on a bearing of S 62° E and
travels for 75 km. It then turns and continues on a bearing of N 28° E for 53 km.
How far is the ship from the pier?

Find £ as indicated in the figure.

41.2°/52.5°
e

168 m
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Radian Measure

Radian Measure

Conversions between
Degrees and Radians

Trigonometric
Function Values of
Angles in Radians

=

6 = 1 radian

Figurel

Radian Measure We have seen that angles can be measured in degrees.
In more theoretical work in mathematics, radian measure of angles is preferred.
Radian measure enables us to treat the trigonometric functions as functions with
domains of real numbers, rather than angles.

Figure 1 shows an angle 6 in standard position, along with a circle of
radius r. The vertex of 6 is at the center of the circle. Because angle 6 intercepts
an arc on the circle equal in length to the radius of the circle, we say that angle 6
has a measure of / radian.

Radian

An angle with its vertex at the center of a circle that intercepts an arc on the
circle equal in length to the radius of the circle has a measure of 1 radian.

It follows that an angle of measure 2 radians intercepts an arc equal in
length to twice the radius of the circle, an angle of measure 5 radian intercepts
an arc equal in length to half the radius of the circle, and so on. In general, if 6
is a central angle of a circle of radius r, and 0 intercepts an arc of length s,
then the radian measure of 0 is ; See Figure 2.

y y y
2r
C=2xnr
. 1
0 5T 0
N AL N x
0 r 0 r o[ A r
6 = 2 radians 6= %radian 6 = 27 radians
Figure 2

.85 . . .
The ratio ; is a pure number, where s and r are expressed in the same units.
Thus, “radians’ is not a unit of measure like feet or centimeters.

Conversions between Degrees and Radians The circumference of a
circle—the distance around the circle—is given by C = 27rr, where r is the radius
of the circle. The formula C = 27rr shows that the radius can be measured off
27 times around a circle. Therefore, an angle of 360°, which corresponds to a
complete circle, intercepts an arc equal in length to 277 times the radius of the
circle. Thus, an angle of 360° has a measure of 27 radians.

360° = 277 radians

An angle of 180° is half the size of an angle of 360°, so an angle of 180° has
half the radian measure of an angle of 360°.

1 . .
180° = 5(277) radians = 77 radians Degree/radian relationship
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We can use the relationship 180° = 7r radians to develop a method for con-

verting between degrees and radians as follows.

180° = sr radians Degree/radian relationship

o

T
1° = ——radian Divide by 180. or 1 radian =

= Divide by .
180

Replacing 7 with its approximate integer value 3 in the fractions
above and simplifying gives a couple of facts to help recall the relationship
between degrees and radians. Remember that these are only approximations.

1
1° = —radian and 1 radian = 60°

60

Converting between Degrees and Radians

e Multiply a degree measure by % radian and simplify to convert to radians.

e Multiply a radian measure by % and simplify to convert to degrees.

Converting Degrees to Radians

Convert each degree measure to radians.

(a) 45° (b) —270° (c) 249.8°
(a) 45° = 45(120 radian) = %radian Multiply by 755 radian.

Multiply by & radian.
Write in lowest terms.

(b) —270° 270( T radi > 5T adi
— = — ——radian | = ——radians
180 2

Nearest thousandth

(¢) 249.8° = 249.8(17;0 radian> ~ 4360 radians

Now Try Exercises 11,17, and 47.

Converting Radians to Degrees

Convert each radian measure to degrees.

97 S5
(a) e (b) —? (c) 4.25

9 9 180° o
(a) Z radians = Z < T > = 405" Multiply by ;™.

5 5 180° °
(b) —%Tradians = _677(77> = —150°  Multiply by ">

180°
(c) 4.25 radians = 4.25<7T> ~ 243.5°, or 243°30" 0.50706(60') = 30’

Now Try Exercises 31, 35, and 59.
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Another way to convert a radian measure that is a rational multiple
of 7, such as %TW, to degrees is to substitute 180° for 7. In Example 2(a),

doing this would give the following.

9 9(180°
TW radians = (4) = 405°

One of the most important facts to remember when working with angles and
their measures is summarized in the following statement.

Agreement on Angle Measurement Units

If no unit of angle measure is specified, then the angle is understood to be
measured in radians.

For example, Figure 3(a) shows an angle of 30°, and Figure 3(b) shows
an angle of 30 (which means 30 radians). An angle with measure 30 radians
is coterminal with an angle of approximately 279°.

y y

N

30 degrees 30 radians

30°\

X

X

)

() (b)
Note the difference between an angle of
30 degrees and an angle of 30 radians.

Figure 3

The following table and Figure 4 on the next page give some equivalent
angle measures in degrees and radians. Keep in mind that

180° = 7 radians.

Equivalent Angle Measures

Degrees Radians Degrees Radians
Exact | Approximate Exact | Approximate
T

0° 0 0 90° 5 1.57
K

30° 5 0.52 180° T 3.14

0 z O 3l

45 1 0.79 270 > 4.71
K

60° 3 1.05 360° 27 6.28

These exact values are rational multiples of 7.




LOOKING AHEAD TO CALCULUS
In calculus, radian measure is much
easier to work with than degree mea-
sure. If x is measured in radians, then
the derivative of f(x) = sin x is

f'(x) = cos x.

However, if x is measured in degrees,

then the derivative of f(x) = sinx is

m
~ - COs x.

') = 1g0

—180° =7

90° =

SIE]
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Figure 4

0°=0 —>x

Learn the equivalences in Figure 4. They appear often in trigonometry.

Trigonometric Function Values of Angles in Radians

Trigonometric

function values for angles measured in radians can be found by first converting
radian measure to degrees. (Try to skip this intermediate step as soon as possible,
however, and find the function values directly from radian measure.)

Finding Function Values of Angles in Radian Measure

Find each function value.

27
t PR
(a) tan 3

37
b) sin —
(b) sin >

(a) First convert 2777 radians to degrees.

(¢) cos< - 4;)

tan — =t

2 <27T 180°)
an| — - ——
3 3

w

Consider the . .

-\V3

3
(b) sin 777 = sin 270° =

47 4T
(c) cos(—) = cos<— .
3 3
= cos(—240°)
__1
2

180°
T

. 180° .
Multiply by = to convert
radians to degrees.

Multiply.

tan 120° = —tan 60° = —\/3

-1 %‘7 radians = 270°

> Convert radians to degrees.
Multiply.
cos(—240°) = —cos 60° = —%

Now Try Exercises 69, 79, and 83.
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e

Exercises

CONCEPT PREVIEW Fill in the blank(s) to correctly complete each sentence.

1. An angle with its vertex at the center of a circle that intercepts an arc on the circle
equal in lengthtothe __ of the circle has measure 1 radian.

2. 360° = radians, and 180° = radians.

3. To convert to radians, multiply a degree measure by radian and simplify.

4. To convert to degrees, multiply a radian measure by and simplify.

CONCEPT PREVIEW Each angle 0 is an integer (e.g., 0, T 1, £ 2, ... )when measured
in radians. Give the radian measure of the angle. (It helps to remember that w = 3.)

B B D
o o (o

Convert each degree measure to radians. Leave answers as multiples of . See

Examples 1(a) and 1(b).

11. 60° 12. 30° 13. 90° 14. 120°
15. 150° 16. 270° 17. —300° 18. —315°
19. 450° 20. 480° 21. 1800° 22. 3600°
23. 0° 24. 180° 25. —900° 26. —1800°

27. Concept Check Explain the meaning of radian measure.

28. Concept Check Explain why an angle of radian measure ¢ in standard position
intercepts an arc of length ¢ on a circle of radius 1.

Convert each radian measure to degrees. See Examples 2(a) and 2(b).

2 T 30, 37 S T 0
3 3 4 3
117 157 T 8

.= 4. 28 . .-

3. 4. - 3.~ 36—
T 11 4ar T

37- E 38. ? 39. _E 40. _%
1 1

4. U 4. —~ 43. —57 4. 157

20 30
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Convert each degree measure to radians. If applicable, round to the nearest thousandth.
See Example 1(c).

45. 39° 46. 74° 47. 42.5° 48. 264.9°
49. 139°10’ 50. 174° 50’ 51. 64.29° 52. 85.04°
53. 56°25' 54. 122°37’ 55. —47.69° 56. —23.01°

Convert each radian measure to degrees. Write answers to the nearest minute. See
Example 2(c).

57. 2 58. 5 59. 1.74 60. 3.06
61. 0.3417 62. 9.84763 63. —5.01095 64. —3.47189
65. Concept Check The value of sin 30 is not % Why is this true?

66. Concept Check What is meant by an angle of one radian?

Find each exact function value. See Example 3.

T T T T
7. sin — . — . — 70. —
67. sin 3 68. cos 5 69. tan 2 0. cot 3
T T T T
71. — 72. — 73. sin — 74. —
sec 6 csc 2 3. sin > csc >
2
75. tan 27 76. cot 77, sin > 78. tan o7
3 3 6 6
2
79. cos 3w 80. sec 7w 81. sin<—837T) 82. cot(—;)

7 14 13
83. sin <* %T) 84. cos (f %) 85. tan (* %) 86. csc <f %)

87. Concept Check The figure shows the same angles measured in both degrees and
radians. Complete the missing measures.
y

!

90°; % radians

% %’T radians 60°; radians
. o. o 3
_ % 3% radians —°% radian
150°; radians 30°; radian

-~ 180°; radians 0°;, 0 radians =—>x

210°; radians 330°; radians

225°% radians 315% radians
% %’T radians ° ST’T radians

270°; 3{ radians

l

88. Concept Check What is the exact radian measure of an angle measuring 7 degrees?

89. Concept Check Find two angles, one positive and one negative, that are coterminal
with an angle of 7 radians.

90. Concept Check Give an expression that generates all angles coterminal with an
angle of % radians. Let n represent any integer.
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Solve each problem.

91

92.

93.

94.

9s.

96.

Rotating Hour Hand on a Clock Through how many radians does the hour hand
on a clock rotate in (a) 24 hr and (b) 4 hr?

Rotating Minute Hand on a Clock Through how many radians does the minute
hand on a clock rotate in (a) 12 hr and (b) 3 hr?

Orbits of a Space Vehicle A space vehicle is orbiting Earth in a circular orbit. What
radian measure corresponds to (a) 2.5 orbits and (b) % orbits?

Rotating Pulley A circular pulley is rotating about its center. Through how many
radians does it turn in (a) 8 rotations and (b) 30 rotations?

Revolutions of a Carousel A stationary Sis2
horse on a carousel makes 12 complete
revolutions. Through what radian mea-
sure angle does the horse revolve?

Railroad Engineering Some engineers use the term grade to represent 1(])*0 of aright

angle and express grade as a percent. For example, an angle of 0.9° would be referred

to as a 1% grade. (Source: Hay, W., Railroad Engineering, John Wiley and Sons.)

(a) By what number should we multiply a grade (disregarding the % symbol) to
convert it to radians?

(b) In a rapid-transit rail system, the maximum grade allowed between two stations
is 3.5%. Express this angle in degrees and in radians.

Applications of Radian Measure

Arc Length on a Circle

Area of a Sector of a
Circle

s r

0 radians\/1 radian

R

r o0 r P

Figure5

ArcLengthonacCircle  The formula for finding the length of an arc of a
circle follows directly from the definition of an angle # in radians, where 6 = f

In Figure 5, we see that angle QOP has measure 1 radian and intercepts an arc

of length  on the circle. We also see that angle ROT has measure 6 radians and
intercepts an arc of length s on the circle. From plane geometry, we know that
the lengths of the arcs are proportional to the measures of their central angles.

N
- = T Set up a proportion.
r

Multiplying each side by r gives

s =r@. Solve fors.

ArcLength

The length s of the arc intercepted on a circle of radius r by a central angle
of measure 6 radians is given by the product of the radius and the radian
measure of the angle.

s = r6, where 0 isin radians
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CAUTION When the formula s = r@ is applied, the value of 6 MUST
be expressed in radians, not degrees.

Finding Arc Length Using s = ré

A circle has radius 18.20 cm. Find the length of the arc intercepted by a central
angle having each of the following measures.

3w .
(a) ?radlans (b) 144°

(a) Asshown in Figure6, » = 18.20 cm and 6 = ‘%T.
s=r0 Arc length formula

37T 3
s = 18.20 ? Letr = 1820 and 6 = .

s = 21.44 cm Use a calculator. Figure 6

(b) The formula s = r6 requires that 6 be measured in radians. First, convert 6
to radians by multiplying 144° by 1%0 radian.

R T dar )
144° = 144 @ = ? radians  Convert from degrees to radians.

The length s is found using s = r6.

477 47
s=r60=18.20 ? ~4574cm Letr=1820and 6 ==

Be sure to use radians
forgins = ro. Now Try Exercises 13 and 17.

Finding the Distance between Two Cities

Latitude gives the measure of a central angle with vertex at Earth’s center whose
initial side goes through the equator and whose terminal side goes through
the given location. Reno, Nevada, is approximately due north of Los Angeles.
The latitude of Reno is 40° N, and that of Los Angeles is 34° N. (The N in 34° N
means north of the equator.) The radius of Earth is 6400 km. Find the north-south
distance between the two cities.

As shown in Figure 7, the central angle between Reno and Los
Angeles is

40° — 34° = 6°,

The distance between the two cities can be found using the formula s = r#6, after
6° is converted to radians.

6° 6( u ) " radi

=6| ——= ) = —-radian
180 30

The distance between the two cities is given by s.

s=rf= 6400(32) ~670km Letr - 6400and 6 = %

Now Try Exercise 23.
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A

%

\(/139.72°
il

=

0.8725 ft

Figure 8

Figure 9

The shaded
region is a

sector of
the circle.

Figure 10

Finding a Length Using s = ré

A rope is being wound around a drum with radius 0.8725 ft. (See Figure 8.)
How much rope will be wound around the drum if the drum is rotated through
an angle of 39.72°?

The length of rope wound around the drum is the arc length for a
circle of radius 0.8725 ft and a central angle of 39.72°. Use the formula s = r#,
with the angle converted to radian measure. The length of the rope wound

around the drum is approximated by s.
Convert to
radian measure.

s=rf= 0.8725{39.72(17;0” ~ 0.6049 ft

Now Try Exercise 35(a).

Finding an Angle Measure Using s = ro

Two gears are adjusted so that the smaller gear drives the larger one, as shown
in Figure 9. If the smaller gear rotates through an angle of 225°, through how
many degrees will the larger gear rotate?

First find the radian measure of the angle of rotation for the
smaller gear, and then find the arc length on the smaller gear. This arc length

will correspond to the arc length of the motion of the larger gear. Because

225° = o radians, for the smaller gear we have arc length

=
—9=25 Sm\ 1257 257
s=r S\ 1 g cm.

The tips of the two mating gear teeth must move at the same linear speed, or
the teeth will break. So we must have “equal arc lengths in equal times.” An arc
with this length s on the larger gear corresponds to an angle measure 6, in radians,
where s = r0.

s=r0 Arc length formula
2577 257 N
3 =480 Lets==;"and r = 4.8 (for the larger gear).
1257 48 _ 24 . 5
W =0 4.8 =15 = 5 ; Multiply by 55 to solve for 6.

Converting 6 back to degrees shows that the larger gear rotates through

192

1257 1800 ° 1257
=~ 117°.  Convert § = 55" to degrees.

Now Try Exercise 29.

Area of a Sector of a Circle A sector of a circle is the portion of the
interior of a circle intercepted by a central angle. Think of it as a “piece of pie.”
See Figure 10. A complete circle can be thought of as an angle with measure
21 radians. If a central angle for a sector has measure 6 radians, then the sector

makes up the fraction % of a complete circle. The area s of a complete circle

with radius r is & = 7rr2. Therefore, we have the following.

0 1
Area o of a sector = T(Wrz) = 720, where 6 is in radians.
ar
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Area of a Sector

The area s of a sector of a circle of radius r and central angle 6 is given by
the following formula.

A = 5r20, where 0 is in radians

CAUTION As in the formula for arc length, the value of 0 must be in
radians when this formula is used to find the area of a sector.

m Finding the Area of a Sector-Shaped Field

A center-pivot irrigation system provides water to

a sector-shaped field with the measures shown in A '
Figure 11. Find the area of the field. -~

g 15°
SOLUTION  First, convert 15° to radians. §,

Center-pivot irrigation system

15° =15 (%) = % radian  Convert to radians. * -

Now find the area of a sector of a circle.

1 Figure 11l
— 2
A= Er 0 Formula for area of a sector
1 Nu -
A=—(321)* —= Let 7 =321 and 6 = {5.
2 12
A = 13,500 m? Multiply. +/ Now Try Exercise 57.

Exercises

CONCEPT PREVIEW Find the exact length of each arc intercepted by the given central
angle.

1. 2.
4 ‘

CONCEPT PREVIEW Find the radius of each circle.

3. 67 4. ‘
147

SIE|
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CONCEPT PREVIEW Find the measure of each central angle (in radians).

5. 6. 20

(&
(&

CONCEPT PREVIEW Find the area of each sector:

7. 8. 157

T

[
S~
—
=]

CONCEPT PREVIEW Find the measure (in radians) of each central angle. The number
inside the sector is the area.

9. 10.

(P
(»

CONCEPT PREVIEW Find the measure (in degrees) of each central angle. The number
inside the sector is the area.

11. 12.

(»
@

Unless otherwise directed, give calculator approximations in answers in the rest of this
exercise set.

Find the length to three significant digits of each arc intercepted by a central angle 0 in a
circle of radius r. See Example 1.

13. r=123cm, 6 = 2?77 radians 14. r=0.892cm, 6 = 111% radians
15. r=1381t 0 =" radians 16. r =324 mi, 0 ="" radians
17. r=4.82m, 6=60° 18. r=719cm, 6 = 135°

19. r=15.1in.,, 6 =210° 20. r=124ft, 6=330°

21. Concept Check 1If the radius of a circle is doubled, how is the length of the arc
intercepted by a fixed central angle changed?

22. Concept Check Radian measure simplifies many formulas, such as the formula for
arc length, s = r6. Give the corresponding formula when 6 is measured in degrees
instead of radians.
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Distance between Cities Find the distance in kilometers between each pair of cities,
assuming they lie on the same north-south line. Assume that the radius of Earth is 6400 km.
See Example 2.

23.
24,
25.
26.
27.

28.

Panama City, Panama, 9° N, and Pittsburgh, Pennsylvania, 40° N
Farmersville, California, 36° N, and Penticton, British Columbia, 49° N
New York City, New York, 41° N, and Lima, Peru, 12° S

Halifax, Nova Scotia, 45° N, and Buenos Aires, Argentina, 34° S

Latitude of Madison Madison, South Dakota, and Dallas, Texas, are 1200 km apart
and lie on the same north-south line. The latitude of Dallas is 33° N. What is the
latitude of Madison?

Latitude of Toronto Charleston, South Carolina, and Toronto, Canada, are 1100 km
apart and lie on the same north-south line. The latitude of Charleston is 33° N. What
is the latitude of Toronto?

Work each problem. See Examples 3 and 4.

29.

30.

31.

32.

33.

34.

35.

Gear Movement Two gears are adjusted so that
the smaller gear drives the larger one, as shown
in the figure. If the smaller gear rotates through an
angle of 300°, through how many degrees does the
larger gear rotate?

Gear Movement Repeat Exercise 29 for gear
radii of 4.8 in. and 7.1 in. and for an angle of 315° for
the smaller gear.

Rotating Wheels The rotation of the smaller
wheel in the figure causes the larger wheel to rotate.
Through how many degrees does the larger wheel
rotate if the smaller one rotates through 60.0°?

Rotating Wheels Repeat Exercise 31 for wheel
radii of 6.84 in. and 12.46 in. and an angle of 150.0°
for the smaller wheel.

Rotating Wheels Find the radius of the larger
wheel in the figure if the smaller wheel rotates 80.0°
when the larger wheel rotates 50.0°.

Rotating Wheels Repeat Exercise 33 if the
smaller wheel of radius 14.6 in. rotates 120.0° when
the larger wheel rotates 60.0°.

Pulley Raising a Weight Refer to the figure.

(a) How many inches will the weight in the figure rise if the pulley is rotated through
an angle of 71°50'?

(b) Through what angle, to the nearest minute, must the pulley be rotated to raise the
weight 6 in.?
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36.

S

38.

Suppose the tip of the minute hand of a clock is 3 in. from
the center of the clock. For each duration, determine the dis-
tance traveled by the tip of the minute hand. Leave answers
as multiples of .

39.

41.

Pulley Raising a Weight Find the radius of the pulley in the
figure if a rotation of 51.6° raises the weight 11.4 cm.

Bicycle Chain Drive The figure
shows the chain drive of a bicycle.
How far will the bicycle move if the
pedals are rotated through 180.0°?
Assume the radius of the bicycle
wheel is 13.6 in.

Car Speedometer The speedometer of Terry’s Honda CR-V is designed to be accu-
rate with tires of radius 14 in.

(a) Find the number of rotations of a tire in 1 hr if the car is driven at 55 mph.

(b) Suppose that oversize tires of radius 16 in. are placed on the car. If the car is now
driven for 1 hr with the speedometer reading 55 mph, how far has the car gone?
If the speed limit is 55 mph, does Terry deserve a speeding ticket?

30 min 40. 40 min

1
4.5 hr 42. 65 hr

If a central angle is very small, there is little dif-  Arclength = length of inscribed chord

ference in length between an arc and the inscribed
chord. See the figure. Approximate each of the fol-
lowing lengths by finding the necessary arc length.
(Note: When a central angle intercepts an arc, the

Inscribed chord

arc is said to subtend the angle.) 1

43.

44.

45.

46.

Length of a Train A railroad track in the desert is 3.5 km away. A train on the track
subtends (horizontally) an angle of 3° 20'. Find the length of the train.

Repeat Exercise 43 for a railroad track 2.7 mi away and a train that subtends an
angle of 2°30".

Distance to a Boat The mast of a boat is 32.0 ft high. If it subtends an angle of
2°11', how far away is it?

Repeat Exercise 45 for a boat mast 11.0 m high that subtends an angle of 1°45".

Find the area of a sector of a circle having radius r and central angle 0. Express answers
to the nearest tenth. See Example 5.

47.
49.

51.
53.

r=292m, 0 =">7 radians 48. r=59.8km, 0 = radians
r=230.0ft 6= %radians 50. »=90.0yd, 6= 5%7 radians
r=127cm, 6=81° 52. r=183m, 6=125°

r=40.0 mi, 6 = 135° 54. r=190.0km, 6 = 270°
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Work each problem. See Example 5.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Angle Measure Find the measure (in radians) of a central angle of a sector of area
16 in.? in a circle of radius 3.0 in.

Radius Length Find the radius of a circle in which a central angle of % radian
determines a sector of area 64 m>.

Irrigation Area A center-pivot irrigation system provides water to A

a sector-shaped field as shown in the figure. Find the area of the

field if & = 40.0° and r = 152 yd.

Irrigation Area Suppose that in Exercise 57 the angle is halved
and the radius length is doubled. How does the new area compare
to the original area? Does this result hold in general for any values
of 6 and r?

Arc Length A circular sector has an area of 50 in.2. The radius of the circle is 5 in.
What is the arc length of the sector?

Angle Measure In a circle, a sector has an area of 16 cm? and an arc length of
6.0 cm. What is the measure of the central angle in degrees?

Measures of a Structure The figure illustrates Medicine Wheel, a Native American
structure in northern Wyoming. There are 27 aboriginal spokes in the wheel, all

equally spaced.

(a) Find the measure of each central angle in degrees and in radians in terms of .
(b) If the radius of the wheel is 76.0 ft, find the circumference.
(c) Find the length of each arc intercepted by consecutive pairs of spokes.

(d) Find the area of each sector formed by consecutive spokes.

Area Cleaned by a Windshield Wiper The
Ford Model A, built from 1928 to 1931, had
a single windshield wiper on the driver’s
side. The total arm and blade was 10 in.
long and rotated back and forth through an
angle of 95°. The shaded region in the figure
is the portion of the windshield cleaned by
the 7-in. wiper blade. Find the area of the
region cleaned to the nearest tenth.

Circular Railroad Curves In the United States, circular railroad curves are desig-
nated by the degree of curvature, the central angle subtended by a chord of 100 ft.
Suppose a portion of track has curvature 42.0°. (Source: Hay, W., Railroad
Engineering, John Wiley and Sons.)

(a) What is the radius of the curve?

(b) What is the length of the arc determined by the 100-ft chord?

(c) What is the area of the portion of the circle bounded by the arc and the 100-ft
chord?

Land Required for a Solar-Power Plant A 300-megawatt solar-power plant
requires approximately 950,000 m? of land area to collect the required amount of
energy from sunlight. If this land area is circular, what is its radius? If this land area
is a 35° sector of a circle, what is its radius?
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65. Area of a Lot A frequent problem in surveying city lots

66.

67.

68.

and rural lands adjacent to curves of highways and rail-

ways is that of finding the area when one or more of the

boundary lines is the arc of a circle. Find the area (to two 40 yd
significant digits) of the lot shown in the figure. (Source:

Anderson, J. and E. Michael, Introduction to Surveying, ]
McGraw-Hill.) 30 yd

Nautical Miles Nautical miles are used
by ships and airplanes. They are different

—_———1

from statute miles, where 1 mi = 5280 ft. e L 0§
A nautical mile is defined to be the arc 7 o 2
length along the equator intercepted by a B

central angle AOB of 1’, as illustrated in
the figure. If the equatorial radius of Earth
is 3963 mi, use the arc length formula to  Nautical NOT TO SCALE
approximate the number of statute miles in mile

1 nautical mile. Round the answer to two

decimal places.

Circumference of Earth The first accurate estimate of the distance around Earth
was done by the Greek astronomer Eratosthenes (276—-195 B.c.), who noted that the
noontime position of the sun at the summer solstice in the city of Syene differed by
7° 12" from its noontime position in the city of Alexandria. (See the figure.) The dis-
tance between these two cities is 496 mi. Use the arc length formula to estimate the
radius of Earth. Then find the circumference of Earth. (Source: Zeilik, M., Introductory
Astronomy and Astrophysics, Third Edition, Saunders College Publishers.)

Sun’s rays at noon

496mi| [I 7712
o | «— Shadow
1
: ,I Alexandria
1
LI ’70 ‘l 2!

Longitude Longitude is the angular distance (expressed in degrees) East or West
of the prime meridian, which goes from the North Pole to the South Pole through
Greenwich, England. Arcs of 1° longitude are 110 km apart at the equator, and
therefore 15° arcs subtend 15(110) km, or 1650 km, at the equator.

North Pole

Prime meridian

South Pole

Because Earth rotates 15° per hr, longitude is found by taking the difference
between time zones multiplied by 15°. For example, if it is 12 noon where we are
(in the United States) and 5 p.M. in Greenwich, we are located at longitude 5(15°),
or 75° W.

(a) What is the longitude at Greenwich, England?

(b) Use time zones to determine the longitude where you live.
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Concept Check 1f the radius of a circle is doubled and the central angle of a sector
is unchanged, how is the area of the sector changed?

Concept Check Give the formula for the area of a sector when the angle is mea-
sured in degrees.

Volume of a Solid Multiply the area of the base by the height to find a formula for the
volume V of each solid.

71.

72.

‘)

Outside radius is ry,
inside radius is r,.

Relating Concepts

For individual or collaborative investigation (Exercises 73-76)

(Modeling) Measuring Paper Curl Manufacturers of paper determine its quality

by its curl. The curl of a sheet of paper is measured by holding it at the center of one

edge and comparing the arc formed by the free end to arcs on a chart lying flat on

a table. Each arc in the chart corresponds to a number d that gives the depth of the
arc. See the figure. (Source: Tabakovic, H., J. Paullet, and R. Bertram, “Measuring
the Curl of Paper,” The College Mathematics Journal, Vol. 30, No. 4.)

To produce the chart, it is necessary to find a function that relates d to the length
of arc L. Work Exercises 73-76 in order, to determine that function. Refer to the

figure on the right.

73. Express L in terms of r and 6, and then solve for r.
74. Use aright triangle to relate r, i, and 6. Solve for A.

75. Express d in terms of r and . Then substitute the answer from Exercise 74
for h. Factor out r.

76. Use the answer from Exercise 73 to substitute for r in the result from
Exercise 75. This result is a formula that gives d for specific values of 6.
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The Unit Circle and Circular Functions

Circular Functions

Values of the Circular
Functions
Determining a Number
with a Given Circular
Function Value
Applications of
Circular Functions

Function Values

as Lengths of Line
Segments
y
X =COSs
y =sins

©, 1) Arc of length s
(x,y)

1~ 0
1,0 B L0

©0,-1
The unit circle x> + y? = 1

Figure12

LOOKING AHEAD TO CALCULUS
If you plan to study calculus, you

must become very familiar with radian
measure. In calculus, the trigonometric
or circular functions are always under-

stood to have real number domains.

We have defined the six trigonometric functions in such a way that the domain
of each function was a set of angles in standard position. These angles can be
measured in degrees or in radians. In advanced courses, such as calculus, it is
necessary to modify the trigonometric functions so that their domains consist of
real numbers rather than angles. We do this by using the relationship between
an angle 6 and an arc of length s on a circle.

Circular Functions  In Figure 12, we start at the point (1, 0) and measure
an arc of length s along the circle. If s > 0, then the arc is measured in a counter-
clockwise direction, and if s < 0, then the direction is clockwise. (If s = 0, then
no arc is measured.) Let the endpoint of this arc be at the point (x, y). The circle
in Figure 12 is the unit circle—it has center at the origin and radius 1 unit (hence
the name unit circle). Recall from algebra that the equation of this circle is

x* 4+ y2=1. The unit circle

The radian measure of 6 is related to the arc length s. For § measured in
radians and for » and s measured in the same linear units, we know that

s=rb.

When the radius has measure 1 unit, the formula s = r0 becomes s = 6. Thus,
the trigonometric functions of angle 6 in radians found by choosing a point
(x, y) on the unit circle can be rewritten as functions of the arc length s, a real
number. When interpreted this way, they are called circular functions.

Circular Functions

The following functions are defined for any real number s represented by a
directed arc on the unit circle.

x tans = (x #0)

sins =y CoS §

R R

1 1
cscs=; (y #0) secs T (x#0) cots = (y #0)

The unit circle is symmetric with respect to the x-axis, the y-axis, and
the origin. If a point (a, b) lies on the unit circle, so do (a, —b), (—a, b), and
(—a, —b). Furthermore, each of these points has a reference arc of equal mag-
nitude. For a point on the unit circle, its reference arc is the shortest arc from
the point itself to the nearest point on the x-axis. (This concept is analogous to the
reference angle concept.) Using the concept of symmetry makes determining
sines and cosines of the real numbers identified in Figure 13* a relatively simple
procedure if we know the coordinates of the points labeled in quadrant 1.

*The authors thank Professor Marvel Townsend of the University of Florida for her suggestion to include
Figure13.
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The unit circle x? + y* = 1

Figure13

For example, the quadrant I real number % is associated with the point
(1 V3

7 T) on the unit circle. Therefore, we can use symmetry to identify the coor-

. . . o
dinates of points having 3 as reference arc.

Symmetry and Function Values for Real Numbers with Reference Arc %

Quadrant Symmetry Type and
s of s Corresponding Point cos s sin s
77 . aoticable: [ 1 V3 1 V3
2 m i o . 2z VA=)
3 HHEAREEES 90T 2 2
T 2m , 1 V3 1 V3
T =— 1I y-axis; | ——, —— == e
3 3 27 2 2 2
T 4w . 1 \V3 1 V3
T+t =— 111 origin; | ——, — - =
3 3 2 2 2 2
T 5w (1 \3 1 V3
27 — — = — v x-axis; | —, =~ ——
3 3 2 2 2 2

Because cos s = x and sin s = y, we can replace x and y in the
equation of the unit circle x> + y? = 1 and obtain the following.

cos’s + sin’s = 1 Pythagorean identity

The ordered pair (x, y) represents a point on the unit circle, and therefore

—1

I\

x =1 and -1 =y

I\

1’

—1=<coss=<1 and —1=<sins=1.

For any value of s, both sin s and cos s exist, so the domain of these functions is
the set of all real numbers.
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(cos s, sin 5) = (x,y)

0. 1)

r=1

s=60
\0
X
b ,0)
0,-1)
P+yr=1
Figure 14

For tan s, defined as f; x must not equal 0. The only way x can equal O is

: 3 3 . .
when the arc length s is 5, —5, 5", — -, and so on. To avoid a 0 denominator,

the domain of the tangent function must be restricted to those values of s that
satisfy

s # (2n + 1) %, where n is any integer.

The definition of secant also has x in the denominator, so the domain of secant
is the same as the domain of tangent. Both cotangent and cosecant are defined
with a denominator of y. To guarantee that y # 0, the domain of these functions
must be the set of all values of s that satisfy

s ¥ ni, where n is any integer.

Domains of the Circular Functions

The domains of the circular functions are as follows.
Sine and Cosine Functions: ( — o, ®)

Tangent and Secant Functions:
s|s n + E, where n is any integer
#* (2 1 2

Cotangent and Cosecant Functions:

{s|s # nm, where n is any integer}

Values of the Circular Functions The circular functions of real numbers
correspond to the trigonometric functions of angles measured in radians. Let
us assume that angle 6 is in standard position, superimposed on the unit circle.
See Figure 14. Suppose that 0 is the radian measure of this angle. Using the arc
length formula

s=r0 withr=1, wehave s=26.

Thus, the length of the intercepted arc is the real number that corresponds to the
radian measure of . We use the trigonometric function definitions to obtain
the following.

. y_y . X X

sinf ==—==-=y=sins, cosh=—=—=x=coss, andsoon.
ro1 ro1

As shown here, the trigonometric functions and the circular functions lead to

the same function values, provided that we think of the angles as being in radian

measure. This leads to the following important result.

Evaluating a Circular Function

Circular function values of real numbers are obtained in the same manner
as trigonometric function values of angles measured in radians. This applies
both to methods of finding exact values (such as reference angle analysis)
and to calculator approximations. Calculators must be in radian mode
when they are used to find circular function values.
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Finding Exact Circular Function Values

Find the exact values of srn 2 , COS 7, and
37

tan 5

Evaluating a circular function at

-1,0)

the real number s equrvalent to evaluating it

N L0

at 2 radians. An angle of =2 radians intersects

the unit circle at the point (O, —1), as shown in

Figure 15. Because 0, -1)
sin s = cos s = and tans = Y
5= §=% § x’ Figure 15
it follows that
. 37 3 37 . )
sin 7 =—1, cos 7 =0, and tan—1s undefined.

Now Try Exercises 11 and 13.

Finding Exact Circular Function Values
Find each exact function value using the specified method.

7 .7
(a) Use Figure 13 to find the exact values of cos Tﬂ and sin %.

(b) Use Figure 13 and the definition of the tangent to find the exact value of
(-%)
tan{ —3% ).

(¢) Use reference angles and radian-to-degree conversion to find the exact value

27
of cos 3 -

(a) In Figure 13, we see that the real number 2~ corresponds to the unit circle

point (i —i>
ko \/2 ks \6

cosT T and SinT:_T

(b) Moving around the unit crrcle T units in the negative direction yields the
same ending point as moving around 7 units in the positive direction. Thus,

5w dsto (1,32
3 corresponds to 7 )

V3
5 3.1 3 2
tan(—w)=tanﬂ-=L=\/+= T=\/§

2 2 2

Simplify this complex fraction.

(c) Anangle of T radians corresponds to an angle of 120°. In standard position,
120° lies in quadrant II with a reference angle of 60°.

Cosine is negative in quadrant II.

21 1
cos ? = co0s 120° = —cos 60° = ——

N 2
Reference angle

Now Try Exercises 17, 23, 27, and 31.
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WERFAL FINY RUTD WEAL RABINN WP

cos(l.85)
R O N A A 27356
cos{.5i49)
8783
1stanil,3289)
s rEaE
1 cosl -2,9234)

......... 1.9243

Radian mode

This is how the TI-84 Plus calculator
displays the results of Example 3,
fixed to four decimal places.

Approximating Circular Function Values

Find a calculator approximation for each circular function value.

(a) cos 1.85 (b) cos 0.5149 (¢) cot 1.3209 (d) sec(—2.9234)

(a) cos 1.85 = —0.2756  Use a calculator in radian mode.
(b) cos 0.5149 = 0.8703 Use a calculator in radian mode.

(c¢) As before, to find cotangent, secant, and cosecant function values, we
must use the appropriate reciprocal functions. To find cot 1.3209, first find
tan 1.3209 and then find the reciprocal.

cot 1.3209 = —————— = 0.2552 Tangent and cotangent are reciprocals.
tan 1.3209 : 0

1

(d) sec(—2.9234) = cos(—2.9234)

=~ —1.0243  Cosine and secant are reciprocals.

Now Try Exercises 33, 39, and 43.

CAUTION Remember, when used to find a circular function value of a
real number, a calculator must be in radian mode.

Determining a Number with a Given Circular Function Value We
can reverse the process of Example 3 and use a calculator to determine an angle
measure, given a trigonometric function value of the angle. Remember that
the keys marked sin~!, cos~!, and tan~! do not represent reciprocal functions.
They enable us to find inverse function values.

For reasons explained in a later chapter, the following statements are true.
e Forall xin [—1, 1], a calculator in radian mode returns a single value in

1

[_z z]f -
7,7 | forsin™ x.

e Forall xin [—1, 1], a calculator in radian mode returns a single value in

1

[0, 7] for cos™! x.

e For all real numbers x, a calculator in radian mode returns a single value in

_mT -1
( 2,2)fortan X.

Finding Numbers Given Circular Function Values
Find each value as specified.

(a) Approximate the value of s in the interval [0, %] if cos s = 0.9685.

(b) Find the exact value of s in the interval [ T, 37#] iftans = 1.

(a) Because we are given a cosine value and want to determine the real number
in [O, %} that has this cosine value, we use the inverse cosine function of a
calculator. With the calculator in radian mode, we find s as follows.

s = cos1(0.9685) =~ 0.2517
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This screen supports the result in
Example 4(b) with calculator

approximations.

y

0,1
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Figure 18
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See Figure 16. The screen indicates that [CEEESEEE T

the real number in [0%] having cosine [Fos*(.9685)

equal to 0.9685 is 0.2517.

Radian mode

Figure 16

(b) Recall that tan % = 1, and in quadrant III tan s is positive.

T S5
tan(w—i— ) =tan— =1
4 4

Thus, s = %TW See Figure 17. Now Try Exercises 63 and 71.
Applications of Circular Functions

Modeling the Angle of Elevation of the Sun

The angle of elevation 0 of the sun in the sky at any latitude L is calculated with
the formula

sin @ = cos D cos L cos w + sin D sin L,

where 6 = 0 corresponds to sunrise and 6 = % occurs if the sun is directly over-

head. The Greek letter w (lowercase omega) is the number of radians that Earth
has rotated through since noon, when w = 0. D is the declination of the sun,
which varies because Earth is tilted on its axis. (Source: Winter, C., R. Sizmann,
and L. L. Vant-Hull, Editors, Solar Power Plants, Springer-Verlag.)

Sacramento, California, has latitude L = 38.5°, or 0.6720 radian. Find the
angle of elevation 6 of the sun at 3 p.M. on February 29, 2012, where at that time
D = —0.1425 and w = 0.7854.

Use the given formula for sin 6.

sin @ = cos D cos L cos w + sin D sin L

sin @ = cos(—0.1425) c0s(0.6720) cos(0.7854) + sin(—0.1425) sin(0.6720)
Let D = —0.1425, L = 0.6720, and w = 0.7854.
sin 6 =~ 0.4593426188

0 =~ 0.4773 radian, or 27.3° Use inverse sine.
Now Try Exercise 89.

Function Values as Lengths of Line Segments = The diagram shown in
Figure 18 illustrates a correspondence that ties together the right triangle ratio
definitions of the trigonometric functions and the unit circle interpretation. The
arc SR is the first-quadrant portion of the unit circle, and the standard-position
angle POQ is designated 0. By definition, the coordinates of P are (cos 6, sin 6).
The six trigonometric functions of # can be interpreted as lengths of line seg-
ments found in Figure 18.

For cos 6 and sin 6, use right triangle POQ and right triangle ratios.

side adjacentto 6 ~ 0Q  0Q
hypotenuse S oP 1

. side opposite @ PQ  PQ
sin=———=—"=—"=

CoOS U =

00

= = PO
hypotenuse oP 1
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For tan 6 and sec 0, use right triangle VOR in Figure 18 (repeated below in the
margin) and right triangle ratios.

_ sideopposite6 VR VR _
side adjacentto§  OR 1

tan VR

hypotenuse OV OV
side adjacent to 6 T OR 1

sec 0 = ov

For csc 6 and cot 0, first note that US and OR are parallel. Thus angle SUO is
equal to € because it is an alternate interior angle to angle POQ, which is equal
to 6. Use right triangle USO and right triangle ratios.

hypotenuse oU o0U
cscSU0=csc0=.yp—.=7=7=0U
side opposite &  OS 1

side adjacentto§  US US

cot SUO = cot 0 = = = Us
side opposite 0 (0N 1
Figure 19 uses color to illustrate the results found above.
y y y
540, 1) 'T/l{_/ 540, 1) 'T/l{_/ 20, D) 'T/Z{_/
PV 14 1\4
9 39 [) 39 [ g9
0 O R 0 O R 0 O R
cos 60 = 00 sin 0 = PO tan @ = VR
(a) (b) (c)
y y y
$d0. D 'T/l{_/ 540, 1) ;f__/ 540, D 'T/I{/
[] 1,0 ] a9 [ 1,0
0 O R 0 O R 0 O R
sec @ = OV csc 0 = 0U cot 0 = US
(d) (e) (f)
Figure19

Finding Lengths of Line Segments

Figure 18 is repeated in the margin. Suppose that angle 7VU measures 60°. Find

©, 1) T U the exact lengths of segments OQ, PQ, VR, OV, OU, and US.
/ Angle TVU has the same measure as angle OVR because they are
v vertical angles. Therefore, angle OVR measures 60°. Because it is one of the
7 acute angles in right triangle VOR, 0 must be its complement, measuring 30°.
.3 YA
o J o (O ) 0Q = cos 30 = OV = sec 30 —T
0 o R 1 Use the equations
Figure 18 (repeated) PQ =5sin 30° = — OU = csc30° =2 found in Figure 19,
2 with 6 = 30°.
V3
VR = tan 30° = — US = cot 30° = V3

Now Try Exercise 93.
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Exercises

CONCEPT PREVIEW Fill in the blanks to complete the coordinates for each point
indicated in the first quadrant of the unit circle in Exercise 1. Then use it to find each
exact circular function value in Exercises 2-5, and work Exercise 6.

1. y 2. cosO 3. sin%

4. sin~ 5. tan —
. SIn — . tan —
3 4

6. Find s in the interval [0, g]

. 1
if cos s =5

CONCEPT PREVIEW Each figure shows an angle 6 in standard position with its ter-

minal side intersecting the unit circle. Evaluate the six circular function values of 6.

(ﬁy ﬂ) 80
2.2

1 X (_% %)

<

Find the exact values of (a) sin s, (b) cos s, and (c) tan s for each real number s. See

Example 1.
11.s=% 12. s=7 13. s=2m
14. s =37 15. s=—7 16. s = —3777
Find each exact function value. See Example 2.
7 5 3 2
17. sin?ﬂ- 18. cos ?ﬂ- 19. tan% 20. sec ?ﬂ-

11 4 1
21. csc LELS 22. cot o 23. cos (— i) 24. tan <— ﬁ)
6 6 3 3
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7 5 4 5
25. cos Tﬂ- 26. sec Tﬂ 27. sin ( - ?ﬂ-) 28. sin < - %T)

29. sec 237# 30. CSCBJ 31. tansl 32. cosgir
6 3 6 4

Find a calculator approximation to four decimal places for each circular function value.
See Example 3.

33. sin 0.6109 34. sin 0.8203 35. cos(—1.1519)
36. cos(—5.2825) 37. tan 4.0203 38. tan 6.4752
39. csc(—9.4946) 40. csc 1.3875 41. sec 2.8440
42. sec(—8.3429) 43. cot 6.0301 44. cot 3.8426

Concept Check The figure displays a unit circle and an angle of 1 radian. The tick
marks on the circle are spaced at every two-tenths radian. Use the figure to estimate
each value.

R
0.8 0.8 radian
0.6 0.6 radian
f 0.4 X 0.4 radian
/ 0.2 radian
34 02 1 radian
\ X
v 0.2 0.6
x
\ /6
X o
4 A X
N o
5
45. cos 0.8 46. cos 0.6 47. sin2
48. sin 5.4 49, sin 3.8 50. cos 3.2

51. apositive angle whose cosine is —0.65
52. apositive angle whose sine is —0.95
53. apositive angle whose sine is 0.7

54. a positive angle whose cosine is 0.3

Concept Check Without using a calculator, decide whether each function value is positive
or negative. (Hint: Consider the radian measures of the quadrantal angles, and remember
that m =~ 3.14.)

55. cos2 56. sin(—1) 57. sin5
58. cos 6 59. tan 6.29 60. tan(—6.29)

Find the approximate value of s, to four decimal places, in the interval [0, %] that makes
each statement true. See Example 4(a).

61. tans = 0.2126 62. coss = 0.7826 63. sins = 0.9918
64. cots = 0.2994 65. sec s = 1.0806 66. cscs =1.0219
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Find the exact value of s in the given interval that has the given circular function value.
See Example 4(b).

[ . 1 [ 1
67. _5,77}, sms—2 68. _2,77}, coss——2

3 3 1
69. _77,777}; tans=\/§ 70. _77,777}; sins=—5

[3 [3 3
71. %,277}; tans = —1 72. %,277}; coss=\2/

Find the exact values of s in the given interval that satisfy the given condition.

3 1
73. [0, 2m); sins=—\2/ 74. [0, 2m); coss=—5
1
75. [0,27); coszs=5 76. [0,27); tan’s =3
1
77. [—2m,7); 3tan’s =1 78. [—m, 7); sin2s=5

Suppose an arc of length s lies on the unit circle x*> + y*> = 1, starting at the point
(1, 0) and terminating at the point (x,y). (See Figure 12.) Use a calculator to find the
approximate coordinates for (x, y) to four decimal places. (Hint: x = cos s and y = sin s.)

79. s=25 80. s =34 81. s=-74 82. s=-39

Concept Check For each value of s, use a calculator to find sin s and cos s, and then use
the results to decide in which quadrant an angle of s radians lies.

83. s=751 84. s=149 85. s =065 86. s=79

Concept Check Each graphing calculator screen shows a point on the unit circle. Find
the length, to four decimal places, of the shortest arc of the circle from (1, 0) to the point.

87. 2Hy=1 88.

x2+y2:1

FERIAL FLOAT SUTE BERL FARINE 77

(Modeling) Solve each problem. See Example 5.

89. Elevation of the Sun Refer to Example 5.
(a) Repeat the example for New Orleans, which has latitude L = 30°.

(b) Compare the answers. Do they agree with intuition?

90. Length of a Day The number of daylight hours H at any location can be calculated
using the formula

cos(0.1309H) = —tan D tan L,

where D and L are defined as in Example 5. Use this trigonometric equation to
calculate the shortest and longest days in Minneapolis, Minnesota, if its latitude
L = 44.88°, the shortest day occurs when D = —23.44°, and the longest day occurs
when D = 23.44°. Remember to convert degrees to radians. Round the answer to
the nearest tenth. (Source: Winter, C., R. Sizmann, and L. L. Vant-Hull, Editors,
Solar Power Plants, Springer-Verlag.)
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91. Maximum Temperatures Because the values of the circular functions repeat every
21, they may be used to describe phenomena that repeat periodically. For example,
the maximum afternoon temperature in a given city might be modeled by

£ =60 — 30 cos (%),

where ¢ represents the maximum afternoon temperature in degrees Fahrenheit in
month x, with x = 0 representing January, x = 1 representing February, and so on.
Find the maximum afternoon temperature, to the nearest degree, for each of the
following months.

(a) January (b) April (c) May
(d) June (e) August (f) October

92. Temperature in Fairbanks Suppose the temperature in Fairbanks is modeled by

2
T(x)=37sin| — (x—101) | + 2
(x)=3 sm[365 (x—10 )} 5,

where T(x) is the temperature in degrees Fahrenheit on day x, with x = 1 corre-
sponding to January 1 and x = 365 corresponding to December 31. Use a calculator
to estimate the temperature, to the nearest degree, on the following days. (Source:
Lando, B. and C. Lando, “Is the Graph of Temperature Variation a Sine Curve?,”
The Mathematics Teacher, vol. 70.)

(a) March 1 (day 60) (b) April 1 (day 91) (c) Day 150
(d) June 15 (e) September 1 (f) October 31

Refer to Figures 18 and 19, and work each problem. See Example 6.

93. Suppose that angle § measures 60°. Find the exact length of each segment.
(@ 00 (b) PO (¢) VR
d) ov (e) OU f) US

94. Repeat Exercise 93 for 6 = 38°. Give lengths as approximations to four significant
digits.

Chapter 3 Quiz (sections 3.1-3.3)

Convert each degree measure to radians.

1. 225° 2. —330°

Convert each radian measure to degrees.
S T

3. — 4. — 2%
3 6

A central angle of a circle with radius 300 in. intercepts an arc of 450 in. (These measures
are accurate to the nearest inch.) Find each measure.

5. the radian measure of the angle 6. the area of the sector

Find each exact circular function value.

7
7. cos Tﬂ- 8. sin (— ?) 9. tan 37

10. Find the exact value of s in the interval [%, 77} if sins = ?
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—

Linear and Angular Speed

Linear Speed
Angular Speed

P moves at
a constant

speed along
the circle.

Figure 20

Formulas for Angular and

Linear Speed

Angular Linear
Speed @ Speed v

0 s

= — vy =—

w p P
(w in radians y = ﬁ

per unit time ¢, t
6 in radians) vV =row

Linear Speed There are situations when we need to know how fast a
point on a circular disk is moving or how fast the central angle of such a disk is
changing. Some examples occur with machinery involving gears or pulleys or
the speed of a car around a curved portion of highway.

Suppose that point P moves at a constant speed along a circle of radius r and
center 0. See Figure 20. The measure of how fast the position of P is changing
is the linear speed. If v represents linear speed, then

distance s
speed=——, or v =—,
time t

where s is the length of the arc traced by point P at time z. (This formula is just a
restatement of r = % with s as distance, v as rate (speed), and ¢ as time.)

Angular Speed Refer to Figure 20. As point P in the figure moves along
the circle, ray OP rotates around the origin. Because ray OP is the terminal side
of angle POB, the measure of the angle changes as P moves along the circle. The
measure of how fast angle POB is changing is its angular speed. Angular speed,
symbolized w, is given as

0
w = L where 6 is in radians.

Here 0 is the measure of angle POB at time t. As with earlier formulas in this
chapter, @ must be measured in radians, with w expressed in radians per unit
of time.

The length s of the arc intercepted on a circle of radius r by a central angle
of measure 6 radians is s = rf. Using this formula, the formula for linear speed,
y= ? can be written in several useful forms.

V=- Formula for linear speed
t
ré
V= s=r6
t
0
v=r e
t
V=rw w= ?

As an example of linear and angular speeds, consider the following. The human
joint that can be flexed the fastest is the wrist, which can rotate through 90°, or

% radians, in 0.045 sec while holding a tennis racket. The angular speed of a
human wrist swinging a tennis racket is

w=— Formula for angular speed

SR

© = 0045 Let§ = T and 1 = 0.045.

o = 35 radians per sec.  Use a calculator.



128

CHAPTER 3 Radian Measure and the Unit Circle

If the radius (distance) from the tip of the racket to the wrist joint is 2 ft, then the
speed at the tip of the racket is

V=rw Formula for linear speed
v = 2(35) Letr = 2 and w = 35.
v =70 ft per sec, or about48 mph. Use a calculator.

In a tennis serve the arm rotates at the shoulder, so the final speed of the racket is
considerably greater. (Source: Cooper, J. and R. Glassow, Kinesiology, Second
Edition, C.V. Mosby.)

Using Linear and Angular Speed Formulas

Suppose that point P is on a circle with radius 10 cm, and ray OP is rotating
with angular speed % radian per sec.

(a) Find the angle generated by P in 6 sec.
(b) Find the distance traveled by P along the circle in 6 sec.

(¢) Find the linear speed of P in centimeters per second.

(a) Solve for 0 in the angular speed formula w = g, and substitute the known
quantities w = % radian per sec and ¢ = 6 sec.

0= wt Angular speed formula solved for 6

0 Z%(6) Letw = {gand t = 6.

™ .
0= ?radlans Multiply.

(b) To find the distance traveled by P, use the arc length formula s = r6 with

r = 10 cm and, from part (a), 6 = % radians.

T 107 _
s=r6=10 ? Z?Cm Letr=10and 6 = 5.

(¢) Use the formula for linear speed with r = 10 cm and w = % radians per sec.

T Sm
v=rw=10 13 = ?cm per sec  Linear speed formula

Now Try Exercise 7.

Finding Angular Speed of a Pulley and Linear Speed
of a Belt

A belt runs a pulley of radius 6 cm at 80 revolutions
per min. See Figure 21.

(a) Find the angular speed of the pulley in radians per
second.

(b) Find the linear speed of the belt in centimeters per
second.

87

Figure 21
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(a) The angular speed 80 revolutions per min can be converted to radians per
second using the following facts.

1 revolution = 27r radians and 1 min = 60 sec

We multiply by the corresponding unit fractions. Here, just as with the unit
circle, the word unit means 1, so multiplying by a unit fraction is equivalent
to multiplying by 1. We divide out common units in the same way that we
divide out common factors.

~ 80revolutions 27 radians 1 min

1 min | revolution 60 sec
1607 radians , o ,
w=—"" Multiply. Divide out common units.
60 sec

8T .
W= 3 radians per sec  Angular speed

(b) The linear speed v of the belt will be the same as that of a point on the cir-
cumference of the pulley.

8
V=rw = 6(;) = 167 = 50 cm per sec  Linear speed

Now Try Exercise 47.

Finding Linear Speed and Distance Traveled
by a Satellite

A satellite traveling in a circular orbit 1600 km above the surface of Earth takes 2 hr
to make an orbit. The radius of Earth is approximately 6400 km. See Figure 22.

(a) Approximate the linear speed of the satellite in kilometers per hour.

(b) Approximate the distance the satellite travels in 4.5 hr.

(a) The distance of the satellite from the center of Earth is approximately
r = 1600 + 6400 = 8000 km.

The angular speed 1 orbit per 2 hr can be converted to radians per hour using
the fact that 1 orbit = 27 radians.

: ., 2rnradians _
Unit fraction: “5 55— = 1]

1 orbit 27 radians )
0= . —— = ar radians per hr ~ Angular speed
2 hr 1 orbit

We now use the formula for linear speed with » = 8000 km and w = 7 radi-
ans per hr.

v =rw = 80007 = 25,000 km per hr  Linear speed

(b) To approximate the distance traveled by the satellite, we use s = vz.

This is similar ~ S =Vt Formula for arc length
to the distance
formulad = rt. s = 80007 (4.5)  Letv = 80007 and 1 = 4.5.

s = 110,000 km  Multiply. Approximate to two significant digits.

Now Try Exercise 45.
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Exercises

CONCEPT PREVIEW Fill in the blank to correctly complete each sentence. As necessary,
refer to the figure that shows point P moving at a constant speed along the unit circle.

P moves at

a constant
P speed along
\ 0 s the unit circle.

X
(—1,0) o r B(1,0)

0, D] =~

0, -1)

1. The measure of how fast the position of point P is changing is the
2. The measure of how fast angle POB is changing is the

3. If the angular speed of point P is 1 radian per sec, then P will move around the
entire unit circle in sec.

4. If the angular speed of point P is 7 radians per sec, then the linear speed is
unit(s) per sec.

5. An angular speed of 1 revolution per min on the unit circle is equivalent to an angu-
lar speed, w, of radians per min.

6. If P is rotating with angular speed % radians per sec, then the distance traveled by
Pin 10 sec is units.

Suppose that point P is on a circle with radius r, and ray OP is rotating with angular
speed w. Use the given values of 1, o, and t to do the following. See Example 1.

(a) Find the angle generated by P in time t.
(b) Find the distance traveled by P along the circle in time t.
(¢) Find the linear speed of P.

7. r=20cm, w= % radian per sec, = 6 sec
8. r=30cm, w= % radian per sec, t = 4 sec
9. r=8in, w= %radians per min, ¢ =9 min

10. r =12 ft, w = 87 radians per min, # = 5 min

Use the formula o = ? to find the value of the missing variable.

11. w = 2% radians per sec, = 3 sec 12. w = %radian per min, =5 min

13. @ = 0.91 radian per min, ¢t = 8.1 min 14. ® = 4.3 radians per min, ¢ = 1.6 min
15. =" radians, ¢ = 8 sec 16. 0 = 2% radians, ¢t = 10 sec

17. 6 = 3.871 radians, ¢t = 21.47 sec 18. 0 = 5.225 radians, = 2.515 sec

_ 27 . _ 5T . .
19. 0 = 9 radian, @ = 57 radian per min

20. 6 = - radians, w = 57 radian per min
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Use the formula v = ro to find the value of the missing variable.

2 .
2. r=12m, w= 77 radians per sec

22. r=8cm, w= 9?” radians per sec

23. v=9mpersec, r=5m

24. v=18ftpersec, r=3ft

25. v=12mpersec, w = 3777 radians per sec

26. v =24.93 cm per sec, w = 0.3729 radian per sec

The formula w = g can be rewritten as 0 = wt. Substituting wt for 6 converts s = r0 to
s = rwt. Use the formula s = rot to find the value of the missing variable.

27. r=6c¢cm, w = = radians per sec, t = 9 sec
3 p
2 .
28. r=9yd, w= % radians per sec, t = 12 sec
29. s=6mwcm, r=2cm, o= = radian per sec
1 p
12 3 2 .
30. s=-<"m, r=3;m, o= % radians per sec

31 s=Tkm, r=2km, 1 =4sec

4
32. s=8§m, r=zm, t=12sec

Find the angular speed w for each of the following.
33. the hour hand of a clock 34. the second hand of a clock

35. the minute hand of a clock 36. a gear revolving 300 times per min

Find the linear speed v for each of the following.

37. the tip of the minute hand of a clock, if the hand is 7 cm long

38. the tip of the second hand of a clock, if the hand is 28 mm long

39. apoint on the edge of a flywheel of radius 2 m, rotating 42 times per min
40. a point on the tread of a tire of radius 18 cm, rotating 35 times per min

41. the tip of a propeller 3 m long, rotating 500 times per min (Hint: r = 1.5 m)

42. a point on the edge of a gyroscope of radius 83 cm, rotating 680 times per min

Solve each problem. See Examples 1-3.

43. Speed of a Bicycle The tires of a bicycle have radius 13.0 in. and are turning at the
rate of 215 revolutions per min. See the figure. How fast is the bicycle traveling in
miles per hour? (Hint: 5280 ft = 1 mi)
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44.

45.

46.

47.

48.

49.

50.

51.

52.

Hours in a Martian Day Mars rotates on its axis at the rate of about 0.2552 radian
per hr. Approximately how many hours are in a Martian day (or sol)? (Source:
World Almanac and Book of Facts.)

Opposite sides of Mars

Angular and Linear Speeds of Earth The orbit
of Earth about the sun is almost circular. Assume
that the orbit is a circle with radius 93,000,000 mi.
Its angular and linear speeds are used in designing
solar-power facilities.

93,000,

(a) Assume that a year is 365 days, and find the
angle formed by Earth’s movement in one day.

(b) Give the angular speed in radians per hour.

(¢) Find the approximate linear speed of Earth in miles per hour.

Angular and Linear Speeds of Earth Earth revolves on its axis once every 24 hr.
Assuming that Earth’s radius is 6400 km, find the following.

(a) angular speed of Earth in radians per hour

(b) linear speed at the North Pole or South Pole

(¢) approximate linear speed at Quito, Ecuador, a city on the equator

(d) approximate linear speed at Salem, Oregon (halfway from the equator to the

North Pole)

Speeds of a Pulley and a Belt The pulley shown has a
radius of 12.96 cm. Suppose it takes 18 sec for 56 cm of
belt to go around the pulley.

(a) Find the linear speed of the belt in centimeters per
second.

(b) Find the angular speed of the pulley in radians per
second.

Angular Speeds of Pulleys The two pulleys in the
figure have radii of 15 cm and 8 cm, respectively.

¢m
The larger pulley rotates 25 times in 36 sec. Find the

angular speed of each pulley in radians per second.

Radius of a Spool of Thread A thread is being pulled off a spool at the rate of
59.4 c¢m per sec. Find the radius of the spool if it makes 152 revolutions per min.

Time to Move along a Railroad Track A railroad track is laid along the arc of
a circle of radius 1800 ft. The circular part of the track subtends a central angle
of 40°. How long (in seconds) will it take a point on the front of a train traveling
30.0 mph to go around this portion of the track?

Angular Speed of a Motor Propeller The propeller of a 90-horsepower outboard
motor at full throttle rotates at exactly 5000 revolutions per min. Find the angular
speed of the propeller in radians per second.

Linear Speed of a Golf Club The shoulder joint can rotate at 25.0 radians per sec.
If a golfer’s arm is straight and the distance from the shoulder to the club head
is 5.00 ft, find the linear speed of the club head from shoulder rotation. (Source:
Cooper, J. and R. Glassow, Kinesiology, Second Edition, C.V. Mosby.)
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Key Terms

3.1 radian
circumference
3.2 latitude
sector of a circle
subtend

degree of curvature
nautical mile
statute mile
longitude

3.3 unit circle
circular functions
reference arc

3.4 linear speed v
angular speed w
unit fraction

Quick Review

Concepts

m Radian Measure

An angle with its vertex at the center of a circle that inter-
cepts an arc on the circle equal in length to the radius of the
circle has a measure of 1 radian.

180° = a7 radians  Degree/Radian Relationship

Converting between Degrees and Radians

e Multiply a degree measure by % radian and simplify to
convert to radians.
. . 180°
® Multiply a radian measure by —
vert to degrees.

and simplify to con-

m Applications of Radian Measure

Arc Length

The length s of the arc intercepted on a circle of radius r by
a central angle of measure 6 radians is given by the product
of the radius and the radian measure of the angle.

s = r6, where @ is in radians

Area of a Sector
The area s{ of a sector of a circle of radius r and central
angle 6 is given by the following formula.

1
A = Erzo, where 0 is in radians

Examples

/o\r
1

6 = 1 radian

Convert 135° to radians.
135° = 135 -7 radian ) = > radi
= 180 radian = 4 radians

Convert — 5777 radians to degrees.

5 180°
—>7 radians = —51( 50 > = —300°
3 3 T

Find the central angle 6 in the
figure.

s=3

N .
6 = — = — radian
r

AW

Find the area { of the sector in the figure above.

1 3
=—(4)2( = | = i
A 2(4) (4) 6 sq units
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Concepts

The Unit Circle and Circular Functions

Circular Functions

Start at the point (1, 0) on the unit circle x> + y?> = 1 and
measure off an arc of length |s| along the circle, moving
counterclockwise if s is positive and clockwise if s is nega-
tive. Let the endpoint of the arc be at the point (x, y). The
six circular functions of s are defined as follows. (Assume

Use the unit circle to find each value.

that no denominators are 0.)

sing =y coOSs = Xx tans = =
1
cscs = — secs = — cots = —
The Unit Circle

The unit circle x2 + y2 = 1

Linear and Angular Speed

Formulas for Angular and Linear Speed

Angular Speed w Linear Speed v

0 s
= — y ==
o= P

. . . ré

(w in radians per unit v = r

time ¢, 6 in radians)
vV = rw

57 1
sin— = —
6 2
3
cosl=0
2
Va
tanf=izl
4 V2
2
T 1 5
csC— = = —
4 _\a
2
T 1 2\5
sec — = =——
6 _\3 3
2
1
t 2 3
ot —=—=—
Vi 3
2
sin0 =10
T
—=0
cos2

Find the exact value of s in [0, %] if cos s = %

In [0, %] the arc length s = 7 is associated with the

point (?, %) The first coordinate is

V3
=

K
COS s =cos =
6

Thus we have s = ¢.

A belt runs a machine pulley of radius 8 in. at 60 revolu-
tions per min.

(a) Find the angular speed w in radians per minute.

60 revolutions 27 radians
0= .

1 min 1 revolution
o = 1207 radians per min
(b) Find the linear speed v in inches per minute.
V=rw
v = 8(120)

v = 9607 in. per min
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Chapter 3 I\ (=18 5 (=) (o £Y=13

Concept Check Work each problem.
1. What is the meaning of “an angle with measure 2 radians”?

2. Consider each angle in standard position having the given radian measure. In what
quadrant does the terminal side lie?

(@ 3 (b) 4 () =2 (@ 7
3. Find three angles coterminal with an angle of 1 radian.
4. Give an expression that generates all angles coterminal with an angle of % radian.

Let n represent any integer.

Convert each degree measure to radians. Leave answers as multiples of .

5. 45° 6. 120° 7. 175° 8. 330° 9. 800° 10. 1020°

Convert each radian measure to degrees.

1 21
1n T 2 T 3. 87 w 15 ———~ 16 - =%
4 10 3 5 18 5

Suppose the tip of the minute hand of a clock is 2 in. from the center of the clock. For
each duration, determine the distance traveled by the tip of the minute hand. Leave an-
swers as multiples of .

17. 15 min 18. 20 min 19. 3 hr 20. 8 hr

Solve each problem. Use a calculator as necessary.

21. Arc Length The radius of a circle is 15.2 cm. Find the length of an arc of the circle

intercepted by a central angle of %T radians.

22. Arc Length Find the length of an arc intercepted by a central angle of 0.769 radian
on a circle with radius 11.4 cm.

23. Angle Measure Find the measure (in degrees) of a central angle that intercepts an
arc of length 7.683 cm in a circle of radius 8.973 cm.

24. Angle Measure Find the measure (in radians) of a central angle whose sector has

50 . . .
area TW cm? in a circle of radius 10 cm.

25. Area of a Sector Find the area of a sector of a circle having a central angle of
21°40" in a circle of radius 38.0 m.

26. Area of a Sector A central angle of %T radians forms a sector of a circle. Find the
area of the sector if the radius of the circle is 28.69 in.

27. Diameter of the Moon The dis- -
tance to the moon is approximately o - [
238,900 mi. Use the arc length =<2 \] 0 A
formula to estimate the diameter TT~—

d of the moon if angle 6 in the fig- T
ure is measured to be 0.5170°. NOT TO SCALE

28. Concept Check Using s = rf and o = %rze, express 9 in terms of s and 6.

29. Concept Check The hour hand of a wall clock measures 6 in. from its tip to the
center of the clock.

(a) Through what angle (in radians) does the hour hand pass between 1 o’clock and
3 o’clock?

(b) What distance does the tip of the hour hand travel during the time period from
1 o’clock to 3 o’clock?
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30. Concept Check What would happen to the central angle for a given arc length of a
circle if the circle’s radius were doubled? (Assume everything else is unchanged.)
Distance between Cities Assume that the radius of Earth is 6400 km.

31. Find the distance in kilometers between cities on a north-south line that are on lati-
tudes 28° N and 12° S, respectively.

32. Two cities on the equator have longitudes of 72° E and 35° W, respectively. Find the
distance between the cities.

Concept Check Find the measure of each central angle 0 (in radians) and the area of
each sector.

33. 34.

Find each exact function value.

2 5
35. tan g 36. cos ?77 37. sin ( - %)
Tr
38. tan(—?> 39. csc(—T) 40. cot(—13r)

Concept Check Without using a calculator, determine which of the two values is greater.
41. tan l ortan 2 42, sin 1 ortan 1 43. cos2orsin?2

44. Concept Check Match each domain in Column II with the appropriate circular
function pair in Column I.

I II
(a) sine and cosine A. (—o0, )
(b) tangent and secant B. {s|s # nm, where n is any integer }
(c) cotangent and cosecant C. {s|s # (2n + 1)7, where n is any integer }

Find a calculator approximation to four decimal places for each circular function value.
45, sin 1.0472 46. tan 1.2275 47. cos(—0.2443)
48. cot 3.0543 49. sec 7.3159 50. csc 4.8386

Find the approximate value of s, to four decimal places, in the interval [0, %] that makes
each statement true.

51. cos s = 0.9250 52. tans = 4.0112 53. sins = 0.4924
54. cscs = 1.2361 55. cots = 0.5022 56. sec s = 4.5600

Find the exact value of s in the given interval that has the given circular function value.

2
57. [O,g}; coss=\2[ 58. |:§,7T:|; tans=*\/§

3 2V3 3 1
59. [77,777]; secs=—T 60. [777,277}; sins=—5
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Suppose that point P is on a circle with radius r, and ray OP is rotating with angular
speed w. Use the given values of 1, w, and t to do the following.

(a) Find the angle generated by P in time t.

(b) Find the distance traveled by P along the circle in time t.
(¢) Find the linear speed of P.

61.

62.

2 .
r=15cm, w = Tﬂ radians per sec, t = 30 sec

r=451t, o = % radian per min, = 12 min

Solve each problem.

63.

64.

65.

66.

Linear Speed of a Flywheel Find the linear speed of a point on the edge of a fly-
wheel of radius 7 cm if the flywheel is rotating 90 times per sec.

Angular Speed of a Ferris Wheel A Ferris wheel

has radius 25 ft. A person takes a seat, and then the
S .

wheel turns 7 radians.

(a) How far is the person above the ground to the
nearest foot?

(b) If it takes 30 sec for the wheel to turn 5% radians,
what is the angular speed of the wheel?

(Modeling) Archaeology An archaeology professor believes that an unearthed
fragment is a piece of the edge of a circular ceremonial plate and uses a formula
that will give the radius of the original plate using measurements from the fragment,
shown in Figure A. Measurements are in inches.

In Figure B, a is % the length of chord NP, and b is the distance from the mid-
point of chord NP to the circle. According to the formula, the radius r of the circle,
OR, is given by

a* + b?
r= .

2b

What is the radius of the original plate from which the fragment came?

(Modeling) Phase Angle of the Moon Because the moon orbits Earth, we observe
different phases of the moon during the period of a month. In the figure, ¢ is the
phase angle.

Moon
A

Earth

Sun
The phase F of the moon is modeled by
1
F(r) = —(1 —cos 1)
2
and gives the fraction of the moon’s face that is illuminated by the sun. (Source:

Duffet-Smith, P., Practical Astronomy with Your Calculator, Cambridge University
Press.) Evaluate each expression and interpret the result.

@ F(0) b) F(g) © F(m) @ F(%T)
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Chapter 3

Convert each degree measure to radians.

1.

120° 2. —45° 3. 5°(to the nearest thousandth)

Convert each radian measure to degrees.

4.

7.

8.

37 T .
e 5. — r 6. 4 (to the nearest minute)

A central angle of a circle with radius 150 cm intercepts an arc of 200 cm. Find each
measure.

(a) the radian measure of the angle (b) the area of a sector with that central angle

Rotation of Gas Gauge Arrow The arrow on a car’s
gasoline gauge is % in. long. See the figure. Through

what angle does the arrow rotate when it moves 1 in. on
the gauge?

Find each exact function value.

9.

12.

15.

16.
17.

18.

19.

20.

3 T 3
sin —— 10. cos| —— 11. tan —
4 ( 6 ) 2
8 3
sec — 13. tan 7 14. cos —
3 2
Determine the six exact circular function y
values of s in the figure.
onl o _m
6
X
(-1,0) 0 (1,0)
X2+ y2 =1
0, -1)

Give the domains of the six circular functions.

(a) Use a calculator to approximate s in the interval [0, ﬂ if sin s = 0.8258.

(b) Find the exact value of s in the interval [0, %] if cos s = %

Angular and Linear Speed of a Point Suppose that point P is on a circle with
radius 60 cm, and ray OP is rotating with angular speed % radian per sec.

(a) Find the angle generated by P in 8 sec.

(b) Find the distance traveled by P along the circle in 8 sec.

(¢) Find the linear speed of P.

Orbital Speed of Jupiter It takes Jupiter 11.86 yr
to complete one orbit around the sun. See the fig-

ure. If Jupiter’s average distance from the sun is | . )
483,800,000 mi, find its orbital speed (speed along  \ Sun , Jupiter

its orbital path) in miles per second. (Source: World N J/

Almanac and Book of Facts.) S—_ EOT TO SCALE

Ferris Wheel A Ferris wheel has radius 50.0 ft. A person takes a seat, and then the
wheel turns 2777 radians.
(a) How far is the person above the ground?

(b) If it takes 30 sec for the wheel to turn 2777 radians, what is the angular speed of the
wheel?
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Graphs of the Sine and Cosine Functions

Periodic Functions

Graph of the Sine
Function

Graph of the Cosine
Function

Techniques for
Graphing, Amplitude,
and Period
Connecting Graphs
with Equations

A Trigonometric Model

LOOKING AHEAD TO CALCULUS
Periodic functions are used throughout
calculus, so it is important to know
their characteristics. One use of

these functions is to describe the
location of a point in the plane using
polar coordinates, an alternative to

rectangular coordinates.

<

(x,y) =

a
(0, 1)} 2 (cos s, sin §)

N

1,0)
T 0 0 *

0,-1)| 37

2

The unit circle
2, .2
x“+y° =1

Figure 2

Periodic Functions Phenomena that repeat with a predictable pattern,
such as tides, phases of the moon, and hours of daylight, can be modeled by sine
and cosine functions. These functions are periodic. The periodic graph in Figure 1
represents a normal heartbeat.

Figurel

Periodic functions are defined as follows.

Periodic Function

A periodic function is a function f such that
f(x) = f(x + np),

for every real number x in the domain of f, every integer n, and some posi-
tive real number p. The least possible positive value of p is the period of the
function.

The circumference of the unit circle is 27, so the least value of p for which
the sine and cosine functions repeat is 27r. Therefore, the sine and cosine func-
tions are periodic functions with period 2. For every positive integer n,

sinx = sin(x + n+27) and cosx = cos(x + n * 27).

Graph of the Sine Function We have seen that for a real number s, the
point on the unit circle corresponding to s has coordinates (cos s, sin s). See
Figure 2. Trace along the circle to verify the results shown in the table.

As s Increases from sin § cos §
0to g Increases from O to 1 Decreases from 1 to 0
% tom Decreases from 1 to 0 Decreases from 0 to —1
T to 3{ Decreases from 0 to —1 | Increases from —1 to 0
37” to 2 Increases from —1to O | Increases from O to 1

To avoid confusion when graphing the sine function, we use x rather than s.
This corresponds to the letters in the xy-coordinate system. Selecting key values
of x and finding the corresponding values of sin x leads to the table in Figure 3.
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To obtain the traditional graph in Figure 3, we plot the points from the table,
use symmetry, and join them with a smooth curve. Because y = sin x is periodic
with period 27 and has domain (—o, «), the graph continues in the same pat-
tern in both directions. This graph is a sine wave, or sinusoid.

Sine Function f(x) = sinx

Domain: (—, ) Range: [—1, 1]

X y y
0 0 L .

z 1 fx) =sinx, 27 =x =2w
o 2 -Zir 3w

/\ 5 K
s \/5 f : : . : : | .
4 2 27 37 - / % Uﬂ_
2 714

T | V3 X

3 2 ol

w

7|1 |

7 0 f(x) = sinx

3 WERMAL TLOAT ALTOD BOEL DADDS

2 |1 m:
2w 0 |

R A
| |

A |

Figure 3
The graph is continuous over its entire domain, (—2, ).
Its x-intercepts have x-values of the form n7r, where n is an integer.
Its period is 27r.

The graph is symmetric with respect to the origin, so the function is an
odd function. For all x in the domain, sin(—x) = —sin x.

A function f is an odd function if for all x in the domain of f,
f(=x) = = f(x).

The graph of an odd function is symmetric with respect to the origin. This
means that if (x, y) belongs to the function, then (—x, —y) also belongs to

the function. For example, (% 1) and (— = 1) are points on the graph of

2
y = sin x, illustrating the property sin(—x) = —sin x.

The sine function is related to the unit circle. Its domain consists of real
numbers corresponding to angle measures (or arc lengths) on the unit circle.
Its range corresponds to y-coordinates (or sine values) on the unit circle.

Consider the unit circle in Figure 2 and assume that the line from the origin
to some point on the circle is part of the pedal of a bicycle, with a foot placed
on the circle itself. As the pedal is rotated from O radians on the horizontal axis
through various angles, the angle (or arc length) giving the pedal’s location and
its corresponding height from the horizontal axis given by sin x are used to cre-
ate points on the sine graph. See Figure 4 on the next page.
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LOOKING AHEAD TO CALCULUS
The discussion of the derivative of a
function in calculus shows that for the
sine function, the slope of the tangent
line at any point x is given by cos x.
For example, look at the graph of

y = sin x and notice that a tangent line
atx= =2, 3 437
horizontal and thus have slope 0. Now

. will be

look at the graph of y = cos x and see
that for these values, cos x = 0.

Figure 4

Graph of the Cosine Function
the graph of the sine function shifted, or translated, % units to the left.

Cosine Function f(x) = cos x

Domain: (—, ©)

The graph of y = cos x in Figure 5 is

Range: [—1, 1]
y

"f(x) =cosx, 27 <x<2m

§elga vinwn 28 aln o ‘ =

The graph is continuous over its entire domain, (—o°, ).

Its x-intercepts have x-values of the form (2n + 1)5, where n is an integer.

Its period is 27r.

The graph is symmetric with respect to the y-axis, so the function is an
even function. For all x in the domain, cos(—x) = cos x.

Figure5

A function f is an even function if for all x in the domain of f,

f(=x) = f(x).

The graph of an even function is symmetric with respect to the y-axis. This
means that if (x, y) belongs to the function, then (—x, y) also belongs to

the function. For example, (%, 0) and (— g, O) are points on the graph of

y = cos x, illustrating the property cos(—x) = cos x.
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The graph of y = 2 sin x is shown in
blue, and that of y = sin x is shown in
red. Compare to Figure 6.
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FI<] The calculator graphs of f(x) = sin x in Figure 3 and f(x) = cos x in
Figure 5 are shown in the ZTrig viewing window
11 11 .
[—W, W} by [—4,4] (47~ 8.639379797)
4 4
of the TI-84 Plus calculator, with Xscl = % and Yscl = 1. (Other models have
different trigonometry viewing windows.) m

Techniques for Graphing, Amplitude, and Period The examples that
follow show graphs that are “stretched” or “compressed” (shrunk) either vertically,
horizontally, or both when compared with the graphs of y = sin x or y = cos x.

Graphing y = asin x
Graph y = 2 sin x, and compare to the graph of y = sin x.

For a given value of x, the value of y is twice what it would be for
y = sin x. See the table of values. The change in the graph is the range, which
becomes [ —2, 2]. See Figure 6, which also includes a graph of y = sin x.

x 0 5 T 3777 2w
sin x 0 1 0 —1 0
2 sin x 0 2 0 -2 0

Period: 27 y =2sinx
2

Figure 6

The amplitude of a periodic function is half the difference between the
maximum and minimum values. It describes the height of the graph both above
and below a horizontal line passing through the “middle” of the graph. Thus,
for the basic sine function y = sin x (and also for the basic cosine function
y = cos x), the amplitude is computed as follows.

1

1
5[1 - (=] = 5(2) =1 Amplitude of y = sin x

For y = 2 sin x, the amplitude is
1

1
5[2 - (=2)] = 5(4) = 2. Amplitude of y = 2 sin x

We can think of the graph of y = a sin x as a vertical stretching of the
graph of y = sinx when a > 1 and a vertical shrinking when 0 < a < 1.

Now Try Exercise 15.

Amplitude

The graph of y = asinx or y = a cos x, with a # 0, will have the same
shape as the graph of y = sin x or y = cos x, respectively, except with range
[—|al, |a|]. The amplitude is |a|.
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While the coefficient @ in y = a sin x or y = a cos x affects the amplitude
of the graph, the coefficient of x in the argument affects the period. Consider
y = sin 2x. We can complete a table of values for the interval [0, 27 ].

x |0| 4 4 2 4

[—tloltfo]-t]o

il
P
t

Note that one complete cycle occurs in 77 units, not 27 units. Therefore, the period

o | v

sin 2x | 0 |

here is 7, which equals 2777 Now consider y = sin 4x. Look at the next table.

T
8
1

These values suggest that one complete cycle is achieved in % or %Tﬁ units, which

is reasonable because
. T .
sm<4 . 2) =sin 27 = 0.

In general, the graph of a function of the form y = sin bx or y = cos bx,
for b > 0, will have a period different from 27w when b ¥ 1.

T

8

b |0| T
[ -1] o

[=NESIE]

5w
8
1

o+

sin 4x | 0 |

To see why this is so, remember that the values of sin bx or cos bx will take on
all possible values as bx ranges from 0 to 27r. Therefore, to find the period of
either of these functions, we must solve the following three-part inequality.

0 =bx=2m bxranges from 0 to 27.

27 Divide each part by the
0= x =— .
b positive number b.
Thus, the period is 2777 By dividing the interval [0, 2777] into four equal parts, we
obtain the values for which sin bx or cos bx is —1, 0, or 1. These values will give
minimum points, x-intercepts, and maximum points on the graph. (If a function
has b < 0, then identities can be used to rewrite the function so that b > 0.)

One method to divide an interval into four equal parts is as follows.
Step 1 Find the midpoint of the interval by adding the x-values of the end-
points and dividing by 2.

Step 2 Find the quarter points (the midpoints of the two intervals found in
Step 1) using the same procedure.

Graphing y = sin bx
Graph y = sin 2x, and compare to the graph of y = sin x.

In this function the coefficient of x is 2, so b = 2 and the period is
27

5~ = . Therefore, the graph will complete one period over the interval [0, 7 ].
We can divide the interval [0, 7] into four equal parts by first finding its

midpoint: %(0 + 7) = 7. The quarter points are found next by determining the

midpoints of the two intervals [0, g] and [%, 77]. Vi AN B
/Zm n)-3%)-%]

1 T T I 3T
—10+—=)=— and —| -+ 7 )=—Quarter points
2 2 4 2\2 4
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2

This screen shows a graph of the
function in Example 3. By choosing
Xscl = -, the x-intercepts, maxima,
and minima coincide with tick marks
on the x-axis.
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The interval [0, 77 ] is divided into four equal parts using these x-values.

0 T T 37
b - b o b . b 77-
4 2 4
Left First-quarter Midpoint Third-quarter Right
endpoint point point endpoint

We plot the points from the table of values given at the top of the previous page,
and join them with a smooth sinusoidal curve. More of the graph can be sketched
by repeating this cycle, as shown in Figure 7. The amplitude is not changed.

y

y= smx

,3 —77\ _'\4:05 = Mﬂ'
2
y = sin 2x

Figure 7

X

We can think of the graph of y = sin bx as a horizontal stretching of the
graph of y = sinx when 0 < b < 1 and a horizontal shrinking when b > 1.

Now Try Exercise 27.

Period

For b > 0, the graph of y = sin bx will resemble that of y = sin x, but with
period 2777. Also, the graph of y = cos bx will resemble that of y = cos x, but

with period 2.

Graphing y = cos bx

e 2 -
Graph y = cos 3.x over one period.

The period is
2777 Y % =2 i — ~ Tod divide by a fraction,
2 3 2 multiply by its reciprocal.

We divide the interval [0, 377 ] into four equal parts to obtain the x-values 0, 3%,
3m 9w

2 ’ 4 b
We use these values to obtain a table of key points for one period.

and 37 that yield minimum points, maximum points, and x-intercepts.

Figure 8

The amplitude is 1 because the maximum value is 1, the minimum value is
—1, and ; [1-(-1)]= 2(2) = 1. We plot these points and join them with a

smooth curve. The graph is shown in Figure 8.
Now Try Exercise 25.
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Look at the middle row of the table in Example 3. Dividing [0, 2777]

into four equal parts gives the values 0, g, T, 3777, and 277 for this row, result-

ing here in values of —1, 0, or 1. These values lead to key points on the graph,
which can be plotted and joined with a smooth sinusoidal curve.

Guidelines for Sketching Graphs of Sine and Cosine Functions

To graph y = a sin bx or y = a cos bx, with b > 0, follow these steps.

Step 1 Find the period, 2777. Start at 0 on the x-axis, and lay off a distance of 2777.

Step 2 Divide the interval into four equal parts. (See the Note preceding
Example 2.)

Step 3 Evaluate the function for each of the five x-values resulting from
Step 2. The points will be maximum points, minimum points, and
x-intercepts.

Step 4 Plot the points found in Step 3, and join them with a sinusoidal curve
having amplitude |a/|.

Step 5 Draw the graph over additional periods as needed.

Graphing y = asin bx

Graph y = —2 sin 3x over one period using the preceding guidelines.

Step 1 For this function, b = 3, so the period is 2777 The function will be graphed

over the interval [0, 2777]

Step 2 Divide the interval {O, 2777] into four equal parts to obtain the x-values
0.2 7T 7T and ™
16> 302> and 3.

Step 3 Make a table of values determined by the x-values from Step 2.

T T T 2 24
x Ols |52 |F
1 -
3x 0|2 | 37” 2
—‘0 X
sin 3x 0 1 0 -1 0 N
—2 sin 3x 0 -2 0 2 0

y = -2sin 3x

Figure9

Step 4 Plot the points (0, 0), (% —2), (% 0), (% 2), and (2777 0), and join
them with a sinusoidal curve having amplitude 2. See Figure 9.
Step 5 The graph can be extended by repeating the cycle.

Notice that when a is negative, the graph of y = a sin bx is a reflection
across the x-axis of the graph of y = |a| sin bx.

Now Try Exercise 29.
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y =-3 cos @x

W

-2+

-34

Figure 10

N =

X
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Graphing y = acos bx (Where bls a Multiple of =)

Graph y = —3 cos 7rx over one period.

Step 1 Here b =  and the period is 2777 = 2, so we will graph the function over
the interval [0, 2].

3

Step 2 Dividing [0, 2] into four equal parts yields the x-values 0, % 1,5, and 2.

Step 3 Make a table using these x-values.

1 3
X 0 ) 1 ) 2
X 0 5 ™ 3777 2w
COS 7TX 1 0 -1 0 1
—3cos@x | —3 0 3 0 -3

Step 4 Plot the points (0, —3), (% 0), (1, 3), (% 0), and (2, —3), and join them
with a sinusoidal curve having amplitude | —3| = 3. See Figure 10.
Step 5 The graph can be extended by repeating the cycle.

Notice that when b is an integer multiple of , the first coordinates of the
x-intercepts of the graph are rational numbers.

Now Try Exercise 37.

Connecting Graphs with Equations

Determining an Equation for a Graph

Determine an equation of the form y = a cos bx or y

y = a sin bx, where b > 0, for the given graph. 3

2 /\

1
that is reflected across its horizontal axis, the x-axis. 0 f x
The amplitude is half the distance between the max- :; VT 2” SNﬁ
imum and minimum values. 3

1 1
5[2 —(=2)] = 5(4) =72  The amplitude |a]| is 2.

This graph is that of a cosine function

Because the graph completes a cycle on the interval [0, 47 ], the period is 4.
We use this fact to solve for b.

o o)
4 = B Period = 7"
47b = 27 Multiply each side by b.
1 . .
b= 5 Divide each side by 4.

An equation for the graph is

1
= —2cos —X.
y 2x

L BN Horizontal stretch
x-axis reflection

Now Try Exercise 41.
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A Trigonometric Model  Sine and cosine functions may be used to model
many real-life phenomena that repeat their values in a cyclical, or periodic,
manner. Average temperature in a certain geographic location is one such example.

S Interpreting a Sine Function Model

The average temperature (in °F) at Mould Bay, Canada, can be approximated by
the function

o

f(x) =34 sin{ o (x— 4.3)],

where x is the month and x = 1 corresponds to January, x = 2 to February, and
so on.

(a) To observe the graph over a two-year interval, graph f in the window [0, 25 ]
by [ —45,45].

(b) According to this model, what is the average temperature during the month
of May?

(c) What would be an approximation for the average annual temperature at
Mould Bay?

(a) The graph of f(x) = 34 sin[%(x - 4.3)] is shown in Figure 11. Its ampli-
tude is 34, and the period is

27

T—2W+

6

6
=2 + — = 12. Simplify the complex fraction.
T

o3

Function f has a period of 12 months, or 1 year, which agrees with the
changing of the seasons.

HERFAL FLOAT SUTOD RESL DADIEM MP

(b) May is the fifth month, so the average temperature during May is
f(5) =134 Sin[Z(S - 4.3):| = 12°F. Letx =5 in the given function.

See the display at the bottom of the screen in Figure 11.

i L -1 (¢) From the graph, it appears that the average annual temperature is about 0°F
Figure 11 because the graph is centered vertically about the line y = 0.

Now Try Exercise 57.

Exercises

CONCEPT PREVIEW Fill in the blank(s) to correctly complete each sentence.

1. The amplitude of the graphs of the sine and cosine functions is , and the
period of each is
2. For the x-values 0 to %, the graph of the sine function ___ and that of the

(rises/falls)

cosine function
(rises/falls)
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3. The graph of the sine function crosses the x-axis for all numbers of the form
where n is an integer.

4. The domain of both the sine and cosine functions (in interval form)is
and the range is

5. The least positive number x for which cos x = 0 is

6. On the interval [, 277 ], the function values of the cosine function increase from
to

Concept Check Match each function with its graph in choices A—F.

7. y= —sinx 8. y= —cosx 9. y=sin2x
10. y = cos 2x 11. y=2sinx 12. y=2cosx
A. y B. C.

N/ N %\/
VA

[
=)
T
NEES
L
| =
T
N<ﬂ
3
v o
-+ =
<
]
3

Graph each function over the interval [ =21, 27 |. Give the amplitude. See Example 1.

2
13. y=2cosx 14. y=3sinx 15. y=§sinx
3 .
16. y = Zcosx 17. y= —cosx 18. y = —sinx
19. y= —2sinx 20. y=—3cosx 21. y =sin(—x)

22. Concept Check In Exercise 21, why is the graph the same as that of y = —sin x?

Graph each function over a two-period interval. Give the period and amplitude. See
Examples 2-5.

1 2 3
23. y =sin Ex 24. y = sin gx 25. y = cos Zx
1 .
26. y = cos gx 27. y =sin3x 28. y =cos2x
1 .
29. y =2sin i 30. y =3sin2x 31. y=—2cos3x
32. y=—5cos2x 33. y=cosmx 34. y= —sinmx
. 1 T
35. y=—2sin2mx 36. y =3 cos2mx 37. y= Ecos P
2 . w .
38. y=——sin—x 39. y=msinmx 40. y = — cos mx

3 4
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Connecting Graphs with Equations Determine an equation of the form y = a cos bx or

y = a sin bx, where b > 0, for the given graph. See Example 6.
43. »

41.

44.

y 42.

y 45.

[SIERE
3

14+
24
-3+

(Modeling) Solve each problem.

47. Average Annual Temperature Scientists believe that the average annual tempera-
ture in a given location is periodic. The average temperature at a given place dur-
ing a given season fluctuates as time goes on, from colder to warmer, and back
to colder. The graph shows an idealized description of the temperature (in °F) for

48.

3__

y

AEA

”\/z'ﬂ

X

3

24

14
0

approximately the last 150 thousand years of a particular location.

Average Annual Temperature (Idealized)

(a) Find the highest and lowest temperatures recorded.

(b) Use these two numbers to find the amplitude.

(¢) Find the period of the function.
(d) What is the trend of the temperature now?

Blood Pressure Variation The
graph gives the variation in
blood pressure for a typical
person. Systolic and diastolic
pressures are the upper and
lower limits of the periodic
changes in pressure that pro-
duce the pulse. The length
of time between peaks is the
period of the pulse.

Blood Pressure Variation

\ 80°
[\.2S I \
\ F [350 WT W L 1
=\ V=0T
s\ / s.\/
AV / 50°
Years ago

°F

Systolic Period =0.8 sec

120 pressure | |
N N \\ "\
sl NS NN
Diastolic | ]
J0| Pressure | |
| |
| ] |
0 0.8 1.6

Pressure (in mm mercury)

(a) Find the systolic and diastolic pressures.
(b) Find the amplitude of the graph.

(¢) Find the pulse rate (the number of pulse beats in 1 min) for this person.

Time (in seconds)
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(Modeling) Tides for Kahului Harbor The chart shows the tides for Kahului Harbor
(on the island of Maui, Hawaii). To identify high and low tides and times for other Maui
areas, the following adjustments must be made.

Hana: High, +40 min, +0.1 ft; Makena: High, +1:21, —0.5 ft;
Low, +18 min, —0.2 ft Low, +1:09, —0.2 ft
Maalaea: High, +1:52, —0.1 ft; Lahaina: High, +1:18, —0.2 ft;
Low, +1:19, —0.2 ft Low, +1:01, —0.1 ft
JANUARY
19 20 21 22
6 Noon 6 6 Noon 6 6 Noon 6 6 Noon 6
AM. PM. AM. PM. AM. PM. AM. PM.
3 i i I (TR i 3
i i i 2 0l \
) 1\ 2
3 i 3
= i i 1=
11 ¥y | |
it addd i aad) o i
O i i L LT L LU L L 1 O

Source: Maui News. Original chart prepared by
Edward K. Noda and Associates.

Use the graph to approximate each answer.

49.
50.
51.
52.
53.

The graph is an example of a periodic function. What is the period (in hours)?
What is the amplitude?

At what time on January 20 was low tide at Kahului? What was the height then?
Repeat Exercise 51 for Maalaea.

At what time on January 22 was high tide at Lahaina? What was the height then?

(Modeling) Solve each problem.

54.

Activity of a Nocturnal Animal Many activities of living organisms are periodic.
For example, the graph at the right below shows the time that a certain nocturnal
animal begins its evening activity.

(a) Find the amplitude of this graph. Activity of a Nocturnal Animal

(b) Find the period.

Time P.M.

55. Atmospheric Carbon Dioxide At Mauna Loa, Hawaii, atmospheric carbon dioxide

levels in parts per million (ppm) were measured regularly, beginning in 1958. The
function

L(x) = 0.022x2 + 0.55x + 316 + 3.5 sin 27x

can be used to model these levels, where x is in years and x = 0 corresponds to 1960.
(Source: Nilsson, A., Greenhouse Earth, John Wiley and Sons.)

A5 (a) Graph L in the window [ 15, 45] by [325, 385].

(b) When do the seasonal maximum and minimum carbon dioxide levels occur?

(¢) Listhe sum of a quadratic function and a sine function. What is the significance
of each of these functions?
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56. Atmospheric Carbon Dioxide Refer to Exercise 55. The carbon dioxide content

in the atmosphere at Barrow, Alaska, in parts per million (ppm) can be modeled by
the function

C(x) = 0.04x? + 0.6x + 330 + 7.5 sin 27rx,

where x = 0 corresponds to 1970. (Source: Zeilik, M. and S. Gregory, Introductory
Astronomy and Astrophysics, Brooks/Cole.)

<] (a) Graph C in the window [5, 50] by [320, 450].

57.

58.

(b) What part of the function causes the amplitude of the oscillations in the graph
of C to be larger than the amplitude of the oscillations in the graph of L in
Exercise 55, which models Hawaii?

Average Daily Temperature The temperature in Anchorage, Alaska, can be approx-
imated by the function

2
=37+ 21 sin| ——(x —
T(x) =37 + 21 sm[365 (x 91)},

where T(x) is the temperature in degrees Fahrenheit on day x, with x = 1 corre-
sponding to January 1 and x = 365 corresponding to December 31. Use a calculator
to estimate the temperature on the following days. (Source: World Almanac and Book
of Facts.)

(a) March 15 (day 74) (b) April 5 (day 95) (c) Day 200

(d) June 25 (e) October 1 (f) December 31
Fluctuation in the Solar Constant The solar constant S is the amount of energy
per unit area that reaches Earth’s atmosphere from the sun. It is equal to 1367 watts

per m? but varies slightly throughout the seasons. This fluctuation AS in S can be
calculated using the formula

27 (825 — N)
AS = 0.034S sin| ——————

365.25

In this formula, N is the day number covering a four-year period, where N = 1 cor-
responds to January 1 of a leap year and N = 1461 corresponds to December 31 of
the fourth year. (Source: Winter, C., R. Sizmann, and L. L.Vant-Hull, Editors, Solar
Power Plants, Springer-Verlag.)

(a) Calculate AS for N = 80, which is the spring equinox in the first year.
(b) Calculate AS for N = 1268, which is the summer solstice in the fourth year.
(¢) What is the maximum value of AS?

(d) Find a value for N where AS is equal to 0.

Musical Sound Waves Pure sounds produce single sine waves on an oscilloscope.
Find the amplitude and period of each sine wave graph. On the vertical scale, each
square represents 0.5. On the horizontal scale, each square represents 30° or %.

59.

A 61.
A 62.

60.

/ \ -

Concept Check Compare the graphs of y = sin 2x and y = 2 sin x over the interval
[0, 277 ]. Can we say that, in general, sin bx = b sin x for b > 0? Explain.

Concept Check Compare the graphs of y = cos 3x and y = 3 cos x over the interval
[0, 277 ]. Can we say that, in general, cos bx = b cos x for b > 0? Explain.



4.2 Translations of the Graphs of the Sine and Cosine Functions | 153

Relating Concepts

For individual or collaborative investigation (Exercises 63-66)

I Connecting the Unit Circle and Sine Graph Using a TI-84 Plus calculator, adjust
the settings to correspond to the following screens.

H H BOENAL PLDAT alTE BERL FAXIAN NP H BONIAL FLONT aUTH BESL PADIAN NP H
Fistl Mot Flold INDOH
iy Beas(T) Tmin=0
YieBaialT) Tmax=6. 283185587
P BT Tstes=, LIGAPDLI2A09E7
Yoo OmaniT} imin= -1, 382Z7F75F
La = Fmax=6, GEFIRFETT
TRy Exrrid ¢ Y= Weok=1.5707 96376 TH49
BoarderCalar: Ehiigr = Vmin=-2.5
Backeround: Yar= fmax=2.5
Detect Asunstotes: OR OFF | [Pizes | Yaclsl
FORMAT Y = EDITOR

Graph the two equations (which are in parametric form), and watch as the
unit circle and the sine function are graphed simultaneously. Press the TRACE
key once to obtain the screen shown on the left below. Then press the up-arrow key
to obtain the screen shown on the right below. The screen on the left gives a unit
circle interpretation of cos 0 = 1 and sin 0 = 0. The screen on the right gives a
rectangular coordinate graph interpretation of sin 0 = 0.

BAIAL FLONT aUTE DAL PAIIAH NP BARNAL FLONT BUTE DAL PAXIAH WP fl

E‘—ZS — '[::—25 Framm

63. On the unit circle graph, let T = 2. Find X and Y, and interpret their values.

64. On the sine graph, let T = 2. What values of X and Y are displayed? Interpret
these values with an equation in X and Y.

65. Now go back and redefine Y,y as cos(T). Graph both equations. On the cosine
graph, let T = 2. What values of X and Y are displayed? Interpret these values
with an equation in X and Y.

66. Explain the relationship between the coordinates of the unit circle and the coor-
dinates of the sine and cosine graphs.

I E Translations of the Graphs of the Sine and Cosine

Functions

R e Horizontal Translations = The graph of the function

m Vertical Translations

m Combinations of y = f(x —d) y=fG+3y =f() y=flx—4)
Translations ) )
is translated horizontally compared to the

graph of y = f(x). The translation is d units
to the right if d > 0 and |d| units to the left 0 !
if d < 0. See Figure 12.

With circular functions, a horizontal
translation is a phase shift. In the function
y = f(x _ d), the expression x — d is the Horizontal translations of y = f(x)
argument. Figure12

= A Trigonometric Model
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Graphing y = sin(x — d)
Graph y = sin (x — %) over one period.

Method 1 For the argument x — % to result in all possible values
throughout one period, it must take on all values between 0 and 24, inclusive.
To find an interval of one period, we solve the following three-part inequality.

T
0=x-— 3 = 27  Three-part inequality

17
3

= x = Add 7§ to each part.

w3y

Use the method described in the previous section to divide the interval [%, 7777]
into four equal parts, obtaining the following x-values.

m Sm 4xm llw Iw These are key
37 67 37 6 3 x-values.

A table of values using these x-values follows.

T S5 4 11 T
X 30 %6 |3 |76 |3
x—3 0 5| m %T 2
sin(x—3) [ 0 | 1 | O |—-1]0

We join the corresponding points with a smooth curve to obtain the solid blue
graph shown in Figure 13. The period is 27, and the amplitude is 1.

y

1_
o

ENE]

The graph can be extended through
additional periods by repeating the given
portion of the graph, as necessary.

Figure13

Method 2 We can also graph y = sin (x — g) by using a horizontal trans-

lation of the graph of y = sin x. The argument x — % indicates that the graph
will be translated % units to the right (the phase shift) compared to the graph of

y = sin x. See Figure 13.
To graph a function using this method, first graph the basic circular func-
tion, and then graph the desired function using the appropriate translation.

Now Try Exercise 39.

CAUTION In Example 1, the argument of the function is (x - %) The
parentheses are important here. If the function had been

. T
y=sinx — —,

3

the graph would be that of y = sin x translated vertically % units down.
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Graphing y = acos(x — d)
Graph y = 3 cos (x + %) over one period.

Method 1 We first solve the following three-part inequality.

T
0=x+ " = 27  Three-part inequality
™ T p
——= X = —— Subtracty from each part.
4 4

Dividing this interval into four equal parts gives the following x-values. We use
them to make a table of key points.

m @ 3w Sm w
T T, T , ——  Key x-values

4 4 4 4 4

N | @ 3m | 5w 17 These x-values lead to
i 4 4 4 maximum points, minimum

x + % 0 % P 3277 2 points, and x-intercepts.
cos(x + 7) 1|0 |-1]0]|1
3cos(x+ %) | 3 0 |-3]0 3

We join the corresponding points with a smooth curve to obtain the solid blue
graph shown in Figure 14. The period is 27, and the amplitude is 3.

Method 2 Write y =3 cos(x + %) in the form y = a cos(x — d).

m ™
=3 c+— ), =3cos|x— |
y COoS </\ 4) or y COS{’C ( 4)

This result shows that d = —% Because —% is negative, the phase shift is

—%‘ = % unit to the left. The graph is the same as that of y = 3 cos x (the red
graph in the calculator screen shown in the margin), except that it is translated
% unit to the left (the blue graph). Now Try Exercise 41.

Rewrite to subtract — %

Graphing y = acos[b(x — d)]
Graph y = —2 cos(3x + ) over two periods.
Method 1 We first solve the three-part inequality
0=3x+7=27w
to find the interval [—%, %] Dividing this interval into four equal parts gives

the points (*% 72>, (*761 0), (0,2), (% O), and (; f2). We plot these
points and join them with a smooth curve. By graphing an additional half period
y to the left and to the right, we obtain the graph shown in Figure 15.

Method 2 First write the equation in the form y = a cos[b(x — d) ].

Rewrite b
y=—2cos(3x + ), or y:_zcos{:;(x_i_ﬂ')} ewrite by

3 factoring out 3.

Then a = =2, b =3, and d = — 3. The amplitude is | —2| = 2, and the period
is 2777 (because the value of b is 3). The phase shift is |—%‘ = g units to the left

y =-2cos 3x + )

compared to the graph of y = —2 cos 3x. Again, see Figure 15.
Figure15 .
Now Try Exercise 47.



156 | CHAPTER4 Graphs of the Circular Functions

y=3+f(x)

L)

41 y=-5+f(x)

Vertical translations of y = f(x)

Figure 16

HERRAL FLOAT ALTD BECEL DAGCEW HP u

MARMA,

Yy = —2cos 3x

117
4

Vertical Translations The graph of a function of the form
y =c¢ + f(x)

is translated vertically compared to the graph of y = f(x). See Figure 16. The
translation is ¢ units up if ¢ > 0 and is | c| units down if ¢ < 0.

Graphing y = ¢ + acos bx
Graph y = 3 — 2 cos 3x over two periods.

We use Method 1. The values of y will be 3 greater than the cor-
responding values of y in y = —2 cos 3x. This means that the graph of
y =3 — 2 cos 3x is the same as the graph of y = —2 cos 3x, vertically translated

3 units up. The period of y = —2 cos 3xis 2777, so the key points have these x-values.

momom 2T
6> 37 27 3

Use these x-values to make a table of points.

0,

Key x-values

x ozl 5 |5|%
cos 3x O[—-1]0] 1
2 cos 3x 210|210 2
3—2cos3x | 1|35 |31

The key points are shown on the graph in Figure 17, along with more of the graph,
which is sketched using the fact that the function is periodic.

y

1
T
T 27
2

Figure17 Now Try Exercise 51.

CAUTION If we use Method 2 to graph the function y =3 — 2 cos 3x in
Example 4, we must first graph

y = —2cos 3x

and then apply the vertical translation 3 units up. To begin, use the fact that
a = —2 and b = 3 to determine that the amplitude is 2, the period is 2777 and
the graph is the reflection of the graph of y = 2 cos 3x across the x-axis.

Then, because ¢ = 3, translate the graph of y = —2 cos 3x up 3 units. See
Figure17.

If the vertical translation is applied first, then the reflection must be
across the line y = 3, not across the x-axis.
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Combinations of Translations

Further Guidelines for Sketching Graphs of Sine and
Cosine Functions

To graph y =c¢ + asin[b(x —d)] ory =c + a cos[b(x — d)], with b > 0,
follow these steps.

Method 1

Step 1 Find an interval whose length is one period 2777 by solving the three-
part inequality 0 =< b(x — d) = 2.

Step 2 Divide the interval into four equal parts to obtain five key x-values.

Step 3 Evaluate the function for each of the five x-values resulting from
Step 2. The points will be maximum points, minimum points, and
points that intersect the line y = ¢ (“middle” points of the wave).

Step 4 Plot the points found in Step 3, and join them with a sinusoidal curve
having amplitude |a|.

Step 5 Draw the graph over additional periods, as needed.
Method 2

Step 1 Graph y = a sin bx or y = a cos bx. The amplitude of the function is

. . 2w
, and the period is -

|a

Step 2 Use translations to graph the desired function. The vertical transla-
tion is ¢ units up if ¢ > 0 and | c| units down if ¢ < 0. The horizontal
translation (phase shift) is d units to the right if d > 0 and |d | units
to the left if d < 0.

Graphing y = ¢ + asin[b(x — d)]
Graph y = —1 + 2 sin(4x + ) over two periods.

We use Method 1. We must first write the expression on the right
side of the equation in the form ¢ + a sin[b(x — d)].

Rewrite by
factoring out 4.

y=-—1+2sin(4x +7), or y=—1+ 25in{4<x + Z)

Step 1 Find an interval whose length is one period.

T
0=4 <\ + 4> = 271 Three-part inequality

aw ko
0= x+— =—  Divide each part by 4.
4 2
7T 77. m
— Z = X = Z Subtract 7 from each part.

T T T T
-——, ——, 0, —, — Keyux-values
4 8 8 4
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Step 3 Make a table of values.

x g M A O O O O
ot A EIE
4(x +7) 0 7 m 3777 2
sin[4(x + )] 0 1 0 -1 0
2sin[4(x + 7)] 0 2 0 -2 0
y=-1+2sin(x +m) -1+ 2sin(d4x + @) | —1 1 -1 | =3 | ~1

Figure 18
Steps 4 and 5 Plot the points found in the table and join them with a sinusoidal
curve. Figure 18 shows the graph, extended to the right and left to include
two full periods.

+/ Now Try Exercise 57.

A Trigonometric Model " For natural phenomena that occur in periodic
patterns (such as seasonal temperatures, phases of the moon, heights of tides)
a sinusoidal function will provide a good approximation of a set of data points.

Fd m Modeling Temperature with a Sine Function

The maximum average monthly temperature in New Orleans, Louisiana, is 83°F,
and the minimum is 53°F. The table shows the average monthly temperatures. The
scatter diagram for a two-year interval in Figure 19 strongly suggests that the
temperatures can be modeled with a sine curve.

Month | °F || Month | °F

WERHAL FLOAT ALTO RESL NADISW MP 1]
Jan 53 July 83
Feb 56 Aug 83
Mar 62 Sept 79 o : " ’

] = L -]
Apr 68 Oct 70 i . @ -
May 76 Nov 61 ) u
June 81 Dec 55 Figure 19

Source: World Almanac and Book
of Facts.

(a) Using only the maximum and minimum temperatures, determine a function
of the form

f(x) =asin[b(x —d)] + ¢, wherea,b, c, and d are constants,

that models the average monthly temperature in New Orleans. Let x represent
the month, with January corresponding to x = 1.

(b) On the same coordinate axes, graph f for a two-year period together with
the actual data values found in the table.

(c) Use the sine regression feature of a graphing calculator to determine a sec-
ond model for these data.
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Figure 21

(a)

(b)

(c)
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We use the maximum and minimum average monthly temperatures to find
the amplitude a.
83 —-53

5 =15 Amplitude a

The average of the maximum and minimum temperatures is a good choice
for c. The average is

83 + 53
2

= 68. Vertical translation ¢
Because temperatures repeat every 12 months, b can be found as follows.

12= 2" beriod =2
= eriod = 5~
b 7
ar
b=— Solve for b.
6

The coldest month is January, when x = 1, and the hottest month is July,
when x = 7. A good choice for d is 4 because April, when x = 4, is located
at the midpoint between January and July. Also, notice that the average
monthly temperature in April is 68°F, which is the value of the vertical
translation, c. The average monthly temperature in New Orleans is modeled
closely by the following equation.

f(x)=asin[b(x—d)] +¢
f(x) =15 Sin|:76T(x — 4)] + 68  Substitute for a, b, ¢, and d.

Figure 20 shows two iterations of the data points from the table, along with
the graph of y = 15 sin[%(x - 4)] + 68. The graph of y = 15 sin %x + 68
is shown for comparison.

We used the given data for a two-year period and the sine regression capabil-
ity of a graphing calculator to produce the model

£(x) = 15.35 sin(0.52x — 2.13) + 68.89

described in Figure 21(a). Its graph along with the data points is shown in
Figure 21(b).

Now Try Exercise 61.

4 D [T R

Xxercises

CONCEPT PREVIEW Fill in the blank(s) to correctly complete each sentence.

1.

The graph of y = sin (x + %) is obtained by shifting the graph of y = sinx

unit(s)tothe _____ |
(right/left)

The graph of y = cos (x - %) is obtained by shifting the graph of y = cos x

unit(s) to the .
(right/left)
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The graph of y = 4 sin x is obtained by stretching the graph of y = sin x vertically
by a factor of

The graph of y = —3 sin x is obtained by stretching the graph of y = sin x by a fac-
tor of and reflecting across the -axis.

The graph of y = 6 + 3 sin x is obtained by shifting the graph of y = 3 sin x
unit(s)

(up/down)

The graph of y = —5 + 2 cos x is obtained by shifting the graph of y =2 cos x
unit(s)

(up/down)

The graph of y =3 + 5 cos (x + %) is obtained by shifting the graph of y = cos x
unit(s) horizontally tothe __ stretching it vertically by a factor
(right/left)

unit(s) vertically

of , and then shifting it

(up/down)

Repeat Exercise 7 for y = —2 + 3 cos (x - %)

Concept Check Match each function with its graph in choices A—I. (One choice will not

be used.)
9.y:sin<x—%) 10.y:sin<x+%) 11.y:cos<x—%)
k . .
12. y=cos(x+z> 13. y=1+sinx 14. y=—1+sinx
15. y=1+cosx 16. y=—1 + cosx
A. y B. y C y
: | J(
1 3 1 | I
} ? /I x 0 : : x 0 11I' 27 '
0 Tor —l-~ T 2 -1
I 4 -2
D. » E. F. »
4 1 2
/\ | x 0 : : x .
TS A o
177 4 4 | x
,2 0 | T Ll
T 2
G. y H. L
1~T~ S
4 2
1 5 i\ f /i x |
DN T N
= J{_1 m\_Sx T =
17. The graphs of y = sinx + 1 and y = sin(x + 1) are NOT the same. Explain why
this is so.
18. Concept Check Refer to Exercise 17. Which one of the two graphs is the same as

thatof y = 1 + sin x?



4.2 Translations of the Graphs of the Sine and Cosine Functions | 161

Concept Check Match each function in Column I with the appropriate description in
Column II.

I I

19. y =3sin(2x — 4) A. amplitude = 2, period = g phase shift = %
20. y=2sin(3x — 4) B. amplitude = 3, period = 7, phase shift = 2
21. y= —4sin(3x — 2) C. amplitude = 4, period = %ﬁ phase shift = %
22. y= —2sin(4x — 3) D. amplitude = 2, period = %ﬁ phase shift = %

Concept Check Fill in each blank with the word right or the word left.

23. If the graph of y = cos x is translated % units horizontally tothe | it will
coincide with the graph of y = sin x.

24. If the graph of y = sin x is translated % units horizontally tothe — it will
coincide with the graph of y = cos x.

Connecting Graphs with Equations Each function graphed is of the formy = ¢ + cos x,
y=c +sinx, y=cos(x —d), ory = sin(x — d), where d is the least possible positive
value. Determine an equation of the graph.

25. vy 26.
24 34
T 2_\/
T 1+
N 2 >
0 T 21
24 14+
3+ 24+
27. y 28. y
24 2+
11 15
- ¥ x NG e
0 ol 2 ,EO M
-1+ 3 3 -1 3 3
2+ 2+

Find the amplitude, the period, any vertical translation, and any phase shift of the graph
of each function. See Examples 1-5.

29. y=2sin(x + ) 30. y=3sin<x+§)
1 1 1 1

31. y=——cos (*x-i-z) 32. y=——sin <*x+ 77)
4 2 2 2 2

5 y=re] (s 1)] 4.y = e[ 3]

. ™ 1
3s. y=2—s1n<3x—g) 36. y=—1+Ecos(2x—37r)
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Graph each function over a two-period interval. See Examples 1 and 2.

37. y=cos(x—§> 38. y=sin(x—%> 39. yZSin(x—F%)

3
40.y:cos<x+z) 41.y:2005<x—z) 42.y:3sin<x—l>
3 3 2
Graph each function over a one-period interval. See Example 3.

3 1
43. y=2sin[2<x+2)} 44. y=—zcos[4(x+;>}

45. y= —4sin(2x — ) 46. y =3 cos(4x + )
1 1 T 1 3 T
= T . y=——sin| x+—
47. y 2cos<2x 4) 48. y 4sm(4x 8>

Graph each function over a two-period interval. See Example 4.

49. y=-3+2sinx 50. y=2—3cosx 51. y=—1—2cos5x
2 .3 1 1
52. y=1—Zsin—x 53. y=1—2cos—x 54. y=—-3+3sin—x
34 2 2
55. y= 2+ gin3 56, y= 1+ 2 cos
.y= 5 sin 3x .y = 3 608 5%

Graph each function over a one-period interval. See Example 5.

57.y=—3+23in(x+§> 58. y=4—3cos(x—m)

1 5
59. y=5+sin{2(x+%>} 60. y=—5+cos[3(x—%)]

(Modeling) Solve each problem. See Example 6.

61. Average Monthly Temperature The average
monthly temperature (in °F) in Seattle, Washington,
is shown in the table. Jan | 41| July | 65

Month | °F | Month | °F

(a) Plotthe average .monthly temperature over a two- Feb |43 | Aug | 66
year period, letting x = 1 correspond to January
of the first year. Do the data seem to indicate Mar | 46 | Sept | 61
i ?
a translated sine graph? Apr | 50| oct |53

(b) The highest average monthly temperature is
66°F in August, and the lowest average monthly May | 56 | Nov | 45
temperature is 41°F in January. Their average June | 61 Dec | 41
is 53.5°F. Graph the data together with the line
y = 53.5. What does this line represent with
regard to temperature in Seattle?

Source: World Almanac and Book
of Facts.
(¢) Approximate the amplitude, period, and phase shift of the translated sine wave.

(d) Determine a function of the form f(x) = a sin[b(x — d)] + ¢, where a, b, c,
and d are constants, that models the data.

(e) Graph f together with the data on the same coordinate axes. How well does f
model the given data?

I () Use the sine regression capability of a graphing calculator to find the equation of
a sine curve that fits these data.



62. Average Monthly Temperature The average
monthly temperature (in °F) in Phoenix, Arizona,
is shown in the table.

(a) Predict the average annual temperature.

(b) Plot the average monthly temperature over a
two-year period, letting x = 1 correspond to
January of the first year.

(c¢) Determine a function of the form f(x) =
acos[b(x —d)] + ¢, where a, b, ¢, and d
are constants, that models the data.

(d) Graph f together with the data on the same co-
ordinate axes. How well does f model the data?

4.2 Translations of the Graphs of the Sine and Cosine Functions
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Month | °F | Month | °F
Jan 54 July 93
Feb 58 Aug 91
Mar 63 Sept 86
Apr 70 Oct 75
May | 79 Nov 62

June 89 Dec 54

Source: World Almanac and Book
of Facts.

I (e) Use the sine regression capability of a graphing calculator to find the equation of
a sine curve that fits these data (two years).

P (Modeling) Monthly Temperatures A set of temperature data (in °F) is given for a par-
ticular location. (Source: www.weatherbase.com)

(a) Plot the data over a two-year interval.

(b) Use sine regression to determine a model for the two-year interval. Let x = 1 rep-
resent January of the first year.

(c¢) Graph the equation from part (b) together with the data on the same coordinate axes.

63. Average Monthly Temperature, Buenos Aires, Argentina

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sept

Oct

Nov

Dec

71.2

4.7

70.5

63.9

57.7

52.2

51.6

54.9

57.6

63.9

69.1

73.8

64. Average High Temperature, Bue

Jan

Feb

Mar

Apr

May

Jun

nos Aires, Argentina

Jul

Aug

Sept

Oct

Nov

Dec

86.7

83.7

79.5

72.9

66.2

60.1

58.8

63.1

66.0

72.5

71.5

82.6

P (Modeling) Fractional Part of the Moon Illuminated The tables give the fractional part of
the moon that is illuminated during the month indicated. (Source: http://aa.usno.navy.mil)

(a) Plot the data for the month.

(b) Use sine regression to determine a model for the data.

(¢) Graph the equation from part (b) together with the data on the same coordinate axes.

65. January 2015

Day 1 2 3 4 5 6 7 8 9 |10 | 11 {12 |13 |14 | 15| 16
Fraction [0.84[0.91{0.96({0.99(1.00{0.99{0.96{0.92{0.86{0.79{0.70{0.62{0.52]0.42|0.33|0.23
Day 17 | 18 | 19 [ 20 | 21 | 22 [ 23 | 24 | 25|26 | 27 | 28 | 29 | 30 | 31
Fraction [0.15/0.08(0.03{0.00|0.01{0.04(0.10(0.19{0.28(0.39|0.50|0.61{0.71]0.80{0.87
66. November 2015

Day 1 2 3 4 5 6 7 8 9 10 | 11 12 | 13 14
Fraction | 0.730.63[0.53(0.43]0.34[0.25]|0.180.11 | 0.06 | 0.02 [ 0.00 | 0.00 | 0.02 | 0.06
Day 15116 |17 [ 18 119 |20 [ 21 [ 22|23 |24 [ 25|26 |27 |28 |29 | 30
Fraction [0.12{0.19{0.28{0.39{0.49|0.61|0.71]{0.81{0.90|0.96|0.99|1.00(0.98{0.93{0.87{0.79
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Chapter 4 Quiz (sections 4.1-4.2)

1. Give the amplitude, period, vertical translation, and phase shift of the function

v=3—4sin(2x + 7).
Graph each function over a two-period interval. Give the period and amplitude.
. 1 .
2. y=—4sinx 3. y=—Ecos2x 4. y=3sinmwx

1
5. y=—2cos<x+%) 6. y=2+sin(2x — ) 7. y=—1+55inx

Connecting Graphs with Equations Each function graphed is of the form y = a cos bx
ory = a sin bx, where b > 0. Determine an equation of the graph.

8. y 9. y 10.

1
1_
L 0 /\ )
0 77\./271' 1 T 2
t x -

-2

<

o
SIEES
3

(Modeling) Average Monthly Temperature The
average temperature (in °F) at a certain location
can be approximated by the function

flx) =12 sin{%(x - 3.9)} +72,
where x = 1 represents January, x = 2 represents
February, and so on.

11. What is the average temperature in April?

12. What is the lowest average monthly temper-
ature? What is the highest?

Graphs of the Tangent and Cotangent Functions

Graph of the Tangent
Function

Graph of the
Cotangent Function
Techniques for
Graphing

Connecting Graphs
with Equations

Graph of the Tangent Function Consider the table of selected points
accompanying the graph of the tangent function in Figure 22 on the next page.

These points include special values between —g and g The tangent function
is undefined for odd multiples of g and, thus, has vertical asymptotes for such

values. A vertical asymptote is a vertical line that the graph approaches but does
not intersect. As the x-values get closer and closer to the line, the function values
increase or decrease without bound. Furthermore, because

tan(—x) = —tanx, Odd function

the graph of the tangent function is symmetric with respect to the origin.
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y = tanx | Period: 7

The graph continues in this pattern.

Figure 23

X
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x y = tanx y =tanx
| |
5| -V3=-17 | |
3| Y
5| -~ 06 i |
0 0 U I
F v R
7 1 | |
5 V=17 : i

Figure 22

sSin x
cos x?
0 when sine values are 0, and are undefined when cosine values are 0. As x-values
. o o .

increase from — 7 to -, tangent values range from — to % and increase through-

The tangent function has period 7. Because tan x = tangent values are

. . T 3
out the interval. Those same values are repeated as x increases from 5 to —-, from

3w, 5 3w, 3w, -
777 to 7” and so on. The graph of y = tan x from — 777 to 777 is shown in Figure 23.

Tangent Function f(x) = tanx

Domain: {xlx # (2n + 1)% where 7 is any integer} Range: (—o0, )

* Y " f(x) = tan x
_g undefined : WERRAL FLOAT ALTO BESL ln:
m I T
-7 _ : }
0 0 x
T s _{Um —gh . 1w
n 1 2 4 4
|
g undefined | ]lll
f(x) = tanx, —g <x<T

2

Figure 24

The graph is discontinuous at values of x of the form x = (2n + 1)% and
has vertical asymptotes at these values.

Its x-intercepts have x-values of the form nr.
Its period is 7.
There are no minimum or maximum values, so its graph has no amplitude.

The graph is symmetric with respect to the origin, so the function is an odd
function. For all x in the domain, tan(—x) = —tan x.

Graph of the Cotangent Function A similar analysis for selected points
between 0 and 7 for the graph of the cotangent function yields the graph in
Figure 25 on the next page. Here the vertical asymptotes are at x-values that are
integer multiples of 7. Because

cot(—x) = —cotx, Odd function

this graph is also symmetric with respect to the origin.
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213

|
|
|
|
|
1
T
ks
|
|
|

|
e I

y =cotx Period: 7

The graph continues in this pattern.

Figure 26

X y = cotx y
51 V3=11

T 1

Tl Vo6

g 0

Z Vil g6

u ~1

N3~ —17

Figure 25

The cotangent function also has period 7r. Cotangent values are O when cosine
values are 0, and are undefined when sine values are 0. As x-values increase from
0 to 7, cotangent values range from % to — and decrease throughout the inter-
val. Those same values are repeated as x increases from 7 to 277, from 27 to 3,
and so on. The graph of y = cot x from —m to 7 is shown in Figure 26.

Cotangent Function f(x) = cotx

Domain: {x|x # nr, where n is any integer} Range: (—c, ©)

X y ’ f(x) = cot x
o
n 1
o
3 0
11 1l
37” -1 BiG W |
7r | undefined

f(x)=cotx, 0<x <
Figure 27

The graph is discontinuous at values of x of the form x = n7r and has ver-
tical asymptotes at these values.

Its x-intercepts have x-values of the form (2n + 1) 7.
Its period is 7.
There are no minimum or maximum values, so its graph has no amplitude.

The graph is symmetric with respect to the origin, so the function is an
odd function. For all x in the domain, cot(—x) = —cot x.

<l The tangent function can be graphed directly with a graphing calculator,
using the tangent key. To graph the cotangent function, however, we must use
one of the identities

1 COS X

cotx = .
tan x s x

because graphing calculators generally do not have cotangent keys. m
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Techniques for Graphing

Guidelines for Sketching Graphs of Tangent and
Cotangent Functions

To graph y = a tanbx or y = a cot bx, with b > 0, follow these steps.

Step 1 Determine the period, %. To locate two adjacent vertical asymptotes,
solve the following equations for x:

For y = a tan bx: bx = —% and bng.
For y = a cot bx: bx =0 and bx = .
Step 2 Sketch the two vertical asymptotes found in Step 1.

Step 3 Divide the interval formed by the vertical asymptotes into four equal
parts.

Step 4 Evaluate the function for the first-quarter point, midpoint, and third-
quarter point, using the x-values found in Step 3.

Step 5 Join the points with a smooth curve, approaching the vertical asymp-
totes. Indicate additional asymptotes and periods of the graph as
necessary.

Graphing y = tan bx
Graph y = tan 2x.

Step 1 The period of this function is % To locate two adjacent vertical asymp-

totes, solve 2x = —g and 2x = g (because this is a tangent function). The
two asymptotes have equations x = —% and x = %.

Step 2 Sketch the two vertical asymptotes x = =+ %, as shown in Figure 28.

a T

Step 3 Divide the interval (— T Z) into four equal parts to find key x-values.
™ : ) T
first-quarter value: — 3 middle value: 0, third-quarter value: 3 Key x-values

Step 4 Evaluate the function for the x-values found in Step 3.

o o
. KRR
2x 710 |7
tan2x | —1 0 1 | ¥

]

Another period has been
graphed, one half period to
the left and one half period to
the right.

y = tan 2x Period:g
Figure 28

Step 5 Join these points with a smooth curve, approaching the vertical asymp-
totes. See Figure 28. Now Try Exercise 13.
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y

|
ry=-3 tan% x
27T Period: 27

Il
T
s
2

|
f
w
|
|
|
I

Figure 29

Graphing y = atan bx
Graph y = —3 tan %x.
N T B I .
The period is - = 7 + 5 = 7 - 7 = 27. Adjacent asymptotes are
2
at x = — and x = 7. Dividing the interval (—r, 77) into four equal parts gives

key x-values of —%, 0, and % Evaluating the function at these x-values gives
the following key points.

<—7T %) (0.0) <7T —2) Key points
2 s 9 | 5 ) 2 5 . ey l)Oll'ltS

By plotting these points and joining them with a smooth curve, we obtain the
graph shown in Figure 29. Because the coefficient —3 is negative, the graph is
reflected across the x-axis compared to the graph of y = 3 tan %x.

Now Try Exercise 21.

The function y = —3 tan %x in Example 2, graphed in Figure 29,
has a graph that compares to the graph of y = tan x as follows.

1. The period is larger because b = %, and % <.
2. The graph is stretched vertically because a = —3, and | —3| > 1.
3. Each branch of the graph falls from left to right (that is, the function

decreases) between each pair of adjacent asymptotes because a = —3,
and —3 < 0. When a < 0, the graph is reflected across the x-axis com-
pared to the graph of y = |a| tan bx.

Graphing y = acot bx
Graph y = %cot 2x.

Because this function involves the cotangent, we can locate two
adjacent asymptotes by solving the equations 2x = 0 and 2x = 7. The lines
x = 0 (the y-axis) and x = g are two such asymptotes. We divide the interval
(O, %) into four equal parts, obtaining key x-values of %, %, and %T Evaluating
the function at these x-values gives the key points (%, %) (%, O), <%T — %) We
plot these points and join them with a smooth curve approaching the asymptotes
to obtain the graph shown in Figure 30.

|
1.
y=3 cot 2x
A Periodlz g

—+ 3

8
!
T

o3 4
NE

|
!
T
m
2
!
|
|

Figure 30

Now Try Exercise 23.
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Like the other circular functions, the graphs of the tangent and cotangent
functions may be translated horizontally and vertically.

Graphingy = ¢ + tanx

Graph y = 2 + tan x.

Every value of y for this function will be 2 units more
than the corresponding value of y in y = tan x, causing
the graph of y = 2 + tan x to be translated 2 units up
compared to the graph of y = tan x. See Figure 31.

y

2
1

T
I 37
2 2
T2 [

y=2+tanx

— =

-
12

|

|

|

|

|

|

|

|

|

—
_3m -7

2

|

Figure 31

Three periods of the function are shown in Figure 31.
Because the period of y = 2 + tan x is 7, additional
asymptotes and periods of the function can be drawn by
repeating the basic graph every 7 units on the x-axis to
the left or to the right of the graph shown.

Observe Figures 32 and 33. In these figures
Yy, =tanx
is the red graph and

y, =2+ tan x

is the blue graph. Notice that for the arbitrarily-chosen
value of 7} (approximately 0.78539816), the difference
in the y-values is

)’1_)’2:3_1:2

This illustrates the vertical translation 2 units up.

FE T 1
{ -
. e
i /_/FF_._ = ™ =, /:FF__ = ¥
i."f ' i.l'f '
| —4 | | —4 |
SR TEEIREL N = W TREITEIE vy <!
Figure 32 Figure 33

Now Try Exercise 29.

Graphing y = ¢ + acot(x — d)

Graphy = =2 — cot(x - %)

Here b = 1, so the period is 7. The negative sign in front of the
cotangent will cause the graph to be reflected across the x-axis, and the argument

(x - %) indicates a phase shift (horizontal shift) % unit to the right. Because

¢ = —2, the graph will then be translated 2 units down. To locate adjacent asymp-
totes, because this function involves the cotangent, we solve the following.

x—z=0 and x—z=7r
4 4
x=2 and xX=— Add7.
4 4

Dividing the interval (%, %7) into four equal parts and evaluating the function at
the three key x-values within the interval give these points.

T
<’ 73
2

3
)» <472), (7T,*1) Key points

We join these points with a smooth curve. This period of the graph, along with

™

the one in the domain interval (— %T, 7 ) is shown in Figure 34 on the next page.
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Figure 34

Now Try Exercise 37.

Connecting Graphs with Equations

Determining an Equation for a Graph
Determine an equation for each graph.

(@ y ®

=

R Y Spp——

(a) This graph is that of y = tan x but reflected across the x-axis and stretched
vertically by a factor of 2. Therefore, an equation for this graph is

y = —2tan x.
™

x-axis reflection

Vertical stretch

(b) This is the graph of a cotangent function, but the period is g rather than 7.
Therefore, the coefficient of x is 2. This graph is vertically translated 1 unit
down compared to the graph of y = cot 2x. An equation for this graph is

y=—1+ cot2x.
™\ Period is 7.
Vertical translation
1 unit down

Now Try Exercises 39 and 43.

Because the circular functions are periodic, there are infinitely many
equations that correspond to each graph in Example 6. Confirm that both

y=-—-1—cot(—2x) and y=-1-— tan(2x - Z)
are equations for the graph in Example 6(b). When writing the equation from

a graph, it is practical to write the simplest form. Therefore, we choose values
of b where b > 0 and write the function without a phase shift when possible.
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E

xercises

CONCEPT PREVIEW Fill in the blank to correctly complete each sentence.

1. The least positive value x for which tan x = 0 is

2. The least positive value x for which cot x = 0 is

3. Between any two successive vertical asymptotes, the graph of y = tan x

(increases/decreases)

4. Between any two successive vertical asymptotes, the graph of y = cot x

(increases/decreases)

5. The negative value k with the greatest value for which x = k is a vertical asymptote
of the graph of y = tan x is

6. The negative value k with the greatest value for which x = k is a vertical asymptote
of the graph of y = cot x is

Concept Check Match each function with its graph from choices A-F.

7. y= —tanx 8. y= —cotx 9. y=tan(x—%>
10. y = cot <x - %) 11. y= cot(x + %) 12. y =tan (x + %)
A. y B. y C. y

| |
| | | | |
‘ /‘ ! ‘ ! A
o0/ o7 T N+ )
V | [ i I
| | |
D. y E. F. y
| | |
| | A
o > N
™ Sm _m 3m
4 \\jt 4 \4
! | |
Graph each function over a one-period interval. See Examples 1-3.
1
13. y =tan4x 14. y =tan Ex 15. y=2tanx
1 1
16. y =2cotx 17. y:2tan1x 18. y=Ecotx
1 1
19. y = cot 3x 20. y = —cot >* 21. y= —2tan 2~
22 3t ! 23 ! t 4 24 ! t 2
.y = n— Ly =— Ly = ——
y an - x y = cotdx y 5 oot 2x
Graph each function over a two-period interval. See Examples 4 and 5.
X T
25. y=tan(2x — ) 26. y = tan <5 + 77) 27. y=cot <3x + Z)

3
28.y:cot(2x—7ﬂ-> 29, y=1+tanx 30. y=1—tanx
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31. y=1—cotx 32, y=—-2—cotx
1

33, y=—1+2tanx 34. y=3+5tanx

1

35. y=—1+Zcot(2x - 3m) 36. y=—2+3tan(4x + )
2 3

37. y:1—200t{2(x+z>} 38. y:—2+*tan<*x—ﬂ')

2 3 4

Connecting Graphs with Equations Determine the simplest form of an equation for
each graph. Choose b > 0, and include no phase shifts. (Midpoints and quarter-points
are identified by dots.) See Example 6.

39. 41. y

42,

(el
EERA

_——— 4 —— ——

Concept Check Decide whether each statement is true or false. If false, explain why.

45. The least positive number k for which x = k is an asymptote for the tangent function
is %
46. The least positive number k for which x = k is an asymptote for the cotangent func-

t. . E
101N 18 5

47. The graph of y = tan x in Figure 23 suggests that tan(—x) = tan x for all x in the
domain of tan x.

48. The graph of y = cot x in Figure 26 suggests that cot(—x) = —cot x for all x in the
domain of cot x.

Work each exercise.

49. Concept Check If c is any number, then how many solutions does the equation
¢ = tan x have in the interval (=2, 27 ]?

50. Concept Check Consider the function defined by f(x) = —4 tan(2x + 7). What is
the domain of f? What is its range?

sin(—x) .
o5 and then using the rela-

51. Show that tan(—x) = —tan x by writing tan(—x) as (:x)
tionships for sin(—x) and cos(—x).

cos(—x)

sin( —x)

52. Show that cot(—x) = —cot x by writing cot(—x) as and then using the rela-

tionships for cos(—x) and sin(—x).
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(Modeling) Distance of a Rotating Beacon A rotating beacon is located at point A
next to a long wall. The beacon is 4 m from the wall. The distance d is given by

d = 4 tan 27rt,

where t is time measured in seconds since the beacon started rotating. (When t = 0,
the beacon is aimed at point R. When the beacon is aimed to the right of R, the value
of d is positive; d is negative when the beacon is aimed to the left of R.) Find d for
each time. Round to the nearest tenth if applicable.

d
53. t=0
R
54. +=04
4 m
55. t=12 a
56. Why is 0.25 a meaningless value ¢

for t?

Relating Concepts

For individual or collaborative investigation (Exercises 57-62)

Consider the following function from Example 5. Work these exercises in order.

T
=—-2-—cot| x——
y co <x 4>

57. What is the least positive number for which y = cot x is undefined?

58. Let k represent the number found in Exercise 57. Set x — 7 equal to k, and
solve to find a positive number for which cot (x - %) is undefined.

59. Based on the answer in Exercise 58 and the fact that the cotangent function has
period 7, give the general form of the equations of the asymptotes of the graph
of y=—2 —cot (x - %) Let n represent any integer.

I 60. Use the capabilities of a calculator to find the x-intercept with least positive
x-value of the graph of this function. Round to the nearest hundredth.

61. Use the fact that the period of this function is 7 to find the next positive
x-intercept. Round to the nearest hundredth.

62. Give the solution set of the equation —2 — cot (x - %) = 0 over all real num-
bers. Let n represent any integer.

l !I Graphs of the Secant and Cosecant Functions

Graph of the Secant
Function

Graph of the Cosecant
Function

Techniques for
Graphing
Connecting Graphs
with Equations

Addition of Ordinates

Graph of the Secant Function  Consider the table of selected points
accompanying the graph of the secant function in Figure 35 on the next page.
These points include special values from —a to 7r. The secant function is

undefined for odd multiples of g and thus, like the tangent function, has vertical
asymptotes for such values. Furthermore, because

sec(—x) =secx, Even function

the graph of the secant function is symmetric with respect to the y-axis.
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y =secx Period: 27

Figure 36

X y = secx y
2__
+Z NV, : :
e | |y =secx
| |
+3 2 FapalREaraal
427 -2 2 2
3 -1+ |
37 — | |
7| -V2=-14 | |
S |21+ |
5 _2;75% -12 ! !
tar -1 .
Figure 35

Because secant values are reciprocals of corresponding cosine values, the
period of the secant function is 2, the same as for y = cos x. When cos x = 1,
the value of sec x is also 1. Likewise, when cos x = —1, secx = —1. For all x,
—1 =cosx = 1, and thus, |sec x| = 1 for all x in its domain. Figure 36 shows
how the graphs of y = cos x and y = sec x are related.

Secant Function f(x) = secx

Domain: {x|x # (2n+1)7, Range: (—o, —=1]U[1, )

where n is any integer

X y y
—% undefined T
-z N I | R
4 \/2 : : i : :
oL W
T \/2 I S —| [ R R
: AR
% | undefined | Fit |
| [ |
Il W Tl
4 V2 i L] | g
o —1 1
3777 undefined flx) = secx
Figure 37

* The graph is discontinuous at values of x of the form x = (2n + 1)7
and has vertical asymptotes at these values.

¢ There are no x-intercepts.
o Its period is 27r.
¢ There are no minimum or maximum values, so its graph has no amplitude.

o The graph is symmetric with respect to the y-axis, so the function is an even
function. For all x in the domain, sec(—x) = sec x.

As we shall see, locating the vertical asymptotes for the graph of a function
involving the secant (as well as the cosecant) is helpful in sketching its graph.
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Graph of the Cosecant function = A similar analysis for selected points
between —r and 7 for the graph of the cosecant function yields the graph in
Figure 38. The vertical asymptotes are at x-values that are integer multiples of 7.
This graph is symmetric with respect to the origin because

csc(—x) = —cscx.  Odd function
X y = csex X y = csex y
ks _7 _ | |
6 2 6 2 | 2+ |
| |
T Ve=14| "% | -V2=-14 | |
| I |
TN I I <R | y = osex |
it z | = O BT R
2 2 | 2 2 |
| . Tl - -~ | 1+ |
|
3 3
| L T | Va=14|-T| -V2=-14 | 1 |
[ | | Sm _5m _
/ A\l I/ \ |y =sinx 6 2 6 2 ! I
X
N R N Figure 38
™ /-—_1 N g
| | | . . .
| | | Because cosecant values are reciprocals of corresponding sine values, the
' ' ' period of the cosecant function is 27, the same as for y = sin x. When sinx = 1,

the value of csc x is also 1. Likewise, when sin x = —1, csc x = —1. For all x,
—1 =sinx =1, and thus |csc x| = 1 for all x in its domain. Figure 39 shows
how the graphs of y = sin x and y = csc x are related.

Cosecant Function f(x) = cscx

Domain: {x|x # nr, Range: (—o, —1]U [1, )

y = cscx Period: 27

Figure 39

where n is any integer }

x y y
0 | undefined 1
T
6 2 | I [
s V3 | | | |
3 3 | | |
| I 14 |
o
2 : o
27 M 27 -7 0 T
3 3 LoaNT
7 | undefined | | -
3 | | |
T L
Z - |
| | |
27 | undefined T
f(x) =cscx

Figure 40

The graph is discontinuous at values of x of the form x = n7 and has
vertical asymptotes at these values.

There are no x-intercepts.
Its period is 27r.
There are no minimum or maximum values, so its graph has no amplitude.

The graph is symmetric with respect to the origin, so the function is an odd
function. For all x in the domain, csc(—x) = —csc x.
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P&l Calculators do not have keys for the cosecant and secant functions. To
graph them with a graphing calculator, use

cscx=— and secx=——. Reciprocal identities [ |
sSin x COsS X

Techniques for Graphing

Guidelines for Sketching Graphs of Cosecant and Secant
Functions

To graph y = a cscbx or y = a sec bx, with b > 0, follow these steps.

Step 1 Graph the corresponding reciprocal function as a guide, using a
dashed curve.

To Graph Use as a Guide

y = acsc bx y = asin bx

y = a sec bx y = acos bx

Step 2 Sketch the vertical asymptotes. They will have equations of the form
x = k, where k corresponds to an x-intercept of the graph of the
guide function.

Step 3 Sketch the graph of the desired function by drawing the typical
U-shaped branches between the adjacent asymptotes. The branches
will be above the graph of the guide function when the guide function
values are positive and below the graph of the guide function when the
guide function values are negative. The graph will resemble those in
Figures 37 and 40 in the function boxes given earlier in this section.

Like graphs of the sine and cosine functions, graphs of the secant and cose-
cant functions may be translated vertically and horizontally. The period of both
basic functions is 27r.

Graphing y = asec bx
Graph y = 2 sec %x.
Step 1 This function involves the secant, so the corresponding reciprocal func-
tion will involve the cosine. The guide function to graph is
5 1
=2 cos —x.
Y 2
Using the guidelines given earlier, we find that this guide function has
amplitude 2 and that one period of the graph lies along the interval that
satisfies the following inequality.
1
0=—x=2
% T
0= x =47 Muliiply each part by 2.
Dividing the interval [0, 477 | into four equal parts gives these key points.

(0,2), (m,0), (2m, —2), (3m0), (4m,2) Key points
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These key points are plotted and joined with a dashed red curve to indi-
cate that this graph is only a guide. An additional period is graphed as
shown in Figure 41(a).

y y
1
y =2sec 3X
: : : y=2cos %x I I
| | | is used as a guide. : : : :
| lo24. | | | [ S |
~ -
N 7 s N s
N 7t I\ VN L A S U N S et
N /: oL
47 —SIW\\—%Z//—T T 7IT \\2.7:, 3I77 47 —4ar _3|7T\\_2W//_T ok T SNan ,/3;7 47
| | T | | | | T | |
| | | | | | | |
| | | | | |
| | | |
(@) (b)
n Figure 41

b4

This is a calculator graph of the function

in Example 1.

HERFAL FLOAT SUTD RESL DADIEM MP

This is a calculator graph of the
function in Example 2. (The use

of decimal equivalents when defining

y; eliminates the need for some
parentheses.)

Step 2 Sketch the vertical asymptotes as shown in Figure 41(a). These occur at
x-values for which the guide function equals 0, such as

x=—-3m7, x=-—m, x=1, x=3.

Step 3 Sketch the graph of y = 2 sec %x by drawing typical U-shaped branches,
approaching the asymptotes. See the solid blue graph in Figure 41(b).

Now Try Exercise 11.

Graphing y = acsc(x — d)
Graph y = %csc (x - %)

Step 1 Graph the corresponding reciprocal function

yin(s-3)
=—sin|lx——|,
YT YT

shown as a red dashed curve in Figure 42.

Step 2 Sketch the vertical asymptotes through the x-intercepts of the graph of
y= %sin (x - %) These x-values have the form (2n + 1)7, where n is
any integer. See the black dashed lines in Figure 42.

m

Step 3 Sketch the graph of y = %csc (x - 5) by drawing the typical U-shaped
branches between adjacent asymptotes. See the solid blue graph in

Figure 42.
y
: : :y = 7csc(x—?)
| | | |
| | N | |
| | | |
% 1,/ O\ |
4 P | \ | | x
T 4 T T T ’
i Foow o n b
2 7 2 2 N/ 2
=3 | | |
) | | |
| | |
| | |

Figure 42 Now Try Exercise 13.



178 | CHAPTER 4 Graphs of the Circular Functions

Yascealil

Figure 43
Y¥aramied 2_
4
1 ) L?' ¥ 417
- mremr et e e e L
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A |
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Figure 44

Figure 45

Connecting Graphs with Equations

Determining an Equation for a Graph

Determine an equation for each graph.

@ v (b) y

J

b

f=)
)
—— oy t—————

Y I J i A

(a) This graph is that of a cosecant function that is stretched horizontally having

period 4. If y = csc bx, where b > 0, then we must have b = % and

= CSC X
y ZX

[

Horizontal stretch

1 2
T
2

(b) This is the graph of y = sec x, translated 1 unit up. An equation is
y=1+ secx.

Vertical translation

Now Try Exercises 25 and 27.

Addition of Ordinates
tions, such as

A function formed by combining two other func-

3=yt v,

has historically been graphed using a method known as addition of ordinates.
(The x-value of a point is sometimes called its abscissa, while its y-value is
called its ordinate.)

Illustrating Addition of Ordinates
Use the functions y; = cos x and y, = sin x to illustrate addition of ordinates for

y3 = cos x + sin x

with the value % for x.

In Figures 43-45, y, = cos x is graphed in blue, y, = sinx is
graphed in red, and their sum, y; + y, = cos x + sin x, is graphed as y; in green.
If the ordinates (y-values) for x = % (approximately 0.52359878) in Figures 43
and 44 are added, their sum is found in Figure 45. Verify that

0.8660254 + 0.5 = 1.3660254.

(This would occur for any value of x.) Now Try Exercise 43.
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Exercises

CONCEPT PREVIEW Match each description in Column I with the correct value in
Column II. Refer to the basic graphs as needed.

I 11
.. . . ™
1. The least positive value k for which x = kis a A. 5
vertical asymptote for y = sec x
2. The least positive value k for which x = kis a B.m
vertical asymptote for y = csc x C. —m
3. The least positive value that is in the range of D. 1
y =secx
g 7
4. The greatest negative value that is in the range )
of y=cscx
F. -1

5. The greatest negative value of x for which
secx = —1

6. The least positive value of x for which
cscx =—1

Concept Check Match each function with its graph from choices A-D.
7. y=—cscx 8. y= —secx 9. y=sec(xf§> 10. y=csc<x+§)

A. y B. y

T EY

|
T X

1 1
T T
LT T N3 1Y - 21
| |

:\

|

1

T

|
| |
)
X X
T R
N o
|

Graph each function over a one-period interval. See Examples 1 and 2.

1 1 1 T
11. y= — 12. y= —2sec— . y=—= + =
y 3sec4x y sec2x 13. y chc<x 2)
1 3
14. y:Ecsc<x—%> 15. y:csc(x—%> 16. y:sec<x+7ﬂ->
17. y= (+3> 18. y= (+3>
- y=sec{x+y - y=ose{x+ 3
1 T 1 T
19. y= —x — — 20. v= T4+ =
9. y csc(zx 4) 0. y sec(zx 3)
21. y=2+3sec(2x —m) 22. y=1—2csc(x+%>

23, y=1-+ (—3—77> 2. y=2+1 (1—)
.y = Seselx = .y = Miad CRank
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Connecting Graphs with Equations Determine an equation for each graph. See Exam-
ple 3.

26. ¥ 27. y
| | |
|\ | 3 I
I Moz |
2 | |2 14 2 [I |
+—1 F——>x —H—t—4—x
0 oz 4N 7 3w o
4 4 + [ 2 |
\I | 34 I I
| | | |
I I
30. 7
4 | |
| |
24 | |
| |
! | |
— X
0 T R 37 4w
-1 | |
2 |

Concept Check Decide whether each statement is true or false. If false, explain why.

31.
32.
33.

34.

The tangent and secant functions are undefined for the same values.
The secant and cosecant functions are undefined for the same values.

The graph of y = sec x in Figure 37 suggests that sec(—x) = sec x for all x in the
domain of sec x.

The graph of y = csc x in Figure 40 suggests that csc(—x) = —csc x for all x in the
domain of csc x.

Work each problem.

35. Concept Check If c is any number such that —1 < ¢ < I, then how many solutions
does the equation ¢ = sec x have over the entire domain of the secant function?

36. Concept Check Consider the function g(x) = —2 csc(4x + 7). What is the domain
of g? What is its range?

37. Show that sec(—x) = sec x by writing sec(—x) as m and then using the rela-
tionship between cos(—x) and cos x.

38. Show that csc(—x) = —csc x by writing csc(—x) as sin(—y) and then using the rela-

tionship between sin(—x) and sin x.

(Modeling) Distance of a Rotating Beacon The distance a in the figure (repeated from
the exercise set in the previous section) is given by

a = 4]sec 27rt|.

d

A

Find the value of a for each time t. Round to the nearest tenth if applicable.

39.

t=0 40. +=0.86 41. t=124 42. t=025
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E@ Given y, and y,, define their sum to be

Y3 =yt ¥
Evaluate y, and y, at the given value of x and show that their sum is equal to y; evalu-
ated at x. Use the method of addition of ordinates. See Example 4.

. . 2
43. y, =sinx,y, =sin2x; x=7¢ 44. y, =cosx,y, =cos2x; x=7%

45. y, =tanx, y, = sec x; x:% 46. y, = cotx, y, = cscx; x:%

I ———————————
Summary Exercises on Graphing Circular Functions

These summary exercises provide practice with the various graphing techniques pre-
sented in this chapter. Graph each function over a one-period interval.

3
1. y=2sinmx 2. y=4cosEx
3 2+ Seos ™ 4. y=3sec
.y == —Cos — .y = -
y > i y sec
1 T
5. y=—4cscax 6. y=3tan E)H_W

Graph each function over a two-period interval.

7. y=—55in§ 8. y=10005(%+§>
(5
9. y=3—4sm<5x+ﬂ') 10. y =2 —sec[m(x —3)]

—

Harmonic Motion

Simple Harmonic
Motion

Damped Oscillatory
Motion

Simple Harmonic Motion In part A of Figure 46, a spring with a weight
attached to its free end is in equilibrium (or rest) position. If the weight is pulled
down a units and released (part B of the figure), the spring’s elasticity causes the
weight to rise a units (a > 0) above the equilibrium position, as seen in part C,
and then to oscillate about the equilibrium position.

Figure 46

If friction is neglected, this oscillatory motion is described mathematically
by a sinusoid. Other applications of this type of motion include sound, electric
current, and electromagnetic waves.
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Figure 47

To develop a general equation for such motion, consider Figure 47. Sup-
pose the point P(x, y) moves around the circle counterclockwise at a uniform
angular speed w. Assume that at time ¢ = 0, P is at (a, 0). The angle swept out
by ray OP at time ¢ is given by 6§ = wt. The coordinates of point P at time ¢ are

x=acos =acoswt and y=asinf = asin wt.

As P moves around the circle from the point (a, 0), the point Q(0, y) oscil-
lates back and forth along the y-axis between the points (0, @) and (0, —a).
Similarly, the point R(x, 0) oscillates back and forth between (a, 0) and (—a, 0).
This oscillatory motion is simple harmonic motion.

The amplitude of the motion is |a |, and the period is %T The moving points

P and Q or P and R complete one oscillation or cycle per period. The number of
w

cycles per unit of time, called the frequency, is the reciprocal of the period, 5,

where w > 0.

Simple Harmonic Motion

The position of a point oscillating about an equilibrium position at time # is
modeled by either

s(t) = acoswt or s(t) = asin wt,

where a and w are constants, with @ > 0. The amplitude of the motion is | a/|,
the period is =% and the frequency is = oscillations per time unit.
[0} 27

Modeling the Motion of a Spring

Suppose that an object is attached to a coiled spring such as the one in Figure 46
on the preceding page. It is pulled down a distance of 5 in. from its equilibrium
position and then released. The time for one complete oscillation is 4 sec.

(a) Give an equation that models the position of the object at time .
(b) Determine the position at t = 1.5 sec.

(¢) Find the frequency.

(a) When the object is released at # = 0, the distance of the object from the equi-
librium position is 5 in. below equilibrium. If 5(¢) is to model the motion,
then s(0) must equal —5. We use

s(t) = acoswt, witha = —5.

We choose the cosine function here because cos w(0) = cos 0 =1, and
—5+ 1= —5. (Had we chosen the sine function, a phase shift would have
been required.) Use the fact that the period is 4 to solve for w.

2w -
—— =4 The period is %
w

T
w = — Solve for w.
2

Thus, the motion is modeled by s(z) = —5 cos 5.
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(b) Substitute the given value of 7 in the equation found in part (a).

o
S([) = —5cos El Equation from part (a)

s(1.5)=-5 COS[Z(1.5)1| Lets=1.5.
s(1.5) = 3.54 in. Use a calculator.
Because 3.54 > 0, the object is above the equilibrium position.

(¢) The frequency is the reciprocal of the period, or L oscillation per sec.
q y p p 1 p

Now Try Exercise 7.

Analyzing Harmonic Motion

Suppose that an object oscillates according to the model
s(t) = 8 sin 31,
where 7 is in seconds and s(7) is in feet. Analyze the motion.

The motion is harmonic because the model is
s(1) = a sin wt.

Because a = 8, the object oscillates 8 ft in either direction from its starting
point. The period 2777 =~ 2.1 is the time, in seconds, it takes for one complete
oscillation. The frequency is the reciprocal of the period, so the object completes

% ~ ().48 oscillation per sec.

Now Try Exercise 17.

Damped Oscillatory Motion In the example of the stretched spring, we
disregard the effect of friction. Friction causes the amplitude of the motion to
diminish gradually until the weight comes to rest. In this situation, we say that
the motion has been damped by the force of friction. Most oscillatory motions
are damped. For instance, shock absorbers are put on an automobile in order to
damp oscillatory motion. Instead of oscillating up and down for a long while
after hitting a bump or pothole, the oscillations of the car are quickly damped out
for a smoother ride.

The decrease in amplitude of a damped oscillatory motion usually follows
the pattern of exponential decay.

Analyzing Damped Oscillatory Motion
A typical example of damped oscillatory motion is provided by the function
s(x) = e " cos 2mx.
(The number e = 2.718 is the base of the natural logarithm function.) We use x
rather than ¢ to match the variable for graphing calculators.

I (@) Provide a calculator graph of y; = e * cos 27x, along with the graphs of
yi=e*andy, = —e*for 0 = x = 3.

(b) Describe the relationships among the three graphs drawn in part (a).
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(c) For what values of x does the graph of y; touch the graph of y;?

(d) For what values of x does the graph of y; intersect the x-axis?

(a) Figure 48 shows a TI-84 Plus graph of y,, y,, and y; in the window [0, 3]

by [—1,1].

—X

yy=e

y3 = e*cos 2mx

Figure 48

(b) The graph of y; is bounded above by the graph of y; and below by the graph

of y,. (The graphs of y, and y, are referred to as envelopes for the graph
of y3)

(¢) When2mx = 0,27, 447, and 677, cos 27rx = 1. Thus, the value of ™ cos 27x

is the same as the value of e¢™* when 2m7x = 0, 27, 47, and 67r—that is,
when x =0, 1, 2, and 3.

Now Try Exercise 33.

S

Exercises

CONCEPT PREVIEW Refer to the equations in the definition of simple harmonic motion
in this section, and consider the following equation.

s(t) = 5 cos2t, where tis time in seconds

Answer each question.

1.

What is the amplitude of this motion?

2. What is the period of this motion?
3. What is the frequency?

4.
5
6

What is s(0)?

. What is s(%)?

. What is the range of the graph of this function? (Hint: See the answers to Exer-

cises 4 and 5.)
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(Modeling) Solve each problem. See Examples 1 and 2.

7.

10.

11.

12.

13.

14.

Spring Motion An object is attached to a coiled spring, as in Figure 46. It is pulled
down a distance of 4 units from its equilibrium position and then released. The time
for one complete oscillation is 3 sec.

(a) Give an equation that models the position of the object at time 7.
(b) Determine the position at t = 1.25 sec to the nearest hundredth.
(c) Find the frequency.

Spring Motion Repeat Exercise 7, but assume that the object is pulled down a dis-
tance of 6 units and that the time for one complete oscillation is 4 sec.

Voltage of an Electrical Circuit The voltage E in an electrical circuit is modeled by
E =5 cos 1207,

where ¢ is time measured in seconds.

(a) Find the amplitude and the period.

(b) Find the frequency.

(¢) Find E, to the nearest thousandth, when ¢ = 0, 0.03, 0.06, 0.09, 0.12.

(d) Graph Efor0 =r = %.

Voltage of an Electrical Circuit For another electrical circuit, the voltage E is
modeled by
E = 3.8 cos 407rt,

where ¢ is time measured in seconds.

(a) Find the amplitude and the period.

(b) Find the frequency.

(¢) Find E, to the nearest thousandth, when ¢ = 0.02, 0.04, 0.08, 0.12, 0.14.

(d) Graph Efor0 =¢= 21*0.

Particle Movement Write the equation and then determine the amplitude, period,

and frequency of the simple harmonic motion of a particle moving uniformly around
a circle of radius 2 units, with the given angular speed.

(a) 2 radians per sec (b) 4 radians per sec

Spring Motion The height attained by a weight attached to a spring set in motion is
s(t) = —4 cos 8t inches after ¢ seconds.

(a) Find the maximum height that the weight rises above the equilibrium position of
s(r) =0.

(b) When does the weight first reach its maximum height if r = 0?

(c) What are the frequency and the period?

Pendulum Motion What are the period P and frequency T of
oscillation of a pendulum of length % ft? (Hint: P =27 3%

where L is the length of the pendulum in feet and the period
Pisin seconds.)

Pendulum Motion In Exercise 13, how long should the pen-
dulum be to have a period of 1 sec?
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15.

16.

17.

18.

19.

20.

Spring Motion The formula for the up and down motion of a weight on a spring is

given by
s(t) = asin , lﬁt.
m

If the spring constant k is 4, what mass m must be used to produce a period of
1 sec?

Spring Motion (See Exercise 15.) A spring with spring constant k = 2 and a 1-unit

mass m attached to it is stretched and then allowed to come to rest.

(a) If the spring is stretched % ft and released, what are the amplitude, period, and
frequency of the resulting oscillatory motion?

(b) What is the equation of the motion?

Spring Motion The position of a weight attached to a spring is
s(t) = —5 cos 4art inches after ¢ seconds.

(a) Find the maximum height that the weight rises above the equilibrium position of
s(t) = 0.

(b) What are the frequency and period?

(¢) When does the weight first reach its maximum height?

(d) Calculate and interpret s(1.3) to the nearest tenth.

Spring Motion The position of a weight attached to a spring is
s(t) = —4 cos 10r inches after 7 seconds.

(a) Find the maximum height that the weight rises above the equilibrium position of
s(r) = 0.

(b) What are the frequency and period?

(¢) When does the weight first reach its maximum height?

(d) Calculate and interpret s(1.466).

Spring Motion A weight attached to a spring is pulled down 3 in. below the equi-

librium position.

(a) Assuming that the frequency is % cycles per sec, determine a model that gives
the position of the weight at time ¢ seconds.

(b) What is the period?

Spring Motion A weight attached to a spring is pulled down 2 in. below the equi-

librium position.

(a) Assuming that the period is % sec, determine a model that gives the position of
the weight at time 7 seconds.

(b) What is the frequency?

(Modeling) Springs A weight on a spring has initial position s(0) and period P.

(a) To model displacement of the weight, find a function s given by

s(t) = a cos wt.

(b) Evaluate s(1). Is the weight moving upward, downward, or neither when ¢t = 1?

21.
23.

Support the results graphically or numerically.
s(0) =2in.; P=0.5sec 22. s(0) =5in; P=1.5sec
5(0) = =3in.; P =0.8sec 24. s(0) = —4in.; P=12sec
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P (Modeling) Music A note on a piano has given frequency F. Suppose the maximum
displacement at the center of the piano wire is given by s(0). Find constants a and @ so
that the equation

s(t) = a cos wt
models this displacement. Graph s in the viewing window [0, 0.05] by [ —0.3, 0.3].
25. F=275; s(0) =021 26. F=110; 5(0) = 0.11
27. F=55; 5(0) = 0.14 28. F = 220; s(0) = 0.06

(Modeling) Spring Motion Consider the spring in Figure 46, but assume that because
of friction and other resistive forces, the amplitude is decreasing over time, and that
t seconds after the spring is released, its position in inches is given by the function

s(t) = —11e %% cos 0.57r1.

29. How far was the weight pulled down from the equilibrium position before it was
released?

30. How far, to the nearest hundredth of an inch, is the weight from the equilibrium
position after 6 sec?

I 31. Graph the function on the interval [0, 12] by [—12, 12], and determine the values
for which the graph intersects the horizontal axis.

32. How many complete oscillations will the graph make during 12 sec?

FI& (Modeling) Damped Oscillatory Motion Work each exercise. See Example 3.
33. Consider the damped oscillatory function
s(x) = 5¢ %3 cos mx.

(a) Graph the function y; = 5¢ %3* cos 7rx in the window [0, 3] by [ =5, 5].
(b) The graph of which function is the upper envelope of the graph of y;?

(¢) For what values of x does the graph of y; touch the graph of the function found
in part (b)?

34. Consider the damped oscillatory function
s(x) = 10e™™ sin 27rx.
(a) Graph the function y; = 10e™ sin 27rx in the window [0, 3] by [ —10, 10].

(b) The graph of which function is the lower envelope of the graph of y;?

(c) For what values of x does the graph of y; touch the graph of the function found
in part (b)?

—
Chapter 4 Test Prep

periodic function phase shift addition of ordinates frequency
period argument simple harmonic damped oscillatory
sine wave (sinusoid) vertical asymptote motion motion

amplitude envelope
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Concepts Examples

m Graphs of the Sine and Cosine Functions

m Translations of the Graphs of the Sine and Cosine Functions

Sine and Cosine Functions Graph y = 1 + sin 3x.

y

y =sinx li\y:cosx/
1 ] X :

5

1 2 1 2 2 X

Domain: (—, ) Domain: (—», )

Range: [—1, 1] Range: [—1,1] amplitude: 1 domain: (—oe, )
Am.plltude: 1 Am.plltude: 1 period: %’T range: [0, 2]
Period: 27 Period: 27 vertical translation: 1 unit up

The graph of Graph y = —2 cos (x + %)

y=c +asin[b(x —d)] or y =c¢ + acos[b(x — d)],

y

y =-2cos (x+ E)

with b > 0, has the following characteristics. P

1. amplitude | a|

L2
2. period 5

_r
3. vertical translation ¢ units up if ¢ > 0 or | c¢| units down g
ifc<0
4. phase shift d units to the right if d > 0 or |d| units to the amplitude: 2 domain: (o, o)
leftif d <0 )
period: 27 range: [ —2, 2]

phase shift: 5 units left

m Graphs of the Tangent and Cotangent Functions

Tangent and Cotangent Functions Graph y = 2 tan x over a one-period interval.
¥ y y
| | | | |
| |y=tanx |y=c0tx | |
v n\. payl
o x : x Loy 2
o T Q_ m\ T 75_ i X
2 /T 2 2 T
2 2 | 2 Ll
| | | | |
|
| |
| |
Domain: {x|x # (2n+1)%, Domain: {x|x # nm, y=2tanx
. ) where n is any integer }
where 7 is any integer period:
Range: (—x, =) Range: (—o, ») domain: {x|x # (2n+1)7,
Period: 7 Period: 7 where 7 is any integer}

range: (—9%, )
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Concepts Examples

Graphs of the Secant and Cosecant Functions

Secant and Cosecant Functions Graph y = sec (x + %) over a one-period interval.
y y
| | | | M
y=secx | | |
\L/Z | = |
. |1 2 | 731 |y =cscx | |
1 1 X I I
T ™0 T T I 1 | | x 3T
T I 1 2 |
z o | 2 g
I -T Im
4

N
—— a3 4
__4;‘5"__

Domain: {x|x # (2n+1)%, Domain: {x|x # n,

where n is any integer} where n is any integer } y = sec (x + %)
Range: (—©, —1]U[1,)  Range: (—%, —1]U[1, %) period: 27
Period: 27 Period: 27 phase shift: 7 unit left

domain: {x |x # % + nar,
where 7 is any integer}

range: (—o0, —1]U[1, =)

Harmonic Motion

Simple Harmonic Motion A spring oscillates according to
The position of a point oscillating about an equilibrium

position at time ¢ is modeled by either s(t) = =5 cos 61,

where 7 is in seconds and s() is in inches. Find the

s(t) =acoswt or s(t) = asinwt . .
® ®) ’ amplitude, period, and frequency.

where a and w are constants, with w > 0. The amplitude of )

. . . T
the motion is ||, the period is %T, and the frequency is 5 amplitude = | —5| = 5in. period = o =3
oscillations per time unit.

3
frequency = — oscillation per sec
K

Chapter 4 {7 (\W8 5 {) fu EY=1

1. Concept Check Which one of the following statements is true about the graph of

y = 45sin 2x?
A. It has amplitude 2 and period 5. B. It has amplitude 4 and period 7.
C. Itsrangeis [0, 4]. D. Itsrangeis [—4,0].
2. Concept Check Which one of the following statements is false about the graph of
y = —3cos %x?
A. Ttsrangeis [ =3, 3]. B. Its domain is (—o0, ).

C. Its amplitude is 3, and its period is 47r. D. Its amplitude is —3, and its period is 7.
3. Concept Check Which of the basic circular functions can have y-value %?

4. Concept Check Which of the basic circular functions can have y-value 2?
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For each function, give the amplitude, period, vertical translation, and phase shift, as

applicable.
1
5. y=2sinx 6. y = tan3x 7. y=—5cos3x
8. y=2sin5 9 —1+2'l 10 —3—l 2
. y=2sin5x .y = sin 7 .y = 4608 3%

3 1
11. y=3cos<x+§) 12. y=—sin(x—7’”> 13. y=Ecsc (2x—%>

1 3
14. y =2 sec(mx — 21r) 15. y= gtan <3x - %) 16. y = cot (g + %)

Concept Check Identify the circular function that satisfies each description.

17. period is 7r; x-intercepts have x-values of the form n, where n is any integer
18. period is 27r; graph passes through the origin

19. period is 27r; graph passes through the point (%, 0)

20. period is 277; domain is {x|x # nr, where n is any integer }

21. period is 7r; function is decreasing on the interval (0, 7)

22. period is 27; has vertical asymptotes of the form x = (2n + 1)%, where 7 is any
integer

Provide a short explanation.

23. Suppose that f defines a sine function with period 10 and f(5) = 3. Explain why

f(25) = 3.
24. Suppose that f defines a sine function with period 7 and f (6%) = 1. Explain why
4
f(=5)=1.
Graph each function over a one-period interval.
1
25. y=3sinx 26. y=Esecx 27. y=—tanx
28. y=—2cosx 29. y=2+cotx 30. y=—1+cscx
31. y=sin2x 32. y=tan3x 33. y=3cos2x
1 T T
34. y=—cot3 Ly = _ oy = ™
y 2co X 35. y cos<x 4) 36. y tan(x 2)
T . T
37. y:sec(2x+§> 38. y:sm(3x+5) 39. y=1+2cos3x
. . 1
40. y=—1—3sin2x 41. y=2sinmx 42, y:—ECOS(W)C—W)

P (Modeling) Monthly Temperatures A set of temperature data (in °F) is given for a par-
ticular location. (Source: www.weatherbase.com)

(a) Plot the data over a two-year interval.

(b) Use sine regression to determine a model for the two-year interval. Let x = 1 repre-
sent January of the first year.

(c) Graph the equation from part (b) together with the data on the same coordinate axes.

43. Average Monthly Temperature, Auckland, New Zealand

Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sept | Oct | Nov | Dec
67.6 | 68.5 | 65.8 | 61.3 |57.2 532|516 529|554 |58.1]|612 649
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44. Average Low Temperature, Auckland, New Zealand

Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sept | Oct | Nov | Dec
60.8 | 61.7 | 58.8 | 54.9 | 51.1 | 47.1 | 45.5 | 46.8 | 49.5 | 52.2 | 55.0 | 58.8

Connecting Graphs with Equations Determine the simplest form of an equation for
each graph. Choose b > 0, and include no phase shifts.

45.

47.

Solve each problem.

49.

50.

51.

Viewing Angle to an Object Suppose
that a person whose eyes are /1, feet
from the ground is standing d feet
from an object &, feet tall, where
h, > h;. Let 0 be the angle of ele-
vation to the top of the object. See
the figure.

(a) Show thatd = (h, — h) cot 6.
(b) Let h, = 55 and h; = 5. Graph d for the interval 0 < § = %

(Modeling) Tides The figure shows a func- y

tion f that models the tides in feet at Clearwater

Beach, Florida, x hours after midnight. (Source: T (14.7,2.6)
Pentcheff, D., WWW Tide and Current Predictor.)

(a) Find the time between high tides.

3+(24,2.6) (27,2.6)

(b) What is the difference in water levels between
high tide and low tide?

(¢) The tides can be modeled by e

0 4 8 12 16 20 24 28
Time (in hours)

Tides (in feet)

14 (8.7,14) (21,1.4)

£(x) = 0.6 cos[0.511(x — 2.4)] + 2.

Estimate the tides, to the nearest hundredth, when x = 10.

(Modeling) Maximum Temperatures The maximum afternoon temperature (in °F)
in a given city can be modeled by

t=60—3000s%,

where ¢ represents the maximum afternoon temperature in month x, with x =0
representing January, x = 1 representing February, and so on. Find the maximum
afternoon temperature, to the nearest degree, for each month.

(a) January (b) April (¢) May
(d) June (e) August (f) October
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A 52.

53.

54.

(Modeling) Average Monthly Temperature The g0 4 ok || Month | °F
average monthly temperature (in °F) in Chicago,
Illinois, is shown in the table.

Jan 22 July 73
Feb 27 | Aug | 72

(a) Plot the average monthly temperature over
a two-year period. Let x = 1 correspond to Mar | 37 | Sept | 64
January of the first year. Apr | 48 Oct 52

(b) To model the data, determine a function of May 59 Nov 39

the form f(x) = a sin[b(x — d)] + ¢, where June | 68 | Dec | 27
a, b, ¢, and d are constants.

. Source: World Almanac and Book
(¢) Graph f together with the data on the same coor- of Facts.

dinate axes. How well does f model the data?

(d) Use the sine regression capability of a graphing calculator to find the equation of
a sine curve of the form y = a sin(bx + ¢) + d that fits these data.

(Modeling) Pollution Trends The amount of pollution in the air is lower after
heavy spring rains and higher after periods of little rain. In addition to this seasonal
fluctuation, the long-term trend is upward. An idealized graph of this situation is
shown in the figure.

0 6

o] 1. )

Circular functions can be used to model the fluctuating part of the pollution levels.
Powers of the number e (e is the base of the natural logarithm; e =~ 2.718282) can
be used to model long-term growth. The pollution level in a certain area might be
given by

y =7(1 — cos 2mx)(x + 10) + 100,
where x is the time in years, with x = 0 representing January 1 of the base year. July 1

of the same year would be represented by x = 0.5, October 1 of the following year
would be represented by x = 1.75, and so on. Find the pollution levels on each date.

(a) January 1, base year (See the screen.) (b) July 1, base year

(¢) January 1, following year (d) July 1, following year

(Modeling) Lynx and Hare Populations The figure shows the populations of lynx
and hares in Canada for the years 1847-1903. The hares are food for the lynx. An
increase in hare population causes an increase in lynx population some time later.
The increasing lynx population then causes a decline in hare population. The two
graphs have the same period.

Canadian Lynx and Hare Populations

Hare

= = = [ ynx

150,000

100,000 +

Number

-’

50,000 I
1

\
\
\
\
~

T T T
1850 1860 1870 1880 1890
Year

T
1900

(a) Estimate the length of one period.

(b) Estimate the maximum and minimum hare populations.
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An object in simple harmonic motion has position function s(t) inches from an equilib-
rium point, where t is the time in seconds. Find the amplitude, period, and frequency.

55.
57.

58.

s(t) = 4 sin 7t 56. s(t) =3 cos 2t

In Exercise 55, what does the frequency represent? Find the position of the object
relative to the equilibrium point at 1.5 sec, 2 sec, and 3.25 sec.

In Exercise 56, what does the period represent? What does the amplitude represent?

Chapter 4

1.

2.

3.

Identify each of the following basic circular function graphs.

(a) (b)
y
[ & o [
ARy
7 |- j]"__ | = | 2m
INTT INI
N+
I I-_I’[\:
(d) (e) )
y y y
| 2+ | T |
' ' 1 [ S [
A U Ul |
T 0L (I B E B
2442 o 0:17:7:2:77x
' ' VA YEYAY
W 2T ' [T B T B
: 1 | I

Connecting Graphs with Equations Determine the simplest form of an equation
for each graph. Choose b > 0, and include no phase shifts.

@@ 7 b)) 7

Answer each question.

(a) What is the domain of the cosine function?

(b) What is the range of the sine function?

(c) What is the least positive value for which the tangent function is undefined?

(d) What is the range of the secant function?



194

CHAPTER 4 Graphs of the Circular Functions

4.

Consider the functiony =3 — 6 sin(2x + %)
(a) What is its period?

(b) What is the amplitude of its graph?

(¢) What is its range?

(d) What is the y-intercept of its graph?

(e) What is its phase shift?

Graph each function over a two-period interval. Identify asymptotes when applicable.

5.

7.

9.

11.

y = sin(2x + ) 6. y = —cos 2x
y=2+cosx 8 y=—1+2sin(x+ )
T T
=t - — 10. y=—-2—cot{x——
(o) (o)
y = —csc 2x 12. y =3 cscmx

(Modeling) Solve each problem.

13. Average Monthly Temperature The average monthly temperature (in °F) in San

Antonio, Texas, can be modeled by
f(x) =165 sin{%(x - 4)} +67.5,

where x is the month and x = 1 corresponds to January. (Source: World Almanac and
Book of Facts.)

< (a) Graph f in the window [0, 25] by [40, 90].

14.

15.

(b) Determine the amplitude, period, phase shift, and vertical translation of f.
(¢) What is the average monthly temperature for the month of December?

(d) Determine the minimum and maximum average monthly temperatures and the
months when they occur.

(e) What would be an approximation for the average annual temperature in San
Antonio? How is this related to the vertical translation of the sine function in the
formula for f?

Spring Motion The position of a weight attached to a spring is
s(t) = —4 cos 8rt inches after 7 seconds.
(a) Find the maximum height that the weight rises above the equilibrium position of
s(r) = 0.
(b) When does the weight first reach its maximum height if t = 0?
(¢) What are the frequency and period?

Explain why the domains of the tangent and secant functions are the same, and then
give a similar explanation for the cotangent and cosecant functions.
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Fundamental Identities

Fundamental
Identities

Uses of the
Fundamental
Identities

Fundamental Identities = Recall that a Y
function is even if f(—x) = f(x) for all x )
in the domain of f, and a function is odd if
f(—x) = —f(x) for all x in the domain of f. y:
We have used graphs to classify the trigono- | x

|
|
|

r

o

\0
metric functions as even or odd. We can also use 9_0
Figure 1 to do this.
As suggested by the circle in Figure 1, an
angle 6 having the point (x, y) on its terminal 5 -y)
side has a corresponding angle —6 with the

point (x, —y) on its terminal side.

-y
r

sin(-0) = - = —sin 9

From the definition of sine, we see that Figurel
sin(—0) and sin 6 are negatives of each other.
That is,

. Yy . Yy
sin(—f) = — and sinf=—,
r r
SO sin(— 0) = —sin 6 Sine is an odd function.

This is an example of an identity, an equation that is satisfied by every value in
the domain of its variable. Some examples from algebra follow.

=y =(x+y)(x—y)
x(x + y) =x2 4+ Xy Identities
X2+ 2xy +y? = (x+y)?

Figure 1 shows an angle 0 in quadrant II, but the same result holds for 0 in
any quadrant. The figure also suggests the following identity for cosine.

X X
cos(—#) =— and cosf =—
r r

COS(— 0) = cos 0 Cosine is an even function.

We use the identities for sin(—6) and cos(—6) to find tan(—6) in terms of
tan 6.

tan(—0) sin(—@)  —sin@ sin 6
an( — = = = —
cos(—@)  cos O cos 6
tan(—0) = —tan @ Tangent is an odd function.

The reciprocal identities are used to determine that cosecant and cotangent
are odd functions and secant is an even function. These even-odd identities
together with the reciprocal, quotient, and Pythagorean identities make up the
fundamental identities.

In trigonometric identities, 6 can represent an angle in degrees or
radians, or a real number.
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Fundamental Identities

Reciprocal Identities

1
cot O = sec O = csc O =
tan 0 cos 0 sin 6
Quotient Identities
sin 0 cos 0
tan 0 = cot O = —
cos 0 sin 0

Pythagorean Identities
sin@ + cos’0 =1  tan’0 + 1 = sec’ 0 1+ cot? @ = csc? 0
Even-Odd Identities
sin(—@) = —sin®  cos(—0) = cos®  tan(—6) = —tan 0
csc(—0) = —csc®  sec(—0) = secO cot(—0) = —cot O

We will also use alternative forms of the fundamental identities.
For example, two other forms of sin®> @ + cos’> 0 = 1are

sinf@ =1 — cos?0® and cos’0 =1 — sin 0.

Uses of the Fundamental Identities =~ We can use these identities to find
the values of other trigonometric functions from the value of a given trigonomet-
ric function.

Finding Trigonometric Function Values Given
One Value and the Quadrant

Iftan 0 = —% and 6 is in quadrant II, find each function value.

(a) secO (b) sin 6 (c) cot(—0)

(a) We use an identity that relates the tangent and secant functions.

tan? 0 + 1 = sec? 6 Pythagorean identity

5\2 i
(—2> + 1 =-sec?6 tanH:*%

25 i
9 + 1 =sec?6 Square *3

—=sec’®  Add: 1=

Take the negative square root

—+[ = =sec O because 6 is in quadrant II.

Choose the
correct sign. _ — S
V34 34 V34 V34

sec § = — Slmpllly'lhc radical: —=\/ 7§ = 5 =——3,
3 and rewrite.

(98 (O8]
ﬁ\og



198 | CHAPTERS Trigonometric Identities

(b) tan 0 = Quotient identity

cos 0 tan @ = sin 0 Multiply each side by cos 6.

1
( >tan 0 = sin 6 Reciprocal identity
sec 0

tan 6 = — 2 and from part (a),

<—3\/3z><—5)=sin0 | _3 3  Mm_ 3Vu

34 3 wd =V Va o Vi
3
5V/34

sin = Multiply and rewrite.

34
1
(c) cot(—6) = m Reciprocal identity
1 o
cot(—0) = —an 0 Even-odd identity
1 5
cot(—6) = S anf= -3
o
L is_q.323
cot(—6) = — 7<75) 73 575
3

+/ Now Try Exercises 11, 19, and 31.

CAUTION When taking the square root, be sure to choose the sign
based on the quadrant of 0 and the function being evaluated.

m Writing One Trignometric Function in Terms of Another
Write cos x in terms of tan x.

SOLUTION By identities, sec x is related to both cos x and tan x.

1 + tan® x = sec® x Pythagorean identity

1 1
= q Take reciprocals.
1 +tan"x sec”x

2

= cos“ X The reciprocal of sec? x is cos?

1+ tan’x X.
2
Remember both 1 + tan® x

the positive and
a2 2 negative roots. 1 ) ‘
Y1 = sin“x + cos”x * T . 3. Cosx Take the square root of each side.
v =1 1 + tan“ x
+1

|_|1-r BUTD BESL DADCEM MP n

cosxy=———.— Quotient rule for radicals: % = %,
b

V1 + tan? x rewrite.
+V1+ tan® x

cosSx=——""—">"—— Rationalize the denominator.
1 + tan® x

3
3

=
|

The choice of the + sign or the — sign is made depending on the quadrant of x.

—4

With an identity, there should be no  Now Try Exercise 47.

difference between the two graphs.

Figure 2 FI<|  Figure 2 supports the identity sin® x + cos?x = 1. m
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The functions tan 6, cot 6, sec 6, and csc 6 can easily be expressed in terms of
sin 6, cos 6, or both. We make such substitutions in an expression to simplify it.

Rewriting an Expression in Terms of Sine and Cosine

. 29 . . o .
Write % in terms of sin 6 and cos 6, and then simplify the expression so

that no quotients appear.

1+ cot?6 _ ,
2 Given expression
1 —csc” 0
cos? 6
1 S
sin~ 6 o
= —1 Quotient identities
1 + cot®x -
N e sin® 0
1 —cscox
—sec?x cos?6
oar r 1+ sin~ 0 B . o
m sinZ Simplify the complex fraction by

= multiplying both numerator and
1 — 1 sin2 6 denominator by the LCD.
‘ sin>6 )

_uz it
4

1 \ _ M Distributive property:
! {-\ ﬂ rq\ Jq ﬂ ]’ -~ sin? 6—1 (b+c)a=ba+ca
i |
-4

: 1
The graph supports the result in - m Pythagorean identities
Example 3. The graphs of y; and y,
P — 2 ) ol .
coincide. = —sec- 0 Reciprocal identity

Now Try Exercise 59.

CAUTION When working with trigonometric expressions and identities,
be sure to write the argument of the function. For example, we would not
write sin? + cos”> = 1. An argument such as 0 is necessary to write this cor-
rectly as sin? 0 + cos? 0 = 1.

E

xercises

CONCEPT PREVIEW For each expression in Column I, choose the expression from
Column II that completes an identity.

| 11
coS X .
1. —= A. sin?x + cos? x
sin x
2. tanx=___ B. cotx
3. cos(—x)=___ C. sec’x
sin x
4, tan’x+1=__ D.
coS X

5. 1=__ E. cosx
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CONCEPT PREVIEW Use identities to correctly complete each sentence.

6.
7.
8.
9.

10.

If tan 6 = 2.6, then tan(—6) =

If cos 6 = —0.65, then cos(—6) =

If tan & = 1.6, then cot 6 =

If cos 6 = 0.8 and sin § = 0.6, then tan(—0) =

If sin 6 = %, then —sin(—6) =

Find sin 6. See Example 1.

11.

13.

15.

17.

19.

21.

23.
24.

cos O = %, 0 in quadrant I

cot § = —%, 6 in quadrant IV

cos(—0) = g,tane <0
tan 0 = —%,c050>0
secBZ%,cot0<0

—-_9
csch=—3

12.

14.

16.

18.

20.

22,

cos 6 = %, 0 in quadrant I

cotf = —%, 6 in quadrant IV

cos(—0) = %, cotf <0
tan 0 = —¥,3e00>0

seCBZ%,tan0<0

__38
csch = —3

Why is it unnecessary to give the quadrant of 6 in Exercises 21 and 22?

Concept Check What is WRONG with the statement of this problem?

Find cos(—0) if cos § = 3.

Concept Check Find f(—x) to determine whether each function is even or odd.

25.

sin x

flx) =

26.

f(x) = xcosx

Concept Check Identify the basic trigonometric function graphed and determine
whether it is even or odd.

217.

29.

-
»%a
A

‘:]I';,.'—'—

28.

30.

BAENAL FLONT AUTH BERL BAXINH 1F

Find the remaining five trigonometric functions of 0. See Example 1.

31.
33.
35.
37.

sin @ = % 6 in quadrant II

tan 0 = —i, 6 in quadrant IV

cot0=%,sin9>0
3,5in0<0

32.
34.
36.
38.

cos O = % 0 in quadrant I
csc ) =— %, 0 in quadrant IIT
sin 6 = —%,cose<0

cosB=—31,sin0>O
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Concept Check For each expression in Column I, choose the expression from Column I1
that completes an identity. One or both expressions may need to be rewritten.

| 11
sin? x
39, —tanxcosx=_____ A. 3
cos? x
1
40. seclx—1=____ B. —x
sec
sec x
41. = C. sin(—x)
csc x
42, 1 +sin2x=___ D. csc?zx — cot? x + sin® x
43. cos?x=___ E. tan x

44. A student writes “1 + cot?> = csc2.” Comment on this student’s work.

45. Concept Check Suppose that cos 0 = ﬁ Find an expression in x for sin 6.

+4 . . .
L ~— - Find an expression in x for tan 6.

46. Concept Check Suppose that sec § =

Perform each transformation. See Example 2.

47. Write sin x in terms of cos x. 48. Write cot x in terms of sin x.
49. Write tan x in terms of sec x. 50. Write cot x in terms of csc x.
51. Write csc x in terms of cos x. 52. Write sec x in terms of sin x.

Write each expression in terms of sine and cosine, and then simplify the expression so
that no quotients appear and all functions are of 6 only. See Example 3.

53. cotfsin @ 54. tan 6 cos 6
55. sec 6 cot 0 sin 0 56. csc 6 cos 6 tan 6
57. cosBcsc O 58. sin 6 sec 6
59. sin?6(csc? 0 — 1) 60. cot? 6(1 + tan®0)
61. (1 —cos)(1 + sech) 62. (secH — 1)(secO + 1)
1 + tan(—6 1+ cotf
63, L un(=0) 64, — 7
tan(—6) cot 0
1 — cos*(—6 1 — sin?(—6
65, L0 66, 0
1 + tan?(—6) 1 + cot’(—6)
67. sec§ —cos 68. csc O —sin 6
69. (sec O + csc 6)(cos O — sin ) 70. (sin 6 — cos 0)(csc 6 + sec 0)
71. sin O(csc @ — sin 6) 72. cos O(cos 6 — sec 6)
1 + tan? 29— 1
7. tan” 6 24, sec” 6
1 + cot? 6 csc? — 1
tan(—6
75, 50 )]
cot(—0) sec

77. sin?(—6) + tan?(—0) + cos*(—6) 78. —sec?(—0) + sin*(—6) + cos*(—0)
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Work each problem.

79. Letcosx = é Find all possible values of

80. Let cscx = —3. Find all possible values of

secx — tanx
sin x

sin x + cos x
sec x

A Use a graphing calculator to make a conjecture about whether each equation is an

identity.
81. cos2x=1—2sin’x 82. 2 sinx = sin 2x
83. sinx = V1 — cos? x 84. cos 2x = cos? x — sin® x

Relating Concepts

For individual or collaborative investigation (Exercises 85-90)

Previously we graphed functions of the form

y=c+a- f[b(x—4d)]

with the assumption that b > 0. To see what happens when b <0, work Exer-
cises 85-90 in order.

85.
86.
87.
88.
89.

90.

Use an even-odd identity to write y = sin(—2x) as a function of 2.x.
How is the answer to Exercise 85 related to y = sin 2x?
Use an even-odd identity to write y = cos(—4x) as a function of 4x.
How is the answer to Exercise 87 related to y = cos 4x?

Use the results from Exercises 85—88 to rewrite the following with a positive
value of b.
(a) y = sin(—4x) (b) y = cos(—2x) (¢) y = —5sin(—3x)

Write a short response to this statement, which is often used by one of the
authors of this text in trigonometry classes:

Students who tend to ignore negative signs should enjoy graphing functions
involving the cosine and the secant.

la Verifying Trigonometric Identities

m Strategies

m Verifying Identities by
Working with One Side

m Verifying Identities
by Working with Both
Sides

Strategies One of the skills required for more advanced work in math-
ematics, especially in calculus, is the ability to use identities to write expressions
in alternative forms. We develop this skill by using the fundamental identities to
verify that a trigonometric equation is an identity (for those values of the variable
for which it is defined).

CAUTION The procedure for verifying identities is not the same as that

Jor solving equations. Techniques used in solving equations, such as add-
ing the same term to each side, and multiplying each side by the same term,
should not be used when working with identities.




LOOKING AHEAD TO CALCULUS
Trigonometric identities are used in
calculus to simplify trigonometric
expressions, determine derivatives of
trigonometric functions, and change
the form of some integrals.
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Hints for Verifying Identities

1. Learn the fundamental identities. Whenever you see either side of a
fundamental identity, the other side should come to mind. Also, be aware
of equivalent forms of the fundamental identities. For example,

sin2® = 1 — cos2 0 is an alternative form of sin% 0 + cos? 0 = 1.

2. Try to rewrite the more complicated side of the equation so that it is
identical to the simpler side.

3. It is sometimes helpful to express all trigonometric functions in the
equation in terms of sine and cosine and then simplify the result.

4. Usually, any factoring or indicated algebraic operations should be
performed. These algebraic identities are often used in verifying trigo-
nometric identities.

X2+ 2xy +y2 = (x + y)?
X2 =2y +y? = (x —y)?
o =yi= (= y)( Fay +y?)
Ay = (e y)(? - ay +y?)
x=yr=(xty)(x—y)
For example, the expression
sin?x + 2sinx + 1 can be factored as  (sinx + 1)2.

The sum or difference of two trigonometric expressions can be found in
the same way as any other rational expression. For example,

1 1
= ar
sinf cos 6
1-cosf 1-sin6
= + Write with the LCD.

sin@ cosf® cos O sinf

cos 0 + sin 0 e b
= 2+
sin 6 cos 6 ‘

b _at b
5. When selecting substitutions, keep in mind the side that is not changing,
because it represents the goal. For example, to verify that the equation

tan?x + 1 = —
CcOS” X

is an identity, think of an identity that relates tan x to cos x. In this case,
because sec x = L and sec?x = tan? x + 1, the secant function is the

COS x
best link between the two sides.

6. If an expression contains 1 + sin x, multiplying both numerator and
denominator by 1 — sin x would give 1 — sin? x, which could be replaced
with cos? x. Similar procedures apply for 1 —sinx, 14 cosx, and
1 — cos x.

Verifying Identities by Working with One Side Avoid the temptation
to use algebraic properties of equations to verify identities.

One strategy is to work with one side and rewrite it to match the other side.
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For 6 = x,
y; =cotx + 1
Yo = csc x(cos x + sin x)
RUTO BOEL DADIEW MP

4

n

AU

The graphs coincide, which supports

the conclusion in Example 1.

v = tan? x(1 + cot? x)
1

2 1 — sin?x

JUYYUL

—4

L)
4

The screen supports the conclusion in

Example 2.

CHAPTER 5 Trigonometric Identities

m Verifying an Identity (Working with One Side)

Verify that the following equation is an identity.
cotf + 1 = csc O(cos 6 + sin )

SOLUTION We use the fundamental identities to rewrite one side of the equa-
tion so that it is identical to the other side. The right side is more complicated, so
we work with it, as suggested in Hint 2, and use Hint 3 to change all functions to
expressions involving sine or cosine.

Steps Reasons
Right side of
given equation
csc O(cos O + sin ) = in b (cos @ + sinf) csco =
_ cos®  sinf Distributive property:
sinf  sin @ a(b+c¢)=ab + ac
— cosf __ .sinf
=cotf +1 Gnp = cotf; o =1
Left side of

given equation
The given equation is an identity. The right side of the equation is identical to the
left side.
+/ Now Try Exercise 45.

m Verifying an Identity (Working with One Side)

Verify that the following equation is an identity.

1
tan® x(1 + cot?> x) = ————
( ) 1 —sin®x
SOLUTION  We work with the more complicated left side, as suggested in Hint 2.
Again, we use the fundamental identities.

Left side of
given equation
— A —————

tan? x(l + cot? x) = tan® x + tan® x cot’ x Distributive property

= tanzx + tan2x ° ¢ 5 cot? x = P
an- x .
=tan’x + 1 tan’x + —5— =
tan” x
=sec?x Pythagorean identity
1 2
= COSz X SECT X = Costx
1 . .
T — Pythagorean identity
I — sin® x
-
Right side of

given equation
Because the left side of the equation is identical to the right side, the given equa-
tion is an identity.
+/ Now Try Exercise 49.
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Verifying an Identity (Working with One Side)

Verify that the following equation is an identity.

tant — cot ¢ ) 5
—— =sec’t —csc’t
sin 7 cos t

We transform the more complicated left side to match the right side.

tant — cott B tan ¢ cott

a—b _a b

sin f cos t sinfcost sintcost

=tant+—————cott*——— ;=a-}
sin 7 cos t sin ¢ cos t

sin £ . 1 _ cos ? . 1 t: __sint __cost
o : o . an i’ = o cotr = G
COS ¢ Sin 7 cos t sin ¢ Sin 7 cos t

1 1
= Multiply.
cos?t sin%t oy

5 =csc?t
cos“t

= sec? ¢

=sec?t— csc2t

> sin’ ¢

Hint 3 about writing all trigonometric functions in terms of sine and cosine was
used in the third line of the solution.
Now Try Exercise 53.

Verifying an Identity (Working with One Side)

Verify that the following equation is an identity.

cosx 1 +sinx
1 —sinx COS X

We work on the right side, using Hint 6 in the list given earlier to
multiply the numerator and denominator on the right by 1 — sin x.
I +sinx (1 +sinx)(1 — sinx)

1 — sinx

Multiply by 1 in the form —3 .

cos x cos x(1 — sinx)

1 —sin’x
T oy (x+y)(x —y) =x* = y?
cos x(1 — sin x)

cos? x
- 1 — sin?x = cos? x
cos x(1 — sinx)

COS X * COS X .
- - . < a-=a-* a
cos x(1 — sinx)

COS X o
= Write in lowest terms.
1 —sinx
Now Try Exercise 59.

Verifying Identities by Working with Both Sides  If both sides of an
identity appear to be equally complex, the identity can be verified by working
independently on the left side and on the right side, until each side is changed into
some common third result. Each step, on each side, must be reversible. With all
steps reversible, the procedure is as shown in the margin. The left side leads to a
common third expression, which leads back to the right side.
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Working with both sides is often a good alternative for identities
that are difficult. In practice, if working with one side does not seem to be
effective, switch to the other side. Somewhere along the way it may happen
that the same expression occurs on both sides.

Verifying an Identity (Working with Both Sides)

Verify that the following equation is an identity.

seca ttana 1+ 2sina+sin’a
sec a — tan « cos? a

Both sides appear equally complex, so we verify the identity by
changing each side into a common third expression. We work first on the left,
multiplying the numerator and denominator by cos a.

seca +tana  (sec a + tan a) cos «

Ccos a
cosa”

= Multiply by 1 in the form
seca —tana  (sec a — tan &) cos «

—
Left side of ~ SeC & cOS & + tan « Cos «
given equation

Distributive property
Sec o cos v — tan & CoS «

] + tan @ cos «
-—- secacosa:l
| —tan a cos «

— tan o = sin
cos «

1+ sina
=0 Simplify.
1 —sina

On the right side of the original equation, we begin by factoring.

1 +2sina+sin2a (1 +sina)? Factor the numerator;
= 24y 4 v2 = (4 )2

cos’ a cos? a Xt 2ay = (x+y)n
Right side of .
Yivvn ation (1 + sin 0()2 2
given equalio = cos?a=1—sin’a

1 —sin“«
(1 + sin (1)2 Factor the denominator;

(1 +sina)(l —sina) * ¥ =E+yE-y).

1+ sin « o
= Write in lowest terms.
1 —sina
We have shown that
Left side of Common third Right side of
given equation expression given equation

secattana | +sina 1+ 2sina+sin’a

bl

seca—tana | —sina cos? «

and thus have verified that the given equation is an identity.

Now Try Exercise 75.
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CAUTION Use the method of Example 5 only if the steps are reversible.

There are usually several ways to verify a given identity. Another way to begin
verifying the identity in Example S is to work on the left as follows.

1 sin «
_l’_

sec o + tan « cosa Ccosw ‘ N
= Fundamental identities

sec « — tan « 1 sin «
| — -
Left side of cosa cosa
given equation 1 + sin @
in Example 5 —
COS «
= Add and subtract fractions.
1 —sina
COS o

l+sinae  1—sina Simplify the complex fraction.

cosa  cosa Use the definition of division.
1+ sin« CcoS « _ .
T cosa 1 — sina Multiply by the reciprocal.
_ltsina

= ; Multiply and write in lowest terms.
I — sin«

Compare this with the result shown in Example 5 for the right side to see that
the two sides indeed agree.

Applying a Pythagorean Identity to Electronics

Tuners in radios select a radio station by adjusting the frequency. A tuner may
contain an inductor L and a capacitor C, as illustrated in Figure 3. The energy
stored in the inductor at time ¢ is given by

L(t) = k sin® 27 Ft
and the energy stored in the capacitor is given by
C(t) = k cos® 2w Ft,

where F is the frequency of the radio station and k is a constant. The total energy
E in the circuit is given by

E(t) = L(t) + C(1).

Show that E is a constant function. (Source: Weidner, R. and R. Sells, Elemen-
tary Classical Physics, Vol. 2, Allyn & Bacon.)

E(t) = L(t) + C(¢) Given equation
= ksin? 2mFt + k cos® 2wFt  Substitute.
= k[sin?2mFt + cos?2mFt]  Factor out .
= k(1) sin? 6 + cos? 6 = 1 (Here 60 = 27rFt.)
=k Identity property

Because k is a constant, E(¢) is a constant function. Now Try Exercise 105.
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e

Exercises

To the student: Exercises 1-44 are designed for practice in using the fundamental iden-
tities and applying algebraic techniques to trigonometric expressions. These skills are
essential in verifying the identities that follow.

CONCEPT PREVIEW Match each expression in Column I with its correct factorization
in Column I1.

I I
1. x2—y? A (x+y)(x2—xy +y?)
2. x3—y3 B. (x +y)(x—y)
3. ¥ +y3 C. (x +y)?
4. x*+ 2xy +y? D. (x —y)(x>+xy +y?)

CONCEPT PREVIEW Fill in the blank(s) to correctly complete each fundamental identity.

5. sinf@ +cos?h=__ 6. tanf0+ 1=
7. sin(—=0)=_____ 8 sec(—0)=__
1 i 1
9. tanp— 1 — Sn0 10. cotg = 1 — €086

Perform each indicated operation and simplify the result so that there are no quotients.

1
11. cotf + — 2, =X =X 13. tan x(cot x + csc x)
cot 6 cscx  secx
1 1 cos sin
14. cos B(sec B +cscB) 15, ——+ —— 16. * oy nx
csc2f  sec’ O secx  cscx
17. (sin @ — cos a)? 18. (tanx + cotx)? 19. (1 +sin¢)? + cos’ ¢t
1 1 1 1
20. (1 +tan6)>—2tan6 21. - 22, — - =
1+cosx 1—cosx sina—1 sina+1

Factor each trigonometric expression.

23. sin?6 — 1 24. sec?0 — 1

25. (sinx+ 1)2— (sinx — 1)2 26. (tan x + cot x)? — (tan x — cot x)?
27. 2sin’x + 3sinx + 1 28. 4tan’ B +tan B — 3

29. cos*x +2cos?x + 1 30. cot*x + 3 cot? x + 2

31. sin®x — cos’x 32. sin®a + cos’ «

Each expression simplifies to a constant, a single function, or a power of a function. Use
Sfundamental identities to simplify each expression.

33. tan 6 cos 6 34. cot « sin « 35. secrcosr
sin B tan 6 0
36. cotrtant 37. M 38. gerseed
cos B cot O
sin?
39. sec?x — 1 40. csc?r—1 41. 2x + sin x csc x
cos? x
1 1
42. 5 T cotatan 43. 1 — 3 44. 1 — 5
tan® « csc x sec” x
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Verify that each equation is an identity. See Examples 1-5.

45.

47.

49.
51.

53.

55.

57.

59.

61.

63.

65.

67.

69.

71.

73.

74.

75.

76.

77.

78.

79.

80.
81.
82.

83.

cot 6 tan « .
= cos 0 46. =sin
csc 6 sec «
1 —sin’> B tan? o + 1
——=cos B 48, ———=seca
cos 3 sec a
cos?f(tan’ 0 + 1) = 1 50. sin? B(1 + cot?> B) = 1
cot@ + tan 6 = sec 0 csc 52. sin? o + tan® @ + cos? @ = sec? &
. .
cosa  sina sin“ 0
+ =sec?a — tan’ 54. =sec  — cos 0
seca Ccsca cos 6
sin* @ — cos* 0 = 2sin? 0 — 1 56. sec* x — sec?x = tan* x + tan® x
1 —cosx ) ) 1 — sin «
—— = (cotx — csc x) 58. (seca —tana)’?=——
1 + cos x I +sina
cos 6 + 1 cos 6 (sec —tan 6)% + 1
5 = 60. =2tan 6
tan- 6 sechd — 1 sec O csc @ — tan 6 csc 6
1 1 5 1
- - = 2sec” 6 62. ——————————=seca ttanw
I—sinf® 1+sin6 seca — tan a
cota + 1 1+ tan « csc 6 + cot O
= 64. ——————=cotfcsch
cota—1 1 —tana tan 6 + sin 6
cos 6
- = 66. sin?0(1 +cot?0) —1=0
sin 6 cot 6 ( )
4 4 4 4
sec* § — tan* 0 sin® @ — cos® «
YN = sec? 6 — tan? 6 68. S =
sec” 0 + tan- 6 sin“ & — cos” «
tan’t— 1 tant— cott cot?t— 1 -
3 = 70. —————=1—2sin’¢
sec” t tant + cott 1+ cot* ¢
sin?asec? a + sin?a csc? @ = sec? @  72. tan® asin? a = tan?> @ + cos> @ — 1

tan x sin x

= cotx + sec x csc x
1+cosx 1—cosx

sin 6 sin 0 cos 6 6(1 + cos? 6)
— = csc cos
1 —cos6 1+ cos 6

1+cosx 1—cosx

=4 cotxcscx
1—cosx 1+cosx
1+sinf 1 —sin6 A tan 0 0
- = 4 tan 6 sec

1—sinf 1+sin6
1 —sin6
———=sec?f — 2sec Htan O + tan> 0
1+ sin6
. sin 6 cos 6
sin @ + cos O =

1—cotf 1—tané6

-1 -1
+ =2tan @

tana —seca tan o + sec «

(1 +sinx + cos x)? = 2(1 + sin x)(1 + cos x)

(1 — cos? a)(1 + cos?> @) = 2 sin? a — sin*

(sec a + csc a)(cos a — sin @) = cot a — tan «

1 —cosx ) )
——=c¢sc”x — 2c¢cscxcotx + cot* x

1+ cosx
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1- 0
84. ¢=2c5020*2050000t071
1+ cos6

85. (2sinx + cosx)? + (2cosx —sinx)> =35
86. sin?x(1 + cotx) + cos? x(1 — tan x) + cot®> x = csc? x
87. secx — cos x + cscx — sinx — sin x tan x = cos x cot x

88. sin’ 0 + cos® 0 = (cos 6 + sin 0)(1 — cos 6 sin 6)

I Graph each expression and use the graph to make a conjecture, predicting what might be
an identity. Then verify your conjecture algebraically.

89. (sec 6 +tan 6)(1 — sin 6) 90. (cscH + coth)(sechd — 1)

cos 0 + 1 .
PP 92. tan 6 sin 6 + cos 0
sin @ + tan 0
B Graph the expressions on each side of the equals symbol to determine whether the
equation might be an identity. (Note: Use a domain whose length is at least 2m.) If
the equation looks like an identity, then verify it algebraically. See Example 1.

2+ 5cosx sec? x
93, —————=2cscx+ 5cotx 94, 1+cot2x=27
sin x secx — 1
tan x — cotx . 1 1
. ——————— =2sin’x 96. — = sec?x
tan x + cot x l+sinx 1—sinx

By substituting a number for t, show that the equation is not an identity.

97. sin(csct) =1 98. Vcos’r = cost

99. csct= V1 + cot?t 100. cost= V1 — sin?¢

(Modeling) Work each problem.

101. Intensity of a Lamp According to Lambert’s law,
the intensity of light from a single source on a flat
surface at point P is given by

I =kcos?0,

where k is a constant. (Source: Winter, C., Solar Power
Plants, Springer-Verlag.)

(a) Write / in terms of the sine function.

(b) Why does the maximum value of I occur when
6 =07

102. Oscillating Spring The distance or displacement y of a
weight attached to an oscillating spring from its natural posi-
tion is modeled by

y = 4 cos 21t

where 7 is time in seconds. Potential energy is the energy of
position and is given by

P = ky?,
where k is a constant. The weight has the greatest potential energy when the spring

is stretched the most. (Source: Weidner, R. and R. Sells, Elementary Classical
Physics, Vol. 2, Allyn & Bacon.)

(a) Write an expression for P that involves the cosine function.

(b) Use a fundamental identity to write P in terms of sin 27rt.
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P (Modeling) Radio Tuners See Example 6. Let the energy stored in the inductor be
given by

L(1t) = 3 cos?6,000,000¢
and let the energy stored in the capacitor be given by
C(1) = 3 sin”6,000,000¢,
where t is time in seconds. The total energy E in the circuit is given by
E(t) = L(z) + C(2).

103. Graph L, C, and E in the window [0, 107°] by [—1, 4], with Xscl = 1077 and
Yscl = 1. Interpret the graph.

104. Make a table of values for L, C, and E starting at ¢ = 0, incrementing by 1077,
Interpret the results.

105. Use a fundamental identity to derive a simplified expression for E(r).

Sum and Difference Identities for Cosine

Difference Identity for
Cosine

Sum Identity for
Cosine

Cofunction Identities

Applications of the
Sum and Difference
Identities

Verifying an Identity

Difference Identity for Cosine Several examples presented earlier should
have convinced you by now that

cos(A — B) does not equal cosA — cos B.

For example, if A = % and B = 0, then

while cosA—cosB=cos§—cos0=O—1=—1.

To derive a formula for cos(A — B), we start by locating angles A and B in
standard position on a unit circle, with B < A. Let S and Q be the points where
the terminal sides of angles A and B, respectively, intersect the circle. Let P
be the point (1, 0), and locate point R on the unit circle so that angle POR equals
the difference A — B. See Figure 4.

(cos(A —B), sin(A - B)) R
N 0 (cos B, sin B)
(cosA,sinAd) S/ _N\L=T7/
>N
N g \P(1,0) N
o B
Figure 4

Because point Q is on the unit circle, the x-coordinate of Q is the cosine of
angle B, while the y-coordinate of Q is the sine of angle B.

Q has coordinates (cos B, sin B).
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In the same way,
S has coordinates (cos A, sin A),
and R has coordinates (cos(A — B), sin(A — B)).

Angle SOQ also equals A — B. The central angles SOQ and POR are equal,
so chords PR and SQ are equal. Because PR = SQ, by the distance formula,

\V[cos(A — B) — 1]2 + [sin(A — B) — 0]

d= \/(Xz —x)*+ (2 —)?

= V/(cos A — cos B)? + (sin A — sin B)2.

Square each side of this equation. Then square each expression, remembering
that for any values of x and y, (x — y)? = x> — 2xy + y2.

[cos(A —B) — 1]>+ [sin(A —B) — 0]?
= (cos A — cos B)? + (sin A — sin B)?
cos’(A — B) —2cos(A — B) + 1 + sin*(A — B)
=08’ A — 2 cos A cos B + cos’ B + sin> A — 2 sin A sin B + sin’ B
For any value of x, sin? x + cos? x = 1, so we can rewrite the equation.
Use sin’ x + cos? x = 1

2—2cos(A—B)=2—2cosAcos B—2sinAsinB three times and add like

terms.

. . Subtract 2, and then
cos(A — B) = cos A cos B + sin A sin B divide by 2.

This is the identity for cos(A — B). Although Figure 4 shows angles A and B in
the second and first quadrants, respectively, this result is the same for any values
of these angles.

Sum Identity for Cosine To find a similar expression for cos(A + B),
rewrite A + B as A — (—B) and use the identity for cos(A — B).

cos(A + B) = cos[A — (—B)] Definition of subtraction
= cos A cos(—B) + sin A sin(—B)  Cosine difference identity
= cos A cos B + sin A(—sin B) Even-odd identities
cos(A + B) = cos A cos B — sinA sin B Multiply.

Cosine of a Sum or Difference

cos(A + B) = cos A cos B — sin A sin B
cos(A — B) = cos A cos B + sin A sin B

These identities are important in calculus and useful in certain applications.
For example, the method shown in Example 1 can be applied to find an exact
value for cos 15°.



5.3 Sum and Difference Identities for Cosine | 213

Finding Exact Cosine Function Values

Find the exact value of each expression.

5
(a) cos 15° (b) cos % (¢) cos 87° cos 93° — sin 87° sin 93°

(a) Tofind cos 15°, we write 15° as the sum or difference of two angles with known
function values, such as 45° and 30°, because

15° = 45° — 30°.  (We could also use 60° — 45°.)
Then we use the cosine difference identity.

cos 15°

cos(45% —30°) 15° = 45° — 30°

cos 45° cos 30° + sin 45° sin 30°  Cosine difference identity

V2 V3 V2o |
= . + * = Substitute known values.

2 2 2 2

_Ve+ V2

Multiply, and then add fractions.

4
S5
(b) cos —
HWERFAL FLOAT ALTO ELH DADCEH HP ﬂ 12
n ar - -
=cos<6+4> T =2 and T =27
.n25RA190451 | ™ m ™ ™

= c0S —cos — — sin —sin —  Cosine sum identity
6 4 6 4

V3 V2 o1 V2 ,
- : = . - Substitute known values.
This screen supports the solution in 2 2 2 2
Example 1(b) by showing that the
decimal approximations for cos 51% _ \/6 — \/2 . .
= Multiply, and then subtract fractions.
Vo -\a 4
and 7 agree.

(¢) cos 87° cos 93° — sin 87° sin 93°

= cos(87° + 93°)  Cosine sum identity

= cos 180° Add.

-1 cos 180° = —1 Now Try Exercises 9, 13, and 17.

Cofunction Identities =~ We can use the identity for the cosine of the differ-
ence of two angles and the fundamental identities to derive cofunction identities,
presented previously for values of 6 in the interval [0°, 90°]. For example, sub-
stituting 90° for A and 6 for B in the identity for cos(A — B) gives the following.

c0s(90° — @) = cos 90° cos O + sin 90° sin @ Cosine difference identity
=0-cos@+1-sin6 cos 90° = 0 and sin 90° = 1
= sin 0 Simplify.

This result is true for any value of 0 because the identity for cos(A — B) is true
for any values of A and B.
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Cofunction Identities

The following identities hold for any angle 6 for which the functions are
defined.

cos(90° — @) =sin®  cot(90° — @) = tan 6
sin(90° — @) = cos®  sec(90° — @) = csc O
tan(90° — 0) = cot®  csc(90° — @) = sec 0

The same identities can be obtained for a real number domain by replacing
90° with 7.

Because trigonometric (circular) functions are periodic, the solu-
tions in Example 2 are not unique. We give only one of infinitely many
possibilities.

Using Cofunction Identities to Find 6

Find one value of 0 or x that satisfies each of the following.

3
(a) cotf = tan 25° (b) sin 8 = cos(—30°) (¢) csc TTF = sec x

(a) Because tangent and cotangent are cofunctions, tan(90° — #) = cot 6.
cot 6§ = tan 25°

tan(90° — 6) = tan 25°  Cofunction identity

90° — 0 = 25° Set angle measures equal.
0 = 65° Solve for 6.
(b) sin 6 = cos(—30°)
c0s(90° — 6) = cos(—30°)  Cofunction identity
90° — 0 = —30° Set angle measures equal.
0 = 120° Solve for 6.

3
(¢) csc— =secx

4
3m ™ A
cSC—— =csc| —— X Cofunction identity
4 2
3r w
— ==X Set angle measures equal.
4 2
T
- T 37 T 3w m
x:—z S()lvel()rx;gszzjff:*I.

Now Try Exercises 37 and 41.

Applications of the Sum and Difference Identities If either angle A
or angle B in the identities for cos(A + B) and cos(A — B) is a quadrantal angle,
then the identity allows us to write the expression in terms of a single function
of A or B.
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Reducing cos(A — B) to a Function of a Single Variable
Write cos(180° — 0) as a trigonometric function of 6 alone.
cos(180° — 6)

= cos 180° cos # + sin 180° sin &  Cosine difference identity

_ . cos 180° = —1 and
=(—1)cos® + (0)sin@ sin 180° = 0
= —cos Simplify.

Now Try Exercise 49.

Finding cos(s + t) Given Information about sand t

Suppose that sin s = %, cost = — %, and both s and ¢ are in quadrant II. Find
cos(s + 7).

By the cosine sum identity,
cos(s + 1) = cos s cos ¢ — sin s sin 7.

The values of sin s and cos # are given, so we can find cos(s + ) if we know the
values of cos s and sin ¢. There are two ways to do this.

Method 1 We use angles in standard position. To find cos s and sin 7, we
sketch two reference triangles in the second quadrant, one with sin s = % and
the other with cos ¢ = —%. Notice that for angle ¢, we use —12 to denote the

3 X . length of the side that lies along the x-axis. See Figure 5.
I . In Figure 5(a), y = 3 and r = 5. We must find x.
x
x2 + y2 =7 Pythagorean theorem
x*+32=52  Substitute.
@ x>=16  Isolate x2.
J x=—4 Choose the negative]
square root here.
Thus, cos s = );C = —‘51.
)] 13 /\’ ) In Figure 5(b), x = —12 and r = 13. We must find y.
12 x>+ y2 =r? Pythagorean theorem
(—12)2+ y2=13% Substitute.
(b) y2 =25 Isolate y%
Figure 5

y = 5 —{ Choose the positive
square root here.

Now we can find cos(s + 7).

PR -
Thus, sin 7= = 3.

cos(s + 1) =cosscost—sinssins Cosine sum identity (1)

4 ( 12) 3 5 _
= ——| —— | — —+ — Substitute.
5 13 5 13

48 15
=———= Multiply.
65 65
33
cos(s +1) = Subtract.

65
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Method 2 We use Pythagorean identities here. To find cos s, recall that
sin? s + cos? s = 1, where s is in quadrant II.

3 2
<5> + costs =1 sin .v:%

9
—+cos’s=1 Square 3.
25 ’
25 =20 Subtract ]
cos*s = —_  Subtract 5=.
25 25

4 cos s < Obecause s
CoS s = — g isin quadrant II.

To find sin ¢, we use sin® ¢t + cos? t = 1, where ¢ is in quadrant II.

13
in ¢ + 144 1 S 12
S1n - = Square — 5.
169 e
. 25 44
sin? t = @ Subtract %

sin f = i sin t > O because t
13 isin quadrant IL
From this point, the problem is solved using the same steps beginning with
the equation marked (1) in Method 1 on the previous page. The result is

COS(s + t) = 675 Same result as in Method 1

Now Try Exercise 51.

Applying the Cosine Difference Identity to Voltage

Common household electric current is called alternating current because the
current alternates direction within the wires. The voltage V in a typical 115-volt
outlet can be expressed by the function

V() = 163 sin wt,

where o is the angular speed (in radians per second) of the rotating generator at
the electrical plant and ¢ is time in seconds. (Source: Bell, D., Fundamentals of
Electric Circuits, Fourth Edition, Prentice-Hall.)

(a) It is essential for electric generators to rotate at precisely 60 cycles per sec
so household appliances and computers will function properly. Determine w
for these electric generators.

=l (b) Graph V in the window [0, 0.05] by [ —200, 200].
(¢) Determine a value of ¢ so that the graph of
V() = 163 cos(wt — ¢)
is the same as the graph of

V(1) = 163 sin wt.



Forx =1,
V(1) = 163 sin 1207t

NNN L
VRVAY,

—200

Figure 6
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(a) We convert 60 cycles per sec to radians per second as follows.

60 cycles 27 radians )
w= . = 120 radians per sec.
I sec 1 cycle

(b) V(1) = 163 sin wt
V(#) = 163 sin 12071t From part (a), @ = 1207 radians per sec.

Because the amplitude of the function V(¢) is 163, an appropriate interval for
the range is [ —200, 200 ], as shown in the graph in Figure 6.

(¢) Use the even-odd identity for cosine and a cofunction identity.

cos =T ) = oo = (T ) | = cos (T~ ) = ina

Therefore, if ¢ = %, then

V(t) = 163 cos(wt — ¢)

T
V(r) = 163 cos(wt - 2)

V(t) = 163 sin wt.

Now Try Exercise 75.

Verifying an Identity

Verifying an Identity

Verify that the following equation is an identity.

sec{ — —x | = —cscx
2

We work with the more complicated left side.

37 B 1 R L ident
secC > X | = (377 ) eciprocal identity
Cos| 5 — X

1
= 3 e Cosine difference identity
COs 5 €cos x + sin 5~ sin x

1

— 3w . 3w
= - 0057:Oands1n7:—1
0-cosx+ (—1)sinx
1 o
= - Simplify.
—Ssin x
= —CScx Reciprocal identity

The left side is identical to the right side, so the given equation is an identity.

Now Try Exercise 67.
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e

Exercises

CONCEPT PREVIEW Match each expression in Column I with the correct expression
in Column II to form an identity. Choices may be used once, more than once, or not at all.

| II

1. cos(x+y)=____ A. cosxcosy+ sinxsiny
2. cos(x—y)=____ B. tanx

3. cos(% - x) =_ C. —cosx

4 sm(% — x) =_ D. —sinx

5 cos(x - %) =_ E. sinx

6. sin(x—%)=_ F. cosxcosy — sinxsiny
7. tan(% - x) =_ G. cos x

8 cot(% — x) =_ H. cotx

Find the exact value of each expression. (Do not use a calculator.) See Example 1.

9. cos75° 10. cos(—15°)
11. cos(—105°) 12. cos 105°
(Hint: —105° = —60° + (—45°)) (Hint: 105° = 60° + 45°)
13. cos h 14. cos L
12 12
T T
15. - 16. -
5 cos( 12) 6 cos( 12)
5 5 . o . 5 T 2T T 2w
17. cos 40° cos 50° — sin 40° sin 50 18. cos ? cos ? — sin ? sin 7

Write each function value in terms of the cofunction of a complementary angle. See

Example 2.
2
19. tan 87° 20. sin 15° 21. cos% 22. sin?ﬂ-
. . 5w O
23. csc 14° 24’ 24. sin 142° 14’ 25. sin Y 26. cot To

27. sec 146° 42’ 28. tan 174° 03’ 29. cot 176.9814°  30. sin 98.0142°

Use identities to fill in each blank with the appropriate trigonometric function name. See

Example 2.
T T . 2w T
31. cot;——g 32. sin 3 ——( 6)
33. ____ 33°=5sin57° 34. _ 72°=cot 18°
1 1
35. cos 710° = ———— 36. tan 24° =

0 _66°
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Find one value of 6 or x that satisfies each of the following. See Example 2.

37. tan 0 = cot(45° + 26) 38. sin 6 = cos(260 + 30°)
2 o
39. secx =csc—— 40. cosx = sin—
3 12
41. sin(360 — 15°) = cos(6 + 25°) 42. cot(f — 10°) = tan(26 — 20°)

Use the identities for the cosine of a sum or difference to write each expression as a
trigonometric function of 0 alone. See Example 3.

43. cos(0° — ) 44. cos(90° — 0) 45. cos(6 — 180°)
46. cos(0 — 270°) 47. cos(0° + 0) 48. cos(90° + 0)
49. cos(180° + 0) 50. cos(270° + )

Find cos(s + t) and cos(s — t). See Example 4.

51. sins = % and sint = — %, s in quadrant I and # in quadrant I1I
52. coss=— % and cos r = — % s and ¢ in quadrant IIT

53. coss = —é and sinz = %, s and ¢ in quadrant II

54. sins = % and sint = — %, s in quadrant IT and ¢ in quadrant IV
55. sins = # and sin t = %, s and 7 in quadrant I

56. coss = # and sint = — %, s and ¢ in quadrant IV

Concept Check Determine whether each statement is true or false.
57. cos 42° = cos(30° + 12°)

58. cos(—24°) = cos 16° — cos 40°

59. cos 74° = cos 60° cos 14° + sin 60° sin 14°

60. cos 140° = cos 60° cos 80° — sin 60° sin 80°

61 T m m .omT o, TT
. - = S — — — S ——Sin —~
COS 3 COoS 12 Cos 4 S 12 S 4

T 11ar T T ow
62. cos— =Cc0S——CcoS— + sin ———sin —
3 12 4 12 4

63. cos 70° cos 20° — sin 70° sin 20° = 0

°[S

64. cos 85° cos 40° + sin 85° sin 40° =

65. tan (x — %) =cotx 66. sin <x — g) =CoSs X

Verify that each equation is an identity. (Hint: cos 2x = cos(x + x).) See Example 6.

67. cos (g + x> = —sinx 68. sec(m —x) = —sec x

69. cos 2x = cos?x — sin? x 70. 1 + cos 2x — cos? x = cos? x

71. cos2x=1—2sin’x 72. cos2x =2 cos?x — 1
?x—1 2x+ 1

73. cos2x = corx— 74. sec2x = corxT

cot?x + 1 cot?x — 1



220 | CHAPTERS5 Trigonometric Identities

(Modeling) Solve each problem. See Example 5.

75. Electric Current The voltage V in a typical 115-volt outlet can be expressed by the
function
V(t) = 163 sin 1207,

where 1207 is the angular speed (in radians per second) of the rotating generator at
an electrical power plant, and ¢ is time in seconds. (Source: Bell, D., Fundamentals
of Electric Circuits, Fourth Edition, Prentice-Hall.)

(a) How many times does the current oscillate in 0.05 sec?
(b) What are the maximum and minimum voltages in this outlet?

(c) Is the voltage always equal to 115 volts?

I 76. Sound Waves Sound is a result of waves applying
pressure to a person’s eardrum. For a pure sound
wave radiating outward in a spherical shape, the trig-
onometric function

can be used to model the sound pressure at a radius of
r feet from the source, where ¢ is time in seconds, A is
length of the sound wave in feet, c is speed of sound
in feet per second, and @ is maximum sound pressure
at the source measured in pounds per square foot.
(Source: Beranek, L., Noise and Vibration Control,
Institute of Noise Control Engineering, Washington,
D.C.) Let A = 4.9 ft and ¢ = 1026 ft per sec.

(a) Let a = 0.4 1b per ft>. Graph the sound pressure at distance » = 10 ft from its
source in the window [0, 0.05] by [ —0.05, 0.05]. Describe P at this distance.

(b) Now let @ = 3 and ¢ = 10. Graph the sound pressure in the window [0, 20] by
[ =2, 2]. What happens to pressure P as radius r increases?

(¢) Suppose a person stands at a radius r so that » = nA, where n is a positive integer.
Use the difference identity for cosine to simplify P in this situation.

Relating Concepts

For individual or collaborative investigation (Exercises 77-82)

(This discussion applies to functions of both angles and real numbers.) The result of
Example 3 in this section can be written as an identity.

cos(180° — @) = —cos @

This is an example of a reduction formula, which is an identity that reduces a func-
tion of a quadrantal angle plus or minus 6 to a function of € alone. Another example
of a reduction formula is

cos(270° + @) = sin 6.

Here is an interesting method for quickly determining a reduction formula for a
trigonometric function f of the form

f(Q £ 0), where Q is a quadrantal angle.

There are two cases to consider, and in each case, think of 0 as a small positive
angle in order to determine the quadrant in which Q * 6 will lie.
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Case 1 (Q is a quadrantal angle whose terminal side lies along the x-axis.

Determine the quadrant in which Q £ 6 will lie for a small positive angle 6.
If the given function f is positive in that quadrant, use a + sign on the
reduced form. If f is negative in that quadrant, use a — sign. The reduced
form will have that sign, f as the function, and 6 as the argument.

Example:

Terminates on
the x-axis

Cosine is negative
in quadrant II.

!

cos(180° — 0) = —cos 6
-
This is in
quadrant II

for small 6.
Same function

Case 2 ( is a quadrantal angle whose terminal side lies along the y-axis.

Determine the quadrant in which Q * 6 will lie for a small positive angle 6.
If the given function f is positive in that quadrant, use a + sign on the
reduced form. If f is negative in that quadrant, use a — sign. The reduced
form will have that sign, the cofunction of f as the function, and 0 as the
argument.

Example:

Cosine is positive
in quadrant I'V.

!

+ sin 6 (or sin 6, as it is usually written)

Terminates on
the y-axis

cos(270° + 0)
-

This is in
quadrant IV
for small 6.

Cofunctions

Use these ideas to write a reduction formula for each of the following.
77. cos(90° + 0) 78. cos(270° — 6) 79. cos(180° + )
80. cos(270° + 6) 81. sin(180° + ) 82. tan(270° — )

Sum and Difference Identities for Sine and Tangent

Sum and Difference
Identities for Sine

Sum and Difference
Identities for Tangent

Applications of the
Sum and Difference
Identities

Verifying an Identity

Sum and Difference Identities for Sine We can use the cosine sum and
difference identities from the previous section to derive similar identities for sine
and tangent. In sin § = cos(90° — 6), replace 6 with A + B.

sin(A + B) = cos[90° — (A + B) | Cofunction identity

cos[ (90° — A) — B] Distribute negative sign and regroup.

cos(90° — A) cos B + sin(90° — A) sin B

Cosine difference identity

sin(A + B) = sinA cos B + cos A sin B Cofunction identities
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Now we write sin(A — B) as sin[ A + (—B) | and use the identity just found

for sin(A + B).

sin(A — B) =sin[A + (—B)]
= sin A cos(—B) + cos A sin(—B)
sin(A — B) = sinA cos B — cos A sin B

Sine of a Sum or Difference

Definition of subtraction

Sine sum identity

Even-odd identities

sin(A + B) = sinA cos B + cos A sin B

sin(A — B) = sinA cos B — cos A sin B

Sum and Difference Identities for Tangent =~ We can derive the identity

for tan(A + B) as follows.
sin(A + B)
cos(A + B)

We express this sin A cos B + cos A sin B
result in terms of the = - -
tangent function. cos A cos B — sin A sin B

tan(A + B) =

sin A cos B + cos A sin B

1

1

cos A cos B

cos A cos B — sin A sin B

1

1

cos A cos B

sinAcosB cosAsinB

cosAcosB cosAcosB

cos A cos B sin A sin B

cos A cos B cos A cos

sin A sin B

cCosA cosB

sinA sinB

cosA cosB

tanA + tan B
1 — tanA tan B

tan(A + B) =

B

Fundamental identity

Sum identities

Multiply by 1, where
1
cos A cos B

1
cosAcos B

1=

Multiply numerators.
Multiply denominators.

Simplify.

sinf __
cosg — tan @

We can replace B with —B and use the fact that tan(—B) = —tan B to obtain
the identity for the tangent of the difference of two angles, as seen below.

Tangent of a Sum or Difference

tanA + tan B

tan(A + B) =
aif ) 1 — tanA tan B

tan(A — B) =

tanA — tan B

1+ tanA tan B
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Applications of the Sum and Difference Identities

m Finding Exact Sine and Tangent Function Values

Find the exact value of each expression.

7
(a) sin 75° (b) tan % (¢) sin 40° cos 160° — cos 40° sin 160°
SOLUTION
(a) sin75°
= sin(45° + 30°) 75° = 45° + 30°

= sin 45° cos 30° + cos 45° sin 30°  Sine sum identity

V2 3 . V2 o1
2 2 2 2

Ve+\V2

4

Substitute known values.

Multiply, and then add fractions.

T
b) tan —
()an12

m ™ T _ 4m T _ 37
tan<3+4> gfﬁand;fﬁ

w w

tan 3 + tan
= Tangent sum identity
1 —tan 3 tan -

4
V31
1-V3-1

_VE+1 140V
1-V3 1+V3

_ \/§+3+1+\/3 (a+b)(c+d)=ac+ad+ bc+ bd,

Substitute known values.

Rationalize the denominator.

1-3 (x=y)+y)=x>=y?
4+2V3 o

= —2 Combine like terms.

Factor first. Then
divide out the 2(2 + \6)
common factor. = Factor out 2.
2(-1)
= -2 - \6 Write in lowest terms.

(¢) sin 40° cos 160° — cos 40° sin 160°

= sin(40° — 160°)  Sine difference identity

= sin(—120°) Subtract.
= —sin 120° Even-odd identity
V3

= —-—— Substitute the known value.

2
v/ Now Try Exercises 9, 15, and 25.
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Writing Functions as Expressions Involving
Functions of 6

Write each function as an expression involving functions of 6 alone.

(a) sin(30° + 6) (b) tan(45° — 0) (c) sin(180° — 0)

(a) sin(30° + 0)

= sin 30° cos @ + cos 30° sin €  Sine sum identity

| 3.

= E cos 6 +——sin 6 sin 30° = % and cos 30° =
cos 6 + \/3 sin 6 B e

= (‘ = 5

2 b ¢ %

\a
2

; Add fractions.

(b) tan(45° — 6)

tan 45° — tan 0 o o
= S Tangent difference identity
1 + tan 45° tan 0

| —tan 6
= tan 45° = |
1+1-tan@
1 —tan 6 Multiol
= ulti .
1 + tan 6 o

(c) sin(180° — 0)
= sin 180° cos @ — cos 180° sin 6  Sine difference identity
=0-cosf —(—1)sin0 sin 180° = 0 and cos 180° = —1
=sin 0 Simplify.
Now Try Exercises 33, 39, and 43.

Finding Function Values and the Quadrantof A + B

Suppose that A and B are angles in standard position such that sin A = %,
% <A<, and cos B= — % T<B< 3777 Find each of the following.

(a) sin(A + B) (b) tan(A + B) (¢) the quadrant of A + B

(a) The identity for sin(A + B) involves sin A, cos A, sin B, and cos B. We are
given values of sin A and cos B. We must find values of cos A and sin B.

sin?A + cos?A =1 Fundamental identity

4\? ,
<5> +cos2A=1 sin A :%

6
— +cos?A =1 Square
25

16
cos2A = —  Subtract 2%

25

Pay attention COs A = — é Take square roots. Because
to signs. - 5 Aisinquadrant II, cos A <O0.
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In the same way, sin B = — % Now find sin(A + B).

sin(A + B) = sin A cos B + cos A sin B

) )

g

(b) Tofindtan(A + B), use the values of sine and cosine from part (a), sin A =

_ 20,36
65 65
16
in(A+ B) =—
sin( ) P
cosAZ—%,sinBz—%,andcosBz
sin A
tan A =
cos A
4
5
3
5
_4;<_3>
5° 5
_4 <_5)
5 3
4
tanA = ——
3
tan A + tan B
tan(A + B) = ———————
1 —tanAtan B
4 12
_ (-3)+%
4\(12
t=(-9)(5)
16
__ 15
1+3
16
_ 15
=
15
_16. 63
15 15
1615
15 63
tan(A + B) 16
an =—
63

(c)

Both are positive. Therefore, A + B must be in quadrant I, because it is the

16 16
sin(A + B) = P and tan(A + B) = Py

Sine sum identity
12)
13 found for cos A and sin B.

Multiply.

Add.

- 1% to obtain tan A and tan B.

sin B

tan B =
cos B

_12
13
-3
13

12

13
12
13

tan B

Tangent sum identity

Substitute.

Perform the indicated operations.

Add terms in the denominator.

Simplify the complex fraction.

Definition of division

Multiply.

See parts (a) and (b).

only quadrant in which both sine and tangent are positive.

Now Try Exercise 51.

Substitute the given values for
sin A and cos B and the values
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Verifying an Identity

Verifying an Identity

Verify that the equation is an identity.

i (77 ¥ 0) i (77 + 0) )
s\ — COS\| — = COS
6 3

Work on the left side, using the sine and cosine sum identities.

i <W+0) + <7T+9)
S 6 COS 3

T cos O+ e) ( T cos 6 T 0)
Sln — COS COS - Sln COS — COS - Sln - Sln
6 6 3 3

/\

Sine sum identity; cosine sum identity

1 V3 1 V3
<2c050+2s1n0> <2 050—2sm6>

T 1 \/n. w1, . 77_\§
Slngf,:, COS ¢ (\ 5 CO¢ 373,8111§77
1 1 S
=—cosf + —cosh Simplify.
2 2
= cos 0 Add. Now Try Exercise 63.

e

Exercises

CONCEPT PREVIEW Match each expression in Column I with the correct expression
in Column II to form an identity.

I I
1. sin(A + B) A. sinA cos B — cos A sin B
2. sin(A — B) B. %
tanA — tan B
3. tan(A + B) O T
4. tan(A — B) D. sinA cos B + cos A sin B

CONCEPT PREVIEW Match each expression in Column I with its equivalent expres-
sion in Column I1.

| 11
5. sin 60° cos 45° + cos 60° sin 45° A. tan 71727
6. sin 60° cos 45° — cos 60° sin 45° B. sin 15°
tan % + tan %
° T T C. sin 1050
I —tan 3 tan 7
aa aa
tan 3= tan n b -
1+tan§tan% - tany;

Find the exact value of each expression. See Example 1.

9. sin 165° 10. sin 255° 11. tan 165° 12. tan 285°
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1
13. sin " 14, sin 57 15. tan — 16. tan 27
12 12 12 12
T T T S
17. sin — 18. sin — 19. sin| —— 20. sin| ——
sin 2 8. sin 2 9 sm< 12) 0 sm( 12)
11 1
21. tan ( - 5—”) 22. tan (— 7—”) 23. tan —— 24. sin ( - ﬁ)
12 12 12 12
25. sin 76° cos 31° — cos 76° sin 31° 26. sin 40° cos 50° + cos 40° sin 50°
3 3 5 5
27. sin % cos % + cos % sin % 28. sin ?ﬂ- cos 118 — cos ?ﬂ- sin 118
29 tan 80° + tan 55° 30 tan 80° — tan(—55°)
" 1 — tan 80° tan 55° " 1 + tan 80° tan(—55°)
tan%”+ tan%77 tan%+ tan
N ——— 32. T sm. w
I — tan 7 tan 4 1 — tan 75 tan 3

Write each function as an expression involving functions of 0 or x alone. See Example 2.

33. cos(30° + 6) 34. cos(6 — 30°) 35. cos(60° + 6)
3 .
36. cos(45° —6) 37. cos (T - x) 38. sin(45° +0)
39. tan(0 + 30°) 40. tan (% + x> 41. sin (% + x)
(3w .
42. sin 7 43. sin(270° — 0) 44. tan(180° + )
45. tan(2m — x) 46. sin(m + x) 47. tan(m — x)

48. Why is it not possible to use the method of Example 2 to find a formula for
tan(270° — 6)?

49. Why is it that standard trigonometry texts usually do not develop formulas for the
cotangent, secant, and cosecant of the sum and difference of two numbers or angles?

50. Show thatif A, B, and C are the angles of a triangle, then

sin(A + B+ C) =0.
Use the given information to find (a) sin(s + t), (b) tan(s + t), and (c) the quadrant of
s + t. See Example 3.

51. coss = % and sin t = 1%, s and ¢ in quadrant I

52. sins = % and sint = — %, s in quadrant I and 7 in quadrant III
53. coss = — % and cos t = — % s and ¢ in quadrant I1I

54. coss = — % and sint = %, s in quadrant IT and ¢ in quadrant [
55. sins = % and sint = — % s in quadrant II and ¢ in quadrant IV
56. coss = —é and sin ¢ = % s and ¢ in quadrant II

F Graph each expression and use the graph to make a conjecture, predicting what might be
an identity. Then verify your conjecture algebraically.

T 3 T T
.osin| —+ . sin{ —+ . —+ . —-
57 sm<2 9) 58 sm( > 0> 59 tan(2 0) 60 tan(2 0)
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Verify that each equation is an identity. See Example 4.

61.
62.

63.

64.

65.

67.

69.

sin 2x = 2 sinx cos x  (Hint: sin 2x = sin(x + x))

sin(x +y) + sin(x —y) = 2sinxcos y

(770 ) a2 4 4) =0
s 6 X COS 3 X | =

2(tan x — tany)
tan(x =) —tan(y = x) = S any

cos(a — B) sin(s + ¢)
—————=tana tcotf3 66. ——— =tans + tant
cos asin B COS 5 COS ¢

sin(x —y) tanx—tany sin(x +y)  cotx + coty

- = 68. =
sin(x +y) tanx+tany cos(x —y) 1 -+cotxcoty
sin(s —¢) cos(s — 1) sin s tan(a + B) — tan B
- + == 0. = tan o
sin ¢ cos ¢ sin 7 cos ¢ 1 + tan(e + B) tan B

(Modeling) Solve each problem.

71.

72.

Back Stress If a person bends at the waist
with a straight back making an angle of 6
degrees with the horizontal, then the force F
exerted on the back muscles can be modeled
by the equation

1 0:6Wsin(0 +90°)
a sin 12° ’

where W is the weight of the person. (Source:
Metcalf, H., Topics in Classical Biophysics,
Prentice-Hall.)

(a) Calculate force F, to the nearest pound, for W = 170 1b and 6 = 30°.
(b) Use an identity to show that F is approximately equal to 2.9W cos 6.

(¢) For what value of 0 is F maximum?

Back Stress Refer to Exercise 71.

(a) Suppose a 200-1b person bends at the waist so that 6 = 45°. Calculate the force,
to the nearest pound, exerted on the person’s back muscles.

I (b) Approximate graphically the value of , to the nearest tenth, that results in the

73.

- 74.

back muscles of a 200-1b person exerting a force of 400 Ib.

Voltage A coil of wire rotating in a magnetic field induces a voltage

e aw
E=20sin( ———].
s1n(4 2)

Use an identity from this section to express this in terms of cos %t.
Voltage of a Circuit When the two voltages
V, =30sin 12077t and V, = 40 cos 1207t

are applied to the same circuit, the resulting voltage V will be equal to their sum.
(Source: Bell, D., Fundamentals of Electric Circuits, Second Edition, Reston
Publishing Company.)

(a) Graph the sum in the window [0, 0.05] by [ —60, 60].
(b) Use the graph to estimate values for a and ¢ so that V = a sin(1207t + ¢).
(c) Use identities to verify that the expression for V in part (b) is valid.
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(Modeling) Roll of a Spacecraft The figure on the left below shows the three quantities
that determine the motion of a spacecraft. A conventional three-dimensional spacecraft
coordinate system is shown on the right.

Angle YOQ = 0 and OQ = r. The coordinates of Q are (x,y, z), where
y=rcosf and z=rsin6.

When the spacecraft performs a rotation, it is necessary to find the coordinates in the
spacecraft system after the rotation takes place. For example, suppose the spacecraft
undergoes roll through angle R. The coordinates (x, y, z) of point Q become (x',y',7"),
the coordinates of the corresponding point Q'. In the new reference system, OQ' =r
and, because the roll is around the x-axis and angle Y'OQ' = YOQ = 6,

x'=x, y =rcos(§+R), and z' =rsin(6 + R).
(Source: Kastner, B., Space Mathematics, NASA.)

75. Write y’ in terms of y, R, and z. 76. Write z' in terms of y, R, and z.

Relating Concepts

For individual or collaborative investigation (Exercises 77-82)
Refer to the figure on the left below. By the definition of tan 0,
m = tan 0, where m is the slope and 0 is the angle of inclination of the line.

The following exercises, which depend on properties of triangles, refer to triangle
ABC in the figure on the right below. Work Exercises 77—-82 in order. Assume that
all angles are measured in degrees.

¥ s
77. Interms of B, what is the measure of angle ABC?

78. Use the fact that the sum of the angles in a triangle is 180° to express 6 in terms
of e and .

79. Apply the formula for tan(A — B) to obtain an expression for tan 6 in terms of
tan o and tan S.

. . . mp; —m,

80. Replace tan o with m, and tan B with m, to obtain tan § = ———.
1+ mm,

Use the result from Exercise 80 to find the acute angle between each pair of lines.

(Note that the tangent of the angle will be positive.) Use a calculator and round to

the nearest tenth of a degree.

8. x+y=9, 2x+y=—1 82. 5x—2y+4=0, 3x+5y=6



230 | CHAPTERS5 Trigonometric Identities

Chapter 5 o) VAT LR WP

_7

1. If sin # = — 55 and 0 is in quadrant IV, find the remaining five trigonometric func-

tion values of 6.
2. Express cot? x + csc? x in terms of sin x and cos x, and simplify.
3. Find the exact value of sin (— 71%)

4. Express cos(180° — ) as a function of 6 alone.

5. Ifcos A = %, sin B = —%, 0<A< %, and m <B< 37’7, find each of the following.
(a) cos(A + B) (b) sin(A + B) (¢) the quadrant of A + B

6. Express tan(’%ﬁ + x) as a function of x alone.

Verify that each equation is an identity.

1+ sin 6 sin @ 8 i (77+0) , <’7T 0) -
= . sin| — —sin| = — 6 ) = sin
cot? 6 csch—1 M3 S\ 3 °
sin? 0 — cos’ 0 cos(x +y) + cos(x — y)
S aa AT 10. — ; = cotx
sin* @ — cos* 0 sin(x — y) + sin(x + )

Double-Angle Identities

Double-Angle
Identities

An Application

Product-to-Sum and
Sum-to-Product
Identities

Double-Angle Identities When A = B in the identities for the sum of two
angles, the double-angle identities result. To derive an expression for cos 2A,
we let B = A in the identity cos(A + B) = cos A cos B — sin A sin B.

cos 2A = cos(A + A) 2A=A+A
=cosAcosA —sinAsinA  Cosine sum identity
cos 2A = cos’A — sin’A a-a=a

Two other useful forms of this identity can be obtained by substituting
cos’A=1-—sin?A or sin?A =1 — cos’>A.
Replacing cos? A with the expression 1 — sin? A gives the following.
cos 2A = cos’ A — sin? A Double-angle identity from above
= (1 —sin?A) —sin? A Fundamental identity
cos24 =1 — 2sinA Subtract.
Replacing sin?> A with 1 — cos® A gives a third form.
cos 2A = cos? A — sin’ A Double-angle identity from above

=cos?A — (1 — cos’ A)  Fundamental identity

cos’A — 1 + cos’A Distributive property

cos2A = 2cos?A — 1 Add.



LOOKING AHEAD TO CALCULUS
The identities

cos2A=1—2sin’A
and  cos2A =2cos’A — 1

can be rewritten as

1
sin?A = 5(1 — cos 24)

1
and  cos’A =E(l + cos 24).

These identities are used to integrate
the functions

f(A) = sin> A

and g(A) = cos? A.

<=2, 3\ =
Any of the three c0s 20 = cos2 0 — sin2 0 = 2 _ & _ _l cos 6 =5 and (v) 25°
4 4\2
forms may be used. 25 25 25 sing= 7% and (f%) =78

5.5 Double-Angle Identities

We find sin 2A using sin(A + B) = sin A cos B + cos A sin B, with B = A.

sin 2A = sin(A + A) 2A=A+A
=sinAcosA +cosAsinA  Sine sum identity

sin 2A = 2sinA cos A Add.

Using the identity for tan(A + B), we find tan 2A.

tan 2A = tan(A + A) 2A=A+A
tan A + tan A
= ——  Tangent sum identity
I —tan A tan A
tan 2A 2tanA Simplif
an = mmplity.
1 — tan’A p

In general, for a trigonometric function f,

f(2A) # 2f(A).

Double-Angle Identities

cos2A =1 — 2sin?A
sin 2A = 2sinA cos A

cos 2A = cos?A — sin?A

cos2A = 2cos?A — 1

Finding Function Values of 20 Given Information
about 0

Given cos 0 = % and sin 6 < 0, find sin 26, cos 26, and tan 26.

To find sin 26, we must first find the value of sin 6.

sin? @ + cos20 =1

. 3\ :
sin? @ + g =1 cos 0 =%

32 _ 9. .9
(g) fzfs,Sublrach.

Pythagorean identity

1
1 29=7
Sin 25

Pay attention §inf = — ﬂ
to signs here. ’ 5

Now use the double-angle identity for sine.

. . 4\(3 24
sin20 =2sinfcos =2 —— || = | = ——
5/)\5 25

Now we find cos 26, using the first of the double-angle identities for cosine.

Take square roots. Choose the negative
square root because sin 6 < 0.

. 4 3
sinf = —zand cos 0 =5

2_9

25

231
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CHAPTER 5 Trigonometric Identities

The value of tan 26 can be found in either of two ways. We can use the double-

4
angle identity and the fact that tan 6 = :l)nsee = —35 = —% = % = —;1 . % = —%1
5
4 8
tan 26 2 tan 0 2<*§> -3 24
an = = = =
1 —tan? 0 1_(_11)2 -1 7
3 9

Alternatively, we can find tan 26 by finding the quotient of sin 26 and cos 26.

24

sin 26 —55 24
tan 20 = = = —  Same result as above
cos20  _ 277

Now Try Exercise 11.

Finding Function Values of 6 Given Information
about 20

Find the values of the six trigonometric functions of 6 given cos 26 Z% and
90° < 0 < 180°.

We must obtain a trigonometric function value of 6 alone.

cos 20 =1 —2sin% 60 Double-angle identity

4 - ,
—=1-—2sin"0 cos20 =z
5 p
1 . : :
-3 = —2sin“ 6 Subtract 1 from each side.
L sin? 6 Multiply by —
10 ’
1 Take square roots. Choose
sinf =,/ — the positive square root because 6
10 terminates in quadrant II.
in 0 1 \/E Quotient rule for radicals;
Sln = . . . . ; . .
rationalize the denominator.
V1o V1o
V1o
sinf = —— Va-Va=a

10
Now find values of cos 6 and tan 6 by sketching and labeling a right triangle in

quadrant II. Because sin 6 = ﬁ, the triangle in Figure 7 is labeled accordingly.

The Pythagorean theorem is used to find the remaining leg.

-3 3VIo |

1 1 ' )
coS 0 = = and tan 9 = = —— cos 0 = ’l and tan 0 = =

V10 10 -3 3 |

We find the other three functions using reciprocals.

1 1 10 1
csc O = —\/ﬁ, sec = :_\F coth = =-3

sinf cos 0 3’ tan

Now Try Exercise 15.
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Verifying an Identity
Verify that the following equation is an identity.

cotxsin2x =1 + cos 2x

We start by working on the left side, writing all functions in terms of
sine and cosine and then simplifying the result.

. cosx o )
cot x sin 2x = —; - sin 2x Quotient identity
sin x
COS X . ) )
=— (2sinx cos x) Double-angle identity
sin x
Beable torecognize | = 2 cos® x Multiply.
alternative forms
of identities. cos 2x =2 cos’x — 1, 50
=1+ cos2x 5o _
2 cos*x = 1 + cos 2x.
Now Try Exercise 17.

Simplifying Expressions Using Double-Angle Identities
Simplify each expression.

(a) cos? 7x — sin® 7x (b) sin 15° cos 15°

(a) This expression suggests one of the double-angle identities for cosine:
cos 2A = cos” A — sin® A. Substitute 7x for A.

cos? 7x — sin? 7x = cos 2(7x) = cos 14x
(b) If the expression sin 15° cos 15° were
2 sin 15° cos 15°,
we could apply the identity for sin 2A directly because sin 2A = 2 sin A cos A.

sin 15° cos 15°

|
= —(2) sin 15°cos 15°  Multiply by 1 in the form %(2)

This is not an obvious
way to begin, but it is
disisst vall = 5 (2 sin 15° cos 15°)  Associative property
1.
=5 sin(2 - 15°) 2sin A cos A = sin 24, with A = 15°
_ L .
= —sin 30 Multiply.
2
11 1
=—-— sin 30° = 5
2 2
! Multipl
= - ultiply.
4 ply

Now Try Exercises 37 and 39.

Identities involving larger multiples of the variable can be derived by
repeated use of the double-angle identities and other identities.
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Deriving a Multiple-Angle Identity

Write sin 3x in terms of sin x.

sin 3x
= Sin(zx + X) 3x=2x+x
= sin 2x cos x + cos 2x sin x Sine sum identity
= (2 sin x cos x)cos x + (cos” x — sin” x)sin x Double-angle identities
= 2 sin x cos” x + cos” x sin x — sin® x Multiply.
=2sinx(1 — sin’x) + (1 — sin” x)sin x — sin* x  cos’x = | — sin’x
=2sinx — 2 sin® x + sin x — sin® x — sin’ x Distributive property
=3sinx — 4sin’x Combine like terms.
Now Try Exercise 49.
An Application

Determining Wattage Consumption

If a toaster is plugged into a common household outlet, the wattage consumed is
not constant. Instead, it varies at a high frequency according to the model

V2

W = I

R
where V is the voltage and R is a constant that measures the resistance of the
toaster in ohms. (Source: Bell, D., Fundamentals of Electric Circuits, Fourth
Edition, Prentice-Hall.)

Graph the wattage W consumed by a toaster with R=15 and

V =163 sin 12077 in the window [0, 0.05] by [—500,2000]. How many
oscillations are there?

Substituting the given values into the wattage equation gives

V2 (163 sin 12071)?
"R 15 '
To determine the range of W, we note that sin 1207¢ has maximum value 1, so
the expression for W has maximum value % =~ 1771. The minimum value is 0.
The graph in Figure 8 shows that there are six oscillations.

Now Try Exercise 69.

Product-to-Sum and Sum-to-Product Identities @ We can add the
corresponding sides of the identities for cos(A + B) and cos(A — B) to derive
a product-to-sum identity that is useful in calculus.

cos(A + B) = cos A cos B — sin A sin B

cos(A — B) = cos A cos B + sin A sin B
cos(A + B) + cos(A — B) =2 cos A cos B Add.

1
cos A cos B E[cos(A + B) + cos(A — B)]



LOOKING AHEAD TO CALCULUS
The product-to-sum identities are used
in calculus to find integrals of functions
that are products of trigonometric
functions. The classic calculus text by
Earl Swokowski includes the following

example:
Evaluate / cos 5x cos 3x dx.

The first solution line reads:

“We may write

1
cos 5x cos 3x = 3 [cos 8x + cos 2x].”

5.5 Double-Angle Identities | 235

Similarly, subtracting cos(A + B) from cos(A — B) gives
1
sinA sin B = E[COS(A — B) — cos(A + B)].

Using the identities for sin(A + B) and sin(A — B) in the same way, we
obtain two more identities. Those and the previous ones are now summarized.

Product-to-Sum Identities
1
cosA cos B = E[cos(A + B) + cos(A — B)]
. . 1
sinA sin B = E[COS(A — B) — cos(A + B)]
. 1. .
sin A cos B = E[sm(A + B) + sin(A — B)]

1
cosAsinB = E[sin(A + B) — sin(A — B)]

Using a Product-to-Sum Identity

Write 4 cos 75° sin 25° as the sum or difference of two functions.

4 cos 75° sin 25°

_ 1 . o o . o o Use the identity for cos A sin B,
=4 5(sm(75 +25°%) —sin(75° = 25°)) | ith A = 75° and B = 25°.
= 2 sin 100° — 2 sin 50° Simplify.

Now Try Exercise 57.

We can transform the product-to-sum identities into equivalent useful forms—
the sum-to-product identities—using substitution. Consider the product-to-sum
identity for sin A cos B.

Product-to-sum

. | .
sin A cos B = 5[sm (A+B) +sin(A = B)] geniity

Let u=A+B and vy =A — B. Use substitution
variables to write
Then ut+v=2A and u —v=2B, it o
he product-to-sum
u+v u—v identity in terms of
SO A= and B = . and v
) ) u and v.
.(u+v> (u\/) 1(. 4 sinv) bt
Sin COS = —(S1In u sin v Substitute.
2 2 2
Multiply by 2.

Interchange sides.

. e 2,<u+v> <u—v>
sinu +siny =2sin{ ——— Jcos
2 2

The other three sum-to-product identities are derived using the same substitu-
tions into the other three product-to-sum formulas.
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Sum-to-Product Identities

A+ B A—-B
sinA + sinB = Zsin( ) cos( )

A+ B A—-B
sinA—sinB=2cos( > )sm( > )

cosA + cos B = 2 cos

coSA — cos B = —2sin

/—\
(&)
bu
—
28
=]
e
=
N |
=
~—

Using a Sum-to-Product Identity
Write sin 20 — sin 46 as a product of two functions.

sin 260 — sin 460

20+ 40\ (20— 40 Usg the i(.lcmity !‘or
=2 cos Y sin| ——— ] sinA —sin B, with

2 A =20and B = 46.
60 . [ —260 o
=2cos—sin| — Simplify the numerators.
2 2
= 2 cos 30 sin(—0) Divide.
= —2cos 30 sin 0 sin(—6) = —sin 0
Now Try Exercise 63.

e

Exercises

CONCEPT PREVIEW Match each expression in Column I with its value in Column I1.

I 1l
2 tan 15° 1 V2
1. 2cos?15° — 1 3, =2 A. - B. -
€08 1 — tan? 15° 2 2
3
3. 2§in22.5°c0os 22.5° 4. coszg— sinzg C. \2/ D. —\V3
2 tan T V3
. T m 3
5. 4 sin— cos — 6. — > E. — F V3
Sin 3 COS 3 l — tanzg 3

Find values of the sine and cosine functions for each angle measure. See Examples 1

and 2.
7. 20, given sin 0 = and cos § <0 8. 20, given cos 0 = —% and sinf > 0
9. 2x, giventanx = 2 and cos x > 0 10. 2x, given tan x = %and sinx <0

11. 20, given sin 6 = —é andcos 6 >0 12. 20, given cos 6 = \[ and sin 6 > 0

13. 6, given cos 26 = % and 6 terminates 14. 6, given cos 260 = 1 and 0 terminates
in quadrant [ in quadrant III
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15. 6, given cos 260 = —153 and 90° < 6 < 180°
16. 6, given cos 26 = % and 90° < 0 < 180°

Verify that each equation is an identity. See Example 3.
sec? x + sec* x

17. (sinx + cos x)? = sin 2x + 1 18. sec2x = 3 T soc?r — socix
19. (cos 2x + sin 2x)2 = 1 + sin 4x 20. (cos2x —sin 2x)2 =1 — sin 4x
2t
21. tan 80 — tan 86 tan? 40 = 2 tan 40 22, sin2x =X
1 + tan? x
2 —sec?f —2tan 0
23. 20 =—7—"— 24. tan20 = —————
€os sec? 6 an sec?h —2
1+ 2
25. sin 4x = 4 sin x cos x cos 2x 26. w = cotx
sin 2x
2 26 1 — tan? 26
27. ?OS =cotfh — tan 6 28. cot4l = R
sin 26 2 tan 20
1 — tan® x
29. tanx + cotx = 2 csc 2x 30. cos2x = —————
1 + tan x
tA —tan A
31. 1 + tan xtan 2x = sec 2x 32. coma T ans cos 2A
COtA +tan A
33. sin2A cos 2A = sin 2A — 4 sin® A cos A
34. sin 4x = 4 sin x cos x — 8 sin® x cos x
35. tan(6 — 45°) + tan(6 + 45°) = 2 tan 20
36. cot 6 tan(6 + 7) — sin(m — 6) cos (% - 0) = cos? 0
Simplify each expression. See Example 4.
2 tan 15°
37. cos? 15° —sin? 15° 38— 2 39. 1 2sin? 15°
1 — tan? 15
1° 1° |
40. 1 — 2sin?22 5 41. 2cos? 67 5 1 42. cos? 3 2
tan 51° tan 34° 1 1
43, ———— 4, —————— 45. — — —sin?47.1°
1 — tan’51° 2(1 — tan? 34°) 4 2
1 2 2
46. 3 sin 29.5° cos 29.5° 47. sin? ?ﬂ- — cos? ?W 48. cos?2x — sin? 2x

Express each function as a trigonometric function of x. See Example 5.

49. sin 4x 50. cos 3x 51. tan 3x 52. cos4x

< Graph each expression and use the graph to make a conjecture, predicting what might be
an identity. Then verify your conjecture algebraically.

4 tan x cos? x — 2 tan x

53. cos*x — sin*x 54. 5
1 — tan“ x
2 tan x cot?x — 1
55, ————— 56. ———
2 —sec?x 2 cot x

Write each expression as a sum or difference of trigonometric functions. See Example 7.

57. 2 sin 58° cos 102° 58. 2 cos 85° sin 140° 59. 2 sin %cos %

60. 5 cos 3xcos2x 61. 6sin4xsin S5x 62. 8 sin 7x sin 9x
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Write each expression as a product of trigonometric functions. See Example 8.
63. cos 4x — cos 2x 64. cos 5x + cos 8x 65. sin 25° + sin(—48°)

66. sin 102° — sin 95° 67. cos 4x + cos 8x 68. sin 9x — sin 3x

A (Modeling) Solve each problem. See Example 6.

69. Wattage Consumption Use the identity cos 20 = 1 — 2 sin? 0 to determine values
of a, ¢, and w so that the equation

(163 sin 12077)?

W=s—"——"778™—+¢

15 becomes W = acos(wt) + c.

Round to the nearest tenth as necessary. Check by graphing both expressions for
W on the same coordinate axes.

70. Amperage, Wattage, and Voltage Amperage is a measure of the amount of electricity
that is moving through a circuit, whereas voltage is a measure of the force pushing
the electricity. The wattage W consumed by an electrical device can be determined
by calculating the product of the amperage / and voltage V. (Source: Wilcox, G. and
C. Hesselberth, Electricity for Engineering Technology, Allyn & Bacon.)

(a) A household circuit has voltage
V =163 sin 1207t

when an incandescent light bulb is turned on with
amperage

1 =1.23 sin 1207t.

Graph the wattage W = VI consumed by the light
bulb in the window [0, 0.05] by [ —50, 300].

(b) Determine the maximum and minimum wattages used by the light bulb.

(c) Use identities to determine values for a, ¢, and w so that W = a cos(wt) + c.
(d) Check by graphing both expressions for W on the same coordinate axes.

(e) Use the graph to estimate the average wattage used by the light. For how many
watts (to the nearest integer) would this incandescent light bulb be rated?

Half-Angle Identities

sl En ErE e Half-Angle Identities ~ From alternative forms of the identity for cos 24,
Applications of the . ... . . epe
Hgff- Angle Identities we derive identities for sin %, cos %, and tan %, known as half-angle identities.
Verifying an Identity We derive the identity for sin ’% as follows.

cos2x=1—2sin’>x Cosine double-angle identity

2sin?x =1 — cos 2x Add 2 sin? x and subtract cos 2x.

1 —cos2x o
+ f Divide by 2 and take square roots.
. A 1—cosA A '
sin E =+ T Let 2x = A, so x = 3. Substitute.

The * symbol indicates that the appropriate sign is chosen depending on the

positive and negative

Remember both the
square roots.

quadrant of %. For example, if % is a quadrant IIT angle, we choose the negative
sign because the sine function is negative in quadrant III.
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We derive the identity for cos % using another double-angle identity.

cos 2x =2cos?x — 1 Cosine double-angle identity
1 + cos2x =2 cos’ x Add 1.
5 1 + cos 2x ) o
Cos“x = ———_——— Rewrite and divide by 2.

1+ cos 2x
cosx = Take square roots.
A 1+ cosA oA
CcoS ? = Replace x with 5.

An identity for tan % comes from the identities for sin % and cos Ai.

tan — =

2 0052 /1+cosA

We derive an alternative identity for tan ‘% using double-angle identities.

l—cosA
A sm2 B \/ 1 — cos A
1 + cos A

A 54 cosd
A 51n2 _ Sll’l20052

. A
Multiply by 2 cos 5 in numerator
tan — = Py oy 2

2 A 2A and denominator.
COS 5 2 cos” 5
sin 2(%)
= Double-angle identities
1 + cos 2(§>
t. sin A Simplif
an — = ——— Simplify.
2 1+ cosA e

From the identity tan% = %, we can also derive an equivalent identity.

¢ A 1 —cosA
an— = ———
2 sin A

Half-Angle Identities

In the following identities, the = symbol indicates that the sign is chosen

. . . A
based on the function under consideration and the quadrant of 7.

A + 1+ cosA A 1 — cosA
A_ 4 fl1tcosd Ao g [L—cos4
C()S2 2 S1 2 2
t é_+ 1 —cosA ; é_ sin A ; é_l—cosA
Lo Nicsd 52 s A =2 A

Three of these identities require a sign choice. When using these identities,

H

select the plus or minus sign according to the quadrant in which ‘% terminates. For
example, if an angle A = 324°, then % = 162°, which lies in quadrant IT. So when

A A . AL .
A = 324°, cos 5 and tan 5 are negative, and sin 7 is positive.
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Applications of the Half-Angle Identities

Using a Half-Angle Identity to Find an Exact Value

Find the exact value of cos 15° using the half-angle identity for cosine.

30° 1 + cos 30°
cos 15° = cos =,
2 2

Choose the positive square root.

_\/1 \/1+ 2+V3
a a 2

Simplify the radlm

Now Try Exercise 11.

Using a Half-Angle Identity to Find an Exact Value

Find the exact value of tan 22. 5° using the identity tanfzl =7 fnc‘gs -
Because 22.5° = 2 , replace A with 45°,
V2 V2
tan 22.5° = t 45° sin 45° 2 - 2
an 22.5° = tan = = = ©
2 14 cosd5° V2 Ve 2

I+5 I+

\/2 \/ 2 — \/2 2\/2 Rationalize the
= 24 \6 2+ \/ 5y \/Z 7 denominator.
Factor first, and
then di:ii(lire outr}che 2(\6 - 1)

common factor. = f = \6 — 1 Now Try Exercise 13.

Finding Function Values of 5 3 Given Information about s

. 2
Given cos s = 3 w1th Tos< 241, find sin 5, cos ,and tan =

The angle associated with > 5 terminates in quadrant II because

3 3m s o
7<S<27T and T<E<7T Divide by 2.

See Figure 9 In quadrant II, the values of cos 5 ~ and tan 5 Z are negative and the

Figure 9

value of sm is positive. Use the appropriate half—angle 1dent1tles and simplify.

1_V1 Ve_ Ve

2
s =3
sin - =\/——=

2 2 6 \/ \/6 6 Rationalize

5 all denominators.
s 1+5 5. V5 Ve_ V3o
2 2 6 Ve Vo 6

L e Ve o Ve VEo o Viso o 6V5 o Vs
2 cosy; V30 —\/30 V30 V30 30 65 5

Notice that it is not necessary to use a half-angle identity for tan % once we find

sin % and cos % However, using this identity provides an excellent check.

Now Try Exercise 19.
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Simplifying Expressions Using Half-Angle Identities

Simplify each expression.

1+ cos 12x 1 — cos Sa
(@ X/ ——— (b) ———(——
2 sin Sa

(a) This matches part of the identity for cos %. Replace A with 12x.

A 1+ cosA 1+ cos 12x 12x
COSEZ iwlfz i‘w/%:cosf=cos6x

(b) Use the identity tan 41— cosA ith A = 5a.
2 sin A
1 — cos Sa Sa
— = tan —
sin S« 2

Now Try Exercises 37 and 39.

Verifying an Identity

Verifying an Identity

Verify that the following equation is an identity.
X x\? .
sin-+cos— | =1+sinx
2 2
We work on the more complicated left side.
x x\2 Remember the
sin — + cos — middle term when
2 2 squaring a binomial.

L) X . X X 2 X 2 2 2
= sin- — + 2 sin 5 COos —+ cos™ = (x+y)P=x*+2xy+ y?

2
X X s 92X 7 X
=1+ 2sin—cos — sin?5 + cos?5 = 1
. X . c .
=1+ s1n2<2> 23111%c0s§: sin 2(%)
=1+ sinx Multiply.
Now Try Exercise 47.

Exercises

CONCEPT PREVIEW Determine whether the positive or negative square root should

be selected.
+ 1 — cos 390 2 cos 58° = + 1 +cos 116
2 2
1 — cos 450° 1 — cos(—20°)
S tan225° =+ [———— 4. sin(—10°) = +,|————
3. tan 225 1+ cos 450° sin(=107) 2

1. sin 195° =



242

CHAPTER 5 Trigonometric Identities

CONCEPT PREVIEW Match each expression in Column I with its value in Column I1.

I I

2-V2

5. sin 15° 6. tan 15° A.2-V3 B. .
T T 2 — \/g 2+ \6
7. cos — . - S A p. ~———*=
cos 2 8 tan( 8) C 5 >
9. tan 67.5° 10. cos 67.5° E. 1-\V2 F. 1+V2

Use a half-angle identity to find each exact value. See Examples 1 and 2.

11. sin 67.5° 12. sin 195° 13. tan 195°

14. cos 195° 15. cos 165° 16. sin 165°

17. Explain how to use identities from this section to find the exact value of sin 7.5°.
18. The half-angle identity

A 1 —cosA
tan —= .,/ ———
2 1+cosA

can be used to find tan 22.5° = V 3 — 2\/5, and the half-angle identity

A sin A
tan — = ———
2 1+cosA

can be used to find tan 22.5° = \6 — 1. Show that these answers are the same,
without using a calculator. (Hint: If a > 0 and b > 0 and a®> = b?, then a = b.)

Use the given information to find each of the following. See Example 3.

1

19. cosy, givencosx = 7, with 0 <x <75

20. sin 3, given cos x = *%, with T <x <

21. tan g, given sin = %, with 90° < 6 < 180°

22. cos g, given sin § = 7;_1’ with 180° < 6 < 270°

23. sinj, giventanx =2, with 0 <x <75

24. cos3, givencotx = =3, with 5 <x <

25. tan %, given tan = 7, with 180° < 6 < 270°

26. cot g, given tan 6 = —?, with 90° < 6 < 180°

27. sin 6, given cos 20 = % and 6 terminates in quadrant |
28. cos 0, given cos 20 = % and 6 terminates in quadrant 11
29. cos x, given cos 2x = — 1%, with 7 <x <

30.
31.
32.

sin x, given cos 2x = %, with m <x < 37”
Concept Check If cos x = 0.9682 and sin x = 0.250, then tan )25 ~
Concept Check If cos x = —0.750 and sin x = 0.6614, then tan % =~

Simplify each expression. See Example 4.

1 — cos 40° 1 + cos 76°

3. | —— 34, | —
2 2

36, 1 + cos 165°

1 — cos 165°

sin 59.74°

1 — cos 59.74°

35 1 — cos 147°
"N 1+ cos 147°
sin 158.2°

38, —M—
1 + cos 158.2°
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39, + 1+ cos 18x 40. + 1 + cos 20« 4L+ 1 —cos 86

2 2 1+ cos 860

_ 1+ cos® 1 —cos 3

g2, + |1cosA 43+, — 24 4, t|—25
1 + cos 5A 2 2

Verify that each equation is an identity. See Example 5.

2 2
45. sec?t=— - 46. cot? X = (1 + cos x)*
2 1+cosx : 2 sin? x
47. sin? X_fanx 7 sinx sin ¢ 48. sin. 2x = cos? - sin? X
2 2 tan x 2 sin x 2 2
2 0
49, — = =1 50. tan — = csc O — cot 6
1+ cosx 2 2
0 2 cos 6 1 —tan®3
51. 1 —tan? - = ——— 52. cosx=—i
2 1+4+cosf 1+ tan®5
53. Use the half-angle identity
A sin A
tan - = ———
2 l+4cosA
to derive the equivalent identity
A 1—cosA
tan - = ———
2 sin A

by multiplying both the numerator and the denominator by 1 — cos A.

54. Use the identity tan% =71 imcgs + to determine an identity for cot%.

EE Graph each expression and use the graph to make a conjecture, predicting what might be
an identity. Then verify your conjecture algebraically.
sin x 1 —cosx

55, —— 56. :
1+ cosx sin x

X X

tan 5 + cot 5
2 2 X X

L — 58. 1 — 8sin®> ~cos? =
cot; — tany 2 2

(Modeling) Mach Number An airplane flying
faster than the speed of sound sends out sound
waves that form a cone, as shown in the figure.
The cone intersects the ground to form a
hyperbola. As this hyperbola passes over
a particular point on the ground, a sonic boom
is heard at that point. If 0 is the angle at the
vertex of the cone, then

.0
sin — =

o
3=

where m is the Mach number for the speed of the plane. (We assume m > 1.) The Mach
number is the ratio of the speed of the plane to the speed of sound. Thus, a speed of
Mach 1.4 means that the plane is flying at 1.4 times the speed of sound.

In each of the following exercises, 8 or m is given. Find the other value (0 to the
nearest degree and m to the nearest tenth as applicable).

59. m=% 60. m=g 61. 6 =60° 62. 6 =30°
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Solve each problem.

63. (Modeling) Railroad Curves In the United States, circular railroad curves are desig-
nated by the degree of curvature, the central angle subtended by a chord of 100 ft.
See the figure. (Source: Hay, W. W., Railroad Engineering, John Wiley and Sons.)

(a) Use the figure to write an expres-

. 0
sion for cos 5.
(b) Use the result of part (a) and the half-angle identity tan % =
expression for tan g.

1 — cos A

snA Lo write an

64. In Exercise 63, if » = 12, what is the measure of angle 6 to the nearest degree?

Advanced methods of trigonometry can be used to find the following exact value.

Vs-i

in 18° =
sin 4

(See Hobson’s A Treatise on Plane Trigonometry.) Use this value and identities to find
each exact value. Support answers with calculator approximations if desired.

65. cos 18° 66. tan 18° 67. cot 18° 68. sec 18°
69. csc 18° 70. cos 72° 71. sin 72° 72. tan 72°
73. cot 72° 74. csc72° 75. sec 72° 76. sin 162°

Relating Concepts

For individual or collaborative investigation (Exercises 77-84)

These exercises use results from plane geom-
etry to obtain exact values of the trigonometric
functions of 15°.

Start with a right triangle ACB having
a 60° angle at A and a 30° angle at B. Let
the hypotenuse of this triangle have length 2.
Extend side BC and draw a semicircle with
diameter along BC extended, center at B, and
radius AB. Draw segment AE. (See the figure.) Any angle inscribed in a semicircle
is a right angle, so triangle EAD is a right triangle. Work Exercises 77-84 in order.

77. Why is AB = BD true? Conclude that triangle ABD is isosceles.

78. Why does angle ABD have measure 150°?

79. Why do angles DAB and ADB both have measures of 15°?

80. What is the length DC?

81. Use the Pythagorean theorem to show that the length AD is V6 + V2.
82. Use angle ADB of triangle EAD to find cos 15°.

83. Show that AE has length V6 — V/2 and find sin 15°.

84. Use triangle ACD to find tan 15°.
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I T —————————————————.~.,
Summary Exercises on Verifying Trigonometric Identities

These summary exercises provide practice with the various types of trigonometric identi-
ties presented in this chapter. Verify that each equation is an identity.

1. tan 6 + cot 6 = sec O csc O 2. csccos?h + sinh =csch
X
3. tan5=cscx*cotx 4. sec(m —x) = —secx
5 sint 1 —cost 6 I —sint 1
" 1+cost sin ¢ ) cos t sect+ tant
2 tan 0 2 X
7. sin20 = ———— §. ——— —tan?—=1
1 + tan- 0 1+ cosx 2
20 — 1 1
9. cott9—tan0=2,COS761 10. + =2cotrcesct
sin 0 cos 6 sect—1 secr+1
u sin(x +y)  cotx+coty 12 1—1 ,0  2cosf
. = ol —tan? = ———
cos(x—y) 1+ cotxcoty 2 1+4cos#
sin 0 + tan 0 1 + cos?x
13. ————=tan6 . by —cottx=— 7
1+ cos6 14. csetx = cottx 1 — cos® x
1 — tan®3 2 —sec’x
15. cosx=—§ 16. cos2x = —————
1+ tan?5 sec x
tan? ¢ + 1 sin s 1+ cos s
17. —————=tant 18. + - =2cscs
tan 7 csc- t 1+ coss sin s
2 tan 26 X
19. tan40 = ——— 20. tan| —+ — ) = secx + tan
2 — sec226 (2 4) * *
cot s — tan cos s — sin tan 6 — cot O
g1, I HAS_EO83 d 2. 27 | _2cos2h
coss +sins Sin s COS § tan 0 + cot 6

tan(x +y) —tany X .
23. = tan x 24. 2 cos’> —tanx = tan x + sin x
I +tan(x +y) tany 2

4 4
Ccos™ x — sin* x csct+ 1
285 ———=1~- tan? x 26. ———— = (sect + tanr)?
COS~ X csct—1
2(sin x — sin® x) x 1 x
27, —————~— =3gin 2x 28. —cot—— —tan — = cotx
COS X 2 2 2 2

cos(x +y) + cos(y — x)
29. — - = cotx
sin(x +y) — sin(y — x)

30. sin(60° — x) — sin(60° + x) = —sinx

31. sin(60° + x) + sin(60° — x) = V/3 cos x
32. sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x

33. sin®f + cos® 6 + sin O cos? O + sin? 6 cos O = sin O + cos O

4 cosx +sinx cosx — sinx

- - = 2 tan 2x
COsSx —sinx Ccosx + sinx
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Chapter 5 Test Prep

Concepts Examples
m Fundamental Identities If 6 is in quadrant IV and sin 6 = —%, find csc 6, cos 0,
and sin(—6).

Reciprocal Identities

1 5 :
1 1 1 csc = — —_ — _~ Reciprocal
coth = —— sec § = cscd =——— ’ i 3 e
tan O cos 0 SC sin 6 sinf  _ 2 3 identity
Quotient Identities sin? 0 + cos’> 6 =1 Pythagorean identity
. 3 2
tan 6 = sin 6 cotfh = cos 6 (_7> + C052 6=1 Substitute.
s 6 sin 0 5
16 2 ¢ ¢
20— 3y - 9. ot 2
Pythagorean Identities cos™6 25 ( 5> 25 Sublract 3.
sin? @ + cos?2 9 =1 tan? 0 + 1 = sec? 0 16  cos 6 is positive
cos =+ 25 in quadrant IV.
1 + cot? § = csc? 0
4
Even-Odd Identities cos § = 35
in(—0) = —si —0) = —0) = — 3 3
sin(—0) sinf cos(—0) =cosf tan(—0) tan 0 §in(—0) = —sin 6 = _(_§> -5
csc(—0) = —csc O sec(—0) =secH cot(—6) = —coth
Even-odd identity
m Verifying Trigonometric Identities
See the box titled Hints for Verifying Identities in Section 5.2.
m Sum and Difference Identities for Cosine
m Sum and Difference Identities for Sine and Tangent
Cofunction Identities Find one value of 0 such that tan 6 = cot 78°.
cos(90° — 6) = sin 6 cot(90° — 0) = tan 6 tan 6 = cot 78°
sin(90° — #) = cos 6 sec(90° — ) = csc 6 cot(90° — 0) = cot 78°  Cofunction identity
tan(90° — ) = cot 0 csc(90° — 0) = sec 0 90° — 6 =178° Set angles equal.
0=12° Solve for 6.
Sum and Difference Identities Find the exact value of cos(—15°).
cos(A — B) = cos A cos B + sin A sin B cos(—15%)
cos(A + B) = cos A cos B — sin A sin B =cos(30° — 45°) —15°=30°—45°
sin(A + B) = sin A cos B + cos A sin B — cos 30° cos 45° + sin 30° sin 45°
sin(A — B) = sin A cos B — cos A sin B Cosine difference identity
tan(A + B) = tanA+tanB _ V3 V2 i 1. ﬁ Substitute
1 —tanAtan B ) 2 ) known values.
tan A — tan B V6 + V2
tan(A —B)=——— _ e
an ) 1 + tan A tan B - 4 Simplify.



Concepts

Double-Angle Identities

Double-Angle Identities
cos 2A = cos’ A — sin? A

cos2A =2 cos?A — 1

cos2A =1—2sin?A
sin 2A = 2 sin A cos A

Product-to-Sum Identities

1
cos A cos B = E[COS(A + B) + cos(A — B)]
1
sin A sin B = E[COS(A — B) —cos(A + B)]
. L. .
sinA cos B = E[sm(A + B) + sin(A — B) ]

1
cos A sin B = E[Sin(A + B) — sin(A — B) ]

Sum-to-Product Identities

. . . (A+B A—B
sin A + sin B = 2 sin 2 cos
A+B> ) (A >
sin
2
A+B> (A >
> cos >
. (A+B\ . ([A—B
cos A — cos B = —2sin > sin >

Half-Angle Identities

SinA — sinB:2cos(

2
- B
2

—B

cos A +cosB=200s(

Half-Angle Identities

A 1+ A A 1- A
cos —= * L reosa sin —= * - cosa
2 2 2 2
A 1 —cosA A sin A
tan —= *+, |/ — tan - = ———

2 1+cosA 2 1+cosA

A 1 —cosA
tan - = ————
2 sin A
<In the identities involving radicals, the sign is chosen based

on the function under consideration and the quadrant of ’% )

CHAPTERS TestPrep | 247

Examples

Given cos 0 = — % and sin 6 > 0, find sin 26.
Sketch a triangle in quadrant II because cos 8 <0 and
sin @ > 0. Use it to find that sin 0 = %

sin 260 = 2 sin 0 cos 6 y
13
= 2<E)<_i> 12 0
13 13
__120 B
169

Write sin(—6) sin 26 as the difference of two functions.
sin(—6) sin 26

= %[cos(*() —260) — cos(—6 + 20) ]

= %[cos(—SG) —cos 0]

1 1
= 5005(—36) — 5 cos 0

1 1
= —cos 30 — —cos 6
2 2

Write cos 6 + cos 30 as a product of two functions.

cos 6 + cos 36

0+ 36 0 — 360
=2 cos cos| —
2 2
46 —20
=2cos| — Jcos| —
2 2

= 2 cos 26 cos(—0)

=2 cos 26 cos O

Find the exact value of tan 67.5°.
We choose the last form with A = 135°.

()
135° 1 — cos 135° 2
tan 67.5° = tan = - =
2 sin 135° 2
2
Va2
1+5 2 2+4V2
= =t =Vt
V22 2
2

Rationalize the denominator and simplify.
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Concept Check For each expression in Column I, choose the expression from Column II
that completes an identity.

I II
1 1
1. secx=__ 2. ¢cscx=__ A, — B.
sin x COS X
sin x 1
3. tanx=__ 4., cotx=_____ C. D. ——
COS X cot” x
1 coS X
5. tanfx=___ 6. sec’ix=__ E. 5 F. —
COS” x sin x

Use identities to write each expression in terms of sin 6 and cos 0, and then simplify so
that no quotients appear and all functions are of 0 only.

cot(—0)
7. sec? 0 — tan’ 0 . 9. tan? 6(1 + cot? 6)
sec(—0)
10. csc O —sin 6 11. tan 6 — sec 6 csc 0 12. csc? 0 + sec? 6

Work each problem.

13. Use the trigonometric identities to find sin x, tan x, and cot( —x), given cos x = % and
x in quadrant I'V.

14. Given tanx = — %, where 721 < x <, use the trigonometric identities to find cot x,
csc x, and sec x.

15. Find the exact values of the six trigonometric functions of 165°.

16. Find the exact values of sin x, cos x, and tan x, for x = %, using

(a) difference identities (b) half-angle identities.

Concept Check For each expression in Column I, use an identity to choose an expression
Jfrom Column Il with the same value. Choices may be used once, more than once, or not at all.

I II
17. cos210°  18. sin 35° A. sin(—35°) B. cos 55°
) 1 + cos 150° . R R
19. tan(—35°) 20. —sin35° C. B — D. 2 sin 150° cos 150
21. cos 35° 22. cos 75° E. cot(—35°) F. cos? 150° — sin? 150°
23. sin 75° 24. sin 300° G. cos(—35°) H. cot 125°

25. cos 300°  26. cos(—55°) I. cos 150° cos 60° — sin 150° sin 60°

J. sin 15° cos 60° + cos 15° sin 60°

Use the given information to find sin(x + y), cos(x — y), tan(x + y), and the quadrant
of x +y.

27. sinx = — %, cosy = —zls, x and y in quadrant III
28. sinx = %, cosy = %, x in quadrant I, y in quadrant IV
29. sinx = — %, cosy= — %, x and y in quadrant I1I

30. siny = — % cos x = —%, x in quadrant II, y in quadrant I1T
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31. sinx = 1]*0, cosy = ‘51, x in quadrant I, y in quadrant IV

32. cosx = %, siny = — % x in quadrant IV, y in quadrant IIT

Find values of the sine and cosine functions for each angle measure.
33. 0, given cos 20 = —3, 90° < 20 < 180°

34. B, given cos 2B = &, 540° < 2B < 720°

35. 2x, giventanx = 3,sinx <0 36. 2y, givensecy = — %, siny >0

Use the given information to find each of the following.

37. cos g, given cos 6 = —%, 90° < 0 < 180°

38. sin’%, given cos A = —%, 90° < A < 180°

39. tanx, giventan2x =2, 7w < x < 3777 40. siny, given cos 2y = —%, F<y<mw

41. tan3, givensinx = 0.8,0<x<7 42. sin2x, givensinx = 0.6, 5 <x <

F Graph each expression and use the graph to make a conjecture, predicting what might
be an identity. Then verify your conjecture algebraically.

sin 2x + sin x 1 — cos 2x sin x
. 4, ——— 45, —
COS X — COS 2x sin 2x 1 —cosx
cos x sin 2x 2(sin x — sin’ x)
46, ———— 47, ——~ 48. cscx — cotx
1 + cos 2x COS X

Verify that each equation is an identity.
cos? x — sin® x

49. sin®x — sin? y = cos?> y — cos® x 50. 2cos’x —cosx =
sec x
in2? in 2 2
51. _Sx cos? > 52. SITI *
2—2cosx 2 sin x Sec x
tan A 2tan B
53, 2cosA —secA = cos A — —2 54. .an =sec’B
csC A sin 2B
2 cot
§5. 1+ tan? @ = 2 tan @ csc 2a 56. " =csclx— 2
tan 2x
57. tan6sin260 =2 — 2 cos? 6 58. cscAsin2A — sec A = cos 2A sec A
1 — tan% 0
59. 2tanxcsc2x —tan?x = 1 60. 2cos’f — 1 =—"—
1 + tan= 0
2 tan 6 cos* § — tan 6 sec 2o — 1
61. tan f cos?h = 62. secta— 1=t
1 — tan? @ sec 2a + 1
s 2
63. SEY eV A 2 sin® x — sin x 64. sin> 0 =sin § — cos? O sin O
csc x
2 tan 260
65. tan 40 = _Lansy 66. 2 cos® tanx = tan x + sin x
2 — sec? 20 2
x 1 x 1 X
67. tan| -+ — ) =secx + tanx 68. —cot—— —tan — = cotx
2 4 2 2 2 2
5
60, oo ¥ _ Sin2xFsinx 7o, Sin3i+sin2e _tany

2 cos2x —cosx sin 3¢ — sin 2¢ tan%
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(Modeling) Solve each problem.

71. Distance Traveled by an Object The distance D
of an object thrown (or projected) from height %
(in feet) at angle 6 with initial velocity v is illus- i
trated in the figure and modeled by the formula

D_vzsin00050+vcose V(v sin )2 + 64h

32
(Source: Kreighbaum, E. and K. Barthels, Biomechanics, Allyn & Bacon.)

o

(a) Find D when h = 0—that is, when the object is projected from the ground.

(b) Suppose a car driving over loose gravel kicks up a small stone at a velocity of
36 ft per sec (about 25 mph) and an angle # = 30°. How far, to the nearest foot,
will the stone travel?

72. Amperage, Wattage, and Voltage Suppose that for an electric heater, voltage is given
by V = a sin 27wt and amperage by I = b sin 27 wt, where ¢ is time in seconds.

(a) Find the period of the graph for the voltage.
(b) Show that the graph of the wattage W = VI has half the period of the voltage.

Chapter5

Ifcos 0 = % and @ is in quadrant IV, find the other five trigonometric functions of 6.
Express sec 8 — sin 6 tan 6 as a single function of 6.

Express tan® x — sec?

x in terms of sin x and cos x, and simplify.
Find the exact value of cos 51%
Express (a) cos(270° — 6) and (b) tan(7 + x) as functions of 6 or x alone.

Use a half-angle identity to find the exact value of sin(—22.5°).

AT U T

Graph y = cot %x — cot x and use the graph to make a conjecture, predicting what
might be an identity. Then verify your conjecture algebraically.

8. Given that sin A = 1%, cosB = —%, A is a quadrant | angle, and B is a quadrant II
angle, find each of the following.

(a) sin(A +B) (b) cos(A+ B) (c) tan(A — B) (d) the quadrant of A + B
9. Given that cos 6 = —% and 90° < 6 < 180°, find each of the following.

(a) cos 26 (b) sin 260 (c) tan 26 (d) cos 6 (e) tan 0

2 2
Verify that each equation is an identity.
1 tA —tan A in 2
10. sec>’B=——5— 11. cos24 = =2 204 12, 22 anx
1 —sin’B csc A sec A cos 2x + 1

tan x — cotx
13. tan?x — sin?x = (tan x sin x)2 14, ——————=2sin’x— 1
tan x + cot x
15. (Modeling) Voltage The voltage in common household current is expressed as
V = 163 sin wt, where w is the angular speed (in radians per second) of the genera-
tor at an electrical plant and ¢ is time (in seconds).

(a) Use an identity to express V in terms of cosine.

(b) If @ = 1207, what is the maximum voltage? Give the least positive value of ¢
when the maximum voltage occurs.
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Sound waves, such as those
initiated by musical instruments,
travel in sinusoidal patterns that
can be graphed as sine or cosine
functions and described by
trigonometric equations.
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Inverse Circular Functions

Inverse Functions
Inverse Sine Function
Inverse Cosine Function

Inverse Tangent
Function

Other Inverse Circular
Functions

Inverse Function Values

f(x) = x* is a one-to-one func-
tion. It satisfies the conditions
of the horizontal line test.

2
g(x) = x2 is not one-to-one.

It does not satisfy the conditions
of the horizontal line test.

Figurel

Inverse Functions We now review some basic concepts from algebra.
For a function f, every element x in the domain corresponds to one and only
one element y, or f(x), in the range. This means the following:

1. If point (a, b) lies on the graph of f, then there is no other point on the
graph that has a as first coordinate.

2. Other points may have b as second coordinate, however, because the defi-
nition of function allows range elements to be used more than once.

If a function is defined so that each range element is used only once, then it
is a one-to-one function. For example, the function

f(x) = x* is a one-to-one function
because every real number has exactly one real cube root. However,
g(x) = x?is not a one-to-one function

because g(2) = 4 and g(—2) = 4. There are two domain elements, 2 and —2,
that correspond to the range element 4.

The horizontal line test helps determine graphically whether a function is
one-to-one.

Horizontal Line Test

A function is one-to-one if every horizontal line intersects the graph of the
function at most once.

This test is applied to the graphs of f(x) = x? and g(x) = x? in Figure1.

By interchanging the components of the ordered pairs of a one-to-one
function f, we obtain a new set of ordered pairs that satisfies the definition of
a function. This new function is the inverse function, or inverse, of f.

Inverse Function

The inverse function of a one-to-one function f is defined as follows.

S~ = {(y,x)|(x,y) belongs to f}

The special notation used for inverse functions is f~! (read “f-inverse”).
It represents the function created by interchanging the input (domain) and the
output (range) of a one-to-one function.

CAUTION Do not confuse the —1 in f~' with a negative exponent.

The symbol f~!(x) represents the inverse function of f, not f(lfx)




gx) = xz, x20

If the domain of g(x) = x2is
restricted so that x > 0, then
it is a one-to-one function.

Figure 3

LOOKING AHEAD TO CALCULUS
The inverse circular functions are
used in calculus to solve certain types
of related-rates problems and to

integrate certain rational functions.
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The following statements summarize the concepts of inverse functions.

Summary of Inverse Functions

1. In a one-to-one function, each x-value corresponds to only one y-value
and each y-value corresponds to only one x-value.

2. If a function f is one-to-one, then f has an inverse function f~'.

3. The domain of f is the range of f~!, and the range of f is the domain of
f~!. That is, if the point (a, b) lies on the graph of f, then the point (b, a)
lies on the graph of f7!.

4. The graphs of f and f' are reflections of each other across the line
y=x

5. To find f~!(x) for f(x), follow these steps.
Step 1 Replace f(x) with y and interchange x and y.
Step 2 Solve for y.

Step 3 Replace y with f~1(x).

Figure 2 illustrates some of these concepts.

(b, a)
e

y
vé
v
N

—Of»x

y=x," )
7 (a, b)

v

¥

(b, a) is the reflection of (a, b) across The graph of f‘1 is the reflection of
the line y = x. the graph of facross the line y = x.

Figure 2

We often restrict the domain of a function that is not one-to-one to make it
one-to-one without changing the range. We saw in Figure 1 that g(x) = x2, with
its natural domain (—oe, %), is not one-to-one. However, if we restrict its domain
to the set of nonnegative numbers [0, ), we obtain a new function f that is
one-to-one and has the same range as g, [O, ). See Figure 3.

We could have restricted the domain of g(x) = x? to (=, 0]to
obtain a different one-to-one function. For the trigonometric functions, such
choices are based on general agreement by mathematicians.

Inverse Sine Function  Refer to the graph of the sine function in Figure 4
on the next page. Applying the horizontal line test, we see that y = sin x does
not define a one-to-one function. If we restrict the domain to the interval

[ —7, g] , which is the part of the graph in Figure 4 shown in color, this restricted

function is one-to-one and has an inverse function. The range of y = sin x is

[—1, 1], so the domain of the inverse function will be [—1, 1], and its range
. m T

will be [—5, 5}.
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Reflecting the graph of y = sin x on the restricted domain, shown in Fig-
ure 5(a), across the line y = x gives the graph of the inverse function, shown in
Figure 5(b). Some key points are labeled on the graph. The equation of the
inverse of y = sin x is found by interchanging x and y to obtain

X = sin y.
This equation is solved for y by writing
y = sin~lx (read “inverse sine of x”).

As Figure 5(b) shows, the domain of y = sin"! x is [ —1, 1], while the restricted

. . ar ar . .o B
domain of y = sin x, [— 7> 5], is the range of y = sin"! x. An alternative nota-
tion for sin~1 x is arcsin x.

y y
@
(51 SR
1 ~x 2 (ﬁ, 17)
~ 273
(2.2)
| | 1@
I ©,0) T ' % o/ ) .
2 2 4 UM
< ! 2776
I
S< 14+ | _ Q _ ﬂ)
(5T | e
> . 4-5)
| N N 1 T 2 3
| Restricted domain | (—l, —7) T
1 T 1 2 2
2’2 y =sinlx or y = arcsin x
(a) (b)
Figure5
Inverse Sine Function
y = sin~'x or y = aresin x means that x = sin y, for —5 <y = 7.

We can think of y = sin~'x or y = arcsin x as

“y is the number (angle) in the interval [— %, %] whose sine is x.”

Thus, we can write y = sin”! x as sin y = x to evaluate it. We must pay close
attention to the domain and range intervals.



(a)

(b)

(c)
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Finding Inverse Sine Values

Find the value of each real number y if it exists.

(@ y= arcsin% (b) y = sin"!(—1) (©) y=sin"/(=2)

1

The graph of the function defined by y = arcsinx | (a)-(c) We graph the equation y; = sin"'x and find

(Figure 5(b)) includes the point (% %) Therefore, | the points with x-values % = (0.5 and —1. For these two
x-values, Figure 6 indicates that y = % ~ (.52359878
andy = —5 =~ —1.570796.

L7
ar051n2—6.

Alternatively, we can think of y = arcsin%

. . N
as “y is the number in [—% %] whose sine is 5.”

SEENAL FLONT SUTE BERL FAIINE 1P

Then we can write the given equation as siny = % Voumtbl 7 Versmrl T
2 J 2 J
Because sin g = % and ¢ is in the range of the arc- _//; _fd-’;
. . T | e 1 i oo 1
sine function, y = ¢. — —
1 1
Writing the equation y = sin"!(—1) in the form :'“ L — iﬂ S
. ar .
siny = —1 shows that y = —75. Notice that the
Figure 6

point (—1, - g) is on the graph of y = sin™! x.

Because —2 is not in the domain of the inverse sine | Because sin”!(—2) does not exist, a calculator will give
function, sin~!(—2) does not exist. an error message for this input.

Now Try Exercises 13, 21, and 25.

CAUTION In Example 1(b), it is tempting to give the value of sin"!(—1)

3 .3 37 . . .
as 777 because sin 7” = —1. However, 777 is not in the range of the inverse

sine function. Be certain that the number given for an inverse function
value is in the range of the particular inverse function being considered.

Inverse Sine Function y = sin~1x or y = arcsin x

Domain: [ —1, 1] Range: [_%’g]

1

x y y y=sin""x
1|-1
— — L w
3 Tl
2 -
V2| _m
I
Il Il X
0| 0 Ry
V2| z
|4 —%—- y =sinlx 1
1 % _7l
2

Figure 7

The inverse sine function is increasing on the open interval (—1, 1) and
continuous on its domain [ —1, 1].

Its x- and y-intercepts are both (0, 0).

Its graph is symmetric with respect to the origin, so the function is an odd
function. For all x in the domain, sin"!(—x) = —sin"'x.
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Inverse Cosine Function The function
y =cos 'x or y = arccosx

is defined by restricting the domain of the function y = cos x to the interval
[0, 7] as in Figure 8. This restricted function, which is the part of the graph in
Figure 8 shown in color, is one-to-one and has an inverse function. The inverse
function, y = cos™! x, is found by interchanging the roles of x and y. Reflecting
the graph of y = cos x across the line y = x gives the graph of the inverse func-
tion shown in Figure 9. Some key points are shown on the graph.

y
140D
e d
I” ™
e (9)
1 d X
! 0 T L]
_m ™ ™ R4
2 2 ’,
L (77, —11,/
| y=cosx
Restricted domain !
[0, 7] y=cos'x or y=arccosx
Figure 8 Figure 9

Inverse Cosine Function

y = cos~!x or y = arccos x means that x = cos y, for 0 < y < 7.

We can think of y = cos™!x or y = arccos x as

“y is the number (angle) in the interval [0, 7] whose cosine is x.”

WERHAL FLOAT ALTO BEEL RAGIAN HP Finding Inverse Cosine Values

Find the value of each real number y if it exists.

2

%)

(a) y = arccos 1 (b) y =cos™! <—

(a) Because the point (1, 0) lies on the graph of y = arccos x in Figure 9, the
value of y, or arccos 1, is 0. Alternatively, we can think of y = arccos 1 as

“y is the number in [0, 77 | whose cosine is 1,” or cosy = 1.

| Thus, y = 0, since cos 0 = 1 and 0 is in the range of the arccosine function.

(b) We must find the value of y that satisfies

2 .. .
5 ) | cosy = —%, where y is in the interval [0, 77 ],
| e AT Wad JIERLINE |
Ehese s;rezegs support the results of which is the range of the function y = cos ! x. The only value for y that
xample 2 because . . . X A . X
v satisfies these conditions is %’ Again, this can be verified from the graph in
2

——5 =~ —0.7071068 Figure 9.
and G~ 23561945, Now Try Exercises 15 and 23.
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Inverse Cosine Function y = cos ~1x or y = arccos x

Domain: [—1, 1] Range: [0, 7]

1

X y y y =CoS ' x
— WERhAL FLOAT ALTO BESL B m
=1 | 7 T
V2 | 3 B
5 |3 y=cos x
m
0|3 \
V2| m } 0 ¥ X
5|3 -1 1
110
Figure 10

The inverse cosine function is decreasing on the open interval (—1, 1) and
continuous on its domain [ —1, 1].

. . . . . T
Its x-intercept is (1, 0) and its y-intercept is (O, 5).

Its graph is not symmetric with respect to either the y-axis or the origin.

Inverse Tangent Function = Restricting the domain of the function y = tan x
to the open interval (— %, %) yields a one-to-one function. By interchanging the

roles of x and y, we obtain the inverse tangent function given by

y =tan"lx or y = arctanx.
Figure 11 shows the graph of the restricted tangent function. Figure 12 gives the
graph of y = tan™"! x.
y
1 y= tan x
| |
| |
1+ y

I ‘\I(%’ 1) ™

0,0 - T Pl T

- — x (1L%)

7 0 ™ L (v3-9)

(B, 7 ’

A S N Gk

_T_ 3w
(-%3-1) | | -5-7) {1zt 2
¥ 2t | — \ | s
IRestricted domain (—\6 , —g) ( 1, ”) 2
53 e
272 y=tanlx or y=arctanx
Figure 1l Figure 12

Inverse Tangent Function

y = tan~ ! x or y = arctan x means that x = tan y, for —% <y< %

We can think of y = tan~! x or y = arctan x as

“y is the number (angle) in the interval (— %, %) whose tangent is x.”
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We summarize this discussion about the inverse tangent function as follows.

Inverse Tangent Function y = tan-1x or y = arctan x

s (_m T
Domain: (—, ) Range.( 2,2)
x y y y =tanlx
— m T
1 -3 ————— T ——=s—
V3 - y=tan‘1x
R — e
0 0 -2 -1 0 1 2
AVEN) I S ——— R
3 6 2
ko
L7

Figure13

The inverse tangent function is increasing on (—, %) and continuous on
its domain (—o, ).

Its x- and y-intercepts are both (0, 0).

Its graph is symmetric with respect to the origin, so the function is an odd

function. For all x in the domain, tan™'(—x) = —tan"'x.

The lines y = g and y = —% are horizontal asymptotes.

Other Inverse Circular Functions The other three inverse trigonometric
functions are defined similarly. Their graphs are shown in Figure 14.

Inverse Cotangent, Secant, and Cosecant Functions*

y = cot~lx or y = arccot x means that x = cot y, for 0 <y < .
— -1 — - T
y = sec” xory = arcsec x means thatx =secy, forO=y=m,y # 7.

— -1 — — _T 71
y = c¢sc”'xory = arccsc x means that x = csc y, for TSV S 5,
y # 0.

/\I
|
|
|
|
1l
T
|
|
|
|
|
f
<« 3
I
w
@
e
-
|
)
SIE
1
T

Figure 14

*The inverse secant and inverse cosecant functions are sometimes defined with different ranges. We use
intervals that match those of the inverse cosine and inverse sine functions, respectively (except for one
missing point).
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The table gives all six inverse circular functions with their domains and
ranges.

Summary of Inverse Circular Functions

Range
Inverse Quadrants of the
Function Domain Interval Unit Circle
y=sin"!x [—1,1] [—%,%] ILand IV
y=cosx [—1,1] [0, 7] Tand II
y=tan'x (=, ) (—%%) Land IV
y=cot'x (—o, ») (0, ) Iand IT
y=sec'x (=0, =11 U [1, ) [0,%)U(%,7T} Land [T
y=csclx | (=, —-1]U [1,) | [-5.0)U(0,5] Tand IV

Inverse Function Values The inverse circular functions are formally
defined with real number ranges. However, there are times when it may be con-
venient to find degree-measured angles equivalent to these real number values. It
is also often convenient to think in terms of the unit circle and choose the inverse
function values on the basis of the quadrants given in the preceding table.

Finding Inverse Function Values
(Degree-Measured Angles)

Find the degree measure of 0 if it exists.

(a) 6 = arctan 1 (b) 0 =sec!'2

(a) Here 0 must be in (—90°, 90°), but because 1 is positive, # must be in quad-
rant I. The alternative statement, tan 6 = 1, leads to 0 = 45°.

(b) Write the equation as sec # = 2. For sec™! x, 0 is in quadrant I or II. Because
2 is positive, 6 is in quadrant I and 8 = 60°, since sec 60° = 2. Note that 60°

(the degree equivalent of %) is in the range of the inverse secant function.

Now Try Exercises 37 and 45.

The inverse trigonometric function keys on a calculator give correct results
for the inverse sine, inverse cosine, and inverse tangent functions.

sin10.5 = 30°, sin™! (—0.5) = —30°,
Degree mode
tan"!(—1) = —45° and cos !(—0.5) = 120°

However, finding cot™ x, sec™' x, and csc™!' x with a calculator is not as

straightforward because these functions must first be expressed in terms of tan™! x,
cos™'x, and sin”! x, respectively. If y = sec™! x, for example, then we have
sec y = x, which must be written in terms of cosine as follows.

1
cosy

11

1 _
If secy=ux, then =X, Or cosy=-_, and y = cos o
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Use the following to evaluate these inverse functions on a calculator.

. 11 . S|
1x is evaluated as cos™' =; csc™1x is evaluated as sin~! —;

sec” b o

an~!1 ifx >0
180° + tan~!1 ifx < 0.

cot™! x is evaluated as { Degree mode

Finding Inverse Function Values with a Calculator
Use a calculator to approximate each value.
(a) Find y in radians if y = csc™!(—3).
(b) Find 6 in degrees if 6 = arccot(—0.3541).

HERFAL FLOAT &UTD RIS BABDEW HP ﬂ

(a) With the calculator in radian mode, enter csc™!' (—3) as sin™! (%) to obtain
y = —0.3398369095. See Figure 15(a).

(b) A calculator in degree mode gives the inverse tangent value of a negative
number as a quadrant IV angle. The restriction on the range of arccotangent
implies that 6 must be in quadrant II.

(a)

arccot(—0.3541) is entered as tan’l(ﬁ) + 180°.

As shown in Figure 15(b),

(b) 0 = 109.4990544°.
Figure 15 Now Try Exercises 53 and 65.

CAUTION Be careful when using a calculator to evaluate the inverse
cotangent of a negative quantity. Enter the inverse tangent of the recipro-
cal of the negative quantity, which returns an angle in quadrant IV. Because
inverse cotangent is negative in quadrant II, adjust the calculator result by
adding 7 or 180° accordingly. (Note that cot ™' 0 = 5 or 90°.)

Finding Function Values Using Definitions
of the Trigonometric Functions

Evaluate each expression without using a calculator.
3 5
in| tan”! = b) t I - ))
(a) sm( an 2) (b) an(cos ( 13

(a) Let# = tan™! %, and thus tan 6 = % The inverse tangent function yields val-

ues only in quadrants I and IV, and because % is positive, 6 is in quadrant .
Sketch 6 in quadrant I, and label a triangle, as shown in Figure 16 on the

next page. By the Pythagorean theorem, the hypotenuse is \/B The value
of sine is the quotient of the side opposite and the hypotenuse.

( _13> . 3 3 Vi3 3Vi3
sin{ tan™' — | =sin 0 = =

Vi VB VB3

Rationalize the denominator.
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0 2 -5
0 = tan™! % A= cos"(— %)
Figure 16 Figure 17
(b) Let A = cosfl(—%) Then, cos A = —%. Because cos™! x for a negative

value of x is in quadrant II, sketch A in quadrant II. See Figure 17.

tan (cosl(— 5)) =tan A = _12
13 5

Now Try Exercises 75 and 77.

Finding Function Values Using Identities

Evaluate each expression without using a calculator.

1 2
(a) cos <arctan \/g + arcsin 3) (b) tan <2 arcsin 5)

(a) Let A=arctan V3 and B = arcsin % Therefore, tan A = \/g and sin B = %

Sketch both A and B in quadrant I, as shown in Figure 18, and use the
Pythagorean theorem to find the unknown side in each triangle.

2
\3 3
1
A . B o, .
of 1 0 72
Figure 18

1 : :
cos arctan\/g + arcsin g Given expression

= COS(A + B) Let A = arctan’\/ 3 and B = arcsin %

=cosA cos B —sinAsin B Cosine sum identity

Substitute values using Figure 18.

= Multiply and write as a single fraction.
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wm

2
B
0 \ i *
Figure19

y

u,u>0
X

u,u<0

Figure 20

(b) Let B = arcsin % so that sin B = % Sketch angle B in quadrant I, and use
the Pythagorean theorem to find the length of the third side of the triangle.
See Figure 19.

.2
tan <2 arcsin 5> Given expression

2 tan B

2
2( \/ﬁ) Use tan 2B = = ——

with

_ ( 2 )2 tan B = %1 from Figure 19.

V21 vai
4
V21
= n Multiply and apply the exponent.
=51
4 V21
V21 21 Rationalize in the numerator.
17 Subtract in the denominator.
21
4V21
21 . .
=7 Multiply in the numerator.
21
4\/27 % a c a d
= Divide; —=7 +5=7+".
17 ’c b d b ¢

d
Now Try Exercises 79 and 87.

While the work shown in Examples 5 and 6 does not rely on a calculator, we
can use one to support our algebraic work. By entering cos (arctan \/3 + arcsin %)

from Example 6(a) into a calculator, we find the approximation 0.1827293862,
2V2 - V3
6

the same approximation as when we enter (the exact value we obtained

algebraically). Similarly, we obtain the same approximation when we evaluate

2 421

tan(2 arcsin g) and —7—, supporting our answer in Example 6(b).

Writing Function Values in Terms of u

Write each trigonometric expression as an algebraic expression in u.

(a) sin(tan™! u) (b) cos(2sin!u)

(a) Let® = tan~! u, so tan 6 = u. Because
T . T
——<tanlu<—,
2 2

sketch 60 in quadrants I and IV and label two triangles, as shown in Figure 20.

Sine is given by the quotient of the side opposite and the hypotenuse, so we
have the following.

Vu+1 uVur+1

u
Vet 1 Var+1 Var+1 i+l

Rationalize the denominator.

The result is positive when u is positive and negative when u is negative.
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(b) Let 0 =sin"! u, so that sin ® = u. To find cos 26, use the double-angle

identity cos 260 = 1 — 2 sin? 6.
cos(2sin"'u) =cos20 =1—2sin’ 0 = 1 — 2u?

v/ Now Try Exercises 95 and 99.

= ¢.vii=: Finding Optimal Angle of Elevation of a Shot Put

The optimal angle of elevation 0 for a shot-putter to achieve the greatest dis-
tance depends on the velocity v of the throw and the initial height £ of the shot.
See Figure 21. One model for 6 that attains this greatest distance is

. ( [ 2 )
6 = arcsin —_— .
2v2 + 64h

(Source: Townend, M. S., Mathematics in Sport, Chichester, Ellis Horwood Ltd.)

D

Figure 21

An athlete can consistently put the shot with 4 = 6.6 ft and v = 42 ft per sec.
At what angle should he release the ball to maximize distance?

SOLUTION To find this angle, substitute and use a calculator in degree mode.

. 422
6 = arcsin <\/ > =~ 42° Useh= 6.6, v =42, and a calculator.

2(422) + 64(6.6)

v/ Now Try Exercise 105.

l:!l Exercises

CONCEPT PREVIEW Fill in the blank(s) to correctly complete each sentence.

1. For a function to have an inverse, it must be -to-

2. The domain of y = arcsinx equalsthe ___ of y = sin x.

3. y=cos'xmeansthatx=__ for0=y=.

4. The point (%, 1) lies on the graph of y = tan x. Therefore, the point ________ lies
on the graph of y = tan™! x.

5. If a function f has an inverse and f(7) = —1, then f !(—1) =

1 1

To evaluate sec™! x, use the value of cos™

CONCEPT PREVIEW Write a short answer for each of the following.

7.

Consider the inverse sine function y = sin"! x, or y = arcsin x.
(a) What is its domain? (b) What is its range?
(c) Is this function increasing or decreasing?

(d) Why is arcsin(—2) not defined?
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8.

10.

11.

12.

Consider the inverse cosine function y = cos™!

(a) What is its domain? (b) What is its range?

X, Or y = arccos x.

(c¢) Is this function increasing or decreasing?
(d) arccos ( - %) = 2777 Why is arccos ( - %) not equal to — 4777 ?

Consider the inverse tangent function y = tan™!

(a) What is its domain? (b) What is its range?

X, Or y = arctan x.

(¢) Is this function increasing or decreasing?

(d) Is there any real number x for which arctan x is not defined? If so, what is it
(or what are they)?

Give the domain and range of each inverse trigonometric function, as defined in this
section.

(a) inverse cosecant function (b) inverse secant function

(c) inverse cotangent function

Concept Check Why are different intervals used when restricting the domains of
the sine and cosine functions in the process of defining their inverse functions?

Concept Check For positive values of a, cot™! a is calculated as tan™! ‘1; How is
cot™! a calculated for negative values of a?

Find the exact value of each real number y if it exists. Do not use a calculator. See

Examples 1 and 2.
13. y=sin!0 14. y =sin!(—1) 15. y =cos7!(—1)
16. y = arccos 0 17. y=tan'1 18. y = arctan(—1)
3
19. y = arctan 0 20. y=tan'(—1) 21. y = arcsin <— \2/>
2 3 1
22, y=sin"! i 23. y = arccos —i 24. y=cos’! (— 7)
2 2 2
25. y=sin' \V/3 26. y = arcsin(—\/Z) 27. y=cot '(—1)
28. y= arccot(*\/§> 29. y=csc'(—2) 30. y=csc' V2
2V3
31. y = arcsec \3/ 32. y= sec‘l(—\/Z) 33. y=sec!'l1
2 1
34. y=sec'0 35. y=csc! \2/ 36. y = arccsc (— 5)
Give the degree measure of 0 if it exists. Do not use a calculator. See Example 3.
V3
37. 6 = arctan(—1) 38. 9=tan"' \V/3 39. 6 = arcsin (—2
2 1
40. 6 = arcsin <— \2/> 41. 0 = arccos <_ 5) 42. 6 =sec!(-2)
3 3
43. 6 = cot’! <— \3/) 44. 6 = cot’! \3/ 45. 6 =csc'(-2)
46. 6 =csc’!(—1) 47. 6 =sin"' 2 48. 0 =cos!(-2)
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Use a calculator to approximate each value in decimal degrees. See Example 4.

49. 0 = sin"'(—0.13349122) 50. 6 = arcsin 0.77900016
51. 6 = arccos(—0.39876459) 52. 9 = cos !(—0.13348816)
53. 0 =csc! 1.9422833 54. 6 = cot ! 1.7670492

55. 6 = cot !(—0.60724226) 56. 0 = cot !(—2.7733744)
57. 6 = tan"!(—7.7828641) 58. 6 = sec™!(—5.1180373)

Use a calculator to approximate each real number value. (Be sure the calculator is in
radian mode.) See Example 4.

59. y = arcsin 0.92837781 60. y = arcsin 0.81926439
61. y = cos™!(—0.32647891) 62. y = arccos 0.44624593
63. y =arctan 1.1111111 64. y = cot”! 1.0036571
65. y = cot !(—0.92170128) 66. y = cot”!(—36.874610)
67. y =sec!(—1.2871684) 68. y =sec™!4.7963825

FId The screen here shows how to define the inverse secant,
cosecant, and cotangent functions in order to graph
them using a TI-84 Plus graphing calculator.

Use this information to graph each inverse circular |[*sY28sini[ %]
function and compare the graphs to those in Figure 14, |[WWY18F -taniix)

B\ 4=
69. y=sec'x 70. y=csc'x 7l y=cot'x |loriZ
B o=
Graph each inverse circular function by hand.
1
72. y = arccsc 2x 73. y = arcsec 3% 74. y=2cot ' x

Evaluate each expression without using a calculator. See Examples 5 and 6.

3 1
75. tan (arccos Z) 76. sin (arccos Z) 77. cos(tan™!(—2))
78. sec (sin’1 (— l)) 79. sin (2 tan™! E) 80. cos (2 sin™! l)
2 ) 3 5 . 1
4 1 . 1
81. cos| 2 arctan 3 82. tan|2cos’! n 83. sin|2cos™! 3
84. cos(2tan!'(—2)) 85. sec(sec™!'2) 86. csc(csc_l\ﬁ)
5 3 3 5
87. cos (tan‘1 — —tan! *) 88. cos (sin‘1 =+ cos™! 7)
12 4 5 13

1 3 3
89. sin <sin‘1 0 + tan‘l(—3)) 90. tan (cos’l \2/ — sin”! <— g)>

Use a calculator to find each value. Give answers as real numbers.
91. cos(tan"!0.5) 92. sin(cos™! 0.25)
93. tan(arcsin 0.12251014) 94. cot(arccos 0.58236841)
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Write each trigonometric expression as an algebraic expression in u, for u> 0. See

Example 7.
95. sin(arccos u) 96. tan(arccos u) 97. cos(arcsin u)
. . u 3
98. cot(arcsin u) 99. sin|{ 2 sec™! 2 100. cos|{ 2 tan”! .

101.

103.

u u
tan (Sinl 7) 102. sec (cosl 7)
Vu>+2 Vu>+5

V4 — u? V9 — u?
sec arccotT 104. csc arctanT

(Modeling) Solve each problem.

105. Angle of Elevation of a Shot Put Refer to Example 8. Suppose a shot-putter can

consistently release the steel ball with velocity v of 32 ft per sec from an initial
height £ of 5.0 ft. What angle, to the nearest degree, will maximize the distance?

106. Angle of Elevation of a Shot Put Refer to Example 8.

107.

I (e) Graph the function for 6 with a graphing calcu-

108. Landscaping Formula A shrub is planted

(a) What is the optimal angle, to the nearest degree, when & = 0?
(b) Fix h at 6 ft and regard 6 as a function of v. As v increases without bound, the
graph approaches an asymptote. Find the equation of that asymptote.

Observation of a Painting A painting 1 m high and 3 m from the floor will cut off
an angle 6 to an observer, where

B X
0 = tan 1<x2+2)’

assuming that the observer is x meters from the wall where the painting is displayed
and that the eyes of the observer are 2 m above the ground. (See the figure.) Find the
value of 6 for the following values of x. Round to the nearest degree.

(@ 1 (b) 2 (¢ 3

(d) Derive the formula given above. (Hint: Use the
identity for tan(6 + «). Use right triangles.)

lator, and determine the distance that maximizes
the angle.

(f) The concept in part (e) was first investigated in
1471 by the astronomer Regiomontanus. (Source:
Maor, E., Trigonometric Delights, Princeton University Press.) If the bottom
of the picture is a meters above eye level and the top of the picture is b meters

above eye level, then the optimum value of x is V/ab meters. Use this result to
find the exact answer to part (e).

in a 100-ft-wide space between buildings
measuring 75 ft and 150 ft tall. The loca-

tion of the shrub determines how much

sun it receives each day. Show that if 6 is

the angle in the figure and x is the distance

of the shrub from the taller building, then 75 ft
the value of 6 (in radians) is given by

( 75 ) (150)
0 = 7 — arctan —arctan| — |.
100 — x X
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109. Communications Satellite Coverage The figure shows a stationary communi-
cations satellite positioned 20,000 mi above the equator. What percent, to the
nearest tenth, of the equator can be seen from the satellite? The diameter of Earth
is 7927 mi at the equator.

110. Oilin a Storage Tank The level of oil in a storage tank buried in the ground can
be found in much the same way as a dipstick is used to determine the oil level in
an automobile crankcase. Suppose the ends of the cylindrical storage tank in the
figure are circles of radius 3 ft and the cylinder is 20 ft long. Determine the volume
of oil in the tank to the nearest cubic foot if the rod shows a depth of 2 ft. (Hint:
The volume will be 20 times the area of the shaded segment of the circle shown in
the figure on the right.)

Relating Concepts

For individual or collaborative investigation (Exercises 111-114)*

111. Consider the function

1 2
f(x) =3x—2 anditsinverse f'(x) = 5

Simplify f(f~'(x)) and f~'(f(x)). What do you notice in each case?

112. Now consider the general linear functions

1 b
f(x)=ax+Db and f‘l(x)=gx—g, for a # 0.

Simplify f(f'(x)) and f7!(f(x)). What do you notice in each case? What is
the graph in each case?

FI<113. Use a graphing calculator to graph y = tan(tan™! x) in the standard viewing
window, using radian mode. How does this compare to the graph you described
in Exercise 112?

FE114. Use a graphing calculator to graph y = tan™!(tan x) in the standard viewing
window, using radian and dot modes. Why does this graph not agree with the
graph you found in Exercise 113?

*The authors wish to thank Carol Walker of Hinds Community College for making a suggestion on
which these exercises are based.
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—

(a)

(b)

Trigonometric Equations I

Linear Methods

Zero-Factor Property
Method

Quadratic Methods

Trigonometric Identity

Substitutions Linear Methods

An Application .
of the equation.

Earlier we studied trigonometric equations that were identities. We now consider
trigonometric equations that are conditional. These equations are satisfied by
some values but not others.

The most basic trigonometric equations are solved by
first using properties of equality to isolate a trigonometric expression on one side

Solving a Trigonometric Equation (Linear Methods)

Solve the equation 2sin§ + 1 =0

(a) over the interval [0°, 360°)

Because sin 6 is to the first power, we use the same
method as we would to solve the linear equation
2x+1=0.

2sinf+1=0 Original equation
2sinf = —1  Subtract 1.
. |
sin @ = ——  Divide by 2.
2
To find values of 6 that satisfy sin 6 = —%, we

observe that § must be in either quadrant III or
quadrant IV because the sine function is negative
only in these two quadrants. Furthermore, the ref-
erence angle must be 30°. The graph of the unit
circle in Figure 22 shows the two possible values
of 6. The solution set is {210°, 330°}.

y

Figure 22

To find all solutions, we add integer multiples of
the period of the sine function, 360°, to each solu-
tion found in part (a). The solution set is written as
follows.

{210° + 360°n, 330° + 360°n,
where n is any integer }

(b) for all solutions.

(a) Consider the original equation.

2sinf+1=0

We can find the solution set of this equation by
graphing the function

y;=2sinx+ 1

and then determining its zeros. Because we are find-
ing solutions over the interval [0°, 360°), we use
degree mode and choose this interval of values for the
input x on the graph.

The screen in Figure 23(a) indicates that one
solution is 210°, and the screen in Figure 23(b)
indicates that the other solution is 330°. The solution
setis {210° 330°}, which agrees with the algebraic
solution.

| 4i.-umu|m-; |

| Pl

+ p + /
0o p—— =360 R e
-4 —4

Lt v | e e

Degree mode Degree mode
(a) (b)
Figure 23

(b) Because the graph of

vy =2sinx + 1

repeats the same y-values every 360°, all solutions
are found by adding integer multiples of 360° to
the solutions found in part (a). See the algebraic
solution.

Now Try Exercises 15 and 47.



Figure 24

-1.1071 + 7 1
=2.0344 o
4
\ X
-1 71,1071 !
S
4 ~1.1071 + 277
-1 =5.1760

The solutions shown in blue
represent angle measures, in
radians, and their intercepted
arc lengths on the unit circle.

Figure 25
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Zero-Factor Property Method

Solving a Trigonometric Equation (Zero-Factor Property)

Solve sin 6 tan 6 = sin 6 over the interval [0°, 360°).

sin 0 tan 6 = sin 0 Original equation
sinftan§ —sinf =0 Subtract sin 6.
sinf(tanf — 1) =0 Factor out sin 6.
sinf =0 or tanf — 1 =0 Zero-factor property
tan 0 = 1

0=0° or 6=180° 0 =45° or 6 =225° Apply the inverse function.
See Figure 24. The solution set is {0°, 45°, 180°, 225°}.

Now Try Exercise 35.

CAUTION Trying to solve the equation in Example 2 by dividing
each side by sin 6 would lead to tan # = 1, which would give 6 = 45° or
0 = 225°. The missing two solutions are the ones that make the divisor,
sin 6, equal 0. For this reason, we avoid dividing by a variable expression.

Quadratic Methods = The equation au® + bu + ¢ = 0, where u is an alge-
braic expression, is solved by quadratic methods. The expression u may be a
trigonometric function.

Solving a Trigonometric Equation (Zero-Factor Property)
Solve tan® x + tan x — 2 = 0 over the interval [0, 277).
tan’x + tanx —2 =0 This equation is quadratic in form.

(tanx — 1) (tanx +2) =0 Factor.

tanx —1 =0 or tanx+2=0 Zero-factor property
tanx =1 or tanx = —2  Solve each equation.
The solutions for tan x = 1 over the interval [0, 27) are x = 7 and x = %
To solve tan x = —2 over that interval, we use a calculator set in radian mode.

We find that tan~!(—2) = —1.1071487. This is a quadrant IV number, based on
the range of the inverse tangent function. However, because we want solutions
over the interval [0, 277), we must first add 7 to —1.1071487, and then add 27r.
See Figure 25.

U

—1.1071487 + 7 = 2.0344439
—1.1071487 + 27 = 5.1760366

X

U

X
The solutions over the required interval form the following solution set.

{2, . 20344, 51760}

Exact Approximate values to
values four decimal places

Now Try Exercise 25.
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LOOKING AHEAD TO CALCULUS
There are many instances in calculus
where it is necessary to solve
trigonometric equations. Examples
include solving related-rates problems
and optimization problems.
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Solving a Trigonometric Equation (Quadratic Formula)
Find all solutions of cot x(cotx + 3) = 1.

We multiply the factors on the left and subtract 1 to write the
equation in standard quadratic form.

cotx(cotx +3) =1 Original equation

cot?x +3cotx — 1 =0 Distributive property: Subtract 1.

This equation is quadratic in form, but cannot be solved using the zero-factor
property. Therefore, we use the quadratic formula, witha=1,b=3,c = —1,
and cot x as the variable.

—b+ Vb?— 4ac

cotx = Quadratic formula
2a
-3+ V32—-4(1)(—-1
= ( )( ) a=1,b=3,c=—1
2( 1) Be careful
with signs.
_ -3 * Vo+4 -
= —2 implify.
-3+ V13 _
= f Add under the radical.
cotx = —3.302775638 or cotx = 0.3027756377
Use a calculator.
x = cot 1(—3.302775638) or x = cot 1(0.3027756377)

Definition of inverse cotangent

|
=t -1 - -
* = tan (0.3027756377)

Write inverse cotangent in terms of
inverse tangent.

x =~ 1.276795025

Use a calculator in radian mode.

1
~tan || ——— | +
re (—3.302775638> ™ot

x = —0.2940013018 + or

U

x =~ 2.847591352

To find all solutions, we add integer multiples of the period of the tangent
function, which is 7, to each solution found previously. Although not unique, a
common form of the solution set of the equation, written using the least possible
nonnegative angle measures, is given as follows.

{2.8476 + n, 1.2768 + nr, where n is any integer }
Round to four decimal places.

Now Try Exercise 57.

Trigonometric Identity Substitutions
an equation, such as

Recall that squaring each side of

Vx+4=x+2,

will yield all solutions but may also give extraneous solutions—solutions that
satisfy the final equation but not the original equation. As a result, all proposed
solutions must be checked in the original equation as shown in Example 5.
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Solving a Trigonometric Equation (Squaring)

Solve tan x + \/3 = sec x over the interval [0, 27r).

We must rewrite the equation in terms of a single trigonometric
function. Because the tangent and secant functions are related by the identity
1 + tan® x = sec? x, square each side and express sec? x in terms of tan® x

Don't forget the
o VB -

tan? x + 2V/3 tan x + 3 = sec? x

tan?x + 2V3 tanx + 3 =

1 + tan? x

Square each side.
(x +y)?=x>+2xy +y?

Pythagorean identity

2V3tanx = —2 Subtract 3 + tan’ x.
1 .

tanx = ——— Divide by 2\/3.
V3
V3

tanx = — ? Rationalize the denominator.

V3 i .
Solutions of tan x = ——5= over [0, 27) are 27 and . These possible, or pro-

posed, solutions must be checked to determme whether they are also solutions
of the original equation.
tanx + V3 = sec x

5 5
tan<6ﬂ-> +V3< sec<6ﬂ->

V3 3V3, 2V3

Original equation

117 5 117
tan| — | + V3 =sec| —
6 6

V3 3V3,2V3

HEEFAL FLOAT ALTD BRESL DADCEW MP
EHL-'C IEF‘H

| 3 3 3 3 3 3
i - | 2V3 . 2V3 V3 2V3
Radian mode 3 =~ 3 False 3 = I True
The graph shows that on the interval
[0. 27), the only zero of the function As the check shows, only = is a solution, so the solution set is {11677 }
y=tanx + V3 — secxis 5.7595865,
which is an approximation for “Tv, the Now Try Exercise 45.

solution found in Example 5.

Solving a Trigonometric Equation

1. Decide whether the equation is linear or quadratic in form in order to
determine the solution method.

2. If only one trigonometric function is present, solve the equation for that

function.

If more than one trigonometric function is present, rewrite the equation so
that one side equals 0. Then try to factor and apply the zero-factor property.

If the equation is quadratic in form, but not factorable, use the quadratic
formula. Check that solutions are in the desired interval.

Try using identities to change the form of the equation. It may be helpful
to square each side of the equation first. In this case, check for extraneous
solutions.
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An Application

Describing a Musical Tone from a Graph

PRRRATLE: FI-ANTNCTE RERSRACTRMEHE A basic component of music is a pure tone. The graph in Figure 26 models the

(a)

| dew i) 1 (b)
Figure 26
A (o)
(a)
vy, = 0.004

HERMAL FLOAT SUTD REM
EALC THITRIECT

A '

~49% gmtarsetion |
K SRk e, B0
e

()

v1 = 0.004 sin 3007x

Figure 27

sinusoidal pressure y = P in pounds per square foot from a pure tone at time
X = t in seconds.

The frequency of a pure tone is often measured in hertz. One hertz is equal
to one cycle per second and is abbreviated Hz. What is the frequency f, in
hertz, of the pure tone shown in the graph?

The time for the tone to produce one complete cycle is the period. Approxi-
mate the period 7, in seconds, of the pure tone.

An equation for the graph is y = 0.004 sin 3007x. Use a calculator to estimate
all solutions that make y = 0.004 over the interval [0, 0.02].

From Figure 26, we see that there are 6 cycles in 0.04 sec. This is equivalent

to ﬁ = 150 cycles per sec. The pure tone has a frequency of f = 150 Hz.

Six periods cover a time interval of 0.04 sec. One period would be equal to

T= 0'% = %, or 0.006 sec.

If we reproduce the graph in Figure 26 on a calculator as y, and also graph a
second function as y, = 0.004, we can determine that the approximate values
of x at the points of intersection of the graphs over the interval [0, 0.02] are

0.0017, 0.0083, and 0.015.

The first value is shown in Figure 27. These values represent time in seconds.

Now Try Exercise 65.

e

Exercises
CONCEPT PREVIEW Use the unit circle y
shown here to solve each simple trigno- G
metric equation. If the variable is x, then (—5’ *)
solve over [0, 2). If the variable is 6, (_72 2 o 7
then solve over [ 0°, 360°). (_ NG 3m 3 120°
>
1 3
1. cosx=— 2. cosx = l 1. 0) [ 180°
2 2
V3
3. sin ! 4. sin Vs (_7 2
. xX=—-= . xX=—-——
2 2 (- g -
5. cosx=—1 6. cosx=0
7. sinf =0 8. sinf=—-1
2 2 3
10. cos@=—£ 11. sin0=—£ 12. sin 9=—£
2 2 2
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13. Concept Check Suppose that in solving an equation over the interval [0°, 360°),

we reach the step sin 0 = — % Why is —30° not a correct answer?

14. Concept Check Lindsay solved the equation sinx = 1 — cos x by squaring each
side to obtain

2x=1—2cosx + cos? x.

sin
Several steps later, using correct algebra, she concluded that the solution set for solu-

tions over the interval [0, 27) is {0, g, %T} Explain why this is not correct.

Solve each equation for exact solutions over the interval [0, 27). See Examples 1-3.

15. 2cotx+1=—1 16. sinx +2 =3

17. 2sinx+3=4 18. 2secx+ 1 =secx+3

19. tan’x+3=0 20. sec’x+2=—1

21. (cotx—l)(\/gcotx—l-]):O 22. (cscx+2)(cscx—\/2)=0
23. cos’x+2cosx+1=0 24. 2cos’x — V3cosx =0

25. —2sin?x=3sinx+ 1 26. 2cos’x —cosx =1

Solve each equation for solutions over the interval [0°, 360°). Give solutions to the near-
est tenth as appropriate. See Examples 2-5.

27. (cot0— V3)(2sin0+V3)=0 28 (tan6—1)(cos6—1)=0

29. 2sinf — 1 =csch 30. tan 6+ 1=\V3+\V3cotd
31. tanf —cotf =0 32. cos?f =sin?6 + 1

33. csc?—2coth =0 34. sin®> 0 cos O = cos 0

35. 2tan’Hsinf — tan> 6 = 0 36. sin?0cos’0 =0

37. sec’ftan 6 = 2 tan 6 38. cos?0 —sin?0 =0

39. 9sin’6 — 6sinf =1 40. 4cos’0 + 4cosf =1

41. tan’6 +4tanh +2=0 42, 3cot?’0 —3cot—1=0
43. sin’0 —2sinf+3=0 44. 2cos?0+2cosf+1=0
45. cotf +2csch =3 46. 2sinf=1—2cos 6

Solve each equation (x in radians and 6 in degrees) for all exact solutions where appro-
priate. Round approximate answers in radians to four decimal places and approximate
answers in degrees to the nearest tenth. Write answers using the least possible nonnegative
angle measures. See Examples 1-5.

47. cosf+1=0 48. tan6+1=0

49. 3cscx—2V3=0 50. cotx+V3=0

51. 6sin?0 +sinf =1 52. 3sin?6 —sinfh =2

53. 2cos?x+cosx—1=0 54. 4cos?x—1=0

55. sin 6 cos 6 — sin 6 = 0 56. tan 6 csc 6 — V3 csc 6 =0

57. sinx(3sinx—1) =1 58. tanx(tanx —2) =35
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59.

61.

5+ 5tan?0 = 6sec 60. sec’f =2tanf + 4
2tanf 2cot?0
3 —tan% 60 " cotf+3

@ The following equations cannot be solved by algebraic methods. Use a graphing calcula-
tor to find all solutions over the interval | 0, 27r). Express solutions to four decimal places.

63.

. 1
x2+sinx —x3—cosx=0 64. x3*coszx=5x*1

(Modeling) Solve each problem.

65.

Pressure on the Eardrum See Example 6. No musical instrument can generate a true
pure tone. A pure tone has a unique, constant frequency and amplitude that sounds
rather dull and uninteresting. The pressures caused by pure tones on the eardrum are
sinusoidal. The change in pressure P in pounds per square foot on a person’s eardrum
from a pure tone at time # in seconds can be modeled using the equation

P = Asin(2wft + ¢),

where f is the frequency in cycles per second, and ¢ is the phase angle. When P is
positive, there is an increase in pressure and the eardrum is pushed inward. When
P is negative, there is a decrease in pressure and the eardrum is pushed outward.
(Source: Roederer, J., Introduction to the Physics and Psychophysics of Music,
Second Edition, Springer-Verlag.)

(a) Determine algebraically the values of ¢ for which P = 0 over [0, 0.005].

@ (b) From a graph and the answer in part (a), determine the interval for which P = 0

66.

67.

68.

over [0, 0.005].

(¢) Would an eardrum hearing this tone be vibrating outward or inward when P < 0?

Accident Reconstruction To reconstruct
accidents in which a vehicle vaults into the air
after hitting an obstruction, the model

16D?

0.342D cos 6 + h cos? § = ——
Vo

can be used. V; is velocity in feet per second
of the vehicle when it hits the obstruction,
D is distance (in feet) from the obstruction to the landing point, and / is the dif-
ference in height (in feet) between landing point and takeoff point. Angle 6 is
the takeoff angle, the angle between the horizontal and the path of the vehicle.
Find 6 to the nearest degree if V, = 60, D = 80, and h = 2.

Electromotive Force In an electric circuit, suppose that the electromotive force in
volts at ¢ seconds can be modeled by

V = cos 27rt.

Find the least value of r where 0 = ¢t = % for each value of V.
(@ V=0 (b) V=0.5 (¢) V=025

Voltage Induced by a Coil of Wire A coil of wire rotating in a magnetic field
induces a voltage modeled by

B0 (m 77)
=20sin| ——— |,
4 2

where ¢ is time in seconds. Find the least positive time to produce each voltage.

(@) 0 () 103
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Trigonometric Equations II

Equations with
Half-Angles

Equations with
Multiple Angles

An Application
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The x-intercepts correspond to the
solutions found in Example 1(a).
Using Xscl = % makes it possible to
support the exact solutions by counting
the tick marks from O on the graph.

In this section, we discuss trigonometric equations that involve functions of
half-angles and multiple angles. Solving these equations often requires adjusting
solution intervals to fit given domains.

Equations with Half-Angles

Solving an Equation with a Half-Angle

Solve 2sin> =1

2

(a) over the interval [0, 277) (b) for all solutions.

(a) To solve over the interval [0, 27), we must have

(b)

0=x<2m.

The corresponding inequality for )25 is
X
0= 5 < Divideby2

To find all values of )25 over the interval [ 0, 7r) that satisfy the given equation,
first solve for sin %

X
2 sin > =1 Original equation
in > ! Divide by 2
sin — = — ivide by 2.
272 g

The two numbers over the interval [0, 7) with sine value % are % and 5?77.

—=—-— 0or —=— efinition of inverse sine
2 6 2 6

T S5
X = ? or x= ? Multiply by 2.

The solution set over the given interval is {%, 5777}

The argument % in the expression sin )21 can also be written %x to see that the
value of b in sin bx is % From earlier work we know that the period is 277, SO
we replace b with % in this expression and perform the calculation. Here the
period is

2

1
]—:27T+*:27T‘2:47T.
2

2
All solutions are found by adding integer multiples of 4.

{% + 4nr, 5{ + 4nr, where n is any integer}

Now Try Exercises 25 and 39.
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Equations with Multiple Angles

Solving an Equation Using a Double-Angle Identity
Solve cos 2x = cos x over the interval [0, 277).

First convert cos 2x to a function of x alone. Use the identity
cos 2x = 2 cos? x — 1 so that the equation involves only cos x. Then factor.

cos 2x = cos x Original equation
2cos’x — 1 =cosx Cosine double-angle identity
2cos’x —cosx—1=0 Subtract cos x.
y
(1, 5y | (2cosx+ 1)(cosx—1)=0 Factor.
2 I 2cosx+1=0 or cosx — 1 =0 Zero-factor property
p 1 _ -
1 | :, i R\ 0 (1,)9) cosx = — 5 or cosx =1  Solve each equation for cos x.
_ i
-53 L . .
2 If we use the unit circle to analyze these results, we recognize that a radian-
. . 1 . .
(_ . ﬁ) i measuied angle having cosine — 5 must be in quadrant II or III with reference
¥ 2)3 -l angle 5. Another possibility is that it has a value of 1 at 0 radians. We can use
Figure 28 Figure 28 to determine that solutions over the required interval are as follows.
2m 4
x=— o x=— or x=0
3 3
The solution set is {0, 2377 , 4?77} Now Try Exercise 27.

CAUTION Because 2 is not a factor of cos 2x, # # cos x. In Exam-
ple 2, we changed cos 2x to a function of x alone using an identity.

Solving an Equation Using a Double-Angle Identity

Solve 4 sin 6 cos 6 = \/g

(a) over the interval [0°, 360°) (b) for all solutions.
(a) 4 sin 6 cos 6 = \/g Original equation

2(2sin900s9)=\6 4=2-2

2 sin 20 = \/3 Sine double-angle identity

V3

sin 20 = T Divide by 2.

From the given interval 0° = 6 < 360°, the corresponding interval for 26 is
0° = 26 < 720°. Because the sine is positive in quadrants T and II, solutions
over this interval are as follows.

20 = 60°, 120°, 420°, 480°, Reference angle is 60°.
or 6 = 30°, 60°, 210°, 240° Divide by 2.

The final two solutions for 20 were found by adding 360° to 60° and 120°,
respectively, which gives the solution set {30°, 60°, 210°, 240°}.
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The screen shows the graphs of
y; = tan 3x + sec 3x
and
Yo =2.
One solution is approximately 2.3089.
An advantage of using a graphing

calculator is that extraneous values do
not appear.
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(b) All angles 26 that are solutions of the equation sin 26 = \/ are found by
adding integer multiples of 360° to the basic solution angles, 60° and 120°.

Add integ Itiples
20 =60° +360°n and 20 = 120°+360°n |y

0=30°+180°n and 6 =060°+ 180°z  Divide by 2.

All solutions are given by the following set, where 180° represents the period
of sin 26.

{30° + 180°1, 60° + 180°n, where n is any integer }

Now Try Exercises 23 and 47.

Solving an equation by squaring both sides may introduce extra-
neous values. We use this method in Example 4, and all proposed solutions
must be checked.

Solving an Equation with a Multiple Angle
Solve tan 3x + sec 3x = 2 over the interval [0, 277).

The tangent and secant functions are related by the identity
1 + tan’x = sec’x. One way to begin is to express the left side in terms of
secant.

tan 3x + sec 3x = 2
tan 3x = 2 — sec 3x Subtract sec 3x.
(tan 3x)2 = (2 — sec 3x)2 Square each side.
tan? 3x =4 — 4 sec 3x + sec?3x  (x — y)2 = x> — 2xy + )2

sec?3x — 1 =4 — 4 sec 3x + sec? 3x  Replace tan? 3x with sec? 3x — 1.

4sec3x=5 Simplify.
5 -
sec 3x = Z Divide by 4.
1 5 )
=— sec = ——
cos3x 4 cosd
4 :
cos 3x = g Use reciprocals.

Multiply each term of the inequality 0 = x < 27 by 3 to find the interval for 3x:
[0, 67). Use a calculator and the fact that cosine is positive in quadrants I and IV.

3x = 0.6435,5.6397, 6.9267, 11,9229, 13.2099, 18.2061 ¢ "mbers have

cosine value equal to =.

x = 0.2145, 1.8799, 2.3089, 3.9743, 4.4033, 6.0687 Divide by 3.

Both sides of the equation were squared, so each proposed solution must be
checked. Verify by substitution in the given equation that the solution set is

{0.2145, 2.3089, 4.4033 }.

Now Try Exercise 53.
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An Application A piano string can vibrate at more than one frequency
when it is struck. It produces a complex wave that can mathematically be modeled
by a sum of several pure tones. When a piano key with a frequency of f, is played,
the corresponding string vibrates not only at f, but also at the higher frequencies
of 2f,, 3f, 4f, ..., nf,. f; is the fundamental frequency of the string, and
higher frequencies are the upper harmonics. The human ear will hear the sum of
these frequencies as one complex tone. (Source: Roederer, J., Introduction to the
Physics and Psychophysics of Music, Second Edition, Springer-Verlag.)

Analyzing Pressures of Upper Harmonics

Suppose that the A key above middle C is played on a piano. Its fundamental
frequency is f; = 440 Hz, and its associated pressure is expressed as

P, = 0.002 sin 8807rt.
The string will also vibrate at
f>» =880, f3=1320, f; =1760, fs;=2200,....Hz.

The corresponding pressures of these upper harmonics are as follows.

0.002 0.002
P2 = 3 sin 17607Tt, P3 =

sin 26407rt,

0.002 0.002
P, = 4 sin 35207r¢, and Ps = 5 sin 44007t

The graph of P = P, + P, + P; + P, + P5 can be found by entering each P, as a
separate function y; and graphing their sum. The graph, shown in Figure 29, is
“saw-toothed.”

HERMAL FLOAT SUTD RESL DROIEH MP

Figure 29

(a) Approximate the maximum value of P.

(b) At what values of t = x does this maximum occur over [0, 0.01]?

CHISEOEE S | (a) A graphing calculator shows that the maximum value of P is approximately
sy 0.00317. See Figure 30.

(b) The maximum occurs at

t = x = 0.000191, 0.00246, 0.00474, 0.00701, and 0.00928.

Figure 30 shows how the second value is found. The other values are found
VEA9ILIS? ! similarly.

Figure 30 Now Try Exercise 57.
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e

Exercises

CONCEPT PREVIEW Refer to Exercises 1-6 in the previous section, and use those
results to solve each equation over the interval [0, 27r).

1

1. cos2x=— 2. cos2x:ﬁ 3. sin2x=——
2 2 2

4. sin2x=—7 5. cos2x=—1 6. cos2x=0

CONCEPT PREVIEW Refer to Exercises 7—-12 in the previous section, and use those
results to solve each equation over the interval [ 0°, 360°).

0 0 0 1

7. sin—=20 8. sin—=—1 . =
sm2 s1n2 9 cos2 >

o V2 0 2 0 3

10. c0s2—— 5 11. sz__ > 12. s1n2—— 5

Concept Check Answer each question.

13. Suppose solving a trigonometric equation for solutions over the interval [0, 27r)

leads to 2x = 277 21, 8{ What are the corresponding values of x?

14. Suppose solving a trigonometric equation for solutions over the interval [0, 27)

1 .
leads to 5x = 116, 51%, %ﬁ. What are the corresponding values of x?

15. Suppose solving a trigonometric equation for solutions over the interval [0°, 360°)
leads to 36 = 180°, 630°, 720°, 930°. What are the corresponding values of ?

16. Suppose solving a trigonometric equation for solutions over the interval [0°, 360°)
leads to _%0 = 45°, 60°, 75°, 90°. What are the corresponding values of 0?

Solve each equation in x for exact solutions over the interval [0, 27) and each equation
in 0 for exact solutions over the interval [0°, 360°). See Examples 1-4.

17. 2cos2x = V3 18. 2cos2x = —1 19. sin30=—1
20. sin30 =0 21. 3tan3x=\3 22. cot3x=\3
23. V2cos26 = —1 24. 2\/3sin20 =3 25. sin§=\6—sin§
26. tan4x =10 27. sin x = sin 2x 28. cos2x —cosx =0
0 9
29. 8sec2§=4 30. sin2§—2=0 3L sin = cse
) 9 . 1
32. sec E = CcoSs E 33. cos2x+cosx=0 34. sinxcosx = Z

Solve each equation (x in radians and 6 in degrees) for all exact solutions where appro-
priate. Round approximate answers in radians to four decimal places and approximate
answers in degrees to the nearest tenth. Write answers using the least possible nonnegative
angle measures. See Examples 1-4.

35. V2sin3x—1=0 36. —2cos2x=\3 37. cos§=l

0
38. sino = 1 39. 2\/3 sin g =3 40. 2\/3 cos g =3
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41. 2sin 6 = 2 cos 260 42. cos — 1 = cos 20 43. 1 — sinx = cos 2x
44. sin2x = 2 cos? x 45. 3 csc? % =2secx 46. cosx = sinzg

47. 2 — sin 20 = 4 sin 20 48. 4 cos 260 = 8sin 0 cos O

49. 2 cos?20 =1 — cos 20 50. sinf — sin20 =0

Solve each equation for solutions over the interval [0, 21r). Write solutions as exact values
or to four decimal places, as appropriate. See Example 4.

51. si ol ol 0 52. si x+ X 1

. sin—— — = . sin — — =

S > 0052 S > cos2

53. tan 2x + sec2x = 3 54. tan2x —sec2x =2

P The following equations cannot be solved by algebraic methods. Use a graphing calcula-
tor to find all solutions over the interval | 0, 27r). Express solutions to four decimal places.

1
55. 2sin2x—x°+1=0 56.3c0s§+\/—2:_5x+2

(Modeling) Solve each problem. See Example 5.

I 57. Pressure of a Plucked String 1f a string with a fundamental frequency of 110 Hz is
plucked in the middle, it will vibrate at the odd harmonics of 110, 330, 550, . . . Hz
but not at the even harmonics of 220, 440, 660, . . . Hz. The resulting pressure P
caused by the string is graphed below and can be modeled by the following equation.

3 sin 15407t

P =0.003 sin 2207t + sin 6607t + sin 11007t +
(Source: Benade, A., Fundamentals of Musical Forx =1,
Acoustics, Dover Publications. Roederer, J., P(t) = 0.003 sin 2207t +
Introduction to th.e .Physics' and Psychophysics of 0.(;03 sin 66071 +
Music, Second Edition, Springer-Verlag.) 0.003
(a) Duplicate the graph shown here. 5 sin 1100w +
(b) Describe the shape of the sound wave that is 0(;& sin 15407t

produced.

(c) At lower frequencies, the inner ear will hear a
tone only when the eardrum is moving outward.
This occurs when P is negative. Determine the
times over the interval [0, 0.03 ] when this will
occur.

I 58. Hearing Beats in Music Musicians sometimes tune instruments by playing the
same tone on two different instruments and listening for a phenomenon known as
beats. Beats occur when two tones vary in frequency by only a few hertz. When the
two instruments are in tune, the beats disappear. The ear hears beats because
the pressure slowly rises and falls as a result of this slight variation in the frequency.
(Source: Pierce, J., The Science of Musical Sound, Scientific American Books.)

(a) Consider the two tones with frequencies of 220 Hz For x = ¢,
and 223 Hz and pressures P; = 0.005 sin 4407t P(t) = 0.005 sin 4407t +
and P, = 0.005 sin 4467, respectively. A graph 0.005 sin 446t

of the pressure P = P, + P, felt by an eardrum
over the 1-sec interval [0.15, 1.15] is shown here.
How many beats are there in 1 sec?

(b) Repeat part (a) with frequencies of 220 and 216 Hz.

(¢) Determine a simple way to find the number of beats
per second if the frequency of each tone is given.
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F59. Hearing Difference Tones When a musical instrument creates a tone of 110 Hz,
it also creates tones at 220, 330, 440, 550, 660, . . . Hz. A small speaker cannot
reproduce the 110-Hz vibration but it can reproduce the higher frequencies, which
are the upper harmonics. The low tones can still be heard because the speaker
produces difference tones of the upper harmonics. The difference between con-
secutive frequencies is 110 Hz, and this difference tone will be heard by a listener.
(Source: Benade, A., Fundamentals of Musical Acoustics, Dover Publications.)

(a) In the window [0, 0.03] by [—1, 1], graph the upper harmonics represented
by the pressure

1 1 1
P= 3 sin[27(220)¢] + 3 sin[ 27r(330)¢] + 1 sin[27(440)¢].

(b) Estimate all #-coordinates where P is maximum.

(¢) What does a person hear in addition to the frequencies of 220, 330, and 440 Hz?

(d) Graph the pressure produced by a speaker that can vibrate at 110 Hz and above.
60. Daylight Hours in New Orleans The seasonal variation in length of daylight can

be modeled by a sine function. For example, the daily number of hours of daylight
in New Orleans is given by

h—ﬁ-i-z . 2mx
3 33650

where x is the number of days after March 21 (disregarding leap year). (Source:
Bushaw, D., et al., A Sourcebook of Applications of School Mathematics, Mathemati-
cal Association of America.)

(a) On what date will there be about 14 hr of daylight?
(b) What date has the least number of hours of daylight?
(¢) When will there be about 10 hr of daylight?

61. Average Monthly Temperature in Vancouver The following function approxi-
mates average monthly temperature y (in °F) in Vancouver, Canada. Here x
represents the month, where x = 1 corresponds to January, x = 2 corresponds to
February, and so on. (Source: www.weather.com)

flx) = 14 sin[%(x - 4)} +50

When is the average monthly temperature (a) 64°F (b) 39°F?

62. Average Monthly Temperature in Phoenix The following function approximates
average monthly temperature y (in °F) in Phoenix, Arizona. Here x represents the
month, where x = 1 corresponds to January, x = 2 corresponds to February, and so
on. (Source: www.weather.com)

F(x) =195 cos[%(x - 7)} +70.5
When is the average monthly temperature (a) 70.5°F (b) 55°F?
(Modeling) Alternating Electric Current The study of alternating electric current requires
solving equations of the form
i = I, Sin 27 ft,

for time t in seconds, where i is instantaneous current in amperes, I, is maximum cur-
rent in amperes, and f is the number of cycles per second. (Source: Hannon, R. H., Basic
Technical Mathematics with Calculus, W. B. Saunders Company.) Find the least positive
value of t, given the following data.

63. i =40, I, = 100, f = 60 64. i = 50, I, = 100, f = 120

1
65. i=1,.,f=60 66. i = - In. f = 60
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1. Graph y = cos™' x, and indicate the coordinates of three points on the graph. Give
the domain and range.

2. Find the exact value of each real number y. Do not use a calculator.

(a) y =sin! <—\6> (b) y = tan™! V3 (¢) y=sec’! <—2\/§>

2 3
3. Use a calculator to approximate each value in decimal degrees.
(a) 6 = arccos 0.92341853 (b) 6 = cot™!(—1.0886767)

4. Evaluate each expression without using a calculator.
4 1
(a) cos (tan’l 5) (b) sin (cos’1 (— 2> + tan™! ( -\V3 ))

Solve each equation for exact solutions over the interval [ 0°, 360°).
5. 2sin6—\V3=0 6. cosf+ 1 =2sin?0
7. (Modeling) Electromotive Force In an electric circuit, suppose that
V = cos 2wt

models the electromotive force in volts at 7 seconds. Find the least value of ¢ where

O0=r= % for each value of V.

(@ V=1 (b) V=0.30

Solve each equation for solutions over the interval [0, 27). Round approximate answers
to four decimal places.

8. tan?x— Stanx+3 =0 9. 3cot2x— V3=0

X x
10. Solve cos 5 + V3= —cos > giving all solutions in radians.

Equations Involving Inverse Trigonometric Functions

Solution for x in Terms
of y Using Inverse
Functions

Solution of Inverse
Trigonometric
Equations

Solution for x in Terms of y Using Inverse Functions

Solving an Equation for a Specified Variable
Solve y = 3 cos 2x for x, where x is restricted to the interval {O, g] .

We want to isolate cos 2x on one side of the equation so that we
can solve for 2x, and then for x.

y =3cos 2x <<Our goal is to isolate x.)

y
3 = cos 2x Divide by 3.
_ y R .
2x = arccos g Definition of arccosine

x=larccosz Multiply by &
x=3 3 ply by 5.

. . . 1y
An equivalent form of this answer is x = 5 cos™! %



y

R 0,3) (7, 3)
7 at
V’l y=3cos2xy N
]
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0<x<3
Figure 31
y
2 1
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T
Figure 32
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Because the function y = 3 cos 2x is periodic, with period 7, there are
infinitely many domain values (x-values) that will result in a given range value
(y-value). For example, the x-values 0 and 7= both correspond to the y-value 3.

See Figure 31. The restriction 0 = x = % given in the original problem ensures
that this function is one-to-one, and, correspondingly, that

_ Y
X = —arccos =
2 3

has a one-to-one relationship. Thus, each y-value in [ —3, 3] substituted into
this equation will lead to a single x-value.

Now Try Exercise 9.

Solution of Inverse Trigonometric Equations

Solving an Equation Involving an Inverse
Trigonometric Function

Solve 2 arcsin x = 7.

First solve for arcsin x, and then for x.

2 arcsin x = 77 Original equation
. ﬂ- . .
arcsin x = — Divide by 2.
2
x = sin 5 Definition of arcsine
x =1 arcsin 1 :g
2 arcsin x = Original equation
. ?
2 arcsin | = Let x = 1.
T 2 . .
2 E =1 Substitute the inverse value.
T =1 True

The solution setis {1}. Now Try Exercise 27.

Solving an Equation Involving Inverse
Trigonometric Functions

1

ly = gin~! —
x=sin"" .
2

Solve cos™

Let sin”! % = u. Then sin u = %, and for u in quadrant I we have
the following.

cos ' x=sin"!—  Original equation
2 =]

cos ' x=u Substitute.

cosu=x Alternative form

Sketch a triangle and label it using the facts that u is in quadrant I and sin u = %

V3

See Figure 32. Because x = cos u, we have x = % The solution set is {T}

Now Try Exercise 35.
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Figure 33

Solving an Inverse Trigonometric Equation Using
an Identity

. ar
Solve arcsin x — arccos x = g

Isolate one inverse function on one side of the equation.

™

6

arcsin x — arccos x Original equation

. v
arcsin x = arccos x + g Add arccos x. (1)

. T
sin| arccos x + g

Let u = arccos x. The arccosine function yields angles in quadrants I and II, so
0 = u = 7 by definition.

x=sin| v+ —
6

. T LT
x=smuc05g+cosusmf

X Definition of arcsine

Substitute.

Sine sum identity  (2)

Use equation (1) and the definition of the arcsine function.

T T m . o -
——_—=arccosx + — = -— Range of arcsine is [*5,7]
2 6 2 -
2 T .
- ? = arccosx = ? Subtract ¢ from each part.

Because both 0 = arccos x = 7 and — 2% = arccos x = %, the intersection yields
0 = arccos x = % This places u in quadrant I, and we can sketch the triangle

in Figure 33. From this triangle we find that sin u = V' 1 — x2. Now substitute
1 5 . T 1 T o_ \/g

into equation (2) using sin u = — x5, 8ing =3,c08 ¢ =5 ,and cos u = x.

. ™ LT
x=smuc05g+cosusmg (2)

Substitute.

x= \/?:) 1 —x?

Square each 2 — )
¥ =301 =)

x2=3—3x2

(

2x=(m \ﬁ-i-x
(
3

Choose the
positive square
root, x> 0.

1—X2>T+X'%
)

Multiply by 2.

Subtract x; commutative property

2

Square each side; (ab)? = a®b?
Distributive property

Add 3x2. Divide by 4.

Take the square root on each side.

Quotient rule: \'/% =Ya

Vb
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A check is necessary because we squared each side when solving the

equation.

The solution set is {

arcsin x — arccos x = —

arcsin T — arccos

%)

w3

S

[

a3 o3

\V}

[l

Original equation
6
- ~
/3
g Letx = \T
7T . .
— Substitute inverse values.
6
o
— True
6

Now Try Exercise 37.

—

Exercises

CONCEPT PREVIEW Answer each question.

1.

Which one of the following equations has solution 0?

A. arctan 1 = x

B. arccos 0 = x C. arcsin 0 = x

Which one of the following equations has solution %?

2
A. arcsin BN =Xx

Which one of the following equations has solution SuLy

A. arctan 1 = x

B. arccos <

2
B. arcsin —— =
arcsin D) X

V2 V3
5 =X C. arctan?=x

4

(%)
C. arccos —7 =x

Which one of the following equations has solution — %?

3
A. arctan — = x
3

1 1
B. arccos ( - *) =X C. arcsin(— *) =x
2 2

Which one of the following equations has solution 7?

A. arccos(—1) = x

Which one of the following equations has solution — 52

A. arctan(—1) =x

B. arccos 1 = x C. arcsin(—1) =x

2

B. arcsin(—1) =x C. arccos(—1) =x

Solve each equation for x, where x is restricted to the given interval. See Example 1.

7. y=5cosx, forxin [0, 7]

9. y=3tan2x, forxin <—%

m
4

11. y=6cos %, for x in [0, 47 ]

13. y = —2cos 5x, forxin {o, ﬂ

)

1
8. y=Zsinx, forxin[—g,%}
. X .
10. y= 351n5, forxin [—m, 7]

37w 3
12. y = —sin i, for x in [—W,W}
3 22

14. y =3 cot 5x, for xin <o, %)
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15.

17.

19.

20.

21.

22.

23.

24.

25.

26.

. . T )
y=sinx — 2, forxm[—z,z} 16. y = cotx + 1, forxin (0, 7)

y=—4+ 2sinx, forxin[—%,g} 18. y =4+ 3 cosx, forxin [0, 7]

! t 3x, fi i (0 77)
=— I x in —
y 2co x, forx '3

1
y= Esec x, forxin [O, g) U (%, 77}

y = cos(x + 3), forxin [ =3, 7 — 3]

= tan(2x — 1), forxi (1—3 l+3>
y = tan(2x , for xin R

y= V2 + 3 sec 2x, for xin [O,%)U(z Z}

X
y= —\/§+ 2 csc > forxin [—a,0) U (0, 7]
Refer to Exercise 15. A student solving this equation wrote y = sin(x — 2) as the
first step, inserting parentheses as shown. Explain why this is incorrect.

Explain why the equation sin™' x = cos™' 2 cannot have a solution. (No work is
required.)

Solve each equation for exact solutions. See Examples 2 and 3.

27.

29.

31.

33.

35.

—4 arcsinx = 7 28. 6 arccos x = 57
$ o1 X = 30. 4tan'x = —3
3 2 T . an ' x = =37
2 arccos (g - %) =2 32. 6 arccos (x - %) =1
arcsin x = arctan — 34. arctan x = arccos —
4 13

3 4

cos ! x =sin™! 5 36. cot’!x=tan’! N

Solve each equation for exact solutions. See Example 4.

37. sin'x—tan!'1 = —% 38. sin~!x + tan~! V3 = 2m
3
. 3 . 3 7
39. arccos x + 2 arcsin N = 40. arccos x + 2 arcsin N = 3

. T
41. arcsin 2x + arccos x = g

T
43. cos'x+tanlx = B

. . T
42. arcsin 2x + arcsin x = >

44, sin'x+tan'x=0

F Use a graphing calculator in each of the following.

45. Provide graphical support for the solution in Example 4 by showing that the graph of

y =sin"! x — cos™!

™
-2
6

has a zero of \gg = (0.8660254.
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46. Provide graphical support for the solution in Example 4 by showing that the
x-coordinate of the point of intersection of the graphs of

3
x and y2=% is \Z/zo.8660254.

1 1

y, =sin ' x — cos~

F The following equations cannot be solved by algebraic methods. Use a graphing calcula-
tor to find all solutions over the interval [0, 6 ]. Express solutions to four decimal places.

47. (arctanx)? —x+2=10 48. 7 sin'(0.2x) —3 = ~Vx

(Modeling) Solve each problem.

49. Tone Heard by a Listener When two sources located at different positions pro-
duce the same pure tone, the human ear will often hear one sound that is equal to
the sum of the individual tones. Because the sources are at different locations, they
will have different phase angles ¢. If two speakers located at different positions
produce pure tones P; = A, sin(27ft + ¢,) and P, = A, sin(27ft + ¢»,), where
—% =¢, P = %, then the resulting tone heard by a listener can be written as

P = Asin(2mft + ¢), where

A= \/(Al cos ¢y + A, cos ¢,)? + (A, sin ¢ + A, sin ¢,)?

A;sing, + A, sinq’)z)
Ay cos ¢, + Aycos p, /)’

and ¢ = arctan<

(Source: Fletcher, N. and T. Rossing, The Physics of Musical Instruments, Second
Edition, Springer-Verlag.)

(a) Calculate A and ¢ if A; =0.0012, ¢, = 0.052, A, = 0.004, and ¢, = 0.61.
Also, if f = 220, find an expression for
P = Asin(2mft + ¢).

A< (b) Graph Y; = P and Y, = P, + P, on the same coordinate axes over the interval
[0,0.01]. Are the two graphs the same?

[~[ 50. Tone Heard by a Listener Repeat Exercise 49. Use A, =0.0025, ¢, =7, A,=0.001,
¢, =%, and f = 300.

51. Depth of Field When a large-view camera is used to take a picture of an object

that is not parallel to the film, the lens board should be tilted so that the planes con-

taining the subject, the lens board, and the film intersect in a line. This gives the

best “depth of field.” See the figure. (Source: Bushaw, D., et al., A Sourcebook of
Applications of School Mathematics, Mathematical Association of America.)

Subject Lens

(a) Write two equations, one relating «, x, and z, and the other relating 3, x, y, and z.

(b) Eliminate z from the equations in part (a) to get one equation relating «, 3, x,
and y.

(c) Solve the equation from part (b) for a.

(d) Solve the equation from part (b) for 3.
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52.

53.

54.

Programming Language for Inverse Functions In Y
some programming languages, the only inverse
trigonometric function available is arctangent. The
other inverse trigonometric functions can be expressed
in terms of arctangent.

(a) Let u = arcsin x. Solve the equation for x in L X
terms of u.

(b) Use the result of part (a) to label the three
sides of the triangle in the figure in terms of x.

(c) Use the triangle from part (b) to write an equation for tan u in terms of x.
(d) Solve the equation from part (c) for u.

Alternating Electric Current In the study of alternating electric current, instanta-
neous voltage is modeled by

E = E, sin 27 f1,

where f is the number of cycles per second, E,,, is the maximum voltage, and ¢ is
time in seconds.

(a) Solve the equation for 7.

(b) Find the least positive value of ¢if E,, = 12, E =5, and f = 100. Use a calcu-
lator and round to two significant digits.

Viewing Angle of an Observer While visiting a museum, an observer views a
painting that is 3 ft high and hangs 6 ft above the ground. See the figure. Assume
her eyes are 5 ft above the ground, and let x be the distance from the spot where she
is standing to the wall displaying the painting.

6 ft

x ft

(a) Show that 0, the viewing angle subtended by the painting, is given by

4 1
0 =tan! (*) — tan™! (*)
X X
(b) Find the value of x to the nearest hundredth for each value of 6.
T T
i) 0=— i) 0= —
() 6 (i) 3

(¢) Find the value of 6 to the nearest hundredth for each value of x.
) x=4 (ii) x=3

55. Movement of an Arm In the equation below, 7 is time (in seconds) and y is the angle

formed by a rhythmically moving arm.

(a) Solve the equation for 7.

(b) At what time, to the nearest hundredth of a second, does the arm first form an
angle of 0.3 radian?
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Key Terms

6.1 one-to-one function
inverse function

f—l

sin~! x (arcsin x)

cos™!x (arccos x)

tan~!x (arctan x)

inverse of function f
inverse sine of x

inverse cosine of x

inverse tangent of x

cot™!x (arccot x) inverse cotangent of x

sec™!x (arcsec x) inverse secant of x

ese™lx (arccsc x) inverse cosecant of x

Quick Review

Concepts

m Inverse Circular Functions

Range
Inverse Quadrants of
Function Domain Interval the Unit Circle
y=sin"'x [-1,1] [7%,%} Tand IV
y=cos'x [-1,1] [0, 7] Tand IT
y=tan'x (=00, ®) (7%,%) Tand IV
y=cotlx (=00, ») (0, ) Tand IT
y=seclx | (=, —1]U[1, [0,%)U(g,ﬂ} Tand IT
y=csctx | (=, —1]U[L=) | [-3.0)U (0.5] Land IV
Y y
T (-1, m)
m L (1’ 2 ) T4
2
-1
y=cos " x
I | Y (0 E)
o /0 i)
, (1,0
-T1 y=sinlx i I
(9 ‘
T2
y
_____ Ty
| 2
y=tan'x (1, E)
} } } l4 x
2 a /%1 2
” See the section for graphs
_(_1 77)75 ______ of the other inverse circular
T4 (trigonometric) functions.

Examples

Evaluate y = cos™! 0.

Write y = cos™ 0 as cos y = 0. Then

iy

because cos 5 = 0 and 7 is in the range of cos™ x.

Use a calculator to find y in radians if y = sec™! (=3).

With the calculator in radian mode, enter sec™! (—3) as
cos™! (_%) to obtain

y = 1.9106332.

Evaluate sin (tan“ ( - %)) )

Let u = tan™! (—%). Then tan u = —%. Because tan u is

negative when u is in quadrant IV, sketch a triangle as
shown.

y

We want sin(tan’1 (— %)) = sin u. From the triangle, we

have the following.

sinu = ——
5

289
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Concepts

Trigonometric Equations I

Trigonometric Equations II

Solving a Trigonometric Equation

1.

Decide whether the equation is linear or quadratic in
form in order to determine the solution method.

. If only one trigonometric function is present, solve the

equation for that function.

. If more than one trigonometric function is present,

rewrite the equation so that one side equals 0. Then try
to factor and apply the zero-factor property.

. If the equation is quadratic in form, but not factorable,

use the quadratic formula. Check that solutions are in the
desired interval.

. Try using identities to change the form of the equation. It

may be helpful to square each side of the equation first.
In this case, check for extraneous solutions.

CHAPTER 6 Inverse Circular Functions and Trigonometric Equations

Examples

Solve tan 6 + /3 = 2\/3 over the interval [0°,360°).

tan 6 + \/ = 2\/§ Original equation
tan®=\3  Subtract \/3.
0 = 60° Definition of inverse tangent
Another solution over [0°, 360°) is
6 = 60° + 180° = 240°.
The solution set is {60°, 240°}.

Solve 2 cos? x = 1 for all solutions.

2cos?x =1 Original equation
2cos’x — 1 =0 Subtract 1.
cos 2x =0  Cosine double-angle identity
2x=§+2n77 and 2x=377r+2n7r
Add integer multiples of 27r.
x=z+n77 and x=3l+n77
4 4

Divide by 2.

The solution set, where 7 is the period of cos 2x, is

T 37 . .
{Z + nw, -+ nw,  where nis any 1nteger}.

Equations Involving Inverse Trigonometric Functions

We solve equations of the form y = f(x), where f(x)
involves a trigonometric function, using inverse trigono-
metric functions.

Techniques introduced in this section also show how to
solve equations that involve inverse functions.

Solve y = 2 sin 3x for x, where x is restricted to the
. o T
interval {— 5 g} .

y =2sin3x Original equation
Y . .
5 = sin 3x Divide by 2.

3x = arcsin 5 Definition of arcsine

1

.y . 1
X = —arcsin — Multiply by =.
3 B ply by 3

Solve.

4tan ' x =7 Original equation

T
tan”! x = 1 Divide by 4.
7T e e ~
x =tan— Definition of arctangent

4
x=1 Evaluate.

The solution set is {1}.
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1. Graph the inverse sine, cosine, and tangent functions, indicating the coordinates of
three points on each graph. Give the domain and range for each.

Concept Check Determine whether each statement is true or false. If false, tell why.

2. The ranges of the inverse tangent and inverse cotangent functions are the same.

3. Itis true that sin “Tw = - %, and therefore arcsin(f %) = Ur

6 -

4. For all x, tan(tan™' x) = x.

Find the exact value of each real number y. Do not use a calculator.

2 1
5. y=sin"! i 6. y = arccos (— *) 7. y=tan™! (—\/g)
2 2
V2 3
8. y = arcsin(—1) 9. y=cos! (— T) 10. y = arctan \3/

2V3

11. y =sec !(-2) 12. y = arccsc 13. y = arccot(—1)

Give the degree measure of 6. Do not use a calculator.

1 V3
14. 6 = arccos > 15. 6 = arcsin <— 2) 16. 6 =tan' 0

Use a calculator to approximate each value in decimal degrees.
17. 0 = arctan 1.7804675 18. 6 = sin"'(—0.66045320) 19. 6 = cos ' 0.80396577
20. 6 = cot ! 4.5046388  21. 6 = arcsec 3.4723155 22. 0 = csc™! 7.4890096

Evaluate each expression without using a calculator.

3 3
23. cos(arccos(—1)) 24. sin <arcsin (— \2/>> 25. arccos (cos Tﬂ-)

26. arcsec(sec ) 27. tan! <tan %) 28. cos!(cos 0)
. 3 _
29. sin <arccos Z) 30. cos(arctan 3) 31. cos(esc™(—2))
. 1 .3 5
32. sec (2 sin”! (— g)) 33. tan (arcsm 3 + arccos ;)

Write each trigonometric expression as an algebraic expression in u, for u > 0.

Vi)

34. cos <arctan u> 35. tan <arcsec
1 — u?

Solve each equation for exact solutions over the interval [0, 2a) where appropriate.
Give approximate solutions to four decimal places.

36. sin2x=1 37. 2tanx— 1 =0
38. 3sin?x—5sinx+2=0 39. tanx = cotx

40. sec?2x=2 41. tan?2x—1=0
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Solve each equation for all exact solutions, in radians.

42. sec % = cos% 43. cos2x +cosx =0 44. 4 sin x cos x = \ﬁ

Solve each equation for exact solutions over the interval [0° 360°) where appropriate.
Give approximate solutions to the nearest tenth of a degree.

45. sin?0 +3sinf+2=0 46. 2tan?0 =tan O + 1
47. sin 20 = cos 20 + 1 48. 2sin20 =1
49. 3cos2f+2cosf—1=0 50. 5cot?26 —cotf —2=0

Solve each equation for all exact solutions, in degrees.

51. 2\/§cos§= -3 52. sinf —cos20 =0 53. tanf —sec O =1

Solve each equation for x.

B 4 X
54. 4 —4dcot'x=1 55. garctan5=7r
o2 117
56. arccos x = arcsm; 57. arccos x + arctan 1 =?
1
58. y=3cos%, for x in [0, 277 ] 59. y=5sinx, forxin[—%,%}
4 3
60. y=gsinx—g, forxin[—g,;-}
1 2 2
61. y=5tan(3x+2), for x in <_§_%’_§+%>

62. Solve d = 550 + 450 cos <%t> for ¢, where ¢ is in the interval [0, 50].

(Modeling) Solve each problem.

63. Viewing Angle of an Observer A 10-ft-wide chalkboard ~—_ f<5>{<—10 —]
is situated 5 ft from the left wall of a classroom. See the /
figure. A student sitting next to the wall x feet from
the front of the classroom has a viewing angle of 0 radians. li /o

(a) Show that the value of 6 is given by

15 5
— tan] ~tan—1 [ 2
y| = tan ( . > tan <x>

] (b) Graph y, with a graphing calculator to estimate the
value of x that maximizes the viewing angle.

64. Snell’s Law Snell’s law states that

¢y sin6,

Cy sin 62 ’

where ¢, is the speed of light in one medium,
¢, is the speed of light in a second medium, and
0, and 6, are the angles shown in the figure.
Suppose a light is shining up through water
into the air as in the figure. As 6, increases, 6,
approaches 90°, at which point no light will emerge from the water. Assume the ratio
% in this case is 0.752. For what value of 6,, to the nearest tenth, does 6, = 90°? This

value of 6, is the critical angle for water.
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66.
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Snell’s Law Refer to Exercise 64. What happens when 6, is greater than the critical
angle?

British Nautical Mile The British nautical . .
. R A nautical mile is

mile is defined as the length of a minute of  he jength on any

arc of a meridian. Because Earth is flat at  of the meridians

its poles, the nautical mile, in feet, is given ~ cut by a central
angle of measure

by 1 minute.
L = 6077 — 31 cos 26,

where 0 is the latitude in degrees. See the

figure. (Source: Bushaw, D., et al., A Sourcebook of Applications of School Mathematics,
National Council of Teachers of Mathematics.) Give answers to the nearest tenth if
applicable.

(a) Find the latitude between 0° and 90° at which the nautical mile is 6074 ft.
(b) At what latitude between 0° and 180° is the nautical mile 6108 ft?

(¢) In the United States, the nautical mile is defined everywhere as 6080.2 ft. At
what latitude between 0° and 90° does this agree with the British nautical mile?

Chapter 6

1.

Graph y = sin™! x, and indicate the coordinates of three points on the graph. Give the

domain and range.

2. Find the exact value of each real number y. Do not use a calculator.
1 V3
(a) y = arccos (— 7) (b) y=sin"! | ——
2 2
(¢) y=tan'0 (d) y = arcsec(—2)
3. Give the degree measure of 6. Do not use a calculator.
V3
(a) 6 = arccos - (b) 6 =tan"!(—1)
2V/3
(¢) 6 =cot™!(—1) (d) 6 =csc™! <—3>
4. Use a calculator to approximate each value in decimal degrees to the nearest

hundredth.
(a) sin™! 0.69431882 (b) sec™! 1.0840880
(¢) cot™1(—0.7125586)

. Evaluate each expression without using a calculator.

(a) cos (arcsin %) (b) sin (2 cos™! %)

Explain why sin™! 3 is not defined.

. Explain why arcsin(sin %T) # %T.

Write tan(arcsin u) as an algebraic expression in u, for u > 0.

Solve each equation for exact solutions over the interval [0°, 360°) where appropriate.
Give approximate solutions to the nearest tenth of a degree.

9.

—3secH+2V3=0 10. sin26 = cos? 6 + 1 11. csc2h —2coth =4
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Solve each equation for exact solutions over the interval [0, 2ar) where appropriate.
Give approximate solutions to four decimal places.

1
12. cos x = cos 2x 13. \/2003 3x—1=0 14. sinxcosx = 5

Solve each equation for all exact solutions in radians (for x) or in degrees (for 0). Write
answers using the least possible nonnegative angle measures.

15. sin? 6 = —cos 20 16. 2\V/3 sin g =3 17. cscx —cotx =1

Work each problem.
18. Solve each equation for x, where x is restricted to the given interval.

(a) y = cos 3x, forxin [0, %} (b) y=4 +3cotx, forxin (0, )
19. Solve each equation for exact solutions.

4 3
(a) arcsin x = arctan 5 (b) arccot x + 2 arcsin T =1

FK 20. Upper Harmonics Pressures Suppose that the E key above middle C is played on

a piano, and its fundamental frequency is f; = 330 Hz. Its associated pressure is
expressed as

P, = 0.002 sin 660 7rt.
The pressures associated with the next four frequencies are P, = % sin 13207,

Py =29 sin 198071, P, = “ sin 26407+, and Py = “%2 sin 33007+ Duplicate

the graph shown below of
P=P +P+P+P+Ps

Approximate the maximum value of P to four significant digits and the least positive
value of ¢ for which P reaches this maximum.

Forx =1,
y6=P1+P2+P3+P4+P5=P

0. Os;fu'h CLETR T TRy



Applications of
Trigonometry and Vectors

Surveyors use a method known as

triangulation to measure distances
when direct measurements cannot
be made due to obstructions in the
line of sight.

Oblique Triangles and
the Law of Sines

- The Ambiguous Case of
the Law of Sines

- The Law of Cosines
Chapter 7 Quiz

Geometrically Defined
Vectors and Applications

- Algebraically Defined
Vectors and the Dot

Product

Summary Exercises on
Applications of Trigonometry
and Vectors




296 | CHAPTER7 Applications of Trigonometry and Vectors

Oblique Triangles and the Law of Sines

Congruency and
Oblique Triangles

Derivation of the Law
of Sines

Solutions of SAA and
ASA Triangles (Case 1)

Area of a Triangle

Examples of congruent
triangles ABC and XYZ

X

Congruency and Oblique Triangles ‘We now turn our attention to solving
triangles that are not right triangles. To do this we develop new relationships, or
laws, that exist between the sides and angles of any triangle. The congruence
axioms assist in this process. Recall that two triangles are congruent if their
corresponding sides and angles are equal.

Congruence Axioms

Side-Angle-Side  If two sides and the included angle of one triangle are
(SAS) equal, respectively, to two sides and the included angle
of a second triangle, then the triangles are congruent.

Angle-Side-Angle If two angles and the included side of one triangle are
(ASA) equal, respectively, to two angles and the included side
of a second triangle, then the triangles are congruent.

Side-Side-Side If three sides of one triangle are equal, respectively, to
(SSS) three sides of a second triangle, then the triangles are
congruent.

If a side and any two angles are given (SAA), the third angle can be determined
by the angle sum formula

A+ B + C = 180°.

Then the ASA axiom can be applied. Whenever SAS, ASA, or SSS is given, the
triangle is unique.

A triangle that is not a right triangle is an oblique triangle. Recall that a
triangle can be solved—that is, the measures of the three sides and three angles
can be found—if at least one side and any other two measures are known.

Data Required for Solving Oblique Triangles

There are four possible cases.
Case 1 One side and two angles are known (SAA or ASA).

Case 2 Two sides and one angle not included between the two sides are
known (SSA). This case may lead to more than one triangle.

Case 3 Two sides and the angle included between the two sides are known
(SAS).
Case 4 Three sides are known (SSS).

If we know three angles of a triangle, we cannot find unique
side lengths because AAA assures us only of similarity, not congruence.
For example, there are infinitely many triangles ABC of different sizes with
A =35° B=65°and C = 80°.



Acute triangle ABC

(a)
B
\
no\e a
pL c
A b
Obtuse triangle ABC
(b)

We label oblique triangles as we did
right triangles: side a opposite angle A,
side b opposite angle B, and side ¢
opposite angle C.

Figurel
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Solving a triangle with given information matching Case 1 or Case 2
requires using the law of sines, while solving a triangle with given information
matching Case 3 or Case 4 requires using the law of cosines.

Derivation of the Law of Sines ~ To derive the law of sines, we start with
an oblique triangle, such as the acute triangle in Figure 1(a) or the obtuse triangle
in Figure 1(b). This discussion applies to both triangles. First, construct the per-
pendicular from B to side AC (or its extension). Let 4 be the length of this perpen-
dicular. Then c is the hypotenuse of right triangle ADB, and a is the hypotenuse
of right triangle BDC.

In triangle ADB, sinA=—, or h=csinA.

In triangle BDC, sinC=—, or h=asinC.

QI ol

Because /1 = ¢ sin A and /1 = a sin C, we set these two expressions equal.

asinC =csinA

a c
- = - Divide each side by sin A sin C.
sinA  sinC

In a similar way, by constructing perpendicular lines from the other vertices,
we can show that these two equations are also true.

a b b c

= and =
sin A sin B sin B sin C

This discussion proves the following theorem.

Law of Sines
In any triangle ABC, with sides a, b, and c, the following hold.

a b a and b ¢
sinA sinB’ sinA sinC’ sinB  sinC

This can be written in compact form as follows.

a b c

sinA  sinB - sin C

That is, according to the law of sines, the lengths of the sides in a triangle are
proportional to the sines of the measures of the angles opposite them.
In practice we can also use an alternative form of the law of sines.

sin A _ sin B _ sin C' Aliernative form of
a b ¢ the law of sines

When using the law of sines, a good strategy is to select a form
that has the unknown variable in the numerator and where all other variables
are known. This makes computation easier.
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carefully to help set up
the correct equation.

[Be sure to label a sketchJ

Figure 2

A

31.10°

b =347.6 ft
112.90°

Figure 3

Solutions of SAA and ASA Triangles (Case 1)

m Applying the Law of Sines (SAA)

Solve triangle ABC if A = 32.0°, B = 81.8°, and @ = 42.9 cm.

SOLUTION  Start by drawing a triangle, roughly to scale, and labeling the given
parts as in Figure 2. The values of A, B, and a are known, so use the form of the
law of sines that involves these variables, and then solve for b.

a b Choose a form of the law of sines
- = — that has the unknown variable
sinA  sinB in the numerator.
42.9 b

= Substitute the given values.

sin 32.0°  sin 81.8°

_ 4295in 81.8°
sin 32.0°

Multiply by sin 81.8° and rewrite.

b = 80.1 cm Approximate with a calculator.

To find C, use the fact that the sum of the angles of any triangle is 180°.

A+ B+ C=180° Angle sum formula
C=180°-A—B Solve for C.
C = 180° — 32.0° — 81.8°  Substitute.
C =66.2° Subtract.

Now use the law of sines to find c. (The Pythagorean theorem does not apply
because this is not a right triangle.)

a c

B = Law of sines
sinA sinC

42.9 c
- o= S Substitute known values.
sin 32.0 sin 66.2
42.9 sin 66.2° Multine by <in 66.2° and rewrd
= ulti sin 66.2° and rewrite.
sin 32.0° P
c=74.1cm Approximate with a calculator.

+/ Now Try Exercise 17.

CAUTION Whenever possible, use given values in solving triangles, rather
than values obtained in intermediate steps, to avoid rounding errors.

_~..'-~ Rpplying the Law of Sines (ASA)

An engineer wishes to measure the distance across a river. See Figure 3. He
determines that C = 112.90°, A = 31.10°, and b = 347.6 ft. Find the distance a.

SOLUTION To use the law of sines, one side and the angle opposite it must be
known. Here b is the only side whose length is given, so angle B must be found
before the law of sines can be used.

B=180°—-A—-C Angle sum formula, solved for B
B =180°—31.10° — 112.90°  Substitute the given values.
B = 36.00° Subtract.



A 110 mi B

Figure 4
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Now use the form of the law of sines involving A, B, and b to find side a.

Solvefora.~a b
sinA sinB

a 347.6

sin 31.10°  sin 36.00°

~ 347.6sin 31.10°
sin 36.00°

a =~ 305.5 ft

Law of sines

Substitute known values.

Multiply by sin 31.10°.

Use a calculator.

Now Try Exercise 33.

Recall that bearing is used in navigation to refer to direction of motion or
direction of a distant object relative to current course. We consider two methods

for expressing bearing.

Method 1

When a single angle is given, such
as 220°, this bearing is measured in
a clockwise direction from north.

Method 2

Start with a north-south line and use
an acute angle to show direction,
either east or west, from this line.

Example: 220° Example: S 40°' W

40°

| 220° S

Applying the Law of Sines (ASA)

Two ranger stations are on an east-west line 110 mi apart. A forest fire is located
on a bearing of N 42° E from the western station at A and a bearing of N 15°E
from the eastern station at B. To the nearest ten miles, how far is the fire from
the western station?

Figure 4 shows the two ranger stations at points A and B and the
fire at point C. Angle BAC measures 90° — 42° = 48°, obtuse angle B measures
90° + 15° = 105°, and the third angle, C, measures 180° — 105° — 48° = 27°.
We use the law of sines to find side b.

Solve for b. b ¢

] = Law of sines
sinB sin C

b 110
sin 105°  sin 27°
_ 110 sin 105°
sin 27°
b = 230 mi

Substitute known values.

Multiply by sin 105°.

Use a calculator and give two
significant digits.

Now Try Exercise 35.
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AreaofaTriangle A familiar formula for the area of a triangle is

1
A = Ebh’ where A represents area, b base, and & height.

This formula cannot always be used easily because in practice, & is often
unknown. To find another formula, refer to acute triangle ABC in Figure 5(a) or
(a) obtuse triangle ABC in Figure 5(b).

A perpendicular has been drawn from B to the base of the triangle (or the
extension of the base). Consider right triangle ADB in either figure.

. h .
sinA=—, or h=csinA
c

Substitute into the formula for the area of a triangle.

Obtuse triangle ABC oA = lbh — lb(‘ sin A
(b) 2 2
Figure5 Any other pair of sides and the angle between them could have been used.
Area of a Triangle (SAS)

In any triangle ABC, the area & is given by the following formulas.

1 1 1
A = Ebc sinA, o = Eab sinC, and o = Eac sin B

That is, the area is half the product of the lengths of two sides and the sine of
the angle included between them.

If the included angle measures 90°, its sine is 1 and the formula

becomes the familiar s§ = %bh.

Finding the Area of a Triangle (SAS)

Find the area of triangle ABC in Figure 6. c
Substitute B = 55° 10', a = 34.0 ft, and

¢ = 42.0 ft into the area formula. 34.01ft

L 1 o i 5 55° 107
A = —acsin B=—(34.0)(42.0) sin 55° 10" =~ 586 ft -

2 2 B 42.0 ft A

Figure 6
Now Try Exercise 51.

Finding the Area of a Triangle (ASA)
B Find the area of triangle ABC in Figure 7.

c a Before the area formula can be used, we must find side a or c.

247 40° 527 40° C Al ~180°=A+B+C Angle sum formula
b=27.3cm remaining
angle B. B = 180° — 24°40’' — 52°40" Substitute and solve for B.

Figure 7
B =102°40' Subtract.
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Next use the law of sines to find side a.

Solvefora.~—a b
sinA sinB
a B 27.3
sin 24° 40" sin 102° 40’
_27.35in 24° 40’
~ sin 102° 40’

Law of sines

Substitute known values.

Multiply by sin 24° 40’.

a=11.7cm Use a calculator.

Now that we know two sides, a and b, and their included angle C, we find the area.

1 1
A= Eab sin C = 5(1 1.7)(27.3) sin 52° 40" = 127 cm?

[11.7 is an approximation. In practice,

Now Try Exercise 57.
use the calculator value.

—

Exercises

CONCEPT PREVIEW Fill in the blank(s) to correctly complete each sentence.

1.
2.

A triangle that is not a right triangle isa(n) — triangle.

The measures of the three sides and three angles of a triangle can be found if at least
one __ and any other two measures are known.

. If we know three ______ of a triangle, we cannot find a unique solution for the

triangle.

In the law of sines, ‘a = b = < .
sin A _ _

sin A sin B sin C

. An alternative form of the law of sines is = =

For any triangle ABC, its area can be found using the formula & = %ab

CONCEPT PREVIEW Consider each case and determine whether there is sufficient
information to solve the triangle using the law of sines.

7.
8.
9.
10.

Two angles and the side included between them are known.
Two angles and a side opposite one of them are known.
Two sides and the angle included between them are known.

Three sides are known.

Find the length of each side labeled a. Do not use a calculator:

11.

c 12. C
105°

45°

60° 75°
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Determine the remaining sides and angles of each triangle ABC. See Example 1.

13.

15.

17.

19.

21.

23.

25.

27.

B 14. C
48°
18 m
43 cm
A 37° C
B A
A
76.0 ft
B C
A =68.41°, B =54.23°, 18. C =74.08°, B = 69.38°,
a=12.75ft c=4538m
A=872° b="759yd, 20. B=138°40', a=19.7 cm,
C=174.3° C=91°40'
B =20°50', C=103°10', 22. A =35.3° B =528
AC =132 ft AC = 675 ft
A =39.70°, C = 30.35° 24. C=171.83°, B=42.57°,
b=39.74m a=2.614cm
B =42.88° C=102.40°, 26. C =50.15°, A =106.1°,
b = 3974 ft c=3726yd
A =39°54", a =268.7m, 28. C=79°18', ¢ =39.81 mm,
B =42°32' A =32°57'

Concept Check Answer each question.

29.

30.

31.

32.

Why can the law of sines not be used to solve a triangle if we are given only the
lengths of the three sides of the triangle?

In Example 1, we begin (as seen there) by solving for » and C. Why is it a better
idea to solve for ¢ by using a and sin A than by using b and sin B?

Eli Maor, a perceptive trigonometry student, makes this statement: “If we know any
two angles and one side of a triangle, then the triangle is uniquely determined.”
Why is this true? Refer to the congruence axioms given in this section.

In a triangle, if a is twice as long as b, is A necessarily twice as large as B?

Solve each problem. See Examples 2 and 3.

33.

34.

Distance across a River To find the distance
AB across a river, a surveyor laid off a dis-
tance BC = 354 m on one side of the river. It
is found that B = 112° 10’ and C = 15°20".
Find AB. See the figure.

Distance across a Canyon To determine the
distance RS across a deep canyon, Rhonda lays
off a distance TR = 582 yd. She then finds that
T =32°50" and R = 102° 20’. Find RS. See the
figure.
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35. Distance a Ship Travels A ship is sailing due north. At a certain point the bearing
of a lighthouse 12.5 km away is N 38.8° E. Later on, the captain notices that the
bearing of the lighthouse has become S 44.2° E. How far did the ship travel between
the two observations of the lighthouse?

36. Distance between Radio Direction Finders Radio direction finders are placed at
points A and B, which are 3.46 mi apart on an east-west line, with A west of B.
From A the bearing of a certain radio transmitter is 47.7°, and from B the bearing is
302.5°. Find the distance of the transmitter from A.

37. Distance between a Ship and a Lighthouse The bearing of a lighthouse from a
ship was found to be N 37° E. After the ship sailed 2.5 mi due south, the new bearing
was N 25° E. Find the distance between the ship and the lighthouse at each location.

38. Distance across a River Standing on one bank of a river flowing north, Mark
notices a tree on the opposite bank at a bearing of 115.45°. Lisa is on the same bank
as Mark, but 428.3 m away. She notices that the bearing of the tree is 45.47°. The
two banks are parallel. What is the distance across the river?

39. Height of a Balloon A balloonist is
directly above a straight road 1.5 mi

long that joins two villages. She finds NOT TO SCALE
that the town closer to heris atanangle — __ _ _ _ 7_’\_ e .
of depression of 35° and the farther 35&/ i \\7310

| ~
town is at an angle of depression of ﬂ P d I \\\ “@’

31°. How high above the ground is the
balloon?

40. Measurement of a Folding Chair A folding chair is to have
a seat 12.0 in. deep with angles as shown in the figure. How
far down from the seat should the crossing legs be joined?
(Find length x in the figure.)

41. Angle Formed by Radii of Gears 42. Distance between Atoms Three atoms

Three gears are arranged as shown in with atomic radii of 2.0, 3.0, and 4.5
the figure. Find angle 6. are arranged as in the figure. Find the
distance between the centers of atoms A

and C.

43. Distance to the Moon The moon is a relatively close celestial object, so its distance

Moon can be measured directly by taking two different photographs at precisely the same
) time from two different locations. The moon will have a different angle of eleva-
e tion at each location. On April 29, 1976, at 11:35 A.M., the lunar angles of elevation
PR during a partial solar eclipse at Bochum in upper Germany and at Donaueschingen

s ,/ in lower Germany were measured as 52.6997° and 52.7430°, respectively. The two

P y; .
Bochum cities are 398 km apart.

¢, = — —¢ ", Donaueschingen Calculate the distance to the moon, to the nearest thousand kilometers, from

Bochum on this day, and compare it with the actual value of 406,000 km. Disregard
the curvature of Earth in this calculation. (Source: Scholosser, W., T. Schmidt-Kaler,
NOT TO SCALE and E. Milone, Challenges of Astronomy, Springer-Verlag.)
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44. Ground Distances Measured by Aerial
Photography The distance covered by an
aerial photograph is determined by both
the focal length of the camera and the tilt
of the camera from the perpendicular to
the ground. A camera lens with a 12-in.
focal length will have an angular cover-
age of 60°. If an aerial photograph is taken d I
with this camera tilted 6 = 35° at an altitude of 5000 ft, calculate to the nearest foot
the ground distance d that will be shown in this photograph. (Source: Brooks, R.
and D. Johannes, Phytoarchaeology, Dioscorides Press.)

45. Ground Distances Measured by Aerial Photog-
raphy Refer to Exercise 44. A camera lens with a
6-in. focal length has an angular coverage of 86°.
Suppose an aerial photograph is taken vertically
with no tilt at an altitude of 3500 ft over ground with
an increasing slope of 5°, as shown in the figure.
Calculate the ground distance CB, to the nearest
hundred feet, that will appear in the resulting pho-
tograph. (Source: Moffitt, F. and E. Mikhail, Pho-
togrammetry, Third Edition, Harper & Row.)

—_—

46. Ground Distances Measured by Aerial
Photography Repeat Exercise 45 if the
camera lens has an 8.25-in. focal length
with an angular coverage of 72°.

Find the area of each triangle using the formula s = %bh, and then verify that the for-

mula sl = % ab sin C gives the same result.

47. B
2/ |3
[ ]
A 1 C
49, B 50. A
|
|
2 V3 2 i
|
. . o L0 i—| R
1 A

Find the area of each triangle ABC. See Examples 4 and 5.

51. A=425°b=13.6m,c=10.1m 52. C=722°b=4381ft,a=35.1ft

53. B=124.5°a=304cm,c =284cm 54. C=142.7°,a=219km, b = 24.6 km
55. A =56.80° b =32.67in.,¢ =52.891in. 56. A =34.97°,b=3529m,c = 28.67 m
57. A =130.50°b=13.00cm, C = 112.60° 58. A =59.80°, b = 15.00 m, C = 53.10°
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Solve each problem.

59.

60.

61.

62.

63.

64.

Area of a Metal Plate A painter is going to apply a special coating to a triangular
metal plate on a new building. Two sides measure 16.1 m and 15.2 m. She knows
that the angle between these sides is 125°. What is the area of the surface she plans
to cover with the coating?

Area of a Triangular Lot A real estate agent wants to find the area of a triangular
lot. A surveyor takes measurements and finds that two sides are 52.1 m and 21.3 m,
and the angle between them is 42.2°. What is the area of the triangular lot?

Triangle Inscribed in a Circle For a triangle inscribed
in a circle of radius r, the law of sines ratios B
a c
——, ——, and —— have value 2r.
sinA’~  sin B sin C A
The circle in the figure has diameter 1. What are the values c

of a, b, and ¢? (Note: This result provides an alternative way
to define the sine function for angles between 0° and 180°.
It was used nearly 2000 yr ago by the mathematician
Ptolemy to construct one of the earliest trigonometric tables.)

Theorem of Ptolemy The following theorem is also attributed to Ptolemy:

In a quadrilateral inscribed in a circle, the product of
the diagonals is equal to the sum of the products of the
opposite sides.

(Source: Eves, H., An Introduction to the History of Math-
ematics, Sixth Edition, Saunders College Publishing.) The
circle in the figure has diameter 1. Use Ptolemy’s theorem
to derive the formula for the sine of the sum of two angles.

Law of Sines Several of the exercises on right triangle D
applications involved a figure similar to the one shown
here, in which angles « and 8 and the length of line

segment AB are known, and the length of side CD is to x
be determined. Use the law of sines to obtain x in terms
of a, B, and d. o B
A B C
N
d
Aerial Photography Aerial photographs can be

used to provide coordinates of ordered pairs to
determine distances on the ground. Suppose we

assign coordinates as shown in the figure. If an o ) A g ¥F)
object’s photographic coordinates are (x, y), then e

its ground coordinates (X, Y) in feet can be com-
puted using the following formulas.

B (a — h)x ~ (a—=h)ycos 6
~ fsecO—ysin®  fsec — ysinf

Xy, Yp)

Here, f is focal length of the camera in inches, a is
altitude in feet of the airplane, and # is elevation in feet of the object. Suppose that
a house has photographic coordinates (x, y;) = (0.9, 3.5) with elevation 150 ft,
and a nearby forest fire has photographic coordinates (xp, yy) = (2.1, —2.4) and
is at elevation 690 ft. Also suppose the photograph was taken at 7400 ft by a camera
with focal length 6 in. and tilt angle 6 = 4.1°. (Source: Moffitt, F. and E. Mikhail,
Photogrammetry, Third Edition, Harper & Row.)

(a) Use the formulas to find the ground coordinates of the house and the fire to the
nearest tenth of a foot.

(b) Use the distance formula d = \/(xz —x1)%+ (v, — y1)? to find the distance
on the ground between the house and the fire to the nearest tenth of a foot.
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The Ambiguous Case of the Law of Sines

Description of the
Ambiguous Case
Solutions of SSA
Triangles (Case 2)
Analyzing Data for
Possible Number of
Triangles

V4

B lies along this side
if a triangle exists.

Figure 8

Description of the Ambiguous Case We have used the law of sines to
solve triangles involving Case 1, given SAA or ASA. If we are given the lengths
of two sides and the angle opposite one of them (Case 2, SSA), then zero, one, or
two such triangles may exist. (There is no SSA congruence axiom.)

Suppose we know the measure of acute angle A of triangle ABC, the length
of side a, and the length of side b, as shown in Figure 8. We must draw the side
of length a opposite angle A. The table shows possible outcomes. This situation
(SSA) is called the ambiguous case of the law of sines.

Possible Outcomes for Applying the Law of Sines

Possible
Number of Applying Law of Sines
Angle A is Triangles Sketch Leads to
©
| a
Acute 0 b :h sinB>1, a<h<b
A
@
Acute 1 Aajh sinB=1, a=hand h<b
A B

C
Acute 1 m 0<sinB<1, a=b
A ' B
C

b a 0<sinB; <1, h<a<h,
Acute 2 /
- [ A + B, < 180°

By~____"B,
C a
Obtuse 0 b; ? sinB=1, a=b
A
€ a
Obtuse 1 bA . 0<sinB<1, a>b

The following basic facts help determine which situation applies.

Applying the Law of Sines

1. For any angle 6 of a triangle, 0 < sin 6 = 1. If sin # = 1, then 6 = 90°
and the triangle is a right triangle.

2. sin 6 = sin(180° — 6) (Supplementary angles have the same sine value.)

3. The smallest angle is opposite the shortest side, the largest angle is opposite
the longest side, and the middle-valued angle is opposite the intermediate
side (assuming the triangle has sides that are all of different lengths).
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Solutions of SSA Triangles (Case 2)

Solving the Ambiguous Case (No Such Triangle)
Solve triangle ABC if B = 55°40', b = 8.94 m, and ¢ = 25.1 m.

We are given B, b, and a. We use the law of sines to find angle A.

Choose a form sin A _Sm B

Law of sines (alternative form)

that has the a b
unknown variable
in the numerator. sin A sin 55° 40/
= Substitute the given values.
25.1 8.94
A 25.1 sin 55° 40’ Multioly by 25 |
Sin = ultiply J. 1.
8.94 re
sin A = 2.3184379 Use a calculator.

Because sin A cannot be greater than 1, there can be no such angle A—and thus
no triangle with the given information. An attempt to sketch such a triangle leads
to the situation shown in Figure 9.

Now Try Exercise 17.

In the ambiguous case, we are given two sides and an angle
opposite one of the sides (SSA). For example, suppose b, ¢, and angle C
are given. This situation represents the ambiguous case because angle C is
opposite side c.

Solving the Ambiguous Case (Two Triangles)
Solve triangle ABC if A = 55.3°, a = 22.8 ft, and b = 24.9 ft.

To begin, use the law of sines to find angle B.

sin A _ sin B </solve for sin B.

a b
sin 55.3°  sin B _ _
738 = 249 Substitute the given values.
) 24.9 sin 55.3° ) )
sin B = T Multiply by 24.9 and rewrite.

sin B = 0.8978678 Use a calculator.

There are two angles B between 0° and 180° that satisfy this condition. Because
sin B = (0.8978678, one value of angle B, to the nearest tenth, is

B, = 63.9°.  Use the inverse sine function.
Supplementary angles have the same sine value, so another possible value of B is
B, = 180° — 63.9° = 116.1°.

To see whether B, = 116.1° is a valid possibility, add 116.1° to the measure of A,
55.3°. Because 116.1° 4+ 55.3° = 171.4°, and this sum is less than 180°, it is a valid
angle measure for this triangle.
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Now separately solve triangles AB,;C; and AB,C, shown in Figure 10.
Begin with AB,C;. Find angle C, first.

C,=180°—A — B, Angle sum formula, solved for C,
C, = 180° — 55.3° — 63.9° Substitute.
C, = 60.8° Subtract.

Now, use the law of sines to find side c;.
a — Solve for ¢;.
sinA  sin C,

22.8 Cq
- = — Substitute.
sin 55.3°  sin 60.8°

_22.8sin 60.8°

c| = sin 55.3° Multiply by sin 60.8° and rewrite.
c, = 2421t Use a calculator.
A ¢ By To solve triangle AB,C,, first find angle C,.
Figure10 C,=180°—A — B, Angle sum formula, solved for C,
C, = 180° — 55.3° — 116.1°  Substitute.
C,=8.6° Subtract.

Use the law of sines to find side c,.

a Cy — Solve for c,.

sinA  sin C,

22.8 cy _
- 5= . S Substitute.
sin 55.3 sin 8.6
22.8 sin 8.6° Multioly by sin 8.6° and )
Cr=—"T—--— ulti / sin 8.6° and rewrite.
2 sin 55.3° Py
cy, = 415 ft Use a calculator.

Now Try Exercise 25.

The ambiguous case results in zero, one, or two triangles. The following guide-
lines can be used to determine how many triangles there are.

Number of Triangles Satisfying the Ambiguous Case (SSA)

Let sides @ and b and angle A be given in triangle ABC. (The law of sines
can be used to calculate the value of sin B.)

1. If applying the law of sines results in an equation having sin B > 1, then
no triangle satisfies the given conditions.

2. If sin B = 1, then one triangle satisfies the given conditions and B = 90°.

3. If 0 <sinB < 1, then either one or two triangles satisfy the given
conditions.

(a) If sin B = k, then let B; = sin"! k and use B, for B in the first triangle.

(b) Let B, = 180° — B,. If A + B, < 180°, then a second triangle exists.
In this case, use B, for B in the second triangle.
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Solving the Ambiguous Case (One Triangle)
Solve triangle ABC, given A = 43.5°, a = 10.7 in., and ¢ = 7.2 in.
Find angle C.

sinC sinA

Law of sines (alternative form)

C a
sin C  sin43.5°
= Substitute the given values.
7.2 10.7
) 7.2 sin 43.5° Multiol be 70
sSin S ulti 2.
10.7 e

sin C = 0.46319186  Use a calculator.
C = 27.6° Use the inverse sine function.
There is another angle C that has sine value 0.46319186. It is
C =180° — 27.6° = 152.4°.

However, notice in the given information that ¢ < a, meaning that in the tri-
angle, angle C must have measure less than angle A. Notice also that when we
add this obtuse value to the given angle A = 43.5°, we obtain

152.4° + 43.5° = 195.9°,

which is greater than 180°. Thus either of these approaches shows that there can
be only one triangle. See Figure 11. The measure of angle B can be found next.

B =180°— 27.6° — 43.5° Substitute.
B =108.9° Subtract.

We can find side b with the law of sines.

b a
B = Law of sines
sinB sinA
b _10.7

Substitute known values.

sin 108.9°  sin 43.5°

_10.7 sin 108.9°

1 43.5° Multiply by sin 108.9°.
S .

b = 14.7 in. Use a calculator.

Now Try Exercise 21.

Analyzing Data for Possible Number of Triangles

Analyzing Data Involving an Obtuse Angle

Without using the law of sines, explain why A = 104°, a = 26.8 m, and
b = 31.3 m cannot be valid for a triangle ABC.

Because A is an obtuse angle, it is the largest angle, and so the
longest side of the triangle must be a. However, we are given b > a.

Thus, B > A, which is impossible if A is obtuse.

Therefore, no such triangle ABC exists. Now Try Exercise 33.
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e

Exercises

1. CONCEPT PREVIEW Which one of the following sets of data does not determine

a unique triangle?

A. A=50° b=21,a=19 B. A=45°, b=10, a= 12

C. A=130°, b=4,a=7 D. A=30° b=8,a=4

CONCEPT PREVIEW Which one of the following sets of data determines a
unique triangle?

A. A=50° B=50° C=380° B.a=3,b=5,c=20

C. A=40° B=20°, C=30° D.a=7 b=24, c=25

CONCEPT PREVIEW In each figure, a line segment of length L is to be drawn from the
given point to the positive x-axis in order to form a triangle. For what value(s) of L can
we draw the following?

(a) two triangles (b) exactly one triangle (¢) no triangle

3.

y 4. y
(3, 4) 3.4

0] 0]

CONCEPT PREVIEW Determine the number of triangles ABC possible with the given

parts.

5. a=50, b=26, A=95° 6. a=35 b=30, A=40°
7. a=31, b=26, B=48° 8. B=54° ¢=128, b=23
9. ¢=50, b=61, C=58 10. ¢ =60, a =82, C=100°

Find each angle B. Do not use a calculator.

11.

c 12. c
32
2 V6 3
45°
00 A B
A B

Find the unknown angles in triangle ABC for each triangle that exists. See Examples 1-3.

13.
14.
15.
16.
17.
18.
19.
20.

A=297° b=4151t a=272ft

B =482° a=890cm, b =697 cm
C=41°20", b=259m, ¢c=384m

B =48°50", a =3850in., b = 4730 in.
B=743° a=2859m, b=783m
C=2822° a=109km, ¢ =7.62km

A =142.13° b =54321t, a ="7.297 ft
B=113.72°, a=189.6 yd, b = 243.8 yd
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Solve each triangle ABC that exists. See Examples 1-3.

21.
23.
25.
26.
27.
28.
29.
30.

A=425° a=15.61t, b=8.14ft 22. C=523° a=325yd, ¢ =59.8yd
B=1722° b=783m, c=145m 24. C=068.5° ¢=258cm, b=386cm
A=38°40", a=9.72m, b=11.8m

C=29°50", a=86lm, c=52lm

A =96.80°, b=3.5891ft, a=5818ft

C=288.70° b=5687m, c=1124m

B =39.68°, a =29.81m, b=23.76m

A =51.20° ¢ =7986 cm, a = 7208 cm

Concept Check Answer each question.

31.

32.

33.

34.

Apply the law of sines to the following: a = \/g, c= 2\/5, A = 30°. What is the
value of sin C? What is the measure of C? Based on its angle measures, what kind
of triangle is triangle ABC?

What condition must exist to determine that there is no triangle satisfying the given
values of a, b, and B, once the value of sin A is found by applying the law of sines?

Without using the law of sines, why can no triangle ABC exist that satisfies
A =103°20",a = 14.6 ft, b = 20.4 ft?

If the law of sines is applied to the data given in Example 4, what happens when we
try to find the measure of angle B using a calculator?

Use the law of sines to solve each problem.

35.

36.

37.

38.

Distance between Inaccessible Points To find Y

the distance between a point X and an inacces- 43° 30
sible point Z, a line segment XY is constructed. It
is found that XY = 960 m, angle XYZ = 43° 30/,
and angle YZX = 95°30’'. Find the distance be-
tween X and Z to the nearest meter.

960 m

95° 30"
4

X
Height of an Antenna Tower The angle of
elevation from the top of a building 45.0 ft 15° 20/
high to the top of a nearby antenna tower is Yo
15°20’. From the base of the building, the =
angle of elevation of the tower is 29° 30’. 45.01ft -

~29° 30/

Find the height of the tower.

Height of a Building A flagpole 95.0 ft tall is on the top of a building. From a
point on level ground, the angle of elevation of the top of the flagpole is 35.0°, and
the angle of elevation of the bottom of the flagpole is 26.0°. Find the height of the
building.

Flight Path of a Plane A pilot flies her plane on a bearing of 35° 00’ from point X to
point Y, which is 400 mi from X. Then she turns and flies on a bearing of 145° 00’
to point Z, which is 400 mi from her starting point X. What is the bearing of Z
from X, and what is the distance YZ?

Use the law of sines to prove that each statement is true for any triangle ABC, with cor-
responding sides a, b, and c.

39.

a+b sinA+sinB 40 a—b sinA—sinB
b sin B “a+b sinA+sinB
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Relating Concepts

For individual or collaborative investigation. (Exercises 41-44)

Colors of the U.S. Flag The flag of the United States includes the colors red, white,
and blue.

Which color is predominant?

Clearly the answer is either red or white. (It can be shown that only 18.73% of the
total area is blue.) (Source: Banks, R., Slicing Pizzas, Racing Turtles, and Further
Adventures in Applied Mathematics, Princeton University Press.)

41.

42,

43.

44.

To answer this question, work Exercises 41-44 in order.

Let R denote the radius of the circumscribing circle of a five-pointed star ap-
pearing on the American flag. The star can be decomposed into ten congruent
triangles. In the figure, r is the radius of the circumscribing circle of the penta-
gon in the interior of the star. Show that the area of a star is
sin A sin B . . . o .
=|5————|R?>. (Hint: sin C = sin[180° — (A + B) ] = sin(A + B).)
sin(A + B)

A

<=

ZNED)

r

B

Angles A and B have values 18° and 36°, respectively. Express the area s of a star
in terms of its radius, R.

To determine whether red or white is predominant, we must know the measure-
ments of the flag. Consider a flag of width 10 in., length 19 in., length of each
upper stripe 11.4 in., and radius R of the circumscribing circle of each star
0.308 in. The thirteen stripes consist of six matching pairs of red and white
stripes and one additional red, upper stripe. Therefore, we must compare the
area of a red, upper stripe with the total area of the 50 white stars.

(a) Compute the area of the red, upper stripe.
(b) Compute the total area of the 50 white stars.

Which color occupies the greatest area on the flag?

The Law of Cosines

m Derivation of the Law
of Cosines

m Solutions of SAS and SSS
Triangles (Cases 3 and 4)

u Heron's Formula for the
Area of a Triangle

m Derivation of Heron's
Formula

If we are given two sides and the included angle (Case 3) or three sides (Case 4)
of a triangle, then a unique triangle is determined. These are the SAS and SSS
cases, respectively. Both require using the law of cosines to solve the triangle.

The following property is important when applying the law of cosines.

Triangle Side Length Restriction

In any triangle, the sum of the lengths of any two sides must be greater than
the length of the remaining side.
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As an example of this property, it would be impossible to construct a tri-
angle with sides of lengths 3, 4, and 10. See Figure 12.

c=10
No triangle is formed.

Figure 12

Derivation of the Law of Cosines  To derive the law of cosines, let ABC
be any oblique triangle. Choose a coordinate system so that vertex B is at the origin
and side BC is along the positive x-axis. See Figure 13.
Let (x, y) be the coordinates of vertex A of the triangle. Then the following
are true for angle B, whether obtuse or acute.
(c cos B, ¢ sin B)

. Yy X . . .
sin B == and cosB=— Definition of sine and cosine
C C

Here x is negative when B

y=csinB and xX=ccosB . i
is obtuse.

Thus, the coordinates of point A become (c cos B, ¢ sin B).

Figure13 Point C in Figure 13 has coordinates (a, 0), AC has length b, and point A
has coordinates (¢ cos B, ¢ sin B). We can use the distance formula to write an
equation.

b= \/(c cos B—a)*+ (c¢sin B — 0)? d=V{(x—x)2+ (y»— )

b* = (ccos B — a)* + (c sin B)? Square each side.

Multiply;

b? = (c? cos’ B — 2ac cos B + a®) + ¢*sin’ B S ,
(x —y)*=x* —2xy +y?

b?* = a® + ¢?*(cos’ B + sin’ B) — 2ac cos B Properties of real numbers
b*=a? + ¢*(1) — 2ac cos B Fundamental identity
b?> =a?>+ c? — 2ac cos B Law of cosines

This result is one of three possible forms of the law of cosines. In our work, we
could just as easily have placed vertex A or C at the origin. This would have
given the same result, but with the variables rearranged.

Law of Cosines

In any triangle ABC, with sides a, b, and c, the following hold.
a* =b* + ¢ — 2bc cos A
b = a* + ¢*> — 2ac cos B

2 = g2 + b?> — 2ab cos C

(4

That is, according to the law of cosines, the square of a side of a triangle is
equal to the sum of the squares of the other two sides, minus twice the product
of those two sides and the cosine of the angle included between them.
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If we let C = 90° in the third form of the law of cosines, then
cos C = cos 90° = 0, and the formula becomes

c?=a*+ b2 Pythagorean theorem

The Pythagorean theorem is a special case of the law of cosines.

Solutions of SAS and SSS Triangles (Cases 3 and 4)

Applying the Law of Cosines (SAS)

A A surveyor wishes to find the distance between two inaccessible points A and B
on opposite sides of a lake. While standing at point C, she finds that b = 259 m,
b=259m \ a = 423 m, and angle ACB measures 132° 40’. Find the distance c. See Figure 14.

\ We can use the law of cosines here because we know the lengths
| of two sides of the triangle and the measure of the included angle.

\ c2=a>+ b?—2abcos C Law of cosines
2 =42324 2592 — 2(423)(259) cos 132°40"  Substitute.
c? = 394,510.6 Use a calculator.

. Take the square root of each side.
c = 0628 T
B Choose the positive root.

132° 40’
a=423m

Figure 14 The distance between the points is approximately 628 m. Now Try Exercise 39.

Applying the Law of Cosines (SAS)
Solve triangle ABC if A = 42.3°, b = 12.9 m, and ¢ = 15.4 m.

See Figure 15. We start by finding side a with the law of cosines.

a’>=b*+ c* — 2bc cos A Law of cosines

a?=12.92+ 1542 —2(12.9)(15.4) cos 42.3°  Substitute.

a’> =109.7 Use a calculator.
Figure 15 a ~1047 m Take square roots and

choose the positive root.

Of the two remaining angles B and C, B must be the smaller because it is oppo-
site the shorter of the two sides b and c. Therefore, B cannot be obtuse.

sinA sinB

Law of sines (alternative form)

a b
sin42.3° sinB
= Substitute.
10.47 12.9
. 12.9 sin 42.3°
sin B=———————  Multiply by 12.9 and rewrite.
10.47
B = 56.0° Use the inverse sine function.

The easiest way to find C is to subtract the measures of A and B from 180°.
C=180°-A—-B Angle sum formula, solved for C
C =~ 180° — 42.3° — 56.0° Substitute.

C = 81.7° Subtract. Now Try Exercise 19.
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CAUTION Had we used the law of sines to find C rather than B in
Example 2, we would not have known whether C was equal to 81.7° or to
its supplement, 98.3°.

Applying the Law of Cosines (SSS)
Solve triangle ABC if a = 9.47 ft, b = 15.9 ft, and ¢ = 21.1 ft.

We can use the law of cosines to solve for any angle of the triangle.
We solve for C, the largest angle. We will know that C is obtuse if cos C < 0.

c2=a%>+ b?—2abcos C Law of cosines

a? + b? — 2

cos C = o Solve for cos C.
cos C = 04T +15.9° ~ 211 Substitute.
2(9.47)(15.9)
cos C = —0.34109402 Use a calculator.
C = 109.9° Use the inverse cosine function.

Now use the law of sines to find angle B.

sinB _ sinC

Law of sines (alternative form)

b c

sin B sin 109.9°
= Substitute.

15.9 21.1

. 15.9 sin 109.9°
sin B=—————— Multiply by 15.9.

21.1
B = 45.1° Use the inverse sine function.

Since A = 180° — B — C, we have A = 180° — 45.1° — 109.9° = 25.0°.

Now Try Exercise 23.

Trusses are frequently used to support roofs on buildings, as illustrated in
Figure 16. The simplest type of roof truss is a triangle, as shown in Figure 17.
(Source: Riley, W., L. Sturges, and D. Morris, Statics and Mechanics of Materials,
Figure 16 John Wiley and Sons.)

Designing a Roof Truss (SSS)

Find angle B to the nearest degree for the truss shown in Figure 17.

A
b?> = a*> + ¢*> — 2ac cos B Law of cosines 9 ft 6 ft
cos B = M Solve for cos B. B c
2ac 11 ft
112 +92 — 62 Figure 17
COSBZW Leta=11,b=6,and c = 9.
cos B = (0.83838384 Use a calculator.
B =~ 33° Use the inverse cosine function.

Now Try Exercise 49.
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Four possible cases can occur when we solve an oblique triangle. They are
summarized in the following table. In all four cases, it is assumed that the given
information actually produces a triangle.

Four Cases for Solving Oblique Triangles

Oblique Triangle Suggested Procedure for Solving
Case 1: One side and two angles | Step I Find the remaining angle using the angle
are known. sum formula (A + B + C = 180°).
(SAA or ASA)

Step 2 Find the remaining sides using the law of
sines.

Case 2: Two sides and one angle | This is the ambiguous case. There may be no

(not included between triangle, one triangle, or two triangles.
the two sides) are Step 1 Find an angle using the law of sines.
known.
(SSA) Step 2 Find the remaining angle using the angle
sum formula.
Step 3 Find the remaining side using the law of
sines.
If two triangles exist, repeat Steps 2 and 3.
Case 3: Two sides and the Step 1 Find the third side using the law of
included angle are cosines.
known. Step 2 Find the smaller of the two remaining
(SAS)

angles using the law of sines.

Step 3 Find the remaining angle using the angle
sum formula.

Case 4: Three sides are known. Step 1 Find the largest angle using the law of
(SSS) cosines.

Step 2 Find either remaining angle using the law
of sines.

Step 3 Find the remaining angle using the angle
sum formula.

Heron's Formula for the Area of a Triangle A formula for finding the
area of a triangle given the lengths of the three sides, known as Heron’s for-
mula, is named after the Greek mathematician Heron of Alexandria. It is found
in his work Metrica. Heron’s formula can be used for the case SSS.

Heron’'s Area Formula (SSS)

If a triangle has sides of lengths a, b, and ¢, with semiperimeter

1
s=5(a+b+c),

AN iﬁ_ then the area 54 of the triangle is given by the following formula.
Heron of Alexandria (c. 62 CE) sl = Vs(s — a)(s = b)(s — ¢)

Heron (also called Hero), a Greek

geometer and inventor, produced . . R . .
writings that contain knowledge of That is, according to Heron’s formula, the area of a triangle is the square

the mathematics and engineering root of the product of four factors: (1) the semiperimeter, (2) the semiperimeter
of Babylonia, ancient Egypt, and minus the first side, (3) the semiperimeter minus the second side, and (4) the
the Greco-Roman world. semiperimeter minus the third side.
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Using Heron's Formula to Find an Area (SSS)

The distance “as the crow flies” from Los Angeles to New York is 2451 mi,
from New York to Montreal is 331 mi, and from Montreal to Los Angeles is
2427 mi. What is the area of the triangular region having these three cities as
vertices? (Ignore the curvature of Earth.)

In Figure 18, we let a = 2451, b = 331, and ¢ = 2427.

Montreal

¢ = 2427 mi b =331 mi
New

Los Angeles a = 2451 mi  York

NOT TO SCALE
Figure 18
First, find the semiperimeter s.
1
s = E(a +b+ C) Semiperimeter

1
s = 5(2451 + 331 + 2427)  Substitute the given values.

s = 2604.5 Add, and then multiply.

Now use Heron’s formula to find the area .

A= \/s(s —a)(s—Db)(s — )

factors. %4 = V/2604.5(2604.5 — 2451)(2604.5 — 331)(2604.5 — 2427)

A =~ 401,700 mi®  Use a calculator. Now Try Exercise 73.

Derivation of Heron's Formula A trigonometric derivation of Heron’s
formula illustrates some ingenious manipulation.
Let triangle ABC have sides of lengths a, b, and c. Apply the law of cosines.

a’?=b*+ c2—2bccosA Law of cosines
b* + ¢ — a?

COSA=——"——""" Solve for cos A. (1)
2bc

The perimeter of the triangle is a + b + ¢, so half of the perimeter (the semi-
perimeter) is given by the formula in equation (2) below.

1
SZE(a—Fb—i-C) 2)

2s=a+b+c Multiply by 2. (3)
b+c—a=2s—2a Subtract 2a from each side and rewrite.
btc—a=2(s—a) Factor. (4)

Subtract 2b and 2c in a similar way in equation (3) to obtain the following.
a—b+c=2(s=Db) (5
at+b—c=2(s—c) (6



318

CHAPTER 7 Applications of Trigonometry and Vectors

Now we obtain an expression for 1 — cos A.

1—cosA

Pay attention
to signs.
g a’>— (b —c)

1 —cosA =

b? + ¢ — a2
2bc

!
cos A, from (1)
_ 2bc + a*— b? — ¢?
2bc
— (b? = 2bc + ¢?)
2bc

:l—

Regroup.

Similarly, it can be shown that

Find a common
denominator, and
distribute the — sign.

Factor the perfect
square trinomial.

(N

2bc
[a - (b - C)][a + (b - C)] Factor the difference
- 2be of squares.
(a=b+c)la+b—c)
= Distributive property
2bc
2(s —b) - 2(s —¢)
= Use equations (5) and (6).
2bc
2(s —b)(s —c¢)
— Lowest terms
bc
2s(s — a)
1+cosA=—— (8

bc

Recall the double-angle identities for cos 26.

cos 260 =2cos2f — 1
A
cos A = 2 cos? ( )—1
1 + cos A = 2 cos? ( )
25(s —a)

)

From (8)

s(s—a B < >
s(s —a)

cos =

Let§ =15.
Add 1.

Substitute.

Divide by 2.

©)

cos 20 =1 — 2sin?6

. A
cosA=1-2 sm2(>
2
. A
1—cosA=2 s1n2<2>

The area of triangle ABC can be expressed as follows.

1
A= Ebc sinA  Area formula

24 = bc sin A

24 .
— =3sinA
bc

Multiply by 2.

Divide by be.  (11)

()
From (7)
)
() - f=2=0
2 bc

Subtract 1.
Multiply by —1.

Substitute.

Divide by 2.

(10)
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Recall the double-angle identity for sin 26.

sin 260 = 2 sin 0 cos 6

g A) (A) Lotg A
simA =2sn| — - to=75.
s1 S > cos > e 3

— =2sgin| — | cos| — Use equation (11).

bc 2 2

2A s—b)(s—c s(s —a

—=2 ( )( ) . ( ) Use equations (9) and (10).
bc bc bc

Multiply.
b2 ply

244 \/s(s—a)(s— b)(s — c)

24 2\/s(s —a)(s—b)(s—c)
be bc

Heron’s formula _ Multiply by bc.
results. = Vs(s - a)(s - b)(s - C) Divide by 2.

Simplify the denominator.

Exercises

CONCEPT PREVIEW Assume a triangle ABC has standard labeling.
(a) Determine whether SAA, ASA, SSA, SAS, or SSS is given.

(b) Decide whether the law of sines or the law of cosines should be used to begin solving
the triangle.

1. a,b,and C 2. A,C,and ¢ 3. a,b,and A 4. a,B,and C
5. A,B,and ¢ 6. a,c,and A 7. a, b, and ¢ 8. b,c,and A

Find the length of the remaining side of each triangle. Do not use a calculator.

9. 10.
! 3
45° 60°
W2 8
Find the measure of 0 in each triangle. Do not use a calculator.
11. 1
7
3
0
5

Solve each triangle. Approximate values to the nearest tenth.

13. ¢ 14

2.

1 1

2]

3
) c
/\
5

61°

A 6 B
A 3 B




320 | CHAPTER7 Applications of Trigonometry and Vectors

15. C 16. C
10
4
10 12
A 8 B
A 10 B
17. C 18. C
7 5
90
A 9 B
550
A 100 B

Solve each triangle. See Examples 2 and 3.
19. A=414°b=278yd,c=392yd
20. C=28.3°b=571in,a=421in
2l. C=456°0=894m,a=723m
22. A=67.3°b=379km, c =40.8 km
23. a=93cm,b=57cm,c=82cm
24, a=281t,b=47ft,c=58ft

25. a=429m,b=376m,c=627m
26. a=189yd,b=214yd, c =325yd
27. a =965 ft, b = 876 ft, c = 1240 ft

28. a=324m,b=421m,c =298 m
29. A=180°40",b =143 cm, ¢ = 89.6 cm
30. C=172°40",a =327 ft,b =251 ft
31. B=74.8°a=2892in.,,c =643 in.
32. C=59.7°,a=3.73mi, b = 4.70 mi
33. A=1128°b=628m,c=122m
34. B=1682° a=151cm,c=192cm
35. a=3.0ft,b=50ft,c=6.0ft

36. a=4.0ft,b=50ft,c=80ft

Concept Check Answer each question.

37. Refer to Figure 12. If we attempt to find any angle of a triangle with the values
a=3,b =4, and ¢ = 10 using the law of cosines, what happens?

38. “The shortest distance between two points is a straight line.” How is this statement
related to the geometric property that states that the sum of the lengths of any two
sides of a triangle must be greater than the length of the remaining side?

Solve each problem. See Examples 1-4.

39. Distance across a River Points A and B are on opposite sides of False River. From a
third point, C, the angle between the lines of sight to A and B is 46.3°. If AC is 350 m
long and BC is 286 m long, find AB.



40.

41.

42,

43.

4.

45.
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Distance across a Ravine Points X and Y are on opposite sides of a ravine. From a
third point Z, the angle between the lines of sight to X and Y is 37.7°. If XZ is 153 m
long and YZ is 103 m long, find XY.

Angle in a Parallelogram A parallelogram has sides of length 25.9 cm and 32.5 cm.
The longer diagonal has length 57.8 cm. Find the measure of the angle opposite the
longer diagonal.

Diagonals of a Parallelogram The sides of a parallelogram are 4.0 cm and 6.0 cm.
One angle is 58°, while another is 122°. Find the lengths of the diagonals of the
parallelogram.

Flight Distance Airports A and B are 450 km apart, on an east-west line. Tom flies
in a northeast direction from airport A to airport C. From C he flies 359 km on a
bearing of 128° 40’ to B. How far is C from A?

Distance Traveled by a Plane An airplane flies 180 mi from point X at a bearing of
125°, and then turns and flies at a bearing of 230° for 100 mi. How far is the plane
from point X?

Distance between Ends of the Vietnam Memorial The Vietnam Veterans Memorial
in Washington, D.C., is V-shaped with equal sides of length 246.75 ft. The angle
between these sides measures 125° 12’. Find the distance between the ends of the
two sides. (Source: Pamphlet obtained at Vietnam Veterans Memorial.)

246.75 ft 246.75 ft

46.

417.

Distance between Two Ships Two ships leave a harbor together, traveling on
courses that have an angle of 135° 40’ between them. If each travels 402 mi, how far
apart are they?

Distance between a Ship and a Rock A ship is sailing east. At one point, the bear-
ing of a submerged rock is 45°20’. After the ship has sailed 15.2 mi, the bearing
of the rock has become 308° 40'. Find the distance of the ship from the rock at the
latter point.

N

Rock
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48.

49.

50.

51.

52.

53.

Distance between a Ship and a Submarine From an airplane flying over the ocean,
the angle of depression to a submarine lying under the surface is 24° 10’. At the
same moment, the angle of depression from the airplane to a battleship is 17° 30’.
See the figure. The distance from the airplane to the battleship is 5120 ft. Find the
distance between the battleship and the submarine. (Assume the airplane, subma-
rine, and battleship are in a vertical plane.)

17730 g 10

5120 ft

- Battleship
Submarine

Truss Construction A triangular truss is shown in
the figure. Find angle 6.

Truss Construction Find angle 3 in the truss shown
in the figure.

20 ft
Distance between a Beam and Cables A weight is

supported by cables attached to both ends of a bal-
ance beam, as shown in the figure. What angles are
formed between the beam and the cables?

| |
[ 90 ft |
| |

Distance between Points on a Crane A crane with 4
a counterweight is shown in the figure. Find the
horizontal distance between points A and B to
the nearest foot.

Distance on a Baseball Diamond A 54. Distance on a Softball Diamond A
baseball diamond is a square, 90.0 ft softball diamond is a square, 60.0 ft
on a side, with home plate and the on a side, with home plate and the
three bases as vertices. The pitcher’s three bases as vertices. The pitcher’s
position is 60.5 ft from home plate. position is 46.0 ft from home plate.
Find the distance from the pitcher’s Find the distance from the pitcher’s
position to each of the bases. position to each of the bases.

st base

Home
plate
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58.
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Distance between a Ship and a Point Starting at point A, a ship sails 18.5 km on a
bearing of 189°, then turns and sails 47.8 km on a bearing of 317°. Find the distance
of the ship from point A.

Distance between Two Factories Two factories blow their whistles at exactly 5:00.
A man hears the two blasts at 3 sec and 6 sec after 5:00, respectively. The angle
between his lines of sight to the two factories is 42.2°. If sound travels 344 m per sec,
how far apart are the factories?

Measurement Using Triangulation Surveyors are often confronted with obstacles,
such as trees, when measuring the boundary of a lot. One technique used to obtain
an accurate measurement is the triangulation method. In this technique, a triangle is
constructed around the obstacle and one angle and two sides of the triangle are
measured. Use this technique to find the length of the property line (the straight line
between the two markers) in the figure. (Source: Kavanagh, B., Surveying Principles
and Applications, Sixth Edition, Prentice-Hall.)

14.0 ft 13.0 ft
Marker /(%\ Marker

— E—
18.0 ft 14.0 ft

NOT TO SCALE

Path of a Ship A ship sailing due east in the North Atlantic has been warned to
change course to avoid icebergs. The captain turns and sails on a bearing of 62°,
then changes course again to a bearing of 115° until the ship reaches its original
course. See the figure. How much farther did the ship have to travel to avoid the
icebergs?

L

"il\

Icebergs

| 50 mi |

Length of a Tunnel To measure the distance through a mountain for a proposed
tunnel, a point C is chosen that can be reached from each end of the tunnel. See
the figure. If AC = 3800 m, BC = 2900 m, and angle C = 110°, find the length

of the tunnel.

A S, B

. Tunnel 4
S //
3800 m \\\ // 2900 m
\\11/0}

C

Distance between an Airplane and a Mountain A person in a plane flying straight
north observes a mountain at a bearing of 24.1°. At that time, the plane is 7.92 km
from the mountain. A short time later, the bearing to the mountain becomes 32.7°.
How far is the airplane from the mountain when the second bearing is taken?
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Find the measure of each angle 0 to two decimal places.

61.

62. v

8.6) (12,5)

. . . 1 .
Find the exact area of each triangle using the formula s = 5bh, and then verify that
Heron’s formula gives the same result.

63.

64.

6 : 14 : 14

] uil

16 10

Find the area of each triangle ABC. See Example 5.

65.
67.
69.

a=12m,b=16m,c =25m 66. a =22in.,b =45in.,c = 311in.
a=15%4cm,b=179cm,c=183cm 68. a =254yd, b =382yd,c=19.8yd
a="763ft,b=109 ft,c = 98.8 ft 70. a=158m,b=21.7m,c =109 m

Solve each problem. See Example 5.

71.

72.

73.

74.

75.

76.

Perfect Triangles A perfect triangle is a triangle whose sides have whole number
lengths and whose area is numerically equal to its perimeter. Show that the triangle
with sides of length 9, 10, and 17 is perfect.

Heron Triangles A Heron triangle is a triangle having integer sides and area.
Show that each of the following is a Heron triangle.

(@ a=11,b=13,c=20 (b) a=13,b=14,c =15
(©a=7,b=15c=20 d) a=9,b=10,c =17

Area of the Bermuda Triangle Find the area of the Bermuda Triangle if the sides
of the triangle have approximate lengths 850 mi, 925 mi, and 1300 mi.

Required Amount of Paint A painter needs to cover a triangular region 75 m by
68 m by 85 m. A can of paint covers 75 m? of area. How many cans (to the next
higher number of cans) will be needed?

Consider triangle ABC shown here.

(a) Use the law of sines to find candidates for the value of angle C. B
Round angle measures to the nearest tenth of a degree.

(b) Rework part (a) using the law of cosines.

(¢) Why is the law of cosines a better method in this case? ) 13|a

Show that the measure of angle A is twice the measure of C
angle B. (Hint: Use the law of cosines to find cos A and cos B,
and then show that cos A =2 cos? B — 1.)

5
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Relating Concepts

For individual or collaborative investigation (Exercises 77-80)

We have introduced two new formulas for the area of a triangle in this chapter. We
can now find the area A of a triangle using one of three formulas.

(@) o =5 bh

(b) &ﬁ=%absinC (orsﬁ=%acsinBor&d =%bcsinA)

() d= \/s(s —a)(s —b)(s —¢) (Heron’s formula)

If the coordinates of the vertices of a triangle are given, then the following area
formula is also valid.

1 The vertices are the
d) A= 5 (x1y2 = yiX2 + Xoy3 — yaXy + x3y; — y3x;) | ordered pairs (xy, ;).
(%2, 2), and (x3, y3)-

Work Exercises 77-80 in order, showing that the various formulas all lead to the
same area.

77. Draw a triangle with vertices A(2, 5), B(—1, 3), and C(4, 0), and use the dis-
tance formula to find the lengths of the sides a, b, and c.

78. Find the area of triangle ABC using formula (b). (First use the law of cosines to
find the measure of an angle.)

79. Find the area of triangle ABC using formula (c)—that is, Heron’s formula.

80. Find the area of triangle ABC using new formula (d).

Chapter 7 Quiz (sections 7.1-7.3)

Find the indicated part of each triangle ABC.
1. Find Aif B =30.6°,b = 7.42 in., and ¢ = 4.54 in.
2. Findaif A =144°, ¢ =135 m, and b = 75.0 m.
3. Find Cifa =284 ft, b =169 ft, and ¢ = 21.2 ft.

Solve each problem.

4. Find the area of the triangle shown here.

7 150°

9
5. Find the area of triangle ABC if a = 19.5 km, b = 21.0 km, and ¢ = 22.5 km.

6. For triangle ABC with ¢ = 345, a = 534, and C = 25.4°, there are two possible val-
ues for angle A. What are they?

7. Solve triangle ABC if ¢ = 326, A = 111°, and B = 41.0°.

8. Height of a Balloon The angles of elevation of a
hot air balloon from two observation points X
and Y on level ground are 42° 10" and 23°30’,
respectively. As shown in the figure, points X, Y,
and Z are in the same vertical plane and points X 12° 10 230 30’
and Y are 12.2 mi apart. Approximate the height 12.2 mi
of the balloon to the nearest tenth of a mile.
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9. Volcano Movement To help predict eruptions from

the volcano Mauna Loa on the island of Hawaii, O

scientists keep track of the volcano’s movement by
using a “super triangle” with vertices on the three
volcanoes shown on the map at the right. Find BC
given that AB = 22.47928 mi, AC = 28.14276 mi,
and A = 58.56989°.

10. Distance between Two Towns To find the distance

between two small towns, an electronic distance mea- ) ,5&;,%/‘“. iown A
suring (EDM) instrument is placed on a hill from ‘\/f(/(@lu j43.330
which both towns are visible. The distance to each \kf;/ﬁ S~
town from the EDM and the angle between the two i o3 m e A
lines of sight are measured. See the figure. Find the .
distance between the towns.
Geometrically Defined Vectors and Applications
Basic Terminology Basic Terminology  Quantities that involve magnitudes, such as 45 1b or

60 mph, can be represented by real numbers called scalars. Other quantities,
called vector quantities, involve both magnitude and direction. Typical vector
quantities are velocity, acceleration, and force. For example,
Applications east represents a vector quantity.

traveling 50 mph

A vector quantity can be represented with a directed line segment (a seg-
ment that uses an arrowhead to indicate direction) called a vector. The length of
the vector represents the magnitude of the vector quantity. The direction of the
vector, indicated by the arrowhead, represents the direction of the quantity. See

Figure 19.
P P
u A
0 0
Vector OP, Vector PO,
Horizontal or vector u or vector A
This vector represents a force Vectors may be named with two uppercase
of 10 Ib applied at an angle letters or with one lowercase or uppercase
30° above the horizontal. letter.
Figure 19 Figure 20

When we indicate vectors in print, it is customary to use boldface type or an
arrow over the letter or letters. Thus, OP and OP both represent the vector OP.
When two letters name a vector, the first indicates the initial point and the second
indicates the terminal point of the vector. Knowing these points gives the direc-
tion of the vector. For example, vectors OP and PO in Figure 20 are not the same

vector. They have the same magnitude but opposite directions.

vector OP is written |OP|.

The magnitude of
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Two vectors are equal if and only if they have the same direction and the
same magnitude. In Figure 21, vectors A and B are equal, as are vectors C and
D. As Figure 21 shows, equal vectors need not coincide, but they must be paral-
lel and in the same direction. Vectors A and E are unequal because they do not
have the same direction, while A # F because they have different magnitudes.

N AN

Figure 21

The sum of two vectors is also a vector. There are two ways to find the sum

ArE b of two vectors A and B geometrically.
1. Place the initial point of vector B at the terminal point of vector A, as
A shown in Figure 22(a). The vector with the same initial point as A and the
(a) same terminal point as B is the sum A + B.

,,,,, 2. Use the parallelogram rule. Place vectors A and B so that their initial
points coincide, as in Figure 22(b). Then, complete a parallelogram that
has A and B as two sides. The diagonal of the parallelogram with the same
initial point as A and B is the sum A + B.

B

A Parallelograms can be used to show that vector B + A is the same as vec-

(b) tor A + B, or that A + B = B + A, so vector addition is commutative. The
Figure 22 vector sum A + B is the resultant of vectors A and B.

For every vector v there is a vector —v that has the same magnitude as v
but opposite direction. Vector —v is the opposite of v. See Figure 23. The sum
of v and —v has magnitude 0 and is the zero vector. As with real numbers, to
subtract vector B from vector A, find the vector sum A + (—B). See Figure 24.

Vectors v and —v
are opposites.

Figure 23 Figure 24 Figure 25

The product of a real number (or scalar) k and a vector u is the vector k - u,
which has magnitude | k| times the magnitude of u. The vector k * u has the same
direction as u if K > 0 and the opposite direction if k < 0. See Figure 25.

The following properties are helpful when solving vector applications.

Geometric Properties of Parallelograms

1. A parallelogram is a quadrilateral whose opposite sides are parallel.

2. The opposite sides and opposite angles of a parallelogram are equal, and
adjacent angles of a parallelogram are supplementary.

3. The diagonals of a parallelogram bisect each other, but they do not nec-
essarily bisect the angles of the parallelogram.
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Finding the Magnitude of a Resultant

Two forces of 15 and 22 newtons act on a point in the plane. (A newton is a unit
of force that equals 0.225 1b.) If the angle between the forces is 100°, find the
magnitude of the resultant force.

As shown in Figure 26, a parallelogram
that has the forces as adjacent sides can be formed. The
angles of the parallelogram adjacent to angle P measure
80° because adjacent angles of a parallelogram are supple-
mentary. Opposite sides of the parallelogram are equal in
length. The resultant force divides the parallelogram into
two triangles. Use the law of cosines with either triangle.

|v|? =152 + 222 — 2(15)(22) cos 80°  Law of cosines

2 . Evaluate powers

v|® =225+ 484 — 115 .

| | and cos 80°. Multiply. Figure 26
|v|> = 594 Add and subtract.

|V| ~ 24 Take square roots and choose

the positive square root.
To the nearest unit, the magnitude of the resultant force is 24 newtons.

Now Try Exercise 27.

The Equilibrant The previous example showed a method for finding the
resultant of two vectors. Sometimes it is necessary to find a vector that will
counterbalance the resultant. This opposite vector is the equilibrant. That is, the
equilibrant of vector u is the vector —u.

Finding the Magnitude and Direction of an Equilibrant

Find the magnitude of the equilibrant of forces of 48 newtons and 60 newtons
acting on a point A, if the angle between the forces is 50°. Then find the angle
between the equilibrant and the 48-newton force.

As shown in Figure 27, the equilibrant is —v.

Figure 27

The magnitude of v, and hence of —v, is found using triangle ABC and the law
of cosines.

|v|? =482+ 602 — 2(48)(60) cos 130°  Law of cosines

|V |2 =~ 9606.5 Use a calculator.
~ Square root property;
|V| 98 Give two significant digits.
To the nearest unit, the magnitude is 98 newtons.
The required angle, labeled « in Figure 27, can be found by subtracting
angle CAB from 180°. Use the law of sines to find angle CAB.



20°

“a(“?

20°

Figure 28
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sin CAB _ sin 130°
60 98

sin CAB = 0.46900680 Multiply by 60 and use a calculator.

Law of sines (alternative form)

CAB = 28° Use the inverse sine function.

Finally, o = 180° — 28° = 152°. Now Try Exercise 31.

Incline Applications We can use vectors to solve incline problems.

Finding a Required Force

Find the force required to keep a 50-1b wagon from sliding down a ramp inclined
at 20° to the horizontal. (Assume there is no friction.)

In Figure 28, the vertical 50-1b force BA represents the force of
gravity. It is the sum of vectors BC and —AC. The vector BC represents the
force with which the weight pushes against the ramp. The vector BF represents
the force that would pull the weight up the ramp. Because vectors BF and AC
are equal, | AC| gives the magnitude of the required force.

Vectors BF and AC are parallel, so angle EBD equals angle A by alternate
interior angles. Because angle BDE and angle C are right angles, triangles CBA
and DEB have two corresponding angles equal and, thus, are similar triangles.
Therefore, angle ABC equals angle E, which is 20°. From right triangle ABC, we
have the following.

| AC | side opposite B

sin 20° = 50 sin B = =0 e

|AC| =50 5sin 20° Multiply by 50 and rewrite.

|AC| =17 Use a calculator.

A force of approximately 17 1b will keep the wagon from sliding down the ramp.

Now Try Exercise 39.

Finding an Incline Angle

A force of 16.0 Ib is required to hold a 40.0-1b lawn mower on an incline. What
angle does the incline make with the horizontal?

This situation is illustrated in Fig-
ure 29. Consider right triangle ABC. Angle B equals E
angle 6, the magnitude of vector BA represents the

B
weight of the mower, and vector AC equals vector BE,
which represents the force required to hold the mower
on the incline. o
40.0
16.0 side opposite B
. _ o site C
sin B = 40.0 sin B = hypotenuse
: 160
sinB=04 Simplify. .
Figure 29

B = 23.6° Use the inverse sine function.

The hill makes an angle of about 23.6° with the horizontal.

Now Try Exercise 41.
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Course and ground speed
(actual direction of plane)

‘Wind direction
and speed
p \

Bearing
and airspeed

Drift angle
Figure 31

Navigation Applications
solved using vectors.

Problems that involve bearing can also be

Applying Vectors to a Navigation Problem

A ship leaves port on a bearing of 28.0° and travels 8.20 mi. The ship then turns
due east and travels 4.30 mi. How far is the ship from port? What is its bearing
from port?

In Figure 30, vectors PA and AE
represent the ship’s path. The magnitude and bear-
ing of the resultant PE can be found as follows.
Triangle PNA is a right triangle, so

angle NAP = 90° — 28.0° = 62.0°,
and angle PAE = 180° — 62.0° = 118.0°.

Use the law of cosines to find | PE |, the magnitude
of vector PE.

Figure 30

|PE|2 = 8.202 + 4.30% — 2(8.20)(4.30) cos 118.0°

Law of cosines
|PE|? =~ 118.84 Use a calculator.
|PE| ~10.9

Square root property

The ship is about 10.9 mi from port.
To find the bearing of the ship from port, find angle APE.

sin APE _ sin 118.0°

Law of sines

4.30 10.9
. 4.30 sin 118.0°
sin APE = ————————  Multiply by 4.30.
10.9
APE = 20.4° Use the inverse sine function.

Finally, 28.0° + 20.4° = 48.4°, so the bearing is 48.4°.

Now Try Exercise 45.

In air navigation, the airspeed of a plane is its speed relative to the air, and
the ground speed is its speed relative to the ground. Because of wind, these two
speeds are usually different. The ground speed of the plane is represented by the
vector sum of the airspeed and windspeed vectors. See Figure 31.

Applying Vectors to a Navigation Problem

An airplane that is following a bearing of 239° at an airspeed of 425 mph
encounters a wind blowing at 36.0 mph from a direction of 115°. Find the result-
ing bearing and ground speed of the plane.

An accurate sketch is essential to the solution of this problem. We
have included two sets of geographical axes, which enable us to determine mea-
sures of necessary angles. Analyze Figure 32 on the next page carefully.
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N,

<
S
/
t

\j239°

124°
360 3 115°

W,

E,

~
B'S<J \/ 25°
Sey
F
NOT TO SCALE

Figure 32

Vector c¢ represents the airspeed and bearing of the plane, vector a repre-
sents the speed and direction of the wind, and vector b represents the resulting
bearing and ground speed of the plane. Angle ABC has as its measure the sum of
angle ABN, and angle N;BC.

e Angle SAB measures 239° — 180° = 59°. Because angle ABN; is an alternate
interior angle to it, ABN; = 59°.

e Angle E,BF measures 115° — 90° = 25°. Thus, angle CBW, also measures
25° because it is a vertical angle. Angle N BC is the complement of 25°, which
is 90° — 25° = 65°.

By these results,
angle ABC = 59° + 65° = 124°.
To find |b|, we use the law of cosines.
|b|?=|a|?>+ |c|> —2|a]||¢]| cos ABC Law of cosines
|b|? = 36.0% + 425% — 2(36.0)(425) cos 124°  Substitute.
|b|2 ~ 199,032 Use a calculator.
Ib| ~ 446 Square root property

The ground speed is approximately 446 mph.
To find the resulting bearing of b, we must find the measure of angle « in
Figure 32 and then add it to 239°. To find «, we use the law of sines.

sina  sin 124° To maintain accuracy, use
36.0 - 446 all the significant digits that

a calculator allows.
36.0 sin 124°

sina@ = == —— Multiply by 36.0.
_— 36.0 sin 124° ' S
a=sin"l|{ ———— Use the inverse sine function.
446
a = 4° Use a calculator.

Add 4° to 239° to find the resulting bearing of 243°. Now Try Exercise 51.
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Exercises

CONCEPT PREVIEW Refer to the vectors m through t below.

1. Name all pairs of vectors that appear to be
equal. m n 0

2. Name all pairs of vectors that are opposites.

3. Name all pairs of vectors where the first
is a scalar multiple of the other, with the - . t/
scalar positive.

4. Name all pairs of vectors where the first is
a scalar multiple of the other, with the scalar negative.

CONCEPT PREVIEW Refer to vectors a through h below. Make a copy or a sketch of
each vector, and then draw a sketch to represent each of the following. For example, find
a + e by placing a and e so that their initial points coincide. Then use the parallelogram
rule to find the resultant, as shown in the figure on the right.

5. —b 6. —g 7. 2¢ 8. 2h
9. a+b 10. h+g 11. a—¢ 12. d —e
13. a+ (b +c¢) 14. (a+b) +ec 15. ¢ +d 16. d + ¢

17. From the results of Exercises 13 and 14, does it appear that vector addition is
associative?

18. From the results of Exercises 15 and 16, does it appear that vector addition is
commutative?

For each pair of vectors u and v with angle 6 between them, sketch the resultant.

v| =12,60=20°

19. |u| =12,

v| =20,60=27° 20. |u| =38,

21. |u| =20, v| =70, 6 = 40°

v| = 30,6 =30° 22. |u| =50,

Use the parallelogram rule to find the magnitude of the resultant force for the two forces
shown in each figure. Round answers to the nearest tenth.

23. 24.
40 1b
Caoe 851b
60 1b
‘\ 65°
102 1b
25. 26.
151b 1500 1b 140°
110° 2000 Ib

251b
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Two forces act at a point in the plane. The angle between the two forces is given. Find the
magnitude of the resultant force. See Example 1.

27.
28.
29.
30.

forces of 250 and 450 newtons, forming an angle of 85°
forces of 19 and 32 newtons, forming an angle of 118°
forces of 116 and 139 Ib, forming an angle of 140° 50"
forces of 37.8 and 53.7 Ib, forming an angle of 68.5°

Solve each problem. See Examples 1-4.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Direction and Magnitude of an Equilibrant Two tugboats are pulling a disabled
speedboat into port with forces of 1240 Ib and 1480 1b. The angle between these
forces is 28.2°. Find the direction and magnitude of the equilibrant.

Direction and Magnitude of an Equilibrant Two rescue vessels are pulling a
broken-down motorboat toward a boathouse with forces of 840 1b and 960 1b.
The angle between these forces is 24.5°. Find the direction and magnitude of the
equilibrant.

Angle between Forces Two forces of 692 newtons and 423 newtons act at a point.
The resultant force is 786 newtons. Find the angle between the forces.

Angle between Forces Two forces of 128 1b and 253 b act at a point. The resultant
force is 320 1b. Find the angle between the forces.

Magnitudes of Forces A force of 176 1b makes an
angle of 78° 50" with a second force. The resultant of
the two forces makes an angle of 41° 10" with the first ~ Second
force. Find the magnitudes of the second force and of
the resultant.

41° 10’

176 1b
First force

78° 50’
Magnitudes of Forces A force of 28.7 1b
makes an angle of 42° 10" with a second force.
The resultant of the two forces makes an angle Second
of 32° 40" with the first force. Find the magni-

tudes of the second force and of the resultant. 320 40’

42° 107

28.7 1b
First force

Angle of a Hill Slope A force of 25 1b is required to hold an 80-Ib crate on a hill.
What angle does the hill make with the horizontal?

Force Needed to Keep a Car Parked Find the force required to keep a 3000-1b car
parked on a hill that makes an angle of 15° with the horizontal.

Force Needed for a Monolith To build the pyramids in Egypt, it is believed that
giant causeways were constructed to transport the building materials to the site. One
such causeway is said to have been 3000 ft long, with a slope of about 2.3°. How
much force would be required to hold a 60-ton monolith on this causeway?

|
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40.

41.

42,

43.

44.

Force Needed for a Monolith 1If the causeway in Exercise 39 were 500 ft longer
and the monolith weighed 10 tons more, how much force would be required?

Incline Angle A force of 18.0 1b is required to hold a 60.0-1b stump grinder on an
incline. What angle does the incline make with the horizontal?

Incline Angle A force of 30.0 Ib is required to hold an 80.0-1b pressure washer on
an incline. What angle does the incline make with the horizontal?

Weight of a Box Two people are carrying a box. One
person exerts a force of 150 Ib at an angle of 62.4° with
the horizontal. The other person exerts a force of 114 lb
at an angle of 54.9°. Find the weight of the box. 150 1b

Weight of a Crate and Tension of a Rope A crate is supported by two ropes. One
rope makes an angle of 46° 20" with the horizontal and has a tension of 89.6 Ib on it.
The other rope is horizontal. Find the weight of the crate and the tension in the hori-
zontal rope.

Solve each problem. See Examples 5 and 6.

45.

46.

47.

48.

49.

50.

Distance and Bearing of a Ship A ship leaves port on a bearing of 34.0° and travels
10.4 mi. The ship then turns due east and travels 4.6 mi. How far is the ship from
port, and what is its bearing from port?

Distance and Bearing of a Luxury Liner A luxury liner leaves port on a bearing of
110.0° and travels 8.8 mi. It then turns due west and travels 2.4 mi. How far is the
liner from port, and what is its bearing from port?

Distance of a Ship from Its Starting Point Starting at point A, a ship sails 18.5 km
on a bearing of 189° then turns and sails 47.8 km on a bearing of 317°. Find the
distance of the ship from point A.

Distance of a Ship from Its Starting Point Starting at point X, a ship sails 15.5 km
on a bearing of 200°, then turns and sails 2.4 km on a bearing of 320°. Find the dis-
tance of the ship from point X.

Distance and Direction of a Motor-
boat A motorboat sets out in the
direction N 80° 00" E. The speed of
the boat in still water is 20.0 mph.
If the current is flowing directly
south, and the actual direction of the
motorboat is due east, find the speed
of the current and the actual speed of
the motorboat.

Movement of a Motorboat Suppose we would like to cross

a 132-ft-wide river in a motorboat. Assume that the motor- Ending point
boat can travel at 7.0 mph relative to the water and that the - o —
- 3.0

current is flowing west at the rate of 3.0 mph. The bearing 0
is chosen so that the motorboat will land at a point exactly
across from the starting point.

(a) At what speed will the motorboat be traveling relative L~
to the banks? - 5
(b) How long will it take for the motorboat to make the
crossing? ; :
Starting point

(¢) What is the measure of angle 6?



51.

52.

53.

54.

55.

56.

S7/s

58.

59.

60.
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Bearing and Ground Speed of a Plane An airline route from San Francisco to
Honolulu is on a bearing of 233.0°. A jet flying at 450 mph on that bearing encounters
a wind blowing at 39.0 mph from a direction of 114.0°. Find the resulting bearing
and ground speed of the plane.

Path Traveled by a Plane The aircraft carrier Tallahassee N
is traveling at sea on a steady course with a bearing of 30°
at 32 mph. Patrol planes on the carrier have enough fuel
for 2.6 hr of flight when traveling at a speed of 520 mph. //
One of the pilots takes off on a bearing of 338° and then o
turns and heads in a straight line, so as to be able to catch
the carrier and land on the deck at the exact instant that his
fuel runs out. If the pilot left at 2 p.m., at what time did he
turn to head for the carrier?

Plane

Carrier

338°

Airspeed and Ground Speed A pilot wants to fly on a bearing of 74.9°. By fly-
ing due east, he finds that a 42.0-mph wind, blowing from the south, puts him on
course. Find the airspeed and the ground speed.

Bearing of a Plane A plane flies 650 mph on a bearing of 175.3°. A 25-mph wind,
from a direction of 266.6°, blows against the plane. Find the resulting bearing of the
plane.

Bearing and Ground Speed of a Plane A pilot is flying at 190.0 mph. He wants
his flight path to be on a bearing of 64° 30’. A wind is blowing from the south at
35.0 mph. Find the bearing he should fly, and find the plane’s ground speed.

Bearing and Ground Speed of a Plane A pilot is flying at 168 mph. She wants
her flight path to be on a bearing of 57° 40’. A wind is blowing from the south at
27.1 mph. Find the bearing she should fly, and find the plane’s ground speed.

Bearing and Airspeed of a Plane What bearing and airspeed are required for a
plane to fly 400 mi due north in 2.5 hr if the wind is blowing from a direction of
328°at 11 mph?

Ground Speed and Bearing of a Plane A plane is headed due south with an air-
speed of 192 mph. A wind from a direction of 78.0° is blowing at 23.0 mph. Find
the ground speed and resulting bearing of the plane.

Ground Speed and Bearing of a Plane An airplane is headed on a bearing of 174°
at an airspeed of 240 km per hr. A 30-km-per-hr wind is blowing from a direction of
245°. Find the ground speed and resulting bearing of the plane.

Velocity of a Star The space velocity v of a star rela-
tive to the sun can be expressed as the resultant vector
of two perpendicular vectors—the radial velocity v,
and the tangential velocity v,, where v =v, + v,. If
a star is located near the sun and its space velocity is
large, then its motion across the sky will also be large.
Barnard’s Star is a relatively close star with a distance
of 35 trillion mi from the sun. It moves across the
sky through an angle of 10.34” per year, which is
the largest motion of any known star. Its radial velocity
v, is 67 mi per sec toward the sun. (Sources: Zeilik, NOT TO SCALE
M., S. Gregory, and E. Smith, Introductory Astronomy

and Astrophysics, Second Edition, Saunders College Publishing; Acker, A. and
C. Jaschek, Astronomical Methods and Calculations, John Wiley and Sons.)

Barnard's Star

(a) Approximate the tangential velocity v, of Barnard’s Star. (Hint: Use the arc
length formula s = r0.)

(b) Compute the magnitude of v.
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Algebraically Defined Vectors and the Dot Product

Algebraic Interpretation

Algebraic Interpretation of Vectors

A vector y

of Vectors g . N .
o ) - with initial point at the origin in a rectangular coordi- (a,b)
perations with Vectors nate system is a position vector. A position vector u u = (a, b)
LS e I PTG with endpoint at the point (a, b) is written {a, b), so |
the Angle between " ib
Vectors u= (a,b). |
|
This means that every vector in the real plane cor- P -
. L x
responds to an ordered pair of real numbers. Thus, © a
geometrically a vector is a directed line segment while .
LOOKING AHEAD TO CALCULUS Figure 33

In addition to two-dimensional vectors
in a plane, calculus courses introduce of vector u.
three-dimensional vectors in space.

The magnitude of the two-dimensional

vector (a, b) is given by
Va*+ b2
If we extend this to the three-

dimensional vector (a, b, ¢}, the

expression becomes

\Va?+ b* + 2
Similar extensions are made for other

concepts.

The direction angle 6 satisfies tan § = =

algebraically it is an ordered pair. The numbers a
and b are the horizontal component and the vertical component, respectively,

Figure 33 shows the vector u = (a, b). The positive angle between the
x-axis and a position vector is the direction angle for the vector. In Figure 33,
0 is the direction angle for vector u. The magnitude and direction angle of
a vector are related to its horizontal and vertical components.

Magnitude and Direction Angle of a Vector (a, b)

The magnitude (length) of vector u = (a, b) is given by the following.

[u] = Va® + b2

where a# 0.

Finding Magnitude and Direction Angle

Find the magnitude and direction angle foru = (3, —=2).

V32 + —\F To

fmd the direction angle 6, start w1th tan 6 = IZ = T

The magnitude is |u| =

—g. Vector u has a positive horizontal component
and a negative vertical component, which places the
position vector in quadrant IV. A calculator then gives

tan"! (—3) = —33.7°. Adding 360° yields the direction
angle 6 =~ 326.3°. See Figure 34.

2+ u=(3,-2)
0+
+—t IF\I —t x
N
u
- (3,-2)
Figure 34

The TI-84 Plus calculator can find the magnitude and
direction angle using rectangular to polar conversion
(which is covered in detail in the next chapter). An
approximation for V13 is given, and the TI-84 Plus
gives the direction angle with the least possible absolute
value. We must add 360° to the given value —33.7° to
obtain the positive direction angle 6 =~ 326.3°.

HERMAL FLOAT AUTD RESL DEGEREE HP ﬂ

RPrid, -2}
i 3. 805551275
J13
: 3. 605551275
RrBB(3. -2) _
L TR3.RPRRETS3
Figure 35

Now Try Exercise 9.
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Horizontal and Vertical Components

The horizontal and vertical components, respectively, of a vector u having
magnitude |u| and direction angle 6 are the following.

a = |u|lcos® and b = |u|sin@

Thatis,u= (a,b) = (|u| cos 6, |u]| sin@).

Finding Horizontal and Vertical Components

Vector w in Figure 36 has magnitude 25.0 and direction angle 41.7°. Find the
Figure 36 horizontal and vertical components.

Use the formulas below, with |w| = 25.0and 6 = 41.7°. | See Figure 37. The results support the algebraic solution.

@ Iwleost b= w]sing

a=250cos41.7° | b=250sin41.7° o a0 ‘7

a~ 187 b~ 166 R ey ik

Therefore, w = (18.7, 16.6). The horizontal compo-
nent is 18.7, and the vertical component is 16.6 (rounded
to the nearest tenth).

Figure 37

Now Try Exercise 13.

~=

Writing Vectors in the Form (a, b)

S s0e Write each vector in Figure 38 in the form (a, b).
Yoo

2\J
z . 1 3 5 5V3
280 u = (5co0s60°5sin60°) = <5 '5,5 \/>: < \/>

6 2 27 2
v v = (2cos 180° 2sin 180°) = (2(—1),2(0)) = (—2,0)
Figure 38 w = (6 cos 280° 6 sin 280°) =~ (1.0419, —5.9088) Use a calculator.

Now Try Exercises 19 and 21.

Operations with Vectors As shown in Figure 39,
m= (a,b), n=(c,d), and p= (a+tc,b+d).

Using geometry, we can show that the endpoints
of the three vectors and the origin form a parallel-
ogram. A diagonal of this parallelogram gives the
resultant of m and n, so we have p =m + n or

(a+c,b+d)=(a,b)+{cd).

Similarly, we can verify the following operations. Figure 39
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Vector Operations
Let a, b, ¢, d, and k represent real numbers.
(a,b) + (c,d) ={a + ¢,b + d)
k - {a,b) = (ka, kb)
y If u = (a;,a,), then —u = (—a;, —a,).

4.3 (a,0) = {¢c,d) = (a,b) + (=(¢,d)) = (a = ¢,b — d)

Performing Vector Operations

Letu= (—2,1) and v = (4, 3). See Figure 40. Find and illustrate each of the

following.
Figure 40 (a) utv (b) —2u (¢) 3u—2v
See Figure 41.
@ u+tv (b) —2u (¢) 3u—2v
=(=2,1)+ (4,3) =—-2-(-2,1) =3-(-2,1) —2-(4,3)
=(-2+4,1+3) = (—=2(-2),—2(1)) =(-6,3) — (8,6)
=(2,4) = (4,-2) =(-6—-8,3-6)
= (—14,-3)

(b)
Figure 41 Now Try Exercises 35, 37, and 39.

A unit vector is a vector that has magnitude 1. Two very important unit
vectors are defined as follows and shown in Figure 42(a).

i=(1,0) j=1(0,1)

Figure 42
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With the unit vectors i and j, we can express any other vector (a, b) in the
form ai + bj, as shown in Figure 42(b), where (3,4) = 3i + 4j. The vector
operations previously given can be restated, using ai + bj notation.

i, jForm for Vectors
If v= (a,b), then

v=ai+ bj, wherei= (1,0) and j= (0,1).

The Dot Product and the Angle between Vectors The dot product of
two vectors is a real number, not a vector. It is also known as the inner product.
Dot products are used to determine the angle between two vectors, to derive
geometric theorems, and to solve physics problems.

Dot Product

The dot product of the two vectors u = (a,b) and v = (¢, d) is denoted
u * v, read “u dot v,” and given by the following.

u-v=ac + bd

That is, the dot product of two vectors is the sum of the product of their
first components and the product of their second components.

Finding Dot Products
Find each dot product.
@ (2,3)-(4 1) (b) (6,4)-(-2,3)
@ (2,3)-(4 1) (b) (6,4)-(-2,3)
=2(4) +3(-1) =6(—-2) +4(3)
=5 =0

Now Try Exercises 47 and 49.

The following properties of dot products can be verified using the defini-
tions presented so far.

Properties of the Dot Product

For all vectors u, v, and w and real numbers k, the following hold.
@u-v=v-u M u-(v+w)=u-v+u-w
© (u+v)-w=u-w+v-w (d (ku)-v=4k(u-v)=mu- (kv)
@ 0-u=0 ) u-u=|ul?
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For example, to prove the first part of property (d),
(ku) - v=rk(u-v),
weletu= (a,b) andv = (c,d).

(ku) - v=(k(a,b))-{c.d)  Substitue.

(ka, kb) - (c,d) Multiply by scalar k.
= kac + kbd Dot product
= k(ac + bd) Distributive property
=k{(a,b)-{c.d)) Dot product

=k(u-v) Substitute.

The proofs of the remaining properties are similar. y

The dot product of two vectors can be positive,
0, or negative. A geometric interpretation of the dot
product explains when each of these cases occurs.
This interpretation involves the angle between the
two vectors.

Consider the two vectors u= (a;,a,) and
v = (b}, b,), as shown in Figure 43. The angle 0 Figure 43
between u and v is defined to be the angle having
the two vectors as its sides for which 0° = 6 = 180°.

We can use the law of cosines to develop a formula to find angle 6 in Figure 43.

(by, by)

<a17 “2)

X

lu—v|2=|u|?>+ |v|> = 2|u]||v]| cos ®
Law of cosines applied to
Figure 43

(\/(al - b1)2 + (aZ - b2)2>2 = ( V Cl12 + 022)2 + (\/m)z
Magnitude of a vector
—2|ul|v| cos @

6112 - Zalbl + b12 + a22 - 2a2b2 + b22 Square.

=a’>+ a> + b> + b —2|u||v| cos

—2a,b, — 2ayby = _2|u| |V| cos SuF)trz}_ct like terms from
each side.
a,b, + ayb, = |u||v| cos 6 Divide by —2.
u-v= |ll| |V| cos 6 Definition of dot product
cos 0 = u'v Divide by |u||v| and
|u| |V| rewrite.

Geometric Interpretation of Dot Product

If 6 is the angle between the two nonzero vectors u and v, where
0° = 6 = 180°, then the following holds.

u-v

lul]v]

cos 0 =
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Finding the Angle between Two Vectors

Find the angle 0 between the two vectors.

(@ u=(3,4)andv=(2,1)

(a) cos O = u-y
lul|v]
0 3,4)-(2,1)
cos O =
[(3,4)][(2,1)]
3(2) +4(1)
cos O =
VO+16- Va+1
10
cos =——=

5Vs

cos 6 = 0.894427191

0 = 26.57°
(b) cos 0 = u-v
lul|v|
0 (2,-6)-(6,2)
cos 0 =
(2, -6)] [(6,2)]
o 2(6) +(-6)(2)
cos O =
V4 +36-\V36+4
cos =0
6 =90°

(b) u= (2,-6) andv=(6,2)

Geometric interpretation
of the dot product

Substitute values.

Use the definitions.

Simplify.

Use a calculator.

Use the inverse cosine function.

Geometric interpretation
of the dot product

Substitute values.

Use the definitions.

Evaluate. The numerator is equal to 0.
cos 10 =90°

Now Try Exercises 53 and 55.

For angles 0 between 0° and 180°, cos 0 is positive, 0, or negative when 0
is less than, equal to, or greater than 90°, respectively. Therefore, the dot prod-
uct of nonzero vectors is positive, 0, or negative according to this table.

Dot Product

Angle between Vectors

Positive

Acute

0

Right

Negative

Obtuse

Thus, in Example 6, the vectors in part (a) form an
acute angle, and those in part (b) form a right angle.
If u - v =0 for two nonzero vectors u and v, then
cos 8 = 0 and 6 = 90°. Thus, u and v are perpen-
dicular vectors, also called orthogonal vectors.

See Figure 44.

(2,-6)

Orthogonal vectors

Figure 44
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e

Exercises

CONCEPT PREVIEW Fill in the blank to correctly complete each sentence.

1. The magnitude of vectoruis . y
. . . u= <\6’ 1>
2. The direction angle of vector u is
|
u I 1
|
A o
0 V3
3. The horizontal component, a, of vectorvis — . y
v
4. The vertical component, b, of vector v is |
1 |
| b
|
45°
A i
0 a

5. The sum of the vectorsu = (—3,5) andv= (7,4) isu+v=
6. The vector u = (4, —2) is written in i, j form as
7. The formula for the dot product of the two vectorsu = (a, b) and v = (c,d) is
u-v=
8. If the dot product of two vectors is a positive number, then the angle between them
is W.

Find the magnitude and direction angle for each vector. See Example 1.

9. (15, -8) 10. (—7,24)

1. (—4,4\/3) 12. (8V2,-8V2)

Vector v has the given direction and magnitude. Find the horizontal and vertical compo-
nents of v, if 0 is the direction angle of v from the horizontal. See Example 2.

13. 6=20° |v|=50 14. 6=50°, |v| =26
15. 0=35°50", |v| =478 16. 6=27°30", |v|=154
17. 6=1285° |v|=198 18. 6=1463°, |v| =238

Write each vector in the form {(a, b). Round to four decimal places as applicable. See
Example 3.

19. y 20. y 21. y

5 g o0 N L1400
30 \ . N
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22. y 23. y 24. y

130°

—-140°

Use the figure to find each vector: (a) u + v (b) u —v (¢) —u. Use vector notation
as in Example 4.

25. y 26. y 27. y
4 4 4
u v u
X v u X X
w 4 P2 8 4 4
-4
v\
_8 -8
28. y 29. y 30. y
8
4 4
v o v v
x X X
-8 4 -4 4 -4 . 8
-8 -8 -8

Given vectors u and v, find: (a) 2u (b) 2u + 3v (¢) v — 3u. See Example 4.
3l. u=2i, v=i+tj R.u=-i+2j v=i—j
3. u=(-1,2), v=(3,0) M. u=(-2,—-1), v=(-3,2)

Givenu = (—2,5) and v = (4, 3), find each of the following. See Example 4.
35. u—v 36. v—u 37. —4u 38. —5v
39. 3u— 6v 40. —2u + 4v 41. u+v—3u 42. 2u +v—6v

Write each vector in the form ai + bj.

43. (-5,8) 44. (6,-3) 45. (2,0) 46. (0, —4)

Find the dot product for each pair of vectors. See Example 5.
47. (6,—1), (2,5) 48. (—3,8), (7,-5) 49. (5,2), (—4,10)
50. (7,-2), (4,14) 51. 4i, 51 — 9j 52. 2i + 4j, —j

Find the angle between each pair of vectors. See Example 6.
53' <231>7<_371> 54' <197>9<1’l> 55' <1’2>7<_6’3>
56. (4,0), (2,2) 57. 3i+4j,j 58. —5i + 12j, 3i + 2j

Letu= (=2,1),v=(3,4),and w = (=5, 12). Evaluate each expression.
59. (3u) - v 60. u - (3v) 6l. u-v—u-w 62 u-(v—w)
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Determine whether each pair of vectors is orthogonal. See Example 6(b).

63.
65.

67.
69.

70.

(1,2), (—6,3) 64. (1,1),(1,—-1)
(1,0), (V2,0) 66. (3.4), (6,8)
V5i-2j, =51+ 2V5j 68. —4i + 3j, 8i — 6
(Modeling) Measuring Rainfall Suppose that vector R models the

amount of rainfall in inches and the direction it falls, and vector A / / / /R
models the area in square inches and the orientation of the opening A

of a rain gauge, as illustrated in the figure. The total volume V of
water collected in the rain gauge is given by

4

-
V=|R-A| Sp

E 5

This formula calculates the volume of water collected even if the §
wind is blowing the rain in a slanted direction or the rain gauge is %

not exactly vertical. Let R =i — 2j and A = 0.5i + j.
(a) Find |R| and |A] to the nearest tenth. Interpret the results.
(b) Calculate V to the nearest tenth, and interpret this result.

Concept Check In Exercise 69, for the rain gauge to collect the maximum amount
of water, what should be true about vectors R and A?

Relating Concepts

For individual or collaborative investigation (Exercises 71-76)

P Consider the two vectors w and v shown. Assume all values are exact. Work
Exercises 71-76 in order.

71.

Use trigonometry alone (without using vector y
notation) to find the magnitude and direction angle
of u + v. Use the law of cosines and the law of u

sines in your work. 12 =110°

= 1
72. Find the horizontal and vertical components of u, 6, = 260 ‘\\ x

. o
using a calculator. 3 l
v

73. Find the horizontal and vertical components of v, NOT TO SCALE

using a calculator.

74. Find the horizontal and vertical components of u + v by adding the results

obtained in Exercises 72 and 73.

75. Use a calculator to find the magnitude and direction angle of the vector u + v.

76. Compare the answers in Exercises 71 and 75. What do you notice? Which

method of solution do you prefer?

Summary Exercises on Applications of Trigonometry and Vectors

These summary exercises provide practice with applications that involve solving trian-
gles and using vectors.

1.

Wires Supporting a Flagpole A flagpole stands vertically
on a hillside that makes an angle of 20° with the horizontal.
Two supporting wires are attached as shown in the figure.
What are the lengths of the supporting wires?
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2. Distance between a Pin and a Rod A slider P
crank mechanism is shown in the figure. Find ~ Fixed q,“@ 286 cm .
the distance between the wrist pin W and the P Ny55.5° VShder
connecting rod center C. C w
Track
3. Distance between Two Lighthouses Two lighthouses are located on a north-south

10.

line. From lighthouse A, the bearing of a ship 3742 m away is 129° 43'. From light-
house B, the bearing of the ship is 39° 43", Find the distance between the lighthouses.

Hot-Air Balloon A hot-air balloon is rising straight up at the speed of 15.0 ft per
sec. Then a wind starts blowing horizontally at 5.00 ft per sec. What will the new
speed of the balloon be and what angle with the horizontal will the balloon’s path
make?

. Playing on a Swing Mary is playing with her

daughter Brittany on a swing. Starting from rest,
Mary pulls the swing through an angle of 40°
and holds it briefly before releasing the swing. If
Brittany weighs 50 1b, what horizontal force, to
the nearest pound, must Mary apply while hold-
ing the swing?

Height of an Airplane Two observation points A and B
are 950 ft apart. From these points the angles of elevation
of an airplane are 52° and 57°. See the figure. Find the
height of the airplane.

A|<—950 ft—>|B

Wind and Vectors A wind can be described by v = 6i + 8j, where vector j points
north and represents a south wind of 1 mph.

(a) What is the speed of the wind?

(b) Find 3v and interpret the result.

(¢) Interpret the direction and speed of the wind if it changes to u = —8i + 8j.
Ground Speed and Bearing A plane with an airspeed of 355 mph is on a bearing of

62°. A wind is blowing from west to east at 28.5 mph. Find the ground speed and the
actual bearing of the plane.

Property Survey A surveyor reported the following data about a piece of property:
“The property is triangular in shape, with dimensions as shown in the figure.” Use
the law of sines to see whether such a piece of property could exist.

219 yd

38° 50"

Can such a triangle exist?

Property Survey A triangular piece of property has
the dimensions shown. It turns out that the surveyor
did not consider every possible case. Use the law of 28° 10
sines to show why.

2yd 26.5 yd
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Chapter 7 Test Prep

7.1 Side-Angle-Side 7.3 semiperimeter opposite (of a vertical
(SAS) 7.4 scalar vector) component
Angle-Side-Angle vector quantity zero vector direction angle
(ASA) vector equilibrant unit vector
Side-Side-Side (SSS) magnitude airspeed dot product
oblique triangle initial point ground speed (inner product)
Side-Angle-Angle terminal point 7.5 position vector angle between two
(SAA) parallelogram rule horizontal vectors
7.2 ambiguous case resultant component orthogonal vectors

OPorOP  vector OP (a,b)  position vector
|oP| magnitude of vector OP i j unit vectors

Quick Review

Concepts Examples

m Oblique Triangles and the Law of Sines

Law of Sines In triangle ABC, find ¢, to the nearest hundredth, if
In any triangle ABC, with sides a, b, and c, the following A =44°, C=62° and a = 12.00 units. Then find its
holds. area.
a _ b _ c a _ c L f si
sinA _ sinB  sinC sinA  sin C awosmes

1200 ¢

sin A sinB sinC  Alternative - =—
= = sin 44°  sin 62°

Substitute.

a b ¢ form
- 12.00 sin 62°  Multiply by sin 62°
sin 44° and rewrite.
Area of a Triangle ¢ = 15.25 units Use a calculator.
In any triangle ABC, the area 5{ is half the product of the For triangle ABC above, apply the appropriate area
lengths of two sides and the sine of the angle between them. formula.
1. . 1. 1 . . :
A= Ebc sinA, o = Eab sinC, o = Eac sin B A= Eac sin B Area formula

B = 180° — 44° — 62°

1 . o
&Q—E(12.OO)(15.25) sin 74 B = 74°

A = 87.96 sq units Use a calculator.



Concepts

The Ambiguous Case of the Law of Sines

Ambiguous Case

If we are given the lengths of two sides and the angle oppo-
site one of them (for example, A, @, and b in triangle ABC),
then it is possible that zero, one, or two such triangles exist.
If A is acute, & is the altitude from C, and

® g <h < b, then there is no triangle.

® a = handh <D, then there is one triangle
(a right triangle).

® a = b, then there is one triangle.

® h <a <b,then there are two triangles.
If A is obtuse and

® g = b, then there is no triangle.

® g > b, then there is one triangle.

See the guidelines in this section that illustrate the possible
outcomes.

The Law of Cosines

Law of Cosines
In any triangle ABC, with sides a, b, and c, the following
hold.

S}
|

= b2 + ¢ — 2bc cos A

b = a®> + ¢ — 2ac cos B

S
|

=a?+ b* — 2abcos C

Heron’s Area Formula
If a triangle has sides of lengths a, b, and ¢, with semi-
perimeter

1
s=5(a+b+c),

then the area 5{ of the triangle is given by the following.

d=Vs(s — a)(s — b)(s — ¢)
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Examples

Solve triangle ABC, given A = 44.5°, a = 11.0 in., and
c=7.0in.

Find angle C.
sin € = w Law of sines
7.0 11.0
sin C = 0.4460 Solve for sin C.
C = 26.5° Use the inverse sine function.

Another angle with this sine value is
180° — 26.5° = 153.5°.

However, 153.5° + 44.5° > 180°, so there is only one
triangle.

B = 180° — 44.5° — 26.5°

Angle sum formula

B =109° Subtract.

Use the law of sines again to solve for b.

b =~ 148 in.

In triangle ABC, find C if a = 11 units, b = 13 units, and
¢ = 20 units. Then find its area.

c¢?=a*+ b*— 2ab cos C
Law of cosines
202 =112 + 132 — 2(11)(13) cos C
Substitute.
400 = 121 + 169 — 286 cos C
Square and multiply.
400 — 121 — 169
—286

cos C = Solve for cos C.

cos C = —0.38461538

Use a calculator.

Use the inverse
cosine function.

C =113

The semiperimeter s of the above triangle is

1
s=(11+13+20) =22,

so the area is

d=\V22(22 — 11)(22 — 13)(22 — 20)
A = 66 sq units.
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Concepts Examples

Geometrically Defined Vectors and Applications

Vector Sum
The sum of two vectors is also a vector. There are two ways Two forces of 25 newtons and 32 newtons act on a point
to find the sum of two vectors A and B geometrically. in a plane. If the angle between the forces is 62°, find the

. L . magnitude of the resultant force.
1. The vector with the same initial point as A and the same gt b

terminal point as B is the sum A + B.

A+B B

2. The diagonal of the parallelogram with the same initial The resultant force divides a parallelogram into two tri-
point as A and B is the sum A + B. This is the paral- angles. The measure of angle Q in the figure is 118°. We
lelogram rule. use the law of cosines to find the desired magnitude.

|v[2 = 252 + 322 — 2(25)(32) cos 118°
|2 = 2400
|v| = 49

The magnitude of the resultant force is 49 newtons.

Algebraically Defined Vectors and the Dot Product

Magnitude and Direction Angle of a Vector
The magnitude (length) of vector u = (a, b) is given by Find the magnitude and direction angle of vector u in the

the following. figure.
[u] = Va® + b2
lul=V(2V3) +22= V16
The direction angle 0 satisfies tan 6 = — Where a # 0.
= 4 <— Magnitude
g2 1 V3 \/
amf=—-—=—+-+—-=——
V3 V3 V33
If u = (a, b) has direction angle 6, then For u defined above,
u= (|ul ). u = (4 cos 30° 4 sin 30°)
= <2\/3, 2>. cos 30° ; sin 30° = 15
Vector Operations
Let a, b, ¢, d, and k represent real numbers. Find each of the following.
(a,b) + {(c,d) ={a + ¢,b + d) (4,6) + (—8,3) = (—4,9)
k- {(a,b) = (ka,kb) 5(=2,1) = (—10,5)
Ifu = {a;, a,), then —u = (—a,, —a,). —(=9,6) =(9,-6)
(a,b) — {c,d) = (a,b) + (—(c,d)) =(a — ¢,b — d) (4,6) — (—8,3) = (12,3)

i, j Form for Vectors
If v= (a,b), then Ifu= <2\/37,2> as above, then

v=ai+ bj, wherei= (1,0) and j= (0, 1). u=2\/3i+2j.
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Concepts Examples
Dot Product
The dot product of the two vectors u = (a, b) and Find the dot product.
v = (¢, d), denoted u - v, is given by the following. (2,1)-(5,-2)

u-v=ac+ bd

=2-5+1(-2)
. . =38
Geometric Interpretation of the Dot Product
If 6 is the angle between the two nonzero vectors u and v, Find the angle 6 betweenu = (3,1) and v = (2, —=3).
where 0° = 6 = 180°, then the following holds. u-v Geometric
. cos = interpretation of
cos O = u-v |u| |V| the dot product
lullv] 3@ 1) Use the
cos O =

\/32 +12. \/22 +(—3)2 definitions.

3
cos f = Simplity.
V130
cos 0 = 0.26311741 Use a calculator.
0 ~ 74.7° Use the inverse

cosine function.

Chapter 7 g SV S G (o =1

Use the law of sines to find the indicated part of each triangle ABC.

1.

2
3
4.
5
6

Find b if C = 74.2°, ¢ = 96.3 m, B = 39.5°.

. Find Bif A = 129.7°, a = 127 ft, b = 69.8 ft.
. Find Bif C=51.3° ¢ =683 m,b=582m.

Find b if a = 165 m, A = 100.2°, B = 25.0°.

. FindAif B=39°50", b =268 m, a = 340 m.
. FindAif C=79°20",c =97.4 mm, a = 75.3 mm.

Answer each question.

7.

8.

9.

10.

If we are given a, A, and C in a triangle ABC, does the possibility of the ambiguous
case exist? If not, explain why.

Can triangle ABC existif a = 4.7, b = 2.3, and ¢ = 7.0? If not, explain why. Answer
this question without using trigonometry.

Given a = 10 and B = 30° in triangle ABC, for what values of b does A have

(a) exactly one value (b) two possible values (¢) no value?

Why can there be no triangle ABC satisfying A = 140°,a = 5, and b = 7?

Use the law of cosines to find the indicated part of each triangle ABC.

11.
12.
13.

Find Aif a = 86.14 in., b = 253.2 in., ¢ = 241.9 in.
Find b if B = 120.7°, a = 127 ft, ¢ = 69.8 ft.
Find a if A =51°20", ¢ = 683 m, b = 58.2 m.
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14. Find Bifa=14.8m,b=19.7m, c =31.8 m.
15. Findaif A =60° b =5.0cm, ¢ =21 cm.
16. FindAifa=131t, b =17 ft,c = 8 ft.

Solve each triangle ABC.
17. A=252%a=692yd, b=482yd 18. A=61.7°,a=789m,b=864m
19. a=27.6cm,b=198cm, C=42°30" 20. a =94.6yd, b =123 yd, c = 109 yd

Find the area of each triangle ABC.

21. b=2840.6m,c=7159m, A =149.3° 22. a=6.90ft, b =10.2ft, C = 35° 10’
23. @ =0.913 km, b = 0.816 km, ¢ = 0.582 km

24. a=43m,b=32m,c=5lm

Solve each problem.

25. Distance across a Canyon To measure the distance A
AB across a canyon for a power line, a surveyor mea-
sures angles B and C and the distance BC, as shown  Canyon
in the figure. What is the distance from A to B?

26. Length of a Brace A banner on an 8.0-ft pole is to be
mounted on a building at an angle of 115°, as shown in
the figure. Find the length of the brace.

27. Height of a Tree A tree leans at an angle of 8.0° from
the vertical. From a point 7.0 m from the bottom of the
tree, the angle of elevation to the top of the tree is 68°.
Find the slanted height x in the figure.

28. Hanging Sculpture A hanging sculp-
ture is to be hung in an art gallery with
two wires of lengths 15.0 ft and 12.2 ft
so that the angle between them is 70.3°. 16
How far apart should the ends of the ’ 70.3° 15.01t
wire be placed on the ceiling?
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29. Height of a Tree A hill makes an angle of 14.3° with the horizontal. From the base
of the hill, the angle of elevation to the top of a tree on top of the hill is 27.2°. The
distance along the hill from the base to the tree is 212 ft. Find the height of the tree.

30. Pipeline Position A pipeline is to run between points A and B, which are separated
by a protected wetlands area. To avoid the wetlands, the pipe will run from point A
to C and then to B. The distances involved are AB = 150 km, AC = 102 km, and
BC = 135 km. What angle should be used at point C?

31. Distance between Two Boats Two boats leave a dock together. Each travels in a
straight line. The angle between their courses measures 54° 10’. One boat travels
36.2 km per hr, and the other travels 45.6 km per hr. How far apart will they be
after 3 hr?

54° 10’

32. Distance from a Ship to a Lighthouse A ship sailing parallel to shore sights a light-
house at an angle of 30° from its direction of travel. After the ship travels 2.0 mi
farther, the angle has increased to 55°. At that time, how far is the ship from the
lighthouse?

33. Area of a Triangle Find the area of the triangle shown in the figure using Heron’s
area formula.

34. Show that the triangle in Exercise 33 is a right triangle. Then use the formula
sl = J ac sin B, with B = 90°, to find the area.

Use the given vectors to sketch each of the following.
35. a—b a
36. a+ 3c

A
x
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Given two forces and the angle between them, find the magnitude of the resultant force.

37. 38. forces of 142 and 215 newtons,
forming an angle of 112°
100 1b

52°

130 1b

Vector v has the given magnitude and direction angle. Find the horizontal and vertical
components of V.

39. |v| =964, 0 = 154° 20’ 40. |v| =50,0=45°
(Give exact values.)

Find the magnitude and direction angle for u rounded to the nearest tenth.
41. u= (—-9,12) 42. u= (21, -20)

43. Letv =2i— jand u = —3i + 2j. Express each in terms of i and j.
(a) 2v +u (b) 2v (¢c) v—3u

Find the angle between the vectors. Round to the nearest tenth of a degree. If the vectors
are orthogonal, say so.

4. (3,-2),(—1,3) 45. (5,-3),(3,5) 46. (0,4), (—4,4)

Solve each problem.

47. Weight of a Sled and Passenger Paula and Steve are pulling their daughter Jessie
on a sled. Steve pulls with a force of 18 Ib at an angle of 10°. Paula pulls with a
force of 12 Ib at an angle of 15°. Find the magnitude of the resultant force on Jessie
and the sled.

48. Force Placed on a Barge One boat pulls a barge with a force of 100 newtons.
Another boat pulls the barge at an angle of 45° to the first force, with a force of
200 newtons. Find the resultant force acting on the barge, to the nearest unit, and the
angle between the resultant and the first boat, to the nearest tenth.

49. Direction and Speed of a Plane A plane has an airspeed of 520 mph. The pilot
wishes to fly on a bearing of 310°. A wind of 37 mph is blowing from a bearing of
212°. In what direction should the pilot fly, and what will be her ground speed?

50. Angle of a Hill A 186-1b force is required to hold a 2800-1b car on a hill. What
angle does the hill make with the horizontal?

51. Incline Force Find the force required to keep a 75-1b sled from sliding down an
incline that makes an angle of 27° with the horizontal. (Assume there is no friction.)

52. Speed and Direction of a Boat A boat travels 15 km per hr in still water. The boat
is traveling across a large river, on a bearing of 130°. The current in the river, com-
ing from the west, has a speed of 7 km per hr. Find the resulting speed of the boat
and its resulting direction of travel.
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Other Formulas from Trigonometry The following identities involve all six parts of a
triangle ABC and are useful for checking answers.

1
a+b cosy(A—B)

Newton’s formula
c ol
sin5C

a—b sin %(A - B)
= Mollweide’s formula
c 1
cos 5C

C a=7

53. Apply Newton’s formula to the given triangle to verify the accuracy of the information.

54. Apply Mollweide’s formula to the given triangle to verify the accuracy of the
information.

55. Law of Tangents In addition to the law of sines and the law of cosines, there is a
law of tangents. In any triangle ABC,
1
tan 5 (A — B) _a—b
1 - .
tans(A+B) atb

Verify this law for the triangle ABC witha =2, b = 2\/5, A = 30° and B = 60°.

Chapter 7

Find the indicated part of each triangle ABC.
1. Find Cif A =25.2°,a=6.92 yd, and b = 4.82 yd.
2. Find cif C = 118° a = 75.0 km, and b = 131 km.
3. Find Bifa =173 ft, b = 22.6 ft, c = 29.8 ft.

Solve each problem.
4. Find the area of triangle ABC if a = 14, b = 30, and ¢ = 40.

5. Find the area of triangle XYZ shown here. z

6. Givena = 10 and B = 150° in triangle ABC, determine the values of b for which A has

(a) exactly one value (b) two possible values (¢) no value.

Solve each triangle ABC.
7. A=60°%b=30m,c=45m 8. b=1075in., ¢ =785 in., C = 38° 30’

Work each problem.

9. Find the magnitude and the direction angle, to the nearest
tenth, for the vector shown in the figure.
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10.

11.

12.

13.

Use the given vectors to sketch a + b. /
\

For the vectorsu = (—1,3) and v = (2, —6), find each of the following.
(@Qu+v (b) —3v ©u-v d) |u]

Find the measure of the angle 6 between u = (4,3) and v= (1,5) to the nearest
tenth.

Show that the vectorsu = (—4,7) and v = (—14, —8) are orthogonal vectors.

Solve each problem.

14.

15.

16.

17.

18.

19.

20.

from two points A and B on level ground are 24° 50" and
47°20’, respectively. As shown in the figure, points A, B,
and C are in the same vertical plane and points A and B
are 8.4 mi apart. Approximate the height of the balloon
above the ground to the nearest tenth of a mile. /47220 24°50"
B 8.4 mi A

Height of a Balloon The angles of elevation of a balloon v
C

Horizontal and Vertical Components Find the horizontal and vertical components
of the vector with magnitude 569 and direction angle 127.5° from the horizontal.
Give your answer in the form (a, b) to the nearest unit.

Radio Direction Finders Radio direction finders are placed at points A and B,
which are 3.46 mi apart on an east-west line, with A west of B. From A, the bearing
of a certain illegal pirate radio transmitter is 48°, and from B the bearing is 302°.
Find the distance between the transmitter and A to the nearest hundredth of a mile.

Height of a Tree A tree leans at an angle of 8.0°
from the vertical, as shown in the figure. From a
point 8.0 m from the bottom of the tree, the angle
of elevation to the top of the tree is 66°. Find the
slanted height x in the figure.

Walking Dogs on Leashes While Michael is
walking his two dogs, Gus and Dotty, they reach
a corner and must wait for a WALK sign. Michael
is holding the two leashes in the same hand, and
the dogs are pulling on their leashes at the angles
and forces shown in the figure. Find the magni-
tude of the equilibrant force (to the nearest tenth
of a pound) that Michael must apply to restrain
the dogs.

Bearing and Airspeed Find the bearing and airspeed required for a plane to fly
630 mi due north in 3.0 hr if the wind is blowing from a direction of 318° at 15 mph.
Approximate the bearing to the nearest degree and the airspeed to the nearest 10 mph.

Incline Angle A force of 16.0 Ib is required to hold a 50.0-1b wheelbarrow on an
incline. What angle does the incline make with the horizontal?
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CHAPTER 8 Complex Numbers, Polar Equations, and Parametric Equations

e

Complex Numbers

Basic Concepts of
Complex Numbers

Complex Solutions of
Quadratic Equations
(Part1)

Operations on Complex
Numbers

Complex Solutions of
Quadratic Equations
(Part 2)

Powers of i

LOOKING AHEAD TO CALCULUS
The letters j and k are also used to
represent V' —1 in calculus and some

applications (electronics, for example).

HERFAL FLOAT SUTD askl EROTAM kP n

-1
e .!
il
.......................... .
reall 7+21)
7
imaal f+21)
o

The calculator is in complex number
mode. This screen supports the
definition of i and shows how the
calculator returns the real and imaginary
parts of the complex number 7 + 2i.

Figurel

Basic Concepts of Complex Numbers There is no real number solution

of the equation

because no real number, when squared, gives —1. To extend the real number
system to include solutions of equations of this type, the number i is defined.

Imaginary Uniti

i =V —1, andtherefore i?= —1.

(Note that —i is also a square root of —1.)

Square roots of negative numbers were not incorporated into an integrated
number system until the 16th century. They were then used as solutions of equa-
tions. Today, complex numbers are used extensively in science and engineering.

Complex Number

If @ and b are real numbers, then any number of the form a + bi is a
complex number. In the complex number a + bi, a is the real part and b is
the imaginary part.*

Two complex numbers a + bi and ¢ + di are equal provided that their real
parts are equal and their imaginary parts are equal.

Equality of Complex Numbers

a+bi =c+di ifandonlyif a =candb = d.

<) Some graphing calculators, such as the TI-84 Plus, are capable of working
with complex numbers, as seen in Figurel. =

The following important concepts apply to a complex number a + bi.

1. If b = 0, then a + bi = a, which is a real number. (This means that the set
of real numbers is a subset of the set of complex numbers. See Figure 2 on
the next page.)

2. If b # 0, then a + bi is a nonreal complex number.

Examples: 7+ 2i, —1 —1i

3. If a = 0 and b # 0, then the nonreal complex number is a pure imaginary

number.

Examples: 3i, —16i
The form a + bi (or a + ib) is standard form. (The form a + ib is used to
write expressions such as i \/5 because \/5i could be mistaken for V/5i J)

*In some texts, the term bi is defined to be the imaginary part.
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Figure 2 shows the relationships among subsets of the complex numbers.

Complex Numbers a + bi, for a and b Real

Real numbers Nonreal complex numbers
a+bi, b=0 a+bi, b0
: ; 34
Rational numbers Irrational T+2i, 5-iV3, _7 +31
4 5 11 numbers
98 T
Integers V2 Pure imaginary numbers
~11,-6,-3,-2, -1 V15 a+bi, a=0andb =0
. . 2. .
Whole numbers 3 3i, =i, =5, iVvs
0
a
Natural numbers
v
1,2,3,4,5,37,40 &
Figure 2

For a positive real number a, the expression V —a is defined as follows.

Meaningof V-a
If a > 0, then V-a=iVa.

WritingV—a asiVa
Write as the product of a real number and 7, using the definition of V —a.

(a) V—16 (b) V—=70 (c) V—48

@ V-16=iV16=4i () V=70 =iV/70
Prod for radicals:
© Vas=iVas=iV16-3=4V3 oo

Now Try Exercises 21, 23, and 25.

Complex Solutions of Quadratic Equations (Part 1) Such solutions are
expressed in the form a + bi or a + ib.

Solving Quadratic Equations (Complex Solutions)

Solve each equation over the set of complex numbers.

(@) x>2=-9 (b) x>+24=0

x>=-9

x= =t \/j9 Square root property
x=+iV9  Voa=iVa

x= 13i Vo=3

(a)

Take both square
roots, indicated by
the & symbol.

The solution set is {£3i}.
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(b) x2+24=0
x2=-24 Subtract 24.
x=1TV-24 Square root property

x= =T i\@ V—-a=iVa
x= = i\/zl . \/8 Product rule for radicals
x=+2iV6 V=2

The solution set is {i‘ Zi\ﬁ}. Now Try Exercises 85 and 87.

Operations on Complex Numbers = Products or quotients with negative
radicands are simplified by first rewriting

\V—a as i \/;, for a positive number a.

Then the properties of real numbers and the fact that i> = —1 are applied.

CAUTION When working with negative radicands, use the definition
V—a=i \/c; before using any of the other rules for radicals. In par-
ticular, the rule Ve Vd=Vedis valid only when ¢ and d are not both
negative. For example, consider the following.

\/j4 . \/j9 =2i+3i=6i>=—6 Correct
\/j4 . \/j =V (=4)(=9) = V36 =6 Incorrect

Finding Products and Quotients Involving V — a

Find each product or quotient. Simplify the answers.

V —20 V —48
V-=T7-V-=T7 b) V-6-V-10 d
(@) (b) (c) ) (d) oa

@ VvV-7-V-17 b)) V-6-V-10
First write all

i\ﬁ-i\ﬁ =iV6 - iV10

in terms of 1.

>+ V60
—1V4-15
—-1-2V15
- -2V15

Il Il
| o
Ll .
—
] ﬁ
~J
SN——
(3]
o
I
|
S
.
o
Il
Q
Il Il

Il
|
<
=
=
g
<
Il

=20 V20 20 Vo nfa
(¢) = l\/i =\|/—= \/E Quotient rule for radicals: M = \/%
V-2 V2 2 v
—48 V48 48
(d) = ! =i ]— = i\/Z Quotient rule for radicals
Vo4 Vo4 24

Now Try Exercises 29, 31, 33, and 35.
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Simplifying a Quotient Involving V — a

-8+ \V—128 .
4

Write in standard form a + bi.
-8+ \V/—128
4
-8+ V—-64-2
= 1 Product rule for radicals
-8 +8iV2
= V —64 = 8i
4
Be sure to factor _ .
before dividing. | 4( 2+ 2’\/2>
= Factor.
4
=-2+ Zi\ﬁ Lowest terms; standard form

Now Try Exercise 41.

With the definitions i> = —1 and \V/—a = i\Va for a > 0, all properties of
real numbers are extended to complex numbers.

Addition and Subtraction of Complex Numbers

For complex numbers a + bi and ¢ + di, the following hold.
(@ +bi)+ (c+di)=(a+c)+ (b+d)
(a+bi)—(c+di)=(a—c)+ (b —d)

That is, to add or subtract complex numbers, add or subtract the real parts,
and add or subtract the imaginary parts.

Adding and Subtracting Complex Numbers
Find each sum or difference. Write answers in standard form.

(@) (3 —4i) + (=2 + 6i) (b) (—4 + 3i) — (6 — 7i)

@ (3—4i)+ (—2+6i)

Add real Add imaginary
parts. parts. Commutative, associative

. and distributive properties
=[3+(-2)]+[-4+6]i

=1+2 Standard form
(b) (—4 +3i) — (6 —7i)

=(—=4—-6)+[3—(—=7)]i Subtract real parts. Subtract imaginary parts.

—10 + 10 Standard form

Now Try Exercises 47 and 49.
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The product of two complex numbers is found by multiplying as though the
numbers were binomials and using the fact that i = —1, as follows.

(a + bi)(c + di)

= ac + adi + bic + bidi FOIL method (Multiply First,

Outer, Inner, Last terms.)

= ac + adi + bci + bdi® Commutative property; Multiply.

ac + (ad + bc)i + bd(—1)  Distributive property; i> = —1

(ac — bd) + (ad + bc)i Group like terms.

Multiplication of Complex Numbers
For complex numbers a + bi and ¢ + di, the following holds.

(a + bi)(c + di) = (ac — bd) + (ad + bc)i

To find a given product in routine calculations, it is often easier to multiply
as with binomials and use the fact that i = —1.

Multiplying Complex Numbers
Find each product. Write answers in standard form.

(@ (2 —3i)(3 +4i) (b) (4 + 3i)> (©) (6 + 5i)(6 — 5i)

@ (2—-30i)(3+4)
=2(3) + 2(4i) — 3i(3) — 3i(4i) FOIL method

=6+8 —9i— 12/ Multiply.
=6—1i— 12(—1) Combine like terms; i2 = —1.
=18—1i Standard form

(b) (4 + 3i)?
=42+ 2(4)(3i) + (3i)?

Square of a binomial:
(x+y)P=x2+ 2y +y?

Remember to add
twice the product
of the two terms.

=16 + 24i + 9:? Multiply; (3:)% = 3%
=16 +24i +9(—1) i2=-—1
=7+ 24i Standard form

HERRAL FLOAT ALTO askl ERDTAM PP u

(©) (6 + 5i)(6 — 5i)

18=1% | . .
(4+31 0 S — 62— (5i)2 Product of the sum and difference of

TFH244 two terms: (x + y)(x —y) = x2 — y?

(64510 (6-51)
el =36 —25(—1) Square; (5i)? = 5% = 25(—1).
=36+ 25 Multiply.

=61, or 61 + 0i Standard form

This screen supports the results found
in Example 6. Now Try Exercises 55, 59, and 63.
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Example 6(c) showed that (6 + 5i)(6 — 5i) = 61. The numbers 6 + 5i and
6 — 5i differ only in the sign of their imaginary parts and are called complex con-
jugates. The product of a complex number and its conjugate is always a real
number. This product is the sum of the squares of the real and imaginary parts.

Property of Complex Conjugates
For real numbers a and b,

(a + bi)(a — bi) = a®> + b~

To find the quotient of two complex numbers in standard form, we multi-
ply both the numerator and the denominator by the complex conjugate of the
denominator.

Dividing Complex Numbers

Find each quotient. Write answers in standard form.

3+ 2i 3
(a) ; (b) —
5—i i
3+ 2i
a
@ 35
(3 + Zi) (5 + ,') Multiply by the complex conjugate of the
= denominator in both the numerator and the
(5 N l)<5 + l) denominator.
15 + 3i + 10i + 242 Mutiio]
= ultiply.
25 — 2 o
13 + 13§
=— Combine like terms; i2 = —1.
26
= E & atbi _a bi
26 26 ‘ o
1 1
= 5 + El Lowest terms; standard form

1 1
<2 + 2i>(5 —i)=3+2i Quotient X Divisor = Dividend

3(—i)
= —i is the conjugate of i.

i(—i)
— _3i .
= ) Multiply.

—3i S (1) =1
= —_— —1°= —(— =

1

= =37, or 0—3i Standard form Now Try Exercises 73 and 79.
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Complex Solutions of Quadratic Equations (Part 2)

Solving a Quadratic Equation (Complex Solutions)
Solve 9x2 + 5 = 6x over the set of complex numbers.
Ox2—6x+5=0 Standard form ax? + bx + ¢ =0
_ —b* Vb?—dac

X = Use the quadratic formula.

2a

—(=6) £ V(—6)2— 4(9)(5)

Substitute « =9, b = —6,c = 5.

2(9)
6t \V—-144 -
= implify.
18 i
6+ 12i
= —144 = 12i
18
Factor first, then .
divide out the 6(1 £ 2i) -
common factor. 63 Factor.
1+ 2i o
X = 3 Write in lowest terms.
atbi_a_ Qi
. . 1 2. [4 c—rc ]
The solution set is {3 T 31 } Now Try Exercise 89.

Powersofi  Powers of i can be simplified using the facts

i?=-1 and *=(’)?=(-1)2=1

HERFRL FLOAT ALTD askl EROTIAM HOF

Consider the following powers of i.

i'=i P=itei=1-i=i
e — . i2=—1 =i*-i2=1(-1)=—1
.............................. 1 B=iti=(-1)i=—i T=itB=1-(=i)=—i
=22 =(-1)(-1)=1 #=i*-i*=1-1=1 andsoon.
Powers of / can be found on a TI-84 Powers of i cycle through the same four outcomes (i, —1, —i, and 1) because

Plus caleulator. i* has the same multiplicative property as 1. It follows that a power of i with

an exponent that is a multiple of 4 has value 1.

Simplifying Powers of i
Simplify each power of i.

(a) ¥ (b) i3

(a) Because i* = 1, write the given power as a product involving i*.
l'lS — i12 . i3 — (14)3 . l'3 — 13(_1) = —

(b) Multiply i 3 by 1 in the form of i* to create the least positive exponent for i.
[ eit=0 if=1

Now Try Exercises 97 and 105.



8.1 Complex Numbers | 363

Exercises

CONCEPT PREVIEW Fill in the blank(s) to correctly complete each sentence.

1. By definition, i = , and therefore 2= .

2. In —4 — 8i, the real part is
3. Intermsofi, V—100=__.
4

. The complex conjugate of 6 — 2i is

and the imaginary part is

CONCEPT PREVIEW Determine whether each statement is true or false. If it is false,
tell why.

5. Every real number is a complex number.

6. No real number is a pure imaginary number.

7. Every pure imaginary number is a complex number.
8. A number can be both real and complex.

9. There is no real number that is a complex number.

10. A complex number might not be a pure imaginary number.

Concept Check Identify each number as real, complex, pure imaginary, or nonreal com-
plex. (More than one of these descriptions will apply.)

11. —4 12. 0 13. 13i 14. —7i 15. 5+

16. —6-2i 17. = 18. V24 19. V=25 20. V=36

Write each number as the product of a real number and i. See Example 1.
21. V=25 22. V=36 23. V-10 24. V—15
25. V —288 26. vV —500 27. -V —18 28. -V —80

Find each product or quotient. Simplify the answers. See Example 3.

29. V-13 - V-13 30. V-17-V-17 31 V-3-V-8

b
D

32. V-5-V-15 33, Y3 34.

D
<

V—24 —54 —1
3s. 36. > 37. 0
V8 V27 —40
V-8 V-6-V-2 —12- V-6
38. 39, ~ 2 YL 40, ~——= Y2
72 V3 V8

Write each number in standard form a + bi. See Example 4.

—-6—V-—-24 -9-V-I8 10 + V' =200
41. — 42. s 443 —

9]

20+ V-8 45 -3+ V-—-I18

2 2

-5+ V-50

1

44. 46.

=
o
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Find each sum or difference. Write answers in standard form. See Example 5.

47. (3 +2i) + (9 - 3i) 48. (4 —i) + (8 + 5i)
49. (=2 + 4i) — (—4 + 4i) 50. (=3 +2i) — (—4 + 2i)
51. (2 5i) — (3 +4i) — (=1 - 9) 52. (=4 —i) — (2 +3i) + (6 + 4i)

83. —iV2-2-(6-4iV2)-(5-iV2)
54. 3V7 — (4V7 = i) - 4i + (-2V7 + 5i)

Find each product. Write answers in standard form. See Example 6.

55. (2+4)(3 — 2i) 56. (—2 + 3i)(4 — 2i)
57. (2 + 4i)(—1 + 3i) 58. (1 +3i)(2 — 5i)

59. (3 - 2i)? 60. (2 + i)

61. (3+i)(3 — i) 62. (5+0)(5— i)

63. (—2 — 3i)(—2 + 3i) 64. (6 — 4i)(6 + 4i)

65. (Vo6 +i)(Ve—1i) 66. (V2 - 4i)(V2 + 4i)
67. i(3 — 4i)(3 + 4i) 68. i(2 + 7i)(2 — 7i)

69. 3i(2 — i) 70. —5i(4 — 3i)2

1. (2+i)(2— i)(4 + 3i) 72. (3—i)(3+i)(2— 6i)

Find each quotient. Write answers in standard form. See Example 7.

6 + 2i 14 + 5i 22—
73. ) 75.
Sy ey 24
4-3 1-3i -3 +4i
76, 231 7. 123 78, St 4
4+ 3 1+ 2—1i
79. _—5 80. _—.6 81. i
l l -1
12 2
82. — 83. — 84. 3
—i 3i 9i

Solve each equation over the set of complex numbers. See Examples 2 and 8.

85. x2=—16 86. x> = —36

87. x2+12=0 88. x2+48=0

89. 3x2+ 2= —4x 90. 2x2+3x= -2
91. x> —6x+14=0 92. x2+4x+11=0
93. 4(x*—x) =7 94. 3(3x* —2x) = —7
95. x>+ 1=—x 96. x> +2=2x

Simplify each power of i. See Example 9.
97. i» 98. ¥ 99. j»? 100. ¢
101. % 102. %7 103. 32 104. i

1
105. i1 106. i~ 107. — 108. —5

—11 l'—12
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Concept Check Work each problem.

109. Suppose a friend says that she has discovered a method of simplifying a positive
power of i:

“Just divide the exponent by 4. The answer is i raised to the remainder.”
Explain why her method works.
110. Why does the following method of simplifying i ~*?> work?

42 — 42

i #=2= ]

c i

(Modeling) Impedance Impedance is a measure of the opposition to the flow of alter-
nating electrical current found in common electrical outlets. It consists of two parts,
resistance and reactance. Resistance occurs when a light bulb is turned on, while reac-
tance is produced when electricity passes through a coil of wire like that found in electric
motors. Impedance Z in ohms (1) can be expressed as a complex number, where the
real part represents resistance and the imaginary part represents reactance.

For example, if the resistive part is 3 ohms and the reactive part is 4 ohms, then the
impedance could be described by the complex number Z = 3 + 4i. In the series circuit
shown in the figure, the total impedance will be the sum of the individual impedances.
(Source: Wilcox, G. and C. Hesselberth, Electricity for Engineering Technology, Allyn
& Bacon.)

111. The circuit contains two light bulbs and two electric motors. Assuming that the
light bulbs are pure resistive and the motors are pure reactive, find the total imped-
ance in this circuit and express it in the form Z = a + bi.

112. The phase angle 0 measures the phase difference between the voltage and the cur-
rent in an electrical circuit. Angle 6 (in degrees) can be determined by the equation

tan 6 = S. Find 6, to the nearest hundredth, for this circuit.

(Modeling) Ohm’s Law Complex numbers are used to describe current I, voltage E, and
impedance Z (the opposition to current). These three quantities are related by the equation

E =1Z, whichisknown as Ohm’s law.

Thus, if any two of these quantities are known, the third can be found. In each exercise,
solve the equation E = IZ for the missing variable.

113. I1=8+6i, Z=6+3i 114. 1=10+6i, Z=8+5i
115. I=7+5i, E=28+54i 116. E=35+55i, Z=6+4i
Work each problem.

\/7

117. Show that 72 + %i is a square root of i.

118. Show that % + %i is a cube root of i.
119. Show that —2 + i is a solution of the equation x> + 4x + 5 = 0.

120. Show that —3 + 4i is a solution of the equation x> + 6x + 25 = 0.
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Trigonometric (Polar) Form of Complex Numbers

The Complex The Complex Plane and Vector Representation
Plane and Vector Unlik | b | b t b Imaginary axis
Errese nlike real numbers, complex numbers cannot be ginary axis
. . ordered. One way to organize and illustrate them is M
Trigonometric (Polar) . ! .
Eor by using a graph in a rectangular coordinate syst§m.
Converting between To graph a gomplex number sqch as 2 — .31, we L Realaxis
Rectangular and modify the coordinate system by calling the horizontal
Trigonometric (Polar) axis the real axis and the vertical axis the imaginary
Forms axis. Then complex numbers can be graphed in this
An Application of complex plane, as shown in Figure 3. Each complex
]E‘r’:c‘f:: Numbers to number a + bi determines a unique position vector Figure 3

with initial point (0, 0) and terminal point (a, b).

This geometric representation is the reason that a + bi is called the
rectangular form of a complex number. (Rectangular form is also known
as standard form.)

Recall that the sum of the two complex numbers 4 + i and 1 + 3i is

(4+i)+ (1 +3i)=5+4i

Graphically, the sum of two complex numbers is represented by the vector that
is the resultant of the vectors corresponding to the two numbers. See Figure 4.

Expressing the Sum of Complex Numbers Graphically

Find the sum of 6 — 2i and —4 — 3i. Graph both complex numbers and their
resultant.

The sum is found by adding the two numbers.

(6 —2i) + (—4 — 3i) =2 — 5i Add real parts, and add imaginary parts.
Figure 5 The graphs are shown in Figure 5. Now Try Exercise 17.
Trigonometric (Polar) Form Figure 6 shows the complex number x + yi

that corresponds to a vector OP with direction angle 6 and magnitude r. The fol-
lowing relationships among x, y, r, and 6 can be verified from Figure 6.

Relationships among x, y, r, and 0
Px+yl- X =rcos0 y = rsin 0
r ly y .

' r=Vx*+)y? tan@ ==, ifx#0
| X

N 0,y

0 X
Figure 6 Substituting x = r cos 6 and y = r sin 6 into x + yi gives the following.

X+ i

rcos O + (rsin@)i  Substitute.

r(cos 0 + isin ) Factor out 7.
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Trigonometric (Polar) Form of a Complex Number

The trigonometric form (or polar form) of the complex number x + yi is
r(cos 0 + isin 0).

The expression cos 0 + i sin # is sometimes abbreviated cis 6. Using this
notation, r(cos @ + i sin @) is written r cis 6.

The number r is the absolute value (or modulus) of x + yi, and 6 is the
argument of x + yi. In this section, we choose the value of 0 in the interval
[0°, 360°). Any angle coterminal with 0 also could serve as the argument.

Converting from Trigonometric Form
to Rectangular Form

Write 2(cos 300° + i sin 300°) in rectangular form.

In Figure 7, the first result confirms the algebraic solu-
tion, where an approximation for — \/3 is used for the

cos 300° = %; sin 300° = _% imaginary part (from the second result). The TI-84

Plus also converts from polar to rectangular form, as
seen in the third and fourth results.

Distributive property

Note that the real part is positive and the imaginary part
is negative. This is consistent with 300° being a quad-
rant IV angle. For a 300° angle, the reference angle is
60°. Thus the function values cos 300° and sin 300° cor-
respond in absolute value to those of cos 60° and sin 60°,
with the first of these equal to % and the second equal

V3

to - -

HERFAL FLOAT SUTD askl BEGREE MP n

2lcos(300)+isin(300))
e A=l T 220508081
I3

FrExi 2, 300)

. ~1,732050808

1
T
— v B I EEEERERE

Figure 7

Now Try Exercise 33.

Converting between Rectangular and Trigonometric (Polar) Forms
To convert from rectangular form to trigonometric form, we use the following

procedure.

Converting from Rectangular to Trigonometric Form

Step 1 Sketch a graph of the number x + yi in the complex plane.
Step 2 Find r by using the equation r = Vx? + y2.

Step 3 Find 0 by using the equation tan = )y; where x # 0, choosing the
quadrant indicated in Step 1.

CAUTION Errors often occur in Step 3. Be sure to choose the correct
quadrant for 6 by referring to the graph sketched in Step 1.
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See Example 3(a). The TI-84 Plus
converts from rectangular form to
polar form. The value of 6 in the
second result is an approximation for
5?’7, as shown in the third result.
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Compare to the result in Example 3(b).

The angle —90° is coterminal with 270°.

The calculator returns 6 values between
—180° and 180°.
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Converting from Rectangular to Trigonometric Form
Write each complex number in trigonometric form.
(a) — \/3 + i (Use radian measure.) (b) —3i (Use degree measure.)

(a) We start by sketching the graph of — \V/3 + iinthe complex plane, as shown
3and y = 1 to find r and 6.

r=Veryi=V(-Vif+r=Viri=2

ang =2 = [ .\/3:_\/5
N RV ARV I

Rationalize the denominator.

i

Because tan 6 = —73, the reference angle for 6 in radians is %. From the

in Figure 8. Next, we use x = —

graph, we see that 6 is in quadrant I, so 6 = 7 — % = %T.

) Sm .. 5w .5
—\@+l=2 cos?Jrlsmf, or 2cis—

6 6
y y
3 +i 1
1, 0 =270°
N2 s : fg\ ——
y=1] _ 2T 0
L 6 =2 NI
— : * r=3
) x=-V3 0 T
Yy 0-3i
Figure 8 Figure 9

(b) SeeFigure 9. Because —3i = 0 — 3i, we have x = 0 and y = —3.
r=\V02+ (—-3)2= VO+9=V9=3 subsitute.

We cannot find 6 by using tan 6 = )y; because x = 0. However, the graph shows
that the least positive value for 0 is 270°.

—3i = 3(cos 270° + i sin 270°), or 3 cis270°

Trigonometric form

Now Try Exercises 45 and 51.

Converting between Trigonometric and Rectangular
Forms Using Calculator Approximations

Write each complex number in its alternative form, using calculator approxima-
tions as necessary.

(a) 6(cos 125° + i sin 125°) (b) 5—4i

(a) Because 125° does not have a special angle as a reference angle, we cannot
find exact values for cos 125° and sin 125°.
6(cos 125° + i sin 125°)
~ 6(—0.5735764364 + 0.81915204437) ¢ @ caleulator
set to degree mode.

~ —3.4415 + 4.9149i

Four decimal places
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(b) A sketch of 5 — 4i shows that § must be in quadrant IV. See Figure 10.
4
r=V52+ (~4)2=V4l and tanf= -3

Use a calculator to find that one measure of 6 is —38.66°. In order to express
6 in the interval [0, 360°), we find # = 360° — 38.66° = 321.34°.

5 — 4i = \V/41 cis 321.34°
+ Now Try Exercises 57 and 61.

An Application of Complex Numbers to Fractals " At its basic level, a
fractal is a unique, enchanting geometric figure with an endless self-similarity
property. A fractal image repeats itself infinitely with ever-decreasing dimensions.
If we look at smaller and smaller portions, we will continue to see the whole—it is
much like looking into two parallel mirrors that are facing each other.

m Deciding Whether a Complex Number Is in the Julia Set

The fractal called the Julia set is shown in Figure 11. To determine whether a
complex number z = a + bi is in this Julia set, perform the following sequence
of calculations.

-1 (Z-1)P-1 [(Z-1)-1)—-1,

If the absolute values of any of the resulting complex numbers exceed 2, then the
complex number z is not in the Julia set. Otherwise z is part of this set and
the point (a, b) should be shaded in the graph.

Figure 11

Determine whether each number belongs to the Julia set.

@ z=0+0: (b) z=1+1i
SOLUTION
(a) Here z=0+0i =0,

?2-1=02-1=—1,
(2=1)P2—-1=(-1)2-1=0,
[(z2=1)2—=1]>—1=02-1=-1, andsoon.
We see that the calculations repeat as 0, —1, 0, —1, and so on. The absolute

values are either O or 1, which do not exceed 2, so 0 + 0i is in the Julia set
and the point (0, 0) is part of the graph.
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(b) For z =1 + 1i, we have the following.
22—-1
= (1 + i)2 -1 Substitute forz; 1 + 1i = 1 + i.

Square the binomial;
(x +y)?=x2+ 2xy + y2

(1+2i+i%)—1

=—1+2 i?=—1
The absolute value is
V2= V5
Because \/5 is greater than 2, the number 1 + 1/ is not in the Julia set and

(1, 1) is not part of the graph. Now Try Exercise 67.

e

Exercises

CONCEPT PREVIEW For each complex number shown, give (a) its rectangular form
and (b) its trigonometric (polar) form with r > 0, 0° =< 6 < 360°.

1. Tmaginary 2. Imaginary 3. Imaginary
24 2t 24
14 14 1+
1 1 5 Il Real L Il Il Il Real 1 Il Il Il Real
T T U T T T T T T T T T
-2 -1 0 1 2 -2 -1 g 1 2 -2 -1 g 1 2
14 14 14
ot ot ol
4. Imaginary 5. Imaginary 6. Imaginary
2+ 2+ 2+
1T 1T ,z/g 1+
> Real 5+ Real H—+—g——+— Real
-2 -1 1 2 -2 -1 1 2 -2 1 2
14 -1 14
oY 24 ol

CONCEPT PREVIEW Fill in the blank(s) to correctly complete each sentence.

7. The absolute value (or modulus) of a complex number represents the _ of
the vector representing it in the complex plane.

8. The geometric interpretation of the argument of a complex number is the

formed by the vector and the positive -axis.
Graph each complex number. See Example 1.
9. —3+2i 10. 6 — 5i m V2+vVv2i o 12, 2-2\V3
13. —4i 14. 3i 15. -8 16. 2

Find the sum of each pair of complex numbers. In Exercises 17-20, graph both complex
numbers and their resultant. See Example 1.

17. 4 —-3i, -1+ 2i 18. 2 +3i, -4—i 19. 5—-6i, =5+ 3i
20. 7—3i, —4+3i 21. -3, 3i 22. 6, —2i
23. —5—-8i, —1 24. 4-2i, 5 25. 7+ 6i, 3i
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26. 2+ 61, —2i 217. lJr%i,%Jrli 28. *l+%i,§*§i
2 33 2 5 77 4

Write each complex number in rectangular form. See Example 2.

29. 2(cos 45° + i sin 45°) 30. 4(cos 60° + i sin 60°)

31. 10(cos 90° + i sin 90°) 32. 8(cos 270°+ i sin 270°)

33. 4(cos 240° + i sin 240°) 34. 2(cos 330° + i sin 330°)

35. 3cis 150° 36. 2cis 30° 37. 5cis 300°
38. 6cis 135° 39. V2 cis 225° 40. V/3cis 315°

41. 4(cos(—30°) + isin(—30°)) 42.\/2(005(*60") + i sin(—60°))

Write each complex number in trigonometric form r(cos 6 + i sin ), with 0 in the inter-
val [0°,360°). See Example 3.

43. -3-3\V3 4. 1+i\V/3 45. \V3—i 46. 4\/3 + 4i
47. —5—5i 48. —2 +2i 49. 2 +2i 50. 4+ 4i
51. 5i 52, —2i 53. —4 54. 7

Write each complex number in its alternative form, using a calculator to approximate
answers to four decimal places as necessary. See Example 4.

Rectangular Form Trigonometric Form
55. 2+ 3i
56. cos 35° + i sin 35°
57. 3(cos 250° + i sin 250°)
58. -4+
59. 12i
60. 3 cis 180°
61. 3+ 5§
62. cis 110.5°

Concept Check The complex number z, where 7 = x + yi, can be graphed in the plane
as (x,y). Describe the graphs of all complex numbers z satisfying the given conditions.
63. The absolute value of zis 1. 64. The real and imaginary parts of z are equal.

65. The real part of zis 1. 66. The imaginary part of z is 1.

Julia Set Refer to Example 5.
67. Is z = —0.2i in the Julia set?
68. The graph of the Julia set in Figure 11 appears to be symmetric with respect to both
the x-axis and the y-axis. Complete the following to show that this is true.
(a) Show that complex conjugates have the same absolute value.
(b) Compute 7,2 — 1 and z,> — 1, where z; = a + bi and z, = a — bi.
(c) Discuss why if (a, b) is in the Julia set, then so is (a, —b).

(d) Conclude that the graph of the Julia set must be symmetric with respect to the
X-axis.

(e) Using a similar argument, show that the Julia set must also be symmetric with
respect to the y-axis.
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Concept Check Identify the geometric condition (A, B, or C) that implies the situation.
A. The corresponding vectors have opposite directions.

B. The terminal points of the vectors corresponding to a + bi and ¢ + di lie on a
horizontal line.

C. The corresponding vectors have the same direction.

69. The difference between two nonreal complex numbers a + bi and ¢ + di is a real
number.

70. The absolute value of the sum of two complex numbers a + bi and ¢ + di is equal
to the sum of their absolute values.

71. The absolute value of the difference of two complex numbers a + bi and ¢ + di is
equal to the sum of their absolute values.

72. Concept Check Show that z and iz have the same absolute value. How are the
graphs of these two numbers related?

—

The Product and Quotient Theorems

Products of Complex
Numbers in
Trigonometric Form

Quotients of Complex
Numbers in
Trigonometric Form

WERMAL FLOAT AUTO a+bl SEGREE MP n
analel1+[31)

With the TI-84 Plus calculator in
complex and degree modes, the MATH
menu can be used to find the angle and
the magnitude (absolute value) of a
complex number.

Products of Complex Numbers in Trigonometric Form Using the
FOIL method to multiply complex numbers in rectangular form, we find the prod-

uctof 1 + i\@ and —2\@ + 2i as follows.
(1+V3)(-2V3 +2i)
=—2\V3 +2i - 2i(3) + 2i%\/3  FOIL method
—2\/3 +2i— 6i — 2V/3 =1
= —4\V3 - 4i

We can also find this same product by first converting the complex numbers
1+iV3and —2V3 + 2ito trigonometric form.

Combine like terms.

1 +iV3 =2(cos 60° + i sin 60°)
—2\V/3 + 2i = 4(cos 150° + i sin 150°)

If we multiply the trigonometric forms and use identities for the cosine and
the sine of the sum of two angles, then the result is as follows.

[2(cos 60° + i sin 60°) |[4(cos 150° + i sin 150°) |
=2+ 4(cos 60° - cos 150° + i sin 60° - cos 150° Multiply the absolute
+ i cos 60° + sin 150° + i?sin 60° + sin 150°)

values and the binomials.

= 8[ (cos 60° + cos 150° — sin 60° « sin 150°)
+ i(sin 60° - cos 150° + cos 60° « sin 150°) ]

i2 = —1; Factor out i.

= 8[cos(60° + 150°) + i sin(60° + 150°) |
cos(A + B) =cosA - cos B—sinA
sin(A + B) =sin A - cos B + cos A

* sin B;
- sin B

= 8(cos 210° + i sin 210°) Add.

The absolute value of the product, 8, is equal to the product of the absolute val-
ues of the factors, 2 - 4. The argument of the product, 210° is equal to the sum
of the arguments of the factors, 60° + 150°.
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The product obtained when multiplying by the first method is the rectangu-
lar form of the product obtained when multiplying by the second method.

8(cos 210° + i sin 210°)

o —

Il
N
I
S

I
| =

) C()SZIOC’:*\%}:sin 210° = —

I

|
z

|
&

Rectangular form

Product Theorem

If r,(cos 0, + i sin 6,) and r,(cos 6, + i sin ,) are any two complex num-
bers, then the following holds.

[ri(cos 6, + isin @,)] - [ry(cos O, + isin6,)]
= rry[cos(0; + 60,) + isin(6; + 60,)]
In compact form, this is written

(ry cis 0y)(r; cis 0,) = ryr, cis(0; + 0,).

That is, to multiply complex numbers in trigonometric form, multiply their
absolute values and add their arguments.

Using the Product Theorem

Find the product of 3(cos 45° + i sin 45°) and 2(cos 135° + i sin 135°). Write
the answer in rectangular form.

[3(cos 45° + i sin 45°) ][2(cos 135° + i sin 135°)]  Write as a product.
=3 - 2[cos(45° + 135°) + isin(45° + 135°)]  Product theorem

= 6(cos 180° + i sin 180°) Multiply and add.
=6(—1+1i-0) cos 180° = —1; sin 180° =0
=—6 Rectangular form

Now Try Exercise 11.

Quotients of Complex Numbers in Trigonometric Form The rectan-
gular form of the quotient of 1 + i /3 and —2V/3 + 2i is found as follows.

1+iV3
—2V3 + 2

(1 + l\/§> (72\/3 B 21) Multiply both numerator and denominator
(_2\/3 + Zi) <72\/~% o 21-) by the conjugate of the denominator.

—2V3 - 2i — 6i — 2i2\V/3

= FOIL method; (x + y)(x — y) = x> — y?

12 — 4i?
—8i Simplif
= — Simplify.
16 phity
L.
= —— Lowest terms
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Writing 1 + i \/, —2V3 + 2i, and — %i in trigonometric form gives

1+ iV/3 = 2(cos 60° + i sin 60°),

—2\/5 + 2i = 4(cos 150° + i sin 150°), Use r ="V x2+ yZand tan (9:%.
11 o .
and _El = 2 [cos(—90°) + isin(—90°)]. —90° can be replaced by 270°.

1

Here, the absolute value of the quotient, 5, is the quotient of the two absolute

] 2 9
values, % = % The argument of the quotient, —90°, is the difference of the two
arguments,
60° — 150° = —90°.
Quotient Theorem

If ri(cos 0, + isin 6,) and r,(cos 6, + i sin §,) are any two complex num-
bers, where r,(cos 6, + i sin 6,) # 0, then the following holds.

ri(cos 0; + isin@) r oo tanto — 6
rz(cos 0, + isin 02) - r [COS( 1 2) 1 sm( 1 2)]

In compact form, this is written
rcisf;, n

= is(0, — 0,).
r2Ci502 r CIS( ! 2)

That is, to divide complex numbers in trigonometric form, divide their abso-
lute values and subtract their arguments.

Using the Quotient Theorem
10 cis(—60°)

Find the quotient - =
5 cis 150

. Write the answer in rectangular form.

10 cis(—60°)

5 cis 150°
10 .
= 5 cis(—60° — 150°) Quotient theorem
=2 cis(—210°) Divide and subtract.

=2[cos(—210°) + isin(—210°)] Rewrite.

|: \6 <l>:| cos(—210°) = 7&;5;
= —7+l —_ 2

sin(—210°) =1

= —\/5 + i Distributive property

Now Try Exercise 21.
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Using the Product and Quotient Theorems
with a Calculator

Use a calculator to find the following. Write the answers in rectangular form.

10.42(005 %T + isin 3777)

(@) (9.3 cis 125.2°)(2.7 cis 49.8°) (b)
5.21 (cos % + i sin %)

(a) (9.3 cis 125.2°)(2.7 cis 49.8°)
— 9.3(2.7) cis(125.2° + 49.8°)

Product theorem

the arguments.

Multiply the absolute = 25.11cis 175°
values and add

Multiply. Add.

Equivalent form

=25.11(cos 175° + i sin 175°)

Use a calculator.

~ 25.11[ —0.99619470 + i(0.08715574) ]
~ —25.0144 + 2.1885i

Rectangular form

10.42(005 %TW =+ isin 3{)

(b)
5.21(cos T +isin %)

() )
T 501 [\q T 5) Ty T s

Quotient theorem

) 117T+ 117 3w _ 157 7 _ 4w
Divide the absolute |/ cos 20 £sim 20 472005720
values and subtract
the arguments. ~ —0.3129 + 1.9754i Rectangular form
Now Try Exercises 31 and 33.
Exercises

CONCEPT PREVIEW Fill in the blanks to correctly complete each problem.

1. When multiplying two complex numbers in trigonometric form, we — their
absolute values and their arguments.

2. When dividing two complex numbers in trigonometric form, we __ their
absolute values and their arguments.

3. [5(cos 150° + i sin 150°) ][ 2(cos 30° + i sin 30°) ]
+ i sin )

= (cos

= + i

6(cos 120° + i sin 120°)
2(cos 30° + i sin 30°)

= (cos + i sin )

= + i

5 cis 50,000°

5. cis(—1000°) - cis 1000° -
cis 50,000°

= cis

=5cis
= +

= +
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Find each product. Write answers in rectangular form. See Example 1.

7.
8.
9.
10.

3(cos 60° + i sin 60°) ][
4(cos 30° + i sin 30°) ][
]

12.

13.

15. (5 cis 90°)(3 cis 45°)

8(cos 210° + i sin 210°) ]

V3 cis 45°)(V/3 cis 225°)

[
[
[
[
11. [2(cos 135° + i sin 135°) ]
[
(
(

2(cos 90° + i sin 90°) |
5(cos 120° + i sin 120°) ]
4(cos 60° + i sin 60°) ][ 6(cos 330° + i sin 330°) |
8(cos 300° + i sin 300°) ][ 5(cos 120° + i sin 120°) ]
(cos 225° + i sin 225°) ]
(cos 330° + i sin 330°) ]

14. (V6 cis 120°)[ V6 cis(—30°) |

16. (3 cis 300°)(7 cis 270°)

Find each quotient. Write answers in rectangular form. In Exercises 23-28, first convert
the numerator and the denominator to trigonometric form. See Example 2.

4(cos 150° + i sin 150°)
2(cos 120° + i sin 120°)

17.

10(cos 50° + i sin 50°)

19.
5(cos 230° + i sin 230°)
3 cis 305°
21, ————
9 cis 65°
8
23.

26.

24

T o1 -iV3
2V6 —2iV2 -3V2 +3iV6

—_— 28

V2-iVe C Ve+iV2

27.

24(cos 150° + i sin 150°)
2(cos 30° + i sin 30°)

12(cos 23° + i sin 23°)
" 6(cos 293° + i sin 293°)

16 cis 310°
8 cis 70°
—i

25. ——
1+

EE] Use a calculator to perform the indicated operations. Write answers in rectangular form,
expressing real and imaginary parts to four decimal places. See Example 3.

29. [2.5(cos 35° + isin 35°)][3.0(cos 50° + i sin 50°) ]

30. [4.6(cos 12° + isin 12°)][2.0(cos 13° + i sin 13°) ]

31. (12cis 18.5°)(3 cis 12.5°)

.. 2
. 45(cos§+zsm%>

22.5 (cos %’T + isin 3%)

5 |?
35. |2cis—
[ cis = }

Work each problem.

32. (4cis 19.25%)(7 cis 41.75%)

21 . . 2w
30(cos = + i sin =
34. ( > > )

10(cos 7+ isin %)

7 2
36. [24.3 cis —”}
12

37. Note that (rcis 0)2 = (rcis 0)(rcis 0) = r?cis(0 + 0) = r? cis 26. Explain how
we can square a complex number in trigonometric form. (In the next section, we will
develop this idea more fully.)

38. Without actually performing the operations, state why the following products are
the same.

[2(cos 45° + i sin45°)] + [5(cos 90° + i sin 90°) ]
and [ 2[cos(—315°) + i sin(—315°)]] - [5[cos(~270%) + i sin(—270°)] |

39. Show that% = %(COS 6 — isin ), where z = r(cos 6 + i sin 6).
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40. The complex conjugate of r(cos 6 + i sin 6) is r(cos @ — i sin §). Use these trigo-
nometric forms to show that the product of complex conjugates is always a real
number.

(Modeling) Electrical Current Solve each problem.

41. The alternating current in an electric inductor is / = % amperes, where E is voltage
and Z = R + X;i is impedance. If E = 8(cos 20° + i sin 20°), R = 6, and X, = 3,
find the current. Give the answer in rectangular form, with real and imaginary parts
to the nearest hundredth.

42. The current / in a circuit with voltage E, resistance R, capacitive reactance X,, and
inductive reactance X; is

E

I=——F———.
R+ (X, — X,)i

Find 7 if E = 12(cos 25° + i sin 25°), R = 3, X, = 4, and X, = 6. Give the answer
in rectangular form, with real and imaginary parts to the nearest tenth.

(Modeling) Impedance In the parallel electrical circuit
shown in the figure, the impedance Z can be calculated

using the equation
1
Z=——— 60 Q
20 Q

1 1’
— + —
Zy 7
where Z, and Z, are the impedances for the branches
of the circuit. iy S @
. . . 50 Q
43. If Z, = 50 + 25i and Z, = 60 + 20i, approximate 25 Q)
Z to the nearest hundredth.
44. Determine the angle 6, to the nearest hundredth, for &u)

the value of Z found in Exercise 43.

Relating Concepts

For individual or collaborative investigation (Exercises 45-52)
Consider the following complex numbers, and work Exercises 45-52 in order.
w=—1+i and z=-1—1i

45. Multiply w and z using their rectangular forms and the FOIL method. Leave the
product in rectangular form.

46. Find the trigonometric forms of w and z.

47. Multiply w and z using their trigonometric forms and the method described in
this section.

48. Use the result of Exercise 47 to find the rectangular form of wz. How does this
compare to the result in Exercise 45?

49. Find the quotient VZ*V using their rectangular forms and multiplying both the
numerator and the denominator by the conjugate of the denominator. Leave
the quotient in rectangular form.

50. Use the trigonometric forms of w and z, found in Exercise 46, to divide w by z
using the method described in this section.

51. Use the result in Exercise 50 to find the rectangular form of %

52. How does the result in Exercise 51 compare to the result in Exercise 49?
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De Moivre’'s Theorem; Powers and Roots
of Complex Numbers

Powers of Complex Powers of Complex Numbers (De Moivre's Theorem)  Because raising

Numbers (De Moivre's e . L

Theorem) a number to a positive integer power is a repeated application of the product
rule, it would seem likely that a theorem for finding powers of complex numbers

Roots of Complex

RS exists. Consider the following.
[r(cos® +isinf)]’
= [r(cos@ +isin@)]|[r(cosf +isinf)] a*=a-a
=r-r[cos(f +0) +isin(0 +6)] Product theorem
= r’(cos 26 + i sin 26) Multiply and add.
In the same way,
[r(cos@ +isin6)]® isequivalentto r’(cos 36 + isin36).

These results suggest the following theorem for positive integer values of n.
Although the theorem is stated and can be proved for all n, we use it only for
positive integer values of n and their reciprocals.

De Moivre's Theorem
Abraham De Moivre If (cos 6 + i sin €) is a complex number, and if 7 is any real number, then
(1667-1754) the following holds.
Named after this French expatriate [r (cos 0 + isin 0)]n = pn ( cos nO + isin n0)
friend of Isaac Newton, De Moivre’s
theorem relates complex numbers In compact form, this is written

and trigonometry. [r cis 0]" = r*(cis n®).

Finding a Power of a Complex Number

Find (1 +i \/3)8 and write the answer in rectangular form.

Using earlier methods, write 1 + i \/3 in trigonometric form.
2(cos 60° + isin 60°)  Trigonometric form of 1 + i V3
Now, apply De Moivre’s theorem.
(1+iV3)
= [2(cos 60° + i sin 60°) |3 Trigonometric form

= 28[008(8 - 60°) + isin(8 - 60°)] De Moivre’s theorem

= 256(cos 480° + i sin 430°) Apply the exponent and multiply.
= 256(cos 120° + i sin 120°) 480° and 120° are coterminal.
1 \V3
=256 —~+i—— cos 120° = =33 sin 120° = 5>
2 2 - -
= —128 + 1281'\/5 Rectangular form

Now Try Exercise 13.
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Roots of Complex Numbers  Every nonzero complex number has exactly
n distinct complex nth roots. De Moivre’s theorem can be extended to find all nth
roots of a complex number.

nth Root

For a positive integer n, the complex number a + bi is an nth root of the
complex number x + yi if the following holds.

(a + bi)" =x + yi

To find the three complex cube roots of 8(cos 135° + i sin 135°), for example,
look for a complex number, say r(cos « + i sin a), that will satisfy

[r(cos a +isina)]? = 8(cos 135° + i sin 135°).
By De Moivre’s theorem, this equation becomes
r3(cos 3a + i sin 3a) = 8(cos 135° + i sin 135°).

Set 3 = 8 and cos 3a + i sin 3a = cos 135° + i sin 135°, to satisfy this equa-
tion. The first of these conditions implies that r = 2, and the second implies that

cos 3o = cos 135° and sin 3a = sin 135°.

For these equations to be satisfied, 3a must represent an angle that is
coterminal with 135°. Therefore, we must have

3a = 135° + 360° - k, k any integer

135° + 360° - k
a:—

or ,
3

k any integer.

Now, let k take on the integer values 0, 1, and 2.

If k = 0, then a=%—45°.
135° +360° - 1 495°

Ifk =1 then a=i T30 1 4957 .
3 3
135° +360° - 2 855°

Ifk=2then «a= 3 = 3 = 285°.

In the same way, a« = 405° when k = 3. But note that 405° = 45° + 360°, so
sin 405° = sin 45° and cos 405° = cos 45°. Similarly, if k = 4, then a = 525°,
which has the same sine and cosine values as 165°. Continuing with larger val-
ues of k would repeat solutions already found. Therefore, all of the cube roots
(three of them) can be found by letting k£ = 0, 1, and 2, respectively.

When k = 0, the root is  2(cos 45° + i sin 45°).
When k = 1, the rootis  2(cos 165° + i sin 165°).
When k = 2, the root is  2(cos 285° + i sin 285°).

In summary, we see that 2(cos 45° + i sin 45°), 2(cos 165° + i sin 165°), and
2(cos 285° + i sin 285°) are the three cube roots of 8(cos 135° + i sin 135°).
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nth Root Theorem

If n is any positive integer, r is a positive real number, and 6 is in degrees,
then the nonzero complex number r(cos 6 + i sin ) has exactly n distinct
nth roots, given by the following.

%(cos a +isina) or Vr cis a,

where

0 + 360° - k (7] 360° - k
a=——— o a=—+—— k=0,1,2,....,n—1
n n n

If 6 is in radians, then

0 + 2wk 0 2wk
a=— o a=—+—, k=0,1,2, ,n—1
n n n
Finding Complex Roots

Find the two square roots of 4i. Write the roots in rectangular form.

First write 4i in trigonometric form.
T .. T
4 (COS 5 + isin 2) Trigonometric form (using radian measure)
Here r =4 and 0 = g The square roots have absolute value \/Z = 2 and argu-

ments as follows.
m
a:£+ﬂzl+ﬂk Be careful
2 2 4 simplifying here.

Because there are two square roots, let k = 0 and 1.

T T

If k=0, th =—4+7-:-0=—.
en « 4 T 4

T S5

Ifk=1,then a=—+m7+1=—.
4 4

. . T .5 .
Using these values for «, the square roots are 2 cis 7 and 2 cis 777, which can
be written in rectangular form as

\/24—[\/2 and —\/i—i\ﬁ.

Now Try Exercise 23(a).

Finding Complex Roots
Find all fourth roots of —8 + 8i\/3. Write the roots in rectangular form.

-8 + Si\/g = 16 cis 120° Write in trigonometric form.

Here r = 16 and 6 = 120°. The fourth roots of this number have absolute value
\4/% = 2 and arguments as follows.
_120° | 360° - k

+ = 30°+90° - k
4 4

o
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Because there are four fourth roots, let k = 0, 1, 2,

If k=0,then « = 30°+ 90°
Ifk=1,then « = 30°+ 90°
If k=2,then « = 30°+ 90°
If k=3,then « = 30°+ 90°

381

and 3.

- 0 =30°
- 1 =120°
-2 =210
- 3 =300°

Using these angles, the fourth roots are

2 ¢is 30°, 2cis 120°, 2cis210°, and 2 cis 300°.

These four roots can be written in rectangular form as
V3+i, —1+iV3, —V3—i and 1-iV3,

The graphs of these roots lie on a circle with center at the origin and radius 2.
See Figure 12. The roots are equally spaced about the circle, 90° apart. (For con-
venience, we label the real axis x and the imaginary axis y.)

y

2 cis 12022
<4 2 cis 30°
30°
X

—t— :

2 cis 210°
2 cis 300°

;)

Figure12 Now Try Exercise 29.

Solving an Equation (Complex Roots)

Find all complex number solutions of x> — 1 = 0. Graph them as vectors in the
complex plane.

Write the equation as
x =1

xX—1=0, or

Because 1° = 1, there is a real number solution, 1, and it is the only one. There are
a total of five complex number solutions. To find these solutions, first write 1 in
trigonometric form.

1=1+0i=1(cos 0° + isin 0°)

Trigonometric form
The absolute value of the fifth roots is /1 = 1. The arguments are given by
0°+72°k k=0,1,2,3,and 4.
By using these arguments, we find that the fifth roots are as follows.
Real solution — 1(cos 0° + i sin 0°),
1(cos 72° + i sin 72°),
1(cos 144° + i sin 144°),
1(cos 216° + i sin 216°),
1(cos 288° + i sin 288°)
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The solution set of the equation can be written as

{cis 0°, cis 72°, cis 144°, cis 216°, cis 288°}.

The first of these roots is the real number 1. The others cannot easily be
expressed in rectangular form but can be approximated using a calculator.

The tips of the arrows representing the five fifth roots all lie on a unit circle
and are equally spaced around it every 72°, as shown in Figure 13.

1(cos 144° + i sin 144°)

y

1 1(cos 72° +i sin 72°)

Figure13

X
1(cos 0° + i sin 0°)

1(cos 288° + i sin 288°)

Now Try Exercise 41.

Exercises

CONCEPT PREVIEW Fill in the blanks to correctly complete each problem.

1. If z = 3(cos 30° + i sin 30°), it

Z

3.

3

follows that

= + isin

(cos

(

J’_

+i

)

[cos 6° + isin 6°]3

= cos + i sin

+ i

i,orsimply — .

2. If we are given
z = 16(cos 80° + i sin 80°),

then any fourth root of z has r = ,
and the fourth root with least positive
argumenthas 6 = .

Based on the result of Exercise 3,
cos 6° + i sin 6°

root of

is a(n)

CONCEPT PREVIEW Answer each question.

5. How many real tenth roots of 1 exist?

6.

How many nonreal complex tenth roots
of 1 exist?

Find each power. Write answers in rectangular form. See Example 1.

[3(cos 30° + i sin 30°) ]3

9. (cos 45° + isin 45°)%

11.

13.

15.

17.

[3 cis 100°]3

(V3+i)
(2v2-2v2)

(=2 — 2i)°

[2(cos 135° + i sin 135°) |*

10. [2(cos 120° + i sin 120°) J*
12. [3cis40°)°
4. (2-2

\ S

16.

V)
%)

(

[ [\
_|_

18. /)’
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For each of the following, (a) find all cube roots of each complex number. Write answers
in trigonometric form. (b) Graph each cube root as a vector in the complex plane.
See Examples 2 and 3.

19. cos 0° +isin 0° 20. cos 90° + i sin 90° 21. 8cis 60°
22. 27 cis 300° 23. —8i 24. 27i
25. —64 26. 27 27. 1+i\V3

28. 2-2i\/3 29. —2\/3 +2i 30. V3—i

Find and graph all specified roots of 1.
31. second (square) 32. fourth 33. sixth

Find and graph all specified roots of i.
34. second (square) 35. third (cube) 36. fourth

Find all complex number solutions of each equation. Write answers in trigonometric
form. See Example 4.

3. B -1=0 38. 2 +1=0 39. P +i=0
40. x*+i=0 41. ¥ -8=0 42. ¥ +27=0
43. x*+1=0 4. x*+16=0 45. x*—i=0
46. x5—i=0 47. - (4+4iV3)=0 48. x*—(8+8iV3)=0

Solve each problem.

49. Solve the cubic equation

=1

by writing it as x> — 1 = 0, factoring the left side as the difference of two cubes,
and using the zero-factor property. Apply the quadratic formula as needed. Then
compare the solutions to those of Exercise 37.

50. Solve the cubic equation
x*=-27

by writing it as x> 4+ 27 = 0, factoring the left side as the sum of two cubes, and
using the zero-factor property. Apply the quadratic formula as needed. Then com-
pare the solutions to those of Exercise 42.

51. Mandelbrot Set The fractal known as the Man-
delbrot set is shown in the figure. To determine
whether a complex number z = a + bi is in this
set, perform the following sequence of calcula-
tions. Repeatedly compute

z, 22+z, (22+z2)+z,
[(2+2)2+z)>+z....

In a manner analogous to the Julia set, the complex number z does not belong to the
Mandelbrot set if any of the resulting absolute values exceeds 2. Otherwise z is in
the set and the point (a, b) should be shaded in the graph. Determine whether the
following numbers belong to the Mandelbrot set. (Source: Lauwerier, H., Fractals,
Princeton University Press.)

(@ z=0+0i (b) z=1-1i (¢) z=—0.5i
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52. Basins of Attraction The fractal shown in the figure

A s3.

is the solution to Cayley’s problem of determining
the basins of attraction for the cube roots of unity.
The three cube roots of unity are

V3

w, =1, w2=—5+71,

2
1 V3

and W3=—E—T'.

A fractal of this type can be generated by repeatedly evaluating the function

22 +1
3z

f(2)

where z is a complex number. We begin by picking z; = a + bi and successively
computing z, = f(z1), 23 = f(22), 24 = f(23), . . . . Suppose that if the resulting val-
ues of f(z) approach wy, we color the pixel at (a, b) red. If they approach w,, we
color it blue, and if they approach w;, we color it yellow. If this process continues
for a large number of different z;, a fractal similar to the figure will appear. Deter-
mine the appropriate color of the pixel for each value of z;. (Source: Crownover, R.,
Introduction to Fractals and Chaos, Jones and Bartlett Publishers.)

@z =1 (b) z,=2+1i © z1=—-1—1i
The screens here illustrate how a pentagon can be graphed using a graphing calculator.

Note that a pentagon has five sides, and the Tstep is 35ﬂ = 72. The display at the bottom

of the graph screen indicates that one fifth root of 1 is 1 + 0i = 1. Use this technique to
find all fifth roots of 1, and express the real and imaginary parts in decimal form.

BRI FLAT STE S BEREE AP @

~/

Yacl=1 la'-‘ Yoy

The calculator is in parametric,
degree, and connected graph modes.

@ 54. Use the method of Exercise 53 to find the first three of the ten 10th roots of 1.

Use a calculator to find all solutions of each equation in rectangular form.

55. x2=3+2i=0 56. X>+2—-i=0
57. ¥ +2+3i=0 58. x*+4-5i=0

Relating Concepts

For individual or collaborative investigation (Exercises 59-62)

In earlier work we derived identities, or formulas, for cos 260 and sin 26. These
identities can also be derived using De Moivre’s theorem. Work Exercises 59-62 in
order, to see how this is done.

59. De Moivre’s theorem states that (cos 6 + i sin 6)% =

60. Expand the left side of the equation in Exercise 59 as a binomial and combine
like terms to write the left side in the form a + bi.

61. Use the result of Exercise 60 to obtain the double-angle formula for cosine.

62. Repeat Exercise 61, but find the double-angle formula for sine.
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Chapter 8 Quiz (sections 8.1-8.4)

1. Find each product or quotient. Simplify the answers.

V-24-V-3 b >
(a) (b) 7

2. Write each of the following in rectangular form for the complex numbers
w=3+5 and z=-—-4+1i
(a) w + z (and give a geometric representation)
) w—z (©) wz d) %
3. Write each of the following in rectangular form.
(@ (1—i)? (b) %
4. Solve 3x* — x + 4 = 0 over the set of complex numbers.

5. Write each complex number in trigonometric (polar) form, where 0° =< 6 < 360°.

(a) —4i b 1-i\V3 (© —3—i
6. Write each complex number in rectangular form.

(a) 4(cos 60° + i sin 60°) (b) 5cis 130°

(¢) 7(cos270° + i sin 270°) (d) 2cis0°

7. Write each of the following in the form specified for the complex numbers

w = 12(cos 80° + i sin 80°) and z = 3(cos 50° + i sin 50°).
(a) wz (trigonometric form) (b) % (rectangular form)

(¢) 23 (rectangular form) (d) w3 (rectangular form)

8. Find the four complex fourth roots of —16. Write them in both trigonometric and
rectangular forms.

—

Polar Equations and Graphs

Polar Coordinate
System

Graphs of Polar
Equations
Conversion from
Polar to Rectangular
Equations
Classification of Polar
Equations

Polar Coordinate System  Previously we have used the rectangular coor-
dinate system to graph points and equations. In the rectangular coordinate system,
each point in the plane is specified by giving two numbers (x, y). These repre-
sent the directed distances from a pair of perpendicular axes, the x-axis and
the y-axis.

Now we consider the polar coordinate system which is based on a point,
called the pole, and a ray, called the polar axis. The polar axis is usually drawn
in the direction of the positive x-axis, as shown in Figure 14.

Pole

Polar axis

Figure 14
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In Figure 15 the pole has been placed at the origin of a rectangular coordi-
nate system so that the polar axis coincides with the positive x-axis. Point P has
rectangular coordinates (x, y). Point P can also be located by giving the directed
angle 6 from the positive x-axis to ray OP and the directed distance r from the
pole to point P. The ordered pair (r, 6) gives the polar coordinates of point P.
If » > 0 then point P lies on the terminal side of 0, and if » < 0 then point P lies
on the ray pointing in the opposite direction of the terminal side of 6, a distance
| 7| from the pole.

Figure 16 shows rectangular axes superimposed on a polar coordinate grid.

P(x,y)

TP(r, 0)

r : r>0
R4 x
|

0 o N

0 X
Figure 15 Figure 16

Rectangular and Polar Coordinates

If a point has rectangular coordinates (x,y) and polar coordinates (r, ),
then these coordinates are related as follows.

X =rcos0 y = rsin 0

r’=x*+y? tan0=%, ifx #0

Plotting Points with Polar Coordinates

Plot each point in the polar coordinate system. Then determine the rectangular
coordinates of each point.

2
@) P(2,30°) (b) Q<—4, 377) © R<5, —Z)
y (a) In the point P(2, 30°), r = 2 and 6 = 30°, so P is located 2 units from the

origin in the positive direction on a ray making a 30° angle with the polar
axis, as shown in Figure 17.
We find the rectangular coordinates as follows.

x=rcosf y=rsinf Conversion equations
x =2 cos 30° y = 2sin 30° Substitute.
V3 1
- x=2 > y=2 > Evaluate the functions.
Figure17
X = \/g y=1 Multiply.

The rectangular coordinates are (\ﬁ 1).



Figure 18

Figure19

LOOKING AHEAD TO CALCULUS
Techniques studied in calculus
associated with derivatives and
integrals provide methods of finding
slopes of tangent lines to polar curves,
areas bounded by such curves, and
lengths of their arcs.
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(b) In the point Q ( —4, 2777) ris negative, so Q is 4 units in the opposite direction

from the pole on an extension of the 2777 ray. See Figure 18. The rectangular
coordinates are

2
and y = —4sin oy <\6> = -2V3.

(¢) Point R(S, —%) is shown in Figure 19. Because 6 is negative, the angle is

measured in the clockwise direction.

=\ 5V2 a 5V2
x=5cos| ——|]=—— and y=5sin| — |=———

4 2 4 2

Now Try Exercises 13(a), (c), 15(a), (c), and 21(a), (c).

While a given point in the plane can have only one pair of rectangular
coordinates, this same point can have an infinite number of pairs of polar
coordinates. For example, (2, 30°) locates the same point as

(2,390°), (2,-330°), and (—2,210°).

Giving Alternative Forms for Coordinates of Points
Determine the following.

(a) Three other pairs of polar coordinates for the point P(3, 140°)

(b) Two pairs of polar coordinates for the point with rectangular coordinates

(=1, 1)

(a) Three pairs that could be used for the point are (3, —220°), (=3, 320°), and
(—3, —40°). See Figure 20.

Figure 20 Figure 21

(b) As shown in Figure 21, the point (—1, 1) lies in the second quadrant.
Because tan 0 = _Ll = —1, one possible value for 0 is 135°. Also,

=V = VR VA

Two pairs of polar coordinates are (\/2 135") and (— \/2 315").

Now Try Exercises 13(b), 15(b), 21(b), and 25.
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Graphs of Polar Equations = An equation in the variables x and y is a
rectangular (or Cartesian) equation. An equation in which » and 6 are the vari-
ables instead of x and y is a polar equation.

r=3sinf, r=2+cosfh, r=46 Polarequations

Although the rectangular forms of lines and circles are the ones most often
encountered, they can also be defined in terms of polar coordinates. The polar
equation of the line ax + by = ¢ can be derived as follows.

Line: ax + by = ¢ Rectangular equation of a line
a(rcos 0) + b(rsin @) = ¢ Convert to polar coordinates.

r(acos® + bsinh) =c Factorout r.

This is the polar c ] _ -
equation of r= - Polar equation of a line
a,?ﬂ,y:(: acos 0 + bsin 0

Circle: x2+y2= a? Rectangular equation of a circle

re= a2 x2 + },2 =r2

These are polar
equations of
X2+ y2= a2

Polar equation of a circle; r can be
negative in polar coordinates.

We use these forms in the next example.

Finding Polar Equations of Lines and Circles

For each rectangular equation, give the equivalent polar equation and sketch its

y graph.
@ y=x—-3 (b) x2+y2=4
x (a) This is the equation of a line.
y=x—3
_ Write in standard form
x—y=3 e
y = x =3 (rectangular) ax + by =c.
3 rcos@ —rsinfh =3 Substitute for x and y.
"= CosO—sin0 (polar) .
T r(cos@ —sinf) =3 Factor out r.
(a)
3 . .
r = —————— Divide by cos 6 — sin 6.

HERRAL FLOAT ALTOD BEE. DACCEW MP u

cos @ —sin 0

i | A traditional graph is shown in Figure 22(a), and a calculator graph is shown
i in Figure 22(b).

L) S R, S

(b) The graph of x> + y?> = 4 is a circle with center at the origin and radius 2.

x> +yr=4

In polar
coordinates, we
may have r < 0.

— 2 2 = 4
Polar graphing mode ! 4 4y 7

(b) r=2 or r=-2

Figure 22 The graphs of » = 2 and r = —2 coincide. See Figure 23 on the next page.
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Fil 4.1

—4.1

x2+ y2 = 4 (rectangular)

r = 2 (polar) Polar graphing mode
(@) (b)

Figure 23
Now Try Exercises 37 and 39.

To graph polar equations, evaluate r for various values of 6 until a pattern
appears, and then join the points with a smooth curve. The next four examples
illustrate curves that are not usually discussed when rectangular coordinates are
covered. (Using graphing calculators makes the task of graphing them quite a bit
easier than using traditional point-plotting methods.)

Graphing a Polar Equation (Cardioid)
Graph r =1 + cos 6.

To graph this equation, find some ordered pairs as in the table. Once | We choose degree mode and graph values
the pattern of values of r becomes clear, it is not necessary to find more | of 6 in the interval [0°, 360°]. The screen
ordered pairs. The table includes approximate values for cos 6 and r. in Figure 25(a) shows the choices needed
to generate the graph in Figure 25(b).

(7] cosO | r=1+ cosf (7] cosO | r=1+ cos O
0° 1 2 135° | —0.7 0.3
30° 0.9 1.9 150° | —0.9 0.1
45° 0.7 1.7 180° | —1 0
60° 0.5 1.5 270° 0 1
90° 0 1 315° 0.7 1.7
120° | —0.5 0.5 330° 0.9 1.9 Vome g

(@)
Connect the points in order—from (2, 0°) to (1.9, 30°) to (1.7, 45°)

and so on. See Figure 24. This curve is called a cardioid because of
its heart shape. The curve has been graphed on a polar grid.

TRl Frasia) 2.05
1

| }
If’_.\‘[
33 L

3.3

90°

?.‘7-"4

F
—

-205

Polar graphing mode
(b)
Figure 25

180°

270°

Figure 24 Now Try Exercise 47.
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Graphing a Polar Equation (Rose)

Graph r = 3 cos 26.

Because the argument is 20, the graph requires a greater number
of points than when the argument is just . We complete the table using selected
angle measures through 360° in order to see the pattern of the graph. Approxi-
mate values in the table have been rounded to the nearest tenth.

(7] 20 cos 20 | r = 3 cos 20 (7] 20 cos20 | r = 3 cos 260
0° 0° 1 3 120° | 240° -0.5 -1.5

15° 30° 0.9 2.6 135° | 270° 0 0

30° 60° 0.5 1.5 180° | 360° 1 3

45° 90° 0 0 225° | 450° 0 0

60° 120° —0.5 -1.5 270° | 540° -1 =3

75° 150° -0.9 —2.6 315° | 630° 0 0

90° 180° -1 =3 360° | 720° 1 3

Plotting these points in order gives the graph of a four-leaved rose. Note in Fig-
ure 26(a) how the graph is developed with a continuous curve, beginning with
the upper half of the right horizontal leaf and ending with the lower half of that
leaf. As the graph is traced, the curve goes through the pole four times. This can
be seen as a calculator graphs the curve. See Figure 26(b).

The equation r = 3 cos 20 in Example 5 has a graph that belongs to

180°-

90°

270°
(a)

HERFAL FLOAT &UTD REHL BESREE HP ﬂ

—41

Figure 26

Polar graphing mode

(b)

Now Try Exercise 51.

To sketch the graph of » = 3 cos 26 in polar coordinates, it may be
helpful to first sketch the graph of y = 3 cos 2x in rectangular coordinates.
The minimum and maximum values of this function may be used to deter-
mine the location of the tips of the leaves, and the x-intercepts of this function
may be used to determine where the polar graph passes through the pole.

family of curves called roses.

r=asinn@® and r = acosn@ Equations of roses

e The graph has n leaves if n is odd, and 2n leaves if n is even.

e The absolute value of a determines the length of the leaves.
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Graphing a Polar Equation (Lemniscate)
Graph 2 = cos 26.

Complete a table of ordered pairs, and sketch the graph, as | To graph r? = cos 26 with a graphing calculator,
in Figure 27. The point (—1, 0°), with r negative, may be | first solve for r by considering both square roots.

plotted as (1, 180°). Also, (—0.7,30°) may be plotted as | Enter the two polar equations as
(0.7, 210°), and so on.

Values of 6 for 45° < 6 < 135° are not included in the rn="Vcos20 and r,=—"Vcos26.

table because the corresponding values of cos 26 are negative
(quadrants II and IIT) and so do not have real square roots.
Values of 6 greater than 180° give 26 greater than 360° and
would repeat the points already found. This curve is called

See Figures 28(a) and (b).

a lemniscate.
0 0°| 30° |[45°|135°| 150° | 180°
20 0°| 60° |[90°|270°| 300° | 360°
cos 260 1 0.5 0 0 0.5 1
r = ivcos 260 +1 +0.7 0 0 +0.7 +1

180°

90°

0°

)
ro = —"Vcos 20 is in red.
270° (b)

Figure 27 Figure 28

Now Try Exercise 53.

Graphing a Polar Equation (Spiral of Archimedes)

Graph r = 26 (with § measured in radians).

Some ordered pairs are shown in the table. Because r = 26 does
not involve a trigonometric function of 6, we must also consider negative values
of 0. The graph in Figure 29(a) on the next page is a spiral of Archimedes.
Figure 29(b) shows a calculator graph of this spiral.

(7] 0
(radians) | r = 20 | (radians) | r = 20
—7 -6.3 2 2.1
T T
T2 —3.1 2 3.1 Radian measures
_ % ~16 - 6.3 have been rounded.
37
0 0 - 9.4
5 1 2 12.6
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More of the spiral is shown in this
calculator graph, with —87 = 6 = 8.

(b)
Figure 29 +/ Now Try Exercise 59.

Conversion from Polar to Rectangular Equations

= vih=:t Converting a Polar Equation to a Rectangular Equation

. 4 . . L
For the equation r = ;=55 Write an equivalent equation in rectangular coor-

dinates, and graph.

SOLUTION r= 1+4m Polar equation
r(1 +sinf) =4 Multiply by 1 + sin 6.
r+rsinf =4 Distributive property
Vxr+y>2+y=4 Letr = Vx?+ yZand rsin § = y.
Vxr+y2=4—y Subtract y.
x>+ yr=(4—-y)? Square each side.
x2+y2=16 — 8y + y? Expand the right side.
x2=—-8y+ 16 Subtract y°.
x2=-8(y—2) Rectangular equation
Figure 30 The final equation represents a parabola and is graphed in Figure 30.

+/ Now Try Exercise 63.
PRBRERLE K ANTI N ERL DENELE HE & The conversion in Example 8 is not necessary when using a graphing cal-

culator. Figure 31 shows the graph of r =
calculator in polar mode. m

1 +4Sin 9° graphed directly with the

10+ -"”HI"-'"“ 10

Classification of Polar Equations = The table on the next page summa-
rizes common polar graphs and forms of their equations. In addition to circles,
lemniscates, and roses, we include limagons. Cardioids are a special case of
0° < 0 = 360° limacons, where |%‘ = 1.

|
S

Figure 31

NOTE Some other polar curves are the cissoid, kappa curve, conchoid,
trisectrix, cruciform, strophoid, and lituus. Refer to older textbooks on
analytic geometry or the Internet to investigate them.
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Polar Graphs and Forms of Equations

Circles and Lemniscates

Circles Lemniscates

I~ D
et |

r=acosf r=asinf r2 = a2 sin 26 r2 = a?cos 26

]
i

Limacons

r=atbsing or r=axbcosb

( N
b

J¥e

a a

S —=1 1<—-<2

! b b
Rose Curves
2n leaves if n is even, n = 2 n leaves if n is odd

n=2 n=4 n=3 n=>5
N2 Q.
N q-
r = a sin nf r=acos nf r=acos nf r = a sin nf

Exercises

CONCEPT PREVIEW Fill in the blank to correctly complete each sentence.
1. For the polar equation r = 3 cos 6, if § = 60°, then r = .
2. For the polar equation » = 2 sin 260, if 0 = 15°, then r = _____.
3. For the polar equation r> = 4 sin 20, if = 15°, then r = .
4

. For the polar equation r2 = —2 cos 26, if 6 = 60°, then r = .
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CONCEPT PREVIEW For each point given in polar coordinates, state the quadrant in
which the point lies if it is graphed in a rectangular coordinate system.

5. (5,135°) 6. (2,60°) 7. (6, —-30°) 8. (4.6,213°)
CONCEPT PREVIEW For each point given in polar coordinates, state the axis on which
the point lies if it is graphed in a rectangular coordinate system. Also state whether it is

on the positive portion or the negative portion of the axis. (For example, (5, 0°) lies on
the positive x-axis.)

9. (7,360°) 10. (4, 180°) 11. (2, —90°) 12. (8,450°)

For each pair of polar coordinates, (a) plot the point, (b) give two other pairs of polar
coordinates for the point, and (c) give the rectangular coordinates for the point. See
Examples 1 and 2.

13. (1,45%) 14. (3,120°) 15. (-2,135°)  16. (—4,30°)
17. (5, —60°) 18. (2, —45°) 19. (=3,-210°)  20. (-1, —120°)

S5 3 T S5
21. — 22. (4,— 23. | =2, — 24. | —5,—
(3’3> <2> 3( ’3) (5’6>

For each pair of rectangular coordinates, (a) plot the point and (b) give two pairs of
polar coordinates for the point, where 0° = 6 < 360°. See Example 2(b).

25. (1,-1) 26. (1. 1) 27. (0.3)

28. (0, -3) 29. (V2,V2) 30. (-V2.V2)
3L <\/§ 3) 32 <—\/§,—1> 33. (3,0)

22 27 2
1
34. (-2,0) 3s. —i—ﬁ 36. —,—ﬁ
2 2 2 2

For each rectangular equation, give the equivalent polar equation and sketch its graph.
See Example 3.

37. x—y=4 38. x+y=-7 39. x2+y2=16
40. x> +y?2=9 41. 2x+y=5 42. 3x—2y=06

Concept Check Match each equation with its polar graph from choices A—D.
2

43. r=3 44. r = cos 36 45. r = cos 26 46. r=——"
cos 0 +sin 6

A. 90° B. 90°

180

270°

D. 90°

270°



8.5 Polar Equations and Graphs | 395

Graph each polar equation. In Exercises 47-56, also identify the type of polar graph.
See Examples 4—6.

47. r=2+ 2cos 6 48. r=8+ 6cos 6
49. r=3+ cos @ 50. r=2—cosf
51. r=4cos 26 52. r=3cos 56
53. r?=4cos 20 54. r? = 4sin 20
55. r=4—4cos6 56. r=6—3cos 6
57. r=2sin0tan 0 5. = <520
cos 0

This i issoid.
(This is a cissold.) (This is a cissoid with a loop.)

Graph each spiral of Archimedes. See Example 7.

59. r = 60 (Use both positive and nonpositive values.)

I 60. r = —46 (Use a graphing calculator in a window of [—30,30] by [—30, 30], in
radian mode, and 6 in [ —127, 127].)

For each equation, find an equivalent equation in rectangular coordinates, and graph.
See Example 8.

61. r=2sin6 62. r=2cos#f
63 -2 64 -3
T —cos 6 T —ing
65 2 6 —2sin6 66. 3
. r=— — . r=—""
g cos s 4 cosf —sin6
67. r=2sech 68. r=—5csch
2 2
69. r=——"— 70. r=——"——
cos O + sin 0 2 cos 6 + sin 6

Solve each problem.

71. Find the polar equation of the line that passes through the points (1,0°) and
(2,90°).

72. Explain how to plot a point (r, ) in polar coordinates, if » < 0 and 0 is in degrees.

Concept Check The polar graphs in this section exhibit symmetry. Visualize an xy-plane
superimposed on the polar coordinate system, with the pole at the origin and the polar
axis on the positive x-axis. Then a polar graph may be symmetric with respect to the

x-axis (the polar axis), the y-axis (the line 6 = %), or the origin (the pole).

73. Complete the missing ordered pairs in the graphs below.

(a) y (b) ¥ (c) y
~l «o
(.) r.6) (r, 0)
()
6 +0
—>x Ko AN
X \
T -0 —0
~T .) (.)
()
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74. Based on the results in Exercise 73, fill in the blank(s) to correctly complete each

sentence.
(a) The graph of r = f(6) is symmetric with respect to the polar axis if substitution
of for 0 leads to an equivalent equation.

(b)

(0

(d)

(e)

®

(€9)

The graph of r = f(6) is symmetric with respect to the vertical line § = 7 if
substitution of for 0 leads to an equivalent equation.

Alternatively, the graph of r = f(6) is symmetric with respect to the vertical
line 6 = g if substitution of for r and

equation.

for 6 leads to an equivalent

The graph of r = f(6) is symmetric with respect to the pole if substitution
of for r leads to an equivalent equation.

Alternatively, the graph of r = f(6) is symmetric with respect to the pole if
substitution of for 6 leads to an equivalent equation.

In general, the completed statements in parts (a)—(e) mean that the graphs of
polar equations of the form r = a & b cos 0 (where a may be 0) are symmetric
with respect to

In general, the completed statements in parts (a)—(e) mean that the graphs of
polar equations of the form r = a & b sin # (where a may be 0) are symmetric
with respect to

I Spirals of Archimedes The graph of r = af in polar coordinates is an example of a
spiral of Archimedes. With a calculator set to radian mode, use the given value of a and
interval of 6 to graph the spiral in the window specified.

75. a=1,0=0 = 4m, 76. a =2, —47 =60 = 47,
[—15,15] by [—15,15] [—30,30] by [ —30,30]

77. a=1.5, =47 =0 < 4, 78. a=-1,0=0= 12,
[—20,20] by [ —20,20] [—40,40] by [ —40, 40]

I Intersection of Polar Curves Find the polar coordinates of the points of intersection of
the given curves for the specified interval of 6.

79. r=4sinf, r=1+ 2sin0; 80. r=3, r=2+2cos#b,
0=60<2m 0° = 6 < 360°
81. r=2+sin6, r=2 + cos 6, 82. r=sin29,r=\/2cos¢9;
0=60<2mw 0=60<mw
E@ (Modeling) Solve each problem. Satellite a e
83. Orbits of Satellites The polar equation Mercury | 0.39 | 0.206
a(l — e?) Venus 0.78 | 0.007
" ¥ ecos 0 Earth 1.00 | 0.017
can be used to graph the orbits of the satellites of our Mars 1.52 | 0.093
sun, where a is the average distance in astronomi-  Jupiter 5.20 | 0.048
cal units from the sun and e is a constant called the Saturn 954 | 0.056

eccentricity. The sun will be located at the pole. The
table lists the values of a and e.

Uranus | 19.20 | 0.047
Neptune | 30.10 | 0.009
Pluto 39.40 | 0.249

Source: Karttunen, H., P. Kroger,
H. Oja, M. Putannen, and K.
Donners (Editors), Fundamental
Astronomy, 4th edition, Springer-
Verlag. Zeilik, M., S. Gregory,
and E. Smith, Introductory
Astronomy and Astrophysics,
Saunders College Publishers.
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(a) Graph the orbits of the four closest satellites on the same polar grid. Choose a
viewing window that results in a graph with nearly circular orbits.

(b) Plot the orbits of Earth, Jupiter, Uranus, and Pluto on the same polar grid. How
does Earth’s distance from the sun compare to the others’ distances from the sun?

(¢) Use graphing to determine whether or not Pluto is always farthest from the sun.
84. Radio Towers and Broadcasting Patterns Radio stations do not always broadcast
in all directions with the same intensity. To avoid interference with an existing sta-
tion to the north, a new station may be licensed to broadcast only east and west.

To create an east-west signal, two radio towers are sometimes used. See the figure.
Locations where the radio signal is received correspond to the interior of the curve

r2 = 40,000 cos 26,

where the polar axis (or positive x-axis) points east.

(a) Graph r? = 40,000 cos 26 for 0° = 0 = 360°, where distances are in miles.
Assuming the radio towers are located near the pole, use the graph to describe the
regions where the signal can be received and where the signal cannot be received.

(b) Suppose a radio signal pattern is given by the following equation. Graph this
pattern and interpret the results.

r? = 22,500 sin 26

Relating Concepts

For individual or collaborative investigation (Exercises 85-92)
In rectangular coordinates, the graph of
ax+by=c

is a horizontal line if a = 0 or a vertical line if b = 0. Work Exercises 85-92 in order,
to determine the general forms of polar equations for horizontal and vertical lines.

85. Begin with the equation y = k, whose graph is a horizontal line. Make a trigo-
nometric substitution for y using » and 6.

86. Solve the equation in Exercise 85 for r.
87. Rewrite the equation in Exercise 86 using the appropriate reciprocal function.

88. Sketch the graph of the equation r = 3 csc 6. What is the corresponding rectan-
gular equation?

89. Begin with the equation x = k, whose graph is a vertical line. Make a trigono-
metric substitution for x using r and 6.

90. Solve the equation in Exercise 89 for r.
91. Rewrite the equation in Exercise 90 using the appropriate reciprocal function.

92. Sketch the graph of » = 3 sec 6. What is the corresponding rectangular equation?
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Parametric Equations, Graphs, and Applications

Basic Concepts Basic Concepts

Parametric Graphs
and Their Rectangular
Equivalents

The Cycloid

Applications of
Parametric Equations

We have graphed sets of ordered pairs that correspond
to a function of the form y = f(x) or r = g(0). Another way to determine a set
of ordered pairs involves the equations x = f(¢) and y = g(t), where ¢ is a real
number in an interval /. Each value of ¢ leads to a corresponding x-value and a
corresponding y-value, and thus to an ordered pair (x, y).

Parametric Equations of a Plane Curve

A plane curve is a set of points (x,y) such that x = f(¢), y = g(#), and
f and g are both defined on an interval /. The equations x = f(¢) and y = g(1)
are parametric equations with parameter #.

FI<)  Graphing calculators are capable of graphing plane curves defined by
parametric equations. The calculator must be set to parametric mode. =

Parametric Graphs and Their Rectangular Equivalents

Graphing a Plane Curve Defined Parametrically

Letx = t?and y = 2t + 3, for tin [ —3, 3]. Graph the set of ordered pairs (x, y).

Make a table of corresponding values of 7, x, and y over
the domain of #. Plot the points as shown in Figure 32.
The graph is a portion of a parabola with horizontal
axis y = 3. The arrowheads indicate the direction the
curve traces as f increases.

for ¢ in [-3, 3]

t X y 0,9
=319 ]| -3
=214 —1
—1 1 1
0|0 3 ) ) N
L)1 5 3 NG 9
2| 4 7 3«‘» 9,-3)
319 9

Figure 32

We set the parameters of the TI-84 Plus as shown to
obtain the graph. See Figure 33.

BEENAL FLOAT SUTH BENL FARIAR 1P

Tstep=, 85 Lo
mine =2
Kmpe= 10
Neclsi

Yaine <&
Ymaw=10 [
Yacl=1 =

Figure 33

Duplicate this graph and observe how the curve is
traced. It should match Figure 32.

Now Try Exercise 9(a).

Finding an Equivalent Rectangular Equation

Find a rectangular equation for the plane curve of Example 1,

x =12

y=2t+3, forzin [—3,3].

To eliminate the parameter ¢, first solve either equation for z.

This equation
leads to a unique
solution for t.

y=2t+ 3 Choose the simpler equation.
2t=y—3
y—3

Subtract 3 and rewrite.

Divide by 2.
2 y
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Now substitute this result into the first equation to eliminate the parameter z.

x =12
()

X = > Substitute for z.
(y — 3)2 a 2 lll

4x = (y —3)%>  Multiply by 4.

This is the equation of a horizontal parabola opening to the right, which agrees
with the graph given in Figure 32. Because 7is in [ —3,3], xis in [0, 9] and
yisin [ =3, 9]. The rectangular equation must be given with restricted domain as

4x = (y —3)?,  forxin[0,9].

Now Try Exercise 9(b).

Graphing a Plane Curve Defined Parametrically
Graph the plane curve defined by x = 2 sin ¢, y = 3 cos t, for 7in [0, 27 ].

To convert to a rectangular equation, it is not productive here
to solve either equation for 7. Instead, we use the fact that sin?t + cos?t = 1 to
apply another approach.

x=2sint y=3cost Givenequations
x?=4sin’t y2=9cos?t Square each side.

2 ,2
xr 5 o ,
Z = sin“ ¢ 5 = cos“t Solve for sin~ ¢ and cos” t.

Now add corresponding sides of the two equations.

[§)

2

X y . 5 5

—+ —=sIn"t + cos° ¢

4 9

Xy’ . ,
—+—==1 sin®t + cos?t =1
4 9

This is an equation of an ellipse. See Figure 34.

x =2sint| for
y=3cost| tin[0,2m7]

y

HERFAL FLOAT SLTD BESL ERDIEH MP n

3
I ( X
T T T T T S —
_2Q 2 I i
-3
2

=31

+

ISE
\c‘*

Parametric graphing mode

Figure 34 Now Try Exercise 31.

Parametric representations of a curve are not unique. In fact, there are infinitely
many parametric representations of a given curve. If the curve can be described
by a rectangular equation y = f(x), with domain X, then one simple parametric
representation is

x=t y=f(t), fortinX.
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There is no simple way to find a rectangular equation for the
cycloid from its parametric equations. Instead, begin with a
table using selected values for ¢ in [0, 277 ]. Approximate
values have been rounded as necessary.

CHAPTER 8 Complex Numbers, Polar Equations, and Parametric Equations

Finding Alternative Parametric Equation Forms
Give two parametric representations for the equation of the parabola.
y=(x—-2)2+1
The simplest choice is to let

x=t y=(—-2)?+1, for ¢ in (—o0, ).

Another choice, which leads to a simpler equation for y, is

x=t+2, y=12+1, for ¢ in (—o0, ).

Now Try Exercise 33.

Verify that another choice in Example 4 is

Other choices

_ — epp? (T T
x=2-+tant, y=sec-t, fortm( 2,2). are possible.

The Cycloid The cycloid is a special case of the trochoid—a curve traced
out by a point at a given distance from the center of a circle as the circle rolls
along a straight line. If the given point is on the circumference of the circle,
then the path traced as the circle rolls along a straight line is a cycloid, which is
defined parametrically as follows.

x =at —asint, y=a — acost, for ¢ in (— oo, ®)

Other curves related to trochoids are hypotrochoids and epitrochoids,
which are traced out by a point that is a given distance from the center of a
circle that rolls not on a straight line, but on the inside or outside, respectively,
of another circle. The classic Spirograph toy can be used to draw these curves.

Graphing a Cycloid
Graph the cycloid.

x=t—sint, y=1—cost, for tin [0, 277 |

It is easier to graph a cycloid with a graphing
calculator in parametric mode than with tradi-
tional methods. See Figure 36.

HERFAL FLOAT KUTD BEEL IRDIEH HP n

:
elo] 5|3 7|5 o [P0
x[0[008| 06 |7m|57|2m 1
003 2 0 ol + AN
Figure 35

Plotting the ordered pairs (x, y) from the table of values leads
to the portion of the graph in Figure 35 from O to 2.

Figure 36

Using a larger interval for  would show that the
cycloid repeats the pattern shown here every
277 units.

Now Try Exercise 37.
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Figure 37
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(b)
Figure 39
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The cycloid has an interesting physical property. If a flexible cord or wire
goes through points P and Q as in Figure 37, and a bead is allowed to slide due
to the force of gravity without friction along this path from P to Q, the path that
requires the shortest time takes the shape of the graph of an inverted cycloid.

Applications of Parametric Equations Parametric equations are used
to simulate motion. If an object is thrown with a velocity of v feet per second at
an angle 6 with the horizontal, then its flight can be modeled by

x = (vcosO) and y = (vsin@)t — 16¢> + h,

where ¢ is in seconds and £ is the object’s initial height in feet above the ground.
Here, x gives the horizontal position information and y gives the vertical posi-
tion information. The term — 162 occurs because gravity is pulling downward.
See Figure 38. These equations ignore air resistance.

Yo
vy sin 0

y 0

vy cos 0

Figure 38

Simulating Motion with Parametric Equations

Three golf balls are hit simultaneously into the air at 132 ft per sec (90 mph) at
angles of 30°, 50°, and 70° with the horizontal.

a) Assuming the ground is level, determine graphically which ball travels the
(a A ing th d is level, d i hically which ball Is th
greatest distance. Estimate this distance.

(b) Which ball reaches the greatest height? Estimate this height.

(a) Use the following parametric equations to model the flight of the golf balls.
x=(vcosO) and y= (vsinf)r— 16t>+ h
Write three sets of parametric equations.

x; = (132 cos 30%)¢, y, = (1325sin30°)7 — 1612 ,
Substitute & = 0,

X, = (132 cos 50°)z, y, = (132sin 50°)¢ — 161> v = 132 ft per sec, and
. 0 = 30° 50°, and 70°.
x; = (132 cos 70°), y; = (132 sin 70°)¢ — 16> o
The graphs of the three sets of parametric equations are shown in Figure 39(a),
where 0 = ¢t = 3. From the graph in Figure 39(b), where 0 = 7 = 9, we see

that the ball hit at 50° travels the greatest distance. Using the tracing feature of
the TI-84 Plus calculator, we find that this distance is about 540 ft.

(b) Again, use the tracing feature to find that the ball hit at 70° reaches the great-
est height, about 240 ft.

Now Try Exercise 43.
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<] A TI-84 Plus calculator allows us to view the graphing of more than one
equation either sequentially or simultaneously. By choosing the latter, the three
golf balls in Figure 39 can be viewed in flight at the same time. =

Examining Parametric Equations of Flight

Jack launches a small rocket from a table that is 3.36 ft above the ground. Its
initial velocity is 64 ft per sec, and it is launched at an angle of 30° with respect
to the ground. Find the rectangular equation that models its path. What type of
path does the rocket follow?

The path of the rocket is defined by the parametric equations
x=(64cos30°)r and y= (64sin30°)r— 167> + 3.36
or, equivalently, X = 32\/§t and y= —16>+ 32t + 3.36.

From x = 32\/3@ we solve for ¢ to obtain

X
32V3

Substituting for 7 in the other parametric equation yields the following.

r= Divide by 32V/3.

y = —16:> + 321 + 3.36

X 2 X X
=—16 +32 +336 Leti— .
Y (%2\5) <32\/3> YRV

1 3
y = ——x2+ ix + 3.36 Simplify.
192 3

This equation defines a parabola. The rocket follows a parabolic path.

Now Try Exercise 47(a).

Analyzing the Path of a Projectile

Determine the total flight time and the horizontal distance traveled by the rocket
in Example 7.

The equation y = —16¢2 + 32¢ + 3.36 tells the vertical position of | Figure 40 shows that when ¢ = 2.1, the hor-
the rocket at time 7. We need to determine the positive value of  for | izontal distance x covered is approximately
which y = 0 because this value corresponds to the rocket at ground | 116.4 ft, which agrees with the algebraic
level. This yields solution.

HERFAL FLOAY SUTD BEF. ERDCEW MP n

0 = —16¢* + 32t + 3.36.

Using the quadratic formula, the solutions are t = —0.1 or t = 2.1.
Because f represents time, ¢t = —0.1 is an unacceptable answer.
Therefore, the flight time is 2.1 sec.

The rocket was in the air for 2.1 sec, so we can use 7 = 2.1 | B SOy TN
and the parametric equation that models the horizontal position, 1 4

I=k1
X = 32\/51, to obtain Bhowa v
Fi 4
x=32V3(2.1) = 1164 ft. igure 40

Now Try Exercise 47(b).
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Exercises

CONCEPT PREVIEW Fill in the blank to correctly complete each sentence.
1. For the plane curve defined by
x=1r*+1, y=2t+3, fortin[—4,4],
the ordered pair that corresponds to t = —3 is
2. For the plane curve defined by
x=-3t+6, y=1>—3, fortin[-5,5],
the ordered pair that corresponds to r = 4 is
3. For the plane curve defined by
x=cost, y=2sint, fortin[0,27],
the ordered pair that corresponds to ¢ = g is
4. For the plane curve defined by
x=V1 y=r+3, fortin (0, ),
the ordered pair that corresponds to t = 16 is
CONCEPT PREVIEW Match the ordered pair from Column II with the pair of para-

metric equations in Column I on whose graph the point lies. In each case, consider the
given value of t.

I I
5.x=3t+6, y=—2t+4;, t=2 A. (5,25)
6. x=cost, y=sint; =7 B. (7,2)
7.x=t, y=1t% t=5 C. (12,0)
8. x=r+3, y=12-2; 1t=2 D(%%)

For each plane curve, (a) graph the curve, and (b) find a rectangular equation for the
curve. See Examples 1 and 2.

9. x=1t+2, y=1% 10. x=21, y=1+1,
forzin [—1,1] fortin [—2,3]

1. x=Vr, y=3t—4, 12. x=1 y=\r,
for ¢in [0, 4] for ¢in [0, 4]

13. x=£5+1, y=1—1, 14. x=2t—1, y=1>+2,
for ¢ in (—oo, ) for ¢ in (—o0, =)

15. x=2sint, y=2cost, 16. x=\/5sint, y=\/§cost,
for tin [0, 277 ] for tin [0, 277 ]

17. x=3tant, y=2sect, 18. x=cott, y =csct,
for 7 in (—%, %) for #in (0, )

19. x =sint, y =csct, 20. x=tant, y = cott,
for ¢ in (0, ) for £in (0’ %)

2. x=1, y= V2 +2, 2. x=V1, y=12—1,

for #in (—o0, ) for 7in [0, »)
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23. x=2+sint, y=1+ cost, 24, x=1+2sint, y=2+ 3cost,
forzin [0, 27 ] forzin [0, 27 ]
25 =t+2 _ 26 =t—3 _ 2
CATITe YTy SR P
fort# =2 fort#3
27. x=t+2, y=t—4, 28. x=1>+2, y=1>—4,
for ¢ in (—oo, ) for t in (—o, )

Graph each plane curve defined by the parametric equations for t in [0, 27 ]. Then find
a rectangular equation for the plane curve. See Example 3.

29. x=3cost, y=3sint 30. x=2cost, y=2sint

31. x=3sint, y=2cost 32. x=4sint, y=3cost

Give two parametric representations for the equation of each parabola. See Example 4.
3. y=(x+3)2—-1 M. y=(x+4)2+2
35, y=x>—2x+3 36. y=x>—4x+6

Graph each cycloid defined by the given equations for t in the specified interval. See

Example 5.
37. x=2t—2sint, y=2 —2cost, 38. x=t—sint, y=1—cost,
for tin [0, 477 | for tin [0, 477 |

F<& Lissajous Figures The screen shown here is an example
of a Lissajous figure. Such figures occur in electronics
and may be used to find the frequency of an unknown
voltage. Graph each Lissajous figure for t in [0, 6.5] | =~
using the window [ —6, 6] by [ —4,4].

39. x=2cost, y=3sin2t _E

40. x=3cost, y=2sin2t
41. x =3sin4t, y =3 cos 3¢ 42. x =4sind4t, y =3 sin 5t

(Modeling) Do the following. See Examples 6-8.

(a) Determine parametric equations that model the path of the projectile.

(b) Determine a rectangular equation that models the path of the projectile.

(c¢) Determine approximately how long the projectile is in flight and the horizontal dis-

tance it covers.

43. Flight of a Model Rocket A model rocket is launched from the ground with vel-
ocity 48 ft per sec at an angle of 60° with respect to the ground.

44. Flight of a Golf Ball Tyler is playing golf. He hits
a golf ball from the ground at an angle of 60° with ”h
respect to the ground at velocity 150 ft per sec.

45. Flight of a Softball Sally hits a softball when it is 2 ft above the ground. The ball
leaves her bat at an angle of 20° with respect to the ground at velocity 88 ft per sec.
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46. Flight of a Baseball Francisco hits

a baseball when it is 2.5 ft above ///
the ground. The ball leaves his bat ) 29°

at an angle of 29° from the horizon-

tal with velocity 136 ft per sec. 2.5 ft

(Modeling) Solve each problem. See Examples 7 and 8.

47.

48.

49.

50.

Path of a Rocket A rocket is launched from the top of an 8-ft platform. Its initial
velocity is 128 ft per sec. It is launched at an angle of 60° with respect to the ground.

(a) Find the rectangular equation that models its path. What type of path does the
rocket follow?

(b) Determine the total flight time, to the nearest second, and the horizontal distance
the rocket travels, to the nearest foot.

Simulating Gravity on the Moon If an object is thrown on the moon, then the para-
metric equations of flight are

x=(vcosf)r and y= (vsin0)t— 2.66:> + h.
Estimate, to the nearest foot, the distance a golf ball hit at 88 ft per sec (60 mph) at
an angle of 45° with the horizontal travels on the moon if the moon’s surface is level.
Flight of a Baseball A baseball is hit from a height of 3 ft at a 60° angle above the
horizontal. Its initial velocity is 64 ft per sec.
(a) Write parametric equations that model the flight of the baseball.

(b) Determine the horizontal distance, to the nearest tenth of a foot, traveled by the
ball in the air. Assume that the ground is level.

(c) What is the maximum height of the baseball, to the nearest tenth of a foot?
At that time, how far has the ball traveled horizontally?

(d) Would the ball clear a 5-ft-high fence that is 100 ft from the batter?

Path of a Projectile A projectile has been launched from the ground with initial
velocity 88 ft per sec. The parametric equations

x=827t and y= —16¢>+ 30.1¢

model the path of the projectile, where 7 is in seconds.

(a) Approximate the angle 0 that the projectile makes with the horizontal at the
launch, to the nearest tenth of a degree.

(b) Write parametric equations for the path using the cosine and sine functions.

Work each problem.

51.
52.

53.

54.

55.

Give two parametric representations of the parabola y = a(x — h)? + k.

Q““<
©

o

Give a parametric representation of the rectangular equation %3 — 75 = 1.
a

. . . . 2 )2
Give a parametric representation of the rectangular equation ;% + ;72 = 1.

The spiral of Archimedes has polar equation » = a, where > = x> + y2. Show that
a parametric representation of the spiral of Archimedes is

x=abcosf, y=absinb, for 6 in (—oo, ).

Show that the hyperbolic spiral r0 = a, where > = x> + y?, is given parametri-
cally by

__acosb __asin@
9 Yy 9

for 6 in (—2°, 0) U (0, ).
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I~ 56. The parametric equations x = cos 7, y = sin t, for ¢ in [0, 277] and the parametric

equations x = cos 7, y = —sin t, for 7 in [0, 277 ] both have the unit circle as their
graph. However, in one case the circle is traced out clockwise (as  moves from 0 to
21r), and in the other case the circle is traced out counterclockwise. For which pair

of equations is the circle traced out in the clockwise direction?

Concept Check Consider the parametric equations x = f(t), y = g(t), for t in [a, b],

with ¢ >0,d > 0.

57. How is the graph affected if the equation x = f(¢) is replaced by x = ¢ + f(7)?

58. How is the graph affected if the equation y = g(¢) is replaced by y = d + g(1)?

Chapter 8 Test Prep

Key Terms

8.1

imaginary unit
complex number
real part
imaginary part
nonreal complex
number
pure imaginary
number
standard form
complex
conjugates

8.2 resultant

real axis

imaginary axis

complex plane

rectangular form of a
complex number

trigonometric (polar)
form of a complex
number

absolute value (modulus)

argument

8.4 nth root of a complex

8.5

number

polar coordinate system

pole

polar axis

polar coordinates

rectangular
(Cartesian) equation

polar equation

cardioid

polar grid

rose curve
lemniscate
spiral of
Archimedes
limagon
plane curve
parametric
equations of a
plane curve
parameter
cycloid

i

a + bi

imaginary unit
complex number

Quick Review

cis 0

cos 0 + isin 0

Concepts

m Complex Numbers

Imaginary Unit i

i =V —1, andtherefore 2= —1.

Complex Number

If @ and b are real numbers, then any number of the form
a + bi is a complex number. In the complex number a + bi,

a is the real part and b is the imaginary part.

Examples

3—4i

Real
part

Imaginary

part



Concepts

Meaning of V —a

If a > 0, then

V=a=iVa.

Adding and Subtracting Complex Numbers
Add or subtract the real parts, and add or subtract the imagi-
nary parts.

Multiplying and Dividing Complex Numbers
Multiply complex numbers as with binomials, and use the fact
that i = —1.

Divide complex numbers by multiplying the numerator and
denominator by the complex conjugate of the denominator.

CHAPTER 8 Test Prep

Examples

Simplify.
V-4 =2i
V-12=iVi2=iV4-3=2\/3
(2+30) +(B+i)— (2—i)
=2+3-2)+(3+1+1)i
=3+5i
(6 +i)(3 —2i)

=18 — 12i + 3i — 2i? FOIL method

=(18+2) + (—12+3)i i>=-1
=20—-9i
3+ (B —i) 3-3i+i— 4
1+i (1+0)(1—1) 1 —i?
4 2i 2—1i
I ) N
2 2

Trigonometric (Polar) Form of Complex Numbers

Trigonometric (Polar) Form of Complex Numbers
Let the complex number x + yi correspond to the vector with
direction angle 6 and magnitude r.

x = rcos 6 y =rsinf
r="Vx? +y? tan0=)—), ifx#0
x

The trigonometric (polar) form of the expression x + yi is

r(cos @ + isin@) or rcis®.

The Product and Quotient Theorems

Product and Quotient Theorems
If r;(cos 6, + isin ;) and r,(cos 6, + i sin 0,) are any two
complex numbers, then the following hold.

[ri(cos 0; + isin 0,)] - [ry(cos 0, + isin 6,)]
= nry[cos(0; + 0,) + isin(0, + 6,)]

ri(cos 0, + isin 6,)

ry(cos @, + isin 6,)
r
= r—l[cos(()l - 0,) + isin(0; — 6,)],
2

where r, (cos 0, + isin6,) # 0

Write 2(cos 60° + i sin 60°) in rectangular form.

2(cos 60° + i sin 60°)
< 1.3 )
2l —+i——
2 2
1+iV3
Write —V2 +iV2in trigonometric form.

r=V(-Va)+ (V2] =2

tan # = —1 and 6 is in quadrant II,
Real 0 0 = 180° — 45° = 135°.

—V2 +iV2 = 2 cis 135°,

Imaginary

Let z; =4(cos 135° + isin 135°)
and z, = 2(cos 45° + i sin 45°).
212 = 8(cos 180° + i sin 180°) 4 -2 =28;
:8(*1+l“0) 135° 4+ 45° = 180°
= -8
z
;1 = 2(cos 90° + i sin 90°) % =2,
: , 135° — 45° = 90°
=200+i-1)
=2i

407
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Examples

De Moivre’'s Theorem; Powers and Roots of Complex Numbers

De Moivre’s Theorem
[r(cos @ + isin 0)]" = r*(cos n@ + isin nh)

nth Root Theorem

If nis any positive integer, r is a positive real number, and 6 is in
degrees, then the nonzero complex number r(cos 6 + i sin 6)
has exactly n distinct nth roots, given by the following.

\%-'(cosa + isina@), or Vr cis a,

where

0 + 360° - k
o0 = —————
n

, k=0,1,2,...,n— 1.

If 6 is in radians, then

0 + 2wk
o = —
n

, k=0,1,2,...,n—1.

Polar Equations and Graphs

Rectangular and Polar Coordinates
If a point has rectangular coordinates (x, y) and polar coor-
dinates (r, ), then these coordinates are related as follows.

r cos 6

x y =rsin@

r2 =x2 +y? tan0=X, ifx#0
x

Polar Equations and Graphs

=ac050}c_ | r2=azsin20}L -
. 1rcles cemniscates
r =asin@ r? = a?cos 20
=aibsin0}L_ =asinn0}R
llﬂll(;()ns 0OS€ curves
r=azxbcos0 = a cos n@

Let z = 4(cos 180° + i sin 180°). Find z* and the square
roots of z.

[4(cos 180° + i sin 180°) J°
=43(cos 3 - 180° + i sin 3 - 180°)
= 64(cos 540° + i sin 540°)
=64(—1+i-0)
= —64

Find 2.

For the given z, r = 4 and 6 = 180°. Its square roots are

180° 180°
\/Z(cos 5 + i sin > )

=200+i-1)
=2i
1 O+ O 1 O+ (o]
and \/1(005803604‘18111 M)
2 2
=2(0+i(—1))

= —2i

Find the rectangular coordinates for the point (5, 60°) in
polar coordinates.

seosir=5(1) =3
= 5 cos = - — | = —
X C ) )

\ﬂ) 5V/3

y=5sin()0°=5<

2 2
The rectangular coordinates are (% #) .

Find polar coordinates for (—1,—1) in rectangular
coordinates.

r= V(=1 + (-1 =V2

tan § = 1 and 0 is in quadrant III,
so 6 = 225°.

One pair of polar coordinates for
(—1,—1)is (V2,225°).
Graph r = 4 cos 26.

90°

270°
r =4 cos 20
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Examples

Parametric Equations, Graphs, and Applications

Parametric Equations of a Plane Curve

A plane curve is a set of points (x,y) such that x = f(¢),
y = g(1), and f and g are both defined on an interval /. The
equations

x=f(r) and y=g(t)

are parametric equations with parameter .

Flight of an Object

If an object has initial velocity v and initial height /4, and trav-
els such that its initial angle of elevation is 6, then its flight
after ¢ seconds can be modeled by the following parametric
equations.

x = (vcos@)t and y = (vsin@)t — 16> + h

Graphx =2 —sint,y=cost — 1,for0 =t = 2m7.

Joe kicks a football from the ground at an angle of 45°
with a velocity of 48 ft per sec. Give the parametric equa-
tions that model the path of the football and the distance
it travels before hitting the ground.

x = (48 cos 45°)1 = 24\/21
y = (48 sin 45°) — 161> = 24\/21 — 1672
When the ball hits the ground, y = 0.

24\/2t —16:2=0 Substitute y = 0.

8t(3\ﬁ - 2t> =0 Factor.

3V2 ‘
t=0 or t= ? Zero-factor property
(Reject)

The distance it travels is x = 24\6 (3 \22) =72 ft.

Chapter 8 {7 S\ 5 =) {u EY=1

Write each number as the product of a real number and i.

1. V-9

2. V-12

Solve each equation over the set of complex numbers.

3. x2=-81

4. x(2x+3)=—4

Perform each operation. Write answers in standard form.

5. (1—i)— (3+4i)+2i

7. (6= 5i) + (2+7i) — (3 — 2i)

9. (3 +5i)(8 — i)
12. (6 — 3i)?
25 —19i
5+ 3i
342

i

15.

18.

6. (2—5i)+(9—10i) -3

8. (4—2i)— (6+5i)— (3—i)

10. (4 —0)(5 + 2i) 11. (2 + 6i)?
13. (1—i)? 14. (2+i)?
2—5i 2+
16. 17.
6 1+ 1 —5i
19. i3 20. i
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Perform each operation. Write answers in rectangular form.
21. [5(cos90° + isin 90°) ][6(cos 180° + i sin 180°) ]

2(cos 60° + i sin 60°)

22. [3cis 135°][2 cis 105°] - ${cos 300°+ 1 5 300°)

24, LCis270° 25, (V3 +i)
2 cis 90°
26. (2 —2i)’ 27. (cos 100° + i sin 100°)®

28. Concept Check The vector representing a real number will lie on the -axis in

the complex plane.

Graph each complex number.
29. 5i 30. —4+2i 31 3-3iV3
32. Find the sum of 7 + 3i and —2 + i. Graph both complex numbers and their resultant.

Write each complex number in its alternative form, using a calculator to approximate
answers to four decimal places as necessary.

Rectangular Form Trigonometric Form
33. -2+ 2i
34. 3(cos 90° + i sin 90°)
35. 2(cos 225° + i sin 225°)
36. —4+4iV/3
37. 1—i
38. 4 cis 240°
39. —4i
40. 7 cis 310°

Concept Check The complex number z, where z = x + yi, can be graphed in the plane
as (x,y). Describe the graph of all complex numbers 7 satisfying the given conditions.

41. The imaginary part of z is the negative of the real part of z.

42. The absolute value of z is 2.

Find all roots as indicated. Write answers in trigonometric form.
43. the cube roots of 1 — i 44. the fifth roots of =2 + 2§
45. Concept Check How many real sixth roots does —64 have?

46. Concept Check How many real fifth roots does —32 have?

Find all complex number solutions. Write answers in trigonometric form.
47. x*+16=0 48. 3+ 125=0 49. x>+i=0
50. Convert (5, 315°) to rectangular coordinates.

51. Convert (— 1, \/g) to polar coordinates, with 0° =< 6 < 360° and r > 0.
52. Concept Check Describe the graph of r = k for k > 0.

Identify and graph each polar equation for 6 in [0°, 360°).

53. r=4cos6 54. r=—1+cosf
2

55. r=2sin40 56. r=——"—""
2cos 6 — sin O
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Find an equivalent equation in rectangular coordinates.

57. r=; 58. r=sinf + cos 0 59. r=2
1+ cosé@

Find an equivalent equation in polar coordinates.
60. y=x 61. y=x2 62. x>+ y2=25
Identify the geometric symmetry (A, B, or C) that each graph will possess.

A. symmetry with respect to the origin

B. symmetry with respect to the y-axis

C. symmetry with respect to the x-axis
63. Whenever (r, 6) is on the graph, so is (—r, —6).
r,0)

r, —0)

(—
64. Whenever (r, 6) is on the graph, so is (—r, 6).
65. Whenever (r, 6) is on the graph, so is ( .
66. Whenever (r, 6) is on the graph, so is (r, 7 — 6).

Find a polar equation having the given graph.

67. y 68. ¥

69. ¥ 70. y

411

71. Graph the plane curve defined by the parametric equations x = ¢ + cos t, y = sint,

forrin [0, 27].

72. Show that the distance between (ry, 6,) and (r,, 6,) in polar coordinates is given by

d="\n2+r,> = 2rr;ycos(6, — 6,).

Find a rectangular equation for each plane curve with the given parametric equations.

73. x=Vi—1,y= \/;, forzin [ 1, »)

74. x=3t+2, y=t—1, fortin[-5,5]

. T T
75. x=S5tant, y =3 sect, fort1n(—5,5>

76. x=1"+5, y= o fortin (=, )

77. x =cos2t, y=sint, fortin (—m, )

78. Give a pair of parametric equations whose graph is the circle having center (3, 4)

and passing through the origin.
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79. (Modeling) Flight of a Baseball A batter hits a baseball when it is 3.2 ft above the
ground. It leaves the bat with velocity 118 ft per sec at an angle of 27° with respect
to the ground.

(a) Determine parametric equations that model the path of the baseball.

(b) Determine a rectangular equation that models the path of the baseball.

(c) Determine approximately how long the baseball is in flight and the horizontal
distance it covers.

80. Mandelbrot Set Consider the complex number z = 1 + i. Compute the value of
72 + z, and show that its absolute value exceeds 2, indicating that 1 + i is not in the
Mandelbrot set.

Chapter 8

1. Find each product or quotient. Simplify the answers.

V-2 -20
(@A V-8-V-6 (b) — (©) —F——
) V8 “ Vo1s0

2. For the complex numbers w = 2 — 4j and z = 5 + i, find each of the following in
rectangular form.

(a) w + z (and give a geometric representation) (b) w—z (¢) wz (d) %
3. Express each of the following in rectangular form.

(a) i’ (b) (1+1i)
4. Solve 2x? — x + 4 = 0 over the set of complex numbers.

5. Write each complex number in trigonometric (polar) form, where 0° = 6 < 360°.

(a) 3i (b) 1+2i © —-1-iV3
6. Write each complex number in rectangular form.
(a) 3(cos 30° +isin30°)  (b) 4 cis40° (c) 3(cos 90°+ i sin 90°)

7. For the complex numbers w = 8(cos 40° + i sin 40°) and z = 2(cos 10° + i sin 10°),
find each of the following in the form specified.

(a) wz (trigonometric form) (b) s (rectangular form) (¢) z? (rectangular form)
z

8. Find the four complex fourth roots of —16i. Write answers in trigonometric form.

9. Convert the given rectangular coordinates to polar coordinates. Give two pairs of
polar coordinates for each point.

(@ (0,5) (b) (-2, -2)
10. Convert the given polar coordinates to rectangular coordinates.
(a) (3,315°) (b) (—4,90°)

Identify and graph each polar equation for 0 in [ 0°, 360°).
11. r=1—rcos 0 12. r =3 cos 30

13. Convert each polar equation to a rectangular equation, and sketch its graph.
B 4
2sinf — cos 0

(a) r (b) r=6

Graph each pair of parametric equations.
14. x=4tr—-3, y=1¢% fortin [—3,4] 15. x=2cos2t, y=2sin2t, for¢in [0, 27]

16. Julia Set Consider the complex number z = —1 + i. Compute the value of 7> — 1,
and show that its absolute value exceeds 2, indicating that —1 + i is not in the Julia set.
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Appendices

Equations and Inequalities

Basic Terminology of
Equations

Linear Equations
Quadratic Equations
Inequalities

Linear Inequalities
and Interval Notation

Three-Part Inequalities

Basic Terminology of Equations An equation is a statement that two
expressions are equal.

x+2=9, 1lx=5x+6x, x>—2x—1=0 Equations

To solve an equation means to find all numbers that make the equation a true
statement. These numbers are the solutions, or roots, of the equation. A number
that is a solution of an equation is said to satisfy the equation, and the solutions
of an equation make up its solution set. Equations with the same solution set are
equivalent equations. For example,

x=4, x+1=5, and 6x+ 3 =27 areequivalent equations
because they have the same solution set, {4 }. However, the equations
x>=9 and x=3 arenotequivalent

because the first has solution set { —3, 3 } while the solution set of the second is {3 }.

One way to solve an equation is to rewrite it as a series of simpler equiva-
lent equations using the addition and multiplication properties of equality.
Let a, b, and c represent real numbers.

Ifa=b, then a+c=b + c.
Ifa =bandc #¥ 0, then ac = bc.

These properties can be extended: The same number may be subtracted from
each side of an equation, and each side may be divided by the same nonzero
number, without changing the solution set.

Linear Equations We use the properties of equality to solve linear
equations.

Linear Equation in One Variable

A linear equation in one variable is an equation that can be written in the
form

ax +b =0,

where a and b are real numbers and a # 0.

A linear equation is a first-degree equation because the greatest degree of the
variable is 1.

3
3x + \[ =0, —x=12, O.S(X + 3) =2x — 6 Linear equations

N

1
Vx+2= 5, T =-8, x24+3x+02=0 Nonlinear equations

413
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m Solving a Linear Equation

Solve 3(2x —4) =7 — (x + 5).

SOLUTION 32x—4)=7—(x+5)
6x—12=7—x—5
6x—12=2—x

bx— 12 +x=2—x+x
Ix—12=2
Ix—12+12=2+12
Tx =14
e 14
7 7
x=2
CHECK 32r—4)=7—(x+5)
[Acheckoft/li'lesolution] 32:2-4)27-(2+5)
isrecommended. 3(4 4) 27 (7)

0=0 v
The solution set is {2} .

Distributive property
Combine like terms.
Add x to each side.
Combine like terms.
Add 12 to each side.

Combine like terms.

Divide each side by 7.

Original equation

Letx = 2.

Work inside the parentheses.
True

+/ Now Try Exercise 9.

m Solving a Linear Equation with Fractions

2x+4 1 1 7

Sol +ox=-x—-.
R T A
2x+4 1 1 7
SOLUTION —X=—X— =
2 4 3
[ Distribute to all terms }> 12<2x t4 + lx) - 12<lx _ Z)
within the parentheses. 3 2 4 3

<2x+4> (1 ) (1
12 + 12 =x )= 12| =
3 2 4

4(2x +4) + 6x=3x — 28

8x + 16 + 6x = 3x — 28

14x + 16 = 3x — 28
1lx=—44

E —Xx=—x—=
CHECK 3 2x 4x 3
2(—4 1 1
(—4) L2l
3 2 4
10 10
==
3 3

The solution set is { —4 }.

7
5) Distributive property

)il

Multiply by 12, the
LCD of the fractions.

Multiply.

Distributive property
Combine like terms.
Subtract 3x. Subtract 16.

Divide each side by 11.

Original equation

7
Let x = —4.
3
True
+/ Now Try Exercise 11.
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An equation satisfied by every number that is a meaningful replacement for
the variable is an identity.

3(x+1)=3x+3 Identity

An equation that is satisfied by some numbers but not others is a conditional
equation.
2x =4 Conditional equation

The equations in Examples 1 and 2 are conditional equations. An equation that
has no solution is a contradiction.

x=x+1 Contradiction

Identifying Types of Equations

Determine whether each equation is an identity, a conditional equation, or a
contradiction. Give the solution set.

@ —2(x+4)+3x=x-8 () S5x—4=11 (c)33x—1)=9x+7

(@ —2(x+4)+3x=x-38
—2x — 8 + 3x =x — 8 Distributive property
x — 8 =x—8 Combine like terms.
0=0 Subtract x. Add 8.

When a true statement such as 0 = O results, the equation is an identity, and
the solution set is {all real numbers}.

(b) 5x—4=11
5x =15 Add 4 to each side.
x =3  Divide each side by 5.
This is a conditional equation, and its solution set is {3 }.
() 33x—1)=9x+7
9x — 3 =9x + 7 Distributive property
—-3=7 Subtract 9x.

When a false statement such as —3 = 7 results, the equation is a contradic-
tion, and the solution set is the empty set, or null set, symbolized <.

Now Try Exercises 21, 23, and 25.

Quadratic Equations A quadratic equation is defined as follows.

Quadratic Equation in One Variable
An equation that can be written in the form
ax? + bx + ¢ =0,

where a, b, and c are real numbers with a # 0, is a quadratic equation.
The given form is called standard form.
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A quadratic equation is a second-degree equation—that is, an equation
with a squared variable term and no terms of greater degree.

x>2=25, 4x*+4x—5=0, 3x2=4x—8 Quadratic equations

When the expression ax?> + bx + c in a quadratic equation is easily factorable
over the real numbers, it is efficient to factor and then apply the following zero-
factor property.

If a and b are complex numbers with ab = 0, thena = 0 or b = 0 or

both equal zero.

Using the Zero-Factor Property
Solve 6x? + 7x = 3.

6x2+7x=3 <<Don’t factor out xhere.)
6x2+7x—3=0
Bx—1)2x+3)=0

Standard form

Factor.

3x—1=0 or 2x+3=0 Zero-factor property
3x=1 or 2x = —3 Solve each equation.

1 3

X =_ or X = ——

3 2

6<1>2+7<'>°3 L ’ 6< %>2+7< %>?3 L 3
— — = ot x = 1. —= —= )= x=—3.
,% % L X 3 2 2 et x 3
6 7 , 54 21 ,
—+ = =3 5 =3
9 3 4 2
3=3 True 3=3 True

Both values check because true statements result. The solution set is {% —% .

Now Try Exercise 33.

A quadratic equation written in the form x? = k, where k is a constant, can be
solved using the square root property.

If x2 = k, then x=Vk or x=-Vk
That is, the solution set of x* = k is

{\/_, - \/I;}, which may be abbreviated {i \/I; }

Using the Square Root Property

Solve each quadratic equation.
(a) x2=17 (b) (x—4)2=12

(a) X2=17
x=+V17

The solution set is { * \E }

Square root property
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(b) (x—4)2=12
x—4=+\V12 Generalized square root property
x=4+ V12 Add4.
x=4%2V3 Vi2=Vi-3=2V3

(x —4)2=12 Original equation

(4+2V3-4f212  Lex=4+2va | (4-2V3-4)f212 Lax=4-2V3
(2V3) 212 (—2V3) 212
2-(V3) 212 (-22-(V3) 212
12=12 / Tre 12=12 / True
The solution set is {4 * 2\/5}. Now Try Exercises 43 and 47.

Any quadratic equation can be solved by the quadratic formula, which says
that the solutions of the quadratic equation ax? + bx + ¢ = 0, where a # 0, are

given by
—-b + Vb? — dac This formula is derived
X = 2a * in algebra courses.
Using the Quadratic Formula
Solve x> — 4x = —2.

Write in standard form.
x2—4x+2=0

Herea=1,b= —4,and ¢ = 2.
_ —b £ Vb?—4dac

2a
—(—4) £ V(—4)2—4(1)(2) Substitutea = 1.b = —4,
x =

and ¢ = 2.
The fraction bar 2( 1 )
extends under —b.
_4+Vie-3

2

_4x2\2

2

2(2+V2)

XxX=——

2
(Factor first, then divide.y

x=2= \6 Lowest terms

X Quadratic formula

X Simplify.

X

VI6—8=VB= Vi 2=2V2

Factor out 2 in the numerator.

The solution set is {2 * \6 } Now Try Exercise 55.

Inequalities An inequality says that one expression is greater than,
greater than or equal to, less than, or less than or equal to another. As with equa-
tions, a value of the variable for which the inequality is true is a solution of the
inequality, and the set of all solutions is the solution set of the inequality. Two
inequalities with the same solution set are equivalent.
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L
T T /l T T
4

Figurel

Inequalities are solved with the properties of inequality, which are similar
to the properties of equality. Let a, b, and ¢ represent real numbers.

1. Ifa < b,thena + ¢ < b + c.
2. Ifa < bandifc > 0, then ac < bc.
3. Ifa < bandifc <0, then ac > bc.

Replacing < with >, =, or = results in similar properties. (Restrictions on ¢ remain the same.)

Multiplication may be replaced by division in Properties 2 and 3. Always remem-
ber to reverse the direction of the inequality symbol when multiplying or dividing
by a negative number.

Linear Inequalities and Interval Notation The definition of a linear
inequality is similar to the definition of a linear equation.

Linear Inequality in One Variable

A linear inequality in one variable is an inequality that can be written in
the form

ax + b > 0,*

where a and b are real numbers and a # 0.

*The symbol > can be replaced with <, =<, or =.

Solving a Linear Inequality
Solve =3x + 5> —7.
—3x+5>-7
—3x+5—-5>-7—15 Subtract 5.

—3x>—-12 Combine like terms.
Don't forget Divide by —3. Reverse the direction of the
toreverse the _—3)6 < _—12 inequality symbol when multiplying or
inequality symbol -3 -3 . q . Y8y . plyme
here. dividing by a negative number.
x<4

The original inequality —3x + 5 > —7 is satisfied by any real number less than 4.
The solution set can be written using set-builder notation as

{x|x < 4}, Set-builder notation

which is read “the set of all x such that x is less than 4.”
The solution set {x|x <4} is an example of an interval. Using interval
notation, we write it as

(—00, 4). Interval notation

The symbol —2 does not represent an actual number. Rather, it is used to show
that the interval includes all real numbers less than 4. The interval (—, 4) is an
example of an open interval because the endpoint, 4, is not part of the interval.
An interval that includes both its endpoints is a closed interval. A square
bracket indicates that a number is part of an interval, and a parenthesis indicates
that a number is not part of an interval.

The solution set (—%, 4) is graphed in Figure 1. Now Try Exercise 73.
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Summary of Types of Intervals (Assume that a < b.)

Type of Interval
Interval Set Notation Graph
{x|x>a} (a, )
a
Open interval {xla<x<b} (a, b) 7
a
{xle<b) (=.b) 4
( L
=
{xlx=a} [, ) E
-
<x=b b J
Other {xla<x=b} (a. 6] a b
intervals -
{x|la=x<b} [a, b) C i
a
-
{xlx=b) (=0, b] T
L J
Closed interval | {x|a=x=0b} [a,b] £ -
Disjoint interval | {x|x <aorx>b} (=9, a) U (b, ) > bE
a
All real numbers | {x|x is a real number} | (=, ®)

Three-Part Inequalities The inequality —2 < 5 + 3x < 20 says that
5 + 3x is between —2 and 20. This inequality is solved using an extension of
the properties of inequality given earlier, working with all three expressions at the
same time.

Solving a Three-Part Inequality
Solve —2 < 5 + 3x < 20. Give the solution set in interval notation.
—2< 5+4+3x <20
—2—5<5+3x—5<20—5 Subtract 5 from each part.

-7< 3x <15 Combine like terms in each part.
=7 3x 15
— < — <— Divide each part by 3.
3 3 3
1 1 4 ) 1 1
T T T T / T T 7
20 5 ——< X <5
3 3
Figure2 The solution set, graphed in Figure 2, is the interval (— %, 5).
Now Try Exercise 83.
Exercises
Concept Check Fill in the blank to correctly complete each sentence.
1. A(n) ___ is a statement that two expressions are equal.
2. To____ anequation means to find all numbers that make the equation a true

statement.



420

APPENDIX A Equations and Inequalities

3. Alinear equationisa(n) — because the greatest degree of the variable is 1.

4. A(n) ___ isanequation satisfied by every number that is a meaningful replace-
ment for the variable.

5. A(n) _____ isan equation that has no solution.

6. Concept Check Which one is not a linear equation?
A 5x+7(x—1)=—3x B. 9x2—4x+3=0
C. 7x + 8x=13x D. 0.04x — 0.08x = 0.40

Solve each equation. See Examples 1 and 2.

7. 5x+4=3x—4 8. Ix+11=T7x+1

9. 6(3x— 1) =8 — (10x — 14) 10. 4(—2x+1)=6— (2x —4)
11.%x—2x+g=§ 12.%4-%)6—%:%)6

13. 3x+5—-5(x+1)=6x+7 14. 5(x +3) +4x—3=—(2x—4) +2
15. 2[x — (4 +2x) + 3] =2x+2 16. 4[2x— (3 —x) +5] = —6x—28
17. 02x—05=0.1x+ 7 18. 0.01x + 3.1 =2.03x — 2.96

19. —4(2x—6) +8x=5x+24 +x 20. —8(3x +4) + 6x=4(x—8) +4x

Determine whether each equation is an identity, a conditional equation, or a contradic-
tion. Give the solution set. See Example 3.

1

2L 4(2x+7) =20 +224+32x+2) 22 _(6x+20) =x+4+2x+3)
23. 2(x —8) =3x— 16 24. —8(x+5)=—8x—5(x+8)

25. 4(x +7) = 2(x + 12) + 2(x + 1) 26. —6(2x+ 1) —3(x —4) = —15x + |

Concept Check Use choices A-D to answer each question.

A 32— 17x—-6=0 B. (2x+5)*=

C. x>+x=12 D. Bx—1)(x—7)=0

27. Which equation is set up for direct use of the zero-factor property? Solve it.

28. Which equation is set up for direct use of the square root property? Solve it.

29. Which one or more of these equations can be solved using the quadratic formula?
30. Only one of the equations is set up so that the values of a, b, and ¢ can be deter-

mined immediately. Which one is it? Solve it.

Solve each equation using the zero-factor property. See Example 4.

31. x2—5x+6=0 32. x2+2x—8=0 33. 5x2—-3x—2=0
34. 2x2—x—15=0 35. —4x2+x=-3 36. —6x2+7x=—10
37. x2—100=0 38. x2—64=0 39, 4x2—4x+1=0

40. 9x2—12x+4=0 41. 25x>+30x+9=0 42, 36x>+60x +25=0

Solve each equation using the square root property. See Example 5.
43. x2=16 44. x? =121 45. x2—-27=0
46. x> —48=0 47. 3x—1)2=12 48. (4x+1)2=20
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Solve each equation using the quadratic formula. See Example 6.

49. x> —4x+3=0 50. x>—7x+12=0 51. 2x2—x—28=0
52. 4x*=3x—10=0 53. x> —2x—2=0 54. x> —10x+18=0
55. x2—6x=—7 56. x> —4x=—1 57. x2—x—1=0

58. x2—3x—-2=0 59. —2x2+4x+3=0 60. —3x2+6x+5=0

Concept Check Match the inequality in each exercise in Column I with its equivalent
interval notation in Column I1.

I I
61. x<-—6 A. (—2,6]
62. x=6 B. [-2,6)
63. 2<x=6 C. (—», —6]
64. x>=0 D. [6, %)
65. x=—6 E. (=, =3)U (3, =)
66. 6 =x F. (-, —6)
67. G. (0,8)
T L lllllll /l T
2 0 6
FIR A N W Y S N W | H- -,
S (o0,
0 8
- [ R - L _65
69' ||> LI I B B | <|| [ oo)
-3 0 3
P R R R T R A J _0076
70' T T IJ T 11T T ( :l
-6 0

71. Explain how to determine whether to use a parenthesis or a square bracket when
writing the solution set of a linear inequality in interval notation.

72. Concept Check The three-part inequality a < x < b means “a is less than x and x is
less than b.” Which inequality is not satisfied by some real number x?

A. —3<x<10 B.0<x<6
C. 3<x<-1 D. 8<x<—-10

Solve each inequality. Give the solution set in interval notation. See Example 7.

73. 2x+8=16 74. —3x—8=17

75. —2x—2=1+x 76. —4x +3=—-2+x

77. 3(x+5)+1=5+3x 78. 6x— (2x+3)=4dx—5

79. 8x—3x+2<2(x+7) 80. 2 —4x+5x—1)<—6(x—2)
4x+7 2y —

81, ° ~<2x+5 g2. X3y,

Solve each inequality. Give the solution set in interval notation. See Example 8.

83. —5<5+2xr<11 84, —7<2+3x<5

85. 10=2x+4=16 86. —6=6x+3=21

87. —11> 3x+1>-17 88. 2> —6x+3>—3
+1 -3

89, 4="""=5 9. 5=">=1

2 3
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Graphs of Equations

The Rectangular
Coordinate System

Equations in Two
Variables

Circles

The Rectangular Coordinate System Each real number corresponds to
a point on a number line. This idea is extended to ordered pairs of real numbers
by using two perpendicular number lines, one horizontal and one vertical, that
intersect at their zero-points. The point of intersection is the origin. The horizontal
line is the x-axis, and the vertical line is the y-axis. See Figure 1.

The x-axis and y-axis together make up a rectangular coordinate system, or
Cartesian coordinate system (named for one of its coinventors, René Descartes.
The other coinventor was Pierre de Fermat). The plane into which the coordinate
system is introduced is the coordinate plane, or xy-plane. See Figure 1. The
x-axis and y-axis divide the plane into four regions, or quadrants, labeled as
shown. The points on the x-axis or the y-axis belong to no quadrant.

Each point P in the xy-plane corresponds to a unique ordered pair (a, b)
of real numbers. The point P corresponding to the ordered pair (a, b) often is
written P(a, b) as in Figure 1 and referred to as

“the point (a, b).”

The numbers a and b are the coordinates of point P.

y-axis y
°
B(-5, 6) A3, 4)
Quadrant | Quadrant b4
11
I4 units
P(a, b) b !
x-axis & =l X
it E(=3,0) 0|3 units
Quadrant Quadrant C(-2,-4) ®
I v [} D4,-3)
Rectangular (Cartesian) Plotting Points
Coordinate System
Figurel Figure 2

To locate on the xy-plane the point corresponding to the ordered pair (3, 4),
for example, start at the origin, move 3 units in the positive x-direction, and then
move 4 units in the positive y-direction. See Figure 2. Point A corresponds to the
ordered pair (3, 4).

Equations in Two Variables Ordered pairs are used to express the solu-
tions of equations in two variables. When an ordered pair represents the solution
of an equation with the variables x and y, the x-value is written first. For example,
we say that

(1,2) isasolutionof 2x—y=0.
Substituting 1 for x and 2 for y in the equation gives a true statement.
2x—y=0
2(1)—-220 Letx=1andy=2.
0=0 True
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Finding Ordered-Pair Solutions of Equations

For each equation, find at least three ordered pairs that are solutions.

(a)

(a)

(b)

(c)

ordered pairs that are solutions of the equation. The
intercepts of the graph are good points to plot first.
An x-intercept is a point where the graph intersects
the x-axis, and a y-intercept is a point where the graph
intersects the y-axis. In other words, the x-intercept is
represented by an ordered pair with y-coordinate 0,

y=4x—1 (b) x=Vy—-1 (c) y=x2—4
Choose any real number for x or y, and substitute in the equation to obtain

the corresponding value of the other variable. For example, let x = —2 and
then let y = 3.
y=4x—1 y=4x—1
y=4(-2)—1 Letx=-2. 3=4x—1 Lety=3.
y=-8-1 Multiply. 4 =4x Add 1.
y=-9 Subtract. 1=x Divide by 4.

This gives the ordered pairs (—2, —9) and (1, 3). Verify that the ordered
pair (0, —1) is also a solution.

x=Vy—1 Givenequation
Il=Vy—-1

Letx = 1.
I1=y—-1 Square each side.
2=y Add 1.

One ordered pair is (1, 2). Verify that the ordered pairs (0, 1) and (2, 5) are
also solutions of the equation.

A table provides an organized method for determining ordered pairs. Here,
we let x equal —2, —1,0, I, and 2 in
y=x2—4

and determine the corresponding y-values.

Five ordered pairs are (—2,0), (—1, —3), (0, —4), (1, —3), and (2, 0).

Now Try Exercises 15(a), 19(a), and 21(a).

The graph of an equation is found by plotting y

y-intercept

x-intercept

and the y-intercept is represented by an ordered pair Intercepts
with x-coordinate 0.

A general algebraic approach for graphing an equation using intercepts and

point-plotting follows.
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Graphing an Equation by Point Plotting

Step 1 Find the intercepts.

Step 2 Find as many additional ordered pairs as needed.
Step 3 Plot the ordered pairs from Steps 1 and 2.

Step 4 Join the points from Step 3 with a smooth line or curve.
Graphing Equations
Graph each of the equations here, from Example 1.

(@) y=4x—1 (b) x=Vy—1 () y=x*—14

(a) Step 1 Lety = 0 to find the x-intercept, and let x = 0 to find the y-intercept.

y=4x—1 y=4x—1

0=4x—1 Lety=0. y=4(0) =1 Letx=0.
1 =4x y=0-1

1 y=—1

sz

The intercepts are (JT, 0) and (0, —1).*

Step 2 We use the intercepts and the other ordered pairs found in Exam-
ple 1(a): (—2, —9) and (1, 3).

Step 3 Plot the four ordered pairs from Steps 1 and 2 as shown in Figure 3.

Step 4 Join the points plotted in Step 3 with a straight line. This line, also
shown in Figure 3, is the graph of the equation y = 4x — 1.

y y
3
fy =4x -1 10
0
+ X
]
! ] 2 l
/13 3 i
H fr=\5-1
-6
11
/ ! N
-9 0
Figure3 Figure 4

(b) For x = Vy — 1, the y-intercept (0, 1) was found in Example 1(b). Solve

x=V0—-1 Lety=0.

to find the x-intercept. When y = 0, the quantity under the radical symbol
is negative, so there is no x-intercept. In fact, y — 1 must be greater than or
equal to 0, so y must be greater than or equal to 1.

We plot the ordered pairs (0, 1), (1, 2), and (2, 5) from Example 1(b)
and join the points with a smooth curve as in Figure 4. To confirm the direc-
tion the curve will take as x increases, we find another solution, (3, 10).

*Intercepts are sometimes defined as numbers, such as x-intercept % and y-intercept —1. In this text, we
define them as ordered pairs, such as (JT’ 0) and (0, —1).
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_‘2\ y= x2-4
Figure5
y
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(c) In Example 1(c), we made a table of five ordered pairs that satisfy the equa-
tion y = x> — 4.

(-2,0), (—1,-3), (0,—4), (1,-3), (2,0)
) 1 1

x-intercept y-intercept x-intercept

Plotting the points and joining them with a smooth curve gives the graph in
Figure 5. This curve is called a parabola.

Now Try Exercises 15(b), 19(b), and 21(b).

Circles By definition, a circle is the set of all points in a plane that lie a
given distance from a given point. The given distance is the radius of the circle,
and the given point is the center.

We can find the equation of a circle from its definition using the distance
formula. Suppose that the point (%, k) is the center and the circle has radius r,
where r > 0. Let (x, y) represent any point on the circle. See Figure 6.

\/()C2 - x1)2 + (y2 - y1)2 =d  Distance formula

\/(x —h)?2+(y—k)?=r (x,y)= (k) (xy,) = (x,y),andd = r

(x = h)2+ (y — k)*> = r? Square each side.

Center-Radius Form of the Equation of a Circle

A circle with center (h, k) and radius r has equation
(x=h)+ (y—k)=r%

which is the center-radius form of the equation of the circle. As a special
case, a circle with center (0, 0) and radius r has the following equation.

X2+ y? =2

Finding the Center-Radius Form
Find the center-radius form of the equation of each circle described.
(a) center (—3, 4), radius 6 (b) center (0, 0), radius 3
(a) (x —h)®>+ (y —k)>=1r? Center-radius form

[x—(=3)]>+ (y —4)>=6% Substitute. Let (h, k) = (—3,4) and r = 6.
+ 3P+ (y—4)7 =36 simplify.

(b) The center is the origin and r = 3.
x>+ y2 =r? Special case of the center-radius form
x2+y2=3% Letr=3
x>+ y2 =9 Apply the exponent.

Now Try Exercises 35(a) and 41(a).
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Graphing Circles
Graph each circle discussed in Example 3.

(@ (x+3)2+(y—4)2=36 (b) x2+y2=9
(a) Writing the given equation in center-radius form

(= (P -4y =6

gives (—3, 4) as the center and 6 as the radius. See Figure 7.

(x+3)%+(y-4)?2=36

Figure 7 Figure 8
(b) The graph with center (0, 0) and radius 3 is shown in Figure 8.

Now Try Exercises 35(b) and 41(b).

Exercises

Concept Check Fill in the blank to correctly complete each sentence.
1. The point (—1, 3) lies in quadrant —_______ in the rectangular coordinate system.
. The point (4, —) lies on the graph of the equation y = 3x — 6.
. Any point that lies on the x-axis has y-coordinate equal to

2
3
4. The y-intercept of the graphof y = —2x + 6is .
5. The x-intercept of the graph of 2x + 5y =10is .
6

. Give three ordered pairs from the table.

Concept Check Graph the points on a coordinate system and identify the quadrant or
axis for each point.

7. (3.2) 8. (—7.6) 9. (=7, —4) 10. (8, —5)
11. (0, 5) 12. (-8,0) 13. (4.5.7) 14. (-75.8)

For each equation, (a) give a table with at least three ordered pairs that are solutions,
and (b) graph the equation. See Examples 1 and 2.

1 1
15.y=5x—2 16.y=—5x+2 17. 2x+3y =5

18. 3x—2y=6 19. y=1x? 20. y=x>+2
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21, y=Vx—3 22. y=Vx-3 23, y=|x—2]

24, y=—|x+4| 25, y=x* 26. y=—x°

Concept Check Fill in the blank(s) to correctly complete each sentence.

27. The circle with equation x> + y?> = 49 has center with coordinates _____ and
radius equal to

28. The circle with center (3, 6) and radius 4 has equation
29. The graph of (x — 4)2 + (y + 7)> = 9 has center with coordinates

30. The graph of x> + (y — 5) = 9 has center with coordinates
Concept Check Match each equation in Column I with its graph in Column II.

I I
3. (x =32+ (y—2)2=25 A. y B. y

'l

C. y D. y

34, (x+3)2+ (y+2)2 =25 AN\

32. (x—=3)2+(y+2)2=25

33. (x+3)2+ (y—2)2=25

/

In the following exercises, (a) find the center-radius form of the equation of each circle
described, and (b) graph it. See Examples 3 and 4.

35. center (0, 0), radius 6 36. center (0, 0), radius 9

37. center (2, 0), radius 6 38. center (3, 0), radius 3

39. center (0, 4), radius 4 40. center (0, —3), radius 7
41. center (=2, 5), radius 4 42. center (4, 3), radius 5

43. center (5, —4), radius 7 44. center (—3, —2), radius 6

45. center (\6 \6), radius \/2 46. center (— \/, - \/?;) , radius \/?:

Connecting Graphs with Equations Use each graph to determine an equation of the
circle in center-radius form.

47. y 48.
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Functions

Relations and
Functions

Domain and Range
Determining
Whether Relations
Are Functions
Function Notation
Increasing,

Decreasing, and
Constant Functions

Relations and Functions In algebra, we use ordered pairs to represent
related quantities. For example, (3, $10.50) might indicate that we pay $10.50 for
3 gallons of gas. The amount we pay depends on the number of gallons pumped,
so the amount (in dollars) is called the dependent variable, and the number of
gallons pumped is called the independent variable.

Generalizing, if the value of the second component y depends on the value
of the first component x, then y is the dependent variable and x is the indepen-
dent variable.

Independent variable W r Dependent variable
(. )

A set of ordered pairs such as {(3, 10.50), (8,28.00), (10, 35.00)} is a
relation. A function is a special kind of relation.

Relation and Function

A relation is a set of ordered pairs. A function is a relation in which, for each
distinct value of the first component of the ordered pairs, there is exactly one
value of the second component.

Deciding Whether Relations Define Functions

Decide whether each relation defines a function.
F={(1,2),(-2,4),(3,4)}
G={(11),(1,2),(1,3),(2,3)}
H={(-4,1),(-2,1),(-2,0)}

Relation F is a function because for each different x-value there is
exactly one y-value. We can show this correspondence as follows.

{1,-2,3} x-valuesof F

P

{2, 4, 4} y-valuesof F

As the correspondence below shows, relation G is not a function because
one first component corresponds to more than one second component.

{1, 2} x-values of G

{ 1,2, 3} y-values of G

In relation H the last two ordered pairs have the same x-value paired with
two different y-values (—2 is paired with both 1 and 0), so H is a relation but not
a function. In a function, no two ordered pairs can have the same first compo-
nent and different second components.

Different y-values

H= {(_4’ 1), (*2, 1), (*2, 0)} Not a function

Same x-value Now Try Exercises 1 and 3.



x-values y-values

]

F is a function.

H
x-values y-values

H is not a function.

Figurel

APPENDIX C Functions | 429

Relations and functions can also be expressed as a correspondence or
mapping from one set to another, as shown in Figure 1 for function F and
relation H from Example 1. The arrow
from 1 to 2 indicates that the ordered pair
(1,2) belongs to F—each first component

y

x oy
is paired with exactly one second compo- 240 (3,4
nent. In the mapping for relation H, which _é i o (1,2)
is not a function, the first component —2 is 3| 4 0 x

paired with two different second compo-
nents, 1 and 0.

Because relations and functions are sets
of ordered pairs, we can represent them Graph of F
using tables and graphs. A table and graph
for function F are shown in Figure 2.

Finally, we can describe a relation or function using a rule that tells how to
determine the dependent variable for a specific value of the independent vari-
able. The rule may be given in words: for instance, “the dependent variable is
twice the independent variable.” Usually the rule is an equation, such as the one
below.

Figure 2

Dependent variable — y = 2x <— Independent variable

In a function, there is exactly one value of the dependent variable, the sec-
ond component, for each value of the independent variable, the first component.

Domain and Range We consider two important concepts concerning
relations.

Domain and Range

For every relation consisting of a set of ordered pairs (x, y), there are two
important sets of elements.

e The set of all values of the independent variable (x) is the domain.

e The set of all values of the dependent variable (y) is the range.

Finding Domains and Ranges of Relations

Give the domain and range of each relation. Tell whether the relation defines a
function.

@ {(3,-1),(4.2),(45).(6,8)}

b c) x
(b) — (c) y
o ok
300 02
512

(a) The domain is the set of x-values, {3, 4, 6 }. The range is the set of y-values,
{—1,2,5,8}. This relation is not a function because the same x-value, 4, is
paired with two different y-values, 2 and 5.

(b) The domain is {4, 6,7, —3} and the range is {100, 200, 300 }. This map-
ping defines a function. Each x-value corresponds to exactly one y-value.
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x |y (¢) This relation, represented by a table, is a set of ordered pairs. The domain

s |2 is the set of x-values {—35, 0,5}, and the range is the set of y-values {2}.
ol 2 The table defines a function because each different x-value corresponds to
512 exactly one y-value (even though it is the same y-value).

Now Try Exercises 9, 11, and 13.

Finding Domains and Ranges from Graphs

Give the domain and range of each relation.

(a) y (b) Domain

|
\ \
\ \
\ \

1,2 8 N
’Q( ) ] |
i i

G I Y
| 1 [ |
0, ) |B
it 5 _4Qj4 é
-3

(c) y (d) y

(a) The domain is the set of x-values, {—1, 0, I,4}. The range is the set of
y-values, {—3, =1, 1,2}.

(b) The x-values of the points on the graph include all numbers between —4 and
4, inclusive. The y-values include all numbers between —6 and 6, inclusive.

The domain is [ —4,4]. Therangeis [—6,6]. Use interval notation.

(¢) The arrowheads indicate that the line extends indefinitely left and right, as
well as up and down. Therefore, both the domain and the range include all
real numbers, which is written

Interval notation for the

(—oo, oo). !
set of all real numbers

(d) The arrowheads indicate that the graph extends indefinitely left and right, as
well as upward. The domain is (—%, ). Because there is a least y-value, —3,
the range includes all numbers greater than or equal to —3, written [ —3, ©).

Now Try Exercise 19.

Determining Whether Relations Are Functions Because each value
of x leads to only one value of y in a function, any vertical line must intersect the
graph in at most one point. This is the vertical line test for a function.

Vertical Line Test

If every vertical line intersects the graph of a relation in no more than one
point, then the relation is a function.
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The graph in Figure 3(a) represents a function because each vertical line
intersects the graph in no more than one point. The graph in Figure 3(b) is not
the graph of a function because there exists a vertical line that intersects the
graph in more than one point.

y y
Vi ——w&n )
Yo — — | 1 Y1
—|1
2l . o 5 x
N %2 [%s
2t iy dCT )
This is the graph of a function. This is not the graph of a function.
Each x-value corresponds The same x-value corresponds to
to only one y-value. two different y-values.
(a) (b)
Figure 3

Using the Vertical Line Test

Use the vertical line test to determine whether each relation graphed in Example 3
is a function.

We repeat each graph from Example 3, this time with vertical
lines drawn through the graphs.

(a) y (b) y

(1,2) \
1,1
0 * - x
(0,_\1).. 410 4
@,-3)

=]
=
|
[o8) (=)
=

e The graphs of the relations in parts (a), (c), and (d) pass the vertical line test
because every vertical line intersects each graph no more than once. Thus,
these graphs represent functions.

e The graph of the relation in part (b) fails the vertical line test because
the same x-value corresponds to two different y-values. Therefore, it is not the
graph of a function.

Now Try Exercises 15 and 17.

The vertical line test is a simple method for identifying a function defined
by a graph. Deciding whether a relation defined by an equation or an inequality
is a function, as well as determining the domain and range, is more difficult. The
next example gives some hints that may help.
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y=v2x -1

Domain

Figure 4
y
4 T Range
2 _
24 yo=x

Figure5

Figure 6

Identifying Functions, Domains, and Ranges

Decide whether each relation defines y as a function of x, and give the domain
and range.

(a)

(a)

(b)

()

y=x+4 (b)y=\/2x7—1 (¢) y?=x (d)yZL

x—1

In the defining equation (or rule), y = x + 4, y is always found by adding 4 to x.
Thus, each value of x corresponds to just one value of y, and the relation defines
a function. The variable x can represent any real number, so the domain is

{x|xis areal number}, or (—o,).

Because y is always 4 more than x, y also may be any real number, and so the
range is (—o0, ).

For any choice of x in the domain of y = V' 2x — 1, there is exactly one cor-
responding value for y (the radical is a nonnegative number), so this equation
defines a function. The equation involves a square root, so the quantity under
the radical sign cannot be negative.

2x — 1 =0 Solve the inequality.

2x=1 Addl.

1
X = — Divide by 2.
2

The domain of the function is [%, 00). Because the radical must represent a
nonnegative number, as x takes values greater than or equal to % the range is
{y|y = 0}, or [0, »). See Figure 4.

The ordered pairs (16, 4) and (16, —4) both satisfy the equation y? = x.
There exists at least one value of x—for example, 16—that corresponds to
two values of y, 4 and —4, so this equation does not define a function.

Because x is equal to the square of y, the values of x must always be
nonnegative. The domain of the relation is [0, ©). Any real number can
be squared, so the range of the relation is (—%, «). See Figure 5.

Given any value of x in the domain of

we find y by subtracting 1 from x, and then dividing the result into 5. This
process produces exactly one value of y for each value in the domain, so this
equation defines a function.

The domain of y = % includes all real numbers except those that

make the denominator 0. We find these numbers by setting the denominator
equal to 0 and solving for x.

x—1=0
x=1 Addl.

Thus, the domain includes all real numbers except 1, written as the inter-
val (—o, 1) U (1, o). Values of y can be positive or negative, but never 0,
because a fraction cannot equal O unless its numerator is 0. Therefore, the
range is the interval (—, 0) U (0, ), as shown in Figure 6.

Now Try Exercises 23, 25, and 29.
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Function Notation When a function f is defined with a rule or an equation
using x and y for the independent and dependent variables, we say, ““y is a function
of X” to emphasize that y depends on x. We use the notation

y = f(x),

called function notation, to express this and read f(x) as “f of x,” or “f at x.”
The letter f is the name given to this function.
For example, if y = 3x — 5, we can name the function f and write

f(x)=3x—5.

Note that f(x) is just another name for the dependent variable y. For example,
if y = f(x) = 3x — 5 and x = 2, then we find y, or f(2), by replacing x with 2.

f(2)=3-2-5 Letx=2.
f(2)=1 Multiply, and then subtract.

The statement “In the function f, if x = 2, then y = 1” represents the ordered
pair (2, 1) and is abbreviated with function notation as follows.

f2)=1

The symbol f(2) is read “f of 2” or “f at 2.”
Function notation can be illustrated as follows.

Name of the function

Defining expression
—h—

y = f(x) = 3x—5
Value of the function Name of the independent variable

Using Function Notation
Let f(x) = —x? + 5x — 3 and g(x) = 2x + 3. Find each of the following.
@ f(2) (b) £(q) (©) gla+1)

(@ f(x)=-x?2+5x—3
f(2) =—22+5+2—3 Replace x with 2.
f(2)=—-4+10-3 Apply the exponent and multiply.
f(2)=3 Add and subtract.
Thus, f(2) = 3, and the ordered pair (2, 3) belongs to f.
() f(x)=—x2+5r—3
f(q) = —q¢*+5q —3 Replace x with g.

(c) g(x)=2x+3
gla+1)=2(a+1)+3 Replacexwitha + 1.
gla+1)=2a+2+3 Distributive property
gla+1)=2a+5 Add.

Now Try Exercises 35, 43, and 49.

Functions can be evaluated in a variety of ways, as shown in Example 7.
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Domain Range

Figure 7

A

v =f(x)

A

234

Figure 8

Using Function Notation
For each function, find f(3).
@ f(x)=3x-7 (b) f={(-3,5),(0,3), (3, 1), (6, ~1)}
(© f (d) y

Domain Range

@ f(x)=3x—7
f(3) =3(3) =7 Replace x with 3.
f(3)=2 Simplify.
f(3) = 2 indicates that the ordered pair (3, 2) belongs to f.

(b) For f={(-3,5),(0,3),(3,1), (6, —1)}, we want f(3), the y-value of
the ordered pair where x = 3. As indicated by the ordered pair (3, 1), when
x=3,y=1,50f(3)=1.

(¢) In the mapping, repeated in Figure 7, the domain element 3 is paired with 5
in the range, so f(3) = 5.

(d) To evaluate f(3) using the graph, find 3 on the x-axis. See Figure 8. Then
move up until the graph of f is reached. Moving horizontally to the y-axis
gives 4 for the corresponding y-value. Thus, f(3) = 4.

Now Try Exercises 51, 53, and 55.

Increasing, Decreasing, and Constant Functions Informally speak-
ing, a function increases over an open interval of its domain if its graph rises
from left to right on the interval. It decreases over an open interval of its domain
if its graph falls from left to right on the interval. It is constant over an open
interval of its domain if its graph is horizontal on the interval.

For example, consider Figure 9.

e The function increases over the open interval y
(=2, 1) because the y-values continue to get
larger for x-values in that interval. 5

e The function is constant over the open inter-
val (1, 4) because the y-values are always 5

for all x-values there. /

e The function decreases over the open interval T A S A e
(4, 6) because in that interval the y-values - R
continuously get smaller. oyl v yis !

increasing. yis decreasing.

The intervals refer to the x-values where the constant.

y-values either increase, decrease, or are con- Figure 9

stant.

The formal definitions of these concepts follow.
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Increasing, Decreasing, and Constant Functions

Suppose that a function f is defined over an open interval I and x; and x,
are in /.

(a) fincreases over [ if, whenever x; < x,, f(x;) < f(x,).
(b) f decreases over [ if, whenever x; < x,, f(x;) > f(x,).

(c) fis constant over I if, for every x; and x,, f(x;) = f(x,).

Figure 10 illustrates these ideas.

) ) } y=1e
y = f(x) y=f() SR
Sxp) = f(x)
fxy) | FiED) B
| | |
fonf=" | Fo) b= |
o x x ol xi X x o x xm o
Whenever x| < x,, and f(x;) < f(x,), Whenever x| < x,, and f(x{) > f(x,), For every xand x,, if f(x}) = f(x,),
fis increasing. fis decreasing. then f is constant.
(@) (b) (c)
Figure 10

To decide whether a function is increasing, decreasing, or con-
stant over an interval, ask yourself, “What does y do as x goes from left
to right?” Our definition of increasing, decreasing, and constant function
behavior applies to open intervals of the domain, not to individual points.

Determining Open Intervals of a Domain

Figure 11 shows the graph of a function. Determine the largest open intervals of
the domain over which the function is increasing, decreasing, or constant.

y

(1, 8)

7
(=2,-1)
Figure 11
We observe the domain and ask, “What is happening to the y-values

as the x-values are getting larger?” Moving from left to right on the graph, we
see the following:

e On the open interval (—, —2), the y-values are decreasing.

e On the open interval (—2, 1), the y-values are increasing.

e On the open interval (1, ), the y-values are constant (and equal to 8).
Therefore, the function is decreasing on (—o, —2), increasing on (—2, 1), and

constant on (1, o). .
( ) Now Try Exercise 65.
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Appendix o Exercises

Decide whether each relation defines a function. See Example 1.

1. {(5,1),(3,2),(4,9),(7,8)} 2. {(8,0),(5,7),(9,3),(3,8)}

3. {(2.4),(0,2),(2,6)} 4. {(9,-2),(-3,5). (9, 1)}

5. {(=3,1), (4 1), (=2,7)} 6. {(—12,5), (~10,3), (8,3)}
7. x 8. «x y
E K
10 | -4 0[V2
41V2

Decide whether each relation defines a function, and give the domain and range. See
Examples 1-4.

9. {(1,1),(1,—-1),(0,0), (2,4), (2, —4)}
10. {(2.5),(3.7).(3.9), (5. 11)}

11. 12.
— |
| ——
13. x|y 14. x| y
00 0 0
-1 1|1 1] —1
212 21 =2
15. y 16. y 17. y
2 I[\\ 4 :
X
0 [\ I x
3 0 *
18. y 19. y 20. y
3
3 i
i 0 x 0 A * 110\
X
5 -3 2.0

Decide whether each relation defines y as a function of x. Give the domain and range.

See Example 5.

21. y=x? 22, y=x3 23, x=y°

24, x=y* 25. y=2x—-5 26. y=—6x+4
27. y=Vax 28. y=—Vx 29. y=\Vax+1
30. y=\7-2x 3. y= 2 32 y= !

x—35
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33. Concept Check Choose the correct answer: For function f, the notation f(3) means
A. the variable f times 3, or 3f.
B. the value of the dependent variable when the independent variable is 3.
C. the value of the independent variable when the dependent variable is 3.
D. fequals 3.

34. Concept Check Give an example of a function from everyday life. (Hint: Fill in the
blanks: _ depends on , SO isafunctionof )

Let f(x) = —=3x + 4 and g(x) = —x* + 4x + 1. Find each of the following. Simplify if
necessary. See Example 6.

35. f(0) 36. f(—3) 37. g(—2) 38. ¢(10)
39. f(%) 0. f —Z) 41. g(%) 2. g(—D
43. f(p) 4. g(k) 45. f(—x) 46. g(—x)
47. f(x+2) 48. f(a+4) 49. f(2m —3) 50. f(3r—2)

For each function, find (a) f(2) and (b) f(—1). See Example 7.
51. f={(—-1,3),(4,7),(0,6),(2,2)} 52. f=1(2,5),(3,9),(—1,11),(5,3)}

53. f 54, r
\ 7/ N/
|| |
— |
55, , 56. y
4
2 ¥ y = f(x)
2 of 2 4" o\ 2 *
/ Yy =fx)

Use the graph of y = f(x) to find each function value: (a) f(—=2), (b) £(0), (c) f(1),
and (d) f(4). See Example 7(d).

57. y 58. y
6 6
4 4
2 A2
X X
510 5.1.0
219 2344 2-1-9 24344
59. y 60. y
4 4
2 » 2
-
X
=2—1-0 24344 2210 24344 *
17 i
g 4
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Determine the largest open intervals of the domain over which each function is
(a) increasing, (b) decreasing, and (c) constant. See Example 8.

61. 63.
y y
1 2.4
i
T |72| Io__ T é L X é T X
(0, =2) g
S
(-2.-4)
64. 65.

I

ol '

e

-7 10 3 2 2
3.-D)  + 0,-2)
T (-1,-3) +(1,-3)
Graphing Techniques
Stre_tch_ing and Graphing techniques presented in this section show how to graph functions that
Shrinking . . . .
are defined by altering the equation of a basic function.
Reflecting
Symmetry
Translations Recall from algebra that |a| is the absolute

value of a number a.

la| a if a is positive or 0
a = . . .
—a if a is negative

Graph of the absolute
Thus, |2 | = |2 | and | _2| = | 2 | . value function

We use absolute value functions to illustrate many
of the graphing techniques in this section.

Stretching and Shrinking We begin by considering how the graphs of
y = af(x) and y = f(ax) compare to the graph of y = f(x), where a > 0.

Stretching or Shrinking Graphs

Graph each function.

1
@ g(x) = 2[x| (b) h(x) =5 x] (©) k(x) =[2x]|

(a) Comparing the tables of values for f(x) = | x| and g(x) = 2|x| in Figure1 on
the next page, we see that for corresponding x-values, the y-values of g are
each twice those of f. The graph of f(x) = |x| is vertically stretched. The
graph of g(x), shown in blue in Figure1, is narrower than that of f(x), shown
in red for comparison.



y

y=£x)
(x, y)

0 \E !
/ y=af(x),a>1
(x, ay)

Vertical stretching
a>1

y=af(x),0<a<1

Vertical shrinking
0<a<1

Figure 3
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x | £ = Il | g() =20l
-2 2 4
-1 1 2

0 0 0

1 1 2

2 2 4
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g(x) = 2lx|

f@x) = x|

Figurel

(b) The graph of h(x) = %\x\ is also the same general shape as that of f(x), but

here the coefficient % is between 0 and 1 and causes a vertical shrink. The

graph of h(x) is wider than the graph of f(x), as we see by comparing the
tables of values. See Figure 2.

x | £(x) = Ix] | ) = x| :
-2 2 1 it
-1 1 : 1
0 0 0 s S0 =k
1
1 1 5
2 —+ =1
) ) ] h(x) =5 |x|
f f L x
-4 -2 0 2 4
Figure 2
(c) Use the property of absolute value that states |ab| = |a| + |b| to rewrite
|2x].

k(x) = [2x] = [2] - [x[ = 2[]

Therefore, the graph of k(x) = | 2x| is the same as the graph of g(x) = 2|x/|in
part (a). This is a horizontal shrink of the graph of f(x) = | x|. See Figure1.

Now Try Exercises 13 and 15.

Vertical Stretching or Shrinking of the Graph of a Function

Suppose that @ > 0. If a point (x, y) lies on the graph of y = f(x), then the

point (x, ay) lies on the graph of y = af(x).

(a) If a > 1, then the graph of y = af(x) is a vertical stretching of the

graph of y = f(x).

(b) If 0 < a < 1, then the graph of y = af(x) is a vertical shrinking of the

graph of y = f(x).

Figure 3 shows graphical interpretations of vertical stretching and shrinking.
In both cases, the x-intercepts of the graph remain the same but the y-intercepts

are affected.
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Graphs of functions can also be stretched and shrunk horizontally.

Horizontal Stretching or Shrinking of the Graph of a Function

Suppose that a > 0. If a point (x, y) lies on the graph of y = f(x), then the

point (i y) lies on the graph of y = f(ax).

(a) If 0 <a <1, then the graph of y = f(ax) is a horizontal stretching of
the graph of y = f(x).

(b) If a > 1, then the graph of y = f(ax) is a horizontal shrinking of the
graph of y = f(x).

See Figure 4 for graphical interpretations of horizontal stretching and
shrinking. In both cases, the y-intercept remains the same but the x-intercepts
are affected.

y ;f(ax), a>1

/
y=flax),0<a<1

Horizontal stretching Horizontal shrinking
0<a<1 a>1
Figure 4
Reflecting Forming the mirror image of a graph across a line is called

reflecting the graph across the line.

Reflecting Graphs across Axes

Graph each function.

(@) g(x) = —Vax (b) h(x) = V-x

(a) The tables of values for g(x) = —Vx and flx) = V/x are shown with
their graphs in Figure 5. As the tables suggest, every y-value of the graph of

g(x) = —Vx is the negative of the corresponding y-value of f(x) = V.
This has the effect of reflecting the graph across the x-axis.

x| ) =Vx | () = - V&
0 0 ‘ 0
1 1 —1
4 -2

Figure5
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(b) The domain of A(x) = V—xis (—o0, 0], while the domain of f(x) = Vixis
[0, ). Choosing x-values for i(x) that are negatives of those used for f(x),
we see that corresponding y-values are the same. The graph of 4 is a reflec-
tion of the graph of f across the y-axis. See Figure 6.

x | f(x) = Vx | h(x) =V —-x "
—4 | undefined 2 4T
-1 undefined 1 h(x) = V=x + foo) =V
0 0 0 1
1 1 undefined 1
4 2 undefined
——t— —t—+— x
-4 op 4
Figure 6

Now Try Exercises 23 and 29.

The graphs in Example 2 suggest the following generalizations.

Reflecting across an Axis

The graph of y = —f(x) is the same as the graph of y = f(x) reflected
across the x-axis. (If a point (x, y) lies on the graph of y = f(x), then
(x, —) lies on this reflection.)

The graph of y = f(—x) is the same as the graph of y = f(x) reflected
across the y-axis. (If a point (x, y) lies on the graph of y = f(x), then (—x, y)
lies on this reflection.)

Symmetry The graph of f shown in Figure 7(a) is cut in half by the y-axis,
with each half the mirror image of the other half. Such a graph is symmetric with
respect to the y-axis. In general, for a graph to be symmetric with respect to the
y-axis, the point (—x, y) must be on the graph whenever the point (x, y) is on
the graph.

y y
y=£x)

(x,y)
(-=x, ) (x,y) -
\ / \ L., _~— .

(VARVAREEN

(x, -y)
y-axis symmetry Xx-axis symmetry
(a) (b)

Figure 7

Similarly, if the graph in Figure 7(b) were folded in half along the x-axis,
the portion at the top would exactly match the portion at the bottom. Such a
graph is symmetric with respect to the x-axis. In general, for a graph to be
symmetric with respect to the x-axis, the point (x, —y) must be on the graph
whenever the point (x,y) is on the graph.
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Symmetry with Respect to an Axis

The graph of an equation is symmetric with respect to the y-axis if the
replacement of x with —x results in an equivalent equation.

The graph of an equation is symmetric with respect to the x-axis if the
replacement of y with —y results in an equivalent equation.

Testing for Symmetry with Respect to an Axis

Test for symmetry with respect to the x-axis and the y-axis.

(a) y=x>+4 (b) x=y2-3 (¢) x> +y2=16 d) 2x+y=4

(a) Iny = x% + 4, replace x with —x.

Use parentheses 4 ) )
around —X. ~ 2 ! The result is equivalent to the
y= ( A .. .

original equation.

y=x>+4

Thus the graph, shown in Figure 8, is symmetric with respect to the y-axis.
The y-axis cuts the graph in half, with the halves being mirror images.
Now replace y with —y to test for symmetry with respect to the x-axis.

y=x2+4
The result is not equivalent

= 42 . .
y=x"+4 to the original equation.

The graph is not symmetric with respect to the x-axis. See Figure 8.

y-axis symmetry X-axis symmetry

Figure 8 Figure 9

(b) In x = y2 — 3, replace y with —y.
X = (*)7)2 —3= y2 — 3 Same as the original equation

The graph is symmetric with respect to the x-axis, as shown in Figure 9. It
is not symmetric with respect to the y-axis.

(¢) Substitute —x for x and then —y for y in x> + y? = 16.
(—x)2+y2=16 and x>+ (—y)>=16
Both simplify to the original equation,

x2+y2=16.



(x,y)
0 /
(_x5 —Y)
y
s (x,y)
Ve
70
e
7
(_x9 _y)

Origin symmetry

Figure12
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The graph, a circle of radius 4 centered at the origin, is symmetric with
respect to both axes. See Figure 10.

y

4
X
LA
x-axis and No x-axis or
y-axis symmetry y-axis symmetry
Figure 10 Figure1l

(d) In 2x + y = 4, replace x with —x and then replace y with —y.

2x+y=4 2x+y=4
2(—x)+y=4 Not equivalent 2x+ (—v)=4 Not equivalent
—2x+y=4 2x—y=4
The graph is not symmetric with respect to either axis. See Figure 11.

Now Try Exercise 35.

Another kind of symmetry occurs when a graph can be rotated 180° about
the origin, with the result coinciding exactly with the original graph. Symmetry
of this type is symmetry with respect to the origin. In general, for a graph to
be symmetric with respect to the origin, the point (—x, —y) is on the graph
whenever the point (x,y) is on the graph.

Figure 12 shows two such graphs.

Symmetry with Respect to the Origin

The graph of an equation is symmetric with respect to the origin if the
replacement of both x with —x and y with —y at the same time results in an
equivalent equation.

Testing for Symmetry with Respect to the Origin

Determine whether the graph of each equation is symmetric with respect to the
origin.

(@ x2+y2=16 (b) y=x3

(a) Replace x with —x and y with —y.

2 2 —
Use parentheses x+y° =16
around —xand —y. (7]()2 n (7\')2 ~ 16

x>+y2=16

Equivalent

The graph, which is the circle shown in Figure 10 in Example 3(c), is sym-
metric with respect to the origin.
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Origin symmetry

Figure13

(b) In y = x3, replace x with —x and y with —y.

y=x
—y = (_\ 3 '
Equivalent
—y=—x
y=x

The graph, which is that of the cubing function, is symmetric with respect to
the origin and is shown in Figure 13.
Now Try Exercise 39.

Notice the following important concepts regarding symmetry:

e A graph symmetric with respect to both the x- and y-axes is automatically
symmetric with respect to the origin. (See Figure 10.)

e A graph symmetric with respect to the origin need not be symmetric with
respect to either axis. (See Figure 13.)

e Of the three types of symmetry—with respect to the x-axis, with respect to
the y-axis, and with respect to the origin—a graph possessing any two types
must also exhibit the third type of symmetry.

e A graph symmetric with respect to the x-axis does not represent a function.
(See Figures9and 10.)

Translations The next examples show the results of horizontal and verti-
cal shifts, or translations, of the graph of f(x) = |x]|.

Translating a Graph Vertically
Graph g(x) = |x| — 4.

Comparing the table shown with Figure 14, we see that for corre-
sponding x-values, the y-values of g are each 4 less than those for f. The graph
of g(x) = |x| — 4 is the same as that of f(x) = | x|, but translated 4 units down.
The lowest point is at (0, —4). The graph is symmetric with respect to the y-axis
and is therefore the graph of an even function.

x [ S6) = Ixl | ) = |+ -~ 4

—4 4 0
-1 1 -3
0 0 —4
1 1 -3
4 4 0

Figure 14

Now Try Exercise 51.

The graphs in Example 5 suggest the following generalization.
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y

Vertical Vertical Translations
translation
yﬂ)_"z\;“ 2 units up Given a function g defined by g(x) = f(x) + ¢, where c is a real number:
y=f&) 11 e For every point (x, y) on the graph of f, there will be a corresponding
0 x point (x, y + ¢) on the graph of g.
-1+ Original graph
y=fx)-3-2+ e The graph of g will be the same as the graph of f, but translated ¢ units
*43 .V\_lj up if ¢ is positive or ] c | units down if ¢ is negative.
-4 T Vertica
translation The graph of g is a vertical translation of the graph of f. See Figure 15.
3 units down
Figure 15
Translating a Graph Horizontally
Graph g(x) = |x — 4].
Comparing the tables of values given with Figure 16 shows that
for corresponding y-values, the x-values of g are each 4 more than those for f.
The graph of g(x) = |x — 4/ is the same as that of f(x) = |x/|, but translated
4 units to the right. The lowest point is at (4, 0). As suggested by the graphs in
Figure 16, this graph is symmetric with respect to the line x = 4.
x | £Gx) = x| | 8(x) = |x - 4]
-2 2 6
0 0 4
2 2 2
4 4 0 8(x) =[x -4
6 6 2 N
4,0
Figure 16
Now Try Exercise 49.
The graphs in Example 6 suggest the following generalization.
Original
Horizontal y  graph . q
ranslation | ¥ = /() Horizontal Translations
2 units to
;h: ;fg +2) Given a function g defined by g(x) = f(x — ¢), where c is a real number:
by = fe-3) * For every point (x, y) on the graph of f, there will be a corresponding
| I — > x point (x + ¢, y) on the graph of g.
3 [ - 12 4
. e The graph of g will be the same as the graph of f, but translated ¢ units
Horizontal 2 Q 2 20 2 o o o
translation to the right if ¢ is positive or | ¢ | units to the left if ¢ is negative.
3 units to
the right The graph of g is a horizontal translation of the graph of f. See Figure 17.
Figure 17

CAUTION Errors frequently occur when horizontal shifts are involved.
Find the value that causes the expression x — & to equal 0, as shown below.

F(x) = (x — 5)* F(x) = (x + 5)?

Because + 5 causes x — 5Stoequal | Because —S5 causes x + 5 to equal
0, the graph of F(x) illustrates a | 0, the graph of F(x) illustrates a
shift of shift of

5 units to the right. 5 units to the left.
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(a)

(a)

Figure18

(b)

(c)

Using More Than One Transformation

Graph each function.

f(x)=—|x+3]+1 (b) h(x) = |2x — 4| (c)g(x)=—%x2+4

To graph f(x) = —|x + 3| + 1, the lowest point on the graph of y = | x| is
translated 3 units to the left and 1 unit up. The graph opens down because of
the negative sign in front of the absolute value expression, making the lowest
point now the highest point on the graph, as shown in Figure 18. The graph is
symmetric with respect to the line x = —3.

To determine the horizontal translation, factor out 2.
h(x) = |2x — 4]
h(x) =|2(x—2)| Factor out 2.
ho) = 12|+ lx=2| [ab]=al[0]
h(x) = 2]x — 2| [2] =2
The graph of % is the graph of y = |x| translated 2 units to the right, and

vertically stretched by a factor of 2. Horizontal shrinking gives the same
appearance as vertical stretching for this function. See Figure 19.

The graph of g(x) = — %xz + 4 has the same shape as that of y = x?, but it
is wider (that is, shrunken vertically), reflected across the x-axis because the
coefficient —% is negative, and then translated 4 units up. See Figure 20.

Y h(x)=[2x -4 =2)x - 2|

4

Figure19 Figure 20

Now Try Exercises 55, 57, and 65.

E

xercises

Concept Check Fill in the blank(s) to correctly complete each sentence.

1.
2.
3.

To graph the function f(x) = x> — 3, shift the graph of y = x> down units.

units.

To graph the function f(x) = x2 + 5, shift the graph of y = x? up

The graph of f(x) = (x + 4)? is obtained by shifting the graph of y = x2 to the
4 units.

The graph of f(x) = (x — 7)? is obtained by shifting the graph of y = x2 to the
7 units.

The graph of f(x) = —V/x is a reflection of the graph of y = V/x across the
-axis.
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The graph of f(x) =V —x is a reflection of the graph of y = Vx across the
-axis.

To obtain the graph of f(x) = (x + 2)* — 3, shift the graph of y = x* to the left
units and down units.

To obtain the graph of f(x) = (x — 3)3 + 6, shift the graph of y = x* to the right
units and up units.

Concept Check Work each matching problem.

9. Match each equation in Column I with a description of its graph from Column II

10.

11.

as it relates to the graph of y = x2.

I II
(@ y=(x—-7)? A. atranslation 7 units to the left
(b) y=x2-7 B. atranslation 7 units to the right
(¢) y="7x2 C. atranslation 7 units up
@ y=(x+7)? D. a translation 7 units down
(e y=x>+7 E. avertical stretching by a factor of 7

Match each equation in Column I with a description of its graph from Column II as
it relates to the graph of y = V.

I
(a) y=4Vx
M) y=—Vx
© y=V-x
@ y=Vx—4
@ y=Vx—4

A.

II

a translation 4 units to the right

. atranslation 4 units down
. areflection across the x-axis

B
C
D.
E

a reflection across the y-axis

. a vertical stretching by a factor of 4

Match each equation with the sketch of its graph in A-I.

(@ y=x>+2 (b) y=x*-2 (© y=(x+2)
(d) y=(x—2)? (e) y=2x? ) y=—x2
(@ y=(x—-272+1 (h) y=(x+2)"+1 i y=(x+272-1
A. y B. y C. y
2
X 0 X 0 5 X
)
D. y E. y F. y
0 (2.1) .
7 X O 0 X
G. y H. y
2, 1)
0 . 0 x
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12. Match each equation with the sketch of its graph in A—I.

@@ y=|x—2| (b) y=|x| -2
(d) y=2]x]| (e y=—|x|
(@ y=—2|x| (h) y=[x—2|+2

Graph each function. See Examples 1 and 2.

2

13. f(x) = 3[x| 14. f(x) =4|x| 15. f(x) =]
16. f(x) = %\x\ 17. g(x) = 2x2 18. g(x) = 3x?

1 1 1
19. g(x) = Exz 20. g(x) = gxz 21. f(x) = —Exz
22, f(x) = —%x2 23. f(x) = —3|x| 24. f(x) = —2|x|
25. h(x) = ‘—%x 26. hx) = ‘—%x 27. h(x) = V4ax
28. h(x) = Vox 29. f(x) =V —x 30. f(x) = —|—x|

Concept Check Plot each point, and then plot the points that are symmetric to the given
point with respect to the (a) x-axis, (b) y-axis, and (c) origin.

31. (5.-3) 32. (=6,1) 33, (—4,-2) 34. (-8.0)

Without graphing, determine whether each equation has a graph that is symmetric with
respect to the x-axis, the y-axis, the origin, or none of these. See Examples 3 and 4.

35. y=x2+5 36. y=2x*-3
37. x2+y2=12 38. y2—x2=-6
39. y=—4x3+x 40. y=x3—x

41, y=x>—x+38 42, y=x+15
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Graph each function. See Examples 5-7.

43. f(x)=x>—-1
46. f(x)=x>+3

49. g(x) = (x +2)?

52. g(x)=|x+3]+2

55. h(x) =2x2—1

58. f(x)=-3(x—2)>+1

61. f(x)=—V&x
64. f(x)=3Vx—2

44.

47.

f(x)=x*—-2
g(x) = (x —4)
o) = (r+ 37

. h(x)=—(x+1)3

. h(x) =3x2 2
. f(x)=Vx+2
. f(x)=Vx—2
.gn:%ﬁ—4

45.

48.

51.

4.

57.

60.

63.

66.

449

flx)=x*+2

g(x) = (x—2)
g(x) = |x[ 1
h(x) = —(x — 1)}
fx) =2(x—2)2—4

f(x)=Vx-3
f(x)=2Vx+1
g(x) :lx3 +2

2

Connecting Graphs with Equations Each of the following graphs is obtained from the
graph of f(x) = |x| or g(x) = V/x by applying several of the transformations discussed
in this section. Describe the transformations and give an equation for the graph.

67. Y

69. y

68.

y

70.
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Answers to Selected Exercises

In this section we provide the answers that we think most
students will obtain when they work the exercises using the
methods explained in the text. If your answer does not look
exactly like the one given here, it is not necessarily wrong.
In many cases there are equivalent forms of the answer. For
example, if the answer section shows % and your answer is
0.75, you have obtained the correct answer but written it in a
different (yet equivalent) form. Unless the directions specify
otherwise, 0.75 is just as valid an answer as %. (In answers
with radicals, we give rationalized denominators when
appropriate.) In general, if your answer does not agree with
the one given in the text, see whether it can be transformed
into the other form. If it can, then it is equivalent to the cor-

rect answer. If you still have doubts, talk with your instructor.

1.1 Exercises
1

L 555 3. 180° 5.90° 7. & 9.55°15" 11. (a) 60°
(b) 150° 13. (a) 45° (b) 135° 15. (a) 36° (b) 126°
17. (a) 89° (b) 179° 19. (a) 75°40" (b) 165°40’
21. (a) 69°49'30" (b) 159°49'30" 23. 70% 110°
25. 30%60° 27. 40°140° 29. 107%73° 31. 69%21°
33. 150° 35.7°30" 37. 130° 39. 83°59’

41. 179°19' 43. —23°49' 45.38°32" 47. 60°34'
49. 17°01' 49" 51.30°27" 53.35.5° 55. 112.25°
57. —60.2° 59.20.91° 61. 91.598° 63. 274.316°

65. 39° 15" 00" 67. 126°45' 36" 69. —18°30" 54"
71. 31°25' 47" 73. 89°54' 01”7 75. 178°35' 58"
77.392° 79. 386°30" §1. 320° 83. 234°30' 85. I°
87. 359° 89. 179° 91. 130° 93. 240° 95. 120°

In Exercises 97 and 99, answers may vary.

97. 450°, 810° —270°, —630° 99. 360°, 720°; —360°,
—720° 101. 30° +n - 360° 103. 135°+ n - 360°
105. —90° + n - 360° 107. 0° + n - 360° or n * 360°
109. 0° and 360° are coterminal angles.

Angles other than those given are possible in Exer-
cises 111-121.

111. y 113. y
750 174°
0 * 0 *
435°; -285°; 534°; -186°;
quadrant I quadrant IT

115. y 117. y
300°
x
N
660°; —60°; 299°; —421°;
quadrant IV quadrant IV
119. y 121. y
90°
x x
0 01/ _gg0
450° -270°; 270°; —450°;

no quadrant no quadrant

123. 2 125. 1800° 127. 12.5 rotations per hr
129. 4 sec

1.2 Exercises

1. 180° 3. three 5. Answers are given in numerical
order: 49°; 49°; 131°; 131°; 49°; 49° 131° 7. A and P;
B and Q; C and R; AC and PR; BC and QR; AB and PQ
9. Aand C; E and D; ABE and CBD; EB and DB;

AB and CB; AE and CD 11. 51°% 51° 13. 50° 60°; 70°
15. 60°% 60°% 60° 17. 45° 75°% 120° 19. 49°; 49°
21. 48°,132° 23. 91° 25, 2°29" 27. 254°

29. 22°29' 34" 31. no 33. right; scalene

35. acute; equilateral 39. right;
41. obtuse; scalene 43. acute; isosceles

37. right; scalene
isosceles
45. Angles 1, 2, and 3 form a straight angle on line m

and, therefore, sum to 180°. It follows that the sum of the
measures of the angles of triangle POR is 180° because the
angles marked 1 are alternate interior angles whose mea-
sures are equal, as are the angles marked 2.

47. Q=42°,B=R=48° 49. B= 106" A =M = 44°
51. X=M=52° 53. a=20;b=15 55. a=6;
b=75 57.x=6 59.30m 61. 500 m; 700 m

63. 1125t 65. x=110 67. ¢ =~ 111.1

69. (a) 236,000 mi (b) no 71. (a) 2900 mi (b) no
73. (@) & (b) 30 arc degrees

Chapter 1 Quiz

[1.1] 1. (@) 71° (b) 161° 2. 65°%115° 3. 26° 64°
[1.2] 4. 20°24° 136° 5. 130° 50°

[1.1] 6. (a) 77.2025° (b) 22°01' 30" 7. (a) 50°

(b) 300° (c) 170° (d) 417° 8. 1800° [1.2] 9. 10 ft

10. (a) x=12;y=10 (b) x=5
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1.3 Exercises 51. y
1. hypotenuse 3. same 5. positive; negative

7.3V2 9. -2

2x+y=0,x=0

In Exercises 11-29 and 51-61, we give, in order, sine, _2V5 Vs, _9.
cosine, tangent, cotangent, secant, and cosecant. 3

— 1; O; undefined; O;

V2 V3 undefined; 1

=3 T2 =T
63. 0 65.0 67. —1 69. 1 71. undefined 73. —1
75. 0 77. undefined 79. 1 81. —1 83. 0 85. -3
1: 0: undefined: 0: 0: —1: 0: undefined: 87. -3 89.5 91.1 93.0 95.0 97.1 99.0
101. 0 103. undefined 105. 0 107. undefined
109. They are equal. 111. They are negatives of
each other. 113. 0.940; 0.342 115. 35°

117. decrease; increase

undefined; 1 —1; undefined

1.4 Exercises

1. cos f;secf 3. sinB;csc O 5. possible
7. impossible 9. possible 11. 3 13. —1 15. 1

17. -2 19. Y2 21. —04 23.08 25. Because

—1 = cos § = 1, it is not possible that cos § = %

—1; 0; undefined; 0;
undefined; —1

27. All are positive. 29. Tangent and cotangent are posi-
tive. All others are negative. 31. Sine and cosecant are
positive. All others are negative. 33. Cosine and secant are
positive. All others are negative. 35. Sine and cosecant
are positive. All others are negative. 37. All are positive.
39. LI 41.1 43. 11 45. 1 47. 11 49. 1II, IV

51. cos 6 and sec 0 are reciprocal functions, and sin 6 and

csc 0 are reciprocal functions. The pairs have the same sign

31. negative 33. negative 35. positive 37. positive for each quadrant. ~ 53. impossible  55. possible

57. possible 59. impossible 61. possible 63. possible

47. positive  49. positive 65. —% 67. - 69. =3 71. 1.05

39. negative 41. positive 43. negative 45. positive




In Exercises 73-83, we give, in order, sine, cosine,
tangent cotangent, secant, and cosecant.

8. 15, 8. _17.17
73. 17!_ﬁ’ g8> 15> 8°15

V5 2V V55 2Vss 1V 1V

5 577 s m TS s s
8\/7 vzo Mﬁvzo £
3 9 8 £ ’

Vis, 1 Vs 4\@
81. T; Z \/75 —?, —4

83. 1; 0; undefined; O; undefined; 1
is false. For example, sin 180° + cos 180° =
—1#1.
95. negative 97. positive 99. negative 101. positive
103. negative 105. 2° 107. 3° 109. Quadrant II is
the only quadrant in which the cosine is negative and the

87. This statement
0+ (-1)=
89. negative 91. positive 93. negative

sine is positive.

Chapter 1 Review Exercises

1. complement: 55°; supplement: 145°
7. 119.134° 9. 275°06' 02"
13. 105°; 105°
M = 86°

3. 186°
11. 40°; 60°; 80°
15. 0.25km 17. N=12° R = 82°
19. p=7;9q=7 21. k=14 23. 12ft

5. 9360°

In Exercises 25-43, we give, in order, sine, cosine,
tangent, cotangent, secant, and cosecant.

25. _ns

27.
29.

31.
33.

b
\/?4 5.1 13

L
3 3 12> 5 12
37. —1; 0; undefined; 0; undefined; —1
£

39 5. V39 5V39. 8. 8V39
. 8> 5 > 39 5 5 39
2\/5_ V5. 4 1. Vs
AL - o Vs P

3.4, 3. 4.5 5
B 755 T T 7

45. (a) impossible (b) possible (c) impossible
47. 40yd 49. 9500 ft

Chapter 1 Test
[1.1] 1. 23° 113° 2. 145°,35° 3. 20°% 70°
[1.2] 4. 130° 130° 5. 110°% 110° 6. 20° 30° 130°

7. 60°; 40°% 100°
10. (a) 30°

[1.1] 8. 74.31° 9. 45° 12" 09"
(b) 280° (c) 90° 11. 2700°

A-3

Answers to Selected Exercises

[1.2] 12. lO%ft, or10ft,8in. 13. x=8;y=06
[1.3]

__1Vs3, 2V53 .
sinf) = ——537; cos O = ~53—;
tan 0 = —%; cotfh = —%;
sec0=%;cscl9= @

15. y sinf = —1;cos 6 = 0;
tan 0 is undefined; cot 6 = O;
L/ . sec 6 is undefined; csc 8 = —1
0,-2)

3x—dy=0,x=0
17. row 1: 1, 0, undefined, O, undefined, 1; row 2: 0, 1, O,
undefined, 1, undefined; row 3: —1, 0, undefined, O,

undefined, —1
[1.4] 19. (@) T (b) 1L IV

18. cosecant and cotangent
(c) IIT 20. (a) impossible

(b) possible (c) possible 21. sec § = —Q
22. cos O = —g; tan = —%; coth = _23@;
86002—%; 0500:%

2.1 Exercises
1.C 3.B S5 E
In Exercises 7 and 9, we give, in order, sine, cosine, and

tangent.
21,20, 21 n
7.5 500 %t pim

In Exercises 11-19, we give, in order, the unknown side,

sine, cosine, tangent cotangent, secant, and cosecant.
_ 120513, 13
1. c=13; 13’ 13’ 55120 50 12

_ VI3 6, VI3 eVi3, 1. 1V13
13. b=\13; B, & VB VB 1 TV
3 10V91

15. b=\/971' @; = Vo1, 3Vo1. 10,

3 > 91 » 3> 91
17. b=\/§; %; % \/3; %; 2; 23ﬁ
_ C2. V21 2V21l Ver, sV21L s
19'“_\5’5 75 s 21 0 2 0 21 02
21. sin 60° 23. sec 30° 25. csc 51° 27. cos 51.3°
29. csc(75°—6) 31. 40° 33.20° 35.12° 37. 35°

39. 18° 41. true 43. false 45. true 47. true

9.2 511 53,23 5502 5.2 591
61. 2 63.\V/3 65.60° 67. y=Lx 69. 60°
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71. (a) 60° (b) £ (c) KN3 d) 2; \@; 30°; 60°

73.x=%@;y=%;z=¥;w=3\6
75. p=15; r=15V2; ¢=5V6; r=10V6
7. =5 79. (Y2 %2)ias0

83. the legs: (2V/2, 2V/2)

2.2 Exercises

84. (1,V3)

1. negative; III; 60°; —ﬁ 3. positive; IIT; 30°; ﬁ
5. 7.A 9.0 1L V3 1. 3?%
V3 2\/

15. -1, -1 17, =3 -2

In Exercises 19-35, we give, in order, sine, cosine, tangent,
cotangent, secant, and cosecant.

V3 V3 2V3
19. —T; E; _\/_;); —T; 2; —3
21. %; %; 1; 1; \6; \/i

23. 575 =5 -V3; _T3; -2 5=
25. -5 *?; é V3 *23&; -2
27, -2 -2 1 1 -V2; - V2
20. 3, Lo/3, V3, 0 28

3. -4 - ¥ \
33. 5 — % —?; ~V3; —2%; 2

35. —?; %; ~V3; —?; 2; —# 37. —%
39. -2 41 -V2 43 -1 451 4.2 9.

\f+1

=
51 -3 53, false; 0 # Y51 55, false; 1 # V3

57. true  59. false;0 % V2 61. 30°150° 63. 120° 300°
65. 45°%315° 67. 210%330° 69. 30%210° 71. 225°%315°

73. (—3\@, 3) 75. yes 77. positive 79. positive

81. negative 83. When an integer multiple of 360° is added
to 0, the resulting angle is coterminal with 6. The sine values

of coterminal angles are equal. 85. 0.9 87. 45°; 225°

2.3 Exercises

1.J 3.E 5.D 7.H 9. G

In Exercises 11-27, the number of decimal places may
vary depending on the calculator used. We show six places.
11. 0.625243 13. 1.027349 15. 15.055723

17. 0.740805 19. 1.483014 21. tan 23.4° =~ 0.432739

23. cot 77° = 0.230868 25. tan 4.72° = 0.082566

27. cos 51° = 0.629320 29. 55.845496°

31. 16.166641° 33. 38.491580° 35. 68.673241°

37. 45.526434° 39. 12.227282° 41. The calculator is not
indegree mode. 43. 56° 45. 1 47.1 49. 0 51. false
53. true 55. false 57. false 59. true 61. true

63. 68°% 112° 65. 44°;316° 67. 51°,231° 69. 701b
71. —2.9° 73. 25001b 75. A 2200-1b car on a 2° uphill
grade has greater grade resistance. 77. 703 ft

79. R would decrease; 644 ft, 1559 ft

81. (a) 2 X 108 mpersec (b) 2 X 108 m per sec

83. 48.7° 85. 155ft 87. Negative values of 6 require
greater distances for slowing down than positive values.

89. A: 69 mph; B: 66 mph 91. 550 ft

Chapter 2 Quiz
[2.1] 1. SlIlA—*, cosA:%; tanA:%; COtAZ%;
secA = %; csCA = 5
2.
0 sin® | cos@ | tan® | cot® | secO | cscO
° 1| V3 V3 2V3
30 2 2 3 \ﬁ 3 2
° V2 NG
palil e Bl L V2| V2
° V3 : V3 2V3
60° | M3 1 5 V3| Y| 2 | BB
3. w=18; x—lS\/y_lg 7—18\/
4. o =3x>sin 6

[2.2] In Exercises 5-7, we give, in order, sine, cosine,
tangent, cotangent, secant, and cosecant.

5.2 V2L V2 VA
R —% % -2

3;
7. —?; 5 -V3; —é; 2;
8. 60° 120° 9. 135°225° [2.3] 10. 0.673013

11. —1.181763 12. 69.497888° 13. 24.777233°
[2.1-2.3] 14. false 15. true

_2V3
3

2.4 Exercises
1. B 3. A 5. C 7. 23.8251t023.835
9. 8958.51t08959.5 11. 0.05

Note to student: While most of the measures resulting
from solving triangles in this chapter are approxima-
tions, for convenience we use = rather than ~.

13. B=53°40"; a=571m; b=777Tm

15. M =388% n=154m; p=198m

17. A =47.9108°% ¢ = 84.816 cm; a = 62.942 cm

19. A=37°40"; B=52°20"; ¢ =20.5ft 21. No.Given
three angles (the two acute angles and the right angle), there
are infinitely many similar triangles satisfying the conditions.



23. If we are given one side and one acute angle, an
appropriate trigonometric function of that angle will make
it possible to solve for one of the remaining sides. Then the
complete solution can follow.

25. B=062.0% a=28.171t; b= 1541t

27. A=17.0% a=39.1in; ¢ = 134in.

29. B=29.0% a=70.7cm; ¢ =809 cm

31. A=36% B=54°; b=18m
33. ¢=859yd; A=62°50"; B=27°10’
35. b=423cm; A=24°10"; B =65°50'

37. B=36°36"; a=310.8ft; b =230.8 ft

39. A=50°51"; a=0.4832m; b=0.3934m

41. If B is a point above point A, as shown in the figure,
then the angle of elevation from A to B is the acute angle
formed by the horizontal line through A and the line of sight
from A to B.

B

Angle of elevation

Horizontal

43. Angles DAB and ABC are alternate interior angles
formed by the transversal AB intersecting parallel lines
AD and BC. Therefore, they have the same measure.

45. 935m 47. 128ft 49. 26.92in. 51. 28.0m
53. 13.3ft 55. 37°35" 57. 42.18° 59. 22°
61. (a) 29,000 ft (b) shorter

2.5 Exercises

1.C 3. A 5B 7.F 9.1 11. 270°% N90° W,

or SO0°W 13. 0°;NO°E,or NO°W 15. 315°,N45°W
17. 135°;S45°E 19. 220 mi  21. 47 nautical mi

23. 2203 ft 25. 148 mi 27. 430 mi 29. 140 mi

31 1141t 33.5.08m 35. 433 ft 37. 108 fi
39. 1.95mi 4L (a) d=5(cots + cot?) (b) 345.4 cm
43. (a) 320t (b) R(1—cos))

45. y = (an35°)(x— 25) 49. y=Lx x=0

Chapter 2 Review Exercises
In Exercises 1, 13, and 15, we give, in order, sine, cosine,
tangent, cotangent, secant, and cosecant.

60, 11,60 11 61 6l o °
L& 65 115 600 100 g0 3 10° 5.7° 7. true 9. true
11. cosA=IE’and sinB=%, so cos A = sin B. (This is an

example of equality of cofunctions of complementary angles.)

V3 =V, M
Vs

; 2\/
;_3;_\@;7

19. 150%210° 21. 3 — # 23. 5 25. —1.356342

27. 1.021034 29. 0.208344 31. 55.673870°
33. 12.733938° 35. 63.008286° 37. 47°; 133°

13. —5=;

D=

“\&

15. —5;

s

-2 17. 120°% 240°

=

Answers to Selected Exercises | A-5
39. false; 1.4088321 # 1 41. true 43. No, this will
result in an angle having tangent equal to 25. The function
tan~! is not the reciprocal of the tangent (cotangent) but is,
rather, the inverse tangent function. To find cot 25°, the
student must find the reciprocal of tan 25°.

45. B=31°30"; a=638; b= 391

47. B =50.28% a =32.38m; ¢ =50.66 m 49. 137 ft

51. 73.7ft 53. 18.75cm 55. 1200 m 57. 140 mi
59. One possible answer:  61. (a) 716 mi (b) 1104 mi
Find the value of x.

! 2 25°

3

Chapter 2 Test
[2.1] 1. sinA = é, COSA = 13, tan A = f, COtA = 157
seCA = 3, scA=£ 2.x=4;y=4\/;

2=4V2; w=8 3.15° [2.1,2.2] 4. (a) true
(b) false; For 0° = 0 = 90°, as the angle increases, cos

decreases. (c¢) true

In Exercises 5-7, we give, in order, sine, cosine, tangent,
cotangent, secant, and cosecant.

[2.2] 5. ,——\f \3/ -2 —23&
6. — 2. \/- -V2; -\V2

7. —1,0, undeﬁned; 0; undefined; —1 8. 135°; 225°

9. 240° 300° 10. 45°,225° [2.3] 11. Take the
reciprocal of tan 0 to obtain cot § = 0.59600119.

12. (a) 0.979399 (b) —1.905608 (c) 1.936213

13. 16.166641° [2.4] 14. B=31°30";c = 877; b = 458
15. 67.1°,0r 67°10" 16. 15.5ft 17. 8800 ft

[2.5] 18. 72 nautical mi  19. 92 km 20. 448 m

3.1 Exercises
1. radius 3. % 5.1 7.3 9.

152 17. - 19. 7 21. 107 23.0 25. =57

27. Radian measure pr0v1des a method for measuring angles

-3 1.7 13.3

in which the central angle, 6, of a circle is the ratio of the
intercepted arc, s, to the radius of the circle, r. That is, 6 = %
29. 60° 31. 315° 33. 330° 35. —30° 37. 126°

39. —48° 41. 153° 43. —900° 45. 0.681 47. 0.742
49. 2429 51. 1.122 53. 0.985 55. —0.832

57. 114°35" 59. 99°42" 61. 19°35" 63. —287° 06’
65. In the expression “sin 30,” 30 means 30 radians;

in30° = 1 while sin 30 ~ 09880, 67. 2 9. 1

7. 23 731 V3 77.1 79. -1 81 -

~IS
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83. % 85. \/3 87. We begin the answers with the blank

next to 30°, and then proceed counterclockwise from there:

T T S Jm . 5w, To . 1lm
o> 45 35 1205 135; =5 w5 &5 75 240; 3005 55 —4—.

89. 37r; —ar (Answers may vary.) 91. (a) 47 (b) T
93. (a) 57 (b) T 95. 247

3.2 Exercises
.27 3.8 5.1 7.6m 9.15 11. 60°

13. 258 cm 15. 3.61ft 17. 5.05m 19. 553 in.
21. The length is doubled. 23. 3500 km 25. 5900 km
27. 44°N 29. 156° 31. 38.5° 33. 18.7cm

35. (a) 11.6in. (b) 37°05" 37. 146in. 39. 37 in.
41. 277 in. 43. 0.20km 45. 840 ft 47. 1116.1 m?
49. 706.9 ft> 51. 114.0 cm> 53. 1885.0 mi> 55. 3.6
57. 8060 yd*> 59. 20in. 61. (a) 1330, 57 (b) 478 ft
(¢) 17.71ft (d) 67212 63. (a) 140ft (b) 102 ft
(¢) 622 {2 65. 1900 yd> 67. radius: 3950 mi;
circumference: 24,800 mi  69. The area is quadrupled.
71. V= ﬂ (6 in radians) L

73.r=75 74 h=rcosg

75. d=r(1 —cos§) 76. d="%(1~cos)

3.3 Exercises
1. Counterclockwise from O radians, the coordinates are

(1,0), ( 232) (?%)G?)and (0,1). 3. ¥

5.1 7. siné):%; COSBZ%; tanf =1; cotd =1;

se(:0=\6; CSCOZ\/E 9. sinf =

12, _ 5.
— 135 cos 0 = 3;
13

tan6=—%; cotf = 152, sec 0 = 5’, cscl=—35

11. @) 1 (b) 0 (c) undefined 13. (a) 0 (b) 1 (¢) O
15. @0 (b -1 (0 17. —3 19. -1 21. —2
23. -1 25. % 27. % 29. 2\/3 31 —?

33. 0.5736 35. 0.4068 37. 1.2065 39. 14.3338
41. —1.0460 43. —3.8665 45. 0.7 47. 09 49. —0.6
51. 23 0r4.0 53. 0.80r2.4 55. negative 57. negative
59. positive 61. 0.2095 63. 1.4426 65. 0.3887

S 4 77T 47T S m 3w Sw Imw
67. % 69. 3 71. 73. » 3 75 40 4 40 4
117 T S

77. BT, - 6,—%,%,% 79. (—0.8011, 0.5985)
81. (0.4385,—0.8987) 83. 1 85. 1 87.0.9428

89. (a) 32.4° (b) Answers may vary. 91. (a) 30°

(b) 60° (c) 75° (d) 86° (e) 86° (f) 60°

%B.o@l mL ©VF @2 @2

M L2

Chapter 3 Quiz
31137 2. —H7 3.300°

[3.2]5. 1.5 6. 67,500 in.2
9.0 10. &

4. —210°

3317. X2 8. -

o=

3.4 Exercises
1. linear speed (or linear velocity) 3 27 5. 27

(b) 107 cm (c)
(b) 247 in. (c)
13. 7.4 radians

7. (a) 5 radians =T cm per sec

9. (a) 37 radians T in. per min
11. 27 radians

17. 0.1803 radian per sec

15. § radian per sec
19. gmin 21. 87 m per sec
23. gradians per sec  25. %m 27. 18mcm  29. 12 sec
31. % radian per sec  33. % radian per hr

35. 35 radian per min  37. 73% cm per min

39. 1687 m per min 41. 150077 m per min

43. 16.6 mph 45. (a) = radian (b) ;2= radian per hr
(¢) 67,000 mph 47. (a) 3.1 cm per sec

(b) 0.24 radian per sec 49. 3.73 cm
51. 523.6 radians per sec

Chapter 3 Review Exercises

1. A central angle of a circle that intercepts an arc of length
2 times the radius of the circle has a measure of 2 radians.

3. Three of many possible answers are 1 + 27, 1 + 47, and
1+6m 5.7 7.27 9. %07 11.225° 13. 480°

15. —110° 17. win. 19. 127 in. 21. 35.8 cm

23. 49.06° 25. 273 m? 27. 2156 mi 29. (a) %radians
(b) 27in. 31. 4500km 33. 3;1.5squnits 35. V3
37. —% 39.2 41.tan1 43. sin2 45. 0.8660
47. 09703 49. 1.9513 51. 0.3898 53. 0.5148
55. 1.1054 57. 7 59. %T 61. (a) 207 radians

(b) 300 cm (c¢) 107 cm per sec
63. 12607t cm per sec  65. 5 in.

Chapter 3 Test
3111 % 2. -7 3.0087 4. 135° 5.
6.229°11" [32]7. (@ 3 (b) 15,000 cm?

Vi gy, 5

—210°

8. 2 radians

[3.3]9. 11. undefined 12. —2 13. 0

1 T V3. 7 _ V3.

14. 0 15. sm6 = =5, 08¢ = —5; tang =3

7 23 7
=-2; secg = _\T[? cot ¢ = V3

16. sine and cosine: (—o, %); tangent and secant:

T
csc g

{s|s # (2n + 1) 5, where n is any integer }; cotangent and
cosecant: {s|s # nr, where n is any integer}

17. (a) 09716 (b) 5 [3.4]18. (a)
(b) 40m cm  (¢) S cmpersec 19. 8.127 mi per sec
20. (a) 75 ft

<7 radians

(b) 75 radian per sec



4.1 Exercises
1. ;27 3.nm 5.5 7.E 9.B 1L F

2 y =-2cos3x

1;2
41. y = 2 cos 2x
43. y = —3 cos %x
45. y =3 sin4x
47. (a) 80°F; 50°F
(b) 15

1 y = sin mx

4; 5 (c) 35,000 yr

2,
(d) downward

49. 24 hr 51. 6:00 p.M.; 0.2 ft 53, 3:18 Am.; 2.4 ft

55. (@) L(x) = 0.022x2 + 0.55x
+ 316 + 3.5 sin 27x

385
o
P
i
v
1§25 45
1509 371

(b) maxima: x = ;,%,7,...; minima: x = 4,%,7, ..
(¢) The quadratic function provides the general

increasing nature of the level, while the sine function
provides the fluctuations as the years go by.

57. (a) 31°F (b) 38°F (c¢) 57°F (d) 58°F (e) 37°F

() 16°F 59. 1;240° or%w 61. No.Forb>0,b # 1,

. . . 2
the graph of y = sin bx has amplitude 1 and period -,
while that of y = b sin x has amplitude b and period 2.

Answers to Selected Exercises | A-7

63. X =—0.4161468,Y = 0.90929743; X is cos 2 and Y is
sin2. 64. X =2,Y =0.90929743; sin 2 = 0.90929743
65. X=2,Y =—0.4161468; cos 2 = —0.4161468

66. For an arc length T on the unit circle, X = cos T and

Y =sinT.

4.2 Exercises

1. Tsleft 3.4 5. 6;up 7. %;left;5;3;up 9. D

11. H 13. B 15. 1 17. The graphof y =sinx + 1is
obtained by shifting the graph of y = sin x up 1 unit. The
graph of y = sin(x + 1) is obtained by shifting the graph of
y = sin x to the left 1 unit. 19. B 21. C 23. right

25. y=—1+sinx 27. y=cos (x - %) 29. 2;27r; none;
7 to the left  31. i; 44r; none; 7 to the left  33. 3; 4; none;

%to the right  35. 1; 27”; up 2; {5 to the right

s

y=—3+25in(x+

61. (a) (b) y=535
75 75 \
e a™ = 0 = = 2
030 25 30 25
yes It represents the average

annual temperature.

(© 12,5 12,45 (@ f(x)=125sin[Z(x—45)]+ 535
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61. (e) (f)

) =125 sin[%(x - 4.5)]

+53.5
75

Y
‘I,r' " TI-84 Plus fixed to
v,' b -" F the nearest hundredth

030 25

The function gives a good
model for the given data.

In the answers to Exercises 63 and 65, we give the model
and one graph of the data and equation.

63. (a) See the graph in part (c).

(b) y = 12.28 sin(0.52x + 1.06) + 63.96

(c) 80

v

65. (a) See the graph in part (c).
(b) y =0.495sin(0.21x + 0.41) + 0.52

(¢ U

ob—+— sy
-0.1

Chapter 4 Quiz
[4.1,4.2] 1. 4; ;3 up; 7 to the left

y=2+sin 2x-m)
1
;1 27 5

272
[4.1] 8. y=2sinx 9. y=cos2x 10. y= —sinx
12. 60°F; 84°F

[4.1,4.2] 11. 73°F

4.3 Exercises
1. = 3. increases

y=2tan %x

y= cot(3x+%)

y=-1+2tanx

y=-1+1cot @x-3m
39. y=—2tanx 41. y=cot3x
43. y=1 +tan %x 45. true

47. false; tan(—x) = —tan x for all x

in the domain. 49. four 53. Om

55.123m 57. 7 58 7
59. x="T+nr 60. (032,0) 61. (3.46,0)
62. {x|x=032+nmw}

4.4 Exercises
1.A 3.D 5.C 7.B 9.D

|
y=2+3sec(2x-m)

25. y=secd4x 27. y=—-2+cscx
29. y=—1—secx 31. true

33. true 35. none 39. 4m

41. 63.7m 43. The value is
1.3660254 in both cases. 45. The
value is 2.4142136 in both cases.



Summary Exercises on Graphing Circular
Functions

[
y =2 -sec[m(x - 3)]

4.5 Exercises
1. 5 3. %oscillation persec 5. —5
7. (a) s(r) = —4cos 21 (b) 3.46 units

(c) %oscillation persec 9. (a) 5;% (b) 60 oscillations

(c) 5;1.545; —4.045; —4.045; 1.545

11. (a) s(z) = 2 sin 2t; amplitude: 2;
period: 7; frequency: % rotation per sec
(b) s(#) = 2 sin 4t; amplitude: 2;

per sec

. 2 .
period: 7 ; frequency: = rotation per sec

13. period: %; frequency: %oscillations

E =5 cos 1207t

persec 15. # 17. (a) 5in. (b) 2 cycles per sec;%sec
(c) after }T sec (d) 4.0; After 1.3 sec, the weight is about
4 in. above the equilibrium position.

19. (a) s(r) = =3 cos 12t (b) % sec

21. (a) s(t) =2cos4mt (b) s(1) = 2; The weight is
moving neither upward nor downward. At ¢ = 1, the motion
of the weight is changing from up to down.

23. (a) s(t) = —3 cos 2.5zt (b) s(1) = 0; upward

25. s(t) = 0.21 cos 557t 27. s(¢) = 0.14 cos 1107t

0.3 0.3
- Fa
0f- A Noos o\-\--f--- SN oos
) . 7 PR
P v
~03 -0.3

29. 11in. 31. 1,3,5,7,9, 11

A-9

Answers to Selected Exercises

33. (a) 5

. _\‘;‘\

-5

(b) y, =57 (¢) 0,2

=]
(98]

Chapter 4 Review Exercises

1. B 3. sine, cosine, tangent, cotangent 5. 2; 27r; none;
none 7. %; 2{; none; none 9. 2; 87; 1 up; none

11. 3; 27r; none; % to the left  13. not applicable; 7; none;
% to the right  15. not applicable; g; none; % to the right
17. tangent

19. cosine 21. cotangent 23. By the given

condition, f(x) = f(x + 10n) for all integers n. If we let
n = 2,then 25 =5 + 10 - 2, and therefore f(5) = f(25).
Thus £(25) = 3.

y=1+2cos3x

y=sec(2x+’§7)

43. (a) See the graph in part (c).
(b) y =8.025sin(0.52x + 0.84) + 59.83

(¢) 80
ﬂ\.f‘f\y’f
0
45 25
45. y=1—sinx 47. y=2tanix
49. (b) 51. (a) 30°F (b) 60°F

(¢c) 75°F (d) 86°F (e) 86°F
(f) 60°F 53. (a) 100 (b) 258
(c) 122 (d) 296

55. amplitude: 4; period: 2;

50
0 0

s
2
cot

ST

d=

7]

0 frequency: % cycle per sec

57. The frequency is the number of cycles in one unit of
time; —4; 0; —2\6
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Chapter 4 Test

[4.1-4.4] 1. (a) y=secx (b) y=sinx (¢) y=cosx
(d y=
2. (@) y=1+cossx (b) y=
[4.1,4.3,44] 3. (@) (—=,) () [-1,1] (© 5
d) (=, —1]U[1,%) [4.2] 4. (@) 7 (b) 6

© [-3.9] @ (0,-3) (e) Ttotheleft (thatis, — %)

tanx (e) y=cscx (f) y=cotx

1
—5cotx

[4.1] 6.

y=sin (2x + )

[4.2] 7.

[4.3] 9. 10.

[4.4] 11.

y =-csc2x

[4.1,4.2] 13. (a)
f(x) = 16.5 sm[6 (x— 4)]

+ 67 5
90
0
40 2

(b) 16.5; 12; 4 to the right; 67.5up (¢) 53°F (d) 51°F
in January; 84°F in July (e) 67.5°F; This is the vertical
[4.5] 14. (a) 4in. (b) after § sec

[4.3,4.4] 15. Both the tangent
and secant functions are (by definition) undefined when

translation.

(c) 4 cycles per sec; 41*1 sec

cos x = 0 and are defined for all other x-values, so their
domains are the same. Both the cotangent and cosecant
functions are (by definition) undefined when sin x = 0
and are defined for all other x-values, so their domains
are the same.

5.1 Exercises
1.B 3. E 5. A 7. -065 9. -0.75 11. i
5V26 2V5 Vs 105

13. -2 15 -2 17, - XE 9. -
21. —;

has the same sign.

23. sin 6 is the reciprocal of csc 6 and therefore
25, f(—x) = 30X _ ST _ o) even

X X
27. f(x) =secx;even 29. f(x) = cotx; odd

31. cos0=—¥;tan0— 2\[ ;cot 6 ——#;
se00=—%@;cs<_‘0=§ 33. smG——£
cos(9=4\l7ﬁ cot = —4; sece—ﬂ; scH=—\/ﬁ
35. s1n6—%;cos€zg;tan0:%,secezg,cscﬁzg
37. sinf = 4&036:%; an0=—$;cot9=—¥;
csc = %/7 39.C 41.E 43. B
45. sinf = 221 47 Gnx= £V/1 - costx
m

49. tanx = £ Vsec?x—1 51. cscx =

— cos? x

In Exercises 53-77, there may be more than one possible
answer.

53. cosf 55.1 57.cotf 59.cos’6 61. sec§ — cos 6
63. —cot + 1 65. sin>6cos>6 67. tan 0 sin 0

69. cot —tanf 71. cos’6 73. tan’6 75. —secd

77. sec2 79. 25\/ 60,’25\/

83. not an identity 85. y= —sin2x 86. Itis the
negative of y = sin 2x. 87. y = cos 4x 88. Itis the same
89. (a) y= —sindx (b) y=cos2x

(¢) y=5sin3x 90. Students who ignore negative signs

81. identity

function.

will enjoy graphing cosine and secant functions containing
a negative coefficient of x in the argument, because it can be
ignored and the graph will still be correct.

5.2 Exercises

1.B 3. A 5.1 7. —sinf 9. cot@;cos@

11. cscfsecd 13. 1 +secx 15. 1

17. 1 —2sinacosa 19. 2+ 2sint

21. —2cotxcscx 23. (sinf + 1)(sinf — 1)

25. 4sinx 27. (2sinx + 1)(sinx + 1)

29. (cos?x + 1) 31. (sinx — cos x)(1 + sin x cos x)
33.sinf 35. 1 37.tan’B 39. tan’x 41. sec’x

43. cos’x 89. (sec +tan0)(1 —sin6) = cos O

cosf + 1
Il sin § + tan 6

101. (a) I = k(1 —sin>0) (b) When 6 = 0, cos 6 = 1, its
maximum value. Thus, cos? § will be a maximum and, as a

=cotf 93. identity 95. not an identity

result, / will be maximized if & is a positive constant.



103. 4

E
XXXX
of~ AL 1076

-1

The sum of L and C equals 3.

105. E(1) =3

5.3 Exercises
1.F 3.E 5.E 7.H 9.

V2 - Ve 15 Ve + V2
4 . 4
5

21. sin7;  23. sec 75°36' 25. cos(—%)

27. csc(—56°42") 29. tan(—86.9814°)
31. tan 33. cos 35. csc

Ve-Va 4 Vi- Ve
4 . 4

13. 17. 0 19. cot 3°

For Exercises 37-41, other answers are possible. We give
the most obvious one.

37. 15° 39. —% 41. 20° 43. cos 6 45. —cos 6

47. cos 49. —cos® 51 ;22

53 4-6V6. 4+6V6 55, 2Ves - V30, 2V638 + V30
- T 25 5 25 . 56 ; 56

57. true 59. false 61. true 63. true 65. false

75. (a) 3 (b) 163 and —163 (c¢) no

77. cos(90° + ) = —sin @ 78. cos(270° — ) = —sin O
79. cos(180° + 0) = —cos 6 80. cos(270° + 0) = sin 0
81. sin(180° + ) = —sin O 82. tan(270° — 6) = cot H

5.4 Exercises
LD 3B 5C 7.A 9. Y2 11 243
13. L: V2 s 0-V3 1. LX Va

19. Yo V2 a1 2-VE 23 2+ V3 25
27.1 29, —1 310 33, Veot—sino

cosf — \V3sin0 W(Sinx—cosx) V3tang + 1
* ’ 7 : 39 V3 — tan g

41. \/5(005; + sin x)

47. —tanx 49. Cotangent, secant, and cosecant formulas

43. —cos 6 45. —tanx

can be written using their reciprocal functions: tangent, cosine,

andsine. 5. @ 2 M Z ©1 53. @ £ b —1

N2+ Vs -V5-\V2
9 (b) —

57. sin(% + 0) =cosf 59. tan(% + 0) = —cotf

(c) I 55. (a)

(o) II

71. (a) 4251b (¢) 0° 73. —20 cos%l
75. y' =ycosR—zsinR 77. 180° -

78.0=B—a 79 tan6 =YL e 81 18.4°
82. 80.8°

Chapter 5 Quiz

[5.1] 1. 0056:%;tan0: —;j;cotez —%;secﬁzg;
csch = —275 2. wifizrl [5.4] 3. M

A-11

Answers to Selected Exercises

16

[53] 4. —cos 0 [53,54] 5. (@) —2 () -2 (¢ I
[5.4] 6. Fnx

5.5 Exercises

1.C 3B 5. F 7. cos20 =11 sin2g= —+Y2

9. cos2x = —%; sin 2x = ;1 11. cos 260 = %;

sin 260 = —% 13. cos0=25ﬁ;sin6=%

15. cos 6 = —@;sin0=@ 37. % 39. %

a1, =2 43 Lan102° 45, Leos942° 47, —cos T

49. sin 4x = 4 sin x cos® x — 4 sin® x cos x

_ 3tanx — tan®x
S1. tan 3x = 3.

4

53. cos* x — sin* x = cos 2x

55, 2 tan x

2 — sec’x

=tan 2x 57. sin 160° — sin 44°
59. sin7 —sing 61 3 cosx — 3 cos 9x

63. —2sin3xsinx 65. —2sin 11.5° cos 36.5°
67. 2 cos 6xcos2x 69. a = —885.6; ¢ = 885.6;
w = 2407

5.6 Exercises

- 3+ 5C 7.D 9. F 11 Y212
13.2- V3 1s. —2%\/5 17. Because

sin 7.5° = sin(% . %) first use the half-angle identity for

sine and then use the half-angle identity for cosine within

that calculation. The exact value is %M
19. V10 21,3 23, VIOV 55 /7 97 V5
29. Y2 310127 33, sin20° 35. tan 73.5°

37. tan29.87° 39. cos 9x 41. tan40 43. cos%

X X
tan 5 + cot 5

sinx X _
55, {9 oosy = tany  S7. — = secx

X
cot 5~ tan 3

R—-1»b

59. 106° 61.2 63. (a) cosy =222 (b) tanl=2

65. Y102V 67.< '0”\@(\@“) 69. 1+ V5
V10 + 2V5 (V1o +2V5)(=5 + 3V/5)
71, 10 73. =

75. 1+ V5 77. They are both radii of the circle.

78. It is the supplement of a 30° angle. 79. Their sum is
180° — 150° = 30°, and they are equal. 80. 2 + /3
g2, YorVa g3 V6-V2 gy 5 \/3

Chapter 5 Review Exercises
1.B 3.C 5D

In Exercises 7-11, there may be more than one possible
answer.

7.1 9. sec?6 11. —cotf
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4, _ 4. =3
13. sinx = —35;tanx = —3; cot(—x) =3

15. sin 165° = YO V2, oo jg50 = =V6 - V2,

tan 165° = —2 + \/g; csc 165° = \/6 + \/2;
sec 165° = —\/8+ \/2; cot 165° = —2 — \/g

17.1 19.H 21.G 23.J 25.F 27. 453 -1l

2 +3V7.2V3+ V21, —25V3 — 8Vl
29. =5 s 10 ; 9 |l

4-9V11 12V11 -3 V11— 16 . Vi4
31. O = ; 7 ; IV 330 sin 6 = —5—;
cos¢9=¥ 35. sin2x=%;0052x: —‘51 37. %

V5 -1 sin 2x + si
39. 55— 41,05 430 T =coty

) T

45, S oorf gy, 2SS oy
71. (@) D =" (b) 351
Chapter 5 Test
[5.1] 1. sinf = —zls; tan 0 = —214; cotf = —274;
sec(9=§;0506=—275 2. cosf 3. —1
[5.3] 4. @ [5.3,5.4] 5. (a) —sin® (b) tanx
[5.6] 6. —2%\/5 7. cot %x— cotx = csc x

(53,541 8. (@ 2 () -2 © 2 @1
24

55,561 9. @) —% ) -2 ©% @ % ©2
[5.3] 15. (a) V=163 cos(T — wr) (b) 163 volts; 3y sec

Vs
5

6.1 Exercises

1. one;one 3. cosy 5.7 7.(a) [—1,1]

(b) {—%%} (¢) increasing (d) —2 is not in the domain.
9. (a) (—»,%) (b) (—%,%) (c) increasing (d) no
11. The interval must be chosen so that the function is one-

to-one, and the sine and cosine functions are not one-to-one
on the same intervals. 13. 0 15. = 17. % 19. 0

21. -5 23. 5%7 25. sin'\/3 does not exist. 27. 3777
29. -7 31.% 33.0 35 csc! ?does not exist.
37. —45° 39. —60° 41. 120° 43. 120° 45. —30°

47. sin™!' 2 does not exist. 49. —7.6713835°
51. 113.500970° 53. 30.987961° 55. 121.267893°
57. —82.678329° 59. 1.1900238 61. 1.9033723
63. 0.83798122 65. 2.3154725 67. 2.4605221
69, yoecix 71.

Y,

y= cot ! x

1

T

¥
\
|
|
0

’7T

|

|

| &
o

|/

0

73. y 75. Y7 77,35 79,120
Ed 7 4Vo 63
AT e, 8L 8358 852 81
’ 89, Y10—3V30 g1 804427191

95. V1 —u?

93. 0.1234399811

97. V-2 99, L4 qop, Y2 o3, DV
107. (a) 18°

105. 41° (b) 18° (¢) 15°
1.414213 m (Note: Due to the
computational routine, there

may be a discrepancy in the

i last few decimal places.)
O e ) V2

109. 44.7% 111. In each case, the resultis x. 112. In each
case, the result is x. The graph is that of the line y = x.

113. 114.
y= tan(tan™" x) y= tan™!(tan x)
10\ 10
R \
~10 _;A_f_ 10 ~10 _x’_,_...r’?af*;.-(?-f?- 10
| |
-10 -10

It is also the graph of y = x. It does not agree because the

range of the inverse tangent
function is (— 7. %) , not
(—o0, @), as was the case in

Exercise 113.
6.2 Exercises
L {%STW} 3. {%THT”} 5. {m} 17.{0°180°}
9. {120°,240°} 11. {225°315°} 13. —30°is notin
the interval [0°, 360°). 15, {37, 77} 17, {7 37}

19. ¢ 21 {Z,% 57 57} 53 ()

25, {77 37 Umd 7. (300, 210°, 240, 300°)

29. {90°,210°,330°} 31. {45° 135°,225° 315°}
33. {45°,225°} 35. {0°,30° 150°, 180°}

37. {0°,45°, 135°, 180°, 225°, 315°}

39. {53.6°,126.4°, 187.9°,352.1°}

41. {149.6°,329.6°, 106.3°,286.3°} 43. &

45. {57.7°,159.2°} 47. {180° + 360°n, where n is

any integer}  49. {% + 2nir, 2777 + 2nir, where n is any
integer | 51. {19.5° + 360°n, 160.5° + 360°n,

210° + 360°n, 330° + 360°n, where n is any integer }

53. {% + 2nar, m + 2n1r, STTF + 2nm, where n is any integer}
55. {180°n, where n is any integer }  57. {0.8751 + 2nr,
2.2665 + 2nar, 3.5908 + 2nr, 5.8340 + 2nr, where n is

any integer }



59. {33.6° + 360°n, 326.4° + 360°n, where n is any integer }
61. {45° + 180°n, 108.4° + 180°n, where n is any integer }
63. {0.6806, 1.4159} 65. (a) 0.00164 and 0.00355

(b) [0.00164, 0.00355] (c) outward 67. (a) 4lsec

(b) Lsec () 0.21 sec

6.3 Exercises

rEEe) s (n ) s (n)
7. {0°} 9. {240°) 1. @ 13.{Z 7 %7}

15. {60°, 210°,240°, 310°} 17, { %, 1z 13w 2m}

19. {90°,210°,330°} 21, {f, 17 137 197 257 3la}

23. {67.5°, 112.5°,247.5°,292.5°}  25. {%37”}

22. {07,757} 29. 2 31 {180°} 33. {7,777}

3s. {% + 2T T 4 27 \where n is any integer }

37. {720°n, where n is any integer }

39. {%’T + dnar, 4% + 4nir, where n is any integer}

41. {30° + 360°n, 150° + 360°1, 270° + 360°n, where n

is any integer}  43. {mr, Z +2nm, %ﬂ + 2nar, where n is
any integer} 45. {1.3181 + 2nr, 4.9651 + 2nr, where n
is any integer} 47. {11.8° + 180°, 78.2° + 180°n, where
nis any integer } 49. {30° + 180°1, 90° + 180°n,

150° + 180°n, where n is any integer }  51. {%}

53. {0.4636,3.6052} 55. {1.2802} 57. (a) See the
graph in the text. (b) The graph is periodic, and the wave
has “jagged square” tops and bottoms. (¢) This will
occur when 7 is in one of these intervals: (0.0045, 0.0091),
(0.0136, 0.0182), (0.0227, 0.0273).

59. (@) Forx=—1 (b) 0.0007576,
P() = $sin2m(22001 +  0.009847, 0.01894,
L inf2m (33001 + 0.02803 (c) 110 Hz
[ asin2m0y]
I !
Al ol
O+ t..'l' 1 I ..IM|I|L 0.03

||

-1
(d) Forx =1,
P(t) = sin[27(110)¢] +
%sin[27r(220)t] +

61. (a) when x = 7 (during
July) (b) whenx =23
(during February) and when
%sin[Zﬂ'(330)t] + x = 11.7 (during November)
63. 0.001 sec

1 sin[2m(440)]
65. 0.004 sec

o N
: f\x _,._.\,.le_o_m

ul

2

(=]

-2

Answers to Selected Exercises | A-13
Chapter 6 Quiz

[6.1] 1. 2@ -7 ®MT ©F
3. (a) 22.568922°

(b) 137.431085°

4. @) Y ) B

[6.2] 5. {60° 120°}
6. {60°, 180°, 300°}
(b) 0.20 sec 8. {0.6089, 1.3424,

[—1,1];[0,7]

7. (a) Osec
37505, 44840} [6.3] 9. {T, % Tm 57}

10. {%ﬂ + 4nr, %ﬂ + 4nar, where n is any integer }

6.4 Exercises
1.C 3.C 5. A 7.x=arccos§ 9.x=%arctan§
11. x=4 arccos% 13. x= éarccos(—%)

15. x = arcsin(y + 2) 17. x = arcsin (#)

19. x = %arccot 2y 21. x = —3 + arccos y

23, x = % sec‘l(yif\/E

function is x, not x — 2. To solve for x, first add 2 and then

use the definition of arcsine. 27. {— %} 29. {—2\/2}

3. {7 -3} 33. {3} 35 {!} 3. (0

3. {1} a.{-1} w3 {0
45 47. {44622}

) 25. The argument of the sine

. . _ T
y =sin'x—cosTx -2
\__2 6

2

49. (a) A = 0.00506, ¢ = 0.484;
P = 0.00506 sin(4407¢ + 0.484)
(b) Forx =1,

P(f) = 0.00506 sin (4407t + 0.484)

P,(t) + P5(t) = 0.0012 sin(4407t + 0.052)
+ 0.004 sin (4407t + 0.61)

0.006 /
e /
OK\-- ,Z : --;I."--- 0.01
' N
-0.006
The two graphs are the same.
+y +y
SLo(@ tna=3tanB=""" () ma="mp
t + t:
(¢) a = arctan(iafnf) d B= arctan(%)

T f
55. (a) 1= ;- arcsin 3y (b) 0.27 sec

53. (a) 1 = 5o arcsin = (b) 0.00068 sec
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Chapter 6 Review Exercises

) 1 11
3. false; arcsin ( - 5) z &

9. 1. 13. 7 15 —60° 17. 60.67924514°

19. 36.4895081° 21. 73.26220613° 23. —1 25. 3777

20, VT 31, Y3 33, 2erinVe 550l

Il
|
o
=
3
-
o
W
N
~
e

27. 7
37. {04636, 36052} 39, {7 37 57 Trl
a1, (T3 5w Tm 9w Ml Bn 15wk g3 {74 o,

T + 2nm, 5?” + 2n7r, where n is any integer} 45. {270°}
47. {45°,90° 225°,270°}F 49. {70.5°, 180°, 289.5°}
51. {300° + 720°1, 420° + 720°1, where n is any integer }
53. {180° + 360°n, where n is any integer} 55. &

S7. {_%} 59. x =arcsin2y 61, x = (% arctan 2y> - %

63. (b) )1«1 = tan™! (1?5) */tan_l (%)
P e _/___
.--F' E
0 I ettt 20
Ol s

8.6602534 ft; There may be a discrepancy in the final digits.
65. No light will emerge from the water.

Chapter 6 Test
[6.1] 1. 2@% m -7 ©0
) 2777 3. (a) 30° (b) —45°
(¢c) 135° (d) —60°
4. (a) 43.97° (b) 22.72°
0 Vs
(c) 125.47° 5. (a) 5
) 2
6. No number has a sine value of 3.
uV1 —u?

7. arcsin(sin 5%7) =arcsing = £ #2 8.
[6.2,6.3] 9. {30°,330°} 10. {90°,270°}

o o o o 2 4
11. {18.4°,135°198.4°,315°} 12. {0,%,%}

1 —u?

13. {7, 77 37 57 1 Brl gy 10.3649,1.2059,
3.5065,4.3475} 15. {90° + 180°n, where n is any

integer} 16. {2777 + 4nar, 4777 + 4nar, where n is any

integer} 17. {g + 2nar, where n is any integer}

[6.4] 18. (a) x = %arccos y (b) x= arccot(y%)

19. (a) {‘51} (b) {é} 20. P first reaches its maximum

at approximately 2.5 X 10~*. The maximum is approximately
0.003166.

Note to student: Although most of the measures resulting
from solving triangles in this chapter are approximations,
for convenience we use = rather than ~ in the answers.

7.1 Exercises

1. oblique 3. angles 5. a;b;c 7. The law of sines
may be used. 9. There is not sufficient information to use
the law of sines. 11. \/3 13. C=95°b=13m,
a=11m 15. B=37.3°a=38.51t b=51.0ft

17. C=57.36°b=11.13ft,c = 11.55 ft

19. B=18.5°a=239yd, c =230yd

21. A=56°00", AB = 361 ft, BC = 308 ft

23. B=110.0°,a =27.01 m, ¢ = 21.36 m

25. A =34.72° a = 3326 ft, c = 5704 ft

27. C=97°34",b=2832m,c=4152m

29. To use the law of sines, we must know an angle measure,
the length of the side opposite it, and at least one other angle
measure or side length. 31. If two angles and a side are
given, the third angle can be determined using the angle sum
formula. Then the ASA congruence axiom can be applied.
This triangle is uniquely determined because there is only one
possible triangle that meets these initial conditions.

33. 118 m 35. 17.8 km 37. first location: 5.1 mi;

39. 0.49mi 41. 111°

43. The distance is 419,000 km, which compares favorably

second location: 7.2 mi

to the actual value. 45. 6600 ft 47. % sq unit

49. % squnit 51. 46.4m> 53. 356 cm®

55. 722.9in.2 57. 65.94cm? 59. 100 m?

61. a =sinA,b=sinB,c=sinC 63. x=%

7.2 Exercises

1. A 3. (a)4<L<5 () L=4orL>5 (¢c) L<4
5.1 7.2 9.0 11. 45° 13. B, =49.1°, C, = 101.2°,
B, =130.9°, C, = 19.4° 15. B=26°30', A =112° 10’
17. No such triangle exists. 19. B =27.19°, C = 10.68°
21. B=120.6°,C = 116.9°, ¢ = 20.6 ft 23. No such triangle
exists. 25. B, =49°20',C, =92°00",¢; = 155 m;

B, =130°40', C, = 10°40', ¢, =2.88m 27. B=37.77°,
C=14543° c=4.1741t 29. A, = 53.23°, C, = 87.09°,

¢, =37.16 m; A, = 126.77°, C, = 13.55°, ¢, = 8.719 m

31. 1; 90°; aright triangle 33. Because A is obtuse, it is
the largest angle. Thus side a should be the longest side, but
it is not. Therefore, no such triangle exists.

35. 664m 37. 2181t 42. o = 1.12257R?

43. (a) 8.77in2 (b) 532in.? 44. red



7.3 Exercises

1. (a) SAS (b) law of cosines 3. (a) SSA

5. (a) ASA (b) law of sines

7. (@) SSS (b) law of cosines 9. 5 11. 120°

13. a=7.0,B=37.6°,C=214° 15. A=73.7°,

B =53.1°, C = 53.1° (The angles do not sum to 180° due to
rounding.) 17. b =288.2, A = 56.7°, C = 68.3°

19. a =2.60yd, B=45.1°,C=93.5° 21. ¢ =646 m,
A=531°B=281.3° 23. A=82°,B=137°C=061°
25. C=102°10', B=35°50", A = 42°00'

27. C=284°30',B=44°40", A = 50° 50’

29. a = 156cm, B = 64°50', C = 34° 30’

31. »=9.531in., A =64.6°, C=40.6° 33. a =157 m,
B=121.6°C=456° 35. A=230°B=56°C=94°
37. The value of cos 6 will be greater than 1. A calculator

(b) law of sines

will give an error message (or a nonreal complex number)
when using the inverse cosine function. 39. 257 m

41. 163.5° 43. 281 km 45. 438.14ft 47. 10.8 mi

49. 40° 51. 26° and 36° 53. second base: 66.8 ft; first
and third bases: 63.7 ft 55. 39.2km 57. 47.5 ft

59. 5500m 61 16.26° 63. 24\/3 sq units  65. 78 m?
67. 12,600 cm?> 69. 3650 ft> 71. Area and perimeter are
both 36.  73. 390,000 mi> 75. (a) 87.8° and 92.2° are
possible angle measures. (b) 92.2° (c¢) With the law of
cosines we are required to find the inverse cosine of a negative
number. Therefore, we know that angle C is greater than 90°.
78. 9.5 sq units

79. 9.5 sq units

80. 9.5 sq units

a=@,b=@,c=vg

Chapter 7 Quiz

[7.1] 1. 131° [7.3] 2. 20l m 3. 48.0°
[7.1] 4. 15.75 sq units  [7.3] 5. 189 km?
138.4° [7.1] 7. a = 648, b = 456, C = 28°
[7.3] 9. 25.24983 mi 10. 3921 m

[7.2] 6. 41.6°,
8. 3.6 mi

7.4 Exercises
1. mand p;nand r 3. mand p equal 2t, or t equals %m
and %p. Alsom = lp and n = Ir.

5. /b 7.

A-15

Answers to Selected Exercises

17. Yes, it appears that vector addition is associative (and
this is true, in general).

19. 12 _ 21, 20 —~——_
27° T ——_ 30° =

— —

20 - 30 -
23. 9421b 25. 2441b 27. 530 newtons 29. 88.21b
31. 2640 1b at an angle of 167.2° with the 1480-Ib force
33. 93.9° 35. 190 1b and 283 1b, respectively 37. 18°
39. 2.4tons 41. 17.5° 43. 2261b 45. 13.5 mi; 50.4°
47. 39.2km 49. current: 3.5 mph; motorboat: 19.7 mph
51. bearing: 237°; ground speed: 470 mph 53. ground
speed: 161 mph; airspeed: 156 mph 55. bearing: 74°;
ground speed: 202 mph 57. bearing: 358°; airspeed:
170 mph  59. ground speed: 230 km per hr; bearing: 167°

7.5 Exercises

1. 2 3. % 5.(4,9) 7. ac+bd 9.17;331.9°

11. 8;120° 13. 47,17 15. 38.8,28.0

17. —123,155 19, (3Y3.3) 21, (~3.0642,2.5712)

23. (4.0958, —2.8679) 25. (a) (—4,16) (b) (—12,0)
(©) (8,—8) 27.(a)(8,0) (b)(0,16) (c) (—4,-8)
29. (a) (0,12) (b) (—16,—4) (c) (8, —4)

31. (@) 4i (b) 7i+3j (¢c) =5i+j 33.(a) (—2,4)
(b) (7,4) (¢) (6,—6) 35.(—6,2) 37.(8,—-20)
39. (—30,—3) 41.(8,—7) 43. —5i+ §j

45. 2i,or2i+0j 47.7 49. 0 51.20 53. 135°

55. 90° 57. 36.87° 59. —6 61. —24 63. orthogonal
65. not orthogonal 67. not orthogonal

69. (a) |R|=V5=~22|A| =V125~1.1;2.2in.

of rain fell. The area of the opening of the rain gauge is
1.1in2

(b) V = 1.5; The volume of rain was 1.5 in.>.

In Exercises 71-75, answers may vary due to rounding.
71. magnitude: 9.5208; direction angle: 119.0647°

72. (—4.1042, 11.2763) 73. (—0.5209, —2.9544)

74. (—4.6252,8.3219) 75. magnitude: 9.5208; direction
angle: 119.0647° 76. They are the same. Preference of
method is an individual choice.

Summary Exercises on Applications
of Trigonometry and Vectors

1. 29 ft; 38 ft 2. 383 cm 3. 5856 m 4. 15.8 ft per
sec; 71.6° 5. 421b 6. 7200 ft 7. (a) 10 mph
(b) 3v = 18i + 24j; This represents a 30-mph wind in

the direction of v. (c¢) u represents a southeast wind of

V128 = 11.3 mph. 8. 380 mph; 64° 9. It cannot exist.
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10. Other angles can be 36° 10', 115° 40, third side 40.5,
or other angles can be 143° 50', 8° 00’, third side 6.25.
(Lengths are in yards.)

Chapter 7 Review Exercises

1. 63.7m 3. 41.7° 5. 54°20' or 125° 40’

7. If one side and two angles are given, the third angle can
be determined using the angle sum formula, and then the
ASA axiom can be applied. This is not the ambiguous case.
9. (@ b=5b=10 (b) 5<b<10 (¢c) b<5

11. 19.87°,0r 19°52" 13. 555m 15. 19cm

17. B =17.3°,
A =91°40', B=45°50'
23. 0.234 km? 25. 58.6 ft
31. 115km 33. 25 sq units
35.

21. 153,600 m?
27. 13m 29. 53.2ft

37. 2071b  39. —869; 418
41. 15;126.9° 43. (a) i
(b) 4i—2j (c) 11i—7j
45. 90°; orthogonal

47. 291b 49. bearing: 306°; ground speed: 524 mph

1+ \f

51. 341b 53. Both expressions equal ———

—2+ V3.

55. Both expressions equal

Chapter 7 Test

[7.1] 1. 137.5° [7.3] 2. 179 km 3. 49.0°
4. 168 squnits [7.1] 5. 18 sq units

[7.2] 6. (a) b>10 (b) none (¢) b =10
[71-73] 7. a=40m, B=41°,C=179°

8. B, =58°30", A, =83°00', a; = 1250 in.;

B, = 121°30", A, = 20° 00", a, = 431 in.
[7.5] 9. |v| = 10; 6 = 126.9°
[7.4] 10. /\\\
a+b \\‘
\ ///
[7.5] 11. (a) (1,=3) (b) (—6,18) (c) —20

(@ V10 12. 41.8° 13. Show thatu + v = 0.
[7.1] 14. 2.7 mi [7.5] 15. (—346,451)

[7.4] 16. 1.91 mi [7.1] 17. 14 m [7.4] 18. 301b
19. bearing: 357°; airspeed: 220 mph  20. 18.7°

8.1 Exercises
1. V—-1;—-1 3. 10i

real number is a complex number.

5. true 7. true 9. false; Every
11. real, complex

13. pure imaginary, nonreal complex, complex

15. nonreal complex, complex 17. real, complex

19. pure imaginary, nonreal complex, complex 21. 5i

23. V10 25. 12iV/2 27, =3iV2 29, —13

3. —2V6 33. V3 35 iV3 37.1 39. 2

C=1375%c¢=11.0yd 19. ¢ =187 cm,

41.

47.

57.
67.

75.

85.

91.
97.

S3-iVe 43.2+2iV2 45 —L+ 2

12—i 49.2 51.0 53. —13+4i\V/2 55. 8—i

—14+2i 59.5-12i 61. 10 63. 13 65. 7
25i 69. 12+9i 71. 20+ 15i 73. 2 —2i

i 77 —1-2i 79.5i 818 83. -2
87, {+21V3] }
3+1\V/5) 93, {%i#i} 95.{—§J_r¥i}

i 99. -1 101. —i 103. 1 105. —i 107. —i

4
5
+4;

109. Every i* factor acts as 1, so if the remainder is R, the

final product is i
115, z =

R 111. 110 + 32 113. E =30 + 60i

23, 19,

8.2 Exercises
1. (a) 2 (b) 2(cos0°+isin0°) 3. (a) 2i

(b) 2(cos 90° + i sin 90°)

5. (@ 2+2

(b) 2\6(003 45° + i sin 45°) 7. length (magnitude)

21.
29.

35.
41.
45.
47.

49.
53.
55.
57.
61.
of radius 1 centered at the origin.
x =1

~3+3i 23. —6-8i 25.7+9i 27.1+1i
V2+iV2 31100 33. —2-2i\3
SB35 o83 39 1

2V/3 —2i 43. 6(cos 240° + i sin 240°)

2(cos 330° + i sin 330°)

5V/2(cos 225° + i sin 225°)

2\6(005 45° + isin 45°)  51. 5(cos 90° + i sin 90°)
4(cos 180° + i sin 180°)

\E(cos 56.31° + i sin 56.31°)

—1.0261 —2.8191i 59. 12(cos 90° + i sin 90°)

\/?)Z(COS 59.04° + isin 59.04°)  63. Itis the circle
65. Itis the vertical line

67. yes 69. B 71. A

8.3 Exercises
1. multiply; add 3. 10; 180° 180°; —10;0 5. 0° 1;0
7. =3V3+3i 9. 12V3+12i 11. 4 13. =3i

15.

SV VR g7 N34 19, 2



a1 -3 m3ovVa-2i 25 -l

27. V3+i 29. 0.6537 + 7.4715i

31. 30.8580 + 18.5414; 33. 1.9563 + 0.4158i

35. —3.7588 — 1.3681i 37. To square a complex number
in trigonometric form, square its absolute value and double
41. 1.18 — 0.14i 43. 27.43 + 11.50i
45.2 46. w=\V2cis 135% z = V2 cis 225°

47. 2cis 0° 48. 2;Itis the same. 49. —i

50. cis(—90°) 51. —i 52. Itis the same.

its argument.

8.4 Exercises
1. 27;90°; 90°; 27; 0; 1;0; 27;27i 3. 180°; 180°;, —1;0

5.two 7,270 9.1 1L Z-23
13. —16\V/3 + 16/ 15. 4096/ 17. 128 + 128i

19. (a) cos 0° + i sin 0°,
cos 120° + i sin 120°,
cos 240° + i sin 240°

21. (a) 2cis 20°
2 cis 140°,
2 cis 260°

(b)

23. (a) 2(cos 90° + isin 90°),
2(cos 210° + i sin 210°),
2(cos 330° + i sin 330°)

25. (a) 4(cos 60° + isin 60°), (b)
4(cos 180° + i sin 180°),
4(cos 300° + i sin 300°)

27. () V/2(cos 20° + isin20°), ~ (® y
V/2(cos 140° + i sin 140°),
V/2(cos 260° + i sin 260°)

29. (a) Va(cos 50° + isin50°),
\ﬁ(cos 170° + i sin 170°),
V4(cos 290° + i sin 290°)

31. cos 0° + isin 0°,
cos 180° + i sin 180°

Answers to Selected Exercises | A-17
33. cos 0° + i sin 0°,
cos 60° + i sin 60°,
cos 120° + i sin 120°,
cos 180° + i sin 180°,
cos 240° + i sin 240°,
cos 300° + i sin 300°

35. cos 30° + i sin 30°,
cos 150° + i sin 150°,
cos 270° + i sin 270°

37. {cos 0° + isin 0° cos 120° + i sin 120°,

cos 240° + i sin 240°}  39. {cos 90° + i sin 90°,

cos 210° + i sin 210°, cos 330° + i sin 330°}

41. {2(cos 0° + isin 0°), 2(cos 120° + i sin 120°),
2(cos 240° + i sin 240°) }  43. {cos 45° + i sin 45°,
cos 135° + i sin 135°, cos 225° + i sin 225°,

cos 315° + isin 315°}  45. {cos 22.5° + i sin 22.5°,
cos 112.5° + i sin 112.5°, cos 202.5° + i sin 202.5°,

€08 292.5° + i sin 292.5°}  47. {2(cos 20° + i sin 20°),
2(cos 140° + i sin 140°), 2(cos 260° + i sin 260°) }

49. 1, -1+ 33 1 M3 51 () yes

(c) yes 53. 1,0.30901699 + 0.95105652i,

—0.809017 + 0.58778525i, —0.809017 — 0.5877853i,
0.30901699 — 0.9510565; 55. {—1.8174 + 0.5503i,
1.8174 — 0.5503i} 57. {0.8771 + 0.9492i,

—0.6317 + 1.1275i, —1.2675 — 0.2524i,

—0.1516 — 1.2835(, 1.1738 — 0.5408i }

59. cos 26 + isin 20

60. (cos?6 — sin?0) + i(2 cos 6 sin §) = cos 260 + i sin 26
61. cos 26 = cos>f —sin> @  62. sin 20 = 2 sin 0 cos 6

(b) no

Chapter 8 Quiz

8.1] 1. (@ —6V2 (b) 5i

[8.1,8.2]

2. () —1+6i (b) 7+4i () —17—17i
@ —-L—2i 3. (@ —2-2
(b) i,or0+i

8.1] 4. {5+ @l}

[8.2] 5. (a) 4(cos270° + isin 270°)
(b) 2(cos 300° + i sin 300°)

(©) V10 (cos 198.4° + i sin 198.4°) 6. (a) 2 +2i\/3
(b) —3.2139+3.8302i (¢) —7i,0or0—7i (d) 2, 0r2+0i
[8.3,8.4] 7. (a) 36(cos 130° + isin 130°) (b) 2\V/3 + 2i

© - 2342 (@) —864 — 864i\/3

[8.4] 8. 2(cos 45° + isin 45°), 2(cos 135° + i sin 135°),
2(cos 225° + i sin 225°), 2(cos 315° + i sin 315°);

V2+iV2, V2 +iV2, -V2-iV2, V2 -iV2
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8.5 Exercises 47. %0 49, o
1.2 3. £V2 51 7.1V 9. positive x-axis o
. . 180° - 40° 180° 0°
11. negative y-axis NG A
27‘0° ‘ ) .2'%00 »
Graphs for Exercises 13(a)-23(a) r=2rzesd r=3+cos0
o cardioid limagon

180°-++

r =4 cos 20 2 = 4 cos 20
Answers may vary in Exercises 13(b)-23(b). four-leaved rose lemniscate
13. (b) (1,405°%), (—1,225°) (c) (%%) 55. . 57. L
15. (b) (—2,495°), (2,315%) (0 (V2,-V2) 180 - wr Lol
17. (b) (5.300°), (=5,120°) (c) G —#) T oY
\/ r=4-4cos @ r =2sin 0 tan 0
19. (b) (-3,1509, (3, -30°) (o) (3. -3) cardioid
59. z 6L X2+ (y—1)2=1
1w 27 3 3V3 2
2t o (319, (-3.2) © (-2F) | ;
23. 0 (-2.7). (%) © (-1,-V3) ol w )
0 X
Graphs for Exercises 25(a)-35(a) !
r=2sin6
Pry-1*=1

63. y2=4(x+1)

53. s

65. (x+ 1)+ (y+1)2=2

y
2
Answers may vary in Exercises 25(b)-35(b). O *
25. (b) (V2,315°), (- V2,135°) 27. (b) (3,90°),
r= r=-2cos @-2sin6
(=3,270°) 29. (b) (2,45°), (—2,225°) s 41(—:"15)" @+ (y+1P=2
y =4k
31 () (V3,60°), (—V/3,240°) 33. (b) (3,0°), 67 x=3 69. x+y—2
(=3, 180°) 35. (b) (3,240°), (=3, 60°) M y
4 = = _
3. r= 5t — 39. r=4orr 4 D)
] \ZL X 0 P) X
r=2sec 2
x=2 = Cos 0 +sin0
x+y=2

x:y=44 71. r:m 73. (a) (r, —9) (b) (r,7T —9) or
cos 0 —sin 6 (_I’, _0) (C) (r,77+0) 0r(—r,0)

4. r=5_— 43.C 45 A 75. r\=01,50s9547-r 77.  r=150,-4r=0=4x

y j_ T

_15 Ft'p..' ...... 15
‘“‘M,_J__-_#/
I
-15

2x+y=55

m (205 00w (227 (4 5)

"= 3cosO+sin 0




83. (a) 1.6 (b) 40
._T — — T~
24 It ,_:E'iﬁ.:__'_ 2.4 —60 T,{.. P . | —160
.\\ x_j .- i \ -__lL
-1.6 -40
Earth is closest to the sun.
(¢) no 85. rsinf =k 86.r=$ 87. r=kcsch
88. Y r=3csco0 89. rcos0=k 92. y r=3secf
k
90. r =7
91. r=ksecO

8.6 Exercises

L (10,-3) 3. (3, V3) 5.Cc 7.A

9. (a »

o0 1 2 3
x=t+2
y=£
fortin [-1,1]

(b) y=x>—4x +4,
forxin [1, 3]

¥y

13. (a) P

y= t3— 1 4
for ¢ in (=00, o)

x =3tant
y =2sect

B mm
for¢in (_7’ f)

2
(b) y=2\/1+7,

for x in (—o0, )

21. (a) y

4

—4/0 N4
’ N
x=t

y=Vt2+2

for ¢ in (—co, o0)

(b) y= Vx> +2,

for x in (—o0, )

11. (a) y

2,8)
x=\t
y=3t-4
for ¢ in [0, 4]

0,-4)
(b) y =3x>—4,
for x in [0, 2]
15. (a) y x =2sint
y=2cost

for ¢ in [0, 277]

(b) x> +y2=4,
forxin [ =2, 2]

19. (a) y

x =sint
y=csct
for ¢ in (0, 77)

1

) y=1,
for xin (0, 1]

23. (a) ¥

x=2+sint
y=1+cost
for ¢ in [0, 277]

b) (x=2)*+(y-1)°=1,
forxin [1,3]

A-19
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25. (a) 27. (a) y

Y ox=t+2

x=t+2

y=t-4
for ¢ in (oo, o0)
(b) y=,l;, for x in (b) y=x—6,
(=20, 0) U (0, ) for x in (—o0, )
29. Y x=3cost 31° Y x=3sint
3y=35int y=2cost
for ¢ in [0, 277] for ¢ in [0, 277]
N
x [/

X2y

6+I_1
Answers may vary for Exercises 33 and 35.

33. x=t,y=(t+3)>—1,fortin (=, ®); x =1 — 3,
y=1>—1,fortin (—o,») 35 x=1ty=1>—2t+3,
forfin (—o,0); x =1+ 1,y = 1>+ 2, for tin (—o, )

37. ¥ 39.

x=2t-2sint,y=2-2cost
for ¢ in [0, 477]

x=2cost,y=3sin2t,
for ¢ in [0, 6.5]

N

x =3 sin4t,y=3cos 31,
for ¢in [0, 6.5]

x
27 4w 6w 8w

(=)}
(=)}

41.

43. (a) x =241,y = —16:2 + 24\/31

() y=—2x2+ V3x (¢) 2.6 sec; 62 i

45. () x = (88 cos 20°)r, y = 2 — 1612 + (88 sin 20°)7
() y=2— i+ (1an 20°)x () 1.9 sec; 161 ft

47. (a) y = —ﬁxz +\V3x+ 8; parabolic path

(b) 7sec; 448 ft 49. (a) x=32t,y = 32\/§t — 162+ 3
(b) 112.6ft (c) 51 ft maximum height; The ball had traveled
horizontally 55.4 ft.
for example, y = a(r — h)> + k,x =tand y = ar® + k,

(d) yes 51. Many answers are possible;

x =1+ h. 53. Many answers are possible; for example,
x=asint,y=bcostand x =t, y> = b? l—% .
57. The graph is translated c units to the right.

Chapter 8 Review Exercises
1.3i 3. {+9} 5 —2-3i 7.5+4i
11. —32+24; 13. —2—-2i 15.2-—5i
17 -2+ i 100 21 —30i 23, —L+ 3

9. 29 + 37i
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25.8i 27. —3— 5

33. 2V/2(cos 135° + isin 135°) 35, —\V/2 —iV2

37. V/2(cos 315° + i sin 315°)

39. 4(cos 270° + isin 270°) 41. Itis the line y = —x.

43. %(cos 105° + i sin 105°), %(cos 225° + i sin 225°),
\%(cos 345° + i sin 345°)  45. none

47. {2(cos 45° + i sin 45°), 2(cos 135° + i sin 135°),
2(cos 225° + i sin 225°), 2(cos 315° + i sin 315°) }

49. {cos 135° + isin 135° cos 315° + i sin 315°}

51. (2, 120°)

53. circle

180°--i 0°
; 4

55. eight-leaved rose

r =2sin 40

57. y2=—6(x—%),ory2+6x—9=0 59. x> +y2=4
61. r=tan65600,orr=m"0 63. B 65. C

cos 0
67. r=28€C0,01‘I’:C(i,0 69. r=m
71. 73. y=Vx2+ 1, forxin [0, «)

Yy
75. y=3\/ 1+ g,forxin (—o0, )

(o 1
(7 1,0)(277;1,0) 77_ y2 — _i('x_ 1)’01.

(3.-1) 22+ x—1=0,forxin[—1,1]
Xx=t+cost
y=sint
for ¢ in [0, 277]

79. (a) x = (118 cos 27°)t,y = 3.2 — 161> + (118 sin 27°)¢

() y=32— 5 s+ (tan 27°)x  (¢) 3.4 sec; 358 fi
Chapter 8 Test
8.1 1. (@) —4V3 ) 3i (© 1
8.1,8.2]
2. (a) 7 3i (b) —3 —5i
(¢) 14 — 18i
@ 75— 30
3. —i (b)2i

811 4. {f+ v

i} 1821 5. (@) 3(cos 90° + i sin 90°)

(b) V5 cis 63.43° (c) 2(cos 240° + i sin 240°)

6. @ 2243 (b) 3.06+257 (o) 3i

[8.3,8.4] 7. (a) 16(cos 50° + isin 50°) (b) 2V/3 + 2i
(©) 4\V/3+4i [84] 8. 2cis 67.5° 2 cis 157.5°,

2 cis 247.5°, 2 cis 337.5° [8.5] 9. Answers may vary.

@ (5,90°), (5, -270°) (o) (2V/2,225°),(2V2, —135°)

10. (a) (¥ —3\2—5) (b) (0, —4)

11. cardioid 12. three-leaved rose

270°
r=3cos 30

(b) x>+ y2 =36

x =2cos2t
¥y =2sin2t
for ¢ in [0, 277]

for t in [-3, 4]

(821 16. 22— 1=—1—2i:r=\5and V/5>2

Appendix A Exercises
1. equation 3. first-degree equation 5. contradiction

7. (-4} 9. (1} 1. {-2} 1.{-I} 15 (-1}
17. {75} 19. {0} 21. identity; {all real numbers }

23. conditional equation; {0} 25. contradiction; &

27. 0;{L,7} 29.a,B,CcD 31 (2,3} 33 {-11}

35. {31} 37 (10} 30.{} a4 {-3}

3. {+a) 45 {£3V3) an {15231 w0 1.3}
st {~2,4} s3.{1+Vv3} s5 {3+V2}

s7. {L55) 50 {2500 61 F 63 A 651

67. B 69. E 71. A square bracket is used to show that a
number is part of the solution set, and a parenthesis is used
to indicate that a number is not part of the solution set.

73. [—4,°) T75. [—1,°) 77. (=, )

79. (—=,4) 8L [—%, ) 83.(-5.3)

85. [3,6] 87. (4.6) 89. [—9,9]
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Appendix B Exercises 39. (a) x>+ (y—4)>=16 (b)
1.1 3.0 5 (50) 7-13. 1 V@5, 7)1
(0. S'y-axis
7,4)
IIL V.

41. (a) (x+2)2+ (y—5)2=16 (b)
Other ordered pairs are possible in Exercises 15-25.

15. (a) _ X y (b)
0 -2
4 0
2 1 -1
43. (@) (x—5)2+(y+4)2=49 (b
17. (a) «x y (b)
5
0 3
% 0 (x=5%+(y+4)* =49
4 | -1 , ,
5. @ (x— V2 +(y-V2)=2
19.(a) x | y (b) (b) y
0o O
1| 1
21| 4 SN .
(x=2)+(y-A2)" =2
_12)\2 _1)2 =
2. (a) x | y 47. (x =32+ (y—1)*=4
300
47‘ ; Appendix C Exercises

1. function 3. nota function 5. function 7. function

9. not a function; domain: {0, 1, 2}; range:
{—4,—-1,0,1,4} 11. function; domain:
{2,3,5,11,17}; range: {1,7,20} 13. function; domain:
{0, —1, —2}; range: {0, 1,2} 15. function; domain:
(—o0, ); range: (—o, %) 17. not a function; domain:

[3, ); range: (—%, ©) 19. function; domain: (—o°, »);
range: (—o, %) 21. function; domain: (—o, %);
range: [0, %) 23. not a function; domain: [0, ®);

range: (—o, ) 25. function; domain: (—, );

range: [0, ) 29. function; domain: [ 4,00);

range: [0, %) 31. function; domain: (—, 3) U (3, «);
range: ,0) U (0,0) 33.B 35.4 37. —11

39. 3 4l. “ 43. 3p+4 45 3x+4 47, —3x—2
49. —6m + 13 51. (a) 2 (b) 3 53. (a) 15 (b) 10
55.(a)3 (b) =3 57.(@ 0 (b)4 (2 @4
59. @) =3 (b) 2 (©0 (d 2 61. (a) (—2,0)
(b) (=2, =2) (¢) (0,) 63. (a) (=%, =2); (2, %)
(b) (=2,2) (c) none 65. (a) (—1,0); (1,=)

(=22 +y2 =36 (b) (=, —1);(0,1) (c) none

(-
[
(
range: (—o, ) 27. function; domain: [0, ©);
[0
[0
(o

27. (0,0);7 29. (4,-7) 31.B 33.D
35. (a) x>+ y2 =136 37. (@) (x—2)>+y2=36
(b) (b)
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Appendix D Exercises 43.
1.3 3. left 5.x 7.2;3 9.(a B (b) D (¢) E

dA (¢eC 11.(a) B b A ()G (d C (e) F

D (@H MWE OHI

13. y 15.

45.

47. 5 s =oa? 49

f)=3|x|

2

51. 53.

55. 5.,

0)

-4
) =2x-27%-4

59.

63.

67. Itis the graph of f(x) = |x| translated 1 unit to the

35. y-axis left, reflected across the x-axis, and translated 3 units up.

37. x-axis, y-axis, origin The equationis y = —|x + 1| + 3. 69. It is the graph of
39. origin g(x) = VA translated 4 units to the left, stretched vertically
41. none of these by a factor of 2, and translated 4 units down. The equation is

y=2Vx+4—4.
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Index

Abscissa, 178
Absolute value
of a complex number, 367
symbol for, 438
Absolute value function, graph of, 438
Acute angles
definition of, 2
trigonometric functions of, 23-24,
48, 50
Acute triangle, 12, 297
Addition
of complex numbers, 359
of ordinates method, 178
property of equality, 413
Adjacent side to an angle, 48
Aerial photography, 305
Airspeed, 330
Alternate exterior angles, 11
Alternate interior angles, 11
Alternating current, 216, 281
Ambiguous case of the law of sines, 306
Amplitude
of cosine function, 143
definition of, 143
of sine function, 143
Angle(s)
acute, 2, 48
adjacent side to an, 48
alternate exterior, 11
alternate interior, 11
complementary, 3
corresponding, 11
coterminal, 5
critical, 292
definition of, 2
of depression, 75
direction angle for vectors, 336
of elevation, 75, 85
of inclination, 329
initial side of, 2
measure of, 2, 61, 65
negative, 2
obtuse, 2
opposite side to an, 48
phase, 137
positive, 2
quadrantal, 5
reference, 56-58
right, 2
side adjacent to, 48
side opposite, 48
significant digits for, 72-73
special, 51-52, 58-59, 61
standard position of, 5
straight, 2
subtend an, 112
supplementary, 3
terminal side of, 2

types of, 2
between vectors, 341
vertex of, 2
vertical, 10
Angle-Side-Angle (ASA) axiom, 296
Angle sum of a triangle, 12
Angular speed
applications of, 128-129
definition of, 127
formula for, 127
Applied trigonometry problems, steps to
solve, 76
Approximately equal to
definition of, 53
symbol for, 53
arccos x, 256
arccot x, 258
arccsc x, 258
Archimedes, spiral of, 391-392
Arc length, 106
arcsec x, 258
arcsin x, 254
arctan x, 257
Area of a sector, 108—-109
Area of a triangle
deriving formula for, 300-301
Heron’s formula for, 316
Argument
of a complex number, 367
definition of, 153
of a function, 153, 199
Asymptote, vertical, 164
Axis
horizontal, 366
imaginary, 366
polar, 385
real, 366
reflecting a graph across an, 440-441
symmetry with respect to an,
441-442
vertical, 366
x-, 422
y-, 422

Bearing, 82-83, 330
Beats, 280

Braking distance, 69
British nautical mile, 293

Calculators. See Graphing calculators

Cardioid, 389

Cartesian coordinate system, 422

Cartesian equations, 388

Center of a circle, 425

Center-radius form of the equation of
a circle, 425

Chords, table of, 72
Circle
arc length of, 106
center of, 425
circumference of, 100
definition of, 425
equation of, 425
graph of, 425-426
polar form of, 388-389, 393
radius of, 425
sector of, 108
unit, 116
Circular functions
applications of, 121
definition of, 116
domains of, 118
evaluating, 118
finding numbers with a given
circular function
value, 120
Circumference of a circle, 100
Cis 0, 367
Cissoid
graphing, 395
with a loop, 395
Clinometer, 81, 95
Closed interval, 418
Cloud ceiling, 81
Cofunction identities, 49, 213-214
Cofunctions of trigonometric
functions, 49
Columbus, Christopher, 82
Complementary angles, 3
Complex conjugates, 361
Complex number(s)
absolute value of, 367
argument of, 367
conjugate of, 361
definition of, 356
De Moivre’s theorem for,
378
equality of, 356
graph of, 366
imaginary part of, 356
modulus of, 367
nonreal, 356
nth root of, 379
nth root theorem for, 380
operations on, 358-361
polar form of, 367
powers of, 378
product theorem for, 373
pure imaginary, 356
quotient theorem for, 374
real part of, 356
rectangular form of, 356, 366
roots of, 379-382
standard form of, 356, 366
trigonometric form of, 367
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Complex plane
imaginary axis of, 366
real axis of, 366
Components of a vector
horizontal, 336
vertical, 336
Conditional equation, 415
Conditional trigonometric
equations
with half-angles, 275
linear methods for solving, 268
with multiple angles, 276-277
satisfying, 268
solving with the quadratic formula,
270
steps to solve algebraically, 271
using trigonometric identities to
solve, 270-271
zero-factor property method for
solving, 269
Congruence axioms, 296
Congruent triangles, 12, 296
Conjugate of a complex number, 361
Constant function, 434-435
Contradiction, 415
Coordinate (xy) plane, 422
Coordinates, photographic, 305
Coordinate system
Cartesian, 422
polar, 140, 385
rectangular, 385, 422
Corresponding angles, 11
Cosecant function
characteristics of, 175
definition of, 23
domain of, 175
graph of, 175
inverse of, 258
period of, 175
range of, 33, 175
steps to graph, 176
Cosine function
amplitude of, 143
characteristics of, 142
definition of, 23
difference identity for, 211-212
domain of, 142
double-angle identity for,
230-231
graph of, 142
half-angle identity for, 239
horizontal translation of, 155
inverse of, 256-257
period of, 142, 145
range of, 33, 142
steps to graph, 146, 157
sum identity for, 212-213

translating graphs of, 155, 156, 157

vertical translation of, 156
Cosines, law of, 312-313
Cotangent function

characteristics of, 166

definition of, 23

domain of, 166

graph of, 166

horizontal translation of, 169

inverse of, 258

period of, 166

range of, 33, 166

steps to graph, 167
vertical translation of, 169
Coterminal angles, 5
Critical angle, 292
Curvature, degree of, 113, 244
Cycloid
calculator graphing of, 400
definition of, 400

Damped oscillatory motion, 183
Decimal degrees, 4
Decreasing function, 434-435
Degree measure
converting to radian measure,
100-101
definition of, 2
Degree mode, calculators in, 26, 64
Degree of curvature, 113, 244
Degree/radian relationship
converting measures, 100-101
table of, 102
De Moivre, Abraham, 378
De Moivre’s theorem, 378
Denominator, rationalizing, 25, 31,
34
Dependent variable, 428
Depression, angle of, 75
Derivatives
of parametric equations, 74
of trigonometric functions, 203
Diastolic pressure, 150
Difference identity
application of, 214-217, 223-226
for cosine, 211-212
for sine, 221-222
for tangent, 222
Difference tones, 281
Digits, significant, 72—73
Direction angle of a vector, 336
Distance formula, 22
Division of complex numbers, 361
Domain(s)
of circular functions, 118
of inverse circular functions, 259
of a relation, 429
Dot product of vectors
definition of, 339
geometric interpretation of, 340
properties of, 339
Double-angle identities
definition of, 230
simplifying expressions using,
233
verifying, 233

Eccentricity e , 396
Elevation, angle of, 75, 85
Ellipse, 399
Empty set, 415
Endpoint of a ray, 2
Envelopes, 184
Equation(s)
Cartesian, 388
of a circle, 425
with complex solutions, 357-358

conditional, 415
conditional trigonometric. See
Conditional trigonometric
equations
connecting graphs with, 147, 170,
178
definition of, 413
equivalent, 413
first-degree, 413
linear, 413
parametric, 74, 153, 398
polar, 388-393
quadratic, 415
rectangular, 388, 392
roots of, 413
second-degree, 416
solution of, 413
solution set of, 413
steps to graph, 424
trigonometric. See Trigonometric
equations
types of, 415
Equilateral triangle, 12
Equilibrant vector, 328
Equivalent equations, 413
Even function, 142, 196
Even-odd identities, 196
Exact number, 72

First-degree equation, 413
Four-leaved rose, 390
Fractals, 369
Fractions, unit, 129
Frequency
definition of, 182
fundamental, 278
Function(s)
absolute value, 438
argument of, 153, 199
circular. See Circular functions
constant, 434-435
cosecant. See Cosecant function
cosine. See Cosine function
cotangent. See Cotangent function
decreasing, 434-435
definition of, 428
domain of, 429
even, 142, 196
horizontal translations of, 445
increasing, 434-435
integrals of, 235
inverse, 252-253
inverse cosecant, 258
inverse cosine, 256257
inverse cotangent, 258
inverse secant, 258
inverse sine, 253-255
inverse tangent, 257-258
notation, 433
odd, 141, 196
one-to-one, 252
periodic, 140
range of, 429
secant. See Secant function
sine. See Sine function
sinusoidal, 158
tangent. See Tangent function



trigonometric. See Trigonometric
functions
vertical line test for, 430
vertical translations of, 445
Fundamental frequency, 278
Fundamental identities, 196197

Grade, 106
Grade resistance, 65
Graph(s)
of circles, 425-426
of complex numbers, 366
compressed, 143
connecting with equations, 147, 170,
178
of cosecant function, 175
of cosine function, 142
of cotangent function, 166
of equations, 422-427
of inverse cosecant function, 258
of inverse cosine function, 256-257
of inverse cotangent function, 258
of inverse functions, 253
of inverse secant function, 258
of inverse sine function, 254-255
of inverse tangent function, 257-258
parametric, 398
of polar coordinates, 386
of polar equations, 388-393
reflecting, 440-441
of secant function, 174
shrinking, 438—440
of sine function, 141
stretched, 143
stretching, 438—440
summary of polar, 393
of tangent function, 165
Graphing calculators
analyzing the path of a projectile,
402
converting from trigonometric form
to rectangular form, 367
degree mode in, 26, 64
finding magnitude and direction
angle of vectors, 336
finding trigonometric function values
with, 64
graphing a cycloid, 400
graphing a plane curve defined para-
metrically, 398
graphing of polar equations,
389-393
sine regression feature, 158—159
solving problems involving angles of
elevation, 85
solving trigonometric equations by
linear methods, 268
ZTrig viewing window, 143
Groundspeed, 330

Half-angle identities
application of, 240-241
definition of, 238
general statement about, 239
simplifying expressions using, 241

trigonometric equations with, 275
verifying, 241
Harmonic motion, 182
Heron of Alexandria, 316
Heron’s formula
application of, 317
derivation of, 317-319
statement of, 316
Heron triangle, 324
Hipparchus, 72
Horizontal axis, 366
Horizontal component of a vector, 336
Horizontal line test for one-to-one
functions, 252
Horizontal shrinking of a graph, 440
Horizontal stretching of a graph, 440
Horizontal translations
of cosine function, 155
of cotangent function, 169
definition of, 445
graphing, 153-155
of sine function, 154
of tangent function, 169
Hyperbola, 243
Hyperbolic spiral, 405
Hypotenuse, 22, 48
Hypotrochoids, 400

definition of, 356
powers of, 362
simplifying powers of, 362
i, j unit vectors, 339
Identities, 196-197, 415. See also
Trigonometric identities
Imaginary axis, 366
Imaginary numbers, 356
Imaginary part of a complex number,
356
Imaginary unit, 356
Impedance, 365, 377
Inclination, angle of, 329
Increasing function, 434435
Independent variable, 428
Inequality
definition of, 417
properties of, 418
three-part, 419
Initial point of a vector, 326
Initial side of an angle, 2
Inner product of vectors, 339
Integrals of functions, 235
Intercept(s), 423
Interval, 418
Interval notation, 418
Inverse cosecant function
definition of, 258
graph of, 258
Inverse cosine function
definition of, 256
graph of, 256-257
Inverse cotangent function
definition of, 258
graph of, 258
Inverse functions
definition of, 252
graphs of, 253
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notation for, 252
summary of concepts, 253
Inverse secant function
definition of, 258
graph of, 258
Inverse sine function
definition of, 254
graph of, 254-255
Inverse tangent function
general statement about, 257
graph of, 257-258
Inverse trigonometric equations,
283-285
Inverse trigonometric functions
domains and ranges of, 259
equations with, 283-285
graphs of, 254-258
notation for, 252
summary of, 259
Isosceles triangle, 12

Julia set, 369

Lambert’s law, 210
Latitude, 107
Law of cosines
applications of, 314-315
applying to solve a triangle, 312
derivation and statement of, 312-313
Heron’s formula and, 317-319
Law of sines
ambiguous case of, 306
applications of, 298-299
derivation and statement of, 297
Law of tangents, 353
Legs of aright triangle, 22
Lemniscates, 391, 393
Limacons, 392, 393
Line(s). See also Line segment(s)
definition of, 2
parallel, 10
polar form of, 388-389
Linear equation in one variable, 413
Linear inequality in one variable, 418
Linear methods for solving trigono-
metric equations, 268
Linear speed
applications of, 129
definition of, 127
formula for, 127
Line segment(s)
definition of, 2
finding lengths of, 122
function values as lengths of,
121-122
Lissajous figure, 404
Locating points in a plane, 422
Longitude, 114

Mach number, 243
Magnitude of a vector, 326
Mandelbrot set, 383

Maor, Eli, 82

Measure of an angle, 2, 61, 65
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Minute, 4

Modulus of a complex number, 367
Mollweide’s formula, 353

Miiller, Johann, 82

Multiple-angle identity, deriving, 234

Multiple angles, trigonometric equations

with, 276-277

Multiplication of complex numbers, 360

Multiplication property of equality, 413

Nautical mile, 114
Negative angle, 2
Newton, 328
Newton’s formula, 353
Nonreal complex number, 356
Notation
function, 433
interval, 418
inverse function, 252
nth root of a complex number, 379
nth root theorem for complex numbers,
380
Null set, 415
Number(s)
complex, 356
exact, 72
pure imaginary, 356

Oblique triangle
congruency and, 296-297
data required for solving, 296
definition of, 296
finding area of, 300-301
solving procedures for, 296-299
Obtuse angle, 2
Obtuse triangle, 12, 297
Odd function, 141, 196
Ohm’s law, 365
One-to-one function
definition of, 252
horizontal line test for, 252
Open interval, 418
Opposite of a vector, 327
Opposite side to an angle, 48
Orbital period of a satellite, 396
Ordered pair, 422
Ordinates, addition of, 178
Origin
definition of, 422
symmetry with respect to the, 443
Orthogonal vectors, 341

Parabola, 425
Parallel lines
definition of, 10
transversal intersecting, 10
Parallelogram rule for vectors, 327
Parallelograms, properties of, 327
Parametric equations
definition of, 153, 398
derivatives of, 74
of a plane curve, 398
Path of a projectile, 402
Perfect triangle, 324

Period
of cosecant function, 175
of cosine function, 142, 145
of cotangent function, 166
definition of, 145, 272
of secant function, 174
of sine function, 141, 145
of tangent function, 165
Periodic function
definition of, 140
period of, 140
Phase angle, 137
Phase shift, 153
Photographic coordinates, 305
Pi (), 100
Plane curve, 398
Plane trigonometry, 72
Plimpton 322 (tablet), 72
Polar axis, 385
Polar coordinates of a point
definition of, 140, 385
graph of, 386
Polar coordinate system
definition of, 385
polar axis of, 385
pole of, 385
Polar equations
calculator graphing of, 389-393
classifying, 392-393
converting to rectangular equations,
392
definition of, 388
graphs of, 388-393
Polar form
of a complex number, 367
of lines and circles, 388-389
Polar grid, 389
Pole of a polar coordinate system, 385
Polya, George, 76
Position vector, 336
Positive angle, 2
Powers
of complex numbers, 378
of i, 356
Prism diopter, 95
Product theorem for complex numbers,
373
Product-to-sum identities, 234-235
Properties
of equality, 413
of inequality, 418
of parallelograms, 327
of triangles, 12
Ptolemy, 72, 305
Pure imaginary numbers, 356
Pythagorean identities, 34-35, 197
Pythagorean theorem, 22

Quadrantal angles, 5

Quadrants, 422

Quadratic equation
definition of, 415
standard form of, 415

Quadratic formula, 417

Quotient identities, 35, 197

Quotient theorem for complex numbers,

374

Radian, 100
Radian/degree relationship
converting measures, 100-101
table of, 102
Radian measure
applications of, 107-108
converting to degree measure,
100-101
definition of, 100
Radius of a circle, 425
Range(s)
of inverse circular functions, 259
of a relation, 429
of trigonometric functions, 33
Ray
definition of, 2
endpoint of, 2
rcis 6, 367
Reactance, 365
Real axis, 366
Real part of a complex number, 356
Reciprocal, 30
Reciprocal identities, 30-31, 197
Rectangular coordinates, converting to
polar coordinates, 386
Rectangular coordinate system, 422
Rectangular equations
converting polar equations to,
392
definition of, 388
Rectangular form of a complex
number
converting to trigonometric form,
368
definition of, 366
Reduction formula, 220
Reference angles
definition of, 56
special angles as, 58-59
table of, 58
Reference arc, 116
Reflecting a graph, 440-441
Refraction of light, 69
Regiomontanus, 82
Regression, sine, 158—159
Related rates, 74
Relation
definition of, 428
domain of a, 429
range of a, 429
Resistance
grade, 65
impedance and, 365
Resultant vectors, 327, 366
Right angle, 2
Right triangle(s)
applications of, 82
definition of, 12
hypotenuse of, 22, 48
legs of, 22
solving, 73
Right-triangle-based definitions of
trigonometric functions, 48
Root, of an equation, 413
Roots of a complex number,
379-382
Rose curve, 390, 393



Sag curve, 70
Scalars, 326
Scalene triangle, 12
Secant function

characteristics of, 174

definition of, 23

domain of, 174

graph of, 174

inverse of, 258

period of, 174

range of, 33, 174

steps to graph, 176
Second, 4
Second-degree equation, 416
Sector of a circle

area of, 108-109

definition of, 108
Segment of a line. See Line segment(s)
Semiperimeter, 316
Shrinking a graph, 438-440
Side adjacent to an angle, 48
Side-Angle-Angle (SAA) axiom, 296
Side-Angle-Side (SAS) axiom, 296
Side opposite an angle, 48
Side-Side-Side (SSS) axiom, 296
Significant digits, 7273

Signs of trigonometric function values, 31

Similar triangles
conditions for, 13
definition of, 12
Simple harmonic motion, 182
Sine function
amplitude of, 143
characteristics of, 141
definition of, 23
difference identity for, 221-222
domain of, 141
double-angle identity for, 230-231
graph of, 141
half-angle identity for, 239
horizontal translation of, 154
inverse of, 254-255
period of, 141, 145
range of, 33, 141
steps to graph, 146, 157
sum identity for, 221-222
translating graphs of, 154, 157
Sine regression, 158-159
Sines, law of
ambiguous case of, 306
applications of, 298-299
derivation of, 297
Sine wave, 141
Sinusoid, 141
Sinusoidal function, 158
Snell’s law, 69, 292-293
Solar constant, 152
Solution, of an equation, 413
Solution set, 413
Solving triangles, 73, 298-299,
307-309, 314-316
Sound waves, 152, 220
Special angles
finding angle measures with, 61
reference angles as, 58-59
trigonometric function values of,
51-52

Speed

angular, 127-129

linear, 127, 129
Spherical trigonometry, 72
Spiral, hyperbolic, 405
Spiral of Archimedes, 391-392
Square root property, 416-417
Standard form of a complex number,

356, 366
Standard form of a quadratic equation,
415

Standard position of an angle, 5
Statute mile, 114
Straight angle, 2
Stretching a graph, 438—440
Subtend an angle, 112
Subtense bar method, 84
Subtraction

of complex numbers, 359

of vectors, 327
Sum identity

application of, 214-217, 223-226

for cosine, 212-213

for sine, 221-222

for tangent, 222
Sum-to-product identities, 236
Superelevation, 68
Supplementary angles, 3
Swokowski, Earl, 235
Symmetry, 441-444
Systolic pressure, 150

Tangent function
characteristics of, 165
definition of, 23
difference identity for, 222
domain of, 165
double-angle identity for, 231
graph of, 165
half-angle identity for, 239
horizontal translation of, 169
inverse of, 257-258
period of, 165
range of, 33, 165
steps to graph, 167
sum identity for, 222
vertical translation of, 169
Tangents, law of, 353
Terminal point of a vector, 326
Terminal side of an angle, 2
Three-part inequality, 419
Transit, 79
Translations
combinations of, 157-158
definition of, 444
horizontal, 153-155, 169, 445
vertical, 156, 169, 445
Transversal
definition of, 10
interior angles on same side of, 11
Triangle(s)
acute, 12, 297
angle sum of, 12
applications of, 14
area of, 300-301, 316
congruent, 12, 296
equilateral, 12
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Heron, 324
isosceles, 12
oblique, 296-301
obtuse, 12, 297
perfect, 324
properties of, 12
right. See Right triangle(s)
scalene, 12
similar, 12, 13
solving, 73, 298-299, 307-309,
314-316
types of, 12
Triangulation method, 323
Trigonometric equations
conditional, 268
with half-angles, 275
inverse, 282
linear methods for solving, 268
with multiple angles, 276-277
quadratic methods for solving,
269-270
solving by squaring, 271
solving using the quadratic formula,
270
solving by zero-factor property, 269
Trigonometric form of a complex
number, 367
Trigonometric functions
circular, 116
cofunctions of, 49, 213-214
combinations of translations of,
157
definitions of, 23
derivatives of, in calculus, 203
domains of, 118
inverses of, 252-259
ranges of, 33
right-triangle-based definitions of,
48
translations of, 153-158
Trigonometric function values
of acute angles, 48, 50
for angles in radians, 103
finding with a calculator, 64
of nonquadrantal angles, 59
of quadrantal angles, 25-26
signs and ranges of, 31
of special angles, 51-52
undefined, 26
Trigonometric identities
cofunction, 49, 213-214
difference, 211-212, 214,
221-222
double-angle, 230-234
even-odd, 196-197
fundamental, 196-197
half-angle, 238-241, 275
product-to-sum, 234-235
Pythagorean, 34-35, 197
quotient, 35, 197
reciprocal, 30, 197
solving conditional trigonometric
equations using, 270-271
sum, 212-213, 214, 221-222
sum-to-product, 236
verifying, 203
Trigonometric models, 148, 158-159
Trigonometric substitution, 35
Trochoid, 400
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Umbra, 19

Unit, imaginary, 356

Unit circle, 116

Unit fractions, 129

Unit vector, 338

Upper harmonics, 278, 281

Variable
dependent, 428
independent, 428

Vector(s)
algebraic interpretation of, 336-337
angle between, 341
applications of, 329-331
components of, 336
direction angle for, 336
dot product of, 339-341
equilibrant of, 328
horizontal component of, 336
i, j units, 339
initial point of, 326
inner product of, 339

magnitude of, 326
naming practices, 326
operations with, 338
opposite of, 327
orthogonal, 341
parallelogram rule for, 327
position, 336
quantities, 326
resultant of, 327, 366
symbol for, 326
terminal point of, 326
unit, 338
vertical component of, 336
zero, 327
Verifying trigonometric identities, 203
Vertex of an angle, 2
Vertical angles, 10
Vertical asymptote, 164
Vertical axis, 366
Vertical component of a vector, 336
Vertical line test, 430
Vertical shrinking of a graph, 439
Vertical stretching of a graph, 439
Vertical translations
of cosine function, 156
of cotangent function, 169

definition of, 445
graphing, 156
of tangent function, 169

Wave
sine, 141
sound, 152, 220

x-axis, 422
x-intercept, 423
xy-plane, 422

y-axis, 422
y-intercept, 423

Zero-factor property, 269, 416
Zero vector, 327
ZTrig viewing window, 143



3.1 Conversion of Angular Measure
Degree/Radian Relationship: 180° = 7 radians

Conversion Formulas:

3.2 Applications of Radian Measure
Arc Length: s=r6, 6 inradians

1
Area of Sector: o = Er20, 0 in radians

From To Multiply by
3.4 Angular Speed » | Linear Speed v
T
. T 0 _ S
Degrees Radians 180 w= " v="
180° . .
Radians Degrees (w in radians per Y= ro
™ unit time, 0 in t
radians) v=re
5.1 Fundamental Identities 5.5 Product-to-Sum and Sum-to-Product Identities
1 1
cot =—— sech = csch = — 1
tan 6 cos 6 sin 6 cos A cos B = E[cos(A + B) + cos(A — B)]
tan 0 sin 6 ‘o cos 0
ne = =
a cos 6 c0 sin 6 1

sinff 4+ cos?0 =1 tan’0+ 1 =sec?f 1+ cot?f =csc?0

sin(—@) = —sin@®  cos(—0) = cos 0 tan(—6) = —tan 6

csc(—0) = —csc @  sec(—0) = sec O cot(—0) = —cot 6

5.3, 5.4 Sum and Difference Identities

cos(A + B) = cos A cos B — sin A sin B
cos(A — B) = cos A cos B + sin A sin B
sin(A + B) = sin A cos B + cos A sin B
sin(A — B) = sin A cos B — cos A sin B

tan A + tan B
tan(A+B)=——"——

1 —tan A tan B

tan A — tan B
tan(A — B) =

1+ tan A tan B

sin A sin B = —[cos(A — B) — cos(A + B) |

—_— N

sin A cos B = —[sin(A + B) + sin(A — B)]

NS}

1
cos A sianz[sm(AJrB —sin(A — B) ]

)sm(" ‘*)
A-;—B) COS(A;B)

. (A+B\ . ([A—B
cos A — cos B= —2sin (T) sin <T>

sin A +sinB:2sin<

sinA — sin B = 2cos<

cosA+cosB=ZCos<

5.3 Cofunction Identities
c0s(90° — 0) = sin 6
sin(90° — 0) = cos 6
tan(90° — 0) = cot 0
cot(90° — 0) = tan 0
sec(90° — 0) = csc 0
)=

csc(90° — 0) = sec 6

5.5, 5.6 Double-Angle and Half-Angle Identities
cos 2A = cos? A — sin? A cos24A =1—2sin’A

cos2A =2cos’A — 1 sin 2A = 2 sin A cos A

2tan A A 1 +cosA

tan2A = ——— cos — =t /——
1 —tan®A 2 2

A 1 —cosA A 1 —cosA

in—=+,/—— tan - =t/ ——

Sln2 2 an2 1 +cosA

A sinA A 1—cosA
tan - = ——— tan - = ——(——
2 1+4cosA 2 sin A

7.1 Law of Sines
In any triangle ABC, with sides a, b, and c,

a b a c b c
sin C’

sinA sinB’ sinA

- , and
sin C sin B

Area of a Triangle

The area o4 of a triangle is given by half the product of the lengths of
two sides and the sine of the angle between the two sides.
1 .
A= 3 bc sin A, A=

1 1
EabsinC, &d=5acsinB

7.3 Law of Cosines

In any triangle ABC, with sides a, b, and c,
a?=b*+ ¢2— 2bccos A,

and ¢? = a*+ b* — 2ab cos C.

b2 = a%+ ¢ — 2ac cos B,

Heron’s Area Formula
If a triangle has sides of lengths a, b, and ¢, with semiperimeter
s = 12(“ + b + ¢), then the area o of the triangle is

A= \/x(x —a)(s —b)(s —c).




4.1-4.4 Trigonometric (Circular) Functions

The graph of y = ¢ + asin [b(x —d)] or y = ¢ + acos [b(x — d)], where b > 0, has amplitude |a|, period 27“, a vertical translation ¢ units
up if ¢ > 0 or | ¢| units down if ¢ < 0, and a phase shift d units to the right if d > 0 or |d| units to the left if d < 0. The graph of y = a tan bx or

y = a cot bx has period %, where b > 0.

y y y
| (
14+ 14 : Iy =tanx
y=sinx \ y=cos,/ | |
f— = 5 : : e A x
T w\ 37 2 T T 3w 2w - o
2 2 2 2 2 2
1+ 14+
| |
|
1 1
y y y
' |
| | | | |
: —% 1+ :y—cscx : :y=secx :y=c0tx
| | | | X | | | | x } X
N S a0 4 TN
| 2 2 2 2\ |
| | | | |
|
| | | | |
6.1 Inverse Trigonometric (Circular) Functions
y y y
w
T e
=t 2
2
} } } }
N\ 2 a /P 0 2
t 0 } X ' 2 y= tan™! x
-1 1 y=cos x S 3 B or
y=sin"lx or 2 y =arctanx
y = arccos x
or )
_%_- y = arcsin x 71' 0 ‘1'
y o y y
y=cscx y=seclx y=cotlx
or or or
| J S areeex y = arcsec x - y = arccot x
2 1., T
-2 @J (-\
1 1 1 . . me—m——— e ——————
T T T T X
4 0 1 2 r? \)
1 I +—1 +— X
T T ¥ 0
1= 2 9% 1 2 2 -1 12
2




Solutions to Selected Exercises

1.1 Exercises
49. 90° — 72°58' 11"
89°59' 60"  Write 90° as 89° 59" 60"
—72°58" 11"
17°01" 49"

Thus, 90° — 72° 58" 11" = 17° 01" 49"

125. 600 rotations per min
600 rotations per sec
=— i
60 P

= 10 rotations per sec
= 5 rotations per % sec
= 5(360°) per % sec

= 1800° per % sec

A point on the edge of the tire will move 1800° in % sec.

1.2 Exercises
41. The triangle is obtuse because it has an angle of 96°,
which is between 90° and 180°. It is a scalene triangle

corresponding sides of the similar A‘

e
triangles. Add 100 + 120 = 220 to 100 120
obtain the appropriate side measure

because no two sides are equal.

65. Write a proportion using the

of the larger triangle.

X @ Corresponding sides
50 100 are proportional.
100x = 50 - 220 ll‘% = ;7 then ad = bc.
100x = 11,000 Multiply.
x =110 Divide.
1.3 Exercises
89. Evaluate tan 360° + 4 sin 180° + 5 cos? 180°.
0
tan360°=tan0°=X=*=0
x 1
0
sin 180° =2 == =0
r 1
x -1
cos 180° = — = =-1
r 1

tan 360° + 4 sin 180° + 5 cos? 180°
=0+ 4(0) +5(—1)2 Substitute; cos” x = (cos x)>.
=5

1.4 Exercises

73. We are given tan 0 = — %, with 0 in quadrant II.
Draw 6 in standard position in quadrant II. Because

tan 6 = )y; and 6 is in quadrant II, we can use the

values y = 15 and x = —8 for a point on its terminal
side.
r=Vx2+y2=V(-8)2+ 152 = V64 + 225
='V289 =17

Use the values of x, y, and r and the definitions of the
trigonometric functions to find the six trigonometric
function values for 6.

. y 15 r 17
sinf ===— csch=—=—
r 17 y 15
-8 8 r 17 17
cos 0 = 7. secd9—x—_8——8
can 0 y 15 15 ‘0 x -8 8
an === —— cO = - = — —
x -8 8 y 15 15

89. Multiply the compound inequality 90° < 6§ < 180°
by 2 to find that 180° < 26 < 360°. Thus, 26 must
lie in quadrant IIT or quadrant IV. In both of these
quadrants, the sine function is negative, so sin 26
must be negative.

1
cot(56 — 8°)

tan(360 — 4°) = tan(560 — 8°)

105. tan(30 — 4°) =

Given equation

Reciprocal identity
The second equation above will be true if

30 — 4° = 56 — 8°, so solving this equation will give
a value (but not the only value) for which the given
equation is true.

30 —4° =560 — 8°
4° =260
0=2°
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2.1 Exercises

69. One point on the line y = \V/3x is the origin, (0, 0).
Let (x, y) be any other point on this line. Then, by the
definition of slope, m = )yc - 8 = )V; = \/g, but also, by
the definition of tangent, tan 6 = )XC Thus, tan 6 = \/g
Because tan 60° = \/3, the line y = \@x makes a
60° angle with the positive x-axis.

73. Apply the relationships among the lengths of the sides
of a 30°-60° right triangle first to the triangle on the
left to find the values of x and y, and then to the triangle
on the right to find the values of z and w. In a 30°-60°

right triangle, the side opposite the 30° angle is % the

length of the hypotenuse. The longer leg is \/3 times
the shorter leg.

Thus,

y=%(9):2 and x:y\/:M

3
2 2

Because y = z\/g,

2.2 Exercises
29. To find the reference angle for —300°, sketch this angle
in standard position.

-

b 60°

o :
-300°

~

The reference angle for —300° is
—300° + 360° = 60°.

Because —300° is in quadrant I, the values of all its
trigonometric functions are positive, and these values

will be identical to the trigonometric function values
for 60°.
V3 2\V3

sin(—300°) = - csc(—300°) = =

sec(—300°) =2

cot(—300°) = \gg

oy 1
cos(—300°) = >
tan(—300°) = V3

85. The reference angle for 115° is 65°. Because 115° is in
quadrant II, its sine is positive. The function sin 6
decreases on the interval (90°, 180°) from 1 to 0.
Therefore, sin 115° is closest to 0.9.

2.3 Exercises
51. sin 10° + sin 10° £ sin 20°
Using a calculator, we obtain

sin 10° + sin 10° = 0.34729636
and sin 20° = 0.34202014.
Thus, the statement is false.

77. Use 6 = 3°, g = 32.2, f = 0.14, and the fact that
45 mph = 66 ft per sec.
V2

R:g(f+tan6)

662
R=
32.2(0.14 + tan 3°)

R = 703 ft
78. Use 6 = 3°, g = 32.2, f = 0.14, and the fact that
70 mph = Mg%l ft per sec = 102.67 ft per sec.
V2
R=—7—"-—"7-—
g(f +tan 0)

B 102.672
32.2(0.14 + tan 3°)

R = 1701 ft

79. Intuitively, increasing 6 would make it easier to
negotiate the curve at a higher speed, much as is
done at a race track. Mathematically, a larger value
of 0 (acute) will lead to a larger value for tan 6.

If tan 6 increases, then the ratio determining R will
decrease. Thus, the radius can be smaller and the curve
sharper if 0 is increased.
V2
 g(f+tan6)
662
R=
32.2(0.14 + tan 4°)

R




R =~ 644 ft
VZ
R=—"
g(f+tan0)

Compare to Exercise 77.

B 102.67>
32.2(0.14 + tan 4°)

R =~ 1559 ft

Compare to Exercise 78.
As predicted, both values are less.
2.4 Exercises

27. Solve the right triangle with B = 73.0°, b = 128 in.,
and C = 90°.

B
A ToTm €
A =90°—"73.0°=17.0°
128
tan 73.0° = —— tan B =2
u= 128 39.1in Three significant
tan 73.0° T digits
128 )
sin 73.0° = —— sinB =2
c
128 . Three significant
e~ P digies

47. Let x represent the horizontal distance between the two
buildings and y represent the height of the portion of the
building across the street that is higher than the window.

50.0°
20.0° }
3001t 30.0 ft
30.0
tan 20.0° = —— Tangent ratio
X
30.0
x=—"T—>= 2824 Solve for x.
tan 20.0°
o_ Y .
tan 50.0° = . Tangent ratio
30.0
y = x tan 50.0° = <70) tan 50.0° = 98.2
tan 20.0

Solve for y.

height = y + 30.0 = ( )tan 50.0° + 30.0 ~ 128

tan 20.0°

Three significant digits

The height of the building across the street is 128 ft.
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51. Let h represent the height of the tower.

34.6°

——
40.6 m

tan 34.6° = ——
an 406

h = 40.6 tan 34.6° = 28.0

Three significant digits

Tangent ratio

The height of the tower is about 28.0 m.

2.5 Exercises
25. Let x = the distance between N

Second ship

the two ships. The angle
between the bearings of the
ships is

180° — (28° 10" + 61°50") = 90°.

W=

The triangle formed is a right

triangle. First ship

Distance traveled at 24.0 mph:
(4 hr)(24.0 mph) = 96 mi

Distance traveled at 28.0 mph:
(4 hr)(28.0 mph) = 112 mi
Applying the Pythagorean theorem gives the following.
x2=96%+ 1122
x? = 21,760
x = 148
The ships are 148 mi apart.

31. Let x = the distance from the closer point on the
ground to the base of height / of the pyramid.

x 135 ft

In the larger right triangle,

h
135 +x

h= (135 + x) tan 21° 10".

tan 21° 10" =

In the smaller right triangle,

tan 35° 30" =

== >

h = x tan 35°30’.
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Substitute for % in this equation, and solve for x.

(135 + x)tan 21° 10" = x tan 35° 30’
Substitute (135 + x)tan 21° 10" for A.

135tan 21° 10" + x tan 21° 10’ = x tan 35° 30’
Distributive property

135tan 21° 10’ = x tan 35° 30" — xtan 21° 10’

Write the x-terms on one side.

135 tan21° 10" = x(tan 35° 30" — tan 21° 10")

Factor out x.

135 tan 21° 10’
tan 35° 30’ — tan 21° 10’
Divide by the coefficient of x.

=X

Then substitute for x in the equation for the smaller
triangle.

_< 135 tan 21° 10’
tan 35° 30" — tan 21° 10’

) tan 35°30" = 114

The height of the pyramid is 114 ft.

3.1 Exercises

91. (a) In 24 hr, the hour hand will rotate twice around the
clock. One complete rotation measures 27 radians,
so the two rotations will measure

2(2r) = 4 radians.

(b) In 4 hr, the hour hand will rotate % = % of the way
around the clock, which will measure

1 2
5(277) = ?ﬂradians.

3.2 Exercises
37. For the large gear and pedal,

s=r0=4.72m.
Thus, the chain moves 4.727 in. Find the angle through

180° = 7r radians

which the small gear rotates.

The angle 6 for the wheel and for the small gear are the
same, so for the wheel,

s =r6 = 13.6(3.427) ~ 146 in.

The bicycle will move about 146 in.

63. (a)
‘A s
A‘m

T

The triangle formed by the sides of the central angle

=
e

and the chord is isosceles. Therefore, the bisector of
the central angle is also the perpendicular bisector

of the chord and divides the larger triangle into two
congruent right triangles.

50
sin 21° = —
-
r= ,50 -~ 140 ft
sin 21

The radius of the curve is about 140 ft.

50
b) r= :
b) r= o

0 =42°

42°—42<l d )—7—” di
180ra l1an 30ra 1an

50 T 357
s=rf=— =
sin21° 30  3sin21°
The length of the arc determined by the 100-ft
chord is about 102 ft.
(¢) The portion of the circle bounded by the arc and
the 100-ft chord is the shaded region in the figure
below.

~ 102 ft

42°

The area of the portion of the circle can be found
by subtracting the area of the triangle from the area
of the sector. Refer to the figure in part (a).

50 50
tan 21° = —, = S
h tan 21
1
‘ﬁsector = 57’29
1 ( 50 >2<777) From part (b),
“2\sin21°/\30) 42°=7
~ 7135 ft
1
‘ﬁtriangle = Ebh
1 50
- Laon( 2-)
2 tan 21
~ 6513 ft?
‘sdponion = &qsector - 'Sdtriangle
~ 7135 ft> — 6513 ft®

= 622 ft
The area of the portion is about 622 ft%.

65. Use the Pythagorean theorem to find the hypotenuse of
the right triangle, which is also the radius of the sector
of the circle.

r?2 =302 + 402
r= V2500
r=150



1
‘ﬁtriangle = Ebh
_!
2
= 600 yd?
1

sector — A
2

(30)(40)

A r20

1 ™
== 2. 2
2(50) 3

o __
60° =3

12507
3

Total area = ‘ﬂtriangle + ‘ﬂseclor

12507
3

yd?

= 600 yd*> + yd?

~ 1900 yd>
The area of the lot is about 1900 yd?.

3.3 Exercises
55. cos 2

5~ 157and m = 3.14,50 7 < 2 <. Thus, an
angle of 2 radians is in quadrant II. Because values of
the cosine function are negative in quadrant II, cos 2 is

negative.
3
69. 77,7 ;tan s = \/§

Recall that tan % = \/5 and that in quadrant III, tan s
is positive.

4
tan(wﬂ—%) =tanl= \/g

3

4
Thus, s = Tﬂ

3.4 Exercises

33. The hour hand of a clock moves through an angle of
27r radians (one complete revolution) in 12 hr. Find w
as follows.

0 2

w=>="=" adian per hr

t 12 6

43. At 215 revolutions per min, the bicycle tire is moving
215(27) = 4307 radians per min. This is the angular
velocity w. Find v as follows.

v = rw = 13(4307) = 55907 in. per min
Convert this velocity to miles per hour.

B 55907 in. 60 min 1ft 1 mi
. Thr  12in. 5280 ft

~ 16.6 mph
1 min mp
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4.1 Exercises

41. The point (0, 2) lies on the graph, and 2 is the maxi-
mum value of the function. It can be interpreted as the
point (0, 1) on the graph of y = cos x that has been
stretched vertically by a factor of 2, so we can conclude
that a = 2.

To find b, note from the graph that the period is 7,

and use period = 2777:

21
T
wh =21
b=2.

The graph is that of y = 2 cos 2x.

4.2 Exercises

1 . ™
59. y=—+sin|2( x + —
2 4

This equation has the form y = ¢ + a sin [b(x — d) ]
withc =12,a=1,b=2,and d = —Z. Start with the
graph of y = sin x and modify it to take into account
the amplitude, period, and translations required to
obtain the desired graph.

Amplitude: |a| =1

. 27 2
Period: 7 = =

) aw

Phase shift (horizontal translation): % unit to the left

1
Vertical translation: > unit up

4.3 Exercises
1
3[5.y=—-1+ Ecot(Zx — 3r)

)} Rewrite 2x — 37 as

y=—l+lcot[2<x—3i 3w
2 2(.’(*7).

2
Period: T_T
b 2

3
Phase shift (horizontal translation): 777- units to the right

Vertical translation: 1 unit down
Because the function is to be graphed over a two-period
interval, locate three adjacent vertical asymptotes.
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Because asymptotes of the graph of y = cot x occur at
multiples of 7, the following equations can be solved
to locate asymptotes.

2(x=2T) = —2m 2(x-2T)=- d
X 5 )= T, X 5 )= T, an
3T
2(x-T)=0
(x 2)

Solve each of these equations.

3
Z(x—g) = =27

3 .
x—7=—7r Divide by 2.
x=-m+— Add¥.
_T
T2
3
2<x—7T>=—7T
2
3 T
-1
2 2
__m 37
T
_2m
x= 7 or
3
2lx——1=0
(" 2)
3
x—l:O
2
o
T

Divide the interval (% 'n') into four equal parts to obtain
the following key x-values.

5 3
first-quarter value: %; middle value: Tﬂ;

7
third-quarter value: %

Evaluating the given function at these three key x-values

gives the following points.

(-9 () (5
8 9 2 9 4 b 9 8 9 2

Connect these points with a smooth curve and continue
the graph to approach the asymptotes x = % and x =7
to complete one period of the graph. Sketch an identical

curve between the asymptotes x = 77 and x = %777 to
complete a second period of the graph.

y=—1+%cot(2x—3‘n-)

sin(—x) S
51. tan(—x) = ————  Quotient identity
cos(—x)
—sin x . ) »
= Negative-angle identities
Cos X
_ sinx p P
COS X b b
= —tanx Quotient identity
4.4 Exercises
1
37. sec(—x) = ————  Reciprocal identity
cos(—x)
1 . . .
= Negative-angle identity
Cos x
=secx Reciprocal identity
4.5 Exercises

9. E =5 cos 1207t

(a) The amplitude is |5| = 5, and the period is
257 = -

(b) Because the period is 617), one cycle is completed in
6]*0 sec. Therefore, the frequency is 60 oscillations
per sec.

(¢) Fort=0,E =5cos 120m(0) = 5cos 0 = 5.

For r = 0.03, E = 5 cos 1207r(0.03) = 1.545.
For r = 0.06, E = 5 cos 1207 (0.06) =~ —4.045.
Fort = 0.09, E = —4.045.

Fort=0.12, E = 1.545.

E =5 cos 1207t

19. (a) We will use a model of the form s(¢) = a cos wt
with @ = —3. Because
5(0) = —=3cos(w+0)=—-3cos0=—-3-1= -3,

using a cosine function rather than a sine function
will avoid the need for a phase shift.



The frequency of % cycles per sec is the reciprocal

of the period.
6 _ w - 1
; = 7 Frequency = period
6:2=w Multiply by 27r.
w =12  Multiply and rewrite.

Therefore, a model for the position of the weight at
time ¢ seconds is

s(t) = =3 cos 121.

=1+g=1°z=zsec

b) Period =
(b) Perio - 6= 6

3o =

5.1 Exercises
35. cot9=%,sin0>0
Because cot # > 0 and sin 6 > 0, 6 is in quadrant I, so
all the function values are positive.
1 3

1
tanf = ——= =—

— Reciprocal identity
cotf 4 4
3

sec’f =tan? 6 + 1 Pythagorean identity

3\? 9 16 25
sec20=(7> +l=—+—="

Sec 0 - - sec 6 > O
COS - - = Re al ident [>
0 = = — ciproc ;
3 C1proc 1

Alternative form of

129 — 2
sinf = 1 — cos . .
0 0 Pythagorean identity

sin @ >0

0 1 1
csc = ===
sin g 3

. 4
Thus, sin 68 = % cos ) =z, tan 0 = %, sec 6 = %, and
_3
cscf = 3.
1 Reciprocal
51. cscx=— neep
sin x identity
Alternative
1 form of

+V1—cos?x

Pythagorean
identity
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t1 Redistribute
signs.

+1 Vi — cos? x
V1-co2x V1-—cosx
+V1—cosx

1 — cosx

Rationalize the
denominator.

cscx = Multiply.

67. sec 0 — cos 6

! 0
= — cos
cos 6
1 cos? 6 )
= — Use a common denominator.
cosf cosb
1 —cos? 0 L
= Subtract fractions.
cos 6
sin® 6 . o
= 1 — cos* 6 = sin“ O
cos 6
sinf . o ) )
= +sin 6 sin“ 6 = sin 0 - sin 6
cos 6
_ . sinf _ |
= tan 6 sin 6 cosg — tan 0

79. Because cos x = % >0, x is in quadrant I or I'V.

12
sinx=£V1—cos?tx=* 1—<7)

sinx= t,/—=t—
25 5
sin x J—r256
tan x = =—F= +2V6
COS X 1
5
1 1
sec x = =1—=5
cosx 1
5
Quadrant I:

secx — tan x

sin x
- ﬂ Substitute known
2Ve values.
5

55 -2Ve)

Ve

_25-10V6 Ve
2Ve Ve

~25V6 - 60
12

Simplify the complex
fraction.

Distribute in the numerator.
Rationalize the denominator.

Multiply.
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Quadrant IV: 1
_ tant | tant — tant
secx — tan x tan ¢ tant-i—tlfl
M an
sSin x
Multiply numerator and denominator of
5 (_2\@) the complex fraction by the LCD, tan .
2—\/6 Substitute known values. tan2 7 — 1 N l
—£== =— istributive proper
5 tan® ¢ + 1 propery
tan’t — 1 .
_ 5<5 + 2\/6) Simplify the complex = Teec?s tan> ¢t + 1 = sec?t

-2V6 fraction.
97. Show that sin(csc #) = 1 is not an identity.

_25+ 10V6 = V6 Distribute in the numerator. We need find only one value for which the state-
-2V6 —V/6  Rationalize the denominator. ment is false. Let r = 2. Use a calculator to find that
sin(csc 2) = 0.891094, which is not equal to 1. Thus,
~25V6 — 60 _ : L .
i At Multiply. sin(csc 7) = 1 is not true for all real numbers 7, so it is
12

not an identity.

5.2 Exercises 5.3 Exercises

21. ! — ! 27
I +cosx 1—cosx 39. secx=cscT
_ 1(1 = cosx) — 1(1 + cos x) By a cofunction identity, sec x = csc(% - x).
(1 + cosx)(1 — cosx)
The LCD is (1 + cos x)(1 — cos x) m 2T ;
’ e csc 5 x| = csc? Substitute.
I —cosx—1—cosx Distribute.
1 —cos®x Multiply. T 2
——Xx=— Set angle measures equal.
2 3
_ —2cosx Simplify
T osin?x HMpHLY- T 27
S ——— =X Add x and subtract 2%
__2cosx —u_ a 2 3
sin® x beh __T m_2m _3m_ 4w _ _ @
X 6 27376 6 6
- _2(w> (L) a_ (g)<l) 77 a o T o
sinx / \ sin x b WD 61. True or false: cos — = cos —— cos — — sin — sin —.
3 12 4 12 4
R . Fund.zu.nental
identities Note that 5 = %T =15+ 31—727 =15+7.
25. T T T )
. ) . ) cos —=cos| ——+ — Substitute.
(sinx+ 1) = (sinx — 1) 3 12 4
=[(sinx+ 1)+ (sinx — 1)][(sinx + 1) — (sinx — 1) ] = cos = cos T — sin = sin =
12 4 12 4

Factor the difference of squares. ‘ ) )
) ) ) Cosine sum identity
= [2sinx][sinx+ 1 —sinx+ 1] Simplify. . .

The given statement is true.

= [2sinx][2] Simplify again.
= 4 sin x Multiply. 5.4 Exercises
11
) 23. tan ——
. tant—1 tant— cott . . 12
69. Verify that = is an identity.
sec” t tan f + cot ¢
—tn( X4+ 3w _9m.m _ 2w
Work with the right hand side. 4 6 4 1206 12
1 3w T
tant—cott tant— oo i tan - + tan ¢
= cot? = oy = Tangent sum identity

1 tan ¢

tan + cot ¢ tan+ o 1—tan37"tan%
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s V3 - (a) sin(s +¢) = sin s cos  + cos s sin ¢
3 37 7 /
:—\/§ lan%—r:—l;lam%:\33 :(_E)(_§>+<_£)(_ﬁ)
I=(-1 (?) 17)\ 5 17)\ 5
45 32
:—_l +% Simplify :g+g
L+ V3 ‘ ' 77
3 -’
85
V3
_ -1+ 3 . i Multiply numerator and ) ¢ ( N z) tan s + tan ¢ g + ‘31
V3 3 denominator by 3. an{s = 1 — = 15\/4
1+ tanstans | _ (§)<§)
-3+V3 2 7
= 7\/ Distributive property = % = 24:6 = _H
3+V3 1-25 -2 36
_ -3+V3 L3 V3 Rationalize the (c¢) From parts (a) and (b), sin(s + 7) >0 and
3+V3 3—1/3 denominator. tan(s + ¢) < 0. The only quadrant in which values
of sine are positive and values of tangent are nega-
— M Multiply tive is quadrant II. Thus, s + 7 is in quadrant II.
9-3 '
67, Verify that sin(x—y) tanx—tany dentit
. Veri a = is an identity.
_ -2+ 6\V3 Subtract Y sin(x +y) tanx+ tany Y
6 Work with the left hand side.
6(_2 + \/g) sin(x —y) sinxcosy — cosxsiny Zl?fe sum and
R A aotor . = ifference
= 5 Factor the numerator. Sin(x +y)  SINXCOSY + COSXSINY oo
sin x cos y cos X sin y - .
=24 \@ Lowest terms cosxcosy " cosxcosy Divide numer ator
== - and denominator by
3 3 ) sin x cos y cos x sin y o i
53. coss = — 17 and cos 1 = =35, and ¢ in quadrant I1I COSXCOSY  COSXCOSY COS X COS y.
In order to substitute into sum and difference identi- ;)[;’; “1—1- :)"S)V
ties, we need to find the values of sin s and sin ¢, and T Smr . sny Divide.
S E
also the values of tan s and tan 7. Because s and ¢ are cos x cosy
both in quadrant III, the values of sin s and sin 7 will _ fanx —tany Tangent quotient
be negative, and the values of tan s and tan ¢ will be tan x + tan y identity
ositive. .
P 5.5 Exercises
8 \2 25. Verify that sin 4x = 4 sin x cos x cos 2x is an identity.
o= /1 — co ¢ = — Y
sins = —V1=cos™s = —/1 ( 17) Work with the left hand side.
sin 4x = sin 2(2x) Factor: 4 =2 - 2.
225 15 .
=—A\|Zo = —72 — 2 in2 2 Sine double-angle
289 17 T £ SIn2X Cos 2x identity
. Sine double-angle
3)\? =2(2sinxcos x)cos 2x ., . :
sint = —V1 — cos? =—1l1—<—§) ( ) identity
= 4 sin x cos x cos 2x Multiply.
16 4 1 1
== g:_g 45.Z—Esin247.l°
. E 1 L) o 1
sin s -1 15 =—(1—25sin*47.1°) Factor out I
tan s = = =— 4
coss _ 38 8
17 1
. = cos 2(47.1°) cos2A =1 —2sin”A
sin ¢ -5 4
tanr = ; =—3 = 3 1 o
cos -3 = 1 cos 94.2
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51. tan 3x
= tan(2x + x)
tan 2x + tan x

= Tangent sum identity
1 — tan 2x tan x

2 tan x
PRI + tan x
_ 1 —tan"x Tangent double-
2 tan x angle identity
—————— -tanx
1 — tan® x

2 tan x + (1 — tan® x) tan x

2 Add and subtract

1 — tan“ x .

= > > using the common
1 — tan”x — 2 tan” x denominator.

1 — tan? x

3 Multiply numerator
2 tan x + tan x — tan’ x ) o
= and denominator by
1 — tan® x — 2 tan® x 1 — tan? x.

_ 3tanx — tan’ x

2 Combine like terms.
1 —3tan* x

5.6 Exercises
21. Find tan %, given sin 6 = 2, with 90° < § < 180°,

To find tan g, we need the values of sin 6 and cos 6.

We know sin 6§ = %

cos =+ V1 —sin?0 Fundamental identity

3 2
=1,/1- (*) Substitute.
5
16
== > Simplify.
4 .
cos 6 = —g 0 is in quadrant II.

Thus, we have the following.

t 0 sin 6 Half le identit
an - =——— alf-angle identi
2 1+cosé ¢ Y
3
5 .
= T Substitute.
I=3
=3 Simplify.

45. Verify that sec? o=
2 1+cosx

Work with the left hand side.

is an identity.

Reciprocal identity

= Cosine half-angle

2
< ! 1+COSX> identity
- 2

1
T 1+ cosx Apply the exponent.
2
2 . .
T4 e Divide.
1+ cosx

6.1 Exercises

1
83. sin (2 cos™! g)

Let § = cos™! é, meaning that cos 6 = é The inverse
cosine function yields values only in quadrants I and I,
and because % is positive, € is in quadrant I. Sketch 6 in
quadrant I, and label the sides of a right triangle. By the
Pythagorean theorem, the length of the side opposite 6
will be

V52— 12=V24=2Vb.
Yy

2Ve6
—

From the figure, sin 6 =

1
3 2 -1 _
sm( COS 5)

= sin 260

= 2sin 6 cos 0

()

25

Sine double-angle
identity

1
89. sin (sin*1 5 + tan’1(73)>

Let sin”! % = A and tan"!(—3) = B. Then sin A = %
and tan B = —3. Sketch angle A in quadrant I and
angle B in quadrant IV, and use the Pythagorean
theorem to find the unknown side in each triangle.




1
sin (sin_l > + tan_'(—3)>
= sin(A + B)
= gsin A cos B + cos A sin B

1 V3
- 4 — =

1 2
_1-3V3
2V10

V10 - 3V/30

Rationalize the
- 20 denominator.

Sine sum identity

N | =
(e}
Sula
—_
S

6.2 Exercises

19. tan®’x + 3 =0, so tan®> x = —3.
The square of a real number cannot be negative, so this
equation has no solution. The solution set is J.

29. 2sinf® — 1 =cscf Original equation

. 1
2sinf — 1 =-—— Reciprocal identity
sin 6

2sin?0 —sinf =1 Multiply by sin 6.

2sin?@ —sinf—1=0 Subtract 1.

(2sin@ + 1)(sinf—1)=0 Factor.
2sinf+1=0 or sinf—1=0
Zero-factor property
in 0 : inf =1
sinf = —— or sin § =
2

Solve for sin 6.

Over the interval [0°, 360°), the equation sin 6 = —%

has two solutions, the angles in quadrants III and IV
that have reference angle 30°. These are 210° and
330°. In the same interval, the only angle 6 for which
sin @ = 1 is 90°. All three of these check.

The solution set is {90°, 210°, 330°}.

2 tan 6 . .
61. POy Original equation
3 —tan° 0
2tan =3 — tan” 0 Multiply by
3 — tan? 6.

tan?f + 2tan —3 =0 Write in standard

quadratic form.

(tan — 1)(tan O +3) =0 Factor.

tanfd —1=0 or tanf+3=0 Zero-factor
property
tan 6 = 1 or tan @ = —3  Solve for tan 6.
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Over the interval [0°, 360°), the equation tan 6 = 1

has two solutions, 45° and 225°. Over the same
interval, the equation tan § = —3 has two solutions

that are approximately —71.6° + 180° = 108.4° and
—71.6° + 360° = 288.4°. All of these check.

The period of the tangent function is 180°, so the solu-
tion set is

{45° + 180°n, 108.4° + 180°n, where n is any integer }.

6.3 Exercises
33. cos2x + cosx =0
We choose the identity for cos 2x that involves only the

cosine function.
cos 2x + cosx =0  Original equation
2cos?x — 1 +cosx=0 Cosine double-angle identity

2cos’x+cosx—1=0 Standard quadratic form

(2cosx — 1)(cosx+ 1) =0 Factor.
2cosx—1=0 or cosx+1=0 Zero-factor
property
2cosx =1
_ _ Solve for
cosXx = — or cCos X = — o
2 COs X.

Over the interval [0, 27), the equation cos x = % has

two solutions, % and 5777 Over the same interval, the
equation cos x = —1 has only one solution, 7.

The solution set is {% , 5{}

41. 2 sin § = 2 cos 20 Original equation

sin @ = cos 26 Divide by 2.

sin@=1—2sin?0 Cosine double-
angle identity

2sin?6 +sinfh —1=0 Standard quadratic

form

(2sinf —1)(sinf +1) =0 Factor.

2sinf—1=0 or sinf+1=0 Zero-factor
property
1
sin 6 = E or sinf = —1 Solve for sin 6.

Over the interval [0°, 360°), the equation sin 6 = % has
two solutions, 30° and 150°. Over the same interval,
the equation sin § = —1 has one solution, 270°.

The period of the sine function is 360°, so the solution
set is
{30° + 360°n, 150° + 360°n, 270° + 360°n,

where n is any integer }.




S-12 | Solutions to Selected Exercises
6.4 Exercises
21. y =cos(x + 3), forxin [ =3, 7 — 3]
Original equation
x + 3 = arccos y Definition of arccos

x = —3 + arccosy Subtract 3.

. 3 - .
39. arccos x + 2 arcsin o T Original equation

3
arccos x = 77 — 2 arcsin 72
Isolate arccos x.

o

_ m . \V3
arccosx = — 2 ? arcsin 5= = 3

T
arccos x = ? Subtract.

m . .
X = COS E Definition of arccos

X == Evaluate.
2

The solution set is {%}

43. cos'x +tan ' x = Original equation

1 1

cos'x=——tan"!x Subtract tan"' x.

T
X = cos <* —tan! x)
2

Definition of cos™! x

3

Ko
x=cos - cos(tan™! x)

+ sin% - sin(tan"! x)
Cosine difference identity
x=0-cos(tan”!x) + 1 - sin(tan™! x)
cos % = 0 and sin % =1
x = sin(tan"! x)

Let u = tan ' x, so tan u = x.

. . . X
From the triangle, we find that sin u = ———,
1+ x2

so the equation x = sin(tan™' x) becomes

X

S}

1+x

Now solve this equation.

X

1+ x2
szx
XV1+x2—x=0
A(Vi+a2-1)=0

Vit+a2—1=0

Vita=1

Multiply by V1 + x2.
Subtract x.

Factor.

Zero-factor property

x=0 or

Isolate the radical.

1+x2=1 Square each side.
x>=0 Subtract 1.
x =0 Take square roots.

The solution set is {0}.

7.1 Exercises

41. We cannot find 6 directly
because the length of the side
opposite angle 6 is not given.
Redraw the triangle shown in
the figure, and label the third

—_
=)}

angle as a. Lo

Law of sines
(alternative form)

sina sin 38°
1.6+27 16+36

sina  sin 38°

Add in the denominators.

43 52
. 4.3 sin 38° )
sin o = T Multiply by 4.3.

sin @ = 0.50910468 Use a calculator.

a = 31° Use the inverse sine function.

0 = 180° — 38° — 31°
0= 111°.

Then

49. To find the area of the triangle, use s{ = %bh, with

b=1landh=\2.
1 V2
A= 5(1)(%) :T
Now use A = %ab sin C, witha =2, b =1, and
C = 45°

1 2
A = 5(2)(1) sin 45° = sin 45° = \2/

Both formulas show that the area is % sq unit.



7.2 Exercises

11.

19.

sinB _ sinA

Law of sines (alternative form)

b a

sinB  sin 60° Substitute values from the fi
= ubstitute values from the figure.

2 Ve

. 2 sin 60° )

sin B=——>—— Multiply by 2.

Ve
. 2. V3
sin B = sin 60° = =5
Ve
V3 .
sinB=—+ Simplify.
Ve

. _ 1 Va a
sin B = 5 v \/,; (b#0)

sin B = T Rationalize the denominator.

B = 45° Use the inverse sine function.

There is another angle between 0° and 180° whose sine
V2,
is 5~

180° — 45° = 135°.
However, this is too large because A = 60° and

60° + 135° = 195°. Because 195° > 180°, there is only
one solution, B = 45°.

A =142.13° b = 5432 ft, a = 7.297 ft
sinB _ sinA Law of sines

b a (alternative form)

. bsin A )
sin B = P Multiply by b.

. 5.432 sin 142.13° ) )
sin B=—————— Substitute given values.

7.297
sin B = 0.45697580 Simplify.
B = 27.19° Use the inverse sine function.

Because angle A is obtuse, angle B must be acute, so
this is the only possible value for B and there is one

triangle with the given measurements.

C=180°—A — B Angle sum formula, solved for C
C =~ 180° — 142.13° — 27.19°

C =~ 10.68°

Thus, B = 27.19° and C = 10.68°.

7.3 Exercises

21.

C=456°b=894m,a="723m
First find c.

c2=a?+ b%>—2abcos C Law of cosines
¢? =723+ 8.94> — 2(7.23)(8.94) cos 45.6°

Substitute given values.
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c? =~ 41.7493
c = 646

Use a calculator.
Square root property

Find A next because angle A is smaller than angle B
(here a < b), so angle A must be acute.

sinA _sinC

Law of sines (alternative form)

a c
sinA =2 SICn ¢ Multiply by a.
sinA = 7.23 5in 45.6° Substitute.
6.46
sin A = 0.79963428 Simplify.
A = 53.1° Use the inverse sine function.

Finally, find B.
B=180°—-C—A
B = 180° — 45.6° — 53.1°
B =~ 81.3°
Thus, ¢ = 6.46 m, A = 53.1°, and B = 81.3°.

. Find AC, or b, in this figure.

A 450 km B

Angle 1 = 180° — 128°40" = 51° 20’

Angles 1 and 2 are alternate interior angles formed
when two parallel lines (the north lines) are cut by a
transversal, line BC, so angle 2 = angle 1 = 51°20".

angle ABC = 90° — angle 2 = 90° — 51°20" = 38° 40’
Complementary angles

Now use the law of cosines to find b.

b%?=a%+ c*—2accos B
Law of cosines

b? = 3592 + 450% — 2(359)(450) cos 38° 40’
Substitute values from the figure.

b% = 79,106 Use a calculator.

b = 281

Square root property

C is about 281 km from A.
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7.4 Exercises

35. Use the parallelogram rule. In the figure, x represents

the second force and v is the resultant.

7.5 Exercises
23. v= (a,b)

= (5 cos(—35°), 5 sin(—35°))
= (4.0958, —2.8679)

25. Use the figure to find the components of u and v:
u= (—8,8)and v= (4,8).

X
/ (@A u+tv
b / = (~8,8) + (4,8)
41° 10’ / T ’
176 Ib =(-8+4,8+38)
= (—4,16)
a = 180° — 78°50" = 101° 10’
(b)u—v
B =7850" —41° 10" = 37°40’
= (-8,8)—(4,8)
X 176
: x| = — Law of sines =(—-8-4,8-38)
sin41° 10" sin 37° 40’
= (—12,0)
x| = 176 sin 41° 10’
sin 37° 40’ © ~u
x| =~ 190 =—(-838)
= (8,-8)
[v] 176 Lo of 57, Fi ite the o . ;
= aw Ol sines . .
sin 101° 10" sin 37° 40" 1rst write the given vectors in component form
vl 176 sin 101° 10’ 3it+4j=(3,4); j=(0,1)
VI= T ey
sin 37° 40 (3,4)-(0,1)
cosl=——————"7
lv| ~ 283 1(3,4)]1(0, 1)
Thus, the magnitude of the second force is about cos 6 = 3(0) +4(1)
190 Ib, and the magnitude of the resultant is about VO+16- VO +1
283 1b. cos 6 =0.8
57. Let v represent the airspeed vector. C N 6 =cos'0.8
The ground speed is 4292 }rlr;i = 160 mph. 1 0 ~ 36.87°

angle BAC = 328° — 180° = 148°

[v]|>= 11>+ 1602 — 2(11)(160) cos 148> ¥

Law of cosines

|v|? = 28,706
|v| =~ 169.4

The airspeed must be approximately 170 mph.

8.1 Exercises
53 —iV2-2-(6-4iV2)—(5-iV2)
(-2-6-5)+[-V2—(-4V2) - (-V2)]i
—13 +4iV2

Combine real parts and

combine imaginary parts.

sin B sin 148°

Law of sines 71. (2 + l)(z - l)(4 + 31)
11 169.4
=[(2+0)(2—1i)](4 +3i) Associative property
. 11 sin 148°
SnB =" o4 = (22— 2)(4 + 3i) Product of the sum and
’ difference of two terms
sin B = (0.03441034 =[4—(=1)](4 + 3i) 2=
B=2 =5(4 + 3i) Subtract.
The bearing must be approximately 360° — 2° = 358°. =20+ 15i Distributive property




T\

Square the binomial.

Il
VRS
S
~
0~
~[S
)

V2 <\6>2

2 2
—+2-—i+—i> Apply exponents and multiply.
4 4 4 pply exp ply
[N o -
= 5 + i+ =it Simplify the fractions.
+i+ 1( 1) 2 1
=—+i+ (- ‘= -
2
! +1i ! Multipl
—+i—= ultiply.
5 5 ply
=i Combine real parts.
Va2 V2

2 2.. .
Thus, 5~ + —5~i is a square root of i.

8.2 Exercises
35. 3 cis 150°

= 3(cos 150° + i sin 150°)

< \/g . 1> cos]SO‘]:fY‘;
=3 ——+1i- -

2 2 sin 150° = 1

W

3V3 3
-

—i Rectangular form

2 2

47. =5 —5i
Sketch the graph of —5 — 5i in the complex plane.

Because x = —5 and y = —5,
r=Valtyl= \/(—5)2 +(=5)2= V50 =5V2
and tan9=X:;5=1.

x =5

For tan 6 = 1, the reference angle for 6 is 45°. The
graph shows that 6 is in quadrant III, so

6 = 180° + 45° = 225°.
Use these results.

—5 — 5i = 5\/2(cos 225° + i sin 225°)

8.3 Exercises
9. [4(cos 60° + i sin 60°) ][ 6(cos 330° + i sin 330°) ]
=4 - 6[cos(60° + 330°) + i sin(60° + 330°) ]

Product theorem

Solutions to Selected Exercises | S-15
= 24(cos 390° + i sin 390°)
= 24(cos 30° + i sin 30°)

=24<\/§+i-1
2 2
= 12V3 + 12i

—i
1+
For the numerator, we have
—i=0-1 and r=VO0>+ (—-1)2=1.
0 = 270° because cos 270° = 0 and sin 270° = —1.
Thus —i = 1 cis 270°.

Multiply and add.
390° and 30° are

coterminal angles.

) cos 30° = \2 R
sin 30° =

)

[S1}

Rectangular form

25.

For the denominator, we have

I+i=1+1i ad r=VE+12=V2
I

tan6=X=*=1.
x 1

Because x and y are both positive, 6 is in quadrant I and
6= tan~' 1 = 45°. Thus, 1 +i = \/2 cis 45°. Now use
this information to convert.
—i
1+
1 cis 270°
V2 cis 45°

1
= ——cis(270° — 45°)

V2

= \2/2 cis 225°

Substitute
trigonometric forms.

Quotient theorem

Rationalize and
subtract.

V2
= T(COS 225° + i sin 225°)

Equivalent form

/

[}

\6< V2 . \6) 003225°:,\z/ :

V2 N2 . V2 ;

? 2 2 sin 225° = — T.
1 1. ‘

T2 2 Rectangular form

2

8.4 Exercises

17. (=2 —2i)°

First write —2 — 2i in trigonometric form.

r=V(=22+ (—2)2=V8=2V2
y =2
tanf=—=—=1
an x =2
Because x and y are both negative, 6 is in quadrant IIL
Thus 6 = 225°.

—2 — 2i = 2V/2(cos 225° + i sin 225°)
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(=2 —2i) The graph is a circle with center (0, 1) and radius 1.
= [2V/2(cos 225° + i sin 225°) ,
= (2V2) [cos(5 - 225°) + i sin(5 - 225°)] 2
De Moivre’s theorem . .
1

=32 - 4V/2(cos 1125° + i sin 1125°)

r=2sin6
Pry-1i=1

= 128V/2(cos 1125° + i sin 1125°)
= 128V/2(cos 45° + i sin 45°)

1125° and 45° are coterminal.

=128\f2<\6+i-\6> r:cozw

2 2
rcosf =2

67. r=2sech

Reciprocal identity

Multiply by cos 6.

/

()]

cos 45° = ¥ sin 45° = Nz/

x=2
The graph is the vertical line through (2, 0).

rcosf =x

=128 + 128i

Rectangular form

47. 0 — (4 +4iV3)=0

B =4+4i\3
r=Va+(4V3p=Vie+48=Vos=3 , .

¥

<«

tan 6 =

ERad

0 is in quadrant I, so 6 = 60°.
B =4+4\V3
x3 = 8(cos 60° + i sin 60°)
r3(cos 3a + i sin 3a) = 8(cos 60° + i sin 60°)
r3=8,sor=2.
60°  360° - k
R T
a =20° + 120° - k, k any integer
If k = 0, then a = 20° + 0° = 20°.
If k = 1, then @ = 20° + 120° = 140°.
If k =2, then o = 20° + 240° = 260°.
The solution set is {2(cos 20° + i sin 20°),
2(cos 140° + i sin 140°), 2(cos 260° + i sin 260°) }.

, k any integer  nth root theorem

8.5 Exercises

r=12sin6
r2=2rsin® Multiply by 7.
x> +y2=2y
xX2+y2=2y=0
X2+y2=2y+1=1

r2=x>+y%rsinf=y
Subtract 2y.

Add 1 to complete the
square on y.

¥+ (y-1)=1 Factor the perfect square
trinomial.

r=2sec
x=2

8.6 Exercises

13. x=3+1,y=1—1, fortin (=00, )

@ ¢t | x |y
-2 -7 -9

1] o -2

0 -1

1 0

2 7

31 281 26

x=r+1 i

y= t3— 1 4
for ¢ in (—oo, o0)

(b) x=1+1

y=1—1
x—y=2 Subtract equations to eliminate 7.
y=x—2 Solve fory.

The rectangular equation is y = x — 2, for x in
(—90, ). The graph is a line with slope 1 and
y-intercept (0, —2).



17. x=3tant, y = 2 sect, fortin(—%,%)

(@ ¢ x y
-7 -3V3=-52 4
-7l -V3=-17 gﬁ ~23
0 0 2
z Vi=11 |98 <23
Tl 3V3=52 4

x =3tant
y =2sect

B T T
for ¢in (—7, ?)
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(b) x=3tant,so§:tant.

y
y=2sect,soE=sect.

1 + tan® f = sec’ ¢ Pythagorean identity
1+ X 2 (Y 2 Substitute expressions
3 2 for tan ¢ and sec .
¥z y?
1+ 9 = 7 Apply the exponents.

$2
y2= 4(1 + 5) Multiply by 4. Rewrite.

Use the positive square
y=24]1+ X" root because y >0 in the
9  given interval for ¢.

| 2
The rectangular equationis y = 24/ 1 + %, for x in

(=90, ). The graph is the upper half of a hyperbola.
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