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PREFACE

This book covers the use of the R programming language for data analysis. Data
analysis is a broad term that includes exploratory data analysis by calculating summary
statistics and plotting summary plots, and inferential data analysis by conducting
statistical tests to infer population characteristics from the data samples we have. The
two types of data analysis, whether exploratory or inferential, can be done perfectly
using R programming.

R has many useful packages that can not only perform all the previous data analysis
steps but also has additional packages that were developed by different scientists
specifically for creating specific analyses for various fields like genomics, geography,
environmental sciences, marketing, etc. Furthermore, R is free software and can run on
all major platforms: Windows, Mac OS, and UNIX/Linux.

This book covers the different types of data analysis that can be performed on the main
two types of data, categorical and continuous. As such, it is divided into 5 chapters that
demonstrate these analyses with different real-world datasets.

Chapters 1 and 2 were designed for univariate analysis of continuous and categorical
variables, respectively. Different datasets were used to illustrate how to calculate
summary statistics, create summary plots, and conduct statistical tests on these variables.

Chapter 3 is designed to demonstrate how to examine the relationship between two
continuous variables using summary statistics of different correlation coefficients,
various summary plots like scatter plots or correlation matrices, and finally some
statistical tests for the significance of these correlations.

Chapter 4 shows how to examine the relationship between one categorical and one
continuous variable using summary statistics of location or spread, different summary
plots like box plots, histograms, etc., and some statistical tests.

Finally, Chapter 5 demonstrates how to examine the relationship between two categorical
variables using summary statistics of counts and proportions, summary plots like bar
and line plots, and some statistical tests.

In all these chapters, different datasets per chapter were used so each chapter can be
viewed as a separate entity for the interested researcher in any of the five chapter topics.
All the data analysis steps were done using the R programming language with several
code chunks to demonstrate these complex analyses. I hope that this book, covering
the main five types of data analysis, will be a valuable addition to your journey in data
analysis.

—Author
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1.1. DATA USED IN THIS CHAPTER

1.1.1. The Economics Data

The US economic time series data is available from https://fred.stlouisfed.org/
and is part of the ggplot2 package under the name “economics.” To load this
data into our R session, we will load the tidyverse package (which contains the
ggplot2 package) using the library function. Then, we will load the economics
data using the data function.

Library(tidyverse)

data(“economics™)

Then, to see the data structure, we will use the glimpse function.

glimpse(economics)

## Rows: 574

## Columns: 6

## $ date <date> 1967-07-01, 1967-08-01, 1967-09-01, 1967-10-01, 1967-11-01, ..
## $ pce  <dbl> 506.7, 509.8, 515.6, 512.2, 517.4, 525.1, 530.9, 533.6, 544.3.
## $ pop  <dbl> 198712, 198911, 199113, 199311, 199498, 199657, 199808, 19992..
## $ psavert <dbl> 12.6, 12.6, 11.9, 12.9, 12.8, 11.8, 11.7, 12.3, 11.7, 12.3, 1.
## $ uempmed <dbl> 4.5, 4.7, 4.6, 4.9, 4.7, 4.8, 5.1, 4.5, 4.1, 4.6, 4.4, 4.4, 4.
## $ unemploy <dbl> 2944, 2945, 2958, 3143, 3066, 3018, 2878, 3001, 2877, 2709, 2.

The glimpse function gives the number of rows, the number of columns in
the data followed by the column names (with a dollar sign prefix), the column
classes (within parentheses), and the first values of each column. We see that the
economics data contains 574 rows and 6 columns:

1. date: the month of data collection. It is a date column.

2. pce: the personal consumption expenditures, in billions of dollars. It
is a double or numeric column with decimals.

3. pop: the total population, in thousands. It is a double or numeric
column.

4. psavert: the personal savings rate. It is a double or numeric column

with decimals.

5. uempmed: the median duration of unemployment, in weeks. It is a
double or numeric column with decimals.

6. unemploy: the number of unemployed in thousands. It is a double or
numeric column.
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1.1.2. The Midwest Data

The midwest data frame contains demographic information of midwest counties
from the 2000 US census. As before, we load the “midwest” data frame using
the data function. Finally, we explore the data using the glimpse function.
data(“midwest”)

glimpse(midwest)

## Rows: 437

## Columns: 28

## $ PID <int> 561, 562, 563, 564, 565, 566, 567, 568, 569, 570,..
## $ county <chr> “ADAMS,” “ALEXANDER,” “BOND,” “BOONE,” “BROWN,” *.
## $§ state <chr> “IL,” “IL,” “IL,” “IL,” “IL,” “IL,” “IL,” “IL,” “.
## $ area <dbl> ©.052, ©.014, 0.022, ©.017, 0.018, ©.050, 0.017, ..

## $ poptotal

## $ popdensity
## $ popwhite

## $ popblack

## $ popamerindian
## $ popasian

## $ popother

## $ percwhite

## $ percblack

## $ percamerindan
## $ percasian

## $ percother

## $ popadults

## $ perchsd

## $ percollege
## $ percprof

## $ poppovertyknown
## $ percpovertyknown
## $ percbelowpoverty

<int> 66090, 10626, 14991, 30806, 5836, 35688, 5322, 16..
<dbl> 1270.9615, 759.0000, 681.4091, 1812.1176, 324.222..
<int> 63917, 7054, 14477, 29344, 5264, 35157, 5298, 165..
<int> 1702, 3496, 429, 127, 547, 50, 1, 111, 16, 16559,..
<int> 98, 19, 35, 46, 14, 65, 8, 30, 8, 331, 51, 26, 17..
<int> 249, 48, 16, 150, 5, 195, 15, 61, 23, 80633, 89, 3..
<int> 124, 9, 34, 1139, 6, 221, 0, 84, 6, 1596, 20, 7, ..
<dbl> 96.71206, 66.38434, 96.57128, 95.25417, 90.19877,..
<dbl> 2.57527614, 32.90043290, 2.86171703, 0.41225735, ..
<dbl> 0.14828264, 0.17880670, 0.23347342, 0.14932156, ..
<dbl> 0.37675897, ©.45172219, 0.10673071, 0.48691813, ..
<dbl> 0.18762294, 0.08469791, 0.22680275, 3.69733169, ..
<int> 43298, 6724, 9669, 19272, 3979, 23444, 3583, 1132..

<dbl> 75.10740, 59.72635, 69.33499, 75.47219, 68.86152,..

<dbl> 19.63139, 11.24331, 17.03382, 17.27895, 14.47600,..
<dbl> 4.355859, 2.870315, 4.488572, 4.197800, 3.367680,..
<int> 63628, 10529, 14235, 30337, 4815, 35107, 5241, 16..
<dbl> 96.27478, 99.08714, 94.95697, 98.47757, 82.50514,..
<dbl> 13.151443, 32.244278, 12.068844, 7.209019, 13.526..

## $ percchildbelowpovert <dbl> 18.011717, 45.826514, 14.036061, 11.179536, 13.02..
## $ percadultpoverty <dbl> 11.009776, 27.385647, 10.852090, 5.536013, 11.143..
## $ percelderlypoverty <dbl> 12.443812, 25.228976, 12.697410, 6.217047, 19.200..
## $ inmetro <int> o0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 6..
## $ category <chr> “AAR,” “LHR,” “AAR,” “ALU,” “AAR,” “AAR,” “LAR,” ..
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The midwest is a data frame with 437 rows and 28 variables:

1

2.
3.
4

o

10.
11.
12.
13.
14.

15.
16.
17.
18.

19.

20.

21.

22.

23.

PID: Unique county identifier and its class is integer or numeric.
county: County name and its class is character.
state: State to which county belongs and its class is character.

area: The area of the county and its class is double with decimal
places or numeric.

poptotal: Total population and its class is integer or numeric.

popdensity: Population density (person/unit area) and its class is
double or numeric.

popwhite: Number of whites and its class is integer or numeric.
popblack: Number of blacks and its class is integer or numeric.

popamerindian: Number of American Indians and its class is integer
or numeric.

popasian: Number of Asians and its class is integer or numeric.
popother: Number of other races and its class is integer or numeric.
percwhite: Percent white and its class is double or numeric.
percblack: Percent black and its class is double or numeric.

percamerindan: Percent American Indian and its class is double or
numeric.

percasian: Percent Asian and its class is double or numeric.
percother: Percent other races and its class is double or numeric.
popadults: Number of adults and its class is integer or numeric.

perchsd: Percent with high school diploma and its class is double or
numeric.

percollege: Percent college educated and its class is double or
numeric.

percprof: Percent with professional degree and its class is double or
numeric.

poppovertyknown: Population with known poverty status and its
class is integer or numeric.

percpovertyknown: Percent of population with known poverty status
and its class is double or numeric.

percbelowpoverty: Percent of people below the poverty line and its
class is double or numeric.
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24.  percchildbelowpovert: Percent of children below poverty line and
its class is double or numeric.

25.  percadultpoverty: Percent of adults below poverty line and its class
is double or numeric.

26.  percelderlypoverty: Percent of elderly below poverty line and its
class is double or numeric.

27.  inmetro: County considered in a metro area and its class is integer
or numeric. This column has 2 values only, 1 for counties in a metro
area and 0 for counties not in a metro area.

28.  category: Miscellaneous column and its class is a character.

1.2. SUMMARY STATISTICS FOR LOCATION

There are different measures of the central tendency (central location) of
numerical data. A measure of central tendency is a single value that describes
the numerical data by identifying its central position. The measures of central
tendency are also called summary statistics because they try to summarize
numerical data with a single number. The mean, median and mode are all
measures of central tendency, but under certain conditions, some measures of
central tendency become more suitable to use than others.

1.2.1. The Mean

The (arithmetic) mean is calculated by summing all data values and dividing
them by the number of these data values. For the numbers (1,2,3), their mean
would be=(1+2+3)/3= 2.

The mean is sensitive to extreme values in small samples. For a sample
of two observations, each observation will affect the mean by 50% while for a
sample of 100 observations, each observation will affect the mean by 1%. So,
increasing the sample size will lead to a more stable sample mean.

For the numbers (1,2,10), their mean = (1+2+10)/3 = 4.333. The mean has
doubled compared to the previous example although we still have three values.
With more outliers in your data, the mean loses its ability to provide the central
location for the data because the outlier values are dragging the mean away
from the central position.

1.2.1.1. The Mean of Economics Data Columns

In the economics data, we can see the mean of every numeric column in our
data using the functions:



Statistics with R for Data Analysis

1. The get summary_stats function, from the rstatix package, using the
argument, show = c¢(“mean”), to show the mean of every numeric
column in the economics data.

2. The flextable package functions, flextable, theme box, and set
caption, to convert the result to a table with a caption.

All these functions were applied in sequence using the “%>%" operator.
Because we are using functions from the rstatix and flextable packages, so we
must first load these packages into our R session using the library function.
Library(rstatix)

Library(flextable)
economics %>% get_summary_stats( show = c(“mean®)) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Mean of every numeric column in the economics data™)

Table 1.1. Mean of Every Numeric Column in the Economics Data

Variable n Mean

pce 574 4,820.093
pop 574 257,159.653
psavert 574 8.567
uempmed 574 8.609
unemploy 574 7,771.310

The mean has the same unit of the numerical data, so:

1. The mean of pce column (personal consumption expenditures) is
4,820.093 billion dollars.

The mean of pop column or population is 257,159.653 thousand.
3. The mean of psavert column (personal savings rate) is 8.567.

The mean of the uempmed column (median duration of
unemployment) is 8.609 weeks.

5. The mean of the unemploy column (number of unemployed) is
7,771.310 thousand.

In addition, we see that the sample size for every column is 574 which is the
number of rows in our data, meaning that no numeric column has any missing data.

1.2.1.2. The Mean of Midwest Data Columns

Similarly, we can use the same functions to get the mean value of each numeric
column of the midwest data.
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midwest %>% get_summary_stats( show = c(“mean”)) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “Mean of every numeric column in the midwest data™)

Table 1.2. Mean of Every Numeric Column in the Midwest Data

Variable n Mean

PID 437 1,437.339
area 437 0.033
poptotal 437 96,130.302
popdensity 437 3,097.743
popwhite 437 81,839.915
popblack 437 11,023.881
popamerindian 437 343.110
popasian 437 1,310.465
popother 437 1,612.931
percwhite 437 95.558
percblack 437 2.676
percamerindan 437 0.799
percasian 437 0.487
percother 437 0.479
popadults 437 60,972.613
perchsd 437 73.966
percollege 437 18.273
percprof 437 4.447
poppovertyknown 437 93,642.284
percpovertyknown 437 97.110
percbelowpoverty 437 12.511
percchildbelowpovert | 437 16.447
percadultpoverty 437 10.919
percelderlypoverty 437 11.389
inmetro 437 0.343

We get the mean of every numeric column of the midwest data:

1.

The first column is PID or the Unique county identifier and it is a

meaningless mean.
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2. By looking at the means of similar columns, we can get the interesting
properties of midwest counties. Because the mean of percent white
in these counties is 95.558% compared to 2.676% of percent black,
0.799% of percent American Indian, 0.487% Asians, and 0.479%
of other races, we conclude that these counties have mostly white

races.

3. The sample size for every column is 437 which is the number of
rows in our data, meaning that no numeric column has any missing
data.

1.2.2. The Median

The median is the value that halves a set of data values equally. In other words,
it is the middle value of a data set and so it is called the 50th percentile. For an
odd number of data points, it is the central data point after arranging them. For
an even number of data points, it is the average of the two central data points.

When the data is evenly spaced (or evenly distributed), the mean and
median are nearly the same. When there are large outliers in our data, the mean
is pulled by them to the right and will be larger than the median. This data is
called right-skewed data.

When there are small outliers in our data, the mean is pulled by them to the
left and will be smaller than the median. This data is called left-skewed data.

The median gives the data center without being affected by the extreme
values or outliers in the data. Median is a type of robust statistics because of
this.

1.2.2.1. The Median for Economics Data

In the economics data, we can see the median (and the mean) of every numeric
column in our data using the functions:

1. The get summary_stats function, from the rstatix package, using
the argument, show = ¢(“mean,” “median”), to show the mean and
median of every numeric column in the economics data.

2. The flextable package functions, flextable, theme box, and set
caption, to convert the result to a table with a caption.

e

economics %>% get_summary_stats( show = c(“mean, ‘median”)) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Mean and median of every numeric column in the economics
data”)
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Table 1.3. Mean and Median of Every Numeric Column in the Economics Data

Variable n Mean Median

pce 574 4,820.093 3,936.85

pop 574 257,159.653 | 253,060.00

psavert 574 8.567 8.40

uempmed 574 8.609 7.50

unemploy 574 7,771.310 7,494.00

We see that:

1.

When the mean is larger than the median, this indicates right-skewed
data for the pce, pop, uempmed, and unemploy columns. We will
also see that in the subsequent summary plots.

When the mean is nearly equal to the median, this indicates evenly-
spaced or normally distributed data as for the psavert column. The
normal distribution with a bell shape can be checked using summary
plots and statistical tests as described below.

Because for each column we have 574 data points, we can arrange
these values for a certain column to check if the median is calculated
correctly. To arrange the values of psavert column, we will use the
sort function with the argument, economics$psavert to extract that
column.

sort(economicsgpsavert)
2.
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## [241] 7.5 7.5 7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.7 7.7 7.7 7.8 7.8

## [256] 7.8 7.8 7.8 7.8 7.9 7.9 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.1 8.1

## [271] 8.1 8.1 8.1 8.2 8.2 8.2 8.2 8.2 8.2 8.28.28.28.38.38.3

## [286] 8.3 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.5 8.5 8.5 8.5 8.5 8.5 8.6

## [301] 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.7 8.7 8.7 8.7 8.7

## [316] 8.7 8.7 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.9 8.9 8.9 8.9 9.0

## [331] 9.0 9.0 9.0 9.1 9.1 9.1 9.1 9.1 9.1 9.2 9.3 9.3 9.3 9.3 9.3

## [346] 9.3 9.4 9.4 9.4 9.5 9.6 9.6 9.6 9.6 9.7 9.7 9.7 9.7 9.7 9.7

## [361] 9.7 9.7 9.7 9.7 9.7 9.7 9.8 9.9 9.9 9.9 9.9 9.9 9.9 9.9 10.0

## [376] 10.0 10.1 10.1 10.1 10.1 10.1 10.2 10.2 10.3 10.3 10.3 10.3 10.3 10.3
10.3

## [391] 10.4 10.5 10.5 10.5 10.5 10.5 10.5 10.6 10.6 10.6 10.6 10.6 10.6 10.6
10.6

## [406] 10.6 10.7 10.7 10.8 10.8 10.8 10.8 10.8 10.9 10.9 10.9 10.9 10.9 10.9
10.9

## [421] 11.0 11.0 11.0 11.0 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1
11.1

## [436] 11.1 11.2 11.2 11.2 11.2 11.3 11.3 11.3 11.3 11.3 11.4 11.4 11.4 11.4
11.4

## [451] 11.4 11.4 11.5 11.5 11.5 11.5 11.6 11.6 11.6 11.6 11.7 11.7 11.7 11.7
11.7

## [466] 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.8 11.8 11.8 11.8 11.8
11.8

## [481] 11.8 11.8 11.9 11.9 12.0 12.0 12.0 12.0 12.0 12.1 12.1 12.2 12.2 12.2
12.3

## [496] 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.4 12.4 12.4 12.4 12.5 12.5 12.5
12.5

## [511] 12.5 12.6 12.6 12.6 12.6 12.7 12.7 12.7 12.7 12.8 12.8 12.8 12.8 12.8
12.9

## [526] 12.9 12.9 12.9 13.0 13.0 13.0 13.0 13.0 13.1 13.1 13.1 13.1 13.2 13.2
13.2

## [541] 13.2 13.2 13.2 13.2 13.3 13.3 13.3 13.3 13.3 13.4 13.4 13.4 13.4 13.5
13.5

## [556] 13.6 13.6 13.6 13.6 13.6 13.7 13.8 13.8 13.9 14.0 14.2 14.2 14.3 14.3
14.4

## [571] 14.4 14.7 14.8 17.3

The indices in the square brackets indicate the value rank. For example, the
value of 8.2 has a rank of [281] and the value of 8.5 has a rank of [295]. The 2
central points are 287th and 288th values and both have a value of 8.4 so the
median = (8.4+8.4)/2 = 8.4.

We can also see that using the following functions:

1. The arrange function with the psavert argument to arrange the rows
according to the psavert value in ascending order.

10
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2. The select function to select only the psavert column.
3. The slice column with the argument, 287 and 288, to select the 287th
and 288th rows.

economics %>% arrange(psavert) %>% select(psavert) %>% slice(287,288)
## # A tibble: 2 x 1

## psavert

##  <dbl>

## 1 8.4

## 2 8.4

Again, we see that the 287th and 288th values are both 8.4 so the median =
(8.4+8.4)/2 = 8.4. We can also use the same functions for the uempmed column.
economics %>% arrange(uempmed) %>% select(uempmed) %>% slice(287,288)

## # A tibble: 2 x 1
## uempmed

##  <dbl>

## 1 7.5

##2 7.5

We see that the 287th and 288th values, of median duration of unemployment
column, are both 7.5 so the median = (7.5+7.5)/2 = 17.5.

1.2.2.2. The Median for Midwest Data

We can use the same functions for the midwest data with 437 data points to get
the median and mean for every numeric column.
midwest %>% get_summary_stats( show = c(“mean,” “median®)) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “Mean and median of every numeric column in the midwest
data”)

Table 1.4. Mean and Median of Every Numeric Column in the Midwest Data

Variable n Mean Median
PID 437 1,437.339 1,221.000
area 437 0.033 0.030
poptotal 437 96,130.302 | 35,324.000
popdensity 437 3,097.743 1,156.208
popwhite 437 81,839.915 34,471.000
popblack 437 11,023.881 201.000
popamerindian 437 343.110 94.000

11
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popasian 437 1,310.465 102.000
popother 437 1,612.931 66.000
percwhite 437 95.558 98.033
percblack 437 2.676 0.539
percamerindan 437 0.799 0.215
percasian 437 0.487 0.297
percother 437 0.479 0.178
popadults 437 60,972.613 | 22,188.000
perchsd 437 73.966 74.247
percollege 437 18.273 16.798
percprof 437 4.447 3.814
poppovertyknown 437 93,642.284 33,788.000
percpovertyknown 437 97.110 98.170
percbelowpoverty 437 12.511 11.822
percchildbelowpovert 437 16.447 15.270
percadultpoverty 437 10.919 10.008
percelderlypoverty 437 11.389 10.869
inmetro 437 0.343 0.000

We see that:

1. When the mean is larger than the median, this indicates right-skewed

data for the poptotal, popdensity, and popwhite columns. We will
also see that in the subsequent summary plots.

When the mean is nearly equal to the median, this indicates evenly-
spaced or normally distributed data for the area column. The normal
distribution with a bell shape can be checked using summary plots
and statistical tests as described below.

When the mean is smaller than the median, this indicates left-
skewed data for the percwhite column. We will also see that in the
subsequent summary plots.

Because each column has 437 data points, we can arrange these

values for a certain column, using the sort function, to check if the
median is calculated correctly. For the area column.

sort(midwestgarea)
## [1] ©.005 ©0.009 ©.009 ©.010 0.010 0.010 0.011 0.011 0.012 ©.012 0.013 0.013
## [13] 0.013 0.014 0.014 0.014 0.014 0.014 ©.015 0.015 0.015 0.016 0.016 0.016

12



## [25]
## [37]
## [49]
## [61]
## [73]
## [85]
## [97]
## [109] @
## [121]
## [133]
## [145]
## [157]
## [169]
## [181]
## [193]
## [205]
## [217]
## [229]
## [241]
## [253]
## [265]

S oo oS

## [289]
## [301]
## [313]
## [325]
## [337]
## [349]
## [361]
## [373]
## [385]
## [397]
## [409]
## [421]
## [433]

0
0
0
0
0
0
0
0
0
0
0
0
0
## [277] o.
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0
0
0
0
0
0
0
0
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.017 0.017 0.017 0.017
019 0.020 0.020 0.020
021 0.021 0.021 0.021
022 0.022 0.022 0.022
022 0.022 0.022 0.022

.023 0.023 0.023 0.023

.024 0.0924 0.024 0.024
.024 0.024 0.024 0.024

024 0.024 0.024 0.024
025 0.025 0.025 0.025
025 0.025 0.025 0.025
026 0.026 0.026 0.026
026 0.026 0.026 0.026
027 0.027 0.027 0.027
028 0.028 0.028 0.028
029 0.029 0.029 0.029
030 0.030 0.030 0.030
030 0.030 0.030 0.030
031 0.031 0.032 0.032
033 0.033 0.033 0.033
033 0.033 0.033 0.033
034 0.034 0.034 0.034
034 0.034 0.034 0.034
035 0.035 0.035 0.035
036 0.036 9.036 0.037
038 0.038 0.038 0.039
041 0.041 0.041 0.041
042 0.043 0.043 0.043
046 0.046 0.046 0.047
049 6.049 0.050 0.050
051 0.052 0.052 0.052
054 0.054 0.055 0.055
060 0.060 0.060 0.060
069 0.070 0.071 0.072
.089 0.094 0.110

S o oo oS
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018
020
021
022
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.023
.024
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.024
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.073
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023
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024
024
025
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031
032
033
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035
037
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050
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.064
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018 0.018 0.019
020 0.020 0.020
021 0.021 0.021
022 0.022 0.022
023 0.023 0.023
.023 0.0923 0.023
.024 0.924 0.024
.024 0.024 0.024
024 0.024 0.024
025 0.025 0.025
025 0.025 0.025
026 0.026 0.026
026 0.027 0.027
028 0.028 0.028
028 0.028 0.029
029 0.029 0.029
030 0.030 0.030
031 0.031 0.031
032 0.032 0.032
033 0.033 0.033
034 0.034 0.034
034 0.034 0.034
034 0.034 0.035
036 0.036 0.036
037 0.037 0.037
040 0.040 0.041
042 0.042 0.042
044 0.044 0.045
048 0.048 0.048
050 0.050 0.051
053 0.053 0.054
057 0.058 0.058
.067 0.068 0.068
.078 0.0978 0.078

The central point is the 219th point and has a value of 0.03 so the median
= 0.03. We can also see that using the arrange, select, and slice functions as
described above.
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midwest %>% arrange(area) %>% select(area) %>% slice(219)
## # A tibble: 1 x 1

## area

## <dbl>

## 1 0.03

We see that the median = 0.03. For the poptotal column.
midwest %>% arrange(poptotal) %>% select(poptotal) %>% slice(219)
## # A tibble: 1 x 1
## poptotal
##  <int>
## 1 35324

The median = 35324.

1.2.3. The percentiles

The pth sample percentile is the data point such that p% of data points are below
that value and (100-p) % of data points are larger than that value. For example,
the median or 50th percentile is that data point that nearly 50% of data is below
that value and 50% are larger than that value, while the 75th percentile is that
data point that nearly 75% of data points are below that value and 25% are
larger than that value.

The 25th percentile is also known as the first quartile or Q1, the 50th
percentile is known as the second quartile, Q2, or the median, and the 75th
percentile is known as the third quartile or Q3. The percentiles including the
median are not affected by the extreme values or outliers in the data so they are
robust statistics.

Percentiles are used to understand values such as test scores or health
indicators. For example, if a student has a score of 90 out of 100 on a certain
test. That score has no meaning unless he knows what percentile he falls into.
If his score (90 out of 100) is the 95th percentile. This means that his score is
better than 95% of the test takers in his class. If his score is the 20th percentile.
This means that only his score is better than 20% of the test takers.

1.2.3.1. The Percentiles for Economics Data
In the economics data, we can see the percentiles (and the median) of every
numeric column in our data using the functions:

1. The get summary_stats function, from the rstatix package, using
the argument, type = “quantile,” to show the 0% (minimum),25%
(Q1), 50% (median), 75% (Q3), and 100% (maximum) percentiles
of every numeric column in the economics data.
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2. The flextable package functions, flextable, theme box, and set
caption, to convert the result to a table with a caption.
economics %>% get_summary_stats(type = “quantile”) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “The o, 25, 50, 75, 100%of every numeric column in the
economics data”)

Table 1.5. The 0, 25, 50, 75, 100%of Every Numeric Column in the Economics Data

Variable n 0% 25% 50% 75% 100%
pce 574 | 506.7 1,578.3 3,936.85 7,626.325 12,193.8
pop 574 198,712.0 | 224,896.0 | 253,060.00 | 290,290.750 | 320,402.3
psavert 574 | 2.2 6.4 8.40 11.100 17.3
uempmed | 574 | 4.0 6.0 7.50 9.100 252
unemploy | 574 | 2,685.0 6,284.0 7,494.00 8,685.500 15,352.0

The default result will give the 0% (minimum),25% (Q1), 50% (median),
75% (Q3), and 100% (maximum) percentiles. We see that the 50% is the same
as the median calculated above.

We can get any required percentiles using the probs argument with
proportion numbers. For example, we can get the 30% and 60%of every column
using the probs = ¢(0.3,0.6) argument for 30% and 60%respectively.

economics %>% get_summary_stats(type = “quantile,” probs = c(0.3,0.6)) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “The 30% and 60%of every numeric column in the econom-

ics data”)

Table 1.6. The 30% and 60%of Every Numeric Column in the Economics Data

Variable n 30% 60%

pce 574 1,970.2 5,165.2
pop 574 230,803.9 268,548.8
psavert 574 6.7 9.3
uempmed 574 6.3 8.3
unemploy 574 6,590.0 8,048.0
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1.2.3.2. The Percentiles for Midwest Data

We can use the same functions to get the same percentiles for every numeric
column in the midwest data.
midwest %>% get_summary_stats(type = “quantile”) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “The o, 25, 50, 75, 100%of every numeric column in the

midwest data”)

Table 1.7. The 0, 25, 50,

75, 100%of Every Numeric Column in the Midwest Data

Variable n 0% 25% 50% 75% 100%

PID 437 [561.000 |670.000  [1,221.000 |2,059.000 |3,052.000
area 437 10.005 0.024 0.030 0.038 0.110
poptotal 437 |1,701.000 |18,840.000 (35,324.000 |75,651.000 {5,105,067.000
popdensity 437 [85.050 622.407  |1,156.208 [2,330.000 [88,018.397
popwhite 437 K416.000 |18,630.000 [34,471.000 |72,968.000 [3,204,947.000
popblack 437 10.000 29.000 201.000 1,291.000 |1,317,147.000
popamerindian 437 14.000 44.000 94.000 288.000 10,289.000
popasian 437 10.000 35.000 102.000 401.000 188,565.000
popother 437 10.000 20.000 66.000 345.000 384,119.000
percwhite 437 (10.694 04.886 08.033 99.075 99.823
percblack 437 10.000 0.116 0.539 2.601 40.210
percamerindan 437 10.056 0.158 0.215 0.384 89.177
percasian 437 10.000 0.174 0.297 0.521 5.070
percother 437 10.000 0.091 0.178 0.481 7.524
popadults 437 (1,287.000 |12,271.000 [22,188.000 47,541.000 [3,291,995.000
perchsd 437 K6.912 71.325 74.247 77.195 88.899
percollege 437 [7.336 14.114 16.798 20.550 48.079
percprof 437 10.520 2.998 3.814 4.949 20.791
poppovertyknown 437 11,696.000 |18,364.000 [33,788.000 {72,840.000 |5,023,523.000
percpovertyknown 437 180.902 96.895 98.170 98.599 99.860
percbelowpoverty 437 12.180 9.199 11.822 15.133 48.691
percchildbelowpovert 437 [1.919 11.624 15.270 20.352 64.308
percadultpoverty 437 11.939 7.668 10.008 13.182 43.312
percelderlypoverty 437 3.547 8.912 10.869 13.412 31.162
inmetro 437 10.000 0.000 0.000 1.000 1.000
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We see that:

1. The percent white has 10.694 as 0% or minimum, 94.886 as 25% or
Ql, 98.033 as 50% or median, 99.075 as 75% or Q3, and 99.823 as
100% or maximum. According to these numbers, about 75% of the
437 midwest counties have a percent white equal to 94.886 (Q1) or
more.

2. The percent black has 0.000 as 0% or minimum, 0.116 as 25% or
Ql, 0.539 as 50% or median, 2.601 as 75% or Q3, and 40.210 as
100% or maximum. According to these numbers, only 25% of the
437 midwest counties have percent black equals 2.601 (Q3) or more.

1.2.4. The Mode

The mode is the data point that appears most frequently in a set of data points.
The mode is not necessarily unique to a given data, since certain numbers or
categories may occur the same maximum value. In that case, the data is called
multimodal data as opposed to unimodal data with only one unique mode.

1.2.4.1. The Mode of Economics Data

To see the mode of any numeric column, we can use the count function with the
argument, sort = TRUE to sort the frequency of different values in descending
order. Then, we will use the head function to get the top 6 most frequent values
of every column. Finally, we convert the result to a table as above. For the pce
column.

economics %>% count(pce, sort = TRUE) %>% head() %>%

flextable() %>% theme_box() %>%
set_caption(caption = “The top 6 most frequent values of the pce column from

economics data”)

Table 1.8. The Top 6 Most Frequent Values of the pce Column from Economics Data

pce n

506.7
509.8
512.2
515.6
517.4
525.1

—_— = === -
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We see that all values have a count of 1 so there is no mode in this column.
For the pop column.
economics %>% count(pop, sort = TRUE) %>% head() %>%
flextable() %>% theme_box() %>%

set_caption(caption = “The top 6 most frequent values of the pop column from
economics data”)

Table 1.9. The Top 6 Most Frequent Values of the Pop Column from Economics Data

Pop n

198,712
198,911
199,113
199,311
199,498
199,657

—_— = == =] ==

Similarly, we see that all values have a count of 1 so there is no mode in this
column. For the psavert column.
economics %>% count(psavert, sort = TRUE) %>% head() %>%
flextable() %>% theme_box() %>%
set_caption(caption = “The top 6 most frequent values of the psavert column

from economics data”)

Table 1.10. The top 6 Most Frequent Values of the Psavert column from Economics Data

Psavert n
6.4 15
11.7 14
6.8 13
9.7 12
11.1 12
6.7 11

We see that 6.4 has the top frequency of 15 so psavert is an example of
unimodal data with a mode = 6.4. For the uempmed column.
economics %>% count(uempmed, sort = TRUE) %>% head() %>%

flextable() %>% theme_box() %>%

set_caption(caption = “The top 6 most frequent values of the uempmed column

from economics data”)
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Table 1.11. The Top 6 Most Frequent Values of the Uempmed Column from Eco-
nomics Data

Uempmed n
8.3 22
6.9 15
6.8 14
7.1 14
5.7 13
5.8 13

We see that 8.3 has the top frequency of 22 so uempmed is an example of
unimodal data with a mode = 8.3. For the unemploy column.
economics %>% count(unemploy, sort = TRUE) %>% head() %>%
flextable() %>% theme_box() %>%

set_caption(caption = “The top 6 most frequent values of the unemploy column
from economics data”)

Table 1.12. The Top 6 Most Frequent Values of the Unemploy Column from Eco-
nomics Data

Unemploy
2,856
4,305
4,959
6,109
6,590
6,655 2

CN SN N SN O =

We see that many values have the top frequency of 2 so unemploy is an
example of multi-modal data.

1.2.4.2. The Mode of Midwest Data

To get the mode of all numeric columns in the midwest data, we will use the
following functions:

1. The select function with the argument, area:percelderlypoverty, to
select the 23 columns from the area column to percelderlypoverty
column. The resulting data will be 437 rows and 23 columns.
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midwest %>% select(area:percelderlypoverty)
## # A tibble: 437 x 23
##  area poptotal popdensity popwhite popblack popamerindian popasian popother

## <dbl> <int> <dbl> <int> <int> <int> <int> <int>
## 1 0.052 66090 1271. 63917 1762 98 249 124
## 2 0.014 10626 759 7054 3496 19 48 9

## 3 0.022 14991 681. 14477 429 35 16 34

## 4 0.017 30806 1812. 29344 127 46 150 1139
## 5 0.018 5836 324. 5264 547 14 5 6

## 6 0.05 35688 714. 35157 50 65 195 221

## 7 0.017 5322 313. 5298 1 8 15 7}

## 8 0.027 16805 622. 16519 111 30 61 84

## 9 0.024 13437 560. 13384 16 8 23 6

## 10 0.058 173025 2983. 146506 16559 331 8633 1596

## # 1 427 more rows

## # 1 15 more variables: percwhite <dbl>, percblack <dbl>, percamerindan <dbl>,
## # percasian <dbl>, percother <dbl>, popadults <int>, perchsd <dbl>,

## # percollege <dbl>, percprof <dbl>, poppovertyknown <int>,

## # percpovertyknown <dbl>, percbelowpoverty <dbl>, percchildbelowpovert <dbl>,
## # percadultpoverty <dbl>, percelderlypoverty <dbl>

2. The pivot longer function with the argument, cols =
area:percelderlypoverty, collapses all 23 columns into 2 columns,
the name and value columns. The resulting data will be 10051 rows
and 2 columns.

midwest %>% select(area:percelderlypoverty) %>%
pivot_Llonger(cols = area:percelderlypoverty)
## # A tibble: 10,051 x 2

## name value
## <chr> <dbl>
## 1 area 0.052

## 2 poptotal 66090
## 3 popdensity  1271.
## 4 popwhite 63917
## 5 popblack 1702
## 6 popamerindian 98
## 7 popasian 249

## 8 popother 124

## 9 percwhite 96.7
## 10 percblack 2.58
## # 1 10,041 more rows
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3. The group by function with the argument name to split the data
frame or tibble into multiple data frames each containing a single
name or column.

4. The count function with the arguments, value, sort = TRUE, to count
the values of each name (column) and sort them in descending order.

5. The slice_head function with the argument, n=6, to get the top 6
most frequent values of each column. Then we convert the result to
a table as before.
midwest %>% select(area:percelderlypoverty) %>%
pivot_Llonger(cols = area:percelderlypoverty) %>%
group_by(name) %>% count(value, sort = TRUE) %>%
slice_head(n = 6) %>% flextable() %>% theme_box() %>%
set_caption(caption = “The top 6 most frequent values of every numeric column

from the midwest data”)

Table 1.13. The Top 6 Most Frequent Values of Every Numeric Column from the
Midwest Data

Name Value n
area 0.02400000 36
area 0.03400000 26
area 0.02500000 24
area 0.03300000 21
area 0.02300000 20
area 0.02600000 20
percadultpoverty 1.93850430 1
percadultpoverty 2.35504872 1
percadultpoverty 2.39906403 1
percadultpoverty 2.58450033 1
percadultpoverty 2.59006144 1
percadultpoverty 2.84384454 1
percamerindan 0.05623243 1
percamerindan 0.05953710 1
percamerindan 0.07306158 1
percamerindan 0.08007779 1
percamerindan 0.08035525 1
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percamerindan 0.08193140 1
percasian 0.00000000 1
percasian 0.01059210 1
percasian 0.01594981 1
percasian 0.02703190 1
percasian 0.03250447 1
percasian 0.05315379 1
percbelowpoverty 2.18016760 1
percbelowpoverty 2.71473392 1
percbelowpoverty 3.12105990 1
percbelowpoverty 3.23762786 1
percbelowpoverty 3.38529044 1
percbelowpoverty 3.49159858 1
percblack 0.00000000 1
percblack 0.00859660 1
percblack 0.00942596 1
percblack 0.01058145 1
percblack 0.01119069 1
percblack 0.01223092 1
percchildbelowpovert | 1.91895478 1
percchildbelowpovert | 2.94525227 1
percchildbelowpovert | 3.78581963 1
percchildbelowpovert | 4.06964667 1
percchildbelowpovert | 4.06985404 1
percchildbelowpovert | 4.22803082 1
percelderlypoverty 16.78004540 2
percelderlypoverty 3.54706685 1
percelderlypoverty 3.83824912 1
percelderlypoverty 4.08547929 1
percelderlypoverty 4.28088917 1
percelderlypoverty 4.90623387 1
perchsd 46.91226100 1
perchsd 56.65217390 1
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perchsd 58.38525270
perchsd 58.41880340
perchsd 58.69596440
perchsd 59.56804830
percollege 7.33610822
percollege 7.91325578
percollege 8.54375099
percollege 8.74173036
percollege 8.84588804
percollege 9.33070866
percother 0.00000000
percother 0.00824776
percother 0.01347648
percother 0.01530456
percother 0.01598849
percother 0.01935859
percpovertyknown 80.90244120
percpovertyknown 81.77562140

percpovertyknown 82.50514050

percpovertyknown 85.20980230

percpovertyknown 85.64711410

percpovertyknown 85.97423330

—l—_— = === === |=]=|=]|=|=]|—=|=|=|=|=|~<=|=|~—|lW|=]=]=]=]=|=]=|=]=|~

percprof 0.52029136
percprof 1.56541721
percprof 1.57567381
percprof 1.72665917
percprof 1.79346254
percprof 1.94520548
percwhite 10.69408740
percwhite 57.39520110
percwhite 62.77972450
percwhite 66.38434030
percwhite 66.88820950
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percwhite 70.27065100 1
popadults 17,369.00000000 | 2
popadults 1,287.00000000 1
popadults 1,922.00000000 1
popadults 2,821.00000000 1
popadults 3,057.00000000 1
popadults 3,457.00000000 1
popamerindian 26.00000000 7
popamerindian 8.00000000 6
popamerindian 16.00000000 6
popamerindian 37.00000000 6
popamerindian 49.00000000 6
popamerindian 31.00000000 5
popasian 15.00000000 7
popasian 38.00000000 7
popasian 21.00000000 6
popasian 24.00000000 6
popasian 19.00000000 5
popasian 41.00000000 5
popblack 1.00000000 7
popblack 8.00000000 7
popblack 9.00000000 7
popblack 10.00000000 7
popblack 2.00000000 6
popblack 4.00000000 6
popdensity 1,156.20833000 2
popdensity 85.05000000 1
popdensity 104.78181800 1
popdensity 110.69333300 1
popdensity 113.51282100 1
popdensity 130.91489400 1
popother 6.00000000 10
popother 10.00000000 10
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popother 13.00000000 9
popother 2.00000000 7
popother 14.00000000 7
popother 7.00000000 6
poppovertyknown 34,833.00000000 | 2
poppovertyknown 1,696.00000000 1
poppovertyknown 3,820.00000000 1
poppovertyknown 4,160.00000000 1
poppovertyknown 4,513.00000000 1
poppovertyknown 4,815.00000000 1
poptotal 19,464.00000000 | 2
poptotal 35,427.00000000 | 2
poptotal 1,701.00000000 1
poptotal 3,890.00000000 1
poptotal 4,373.00000000 1
poptotal 4,590.00000000 1
popwhite 416.00000000 1
popwhite 1,688.00000000 1
popwhite 4,072.00000000 1
popwhite 4,562.00000000 1
popwhite 5,032.00000000 1
popwhite 5,062.00000000 1
We see that:
1. Some columns are unimodal with 1 mode as for the area column
(mode = 0.024), and the percother column (mode = 0.00).
2. Some columns are multimodal with 2 modes or more as for the

popasian column (mode = 15.0,38.0) and the popblack column
(mode = 1.00, 8.00, 9.00, 10.00).

3. Other columns have no mode because all values have a frequency of
1 as for the percadultpoverty and percamerindan columns.

1.3. SUMMARY STATISTICS FOR SPREAD

In some cases, we see that two samples have the same mean. However, this
does not indicate that the two samples are identical. In fact, the data sample
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spread may differ between the two samples, so to better describe any sample,
we should report a combination of location and spread measures.

1.3.1. The Range

The simplest measure of spread is the range. The range is the difference between
the largest and smallest observations in a sample.

The disadvantages of the range as a spread measure are:
1. The range is very sensitive to extreme values or outliers.

2. The range depends on the sample size. The larger the sample size,
the larger the range tends to be. This makes it difficult to compare
ranges from samples of differing sizes.

1.3.1.1. The Range of the Economics Data

To get the range of every numeric column in the economics data, we will use
the functions:

1. The get_ summary_stats function with the argument, show = c(“min,”
“max”), to get the minimum and maximum value of every column.

2. The mutate function creates a new column (range) by subtracting the
minimum value from the maximum value.

3. The flextable, theme box, and set caption to convert the result to a
table.

economics %>% get_summary_stats(show = c(“min,””max”)) %>%
mutate(range = max-min) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “The minimum, maximum, and range of every numeric column
in the economics data”)

Table 1.14. The Minimum, Maximum, and Range of Every Numeric Column in the
Economics Data

Variable n Min Max Range
pce 574 506.7 12,193.8 11,687.1
pop 574 198,712.0 320,402.3 121,690.3
psavert 574 2.2 17.3 15.1
uempmed | 574 4.0 25.2 21.2
unemploy | 574 2,685.0 15,352.0 12,667.0
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We see that:

1. The highest range was for the pop column with a range = 121,690.3.

2. The lowest range was for the psavert column with a range = 15.1.

3. We conclude that the pop values are more spread than the psavert
values.

1.3.1.2. The Range of the Midwest Data

Using the same functions, we can get the range of every numeric column in the
midwest data.

midwest %>% get_summary_stats(show = c(“min,””max”)) %>%

mutate(range = max-min) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “The minimum, maximum, and range of every numeric column
in the midwest data”)

Table 1.15. The Minimum, Maximum, and Range of Every Numeric Column in the
Midwest Data

Variable n Min Max Range

PID 437 561.000 | 3,052.000 2,491.000
area 437 0.005 0.110 0.105
poptotal 437 1,701.000 | 5,105,067.000 5,103,366.000
popdensity 437 85.050 88,018.397 87,933.347
popwhite 437 416.000 | 3,204,947.000 3,204,531.000
popblack 437 0.000 1,317,147.000 1,317,147.000
popamerindian 437 4.000 10,289.000 10,285.000
popasian 437 0.000 188,565.000 188,565.000
popother 437 0.000 384,119.000 384,119.000
percwhite 437 10.694 99.823 89.129
percblack 437 0.000 40.210 40.210
percamerindan 437 0.056 89.177 89.121
percasian 437 0.000 5.070 5.070
percother 437 0.000 7.524 7.524
popadults 437 1,287.000 | 3,291,995.000 3,290,708.000
perchsd 437 46.912 88.899 41.987
percollege 437 7.336 48.079 40.743
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percprof 437 0.520 20.791 20.271
poppovertyknown 437 1,696.000 | 5,023,523.000 5,021,827.000
percpovertyknown 437 80.902 99.860 18.958
percbelowpoverty 437 2.180 48.691 46.511
percchildbelowpovert| 437 1.919 64.308 62.389
percadultpoverty 437 1.939 43.312 41.373
percelderlypoverty 437 3.547 31.162 27.615
inmetro 437 0.000 1.000 1.000

We see that:

1. The highest range was for the poptotal column with a range =

5,103,366.000.
The lowest range was for the area column with a range = 0.105 only.

3. The highest range in percent columns was for the percent white
column (range = 89.129) and the lowest range was for the percent
asian column (5.07). This means that the percent white values are
more spread across these 437 counties than the percent asian values.

1.3.2. The Variance

The variance is the average of the squared differences from the sample mean.
As such, it has the squared unit of the data points and can be calculated from
the formula:

z;(xi _ij

n—1

Where;

2
S =

2 . .
Where s° is the sample variance.
X is the sample mean.

n is the sample size.

2
n 3
Z(xi - xj means sum the squared difference between every element of our
i=1

sample (from X, to x,) and the sample mean x . Every element of our sample
is denoted as x with a subscript to indicate its position in our sample.
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We divide by n-1 when calculating the sample variance (and not by n as any
average) to make the sample variance a good estimator of the true population
variance. If we have population data, we will divide by N (where N is the
population size) to get the variance.

1.3.2.1. Variance Interpretation

A large variance indicates that data points in your sample are far from the mean
and far from each other, while a small variance indicates the opposite. A zero
variance indicates that all values within our data are identical.

Variance is important in investment where stock price variance (as a
measure of spread or variability) can be used as a measure of risk. Also, in the
industrial machines, the products produced from these machines are with high
variance. This indicates that these machines need adjustment.

1.3.2.2. Disadvantages of Variance

1. Variance is affected by outliers. Squaring the differences between
these numbers and the mean can skew the variance.

2. Not easily interpreted because the variance has the squared unit of
the data.

1.3.3. The Standard Deviation

The standard deviation is the square root of the variance. As such, it has the
same unit of data and is more easily interpreted. It can be calculated from the
square root of the variance formula:

Z:’_l(xi _3;]2

n—1

=

As before, we divide by n-1 when calculating the standard deviation (and
not by n as any average) to make the sample standard deviation a good estimator
of the true population standard deviation. If we have the population data, we
will divide by N (where N is the population size) to get the standard deviation.

1.3.3.1. Interpretation of the Standard Deviation

They are the same as variance.
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1.3.3.2. Disadvantages of Standard Deviation

1. The standard deviation is affected by outliers, and so it is not one of
the robust statistics.

1.3.3.3. The Variance and Standard Deviation of Economics Data

Similarly, we can calculate the standard deviation of every numeric column in
the economics data using the get summary stats function with the argument,
show = ¢(“sd). Then, we use the mutate function to create a new column
(variance) by raising the standard deviation to the power of 2.

economics %>% get_summary_stats(show = c(“sd”)) %>%

mutate(variance = sd"2) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “The standard deviation and variance of every numeric
column in the economics data™)

Table 1.16. The Standard Deviation and Variance of Every Numeric Column in the
Economics Data

Variable n sd Variance
pce 574 3,556.804 12,650,854.694416
pop 574 36,682.399 1,345,598,396.395201
psavert 574 2.964 8.785296
uempmed 574 4.107 16.867449
unemploy 574 2,641.959 6,979,947.357681

We see that:

1. The standard deviation of the pce column is 3,556.804 billion
dollars, while the variance is 12,650,854.694416 billion dollars"2.

2. The highest standard deviation (and variance) was for the pop
column with a value of 36,682.399. So the population values are
more spread than other column values in the economics data.
However, the columns in the economics data are not on the same
scale. For example, the population column is in thousands while
the pce is in billions which makes comparing the standard deviation
between them difficult.

1.3.3.4. The Variance and Standard Deviation of Midwest Data

Using the same functions, we can obtain the standard deviation and variance
of every numeric column in the midwest data. In addition, we can arrange
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the standard deviation values in descending order using the arrange and desc
functions on the sd column.
midwest %>% get_summary_stats(show = c(“sd”)) %>%

mutate(variance = sd”2) %>% arrange(desc(sd)) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “The standard deviation and variance of every numeric

column in the midwest data in descending order”)

Table 1.17. The Standard Deviation and Variance of Every Numeric Column in the
Midwest Data in Descending Order

Variable n sd Variance

poptotal 437 298,170.540 | 88,905,670,923.891586
poppovertyknown 437 293,235.058 | 85,986,799,240.263382
popwhite 437 200,196.648 | 40,078,697,870.435898
popadults 437 191,644.862 | 36,727,753,130.999039
popblack 437 78,958.267 | 6,234,407,927.643291
popother 437 18,526.541 343,232,721.424681
popasian 437 9,518.394 90,599,824.339236
popdensity 437 7,664.752 58,748,423.221504
PID 437 876.390 768,059.432100
popamerindian 437 868.927 755,034.131329
percchildbelow- 437 7.229 52.258441

povert

percwhite 437 7.087 50.225569

percollege 437 6.262 39.212644

perchsd 437 5.843 34.140649
percbelowpoverty 437 5.150 26.522500

percblack 437 5.136 26.378496
percadultpoverty 437 5.109 26.101881
percamerindan 437 4.536 20.575296
percelderlypoverty | 437 3.661 13.402921
percpovertyknown | 437 2.750 7.562500

percprof 437 2.408 5.798464

percother 437 0.838 0.702244

percasian 437 0.628 0.394384
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inmetro 437 0.475 0.225625
area 437 0.015 0.000225
We see that:
1. In the population columns, the highest standard deviation or spread

was for the poptotal column (298,170.540). So the poptotal column
values are more spread than other population count columns
(popwhite, popblack, etc).

In the percent columns, the highest standard deviation or spread
was for the percchildbelowpovert column (7.229). So the percent
child below poverty line column values are more spread than other
percentage columns (percwhite, percblack, etc).

1.3.4. The Coefficient of Variation (CV)

The coefficient of variation is used to relate the mean and the standard deviation
to each other. It is calculated using the formula:

$ CV=(s/{x}) X 100$
Where:

CV = coefficient of variation.

s = standard deviation.

x = the mean.

The CV remains the same regardless of the scale of the different samples
(columns) used, so the CV is more useful in comparing the variability of different
samples (columns) with different means than using the standard deviation.

1.3.4.1. The CV of Economics Data

We can get the CV for all numeric columns of the economics data using the

functions:
1.

The get summary_stats function with the arguments, show = ¢(*sd,”
“mean”), to calculate the standard deviation and mean for each
column respectively.

The mutate function to create a new column, CV, is calculated by the
above formula.

The flextable, theme box, and set caption functions create a table
from the resulting data frame as described above.

economics %>% get_summary_stats(show = c(“sd,””mean”)) %>%
mutate(CV = (sd/mean)*100) %>%
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flextable() %>% theme_box() %>%

set_caption(caption = “The standard deviation, mean, and coefficient of variation

for all columns of the economics data™)

Table 1.18. The Standard Deviation, Mean, and Coefficient of Variation for All
Columns of the Economics Data

Variable n sd Mean Cv

pce 574 3,556.804 4,820.093 73.79119
pop 574 36,682.399 257,159.653 14.26445
psavert 574 2.964 8.567 34.59788
uempmed 574 4.107 8.609 47.70589
unemploy 574 2,641.959 7,771.310 33.99631

We see that the highest variability was for the pce column with 73.79119
CV and 3,556.804 standard deviation and not the pop column with 14.26445
CV and 36,682.399 standard deviation.

1.3.4.2. The CV of Midwest Data

Similarly, we can get the CV for all numeric columns of the midwest data. In
addition, we use the arrange and desc functions to order the columns according
to their CV values in descending order.

midwest %>% get_summary_stats(show = c(“sd,””mean™)) %>%

mutate(CV = (sd/mean)*100) %>% arrange(desc(CV)) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “The standard deviation, mean, and coefficient of variation
for all columns of the midwest data in descending order of CV value®)

Table 1.19. The Standard Deviation, Mean, and Coefficient of Variation for All
Columns of the Midwest Data in Descending Order of CV Value

Variable n sd Mean Cv
popother 437 18,526.541 1,612.931 1,148.625763
popasian 437 9,518.394 1,310.465 726.337140
popblack 437 78,958.267 11,023.881 | 716.247454
percamerindan 437 4.536 0.799 567.709637
popadults 437 191,644.862 | 60,972.613 | 314.313021
poppovertyknown 437 293,235.058 | 93,642.284 | 313.143855
poptotal 437 298,170.540 | 96,130.302 | 310.173310
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popamerindian 437 868.927 343.110 253.250270
popdensity 437 7,664.752 3,097.743 247.430210
popwhite 437 200,196.648 | 81,839.915 | 244.619814
percblack 437 5.136 2.676 191.928251
percother 437 0.838 0.479 174.947808
inmetro 437 0.475 0.343 138.483965
percasian 437 0.628 0.487 128.952772
PID 437 876.390 1,437.339 60.973090
percprof 437 2.408 4.447 54.148864
percadultpoverty 437 5.109 10.919 46.789999
area 437 0.015 0.033 45.454545
percchildbelowpovert | 437 7.229 16.447 43.953305
percbelowpoverty 437 5.150 12.511 41.163776
percollege 437 6.262 18.273 34.269140
percelderlypoverty 437 3.661 11.389 32.145052
perchsd 437 5.843 73.966 7.899575
percwhite 437 7.087 95.558 7.416438
percpovertyknown 437 2.750 97.110 2.831840

We see that the highest variability was for the popother column with
1,148.625763 CV and 18,526.541 standard deviation and not the poptotal
column with 310.173310 CV and 298,170.540 standard deviation.

1.3.5. The Interquartile Range (IQR)

The interquartile range (IQR) is the difference between the first and third
quartiles (Q3-Q1) and provides an estimate of the data spread. The IQR contains
the middle 50% of our data. If the median or Q2 is closer to Q1 than Q3, this
means that our data is right-skewed with a low frequency of large values. On
the other hand, if the median or Q2 is closer to Q3 than Q1, this means that our
data is left-skewed with a low frequency of small values. This will be seen from
the summary plots described below. Finally, if the median is nearly in the center
between Q1 and Q3, this means that our data is nearly normally distributed.

1.3.5.1. Advantages of Interquartile Range

1. The interquartile range is less sensitive to outliers than standard
deviation, variance, or range so it is a robust statistic.

34



Univariate Analysis of Continuous Data

2. The interquartile range is less affected by the sample size than the
range.

1.3.5.2. IQR of economics Data

Using the get summary_stats function with the argument, show = c(“median,”
“ql,”“q3,” “iqr”), we will get the median, Q1, Q3, and IQR values, respectively,
of all numeric columns in the economics data. In addition, we will arrange the
columns by their IQR value in descending order.

economics %>% get_summary_stats(show = c(“median,””q1,””q3,””iqr”)) %>%
arrange(desc(iqr)) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “The median, Q1, Q3, and IQR for all columns of the
economics data in descending order by IQR value”)

Table 1.20. The Median, Q1, Q3, and IQR for All Columns of the Economics Data
in Descending Order by IQR Value

Variable n Median Q1 Q3 IQR
pop 574 | 253,060.00 | 224,896.0 290,290.750 65,394.750
pce 574 | 3,936.85 1,578.3 7,626.325 6,048.025
unemploy | 574 | 7,494.00 6,284.0 8,685.500 2,401.500
psavert 574 | 8.40 6.4 11.100 4.700
uempmed 574 | 7.50 6.0 9.100 3.100
We see that:
1. The highest variability was for the pop column with IQR =
65,394.750.
The IQR is calculated as Q3-Q1 for each column.
3. The median is nearly in the center between Q1 and Q3 for the

unemploy column indicating a nearly normal distribution. On the
other hand, the median is closer to QI than Q3 for the pce and
uempmed columns indicating right-skewed data. This will be more
clearly seen in the summary plots described below.

1.3.5.3. IQR of Midwest Data

Using the get summary_stats function, we will get the median, Q1, Q3, and
IQR values of all numeric columns in the midwest data. In addition, we will
arrange the columns by their IQR value in descending order.
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midwest %>% get_summary_stats(show = c(“median,””ql,””q3,””iqr”)) %>%

arrange(desc(iqr)) %>%

flextable() %>% theme_box() %>%
set_caption(caption = “The median, Q1, @3, and IQR for all columns of the

midwest data in descending order by IQR value”)

Table 1.21. The Median, Q1, Q3, and IQR for All Columns of the Midwest Data in
Descending Order by IQR Value

Variable n Median Q1 Q3 IQR
poptotal 437 35,324.000 | 18,840.000 | 75,651.000 | 56,811.000
POPPOVEL= | 437 33,788.000 | 18,364.000 | 72,840.000 | 54,476.000
tyknown

popwhite 437 34,471.000 | 18,630.000 | 72,968.000 | 54,338.000
popadults | 437 22,188.000 | 12,271.000 | 47,541.000 | 35,270.000
popdensity | 437 1,156.208 | 622.407 2,330.000 | 1,707.593
PID 437 1,221.000 | 670.000 2,059.000 | 1,389.000
popblack 437 201.000 | 29.000 1,291.000 | 1,262.000
popasian 437 102.000 | 35.000 401.000 366.000
popother 437 66.000 20.000 345.000 325.000
g;);;amerm- 437 94.000 44.000 288.000 244.000
percchildbe- |- . 15.270 11.624 20.352 8.728
lowpovert

percollege 437 16.798 14.114 20.550 6.436
percbelow- | 1 11.822 9.199 15.133 5.935
poverty

perchsd 437 74.247 71.325 77.195 5.870
percadult-— 1 43516 908 7.668 13.182 5.514
poverty

percelderly- | 3 10.869 8.912 13.412 4.500
poverty

percwhite | 437 98.033 94.886 99.075 4.189
percblack | 437 0.539 0.116 2.601 2.486
percprof 437 3.814 2.998 4.949 1.951
PECpOver= | 437 98.170 96.895 98.599 1.704
tyknown
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inmetro 437 0.000 0.000 1.000 1.000
percother 437 0.178 0.091 0.481 0.389
percasian 437 0.297 0.174 0.521 0.347
percamerin- | 43, 0.215 0.158 0.384 0.226
dan
area 437 0.030 0.024 0.038 0.014

We see that:

1. The highest variability was for the poptotal column with IQR =

56,811.0.

2. The median is nearly in the center between Q1 and Q3 for the perchsd
column indicating a nearly normal distribution. On the other hand,
the median is closer to Q1 than Q3 for the popblack and percblack
columns indicating right-skewed data. Finally, the median is closer
to Q3 than Q1 for the percwhite column indicating left-skewed data.
This will be more clearly seen in the summary plots described below.

1.3.6. Median Absolute Deviation (MAD)

The MAD is another robust statistic for measuring the variability of numeric
data. MAD is the median absolute distance that the data points are from the
median. So it is calculated using the formula:

L4
MAD = median( X, —X J
Where:
L 4
X, — x| is the absolute difference between every element in our sample (from

X, to x, where n is the sample size or the number of rows in our data) and the
sample mean x .

1.3.6.1. MAD of Economics Data

Using the get summary stats function with the argument, show = c¢(“mad),
we will get the MAD value of all numeric columns in the economics data. In
addition, we will arrange the columns by their MAD value in descending order.
economics %>% get_summary_stats(show = c(“mad”)) %>%

arrange(desc(mad)) %>%

flextable() %>% theme_box() %>%
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set_caption(caption = “The median absolute deviation (MAD) for all columns of

the economics data in descending order by MAD value”)

Table 1.22. The Median Absolute Deviation (MAD) for All Columns of the Eco-
nomics Data in Descending Order by MAD Value

Variable n MAD

pop 574 48,097.027
pce 574 4,139.123
unemploy 574 1,788.016
psavert 574 3.558
uempmed 574 2.224

We see that the highest variability was for the pop column with MAD =
48,097.027.

1.3.6.2. MAD of Midwest Data

Using similar functions, we can get the MAD value for all numeric columns of
the midwest data.

midwest %>% get_summary_stats(show = c(“mad”)) %>%

arrange(desc(mad)) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “The median absolute deviation (MAD) for all columns of
the midwest data in descending order by MAD value”)

Table 1.23. The Median Absolute Deviation (MAD) for All Columns of the Midwest
Data in Descending Order by MAD Value

Variable n MAD
poptotal 437 29,662.378
popwhite 437 28,525.224
poppovertyknown 437 27,826.919
popadults 437 17,779.339
popdensity 437 948.537
PID 437 892.525
popblack 437 286.142
popasian 437 121.573
popamerindian 437 100.817
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popother 437 84.508
percchildbelowpovert 437 6.282
percollege 437 4.543
perchsd 437 4.371
percbelowpoverty 437 4.204
percadultpoverty 437 4.175
percelderlypoverty 437 3.359
percwhite 437 1.962
percprof 437 1.311
percpovertyknown 437 0.902
percblack 437 0.722
percasian 437 0.207
percother 437 0.166
percamerindan 437 0.110
area 437 0.009
inmetro 437 0.000

We see that the highest variability was for the poptotal column with MAD
=29,662.378.

1.4. SUMMARY PLOTS FOR CONTINUOUS
UNIVARIATE ANALYSIS

The measures of location (mean, median, mode) and spread (standard deviation,
IQR, MAD) do not tell the whole story of the data distribution or the distribution
shape. Instead, we can use different plots to quickly look at the different data
distributions. The ggplot2 package (a member of the tidyverse package) allows
us to quickly visualize and explore data and we will heavily use it in this chapter
and subsequent chapters.

1.4.1. Introduction to ggplot2

In ggplot2, it is recommended that everything you want to plot is included in a
data frame (a tabular R object) as a column.

The basic steps to create a plot with the ggplot2 package are:

1. Create an object of the ggplot class using the ggplot() function.

2. Add geoms and other elements to create and customize the plot
using +.
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1.4.1.1. Create a ggplot Object

The ggplot() function will create a blank plot without anything in it. It has 2
main arguments:

N =

e T A

10.

The data argument specifies the data frame you want to use.

The aes() argument specifies which columns of that data frame are
mapped to which aesthetics. Common plot aesthetics include:

x: Position on x-axis.

y: Position on the y-axis.

shape: Shape.

color: Color of the border of elements.

fill: Color of the inside of elements.

size: Size.

alpha: Transparency (1: opaque; 0: transparent).
linetype: Type of line (e.g., solid, dashed).

To plot the psavert (personal savings rate) values from the economics data
on the x-axis, we use the ggplot function with 2 arguments:

1.

ggplot(data
Labs(title

data = economics which is our data frame containing the psavert
column.

aes with the argument x = psavert to plot psavert values on the x-axis.
Then, we add a title using the labs function with the title argument to
further customize this plot.

= economics, aes(x = psavert))+

= “Blank plot using ggplot function”)

Blank plot using ggpiot function
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A blank plot is produced because the exact geom (plot type) has not been
specified yet. The x-axis has a title of “psavert” and no title appears for the
y-axis.

Another way of producing this plot is using the “%>%" function after the
economics data and using only the aes argument inside the ggplot function.
economics %>% ggplot(aes(x = psavert))+

Labs(title = “Another blank plot using ggplot function™)

Ancther blank plot using ggplot function

psavent

The aesthetics required for a plot depend on the geoms (plot types).

1.4.1.2. Adding Geoms

The geom functions add the graphical elements to the plot (e.g. histogram,
boxplot, scatterplot). When you run the code to create a plot in RStudio, the
plot will be shown in the “Plots” tab in one of the RStudio panels. If you would
like to save the plot, you can do so using the “Export” button in this tab.

The aesthetics required for a geom type (plot type) can be found in the
“Aesthetics” section of the geom’s help file (e.g., 7geom_histogram). Required
aesthetics are in bold in this section of the help file and optional ones are not.
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1.4.2. Histograms

Histograms show the distribution of a continuous variable by dividing the x-axis
into bins, counting the number of observations in each bin, and displaying the
counts with bars. The geom_histogram() function requires only one aesthetic
(x) or the continuous variable you want to visualize.

To plot a histogram of the psavert column, we will:
1. Create a blank plot using the ggplot function as before.
2. Add geom_histogram function to create the histogram plot.

3. Add a title using the labs function with the title argument. Also, the
x and y arguments can modify the x- and y-axis titles.

4. Remove the default gray background with white lines by using the
theme classic function.

5. Put the plot title in the top center of the graph using the theme
function with plot.title argument = element_text(hjust = 0.5) where
hjust is for horizontal justification.

ggplot(data = economics, aes(x = psavert))+ geom_histogram()+

labs(title = “Histogram of personal saving rate 1in economics data,” x =
“Personal Saving Rate,”

y = “Count”)+
theme_classic()+
theme(plot.title = element_text(hjust = 6.5))

Histogram of persanal saving rate in economics data
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The peak count of observations (> 40 rows) appears between 5 and 10. The
personal saving rate values appear normally distributed with a high frequency
of values in the center and a low frequency at the tails.

1.4.2.1. Coloring the Bar Borders

The default histogram has a black color with difficult-to-see bar borders. We
can add an extra argument, color = “red,” to the geom_histogram function to
see the bars more clearly.
ggplot(data = economics, aes(x = psavert))+

geom_histogram(color = “red”)+

labs(title = “Histogram of personal saving rate 1in economics data with red
borders,” x = “Personal Saving Rate,”

y = “Count”)+

theme_classic()+

theme(plot.title = element_text(hjust = 6.5))

gram of p saving rate in data with red borders.

The bars are now more clearly seen.
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1.4.2.2. Bins

The bins argument controls the number of bins into which the numeric variable
is divided (i.e., the number of bars in the plot). The default is 30, but it is helpful
to try smaller and larger numbers to get a better impression of the distribution
shape. For example, using 20 bins for the personal saving rate column.
ggplot(data = economics, aes(x = psavert))+

geom_histogram(color = “red,” bins = 20)+

Labs(title = “Histogram of personal saving rate 1in economics data using 20
bins,”

X = “Personal Saving Rate,”
y = “Count”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Histogram of personal saving rate in economics data using 20 bins

For example, using 40 bins for the personal saving rate column.
ggplot(data = economics, aes(x = psavert))+
geom_histogram(color = “red,” bins = 40)+

Labs(title = “Histogram of personal saving rate in economics data using 40
bins,”
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X = “Personal Saving Rate,”
y = “Count”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Histogram of personal saving rate In economics data using 40 bins

0
Personal Saving Rate

We see that the personal saving rate is still a normally distributed variable.

1.4.2.3. Binwidth

In some of the above plots, we see that the bin boundaries are not integer
numbers. If we want integer bin boundaries, we can use the binwidth argument
with an integer value within the geom_histogram function. For example, using
binwidth = 1 for the personal saving rate column. In addition, we will use the
scale x continuous function with the argument, breaks = seq(0,20,1), to break
the x-axis in 1 point value interval.

ggplot(data = economics, aes(x = psavert))+

geom_histogram(color = “red,” binwidth = 1)+

labs(title = “Histogram of personal saving rate 1in economics data using 1
binwidth,”

X = “Personal Saving Rate,”

y = “Count”)+ scale_x_continuous(breaks = seq(0,20,1))+
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theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Histogram of personal saving rate in economics data using 1 binwidth

§

We see that each bar now corresponds to a single integer value.

1.4.2.4. Histograms with Reference Lines

A more informative histogram can be obtained by using reference lines
indicating certain summary statistics like mean, median, etc. In that case, we
will see if the data is right-skewed (median < mean), left-skewed (median >
mean), or normally distributed (median nearly = mean).

For the economics data, we will generate a data frame containing the desired
summary statistics in a long format using the functions:

1.

The get summary stats function with the argument, show =
c(“mean,” “median”), to get the mean and median value for each
column in the economics data in a separate column.

The pivot_longer function with the arguments:

2.1. cols = c(mean, median) to convert the 2 numeric columns of
mean and median into 2 columns.

2.2. names_to = “Statistics” which is the first character column
holding the statistic name, mean, or median.
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2.3. values_to = “value” which is the 2nd numeric column holding
the mean and median value for each column.

3. The resulting data frame “df” is converted to a table as before.
df<-economics %>% get_summary_stats(show = c(“mean,” “median”)) %>%
pivot_Llonger(cols = c(mean,median), names_to = “Statistics,”
values_to = “value”)
df %>% flextable() %>% theme_box() %>%

set_caption(caption = “Mean and Median value for every numeric column in the
economics data in long format?”)

Table 1.24. Mean and Median Value for Every Numeric Column in the Economics
Data in Long Format

Variable n Statistics Value

pce 574 mean 4,820.093
pce 574 median 3,936.850
pop 574 mean 257,159.653
pop 574 median 253,060.000
psavert 574 mean 8.567
psavert 574 median 8.400
uempmed 574 mean 8.609
uempmed 574 median 7.500
unemploy 574 mean 7,771.310
unemploy 574 median 7,494.000

As shown above, the right-skewed columns are the pce, pop, uempmed,
and unemploy columns because the mean is greater than the median. On the
other hand, the psavert column is an evenly-spaced or normally distributed data
because the mean is nearly equal to the median.

To plot a histogram of the psavert column with mean and median reference
lines, we will use the same above functions with an additional geom vline
function to plot vertical lines with the arguments:

1. data = df %>% filter(variable=="psavert”) to filter for only rows
containing the psavert column.

2. aes(xintercept = value, color = Statistics) so it will plot 2 vertical
lines one for the mean and one for the median with a different color.
We also use the “\n” in the title to break the long title into 2 lines.
ggplot(data = economics, aes(x = psavert))+

geom_histogram(color = “red”)+
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geom_vline(data = df %>% filter(variable=="“psavert”),
aes(xintercept = value, color = Statistics))+

Llabs(title = “Histogram of personal saving rate in economics data\n with mean
and median reference Llines,”

X = “Personal Saving Rate,”

y = “Count”)+

theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Hestogram of perscnal saving rate in economics data
with mean and median reference lines

il

Personal Saving Rate

We see that the mean is plotted as a red vertical line while the median
is plotted as a blue vertical line. The 2 lines are near to each other or nearly
equal indicating a normally distributed variable. Similarly, we can plot the pce
column with 2 reference lines.
ggplot(data = economics, aes(x = pce))+

geom_histogram(color = “red”)+
geom_vline(data = df %>% filter(variable=="“pce”),
ages(xintercept = value, color = Statistics))+

labs(title = “Histogram of personal consumption expenditures \n with mean and
median reference Llines,”

x = “personal consumption expenditures (billions of dollars),”
y = “Count”)+

theme_classic()+

theme(plot.title = element_text(hjust = 0.5))
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The mean is plotted as a red vertical line while the median is plotted as a
blue vertical line. The mean line is greater than the median line indicating a
right-skewed variable or a low frequency of large values.

For the midwest data, we will generate a data fame “df” containing the
desired summary statistics in the long format using the same functions.
df<-midwest %>% get_summary_stats(show = c(“mean,” “median®)) %>%
pivot_Llonger(cols = c(mean,median), names_to = “Statistics,”
values_to = “value”)
df %>% flextable() %>% theme_box() %>%

set_caption(caption = “Mean and Median value for every numeric column of the

midwest data in Llong format™)

Table 1.25. Mean and Median Value for Every Numeric Column of the Midwest
Data in Long Format

Variable n Statistics Value
PID 437 mean 1,437.339
PID 437 median 1,221.000
area 437 mean 0.033
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area 437 median 0.030
poptotal 437 mean 96,130.302
poptotal 437 median 35,324.000
popdensity 437 mean 3,097.743
popdensity 437 median 1,156.208
popwhite 437 mean 81,839.915
popwhite 437 median 34,471.000
popblack 437 mean 11,023.881
popblack 437 median 201.000
popamerindian 437 mean 343.110
popamerindian 437 median 94.000
popasian 437 mean 1,310.465
popasian 437 median 102.000
popother 437 mean 1,612.931
popother 437 median 66.000
percwhite 437 mean 95.558
percwhite 437 median 98.033
percblack 437 mean 2.676
percblack 437 median 0.539
percamerindan 437 mean 0.799
percamerindan 437 median 0.215
percasian 437 mean 0.487
percasian 437 median 0.297
percother 437 mean 0.479
percother 437 median 0.178
popadults 437 mean 60,972.613
popadults 437 median 22,188.000
perchsd 437 mean 73.966
perchsd 437 median 74.247
percollege 437 mean 18.273
percollege 437 median 16.798
percprof 437 mean 4.447
percprof 437 median 3.814
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poppovertyknown 437 mean 93,642.284
poppovertyknown 437 median 33,788.000
percpovertyknown 437 mean 97.110
percpovertyknown 437 median 98.170
percbelowpoverty 437 mean 12.511
percbelowpoverty 437 median 11.822
percchildbelowpov- 437 mean 16.447

ert

percchildbelowpov- - 3 median 15.270

ert

percadultpoverty 437 mean 10.919
percadultpoverty 437 median 10.008
percelderlypoverty 437 mean 11.389
percelderlypoverty 437 median 10.869
inmetro 437 mean 0.343
inmetro 437 median 0.000

When the mean is larger than the median, this indicates right-skewed data
as for the poptotal, popdensity, and popwhite columns. When the mean is nearly
equal to the median, this indicates evenly-spaced or normally distributed data
as for the area column. Finally, when the mean is smaller than the median, this
indicates left-skewed data as for the percwhite column.

To plot a histogram of the poptotal column with mean and median reference
lines, we will use the same above functions with an additional geom_ vline
function.
ggplot(data = midwest, aes(x = poptotal))+

geom_histogram(color = “red”)+
geom_vline(data = df %>% filter(variable==“poptotal”),
aes(xintercept = value, color = Statistics))+

labs(title = “Histogram of total population from midwest data\n with mean and
median reference Lines,”

X = “Total Population,”

y = “Count”)+

theme_classic()+

theme(plot.title = element_text(hjust = 0.5))
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Histogram of total population from midwest data
‘with mean and median reference lines
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We see that the mean (red vertical line) is greater than the median (blue
vertical line) indicating right-skewed data. Although the 2 lines are near to each
other, they have great differences because the scale of the x-axis is in millions.

Similarly, we can plot the area column with 2 reference lines.
ggplot(data = midwest, aes(x = area))+
geom_histogram(color = “red”)+
geom_vline(data = df %>% filter(variable==“area”),
aes(xintercept = value, color = Statistics))+

labs(title = “Histogram of county area from the midwest data \n with mean and
median reference Llines,”

X = “County Area,”
y = “Count”)+
theme_classic()+

theme(plot.title = element_text(hjust = 0.5))
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Histegram of county area from the midwest data
with mean and median reference lines

Coant

000 003 0.08 Ll ]
County Area

The mean line is near the median line (with a difference of 0.003) indicating
a normally-distributed variable.

Finally, we can plot the percwhite column with 2 reference lines.
ggplot(data = midwest, aes(x = percwhite))+
geom_histogram(color = “red”)+
geom_vline(data = df %>% filter(variable=="“percwhite”),
aes(xintercept = value, color = Statistics))+

Llabs(title = “Histogram of White percentage from the midwest data \n with mean
and median reference Llines,”

X = “White Percentage,”
y = “Count”)+
theme_classic()+
theme(plot.title = element_text(hjust = 6.5))
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Histogram of White percentage from the midwes! data
with mean and median reference lines
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We see that the mean (red vertical line) is smaller than the median (blue
vertical line) indicating left-skewed data with low frequency of small values.

1.4.3. Box Plots

The box plot displays the distribution of a continuous variable. It visualizes
five summary statistics (the median, two hinges, and two whiskers), and all
outliers individually. The lower and upper hinges correspond to the first and
third quartiles (Q1 and Q3)respectively.

The upper whisker extends from Q3 to the largest value no further than
1.5 X IQR from Q3. The lower whisker extends from Q1 to the smallest value
at most 1.5 X IQR from Q1. Data beyond the end of the whiskers are called
“outlying” points and are plotted individually.

The median (central line in the box), the upper quartile, and the lower
quartile be used to determine the symmetry of the distribution:

1. If the distribution is symmetric, then the upper and lower quartiles
should be nearly equally spaced from the median. This can be seen
in the psavert column of the economics data.

2. If the median is closer to the 1st quartile than to the 3rd quartile, then
the distribution is right-skewed. This can be seen in the pce column
from the economics data.
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3. If the median is closer to the 3rd quartile than to the 1st quartile, then
the distribution is left-skewed. This can be seen in the percent white
column from the midwest data.

1.4.3.1. Box plots for Symmetric Distribution

The geom_boxplot function is used to plot a box plot by providing the x or
y value as the continuous variable you want to plot. To plot a box plot of the
psavert column from economics data on the x-axis, we will use the following
functions:

1. The ggplot function with arguments:

1.1. data = economics which is the data frame containing the psavert
column.

1.2. aes(x = psavert) to plot personal saving rate values on the x-axis.
2. The geom_boxplot function to create the box plot.
3. The labs, theme classic, and theme functions as described above.

ggplot(data= economics, aes(x = psavert))+ geom_boxplot()+

Labs(title = “Boxplot of personal saving rate on the x-axis from economics
data,”

X = “Personal Saving Rate”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

[+
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The box plot shows no outliers and the personal saving rate is plotted on the
x-axis. Because the median is equally spaced from the 1st and 3rd quartiles, so
the personal saving rate has a symmetric distribution.

Alternatively, we can plot the personal saving rate values on the y-axis
using the argument, aes(y = psavert), and adjust the labs function accordingly.
ggplot(data= economics, aes(y = psavert))+ geom_boxplot()+

Labs(title = “Boxplot of personal saving rate on the y-axis from economics
data,”

y = “Personal Saving Rate”)+

theme_classic()+

theme(plot.title = element_text(hjust = 0.5))

Boxplot of personal saving rate on the y-axis from economics data
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1.4.3.2. Box Plots for Right-Skewed Distribution

Using the same functions, we can plot the pce column values on the x-axis.
ggplot(data= economics, aes(x = pce))+ geom_boxplot()+

Labs(title = “Boxplot of personal consumption expenditures on the x-axis from
economics data,”

56



Univariate Analysis of Continuous Data

X = “Personal Consumption Expenditures (billions of dollars)”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Boxplot of p p P on the x-axis from economics data
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The box plot shows no outliers. Because the median is closer to the 1st
quartile than to the 3rd quartile, the personal consumption expenditures have a
right-skewed distribution.

Using the same functions, we can plot the poptotal column values from the
midwest data on the x-axis.
ggplot(data= midwest, aes(x = poptotal))+ geom boxplot()+
Labs(title = “Boxplot of total population on the x-axis from midwest data,”
X = “Total Population”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))
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Boxplot of total population on the x-axis from midwest data
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The box plot shows some large outliers as black points. Because the median
is closer to the 1st quartile than to the 3rd quartile, the total population has a
right-skewed distribution.

1.4.3.3. Box Plots for Left-Skewed Distribution

Using the same functions, we can plot the percent white column values on the
x-axis from the midwest data.
ggplot(data= midwest, aes(x = percwhite))+ geom_boxplot()+

Labs(title = “Boxplot of White percentage on the x-axis from midwest data,”

x = “White Percentage™)+

theme_classic()+

theme(plot.title = element_text(hjust = 6.5))
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Boxplot of White percentage on the x-axis from midwest data
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The box plot shows small outlier values as black points. Because the median
is closer to the 3rd quartile than to the Ist quartile, the percentage white has a
left-skewed distribution.

1.4.3.4. Box Plots with Reference Points

A more informative box plot can be plotted with a reference point for the mean
value. Because the median is plotted as a central black line, the mean point can
be compared to the median to deduce the data distribution as discussed in the
above sections.

In R, there are many point shapes that can be supplied by their numbers.
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For example, we can plot a box plot of the psavert column from economics
data on the y-axis with a plus mean reference point, we will use the following
functions:

1. The ggplot function with arguments:

1. data = economics which is the data frame containing the
psavert column.
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il. aes(y = psavert, x = 0) to plot personal saving rate values on
the y-axis. The whiskers will have an x-axis position at 0 as
well as the reference point.

The geom_boxplot function to create the box plot.

3. The stat_summary function with the arguments:
1. geom = “point” to plot a point.
ii. fun = “mean” the point plotted is for the mean value of

personal saving rate.
iii.  shape = “plus” which is the point shape.
iv.  color = “red” which is the point color.
V. size = 2 which is the point size.
4, The labs, theme classic, and theme functions as described above.
ggplot(data= economics, aes(y = psavert, x = 0))+ geom_boxplot()+

2

stat_summary(geom = “point,” fun = “mean,” shape = “plus,”
color = “red,” size = 2)+

Labs(title = “Boxplot of personal saving rate on the y-axis with
a plus mean reference point,”

X = “Personal Saving Rate”)+
theme_classic()+
theme(plot.title = element_text(hjust = 6.5))

xplot of p o o the y-axis Wi a p

Pl S fl
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Alternatively, we can plot this reference point as an asterisk.
ggplot(data= economics, aes(y = psavert, x = 0))+ geom_boxplot()+
stat_summary(geom = “point,” fun = “mean,” shape = “asterisk,”

color = “red,” size = 2)+

Llabs(title = “Boxplot of personal saving rate on the y-axis with an asterisk
mean reference point,”

y = “Personal Saving Rate”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Boxplot of personal saving rate on the y-axis with an asterisk mean reference point

Parscnal Saving Rate
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We see that the mean reference point is near the median central line of the
box indicating a symmetrical distribution.

In a second example, we can plot the popwhite column from the midwest
data with a diamond mean reference point.
ggplot(data= midwest, aes(y = popwhite, x = 0))+ geom_boxplot()+
stat_summary(geom = “point,” fun = “mean,” shape = “diamond,”
color = “red,” size = 2)+

Labs(title = “Boxplot of White population on the y-axis with a diamond mean
reference point,”

y = “White population™)+

theme_classic()+
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theme(plot.title = element_text(hjust = 0.5))

Boxplot of White population on the y-axis with a diamond mean reference point
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We see that the red mean reference point is above (greater than) the median
central line of the box indicating a right-skewed distribution.

In a third example, we can plot the percwhite column from the midwest data
with a cross mean reference point.
ggplot(data= midwest, aes(y = percwhite, x = 0))+ geom_boxplot()+

»

stat_summary(geom = “point,” fun = “mean,” shape = “cross,”
color = “red,” size = 2)+

Labs(title = “Boxplot of White percentage on the y-axis with a cross mean
reference point,”

y = “White Percentage”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))
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Boxplot of White percentage on the y-axis with a cross mean reference point
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We see that the red mean reference point is below (smaller than) the median
central line of the box indicating a left-skewed distribution.

1.4.4. Density Plots

The density plot is a kernel density estimate of the data (or a smoothed version
of the histogram). Kernel density estimation is a method for estimating the
probability density function of a continuous variable.

For the continuous variables, the probability distribution is known as the
probability density function or PDF. The probability distribution for any variable
describes how the probabilities are distributed over the different values of this
variable. The density plot quickly shows the distribution shape of any variable.

1.4.4.1. Density Plot for a Symmetric Distribution

The geom density function plots a kernel density plot of your continuous
variable on the x or y-axis. To plot a density plot of the psavert column from the
economics data on the x-axis, we will use the following functions:
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1. The ggplot function with arguments:

1. data = economics which is the data frame containing the
psavert column.
ii. aes(x = psavert) to plot personal saving rate values on the
X-axis.
2. The geom_density function to create the density plot.
3. The labs, theme classic, and theme functions as described above.

ggplot(data= economics, aes(x = psavert))+ geom_density()+

Labs(title = “Kernel density plot of personal saving rates in economics data,”
X = “Personal Saving Rate,” y = “Density”)+

theme_classic()+

theme(plot.title = element_text(hjust = 0.5))

Kemel density plot of parsonal saving rates in economics data

[T

We see that the peak density appears between 5 and 10. The personal saving
rate values appear nearly normally distributed with a high frequency of values
in the center and a low frequency at the tails. There is also another density peak
at a value greater than 10. To look at the exact location of these peaks, we can
look at section 1.2.4.1. for calculating the mode of economics data. The table
for the psavert column shows that the highest frequency (probability) was for
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6.4 value (1st density peak) and the 2nd most frequent value was for 11.7 value
(the second peak).

1.4.4.2. Density Plot for Right-Skewed Distribution

Using the same functions, we can plot a density plot for the pce column.
ggplot(data= economics, aes(x = pce))+ geom _density()+

Labs(title = “Density plot of personal consumption expenditures from the
economics data,”

X = “Personal Consumption Expenditures (billions of dollars),”
y = “Density”)+

theme_classic()+

theme(plot.title = element_text(hjust = 0.5))

Density plat of personal 7 from the data
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We see that the highest density was at low values (< 2500) and larger
values have much lower density. This indicates that the personal consumption
expenditures have a right-skewed distribution. Using the same functions, we
can plot a density plot for the poptotal column values from the midwest data on
the x-axis.
ggplot(data= midwest, aes(x = poptotal))+ geom density()+

labs(title = “Density plot of total population from the midwest data,”
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X = “Total Population,” y = “Density”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Density plot of total population from the midwest data
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We see that the highest density was at low values (< 1000000) and larger
values have a much lower density, so the total population has a right-skewed
distribution.

1.4.4.3. Density Plot for left-Skewed Distribution

Using the same functions, we can plot a density plot of the percent white column
values on the x-axis from the midwest data.
ggplot(data= midwest, aes(x = percwhite))+ geom_density()+
labs(title = “Density plot of White percentage from midwest data,”
X = “White Percentage,” y = “Density”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))
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Dansity plot of White parcentage from midwest data
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We see that the highest density was at high values (at < 100) and smaller
values have a much lower density, so the percentage white has a left-skewed
distribution.

1.4.4.4. Bandwidth

The degree of density plot smoothness is controlled by the bandwidth parameter
bw. To find the default value for a particular variable, use the bw.nrd0 function.
For example, to find the default value of the personal saving rate of economics
data.

bw.nrdé(economicsgpsavert)

## [1] 0.7487979

The default bandwidth value is 0.75. Larger values will result in more smoothing,
while smaller values will produce less smoothing.

Example using bw = 0.01.
ggplot(data= economics, aes(x = psavert))+ geom_density(bw = 0.01)+

Labs(title = “Kernel density plot of personal saving rates in economics data \
nwith .01 bandwidth,”

X = “Personal Saving Rate,” y = “Density”)+

theme_classic()+

theme(plot.title = element_text(hjust = 0.5))
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The resulting plot is less smooth than the plot with a default band width of
0.75.

Example using bw = 5.
ggplot(data= economics, aes(x = psavert))+ geom_density(bw = 5)+

labs(title = “Kernel density plot of personal saving rates in economics data \
nwith 5 bandwidth,”

X = “Personal Saning Rate,” y = “Density”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))
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The resulting plot is more smooth than the density plot with a default band
width of 0.75.

1.4.5. Violin Plots

A violin plot is a blend of a box plot and a density plot which is a mirrored
density plot.

1.4.5.1. Violin Plot for a Symmetric Distribution

The geom_violin function plots a violin plot and requires two aesthetics (x for
locating the symmetry line of the violin plot and y for the continuous variable
you want to visualize on the y-axis). To draw a violin plot of the psavert column
from the economics data, we will use the following functions:
1. The ggplot function with arguments:
1. data = economics which is the data frame containing the
psavert column.

il. aes(y = psavert,x = 1), to plot the personal saving rates on the
y-axis and symmetry line at 1 value on the x-axis.

Violin plot of personal saving rates in economics data on the y-ads

Personal Saving Rate

2. The geom_violin function to create the violin plot.
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3. The geom_vline function with the argument, xintercept = 1, plots
the vertical line at x-axis value = 1.

4, The labs, theme classic, and theme functions as described above.
ggplot(data= economics, aes(x = 1,y = psavert))+ geom_violin()+
geom_vline(xintercept = 1)+
Labs(title = “Violin plot of personal saving rates in economics data on the
y-axis,”
y = “Personal Saving Rate,” x = “Mirrored Density”)+

theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

As noted previously, the highest density (peak) of personal saving rates was
at values between 5 and 10.

Alternatively, we can plot the personal saving rates on the x-axis and
the symmetry line on the y-axis by reversing the aesthetics to be y = 1 and
x = psavert. In addition, we use the geom_hline function with the argument,
yintercept = 1 to plot a horizontal line at 1 value.
ggplot(data= economics, aes(y = 1,x = psavert))+ geom_violin()+

geom_hline(yintercept = 1)+

Labs(title = “Violin plot of personal saving rates in economics data on the
x-axis,”

X = “Personal Saving Rate,” y = “Mirrored Density”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Wiclin piot of parsonal saving rates in economics data on th x-axs

Mirernd Density

71



Statistics with R for Data Analysis

1.4.5.2. Violin Plot for Right-Skewed Distribution

Using the same functions, we can plot a violin plot for the pce column.
ggplot(data= economics, aes(x = pce, y = 1))+ geom_violin()+
geom_hline(yintercept = 1)+

Labs(title = “Violin plot of personal consumption expenditures from the economics
data,”

X = “Personal Consumption Expenditures (billions of dollars),”
y = “Mirrored Density”)+

theme_classic()+

theme(plot.title = element_text(hjust = 0.5))

Violin plot of from the data

Mirrared Density
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We see that the personal consumption expenditures have a right-skewed
distribution with a low density of large values. Using the same functions, we
can plot a violin plot for the poptotal column values from the midwest data on
the x-axis.
ggplot(data= midwest, aes(x = poptotal, y = 1))+ geom_violin()+

geom_hline(yintercept = 1)+
Labs(title = “Violin plot of total population from the midwest data,”

x = “Total Population,” y = “Mirrored Density”)+
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theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Vilin plot of total population from the midwest data
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We see that the highest density was at low values (< 1000000) and larger
values have a much lower density, so the total population has a right-skewed
distribution.

1.4.5.3. Violin Plot for Left-Skewed Distribution

Using the same functions, we can plot a violin plot of the percent white column
values on the x-axis from the midwest data.

ggplot(data= midwest, aes(x = percwhite, y = 1))+ geom_ violin()+
geom_hline(yintercept = 1)+

Labs(title = “Violin plot of White percentage from midwest data,”

X = “White Percentage,” y = “Mirrored Density”)+

theme_classic()+

theme(plot.title = element_text(hjust = 0.5))
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Vialin plot of White percentage from midwest data
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We see that the highest density was at high values (at about 100%) and
smaller values have a much lower density, so the percentage white has a left-
skewed distribution.

1.4.5.4. Bandwidth

The degree of density plot smoothness in the violin plot is controlled by the
bandwidth parameter bw. The default value of the personal saving rate of
economics data is 0.75 as noted before.

Larger values will result in more smoothing, while smaller values will
produce less smoothing.

Example using bw = 0.1 within the geom_violin function.
ggplot(data= economics, aes(x = psavert, y = 1))+
geom_violin(bw = 0.1)+ geom_hline(yintercept = 1)+

labs(title = “Violin plot of personal saving rates in economics data \nwith 0.1
bandwidth,”

x = “Personal Saving Rate,” y = “Mirrored Density”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))
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Violin plot of personal saving rates in economics data
‘with 0.1 bandwidth
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The resulting plot is less smooth than the plot with a default band width of
0.75.

Example using bw = 3.
ggplot(data= economics, aes(x = psavert, y = 1))+
geom_violin(bw = 3)+ geom_hline(yintercept = 1)+

Labs(title = “Violin plot of personal saving rates in economics data \nwith 3
bandwidth,”

X = “Personal Saning Rate,” y = “Mirrored Density”)+
theme_classic()+
theme(plot.title = element_text(hjust = 6.5))
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Violin plot of personal saving rates in economics data
P8 with 3 bandwidth
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The resulting plot is more smooth than the density plot with a default band
width of 0.75.

1.4.5.5. Quantiles

The draw_quantiles argument within the geom_violin function can draw lines
at specified quantiles of the data.

Example drawing quantiles at 0.25, 0.5, and 0.75 that correspond to Q1,
Q2, Q3.
ggplot(data= economics, aes(x = psavert, y = 1))+
geom_violin(draw_quantiles = c(0.25,0.5,0.75))+ geom_hline(yintercept = 1)+

Labs(title = “Violin plot of personal saving rates in economics data \nwith
0.25,0.5, and 0.75 quantiles,”

Xx = “Personal Saving Rate,” y = “Mirrored Density”)+
theme_classic()+
theme(plot.title = element_text(hjust = 6.5))
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Violin plot of personal saving rates in economics data
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Example drawing quantiles at 0.1, 0.5, and 0.9 that correspond to 10%, 50%
(median), and 90%.
ggplot(data= economics, aes(x = psavert, y = 1))+
geom_violin(draw_quantiles = c(0.1,0.5,0.9))+ geom_hline(yintercept = 1)+

Labs(title = “Violin plot of personal saving rates in economics data \nwith
10%,50%, and 90%,”

X = “Personal Saving Rate,” y = “Mirrored Density”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))
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Vilin plot of parsonal rates in economics data
with 10%.50%, and 50% percentiles
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1.4.6. QQ Plot

The QQ plot (Quantile-Quantile Plot) is a plot used to assess the normal
distribution of any numerical data.

If the data follow a normal distribution then a plot of the theoretical
percentiles of the normal distribution on the x-axis versus the observed sample
percentiles on the y-axis should be approximately linear. A reference line is
plotted and if all data points fall along this reference line, we can assume
normality.

1.4.6.1. QQ Plot of Symmetric Distribution

The ggqqplot from the ggpubr package can plot the QQ plot of any numerical
column. To plot the QQ plot of personal saving rates from the economics data,
we first load the ggpubr package into the R session using the library function.
Then we use the ggqqplot function with the following arguments:

1. data = economics which is the data frame containing the psavert
column
2. x = “psavert” which is the column to be plotted.
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3. title, xlab, and ylab arguments to add title, x-axis, and y-axis titles.

We also use the theme function to plot the title in the top middle of the
graph.
Library(ggpubr)
ggqqgplot(data = economics, x = “psavert,”
title = “QQ plot of personal saving rates from economics data,”
xlab
theme(plot.title = element_text(hjust = 0.5))

“Theoretical percentiles,” ylab = “Sample percentiles”)+

Q0 plot of personal saving rates from economics data

Thecretical percentiles

The reference line is plotted with its 95% confidence interval. Because not
all data points fall along this reference line or within the confidence band, we
cannot assume the normality of personal saving rates.

Using the same functions, we can plot a QQ plot of the area column in the
midwest data.
ggqqplot(data = midwest, x = “area,”
title = “QQ plot of area values from midwest data,”
xlab = “Theoretical percentiles,” ylab = “Sample percentiles”)+

theme(plot.title = element_text(hjust = 0.5))
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QQ plot of area values from midwest data
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Some large data points do not fall along the reference line or within the 95%
confidence band, so we can not assume the normality of area rates.

1.4.6.2. QQ Plot of Right-Skewed Distribution

Using the same functions, we can plot a QQ plot of the pce column from the
economics data.

ggqqplot(data = economics, x = “pce,”

title = “QQ plot of personal consumption expenditures from economics data,”
xlab = “Theoretical percentiles,” ylab = “Sample percentiles”)+

theme(plot.title = element_text(hjust = 0.5))
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QQ plot of personal consumption expenditures from economics data
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The personal consumption expenditures have a right-skewed distribution
with large values outside the confidence band of the reference line. To plot a QQ
plot of the poptotal column from the midwest data.
ggqqplot(data = midwest, x = “poptotal,”
title = “QQ plot of total population from midwest data,”
xlab = “Theoretical percentiles,” ylab = “Sample percentiles”)+

theme(plot.title = element_text(hjust = 0.5))
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QQ plot of total population from midwest data
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Similarly, the total population has a right-skewed distribution with large
values outside the confidence band of the reference line.

1.4.6.3. QQ Plot of Left-Skewed Distribution
Using the same functions, we can plot a QQ plot of the percent white column
from the midwest data.
ggqqplot(data = midwest, x = “percwhite,”
title = “QQ plot of percent white from midwest data,”

xlab = “Theoretical percentiles,” ylab = “Sample percentiles™)+

theme(plot.title = element_text(hjust = 0.5))
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QQ plot of percent white from midwest data
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The percent white has left skewed distribution with small values greatly
outside the confidence band of the reference line.

1.5. STATISTICAL TESTS FOR CONTINUOUS UNI-
VARIATE ANALYSIS

After estimating the sample mean (sample estimate), we may wish to infer the
underlying population mean (population parameter) from this sample mean
using some statistical tests because this estimate (sample mean) is subjected to
sampling error.

1.5.1. t-Test for One Sample Mean

1.5.1.1. Hypothesis Testing

In hypothesis testing, we start with two exclusive possibilities for the unknown
truth (population parameters). Then, we use the sample data to choose between
these two possibilities for the truth.
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The two possibilities are the null hypothesis, Ho, and the alternative
hypothesis, Ha.

The null hypothesis, Ho, states that our sample parameter equals a reference

value.

The alternative hypothesis, Ha, is the hypothesis that contradicts the null
hypothesis. The alternative hypothesis states that our population parameter is
less than <, greater than >, or not equal to # . areference value.

1.5.1.2. Types of Hypothesis Testing

1.

One-tailed Hypothesis Testing is a test in which the alternative
hypothesis states that the sample parameter is less than < or greater
than > a reference value.

Two-Tailed Hypothesis Testing is a test in which the
alternativeypothesis states that the sample parameter is not equal to
# areference value. Not equal means that the sample parameter can
be greater than or less than a reference value.

1.5.1.3. Examples of Hypothesis Testing

1.

Examples of One-Tailed Hypothesis Testing:

1. The mean percent of adults below the poverty line across all
US counties is 15%, while the mean percent of adults below
the poverty line in midwest counties is 10.9%. We want to test
the hypothesis that midwest counties have a mean percent of
adults below the poverty line lower than the US average of
15%.

Two hypotheses are considered:

il.

a. The average percent of adults below the poverty line in
midwest counties = 15%. This is the null hypothesis.

b. The average percent of adults below the poverty line in

midwest counties is < 15%. This is the alternative hypothesis.

Suppose we know from nationwide surveys based on millions of
deliveries that the mean birth weight in the United States is 3400
grams. We want to test the hypothesis that mothers with low
socioeconomic status deliver babies whose birth weights are lower
than this normal average.

Two hypotheses are considered:

a.

The average birth weight of babies delivered by these mothers =
3400 grams. This is the null hypothesis.
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b. The average birth weight of babies delivered by these mothers is <
3400 grams. This is the alternative hypothesis.

2. Examples of Two-tailed Hypothesis Testing:

1. We assume cholesterol levels in women in the United States
have a mean of 190 mg/dL. It is unknown whether cholesterol
levels among recent Asian women immigrants are higher or
lower than those in the general U.S. population.

Two hypotheses are considered:

a. The average cholesterol level of recent Asian women
immigrants = 190 mg/dL. This is the null hypothesis.

b. The average cholesterol level of recent Asian women
immigrants # 190 mg/dL. This is the alternative hypothesis.

il. The standard mean tablet weight for a certain drug is 125 mg.

A new tableting machine is installed and we want to test that this machine
is working properly. It is unknown whether the mean tablet weight from this
machine is higher or lower than the standard weight of 125 mg.

Two hypotheses are considered:

i. The average tablet weight from this machine = 125 mg. This is the
null hypothesis.

il. The average tablet weight from this machine is # 125 mg. This is
the alternative hypothesis.

1.5.1.4. Error Rate in Hypothesis Testing

If Ho is true and Ho is accepted, or if Ha is true and Ho is rejected, then the
correct decision has been made.

If Ho is true and Ho is rejected, then an error has been made and it is called
type I error. The probability of a type I error is the probability of rejecting the
null hypothesis, Ho when Ho is true.

The probability of a type I error is denoted by ¢ and is commonly called
the significance level of a test or the rejection level. The default value is 0.05
or 5%.

The p-value is the probability of the test statistic (z or t) or more extreme
values, that correspond to our sample results, under the Null hypothesis. If
the p-value < significance level, it is a statistically significant result at this
significance level, and we reject the Null hypothesis. Our sample data are
unlikely under the Ho, they have a probability less than the significance level
or 5%.
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If the p-value >= significance level, it is a statistically insignificant result at
the significance level, and we fail to reject the Null hypothesis. We say fail to
reject the Null hypothesis because if we have a p-value of 0.25. This means that
our sample data have a probability of 25% under the Null hypothesis which is
considered a large percentage. In your opinion, you may consider it small and
accept Ha.

All statistical tests, explored in the following sections, give us the sample
statistic (t or z value that corresponds to our sample results) and the p-value
required for a decision.

1.5.1.5. t-Test for Personal Saving Rate

We note from the above summary statistics that the mean personal saving rate in
the economics data is 8.567. We may wish to test the hypothesis that this mean
is different from a reference value of 9, so the alternative hypothesis is the mean
personal saving rate is higher or lower than the reference value or a two-tailed
hypothesis testing.

To conduct a t-test of the personal saving rate in economics data, we use
the t_test function with the following arguments:

1. data = economics which is our data frame containing the psavert
(personal saving rate column).

2. psavert ~1 which is the formula for one sample testing of psavert
column. This means that all personal saving rate values correspond
to 1 group.

3. mu= 9 which is our reference value.

4. alternative = “two.sided” which is the alternative hypothesis.

Then, we use the flextable, theme box, and set_caption functions to convert
the result to a table as before.
t_test(data = economics, psavert ~1, mu= 9, alternative = “two.sided”) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Two-tailed t-test results of personal saving rates 1in
economics data”)

Table 1.26. Two-Tailed t-Test Results of Personal Saving Rates in Economics

Data
y. Groupl Group2 n Statistic df P
psavert | 1 null model | 574 | -3.497769 | 573 0.000506
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The table 1.26 contains the t statistic = -3.498 which corresponds to our
sample results and the p-value = 0.0005 or 0.05%.

The p_value is the probability of our sample results (personal saving rate)
under the null hypothesis (where the mean personal saving rate = 9). Since this
is a very low probability, we reject the null hypothesis and conclude that the
mean personal saving rate in the US is significantly different from 9.

We can continue and do a one-tailed t-test for the personal saving rate
with the alternative hypothesis that the mean personal saving rate is less than
9 because our observed mean from the sample is 8.567. We will use the same
functions above except that we use the argument, alternative = “less” for the
different alternative hypothesis.
t_test(data = economics, psavert ~1, mu= 9, alternative = “less”) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “One-tailed t-test results of personal saving rates 1in
economics data”)

Table 1.27. One-Tailed t-Test Results of Personal Saving Rates in Economics Data

.y- Groupl Group2 n Statistic df p
psavert 1 null model | 574 | -3.497769 | 573 0.000253

The table 1.27 contains the same t statistic = -3.498 that corresponds to our
sample results and the p-value = 0.00025 or 0.025%.

The p_value is the probability of our sample results (personal saving rate)
under the null hypothesis (where the mean personal saving rate = 9). Since this
is a very low probability, we reject the null hypothesis and conclude that the
mean personal saving rate in the US is significantly lower than 9.

1.5.1.6. t-Test for Percent of Adults Below the Poverty Line

The mean percent of adults below the poverty line across all US counties is
15%, while the mean percent of adults below the poverty line in midwest
counties is 10.9%. We can do a one-tailed t-test for the mean percent of adults
below the poverty line with the alternative hypothesis is that the mean percent
of adults below the poverty line in the midwest counties is less than 15 because
our observed mean from the sample is 10.9.

t_test(data = midwest, percadultpoverty ~1, mu= 15, alternative = “less”) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “One-tailed t-test results of percent of adults below
poverty Lline in midwest data”)
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Table 1.28. One-Tailed t-Test Results of Percent of Adults Below the Poverty Line
in Midwest Data

.y groupl group2 n statistic df P
0.00000000

per- 0000000000
0000000000

cz:)dt;lrtt- 1 null model 437 -16.69855 436 0000000000

poverty 000000000
0472

The Table 1.28 contains the same t statistic = -16.699 that corresponds to
our sample results and the p-value is very low and nearly equals zero.

The p_value is the probability of our sample results (percent adults below
the poverty line) under the null hypothesis (where the mean percent adults
below the poverty line = 15). Since this is a very low probability, we reject the
null hypothesis and conclude that the mean percent of adults below the poverty
line in the midwest counties is significantly lower than 15 which is the mean
value of all US counties.

1.5.2. Normality Test for One Sample

The t-test assumes that the data follows a normal distribution or a Gaussian
distribution. The t-test is called a parametric test because its validity depends
on the data distribution.

With large enough sample sizes (> 30 as in midwest data with 437 rows or
economics data with 574 rows), we can ignore the distribution of the data and
use the parametric t-test directly. This is because the central limit theorem tells
us that no matter what distribution things have, the sampling distribution tends
to be normal if the sample is large enough (n > 30).

However, to inspect normality for some numerical data, we can use visual
plots (histogram, density plot, or QQ plot as described above) or statistical tests
such as Shapiro-Wilk normality Test.

1.5.2.1. Shapiro-Wilk Normality Test

Shapiro-Wilk normality test is a test comparing the sample distribution to a
normal distribution to ascertain whether data show or not a serious deviation
from normality.

The null hypothesis of this test is that the sample distribution is normal.
If the test is significant, the distribution is not normal. However, the Shapiro-
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Wilk normality test is sensitive to sample size. Small samples most often pass
normality tests. Therefore, it’s important to combine visual inspection and
significance tests to make the right decision.

1.5.2.2. Shapiro-Wilk Test for Personal Saving Rate

To conduct the Shapiro-Wilk test for personal saving rate, we use the shapiro
test function with the following arguments:

1. data = economics which is our data frame containing the required
column (personal saving rate).

2. psavert which is our interested column to be tested. Then, we convert
the results to a table as before.
shapiro_test(data = economics, psavert) %>% flextable() %>% theme_box() %>%

set_caption(caption = “Shapiro-Wilk test results for personal saving rate 1in
economics data™)

Table 1.29. Shapiro-Wilk Test Results for Personal Saving Rate in Economics Data

Variable Statistic P
psavert 0.9754891 0.00000003262322

The Table 1.29 contains the sample statistic = 0.975 which corresponds to
our sample results and the p-value which is very low and nearly equals zero.

The p_value is significant (< 0.05), so we reject the null hypothesis and
conclude that the personal saving rate values in the economics data are not
normally distributed. However, due to the large sample size of 574 observations,
we can ignore the normality test results and use the t-test.

1.5.2.3. Shapiro-Wilk Test for Percent Adults Below the Poverty
Line
To conduct the Shapiro-Wilk test for the percent of adults below the poverty
line in the midwest data, we use the same functions above and modify them
accordingly.
shapiro_test(data = midwest, percadultpoverty) %>% flextable() %>%

theme_box() %>%

set_caption(caption = “Shapiro-Wilk test results for percent adults below
poverty Lline in midwest data™)
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Table 1.30. Shapiro-Wilk Test Results for the Percent Adults Below the Poverty
Line in Midwest Data

Variable Statistic p
percadultpoverty | 0.9020281 0.000000000000000377401

The Table 1.30 contains the sample statistic = 0.90 which corresponds to
our sample results and the p-value which is very low and nearly equals zero.

The p_value is significant (< 0.05), so we reject the null hypothesis and
conclude that the percent of adults below the poverty line values in the midwest
data is not normally distributed. However, due to the large sample size of 437
observations, we can ignore the normality test results and use the t-test.

1.5.3. Test for Outliers

The t-test assumes that the data contains no outliers. Outliers can be detected
using the box plot method.

Values above Q3 + 1.5 X IQR or below Q1 — 1.5 X IQR are considered
outliers and plotted individually using the box plot described above. In addition,
values above Q3 + 3 X IQR or below Q1 — 3 X IQR are considered extreme
outliers. They are also plotted individually using the box plot method.

Extreme outliers can be due to data entry errors, measurement errors, or
unusual values.

1.5.3.1. Outlier Test for Personal Saving Rate

To conduct the outlier test for personal saving rate, we use the identify_outliers
function with the following arguments:

1. data = economics which is our data frame containing the required
column (personal saving rate).
2. psavert which is our interested column to be tested. Then, we convert
the results to a table as before.
identify outliers(data = economics, psavert) %>% flextable() %>%
theme_box () %>%
set_caption(caption = “Outlier test results for personal saving rate in economics

data”)

Table 1.31. Outlier Test Results for Personal Saving Rate in Economics Data

date | pce | pop | psavert | uempmed |unemploy | is.outlier | is.extreme
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We see that the Table 1.31 has no rows meaning that personal saving rate
values have no outliers in the economics data.

1.5.3.2. Outlier Test for Percent Adults Below the Poverty Line

To conduct the outlier test for the percent adults below the poverty line in
the midwest data, we use the identify outliers function with the following
arguments:

1. data = midwest which is our data frame containing the required
column to be tested.

2. percadultpoverty which is our interested column to be tested. Then,
we use the select function to select the important columns to be
viewed (county, percadultpoverty, is.outlier, is.extreme) instead of
viewing all 28 columns of the midwest data. Finally, we convert the
results to a table as before.

identify outliers(data = midwest, percadultpoverty) %>%
select(county, percadultpoverty,is.outlier, is.extreme) %>%
flextable() %>%

theme_box () %>%

set_caption(caption = “Outlier test results for percent adults below poverty
Line in midwest data”)

Table 1.32. Outlier Test Results for Percent Adults Below the Poverty Line in
Midwest Data

County gz:}z‘ti;lt- is.outlier is.extreme
ALEXANDER 27.38565 TRUE FALSE
HARDIN 25.17428 TRUE FALSE
JACKSON 32.45848 TRUE TRUE
MCDONOUGH 22.40338 TRUE FALSE
POPE 24.41487 TRUE FALSE
PULASKI 23.86774 TRUE FALSE
MONROE 22.99900 TRUE FALSE
CLARE 22.17195 TRUE FALSE
HOUGHTON 23.69715 TRUE FALSE
ISABELLA 28.47915 TRUE FALSE
LAKE 25.07071 TRUE FALSE
MECOSTA 28.22996 TRUE FALSE

91



Statistics with R for Data Analysis

County gﬁiﬁ?;ﬂ;lt- is.outlier is.extreme
ADAMS 25.75226 TRUE FALSE
ATHENS 31.74428 TRUE TRUE
MEIGS 23.66729 TRUE FALSE
PIKE 22.22396 TRUE FALSE
SCIOTO 23.52317 TRUE FALSE
VINTON 22.22598 TRUE FALSE
MENOMINEE 43.31246 TRUE TRUE

We have a Table 1.32 of 4 columns and 19 rows meaning that there are 19
outliers in the percent adult below the poverty line.

The 2 logical columns is. outlier and is.extreme identify if the value is an
outlier or an extreme outlier. For example, the county ALEXANDER has a
value of 27.39 which is an outlier but not an extreme outlier. On the other hand,
the county JACKSON has a value of 32.46 which is an outlier and also an
extreme outlier.

1.5.4. Wilcoxon Test for One Sample

The Wilcoxon signed rank test is used to determine if the median of the sample
is equal to a value. This is a non-parametric equivalent of one-sample t-test and
can be used when the required assumptions of the t-test are not met (normality
and no outliers).

For example, we see that the percent adults below the poverty line in the
midwest data contain some outliers so the t-test cannot be used in that case.
However, the minimum sample size for the Wilcoxon test should be 6, or the
test cannot become significant.

1.5.4.1. Wilcoxon Test for Percent of Adults Below the Poverty
Line

To conduct a Wilcoxon test for the percent of adults below the poverty line in the
midwest data, we use the wilcox_test function with the following arguments:

1. data = midwest which is our data frame containing the desired
column (percent adults below the poverty line).

2. percadultpoverty ~1 which is the formula for one sample testing.
This means that all percent of adults below the poverty line values
correspond to 1 group.
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3. mu= 15 which is our reference value.

alternative = “less” which is the alternative hypothesis. The
alternative hypothesis is that the median percent of adults below the
poverty line in the midwest counties is less than 15 reference value.

wilcox_test(data = midwest, percadultpoverty ~1, mu= 15,

alternative = “less™) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “One-tailed Wilcoxon test results of percent of adults
below poverty Line in midwest data™)

Table 1.33. One-Tailed Wilcoxon Test Results of Percent of Adults Below the Pov-
erty Line in Midwest Data

A groupl group2 n statistic p

er 0.000000000000
- null 00000000000000

Czd‘élrtt' ! model | 7 11,566 0000000000000

poverty 00031

The Table 1.33 contains the sample statistic = 11566 which corresponds to
our sample results and the p-value is very low and nearly equals zero.

The p_value is the probability of our sample results (percent adults below
the poverty line) under the null hypothesis (where the median percent adults
below the poverty line = 15). Since this is a very low probability, we reject
the null hypothesis and conclude that the median percent of adults below the
poverty line in the midwest counties is significantly lower than 15.
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2.1. DATA USED IN THIS CHAPTER

2.1.1. The Diamonds Data

The diamonds data is part of the ggplot2 package under the name “diamonds”
and contains the prices and other attributes of about 54,000 diamonds. To load
this data into our R session, we will load the tidyverse package (which contains
the ggplot2 package) using the library function. Then, we will load the diamonds
data using the data function.

Library(tidyverse)

data(“diamonds™)

Then, to see the data structure, we will use the glimpse function.
glimpse(diamonds)

## Rows: 53,940

## Columns: 10

## $ carat <dbl> ©.23, .21, 0.23, ©.29, 0.31, 0.24, ©.24, 0.26, 0.22, 0.23, 0...
## § cut <ord> Ideal, Premium, Good, Premium, Good, Very Good, Very Good, Ver..
## § color <ord> E, E, E, I, J, J, I, H, E, H, 7, 3, F, 3, E, E, I, 3, 3, J, I,..
## § clarity <ord> SI2, SI1, VS1, VS2, SI2, WS2, WS1, SI1, VS2, VS1, SI1, VSI, ..
## $ depth <dbl> 61.5, 59.8, 56.9, 62.4, 63.3, 62.8, 62.3, 61.9, 65.1, 59.4, 64..
## § table <dbl> 55, 61, 65, 58, 58, 57, 57, 55, 61, 61, 55, 56, 61, 54, 62, 58.
## $ price <int> 326, 326, 327, 334, 335, 336, 336, 337, 337, 338, 339, 340, 34..
## $ x <dbl> 3.95, 3.89, 4.05, 4.20, 4.34, 3.94, 3.95, 4.07, 3.87, 4.00, 4
# gy <dbl> 3.98, 3.84, 4.07, 4.23, 4.35, 3.96, 3.98, 4.11, 3.78, 4.05, 4
## 8 z <dbl> 2.43, 2.31, 2.31, 2.63, 2.75, 2.48, 2.47, 2.53, 2.49, 2.39, 2

The diamonds data contains 53940 rows (diamonds) and 10 columns:

1. carat: the weight of the diamond. It is a double or numeric column
with decimals.

2. cut: the quality of the cut. It is an ordered factor with Fair as the
lowest cut and Ideal as the best cut.

3. color: the diamond color. It is an ordered factor with D as the best
color to J as the worst color.

4, clarity: the clarity of the diamond. It is an ordered factor with 11 as
the worst clarity to IF as the best clarity.

5. depth: the total depth percentage. It is a double or numeric column
with decimals.

6. table: the width of the top of the diamond relative to the widest point.
It is a double or numeric column with decimals.
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7. price: the price in US dollars. It is a double or numeric column with
decimals.
8. x: the length in mm. It is a double or numeric column with decimals.

y: the width in mm. It is a double or numeric column with decimals.

10.  z: the depth in mm. It is a double or numeric column with decimals.

2.1.2. The General Social Survey Data

The general social survey data frame is part of the forcats package (which
is part of the tidyverse package) under the name “gss cat.” The gss cat data
contains a sample of categorical variables from the General Social Survey of
about 21,000 participants. As before, we load the”’gss _cat” data frame using the
data function. Finally, we explore the data using the glimpse function.
data(“gss_cat”)

glimpse(gss_cat)

## Rows: 21,483

## Columns: 9

## $ year <int> 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 20..
## $ marital <fct> Never married, Divorced, Widowed, Never married, Divorced, Mar..
## $ age  «<int> 26, 48, 67, 39, 25, 25, 36, 44, 44, 47, 53, 52, 52, 51, 52, 46..
## $ race <fct> White, White, White, White, White, White, White, White, White,..
## $ rincome <fct> $8000 to 9999, $8000 to 9999, Not applicable, Not applicable, ..
## $ partyid <fct> “Ind,near rep,” “Not str republican,” “Independent,” “Ind,near..
## $ relig <fct> Protestant, Protestant, Protestant, Orthodox-christian, None, ..
## $ denom <fct> “Southern baptist,” “Baptist-dk which,” “No denomination,” “No..

## $ tvhours <int> 12, NA, 2, 4, 1, NA, 3, NA, @, 3, 2, NA, 1, NA, 1, 7, NA, 3, 3..
The data contains 21,483 rows and 9 columns:

year: the year of the survey and its class is integer.

marital: the marital status and its class is a factor.

age: the participant’s age and its class is an integer.

race: the participant’s race and its class is a factor.

rincome: the reported income and its class is a factor.

partyid: the party affiliation and its class is a factor.

relig: the participant’s religion and its class is a factor.

denom: the participant’s denomination and its class is a factor.

D A o

tvhours: the hours per day watching TV and its class is an integer.
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2.2. TYPES OF CATEGORICAL DATA

There are 2 types of categorical data:

1.

Nominal Categorical Data: Where the categories have no inherent
ordering. Examples are all categorical columns or factors of gss cat
data (marital, race, rincome, partyid, relig, denom).

Ordinal Categorical Data: Where the categories are ordered.
Examples are all categorical columns or ordered factors of diamonds
data (cut, color, clarity). The cut column describes the quality of the
cut and has the Fair category as the lowest cut and the Ideal category
as the best cut.

2.3. SUMMARY STATISTICS

The category proportion (along with the category sample size) is the only
measure that is used to describe categorical data.

2.3.1. Proportion and Sample Size of Cut Categories in
Diamonds Data

To get the sample size and proportion of the cut column categories in diamonds
data, we use the following functions:

1.

The count function with the cut argument is applied to the diamonds
data frame to give the sample size (number of rows) of cut column
categories.

The mutate function with the argument, proportion = n/sum(n), to
create a new column called “proportion” by dividing n by the sum
of n.

The flextable, theme box, and set caption functions, from the
flextable package, convert the result to a table as described in
Chapter 1.

All these functions are applied in sequence using the “%>%" operator.
Because we are using functions from the flextable package, we should load first
the flextable package into our R session using the library function.
Library(flextable)

diamonds %>% count(cut) %>% mutate(proportion = n/sum(n)) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “Sample size and proportion of cut column categories in
diamonds data”)
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Table 2.1. Sample Size and Proportion of Cut Column Categories in Diamonds Data

Cut n Proportion

Fair 1,610 0.02984798

Good 4,906 0.09095291

Very Good 12,082 0.22398962

Premium 13,791 0.25567297

Ideal 21,551 0.39953652
We see that:

1. The sample size (or the number of rows) is n. Fair cut has the lowest
sample size (1610) and the Ideal cut has the highest sample size
(21551).

2. The proportion column contains the proportion of every category.

Fair cut has the lowest proportion (0.03 or 3%) and the Ideal cut has
the highest proportion (0.4 or 40%).

3. Because the cut is an ordered factor, the categories are arranged
by their cut quality which also corresponds to their sample size or
proportion.

2.3.2. Proportion and Sample Size of Color Categories in
Diamonds Data

We can use the same functions to get the sample size and proportion of color
categories in diamonds data.

diamonds %>% count(color) %>% mutate(proportion = n/sum(n)) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “Sample size and proportion of color column categories
in diamonds data”)

Table 2.2 Sample Size and Proportion of Color Column Categories in Dia-
monds Data

Color n Proportion
D 6,775 0.12560252
E 9,797 0.18162773
F 9,542 0.17690026
G 11,292 0.20934372
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H 8,304 0.15394883
I 5,422 0.10051910
J 2,808 0.05205784

Because the color is an ordered factor, the categories are arranged by their
color quality from the best color (D) to the worst color (J). However, this
arrangement does not correspond to the color sample size or frequency.

To get a Table 2.2 of color column categories arranged by their sample
size, we use the additional function arrange with the argument n to arrange the
categories in ascending order according to their sample size.
diamonds %>% count(color) %>% mutate(proportion = n/sum(n)) %>%

arrange(n) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Sample size and proportion of color column categories in
diamonds data arranged by their frequency”)

Table 2.3. Sample Size and Proportion of Color Column Categories in Diamonds
Data Arranged by Their Frequency

Color n Proportion
J 2,808 0.05205784
I 5,422 0.10051910
D 6,775 0.12560252
H 8,304 0.15394883
F 9,542 0.17690026
E 9,797 0.18162773
G 11,292 0.20934372
We see that:

1. The J color has the lowest sample size (2808) and the G color has the
highest sample size (11292).

2. Accordingly, the J color has the lowest proportion (0.052 or 5.2%)
and the G color has the highest proportion (0.209 or 20.9%).

2.3.3. Proportion and sample Size of Marital Categories in
General Social Survey Data

We can use the same functions to get the sample size and proportion of marital
categories in gss_cat data.
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gss_cat %>% count(marital) %>% mutate(proportion = n/sum(n)) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Sample size and proportion of marital
column categories in gss_cat data™)

Table 2.4 Sample Size and Proportion of Marital Column Categories in gss_cat
Data

Marital n Proportion

No answer 17 0.0007913234
Never married 5,416 0.2521063166
Separated 743 0.0345854862
Divorced 3,383 0.1574733510
Widowed 1,807 0.0841130196
Married 10,117 0.4709305032

We have 6 different marital categories. However, they are not arranged by
their sample size. We can use the arrange function to arrange the categories by
their sample size.
gss_cat %>% count(marital) %>% mutate(proportion = n/sum(n)) %>%

arrange(n) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Sample size and proportion of marital column
categories in gss_cat data arranged by their frequency”)

Table 2.5. Sample Size and Proportion of Marital Column Categories in gss_cat
Data Arranged by Their Frequency

Marital n Proportion
No answer 17 0.0007913234
Separated 743 0.0345854862
Widowed 1,807 0.0841130196
Divorced 3,383 0.1574733510
Never married 5,416 0.2521063166
Married 10,117 0.4709305032
We see that:
1. The “No answer” category has the lowest sample size (17) and the

“Married” status has the highest sample size (10,117).
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2. Accordingly, the “No answer” category has the lowest proportion
(0.0008 or 0.08%) and the “Married” status has the highest proportion
(0.47 or 47%)).

2.3.4. Proportion and Sample Size of Religion Categories in
General Social Survey Data

We can use the same functions to get the sample size and proportion of religion
categories in gss_cat data.
gss_cat %>% count(relig) %>% mutate(proportion = n/sum(n)) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “Sample size and proportion of religion categories 1in
gss_cat data”)

Table 2.6. Sample Size and Proportion of Religion Categories in gss_cat Data

Relig. n Proportion

No answer 93 0.0043290043
Don’t know 15 0.0006982265
::g;‘;‘l’“denomi' 109 0.0050737793
Native american | 23 0.0010706140
Christian 689 0.0320718708
g;h"d"x'cmis' 95 0.0044221012
Moslem/islam 104 0.0048410371
Other eastern 32 0.0014895499
Hinduism 71 0.0033049388
Buddhism 147 0.0068426197
Other 224 0.0104268491
None 3,523 0.1639901317
Jewish 388 0.0180607923
Catholic 5,124 0.2385141740
Protestant 10,846 0.5048643113

We have 15 different religions. However, they are not arranged by their
sample size. We can use the arrange function to arrange the categories by their
sample size.
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gss_cat %>% count(relig) %>% mutate(proportion = n/sum(n)) %>%
arrange(n) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Sample size and proportion of religions in gss_cat data
arranged by their frequency”)

Table 2.7. Sample Size and Proportion of Religions in gss_cat Data Arranged by
Their Frequency

Relig n Proportion

Don’t know 15 0.0006982265
Native american 23 0.0010706140
Other eastern 32 0.0014895499
Hinduism 71 0.0033049388
No answer 93 0.0043290043
Orthodox-christian 95 0.0044221012
Moslem/islam 104 0.0048410371
L‘:)f;l nondenomina- | g 0.0050737793
Buddhism 147 0.0068426197
Other 224 0.0104268491
Jewish 388 0.0180607923
Christian 689 0.0320718708
None 3,523 0.1639901317
Catholic 5,124 0.2385141740
Protestant 10,846 0.5048643113

We see that:

1. The “Don’t know” category has the lowest sample size (15) and the
“Protestant” has the highest sample size (10,846).

2. Accordingly, the “Don’t know” category has the lowest proportion
(0.0007 or 0.07%), and the “Protestant” has the highest proportion
(0.505 or 50.5%).
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2.4. SUMMARY PLOTS

2.4.1. Bar Plot

The geom_bar function is used to plot a bar graph where each bar has a height
equal to the number of rows or observations at each level of the categorical
variable.

The geom bar function requires only one aesthetic (x or y) which is the
categorical variable you want to plot.

2.4.1.1. Bar Plot of Cut Column in Diamonds Data

To plot a bar plot of the cut column from the diamonds data, we will use the
following functions:

1. The ggplot function, applied to diamonds data, with argument aes(x
= cut) to plot cut categories on the x-axis.

The geom_bar function to create the bar plot.

3. The labs function with the title X, and y arguments to add a title,
x-axis title, and y-axis title.

Bar plot of cut categories in diamonds data with categories on the x-axis
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We see that the ideal cut has the highest count or frequency (highest bar)
and the fair cut has the lowest count or frequency (shortest bar).
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4. The theme classic function removes the default gray background
with white lines.

5. The theme function with the argument plot.title = element_text(hjust
= (.5), where hjust is for horizontal justification, to put the plot title
in the top center of the graph.

diamonds %>% ggplot(aes(x = cut))+ geom_bar()+

Llabs(title = “Bar plot of cut categories 1in diamonds data with categories on
the x-axis,”

x = “Cut,” y = “Count”)+

theme_classic()+

theme(plot.title = element_text(hjust = 0.5))

2.4.1.2. Bar Plot of the color Column in Diamonds Data

We can use the same Functions to plot the color categories on the x-axis.
diamonds %>% ggplot(aes(x = color))+ geom_bar()+

labs(title = “Bar plot of color categories in diamonds data with categories on
the x-axis,”

x = “Color,” y = “Count”)+
theme_classic()+

theme(plot.title = element_text(hjust = 6.5))

Bar plet of color categories in diamonds data with categories on the x-axis
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We see that the G color has the highest count or frequency (highest bar) and
the J color has the lowest count or frequency (shortest bar).
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2.4.1.3. Bar Plot of the Religion Column in General Social Sur-
vey Data

We can use the same functions to plot the religion categories on the x-axis from
the general social survey data.
gss_cat %>% ggplot(aes(x = relig))+ geom_bar()+

Labs(title = “Bar plot of religions in general social survey data with religions
on the x-axis,”

X = “Religion,” y = “Count”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Bar plot of religions In general social survey data with religions on the x-axis
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We see that the 15 religions are crowded and not appearing correctly. We
can use the argument, axis.text.x = element_text(angle = 60, hjust = 1), inside
the theme function to put the x-axis text at an angle = 60 with 1 horizontal
justification. We also use the “\n” to break the long title into 2 lines.
gss_cat %>% ggplot(aes(x = relig))+ geom_bar()+

labs(title = “Bar plot of religions 1in general social survey data \nwith
religions on the x-axis at an angle of 66,”
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x = “Religion,” y = “Count”)+

theme_classic()+

theme(plot.title = element_text(hjust = 0.5),
axis.text.x = element_text(angle = 60, hjust = 1))

Bar plot of religions in general social survey data
with religions on the x-axis at an angle of 60
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Alternatively, we can plot the religions on the y-axis.

2.4.1.4. Bar Plot with Categories on the Y-Axis

When we have many categories as for the 15 religions in the general social
survey data, we can put the categories on the y-axis to avoid crowding on the
x-axis. We will use the same functions above except that we use the argument
aes(y = relig) to plot the religions on the y-axis. We will modify the labs and
theme functions accordingly.

gss_cat %>% ggplot(aes(y = relig))+ geom_bar()+

Labs(title = “Bar plot of religions 1in general social survey data \nwith
religions on the y-axis,”

y = “Religion,” x = “Count”)+
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theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Bar plot of religions in general social survey data
with religions on the y-axis
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We see that all religion names appear clearly. The Protestant religion has
the highest frequency. However, the less frequent religion is not clear.

2.4.1.5. Bar Plot with Ordered Categories by Frequency

We can use the mutate and fct_infreq functions to convert the religion column
to a factor with religions arranged by their frequency. Then, we use the same
above functions.
gss_cat %>% mutate(relig = fct_infreq(relig)) %>%

ggplot(aes(y = relig))+ geom_bar()+

labs(title = “Bar plot of religions 1in general social survey data \n with
religions on the y-axis arranged by their frequency,”

y = “Religion,” x = “Count”)+
theme_classic()+
theme(plot.title = element_text(hjust = 6.5))
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Bar plot of religions in general social survey data
with religions on the y-axis arranged by their frequency
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Here we see that Protestant is the most frequent religion while the “Don’t
know” category is the least frequent.

2.4.1.6. Bar Plot with Labeled Bars by Counts

For a more informative plot, we can plot a bar plot with bars labeled by their
counts. To plot this plot for the religion column, we use the following functions:

1. The count function with the argument relig gives a data frame with 15
rows (for 15 religions) with a count column (n) for each religion.

2. The mutate and fct reorder functions to convert the religion to a factor
with religions arranged by their n or frequency value.

3. The ggplot function with argument aes(x = n, y = relig) plots counts on
the x-axis and religions on the y-axis.

4.  The geom bar function with the argument stat = “identity” to create
the bar plot. The default stat of the geom_bar function is “count” which
will not be used here because every religion is represented by only 1
row.
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5. The geom_label function with the argument aes(label = n) to plot a

label of count (n) on the top of each bar.
6. The labs, theme classic, and theme functions as before.

gss_cat %>% count(relig) %>% mutate(relig = fct_reorder(relig,n)) %>%
ggplot(aes(y = relig, x = n))+ geom_bar(stat = “identity”)+
geom_Label (aes(lLabel = n))+

Labs(title = “Bar plot of religions in general social survey data \
nwith religions arranged by their frequency and labeled bars,”

y = “Religion,” x = “Count”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))
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We see that Protestant is the most frequent religion with a frequency of
10846, while the “Don’t know” category is the less frequent with a frequency

of only 15.

110



Univariate Analysis of Categorical Data

As another example, we can plot the clarity categories from the diamonds
data on the x-axis with labeled and arranged bars.
diamonds %>% count(clarity) %>%
mutate(clarity = fct_reorder(clarity,n)) %>%
ggplot(aes(x = clarity, y = n))+ geom_bar(stat = “identity”)+
geom_Label (aes(Label = n))+

Labs(title = “Bar plot of clarity categories in diamonds data \nwith clarities
arranged by their frequency and labeled bars,”

X = “Clarity,” y = “Count”)+
theme_classic()+
theme(plot.title = element_text(hjust = 6.5))

Bar plot of clarity categories in diamonds data
with clarities arranged by their frequency and labeled bars
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We see that “SI1” is the most frequent clarity with a frequency of 13065,
while the “I1” category is the least frequent with a frequency of 741.
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2.4.2. Lollipop Plot

The lollipop plot is the same as the bar plot and consists of 2 parts, the point
and a line. The point represents the count and the line connects the point to its
corresponding category.

The geom point and geom segment functions can be used to plot the 2
parts of the lollipop plot. However, both functions require 2 or more aesthetics
and not only 1 aesthetic as the geom_bar function. This will be explained below.

2.4.2.1. Lollipop Plot of Cut Column in Diamonds Data

To plot a lollipop plot of the cut column from the diamonds data, we will use
the following functions:

1. The count function with the argument cut, applied to the diamonds
data, gives a data frame with 5 rows (for 5 cut categories) with a
count column (n) for each category.

2. The ggplot function with argument aes(x = cut, y = n) plots cut
categories on the x-axis and their counts on the y-axis.

3. The geom_point function to draw the point for each cut category.
We increase the point size to size 3 so the resulting plot resembles a
lollipop.

4. The geom_segment function with the argument, aes(y =0, yend =n,
x = cut, xend = cut), to draw a line for each cut category that:

. Starts at y = 0 and ends at n or counts at the y-axis.
. Starts and ends at the same cut category on the x-axis.
5. The labs, theme classic, and theme functions as described above.
diamonds %>% count(cut) %>%
ggplot(aes(x = cut, y = n))+ geom_point(size = 3)+
geom_segment(aes(y = 0, yend = n, x = cut, xend = cut))+

Labs(title = “Lollipop plot of cut categories in diamonds data \nwith cut
categories on the x-axis,”

x = “Cut,” y = “Count”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))
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Lollipop plot of cut categories in diamonds data

with cut categories on the x-axis
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We see that the ideal cut has the highest count or frequency (longest lollipop)
and the fair cut has the lowest count or frequency (shortest lollipop).

2.4.2.2. Lollipop Plot with Categories on the Y-axis

When we have many categories as for the 15 religions in the general social
survey data, we can put the categories on the y-axis to avoid crowding on the
x-axis. We will use the same functions above except that:

1. We use the argument aes(y = relig, x = n) inside the ggplot function
to plot the religions on the y-axis and their counts on the x-axis.

2. We use the argument aes(x = 0, xend = n, y = relig, yend = relig)
inside the geom segment function to draw a line for each religion
that starts at x = 0 and ends at n or counts at the x-axis and starts and
ends at the same religion on the y-axis.

We will modify the labs and theme functions accordingly.

gss_cat %>% count(relig) %>%
ggplot(aes(y = relig, x = n))+ geom_point(size = 3)+
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geom_segment(aes(x = 0, xend = n, y = relig, yend = relig))+
Labs(title = “Lollipop plot of religions in general social survey data \nwith
religions on the y-axis,”

y = “Religion,” x = “Count”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Lollipop plot of religions in general social survey data
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We see that all religion names appear clearly. The protestant religion has the
highest frequency. However, the less frequent religion is not clear.

2.4.2.3. Lollipop Plot with Ordered Categories by Frequency

We can use the mutate and fct reorder functions to convert the religion to a
factor with religions arranged by their n or frequency. Then, we use the same
above functions.

gss_cat %>% count(relig) %>% mutate(relig = fct_reorder(relig,n)) %>%
ggplot(aes(y = relig, x = n))+ geom_point(size = 3)+
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geom_segment(aes(x = 0, xend = n, y = relig, yend = relig))+

Labs(title = “Lollipop plot of religions in general social survey data \nwith
religions on the y-axis arranged by their frequency,”

y = “Religion,” x = “Count”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Lollipop plot of religions in general social survey data
with religions on the y-axis arranged by their frequency
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Here we see that Protestant is the most frequent religion while the “Don’t
know” category is the least frequent.

2.4.2.4. Lollipop Plot Labeled with Counts
We will use the same functions in 2.4.2.3. with the addition of the geom_label
function with the arguments:

. aes(label = n) so the label for each lollipop will be its count or n.

. nudge x =500 to offset the labels from the points of lollipops by 500
points on the x-axis, or the labels will hide the points of lollipops.
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. size = 3 to decrease the label size to avoid crowding
gss_cat %>% count(relig) %>% mutate(relig = fct_reorder(relig,n)) %>%
ggplot(aes(y = relig, x = n))+ geom_point(size = 3)+
geom_segment(aes(x = 0, xend = n, y = relig, yend = relig))+
geom_Label (aes(Label = n), nudge _x = 500, size = 3)+
Labs(title = “Lollipop plot of religions in general social survey data \nwith
religions arranged and Llabeled by their frequency,”

y = “Religion,” x = “Count”)+
theme_classic()+
theme(plot.title = element_text(hjust = 6.5))

Lollipop plot of religions in general soclal survey data
with religions arranged and labeled by their frequency
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We see that Protestant is the most frequent religion with a frequency of
10846, while the “Don’t know” category is the less frequent with a frequency
of only 15.

As another example, we can plot the denomination categories from the
general social survey data on the y-axis with labeled and arranged lollipops.
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gss_cat %>% count(denom) %>% mutate(denom = fct_reorder(denom,n)) %>%
ggplot(aes(y = denom, x = n))+ geom _point(size = 3)+

geom_segment(aes(x = @, xend = n, y = denom, yend = denom))+
geom_Label (aes(Label = n), nudge x = 500, size = 3)+

Labs(title = “Lollipop plot of denomination categories in general social survey
data \nwith categories arranged and labeled by their frequency,”

y = “Denomination,” x = “Count”)+
theme_classic()+
theme(plot.title = element_text(hjust = 6.5))
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We see that the “Not applicable” category is the most frequent category with
a frequency of 10072, while the “Other lutheran” category is the less frequent
with a frequency of 30.

To give a different color for each category, we can use the color= denom
argument inside the ggplot function. We also use the color= “Denomination”
inside the labs function to modify the legend title.
gss_cat %>% count(denom) %>% mutate(denom = fct_reorder(denom,n)) %>%
ggplot(aes(y = denom, x = n, color = denom))+ geom_point(size = 3)+

geom_segment(aes(x = @, xend = n, y = denom, yend = denom))+

117



Statistics with R for Data Analysis

geom_Label (aes(Label = n), nudge _x = 500, size = 3)+

Labs(title = “Lollipop plot of denomination categories in general social survey
data \nwith colored categories arranged and labeled by their frequency,”

y = “Denomination,” x = “Count,” color = “Denomination®)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))
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We see that each lollipop and label has a different color for each category.

2.4.3. Pie Chart

The pie chart is used if the goal is to compare each category with the whole. The
pie chart is most useful when the number of categories is small. However, if the
goal is to compare the frequency of categories, it is better to use bar or lollipop
charts because humans are better at judging the length of bars or lollipops than
the volume of pie slices.
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To plot a pie chart, we must have a table of categories and their percentages
that sum up to 100%.

2.4.3.1. Pie chart for Cut Categories in Diamonds Data

We generate a data frame with the count and percentage of each cut category
using the formula percentage = nX100/sum(n) as done before in section 2.3.1.
Instead of proportions, we will create percentages by multiplying the formula of
proportion by 100. We convert the result to a table as before.

diamonds %>% count(cut) %>% mutate(percentage = n*100/sum(n)) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “Sample size and percentage of cut column categories 1in
diamonds data”)

Table 2.8. Sample Size and Percentage of cut Column Categories in Diamonds

Data
Cut n Percentage
Fair 1,610 2.984798
Good 4,906 9.095291
Very Good 12,082 22.398962
Premium 13,791 25.567297
Ideal 21,551 39.953652

To create a pie plot from this data, we use the following functions:

1. the ggplot function with the arguments, aes(y = percentage, fill =
cut, x = ““), to plot the percentage on the y-axis and a different fill
color for each cut category. This will produce 1 bar with 5 parts for
5 cut categories.

2. The geom bar function with the arguments, stat = “identity” and
color = “black,” to draw a black border around each category.

3. The coord polar function produces a pie chart circle from the

bar plot. We use the argument, theta = “y” to map the y values
(percentage) to angles.

4, The labs function with the arguments title and fill to add a title and a
legend title respectively. We also use the y = ““ and x="“‘ arguments
to delete the y-axis and x-axis titles respectively since they have no
meaning.

G

5. The theme void function removes x- and y-axes and keeps only the
pie chart circle.
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6. The theme function with plot.title argument to place the title at the
top center of the plot.
diamonds %>% count(cut) %>% mutate(percentage = n*100/sum(n)) %>%
ggplot(aes(y = percentage, fill = cut, x = ““)) +
geom_bar(stat = “identity,” color = “black”)+
coord_polar(theta = “y”)+

Labs(title = “Pie chart for percentage of different cut categories in diamonds
data,”

y = ({J » X = (fl » f.i.LL = ((Cut11)+
theme_void()+

theme(plot.title = element_text(hjust = 0.5))

Pie chart for percentage of different cut categories in diamonds data
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We see that the largest slice (most frequent category) was for the ideal cut
and the smallest slice (lowest frequent category) was for the fair cut.
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2.4.3.2. Pie Chart for Marital Status Categories in General Social
Survey Data

Using the same functions, we can draw a pie chart for the marital status
categories in the general social survey data.
gss_cat %>% count(marital) %>% mutate(percentage = n*100/sum(n)) %>%
ggplot(aes(y = percentage, fill = marital, x = ““)) +

geom_bar(stat = “identity,” color = “black”)+

coord_polar(theta = “y”)+

Labs(title = “Pie chart for percentage of different marital categories 1in
general social survey data,”

y="x="9” fill = “Marital status”)+
theme_void()+
theme(plot.title = element_text(hjust = 0.5))

PPie chart for percentage of different marital categories in general social survey data
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We see that the largest slice (most frequent category) was for the married status
and the smallest slice (lowest frequent category) was for the “No answer” category.

2.4.3.3. Pie Chart for Religions in General Social Survey Data

Using the same functions, we can draw a pie chart for the religion categories in
the general social survey data
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gss_cat %>% count(relig) %>% mutate(percentage = n*100/sum(n)) %>%
ggplot(aes(y = percentage, fill = relig, x = ““)) +

geom_bar(stat = “identity,” color = “black”)+

coord_polar(theta = “y”)+

Labs(title = “Pie chart for percentage of different religions in general social
survey data,”

y =7 x =" fill = “Religion”)+

theme_void()+

theme(plot.title = element_text(hjust = 6.5))

Pie chart for percentage of different religions in general social survey data

We see that the largest slice (most frequent religion) was the protestant but
the smallest slice (lowest frequent religion) is difficult to discern.

2.4.4. Tree Map

In a tree map, each tile represents a single category, with the area of the tile
proportional to the categorical counts.

A tree map is similar to a pie chart in that it displays proportions by varying
the area of a shape. A tree map has two advantages over a pie chart:
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We can display many more categories. In a pie chart, there is an
upper limit to the number of categories that can be added to the
circle. On the other hand, in a tree map, we can display hundreds, or
thousands, of categories.

A tree map allows us to arrange the data categories hierarchically. In
other words, we can group the proportions by using other categorical
variables in the data.

We will use the treemapify package for plotting tree maps of different
categorical columns so we load it first into our R session using the library

function.

2.4.4.1. Treemap for the Cut Categories in Diamonds Data

To draw this plot, we will use the following functions:

1. The count function with the cut argument is applied to the diamonds
data to produce a count for each one of the 5 cut categories.

2. The ggplot function with the argument, aes(fill = cut, area = n), so
a tile will be drawn for each cut category, with a different fill color,
and the tile area is proportional to the count of each cut category.

3. The geom_treemap function to draw the 5 tiles corresponding to 5
cut categories.

4. The labs function with title and fill arguments to add a title and
legend title respectively.

5. The theme function with plot.title argument to place the title at the
top center of the plot.

Library(treemapify)

diamonds %>% count(cut) %>%

ggplot(aes(fill = cut, area = n)) +

geom_treemap() +

Labs(title = “Tree map of cut categories in Diamonds data,”
fill = “cut”)+
theme(plot.title = element_text(hjust = 0.5))
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Tree map of cut categories in Diamonds data
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We see that the ideal cut has the largest tile (most frequent), and the fair cut
has the smallest tile (least frequent).

2.4.4.2. Treemap for the Color Categories in Diamonds Data

Using the same functions above.

diamonds %>% count(color) %>%

ggplot(aes(fill = color, area = n)) +

geom_treemap() +

Labs(title = “Tree map of color categories in Diamonds data,”
Ffill = “Color”)+

theme(plot.title = element_text(hjust = 0.5))
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Tree map of color categories in Diamonds data
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It is difficult to discern which color category is the most frequent. It is better
if we add the color name to each tile.

2.4.4.3. Treemap with Labeled Tiles

we can add the text for each tile using the geom_treemap_text function with the

argument, aes(label = color), to place the corresponding color name in each tile.
diamonds %>% count(color) %>%

ggplot(aes(fill = color, area = n)) +
geom_treemap() +
geom_treemap_text(aes(Label = color))+

Labs(title = “Tree map of color categories in Diamonds data with Labeled tiles,”
fill = “Color”)+
theme(plot.title = element_text(hjust = 6.5))
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Tree map of coler categories in Diamonds data with labeled tiles
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The default black color is difficult to discern in dark color so it is better to
use white color using the color="white” argument within the geom_treemap
text function.
diamonds %>% count(color) %>%

ggplot(aes(fill = color, area = n)) +
geom_treemap() +
geom_treemap_text(aes(label = color), color = “white”)+

labs(title = “Tree map of color categories in Diamonds data with white Llabeled
tiles,”

Fill = “Color”)+
theme(plot.title = element_text(hjust = 0.5))
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Tree map of color categories in Diamonds data with white labeled tiles
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We can also place the labels in the center of each tile using the place =
“center” argument within the geom_treemap_text function.
diamonds %>% count(color) %>%
ggplot(aes(fill = color, area = n)) +
geom_treemap() +
geom_treemap_text(aes(Label = color), color = “white,”
place = “center”)+

labs(title = “Tree map of color categories in Diamonds data \nwith centered
white labeled tiles,”

fill = “Color”)+

theme(plot.title = element_text(hjust = 0.5))
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Tree map of color categories in Diamonds data
with centered white labeled tiles
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We can also label the tiles by their frequency along with their names.
Inside the geom_treemap text function, we will use the argument, aes(label =
paste(color,n, sep = “\n”), to paste the color name to its frequency with a “\n”
separator (sep argument) so the result will be in 2 lines.
diamonds %>% count(color) %>%

ggplot(aes(fill = color, area = n)) +
geom_treemap() +
geom_treemap_text (aes(Label = paste(color,n, sep = “\n”)), color = “white,”

place = “center”)+

Labs(title = “Tree map of color categories in Diamonds data \nwith tiles
Labeleled by names and frequency,”

fill = “Color”)+
theme(plot.title = element_text(hjust = 6.5))
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Tree map of color categories in Diamonds data
with tiles labeleled by names and frequency
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We see that the G color is the most frequent with a frequency of 11292 and
the J color is the least frequent with a frequency of 2808.

2.4.4.4. Treemap for Religions in the General Social Survey Data

We can use the same functions to plot a treemap of the religions in the general
social survey data.

gss_cat %>% count(relig) %>%

ggplot(aes(fill = relig, area = n)) +

geom_treemap() +

geom_treemap_text(aes(label = paste(relig,n, sep = “\n”)), color = “white,”

place = “center”)+

Labs(title = “Tree map of religions in general social survey data \nwith most
tiles labeleled by names and frequency,”

Ffill = “Religion”)+

theme(plot.title = element_text(hjust = 6.5))
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We see that the least frequent tiles are not labeled. This can be corrected
using the min.size = 0 argument within the geom_treemap_text function.
gss_cat %>% count(relig) %>%

ggplot(aes(fill = relig, area = n)) +
geom_treemap() +
geom_treemap_text(aes(lLabel = paste(relig,n, sep = “\n”)), color = “white,”

2

place = “center,” min.size = 0)+

labs(title = “Tree map of religions 1in general social survey data \nwith all
tiles labeleled by names and frequency,”

fill = “Religion”)+

theme(plot.title = element_text(hjust = 0.5))
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2.5. STATISTICAL TESTS

2.5.1. Binomial and Multinomial Tests

The binomial and multinomial tests are used to test if a categorical variable has
a homogeneity between its categories or to compare the categories’ proportions
to expected proportions. The binomial test is used when the categorical variable
has 2 categories only (binary) and the multinomial test is used with a categorical
variable with more than 2 categories.

The binomial and multinomial tests are alternatives to proportion and Chi-
square tests when the sample size is small. The sample size is small when is
less than 5 where:

. n = sample size.
. is the probability or proportion of success or the null hypothesis.
. is the probability or proportion of failure and equals 1-.
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2.5.1.1. Binomial Test for Small Sample Data

This example is modified from Rosner, Bernard (Bernard A.). Fundamentals of
Biostatistics. Boston :Brooks/Cole, Cengage Learning, 8th edition, 2016.

If 13 deaths have occurred among male workers in a nuclear power plant
and in 5 of them the cause of death was cancer. So the proportion from this
sample is 5/13 = 0.38 or 38%. Based on vital statistics reports, about 20% of all
deaths can be attributed to some form of cancer. So this is the null hypothesis
proportion.

This is a small sample because 0.2 X 0.8 X 13 =2.08 which is < 5.

Null hypothesis: The population proportion of deaths due to cancer among
male workers in a nuclear power plant = 20% or 0.2. The observed proportion
of 0.38 or 38% was due to sampling error.

Alternative hypothesis: The population proportion of deaths due to cancer
among male workers in a nuclear power plant is greater than 20% or 0.2. The
observed proportion of 0.38 or 38% truly represents the background population
of male workers in a nuclear power plant. This is a one-tailed test.

We will use the binom_test function from the rstatix package to conduct
this test with the arguments:

. x = 5 which is the count of deaths from cancer in this sample.
. n = 13 which is the sample size.
. p = 0.2 which is the null hypothesis proportion
. alternative = “greater” which is the alternative hypothesis. Then we
convert the results to a table as before.
Because we are using the rstatix package, we must load it into our R session
using the library function.
Library(rstatix)
binom_test(x = 5, n = 13, p = 0.2, alternative = “greater”) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “One-tailed binomial test results of cancer deaths
proportion among male workers in a nuclear power plant”)

Table 2.9. One-Tailed Binomial Test Results of Cancer Deaths Proportion Among
Male Workers in a Nuclear Power Plant

. conf. -
n estimate conf.low high p p.signif
13 0.3846154 0.1656594 1 0.09913061 ns
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The Table 2.8 contains the estimated sample proportion= 0.38 or 38% and the
p-value = 0.099.

Thep_value is the probability of our sample results (cancer deaths proportion
among male workers in a nuclear power plant) under the null hypothesis (where
the actual proportion = 0.2 or 20%). Since this probability is greater than 0.05,
we fail to reject the null hypothesis and conclude that the proportion of deaths
from cancer is not significantly different for nuclear-power-plant workers than
for men in the general population.

This is also evident from the reported 95% confidence interval from 0.166 or
16.6% to 1 or 100%. Since this interval contains the null hypothesis proportion,
we accept the null hypothesis that the proportion of cancer deaths among male
workers in a nuclear power plant equals 0.2 or 20%.

2.5.1.2. Binomial Test for Race Column in the General Social
Survey Data

If we apply the count function with the argument race on the gss_cat data, we
will get the 3 races that are presented in this data.
gss_cat %>% count(race) %>% flextable() %>% theme_box() %>%

set_caption(caption = “Count of different races in the general social survey
data”)

Table 2.10. Count of Different Races in the General Social Survey Data

Race n
Other 1,959
Black 3,129
White 16,395

We see that White is the most frequent race with a count of 16395, followed
by Black with a count of 3129, and other (races) with a count of 1959.

To convert this column to a binary column, we will use the fct lump
function inside the mutate function with the arguments:

. race which is the column to be mutated or changed.

. n=1 to keep only the most frequent race and all other races are
lumped in the “Other” race.
gss_cat %>% mutate(race = fct_Lump(race, n = 1)) %>%
count(race) %>% flextable() %>% theme_box() %>%

set_caption(caption = “Count of two races after race Lumping \n in the general
social survey data”)
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Table 2.11. Count of Two Races After Race Lumping in the General Social Survey
Data

Race n
White 16,395
Other 5,088

We see that White has the same count of 16395, while the other (races) has
a count of 5088 which is the sum of the counts of 2 previous races, black and
other, 3129+1959 = 5088. The proportion of White in this data = 16395/21483
=0.763 or 76.3%.

We know from the United States census that 71% of the population in
the United States are White. So we may wish to test the hypothesis that the
proportion of whites in the general social survey data is different from the
general US census.

Null hypothesis: The population (actual) proportion of White in the general
social survey data = 71% or 0.71. The observed proportion of 0.763 or 76.3%
was due to sampling error.

Alternative hypothesis: The population (actual) proportion of White in the
general social survey data is different from 71% or 0.71. This is a two-tailed test
because the actual proportion may be less or greater than 71%.

Again, we will use the binom_test function to conduct this test with the
arguments:

. x = 16395 which is the count of White in this sample.

. n = 21483 which is the sample size or the number of rows in this
data.

. p = 0.71 which is the null hypothesis proportion

. alternative = “two.sided” which is the alternative hypothesis. Then
we convert the results to a table as before.
binom_test(x = 16395, n = 21483, p = 0.71, alternative = “two.sided”) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “Two-tailed binomial test results of White proportion
in the general social survey data”)
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Table 2.12. Two-Tailed Binomial Test Results of White Proportion in the General
Social Survey Data

n Estimate conf.low conf.high p p.signif

0.0000
000000
000000
000000
000000
000000
21,483 | 0.7631616 0.7574178 0.768834 000000 | ##x**
000000
000000
000000
000000
000119
439

The Table 2.11 contains the estimated sample proportion of 0.763 or 76.3%
and the p-value which is very low and nearly equals zero.

The p_value is the probability of our sample results (White proportion
in the general social survey data) under the null hypothesis (where the actual
proportion = 0.71 or 71%). Since this probability is very low, we reject the
null hypothesis and conclude that the proportion of whites in the general social
survey data is significantly different from the white proportion in the US census.
This means that the general social survey data is not representative of the general
population in the US.

This is also evident from the reported 95% confidence interval from 0.757
or 75.7% to 0.769 or 76.9%. Since this interval does not contain the null
hypothesis proportion, we accept the alternative hypothesis that the proportion
of whites in the general social survey data is different from that in the general
population of the US.

2.5.1.3. Multinomial Test for Race Column in the General Social
Survey Data
We see that we have 3 races in the general social survey data. We may test the
proportions of these races using 2 approaches:

1. Are the 3 races equally common? This is a test of homogeneity.

2. Are the races’ proportions equivalent to certain proportions? This is
called the goodness-of-fit test where we compare multiple observed
proportions to expected probabilities.
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2.5.1.3.1. Test for Homogeneity

We will test the homogeneity of races within those participants with a reported
income of less than 1000 USD. We use the following functions:

1. The filter function with the argument rincome=="“Lt $1000” filters
for participants with a reported income less than 1000 USD.

2. The count function with race argument to count the different races
within those participants.
gss_cat %>% filter(rincome==“Lt $1006”) %>% count(race) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Count of different races 1in participants with a reported
income less than 1000 USD “)

Table 2.13. Count of Different Races in Participants with a Reported Income Less
Than 1000 USD

Race n
Other 36
Black 51
White 199

We see that White is the most frequent race with a count of 199, followed
by Black with a count of 51, and other (races) with a count of 36. To test the
homogeneity of races within this subset, we do these steps:

1. We create a vector called “races” that contains the counts for each
race.

2. We use the multinom_test function with the arguments:
1. x = races which is the sample counts.

ii. p = ¢(1/3,1/3,1/3) which are the probabilities or proportions
under the null hypothesis. If the 3 races are homogeneous
in those participants with income less than 1000 USD, the
expected proportion = 1/3 = 0.33 or 33%. Then we convert the
results to a table as before.

races<-c(white =199, black=51, other=36)
races

## white black other

## 199 51 36

multinom_test(x = races,

p =¢(1/3,1/3,1/3)) %>%
flextable() %>% theme_box() %>%
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set_caption(caption = “Multinomial test of homogeneity for races within
participants with income less than 1000 USD™)

Table 2.14. Multinomial Test of Homogeneity for Races Within Participants
with Income Less Than 1000 USD

p p-signif
0.000000000000000000000 N
00000000000003624663

The table 2.13 contains the p-value which is very low and nearly equals
Zero.

The p_value is the probability of our sample results (race proportion in
participants with less than 1000 USD income) under the null hypothesis (where
all 3 proportions = 0.33 or 33%). Since this probability is very low, we reject the
null hypothesis and conclude that the proportion of some races is different from
other races in those participants with income less than 1000 USD.

A subsequent test is to perform pairwise comparisons between groups to
find out which race pair is different in its components. In other words, which
race proportion is significantly different from 0.5 relative to any other race.

We use the pairwise_binom_test function to perform a pairwise comparison
(binomial test) with the arguments:

. x = races which is the named vector with counts.

. p-adjust.method = “fdr” which is the method for adjusting the
p-value in multiple comparisons. The “fdr” is for the false discovery
rate.

. alternative = “two.sided” which is the alternative hypothesis.
pairwise_binom_test(x = races, p.adjust.method = “fdr,”
alternative = “two.sided”) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Pairwise comparisons for races within participants with
income less than 1000 USD”)

Table 2.15. Pairwise Comparisons for Races Within Participants with Income Less
Than 1000 USD
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Groupl

Group2 |n |Estimate |conflow |confhigh |p p-adj

p-adj.
signif

white

black 250 {0.7960000 [0.7406598 |0.8441733 oAk

0.00000000(0.0000000
000000000 {00000000
000078206 {000001170,
72314546 (000000

white

other 235 0.8468085 [0.7942799 (0.8903422 oAk

0.00000000{0.0000000
000000000 {00000000
000000000 {00000000
01601867 |0000481

black

other |87 [0.5862069 [0.4755393 (0.6908337 ns

0.13290188(0.1330000
519546225 {00000000
487388824 {00710542
14909313 |7357601

We have 3 pairwise comparisons:

1.

Comparing white with a count of 199 to black with a count of 51.
So the total sample size = 199+51 = 250. The estimated proportion
of white in this sample = 199/250 = 0.796 or 79.6% and 95%
confidence interval = 0.74—0.84. The 95% confidence interval does
not contain the null hypothesis proportion of 0.5 and the adjusted
p-value is very low. So, we reject the null hypothesis and conclude
that white proportion is significantly different from (larger than) the
black proportion in this sample.

Comparing white with a count of 199 to other with a count of 36.
So the total sample size = 199+36 = 235. The estimated proportion
of white in this sample = 199/235 = 0.847 or 84.7% and 95%
confidence interval = 0.79—-0.89. The 95% confidence interval does
not contain the null hypothesis proportion of 0.5 and the adjusted
p-value is very low. So, we reject the null hypothesis and conclude
that white proportion is significantly different from (larger than) the
other proportion in this sample.

Comparing black with a count of 51 to other with a count of 36.
So the total sample size = 51+36 = 87. The estimated proportion of
black in this sample = 51/87 = 0.586 or 58.6% and 95% confidence
interval = 0.476—0.69. The 95% confidence interval contains the null
hypothesis proportion of 0.5 and the adjusted p-value larger than
0.05. So, we fail to reject the null hypothesis and conclude that the
black proportion is statistically equivalent to the other proportion in
this sample.

138



Univariate Analysis of Categorical Data

2.5.1.3.2. Goodness-of-Fit Test

For the goodness-of-fit test, we must have another vector of probabilities or
proportions that sum to 1. So, we do these steps:

1. We create another vector called “races prob” that contains the
probability for each race. We assume that the expected probability
of white is 0.8 or 80%, the expected probability of black is 0.1 or
10%, and the expected probability of other is 0.1 or 10%. Note that
0.8+0.1+0.1 = 1.

2. We use the multinom_test function with the arguments:
1. x = races which is the sample counts.

il. p=races_prob which are the probabilities or proportions under
the null hypothesis that we want to test. Then we convert the
results to a table as before.

races_prob<-c(white =0.8, black=6.1, other=0.1)
races_prob

## white black other

# 0.8 0.1 0.1

multinom_test(x = races,

p = races_prob) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “Multinomial goodness-of-fit test for races within
participants with income less than 1000 USD”)

Table 2.16. Multinomial Goodness-of-Fit Test for Races Within Participants with
Income Less Than 1000 USD

p p.signif
0.0000324622 ok

The Table 2.15 contains the p-value which is very low and nearly equals
Zero.

The p value is the probability of our sample results (race proportion in
participants with less than 1000 USD income) under the null hypothesis (where
the proportions are stored in the races prob vector). Since this probability is
very low, we reject the null hypothesis and conclude that the proportion of some
races is different from the expected probabilities in the races prob vector.

A subsequent test is to perform pairwise comparisons between each race
and its expected probability to find out which race is different from its expected
probability. We use the pairwise binom _test against p function to perform a
pairwise comparison (binomial test) with the arguments:
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. x = races which 1s the named vector with counts.

. p = races_prob which is the vector holding the expected
probabilities.

. p-adjust.method = “fdr” which is the method for adjusting the
p-value in multiple comparisons. The “fdr” is for the false
discovery rate.

. alternative = “two.sided” which is the alternative hypothesis.
pairwise_binom_test_against_p(x = races, p = races_prob,
p.adjust.method = “fdr,”
alternative = “two.sided”) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Pairwise comparisons for races against expected
probabilities™)

Table 2.17. Pairwise Comparisons for Races Against Expected Probabilities

Group [Observed [Expected n  |Estimate |conflow  [confhigh [p p.adj lsjéﬂif
white 199 228.8 286 10.6958042 [0.63890187 [0.7485954 10.00003054810 (0.0000686 [****
black |51 28.6 286 10.1783217 (0.13574917 0.2277023 [0.00004571957 {0.0000686 [****
other |36 28.6 286 [0.1258741 0.08974017 {0.1699832 (0.13993011724 {0.1400000 |[ns

We have 3 pairwise comparisons:

1. Comparing white with a count of 199 and a proportion of 199/286=
0.696 to its expected probability of 0.8. The 95% confidence interval
= 0.64-0.75. The 95% confidence interval does not contain the null
hypothesis proportion of 0.8 and the adjusted p-value is very low.
So, we reject the null hypothesis and conclude that white proportion
is significantly different from (smaller than) the expected probability
of 0.8.

2. Comparing black with a count of 51 and a proportion of 51/286=
0.178 to its expected probability of 0.1. The 95% confidence interval
= 0.136-0.228. The 95% confidence interval does not contain the
null hypothesis proportion of 0.1 and the adjusted p-value is very
low. So, we reject the null hypothesis and conclude that black
proportion is significantly different from (larger than) the expected
probability of 0.1 in this sample.

3. Comparing other with a count of 36 and a proportion of 36/286=
0.126 to its expected probability of 0.1. The 95% confidence
interval = 0.09-0.17. The 95% confidence interval contains the null
hypothesis proportion of 0.1 and the adjusted p-value is greater
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than 0.05. So, we accept the null hypothesis and conclude that other
proportion is not significantly different from (equivalent to) the
expected probability of 0.1.

2.5.2. Proportion Test

The proportion test is used for binary categorical variables to either evaluate the
homogeneity of proportions or to test that the proportions are equal to certain
given values when the sample size is large.

2.5.2.1. Test for Homogeneity in the Race Column of the General
Social Survey Data

We see above after the race factor lumping that White has a count of 16395
and the other (races) has a count of 5088. We can test if these two races are
homogeneous or in other words, they have a proportion of 0.5.

. Null Hypothesis: The population (actual) proportion of whites or
other in the general social survey data = (.5.

. Alternative Hypothesis: The population (actual) proportion of
White or other in the general social survey data is different from 0.5.
This is a two-tailed test because the actual proportion may be less or
greater than 50%.

We will use the prop_test function to conduct this test with the arguments:

. x = 16395 which is the count of White in this sample.

. n = 21483 which is the sample size or the number of rows in this
data.

. p = 0.5 which is the null hypothesis proportion.

. alternative = “two.sided” which is the alternative hypothesis. Then
we convert the results to a table as before.

prop_test(x = 16395, n = 21483, p = 0.5, alternative = “two.sided”) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Two-tailed proportion test for homogeneity of white and
other proportion in the general social survey data”)

Table 2.18. Two-Tailed Proportion test for Homogeneity of White and Other
Proportions in the General Social Survey Data

n Statistic df p p-signif
21,483 5,950.083 1 0 etk ok
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The Table 2.17 contains the estimated sample statistic==5950.083 and the
p-value which equals zero.

The p_value is the probability of our sample results (White proportion
in the general social survey data) under the null hypothesis (where the white
proportion = 0.5 or 50%). Since this probability is zero, we reject the null
hypothesis and conclude that the proportion of whites in the general social
survey data is significantly different from (larger than) 0.5. This means that the
two races are not equally distributed in the population from which this sample
was taken.

2.5.2.2. Test for Equality of the Race Column to a Certain Propor-
tion

We know from the United States census that 71% of the population in the United
States are White. So we may wish to test the hypothesis that the proportion of
whites in the general social survey data is different from the general US census.

. Null Hypothesis: The population (actual) proportion of White in the
general social survey data = 71% or 0.71. The observed proportion
of 0.763 or 76.3% was due to sampling error. This means also that
the proportion of other race = 1-0.71 = 0.29.

. Alternative Hypothesis: The population (actual) proportion of
White in the general social survey data is different from 71% or
0.71. This is a two-tailed test.

We use the prop_test function with the same arguments as above except that
p = 0.71 which is the new null hypothesis proportion.
prop_test(x = 16395, n = 21483, p = 0.71, alternative = “two.sided”) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Two-tailed proportion test for equality of white and
other proportion to certain proportions™)

Table 2.19. Two-Tailed Proportion Test for Equality of White and other Propor-
tions to Certain Proportions

n Statistic df | p p.signif
0.0000000000000000000000

21,483 | 294.6143 1 000000000000000000000000 | ****
0000000000000000000491

The Table 2.18 contains the estimated sample statistic= 294.6143 and the
p-value which is very low and nearly equals zero.
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The p_value is the probability of our sample results (White proportion
in the general social survey data) under the null hypothesis (where the white
proportion = 0.71 or 71%). Since this probability is very low, we reject the null
hypothesis and conclude that the proportion of White in the population, from
which this sample was taken, is significantly different from (larger than) 0.71.
This means also that the proportion of other race is significantly lower than 0.29
or 29%.

2.5.3. Chi-Square Test

The Chi-square test is used for categorical variables (with many categories) to
either evaluate the homogeneity of proportions or to test that the proportions are
equal to certain given values when the sample size is large.

2.5.3.1. Test for Homogeneity in the Race Column of the General
Social Survey Data

We have seen above that the race column has 3 categories. White is the most
frequent race with a count of 16395, followed by Black with a count of 3129,
and other (races) with a count of 1959.

To test the homogeneity of races within this column, we do these steps:

1. We create a vector called “races2” that contains the counts for each
race.

2. We use the chisq_test function with the arguments:
1. x = races which is the sample counts.

2. p = ¢(1/3,1/3,1/3) which are the probabilities or proportions
under the null hypothesis. If the 3 races are homogeneous in
the general social survey data, the expected proportion = 1/3 =
0.33 or 33%. Then we convert the results to a table as before.

races2<-c(white = 16395, black = 3129, other = 1959)

races2

## white black other

## 16395 3129 1959

chisq_test(x= races2, p = ¢(1/3,1/3,1/3)) %>% flextable() %>%
theme_box () %>%

set_caption(caption = “Chi-square test for homogeneity of races in the
general social survey data”)

143



Statistics with R for Data Analysis

Table 2.20. Chi-Square Test for Homogeneity of Races in the General Social Sur-
vey Data

n Statistic p df Method p.signif
3 17,956.23 0 2 Chi-square | ;44
test

The Table 2.19 contains the p-value which equals zero, the sample statistic
=17956.23, and n = 3 because we have 3 categories.

The p_value is the probability of our sample results (race proportions in the
general social survey data) under the null hypothesis (where all 3 proportions =
0.33 or 33%). Since this probability equals zero, we reject the null hypothesis
and conclude that the proportion of some races is different from other races in
the general social survey data.

A subsequent test is to perform pairwise comparisons between races to find
out which race pair is different in its components. In other words, which race
proportion is significantly different from 0.5 relative to any other race.

We use the pairwise chisq gof test function to perform a pairwise
comparison with the arguments:

. x = races2 which is the named vector with counts.

. p.adjust.method = “fdr” which is the method for adjusting the
p-value in multiple comparisons. The “fdr” is for the false discovery
rate.

pairwise_chisq_gof test(x = races2,
p.adjust.method = “fdr”) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Pairwise comparisons for races in the general social
survey data”)

Table 2.21. Pairwise Comparisons for Races in the General Social Survey Data

. . p-adj.
n | Groupl | Group2 | Statistic p df | p.adj signif
0.000000000000000 0.0000000000000
0000000000000000 000000000000000
2 | white | black 9,013.8679 1 | 000000000000000| ****
0000000000000000 000000000000000
000000000000000 0000
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.. . p-adj.
n | Groupl | Group2 | Statistic p df | p.adj signif
0.000000000000000; 0.0000000000000
0000000000000000 000000000000000
2 | white | other 11,354.3694 1 | 000000000000000| ****
0000000000000000 000000000000000
000000000000000
0000
0.000000000000000 0-0000000000000
0000000000000000 000000000000009
2 | black other 269.0448 1 | 000000000000000f ****
0000000000000000 000000000000000
000000000000183 0183

We have 3 pairwise comparisons:

1.

Comparing white with a count of 16395 to black with a count of 3129.
The adjusted p-value is very low, so we reject the null hypothesis
and conclude that white proportion is significantly different from
(larger than) the black proportion in this sample.

Comparing whites with a count of 16395 to other with a count
of 1959. The adjusted p-value is very low, so we reject the null
hypothesis and conclude that white proportion is significantly
different from (larger than) the other race proportion in this sample.

Comparing black with a count of 3129 to other with a count of 1959.
The adjusted p-value is very low, so we reject the null hypothesis
and conclude that the black proportion is significantly different from
(larger than) other race proportion in this sample.

2.5.3.2. Test for Homogeneity in the Cut Column of Diamonds

Data

We have seen above that the cut column has 5 categories. Ideal is the most
frequent cut with a count of 21551, and fair is the least frequent cut with a count
of 1610. To test the homogeneity of different cuts within this column, we do
these steps:

1.
2.

L.

ii.

We create a vector called “cuts” that contains the counts for each cut.
We use the chisq_test function with the arguments:
x = cuts which is the sample counts.

p = c(1/5,1/5,1/5,1/5,1/5) which are the probabilities or proportions
under the null hypothesis. If the 5 cuts are homogeneous in the data,
the expected proportion = 1/5 = 0.2 or 20%. Then we convert the
results to a table as before.
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cuts<-c(ideal = 21551, premium = 13791, very _good = 12082,
good = 4906, fair = 1610)
cuts
##  ideal premium very_good good  fair
## 21551 13791 12082 4906 l61e
chisq_test(x= cuts, p = ¢(1/5,1/5,1/5,1/5,1/5)) %>% flextable() %>%
theme_box () %>%

set_caption(caption = “Chi-square test for homogeneity of cuts in the diamonds

data”)

Table 2.22. Chi-Square Test for Homogeneity of Cuts in the Diamonds Data

n Statistic p df Method p.signif
22,744.55 0 4 Chi-square test | ****

The Table 2.21 contains the p-value which equals zero, the sample statistic
=22744.55, and n = 5 because we have 5 categories.

The p value is the probability of our sample results (cut proportions in
the diamonds data) under the null hypothesis (where all 5 proportions = 0.2
or 20%). Since this probability equals zero, we reject the null hypothesis and
conclude that the proportion of some cuts is different from other cuts in the
diamonds data.

A subsequent test is to perform pairwise comparisons between cuts to find
out which cut pair is different in its components. In other words, which cut
proportion is significantly different from 0.5 relative to any other cut.

We use the pairwise chisq gof test function to perform a pairwise
comparison with the arguments:

. X = cuts which is the named vector with counts.

. p-adjust.method = “fdr” which is the method for adjusting the
p-value in multiple comparisons. The “fdr” is for the false discovery
rate.

pairwise_chisq_gof_test(x = cuts,
p.adjust.method = “fdr”) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Pairwise comparisons for cuts in the diamonds data™)
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Table 2.23. Pairwise Comparisons for Cuts in the Diamonds Data

n |groupl |group2 statistic p df |p.adj Slggjlf
¢ [ideal  [premium 11,703.8538 fo%ogo%o(?o%o(?o%oooo ! 8600000000000000000000000000 o
2 fideal  |very_good 12,665.8925 gfo%og)o%o(;)o%og)o%og) " ! 8boo()00000()00000000000000000 o
b fdeal  Leood 10.471.9365 600000000000000000000000000 . 8600000000000000000000000000 e
¢ [ideal - [fair 17,168.6663 i)00()00000()00000000000000000 ! 860(?0%0(?0%0(?0%0:00000 o
b bromium fvery. sood |112.8853 86000000000000000202090OOOOO . 860(;)0%0(;)0%0(;)20209000000 e
b bremium lgood 222,240 600000000000000000000000000 . 860(?0%0(?0%0(?0%0(?00000 e
b oremium [far 6342290 3600000000000000000000000000 . 8603)0%03)0%03)0%03)00000 e
, ;zl(’)}:l_ oo 50312550 600000000000000000000000000 . 86000000000000000000000OOOOO e
> ;221_ fair 8.009.2597 6%0(?0%0(?0%0(?0%0(? o 860000()000000000000000000000 o
b kood fair 16672216 gb%o(;)o%o(;)o%o(;)oooooooo . 86000000000000000000000OOOOO e

We have 10 pairwise comparisons:

1.

Comparing ideal with a count of 21551 to premium with a count
of 13791. The adjusted p-value is very low, so we reject the null
hypothesis and conclude that the ideal proportion is significantly
different from (larger than) the premium proportion in the population
from which this sample was taken.

Comparing ideal with a count of 21551 to very good with a count
of 12082. The adjusted p-value is very low, so we reject the null
hypothesis and conclude that the ideal proportion is significantly
different from (larger than) the very good proportion in the population
from which this sample was taken.

Comparing ideal with a count of 21551 to good with a count of 4906.
The adjusted p-value is very low, so we reject the null hypothesis
and conclude that the ideal proportion is significantly different from
(larger than) the good proportion in the population from which this
sample was taken.
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The ideal proportion is significantly larger than the fair proportion.

5. The premium proportion is significantly larger than very good, good,
and fair proportions.

6. The very good proportion is significantly larger than good and fair
proportions.

7. The good proportion is significantly larger than the fair proportion.

2.5.3.3. Goodness-of-Fit Test

For the goodness-of-fit test, we must have another vector of probabilities or
proportions that sum to 1. So, we do these steps:

1. We create another vector called “cuts prob” that contains the
probability for each cut. We assume that the expected probability
of ideal cut is 0.3 or 30%, the expected probability of premium is
0.2 or 20%, the expected probability of very good is 0.2 or 20%,
the expected probability of good is 0.15 or 15%, and the expected
probability of fair is 0.15 or 15%. Note that 0.3+0.2+0.2+0.15+0.15

=1.
2. We use the chisq_test function with the arguments:
i x = cuts which is the sample counts.
il. p = cuts_prob which are the probabilities or proportions under the

null hypothesis that we want to test. Then we convert the results to a
table as before.
cuts_prob<-c(ideal= 0.3, premium = 0.2, very good = 0.2,
good = 0.15, fair = 0.15)
cuts_prob
##  ideal premium very _good good  fair
## ©.30 0.20 0.20 0.15 0.15
chisq_test(x = cuts,
p = cuts_prob) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Chi-square goodness-of-fit test for cuts in the diamonds
data”)

Table 2.24. Chi-Square Goodness-of-Fit Test for Cuts in the Diamonds Data

n Statistic p df Method p.signif
5 9217.649 |0 4 Chi-square |y ps
test

The Table 2.23 contains the p-value which equals zero.
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The p_value is the probability of our sample results (cut proportions in
diamonds data) under the null hypothesis (where the proportions are stored
in the cuts_prob vector). Since this probability equals zero, we reject the null
hypothesis and conclude that the proportion of some cuts is different from the
expected probabilities in the cuts_prob vector.

A subsequent test is to perform pairwise comparisons between each cut
and its expected probability to find out which cut is different from its expected
probability.

We use the pairwise chisq test against p function to perform a pairwise
comparison with the arguments:

. x = cuts which is the named vector with counts.
. p =cuts_prob which is the vector holding the expected probabilities.

. p-adjust.method = “fdr” which is the method for adjusting the
p-value in multiple comparisons. The “fdr” is for the false discovery
rate.

pairwise_chisq_test_against_p(x = cuts, p = cuts_prob,
p.adjust.method = “fdr”) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Pairwise comparisons for cuts against expected
probabilities™)

Table 2.25. Pairwise Comparisons for Cuts Against Expected Probabilities

. . p-adj.
Group |Observed |Expected [n |Statistic |[p df |p.adj signif
ideal 21,551 16,182 2 |2,544.817 2&?00006 1 10.00000e+00 | ****
premium | 13,791 10,788 2 |1,044.912 _32’121900006 1 |3.89000e-229 |****
Ve pos2  |10788 |2 [194016 4220000 1 1400000044 |xers
good -44
good 4,906 8,091 2 |1,475.019 _1?;(;;75386' 1 | 1.72923e-322 | ****
fair 1,610 8,091 2 16,107.492 g.é)é)OOOOe 1 10.00000e+00 |****

We have 5 pairwise comparisons:

1. Comparing the ideal with a count of 21551 and a proportion of
21551/53940= 0.4 to its expected probability of 0.3, where 53940
is the number of rows or diamonds in our data. The expected count
will be 0.3 X 53940 = 16182 and the adjusted p-value equals zero,
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so we reject the null hypothesis and conclude that ideal proportion is
significantly different from (larger than) the expected probability of
0.3.

2. Comparing the premium with a count of 13791 and a proportion of
13791/53940= 0.256 to its expected probability of 0.2. The expected
count will be 0.2 X 53940 = 10788 and the adjusted p-value is very
low, so we reject the null hypothesis and conclude that the premium
proportion is significantly different from (larger than) the expected
probability of 0.2.

3. Comparing very good with a count of 12082 and a proportion of
12082/53940= 0.224 to its expected probability of 0.2. The expected
count will be 0.2 X 53940 = 10788 and the adjusted p-value is very
low, so we reject the null hypothesis and conclude that the very good
proportion is significantly different from (larger than) the expected
probability of 0.2.

4, Comparing good with a count of 4906 and a proportion of
4906/53940=0.091 to its expected probability of 0.15. The expected
count will be 0.15 X 53940 = 8091 and the adjusted p-value is very
low, so we reject the null hypothesis and conclude that the good
proportion is significantly different from (smaller than) the expected
probability of 0.15.

5. Comparing fair with a count of 1610 and a proportion of 1610/53940=
0.0298 to its expected probability of 0.15. The expected count will
be 0.15 X 53940 = 8091 and the adjusted p-value is very low, so we
reject the null hypothesis and conclude that the fair proportion is
significantly different from (smaller than) the expected probability
of 0.15.
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3.1. DATA USED IN THIS CHAPTER

3.1.1. Body Measurements of Physically Active Individuals Data

The Body measurements of physically active individuals data is stored under the
name “bdims.” The data is part of the openintro package and its source is Heinz
G, Peterson LJ, Johnson RW, and Kerk CJ. 2003. Exploring Relationships in
Body Dimensions. Journal of Statistics Education 11(2). To load this data into
our R session, we will load the openintro package using the library function.
Then, we will load the bdims data using the data function. We will also load
the tidyverse package because it contains many packages for data analysis like
dplyr, tidyr, ggplot2, etc.

library(openintro)
library(tidyverse)
data(“bdims™)

Then, to see the data structure, we will use the glimpse function from the
dplyr package.
glimpse(bdims)
## Rows: 507
## Columns: 25
## $ bia_di <dbl> 42.9, 43.7, 40.1, 44.3, 42.5, 43.3, 43.5, 44.4, 43.5, 42.0, 40...
## $ bii_di <dbl> 26.0, 28.5, 28.2, 29.9, 29.9, 27.0, 30.0, 29.8, 26.5, 28.0, 29...
## $ bit_di <dbl> 31.5, 33.5, 33.3, 34.0, 34.0, 31.5, 34.0, 33.2, 32.1, 34.0, 33...
## $ che_de <dbl> 17.7, 16.9, 20.9, 18.4, 21.5, 19.6, 21.9, 21.8, 15.5, 22.5, 20...
## $ che_di <dbl> 28.0, 30.8, 31.7, 28.2, 29.4, 31.3, 31.7, 28.8, 27.5, 28.0, 30...
## $ elb_di <dbl> 13.1, 14.0, 13.9, 13.9, 15.2, 14.0, 16.1, 15.1, 14.1, 15.6, 13...
## $ wri_di <dbl> 10.4, 11.8, 10.9, 11.2, 11.6, 11.5, 12.5, 11.9, 11.2, 12.0, 10...
## $ kne_di <dbl> 18.8, 20.6, 19.7, 20.9, 20.7, 18.8, 20.8, 21.0, 18.9, 21.1, 19...
## $ ank_di <dbl> 14.1, 15.1, 14.1, 15.0, 14.9, 13.9, 15.6, 14.6, 13.2, 15.0, 14...
## $ sho_gi <dbl> 106.2, 110.5, 115.1, 104.5, 107.5, 119.8, 123.5, 120.4, 111.0, ..

## $ che_gi <dbl> 89.5, 97.6, 97.5, 97.6, 97.5, 99.9, 106.9, 102.5, 91.0, 93.5, 9.
## $ wai_gi <dbl> 71.5, 79.0, 83.2, 77.8, 80.0, 82.5, 82.0, 76.8, 68.5, 77.5, 81...
## $ nav_gi <dbl> 74.5, 86.5, 82.9, 78.8, 82.5, 80.1, 84.0, 80.5, 69.0, 81.5, 81...
## $ hip_gi <dbl> 93.5, 94.8, 95.0, 94.0, 98.5, 95.3, 101.0, 98.0, 89.5, 99.8, 98..
## $ thi_gi <dbl> 51.5, 51.5, 57.3, 53.0, 55.4, 57.5, 60.9, 56.0, 50.0, 59.8, 60...
## $ bic_gi <dbl> 32.5, 34.4, 33.4, 31.0, 32.0, 33.0, 42.4, 34.1, 33.0, 36.5, 34...
## $ for_gi <dbl> 26.0, 28.0, 28.8, 26.2, 28.4, 28.0, 32.3, 28.0, 26.0, 29.2, 27...
## $ kne_gi <dbl> 34.5, 36.5, 37.0, 37.0, 37.7, 36.6, 40.1, 39.2, 35.5, 38.3, 38...
## $ cal_gi <dbl> 36.5, 37.5, 37.3, 34.8, 38.6, 36.1, 40.3, 36.7, 35.0, 38.6, 40...
## $ ank_gi <dbl> 23.5, 24.5, 21.9, 23.0, 24.4, 23.5, 23.6, 22.5, 22.0, 22.2, 23...
## $ wri_gi <dbl> 16.5, 17.0, 16.9, 16.6, 18.0, 16.9, 18.8, 18.0, 16.5, 16.9, 16...
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<int> 21, 23, 28, 23, 22, 21, 26, 27, 23, 21, 23, 22, 20, 26, 23, 22,..
<dbl> 65.6, 71.8, 80.7, 72.6, 78.8, 74.8, 86.4, 78.4, 62.0, 81.6, 76...
<dbl> 174.0, 175.3, 193.5, 186.5, 187.2, 181.5, 184.0, 184.5, 175.0, ..
<int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ..

We see that the bdims data contains 507 rows and 25 columns:

1.

10.

11.

12.

13.

14.

bia di: respondent’s biacromial diameter in centimeters. It is a
double or numeric column with decimals.

bii_di: respondent’s biliac diameter (pelvic breadth) in centimeters.
It is a double or numeric column with decimals.

bit di: respondent’s bitrochanteric diameter in centimeters. It is a
double or numeric column with decimals.

che de: respondent’s chest depth in centimeters, measured between
spine and sternum at nipple level, mid-expiration. It is a numeric
column with decimals.

che di: respondent’s chest diameter in centimeters, measured at
nipple level, mid-expiration. It is a numeric column.

elb_di: respondent’s elbow diameter in centimeters, measured as the
sum of two elbows. It is a numeric column.

wri_di: respondent’s wrist diameter in centimeters, measured as the
sum of two wrists. It is a numeric column.

kne di: respondent’s knee diameter in centimeters, measured as the
sum of two knees. It is a numeric column.

ank_di: respondent’s ankle diameter in centimeters, measured as the
sum of two ankles. It is a numeric column.

sho_gi: respondent’s shoulder girth in centimeters, measured over
deltoid muscles. It is a numeric column.

che gi: respondent’s chest girth in centimeters, measured at nipple
line in males and just above breast tissue in females, mid-expiration.
It is a numeric column.

wai_gi: respondent’s waist girth in centimeters, measured at the
narrowest part of the torso below the rib cage as the average of
contracted and relaxed position. It is a numeric column.

nav_gi: respondent’s navel (abdominal) girth in centimeters,
measured at the umbilicus and iliac crest using the iliac crest as a
landmark. It is a numeric column.

hip_gi: respondent’s hip girth in centimeters, measured at a level of
bitrochanteric diameter. It is a numeric column.
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15.  thi_gi: respondent’s thigh girth in centimeters, measured below the
gluteal fold as the average of right and left girths. It is a numeric
column.

16.  bic_gi: respondent’s bicep girth in centimeters, measured when
flexed as the average of right and left girths. It is a numeric column.

17.  for_gi: respondent’s forearm girth in centimeters, measured when
extended, palm up as the average of right and left girths. It is a
numeric column.

18.  kne gi: respondent’s knee diameter in centimeters, measured as the
sum of two knees. It is a numeric column.

19.  cal gi: respondent’s calf maximum girth in centimeters, measured
as the average of right and left girths. It is a numeric column.

20. ank gi: respondent’s ankle minimum girth in centimeters, measured
as the average of right and left girths. It is a numeric column.

21.  wri_gi: respondent’s wrist minimum girth in centimeters, measured
as the average of right and left girths. It is a numeric column.

22.  age: respondent’s age in years. It is an integer column.

23.  wgt: respondent’s weight in kilograms. It is a numeric column.

24.  hgt: respondent’s height in centimeters. It is a numeric column.

25.  sex:Itis an integer column with 1 if the respondent is male, and 0 if female.

3.1.2. Nutrition in Fast Food

The nutrition amounts in different fast food items are stored in the “fastfood”
data frame which is part of the openintro package. To load this data into our R
session, we will use the data function followed by the glimpse function to see
the data structure.

data(“fastfood”)

glimpse(fastfood)

## Rows: 515

## Columns: 17

## $ restaurant <chr> “Mcdonalds,” “Mcdonalds,” “Mcdonalds,” “Mcdonalds,” “Mcdon..
## $ item <chr> “Artisan Grilled Chicken Sandwich,” “Single Bacon Smokehou...
## $ calories <dbl> 386, 840, 1130, 750, 920, 540, 300, 510, 430, 770, 380, 62.
## $ cal_fat <dbl> 60, 416, 600, 280, 410, 250, 100, 210, 190, 400, 170, 300,..
## $ total_fat <dbl> 7, 45, 67, 31, 45, 28, 12, 24, 21, 45, 18, 34, 20, 34, 8, ..
## $ sat_fat <dbl> 2.0, 17.0, 27.0, 10.0, 12.0, 10.0, 5.0, 4.0, 11.0, 21.0, 4.
## § trans_fat <dbl> 6.0, 1.5, 3.0, 6.5, 0.5, 1.0, 6.5, 0.0, 1.0, 2.5, 0.0, 1.5.
## $ cholesterol <dbl> 95, 136, 226, 155, 120, 80, 46, 65, 85, 175, 40, 95, 125, ..
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## $ sodium  <dbl> 1110, 1580, 1920, 1940, 1980, 950, 680, 1040, 1040, 1290, ..

## § total carb <dbl> 44, 62, 63, 62, 81, 46, 33, 49, 35, 42, 38, 48, 48, 67, 31.

## $ fiber  <dbl> 3, 2, 3, 2, 4, 3, 2, 3, 2, 3, 2, 3, 3, 5, 2, 2, 3, 3, 5, 2.

## $ sugar  <dbl> 11, 18, 18, 18, 18, 9, 7, 6, 7, 10, 5, 11, 11, 11, 6, 3, 1.

## $ protein <dbl> 37, 46, 70, 55, 46, 25, 15, 25, 25, 51, 15, 32, 42, 33, 13.

## $ vit a  <dbl> 4, 6, 10, 6, 6, 10, 10, 0, 20, 20, 2, 10, 10, 10, 2, 4, 6,..

## $ vit ¢ <dbl> 20, 20, 20, 25, 20, 2, 2, 4, 4, 6, 0, 10, 20, 15, 2, 6, 15.

## $ calcium <dbl> 20, 20, 50, 20, 20, 15, 10, 2, 15, 20, 15, 35, 35, 35, 4, ..

## $ salad <chr> “Other,” “Other,” “Other,” “Other,” “Other,” “Other,” “Oth..
The data contains 515 rows and 17 columns:

restaurant: Name of restaurant. It is a character column.

item: Name of the item or fast food. It is a character column.

calories: Number of calories. It is a numeric column.

cal_fat: Calories from fat. It is a numeric column.

total_fat: the total fat. It is a numeric column.

sat_fat: the saturated fat. It is a numeric column.

trans_fat: the trans fat. It is a numeric column.

% N AW

cholesterol: the cholesterol. It is a numeric column.

9. sodium: the sodium present. It is a numeric column.

10.  total carb: the total carbohydrates. It is a numeric column.
11.  fiber: the fiber present. It is a numeric column.

12.  sugar: the sugar present. It is a numeric column.

13.  protein: the protein present. It is a numeric column.

14.  vit_a: the Vitamin A present. It is a numeric column.

15.  vit_c: the Vitamin C present. It is a numeric column.

16.  calcium: the Calcium present. It is a numeric column.

17.  salad: with salad or not. It is a character column.

3.2. SUMMARY STATISTICS

3.2.1. The Correlation Coefficient

The correlation coefficient determines the relationship between 2 continuous
variables. The correlation coefficient is a dimensionless quantity and ranges
between -1 and 1. Generally, we have one of 3 conditions for the value of the
correlation coefficient:

1. If the correlation is greater than 0, then the 2 variables are positively
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correlated and if one of them increases, the other variable tends to
increase, and vice versa.

2. If the correlation is less than 0, then the 2 variables are negatively
correlated and if one of them increases, the other variable tends to
decrease, and vice versa.

3. If the correlation is nearly 0, then the 2 variables are uncorrelated,
and if one of them increases or decreases, the other variable remains
the same, and vice versa.

Generally, if the absolute value of the correlation coefficient is greater than 0.5,

then this correlation is a relatively strong one. If the absolute value of the correlation
coefficient is smaller than 0.5, then this correlation is a relatively weak one.

3.2.2. Types of Correlation Coefficients
There are 3 types of correlation coefficients:

1. Pearson correlation coefficient: which is a parametric correlation
coefficient that measures the association between the two variables.
The Pearson correlation requires:

1. The relation between the 2 variables is linear. This can be
checked using a scatter plot showing this linear relation.

il. The 2 variables follow a normal distribution. This can be
checked using the QQ plot and Shapiro-Wilk test as described
in Chapter 1.

2. Spearman correlation coefficient: is a non-parametric correlation
coefficient and can be used for non-normally distributed variables. In
addition, Spearman correlation can be used for non-linear relations.
The Spearman correlation computes the correlation between the
ranks of one variable to the ranks of the other variable.

3. Kendall correlation coefficient: is a non-parametric correlation
coefficient and can be used for non-normally distributed variables.
Also, the Kendall correlation can be used for non-linear relations.
The Kendall correlation method measures the correspondence
between the ranking of the 2 variables.

3.2.3. Correlation Between Ankle Diameter (ank di) and Bitro-
chanteric Diameter (bit_di) in Bdims Data

3.2.3.1. Plot a Scatter Plot

Using the following functions:
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1. The ggplot function applied on the bdims data with the arguments,
aes(x = ank_di, y = bit_di), to plot the ankle diameter on the x-axis
and bitrochanteric diameter on the y-axis.

The geom_point function to draw a scatter plot.

3. The geom smooth function with the argument, method = “Im,” to
add the linear fit line to the scatter plot.

4. The labs, theme classic, and theme functions as described in
previous chapters.
bdims %>% ggplot(aes(x = ank_di, y = bit_di))+ geom_point()+
geom_smooth(method = “Lm”)+

labs(title = “Scatter plot of bitrochanteric diameter vs. ankle diameter 1in
bdims data \n with linear fit line,” x = “Ankle diameter,”

y = “Bitrochanteric diameter”)+
theme_classic()+
theme(plot.title = element_text(hjust = 6.5))

Scatter plot of bitrochanteric diameter vs. ankle diameter in bdims data
with linear fit line

Bitrochanteric dameter

We see that all points are scattered around the linear fit line so the relation
is linear.
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3.2.3.2. Plot a QQ Plot

We plot a QQ plot for the ankle diameter and the bitrochanteric diameter, as
described in Chapter 1, using the ggqqplot function from the ggpubr package.
library(ggpubr)

ggqqplot(data = bdims, x = “ank_di,”

title = “QQ plot of ankle diameter from bdims data,”

xlab = “Theoretical percentiles,” ylab = “Sample percentiles”)+
theme(plot.title = element_text(hjust = 0.5))

QQ plot of ankle diameter from bdims data
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We see that nearly all data points fall along this reference line or within the
confidence band, so we can assume the normality of ankle diameters.
ggqaplot(data = bdims, x = “bit_di,”
title = “QQ plot of bitrochanteric diameter from bdims data,”
xlab = “Theoretical percentiles,” ylab = “Sample percentiles”)+

theme(plot.title = element_text(hjust = 6.5))
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QQ plot of bitrochanteric diameter from bdims data

40

Sample percentiles

Theoretical percentiles

Similarly, We see that all data points fall along this reference line or within
the confidence band, so we can assume the normality of bitrochanteric diameters.

3.2.3.3. Shapiro-Wilk Test

We do a Shapiro-Wilk test for the ankle diameter and the bitrochanteric
diameter, as described in Chapter 1, using the shapiro_test function from the
rstatix package. We convert the results to a table using the flextable package
functions.

library(rstatix)

library(flextable)

shapiro_test(data = bdims, ank_di) %>% flextable() %>% theme_
box() %>%

set_caption(caption = “Shapiro-Wilk test results for ankle
diameter in the body measurements data”)
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Table 3.1. Shapiro-Wilk Test Results for Ankle Diameter in the Body Measure-
ments Data

Variable Statistic P
ank di 0.9949495 0.09594954

The Table 3.1 contains the sample statistic = 0.995 which corresponds to
our sample results and the p-value which is larger than the cut-off point of 0.05.

The p_value is insignificant, so we fail to reject the null hypothesis and
conclude that the ankle diameter in the body measurements data is normally
distributed.

shapiro_test(data = bdims, bit_di) %>% flextable() %>% theme_
box() %>%

set_caption(caption = “Shapiro-Wilk test results for
bitrochanteric diameter in the body measurements data™)

Table 3.2. Shapiro-Wilk Test Results for Bitrochanteric Diameter in the Body Mea-
surements Data

Variable Statistic P
bit di 0.9979092 0.7928441

The Table 3.2 contains the sample statistic = 0.998 which corresponds to
our sample results and the p-value which is larger than the cut-off point of 0.05.

The p_value is insignificant, so we fail to reject the null hypothesis and
conclude that the bitrochanteric diameter in the body measurements data is
normally distributed.

Because the ankle and bitrochanteric diameters show a linear relation and
both are normally distributed, we can use the Pearson correlation method to
examine the relation between the ankle and bitrochanteric diameter.

3.2.3.4. Pearson Correlation

We get the Pearson correlation coefficient between the ankle diameter and
the bitrochanteric diameter, we use the cor_test function with the following
arguments:

. ank di, bit_di which are the 2 columns we want to get the correlation
between them.

. method = “pearson” which is the correlation method.

. alternative = “two.sided” which is the alternative hypothesis for

testing the significance of the correlation. The null hypothesis is that
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the correlation equals zero or no correlation. The “greater” alternative
hypothesis corresponds to positive correlation (correlation > 0) and
the “less” alternative hypothesis corresponds to negative correlation
(correlation < 0). We convert the result to a table as before.
bdims %>% cor_test(ank_di, bit_di, method = “pearson,”
alternative = “two.sided”) %>% flextable() %>%
theme_box () %>%
set_caption(caption = “Pearson correlation test results for the

correlation between ankle and bitrochanteric diameter 1in the
body measurements data”)

Table 3.3. Pearson Correlation Test Results for the Correlation Between Ankle
and Bitrochanteric Diameter in the Body Measurements Data

varl var2 | cor statistic p conf.low conf.high | method
0.000000
bt 00000000
ank di & 0.5 12.8161 00000000 | 0.4267328 | 0.5583983 | Pearson
00000000
00938
We see that:

1. The pearson correlation = 0.5.

2. The sample statistic = 12.8161 which corresponds to our sample results
and the p-value which is very low and nearly equals zero. The p_value
is significant, so we reject the null hypothesis and conclude that the
correlation between the ankle and bitrochanteric diameter in the body
measurements data is different from zero. In other words, they are posi-
tively associated so as the ankle diameter increases, the bitrochanteric
diameter increases on average.

3. The 95% confidence interval = 0.43—0.56. This means that we are 95%
confident that the underlying population from which this sample was
taken can have a correlation as low as 0.43 and as high as 0.56.

3.2.4. Correlation Between Weight and Height in Bdims Data

3.2.4.1. Plot a Scatter Plot

Using the same previous functions.
bdims %>% ggplot(aes(x = wgt, y = hgt))+ geom_point()+
geom_smooth(method = “Lm”)+

labs(title = “Scatter plot of height vs. weight in bdims data with Llinear fit
Line,”
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X = “Weight,”
y = “Height”)+

theme_classic()+

theme(plot.title = element_text(hjust = 6.5))

Scatter plot of height vs. weight in bdims data with linear fit line

We see that all points are scattered around the linear fit line so the relation
is linear.

3.2.4.2. Plot a QQ Plot

We plot a QQ plot for the weight and the height columns as described previously.
ggqgplot(data = bdims, x = “wgt,”

title = “QQ plot of weight values from bdims data,”

xlab = “Theoretical percentiles,” ylab = “Sample percentiles™)+
theme(plot.title = element_text(hjust = 0.5))
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QQ plot of weight values from bdims data
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Sample percentiles
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We see that many data points are outside the confidence band, so we can not
assume the normality of the weight values.
ggqgplot(data = bdims, x = “hgt,”
title = “QQ plot of height values from bdims data,”

xlab = “Theoretical percentiles,” ylab = “Sample percentiles™)+

theme(plot.title = element_text(hjust = 0.5))
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QQ plot of height values from bdims data

3

Sample percentiles

Theoretical percentiles

Similarly, we see that many data points are outside the confidence band, so
we can not assume the normality of the height values.

3.2.4.3. Shapiro-Wilk Test

We do a Shapiro-Wilk test for the weight and the height values.
shapiro_test(data = bdims, wgt) %>% flextable() %>% theme_box() %>%

set_caption(caption = “Shapiro-Wilk test results for the weight in the body
measurements data”)

Table 3.4. Shapiro-Wilk Test Results for the Weight in the Body Measurements
Data

Variable Statistic P
wgt 0.9791889 0.00000123279

The Table 3.4 contains the sample statistic = 0.979 which corresponds to
our sample results and the p-value which is smaller than the cut-off point of
0.05.

164



Bivariate Analysis for Continuous-Continuous Data

The p_value is significant, so we reject the null hypothesis and conclude that
the weight values in the body measurements data are not normally distributed.
shapiro_test(data = bdims, hgt) %>% flextable() %>% theme_box() %>%

set_caption(caption = “Shapiro-Wilk test results for height 1in the body
measurements data”)

Table 3.5. Shapiro-Wilk Test Results for Height in the Body Measurements Data

Variable Statistic P
hgt 0.9923302 0.01044543

The Table 3.5 contains the sample statistic = 0.992 which corresponds to
our sample results and the p-value which is smaller than the cut-off point of
0.05.

The p_value is significant, so we reject the null hypothesis and conclude
that the height in the body measurements data is not normally distributed.

Because the weight and height values are not normally distributed, we
can use the Spearman or Kendall correlation method to examine the relation
between these 2 columns.

3.2.4.4. Spearman Correlation

To get the Spearman correlation coefficient between the weight and the height,
we use the cor_test function with the following arguments:

. wgt, hgt which are the 2 columns we want to get the correlation
between them.

. method = “spearman” which is the correlation method.

. alternative = “two.sided” which is the alternative hypothesis for

testing the significance of the correlation. The null hypothesis is that
the correlation equals zero or no correlation.
bdims %>% cor_test(wgt, hgt, method = “spearman,”
alternative = “two.sided”) %>% flextable() %>%

theme_box() %>%

set_caption(caption = “Spearman correlation test results for the correlation
between weight and height in the body measurements data”)
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Table 3.6. Spearman Correlation Test Results for the Correlation Between Weight
and Height in the Body Measurements Data

varl | var2 cor Statistic p Method
0.00000000000000000000000
0000000000000000000000000
wet | het 073 | 5824225 4400000000000000000000000 | SPEATMAn
000000000000373
We see that:
1. The Spearman correlation = 0.73.
2. The sample statistic = 5824225 which corresponds to our sample

results and the p-value which is very low and nearly equals zero. The
p_value is significant, so we reject the null hypothesis and conclude
that the correlation between the weight and height in the body
measurements data is different from zero. In other words, they are
positively associated so as the weight increases, the height increases
on average.

3.2.4.5. Kendall Correlation

To get the Kendall correlation coefficient between the weight and the height, we
use the cor_test function with the following arguments:

wgt, hgt which are the 2 columns we want to get the correlation
between them.

method = “kendall” which is the correlation method.

alternative = “two.sided” which is the alternative hypothesis for
testing the significance of the correlation. The null hypothesis is that
the correlation equals zero or no correlation.

bdims %>% cor_test(wgt, hgt, method = “kendall,”

alternative = “two.sided”) %>% flextable() %>%

theme_box() %>%

set_caption(caption = “Kendall correlation test results for the correlation
between weight and height in the body measurements data”)
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Table 3.7. Kendall Correlation Test Results for the Correlation Between Weight
and Height in the Body Measurements Data

varl var2 cor Statistic p Method

0.0000
000000
000000
000000
000000
000000
wgt hgt 0.54 18.10245 000000 | Kendall
000000
000000
000000
000000
000000
00305

We see that:

1. The Kendall correlation = 0.54.

2. The sample statistic = 18.10245 which corresponds to our sample
results and the p-value is very low and nearly equals zero. The p_
value is significant, so we reject the null hypothesis and conclude
that the Kendall correlation between the weight and height in the
body measurements data is different from zero. In other words,
they are positively associated so as the weight increases, the height
increases on average.

3.2.5. Correlation Between Cholesterol and Calories in the Fast
Food Data

3.2.5.1. Plot a Scatter Plot

Using the same previous functions.
fastfood %>% ggplot(aes(x = cholesterol, y = calories))+ geom_point()+
geom_smooth(method = “Lm”)+

labs(title = “Scatter plot of calories vs. cholesterol in fast food data with
Linear fit Lline,”

x = “Cholesterol,”

y = “Calories”)+
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theme_classic()+
theme(plot.title = element_text(hjust = 6.5))

Scatter plot of calorles vs. cholestercl in fast food data with linear fit line

Calories

We see that all points are scattered around the linear fit line so the relation
is linear.

3.2.5.2. Plot a QO Plot
We plot a QQ plot for the cholesterol and for the calories columns as described
previously.
ggqgplot(data = fastfood, x = “cholesterol,”

title = “QQ plot of cholesterol values from fast food data,”

xlab = “Theoretical percentiles,” ylab = “Sample percentiles™)+

theme(plot.title = element_text(hjust = 6.5))
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QQ plot of cholesterol values from fast food data

8
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We see that many data points are outside the confidence band, so we can not
assume the normality of the cholesterol values.
ggqqplot(data = fastfood, x = “calories,”
title = “QQ plot of calories values from fast food data,”

xlab = “Theoretical percentiles,” ylab = “Sample percentiles™)+

theme(plot.title = element_text(hjust = 0.5))
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QQ plot of calories values from fast food data
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Similarly, we see that many data points are outside the confidence band, so
we can not assume the normality of the calories values.

3.2.5.3. Shapiro-Wilk Test

We do a Shapiro-Wilk test for the cholesterol and the calories values.
shapiro_test(data = fastfood, cholesterol) %>% flextable() %>%

theme_box() %>%

set_caption(caption = “Shapiro-Wilk test results for the cholesterol 1in the
fast food data™)

Table 3.8. Shapiro-Wilk Test Results for the Cholesterol in the Fast Food Data

Variable Statistic P
0.000000000000

cholesterol 0.7064736 00000000000000
005103688
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The table contains the sample statistic = 0.706 which corresponds to our
sample results and the p-value which is smaller than the cut-off point of 0.05.

The p_value is significant, so we reject the null hypothesis and conclude
that the cholesterol values in the fast food data are not normally distributed.

shapiro_test(data = fastfood, calories) %>% flextable() %>% theme_box() %>%

set_caption(caption = “Shapiro-Wilk test results for calories in the fast food
data”)

Table 3.9. Shapiro-Wilk Test Results for Calories in the Fast Food Data

Variable Statistic p

calories 0.9214142 0.0000000000000009594792

The table contains the sample statistic = 0.921 which corresponds to our
sample results and the p-value which is smaller than the cut-off point of 0.05.

The p_value is significant, so we reject the null hypothesis and conclude
that the calories in the fast food data are not normally distributed.

Because the cholesterol and calories values are not normally distributed,
we can use the Spearman or Kendall correlation method to examine the relation
between these 2 columns.

3.2.5.4. Spearman Correlation

To get the Spearman correlation coefficient between the cholesterol and calories
values, we use the same functions described above and convert the result to a
table as before.
fastfood %>% cor_test(cholesterol,calories, method = “spearman,”

alternative = “two.sided”) %>% flextable() %>%

theme_box() %>%

set_caption(caption = “Spearman correlation test results for the correlation
between cholesterol and calories in the fast food data”)
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Table 3.10. Spearman Correlation Test Results for the Correlation Between Choles-
terol and Calories in the Fast Food Data

varl var2 cor Statistic p Method

0.00000000000000
000000000000000
000000000000000
000000000000000
000000000000000
000000000000665

cholesterol | calories 0.73 6,142,437 Spearman

We see that:

1. The Spearman correlation = 0.73.

2. The sample statistic = 6142437 which corresponds to our sample re-
sults and the p-value which is very low and nearly equals zero. The
p_value is significant, so we reject the null hypothesis and conclude
that the correlation between the cholesterol and calories in the fast food
data is different from zero. In other words, they are positively associ-
ated so as the cholesterol increases, the calories increase on average.

3.2.6. Correlation Between Cholesterol and Vitamin A

3.2.6.1. Plot a Scatter Plot

Using the same previous functions.
fastfood %>% ggplot(aes(x = cholesterol, y = vit_a))+ geom_point()+
geom_smooth(method = “Lm”)+

labs(title = “Scatter plot of vitamin A vs. cholesterol in fast food data with
Linear fit Lline,”

x
I

= “Cholesterol,”

= “vitamin A”)+

<
|

theme_classic()+

theme(plot.title = element_text(hjust = 0.5))
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Scatter plot of vitamin A vs. cholesterol in fast food data with linear fit line

e m mes

vitemin A

We see that nearly all points are scattered around the linear fit line so the
relation is nearly linear. However, some large outliers in vitamin A are far from
the linear fit line.

3.2.6.2. Plot a QQ Plot
We plot a QQ plot for the vitamin A column as described previously. The QQ
plot of cholesterol is drawn in the previous example.
ggqqplot(data = fastfood, x = “vit_a,”

title = “QQ plot of vitamin A values from fast food data,”

xlab = “Theoretical percentiles,” ylab = “Sample percentiles™)+

theme(plot.title = element_text(hjust = 6.5))
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QQ plot of vitamin A values from fast food data
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We see that many data points are outside the confidence band, so we can not
assume the normality of the vitamin A values.

3.2.6.3. Shapiro-Wilk Test

We do a Shapiro-Wilk test for the vitamin A values.
shapiro_test(data = fastfood, vit_a) %>% flextable() %>%

theme_box() %>%

set_caption(caption = “Shapiro-Wilk test results for vitamin A in the fast food
data”)
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Table 3.11. Shapiro-Wilk Test Results for Vitamin A in the Fast Food Data

Variable Statistic P
0.000000000000

vit a 0.4983948 00000000000000
02535053

The Table 3.11 contains the sample statistic = 0.498 which corresponds to our
sample results and the p-value which is smaller than the cut-off point of 0.05.

The p_value is significant, so we reject the null hypothesis and conclude
that vitamin A values in the fast food data are not normally distributed.

Because the cholesterol and vitamin A values are not normally distributed,
we can use the Spearman or Kendall correlation method to examine the relation
between these 2 columns.

3.2.6.4. Spearman Correlation

We use the same functions described above and convert the result to a table as
before.
fastfood %>% cor_test(cholesterol,vit_a, method = “spearman,”

alternative = “two.sided”) %>% flextable() %>%

theme_box() %>%

set_caption(caption = “Spearman correlation test results for the correlation
between cholesterol and vitamin A in the fast food data”)

Table 3.12. Spearman Correlation Test Results for the Correlation Between Choles-
terol and Vitamin A in the Fast Food Data

varl var2 cor Statistic p Method

cholesterol | vit a 0.069 4,232,745 0.235 Spearman

We see that:
1. The Spearman correlation = 0.069 which is a very low value.
2. The sample statistic = 4232745 corresponds to our sample results

and the p-value which is larger than the cut-off value of 0.05. The
p_value is insignificant, so we fail to reject the null hypothesis and
conclude that there is no correlation between cholesterol and vitamin
A in the fast food data. In other words, when one of the variables
increases or decreases, the other variable remains nearly the same.
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3.2.7. Correlation Between All Numeric Variables in Body
Measurements Data

3.2.7.1. The Correlation Matrix

We can get all pairwise correlations between all numeric columns in the body
measurements data using the cor_mat function (to produce a correlation matrix)
with the argument method = “spearman” because not all variables are normally
distributed as we see above.

bdims %>% cor_mat(method = “spearman”)

## # A tibble: 25 x 26

## rowname bia_di bii_di bit_di che_de che_di elb_di wri_di kne_di ank_di sho_gi
## * <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

## 1 bia di 1 ©.3 0.48 0.61 ©.78 0.78 0.74 0.66 0.68 0.81
## 2 bii di 0.3 1 0.68 0.36 0©.32 0.31 0.28 0.42 0.36 0.26
## 3 bit_di 0.48 ©.68 1 0.47 ©.51 0.52 0.47 0.6 0.5 0.47
## 4 che_de ©0.61 ©.36 0.47 1 ©0.68 0.7 0.65 0.6 0.63 0.76
## 5 che_di ©.78 ©.32 0.51 ©0.68 1 ©.78 0.75 0.67 0.69 0.87
## 6 elb di 0.78 ©.31 0.52 0.7 0.78 1 0.8 0.75 0.83 0.83
## 7 wri_di 0.74 0.28 0.47 0©.65 ©.75 0©.85 1 0.73 0.78 0.8
## 8 kne_di 0.66 0.42 0.6 0.6 0.67 0.75 0.73 1 0.75 0.69
## 9 ank_di ©0.68 ©.36 0.5 0.63 0.69 ©.83 0©.78 0©.75 1 0.72

## 10 sho_gi ©.81 ©.26 ©.47 ©.76 0.87 ©.83 0.8 0.69 0.72 1

## # 1 15 more rows

## # 1 15 more variables: che_gi <dbl>, wai_gi <dbl>, nav_gi <dbl>, hip_gi <dbl>,
## # thi_gi <dbl>, bic_gi <dbl>, for_gi <dbl>, kne_gi <dbl>, cal_gi <dbl>,

## # ank_gi <dbl>, wri_gi <dbl>, age <dbl>, wgt <dbl>, hgt <dbl>, sex <dbl>

The result is a correlation matrix or a data frame with 25 rows (for 25
columns in the body measurements data) and 26 columns (for 25 columns of
the data plus a “rowname” column for the column names). The upper triangle
of the matrix is the same as the lower triangle with a diagonal of ones because
it is the correlation of the variable with itself.

3.2.7.2. Long Correlation Matrix

Because the correlation matrix is so wide and symmetric along its diagonal,
we can gather these columns and extract the lower triangle using the following
functions after the cor mat function:

. The pull lower triangle function extracts the lower triangle of the
correlation matrix.
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. The cor_gather function to gather all columns. Then, we convert the
result to a table as before.

. The mutate and round function to round the p-values to 5 decimal
places.

bdims %>% cor_mat(method = “spearman”) %>% pull_lower_triangle() %>%
cor_gather() %>% mutate(p = round(p,5)) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Spearman correlation matrix of numeric columns of body
measurements data in long format with p-values™)

Table 3.13. Spearman Correlation Matrix of Numeric Columns of Body Measure-
ments Data in Long Format with p-Values

varl var2 cor P

bii_di bia di 0.30000 0.00000
bit_di bia_di 0.48000 0.00000
che de bia di 0.61000 0.00000
che di bia_di 0.78000 0.00000
elb_di bia di 0.78000 0.00000
wri_di bia_di 0.74000 0.00000
kne_di bia_di 0.66000 0.00000
ank di bia di 0.68000 0.00000
sho gi bia di 0.81000 0.00000
che gi bia_di 0.74000 0.00000
wai_gi bia di 0.68000 0.00000
nav_gi bia di 0.33000 0.00000
hip gi bia di 0.34000 0.00000
thi_gi bia_di 0.13000 0.00257
bic gi bia_di 0.71000 0.00000
for gi bia di 0.76000 0.00000
kne gi bia di 0.53000 0.00000
cal gi bia_di 0.52000 0.00000
ank gi bia di 0.61000 0.00000
wri_gi bia_di 0.79000 0.00000
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age bia_di 0.11000 0.01030
wgt bia_di 0.75000 0.00000
hgt bia_di 0.76000 0.00000
sex bia_di 0.79000 0.00000
bit_di bii_di 0.68000 0.00000
che de bii_di 0.36000 0.00000
che_di bii_di 0.32000 0.00000
elb_di bii_di 0.31000 0.00000
wri_di bii_di 0.28000 0.00000
kne di bii_di 0.42000 0.00000
ank_di bii_di 0.36000 0.00000
sho_gi bii_di 0.26000 0.00000
che_gi bii_di 0.32000 0.00000
wai_gi bii_di 0.41000 0.00000
nav_gi bii_di 0.56000 0.00000
hip_gi bii_di 0.55000 0.00000
thi_gi bii_di 0.42000 0.00000
bic_gi bii_di 0.29000 0.00000
for_gi bii_di 0.28000 0.00000
kne_gi bii_di 0.46000 0.00000
cal_gi bii_di 0.40000 0.00000
ank_gi bii_di 0.33000 0.00000
wri_gi bii_di 0.27000 0.00000
age bii_di 0.26000 0.00000
wgt bii_di 0.48000 0.00000
hgt bii_di 0.36000 0.00000
sex bii_di 0.10000 0.02390
che_de bit_di 0.47000 0.00000
che_di bit_di 0.51000 0.00000
elb_di bit_di 0.52000 0.00000
wri_di bit_di 0.47000 0.00000
kne_di bit_di 0.60000 0.00000
ank_di bit_di 0.50000 0.00000
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sho_gi bit_di 0.47000 0.00000
che gi bit_di 0.49000 0.00000
wai_gi bit_di 0.57000 0.00000
nav_gi bit_di 0.61000 0.00000
hip_gi bit_di 0.75000 0.00000
thi_gi bit_di 0.53000 0.00000
bic_gi bit_di 0.49000 0.00000
for gi bit_di 0.49000 0.00000
kne gi bit_di 0.62000 0.00000
cal gi bit_di 0.58000 0.00000
ank gi bit_di 0.54000 0.00000
wri_gi bit_di 0.49000 0.00000
age bit_di 0.26000 0.00000
wgt bit_di 0.66000 0.00000
hgt bit_di 0.48000 0.00000
sex bit_di 0.27000 0.00000
che di che de 0.68000 0.00000
elb_di che de 0.70000 0.00000
wri_di che de 0.65000 0.00000
kne di che de 0.60000 0.00000
ank di che de 0.63000 0.00000
sho gi che de 0.76000 0.00000
che gi che de 0.82000 0.00000
wai_gi che de 0.81000 0.00000
nav_gi che de 0.62000 0.00000
hip_gi che de 0.56000 0.00000
thi_gi che de 0.36000 0.00000
bic_gi che de 0.77000 0.00000
for gi che de 0.74000 0.00000
kne gi che de 0.58000 0.00000
cal gi che de 0.57000 0.00000
ank gi che de 0.60000 0.00000
wri_gi che de 0.71000 0.00000
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age che de 0.31000 0.00000
wgt che de 0.81000 0.00000
hgt che de 0.58000 0.00000
sex che de 0.65000 0.00000
elb_di che di 0.78000 0.00000
wri_di che di 0.75000 0.00000
kne di che di 0.67000 0.00000
ank di che di 0.69000 0.00000
sho_gi che di 0.87000 0.00000
che gi che di 0.87000 0.00000
wai_gi che di 0.79000 0.00000
nav_gi che di 0.50000 0.00000
hip_gi che di 0.50000 0.00000
thi_gi che di 0.30000 0.00000
bic_gi che di 0.80000 0.00000
for gi che di 0.81000 0.00000
kne gi che di 0.58000 0.00000
cal gi che di 0.59000 0.00000
ank gi che di 0.64000 0.00000
wri_gi che di 0.78000 0.00000
age che di 0.22000 0.00000
wgt che di 0.82000 0.00000
hgt che di 0.64000 0.00000
sex che di 0.72000 0.00000
wri_di elb di 0.85000 0.00000
kne di elb di 0.75000 0.00000
ank _di elb_di 0.83000 0.00000
sho_gi elb di 0.83000 0.00000
che gi elb_di 0.82000 0.00000
wai_gi elb_di 0.74000 0.00000
nav_gi elb di 0.46000 0.00000
hip_gi elb_di 0.45000 0.00000
thi_gi elb di 0.21000 0.00000
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bic gi elb_di 0.82000 0.00000
for gi elb_di 0.87000 0.00000
kne gi elb_di 0.59000 0.00000
cal _gi elb_di 0.58000 0.00000
ank gi elb_di 0.69000 0.00000
wri_gi elb di 0.86000 0.00000
age elb_di 0.20000 0.00000
wgt elb_di 0.82000 0.00000
hgt elb_di 0.75000 0.00000
sex elb_di 0.79000 0.00000
kne di wri_di 0.73000 0.00000
ank di wri_di 0.78000 0.00000
sho_gi wri_di 0.80000 0.00000
che gi wri_di 0.79000 0.00000
wai_gi wri_di 0.71000 0.00000
nav_gi wri_di 0.41000 0.00000
hip_gi wri_di 0.43000 0.00000
thi_gi wri_di 0.20000 0.00001
bic_gi wri_di 0.78000 0.00000
for gi wri_di 0.83000 0.00000
kne gi wri_di 0.60000 0.00000
cal gi wri_di 0.58000 0.00000
ank gi wri_di 0.68000 0.00000
wri_gi wri_di 0.88000 0.00000
age wri_di 0.22000 0.00000
wgt wri_di 0.79000 0.00000
hgt wri_di 0.70000 0.00000
sex wri_di 0.75000 0.00000
ank di kne di 0.75000 0.00000
sho_gi kne di 0.69000 0.00000
che gi kne di 0.67000 0.00000
wai_gi kne di 0.66000 0.00000
nav_gi kne di 0.47000 0.00000
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hip gi kne di 0.56000 0.00000
thi_gi kne di 0.39000 0.00000
bic_gi kne di 0.70000 0.00000
for gi kne di 0.74000 0.00000
kne gi kne di 0.72000 0.00000
cal gi kne di 0.68000 0.00000
ank gi kne di 0.68000 0.00000
wri_gi kne di 0.75000 0.00000
age kne di 0.20000 0.00001
wgt kne di 0.78000 0.00000
hgt kne di 0.62000 0.00000
sex kne di 0.59000 0.00000
sho gi ank di 0.72000 0.00000
che gi ank di 0.73000 0.00000
wai_gi ank_di 0.68000 0.00000
nav_gi ank di 0.46000 0.00000
hip gi ank di 0.43000 0.00000
thi_gi ank di 0.21000 0.00000
bic_gi ank di 0.71000 0.00000
for gi ank_di 0.75000 0.00000
kne gi ank di 0.57000 0.00000
cal gi ank di 0.56000 0.00000
ank gi ank_di 0.70000 0.00000
wri_gi ank di 0.77000 0.00000
age ank_di 0.26000 0.00000
wgt ank_di 0.76000 0.00000
hgt ank di 0.70000 0.00000
sex ank_di 0.71000 0.00000
che gi sho gi 0.93000 0.00000
wai_gi sho gi 0.85000 0.00000
nav_gi sho_gi 0.52000 0.00000
hip_gi sho_gi 0.52000 0.00000
thi_gi sho gi 0.32000 0.00000
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bic gi sho_gi 0.90000 0.00000
for gi sho_gi 0.90000 0.00000
kne gi sho gi 0.62000 0.00000
cal gi sho gi 0.62000 0.00000
ank gi sho gi 0.69000 0.00000
wri_gi sho gi 0.85000 0.00000
age sho gi 0.20000 0.00000
wgt sho gi 0.88000 0.00000
hgt sho gi 0.68000 0.00000
sex sho gi 0.79000 0.00000
wai_gi che gi 0.90000 0.00000
nav_gi che gi 0.63000 0.00000
hip gi che gi 0.59000 0.00000
thi_gi che gi 0.37000 0.00000
bic_gi che gi 0.92000 0.00000
for_gi che gi 0.90000 0.00000
kne gi che gi 0.62000 0.00000
cal gi che gi 0.62000 0.00000
ank gi che gi 0.69000 0.00000
wri_gi che gi 0.84000 0.00000
age che gi 0.26000 0.00000
wgt che gi 0.91000 0.00000
hgt che gi 0.63000 0.00000
sex che gi 0.76000 0.00000
nav_gi wai_gi 0.74000 0.00000
hip_gi wai_gi 0.68000 0.00000
thi_gi wai_gi 0.42000 0.00000
bic_gi wai_gi 0.85000 0.00000
for gi wai_gi 0.82000 0.00000
kne gi wai_gi 0.66000 0.00000
cal gi wai_gi 0.64000 0.00000
ank gi wai_gi 0.68000 0.00000
wri_gi wai_gi 0.77000 0.00000
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age wai_gi 0.36000 0.00000
wgt wai_gi 0.91000 0.00000
hgt wai_gi 0.59000 0.00000
sex wai_gi 0.70000 0.00000
hip gi nav_gi 0.80000 0.00000
thi_gi nav_gi 0.59000 0.00000
bic_gi nav_gi 0.58000 0.00000
for_gi nav_gi 0.50000 0.00000
kne gi nav_gi 0.58000 0.00000
cal gi nav_gi 0.51000 0.00000
ank gi nav_gi 0.53000 0.00000
wri_gi nav_gi 0.45000 0.00000
age nav_gi 0.44000 0.00000
wgt nav_gi 0.70000 0.00000
hgt nav_gi 0.33000 0.00000
sex nav_gi 0.23000 0.00000
thi_gi hip gi 0.81000 0.00000
bic_gi hip gi 0.57000 0.00000
for gi hip gi 0.53000 0.00000
kne gi hip gi 0.71000 0.00000
cal gi hip gi 0.66000 0.00000
ank gi hip gi 0.59000 0.00000
wri_gi hip gi 0.47000 0.00000
age hip gi 0.24000 0.00000
wgt hip gi 0.75000 0.00000
hgt hip gi 0.35000 0.00000
sex hip gi 0.17000 0.00011
bic_gi thi_gi 0.42000 0.00000
for gi thi_gi 0.36000 0.00000
kne gi thi_gi 0.62000 0.00000
cal gi thi_gi 0.62000 0.00000
ank gi thi_gi 0.42000 0.00000
wri_gi thi_gi 0.26000 0.00000
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age thi_gi 0.00097 0.98300
wgt thi_gi 0.54000 0.00000
hgt thi_gi 0.14000 0.00130
sex thi_gi -0.05900 0.18200
for gi bic gi 0.94000 0.00000
kne gi bic gi 0.64000 0.00000
cal gi bic gi 0.65000 0.00000
ank gi bic_gi 0.70000 0.00000
wri_gi bic gi 0.86000 0.00000
age bic_gi 0.22000 0.00000
wgt bic_gi 0.89000 0.00000
hgt bic gi 0.61000 0.00000
sex bic_gi 0.76000 0.00000
kne gi for gi 0.66000 0.00000
cal gi for gi 0.68000 0.00000
ank gi for gi 0.74000 0.00000
wri_gi for gi 0.91000 0.00000
age for gi 0.17000 0.00012
wgt for_gi 0.89000 0.00000
hgt for gi 0.67000 0.00000
sex for gi 0.80000 0.00000
cal gi kne gi 0.79000 0.00000
ank gi kne gi 0.75000 0.00000
wri_gi kne gi 0.66000 0.00000
age kne gi 0.12000 0.00835
wgt kne gi 0.79000 0.00000
hgt kne gi 0.56000 0.00000
sex kne gi 0.40000 0.00000
ank gi cal gi 0.74000 0.00000
wri_gi cal gi 0.64000 0.00000
age cal gi 0.12000 0.00645
wgt cal gi 0.77000 0.00000
hgt cal gi 0.48000 0.00000
sex cal gi 0.40000 0.00000
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wri_gi ank gi 0.77000 0.00000
age ank gi 0.16000 0.00022
wgt ank gi 0.78000 0.00000
hgt ank gi 0.59000 0.00000
sex ank gi 0.55000 0.00000
age wri_gi 0.19000 0.00001
wgt wri_gi 0.84000 0.00000
hgt wri_gi 0.71000 0.00000
sex wri_gi 0.79000 0.00000
wgt age 0.24000 0.00000
hgt age 0.11000 0.01520
sex age 0.16000 0.00039
hgt wgt 0.73000 0.00000
sex wgt 0.68000 0.00000
sex hgt 0.71000 0.00000

The result is a data frame with 300 rows and 4 columns:

varl which is one continuous variable.
var2 which is another continuous variable.

cor which is the Spearman correlation coefficient between varl and
var2.

p which is the p-value for the test of significance of this correlation
coefficient.

To make this table more informative, we use the following functions after
the cor_gather function:

The arrange function with the argument cor to arrange the correlation
coefficients in ascending order.

The add_significance function with the arguments, p.col = “p,”
output.col = “significance,” to add p-value significance symbols
according to the “p” in the “significance” column.

The mutate function with the argument p = scientific(p) to convert
the large decimals of p-values to scientific notations (1¢05, 1.5¢-02)
using the scientific function from the scales package.

library(scales)

bdims %>% cor_mat(method = “spearman”) %>% pull_lower_triangle() %>%
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cor_gather() %>%
arrange(cor) %>%
add_significance(p.col = “p,” output.col = “significance™) %>%

mutate(p = scientific(p)) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “Spearman correlation matrix of numeric columns of body
measurements data in ascending order and significance symbols™)

Table 3.14. Spearman Correlation Matrix of Numeric Columns of Body Measure-
ments Data in Ascending Order and Significance Symbols

varl var2 cor p Significance
sex thi_gi -0.05900 | 1.82e-01 ns
age thi_gi 0.00097 | 9.83e-01 ns
sex bii_di 0.10000 | 2.39e-02 *
age bia di 0.11000 1.03e-02 *
hgt age 0.11000 1.52e-02 *
age kne gi 0.12000 | 8.35e-03 ok
age cal gi 0.12000 | 6.45¢-03 ok
thi_gi bia di 0.13000 | 2.57e-03 HE
hgt thi_gi 0.14000 | 1.30e-03 *x
age ank gi 0.16000 | 2.24¢-04 HAK
sex age 0.16000 | 3.94e-04 oAk
sex hip gi 0.17000 | 1.13e-04 ok
age for gi 0.17000 1.16e-04 Ak
age wri_gi 0.19000 | 1.38e-05 Ak
age elb_di 0.20000 | 3.33e-06 kol
thi_gi wri_di 0.20000 | 6.75e-06 Ak
age kne di 0.20000 | 5.55e-06 Rl
age sho gi 0.20000 | 3.29¢-06 kol
thi gi elb di 0.21000 | 1.49e-06 Ak
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thi_gi ank di | 0.21000 | 3.18¢-06 ok

age che di 0.22000 | 3.45¢-07 kol
age wri_di 0.22000 | 8.23e-07 HAEH
age bic_gi 0.22000 | 8.97e-07 ol
sex nav_gi 0.23000 1.01e-07 ol
age hip gi 0.24000 | 7.73e-08 oAk
wgt age 0.24000 | 5.19¢-08 kol
sho gi bii_di 0.26000 | 4.61e-09 HAEH
age bii_di 0.26000 | 2.92e-09 Rl
age bit_di 0.26000 | 2.93¢-09 oAk
age ank di 0.26000 | 4.71e-09 HoAEH
age che gi 0.26000 1.69¢-09 ol

wri_gi thi_gi 0.26000 | 5.08e-09 ol

wri_gi | bii_di 027000 | 9.49e-10 | ##**

sex bit_di 0.27000 1.17e-09 Ak

wri_di bii_di 0.28000 1.04e-10 Ak

for gi | bii di 028000 | 1.94e-10 [

bic gi | bii di 0.29000 | 4.29¢-11 Hokdk

bii_di bia di 0.30000 1.13e-11 ARk

thi_gi che_di 0.30000 I.11e-11 HoAEE

elb di | bii di 0.31000 | 4.10e-13 e

age che de 0.31000 | 8.31e-13 ool

che di | bii di 0.32000 | 2.47e-13 ok

che gi | bii di 0.32000 | 1.36e-13 e

thi_gi sho_gi 0.32000 | 3.79e-13 HoAEE

nav_gi bia_di 0.33000 1.94e-14 ol

ank gi bii_di 0.33000 | 4.94e-14 oAk

hgt nav_gi 0.33000 1.18e-14 ol
hip_gi bia di 0.34000 | 1.53e-15 oAk
hgt hip_gi 0.35000 | 1.68e-16 HoAEE

che de | bii di 0.36000 | 1.38¢-16 Ak

ank di bii_di 0.36000 1.04e-16 Ak
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hgt bii_di 0.36000 | 2.39e-17 HoEAk
thi_gi che de 0.36000 | 6.16e-17 kol
age wai_gi 0.36000 | 1.48e-16 ok

for_gi thi_gi 0.36000 | 1.06e-16 |

thi_gi che gi 0.37000 | 4.36e-18 sk kk

thi_gi kne_di 0.39000 | 9.95¢-20 -

cal_gi bii_di 0.40000 | 4.47e-21 ok

sex kne gi 0.40000 | 6.67e-21 HAEH

sex cal gi 0.40000 | 4.03e-21 okl

wai_gi bii_di 0.41000 | 2.70e-22 oAk

nav gi | wridi | 041000 | 1.65e-22 [ ®xx

kne_di bii_di 0.42000 | 5.59e-23 Ak

thi_gi bii_di 0.42000 | 4.67¢-23 ok

thi gi wai_gi 0.42000 1.53e-23 wokk

bic_gi thi_gi 0.42000 | 7.06e-23 ok

ank gi | thi gi 0.42000 | 1.01e-22 [ =

hip gi | wridi | 043000 | 3.40e-24 ko

hip gi  |ank di | 0.43000 | 8.80e-24 ok

age nav_gi 0.44000 | 3.50e-25 ol

hip_gi elb di 0.45000 | 4.56¢-26 ok

wri_gi nav_gi 0.45000 | 2.08e-26 ol

kne gi | bii di 0.46000 | 1.78e-28 [ *xxx

nav_gi elb di 0.46000 | 2.76e-27 Ak

nav_gi ank di 0.46000 | 2.94e-28 HAEH

che de | bit di 0.47000 | 2.52¢-29 ok

wri di | bit di 0.47000 | 8.91e-29 Hkkk

sho gi bit di 0.47000 | 4.59¢-29 oAk

nav gi | kne di | 0.47000 | 3.07¢-29 [

wri_gi hip gi 0.47000 | 6.98e-30 ol

bit di bia di 0.48000 | 4.77e-30 Rl

wgt bii_di 0.48000 | 3.24e-30 Ak
hgt bit di 0.48000 | 3.81e-31 Hokkk
ht cal gi 0.48000 | 3.28e-31 ko
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che gi | bit di 0.49000 | 4.09¢-32 ok

bic gi | bit di 0.49000 | 2.42¢-32 ok

for gi bit di 0.49000 1.49¢e-31 Ak

wri_gi bit_di 0.49000 1.71e-31 HoAEE

ank di | bit di 0.50000 | 9.88¢-33 -

nav_gi che di 0.50000 | 2.44e-33 oAk

hip gi  |che di | 0.50000 [ 1.01e-33 ok

for_gi nav_gi 0.50000 | 9.10e-34 HAEH

che di | bit di 0.51000 | 2.18¢-35 ko

cal gi nav_gi 0.51000 1.81e-35 Ak

cal gi bia di 0.52000 1.56e-36 ARk

elb_di bit_di 0.52000 | 3.79e-36 Ak

nav_gi sho gi 0.52000 | 2.51e-36 ol

hip gi | sho gi | 0.52000 | 3.64e-36 —

kne gi | bia di | 0.53000 |[7.88¢-38 [

thi gi bit_di 0.53000 | 2.76e-38 oAk

ank gi nav_gi 0.53000 | 2.02e-37 Rl

for gi hip gi 0.53000 | 2.07e-37 Ak

ank gi bit di 0.54000 | 2.06e-40 Ak

wgt thi_gi 0.54000 | 1.50e-40 Rl
hip_gi bii_di 0.55000 | 1.12e-40 Ak
sex ank gi 0.55000 | 8.10e-41 oAk

nav_gi bii_di 0.56000 | 2.48e-43 Ak

hip gi | che de | 0.56000 |2.02e-42 [ ##xx

hip gi | kne di | 0.56000 | 3.98¢-43 ok

cal_gi ank di 0.56000 | 9.92¢-44 otk

hgt kne gi | 0.56000 | 1.13e-43 e

wai gi | bit_di 0.57000 | 3.36e-44 ko

cal gi che de 0.57000 1.97e-45 ol

kne gi | ank di | 0.57000 | 1.32e-44 [ ®xxx

bic_gi hip gi | 0.57000 | 2.12¢-45 Ak

cal gi | bit di 0.58000 | 4.11e-47 e

kne gi che de 0.58000 | 3.05e-46 Rl
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hgt che de | 0.58000 | 2.95¢-46 ko

kne gi | che di | 0.58000 |[8.01e-48 [ wxx

cal gi elb di 0.58000 1.80e-46 Ak

cal_gi wri di | 0.58000 | 1.79e-46 | **xx

bic_gi nav_gi 0.58000 | 3.83e-47 ol

kne gi nav_gi 0.58000 | 9.56e-47 oAk

cal gi che di 0.59000 | 6.57e-49 Ak

kne gi |elb di | 0.59000 |8.48e-50 [ wwxx

sex kne di 0.59000 | 3.94¢-48 okl
hip _gi che gi 0.59000 | 2.44¢-48 oAk
hgt wai_gi 0.59000 | 5.40e-48 ok

thi_gi nav_gi | 0.59000 | 1.92e-48 ok

ank gi hip gi 0.59000 | 2.19e-48 ol
hgt ank gi 0.59000 | 7.16e-49 oAk

kne di | bit di 0.60000 | 1.31e-51 ok

kne di che de 0.60000 | 2.33e-51 Ak

ank gi | che de | 0.60000 | 1.23e-51 ko

kne gi | wridi | 0.60000 |[1.38¢-50 [

che de bia di 0.61000 1.04e-53 ARk

ank gi | bia di | 0.61000 |5.53¢-54 [ e

nav_gi bit_di 0.61000 1.28e-53 ol

hgt bic gi | 0.61000 | 5.72e-52 | ##*x

kne gi | bit di 0.62000 | 2.21e-55 -

nav_gi che de 0.62000 1.30e-55 ool

hgt kne di 0.62000 | 7.17e-56 Rkl

kne gi | sho gi | 0.62000 | 1.29¢-55 e

cal gi sho gi 0.62000 | 4.16e-55 ool

kne gi | che gi | 0.62000 |[3.31e-55 -

cal gi che gi 0.62000 1.18e-54 ol

kne gi | thi gi 0.62000 | 1.81e-55 o

cal_gi thi_gi 0.62000 | 2.17e-54 [ s

ank di che de 0.63000 1.57e-57 ool

nav_gi che gi 0.63000 | 2.52e-58 Rl
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hgt che gi | 0.63000 | 4.15¢-58 ok
ank gi | che di | 0.64000 | 3.43e-60 Kk
ht che di | 0.64000 | 3.02¢-60 Hokkk

cal gi wai_gi 0.64000 1.53e-60 Rl

kne gi bic gi 0.64000 | 8.06e-59 ol

wri_gi cal gi 0.64000 8.12e-61 Hokokok

wri_di che de 0.65000 | 4.03e-61 kol

sex che de 0.65000 | 2.20e-61 HAEH

cal gi bic_gi 0.65000 | 1.99e-61 ko

kne di | bia di 0.66000 | 1.18¢-64 ok

wgt bit di 0.66000 | 2.99e-65 ARk

wai_gi kne_di 0.66000 | 7.98e-66 ok

kne gi wai_gi 0.66000 | 3.68e-65 ol

cal_gi hip gi | 0.66000 | 1.06e-65 o

kne gi | for gi 0.66000 | 6.17e-66 | *xxx

wri gi | kne gi | 0.66000 | 1.06e-64 | *xxx

kne di  |che di | 0.67000 | 9.66e-67 ko

che gi kne di 0.67000 | 2.24e-68 Ak

hgt for_gi 0.67000 | 4.29e-66 | *xxx

ank di | bia_di 0.68000 | 1.81e-71 ko

wai_gi bia di 0.68000 9.41e-71 ok kok

bit di bii_di 0.68000 | 4.62e-69 Rl

che di che de 0.68000 | 8.65¢-71 kol

ank gi | wridi | 0.68000 | 2.69e-71 e

cal_gi kne di | 0.68000 | 2.17e-70 | **wx

ank gi | kne di | 0.68000 |[7.52e-70 [

wai_gi ank di 0.68000 | 2.97e-69 ok

hgt sho gi | 0.68000 | 1.39¢-69 ko

hip_gi wai_gi 0.68000 | 2.18¢-70 ok ok

ank gi wai_gi 0.68000 | 2.51e-70 o

cal_gi for_gi 0.68000 | 4.33¢-69 [

sex wgt 0.68000 | 2.20e-71 Ak

ank di che_di 0.69000 | 2.37e-73 Rl
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ank gi | elb di 0.69000 | 1.43e-71 ok

sho gi |kne di [ 0.69000 | 1.17¢-73 -

ank gi |sho gi | 0.69000 |2.28e-74 [ ®xxx

ank gi | che gi | 0.69000 | 2.04e-73 -

elb_di che de 0.70000 | 5.38e-75 ol

hgt wri_di 0.70000 1.05e-74 Rl

bic_gi kne di | 0.70000 | 3.15¢-77 ok

ank gi ank di 0.70000 | 8.49¢-76 HAEH

hgt ank di 0.70000 | 1.26e-76 Rl
sex wai_gi 0.70000 | 2.36¢-77 kK
wgt nav_gi 0.70000 | 3.99¢-76 ok

ank gi | bic gi | 0.70000 | 5.98¢-75 ook

bic gi | biadi | 0.71000 |[2.04e-79 [ wwx

wri_gi che de 0.71000 | 4.43e-78 ok

wai gi | wridi | 0.71000 | 1.48¢-79 ok

bic gi | ank di | 0.71000 | 1.43e-79 [ *xxx

sex ank_di 0.71000 | 1.30e-79 Rl
kne gi hip gi 0.71000 | 3.11e-80 Ak
hgt wri_gi 0.71000 | 1.78e-77 HrEE
sex hgt 0.71000 | 1.71e-77 Rl
sex che di 0.72000 | 2.75e-81 ol

kne gi | kne di | 0.72000 | 4.49¢-81 ko

sho gi | ank di | 0.72000 | 1.68¢-81 ok

kne di wri_di 0.73000 | 2.99¢-85 Ak

che gi |[ank di | 0.73000 |3.82¢-86 [ *x

hgt wgt 0.73000 | 3.73e-86 Rl

wri_di bia di 0.74000 | 3.41e-89 oAk

che gi |[biadi | 0.74000 | 6.00e-88 |

for gi che de 0.74000 1.61e-90 ol

wai_gi elb di 0.74000 | 2.34e-87 ook

for_gi kne di | 0.74000 | 8.97e-89 | ##xx

nav_gi wai_gi 0.74000 1.23e-89 ool

ank gi for gi 0.74000 1.51e-87 Rl
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ank gi cal gi 0.74000 1.69¢-89 Rl

wegt bia_di 0.75000 | 5.19¢-91 kol

hip gi | bit di 0.75000 | 2.32e-92 [ wxx

wri_di che di 0.75000 | 9.52¢-92 ol

kne di [elb di | 0.75000 | 2.44e-91 -

hgt elb di 0.75000 1.48e-91 Rl

sex wri_di 0.75000 1.84¢-93 kol

ank di kne di 0.75000 | 6.83e-92 Ak

wri gi | kne di | 0.75000 | 3.04e-92 T

for gi ank di 0.75000 1.53e-93 Ak

wgt hip gi | 0.75000 | 4.61e-92 | #***

ank gi | kne gi | 0.75000 | 2.73e-91 ok

for gi bia_di 0.76000 1.01e-96 ol

hgt bia_di 0.76000 | 9.50e-96 HoAEH
sho gi che de 0.76000 | 8.39¢-97 o
wgt ank di 0.76000 | 7.42¢-95 oAk
sex che gi 0.76000 1.55e-95 ool
sex bic_gi 0.76000 | 3.46¢-95 ol

bic gi | che de | 0.77000 | 1.62e-99 [ xxx

wri_gi ank di 0.77000 | 2.12e-101 HoAEE

wri_gi wai_gi 0.77000 | 6.04e-99 ol

wat cal_gi 0.77000 | 2.39e-102 | ****

wri_gi ank gi 0.77000 | 3.68e-101 kol

che di bia di 0.78000 1.42e-106 Ak

elb di | bia_di 0.78000 | 3.30e-104 | ##*x

elb_di che di | 0.78000 | 1.53e-103 | ****

wri_gi | che di | 0.78000 | 1.54e-104 [ *xxx

ank di wri_di 0.78000 | 4.58e-107 Rl

bic gi | wridi | 0.78000 | 1.06e-104 |

wgt kne di 0.78000 | 1.55e-106 HoAEE
wgt ank gi 0.78000 1.11e-103 kol
wri_gi bia_di 0.79000 | 1.92¢-108 oAk
sex bia_di 0.79000 | 2.48e-108 ool
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wai_gi che_di 0.79000 | 9.19e-111 HoAEH

sex elb_di 0.79000 | 5.95¢-111 kol
che gi wri_di 0.79000 | 1.51e-107 Ak
wgt wri_di 0.79000 | 9.67e-109 Rl
sex sho gi 0.79000 | 2.66e-111 ol
cal gi kne gi 0.79000 | 2.45e-111 Ak
wgt kne gi 0.79000 1.78e-111 kol
sex wri_gi 0.79000 | 4.58e-110 HAEH

bic_gi che di | 0.80000 | 9.64e-114 | #***

sho gi wri_di 0.80000 | 4.46¢-112 kK

hip_gi nav_gi 0.80000 1.65e-115 Fokokok

sex for_gi 0.80000 | 2.67e-112 ook

sho gi bia_di 0.81000 1.57e-117 ol

wai_gi che de 0.81000 1.62e-120 Fkkk

wgt che de 0.81000 1.61e-120 kol

for_gi che di | 0.81000 | 7.29e-119 | s

thi gi hip_gi 0.81000 | 6.58e-120 HoEAE

che gi che de 0.82000 | 6.76e-126 Ak

wgt che di 0.82000 | 2.57e-126 Ak

che gi | elb_di 0.82000 | 2.18e-124 | ##*x

bic gi |elb di | 0.82000 |[5.25e-123 [ s

wgt elb di 0.82000 | 4.03e-123 oAk

for gi wai gi | 0.82000 | 1.03e-124 | ##*x

ank di elb_di 0.83000 1.14e-132 Ak

sho gi elb_di 0.83000 | 3.58e-131 ool

for gi wri di | 0.83000 | 4.75e-131 | ##*x

wri_gi che gi 0.84000 2.96e-135 Fokokok

wet wri_gi | 0.84000 | 7.26e-136 | ##*x

wri di |elb di | 0.85000 | 1.16e-144 [ s

wai_gi sho gi 0.85000 1.67e-139 o

wri gi  |sho gi | 0.85000 | 6.03e-143 | ##xx

bic gi | wai gi | 0.85000 |[2.68e-141 [ xx

wri gi | elb_di 0.86000 | 5.71e-147 | ###x
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wri_gi bic gi 0.86000 | 6.99¢-148 Rl
sho gi che di 0.87000 | 2.96e-158 Ak
che gi che di 0.87000 | 4.67e-156 Ak
for gi elb_di 0.87000 | 1.64e-153 Rl
wri_gi wri_di 0.88000 | 5.39e-162 Ak

wgt sho gi 0.88000 | 4.21e-164 ool
wgt bic_gi 0.89000 | 3.21e-172 o
wgt for gi 0.89000 | 3.69e-172 Ak

bic gi sho_gi 0.90000 | 4.24¢-182 HoAEH
for gi sho gi 0.90000 | 2.10e-181 A
wai_gi che gi 0.90000 | 1.06e-187 HoAEH
for gi che gi 0.90000 | 1.72e-181 o
wgt che gi 0.91000 | 1.51e-191 oAk
wgt wai_gi 0.91000 | 3.41e-200 ool
wri_gi for gi 0.91000 | 2.37e-197 kol
bic_gi che gi 0.92000 | 2.93e-205 HAEH
che gi sho_gi 0.93000 | 2.13e-217 HoEAE
for gi bic_gi 0.94000 | 9.81e-247 ool

We see that:

. The lowest correlation coefficient was between sex and thigh
girth (thi_gi) and equals -0.059. However, this correlation was
insignificant or ns.

. There are no more negative correlations and all other correlation
coefficients are positive.

. The highest correlation was between forearm girth (for gi) and
bicep girth (bic_gi) and equals 0.94. It was significantly greater
than 0 with a very low p-value. This means that as the forearm girth
increases, the bicep girth increases on average and vice versa.

3.2.8. Correlation Between all Numeric Variables in fast Food
Data

We can use the same functions to get the long correlation matrix between all
numeric variables in fast food data. However, because not all columns in the

fast food data are numeric, we select the numeric ones using the select function
with the argument where(is.numeric) to select numeric columns only.
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fastfood %>% select(where(is.numeric)) %>% cor_mat(method = “spearman®) %>%
pull_lower_triangle() %>%

cor_gather() %>%
arrange(cor) %>%
add_significance(p.col = “p,” output.col = “significance™) %>%

mutate(p = scientific(p)) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “Spearman correlation matrix of numeric columns of fast
food data in ascending order and significance symbols™)

Table 3.15. Spearman Correlation Matrix of Numeric Columns of Fast Food Data
in Ascending Order and Significance Symbols

varl var2 cor p Significance

vit ¢ trans_fat -0.2100 2.43e-04 oAk
vit ¢ cal fat -0.1800 1.92¢-03 HoE
vit_c¢ total fat -0.1700 2.26e-03 *E
fiber trans_fat -0.1300 4.91e-03 woE
vit ¢ sat_fat -0.1200 3.06e-02 *
fiber cholesterol -0.0370 4.04e-01 ns
vit a cal fat -0.0098 8.65¢-01 ns
vit_a total fat -0.0092 8.74e-01 ns
vit a trans_fat 0.0059 9.19e-01 ns
vit_a total carb 0.0140 8.05¢-01 ns
vit_¢ calories 0.0230 6.87e-01 ns
fiber sat_fat 0.0440 3.26e-01 ns
vit_a calories 0.0560 3.33¢-01 ns
vit a sodium 0.0560 3.34e-01 ns
vit a cholesterol 0.0690 2.35e-01 ns
fiber cal fat 0.0700 1.17e-01 ns
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fiber total fat 0.0730 1.00e-01 ns
vit ¢ cholesterol 0.0850 1.40e-01 ns
vit ¢ sodium 0.1100 5.59¢-02 ns
vit a protein 0.1300 2.31e-02 *
vit_a sat fat 0.1400 1.20e-02 *
calcium trans_fat 0.1500 9.01e-03 o
vit ¢ total carb 0.1500 9.79¢-03 ok
protein fiber 0.1700 1.23e-04 oAk
total carb trans_fat 0.1900 1.44e-05 Rl
vit ¢ protein 0.2400 2.52¢-05 wokdE
calcium cal fat 0.2500 1.29¢-05 ool
calcium total fat 0.2500 9.49¢-06 kol
sugar trans_fat 0.2500 1.00e-08 A
calcium cholesterol 0.2500 1.43e-05 kool
sugar fiber 0.2900 3.09¢e-11 kol
fiber calories 0.3000 3.51e-12 HAEE
fiber sodium 0.3100 1.63e-12 Rl
sodium trans_ fat 0.3200 9.55¢-14 HkE
total carb cholesterol 0.3300 1.09e-14 kool
vit_a sugar 0.3300 4.54¢-09 okl
sugar cal fat 0.3400 9.13e-16 HoHAk
sugar total fat 0.3500 3.00e-16 oAk
protein trans_fat 0.3600 1.97e-17 okl
sugar sat fat 0.3700 5.27e-18 oAk
calcium sat_fat 0.4000 2.04e-13 oAk
calcium vit_¢ 0.4100 4.00e-14 lollo
total carb sat_fat 0.4200 2.51e-23 ook
calcium sodium 0.4200 1.16e-14 Rl
vit_a fiber 0.4300 4.88e-15 Rl
sugar cholesterol 0.4500 1.75e-26 ok
calcium protein 0.4500 1.18e-16 ol
calcium vit_a 0.4500 1.20e-16 Rl
trans_fat calories 0.4700 3.32¢-30 otk
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vit ¢ sugar 0.4700 4.84e-18 oAk
sugar sodium 0.4800 3.49¢-31 koo
cholesterol trans_fat 0.4900 2.12e-32 ook
total carb cal fat 0.5000 1.34e-34 kool
calcium calories 0.5100 5.67e-22 Rl
total carb total fat 0.5100 4.33e-35 Rl
protein sugar 0.5200 3.11e-37 ol
protein total carb 0.5300 7.59¢-39 Rl
sugar calories 0.5500 1.91e-41 ook
fiber total carb 0.5600 1.03e-43 wokdE
trans_fat cal fat 0.5700 1.50e-45 ool
trans_fat total fat 0.5700 4.64¢e-46 o
protein sat_fat 0.5800 5.07e-47 A
calcium sugar 0.5800 3.53e-29 o
sugar total carb 0.5900 7.95e-49 kol
vit ¢ fiber 0.5900 2.04e-29 Ak
sodium sat fat 0.6200 1.22e-55 kool
calcium total carb 0.6200 1.15¢-33 HkE
calcium fiber 0.6200 3.76e-33 kool
protein cal fat 0.6300 1.73e-58 oAk
protein total fat 0.6300 5.75e-59 HoHAk
vit ¢ vit a 0.6300 2.05¢e-34 ok
sodium cholesterol 0.6700 1.71e-68 oAk
sodium cal fat 0.7000 1.93e-77 oAk
sodium total fat 0.7000 1.66¢e-77 oAk
trans_ fat sat_fat 0.7000 2.37e-77 lollo
cholesterol sat_fat 0.7100 3.13e-81 ook
total carb sodium 0.7100 2.07e-80 ook
cholesterol cal fat 0.7200 2.70e-84 Rl
cholesterol total fat 0.7200 5.59¢-85 ok
cholesterol calories 0.7300 6.65e-87 Rl
sat_fat calories 0.7500 4.62e-96 Rl
total carb calories 0.7800 2.93e-106 otk
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protein sodium 0.7800 1.62e-105 oAk
protein calories 0.8000 2.57e-113 koo
sodium calories 0.8400 2.72e-137 ook
sat_fat cal fat 0.8500 2.79¢-146 ook
sat fat total fat 0.8500 1.92¢-146 koo
cal fat calories 0.8700 1.87e-163 kool
total fat calories 0.8800 1.22¢-164 ol
protein cholesterol 0.8800 6.37e-167 otk
total fat cal fat 1.0000 0.00e+00 Rl

We see that:

1. The lowest correlation was -0.21 and was between vitamin C and

trans fat. There was a significant correlation with p-value < 0.05.
This means that as the concentration of vitamin C increases the
concentration of trans fat decreases and vice versa.

2. The highest correlation was 1.00 and was between total fat and
calories from fat (cal_fat). It was a significant correlation with a zero
p-value. This means that as the concentration of total fat increases,
the calories from fat increase too, and vice versa.

3.3. SUMMARY PLOTS

3.3.1. Scatter Plot

The scatter plot is explained above to see the linear dependence between 2
variables. Here, we will plot another scatter plot for a significant small negative
correlation, a significant small positive correlation, and a significant large
positive correlation.

3.3.1.1. Scatter Plot for Significant Small Negative Correlation

We noticed that the Spearman correlation between vitamin C and trans fat is
significant, small, and negative (-0.21). We can plot a scatter plot of trans fat
on the y-axis vs. vitamin C on the x-axis with a linear fit line as described
previously.

fastfood %>% ggplot(aes(x = vit_c, y = trans_fat))+ geom_point()+
geom_smooth(method = “Lm”)+

labs(title = “Scatter plot of trans fat vs. vitamin C in fast food data \n with
Linear fit line,” x = “vitamin C,”
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y = “Trans fat”)+
theme_classic()+

theme(plot.title = element_text(hjust = 6.5))

Scatter plot of trans fat vs. vitamin C in fast food data
with linear fit line

We see that the linear fit line has a negative slope and many points are
scattered around this linear fit line. That is why the correlation was negative
and small.

3.3.1.2. Scatter Plot for a Significant Small Positive Correlation

We noticed that the Spearman correlation between vitamin C and protein is
significant, small, and positive (0.24). We can plot a scatter plot of protein on the
y-axis vs. vitamin C on the x-axis with a linear fit line as described previously.
fastfood %>% ggplot(aes(x = vit_c, y = protein))+ geom_point()+

geom_smooth(method = “Lm”)+
labs(title = “Scatter plot of protein vs. vitamin C in fast food data \n with
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Linear fit Lline,” x = “vitamin C,”

y = “Protein”)+
theme_classic()+

theme(plot.title = element_text(hjust = 6.5))

Scatter plot of protein vs. vitamin C in fast food data
‘with linear it line

Protesn

We see that the linear fit line has a positive slope and many points are
scattered around this linear fit line. That is why the correlation was positive and
small.

3.3.1.3. Scatter Plot for a Significant Large Positive Correlation

We noticed that the Spearman correlation between total fat and calories from
fat is significant, large, and perfectly positive (1.00). We can plot a scatter plot
of calories from fat on the y-axis vs. total fat on the x-axis with a linear fit line
as described previously.

fastfood %>% ggplot(aes(x = total_fat, y = cal_fat))+ geom_point()+
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geom_smooth(method = “Lm”)+

labs(title = “Scatter plot of calories from fat vs. total fat in fast food data
\n with linear fit line,” x = “Total fat,”

y = “Calories from fat”)+
theme_classic()+

theme(plot.title = element_text(hjust = 6.5))

Calorias from fat

We see that the linear fit line has a positive slope and many points are aligned
along this linear fit line. That is why the correlation was perfectly positive and
large.

3.3.2. Visualize the Correlation Matrix

The cor _plot function can be applied to the result of the cor mat function.
The produced plot is created using the base R functions (and not the ggplot
function), so to add a title, we use the title function after the cor plot function.
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3.3.2.1. Visualize the Correlation Matrix of Body Measurements

Data

bdims %>% cor_mat(method = “spearman®) %>% cor_plot()

title(“Spearman correlation matrix of numeric columns 1in body

data\n using cor_plot function”)

measurements

matrix of
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using cor_plot function
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1. The positive correlations are plotted as blue circles, while the
negative correlations are plotted as red circles (none in this data).

2. The areas and color shades of circles correspond to the absolute
value of the correlation coefficient. So, a larger positive correlation
coefficient will be shown as larger darker blue circles than a smaller
positive correlation coefficient.

3. The insignificant correlations are marked by crosses (X). For

example, between age and thigh girth (thi_gi).

We see that the lower triangle is a mirror image of the upper triangle so
we can extract the lower or upper triangle using the type argument within the
cor_plot function. This also will reduce the crowding of visualizing the whole

correlation matrix.
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bdims %>% cor_mat(method = “spearman”) %>% cor_plot(type = “Lower™)

title(“Lower triangle of spearman correlation matrix of numeric columns in body
measurements data\n using cor_plot function™)

LLower triangle of matrix of in body data
using cor_plot function
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3.3.2.2. Visualize the Correlation Matrix of Fast Food Data

We can also plot the lower triangle of the Spearman correlation matrix of the
fast food data.

fastfood %>% select(where(is.numeric)) %>% cor_mat(method = “spearman®) %>%
cor_plot(type = “lower”)

title(“Lower triangle of spearman correlation matrix of numeric columns in fast
food data\n using cor_plot function®)
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Lower triangle of spearman correlation matrix of numeric columns in fast food data
using cor_plot function

q’?‘%-

%,

%

%,

N

°0
0
)N

000000
® x x.. ..

°*-00000

Y
®

=

X ....@?
0.

X | x .. X
9o

] &
via X | X X x @ . o
we| % @ 0 -
—r @ 'YX XX XY )
N T
E 08 06 04 -0‘.2 L] nfz 04 06 [ F.] 1

A more informative plot is to label the circles with their corresponding
correlation coefficient using label = TRUE argument within the cor plot
function.

fastfood %>% select(where(is.numeric)) %>% cor_mat(method = “spearman®) %>%
cor_plot(type = “Lower,” Llabel = TRUE)

title(“Lower triangle of spearman correlation matrix with Llabels of numeric
columns in fast food data\n using cor_plot function”)
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Lower triangle of spearman correlation matrix with labels of numeric columns in fast food data
using cor_plot function
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To see the correlation coefficients more clearly, we can color the text white
using the font.label argument within the cor_plot function.

fastfood %>% select(where(is.numeric)) %>% cor_mat(method = “spearman®) %>%
cor_plot(type = “Lower,” Label = TRUE, font.label = list(color = “white”))

title(“Lower triangle of spearman correlation matrix with white Labels of numeric
columns 1in fast food data\n using cor_plot function”)
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Lower triangle of spearman correlation matrix with white labels of numeric columns in fast food data
using cor_plot function
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3.4. STATISTICAL TESTS

We can test the correlation for significance as described above.
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4.1. DATA USED IN THIS CHAPTER

4.1.1. US Births Data

A random sample of 1000 births from the US births data released in 2014 is
stored under the name “births14.” The data is part of the openintro package
and its source is: United States Department of Health and Human Services.
Centers for Disease Control and Prevention. National Center for Health
Statistics. Natality Detail File, 2014 United States. Inter-university Consortium
for Political and Social Research, 2016—-10-07. doi:10.3886/ICPSR36461.v1.

To load this data into our R session, we will load the openintro package
using the library function. Then, we will load the “births14” data using the data
function. We will also load the tidyverse package because it contains many
packages for data analysis like dplyr, tidyr, ggplot2, etc.

Library(openintro)
data(“birthsi4”)
Library(tidyverse)

To see the data structure, we will use the glimpse function from the dplyr
package.
glimpse(birthsi14)
## Rows: 1,000
## Columns: 13

## $ fage <int> 34, 36, 37, NA, 32, 32, 37, 29, 30, 29, 30, 34, 28, 28,..
## $ mage <dbl> 34, 31, 36, 16, 31, 26, 36, 24, 32, 26, 34, 27, 22, 31,..
## $ mature <chr> “younger mom,” “younger mom,” “mature mom,” “younger mo..
## $ weeks <dbl> 37, 41, 37, 38, 36, 39, 36, 40, 39, 39, 42, 40, 40, 39,..
## $ premie <chr> “full term,” “full term,” “full term,” “full term,” “pr..
## $ visits <dbl> 14, 12, 10, NA, 12, 14, 10, 13, 15, 11, 14, 16, 20, 15,..
## $ gained <dbl> 28, 41, 28, 29, 48, 45, 20, 65, 25, 22, 40, 30, 31, NA,..
## $ weight <dbl> 6.96, 8.86, 7.51, 6.19, 6.75, 6.69, 6.13, 6.74, 8.94, 9..
## $ Lowbirthweight <chr> “not Low,” “not Low,” “not Low,” “not Low,” “not low,” ..
## $ sex <chr> “male,” “female,” “female,” “male,” “female,” “female,”..
## $ habit <chr> “nonsmoker,” “nonsmoker,” “nonsmoker,” “nonsmoker,” “no..
## $ marital <chr> “married,” “married,” “married,” “not married,” “marrie..
## $ whitemom <chr> “white,” “white,” “not white,” “white,” “white,” “white..

We see that the “births14” data contains 1000 rows and 13 columns:

1. fage: Father’s age in years. It is an integer column.
2. mage: Mother’s age in years. It is a double or numeric column.
3. mature: Maturity status of the mother. It is a character column.
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4. weeks: Length of pregnancy in weeks. It is a double or numeric
column.
5. premie: Whether the birth was classified as premature (premie) or

full-term. It is a character column.

6. visits: Number of hospital visits during pregnancy. It is a double or
numeric column.

7. gained: Weight gained by mother during pregnancy in pounds. It is
a double or numeric column.

8. weight: Weight of the baby at birth in pounds. It is a double or
numeric column.

9. lowbirthweight: Whether the baby was classified as low birthweight
(low) or not (not low). It is a character column.

10.  sex: Sex of the baby, female or male. It is a character column.

11.  habit: Status of the mother as a nonsmoker or a smoker. It is a
character column.

12.  marital: Whether the mother is married or not married at birth. It is a
character column.

13.  whitemom: Whether mom is white or not white. It is a character
column.

4.1.2. Cherry Blossom Run Data in 2009

The Details for all 14,974 runners in the 2009 Cherry Blossom Run, which is an
annual road race that takes place in Washington DC, are stored in the “run09”
data frame that is part of the cherryblossom package. The cherryblossom package
is loaded automatically when we load the openintro package. So, to load this
data into our R session, we will use the data function as before followed by the
glimpse function to get the data structure.

data(“runo9g”)

glimpse(runo9)

## Rows: 14,974

## Columns: 14

## $ place <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1.
## $ time  <dbl> 53.533, 53.917, 53.967, 54.433, 54.450, 54.533, 54.633, 54.6..
## $ net_time <dbl> 53.533, 53.917, 53.967, 54.433, 54.450, 54.533, 54.633, 54.6..
## $ pace  <dbl> 5.367, 5.400, 5.400, 5.450, 5.450, 5.467, 5.467, 5.467, 5.48..
## $ age  <int> 21, 21, 22, 19, 36, 28, 25, 31, 23, 26, 23, 35, 28, 28, 26, ..
## $ gender <fct> F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, ..
## $ first <fct> Lineth, Belianesh Zemed, Teyba, Abebu, Catherine, Olga, Sall..
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## $ last
## $ city
## § state

<fct> Chepkurui, Gebre, Naser, Gelan, Ndereba, Romanova, Meyerhoff..
<fct> Kenya, Ethiopia, Ethiopia, Ethiopia, Kenya, Russia, United S..
<fct> NR, NR, NR, NR, NR, NR, NR, NR, NR, NR, NR, NR, NR, CO, AR, ..

## $ country <fct> KEN, ETH, ETH, ETH, KEN, RUS, USA, KEN, ETH, RUS, ETH, ROM, ..

## $ div

<int> 2, 2, 2, 1, 5, 3, 3, 4, 2, 3, 2, 5, 3, 3, 3, 3, 3, 5, 4, 2, .

## $ div_place <int> 1, 2, 3, 1, 1, 1, 2, 1, 4, 3, 4, 2, 4, 5, 6, 7, 8, 3, 2, 5, ..
## $ div_tot «<int> 953, 953, 953, 71, 1130, 2706, 2706, 1678, 953, 2706, 953, 1.

The data is composed of 14974 rows (runners) and 14 columns:

1.

10.

11.

12.
13.

14.

place: Finishing position. Separate positions are provided for each
gender. It is an integer column.

time: The total run time. It is a double or numeric column.

net_time: The run time from the start line to the finish line. It is a
double or numeric column.

pace: Average time per mile, in minutes. It is a double or numeric
column.

age: runner’s age. It is a double or numeric column.

gender: runner’s gender. It is a factor column with 2 levels “F” for
females and “M” for males.

first: runner’s first name. It is a factor column with many levels.
last: runner’s last name. It is a factor column with many levels.
city: runner’s hometown city. It is a factor column with many levels.

state: runner’s hometown state. It is a factor column with many
levels.

country: runner’s hometown country. It is a factor column with many
levels.

div: Running division (age group). It is an integer column.

div_place: Division place broken up by gender. It is an integer
column.

div_tot: Total number of people in the division split by gender. It is
an integer column.

4.2. SUMMARY STATISTICS

4.2.1. Summary Statistics for Location: The Mean

As we see in Chapter 1, there are different measures of the central tendency
(central location) of numerical data like the mean, the median, and percentiles.
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To examine the relation between a continuous and a categorical variable,
we can calculate the mean of the continuous variable under the different levels
of the categorical variable to see how the data center changes between the
different levels.

4.2.1.1. The Mean Maternal Age in the Birth Types

To get the mean maternal age for the 2 birth types (premature and full-term), we
use the following functions:

. The group by function with the argument premie applied to the
births data frame to split the data frame into different data frames
each containing one level of premie column. So we will have 2 data
frames, one for full-term births and the other for premature births.

. The get summary_stats function, from the rstatix package, with
the arguments, mage, and show = “mean,” to calculate the mean
maternal age within each data frame.

. The flextable, theme box, and set caption functions convert the
result to a table as described in previous chapters.

The functions are applied in sequence using the “%>%" operator. Because
we are using rstatix and flextable functions, so we must first load them into our
R session using the library function.

Library(rstatix)

Library(flextable)

births14 %>% group_by(premie) %>% get_summary_stats(mage, show = “mean”) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Mean maternal age in premature and full-term births of
the US births data in 2014”)

Table 4.1. Mean Maternal Age in Premature and Full-Term Births of the US Births
Data in 2014

Premie Variable n Mean
full term mage 876 28.33
premie mage 124 29.29
We see that:
1. There are 876 full-term births in our data compared to 124 premature
births. The total is 1000 births which is the number of rows in our
data.
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2. The mean maternal age in full-term births is 28.33 years which is
lower than that in premature births (29.29 years). So higher maternal
age may be associated with premature births.

4.2.1.2. The Mean Number of Visits in the Birth Types

Similarly, we can use the same functions to get the mean number of hospital
visits during pregnancy for the 2 birth types (premature and full-term).
births14 %>% group_by(premie) %>% get_summary_stats(visits, show = “mean”) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Mean number of hospital visits during pregnancy 1in
premature and full-term births of the US births data in 2014”)

Table 4.2. Mean Number of Hospital Visits During Pregnancy in Premature and
Full-Term Births of the US Births Data in 2014

Premie Variable n Mean
full term visits 829 11.516
premie visits 115 10.165
We see that:
1. There are 829 full-term births in our data with an available number

of visits compared to 115 premature births. The total is 944 births
which is lower than the number of rows in our data. This means that
there are some full-term births and some premature births without a
recorded number of visits.

2. The mean number of visits in full-term births is 11.516 which is
higher than that in premature births (10.165). So lower number of
hospital visits during pregnancy may be associated with premature
births.

4.2.1.3. The Mean Run Time in the 2 Genders

Similarly, we can use the same functions to get the mean run time for the 2
genders (males and females) in the Cherry Blossom Run data of 2009.

run@9 %>% group_by(gender) %>% get_summary_stats(time, show = “mean”) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Mean run time in males and females of Cherry Blossom Run
data in 2009”)
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2009
Gender Variable n mean
F time 8,323 109.240
M time 6,651 96.226
We see that:
1. There are 8323 females in our data compared to 6651 males. The

total is 14974 persons which is the number of rows in our data.

2. The mean run time in females is 109.240 which is higher than that
in males (96.226). So males may be associated with lower run times
on average.

4.2.1.4. The Mean Run Time in the Different States

Similarly, we can use the same functions to get the mean run time for runners
from the different hometown states in the Cherry Blossom Run data of 2009. To
make the resulting table more informative, we use the arrange function with the
argument mean to arrange the states in ascending order by their mean run time.
run@9 %>% group_by(state) %>% get_summary_stats(time, show = “mean”) %>%
arrange(mean) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Mean run time in runners from different states of Cherry
Blossom Run data in 2009”)

Table 4.4. Mean Run Time in Runners from Different States of Cherry Blossom
Run Data in 2009

State Variable n Mean

NR time 59 70.138
AE time 1 74.467
IA time 6 91.836
OK time 4 92.604
WA time 8 93.102
VT time 6 93.817
DE time 61 98.278
AK time 2 98.475
CO time 23 99.796
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wY time 1 100.383
NH time 19 100.950
PA time 461 101.227
MS time 3 101.417
A% time 28 101.580
GA time 37 101.675
KY time 9 102.074
NY time 522 102.141
DC time 3,464 | 102.150
NM time 7 102.364
WI time 14 102.385
SC time 11 102.424
RI time 14 102.688
CA time 75 102.730
CT time 73 102.740
KS time 3 103.017
NE time 103.106
LA time 2 103.250
IL time 71 103.411
MA time 136 104.068
VA time 5,608 | 104.083
MD time 3,558 | 104.450
MN time 19 104.459
ME time 10 104.523
NJ time 207 104.567
MI time 34 105.225
MO time 17 105.468
IN time 18 105.753
FL time 55 105.913
UT time 2 106.175
NC time 158 107.048
1D time 1 107.733
TX time 44 107.791
AL time 6 109.383
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OH time 80 110.043
TN time 10 110.120
AZ time 11 110.379
OR time 5 111.783
PR time 3 113.028
NV time 2 113.258
SD time 1 113.683
AR time 2 129.967

We see that:

1. There are 51 different states in our data with different sample sizes.
Some states have only 1 runner coming from it (“AE” and “WY?”).

2. The lowest mean run time was in 59 runners coming from the “NR”
state, while the highest mean run time was found in 2 runners coming
from the “AR” state. So runners from the “NR” state may be associated
with lower run times on the average.

4.2.2. Summary Statistics for Location: The Median

As we saw in Chapter 1, The median is a robust statistic that gives the data
center without being affected by the extreme values or outliers in the data. So,
we can calculate the median of the continuous variable under the different
levels of the categorical variable to see how the data center changes between
the different levels. In addition, we will also calculate the mean to determine if
the data is skewed as we saw in Chapter 1.

4.2.2.1. The Median and Mean Maternal Age in the Birth Types

To get the median and mean maternal age for the 2 birth types (premature and
full-term), we will use the same above functions except that we add another
argument to the get summary_stats function. So this function will have the
arguments, mage, and show = c(“mean,” “median”), to calculate the mean and
median maternal age within each birth type.

births14 %>% group_by(premie) %>% get_summary_stats(mage,

show = c(“mean,””median®)) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Mean and median maternal age in premature and full-
term births of the US births data in 2014”)
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Table 4.5. Mean and Median Maternal Age in Premature and Full-Term Births of
the US Births Data in 2014

Premie Variable | n Mean Median
full term | mage 876 28.33 28
premie mage 124 29.29 30
We see that:
1. The median maternal age in full-term births is 28 years which is

lower than that in premature births (30 years). So higher maternal
age may be associated with premature births.

2. The mean and median maternal age are nearly equal in full-term and
premature births. So, we conclude that the maternal age is evenly
spaced or normally distributed in the 2 birth types. We will see that
in the summary plots below.

4.2.2.2. The Median and Mean Number of Visits in the Birth
Types

Similarly, we can use the same functions to get the mean and median number of
hospital visits during pregnancy for the 2 birth types (premature and full-term).
births14 %>% group_by(premie) %>% get_summary_stats(visits,

show = c(“mean,””median”)) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Mean and median number of hospital visits during pregnancy
in premature and full-term births of the US births data in 2014”)

Table 4.6. Mean and Median Number of Hospital visits During Pregnancy in Pre-
mature and Full-Term Births of the US Births Data in 2014

Premie Variable | n Mean Median
full term | visits 829 11.516 12
premie visits 115 10.165 10

We see that:

1. The mean number of visits in full-term births is 12 which is higher than
that in premature births (10). So lower number of hospital visits during
pregnancy may be associated with premature births.
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2. The mean nearly equals the median in full-term and premature births.
So, we conclude that the number of visits is evenly spaced or normally
distributed in the 2 birth types.

4.2.2.3. The Median and Mean Run Time in the 2 Genders

Similarly, we can use the same functions to get the median and mean run time
for the 2 genders (males and females) in the Cherry Blossom Run data of 2009.
run@9 %>% group_by(gender) %>% get_summary_stats(time,

show = c(“mean,””’median®)) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Mean and median run time in males and females of Cherry
Blossom Run data in 2009”)

Table 4.7. Mean and Median Run Time in Males and Females of Cherry Blossom
Run Data in 2009

Gender Variable | n Mean Median

F time 8,323 109.240 109.567

M time 6,651 96.226 95.717
We see that:

1. The median run time in females is 109.567 which is higher than that
in males (95.717). So males may be associated with lower run times.

2. The mean nearly equals the median in females and males. So, we
conclude that the run time is evenly spaced or normally distributed
in the 2 genders.

4.2.2.4. The Median and Mean Run Time in the Different States

Similarly, we can use the same functions to get the mean and median run time
for runners from the different hometown states in the Cherry Blossom Run
data of 2009. To make the resulting table more informative, we use the arrange
function with the argument median to arrange the states in ascending order by
their median run time.
run@9 %>% group_by(state) %>%

get_summary_stats(time, show = c(“mean,””median”)) %>%

arrange(median) %>%
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flextable() %>% theme_box() %>%

set_caption(caption = “Mean and median run time in runners from different states
of Cherry Blossom Run data in 2009”)

Table 4.8. Mean and Median Run Time in Runners From Different States of Cherry
Blossom Run Data in 2009

State Variable n Mean Median
NR time 59 70.138 55.183
AE time 1 74.467 74.467
VT time 6 93.817 92.267
OK time 4 92.604 92.808
WA time 8 93.102 93.200
MS time 3 101.417 | 93.667
1A time 6 91.836 96.042
RI time 14 102.688 | 97.858
NH time 19 100.950 | 97.900
AK time 2 98.475 98.475
NE time 3 103.106 | 98.550
KY time 9 102.074 | 98.833
MI time 34 105.225 99.358
DE time 61 98.278 99.383
OR time 5 111.783 99.567
wvV time 28 101.580 | 99.875
WY time 1 100.383 100.383
PA time 461 101.227 100.650
SC time 11 102.424 100.983
MO time 17 105.468 101.133
DC time 3,464 102.150 102.575
NY time 522 102.141 102.650
WI time 14 102.385 102.750
CT time 73 102.740 103.000
TN time 10 110.120 103.108
LA time 2 103.250 103.250
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CA time 75 102.730 103.383
CO time 23 99.796 103.617
MN time 19 104.459 103.950
MA time 136 104.068 104.225
VA time 5,608 104.083 104.308
FL time 55 105.913 104.600
MD time 3,558 104.450 104.833
GA time 37 101.675 104.967
NJ time 207 104.567 104.967
IL time 71 103.411 105.300
IN time 18 105.753 105.750
UT time 2 106.175 106.175
NM time 7 102.364 107.617
ID time 1 107.733 107.733
NC time 158 107.048 108.450
OH time 80 110.043 109.592
ME time 10 104.523 110.534
X time 44 107.791 111.242
AZ time 11 110.379 111.300
AL time 6 109.383 113.092
NV time 2 113.258 113.258
PR time 3 113.028 113.417
SD time 1 113.683 113.683
KS time 3 103.017 120.050
AR time 2 129.967 129.967
We see that:

1. The lowest median run time was in 59 runners coming from the
“NR” state (55.183), while the highest median run time was found
in 2 runners coming from the “AR” state (129.967). So runners from
the “NR” state may be associated with lower run times.

2. There is a great difference between the mean and median run time

for runners coming from the “NR” state. So, we conclude that the
run time in the “NR” state is right skewed because the mean is
much larger than the median. On the other hand, the median is larger
than the mean in the “CO” state so the run time in this state is left
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skewed. Other states like “DC” and “NY” have nearly equal mean
and median so the run in these states is evenly spaced or normally
distributed.

4.2.3. Summary Statistics for Location: The Percentiles

As we saw in Chapter 1, the percentiles including the median are not affected by
the extreme values or outliers in the data so they are robust statistics. We can
calculate the different percentiles of the continuous variable under the different
levels of the categorical variable to see how the continuous variable distributes
under the different levels.

4.2.3.1. The Percentiles of Maternal Age in the Birth Types

To get the percentiles of maternal age for the 2 birth types (premature and
full-term), we will use the same above functions except that we use the get
summary_stats function with the arguments, mage, and type = “quantile,” to get
the 0% (minimum),25% (Q1), 50% (median), 75% (Q3), and 100% (maximum)
percentiles of maternal age within each birth type.

births14 %>% group_by(premie) %>% get_summary_stats(mage,

type = “quantile”) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “The different percentiles of maternal age in premature
and full-term births of the US births data in 2014”)

Table 4.9. The Different Percentiles of Maternal Age in Premature and Full-Term
Births of the US Births Data in 2014

Premie Variable n 0% | 25% | 50% | 75% | 100%

full term mage 876 | 14 24 28 33 44

premie mage 124 | 16 24 30 34 47
We see that:

1. All percentiles (except the 25%) are lower in full-term births than
in premature births. So higher maternal age may be associated with
premature births.
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4.2.3.2. The Percentiles of Visits Number in the Birth Types

births14 %>% group_by(premie) %>%
get_summary_stats(visits, type = “quantile”) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “The different percentiles of the number of hospital
visits during pregnancy 1in premature and full-term births of the US births data
in 2014”)

Table 4.10. The Different Percentiles of the Number of Hospital Visits During Preg-
nancy in Premature and Full-Term Births of the US Births Data in 2014

E;Z Variable | n 0% | 25% | 50% | 75% | 100%
full - isits 829 |0 10 |12 |14 |30
term

Pre- 1 isits 115 | o 7 10 |12 |30
miec

We see that:

All percentiles (except the 0% and 100%) are higher in full-term births
than in premature births. So lower number of hospital visits may be
associated with premature births.

4.2.3.3. The Percentiles of Run Time in the 2 Genders

run@9 %>% group_by(gender) %>% get_summary_stats(time,
type = “quantile”) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “The different percentiles of run time in males and
females of Cherry Blossom Run data in 2009”)

Table 4.11. The Different Percentiles of Run Time in Males and Females of Cherry
Blossom Run Data in 2009

Gender | Variable |n 0% 25% 50% 75% 100%
F time 8,323 |53.533 197.433 [109.567 |121.242 [169.617
M time 6,651 145.933 |82.542 {95.717 |109.225 |[157.517
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We see that:

1. All percentiles are higher in females than in males. So males appear
to be faster than females in this data.

4.2.3.4. The Percentiles of Run Time in the Different States

We also use the arrange function with the argument “50%” to arrange the states
in ascending order by their median run time.
run@9 %>% group_by(state) %>%

get_summary_stats(time, type = “quantile”) %>%

arrange( 50%") %>%

flextable() %>% theme_box() %>%

set_caption(caption = “The different percentiles of run time in runners from
different states of Cherry Blossom Run data in 2009”)

Table 4.12. The Different Percentiles of Run Time in Runners from Different States
of Cherry Blossom Run Data in 2009

State Z:E n 0% 25% 50% 75% 100%

NR time 59 45.933 48.159 55.183 92.450 144.767
AE time 1 74.467 74.467 74.467 74.467 74.467
VT time 6 82.833 85.100 92.267 103.008 | 106.233
OK time 4 75.200 76.500 92.808 108.912 | 109.600
WA time 8 61.350 80.008 93.200 103.854 | 127.083
3
6

MS time 85.450 89.559 93.667 109.400 | 125.133
IA time 68.317 78.412 96.042 101.708 | 114.483
RI time 14 84.417 92.975 97.858 110.229 | 131.400
NH time 19 58.233 87.942 97.900 122.559 | 134.800

AK time 2 91.467 94.971 98.475 101.979 | 105.483
NE time 3 92.900 95.725 98.550 108.208 | 117.867
KY time 9 83.100 98.800 98.833 109.083 | 117.867

MI time 34 63.200 91.692 99.358 121.600 | 139.850
DE time 61 66.033 87.450 99.383 107.100 | 141.183

OR time 5 86.817 92.700 99.567 125.983 | 153.850
WV | time 28 66.717 86.696 99.875 111.933 | 150.683
WY | time 1 100.383 | 100.383 | 100.383 | 100.383 | 100.383

PA time 461 50.700 88.850 100.650 | 114.017 | 149.733
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SC time 11 79.617 97.858 100.983 | 105.267 | 132.983
MO time 17 67.683 88.433 101.133 | 112.383 | 155.883
DC time 3,464 | 53.233 88.767 102.575 | 115.067 | 158.133
NY time 522 53.183 88.171 102.650 | 116.970 | 158.083
WI time 14 65.917 87.113 102.750 | 121.525 | 146.067
CT time 73 61.000 91.717 103.000 | 117.600 [ 150.600
TN time 10 80.067 96.825 103.108 | 125.129 | 156.867
LA time 2 86.783 95.016 103.250 | 111.484 | 119.717
CA time 75 60.950 88.167 103.383 | 117.708 | 149.333
CcO time 23 48.050 85.884 103.617 | 115.575 | 130.133
MN time 19 48.067 94.284 103.950 | 119.075 | 139.300
MA time 136 53.150 90.170 104.225 | 117.983 | 152.467
VA time 5,608 | 51.117 90.113 104.308 | 117.737 | 169.617
FL time 55 68.733 88.325 104.600 | 122.575 | 148.183
MD time 3,558 | 51.183 90.800 104.833 | 117.929 | 158.233
GA time 37 55.733 78.017 104.967 | 120.100 | 156.783
NJ time 207 62.333 91.158 104.967 | 117.775 | 149.883
IL time 71 52.400 90.192 105.300 | 116.017 | 153.750
IN time 18 64.167 97.167 105.750 | 123.383 | 133.700
UT time 93.367 99.771 106.175 | 112.579 | 118.983
NM time 58.333 91.542 107.617 | 117.350 | 132.817
ID time 107.733 | 107.733 | 107.733 | 107.733 | 107.733
NC time 158 62.567 94.537 108.450 | 118.850 | 149.400
OH time 80 59.667 97.667 109.592 | 126.238 | 154.450
ME time 10 65.300 95.725 110.534 | 117.304 | 121.800
TX time 44 56.783 90.975 111.242 | 127.312 | 150.800
AZ time 11 85.517 98.200 111.300 | 122.358 | 134.350
AL time 6 90.733 97.375 113.092 | 120.546 | 124.217
NV time 2 97.417 105.338 | 113.258 | 121.179 | 129.100
PR time 3 85.550 99.483 113.417 | 126.767 | 140.117
SD time 1 113.683 | 113.683 | 113.683 | 113.683 | 113.683
KS time 3 54.967 87.508 120.050 | 127.041 | 134.033
AR time 2 106.517 | 118.242 | 129.967 | 141.692 | 153.417
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We see that:

1. The lowest median run time was in 59 runners coming from the
“NR” state (55.183). However, the maximum run time in the “NR”
state is 144.767 which is higher than other maximums from other
states like “WA,” “NH,” “MI,” etc.

4.2.4. Summary Statistics for Spread: The Range

The range is the difference between the largest and smallest observations in
a sample. As we see in Chapter 1, the disadvantages of the range as a spread
measure are:

. The range is very sensitive to extreme values or outliers.

. The range depends on the sample size. The larger the sample size,
the larger the range tends to be. This makes it difficult to compare
ranges from samples of different sizes.

However, we can calculate the range of the continuous variable under the
different levels of the categorical variable to see how the continuous variable
spreads under the different levels.

4.2.4.1. The Range of Maternal Age in the Birth Types

To get the range of maternal age in 2 birth types, we will use the functions:

. The group by function with the argument premie applied to the
births data frame to split the data frame into different data frames
each containing one level of premie column.

. The get summary_stats function with the arguments, mage, and
show = c¢(“min,” “max”) to calculate the minimum and maximum
maternal age within each data frame.

. The mutate function creates a new column (range) by subtracting the
minimum value from the maximum value.

. The flextable, theme box, and set caption functions convert the
result to a table as described in previous chapters.
birthsi4 %>% group_by(premie) %>%
get_summary_stats(mage, show = c(“min,””max”)) %>%
mutate(range = max-min) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “The range of maternal age 1in premature and full-term
births of the US births data in 2014”)
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Table 4.13. The Range of Maternal Age in Premature and Full-Term Births of the
US Births Data in 2014

Premie Variable n Min Max Range
full term mage 876 14 44 30
premie mage 124 16 47 31

We see that the premature births had a higher maternal age range than full-
term births (31 compared to 30) although they have a lower sample size than the
full-term births (124 compared to 876), so we conclude that the maternal age is
more spread in premature births than in full-term births.

4.2.4.2. The Range of Visits Number in the Birth Types

birthsi4 %>% group_by(premie) %>%
get_summary_stats(visits, show = c(“min,””max”)) %>%
mutate(range = max-min) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “The range of the number of hospital visits during
pregnancy 1in premature and full-term births of the US births data in 2014”)

Table 4.14. The Range of the Number of Hospital Visits During Pregnancy in Pre-
mature and Full-Term Births of the US Births Data in 2014

Premie | Variable n Min Max Range
full visits 829 0 30 30
term

premie visits 115 0 30 30

We see that the premature births had an equal maternal age range to that of
full-term births (range = 30 in 2 birth types) although they had a lower sample
size than the full-term births (115 compared to 829), so we conclude that the
maternal age is equally spread in premature births and full-term births.

4.2.4.3. The Range of Run Time in the 2 Genders

run@9 %>% group_by(gender) %>% get_summary_stats(time,
show = c(“min,””max”)) %>%
mutate(range = max-min) %>%

flextable() %>% theme_box() %>%
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set_caption(caption = “The range of run time in males and females of Cherry

Blossom Run data in 2009”)

Table 4.15. The Range of Run Time in Males and Females of Cherry Blossom Run

Data in 2009
Gender Variable n Min Max Range
F time 8,323 53.533 | 169.617 116.084
M time 6,651 45.933 | 157.517 111.584

We see that females had a higher run time range than males (116.084
compared to 111.584). This may be due that females had a higher sample size
than males in this data (8323 compared to 6651), so other summary statistics of
spread need to be calculated.

4.2.4.4. The Range of Run Time in the Different States

We also use the arrange function to arrange the states by their range in ascending

order.

run@9 %>% group_by(state) %>% get_summary_stats(time,

mutate(range = max-min) %>%

show = c(“min,””max”)) %>%

arrange(range) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “The range of run time in runners from different states

of Cherry Blossom Run data in 2009”)

Table 4.16. The Range of Run Time in Runners From Different States of Cherry

Blossom Run Data in 2009
State :::llz ) n Min Max Range
AE time 1 74.467 74.467 0.000
ID time 1 107.733 107.733 0.000
SD time 1 113.683 113.683 0.000
wYy time 1 100.383 100.383 0.000

228




Bivariate Analysis for Continuous-Categorical Data

AK time 2 91.467 105.483 14.016
VT time 6 82.833 106.233 23.400
NE time 3 92.900 117.867 24.967
UT time 2 93.367 118.983 25.616
NV time 2 97.417 129.100 31.683
LA time 2 86.783 119.717 32.934
AL time 6 90.733 124.217 33.484
OK time 4 75.200 109.600 34.400
KY time 9 83.100 117.867 34.767
MS time 3 85.450 125.133 39.683
IA time 6 68.317 114.483 46.166
AR time 2 106.517 153.417 46.900
RI time 14 84.417 131.400 46.983
AZ time 11 85.517 134.350 48.833
SC time 11 79.617 132.983 53.366
PR time 3 85.550 140.117 54.567
ME time 10 65.300 121.800 56.500
WA time 8 61.350 127.083 65.733
OR time 5 86.817 153.850 67.033
IN time 18 64.167 133.700 69.533
NM time 7 58.333 132.817 74.484
DE time 61 66.033 141.183 75.150
NH time 19 58.233 134.800 76.567
MI time 34 63.200 139.850 76.650
TN time 10 80.067 156.867 76.800
KS time 3 54.967 134.033 79.066
FL time 55 68.733 148.183 79.450
WI time 14 65.917 146.067 80.150
CcO time 23 48.050 130.133 82.083
wv time 28 66.717 150.683 83.966
NC time 158 62.567 149.400 86.833
NJ time 207 62.333 149.883 87.550
MO time 17 67.683 155.883 88.200
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CA time 75 60.950 149.333 88.383

CT time 73 61.000 150.600 89.600

MN time 19 48.067 139.300 91.233

X time 44 56.783 150.800 94.017

OH time 80 59.667 154.450 94.783

NR time 59 45.933 144.767 98.834

PA time 461 50.700 149.733 99.033

MA time 136 53.150 152.467 99.317

GA time 37 55.733 156.783 101.050

IL time 71 52.400 153.750 101.350

DC time 3,464 53.233 158.133 104.900

NY time 522 53.183 158.083 104.900

MD time 3,558 51.183 158.233 107.050

VA time 5,608 51.117 169.617 118.500

We see that:

1. When the sample size is 1 for the “AE,” “ID,” “SD,” and “WY”
states, the range is 0 because the minimum and maximum are the
same numbers.

2. The lowest range was for the “AK” and “VT” states (14.016 and
23.400 respectively). However, this may be due to low sample
sizes, 2 and 6 respectively. So, more measures of spread need to be
calculated.

3. The highest range was for the “VA” and “MD” states (118.500 and

107.05 respectively). However, this may be due to large sample
sizes, 5608 and 3558 respectively. So, more measures of spread need
to be calculated.

4.2.5. Summary Statistics for Spread: The Standard Deviation

As we saw in Chapter 1, the standard deviation is the square root of the average
squared differences from the sample mean. A large standard deviation indicates
that data points are far from the mean and far from each other, while a small
standard deviation indicates the opposite. A zero standard deviation indicates
that all values within our data are identical.

The standard deviation is affected by outliers. However, we can calculate it
for the different levels of categorical variable to see how the continuous variable
spreads under these levels.
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4.2.5.1. The Standard Deviation of Maternal Age in the Birth
Types

To get the standard deviation of maternal age in 2 birth types, we will use the
same above functions except that the get summary stats function will have
the arguments, mage, and show = “sd” to calculate the standard deviation of

maternal age within each birth type.
births14 %>% group_by(premie) %>%

get_summary_stats(mage, show = “sd”) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “The standard deviation of maternal age in premature and
full-term births of the US births data in 2014”)

Table 4.17. The Standard Deviation of Maternal Age in Premature and Full-Term
Births of the US Births Data in 2014

Premie Variable n sd
full term mage 876 5.721
premie mage 124 5.982

We see that the maternal age standard deviation (sd) is higher in premature
births than in full-term births (5.982 compared to 5.721), so we conclude that
the maternal age is more spread in premature births than in full-term births in
this data.

4.2.5.2. The Standard Deviation of Visits Number in the Birth
Types

births14 %>% group_by(premie) %>%
get_summary_stats(visits, show = “sd”) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “The standard deviation of the number of hospital visits
during pregnancy 1in premature and full-term births of the US births data 1in
2014”)
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Table 4.18. The Standard Deviation of the Number of Hospital Visits During Preg-
nancy in Premature and Full-Term births of the US Births Data in 2014

Premie Variable n sd
full term visits 829 3.884
premie visits 115 5.329

We see that the visits standard deviation is higher in premature births than
in full-term births (5.329 compared to 3.884), so we may conclude that the
number of visits is more spread in premature births than in full-term births in
this data.

4.2.5.3. The Standard Deviation of Run Time in the 2 Genders

run@9 %>% group_by(gender) %>% get_summary_stats(time,
show = “sd”) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “The standard deviation of run time in males and females
of Cherry Blossom Run data in 2009”)

Table 4.19. The Standard Deviation of Run Time in Males and Females of Cherry
Blossom Run Data in 2009

Gender Variable n sd
F time 8,323 17.453
M time 6,651 19.095

We see that females had a lower run time standard deviation than males
(17.453 compared to 19.095). So, we may conclude that the run time in females
is less spread than that in males.

4.2.5.4. The Standard Deviation of Run Time in the Different
States

We also use the arrange function to arrange the states by their standard deviation
in ascending order.
run@9 %>% group_by(state) %>% get_summary_stats(time,

show = “sd”) %>%
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arrange(sd) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “The standard deviation of run time 1in runners from
different states of Cherry Blossom Run data in 2009”)

Table 4.20. The Standard Deviation of Run Time in Runners from Different States
of Cherry Blossom Run Data in 2009

State Variable n sd

AK time 2 9.911
KY time 9 10.293
VT time 6 10.386
NE time 3 13.092
SC time 11 13.932
AL time 6 14.478
RI time 14 15.075
DE time 61 15.277
AZ time 11 17.478
1A time 6 17.696
CT time 73 17.926
UT time 2 18.113
DC time 3,464 18.138
ME time 10 18.142
PA time 461 18.676
NJ time 207 18.813
NC time 158 18.945
OK time 4 19.113
VA time 5,608 19.217
MD time 3,558 19.492
IL time 71 19.559
NY time 522 19.890
MI time 34 20.176
WA time 8 20.426
MA time 136 20.460
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MS time 3 20.946
IN time 18 21.059
MN time 19 21.240
OH time 80 21.389
FL time 55 21.553
CA time 75 21.601
NV time 2 22.403
CO time 23 22.556
TN time 10 22.920
X time 44 23.227
MO time 17 23.240
LA time 2 23.288
NH time 19 23.610
WI time 14 24.185
A% time 28 24.488
NM time 7 25.337
GA time 37 25.755
PR time 3 27.286
OR time 5 27.875
NR time 59 28.123
AR time 2 33.163
KS time 3 42.195
AE time 1

ID time 1

SD time 1

wY time 1

We see that:

1. When the sample size is 1 as for the “AE,” “ID,” “SD,” and “WY”
states, the standard deviation is missing because the sample size is 1
with no variation.

2. The lowest standard deviation was for the “AK” and “KY” states

(9.911 and 10.293 respectively). So, the run time of runners from
these states is less spread than in other states, although they have a
low sample size (2 and 9 runners respectively).
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3. The highest standard deviation was for the “KS” and “AR” states
(42.195 and 33.163 respectively). So, the run time of runners from
these states is more spread than in other states, although they have a
low sample size (3 and 2 runners respectively).

4.2.6. Summary Statistics for Spread: The Interquartile Range
(IQR)

As we saw in Chapter 1, the interquartile range (IQR) is the difference between
the first and third quartiles (Q3-Q1) and provides an estimate of the data spread.
The IQR contains the middle 50% of our data. The interquartile range is a robust
statistic since it is less sensitive to outliers or sample size than the standard
deviation or the range. We can calculate the IQR for the different levels of
categorical variable to see how the continuous variable spreads under these levels.

4.2.6.1. The IQR of Maternal Age in the Birth Types

To get the IQR of maternal age in the 2 birth types, we will use the same above
functions except that the get summary_stats function will have the arguments,
mage, and show = “iqr” to calculate the IQR of maternal age within each birth

type.

birthsi4 %>% group_by(premie) %>%

get_summary_stats(mage, show = “igr”) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “The interquartile range of maternal age in premature and
full-term births of the US births data in 2014”)

Table 4.21. The Interquartile Range of Maternal Age in Premature and Full-Term
Births of the US Births Data in 2014

Premie Variable n iqr
full term mage 876 9
premie mage 124 10

We see that the maternal age IQR is higher in premature births than in full-
term births (10 compared to 9), so we may conclude that the maternal age is
more spread in premature births than in full-term births in this data.
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4.2.6.2. The IQOR of Visits Number in the Birth Types

birthsi4 %>% group_by(premie) %>%
get_summary_stats(visits, show = “iqr”) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “The IQR of the number of hospital visits during pregnancy
in premature and full-term births of the US births data in 2014”)

Table 4.22. The IQOR of the Number of Hospital Visits During Pregnancy in Prema-
ture and Full-term Births of the US Births Data in 2014

Premie Variable n iqr
full term visits 829 4
premie visits 115 5

We see that the visits IQR is higher in premature births than in full-term
births (5 compared to 4), so we may conclude that the number of visits is more
spread in premature births than in full-term births in this data.

4.2.6.3. The IQR of Run Time in the 2 Genders

run@9 %>% group_by(gender) %>% get_summary_stats(time,
show = “igr”) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “The IQR of run time 1in males and females of Cherry
Blossom Run data in 2009”)

Table 4.23. The IQR of Run Time in Males and Females of Cherry Blossom Run
Data in 2009

Gender Variable n iqr
F time 8,323 23.808
M time 6,651 26.683

We see that females had lower run time IQR than males (23.808 compared
t0 26.683). So, we may conclude that the run time in females is less spread than
that in males.
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4.2.6.4. The IQR of Run Time in the Different States

We also use the arrange function to arrange the states by their IQR value in
ascending order.
run@9 %>% group_by(state) %>% get_summary_stats(time,

show = “igr”) %>%
arrange(iqr) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “The IQR of run time in runners from different states of
Cherry Blossom Run data in 2009”)

Table 4.24. The IQR of Run Time in Runners from Different States of Cherry Blos-
som Run Data in 2009

State Variable n iqr
AE time 1 0.000
ID time 1 0.000
SD time 1 0.000
wY time 1 0.000
AK time 2 7.008
SC time 11 7.408
KY time 9 10.283
NE time 3 12.484
UT time 2 12.808
NV time 2 15.841
LA time 2 16.467
RI time 14 17.254
VT time 6 17.908
DE time 61 19.650
MS time 3 19.841
ME time 10 21.579
AL time 6 23.171
IA time 6 23.296
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AR time 2 23.450
WA time 8 23.846
MO time 17 23.950
AZ time 11 24.158
NC time 158 24313
MN time 19 24.791
PA time 461 25.167
WV time 28 25.238
NM time 7 25.808
IL time 71 25.824
CT time 73 25.883
IN time 18 26.216
DC time 3,464 26.300
NJ time 207 26.617
MD time 3,558 27.129
PR time 3 27.284
VA time 5,608 27.624
MA time 136 27.813
TN time 10 28.304
OH time 80 28.570
NY time 522 28.800
CA time 75 29.541
CcO time 23 29.691
MI time 34 29.909
OK time 4 32.412
OR time 5 33.283
FL time 55 34.250
WI time 14 34.412
NH time 19 34.617
TX time 44 36.338
KS time 3 39.533
GA time 37 42.083
NR time 59 44.291
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We see that:

1. When the sample size is 1 as for the “AE,” “ID,” “SD,” and “WY”
states, the IQR is 0 because the sample size is 1 with no variation.

2. The lowest IQR was for the “AK” and “SC” states (7.008 and 7.408
respectively). So, the run time of runners from these states is less
spread than in other states.

3. The highest IQR was for the “NR” and “GA” states (44.291 and
42.083 respectively). So, the run time of runners from these states is
more spread than in other states.

4.2.7. Summary Statistics for Spread: The Median Absolute
Deviation (MAD)

The MAD is another robust statistic for measuring the variability of numeric
data. MAD is the median absolute distance that the data points are from the
median. We can calculate the MAD for the different levels of categorical
variable to see how the continuous variable spreads under these levels.

4.2.7.1. The MAD of Maternal Age in the Birth Types

To get the MAD of maternal age in the 2 birth types, we will use the same above
functions except that the get summary_stats function will have the arguments,
mage, and show = “mad” to calculate the MAD of maternal age within each
birth type.

birthsi4 %>% group_by(premie) %>%

get_summary_stats(mage, show = “mad”) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “The median absolute deviation of maternal age in premature
and full-term births of the US births data in 2014”)

Table 4.25. The Median Absolute Deviation of Maternal Age in Premature and
Full-Term Births of the US Births Data in 2014

Premie Variable n mad
full term mage 876 5.930
premie mage 124 7.413
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We see that the maternal age MAD is higher in premature births than in full-
term births (7.413 compared to 5.930), so we may conclude that the maternal
age is more spread in premature births than in full-term births in this data.

4.2.7.2. The MAD of Visits Number in the Birth Types

births14 %>% group_by(premie) %>%
get_summary_stats(visits, show = “mad”) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “The median absolute deviation of the number of hospital
visits during pregnancy in premature and full-term births of the US births data
in 2014”)

Table 4.26. The Median Absolute Deviation of the Number of hospital Visits Dur-
ing Pregnancy in Premature and full-Term Births of the US Births Data in 2014

Premie Variable n MAD
full term visits 829 2.965
premie visits 115 4.448

We see that the visits MAD is higher in premature births than in full-term
births (4.448 compared to 2.965), so we may conclude that the number of visits
is more spread in premature births than in full-term births in this data.

4.2.7.3. The MAD of Run Time in the 2 Genders

run@9 %>% group_by(gender) %>% get_summary_stats(time,
show = “mad”) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “The MAD of run time in males and females of Cherry
Blossom Run data in 2009”)

Table 4.27. The MAD of Run Time in Males and Females of Cherry Blossom Run
Data in 2009

Gender Variable n MAD
F time 8,323 17.643
M time 6,651 19.769

We see that females had lower run time MAD than males (17.643 compared
to 19.769). So, we may conclude that the run time in females is less spread than
that in males.
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4.2.7.4. The MAD of Run Time in the Different States

We also use the arrange function to arrange the states by their MAD value in
ascending order.
run@9 %>% group_by(state) %>% get_summary_stats(time,

show = “mad”) %>%

arrange(mad) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “The MAD of run time in runners from different states

of Cherry Blossom Run data in 2009”)

Table 4.28. The MAD of Run Time in Runners from Different States of Cherry
Blossom Run Data in 2009

State Variable n MAD
AE time 1 0.000
ID time 1 0.000
SD time 1 0.000
wY time 1 0.000
KY time 9 1.804
SC time 11 6.672
NE time 3 8.377
AK time 2 10.390
NR time 59 12.058
MS time 3 12.183
RI time 14 12.837
VT time 6 12.973
DE time 61 14.034
ME time 10 14.987
AL time 6 15.148
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1A time 6 17.902
CT time 73 18.335
OH time 80 18.383
IL time 71 18.755
MO time 17 18.829
OR time 5 18.903
PA time 461 18.903
UT time 2 18.989
MN time 19 19.026
DC time 3,464 19.311
NI time 207 19.398
NC time 158 19.434
wvV time 28 19.694
MD time 3,558 20.090
VA time 5,608 20.584
KS time 3 20.731
MA time 136 20.831
WA time 8 20.856
NY time 522 21.387
NH time 19 21.646
CcO time 23 21.818
TN time 10 22.091
AZ time 11 22.387
CA time 75 22.438
MI time 34 23.178
NV time 2 23.487
OK time 4 24.216
LA time 2 24.414
GA time 37 25.772
FL time 55 25.994
IN time 18 26.143
X time 44 27.725
WI time 14 27.762
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NM time 7 28.860
AR time 2 34,767
PR time 3 39.585
We see that:
1. When the sample size is 1 as for the “AE,” “ID,” “SD,” and “WY”
states, the MAD is 0 because the sample size is 1 with no variation.
2. The lowest MAD was for the “KY” and “SC” states (1.804 and
6.672 respectively). So, the run time of runners from these states is
less spread than in other states.
3. The highest MAD was for the “PR” and “AR” states (39.585 and

34.767 respectively). So, the run time of runners from these states is
more spread than in other states.

4.3. SUMMARY PLOTS

4.3.1. Histogram

Histograms show the distribution of a continuous variable by dividing the x-axis
into bins, counting the number of observations in each bin, and displaying the
counts with bars. By producing a histogram for each level of the categorical
variable, we can see how the continuous variable distributes under the different
levels of the categorical variable.

4.3.1.1. Histograms of Maternal Age in the Birth Types

To produce a histogram with different fill color for each birth type, we use the
following functions:

The ggplot function, applied on the “births14” data frame,” with the
arguments, aes(x = mage, fill = premie), to plot “mage” or maternal
age on the x-axis and the bins will have different fill color for each
level of “premie” column. So we will have 2 different fill colors, one
for full-term births and the other for premature births.

The geom_histogram function with the argument, color = “black,”
to make the histogram bins have a black border so the fill color can
be seen easily.

The labs function with the arguments, title to plot a plot title, x to
plot an x-axis title, y to plot a y-axis title, and fill to plot a legend
title.
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. The theme classic and theme functions as described in previous
chapters.
birthsi4 %>% ggplot(aes(x = mage, fill = premie))+

geom_histogram(color = “black”)+

labs(title = “Histogram of maternal age 1in premature and full-term births of
the US births data in 2014,”

X = “Maternal age,”

y = “Count,” fill = “Birth type”)+
theme_classic()+
theme(plot.title = element_text(hjust = 6.5))

gram of ageinp and full-term births of the US births data in 2014

Birth type
il tarem
piemis

We see that:

. The bins of full-term births are taller than that of premature births
indicating that the count of full-term births is higher than that of
preterm births and we have seen that above because the sample size
of full-term births is 876 compared to only 124 premature births.
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. The distribution of maternal age in full-term or premature births is
nearly normal with peak count at the center and low counts at the
tails (high or small values).

Alternatively, we can plot a separate plot for each birth type by using the
function facet wrap with the arguments, ~premie, nrow = 1, to produce a
separate plot for each level of the “premie” column and the 2 plots are in 1 row.
births14 %>% ggplot(aes(x = mage, fill = premie))+

geom_histogram(color = “black”)+
facet_wrap(~premie, nrow = 1)+

Labs(title = “Histogram of maternal age in premature and full-term births of
the US births data in 2014\n using facet_wrap function,”

X = “Maternal age,”

y = “Count,” fill = “Birth type”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

gram of age in p and full-term births of the US births data in 2014
using facet_wrap function

ratem Il same ]

Birth type:
il term
premis

We note the same comments stated above.

245



Statistics with R for Data Analysis
4.3.1.2. Histograms of Visits Number in the Birth Types

To produce a histogram of the number of hospital visits with different fill color
for each birth type, we use the same above functions except that the ggplot func-
tion will have the arguments, aes(x = visits, fill = premie), to plot “visits” or
number of visits during pregnancy on the x-axis and the bins will have different
fill color for each birth type.

births14 %>% ggplot(aes(x = visits, fill = premie))+
geom_histogram(color = “black”)+

labs(title = “Histogram of number of hospital visits during pregnancy\n in
premature and full-term births of the US births data in 2014,”

X = “Number of visits,”
y = “Count,” fill “Birth type”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Histogram of number of hospital visits pregnanc;
Inwmwmmmdmummh 14

Burth type.
naliem
oremin

Humiber of visis

We see that:

. The bins of full-term births are taller than that of premature births
indicating that the count of full-term births is higher than that of
preterm births.
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. The distribution of visits in full-term or premature births is nearly
normal with peak count at the center and low counts at the tails (high
or small values).

. The distribution of visits in full-term births is more shifted to the
right than that of premature births. This means that a higher number
of visits may be associated with full-term birth.

Alternatively, we can plot a separate plot for each birth type by using the
function facet wrap with the arguments, ~premie, ncol = 1, to produce a separate
plot for each level of the “premie” column and the 2 plots are in 1 column.
birthsi14 %>% ggplot(aes(x = visits, fill = premie))+

geom_histogram(color = “black”)+
facet_wrap(~premie, ncol = 1)+

Labs(title = “Histogram of number of hospital visits during pregnancy\n in
premature and full-term births of the US births data in 2014\n using facet_wrap
function,”

X = “Number of visits,”

y = “Count,” fill = “Birth type”)+
theme_classic()+
theme(plot.title = element_text(hjust = 6.5))

Histogram of number of hospital visits during pregnanc:
Inpnmmundmlmnbmotmusﬁmsmhiyold
facet_wrap function

using
full feem ]

§ Blhf | [T

We note the same comments stated above.
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4.3.1.3. Histograms of Run Time in the 2 Genders

To produce a histogram of the run time with different fill color for each gender,
we use the same above functions except that the ggplot function will be applied
on “run09” data and have the arguments, aes(x = time, fill = gender), to plot the
run time on the x-axis and the bins will have different fill color for each gender.
runé9 %>% ggplot(aes(x = time, fill = gender))+

geom_histogram(color = “black”)+

Labs(title = “Histogram of run time in males and females of Cherry Blossom Run
data in 2009,”

x = “Time,”

y = “Count,” fill = “Gender”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Histogram of run time in males and females of Cherry Blossom Run data in 2009

; B
We see that:
. The bins of females are taller than that of males indicating that the

count of females is higher than that of males in this data.

. The distribution of run time in females or males is nearly normal

with peak count at the center and low counts at the tails (high or
small values).

248



Bivariate Analysis for Continuous-Categorical Data

. The distribution of run time in females is more shifted to the right
than that of males. This means that females have higher run time
(slower) than males.

Alternatively, we can plot a separate plot for each gender by using the
function facet wrap with the arguments, ~gender, ncol = 1, to produce a separate
plot for each gender and the 2 plots will be in 1 column.
rune9 %>% ggplot(aes(x = time, fill = gender))+

geom_histogram(color = “black”)+
facet_wrap(~gender, ncol = 1)+

labs(title = “Histogram of run time in males and females of Cherry Blossom Run
data in 2009\n using facet_wrap function,”

X = “Time,”

y = “Count,” fill = “Gender”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Histogram of run time in males and females of Cherry Blossom Run data in 2009
using facet_wrap function

P ]

We note the same comments stated above.
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4.3.1.4. Histograms of Run Time in Runners from Different States

Because we have 51 different states in our data, we cannot plot the bins from
all states in 1 plot as the plot will be very crowded. Alternatively, we can
plot a separate plot for each state by using the function facet wrap with the
arguments, ~state, scales = “free,” to produce a separate plot for each state and
each plot will have its x-axis and y-axis with separate limits. We also remove
the unnecessary legend by using the argument, show.legend = FALSE, inside
the geom_histogram function.
run@9 %>% ggplot(aes(x = time, fill = state))+

geom_histogram(color = “black,” show.legend = FALSE)+

facet_wrap(~state, scales = “free”)+

labs(title = “Histogram of run time in runners from different states of Cherry
Blossom Run data in 2009\n using facet_wrap function,”

X = “Time,”
y = “Count”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))
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We note that each state has its x-axis and y-axis with a specific limit
according to its values. For example, the “AZ” state has x-axis values from 90
to 130, while the “CT” state has x-axis values from 75 to 150.

4.3.2. Box Plot

As we see in Chapter 1, the box plot displays the distribution of a continuous
variable by displaying the median, two hinges two whiskers, and all outliers
individually. The lower and upper hinges correspond to the first and third
quartiles (Q1 and Q3)respectively. The upper whisker extends from Q3 to the
largest value no further than 1.5 X IQR from Q3. The lower whisker extends
from Q1 to the smallest value at most 1.5 X IQR from Q1. Data beyond the end
of the whiskers are called “outlying” points and are plotted individually.

By plotting a box plot for each level of the categorical variable, we can see
how the continuous variable distributes under these different levels.

4.3.2.1. Box Plots of Maternal Age in the Birth Types

To produce a box plot with different fill color for each birth type, we use the
following functions:
. The ggplot function, applied on the “births14” data frame, with
the arguments, aes(x = premie, fill = premie, y = mage), to plot the
“premie” or the 2 levels of “premie” column on the x-axis, “mage”
or maternal age on the y-axis and the box plots will have different fill
color for each level of “premie” column. So we will have 2 different
fill colors, one for full-term births and the other for premature births.
. The geom boxplot function plots a box plot.
. The labs, theme classic, and theme functions as described previously.
births14 %>% ggplot(aes(x = premie, fiLL = premie, y = mage))+
geom_boxplot()+

Labs(title = “Box plot of maternal age in premature and full-term births of
the US births data in 2014,”

x = “Birth type,”

y = “Maternal age,” fiLL = “Birth type”)+
theme_classic()+

theme(plot.title = element_text(hjust = 0.5))
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Box plot of maternal age in premature and full-term births of the US births data in 2014
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We see that:

The distribution of maternal age in full-term or premature births is
nearly normal with the median line equally spaced from the 1st and
3rd quartiles. There are no outliers in the maternal age for both birth
types.

The box plot of maternal age in premature births is shifted up to that
of maternal age in full-term births. This means that high maternal
age may be associated with premature births.

4.3.2.2. Box Plots of Number of Visits in the Birth Types

To produce a box plot of the number of visits with different fill color for each
birth type, we use the same functions except that the ggplot function will have
the arguments, aes(x = premie, fill = premie, y = visits), to plot “premie” or the
2 levels of “premie” column on the x-axis, visits number on the y-axis and the
box plots will have different fill color for each level of “premie” column.

252



Bivariate Analysis for Continuous-Categorical Data

births14 %>% ggplot(aes(x = premie, fill = premie, y = visits))+
geom_boxplot()+

Labs(title = “Box plot of number of hospital visits during pregnancy \nin
premature and full-term births of the US births data in 2014,”

X = “Birth type,”
y = “Number of hospital visits during pregnancy,”
fill = “Birth type”)+

theme_classic()+

theme(plot.title = element_text(hjust = 6.5))

Box plot of number of hospital visits during pregnancy
in premature and full-term births of the US births data in 2014

0 .

.

Em
]
a
: =
% B premie
k-]
Rull term Bmw premee
We see that:
. The distribution of the visits number in full-term or premature births

is nearly normal with the median line equally spaced from the 1st and
3rd quartiles. However, there are large and small outliers of visits in
full-term births and large outliers of visits in premature births.

. The box plot of visits in premature births is shifted down to that of
visits in full-term births. This means that the low number of visits
may be associated with premature births.
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4.3.2.3. Box Plots of Run Time in the 2 Genders

To produce a box plot of the run time with different fill color for each gender, we
use the same functions except that the ggplot function will have the arguments,
aes(x = gender, fill = gender, y = time), to plot gender on the x-axis, run time
on the y-axis and the box plots will have different fill color for each level of the
gender column.
run@9 %>% ggplot(aes(x = gender, fill = gender, y = time))+

geom_boxplot()+

Labs(title = “Box plot of run time in males and females of Cherry Blossom Run
data in 2009,”

x = “Gender,”
y = “Run time,”
fill = “Gender”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Box plot of run time in males and females of Chermry Blossom Run data in 2009

; ¥
i -
We see that:
. The distribution of the run time in females or males is nearly normal

with the median line equally spaced from the 1st and 3rd quartiles.
However, there are large and small outliers of run time in females
and large outliers of run time in males.
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. The box plot of run time in males is shifted down than that of females.
This means that males had lower run time (faster) than females.

4.3.2.4. Box Plots of Run Time in Runners from Different States

To produce a box plot of the run time with different fill color for each state, we
use the same functions except that the ggplot function will have the arguments,
aes(x = state, fill = state, y = time), to plot states on the x-axis, run time on the
y-axis and the box plots will have different fill color for each level of the state
column.
run@9 %>% ggplot(aes(x = state, fill = state, y = time))+

geom_boxplot()+

labs(title = “Box plot of run time 1in runners from different states of Cherry
Blossom Run data in 2009, ”

X “State,”

y = “Run time,”
fill = “State”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Box plot of run time in runners from different states of Cherry Blossom Run data in 2009
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We see that the x-axis is very crowded and some states have only a dash
(like “AE” and “WY?” states) because their sample size is only 1 (one runner
from these states).

We can further customize this plot by:

. Removing the states with a single count (“AE,” “ID,” “SD,” and
“WY?” states) using the filter function. The filter function will have
the “!” operator on the states %in% c(“AE,” “ID,” “SD,” “WY”) to
filter out these states.

. Removing the legend by using the argument show.legend = FALSE
within the geom_boxplot function.

. Arranging the states by their median time using the fct reorder
function within the mutate function. The fct reorder function will
have the state, time, .fun = median, to arrange states by their median
time in ascending order.

rune9 %>% filter(!state %in% c(“AE,” “ID,” “SD,” “WY”)) %>%
mutate(state = fct_reorder(state,time, .fun = median)) %>%

ggplot(aes(x = state, fill = state, y = time))+

geom_boxplot(show.legend = FALSE)+

Labs(title = “Box plot of run time in runners from 47 states of Cherry Blossom
Run data in 2009 \n arranged by median time,”

x = “State,”

= “Run time”)+

<
1

theme_classic()+

theme(plot.title = element_text(hjust = 0.5))
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Box plot of run time in runners from 47 states of Cherry Blossom Run data in 2009

arranged by median time
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We see that:
. The distribution of the run time in different states may be symmetric

with the upper and lower quartiles nearly equally spaced from the
median (like “DC” and “NY” states), right skewed with the median
line closer to the 1st quartile line than to the 3rd quartile (as “NR”
state), or left skewed with the median line closer to the 3rd quartile
line than to the 1st quartile line (as “KS” state)

. The lowest median run time was for runners from the “NR” state,
while the highest median run time was for runners from the “AR”
state. So runners from the “NR” state are faster than other runners
from other states.

4.3.3. Strip Plot

A strip chart is a scatter plot used to see the relation between a continuous
variable (on the x-axis) and a categorical variable (on the y-axis).
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4.3.3.1. Strip Plot of Maternal Age in the Birth Types

To create this plot, we will use the following functions:

. The ggplot function with the arguments, aes(x = mage, y = premie,
color = premie), to plot maternal age “mage” on the x-axis and
premie column on the y-axis with coloring the points by a different

color for each birth type.
. The geom_point function to draw the scatter plot.
. The labs, theme classic, and theme functions as described before.

births14 7%>%
ggplot(aes(x = mage, y = premie, color = premie))+
geom_point()+

Labs(title = “Strip plot of maternal age in premature and full-term births of
the US births data in 2014,”

X = “Maternal age,” y = “Birth type,”
color = “Birth type”)+

theme_classic()+

theme(plot.title = element_text(hjust = 0.5))

Strip plot of maternal age in premature and full-term births of the US births data in 2014
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We see that:

. The different data points are superimposed over each other which
makes the interpretation difficult.

. The distribution of maternal age in premature births is more shifted
to the right (higher) than that of maternal age in full-term births. This
means that higher maternal age may be associated with premature
births.

Iternatively, the continuous categorical relationship can be seen easily if the
points are jittered (displaced) using the geom_jitter function. The geom _jitter
function adds a small amount of random variation to the location of each data
point so the points are less to be superimposed over each other.

As it adds randomness to the location at each point, we must use the set.
seed function (with any number of our choice) for a reproducible plot. We
simply replace the geom point function with the geom jitter function in the
above code chunk.
set.seed(123)
births14 %>%
ggplot(aes(x = mage, y = premie, color = premie))+

geom_jitter()+

Labs(title = “Strip plot of maternal age in premature and full-term births of
the US births data in 2014\n using geom_jitter function,”

X = “Maternal age,” y = “Birth type,”
color = “Birth type”)+
theme_classic()+

theme(plot.title = element_text(hjust = 0.5))
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Strip plot of matemal age in premature and full-term births of the US births data in 2014
using geom_jitter function
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The using of the geom_jitter function has revealed that the sample size of
premature births is much lower than that of full-term births.

4.3.3.2. Strip Plot of Visits Number in the Birth Types

To create this plot, we will use the same above functions except that the ggplot
function will have the arguments, aes(x = visits, y = premie, color = premie),
to plot the visits number on the x-axis and premie column on the y-axis with
coloring the points by a different color for each birth type.
birthsi4 %>%
ggplot(aes(x = visits, y = premie, color = premie))+

geom_point()+

Labs(title = “Strip plot of number of hospital visits during pregnancy\n in
premature and full-term births of the US births data in 2014,”

X = “Number of hospital visits during pregnancy,” y = “Birth type,”
color = “Birth type”)+

theme_classic()+

theme(plot.title = element_text(hjust = 6.5))
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Strip plot of number of hospital visits during pregnancy
in premature and full-term births of the US births data in 2014
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We see that:
. The distribution of visits number in premature births is similar to

that of the visits number in full-term births.

Alternatively, the relationship can be seen easily if the points are jittered
(displaced) using the geom _jitter function as before.
set.seed(123)
births14 7%>%
ggplot(aes(x = visits, y = premie, color = premie))+
geom_jitter()+

Labs(title = “Strip plot of number of hospital visits during pregnancy in
premature and full-term births of the US births data in 2014\n using geom_jitter
function,”

X = “Number of hospital visits during pregnancy,” y = “Birth type,”
color = “Birth type”)+

theme_classic()+

theme(plot.title = element_text(hjust = 0.5))
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Strip plot of number of hospital visits during pregnancy in premature and full-term births of the US births data in 2014
using geom_jitter function
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The distribution of visits number in premature and full-term births is still
similar. To get a deeper look, we will add a box plot for each jittered point using
the geom_boxplot function before the geom_jitter function.

set.seed(123)

births14 7%>%

ggplot(aes(x = visits, y = premie, color = premie))+

geom_boxplot()+

geom_jitter()+
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Labs(title = “Strip and box plot of number of hospital visits during pregnancy

in premature and full-term births of the US births data in 2014\n using geom_
jitter function,”

X = “Number of hospital visits during pregnancy,” y = “Birth type,”
color = “Birth type”)+

theme_classic()+

theme(plot.title = element_text(hjust = 0.5))

1 and box plot of number of hespital visits during pregnancy in premature and full-term births of the US births data in 2014
using geom_jitter function
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Here, we again see that the box plot of visits number in full-term births is

shifted up to that in premature births, so higher visits number may be associated
with full-term births.
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4.3.3.3. Strip Plot of Run Time in the 2 Genders

To create this plot, we will use the same above functions except that the ggplot
function, applied on “run09” data, will have the arguments, aes(x = time, y =
gender, color = gender), to plot the run time on the x-axis and the gender column
on the y-axis with coloring the points by a different color for each gender.
run@9 %>%
ggplot(aes(x = time, y = gender, color = gender))+

geom_point()+

Labs(title = “Strip plot of run time in males and females of Cherry Blossom Run
data in 2009,”

x = “Run time,” y = “Gender,”
color = “Gender”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Strip plot of run time in males and females of Cherry Blossom Run data in 2009

Gender
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We see that:

. The distribution of run time in females is more shifted to the right
(higher) than that in males. This means that females are slower on
average than males.
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Alternatively, the relationship can be seen more easily if the points are

jittered (displaced) using the geom_jitter function as before.
set.seed(123)

run@9 z>%
ggplot(aes(x = time, y = gender, color = gender))+
geom_jitter()+

Labs(title = “Strip plot of run time in males and females of Cherry Blossom Run
data in 2009\n using geom_jitter function,”

X = “Run time,” y = “Gender,”
color = “Gender”)+
theme_classic()+

theme(plot.title = element_text(hjust = 6.5))

Strip plot of run time in males and females of Cherry Blossom Run data in 2009
using geom_jitter function

Gender

Again, we see that males are faster than females on average.
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4.3.3.4. Strip Plot of Run Time in the Different States

To create this plot, we will use the same above functions except that the ggplot
function, applied on “run09” data, will have the arguments, aes(x = time, y =
state, color = state), to plot the run time on the x-axis and the state column on
the y-axis with coloring the points by a different color for each state.

To make this plot more informative, we will use the mutate and fct reorder
functions to order the states by their median run time. We also remove the
unnecessary legend as before.
run@9 %>%

mutate(state = fct_reorder(state, time, .fun = median)) %>%
ggplot(aes(x = time, y = state, color = state))+
geom_point(show.legend = FALSE)+

Labs(title = “Strip plot of run time in 1in runners from different states of
Cherry Blossom Run data in 2009\n arranged by median run time,”

X = “Run time,” y = “State”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Strip plot of run time in in runners from different states of Cherry Blossom Run data in 2009
arranged by median run time

State
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We see that:

The lowest median run time was found in runners from the “NR”
state and the highest median run time was found in runners from the
“AR” state. However, there are only 2 runners (2 data points) from
the “AR? state.

4.3.4. Cleveland Dot Plot

Cleveland plots are useful when you want to compare a numeric statistic of
a continuous variable (like mean, median, minimum, maximum) for different
levels of a categorical variable.

4.3.4.1. Cleveland Dot Plot of Mean Maternal Age in the Birth

Types

To create this plot, we use the following functions:

The group by and get summary_stats function, as we have done in
section 4.2.1.1., to get the mean maternal age in each birth type.

The ggplot function with the arguments, aes(x = mean,y = premie,
color = premie, to plot the mean on the x-axis, the premie column
(with 2 levels) on the y-axis, and coloring a different color for each
birth type.

The geom_point function to plot a point for each mean.

The geom segment function with the arguments, aes(x = 0, xend
= mean, y = premie, yend = premie, to plot a line segment for each
birth type. The start of the line segment for each birth type on the
x-axis will be from 0 to its mean maternal age, while the start of the
line segment for each birth type on the y-axis will be from its birth
type to its birth type too.

birthsi4 %>% group_by(premie) %>%

get_summary_stats(mage, show = “mean”) %>%

ggplot(aes(x = mean,y = premie, color = premie))+

geom_point()+

geom_segment (aes(x = 0, xend = mean,

y = premie,

yend = premie))+

labs(title = “Cleveland plot of mean maternal age 1in premature and full-term
births\n of the US births data in 2014,”
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X = “Mean maternal age,” y = “Birth type,” color = “Birth type”)+

theme_classic()+

theme(plot.title = element_text(hjust = 0.5))

and full-term births
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We see that the mean maternal age in premature births is higher than that
in full-term births.
We can use the same functions to get the median maternal age in each birth

type.
birthsi4 %>% group_by(premie) %>%
get_summary_stats(mage, show = “median”) %>%

ggplot(aes(x = median,y = premie, color = premie))+
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geom_point()+
geom_segment(aes(x = 0, xend = median,
y = premie,

yend = premie))+
Labs(title = “Cleveland plot of median maternal age in premature and full-term
births\n of the US births data in 2014,”

X = “Median maternal age,” y = “Birth type,” color = “Birth type”)+

theme_classic()+
theme(plot.title = element_text(hjust = 6.5))

Cleveland plot of median maternal age in premature and full-term births
of the US births data in 2014
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We see that the median maternal age in premature births is higher than that
in full-term births.
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4.3.4.2. Cleveland Dot Plot of the Mean Number of Hospital Vis-
its in the Birth Types

To create this plot, we use the same above functions and modify them
accordingly.
births14 %>% group_by(premie) %>%
get_summary_stats(visits, show = “mean”) %>%
ggplot(aes(x = mean,y = premie, color = premie))+
geom_point()+
geom_segment(aes(x = @, xend = mean,
y = premie,
yend = premie))+

Labs(title = “Cleveland plot of mean number of hospital visits during pregnancy
\nin premature and full-term births of the US births data in 2014,”

X = “Mean visits number,” y = “Birth type,” color = “Birth type”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Cleveland plot of mean number of hospital visits during pregnancy
In premature and full-term births of the US births data in 2014
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We see that the mean visits number in premature births is lower than that
in full-term births.
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4.3.4.3. Cleveland Dot Plot of Mean Run Time in the 2 Genders

To create this plot, we use the same above functions and modify them
accordingly.
run@9 %>% group_by(gender) %>%
get_summary_stats(time, show = “mean”) %>%
ggplot(aes(x = mean,y = gender, color = gender))+
geom_point()+
geom_segment(aes(x = @, xend = mean,
y = gender,
yend = gender) )+

labs(title = “Cleveland plot of mean run time in males and females of Cherry
Blossom Run data in 2009,”

P2

X = “Mean run time,” y = “Gender,” color = “Gender”)+

theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Cleveland plot of mean run time in males and females of Cherry Blossom Run data in 2009
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We see that the mean run time in females is higher than that in males, so
males are faster than females on average.
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4.3.4.4. Cleveland dot plot of mean run time in the different states

To create this plot, we use the same above functions and modify them
accordingly. We also use the mutate and fct reorder functions to order the state
by their mean run time in ascending order. Finally, we remove the unnecessary
legend by using the argument, show.legend = FALSE, inside the geom_ point
and geom segment functions.

run@9 %>% group_by(state) %>%

get_summary_stats(time, show = “mean”) %>%

mutate(state = fct_reorder(state, mean)) %>%

ggplot(aes(x = mean,y = state, color = state))+

geom_point(show.legend = FALSE)+

geom_segment(aes(x = 0, xend = mean,
y = state,
yend = state), show.legend = FALSE)+

Labs(title = “Cleveland plot of mean run time 1in runners from different states
\nof Cherry Blossom Run data in 2009,”

X = “Mean run time,” y = “State”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Cleveland plot of mean run time in runners from different siates
of Cherry Blossom Run data in 2009

State
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We see that the mean run time in the “NR” state is lower than all other states
so runners from this state are faster than runners from other states on average.

4.3.5. Mean Plot with Error Bars

We can compare the continuous variable in different levels of a categorical
variable by using the mean plot with error bars. The error bars can represent
standard deviations, standard error of the mean, or confidence intervals.

4.3.5.1. Mean Plot with Standard Deviation Error Bars of Mater-
nal Age in the Birth Types

To create this plot, we use the following functions:

The group by and get summary_stats functions as we have done
previously. However, the get summary_stats function will have the
arguments, mage, type= “mean_sd,” to get the mean and standard
deviation of maternal age in each birth type.

The ggplot function with the arguments, aes(x = premie,y = mean,
color = premie, to plot the mean on the y-axis, the premie column
(with 2 levels) on the x-axis, and coloring a different color for each
birth type.

The geom_point function to plot a point for each mean.

The geom_errorbar function with the arguments, aes(ymin = mean —
sd, ymax = mean + sd), width = 0.1), so the error bar for each birth
type will have a maximum of mean + standard deviation value and
a minimum of mean — standard deviation value, and a central point
of the mean maternal age for each birth type. The width argument to
reduce the width of the error bars to 0.1 of its default width.

The labs, theme classic, and theme functions had been described
before.

birthsi4 %>% group_by(premie) %>%

get_summary_stats(mage, type= “mean_sd”) %>%

ggplot(aes(x = premie, y= mean, color = premie))+ geom_point()+

geom_errorbar(aes(ymin = mean - sd,

ymax = mean + sd), width = 0.1)+

Labs(title = “Mean maternal age with 1 standard deviation error bars \nin
premature and full-term births of the US births data in 2014,”

y = “Mean maternal age,

»” x = “Birth type,” color = “Birth type”)+

theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

273



Statistics with R for Data Analysis

Mean | age with 1 standard deviation error bars
in premature and full-term births of the US births data in 2014
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We see that the mean maternal age in premature births is higher than that in
full-term births. However, the standard deviation is nearly the same.

4.3.5.2. Mean Plot with Standard Error Bars of Maternal Age in
the Birth Types

The standard error of the mean is estimated by where:
. s is the sample standard deviation.
. n is the sample size.

The standard error represents the estimated standard deviation obtained
from a set of sample means from repeated samples of size n from the same
population.

We can use the same functions to get the mean plot with standard error bars
of maternal age in the birth types using the argument type = “mean_se” in the
get_summary_stats function.
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births14 %>% group_by(premie) %>%
get_summary_stats(mage, type= “mean_se”) %>%
ggplot(aes(x = premie, y= mean, color = premie))+ geom_point()+
geom_errorbar(aes(ymin = mean - se,
ymax = mean + se), width = 0.1)+

Labs(title = “Mean maternal age with 1 standard error bars \nin premature and
full-term births of the US births data in 2014,”

y = “Mean maternal age,” x = “Birth type,” color = “Birth type”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Mean maternal age with 1 standard error bars

in premature and full-term births of the US births data in 2014
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In a normal distribution, about 95% of the data are within 2 standard
deviations (error) from the mean, so it is more reasonable if we created the
error bars at 2 X se. The 2 X se represents a 95% confidence interval that will
capture the true population mean 95% of the time.
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births14 %>% group_by(premie) %>%
get_summary_stats(mage, type= “mean_se”) %>%
ggplot(aes(x = premie, y= mean, color = premie))+ geom_point()+
geom_errorbar(aes(ymin = mean - 2*se,
ymax = mean + 2*se), width = 0.1)+

Labs(title = “Mean maternal age with 2 standard error bars \nin premature and
full-term births of the US births data in 2014,”

y = “Mean maternal age,” x = “Birth type,” color = “Birth type”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Mean maternal age with 2 standard error bars
in premature and full-term births of the US births data in 2014
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We see that:
. The mean maternal age in premature births is higher than that in full-

term births.
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The error bar in premature births is wider than that in full-term births
because the sample size is smaller in premature births.

The 2 error bars overlap indicating that the difference between the
mean maternal age in premature and full-term births is not significant
or they are statistically equivalent.

4.3.5.3. Mean Plot with 95% Confidence Interval Error Bars of
Maternal Age in the Birth Types

The 95% confidence interval of the mean is estimated by or X standard error

where:

s is the standard deviation.

n is the sample size.

The value depends on the sample size and can be obtained from the
t-distribution table.

is the level of significance and equals a 100-confidence level. For

a 95% confidence interval, = 5% or 0.05, for a 99% confidence
interval, = 1% or 0.01, and for a 90% confidence interval, = 10% or
0.1.

Generally, for large sample sizes (> 30), we can be certain by 95% that the
true mean is within two standard errors of the estimated mean.

We can use the same functions to get the mean plot with 95% confidence
interval error bars of maternal age in the birth types using the argument type =
“mean_ci” in the get summary_stats function.
births14 %>% group_by(premie) %>%

get_summary_stats(mage, type= “mean_ci”) %>%

ggplot(aes(x = premie, y= mean, color = premie))+ geom_point()+

geom_errorbar(aes(ymin = mean - ci,

ymax = mean + ci), width = 0.1)+

labs(title = “Mean maternal age with 95% confidence interval error bars \nin
premature and full-term births of the US births data in 2014,”

y = “Mean maternal age,” x = “Birth type,” color = “Birth type”)+

theme_classic()+

theme(plot.title = element_text(hjust = 0.5))
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Mean maternal age with 95% confidence interval error bars
in premature and full-term births of the US births data in 2014
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We see that:
. The mean maternal age in premature births is higher than that in full-
term births.
. The error bar in premature births is wider than that in full-term births
because the sample size is smaller in premature births.
. The 2 error bars overlap indicating that the difference between the

mean maternal age in premature and full-term births is not significant
or they are statistically equivalent.

4.3.5.4. Mean Plot with 95% Confidence Interval Error Bars of
Visits Number in the Birth Types

We can use the same functions to get the mean plot with 95% confidence
interval error bars of visits number in the birth types and modify the functions
accordingly.
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births14 %>% group_by(premie) %>%
get_summary_stats(visits, type= “mean_ci”) %>%
ggplot(aes(x = premie, y= mean, color = premie))+ geom_point()+
geom_errorbar(aes(ymin = mean - ci,
ymax = mean + ci), width = 0.1)+

Labs(title = “Mean number of hospital visits during pregnancy with 95% confidence
interval error bars \nin premature and full-term births of the US births data
in 2014,”

y = “Mean visits number,” x = “Birth type,” color = “Birth type”)+
theme_classic()+

theme(plot.title = element_text(hjust = 0.5))

Mean number of hospital visits during p with 9 Interval error bars
in premature and full-term births of the \US birihe data n 2014
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We see that:
. The mean number of visits in premature births is lower than that in
full-term births.

. The error bar in premature births is wider than that in full-term births

because the sample size is smaller in premature births.
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. The 2 error bars do not overlap indicating that the difference between
the mean number of hospital visits during pregnancy in premature
and full-term births is statistically significant or there is a real
difference between the 2 groups in their mean number of visits.

4.3.5.5. Mean Plot with 95% Confidence Interval Error Bars of
Run Time in the 2 Genders

We can use the same functions to get the mean plot with 95% confidence
interval error bars of run time in the 2 genders of Cherry Blossom Run data in
2009 and modify the functions accordingly.
run@9 %>% group_by(gender) %>%
get_summary_stats(time, type= “mean_ci”) %>%
ggplot(aes(x = gender, y= mean, color = gender))+ geom_point()+
geom_errorbar(aes(ymin = mean - ci,

ymax = mean + ci), width = 0.1)+

Labs(title = “Mean run time with 95% confidence interval error bars\n in males
and females of Cherry Blossom Run data in 2009,”

” B3]

y = “Mean run time,” x = “Gender,” color = “Gender”)+

theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Mean run time with 95% confidence interval error bars
in males and females of Cherry Blossom Run data in 2009

"

Maan run time
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We see that:
. The mean run time in males is lower than that in females.
. The 2 error bars do not overlap indicating that the difference between

the mean run time in males and females is statistically significant so
we can conclude that males are faster than females on the average in
the population from which this sample was taken.

4.3.5.6. Mean Plot with 95% Confidence Interval Error Bars of
Run Time in the Runners from Different States

We can use the same functions to get the mean plot with 95% confidence
interval error bars of run time in the runner from different states of Cherry
Blossom Run data in 2009 and modify the functions accordingly. However, the
95% confidence interval cannot be calculated when the sample size is 1 and
produces a “NaN” or not a number value. We remove these rows by using the
drop na function. We can also arrange the states by their mean run time using
the mutate and fct reorder functions. We also remove the unnecessary legend
as before.
run@9 %>% group_by(state) %>%
get_summary_stats(time, type= “mean_ci”) %>%
drop_na() %>% mutate(state = fct_reorder(state,mean)) %>%
ggplot(aes(x = state, y= mean, color = state))+
geom_point(show. legend = FALSE)+
geom_errorbar(aes(ymin = mean - ci,

ymax = mean + ci), width = 0.1, show.legend = FALSE)+

Labs(title = “Mean run time with 95% confidence interval error bars\n in runners
from different states of Cherry Blossom Run data in 2009\n arranged by the mean
run time,”

y = “Mean run time,” x = “State”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))
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Mean run time with 95% confidence interval emor bars
in runners from different states of Cherry Blossom Run data in 2009
arranged by the mean run time
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We see that:

. The highest mean run time was in runners from the “AR” state.
However, the 95% confidence interval is very large due to the small
sample size (2 runners only).

. The lowest mean run time was in runners from the “NR” state and
the 95% confidence interval is very tight due to the large sample size
(59 runners).

. All the 95% confidence intervals of different states appear to overlap
so all runners from all states may have statistically equivalent run
time. We will see that in the below statistical tests.

4.4. STATISTICAL TESTS

4.4.1. t-Test for Two Samples

The independent samples t-test (or unpaired samples t-test) is used to compare
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the mean of two independent groups. For example, compare the mean maternal
age in the 2 birth types, full-term, and premature births. Another example is
comparing the mean visits number in the 2 birth types, full-term, and premature
births. A final example is comparing the mean run time in the 2 genders, males
and females. In all these examples, the 2 groups are unrelated or independent.

The independent samples t-test comes in two versions:

. The standard Student’s t-test assumes that the variance of the two
groups is equal.

. The Welch’s t-test does not assume that the variance is the same in
the two groups.

4.4.1.1. Assumptions of t-Test

The independent samples t-test assumes the following about the data:

. Independence of the observations. Each subject or observation
should belong to one group. There is no relationship between the
observations in the 2 groups.

. No significant outliers in the two groups.
. Normality of the data in each group.
. Homogeneity of variances of the data in each group.

4.4.1.2. t-Test for the Mean Maternal Age in the 2 Birth Types

The null hypothesis is that the difference between the mean maternal age in the
2 birth types is 0, while the alternative hypothesis is that the difference between
the means is greater than or smaller than 0 or a two-sided test.

To conduct this test, we use the t-test function applied to the “births14” data
with the following arguments:

. formula = mage ~ premie which is the formula for two samples
t-test. This means that we want to compare the maternal age across
the 2 levels of the “premie” column.

. mu = 0 which is the null value that corresponds to the null hypothesis.
. alternative = “two.sided” which is the alternative hypothesis.

Then, we convert the result to a table as before.
birthsi4 %>% t_test(formula = mage ~ premie, mu = O,

alternative = “two.sided”) %>%
flextable() %>% theme_box() %>%
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set_caption(caption = “Two-sided t-test results of mean maternal age in premature
and full-term births of the US births data in 2014”)

Table 4.29. Tivo-Sided t-Test Results of Mean Maternal Age in Premature and Full-
Term Births of the US births Data in 2014

.y. groupl | group2 | nl n2 statistic df p

mage ‘f:;rln premie 876 124 | -1.682214 156.5432 | 0.0945
We see that:
. The table contains the statistic = -1.68 which corresponds to our

sample results and the p-value = 0.0945.

. The p_value is the probability of our sample results (the difference
between the 2 group means) under the null hypothesis (where the 2
means are equivalent). Since this probability is larger than the cut-
off value of 0.05, we fail to reject the null hypothesis and conclude
that the mean maternal age in full-term and premature births is
statistically equivalent.

To trust these results, we must test the assumptions of the t-test on our data.
The 2 groups are independent with no relation between them. Other tests will
be described below.

4.4.1.2.1. Test for Outliers in the Maternal Age in the 2 Birth Types

As described in Chapter 1, we use the identify outliers function with the
argument, mage, after the group by function with the argument premie to detect
any outliers in the maternal age within the 2 birth types. Then, we use the select
function to select the important columns to be viewed (premie, mage, is.outlier,
is.extreme) instead of viewing all columns of the “births14” data. Finally, we
convert the results to a table as before.

births14 %>% group_by(premie) %>% identify_outliers(mage) %>%

select(premie,mage, is.outlier, 1is.extreme) %>%

flextable() %>%

theme_box () %>%
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set_caption(caption = “Outlier test results for maternal age in premature and
full-term births of the US births data in 2014”)

Table 4.30. Outlier Test Results for Maternal Age in Premature and Full-Term
Births of the US Births Data in 2014

Premie mage is.outlier is.extreme

We see that the table 4.30 has no rows meaning that maternal age values
have no outliers in full-term or premature births.

4.4.1.2.2. Test for Normality of the Maternal Age in the 2 Birth
Types

We can use the QQ plot or the Shapiro-Wilk normality test as described in
Chapter 1. The ggqqplot function from the ggpubr package can be used to create
a QQ plot of the maternal age. To create a separate QQ plot for each birth type,
we use the argument facet.by = “premie” to plot a separate QQ plot for full-term
and premature births.

Library(ggpubr)

ggqqplot(data = birthsi4, x = “mage,” facet.by = “premie,”

title = “QQ plot of maternal age in premature and full-term births\n of the
US births data in 2014,”

xlab = “Theoretical percentiles,” ylab = “Sample percentiles™)+

theme(plot.title = element_text(hjust = 0.5))
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QQ plot of maternal age in premature and full-term births
of the US births data in 2014
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In full-term births, not all data points fall along the reference line or within
the confidence band, so we can not assume normality of maternal age in full-
term births and we should use the Wilcoxon test which does not need normality
of data in the 2 groups.

In premature births, nearly all data points fall along the reference line or
within the confidence band, so we can assume the normality of maternal age in
full-term births.

For the Shapiro-Wilk normality test, we use the shapiro_test function with
the argument “mage” after the group by function with the argument “premie.”
This will test the normality of maternal age in full-term and premature births.
birthsi4 %>% group_by(premie) %>% shapiro_test(mage) %>% flextable() %>%

theme_box () %>%

set_caption(caption = “Shapiro-Wilk test results for maternal age in premature
and full-term births\n of the US births data in 2014”)
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Table 4.31. Shapiro-Wilk Test Results for Maternal Age in Premature and Full-
Term Births of the US Births Data in 2014

Premie Variable Statistic p
full term mage 0.9879408 0.000001299452
premie mage 0.9796766 0.058485020608

In full-term births, the p_value is significant (< 0.05), so we reject the null
hypothesis and conclude that the maternal age values in full-term births are not
normally distributed. However, due to the large sample size of full-term births
(876), we can ignore the normality test results and use the t-test.

In premature births, the p_value is insignificant (> 0.05), so we fail to reject

the null hypothesis and conclude that the maternal age values in premature
births are normally distributed.

4.4.1.2.3. Test for Homogeneity of Variances of the Maternal Age
in the 2 Birth Types

We will use Levene’s test for this using the levene test function. The only
argument is the formula “mage ~ premie” to test the equality of variances of the
maternal age across the 2 groups of the “premie” column. If the variances of
the 2 groups are equal, the p-value should be insignificant or greater than 0.05.
births14 %>% levene_test(formula = mage ~ premie) %>% flextable() %>%

theme_box () %>%

set_caption(caption = “Levene’s test results for maternal age in premature and
full-term births\n of the US births data in 2014”)

Table 4.32. Levene's Test Results for Maternal Age in Premature and Full-Term
Births of the US Births Data in 2014

df1 df2 Statistic P
1 998 0.5747473 0.4485576

We see that the p-value is insignificant (> 0.05) so we conclude that the
variances of the maternal age in premature and full-term births are equal. The
t-test done above was Welch’s t-test which does not assume that the variance is
equal in the two groups. Because the variance is equal in the 2 groups, we can
do the standard Student’s t-test by using the argument var.equal = TRUE within
the t_test function.
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births14 %>% t_test(formula = mage ~ premie, mu

flextable() %>% theme_box() %>%

set_caption(caption =
in premature and full-term births of the US births data in 2014”)

Table 4.33. Two-Sided Students t-Test Results of Mean Maternal Age in Premature

var.equal = TRUE) %>%

alternative = “two.sided,”

9,

and Full-Term Births of the US Births Data in 2014

“Two-sided Student’s t-test results of mean maternal age

Y.

Groupl

Group2

nl

n2

Statistic

df

P

mage

full term

premie

876

124

-1.739637

998

0.0822

The conclusion is the same as that of Welch’s t-test with an insignificant
p-value, so we fail to reject the null hypothesis and conclude that the mean

maternal age in full-term and premature births is statistically equivalent.

4.4.1.3. t-Test for the Mean Number of Hospital Visits During

Pregnancy in the 2 Birth Types

The null hypothesis is that the difference between the mean number of visits
in the 2 birth types is 0, while the alternative hypothesis is that the difference

between the means is greater than or smaller than 0 or a two-sided test.

To conduct this test, we use Welch’s t-test using the same functions above.

birthsi14 %>% t_test(formula = visits ~ premie, mu = 0,

flextable() %>% theme_box() %>%

alternative = “two.sided”) %>%

set_caption(caption = “Two-sided t-test results of mean number of hospital
visits during pregnancy 1in premature and full-term births of the US births data
in 2014”)
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Table 4.34. Two-Sided t-Test Results of the Mean Number of Hospital Visits
During Pregnancy in Premature and Full-Term Births of the US Births Data
in2014

y. groupl | group2 | nl n2 statistic df p
in‘SS' full term | premie | 829 | 115 | 2.62367 | 131.323 | 0.00973
We see that:
. The table contains the statistic = 2.62 which corresponds to our
sample results and the p-value = 0.00973.
. The p_value is significant, so we reject the null hypothesis and

conclude that the mean number of visits in the full-term births is
larger than that of the premature births.

To trust these results, we must test the assumptions of the t-test on our data.
The 2 groups are independent with no relation between them. Other tests will
be described below.

4.4.1.3.1. Test for Outliers in the Number of Visits in the 2 Birth
Types

We use the same above functions. Then, we use the select function to select the
important columns to be viewed (premie, visits, is.outlier, is.extreme) instead
of viewing all columns of the “births14” data. Finally, we convert the results to
a table as before.
births14 %>% group_by(premie) %>% identify outliers(visits) %>%
select(premie,visits, is.outlier, is.extreme) %>%
flextable() %>%

theme_box () %>%

set_caption(caption = “Outlier test results for hospital visits during pregnancy
in premature and full-term births of the US births data in 2014”)
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Table 4.35. Outlier Test Results for Hospital Visits During Pregnancy in Pre-
mature and Full-Term Births of the US Births Data in 2014

Premie Visits is.outlier is.extreme
full term 2 TRUE FALSE
full term 29 TRUE TRUE
full term 0 TRUE FALSE
full term 3 TRUE FALSE
full term 2 TRUE FALSE
full term 25 TRUE FALSE
full term 0 TRUE FALSE
full term 3 TRUE FALSE
full term 21 TRUE FALSE
full term 2 TRUE FALSE
full term 0 TRUE FALSE
full term 0 TRUE FALSE
full term 3 TRUE FALSE
full term 0 TRUE FALSE
full term 0 TRUE FALSE
full term 0 TRUE FALSE
full term 1 TRUE FALSE
full term 30 TRUE TRUE
full term 0 TRUE FALSE
full term 3 TRUE FALSE
full term 21 TRUE FALSE
full term 0 TRUE FALSE
full term 0 TRUE FALSE
full term 3 TRUE FALSE
full term 0 TRUE FALSE
full term 27 TRUE TRUE
full term 3 TRUE FALSE
full term 1 TRUE FALSE
full term 3 TRUE FALSE
full term 21 TRUE FALSE

290



Bivariate Analysis for Continuous-Categorical Data

full term 1 TRUE FALSE
full term 0 TRUE FALSE
full term 1 TRUE FALSE
full term 3 TRUE FALSE
full term 3 TRUE FALSE
full term 3 TRUE FALSE
full term 3 TRUE FALSE
full term 3 TRUE FALSE
full term 0 TRUE FALSE
premie 20 TRUE FALSE
premie 28 TRUE TRUE

premie 20 TRUE FALSE
premie 20 TRUE FALSE
premie 20 TRUE FALSE
premie 20 TRUE FALSE
premie 30 TRUE TRUE

premie 25 TRUE FALSE

We see that the table 4.35 has many rows containing the outlier values of
visits number in full-term or premature births, so we should use the Wilcoxon
test to compare the visits number between the 2 birth types.

4.4.1.3.2. Test for Normality of the Number of Visits in the 2 Birth
Types

We can plot the QQ plot.
ggqqplot(data = birthsi4, x = “visits,” facet.by = “premie,”

title = “QQ plot of hospital visits during pregnancy 1in premature and full-
term births\n of the US births data in 2014,”

xlab = “Theoretical percentiles,” ylab = “Sample percentiles”)+

theme(plot.title = element_text(hjust = 0.5))
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QQ plot of hospital visits during preg| yinp and full-term births
of the US births data in 2014
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In full-term and premature births, not all data points fall along the reference
line or within the confidence band, so we can not assume normality of visits
number in the full-term or premature births and we should use the Wilcoxon test
which does not need normality of data in the 2 groups. However, due to the large
sample size of full-term births or premature births (829 and 115 respectively),
we can ignore the normality test results and use the t-test.

We can also use the Shapiro-Wilk normality test as before.
births14 %>% group_by(premie) %>% shapiro_test(visits) %>% flextable() %>%
theme_box() %>%

set_caption(caption = “Shapiro-Wilk test results for hospital visits during
pregnancy in premature and full-term births\n of the US births data in 2014”)
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Table 4.36. Shapiro-Wilk Test Results for Hospital Visits During Pregnancy in Pre-
mature and Full-Term Births of the US Births Data in 2014

Premie Variable Statistic p
full term visits 0.9593774 0.00000000000002168143
premie visits 0.9418316 0.00008177188744695395

In full-term and premature births, the p_value is significant (< 0.05), so
we reject the null hypothesis and conclude that the visits number values in
the full-term and premature births are not normally distributed. However, due
to the large sample size of full-term births or premature births (829 and 115
respectively), we can ignore the normality test results and use the t-test.

4.4.1.3.3. Test for Homogeneity of Variances of the Hospital Visits
During Pregnancy in the 2 Birth Types

births14 %>% levene_test(formula = visits ~ premie) %>% flextable() %>%
theme_box() %>%

set_caption(caption = “Levene’s test results for hospital visits during pregnancy
in premature and full-term births of the US births data in 2014”)

Table 4.37. Levene s Test Results for Hospital Visits During Pregnancy in Prema-
ture and Full-Term Births of the US Births Data in 2014

dfl df2 Statistic p
1 942 12.91543 0.0003427704

We see that the p-value is significant (< 0.05) so we conclude that the
variances of the visits number in premature and full-term births are different
and we can only use Welch’s t-test conducted above.

4.4.1.4. t-Test for the Mean Run Time in the 2 Genders

The null hypothesis is that the difference between the mean run time in the 2
genders is 0, while the alternative hypothesis is that the difference between the
means is greater than or smaller than 0 or a two-sided test.

To conduct this test, we use Welch’s t-test using the same functions above.

run@9 %>% t_test(formula = time ~ gender, mu = 0,

alternative = “two.sided”) %>%
flextable() %>% theme_box() %>%
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set_caption(caption = “Two-sided t-test results of mean run time in males and
females of Cherry Blossom Run data in 2009™)

Table 4.38. Tivo-Sided t-Test Results of Mean Run Time in Males and Females of
Cherry Blossom Run Data in 2009

. Groupl | Group2 | nl n2 Statistic | df p

time | F M 8,323 6,651 | 43.04116 | 13,636.55 | O

We see that:

. The table contains the statistic = 43.04 which corresponds to our
sample results and the p-value = 0.

. The p_value is significant, so we reject the null hypothesis and

conclude that the mean run time in females is larger than that of
males. In other words, females are slower than males on average.

To trust these results, we must test the assumptions of the t-test on our data.
The 2 groups are independent with no relation between them. Other tests will
be described below.

4.4.1.4.1. Test for Outliers in the Run Time in the 2 Genders

We use the same above functions. Then, we use the select function to select the
important columns to be viewed (gender, time, is.outlier, is.extreme) instead
of viewing all columns of the “run09” data. Finally, we convert the results to a
table as before.

run@9 %>% group_by(gender) %>% identify outliers(time) %>%

select(gender, time, is.outlier, 1is.extreme) %>%

flextable() %>%
theme_box () %>%

set_caption(caption = “Outlier test results for run time in males and females
of Cherry Blossom Run data in 2009”)

Table 4.39. Outlier Test Results for Run Time in Males and Females of Cherry
Blossom Run data in 2009

Gender Time is.outlier is.extreme
F 53.533 TRUE FALSE
F 53.917 TRUE FALSE
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F 53.967 TRUE FALSE
F 54.433 TRUE FALSE
F 54.450 TRUE FALSE
F 54.533 TRUE FALSE
F 54.633 TRUE FALSE
F 54.650 TRUE FALSE
F 54.717 TRUE FALSE
F 54.767 TRUE FALSE
F 55.183 TRUE FALSE
F 55.200 TRUE FALSE
F 55.467 TRUE FALSE
F 55.717 TRUE FALSE
F 55.850 TRUE FALSE
F 55917 TRUE FALSE
F 56.300 TRUE FALSE
F 56.733 TRUE FALSE
F 56.783 TRUE FALSE
F 57.183 TRUE FALSE
F 57.417 TRUE FALSE
F 58.567 TRUE FALSE
F 58.750 TRUE FALSE
F 59.367 TRUE FALSE
F 60.300 TRUE FALSE
F 61.017 TRUE FALSE
F 61.100 TRUE FALSE
F 61.467 TRUE FALSE
F 157.217 TRUE FALSE
F 158.133 TRUE FALSE
F 158.233 TRUE FALSE
F 158.117 TRUE FALSE
F 158.083 TRUE FALSE
F 163.250 TRUE FALSE
F 169.617 TRUE FALSE
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M 151.417 TRUE FALSE
M 149.683 TRUE FALSE
M 151.350 TRUE FALSE
M 153.250 TRUE FALSE
M 149.467 TRUE FALSE
M 150.050 TRUE FALSE
M 149.650 TRUE FALSE
M 150.517 TRUE FALSE
M 152.117 TRUE FALSE
M 150.683 TRUE FALSE
M 150.700 TRUE FALSE
M 153.100 TRUE FALSE
M 150.517 TRUE FALSE
M 150.517 TRUE FALSE
M 152.650 TRUE FALSE
M 150.417 TRUE FALSE
M 149.300 TRUE FALSE
M 152.367 TRUE FALSE
M 154.083 TRUE FALSE
M 151.450 TRUE FALSE
M 155.150 TRUE FALSE
M 156.733 TRUE FALSE
M 153.250 TRUE FALSE
M 156.783 TRUE FALSE
M 154.450 TRUE FALSE
M 157.517 TRUE FALSE
M 155.883 TRUE FALSE
M 149.783 TRUE FALSE
M 154.800 TRUE FALSE
M 151.417 TRUE FALSE
M 155.017 TRUE FALSE

We see that the Table 4.39 has many rows containing the outlier values of
run time in females and males, so we should use the Wilcoxon test to compare
the run time between the 2 genders.
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4.4.1.4.2. Test for Normality of the Run Time in the 2 Genders

We can plot the QQ plot.
ggqqplot(data = runé9, x = “time,” facet.by = “gender,”

title = “QQ plot of run time in males and females of Cherry Blossom Run
data in 2009,”

xlab = “Theoretical percentiles,” ylab = “Sample percentiles™)+

theme(plot.title = element_text(hjust = 0.5))

QQ plot of run time in males and females of Cherry Blossom Run data in 2008
F M

Sample percentiles
g

In females and males, not all data points fall along the reference line or
within the confidence band, so we can not assume the normality of run time in
females or males and we should use the Wilcoxon test which does not need the
normality of data in the 2 groups.
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4.4.1.4.3. Test for Homogeneity of Variances of the Run Time in the
2 Genders

run@9 %>% Levene_test(formula = time ~ gender) %>% flextable() %>%
theme_box() %>%

set_caption(caption = “Levene’s test results for run time in males and females
of Cherry Blossom Run data in 2009”)

Table 4.40. Levene's Test Results for Run Time in Males and Females of Cherry
Blossom Run Data in 2009

dfl df2 Statistic P
1 14,972 66.96781 0.0000000000000002980299

We see that the p-value is significant (< 0.05) so we conclude that the
variances of the run time in females and males are different and we can only use
Welch'’s t-test conducted above.

4.4.2. Wilcoxon Test for Two Samples

The Wilcoxon test is a non-parametric alternative to the two samples t-test for
comparing the median of a continuous variable in two independent groups of
samples, in case where the data are not normally distributed or contain some
outliers. It is also known as the Mann-Whitney or Mann-Whitney U test.
However, the sample size should be at least 6 in each group, or the Wilcoxon
test cannot become significant.

4.4.2.1. Wilcoxon Test for Maternal Age in Premature and Full-
Term Births
The null hypothesis is that the difference between the median maternal age

in the 2 birth types is 0, while the alternative hypothesis is that the difference
between the medians is greater than or smaller than 0 or a two-sided test.

To conduct this test, we use the wilcox _test function applied to the “births14”
data with the following arguments:

. formula = mage ~ premie which is the formula for two samples
Wilcoxon test. This means that we want to compare the maternal
age across the 2 levels of the “premie” column.

. mu = 0 which is the null value that corresponds to the null hypothesis.

. alternative = “two.sided” which is the alternative hypothesis.
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Then, we convert the result to a table as before.

birthsi14 %>% wilcox_test(formula = mage ~ premie, mu = @,
alternative = “two.sided”) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Two-sided Wilcoxon test results of median maternal age
in premature and full-term births of the US births data in 2014”)

Table 4.41. Two-Sided Wilcoxon Test Results of Median Maternal Age in Premature
and Full-Term Births of the US Births Data in 2014

.y Groupl Group2 nl n2 Statistic | p
mage | full term premie 876 124 49,577.5 | 0.115
We see that:
. The table contains the statistic = 49577.5 which corresponds to our

sample results and the p-value = 0.115.

. The p_value is larger than the cut-off value of 0.05, so we fail to
reject the null hypothesis and conclude that the median maternal age
in full-term and premature births is statistically equivalent.

4.4.2.2. Wilcoxon Test for Hospital Visits During Pregnancy in
Premature and Full-Term Births

The null hypothesis is that the difference between the median hospital visits
during pregnancy in the 2 birth types is 0, while the alternative hypothesis is
that the difference between the medians is greater than or smaller than 0 or a
two-sided test.

To conduct this test, we use the same functions above and modify them
accordingly.

birthsi14 %>% wilcox_test(formula = visits ~ premie, mu = 0,
alternative = “two.sided”) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Two-sided Wilcoxon test results of hospital visits during
pregnancy in premature and full-term births of the US births data in 2014”)

299



Statistics with R for Data Analysis

Table 4.42. Two-Sided Wilcoxon Test Results of Hospital Visits During Pregnancy
in Premature and Full-Term Births of the US Births Data in 2014

A Groupl Group2 nl n2 Statistic p
visits | full term premie 829 115 59,894.5 0.00000731
We see that:

. The Table 4.42 contains the statistic = 59894.5 which corresponds
to our sample results and the p-value which is very low and nearly
equals 0.

. The p_value is smaller than the cut-off value of 0.05, so we reject
the null hypothesis and conclude that the median hospital visits
during pregnancy in full-term births is significantly larger than that
of premature births.

4.4.2.3. Wilcoxon Test for Run Time in Females and Males

The null hypothesis is that the difference between the median run time in the 2
genders is 0, while the alternative hypothesis is that the difference between the
medians is greater than or smaller than 0 or a two-sided test.

To conduct this test, we use the same functions above and modify them
accordingly.

run@9 %>% wilcox_test(formula = time ~ gender, mu = @,
alternative = “two.sided”) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Two-sided Wilcoxon test results of run time in males and
females of Cherry Blossom Run data in 2009”)

Table 4.43. Two-Sided Wilcoxon Test Results of Run Time in Males and Females of
Cherry Blossom Run Data in 2009

A Groupl Group2 nl n2 Statistic
time F M 8,323 | 6,651 | 38,522,940 | O
We see that:

. The Table 4.43 contains the statistic = 38,522,940 which corresponds
to our sample results and the p-value which is 0.
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. The p_value is smaller than the cut-off value of 0.05, so we reject the
null hypothesis and conclude that the median run time in females is
significantly larger than that of males or they are slower than males.

4.4.3. ANOVA Test for More Than Two Samples

The ANOVA ( Analysis of Variance) test is used to compare the mean of a
continuous variable across multiple groups. The One-way ANOVA test is an
extension of the independent two samples t-test for comparing the means across
the different levels of 1 group.

If the average variation between group means is large compared to the
average variation within groups, then we can conclude that at least one group
mean is not equal to the others. That is why the method is called analysis of
variance although the main goal is to compare the group means.

The null hypothesis is that all group means are equal, while the alternative
hypothesis is that at least one mean is different from another mean.

4.4.3.1. ANOVA Assumptions

The ANOVA test has the same assumptions as that of the independent two
samples t-test:

. Independence of the observations. Each subject should belong to
only one group. There is no relationship between the observations in
each group.

. No significant outliers in the different groups.

. Normality of the data in each group.
. Homogeneity of variances of the data in each group.

If the above assumptions are not met, there is a non-parametric alternative
(Kruskal-Wallis test) to the one-way ANOVA.

4.4.3.2. ANOVA Test for the Mean Run Time in Runners from
Different States
We saw previously that some states have only 1,2,3, etc runners, so we filter for

states with a suitable sample size (> 10 runners) by creating a data frame “df”
using the following functions:

. The count function with the argument state is applied to the “run09”
data to count the number of runners (rows) for each state.

. The filter function with the argument n > 10 keeps only states with
more than 10 runners.
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df<-run@9 %>% count(state) %>% filter(n > 10)

df %>% flextable() %>% theme_box() %>% set_caption(caption = “States with more
than 10 runners of Cherry Blossom Run data in 2009”)

Table 4.44. States with More than 10 Runners of Cherry Blossom Run Data in 2009

State n

AZ 11
CA 75
CO 23
CT 73
DC 3,464
DE 61
FL 55
GA 37

IL 71
IN 18
MA 136
MD 3,558
MI 34
MN 19
MO 17
NC 158
NH 19
NJ 207
NR 59
NY 522
OH 80
PA 461
RI 14
SC 11
X 44
VA 5,608
WI 14
A% 28
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We have 28 different states instead of 51. Then we use this data frame “df”
to filter for only these states in the original “run09” data frame using the filter
function with the argument state %in% df$state to filter for only these 28 states.
We create another data frame “run_filtered” to be used in subsequent analysis.
run_filtered<-run@9 %>% filter(state %in% df$state)
glimpse(run_filtered)

## Rows: 14,877

## Columns: 14

## $ place «<int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1.
## $ time  <dbl> 53.533, 53.917, 53.967, 54.433, 54.450, 54.533, 54.633, 54.6..
## $ net_time <dbl> 53.533, 53.917, 53.967, 54.433, 54.450, 54.533, 54.633, 54.6..
## $ pace  <dbl> 5.367, 5.400, 5.400, 5.450, 5.450, 5.467, 5.467, 5.467, 5.48.
## $ age <int> 21, 21, 22, 19, 36, 28, 25, 31, 23, 26, 23, 35, 28, 28, 26, ..
## $ gender <fct> F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, ..
## § first <fct> Lineth, Belianesh Zemed, Teyba, Abebu, Catherine, Olga, Sall..
## $ Last  <fct> Chepkurui, Gebre, Naser, Gelan, Ndereba, Romanova, Meyerhoff..
## $§ city <fct> Kenya, Ethiopia, Ethiopia, Ethiopia, Kenya, Russia, United S..
## § state  <fct> NR, NR, NR, NR, NR, NR, NR, NR, NR, NR, NR, NR, NR, CO, AR, ..
## $ country <fct> KEN, ETH, ETH, ETH, KEN, RUS, USA, KEN, ETH, RUS, ETH, ROM, ..
## $ div  <int> 2, 2, 2, 1, 5, 3, 3, 4, 2, 3, 2, 5, 3, 3, 3, 3, 3, 5, 4, 2, .
## $ div_place <int> 1, 2, 3, 1, 1, 1, 2, 1, 4, 3, 4, 2, 4, 5, 6, 7, 8, 3, 2, 5, ..
## $ div_tot «<int> 953, 953, 953, 71, 1136, 2706, 2706, 1678, 953, 2706, 953, 1.

The run_filtered data frame has the same columns as the original data (14
columns) but a lower number of rows (14877 instead of 14974).

The null hypothesis is that all 28 states’ mean run times are equal, while the
alternative hypothesis is that at least one state’s mean is different from another
state’s mean.

To conduct this test, we use the anova_test function applied on the “run_
filtered” data with the following argument, formula = time ~ state which is the
formula for the ANOVA test. This means that we want to compare the mean run
time across the different states of the “state” column.

Then, we convert the result to a table as before.
run_filtered %>% anova_test(formula = time ~ state) %>% flextable() %>%

theme_box() %>% set_caption(caption = “ANOVA test results of the mean run time
in runners from 28 states of Cherry Blossom Run data in 2009”)
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Table 4.45. ANOVA Test Results of the Mean Run Time in Runners from 28
States of Cherry Blossom Run Data in 2009

Effect | DFn | DFd F P p<.05 | ges

0.000
0000
0000
0000
0000 |,
state | 27 14,849 [ 9.121 | o0 0.016
0000
0000
0000

0664

In the table above, we see that:

The “DFn” is the degrees of freedom in the numerator and “DFd” is
the degrees of freedom in the denominator (DFd).

The obtained F-statistic value that corresponds to our sample results
is 9.121.

The p is the p-value which is the probability of our sample results
(the difference between the state means) under the null hypothesis
(where all states’ means are equivalent). Since this probability is
very low, so we reject the null hypothesis and conclude that at least
one state run time mean is significantly different from another state
mean.

The “ges” is the generalized eta squared (effect size). This measures
the proportion of the variability in the run time that can be explained
in terms of the predictor (or the different states). An effect size of
0.016 (1.6%) means that about 1.6% of the variability in run time
can be explained by the different states.

4.4.3.3. Post-Hoc Tests

A significant ANOVA test is followed by Tukey honest significant differences
using the tukey hsd function to perform multiple pairwise t-tests between
the different states. We will use the same formula of the ANOVA test with
the tukey hsd function and arrange the adjusted p-values (p.adj) by using the
arrange function.

run_filtered %>% tukey_hsd(time ~ state) %>% arrange(p.adj) %>%
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flextable() %>% theme_box() %>%

set_caption(caption = “Tukey honest significant differences of the mean run time
in runners from 28 states of Cherry Blossom Run data in 2009”)

Table 4.46. Tukey Honest Significant Differences in the Mean Run Time in Runners
From 28 States of Cherry Blossom Run Data in 2009

Term ;}roup ;}roup 3:11:1'e Estimate conf.low conf.high |p.adj Elg:i'f
state |[CA  |NR |0 -32.592467345 |-44.9864131 [-20.1985216 (0.00000000972f****
|state CT NR |0 -32.602413281 |-45.0708889 |[-20.1339377 (0.00000000972f****
|state DC NR |0 -32.012456556 |-41.3633951 |-22.6615180 (0.00000000972f****
|state DE NR |0 -28.140571826 |-41.1456668 |-15.1354768 [0.00000000972[****
|State FL NR |0 -35.775786133 |-49.1250988 |-22.4264735 [0.00000000972[****
|State GA [NR |0 -31.537143381 |-46.4727401 |-16.6015467 [0.00000000972****
|state IL NR |0 -33.273229410 |-45.8199529 |[-20.7265060 (0.00000000972****
|State MA [NR |0 -33.930212737 |-45.0330935 |-22.8273320 (0.00000000972****
|state MD |NR [0 |-34.312460071 [-43.6613298 [-24.9635904 [0.00000000972***x*
|State MI NR |0 -35.087499501 |-50.4227135 |-19.7522855 |0.00000000972****
|state NC [NR [0 [-36.909997640 |-47.7764842 |-26.0435111 |0.00000000972****
|state INJ NR |0 -34.429368214 |-44.9403545 |-23.9183819 [0.00000000972****
|state NR INY [0 32.003582440 [22.2212901 |[41.7858748 [0.00000000972****
|state NR OH [0 39.904990678 [27.6827669 [52.1272144 (0.00000000972%***
|state NR PA 0 31.089204235 [21.2414085 }40.9370000 ]0.00000000972[****
|State (NR X [0 37.653736133 |23.4670782 |51.8403941 [0.00000000972|*%**%*
|state NR |[VA |0 33.945354551 [24.6243992 |43.2663099 |0.00000000972[****
|state INR WV [0 31.442762107 |15.0983827 [47.7871415 [0.00000001010)****
|state IN NR |0 -35.615218456 |-54.7929367 |-16.4375002 ]0.00000001180****
|state MN [NR |0 -34.321230152 |-53.1082686 |-15.5341917{0.00000001420)****
|State MO |NR [0 -35.329970090 |-54.9351196 |-15.7248205]0.00000001810)****
|State AZ NR [0 -40.241258860 |-63.6318125 |-16.8507052 {0.00000007330)****
|state CO NR |0 -29.658875461 |-47.1666454 |-12.1511055 ]0.00000013000****
|State NH |NR |0 -30.812388046 [-49.5994265 |-12.0253496 [0.00000043500)****
|state INR  |RI 0 32.550583535 |11.3774451 [53.7237219 |0.00000425000****
|State INR  |WI 0 32.247154964 |11.0740166 [53.4202934 [0.00000578000)****
|State INR SC 0 32.286713405 [8.8961598  [55.6772670 0.00010600000|***
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|state DC |MD |0 2.300003515  {0.5999902  |4.0000169 [0.00018000000)***
|state DC |[VA |0 1.932897995 [0.3937783  [3.4720177 0.00105000000|**
|state OH |PA 0 -8.815786443 |-17.4419364 |-0.1896364 10.03770000000|*

|state DC |OH |0 7.892534122  -0.1617464 |15.9468146 |0.06400000000ns
|state DE OH |0 11.764418852 [-0.3419381 [23.8707758 |0.07060000000|ns
|state NY |OH |0 7.901408238  -0.6498856  |16.4527021 |0.12100000000ns
|state MD  |PA 0 -3.223255835 |-6.7487451  |0.3022334 |0.13500000000{ns
|state NC  |PA 0 -5.820793405 |-12.3864800 0.7448932 0.17800000000ns
|state DC |INC |0 4.897541084  |-0.8963532  [10.6914354 |0.26100000000|ns
|state PA VA |0 2.856150316 |-0.5946349 [6.3069356 (0.30300000000|ns
|state DE |NC |0 8.769425814  |-1.9665723  |19.5054239 10.33000000000{ns
|state NC INY |0 -4.906415200 |-11.3734395 |1.5606091 0.49600000000ns
|state OH |VA |0 -5.959636127 |-13.9790869 [2.0598147 0.54300000000{ns
|state MD |OH [0 5.592530607 |-2.4593479 |13.6444091 |0.69000000000ns
|state MD INY |0 -2.308877630 |-5.6470264 [1.0292711 [0.69800000000jns
|state DE |TX [0 9.513164307 |-4.5737938 [23.6001224 (0.74400000000jns
|state DE |MD |0 6.171888245 |-3.0249857 [15.3687621 (0.75500000000{ns
|state CA |OH |0 7.312523333  |-4.1348027 |18.7598494 0.83300000000ns
|state CT OH |0 7.302577397 |-4.2254001 [18.8305549 (0.84400000000jns
|state DE |[VA [0 5.804782725 |-3.3637141 |14.9732795 0.84500000000ns
|state CO |OH |0 10.246115217 [-6.6048014 |27.0970319 |0.89200000000/ns
|state DE |INJ 0 6.288796389  |-4.0872316 [16.6648244 (0.89600000000|ns
|state MA |OH |0 5.974777941 |-4.0604273 [16.0099831 (0.91200000000{ns
|state INY [VA |0 1.941772111  |-1.3173814  [5.2009256 (0.91200000000{ns
|state GA |OH |0 8.367847297 |-5.7920761 |22.5277707 10.91900000000ns
|state INJ OH |0 5.475622464 |-3.9005289 [14.8517739 (0.92800000000{ns
|state PA X |0 6.564531897 |-4.6733048 [17.8023686 (0.92800000000{ns
|state DE |FL 0 7.635214307  |-5.6080962  [20.8785248 (0.93700000000{ns
|state 1L OH |0 6.631761268  |-4.9808031 [18.2443257 (0.94300000000{ns
|state INJ PA 0 -3.340163979 |-9.2990685  [2.6187405 [0.95400000000{ns
|state OH WV [0 -8.462228571 |-24.1009664 [7.1765092  (0.96900000000{ns
|state DE |MA [0 5.789640911  |-5.1855623  [16.7648441 (0.97800000000{ns
|state DC |TX |0 5.641279577 |-5.1638093  [16.4463684 (0.98000000000{ns
|state AZ |IDE |0 -12.100687034 |-35.4309062 (11.2295321 (0.98200000000{ns
|state INC VA |0 -2.964643089 |-8.7100210  [2.7807349  (0.98300000000{ns
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|state NY |TX |0 5.650153692  |-5.5303265 [16.8306339 0.98700000000|ns
|state NH |OH |0 9.092602632  |-9.0838711  [27.2690764 |0.98900000000ns
|state DC |INJ 0 2.416911659 |-2.6791175 {7.5129409 (0.99500000000|ns
|state CO [NC [0 7251122179  |-8.6438823  |23.1461267 |0.99700000000ns
|state DE  |MI 0 6.946927676  |-8.2961006 [22.1899560 0.99700000000{ns
|state FL PA 0 -4.686581897 |-14.8468899 |5.4737261 |0.99700000000ns
|state MD |NC |0 2.597537569 |-3.1930171 |8.3880922 [0.99800000000|ns
|state AZ  |PA 0 -9.152054624 |-30.8809688 |12.5768595 10.99900000000ns
|state CA |INC |0 4317530295 |-5.6694137 {14.3044743 (0.99900000000|ns
|state cCO |TX |0 7.994860672  |-10.3308563 |26.3205776 10.99900000000ns
|state CT NC [0 4.307584359  |-5.7717034  |14.3868722 (0.99900000000|ns
|state DC |DE |0 -3.871884730 |-13.0708617 |5.3270922 10.99900000000|ns
|state DE |IL 0 5.132657585  |-7.3012233  |17.5665385 10.99900000000ns
|state GA |NC [0 5.372854259  |-7.6348822 |18.3805907 10.99900000000|ns
|state NJ NY [0 -2.425785774 |-8.2758033  [3.4242318 (0.99900000000jns
|state AZ |CA |0 -7.648791515 |-30.6439327 [15.3463497 (1.00000000000jns
|state AZ |CO |0 -10.582383399 |-36.6915511 [15.5267843 (1.00000000000jns
|state AZ |ICT |0 -7.638845579 |-30.6742425 [15.3965514 (1.00000000000jns
|state AZ |IDC |0 -8.228802304 |-29.7370956 (13.2794910 (1.00000000000jns
|state AZ |FL 0 -4.465472727 |-27.9893070 [19.0583615 (1.00000000000jns
|state AZ |GA |0 -8.704115479 |-33.1630336 [15.7548027 (1.00000000000jns
|state AZ |IL 0 -6.968029449 |-30.0458738 [16.1098149 (1.00000000000{ns
|state AZ  |IN 0 -4.626040404 |-31.8831772 [22.6310964 (1.00000000000{ns
|state AZ |MA |0 -6.311046123  |-28.6368292 [16.0147369 (1.00000000000{ns
|state AZ |MD |0 -5.928798789 |-27.4361927 [15.5785951 (1.00000000000{ns
|state AZ ML |0 -5.153759358 |-29.8587268 [19.5512081 (1.00000000000{ns
|state AZ |MN |0 -5.920028708 |-32.9037172 [21.0636598 [1.00000000000{ns
|state AZ MO |0 -4.911288770 |-32.4708337 [22.6482562 (1.00000000000{ns
|state AZ INC |0 -3.331261220 |-25.5404296 (18.8779071 (1.00000000000{ns
|state AZ INH |0 -9.428870813 |-36.4125593 [17.5548176 (1.00000000000{ns
|state AZ INJ 0 -5.811890646 |-27.8493011 [16.2255198 (1.00000000000{ns
|state AZ INY |0 -8.237676419 |-29.9369822 (13.4616294 (1.00000000000{ns
|state AZ OH |0 -0.336268182 |-23.2393113 [22.5667749 (1.00000000000{ns
|state AZ |RI 0 -7.690675325 |-36.3868147 [21.0054641 (1.00000000000{ns
|state AZ SC |0 -7.954545455 |-38.3236848 [22.4145939 (1.00000000000{ns
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|state AZ X |0 -2.587522727 |-26.5964355 (21.4213900 |1.00000000000|ns
|state AZ VA |0 -6.295904309 |-27.7911791 |[15.1993704 |1.00000000000[ns
|state AZ (WL |0 -7.994103896 |-36.6902433 (20.7020355 |1.00000000000jns
|state AZ WV |0 -8.798496753 |-34.1422409 |16.5452474 |1.00000000000[ns
|state CA |CO |0 -2.933591884 |-19.9094727 |14.0422889 |1.00000000000{ns
|state CA |CT |0 0.009945936  |-11.6999389 |11.7198308 |1.00000000000ns
|state CA |DC |0 -0.580010789 |-8.8925659  |7.7325443 |1.00000000000{ns
|state CA |DE |0 -4.451895519 |-16.7315949 |7.8278039 |1.00000000000ns
|state CA |FL 0 3.183318788  [-9.4603622 [15.8269998 |1.00000000000{ns
|state CA |GA |0 -1.055323964 |-15.3637330 |13.2530851 |1.00000000000ns
|state CA |IL 0 0.680762066 |-11.1124050 [12.4739291 (1.00000000000jns
|state CA |IN 0 3.022751111  |-15.6706541 |21.7161563 |1.00000000000ns
|state CA |MA |0 1.337745392  |-8.9059103  [11.5814011 [1.00000000000jns
|state CA |MD [0 1.719992726  |-6.5902350 {10.0302205 [1.00000000000jns
|state CA MI |0 2.495032157 |-12.2300250 {17.2200893 [1.00000000000jns
|state CA |MN [0 1.728762807 |-16.5636218 (20.0211474 [1.00000000000{ns
|state CA MO |0 2.737502745 |-16.3941571 [21.8691626 (1.00000000000jns
|state CA |NH [0 -1.780079298 |-20.0724639 [16.5123053 (1.00000000000jns
|state CA |NJ 0 1.836900870  |-7.7620237 |11.4358255 |1.00000000000|ns
|state CA INY [0 -0.588884904 |-9.3838701 [8.2061003  {1.00000000000jns
|state CA |PA 0 -1.503263109 |-10.3710476 |[7.3645214 {1.00000000000jns
|state CA |RI 0 -0.041883810 |-20.7773681 [20.6936005 (1.00000000000{ns
|state CA |SC 0 -0.305753939 |-23.3008952 [22.6893873 (1.00000000000jns
|state CA |TX |0 5.061268788 |-8.4635153  [18.5860529 (1.00000000000{ns
|state CA |[VA |0 1.352887206  [-6.9259249 19.6316993 |1.00000000000|ns
|state CA |WI |0 -0.345312381 |-21.0807967 (20.3901719 (1.00000000000{ns
|state CA |WV [0 -1.149705238 |-16.9230136 (14.6236032 (1.00000000000{ns
|state cO |CT |0 2.943537820 [-14.0868328 |19.9739084 |1.00000000000|ns
|state CO |DC |0 2.353581095  [-12.5464421 |17.2536043 |1.00000000000|ns
|state CO |DE |0 -1.518303635 |-18.9453841 [15.9087769 (1.00000000000{ns
|state CO |FL 0 6.116910672  |-11.5685293 [23.8023506 (1.00000000000{ns
|state CO |GA [0 1.878267920  |-17.0331754 |20.7897112 |1.00000000000ns
|state CO |IL 0 3.614353950 |-13.4733875 [20.7020954 (1.00000000000{ns
|state CO |IN 0 5.956342995 |-16.4569458 [28.3696318 (1.00000000000{ns
|state CO |MA [0 4.271337276  |-11.7862030 [20.3288775 |1.00000000000|ns
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4.653584610  |-10.2451403 {19.5523095 (1.00000000000|ns
5428624041 |-13.7999855 [24.6572336 |1.00000000000[ns
4.662354691  |-17.4175786 [26.7422880 (1.00000000000|ns
5.671094629 |-17.1089960 |28.4511852 |1.00000000000ns
1.153512586  [-20.9264207 [23.2334459 |1.00000000000|ns

|state CO MD
lstate [CO  [m1
|state CO MN
lstate [cO  [MO
|state CO NH

|state CO |NJ 4.770492754  |-10.8836272 [20.4246127 (1.00000000000jns
|state CO INY 2.344706980 |-12.8297414 [17.5191553 |1.00000000000|ns
|state CO |PA 1.430328775 |-13.7864291 [16.6470866 [1.00000000000jns
|state CO |RI 2.891708075 |-21.2510430 [27.0344591 [1.00000000000|ns
|state CO |SC 2.627837945 |-23.4813298 [28.7370056 (1.00000000000jns
|state CO |VA 4.286479090 |-10.5947456 (19.1677037 |1.00000000000|ns
|state CO |WI 2.588279503  |-21.5544715 [26.7310305 (1.00000000000jns

1.783886646 |-18.2588022 [21.8265755 [1.00000000000jns
-0.589956725 |-9.0132319 |7.8333184 (1.00000000000jns
-4.461841455 |-16.8167599 [7.8930769 [1.00000000000jns

|state CO WV
lstate [CT  [DC
lstate [CT  |DE

|state CT FL 3.173372852  |-9.5433744 [15.8901201 (1.00000000000jns
|state CT GA -1.065269900 |-15.4382849 [13.3077451 (1.00000000000jns
|state CT IL 0.670816130  |-11.2006531 [12.5422854 (1.00000000000jns

3.012805175 |-15.7300972 [21.7557076 (1.00000000000jns
1.327799456  |-9.0059062  [11.6615051 [1.00000000000{ns
1.710046790  [-6.7109316 |10.1310252 |1.00000000000|ns
2.485086221 |-12.3027567 (17.2729292 (1.00000000000{ns
1.718816871  [-16.6241471 |20.0617808 |1.00000000000|ns
2.727556809  |-16.4524693 [21.9075829 (1.00000000000{ns
-1.790025234 |-20.1329892 [16.5529387 (1.00000000000{ns
1.826954933  |-7.8680100 |11.5219199 |1.00000000000|ns
-0.598830840 |-9.4985362 [8.3008746 [1.00000000000{ns
-1.513209045 |-10.4848641 [7.4584460 [1.00000000000{ns
-0.051829746 |-20.8319477 [20.7282882 (1.00000000000{ns
-0.315699875 |-23.3510968 [22.7196971 (1.00000000000{ns
5.051322852  |-8.5417922  [18.6444379 (1.00000000000{ns
1.342941270  |-7.0470361 19.7329187 |1.00000000000ns
-0.355258317 |-21.1353763 [20.4248596 (1.00000000000{ns
-1.159651174  |-16.9915888 [14.6722865 (1.00000000000{ns
3.763329577 |-5.9161761 [13.4428352 (1.00000000000{ns

|state CT IN
|state CT MA
|state CT MD
|state CT MI
|state CT MN
|state CT MO
|state CT INH
Istate [CT (NI
|state CT INY
|state CT PA
|state CT RI
Istate [CT  [sC
|state CT TX
|state CT VA
|state CT WI
|state CT WV
|state DC FL
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|state DC |GA |0 -0.475313175 |-12.2464954 (11.2958690 |1.00000000000|ns
|state DC |IL 0 1.260772855  |-7.2779009  [9.7994467 [1.00000000000|ns
|state DC |IN 0 3.602761900 |-13.2279707 (20.4334945 |1.00000000000|ns
|state DC |MA |0 1.917756181 |-4.3082090 [8.1437213 [1.00000000000|ns
|state DC |MI 0 3.075042946  [-9.1992174  |15.3493033 |1.00000000000{ns
|state DC |MN |0 2.308773596 |-14.0754107 [18.6929579 (1.00000000000jns
|state DC MO |0 3.317513534  |-13.9986803 [20.6337074 |1.00000000000{ns
|state DC |NH |0 -1.200068509 |-17.5842528 |15.1841158 |1.00000000000ns
|state DC |INY |0 -0.008874115 |-3.3528126 [3.3350644 |1.00000000000{ns
|state DC  |PA 0 -0.923252320 |-4.4542242  |2.6077195 |1.00000000000ns
|state DC |RI 0 0.538126980 |-18.5351651 [19.6114190 [1.00000000000jns
|state DC |SC |0 0.274256850  |-21.2340364 [21.7825501 (1.00000000000jns
|state DC |WI |0 0.234698408  |-18.8385937 [19.3079905 (1.00000000000jns
|state DC |WV [0 -0.569694449 |-14.0836657 [12.9442768 (1.00000000000jns
|state DE |GA |0 3.396571555 |-11.4443575 [18.2375006 (1.00000000000jns
|state DE |IN 0 7.474646630  |-11.6294368 26.5787300 |1.00000000000ns
|state DE |MN |0 6.180658326 |-12.5312080 [24.8925246 (1.00000000000jns
|state DE MO [0 7.189398264  |-12.3437278 |26.7225243 |1.00000000000ns
|state DE |NH |0 2.671816221 |-16.0400501 [21.3836825 [1.00000000000jns
|state DE |NY [0 3.863010615 |-5.7741243 [13.5001455 (1.00000000000jns
|state DE |PA 0 2.948632410 |-6.7549858 [12.6522506 (1.00000000000jns
|state DE  |RI 0 4.410011710  [-16.6964545 |25.5164779 |1.00000000000|ns
|state DE SC 0 4.146141580  [-19.1840775 |27.4763607 |1.00000000000|ns
|state DE |WI |0 4.106583138  [-16.9998830 |25.2130493 |1.00000000000|ns
|state DE |WV [0 3.302190281 |-12.9557266 [19.5601072 [1.00000000000{ns
|state FL GA |0 -4.238642752 |-19.3821175 {10.9048320 (1.00000000000{ns
|state FL IL 0 -2.502556722  |-15.2960334 {10.2909200 (1.00000000000{ns
|state FL IN 0 -0.160567677 |-19.5006208 [19.1794854 (1.00000000000{ns
|state FL MA |0 -1.845573396  |-13.2265548 [9.5354080 [1.00000000000{ns
|state FL MD |0 -1.463326062 |-11.1408331 [8.2141809 [1.00000000000{ns
|state FL MI 0 -0.688286631 |-16.2260331 [14.8494598 (1.00000000000{ns
|state FL MN |0 -1.454555981 |-20.4072759 (17.4981639 (1.00000000000{ns
|state FL MO |0 -0.445816043  |-20.2097900 (19.3181579 (1.00000000000{ns
|state FL INC |0 1.134211507  |-10.0162731 |12.2846961 |1.00000000000/ns
|state FL NH |0 -4.963398086 |-23.9161180 [13.9893218 (1.00000000000{ns
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-1.346417918 |-12.1507508 [9.4579150 |1.00000000000|ns
-3.772203692 |-13.8690359 [6.3246285 |1.00000000000[ns
4.129204545  |-8.3461925 [16.6046016 [1.00000000000|ns
-3.225202597 |-24.5454879 |18.0950827 |1.00000000000ns
-3.489072727 |-27.0129070 [20.0347615 |1.00000000000{ns
1.877950000 |-12.5273977 (16.2832977 [1.00000000000|ns
-1.830431582 |-11.4809749 |7.8201117 |1.00000000000{ns

lstate [FL  [NU
lstate [FL  [NY
|state FL OH
lstate [FL  [RI
|state FL SC
lstate [FL  [TX
lstate [FL  [VA

|state FL WI -3.528631169 |-24.8489165 |17.7916542 |1.00000000000ns
|state FL A% -4.333024026 |[-20.8675792 (12.2015311 |1.00000000000{ns
|state GA |IL 1.736086030  |-12.7048609 [16.1770329 [1.00000000000jns
|state GA |IN 4.078075075  |-16.3891073 [24.5452575 (1.00000000000jns

2.393069356 |-10.8127869 [15.5989256 (1.00000000000jns
2.775316690 |-8.9942221 |14.5448554 (1.00000000000jns
3.550356121 |-13.3697345 |20.4704467 |1.00000000000ns
2.784086771 |-17.3174926 [22.8856661 [1.00000000000jns
3.792826709 |-17.0753923 [24.6610458 (1.00000000000jns
-0.724755334 |-20.8263347 [19.3768240 (1.00000000000jns
2.892224834  |-9.8200335 [15.6044831 [1.00000000000jns
0.466439060 |-11.6502404 [12.5831186 [1.00000000000jns
-0.447939145 |-12.6175636 [11.7216853 (1.00000000000jns
1.013440154  |-21.3343219 |23.3612022 |1.00000000000|ns
0.749570025  |-23.7093481 [25.2084882 (1.00000000000{ns
6.116592752  |-9.7699406 [22.0031261 (1.00000000000jns
2.408211170  |-9.3391667 [14.1555890 (1.00000000000{ns
0.710011583  |-21.6377504 [23.0577736 (1.00000000000{ns
-0.094381274 |-17.9342079 |[17.7454454 (1.00000000000{ns
2.341989045 [-16.4530575 |21.1370356 |1.00000000000|ns
0.656983326 |-9.7710011  [11.0849678 [1.00000000000{ns
1.039230661  |-7.4971774 19.5756387 |1.00000000000|ns
1.814270091  [-13.0396077 |16.6681479 |1.00000000000|ns
1.048000741  |-17.3482411 |19.4442426 |1.00000000000ns
2.056740679  |-17.1742444 |21.2877258 |1.00000000000|ns
3.636768230  |-6.5391557  [13.8126922 (1.00000000000{ns
-2.460841364 |-20.8570832 [15.9354004 (1.00000000000{ns
1.156138804  [-8.6392545 |10.9515322 |1.00000000000/ns

lstate [GA  [MA
|state GA MD
lstate [GA (M1
|state GA MN
lstate [GA  [MO
|state GA NH
Istate [GA [N
|state GA INY
|state GA PA
|state GA RI
Istate [GA  [sC
|state GA TX
|state GA VA
|state GA WI
Istate [GA  [WV
Istate [IL  [IN
|state 1L MA
Istate [IL  [MD
|state 1L MI
Istate [IL  [MN
|state 1L MO
|state 1L INC
Istate IL  [NH
Istate [IL NI
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|state 1L NY |0 -1.269646970 |-10.2786504 |(7.7393564 |1.00000000000|ns
|state IL PA 0 -2.184025175 |-11.2641122 |6.8960618 |1.00000000000[ns
|state IL RI 0 -0.722645875 |-21.5498081 [20.1045164 |1.00000000000{ns
|state IL SC 0 -0.986516005 |-24.0643603 [22.0913283 |1.00000000000ns
|state IL X |0 4.380506722  |-9.2844178 [18.0454312 |1.00000000000|ns
|state IL VA |0 0.672125141  |-7.8337027 |9.1779530 |1.00000000000ns
|state IL WI |0 -1.026074447 |-21.8532367 (19.8010878 |1.00000000000{ns
|state IL WV |0 -1.830467304 |-17.7241024 |14.0631678 |1.00000000000ns
|state IN MA |0 -1.685005719 |-19.5485851 |16.1785736 |1.00000000000{ns
|state IN MD |0 -1.302758385 |-18.1323416 |15.5268248 |1.00000000000ns
|state IN MI |0 -0.527718954 |-21.2883137 |20.2328758 |1.00000000000ns
|state IN MN |0 -1.293988304 |-24.7201771 |22.1322005 |1.00000000000ns
|state IN MO |0 -0.285248366 |-24.3724938 [23.8019971 |1.00000000000ns
|state IN NC |0 1.294779184  |-16.4228402 [19.0123986 [1.00000000000jns
|state IN NH |0 -4.802830409 |-28.2290192 [18.6233584 (1.00000000000jns
|state IN NJ 0 -1.185850242 |-18.6876884 [16.3159879 (1.00000000000jns
|state IN NY |0 -3.611636015 |-20.6857905 [13.4625184 (1.00000000000jns
|state IN OH |0 4.289772222  |-14.2902240 |22.8697685 |1.00000000000|ns
|state IN PA 0 -4.526014220 |-21.6377817 (12.5857533 (1.00000000000jns
|state IN RI 0 -3.064634921 |-28.4444556 [22.3151857 (1.00000000000jns
|state IN SC 0 -3.328505051 |-30.5856418 [23.9286317 (1.00000000000jns
|state IN X |0 2.038517677 |-17.8887192 [21.9657546 (1.00000000000{ns
|state IN VA |0 -1.669863905 |-18.4839566 |[15.1442288 (1.00000000000{ns
|state IN WI |0 -3.368063492 |-28.7478841 [22.0117571 {1.00000000000{ns
|state IN WV |0 -4.172456349 |-25.6892462 (17.3443335 (1.00000000000{ns
|state MA |MD |0 0.382247334  |-5.8406101 [6.6051047 {1.00000000000{ns
|state MA MI |0 1.157286765 |-12.4988978 |14.8134713 |1.00000000000|ns
|state MA |MN |0 0.391017415  |-17.0524743 [17.8345092 (1.00000000000{ns
|state MA MO |0 1.399757353  |-16.9219368 |19.7214516 |1.00000000000|ns
|state MA |INC |0 2.979784903  [-5.3510686 |11.3106384 |1.00000000000|ns
|state MA |NH |0 -3.117824690 |-20.5613164 [14.3256671 (1.00000000000{ns
|state MA INJ 0 0.499155477 |-7.3623598  [8.3606708  [1.00000000000{ns
|state MA |INY [0 -1.926630296 |-8.7834396  (4.9301790 (1.00000000000{ns
|state MA  |PA 0 -2.841008501  |-9.7909489  [4.1089319  (1.00000000000ns
|state MA |RI 0 -1.379629202 |-21.3702365 [18.6109781 (1.00000000000{ns
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|state MA |SC 0 -1.643499332  |-23.9692824 (20.6822837 |1.00000000000|ns
|state MA |TX |0 3.723523396 |-8.6289603 [16.0760071 |1.00000000000[ns
|state MA |[VA |0 0.015141814 |-6.1656994 [6.1959831 |1.00000000000|ns
|state MA WL |0 -1.683057773 |-21.6736650 |18.3075495 |1.00000000000ns
|state MA |WV |0 -2.487450630 |-17.2678879 [12.2929867 |1.00000000000{ns
|state MD |MI 0 0.775039431  |-11.4976449 |13.0477237 |1.00000000000ns
|state MD |MN |0 0.008770081  |-16.3742335 |16.3917737 |1.00000000000{ns
|state MD MO |0 1.017510019  |-16.2975667 (18.3325867 [1.00000000000|ns
|state MD |NH |0 -3.500072024 |-19.8830757 |12.8829316 |1.00000000000{ns
|state MD  |NJ 0 0.116908143  |-4.9753238 [5.2091401 {1.00000000000jns
|state MD |RI 0 -1.761876536 |-20.8341544 |17.3104013 |1.00000000000ns
|state MD |SC |0 -2.025746666 |-23.5331406 |19.4816472 |1.00000000000ns
|state MD |TX [0 3.341276062  |-7.4620224 |14.1445745 |1.00000000000ns
|state MD VA [0 -0.367105520 |-1.8936054 [1.1593944 (1.00000000000jns
|state MD  |WI |0 -2.065305107 |-21.1375830 [17.0069727 (1.00000000000jns
|state MD WV |0 -2.869697964 |-16.3822377 (10.6428418 (1.00000000000jns
|state MI MN |0 -0.766269350 |-21.1665201 [19.6339814 (1.00000000000jns
|state MI MO |0 0.242470588  |-20.9135996 [21.3985407 (1.00000000000jns
|state MI NC |0 1.822498138  |-11.6421944 |15.2871907 |1.00000000000|ns
|state MI NH |0 -4.275111455 |-24.6753622 (16.1251393 (1.00000000000jns
|state MI INJ 0 -0.658131287 |-13.8375944 (12.5213319 (1.00000000000jns
|state MI NY |0 -3.083917061 |-15.6898942 [9.5220601 [1.00000000000jns
|state MI OH |0 4.817491176  [-9.7633239  |19.3983063 |1.00000000000|ns
|state MI PA 0 -3.998295266 |-16.6551708 [8.6585802 [1.00000000000{ns
|state MI RI 0 -2.536915966 |-25.1537063 [20.0798744 (1.00000000000{ns
|state MI SC 0 -2.800786096 |-27.5057535 [21.9041813 (1.00000000000{ns
|state MI X |0 2.566236631 [-13.6965639 |18.8290371 |1.00000000000|ns
|state MI VA |0 -1.142144950 |-13.3935785 [11.1092886 [1.00000000000{ns
|state MI WI |0 -2.840344538 |-25.4571349 [19.7764458 (1.00000000000{ns
|state MI WV 10 -3.644737395 |-21.8204397 [14.5309649 (1.00000000000{ns
|state MN MO |0 1.008739938  [-22.7686302 [24.7861101 |1.00000000000ns
|state MN |NC |0 2.588767488 [-14.7052191 |19.8827541 |1.00000000000|ns
|state MN |NH [0 -3.508842105 |-26.6162924 [19.5986082 (1.00000000000{ns
|state MN  NJ 0 0.108138063  |-16.9647140 (17.1809901 (1.00000000000{ns
|state MN |INY [0 -2.317647711 |-18.9517899 [14.3164945 (1.00000000000{ns
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|state MN |OH |0 5.583760526  |-12.5927132 (23.7602343 |1.00000000000|ns
|state MN  |PA 0 -3.232025916 |-19.9047739 |13.4407221 |1.00000000000[ns
|state MN |RI 0 -1.770646617 |-26.8565636 (23.3152704 |1.00000000000|ns
|state MN |SC 0 -2.034516746 |-29.0182052 |24.9491717 |1.00000000000ns
|state MN |TX |0 3.332505981  |-16.2190338 [22.8840458 |1.00000000000{ns
|state MN VA |0 -0.375875601 |-16.7429661 |15.9912149 |1.00000000000ns
|state MN |WI |0 -2.074075188 |-27.1599922 |23.0118418 |1.00000000000{ns
|state MN WV |0 -2.878468045 |-24.0477897 |18.2908536 |1.00000000000ns
|state MO |NC |0 1.580027550  |-16.5993852 [19.7594403 |1.00000000000|ns
|state MO |NH [0 -4.517582043 }-28.2949522 |19.2597881 |1.00000000000ns
|state MO |INJ 0 -0.900601876 |-18.8697797 (17.0685759 |1.00000000000{ns
|state MO |INY [0 -3.326387649 -20.8792724 |14.2264971 |1.00000000000ns
|state MO |OH |0 4.575020588  |-14.4458435 [23.5958847 (1.00000000000jns
|state MO |PA 0 -4.240765854 |-21.8302399 [13.3487082 (1.00000000000jns
|state MO  [RI 0 -2.779386555 |-28.4837112 [22.9249381 (1.00000000000jns
|state MO |SC [0 -3.043256684 |-30.6028016 [24.5162882 (1.00000000000jns
|state MO |TX |0 2.323766043 |-18.0151568 [22.6626889 (1.00000000000jns
|state MO VA |0 -1.384615539 |-18.6846365 [15.9154054 (1.00000000000jns
|state MO (WL |0 -3.082815126 |-28.7871398 [22.6215095 (1.00000000000jns
|state MO |WV |0 -3.887207983 |-25.7858211 |[18.0114051 {1.00000000000jns
|state INC [NH |0 -6.097609594 |-23.3915962 [11.1963770 (1.00000000000jns
|state INC  [NJ 0 -2.480629426 |-10.0045906 [5.0433317 {1.00000000000{ns
|state INC [OH |0 2.994993038 |-6.7780266 [12.7680127 (1.00000000000jns
|state INC  [RI 0 -4.359414105 |-24.2196998 [15.5008716 (1.00000000000{ns
|state INC  [SC 0 -4.623284235 |-26.8324526 |[17.5858841 (1.00000000000{ns
|state INC [TX |0 0.743738493  |-11.3967073 [12.8841842 (1.00000000000{ns
|state INC  [WI |0 -4.662842676 |-24.5231284 [15.1974430 (1.00000000000{ns
|state INC WV |0 -5.467235533  |-20.0709302 [9.1364591  [1.00000000000{ns
|state INH  [NJ 0 3.616980168 |-13.4558719 [20.6898322 (1.00000000000{ns
|state INH [NY |0 1.191194394  |-15.4429478 |17.8253366 |1.00000000000|ns
|state NH  [PA 0 0.276816189  |-16.3959318 [16.9495642 (1.00000000000{ns
|state INH  [RI 0 1.738195489  [-23.3477215 |26.8241125 |1.00000000000ns
|state NH  [SC 0 1.474325359  |-25.5093631 |28.4580138 |1.00000000000ns
|state NH [TX |0 6.841348086  |-12.7101917 [26.3928879 (1.00000000000{ns
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|state NH VA |0 3.132966505  |-13.2341240 (19.5000570 |1.00000000000|ns
|state NH |WI |0 1.434766917 |-23.6511501 [26.5206839 [1.00000000000|ns
|state NH |[WV |0 0.630374060 |-20.5389476 (21.7996958 |1.00000000000|ns
|state NJ RI 0 -1.878784679 |-21.5468108 |17.7892414 |1.00000000000ns
|state NJ SC 0 -2.142654809 |-24.1800653 [19.8947557 |1.00000000000{ns
|state NJ X |0 3.224367918  |-8.5989449  |15.0476807 |1.00000000000ns
|state NJ VA |0 -0.484013663 |-5.5248142  [4.5567869 |1.00000000000{ns
|state NJ WI |0 -2.182213251 }-21.8502394 |17.4858129 |1.00000000000ns
|state NJ WV |0 -2.986606108 |-17.3277427 |11.3545305 |1.00000000000{ns
|state NY |PA 0 -0.914378205 |-5.4664057 |3.6376493 |1.00000000000ns
|state NY |[RI 0 0.547001095  |-18.7414323 [19.8354345 (1.00000000000jns
|state NY |SC |0 0.283130965 |-21.4161748 [21.9824368 [1.00000000000jns
|state NY (WL |0 0.243572523  |-19.0448609 [19.5320059 [1.00000000000jns
|state NY |WV |0 -0.560820334 |-14.3767752 (13.2551346 (1.00000000000jns
|state OH |RI 0 -7.354407143 |-27.9877096 [13.2788954 |1.00000000000|ns
|state OH |SC [0 -7.618277273 |-30.5213203 [15.2847658 (1.00000000000jns
|state OH |TX [0 -2.251254545 |-15.6188514 [11.1163423 (1.00000000000jns
|state OH |WI |0 -7.657835714 |-28.2911382 [12.9754668 (1.00000000000jns
|state PA RI 0 1.461379300 |-17.8603572 |20.7831158 |1.00000000000|ns
|state PA SC 0 1.197509170  |-20.5314050 [22.9264233 [1.00000000000{ns
|state PA WI |0 1.157950728  |-18.1637857 |20.4796872 |1.00000000000|ns
|state PA WV 10 0.353557871  |-13.5088534 [14.2159692 (1.00000000000jns
|state RI SC 0 -0.263870130 |-28.9600095 [28.4322693 (1.00000000000jns
|state RI X |0 5.103152597 |-16.7511761 [26.9574813 (1.00000000000{ns
|state RI VA |0 1.394771016  |-17.6638393 |20.4533813 |1.00000000000|ns
|state RI WI |0 -0.303428571 |-27.2227935 [26.6159363 (1.00000000000{ns
|state RI WV |0 -1.107821429 |-24.4206753 [22.2050324 (1.00000000000{ns
|state SC X 10 5.367022727 |-18.6418900 [29.3759355 (1.00000000000{ns
|state SC VA |0 1.658641146  |-19.8366336 [23.1539159 |1.00000000000|ns
|state SC WI |0 -0.039558442 |-28.7356979 [28.6565810 (1.00000000000{ns
|state SC WV |0 -0.843951299 |-26.1876954 [24.4997928 (1.00000000000{ns
|state X VA |0 -3.708381582 |-14.4875328 (7.0707697 (1.00000000000{ns
|state X (WL |0 -5.406581169 |-27.2609099 (16.4477475 (1.00000000000{ns
|state X WV 0 -6.210974026 |-23.4286577 (11.0067096 (1.00000000000{ns
|state VA (WL |0 -1.698199587 |-20.7568099 (17.3604107 (1.00000000000{ns
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state (VA WV |0 -2.502592444  1-15.9958343 [10.9906494 |1.00000000000[ns
state (WI LA -0.804392857 |-24.1172467 |22.5084610 |1.00000000000ns

We see that:

. Every pair of states are compared with an estimate, a 95% confidence
interval, and an adjusted p-value.

. For example, the runners from the “CA” state have significantly
higher mean run time than runners from the “NR” state. The
difference is estimated to be 32.59 and can be as high as 44.99 and
as low as 20.20.

. On the other hand, runners from “WI” state have statistically
equivalent mean run time to runners from “WV” state.

To trust these results, we must test the assumptions of ANOVA on our data.
The runners from different states are independent with no relation between
them. Other tests will be described below.

4.4.3.4. Test for Outliers in the Run Time from Runners of Dif-
ferent States

We use the identify outliers function with the argument, time, after the group
by function with the argument state to detect any outliers in the run time within
the different states. Then, we use the select function to select the important
columns to be viewed (state, time, is.outlier, is.extreme) instead of viewing all
columns of the “run_filtered” data. Finally, we convert the results to a table as
before.

run_filtered %>%

group_by(state) %>%

identify_outliers(time) %>% select(state, time, 1is.outlier, is.extreme) %>%
flextable() %>%
theme_box () %>%

set_caption(caption = “Outlier test results for run time 1in runners from 28
states of Cherry Blossom Run data in 2009”)
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Table 4.47. Outlier Test Results for the Run Time in Runners from 28 States of
Cherry Blossom Run Data in 2009

State Time is.outlier is.extreme
DC 158.133 TRUE FALSE
DE 141.183 TRUE FALSE
MN 48.067 TRUE FALSE
MO 155.883 TRUE FALSE
PA 50.700 TRUE FALSE
SC 79.617 TRUE FALSE
SC 116.533 TRUE FALSE
SC 132.983 TRUE TRUE
VA 163.250 TRUE FALSE
VA 169.617 TRUE FALSE
wv 150.683 TRUE FALSE
WV 150.667 TRUE FALSE
A% 150.683 TRUE FALSE

We have many outlying run time values in different states so a non-
parametric alternative (Kruskal-Wallis test) should be used.

4.4.3.5. Test for Normality of the Run Time from Runners of Dif-
ferent States
As we saw in Chapter 1, normality can be checked using the QQ plot and

Shapiro-Wilk test. For the ANOVA test, the normality assumption can be
checked either by:

. Analyzing the ANOVA model residuals to check the normality for
all groups together. The residuals are the difference between the
actual run time and the predicted run time using the ANOVA test.

. Check normality for each group separately.

4.4.3.5.1. Analyzing the ANOVA Model Residuals Using QQ Plot

We will run the ANOVA test using the aov function then run the residuals
function and finally the ggqqplot function.
ggqqplot(residuals(run_filtered %>% aov(formula = time ~ state)),

title = “QQ plot of ANOVA model residuals of mean run time\n in runners from
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28 states of Cherry Blossom Run data in 2009, ”
xlab = “Theoretical percentiles,” ylab = “Sample percentiles™)+

theme(plot.title = element_text(hjust = 0.5))

QQ plot of ANOVA model residuals of mean run time
in runners from 28 states of Cherry Blossom Run data in 2009

100

Sample percentiles
(=1

0
Theoretical percentiles

We see that not all data points (residuals) fall along the reference line or
within the confidence band, so we can not assume the normality of this ANOVA
model residuals and we should use the Kruskal-Wallis test.

4.4.3.5.2. Analyzing the ANOVA Model Residuals Using the Shap-
iro-Wilk Test

We will run the ANOVA test using the aov function then run the residuals
function and finally the shapiro_test function.
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shapiro_test(residuals(run_filtered %>% aov(formula = time ~ state)))
## Error 1in shapiro.test(data): sample size must be between 3 and 56000

The Shapiro test gives an error because it can handle a sample size of a
maximum of 5000 but the residuals of this ANOVA test are 14877 in size (as
the number of rows in “run_filtered” data). We can check that using the length
function.
Length(residuals(run_filtered %>% aov(formula = time ~ state)))

## [1] 14877

We have 14877 residual values. Alternatively, we can use the Anderson-
Darling test for normality which can handle large sample sizes using the ad.test
from the nortest package.

Library(nortest)

ad.test(residuals(run_filtered %>% aov(formula = time ~ state)))
S

## Anderson-Darling normality test

S

## data: residuals(run_filtered %>% aov(formula = time ~ state))

## A = 5.7034, p-value = 4.82e-14

We see that the p-value is significant so the residuals from this ANOVA test
are not normally distributed.

4.4.3.5.3. Check the Normality of Run Time in Each State Using the
0Q Plot

We use the ggqqplot as done before.
ggqqplot(data = run_filtered, x = “time,” facet.by = “state,”

title = “QQ plot of run time in runners from 28 states of Cherry Blossom
Run data in 2009, ”

xlab = “Theoretical percentiles,” ylab = “Sample percentiles™)+

theme(plot.title = element_text(hjust = 6.5))
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QQ plot of run time in runners from 28 states of Cherry Blossom Run data in 2009
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In some states like “SC” and “NR” states, not all data points fall along the
reference line or within the confidence band, so we can not assume normality or
run time in these states and we should use the Kruskal-Wallis test.

4.4.3.5.4. Check the Normality of Run Time in Each State Using the
Shapiro-Wilk Test

We have seen in the “df” data frame that only 1 state “VA” has a count of more
than 5000. So, all other states can be tested using the Shapiro-Wilk test and the
“VA” state can be tested using the Anderson-Darling test.

To do the Shapiro-Wilk test for the run time of runners from all states except
the ““VA” state, we use the following functions:

. The filter function with the argument !state=="VA” to keep all states
except the “VA” state.
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. The group by function with state argument split the original data
frame into 27 different data frames, each containing a single state.

. The shapiro_test function with time argument to do the Shapiro test
on the run time within each of the 27 data frames.

. The arrange function with “p” argument to arrange the states by their
p-value in ascending order.

Then, we convert the result to a table as before.
run_filtered %>% filter(!state==“VA”) %>% group_by(state) %>%

shapiro_test(time) %>% arrange(p) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Shapiro Wilk test results of the run time of runners from
27 states of Cherry Blossom Run data in 2009”)

Table 4.48. Shapiro Wilk Test Results of the Run Time of Runners from 27 States of
Cherry Blossom Run Data in 2009

State Variable Statistic p

NR time 0.7916430 0.0000001010331
DC time 0.9964880 0.0000003026398
MD time 0.9976155 0.0000254297578
wv time 0.9322716 0.0703558034419
NY time 0.9950121 0.0901289298618
CO time 0.9314712 0.1176689216068
MI time 0.9541755 0.1636801110913
FL time 0.9690047 0.1660520946277
DE time 0.9718075 0.1711607928781
RI time 0.9131650 0.1751648374851
GA time 0.9600517 0.2027996095415
MN time 0.9429599 0.2979244562344
OH time 0.9818345 0.3143889157282
IN time 0.9437351 0.3352867263881
CA time 0.9817530 0.3534059875710
NJ time 0.9923606 0.3555229987540
NH time 0.9490626 0.3809120645476

321




Statistics with R for Data Analysis

SC time 0.9282714 0.3936327687341
NC time 0.9909337 0.4118030556767
PA time 0.9966276 0.4494370300883
AZ time 0.9369979 0.4858739931399
TX time 0.9761737 0.4883669893670
MO time 0.9597313 0.6264349115750
MA time 0.9928759 0.7297291316348
WI time 0.9619497 0.7550410155766
CT time 0.9886693 0.7614992787130
IL time 0.9914030 0.9131006409283

We see that only 3 states (“NR,” “DC,” and “MD”) have significant
p-values meaning that the run time of runners from these 3 states is not normally
distributed and we should use the Kruskal-Wallis test.

To do the Anderson-Darling test for run time of runners from the “VA”
state, we use the following functions:

. The filter function with the argument state=="VA” to keep only the
“VA” state.

. The pull function with time argument extracts the time values from
this data frame containing the “VA” state.

Then, we use the ad.test function as before.
ad.test(run_filtered %>% filter(state=="“VA”) %>% pull(time))
##

## Anderson-Darling normality test

##

## data: run_filtered %>% filter(state == “VA”) %>% pull(time)
## A = 2.9814, p-value = 1.74e-07

We see that the p-value is significant meaning that the run time of runners
from the “VA” state is not normally distributed and we should use the Kruskal-
Wallis test.

4.4.3.6. Homogeneity of Variance of Run Time Across the Differ-
ent States

We can test that using the levene test function with the same formula as that of
the ANOVA test.
run_filtered %>% levene_test(formula = time ~ state) %>% flextable() %>%
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theme_box () %>%

set_caption(caption = “Levene’s test results for homogeneity of variance of
run time of runners from 28 states of Cherry Blossom Run data in 2009”)

Table 4.49. Levene s Test Results for Homogeneity of Variance of Run Time of Run-
ners from 28 States of Cherry Blossom Run Data in 2009

dfl df2 Statistic p
27 14,849 2.597272 0.00001114296

The p-value is significant so we conclude that the variances of run time
of runners from these 28 states are different. We can use the Welch one-way
ANOVA test using the function welch _anova_test. This test does not require
the assumption of equal variances across the different groups (states) but does
require the normality assumption to be met.

4.4.3.7. Welch ANOVA Test

We use the welch _anova test function using the same formula as that of the
standard ANOVA test.
run_filtered %>% welch_anova_test(formula = time ~ state) %>% flextable() %>%

theme_box () %>%

set_caption(caption = “Welch ANOVA test results for the mean run time of runners
from 28 states of Cherry Blossom Run data in 2009”)

Table 4.50. Welch ANOVA Test Results for the Mean Run Time of Runners from 28
States of Cherry Blossom Run Data in 2009

Y. |n Statistic | DFn | DFd P Method
. Welch
time| 14,877 5.32 27 297.6726 | 0.0000000000000495 ANOVA

In the table above, we see that:

. The “DFn” is the degrees of freedom in the numerator and “DFd” is
the degrees of freedom in the denominator (DFd).

. The obtained F-statistic value that corresponds to our sample results
is 5.32.

. The p is the significant p-value, so we reject the null hypothesis
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and conclude that at least one state run time mean is significantly
different from another state’s mean.

4.4.3.8. Post-Hoc Tests

A significant Welch ANOVA test is followed by Games Howell tests using the
games_howell_test function to perform multiple pairwise tests between the
different states with appropriate adjustment for the multiple testing. We will use
the same formula of the ANOVA test with the games_howell_test function and
arrange the adjusted p-values (p.adj) by using the arrange function.

run_filtered %>% games_howell_test(formula = time ~ state) %>%

arrange(p.adj) %>% flextable() %>% theme_box() %>%

set_caption(caption = “Games Howell tests of the mean run time
in runners from 28 states of Cherry Blossom Run data in 2009”)

Table 4.51. Games Howell Tests of the Mean Run Time in Runners from 28 States

of Cherry Blossom Run Data in 2009

y. ?roup grroup Estimate conf.low conf.high p.adj Is)lggjlf
time INC |NR [-36.909997640 |-52.17052437 |-21.6494709 |0.00000000000000 |****
time [NR |OH [39.904990678 (23.20088287 |56.6090985 |0.00000000000255 |****
time [NJ  |NR |-34.429368214 |-49.45175929 |-19.4069771 |0.00000000002970 |****
time [MD |NR [-34.312460071 [-48.65153921 |-19.9733809 |0.00000000013700 |****
time |[NR |VA  [33.945354551 [19.62382760 |48.2668815 |0.00000000019200 |****
time [MA |NR [-33.930212737 [-49.53017052 |-18.3302550 |0.00000000062800 |****
time |DC |NR [-32.012456556 |-46.34647445 |-17.6784387 |0.00000000132000 |****
time |[NR INY [32.003582440 (17.38611844 |46.6210464 |0.00000000143000 |****
time |[FL |NR [-35.775786133 [-53.61351043 |-17.9380618 |0.00000000327000 |****
time |[NR |PA  [31.089204235 (16.47227811 |45.7061304 |0.00000000382000 |****
time |IL NR  |-33.273229410 |-49.84871535 [-16.6977435 |0.00000000410000 |****
time |CT |NR [-32.602413281 (-48.76837801 |-16.4364485 |0.00000000490000 |****
time |[NR |TX [37.653736133 [18.27947837 |57.0279939 |0.00000001390000 |****
time |CA |NR [-32.592467345 [-49.50489006 |-15.6800446 |0.00000001540000 |****
time [MI  |[NR [-35.087499501 (-54.43836057 |-15.7366384 |0.00000022200000 |****
time |DE  |NR [-28.140571826 (-44.07210457 |-12.2090391 |0.00000046900000 |****
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time [GA |NR |-31.537143381 |-53.08172423 |-9.9925625 |0.00008240000000 |****
time |DC  |[MD [2.300003515 [0.63085087 |3.9691562 0.00011200000000 |***
time (NR |RI 32.550583535 |10.73318733 |54.3679797 [0.00018600000000 |***
time |[IN  |INR [-35.615218456 [-60.34769464 |-10.8827423 |0.00035300000000 |***
time |MN |NR [-34.321230152 |-58.63432152 |-10.0081388 |0.00044500000000 |***
time [NR |WV [31.442762107 [8.45006408 |54.4354601 |0.00048000000000 |***
time |DC |VA  [1.932897995 (0.44269026 |3.4231057 |0.00050800000000 |***
time |AZ |NR [-40.241258860 [-67.44514532 |-13.0373724 |0.00068000000000 |***
time [NR |SC  [32.286713405 [9.40338858 |55.1700382 |0.00077800000000 |***
time |CO |NR [-29.658875461 [-53.11401408 |-6.2037368 |0.00200000000000 |**
time [MO |NR [-35.329970090 (-62.70135520 |-7.9585850 |0.00300000000000 |**
time [NH |NR [-30.812388046 [-57.10514805 |-4.5196280 |0.00800000000000 |**
time (NR [WI  [32.247154964 10.93946191  |63.5548480 (0.03900000000000 |*
time |DE  |OH [11.764418852 (0.04420093  |23.4846368 |0.04800000000000 |*
time [DE [NC [8.769425814 |-0.60443761 |18.1432892 (0.10200000000000 |ns
time [MD |PA  [-3.223255835 [-6.69165920 0.2451475 |0.11300000000000 |ns
time [OH |[PA  [-8.815786443 |-18.54407400 |0.9125011 [0.13500000000000 |ns
time [NC |PA  [-5.820793405 [-12.35541704 |0.7138302 |0.16500000000000 |ns
time [DC [OH [7.892534122 |-1.38756734 |17.1726356 [0.22000000000000 |ns
time |DC  |INC [4.897541084 |[-0.91553064 |10.7106128 |0.25100000000000 |ns
time [PA  [VA [2.856150316 |-0.53070064 |6.2430013 [0.26000000000000 |ns
time |[NY |OH [7.901408238 [-1.82767199 |17.6304885 |0.30600000000000 |ns
time [DE [MD [6.171888245 |-1.53807287 |13.8818494 [0.31400000000000 |ns
time |DE  |VA  [5.804782725 |[-1.87220730 |13.4817727 |0.42300000000000 |ns
time INC [NY [-4.906415200 |-11.44211973 |1.6292893 [0.50000000000000 |ns
time |DE  [NJ 6.288796389  |-2.66811103 |15.2457038 |0.61700000000000 |ns
time [OH [VA [-5.959636127 |-15.21973354 |3.3004613 [0.75500000000000 |ns
time IMD [NY |-2.308877630 |-5.77797399 |[1.1602187 0.76100000000000 |ns
time |DE |TX ]9.513164307 |-6.02144730 |[25.0477759 {0.81800000000000 |ns
time IMD [OH |5.592530607 |-3.69567077 |[14.8807320 |0.85000000000000 |ns
time |[CT |OH |7.302577397 |-4.74666434 [19.3518191 [0.86700000000000 |ns
time |AZ |DE |-12.100687034 |-37.88451797 [13.6831439 |0.87500000000000 |ns
time |DE  [MA |5.789640911 |-4.16023886 |[15.7395207 |0.90800000000000 |ns
time |DE [FL  |7.635214307 |-5.77644578 |21.0468744 |0.91300000000000 |ns
time INY [VA |1.941772111 |-1.44568643 |[5.3292306 |0.93600000000000 |ns
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time [CA |OH |7.312523333 |-5.77140521 |20.3964519 {0.93800000000000 |ns
time |[NJ |PA  [-3.340163979 |[-9.21721532 |2.5368874 0.93900000000000 |ns
time (CO |OH |10.246115217 |-11.05264209 |31.5448725 [0.96400000000000 |ns
time [MA |OH [5.974777941 |-5.24533605 |17.1948919 |0.96400000000000 |ns
time |[NJ  |OH [5.475622464 |[-4.87993806 |15.8311830 |0.96400000000000 |ns
time |IL OH ]6.631761268 [-5.99265165 [19.2561742 {0.96800000000000 |ns
time |DC |DE [-3.871884730 (-11.57234304 |3.8285736 |0.96900000000000 |ns
time |AZ |PA  [-9.152054624 |(-34.74980956 |16.4457003 |0.97600000000000 |ns
time [NC |VA [-2.964643089 [-8.74429531 |2.8150091 |0.97700000000000 |ns
time |PA |TX [6.564531897 [-7.65598750 |20.7850513 |0.98500000000000 |ns
time [DE [NY [3.863010615 |-4.36380830 |12.0898295 [0.98900000000000 |ns
time |AZ |DC |[-8.228802304 (-33.81900178 |17.3613972 |0.99000000000000 |ns
time ([AZ [NY [-8.237676419 |-33.83544743 |17.3600946 [0.99100000000000 |ns
time |DE  |[MI  [6.946927676 |[-8.62026330 |22.5141187 |0.99100000000000 |ns
time [DC [NJ  [2.416911659 |-2.63724608 |7.4710694 [0.99200000000000 |ns
time |GA |OH [8.367847297 |[-10.58734885 |27.3230434 |0.99300000000000 |ns
time [OH [SC [-7.618277273 |-28.68595694 |13.4494024 [0.99400000000000 |ns
time |DE |IL 5.132657585  |-6.40075328 ]16.6660684 |0.99600000000000 |ns
time [OH |[RI -7.354407143 |-26.98543932 |12.2766250 |0.99600000000000 |ns
time |OH |WV [-8.462228571 [-29.16621701 |12.2417599 |0.99600000000000 |ns
time [CT [NC [4.307584359 |-5.48000704 |14.0951758 [0.99700000000000 |ns
time |DC |TX [5.641279577 |-8.30111158 |19.5836707 |0.99700000000000 |ns
time (IMD [NC [2.597537569 |-3.22903232 |8.4241075 [0.99700000000000 |ns
time [NH |OH [9.092602632 |[-15.47103481 |33.6562401 |0.99700000000000 |ns
time [AZ [CO [-10.582383399 |-39.93861482 |18.7738480 [0.99800000000000 |ns
time INY [TX |5.650153692 |-8.57089176 [19.8711991 [0.99800000000000 |ns
time ([AZ [CA |[-7.648791515 |-33.69201754 |18.3944345 [0.99900000000000 |ns
time |AZ |[CT |-7.638845579 |-33.47533651 [18.1976453 [0.99900000000000 |ns
time [CO |NC |7.251122179 |-13.13775577 |27.6400001 {0.99900000000000 |ns
time |CT |[DE |-4.461841455 |-15.35496919 [6.4312863 |0.99900000000000 |ns
time |DE |IN 7.474646630 |-14.96658624 |29.9158795 0.99900000000000 |ns
time |FL  [PA  |-4.686581897 |[-16.47485213 |7.1016883 |0.99900000000000 |ns
time |INJ  [NY |-2.425785774 |-8.30397719 |[3.4524056 |0.99900000000000 |ns
time |AZ |FL  |-4.465472727 |-30.83458592 (21.9036405 |1.00000000000000 |ns
time |AZ |GA |-8.704115479 |-36.89755643 [19.4893255 |1.00000000000000 |ns

326




Bivariate Analysis for Continuous-Categorical Data

time ([AZ |IL -6.968029449 |-32.91204635 |18.9759875 [1.00000000000000 |ns
time |AZ |IN -4.626040404 |-34.80829355 |25.5562127 |1.00000000000000 |ns
time ([AZ |MA |-6.311046123 |-32.02474965 |19.4026574 [1.00000000000000 |ns
time |AZ |MD [-5.928798789 [-31.51902053 |19.6614230 |1.00000000000000 [ns
time |AZ |MI  [-5.153759358 |-32.18477439 |21.8772557 |1.00000000000000 |ns
time |AZ |MN [-5.920028708 [-35.82614929 |23.9860919 |1.00000000000000 |ns
time |AZ |MO [-4.911288770 [-36.94924216 |27.1266646 |1.00000000000000 |ns
time |AZ |NC [-3.331261220 (-28.99059779 |22.3280753 |1.00000000000000 |ns
time |AZ |NH [-9.428870813 [-40.70071590 |21.8429743 |1.00000000000000 [ns
time |AZ |NJ -5.811890646 |[-31.44166676 |19.8178855 |1.00000000000000 |ns
time |[AZ |OH [-0.336268182 |-26.31605763 |25.6435213 [1.00000000000000 |ns
time |AZ |RI -7.690675325 |-36.03742567 |20.6560750 |1.00000000000000 |ns
time [AZ [SC [-7.954545455 |-36.91973419 |21.0106433 [1.00000000000000 |ns
time |AZ |TX [-2.587522727 |-29.62517413 |24.4501287 |1.00000000000000 |ns
time [AZ [VA [-6.295904309 |-31.88606673 |19.2942581 [1.00000000000000 |ns
time |AZ |WI [-7.994103896 (-43.00926587 |27.0210581 |1.00000000000000 |ns
time ([AZ WV [-8.798496753 |-37.86657407 |20.2695806 |[1.00000000000000 |ns
time |CA |CO [-2.933591884 [-24.37101536 |18.5038316 |1.00000000000000 |ns
time |[CA [CT [0.009945936 |-12.34752215 |12.3674140 [1.00000000000000 |ns
time |CA |DC [-0.580010789 [-10.27696364 |9.1169421 |1.00000000000000 |ns
time [CA |[DE [-4.451895519 |-16.48994552 |7.5861545 |1.00000000000000 |ns
time |CA |FL  [3.183318788 [-11.40226399 |17.7689016 |1.00000000000000 |ns
time [CA [GA [-1.055323964 |-20.18380860 |18.0731607 [1.00000000000000 |ns
time |CA |IL 0.680762066 |-12.23523397 |13.5967581 |1.00000000000000 |ns
time [CA |IN 3.022751111  |-19.94850189 |25.9940041 |1.00000000000000 |ns
time |CA [MA |1.337745392 |-10.21877388 [12.8942647 |1.00000000000000 |ns
time [CA [MD [1.719992726 |-7.98466378 |11.4246492 |[1.00000000000000 |ns
time |CA [MI  |2.495032157 |-14.03750894 (19.0275733 |1.00000000000000 |ns
time [CA |MN |1.728762807 |-20.74868647 (24.2062121 {1.00000000000000 |ns
time |CA [MO |2.737502745 |-23.16764184 [28.6426473 |1.00000000000000 |ns
time [CA |NC ]4.317530295 |-6.75359491 [15.3886555 [1.00000000000000 |ns
time |CA [NH |-1.780079298 |-26.45132136 [22.8911628 |1.00000000000000 |ns
time |CA [NJ 1.836900870 |-8.88758159 [12.5613833 [1.00000000000000 |ns
time |CA [NY |-0.588884904 |[-10.71371163 [9.5359418 |1.00000000000000 |ns
time |CA [PA  |-1.503263109 |-11.62732698 |8.6208008 |1.00000000000000 |ns
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time (CA |RI -0.041883810 |-19.80668092 |19.7229133 [1.00000000000000 |ns
time |CA |SC  [-0.305753939 (-21.47509713 |20.8635892 |1.00000000000000 [ns
time [CA |TX |5.061268788 |-11.46256594 |21.5851035 [1.00000000000000 |ns
time |CA |VA [1.352887206 |[-8.32504281 |11.0308172 |1.00000000000000 [ns
time |CA |WI [-0.345312381 [-30.59885408 |29.9082293 |1.00000000000000 |ns
time |CA |WV [-1.149705238 (-22.00333554 |19.7039251 |1.00000000000000 |ns
time |CO |CT  [2.943537820 |[-18.00423559 |23.8913112 |1.00000000000000 |ns
time |CO |DC [2.353581095 [-17.50851586 |22.2156780 |1.00000000000000 |ns
time |CO |DE [-1.518303635 (-22.31691826 |19.2803110 |1.00000000000000 [ns
time |CO |FL  [6.116910672 [-15.95437053 |28.1881919 |1.00000000000000 |ns
time |CO |GA [1.878267920 [-22.98029488 |26.7368307 |1.00000000000000 [ns
time |CO |IL 3.614353950 |-17.59890218 |24.8276101 |1.00000000000000 |ns
time |CO |IN 5.956342995 |-21.43969481 |33.3523808 |1.00000000000000 |ns
time |CO |MA (4271337276 |-16.32273828 |24.8654128 |1.00000000000000 |ns
time [CO [MD [4.653584610 |-15.21124326 |24.5184125 |[1.00000000000000 |ns
time |CO |MI  [5.428624041 |[-17.72937847 |28.5866265 |1.00000000000000 |ns
time ([CO [MN [4.662354691 |-22.39186468 |31.7165741 [1.00000000000000 |ns
time |CO MO [5.671094629 [-23.97479201 |35.3169813 |1.00000000000000 |ns
time ([CO [NH [1.153512586 |-27.58294417 |29.8899693 [1.00000000000000 |ns
time |[CO |NJ  [4.770492754 |-15.47814609 |25.0191316 |1.00000000000000 |ns
time [CO [NY [2.344706980 |-17.67296283 |22.3623768 [1.00000000000000 |ns
time |CO |PA 1.430328775 |-18.58703902 |21.4476966 |[1.00000000000000 |ns
time |[CO |[RI 2.891708075 |-22.08501550 |27.8684316 |1.00000000000000 |ns
time |CO |SC  [2.627837945 |-23.14521762 |28.4008935 |1.00000000000000 |ns
time [CO [TX [7.994860672 |-15.18941005 |31.1791314 |[1.00000000000000 |ns
time |CO [VA  ]4.286479090 |-15.56888561 (24.1418438 |1.00000000000000 |ns
time [CO [WI  [2.588279503 |-30.49189771 |35.6684567 [1.00000000000000 |ns
time |CO [WV |1.783886646 |-24.22671179 |(27.7944851 |1.00000000000000 |ns
time [CT |DC |-0.589956725 |-8.77659280 |[7.5966794 [1.00000000000000 |ns
time |CT [FL  |3.173372852 |-10.51942716 [16.8661729 |1.00000000000000 |ns
time [CT |GA |-1.065269900 |-19.57585354 (17.4453137 {1.00000000000000 |ns
time |CT |IL 0.670816130  |-11.19606695 |12.5376992 |1.00000000000000 |ns
time |CT |[IN 3.012805175 |-19.55031694 |25.5759273 |1.00000000000000 |ns
time |CT [MA |1.327799456 [-9.01286441 |[11.6684633 |1.00000000000000 |ns
time |CT [MD |1.710046790 |-6.48570038 [9.9057940 |1.00000000000000 |ns
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time ([CT |MI  |2.485086221 |-13.31069423 |18.2808667 {1.00000000000000 |ns
time |CT |MN [1.718816871 [-20.32779406 |23.7654278 |1.00000000000000 [ns
time ([CT |MO |2.727556809 |-22.84525639 |28.3003700 [1.00000000000000 |ns
time |CT |NH [-1.790025234 |(-26.08347076 |22.5034203 |1.00000000000000 [ns
time |{CT |NJ 1.826954933  |-7.56143294 |11.2153428 |1.00000000000000 |ns
time |CT |INY [-0.598830840 [-9.28922023 |8.0915586 |1.00000000000000 [ns
time |CT |PA  [-1.513209045 [-10.20273993 |7.1763218 |1.00000000000000 |ns
time |{CT |RI -0.051829746 |-19.35745586 |19.2537964 |1.00000000000000 |ns
time |CT |SC [-0.315699875 [-21.14866455 |20.5172648 |1.00000000000000 |ns
time |CT |TX [5.051322852 |[-10.71878698 |20.8214327 |1.00000000000000 |ns
time |CT |VA [1.342941270 [-6.82119006 |9.5070726 |1.00000000000000 |ns
time |CT |WI [-0.355258317 [-30.38747696 |29.6769603 |1.00000000000000 |ns
time [CT [WV [-1.159651174 |-21.48212753 |19.1628252 [1.00000000000000 |ns
time |DC |FL  [3.763329577 |-7.67375706 |15.2004162 |1.00000000000000 |ns
time [DC [GA [-0.475313175 |-17.53029553 |16.5796692 [1.00000000000000 |ns
time |DC |IL 1.260772855 |-7.79158182 |10.3131275 |1.00000000000000 |ns
time ([DC |IN 3.602761900 |-18.10689321 |25.3124170 |1.00000000000000 |ns
time |DC  |MA [1.917756181 |[-4.83492727 |8.6704396 |1.00000000000000 |ns
time [DC [MI  [3.075042946 |-10.97109523 |17.1211811 [1.00000000000000 |ns
time |DC  |MN [2.308773596 |[-18.82257349 |23.4401207 |1.00000000000000 |ns
time [DC MO [3.317513534 |-21.56760588 |28.2026329 [1.00000000000000 |ns
time |DC |[NH [-1.200068509 [-24.68625883 |22.2861218 |1.00000000000000 |ns
time [DC [NY [-0.008874115 |-3.45461898 |3.4368707 [1.00000000000000 |ns
time |DC |PA  [-0.923252320 (-4.36832744 |2.5218228 |1.00000000000000 |ns
time [DC [RI 0.538126980 |-17.92776532 |19.0040193 |1.00000000000000 |ns
time |IDC [SC  ]0.274256850 |-20.12360691 (20.6721206 |[1.00000000000000 |ns
time [DC [WI  [0.234698408 |-29.37749975 |29.8468966 |[1.00000000000000 |ns
time |IDC  [WV |-0.569694449 |-19.67912264 |(18.5397337 |1.00000000000000 |ns
time |DE |GA |3.396571555 |-14.92204117 (21.7151843 {1.00000000000000 |ns
time |DE  [MN |6.180658326 |-15.73659914 [28.0979158 |1.00000000000000 |ns
time |[DE |MO |7.189398264 |-18.28448128 [32.6632778 [1.00000000000000 |ns
time |DE [NH |2.671816221 |-21.50789879 [26.8515312 |1.00000000000000 |ns
time |DE  [PA  |2.948632410 |-5.27730919 |[11.1745740 |1.00000000000000 |ns
time |DE  [RI 4.410011710  |-14.76381503 (23.5838384 [1.00000000000000 |ns
time |DE  [SC  |4.146141580 |-16.59828140 [24.8905646 |1.00000000000000 |ns
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time [DE  |WI  |4.106583138 |-25.86170473 |34.0748710 {1.00000000000000 |ns
time |DE  |WV [3.302190281 [-16.85682052 |23.4612011 |1.00000000000000 [ns
time [FL |GA |-4.238642752 |-24.14545679 |15.6681713 [1.00000000000000 |ns
time |FL  |IL -2.502556722 |-16.68809672 |11.6829833 |1.00000000000000 |ns
time |[FL  |IN -0.160567677 |-23.67418476 |23.3530494 [1.00000000000000 |ns
time |[FL |MA [-1.845573396 [-14.84516853 |11.1540217 |1.00000000000000 |ns
time |[FL |MD [-1.463326062 [-12.90670065 |9.9800485 |1.00000000000000 |ns
time |[FL  |[MI  [-0.688286631 [-18.14689339 |16.7703201 |1.00000000000000 |ns
time |[FL  |MN [-1.454555981 [-24.50052487 |21.5914129 |1.00000000000000 |ns
time |[FL  |MO [-0.445816043 [-26.79566930 |25.9040372 |1.00000000000000 |ns
time |[FL  |INC [1.134211507 |[-11.44944618 |13.7178692 |1.00000000000000 [ns
time |[FL |[NH [-4.963398086 (-30.13256738 |20.2057712 |1.00000000000000 |ns
time [FL  [NJ  [-1.346417918 |-13.63648750 |10.9436517 [1.00000000000000 |ns
time |[FL  INY [-3.772203692 [-15.56112039 |8.0167130 |1.00000000000000 |ns
time [FL [OH [4.129204545 |-10.20731676 |18.4657259 |[1.00000000000000 |ns
time |[FL  |RI -3.225202597 |-23.62353427 |17.1731291 |1.00000000000000 |ns
time [FL  [SC  [-3.489072727 |-25.16451232 |18.1863669 [1.00000000000000 |ns
time |[FL |TX [1.877950000 |[-15.58549319 |19.3413932 |1.00000000000000 |ns
time [FL [VA [-1.830431582 |-13.25199898 |9.5911358 [1.00000000000000 |ns
time |[FL  |WI  [-3.528631169 [-34.09074029 |27.0334780 |1.00000000000000 |ns
time [FL WV [-4.333024026 |-25.86496057 |17.1989125 [1.00000000000000 |ns
time |GA |IL 1.736086030 |-17.11167692 |20.5838490 |[1.00000000000000 |ns
time |[GA |IN 4.078075075  |-21.92574670 |30.0818968 |1.00000000000000 |ns
time |GA |MA [2.393069356 [-15.65903844 |20.4451771 |1.00000000000000 |ns
time |[GA [MD [2.775316690 |-14.28355289 |19.8341863 [1.00000000000000 |ns
time |GA [MI  |3.550356121 |-17.65237350 (24.7530857 |1.00000000000000 |ns
time |[GA [MN [2.784086771 |-22.84056184 |28.4087354 |[1.00000000000000 |ns
time |GA [MO |3.792826709 |-24.65909356 |(32.2447470 |1.00000000000000 |ns
time |[GA |NC |5.372854259 |-12.40734037 (23.1530489 [1.00000000000000 |ns
time |GA [NH |-0.724755334 |-28.18521105 [26.7357004 |1.00000000000000 |ns
time |{GA |NJ  |2.892224834 |-14.69913780 (20.4835875 [1.00000000000000 |ns
time |GA [NY ]0.466439060 |-16.80758975 [17.7404679 |1.00000000000000 |ns
time |GA [PA  |-0.447939145 |-17.72154630 [16.8256680 |1.00000000000000 |ns
time |GA |RI 1.013440154 |-22.30702977 (24.3339101 {1.00000000000000 |ns
time |GA [SC  ]0.749570025 |-23.48770427 |24.9868443 |1.00000000000000 |ns
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time [GA |TX |6.116592752 |-15.11460940 |27.3477949 {1.00000000000000 |ns
time |GA |VA [2.408211170 |[-14.63718159 |19.4536039 |1.00000000000000 [ns
time (GA |WI |0.710011583 |-31.42589310 |32.8459163 [1.00000000000000 |ns
time |GA |WV [-0.094381274 |(-24.54706196 |24.3582994 |1.00000000000000 [ns
time |IL IN 2.341989045 |-20.44120566 |25.1251838 [1.00000000000000 |ns
time |IL MA 0.656983326 [-10.36659960 |11.6805663 |1.00000000000000 [ns
time |IL MD [1.039230661 |[-8.02133474 |10.0997961 |1.00000000000000 [ns
time |IL MI 1.814270091 [-14.38511294 |18.0136531 |1.00000000000000 |ns
time |IL MN (1.048000741 |[-21.23128322 |23.3272847 |1.00000000000000 [ns
time |IL MO |2.056740679 [-23.69479114 |27.8082725 |1.00000000000000 [ns
time |IL NC  [3.636768230 |-6.87483590 |14.1483724 |1.00000000000000 |ns
time |IL NH [-2.460841364 |-26.95810528 |22.0364225 |1.00000000000000 |ns
time |IL NJ 1.156138804 |-8.98853449 |11.3008121 |[1.00000000000000 |ns
time |IL NY [-1.269646970 |-10.77760440 |8.2383105 |1.00000000000000 |ns
time |IL PA  |-2.184025175 |-11.69118413 |7.3231338 |1.00000000000000 |ns
time |IL RI -0.722645875 |-20.27469799 |18.8294062 |1.00000000000000 |ns
time |IL SC  ]-0.986516005 [-21.99657332 (20.0235413 |1.00000000000000 |ns
time |IL TX 14380506722 |-11.80303316 |20.5640466 |1.00000000000000 |ns
time |IL VA [0.672125141 |-8.35995346 |9.7042037 |1.00000000000000 |ns
time |IL WI  |-1.026074447 |-31.17626053 |29.1241116 |1.00000000000000 |ns
time |IL WV [-1.830467304 |-22.44169470 |18.7807601 |1.00000000000000 |ns
time |IN  |[MA [-1.685005719 [-23.96019204 |20.5901806 |1.00000000000000 |ns
time [IN [MD [-1.302758385 |-23.01442191 |20.4089051 [1.00000000000000 |ns
time |IN  |[MI  [-0.527718954 [-24.99658799 |23.9411501 |1.00000000000000 |ns
time [IN [MN [-1.293988304 |-29.32605723 |26.7380806 [1.00000000000000 |ns
time |IN MO |-0.285248366 |-30.75534294 (30.1848462 |1.00000000000000 |ns
time [IN [NC [1.294779184 |-20.81723981 |23.4067982 [1.00000000000000 |ns
time |IN  [NH |-4.802830409 |-34.41452553 (24.8088647 |1.00000000000000 |ns
time [IN  |NJ  |-1.185850242 |-23.18816404 (20.8164636 [1.00000000000000 |ns
time |IN  [NY |-3.611636015 |-25.43715079 |[18.2138788 |1.00000000000000 |ns
time |IN OH  |4.289772222 |-18.56475877 |27.1443032 |1.00000000000000 |ns
time |IN  [PA  |-4.526014220 |-26.35130308 [17.2992746 |1.00000000000000 |ns
time |IN  [RI -3.064634921 |-29.17669894 |23.0474291 |1.00000000000000 |ns
time |IN SC  ]-3.328505051 |[-30.16922188 {23.5122118 |1.00000000000000 |ns
time |IN [TX |2.038517677 |-22.45291092 [26.5299463 |1.00000000000000 |ns
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time [IN |VA |-1.669863905 |-23.37457197 |20.0348442 {1.00000000000000 |ns
time |[IN  |WI [-3.368063492 (-37.11221318 |30.3760862 |1.00000000000000 [ns
time [IN |WV |-4.172456349 |-31.23647191 |22.8915592 [1.00000000000000 |ns
time |MA |MD [0.382247334 [-6.38197560 |7.1464703 |1.00000000000000 [ns
time |[MA |MI  [1.157286765 |[-14.08424514 |16.3988187 |1.00000000000000 |ns
time [MA |MN [0.391017415 [-21.34964972 |22.1316846 |1.00000000000000 |ns
time |[MA MO [1.399757353 [-23.94079294 |26.7403076 |1.00000000000000 |ns
time [MA |NC [2.979784903 [-5.70270210 |11.6622719 |1.00000000000000 |ns
time |[MA |NH [-3.117824690 (-27.14365345 |20.9080041 |1.00000000000000 |ns
time [MA |NJ 0.499155477 |-7.71671604 |8.7150270 |1.00000000000000 |ns
time [IMA [NY [-1.926630296 |-9.30559524 |5.4523346 |1.00000000000000 |ns
time |[MA |PA  [-2.841008501 [-10.21897071 |4.5369537 |1.00000000000000 |ns
time |[MA |RI -1.379629202 |-20.37052665 |17.6112682 |1.00000000000000 |ns
time [MA |SC  [-1.643499332 (-22.26677792 |18.9797793 |1.00000000000000 |ns
time [IMA [TX [3.723523396 |-11.47602680 |18.9230736 [1.00000000000000 |ns
time [MA |VA [0.015141814 [-6.70900044 |6.7392841 |1.00000000000000 |ns
time [IMA [WI [-1.683057773 |-31.56622899 |28.2001134 [1.00000000000000 |ns
time [MA |WV [-2.487450630 (-22.42179170 |17.4468904 |1.00000000000000 |ns
time (IMD [MI  [0.775039431 |-13.27571307 |14.8257919 [1.00000000000000 |ns
time [MD |MN [0.008770081 |[-21.12476996 |21.1423101 |1.00000000000000 |ns
time (IMD (MO [1.017510019 |-23.86923000 |25.9042500 [1.00000000000000 |ns
time [MD |NH [-3.500072024 |(-26.98823230 |19.9880883 |1.00000000000000 |ns
time (IMD [NJ  [0.116908143 |-4.95291983 |5.1867361 [1.00000000000000 |ns
time |MD |RI -1.761876536 |-20.22923890 |16.7054858 |1.00000000000000 |ns
time [IMD [SC  [-2.025746666 |-22.42366399 |18.3721707 [1.00000000000000 |ns
time IMD [TX |3.341276062 |-10.60607198 [17.2886241 |1.00000000000000 |ns
time (IMD [VA  [-0.367105520 |-1.91104496 |1.1768339 [1.00000000000000 |ns
time IMD [WI  |-2.065305107 |-31.67840009 (27.5477899 |1.00000000000000 |ns
time [MD |WV |-2.869697964 |-21.98227823 [16.2428823 [1.00000000000000 |ns
time IMI  [MN |-0.766269350 |-24.80624778 (23.2737091 |1.00000000000000 |ns
time [MI  |MO ]0.242470588 |-26.89901635 (27.3839575 [1.00000000000000 |ns
time IMI  [NC |1.822498138 |-13.09205898 [16.7370553 |1.00000000000000 |ns
time IMI  [NH |-4.275111455 {-30.31639706 [21.7661742 |1.00000000000000 |ns
time IMI  [NJ  |-0.658131287 |-15.34556458 [14.0293020 |1.00000000000000 |ns
time IMI  [NY |-3.083917061 |-17.39096475 [11.2231306 |1.00000000000000 |ns
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time (MI |OH |4.817491176 |-11.50813621 |21.1431186 {1.00000000000000 |ns
time [MI  |PA  [-3.998295266 (-18.30485106 |10.3082605 |1.00000000000000 [ns
time (MI  |RI -2.536915966 |-24.07675664 |19.0029247 [1.00000000000000 |ns
time [MI  |SC  [-2.800786096 |(-25.45121874 |19.8496466 |1.00000000000000 [ns
time |[MI |TX [2.566236631 [-16.44060155 |21.5730748 |1.00000000000000 |ns
time [MI  |VA  [-1.142144950 [-15.17690252 |12.8926126 |1.00000000000000 |ns
time |[MI  |WI  [-2.840344538 [-33.97661141 |28.2959223 |1.00000000000000 |ns
time Ml |WV [-3.644737395 |[-26.32352476 |19.0340500 |1.00000000000000 |ns
time [MN |MO [1.008739938 [-29.18418983 |31.2016697 |1.00000000000000 |ns
time [MN |NC [2.588767488 |[-18.97744387 |24.1549788 |1.00000000000000 |ns
time [MN [NH [-3.508842105 |-32.82677980 |25.8090956 [1.00000000000000 |ns
time [MN [NJ 0.108138063  |-21.34026038 |21.5565365 |1.00000000000000 |ns
time [MN |NY [-2.317647711 |-23.57507228 |18.9397769 |1.00000000000000 |ns
time [MN |OH [5.583760526 |[-16.77079314 |27.9383142 |1.00000000000000 |ns
time [MN [PA  [-3.232025916 |-24.48920500 |18.0251532 |[1.00000000000000 |ns
time |MN |RI -1.770646617 |-27.50848357 |23.9671903 |1.00000000000000 |ns
time [IMN [SC [-2.034516746 |-28.52277341 |24.4537399 |[1.00000000000000 |ns
time [MN |TX [3.332505981 [-20.73089744 |27.3959094 |1.00000000000000 |ns
time [IMN [VA [-0.375875601 |-21.50181987 |20.7500687 [1.00000000000000 |ns
time [MN |WI  [-2.074075188 [-35.59346559 |31.4453152 |1.00000000000000 |ns
time [IMN [WV [-2.878468045 |-29.59194596 |23.8350099 [1.00000000000000 |ns
time [MO |NC [1.580027550 |-23.62901810 |26.7890732 |1.00000000000000 |ns
time (MO [NH [-4.517582043 |-36.11445575 |27.0792917 [1.00000000000000 |ns
time MO [NJ -0.900601876 |-26.02136777 |24.2201640 |1.00000000000000 |ns
time [IMO [NY [-3.326387649 |-28.30488500 |21.6521097 [1.00000000000000 |ns
time IMO [OH |4.575020588 |-21.23493955 (30.3849807 |1.00000000000000 |ns
time [IMO [PA  [-4.240765854 |-29.21907982 |20.7375481 [1.00000000000000 |ns
time MO |RI -2.779386555 |-31.28432049 |25.7255474 |1.00000000000000 |ns
time (MO |SC  |-3.043256684 |-32.15392395 (26.0674106 [1.00000000000000 |ns
time IMO [TX |2.323766043 |-24.84041698 [29.4879491 |1.00000000000000 |ns
time [MO |VA |-1.384615539 |-26.26574276 (23.4965117 {1.00000000000000 |ns
time IMO (WI  |-3.082815126 |-38.39571157 |[32.2300813 |1.00000000000000 |ns
time IMO WV |-3.887207983 |[-33.25171204 [25.4772961 |1.00000000000000 |ns
time INC [NH |-6.097609594 [-29.96996068 |[17.7747415 |1.00000000000000 |ns
time INC [NJ  |-2.480629426 (-9.95704972 [4.9957909 |1.00000000000000 |ns
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time [NC |OH |2.994993038 |-7.72142128 |13.7114074 {1.00000000000000 |ns
time [NC |RI -4.359414105 |[-23.18305692 |14.4642287 |1.00000000000000 |ns
time [NC |SC  |-4.623284235 |-25.15028750 |15.9037190 [1.00000000000000 |ns
time [NC |TX [0.743738493 |[-14.11607473 |15.6035517 |1.00000000000000 [ns
time [NC |WI  [-4.662842676 |(-34.46449677 |25.1388114 |1.00000000000000 [ns
time [NC |WV [-5.467235533 |[-25.17365224 |14.2391812 |1.00000000000000 |ns
time [NH |NJ  [3.616980168 |[-20.15142932 |27.3853897 |1.00000000000000 |ns
time [NH |NY [1.191194394 (-22.40778354 |24.7901723 |1.00000000000000 |ns
time [NH |PA  [0.276816189 |[-23.32194081 |23.8755732 |1.00000000000000 |ns
time |NH |RI 1.738195489  |-25.78008699 |29.2564780 |1.00000000000000 |ns
time [INH [SC [1.474325359 |-26.69487248 |29.6435232 |[1.00000000000000 |ns
time [NH |TX [6.841348086 [-19.22508445 |32.9077806 |1.00000000000000 |ns
time [INH [VA [3.132966505 |-20.34836905 |26.6143021 [1.00000000000000 |ns
time |[NH |WI  [1.434766917 |[-33.24417976 |36.1137136 |1.00000000000000 |ns
time [NH [WV [0.630374060 |-27.80606586 |29.0668140 [1.00000000000000 |ns
time |NJ  |RI -1.878784679 [-20.59522254 |16.8376532 |1.00000000000000 |ns
time [NJ [SC  [-2.142654809 |-22.61585595 |18.3305463 [1.00000000000000 |ns
time |NJ |TX [3.224367918 [-11.39799566 |17.8467315 |1.00000000000000 |ns
time [NJ [VA [-0.484013663 |-5.49931968 |4.5312923 |1.00000000000000 |ns
time |NJ  |WI  [-2.182213251 |-31.93045032 |27.5660238 |1.00000000000000 |ns
time [NJ [WV [-2.986606108 |-22.53597700 |16.5627648 [1.00000000000000 |ns
time |[NY |PA  [-0.914378205 [-5.49935983 |3.6706034 |1.00000000000000 |ns
time INY |[RI 0.547001095 |-18.01024225 |19.1042444 |1.00000000000000 |ns
time |[NY |SC  [0.283130965 |[-20.12983995 |20.6961019 |1.00000000000000 |ns
time [NY [WI  [0.243572523 |-29.42124749 |29.9083925 [1.00000000000000 |ns
time INY [WV |-0.560820334 |-19.84873358 (18.7270929 |1.00000000000000 |ns
time |[OH [TX [-2.251254545 |-18.56415728 |14.0616482 [1.00000000000000 |ns
time |OH [WI |-7.657835714 |-37.84703930 (22.5313679 |1.00000000000000 |ns
time {[PA  |RI 1.461379300 |-17.09568780 |20.0184464 |1.00000000000000 |ns
time |PA  [SC 1.197509170  |-19.21543030 |21.6104486 |1.00000000000000 |ns
time [PA  |WI |1.157950728 |-28.50676515 [30.8226666 [1.00000000000000 |ns
time |PA WV ]0.353557871 |-18.93400935 [19.6411251 |1.00000000000000 |ns
time |RI SC  ]-0.263870130 |-24.77337324 |24.2456330 |1.00000000000000 |ns
time |RI TX  [5.103152597 |-16.44733517 |26.6536404 |1.00000000000000 |ns
time |RI VA  [1.394771016 |-17.06751939 |19.8570614 |1.00000000000000 |ns
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time |RI WI  ]-0.303428571 |-32.47322553 |31.8663684 |[1.00000000000000 |ns
time |RI WV [-1.107821429 |-25.67597581 |23.4603330 |1.00000000000000 |ns
time |SC TX |5.367022727 |-17.28750347 |28.0215489 |1.00000000000000 |ns
time [SC [VA [1.658641146 |-18.73912544 |22.0564077 [1.00000000000000 |ns
time |[SC |WI -0.039558442 |-32.67843301 [32.5993161 [1.00000000000000 [ns
time [SC [WV [-0.843951299 |-26.23340496 |24.5455024 [1.00000000000000 |ns
time |TX |VA [-3.708381582 |-17.63854243 [10.2217793 |1.00000000000000 |ns
time [TX [WI [-5.406581169 |-36.55959340 |25.7464311 [1.00000000000000 |ns
time |[TX [WV [-6.210974026 |[-28.91854690 [16.4965988 |1.00000000000000 |ns
time [VA [WI [-1.698199587 |-31.30819113 |27.9117920 [1.00000000000000 |ns
time |VA |WV [-2.502592444 |-21.60424710 [16.5990622 |1.00000000000000 |ns
time (Wl [WV [-0.804392857 |-33.66115619 |32.0523705 [1.00000000000000 |ns

We see that:

. Every pair of states are compared with an estimate, a 95% confidence

interval, and an adjusted p-value.
. For example, the runners from the “NC” state have significantly

higher mean run time than runners from the “NR” state with zero
adjusted p-value. The difference is estimated to be 36.9 and can be
as high as 52.17 and as low as 21.65.

. On the other hand, runners from “WI” state have statistically
equivalent mean run time to runners from “WV” state with a 1.00
adjusted p-value.

4.4.4. Kruskal Wallis Test for More Than Two Samples

The Kruskal-Wallis test is a non-parametric alternative to the one-way ANOVA
test. It can be viewed as an extension of the two-sample Wilcoxon test in case
there are more than two groups to compare. It is used when the assumptions
of a one-way ANOVA test are not met. The null hypothesis is that the medians
of the continuous variable across the different groups are the same, while the
alternative hypothesis is that at least one group’s median differs from another
group’s median.

4.4.4.1. Kruskal Wallis Test of the Run Time from Runners of Dif-
ferent States

The null hypothesis is that all 28 states’ median run time are equal, while the
alternative hypothesis is that at least one state’s median is different from another
state’s median.
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To conduct this test, we use the kruskal test function applied on the “run_
filtered” data with the following argument, formula = time ~ state which is the
same formula for the ANOVA test. This means that we want to compare the
median run time across the different states of the “state” column.

Then, we convert the result to a table as before.
run_filtered %>% kruskal_test(formula = time ~ state) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “Kruskal-Wallis test results of the median run time 1in
runners from 28 states of Cherry Blossom Run data in 2009”)

Table 4.52. Kruskal-Wallis Test Results of the Median Run Time in Runners from 28
States of Cherry Blossom Run Data in 2009

.y n Statistic | df | p Method
time | 14,877 | 1372318 | 27 | 0.000000000000000102 | Kruskal
Wallis
In the table above, we see that:
. The “df” is the degrees of freedom and the obtained statistic value
that corresponds to our sample results is 137.2318.
. The p is the very low p-value, so we reject the null hypothesis and

conclude that at least one state run time median is significantly
different from another state median.

4.4.4.2. Post-Hoc Test

A significant Kruskal-Wallis test is followed by Dunn’s test to perform multiple
pairwise tests between the different states with p-value adjustment. We will use
the same formula of the ANOVA test with the dunn_test function and arrange
the adjusted p-values (p.adj) by using the arrange function.

run_filtered %>% dunn_test(formula = time ~ state) %>%

arrange(p.adj) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Dunn’s test of the run time in runners from 28 states of
Cherry Blossom Run data in 2009”)
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Statistics with R for Data Analysis

5.1. DATA USED IN THIS CHAPTER

5.1.1. American Community Survey of 2012

The results from the US Census American Community Survey performed
in 2012 are stored under the name “acs12.” The data is part of the openintro
package and its source is https://www.census.gov/programs-surveys/acs.

To load this data into our R session, we will load the openintro package
using the library function. Then, we will load the “acs12” data using the data
function. We will also load the tidyverse package because it contains many
packages for efficient data analysis.

Library(tidyverse)
Library(openintro)

data(“acs12”)

To see the data structure, we will use the glimpse function from the dplyr
package.

glimpse(acs12)
## Rows: 2,000
## Columns: 13
## $ income <int> 60000, 0, NA, 0, 0, 1700, NA, NA, NA, 45000, NA, 8600, O,..
## $ employment <fct> not in Labor force, not in Labor force, NA, not in labor ..
## $ hrs_work <int> 40, NA, NA, NA, NA, 40, NA, NA, NA, 84, NA, 23, NA, NA, N..

## $ race <fct> white, white, white, white, white, other, white, other, a..
## $ age <int> 68, 88, 12, 17, 77, 35, 11, 7, 6, 27, 8, 69, 69, 17, 10, ..
## $ gender <fct> female, male, female, male, female, female, male, male, m..

## $ citizen <fct> yes, yes, yes, yes, yes, yes, yes, yes, yes, yes, yes, ye..
## $ time_to _work <int> NA, NA, NA, NA, NA, 15, NA, NA, NA, 46, NA, 5, NA, NA, NA..
## $ Llang <fct> english, english, english, other, other, other, english, ..
## $ married <fct> no, no, no, no, no, yes, no, no, no, yes, ho, no, yes, no..
## $ edu <fct> college, hs or lLower, hs or Lower, hs or Lower, hs or Low..

## $ disability <fct> no, yes, no, no, yes, yes, no, yes, no, no, no, no, yes, ..

## $ birth_qrtr <fct> jul thru sep, jan thru mar, oct thru dec, oct thru dec, j..

We see that the “acs12” data contains 2000 rows and 13 columns:

1. income: the annual income. It is a numeric column.
2. employment: the employment status. It is a factor column.
3. hrs_work: the hours worked per week. It is an integer column.
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race: the respondent’s race. It is a factor column.
age: the respondent’s age in years. It is an integer column.
gender: the respondent’s gender. It is a factor column.

citizen: whether the person is a U.S. citizen. It is a factor column.

®© =Ny e

time to_work: the travel time to work in minutes. It is an integer
column.

9. lang: the language spoken at home. It is a factor column.

10.  married: whether the person is married. It is a factor column.
11.  edu: the respondent’s education level. It is a factor column.

12.  disability: whether the person is dizabled. It is a factor column.

13.  birth_grtr: the quarter of the year that the respondent was born. [ It is
a factor column.

5.1.2. The Minneapolis Police Use of Force Data

The Minneapolis police use of force data from 2016 through August 2021
is stored in the “mn_police use of force” data frame which is part of the
openintro package of R. The data source is https://opendata.minneapolismn.
gov/search?grouplds=79606f50581f4a33b14a19¢61c489117. To load this data
into our R session, we will use the data function as before followed by the
glimpse function to get the data structure.

data(“mn_police_use_of_ force”)

glimpse(mn_police_use_of force)

## Rows: 12,925

## Columns: 13

## $ response_datetime <chr> “2016/01/01 00:47:36,” “2016/01/01 ©2:19:34,” “2016/...
## $ problem <chr> “Assault in Progress ,” “Fight ,” “Fight ,” “Fight “.

## $ is_911 call <chr> “Yes,” “No,” “No,” “No,” “No,” “No,” “No,” “No,” “No..
## $ primary_offense <chr> “DASLT1,” “DISCON,” “DISCON,” “PRIORI,” “PRIORI,” “P..
## § subject_injury <chrs % % @ 2 @ 5 6 0 5 0 @ n @ g 2 oG P e
## $ force_type <chr> “Bodily Force,” “Chemical Irritant,” “Chemical Irrit..

## $ force_type_action <chr> “Body Weight to Pin,” “Personal Mace,” “Personal Mac..

## $ race <chr> “Black,” “Black,” “White,” “Black,” “Black,” “Black”..
## $ sex <chr> “Male,” “Female,” “Female,” “Male,” “Male,” “Male,” ..
# $ age <int> 20, 27, 23, 20, 20, 20, 20, 20, 20, 18, 18, 21, 21, ..

## $ type_resistance <chr> “Tensed,” “Verbal Non-Compliance,” “Verbal Non-Compl..
## $ prec.inct <Chr‘> ({1} » ({1} » ({1} » ({1} » ({1} » ({1} » ({1} » ({1} » ({1} » ({1} » ({1'"

## $ neighborhood  <chr> “Downtown East,” “Downtown West,” “Downtown West,” .
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The data contains 12925 observations (rows) on the following 13 columns:

1. response_datetime: the datetime of police response. It is a character
column.

2. problem: the problem that required police response. It is a character
column.

3. is 911 call: whether the response was initiated by a call to 911. It is
a character column.

primary_offense: the offense of the subject. It is a character column.

5. subject injury: Whether the subject was injured. It is a character
column.

6. force type: the type of police force used. It is a character column.

7. force type action: the detail of the police force used. It is a character
column.

8. race: the race of the subject. It is a character column.

9. sex: the gender of the subject. It is a character column.

10.  age: the age of the subject. It is an integer column.

11.  type resistance: the resistance to police by the subject. It is a
character column.

12.  precinct: the precinct where the response occurred. It is a character
column.

13.  neighborhood: the neighborhood where the response occurred. It is
a character column.

5.2. SUMMARY STATISTICS

As we saw in Chapter 2, the category sample size and proportion are the only
measures that are used to describe categorical data. To look at the relation
between 2 categorical variables, we can see how the counts or proportions of
1 categorical variable change under the different levels of the other categorical
variable.

5.2.1. The Count

5.2.1.1. The Count of Different Employment Statuses in the 2
Genders

To get these counts from the American Community Survey data, we use
the count function, applied to “acs12” data, with the arguments gender, and
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employment to get the the count of different employment statuses in males and
females. Then, we convert the result to a table as before.

Library(flextable)
acs12 %>% count(gender, employment) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “The count of different employment statuses in males and
females of the American Community Survey data”)

Table 5.1. The Count of Different Employment Statuses in Males and Females of
the American Community Survey Data

Gender Employment n
male not in labor force | 283
male unemployed 59
male employed 470
male 219
female not in labor force | 373
female unemployed 47
female employed 373
female 176
We see that:
. There are 283 males not in labor force compared to 373 females.
. There are 59 unemployed males compared to 47 females.
. There are 470 employed males compared to 373 females. So males
are more employed than females.
. There are 219 males with missing employment status compared to
176 females.

5.2.1.2. The Count of Different Employment Statuses in the Dif-
ferent Races

To get these counts, we use the count function with the arguments race, and
employment to get the the count of different employment statuses in the
different races.
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acs12 %>% count(race, employment) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “The count of different employment statuses 1in the

different races of the American Community Survey data™)

Table 5.2. The Count of Different Employment Statuses in the Different Races of the
American Community Survey Data

Race Employment n
white not in labor force | 520
white unemployed 72
white employed 670
white 293
black not in labor force | 66
black unemployed 20
black employed 76
black 44
asian not in labor force | 31
asian unemployed 3
asian employed 39
asian 14
other not in labor force | 39
other unemployed 11
other employed 58
other 44
We see that:

. There are 520 Whites not in labor force compared to 66 Blacks, 31
Asians, and 39 other races.

. There are 72 unemployed Whites compared to 20 Blacks, 3 Asians,
and 11 other races.

. There are 670 employed Whites compared to 76 Blacks, 39 Asians,
and 58 other races. So Whites are more employed than other races.

. There are 293 Whites with missing employment status compared to
44 Blacks, 14 Asians, and 44 other races.
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5.2.1.3. The Count of Force Types in the Different Races

To get these counts from the Minneapolis police use of force data, we use the
count function, applied on “mn_police use of force” data, with the arguments
race, force_type to get the count of different force types applied on the different
races. Then, we convert the result to a table as before.

mn_police_use_of force %>% count(race, force_type) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “The count of different force types applied on different
races from the Minneapolis police use of force data”)

Table 5.3. The Count of Different Force Types Applied on Different Races from the
Minneapolis Police Use of Force Data

Race force_type n

Asian Bodily Force 78

Asian Chemical Irritant | 32

Asian Gun Point Dis- |
play

Asian Improvised 1
Weapon

Asian Taser 17

Black Baton 2

Black Bodily Force 5,519

Black Chemical Irritant | 1,033

Black Firearm 2

Black Gun Point Dis- 76
play

Black Improvised 23
Weapon

Black Less Lethal 23

Black 'Les.s Lethal Pro- 3
jectile
Maximal Re-

Black straint Technique 104

Black Police K9 Bite 48

Black Taser 755
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Native American | Bodily Force 616

Native American | Chemical Irritant | 18

Native American | OUP Point Dis- 8
play

Native American Improvised 10
Weapon

Native American | Less Lethal 6

Native American Ma).umal Re—. 14
straint Technique

Native American | Police K9 Bite 8

Native American | Taser 104

Other/Mixed Bodily Force 137

Race

Other/Mixed Chemical Irritant | 50

Race

Other/Mixed Gun Point Dis- 3

Race play

Other/Mixed Improvised 1

Race Weapon

Other/Mixed Police K9 Bite 2

Race

Other/Mixed Taser 12

Race

Pacific Islander Bodily Force 5

Pacific Islander Chemical Irritant | 1

White Baton 1

White Bodily Force 2,454

White Chemical Irritant | 191

White Gun Point Dis- 16
play

White Improvised 47
Weapon

White Less Lethal 27

. Maximal Re-

White straint Technique 42

White Police K9 Bite 17

White Taser 334
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Baton 1
Bodily Force 621
Chemical Irritant | 268
Improvised 6
Weapon

Less Lethal 31
Maximal Re- 10

straint Technique
Police K9 Bite 2
Taser 85

We see that:

. The “Bodily Force” type was applied to 78 Asians compared to 5519
Blacks, 616 Native Americans, 137 Other/Mixed Races, 5 Pacific
Islanders, and 2454 Whites. So “Bodily Force” was applied more to
Blacks than to other races.

. The “Chemical Irritant” force type was applied to 32 Asians
compared to 1033 Blacks, 18 Native Americans, 50 Other/Mixed
Races, 1 Pacific Islander, and 191 Whites. So “Chemical Irritant”
was applied more to Blacks than to other races and so on.

5.2.1.4. The Count of Force Types in the Different Neighborhoods
To get these counts from the Minneapolis police use of force data, we use the
count function with the arguments neighborhood, and force type to get the
count of different force types applied in the different neighborhoods. Then, we
convert the result to a table as before.
mn_police_use_of force %>% count(neighborhood, force_type) %>%

flextable() %>%

theme_box() %>%

set_caption(caption = “The count of different force types applied in the
different neighborhoods from the Minneapolis police use of force data”)
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Table 5.4. The Count of Different Force Types Applied in the Different Neighbor-
hoods from the Minneapolis Police Use of Force Data

Neighborhood force_type n
Bodily Force 3
Chemical Irritant 1
Armatage Bodily Force 19
Armatage Chemical Irritant 1
Armatage Maxin.laI Restraint |
Technique
Armatage Police K9 Bite 1
Armatage Taser 6
Audubon Park Bodily Force 89
Audubon Park Chemical Irritant 3
Audubon Park Taser 6
Bancroft Bodily Force 23
Bancroft Chemical Irritant
Bancroft Improvised Weapon
Bancroft Taser
Beltrami Bodily Force 10
Beltrami Less Lethal 1
Bottineau Bodily Force 7
Bottineau Chemical Irritant 1
Bottineau Police K9 Bite 1
Bottineau Taser 1
Bryant Bodily Force 22
Bryant Police K9 Bite 2
Bryant Taser 1
Bryn — Mawr Bodily Force 15
Bryn — Mawr Taser 3
CARAG Bodily Force 154
CARAG Chemical Irritant 4
CARAG Gun Point Display 1
CARAG Improvised Weapon 3
CARAG Police K9 Bite 1
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CARAG Taser 12
Camden Industrial Bodily Force
Cedar — Isles — Dean | Bodily Force
Cedar — Isles — Dean | Chemical Irritant
Cedar Riverside Bodily Force 136
Cedar Riverside Chemical Irritant 31
Cedar Riverside Gun Point Display 3
Cedar Riverside Improvised Weapon 1
Cedar Riverside Less Lethal 3
Cedar Riverside Maximal Restraint 4
Technique
Cedar Riverside Police K9 Bite 3
Cedar Riverside Taser 24
Central Bodily Force 122
Central Chemical Irritant 10
Central Gun Point Display 2
Central Police K9 Bite 1
Central Taser 23
Cleveland Bodily Force 86
Cleveland Chemical Irritant 1
Cleveland Gun Point Display 1
Cleveland Improvised Weapon 1
Cleveland %i’}‘lﬁ?:gesmmt 2
Cleveland Police K9 Bite
Cleveland Taser
Columbia Park Bodily Force 31
Columbia Park Less Lethal 1
Columbia Park %iiﬁ:ifesuamt 5
Columbia Park Police K9 Bite 1
Columbia Park Taser 2
Como Bodily Force 105
Como Chemical Irritant 2
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Como Gun Point Display
Como Improvised Weapon
Como Maxirpal Restraint )
Technique
Como Taser 15
Cooper Bodily Force 8
Cooper Chemical Irritant 1
Cooper Police K9 Bite 2
Corcoran Bodily Force 76
Corcoran Chemical Irritant 2
Corcoran Firearm 1
Corcoran Gun Point Display 1
Corcoran Improvised Weapon 1
Corcoran Less Lethal 1
Corcoran Maxirpal Restraint 1
Technique
Corcoran Taser 6
Diamond Lake Bodily Force 27
Diamond Lake Chemical Irritant 1
Diamond Lake Improvised Weapon 1
Diamond Lake Taser 3
Downtown East Bodily Force 102
Downtown East Chemical Irritant 3
Downtown East %&:}(}fil:llleRestramt 2
Downtown East Taser 24
Downtown West Bodily Force 1,688
Downtown West Chemical Irritant 999
Downtown West Gun Point Display 8
Downtown West Improvised Weapon 17
Downtown West Less Lethal 7
Downtown West %iiﬁ?;llel{estramt 19
Downtown West Taser 190
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ECCO Bodily Force 20
ECCO Chemical Irritant 2
ECCO Taser

East Harriet Bodily Force 15
East Harriet Gun Point Display 1
East Harriet Improvised Weapon 1
East Harriet Taser 4
East Isles Bodily Force 51
East Isles Chemical Irritant 4
East Isles Improvised Weapon 3
East Isles Taser 6
East Phillips Baton 1
East Phillips Bodily Force 231
East Phillips Chemical Irritant 16
East Phillips Gun Point Display 6
East Phillips Improvised Weapon 1
East Phillips %iﬁ?:ifes“amt 4
East Phillips Police K9 Bite 2
East Phillips Taser 31
Elliot Park Baton 1
Elliot Park Bodily Force 215
Elliot Park Chemical Irritant 11
Elliot Park Gun Point Display 1
Elliot Park Improvised Weapon 2
Elliot Park Less Lethal 3
Elliot Park %i’}‘lﬁli’:ifewaim 3
Elliot Park Taser 47
Ericsson Bodily Force 14
Ericsson Improvised Weapon 1
Ericsson Taser 1
Field Bodily Force 10
Field Taser 6
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Folwell Bodily Force 273
Folwell Chemical Irritant 16
Folwell Gun Point Display 6
Folwell Improvised Weapon 10
Folwell Maxirpal Restraint 3
Technique
Folwell Police K9 Bite 6
Folwell Taser 31
Fulton Bodily Force 15
Fulton Improvised Weapon
Fulton Taser 4
Hale Bodily Force
Hale Taser 1
Harrison Bodily Force 130
Harrison Chemical Irritant 8
Harrison Gun Point Display
Harrison Improvised Weapon 2
Harrison Maxin.lal Restraint 3
Technique
Harrison Police K9 Bite 1
Harrison Taser 8
Hawthorne Bodily Force 403
Hawthorne Chemical Irritant 49
Hawthorne Gun Point Display
Hawthorne Improvised Weapon
Hawthorne Less Lethal
Maximal Restraint
Hawthorne Technique 3
Hawthorne Police K9 Bite 2
Hawthorne Taser 32
Hiawatha Bodily Force 39
Hiawatha Police K9 Bite 1
Hiawatha Taser 7
Holland Bodily Force 112
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Holland Chemical Irritant 4
Holland Gun Point Display
Holland Less Lethal 5
Holland Maxirpal Restraint 1
Technique
Holland Police K9 Bite 1
Holland Taser 21
Howe Bodily Force 29
Howe Gun Point Display 1
Howe Improvised Weapon
Howe Police K9 Bite
Howe Taser
Jordan Bodily Force 383
Jordan Chemical Irritant 15
Jordan Gun Point Display 7
Jordan Improvised Weapon 13
Jordan Less Lethal Projectile 2
Jordan Maxin.lal Restraint 7
Technique
Jordan Police K9 Bite 4
Jordan Taser 48
Keewaydin Bodily Force 18
Keewaydin Chemical Irritant 1
Keewaydin %iiﬁ?:lllies‘[ramt 1
Kenny Bodily Force 1
Kenwood Bodily Force 17
Kenwood Chemical Irritant 2
Kenwood Improvised Weapon 1
Kenwood %iiﬁ:ifesuamt 2
Kenwood Taser 1
King Field Bodily Force 72
King Field Improvised Weapon 4
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King Field %iﬁ?:ifesmm 7
King Field Police K9 Bite 1
King Field Taser 3
Lind — Bohanon Bodily Force 111
Lind — Bohanon Chemical Irritant 5
Lind — Bohanon Gun Point Display 2
Lind — Bohanon Improvised Weapon 2
Lind — Bohanon Less Lethal Projectile 1
Lind — Bohanon Maxin.lal Restraint 4
Technique

Lind — Bohanon Police K9 Bite 1
Lind — Bohanon Taser 16
Linden Hills Bodily Force 22
Linden Hills Chemical Irritant 1
Linden Hills Improvised Weapon 1
Linden Hills Less Lethal 1
Linden Hills Taser 1
Logan Park Bodily Force 20
Logan Park Chemical Irritant 1
Logan Park %iiﬁ:ifesuamt 3
Logan Park Police K9 Bite 1
Logan Park Taser 3
Longfellow Bodily Force 99
Longfellow Chemical Irritant 30
Longfellow Gun Point Display 2
Longfellow Less Lethal 21
Longfellow %ii?;:lllfesnaint 1
Longfellow Police K9 Bite 1
Longfellow Taser 16
Loring Park Bodily Force 287
Loring Park Chemical Irritant 23
Loring Park Gun Point Display 3
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Loring Park Improvised Weapon

Loring Park Less Lethal

Loring Park %iiﬁ:ifesuamt 9
Loring Park Police K9 Bite 2
Loring Park Taser 80
Lowry Hill Bodily Force 34
Lowry Hill Chemical Irritant 7
Lowry Hill Gun Point Display 1
Lowry Hil Maximal Restaint | 5
Lowry Hill Police K9 Bite 1
Lowry Hill Taser 5
Lowry Hill East Bodily Force 367
Lowry Hill East Chemical Irritant 126
Lowry Hill East Improvised Weapon 14
Lowry Hill East Less Lethal 3
Lowry Hill East Police K9 Bite 1
Lowry Hill East Taser 43
Lyndale Bodily Force 194
Lyndale Chemical Irritant 6
Lyndale Gun Point Display 2
Lyndale Improvised Weapon 2
Lyndale Less Lethal 4
Lyndale TMeiiinnilcalllllfestraint 5
Lyndale Police K9 Bite 1
Lyndale Taser 32
Lynnhurst Bodily Force 17
Lynnhurst Police K9 Bite 1
Lynnhurst Taser 4
Marcy Holmes Bodily Force 246
Marcy Holmes Chemical Irritant 24
Marcy Holmes Gun Point Display 2
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Marcy Holmes Less Lethal 5
Marcy Holmes %iiﬁ?:ifemaim 5
Marcy Holmes Taser 28
Marshall Terrace Bodily Force 21
Marshall Terrace %iiﬁ?;llfestramt 1
Marshall Terrace Police K9 Bite 1
Marshall Terrace Taser 4
McKinley Bodily Force 143
McKinley Gun Point Display 1
McKinley Improvised Weapon 4

. Maximal Restraint
McKinley Technique 2
McKinley Police K9 Bite 4
McKinley Taser
Mid — City Industrial | Bodily Force 25
Mid - City Industrial | Chemical Irritant 2
Mid - City Industrial %i’}‘lﬁ‘:lllfes“amt 1
Mid — City Industrial | Taser 4
Midtown Phillips Bodily Force 128
Midtown Phillips Chemical Irritant 3
Midtown Phillips Gun Point Display 1
Midtown Phillips Improvised Weapon 4
Midtown Phillips Police K9 Bite 3
Midtown Phillips Taser 8
Minnehaha Bodily Force 10
Morris Park Bodily Force 6
Morris Park %iiﬁ?;llel{es’[raint 1
Morris Park Police K9 Bite 2
Morris Park Taser 3
Near — North Bodily Force 462
Near — North Chemical Irritant 33
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Near — North Gun Point Display

Near — North Improvised Weapon

Near — North Less Lethal 1

Near — North Max1rpal Restraint 4
Technique

Near — North Police K9 Bite 2

Near — North Taser 48

Nicollet Island — East Baton |

Bank

Nicollet Island — East .

Bank Bodily Force 64

Nicollet Island — East . .

Bank Chemical Irritant 7

Nicollet Island — East . .

Bank Gun Point Display 2

Nicollet Island — East .

Bank Improvised Weapon 1

Nicollet Island — East

Bank Less Lethal 1

Nicollet Island — East | Maximal Restraint 6

Bank Technique

Nicollet Island — East . .

Bank Police K9 Bite 1

Nicollet Island — East Taser 23

Bank

North Loop Bodily Force 253

North Loop Chemical Irritant 27

North Loop Improvised Weapon

North Loop Less Lethal 2

North Loop Max1rpal Restraint 10
Technique

North Loop Taser 30

Northeast Park Bodily Force 52

Northeast Park Chemical Irritant

Northeast Park Less Lethal

Northeast Park Police K9 Bite 1

375




Statistics with R for Data Analysis

Northeast Park Taser 6
Northrop Bodily Force 22
Northrop Improvised Weapon 2
Northrop Taser 2
Page Bodily Force 4
Page Taser 1
Phillips West Bodily Force 113
Phillips West Chemical Irritant 11
Phillips West Gun Point Display 2
Phillips West Improvised Weapon 1
Phillips West Less Lethal 1
Phillips West Taser 19
Powderhorn Park Bodily Force 124
Powderhorn Park Chemical Irritant 14
Powderhorn Park Gun Point Display 2
Powderhorn Park Improvised Weapon
Powderhorn Park Less Lethal 1
Powderhorn Park Maximal Restraint 3
Technique
Powderhorn Park Police K9 Bite 4
Powderhorn Park Taser 22
E?,Z?ig;:;rk ~ EBast Bodily Force 94
E(\)lsell? efg;l:llrk ~East | Chemical Trritant 3
E(:/Zl: i:f)al:;rk ~ Bast Improvised Weapon 1
irizilseRCg:;rk “East |1 oos Lethal 4
Prospect Park — East | Maximal Restraint 7
River Road Technique
R ;
Regina Bodily Force 20
Regina Taser 2
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Seward Bodily Force 88
Seward Chemical Irritant
Seward Less Lethal 2
Seward Maxirpal Restraint 3
Technique
Seward Police K9 Bite 1
Seward Taser 19
Sheridan Bodily Force 26
Sheridan %iiﬁlc?lllfesnamt 2
Sheridan Taser 7
Shingle Creek Bodily Force 42
Shingle Creek %i’}‘lﬁ?;llfes“amt 1
Shingle Creek Taser 5
St. Anthony East Bodily Force 24
St. Anthony East Chemical Irritant
St. Anthony East Gun Point Display 2
St. Anthony East Police K9 Bite
St. Anthony East Taser 4
St. Anthony West Bodily Force 32
St. Anthony West Improvised Weapon 1
St. Anthony West %iiﬁ?;llfesnamt 4
St. Anthony West Taser 10
Standish Bodily Force 28
Standish Chemical Irritant 9
Standish Gun Point Display 1
Standish Improvised Weapon 1
Standish Less Lethal 1
Standish %i’}‘lﬁ?;llfes“amt 2
Standish Police K9 Bite 2
Standish Taser 10
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Steven’s Square —

Loring Heights Bodily Force 174

Steven’s Square — . .

Loring Heights Chemical Irritant 1

Steven's Square - Improvised Weapon 10

Loring Heights p P

Steven’s Square —

Loring Heights Less Lethal 1

Steven’s Square — Maximal Restraint 3

Loring Heights Technique

Steven’s Square — . .

Loring Heights Police K9 Bite 1

Steven’s Square —

Loring Heights Taser 35

Sumner — Glenwood | Bodily Force 31

Sumner — Glenwood | Gun Point Display 2

Sumner — Glenwood Maxmpl Restraint 2
Technique

Sumner — Glenwood | Taser 5

Tangletown Bodily Force 37

Tangletown Chemical Irritant 1

Tangletown Less Lethal

Tangletown Taser 4

University of Min- Bodily Force 3

nesota

University of Min- Chemical Irritant 8

nesota

University of Min- Gun Point Display 2

nesota

University of Min- Maximal Restraint )

nesota Technique

University of Min- Taser ]

nesota

Ventura Village Bodily Force 155

Ventura Village Chemical Irritant 5

Ventura Village Gun Point Display 2

Ventura Village Improvised Weapon 2
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Ventura Village Less Lethal 1
Ventura Village %iiﬁ?:ifes’[raint 4
Ventura Village Police K9 Bite 2
Ventura Village Taser 27
Victory Bodily Force 39
Victory Chemical Irritant
Victory Police K9 Bite
Victory Taser
Waite Park Bodily Force 59
Waite Park Chemical Irritant 2
Waite Park Gun Point Display
Waite Park Maxirpal Restraint 5
Technique
Waite Park Police K9 Bite 1
Waite Park Taser 5
Webber — Camden Bodily Force 163
Webber — Camden Chemical Irritant 16
Webber — Camden Gun Point Display
Webber — Camden Improvised Weapon 2
Webber — Camden %iiﬁ:ifesuamt 3
Webber — Camden Police K9 Bite 1
Webber — Camden Taser 19
Wenonah Bodily Force 33
Wenonah Firearm 1
Wenonah Less Lethal 1
Wenonah Taser 7
West Calhoun Bodily Force 12
West Calhoun Taser 1
Whittier Bodily Force 384
Whittier Chemical Irritant 17
Whittier Gun Point Display 6
Whittier Improvised Weapon 12
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Whittier Less Lethal 2
Whittier Maximal Restraint 3
Technique
Whittier Police K9 Bite 1
Whittier Taser 45
Willard — Hay Baton 1
Willard — Hay Bodily Force 256
Willard — Hay Chemical Irritant
Willard — Hay Gun Point Display
Willard — Hay Improvised Weapon
Willard — Hay Police K9 Bite
Willard — Hay Taser 32
Windom Bodily Force 54
Windom Gun Point Display 1
Windom Less Lethal 2
Windom TMeiiinnilcalllllfestraint )
Windom Taser 21
Windom Park Bodily Force 44
Windom Park Chemical Irritant 3
Windom Park Gun Point Display 1
Windom Park Less Lethal 1
Windom Park Police K9 Bite 1
Windom Park Taser 13
We see that:

. The “Bodily Force” type was applied 1688 times in “Downtown
West” compared to 10 times in “Beltrami” and 1 time only in “Hale.”
So “Bodily Force” was applied more in “Downtown West” than in
other neighborhoods.

. The “Chemical Irritant” force type was applied 999 times in
“Downtown West” but never applied in “Beltrami” and “Hale.” So
“Chemical Irritant” was applied more in “Downtown West” than in
other neighborhoods.
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5.2.2. The Proportion

When examining the relation between 2 categorical variables, the proportion or
percentage is preferred over counts because this allows comparison between the
different levels of one categorical variable if they have different sample sizes.

5.2.2.1. The Proportion of Different Employment Statuses in the
2 Genders

To get these proportions, we use the following functions:

The count function with the arguments gender, and employment to
get the count of different employment statuses in males and females.

The drop_na function deletes any rows that contain missings in the
gender or employment status.

The group by function with the gender argument to split the count
results into two, one for males and one for females.

The mutate function creates a new column “proportion” by dividing
the count over the sum of counts for each gender. The sum of
proportions will be 1 or 100% for each gender.

The arrange function with the argument desc(proportion) to arrange
the proportions in descending order. Then we convert the result to a
table as before.

acs12 %>% count(gender, employment) %>% drop_na() %>%

group_by(gender) %>% mutate(proportion = n/sum(n)) %>%

arrange(desc(proportion)) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “The count and proportion of different employment statuses
in males and females of the American Community Survey data”)

Table 5.5. The Count and Proportion of Different Employment Statuses in Males
and Females of the American Community Survey Data

Gender Employment n Proportion
male employed 470 0.5788177
female not in labor force 373 0.4703657
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Gender Employment n Proportion

female employed 373 0.4703657

male not in labor force 283 0.3485222

male unemployed 59 0.0726601

female unemployed 47 0.0592686
We see that:

. The percentage of employed males is 57.9% compared to 47% of
females. So males are more employed than females.

. The percentage of females not in labor force is 47% compared to
34.9% of males. So females are more likely to not be in the labor
force than males.

. The percentage of unemployed males is 7.3% compared to 5.9% of
females. So males are more unemployed than females.

5.2.2.2. The Proportion of Different Employment Statuses in the
Different Races

We use the same functions as above but group by race instead to get the
proportions of employment statuses in each race.

acs12 %>% count(race, employment) %>% drop_na() %>%
group_by(race) %>% mutate(proportion = n/sum(n)) %>%
arrange(desc(proportion)) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “The count and proportion of different employment statuses
in the different races of the American Community Survey data”)

Table 5.6. The Count and Proportion of Different Employment Statuses in the Dif-
ferent Races of the American Community Survey Data

Race Employment n Proportion
other employed 58 0.53703704
asian employed 39 0.53424658
white employed 670 0.53090333
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Race Employment n Proportion
black employed 76 0.46913580
asian not in labor force | 31 0.42465753
white not in labor force | 520 0.41204437
black not in labor force | 66 0.40740741
other not in labor force | 39 0.36111111
black unemployed 20 0.12345679
other unemployed 11 0.10185185
white unemployed 72 0.05705230
asian unemployed 3 0.04109589

We see that:

. The percentage of employed other races is 53.7% compared to

53.4% Asians, 53% Whites, and 46.9% Blacks. So Blacks are less
employed than other races.

. The percentage of Asians not in labor force is 42.5% compared to
41.2% Whites, 40.7% Blacks, and 36% other races. So other races
are less likely to not be in the labor force than other races.

. The percentage of unemployed Blacks is 12.3% compared to 10% of
other races, 5.7% of Whites, and 4.1% of Asians. So Blacks are more
unemployed than other races.

5.2.2.3. The Proportion of Force Types in the Different Races

We use the same functions as above but group by race instead to get the
proportions of the different force types used in each race.

mn_police_use_of force %>% count(race, force_type) %>% drop_na() %>%
group_by(race) %>% mutate(proportion = n/sum(n)) %>%

arrange(desc(proportion)) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “The count and proportion of different force types applied
on different races from the Minneapolis police use of force data”)
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Table 5.7. The Count and Proportion of Different Force Types Applied on Different
Races from the Minneapolis Police Use of Force Data

Race force_type n Proportion
Pacific Bodily Force 5 0.8333333333
Islander
Native .

) Bodily Force 616 0.7857142857
American
White Bodily Force 2,454 0.7842761266
Black Bodily Force 5,519 0.7216265690
Other/Mixed | b 4ity Force 137 0.6682926829
Race
Asian Bodily Force 78 0.6046511628
Asian Chemical Irritant 32 0.2480620155
Other/Mixed | o hical Irritant 50 0.2439024390
Race
Pacific . .

Chemical Irritant 1 0.1666666667

Islander
Black Chemical Irritant 1,033 0.1350679916
Native Taser 104 0.1326530612
American
Asian Taser 17 0.1317829457
White Taser 334 0.1067433685
Black Taser 755 0.0987186192
White Chemical Irritant 191 0.0610418664
Other/Mixed | - (o 12 0.0585365854
Race
Native . .

. Chemical Irritant 18 0.0229591837
American
Native Maximal Restraint
American Technique 14 0.0178571429
White Improvised Weapon 47 0.0150207734
Other/Mixed | ¢ point Display 3 0.0146341463
Race
Black Maximal Restraint 104 0.0135983264

Technique
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Race force_type n Proportion
White Maximal Restraint 42 0.0134228188
Technique

Native Improvised Weapon | 10 0.0127551020
American

Black Improvised Weapon 83 0.0108525105
Native Gun Point Display 8 0.0102040816
American

Native Police K9 Bite 8 0.0102040816
American

Black Gun Point Display 76 0.0099372385
Other/Mixed | 1, e K9 Bite 2 0.0097560976
Race

White Less Lethal 27 0.0086289549
Asian Gun Point Display 1 0.0077519380
Asian Improvised Weapon 1 0.0077519380
Native Less Lethal 6 0.0076530612
American

Black Police K9 Bite 48 0.0062761506
White Police K9 Bite 17 0.0054330457
White Gun Point Display 16 0.0051134548
Other/Mixed |y ovised Weapon | 1 0.0048780488
Race

Black Less Lethal 23 0.0030073222
Black Less Lethal Projectile | 3 0.0003922594
White Baton 1 0.0003195909
Black Baton 2 0.0002615063
Black Firearm 2 0.0002615063
We see that:

. The “Bodily Force” type was applied mostly to Pacific Islanders
(83.3%) compared to 78.6% on Native Americans, 78.4% on
Whites, 72.2% on Blacks, 66.8% on Other/Mixed Races, and 60.5%
on Asians. So “Bodily Force” was applied less frequently to Asians
and more frequently to Pacific Islanders than to other races.

. The “Chemical Irritant” force type was applied to Asians 24.8% of
the time compared to 24.4% on Other/Mixed Races, 16.7% on Pacific
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Islanders, 13.5% on Blacks, 6.1% on Whites, and 2.3% on Native
Americans. So “Chemical Irritant” was applied less frequently to
Native Americans and more frequently to Asians than to other races.

5.2.2.4. The Proportion of Force Types in the Different
Neighborhoods

We use the same functions as above but group by neighborhood instead to get
the proportions of the different force types used in each neighborhood. We also
filter out when the neighborhood is an empty space by using the filter function
with the argument !neighborhood=="."
mn_police_use_of force %>% count(neighborhood, force_type) %>%
filter(!neighborhood=="“") %>%

drop_na() %>%

group_by(neighborhood) %>% mutate(proportion = n/sum(n)) %>%
arrange(desc(proportion)) %>%

flextable() %>%

theme_box () %>%

set_caption(caption = “The count and proportion of different force types applied
in the different neighborhoods from the Minneapolis police use of force data”)

Table 5.8. The Count and Proportion of Different Force Types applied in the Differ-
ent Neighborhoods from the Minneapolis Police use of Force Data

Neighborhood force_type n Proportion

Camden Industrial | Bodily Force 3 1.000000000
Kenny Bodily Force 1 1.000000000
Minnehaha Bodily Force 10 1.000000000
West Calhoun Bodily Force 12 0.923076923
Beltrami Bodily Force 10 0.909090909
Regina Bodily Force 20 0.909090909
Audubon Park Bodily Force 89 0.908163265
Keewaydin Bodily Force 18 0.900000000
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Cleveland Bodily Force 86 0.886597938
Bryant Bodily Force 22 0.880000000
CARAG Bodily Force 154 0.880000000
McKinley Bodily Force 143 0.877300613
Ericsson Bodily Force 14 0.875000000
Shingle Creek Bodily Force 42 0.875000000
Midtown Phillips | Bodily Force 128 0.870748299
Tangletown Bodily Force 37 0.860465116
Corcoran Bodily Force 76 0.853932584
Willard — Hay Bodily Force 256 0.853333333
Linden Hills Bodily Force 22 0.846153846
Northrop Bodily Force 22 0.846153846
Diamond Lake Bodily Force 27 0.843750000
Harrison Bodily Force 130 0.838709677
Bryn — Mawr Bodily Force 15 0.833333333
Hiawatha Bodily Force 39 0.829787234
King Field Bodily Force 72 0.827586207
Northeast Park Bodily Force 52 0.825396825
Near — North Bodily Force 462 0.822064057
Whittier Bodily Force 384 0.817021277
Waite Park Bodily Force 59 0.808219178
Como Bodily Force 105 0.807692308
Hawthorne Bodily Force 403 0.802788845
ECCO Bodily Force 20 0.800000000
Page Bodily Force 4 0.800000000
Jordan Bodily Force 383 0.799582463
East Isles Bodily Force 51 0.796875000
Marcy Holmes Bodily Force 246 0.793548387
Folwell Bodily Force 273 0.791304348
East Phillips Bodily Force 231 0.791095890
Lyndale Bodily Force 194 0.788617886
Wenonah Bodily Force 33 0.785714286
North Loop Bodily Force 253 0.783281734
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Ventura Village Bodily Force 155 0.782828283
Lind — Bohanon Bodily Force 111 0.781690141
Wi =G Indus | godily Force 25 | 0781250000
Webber — Camden | Bodily Force 163 0.779904306
Downtown East Bodily Force 102 0.778625954
Marshall Terrace | Bodily Force 21 0.777777778
Columbia Park Bodily Force 31 0.775000000
vsv‘ggger —Glen- | 5 dily Force 31 0.775000000
Steven’s Square = | i1+ Force 174 | 0.773333333
Loring Heights

Lynnhurst Bodily Force 17 0.772727273
Holland Bodily Force 112 0.772413793
Central Bodily Force 122 0.772151899
Phillips West Bodily Force 113 0.768707483
Bancroft Bodily Force 23 0.766666667
Elliot Park Bodily Force 215 0.759717314
Seward Bodily Force 88 0.758620690
Fulton Bodily Force 15 0.750000000
St. Anthony East | Bodily Force 24 0.750000000
Sheridan Bodily Force 26 0.742857143
Kenwood Bodily Force 17 0.739130435
Victory Bodily Force 39 0.735849057
Cooper Bodily Force 8 0.727272727
Powderhorn Park | Bodily Force 124 0.725146199
East Harriet Bodily Force 15 0.714285714
Logan Park Bodily Force 20 0.714285714
Bottineau Bodily Force 7 0.700000000
Windom Park Bodily Force 44 0.698412698
Loring Park Bodily Force 287 0.693236715
Howe Bodily Force 29 0.690476190
St. Anthony West | Bodily Force 32 0.680851064
Lowry Hill Bodily Force 34 0.680000000
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Armatage Bodily Force 19 0.678571429
Windom Bodily Force 54 0.675000000
E;Z%S;ﬁ;d Bodily Force 94 | 0.671428571
g:jflr ~ Isles— Bodily Force 4 0.666666667
Cedar Riverside Bodily Force 136 0.663414634
Lowry Hill East Bodily Force 367 0.662454874
Field Bodily Force 10 0.625000000
&‘:glf:(‘)g of Bodily Force 32 | 0.615384615
g;‘;?gztnfand ~ | Bodily Force 64 0.603773585
Longfellow Bodily Force 99 0.582352941
Downtown West Bodily Force 1,688 | 0.576502732
Standish Bodily Force 28 0.518518519
Hale Bodily Force 1 0.500000000
Hale Taser 1 0.500000000
Morris Park Bodily Force 0.500000000
Field Taser 0.375000000
Downtown West Chemical Irritant 999 0.341188525
g:gir “Isles— | Chemical Irritant 2 0.333333333
Windom Taser 21 0.262500000
Morris Park Taser 3 0.250000000
Lowry Hill East Chemical Irritant 126 0.227436823
g;‘;:lﬁfvte}:?;;d Taser 31| 0221428571
g;‘;?gzt nfland " | Taser 23 0216981132
Armatage Taser 0.214285714
Howe Taser 0.214285714
St. Anthony West | Taser 10 0.212765957
Windom Park Taser 13 0.206349206
Fulton Taser 4 0.200000000
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Page Taser 1 0.200000000
Sheridan Taser 7 0.200000000
Loring Park Taser 80 0.193236715
East Harriet Taser 4 0.190476190
Standish Taser 10 0.185185185
Downtown East Taser 24 0.183206107
Cooper Police K9 Bite 0.181818182
Lynnhurst Taser 0.181818182
Longfellow Chemical Irritant 30 0.176470588
Bryn — Mawr Taser 0.166666667
Morris Park Police K9 Bite 0.166666667
Standish Chemical Irritant 0.166666667
Wenonah Taser 0.166666667
Elliot Park Taser 47 0.166077739
Seward Taser 19 0.163793103
Efgﬁg;g?g‘;ﬁr: | Taser 35 | 0.155555556
University of . .

Minnesota Chemical Irritant 8 0.153846154
ppversity of Taser 8 0.153846154
Cedar Riverside Chemical Irritant 31 0.151219512
Hiawatha Taser 7 0.148936170
Marshall Terrace | Taser 0.148148148
Central Taser 23 0.145569620
Holland Taser 21 0.144827586
Lowry Hill Chemical Irritant 7 0.140000000
Ventura Village Taser 27 0.136363636
Bancroft Chemical Irritant 4 0.133333333
Lyndale Taser 32 0.130081301
Phillips West Taser 19 0.129251701
Powderhorn Park | Taser 22 0.128654971
Columbia Park | Miaximal Restraint Tech- 1 4 0.125000000

nique
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Mid — City Indus-

trial Taser 4 0.125000000
St. Anthony East | Taser 4 0.125000000
vsv‘;‘:éler ~Glet | Tager 5 0.125000000
Longfellow Less Lethal 21 0.123529412
ECCO Taser 3 0.120000000
Cedar Riverside Taser 24 0.117073171
Como Taser 15 0.115384615
Victory Chemical Irritant 0.113207547
Victory Taser 0.113207547
Lind — Bohanon Taser 16 0.112676056
Logan Park x;z;mal Restraint Tech- 3 0.107142857
Logan Park Taser 3 0.107142857
Willard — Hay Taser 32 0.106666667
East Phillips Taser 31 0.106164384
Shingle Creek Taser 5 0.104166667
Jordan Taser 48 0.100208768
Bottineau Chemical Irritant 1 0.100000000
Bottineau Police K9 Bite 1 0.100000000
Bottineau Taser 1 0.100000000
Lowry Hill Taser 5 0.100000000
Hawthorne Chemical Irritant 49 0.097609562
Whittier Taser 45 0.095744681
Northeast Park Taser 6 0.095238095
Longfellow Taser 16 0.094117647
Diamond Lake Taser 0.093750000
East Isles Taser 0.093750000
Tangletown Taser 0.093023256
North Loop Taser 30 0.092879257
Beltrami Less Lethal 1 0.090909091
Cooper Chemical Irritant 1 0.090909091
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Regina Taser 2 0.090909091
Webber — Camden | Taser 19 0.090909091
Marcy Holmes Taser 28 0.090322581
Folwell Taser 31 0.089855072
Kenwood Chemical Irritant 2 0.086956522
Kenwood Maximal Restraint Tech- | 0.086956522
nique
Near — North Taser 48 0.085409253
St. Anthony West x;z;mal Restraint Tech- | 0.085106383
North Loop Chemical Irritant 27 0.083591331
Morris Park x;l’;;mal Restraint Tech- | 0.083333333
Powderhorn Park | Chemical Irritant 14 0.081871345
King Field Il\l’il("l‘:l‘;mal Restraint Tech- | 0.080459770
Bryant Police K9 Bite 0.080000000
ECCO Chemical Irritant 0.080000000
Lowry Hill East Taser 43 0.077617329
Marcy Holmes Chemical Irritant 24 0.077419355
Northrop Improvised Weapon 0.076923077
Northrop Taser 0.076923077
West Calhoun Taser 0.076923077
Webber — Camden | Chemical Irritant 16 0.076555024
Phillips West Chemical Irritant 11 0.074829932
CARAG Taser 12 0.068571429
Waite Park fl’iljl‘l’l‘;mal Restraint Tech- - 5 0.068493151
Waite Park Taser 0.068493151
Corcoran Taser 0.067415730
Bancroft Improvised Weapon 0.066666667
g;zi’gztnfand " | Chemical Irritant 7 0.066037736
Downtown West Taser 190 0.064890710
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Hawthorne Taser 32 0.063745020
Central Chemical Irritant 10 0.063291139
East Isles Chemical Irritant 4 0.062500000
Ericsson Improvised Weapon 0.062500000
Ericsson Taser 1 0.062500000
2’{;‘: — City Indus= | o ical Trritant 2 0.062500000
St. Anthony East | Gun Point Display 0.062500000
Audubon Park Taser 0.061224490
Near — North Chemical Irritant 33 0.058718861
Sheridan xgiimal Restraint Tech- | 0.057142857
I];I:S:E)geatnlksland x;z;mal Restraint Tech 6 0.056603774
Loring Park Chemical Irritant 23 0.055555556
McKinley Taser 9 0.055214724
East Phillips Chemical Irritant 16 0.054794521
Midtown Phillips | Taser 8 0.054421769
Harrison Chemical Irritant 8 0.051612903
Harrison Taser 8 0.051612903
Columbia Park Taser 2 0.050000000
Fulton Improvised Weapon 1 0.050000000
Keewaydin Chemical Irritant 1 0.050000000
Keewaydin x;’;mal Restraint Tech- | 0.050000000
T e L
stl::ger —Glen- | Gun Point Display 2 0.050000000
Svlcl)rcr)l(riler — Glen- x;l);mal Restraint Tech- ’ 0.050000000
East Harriet Gun Point Display 1 0.047619048
East Harriet Improvised Weapon 1 0.047619048
Howe Police K9 Bite 2 0.047619048
Windom Park Chemical Irritant 3 0.047619048
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East Isles Improvised Weapon 3 0.046875000
Folwell Chemical Irritant 16 0.046376812
King Field Improvised Weapon 4 0.045977011
Lynnhurst Police K9 Bite 0.045454545
ifg;g;ﬁ?gﬁr: ~ | Improvised Weapon 10| 0.044444444
Kenwood Improvised Weapon 1 0.043478261
Kenwood Taser 1 0.043478261
Cleveland Taser 4 0.041237113
Bryant Taser 1 0.040000000
Lowry Hill i’i[;l’imal Restraint Tech- | 0.040000000
Elliot Park Chemical Irritant 11 0.038869258
Linden Hills Chemical Irritant 1 0.038461538
Linden Hills Improvised Weapon 1 0.038461538
Linden Hills Less Lethal 1 0.038461538
Linden Hills Taser 1 0.038461538
pversity of Gun Point Display 2 0.038461538
ﬁr:;;e;:gg of x;zémal Restraint Tech- ) 0.038461538
Victory Police K9 Bite 2 0.037735849
Marshall Terrace x;z;mal Restraint Tech- | 0.037037037
Marshall Terrace | Police K9 Bite 1 0.037037037
Standish x;’;mal Restraint Tech- | 0.037037037
Standish Police K9 Bite 2 0.037037037
Whittier Chemical Irritant 17 0.036170213
Armatage Chemical Irritant 1 0.035714286
Armatage x;zémal Restraint Tech- | 0.035714286
Armatage Police K9 Bite 1 0.035714286
Logan Park Chemical Irritant 1 0.035714286
Logan Park Police K9 Bite 1 0.035714286
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Lind — Bohanon Chemical Irritant 5 0.035211268
Holland Less Lethal S 0.034482759
King Field Taser 3 0.034482759
Bancroft Taser 1 0.033333333
Northeast Park Chemical Irritant 2 0.031746032
Northeast Park Less Lethal 2 0.031746032
Jordan Chemical Irritant 15 0.031315240
Diamond Lake Chemical Irritant 1 0.031250000
Diamond Lake Improvised Weapon 1 0.031250000
ﬁﬁ — City Indus- Ill/i[gzimal Restraint Tech- | 0.031250000
St. Anthony East | Chemical Irritant 1 0.031250000
St. Anthony East | Police K9 Bite 1 0.031250000
North Loop x;’;mal Restraint Tech- 10 |0.030959752
Como Gun Point Display 4 0.030769231
Audubon Park Chemical Irritant 0.030612245
Folwell Improvised Weapon 10 0.028985507
g;‘;:‘;ff\gﬁ;d Less Lethal 4 0.028571429
Lind — Bohanon xgiimal Restraint Tech- |, 0.028169014
Holland Chemical Irritant 0.027586207
Waite Park Chemical Irritant 0.027397260
Midtown Phillips | Improvised Weapon 0.027210884
Jordan Improvised Weapon 13 0.027139875
Seward Chemical Irritant 3 0.025862069
Seward x;z;mal Restraint Tech- 3 0.025862069
Whittier Improvised Weapon 12 0.025531915
Lowry Hill East Improvised Weapon 14 0.025270758
Ventura Village Chemical Irritant 5 0.025252525
Columbia Park Less Lethal 1 0.025000000
Columbia Park Police K9 Bite 1 0.025000000
Windom Less Lethal 2 0.025000000
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Maximal Restraint Tech-

Windom nique 2 0.025000000
McKinley Improvised Weapon 4 0.024539877
McKinley Police K9 Bite 4 0.024539877
Lyndale Chemical Irritant 6 0.024390244
Webber — Camden | Gun Point Display 5 0.023923445
Howe Gun Point Display 1 0.023809524
Howe Improvised Weapon 1 0.023809524
Wenonah Firearm 1 0.023809524
Wenonah Less Lethal 1 0.023809524
Powderhorn Park | Police K9 Bite 4 0.023391813
Tangletown Chemical Irritant 1 0.023255814
Tangletown Less Lethal 1 0.023255814
Downtown East Chemical Irritant 3 0.022900763
CARAG Chemical Irritant 4 0.022857143
Corcoran Chemical Irritant 2 0.022471910
Loring Park x;z;mal Restraint Tech- 9 0.021739130
g;‘;:‘;ff\gﬁ;d Chemical Irritant 3 0.021428571
Hiawatha Police K9 Bite 1 0.021276596
St. Anthony West | Improvised Weapon 1 0.021276596
Shingle Creek Il\l’ilgzl‘;mal Restraint Tech- 1 0.020833333
Cleveland x;’;mal Restraint Tech- 2 0.020618557
Cleveland Police K9 Bite 2 0.020618557
East Phillips Gun Point Display 6 0.020547945
Midtown Phillips | Chemical Irritant 3 0.020408163
Midtown Phillips | Police K9 Bite 3 0.020408163
Lyndale xgiimal Restraint Tech- 5 0.020325203
Ventura Village x;z;mal Restraint Tech- |, 0.020202020
Lowry Hill Gun Point Display 1 0.020000000
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Lowry Hill Police K9 Bite 1 0.020000000
Cedar Riverside E’i[;zimal Restraint Tech- |, 0.019512195
Harrison Gun Point Display 3 0.019354839
Harrison Il\l’ilgzl‘;mal Restraint Tech- | 5 0.019354839
g;‘s’fg?nlksland = | Gun Point Display 2 0.018867925
Standish Gun Point Display 1 0.018518519
Standish Improvised Weapon 1 0.018518519
Standish Less Lethal 1 0.018518519
Powderhorn Park x;z;mal Restraint Tech- | 5 0.017543860
Folwell Gun Point Display 6 0.017391304
Folwell Police K9 Bite 6 0.017391304
Seward Less Lethal 2 0.017241379
CARAG Improvised Weapon 3 0.017142857
Lyndale Less Lethal 4 0.016260163
Marcy Holmes Less Lethal 5 0.016129032
Marcy Holmes x;z;mal Restraint Tech- 5 0.016129032
Northeast Park Police K9 Bite 1 0.015873016
Windom Park Gun Point Display 1 0.015873016
Windom Park Less Lethal 1 0.015873016
Windom Park Police K9 Bite 1 0.015873016
Como Chemical Irritant 2 0.015384615
Como Improvised Weapon 2 0.015384615
Como fl’iljl‘l’l‘;mal Restraint Tech- | 0.015384615
Downtown East x;z;mal Restraint Tech- | 0.015267176
Cedar Riverside Gun Point Display 3 0.014634146
Cedar Riverside Less Lethal 3 0.014634146
Cedar Riverside Police K9 Bite 3 0.014634146
Jordan Gun Point Display 7 0.014613779
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Maximal Restraint Tech-

Jordan nique 7 0.014613779
Loring Park Less Lethal 6 0.014492754
Webber — Camden | Miaximal Restraint Tech- 1 5 0.014354067
nique
Lind — Bohanon Gun Point Display 0.014084507
Lind — Bohanon Improvised Weapon 0.014084507
East Phillips x;imal Restraint Tech- | 0.013698630
Waite Park Gun Point Display 1 0.013698630
Waite Park Police K9 Bite 1 0.013698630
Phillips West Gun Point Display 0.013605442
EgerZ§g’;I Siqgl;lalrse - Ill/i[gz;mal Restraint Tech- 3 0.013333333
Willard — Hay Gun Point Display 4 0.013333333
Harrison Improvised Weapon 2 0.012903226
Whittier Gun Point Display 6 0.012765957
Central Gun Point Display 2 0.012658228
Windom Gun Point Display 1 0.012500000
McKinley x;z;mal Restraint Tech- | 0.012269939
Hawthorne Improvised Weapon 6 0.011952191
Longfellow Gun Point Display 2 0.011764706
Powderhorn Park | Gun Point Display 2 0.011695906
King Field Police K9 Bite 1 0.011494253
Corcoran Firearm 1 0.011235955
Corcoran Gun Point Display 1 0.011235955
Corcoran Improvised Weapon 1 0.011235955
Corcoran Less Lethal 1 0.011235955
Corcoran x;z;mal Restraint Tech- | 0.011235955
Near — North Gun Point Display 0.010676157
Near — North Improvised Weapon 0.010676157
Elliot Park Less Lethal 0.010600707
Elliot Park Maximal Restraint Tech- | 5 0.010600707

nique
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Cleveland Chemical Irritant 1 0.010309278
Cleveland Gun Point Display 1 0.010309278
Cleveland Improvised Weapon 1 0.010309278
Ventura Village Gun Point Display 2 0.010101010
Ventura Village Improvised Weapon 2 0.010101010
Ventura Village Police K9 Bite 2 0.010101010
Willard — Hay Police K9 Bite 3 0.010000000
Hawthorne Gun Point Display 5 0.009960159
Loring Park Improvised Weapon 4 0.009661836
Webber — Camden | Improvised Weapon 2 0.009569378
Nicollet Island —
East Bank Baton 1 0.009433962
Nicollet Island — .
East Bank Improvised Weapon 1 0.009433962
Nicollet Island —
East Bank Less Lethal 1 0.009433962
Nicollet Island — . .
East Bank Police K9 Bite 1 0.009433962
Folwell Maximal Restraint Tech- 3 0.008695652
nique
Seward Police K9 Bite 1 0.008620690
Jordan Police K9 Bite 4 0.008350731
Lyndale Gun Point Display 2 0.008130081
Lyndale Improvised Weapon 2 0.008130081
Loring Park Gun Point Display 3 0.007246377
Prospect Park — .
Fast River Road Improvised Weapon 1 0.007142857
Near — North Maximal Restraint Tech- | 0.007117438
nique
Elliot Park Improvised Weapon 2 0.007067138
Lind — Bohanon Less Lethal Projectile 1 0.007042254
Lind — Bohanon Police K9 Bite 1 0.007042254
Holland Gun Point Display 1 0.006896552
Holland Maximal Restraint Tech- | 0.006896552
nique
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Holland Police K9 Bite 1 0.006896552
East Phillips Police K9 Bite 2 0.006849315
Midtown Phillips | Gun Point Display 1 0.006802721
Phillips West Improvised Weapon 1 0.006802721
Phillips West Less Lethal 1 0.006802721
Willard — Hay Chemical Irritant 2 0.006666667
Willard — Hay Improvised Weapon 2 0.006666667
Downtown West x;z;mal Restraint Tech- 1 15| 9006489071
Harrison Police K9 Bite 0.006451613
Marcy Holmes Gun Point Display 2 0.006451613
Whittier x;z;mal Restraint Tech- 3 0.006382979
Central Police K9 Bite 0.006329114
North Loop Less Lethal 2 0.006191950
McKinley Gun Point Display 1 0.006134969
Hawthorne fl’iljl‘l’l‘;mal Restraint Tech- | 5 0.005976096
Longfellow x;z;mal Restraint Tech- 1 0.005882353
Longfellow Police K9 Bite 1 0.005882353
Powderhorn Park | Improvised Weapon 1 0.005847953
Powderhorn Park | Less Lethal 1 0.005847953
Downtown West Improvised Weapon 17 0.005806011
CARAG Gun Point Display 1 0.005714286
CARAG Police K9 Bite 1 0.005714286
Lowry Hill East Less Lethal 3 0.005415162
Ventura Village Less Lethal 1 0.005050505
Cedar Riverside Improvised Weapon 1 0.004878049
Loring Park Police K9 Bite 2 0.004830918
Webber — Camden | Police K9 Bite 1 0.004784689
ifgﬁg;:ﬁg‘ﬁe | Chemical Irritant 1 0.004444444
Steven's Square = | 1 1 ethal 1 0.004444444

Loring Heights
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ig;g;:ﬁg‘f: ~ | Police K9 Bite 1 0.004444444
Whittier Less Lethal 2 0.004255319
Jordan Less Lethal Projectile 2 0.004175365
Lyndale Police K9 Bite 1 0.004065041
Hawthorne Less Lethal 2 0.003984064
Hawthorne Police K9 Bite 2 0.003984064
Near — North Police K9 Bite 2 0.003558719
Elliot Park Baton 1 0.003533569
Elliot Park Gun Point Display 1 0.003533569
East Phillips Baton 1 0.003424658
East Phillips Improvised Weapon 1 0.003424658
Willard — Hay Baton 1 0.003333333
North Loop Improvised Weapon 1 0.003095975
Downtown West Gun Point Display 8 0.002732240
Downtown West Less Lethal 7 0.002390710
Whittier Police K9 Bite 1 0.002127660
Lowry Hill East Police K9 Bite 1 0.001805054
Near — North Less Lethal 1 0.001779359
We see that:

. The “Bodily Force” type was applied at all times in “Camden Industrial,”

“Kenny,” and “Minnehaha” with a percentage of 100%, but they have
sample sizes of 3,1, and 10 respectively for this force type.

The “Bodily Force” type was applied less frequently in “Hale,”
“Morris Park,” “Standish,” and “Downtown West” with a percentage
0t 50%,50%,51.9%, and 57.7% but they have sample sizes of 1,6,28
and 1688 respectively for this force type.

The “Chemical Irritant” force type was applied mostly in
“Downtown West,” “Cedar — Isles — Dean,” and “Lowry Hill East”
with a percentage of 34.1%,33.3%, and 22.7% respectively, but they
have sample sizes of 999,2, and 126 respectively for this force type.
The “Chemical Irritant” type was applied less frequently in
“Steven’s Square — Loring Heights,” “Willard — Hay,” “Cleveland,”
and “Como” with a percentage of 0.44%,0.67%,1%, and 1.5%
respectively, but they have sample sizes of 1,2,1,2 respectively for
this force type.
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5.2.2.5. The Proportion of Force Types in the 10 Most Frequent
Neighborhoods

Instead of looking at the 86 different neighborhoods, we can look at the 10 most
frequent neighborhoods using the fct lump n function with the argument n=10
within the mutate function. We can see the result of this function by using the
count function with the argument neighborhood after these functions.
mn_police_use_of force %>%

mutate(neighborhood= fct_Lump_n(neighborhood, n=10)) %>%

count(neighborhood) %>%

flextable() %>%

theme_box() %>%

set_caption(caption = “The count of the 16 most frequent neighborhoods from the
Minneapolis police use of force data”)

Table 5.9. The Count of the 10 Most Frequent Neighborhoods from the Minneapo-
lis Police use of Force Data

Neighborhood n
Downtown West 2,928
Folwell 345
Hawthorne 502
Jordan 479
Loring Park 414
Lowry Hill East 554
Marcy Holmes 310
Near — North 562
North Loop 323
Whittier 470
Other 6,038

So the 10 most frequent neighborhoods are “Downtown West,” “Folwell,”
“Hawthorne,” “Jordan,” “Loring Park,” “Lowry Hill East,” “Marcy Holmes,”
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“Near —North,” “North Loop,” “Whittier.” All other less frequent neighborhoods
were lumped in the “Other” category with a frequency of 6038.

So we use the mutate and fct lump n functions before all previous functions
to get the proportions of the different force types used in these 11 neighborhoods
(with the extra one for the “Other” category).
mn_police_use_of_force %>%

mutate(neighborhood= fct_Lump_n(neighborhood, n=10)) %>%
count(neighborhood, force_type) %>%

filter(!neighborhood==“") %>%

drop_na() %>%

group_by(neighborhood) %>% mutate(proportion = n/sum(n)) %>%
arrange(desc(proportion)) %>%

flextable() %>%

theme_box () %>%

set_caption(caption = “The count and proportion of different force types applied
in 11 neighborhoods from the Minneapolis police use of force data™)

Table 5.10. The Count and Proportion of Different Force Types Applied in 11
Neighborhoods from the Minneapolis Police Use of Force Data

Neighborhood force_type n Proportion

Near — North Bodily Force 462 0.8220640569
Whittier Bodily Force 384 0.8170212766
Hawthorne Bodily Force 403 0.8027888446
Jordan Bodily Force 383 0.7995824635
Marcy Holmes Bodily Force 246 0.7935483871
Folwell Bodily Force 273 0.7913043478
North Loop Bodily Force 253 0.7832817337
Other Bodily Force 4,684 0.7757535608
Loring Park Bodily Force 287 0.6932367150
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Lowry Hill East Bodily Force 367 0.6624548736
Downtown West Bodily Force 1,688 0.5765027322
Downtown West Chemical Irritant | 999 0.3411885246
Lowry Hill East Chemical Irritant 126 0.2274368231
Loring Park Taser 80 0.1932367150
Other Taser 732 0.1212321961
Jordan Taser 48 0.1002087683
Hawthorne Chemical Irritant | 49 0.0976095618
Whittier Taser 45 0.0957446809
North Loop Taser 30 0.0928792570
Marcy Holmes Taser 28 0.0903225806
Folwell Taser 31 0.0898550725
Near — North Taser 48 0.0854092527
North Loop Chemical Irritant | 27 0.0835913313
Lowry Hill East Taser 43 0.0776173285
Marcy Holmes Chemical Irritant | 24 0.0774193548
Downtown West Taser 190 0.0648907104
Hawthorne Taser 32 0.0637450199
Near — North Chemical Irritant | 33 0.0587188612
Loring Park Chemical Irritant | 23 0.0555555556
Folwell Chemical Irritant 16 0.0463768116
Other Chemical Irritant | 264 0.0437230871
Whittier Chemical Irritant | 17 0.0361702128
Jordan Chemical Irritant 15 0.0313152401
North Loop %iﬁ?ifemmt 10 0.0309597523
Folwell g]‘g;’:fed 10 0.0289855072
Jordan m‘ggfed 13 0.0271398747
Whittier {;‘eig’;’fed 12 00255319149
Lowry Hill East ;n,“egr;’;’:ed 14 0.0252707581
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Maximal Restraint

Loring Park Technique 9 0.0217391304

Other Maximal Restraint | 1,7, | 5177210997
Technique

Folwell Gun Point Display 0.0173913043

Folwell Police K9 Bite 0.0173913043

Marcy Holmes Less Lethal 0.0161290323

Marcy Holmes Maximal Restraint | § 0.0161290323
Technique

Jordan Gun Point Display | 7 0.0146137787

Jordan Maximal Restraint | 0.0146137787
Technique

Loring Park Less Lethal 0.0144927536

Whittier Gun Point Display 0.0127659574

Hawthorne Improvised 6 0.0119521912
Weapon

Other Improvised 65 0.0107651540
Weapon

Near — North Gun Point Display | 6 0.0106761566

Near — North improvised 6 0.0106761566
Weapon

Other Gun Point Display | 61 0.0101026830

Hawthorne Gun Point Display | 5 0.0099601594

Other Less Lethal 59 0.0097714475

Other Police K9 Bite 59 0.0097714475

Loring Park Improvised 4 0.0096618357
Weapon

Folwell Maximal Restraint | 5 0.0086956522
Technique

Jordan Police K9 Bite 4 0.0083507307

Loring Park Gun Point Display 0.0072463768

Near — North Maximal Restraint |, 0.0071174377
Technique

Downtown West Maximal Restraint | ;o 0.0064890710
Technique

Marcy Holmes Gun Point Display | 2 0.0064516129
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Maximal Restraint

Whittier Technique 3 0.0063829787
North Loop Less Lethal 2 0.0061919505
Hawthorne %i’}ﬁl:gemamt 3 0.0059760956
Downtown West i;?eig’gfed 17 0.0058060109
Lowry Hill East Less Lethal 0.0054151625
Loring Park Police K9 Bite 0.0048309179
Whittier Less Lethal 0.0042553191
Jordan ;eciisljethal Pro-—1 0.0041753653
Hawthorne Less Lethal 0.0039840637
Hawthorne Police K9 Bite 0.0039840637
Near — North Police K9 Bite 0.0035587189
North Loop ig:;’ovr‘lsed 1 0.0030959752
Downtown West Gun Point Display | 8 0.0027322404
Downtown West Less Lethal 7 0.0023907104
Whittier Police K9 Bite 1 0.0021276596
Lowry Hill East Police K9 Bite 1 0.0018050542
Near — North Less Lethal 1 0.0017793594
Other Baton 4 0.0006624710
Other Firearm 2 0.0003312355
Other jLe‘ZiisleLethal Pro-— 14 0.0001656178
We see that:

. The “Bodily Force” type was applied most frequently in “Near
— North,” “Whittier,” and “Hawthorne” with a percentage of

82.2%,81.7%, and 80.3% respectively.

. The “Bodily Force” type was applied less frequently in “Loring
Park,” “Lowry Hill East,” and “Downtown West” with a percentage
0f 69.3%,66.2%, and 57.7% respectively.

. The “Chemical Irritant” force type was applied mostly in “Downtown
West,” “Lowry Hill East,” and “Hawthorne” with a percentage of

34.1%, 22.7%, and 9.8% respectively.
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The “Chemical Irritant” type was applied less frequently in “Other,”
“Whittier,” and “Jordan” with a percentage of 4.4%, 3.6%, and 3.1%
respectively.

5.3. SUMMARY PLOTS

5.3.1. Stacked Bar Plot

In the stacked bar plot, each bar of one categorical variable has a height equal
to the number of rows or observations at each level of the other categorical

variable.

5.3.1.1. Bar Plot of the Count of Different Employment Statuses
in the 2 Genders

To draw this plot, we use the following functions:

The count function, applied on “acs12” data, with the arguments
gender, and employment to get the number of rows for each gender
and employment status.

The ggplot function with the argument, aes(x = gender, fill =
employment, y = n), to plot the gender on the x-axis, n or count on
the y-axis, and different fill color for each employment status.

The geom col function to plot the bar plot with the arguments,
position = “stack” to plot a stacked bar plot, and color = “Black” so
the bar plot with its compartments has a black border.

The labs function to add a title, x-axis title, y-axis title, and legend
title.

The theme_classic and theme functions as described before.

acsi2 %>% count(gender, employment) %>%

ggplot(aes(x = gender, fill = employment, y = n)) +

geom_col (position = “stack,” color = “Black”)+

labs(title = “Stacked bar plot of different employment statuses in males and
females \nof the American Community Survey data,”

y = “Count,” x = “Gender,” fill = “Employment”)+
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theme_classic()+

theme(plot.title = element_text(hjust = 0.5))

Stacked bar plot of differant employment statuses in males and females
of the American Community Survey data

1000
Emplayment
3o l“:,.”:r
o
male femate
Gender

We see that:

. There are 2 bars one for males and one for females. The height of a
male’s bar is higher than that of a female so there is a higher count
of males in our data than females.

. Each bar is divided into 4 compartments, 3 for the employment
statuses and 1 for the NA or missing values.

. The largest compartment in males was for the employed compartment

which is larger than the employed compartment in females, so we
have a higher count of employed males than employed females in
our data.
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The not in labor force compartment in females is larger than that of
males, so we have a higher count of females not in the labor force
than males not in the labor force in our data.

The unemployed compartment in males is larger than that of females,
so we have a higher count of unemployed males than unemployed
females in our data.

The missing “NA” compartment in males is larger than that of
females, so we have a higher count of missing employment status in
males than that of females in our data.

To create a more informative plot, we can:

Delete the missing “NA” compartment using the drop_na function
after the count function.

Add a count label to each compartment by using the geom_text
function with the arguments:

aes(label = n) to plot a count label.

position = position_stack(vjust = 0.5) to vertically justify this count
label to be in the middle of each compartment.

fontface = “bold” so the count labels will have bold fonts.

acs12 %>% count(gender, employment) %>% drop_na() %>%

ggplot(aes(x = gender, fill = employment, y = n)) +

geom_col (position = “stack,” color = “Black™)+

geom_text(aes(label = n),

position = position_stack(vjust = 0.5),

fontface = “bold”)+

Llabs(title = “Stacked bar plot of different employment statuses in males and
females with count Llabels\nof the American Community Survey data,”

y = “Count,” x = “Gender,” fill = “Employment”)+

theme_classic()+

theme(plot.title = element_text(hjust = 6.5))
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MkwurpMNdmmeMMhmmmmmqu!wok
the American Community Survey data

el in lsbor torce
unamployed
‘amployed

We see that the count of employed and unemployed males is higher than
that of employed and unemployed females. However, the count of females not
in the labor force is higher than that of males.

5.3.1.2. Bar Plot of the Count of Different Employment Statuses
in the Different Races

We can use the same functions as above to get these counts as a stacked bar plot.
acs12 %>% count(race, employment) %>% drop_na() %>%
ggplot(aes(x = race, fill = employment, y = n)) +

geom_col (position = “stack,” color = “Black™)+

geom_text(aes(lLabel = n),
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position = position_stack(vjust = 0.5),
fontface = “bold”)+

Labs(title = “Stacked bar plot of different employment statuses in the different
races with count Labels\nof the American Community Survey data,”

y = “Count,” x = “Race,” fill = “Employment”)+
theme_classic()+
theme(plot.title = element_text(hjust = 6.5))

Stacked bar plot of different employment statuses in the different races with count labels
of the American Community Survey data

1000
Employment
t notin ladar force
3 unempiayed
‘employed
500
‘white black asian omer
Race
We see that:

. The longest bar was for Whites so Whites have the highest count in
our data, and Asians have the lowest count.

. The counts of different employment statuses become crowded in the
low-frequency races as Blacks, Asians, and others.
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5.3.1.3. Bar Plot of the Count of Different Force Types in the
Different Races

We can use the same functions to draw a bar plot of different force types applied
to the different races. However, because we have 11 different force types, the
count labels will be very crowded for each bar. So we can neglect the count
labels by avoiding using the geom_text function.

mn_police_use_of force %>% count(race, force_type) %>% drop_na() %>%
ggplot(aes(x = race, fill = force type, y = n)) +

geom_col (position = “stack,” color = “Black”)+

Labs(title = “Stacked bar plot of different force types applied on different
races\nfrom the Minneapolis police use of force data,”

y = “Count,” x = “Race,” fill = “Force type”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Stacked bar plot of different force s applied on different races
from the Minneapolis police use of force data
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Bodéy Force
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We see that:

. Blacks have the longest bar so the highest count in the Minneapolis
police use of force data was for the Blacks and the lowest count was
for the Pacific Islanders with the shortest bar.

. Only the “Bodily force” type, “Chemical Irritant” and “Taser” force
types are seen clearly while other force types are difficult to discern
due to low counts.

. The “Bodily force” type was more frequently applied to Blacks,
followed by Whites, Native Americans, Other/Mixed Races, and
Asians.

5.3.1.4. Bar Plot of the Count of Different Force Types in the Dif-
ferent Neighborhoods

To avoid crowding seen before, we will use the fct lump n function to focus
on the 5 most frequent neighborhoods and the 3 most frequent force types. So
the neighborhoods will have 6 levels (5 most frequent neighborhoods+ other
category), while the force type will have 4 levels (3 most frequent force types
and other category).
mn_police_use_of_force %>%

mutate(neighborhood= fct_Lump_n(neighborhood, n=5)) %>%

mutate(force_type = fct_Lump_n(force_type,n = 3)) %>%

count(neighborhood, force_type) %>%

filter(!neighborhood==“") %>%

drop_na() %>%

ggplot(aes(x = neighborhood, fill = force_ type, y = n)) +

geom_col (position = “stack,” color = “Black”™)+

Llabs(title = “Stacked bar plot of 4 force types applied in 6 neighborhoods\n
from the Minneapolis police use of force data,”

y = “Count,” x = “Neighborhood,” fill = “Force type”)+
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theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Stacked bar plot of 4 force types applied in 6 neighborhoods
from the Minneapolis police use of force data

Force type
Bedily Force
Chemical Imtant
Taser
Other

Downtown West Hawihome Joddan Lowry Hill East Near - North Other

We see that:

. The “Other” neighborhood has the longest bar which is expected

because it contains the counts of 81 different neighborhoods.

. The “Bodily Force” type is applied most frequently in the “other”
neighborhood followed by the “Downtown West” then other

neighborhoods.

. The “Chemical Irritant” type is applied most frequently in the
“Downtown West” neighborhood followed by the “Other” then

other neighborhoods.

. The “Taser” type is applied most frequently in the “other”
neighborhood followed by the “Downtown West” and then other

neighborhoods.
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5.3.2. Grouped Bar Plot

In a grouped bar plot, the different bars of one categorical variable are dodged
side-by-side at each level of the other categorical variable.

5.3.2.1. Grouped Bar Plot of the Count of Different Employment
Statuses in the 2 Genders

To draw this plot, we use the same functions as that in section 5.3.1.1. except
that we use the argument position = “dodge” instead of “stack” within the
geom_col function.

acs12 %>% count(gender, employment) %>%

ggplot(aes(x = gender, fill = employment, y = n)) +

geom_col (position = “dodge,” color = “Black™)+

labs(title = “Grouped bar plot of different employment statuses in males and
females \nof the American Community Survey data,”

y = “Count,” x = “Gender,” fill = “Employment”)+
theme_classic()+
theme(plot.title = element_text(hjust = 6.5))

Grouped bar plot of different employment staluses in males and females
of the American Community Survey data
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We see that:

Each gender has 4 bars, 3 for the employment statuses and 1 for the
NA or missing values.

The tallest bar in males was for the employed status which is taller
than that in females, so we have a higher count of employed males
than employed females in our data.

The not in labor force bar for females is taller than that of males, so
we have a higher count of females not in the labor force than males
not in the labor force in our data.

The unemployed bar in males is taller than that of females, so we
have a higher count of unemployed males than unemployed females
in our data.

The missing “NA” bar in males is taller than that of females, so we
have a higher count of missing employment status in males than that
of females in our data.

To create a more informative plot, we can:

Delete the missing “NA” compartment using the drop_na function
after the count function.

Add a count label to each compartment by using the geom_label
function (draws a rectangle behind the text, making it easier to read)
with the arguments:

aes(label = n) to plot a count label.

position = position_dodge(width = 0.9) to align narrow geom (text
of count) with wider geom (the wide position of each gender with 3
bars).

acs12 %>% count(gender, employment) %>% drop_na() %>%

ggplot(aes(x = gender, fill = employment, y = n)) +

geom_col (position = “dodge,” color = “Black™)+

geom_Label (aes(Label = n),

position = position_dodge(width = ©0.9))+

Llabs(title = “Grouped bar plot of different employment statuses in males and
females with count Llabels\nof the American Community Survey data,”

y = “Count,” x = “Gender,” fill = “Employment”)+

theme_classic()+

theme(plot.title = element_text(hjust = 6.5))
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Grouped bar plot of different employment statuses in males and females with count labels
of the American Community Survey data

ol in labor farce
umemployed
emgloyed

Count

male female

We see that the count of employed and unemployed males is higher than
that of employed and unemployed females. However, the count of females not
in the labor force is higher than that of males.

5.3.2.2. Grouped Bar Plot of the Count of Different Employment
Statuses in the Different Races

We can use the same functions as above to get these counts as a grouped bar
plot.

acs12 %>% count(race, employment) %>% drop_na() %>%

ggplot(aes(x = race, fill = employment, y = n)) +

geom_col (position = “dodge,” color = “Black™)+

geom_Label (aes(Label = n),
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position = position_dodge(width = 0.9))+

Labs(title = “Grouped bar plot of different employment statuses in the different
races with count Llabels\nof the American Community Survey data,”
y = “Count,” x = “Race,” fill = “Employment”)+

theme_classic()+

theme(plot.title = element_text(hjust = 0.5))

Grouped bar plot of different employment statuses in the different races with count labels
of the American Community Survey data
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We see that:

The 3 bars of Whites that correspond to “employed,” “unemployed,”
and “not in labor force” statuses are taller than that of other races, so
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Whites have the highest count of all employment statuses than any
other race in our data.

. On the other hand, Asians have the lowest count of all employment
statuses than any other race in our data.

5.3.2.3. Grouped Bar Plot of the Count of Different Force Types
in the Different Races

We can use the same functions to draw a bar plot of different force types applied
to the different races. However, because we have 11 different force types, the
count labels will be very crowded for each race. We can solve that by using the
geom _label repel function from the ggrepel package, so the text labels repel
away from each other and away from the data points. For reproducibility, we
use the argument seed = 123 to add the counts at the same random positions.
Library(ggrepel)
mn_police_use_of force %>% count(race, force_type) %>% drop_na() %>%
ggplot(aes(x = race, fill = force_type, y = n)) +

geom_col (position = “dodge,” color = “Black™)+

geom_Label_repel (aes(Label = n),

position = position_dodge(width = 6.9),

seed = 123)+

Llabs(title = “Grouped bar plot of different force types applied on different
races\nfrom the Minneapolis police use of force data,”

y = “Count,” x = “Race,” fill = “Force type”)+
theme_classic()+

theme(plot.title = element_text(hjust = 0.5))
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Grouped bar plot of different force types applied on different races
from the Minneapolis police use of force data

Force type
Baton
Bodiy Force
Chemical Irritant
Firearm
Gun Poirt Display
Improvised Weapon
- Less Lethal
Less Lethal Projectie
Maximal Restraint Technique
2000 Police KB Bite
Taser

Count

Sl

Aslan Black Natve Amencan  Ofher | Mized Race  Pacific Islander \White
Race

We see that:

. The “Bodily Force” type mostly applied to Blacks (5519) followed
by Whites (2454), Native Americans (616), Other/Mixed Race
(137), Asians (78), and Pacific Islanders (5).

. The “Chemical Irritant” was more frequently applied to Blacks
(1033), followed by Whites (191), Other/Mixed Races (50), Asians
(32), Native Americans (18), and Pacific Islanders (1).

5.3.2.4. Grouped Bar Plot of the Count of Different Force Types
in the Different Neighborhoods

To avoid crowding seen before, we will use the fct lump_n function to focus on
the 5 most frequent neighborhoods. So the neighborhoods will have 6 levels (5
most frequent neighborhoods+ other category).
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mn_police_use_of_force %>%
mutate(neighborhood= fct_Lump_n(neighborhood, n=5)) %>%
count(neighborhood, force_type) %>%
filter(!neighborhood==“") %>%
drop_na() %>%
ggplot(aes(x = neighborhood, fill = force type, y = n)) +
geom_col (position = “dodge,” color = “Black”)+
geom_Label_repel (aes(Label = n),

position = position_dodge(width = 0.9),

seed = 123)+

Llabs(title = “Grouped bar plot of different force types applied 1in 6
neighborhoods\n from the Minneapolis police use of force data,”

y = “Count,” x = “Neighborhood,” fill = “Force type”)+
theme_classic()+

theme(plot.title = element_text(hjust = 0.5))
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Grouped bar plot of different force types applied in 6 neighborhoods
from the Minneapolis police use of force data
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We see that:

The “Bodily Force” type is applied most frequently in the “other”
neighborhood (6127) followed by the “Downtown West” (1688)
then other neighborhoods.

The “Chemical Irritant” type is applied most frequently in the
“Downtown West” neighborhood (999) followed by the “Other”
(371) then other neighborhoods.

The “Taser” type is applied most frequently in the “other”
neighborhood (946) followed by the “Downtown West” (190) then
other neighborhoods.
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5.3.3. Percent Stacked Bar Plot

A percent stacked bar plot is a stacked bar plot where each bar of one categorical
variable represents 100 percent and is filled with the different levels of another
categorical variable. This allows comparison between different levels of one
categorical variable if they have different sample sizes.

5.3.3.1. Percent Stacked Bar Plot of Different Employment Sta-
tuses in the 2 Genders

To draw this plot, we use the following functions:

. The count function, applied on “acs12” data, with the arguments
gender, and employment to get the number of rows for each gender
and employment status.

. The drop_na function deletes any rows that contain missings in the
gender or employment status.

. The group by function with the gender argument to split the count
results into two, one for males and one for females.

. The mutate function creates a new column “proportion” by dividing
the count over the sum of counts for each gender. The sum of
proportions will be 1 or 100% for each gender.

. The ungroup function removes the grouping effect.

. The ggplot function with the argument, aes(x = gender, fill =
employment, y = proportion), to plot the gender on the x-axis,
proportion on the y-axis, and different fill color for each employment
status.

. The geom_col function to plot the bar plot with the arguments,
position = “fill” to plot a percent stacked bar plot, and color =
“Black™ so the bar plot with its compartments has a black border.

. The geom text function to add a percentage label to each
compartment using the arguments:

++ aes(label = percent(proportion)) to convert the proportion to a percentage
label using the percent function from the scales package.

++ position = position_fill(vjust = 0.5) to vertically justify this percentage label
to be in the middle of each compartment.

. The labs function to add a title, x-axis title, y-axis title, and legend
title.
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. The scale_y_continuous function with the argument labels = percent
to convert the proportion label to percentage labels.
. The theme_classic and theme functions as described before.
Library(scales)

acs12 %>% count(gender, employment) %>% drop_na() %>%

group_by(gender) %>% mutate(proportion = n/sum(n)) %>%

ungroup() %>%

ggplot(aes(x = gender, fill = employment, y = proportion)) +

geom_col (position = “fill,” color = “Black”)+

geom_text(aes(label = percent(proportion)),

position = position_fill(vjust = 0.5))+

Labs(title = “Percent stacked bar plot of different employment statuses in males
and females\n of the American Community Survey data,”

y = “Percentage,” x = “Gender,” fill = “Employment”)+

scale_y continuous(labels = percent)+

theme_classic()+

theme(plot.title = element_text(hjust = 6.5))
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Percent stacked bar plot of different employment statuses in males and females
of the American Community Survey data
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We see that:

. There are 2 bars one for males and one for females. The height of
each bar is 100%.

. Males have a higher percentage of employed and unemployed
statuses but a lower percentage of “not in labor force” than females.

5.3.3.2. Percent Stacked Bar Plot of Different Employment Sta-
tuses in the Different Races

To create this plot, we will use the same functions as above and modify them
accordingly to include race instead of gender.

acs12 %>% count(race, employment) %>% drop_na() %>%

group_by(race) %>% mutate(proportion = n/sum(n)) %>%

ungroup() %>%
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ggplot(aes(x = race, fill = employment, y = proportion)) +
geom_col (position = “fill,” color = “Black”)+

geom_text(aes(label = percent(proportion)),

position = position_fill(vjust = 0.5))+

Labs(title = “Percent stacked bar plot of different employment statuses in the
different races\n of the American Community Survey data,”

y = “Percentage,” x = “Race,” fill = “Employment”)+
scale_y continuous(labels = percent)+

theme_classic()+

theme(plot.title = element_text(hjust = 6.5))

Percent stacked bar alut of different employment statuses in the different races
the American Community Survey data
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We see that:

. The highest percentage of employed was found in Other races
(53.7%) and the lowest percentage was found in Blacks (46.91%).

. The highest percentage of unemployed was found in Blacks (12.35%)
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and the lowest percentage was found in Asians (4.11%).

. The highest percentage of “not in labor force” was found in Asians
(42.47%) and the lowest percentage was found in other races
(36.11%).

5.3.3.3. Percent Stacked Bar Plot of Different Force Types in the
Different Races

we use the same above functions applied on the “mn_police use of force”
data and modify them accordingly.

mn_police_use_of force %>% count(race, force_type) %>% drop_na() %>%
group_by(race) %>% mutate(proportion = n/sum(n)) %>%

ungroup() %>%

ggplot(aes(x = race, fill = force_type, y = proportion)) +
geom_col(position = “fill,” color = “Black”)+

geom_text(aes(label = percent(proportion)),

position = position_fill(vjust = 0.5))+

Llabs(title = “Percent stacked bar plot of different force types applied on
different races \nfrom the Minneapolis police use of force data,”

y = “Percentage,” x = “Race,” fill = “Force type”)+

scale_y _continuous(labels = percent)+

theme_classic()+

theme(plot.title = element_text(hjust = 0.5))
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Percent stacked bar plot of different force types applied on different races
from the Minneapolis police use of force data
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We see that the percentage labels are crowded due to the 11 different levels
of force types. Instead, we can focus on the 3 most frequent force types using
the fct lump n as done before.

mn_police_use_of_force %>%

mutate(force_type = fct_Lump_n(force_type, n = 3)) %>%

count(race, force_type) %>% drop_na() %>%
group_by(race) %>% mutate(proportion = n/sum(n)) %>%

ungroup() %>%
ggplot(aes(x = race, fill = force_type, y = proportion)) +

geom_col (position = “fill,” color = “Black”)+

geom_text(aes(label = percent(proportion)),
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position = position_fill(vjust = 0.5))+

Labs(title = “Percent stacked bar plot of 4 force types applied on different
races \nfrom the Minneapolis police use of force data,”

y = “Percentage,” x = “Race,” fill

“Force type”)+
scale_y continuous(labels = percent)+
theme_classic()+

theme(plot.title = element_text(hjust = 0.5))

Percent stacked bar plot of 4 force types applied on different races
from the Minneapolis pelice use of force data
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We see that:

. The other force type includes all force types except “Bodily Force,”
“Chemical Irritant,” and “Taser.”

. The highest percentage of “Bodily Force” was applied to Pacific
Islanders (83.3%) and the lowest percentage was applied to Asians
(60.465%).

. The highest percentage of “Chemical Irritant” was applied to Asians
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(24.8%) and the lowest percentage was applied to Native Americans
(2.3%).

. The highest percentage of “Taser” was applied to Native Americans
(13.3%) and the lowest percentage was applied to Pacific Islanders
(0%), so the compartment of “Taser” disappeared from the Pacific
Islander bar.

5.3.3.4. Percent Stacked Bar Plot of Different Force Types in the
Different Neighborhoods

we use the same above functions applied on the “mn_police use of force” data
and modify them accordingly. We also focus on the 3 most frequent force types
and the 20 most frequent neighborhoods using the fct lump n as done before.
In addition, we plot the different neighborhoods on the y-axis to avoid crowding
them on the x-axis. Finally, we add the argument accuracy = 0.1 inside the
percent function to plot the percentage with 1 decimal place only.
mn_police_use_of_force %>%

mutate(force_type = fct_Lump_n(force_type, n = 3),

neighborhood= fct_Lump_n(neighborhood, n=20)) %>%
count(neighborhood, force_type) %>%

filter(!neighborhood==“") %>%

drop_na() %>%

group_by(neighborhood) %>% mutate(proportion = n/sum(n)) %>%

ungroup() %>%

ggplot(aes(x = proportion, fill = force_type, y = neighborhood)) +
geom_col(position = “fill,” color = “Black”)+

geom_text(aes(lLabel = percent(proportion, accuracy = 0.1)),

position = position_fill(vjust = 0.5))+
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Labs(title = “Percent stacked bar plot of 4 force types applied in 21 neighborhoods
\nfrom the Minneapolis police use of force data,”

y = “Neighborhood,” x = “Percentage,” fill = “Force type”)+
scale_x_continuous(labels = percent)+
theme_classic()+

theme(plot.title = element_text(hjust = 0.5))

L

Percent stacked bar plot of 4 force types applied in 21 neig
from the Minneapolis police use of force data

Force type
Bodily Force
‘Chemical Mritant
0% 25% 50% 5% 100%
We see that:
. The other neighborhood includes all neighborhoods except the 20
listed neighborhoods.
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The highest percentage of “Bodily Force” was applied in the “CARAG”
neighborhood (88%) and the lowest percentage was applied in “Down-
town West” (57.7%).

The highest percentage of “Chemical Irritant” was applied in “Down-
town West” (34.1%) and the lowest percentage was applied in “Ste-
ven’s Square — Loring Heights” (0.4%).

The highest percentage of “Taser” was applied in “Loring Park”
(19.3%) and the lowest percentage was applied in “Hawthorne” (6.4%).

5.3.4. Line Plot

The line plot can show the relation between 2 categorical variables by plotting
the count or percentage of one categorical variable at each level of the other
categorical variable.

5.3.4.1. Line Plot for the Count of Different Employment Statuses
in the 2 Genders

To draw this plot, we use the following functions:

The count function, applied on “acs12” data, with the arguments
gender, and employment to get the number of rows for each gender
and employment status.

The drop_na function deletes any rows that contain missings in the
gender or employment status.

The group by function with the gender argument to split the count
results into two, one for males and one for females.

The mutate function creates a new column “proportion” by dividing
the count over the sum of counts for each gender. The sum of
proportions will be 1 or 100% for each gender.

The ungroup function removes the grouping effect.

The ggplot function with the argument, aes(x = gender, color =
employment, y = n, group = employment), to plot the gender on
the x-axis, n or count on the y-axis, and a different color for each
employment status.

The geom_line function with the argument aes(group = employment)
plots a different line for each employment status.

The geom_point function to plot a point for each count value.

The geom_label repel function with the argument aes(label =n) adds
a count label to each point and the seed argument for reproducibility.

The labs, theme classic, and theme functions as described before.
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acs12 %>% count(gender, employment) %>% drop_na() %>%
group_by(gender) %>% mutate(proportion = n/sum(n)) %>%
ungroup() %>%

ggplot(aes(x = gender, color = employment, y = n)) +
geom_Line(aes(group = employment))+ geom_point()+

geom_Label_repel (aes(Label = n), seed = 123)+

Llabs(title = “Line plot of the count of different employment statuses in males
and females\n of the American Community Survey data,”

y = “Count,” x = “Gender,” color = “Employment”)+
theme_classic()+
theme(plot.title = element_text(hjust = 6.5))

Line plot of the count of different employment statuses in males and females
of the American Community Survey data

470
“H-.
e
\\\
-
\‘.
-
~
400 i
\E )
1373
et
-~
s
et
o

300 /

s o

28| Employmact
£ 3 nolin kabor force
8 @ unempicyed
a empioyed

200
100

B i

mae female.

433



Statistics with R for Data Analysis

We see that:

. There are 3 lines for the 3 different employment statuses.

. Males have a higher count of employed and unemployed statuses
but a lower count of “not in labor force” than females.

. The count of “not in labor force” and “employed” is equal in females.

5.3.4.2. Line Plot for the Percentage of Different Employment
Statuses in the 2 Genders

We use the same functions as above except that:
. We plot the proportion on the y-axis.

. Convert the labels to percentages using the percent function. Also,
we do that for the y-axis text.

acs12 %>% count(gender, employment) %>% drop_na() %>%
group_by(gender) %>% mutate(proportion = n/sum(n)) %>%
ungroup() %>%
ggplot(aes(x = gender, color = employment, y = proportion)) +
geom_Line(aes(group = employment))+ geom_point()+
geom_Label_repel (aes(lLabel = percent(proportion, accuracy = 0.1)),
seed = 123)+

scale_y continuous(labels = percent)+

Labs(title = “Line plot of the percentage of different employment statuses in
males and females\n of the American Community Survey data,”

y = “Percentage,” x = “Gender,” color = “Employment”)+
theme_classic()+

theme(plot.title = element_text(hjust = 0.5))
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Line plot of the percantage of different employment statuses in males and females
data
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We see that:

The sum of the percentage for each gender is 100%.

Males have a higher percentage of employed and unemployed
statuses but a lower percentage of “not in labor force” than females.
The percentage of “not in labor force” and “employed” is equal in
females.

5.3.4.3. Line Plot for the Count of Different Employment Statuses
in the Different Races

We use the same functions as above and modify them accordingly.

acsi2 %>% count(race, employment) %>% drop_na() %>%
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group_by(race) %>% mutate(proportion = n/sum(n)) %>%
ungroup() %>%

ggplot(aes(x = race, color = employment, y = n)) +
geom_Line(aes(group = employment))+ geom_point()+

geom_Label_repel (aes(lLabel = n), seed = 123)+

Llabs(title = “Line plot of the count of different employment statuses in the
different races \nof the American Community Survey data,”

y = “Count,” x = “Race,” color = “Employment”)+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

Line plot of the count of different employment statuses in the different races
of the American Community Survey data
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We see that:

. The count of different employment statuses is higher in Whites than
in other races.

5.3.4.4. Line Plot For The Percentage of Different Employment
Statuses in the Different Races

We use the same functions as above.

acs12 %>% count(race, employment) %>% drop_na() %>%

group_by(race) %>% mutate(proportion = n/sum(n)) %>%

ungroup() %>%

ggplot(aes(x = race, color = employment, y = proportion)) +

geom_Line(aes(group = employment))+ geom_point()+

geom_Label_repel (aes(label = percent(proportion, accuracy = 0.1)),
seed = 123)+

scale_y continuous(labels = percent)+

labs(title = “Line plot of the percentage of different employment statuses in
the different races\n of the American Community Survey data,”

2

y = “Percentage,” x = “Race,” color = “Employment”)+

theme_classic()+

theme(plot.title = element_text(hjust = 0.5))
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Line plot of the p ge of different in the different races
of the American Community Survey data
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We see that:

The sum of the percentage for each race is 100%.

Employment
} motin labor force

a  emgloyed

The highest percentage of employed was found in Other races
(53.7%) and the lowest percentage was found in Blacks (46.9%).
The highest percentage of unemployed was found in Blacks (12.3%)
and the lowest percentage was found in Asians (4.1%).

The highest percentage of “not in labor force” was found in Asians
(42.5%) and the lowest percentage was found in other races (36.1%).

5.3.4.5. Line Plot for the Count of Different Force Types Applied
on Different Races

We use the same functions as above but use the “mn_police use of force” data.

mn_police_use_of force %>% count(race, force_type) %>% drop_na() %>%

group_by(race) %>% mutate(proportion

n/sum(n)) %>%
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ungroup() %>%

ggplot(aes(x = race, color = force_type, y = n)) +
geom_Line(aes(group = force_type))+ geom_point()+
geom_Label_repel (aes(lLabel = n),

seed = 123)+

Labs(title = “Line plot of the count of different force types applied on
different races\n from the Minneapolis police use of force data,”

y = “Count,” x = “Race,” color = “Force type”)+
theme_classic()+

theme(plot.title = element_text(hjust = 6.5))

Line pict of the count of different force types applied on differant races
from the Minneapolis police use of force data
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We see that:

. The “Bodily Force” type has a higher count in all races than other
force types.

. Some points are not labeled due to crowding.

Instead, we can focus on the 3 most frequent force types using the fct
lump_n function.
mn_police_use_of_force %>%
mutate(force_type = fct_Lump_n(force_type,n = 3)) %>%
count(race, force_type) %>% drop_na() %>%
group_by(race) %>% mutate(proportion = n/sum(n)) %>%
ungroup() %>%
ggplot(aes(x = race, color = force_type, y = n)) +
geom_Line(aes(group = force_type))+ geom_point()+
geom_Label_repel (aes(Label = n),

seed = 123)+

Labs(title = “Line plot of the count of 4 force types applied on different
races\n from the Minneapolis police use of force data,”

y = “Count,” x = “Race,” color = “Force type”)+
theme_classic()+

theme(plot.title = element_text(hjust = 6.5))
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Line plot of the count of 4 force types applied on different races
from the Minneapolis police use of force data
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We see that

. The “Bodily Force” type has a higher count than the other force
types in all races.

. The count of 4 force types is higher in Blacks than in other races.

5.3.4.6. Line Plot for the Proportion of Different Force Types Ap-
plied on Different Races

We again focus on the 3 most frequent force types.
mn_police_use_of_force %>%
mutate(force_type = fct_Lump_n(force_type,n = 3)) %>%

count(race, force_type) %>% drop_na() %>%
group_by(race) %>% mutate(proportion = n/sum(n)) %>%
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ungroup() %>%
ggplot(aes(x = race, color = force_type, y = proportion)) +

geom_Line(aes(group = force_type))+ geom_point()+
geom_Label_repel (aes(lLabel = percent(proportion, accuracy = 0.1)),

seed = 123)+

scale_y continuous(labels = percent)+

Labs(title = “Line plot of the proportion of 4 force types applied on different
races\n from the Minneapolis police use of force data,”

y = “Percentage,” x = “Race,” color = “Force type”)+
theme_classic()+

theme(plot.title = element_text(hjust = 6.5))

Llnsplntuflhpwpurﬂonoul‘motypea applied on different races
the Minneapolis police use of force data
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We see that:
. The sum of the percentage for each race is 100%.

. The highest percentage of “Bodily Force” was applied to Pacific
Islanders (83.3%) and the lowest percentage was applied to Asians

(60.5%).

. The highest percentage of “Chemical Irritant” was applied to Asians
(24.8%) and the lowest percentage was applied to Native Americans
(2.3%).

. The highest percentage of “Taser” was applied to Native Americans

(13.3%) and the lowest percentage was applied to Pacific Islanders
(0%, so the point of “Taser” disappeared from the Pacific Islanders.

5.3.4.7. Line Plot for the Count of Different Force Types Applied
in Different Neighborhoods

We will focus on the 3 most frequent force types and the 20 most frequent
neighborhoods using the fct lump n as done before. In addition, we plot the
different neighborhoods on the y-axis to avoid crowding them on the x-axis. We
also plot a separate black line for each neighborhood by using the arguments
aes(group = neighborhood) and color = “black.”

mn_police_use_of_force %>%

mutate(force_type = fct_Lump_n(force_type, n = 3),

neighborhood= fct_Lump_n(neighborhood, n=20)) %>%

count(neighborhood, force_type) %>%

filter(!neighborhood==“") %>%

drop_na() %>%

group_by(neighborhood) %>% mutate(proportion = n/sum(n)) %>%

ungroup() %>%

ggplot(aes(x = n, color = force_type, y = neighborhood)) +

geom_Line(aes(group = neighborhood), color = “black”)+ geom_point()+
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geom_Label_repel (aes(Label = n),
seed = 123)+

Labs(title = “Line plot of the count of 4 force types applied in 21 neighborhoods
\nfrom the Minneapolis police use of force data,”

y = “Neighborhood,” x = “Count,” color = “Force type”)+
theme_classic()+

theme(plot.title = element_text(hjust = 0.5))

Line plot of the count of 4 force types applied in 21 neighborhoods
from the Minneapolis police use of force data
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We see that:

. The “Bodily Force” type is applied most frequently in the “other”
neighborhood (2882) followed by the “Downtown West” (1688)
then other neighborhoods.

. The “Chemical Irritant” type is applied most frequently in the
“Downtown West” neighborhood (999) followed by the “Other”
(158) then other neighborhoods.

. The “Taser” type is applied most frequently in the “other”
neighborhood (451) followed by the “Downtown West” (190) then
other neighborhoods.

5.3.4.8. Line Plot for the Proportion of Different Force Types Ap-
plied in Different Neighborhoods

mn_police_use_of_force %>%

mutate(force_type = fct_Lump_n(force_type, n = 3),

neighborhood= fct_Lump_n(neighborhood, n=20)) %>%

count(neighborhood, force_type) %>%

filter(!neighborhood==“") %>%

drop_na() %>%

group_by(neighborhood) %>% mutate(proportion = n/sum(n)) %>%
ungroup() %>%
ggplot(aes(x = proportion, color = force_type, y = neighborhood)) +
geom_Line(aes(group = neighborhood), color = “black”)+ geom_point()+
geom_Label_repel (aes(lLabel = percent(proportion, accuracy = 0.1)),

seed = 123)+

scale_x_continuous(labels = percent)+
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Labs(title = “Line plot of the proportion of 4 force types applied in 21
neighborhoods \nfrom the Minneapolis police use of force data,”

y = “Neighborhood,” x = “Percentage,” color = “Force type”)+
theme_classic()+

theme(plot.title = element_text(hjust = 6.5))

Lmeplotafﬂwpropomonofunrcatypeuppllod in 21 neighborhoods
from the Minneapolis police use of force data
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We see that:
. The sum of percentages for each neighborhood is 100%.

. The highest percentage of “Bodily Force” was applied in the
“CARAG” neighborhood (88%) and the lowest percentage was
applied in “Downtown West” (57.7%).
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. The highest percentage of “Chemical Irritant” was applied in
“Downtown West” (34.1%) and the lowest percentage was applied
in “Steven’s Square — Loring Heights” (0.4%).

. The highest percentage of “Taser” was applied in “Loring Park”
(19.3%) and the lowest percentage was applied in “Hawthorne”
(6.4%).

5.4. STATISTICAL TESTS

5.4.1. Chi-square Test

The Chi-square test uses the contingency table of data to calculate an expected
table. The expected table contains the theoretical data values that would be
expected when there is no relation between 2 categorical variables.

The contingency table is a table with R rows and C columns. It displays the
relationship between two categorical variables, where the variable in the rows
has R categories and the variable in the columns has C categories.

The null hypothesis is that the proportions of one categorical variable are
the same at the different levels of the other categorical variable. The alternative
hypothesis is that at least, two proportions are different from each other.

5.4.1.1. Assumptions of the Test

. Unpaired data meaning that all data observations are independent.

. The normal approximation to the binomial distribution is valid. The
normal approximation can be shown to be approximately true if
no expected value in the expected table is less than 5 (sometimes
known as “the rule of five”).

In case of an expected value less than 5, the Fisher exact test is a suitable
alternative. It is not important to assign which categorical variable to columns
or rows. The chi-square test requires a matrix of columns and rows. Although
the hypothesis testing for the chi-square test compares proportions, but chi-
square test uses the actual count to test that.

5.4.1.2. Chi-square Test of the Different Employment Statuses in
the 2 Genders

The null hypothesis is that the proportions of employment statuses are the same
in the 2 genders. The alternative hypothesis is that at least, two employment
statuses are different from each other.
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To conduct this test, we must have a matrix of columns and rows for the
count of employment statuses in each gender. To do that, we use the following
functions:

. The count function with the arguments gender, and employment to
get the count of employment statuses in each gender.

. The drop_na function to delete rows that have missings in the gender
or employment columns.

. The pivot wider function with the argument, names from =
“gender,” to convert the gender column to 2 columns for the males
and females, and the argument, values from = “n,” to fill these 2
columns by the count or n.

Then, we convert the result to a table as before.
acs12 %>% count(gender, employment) %>% drop_na() %>%
pivot_wider(names_from = “gender,” values_from = “n”) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Matrix of the count of different employment statuses in
males and females of the American Community Survey data™)

Table 5.11. Matrix of the Count of Different Employment Statuses in Males and
Females of the American Community Survey Data

Employment Male female
not in labor force 283 373
unemployed 59 47
employed 470 373

Then, to conduct a chi-square test on this matrix with counts, we convert
the employment column to row names using the column_to_rownames function
(as it is a character column and not a count column). Then, we use the chisq_test
function from the rstatix package. So, we first load the rstatix package into our
R session.

Library(rstatix)
acs12 %>% count(gender, employment) %>% drop_na() %>%

pivot_wider(names_from = “gender,” values_from = “n”) %>%
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column_to_rownames (“employment”) %>% chisq_test() %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Chi-square test results of different employment statuses
in males and females of the American Community Survey data™)

Table 5.12. Chi-square Test Results of Different Employment Statuses in Males and
Females of the American Community Survey Data

n statistic p df method p.signif
1,605 | 24.64591 | 0.00000445 |2 t(;lslt"square o
We see that:
. The table contains the statistic = 24.6 which corresponds to our
sample results and the p-value = 0.00000445.
. The p_value is the probability of our sample results under the null

hypothesis (the employment status proportions are the same in
the 2 genders). Since this probability is too low, we reject the null
hypothesis and conclude that the employment status proportions are
different in the 2 genders or the gender proportions are different in
the different employment statuses.

To get a closer look at the Chi-square test results, we can use the chisq
descriptives function after the chisq_test function.
acs12 %>% count(gender, employment) %>% drop_na() %>%
pivot_wider(names_from = “gender,” values_from = “n”) %>%
column_to_rownames (“employment™) %>% chisq_test() %>%
chisq_descriptives() %>%

flextable() %>% theme_box() %>%

set_caption(caption = “Chi-square descriptive statistics of different employment
statuses in males and females of the American Community Survey data™)
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A significant Chi-square test can be followed by a pairwise proportion test
using the pairwise prop_test function to find which groups are different in their
proportions.
acs12 %>% count(gender, employment) %>% drop_na() %>%
pivot_wider(names_from = “gender,” values_from = “n”) %>%
column_to_rownames(“employment”) %>% pairwise_prop_test() %>%

flextable() %>% theme_box() %>%

set_caption(caption = “Pairwise proportion test results of different employment
statuses in males and females of the American Community Survey data™)

Table 5.14. Pairwise Proportion Test Results of Different Employment Statuses in
Males and Females of the American Community Survey Data

. p-adj.
Groupl Group2 P p-adj signif
not in labor unemployed 0.02150000 | 0.04300000 | *
force
not in labor employed 0.00000164 | 0.00000492 | ***x*
force
unemployed employed 1.00000000 1.00000000 | ns
We conclude that:
. The “notin labor force” had significantly different gender proportions

than the “unemployed” status. For example, the male proportion in
“not in labor force” is 0.431 compared to 0.557 in “unemployed”
status.

. The “notin labor force” had significantly different gender proportions
than the “employed” status. For example, the male proportion in “not
in labor force” is 0.431 compared to 0.558 in “employed” status.

. The “unemployed” had statistically equivalent gender proportions
to the “employed” status. For example, the male proportion in
“unemployed” is 0.557 compared to 0.558 in “employed” status.
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5.4.1.3. Chi-square Test of the Different Employment Statuses in
the Different Races

The null hypothesis is that the proportions of employment statuses are the same
in the different races. The alternative hypothesis is that at least, two employment
statuses are different from each other.

To conduct this test, we must have a matrix of columns and rows for the
count of employment statuses in each race. To do that, we use the same above
functions.

acs12 %>% count(race, employment) %>% drop_na() %>%

»

pivot_wider(names_from = “race,” values_from = “n”) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “Matrix of the count of different employment statuses in
the different races of the American Community Survey data”)

Table 5.15. Matrix of the Count of Different Employment Statuses in the Different
Races of the American Community Survey Data

Employment | White Black Asian Other
not in labor 520 66 31 39
force

unemployed 72 20 3 11
employed 670 76 39 58

Then, to conduct a chi-square test on this matrix with counts, we convert the
employment column to row names using the column to rownames function.
Then, we use the chisq_test function.
acs12 %>% count(race, employment) %>% drop_na() %>%

pivot_wider(names_from = “race,” values_from = “n”) %>%
column_to_rownames(“employment”) %>% chisq_test() %>%

flextable() %>% theme_box() %>%

set_caption(caption = “Chi-square test results of different employment statuses
in the different races of the American Community Survey data”)
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Table 5.16. Chi-square Test Results of Different Employment Statuses in the Dif-
ferent Races of the American Community Survey Data

n Statistic | p df Method p.signif
1,605 | 14.18197 | 0.0277 6 Chi-square test *

We see a warning saying that the Chi-squared approximation may be
incorrect. To get a closer look at the Chi-square test results, we can use the
chisq_descriptives function after the chisq_test function.
acs12 %>% count(race, employment) %>% drop_na() %>%
pivot_wider(names_from = “race,” values_from = “n”) %>%

column_to_rownames (“employment”) %>% chisq_test() %>%
chisq_descriptives() %>%

flextable() %>% theme_box() %>%

set_caption(caption = “Chi-square descriptive statistics of different employment
statuses in the different races of the American Community Survey data”)
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5.4.1.4. Chi-square Test of the Different Force Types Applied on the Dif-
ferent Races

The null hypothesis is that the proportions of force types are the same in the
different races. The alternative hypothesis is that at least, two force types are
different from each other.

To conduct this test, we must have a matrix of columns and rows for the
count of force types in each race. To do that, we use the same above functions.
We use the additional argument values_fill = 0 to fill zero values when a certain
force type is not applied to a specific race.
mn_police_use_of force %>% count(race, force_type) %>% drop_na() %>%

pivot_wider(names_from = “race,” values_from = “n,” values_fill = @) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Matrix of the count of different force types applied on
the different races from the Minneapolis police use of force data”)

Table 5.18. Matrix of the Count of Different Force Types Applied on the Different
Races from the Minneapolis Police use of Force Data

force Native Other/ fiif‘i-c
- Asian Black | Ameri- Mixed White
type Is-
can Race
lander
Bodily 78 5519 | 616 137 5 2,454
Force
Chemical | 5, 1,033 |18 50 1 191
Irritant
Gun Point | 76 8 3 0 16
Display
Impro-
vised 1 83 10 1 0 47
Weapon
Taser 17 755 104 12 0 334
Baton 0 2 0 0 0 1
Firearm 0 2 0 0 0 0
Less Le-
thal 0 23 6 0 0 27
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force Native Other/ f;;;c
- Asian Black | Ameri- Mixed White
type Is-
can Race
lander
Less
Lethal 0 3 0 0 0 0
Projectile
Maximal
Restraint 0 104 14 0 0 42
Technique
Police K91, 48 8 2 0 17
Bite

For example, the Firearm force type was not applied to all races except
Blacks in 2 cases, so we filled 0 values for all races except Black.

Then, to conduct a chi-square test on this matrix with counts, we convert
the force type column to row names using the column to rownames function.
Then, we use the chisq_test function.
mn_police_use_of force %>% count(race, force_type) %>% drop_na() %>%

pivot_wider(names_from = “race,” values_from = “n,” values_fill = @) %>%
column_to_rownames (“force_type”) %>% chisq_test() %>%

flextable() %>% theme_box() %>%

set_caption(caption = “Chi-square test results of different force types applied
on the different races from the Minneapolis police use of force data”)

Table 5.19. Chi-square Test Results of Different Force Types Applied on the Differ-
ent Races from the Minneapolis Police use of Force Data

n statistic P df aeth- p.signif
0.0000
000000
000000 Chi-

11,901 | 293.5087 000000 | 50 square | FFE*
000000 test
000000
0353
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Again, we see a warning saying that the Chi-square test is not suitable in
this case and Fisher exact test should be used.

5.4.1.5. Chi-square Test of the Different Force Types Applied in
the Different Neighborhoods

The null hypothesis is that the proportions of force types are the same in the
different neighborhoods. The alternative hypothesis is that at least, two force
types are different from each other.

To conduct this test, we must have a matrix of columns and rows for the
count of force types in each neighborhood. To do that, we use the same above
functions. We use the additional argument values_fill = 0 to fill zero values
when a certain force type is not applied in a specific neighborhood.
mn_police_use_of _force %>% count(neighborhood, force_type) %>%

filter(!neighborhood==“") %>%

drop_na() %>%

pivot_wider(names_from = “force_type,” values_from = “n,”
values_fill = 0) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “Matrix of the count of different force types applied in
different neighborhoods from the Minneapolis police use of force data”)
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Then, to conduct a chi-square test on this matrix with counts, we convert the

neighborhood column to row names using the column_to _rownames function.
Then, we use the chisq_test function.

mn_police_use_of force %>% count(neighborhood, force_type) %>%
filter(!neighborhood==“") %>%
drop_na() %>%
pivot_wider(names_from = “force_type,” values_from = “n,”
values_fill = @) %>%
column_to_rownames (“neighborhood”) %>% chisq_test() %>%

flextable() %>% theme_box() %>%

set_caption(caption = “Chi-square test results of different force types applied
in different neighborhoods from the Minneapolis police use of force data™)

Table 5.21. Chi-square Test Results of Different Force Types Applied in Different
Neighborhoods from the Minneapolis Police Use of Force Data

n Statistic p df method p.signif
12,921 3,791.092 |0 | 850 gsltl‘sq“are .

Again, we see a warning saying that the Chi-square test is not suitable in
this case and Fisher exact test should be used.

5.4.2. Fisher Exact Test

The Fisher exact test is used when the expected value in any cell of the
contingency table is less than 5. For tables in which the use of the Chi-square
test is suitable, the two tests give very similar results although the p-value will
be different as the Fisher exact test uses the hypergeometric distribution to
calculate its p-value. Also, the Fisher test uses the same matrix formula as the
Chi-square test. The Fisher test also needs unpaired data meaning that all data
observations are independent.
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5.4.2.1. Fisher Test of the Different Employment Statuses in the
Two Genders

The null hypothesis is that the proportions of employment statuses are the same
in the 2 genders. The alternative hypothesis is that at least, two employment
statuses are different from each other.

To conduct this test, we must have a matrix of columns and rows for the
count of employment statuses in each gender as done before. Then, we use the
fisher test function from the rstatix package.

acs12 %>% count(gender, employment) %>% drop_na() %>%

»

pivot_wider(names_from = “gender,” values_from = “n”) %>%

column_to_rownames (“employment™) %>% fisher_test() %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Fisher test results of different employment statuses 1in
males and females of the American Community Survey data”)

Table 5.22. Fisher Test Results of Different Employment Statuses in Males and
Females of the American Community Survey Data

n p p-signif
1,605 0.00000437 oA
We see that:
. The table contains the p-value which is very low.
. The p value is too low, so we reject the null hypothesis and

conclude that the employment status proportions are different in the
two genders or the gender proportions are different in the different
employment statuses.

A significant Fisher test can be followed by a pairwise Fisher test using
the pairwiseNominallndependence function, from the rcompanion package,
to find which groups (employment statuses) in the rows are different in their
proportions.

The pairwiseNominallndependence function requires a matrix data class
so we convert the last data frame to a matrix using the as.matrix function. The
pairwiseNominallndependence function uses the arguments:
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. compare = “row” to find which employment statuses in the rows are
different in their proportions.

. fisher = TRUE to do a pairwise Fisher test.
. gtest = FALSE, chisq = FALSE so do not do pairwise Chi-square or

G-tests.
Library(rcompanion)
acs12 %>% count(gender, employment) %>% drop_na() %>%
pivot_wider(names_from = “gender,” values_from = “n”) %>%

column_to_rownames(“employment”) %>% as.matrix() %>%

pairwiseNominalIndependence(compare = “row,” fisher = TRUE, gtest = FALSE,
chisq = FALSE) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “Pairwise Fisher test results of different employment
statuses in males and females of the American Community Survey data™)

Table 5.23. Pairwise Fisher test Results of Different Employment Statuses in Males
and Females of the American Community Survey Data

. . p-adj.
Comparison p.Fisher Fisher
not in labor force : unem- 0.02030000 0.03040000
ployed
not in labor force : employed 0.00000128 0.00000384
unemployed : employed 1.00000000 1.00000000

We conclude that based on the adjusted p-values from the pairwise Fisher
test “p.adj.Fisher”:

. The “notin labor force” had significantly different gender proportions
than the “unemployed” status. For example, the male proportion in
“not in labor force” is 0.431 compared to 0.557 in “unemployed”
status.

. The “notin labor force” had significantly different gender proportions
than the “employed” status. For example, the male proportion in “not
in labor force” is 0.431 compared to 0.558 in “employed” status.
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. The “unemployed” had statistically equivalent gender proportions
to the “employed” status. For example, the male proportion in
“unemployed” is 0.557 compared to 0.558 in “employed” status.

5.4.2.2. Fisher Test of the Different Employment Statuses in the
Different Races

The null hypothesis is that the proportions of employment statuses are the same
in the different races. The alternative hypothesis is that at least, two employment
statuses are different from each other.

To conduct this test, we must have a matrix of columns and rows for the
count of employment statuses in the different races as done before. Then, we
use the fisher_test function from the rstatix package. Because we have a larger
than 2X2 table, we use the argument simulate.p.value = TRUE.
set.seed(123)
acs12 %>% count(race, employment) %>% drop_na() %>%

pivot_wider(names_from = “race,” values_from = “n”) %>%
column_to_rownames (“employment”) %>%
fisher_test(simulate.p.value = T) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “Fisher test results of different employment statuses in
the different races of the American Community Survey data”)

Table 5.24. Fisher Test Results of Different Employment Statuses in the Different
Races of the American Community Survey Data

n p p-signif
1,605 0.0435 *
We see that:
. The table contains the p-value which is lower than the cut-off value
of 0.05.
. The p_value is significant, so we reject the null hypothesis and

conclude that the employment status proportions are different in the
different races or the race proportions are different in the different
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employment statuses.

A significant Fisher test can be followed by a pairwise Fisher test using the
pairwiseNominallndependence function to find which employment statuses in
the rows are different in their proportions.
acs12 %>% count(race, employment) %>% drop_na() %>%

pivot_wider(names_from = “race,” values_from = “n”) %>%
column_to_rownames(“employment”) %>% as.matrix() %>%
pairwiseNominalIndependence(compare = “row,” fisher = TRUE,

gtest = FALSE, chisq = FALSE) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Pairwise Fisher test results of comparing different
employment statuses 1in their proportions of different races of the American
Community Survey data”)

Table 5.25. Pairwise Fisher Test Results of Comparing Different Employment Sta-
tuses in Their Proportions of Different Races of the American Community Survey
Data

Comparison p.Fisher %l:g‘l r
not in labor force : unemployed 0.01320 | 0.0198
not in labor force : employed 0.81700 | 0.8170
unemployed : employed 0.00737 | 0.0198

We conclude that based on the adjusted p-values from the pairwise Fisher
test “p.adj.Fisher”:

. The “not in labor force” had significantly different race proportions
than the “unemployed” status. For example, the White proportion
in “not in labor force” is 0.79 compared to 0.68 in “unemployed”
status.

. The “not in labor force” had statistically equivalent race proportions
to the “employed” status. For example, the White proportion in “not
in labor force” is 0.79 compared to 0.79 in “employed” status.

. The “unemployed” had significantly different race proportions
than the “employed” status. For example, the White proportion in
“unemployed” status is 0.68 compared to 0.79 in “employed” status.

467



Statistics with R for Data Analysis

We can also use the pairwiseNominallndependence function to find which
races in the columns are different in their proportions.

acs12 %>% count(race, employment) %>% drop_na() %>%

pivot_wider(names_from = “race,” values_from = “n”) %>%

column_to_rownames(“employment™”) %>% as.matrix() %>%

pairwiseNominalIndependence(compare = “column,” fisher = TRUE,
gtest = FALSE, chisq = FALSE) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “Pairwise Fisher test results of comparing different
races 1in their proportions of different employment statuses of the American
Community Survey data”)

Table 5.26. Pairwise Fisher Test Results of Comparing Different Races in their
Proportions of Different Employment Statuses of the American Community Survey
Data

Comparison p-Fisher | p.adj.Fisher
white : black 0.00804 0.0482
white : asian 0.94000 0.9400
white : other 0.14600 0.2920
black : asian 0.13000 0.2920
black : other 0.53700 0.6440
asian : other 0.29500 0.4420

We conclude that based on the adjusted p-values from the pairwise Fisher
test “p.adj.Fisher”:
. Only the White race had significantly different employment status

proportions than the Black race. For example, the unemployed
proportion in White is 0.057 compared to 0.123 in Black.

. All other race comparisons (white : asian, white : other, black :
asian, black : other, and asian : other) had statistically equivalent
employment status proportions to each other.
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5.4.2.3. Fisher Test of the Different Force Types Applied on the
Different Races
The null hypothesis is that the proportions of force types are the same in the

different races. The alternative hypothesis is that at least, two force types are
different from each other.

To conduct this test, we must have a matrix of columns and rows for the
count of force types in the different races as done before. Then, we use the
fisher test function from the rstatix package. Because we have a larger than
2X2 table, we use the argument simulate.p.value = TRUE.

set.seed(123)

mn_police_use_of force %>% count(race, force_ type) %>% drop_na() %>%

» e,

pivot_wider(names_from = “race,” values_from = “n,” values_fill = 0) %>%

column_to_rownames(“force_type”) %>%
fisher_test(simulate.p.value = T) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Fisher test results of different force types applied on
the different races from the Minneapolis police use of force data”)

Table 5.27. Fisher Test Results of Different Force Types Applied on the Different
Races from the Minneapolis Police Use of Force Data

n p p-signif
11,901 0.0005 oAk
We see that:
. The Table 5.27 contains the p-value which is lower than the cut-off
value of 0.05.
. The p_value is significant, so we reject the null hypothesis and

conclude that the force type proportions are different in the different

races or the race proportions are different in the different force types.

A significant Fisher test can be followed by a pairwise Fisher test using the
pairwiseNominallndependence function to find which force types in the rows
are different in their proportions. However, due to the many zeros in many force
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types, we must group them to focus on the 5 most frequent types using the

fct lump n function as before. We also use the argument simulate.p.value =
TRUE because of the large cell counts.

set.seed(123)
mn_police_use_of_force %>%
mutate(force_type = fct_Lump_n(force_type, n=5)) %>%
count(race, force_type) %>% drop_na() %>%
pivot_wider(names_from = “race,” values_from = “n,” values_fill = 0) %>%
column_to_rownames(“force_type”) %>% as.matrix() %>%
pairwiseNominalIndependence(compare = “row,” fisher = TRUE,
gtest = FALSE, chisq = FALSE,
simulate.p.value = TRUE) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Pairwise Fisher test results of comparing different
force types 1in their proportions of different races of the Minneapolis police
use of force data™)

Table 5.28. Pairwise Fisher Test Results of Comparing Different Force Types in
Their Proportions of Different Races of the Minneapolis Police Use of Force Data

. . p-adj.
Comparison p-Fisher Fisher
Bodily Force : Chemical Irritant 0.0005 0.0015
Bodily Force : Improvised Weapon | 0.7030 0.7110
Bodily Force : Taser 0.1040 0.2600
Bodily Force : Other 0.5600 0.6460
Bodll}./ Force : Maximal Restraint 0.4100 0.6120
Technique
Chemical Irritant : Improvised 0.0005 0.0015
Weapon
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. . p-adj.
Comparison p-Fisher Fisher
Chemical Irritant : Taser 0.0005 0.0015
Chemical Irritant : Other 0.0005 0.0015
Che'mlcal Irr{tant : Maximal Re- 0.0005 0.0015
straint Technique
Improvised Weapon : Taser 0.7110 0.7110
Improvised Weapon : Other 0.3940 0.6120
Improylsed Wegpon : Maximal 0.3280 0.6120
Restraint Technique
Taser : Other 0.4190 0.6120
Tgser : Maximal Restraint Tech- 0.5080 0.6350
nique
cher : Maximal Restraint Tech- 0.4490 0.6120
nique

We conclude that based on the adjusted p-values “p.adj.Fisher”:

. The “Bodily Force” type had significantly different race proportions
than the “Chemical Irritant” force type.

. The “Chemical Irritant” force type had significantly different race
proportions than the “Improvised Weapon,” “Taser,” “Other,” and
“Maximal Restraint Technique” force types.

. All other pairwise force-type comparisons are statistically equivalent.

We can also use the pairwiseNominallndependence function to find which
races in the columns are different in their proportions of different force types.

set.seed(123)
mn_police_use_of force %>%
mutate(force_type = fct_Llump_n(force_type, n=5)) %>%

count(race, force_type) %>% drop_na() %>%

» e

pivot_wider(names_from = “race,” values_from = “n,” values_fill = 0) %>%
column_to_rownames (“force_type”) %>% as.matrix() %>%

pairwiseNominalIndependence(compare = “column,” fisher = TRUE,
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gtest = FALSE, chisq = FALSE,
simulate.p.value = TRUE) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Pairwise Fisher test results of comparing different
races 1in their proportions of different force types of of the Minneapolis police
use of force data™)

Table 5.29. Pairwise Fisher Test results of Comparing Different Races in Their
Proportions of Different Force Types of the Minneapolis Police Use of Force Data

Comparison p.Fisher p.adj.Fisher
Asian : Black 0.0045 0.00750
Asian : Native American 0.0005 0.00107
Asian : Other/Mixed Race 0.1170 0.17600
Asian : Pacific Islander 0.7430 0.85700
Asian : White 0.0005 0.00107
Black : Native American 0.0005 0.00107
Black : Other/Mixed Race 0.0010 0.00188
Black : Pacific Islander 1.0000 1.00000
Black : White 0.0005 0.00107
I;:geve American : Other/Mixed 0.0005 0.00107
E;algzre American : Pacific Is- 0.3950 0.53900
Native American : White 0.0005 0.00107
ggg:err/Mlxed Race : Pacific Is- 1.0000 1.00000
Other/Mixed Race : White 0.0005 0.00107
Pacific Islander : White 0.5810 0.72600

We conclude that based on the adjusted p-values “p.adj.Fisher”:

. The Asian race had significantly different force-type proportions
than the Black, Native American, and White races.

. The Black race had significantly different force-type proportions
than the Native American, Other/Mixed, and White races.
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. The Native American race had significantly different force type
proportions than the Other/Mixed and White races.

. The Other/Mixed race had significantly different force type
proportions than the White race.

5.4.2.4. Fisher Test of the Different Force Types Applied in the
Different Neighborhoods

The null hypothesis is that the proportions of force types are the same in the
different neighborhoods. The alternative hypothesis is that at least, two force
types are different from each other.

To conduct this test, we must have a matrix of columns and rows for the
count of force types in the different races as done before. Then, we use the
fisher test function from the rstatix package. Because we have a larger than
2X2 table, we use the argument simulate.p.value = TRUE.
set.seed(123)
mn_police_use_of force %>% count(neighborhood, force_type) %>%

filter(!neighborhood==“") %>%

drop_na() %>%

» e,

n,

»

pivot_wider(names_from = “force_type,” values_from =
values_fill = 0) %>%

column_to_rownames (“neighborhood”) %>%

fisher_test(simulate.p.value = T) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “Fisher test results of different force types applied
in the different neighborhoods from the Minneapolis police use of force data”)
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Table 5.30. Fisher Test Results of Different Force Types Applied in the Different
Neighborhoods from the Minneapolis Police Use of Force Data

n p p.signif
12,921 0.0005 oAk
We see that:
. The Table 5.30 contains the p-value which is lower than the cut-off
value of 0.05.
. The p_value is significant, so we reject the null hypothesis and

conclude that the force type proportions are different in the different
neighborhoods or that the neighborhood proportions are different in
the different force types.

A significant Fisher test can be followed by a pairwise Fisher test using the
pairwiseNominallndependence function to find which force types in the columns
are different in their proportions. However, due to the many zeros in many force
types, we must group them to focus on the 5 most frequent types using the
fct lump n function as before. We also use the argument simulate.p.value =
TRUE because of the large cell counts.
set.seed(123)
mn_police_use_of_force %>%

mutate(force_type = fct_Lump_n(force_type, n=5)) %>%

count(neighborhood, force_type) %>%

filter(!neighborhood==“") %>%

drop_na() %>%

pivot_wider(names_from = “force_type,” values_from = “n,”
values_fill = 0) %>%

column_to_rownames (“neighborhood”) %>% as.matrix() %>%

pairwiseNominalIndependence(compare = “column,” fisher = TRUE,

gtest = FALSE, chisq = FALSE,
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simulate.p.value = TRUE) %>%
flextable() %>% theme_box() %>%

set_caption(caption = “Pairwise Fisher test results of comparing different
force types 1in their proportions of different neighborhoods of the Minneapolis
police use of force data™)

Table 5.31. Pairwise Fisher Test Results of Comparing Different Force Types in
Their Proportions of Different Neighborhoods of the Minneapolis Police Use of
Force Data

Comparison p-Fisher p-adj.Fisher
Bodily Force : Chemical Irritant 0.0005 0.000536
?:(?égqllj:rce : Maximal Restraint 0.0005 0.000536
Bodily Force : Taser 0.0005 0.000536
Bodily Force : Other 0.0005 0.000536
Bodily Force : Improvised Weapon 0.0030 0.003000
gf;‘;l%fchﬁéfg + Maximal Re- | 5 505 0.000536
Chemical Irritant : Taser 0.0005 0.000536
Chemical Irritant : Other 0.0005 0.000536
%;r;l;al Irritant @ Improvised 0.0005 0.000536
Maximal Restraint Technique : Taser | 0.0005 0.000536
Maximal Restraint Technique : Other | 0.0005 0.000536
xzﬁgzl\g::;ﬁm Technique = Im- | 505 0.000536
Taser : Other 0.0005 0.000536
Taser : Improvised Weapon 0.0005 0.000536
Other : Improvised Weapon 0.0005 0.000536

We conclude that based on the adjusted p-values “p.adj.Fisher”:

. All force types (“Bodily Force,” “Chemical Irritant,” “Maximal
Restraint Technique, “Taser,” “Improvised Weapon,” and “Other”)
have different neighborhood proportions than each other.
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We can also use the pairwiseNominallndependence function to find which
neighborhoods in the rows are different in their proportions of different force
types. However, due to many zeros in many neighborhoods, we must group
them to focus on the 20 most frequent neighborhoods using the fct lump n
function as before. We also use the argument simulate.p.value = TRUE because
of the large cell counts.
set.seed(123)
mn_police_use_of_force %>%
mutate(neighborhood = fct_Lump_n(neighborhood, n=20)) %>%
count(neighborhood, force_type) %>%
filter(!neighborhood==“") %>%
drop_na() %>%
pivot_wider(names_from = “force_type,” values_from = “n,”
values_fill = @) %>%
column_to_rownames (“neighborhood”) %>% as.matrix() %>%
pairwiseNominalIndependence(compare = “row,” fisher = TRUE,
gtest = FALSE, chisq = FALSE,
simulate.p.value = TRUE) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “Pairwise Fisher test results of comparing different
neighborhoods in their proportions of different force types of the Minneapolis
police use of force data™)
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Table 5.32. Pairwise Fisher Test Results of Comparing Different Neighborhoods in
Their Proportions of Different Force Types of the Minneapolis Police Use of Force
Data

Comparison p-Fisher 117)1:;11 gr
CARAG : Cedar Riverside 0.0005 0.00135
CARAG : Downtown West 0.0005 0.00135
CARAG : East Phillips 0.0720 0.09630
CARAG : Elliot Park 0.0070 0.01300
CARAG : Folwell 0.3430 0.38900
CARAG : Hawthorne 0.0355 0.05320
CARAG : Jordan 0.4910 0.52600
CARAG : Loring Park 0.0005 0.00135
CARAG : Lowry Hill East 0.0005 0.00135
CARAG : Lyndale 0.0615 0.08550
CARAG : Marcy Holmes 0.0030 0.00624
CARAG : Near — North 0.3930 0.43400
CARAG : North Loop 0.0005 0.00135
CARAG : Powderhorn Park 0.0010 0.00247
CARAG : Steven’s Square — Loring Heights 0.0025 0.00530
CARAG : Ventura Village 0.1340 0.16500
CARAG : Webber — Camden 0.0430 0.06310
CARAG : Whittier 0.6910 0.71100
CARAG : Willard — Hay 0.3510 0.39600
CARAG : Other 0.0630 0.08700
Cedar Riverside : Downtown West 0.0005 0.00135
Cedar Riverside : East Phillips 0.0035 0.00700
Cedar Riverside : Elliot Park 0.0005 0.00135
Cedar Riverside : Folwell 0.0005 0.00135
Cedar Riverside : Hawthorne 0.0020 0.00442
Cedar Riverside : Jordan 0.0005 0.00135
Cedar Riverside : Loring Park 0.0020 0.00442
Cedar Riverside : Lowry Hill East 0.0005 0.00135
Cedar Riverside : Lyndale 0.0005 0.00135

477



Statistics with R for Data Analysis

Cedar Riverside : Marcy Holmes 0.0115 0.02060
Cedar Riverside : Near — North 0.0005 0.00135
Cedar Riverside : North Loop 0.0040 0.00778
Cedar Riverside : Powderhorn Park 0.5500 0.58000
ﬁZ?gﬁtflverSIde : Steven’s Square — Loring 0.0005 0.00135
Cedar Riverside : Ventura Village 0.0010 0.00247
Cedar Riverside : Webber — Camden 0.0550 0.07800
Cedar Riverside : Whittier 0.0005 0.00135
Cedar Riverside : Willard — Hay 0.0005 0.00135
Cedar Riverside : Other 0.0005 0.00135
Downtown West : East Phillips 0.0005 0.00135
Downtown West : Elliot Park 0.0005 0.00135
Downtown West : Folwell 0.0005 0.00135
Downtown West : Hawthorne 0.0005 0.00135
Downtown West : Jordan 0.0005 0.00135
Downtown West : Loring Park 0.0005 0.00135
Downtown West : Lowry Hill East 0.0005 0.00135
Downtown West : Lyndale 0.0005 0.00135
Downtown West : Marcy Holmes 0.0005 0.00135
Downtown West : Near — North 0.0005 0.00135
Downtown West : North Loop 0.0005 0.00135
Downtown West : Powderhorn Park 0.0005 0.00135
gziv;ﬁ:(s)wn West : Steven’s Square — Loring 0.0005 0.00135
Downtown West : Ventura Village 0.0005 0.00135
Downtown West : Webber — Camden 0.0005 0.00135
Downtown West : Whittier 0.0005 0.00135
Downtown West : Willard — Hay 0.0005 0.00135
Downtown West : Other 0.0005 0.00135
East Phillips : Elliot Park 0.0635 0.08720
East Phillips : Folwell 0.1580 0.18900
East Phillips : Hawthorne 0.0255 0.03940
East Phillips : Jordan 0.1250 0.15600
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East Phillips : Loring Park 0.0035 0.00700
East Phillips : Lowry Hill East 0.0005 0.00135
East Phillips : Lyndale 0.1360 0.16600
East Phillips : Marcy Holmes 0.0855 0.11200
East Phillips : Near — North 0.4470 0.48400
East Phillips : North Loop 0.0205 0.03210
East Phillips : Powderhorn Park 0.4180 0.46000
East Phillips : Steven’s Square — Loring Heights | 0.0010 0.00247
East Phillips : Ventura Village 0.4450 0.48400
East Phillips : Webber — Camden 0.9310 0.94000
East Phillips : Whittier 0.0750 0.09970
East Phillips : Willard — Hay 0.0035 0.00700
East Phillips : Other 0.0910 0.11900
Elliot Park : Folwell 0.0005 0.00135
Elliot Park : Hawthorne 0.0005 0.00135
Elliot Park : Jordan 0.0025 0.00530
Elliot Park : Loring Park 0.5660 0.59400
Elliot Park : Lowry Hill East 0.0005 0.00135
Elliot Park : Lyndale 0.6990 0.71600
Elliot Park : Marcy Holmes 0.0195 0.03080
Elliot Park : Near — North 0.0080 0.01470
Elliot Park : North Loop 0.0035 0.00700
Elliot Park : Powderhorn Park 0.0480 0.07000
Elliot Park : Steven’s Square — Loring Heights | 0.0085 0.01550
Elliot Park : Ventura Village 0.5810 0.60400
Elliot Park : Webber — Camden 0.0165 0.02670
Elliot Park : Whittier 0.0245 0.03810
Elliot Park : Willard — Hay 0.0010 0.00247
Elliot Park : Other 0.1320 0.16300
Folwell : Hawthorne 0.0070 0.01300
Folwell : Jordan 0.7150 0.72900
Folwell : Loring Park 0.0005 0.00135
Folwell : Lowry Hill East 0.0005 0.00135
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Folwell : Lyndale 0.0150 0.02500
Folwell : Marcy Holmes 0.0010 0.00247
Folwell : Near — North 0.1230 0.15500
Folwell : North Loop 0.0005 0.00135
Folwell : Powderhorn Park 0.1100 0.14000
Folwell : Steven’s Square — Loring Heights 0.0015 0.00354
Folwell : Ventura Village 0.1860 0.21900
Folwell : Webber — Camden 0.3610 0.40300
Folwell : Whittier 0.3540 0.39800
Folwell : Willard — Hay 0.0030 0.00624
Folwell : Other 0.0130 0.02280
Hawthorne : Jordan 0.0010 0.00247
Hawthorne : Loring Park 0.0005 0.00135
Hawthorne : Lowry Hill East 0.0005 0.00135
Hawthorne : Lyndale 0.0005 0.00135
Hawthorne : Marcy Holmes 0.0550 0.07800
Hawthorne : Near — North 0.3390 0.38700
Hawthorne : North Loop 0.0145 0.02460
Hawthorne : Powderhorn Park 0.0160 0.02650
Hawthorne : Steven’s Square — Loring Heights | 0.0005 0.00135
Hawthorne: Ventura Village 0.0020 0.00442
Hawthorne: Webber — Camden 0.4390 0.48000
Hawthorne : Whittier 0.0020 0.00442
Hawthorne : Willard — Hay 0.0005 0.00135
Hawthorne : Other 0.0005 0.00135
Jordan : Loring Park 0.0005 0.00135
Jordan : Lowry Hill East 0.0005 0.00135
Jordan : Lyndale 0.0800 0.10600
Jordan : Marcy Holmes 0.0005 0.00135
Jordan : Near — North 0.0500 0.07190
Jordan : North Loop 0.0005 0.00135
Jordan : Powderhorn Park 0.0195 0.03080
Jordan : Steven’s Square — Loring Heights 0.0195 0.03080
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Jordan : Ventura Village 0.5290 0.56300
Jordan : Webber — Camden 0.1540 0.18500
Jordan : Whittier 0.5720 0.59800
Jordan : Willard — Hay 0.0145 0.02460
Jordan : Other 0.0020 0.00442
Loring Park : Lowry Hill East 0.0005 0.00135
Loring Park : Lyndale 0.1870 0.21900
Loring Park : Marcy Holmes 0.0020 0.00442
Loring Park : Near — North 0.0005 0.00135
Loring Park : North Loop 0.0015 0.00354
Loring Park : Powderhorn Park 0.1830 0.21700
Loring Park : Steven’s Square — Loring Heights | 0.0010 0.00247
Loring Park : Ventura Village 0.2370 0.27500
Loring Park : Webber — Camden 0.0025 0.00530
Loring Park : Whittier 0.0005 0.00135
Loring Park : Willard — Hay 0.0005 0.00135
Loring Park : Other 0.0135 0.02320
Lowry Hill East : Lyndale 0.0005 0.00135
Lowry Hill East : Marcy Holmes 0.0005 0.00135
Lowry Hill East : Near — North 0.0005 0.00135
Lowry Hill East : North Loop 0.0005 0.00135
Lowry Hill East : Powderhorn Park 0.0005 0.00135
E(;\iz;rlisHill East : Steven’s Square — Loring 0.0005 0.00135
Lowry Hill East : Ventura Village 0.0005 0.00135
Lowry Hill East : Webber — Camden 0.0005 0.00135
Lowry Hill East : Whittier 0.0005 0.00135
Lowry Hill East : Willard — Hay 0.0005 0.00135
Lowry Hill East : Other 0.0005 0.00135
Lyndale : Marcy Holmes 0.0420 0.06210
Lyndale : Near — North 0.0125 0.02210
Lyndale : North Loop 0.0120 0.02140
Lyndale : Powderhorn Park 0.0925 0.12000
Lyndale : Steven’s Square — Loring Heights 0.0485 0.07020
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Lyndale : Ventura Village 0.9650 0.96500
Lyndale : Webber — Camden 0.0400 0.05960
Lyndale : Whittier 0.1030 0.13200
Lyndale : Willard — Hay 0.0150 0.02500
Lyndale : Other 0.8980 0.91100
Marcy Holmes : Near — North 0.0595 0.08330
Marcy Holmes : North Loop 0.4500 0.48500
Marcy Holmes : Powderhorn Park 0.0710 0.09560
g;rgclﬁ . Holmes : Steven’s Square — Loring 0.0005 0.00135
Marcy Holmes : Ventura Village 0.0165 0.02670
Marcy Holmes : Webber — Camden 0.1480 0.17900
Marcy Holmes : Whittier 0.0025 0.00530
Marcy Holmes : Willard — Hay 0.0005 0.00135
Marcy Holmes : Other 0.0315 0.04790
Near — North : North Loop 0.0135 0.02320
Near — North : Powderhorn Park 0.0335 0.05060
Near — North : Steven’s Square — Loring Heights | 0.0005 0.00135
Near — North : Ventura Village 0.0645 0.08800
Near — North : Webber — Camden 0.6660 0.68900
Near — North : Whittier 0.3910 0.43400
Near — North : Willard — Hay 0.0015 0.00354
Near — North : Other 0.0040 0.00778
North Loop : Powderhorn Park 0.0300 0.04600
North Loop : Steven’s Square — Loring Heights | 0.0005 0.00135
North Loop : Ventura Village 0.0055 0.01050
North Loop : Webber — Camden 0.0575 0.08100
North Loop : Whittier 0.0005 0.00135
North Loop : Willard — Hay 0.0005 0.00135
North Loop : Other 0.0105 0.01900
I}’I(;\i’;cli;zhorn Park : Steven’s Square — Loring 0.0005 0.00135
Powderhorn Park : Ventura Village 0.2950 0.34000
Powderhorn Park : Webber — Camden 0.5310 0.56300
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Powderhorn Park : Whittier 0.0040 0.00778
Powderhorn Park : Willard — Hay 0.0005 0.00135
Powderhorn Park : Other 0.3240 0.37200
Steven’s Square — Loring Heights : Ventura Vil-

0.1000 0.12900
lage

Steven’s Square — Loring Heights : Webber —
Camden

Steven’s Square — Loring Heights : Whittier 0.0070 0.01300
Steven’s Square — Loring Heights : Willard —

0.0005 0.00135

0.0015 0.00354

Hay

Steven’s Square — Loring Heights : Other 0.0005 0.00135
Ventura Village : Webber — Camden 0.1470 0.17800
Ventura Village : Whittier 0.2230 0.26000
Ventura Village : Willard — Hay 0.0660 0.08940
Ventura Village : Other 0.9500 0.95500
Webber — Camden : Whittier 0.1290 0.16000
Webber — Camden : Willard — Hay 0.0005 0.00135
Webber — Camden : Other 0.1120 0.14200
Whittier : Willard — Hay 0.0165 0.02670
Whittier : Other 0.0055 0.01050
Willard — Hay : Other 0.0005 0.00135

We conclude that based on the adjusted p-values “p.adj.Fisher”:

. The “CARAG” neighborhood had significantly different force type
proportions than the “Cedar Riverside,” “Downtown West,” “Elliot
Park,” “Loring Park,” “Lowry Hill East.” “Marcy Holmes,” “North
Loop,” “Powderhorn Park,” and “Steven’s Square — Loring Heights”
neighborhoods, while has statistically equivalent proportions to all
other neighborhoods.

. Other neighborhoods can be noted similarly based on their adjusted
p-values.
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Statistics with R for Data Analysis

This book covers the use of the R programming language for data analysis. Data analysis is a broad term that
includes exploratory data analysis by calculating summary statistics and plotting summary plots, and inferential
data analysis by conducting statistical tests to infer population characteristics from the data samples we have. The
two types of data analysis, whether exploratory or inferential, can be done perfectly using R programming. R has
many useful packages that can not only perform all the previous data analysis steps but also has additional packages
that were developed by different scientists specifically for creating specific analyses for various fields like genom-
ics, geography, environmental sciences, marketing, etc. Furthermore, R is free software and can run on all major
platforms: Windows, Mac OS, and UNIX/Linux.

This book covers the different types of data analysis that can be performed on the main two types of data, categori-
cal and continuous. As such, it is divided into 5 chapters that demonstrate these analyses with different real-world
datasets. Chapters 1 and 2 were designed for univariate analysis of continuous and categorical variables, respective-
ly. Different datasets were used to illustrate how to calculate summary statistics, create summary plots, and conduct
statistical tests on these variables. Chapter 3 is designed to demonstrate how to examine the relationship between
two continuous variables using summary statistics of different correlation coefficients, various summary plots like
scatter plots or correlation matrices, and finally some statistical tests for the significance of these correlations.
Chapter 4 shows how to examine the relationship between one categorical and one continuous variable using
summary statistics of location or spread, different summary plots like box plots, histograms, etc., and some statisti-
cal tests. Finally, Chapter 5 demonstrates how to examine the relationship between two categorical variables using
summary statistics of counts and proportions, summary plots like bar and line plots, and some statistical tests.

In all these chapters, different datasets per chapter were used so each chapter can be viewed as a separate entity for
the interested researcher in any of the five chapter topics. All the data analysis steps were done using the R program-
ming language with several code chunks to demonstrate these complex analyses. I hope that this book, covering the
main five types of data analysis, will be a valuable addition to your journey in data analysis.

Mohsen Nady is a pharmacist with a M.D. in Microbiology and a Diploma in Industrial Pharmacy.
Besides, Mohsen has more than 10 years of experience in Statistics and Data Analytics. Mohsen has
applied his skills to different projects related to Genomics, Microbiology, Biostatistics, Six Sigma,
Data Analytics, Data Visualization, Building Apps, Geography, Market Analysis, Business Analysis,
Machine Learning, etc. Mohsen also published his thesis in a high-impact journal that attracted
many citations, where all the statistical analyses were performed by him in addition to the method-
ological part. Furthermore, Mohsen has earned different certificates, from top universities (Harvard,
Johns Hopkins, Denmark, etc) in Statistics, Data Analytics, Data Visualization, and Machine
Learning that highlight his outstanding diverse skills.
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