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This book covers the use of the R programming language for data analysis. Data 
analysis is a broad term that includes exploratory data analysis by calculating summary 
statistics and plotting summary plots, and inferential data analysis by conducting 
statistical tests to infer population characteristics from the data samples we have. The 
two types of data analysis, whether exploratory or inferential, can be done perfectly 
using R programming.
R has many useful packages that can not only perform all the previous data analysis 
steps but also has additional packages that were developed by different scientists 
specifically for creating specific analyses for various fields like genomics, geography, 
environmental sciences, marketing, etc. Furthermore, R is free software and can run on 
all major platforms: Windows, Mac OS, and UNIX/Linux.
This book covers the different types of data analysis that can be performed on the main 
two types of data, categorical and continuous. As such, it is divided into 5 chapters that 
demonstrate these analyses with different real-world datasets.
Chapters 1 and 2 were designed for univariate analysis of continuous and categorical 
variables, respectively. Different datasets were used to illustrate how to calculate 
summary statistics, create summary plots, and conduct statistical tests on these variables.
Chapter 3 is designed to demonstrate how to examine the relationship between two 
continuous variables using summary statistics of different correlation coefficients, 
various summary plots like scatter plots or correlation matrices, and finally some 
statistical tests for the significance of these correlations.
Chapter 4 shows how to examine the relationship between one categorical and one 
continuous variable using summary statistics of location or spread, different summary 
plots like box plots, histograms, etc., and some statistical tests.
Finally, Chapter 5 demonstrates how to examine the relationship between two categorical 
variables using summary statistics of counts and proportions, summary plots like bar 
and line plots, and some statistical tests.
In all these chapters, different datasets per chapter were used so each chapter can be 
viewed as a separate entity for the interested researcher in any of the five chapter topics. 
All the data analysis steps were done using the R programming language with several 
code chunks to demonstrate these complex analyses. I hope that this book, covering 
the main five types of data analysis, will be a valuable addition to your journey in data 
analysis.

–Author

PREFACE
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1.1. DATA USED IN THIS CHAPTER

1.1.1. The Economics Data
The US economic time series data is available from https://fred.stlouisfed.org/ 
and is part of the ggplot2 package under the name “economics.” To load this 
data into our R session, we will load the tidyverse package (which contains the 
ggplot2 package) using the library function. Then, we will load the economics 
data using the data function.
library(tidyverse)

data(“economics”)

Then, to see the data structure, we will use the glimpse function.
glimpse(economics)

## Rows: 574

## Columns: 6

## $ date   <date> 1967–07–01, 1967–08–01, 1967–09–01, 1967–10–01, 1967–11–01, …

## $ pce   <dbl> 506.7, 509.8, 515.6, 512.2, 517.4, 525.1, 530.9, 533.6, 544.3…

## $ pop   <dbl> 198712, 198911, 199113, 199311, 199498, 199657, 199808, 19992…

## $ psavert <dbl> 12.6, 12.6, 11.9, 12.9, 12.8, 11.8, 11.7, 12.3, 11.7, 12.3, 1…

## $ uempmed <dbl> 4.5, 4.7, 4.6, 4.9, 4.7, 4.8, 5.1, 4.5, 4.1, 4.6, 4.4, 4.4, 4…

## $ unemploy <dbl> 2944, 2945, 2958, 3143, 3066, 3018, 2878, 3001, 2877, 2709, 2…

The glimpse function gives the number of rows, the number of columns in 
the data followed by the column names (with a dollar sign prefix), the column 
classes (within parentheses), and the first values of each column. We see that the 
economics data contains 574 rows and 6 columns:

1. date: the month of data collection. It is a date column.
2. pce: the personal consumption expenditures, in billions of dollars. It 

is a double or numeric column with decimals.
3. pop: the total population, in thousands. It is a double or numeric 

column.
4. psavert: the personal savings rate. It is a double or numeric column 

with decimals.
5. uempmed: the median duration of unemployment, in weeks. It is a 

double or numeric column with decimals.
6. unemploy: the number of unemployed in thousands. It is a double or 

numeric column.
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1.1.2. The Midwest Data
The midwest data frame contains demographic information of midwest counties 
from the 2000 US census. As before, we load the “midwest” data frame using 
the data function. Finally, we explore the data using the glimpse function.
data(“midwest”)

glimpse(midwest)

## Rows: 437

## Columns: 28

## $ PID         <int> 561, 562, 563, 564, 565, 566, 567, 568, 569, 570,…

## $ county        <chr> “ADAMS,” “ALEXANDER,” “BOND,” “BOONE,” “BROWN,” “…

## $ state        <chr> “IL,” “IL,” “IL,” “IL,” “IL,” “IL,” “IL,” “IL,” “…

## $ area         <dbl> 0.052, 0.014, 0.022, 0.017, 0.018, 0.050, 0.017, …

## $ poptotal       <int> 66090, 10626, 14991, 30806, 5836, 35688, 5322, 16…

## $ popdensity      <dbl> 1270.9615, 759.0000, 681.4091, 1812.1176, 324.222…

## $ popwhite       <int> 63917, 7054, 14477, 29344, 5264, 35157, 5298, 165…

## $ popblack       <int> 1702, 3496, 429, 127, 547, 50, 1, 111, 16, 16559,…

## $ popamerindian    <int> 98, 19, 35, 46, 14, 65, 8, 30, 8, 331, 51, 26, 17…

## $ popasian       <int> 249, 48, 16, 150, 5, 195, 15, 61, 23, 8033, 89, 3…

## $ popother       <int> 124, 9, 34, 1139, 6, 221, 0, 84, 6, 1596, 20, 7, …

## $ percwhite      <dbl> 96.71206, 66.38434, 96.57128, 95.25417, 90.19877,…

## $ percblack      <dbl> 2.57527614, 32.90043290, 2.86171703, 0.41225735, …

## $ percamerindan    <dbl> 0.14828264, 0.17880670, 0.23347342, 0.14932156, 0…

## $ percasian      <dbl> 0.37675897, 0.45172219, 0.10673071, 0.48691813, 0…

## $ percother      <dbl> 0.18762294, 0.08469791, 0.22680275, 3.69733169, 0…

## $ popadults      <int> 43298, 6724, 9669, 19272, 3979, 23444, 3583, 1132…

## $ perchsd       <dbl> 75.10740, 59.72635, 69.33499, 75.47219, 68.86152,…

## $ percollege      <dbl> 19.63139, 11.24331, 17.03382, 17.27895, 14.47600,…

## $ percprof       <dbl> 4.355859, 2.870315, 4.488572, 4.197800, 3.367680,…

## $ poppovertyknown   <int> 63628, 10529, 14235, 30337, 4815, 35107, 5241, 16…

## $ percpovertyknown   <dbl> 96.27478, 99.08714, 94.95697, 98.47757, 82.50514,…

## $ percbelowpoverty   <dbl> 13.151443, 32.244278, 12.068844, 7.209019, 13.520…

## $ percchildbelowpovert <dbl> 18.011717, 45.826514, 14.036061, 11.179536, 13.02…

## $ percadultpoverty   <dbl> 11.009776, 27.385647, 10.852090, 5.536013, 11.143…

## $ percelderlypoverty  <dbl> 12.443812, 25.228976, 12.697410, 6.217047, 19.200…

## $ inmetro       <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0…

## $ category       <chr> “AAR,” “LHR,” “AAR,” “ALU,” “AAR,” “AAR,” “LAR,” …
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The midwest is a data frame with 437 rows and 28 variables:

1. PID: Unique county identifier and its class is integer or numeric.
2. county: County name and its class is character.
3. state: State to which county belongs and its class is character.
4. area: The area of the county and its class is double with decimal 

places or numeric.
5. poptotal: Total population and its class is integer or numeric.
6. popdensity: Population density (person/unit area) and its class is 

double or numeric.
7. popwhite: Number of whites and its class is integer or numeric.
8. popblack: Number of blacks and its class is integer or numeric.
9. popamerindian: Number of American Indians and its class is integer 

or numeric.
10. popasian: Number of Asians and its class is integer or numeric.
11. popother: Number of other races and its class is integer or numeric.
12. percwhite: Percent white and its class is double or numeric.
13. percblack: Percent black and its class is double or numeric.
14. percamerindan: Percent American Indian and its class is double or 

numeric.
15. percasian: Percent Asian and its class is double or numeric.
16. percother: Percent other races and its class is double or numeric.
17. popadults: Number of adults and its class is integer or numeric.
18. perchsd: Percent with high school diploma and its class is double or 

numeric.
19. percollege: Percent college educated and its class is double or 

numeric.
20. percprof: Percent with professional degree and its class is double or 

numeric.
21. poppovertyknown: Population with known poverty status and its 

class is integer or numeric.
22. percpovertyknown: Percent of population with known poverty status 

and its class is double or numeric.
23. percbelowpoverty: Percent of people below the poverty line and its 

class is double or numeric.
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24. percchildbelowpovert: Percent of children below poverty line and 
its class is double or numeric.

25. percadultpoverty: Percent of adults below poverty line and its class 
is double or numeric.

26. percelderlypoverty: Percent of elderly below poverty line and its 
class is double or numeric.

27. inmetro: County considered in a metro area and its class is integer 
or numeric. This column has 2 values only, 1 for counties in a metro 
area and 0 for counties not in a metro area.

28. category: Miscellaneous column and its class is a character.

1.2. SUMMARY STATISTICS FOR LOCATION
There are different measures of the central tendency (central location) of 
numerical data. A measure of central tendency is a single value that describes 
the numerical data by identifying its central position. The measures of central 
tendency are also called summary statistics because they try to summarize 
numerical data with a single number. The mean, median and mode are all 
measures of central tendency, but under certain conditions, some measures of 
central tendency become more suitable to use than others.

1.2.1. The Mean
The (arithmetic) mean is calculated by summing all data values and dividing 
them by the number of these data values. For the numbers (1,2,3), their mean 
would be=(1+2+3)/3= 2.

The mean is sensitive to extreme values in small samples. For a sample 
of two observations, each observation will affect the mean by 50% while for a 
sample of 100 observations, each observation will affect the mean by 1%. So, 
increasing the sample size will lead to a more stable sample mean.

For the numbers (1,2,10), their mean = (1+2+10)/3 = 4.333. The mean has 
doubled compared to the previous example although we still have three values. 
With more outliers in your data, the mean loses its ability to provide the central 
location for the data because the outlier values are dragging the mean away 
from the central position.

1.2.1.1. The Mean of Economics Data Columns
In the economics data, we can see the mean of every numeric column in our 
data using the functions:
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1. The get_summary_stats function, from the rstatix package, using the 
argument, show = c(“mean”), to show the mean of every numeric 
column in the economics data.

2. The flextable package functions, flextable, theme_box, and set_
caption, to convert the result to a table with a caption.

All these functions were applied in sequence using the “%>%” operator. 
Because we are using functions from the rstatix and flextable packages, so we 
must first load these packages into our R session using the library function.
library(rstatix)

library(flextable)

economics %>% get_summary_stats( show = c(“mean”)) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Mean of every numeric column in the economics data”)

Table 1.1. Mean of Every Numeric Column in the Economics Data

Variable n Mean
pce 574 4,820.093
pop 574 257,159.653
psavert 574 8.567
uempmed 574 8.609
unemploy 574 7,771.310

The mean has the same unit of the numerical data, so:
1. The mean of pce column (personal consumption expenditures) is 

4,820.093 billion dollars.
2. The mean of pop column or population is 257,159.653 thousand.
3. The mean of psavert column (personal savings rate) is 8.567.
4. The mean of the uempmed column (median duration of 

unemployment) is 8.609 weeks.
5. The mean of the unemploy column (number of unemployed) is 

7,771.310 thousand.
In addition, we see that the sample size for every column is 574 which is the 

number of rows in our data, meaning that no numeric column has any missing data.

1.2.1.2. The Mean of Midwest Data Columns
Similarly, we can use the same functions to get the mean value of each numeric 
column of the midwest data.
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midwest %>% get_summary_stats( show = c(“mean”)) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Mean of every numeric column in the midwest data”)

Table 1.2. Mean of Every Numeric Column in the Midwest Data

Variable n Mean
PID 437 1,437.339
area 437 0.033
poptotal 437 96,130.302
popdensity 437 3,097.743
popwhite 437 81,839.915
popblack 437 11,023.881
popamerindian 437 343.110
popasian 437 1,310.465
popother 437 1,612.931
percwhite 437 95.558
percblack 437 2.676
percamerindan 437 0.799
percasian 437 0.487
percother 437 0.479
popadults 437 60,972.613
perchsd 437 73.966
percollege 437 18.273
percprof 437 4.447
poppovertyknown 437 93,642.284
percpovertyknown 437 97.110
percbelowpoverty 437 12.511
percchildbelowpovert 437 16.447
percadultpoverty 437 10.919
percelderlypoverty 437 11.389
inmetro 437 0.343

We get the mean of every numeric column of the midwest data:
1. The first column is PID or the Unique county identifier and it is a 

meaningless mean.
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2. By looking at the means of similar columns, we can get the interesting 
properties of midwest counties. Because the mean of percent white 
in these counties is 95.558% compared to 2.676% of percent black, 
0.799% of percent American Indian, 0.487% Asians, and 0.479% 
of other races, we conclude that these counties have mostly white 
races.

3. The sample size for every column is 437 which is the number of 
rows in our data, meaning that no numeric column has any missing 
data.

1.2.2. The Median
The median is the value that halves a set of data values equally. In other words, 
it is the middle value of a data set and so it is called the 50th percentile. For an 
odd number of data points, it is the central data point after arranging them. For 
an even number of data points, it is the average of the two central data points.

When the data is evenly spaced (or evenly distributed), the mean and 
median are nearly the same. When there are large outliers in our data, the mean 
is pulled by them to the right and will be larger than the median. This data is 
called right-skewed data.

When there are small outliers in our data, the mean is pulled by them to the 
left and will be smaller than the median. This data is called left-skewed data.

The median gives the data center without being affected by the extreme 
values or outliers in the data. Median is a type of robust statistics because of 
this.

1.2.2.1. The Median for Economics Data
In the economics data, we can see the median (and the mean) of every numeric 
column in our data using the functions:

1. The get_summary_stats function, from the rstatix package, using 
the argument, show = c(“mean,” “median”), to show the mean and 
median of every numeric column in the economics data.

2. The flextable package functions, flextable, theme_box, and set_
caption, to convert the result to a table with a caption.

economics %>% get_summary_stats( show = c(“mean,” “median”)) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Mean and median of every numeric column in the economics 
data”)
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Table 1.3. Mean and Median of Every Numeric Column in the Economics Data

Variable n Mean Median
pce 574 4,820.093 3,936.85
pop 574 257,159.653 253,060.00
psavert 574 8.567 8.40
uempmed 574 8.609 7.50
unemploy 574 7,771.310 7,494.00

We see that:
1. When the mean is larger than the median, this indicates right-skewed 

data for the pce, pop, uempmed, and unemploy columns. We will 
also see that in the subsequent summary plots.

2. When the mean is nearly equal to the median, this indicates evenly-
spaced or normally distributed data as for the psavert column. The 
normal distribution with a bell shape can be checked using summary 
plots and statistical tests as described below.

3. Because for each column we have 574 data points, we can arrange 
these values for a certain column to check if the median is calculated 
correctly. To arrange the values of psavert column, we will use the 
sort function with the argument, economics$psavert to extract that 
column.

sort(economics$psavert)

##  [1] 2.2 2.7 2.7 2.9 3.1 3.1 3.1 3.4 3.4 3.4 3.4 3.4 3.4 3.5 3.5

## [16] 3.5 3.6 3.6 3.6 3.6 3.6 3.7 3.7 3.7 3.7 3.7 3.7 3.8 3.8 3.8

## [31] 3.9 4.0 4.0 4.0 4.0 4.1 4.1 4.1 4.1 4.2 4.2 4.2 4.2 4.2 4.2

## [46] 4.4 4.4 4.4 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.6 4.6 4.6 4.7

## [61] 4.7 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.9 4.9 4.9 4.9 5.0 5.0 5.0

## [76] 5.0 5.2 5.2 5.2 5.2 5.2 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.4 5.4

## [91] 5.4 5.4 5.4 5.5 5.5 5.5 5.5 5.5 5.5 5.6 5.6 5.6 5.7 5.7 5.7

## [106] 5.7 5.7 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.9 5.9 5.9 5.9 5.9 5.9

## [121] 5.9 6.0 6.0 6.0 6.1 6.1 6.1 6.1 6.2 6.2 6.2 6.2 6.2 6.2 6.2

## [136] 6.2 6.3 6.3 6.3 6.3 6.3 6.3 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4

## [151] 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.5 6.5 6.5 6.5 6.6 6.6 6.6 6.6

## [166] 6.6 6.6 6.6 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.8

## [181] 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.9 6.9 6.9

## [196] 6.9 6.9 6.9 6.9 6.9 6.9 6.9 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.1

## [211] 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2

## [226] 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.5 7.5
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## [241] 7.5 7.5 7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.7 7.7 7.7 7.8 7.8

## [256] 7.8 7.8 7.8 7.8 7.9 7.9 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.1 8.1

## [271] 8.1 8.1 8.1 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.3 8.3 8.3

## [286] 8.3 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.5 8.5 8.5 8.5 8.5 8.5 8.6

## [301] 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.7 8.7 8.7 8.7 8.7

## [316] 8.7 8.7 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.9 8.9 8.9 8.9 9.0

## [331] 9.0 9.0 9.0 9.1 9.1 9.1 9.1 9.1 9.1 9.2 9.3 9.3 9.3 9.3 9.3

## [346] 9.3 9.4 9.4 9.4 9.5 9.6 9.6 9.6 9.6 9.7 9.7 9.7 9.7 9.7 9.7

## [361] 9.7 9.7 9.7 9.7 9.7 9.7 9.8 9.9 9.9 9.9 9.9 9.9 9.9 9.9 10.0

## [376] 10.0 10.1 10.1 10.1 10.1 10.1 10.2 10.2 10.3 10.3 10.3 10.3 10.3 10.3 
10.3

## [391] 10.4 10.5 10.5 10.5 10.5 10.5 10.5 10.6 10.6 10.6 10.6 10.6 10.6 10.6 
10.6

## [406] 10.6 10.7 10.7 10.8 10.8 10.8 10.8 10.8 10.9 10.9 10.9 10.9 10.9 10.9 
10.9

## [421] 11.0 11.0 11.0 11.0 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 
11.1

## [436] 11.1 11.2 11.2 11.2 11.2 11.3 11.3 11.3 11.3 11.3 11.4 11.4 11.4 11.4 
11.4

## [451] 11.4 11.4 11.5 11.5 11.5 11.5 11.6 11.6 11.6 11.6 11.7 11.7 11.7 11.7 
11.7

## [466] 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.8 11.8 11.8 11.8 11.8 
11.8

## [481] 11.8 11.8 11.9 11.9 12.0 12.0 12.0 12.0 12.0 12.1 12.1 12.2 12.2 12.2 
12.3

## [496] 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.4 12.4 12.4 12.4 12.5 12.5 12.5 
12.5

## [511] 12.5 12.6 12.6 12.6 12.6 12.7 12.7 12.7 12.7 12.8 12.8 12.8 12.8 12.8 
12.9

## [526] 12.9 12.9 12.9 13.0 13.0 13.0 13.0 13.0 13.1 13.1 13.1 13.1 13.2 13.2 
13.2

## [541] 13.2 13.2 13.2 13.2 13.3 13.3 13.3 13.3 13.3 13.4 13.4 13.4 13.4 13.5 
13.5

## [556] 13.6 13.6 13.6 13.6 13.6 13.7 13.8 13.8 13.9 14.0 14.2 14.2 14.3 14.3 
14.4

## [571] 14.4 14.7 14.8 17.3

The indices in the square brackets indicate the value rank. For example, the 
value of 8.2 has a rank of [281] and the value of 8.5 has a rank of [295]. The 2 
central points are 287th and 288th values and both have a value of 8.4 so the 
median = (8.4+8.4)/2 = 8.4.

We can also see that using the following functions:
1. The arrange function with the psavert argument to arrange the rows 

according to the psavert value in ascending order.
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2. The select function to select only the psavert column.
3. The slice column with the argument, 287 and 288, to select the 287th 

and 288th rows.
economics %>% arrange(psavert) %>% select(psavert) %>% slice(287,288)

## # A tibble: 2 × 1

##  psavert

##   <dbl>

## 1   8.4

## 2   8.4

Again, we see that the 287th and 288th values are both 8.4 so the median = 
(8.4+8.4)/2 = 8.4. We can also use the same functions for the uempmed column.
economics %>% arrange(uempmed) %>% select(uempmed) %>% slice(287,288)

## # A tibble: 2 × 1

##  uempmed

##   <dbl>

## 1   7.5

## 2   7.5

We see that the 287th and 288th values, of median duration of unemployment 
column, are both 7.5 so the median = (7.5+7.5)/2 = 7.5.

1.2.2.2. The Median for Midwest Data
We can use the same functions for the midwest data with 437 data points to get 
the median and mean for every numeric column.
midwest %>% get_summary_stats( show = c(“mean,” “median”)) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Mean and median of every numeric column in the midwest 
data”)

Table 1.4. Mean and Median of Every Numeric Column in the Midwest Data

Variable n Mean Median
PID 437 1,437.339 1,221.000
area 437 0.033 0.030
poptotal 437 96,130.302 35,324.000
popdensity 437 3,097.743 1,156.208
popwhite 437 81,839.915 34,471.000
popblack 437 11,023.881 201.000
popamerindian 437 343.110 94.000
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popasian 437 1,310.465 102.000
popother 437 1,612.931 66.000
percwhite 437 95.558 98.033
percblack 437 2.676 0.539
percamerindan 437 0.799 0.215
percasian 437 0.487 0.297
percother 437 0.479 0.178
popadults 437 60,972.613 22,188.000
perchsd 437 73.966 74.247
percollege 437 18.273 16.798
percprof 437 4.447 3.814
poppovertyknown 437 93,642.284 33,788.000
percpovertyknown 437 97.110 98.170
percbelowpoverty 437 12.511 11.822
percchildbelowpovert 437 16.447 15.270
percadultpoverty 437 10.919 10.008
percelderlypoverty 437 11.389 10.869
inmetro 437 0.343 0.000

We see that:
1. When the mean is larger than the median, this indicates right-skewed 

data for the poptotal, popdensity, and popwhite columns. We will 
also see that in the subsequent summary plots.

2. When the mean is nearly equal to the median, this indicates evenly-
spaced or normally distributed data for the area column. The normal 
distribution with a bell shape can be checked using summary plots 
and statistical tests as described below.

3. When the mean is smaller than the median, this indicates left-
skewed data for the percwhite column. We will also see that in the 
subsequent summary plots.

4. Because each column has 437 data points, we can arrange these 
values for a certain column, using the sort function, to check if the 
median is calculated correctly. For the area column.

sort(midwest$area)

##  [1] 0.005 0.009 0.009 0.010 0.010 0.010 0.011 0.011 0.012 0.012 0.013 0.013

## [13] 0.013 0.014 0.014 0.014 0.014 0.014 0.015 0.015 0.015 0.016 0.016 0.016
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## [25] 0.016 0.016 0.017 0.017 0.017 0.017 0.018 0.018 0.018 0.018 0.018 0.019

## [37] 0.019 0.019 0.019 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020

## [49] 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021

## [61] 0.021 0.021 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022

## [73] 0.022 0.022 0.022 0.022 0.022 0.022 0.023 0.023 0.023 0.023 0.023 0.023

## [85] 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023

## [97] 0.023 0.023 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024

## [109] 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024

## [121] 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024

## [133] 0.024 0.024 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025

## [145] 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025

## [157] 0.025 0.025 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026

## [169] 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.027 0.027

## [181] 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.028 0.028 0.028 0.028

## [193] 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.029

## [205] 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029

## [217] 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030

## [229] 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.031 0.031 0.031 0.031 0.031

## [241] 0.031 0.031 0.031 0.031 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032

## [253] 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

## [265] 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.034 0.034 0.034

## [277] 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034

## [289] 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.035

## [301] 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.036 0.036 0.036

## [313] 0.036 0.036 0.036 0.036 0.036 0.037 0.037 0.037 0.037 0.037 0.037 0.037

## [325] 0.038 0.038 0.038 0.038 0.038 0.039 0.039 0.040 0.040 0.040 0.040 0.041

## [337] 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.042 0.042 0.042 0.042

## [349] 0.042 0.042 0.042 0.043 0.043 0.043 0.043 0.044 0.044 0.044 0.044 0.045

## [361] 0.045 0.045 0.046 0.046 0.046 0.047 0.047 0.047 0.048 0.048 0.048 0.048

## [373] 0.048 0.048 0.049 0.049 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.051

## [385] 0.051 0.051 0.051 0.052 0.052 0.052 0.052 0.052 0.053 0.053 0.053 0.054

## [397] 0.054 0.054 0.054 0.054 0.055 0.055 0.055 0.055 0.056 0.057 0.058 0.058

## [409] 0.059 0.060 0.060 0.060 0.060 0.060 0.062 0.063 0.064 0.067 0.068 0.068

## [421] 0.068 0.069 0.069 0.070 0.071 0.072 0.073 0.075 0.075 0.078 0.078 0.078

## [433] 0.079 0.082 0.089 0.094 0.110

The central point is the 219th point and has a value of 0.03 so the median 
= 0.03. We can also see that using the arrange, select, and slice functions as 
described above.
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midwest %>% arrange(area) %>% select(area) %>% slice(219)

## # A tibble: 1 × 1

##  area

##  <dbl>

## 1 0.03

We see that the median = 0.03. For the poptotal column.
midwest %>% arrange(poptotal) %>% select(poptotal) %>% slice(219)

## # A tibble: 1 × 1

##  poptotal

##   <int>

## 1  35324

The median = 35324.

1.2.3. The percentiles
The pth sample percentile is the data point such that p% of data points are below 
that value and (100-p) % of data points are larger than that value. For example, 
the median or 50th percentile is that data point that nearly 50% of data is below 
that value and 50% are larger than that value, while the 75th percentile is that 
data point that nearly 75% of data points are below that value and 25% are 
larger than that value.

The 25th percentile is also known as the first quartile or Q1, the 50th 
percentile is known as the second quartile, Q2, or the median, and the 75th 
percentile is known as the third quartile or Q3. The percentiles including the 
median are not affected by the extreme values or outliers in the data so they are 
robust statistics.

Percentiles are used to understand values such as test scores or health 
indicators. For example, if a student has a score of 90 out of 100 on a certain 
test. That score has no meaning unless he knows what percentile he falls into. 
If his score (90 out of 100) is the 95th percentile. This means that his score is 
better than 95% of the test takers in his class. If his score is the 20th percentile. 
This means that only his score is better than 20% of the test takers.

1.2.3.1. The Percentiles for Economics Data
In the economics data, we can see the percentiles (and the median) of every 
numeric column in our data using the functions:

1. The get_summary_stats function, from the rstatix package, using 
the argument, type = “quantile,” to show the 0% (minimum),25% 
(Q1), 50% (median), 75% (Q3), and 100% (maximum) percentiles 
of every numeric column in the economics data.
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2. The flextable package functions, flextable, theme_box, and set_
caption, to convert the result to a table with a caption.

economics %>% get_summary_stats(type = “quantile”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The 0, 25, 50, 75, 100%of every numeric column in the 
economics data”)

Table 1.5. The 0, 25, 50, 75, 100%of Every Numeric Column in the Economics Data

Variable n 0% 25% 50% 75% 100%

pce 574 506.7 1,578.3 3,936.85 7,626.325 12,193.8

pop 574 198,712.0 224,896.0 253,060.00 290,290.750 320,402.3

psavert 574 2.2 6.4 8.40 11.100 17.3

uempmed 574 4.0 6.0 7.50 9.100 25.2

unemploy 574 2,685.0 6,284.0 7,494.00 8,685.500 15,352.0

The default result will give the 0% (minimum),25% (Q1), 50% (median), 
75% (Q3), and 100% (maximum) percentiles. We see that the 50% is the same 
as the median calculated above.

We can get any required percentiles using the probs argument with 
proportion numbers. For example, we can get the 30% and 60%of every column 
using the probs = c(0.3,0.6) argument for 30% and 60%respectively.
economics %>% get_summary_stats(type = “quantile,” probs = c(0.3,0.6)) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The 30% and 60%of every numeric column in the econom-
ics data”)

Table 1.6. The 30% and 60%of Every Numeric Column in the Economics Data

Variable n 30% 60%
pce 574 1,970.2 5,165.2
pop 574 230,803.9 268,548.8
psavert 574 6.7 9.3
uempmed 574 6.3 8.3
unemploy 574 6,590.0 8,048.0
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1.2.3.2. The Percentiles for Midwest Data
We can use the same functions to get the same percentiles for every numeric 
column in the midwest data.
midwest %>% get_summary_stats(type = “quantile”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The 0, 25, 50, 75, 100%of every numeric column in the 
midwest data”)

Table 1.7. The 0, 25, 50, 75, 100%of Every Numeric Column in the Midwest Data

Variable n 0% 25% 50% 75% 100%

PID 437 561.000 670.000 1,221.000 2,059.000 3,052.000

area 437 0.005 0.024 0.030 0.038 0.110

poptotal 437 1,701.000 18,840.000 35,324.000 75,651.000 5,105,067.000

popdensity 437 85.050 622.407 1,156.208 2,330.000 88,018.397

popwhite 437 416.000 18,630.000 34,471.000 72,968.000 3,204,947.000

popblack 437 0.000 29.000 201.000 1,291.000 1,317,147.000

popamerindian 437 4.000 44.000 94.000 288.000 10,289.000

popasian 437 0.000 35.000 102.000 401.000 188,565.000

popother 437 0.000 20.000 66.000 345.000 384,119.000

percwhite 437 10.694 94.886 98.033 99.075 99.823

percblack 437 0.000 0.116 0.539 2.601 40.210

percamerindan 437 0.056 0.158 0.215 0.384 89.177

percasian 437 0.000 0.174 0.297 0.521 5.070

percother 437 0.000 0.091 0.178 0.481 7.524

popadults 437 1,287.000 12,271.000 22,188.000 47,541.000 3,291,995.000

perchsd 437 46.912 71.325 74.247 77.195 88.899

percollege 437 7.336 14.114 16.798 20.550 48.079

percprof 437 0.520 2.998 3.814 4.949 20.791

poppovertyknown 437 1,696.000 18,364.000 33,788.000 72,840.000 5,023,523.000

percpovertyknown 437 80.902 96.895 98.170 98.599 99.860

percbelowpoverty 437 2.180 9.199 11.822 15.133 48.691

percchildbelowpovert 437 1.919 11.624 15.270 20.352 64.308

percadultpoverty 437 1.939 7.668 10.008 13.182 43.312

percelderlypoverty 437 3.547 8.912 10.869 13.412 31.162

inmetro 437 0.000 0.000 0.000 1.000 1.000
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We see that:
1. The percent white has 10.694 as 0% or minimum, 94.886 as 25% or 

Q1, 98.033 as 50% or median, 99.075 as 75% or Q3, and 99.823 as 
100% or maximum. According to these numbers, about 75% of the 
437 midwest counties have a percent white equal to 94.886 (Q1) or 
more.

2. The percent black has 0.000 as 0% or minimum, 0.116 as 25% or 
Q1, 0.539 as 50% or median, 2.601 as 75% or Q3, and 40.210 as 
100% or maximum. According to these numbers, only 25% of the 
437 midwest counties have percent black equals 2.601 (Q3) or more.

1.2.4. The Mode
The mode is the data point that appears most frequently in a set of data points. 
The mode is not necessarily unique to a given data, since certain numbers or 
categories may occur the same maximum value. In that case, the data is called 
multimodal data as opposed to unimodal data with only one unique mode.

1.2.4.1. The Mode of Economics Data
To see the mode of any numeric column, we can use the count function with the 
argument, sort = TRUE to sort the frequency of different values in descending 
order. Then, we will use the head function to get the top 6 most frequent values 
of every column. Finally, we convert the result to a table as above. For the pce 
column.
economics %>% count(pce, sort = TRUE) %>% head() %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The top 6 most frequent values of the pce column from 
economics data”)

Table 1.8. The Top 6 Most Frequent Values of the pce Column from Economics Data

pce n
506.7 1
509.8 1
512.2 1
515.6 1
517.4 1
525.1 1
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We see that all values have a count of 1 so there is no mode in this column. 
For the pop column.
economics %>% count(pop, sort = TRUE) %>% head() %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The top 6 most frequent values of the pop column from 
economics data”)

Table 1.9. The Top 6 Most Frequent Values of the Pop Column from Economics Data

Pop n
198,712 1
198,911 1
199,113 1
199,311 1
199,498 1
199,657 1

Similarly, we see that all values have a count of 1 so there is no mode in this 
column. For the psavert column.
economics %>% count(psavert, sort = TRUE) %>% head() %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The top 6 most frequent values of the psavert column 

from economics data”)

Table 1.10. The top 6 Most Frequent Values of the Psavert column from Economics Data

Psavert n
6.4 15
11.7 14
6.8 13
9.7 12
11.1 12
6.7 11

We see that 6.4 has the top frequency of 15 so psavert is an example of 
unimodal data with a mode = 6.4. For the uempmed column.
economics %>% count(uempmed, sort = TRUE) %>% head() %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The top 6 most frequent values of the uempmed column 

from economics data”)
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Table 1.11. The Top 6 Most Frequent Values of the Uempmed Column from Eco-
nomics Data

Uempmed n
8.3 22
6.9 15
6.8 14
7.1 14
5.7 13
5.8 13

We see that 8.3 has the top frequency of 22 so uempmed is an example of 
unimodal data with a mode = 8.3. For the unemploy column.
economics %>% count(unemploy, sort = TRUE) %>% head() %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The top 6 most frequent values of the unemploy column 
from economics data”)

Table 1.12. The Top 6 Most Frequent Values of the Unemploy Column from Eco-
nomics Data

Unemploy n
2,856 2
4,305 2
4,959 2
6,109 2
6,590 2
6,655 2

We see that many values have the top frequency of 2 so unemploy is an 
example of multi-modal data.

1.2.4.2. The Mode of Midwest Data
To get the mode of all numeric columns in the midwest data, we will use the 
following functions:

1. The select function with the argument, area:percelderlypoverty, to 
select the 23 columns from the area column to percelderlypoverty 
column. The resulting data will be 437 rows and 23 columns.
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midwest %>% select(area:percelderlypoverty)

## # A tibble: 437 × 23

##   area poptotal popdensity popwhite popblack popamerindian popasian popother

##  <dbl>  <int>   <dbl>  <int>  <int>     <int>  <int>  <int>

## 1 0.052  66090   1271.  63917   1702      98   249   124

## 2 0.014  10626    759   7054   3496      19    48    9

## 3 0.022  14991    681.  14477   429      35    16    34

## 4 0.017  30806   1812.  29344   127      46   150   1139

## 5 0.018   5836    324.   5264   547      14    5    6

## 6 0.05   35688    714.  35157    50      65   195   221

## 7 0.017   5322    313.   5298    1       8    15    0

## 8 0.027  16805    622.  16519   111      30    61    84

## 9 0.024  13437    560.  13384    16       8    23    6

## 10 0.058  173025   2983.  146506  16559      331   8033   1596

## # i 427 more rows

## # i 15 more variables: percwhite <dbl>, percblack <dbl>, percamerindan <dbl>,

## #  percasian <dbl>, percother <dbl>, popadults <int>, perchsd <dbl>,

## #  percollege <dbl>, percprof <dbl>, poppovertyknown <int>,

## #  percpovertyknown <dbl>, percbelowpoverty <dbl>, percchildbelowpovert <dbl>,

## #  percadultpoverty <dbl>, percelderlypoverty <dbl>

2. The pivot_longer function with the argument, cols = 
area:percelderlypoverty, collapses all 23 columns into 2 columns, 
the name and value columns. The resulting data will be 10051 rows 
and 2 columns.

midwest %>% select(area:percelderlypoverty) %>%

 pivot_longer(cols = area:percelderlypoverty)

## # A tibble: 10,051 × 2

##  name       value

##  <chr>       <dbl>

## 1 area       0.052

## 2 poptotal   66090 

## 3 popdensity   1271. 

## 4 popwhite   63917 

## 5 popblack    1702 

## 6 popamerindian  98 

## 7 popasian    249 

## 8 popother    124 

## 9 percwhite    96.7

## 10 percblack     2.58

## # i 10,041 more rows
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3. The group_by function with the argument name to split the data 
frame or tibble into multiple data frames each containing a single 
name or column.

4. The count function with the arguments, value, sort = TRUE, to count 
the values of each name (column) and sort them in descending order.

5. The slice_head function with the argument, n=6, to get the top 6 
most frequent values of each column. Then we convert the result to 
a table as before.

midwest %>% select(area:percelderlypoverty) %>%

 pivot_longer(cols = area:percelderlypoverty) %>%

 group_by(name) %>% count(value, sort = TRUE) %>%

 slice_head(n = 6) %>% flextable() %>% theme_box() %>%

 set_caption(caption = “The top 6 most frequent values of every numeric column 

from the midwest data”)

Table 1.13. The Top 6 Most Frequent Values of Every Numeric Column from the 
Midwest Data

Name Value n
area 0.02400000 36
area 0.03400000 26
area 0.02500000 24
area 0.03300000 21
area 0.02300000 20
area 0.02600000 20
percadultpoverty 1.93850430 1
percadultpoverty 2.35504872 1
percadultpoverty 2.39906403 1
percadultpoverty 2.58450033 1
percadultpoverty 2.59006144 1
percadultpoverty 2.84384454 1
percamerindan 0.05623243 1
percamerindan 0.05953710 1
percamerindan 0.07306158 1
percamerindan 0.08007779 1
percamerindan 0.08035525 1
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percamerindan 0.08193140 1
percasian 0.00000000 1
percasian 0.01059210 1
percasian 0.01594981 1
percasian 0.02703190 1
percasian 0.03250447 1
percasian 0.05315379 1
percbelowpoverty 2.18016760 1
percbelowpoverty 2.71473392 1
percbelowpoverty 3.12105990 1
percbelowpoverty 3.23762786 1
percbelowpoverty 3.38529044 1
percbelowpoverty 3.49159858 1
percblack 0.00000000 1
percblack 0.00859660 1
percblack 0.00942596 1
percblack 0.01058145 1
percblack 0.01119069 1
percblack 0.01223092 1
percchildbelowpovert 1.91895478 1
percchildbelowpovert 2.94525227 1
percchildbelowpovert 3.78581963 1
percchildbelowpovert 4.06964667 1
percchildbelowpovert 4.06985404 1
percchildbelowpovert 4.22803082 1
percelderlypoverty 16.78004540 2
percelderlypoverty 3.54706685 1
percelderlypoverty 3.83824912 1
percelderlypoverty 4.08547929 1
percelderlypoverty 4.28088917 1
percelderlypoverty 4.90623387 1
perchsd 46.91226100 1
perchsd 56.65217390 1
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perchsd 58.38525270 1
perchsd 58.41880340 1
perchsd 58.69596440 1
perchsd 59.56804830 1
percollege 7.33610822 1
percollege 7.91325578 1
percollege 8.54375099 1
percollege 8.74173036 1
percollege 8.84588804 1
percollege 9.33070866 1
percother 0.00000000 3
percother 0.00824776 1
percother 0.01347648 1
percother 0.01530456 1
percother 0.01598849 1
percother 0.01935859 1
percpovertyknown 80.90244120 1
percpovertyknown 81.77562140 1
percpovertyknown 82.50514050 1
percpovertyknown 85.20980230 1
percpovertyknown 85.64711410 1
percpovertyknown 85.97423330 1
percprof 0.52029136 1
percprof 1.56541721 1
percprof 1.57567381 1
percprof 1.72665917 1
percprof 1.79346254 1
percprof 1.94520548 1
percwhite 10.69408740 1
percwhite 57.39520110 1
percwhite 62.77972450 1
percwhite 66.38434030 1
percwhite 66.88820950 1
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percwhite 70.27065100 1
popadults 17,369.00000000 2
popadults 1,287.00000000 1
popadults 1,922.00000000 1
popadults 2,821.00000000 1
popadults 3,057.00000000 1
popadults 3,457.00000000 1
popamerindian 26.00000000 7
popamerindian 8.00000000 6
popamerindian 16.00000000 6
popamerindian 37.00000000 6
popamerindian 49.00000000 6
popamerindian 31.00000000 5
popasian 15.00000000 7
popasian 38.00000000 7
popasian 21.00000000 6
popasian 24.00000000 6
popasian 19.00000000 5
popasian 41.00000000 5
popblack 1.00000000 7
popblack 8.00000000 7
popblack 9.00000000 7
popblack 10.00000000 7
popblack 2.00000000 6
popblack 4.00000000 6
popdensity 1,156.20833000 2
popdensity 85.05000000 1
popdensity 104.78181800 1
popdensity 110.69333300 1
popdensity 113.51282100 1
popdensity 130.91489400 1
popother 6.00000000 10
popother 10.00000000 10
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popother 13.00000000 9
popother 2.00000000 7
popother 14.00000000 7
popother 7.00000000 6
poppovertyknown 34,833.00000000 2
poppovertyknown 1,696.00000000 1
poppovertyknown 3,820.00000000 1
poppovertyknown 4,160.00000000 1
poppovertyknown 4,513.00000000 1
poppovertyknown 4,815.00000000 1
poptotal 19,464.00000000 2
poptotal 35,427.00000000 2
poptotal 1,701.00000000 1
poptotal 3,890.00000000 1
poptotal 4,373.00000000 1
poptotal 4,590.00000000 1
popwhite 416.00000000 1
popwhite 1,688.00000000 1
popwhite 4,072.00000000 1
popwhite 4,562.00000000 1
popwhite 5,032.00000000 1
popwhite 5,062.00000000 1

We see that:
1. Some columns are unimodal with 1 mode as for the area column 

(mode = 0.024), and the percother column (mode = 0.00).
2. Some columns are multimodal with 2 modes or more as for the 

popasian column (mode = 15.0,38.0) and the popblack column 
(mode = 1.00, 8.00, 9.00, 10.00).

3. Other columns have no mode because all values have a frequency of 
1 as for the percadultpoverty and percamerindan columns.

1.3. SUMMARY STATISTICS FOR SPREAD
In some cases, we see that two samples have the same mean. However, this 
does not indicate that the two samples are identical. In fact, the data sample 
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spread may differ between the two samples, so to better describe any sample, 
we should report a combination of location and spread measures.

1.3.1. The Range
The simplest measure of spread is the range. The range is the difference between 
the largest and smallest observations in a sample.

The disadvantages of the range as a spread measure are:
1. The range is very sensitive to extreme values or outliers.
2. The range depends on the sample size. The larger the sample size, 

the larger the range tends to be. This makes it difficult to compare 
ranges from samples of differing sizes.

1.3.1.1. The Range of the Economics Data
To get the range of every numeric column in the economics data, we will use 
the functions:

1. The get_summary_stats function with the argument, show = c(“min,” 
“max”), to get the minimum and maximum value of every column.

2. The mutate function creates a new column (range) by subtracting the 
minimum value from the maximum value.

3. The flextable, theme_box, and set_caption to convert the result to a 
table.

economics %>% get_summary_stats(show = c(“min,””max”)) %>%

mutate(range = max-min) %>%

flextable() %>% theme_box() %>%

set_caption(caption = “The minimum, maximum, and range of every numeric column 
in the economics data”)

Table 1.14. The Minimum, Maximum, and Range of Every Numeric Column in the 
Economics Data

Variable n Min Max Range
pce 574 506.7 12,193.8 11,687.1
pop 574 198,712.0 320,402.3 121,690.3
psavert 574 2.2 17.3 15.1
uempmed 574 4.0 25.2 21.2
unemploy 574 2,685.0 15,352.0 12,667.0
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We see that:
1. The highest range was for the pop column with a range = 121,690.3.
2. The lowest range was for the psavert column with a range = 15.1.
3. We conclude that the pop values are more spread than the psavert 

values.

1.3.1.2. The Range of the Midwest Data
Using the same functions, we can get the range of every numeric column in the 
midwest data.
midwest %>% get_summary_stats(show = c(“min,””max”)) %>%

 mutate(range = max-min) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The minimum, maximum, and range of every numeric column 
in the midwest data”)

Table 1.15. The Minimum, Maximum, and Range of Every Numeric Column in the 
Midwest Data

Variable n Min Max Range
PID 437 561.000 3,052.000 2,491.000
area 437 0.005 0.110 0.105
poptotal 437 1,701.000 5,105,067.000 5,103,366.000
popdensity 437 85.050 88,018.397 87,933.347
popwhite 437 416.000 3,204,947.000 3,204,531.000
popblack 437 0.000 1,317,147.000 1,317,147.000
popamerindian 437 4.000 10,289.000 10,285.000
popasian 437 0.000 188,565.000 188,565.000
popother 437 0.000 384,119.000 384,119.000
percwhite 437 10.694 99.823 89.129
percblack 437 0.000 40.210 40.210
percamerindan 437 0.056 89.177 89.121
percasian 437 0.000 5.070 5.070
percother 437 0.000 7.524 7.524
popadults 437 1,287.000 3,291,995.000 3,290,708.000
perchsd 437 46.912 88.899 41.987
percollege 437 7.336 48.079 40.743
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percprof 437 0.520 20.791 20.271
poppovertyknown 437 1,696.000 5,023,523.000 5,021,827.000
percpovertyknown 437 80.902 99.860 18.958
percbelowpoverty 437 2.180 48.691 46.511
percchildbelowpovert 437 1.919 64.308 62.389
percadultpoverty 437 1.939 43.312 41.373
percelderlypoverty 437 3.547 31.162 27.615
inmetro 437 0.000 1.000 1.000

We see that:
1. The highest range was for the poptotal column with a range = 

5,103,366.000.
2. The lowest range was for the area column with a range = 0.105 only.
3. The highest range in percent columns was for the percent white 

column (range = 89.129) and the lowest range was for the percent 
asian column (5.07). This means that the percent white values are 
more spread across these 437 counties than the percent asian values.

1.3.2. The Variance
The variance is the average of the squared differences from the sample mean. 
As such, it has the squared unit of the data points and can be calculated from 
the formula:

2

1
2

1

n

ii
x x

s
n

=

 − 
 =
−

∑


Where;

Where 2s  is the sample variance.
x


 is the sample mean.
n is the sample size.

2

1

n

i
i

x x
=

 − 
 ∑



 means sum the squared difference between every element of our 

sample (from 1x  to nx ) and the sample mean x


. Every element of our sample 
is denoted as x with a subscript to indicate its position in our sample.
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We divide by n-1 when calculating the sample variance (and not by n as any 
average) to make the sample variance a good estimator of the true population 
variance. If we have population data, we will divide by N (where N is the 
population size) to get the variance.

1.3.2.1. Variance Interpretation
A large variance indicates that data points in your sample are far from the mean 
and far from each other, while a small variance indicates the opposite. A zero 
variance indicates that all values within our data are identical.

Variance is important in investment where stock price variance (as a 
measure of spread or variability) can be used as a measure of risk. Also, in the 
industrial machines, the products produced from these machines are with high 
variance. This indicates that these machines need adjustment.

1.3.2.2. Disadvantages of Variance
1. Variance is affected by outliers. Squaring the differences between 

these numbers and the mean can skew the variance.
2. Not easily interpreted because the variance has the squared unit of 

the data.

1.3.3. The Standard Deviation
The standard deviation is the square root of the variance. As such, it has the 
same unit of data and is more easily interpreted. It can be calculated from the 
square root of the variance formula:
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As before, we divide by n-1 when calculating the standard deviation (and 
not by n as any average) to make the sample standard deviation a good estimator 
of the true population standard deviation. If we have the population data, we 
will divide by N (where N is the population size) to get the standard deviation.

1.3.3.1. Interpretation of the Standard Deviation
They are the same as variance.
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1.3.3.2. Disadvantages of Standard Deviation
1. The standard deviation is affected by outliers, and so it is not one of 

the robust statistics.

1.3.3.3. The Variance and Standard Deviation of Economics Data
Similarly, we can calculate the standard deviation of every numeric column in 
the economics data using the get_summary_stats function with the argument, 
show = c(“sd). Then, we use the mutate function to create a new column 
(variance) by raising the standard deviation to the power of 2.
economics %>% get_summary_stats(show = c(“sd”)) %>%

 mutate(variance = sd^2) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The standard deviation and variance of every numeric 
column in the economics data”)

Table 1.16. The Standard Deviation and Variance of Every Numeric Column in the 
Economics Data

Variable n sd Variance
pce 574 3,556.804 12,650,854.694416
pop 574 36,682.399 1,345,598,396.395201
psavert 574 2.964 8.785296
uempmed 574 4.107 16.867449
unemploy 574 2,641.959 6,979,947.357681

We see that:
1. The standard deviation of the pce column is 3,556.804 billion 

dollars, while the variance is 12,650,854.694416 billion dollars^2.
2. The highest standard deviation (and variance) was for the pop 

column with a value of 36,682.399. So the population values are 
more spread than other column values in the economics data. 
However, the columns in the economics data are not on the same 
scale. For example, the population column is in thousands while 
the pce is in billions which makes comparing the standard deviation 
between them difficult.

1.3.3.4. The Variance and Standard Deviation of Midwest Data
Using the same functions, we can obtain the standard deviation and variance 
of every numeric column in the midwest data. In addition, we can arrange 
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the standard deviation values in descending order using the arrange and desc 
functions on the sd column.
midwest %>% get_summary_stats(show = c(“sd”)) %>%

 mutate(variance = sd^2) %>% arrange(desc(sd)) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The standard deviation and variance of every numeric 

column in the midwest data in descending order”)

Table 1.17. The Standard Deviation and Variance of Every Numeric Column in the 
Midwest Data in Descending Order

Variable n sd Variance
poptotal 437 298,170.540 88,905,670,923.891586
poppovertyknown 437 293,235.058 85,986,799,240.263382
popwhite 437 200,196.648 40,078,697,870.435898
popadults 437 191,644.862 36,727,753,130.999039
popblack 437 78,958.267 6,234,407,927.643291
popother 437 18,526.541 343,232,721.424681
popasian 437 9,518.394 90,599,824.339236
popdensity 437 7,664.752 58,748,423.221504
PID 437 876.390 768,059.432100
popamerindian 437 868.927 755,034.131329
percchildbelow-
povert 437 7.229 52.258441

percwhite 437 7.087 50.225569
percollege 437 6.262 39.212644
perchsd 437 5.843 34.140649
percbelowpoverty 437 5.150 26.522500
percblack 437 5.136 26.378496
percadultpoverty 437 5.109 26.101881
percamerindan 437 4.536 20.575296
percelderlypoverty 437 3.661 13.402921
percpovertyknown 437 2.750 7.562500
percprof 437 2.408 5.798464
percother 437 0.838 0.702244
percasian 437 0.628 0.394384
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inmetro 437 0.475 0.225625
area 437 0.015 0.000225

We see that:
1. In the population columns, the highest standard deviation or spread 

was for the poptotal column (298,170.540). So the poptotal column 
values are more spread than other population count columns 
(popwhite, popblack, etc).

2. In the percent columns, the highest standard deviation or spread 
was for the percchildbelowpovert column (7.229). So the percent 
child below poverty line column values are more spread than other 
percentage columns (percwhite, percblack, etc).

1.3.4. The Coefficient of Variation (CV)
The coefficient of variation is used to relate the mean and the standard deviation 
to each other. It is calculated using the formula:
$ CV = (s/{x}) X 100$

Where:
CV = coefficient of variation.
s = standard deviation.

x


 = the mean.
The CV remains the same regardless of the scale of the different samples 

(columns) used, so the CV is more useful in comparing the variability of different 
samples (columns) with different means than using the standard deviation.

1.3.4.1. The CV of Economics Data
We can get the CV for all numeric columns of the economics data using the 
functions:

1. The get_summary_stats function with the arguments, show = c(“sd,” 
“mean”), to calculate the standard deviation and mean for each 
column respectively.

2. The mutate function to create a new column, CV, is calculated by the 
above formula.

3. The flextable, theme_box, and set_caption functions create a table 
from the resulting data frame as described above.

economics %>% get_summary_stats(show = c(“sd,””mean”)) %>%

 mutate(CV = (sd/mean)*100) %>%



Univariate Analysis of Continuous Data

33

 flextable() %>% theme_box() %>%

 set_caption(caption = “The standard deviation, mean, and coefficient of variation 

for all columns of the economics data”)

Table 1.18. The Standard Deviation, Mean, and Coefficient of Variation for All 
Columns of the Economics Data

Variable n sd Mean CV
pce 574 3,556.804 4,820.093 73.79119
pop 574 36,682.399 257,159.653 14.26445
psavert 574 2.964 8.567 34.59788
uempmed 574 4.107 8.609 47.70589
unemploy 574 2,641.959 7,771.310 33.99631

We see that the highest variability was for the pce column with 73.79119 
CV and 3,556.804 standard deviation and not the pop column with 14.26445 
CV and 36,682.399 standard deviation.

1.3.4.2. The CV of Midwest Data
Similarly, we can get the CV for all numeric columns of the midwest data. In 
addition, we use the arrange and desc functions to order the columns according 
to their CV values in descending order.
midwest %>% get_summary_stats(show = c(“sd,””mean”)) %>%

 mutate(CV = (sd/mean)*100) %>% arrange(desc(CV)) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The standard deviation, mean, and coefficient of variation 
for all columns of the midwest data in descending order of CV value”)

Table 1.19. The Standard Deviation, Mean, and Coefficient of Variation for All 
Columns of the Midwest Data in Descending Order of CV Value

Variable n sd Mean CV
popother 437 18,526.541 1,612.931 1,148.625763
popasian 437 9,518.394 1,310.465 726.337140
popblack 437 78,958.267 11,023.881 716.247454
percamerindan 437 4.536 0.799 567.709637
popadults 437 191,644.862 60,972.613 314.313021
poppovertyknown 437 293,235.058 93,642.284 313.143855
poptotal 437 298,170.540 96,130.302 310.173310
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popamerindian 437 868.927 343.110 253.250270
popdensity 437 7,664.752 3,097.743 247.430210
popwhite 437 200,196.648 81,839.915 244.619814
percblack 437 5.136 2.676 191.928251
percother 437 0.838 0.479 174.947808
inmetro 437 0.475 0.343 138.483965
percasian 437 0.628 0.487 128.952772
PID 437 876.390 1,437.339 60.973090
percprof 437 2.408 4.447 54.148864
percadultpoverty 437 5.109 10.919 46.789999
area 437 0.015 0.033 45.454545
percchildbelowpovert 437 7.229 16.447 43.953305
percbelowpoverty 437 5.150 12.511 41.163776
percollege 437 6.262 18.273 34.269140
percelderlypoverty 437 3.661 11.389 32.145052
perchsd 437 5.843 73.966 7.899575
percwhite 437 7.087 95.558 7.416438
percpovertyknown 437 2.750 97.110 2.831840

We see that the highest variability was for the popother column with 
1,148.625763 CV and 18,526.541 standard deviation and not the poptotal 
column with 310.173310 CV and 298,170.540 standard deviation.

1.3.5. The Interquartile Range (IQR)
The interquartile range (IQR) is the difference between the first and third 
quartiles (Q3-Q1) and provides an estimate of the data spread. The IQR contains 
the middle 50% of our data. If the median or Q2 is closer to Q1 than Q3, this 
means that our data is right-skewed with a low frequency of large values. On 
the other hand, if the median or Q2 is closer to Q3 than Q1, this means that our 
data is left-skewed with a low frequency of small values. This will be seen from 
the summary plots described below. Finally, if the median is nearly in the center 
between Q1 and Q3, this means that our data is nearly normally distributed.

1.3.5.1. Advantages of Interquartile Range
1. The interquartile range is less sensitive to outliers than standard 

deviation, variance, or range so it is a robust statistic.
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2. The interquartile range is less affected by the sample size than the 
range.

1.3.5.2. IQR of economics Data
Using the get_summary_stats function with the argument, show = c(“median,” 
“q1,” “q3,” “iqr”), we will get the median, Q1, Q3, and IQR values, respectively, 
of all numeric columns in the economics data. In addition, we will arrange the 
columns by their IQR value in descending order.
economics %>% get_summary_stats(show = c(“median,””q1,””q3,””iqr”)) %>%

arrange(desc(iqr)) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The median, Q1, Q3, and IQR for all columns of the 
economics data in descending order by IQR value”)

Table 1.20. The Median, Q1, Q3, and IQR for All Columns of the Economics Data 
in Descending Order by IQR Value

Variable n Median Q1 Q3 IQR
pop 574 253,060.00 224,896.0 290,290.750 65,394.750
pce 574 3,936.85 1,578.3 7,626.325 6,048.025
unemploy 574 7,494.00 6,284.0 8,685.500 2,401.500
psavert 574 8.40 6.4 11.100 4.700
uempmed 574 7.50 6.0 9.100 3.100

We see that:
1. The highest variability was for the pop column with IQR = 

65,394.750.
2. The IQR is calculated as Q3-Q1 for each column.
3. The median is nearly in the center between Q1 and Q3 for the 

unemploy column indicating a nearly normal distribution. On the 
other hand, the median is closer to Q1 than Q3 for the pce and 
uempmed columns indicating right-skewed data. This will be more 
clearly seen in the summary plots described below.

1.3.5.3. IQR of Midwest Data
Using the get_summary_stats function, we will get the median, Q1, Q3, and 
IQR values of all numeric columns in the midwest data. In addition, we will 
arrange the columns by their IQR value in descending order.



Statistics with R for Data Analysis

36

midwest %>% get_summary_stats(show = c(“median,””q1,””q3,””iqr”)) %>%

arrange(desc(iqr)) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The median, Q1, Q3, and IQR for all columns of the 

midwest data in descending order by IQR value”)

Table 1.21. The Median, Q1, Q3, and IQR for All Columns of the Midwest Data in 
Descending Order by IQR Value

Variable n Median Q1 Q3 IQR
poptotal 437 35,324.000 18,840.000 75,651.000 56,811.000
poppover-
tyknown 437 33,788.000 18,364.000 72,840.000 54,476.000

popwhite 437 34,471.000 18,630.000 72,968.000 54,338.000
popadults 437 22,188.000 12,271.000 47,541.000 35,270.000
popdensity 437 1,156.208 622.407 2,330.000 1,707.593
PID 437 1,221.000 670.000 2,059.000 1,389.000
popblack 437 201.000 29.000 1,291.000 1,262.000
popasian 437 102.000 35.000 401.000 366.000
popother 437 66.000 20.000 345.000 325.000
popamerin-
dian 437 94.000 44.000 288.000 244.000

percchildbe-
lowpovert 437 15.270 11.624 20.352 8.728

percollege 437 16.798 14.114 20.550 6.436
percbelow-
poverty 437 11.822 9.199 15.133 5.935

perchsd 437 74.247 71.325 77.195 5.870
percadult-
poverty 437 10.008 7.668 13.182 5.514

percelderly-
poverty 437 10.869 8.912 13.412 4.500

percwhite 437 98.033 94.886 99.075 4.189
percblack 437 0.539 0.116 2.601 2.486
percprof 437 3.814 2.998 4.949 1.951
percpover-
tyknown 437 98.170 96.895 98.599 1.704
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inmetro 437 0.000 0.000 1.000 1.000
percother 437 0.178 0.091 0.481 0.389
percasian 437 0.297 0.174 0.521 0.347
percamerin-
dan 437 0.215 0.158 0.384 0.226

area 437 0.030 0.024 0.038 0.014

We see that:
1. The highest variability was for the poptotal column with IQR = 

56,811.0.
2. The median is nearly in the center between Q1 and Q3 for the perchsd 

column indicating a nearly normal distribution. On the other hand, 
the median is closer to Q1 than Q3 for the popblack and percblack 
columns indicating right-skewed data. Finally, the median is closer 
to Q3 than Q1 for the percwhite column indicating left-skewed data. 
This will be more clearly seen in the summary plots described below.

1.3.6. Median Absolute Deviation (MAD)
The MAD is another robust statistic for measuring the variability of numeric 
data. MAD is the median absolute distance that the data points are from the 
median. So it is calculated using the formula:

iMAD median x x
 = − 
 



Where:

ix x−


 is the absolute difference between every element in our sample (from 

1x  to nx  where n is the sample size or the number of rows in our data) and the 
sample mean x



.

1.3.6.1. MAD of Economics Data
Using the get_summary_stats function with the argument, show = c(“mad), 
we will get the MAD value of all numeric columns in the economics data. In 
addition, we will arrange the columns by their MAD value in descending order.
economics %>% get_summary_stats(show = c(“mad”)) %>%

arrange(desc(mad)) %>%

 flextable() %>% theme_box() %>%
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 set_caption(caption = “The median absolute deviation (MAD) for all columns of 

the economics data in descending order by MAD value”)

Table 1.22. The Median Absolute Deviation (MAD) for All Columns of the Eco-
nomics Data in Descending Order by MAD Value

Variable n MAD
pop 574 48,097.027
pce 574 4,139.123
unemploy 574 1,788.016
psavert 574 3.558
uempmed 574 2.224

We see that the highest variability was for the pop column with MAD = 
48,097.027.

1.3.6.2. MAD of Midwest Data
Using similar functions, we can get the MAD value for all numeric columns of 
the midwest data.
midwest %>% get_summary_stats(show = c(“mad”)) %>%

arrange(desc(mad)) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The median absolute deviation (MAD) for all columns of 
the midwest data in descending order by MAD value”)

Table 1.23. The Median Absolute Deviation (MAD) for All Columns of the Midwest 
Data in Descending Order by MAD Value

Variable n MAD
poptotal 437 29,662.378
popwhite 437 28,525.224
poppovertyknown 437 27,826.919
popadults 437 17,779.339
popdensity 437 948.537
PID 437 892.525
popblack 437 286.142
popasian 437 121.573
popamerindian 437 100.817
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popother 437 84.508
percchildbelowpovert 437 6.282
percollege 437 4.543
perchsd 437 4.371
percbelowpoverty 437 4.204
percadultpoverty 437 4.175
percelderlypoverty 437 3.359
percwhite 437 1.962
percprof 437 1.311
percpovertyknown 437 0.902
percblack 437 0.722
percasian 437 0.207
percother 437 0.166
percamerindan 437 0.110
area 437 0.009
inmetro 437 0.000

We see that the highest variability was for the poptotal column with MAD 
= 29,662.378.

1.4. SUMMARY PLOTS FOR CONTINUOUS  
UNIVARIATE ANALYSIS
The measures of location (mean, median, mode) and spread (standard deviation, 
IQR, MAD) do not tell the whole story of the data distribution or the distribution 
shape. Instead, we can use different plots to quickly look at the different data 
distributions. The ggplot2 package (a member of the tidyverse package) allows 
us to quickly visualize and explore data and we will heavily use it in this chapter 
and subsequent chapters.

1.4.1. Introduction to ggplot2
In ggplot2, it is recommended that everything you want to plot is included in a 
data frame (a tabular R object) as a column.

The basic steps to create a plot with the ggplot2 package are:
1.  Create an object of the ggplot class using the ggplot() function.
2.  Add geoms and other elements to create and customize the plot 

using +.
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1.4.1.1. Create a ggplot Object
The ggplot() function will create a blank plot without anything in it. It has 2 
main arguments:

1. The data argument specifies the data frame you want to use.
2. The aes() argument specifies which columns of that data frame are 

mapped to which aesthetics. Common plot aesthetics include:
3. x: Position on x-axis.
4. y: Position on the y-axis.
5. shape: Shape.
6. color: Color of the border of elements.
7. fill: Color of the inside of elements.
8. size: Size.
9. alpha: Transparency (1: opaque; 0: transparent).
10. linetype: Type of line (e.g., solid, dashed).
To plot the psavert (personal savings rate) values from the economics data 

on the x-axis, we use the ggplot function with 2 arguments:
1. data = economics which is our data frame containing the psavert 

column.
2. aes with the argument x = psavert to plot psavert values on the x-axis. 

Then, we add a title using the labs function with the title argument to 
further customize this plot.

ggplot(data = economics, aes(x = psavert))+

 labs(title = “Blank plot using ggplot function”)
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A blank plot is produced because the exact geom (plot type) has not been 
specified yet. The x-axis has a title of “psavert” and no title appears for the 
y-axis.

Another way of producing this plot is using the “%>%” function after the 
economics data and using only the aes argument inside the ggplot function.
economics %>% ggplot(aes(x = psavert))+

 labs(title = “Another blank plot using ggplot function”)

The aesthetics required for a plot depend on the geoms (plot types).

1.4.1.2. Adding Geoms
The geom functions add the graphical elements to the plot (e.g. histogram, 
boxplot, scatterplot). When you run the code to create a plot in RStudio, the 
plot will be shown in the “Plots” tab in one of the RStudio panels. If you would 
like to save the plot, you can do so using the “Export” button in this tab.

The aesthetics required for a geom type (plot type) can be found in the 
“Aesthetics” section of the geom’s help file (e.g., ?geom_histogram). Required 
aesthetics are in bold in this section of the help file and optional ones are not.
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1.4.2. Histograms
Histograms show the distribution of a continuous variable by dividing the x-axis 
into bins, counting the number of observations in each bin, and displaying the 
counts with bars. The geom_histogram() function requires only one aesthetic 
(x) or the continuous variable you want to visualize.

To plot a histogram of the psavert column, we will:
1. Create a blank plot using the ggplot function as before.
2. Add geom_histogram function to create the histogram plot.
3. Add a title using the labs function with the title argument. Also, the 

x and y arguments can modify the x- and y-axis titles.
4. Remove the default gray background with white lines by using the 

theme_classic function.
5. Put the plot title in the top center of the graph using the theme 

function with plot.title argument = element_text(hjust = 0.5) where 
hjust is for horizontal justification.

ggplot(data = economics, aes(x = psavert))+ geom_histogram()+

 labs(title = “Histogram of personal saving rate in economics data,” x = 
“Personal Saving Rate,”

    y = “Count”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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The peak count of observations (> 40 rows) appears between 5 and 10. The 
personal saving rate values appear normally distributed with a high frequency 
of values in the center and a low frequency at the tails.

1.4.2.1. Coloring the Bar Borders
The default histogram has a black color with difficult-to-see bar borders. We 
can add an extra argument, color = “red,” to the geom_histogram function to 
see the bars more clearly.
ggplot(data = economics, aes(x = psavert))+

 geom_histogram(color = “red”)+

 labs(title = “Histogram of personal saving rate in economics data with red 
borders,” x = “Personal Saving Rate,”

y = “Count”)+

theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

The bars are now more clearly seen.
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1.4.2.2. Bins
The bins argument controls the number of bins into which the numeric variable 
is divided (i.e., the number of bars in the plot). The default is 30, but it is helpful 
to try smaller and larger numbers to get a better impression of the distribution 
shape. For example, using 20 bins for the personal saving rate column.
ggplot(data = economics, aes(x = psavert))+

 geom_histogram(color = “red,” bins = 20)+

 labs(title = “Histogram of personal saving rate in economics data using 20 
bins,”

x = “Personal Saving Rate,”

y = “Count”)+

theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

For example, using 40 bins for the personal saving rate column.
ggplot(data = economics, aes(x = psavert))+

 geom_histogram(color = “red,” bins = 40)+

 labs(title = “Histogram of personal saving rate in economics data using 40 
bins,”
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x = “Personal Saving Rate,”

y = “Count”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that the personal saving rate is still a normally distributed variable.

1.4.2.3. Binwidth
In some of the above plots, we see that the bin boundaries are not integer 
numbers. If we want integer bin boundaries, we can use the binwidth argument 
with an integer value within the geom_histogram function. For example, using 
binwidth = 1 for the personal saving rate column. In addition, we will use the 
scale_x_continuous function with the argument, breaks = seq(0,20,1), to break 
the x-axis in 1 point value interval.
ggplot(data = economics, aes(x = psavert))+

 geom_histogram(color = “red,” binwidth = 1)+

 labs(title = “Histogram of personal saving rate in economics data using 1 
binwidth,”

    x = “Personal Saving Rate,”

    y = “Count”)+ scale_x_continuous(breaks = seq(0,20,1))+
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 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that each bar now corresponds to a single integer value.

1.4.2.4. Histograms with Reference Lines
A more informative histogram can be obtained by using reference lines 
indicating certain summary statistics like mean, median, etc. In that case, we 
will see if the data is right-skewed (median < mean), left-skewed (median > 
mean), or normally distributed (median nearly = mean).

For the economics data, we will generate a data frame containing the desired 
summary statistics in a long format using the functions:

1. The get_summary_stats function with the argument, show = 
c(“mean,” “median”), to get the mean and median value for each 
column in the economics data in a separate column.

2. The pivot_longer function with the arguments:
2.1. cols = c(mean, median) to convert the 2 numeric columns of 

mean and median into 2 columns.
2.2. names_to = “Statistics” which is the first character column 

holding the statistic name, mean, or median.
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2.3. values_to = “value” which is the 2nd numeric column holding 
the mean and median value for each column.

3. The resulting data frame “df” is converted to a table as before.
df<-economics %>% get_summary_stats(show = c(“mean,” “median”)) %>%

 pivot_longer(cols = c(mean,median), names_to = “Statistics,”

values_to = “value”)

df %>% flextable() %>% theme_box() %>%

 set_caption(caption = “Mean and Median value for every numeric column in the 
economics data in long format”)

Table 1.24. Mean and Median Value for Every Numeric Column in the Economics 
Data in Long Format

Variable n Statistics Value
pce 574 mean 4,820.093
pce 574 median 3,936.850
pop 574 mean 257,159.653
pop 574 median 253,060.000
psavert 574 mean 8.567
psavert 574 median 8.400
uempmed 574 mean 8.609
uempmed 574 median 7.500
unemploy 574 mean 7,771.310
unemploy 574 median 7,494.000

As shown above, the right-skewed columns are the pce, pop, uempmed, 
and unemploy columns because the mean is greater than the median. On the 
other hand, the psavert column is an evenly-spaced or normally distributed data 
because the mean is nearly equal to the median.

To plot a histogram of the psavert column with mean and median reference 
lines, we will use the same above functions with an additional geom_vline 
function to plot vertical lines with the arguments:

1. data = df %>% filter(variable==“psavert”) to filter for only rows 
containing the psavert column.

2. aes(xintercept = value, color = Statistics) so it will plot 2 vertical 
lines one for the mean and one for the median with a different color. 
We also use the “\n” in the title to break the long title into 2 lines.

ggplot(data = economics, aes(x = psavert))+

 geom_histogram(color = “red”)+
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 geom_vline(data = df %>% filter(variable==“psavert”),

aes(xintercept = value, color = Statistics))+

labs(title = “Histogram of personal saving rate in economics data\n with mean 
and median reference lines,”

x = “Personal Saving Rate,”

y = “Count”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that the mean is plotted as a red vertical line while the median 
is plotted as a blue vertical line. The 2 lines are near to each other or nearly 
equal indicating a normally distributed variable. Similarly, we can plot the pce 
column with 2 reference lines.
ggplot(data = economics, aes(x = pce))+

 geom_histogram(color = “red”)+

geom_vline(data = df %>% filter(variable==“pce”),

aes(xintercept = value, color = Statistics))+

labs(title = “Histogram of personal consumption expenditures \n with mean and 
median reference lines,”

x = “personal consumption expenditures (billions of dollars),”

 y = “Count”)+

theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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The mean is plotted as a red vertical line while the median is plotted as a 
blue vertical line. The mean line is greater than the median line indicating a 
right-skewed variable or a low frequency of large values.

For the midwest data, we will generate a data fame “df” containing the 
desired summary statistics in the long format using the same functions.
df<-midwest %>% get_summary_stats(show = c(“mean,” “median”)) %>%

 pivot_longer(cols = c(mean,median), names_to = “Statistics,”

values_to = “value”)

df %>% flextable() %>% theme_box() %>%

 set_caption(caption = “Mean and Median value for every numeric column of the 

midwest data in long format”)

Table 1.25. Mean and Median Value for Every Numeric Column of the Midwest 
Data in Long Format

Variable n Statistics Value
PID 437 mean 1,437.339
PID 437 median 1,221.000
area 437 mean 0.033
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area 437 median 0.030
poptotal 437 mean 96,130.302
poptotal 437 median 35,324.000
popdensity 437 mean 3,097.743
popdensity 437 median 1,156.208
popwhite 437 mean 81,839.915
popwhite 437 median 34,471.000
popblack 437 mean 11,023.881
popblack 437 median 201.000
popamerindian 437 mean 343.110
popamerindian 437 median 94.000
popasian 437 mean 1,310.465
popasian 437 median 102.000
popother 437 mean 1,612.931
popother 437 median 66.000
percwhite 437 mean 95.558
percwhite 437 median 98.033
percblack 437 mean 2.676
percblack 437 median 0.539
percamerindan 437 mean 0.799
percamerindan 437 median 0.215
percasian 437 mean 0.487
percasian 437 median 0.297
percother 437 mean 0.479
percother 437 median 0.178
popadults 437 mean 60,972.613
popadults 437 median 22,188.000
perchsd 437 mean 73.966
perchsd 437 median 74.247
percollege 437 mean 18.273
percollege 437 median 16.798
percprof 437 mean 4.447
percprof 437 median 3.814
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poppovertyknown 437 mean 93,642.284
poppovertyknown 437 median 33,788.000
percpovertyknown 437 mean 97.110
percpovertyknown 437 median 98.170
percbelowpoverty 437 mean 12.511
percbelowpoverty 437 median 11.822
percchildbelowpov-
ert 437 mean 16.447

percchildbelowpov-
ert 437 median 15.270

percadultpoverty 437 mean 10.919
percadultpoverty 437 median 10.008
percelderlypoverty 437 mean 11.389
percelderlypoverty 437 median 10.869
inmetro 437 mean 0.343
inmetro 437 median 0.000

When the mean is larger than the median, this indicates right-skewed data 
as for the poptotal, popdensity, and popwhite columns. When the mean is nearly 
equal to the median, this indicates evenly-spaced or normally distributed data 
as for the area column. Finally, when the mean is smaller than the median, this 
indicates left-skewed data as for the percwhite column.

To plot a histogram of the poptotal column with mean and median reference 
lines, we will use the same above functions with an additional geom_vline 
function.
ggplot(data = midwest, aes(x = poptotal))+

 geom_histogram(color = “red”)+

 geom_vline(data = df %>% filter(variable==“poptotal”),

aes(xintercept = value, color = Statistics))+

labs(title = “Histogram of total population from midwest data\n with mean and 
median reference lines,”

x = “Total Population,”

y = “Count”)+

theme_classic()+

theme(plot.title = element_text(hjust = 0.5))
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We see that the mean (red vertical line) is greater than the median (blue 
vertical line) indicating right-skewed data. Although the 2 lines are near to each 
other, they have great differences because the scale of the x-axis is in millions.

Similarly, we can plot the area column with 2 reference lines.
ggplot(data = midwest, aes(x = area))+

 geom_histogram(color = “red”)+

 geom_vline(data = df %>% filter(variable==“area”),

aes(xintercept = value, color = Statistics))+

labs(title = “Histogram of county area from the midwest data \n with mean and 
median reference lines,”

x = “County Area,”

 y = “Count”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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The mean line is near the median line (with a difference of 0.003) indicating 
a normally-distributed variable.

Finally, we can plot the percwhite column with 2 reference lines.
ggplot(data = midwest, aes(x = percwhite))+

 geom_histogram(color = “red”)+

 geom_vline(data = df %>% filter(variable==“percwhite”),

aes(xintercept = value, color = Statistics))+

labs(title = “Histogram of White percentage from the midwest data \n with mean 
and median reference lines,”

x = “White Percentage,”

y = “Count”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that the mean (red vertical line) is smaller than the median (blue 
vertical line) indicating left-skewed data with low frequency of small values.

1.4.3. Box Plots
The box plot displays the distribution of a continuous variable. It visualizes 
five summary statistics (the median, two hinges, and two whiskers), and all 
outliers individually. The lower and upper hinges correspond to the first and 
third quartiles (Q1 and Q3)respectively.

The upper whisker extends from Q3 to the largest value no further than 
1.5 X IQR from Q3. The lower whisker extends from Q1 to the smallest value 
at most 1.5 X IQR from Q1. Data beyond the end of the whiskers are called 
“outlying” points and are plotted individually.

The median (central line in the box), the upper quartile, and the lower 
quartile be used to determine the symmetry of the distribution:

1. If the distribution is symmetric, then the upper and lower quartiles 
should be nearly equally spaced from the median. This can be seen 
in the psavert column of the economics data.

2. If the median is closer to the 1st quartile than to the 3rd quartile, then 
the distribution is right-skewed. This can be seen in the pce column 
from the economics data.
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3. If the median is closer to the 3rd quartile than to the 1st quartile, then 
the distribution is left-skewed. This can be seen in the percent white 
column from the midwest data.

1.4.3.1. Box plots for Symmetric Distribution
The geom_boxplot function is used to plot a box plot by providing the x or 
y value as the continuous variable you want to plot. To plot a box plot of the 
psavert column from economics data on the x-axis, we will use the following 
functions:

1. The ggplot function with arguments:
1.1. data = economics which is the data frame containing the psavert 

column.
1.2. aes(x = psavert) to plot personal saving rate values on the x-axis.

2. The geom_boxplot function to create the box plot.
3. The labs, theme_classic, and theme functions as described above.

ggplot(data= economics, aes(x = psavert))+ geom_boxplot()+

 labs(title = “Boxplot of personal saving rate on the x-axis from economics 
data,”

 x = “Personal Saving Rate”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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The box plot shows no outliers and the personal saving rate is plotted on the 
x-axis. Because the median is equally spaced from the 1st and 3rd quartiles, so 
the personal saving rate has a symmetric distribution.

Alternatively, we can plot the personal saving rate values on the y-axis 
using the argument, aes(y = psavert), and adjust the labs function accordingly.
ggplot(data= economics, aes(y = psavert))+ geom_boxplot()+

 labs(title = “Boxplot of personal saving rate on the y-axis from economics 
data,”

y = “Personal Saving Rate”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

1.4.3.2. Box Plots for Right-Skewed Distribution
Using the same functions, we can plot the pce column values on the x-axis.
ggplot(data= economics, aes(x = pce))+ geom_boxplot()+

 labs(title = “Boxplot of personal consumption expenditures on the x-axis from 
economics data,”
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x = “Personal Consumption Expenditures (billions of dollars)”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

The box plot shows no outliers. Because the median is closer to the 1st 
quartile than to the 3rd quartile, the personal consumption expenditures have a 
right-skewed distribution.

Using the same functions, we can plot the poptotal column values from the 
midwest data on the x-axis.
ggplot(data= midwest, aes(x = poptotal))+ geom_boxplot()+

 labs(title = “Boxplot of total population on the x-axis from midwest data,”

x = “Total Population”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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The box plot shows some large outliers as black points. Because the median 
is closer to the 1st quartile than to the 3rd quartile, the total population has a 
right-skewed distribution.

1.4.3.3. Box Plots for Left-Skewed Distribution
Using the same functions, we can plot the percent white column values on the 
x-axis from the midwest data.
ggplot(data= midwest, aes(x = percwhite))+ geom_boxplot()+

 labs(title = “Boxplot of White percentage on the x-axis from midwest data,”

 x = “White Percentage”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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The box plot shows small outlier values as black points. Because the median 
is closer to the 3rd quartile than to the 1st quartile, the percentage white has a 
left-skewed distribution.

1.4.3.4. Box Plots with Reference Points
A more informative box plot can be plotted with a reference point for the mean 
value. Because the median is plotted as a central black line, the mean point can 
be compared to the median to deduce the data distribution as discussed in the 
above sections.

In R, there are many point shapes that can be supplied by their numbers.
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Or can be supplied by their names.

For example, we can plot a box plot of the psavert column from economics 
data on the y-axis with a plus mean reference point, we will use the following 
functions:

1. The ggplot function with arguments:
i.  data = economics which is the data frame containing the 

psavert column.
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ii. aes(y = psavert, x = 0) to plot personal saving rate values on 
the y-axis. The whiskers will have an x-axis position at 0 as 
well as the reference point.

2. The geom_boxplot function to create the box plot.
3. The stat_summary function with the arguments:

i. geom = “point” to plot a point.
ii. fun = “mean” the point plotted is for the mean value of 

personal saving rate.
iii. shape = “plus” which is the point shape.
iv. color = “red” which is the point color.
v. size = 2 which is the point size.

4. The labs, theme_classic, and theme functions as described above.
ggplot(data= economics, aes(y = psavert, x = 0))+ geom_boxplot()+

 stat_summary(geom = “point,” fun = “mean,” shape = “plus,”

color = “red,” size = 2)+

labs(title = “Boxplot of personal saving rate on the y-axis with 
a plus mean reference point,”

x = “Personal Saving Rate”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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Alternatively, we can plot this reference point as an asterisk.
ggplot(data= economics, aes(y = psavert, x = 0))+ geom_boxplot()+

 stat_summary(geom = “point,” fun = “mean,” shape = “asterisk,”

color = “red,” size = 2)+

labs(title = “Boxplot of personal saving rate on the y-axis with an asterisk 
mean reference point,”

 y = “Personal Saving Rate”)+

theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that the mean reference point is near the median central line of the 
box indicating a symmetrical distribution.

In a second example, we can plot the popwhite column from the midwest 
data with a diamond mean reference point.
ggplot(data= midwest, aes(y = popwhite, x = 0))+ geom_boxplot()+

 stat_summary(geom = “point,” fun = “mean,” shape = “diamond,”

color = “red,” size = 2)+

 labs(title = “Boxplot of White population on the y-axis with a diamond mean 
reference point,”

y = “White population”)+

 theme_classic()+
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 theme(plot.title = element_text(hjust = 0.5))

We see that the red mean reference point is above (greater than) the median 
central line of the box indicating a right-skewed distribution.

In a third example, we can plot the percwhite column from the midwest data 
with a cross mean reference point.
ggplot(data= midwest, aes(y = percwhite, x = 0))+ geom_boxplot()+

 stat_summary(geom = “point,” fun = “mean,” shape = “cross,”

color = “red,” size = 2)+

 labs(title = “Boxplot of White percentage on the y-axis with a cross mean 
reference point,”

y = “White Percentage”)+

theme_classic()+

theme(plot.title = element_text(hjust = 0.5))
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We see that the red mean reference point is below (smaller than) the median 
central line of the box indicating a left-skewed distribution.

1.4.4. Density Plots
The density plot is a kernel density estimate of the data (or a smoothed version 
of the histogram). Kernel density estimation is a method for estimating the 
probability density function of a continuous variable.

For the continuous variables, the probability distribution is known as the 
probability density function or PDF. The probability distribution for any variable 
describes how the probabilities are distributed over the different values of this 
variable. The density plot quickly shows the distribution shape of any variable.

1.4.4.1. Density Plot for a Symmetric Distribution
The geom_density function plots a kernel density plot of your continuous 
variable on the x or y-axis. To plot a density plot of the psavert column from the 
economics data on the x-axis, we will use the following functions:
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1. The ggplot function with arguments:
i. data = economics which is the data frame containing the 

psavert column.
ii. aes(x = psavert) to plot personal saving rate values on the 

x-axis.
2. The geom_density function to create the density plot.
3. The labs, theme_classic, and theme functions as described above.

ggplot(data= economics, aes(x = psavert))+ geom_density()+

 labs(title = “Kernel density plot of personal saving rates in economics data,”

x = “Personal Saving Rate,” y = “Density”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that the peak density appears between 5 and 10. The personal saving 
rate values appear nearly normally distributed with a high frequency of values 
in the center and a low frequency at the tails. There is also another density peak 
at a value greater than 10. To look at the exact location of these peaks, we can 
look at section 1.2.4.1. for calculating the mode of economics data. The table 
for the psavert column shows that the highest frequency (probability) was for 
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6.4 value (1st density peak) and the 2nd most frequent value was for 11.7 value 
(the second peak).

1.4.4.2. Density Plot for Right-Skewed Distribution
Using the same functions, we can plot a density plot for the pce column.
ggplot(data= economics, aes(x = pce))+ geom_density()+

 labs(title = “Density plot of personal consumption expenditures from the 
economics data,”

 x = “Personal Consumption Expenditures (billions of dollars),”

y = “Density”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that the highest density was at low values (< 2500) and larger 
values have much lower density. This indicates that the personal consumption 
expenditures have a right-skewed distribution. Using the same functions, we 
can plot a density plot for the poptotal column values from the midwest data on 
the x-axis.
ggplot(data= midwest, aes(x = poptotal))+ geom_density()+

 labs(title = “Density plot of total population from the midwest data,”
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 x = “Total Population,” y = “Density”)+

theme_classic()+

theme(plot.title = element_text(hjust = 0.5))

We see that the highest density was at low values (< 1000000) and larger 
values have a much lower density, so the total population has a right-skewed 
distribution.

1.4.4.3. Density Plot for left-Skewed Distribution
Using the same functions, we can plot a density plot of the percent white column 
values on the x-axis from the midwest data.
ggplot(data= midwest, aes(x = percwhite))+ geom_density()+

 labs(title = “Density plot of White percentage from midwest data,”

x = “White Percentage,” y = “Density”)+

theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that the highest density was at high values (at < 100) and smaller 
values have a much lower density, so the percentage white has a left-skewed 
distribution.

1.4.4.4. Bandwidth
The degree of density plot smoothness is controlled by the bandwidth parameter 
bw. To find the default value for a particular variable, use the bw.nrd0 function. 
For example, to find the default value of the personal saving rate of economics 
data.
bw.nrd0(economics$psavert)

## [1] 0.7487979

The default bandwidth value is 0.75. Larger values will result in more smoothing, 
while smaller values will produce less smoothing.

Example using bw = 0.01.
ggplot(data= economics, aes(x = psavert))+ geom_density(bw = 0.01)+

 labs(title = “Kernel density plot of personal saving rates in economics data \
nwith 0.01 bandwidth,”

x = “Personal Saving Rate,” y = “Density”)+

 theme_classic()+

theme(plot.title = element_text(hjust = 0.5))
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The resulting plot is less smooth than the plot with a default band width of 
0.75.

Example using bw = 5.
ggplot(data= economics, aes(x = psavert))+ geom_density(bw = 5)+

 labs(title = “Kernel density plot of personal saving rates in economics data \
nwith 5 bandwidth,”

x = “Personal Saning Rate,” y = “Density”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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The resulting plot is more smooth than the density plot with a default band 
width of 0.75.

1.4.5. Violin Plots
A violin plot is a blend of a box plot and a density plot which is a mirrored 
density plot.

1.4.5.1. Violin Plot for a Symmetric Distribution
The geom_violin function plots a violin plot and requires two aesthetics (x for 
locating the symmetry line of the violin plot and y for the continuous variable 
you want to visualize on the y-axis). To draw a violin plot of the psavert column 
from the economics data, we will use the following functions:

1. The ggplot function with arguments:
i. data = economics which is the data frame containing the 

psavert column.
ii. aes(y = psavert,x = 1), to plot the personal saving rates on the 

y-axis and symmetry line at 1 value on the x-axis.

2. The geom_violin function to create the violin plot.
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3. The geom_vline function with the argument, xintercept = 1, plots 
the vertical line at x-axis value = 1.

4. The labs, theme_classic, and theme functions as described above.
ggplot(data= economics, aes(x = 1,y = psavert))+ geom_violin()+

  geom_vline(xintercept = 1)+

 labs(title = “Violin plot of personal saving rates in economics data on the 
y-axis,”

 y = “Personal Saving Rate,” x = “Mirrored Density”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

As noted previously, the highest density (peak) of personal saving rates was 
at values between 5 and 10.

Alternatively, we can plot the personal saving rates on the x-axis and 
the symmetry line on the y-axis by reversing the aesthetics to be y = 1 and 
x = psavert. In addition, we use the geom_hline function with the argument, 
yintercept = 1 to plot a horizontal line at 1 value.
ggplot(data= economics, aes(y = 1,x = psavert))+ geom_violin()+

  geom_hline(yintercept = 1)+

 labs(title = “Violin plot of personal saving rates in economics data on the 
x-axis,”

 x = “Personal Saving Rate,” y = “Mirrored Density”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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1.4.5.2. Violin Plot for Right-Skewed Distribution
Using the same functions, we can plot a violin plot for the pce column.
ggplot(data= economics, aes(x = pce, y = 1))+ geom_violin()+

 geom_hline(yintercept = 1)+

 labs(title = “Violin plot of personal consumption expenditures from the economics 
data,”

 x = “Personal Consumption Expenditures (billions of dollars),”

 y = “Mirrored Density”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that the personal consumption expenditures have a right-skewed 
distribution with a low density of large values. Using the same functions, we 
can plot a violin plot for the poptotal column values from the midwest data on 
the x-axis.
ggplot(data= midwest, aes(x = poptotal, y = 1))+ geom_violin()+

 geom_hline(yintercept = 1)+

 labs(title = “Violin plot of total population from the midwest data,”

 x = “Total Population,” y = “Mirrored Density”)+
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 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that the highest density was at low values (< 1000000) and larger 
values have a much lower density, so the total population has a right-skewed 
distribution.

1.4.5.3. Violin Plot for Left-Skewed Distribution
Using the same functions, we can plot a violin plot of the percent white column 
values on the x-axis from the midwest data.
ggplot(data= midwest, aes(x = percwhite, y = 1))+ geom_violin()+

 geom_hline(yintercept = 1)+

 labs(title = “Violin plot of White percentage from midwest data,”

 x = “White Percentage,” y = “Mirrored Density”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that the highest density was at high values (at about 100%) and 
smaller values have a much lower density, so the percentage white has a left-
skewed distribution.

1.4.5.4. Bandwidth
The degree of density plot smoothness in the violin plot is controlled by the 
bandwidth parameter bw. The default value of the personal saving rate of 
economics data is 0.75 as noted before.

Larger values will result in more smoothing, while smaller values will 
produce less smoothing.

Example using bw = 0.1 within the geom_violin function.
ggplot(data= economics, aes(x = psavert, y = 1))+

 geom_violin(bw = 0.1)+ geom_hline(yintercept = 1)+

 labs(title = “Violin plot of personal saving rates in economics data \nwith 0.1 
bandwidth,”

    x = “Personal Saving Rate,” y = “Mirrored Density”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))



Univariate Analysis of Continuous Data

75

The resulting plot is less smooth than the plot with a default band width of 
0.75.

Example using bw = 3.
ggplot(data= economics, aes(x = psavert, y = 1))+

 geom_violin(bw = 3)+ geom_hline(yintercept = 1)+

 labs(title = “Violin plot of personal saving rates in economics data \nwith 3 
bandwidth,”

 x = “Personal Saning Rate,” y = “Mirrored Density”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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The resulting plot is more smooth than the density plot with a default band 
width of 0.75.

1.4.5.5. Quantiles
The draw_quantiles argument within the geom_violin function can draw lines 
at specified quantiles of the data.

Example drawing quantiles at 0.25, 0.5, and 0.75 that correspond to Q1, 
Q2, Q3.
ggplot(data= economics, aes(x = psavert, y = 1))+

 geom_violin(draw_quantiles = c(0.25,0.5,0.75))+ geom_hline(yintercept = 1)+

 labs(title = “Violin plot of personal saving rates in economics data \nwith 
0.25,0.5, and 0.75 quantiles,”

 x = “Personal Saving Rate,” y = “Mirrored Density”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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Example drawing quantiles at 0.1, 0.5, and 0.9 that correspond to 10%, 50% 
(median), and 90%.
ggplot(data= economics, aes(x = psavert, y = 1))+

 geom_violin(draw_quantiles = c(0.1,0.5,0.9))+ geom_hline(yintercept = 1)+

 labs(title = “Violin plot of personal saving rates in economics data \nwith 
10%,50%, and 90%,”

 x = “Personal Saving Rate,” y = “Mirrored Density”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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1.4.6. QQ Plot
The QQ plot (Quantile-Quantile Plot) is a plot used to assess the normal 
distribution of any numerical data.

If the data follow a normal distribution then a plot of the theoretical 
percentiles of the normal distribution on the x-axis versus the observed sample 
percentiles on the y-axis should be approximately linear. A reference line is 
plotted and if all data points fall along this reference line, we can assume 
normality.

1.4.6.1. QQ Plot of Symmetric Distribution
The ggqqplot from the ggpubr package can plot the QQ plot of any numerical 
column. To plot the QQ plot of personal saving rates from the economics data, 
we first load the ggpubr package into the R session using the library function. 
Then we use the ggqqplot function with the following arguments:

1. data = economics which is the data frame containing the psavert 
column

2. x = “psavert” which is the column to be plotted.
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3. title, xlab, and ylab arguments to add title, x-axis, and y-axis titles.
We also use the theme function to plot the title in the top middle of the 

graph.
library(ggpubr)

ggqqplot(data = economics, x = “psavert,”

title = “QQ plot of personal saving rates from economics data,”

 xlab = “Theoretical percentiles,” ylab = “Sample percentiles”)+

 theme(plot.title = element_text(hjust = 0.5))

The reference line is plotted with its 95% confidence interval. Because not 
all data points fall along this reference line or within the confidence band, we 
cannot assume the normality of personal saving rates.

Using the same functions, we can plot a QQ plot of the area column in the 
midwest data.
ggqqplot(data = midwest, x = “area,”

title = “QQ plot of area values from midwest data,”

xlab = “Theoretical percentiles,” ylab = “Sample percentiles”)+

 theme(plot.title = element_text(hjust = 0.5))



Statistics with R for Data Analysis

80

Some large data points do not fall along the reference line or within the 95% 
confidence band, so we can not assume the normality of area rates.

1.4.6.2. QQ Plot of Right-Skewed Distribution
Using the same functions, we can plot a QQ plot of the pce column from the 
economics data.
ggqqplot(data = economics, x = “pce,”

title = “QQ plot of personal consumption expenditures from economics data,”

xlab = “Theoretical percentiles,” ylab = “Sample percentiles”)+

 theme(plot.title = element_text(hjust = 0.5))
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The personal consumption expenditures have a right-skewed distribution 
with large values outside the confidence band of the reference line. To plot a QQ 
plot of the poptotal column from the midwest data.
ggqqplot(data = midwest, x = “poptotal,”

title = “QQ plot of total population from midwest data,”

xlab = “Theoretical percentiles,” ylab = “Sample percentiles”)+

 theme(plot.title = element_text(hjust = 0.5))
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Similarly, the total population has a right-skewed distribution with large 
values outside the confidence band of the reference line.

1.4.6.3. QQ Plot of Left-Skewed Distribution
Using the same functions, we can plot a QQ plot of the percent white column 
from the midwest data.
ggqqplot(data = midwest, x = “percwhite,”

    

     title = “QQ plot of percent white from midwest data,”

    

     xlab = “Theoretical percentiles,” ylab = “Sample percentiles”)+

 theme(plot.title = element_text(hjust = 0.5))
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The percent white has left skewed distribution with small values greatly 
outside the confidence band of the reference line.

1.5. STATISTICAL TESTS FOR CONTINUOUS UNI-
VARIATE ANALYSIS
After estimating the sample mean (sample estimate), we may wish to infer the 
underlying population mean (population parameter) from this sample mean 
using some statistical tests because this estimate (sample mean) is subjected to 
sampling error.

1.5.1. t-Test for One Sample Mean

1.5.1.1. Hypothesis Testing
In hypothesis testing, we start with two exclusive possibilities for the unknown 
truth (population parameters). Then, we use the sample data to choose between 
these two possibilities for the truth.
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The two possibilities are the null hypothesis, Ho, and the alternative 
hypothesis, Ha.

The null hypothesis, Ho, states that our sample parameter equals a reference 
value.

The alternative hypothesis, Ha, is the hypothesis that contradicts the null 
hypothesis. The alternative hypothesis states that our population parameter is 
less than < , greater than > , or not equal to ≠ .  a reference value.

1.5.1.2. Types of Hypothesis Testing
1. One-tailed Hypothesis Testing is a test in which the alternative 

hypothesis states that the sample parameter is less than <  or greater 
than >  a reference value.

2. Two-Tailed Hypothesis Testing is a test in which the 
alternativeypothesis states that the sample parameter is not equal to 
≠  a reference value. Not equal means that the sample parameter can 
be greater than or less than a reference value.

1.5.1.3. Examples of Hypothesis Testing
1. Examples of One-Tailed Hypothesis Testing:

i. The mean percent of adults below the poverty line across all 
US counties is 15%, while the mean percent of adults below 
the poverty line in midwest counties is 10.9%. We want to test 
the hypothesis that midwest counties have a mean percent of 
adults below the poverty line lower than the US average of 
15%.

Two hypotheses are considered:
a. The average percent of adults below the poverty line in 

midwest counties = 15%. This is the null hypothesis.
b. The average percent of adults below the poverty line in 

midwest counties is < 15%. This is the alternative hypothesis.
ii. Suppose we know from nationwide surveys based on millions of 

deliveries that the mean birth weight in the United States is 3400 
grams. We want to test the hypothesis that mothers with low 
socioeconomic status deliver babies whose birth weights are lower 
than this normal average.

Two hypotheses are considered:
a. The average birth weight of babies delivered by these mothers = 

3400 grams. This is the null hypothesis.
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b. The average birth weight of babies delivered by these mothers is < 
3400 grams. This is the alternative hypothesis.

2. Examples of Two-tailed Hypothesis Testing:
i. We assume cholesterol levels in women in the United States 

have a mean of 190 mg/dL. It is unknown whether cholesterol 
levels among recent Asian women immigrants are higher or 
lower than those in the general U.S. population.

Two hypotheses are considered:
a. The average cholesterol level of recent Asian women 

immigrants = 190 mg/dL. This is the null hypothesis.
b. The average cholesterol level of recent Asian women 

immigrants ≠  190 mg/dL. This is the alternative hypothesis.
ii. The standard mean tablet weight for a certain drug is 125 mg.
A new tableting machine is installed and we want to test that this machine 

is working properly. It is unknown whether the mean tablet weight from this 
machine is higher or lower than the standard weight of 125 mg.

Two hypotheses are considered:
i. The average tablet weight from this machine = 125 mg. This is the 

null hypothesis.
ii. The average tablet weight from this machine is ≠  125 mg. This is 

the alternative hypothesis.

1.5.1.4. Error Rate in Hypothesis Testing
If Ho is true and Ho is accepted, or if Ha is true and Ho is rejected, then the 
correct decision has been made.

If Ho is true and Ho is rejected, then an error has been made and it is called 
type I error. The probability of a type I error is the probability of rejecting the 
null hypothesis, Ho when Ho is true.

The probability of a type I error is denoted by α  and is commonly called 
the significance level of a test or the rejection level. The default value is 0.05 
or 5%.

The p-value is the probability of the test statistic (z or t) or more extreme 
values, that correspond to our sample results, under the Null hypothesis. If 
the p-value < significance level, it is a statistically significant result at this 
significance level, and we reject the Null hypothesis. Our sample data are 
unlikely under the Ho, they have a probability less than the significance level 
or 5%.
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If the p-value >= significance level, it is a statistically insignificant result at 
the significance level, and we fail to reject the Null hypothesis. We say fail to 
reject the Null hypothesis because if we have a p-value of 0.25. This means that 
our sample data have a probability of 25% under the Null hypothesis which is 
considered a large percentage. In your opinion, you may consider it small and 
accept Ha.

All statistical tests, explored in the following sections, give us the sample 
statistic (t or z value that corresponds to our sample results) and the p-value 
required for a decision.

1.5.1.5. t-Test for Personal Saving Rate
We note from the above summary statistics that the mean personal saving rate in 
the economics data is 8.567. We may wish to test the hypothesis that this mean 
is different from a reference value of 9, so the alternative hypothesis is the mean 
personal saving rate is higher or lower than the reference value or a two-tailed 
hypothesis testing.

To conduct a t-test of the personal saving rate in economics data, we use 
the t_test function with the following arguments:

1. data = economics which is our data frame containing the psavert 
(personal saving rate column).

2. psavert ~1 which is the formula for one sample testing of psavert 
column. This means that all personal saving rate values correspond 
to 1 group.

3. mu= 9 which is our reference value.
4. alternative = “two.sided” which is the alternative hypothesis.
Then, we use the flextable, theme_box, and set_caption functions to convert 

the result to a table as before.
t_test(data = economics, psavert ~1, mu= 9, alternative = “two.sided”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Two-tailed t-test results of personal saving rates in 
economics data”)

Table 1.26. Two-Tailed t-Test Results of Personal Saving Rates in Economics 
Data

.y. Group1 Group2 n Statistic df p
psavert 1 null model 574 -3.497769 573 0.000506
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The table 1.26 contains the t statistic = -3.498 which corresponds to our 
sample results and the p-value = 0.0005 or 0.05%.

The p_value is the probability of our sample results (personal saving rate) 
under the null hypothesis (where the mean personal saving rate = 9). Since this 
is a very low probability, we reject the null hypothesis and conclude that the 
mean personal saving rate in the US is significantly different from 9.

We can continue and do a one-tailed t-test for the personal saving rate 
with the alternative hypothesis that the mean personal saving rate is less than 
9 because our observed mean from the sample is 8.567. We will use the same 
functions above except that we use the argument, alternative = “less” for the 
different alternative hypothesis.
t_test(data = economics, psavert ~1, mu= 9, alternative = “less”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “One-tailed t-test results of personal saving rates in 
economics data”)

Table 1.27. One-Tailed t-Test Results of Personal Saving Rates in Economics Data

.y. Group1 Group2 n Statistic df p
psavert 1 null model 574 -3.497769 573 0.000253

The table 1.27 contains the same t statistic = -3.498 that corresponds to our 
sample results and the p-value = 0.00025 or 0.025%.

The p_value is the probability of our sample results (personal saving rate) 
under the null hypothesis (where the mean personal saving rate = 9). Since this 
is a very low probability, we reject the null hypothesis and conclude that the 
mean personal saving rate in the US is significantly lower than 9.

1.5.1.6. t-Test for Percent of Adults Below the Poverty Line
The mean percent of adults below the poverty line across all US counties is 
15%, while the mean percent of adults below the poverty line in midwest 
counties is 10.9%. We can do a one-tailed t-test for the mean percent of adults 
below the poverty line with the alternative hypothesis is that the mean percent 
of adults below the poverty line in the midwest counties is less than 15 because 
our observed mean from the sample is 10.9.
t_test(data = midwest, percadultpoverty ~1, mu= 15, alternative = “less”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “One-tailed t-test results of percent of adults below 
poverty line in midwest data”)
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Table 1.28. One-Tailed t-Test Results of Percent of Adults Below the Poverty Line 
in Midwest Data

.y. group1 group2 n statistic df p

per-
cadult-
poverty

1 null model 437 -16.69855 436

0.00000000
0000000000
0000000000
0000000000
000000000
0472

The Table 1.28 contains the same t statistic = -16.699 that corresponds to 
our sample results and the p-value is very low and nearly equals zero.

The p_value is the probability of our sample results (percent adults below 
the poverty line) under the null hypothesis (where the mean percent adults 
below the poverty line = 15). Since this is a very low probability, we reject the 
null hypothesis and conclude that the mean percent of adults below the poverty 
line in the midwest counties is significantly lower than 15 which is the mean 
value of all US counties.

1.5.2. Normality Test for One Sample
The t-test assumes that the data follows a normal distribution or a Gaussian 
distribution. The t-test is called a parametric test because its validity depends 
on the data distribution.

With large enough sample sizes (> 30 as in midwest data with 437 rows or 
economics data with 574 rows), we can ignore the distribution of the data and 
use the parametric t-test directly. This is because the central limit theorem tells 
us that no matter what distribution things have, the sampling distribution tends 
to be normal if the sample is large enough (n > 30).

However, to inspect normality for some numerical data, we can use visual 
plots (histogram, density plot, or QQ plot as described above) or statistical tests 
such as Shapiro-Wilk normality Test.

1.5.2.1. Shapiro-Wilk Normality Test
Shapiro-Wilk normality test is a test comparing the sample distribution to a 
normal distribution to ascertain whether data show or not a serious deviation 
from normality.

The null hypothesis of this test is that the sample distribution is normal. 
If the test is significant, the distribution is not normal. However, the Shapiro-
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Wilk normality test is sensitive to sample size. Small samples most often pass 
normality tests. Therefore, it’s important to combine visual inspection and 
significance tests to make the right decision.

1.5.2.2. Shapiro-Wilk Test for Personal Saving Rate
To conduct the Shapiro-Wilk test for personal saving rate, we use the shapiro_
test function with the following arguments:

1. data = economics which is our data frame containing the required 
column (personal saving rate).

2. psavert which is our interested column to be tested. Then, we convert 
the results to a table as before.

shapiro_test(data = economics, psavert) %>% flextable() %>% theme_box() %>%

 set_caption(caption = “Shapiro-Wilk test results for personal saving rate in 
economics data”)

Table 1.29. Shapiro-Wilk Test Results for Personal Saving Rate in Economics Data

Variable Statistic p
psavert 0.9754891 0.00000003262322

The Table 1.29 contains the sample statistic = 0.975 which corresponds to 
our sample results and the p-value which is very low and nearly equals zero.

The p_value is significant (< 0.05), so we reject the null hypothesis and 
conclude that the personal saving rate values in the economics data are not 
normally distributed. However, due to the large sample size of 574 observations, 
we can ignore the normality test results and use the t-test.

1.5.2.3. Shapiro-Wilk Test for Percent Adults Below the Poverty 
Line
To conduct the Shapiro-Wilk test for the percent of adults below the poverty 
line in the midwest data, we use the same functions above and modify them 
accordingly.
shapiro_test(data = midwest, percadultpoverty) %>% flextable() %>%

 theme_box() %>%

 set_caption(caption = “Shapiro-Wilk test results for percent adults below 
poverty line in midwest data”)
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Table 1.30. Shapiro-Wilk Test Results for the Percent Adults Below the Poverty 
Line in Midwest Data

Variable Statistic p
percadultpoverty 0.9020281 0.000000000000000377401

The Table 1.30 contains the sample statistic = 0.90 which corresponds to 
our sample results and the p-value which is very low and nearly equals zero.

The p_value is significant (< 0.05), so we reject the null hypothesis and 
conclude that the percent of adults below the poverty line values in the midwest 
data is not normally distributed. However, due to the large sample size of 437 
observations, we can ignore the normality test results and use the t-test.

1.5.3. Test for Outliers
The t-test assumes that the data contains no outliers. Outliers can be detected 
using the box plot method.

Values above Q3 + 1.5 X IQR or below Q1 – 1.5 X IQR are considered 
outliers and plotted individually using the box plot described above. In addition, 
values above Q3 + 3 X IQR or below Q1 – 3 X IQR are considered extreme 
outliers. They are also plotted individually using the box plot method.

Extreme outliers can be due to data entry errors, measurement errors, or 
unusual values.

1.5.3.1. Outlier Test for Personal Saving Rate
To conduct the outlier test for personal saving rate, we use the identify_outliers 
function with the following arguments:

1. data = economics which is our data frame containing the required 
column (personal saving rate).

2. psavert which is our interested column to be tested. Then, we convert 
the results to a table as before.

identify_outliers(data = economics, psavert) %>% flextable() %>%

 theme_box() %>%

 set_caption(caption = “Outlier test results for personal saving rate in economics 

data”)

Table 1.31. Outlier Test Results for Personal Saving Rate in Economics Data

date pce pop psavert uempmed unemploy is.outlier is.extreme
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We see that the Table 1.31 has no rows meaning that personal saving rate 
values have no outliers in the economics data.

1.5.3.2. Outlier Test for Percent Adults Below the Poverty Line
To conduct the outlier test for the percent adults below the poverty line in 
the midwest data, we use the identify_outliers function with the following 
arguments:

1. data = midwest which is our data frame containing the required 
column to be tested.

2. percadultpoverty which is our interested column to be tested. Then, 
we use the select function to select the important columns to be 
viewed (county, percadultpoverty, is.outlier, is.extreme) instead of 
viewing all 28 columns of the midwest data. Finally, we convert the 
results to a table as before.

identify_outliers(data = midwest, percadultpoverty) %>%

 select(county, percadultpoverty,is.outlier, is.extreme) %>%

 flextable() %>%

 theme_box() %>%

 set_caption(caption = “Outlier test results for percent adults below poverty 
line in midwest data”)

Table 1.32. Outlier Test Results for Percent Adults Below the Poverty Line in 
Midwest Data

County Percadult-
poverty is.outlier is.extreme

ALEXANDER 27.38565 TRUE FALSE
HARDIN 25.17428 TRUE FALSE
JACKSON 32.45848 TRUE TRUE
MCDONOUGH 22.40338 TRUE FALSE
POPE 24.41487 TRUE FALSE
PULASKI 23.86774 TRUE FALSE
MONROE 22.99900 TRUE FALSE
CLARE 22.17195 TRUE FALSE
HOUGHTON 23.69715 TRUE FALSE
ISABELLA 28.47915 TRUE FALSE
LAKE 25.07071 TRUE FALSE
MECOSTA 28.22996 TRUE FALSE
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County Percadult-
poverty is.outlier is.extreme

ADAMS 25.75226 TRUE FALSE
ATHENS 31.74428 TRUE TRUE
MEIGS 23.66729 TRUE FALSE
PIKE 22.22396 TRUE FALSE
SCIOTO 23.52317 TRUE FALSE
VINTON 22.22598 TRUE FALSE
MENOMINEE 43.31246 TRUE TRUE

We have a Table 1.32 of 4 columns and 19 rows meaning that there are 19 
outliers in the percent adult below the poverty line.

The 2 logical columns is. outlier and is.extreme identify if the value is an 
outlier or an extreme outlier. For example, the county ALEXANDER has a 
value of 27.39 which is an outlier but not an extreme outlier. On the other hand, 
the county JACKSON has a value of 32.46 which is an outlier and also an 
extreme outlier.

1.5.4. Wilcoxon Test for One Sample
The Wilcoxon signed rank test is used to determine if the median of the sample 
is equal to a value. This is a non-parametric equivalent of one-sample t-test and 
can be used when the required assumptions of the t-test are not met (normality 
and no outliers).

For example, we see that the percent adults below the poverty line in the 
midwest data contain some outliers so the t-test cannot be used in that case. 
However, the minimum sample size for the Wilcoxon test should be 6, or the 
test cannot become significant.

1.5.4.1. Wilcoxon Test for Percent of Adults Below the Poverty 
Line
To conduct a Wilcoxon test for the percent of adults below the poverty line in the 
midwest data, we use the wilcox_test function with the following arguments:

1. data = midwest which is our data frame containing the desired 
column (percent adults below the poverty line).

2. percadultpoverty ~1 which is the formula for one sample testing. 
This means that all percent of adults below the poverty line values 
correspond to 1 group.
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3. mu= 15 which is our reference value.
4. alternative = “less” which is the alternative hypothesis. The 

alternative hypothesis is that the median percent of adults below the 
poverty line in the midwest counties is less than 15 reference value.

wilcox_test(data = midwest, percadultpoverty ~1, mu= 15,

 alternative = “less”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “One-tailed Wilcoxon test results of percent of adults 
below poverty line in midwest data”)

Table 1.33. One-Tailed Wilcoxon Test Results of Percent of Adults Below the Pov-
erty Line in Midwest Data

.y. group1 group2 n statistic p

per-
cadult-
poverty

1 null 
model 437 11,566

0.000000000000
00000000000000
0000000000000
00031

The Table 1.33 contains the sample statistic = 11566 which corresponds to 
our sample results and the p-value is very low and nearly equals zero.

The p_value is the probability of our sample results (percent adults below 
the poverty line) under the null hypothesis (where the median percent adults 
below the poverty line = 15). Since this is a very low probability, we reject 
the null hypothesis and conclude that the median percent of adults below the 
poverty line in the midwest counties is significantly lower than 15.
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2.1. DATA USED IN THIS CHAPTER

2.1.1. The Diamonds Data
The diamonds data is part of the ggplot2 package under the name “diamonds” 
and contains the prices and other attributes of about 54,000 diamonds. To load 
this data into our R session, we will load the tidyverse package (which contains 
the ggplot2 package) using the library function. Then, we will load the diamonds 
data using the data function.
library(tidyverse)

data(“diamonds”)

Then, to see the data structure, we will use the glimpse function.
glimpse(diamonds)

## Rows: 53,940

## Columns: 10

## $ carat  <dbl> 0.23, 0.21, 0.23, 0.29, 0.31, 0.24, 0.24, 0.26, 0.22, 0.23, 0.…

## $ cut   <ord> Ideal, Premium, Good, Premium, Good, Very Good, Very Good, Ver…

## $ color  <ord> E, E, E, I, J, J, I, H, E, H, J, J, F, J, E, E, I, J, J, J, I,…

## $ clarity <ord> SI2, SI1, VS1, VS2, SI2, VVS2, VVS1, SI1, VS2, VS1, SI1, VS1, …

## $ depth  <dbl> 61.5, 59.8, 56.9, 62.4, 63.3, 62.8, 62.3, 61.9, 65.1, 59.4, 64…

## $ table  <dbl> 55, 61, 65, 58, 58, 57, 57, 55, 61, 61, 55, 56, 61, 54, 62, 58…

## $ price  <int> 326, 326, 327, 334, 335, 336, 336, 337, 337, 338, 339, 340, 34…

## $ x    <dbl> 3.95, 3.89, 4.05, 4.20, 4.34, 3.94, 3.95, 4.07, 3.87, 4.00, 4.…

## $ y    <dbl> 3.98, 3.84, 4.07, 4.23, 4.35, 3.96, 3.98, 4.11, 3.78, 4.05, 4.…

## $ z    <dbl> 2.43, 2.31, 2.31, 2.63, 2.75, 2.48, 2.47, 2.53, 2.49, 2.39, 2.…

The diamonds data contains 53940 rows (diamonds) and 10 columns:
1. carat: the weight of the diamond. It is a double or numeric column 

with decimals.
2. cut: the quality of the cut. It is an ordered factor with Fair as the 

lowest cut and Ideal as the best cut.
3. color: the diamond color. It is an ordered factor with D as the best 

color to J as the worst color.
4. clarity: the clarity of the diamond. It is an ordered factor with I1 as 

the worst clarity to IF as the best clarity.
5. depth: the total depth percentage. It is a double or numeric column 

with decimals.
6. table: the width of the top of the diamond relative to the widest point. 

It is a double or numeric column with decimals.
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7. price: the price in US dollars. It is a double or numeric column with 
decimals.

8. x: the length in mm. It is a double or numeric column with decimals.
9. y: the width in mm. It is a double or numeric column with decimals.
10. z: the depth in mm. It is a double or numeric column with decimals.

2.1.2. The General Social Survey Data
The general social survey data frame is part of the forcats package (which 
is part of the tidyverse package) under the name “gss_cat.” The gss_cat data 
contains a sample of categorical variables from the General Social Survey of 
about 21,000 participants. As before, we load the”gss_cat” data frame using the 
data function. Finally, we explore the data using the glimpse function.
data(“gss_cat”)

glimpse(gss_cat)

## Rows: 21,483

## Columns: 9

## $ year  <int> 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 20…

## $ marital <fct> Never married, Divorced, Widowed, Never married, Divorced, Mar…

## $ age   <int> 26, 48, 67, 39, 25, 25, 36, 44, 44, 47, 53, 52, 52, 51, 52, 40…

## $ race  <fct> White, White, White, White, White, White, White, White, White,…

## $ rincome <fct> $8000 to 9999, $8000 to 9999, Not applicable, Not applicable, …

## $ partyid <fct> “Ind,near rep,” “Not str republican,” “Independent,” “Ind,near…

## $ relig  <fct> Protestant, Protestant, Protestant, Orthodox-christian, None, …

## $ denom  <fct> “Southern baptist,” “Baptist-dk which,” “No denomination,” “No…

## $ tvhours <int> 12, NA, 2, 4, 1, NA, 3, NA, 0, 3, 2, NA, 1, NA, 1, 7, NA, 3, 3…

The data contains 21,483 rows and 9 columns:
1. year: the year of the survey and its class is integer.
2. marital: the marital status and its class is a factor.
3. age: the participant’s age and its class is an integer.
4. race: the participant’s race and its class is a factor.
5. rincome: the reported income and its class is a factor.
6. partyid: the party affiliation and its class is a factor.
7. relig: the participant’s religion and its class is a factor.
8. denom: the participant’s denomination and its class is a factor.
9. tvhours: the hours per day watching TV and its class is an integer.
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2.2. TYPES OF CATEGORICAL DATA
There are 2 types of categorical data:

1. Nominal Categorical Data: Where the categories have no inherent 
ordering. Examples are all categorical columns or factors of gss_cat 
data (marital, race, rincome, partyid, relig, denom).

2. Ordinal Categorical Data: Where the categories are ordered. 
Examples are all categorical columns or ordered factors of diamonds 
data (cut, color, clarity). The cut column describes the quality of the 
cut and has the Fair category as the lowest cut and the Ideal category 
as the best cut.

2.3. SUMMARY STATISTICS
The category proportion (along with the category sample size) is the only 
measure that is used to describe categorical data.

2.3.1. Proportion and Sample Size of Cut Categories in  
Diamonds Data
To get the sample size and proportion of the cut column categories in diamonds 
data, we use the following functions:

1. The count function with the cut argument is applied to the diamonds 
data frame to give the sample size (number of rows) of cut column 
categories.

2. The mutate function with the argument, proportion = n/sum(n), to 
create a new column called “proportion” by dividing n by the sum 
of n.

3. The flextable, theme_box, and set_caption functions, from the 
flextable package, convert the result to a table as described in 
Chapter 1.

All these functions are applied in sequence using the “%>%” operator. 
Because we are using functions from the flextable package, we should load first 
the flextable package into our R session using the library function.
library(flextable)

diamonds %>% count(cut) %>% mutate(proportion = n/sum(n)) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Sample size and proportion of cut column categories in 
diamonds data”)
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Table 2.1. Sample Size and Proportion of Cut Column Categories in Diamonds Data

Cut n Proportion
Fair 1,610 0.02984798
Good 4,906 0.09095291
Very Good 12,082 0.22398962
Premium 13,791 0.25567297
Ideal 21,551 0.39953652

We see that:
1. The sample size (or the number of rows) is n. Fair cut has the lowest 

sample size (1610) and the Ideal cut has the highest sample size 
(21551).

2. The proportion column contains the proportion of every category. 
Fair cut has the lowest proportion (0.03 or 3%) and the Ideal cut has 
the highest proportion (0.4 or 40%).

3. Because the cut is an ordered factor, the categories are arranged 
by their cut quality which also corresponds to their sample size or 
proportion.

2.3.2. Proportion and Sample Size of Color Categories in  
Diamonds Data
We can use the same functions to get the sample size and proportion of color 
categories in diamonds data.
diamonds %>% count(color) %>% mutate(proportion = n/sum(n)) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Sample size and proportion of color column categories 
in diamonds data”)

Table 2.2 Sample Size and Proportion of Color Column Categories in Dia-
monds Data

Color n Proportion
D 6,775 0.12560252
E 9,797 0.18162773
F 9,542 0.17690026
G 11,292 0.20934372
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H 8,304 0.15394883
I 5,422 0.10051910
J 2,808 0.05205784

Because the color is an ordered factor, the categories are arranged by their 
color quality from the best color (D) to the worst color (J). However, this 
arrangement does not correspond to the color sample size or frequency.

To get a Table 2.2 of color column categories arranged by their sample 
size, we use the additional function arrange with the argument n to arrange the 
categories in ascending order according to their sample size.
diamonds %>% count(color) %>% mutate(proportion = n/sum(n)) %>%

 arrange(n) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Sample size and proportion of color column categories in 
diamonds data arranged by their frequency”)

Table 2.3. Sample Size and Proportion of Color Column Categories in Diamonds 
Data Arranged by Their Frequency

Color n Proportion
J 2,808 0.05205784
I 5,422 0.10051910
D 6,775 0.12560252
H 8,304 0.15394883
F 9,542 0.17690026
E 9,797 0.18162773
G 11,292 0.20934372

We see that:
1. The J color has the lowest sample size (2808) and the G color has the 

highest sample size (11292).
2. Accordingly, the J color has the lowest proportion (0.052 or 5.2%) 

and the G color has the highest proportion (0.209 or 20.9%).

2.3.3. Proportion and sample Size of Marital Categories in  
General Social Survey Data
We can use the same functions to get the sample size and proportion of marital 
categories in gss_cat data.
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gss_cat %>% count(marital) %>% mutate(proportion = n/sum(n)) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Sample size and proportion of marital 
column categories in gss_cat data”)

Table 2.4 Sample Size and Proportion of Marital Column Categories in gss_cat 
Data

Marital n Proportion
No answer 17 0.0007913234
Never married 5,416 0.2521063166
Separated 743 0.0345854862
Divorced 3,383 0.1574733510
Widowed 1,807 0.0841130196
Married 10,117 0.4709305032

We have 6 different marital categories. However, they are not arranged by 
their sample size. We can use the arrange function to arrange the categories by 
their sample size.
gss_cat %>% count(marital) %>% mutate(proportion = n/sum(n)) %>%

 arrange(n) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Sample size and proportion of marital column 
categories in gss_cat data arranged by their frequency”)

Table 2.5. Sample Size and Proportion of Marital Column Categories in gss_cat 
Data Arranged by Their Frequency

Marital n Proportion
No answer 17 0.0007913234
Separated 743 0.0345854862
Widowed 1,807 0.0841130196
Divorced 3,383 0.1574733510
Never married 5,416 0.2521063166
Married 10,117 0.4709305032

We see that:
1. The “No answer” category has the lowest sample size (17) and the 

“Married” status has the highest sample size (10,117).
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2. Accordingly, the “No answer” category has the lowest proportion 
(0.0008 or 0.08%) and the “Married” status has the highest proportion 
(0.47 or 47%).

2.3.4. Proportion and Sample Size of Religion Categories in 
General Social Survey Data
We can use the same functions to get the sample size and proportion of religion 
categories in gss_cat data.
gss_cat %>% count(relig) %>% mutate(proportion = n/sum(n)) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Sample size and proportion of religion categories in 
gss_cat data”)

Table 2.6. Sample Size and Proportion of Religion Categories in gss_cat Data

Relig. n Proportion

No answer 93 0.0043290043

Don’t know 15 0.0006982265

Inter-nondenomi-
national 109 0.0050737793

Native american 23 0.0010706140

Christian 689 0.0320718708

Orthodox-chris-
tian 95 0.0044221012

Moslem/islam 104 0.0048410371

Other eastern 32 0.0014895499

Hinduism 71 0.0033049388

Buddhism 147 0.0068426197

Other 224 0.0104268491

None 3,523 0.1639901317

Jewish 388 0.0180607923

Catholic 5,124 0.2385141740

Protestant 10,846 0.5048643113

We have 15 different religions. However, they are not arranged by their 
sample size. We can use the arrange function to arrange the categories by their 
sample size.
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gss_cat %>% count(relig) %>% mutate(proportion = n/sum(n)) %>%

 arrange(n) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Sample size and proportion of religions in gss_cat data 
arranged by their frequency”)

Table 2.7. Sample Size and Proportion of Religions in gss_cat Data Arranged by 
Their Frequency

Relig n Proportion

Don’t know 15 0.0006982265

Native american 23 0.0010706140

Other eastern 32 0.0014895499

Hinduism 71 0.0033049388

No answer 93 0.0043290043

Orthodox-christian 95 0.0044221012

Moslem/islam 104 0.0048410371

Inter-nondenomina-
tional 109 0.0050737793

Buddhism 147 0.0068426197

Other 224 0.0104268491

Jewish 388 0.0180607923

Christian 689 0.0320718708

None 3,523 0.1639901317

Catholic 5,124 0.2385141740

Protestant 10,846 0.5048643113

We see that:
1. The “Don’t know” category has the lowest sample size (15) and the 

“Protestant” has the highest sample size (10,846).
2. Accordingly, the “Don’t know” category has the lowest proportion 

(0.0007 or 0.07%), and the “Protestant” has the highest proportion 
(0.505 or 50.5%).
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2.4. SUMMARY PLOTS

2.4.1. Bar Plot
The geom_bar function is used to plot a bar graph where each bar has a height 
equal to the number of rows or observations at each level of the categorical 
variable.

The geom_bar function requires only one aesthetic (x or y) which is the 
categorical variable you want to plot.

2.4.1.1. Bar Plot of Cut Column in Diamonds Data
To plot a bar plot of the cut column from the diamonds data, we will use the 
following functions:

1. The ggplot function, applied to diamonds data, with argument aes(x 
= cut) to plot cut categories on the x-axis.

2. The geom_bar function to create the bar plot.
3. The labs function with the title x, and y arguments to add a title, 

x-axis title, and y-axis title.

We see that the ideal cut has the highest count or frequency (highest bar) 
and the fair cut has the lowest count or frequency (shortest bar).



Univariate Analysis of Categorical Data

105

4. The theme_classic function removes the default gray background 
with white lines.

5. The theme function with the argument plot.title = element_text(hjust 
= 0.5), where hjust is for horizontal justification, to put the plot title 
in the top center of the graph.

diamonds %>% ggplot(aes(x = cut))+ geom_bar()+

 labs(title = “Bar plot of cut categories in diamonds data with categories on 
the x-axis,”

x = “Cut,” y = “Count”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

2.4.1.2. Bar Plot of the color Column in Diamonds Data
We can use the same Functions to plot the color categories on the x-axis.
diamonds %>% ggplot(aes(x = color))+ geom_bar()+

 labs(title = “Bar plot of color categories in diamonds data with categories on 
the x-axis,”

 x = “Color,” y = “Count”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that the G color has the highest count or frequency (highest bar) and 
the J color has the lowest count or frequency (shortest bar).
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2.4.1.3. Bar Plot of the Religion Column in General Social Sur-
vey Data
We can use the same functions to plot the religion categories on the x-axis from 
the general social survey data.
gss_cat %>% ggplot(aes(x = relig))+ geom_bar()+

 labs(title = “Bar plot of religions in general social survey data with religions 
on the x-axis,”

x = “Religion,” y = “Count”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that the 15 religions are crowded and not appearing correctly. We 
can use the argument, axis.text.x = element_text(angle = 60, hjust = 1), inside 
the theme function to put the x-axis text at an angle = 60 with 1 horizontal 
justification. We also use the “\n” to break the long title into 2 lines.
gss_cat %>% ggplot(aes(x = relig))+ geom_bar()+

 labs(title = “Bar plot of religions in general social survey data \nwith 
religions on the x-axis at an angle of 60,”
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x = “Religion,” y = “Count”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5),

axis.text.x = element_text(angle = 60, hjust = 1))

Alternatively, we can plot the religions on the y-axis.

2.4.1.4. Bar Plot with Categories on the Y-Axis
When we have many categories as for the 15 religions in the general social 
survey data, we can put the categories on the y-axis to avoid crowding on the 
x-axis. We will use the same functions above except that we use the argument 
aes(y = relig) to plot the religions on the y-axis. We will modify the labs and 
theme functions accordingly.
gss_cat %>% ggplot(aes(y = relig))+ geom_bar()+

 labs(title = “Bar plot of religions in general social survey data \nwith 
religions on the y-axis,”

y = “Religion,” x = “Count”)+
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 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that all religion names appear clearly. The Protestant religion has 
the highest frequency. However, the less frequent religion is not clear.

2.4.1.5. Bar Plot with Ordered Categories by Frequency
We can use the mutate and fct_infreq functions to convert the religion column 
to a factor with religions arranged by their frequency. Then, we use the same 
above functions.
gss_cat %>% mutate(relig = fct_infreq(relig)) %>%

 ggplot(aes(y = relig))+ geom_bar()+

 labs(title = “Bar plot of religions in general social survey data \n with 
religions on the y-axis arranged by their frequency,”

y = “Religion,” x = “Count”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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Here we see that Protestant is the most frequent religion while the “Don’t 
know” category is the least frequent.

2.4.1.6. Bar Plot with Labeled Bars by Counts
For a more informative plot, we can plot a bar plot with bars labeled by their 
counts. To plot this plot for the religion column, we use the following functions:

1. The count function with the argument relig gives a data frame with 15 
rows (for 15 religions) with a count column (n) for each religion.

2. The mutate and fct_reorder functions to convert the religion to a factor 
with religions arranged by their n or frequency value.

3. The ggplot function with argument aes(x = n, y = relig) plots counts on 
the x-axis and religions on the y-axis.

4. The geom_bar function with the argument stat = “identity” to create 
the bar plot. The default stat of the geom_bar function is “count” which 
will not be used here because every religion is represented by only 1 
row.
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5. The geom_label function with the argument aes(label = n) to plot a 
label of count (n) on the top of each bar.

6. The labs, theme_classic, and theme functions as before.
gss_cat %>% count(relig) %>% mutate(relig = fct_reorder(relig,n)) %>%

 ggplot(aes(y = relig, x = n))+ geom_bar(stat = “identity”)+

 geom_label(aes(label = n))+

 labs(title = “Bar plot of religions in general social survey data \
nwith religions arranged by their frequency and labeled bars,”

y = “Religion,” x = “Count”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that Protestant is the most frequent religion with a frequency of 
10846, while the “Don’t know” category is the less frequent with a frequency 
of only 15.



Univariate Analysis of Categorical Data

111

As another example, we can plot the clarity categories from the diamonds 
data on the x-axis with labeled and arranged bars.
diamonds %>% count(clarity) %>%

 mutate(clarity = fct_reorder(clarity,n)) %>%

 ggplot(aes(x = clarity, y = n))+ geom_bar(stat = “identity”)+

 geom_label(aes(label = n))+

 labs(title = “Bar plot of clarity categories in diamonds data \nwith clarities 
arranged by their frequency and labeled bars,”

 x = “Clarity,” y = “Count”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that “SI1” is the most frequent clarity with a frequency of 13065, 
while the “I1” category is the least frequent with a frequency of 741.
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2.4.2. Lollipop Plot
The lollipop plot is the same as the bar plot and consists of 2 parts, the point 
and a line. The point represents the count and the line connects the point to its 
corresponding category.

The geom_point and geom_segment functions can be used to plot the 2 
parts of the lollipop plot. However, both functions require 2 or more aesthetics 
and not only 1 aesthetic as the geom_bar function. This will be explained below.

2.4.2.1. Lollipop Plot of Cut Column in Diamonds Data
To plot a lollipop plot of the cut column from the diamonds data, we will use 
the following functions:

1. The count function with the argument cut, applied to the diamonds 
data, gives a data frame with 5 rows (for 5 cut categories) with a 
count column (n) for each category.

2. The ggplot function with argument aes(x = cut, y = n) plots cut 
categories on the x-axis and their counts on the y-axis.

3. The geom_point function to draw the point for each cut category. 
We increase the point size to size 3 so the resulting plot resembles a 
lollipop.

4. The geom_segment function with the argument, aes(y = 0, yend = n, 
x = cut, xend = cut), to draw a line for each cut category that:
• Starts at y = 0 and ends at n or counts at the y-axis.
• Starts and ends at the same cut category on the x-axis.

5. The labs, theme_classic, and theme functions as described above.
diamonds %>% count(cut) %>%

 ggplot(aes(x = cut, y = n))+ geom_point(size = 3)+

 geom_segment(aes(y = 0, yend = n, x = cut, xend = cut))+

 labs(title = “Lollipop plot of cut categories in diamonds data \nwith cut 
categories on the x-axis,”

x = “Cut,” y = “Count”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that the ideal cut has the highest count or frequency (longest lollipop) 
and the fair cut has the lowest count or frequency (shortest lollipop).

2.4.2.2. Lollipop Plot with Categories on the Y-axis
When we have many categories as for the 15 religions in the general social 
survey data, we can put the categories on the y-axis to avoid crowding on the 
x-axis. We will use the same functions above except that:

1. We use the argument aes(y = relig, x = n) inside the ggplot function 
to plot the religions on the y-axis and their counts on the x-axis.

2. We use the argument aes(x = 0, xend = n, y = relig, yend = relig) 
inside the geom_segment function to draw a line for each religion 
that starts at x = 0 and ends at n or counts at the x-axis and starts and 
ends at the same religion on the y-axis.

We will modify the labs and theme functions accordingly.
gss_cat %>% count(relig) %>%

 ggplot(aes(y = relig, x = n))+ geom_point(size = 3)+
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  geom_segment(aes(x = 0, xend = n, y = relig, yend = relig))+

 labs(title = “Lollipop plot of religions in general social survey data \nwith 
religions on the y-axis,”

y = “Religion,” x = “Count”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that all religion names appear clearly. The protestant religion has the 
highest frequency. However, the less frequent religion is not clear.

2.4.2.3. Lollipop Plot with Ordered Categories by Frequency
We can use the mutate and fct_reorder functions to convert the religion to a 
factor with religions arranged by their n or frequency. Then, we use the same 
above functions.
gss_cat %>% count(relig) %>% mutate(relig = fct_reorder(relig,n)) %>%

 ggplot(aes(y = relig, x = n))+ geom_point(size = 3)+
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  geom_segment(aes(x = 0, xend = n, y = relig, yend = relig))+

 labs(title = “Lollipop plot of religions in general social survey data \nwith 
religions on the y-axis arranged by their frequency,”

y = “Religion,” x = “Count”)+

theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

Here we see that Protestant is the most frequent religion while the “Don’t 
know” category is the least frequent.

2.4.2.4. Lollipop Plot Labeled with Counts
We will use the same functions in 2.4.2.3. with the addition of the geom_label 
function with the arguments:

• aes(label = n) so the label for each lollipop will be its count or n.
• nudge_x = 500 to offset the labels from the points of lollipops by 500 

points on the x-axis, or the labels will hide the points of lollipops.
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• size = 3 to decrease the label size to avoid crowding
gss_cat %>% count(relig) %>% mutate(relig = fct_reorder(relig,n)) %>%

 ggplot(aes(y = relig, x = n))+ geom_point(size = 3)+

  geom_segment(aes(x = 0, xend = n, y = relig, yend = relig))+

 geom_label(aes(label = n), nudge_x = 500, size = 3)+

 labs(title = “Lollipop plot of religions in general social survey data \nwith 
religions arranged and labeled by their frequency,”

y = “Religion,” x = “Count”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that Protestant is the most frequent religion with a frequency of 
10846, while the “Don’t know” category is the less frequent with a frequency 
of only 15.

As another example, we can plot the denomination categories from the 
general social survey data on the y-axis with labeled and arranged lollipops.
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gss_cat %>% count(denom) %>% mutate(denom = fct_reorder(denom,n)) %>%

 ggplot(aes(y = denom, x = n))+ geom_point(size = 3)+

  geom_segment(aes(x = 0, xend = n, y = denom, yend = denom))+

 geom_label(aes(label = n), nudge_x = 500, size = 3)+

 labs(title = “Lollipop plot of denomination categories in general social survey 
data \nwith categories arranged and labeled by their frequency,”

y = “Denomination,” x = “Count”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that the “Not applicable” category is the most frequent category with 
a frequency of 10072, while the “Other lutheran” category is the less frequent 
with a frequency of 30.

To give a different color for each category, we can use the color= denom 
argument inside the ggplot function. We also use the color= “Denomination” 
inside the labs function to modify the legend title.
gss_cat %>% count(denom) %>% mutate(denom = fct_reorder(denom,n)) %>%

 ggplot(aes(y = denom, x = n, color = denom))+ geom_point(size = 3)+

  geom_segment(aes(x = 0, xend = n, y = denom, yend = denom))+
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 geom_label(aes(label = n), nudge_x = 500, size = 3)+

 labs(title = “Lollipop plot of denomination categories in general social survey 
data \nwith colored categories arranged and labeled by their frequency,”

y = “Denomination,” x = “Count,” color = “Denomination”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that each lollipop and label has a different color for each category.

2.4.3. Pie Chart
The pie chart is used if the goal is to compare each category with the whole. The 
pie chart is most useful when the number of categories is small. However, if the 
goal is to compare the frequency of categories, it is better to use bar or lollipop 
charts because humans are better at judging the length of bars or lollipops than 
the volume of pie slices.
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To plot a pie chart, we must have a table of categories and their percentages 
that sum up to 100%.

2.4.3.1. Pie chart for Cut Categories in Diamonds Data
We generate a data frame with the count and percentage of each cut category 
using the formula percentage = nX100/sum(n) as done before in section 2.3.1. 
Instead of proportions, we will create percentages by multiplying the formula of 
proportion by 100. We convert the result to a table as before.
diamonds %>% count(cut) %>% mutate(percentage = n*100/sum(n)) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Sample size and percentage of cut column categories in 
diamonds data”)

Table 2.8. Sample Size and Percentage of cut Column Categories in Diamonds 
Data

Cut n Percentage
Fair 1,610 2.984798
Good 4,906 9.095291
Very Good 12,082 22.398962
Premium 13,791 25.567297
Ideal 21,551 39.953652

To create a pie plot from this data, we use the following functions:
1. the ggplot function with the arguments, aes(y = percentage, fill = 

cut, x = ““), to plot the percentage on the y-axis and a different fill 
color for each cut category. This will produce 1 bar with 5 parts for 
5 cut categories.

2. The geom_bar function with the arguments, stat = “identity” and 
color = “black,” to draw a black border around each category.

3. The coord_polar function produces a pie chart circle from the 
bar plot. We use the argument, theta = “y” to map the y values 
(percentage) to angles.

4. The labs function with the arguments title and fill to add a title and a 
legend title respectively. We also use the y = ““ and x=““ arguments 
to delete the y-axis and x-axis titles respectively since they have no 
meaning.

5. The theme_void function removes x- and y-axes and keeps only the 
pie chart circle.
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6. The theme function with plot.title argument to place the title at the 
top center of the plot.

diamonds %>% count(cut) %>% mutate(percentage = n*100/sum(n)) %>%

 ggplot(aes(y = percentage, fill = cut, x = ““)) +

  geom_bar(stat = “identity,” color = “black”)+

 coord_polar(theta = “y”)+

 labs(title = “Pie chart for percentage of different cut categories in diamonds 
data,”

y = “,” x = “,” fill = “Cut”)+

 theme_void()+

 theme(plot.title = element_text(hjust = 0.5))

We see that the largest slice (most frequent category) was for the ideal cut 
and the smallest slice (lowest frequent category) was for the fair cut.
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2.4.3.2. Pie Chart for Marital Status Categories in General Social 
Survey Data
Using the same functions, we can draw a pie chart for the marital status 
categories in the general social survey data.
gss_cat %>% count(marital) %>% mutate(percentage = n*100/sum(n)) %>%

 ggplot(aes(y = percentage, fill = marital, x = ““)) +

  geom_bar(stat = “identity,” color = “black”)+

 coord_polar(theta = “y”)+

 labs(title = “Pie chart for percentage of different marital categories in 
general social survey data,”

 y = “,” x = “,” fill = “Marital status”)+

 theme_void()+

 theme(plot.title = element_text(hjust = 0.5))

We see that the largest slice (most frequent category) was for the married status 
and the smallest slice (lowest frequent category) was for the “No answer” category.

2.4.3.3. Pie Chart for Religions in General Social Survey Data
Using the same functions, we can draw a pie chart for the religion categories in 
the general social survey data
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gss_cat %>% count(relig) %>% mutate(percentage = n*100/sum(n)) %>%

 ggplot(aes(y = percentage, fill = relig, x = ““)) +

  geom_bar(stat = “identity,” color = “black”)+

 coord_polar(theta = “y”)+

 labs(title = “Pie chart for percentage of different religions in general social 
survey data,”

y = “,” x = “,” fill = “Religion”)+

 theme_void()+

 theme(plot.title = element_text(hjust = 0.5))

We see that the largest slice (most frequent religion) was the protestant but 
the smallest slice (lowest frequent religion) is difficult to discern.

2.4.4. Tree Map
In a tree map, each tile represents a single category, with the area of the tile 
proportional to the categorical counts.

A tree map is similar to a pie chart in that it displays proportions by varying 
the area of a shape. A tree map has two advantages over a pie chart:
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1. We can display many more categories. In a pie chart, there is an 
upper limit to the number of categories that can be added to the 
circle. On the other hand, in a tree map, we can display hundreds, or 
thousands, of categories.

2. A tree map allows us to arrange the data categories hierarchically. In 
other words, we can group the proportions by using other categorical 
variables in the data.

We will use the treemapify package for plotting tree maps of different 
categorical columns so we load it first into our R session using the library 
function.

2.4.4.1. Treemap for the Cut Categories in Diamonds Data
To draw this plot, we will use the following functions:

1. The count function with the cut argument is applied to the diamonds 
data to produce a count for each one of the 5 cut categories.

2. The ggplot function with the argument, aes(fill = cut, area = n), so 
a tile will be drawn for each cut category, with a different fill color, 
and the tile area is proportional to the count of each cut category.

3. The geom_treemap function to draw the 5 tiles corresponding to 5 
cut categories.

4. The labs function with title and fill arguments to add a title and 
legend title respectively.

5. The theme function with plot.title argument to place the title at the 
top center of the plot.

library(treemapify)

diamonds %>% count(cut) %>%

 ggplot(aes(fill = cut, area = n)) +

 geom_treemap() +

 labs(title = “Tree map of cut categories in Diamonds data,”

 fill = “Cut”)+

 theme(plot.title = element_text(hjust = 0.5))
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We see that the ideal cut has the largest tile (most frequent), and the fair cut 
has the smallest tile (least frequent).

2.4.4.2. Treemap for the Color Categories in Diamonds Data
Using the same functions above.
diamonds %>% count(color) %>%

 ggplot(aes(fill = color, area = n)) +

 geom_treemap() +

 labs(title = “Tree map of color categories in Diamonds data,”

 fill = “Color”)+

 theme(plot.title = element_text(hjust = 0.5))
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It is difficult to discern which color category is the most frequent. It is better 
if we add the color name to each tile.

2.4.4.3. Treemap with Labeled Tiles
we can add the text for each tile using the geom_treemap_text function with the 
argument, aes(label = color), to place the corresponding color name in each tile.
diamonds %>% count(color) %>%

 ggplot(aes(fill = color, area = n)) +

 geom_treemap() +

 geom_treemap_text(aes(label = color))+

 labs(title = “Tree map of color categories in Diamonds data with labeled tiles,”

 fill = “Color”)+

 theme(plot.title = element_text(hjust = 0.5))
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The default black color is difficult to discern in dark color so it is better to 
use white color using the color=“white” argument within the geom_treemap_
text function.
diamonds %>% count(color) %>%

 ggplot(aes(fill = color, area = n)) +

 geom_treemap() +

 geom_treemap_text(aes(label = color), color = “white”)+

 labs(title = “Tree map of color categories in Diamonds data with white labeled 
tiles,”

 fill = “Color”)+

 theme(plot.title = element_text(hjust = 0.5))
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We can also place the labels in the center of each tile using the place = 
“center” argument within the geom_treemap_text function.
diamonds %>% count(color) %>%

 ggplot(aes(fill = color, area = n)) +

 geom_treemap() +

 geom_treemap_text(aes(label = color), color = “white,”

place = “center”)+

 labs(title = “Tree map of color categories in Diamonds data \nwith centered 
white labeled tiles,”

   

    fill = “Color”)+

 theme(plot.title = element_text(hjust = 0.5))
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We can also label the tiles by their frequency along with their names. 
Inside the geom_treemap_text function, we will use the argument, aes(label = 
paste(color,n, sep = “\n”), to paste the color name to its frequency with a “\n” 
separator (sep argument) so the result will be in 2 lines.
diamonds %>% count(color) %>%

 ggplot(aes(fill = color, area = n)) +

 geom_treemap() +

 geom_treemap_text(aes(label = paste(color,n, sep = “\n”)), color = “white,”

place = “center”)+

 labs(title = “Tree map of color categories in Diamonds data \nwith tiles 
labeleled by names and frequency,”

 fill = “Color”)+

 theme(plot.title = element_text(hjust = 0.5))
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We see that the G color is the most frequent with a frequency of 11292 and 
the J color is the least frequent with a frequency of 2808.

2.4.4.4. Treemap for Religions in the General Social Survey Data
We can use the same functions to plot a treemap of the religions in the general 
social survey data.
gss_cat %>% count(relig) %>%

 ggplot(aes(fill = relig, area = n)) +

 geom_treemap() +

 geom_treemap_text(aes(label = paste(relig,n, sep = “\n”)), color = “white,”

place = “center”)+

 labs(title = “Tree map of religions in general social survey data \nwith most 
tiles labeleled by names and frequency,”

 fill = “Religion”)+

 theme(plot.title = element_text(hjust = 0.5))
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We see that the least frequent tiles are not labeled. This can be corrected 
using the min.size = 0 argument within the geom_treemap_text function.
gss_cat %>% count(relig) %>%

 ggplot(aes(fill = relig, area = n)) +

 geom_treemap() +

 geom_treemap_text(aes(label = paste(relig,n, sep = “\n”)), color = “white,”

place = “center,” min.size = 0)+

 labs(title = “Tree map of religions in general social survey data \nwith all 
tiles labeleled by names and frequency,”

 fill = “Religion”)+

 theme(plot.title = element_text(hjust = 0.5))
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2.5. STATISTICAL TESTS

2.5.1. Binomial and Multinomial Tests
The binomial and multinomial tests are used to test if a categorical variable has 
a homogeneity between its categories or to compare the categories’ proportions 
to expected proportions. The binomial test is used when the categorical variable 
has 2 categories only (binary) and the multinomial test is used with a categorical 
variable with more than 2 categories.

The binomial and multinomial tests are alternatives to proportion and Chi-
square tests when the sample size is small. The sample size is small when  is 
less than 5 where:

• n = sample size.
•  is the probability or proportion of success or the null hypothesis.
•  is the probability or proportion of failure and equals 1-.
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2.5.1.1. Binomial Test for Small Sample Data
This example is modified from Rosner, Bernard (Bernard A.). Fundamentals of 
Biostatistics. Boston :Brooks/Cole, Cengage Learning, 8th edition, 2016.

If 13 deaths have occurred among male workers in a nuclear power plant 
and in 5 of them the cause of death was cancer. So the proportion from this 
sample is 5/13 = 0.38 or 38%. Based on vital statistics reports, about 20% of all 
deaths can be attributed to some form of cancer. So this is the null hypothesis 
proportion.

This is a small sample because 0.2 X 0.8 X 13 = 2.08 which is < 5.
Null hypothesis: The population proportion of deaths due to cancer among 

male workers in a nuclear power plant = 20% or 0.2. The observed proportion 
of 0.38 or 38% was due to sampling error.

Alternative hypothesis: The population proportion of deaths due to cancer 
among male workers in a nuclear power plant is greater than 20% or 0.2. The 
observed proportion of 0.38 or 38% truly represents the background population 
of male workers in a nuclear power plant. This is a one-tailed test.

We will use the binom_test function from the rstatix package to conduct 
this test with the arguments:

• x = 5 which is the count of deaths from cancer in this sample.
• n = 13 which is the sample size.
• p = 0.2 which is the null hypothesis proportion
• alternative = “greater” which is the alternative hypothesis. Then we 

convert the results to a table as before.
Because we are using the rstatix package, we must load it into our R session 

using the library function.
library(rstatix)

binom_test(x = 5, n = 13, p = 0.2, alternative = “greater”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “One-tailed binomial test results of cancer deaths 
proportion among male workers in a nuclear power plant”)

Table 2.9. One-Tailed Binomial Test Results of Cancer Deaths Proportion Among 
Male Workers in a Nuclear Power Plant

n estimate conf.low conf.
high p p.signif

13 0.3846154 0.1656594 1 0.09913061 ns
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The Table 2.8 contains the estimated sample proportion= 0.38 or 38% and the 
p-value = 0.099.

The p_value is the probability of our sample results (cancer deaths proportion 
among male workers in a nuclear power plant) under the null hypothesis (where 
the actual proportion = 0.2 or 20%). Since this probability is greater than 0.05, 
we fail to reject the null hypothesis and conclude that the proportion of deaths 
from cancer is not significantly different for nuclear-power-plant workers than 
for men in the general population.

This is also evident from the reported 95% confidence interval from 0.166 or 
16.6% to 1 or 100%. Since this interval contains the null hypothesis proportion, 
we accept the null hypothesis that the proportion of cancer deaths among male 
workers in a nuclear power plant equals 0.2 or 20%.

2.5.1.2. Binomial Test for Race Column in the General Social 
Survey Data
If we apply the count function with the argument race on the gss_cat data, we 
will get the 3 races that are presented in this data.
gss_cat %>% count(race) %>% flextable() %>% theme_box() %>%

 set_caption(caption = “Count of different races in the general social survey 
data”)

Table 2.10. Count of Different Races in the General Social Survey Data

Race n
Other 1,959
Black 3,129
White 16,395

We see that White is the most frequent race with a count of 16395, followed 
by Black with a count of 3129, and other (races) with a count of 1959.

To convert this column to a binary column, we will use the fct_lump 
function inside the mutate function with the arguments:

• race which is the column to be mutated or changed.
• n=1 to keep only the most frequent race and all other races are 

lumped in the “Other” race.
gss_cat %>% mutate(race = fct_lump(race, n = 1)) %>%

 count(race) %>% flextable() %>% theme_box() %>%

 set_caption(caption = “Count of two races after race lumping \n in the general 
social survey data”)
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Table 2.11. Count of Two Races After Race Lumping in the General Social Survey 
Data

Race n
White 16,395
Other 5,088

We see that White has the same count of 16395, while the other (races) has 
a count of 5088 which is the sum of the counts of 2 previous races, black and 
other, 3129+1959 = 5088. The proportion of White in this data = 16395/21483 
= 0.763 or 76.3%.

We know from the United States census that 71% of the population in 
the United States are White. So we may wish to test the hypothesis that the 
proportion of whites in the general social survey data is different from the 
general US census.

Null hypothesis: The population (actual) proportion of White in the general 
social survey data = 71% or 0.71. The observed proportion of 0.763 or 76.3% 
was due to sampling error.

Alternative hypothesis: The population (actual) proportion of White in the 
general social survey data is different from 71% or 0.71. This is a two-tailed test 
because the actual proportion may be less or greater than 71%.

Again, we will use the binom_test function to conduct this test with the 
arguments:

• x = 16395 which is the count of White in this sample.
• n = 21483 which is the sample size or the number of rows in this 

data.
• p = 0.71 which is the null hypothesis proportion
• alternative = “two.sided” which is the alternative hypothesis. Then 

we convert the results to a table as before.
binom_test(x = 16395, n = 21483, p = 0.71, alternative = “two.sided”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Two-tailed binomial test results of White proportion 
in the general social survey data”)
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Table 2.12. Two-Tailed Binomial Test Results of White Proportion in the General 
Social Survey Data

n Estimate conf.low conf.high p p.signif

21,483 0.7631616 0.7574178 0.768834

0.0000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000119
439

****

The Table 2.11 contains the estimated sample proportion of 0.763 or 76.3% 
and the p-value which is very low and nearly equals zero.

The p_value is the probability of our sample results (White proportion 
in the general social survey data) under the null hypothesis (where the actual 
proportion = 0.71 or 71%). Since this probability is very low, we reject the 
null hypothesis and conclude that the proportion of whites in the general social 
survey data is significantly different from the white proportion in the US census. 
This means that the general social survey data is not representative of the general 
population in the US.

This is also evident from the reported 95% confidence interval from 0.757 
or 75.7% to 0.769 or 76.9%. Since this interval does not contain the null 
hypothesis proportion, we accept the alternative hypothesis that the proportion 
of whites in the general social survey data is different from that in the general 
population of the US.

2.5.1.3. Multinomial Test for Race Column in the General Social 
Survey Data
We see that we have 3 races in the general social survey data. We may test the 
proportions of these races using 2 approaches:

1. Are the 3 races equally common? This is a test of homogeneity.
2. Are the races’ proportions equivalent to certain proportions? This is 

called the goodness-of-fit test where we compare multiple observed 
proportions to expected probabilities.
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2.5.1.3.1. Test for Homogeneity
We will test the homogeneity of races within those participants with a reported 
income of less than 1000 USD. We use the following functions:

1. The filter function with the argument rincome==“Lt $1000” filters 
for participants with a reported income less than 1000 USD.

2. The count function with race argument to count the different races 
within those participants.

gss_cat %>% filter(rincome==“Lt $1000”) %>% count(race) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Count of different races in participants with a reported 
income less than 1000 USD “)

Table 2.13. Count of Different Races in Participants with a Reported Income Less 
Than 1000 USD

Race n
Other 36
Black 51
White 199

We see that White is the most frequent race with a count of 199, followed 
by Black with a count of 51, and other (races) with a count of 36. To test the 
homogeneity of races within this subset, we do these steps:

1. We create a vector called “races” that contains the counts for each 
race.

2. We use the multinom_test function with the arguments:
i. x = races which is the sample counts.
ii. p = c(1/3,1/3,1/3) which are the probabilities or proportions 

under the null hypothesis. If the 3 races are homogeneous 
in those participants with income less than 1000 USD, the 
expected proportion = 1/3 = 0.33 or 33%. Then we convert the 
results to a table as before.

races<-c(white =199, black=51, other=36)

races

## white black other

##  199  51  36

multinom_test(x = races,

      

       p = c(1/3,1/3,1/3)) %>%

 flextable() %>% theme_box() %>%
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 set_caption(caption = “Multinomial test of homogeneity for races within 
participants with income less than 1000 USD”)

Table 2.14. Multinomial Test of Homogeneity for Races Within Participants 
with Income Less Than 1000 USD

p p.signif

0.000000000000000000000
00000000000003624663 ****

The table 2.13 contains the p-value which is very low and nearly equals 
zero.

The p_value is the probability of our sample results (race proportion in 
participants with less than 1000 USD income) under the null hypothesis (where 
all 3 proportions = 0.33 or 33%). Since this probability is very low, we reject the 
null hypothesis and conclude that the proportion of some races is different from 
other races in those participants with income less than 1000 USD.

A subsequent test is to perform pairwise comparisons between groups to 
find out which race pair is different in its components. In other words, which 
race proportion is significantly different from 0.5 relative to any other race.

We use the pairwise_binom_test function to perform a pairwise comparison 
(binomial test) with the arguments:

• x = races which is the named vector with counts.
• p.adjust.method = “fdr” which is the method for adjusting the 

p-value in multiple comparisons. The “fdr” is for the false discovery 
rate.

• alternative = “two.sided” which is the alternative hypothesis.
pairwise_binom_test(x = races, p.adjust.method = “fdr,”

alternative = “two.sided”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Pairwise comparisons for races within participants with 
income less than 1000 USD”)

Table 2.15. Pairwise Comparisons for Races Within Participants with Income Less 
Than 1000 USD
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Group1 Group2 n Estimate conf.low conf.high p p.adj p.adj.
signif

white black 250 0.7960000 0.7406598 0.8441733

0.00000000
000000000
000078206
72314546

0.0000000
00000000
000001170
000000

****

white other 235 0.8468085 0.7942799 0.8903422

0.00000000
000000000
000000000
01601867

0.0000000
00000000
00000000
0000481

****

black other 87 0.5862069 0.4755393 0.6908337

0.13290188
519546225
487388824
14909313

0.1330000
00000000
00710542
7357601

ns

We have 3 pairwise comparisons:
1. Comparing white with a count of 199 to black with a count of 51. 

So the total sample size = 199+51 = 250. The estimated proportion 
of white in this sample = 199/250 = 0.796 or 79.6% and 95% 
confidence interval = 0.74–0.84. The 95% confidence interval does 
not contain the null hypothesis proportion of 0.5 and the adjusted 
p-value is very low. So, we reject the null hypothesis and conclude 
that white proportion is significantly different from (larger than) the 
black proportion in this sample.

2. Comparing white with a count of 199 to other with a count of 36. 
So the total sample size = 199+36 = 235. The estimated proportion 
of white in this sample = 199/235 = 0.847 or 84.7% and 95% 
confidence interval = 0.79–0.89. The 95% confidence interval does 
not contain the null hypothesis proportion of 0.5 and the adjusted 
p-value is very low. So, we reject the null hypothesis and conclude 
that white proportion is significantly different from (larger than) the 
other proportion in this sample.

3. Comparing black with a count of 51 to other with a count of 36. 
So the total sample size = 51+36 = 87. The estimated proportion of 
black in this sample = 51/87 = 0.586 or 58.6% and 95% confidence 
interval = 0.476–0.69. The 95% confidence interval contains the null 
hypothesis proportion of 0.5 and the adjusted p-value larger than 
0.05. So, we fail to reject the null hypothesis and conclude that the 
black proportion is statistically equivalent to the other proportion in 
this sample.
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2.5.1.3.2. Goodness-of-Fit Test
For the goodness-of-fit test, we must have another vector of probabilities or 
proportions that sum to 1. So, we do these steps:

1. We create another vector called “races_prob” that contains the 
probability for each race. We assume that the expected probability 
of white is 0.8 or 80%, the expected probability of black is 0.1 or 
10%, and the expected probability of other is 0.1 or 10%. Note that 
0.8+0.1+0.1 = 1.

2. We use the multinom_test function with the arguments:
i. x = races which is the sample counts.
ii. p = races_prob which are the probabilities or proportions under 

the null hypothesis that we want to test. Then we convert the 
results to a table as before.

races_prob<-c(white =0.8, black=0.1, other=0.1)

races_prob

## white black other

##  0.8  0.1  0.1

multinom_test(x = races,

p = races_prob) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Multinomial goodness-of-fit test for races within 
participants with income less than 1000 USD”)

Table 2.16. Multinomial Goodness-of-Fit Test for Races Within Participants with 
Income Less Than 1000 USD

p p.signif
0.0000324622 ****

The Table 2.15 contains the p-value which is very low and nearly equals 
zero.

The p_value is the probability of our sample results (race proportion in 
participants with less than 1000 USD income) under the null hypothesis (where 
the proportions are stored in the races_prob vector). Since this probability is 
very low, we reject the null hypothesis and conclude that the proportion of some 
races is different from the expected probabilities in the races_prob vector.

A subsequent test is to perform pairwise comparisons between each race 
and its expected probability to find out which race is different from its expected 
probability. We use the pairwise_binom_test_against_p function to perform a 
pairwise comparison (binomial test) with the arguments:
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• x = races which is the named vector with counts.
• p = races_prob which is the vector holding the expected 

probabilities.
• p.adjust.method = “fdr” which is the method for adjusting the 

p-value in multiple comparisons. The “fdr” is for the false 
discovery rate.

• alternative = “two.sided” which is the alternative hypothesis.
pairwise_binom_test_against_p(x = races, p = races_prob,

p.adjust.method = “fdr,”

alternative = “two.sided”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Pairwise comparisons for races against expected 
probabilities”)

Table 2.17. Pairwise Comparisons for Races Against Expected Probabilities

Group Observed Expected n Estimate conf.low conf.high p p.adj p.adj.
signif

white 199 228.8 286 0.6958042 0.63890187 0.7485954 0.00003054810 0.0000686 ****

black 51 28.6 286 0.1783217 0.13574917 0.2277023 0.00004571957 0.0000686 ****

other 36 28.6 286 0.1258741 0.08974017 0.1699832 0.13993011724 0.1400000 ns

We have 3 pairwise comparisons:
1. Comparing white with a count of 199 and a proportion of 199/286= 

0.696 to its expected probability of 0.8. The 95% confidence interval 
= 0.64–0.75. The 95% confidence interval does not contain the null 
hypothesis proportion of 0.8 and the adjusted p-value is very low. 
So, we reject the null hypothesis and conclude that white proportion 
is significantly different from (smaller than) the expected probability 
of 0.8.

2. Comparing black with a count of 51 and a proportion of 51/286= 
0.178 to its expected probability of 0.1. The 95% confidence interval 
= 0.136–0.228. The 95% confidence interval does not contain the 
null hypothesis proportion of 0.1 and the adjusted p-value is very 
low. So, we reject the null hypothesis and conclude that black 
proportion is significantly different from (larger than) the expected 
probability of 0.1 in this sample.

3. Comparing other with a count of 36 and a proportion of 36/286= 
0.126 to its expected probability of 0.1. The 95% confidence 
interval = 0.09–0.17. The 95% confidence interval contains the null 
hypothesis proportion of 0.1 and the adjusted p-value is greater 
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than 0.05. So, we accept the null hypothesis and conclude that other 
proportion is not significantly different from (equivalent to) the 
expected probability of 0.1.

2.5.2. Proportion Test
The proportion test is used for binary categorical variables to either evaluate the 
homogeneity of proportions or to test that the proportions are equal to certain 
given values when the sample size is large.

2.5.2.1. Test for Homogeneity in the Race Column of the General 
Social Survey Data
We see above after the race factor lumping that White has a count of 16395 
and the other (races) has a count of 5088. We can test if these two races are 
homogeneous or in other words, they have a proportion of 0.5.

• Null Hypothesis: The population (actual) proportion of whites or 
other in the general social survey data = 0.5.

• Alternative Hypothesis: The population (actual) proportion of 
White or other in the general social survey data is different from 0.5. 
This is a two-tailed test because the actual proportion may be less or 
greater than 50%.

We will use the prop_test function to conduct this test with the arguments:
• x = 16395 which is the count of White in this sample.
• n = 21483 which is the sample size or the number of rows in this 

data.
• p = 0.5 which is the null hypothesis proportion.
• alternative = “two.sided” which is the alternative hypothesis. Then 

we convert the results to a table as before.
prop_test(x = 16395, n = 21483, p = 0.5, alternative = “two.sided”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Two-tailed proportion test for homogeneity of white and 
other proportion in the general social survey data”)

Table 2.18. Two-Tailed Proportion test for Homogeneity of White and Other 
Proportions in the General Social Survey Data

n Statistic df p p.signif
21,483 5,950.083 1 0 ****
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The Table 2.17 contains the estimated sample statistic= = 5950.083 and the 
p-value which equals zero.

The p_value is the probability of our sample results (White proportion 
in the general social survey data) under the null hypothesis (where the white 
proportion = 0.5 or 50%). Since this probability is zero, we reject the null 
hypothesis and conclude that the proportion of whites in the general social 
survey data is significantly different from (larger than) 0.5. This means that the 
two races are not equally distributed in the population from which this sample 
was taken.

2.5.2.2. Test for Equality of the Race Column to a Certain Propor-
tion
We know from the United States census that 71% of the population in the United 
States are White. So we may wish to test the hypothesis that the proportion of 
whites in the general social survey data is different from the general US census.

• Null Hypothesis: The population (actual) proportion of White in the 
general social survey data = 71% or 0.71. The observed proportion 
of 0.763 or 76.3% was due to sampling error. This means also that 
the proportion of other race = 1–0.71 = 0.29.

• Alternative Hypothesis: The population (actual) proportion of 
White in the general social survey data is different from 71% or 
0.71. This is a two-tailed test.

We use the prop_test function with the same arguments as above except that 
p = 0.71 which is the new null hypothesis proportion.
prop_test(x = 16395, n = 21483, p = 0.71, alternative = “two.sided”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Two-tailed proportion test for equality of white and 
other proportion to certain proportions”)

Table 2.19. Two-Tailed Proportion Test for Equality of White and other Propor-
tions to Certain Proportions

n Statistic df p p.signif

21,483 294.6143 1
0.0000000000000000000000
000000000000000000000000
0000000000000000000491

****

The Table 2.18 contains the estimated sample statistic= 294.6143 and the 
p-value which is very low and nearly equals zero.
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The p_value is the probability of our sample results (White proportion 
in the general social survey data) under the null hypothesis (where the white 
proportion = 0.71 or 71%). Since this probability is very low, we reject the null 
hypothesis and conclude that the proportion of White in the population, from 
which this sample was taken, is significantly different from (larger than) 0.71. 
This means also that the proportion of other race is significantly lower than 0.29 
or 29%.

2.5.3. Chi-Square Test
The Chi-square test is used for categorical variables (with many categories) to 
either evaluate the homogeneity of proportions or to test that the proportions are 
equal to certain given values when the sample size is large.

2.5.3.1. Test for Homogeneity in the Race Column of the General 
Social Survey Data
We have seen above that the race column has 3 categories. White is the most 
frequent race with a count of 16395, followed by Black with a count of 3129, 
and other (races) with a count of 1959.

To test the homogeneity of races within this column, we do these steps:
1. We create a vector called “races2” that contains the counts for each 

race.
2. We use the chisq_test function with the arguments:

1. x = races which is the sample counts.
2. p = c(1/3,1/3,1/3) which are the probabilities or proportions 

under the null hypothesis. If the 3 races are homogeneous in 
the general social survey data, the expected proportion = 1/3 = 
0.33 or 33%. Then we convert the results to a table as before.

races2<-c(white = 16395, black = 3129, other = 1959)

races2

## white black other

## 16395 3129 1959

chisq_test(x= races2, p = c(1/3,1/3,1/3)) %>% flextable() %>%

 theme_box() %>%

 set_caption(caption = “Chi-square test for homogeneity of races in the 
general social survey data”)
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Table 2.20. Chi-Square Test for Homogeneity of Races in the General Social Sur-
vey Data

n Statistic p df Method p.signif

3 17,956.23 0 2 Chi-square 
test ****

The Table 2.19 contains the p-value which equals zero, the sample statistic 
= 17956.23, and n = 3 because we have 3 categories.

The p_value is the probability of our sample results (race proportions in the 
general social survey data) under the null hypothesis (where all 3 proportions = 
0.33 or 33%). Since this probability equals zero, we reject the null hypothesis 
and conclude that the proportion of some races is different from other races in 
the general social survey data.

A subsequent test is to perform pairwise comparisons between races to find 
out which race pair is different in its components. In other words, which race 
proportion is significantly different from 0.5 relative to any other race.

We use the pairwise_chisq_gof_test function to perform a pairwise 
comparison with the arguments:

• x = races2 which is the named vector with counts.
• p.adjust.method = “fdr” which is the method for adjusting the 

p-value in multiple comparisons. The “fdr” is for the false discovery 
rate.

pairwise_chisq_gof_test(x = races2,

p.adjust.method = “fdr”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Pairwise comparisons for races in the general social 
survey data”)

Table 2.21. Pairwise Comparisons for Races in the General Social Survey Data

n Group1 Group2 Statistic p df p.adj p.adj.
signif

2 white black 9,013.8679

0.000000000000000
0000000000000000
0000000000000000
000000000000000

1

0.0000000000000
000000000000000
000000000000000
000000000000000
0000

****
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n Group1 Group2 Statistic p df p.adj p.adj.
signif

2 white other 11,354.3694

0.000000000000000
0000000000000000
0000000000000000
000000000000000

1

0.0000000000000
000000000000000
000000000000000
000000000000000
0000

****

2 black other 269.0448

0.000000000000000
0000000000000000
0000000000000000
000000000000183

1

0.0000000000000
000000000000000
000000000000000
000000000000000
0183

****

We have 3 pairwise comparisons:
1. Comparing white with a count of 16395 to black with a count of 3129. 

The adjusted p-value is very low, so we reject the null hypothesis 
and conclude that white proportion is significantly different from 
(larger than) the black proportion in this sample.

2. Comparing whites with a count of 16395 to other with a count 
of 1959. The adjusted p-value is very low, so we reject the null 
hypothesis and conclude that white proportion is significantly 
different from (larger than) the other race proportion in this sample.

3. Comparing black with a count of 3129 to other with a count of 1959. 
The adjusted p-value is very low, so we reject the null hypothesis 
and conclude that the black proportion is significantly different from 
(larger than) other race proportion in this sample.

2.5.3.2. Test for Homogeneity in the Cut Column of Diamonds 
Data
We have seen above that the cut column has 5 categories. Ideal is the most 
frequent cut with a count of 21551, and fair is the least frequent cut with a count 
of 1610. To test the homogeneity of different cuts within this column, we do 
these steps:

1. We create a vector called “cuts” that contains the counts for each cut.
2. We use the chisq_test function with the arguments:
i. x = cuts which is the sample counts.
ii. p = c(1/5,1/5,1/5,1/5,1/5) which are the probabilities or proportions 

under the null hypothesis. If the 5 cuts are homogeneous in the data, 
the expected proportion = 1/5 = 0.2 or 20%. Then we convert the 
results to a table as before.
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cuts<-c(ideal = 21551, premium = 13791, very_good = 12082,

    good = 4906, fair = 1610)

cuts

##   ideal  premium very_good   good   fair

##   21551   13791   12082   4906   1610

chisq_test(x= cuts, p = c(1/5,1/5,1/5,1/5,1/5)) %>% flextable() %>%

 theme_box() %>%

 set_caption(caption = “Chi-square test for homogeneity of cuts in the diamonds 

data”)

Table 2.22. Chi-Square Test for Homogeneity of Cuts in the Diamonds Data

n Statistic p df Method p.signif
5 22,744.55 0 4 Chi-square test ****

The Table 2.21 contains the p-value which equals zero, the sample statistic 
= 22744.55, and n = 5 because we have 5 categories.

The p_value is the probability of our sample results (cut proportions in 
the diamonds data) under the null hypothesis (where all 5 proportions = 0.2 
or 20%). Since this probability equals zero, we reject the null hypothesis and 
conclude that the proportion of some cuts is different from other cuts in the 
diamonds data.

A subsequent test is to perform pairwise comparisons between cuts to find 
out which cut pair is different in its components. In other words, which cut 
proportion is significantly different from 0.5 relative to any other cut.

We use the pairwise_chisq_gof_test function to perform a pairwise 
comparison with the arguments:

• x = cuts which is the named vector with counts.
• p.adjust.method = “fdr” which is the method for adjusting the 

p-value in multiple comparisons. The “fdr” is for the false discovery 
rate.

pairwise_chisq_gof_test(x = cuts,

p.adjust.method = “fdr”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Pairwise comparisons for cuts in the diamonds data”)
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Table 2.23. Pairwise Comparisons for Cuts in the Diamonds Data

n group1 group2 statistic p df p.adj p.adj.
signif

2 ideal premium 1,703.8538 0.000000000000000 
0000000000000 1 0.00000000000000 

00000000000000 ****

2 ideal very_good 2,665.8925 0.00000000000000 
00000000000000 1 0.0000000000000000 

000000000000 ****

2 ideal good 10,471.9365 0.000000000000000 
0000000000000 1 0.000000000000000 

0000000000000 ****

2 ideal fair 17,168.6663 0.0000000000000000 
000000000000 1 0.000000000000000 

0000000000000 ****

2 premium very_good 112.8853 0.0000000000000000 
000000000229 1 0.0000000000000000 

000000000229 ****

2 premium good 4,222.2402 0.0000000000000000 
000000000000 1 0.0000000000000000 

000000000000 ****

2 premium fair 9,634.2290 0.00000000000000000 
00000000000 1 0.0000000000000000 

000000000000 ****

2 very_
good good 3,031.2559 0.00000000000000000 

00000000000 1 0.00000000000000000 
00000000000 ****

2 very_
good fair 8,009.2597 0.000000000000000 

0000000000000 1 0.00000000000000000 
00000000000 ****

2 good fair 1,667.2216 0.0000000000000000 
00000000000 1 0.00000000000000000 

00000000000 ****

We have 10 pairwise comparisons:
1. Comparing ideal with a count of 21551 to premium with a count 

of 13791. The adjusted p-value is very low, so we reject the null 
hypothesis and conclude that the ideal proportion is significantly 
different from (larger than) the premium proportion in the population 
from which this sample was taken.

2. Comparing ideal with a count of 21551 to very good with a count 
of 12082. The adjusted p-value is very low, so we reject the null 
hypothesis and conclude that the ideal proportion is significantly 
different from (larger than) the very good proportion in the population 
from which this sample was taken.

3. Comparing ideal with a count of 21551 to good with a count of 4906. 
The adjusted p-value is very low, so we reject the null hypothesis 
and conclude that the ideal proportion is significantly different from 
(larger than) the good proportion in the population from which this 
sample was taken.
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4. The ideal proportion is significantly larger than the fair proportion.
5. The premium proportion is significantly larger than very good, good, 

and fair proportions.
6. The very good proportion is significantly larger than good and fair 

proportions.
7. The good proportion is significantly larger than the fair proportion.

2.5.3.3. Goodness-of-Fit Test
For the goodness-of-fit test, we must have another vector of probabilities or 
proportions that sum to 1. So, we do these steps:

1. We create another vector called “cuts_prob” that contains the 
probability for each cut. We assume that the expected probability 
of ideal cut is 0.3 or 30%, the expected probability of premium is 
0.2 or 20%, the expected probability of very good is 0.2 or 20%, 
the expected probability of good is 0.15 or 15%, and the expected 
probability of fair is 0.15 or 15%. Note that 0.3+0.2+0.2+0.15+0.15 
= 1.

2. We use the chisq_test function with the arguments:
i. x = cuts which is the sample counts.
ii. p = cuts_prob which are the probabilities or proportions under the 

null hypothesis that we want to test. Then we convert the results to a 
table as before.

cuts_prob<-c(ideal= 0.3, premium = 0.2, very_good = 0.2,

       good = 0.15, fair = 0.15)

cuts_prob

##   ideal  premium very_good   good   fair

##   0.30   0.20   0.20   0.15   0.15

chisq_test(x = cuts,

p = cuts_prob) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Chi-square goodness-of-fit test for cuts in the diamonds 
data”)

Table 2.24. Chi-Square Goodness-of-Fit Test for Cuts in the Diamonds Data

n Statistic p df Method p.signif

5 9,217.649 0 4 Chi-square 
test ****

The Table 2.23 contains the p-value which equals zero.
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The p_value is the probability of our sample results (cut proportions in 
diamonds data) under the null hypothesis (where the proportions are stored 
in the cuts_prob vector). Since this probability equals zero, we reject the null 
hypothesis and conclude that the proportion of some cuts is different from the 
expected probabilities in the cuts_prob vector.

A subsequent test is to perform pairwise comparisons between each cut 
and its expected probability to find out which cut is different from its expected 
probability.

We use the pairwise_chisq_test_against_p function to perform a pairwise 
comparison with the arguments:

• x = cuts which is the named vector with counts.
• p = cuts_prob which is the vector holding the expected probabilities.
• p.adjust.method = “fdr” which is the method for adjusting the 

p-value in multiple comparisons. The “fdr” is for the false discovery 
rate.

pairwise_chisq_test_against_p(x = cuts, p = cuts_prob,

p.adjust.method = “fdr”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Pairwise comparisons for cuts against expected 
probabilities”)

Table 2.25. Pairwise Comparisons for Cuts Against Expected Probabilities

Group Observed Expected n Statistic p df p.adj p.adj.
signif

ideal 21,551 16,182 2 2,544.817 0.000000e 
+00 1 0.00000e+00 ****

premium 13,791 10,788 2 1,044.912 3.110000e 
-229 1 3.89000e-229 ****

very_
good 12,082 10,788 2 194.016 4.220000e 

-44 1 4.22000e-44 ****

good 4,906 8,091 2 1,475.019 1.037538e 
-322 1 1.72923e-322 ****

fair 1,610 8,091 2 6,107.492 0.000000e 
+00 1 0.00000e+00 ****

We have 5 pairwise comparisons:
1. Comparing the ideal with a count of 21551 and a proportion of 

21551/53940= 0.4 to its expected probability of 0.3, where 53940 
is the number of rows or diamonds in our data. The expected count 
will be 0.3 X 53940 = 16182 and the adjusted p-value equals zero, 
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so we reject the null hypothesis and conclude that ideal proportion is 
significantly different from (larger than) the expected probability of 
0.3.

2. Comparing the premium with a count of 13791 and a proportion of 
13791/53940= 0.256 to its expected probability of 0.2. The expected 
count will be 0.2 X 53940 = 10788 and the adjusted p-value is very 
low, so we reject the null hypothesis and conclude that the premium 
proportion is significantly different from (larger than) the expected 
probability of 0.2.

3. Comparing very good with a count of 12082 and a proportion of 
12082/53940= 0.224 to its expected probability of 0.2. The expected 
count will be 0.2 X 53940 = 10788 and the adjusted p-value is very 
low, so we reject the null hypothesis and conclude that the very good 
proportion is significantly different from (larger than) the expected 
probability of 0.2.

4. Comparing good with a count of 4906 and a proportion of 
4906/53940= 0.091 to its expected probability of 0.15. The expected 
count will be 0.15 X 53940 = 8091 and the adjusted p-value is very 
low, so we reject the null hypothesis and conclude that the good 
proportion is significantly different from (smaller than) the expected 
probability of 0.15.

5. Comparing fair with a count of 1610 and a proportion of 1610/53940= 
0.0298 to its expected probability of 0.15. The expected count will 
be 0.15 X 53940 = 8091 and the adjusted p-value is very low, so we 
reject the null hypothesis and conclude that the fair proportion is 
significantly different from (smaller than) the expected probability 
of 0.15.
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3.1. DATA USED IN THIS CHAPTER

3.1.1. Body Measurements of Physically Active Individuals Data
The Body measurements of physically active individuals data is stored under the 
name “bdims.” The data is part of the openintro package and its source is Heinz 
G, Peterson LJ, Johnson RW, and Kerk CJ. 2003. Exploring Relationships in 
Body Dimensions. Journal of Statistics Education 11(2). To load this data into 
our R session, we will load the openintro package using the library function. 
Then, we will load the bdims data using the data function. We will also load 
the tidyverse package because it contains many packages for data analysis like 
dplyr, tidyr, ggplot2, etc.
library(openintro)

library(tidyverse)

data(“bdims”)

Then, to see the data structure, we will use the glimpse function from the 
dplyr package.
glimpse(bdims)

## Rows: 507

## Columns: 25

## $ bia_di <dbl> 42.9, 43.7, 40.1, 44.3, 42.5, 43.3, 43.5, 44.4, 43.5, 42.0, 40.…

## $ bii_di <dbl> 26.0, 28.5, 28.2, 29.9, 29.9, 27.0, 30.0, 29.8, 26.5, 28.0, 29.…

## $ bit_di <dbl> 31.5, 33.5, 33.3, 34.0, 34.0, 31.5, 34.0, 33.2, 32.1, 34.0, 33.…

## $ che_de <dbl> 17.7, 16.9, 20.9, 18.4, 21.5, 19.6, 21.9, 21.8, 15.5, 22.5, 20.…

## $ che_di <dbl> 28.0, 30.8, 31.7, 28.2, 29.4, 31.3, 31.7, 28.8, 27.5, 28.0, 30.…

## $ elb_di <dbl> 13.1, 14.0, 13.9, 13.9, 15.2, 14.0, 16.1, 15.1, 14.1, 15.6, 13.…

## $ wri_di <dbl> 10.4, 11.8, 10.9, 11.2, 11.6, 11.5, 12.5, 11.9, 11.2, 12.0, 10.…

## $ kne_di <dbl> 18.8, 20.6, 19.7, 20.9, 20.7, 18.8, 20.8, 21.0, 18.9, 21.1, 19.…

## $ ank_di <dbl> 14.1, 15.1, 14.1, 15.0, 14.9, 13.9, 15.6, 14.6, 13.2, 15.0, 14.…

## $ sho_gi <dbl> 106.2, 110.5, 115.1, 104.5, 107.5, 119.8, 123.5, 120.4, 111.0, …

## $ che_gi <dbl> 89.5, 97.0, 97.5, 97.0, 97.5, 99.9, 106.9, 102.5, 91.0, 93.5, 9…

## $ wai_gi <dbl> 71.5, 79.0, 83.2, 77.8, 80.0, 82.5, 82.0, 76.8, 68.5, 77.5, 81.…

## $ nav_gi <dbl> 74.5, 86.5, 82.9, 78.8, 82.5, 80.1, 84.0, 80.5, 69.0, 81.5, 81.…

## $ hip_gi <dbl> 93.5, 94.8, 95.0, 94.0, 98.5, 95.3, 101.0, 98.0, 89.5, 99.8, 98…

## $ thi_gi <dbl> 51.5, 51.5, 57.3, 53.0, 55.4, 57.5, 60.9, 56.0, 50.0, 59.8, 60.…

## $ bic_gi <dbl> 32.5, 34.4, 33.4, 31.0, 32.0, 33.0, 42.4, 34.1, 33.0, 36.5, 34.…

## $ for_gi <dbl> 26.0, 28.0, 28.8, 26.2, 28.4, 28.0, 32.3, 28.0, 26.0, 29.2, 27.…

## $ kne_gi <dbl> 34.5, 36.5, 37.0, 37.0, 37.7, 36.6, 40.1, 39.2, 35.5, 38.3, 38.…

## $ cal_gi <dbl> 36.5, 37.5, 37.3, 34.8, 38.6, 36.1, 40.3, 36.7, 35.0, 38.6, 40.…

## $ ank_gi <dbl> 23.5, 24.5, 21.9, 23.0, 24.4, 23.5, 23.6, 22.5, 22.0, 22.2, 23.…

## $ wri_gi <dbl> 16.5, 17.0, 16.9, 16.6, 18.0, 16.9, 18.8, 18.0, 16.5, 16.9, 16.…
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## $ age  <int> 21, 23, 28, 23, 22, 21, 26, 27, 23, 21, 23, 22, 20, 26, 23, 22,…

## $ wgt  <dbl> 65.6, 71.8, 80.7, 72.6, 78.8, 74.8, 86.4, 78.4, 62.0, 81.6, 76.…

## $ hgt  <dbl> 174.0, 175.3, 193.5, 186.5, 187.2, 181.5, 184.0, 184.5, 175.0, …

## $ sex  <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …

We see that the bdims data contains 507 rows and 25 columns:
1. bia_di: respondent’s biacromial diameter in centimeters. It is a 

double or numeric column with decimals.
2. bii_di: respondent’s biliac diameter (pelvic breadth) in centimeters. 

It is a double or numeric column with decimals.
3. bit_di: respondent’s bitrochanteric diameter in centimeters. It is a 

double or numeric column with decimals.
4. che_de: respondent’s chest depth in centimeters, measured between 

spine and sternum at nipple level, mid-expiration. It is a numeric 
column with decimals.

5. che_di: respondent’s chest diameter in centimeters, measured at 
nipple level, mid-expiration. It is a numeric column.

6. elb_di: respondent’s elbow diameter in centimeters, measured as the 
sum of two elbows. It is a numeric column.

7. wri_di: respondent’s wrist diameter in centimeters, measured as the 
sum of two wrists. It is a numeric column.

8. kne_di: respondent’s knee diameter in centimeters, measured as the 
sum of two knees. It is a numeric column.

9. ank_di: respondent’s ankle diameter in centimeters, measured as the 
sum of two ankles. It is a numeric column.

10. sho_gi: respondent’s shoulder girth in centimeters, measured over 
deltoid muscles. It is a numeric column.

11. che_gi: respondent’s chest girth in centimeters, measured at nipple 
line in males and just above breast tissue in females, mid-expiration. 
It is a numeric column.

12. wai_gi: respondent’s waist girth in centimeters, measured at the 
narrowest part of the torso below the rib cage as the average of 
contracted and relaxed position. It is a numeric column.

13. nav_gi: respondent’s navel (abdominal) girth in centimeters, 
measured at the umbilicus and iliac crest using the iliac crest as a 
landmark. It is a numeric column.

14. hip_gi: respondent’s hip girth in centimeters, measured at a level of 
bitrochanteric diameter. It is a numeric column.
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15. thi_gi: respondent’s thigh girth in centimeters, measured below the 
gluteal fold as the average of right and left girths. It is a numeric 
column.

16. bic_gi: respondent’s bicep girth in centimeters, measured when 
flexed as the average of right and left girths. It is a numeric column.

17. for_gi: respondent’s forearm girth in centimeters, measured when 
extended, palm up as the average of right and left girths. It is a 
numeric column.

18. kne_gi: respondent’s knee diameter in centimeters, measured as the 
sum of two knees. It is a numeric column.

19. cal_gi: respondent’s calf maximum girth in centimeters, measured 
as the average of right and left girths. It is a numeric column.

20. ank_gi: respondent’s ankle minimum girth in centimeters, measured 
as the average of right and left girths. It is a numeric column.

21. wri_gi: respondent’s wrist minimum girth in centimeters, measured 
as the average of right and left girths. It is a numeric column.

22. age: respondent’s age in years. It is an integer column.
23. wgt: respondent’s weight in kilograms. It is a numeric column.
24. hgt: respondent’s height in centimeters. It is a numeric column.
25. sex: It is an integer column with 1 if the respondent is male, and 0 if female.

3.1.2. Nutrition in Fast Food
The nutrition amounts in different fast food items are stored in the “fastfood” 
data frame which is part of the openintro package. To load this data into our R 
session, we will use the data function followed by the glimpse function to see 
the data structure.
data(“fastfood”)

glimpse(fastfood)

## Rows: 515

## Columns: 17

## $ restaurant <chr> “Mcdonalds,” “Mcdonalds,” “Mcdonalds,” “Mcdonalds,” “Mcdon…

## $ item    <chr> “Artisan Grilled Chicken Sandwich,” “Single Bacon Smokehou…

## $ calories  <dbl> 380, 840, 1130, 750, 920, 540, 300, 510, 430, 770, 380, 62…

## $ cal_fat   <dbl> 60, 410, 600, 280, 410, 250, 100, 210, 190, 400, 170, 300,…

## $ total_fat  <dbl> 7, 45, 67, 31, 45, 28, 12, 24, 21, 45, 18, 34, 20, 34, 8, …

## $ sat_fat   <dbl> 2.0, 17.0, 27.0, 10.0, 12.0, 10.0, 5.0, 4.0, 11.0, 21.0, 4…

## $ trans_fat  <dbl> 0.0, 1.5, 3.0, 0.5, 0.5, 1.0, 0.5, 0.0, 1.0, 2.5, 0.0, 1.5…

## $ cholesterol <dbl> 95, 130, 220, 155, 120, 80, 40, 65, 85, 175, 40, 95, 125, …



Bivariate Analysis for Continuous-Continuous Data

155

## $ sodium   <dbl> 1110, 1580, 1920, 1940, 1980, 950, 680, 1040, 1040, 1290, …

## $ total_carb <dbl> 44, 62, 63, 62, 81, 46, 33, 49, 35, 42, 38, 48, 48, 67, 31…

## $ fiber    <dbl> 3, 2, 3, 2, 4, 3, 2, 3, 2, 3, 2, 3, 3, 5, 2, 2, 3, 3, 5, 2…

## $ sugar    <dbl> 11, 18, 18, 18, 18, 9, 7, 6, 7, 10, 5, 11, 11, 11, 6, 3, 1…

## $ protein   <dbl> 37, 46, 70, 55, 46, 25, 15, 25, 25, 51, 15, 32, 42, 33, 13…

## $ vit_a    <dbl> 4, 6, 10, 6, 6, 10, 10, 0, 20, 20, 2, 10, 10, 10, 2, 4, 6,…

## $ vit_c    <dbl> 20, 20, 20, 25, 20, 2, 2, 4, 4, 6, 0, 10, 20, 15, 2, 6, 15…

## $ calcium   <dbl> 20, 20, 50, 20, 20, 15, 10, 2, 15, 20, 15, 35, 35, 35, 4, …

## $ salad    <chr> “Other,” “Other,” “Other,” “Other,” “Other,” “Other,” “Oth…

The data contains 515 rows and 17 columns:
1. restaurant: Name of restaurant. It is a character column.
2. item: Name of the item or fast food. It is a character column.
3. calories: Number of calories. It is a numeric column.
4. cal_fat: Calories from fat. It is a numeric column.
5. total_fat: the total fat. It is a numeric column.
6. sat_fat: the saturated fat. It is a numeric column.
7. trans_fat: the trans fat. It is a numeric column.
8. cholesterol: the cholesterol. It is a numeric column.
9. sodium: the sodium present. It is a numeric column.
10. total_carb: the total carbohydrates. It is a numeric column.
11. fiber: the fiber present. It is a numeric column.
12. sugar: the sugar present. It is a numeric column.
13. protein: the protein present. It is a numeric column.
14. vit_a: the Vitamin A present. It is a numeric column.
15. vit_c: the Vitamin C present. It is a numeric column.
16. calcium: the Calcium present. It is a numeric column.
17. salad: with salad or not. It is a character column.

3.2. SUMMARY STATISTICS

3.2.1. The Correlation Coefficient
The correlation coefficient determines the relationship between 2 continuous 
variables. The correlation coefficient is a dimensionless quantity and ranges 
between -1 and 1. Generally, we have one of 3 conditions for the value of the 
correlation coefficient:

1. If the correlation is greater than 0, then the 2 variables are positively 
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correlated and if one of them increases, the other variable tends to 
increase, and vice versa.

2. If the correlation is less than 0, then the 2 variables are negatively 
correlated and if one of them increases, the other variable tends to 
decrease, and vice versa.

3. If the correlation is nearly 0, then the 2 variables are uncorrelated, 
and if one of them increases or decreases, the other variable remains 
the same, and vice versa.

Generally, if the absolute value of the correlation coefficient is greater than 0.5, 
then this correlation is a relatively strong one. If the absolute value of the correlation 
coefficient is smaller than 0.5, then this correlation is a relatively weak one.

3.2.2. Types of Correlation Coefficients
There are 3 types of correlation coefficients:

1. Pearson correlation coefficient: which is a parametric correlation 
coefficient that measures the association between the two variables. 
The Pearson correlation requires:
i. The relation between the 2 variables is linear. This can be 

checked using a scatter plot showing this linear relation.
ii. The 2 variables follow a normal distribution. This can be 

checked using the QQ plot and Shapiro-Wilk test as described 
in Chapter 1.

2. Spearman correlation coefficient: is a non-parametric correlation 
coefficient and can be used for non-normally distributed variables. In 
addition, Spearman correlation can be used for non-linear relations. 
The Spearman correlation computes the correlation between the 
ranks of one variable to the ranks of the other variable.

3. Kendall correlation coefficient: is a non-parametric correlation 
coefficient and can be used for non-normally distributed variables. 
Also, the Kendall correlation can be used for non-linear relations. 
The Kendall correlation method measures the correspondence 
between the ranking of the 2 variables.

3.2.3. Correlation Between Ankle Diameter (ank_di) and Bitro-
chanteric Diameter (bit_di) in Bdims Data

3.2.3.1. Plot a Scatter Plot
Using the following functions:
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1. The ggplot function applied on the bdims data with the arguments, 
aes(x = ank_di, y = bit_di), to plot the ankle diameter on the x-axis 
and bitrochanteric diameter on the y-axis.

2. The geom_point function to draw a scatter plot.
3. The geom_smooth function with the argument, method = “lm,” to 

add the linear fit line to the scatter plot.
4. The labs, theme_classic, and theme functions as described in 

previous chapters.
bdims %>% ggplot(aes(x = ank_di, y = bit_di))+ geom_point()+

 geom_smooth(method = “lm”)+

 labs(title = “Scatter plot of bitrochanteric diameter vs. ankle diameter in 
bdims data \n with linear fit line,” x = “Ankle diameter,”

 y = “Bitrochanteric diameter”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that all points are scattered around the linear fit line so the relation 
is linear.
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3.2.3.2. Plot a QQ Plot
We plot a QQ plot for the ankle diameter and the bitrochanteric diameter, as 
described in Chapter 1, using the ggqqplot function from the ggpubr package.
library(ggpubr)

ggqqplot(data = bdims, x = “ank_di,”

title = “QQ plot of ankle diameter from bdims data,”

xlab = “Theoretical percentiles,” ylab = “Sample percentiles”)+

 theme(plot.title = element_text(hjust = 0.5))

We see that nearly all data points fall along this reference line or within the 
confidence band, so we can assume the normality of ankle diameters.
ggqqplot(data = bdims, x = “bit_di,”

title = “QQ plot of bitrochanteric diameter from bdims data,”

xlab = “Theoretical percentiles,” ylab = “Sample percentiles”)+

 theme(plot.title = element_text(hjust = 0.5))
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Similarly, We see that all data points fall along this reference line or within 
the confidence band, so we can assume the normality of bitrochanteric diameters.

3.2.3.3. Shapiro-Wilk Test
We do a Shapiro-Wilk test for the ankle diameter and the bitrochanteric 
diameter, as described in Chapter 1, using the shapiro_test function from the 
rstatix package. We convert the results to a table using the flextable package 
functions.
library(rstatix)

library(flextable)

shapiro_test(data = bdims, ank_di) %>% flextable() %>% theme_
box() %>%

 set_caption(caption = “Shapiro-Wilk test results for ankle 
diameter in the body measurements data”)
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Table 3.1. Shapiro-Wilk Test Results for Ankle Diameter in the Body Measure-
ments Data

Variable Statistic p
ank_di 0.9949495 0.09594954

The Table 3.1 contains the sample statistic = 0.995 which corresponds to 
our sample results and the p-value which is larger than the cut-off point of 0.05.

The p_value is insignificant, so we fail to reject the null hypothesis and 
conclude that the ankle diameter in the body measurements data is normally 
distributed.
shapiro_test(data = bdims, bit_di) %>% flextable() %>% theme_
box() %>%

 set_caption(caption = “Shapiro-Wilk test results for 
bitrochanteric diameter in the body measurements data”)

Table 3.2. Shapiro-Wilk Test Results for Bitrochanteric Diameter in the Body Mea-
surements Data

Variable Statistic p
bit_di 0.9979092 0.7928441

The Table 3.2 contains the sample statistic = 0.998 which corresponds to 
our sample results and the p-value which is larger than the cut-off point of 0.05.

The p_value is insignificant, so we fail to reject the null hypothesis and 
conclude that the bitrochanteric diameter in the body measurements data is 
normally distributed.

Because the ankle and bitrochanteric diameters show a linear relation and 
both are normally distributed, we can use the Pearson correlation method to 
examine the relation between the ankle and bitrochanteric diameter.

3.2.3.4. Pearson Correlation
We get the Pearson correlation coefficient between the ankle diameter and 
the bitrochanteric diameter, we use the cor_test function with the following 
arguments:

• ank_di, bit_di which are the 2 columns we want to get the correlation 
between them.

• method = “pearson” which is the correlation method.
• alternative = “two.sided” which is the alternative hypothesis for 

testing the significance of the correlation. The null hypothesis is that 
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the correlation equals zero or no correlation. The “greater” alternative 
hypothesis corresponds to positive correlation (correlation > 0) and 
the “less” alternative hypothesis corresponds to negative correlation 
(correlation < 0). We convert the result to a table as before.

bdims %>% cor_test(ank_di, bit_di, method = “pearson,”

          alternative = “two.sided”) %>% flextable() %>%

 theme_box() %>%

 set_caption(caption = “Pearson correlation test results for the 
correlation between ankle and bitrochanteric diameter in the 
body measurements data”)

Table 3.3. Pearson Correlation Test Results for the Correlation Between Ankle 
and Bitrochanteric Diameter in the Body Measurements Data

var1 var2 cor statistic p conf.low conf.high method

ank_di bit_
di 0.5 12.8161

0.000000
00000000
00000000
00000000
00938

0.4267328 0.5583983 Pearson

We see that:
1. The pearson correlation = 0.5.
2. The sample statistic = 12.8161 which corresponds to our sample results 

and the p-value which is very low and nearly equals zero. The p_value 
is significant, so we reject the null hypothesis and conclude that the 
correlation between the ankle and bitrochanteric diameter in the body 
measurements data is different from zero. In other words, they are posi-
tively associated so as the ankle diameter increases, the bitrochanteric 
diameter increases on average.

3. The 95% confidence interval = 0.43–0.56. This means that we are 95% 
confident that the underlying population from which this sample was 
taken can have a correlation as low as 0.43 and as high as 0.56.

3.2.4. Correlation Between Weight and Height in Bdims Data

3.2.4.1. Plot a Scatter Plot
Using the same previous functions.
bdims %>% ggplot(aes(x = wgt, y = hgt))+ geom_point()+

 geom_smooth(method = “lm”)+

 labs(title = “Scatter plot of height vs. weight in bdims data with linear fit 
line,”
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    x = “Weight,”

    y = “Height”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that all points are scattered around the linear fit line so the relation 
is linear.

3.2.4.2. Plot a QQ Plot
We plot a QQ plot for the weight and the height columns as described previously.
ggqqplot(data = bdims, x = “wgt,”

     title = “QQ plot of weight values from bdims data,”

     xlab = “Theoretical percentiles,” ylab = “Sample percentiles”)+

theme(plot.title = element_text(hjust = 0.5))
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We see that many data points are outside the confidence band, so we can not 
assume the normality of the weight values.
ggqqplot(data = bdims, x = “hgt,”

    

     title = “QQ plot of height values from bdims data,”

    

     xlab = “Theoretical percentiles,” ylab = “Sample percentiles”)+

 theme(plot.title = element_text(hjust = 0.5))
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Similarly, we see that many data points are outside the confidence band, so 
we can not assume the normality of the height values.

3.2.4.3. Shapiro-Wilk Test
We do a Shapiro-Wilk test for the weight and the height values.
shapiro_test(data = bdims, wgt) %>% flextable() %>% theme_box() %>%

 set_caption(caption = “Shapiro-Wilk test results for the weight in the body 
measurements data”)

Table 3.4. Shapiro-Wilk Test Results for the Weight in the Body Measurements 
Data

Variable Statistic p

wgt 0.9791889 0.00000123279

The Table 3.4 contains the sample statistic = 0.979 which corresponds to 
our sample results and the p-value which is smaller than the cut-off point of 
0.05.
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The p_value is significant, so we reject the null hypothesis and conclude that 
the weight values in the body measurements data are not normally distributed.
shapiro_test(data = bdims, hgt) %>% flextable() %>% theme_box() %>%

 set_caption(caption = “Shapiro-Wilk test results for height in the body 
measurements data”)

Table 3.5. Shapiro-Wilk Test Results for Height in the Body Measurements Data

Variable Statistic p
hgt 0.9923302 0.01044543

The Table 3.5 contains the sample statistic = 0.992 which corresponds to 
our sample results and the p-value which is smaller than the cut-off point of 
0.05.

The p_value is significant, so we reject the null hypothesis and conclude 
that the height in the body measurements data is not normally distributed.

Because the weight and height values are not normally distributed, we 
can use the Spearman or Kendall correlation method to examine the relation 
between these 2 columns.

3.2.4.4. Spearman Correlation
To get the Spearman correlation coefficient between the weight and the height, 
we use the cor_test function with the following arguments:

• wgt, hgt which are the 2 columns we want to get the correlation 
between them.

• method = “spearman” which is the correlation method.
• alternative = “two.sided” which is the alternative hypothesis for 

testing the significance of the correlation. The null hypothesis is that 
the correlation equals zero or no correlation.

bdims %>% cor_test(wgt, hgt, method = “spearman,”

          alternative = “two.sided”) %>% flextable() %>%

 theme_box() %>%

 set_caption(caption = “Spearman correlation test results for the correlation 

between weight and height in the body measurements data”)
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Table 3.6. Spearman Correlation Test Results for the Correlation Between Weight 
and Height in the Body Measurements Data

var1 var2 cor Statistic p Method

wgt hgt 0.73 5,824,225

0.00000000000000000000000
0000000000000000000000000
0000000000000000000000000
000000000000373

Spearman

We see that:
1. The Spearman correlation = 0.73.
2. The sample statistic = 5824225 which corresponds to our sample 

results and the p-value which is very low and nearly equals zero. The 
p_value is significant, so we reject the null hypothesis and conclude 
that the correlation between the weight and height in the body 
measurements data is different from zero. In other words, they are 
positively associated so as the weight increases, the height increases 
on average.

3.2.4.5. Kendall Correlation
To get the Kendall correlation coefficient between the weight and the height, we 
use the cor_test function with the following arguments:

• wgt, hgt which are the 2 columns we want to get the correlation 
between them.

• method = “kendall” which is the correlation method.
• alternative = “two.sided” which is the alternative hypothesis for 

testing the significance of the correlation. The null hypothesis is that 
the correlation equals zero or no correlation.

bdims %>% cor_test(wgt, hgt, method = “kendall,”

          alternative = “two.sided”) %>% flextable() %>%

 theme_box() %>%

 set_caption(caption = “Kendall correlation test results for the correlation 
between weight and height in the body measurements data”)
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Table 3.7. Kendall Correlation Test Results for the Correlation Between Weight 
and Height in the Body Measurements Data

var1 var2 cor Statistic p Method

wgt hgt 0.54 18.10245

0.0000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
00305

Kendall

We see that:
1. The Kendall correlation = 0.54.
2. The sample statistic = 18.10245 which corresponds to our sample 

results and the p-value is very low and nearly equals zero. The p_
value is significant, so we reject the null hypothesis and conclude 
that the Kendall correlation between the weight and height in the 
body measurements data is different from zero. In other words, 
they are positively associated so as the weight increases, the height 
increases on average.

3.2.5. Correlation Between Cholesterol and Calories in the Fast 
Food Data

3.2.5.1. Plot a Scatter Plot
Using the same previous functions.
fastfood %>% ggplot(aes(x = cholesterol, y = calories))+ geom_point()+

 geom_smooth(method = “lm”)+

 labs(title = “Scatter plot of calories vs. cholesterol in fast food data with 
linear fit line,”

   

    x = “Cholesterol,”

   

    y = “Calories”)+
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 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that all points are scattered around the linear fit line so the relation 
is linear.

3.2.5.2. Plot a QQ Plot
We plot a QQ plot for the cholesterol and for the calories columns as described 
previously.
ggqqplot(data = fastfood, x = “cholesterol,”

    

     title = “QQ plot of cholesterol values from fast food data,”

    

     xlab = “Theoretical percentiles,” ylab = “Sample percentiles”)+

 theme(plot.title = element_text(hjust = 0.5))
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We see that many data points are outside the confidence band, so we can not 
assume the normality of the cholesterol values.
ggqqplot(data = fastfood, x = “calories,”

    

     title = “QQ plot of calories values from fast food data,”

    

     xlab = “Theoretical percentiles,” ylab = “Sample percentiles”)+

 theme(plot.title = element_text(hjust = 0.5))



Statistics with R for Data Analysis

170

Similarly, we see that many data points are outside the confidence band, so 
we can not assume the normality of the calories values.

3.2.5.3. Shapiro-Wilk Test
We do a Shapiro-Wilk test for the cholesterol and the calories values.
shapiro_test(data = fastfood, cholesterol) %>% flextable() %>%

 theme_box() %>%

 set_caption(caption = “Shapiro-Wilk test results for the cholesterol in the 
fast food data”)

Table 3.8. Shapiro-Wilk Test Results for the Cholesterol in the Fast Food Data

Variable Statistic p

cholesterol 0.7064736
0.000000000000
00000000000000
005103688
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The table contains the sample statistic = 0.706 which corresponds to our 
sample results and the p-value which is smaller than the cut-off point of 0.05.

The p_value is significant, so we reject the null hypothesis and conclude 
that the cholesterol values in the fast food data are not normally distributed.

shapiro_test(data = fastfood, calories) %>% flextable() %>% theme_box() %>%

 set_caption(caption = “Shapiro-Wilk test results for calories in the fast food 
data”)

Table 3.9. Shapiro-Wilk Test Results for Calories in the Fast Food Data

Variable Statistic p

calories 0.9214142 0.0000000000000009594792

The table contains the sample statistic = 0.921 which corresponds to our 
sample results and the p-value which is smaller than the cut-off point of 0.05.

The p_value is significant, so we reject the null hypothesis and conclude 
that the calories in the fast food data are not normally distributed.

Because the cholesterol and calories values are not normally distributed, 
we can use the Spearman or Kendall correlation method to examine the relation 
between these 2 columns.

3.2.5.4. Spearman Correlation
To get the Spearman correlation coefficient between the cholesterol and calories 
values, we use the same functions described above and convert the result to a 
table as before.
fastfood %>% cor_test(cholesterol,calories, method = “spearman,”

          alternative = “two.sided”) %>% flextable() %>%

 theme_box() %>%

 set_caption(caption = “Spearman correlation test results for the correlation 
between cholesterol and calories in the fast food data”)
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Table 3.10. Spearman Correlation Test Results for the Correlation Between Choles-
terol and Calories in the Fast Food Data

var1 var2 cor Statistic p Method

cholesterol calories 0.73 6,142,437

0.00000000000000
000000000000000
000000000000000
000000000000000
000000000000000
000000000000665

Spearman

We see that:
1. The Spearman correlation = 0.73.
2. The sample statistic = 6142437 which corresponds to our sample re-

sults and the p-value which is very low and nearly equals zero. The 
p_value is significant, so we reject the null hypothesis and conclude 
that the correlation between the cholesterol and calories in the fast food 
data is different from zero. In other words, they are positively associ-
ated so as the cholesterol increases, the calories increase on average.

3.2.6. Correlation Between Cholesterol and Vitamin A

3.2.6.1. Plot a Scatter Plot
Using the same previous functions.
fastfood %>% ggplot(aes(x = cholesterol, y = vit_a))+ geom_point()+

 geom_smooth(method = “lm”)+

 labs(title = “Scatter plot of vitamin A vs. cholesterol in fast food data with 
linear fit line,”

   

    x = “Cholesterol,”

   

    y = “vitamin A”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that nearly all points are scattered around the linear fit line so the 
relation is nearly linear. However, some large outliers in vitamin A are far from 
the linear fit line.

3.2.6.2. Plot a QQ Plot
We plot a QQ plot for the vitamin A column as described previously. The QQ 
plot of cholesterol is drawn in the previous example.
ggqqplot(data = fastfood, x = “vit_a,”

    

     title = “QQ plot of vitamin A values from fast food data,”

    

     xlab = “Theoretical percentiles,” ylab = “Sample percentiles”)+

 theme(plot.title = element_text(hjust = 0.5))
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We see that many data points are outside the confidence band, so we can not 
assume the normality of the vitamin A values.

3.2.6.3. Shapiro-Wilk Test
We do a Shapiro-Wilk test for the vitamin A values.
shapiro_test(data = fastfood, vit_a) %>% flextable() %>%

 theme_box() %>%

 set_caption(caption = “Shapiro-Wilk test results for vitamin A in the fast food 
data”)



Bivariate Analysis for Continuous-Continuous Data

175

Table 3.11. Shapiro-Wilk Test Results for Vitamin A in the Fast Food Data

Variable Statistic p

vit_a 0.4983948
0.000000000000
00000000000000
02535053

The Table 3.11 contains the sample statistic = 0.498 which corresponds to our 
sample results and the p-value which is smaller than the cut-off point of 0.05.

The p_value is significant, so we reject the null hypothesis and conclude 
that vitamin A values in the fast food data are not normally distributed.

Because the cholesterol and vitamin A values are not normally distributed, 
we can use the Spearman or Kendall correlation method to examine the relation 
between these 2 columns.

3.2.6.4. Spearman Correlation
We use the same functions described above and convert the result to a table as 
before.
fastfood %>% cor_test(cholesterol,vit_a, method = “spearman,”

          alternative = “two.sided”) %>% flextable() %>%

 theme_box() %>%

 set_caption(caption = “Spearman correlation test results for the correlation 
between cholesterol and vitamin A in the fast food data”)

Table 3.12. Spearman Correlation Test Results for the Correlation Between Choles-
terol and Vitamin A in the Fast Food Data

var1 var2 cor Statistic p Method

cholesterol vit_a 0.069 4,232,745 0.235 Spearman

We see that:
1. The Spearman correlation = 0.069 which is a very low value.
2. The sample statistic = 4232745 corresponds to our sample results 

and the p-value which is larger than the cut-off value of 0.05. The 
p_value is insignificant, so we fail to reject the null hypothesis and 
conclude that there is no correlation between cholesterol and vitamin 
A in the fast food data. In other words, when one of the variables 
increases or decreases, the other variable remains nearly the same.
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3.2.7. Correlation Between All Numeric Variables in Body 
Measurements Data

3.2.7.1. The Correlation Matrix
We can get all pairwise correlations between all numeric columns in the body 
measurements data using the cor_mat function (to produce a correlation matrix) 
with the argument method = “spearman” because not all variables are normally 
distributed as we see above.
bdims %>% cor_mat(method = “spearman”)

## # A tibble: 25 × 26

##  rowname bia_di bii_di bit_di che_de che_di elb_di wri_di kne_di ank_di sho_gi

## * <chr>  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

## 1 bia_di  1   0.3  0.48  0.61  0.78  0.78  0.74  0.66  0.68  0.81

## 2 bii_di  0.3  1   0.68  0.36  0.32  0.31  0.28  0.42  0.36  0.26

## 3 bit_di  0.48  0.68  1   0.47  0.51  0.52  0.47  0.6  0.5  0.47

## 4 che_de  0.61  0.36  0.47  1   0.68  0.7  0.65  0.6  0.63  0.76

## 5 che_di  0.78  0.32  0.51  0.68  1   0.78  0.75  0.67  0.69  0.87

## 6 elb_di  0.78  0.31  0.52  0.7  0.78  1   0.85  0.75  0.83  0.83

## 7 wri_di  0.74  0.28  0.47  0.65  0.75  0.85  1   0.73  0.78  0.8

## 8 kne_di  0.66  0.42  0.6  0.6  0.67  0.75  0.73  1   0.75  0.69

## 9 ank_di  0.68  0.36  0.5  0.63  0.69  0.83  0.78  0.75  1   0.72

## 10 sho_gi  0.81  0.26  0.47  0.76  0.87  0.83  0.8  0.69  0.72  1 

## # i 15 more rows

## # i 15 more variables: che_gi <dbl>, wai_gi <dbl>, nav_gi <dbl>, hip_gi <dbl>,

## #  thi_gi <dbl>, bic_gi <dbl>, for_gi <dbl>, kne_gi <dbl>, cal_gi <dbl>,

## #  ank_gi <dbl>, wri_gi <dbl>, age <dbl>, wgt <dbl>, hgt <dbl>, sex <dbl>

The result is a correlation matrix or a data frame with 25 rows (for 25 
columns in the body measurements data) and 26 columns (for 25 columns of 
the data plus a “rowname” column for the column names). The upper triangle 
of the matrix is the same as the lower triangle with a diagonal of ones because 
it is the correlation of the variable with itself.

3.2.7.2. Long Correlation Matrix
Because the correlation matrix is so wide and symmetric along its diagonal, 
we can gather these columns and extract the lower triangle using the following 
functions after the cor_mat function:

• The pull_lower_triangle function extracts the lower triangle of the 
correlation matrix.
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• The cor_gather function to gather all columns. Then, we convert the 
result to a table as before.

• The mutate and round function to round the p-values to 5 decimal 
places.

bdims %>% cor_mat(method = “spearman”) %>% pull_lower_triangle() %>%

 cor_gather() %>% mutate(p = round(p,5)) %>%

  flextable() %>% theme_box() %>%

 set_caption(caption = “Spearman correlation matrix of numeric columns of body 
measurements data in long format with p-values”)

Table 3.13. Spearman Correlation Matrix of Numeric Columns of Body Measure-
ments Data in Long Format with p-Values

var1 var2 cor p
bii_di bia_di 0.30000 0.00000
bit_di bia_di 0.48000 0.00000
che_de bia_di 0.61000 0.00000
che_di bia_di 0.78000 0.00000
elb_di bia_di 0.78000 0.00000
wri_di bia_di 0.74000 0.00000
kne_di bia_di 0.66000 0.00000
ank_di bia_di 0.68000 0.00000
sho_gi bia_di 0.81000 0.00000
che_gi bia_di 0.74000 0.00000
wai_gi bia_di 0.68000 0.00000
nav_gi bia_di 0.33000 0.00000
hip_gi bia_di 0.34000 0.00000
thi_gi bia_di 0.13000 0.00257
bic_gi bia_di 0.71000 0.00000
for_gi bia_di 0.76000 0.00000
kne_gi bia_di 0.53000 0.00000
cal_gi bia_di 0.52000 0.00000
ank_gi bia_di 0.61000 0.00000
wri_gi bia_di 0.79000 0.00000
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age bia_di 0.11000 0.01030
wgt bia_di 0.75000 0.00000
hgt bia_di 0.76000 0.00000
sex bia_di 0.79000 0.00000
bit_di bii_di 0.68000 0.00000
che_de bii_di 0.36000 0.00000
che_di bii_di 0.32000 0.00000
elb_di bii_di 0.31000 0.00000
wri_di bii_di 0.28000 0.00000
kne_di bii_di 0.42000 0.00000
ank_di bii_di 0.36000 0.00000
sho_gi bii_di 0.26000 0.00000
che_gi bii_di 0.32000 0.00000
wai_gi bii_di 0.41000 0.00000
nav_gi bii_di 0.56000 0.00000
hip_gi bii_di 0.55000 0.00000
thi_gi bii_di 0.42000 0.00000
bic_gi bii_di 0.29000 0.00000
for_gi bii_di 0.28000 0.00000
kne_gi bii_di 0.46000 0.00000
cal_gi bii_di 0.40000 0.00000
ank_gi bii_di 0.33000 0.00000
wri_gi bii_di 0.27000 0.00000
age bii_di 0.26000 0.00000
wgt bii_di 0.48000 0.00000
hgt bii_di 0.36000 0.00000
sex bii_di 0.10000 0.02390
che_de bit_di 0.47000 0.00000
che_di bit_di 0.51000 0.00000
elb_di bit_di 0.52000 0.00000
wri_di bit_di 0.47000 0.00000
kne_di bit_di 0.60000 0.00000
ank_di bit_di 0.50000 0.00000
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sho_gi bit_di 0.47000 0.00000
che_gi bit_di 0.49000 0.00000
wai_gi bit_di 0.57000 0.00000
nav_gi bit_di 0.61000 0.00000
hip_gi bit_di 0.75000 0.00000
thi_gi bit_di 0.53000 0.00000
bic_gi bit_di 0.49000 0.00000
for_gi bit_di 0.49000 0.00000
kne_gi bit_di 0.62000 0.00000
cal_gi bit_di 0.58000 0.00000
ank_gi bit_di 0.54000 0.00000
wri_gi bit_di 0.49000 0.00000
age bit_di 0.26000 0.00000
wgt bit_di 0.66000 0.00000
hgt bit_di 0.48000 0.00000
sex bit_di 0.27000 0.00000
che_di che_de 0.68000 0.00000
elb_di che_de 0.70000 0.00000
wri_di che_de 0.65000 0.00000
kne_di che_de 0.60000 0.00000
ank_di che_de 0.63000 0.00000
sho_gi che_de 0.76000 0.00000
che_gi che_de 0.82000 0.00000
wai_gi che_de 0.81000 0.00000
nav_gi che_de 0.62000 0.00000
hip_gi che_de 0.56000 0.00000
thi_gi che_de 0.36000 0.00000
bic_gi che_de 0.77000 0.00000
for_gi che_de 0.74000 0.00000
kne_gi che_de 0.58000 0.00000
cal_gi che_de 0.57000 0.00000
ank_gi che_de 0.60000 0.00000
wri_gi che_de 0.71000 0.00000
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age che_de 0.31000 0.00000
wgt che_de 0.81000 0.00000
hgt che_de 0.58000 0.00000
sex che_de 0.65000 0.00000
elb_di che_di 0.78000 0.00000
wri_di che_di 0.75000 0.00000
kne_di che_di 0.67000 0.00000
ank_di che_di 0.69000 0.00000
sho_gi che_di 0.87000 0.00000
che_gi che_di 0.87000 0.00000
wai_gi che_di 0.79000 0.00000
nav_gi che_di 0.50000 0.00000
hip_gi che_di 0.50000 0.00000
thi_gi che_di 0.30000 0.00000
bic_gi che_di 0.80000 0.00000
for_gi che_di 0.81000 0.00000
kne_gi che_di 0.58000 0.00000
cal_gi che_di 0.59000 0.00000
ank_gi che_di 0.64000 0.00000
wri_gi che_di 0.78000 0.00000
age che_di 0.22000 0.00000
wgt che_di 0.82000 0.00000
hgt che_di 0.64000 0.00000
sex che_di 0.72000 0.00000
wri_di elb_di 0.85000 0.00000
kne_di elb_di 0.75000 0.00000
ank_di elb_di 0.83000 0.00000
sho_gi elb_di 0.83000 0.00000
che_gi elb_di 0.82000 0.00000
wai_gi elb_di 0.74000 0.00000
nav_gi elb_di 0.46000 0.00000
hip_gi elb_di 0.45000 0.00000
thi_gi elb_di 0.21000 0.00000
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bic_gi elb_di 0.82000 0.00000
for_gi elb_di 0.87000 0.00000
kne_gi elb_di 0.59000 0.00000
cal_gi elb_di 0.58000 0.00000
ank_gi elb_di 0.69000 0.00000
wri_gi elb_di 0.86000 0.00000
age elb_di 0.20000 0.00000
wgt elb_di 0.82000 0.00000
hgt elb_di 0.75000 0.00000
sex elb_di 0.79000 0.00000
kne_di wri_di 0.73000 0.00000
ank_di wri_di 0.78000 0.00000
sho_gi wri_di 0.80000 0.00000
che_gi wri_di 0.79000 0.00000
wai_gi wri_di 0.71000 0.00000
nav_gi wri_di 0.41000 0.00000
hip_gi wri_di 0.43000 0.00000
thi_gi wri_di 0.20000 0.00001
bic_gi wri_di 0.78000 0.00000
for_gi wri_di 0.83000 0.00000
kne_gi wri_di 0.60000 0.00000
cal_gi wri_di 0.58000 0.00000
ank_gi wri_di 0.68000 0.00000
wri_gi wri_di 0.88000 0.00000
age wri_di 0.22000 0.00000
wgt wri_di 0.79000 0.00000
hgt wri_di 0.70000 0.00000
sex wri_di 0.75000 0.00000
ank_di kne_di 0.75000 0.00000
sho_gi kne_di 0.69000 0.00000
che_gi kne_di 0.67000 0.00000
wai_gi kne_di 0.66000 0.00000
nav_gi kne_di 0.47000 0.00000
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hip_gi kne_di 0.56000 0.00000
thi_gi kne_di 0.39000 0.00000
bic_gi kne_di 0.70000 0.00000
for_gi kne_di 0.74000 0.00000
kne_gi kne_di 0.72000 0.00000
cal_gi kne_di 0.68000 0.00000
ank_gi kne_di 0.68000 0.00000
wri_gi kne_di 0.75000 0.00000
age kne_di 0.20000 0.00001
wgt kne_di 0.78000 0.00000
hgt kne_di 0.62000 0.00000
sex kne_di 0.59000 0.00000
sho_gi ank_di 0.72000 0.00000
che_gi ank_di 0.73000 0.00000
wai_gi ank_di 0.68000 0.00000
nav_gi ank_di 0.46000 0.00000
hip_gi ank_di 0.43000 0.00000
thi_gi ank_di 0.21000 0.00000
bic_gi ank_di 0.71000 0.00000
for_gi ank_di 0.75000 0.00000
kne_gi ank_di 0.57000 0.00000
cal_gi ank_di 0.56000 0.00000
ank_gi ank_di 0.70000 0.00000
wri_gi ank_di 0.77000 0.00000
age ank_di 0.26000 0.00000
wgt ank_di 0.76000 0.00000
hgt ank_di 0.70000 0.00000
sex ank_di 0.71000 0.00000
che_gi sho_gi 0.93000 0.00000
wai_gi sho_gi 0.85000 0.00000
nav_gi sho_gi 0.52000 0.00000
hip_gi sho_gi 0.52000 0.00000
thi_gi sho_gi 0.32000 0.00000
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bic_gi sho_gi 0.90000 0.00000
for_gi sho_gi 0.90000 0.00000
kne_gi sho_gi 0.62000 0.00000
cal_gi sho_gi 0.62000 0.00000
ank_gi sho_gi 0.69000 0.00000
wri_gi sho_gi 0.85000 0.00000
age sho_gi 0.20000 0.00000
wgt sho_gi 0.88000 0.00000
hgt sho_gi 0.68000 0.00000
sex sho_gi 0.79000 0.00000
wai_gi che_gi 0.90000 0.00000
nav_gi che_gi 0.63000 0.00000
hip_gi che_gi 0.59000 0.00000
thi_gi che_gi 0.37000 0.00000
bic_gi che_gi 0.92000 0.00000
for_gi che_gi 0.90000 0.00000
kne_gi che_gi 0.62000 0.00000
cal_gi che_gi 0.62000 0.00000
ank_gi che_gi 0.69000 0.00000
wri_gi che_gi 0.84000 0.00000
age che_gi 0.26000 0.00000
wgt che_gi 0.91000 0.00000
hgt che_gi 0.63000 0.00000
sex che_gi 0.76000 0.00000
nav_gi wai_gi 0.74000 0.00000
hip_gi wai_gi 0.68000 0.00000
thi_gi wai_gi 0.42000 0.00000
bic_gi wai_gi 0.85000 0.00000
for_gi wai_gi 0.82000 0.00000
kne_gi wai_gi 0.66000 0.00000
cal_gi wai_gi 0.64000 0.00000
ank_gi wai_gi 0.68000 0.00000
wri_gi wai_gi 0.77000 0.00000
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age wai_gi 0.36000 0.00000
wgt wai_gi 0.91000 0.00000
hgt wai_gi 0.59000 0.00000
sex wai_gi 0.70000 0.00000
hip_gi nav_gi 0.80000 0.00000
thi_gi nav_gi 0.59000 0.00000
bic_gi nav_gi 0.58000 0.00000
for_gi nav_gi 0.50000 0.00000
kne_gi nav_gi 0.58000 0.00000
cal_gi nav_gi 0.51000 0.00000
ank_gi nav_gi 0.53000 0.00000
wri_gi nav_gi 0.45000 0.00000
age nav_gi 0.44000 0.00000
wgt nav_gi 0.70000 0.00000
hgt nav_gi 0.33000 0.00000
sex nav_gi 0.23000 0.00000
thi_gi hip_gi 0.81000 0.00000
bic_gi hip_gi 0.57000 0.00000
for_gi hip_gi 0.53000 0.00000
kne_gi hip_gi 0.71000 0.00000
cal_gi hip_gi 0.66000 0.00000
ank_gi hip_gi 0.59000 0.00000
wri_gi hip_gi 0.47000 0.00000
age hip_gi 0.24000 0.00000
wgt hip_gi 0.75000 0.00000
hgt hip_gi 0.35000 0.00000
sex hip_gi 0.17000 0.00011
bic_gi thi_gi 0.42000 0.00000
for_gi thi_gi 0.36000 0.00000
kne_gi thi_gi 0.62000 0.00000
cal_gi thi_gi 0.62000 0.00000
ank_gi thi_gi 0.42000 0.00000
wri_gi thi_gi 0.26000 0.00000
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age thi_gi 0.00097 0.98300
wgt thi_gi 0.54000 0.00000
hgt thi_gi 0.14000 0.00130
sex thi_gi -0.05900 0.18200
for_gi bic_gi 0.94000 0.00000
kne_gi bic_gi 0.64000 0.00000
cal_gi bic_gi 0.65000 0.00000
ank_gi bic_gi 0.70000 0.00000
wri_gi bic_gi 0.86000 0.00000
age bic_gi 0.22000 0.00000
wgt bic_gi 0.89000 0.00000
hgt bic_gi 0.61000 0.00000
sex bic_gi 0.76000 0.00000
kne_gi for_gi 0.66000 0.00000
cal_gi for_gi 0.68000 0.00000
ank_gi for_gi 0.74000 0.00000
wri_gi for_gi 0.91000 0.00000
age for_gi 0.17000 0.00012
wgt for_gi 0.89000 0.00000
hgt for_gi 0.67000 0.00000
sex for_gi 0.80000 0.00000
cal_gi kne_gi 0.79000 0.00000
ank_gi kne_gi 0.75000 0.00000
wri_gi kne_gi 0.66000 0.00000
age kne_gi 0.12000 0.00835
wgt kne_gi 0.79000 0.00000
hgt kne_gi 0.56000 0.00000
sex kne_gi 0.40000 0.00000
ank_gi cal_gi 0.74000 0.00000
wri_gi cal_gi 0.64000 0.00000
age cal_gi 0.12000 0.00645
wgt cal_gi 0.77000 0.00000
hgt cal_gi 0.48000 0.00000
sex cal_gi 0.40000 0.00000
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wri_gi ank_gi 0.77000 0.00000
age ank_gi 0.16000 0.00022
wgt ank_gi 0.78000 0.00000
hgt ank_gi 0.59000 0.00000
sex ank_gi 0.55000 0.00000
age wri_gi 0.19000 0.00001
wgt wri_gi 0.84000 0.00000
hgt wri_gi 0.71000 0.00000
sex wri_gi 0.79000 0.00000
wgt age 0.24000 0.00000
hgt age 0.11000 0.01520
sex age 0.16000 0.00039
hgt wgt 0.73000 0.00000
sex wgt 0.68000 0.00000
sex hgt 0.71000 0.00000

The result is a data frame with 300 rows and 4 columns:
• var1 which is one continuous variable.
• var2 which is another continuous variable.
• cor which is the Spearman correlation coefficient between var1 and 

var2.
• p which is the p-value for the test of significance of this correlation 

coefficient.
To make this table more informative, we use the following functions after 

the cor_gather function:
• The arrange function with the argument cor to arrange the correlation 

coefficients in ascending order.
• The add_significance function with the arguments, p.col = “p,” 

output.col = “significance,” to add p-value significance symbols 
according to the “p” in the “significance” column.

• The mutate function with the argument p = scientific(p) to convert 
the large decimals of p-values to scientific notations (1e05, 1.5e-02) 
using the scientific function from the scales package.

library(scales)

bdims %>% cor_mat(method = “spearman”) %>% pull_lower_triangle() %>%
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 cor_gather() %>%

 arrange(cor) %>%

 add_significance(p.col = “p,” output.col = “significance”) %>%

 mutate(p = scientific(p)) %>%

  flextable() %>% theme_box() %>%

 set_caption(caption = “Spearman correlation matrix of numeric columns of body 
measurements data in ascending order and significance symbols”)

Table 3.14. Spearman Correlation Matrix of Numeric Columns of Body Measure-
ments Data in Ascending Order and Significance Symbols

var1 var2 cor p Significance
sex thi_gi -0.05900 1.82e-01 ns
age thi_gi 0.00097 9.83e-01 ns
sex bii_di 0.10000 2.39e-02 *
age bia_di 0.11000 1.03e-02 *
hgt age 0.11000 1.52e-02 *
age kne_gi 0.12000 8.35e-03 **
age cal_gi 0.12000 6.45e-03 **
thi_gi bia_di 0.13000 2.57e-03 **
hgt thi_gi 0.14000 1.30e-03 **
age ank_gi 0.16000 2.24e-04 ***
sex age 0.16000 3.94e-04 ***
sex hip_gi 0.17000 1.13e-04 ***
age for_gi 0.17000 1.16e-04 ***
age wri_gi 0.19000 1.38e-05 ****
age elb_di 0.20000 3.33e-06 ****
thi_gi wri_di 0.20000 6.75e-06 ****
age kne_di 0.20000 5.55e-06 ****
age sho_gi 0.20000 3.29e-06 ****
thi_gi elb_di 0.21000 1.49e-06 ****
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thi_gi ank_di 0.21000 3.18e-06 ****
age che_di 0.22000 3.45e-07 ****
age wri_di 0.22000 8.23e-07 ****
age bic_gi 0.22000 8.97e-07 ****
sex nav_gi 0.23000 1.01e-07 ****
age hip_gi 0.24000 7.73e-08 ****
wgt age 0.24000 5.19e-08 ****
sho_gi bii_di 0.26000 4.61e-09 ****
age bii_di 0.26000 2.92e-09 ****
age bit_di 0.26000 2.93e-09 ****
age ank_di 0.26000 4.71e-09 ****
age che_gi 0.26000 1.69e-09 ****
wri_gi thi_gi 0.26000 5.08e-09 ****
wri_gi bii_di 0.27000 9.49e-10 ****
sex bit_di 0.27000 1.17e-09 ****
wri_di bii_di 0.28000 1.04e-10 ****
for_gi bii_di 0.28000 1.94e-10 ****
bic_gi bii_di 0.29000 4.29e-11 ****
bii_di bia_di 0.30000 1.13e-11 ****
thi_gi che_di 0.30000 1.11e-11 ****
elb_di bii_di 0.31000 4.10e-13 ****
age che_de 0.31000 8.31e-13 ****
che_di bii_di 0.32000 2.47e-13 ****
che_gi bii_di 0.32000 1.36e-13 ****
thi_gi sho_gi 0.32000 3.79e-13 ****
nav_gi bia_di 0.33000 1.94e-14 ****
ank_gi bii_di 0.33000 4.94e-14 ****
hgt nav_gi 0.33000 1.18e-14 ****
hip_gi bia_di 0.34000 1.53e-15 ****
hgt hip_gi 0.35000 1.68e-16 ****
che_de bii_di 0.36000 1.38e-16 ****
ank_di bii_di 0.36000 1.04e-16 ****
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hgt bii_di 0.36000 2.39e-17 ****
thi_gi che_de 0.36000 6.16e-17 ****
age wai_gi 0.36000 1.48e-16 ****
for_gi thi_gi 0.36000 1.06e-16 ****
thi_gi che_gi 0.37000 4.36e-18 ****
thi_gi kne_di 0.39000 9.95e-20 ****
cal_gi bii_di 0.40000 4.47e-21 ****
sex kne_gi 0.40000 6.67e-21 ****
sex cal_gi 0.40000 4.03e-21 ****
wai_gi bii_di 0.41000 2.70e-22 ****
nav_gi wri_di 0.41000 1.65e-22 ****
kne_di bii_di 0.42000 5.59e-23 ****
thi_gi bii_di 0.42000 4.67e-23 ****
thi_gi wai_gi 0.42000 1.53e-23 ****
bic_gi thi_gi 0.42000 7.06e-23 ****
ank_gi thi_gi 0.42000 1.01e-22 ****
hip_gi wri_di 0.43000 3.40e-24 ****
hip_gi ank_di 0.43000 8.80e-24 ****
age nav_gi 0.44000 3.50e-25 ****
hip_gi elb_di 0.45000 4.56e-26 ****
wri_gi nav_gi 0.45000 2.08e-26 ****
kne_gi bii_di 0.46000 1.78e-28 ****
nav_gi elb_di 0.46000 2.76e-27 ****
nav_gi ank_di 0.46000 2.94e-28 ****
che_de bit_di 0.47000 2.52e-29 ****
wri_di bit_di 0.47000 8.91e-29 ****
sho_gi bit_di 0.47000 4.59e-29 ****
nav_gi kne_di 0.47000 3.07e-29 ****
wri_gi hip_gi 0.47000 6.98e-30 ****
bit_di bia_di 0.48000 4.77e-30 ****
wgt bii_di 0.48000 3.24e-30 ****
hgt bit_di 0.48000 3.81e-31 ****
hgt cal_gi 0.48000 3.28e-31 ****
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che_gi bit_di 0.49000 4.09e-32 ****
bic_gi bit_di 0.49000 2.42e-32 ****
for_gi bit_di 0.49000 1.49e-31 ****
wri_gi bit_di 0.49000 1.71e-31 ****
ank_di bit_di 0.50000 9.88e-33 ****
nav_gi che_di 0.50000 2.44e-33 ****
hip_gi che_di 0.50000 1.01e-33 ****
for_gi nav_gi 0.50000 9.10e-34 ****
che_di bit_di 0.51000 2.18e-35 ****
cal_gi nav_gi 0.51000 1.81e-35 ****
cal_gi bia_di 0.52000 1.56e-36 ****
elb_di bit_di 0.52000 3.79e-36 ****
nav_gi sho_gi 0.52000 2.51e-36 ****
hip_gi sho_gi 0.52000 3.64e-36 ****
kne_gi bia_di 0.53000 7.88e-38 ****
thi_gi bit_di 0.53000 2.76e-38 ****
ank_gi nav_gi 0.53000 2.02e-37 ****
for_gi hip_gi 0.53000 2.07e-37 ****
ank_gi bit_di 0.54000 2.06e-40 ****
wgt thi_gi 0.54000 1.50e-40 ****
hip_gi bii_di 0.55000 1.12e-40 ****
sex ank_gi 0.55000 8.10e-41 ****
nav_gi bii_di 0.56000 2.48e-43 ****
hip_gi che_de 0.56000 2.02e-42 ****
hip_gi kne_di 0.56000 3.98e-43 ****
cal_gi ank_di 0.56000 9.92e-44 ****
hgt kne_gi 0.56000 1.13e-43 ****
wai_gi bit_di 0.57000 3.36e-44 ****
cal_gi che_de 0.57000 1.97e-45 ****
kne_gi ank_di 0.57000 1.32e-44 ****
bic_gi hip_gi 0.57000 2.12e-45 ****
cal_gi bit_di 0.58000 4.11e-47 ****
kne_gi che_de 0.58000 3.05e-46 ****
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hgt che_de 0.58000 2.95e-46 ****
kne_gi che_di 0.58000 8.01e-48 ****
cal_gi elb_di 0.58000 1.80e-46 ****
cal_gi wri_di 0.58000 1.79e-46 ****
bic_gi nav_gi 0.58000 3.83e-47 ****
kne_gi nav_gi 0.58000 9.56e-47 ****
cal_gi che_di 0.59000 6.57e-49 ****
kne_gi elb_di 0.59000 8.48e-50 ****
sex kne_di 0.59000 3.94e-48 ****
hip_gi che_gi 0.59000 2.44e-48 ****
hgt wai_gi 0.59000 5.40e-48 ****
thi_gi nav_gi 0.59000 1.92e-48 ****
ank_gi hip_gi 0.59000 2.19e-48 ****
hgt ank_gi 0.59000 7.16e-49 ****
kne_di bit_di 0.60000 1.31e-51 ****
kne_di che_de 0.60000 2.33e-51 ****
ank_gi che_de 0.60000 1.23e-51 ****
kne_gi wri_di 0.60000 1.38e-50 ****
che_de bia_di 0.61000 1.04e-53 ****
ank_gi bia_di 0.61000 5.53e-54 ****
nav_gi bit_di 0.61000 1.28e-53 ****
hgt bic_gi 0.61000 5.72e-52 ****
kne_gi bit_di 0.62000 2.21e-55 ****
nav_gi che_de 0.62000 1.30e-55 ****
hgt kne_di 0.62000 7.17e-56 ****
kne_gi sho_gi 0.62000 1.29e-55 ****
cal_gi sho_gi 0.62000 4.16e-55 ****
kne_gi che_gi 0.62000 3.31e-55 ****
cal_gi che_gi 0.62000 1.18e-54 ****
kne_gi thi_gi 0.62000 1.81e-55 ****
cal_gi thi_gi 0.62000 2.17e-54 ****
ank_di che_de 0.63000 1.57e-57 ****
nav_gi che_gi 0.63000 2.52e-58 ****
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hgt che_gi 0.63000 4.15e-58 ****
ank_gi che_di 0.64000 3.43e-60 ****
hgt che_di 0.64000 3.02e-60 ****
cal_gi wai_gi 0.64000 1.53e-60 ****
kne_gi bic_gi 0.64000 8.06e-59 ****
wri_gi cal_gi 0.64000 8.12e-61 ****
wri_di che_de 0.65000 4.03e-61 ****
sex che_de 0.65000 2.20e-61 ****
cal_gi bic_gi 0.65000 1.99e-61 ****
kne_di bia_di 0.66000 1.18e-64 ****
wgt bit_di 0.66000 2.99e-65 ****
wai_gi kne_di 0.66000 7.98e-66 ****
kne_gi wai_gi 0.66000 3.68e-65 ****
cal_gi hip_gi 0.66000 1.06e-65 ****
kne_gi for_gi 0.66000 6.17e-66 ****
wri_gi kne_gi 0.66000 1.06e-64 ****
kne_di che_di 0.67000 9.66e-67 ****
che_gi kne_di 0.67000 2.24e-68 ****
hgt for_gi 0.67000 4.29e-66 ****
ank_di bia_di 0.68000 1.81e-71 ****
wai_gi bia_di 0.68000 9.41e-71 ****
bit_di bii_di 0.68000 4.62e-69 ****
che_di che_de 0.68000 8.65e-71 ****
ank_gi wri_di 0.68000 2.69e-71 ****
cal_gi kne_di 0.68000 2.17e-70 ****
ank_gi kne_di 0.68000 7.52e-70 ****
wai_gi ank_di 0.68000 2.97e-69 ****
hgt sho_gi 0.68000 1.39e-69 ****
hip_gi wai_gi 0.68000 2.18e-70 ****
ank_gi wai_gi 0.68000 2.51e-70 ****
cal_gi for_gi 0.68000 4.33e-69 ****
sex wgt 0.68000 2.20e-71 ****
ank_di che_di 0.69000 2.37e-73 ****
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ank_gi elb_di 0.69000 1.43e-71 ****
sho_gi kne_di 0.69000 1.17e-73 ****
ank_gi sho_gi 0.69000 2.28e-74 ****
ank_gi che_gi 0.69000 2.04e-73 ****
elb_di che_de 0.70000 5.38e-75 ****
hgt wri_di 0.70000 1.05e-74 ****
bic_gi kne_di 0.70000 3.15e-77 ****
ank_gi ank_di 0.70000 8.49e-76 ****
hgt ank_di 0.70000 1.26e-76 ****
sex wai_gi 0.70000 2.36e-77 ****
wgt nav_gi 0.70000 3.99e-76 ****
ank_gi bic_gi 0.70000 5.98e-75 ****
bic_gi bia_di 0.71000 2.04e-79 ****
wri_gi che_de 0.71000 4.43e-78 ****
wai_gi wri_di 0.71000 1.48e-79 ****
bic_gi ank_di 0.71000 1.43e-79 ****
sex ank_di 0.71000 1.30e-79 ****
kne_gi hip_gi 0.71000 3.11e-80 ****
hgt wri_gi 0.71000 1.78e-77 ****
sex hgt 0.71000 1.71e-77 ****
sex che_di 0.72000 2.75e-81 ****
kne_gi kne_di 0.72000 4.49e-81 ****
sho_gi ank_di 0.72000 1.68e-81 ****
kne_di wri_di 0.73000 2.99e-85 ****
che_gi ank_di 0.73000 3.82e-86 ****
hgt wgt 0.73000 3.73e-86 ****
wri_di bia_di 0.74000 3.41e-89 ****
che_gi bia_di 0.74000 6.00e-88 ****
for_gi che_de 0.74000 1.61e-90 ****
wai_gi elb_di 0.74000 2.34e-87 ****
for_gi kne_di 0.74000 8.97e-89 ****
nav_gi wai_gi 0.74000 1.23e-89 ****
ank_gi for_gi 0.74000 1.51e-87 ****
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ank_gi cal_gi 0.74000 1.69e-89 ****
wgt bia_di 0.75000 5.19e-91 ****
hip_gi bit_di 0.75000 2.32e-92 ****
wri_di che_di 0.75000 9.52e-92 ****
kne_di elb_di 0.75000 2.44e-91 ****
hgt elb_di 0.75000 1.48e-91 ****
sex wri_di 0.75000 1.84e-93 ****
ank_di kne_di 0.75000 6.83e-92 ****
wri_gi kne_di 0.75000 3.04e-92 ****
for_gi ank_di 0.75000 1.53e-93 ****
wgt hip_gi 0.75000 4.61e-92 ****
ank_gi kne_gi 0.75000 2.73e-91 ****
for_gi bia_di 0.76000 1.01e-96 ****
hgt bia_di 0.76000 9.50e-96 ****
sho_gi che_de 0.76000 8.39e-97 ****
wgt ank_di 0.76000 7.42e-95 ****
sex che_gi 0.76000 1.55e-95 ****
sex bic_gi 0.76000 3.46e-95 ****
bic_gi che_de 0.77000 1.62e-99 ****
wri_gi ank_di 0.77000 2.12e-101 ****
wri_gi wai_gi 0.77000 6.04e-99 ****
wgt cal_gi 0.77000 2.39e-102 ****
wri_gi ank_gi 0.77000 3.68e-101 ****
che_di bia_di 0.78000 1.42e-106 ****
elb_di bia_di 0.78000 3.30e-104 ****
elb_di che_di 0.78000 1.53e-103 ****
wri_gi che_di 0.78000 1.54e-104 ****
ank_di wri_di 0.78000 4.58e-107 ****
bic_gi wri_di 0.78000 1.06e-104 ****
wgt kne_di 0.78000 1.55e-106 ****
wgt ank_gi 0.78000 1.11e-103 ****
wri_gi bia_di 0.79000 1.92e-108 ****
sex bia_di 0.79000 2.48e-108 ****
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wai_gi che_di 0.79000 9.19e-111 ****
sex elb_di 0.79000 5.95e-111 ****
che_gi wri_di 0.79000 1.51e-107 ****
wgt wri_di 0.79000 9.67e-109 ****
sex sho_gi 0.79000 2.66e-111 ****
cal_gi kne_gi 0.79000 2.45e-111 ****
wgt kne_gi 0.79000 1.78e-111 ****
sex wri_gi 0.79000 4.58e-110 ****
bic_gi che_di 0.80000 9.64e-114 ****
sho_gi wri_di 0.80000 4.46e-112 ****
hip_gi nav_gi 0.80000 1.65e-115 ****
sex for_gi 0.80000 2.67e-112 ****
sho_gi bia_di 0.81000 1.57e-117 ****
wai_gi che_de 0.81000 1.62e-120 ****
wgt che_de 0.81000 1.61e-120 ****
for_gi che_di 0.81000 7.29e-119 ****
thi_gi hip_gi 0.81000 6.58e-120 ****
che_gi che_de 0.82000 6.76e-126 ****
wgt che_di 0.82000 2.57e-126 ****
che_gi elb_di 0.82000 2.18e-124 ****
bic_gi elb_di 0.82000 5.25e-123 ****
wgt elb_di 0.82000 4.03e-123 ****
for_gi wai_gi 0.82000 1.03e-124 ****
ank_di elb_di 0.83000 1.14e-132 ****
sho_gi elb_di 0.83000 3.58e-131 ****
for_gi wri_di 0.83000 4.75e-131 ****
wri_gi che_gi 0.84000 2.96e-135 ****
wgt wri_gi 0.84000 7.26e-136 ****
wri_di elb_di 0.85000 1.16e-144 ****
wai_gi sho_gi 0.85000 1.67e-139 ****
wri_gi sho_gi 0.85000 6.03e-143 ****
bic_gi wai_gi 0.85000 2.68e-141 ****
wri_gi elb_di 0.86000 5.71e-147 ****
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wri_gi bic_gi 0.86000 6.99e-148 ****
sho_gi che_di 0.87000 2.96e-158 ****
che_gi che_di 0.87000 4.67e-156 ****
for_gi elb_di 0.87000 1.64e-153 ****
wri_gi wri_di 0.88000 5.39e-162 ****
wgt sho_gi 0.88000 4.21e-164 ****
wgt bic_gi 0.89000 3.21e-172 ****
wgt for_gi 0.89000 3.69e-172 ****
bic_gi sho_gi 0.90000 4.24e-182 ****
for_gi sho_gi 0.90000 2.10e-181 ****
wai_gi che_gi 0.90000 1.06e-187 ****
for_gi che_gi 0.90000 1.72e-181 ****
wgt che_gi 0.91000 1.51e-191 ****
wgt wai_gi 0.91000 3.41e-200 ****
wri_gi for_gi 0.91000 2.37e-197 ****
bic_gi che_gi 0.92000 2.93e-205 ****
che_gi sho_gi 0.93000 2.13e-217 ****
for_gi bic_gi 0.94000 9.81e-247 ****

We see that:
• The lowest correlation coefficient was between sex and thigh 

girth (thi_gi) and equals -0.059. However, this correlation was 
insignificant or ns.

• There are no more negative correlations and all other correlation 
coefficients are positive.

• The highest correlation was between forearm girth (for_gi) and 
bicep girth (bic_gi) and equals 0.94. It was significantly greater 
than 0 with a very low p-value. This means that as the forearm girth 
increases, the bicep girth increases on average and vice versa.

3.2.8. Correlation Between all Numeric Variables in fast Food 
Data
We can use the same functions to get the long correlation matrix between all 
numeric variables in fast food data. However, because not all columns in the 
fast food data are numeric, we select the numeric ones using the select function 
with the argument where(is.numeric) to select numeric columns only.
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fastfood %>% select(where(is.numeric)) %>% cor_mat(method = “spearman”) %>% 
pull_lower_triangle() %>%

 cor_gather() %>%

 arrange(cor) %>%

 add_significance(p.col = “p,” output.col = “significance”) %>%

 mutate(p = scientific(p)) %>%

  flextable() %>% theme_box() %>%

 set_caption(caption = “Spearman correlation matrix of numeric columns of fast 
food data in ascending order and significance symbols”)

Table 3.15. Spearman Correlation Matrix of Numeric Columns of Fast Food Data 
in Ascending Order and Significance Symbols

var1 var2 cor p Significance
vit_c trans_fat -0.2100 2.43e-04 ***
vit_c cal_fat -0.1800 1.92e-03 **
vit_c total_fat -0.1700 2.26e-03 **
fiber trans_fat -0.1300 4.91e-03 **
vit_c sat_fat -0.1200 3.06e-02 *
fiber cholesterol -0.0370 4.04e-01 ns
vit_a cal_fat -0.0098 8.65e-01 ns
vit_a total_fat -0.0092 8.74e-01 ns
vit_a trans_fat 0.0059 9.19e-01 ns
vit_a total_carb 0.0140 8.05e-01 ns
vit_c calories 0.0230 6.87e-01 ns
fiber sat_fat 0.0440 3.26e-01 ns
vit_a calories 0.0560 3.33e-01 ns
vit_a sodium 0.0560 3.34e-01 ns
vit_a cholesterol 0.0690 2.35e-01 ns
fiber cal_fat 0.0700 1.17e-01 ns
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fiber total_fat 0.0730 1.00e-01 ns
vit_c cholesterol 0.0850 1.40e-01 ns
vit_c sodium 0.1100 5.59e-02 ns
vit_a protein 0.1300 2.31e-02 *
vit_a sat_fat 0.1400 1.20e-02 *
calcium trans_fat 0.1500 9.01e-03 **
vit_c total_carb 0.1500 9.79e-03 **
protein fiber 0.1700 1.23e-04 ***
total_carb trans_fat 0.1900 1.44e-05 ****
vit_c protein 0.2400 2.52e-05 ****
calcium cal_fat 0.2500 1.29e-05 ****
calcium total_fat 0.2500 9.49e-06 ****
sugar trans_fat 0.2500 1.00e-08 ****
calcium cholesterol 0.2500 1.43e-05 ****
sugar fiber 0.2900 3.09e-11 ****
fiber calories 0.3000 3.51e-12 ****
fiber sodium 0.3100 1.63e-12 ****
sodium trans_fat 0.3200 9.55e-14 ****
total_carb cholesterol 0.3300 1.09e-14 ****
vit_a sugar 0.3300 4.54e-09 ****
sugar cal_fat 0.3400 9.13e-16 ****
sugar total_fat 0.3500 3.00e-16 ****
protein trans_fat 0.3600 1.97e-17 ****
sugar sat_fat 0.3700 5.27e-18 ****
calcium sat_fat 0.4000 2.04e-13 ****
calcium vit_c 0.4100 4.00e-14 ****
total_carb sat_fat 0.4200 2.51e-23 ****
calcium sodium 0.4200 1.16e-14 ****
vit_a fiber 0.4300 4.88e-15 ****
sugar cholesterol 0.4500 1.75e-26 ****
calcium protein 0.4500 1.18e-16 ****
calcium vit_a 0.4500 1.20e-16 ****
trans_fat calories 0.4700 3.32e-30 ****
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vit_c sugar 0.4700 4.84e-18 ****
sugar sodium 0.4800 3.49e-31 ****
cholesterol trans_fat 0.4900 2.12e-32 ****
total_carb cal_fat 0.5000 1.34e-34 ****
calcium calories 0.5100 5.67e-22 ****
total_carb total_fat 0.5100 4.33e-35 ****
protein sugar 0.5200 3.11e-37 ****
protein total_carb 0.5300 7.59e-39 ****
sugar calories 0.5500 1.91e-41 ****
fiber total_carb 0.5600 1.03e-43 ****
trans_fat cal_fat 0.5700 1.50e-45 ****
trans_fat total_fat 0.5700 4.64e-46 ****
protein sat_fat 0.5800 5.07e-47 ****
calcium sugar 0.5800 3.53e-29 ****
sugar total_carb 0.5900 7.95e-49 ****
vit_c fiber 0.5900 2.04e-29 ****
sodium sat_fat 0.6200 1.22e-55 ****
calcium total_carb 0.6200 1.15e-33 ****
calcium fiber 0.6200 3.76e-33 ****
protein cal_fat 0.6300 1.73e-58 ****
protein total_fat 0.6300 5.75e-59 ****
vit_c vit_a 0.6300 2.05e-34 ****
sodium cholesterol 0.6700 1.71e-68 ****
sodium cal_fat 0.7000 1.93e-77 ****
sodium total_fat 0.7000 1.66e-77 ****
trans_fat sat_fat 0.7000 2.37e-77 ****
cholesterol sat_fat 0.7100 3.13e-81 ****
total_carb sodium 0.7100 2.07e-80 ****
cholesterol cal_fat 0.7200 2.70e-84 ****
cholesterol total_fat 0.7200 5.59e-85 ****
cholesterol calories 0.7300 6.65e-87 ****
sat_fat calories 0.7500 4.62e-96 ****
total_carb calories 0.7800 2.93e-106 ****
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protein sodium 0.7800 1.62e-105 ****
protein calories 0.8000 2.57e-113 ****
sodium calories 0.8400 2.72e-137 ****
sat_fat cal_fat 0.8500 2.79e-146 ****
sat_fat total_fat 0.8500 1.92e-146 ****
cal_fat calories 0.8700 1.87e-163 ****
total_fat calories 0.8800 1.22e-164 ****
protein cholesterol 0.8800 6.37e-167 ****
total_fat cal_fat 1.0000 0.00e+00 ****

We see that:
1. The lowest correlation was -0.21 and was between vitamin C and 

trans fat. There was a significant correlation with p-value < 0.05. 
This means that as the concentration of vitamin C increases the 
concentration of trans fat decreases and vice versa.

2. The highest correlation was 1.00 and was between total fat and 
calories from fat (cal_fat). It was a significant correlation with a zero 
p-value. This means that as the concentration of total fat increases, 
the calories from fat increase too, and vice versa.

3.3. SUMMARY PLOTS

3.3.1. Scatter Plot
The scatter plot is explained above to see the linear dependence between 2 
variables. Here, we will plot another scatter plot for a significant small negative 
correlation, a significant small positive correlation, and a significant large 
positive correlation.

3.3.1.1. Scatter Plot for Significant Small Negative Correlation
We noticed that the Spearman correlation between vitamin C and trans fat is 
significant, small, and negative (-0.21). We can plot a scatter plot of trans fat 
on the y-axis vs. vitamin C on the x-axis with a linear fit line as described 
previously.
fastfood %>% ggplot(aes(x = vit_c, y = trans_fat))+ geom_point()+

 geom_smooth(method = “lm”)+

 labs(title = “Scatter plot of trans fat vs. vitamin C in fast food data \n with 
linear fit line,” x = “vitamin C,”
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    y = “Trans fat”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that the linear fit line has a negative slope and many points are 
scattered around this linear fit line. That is why the correlation was negative 
and small.

3.3.1.2. Scatter Plot for a Significant Small Positive Correlation
We noticed that the Spearman correlation between vitamin C and protein is 
significant, small, and positive (0.24). We can plot a scatter plot of protein on the 
y-axis vs. vitamin C on the x-axis with a linear fit line as described previously.
fastfood %>% ggplot(aes(x = vit_c, y = protein))+ geom_point()+

 geom_smooth(method = “lm”)+

 labs(title = “Scatter plot of protein vs. vitamin C in fast food data \n with 
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linear fit line,” x = “vitamin C,”

   

    y = “Protein”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that the linear fit line has a positive slope and many points are 
scattered around this linear fit line. That is why the correlation was positive and 
small.

3.3.1.3. Scatter Plot for a Significant Large Positive Correlation
We noticed that the Spearman correlation between total fat and calories from 
fat is significant, large, and perfectly positive (1.00). We can plot a scatter plot 
of calories from fat on the y-axis vs. total fat on the x-axis with a linear fit line 
as described previously.

fastfood %>% ggplot(aes(x = total_fat, y = cal_fat))+ geom_point()+



Bivariate Analysis for Continuous-Continuous Data

203

 geom_smooth(method = “lm”)+

 labs(title = “Scatter plot of calories from fat vs. total fat in fast food data 
\n with linear fit line,” x = “Total fat,”

   

    y = “Calories from fat”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that the linear fit line has a positive slope and many points are aligned 
along this linear fit line. That is why the correlation was perfectly positive and 
large.

3.3.2. Visualize the Correlation Matrix
The cor_plot function can be applied to the result of the cor_mat function. 
The produced plot is created using the base R functions (and not the ggplot 
function), so to add a title, we use the title function after the cor_plot function.
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3.3.2.1. Visualize the Correlation Matrix of Body Measurements 
Data
bdims %>% cor_mat(method = “spearman”) %>% cor_plot()

title(“Spearman correlation matrix of numeric columns in body measurements 
data\n using cor_plot function”)

We see that:
1. The positive correlations are plotted as blue circles, while the 

negative correlations are plotted as red circles (none in this data).
2. The areas and color shades of circles correspond to the absolute 

value of the correlation coefficient. So, a larger positive correlation 
coefficient will be shown as larger darker blue circles than a smaller 
positive correlation coefficient.

3. The insignificant correlations are marked by crosses (X). For 
example, between age and thigh girth (thi_gi).

We see that the lower triangle is a mirror image of the upper triangle so 
we can extract the lower or upper triangle using the type argument within the 
cor_plot function. This also will reduce the crowding of visualizing the whole 
correlation matrix.
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bdims %>% cor_mat(method = “spearman”) %>% cor_plot(type = “lower”)

title(“Lower triangle of spearman correlation matrix of numeric columns in body 
measurements data\n using cor_plot function”)

3.3.2.2. Visualize the Correlation Matrix of Fast Food Data
We can also plot the lower triangle of the Spearman correlation matrix of the 
fast food data.
fastfood %>% select(where(is.numeric)) %>% cor_mat(method = “spearman”) %>% 
cor_plot(type = “lower”)

title(“Lower triangle of spearman correlation matrix of numeric columns in fast 
food data\n using cor_plot function”)
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A more informative plot is to label the circles with their corresponding 
correlation coefficient using label = TRUE argument within the cor_plot 
function.
fastfood %>% select(where(is.numeric)) %>% cor_mat(method = “spearman”) %>% 
cor_plot(type = “lower,” label = TRUE)

title(“Lower triangle of spearman correlation matrix with labels of numeric 
columns in fast food data\n using cor_plot function”)
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To see the correlation coefficients more clearly, we can color the text white 
using the font.label argument within the cor_plot function.

fastfood %>% select(where(is.numeric)) %>% cor_mat(method = “spearman”) %>%

 cor_plot(type = “lower,” label = TRUE, font.label = list(color = “white”))

title(“Lower triangle of spearman correlation matrix with white labels of numeric 
columns in fast food data\n using cor_plot function”)
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3.4. STATISTICAL TESTS
We can test the correlation for significance as described above.
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4.1. DATA USED IN THIS CHAPTER

4.1.1. US Births Data
A random sample of 1000 births from the US births data released in 2014 is 
stored under the name “births14.” The data is part of the openintro package 
and its source is: United States Department of Health and Human Services. 
Centers for Disease Control and Prevention. National Center for Health 
Statistics. Natality Detail File, 2014 United States. Inter-university Consortium 
for Political and Social Research, 2016–10–07. doi:10.3886/ICPSR36461.v1.

To load this data into our R session, we will load the openintro package 
using the library function. Then, we will load the “births14” data using the data 
function. We will also load the tidyverse package because it contains many 
packages for data analysis like dplyr, tidyr, ggplot2, etc.
library(openintro)

data(“births14”)

library(tidyverse)

To see the data structure, we will use the glimpse function from the dplyr 
package.
glimpse(births14)

## Rows: 1,000

## Columns: 13

## $ fage      <int> 34, 36, 37, NA, 32, 32, 37, 29, 30, 29, 30, 34, 28, 28,…

## $ mage      <dbl> 34, 31, 36, 16, 31, 26, 36, 24, 32, 26, 34, 27, 22, 31,…

## $ mature     <chr> “younger mom,” “younger mom,” “mature mom,” “younger mo…

## $ weeks     <dbl> 37, 41, 37, 38, 36, 39, 36, 40, 39, 39, 42, 40, 40, 39,…

## $ premie     <chr> “full term,” “full term,” “full term,” “full term,” “pr…

## $ visits     <dbl> 14, 12, 10, NA, 12, 14, 10, 13, 15, 11, 14, 16, 20, 15,…

## $ gained     <dbl> 28, 41, 28, 29, 48, 45, 20, 65, 25, 22, 40, 30, 31, NA,…

## $ weight     <dbl> 6.96, 8.86, 7.51, 6.19, 6.75, 6.69, 6.13, 6.74, 8.94, 9…

## $ lowbirthweight <chr> “not low,” “not low,” “not low,” “not low,” “not low,” …

## $ sex      <chr> “male,” “female,” “female,” “male,” “female,” “female,”…

## $ habit     <chr> “nonsmoker,” “nonsmoker,” “nonsmoker,” “nonsmoker,” “no…

## $ marital    <chr> “married,” “married,” “married,” “not married,” “marrie…

## $ whitemom    <chr> “white,” “white,” “not white,” “white,” “white,” “white…

We see that the “births14” data contains 1000 rows and 13 columns:
1. fage: Father’s age in years. It is an integer column.
2. mage: Mother’s age in years. It is a double or numeric column.
3. mature: Maturity status of the mother. It is a character column.
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4. weeks: Length of pregnancy in weeks. It is a double or numeric 
column.

5. premie: Whether the birth was classified as premature (premie) or 
full-term. It is a character column.

6. visits: Number of hospital visits during pregnancy. It is a double or 
numeric column.

7. gained: Weight gained by mother during pregnancy in pounds. It is 
a double or numeric column.

8. weight: Weight of the baby at birth in pounds. It is a double or 
numeric column.

9. lowbirthweight: Whether the baby was classified as low birthweight 
(low) or not (not low). It is a character column.

10. sex: Sex of the baby, female or male. It is a character column.
11. habit: Status of the mother as a nonsmoker or a smoker. It is a 

character column.
12. marital: Whether the mother is married or not married at birth. It is a 

character column.
13. whitemom: Whether mom is white or not white. It is a character 

column.

4.1.2. Cherry Blossom Run Data in 2009
The Details for all 14,974 runners in the 2009 Cherry Blossom Run, which is an 
annual road race that takes place in Washington DC, are stored in the “run09” 
data frame that is part of the cherryblossom package. The cherryblossom package 
is loaded automatically when we load the openintro package. So, to load this 
data into our R session, we will use the data function as before followed by the 
glimpse function to get the data structure.
data(“run09”)

glimpse(run09)

## Rows: 14,974

## Columns: 14

## $ place   <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1…

## $ time   <dbl> 53.533, 53.917, 53.967, 54.433, 54.450, 54.533, 54.633, 54.6…

## $ net_time <dbl> 53.533, 53.917, 53.967, 54.433, 54.450, 54.533, 54.633, 54.6…

## $ pace   <dbl> 5.367, 5.400, 5.400, 5.450, 5.450, 5.467, 5.467, 5.467, 5.48…

## $ age    <int> 21, 21, 22, 19, 36, 28, 25, 31, 23, 26, 23, 35, 28, 28, 26, …

## $ gender  <fct> F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, …

## $ first   <fct> Lineth, Belianesh Zemed, Teyba, Abebu, Catherine, Olga, Sall…



Statistics with R for Data Analysis

212

## $ last   <fct> Chepkurui, Gebre, Naser, Gelan, Ndereba, Romanova, Meyerhoff…

## $ city   <fct> Kenya, Ethiopia, Ethiopia, Ethiopia, Kenya, Russia, United S…

## $ state   <fct> NR, NR, NR, NR, NR, NR, NR, NR, NR, NR, NR, NR, NR, CO, NR, …

## $ country  <fct> KEN, ETH, ETH, ETH, KEN, RUS, USA, KEN, ETH, RUS, ETH, ROM, …

## $ div    <int> 2, 2, 2, 1, 5, 3, 3, 4, 2, 3, 2, 5, 3, 3, 3, 3, 3, 5, 4, 2, …

## $ div_place <int> 1, 2, 3, 1, 1, 1, 2, 1, 4, 3, 4, 2, 4, 5, 6, 7, 8, 3, 2, 5, …

## $ div_tot  <int> 953, 953, 953, 71, 1130, 2706, 2706, 1678, 953, 2706, 953, 1…

The data is composed of 14974 rows (runners) and 14 columns:
1. place: Finishing position. Separate positions are provided for each 

gender. It is an integer column.
2. time: The total run time. It is a double or numeric column.
3. net_time: The run time from the start line to the finish line. It is a 

double or numeric column.
4. pace: Average time per mile, in minutes. It is a double or numeric 

column.
5. age: runner’s age. It is a double or numeric column.
6. gender: runner’s gender. It is a factor column with 2 levels “F” for 

females and “M” for males.
7. first: runner’s first name. It is a factor column with many levels.
8. last: runner’s last name. It is a factor column with many levels.
9. city: runner’s hometown city. It is a factor column with many levels.
10. state: runner’s hometown state. It is a factor column with many 

levels.
11. country: runner’s hometown country. It is a factor column with many 

levels.
12. div: Running division (age group). It is an integer column.
13. div_place: Division place broken up by gender. It is an integer 

column.
14. div_tot: Total number of people in the division split by gender. It is 

an integer column.

4.2. SUMMARY STATISTICS

4.2.1. Summary Statistics for Location: The Mean
As we see in Chapter 1, there are different measures of the central tendency 
(central location) of numerical data like the mean, the median, and percentiles.
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To examine the relation between a continuous and a categorical variable, 
we can calculate the mean of the continuous variable under the different levels 
of the categorical variable to see how the data center changes between the 
different levels.

4.2.1.1. The Mean Maternal Age in the Birth Types
To get the mean maternal age for the 2 birth types (premature and full-term), we 
use the following functions:

• The group_by function with the argument premie applied to the 
births data frame to split the data frame into different data frames 
each containing one level of premie column. So we will have 2 data 
frames, one for full-term births and the other for premature births.

• The get_summary_stats function, from the rstatix package, with 
the arguments, mage, and show = “mean,” to calculate the mean 
maternal age within each data frame.

• The flextable, theme_box, and set_caption functions convert the 
result to a table as described in previous chapters.

The functions are applied in sequence using the “%>%” operator. Because 
we are using rstatix and flextable functions, so we must first load them into our 
R session using the library function.
library(rstatix)

library(flextable)

births14 %>% group_by(premie) %>% get_summary_stats(mage, show = “mean”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Mean maternal age in premature and full-term births of 
the US births data in 2014”)

Table 4.1. Mean Maternal Age in Premature and Full-Term Births of the US Births 
Data in 2014

Premie Variable n Mean
full term mage 876 28.33
premie mage 124 29.29

We see that:
1. There are 876 full-term births in our data compared to 124 premature 

births. The total is 1000 births which is the number of rows in our 
data.
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2. The mean maternal age in full-term births is 28.33 years which is 
lower than that in premature births (29.29 years). So higher maternal 
age may be associated with premature births.

4.2.1.2. The Mean Number of Visits in the Birth Types
Similarly, we can use the same functions to get the mean number of hospital 
visits during pregnancy for the 2 birth types (premature and full-term).
births14 %>% group_by(premie) %>% get_summary_stats(visits, show = “mean”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Mean number of hospital visits during pregnancy in 
premature and full-term births of the US births data in 2014”)

Table 4.2. Mean Number of Hospital Visits During Pregnancy in Premature and 
Full-Term Births of the US Births Data in 2014

Premie Variable n Mean
full term visits 829 11.516
premie visits 115 10.165

We see that:
1. There are 829 full-term births in our data with an available number 

of visits compared to 115 premature births. The total is 944 births 
which is lower than the number of rows in our data. This means that 
there are some full-term births and some premature births without a 
recorded number of visits.

2. The mean number of visits in full-term births is 11.516 which is 
higher than that in premature births (10.165). So lower number of 
hospital visits during pregnancy may be associated with premature 
births.

4.2.1.3. The Mean Run Time in the 2 Genders
Similarly, we can use the same functions to get the mean run time for the 2 
genders (males and females) in the Cherry Blossom Run data of 2009.
run09 %>% group_by(gender) %>% get_summary_stats(time, show = “mean”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Mean run time in males and females of Cherry Blossom Run 
data in 2009”)
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Table 4.3. Mean Run Time in Males and Females of Cherry Blossom Run Data in 
2009

Gender Variable n mean
F time 8,323 109.240
M time 6,651 96.226

We see that:
1. There are 8323 females in our data compared to 6651 males. The 

total is 14974 persons which is the number of rows in our data.
2. The mean run time in females is 109.240 which is higher than that 

in males (96.226). So males may be associated with lower run times 
on average.

4.2.1.4. The Mean Run Time in the Different States
Similarly, we can use the same functions to get the mean run time for runners 
from the different hometown states in the Cherry Blossom Run data of 2009. To 
make the resulting table more informative, we use the arrange function with the 
argument mean to arrange the states in ascending order by their mean run time.
run09 %>% group_by(state) %>% get_summary_stats(time, show = “mean”) %>%

 arrange(mean) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Mean run time in runners from different states of Cherry 
Blossom Run data in 2009”)

Table 4.4. Mean Run Time in Runners from Different States of Cherry Blossom 
Run Data in 2009

State Variable n Mean
NR time 59 70.138
AE time 1 74.467
IA time 6 91.836
OK time 4 92.604
WA time 8 93.102
VT time 6 93.817
DE time 61 98.278
AK time 2 98.475
CO time 23 99.796
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WY time 1 100.383
NH time 19 100.950
PA time 461 101.227
MS time 3 101.417
WV time 28 101.580
GA time 37 101.675
KY time 9 102.074
NY time 522 102.141
DC time 3,464 102.150
NM time 7 102.364
WI time 14 102.385
SC time 11 102.424
RI time 14 102.688
CA time 75 102.730
CT time 73 102.740
KS time 3 103.017
NE time 3 103.106
LA time 2 103.250
IL time 71 103.411
MA time 136 104.068
VA time 5,608 104.083
MD time 3,558 104.450
MN time 19 104.459
ME time 10 104.523
NJ time 207 104.567
MI time 34 105.225
MO time 17 105.468
IN time 18 105.753
FL time 55 105.913
UT time 2 106.175
NC time 158 107.048
ID time 1 107.733
TX time 44 107.791
AL time 6 109.383
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OH time 80 110.043
TN time 10 110.120
AZ time 11 110.379
OR time 5 111.783
PR time 3 113.028
NV time 2 113.258
SD time 1 113.683
AR time 2 129.967

We see that:
1. There are 51 different states in our data with different sample sizes. 

Some states have only 1 runner coming from it (“AE” and “WY”).
2. The lowest mean run time was in 59 runners coming from the “NR” 

state, while the highest mean run time was found in 2 runners coming 
from the “AR” state. So runners from the “NR” state may be associated 
with lower run times on the average.

4.2.2. Summary Statistics for Location: The Median
As we saw in Chapter 1, The median is a robust statistic that gives the data 
center without being affected by the extreme values or outliers in the data. So, 
we can calculate the median of the continuous variable under the different 
levels of the categorical variable to see how the data center changes between 
the different levels. In addition, we will also calculate the mean to determine if 
the data is skewed as we saw in Chapter 1.

4.2.2.1. The Median and Mean Maternal Age in the Birth Types
To get the median and mean maternal age for the 2 birth types (premature and 
full-term), we will use the same above functions except that we add another 
argument to the get_summary_stats function. So this function will have the 
arguments, mage, and show = c(“mean,” “median”), to calculate the mean and 
median maternal age within each birth type.
births14 %>% group_by(premie) %>% get_summary_stats(mage,

                      show = c(“mean,””median”)) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Mean and median maternal age in premature and full-
term births of the US births data in 2014”)
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Table 4.5. Mean and Median Maternal Age in Premature and Full-Term Births of 
the US Births Data in 2014

Premie Variable n Mean Median
full term mage 876 28.33 28
premie mage 124 29.29 30

We see that:
1. The median maternal age in full-term births is 28 years which is 

lower than that in premature births (30 years). So higher maternal 
age may be associated with premature births.

2. The mean and median maternal age are nearly equal in full-term and 
premature births. So, we conclude that the maternal age is evenly 
spaced or normally distributed in the 2 birth types. We will see that 
in the summary plots below.

4.2.2.2. The Median and Mean Number of Visits in the Birth 
Types
Similarly, we can use the same functions to get the mean and median number of 
hospital visits during pregnancy for the 2 birth types (premature and full-term).
births14 %>% group_by(premie) %>% get_summary_stats(visits,

                         

                       show = c(“mean,””median”)) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Mean and median number of hospital visits during pregnancy 
in premature and full-term births of the US births data in 2014”)

Table 4.6. Mean and Median Number of Hospital visits During Pregnancy in Pre-
mature and Full-Term Births of the US Births Data in 2014

Premie Variable n Mean Median
full term visits 829 11.516 12
premie visits 115 10.165 10

We see that:
1. The mean number of visits in full-term births is 12 which is higher than 

that in premature births (10). So lower number of hospital visits during 
pregnancy may be associated with premature births.
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2. The mean nearly equals the median in full-term and premature births. 
So, we conclude that the number of visits is evenly spaced or normally 
distributed in the 2 birth types.

4.2.2.3. The Median and Mean Run Time in the 2 Genders
Similarly, we can use the same functions to get the median and mean run time 
for the 2 genders (males and females) in the Cherry Blossom Run data of 2009.
run09 %>% group_by(gender) %>% get_summary_stats(time,

                        

                     show = c(“mean,””median”)) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Mean and median run time in males and females of Cherry 
Blossom Run data in 2009”)

Table 4.7. Mean and Median Run Time in Males and Females of Cherry Blossom 
Run Data in 2009

Gender Variable n Mean Median
F time 8,323 109.240 109.567
M time 6,651 96.226 95.717

We see that:
1. The median run time in females is 109.567 which is higher than that 

in males (95.717). So males may be associated with lower run times.
2. The mean nearly equals the median in females and males. So, we 

conclude that the run time is evenly spaced or normally distributed 
in the 2 genders.

4.2.2.4. The Median and Mean Run Time in the Different States
Similarly, we can use the same functions to get the mean and median run time 
for runners from the different hometown states in the Cherry Blossom Run 
data of 2009. To make the resulting table more informative, we use the arrange 
function with the argument median to arrange the states in ascending order by 
their median run time.
run09 %>% group_by(state) %>%

 get_summary_stats(time, show = c(“mean,””median”)) %>%

 arrange(median) %>%
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 flextable() %>% theme_box() %>%

 set_caption(caption = “Mean and median run time in runners from different states 
of Cherry Blossom Run data in 2009”)

Table 4.8. Mean and Median Run Time in Runners From Different States of Cherry 
Blossom Run Data in 2009

State Variable n Mean Median
NR time 59 70.138 55.183
AE time 1 74.467 74.467
VT time 6 93.817 92.267
OK time 4 92.604 92.808
WA time 8 93.102 93.200
MS time 3 101.417 93.667
IA time 6 91.836 96.042
RI time 14 102.688 97.858
NH time 19 100.950 97.900
AK time 2 98.475 98.475
NE time 3 103.106 98.550
KY time 9 102.074 98.833
MI time 34 105.225 99.358
DE time 61 98.278 99.383
OR time 5 111.783 99.567
WV time 28 101.580 99.875
WY time 1 100.383 100.383
PA time 461 101.227 100.650
SC time 11 102.424 100.983
MO time 17 105.468 101.133
DC time 3,464 102.150 102.575
NY time 522 102.141 102.650
WI time 14 102.385 102.750
CT time 73 102.740 103.000
TN time 10 110.120 103.108
LA time 2 103.250 103.250
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CA time 75 102.730 103.383
CO time 23 99.796 103.617
MN time 19 104.459 103.950
MA time 136 104.068 104.225
VA time 5,608 104.083 104.308
FL time 55 105.913 104.600
MD time 3,558 104.450 104.833
GA time 37 101.675 104.967
NJ time 207 104.567 104.967
IL time 71 103.411 105.300
IN time 18 105.753 105.750
UT time 2 106.175 106.175
NM time 7 102.364 107.617
ID time 1 107.733 107.733
NC time 158 107.048 108.450
OH time 80 110.043 109.592
ME time 10 104.523 110.534
TX time 44 107.791 111.242
AZ time 11 110.379 111.300
AL time 6 109.383 113.092
NV time 2 113.258 113.258
PR time 3 113.028 113.417
SD time 1 113.683 113.683
KS time 3 103.017 120.050
AR time 2 129.967 129.967

We see that:
1. The lowest median run time was in 59 runners coming from the 

“NR” state (55.183), while the highest median run time was found 
in 2 runners coming from the “AR” state (129.967). So runners from 
the “NR” state may be associated with lower run times.

2. There is a great difference between the mean and median run time 
for runners coming from the “NR” state. So, we conclude that the 
run time in the “NR” state is right skewed because the mean is 
much larger than the median. On the other hand, the median is larger 
than the mean in the “CO” state so the run time in this state is left 
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skewed. Other states like “DC” and “NY” have nearly equal mean 
and median so the run in these states is evenly spaced or normally 
distributed.

4.2.3. Summary Statistics for Location: The Percentiles
As we saw in Chapter 1, the percentiles including the median are not affected by 
the extreme values or outliers in the data so they are robust statistics. We can 
calculate the different percentiles of the continuous variable under the different 
levels of the categorical variable to see how the continuous variable distributes 
under the different levels.

4.2.3.1. The Percentiles of Maternal Age in the Birth Types
To get the percentiles of maternal age for the 2 birth types (premature and 
full-term), we will use the same above functions except that we use the get_
summary_stats function with the arguments, mage, and type = “quantile,” to get 
the 0% (minimum),25% (Q1), 50% (median), 75% (Q3), and 100% (maximum) 
percentiles of maternal age within each birth type.
births14 %>% group_by(premie) %>% get_summary_stats(mage,

                         

                      type = “quantile”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The different percentiles of maternal age in premature 
and full-term births of the US births data in 2014”)

Table 4.9. The Different Percentiles of Maternal Age in Premature and Full-Term 
Births of the US Births Data in 2014

Premie Variable n 0% 25% 50% 75% 100%
full term mage 876 14 24 28 33 44
premie mage 124 16 24 30 34 47

We see that:
1. All percentiles (except the 25%) are lower in full-term births than 

in premature births. So higher maternal age may be associated with 
premature births.
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4.2.3.2. The Percentiles of Visits Number in the Birth Types
births14 %>% group_by(premie) %>%

 get_summary_stats(visits, type = “quantile”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The different percentiles of the number of hospital 
visits during pregnancy in premature and full-term births of the US births data 
in 2014”)

Table 4.10. The Different Percentiles of the Number of Hospital Visits During Preg-
nancy in Premature and Full-Term Births of the US Births Data in 2014

Pre-
mie Variable n 0% 25% 50% 75% 100%

full 
term visits 829 0 10 12 14 30

pre-
mie visits 115 0 7 10 12 30

We see that:
All percentiles (except the 0% and 100%) are higher in full-term births 

than in premature births. So lower number of hospital visits may be 
associated with premature births.

4.2.3.3. The Percentiles of Run Time in the 2 Genders
run09 %>% group_by(gender) %>% get_summary_stats(time,

                     type = “quantile”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The different percentiles of run time in males and 
females of Cherry Blossom Run data in 2009”)

Table 4.11. The Different Percentiles of Run Time in Males and Females of Cherry 
Blossom Run Data in 2009

Gender Variable n 0% 25% 50% 75% 100%
F time 8,323 53.533 97.433 109.567 121.242 169.617
M time 6,651 45.933 82.542 95.717 109.225 157.517
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We see that:
1. All percentiles are higher in females than in males. So males appear 

to be faster than females in this data.

4.2.3.4. The Percentiles of Run Time in the Different States
We also use the arrange function with the argument “50%” to arrange the states 
in ascending order by their median run time.
run09 %>% group_by(state) %>%

 get_summary_stats(time, type = “quantile”) %>%

 arrange(`50%`) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The different percentiles of run time in runners from 
different states of Cherry Blossom Run data in 2009”)

Table 4.12. The Different Percentiles of Run Time in Runners from Different States 
of Cherry Blossom Run Data in 2009

State Vari-
able n 0% 25% 50% 75% 100%

NR time 59 45.933 48.159 55.183 92.450 144.767
AE time 1 74.467 74.467 74.467 74.467 74.467
VT time 6 82.833 85.100 92.267 103.008 106.233
OK time 4 75.200 76.500 92.808 108.912 109.600
WA time 8 61.350 80.008 93.200 103.854 127.083
MS time 3 85.450 89.559 93.667 109.400 125.133
IA time 6 68.317 78.412 96.042 101.708 114.483
RI time 14 84.417 92.975 97.858 110.229 131.400
NH time 19 58.233 87.942 97.900 122.559 134.800
AK time 2 91.467 94.971 98.475 101.979 105.483
NE time 3 92.900 95.725 98.550 108.208 117.867
KY time 9 83.100 98.800 98.833 109.083 117.867
MI time 34 63.200 91.692 99.358 121.600 139.850
DE time 61 66.033 87.450 99.383 107.100 141.183
OR time 5 86.817 92.700 99.567 125.983 153.850
WV time 28 66.717 86.696 99.875 111.933 150.683
WY time 1 100.383 100.383 100.383 100.383 100.383
PA time 461 50.700 88.850 100.650 114.017 149.733
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SC time 11 79.617 97.858 100.983 105.267 132.983
MO time 17 67.683 88.433 101.133 112.383 155.883
DC time 3,464 53.233 88.767 102.575 115.067 158.133
NY time 522 53.183 88.171 102.650 116.970 158.083
WI time 14 65.917 87.113 102.750 121.525 146.067
CT time 73 61.000 91.717 103.000 117.600 150.600
TN time 10 80.067 96.825 103.108 125.129 156.867
LA time 2 86.783 95.016 103.250 111.484 119.717
CA time 75 60.950 88.167 103.383 117.708 149.333
CO time 23 48.050 85.884 103.617 115.575 130.133
MN time 19 48.067 94.284 103.950 119.075 139.300
MA time 136 53.150 90.170 104.225 117.983 152.467
VA time 5,608 51.117 90.113 104.308 117.737 169.617
FL time 55 68.733 88.325 104.600 122.575 148.183
MD time 3,558 51.183 90.800 104.833 117.929 158.233
GA time 37 55.733 78.017 104.967 120.100 156.783
NJ time 207 62.333 91.158 104.967 117.775 149.883
IL time 71 52.400 90.192 105.300 116.017 153.750
IN time 18 64.167 97.167 105.750 123.383 133.700
UT time 2 93.367 99.771 106.175 112.579 118.983
NM time 7 58.333 91.542 107.617 117.350 132.817
ID time 1 107.733 107.733 107.733 107.733 107.733
NC time 158 62.567 94.537 108.450 118.850 149.400
OH time 80 59.667 97.667 109.592 126.238 154.450
ME time 10 65.300 95.725 110.534 117.304 121.800
TX time 44 56.783 90.975 111.242 127.312 150.800
AZ time 11 85.517 98.200 111.300 122.358 134.350
AL time 6 90.733 97.375 113.092 120.546 124.217
NV time 2 97.417 105.338 113.258 121.179 129.100
PR time 3 85.550 99.483 113.417 126.767 140.117
SD time 1 113.683 113.683 113.683 113.683 113.683
KS time 3 54.967 87.508 120.050 127.041 134.033
AR time 2 106.517 118.242 129.967 141.692 153.417
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We see that:
1. The lowest median run time was in 59 runners coming from the 

“NR” state (55.183). However, the maximum run time in the “NR” 
state is 144.767 which is higher than other maximums from other 
states like “WA,” “NH,” “MI,” etc.

4.2.4. Summary Statistics for Spread: The Range
The range is the difference between the largest and smallest observations in 
a sample. As we see in Chapter 1, the disadvantages of the range as a spread 
measure are:

• The range is very sensitive to extreme values or outliers.
• The range depends on the sample size. The larger the sample size, 

the larger the range tends to be. This makes it difficult to compare 
ranges from samples of different sizes.

However, we can calculate the range of the continuous variable under the 
different levels of the categorical variable to see how the continuous variable 
spreads under the different levels.

4.2.4.1. The Range of Maternal Age in the Birth Types
To get the range of maternal age in 2 birth types, we will use the functions:

• The group_by function with the argument premie applied to the 
births data frame to split the data frame into different data frames 
each containing one level of premie column.

• The get_summary_stats function with the arguments, mage, and 
show = c(“min,” “max”) to calculate the minimum and maximum 
maternal age within each data frame.

• The mutate function creates a new column (range) by subtracting the 
minimum value from the maximum value.

• The flextable, theme_box, and set_caption functions convert the 
result to a table as described in previous chapters.

births14 %>% group_by(premie) %>%

 get_summary_stats(mage, show = c(“min,””max”)) %>%

 mutate(range = max-min) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The range of maternal age in premature and full-term 
births of the US births data in 2014”)
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Table 4.13. The Range of Maternal Age in Premature and Full-Term Births of the 
US Births Data in 2014

Premie Variable n Min Max Range
full term mage 876 14 44 30
premie mage 124 16 47 31

We see that the premature births had a higher maternal age range than full-
term births (31 compared to 30) although they have a lower sample size than the 
full-term births (124 compared to 876), so we conclude that the maternal age is 
more spread in premature births than in full-term births.

4.2.4.2. The Range of Visits Number in the Birth Types
births14 %>% group_by(premie) %>%

 get_summary_stats(visits, show = c(“min,””max”)) %>%

 mutate(range = max-min) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The range of the number of hospital visits during 
pregnancy in premature and full-term births of the US births data in 2014”)

Table 4.14. The Range of the Number of Hospital Visits During Pregnancy in Pre-
mature and Full-Term Births of the US Births Data in 2014

Premie Variable n Min Max Range

full 
term visits 829 0 30 30

premie visits 115 0 30 30

We see that the premature births had an equal maternal age range to that of 
full-term births (range = 30 in 2 birth types) although they had a lower sample 
size than the full-term births (115 compared to 829), so we conclude that the 
maternal age is equally spread in premature births and full-term births.

4.2.4.3. The Range of Run Time in the 2 Genders
run09 %>% group_by(gender) %>% get_summary_stats(time,

                     show = c(“min,””max”)) %>%

 mutate(range = max-min) %>%

 flextable() %>% theme_box() %>%
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 set_caption(caption = “The range of run time in males and females of Cherry 

Blossom Run data in 2009”)

Table 4.15. The Range of Run Time in Males and Females of Cherry Blossom Run 
Data in 2009

Gender Variable n Min Max Range
F time 8,323 53.533 169.617 116.084
M time 6,651 45.933 157.517 111.584

We see that females had a higher run time range than males (116.084 
compared to 111.584). This may be due that females had a higher sample size 
than males in this data (8323 compared to 6651), so other summary statistics of 
spread need to be calculated.

4.2.4.4. The Range of Run Time in the Different States
We also use the arrange function to arrange the states by their range in ascending 
order.
run09 %>% group_by(state) %>% get_summary_stats(time,

                        

                     show = c(“min,””max”)) %>%

 mutate(range = max-min) %>%

 arrange(range) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The range of run time in runners from different states 
of Cherry Blossom Run data in 2009”)

Table 4.16. The Range of Run Time in Runners From Different States of Cherry 
Blossom Run Data in 2009

State Vari-
able n Min Max Range

AE time 1 74.467 74.467 0.000
ID time 1 107.733 107.733 0.000
SD time 1 113.683 113.683 0.000
WY time 1 100.383 100.383 0.000
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AK time 2 91.467 105.483 14.016
VT time 6 82.833 106.233 23.400
NE time 3 92.900 117.867 24.967
UT time 2 93.367 118.983 25.616
NV time 2 97.417 129.100 31.683
LA time 2 86.783 119.717 32.934
AL time 6 90.733 124.217 33.484
OK time 4 75.200 109.600 34.400
KY time 9 83.100 117.867 34.767
MS time 3 85.450 125.133 39.683
IA time 6 68.317 114.483 46.166
AR time 2 106.517 153.417 46.900
RI time 14 84.417 131.400 46.983
AZ time 11 85.517 134.350 48.833
SC time 11 79.617 132.983 53.366
PR time 3 85.550 140.117 54.567
ME time 10 65.300 121.800 56.500
WA time 8 61.350 127.083 65.733
OR time 5 86.817 153.850 67.033
IN time 18 64.167 133.700 69.533
NM time 7 58.333 132.817 74.484
DE time 61 66.033 141.183 75.150
NH time 19 58.233 134.800 76.567
MI time 34 63.200 139.850 76.650
TN time 10 80.067 156.867 76.800
KS time 3 54.967 134.033 79.066
FL time 55 68.733 148.183 79.450
WI time 14 65.917 146.067 80.150
CO time 23 48.050 130.133 82.083
WV time 28 66.717 150.683 83.966
NC time 158 62.567 149.400 86.833
NJ time 207 62.333 149.883 87.550
MO time 17 67.683 155.883 88.200
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CA time 75 60.950 149.333 88.383
CT time 73 61.000 150.600 89.600
MN time 19 48.067 139.300 91.233
TX time 44 56.783 150.800 94.017
OH time 80 59.667 154.450 94.783
NR time 59 45.933 144.767 98.834
PA time 461 50.700 149.733 99.033
MA time 136 53.150 152.467 99.317
GA time 37 55.733 156.783 101.050
IL time 71 52.400 153.750 101.350
DC time 3,464 53.233 158.133 104.900
NY time 522 53.183 158.083 104.900
MD time 3,558 51.183 158.233 107.050
VA time 5,608 51.117 169.617 118.500

We see that:
1. When the sample size is 1 for the “AE,” “ID,” “SD,” and “WY” 

states, the range is 0 because the minimum and maximum are the 
same numbers.

2. The lowest range was for the “AK” and “VT” states (14.016 and 
23.400 respectively). However, this may be due to low sample 
sizes, 2 and 6 respectively. So, more measures of spread need to be 
calculated.

3. The highest range was for the “VA” and “MD” states (118.500 and 
107.05 respectively). However, this may be due to large sample 
sizes, 5608 and 3558 respectively. So, more measures of spread need 
to be calculated.

4.2.5. Summary Statistics for Spread: The Standard Deviation
As we saw in Chapter 1, the standard deviation is the square root of the average 
squared differences from the sample mean. A large standard deviation indicates 
that data points are far from the mean and far from each other, while a small 
standard deviation indicates the opposite. A zero standard deviation indicates 
that all values within our data are identical.

The standard deviation is affected by outliers. However, we can calculate it 
for the different levels of categorical variable to see how the continuous variable 
spreads under these levels.
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4.2.5.1. The Standard Deviation of Maternal Age in the Birth 
Types
To get the standard deviation of maternal age in 2 birth types, we will use the 
same above functions except that the get_summary_stats function will have 
the arguments, mage, and show = “sd” to calculate the standard deviation of 
maternal age within each birth type.
births14 %>% group_by(premie) %>%

 get_summary_stats(mage, show = “sd”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The standard deviation of maternal age in premature and 
full-term births of the US births data in 2014”)

Table 4.17. The Standard Deviation of Maternal Age in Premature and Full-Term 
Births of the US Births Data in 2014

Premie Variable n sd
full term mage 876 5.721
premie mage 124 5.982

We see that the maternal age standard deviation (sd) is higher in premature 
births than in full-term births (5.982 compared to 5.721), so we conclude that 
the maternal age is more spread in premature births than in full-term births in 
this data.

4.2.5.2. The Standard Deviation of Visits Number in the Birth 
Types
births14 %>% group_by(premie) %>%

 get_summary_stats(visits, show = “sd”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The standard deviation of the number of hospital visits 
during pregnancy in premature and full-term births of the US births data in 
2014”)
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Table 4.18. The Standard Deviation of the Number of Hospital Visits During Preg-
nancy in Premature and Full-Term births of the US Births Data in 2014

Premie Variable n sd
full term visits 829 3.884
premie visits 115 5.329

We see that the visits standard deviation is higher in premature births than 
in full-term births (5.329 compared to 3.884), so we may conclude that the 
number of visits is more spread in premature births than in full-term births in 
this data.

4.2.5.3. The Standard Deviation of Run Time in the 2 Genders
run09 %>% group_by(gender) %>% get_summary_stats(time,

                        

                     show = “sd”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The standard deviation of run time in males and females 
of Cherry Blossom Run data in 2009”)

Table 4.19. The Standard Deviation of Run Time in Males and Females of Cherry 
Blossom Run Data in 2009

Gender Variable n sd
F time 8,323 17.453
M time 6,651 19.095

We see that females had a lower run time standard deviation than males 
(17.453 compared to 19.095). So, we may conclude that the run time in females 
is less spread than that in males.

4.2.5.4. The Standard Deviation of Run Time in the Different 
States
We also use the arrange function to arrange the states by their standard deviation 
in ascending order.
run09 %>% group_by(state) %>% get_summary_stats(time,

                        

                     show = “sd”) %>%



Bivariate Analysis for Continuous-Categorical Data

233

 arrange(sd) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The standard deviation of run time in runners from 
different states of Cherry Blossom Run data in 2009”)

Table 4.20. The Standard Deviation of Run Time in Runners from Different States 
of Cherry Blossom Run Data in 2009

State Variable n sd
AK time 2 9.911
KY time 9 10.293
VT time 6 10.386
NE time 3 13.092
SC time 11 13.932
AL time 6 14.478
RI time 14 15.075
DE time 61 15.277
AZ time 11 17.478
IA time 6 17.696
CT time 73 17.926
UT time 2 18.113
DC time 3,464 18.138
ME time 10 18.142
PA time 461 18.676
NJ time 207 18.813
NC time 158 18.945
OK time 4 19.113
VA time 5,608 19.217
MD time 3,558 19.492
IL time 71 19.559
NY time 522 19.890
MI time 34 20.176
WA time 8 20.426
MA time 136 20.460
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MS time 3 20.946
IN time 18 21.059
MN time 19 21.240
OH time 80 21.389
FL time 55 21.553
CA time 75 21.601
NV time 2 22.403
CO time 23 22.556
TN time 10 22.920
TX time 44 23.227
MO time 17 23.240
LA time 2 23.288
NH time 19 23.610
WI time 14 24.185
WV time 28 24.488
NM time 7 25.337
GA time 37 25.755
PR time 3 27.286
OR time 5 27.875
NR time 59 28.123
AR time 2 33.163
KS time 3 42.195
AE time 1
ID time 1
SD time 1
WY time 1

We see that:
1. When the sample size is 1 as for the “AE,” “ID,” “SD,” and “WY” 

states, the standard deviation is missing because the sample size is 1 
with no variation.

2. The lowest standard deviation was for the “AK” and “KY” states 
(9.911 and 10.293 respectively). So, the run time of runners from 
these states is less spread than in other states, although they have a 
low sample size (2 and 9 runners respectively).
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3. The highest standard deviation was for the “KS” and “AR” states 
(42.195 and 33.163 respectively). So, the run time of runners from 
these states is more spread than in other states, although they have a 
low sample size (3 and 2 runners respectively).

4.2.6. Summary Statistics for Spread: The Interquartile Range 
(IQR)
As we saw in Chapter 1, the interquartile range (IQR) is the difference between 
the first and third quartiles (Q3-Q1) and provides an estimate of the data spread. 
The IQR contains the middle 50% of our data. The interquartile range is a robust 
statistic since it is less sensitive to outliers or sample size than the standard 
deviation or the range. We can calculate the IQR for the different levels of 
categorical variable to see how the continuous variable spreads under these levels.

4.2.6.1. The IQR of Maternal Age in the Birth Types
To get the IQR of maternal age in the 2 birth types, we will use the same above 
functions except that the get_summary_stats function will have the arguments, 
mage, and show = “iqr” to calculate the IQR of maternal age within each birth 
type.

births14 %>% group_by(premie) %>%

 get_summary_stats(mage, show = “iqr”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The interquartile range of maternal age in premature and 
full-term births of the US births data in 2014”)

Table 4.21. The Interquartile Range of Maternal Age in Premature and Full-Term 
Births of the US Births Data in 2014

Premie Variable n iqr
full term mage 876 9
premie mage 124 10

We see that the maternal age IQR is higher in premature births than in full-
term births (10 compared to 9), so we may conclude that the maternal age is 
more spread in premature births than in full-term births in this data.
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4.2.6.2. The IQR of Visits Number in the Birth Types
births14 %>% group_by(premie) %>%

 get_summary_stats(visits, show = “iqr”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The IQR of the number of hospital visits during pregnancy 
in premature and full-term births of the US births data in 2014”)

Table 4.22. The IQR of the Number of Hospital Visits During Pregnancy in Prema-
ture and Full-term Births of the US Births Data in 2014

Premie Variable n iqr
full term visits 829 4
premie visits 115 5

We see that the visits IQR is higher in premature births than in full-term 
births (5 compared to 4), so we may conclude that the number of visits is more 
spread in premature births than in full-term births in this data.

4.2.6.3. The IQR of Run Time in the 2 Genders
run09 %>% group_by(gender) %>% get_summary_stats(time,

                        

                     show = “iqr”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The IQR of run time in males and females of Cherry 
Blossom Run data in 2009”)

Table 4.23. The IQR of Run Time in Males and Females of Cherry Blossom Run 
Data in 2009

Gender Variable n iqr
F time 8,323 23.808
M time 6,651 26.683

We see that females had lower run time IQR than males (23.808 compared 
to 26.683). So, we may conclude that the run time in females is less spread than 
that in males.
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4.2.6.4. The IQR of Run Time in the Different States
We also use the arrange function to arrange the states by their IQR value in 
ascending order.
run09 %>% group_by(state) %>% get_summary_stats(time,

                        

                     show = “iqr”) %>%

 arrange(iqr) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The IQR of run time in runners from different states of 
Cherry Blossom Run data in 2009”)

Table 4.24. The IQR of Run Time in Runners from Different States of Cherry Blos-
som Run Data in 2009

State Variable n iqr
AE time 1 0.000
ID time 1 0.000
SD time 1 0.000
WY time 1 0.000
AK time 2 7.008
SC time 11 7.408
KY time 9 10.283
NE time 3 12.484
UT time 2 12.808
NV time 2 15.841
LA time 2 16.467
RI time 14 17.254
VT time 6 17.908
DE time 61 19.650
MS time 3 19.841
ME time 10 21.579
AL time 6 23.171
IA time 6 23.296



Statistics with R for Data Analysis

238

AR time 2 23.450
WA time 8 23.846
MO time 17 23.950
AZ time 11 24.158
NC time 158 24.313
MN time 19 24.791
PA time 461 25.167
WV time 28 25.238
NM time 7 25.808
IL time 71 25.824
CT time 73 25.883
IN time 18 26.216
DC time 3,464 26.300
NJ time 207 26.617
MD time 3,558 27.129
PR time 3 27.284
VA time 5,608 27.624
MA time 136 27.813
TN time 10 28.304
OH time 80 28.570
NY time 522 28.800
CA time 75 29.541
CO time 23 29.691
MI time 34 29.909
OK time 4 32.412
OR time 5 33.283
FL time 55 34.250
WI time 14 34.412
NH time 19 34.617
TX time 44 36.338
KS time 3 39.533
GA time 37 42.083
NR time 59 44.291
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We see that:
1. When the sample size is 1 as for the “AE,” “ID,” “SD,” and “WY” 

states, the IQR is 0 because the sample size is 1 with no variation.
2. The lowest IQR was for the “AK” and “SC” states (7.008 and 7.408 

respectively). So, the run time of runners from these states is less 
spread than in other states.

3. The highest IQR was for the “NR” and “GA” states (44.291 and 
42.083 respectively). So, the run time of runners from these states is 
more spread than in other states.

4.2.7. Summary Statistics for Spread: The Median Absolute 
Deviation (MAD)
The MAD is another robust statistic for measuring the variability of numeric 
data. MAD is the median absolute distance that the data points are from the 
median. We can calculate the MAD for the different levels of categorical 
variable to see how the continuous variable spreads under these levels.

4.2.7.1. The MAD of Maternal Age in the Birth Types
To get the MAD of maternal age in the 2 birth types, we will use the same above 
functions except that the get_summary_stats function will have the arguments, 
mage, and show = “mad” to calculate the MAD of maternal age within each 
birth type.
births14 %>% group_by(premie) %>%

 get_summary_stats(mage, show = “mad”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The median absolute deviation of maternal age in premature 
and full-term births of the US births data in 2014”)

Table 4.25. The Median Absolute Deviation of Maternal Age in Premature and 
Full-Term Births of the US Births Data in 2014

Premie Variable n mad
full term mage 876 5.930
premie mage 124 7.413
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We see that the maternal age MAD is higher in premature births than in full-
term births (7.413 compared to 5.930), so we may conclude that the maternal 
age is more spread in premature births than in full-term births in this data.

4.2.7.2. The MAD of Visits Number in the Birth Types
births14 %>% group_by(premie) %>%

 get_summary_stats(visits, show = “mad”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The median absolute deviation of the number of hospital 
visits during pregnancy in premature and full-term births of the US births data 
in 2014”)

Table 4.26. The Median Absolute Deviation of the Number of hospital Visits Dur-
ing Pregnancy in Premature and full-Term Births of the US Births Data in 2014

Premie Variable n MAD
full term visits 829 2.965
premie visits 115 4.448

We see that the visits MAD is higher in premature births than in full-term 
births (4.448 compared to 2.965), so we may conclude that the number of visits 
is more spread in premature births than in full-term births in this data.

4.2.7.3. The MAD of Run Time in the 2 Genders
run09 %>% group_by(gender) %>% get_summary_stats(time,

                     show = “mad”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The MAD of run time in males and females of Cherry 
Blossom Run data in 2009”)

Table 4.27. The MAD of Run Time in Males and Females of Cherry Blossom Run 
Data in 2009

Gender Variable n MAD
F time 8,323 17.643
M time 6,651 19.769

We see that females had lower run time MAD than males (17.643 compared 
to 19.769). So, we may conclude that the run time in females is less spread than 
that in males.
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4.2.7.4. The MAD of Run Time in the Different States
We also use the arrange function to arrange the states by their MAD value in 
ascending order.
run09 %>% group_by(state) %>% get_summary_stats(time,

                        

                     show = “mad”) %>%

 arrange(mad) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The MAD of run time in runners from different states 
of Cherry Blossom Run data in 2009”)

Table 4.28. The MAD of Run Time in Runners from Different States of Cherry 
Blossom Run Data in 2009

State Variable n MAD
AE time 1 0.000
ID time 1 0.000
SD time 1 0.000
WY time 1 0.000
KY time 9 1.804
SC time 11 6.672
NE time 3 8.377
AK time 2 10.390
NR time 59 12.058
MS time 3 12.183
RI time 14 12.837
VT time 6 12.973
DE time 61 14.034
ME time 10 14.987
AL time 6 15.148
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IA time 6 17.902
CT time 73 18.335
OH time 80 18.383
IL time 71 18.755
MO time 17 18.829
OR time 5 18.903
PA time 461 18.903
UT time 2 18.989
MN time 19 19.026
DC time 3,464 19.311
NJ time 207 19.398
NC time 158 19.434
WV time 28 19.694
MD time 3,558 20.090
VA time 5,608 20.584
KS time 3 20.731
MA time 136 20.831
WA time 8 20.856
NY time 522 21.387
NH time 19 21.646
CO time 23 21.818
TN time 10 22.091
AZ time 11 22.387
CA time 75 22.438
MI time 34 23.178
NV time 2 23.487
OK time 4 24.216
LA time 2 24.414
GA time 37 25.772
FL time 55 25.994
IN time 18 26.143
TX time 44 27.725
WI time 14 27.762
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NM time 7 28.860
AR time 2 34.767
PR time 3 39.585

We see that:
1. When the sample size is 1 as for the “AE,” “ID,” “SD,” and “WY” 

states, the MAD is 0 because the sample size is 1 with no variation.
2. The lowest MAD was for the “KY” and “SC” states (1.804 and 

6.672 respectively). So, the run time of runners from these states is 
less spread than in other states.

3. The highest MAD was for the “PR” and “AR” states (39.585 and 
34.767 respectively). So, the run time of runners from these states is 
more spread than in other states.

4.3. SUMMARY PLOTS

4.3.1. Histogram
Histograms show the distribution of a continuous variable by dividing the x-axis 
into bins, counting the number of observations in each bin, and displaying the 
counts with bars. By producing a histogram for each level of the categorical 
variable, we can see how the continuous variable distributes under the different 
levels of the categorical variable.

4.3.1.1. Histograms of Maternal Age in the Birth Types
To produce a histogram with different fill color for each birth type, we use the 
following functions:

• The ggplot function, applied on the “births14” data frame,” with the 
arguments, aes(x = mage, fill = premie), to plot “mage” or maternal 
age on the x-axis and the bins will have different fill color for each 
level of “premie” column. So we will have 2 different fill colors, one 
for full-term births and the other for premature births.

• The geom_histogram function with the argument, color = “black,” 
to make the histogram bins have a black border so the fill color can 
be seen easily.

• The labs function with the arguments, title to plot a plot title, x to 
plot an x-axis title, y to plot a y-axis title, and fill to plot a legend 
title.
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• The theme_classic and theme functions as described in previous 
chapters.

births14 %>% ggplot(aes(x = mage, fill = premie))+

 geom_histogram(color = “black”)+

 labs(title = “Histogram of maternal age in premature and full-term births of 
the US births data in 2014,”

 x = “Maternal age,”

    y = “Count,” fill = “Birth type”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that:
• The bins of full-term births are taller than that of premature births 

indicating that the count of full-term births is higher than that of 
preterm births and we have seen that above because the sample size 
of full-term births is 876 compared to only 124 premature births.
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• The distribution of maternal age in full-term or premature births is 
nearly normal with peak count at the center and low counts at the 
tails (high or small values).

Alternatively, we can plot a separate plot for each birth type by using the 
function facet_wrap with the arguments, ~premie, nrow = 1, to produce a 
separate plot for each level of the “premie” column and the 2 plots are in 1 row.
births14 %>% ggplot(aes(x = mage, fill = premie))+

 geom_histogram(color = “black”)+

  facet_wrap(~premie, nrow = 1)+

 labs(title = “Histogram of maternal age in premature and full-term births of 
the US births data in 2014\n using facet_wrap function,”

    x = “Maternal age,”

    y = “Count,” fill = “Birth type”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We note the same comments stated above.
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4.3.1.2. Histograms of Visits Number in the Birth Types

To produce a histogram of the number of hospital visits with different fill color 
for each birth type, we use the same above functions except that the ggplot func-
tion will have the arguments, aes(x = visits, fill = premie), to plot “visits” or 
number of visits during pregnancy on the x-axis and the bins will have different 
fill color for each birth type.

births14 %>% ggplot(aes(x = visits, fill = premie))+

 geom_histogram(color = “black”)+

 labs(title = “Histogram of number of hospital visits during pregnancy\n in 
premature and full-term births of the US births data in 2014,”

    x = “Number of visits,”

y = “Count,” fill = “Birth type”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that:
• The bins of full-term births are taller than that of premature births 

indicating that the count of full-term births is higher than that of 
preterm births.
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• The distribution of visits in full-term or premature births is nearly 
normal with peak count at the center and low counts at the tails (high 
or small values).

• The distribution of visits in full-term births is more shifted to the 
right than that of premature births. This means that a higher number 
of visits may be associated with full-term birth.

Alternatively, we can plot a separate plot for each birth type by using the 
function facet_wrap with the arguments, ~premie, ncol = 1, to produce a separate 
plot for each level of the “premie” column and the 2 plots are in 1 column.
births14 %>% ggplot(aes(x = visits, fill = premie))+

 geom_histogram(color = “black”)+

  facet_wrap(~premie, ncol = 1)+

 labs(title = “Histogram of number of hospital visits during pregnancy\n in 
premature and full-term births of the US births data in 2014\n using facet_wrap 
function,”

    x = “Number of visits,”

    y = “Count,” fill = “Birth type”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We note the same comments stated above.
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4.3.1.3. Histograms of Run Time in the 2 Genders
To produce a histogram of the run time with different fill color for each gender, 
we use the same above functions except that the ggplot function will be applied 
on “run09” data and have the arguments, aes(x = time, fill = gender), to plot the 
run time on the x-axis and the bins will have different fill color for each gender.
run09 %>% ggplot(aes(x = time, fill = gender))+

 geom_histogram(color = “black”)+

 labs(title = “Histogram of run time in males and females of Cherry Blossom Run 
data in 2009,”

    x = “Time,”

    y = “Count,” fill = “Gender”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that:
• The bins of females are taller than that of males indicating that the 

count of females is higher than that of males in this data.
• The distribution of run time in females or males is nearly normal 

with peak count at the center and low counts at the tails (high or 
small values).
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• The distribution of run time in females is more shifted to the right 
than that of males. This means that females have higher run time 
(slower) than males.

Alternatively, we can plot a separate plot for each gender by using the 
function facet_wrap with the arguments, ~gender, ncol = 1, to produce a separate 
plot for each gender and the 2 plots will be in 1 column.
run09 %>% ggplot(aes(x = time, fill = gender))+

 geom_histogram(color = “black”)+

  facet_wrap(~gender, ncol = 1)+

 labs(title = “Histogram of run time in males and females of Cherry Blossom Run 
data in 2009\n using facet_wrap function,”

 x = “Time,”

    y = “Count,” fill = “Gender”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We note the same comments stated above.
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4.3.1.4. Histograms of Run Time in Runners from Different States
Because we have 51 different states in our data, we cannot plot the bins from 
all states in 1 plot as the plot will be very crowded. Alternatively, we can 
plot a separate plot for each state by using the function facet_wrap with the 
arguments, ~state, scales = “free,” to produce a separate plot for each state and 
each plot will have its x-axis and y-axis with separate limits. We also remove 
the unnecessary legend by using the argument, show.legend = FALSE, inside 
the geom_histogram function.
run09 %>% ggplot(aes(x = time, fill = state))+

 geom_histogram(color = “black,” show.legend = FALSE)+

  facet_wrap(~state, scales = “free”)+

 labs(title = “Histogram of run time in runners from different states of Cherry 
Blossom Run data in 2009\n using facet_wrap function,”

    x = “Time,”

    y = “Count”)+

theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We note that each state has its x-axis and y-axis with a specific limit 
according to its values. For example, the “AZ” state has x-axis values from 90 
to 130, while the “CT” state has x-axis values from 75 to 150.

4.3.2. Box Plot
As we see in Chapter 1, the box plot displays the distribution of a continuous 
variable by displaying the median, two hinges two whiskers, and all outliers 
individually. The lower and upper hinges correspond to the first and third 
quartiles (Q1 and Q3)respectively. The upper whisker extends from Q3 to the 
largest value no further than 1.5 X IQR from Q3. The lower whisker extends 
from Q1 to the smallest value at most 1.5 X IQR from Q1. Data beyond the end 
of the whiskers are called “outlying” points and are plotted individually.

By plotting a box plot for each level of the categorical variable, we can see 
how the continuous variable distributes under these different levels.

4.3.2.1. Box Plots of Maternal Age in the Birth Types
To produce a box plot with different fill color for each birth type, we use the 
following functions:

• The ggplot function, applied on the “births14” data frame, with 
the arguments, aes(x = premie, fill = premie, y = mage), to plot the 
“premie” or the 2 levels of “premie” column on the x-axis, “mage” 
or maternal age on the y-axis and the box plots will have different fill 
color for each level of “premie” column. So we will have 2 different 
fill colors, one for full-term births and the other for premature births.

• The geom_boxplot function plots a box plot.
• The labs, theme_classic, and theme functions as described previously.

births14 %>% ggplot(aes(x = premie, fill = premie, y = mage))+

 geom_boxplot()+

 labs(title = “Box plot of maternal age in premature and full-term births of 
the US births data in 2014,”

    x = “Birth type,”

    y = “Maternal age,” fill = “Birth type”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that:
• The distribution of maternal age in full-term or premature births is 

nearly normal with the median line equally spaced from the 1st and 
3rd quartiles. There are no outliers in the maternal age for both birth 
types.

• The box plot of maternal age in premature births is shifted up to that 
of maternal age in full-term births. This means that high maternal 
age may be associated with premature births.

4.3.2.2. Box Plots of Number of Visits in the Birth Types
To produce a box plot of the number of visits with different fill color for each 
birth type, we use the same functions except that the ggplot function will have 
the arguments, aes(x = premie, fill = premie, y = visits), to plot “premie” or the 
2 levels of “premie” column on the x-axis, visits number on the y-axis and the 
box plots will have different fill color for each level of “premie” column.
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births14 %>% ggplot(aes(x = premie, fill = premie, y = visits))+

 geom_boxplot()+

 labs(title = “Box plot of number of hospital visits during pregnancy \nin 
premature and full-term births of the US births data in 2014,”

    x = “Birth type,”

    y = “Number of hospital visits during pregnancy,”

    fill = “Birth type”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that:
• The distribution of the visits number in full-term or premature births 

is nearly normal with the median line equally spaced from the 1st and 
3rd quartiles. However, there are large and small outliers of visits in 
full-term births and large outliers of visits in premature births.

• The box plot of visits in premature births is shifted down to that of 
visits in full-term births. This means that the low number of visits 
may be associated with premature births.
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4.3.2.3. Box Plots of Run Time in the 2 Genders
To produce a box plot of the run time with different fill color for each gender, we 
use the same functions except that the ggplot function will have the arguments, 
aes(x = gender, fill = gender, y = time), to plot gender on the x-axis, run time 
on the y-axis and the box plots will have different fill color for each level of the 
gender column.
run09 %>% ggplot(aes(x = gender, fill = gender, y = time))+

 geom_boxplot()+

 labs(title = “Box plot of run time in males and females of Cherry Blossom Run 
data in 2009,”

    x = “Gender,”

    y = “Run time,”

    fill = “Gender”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that:
• The distribution of the run time in females or males is nearly normal 

with the median line equally spaced from the 1st and 3rd quartiles. 
However, there are large and small outliers of run time in females 
and large outliers of run time in males.
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• The box plot of run time in males is shifted down than that of females. 
This means that males had lower run time (faster) than females.

4.3.2.4. Box Plots of Run Time in Runners from Different States
To produce a box plot of the run time with different fill color for each state, we 
use the same functions except that the ggplot function will have the arguments, 
aes(x = state, fill = state, y = time), to plot states on the x-axis, run time on the 
y-axis and the box plots will have different fill color for each level of the state 
column.
run09 %>% ggplot(aes(x = state, fill = state, y = time))+

 geom_boxplot()+

 labs(title = “Box plot of run time in runners from different states of Cherry 
Blossom Run data in 2009,”

    x = “State,”

    y = “Run time,”

    fill = “State”)+

theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that the x-axis is very crowded and some states have only a dash 
(like “AE” and “WY” states) because their sample size is only 1 (one runner 
from these states).

We can further customize this plot by:
• Removing the states with a single count (“AE,” “ID,” “SD,” and 

“WY” states) using the filter function. The filter function will have 
the “!” operator on the states %in% c(“AE,” “ID,” “SD,” “WY”) to 
filter out these states.

• Removing the legend by using the argument show.legend = FALSE 
within the geom_boxplot function.

• Arranging the states by their median time using the fct_reorder 
function within the mutate function. The fct_reorder function will 
have the state, time, .fun = median, to arrange states by their median 
time in ascending order.

run09 %>% filter(!state %in% c(“AE,” “ID,” “SD,” “WY”)) %>%

 mutate(state = fct_reorder(state,time, .fun = median)) %>%

 ggplot(aes(x = state, fill = state, y = time))+

 geom_boxplot(show.legend = FALSE)+

 labs(title = “Box plot of run time in runners from 47 states of Cherry Blossom 
Run data in 2009 \n arranged by median time,”

   

    x = “State,”

   

    y = “Run time”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that:
• The distribution of the run time in different states may be symmetric 

with the upper and lower quartiles nearly equally spaced from the 
median (like “DC” and “NY” states), right skewed with the median 
line closer to the 1st quartile line than to the 3rd quartile (as “NR” 
state), or left skewed with the median line closer to the 3rd quartile 
line than to the 1st quartile line (as “KS” state)

• The lowest median run time was for runners from the “NR” state, 
while the highest median run time was for runners from the “AR” 
state. So runners from the “NR” state are faster than other runners 
from other states.

4.3.3. Strip Plot
A strip chart is a scatter plot used to see the relation between a continuous 
variable (on the x-axis) and a categorical variable (on the y-axis).
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4.3.3.1. Strip Plot of Maternal Age in the Birth Types
To create this plot, we will use the following functions:

• The ggplot function with the arguments, aes(x = mage, y = premie, 
color = premie), to plot maternal age “mage” on the x-axis and 
premie column on the y-axis with coloring the points by a different 
color for each birth type.

• The geom_point function to draw the scatter plot.
• The labs, theme_classic, and theme functions as described before.

births14 %>%

ggplot(aes(x = mage, y = premie, color = premie))+

 geom_point()+

 labs(title = “Strip plot of maternal age in premature and full-term births of 
the US births data in 2014,”

    x = “Maternal age,” y = “Birth type,”

    color = “Birth type”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that:
• The different data points are superimposed over each other which 

makes the interpretation difficult.
• The distribution of maternal age in premature births is more shifted 

to the right (higher) than that of maternal age in full-term births. This 
means that higher maternal age may be associated with premature 
births.

lternatively, the continuous categorical relationship can be seen easily if the 
points are jittered (displaced) using the geom_jitter function. The geom_jitter 
function adds a small amount of random variation to the location of each data 
point so the points are less to be superimposed over each other.

As it adds randomness to the location at each point, we must use the set.
seed function (with any number of our choice) for a reproducible plot. We 
simply replace the geom_point function with the geom_jitter function in the 
above code chunk.
set.seed(123)

births14 %>%

ggplot(aes(x = mage, y = premie, color = premie))+

 geom_jitter()+

 labs(title = “Strip plot of maternal age in premature and full-term births of 
the US births data in 2014\n using geom_jitter function,”

   

    x = “Maternal age,” y = “Birth type,”

   

    color = “Birth type”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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The using of the geom_jitter function has revealed that the sample size of 
premature births is much lower than that of full-term births.

4.3.3.2. Strip Plot of Visits Number in the Birth Types
To create this plot, we will use the same above functions except that the ggplot 
function will have the arguments, aes(x = visits, y = premie, color = premie), 
to plot the visits number on the x-axis and premie column on the y-axis with 
coloring the points by a different color for each birth type.
births14 %>%

ggplot(aes(x = visits, y = premie, color = premie))+

 geom_point()+

 labs(title = “Strip plot of number of hospital visits during pregnancy\n in 
premature and full-term births of the US births data in 2014,”

    x = “Number of hospital visits during pregnancy,” y = “Birth type,”

    color = “Birth type”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that:
• The distribution of visits number in premature births is similar to 

that of the visits number in full-term births.
Alternatively, the relationship can be seen easily if the points are jittered 

(displaced) using the geom_jitter function as before.
set.seed(123)

births14 %>%

ggplot(aes(x = visits, y = premie, color = premie))+

 geom_jitter()+

 labs(title = “Strip plot of number of hospital visits during pregnancy in 
premature and full-term births of the US births data in 2014\n using geom_jitter 
function,”

    x = “Number of hospital visits during pregnancy,” y = “Birth type,”

    color = “Birth type”)+

theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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The distribution of visits number in premature and full-term births is still 
similar. To get a deeper look, we will add a box plot for each jittered point using 
the geom_boxplot function before the geom_jitter function.

set.seed(123)

births14 %>%

ggplot(aes(x = visits, y = premie, color = premie))+

 geom_boxplot()+

 geom_jitter()+
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 labs(title = “Strip and box plot of number of hospital visits during pregnancy 
in premature and full-term births of the US births data in 2014\n using geom_
jitter function,”

   

    x = “Number of hospital visits during pregnancy,” y = “Birth type,”

   

    color = “Birth type”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

Here, we again see that the box plot of visits number in full-term births is 
shifted up to that in premature births, so higher visits number may be associated 
with full-term births.
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4.3.3.3. Strip Plot of Run Time in the 2 Genders
To create this plot, we will use the same above functions except that the ggplot 
function, applied on “run09” data, will have the arguments, aes(x = time, y = 
gender, color = gender), to plot the run time on the x-axis and the gender column 
on the y-axis with coloring the points by a different color for each gender.
run09 %>%

ggplot(aes(x = time, y = gender, color = gender))+

 geom_point()+

 labs(title = “Strip plot of run time in males and females of Cherry Blossom Run 
data in 2009,”

    x = “Run time,” y = “Gender,”

    color = “Gender”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that:
• The distribution of run time in females is more shifted to the right 

(higher) than that in males. This means that females are slower on 
average than males.
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Alternatively, the relationship can be seen more easily if the points are 
jittered (displaced) using the geom_jitter function as before.
set.seed(123)

run09 %>%

ggplot(aes(x = time, y = gender, color = gender))+

 geom_jitter()+

 labs(title = “Strip plot of run time in males and females of Cherry Blossom Run 
data in 2009\n using geom_jitter function,”

   

    x = “Run time,” y = “Gender,”

    color = “Gender”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

Again, we see that males are faster than females on average.
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4.3.3.4. Strip Plot of Run Time in the Different States
To create this plot, we will use the same above functions except that the ggplot 
function, applied on “run09” data, will have the arguments, aes(x = time, y = 
state, color = state), to plot the run time on the x-axis and the state column on 
the y-axis with coloring the points by a different color for each state.

To make this plot more informative, we will use the mutate and fct_reorder 
functions to order the states by their median run time. We also remove the 
unnecessary legend as before.
run09 %>%

 mutate(state = fct_reorder(state, time, .fun = median)) %>%

ggplot(aes(x = time, y = state, color = state))+

 geom_point(show.legend = FALSE)+

 labs(title = “Strip plot of run time in in runners from different states of 
Cherry Blossom Run data in 2009\n arranged by median run time,”

    x = “Run time,” y = “State”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that:
• The lowest median run time was found in runners from the “NR” 

state and the highest median run time was found in runners from the 
“AR” state. However, there are only 2 runners (2 data points) from 
the “AR” state.

4.3.4. Cleveland Dot Plot
Cleveland plots are useful when you want to compare a numeric statistic of 
a continuous variable (like mean, median, minimum, maximum) for different 
levels of a categorical variable.

4.3.4.1. Cleveland Dot Plot of Mean Maternal Age in the Birth 
Types
To create this plot, we use the following functions:

• The group_by and get_summary_stats function, as we have done in 
section 4.2.1.1., to get the mean maternal age in each birth type.

• The ggplot function with the arguments, aes(x = mean,y = premie, 
color = premie, to plot the mean on the x-axis, the premie column 
(with 2 levels) on the y-axis, and coloring a different color for each 
birth type.

• The geom_point function to plot a point for each mean.
• The geom_segment function with the arguments, aes(x = 0, xend 

= mean, y = premie, yend = premie, to plot a line segment for each 
birth type. The start of the line segment for each birth type on the 
x-axis will be from 0 to its mean maternal age, while the start of the 
line segment for each birth type on the y-axis will be from its birth 
type to its birth type too.

births14 %>% group_by(premie) %>%

get_summary_stats(mage, show = “mean”) %>%

 ggplot(aes(x = mean,y = premie, color = premie))+

 geom_point()+

 geom_segment(aes(x = 0, xend = mean,

          y = premie,

         

          yend = premie))+

 labs(title = “Cleveland plot of mean maternal age in premature and full-term 
births\n of the US births data in 2014,”
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    x = “Mean maternal age,” y = “Birth type,” color = “Birth type”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that the mean maternal age in premature births is higher than that 
in full-term births.

We can use the same functions to get the median maternal age in each birth 
type.
births14 %>% group_by(premie) %>%

get_summary_stats(mage, show = “median”) %>%

 ggplot(aes(x = median,y = premie, color = premie))+
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 geom_point()+

 geom_segment(aes(x = 0, xend = median,

         

          y = premie,

         

          yend = premie))+

 labs(title = “Cleveland plot of median maternal age in premature and full-term 
births\n of the US births data in 2014,”

   

    x = “Median maternal age,” y = “Birth type,” color = “Birth type”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that the median maternal age in premature births is higher than that 
in full-term births.
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4.3.4.2. Cleveland Dot Plot of the Mean Number of Hospital Vis-
its in the Birth Types
To create this plot, we use the same above functions and modify them 
accordingly.
births14 %>% group_by(premie) %>%

get_summary_stats(visits, show = “mean”) %>%

 ggplot(aes(x = mean,y = premie, color = premie))+

 geom_point()+

 geom_segment(aes(x = 0, xend = mean,

          y = premie,

          yend = premie))+

 labs(title = “Cleveland plot of mean number of hospital visits during pregnancy 
\nin premature and full-term births of the US births data in 2014,”

    x = “Mean visits number,” y = “Birth type,” color = “Birth type”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that the mean visits number in premature births is lower than that 
in full-term births.



Bivariate Analysis for Continuous-Categorical Data

271

4.3.4.3. Cleveland Dot Plot of Mean Run Time in the 2 Genders
To create this plot, we use the same above functions and modify them 
accordingly.
run09 %>% group_by(gender) %>%

get_summary_stats(time, show = “mean”) %>%

 ggplot(aes(x = mean,y = gender, color = gender))+

 geom_point()+

 geom_segment(aes(x = 0, xend = mean,

          y = gender,

          yend = gender))+

 labs(title = “Cleveland plot of mean run time in males and females of Cherry 
Blossom Run data in 2009,”

    x = “Mean run time,” y = “Gender,” color = “Gender”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that the mean run time in females is higher than that in males, so 
males are faster than females on average.
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4.3.4.4. Cleveland dot plot of mean run time in the different states
To create this plot, we use the same above functions and modify them 
accordingly. We also use the mutate and fct_reorder functions to order the state 
by their mean run time in ascending order. Finally, we remove the unnecessary 
legend by using the argument, show.legend = FALSE, inside the geom_point 
and geom_segment functions.
run09 %>% group_by(state) %>%

get_summary_stats(time, show = “mean”) %>%

 mutate(state = fct_reorder(state, mean)) %>%

 ggplot(aes(x = mean,y = state, color = state))+

 geom_point(show.legend = FALSE)+

 geom_segment(aes(x = 0, xend = mean,

y = state,

yend = state), show.legend = FALSE)+

 labs(title = “Cleveland plot of mean run time in runners from different states 
\nof Cherry Blossom Run data in 2009,”

 x = “Mean run time,” y = “State”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that the mean run time in the “NR” state is lower than all other states 
so runners from this state are faster than runners from other states on average.

4.3.5. Mean Plot with Error Bars
We can compare the continuous variable in different levels of a categorical 
variable by using the mean plot with error bars. The error bars can represent 
standard deviations, standard error of the mean, or confidence intervals.

4.3.5.1. Mean Plot with Standard Deviation Error Bars of Mater-
nal Age in the Birth Types
To create this plot, we use the following functions:

• The group_by and get_summary_stats functions as we have done 
previously. However, the get_summary_stats function will have the 
arguments, mage, type= “mean_sd,” to get the mean and standard 
deviation of maternal age in each birth type.

• The ggplot function with the arguments, aes(x = premie,y = mean, 
color = premie, to plot the mean on the y-axis, the premie column 
(with 2 levels) on the x-axis, and coloring a different color for each 
birth type.

• The geom_point function to plot a point for each mean.
• The geom_errorbar function with the arguments, aes(ymin = mean – 

sd, ymax = mean + sd), width = 0.1), so the error bar for each birth 
type will have a maximum of mean + standard deviation value and 
a minimum of mean – standard deviation value, and a central point 
of the mean maternal age for each birth type. The width argument to 
reduce the width of the error bars to 0.1 of its default width.

• The labs, theme_classic, and theme functions had been described 
before.

births14 %>% group_by(premie) %>%

get_summary_stats(mage, type= “mean_sd”) %>%

 ggplot(aes(x = premie, y= mean, color = premie))+ geom_point()+

 geom_errorbar(aes(ymin = mean – sd,

          ymax = mean + sd), width = 0.1)+

 labs(title = “Mean maternal age with 1 standard deviation error bars \nin 
premature and full-term births of the US births data in 2014,”

    y = “Mean maternal age,” x = “Birth type,” color = “Birth type”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that the mean maternal age in premature births is higher than that in 
full-term births. However, the standard deviation is nearly the same.

4.3.5.2. Mean Plot with Standard Error Bars of Maternal Age in 
the Birth Types
The standard error of the mean is estimated by  where:

• s is the sample standard deviation.
• n is the sample size.
The standard error represents the estimated standard deviation obtained 

from a set of sample means from repeated samples of size n from the same 
population.

We can use the same functions to get the mean plot with standard error bars 
of maternal age in the birth types using the argument type = “mean_se” in the 
get_summary_stats function.
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births14 %>% group_by(premie) %>%

get_summary_stats(mage, type= “mean_se”) %>%

 ggplot(aes(x = premie, y= mean, color = premie))+ geom_point()+

 geom_errorbar(aes(ymin = mean – se,

          ymax = mean + se), width = 0.1)+

 labs(title = “Mean maternal age with 1 standard error bars \nin premature and 
full-term births of the US births data in 2014,”

    y = “Mean maternal age,” x = “Birth type,” color = “Birth type”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

In a normal distribution, about 95% of the data are within 2 standard 
deviations (error) from the mean, so it is more reasonable if we created the 
error bars at  2 X se. The 2 X se represents a 95% confidence interval that will 
capture the true population mean 95% of the time.
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births14 %>% group_by(premie) %>%

get_summary_stats(mage, type= “mean_se”) %>%

 ggplot(aes(x = premie, y= mean, color = premie))+ geom_point()+

 geom_errorbar(aes(ymin = mean – 2*se,

          ymax = mean + 2*se), width = 0.1)+

 labs(title = “Mean maternal age with 2 standard error bars \nin premature and 
full-term births of the US births data in 2014,”

    y = “Mean maternal age,” x = “Birth type,” color = “Birth type”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that:
• The mean maternal age in premature births is higher than that in full-

term births.
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• The error bar in premature births is wider than that in full-term births 
because the sample size is smaller in premature births.

• The 2 error bars overlap indicating that the difference between the 
mean maternal age in premature and full-term births is not significant 
or they are statistically equivalent.

4.3.5.3. Mean Plot with 95% Confidence Interval Error Bars of 
Maternal Age in the Birth Types
The 95% confidence interval of the mean is estimated by  or  X standard error 
where:

• s is the standard deviation.
• n is the sample size.
• The  value depends on the sample size and can be obtained from the 

t-distribution table.
•  is the level of significance and equals a 100-confidence level. For 

a 95% confidence interval,  = 5% or 0.05, for a 99% confidence 
interval,  = 1% or 0.01, and for a 90% confidence interval,  = 10% or 
0.1.

Generally, for large sample sizes (> 30), we can be certain by 95% that the 
true mean is within two standard errors of the estimated mean.

We can use the same functions to get the mean plot with 95% confidence 
interval error bars of maternal age in the birth types using the argument type = 
“mean_ci” in the get_summary_stats function.
births14 %>% group_by(premie) %>%

get_summary_stats(mage, type= “mean_ci”) %>%

 ggplot(aes(x = premie, y= mean, color = premie))+ geom_point()+

 geom_errorbar(aes(ymin = mean – ci,

          ymax = mean + ci), width = 0.1)+

 labs(title = “Mean maternal age with 95% confidence interval error bars \nin 
premature and full-term births of the US births data in 2014,”

    y = “Mean maternal age,” x = “Birth type,” color = “Birth type”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that:
• The mean maternal age in premature births is higher than that in full-

term births.
• The error bar in premature births is wider than that in full-term births 

because the sample size is smaller in premature births.
• The 2 error bars overlap indicating that the difference between the 

mean maternal age in premature and full-term births is not significant 
or they are statistically equivalent.

4.3.5.4. Mean Plot with 95% Confidence Interval Error Bars of 
Visits Number in the Birth Types
We can use the same functions to get the mean plot with 95% confidence 
interval error bars of visits number in the birth types and modify the functions 
accordingly.
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births14 %>% group_by(premie) %>%

get_summary_stats(visits, type= “mean_ci”) %>%

 ggplot(aes(x = premie, y= mean, color = premie))+ geom_point()+

 geom_errorbar(aes(ymin = mean – ci,

          ymax = mean + ci), width = 0.1)+

 labs(title = “Mean number of hospital visits during pregnancy with 95% confidence 
interval error bars \nin premature and full-term births of the US births data 
in 2014,”

    y = “Mean visits number,” x = “Birth type,” color = “Birth type”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that:
• The mean number of visits in premature births is lower than that in 

full-term births.
• The error bar in premature births is wider than that in full-term births 

because the sample size is smaller in premature births.
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• The 2 error bars do not overlap indicating that the difference between 
the mean number of hospital visits during pregnancy in premature 
and full-term births is statistically significant or there is a real 
difference between the 2 groups in their mean number of visits.

4.3.5.5. Mean Plot with 95% Confidence Interval Error Bars of 
Run Time in the 2 Genders
We can use the same functions to get the mean plot with 95% confidence 
interval error bars of run time in the 2 genders of Cherry Blossom Run data in 
2009 and modify the functions accordingly.
run09 %>% group_by(gender) %>%

get_summary_stats(time, type= “mean_ci”) %>%

 ggplot(aes(x = gender, y= mean, color = gender))+ geom_point()+

 geom_errorbar(aes(ymin = mean – ci,

          ymax = mean + ci), width = 0.1)+

 labs(title = “Mean run time with 95% confidence interval error bars\n in males 
and females of Cherry Blossom Run data in 2009,”

    y = “Mean run time,” x = “Gender,” color = “Gender”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that:
• The mean run time in males is lower than that in females.
• The 2 error bars do not overlap indicating that the difference between 

the mean run time in males and females is statistically significant so 
we can conclude that males are faster than females on the average in 
the population from which this sample was taken.

4.3.5.6. Mean Plot with 95% Confidence Interval Error Bars of 
Run Time in the Runners from Different States
We can use the same functions to get the mean plot with 95% confidence 
interval error bars of run time in the runner from different states of Cherry 
Blossom Run data in 2009 and modify the functions accordingly. However, the 
95% confidence interval cannot be calculated when the sample size is 1 and 
produces a “NaN” or not a number value. We remove these rows by using the 
drop_na function. We can also arrange the states by their mean run time using 
the mutate and fct_reorder functions. We also remove the unnecessary legend 
as before.
run09 %>% group_by(state) %>%

get_summary_stats(time, type= “mean_ci”) %>%

 drop_na() %>% mutate(state = fct_reorder(state,mean)) %>%

 ggplot(aes(x = state, y= mean, color = state))+

 geom_point(show.legend = FALSE)+

 geom_errorbar(aes(ymin = mean – ci,

          ymax = mean + ci), width = 0.1, show.legend = FALSE)+

 labs(title = “Mean run time with 95% confidence interval error bars\n in runners 
from different states of Cherry Blossom Run data in 2009\n arranged by the mean 
run time,”

    y = “Mean run time,” x = “State”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that:
• The highest mean run time was in runners from the “AR” state. 

However, the 95% confidence interval is very large due to the small 
sample size (2 runners only).

• The lowest mean run time was in runners from the “NR” state and 
the 95% confidence interval is very tight due to the large sample size 
(59 runners).

• All the 95% confidence intervals of different states appear to overlap 
so all runners from all states may have statistically equivalent run 
time. We will see that in the below statistical tests.

4.4. STATISTICAL TESTS

4.4.1. t-Test for Two Samples
The independent samples t-test (or unpaired samples t-test) is used to compare 
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the mean of two independent groups. For example, compare the mean maternal 
age in the 2 birth types, full-term, and premature births. Another example is 
comparing the mean visits number in the 2 birth types, full-term, and premature 
births. A final example is comparing the mean run time in the 2 genders, males 
and females. In all these examples, the 2 groups are unrelated or independent.

The independent samples t-test comes in two versions:
• The standard Student’s t-test assumes that the variance of the two 

groups is equal.
• The Welch’s t-test does not assume that the variance is the same in 

the two groups.

4.4.1.1. Assumptions of t-Test
The independent samples t-test assumes the following about the data:

• Independence of the observations. Each subject or observation 
should belong to one group. There is no relationship between the 
observations in the 2 groups.

• No significant outliers in the two groups.
• Normality of the data in each group.
• Homogeneity of variances of the data in each group.

4.4.1.2. t-Test for the Mean Maternal Age in the 2 Birth Types
The null hypothesis is that the difference between the mean maternal age in the 
2 birth types is 0, while the alternative hypothesis is that the difference between 
the means is greater than or smaller than 0 or a two-sided test.

To conduct this test, we use the t-test function applied to the “births14” data 
with the following arguments:

• formula = mage ~ premie which is the formula for two samples 
t-test. This means that we want to compare the maternal age across 
the 2 levels of the “premie” column.

• mu = 0 which is the null value that corresponds to the null hypothesis.
• alternative = “two.sided” which is the alternative hypothesis.
Then, we convert the result to a table as before.

births14 %>% t_test(formula = mage ~ premie, mu = 0,

         

          alternative = “two.sided”) %>%

 flextable() %>% theme_box() %>%
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 set_caption(caption = “Two-sided t-test results of mean maternal age in premature 
and full-term births of the US births data in 2014”)

Table 4.29. Two-Sided t-Test Results of Mean Maternal Age in Premature and Full-
Term Births of the US births Data in 2014

.y. group1 group2 n1 n2 statistic df p

mage full 
term premie 876 124 -1.682214 156.5432 0.0945

We see that:
• The table contains the statistic = -1.68 which corresponds to our 

sample results and the p-value = 0.0945.
• The p_value is the probability of our sample results (the difference 

between the 2 group means) under the null hypothesis (where the 2 
means are equivalent). Since this probability is larger than the cut-
off value of 0.05, we fail to reject the null hypothesis and conclude 
that the mean maternal age in full-term and premature births is 
statistically equivalent.

To trust these results, we must test the assumptions of the t-test on our data. 
The 2 groups are independent with no relation between them. Other tests will 
be described below.

4.4.1.2.1. Test for Outliers in the Maternal Age in the 2 Birth Types
As described in Chapter 1, we use the identify_outliers function with the 
argument, mage, after the group_by function with the argument premie to detect 
any outliers in the maternal age within the 2 birth types. Then, we use the select 
function to select the important columns to be viewed (premie, mage, is.outlier, 
is.extreme) instead of viewing all columns of the “births14” data. Finally, we 
convert the results to a table as before.
births14 %>% group_by(premie) %>% identify_outliers(mage) %>%

 select(premie,mage, is.outlier, is.extreme) %>%

 flextable() %>%

 theme_box() %>%
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 set_caption(caption = “Outlier test results for maternal age in premature and 
full-term births of the US births data in 2014”)

Table 4.30. Outlier Test Results for Maternal Age in Premature and Full-Term 
Births of the US Births Data in 2014

Premie mage is.outlier is.extreme

We see that the table 4.30 has no rows meaning that maternal age values 
have no outliers in full-term or premature births.

4.4.1.2.2. Test for Normality of the Maternal Age in the 2 Birth 
Types
We can use the QQ plot or the Shapiro-Wilk normality test as described in 
Chapter 1. The ggqqplot function from the ggpubr package can be used to create 
a QQ plot of the maternal age. To create a separate QQ plot for each birth type, 
we use the argument facet.by = “premie” to plot a separate QQ plot for full-term 
and premature births.

library(ggpubr)

ggqqplot(data = births14, x = “mage,” facet.by = “premie,”

    

     title = “QQ plot of maternal age in premature and full-term births\n of the 
US births data in 2014,”

    

     xlab = “Theoretical percentiles,” ylab = “Sample percentiles”)+

 theme(plot.title = element_text(hjust = 0.5))
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In full-term births, not all data points fall along the reference line or within 
the confidence band, so we can not assume normality of maternal age in full-
term births and we should use the Wilcoxon test which does not need normality 
of data in the 2 groups.

In premature births, nearly all data points fall along the reference line or 
within the confidence band, so we can assume the normality of maternal age in 
full-term births.

For the Shapiro-Wilk normality test, we use the shapiro_test function with 
the argument “mage” after the group_by function with the argument “premie.” 
This will test the normality of maternal age in full-term and premature births.
births14 %>% group_by(premie) %>% shapiro_test(mage) %>% flextable() %>%

 theme_box() %>%

 set_caption(caption = “Shapiro-Wilk test results for maternal age in premature 
and full-term births\n of the US births data in 2014”)
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Table 4.31. Shapiro-Wilk Test Results for Maternal Age in Premature and Full-
Term Births of the US Births Data in 2014

Premie Variable Statistic p
full term mage 0.9879408 0.000001299452
premie mage 0.9796766 0.058485020608

In full-term births, the p_value is significant (< 0.05), so we reject the null 
hypothesis and conclude that the maternal age values in full-term births are not 
normally distributed. However, due to the large sample size of full-term births 
(876), we can ignore the normality test results and use the t-test.

In premature births, the p_value is insignificant (> 0.05), so we fail to reject 
the null hypothesis and conclude that the maternal age values in premature 
births are normally distributed.

4.4.1.2.3. Test for Homogeneity of Variances of the Maternal Age 
in the 2 Birth Types
We will use Levene’s test for this using the levene_test function. The only 
argument is the formula “mage ~ premie” to test the equality of variances of the 
maternal age across the 2 groups of the “premie” column. If the variances of 
the 2 groups are equal, the p-value should be insignificant or greater than 0.05.
births14 %>% levene_test(formula = mage ~ premie) %>% flextable() %>%

 theme_box() %>%

 set_caption(caption = “Levene’s test results for maternal age in premature and 
full-term births\n of the US births data in 2014”)

Table 4.32. Levene’s Test Results for Maternal Age in Premature and Full-Term 
Births of the US Births Data in 2014

df1 df2 Statistic p
1 998 0.5747473 0.4485576

We see that the p-value is insignificant (> 0.05) so we conclude that the 
variances of the maternal age in premature and full-term births are equal. The 
t-test done above was Welch’s t-test which does not assume that the variance is 
equal in the two groups. Because the variance is equal in the 2 groups, we can 
do the standard Student’s t-test by using the argument var.equal = TRUE within 
the t_test function.
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births14 %>% t_test(formula = mage ~ premie, mu = 0,

         

          alternative = “two.sided,”

         

          var.equal = TRUE) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Two-sided Student’s t-test results of mean maternal age 
in premature and full-term births of the US births data in 2014”)

Table 4.33. Two-Sided Student’s t-Test Results of Mean Maternal Age in Premature 
and Full-Term Births of the US Births Data in 2014

.y. Group1 Group2 n1 n2 Statistic df p
mage full term premie 876 124 -1.739637 998 0.0822

The conclusion is the same as that of Welch’s t-test with an insignificant 
p-value, so we fail to reject the null hypothesis and conclude that the mean 
maternal age in full-term and premature births is statistically equivalent.

4.4.1.3. t-Test for the Mean Number of Hospital Visits During 
Pregnancy in the 2 Birth Types
The null hypothesis is that the difference between the mean number of visits 
in the 2 birth types is 0, while the alternative hypothesis is that the difference 
between the means is greater than or smaller than 0 or a two-sided test.

To conduct this test, we use Welch’s t-test using the same functions above.
births14 %>% t_test(formula = visits ~ premie, mu = 0,

         

          alternative = “two.sided”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Two-sided t-test results of mean number of hospital 
visits during pregnancy in premature and full-term births of the US births data 
in 2014”)
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Table 4.34. Two-Sided t-Test Results of the Mean Number of Hospital Visits 
During Pregnancy in Premature and Full-Term Births of the US Births Data 
in 2014

.y. group1 group2 n1 n2 statistic df p
vis-
its full term premie 829 115 2.62367 131.323 0.00973

We see that:
• The table contains the statistic = 2.62 which corresponds to our 

sample results and the p-value = 0.00973.
• The p_value is significant, so we reject the null hypothesis and 

conclude that the mean number of visits in the full-term births is 
larger than that of the premature births.

To trust these results, we must test the assumptions of the t-test on our data. 
The 2 groups are independent with no relation between them. Other tests will 
be described below.

4.4.1.3.1. Test for Outliers in the Number of Visits in the 2 Birth 
Types
We use the same above functions. Then, we use the select function to select the 
important columns to be viewed (premie, visits, is.outlier, is.extreme) instead 
of viewing all columns of the “births14” data. Finally, we convert the results to 
a table as before.
births14 %>% group_by(premie) %>% identify_outliers(visits) %>%

 select(premie,visits, is.outlier, is.extreme) %>%

 flextable() %>%

 theme_box() %>%

 set_caption(caption = “Outlier test results for hospital visits during pregnancy 
in premature and full-term births of the US births data in 2014”)
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Table 4.35. Outlier Test Results for Hospital Visits During Pregnancy in Pre-
mature and Full-Term Births of the US Births Data in 2014

Premie Visits is.outlier is.extreme
full term 2 TRUE FALSE
full term 29 TRUE TRUE
full term 0 TRUE FALSE
full term 3 TRUE FALSE
full term 2 TRUE FALSE
full term 25 TRUE FALSE
full term 0 TRUE FALSE
full term 3 TRUE FALSE
full term 21 TRUE FALSE
full term 2 TRUE FALSE
full term 0 TRUE FALSE
full term 0 TRUE FALSE
full term 3 TRUE FALSE
full term 0 TRUE FALSE
full term 0 TRUE FALSE
full term 0 TRUE FALSE
full term 1 TRUE FALSE
full term 30 TRUE TRUE
full term 0 TRUE FALSE
full term 3 TRUE FALSE
full term 21 TRUE FALSE
full term 0 TRUE FALSE
full term 0 TRUE FALSE
full term 3 TRUE FALSE
full term 0 TRUE FALSE
full term 27 TRUE TRUE
full term 3 TRUE FALSE
full term 1 TRUE FALSE
full term 3 TRUE FALSE
full term 21 TRUE FALSE
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full term 1 TRUE FALSE
full term 0 TRUE FALSE
full term 1 TRUE FALSE
full term 3 TRUE FALSE
full term 3 TRUE FALSE
full term 3 TRUE FALSE
full term 3 TRUE FALSE
full term 3 TRUE FALSE
full term 0 TRUE FALSE
premie 20 TRUE FALSE
premie 28 TRUE TRUE
premie 20 TRUE FALSE
premie 20 TRUE FALSE
premie 20 TRUE FALSE
premie 20 TRUE FALSE
premie 30 TRUE TRUE
premie 25 TRUE FALSE

We see that the table 4.35 has many rows containing the outlier values of 
visits number in full-term or premature births, so we should use the Wilcoxon 
test to compare the visits number between the 2 birth types.

4.4.1.3.2. Test for Normality of the Number of Visits in the 2 Birth 
Types
We can plot the QQ plot.
ggqqplot(data = births14, x = “visits,” facet.by = “premie,”

    

     title = “QQ plot of hospital visits during pregnancy in premature and full-
term births\n of the US births data in 2014,”

    

     xlab = “Theoretical percentiles,” ylab = “Sample percentiles”)+

 theme(plot.title = element_text(hjust = 0.5))
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In full-term and premature births, not all data points fall along the reference 
line or within the confidence band, so we can not assume normality of visits 
number in the full-term or premature births and we should use the Wilcoxon test 
which does not need normality of data in the 2 groups. However, due to the large 
sample size of full-term births or premature births (829 and 115 respectively), 
we can ignore the normality test results and use the t-test.

We can also use the Shapiro-Wilk normality test as before.

births14 %>% group_by(premie) %>% shapiro_test(visits) %>% flextable() %>%

 theme_box() %>%

 set_caption(caption = “Shapiro-Wilk test results for hospital visits during 
pregnancy in premature and full-term births\n of the US births data in 2014”)
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Table 4.36. Shapiro-Wilk Test Results for Hospital Visits During Pregnancy in Pre-
mature and Full-Term Births of the US Births Data in 2014

Premie Variable Statistic p
full term visits 0.9593774 0.00000000000002168143
premie visits 0.9418316 0.00008177188744695395

In full-term and premature births, the p_value is significant (< 0.05), so 
we reject the null hypothesis and conclude that the visits number values in 
the full-term and premature births are not normally distributed. However, due 
to the large sample size of full-term births or premature births (829 and 115 
respectively), we can ignore the normality test results and use the t-test.

4.4.1.3.3. Test for Homogeneity of Variances of the Hospital Visits 
During Pregnancy in the 2 Birth Types
births14 %>% levene_test(formula = visits ~ premie) %>% flextable() %>%

 theme_box() %>%

 set_caption(caption = “Levene’s test results for hospital visits during pregnancy 
in premature and full-term births of the US births data in 2014”)

Table 4.37. Levene’s Test Results for Hospital Visits During Pregnancy in Prema-
ture and Full-Term Births of the US Births Data in 2014

df1 df2 Statistic p
1 942 12.91543 0.0003427704

We see that the p-value is significant (< 0.05) so we conclude that the 
variances of the visits number in premature and full-term births are different 
and we can only use Welch’s t-test conducted above.

4.4.1.4. t-Test for the Mean Run Time in the 2 Genders
The null hypothesis is that the difference between the mean run time in the 2 
genders is 0, while the alternative hypothesis is that the difference between the 
means is greater than or smaller than 0 or a two-sided test.

To conduct this test, we use Welch’s t-test using the same functions above.
run09 %>% t_test(formula = time ~ gender, mu = 0,

         

          alternative = “two.sided”) %>%

 flextable() %>% theme_box() %>%
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 set_caption(caption = “Two-sided t-test results of mean run time in males and 
females of Cherry Blossom Run data in 2009”)

Table 4.38. Two-Sided t-Test Results of Mean Run Time in Males and Females of 
Cherry Blossom Run Data in 2009

.y. Group1 Group2 n1 n2 Statistic df p
time F M 8,323 6,651 43.04116 13,636.55 0

We see that:
• The table contains the statistic = 43.04 which corresponds to our 

sample results and the p-value = 0.
• The p_value is significant, so we reject the null hypothesis and 

conclude that the mean run time in females is larger than that of 
males. In other words, females are slower than males on average.

To trust these results, we must test the assumptions of the t-test on our data. 
The 2 groups are independent with no relation between them. Other tests will 
be described below.

4.4.1.4.1. Test for Outliers in the Run Time in the 2 Genders
We use the same above functions. Then, we use the select function to select the 
important columns to be viewed (gender, time, is.outlier, is.extreme) instead 
of viewing all columns of the “run09” data. Finally, we convert the results to a 
table as before.
run09 %>% group_by(gender) %>% identify_outliers(time) %>%

 select(gender,time, is.outlier, is.extreme) %>%

 flextable() %>%

 theme_box() %>%

 set_caption(caption = “Outlier test results for run time in males and females 
of Cherry Blossom Run data in 2009”)

Table 4.39. Outlier Test Results for Run Time in Males and Females of Cherry 
Blossom Run data in 2009

Gender Time is.outlier is.extreme
F 53.533 TRUE FALSE
F 53.917 TRUE FALSE
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F 53.967 TRUE FALSE
F 54.433 TRUE FALSE
F 54.450 TRUE FALSE
F 54.533 TRUE FALSE
F 54.633 TRUE FALSE
F 54.650 TRUE FALSE
F 54.717 TRUE FALSE
F 54.767 TRUE FALSE
F 55.183 TRUE FALSE
F 55.200 TRUE FALSE
F 55.467 TRUE FALSE
F 55.717 TRUE FALSE
F 55.850 TRUE FALSE
F 55.917 TRUE FALSE
F 56.300 TRUE FALSE
F 56.733 TRUE FALSE
F 56.783 TRUE FALSE
F 57.183 TRUE FALSE
F 57.417 TRUE FALSE
F 58.567 TRUE FALSE
F 58.750 TRUE FALSE
F 59.367 TRUE FALSE
F 60.300 TRUE FALSE
F 61.017 TRUE FALSE
F 61.100 TRUE FALSE
F 61.467 TRUE FALSE
F 157.217 TRUE FALSE
F 158.133 TRUE FALSE
F 158.233 TRUE FALSE
F 158.117 TRUE FALSE
F 158.083 TRUE FALSE
F 163.250 TRUE FALSE
F 169.617 TRUE FALSE
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M 151.417 TRUE FALSE
M 149.683 TRUE FALSE
M 151.350 TRUE FALSE
M 153.250 TRUE FALSE
M 149.467 TRUE FALSE
M 150.050 TRUE FALSE
M 149.650 TRUE FALSE
M 150.517 TRUE FALSE
M 152.117 TRUE FALSE
M 150.683 TRUE FALSE
M 150.700 TRUE FALSE
M 153.100 TRUE FALSE
M 150.517 TRUE FALSE
M 150.517 TRUE FALSE
M 152.650 TRUE FALSE
M 150.417 TRUE FALSE
M 149.300 TRUE FALSE
M 152.367 TRUE FALSE
M 154.083 TRUE FALSE
M 151.450 TRUE FALSE
M 155.150 TRUE FALSE
M 156.733 TRUE FALSE
M 153.250 TRUE FALSE
M 156.783 TRUE FALSE
M 154.450 TRUE FALSE
M 157.517 TRUE FALSE
M 155.883 TRUE FALSE
M 149.783 TRUE FALSE
M 154.800 TRUE FALSE
M 151.417 TRUE FALSE
M 155.017 TRUE FALSE

We see that the Table 4.39 has many rows containing the outlier values of 
run time in females and males, so we should use the Wilcoxon test to compare 
the run time between the 2 genders.
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4.4.1.4.2. Test for Normality of the Run Time in the 2 Genders
We can plot the QQ plot.
ggqqplot(data = run09, x = “time,” facet.by = “gender,”

    

     title = “QQ plot of run time in males and females of Cherry Blossom Run 
data in 2009,”

    

     xlab = “Theoretical percentiles,” ylab = “Sample percentiles”)+

 theme(plot.title = element_text(hjust = 0.5))

In females and males, not all data points fall along the reference line or 
within the confidence band, so we can not assume the normality of run time in 
females or males and we should use the Wilcoxon test which does not need the 
normality of data in the 2 groups.
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4.4.1.4.3. Test for Homogeneity of Variances of the Run Time in the 
2 Genders
run09 %>% levene_test(formula = time ~ gender) %>% flextable() %>%

 theme_box() %>%

 set_caption(caption = “Levene’s test results for run time in males and females 
of Cherry Blossom Run data in 2009”)

Table 4.40. Levene’s Test Results for Run Time in Males and Females of Cherry 
Blossom Run Data in 2009

df1 df2 Statistic p
1 14,972 66.96781 0.0000000000000002980299

We see that the p-value is significant (< 0.05) so we conclude that the 
variances of the run time in females and males are different and we can only use 
Welch’s t-test conducted above.

4.4.2. Wilcoxon Test for Two Samples
The Wilcoxon test is a non-parametric alternative to the two samples t-test for 
comparing the median of a continuous variable in two independent groups of 
samples, in case where the data are not normally distributed or contain some 
outliers. It is also known as the Mann-Whitney or Mann-Whitney U test. 
However, the sample size should be at least 6 in each group, or the Wilcoxon 
test cannot become significant.

4.4.2.1. Wilcoxon Test for Maternal Age in Premature and Full-
Term Births
The null hypothesis is that the difference between the median maternal age 
in the 2 birth types is 0, while the alternative hypothesis is that the difference 
between the medians is greater than or smaller than 0 or a two-sided test.

To conduct this test, we use the wilcox_test function applied to the “births14” 
data with the following arguments:

• formula = mage ~ premie which is the formula for two samples 
Wilcoxon test. This means that we want to compare the maternal 
age across the 2 levels of the “premie” column.

• mu = 0 which is the null value that corresponds to the null hypothesis.
• alternative = “two.sided” which is the alternative hypothesis.
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Then, we convert the result to a table as before.
births14 %>% wilcox_test(formula = mage ~ premie, mu = 0,

            

             alternative = “two.sided”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Two-sided Wilcoxon test results of median maternal age 
in premature and full-term births of the US births data in 2014”)

Table 4.41. Two-Sided Wilcoxon Test Results of Median Maternal Age in Premature 
and Full-Term Births of the US Births Data in 2014

.y. Group1 Group2 n1 n2 Statistic p
mage full term premie 876 124 49,577.5 0.115

We see that:
• The table contains the statistic = 49577.5 which corresponds to our 

sample results and the p-value = 0.115.
• The p_value is larger than the cut-off value of 0.05, so we fail to 

reject the null hypothesis and conclude that the median maternal age 
in full-term and premature births is statistically equivalent.

4.4.2.2. Wilcoxon Test for Hospital Visits During Pregnancy in 
Premature and Full-Term Births
The null hypothesis is that the difference between the median hospital visits 
during pregnancy in the 2 birth types is 0, while the alternative hypothesis is 
that the difference between the medians is greater than or smaller than 0 or a 
two-sided test.

To conduct this test, we use the same functions above and modify them 
accordingly.

births14 %>% wilcox_test(formula = visits ~ premie, mu = 0,

            

             alternative = “two.sided”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Two-sided Wilcoxon test results of hospital visits during 
pregnancy in premature and full-term births of the US births data in 2014”)
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Table 4.42. Two-Sided Wilcoxon Test Results of Hospital Visits During Pregnancy 
in Premature and Full-Term Births of the US Births Data in 2014

.y. Group1 Group2 n1 n2 Statistic p
visits full term premie 829 115 59,894.5 0.00000731

We see that:
• The Table 4.42 contains the statistic = 59894.5 which corresponds 

to our sample results and the p-value which is very low and nearly 
equals 0.

• The p_value is smaller than the cut-off value of 0.05, so we reject 
the null hypothesis and conclude that the median hospital visits 
during pregnancy in full-term births is significantly larger than that 
of premature births.

4.4.2.3. Wilcoxon Test for Run Time in Females and Males
The null hypothesis is that the difference between the median run time in the 2 
genders is 0, while the alternative hypothesis is that the difference between the 
medians is greater than or smaller than 0 or a two-sided test.

To conduct this test, we use the same functions above and modify them 
accordingly.

run09 %>% wilcox_test(formula = time ~ gender, mu = 0,

            

             alternative = “two.sided”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Two-sided Wilcoxon test results of run time in males and 
females of Cherry Blossom Run data in 2009”)

Table 4.43. Two-Sided Wilcoxon Test Results of Run Time in Males and Females of 
Cherry Blossom Run Data in 2009

.y. Group1 Group2 n1 n2 Statistic p

time F M 8,323 6,651 38,522,940 0

We see that:
• The Table 4.43 contains the statistic = 38,522,940 which corresponds 

to our sample results and the p-value which is 0.
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• The p_value is smaller than the cut-off value of 0.05, so we reject the 
null hypothesis and conclude that the median run time in females is 
significantly larger than that of males or they are slower than males.

4.4.3. ANOVA Test for More Than Two Samples
The ANOVA ( Analysis of Variance) test is used to compare the mean of a 
continuous variable across multiple groups. The One-way ANOVA test is an 
extension of the independent two samples t-test for comparing the means across 
the different levels of 1 group.

If the average variation between group means is large compared to the 
average variation within groups, then we can conclude that at least one group 
mean is not equal to the others. That is why the method is called analysis of 
variance although the main goal is to compare the group means.

The null hypothesis is that all group means are equal, while the alternative 
hypothesis is that at least one mean is different from another mean.

4.4.3.1. ANOVA Assumptions
The ANOVA test has the same assumptions as that of the independent two 
samples t-test:

• Independence of the observations. Each subject should belong to 
only one group. There is no relationship between the observations in 
each group.

• No significant outliers in the different groups.
• Normality of the data in each group.
• Homogeneity of variances of the data in each group.
If the above assumptions are not met, there is a non-parametric alternative 

(Kruskal-Wallis test) to the one-way ANOVA.

4.4.3.2. ANOVA Test for the Mean Run Time in Runners from 
Different States
We saw previously that some states have only 1,2,3, etc runners, so we filter for 
states with a suitable sample size (> 10 runners) by creating a data frame “df” 
using the following functions:

• The count function with the argument state is applied to the “run09” 
data to count the number of runners (rows) for each state.

• The filter function with the argument n > 10 keeps only states with 
more than 10 runners.
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df<-run09 %>% count(state) %>% filter(n > 10)

df %>% flextable() %>% theme_box() %>% set_caption(caption = “States with more 
than 10 runners of Cherry Blossom Run data in 2009”)

Table 4.44. States with More than 10 Runners of Cherry Blossom Run Data in 2009

State n
AZ 11
CA 75
CO 23
CT 73
DC 3,464
DE 61
FL 55
GA 37
IL 71
IN 18
MA 136
MD 3,558
MI 34
MN 19
MO 17
NC 158
NH 19
NJ 207
NR 59
NY 522
OH 80
PA 461
RI 14
SC 11
TX 44
VA 5,608
WI 14
WV 28
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We have 28 different states instead of 51. Then we use this data frame “df” 
to filter for only these states in the original “run09” data frame using the filter 
function with the argument state %in% df$state to filter for only these 28 states. 
We create another data frame “run_filtered” to be used in subsequent analysis.
run_filtered<-run09 %>% filter(state %in% df$state)

glimpse(run_filtered)

## Rows: 14,877

## Columns: 14

## $ place   <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1…

## $ time   <dbl> 53.533, 53.917, 53.967, 54.433, 54.450, 54.533, 54.633, 54.6…

## $ net_time <dbl> 53.533, 53.917, 53.967, 54.433, 54.450, 54.533, 54.633, 54.6…

## $ pace   <dbl> 5.367, 5.400, 5.400, 5.450, 5.450, 5.467, 5.467, 5.467, 5.48…

## $ age    <int> 21, 21, 22, 19, 36, 28, 25, 31, 23, 26, 23, 35, 28, 28, 26, …

## $ gender  <fct> F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, …

## $ first   <fct> Lineth, Belianesh Zemed, Teyba, Abebu, Catherine, Olga, Sall…

## $ last   <fct> Chepkurui, Gebre, Naser, Gelan, Ndereba, Romanova, Meyerhoff…

## $ city   <fct> Kenya, Ethiopia, Ethiopia, Ethiopia, Kenya, Russia, United S…

## $ state   <fct> NR, NR, NR, NR, NR, NR, NR, NR, NR, NR, NR, NR, NR, CO, NR, …

## $ country  <fct> KEN, ETH, ETH, ETH, KEN, RUS, USA, KEN, ETH, RUS, ETH, ROM, …

## $ div    <int> 2, 2, 2, 1, 5, 3, 3, 4, 2, 3, 2, 5, 3, 3, 3, 3, 3, 5, 4, 2, …

## $ div_place <int> 1, 2, 3, 1, 1, 1, 2, 1, 4, 3, 4, 2, 4, 5, 6, 7, 8, 3, 2, 5, …

## $ div_tot  <int> 953, 953, 953, 71, 1130, 2706, 2706, 1678, 953, 2706, 953, 1…

The run_filtered data frame has the same columns as the original data (14 
columns) but a lower number of rows (14877 instead of 14974).

The null hypothesis is that all 28 states’ mean run times are equal, while the 
alternative hypothesis is that at least one state’s mean is different from another 
state’s mean.

To conduct this test, we use the anova_test function applied on the “run_
filtered” data with the following argument, formula = time ~ state which is the 
formula for the ANOVA test. This means that we want to compare the mean run 
time across the different states of the “state” column.

Then, we convert the result to a table as before.
run_filtered %>% anova_test(formula = time ~ state) %>% flextable() %>%

 theme_box() %>% set_caption(caption = “ANOVA test results of the mean run time 
in runners from 28 states of Cherry Blossom Run data in 2009”)
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Table 4.45. ANOVA Test Results of the Mean Run Time in Runners from 28 
States of Cherry Blossom Run Data in 2009

Effect DFn DFd F p p<.05 ges

state 27 14,849 9.121

0.000
0000
0000
0000
0000
0000
0000
0000
0000
0664

* 0.016

In the table above, we see that:
• The “DFn” is the degrees of freedom in the numerator and “DFd” is 

the degrees of freedom in the denominator (DFd).
• The obtained F-statistic value that corresponds to our sample results 

is 9.121.
• The p is the p-value which is the probability of our sample results 

(the difference between the state means) under the null hypothesis 
(where all states’ means are equivalent). Since this probability is 
very low, so we reject the null hypothesis and conclude that at least 
one state run time mean is significantly different from another state 
mean.

• The “ges” is the generalized eta squared (effect size). This measures 
the proportion of the variability in the run time that can be explained 
in terms of the predictor (or the different states). An effect size of 
0.016 (1.6%) means that about 1.6% of the variability in run time 
can be explained by the different states.

4.4.3.3. Post-Hoc Tests
A significant ANOVA test is followed by Tukey honest significant differences 
using the tukey_hsd function to perform multiple pairwise t-tests between 
the different states. We will use the same formula of the ANOVA test with 
the tukey_hsd function and arrange the adjusted p-values (p.adj) by using the 
arrange function.

run_filtered %>% tukey_hsd(time ~ state) %>% arrange(p.adj) %>%
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 flextable() %>% theme_box() %>%

 set_caption(caption = “Tukey honest significant differences of the mean run time 
in runners from 28 states of Cherry Blossom Run data in 2009”)

Table 4.46. Tukey Honest Significant Differences in the Mean Run Time in Runners 
From 28 States of Cherry Blossom Run Data in 2009

Term Group 
1

Group 
2

null.
value Estimate conf.low conf.high p.adj p.adj.

signif

state CA NR 0 -32.592467345 -44.9864131 -20.1985216 0.00000000972 ****

state CT NR 0 -32.602413281 -45.0708889 -20.1339377 0.00000000972 ****

state DC NR 0 -32.012456556 -41.3633951 -22.6615180 0.00000000972 ****

state DE NR 0 -28.140571826 -41.1456668 -15.1354768 0.00000000972 ****

state FL NR 0 -35.775786133 -49.1250988 -22.4264735 0.00000000972 ****

state GA NR 0 -31.537143381 -46.4727401 -16.6015467 0.00000000972 ****

state IL NR 0 -33.273229410 -45.8199529 -20.7265060 0.00000000972 ****

state MA NR 0 -33.930212737 -45.0330935 -22.8273320 0.00000000972 ****

state MD NR 0 -34.312460071 -43.6613298 -24.9635904 0.00000000972 ****

state MI NR 0 -35.087499501 -50.4227135 -19.7522855 0.00000000972 ****

state NC NR 0 -36.909997640 -47.7764842 -26.0435111 0.00000000972 ****

state NJ NR 0 -34.429368214 -44.9403545 -23.9183819 0.00000000972 ****

state NR NY 0 32.003582440 22.2212901 41.7858748 0.00000000972 ****

state NR OH 0 39.904990678 27.6827669 52.1272144 0.00000000972 ****

state NR PA 0 31.089204235 21.2414085 40.9370000 0.00000000972 ****

state NR TX 0 37.653736133 23.4670782 51.8403941 0.00000000972 ****

state NR VA 0 33.945354551 24.6243992 43.2663099 0.00000000972 ****

state NR WV 0 31.442762107 15.0983827 47.7871415 0.00000001010 ****

state IN NR 0 -35.615218456 -54.7929367 -16.4375002 0.00000001180 ****

state MN NR 0 -34.321230152 -53.1082686 -15.5341917 0.00000001420 ****

state MO NR 0 -35.329970090 -54.9351196 -15.7248205 0.00000001810 ****

state AZ NR 0 -40.241258860 -63.6318125 -16.8507052 0.00000007330 ****

state CO NR 0 -29.658875461 -47.1666454 -12.1511055 0.00000013000 ****

state NH NR 0 -30.812388046 -49.5994265 -12.0253496 0.00000043500 ****

state NR RI 0 32.550583535 11.3774451 53.7237219 0.00000425000 ****

state NR WI 0 32.247154964 11.0740166 53.4202934 0.00000578000 ****

state NR SC 0 32.286713405 8.8961598 55.6772670 0.00010600000 ***
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state DC MD 0 2.300003515 0.5999902 4.0000169 0.00018000000 ***

state DC VA 0 1.932897995 0.3937783 3.4720177 0.00105000000 **

state OH PA 0 -8.815786443 -17.4419364 -0.1896364 0.03770000000 *

state DC OH 0 7.892534122 -0.1617464 15.9468146 0.06400000000 ns

state DE OH 0 11.764418852 -0.3419381 23.8707758 0.07060000000 ns

state NY OH 0 7.901408238 -0.6498856 16.4527021 0.12100000000 ns

state MD PA 0 -3.223255835 -6.7487451 0.3022334 0.13500000000 ns

state NC PA 0 -5.820793405 -12.3864800 0.7448932 0.17800000000 ns

state DC NC 0 4.897541084 -0.8963532 10.6914354 0.26100000000 ns

state PA VA 0 2.856150316 -0.5946349 6.3069356 0.30300000000 ns

state DE NC 0 8.769425814 -1.9665723 19.5054239 0.33000000000 ns

state NC NY 0 -4.906415200 -11.3734395 1.5606091 0.49600000000 ns

state OH VA 0 -5.959636127 -13.9790869 2.0598147 0.54300000000 ns

state MD OH 0 5.592530607 -2.4593479 13.6444091 0.69000000000 ns

state MD NY 0 -2.308877630 -5.6470264 1.0292711 0.69800000000 ns

state DE TX 0 9.513164307 -4.5737938 23.6001224 0.74400000000 ns

state DE MD 0 6.171888245 -3.0249857 15.3687621 0.75500000000 ns

state CA OH 0 7.312523333 -4.1348027 18.7598494 0.83300000000 ns

state CT OH 0 7.302577397 -4.2254001 18.8305549 0.84400000000 ns

state DE VA 0 5.804782725 -3.3637141 14.9732795 0.84500000000 ns

state CO OH 0 10.246115217 -6.6048014 27.0970319 0.89200000000 ns

state DE NJ 0 6.288796389 -4.0872316 16.6648244 0.89600000000 ns

state MA OH 0 5.974777941 -4.0604273 16.0099831 0.91200000000 ns

state NY VA 0 1.941772111 -1.3173814 5.2009256 0.91200000000 ns

state GA OH 0 8.367847297 -5.7920761 22.5277707 0.91900000000 ns

state NJ OH 0 5.475622464 -3.9005289 14.8517739 0.92800000000 ns

state PA TX 0 6.564531897 -4.6733048 17.8023686 0.92800000000 ns

state DE FL 0 7.635214307 -5.6080962 20.8785248 0.93700000000 ns

state IL OH 0 6.631761268 -4.9808031 18.2443257 0.94300000000 ns

state NJ PA 0 -3.340163979 -9.2990685 2.6187405 0.95400000000 ns

state OH WV 0 -8.462228571 -24.1009664 7.1765092 0.96900000000 ns

state DE MA 0 5.789640911 -5.1855623 16.7648441 0.97800000000 ns

state DC TX 0 5.641279577 -5.1638093 16.4463684 0.98000000000 ns

state AZ DE 0 -12.100687034 -35.4309062 11.2295321 0.98200000000 ns

state NC VA 0 -2.964643089 -8.7100210 2.7807349 0.98300000000 ns
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state NY TX 0 5.650153692 -5.5303265 16.8306339 0.98700000000 ns

state NH OH 0 9.092602632 -9.0838711 27.2690764 0.98900000000 ns

state DC NJ 0 2.416911659 -2.6791175 7.5129409 0.99500000000 ns

state CO NC 0 7.251122179 -8.6438823 23.1461267 0.99700000000 ns

state DE MI 0 6.946927676 -8.2961006 22.1899560 0.99700000000 ns

state FL PA 0 -4.686581897 -14.8468899 5.4737261 0.99700000000 ns

state MD NC 0 2.597537569 -3.1930171 8.3880922 0.99800000000 ns

state AZ PA 0 -9.152054624 -30.8809688 12.5768595 0.99900000000 ns

state CA NC 0 4.317530295 -5.6694137 14.3044743 0.99900000000 ns

state CO TX 0 7.994860672 -10.3308563 26.3205776 0.99900000000 ns

state CT NC 0 4.307584359 -5.7717034 14.3868722 0.99900000000 ns

state DC DE 0 -3.871884730 -13.0708617 5.3270922 0.99900000000 ns

state DE IL 0 5.132657585 -7.3012233 17.5665385 0.99900000000 ns

state GA NC 0 5.372854259 -7.6348822 18.3805907 0.99900000000 ns

state NJ NY 0 -2.425785774 -8.2758033 3.4242318 0.99900000000 ns

state AZ CA 0 -7.648791515 -30.6439327 15.3463497 1.00000000000 ns

state AZ CO 0 -10.582383399 -36.6915511 15.5267843 1.00000000000 ns

state AZ CT 0 -7.638845579 -30.6742425 15.3965514 1.00000000000 ns

state AZ DC 0 -8.228802304 -29.7370956 13.2794910 1.00000000000 ns

state AZ FL 0 -4.465472727 -27.9893070 19.0583615 1.00000000000 ns

state AZ GA 0 -8.704115479 -33.1630336 15.7548027 1.00000000000 ns

state AZ IL 0 -6.968029449 -30.0458738 16.1098149 1.00000000000 ns

state AZ IN 0 -4.626040404 -31.8831772 22.6310964 1.00000000000 ns

state AZ MA 0 -6.311046123 -28.6368292 16.0147369 1.00000000000 ns

state AZ MD 0 -5.928798789 -27.4361927 15.5785951 1.00000000000 ns

state AZ MI 0 -5.153759358 -29.8587268 19.5512081 1.00000000000 ns

state AZ MN 0 -5.920028708 -32.9037172 21.0636598 1.00000000000 ns

state AZ MO 0 -4.911288770 -32.4708337 22.6482562 1.00000000000 ns

state AZ NC 0 -3.331261220 -25.5404296 18.8779071 1.00000000000 ns

state AZ NH 0 -9.428870813 -36.4125593 17.5548176 1.00000000000 ns

state AZ NJ 0 -5.811890646 -27.8493011 16.2255198 1.00000000000 ns

state AZ NY 0 -8.237676419 -29.9369822 13.4616294 1.00000000000 ns

state AZ OH 0 -0.336268182 -23.2393113 22.5667749 1.00000000000 ns

state AZ RI 0 -7.690675325 -36.3868147 21.0054641 1.00000000000 ns

state AZ SC 0 -7.954545455 -38.3236848 22.4145939 1.00000000000 ns
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state AZ TX 0 -2.587522727 -26.5964355 21.4213900 1.00000000000 ns

state AZ VA 0 -6.295904309 -27.7911791 15.1993704 1.00000000000 ns

state AZ WI 0 -7.994103896 -36.6902433 20.7020355 1.00000000000 ns

state AZ WV 0 -8.798496753 -34.1422409 16.5452474 1.00000000000 ns

state CA CO 0 -2.933591884 -19.9094727 14.0422889 1.00000000000 ns

state CA CT 0 0.009945936 -11.6999389 11.7198308 1.00000000000 ns

state CA DC 0 -0.580010789 -8.8925659 7.7325443 1.00000000000 ns

state CA DE 0 -4.451895519 -16.7315949 7.8278039 1.00000000000 ns

state CA FL 0 3.183318788 -9.4603622 15.8269998 1.00000000000 ns

state CA GA 0 -1.055323964 -15.3637330 13.2530851 1.00000000000 ns

state CA IL 0 0.680762066 -11.1124050 12.4739291 1.00000000000 ns

state CA IN 0 3.022751111 -15.6706541 21.7161563 1.00000000000 ns

state CA MA 0 1.337745392 -8.9059103 11.5814011 1.00000000000 ns

state CA MD 0 1.719992726 -6.5902350 10.0302205 1.00000000000 ns

state CA MI 0 2.495032157 -12.2300250 17.2200893 1.00000000000 ns

state CA MN 0 1.728762807 -16.5636218 20.0211474 1.00000000000 ns

state CA MO 0 2.737502745 -16.3941571 21.8691626 1.00000000000 ns

state CA NH 0 -1.780079298 -20.0724639 16.5123053 1.00000000000 ns

state CA NJ 0 1.836900870 -7.7620237 11.4358255 1.00000000000 ns

state CA NY 0 -0.588884904 -9.3838701 8.2061003 1.00000000000 ns

state CA PA 0 -1.503263109 -10.3710476 7.3645214 1.00000000000 ns

state CA RI 0 -0.041883810 -20.7773681 20.6936005 1.00000000000 ns

state CA SC 0 -0.305753939 -23.3008952 22.6893873 1.00000000000 ns

state CA TX 0 5.061268788 -8.4635153 18.5860529 1.00000000000 ns

state CA VA 0 1.352887206 -6.9259249 9.6316993 1.00000000000 ns

state CA WI 0 -0.345312381 -21.0807967 20.3901719 1.00000000000 ns

state CA WV 0 -1.149705238 -16.9230136 14.6236032 1.00000000000 ns

state CO CT 0 2.943537820 -14.0868328 19.9739084 1.00000000000 ns

state CO DC 0 2.353581095 -12.5464421 17.2536043 1.00000000000 ns

state CO DE 0 -1.518303635 -18.9453841 15.9087769 1.00000000000 ns

state CO FL 0 6.116910672 -11.5685293 23.8023506 1.00000000000 ns

state CO GA 0 1.878267920 -17.0331754 20.7897112 1.00000000000 ns

state CO IL 0 3.614353950 -13.4733875 20.7020954 1.00000000000 ns

state CO IN 0 5.956342995 -16.4569458 28.3696318 1.00000000000 ns

state CO MA 0 4.271337276 -11.7862030 20.3288775 1.00000000000 ns
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state CO MD 0 4.653584610 -10.2451403 19.5523095 1.00000000000 ns

state CO MI 0 5.428624041 -13.7999855 24.6572336 1.00000000000 ns

state CO MN 0 4.662354691 -17.4175786 26.7422880 1.00000000000 ns

state CO MO 0 5.671094629 -17.1089960 28.4511852 1.00000000000 ns

state CO NH 0 1.153512586 -20.9264207 23.2334459 1.00000000000 ns

state CO NJ 0 4.770492754 -10.8836272 20.4246127 1.00000000000 ns

state CO NY 0 2.344706980 -12.8297414 17.5191553 1.00000000000 ns

state CO PA 0 1.430328775 -13.7864291 16.6470866 1.00000000000 ns

state CO RI 0 2.891708075 -21.2510430 27.0344591 1.00000000000 ns

state CO SC 0 2.627837945 -23.4813298 28.7370056 1.00000000000 ns

state CO VA 0 4.286479090 -10.5947456 19.1677037 1.00000000000 ns

state CO WI 0 2.588279503 -21.5544715 26.7310305 1.00000000000 ns

state CO WV 0 1.783886646 -18.2588022 21.8265755 1.00000000000 ns

state CT DC 0 -0.589956725 -9.0132319 7.8333184 1.00000000000 ns

state CT DE 0 -4.461841455 -16.8167599 7.8930769 1.00000000000 ns

state CT FL 0 3.173372852 -9.5433744 15.8901201 1.00000000000 ns

state CT GA 0 -1.065269900 -15.4382849 13.3077451 1.00000000000 ns

state CT IL 0 0.670816130 -11.2006531 12.5422854 1.00000000000 ns

state CT IN 0 3.012805175 -15.7300972 21.7557076 1.00000000000 ns

state CT MA 0 1.327799456 -9.0059062 11.6615051 1.00000000000 ns

state CT MD 0 1.710046790 -6.7109316 10.1310252 1.00000000000 ns

state CT MI 0 2.485086221 -12.3027567 17.2729292 1.00000000000 ns

state CT MN 0 1.718816871 -16.6241471 20.0617808 1.00000000000 ns

state CT MO 0 2.727556809 -16.4524693 21.9075829 1.00000000000 ns

state CT NH 0 -1.790025234 -20.1329892 16.5529387 1.00000000000 ns

state CT NJ 0 1.826954933 -7.8680100 11.5219199 1.00000000000 ns

state CT NY 0 -0.598830840 -9.4985362 8.3008746 1.00000000000 ns

state CT PA 0 -1.513209045 -10.4848641 7.4584460 1.00000000000 ns

state CT RI 0 -0.051829746 -20.8319477 20.7282882 1.00000000000 ns

state CT SC 0 -0.315699875 -23.3510968 22.7196971 1.00000000000 ns

state CT TX 0 5.051322852 -8.5417922 18.6444379 1.00000000000 ns

state CT VA 0 1.342941270 -7.0470361 9.7329187 1.00000000000 ns

state CT WI 0 -0.355258317 -21.1353763 20.4248596 1.00000000000 ns

state CT WV 0 -1.159651174 -16.9915888 14.6722865 1.00000000000 ns

state DC FL 0 3.763329577 -5.9161761 13.4428352 1.00000000000 ns
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state DC GA 0 -0.475313175 -12.2464954 11.2958690 1.00000000000 ns

state DC IL 0 1.260772855 -7.2779009 9.7994467 1.00000000000 ns

state DC IN 0 3.602761900 -13.2279707 20.4334945 1.00000000000 ns

state DC MA 0 1.917756181 -4.3082090 8.1437213 1.00000000000 ns

state DC MI 0 3.075042946 -9.1992174 15.3493033 1.00000000000 ns

state DC MN 0 2.308773596 -14.0754107 18.6929579 1.00000000000 ns

state DC MO 0 3.317513534 -13.9986803 20.6337074 1.00000000000 ns

state DC NH 0 -1.200068509 -17.5842528 15.1841158 1.00000000000 ns

state DC NY 0 -0.008874115 -3.3528126 3.3350644 1.00000000000 ns

state DC PA 0 -0.923252320 -4.4542242 2.6077195 1.00000000000 ns

state DC RI 0 0.538126980 -18.5351651 19.6114190 1.00000000000 ns

state DC SC 0 0.274256850 -21.2340364 21.7825501 1.00000000000 ns

state DC WI 0 0.234698408 -18.8385937 19.3079905 1.00000000000 ns

state DC WV 0 -0.569694449 -14.0836657 12.9442768 1.00000000000 ns

state DE GA 0 3.396571555 -11.4443575 18.2375006 1.00000000000 ns

state DE IN 0 7.474646630 -11.6294368 26.5787300 1.00000000000 ns

state DE MN 0 6.180658326 -12.5312080 24.8925246 1.00000000000 ns

state DE MO 0 7.189398264 -12.3437278 26.7225243 1.00000000000 ns

state DE NH 0 2.671816221 -16.0400501 21.3836825 1.00000000000 ns

state DE NY 0 3.863010615 -5.7741243 13.5001455 1.00000000000 ns

state DE PA 0 2.948632410 -6.7549858 12.6522506 1.00000000000 ns

state DE RI 0 4.410011710 -16.6964545 25.5164779 1.00000000000 ns

state DE SC 0 4.146141580 -19.1840775 27.4763607 1.00000000000 ns

state DE WI 0 4.106583138 -16.9998830 25.2130493 1.00000000000 ns

state DE WV 0 3.302190281 -12.9557266 19.5601072 1.00000000000 ns

state FL GA 0 -4.238642752 -19.3821175 10.9048320 1.00000000000 ns

state FL IL 0 -2.502556722 -15.2960334 10.2909200 1.00000000000 ns

state FL IN 0 -0.160567677 -19.5006208 19.1794854 1.00000000000 ns

state FL MA 0 -1.845573396 -13.2265548 9.5354080 1.00000000000 ns

state FL MD 0 -1.463326062 -11.1408331 8.2141809 1.00000000000 ns

state FL MI 0 -0.688286631 -16.2260331 14.8494598 1.00000000000 ns

state FL MN 0 -1.454555981 -20.4072759 17.4981639 1.00000000000 ns

state FL MO 0 -0.445816043 -20.2097900 19.3181579 1.00000000000 ns

state FL NC 0 1.134211507 -10.0162731 12.2846961 1.00000000000 ns

state FL NH 0 -4.963398086 -23.9161180 13.9893218 1.00000000000 ns
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state FL NJ 0 -1.346417918 -12.1507508 9.4579150 1.00000000000 ns

state FL NY 0 -3.772203692 -13.8690359 6.3246285 1.00000000000 ns

state FL OH 0 4.129204545 -8.3461925 16.6046016 1.00000000000 ns

state FL RI 0 -3.225202597 -24.5454879 18.0950827 1.00000000000 ns

state FL SC 0 -3.489072727 -27.0129070 20.0347615 1.00000000000 ns

state FL TX 0 1.877950000 -12.5273977 16.2832977 1.00000000000 ns

state FL VA 0 -1.830431582 -11.4809749 7.8201117 1.00000000000 ns

state FL WI 0 -3.528631169 -24.8489165 17.7916542 1.00000000000 ns

state FL WV 0 -4.333024026 -20.8675792 12.2015311 1.00000000000 ns

state GA IL 0 1.736086030 -12.7048609 16.1770329 1.00000000000 ns

state GA IN 0 4.078075075 -16.3891073 24.5452575 1.00000000000 ns

state GA MA 0 2.393069356 -10.8127869 15.5989256 1.00000000000 ns

state GA MD 0 2.775316690 -8.9942221 14.5448554 1.00000000000 ns

state GA MI 0 3.550356121 -13.3697345 20.4704467 1.00000000000 ns

state GA MN 0 2.784086771 -17.3174926 22.8856661 1.00000000000 ns

state GA MO 0 3.792826709 -17.0753923 24.6610458 1.00000000000 ns

state GA NH 0 -0.724755334 -20.8263347 19.3768240 1.00000000000 ns

state GA NJ 0 2.892224834 -9.8200335 15.6044831 1.00000000000 ns

state GA NY 0 0.466439060 -11.6502404 12.5831186 1.00000000000 ns

state GA PA 0 -0.447939145 -12.6175636 11.7216853 1.00000000000 ns

state GA RI 0 1.013440154 -21.3343219 23.3612022 1.00000000000 ns

state GA SC 0 0.749570025 -23.7093481 25.2084882 1.00000000000 ns

state GA TX 0 6.116592752 -9.7699406 22.0031261 1.00000000000 ns

state GA VA 0 2.408211170 -9.3391667 14.1555890 1.00000000000 ns

state GA WI 0 0.710011583 -21.6377504 23.0577736 1.00000000000 ns

state GA WV 0 -0.094381274 -17.9342079 17.7454454 1.00000000000 ns

state IL IN 0 2.341989045 -16.4530575 21.1370356 1.00000000000 ns

state IL MA 0 0.656983326 -9.7710011 11.0849678 1.00000000000 ns

state IL MD 0 1.039230661 -7.4971774 9.5756387 1.00000000000 ns

state IL MI 0 1.814270091 -13.0396077 16.6681479 1.00000000000 ns

state IL MN 0 1.048000741 -17.3482411 19.4442426 1.00000000000 ns

state IL MO 0 2.056740679 -17.1742444 21.2877258 1.00000000000 ns

state IL NC 0 3.636768230 -6.5391557 13.8126922 1.00000000000 ns

state IL NH 0 -2.460841364 -20.8570832 15.9354004 1.00000000000 ns

state IL NJ 0 1.156138804 -8.6392545 10.9515322 1.00000000000 ns
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state IL NY 0 -1.269646970 -10.2786504 7.7393564 1.00000000000 ns

state IL PA 0 -2.184025175 -11.2641122 6.8960618 1.00000000000 ns

state IL RI 0 -0.722645875 -21.5498081 20.1045164 1.00000000000 ns

state IL SC 0 -0.986516005 -24.0643603 22.0913283 1.00000000000 ns

state IL TX 0 4.380506722 -9.2844178 18.0454312 1.00000000000 ns

state IL VA 0 0.672125141 -7.8337027 9.1779530 1.00000000000 ns

state IL WI 0 -1.026074447 -21.8532367 19.8010878 1.00000000000 ns

state IL WV 0 -1.830467304 -17.7241024 14.0631678 1.00000000000 ns

state IN MA 0 -1.685005719 -19.5485851 16.1785736 1.00000000000 ns

state IN MD 0 -1.302758385 -18.1323416 15.5268248 1.00000000000 ns

state IN MI 0 -0.527718954 -21.2883137 20.2328758 1.00000000000 ns

state IN MN 0 -1.293988304 -24.7201771 22.1322005 1.00000000000 ns

state IN MO 0 -0.285248366 -24.3724938 23.8019971 1.00000000000 ns

state IN NC 0 1.294779184 -16.4228402 19.0123986 1.00000000000 ns

state IN NH 0 -4.802830409 -28.2290192 18.6233584 1.00000000000 ns

state IN NJ 0 -1.185850242 -18.6876884 16.3159879 1.00000000000 ns

state IN NY 0 -3.611636015 -20.6857905 13.4625184 1.00000000000 ns

state IN OH 0 4.289772222 -14.2902240 22.8697685 1.00000000000 ns

state IN PA 0 -4.526014220 -21.6377817 12.5857533 1.00000000000 ns

state IN RI 0 -3.064634921 -28.4444556 22.3151857 1.00000000000 ns

state IN SC 0 -3.328505051 -30.5856418 23.9286317 1.00000000000 ns

state IN TX 0 2.038517677 -17.8887192 21.9657546 1.00000000000 ns

state IN VA 0 -1.669863905 -18.4839566 15.1442288 1.00000000000 ns

state IN WI 0 -3.368063492 -28.7478841 22.0117571 1.00000000000 ns

state IN WV 0 -4.172456349 -25.6892462 17.3443335 1.00000000000 ns

state MA MD 0 0.382247334 -5.8406101 6.6051047 1.00000000000 ns

state MA MI 0 1.157286765 -12.4988978 14.8134713 1.00000000000 ns

state MA MN 0 0.391017415 -17.0524743 17.8345092 1.00000000000 ns

state MA MO 0 1.399757353 -16.9219368 19.7214516 1.00000000000 ns

state MA NC 0 2.979784903 -5.3510686 11.3106384 1.00000000000 ns

state MA NH 0 -3.117824690 -20.5613164 14.3256671 1.00000000000 ns

state MA NJ 0 0.499155477 -7.3623598 8.3606708 1.00000000000 ns

state MA NY 0 -1.926630296 -8.7834396 4.9301790 1.00000000000 ns

state MA PA 0 -2.841008501 -9.7909489 4.1089319 1.00000000000 ns

state MA RI 0 -1.379629202 -21.3702365 18.6109781 1.00000000000 ns
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state MA SC 0 -1.643499332 -23.9692824 20.6822837 1.00000000000 ns

state MA TX 0 3.723523396 -8.6289603 16.0760071 1.00000000000 ns

state MA VA 0 0.015141814 -6.1656994 6.1959831 1.00000000000 ns

state MA WI 0 -1.683057773 -21.6736650 18.3075495 1.00000000000 ns

state MA WV 0 -2.487450630 -17.2678879 12.2929867 1.00000000000 ns

state MD MI 0 0.775039431 -11.4976449 13.0477237 1.00000000000 ns

state MD MN 0 0.008770081 -16.3742335 16.3917737 1.00000000000 ns

state MD MO 0 1.017510019 -16.2975667 18.3325867 1.00000000000 ns

state MD NH 0 -3.500072024 -19.8830757 12.8829316 1.00000000000 ns

state MD NJ 0 0.116908143 -4.9753238 5.2091401 1.00000000000 ns

state MD RI 0 -1.761876536 -20.8341544 17.3104013 1.00000000000 ns

state MD SC 0 -2.025746666 -23.5331406 19.4816472 1.00000000000 ns

state MD TX 0 3.341276062 -7.4620224 14.1445745 1.00000000000 ns

state MD VA 0 -0.367105520 -1.8936054 1.1593944 1.00000000000 ns

state MD WI 0 -2.065305107 -21.1375830 17.0069727 1.00000000000 ns

state MD WV 0 -2.869697964 -16.3822377 10.6428418 1.00000000000 ns

state MI MN 0 -0.766269350 -21.1665201 19.6339814 1.00000000000 ns

state MI MO 0 0.242470588 -20.9135996 21.3985407 1.00000000000 ns

state MI NC 0 1.822498138 -11.6421944 15.2871907 1.00000000000 ns

state MI NH 0 -4.275111455 -24.6753622 16.1251393 1.00000000000 ns

state MI NJ 0 -0.658131287 -13.8375944 12.5213319 1.00000000000 ns

state MI NY 0 -3.083917061 -15.6898942 9.5220601 1.00000000000 ns

state MI OH 0 4.817491176 -9.7633239 19.3983063 1.00000000000 ns

state MI PA 0 -3.998295266 -16.6551708 8.6585802 1.00000000000 ns

state MI RI 0 -2.536915966 -25.1537063 20.0798744 1.00000000000 ns

state MI SC 0 -2.800786096 -27.5057535 21.9041813 1.00000000000 ns

state MI TX 0 2.566236631 -13.6965639 18.8290371 1.00000000000 ns

state MI VA 0 -1.142144950 -13.3935785 11.1092886 1.00000000000 ns

state MI WI 0 -2.840344538 -25.4571349 19.7764458 1.00000000000 ns

state MI WV 0 -3.644737395 -21.8204397 14.5309649 1.00000000000 ns

state MN MO 0 1.008739938 -22.7686302 24.7861101 1.00000000000 ns

state MN NC 0 2.588767488 -14.7052191 19.8827541 1.00000000000 ns

state MN NH 0 -3.508842105 -26.6162924 19.5986082 1.00000000000 ns

state MN NJ 0 0.108138063 -16.9647140 17.1809901 1.00000000000 ns

state MN NY 0 -2.317647711 -18.9517899 14.3164945 1.00000000000 ns
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state MN OH 0 5.583760526 -12.5927132 23.7602343 1.00000000000 ns

state MN PA 0 -3.232025916 -19.9047739 13.4407221 1.00000000000 ns

state MN RI 0 -1.770646617 -26.8565636 23.3152704 1.00000000000 ns

state MN SC 0 -2.034516746 -29.0182052 24.9491717 1.00000000000 ns

state MN TX 0 3.332505981 -16.2190338 22.8840458 1.00000000000 ns

state MN VA 0 -0.375875601 -16.7429661 15.9912149 1.00000000000 ns

state MN WI 0 -2.074075188 -27.1599922 23.0118418 1.00000000000 ns

state MN WV 0 -2.878468045 -24.0477897 18.2908536 1.00000000000 ns

state MO NC 0 1.580027550 -16.5993852 19.7594403 1.00000000000 ns

state MO NH 0 -4.517582043 -28.2949522 19.2597881 1.00000000000 ns

state MO NJ 0 -0.900601876 -18.8697797 17.0685759 1.00000000000 ns

state MO NY 0 -3.326387649 -20.8792724 14.2264971 1.00000000000 ns

state MO OH 0 4.575020588 -14.4458435 23.5958847 1.00000000000 ns

state MO PA 0 -4.240765854 -21.8302399 13.3487082 1.00000000000 ns

state MO RI 0 -2.779386555 -28.4837112 22.9249381 1.00000000000 ns

state MO SC 0 -3.043256684 -30.6028016 24.5162882 1.00000000000 ns

state MO TX 0 2.323766043 -18.0151568 22.6626889 1.00000000000 ns

state MO VA 0 -1.384615539 -18.6846365 15.9154054 1.00000000000 ns

state MO WI 0 -3.082815126 -28.7871398 22.6215095 1.00000000000 ns

state MO WV 0 -3.887207983 -25.7858211 18.0114051 1.00000000000 ns

state NC NH 0 -6.097609594 -23.3915962 11.1963770 1.00000000000 ns

state NC NJ 0 -2.480629426 -10.0045906 5.0433317 1.00000000000 ns

state NC OH 0 2.994993038 -6.7780266 12.7680127 1.00000000000 ns

state NC RI 0 -4.359414105 -24.2196998 15.5008716 1.00000000000 ns

state NC SC 0 -4.623284235 -26.8324526 17.5858841 1.00000000000 ns

state NC TX 0 0.743738493 -11.3967073 12.8841842 1.00000000000 ns

state NC WI 0 -4.662842676 -24.5231284 15.1974430 1.00000000000 ns

state NC WV 0 -5.467235533 -20.0709302 9.1364591 1.00000000000 ns

state NH NJ 0 3.616980168 -13.4558719 20.6898322 1.00000000000 ns

state NH NY 0 1.191194394 -15.4429478 17.8253366 1.00000000000 ns

state NH PA 0 0.276816189 -16.3959318 16.9495642 1.00000000000 ns

state NH RI 0 1.738195489 -23.3477215 26.8241125 1.00000000000 ns

state NH SC 0 1.474325359 -25.5093631 28.4580138 1.00000000000 ns

state NH TX 0 6.841348086 -12.7101917 26.3928879 1.00000000000 ns
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state NH VA 0 3.132966505 -13.2341240 19.5000570 1.00000000000 ns

state NH WI 0 1.434766917 -23.6511501 26.5206839 1.00000000000 ns

state NH WV 0 0.630374060 -20.5389476 21.7996958 1.00000000000 ns

state NJ RI 0 -1.878784679 -21.5468108 17.7892414 1.00000000000 ns

state NJ SC 0 -2.142654809 -24.1800653 19.8947557 1.00000000000 ns

state NJ TX 0 3.224367918 -8.5989449 15.0476807 1.00000000000 ns

state NJ VA 0 -0.484013663 -5.5248142 4.5567869 1.00000000000 ns

state NJ WI 0 -2.182213251 -21.8502394 17.4858129 1.00000000000 ns

state NJ WV 0 -2.986606108 -17.3277427 11.3545305 1.00000000000 ns

state NY PA 0 -0.914378205 -5.4664057 3.6376493 1.00000000000 ns

state NY RI 0 0.547001095 -18.7414323 19.8354345 1.00000000000 ns

state NY SC 0 0.283130965 -21.4161748 21.9824368 1.00000000000 ns

state NY WI 0 0.243572523 -19.0448609 19.5320059 1.00000000000 ns

state NY WV 0 -0.560820334 -14.3767752 13.2551346 1.00000000000 ns

state OH RI 0 -7.354407143 -27.9877096 13.2788954 1.00000000000 ns

state OH SC 0 -7.618277273 -30.5213203 15.2847658 1.00000000000 ns

state OH TX 0 -2.251254545 -15.6188514 11.1163423 1.00000000000 ns

state OH WI 0 -7.657835714 -28.2911382 12.9754668 1.00000000000 ns

state PA RI 0 1.461379300 -17.8603572 20.7831158 1.00000000000 ns

state PA SC 0 1.197509170 -20.5314050 22.9264233 1.00000000000 ns

state PA WI 0 1.157950728 -18.1637857 20.4796872 1.00000000000 ns

state PA WV 0 0.353557871 -13.5088534 14.2159692 1.00000000000 ns

state RI SC 0 -0.263870130 -28.9600095 28.4322693 1.00000000000 ns

state RI TX 0 5.103152597 -16.7511761 26.9574813 1.00000000000 ns

state RI VA 0 1.394771016 -17.6638393 20.4533813 1.00000000000 ns

state RI WI 0 -0.303428571 -27.2227935 26.6159363 1.00000000000 ns

state RI WV 0 -1.107821429 -24.4206753 22.2050324 1.00000000000 ns

state SC TX 0 5.367022727 -18.6418900 29.3759355 1.00000000000 ns

state SC VA 0 1.658641146 -19.8366336 23.1539159 1.00000000000 ns

state SC WI 0 -0.039558442 -28.7356979 28.6565810 1.00000000000 ns

state SC WV 0 -0.843951299 -26.1876954 24.4997928 1.00000000000 ns

state TX VA 0 -3.708381582 -14.4875328 7.0707697 1.00000000000 ns

state TX WI 0 -5.406581169 -27.2609099 16.4477475 1.00000000000 ns

state TX WV 0 -6.210974026 -23.4286577 11.0067096 1.00000000000 ns

state VA WI 0 -1.698199587 -20.7568099 17.3604107 1.00000000000 ns
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state VA WV 0 -2.502592444 -15.9958343 10.9906494 1.00000000000 ns

state WI WV 0 -0.804392857 -24.1172467 22.5084610 1.00000000000 ns

We see that:
• Every pair of states are compared with an estimate, a 95% confidence 

interval, and an adjusted p-value.
• For example, the runners from the “CA” state have significantly 

higher mean run time than runners from the “NR” state. The 
difference is estimated to be 32.59 and can be as high as 44.99 and 
as low as 20.20.

• On the other hand, runners from “WI” state have statistically 
equivalent mean run time to runners from “WV” state.

To trust these results, we must test the assumptions of ANOVA on our data. 
The runners from different states are independent with no relation between 
them. Other tests will be described below.

4.4.3.4. Test for Outliers in the Run Time from Runners of Dif-
ferent States
We use the identify_outliers function with the argument, time, after the group_
by function with the argument state to detect any outliers in the run time within 
the different states. Then, we use the select function to select the important 
columns to be viewed (state, time, is.outlier, is.extreme) instead of viewing all 
columns of the “run_filtered” data. Finally, we convert the results to a table as 
before.
run_filtered %>%

 group_by(state) %>%

 identify_outliers(time) %>% select(state, time, is.outlier, is.extreme) %>%

 flextable() %>%

 theme_box() %>%

 set_caption(caption = “Outlier test results for run time in runners from 28 
states of Cherry Blossom Run data in 2009”)
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Table 4.47. Outlier Test Results for the Run Time in Runners from 28 States of 
Cherry Blossom Run Data in 2009

State Time is.outlier is.extreme
DC 158.133 TRUE FALSE
DE 141.183 TRUE FALSE
MN 48.067 TRUE FALSE
MO 155.883 TRUE FALSE
PA 50.700 TRUE FALSE
SC 79.617 TRUE FALSE
SC 116.533 TRUE FALSE
SC 132.983 TRUE TRUE
VA 163.250 TRUE FALSE
VA 169.617 TRUE FALSE
WV 150.683 TRUE FALSE
WV 150.667 TRUE FALSE
WV 150.683 TRUE FALSE

We have many outlying run time values in different states so a non-
parametric alternative (Kruskal-Wallis test) should be used.

4.4.3.5. Test for Normality of the Run Time from Runners of Dif-
ferent States
As we saw in Chapter 1, normality can be checked using the QQ plot and 
Shapiro-Wilk test. For the ANOVA test, the normality assumption can be 
checked either by:

• Analyzing the ANOVA model residuals to check the normality for 
all groups together. The residuals are the difference between the 
actual run time and the predicted run time using the ANOVA test.

• Check normality for each group separately.

4.4.3.5.1. Analyzing the ANOVA Model Residuals Using QQ Plot
We will run the ANOVA test using the aov function then run the residuals 
function and finally the ggqqplot function.
ggqqplot(residuals(run_filtered %>% aov(formula = time ~ state)),

    

     title = “QQ plot of ANOVA model residuals of mean run time\n in runners from 
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28 states of Cherry Blossom Run data in 2009,”

    

     xlab = “Theoretical percentiles,” ylab = “Sample percentiles”)+

 theme(plot.title = element_text(hjust = 0.5))

We see that not all data points (residuals) fall along the reference line or 
within the confidence band, so we can not assume the normality of this ANOVA 
model residuals and we should use the Kruskal-Wallis test.

4.4.3.5.2. Analyzing the ANOVA Model Residuals Using the Shap-
iro-Wilk Test
We will run the ANOVA test using the aov function then run the residuals 
function and finally the shapiro_test function.
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shapiro_test(residuals(run_filtered %>% aov(formula = time ~ state)))

## Error in shapiro.test(data): sample size must be between 3 and 5000

The Shapiro test gives an error because it can handle a sample size of a 
maximum of 5000 but the residuals of this ANOVA test are 14877 in size (as 
the number of rows in “run_filtered” data). We can check that using the length 
function.
length(residuals(run_filtered %>% aov(formula = time ~ state)))

## [1] 14877

We have 14877 residual values. Alternatively, we can use the Anderson-
Darling test for normality which can handle large sample sizes using the ad.test 
from the nortest package.
library(nortest)

ad.test(residuals(run_filtered %>% aov(formula = time ~ state)))

##

## Anderson-Darling normality test

##

## data: residuals(run_filtered %>% aov(formula = time ~ state))

## A = 5.7034, p-value = 4.82e-14

We see that the p-value is significant so the residuals from this ANOVA test 
are not normally distributed.

4.4.3.5.3. Check the Normality of Run Time in Each State Using the 
QQ Plot
We use the ggqqplot as done before.
ggqqplot(data = run_filtered, x = “time,” facet.by = “state,”

    

     title = “QQ plot of run time in runners from 28 states of Cherry Blossom 
Run data in 2009,”

    

     xlab = “Theoretical percentiles,” ylab = “Sample percentiles”)+

 theme(plot.title = element_text(hjust = 0.5))
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In some states like “SC” and “NR” states, not all data points fall along the 
reference line or within the confidence band, so we can not assume normality or 
run time in these states and we should use the Kruskal-Wallis test.

4.4.3.5.4. Check the Normality of Run Time in Each State Using the 
Shapiro-Wilk Test
We have seen in the “df” data frame that only 1 state “VA” has a count of more 
than 5000. So, all other states can be tested using the Shapiro-Wilk test and the 
“VA” state can be tested using the Anderson-Darling test.

To do the Shapiro-Wilk test for the run time of runners from all states except 
the “VA” state, we use the following functions:

• The filter function with the argument !state==“VA” to keep all states 
except the “VA” state.
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• The group_by function with state argument split the original data 
frame into 27 different data frames, each containing a single state.

• The shapiro_test function with time argument to do the Shapiro test 
on the run time within each of the 27 data frames.

• The arrange function with “p” argument to arrange the states by their 
p-value in ascending order.

Then, we convert the result to a table as before.
run_filtered %>% filter(!state==“VA”) %>% group_by(state) %>%

 shapiro_test(time) %>% arrange(p) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Shapiro Wilk test results of the run time of runners from 
27 states of Cherry Blossom Run data in 2009”)

Table 4.48. Shapiro Wilk Test Results of the Run Time of Runners from 27 States of 
Cherry Blossom Run Data in 2009

State Variable Statistic p
NR time 0.7916430 0.0000001010331
DC time 0.9964880 0.0000003026398
MD time 0.9976155 0.0000254297578
WV time 0.9322716 0.0703558034419
NY time 0.9950121 0.0901289298618
CO time 0.9314712 0.1176689216068
MI time 0.9541755 0.1636801110913
FL time 0.9690047 0.1660520946277
DE time 0.9718075 0.1711607928781
RI time 0.9131650 0.1751648374851
GA time 0.9600517 0.2027996095415
MN time 0.9429599 0.2979244562344
OH time 0.9818345 0.3143889157282
IN time 0.9437351 0.3352867263881
CA time 0.9817530 0.3534059875710
NJ time 0.9923606 0.3555229987540
NH time 0.9490626 0.3809120645476
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SC time 0.9282714 0.3936327687341
NC time 0.9909337 0.4118030556767
PA time 0.9966276 0.4494370300883
AZ time 0.9369979 0.4858739931399
TX time 0.9761737 0.4883669893670
MO time 0.9597313 0.6264349115750
MA time 0.9928759 0.7297291316348
WI time 0.9619497 0.7550410155766
CT time 0.9886693 0.7614992787130
IL time 0.9914030 0.9131006409283

We see that only 3 states (“NR,” “DC,” and “MD”) have significant 
p-values meaning that the run time of runners from these 3 states is not normally 
distributed and we should use the Kruskal-Wallis test.

To do the Anderson-Darling test for run time of runners from the “VA” 
state, we use the following functions:

• The filter function with the argument state==“VA” to keep only the 
“VA” state.

• The pull function with time argument extracts the time values from 
this data frame containing the “VA” state.

Then, we use the ad.test function as before.
ad.test(run_filtered %>% filter(state==“VA”) %>% pull(time))

##

## Anderson-Darling normality test

##

## data: run_filtered %>% filter(state == “VA”) %>% pull(time)

## A = 2.9814, p-value = 1.74e-07

We see that the p-value is significant meaning that the run time of runners 
from the “VA” state is not normally distributed and we should use the Kruskal-
Wallis test.

4.4.3.6. Homogeneity of Variance of Run Time Across the Differ-
ent States
We can test that using the levene_test function with the same formula as that of 
the ANOVA test.
run_filtered %>% levene_test(formula = time ~ state) %>% flextable() %>%
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 theme_box() %>%

 set_caption(caption = “Levene’s test results for homogeneity of variance of 
run time of runners from 28 states of Cherry Blossom Run data in 2009”)

Table 4.49. Levene’s Test Results for Homogeneity of Variance of Run Time of Run-
ners from 28 States of Cherry Blossom Run Data in 2009

df1 df2 Statistic p
27 14,849 2.597272 0.00001114296

The p-value is significant so we conclude that the variances of run time 
of runners from these 28 states are different. We can use the Welch one-way 
ANOVA test using the function welch_anova_test. This test does not require 
the assumption of equal variances across the different groups (states) but does 
require the normality assumption to be met.

4.4.3.7. Welch ANOVA Test
We use the welch_anova_test function using the same formula as that of the 
standard ANOVA test.
run_filtered %>% welch_anova_test(formula = time ~ state) %>% flextable() %>%

 theme_box() %>%

 set_caption(caption = “Welch ANOVA test results for the mean run time of runners 
from 28 states of Cherry Blossom Run data in 2009”)

Table 4.50. Welch ANOVA Test Results for the Mean Run Time of Runners from 28 
States of Cherry Blossom Run Data in 2009

.y. n Statistic DFn DFd p Method

time 14,877 5.32 27 297.6726 0.0000000000000495 Welch 
ANOVA

In the table above, we see that:
• The “DFn” is the degrees of freedom in the numerator and “DFd” is 

the degrees of freedom in the denominator (DFd).
• The obtained F-statistic value that corresponds to our sample results 

is 5.32.
• The p is the significant p-value, so we reject the null hypothesis 
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and conclude that at least one state run time mean is significantly 
different from another state’s mean.

4.4.3.8. Post-Hoc Tests
A significant Welch ANOVA test is followed by Games Howell tests using the 
games_howell_test function to perform multiple pairwise tests between the 
different states with appropriate adjustment for the multiple testing. We will use 
the same formula of the ANOVA test with the games_howell_test function and 
arrange the adjusted p-values (p.adj) by using the arrange function.
run_filtered %>% games_howell_test(formula = time ~ state) %>%

 arrange(p.adj) %>% flextable() %>% theme_box() %>%

 set_caption(caption = “Games Howell tests of the mean run time 
in runners from 28 states of Cherry Blossom Run data in 2009”)

Table 4.51. Games Howell Tests of the Mean Run Time in Runners from 28 States 
of Cherry Blossom Run Data in 2009

.y. Group 
1

Group 
2 Estimate conf.low conf.high p.adj p.adj.

signif

time NC NR -36.909997640 -52.17052437 -21.6494709 0.00000000000000 ****

time NR OH 39.904990678 23.20088287 56.6090985 0.00000000000255 ****

time NJ NR -34.429368214 -49.45175929 -19.4069771 0.00000000002970 ****

time MD NR -34.312460071 -48.65153921 -19.9733809 0.00000000013700 ****

time NR VA 33.945354551 19.62382760 48.2668815 0.00000000019200 ****

time MA NR -33.930212737 -49.53017052 -18.3302550 0.00000000062800 ****

time DC NR -32.012456556 -46.34647445 -17.6784387 0.00000000132000 ****

time NR NY 32.003582440 17.38611844 46.6210464 0.00000000143000 ****

time FL NR -35.775786133 -53.61351043 -17.9380618 0.00000000327000 ****

time NR PA 31.089204235 16.47227811 45.7061304 0.00000000382000 ****

time IL NR -33.273229410 -49.84871535 -16.6977435 0.00000000410000 ****

time CT NR -32.602413281 -48.76837801 -16.4364485 0.00000000490000 ****

time NR TX 37.653736133 18.27947837 57.0279939 0.00000001390000 ****

time CA NR -32.592467345 -49.50489006 -15.6800446 0.00000001540000 ****

time MI NR -35.087499501 -54.43836057 -15.7366384 0.00000022200000 ****

time DE NR -28.140571826 -44.07210457 -12.2090391 0.00000046900000 ****
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time GA NR -31.537143381 -53.08172423 -9.9925625 0.00008240000000 ****

time DC MD 2.300003515 0.63085087 3.9691562 0.00011200000000 ***

time NR RI 32.550583535 10.73318733 54.3679797 0.00018600000000 ***

time IN NR -35.615218456 -60.34769464 -10.8827423 0.00035300000000 ***

time MN NR -34.321230152 -58.63432152 -10.0081388 0.00044500000000 ***

time NR WV 31.442762107 8.45006408 54.4354601 0.00048000000000 ***

time DC VA 1.932897995 0.44269026 3.4231057 0.00050800000000 ***

time AZ NR -40.241258860 -67.44514532 -13.0373724 0.00068000000000 ***

time NR SC 32.286713405 9.40338858 55.1700382 0.00077800000000 ***

time CO NR -29.658875461 -53.11401408 -6.2037368 0.00200000000000 **

time MO NR -35.329970090 -62.70135520 -7.9585850 0.00300000000000 **

time NH NR -30.812388046 -57.10514805 -4.5196280 0.00800000000000 **

time NR WI 32.247154964 0.93946191 63.5548480 0.03900000000000 *

time DE OH 11.764418852 0.04420093 23.4846368 0.04800000000000 *

time DE NC 8.769425814 -0.60443761 18.1432892 0.10200000000000 ns

time MD PA -3.223255835 -6.69165920 0.2451475 0.11300000000000 ns

time OH PA -8.815786443 -18.54407400 0.9125011 0.13500000000000 ns

time NC PA -5.820793405 -12.35541704 0.7138302 0.16500000000000 ns

time DC OH 7.892534122 -1.38756734 17.1726356 0.22000000000000 ns

time DC NC 4.897541084 -0.91553064 10.7106128 0.25100000000000 ns

time PA VA 2.856150316 -0.53070064 6.2430013 0.26000000000000 ns

time NY OH 7.901408238 -1.82767199 17.6304885 0.30600000000000 ns

time DE MD 6.171888245 -1.53807287 13.8818494 0.31400000000000 ns

time DE VA 5.804782725 -1.87220730 13.4817727 0.42300000000000 ns

time NC NY -4.906415200 -11.44211973 1.6292893 0.50000000000000 ns

time DE NJ 6.288796389 -2.66811103 15.2457038 0.61700000000000 ns

time OH VA -5.959636127 -15.21973354 3.3004613 0.75500000000000 ns

time MD NY -2.308877630 -5.77797399 1.1602187 0.76100000000000 ns

time DE TX 9.513164307 -6.02144730 25.0477759 0.81800000000000 ns

time MD OH 5.592530607 -3.69567077 14.8807320 0.85000000000000 ns

time CT OH 7.302577397 -4.74666434 19.3518191 0.86700000000000 ns

time AZ DE -12.100687034 -37.88451797 13.6831439 0.87500000000000 ns

time DE MA 5.789640911 -4.16023886 15.7395207 0.90800000000000 ns

time DE FL 7.635214307 -5.77644578 21.0468744 0.91300000000000 ns

time NY VA 1.941772111 -1.44568643 5.3292306 0.93600000000000 ns
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time CA OH 7.312523333 -5.77140521 20.3964519 0.93800000000000 ns

time NJ PA -3.340163979 -9.21721532 2.5368874 0.93900000000000 ns

time CO OH 10.246115217 -11.05264209 31.5448725 0.96400000000000 ns

time MA OH 5.974777941 -5.24533605 17.1948919 0.96400000000000 ns

time NJ OH 5.475622464 -4.87993806 15.8311830 0.96400000000000 ns

time IL OH 6.631761268 -5.99265165 19.2561742 0.96800000000000 ns

time DC DE -3.871884730 -11.57234304 3.8285736 0.96900000000000 ns

time AZ PA -9.152054624 -34.74980956 16.4457003 0.97600000000000 ns

time NC VA -2.964643089 -8.74429531 2.8150091 0.97700000000000 ns

time PA TX 6.564531897 -7.65598750 20.7850513 0.98500000000000 ns

time DE NY 3.863010615 -4.36380830 12.0898295 0.98900000000000 ns

time AZ DC -8.228802304 -33.81900178 17.3613972 0.99000000000000 ns

time AZ NY -8.237676419 -33.83544743 17.3600946 0.99100000000000 ns

time DE MI 6.946927676 -8.62026330 22.5141187 0.99100000000000 ns

time DC NJ 2.416911659 -2.63724608 7.4710694 0.99200000000000 ns

time GA OH 8.367847297 -10.58734885 27.3230434 0.99300000000000 ns

time OH SC -7.618277273 -28.68595694 13.4494024 0.99400000000000 ns

time DE IL 5.132657585 -6.40075328 16.6660684 0.99600000000000 ns

time OH RI -7.354407143 -26.98543932 12.2766250 0.99600000000000 ns

time OH WV -8.462228571 -29.16621701 12.2417599 0.99600000000000 ns

time CT NC 4.307584359 -5.48000704 14.0951758 0.99700000000000 ns

time DC TX 5.641279577 -8.30111158 19.5836707 0.99700000000000 ns

time MD NC 2.597537569 -3.22903232 8.4241075 0.99700000000000 ns

time NH OH 9.092602632 -15.47103481 33.6562401 0.99700000000000 ns

time AZ CO -10.582383399 -39.93861482 18.7738480 0.99800000000000 ns

time NY TX 5.650153692 -8.57089176 19.8711991 0.99800000000000 ns

time AZ CA -7.648791515 -33.69201754 18.3944345 0.99900000000000 ns

time AZ CT -7.638845579 -33.47533651 18.1976453 0.99900000000000 ns

time CO NC 7.251122179 -13.13775577 27.6400001 0.99900000000000 ns

time CT DE -4.461841455 -15.35496919 6.4312863 0.99900000000000 ns

time DE IN 7.474646630 -14.96658624 29.9158795 0.99900000000000 ns

time FL PA -4.686581897 -16.47485213 7.1016883 0.99900000000000 ns

time NJ NY -2.425785774 -8.30397719 3.4524056 0.99900000000000 ns

time AZ FL -4.465472727 -30.83458592 21.9036405 1.00000000000000 ns

time AZ GA -8.704115479 -36.89755643 19.4893255 1.00000000000000 ns
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time AZ IL -6.968029449 -32.91204635 18.9759875 1.00000000000000 ns

time AZ IN -4.626040404 -34.80829355 25.5562127 1.00000000000000 ns

time AZ MA -6.311046123 -32.02474965 19.4026574 1.00000000000000 ns

time AZ MD -5.928798789 -31.51902053 19.6614230 1.00000000000000 ns

time AZ MI -5.153759358 -32.18477439 21.8772557 1.00000000000000 ns

time AZ MN -5.920028708 -35.82614929 23.9860919 1.00000000000000 ns

time AZ MO -4.911288770 -36.94924216 27.1266646 1.00000000000000 ns

time AZ NC -3.331261220 -28.99059779 22.3280753 1.00000000000000 ns

time AZ NH -9.428870813 -40.70071590 21.8429743 1.00000000000000 ns

time AZ NJ -5.811890646 -31.44166676 19.8178855 1.00000000000000 ns

time AZ OH -0.336268182 -26.31605763 25.6435213 1.00000000000000 ns

time AZ RI -7.690675325 -36.03742567 20.6560750 1.00000000000000 ns

time AZ SC -7.954545455 -36.91973419 21.0106433 1.00000000000000 ns

time AZ TX -2.587522727 -29.62517413 24.4501287 1.00000000000000 ns

time AZ VA -6.295904309 -31.88606673 19.2942581 1.00000000000000 ns

time AZ WI -7.994103896 -43.00926587 27.0210581 1.00000000000000 ns

time AZ WV -8.798496753 -37.86657407 20.2695806 1.00000000000000 ns

time CA CO -2.933591884 -24.37101536 18.5038316 1.00000000000000 ns

time CA CT 0.009945936 -12.34752215 12.3674140 1.00000000000000 ns

time CA DC -0.580010789 -10.27696364 9.1169421 1.00000000000000 ns

time CA DE -4.451895519 -16.48994552 7.5861545 1.00000000000000 ns

time CA FL 3.183318788 -11.40226399 17.7689016 1.00000000000000 ns

time CA GA -1.055323964 -20.18380860 18.0731607 1.00000000000000 ns

time CA IL 0.680762066 -12.23523397 13.5967581 1.00000000000000 ns

time CA IN 3.022751111 -19.94850189 25.9940041 1.00000000000000 ns

time CA MA 1.337745392 -10.21877388 12.8942647 1.00000000000000 ns

time CA MD 1.719992726 -7.98466378 11.4246492 1.00000000000000 ns

time CA MI 2.495032157 -14.03750894 19.0275733 1.00000000000000 ns

time CA MN 1.728762807 -20.74868647 24.2062121 1.00000000000000 ns

time CA MO 2.737502745 -23.16764184 28.6426473 1.00000000000000 ns

time CA NC 4.317530295 -6.75359491 15.3886555 1.00000000000000 ns

time CA NH -1.780079298 -26.45132136 22.8911628 1.00000000000000 ns

time CA NJ 1.836900870 -8.88758159 12.5613833 1.00000000000000 ns

time CA NY -0.588884904 -10.71371163 9.5359418 1.00000000000000 ns

time CA PA -1.503263109 -11.62732698 8.6208008 1.00000000000000 ns
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time CA RI -0.041883810 -19.80668092 19.7229133 1.00000000000000 ns

time CA SC -0.305753939 -21.47509713 20.8635892 1.00000000000000 ns

time CA TX 5.061268788 -11.46256594 21.5851035 1.00000000000000 ns

time CA VA 1.352887206 -8.32504281 11.0308172 1.00000000000000 ns

time CA WI -0.345312381 -30.59885408 29.9082293 1.00000000000000 ns

time CA WV -1.149705238 -22.00333554 19.7039251 1.00000000000000 ns

time CO CT 2.943537820 -18.00423559 23.8913112 1.00000000000000 ns

time CO DC 2.353581095 -17.50851586 22.2156780 1.00000000000000 ns

time CO DE -1.518303635 -22.31691826 19.2803110 1.00000000000000 ns

time CO FL 6.116910672 -15.95437053 28.1881919 1.00000000000000 ns

time CO GA 1.878267920 -22.98029488 26.7368307 1.00000000000000 ns

time CO IL 3.614353950 -17.59890218 24.8276101 1.00000000000000 ns

time CO IN 5.956342995 -21.43969481 33.3523808 1.00000000000000 ns

time CO MA 4.271337276 -16.32273828 24.8654128 1.00000000000000 ns

time CO MD 4.653584610 -15.21124326 24.5184125 1.00000000000000 ns

time CO MI 5.428624041 -17.72937847 28.5866265 1.00000000000000 ns

time CO MN 4.662354691 -22.39186468 31.7165741 1.00000000000000 ns

time CO MO 5.671094629 -23.97479201 35.3169813 1.00000000000000 ns

time CO NH 1.153512586 -27.58294417 29.8899693 1.00000000000000 ns

time CO NJ 4.770492754 -15.47814609 25.0191316 1.00000000000000 ns

time CO NY 2.344706980 -17.67296283 22.3623768 1.00000000000000 ns

time CO PA 1.430328775 -18.58703902 21.4476966 1.00000000000000 ns

time CO RI 2.891708075 -22.08501550 27.8684316 1.00000000000000 ns

time CO SC 2.627837945 -23.14521762 28.4008935 1.00000000000000 ns

time CO TX 7.994860672 -15.18941005 31.1791314 1.00000000000000 ns

time CO VA 4.286479090 -15.56888561 24.1418438 1.00000000000000 ns

time CO WI 2.588279503 -30.49189771 35.6684567 1.00000000000000 ns

time CO WV 1.783886646 -24.22671179 27.7944851 1.00000000000000 ns

time CT DC -0.589956725 -8.77659280 7.5966794 1.00000000000000 ns

time CT FL 3.173372852 -10.51942716 16.8661729 1.00000000000000 ns

time CT GA -1.065269900 -19.57585354 17.4453137 1.00000000000000 ns

time CT IL 0.670816130 -11.19606695 12.5376992 1.00000000000000 ns

time CT IN 3.012805175 -19.55031694 25.5759273 1.00000000000000 ns

time CT MA 1.327799456 -9.01286441 11.6684633 1.00000000000000 ns

time CT MD 1.710046790 -6.48570038 9.9057940 1.00000000000000 ns
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time CT MI 2.485086221 -13.31069423 18.2808667 1.00000000000000 ns

time CT MN 1.718816871 -20.32779406 23.7654278 1.00000000000000 ns

time CT MO 2.727556809 -22.84525639 28.3003700 1.00000000000000 ns

time CT NH -1.790025234 -26.08347076 22.5034203 1.00000000000000 ns

time CT NJ 1.826954933 -7.56143294 11.2153428 1.00000000000000 ns

time CT NY -0.598830840 -9.28922023 8.0915586 1.00000000000000 ns

time CT PA -1.513209045 -10.20273993 7.1763218 1.00000000000000 ns

time CT RI -0.051829746 -19.35745586 19.2537964 1.00000000000000 ns

time CT SC -0.315699875 -21.14866455 20.5172648 1.00000000000000 ns

time CT TX 5.051322852 -10.71878698 20.8214327 1.00000000000000 ns

time CT VA 1.342941270 -6.82119006 9.5070726 1.00000000000000 ns

time CT WI -0.355258317 -30.38747696 29.6769603 1.00000000000000 ns

time CT WV -1.159651174 -21.48212753 19.1628252 1.00000000000000 ns

time DC FL 3.763329577 -7.67375706 15.2004162 1.00000000000000 ns

time DC GA -0.475313175 -17.53029553 16.5796692 1.00000000000000 ns

time DC IL 1.260772855 -7.79158182 10.3131275 1.00000000000000 ns

time DC IN 3.602761900 -18.10689321 25.3124170 1.00000000000000 ns

time DC MA 1.917756181 -4.83492727 8.6704396 1.00000000000000 ns

time DC MI 3.075042946 -10.97109523 17.1211811 1.00000000000000 ns

time DC MN 2.308773596 -18.82257349 23.4401207 1.00000000000000 ns

time DC MO 3.317513534 -21.56760588 28.2026329 1.00000000000000 ns

time DC NH -1.200068509 -24.68625883 22.2861218 1.00000000000000 ns

time DC NY -0.008874115 -3.45461898 3.4368707 1.00000000000000 ns

time DC PA -0.923252320 -4.36832744 2.5218228 1.00000000000000 ns

time DC RI 0.538126980 -17.92776532 19.0040193 1.00000000000000 ns

time DC SC 0.274256850 -20.12360691 20.6721206 1.00000000000000 ns

time DC WI 0.234698408 -29.37749975 29.8468966 1.00000000000000 ns

time DC WV -0.569694449 -19.67912264 18.5397337 1.00000000000000 ns

time DE GA 3.396571555 -14.92204117 21.7151843 1.00000000000000 ns

time DE MN 6.180658326 -15.73659914 28.0979158 1.00000000000000 ns

time DE MO 7.189398264 -18.28448128 32.6632778 1.00000000000000 ns

time DE NH 2.671816221 -21.50789879 26.8515312 1.00000000000000 ns

time DE PA 2.948632410 -5.27730919 11.1745740 1.00000000000000 ns

time DE RI 4.410011710 -14.76381503 23.5838384 1.00000000000000 ns

time DE SC 4.146141580 -16.59828140 24.8905646 1.00000000000000 ns
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time DE WI 4.106583138 -25.86170473 34.0748710 1.00000000000000 ns

time DE WV 3.302190281 -16.85682052 23.4612011 1.00000000000000 ns

time FL GA -4.238642752 -24.14545679 15.6681713 1.00000000000000 ns

time FL IL -2.502556722 -16.68809672 11.6829833 1.00000000000000 ns

time FL IN -0.160567677 -23.67418476 23.3530494 1.00000000000000 ns

time FL MA -1.845573396 -14.84516853 11.1540217 1.00000000000000 ns

time FL MD -1.463326062 -12.90670065 9.9800485 1.00000000000000 ns

time FL MI -0.688286631 -18.14689339 16.7703201 1.00000000000000 ns

time FL MN -1.454555981 -24.50052487 21.5914129 1.00000000000000 ns

time FL MO -0.445816043 -26.79566930 25.9040372 1.00000000000000 ns

time FL NC 1.134211507 -11.44944618 13.7178692 1.00000000000000 ns

time FL NH -4.963398086 -30.13256738 20.2057712 1.00000000000000 ns

time FL NJ -1.346417918 -13.63648750 10.9436517 1.00000000000000 ns

time FL NY -3.772203692 -15.56112039 8.0167130 1.00000000000000 ns

time FL OH 4.129204545 -10.20731676 18.4657259 1.00000000000000 ns

time FL RI -3.225202597 -23.62353427 17.1731291 1.00000000000000 ns

time FL SC -3.489072727 -25.16451232 18.1863669 1.00000000000000 ns

time FL TX 1.877950000 -15.58549319 19.3413932 1.00000000000000 ns

time FL VA -1.830431582 -13.25199898 9.5911358 1.00000000000000 ns

time FL WI -3.528631169 -34.09074029 27.0334780 1.00000000000000 ns

time FL WV -4.333024026 -25.86496057 17.1989125 1.00000000000000 ns

time GA IL 1.736086030 -17.11167692 20.5838490 1.00000000000000 ns

time GA IN 4.078075075 -21.92574670 30.0818968 1.00000000000000 ns

time GA MA 2.393069356 -15.65903844 20.4451771 1.00000000000000 ns

time GA MD 2.775316690 -14.28355289 19.8341863 1.00000000000000 ns

time GA MI 3.550356121 -17.65237350 24.7530857 1.00000000000000 ns

time GA MN 2.784086771 -22.84056184 28.4087354 1.00000000000000 ns

time GA MO 3.792826709 -24.65909356 32.2447470 1.00000000000000 ns

time GA NC 5.372854259 -12.40734037 23.1530489 1.00000000000000 ns

time GA NH -0.724755334 -28.18521105 26.7357004 1.00000000000000 ns

time GA NJ 2.892224834 -14.69913780 20.4835875 1.00000000000000 ns

time GA NY 0.466439060 -16.80758975 17.7404679 1.00000000000000 ns

time GA PA -0.447939145 -17.72154630 16.8256680 1.00000000000000 ns

time GA RI 1.013440154 -22.30702977 24.3339101 1.00000000000000 ns

time GA SC 0.749570025 -23.48770427 24.9868443 1.00000000000000 ns
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time GA TX 6.116592752 -15.11460940 27.3477949 1.00000000000000 ns

time GA VA 2.408211170 -14.63718159 19.4536039 1.00000000000000 ns

time GA WI 0.710011583 -31.42589310 32.8459163 1.00000000000000 ns

time GA WV -0.094381274 -24.54706196 24.3582994 1.00000000000000 ns

time IL IN 2.341989045 -20.44120566 25.1251838 1.00000000000000 ns

time IL MA 0.656983326 -10.36659960 11.6805663 1.00000000000000 ns

time IL MD 1.039230661 -8.02133474 10.0997961 1.00000000000000 ns

time IL MI 1.814270091 -14.38511294 18.0136531 1.00000000000000 ns

time IL MN 1.048000741 -21.23128322 23.3272847 1.00000000000000 ns

time IL MO 2.056740679 -23.69479114 27.8082725 1.00000000000000 ns

time IL NC 3.636768230 -6.87483590 14.1483724 1.00000000000000 ns

time IL NH -2.460841364 -26.95810528 22.0364225 1.00000000000000 ns

time IL NJ 1.156138804 -8.98853449 11.3008121 1.00000000000000 ns

time IL NY -1.269646970 -10.77760440 8.2383105 1.00000000000000 ns

time IL PA -2.184025175 -11.69118413 7.3231338 1.00000000000000 ns

time IL RI -0.722645875 -20.27469799 18.8294062 1.00000000000000 ns

time IL SC -0.986516005 -21.99657332 20.0235413 1.00000000000000 ns

time IL TX 4.380506722 -11.80303316 20.5640466 1.00000000000000 ns

time IL VA 0.672125141 -8.35995346 9.7042037 1.00000000000000 ns

time IL WI -1.026074447 -31.17626053 29.1241116 1.00000000000000 ns

time IL WV -1.830467304 -22.44169470 18.7807601 1.00000000000000 ns

time IN MA -1.685005719 -23.96019204 20.5901806 1.00000000000000 ns

time IN MD -1.302758385 -23.01442191 20.4089051 1.00000000000000 ns

time IN MI -0.527718954 -24.99658799 23.9411501 1.00000000000000 ns

time IN MN -1.293988304 -29.32605723 26.7380806 1.00000000000000 ns

time IN MO -0.285248366 -30.75534294 30.1848462 1.00000000000000 ns

time IN NC 1.294779184 -20.81723981 23.4067982 1.00000000000000 ns

time IN NH -4.802830409 -34.41452553 24.8088647 1.00000000000000 ns

time IN NJ -1.185850242 -23.18816404 20.8164636 1.00000000000000 ns

time IN NY -3.611636015 -25.43715079 18.2138788 1.00000000000000 ns

time IN OH 4.289772222 -18.56475877 27.1443032 1.00000000000000 ns

time IN PA -4.526014220 -26.35130308 17.2992746 1.00000000000000 ns

time IN RI -3.064634921 -29.17669894 23.0474291 1.00000000000000 ns

time IN SC -3.328505051 -30.16922188 23.5122118 1.00000000000000 ns

time IN TX 2.038517677 -22.45291092 26.5299463 1.00000000000000 ns
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time IN VA -1.669863905 -23.37457197 20.0348442 1.00000000000000 ns

time IN WI -3.368063492 -37.11221318 30.3760862 1.00000000000000 ns

time IN WV -4.172456349 -31.23647191 22.8915592 1.00000000000000 ns

time MA MD 0.382247334 -6.38197560 7.1464703 1.00000000000000 ns

time MA MI 1.157286765 -14.08424514 16.3988187 1.00000000000000 ns

time MA MN 0.391017415 -21.34964972 22.1316846 1.00000000000000 ns

time MA MO 1.399757353 -23.94079294 26.7403076 1.00000000000000 ns

time MA NC 2.979784903 -5.70270210 11.6622719 1.00000000000000 ns

time MA NH -3.117824690 -27.14365345 20.9080041 1.00000000000000 ns

time MA NJ 0.499155477 -7.71671604 8.7150270 1.00000000000000 ns

time MA NY -1.926630296 -9.30559524 5.4523346 1.00000000000000 ns

time MA PA -2.841008501 -10.21897071 4.5369537 1.00000000000000 ns

time MA RI -1.379629202 -20.37052665 17.6112682 1.00000000000000 ns

time MA SC -1.643499332 -22.26677792 18.9797793 1.00000000000000 ns

time MA TX 3.723523396 -11.47602680 18.9230736 1.00000000000000 ns

time MA VA 0.015141814 -6.70900044 6.7392841 1.00000000000000 ns

time MA WI -1.683057773 -31.56622899 28.2001134 1.00000000000000 ns

time MA WV -2.487450630 -22.42179170 17.4468904 1.00000000000000 ns

time MD MI 0.775039431 -13.27571307 14.8257919 1.00000000000000 ns

time MD MN 0.008770081 -21.12476996 21.1423101 1.00000000000000 ns

time MD MO 1.017510019 -23.86923000 25.9042500 1.00000000000000 ns

time MD NH -3.500072024 -26.98823230 19.9880883 1.00000000000000 ns

time MD NJ 0.116908143 -4.95291983 5.1867361 1.00000000000000 ns

time MD RI -1.761876536 -20.22923890 16.7054858 1.00000000000000 ns

time MD SC -2.025746666 -22.42366399 18.3721707 1.00000000000000 ns

time MD TX 3.341276062 -10.60607198 17.2886241 1.00000000000000 ns

time MD VA -0.367105520 -1.91104496 1.1768339 1.00000000000000 ns

time MD WI -2.065305107 -31.67840009 27.5477899 1.00000000000000 ns

time MD WV -2.869697964 -21.98227823 16.2428823 1.00000000000000 ns

time MI MN -0.766269350 -24.80624778 23.2737091 1.00000000000000 ns

time MI MO 0.242470588 -26.89901635 27.3839575 1.00000000000000 ns

time MI NC 1.822498138 -13.09205898 16.7370553 1.00000000000000 ns

time MI NH -4.275111455 -30.31639706 21.7661742 1.00000000000000 ns

time MI NJ -0.658131287 -15.34556458 14.0293020 1.00000000000000 ns

time MI NY -3.083917061 -17.39096475 11.2231306 1.00000000000000 ns
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time MI OH 4.817491176 -11.50813621 21.1431186 1.00000000000000 ns

time MI PA -3.998295266 -18.30485106 10.3082605 1.00000000000000 ns

time MI RI -2.536915966 -24.07675664 19.0029247 1.00000000000000 ns

time MI SC -2.800786096 -25.45121874 19.8496466 1.00000000000000 ns

time MI TX 2.566236631 -16.44060155 21.5730748 1.00000000000000 ns

time MI VA -1.142144950 -15.17690252 12.8926126 1.00000000000000 ns

time MI WI -2.840344538 -33.97661141 28.2959223 1.00000000000000 ns

time MI WV -3.644737395 -26.32352476 19.0340500 1.00000000000000 ns

time MN MO 1.008739938 -29.18418983 31.2016697 1.00000000000000 ns

time MN NC 2.588767488 -18.97744387 24.1549788 1.00000000000000 ns

time MN NH -3.508842105 -32.82677980 25.8090956 1.00000000000000 ns

time MN NJ 0.108138063 -21.34026038 21.5565365 1.00000000000000 ns

time MN NY -2.317647711 -23.57507228 18.9397769 1.00000000000000 ns

time MN OH 5.583760526 -16.77079314 27.9383142 1.00000000000000 ns

time MN PA -3.232025916 -24.48920500 18.0251532 1.00000000000000 ns

time MN RI -1.770646617 -27.50848357 23.9671903 1.00000000000000 ns

time MN SC -2.034516746 -28.52277341 24.4537399 1.00000000000000 ns

time MN TX 3.332505981 -20.73089744 27.3959094 1.00000000000000 ns

time MN VA -0.375875601 -21.50181987 20.7500687 1.00000000000000 ns

time MN WI -2.074075188 -35.59346559 31.4453152 1.00000000000000 ns

time MN WV -2.878468045 -29.59194596 23.8350099 1.00000000000000 ns

time MO NC 1.580027550 -23.62901810 26.7890732 1.00000000000000 ns

time MO NH -4.517582043 -36.11445575 27.0792917 1.00000000000000 ns

time MO NJ -0.900601876 -26.02136777 24.2201640 1.00000000000000 ns

time MO NY -3.326387649 -28.30488500 21.6521097 1.00000000000000 ns

time MO OH 4.575020588 -21.23493955 30.3849807 1.00000000000000 ns

time MO PA -4.240765854 -29.21907982 20.7375481 1.00000000000000 ns

time MO RI -2.779386555 -31.28432049 25.7255474 1.00000000000000 ns

time MO SC -3.043256684 -32.15392395 26.0674106 1.00000000000000 ns

time MO TX 2.323766043 -24.84041698 29.4879491 1.00000000000000 ns

time MO VA -1.384615539 -26.26574276 23.4965117 1.00000000000000 ns

time MO WI -3.082815126 -38.39571157 32.2300813 1.00000000000000 ns

time MO WV -3.887207983 -33.25171204 25.4772961 1.00000000000000 ns

time NC NH -6.097609594 -29.96996068 17.7747415 1.00000000000000 ns

time NC NJ -2.480629426 -9.95704972 4.9957909 1.00000000000000 ns
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time NC OH 2.994993038 -7.72142128 13.7114074 1.00000000000000 ns

time NC RI -4.359414105 -23.18305692 14.4642287 1.00000000000000 ns

time NC SC -4.623284235 -25.15028750 15.9037190 1.00000000000000 ns

time NC TX 0.743738493 -14.11607473 15.6035517 1.00000000000000 ns

time NC WI -4.662842676 -34.46449677 25.1388114 1.00000000000000 ns

time NC WV -5.467235533 -25.17365224 14.2391812 1.00000000000000 ns

time NH NJ 3.616980168 -20.15142932 27.3853897 1.00000000000000 ns

time NH NY 1.191194394 -22.40778354 24.7901723 1.00000000000000 ns

time NH PA 0.276816189 -23.32194081 23.8755732 1.00000000000000 ns

time NH RI 1.738195489 -25.78008699 29.2564780 1.00000000000000 ns

time NH SC 1.474325359 -26.69487248 29.6435232 1.00000000000000 ns

time NH TX 6.841348086 -19.22508445 32.9077806 1.00000000000000 ns

time NH VA 3.132966505 -20.34836905 26.6143021 1.00000000000000 ns

time NH WI 1.434766917 -33.24417976 36.1137136 1.00000000000000 ns

time NH WV 0.630374060 -27.80606586 29.0668140 1.00000000000000 ns

time NJ RI -1.878784679 -20.59522254 16.8376532 1.00000000000000 ns

time NJ SC -2.142654809 -22.61585595 18.3305463 1.00000000000000 ns

time NJ TX 3.224367918 -11.39799566 17.8467315 1.00000000000000 ns

time NJ VA -0.484013663 -5.49931968 4.5312923 1.00000000000000 ns

time NJ WI -2.182213251 -31.93045032 27.5660238 1.00000000000000 ns

time NJ WV -2.986606108 -22.53597700 16.5627648 1.00000000000000 ns

time NY PA -0.914378205 -5.49935983 3.6706034 1.00000000000000 ns

time NY RI 0.547001095 -18.01024225 19.1042444 1.00000000000000 ns

time NY SC 0.283130965 -20.12983995 20.6961019 1.00000000000000 ns

time NY WI 0.243572523 -29.42124749 29.9083925 1.00000000000000 ns

time NY WV -0.560820334 -19.84873358 18.7270929 1.00000000000000 ns

time OH TX -2.251254545 -18.56415728 14.0616482 1.00000000000000 ns

time OH WI -7.657835714 -37.84703930 22.5313679 1.00000000000000 ns

time PA RI 1.461379300 -17.09568780 20.0184464 1.00000000000000 ns

time PA SC 1.197509170 -19.21543030 21.6104486 1.00000000000000 ns

time PA WI 1.157950728 -28.50676515 30.8226666 1.00000000000000 ns

time PA WV 0.353557871 -18.93400935 19.6411251 1.00000000000000 ns

time RI SC -0.263870130 -24.77337324 24.2456330 1.00000000000000 ns

time RI TX 5.103152597 -16.44733517 26.6536404 1.00000000000000 ns

time RI VA 1.394771016 -17.06751939 19.8570614 1.00000000000000 ns
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time RI WI -0.303428571 -32.47322553 31.8663684 1.00000000000000 ns

time RI WV -1.107821429 -25.67597581 23.4603330 1.00000000000000 ns

time SC TX 5.367022727 -17.28750347 28.0215489 1.00000000000000 ns

time SC VA 1.658641146 -18.73912544 22.0564077 1.00000000000000 ns

time SC WI -0.039558442 -32.67843301 32.5993161 1.00000000000000 ns

time SC WV -0.843951299 -26.23340496 24.5455024 1.00000000000000 ns

time TX VA -3.708381582 -17.63854243 10.2217793 1.00000000000000 ns

time TX WI -5.406581169 -36.55959340 25.7464311 1.00000000000000 ns

time TX WV -6.210974026 -28.91854690 16.4965988 1.00000000000000 ns

time VA WI -1.698199587 -31.30819113 27.9117920 1.00000000000000 ns

time VA WV -2.502592444 -21.60424710 16.5990622 1.00000000000000 ns

time WI WV -0.804392857 -33.66115619 32.0523705 1.00000000000000 ns

We see that:
• Every pair of states are compared with an estimate, a 95% confidence 

interval, and an adjusted p-value.
• For example, the runners from the “NC” state have significantly 

higher mean run time than runners from the “NR” state with zero 
adjusted p-value. The difference is estimated to be 36.9 and can be 
as high as 52.17 and as low as 21.65.

• On the other hand, runners from “WI” state have statistically 
equivalent mean run time to runners from “WV” state with a 1.00 
adjusted p-value.

4.4.4. Kruskal Wallis Test for More Than Two Samples
The Kruskal-Wallis test is a non-parametric alternative to the one-way ANOVA 
test. It can be viewed as an extension of the two-sample Wilcoxon test in case 
there are more than two groups to compare. It is used when the assumptions 
of a one-way ANOVA test are not met. The null hypothesis is that the medians 
of the continuous variable across the different groups are the same, while the 
alternative hypothesis is that at least one group’s median differs from another 
group’s median.

4.4.4.1. Kruskal Wallis Test of the Run Time from Runners of Dif-
ferent States
The null hypothesis is that all 28 states’ median run time are equal, while the 
alternative hypothesis is that at least one state’s median is different from another 
state’s median.
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To conduct this test, we use the kruskal_test function applied on the “run_
filtered” data with the following argument, formula = time ~ state which is the 
same formula for the ANOVA test. This means that we want to compare the 
median run time across the different states of the “state” column.

Then, we convert the result to a table as before.
run_filtered %>% kruskal_test(formula = time ~ state) %>%

  flextable() %>% theme_box() %>%

 set_caption(caption = “Kruskal-Wallis test results of the median run time in 
runners from 28 states of Cherry Blossom Run data in 2009”)

Table 4.52. Kruskal-Wallis Test Results of the Median Run Time in Runners from 28 
States of Cherry Blossom Run Data in 2009

.y. n Statistic df p Method

time 14,877 137.2318 27 0.000000000000000102 Kruskal-
Wallis

In the table above, we see that:
• The “df” is the degrees of freedom and the obtained statistic value 

that corresponds to our sample results is 137.2318.
• The p is the very low p-value, so we reject the null hypothesis and 

conclude that at least one state run time median is significantly 
different from another state median.

4.4.4.2. Post-Hoc Test
A significant Kruskal-Wallis test is followed by Dunn’s test to perform multiple 
pairwise tests between the different states with p-value adjustment. We will use 
the same formula of the ANOVA test with the dunn_test function and arrange 
the adjusted p-values (p.adj) by using the arrange function.
run_filtered %>% dunn_test(formula = time ~ state) %>%

 arrange(p.adj) %>%

  flextable() %>% theme_box() %>%

 set_caption(caption = “Dunn’s test of the run time in runners from 28 states of 
Cherry Blossom Run data in 2009”)
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5.1. DATA USED IN THIS CHAPTER

5.1.1. American Community Survey of 2012
The results from the US Census American Community Survey performed 
in 2012 are stored under the name “acs12.” The data is part of the openintro 
package and its source is https://www.census.gov/programs-surveys/acs.

To load this data into our R session, we will load the openintro package 
using the library function. Then, we will load the “acs12” data using the data 
function. We will also load the tidyverse package because it contains many 
packages for efficient data analysis.

library(tidyverse)

library(openintro)

data(“acs12”)

To see the data structure, we will use the glimpse function from the dplyr 
package.

glimpse(acs12)

## Rows: 2,000

## Columns: 13

## $ income    <int> 60000, 0, NA, 0, 0, 1700, NA, NA, NA, 45000, NA, 8600, 0,…

## $ employment  <fct> not in labor force, not in labor force, NA, not in labor …

## $ hrs_work   <int> 40, NA, NA, NA, NA, 40, NA, NA, NA, 84, NA, 23, NA, NA, N…

## $ race     <fct> white, white, white, white, white, other, white, other, a…

## $ age     <int> 68, 88, 12, 17, 77, 35, 11, 7, 6, 27, 8, 69, 69, 17, 10, …

## $ gender    <fct> female, male, female, male, female, female, male, male, m…

## $ citizen   <fct> yes, yes, yes, yes, yes, yes, yes, yes, yes, yes, yes, ye…

## $ time_to_work <int> NA, NA, NA, NA, NA, 15, NA, NA, NA, 40, NA, 5, NA, NA, NA…

## $ lang     <fct> english, english, english, other, other, other, english, …

## $ married   <fct> no, no, no, no, no, yes, no, no, no, yes, no, no, yes, no…

## $ edu     <fct> college, hs or lower, hs or lower, hs or lower, hs or low…

## $ disability  <fct> no, yes, no, no, yes, yes, no, yes, no, no, no, no, yes, …

## $ birth_qrtr  <fct> jul thru sep, jan thru mar, oct thru dec, oct thru dec, j…

We see that the “acs12” data contains 2000 rows and 13 columns:
1. income: the annual income. It is a numeric column.
2. employment: the employment status. It is a factor column.
3. hrs_work: the hours worked per week. It is an integer column.



Bivariate Analysis for Categorical-Categorical Data

359

4. race: the respondent’s race. It is a factor column.
5. age: the respondent’s age in years. It is an integer column.
6. gender: the respondent’s gender. It is a factor column.
7. citizen: whether the person is a U.S. citizen. It is a factor column.
8. time_to_work: the travel time to work in minutes. It is an integer 

column.
9. lang: the language spoken at home. It is a factor column.
10. married: whether the person is married. It is a factor column.
11. edu: the respondent’s education level. It is a factor column.
12. disability: whether the person is dizabled. It is a factor column.
13. birth_qrtr: the quarter of the year that the respondent was born.⁠ It is 

a factor column.

5.1.2. The Minneapolis Police Use of Force Data
The Minneapolis police use of force data from 2016 through August 2021 
is stored in the “mn_police_use_of_force” data frame which is part of the 
openintro package of R. The data source is https://opendata.minneapolismn.
gov/search?groupIds=79606f50581f4a33b14a19e61c4891f7. To load this data 
into our R session, we will use the data function as before followed by the 
glimpse function to get the data structure.

data(“mn_police_use_of_force”)

glimpse(mn_police_use_of_force)

## Rows: 12,925

## Columns: 13

## $ response_datetime <chr> “2016/01/01 00:47:36,” “2016/01/01 02:19:34,” “2016/…

## $ problem      <chr> “Assault in Progress ,” “Fight ,” “Fight ,” “Fight “…

## $ is_911_call    <chr> “Yes,” “No,” “No,” “No,” “No,” “No,” “No,” “No,” “No…

## $ primary_offense  <chr> “DASLT1,” “DISCON,” “DISCON,” “PRIORI,” “PRIORI,” “P…

## $ subject_injury  <chr> “,” “,” “,” “,” “,” “,” “,” “,” “,” “No,” “No,” “Yes…

## $ force_type    <chr> “Bodily Force,” “Chemical Irritant,” “Chemical Irrit…

## $ force_type_action <chr> “Body Weight to Pin,” “Personal Mace,” “Personal Mac…

## $ race       <chr> “Black,” “Black,” “White,” “Black,” “Black,” “Black”…

## $ sex        <chr> “Male,” “Female,” “Female,” “Male,” “Male,” “Male,” …

## $ age        <int> 20, 27, 23, 20, 20, 20, 20, 20, 20, 18, 18, 21, 21, …

## $ type_resistance  <chr> “Tensed,” “Verbal Non-Compliance,” “Verbal Non-Compl…

## $ precinct     <chr> “1,” “1,” “1,” “1,” “1,” “1,” “1,” “1,” “1,” “1,” “1…

## $ neighborhood   <chr> “Downtown East,” “Downtown West,” “Downtown West,” “…
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The data contains 12925 observations (rows) on the following 13 columns:
1. response_datetime: the datetime of police response. It is a character 

column.
2. problem: the problem that required police response. It is a character 

column.
3. is_911_call: whether the response was initiated by a call to 911. It is 

a character column.
4. primary_offense: the offense of the subject. It is a character column.
5. subject_injury: Whether the subject was injured. It is a character 

column.
6. force_type: the type of police force used. It is a character column.
7. force_type_action: the detail of the police force used. It is a character 

column.
8. race: the race of the subject. It is a character column.
9. sex: the gender of the subject. It is a character column.
10. age: the age of the subject. It is an integer column.
11. type_resistance: the resistance to police by the subject. It is a 

character column.
12. precinct: the precinct where the response occurred. It is a character 

column.
13. neighborhood: the neighborhood where the response occurred. It is 

a character column.

5.2. SUMMARY STATISTICS
As we saw in Chapter 2, the category sample size and proportion are the only 
measures that are used to describe categorical data. To look at the relation 
between 2 categorical variables, we can see how the counts or proportions of 
1 categorical variable change under the different levels of the other categorical 
variable.

5.2.1. The Count

5.2.1.1. The Count of Different Employment Statuses in the 2 
Genders
To get these counts from the American Community Survey data, we use 
the count function, applied to “acs12” data, with the arguments gender, and 
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employment to get the the count of different employment statuses in males and 
females. Then, we convert the result to a table as before.

library(flextable)

acs12 %>% count(gender, employment) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The count of different employment statuses in males and 
females of the American Community Survey data”)

Table 5.1. The Count of Different Employment Statuses in Males and Females of 
the American Community Survey Data

Gender Employment n
male not in labor force 283
male unemployed 59
male employed 470
male 219
female not in labor force 373
female unemployed 47
female employed 373
female 176

We see that:
• There are 283 males not in labor force compared to 373 females.
• There are 59 unemployed males compared to 47 females.
• There are 470 employed males compared to 373 females. So males 

are more employed than females.
• There are 219 males with missing employment status compared to 

176 females.

5.2.1.2. The Count of Different Employment Statuses in the Dif-
ferent Races
To get these counts, we use the count function with the arguments race, and 
employment to get the the count of different employment statuses in the 
different races.
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acs12 %>% count(race, employment) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The count of different employment statuses in the 

different races of the American Community Survey data”)

Table 5.2. The Count of Different Employment Statuses in the Different Races of the 
American Community Survey Data

Race Employment n
white not in labor force 520
white unemployed 72
white employed 670
white 293
black not in labor force 66
black unemployed 20
black employed 76
black 44
asian not in labor force 31
asian unemployed 3
asian employed 39
asian 14
other not in labor force 39
other unemployed 11
other employed 58
other 44

We see that:
• There are 520 Whites not in labor force compared to 66 Blacks, 31 

Asians, and 39 other races.
• There are 72 unemployed Whites compared to 20 Blacks, 3 Asians, 

and 11 other races.
• There are 670 employed Whites compared to 76 Blacks, 39 Asians, 

and 58 other races. So Whites are more employed than other races.
• There are 293 Whites with missing employment status compared to 

44 Blacks, 14 Asians, and 44 other races.
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5.2.1.3. The Count of Force Types in the Different Races
To get these counts from the Minneapolis police use of force data, we use the 
count function, applied on “mn_police_use_of_force” data, with the arguments 
race, force_type to get the count of different force types applied on the different 
races. Then, we convert the result to a table as before.
mn_police_use_of_force %>% count(race, force_type) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The count of different force types applied on different 
races from the Minneapolis police use of force data”)

Table 5.3. The Count of Different Force Types Applied on Different Races from the 
Minneapolis Police Use of Force Data

Race force_type n
Asian Bodily Force 78
Asian Chemical Irritant 32

Asian Gun Point Dis-
play 1

Asian Improvised 
Weapon 1

Asian Taser 17
Black Baton 2
Black Bodily Force 5,519
Black Chemical Irritant 1,033
Black Firearm 2

Black Gun Point Dis-
play 76

Black Improvised 
Weapon 83

Black Less Lethal 23

Black Less Lethal Pro-
jectile 3

Black Maximal Re-
straint Technique 104

Black Police K9 Bite 48
Black Taser 755
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Native American Bodily Force 616
Native American Chemical Irritant 18

Native American Gun Point Dis-
play 8

Native American Improvised 
Weapon 10

Native American Less Lethal 6

Native American Maximal Re-
straint Technique 14

Native American Police K9 Bite 8
Native American Taser 104
Other/Mixed 
Race Bodily Force 137

Other/Mixed 
Race Chemical Irritant 50

Other/Mixed 
Race

Gun Point Dis-
play 3

Other/Mixed 
Race

Improvised 
Weapon 1

Other/Mixed 
Race Police K9 Bite 2

Other/Mixed 
Race Taser 12

Pacific Islander Bodily Force 5
Pacific Islander Chemical Irritant 1
White Baton 1
White Bodily Force 2,454
White Chemical Irritant 191

White Gun Point Dis-
play 16

White Improvised 
Weapon 47

White Less Lethal 27

White Maximal Re-
straint Technique 42

White Police K9 Bite 17
White Taser 334
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Baton 1
Bodily Force 621
Chemical Irritant 268
Improvised 
Weapon 6

Less Lethal 31
Maximal Re-
straint Technique 10

Police K9 Bite 2
Taser 85

We see that:
• The “Bodily Force” type was applied to 78 Asians compared to 5519 

Blacks, 616 Native Americans, 137 Other/Mixed Races, 5 Pacific 
Islanders, and 2454 Whites. So “Bodily Force” was applied more to 
Blacks than to other races.

• The “Chemical Irritant” force type was applied to 32 Asians 
compared to 1033 Blacks, 18 Native Americans, 50 Other/Mixed 
Races, 1 Pacific Islander, and 191 Whites. So “Chemical Irritant” 
was applied more to Blacks than to other races and so on.

5.2.1.4. The Count of Force Types in the Different Neighborhoods
To get these counts from the Minneapolis police use of force data, we use the 
count function with the arguments neighborhood, and force_type to get the 
count of different force types applied in the different neighborhoods. Then, we 
convert the result to a table as before.

mn_police_use_of_force %>% count(neighborhood,force_type) %>%

 flextable() %>%

 theme_box() %>%

 set_caption(caption = “The count of different force types applied in the 
different neighborhoods from the Minneapolis police use of force data”)
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Table 5.4. The Count of Different Force Types Applied in the Different Neighbor-
hoods from the Minneapolis Police Use of Force Data

Neighborhood force_type n
Bodily Force 3
Chemical Irritant 1

Armatage Bodily Force 19
Armatage Chemical Irritant 1

Armatage Maximal Restraint 
Technique 1

Armatage Police K9 Bite 1
Armatage Taser 6
Audubon Park Bodily Force 89
Audubon Park Chemical Irritant 3
Audubon Park Taser 6
Bancroft Bodily Force 23
Bancroft Chemical Irritant 4
Bancroft Improvised Weapon 2
Bancroft Taser 1
Beltrami Bodily Force 10
Beltrami Less Lethal 1
Bottineau Bodily Force 7
Bottineau Chemical Irritant 1
Bottineau Police K9 Bite 1
Bottineau Taser 1
Bryant Bodily Force 22
Bryant Police K9 Bite 2
Bryant Taser 1
Bryn – Mawr Bodily Force 15
Bryn – Mawr Taser 3
CARAG Bodily Force 154
CARAG Chemical Irritant 4
CARAG Gun Point Display 1
CARAG Improvised Weapon 3
CARAG Police K9 Bite 1
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CARAG Taser 12
Camden Industrial Bodily Force 3
Cedar – Isles – Dean Bodily Force 4
Cedar – Isles – Dean Chemical Irritant 2
Cedar Riverside Bodily Force 136
Cedar Riverside Chemical Irritant 31
Cedar Riverside Gun Point Display 3
Cedar Riverside Improvised Weapon 1
Cedar Riverside Less Lethal 3

Cedar Riverside Maximal Restraint 
Technique 4

Cedar Riverside Police K9 Bite 3
Cedar Riverside Taser 24
Central Bodily Force 122
Central Chemical Irritant 10
Central Gun Point Display 2
Central Police K9 Bite 1
Central Taser 23
Cleveland Bodily Force 86
Cleveland Chemical Irritant 1
Cleveland Gun Point Display 1
Cleveland Improvised Weapon 1

Cleveland Maximal Restraint 
Technique 2

Cleveland Police K9 Bite 2
Cleveland Taser 4
Columbia Park Bodily Force 31
Columbia Park Less Lethal 1

Columbia Park Maximal Restraint 
Technique 5

Columbia Park Police K9 Bite 1
Columbia Park Taser 2
Como Bodily Force 105
Como Chemical Irritant 2
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Como Gun Point Display 4
Como Improvised Weapon 2

Como Maximal Restraint 
Technique 2

Como Taser 15
Cooper Bodily Force 8
Cooper Chemical Irritant 1
Cooper Police K9 Bite 2
Corcoran Bodily Force 76
Corcoran Chemical Irritant 2
Corcoran Firearm 1
Corcoran Gun Point Display 1
Corcoran Improvised Weapon 1
Corcoran Less Lethal 1

Corcoran Maximal Restraint 
Technique 1

Corcoran Taser 6
Diamond Lake Bodily Force 27
Diamond Lake Chemical Irritant 1
Diamond Lake Improvised Weapon 1
Diamond Lake Taser 3
Downtown East Bodily Force 102
Downtown East Chemical Irritant 3

Downtown East Maximal Restraint 
Technique 2

Downtown East Taser 24
Downtown West Bodily Force 1,688
Downtown West Chemical Irritant 999
Downtown West Gun Point Display 8
Downtown West Improvised Weapon 17
Downtown West Less Lethal 7

Downtown West Maximal Restraint 
Technique 19

Downtown West Taser 190
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ECCO Bodily Force 20
ECCO Chemical Irritant 2
ECCO Taser 3
East Harriet Bodily Force 15
East Harriet Gun Point Display 1
East Harriet Improvised Weapon 1
East Harriet Taser 4
East Isles Bodily Force 51
East Isles Chemical Irritant 4
East Isles Improvised Weapon 3
East Isles Taser 6
East Phillips Baton 1
East Phillips Bodily Force 231
East Phillips Chemical Irritant 16
East Phillips Gun Point Display 6
East Phillips Improvised Weapon 1

East Phillips Maximal Restraint 
Technique 4

East Phillips Police K9 Bite 2
East Phillips Taser 31
Elliot Park Baton 1
Elliot Park Bodily Force 215
Elliot Park Chemical Irritant 11
Elliot Park Gun Point Display 1
Elliot Park Improvised Weapon 2
Elliot Park Less Lethal 3

Elliot Park Maximal Restraint 
Technique 3

Elliot Park Taser 47
Ericsson Bodily Force 14
Ericsson Improvised Weapon 1
Ericsson Taser 1
Field Bodily Force 10
Field Taser 6



Statistics with R for Data Analysis

370

Folwell Bodily Force 273
Folwell Chemical Irritant 16
Folwell Gun Point Display 6
Folwell Improvised Weapon 10

Folwell Maximal Restraint 
Technique 3

Folwell Police K9 Bite 6
Folwell Taser 31
Fulton Bodily Force 15
Fulton Improvised Weapon 1
Fulton Taser 4
Hale Bodily Force 1
Hale Taser 1
Harrison Bodily Force 130
Harrison Chemical Irritant 8
Harrison Gun Point Display 3
Harrison Improvised Weapon 2

Harrison Maximal Restraint 
Technique 3

Harrison Police K9 Bite 1
Harrison Taser 8
Hawthorne Bodily Force 403
Hawthorne Chemical Irritant 49
Hawthorne Gun Point Display 5
Hawthorne Improvised Weapon 6
Hawthorne Less Lethal 2

Hawthorne Maximal Restraint 
Technique 3

Hawthorne Police K9 Bite 2
Hawthorne Taser 32
Hiawatha Bodily Force 39
Hiawatha Police K9 Bite 1
Hiawatha Taser 7
Holland Bodily Force 112
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Holland Chemical Irritant 4
Holland Gun Point Display 1
Holland Less Lethal 5

Holland Maximal Restraint 
Technique 1

Holland Police K9 Bite 1
Holland Taser 21
Howe Bodily Force 29
Howe Gun Point Display 1
Howe Improvised Weapon 1
Howe Police K9 Bite 2
Howe Taser 9
Jordan Bodily Force 383
Jordan Chemical Irritant 15
Jordan Gun Point Display 7
Jordan Improvised Weapon 13
Jordan Less Lethal Projectile 2

Jordan Maximal Restraint 
Technique 7

Jordan Police K9 Bite 4
Jordan Taser 48
Keewaydin Bodily Force 18
Keewaydin Chemical Irritant 1

Keewaydin Maximal Restraint 
Technique 1

Kenny Bodily Force 1
Kenwood Bodily Force 17
Kenwood Chemical Irritant 2
Kenwood Improvised Weapon 1

Kenwood Maximal Restraint 
Technique 2

Kenwood Taser 1
King Field Bodily Force 72
King Field Improvised Weapon 4
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King Field Maximal Restraint 
Technique 7

King Field Police K9 Bite 1
King Field Taser 3
Lind – Bohanon Bodily Force 111
Lind – Bohanon Chemical Irritant 5
Lind – Bohanon Gun Point Display 2
Lind – Bohanon Improvised Weapon 2
Lind – Bohanon Less Lethal Projectile 1

Lind – Bohanon Maximal Restraint 
Technique 4

Lind – Bohanon Police K9 Bite 1
Lind – Bohanon Taser 16
Linden Hills Bodily Force 22
Linden Hills Chemical Irritant 1
Linden Hills Improvised Weapon 1
Linden Hills Less Lethal 1
Linden Hills Taser 1
Logan Park Bodily Force 20
Logan Park Chemical Irritant 1

Logan Park Maximal Restraint 
Technique 3

Logan Park Police K9 Bite 1
Logan Park Taser 3
Longfellow Bodily Force 99
Longfellow Chemical Irritant 30
Longfellow Gun Point Display 2
Longfellow Less Lethal 21

Longfellow Maximal Restraint 
Technique 1

Longfellow Police K9 Bite 1
Longfellow Taser 16
Loring Park Bodily Force 287
Loring Park Chemical Irritant 23
Loring Park Gun Point Display 3
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Loring Park Improvised Weapon 4
Loring Park Less Lethal 6

Loring Park Maximal Restraint 
Technique 9

Loring Park Police K9 Bite 2
Loring Park Taser 80
Lowry Hill Bodily Force 34
Lowry Hill Chemical Irritant 7
Lowry Hill Gun Point Display 1

Lowry Hill Maximal Restraint 
Technique 2

Lowry Hill Police K9 Bite 1
Lowry Hill Taser 5
Lowry Hill East Bodily Force 367
Lowry Hill East Chemical Irritant 126
Lowry Hill East Improvised Weapon 14
Lowry Hill East Less Lethal 3
Lowry Hill East Police K9 Bite 1
Lowry Hill East Taser 43
Lyndale Bodily Force 194
Lyndale Chemical Irritant 6
Lyndale Gun Point Display 2
Lyndale Improvised Weapon 2
Lyndale Less Lethal 4

Lyndale Maximal Restraint 
Technique 5

Lyndale Police K9 Bite 1
Lyndale Taser 32
Lynnhurst Bodily Force 17
Lynnhurst Police K9 Bite 1
Lynnhurst Taser 4
Marcy Holmes Bodily Force 246
Marcy Holmes Chemical Irritant 24
Marcy Holmes Gun Point Display 2
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Marcy Holmes Less Lethal 5

Marcy Holmes Maximal Restraint 
Technique 5

Marcy Holmes Taser 28
Marshall Terrace Bodily Force 21

Marshall Terrace Maximal Restraint 
Technique 1

Marshall Terrace Police K9 Bite 1
Marshall Terrace Taser 4
McKinley Bodily Force 143
McKinley Gun Point Display 1
McKinley Improvised Weapon 4

McKinley Maximal Restraint 
Technique 2

McKinley Police K9 Bite 4
McKinley Taser 9
Mid – City Industrial Bodily Force 25
Mid – City Industrial Chemical Irritant 2

Mid – City Industrial Maximal Restraint 
Technique 1

Mid – City Industrial Taser 4
Midtown Phillips Bodily Force 128
Midtown Phillips Chemical Irritant 3
Midtown Phillips Gun Point Display 1
Midtown Phillips Improvised Weapon 4
Midtown Phillips Police K9 Bite 3
Midtown Phillips Taser 8
Minnehaha Bodily Force 10
Morris Park Bodily Force 6

Morris Park Maximal Restraint 
Technique 1

Morris Park Police K9 Bite 2
Morris Park Taser 3
Near – North Bodily Force 462
Near – North Chemical Irritant 33
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Near – North Gun Point Display 6
Near – North Improvised Weapon 6
Near – North Less Lethal 1

Near – North Maximal Restraint 
Technique 4

Near – North Police K9 Bite 2
Near – North Taser 48
Nicollet Island – East 
Bank Baton 1

Nicollet Island – East 
Bank Bodily Force 64

Nicollet Island – East 
Bank Chemical Irritant 7

Nicollet Island – East 
Bank Gun Point Display 2

Nicollet Island – East 
Bank Improvised Weapon 1

Nicollet Island – East 
Bank Less Lethal 1

Nicollet Island – East 
Bank

Maximal Restraint 
Technique 6

Nicollet Island – East 
Bank Police K9 Bite 1

Nicollet Island – East 
Bank Taser 23

North Loop Bodily Force 253
North Loop Chemical Irritant 27
North Loop Improvised Weapon 1
North Loop Less Lethal 2

North Loop Maximal Restraint 
Technique 10

North Loop Taser 30
Northeast Park Bodily Force 52
Northeast Park Chemical Irritant 2
Northeast Park Less Lethal 2
Northeast Park Police K9 Bite 1
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Northeast Park Taser 6
Northrop Bodily Force 22
Northrop Improvised Weapon 2
Northrop Taser 2
Page Bodily Force 4
Page Taser 1
Phillips West Bodily Force 113
Phillips West Chemical Irritant 11
Phillips West Gun Point Display 2
Phillips West Improvised Weapon 1
Phillips West Less Lethal 1
Phillips West Taser 19
Powderhorn Park Bodily Force 124
Powderhorn Park Chemical Irritant 14
Powderhorn Park Gun Point Display 2
Powderhorn Park Improvised Weapon 1
Powderhorn Park Less Lethal 1

Powderhorn Park Maximal Restraint 
Technique 3

Powderhorn Park Police K9 Bite 4
Powderhorn Park Taser 22
Prospect Park – East 
River Road Bodily Force 94

Prospect Park – East 
River Road Chemical Irritant 3

Prospect Park – East 
River Road Improvised Weapon 1

Prospect Park – East 
River Road Less Lethal 4

Prospect Park – East 
River Road

Maximal Restraint 
Technique 7

Prospect Park – East 
River Road Taser 31

Regina Bodily Force 20
Regina Taser 2
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Seward Bodily Force 88
Seward Chemical Irritant 3
Seward Less Lethal 2

Seward Maximal Restraint 
Technique 3

Seward Police K9 Bite 1
Seward Taser 19
Sheridan Bodily Force 26

Sheridan Maximal Restraint 
Technique 2

Sheridan Taser 7
Shingle Creek Bodily Force 42

Shingle Creek Maximal Restraint 
Technique 1

Shingle Creek Taser 5
St. Anthony East Bodily Force 24
St. Anthony East Chemical Irritant 1
St. Anthony East Gun Point Display 2
St. Anthony East Police K9 Bite 1
St. Anthony East Taser 4
St. Anthony West Bodily Force 32
St. Anthony West Improvised Weapon 1

St. Anthony West Maximal Restraint 
Technique 4

St. Anthony West Taser 10
Standish Bodily Force 28
Standish Chemical Irritant 9
Standish Gun Point Display 1
Standish Improvised Weapon 1
Standish Less Lethal 1

Standish Maximal Restraint 
Technique 2

Standish Police K9 Bite 2
Standish Taser 10
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Steven’s Square – 
Loring Heights Bodily Force 174

Steven’s Square – 
Loring Heights Chemical Irritant 1

Steven’s Square – 
Loring Heights Improvised Weapon 10

Steven’s Square – 
Loring Heights Less Lethal 1

Steven’s Square – 
Loring Heights

Maximal Restraint 
Technique 3

Steven’s Square – 
Loring Heights Police K9 Bite 1

Steven’s Square – 
Loring Heights Taser 35

Sumner – Glenwood Bodily Force 31
Sumner – Glenwood Gun Point Display 2

Sumner – Glenwood Maximal Restraint 
Technique 2

Sumner – Glenwood Taser 5
Tangletown Bodily Force 37
Tangletown Chemical Irritant 1
Tangletown Less Lethal 1
Tangletown Taser 4
University of Min-
nesota Bodily Force 32

University of Min-
nesota Chemical Irritant 8

University of Min-
nesota Gun Point Display 2

University of Min-
nesota

Maximal Restraint 
Technique 2

University of Min-
nesota Taser 8

Ventura Village Bodily Force 155
Ventura Village Chemical Irritant 5
Ventura Village Gun Point Display 2
Ventura Village Improvised Weapon 2
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Ventura Village Less Lethal 1

Ventura Village Maximal Restraint 
Technique 4

Ventura Village Police K9 Bite 2
Ventura Village Taser 27
Victory Bodily Force 39
Victory Chemical Irritant 6
Victory Police K9 Bite 2
Victory Taser 6
Waite Park Bodily Force 59
Waite Park Chemical Irritant 2
Waite Park Gun Point Display 1

Waite Park Maximal Restraint 
Technique 5

Waite Park Police K9 Bite 1
Waite Park Taser 5
Webber – Camden Bodily Force 163
Webber – Camden Chemical Irritant 16
Webber – Camden Gun Point Display 5
Webber – Camden Improvised Weapon 2

Webber – Camden Maximal Restraint 
Technique 3

Webber – Camden Police K9 Bite 1
Webber – Camden Taser 19
Wenonah Bodily Force 33
Wenonah Firearm 1
Wenonah Less Lethal 1
Wenonah Taser 7
West Calhoun Bodily Force 12
West Calhoun Taser 1
Whittier Bodily Force 384
Whittier Chemical Irritant 17
Whittier Gun Point Display 6
Whittier Improvised Weapon 12
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Whittier Less Lethal 2

Whittier Maximal Restraint 
Technique 3

Whittier Police K9 Bite 1
Whittier Taser 45
Willard – Hay Baton 1
Willard – Hay Bodily Force 256
Willard – Hay Chemical Irritant 2
Willard – Hay Gun Point Display 4
Willard – Hay Improvised Weapon 2
Willard – Hay Police K9 Bite 3
Willard – Hay Taser 32
Windom Bodily Force 54
Windom Gun Point Display 1
Windom Less Lethal 2

Windom Maximal Restraint 
Technique 2

Windom Taser 21
Windom Park Bodily Force 44
Windom Park Chemical Irritant 3
Windom Park Gun Point Display 1
Windom Park Less Lethal 1
Windom Park Police K9 Bite 1
Windom Park Taser 13

We see that:
• The “Bodily Force” type was applied 1688 times in “Downtown 

West” compared to 10 times in “Beltrami” and 1 time only in “Hale.” 
So “Bodily Force” was applied more in “Downtown West” than in 
other neighborhoods.

• The “Chemical Irritant” force type was applied 999 times in 
“Downtown West” but never applied in “Beltrami” and “Hale.” So 
“Chemical Irritant” was applied more in “Downtown West” than in 
other neighborhoods.
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5.2.2. The Proportion
When examining the relation between 2 categorical variables, the proportion or 
percentage is preferred over counts because this allows comparison between the 
different levels of one categorical variable if they have different sample sizes.

5.2.2.1. The Proportion of Different Employment Statuses in the 
2 Genders
To get these proportions, we use the following functions:

• The count function with the arguments gender, and employment to 
get the count of different employment statuses in males and females.

• The drop_na function deletes any rows that contain missings in the 
gender or employment status.

• The group_by function with the gender argument to split the count 
results into two, one for males and one for females.

• The mutate function creates a new column “proportion” by dividing 
the count over the sum of counts for each gender. The sum of 
proportions will be 1 or 100% for each gender.

• The arrange function with the argument desc(proportion) to arrange 
the proportions in descending order. Then we convert the result to a 
table as before.

acs12 %>% count(gender, employment) %>% drop_na() %>%

 group_by(gender) %>% mutate(proportion = n/sum(n)) %>%

 arrange(desc(proportion)) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The count and proportion of different employment statuses 
in males and females of the American Community Survey data”)

Table 5.5. The Count and Proportion of Different Employment Statuses in Males 
and Females of the American Community Survey Data

Gender Employment n Proportion
male employed 470 0.5788177
female not in labor force 373 0.4703657
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Gender Employment n Proportion
female employed 373 0.4703657
male not in labor force 283 0.3485222
male unemployed 59 0.0726601
female unemployed 47 0.0592686

We see that:
• The percentage of employed males is 57.9% compared to 47% of 

females. So males are more employed than females.
• The percentage of females not in labor force is 47% compared to 

34.9% of males. So females are more likely to not be in the labor 
force than males.

• The percentage of unemployed males is 7.3% compared to 5.9% of 
females. So males are more unemployed than females.

5.2.2.2. The Proportion of Different Employment Statuses in the 
Different Races
We use the same functions as above but group by race instead to get the 
proportions of employment statuses in each race.

acs12 %>% count(race, employment) %>% drop_na() %>%

 group_by(race) %>% mutate(proportion = n/sum(n)) %>%

 arrange(desc(proportion)) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The count and proportion of different employment statuses 
in the different races of the American Community Survey data”)

Table 5.6. The Count and Proportion of Different Employment Statuses in the Dif-
ferent Races of the American Community Survey Data

Race Employment n Proportion
other employed 58 0.53703704
asian employed 39 0.53424658
white employed 670 0.53090333
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Race Employment n Proportion
black employed 76 0.46913580
asian not in labor force 31 0.42465753
white not in labor force 520 0.41204437
black not in labor force 66 0.40740741
other not in labor force 39 0.36111111
black unemployed 20 0.12345679
other unemployed 11 0.10185185
white unemployed 72 0.05705230
asian unemployed 3 0.04109589

We see that:
• The percentage of employed other races is 53.7% compared to 

53.4% Asians, 53% Whites, and 46.9% Blacks. So Blacks are less 
employed than other races.

• The percentage of Asians not in labor force is 42.5% compared to 
41.2% Whites, 40.7% Blacks, and 36% other races. So other races 
are less likely to not be in the labor force than other races.

• The percentage of unemployed Blacks is 12.3% compared to 10% of 
other races, 5.7% of Whites, and 4.1% of Asians. So Blacks are more 
unemployed than other races.

5.2.2.3. The Proportion of Force Types in the Different Races
We use the same functions as above but group by race instead to get the 
proportions of the different force types used in each race.

mn_police_use_of_force %>% count(race, force_type) %>% drop_na() %>%

 group_by(race) %>% mutate(proportion = n/sum(n)) %>%

 arrange(desc(proportion)) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “The count and proportion of different force types applied 
on different races from the Minneapolis police use of force data”)
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Table 5.7. The Count and Proportion of Different Force Types Applied on Different 
Races from the Minneapolis Police Use of Force Data

Race force_type n Proportion
Pacific 
Islander Bodily Force 5 0.8333333333

Native 
American Bodily Force 616 0.7857142857

White Bodily Force 2,454 0.7842761266
Black Bodily Force 5,519 0.7216265690
Other/Mixed 
Race Bodily Force 137 0.6682926829

Asian Bodily Force 78 0.6046511628
Asian Chemical Irritant 32 0.2480620155
Other/Mixed 
Race Chemical Irritant 50 0.2439024390

Pacific 
Islander Chemical Irritant 1 0.1666666667

Black Chemical Irritant 1,033 0.1350679916
Native 
American Taser 104 0.1326530612

Asian Taser 17 0.1317829457
White Taser 334 0.1067433685
Black Taser 755 0.0987186192
White Chemical Irritant 191 0.0610418664
Other/Mixed 
Race Taser 12 0.0585365854

Native 
American Chemical Irritant 18 0.0229591837

Native 
American

Maximal Restraint 
Technique 14 0.0178571429

White Improvised Weapon 47 0.0150207734
Other/Mixed 
Race Gun Point Display 3 0.0146341463

Black Maximal Restraint 
Technique 104 0.0135983264
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Race force_type n Proportion

White Maximal Restraint 
Technique 42 0.0134228188

Native 
American Improvised Weapon 10 0.0127551020

Black Improvised Weapon 83 0.0108525105
Native 
American Gun Point Display 8 0.0102040816

Native 
American Police K9 Bite 8 0.0102040816

Black Gun Point Display 76 0.0099372385
Other/Mixed 
Race Police K9 Bite 2 0.0097560976

White Less Lethal 27 0.0086289549
Asian Gun Point Display 1 0.0077519380
Asian Improvised Weapon 1 0.0077519380
Native 
American Less Lethal 6 0.0076530612

Black Police K9 Bite 48 0.0062761506
White Police K9 Bite 17 0.0054330457
White Gun Point Display 16 0.0051134548
Other/Mixed 
Race Improvised Weapon 1 0.0048780488

Black Less Lethal 23 0.0030073222
Black Less Lethal Projectile 3 0.0003922594
White Baton 1 0.0003195909
Black Baton 2 0.0002615063
Black Firearm 2 0.0002615063

We see that:
• The “Bodily Force” type was applied mostly to Pacific Islanders 

(83.3%) compared to 78.6% on Native Americans, 78.4% on 
Whites, 72.2% on Blacks, 66.8% on Other/Mixed Races, and 60.5% 
on Asians. So “Bodily Force” was applied less frequently to Asians 
and more frequently to Pacific Islanders than to other races.

• The “Chemical Irritant” force type was applied to Asians 24.8% of 
the time compared to 24.4% on Other/Mixed Races, 16.7% on Pacific 
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Islanders, 13.5% on Blacks, 6.1% on Whites, and 2.3% on Native 
Americans. So “Chemical Irritant” was applied less frequently to 
Native Americans and more frequently to Asians than to other races.

5.2.2.4. The Proportion of Force Types in the Different  
Neighborhoods
We use the same functions as above but group by neighborhood instead to get 
the proportions of the different force types used in each neighborhood. We also 
filter out when the neighborhood is an empty space by using the filter function 
with the argument !neighborhood==“.”
mn_police_use_of_force %>% count(neighborhood,force_type) %>%

 filter(!neighborhood==““) %>%

 drop_na() %>%

 group_by(neighborhood) %>% mutate(proportion = n/sum(n)) %>%

 arrange(desc(proportion)) %>%

 flextable() %>%

 theme_box() %>%

 set_caption(caption = “The count and proportion of different force types applied 
in the different neighborhoods from the Minneapolis police use of force data”)

Table 5.8. The Count and Proportion of Different Force Types applied in the Differ-
ent Neighborhoods from the Minneapolis Police use of Force Data

Neighborhood force_type n Proportion
Camden Industrial Bodily Force 3 1.000000000
Kenny Bodily Force 1 1.000000000
Minnehaha Bodily Force 10 1.000000000
West Calhoun Bodily Force 12 0.923076923
Beltrami Bodily Force 10 0.909090909
Regina Bodily Force 20 0.909090909
Audubon Park Bodily Force 89 0.908163265
Keewaydin Bodily Force 18 0.900000000
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Cleveland Bodily Force 86 0.886597938
Bryant Bodily Force 22 0.880000000
CARAG Bodily Force 154 0.880000000
McKinley Bodily Force 143 0.877300613
Ericsson Bodily Force 14 0.875000000
Shingle Creek Bodily Force 42 0.875000000
Midtown Phillips Bodily Force 128 0.870748299
Tangletown Bodily Force 37 0.860465116
Corcoran Bodily Force 76 0.853932584
Willard – Hay Bodily Force 256 0.853333333
Linden Hills Bodily Force 22 0.846153846
Northrop Bodily Force 22 0.846153846
Diamond Lake Bodily Force 27 0.843750000
Harrison Bodily Force 130 0.838709677
Bryn – Mawr Bodily Force 15 0.833333333
Hiawatha Bodily Force 39 0.829787234
King Field Bodily Force 72 0.827586207
Northeast Park Bodily Force 52 0.825396825
Near – North Bodily Force 462 0.822064057
Whittier Bodily Force 384 0.817021277
Waite Park Bodily Force 59 0.808219178
Como Bodily Force 105 0.807692308
Hawthorne Bodily Force 403 0.802788845
ECCO Bodily Force 20 0.800000000
Page Bodily Force 4 0.800000000
Jordan Bodily Force 383 0.799582463
East Isles Bodily Force 51 0.796875000
Marcy Holmes Bodily Force 246 0.793548387
Folwell Bodily Force 273 0.791304348
East Phillips Bodily Force 231 0.791095890
Lyndale Bodily Force 194 0.788617886
Wenonah Bodily Force 33 0.785714286
North Loop Bodily Force 253 0.783281734
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Ventura Village Bodily Force 155 0.782828283
Lind – Bohanon Bodily Force 111 0.781690141
Mid – City Indus-
trial Bodily Force 25 0.781250000

Webber – Camden Bodily Force 163 0.779904306
Downtown East Bodily Force 102 0.778625954
Marshall Terrace Bodily Force 21 0.777777778
Columbia Park Bodily Force 31 0.775000000
Sumner – Glen-
wood Bodily Force 31 0.775000000

Steven’s Square – 
Loring Heights Bodily Force 174 0.773333333

Lynnhurst Bodily Force 17 0.772727273
Holland Bodily Force 112 0.772413793
Central Bodily Force 122 0.772151899
Phillips West Bodily Force 113 0.768707483
Bancroft Bodily Force 23 0.766666667
Elliot Park Bodily Force 215 0.759717314
Seward Bodily Force 88 0.758620690
Fulton Bodily Force 15 0.750000000
St. Anthony East Bodily Force 24 0.750000000
Sheridan Bodily Force 26 0.742857143
Kenwood Bodily Force 17 0.739130435
Victory Bodily Force 39 0.735849057
Cooper Bodily Force 8 0.727272727
Powderhorn Park Bodily Force 124 0.725146199
East Harriet Bodily Force 15 0.714285714
Logan Park Bodily Force 20 0.714285714
Bottineau Bodily Force 7 0.700000000
Windom Park Bodily Force 44 0.698412698
Loring Park Bodily Force 287 0.693236715
Howe Bodily Force 29 0.690476190
St. Anthony West Bodily Force 32 0.680851064
Lowry Hill Bodily Force 34 0.680000000



Bivariate Analysis for Categorical-Categorical Data

389

Armatage Bodily Force 19 0.678571429
Windom Bodily Force 54 0.675000000
Prospect Park – 
East River Road Bodily Force 94 0.671428571

Cedar – Isles – 
Dean Bodily Force 4 0.666666667

Cedar Riverside Bodily Force 136 0.663414634
Lowry Hill East Bodily Force 367 0.662454874
Field Bodily Force 10 0.625000000
University of 
Minnesota Bodily Force 32 0.615384615

Nicollet Island – 
East Bank Bodily Force 64 0.603773585

Longfellow Bodily Force 99 0.582352941
Downtown West Bodily Force 1,688 0.576502732
Standish Bodily Force 28 0.518518519
Hale Bodily Force 1 0.500000000
Hale Taser 1 0.500000000
Morris Park Bodily Force 6 0.500000000
Field Taser 6 0.375000000
Downtown West Chemical Irritant 999 0.341188525
Cedar – Isles – 
Dean Chemical Irritant 2 0.333333333

Windom Taser 21 0.262500000
Morris Park Taser 3 0.250000000
Lowry Hill East Chemical Irritant 126 0.227436823
Prospect Park – 
East River Road Taser 31 0.221428571

Nicollet Island – 
East Bank Taser 23 0.216981132

Armatage Taser 6 0.214285714
Howe Taser 9 0.214285714
St. Anthony West Taser 10 0.212765957
Windom Park Taser 13 0.206349206
Fulton Taser 4 0.200000000
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Page Taser 1 0.200000000
Sheridan Taser 7 0.200000000
Loring Park Taser 80 0.193236715
East Harriet Taser 4 0.190476190
Standish Taser 10 0.185185185
Downtown East Taser 24 0.183206107
Cooper Police K9 Bite 2 0.181818182
Lynnhurst Taser 4 0.181818182
Longfellow Chemical Irritant 30 0.176470588
Bryn – Mawr Taser 3 0.166666667
Morris Park Police K9 Bite 2 0.166666667
Standish Chemical Irritant 9 0.166666667
Wenonah Taser 7 0.166666667
Elliot Park Taser 47 0.166077739
Seward Taser 19 0.163793103
Steven’s Square – 
Loring Heights Taser 35 0.155555556

University of 
Minnesota Chemical Irritant 8 0.153846154

University of 
Minnesota Taser 8 0.153846154

Cedar Riverside Chemical Irritant 31 0.151219512
Hiawatha Taser 7 0.148936170
Marshall Terrace Taser 4 0.148148148
Central Taser 23 0.145569620
Holland Taser 21 0.144827586
Lowry Hill Chemical Irritant 7 0.140000000
Ventura Village Taser 27 0.136363636
Bancroft Chemical Irritant 4 0.133333333
Lyndale Taser 32 0.130081301
Phillips West Taser 19 0.129251701
Powderhorn Park Taser 22 0.128654971

Columbia Park Maximal Restraint Tech-
nique 5 0.125000000
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Mid – City Indus-
trial Taser 4 0.125000000

St. Anthony East Taser 4 0.125000000
Sumner – Glen-
wood Taser 5 0.125000000

Longfellow Less Lethal 21 0.123529412
ECCO Taser 3 0.120000000
Cedar Riverside Taser 24 0.117073171
Como Taser 15 0.115384615
Victory Chemical Irritant 6 0.113207547
Victory Taser 6 0.113207547
Lind – Bohanon Taser 16 0.112676056

Logan Park Maximal Restraint Tech-
nique 3 0.107142857

Logan Park Taser 3 0.107142857
Willard – Hay Taser 32 0.106666667
East Phillips Taser 31 0.106164384
Shingle Creek Taser 5 0.104166667
Jordan Taser 48 0.100208768
Bottineau Chemical Irritant 1 0.100000000
Bottineau Police K9 Bite 1 0.100000000
Bottineau Taser 1 0.100000000
Lowry Hill Taser 5 0.100000000
Hawthorne Chemical Irritant 49 0.097609562
Whittier Taser 45 0.095744681
Northeast Park Taser 6 0.095238095
Longfellow Taser 16 0.094117647
Diamond Lake Taser 3 0.093750000
East Isles Taser 6 0.093750000
Tangletown Taser 4 0.093023256
North Loop Taser 30 0.092879257
Beltrami Less Lethal 1 0.090909091
Cooper Chemical Irritant 1 0.090909091
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Regina Taser 2 0.090909091
Webber – Camden Taser 19 0.090909091
Marcy Holmes Taser 28 0.090322581
Folwell Taser 31 0.089855072
Kenwood Chemical Irritant 2 0.086956522

Kenwood Maximal Restraint Tech-
nique 2 0.086956522

Near – North Taser 48 0.085409253

St. Anthony West Maximal Restraint Tech-
nique 4 0.085106383

North Loop Chemical Irritant 27 0.083591331

Morris Park Maximal Restraint Tech-
nique 1 0.083333333

Powderhorn Park Chemical Irritant 14 0.081871345

King Field Maximal Restraint Tech-
nique 7 0.080459770

Bryant Police K9 Bite 2 0.080000000
ECCO Chemical Irritant 2 0.080000000
Lowry Hill East Taser 43 0.077617329
Marcy Holmes Chemical Irritant 24 0.077419355
Northrop Improvised Weapon 2 0.076923077
Northrop Taser 2 0.076923077
West Calhoun Taser 1 0.076923077
Webber – Camden Chemical Irritant 16 0.076555024
Phillips West Chemical Irritant 11 0.074829932
CARAG Taser 12 0.068571429

Waite Park Maximal Restraint Tech-
nique 5 0.068493151

Waite Park Taser 5 0.068493151
Corcoran Taser 6 0.067415730
Bancroft Improvised Weapon 2 0.066666667
Nicollet Island – 
East Bank Chemical Irritant 7 0.066037736

Downtown West Taser 190 0.064890710
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Hawthorne Taser 32 0.063745020
Central Chemical Irritant 10 0.063291139
East Isles Chemical Irritant 4 0.062500000
Ericsson Improvised Weapon 1 0.062500000
Ericsson Taser 1 0.062500000
Mid – City Indus-
trial Chemical Irritant 2 0.062500000

St. Anthony East Gun Point Display 2 0.062500000
Audubon Park Taser 6 0.061224490
Near – North Chemical Irritant 33 0.058718861

Sheridan Maximal Restraint Tech-
nique 2 0.057142857

Nicollet Island – 
East Bank

Maximal Restraint Tech-
nique 6 0.056603774

Loring Park Chemical Irritant 23 0.055555556
McKinley Taser 9 0.055214724
East Phillips Chemical Irritant 16 0.054794521
Midtown Phillips Taser 8 0.054421769
Harrison Chemical Irritant 8 0.051612903
Harrison Taser 8 0.051612903
Columbia Park Taser 2 0.050000000
Fulton Improvised Weapon 1 0.050000000
Keewaydin Chemical Irritant 1 0.050000000

Keewaydin Maximal Restraint Tech-
nique 1 0.050000000

Prospect Park – 
East River Road

Maximal Restraint Tech-
nique 7 0.050000000

Sumner – Glen-
wood Gun Point Display 2 0.050000000

Sumner – Glen-
wood

Maximal Restraint Tech-
nique 2 0.050000000

East Harriet Gun Point Display 1 0.047619048
East Harriet Improvised Weapon 1 0.047619048
Howe Police K9 Bite 2 0.047619048
Windom Park Chemical Irritant 3 0.047619048
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East Isles Improvised Weapon 3 0.046875000
Folwell Chemical Irritant 16 0.046376812
King Field Improvised Weapon 4 0.045977011
Lynnhurst Police K9 Bite 1 0.045454545
Steven’s Square – 
Loring Heights Improvised Weapon 10 0.044444444

Kenwood Improvised Weapon 1 0.043478261
Kenwood Taser 1 0.043478261
Cleveland Taser 4 0.041237113
Bryant Taser 1 0.040000000

Lowry Hill Maximal Restraint Tech-
nique 2 0.040000000

Elliot Park Chemical Irritant 11 0.038869258
Linden Hills Chemical Irritant 1 0.038461538
Linden Hills Improvised Weapon 1 0.038461538
Linden Hills Less Lethal 1 0.038461538
Linden Hills Taser 1 0.038461538
University of 
Minnesota Gun Point Display 2 0.038461538

University of 
Minnesota

Maximal Restraint Tech-
nique 2 0.038461538

Victory Police K9 Bite 2 0.037735849

Marshall Terrace Maximal Restraint Tech-
nique 1 0.037037037

Marshall Terrace Police K9 Bite 1 0.037037037

Standish Maximal Restraint Tech-
nique 2 0.037037037

Standish Police K9 Bite 2 0.037037037
Whittier Chemical Irritant 17 0.036170213
Armatage Chemical Irritant 1 0.035714286

Armatage Maximal Restraint Tech-
nique 1 0.035714286

Armatage Police K9 Bite 1 0.035714286
Logan Park Chemical Irritant 1 0.035714286
Logan Park Police K9 Bite 1 0.035714286
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Lind – Bohanon Chemical Irritant 5 0.035211268
Holland Less Lethal 5 0.034482759
King Field Taser 3 0.034482759
Bancroft Taser 1 0.033333333
Northeast Park Chemical Irritant 2 0.031746032
Northeast Park Less Lethal 2 0.031746032
Jordan Chemical Irritant 15 0.031315240
Diamond Lake Chemical Irritant 1 0.031250000
Diamond Lake Improvised Weapon 1 0.031250000
Mid – City Indus-
trial

Maximal Restraint Tech-
nique 1 0.031250000

St. Anthony East Chemical Irritant 1 0.031250000
St. Anthony East Police K9 Bite 1 0.031250000

North Loop Maximal Restraint Tech-
nique 10 0.030959752

Como Gun Point Display 4 0.030769231
Audubon Park Chemical Irritant 3 0.030612245
Folwell Improvised Weapon 10 0.028985507
Prospect Park – 
East River Road Less Lethal 4 0.028571429

Lind – Bohanon Maximal Restraint Tech-
nique 4 0.028169014

Holland Chemical Irritant 4 0.027586207
Waite Park Chemical Irritant 2 0.027397260
Midtown Phillips Improvised Weapon 4 0.027210884
Jordan Improvised Weapon 13 0.027139875
Seward Chemical Irritant 3 0.025862069

Seward Maximal Restraint Tech-
nique 3 0.025862069

Whittier Improvised Weapon 12 0.025531915
Lowry Hill East Improvised Weapon 14 0.025270758
Ventura Village Chemical Irritant 5 0.025252525
Columbia Park Less Lethal 1 0.025000000
Columbia Park Police K9 Bite 1 0.025000000
Windom Less Lethal 2 0.025000000
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Windom Maximal Restraint Tech-
nique 2 0.025000000

McKinley Improvised Weapon 4 0.024539877
McKinley Police K9 Bite 4 0.024539877
Lyndale Chemical Irritant 6 0.024390244
Webber – Camden Gun Point Display 5 0.023923445
Howe Gun Point Display 1 0.023809524
Howe Improvised Weapon 1 0.023809524
Wenonah Firearm 1 0.023809524
Wenonah Less Lethal 1 0.023809524
Powderhorn Park Police K9 Bite 4 0.023391813
Tangletown Chemical Irritant 1 0.023255814
Tangletown Less Lethal 1 0.023255814
Downtown East Chemical Irritant 3 0.022900763
CARAG Chemical Irritant 4 0.022857143
Corcoran Chemical Irritant 2 0.022471910

Loring Park Maximal Restraint Tech-
nique 9 0.021739130

Prospect Park – 
East River Road Chemical Irritant 3 0.021428571

Hiawatha Police K9 Bite 1 0.021276596
St. Anthony West Improvised Weapon 1 0.021276596

Shingle Creek Maximal Restraint Tech-
nique 1 0.020833333

Cleveland Maximal Restraint Tech-
nique 2 0.020618557

Cleveland Police K9 Bite 2 0.020618557
East Phillips Gun Point Display 6 0.020547945
Midtown Phillips Chemical Irritant 3 0.020408163
Midtown Phillips Police K9 Bite 3 0.020408163

Lyndale Maximal Restraint Tech-
nique 5 0.020325203

Ventura Village Maximal Restraint Tech-
nique 4 0.020202020

Lowry Hill Gun Point Display 1 0.020000000
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Lowry Hill Police K9 Bite 1 0.020000000

Cedar Riverside Maximal Restraint Tech-
nique 4 0.019512195

Harrison Gun Point Display 3 0.019354839

Harrison Maximal Restraint Tech-
nique 3 0.019354839

Nicollet Island – 
East Bank Gun Point Display 2 0.018867925

Standish Gun Point Display 1 0.018518519
Standish Improvised Weapon 1 0.018518519
Standish Less Lethal 1 0.018518519

Powderhorn Park Maximal Restraint Tech-
nique 3 0.017543860

Folwell Gun Point Display 6 0.017391304
Folwell Police K9 Bite 6 0.017391304
Seward Less Lethal 2 0.017241379
CARAG Improvised Weapon 3 0.017142857
Lyndale Less Lethal 4 0.016260163
Marcy Holmes Less Lethal 5 0.016129032

Marcy Holmes Maximal Restraint Tech-
nique 5 0.016129032

Northeast Park Police K9 Bite 1 0.015873016
Windom Park Gun Point Display 1 0.015873016
Windom Park Less Lethal 1 0.015873016
Windom Park Police K9 Bite 1 0.015873016
Como Chemical Irritant 2 0.015384615
Como Improvised Weapon 2 0.015384615

Como Maximal Restraint Tech-
nique 2 0.015384615

Downtown East Maximal Restraint Tech-
nique 2 0.015267176

Cedar Riverside Gun Point Display 3 0.014634146
Cedar Riverside Less Lethal 3 0.014634146
Cedar Riverside Police K9 Bite 3 0.014634146
Jordan Gun Point Display 7 0.014613779
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Jordan Maximal Restraint Tech-
nique 7 0.014613779

Loring Park Less Lethal 6 0.014492754

Webber – Camden Maximal Restraint Tech-
nique 3 0.014354067

Lind – Bohanon Gun Point Display 2 0.014084507
Lind – Bohanon Improvised Weapon 2 0.014084507

East Phillips Maximal Restraint Tech-
nique 4 0.013698630

Waite Park Gun Point Display 1 0.013698630
Waite Park Police K9 Bite 1 0.013698630
Phillips West Gun Point Display 2 0.013605442
Steven’s Square – 
Loring Heights

Maximal Restraint Tech-
nique 3 0.013333333

Willard – Hay Gun Point Display 4 0.013333333
Harrison Improvised Weapon 2 0.012903226
Whittier Gun Point Display 6 0.012765957
Central Gun Point Display 2 0.012658228
Windom Gun Point Display 1 0.012500000

McKinley Maximal Restraint Tech-
nique 2 0.012269939

Hawthorne Improvised Weapon 6 0.011952191
Longfellow Gun Point Display 2 0.011764706
Powderhorn Park Gun Point Display 2 0.011695906
King Field Police K9 Bite 1 0.011494253
Corcoran Firearm 1 0.011235955
Corcoran Gun Point Display 1 0.011235955
Corcoran Improvised Weapon 1 0.011235955
Corcoran Less Lethal 1 0.011235955

Corcoran Maximal Restraint Tech-
nique 1 0.011235955

Near – North Gun Point Display 6 0.010676157
Near – North Improvised Weapon 6 0.010676157
Elliot Park Less Lethal 3 0.010600707

Elliot Park Maximal Restraint Tech-
nique 3 0.010600707
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Cleveland Chemical Irritant 1 0.010309278
Cleveland Gun Point Display 1 0.010309278
Cleveland Improvised Weapon 1 0.010309278
Ventura Village Gun Point Display 2 0.010101010
Ventura Village Improvised Weapon 2 0.010101010
Ventura Village Police K9 Bite 2 0.010101010
Willard – Hay Police K9 Bite 3 0.010000000
Hawthorne Gun Point Display 5 0.009960159
Loring Park Improvised Weapon 4 0.009661836
Webber – Camden Improvised Weapon 2 0.009569378
Nicollet Island – 
East Bank Baton 1 0.009433962

Nicollet Island – 
East Bank Improvised Weapon 1 0.009433962

Nicollet Island – 
East Bank Less Lethal 1 0.009433962

Nicollet Island – 
East Bank Police K9 Bite 1 0.009433962

Folwell Maximal Restraint Tech-
nique 3 0.008695652

Seward Police K9 Bite 1 0.008620690
Jordan Police K9 Bite 4 0.008350731
Lyndale Gun Point Display 2 0.008130081
Lyndale Improvised Weapon 2 0.008130081
Loring Park Gun Point Display 3 0.007246377
Prospect Park – 
East River Road Improvised Weapon 1 0.007142857

Near – North Maximal Restraint Tech-
nique 4 0.007117438

Elliot Park Improvised Weapon 2 0.007067138
Lind – Bohanon Less Lethal Projectile 1 0.007042254
Lind – Bohanon Police K9 Bite 1 0.007042254
Holland Gun Point Display 1 0.006896552

Holland Maximal Restraint Tech-
nique 1 0.006896552
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Holland Police K9 Bite 1 0.006896552
East Phillips Police K9 Bite 2 0.006849315
Midtown Phillips Gun Point Display 1 0.006802721
Phillips West Improvised Weapon 1 0.006802721
Phillips West Less Lethal 1 0.006802721
Willard – Hay Chemical Irritant 2 0.006666667
Willard – Hay Improvised Weapon 2 0.006666667

Downtown West Maximal Restraint Tech-
nique 19 0.006489071

Harrison Police K9 Bite 1 0.006451613
Marcy Holmes Gun Point Display 2 0.006451613

Whittier Maximal Restraint Tech-
nique 3 0.006382979

Central Police K9 Bite 1 0.006329114
North Loop Less Lethal 2 0.006191950
McKinley Gun Point Display 1 0.006134969

Hawthorne Maximal Restraint Tech-
nique 3 0.005976096

Longfellow Maximal Restraint Tech-
nique 1 0.005882353

Longfellow Police K9 Bite 1 0.005882353
Powderhorn Park Improvised Weapon 1 0.005847953
Powderhorn Park Less Lethal 1 0.005847953
Downtown West Improvised Weapon 17 0.005806011
CARAG Gun Point Display 1 0.005714286
CARAG Police K9 Bite 1 0.005714286
Lowry Hill East Less Lethal 3 0.005415162
Ventura Village Less Lethal 1 0.005050505
Cedar Riverside Improvised Weapon 1 0.004878049
Loring Park Police K9 Bite 2 0.004830918
Webber – Camden Police K9 Bite 1 0.004784689
Steven’s Square – 
Loring Heights Chemical Irritant 1 0.004444444

Steven’s Square – 
Loring Heights Less Lethal 1 0.004444444
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Steven’s Square – 
Loring Heights Police K9 Bite 1 0.004444444

Whittier Less Lethal 2 0.004255319
Jordan Less Lethal Projectile 2 0.004175365
Lyndale Police K9 Bite 1 0.004065041
Hawthorne Less Lethal 2 0.003984064
Hawthorne Police K9 Bite 2 0.003984064
Near – North Police K9 Bite 2 0.003558719
Elliot Park Baton 1 0.003533569
Elliot Park Gun Point Display 1 0.003533569
East Phillips Baton 1 0.003424658
East Phillips Improvised Weapon 1 0.003424658
Willard – Hay Baton 1 0.003333333
North Loop Improvised Weapon 1 0.003095975
Downtown West Gun Point Display 8 0.002732240
Downtown West Less Lethal 7 0.002390710
Whittier Police K9 Bite 1 0.002127660
Lowry Hill East Police K9 Bite 1 0.001805054
Near – North Less Lethal 1 0.001779359

We see that:
• The “Bodily Force” type was applied at all times in “Camden Industrial,” 

“Kenny,” and “Minnehaha” with a percentage of 100%, but they have 
sample sizes of 3,1, and 10 respectively for this force type.

• The “Bodily Force” type was applied less frequently in “Hale,” 
“Morris Park,” “Standish,” and “Downtown West” with a percentage 
of 50%,50%,51.9%, and 57.7% but they have sample sizes of 1,6,28 
and 1688 respectively for this force type.

• The “Chemical Irritant” force type was applied mostly in 
“Downtown West,” “Cedar – Isles – Dean,” and “Lowry Hill East” 
with a percentage of 34.1%,33.3%, and 22.7% respectively, but they 
have sample sizes of 999,2, and 126 respectively for this force type.

• The “Chemical Irritant” type was applied less frequently in 
“Steven’s Square – Loring Heights,” “Willard – Hay,” “Cleveland,” 
and “Como” with a percentage of 0.44%,0.67%,1%, and 1.5% 
respectively, but they have sample sizes of 1,2,1,2 respectively for 
this force type.
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5.2.2.5. The Proportion of Force Types in the 10 Most Frequent 
Neighborhoods
Instead of looking at the 86 different neighborhoods, we can look at the 10 most 
frequent neighborhoods using the fct_lump_n function with the argument n=10 
within the mutate function. We can see the result of this function by using the 
count function with the argument neighborhood after these functions.

mn_police_use_of_force %>%

 mutate(neighborhood= fct_lump_n(neighborhood, n=10)) %>%

 count(neighborhood) %>%

 flextable() %>%

 theme_box() %>%

 set_caption(caption = “The count of the 10 most frequent neighborhoods from the 
Minneapolis police use of force data”)

Table 5.9. The Count of the 10 Most Frequent Neighborhoods from the Minneapo-
lis Police use of Force Data

Neighborhood n

Downtown West 2,928

Folwell 345

Hawthorne 502

Jordan 479

Loring Park 414

Lowry Hill East 554

Marcy Holmes 310

Near – North 562

North Loop 323

Whittier 470

Other 6,038

So the 10 most frequent neighborhoods are “Downtown West,” “Folwell,” 
“Hawthorne,” “Jordan,” “Loring Park,” “Lowry Hill East,” “Marcy Holmes,” 
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“Near – North,” “North Loop,” “Whittier.” All other less frequent neighborhoods 
were lumped in the “Other” category with a frequency of 6038.

So we use the mutate and fct_lump_n functions before all previous functions 
to get the proportions of the different force types used in these 11 neighborhoods 
(with the extra one for the “Other” category).
mn_police_use_of_force %>%

 mutate(neighborhood= fct_lump_n(neighborhood, n=10)) %>%

 count(neighborhood,force_type) %>%

 filter(!neighborhood==““) %>%

 drop_na() %>%

 group_by(neighborhood) %>% mutate(proportion = n/sum(n)) %>%

 arrange(desc(proportion)) %>%

 flextable() %>%

 theme_box() %>%

 set_caption(caption = “The count and proportion of different force types applied 
in 11 neighborhoods from the Minneapolis police use of force data”)

Table 5.10. The Count and Proportion of Different Force Types Applied in 11 
Neighborhoods from the Minneapolis Police Use of Force Data

Neighborhood force_type n Proportion
Near – North Bodily Force 462 0.8220640569
Whittier Bodily Force 384 0.8170212766
Hawthorne Bodily Force 403 0.8027888446
Jordan Bodily Force 383 0.7995824635
Marcy Holmes Bodily Force 246 0.7935483871
Folwell Bodily Force 273 0.7913043478
North Loop Bodily Force 253 0.7832817337
Other Bodily Force 4,684 0.7757535608
Loring Park Bodily Force 287 0.6932367150



Statistics with R for Data Analysis

404

Lowry Hill East Bodily Force 367 0.6624548736
Downtown West Bodily Force 1,688 0.5765027322
Downtown West Chemical Irritant 999 0.3411885246
Lowry Hill East Chemical Irritant 126 0.2274368231
Loring Park Taser 80 0.1932367150
Other Taser 732 0.1212321961
Jordan Taser 48 0.1002087683
Hawthorne Chemical Irritant 49 0.0976095618
Whittier Taser 45 0.0957446809
North Loop Taser 30 0.0928792570
Marcy Holmes Taser 28 0.0903225806
Folwell Taser 31 0.0898550725
Near – North Taser 48 0.0854092527
North Loop Chemical Irritant 27 0.0835913313
Lowry Hill East Taser 43 0.0776173285
Marcy Holmes Chemical Irritant 24 0.0774193548
Downtown West Taser 190 0.0648907104
Hawthorne Taser 32 0.0637450199
Near – North Chemical Irritant 33 0.0587188612
Loring Park Chemical Irritant 23 0.0555555556
Folwell Chemical Irritant 16 0.0463768116
Other Chemical Irritant 264 0.0437230871
Whittier Chemical Irritant 17 0.0361702128
Jordan Chemical Irritant 15 0.0313152401

North Loop Maximal Restraint 
Technique 10 0.0309597523

Folwell Improvised 
Weapon 10 0.0289855072

Jordan Improvised 
Weapon 13 0.0271398747

Whittier Improvised 
Weapon 12 0.0255319149

Lowry Hill East Improvised 
Weapon 14 0.0252707581
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Loring Park Maximal Restraint 
Technique 9 0.0217391304

Other Maximal Restraint 
Technique 107 0.0177210997

Folwell Gun Point Display 6 0.0173913043
Folwell Police K9 Bite 6 0.0173913043
Marcy Holmes Less Lethal 5 0.0161290323

Marcy Holmes Maximal Restraint 
Technique 5 0.0161290323

Jordan Gun Point Display 7 0.0146137787

Jordan Maximal Restraint 
Technique 7 0.0146137787

Loring Park Less Lethal 6 0.0144927536
Whittier Gun Point Display 6 0.0127659574

Hawthorne Improvised 
Weapon 6 0.0119521912

Other Improvised 
Weapon 65 0.0107651540

Near – North Gun Point Display 6 0.0106761566

Near – North Improvised 
Weapon 6 0.0106761566

Other Gun Point Display 61 0.0101026830
Hawthorne Gun Point Display 5 0.0099601594
Other Less Lethal 59 0.0097714475
Other Police K9 Bite 59 0.0097714475

Loring Park Improvised 
Weapon 4 0.0096618357

Folwell Maximal Restraint 
Technique 3 0.0086956522

Jordan Police K9 Bite 4 0.0083507307
Loring Park Gun Point Display 3 0.0072463768

Near – North Maximal Restraint 
Technique 4 0.0071174377

Downtown West Maximal Restraint 
Technique 19 0.0064890710

Marcy Holmes Gun Point Display 2 0.0064516129
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Whittier Maximal Restraint 
Technique 3 0.0063829787

North Loop Less Lethal 2 0.0061919505

Hawthorne Maximal Restraint 
Technique 3 0.0059760956

Downtown West Improvised 
Weapon 17 0.0058060109

Lowry Hill East Less Lethal 3 0.0054151625
Loring Park Police K9 Bite 2 0.0048309179
Whittier Less Lethal 2 0.0042553191

Jordan Less Lethal Pro-
jectile 2 0.0041753653

Hawthorne Less Lethal 2 0.0039840637
Hawthorne Police K9 Bite 2 0.0039840637
Near – North Police K9 Bite 2 0.0035587189

North Loop Improvised 
Weapon 1 0.0030959752

Downtown West Gun Point Display 8 0.0027322404
Downtown West Less Lethal 7 0.0023907104
Whittier Police K9 Bite 1 0.0021276596
Lowry Hill East Police K9 Bite 1 0.0018050542
Near – North Less Lethal 1 0.0017793594
Other Baton 4 0.0006624710
Other Firearm 2 0.0003312355

Other Less Lethal Pro-
jectile 1 0.0001656178

We see that:
• The “Bodily Force” type was applied most frequently in “Near 

– North,” “Whittier,” and “Hawthorne” with a percentage of 
82.2%,81.7%, and 80.3% respectively.

• The “Bodily Force” type was applied less frequently in “Loring 
Park,” “Lowry Hill East,” and “Downtown West” with a percentage 
of 69.3%,66.2%, and 57.7% respectively.

• The “Chemical Irritant” force type was applied mostly in “Downtown 
West,” “Lowry Hill East,” and “Hawthorne” with a percentage of 
34.1%, 22.7%, and 9.8% respectively.
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• The “Chemical Irritant” type was applied less frequently in “Other,” 
“Whittier,” and “Jordan” with a percentage of 4.4%, 3.6%, and 3.1% 
respectively.

5.3. SUMMARY PLOTS

5.3.1. Stacked Bar Plot
In the stacked bar plot, each bar of one categorical variable has a height equal 
to the number of rows or observations at each level of the other categorical 
variable.

5.3.1.1. Bar Plot of the Count of Different Employment Statuses 
in the 2 Genders
To draw this plot, we use the following functions:

• The count function, applied on “acs12” data, with the arguments 
gender, and employment to get the number of rows for each gender 
and employment status.

• The ggplot function with the argument, aes(x = gender, fill = 
employment, y = n), to plot the gender on the x-axis, n or count on 
the y-axis, and different fill color for each employment status.

• The geom_col function to plot the bar plot with the arguments, 
position = “stack” to plot a stacked bar plot, and color = “Black” so 
the bar plot with its compartments has a black border.

• The labs function to add a title, x-axis title, y-axis title, and legend 
title.

• The theme_classic and theme functions as described before.

acs12 %>% count(gender, employment) %>%

 ggplot(aes(x = gender, fill = employment, y = n)) +

 geom_col(position = “stack,” color = “Black”)+

 labs(title = “Stacked bar plot of different employment statuses in males and 
females \nof the American Community Survey data,”

   

    y = “Count,” x = “Gender,” fill = “Employment”)+
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 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that:
• There are 2 bars one for males and one for females. The height of a 

male’s bar is higher than that of a female so there is a higher count 
of males in our data than females.

• Each bar is divided into 4 compartments, 3 for the employment 
statuses and 1 for the NA or missing values.

• The largest compartment in males was for the employed compartment 
which is larger than the employed compartment in females, so we 
have a higher count of employed males than employed females in 
our data.
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• The not in labor force compartment in females is larger than that of 
males, so we have a higher count of females not in the labor force 
than males not in the labor force in our data.

• The unemployed compartment in males is larger than that of females, 
so we have a higher count of unemployed males than unemployed 
females in our data.

• The missing “NA” compartment in males is larger than that of 
females, so we have a higher count of missing employment status in 
males than that of females in our data.

To create a more informative plot, we can:
• Delete the missing “NA” compartment using the drop_na function 

after the count function.
• Add a count label to each compartment by using the geom_text 

function with the arguments:
• aes(label = n) to plot a count label.
• position = position_stack(vjust = 0.5) to vertically justify this count 

label to be in the middle of each compartment.
• fontface = “bold” so the count labels will have bold fonts.

acs12 %>% count(gender, employment) %>% drop_na() %>%

 ggplot(aes(x = gender, fill = employment, y = n)) +

 geom_col(position = “stack,” color = “Black”)+

 geom_text(aes(label = n),

     

      position = position_stack(vjust = 0.5),

     

       fontface = “bold”)+

 labs(title = “Stacked bar plot of different employment statuses in males and 
females with count labels\nof the American Community Survey data,”

   

    y = “Count,” x = “Gender,” fill = “Employment”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that the count of employed and unemployed males is higher than 
that of employed and unemployed females. However, the count of females not 
in the labor force is higher than that of males.

5.3.1.2. Bar Plot of the Count of Different Employment Statuses 
in the Different Races
We can use the same functions as above to get these counts as a stacked bar plot.

acs12 %>% count(race, employment) %>% drop_na() %>%

 ggplot(aes(x = race, fill = employment, y = n)) +

 geom_col(position = “stack,” color = “Black”)+

 geom_text(aes(label = n),
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      position = position_stack(vjust = 0.5),

     

       fontface = “bold”)+

 labs(title = “Stacked bar plot of different employment statuses in the different 
races with count labels\nof the American Community Survey data,”

   

    y = “Count,” x = “Race,” fill = “Employment”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that:
• The longest bar was for Whites so Whites have the highest count in 

our data, and Asians have the lowest count.
• The counts of different employment statuses become crowded in the 

low-frequency races as Blacks, Asians, and others.
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5.3.1.3. Bar Plot of the Count of Different Force Types in the  
Different Races
We can use the same functions to draw a bar plot of different force types applied 
to the different races. However, because we have 11 different force types, the 
count labels will be very crowded for each bar. So we can neglect the count 
labels by avoiding using the geom_text function.

mn_police_use_of_force %>% count(race, force_type) %>% drop_na() %>%

 ggplot(aes(x = race, fill = force_type, y = n)) +

 geom_col(position = “stack,” color = “Black”)+

 labs(title = “Stacked bar plot of different force types applied on different 
races\nfrom the Minneapolis police use of force data,”

    y = “Count,” x = “Race,” fill = “Force type”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that:
• Blacks have the longest bar so the highest count in the Minneapolis 

police use of force data was for the Blacks and the lowest count was 
for the Pacific Islanders with the shortest bar.

• Only the “Bodily force” type, “Chemical Irritant” and “Taser” force 
types are seen clearly while other force types are difficult to discern 
due to low counts.

• The “Bodily force” type was more frequently applied to Blacks, 
followed by Whites, Native Americans, Other/Mixed Races, and 
Asians.

5.3.1.4. Bar Plot of the Count of Different Force Types in the Dif-
ferent Neighborhoods
To avoid crowding seen before, we will use the fct_lump_n function to focus 
on the 5 most frequent neighborhoods and the 3 most frequent force types. So 
the neighborhoods will have 6 levels (5 most frequent neighborhoods+ other 
category), while the force type will have 4 levels (3 most frequent force types 
and other category).

mn_police_use_of_force %>%

 mutate(neighborhood= fct_lump_n(neighborhood, n=5)) %>%

 mutate(force_type = fct_lump_n(force_type,n = 3)) %>%

 count(neighborhood,force_type) %>%

 filter(!neighborhood==““) %>%

 drop_na() %>%

 ggplot(aes(x = neighborhood, fill = force_type, y = n)) +

 geom_col(position = “stack,” color = “Black”)+

 labs(title = “Stacked bar plot of 4 force types applied in 6 neighborhoods\n 
from the Minneapolis police use of force data,”

   

    y = “Count,” x = “Neighborhood,” fill = “Force type”)+
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 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that:
• The “Other” neighborhood has the longest bar which is expected 

because it contains the counts of 81 different neighborhoods.
• The “Bodily Force” type is applied most frequently in the “other” 

neighborhood followed by the “Downtown West” then other 
neighborhoods.

• The “Chemical Irritant” type is applied most frequently in the 
“Downtown West” neighborhood followed by the “Other” then 
other neighborhoods.

• The “Taser” type is applied most frequently in the “other” 
neighborhood followed by the “Downtown West” and then other 
neighborhoods.
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5.3.2. Grouped Bar Plot
In a grouped bar plot, the different bars of one categorical variable are dodged 
side-by-side at each level of the other categorical variable.

5.3.2.1. Grouped Bar Plot of the Count of Different Employment 
Statuses in the 2 Genders
To draw this plot, we use the same functions as that in section 5.3.1.1. except 
that we use the argument position = “dodge” instead of “stack” within the 
geom_col function.
acs12 %>% count(gender, employment) %>%

 ggplot(aes(x = gender, fill = employment, y = n)) +

 geom_col(position = “dodge,” color = “Black”)+

 labs(title = “Grouped bar plot of different employment statuses in males and 
females \nof the American Community Survey data,”

    y = “Count,” x = “Gender,” fill = “Employment”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))



Statistics with R for Data Analysis

416

We see that:
• Each gender has 4 bars, 3 for the employment statuses and 1 for the 

NA or missing values.
• The tallest bar in males was for the employed status which is taller 

than that in females, so we have a higher count of employed males 
than employed females in our data.

• The not in labor force bar for females is taller than that of males, so 
we have a higher count of females not in the labor force than males 
not in the labor force in our data.

• The unemployed bar in males is taller than that of females, so we 
have a higher count of unemployed males than unemployed females 
in our data.

• The missing “NA” bar in males is taller than that of females, so we 
have a higher count of missing employment status in males than that 
of females in our data.

To create a more informative plot, we can:
• Delete the missing “NA” compartment using the drop_na function 

after the count function.
• Add a count label to each compartment by using the geom_label 

function (draws a rectangle behind the text, making it easier to read) 
with the arguments:

• aes(label = n) to plot a count label.
• position = position_dodge(width = 0.9) to align narrow geom (text 

of count) with wider geom (the wide position of each gender with 3 
bars).

acs12 %>% count(gender, employment) %>% drop_na() %>%

 ggplot(aes(x = gender, fill = employment, y = n)) +

 geom_col(position = “dodge,” color = “Black”)+

 geom_label(aes(label = n),

      position = position_dodge(width = 0.9))+

 labs(title = “Grouped bar plot of different employment statuses in males and 
females with count labels\nof the American Community Survey data,”

   

    y = “Count,” x = “Gender,” fill = “Employment”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))



Bivariate Analysis for Categorical-Categorical Data

417

We see that the count of employed and unemployed males is higher than 
that of employed and unemployed females. However, the count of females not 
in the labor force is higher than that of males.

5.3.2.2. Grouped Bar Plot of the Count of Different Employment 
Statuses in the Different Races
We can use the same functions as above to get these counts as a grouped bar 
plot.
acs12 %>% count(race, employment) %>% drop_na() %>%

 ggplot(aes(x = race, fill = employment, y = n)) +

 geom_col(position = “dodge,” color = “Black”)+

 geom_label(aes(label = n),
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      position = position_dodge(width = 0.9))+

 labs(title = “Grouped bar plot of different employment statuses in the different 
races with count labels\nof the American Community Survey data,”

   

    y = “Count,” x = “Race,” fill = “Employment”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that:
• The 3 bars of Whites that correspond to “employed,” “unemployed,” 

and “not in labor force” statuses are taller than that of other races, so 
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Whites have the highest count of all employment statuses than any 
other race in our data.

• On the other hand, Asians have the lowest count of all employment 
statuses than any other race in our data.

5.3.2.3. Grouped Bar Plot of the Count of Different Force Types 
in the Different Races
We can use the same functions to draw a bar plot of different force types applied 
to the different races. However, because we have 11 different force types, the 
count labels will be very crowded for each race. We can solve that by using the 
geom_label_repel function from the ggrepel package, so the text labels repel 
away from each other and away from the data points. For reproducibility, we 
use the argument seed = 123 to add the counts at the same random positions.

library(ggrepel)

mn_police_use_of_force %>% count(race, force_type) %>% drop_na() %>%

 ggplot(aes(x = race, fill = force_type, y = n)) +

 geom_col(position = “dodge,” color = “Black”)+

 geom_label_repel(aes(label = n),

         

          position = position_dodge(width = 0.9),

         

          seed = 123)+

 labs(title = “Grouped bar plot of different force types applied on different 
races\nfrom the Minneapolis police use of force data,”

   

    y = “Count,” x = “Race,” fill = “Force type”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that:
• The “Bodily Force” type mostly applied to Blacks (5519) followed 

by Whites (2454), Native Americans (616), Other/Mixed Race 
(137), Asians (78), and Pacific Islanders (5).

• The “Chemical Irritant” was more frequently applied to Blacks 
(1033), followed by Whites (191), Other/Mixed Races (50), Asians 
(32), Native Americans (18), and Pacific Islanders (1).

5.3.2.4. Grouped Bar Plot of the Count of Different Force Types 
in the Different Neighborhoods
To avoid crowding seen before, we will use the fct_lump_n function to focus on 
the 5 most frequent neighborhoods. So the neighborhoods will have 6 levels (5 
most frequent neighborhoods+ other category).
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mn_police_use_of_force %>%

 mutate(neighborhood= fct_lump_n(neighborhood, n=5)) %>%

 count(neighborhood,force_type) %>%

 filter(!neighborhood==““) %>%

 drop_na() %>%

 ggplot(aes(x = neighborhood, fill = force_type, y = n)) +

 geom_col(position = “dodge,” color = “Black”)+

 geom_label_repel(aes(label = n),

         

          position = position_dodge(width = 0.9),

         

          seed = 123)+

 labs(title = “Grouped bar plot of different force types applied in 6 
neighborhoods\n from the Minneapolis police use of force data,”

   

    y = “Count,” x = “Neighborhood,” fill = “Force type”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that:
• The “Bodily Force” type is applied most frequently in the “other” 

neighborhood (6127) followed by the “Downtown West” (1688) 
then other neighborhoods.

• The “Chemical Irritant” type is applied most frequently in the 
“Downtown West” neighborhood (999) followed by the “Other” 
(371) then other neighborhoods.

• The “Taser” type is applied most frequently in the “other” 
neighborhood (946) followed by the “Downtown West” (190) then 
other neighborhoods.
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5.3.3. Percent Stacked Bar Plot
A percent stacked bar plot is a stacked bar plot where each bar of one categorical 
variable represents 100 percent and is filled with the different levels of another 
categorical variable. This allows comparison between different levels of one 
categorical variable if they have different sample sizes.

5.3.3.1. Percent Stacked Bar Plot of Different Employment Sta-
tuses in the 2 Genders
To draw this plot, we use the following functions:

• The count function, applied on “acs12” data, with the arguments 
gender, and employment to get the number of rows for each gender 
and employment status.

• The drop_na function deletes any rows that contain missings in the 
gender or employment status.

• The group_by function with the gender argument to split the count 
results into two, one for males and one for females.

• The mutate function creates a new column “proportion” by dividing 
the count over the sum of counts for each gender. The sum of 
proportions will be 1 or 100% for each gender.

• The ungroup function removes the grouping effect.
• The ggplot function with the argument, aes(x = gender, fill = 

employment, y = proportion), to plot the gender on the x-axis, 
proportion on the y-axis, and different fill color for each employment 
status.

• The geom_col function to plot the bar plot with the arguments, 
position = “fill” to plot a percent stacked bar plot, and color = 
“Black” so the bar plot with its compartments has a black border.

• The geom_text function to add a percentage label to each 
compartment using the arguments:

++ aes(label = percent(proportion)) to convert the proportion to a percentage 
label using the percent function from the scales package.
++ position = position_fill(vjust = 0.5) to vertically justify this percentage label 
to be in the middle of each compartment.

• The labs function to add a title, x-axis title, y-axis title, and legend 
title.
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• The scale_y_continuous function with the argument labels = percent 
to convert the proportion label to percentage labels.

• The theme_classic and theme functions as described before.

library(scales)

acs12 %>% count(gender, employment) %>% drop_na() %>%

 group_by(gender) %>% mutate(proportion = n/sum(n)) %>%

 ungroup() %>%

 ggplot(aes(x = gender, fill = employment, y = proportion)) +

 geom_col(position = “fill,” color = “Black”)+

 geom_text(aes(label = percent(proportion)),

     

      position = position_fill(vjust = 0.5))+

 labs(title = “Percent stacked bar plot of different employment statuses in males 
and females\n of the American Community Survey data,”

   

    y = “Percentage,” x = “Gender,” fill = “Employment”)+

 scale_y_continuous(labels = percent)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that:
• There are 2 bars one for males and one for females. The height of 

each bar is 100%.
• Males have a higher percentage of employed and unemployed 

statuses but a lower percentage of “not in labor force” than females.

5.3.3.2. Percent Stacked Bar Plot of Different Employment Sta-
tuses in the Different Races
To create this plot, we will use the same functions as above and modify them 
accordingly to include race instead of gender.
acs12 %>% count(race, employment) %>% drop_na() %>%

 group_by(race) %>% mutate(proportion = n/sum(n)) %>%

 ungroup() %>%
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 ggplot(aes(x = race, fill = employment, y = proportion)) +

 geom_col(position = “fill,” color = “Black”)+

 geom_text(aes(label = percent(proportion)),

     

      position = position_fill(vjust = 0.5))+

 labs(title = “Percent stacked bar plot of different employment statuses in the 
different races\n of the American Community Survey data,”

   

    y = “Percentage,” x = “Race,” fill = “Employment”)+

 scale_y_continuous(labels = percent)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that:
• The highest percentage of employed was found in Other races 

(53.7%) and the lowest percentage was found in Blacks (46.91%).
• The highest percentage of unemployed was found in Blacks (12.35%) 
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and the lowest percentage was found in Asians (4.11%).
• The highest percentage of “not in labor force” was found in Asians 

(42.47%) and the lowest percentage was found in other races 
(36.11%).

5.3.3.3. Percent Stacked Bar Plot of Different Force Types in the 
Different Races
we use the same above functions applied on the “mn_police_use_of_force” 
data and modify them accordingly.

mn_police_use_of_force %>% count(race, force_type) %>% drop_na() %>%

 group_by(race) %>% mutate(proportion = n/sum(n)) %>%

 ungroup() %>%

 ggplot(aes(x = race, fill = force_type, y = proportion)) +

 geom_col(position = “fill,” color = “Black”)+

 geom_text(aes(label = percent(proportion)),

     

      position = position_fill(vjust = 0.5))+

 labs(title = “Percent stacked bar plot of different force types applied on 
different races \nfrom the Minneapolis police use of force data,”

   

    y = “Percentage,” x = “Race,” fill = “Force type”)+

 scale_y_continuous(labels = percent)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))



Statistics with R for Data Analysis

428

We see that the percentage labels are crowded due to the 11 different levels 
of force types. Instead, we can focus on the 3 most frequent force types using 
the fct_lump_n as done before.

mn_police_use_of_force %>%

 mutate(force_type = fct_lump_n(force_type, n = 3)) %>%

 count(race, force_type) %>% drop_na() %>%

 group_by(race) %>% mutate(proportion = n/sum(n)) %>%

 ungroup() %>%

  ggplot(aes(x = race, fill = force_type, y = proportion)) +

 geom_col(position = “fill,” color = “Black”)+

 geom_text(aes(label = percent(proportion)),
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      position = position_fill(vjust = 0.5))+

 labs(title = “Percent stacked bar plot of 4 force types applied on different 
races \nfrom the Minneapolis police use of force data,”

   

    y = “Percentage,” x = “Race,” fill = “Force type”)+

 scale_y_continuous(labels = percent)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that:
• The other force type includes all force types except “Bodily Force,” 

“Chemical Irritant,” and “Taser.”
• The highest percentage of “Bodily Force” was applied to Pacific 

Islanders (83.3%) and the lowest percentage was applied to Asians 
(60.465%).

• The highest percentage of “Chemical Irritant” was applied to Asians 
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(24.8%) and the lowest percentage was applied to Native Americans 
(2.3%).

• The highest percentage of “Taser” was applied to Native Americans 
(13.3%) and the lowest percentage was applied to Pacific Islanders 
(0%), so the compartment of “Taser” disappeared from the Pacific 
Islander bar.

5.3.3.4. Percent Stacked Bar Plot of Different Force Types in the 
Different Neighborhoods
we use the same above functions applied on the “mn_police_use_of_force” data 
and modify them accordingly. We also focus on the 3 most frequent force types 
and the 20 most frequent neighborhoods using the fct_lump_n as done before. 
In addition, we plot the different neighborhoods on the y-axis to avoid crowding 
them on the x-axis. Finally, we add the argument accuracy = 0.1 inside the 
percent function to plot the percentage with 1 decimal place only.

mn_police_use_of_force %>%

 mutate(force_type = fct_lump_n(force_type, n = 3),

 neighborhood= fct_lump_n(neighborhood, n=20)) %>%

count(neighborhood,force_type) %>%

 filter(!neighborhood==““) %>%

 drop_na() %>%

 group_by(neighborhood) %>% mutate(proportion = n/sum(n)) %>%

 ungroup() %>%

  ggplot(aes(x = proportion, fill = force_type, y = neighborhood)) +

 geom_col(position = “fill,” color = “Black”)+

 geom_text(aes(label = percent(proportion, accuracy = 0.1)),

     

      position = position_fill(vjust = 0.5))+
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 labs(title = “Percent stacked bar plot of 4 force types applied in 21 neighborhoods 
\nfrom the Minneapolis police use of force data,”

   

    y = “Neighborhood,” x = “Percentage,” fill = “Force type”)+

 scale_x_continuous(labels = percent)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that:
• The other neighborhood includes all neighborhoods except the 20 

listed neighborhoods.
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• The highest percentage of “Bodily Force” was applied in the “CARAG” 
neighborhood (88%) and the lowest percentage was applied in “Down-
town West” (57.7%).

• The highest percentage of “Chemical Irritant” was applied in “Down-
town West” (34.1%) and the lowest percentage was applied in “Ste-
ven’s Square – Loring Heights” (0.4%).

• The highest percentage of “Taser” was applied in “Loring Park” 
(19.3%) and the lowest percentage was applied in “Hawthorne” (6.4%).

5.3.4. Line Plot
The line plot can show the relation between 2 categorical variables by plotting 
the count or percentage of one categorical variable at each level of the other 
categorical variable.

5.3.4.1. Line Plot for the Count of Different Employment Statuses 
in the 2 Genders
To draw this plot, we use the following functions:

• The count function, applied on “acs12” data, with the arguments 
gender, and employment to get the number of rows for each gender 
and employment status.

• The drop_na function deletes any rows that contain missings in the 
gender or employment status.

• The group_by function with the gender argument to split the count 
results into two, one for males and one for females.

• The mutate function creates a new column “proportion” by dividing 
the count over the sum of counts for each gender. The sum of 
proportions will be 1 or 100% for each gender.

• The ungroup function removes the grouping effect.
• The ggplot function with the argument, aes(x = gender, color = 

employment, y = n, group = employment), to plot the gender on 
the x-axis, n or count on the y-axis, and a different color for each 
employment status.

• The geom_line function with the argument aes(group = employment) 
plots a different line for each employment status.

• The geom_point function to plot a point for each count value.
• The geom_label_repel function with the argument aes(label = n) adds 

a count label to each point and the seed argument for reproducibility.
• The labs, theme_classic, and theme functions as described before.
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acs12 %>% count(gender, employment) %>% drop_na() %>%

 group_by(gender) %>% mutate(proportion = n/sum(n)) %>%

 ungroup() %>%

 ggplot(aes(x = gender, color = employment, y = n)) +

 geom_line(aes(group = employment))+ geom_point()+

 geom_label_repel(aes(label = n), seed = 123)+

 labs(title = “Line plot of the count of different employment statuses in males 
and females\n of the American Community Survey data,”

   

    y = “Count,” x = “Gender,” color = “Employment”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that:
• There are 3 lines for the 3 different employment statuses.
• Males have a higher count of employed and unemployed statuses 

but a lower count of “not in labor force” than females.
• The count of “not in labor force” and “employed” is equal in females.

5.3.4.2. Line Plot for the Percentage of Different Employment 
Statuses in the 2 Genders

We use the same functions as above except that:
• We plot the proportion on the y-axis.
• Convert the labels to percentages using the percent function. Also, 

we do that for the y-axis text.

acs12 %>% count(gender, employment) %>% drop_na() %>%

 group_by(gender) %>% mutate(proportion = n/sum(n)) %>%

 ungroup() %>%

 ggplot(aes(x = gender, color = employment, y = proportion)) +

 geom_line(aes(group = employment))+ geom_point()+

 geom_label_repel(aes(label = percent(proportion, accuracy = 0.1)),

        

         seed = 123)+

 scale_y_continuous(labels = percent)+

 labs(title = “Line plot of the percentage of different employment statuses in 
males and females\n of the American Community Survey data,”

   

    y = “Percentage,” x = “Gender,” color = “Employment”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that:
• The sum of the percentage for each gender is 100%.
• Males have a higher percentage of employed and unemployed 

statuses but a lower percentage of “not in labor force” than females.
• The percentage of “not in labor force” and “employed” is equal in 

females.

5.3.4.3. Line Plot for the Count of Different Employment Statuses 
in the Different Races
We use the same functions as above and modify them accordingly.

acs12 %>% count(race, employment) %>% drop_na() %>%
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 group_by(race) %>% mutate(proportion = n/sum(n)) %>%

 ungroup() %>%

 ggplot(aes(x = race, color = employment, y = n)) +

 geom_line(aes(group = employment))+ geom_point()+

 geom_label_repel(aes(label = n), seed = 123)+

 labs(title = “Line plot of the count of different employment statuses in the 
different races \nof the American Community Survey data,”

   

    y = “Count,” x = “Race,” color = “Employment”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that:
• The count of different employment statuses is higher in Whites than 

in other races.

5.3.4.4. Line Plot For The Percentage of Different Employment 
Statuses in the Different Races
We use the same functions as above.

acs12 %>% count(race, employment) %>% drop_na() %>%

 group_by(race) %>% mutate(proportion = n/sum(n)) %>%

 ungroup() %>%

 ggplot(aes(x = race, color = employment, y = proportion)) +

 geom_line(aes(group = employment))+ geom_point()+

 geom_label_repel(aes(label = percent(proportion, accuracy = 0.1)),

        

         seed = 123)+

 scale_y_continuous(labels = percent)+

 labs(title = “Line plot of the percentage of different employment statuses in 
the different races\n of the American Community Survey data,”

   

    y = “Percentage,” x = “Race,” color = “Employment”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that:
• The sum of the percentage for each race is 100%.
• The highest percentage of employed was found in Other races 

(53.7%) and the lowest percentage was found in Blacks (46.9%).
• The highest percentage of unemployed was found in Blacks (12.3%) 

and the lowest percentage was found in Asians (4.1%).
• The highest percentage of “not in labor force” was found in Asians 

(42.5%) and the lowest percentage was found in other races (36.1%).

5.3.4.5. Line Plot for the Count of Different Force Types Applied 
on Different Races
We use the same functions as above but use the “mn_police_use_of_force” data.

mn_police_use_of_force %>% count(race, force_type) %>% drop_na() %>%

 group_by(race) %>% mutate(proportion = n/sum(n)) %>%
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 ungroup() %>%

 ggplot(aes(x = race, color = force_type, y = n)) +

 geom_line(aes(group = force_type))+ geom_point()+

 geom_label_repel(aes(label = n),

        

         seed = 123)+

 labs(title = “Line plot of the count of different force types applied on 
different races\n from the Minneapolis police use of force data,”

   

    y = “Count,” x = “Race,” color = “Force type”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that:
• The “Bodily Force” type has a higher count in all races than other 

force types.
• Some points are not labeled due to crowding.
Instead, we can focus on the 3 most frequent force types using the fct_

lump_n function.
mn_police_use_of_force %>%

 mutate(force_type = fct_lump_n(force_type,n = 3)) %>%

 count(race, force_type) %>% drop_na() %>%

 group_by(race) %>% mutate(proportion = n/sum(n)) %>%

 ungroup() %>%

 ggplot(aes(x = race, color = force_type, y = n)) +

 geom_line(aes(group = force_type))+ geom_point()+

 geom_label_repel(aes(label = n),

        

         seed = 123)+

 labs(title = “Line plot of the count of 4 force types applied on different 
races\n from the Minneapolis police use of force data,”

   

    y = “Count,” x = “Race,” color = “Force type”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that
• The “Bodily Force” type has a higher count than the other force 

types in all races.
• The count of 4 force types is higher in Blacks than in other races.

5.3.4.6. Line Plot for the Proportion of Different Force Types Ap-
plied on Different Races
We again focus on the 3 most frequent force types.
mn_police_use_of_force %>%

 mutate(force_type = fct_lump_n(force_type,n = 3)) %>%

 count(race, force_type) %>% drop_na() %>%

 group_by(race) %>% mutate(proportion = n/sum(n)) %>%
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 ungroup() %>%

 ggplot(aes(x = race, color = force_type, y = proportion)) +

 geom_line(aes(group = force_type))+ geom_point()+

 geom_label_repel(aes(label = percent(proportion, accuracy = 0.1)),

        

         seed = 123)+

 scale_y_continuous(labels = percent)+

 labs(title = “Line plot of the proportion of 4 force types applied on different 
races\n from the Minneapolis police use of force data,”

   

    y = “Percentage,” x = “Race,” color = “Force type”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that:
• The sum of the percentage for each race is 100%.
• The highest percentage of “Bodily Force” was applied to Pacific 

Islanders (83.3%) and the lowest percentage was applied to Asians 
(60.5%).

• The highest percentage of “Chemical Irritant” was applied to Asians 
(24.8%) and the lowest percentage was applied to Native Americans 
(2.3%).

• The highest percentage of “Taser” was applied to Native Americans 
(13.3%) and the lowest percentage was applied to Pacific Islanders 
(0%), so the point of “Taser” disappeared from the Pacific Islanders.

5.3.4.7. Line Plot for the Count of Different Force Types Applied 
in Different Neighborhoods
We will focus on the 3 most frequent force types and the 20 most frequent 
neighborhoods using the fct_lump_n as done before. In addition, we plot the 
different neighborhoods on the y-axis to avoid crowding them on the x-axis. We 
also plot a separate black line for each neighborhood by using the arguments 
aes(group = neighborhood) and color = “black.”

mn_police_use_of_force %>%

 mutate(force_type = fct_lump_n(force_type, n = 3),

 neighborhood= fct_lump_n(neighborhood, n=20)) %>%

count(neighborhood,force_type) %>%

 filter(!neighborhood==““) %>%

 drop_na() %>%

 group_by(neighborhood) %>% mutate(proportion = n/sum(n)) %>%

 ungroup() %>%

  ggplot(aes(x = n, color = force_type, y = neighborhood)) +

 geom_line(aes(group = neighborhood), color = “black”)+ geom_point()+



Statistics with R for Data Analysis

444

 geom_label_repel(aes(label = n),

        

         seed = 123)+

 labs(title = “Line plot of the count of 4 force types applied in 21 neighborhoods 
\nfrom the Minneapolis police use of force data,”

   

    y = “Neighborhood,” x = “Count,” color = “Force type”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))
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We see that:
• The “Bodily Force” type is applied most frequently in the “other” 

neighborhood (2882) followed by the “Downtown West” (1688) 
then other neighborhoods.

• The “Chemical Irritant” type is applied most frequently in the 
“Downtown West” neighborhood (999) followed by the “Other” 
(158) then other neighborhoods.

• The “Taser” type is applied most frequently in the “other” 
neighborhood (451) followed by the “Downtown West” (190) then 
other neighborhoods.

5.3.4.8. Line Plot for the Proportion of Different Force Types Ap-
plied in Different Neighborhoods

mn_police_use_of_force %>%

 mutate(force_type = fct_lump_n(force_type, n = 3),

 neighborhood= fct_lump_n(neighborhood, n=20)) %>%

count(neighborhood,force_type) %>%

 filter(!neighborhood==““) %>%

 drop_na() %>%

 group_by(neighborhood) %>% mutate(proportion = n/sum(n)) %>%

 ungroup() %>%

  ggplot(aes(x = proportion, color = force_type, y = neighborhood)) +

 geom_line(aes(group = neighborhood), color = “black”)+ geom_point()+

 geom_label_repel(aes(label = percent(proportion, accuracy = 0.1)),

        

         seed = 123)+

 scale_x_continuous(labels = percent)+
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 labs(title = “Line plot of the proportion of 4 force types applied in 21 
neighborhoods \nfrom the Minneapolis police use of force data,”

   

    y = “Neighborhood,” x = “Percentage,” color = “Force type”)+

 theme_classic()+

 theme(plot.title = element_text(hjust = 0.5))

We see that:
• The sum of percentages for each neighborhood is 100%.
• The highest percentage of “Bodily Force” was applied in the 

“CARAG” neighborhood (88%) and the lowest percentage was 
applied in “Downtown West” (57.7%).



Bivariate Analysis for Categorical-Categorical Data

447

• The highest percentage of “Chemical Irritant” was applied in 
“Downtown West” (34.1%) and the lowest percentage was applied 
in “Steven’s Square – Loring Heights” (0.4%).

• The highest percentage of “Taser” was applied in “Loring Park” 
(19.3%) and the lowest percentage was applied in “Hawthorne” 
(6.4%).

5.4. STATISTICAL TESTS

5.4.1. Chi-square Test
The Chi-square test uses the contingency table of data to calculate an expected 
table. The expected table contains the theoretical data values that would be 
expected when there is no relation between 2 categorical variables.

The contingency table is a table with R rows and C columns. It displays the 
relationship between two categorical variables, where the variable in the rows 
has R categories and the variable in the columns has C categories.

The null hypothesis is that the proportions of one categorical variable are 
the same at the different levels of the other categorical variable. The alternative 
hypothesis is that at least, two proportions are different from each other.

5.4.1.1. Assumptions of the Test
• Unpaired data meaning that all data observations are independent.
• The normal approximation to the binomial distribution is valid. The 

normal approximation can be shown to be approximately true if 
no expected value in the expected table is less than 5 (sometimes 
known as “the rule of five”).

In case of an expected value less than 5, the Fisher exact test is a suitable 
alternative. It is not important to assign which categorical variable to columns 
or rows. The chi-square test requires a matrix of columns and rows. Although 
the hypothesis testing for the chi-square test compares proportions, but chi-
square test uses the actual count to test that.

5.4.1.2. Chi-square Test of the Different Employment Statuses in 
the 2 Genders
The null hypothesis is that the proportions of employment statuses are the same 
in the 2 genders. The alternative hypothesis is that at least, two employment 
statuses are different from each other.
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To conduct this test, we must have a matrix of columns and rows for the 
count of employment statuses in each gender. To do that, we use the following 
functions:

• The count function with the arguments gender, and employment to 
get the count of employment statuses in each gender.

• The drop_na function to delete rows that have missings in the gender 
or employment columns.

• The pivot_wider function with the argument, names_from = 
“gender,” to convert the gender column to 2 columns for the males 
and females, and the argument, values_from = “n,” to fill these 2 
columns by the count or n.

Then, we convert the result to a table as before.

acs12 %>% count(gender, employment) %>% drop_na() %>%

 pivot_wider(names_from = “gender,” values_from = “n”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Matrix of the count of different employment statuses in 
males and females of the American Community Survey data”)

Table 5.11. Matrix of the Count of Different Employment Statuses in Males and 
Females of the American Community Survey Data

Employment Male female
not in labor force 283 373
unemployed 59 47
employed 470 373

Then, to conduct a chi-square test on this matrix with counts, we convert 
the employment column to row names using the column_to_rownames function 
(as it is a character column and not a count column). Then, we use the chisq_test 
function from the rstatix package. So, we first load the rstatix package into our 
R session.

library(rstatix)

acs12 %>% count(gender, employment) %>% drop_na() %>%

 pivot_wider(names_from = “gender,” values_from = “n”) %>%



Bivariate Analysis for Categorical-Categorical Data

449

 column_to_rownames(“employment”) %>% chisq_test() %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Chi-square test results of different employment statuses 
in males and females of the American Community Survey data”)

Table 5.12. Chi-square Test Results of Different Employment Statuses in Males and 
Females of the American Community Survey Data

n statistic p df method p.signif

1,605 24.64591 0.00000445 2 Chi-square 
test ****

We see that:
• The table contains the statistic = 24.6 which corresponds to our 

sample results and the p-value = 0.00000445.
• The p_value is the probability of our sample results under the null 

hypothesis (the employment status proportions are the same in 
the 2 genders). Since this probability is too low, we reject the null 
hypothesis and conclude that the employment status proportions are 
different in the 2 genders or the gender proportions are different in 
the different employment statuses.

To get a closer look at the Chi-square test results, we can use the chisq_
descriptives function after the chisq_test function.
acs12 %>% count(gender, employment) %>% drop_na() %>%

 pivot_wider(names_from = “gender,” values_from = “n”) %>%

 column_to_rownames(“employment”) %>% chisq_test() %>%

 chisq_descriptives() %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Chi-square descriptive statistics of different employment 
statuses in males and females of the American Community Survey data”)
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A significant Chi-square test can be followed by a pairwise proportion test 
using the pairwise_prop_test function to find which groups are different in their 
proportions.

acs12 %>% count(gender, employment) %>% drop_na() %>%

 pivot_wider(names_from = “gender,” values_from = “n”) %>%

 column_to_rownames(“employment”) %>% pairwise_prop_test() %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Pairwise proportion test results of different employment 
statuses in males and females of the American Community Survey data”)

Table 5.14. Pairwise Proportion Test Results of Different Employment Statuses in 
Males and Females of the American Community Survey Data

Group1 Group2 p p.adj p.adj.
signif

not in labor 
force unemployed 0.02150000 0.04300000 *

not in labor 
force employed 0.00000164 0.00000492 ****

unemployed employed 1.00000000 1.00000000 ns

We conclude that:
• The “not in labor force” had significantly different gender proportions 

than the “unemployed” status. For example, the male proportion in 
“not in labor force” is 0.431 compared to 0.557 in “unemployed” 
status.

• The “not in labor force” had significantly different gender proportions 
than the “employed” status. For example, the male proportion in “not 
in labor force” is 0.431 compared to 0.558 in “employed” status.

• The “unemployed” had statistically equivalent gender proportions 
to the “employed” status. For example, the male proportion in 
“unemployed” is 0.557 compared to 0.558 in “employed” status.
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5.4.1.3. Chi-square Test of the Different Employment Statuses in 
the Different Races
The null hypothesis is that the proportions of employment statuses are the same 
in the different races. The alternative hypothesis is that at least, two employment 
statuses are different from each other.

To conduct this test, we must have a matrix of columns and rows for the 
count of employment statuses in each race. To do that, we use the same above 
functions.

acs12 %>% count(race, employment) %>% drop_na() %>%

 pivot_wider(names_from = “race,” values_from = “n”) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Matrix of the count of different employment statuses in 
the different races of the American Community Survey data”)

Table 5.15. Matrix of the Count of Different Employment Statuses in the Different 
Races of the American Community Survey Data

Employment White Black Asian Other
not in labor 
force 520 66 31 39

unemployed 72 20 3 11
employed 670 76 39 58

Then, to conduct a chi-square test on this matrix with counts, we convert the 
employment column to row names using the column_to_rownames function. 
Then, we use the chisq_test function.

acs12 %>% count(race, employment) %>% drop_na() %>%

 pivot_wider(names_from = “race,” values_from = “n”) %>%

 column_to_rownames(“employment”) %>% chisq_test() %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Chi-square test results of different employment statuses 
in the different races of the American Community Survey data”)
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Table 5.16. Chi-square Test Results of Different Employment Statuses in the Dif-
ferent Races of the American Community Survey Data

n Statistic p df Method p.signif
1,605 14.18197 0.0277 6 Chi-square test *

We see a warning saying that the Chi-squared approximation may be 
incorrect. To get a closer look at the Chi-square test results, we can use the 
chisq_descriptives function after the chisq_test function.

acs12 %>% count(race, employment) %>% drop_na() %>%

 pivot_wider(names_from = “race,” values_from = “n”) %>%

 column_to_rownames(“employment”) %>% chisq_test() %>%

 chisq_descriptives() %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Chi-square descriptive statistics of different employment 
statuses in the different races of the American Community Survey data”)
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5.4.1.4. Chi-square Test of the Different Force Types Applied on the Dif-
ferent Races

The null hypothesis is that the proportions of force types are the same in the 
different races. The alternative hypothesis is that at least, two force types are 
different from each other.

To conduct this test, we must have a matrix of columns and rows for the 
count of force types in each race. To do that, we use the same above functions. 
We use the additional argument values_fill = 0 to fill zero values when a certain 
force type is not applied to a specific race.
mn_police_use_of_force %>% count(race, force_type) %>% drop_na() %>%

 pivot_wider(names_from = “race,” values_from = “n,” values_fill = 0) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Matrix of the count of different force types applied on 
the different races from the Minneapolis police use of force data”)

Table 5.18. Matrix of the Count of Different Force Types Applied on the Different 
Races from the Minneapolis Police use of Force Data

force_
type Asian Black

Native 
Ameri-
can

Other/
Mixed 
Race

Pa-
cific 
Is-
lander

White

Bodily 
Force 78 5,519 616 137 5 2,454

Chemical 
Irritant 32 1,033 18 50 1 191

Gun Point 
Display 1 76 8 3 0 16

Impro-
vised 
Weapon

1 83 10 1 0 47

Taser 17 755 104 12 0 334
Baton 0 2 0 0 0 1
Firearm 0 2 0 0 0 0
Less Le-
thal 0 23 6 0 0 27
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force_
type Asian Black

Native 
Ameri-
can

Other/
Mixed 
Race

Pa-
cific 
Is-
lander

White

Less 
Lethal 
Projectile

0 3 0 0 0 0

Maximal 
Restraint 
Technique

0 104 14 0 0 42

Police K9 
Bite 0 48 8 2 0 17

For example, the Firearm force type was not applied to all races except 
Blacks in 2 cases, so we filled 0 values for all races except Black.

Then, to conduct a chi-square test on this matrix with counts, we convert 
the force type column to row names using the column_to_rownames function. 
Then, we use the chisq_test function.

mn_police_use_of_force %>% count(race, force_type) %>% drop_na() %>%

 pivot_wider(names_from = “race,” values_from = “n,” values_fill = 0) %>%

 column_to_rownames(“force_type”) %>% chisq_test() %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Chi-square test results of different force types applied 
on the different races from the Minneapolis police use of force data”)

Table 5.19. Chi-square Test Results of Different Force Types Applied on the Differ-
ent Races from the Minneapolis Police use of Force Data

n statistic p df meth-
od p.signif

11,901 293.5087

0.0000
000000
000000
000000
000000
000000
0353

50
Chi-
square 
test

****
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Again, we see a warning saying that the Chi-square test is not suitable in 
this case and Fisher exact test should be used.

5.4.1.5. Chi-square Test of the Different Force Types Applied in 
the Different Neighborhoods
The null hypothesis is that the proportions of force types are the same in the 
different neighborhoods. The alternative hypothesis is that at least, two force 
types are different from each other.

To conduct this test, we must have a matrix of columns and rows for the 
count of force types in each neighborhood. To do that, we use the same above 
functions. We use the additional argument values_fill = 0 to fill zero values 
when a certain force type is not applied in a specific neighborhood.

mn_police_use_of_force %>% count(neighborhood, force_type) %>%

 filter(!neighborhood==““) %>%

 drop_na() %>%

 pivot_wider(names_from = “force_type,” values_from = “n,”

      

       values_fill = 0) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Matrix of the count of different force types applied in 
different neighborhoods from the Minneapolis police use of force data”)
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Then, to conduct a chi-square test on this matrix with counts, we convert the 
neighborhood column to row names using the column_to_rownames function. 
Then, we use the chisq_test function.

 mn_police_use_of_force %>% count(neighborhood, force_type) %>%

 filter(!neighborhood==““) %>%

 drop_na() %>%

 pivot_wider(names_from = “force_type,” values_from = “n,”

      

       values_fill = 0) %>%

 column_to_rownames(“neighborhood”) %>% chisq_test() %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Chi-square test results of different force types applied 
in different neighborhoods from the Minneapolis police use of force data”)

Table 5.21. Chi-square Test Results of Different Force Types Applied in Different 
Neighborhoods from the Minneapolis Police Use of Force Data

n Statistic p df method p.signif

12,921 3,791.092 0 850 Chi-square 
test ****

Again, we see a warning saying that the Chi-square test is not suitable in 
this case and Fisher exact test should be used.

5.4.2. Fisher Exact Test
The Fisher exact test is used when the expected value in any cell of the 
contingency table is less than 5. For tables in which the use of the Chi-square 
test is suitable, the two tests give very similar results although the p-value will 
be different as the Fisher exact test uses the hypergeometric distribution to 
calculate its p-value. Also, the Fisher test uses the same matrix formula as the 
Chi-square test. The Fisher test also needs unpaired data meaning that all data 
observations are independent.
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5.4.2.1. Fisher Test of the Different Employment Statuses in the 
Two Genders
The null hypothesis is that the proportions of employment statuses are the same 
in the 2 genders. The alternative hypothesis is that at least, two employment 
statuses are different from each other.

To conduct this test, we must have a matrix of columns and rows for the 
count of employment statuses in each gender as done before. Then, we use the 
fisher_test function from the rstatix package.

acs12 %>% count(gender, employment) %>% drop_na() %>%

 pivot_wider(names_from = “gender,” values_from = “n”) %>%

 column_to_rownames(“employment”) %>% fisher_test() %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Fisher test results of different employment statuses in 
males and females of the American Community Survey data”)

Table 5.22. Fisher Test Results of Different Employment Statuses in Males and 
Females of the American Community Survey Data

n p p.signif
1,605 0.00000437 ****

We see that:
• The table contains the p-value which is very low.
• The p_value is too low, so we reject the null hypothesis and 

conclude that the employment status proportions are different in the 
two genders or the gender proportions are different in the different 
employment statuses.

A significant Fisher test can be followed by a pairwise Fisher test using 
the pairwiseNominalIndependence function, from the rcompanion package, 
to find which groups (employment statuses) in the rows are different in their 
proportions.

The pairwiseNominalIndependence function requires a matrix data class 
so we convert the last data frame to a matrix using the as.matrix function. The 
pairwiseNominalIndependence function uses the arguments:



Bivariate Analysis for Categorical-Categorical Data

465

• compare = “row” to find which employment statuses in the rows are 
different in their proportions.

• fisher = TRUE to do a pairwise Fisher test.
• gtest = FALSE, chisq = FALSE so do not do pairwise Chi-square or 

G-tests.
library(rcompanion)

acs12 %>% count(gender, employment) %>% drop_na() %>%

 pivot_wider(names_from = “gender,” values_from = “n”) %>%

 column_to_rownames(“employment”) %>% as.matrix() %>%

 pairwiseNominalIndependence(compare = “row,” fisher = TRUE, gtest = FALSE, 
chisq = FALSE) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Pairwise Fisher test results of different employment 
statuses in males and females of the American Community Survey data”)

Table 5.23. Pairwise Fisher test Results of Different Employment Statuses in Males 
and Females of the American Community Survey Data

Comparison p.Fisher p.adj.
Fisher

not in labor force : unem-
ployed 0.02030000 0.03040000

not in labor force : employed 0.00000128 0.00000384
unemployed : employed 1.00000000 1.00000000

We conclude that based on the adjusted p-values from the pairwise Fisher 
test “p.adj.Fisher”:

• The “not in labor force” had significantly different gender proportions 
than the “unemployed” status. For example, the male proportion in 
“not in labor force” is 0.431 compared to 0.557 in “unemployed” 
status.

• The “not in labor force” had significantly different gender proportions 
than the “employed” status. For example, the male proportion in “not 
in labor force” is 0.431 compared to 0.558 in “employed” status.
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• The “unemployed” had statistically equivalent gender proportions 
to the “employed” status. For example, the male proportion in 
“unemployed” is 0.557 compared to 0.558 in “employed” status.

5.4.2.2. Fisher Test of the Different Employment Statuses in the 
Different Races
The null hypothesis is that the proportions of employment statuses are the same 
in the different races. The alternative hypothesis is that at least, two employment 
statuses are different from each other.

To conduct this test, we must have a matrix of columns and rows for the 
count of employment statuses in the different races as done before. Then, we 
use the fisher_test function from the rstatix package. Because we have a larger 
than 2X2 table, we use the argument simulate.p.value = TRUE.

set.seed(123)

acs12 %>% count(race, employment) %>% drop_na() %>%

 pivot_wider(names_from = “race,” values_from = “n”) %>%

 column_to_rownames(“employment”) %>%

 fisher_test(simulate.p.value = T) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Fisher test results of different employment statuses in 
the different races of the American Community Survey data”)

Table 5.24. Fisher Test Results of Different Employment Statuses in the Different 
Races of the American Community Survey Data

n p p.signif
1,605 0.0435 *

We see that:
• The table contains the p-value which is lower than the cut-off value 

of 0.05.
• The p_value is significant, so we reject the null hypothesis and 

conclude that the employment status proportions are different in the 
different races or the race proportions are different in the different 
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employment statuses.
A significant Fisher test can be followed by a pairwise Fisher test using the 

pairwiseNominalIndependence function to find which employment statuses in 
the rows are different in their proportions.
acs12 %>% count(race, employment) %>% drop_na() %>%

 pivot_wider(names_from = “race,” values_from = “n”) %>%

 column_to_rownames(“employment”) %>% as.matrix() %>%

 pairwiseNominalIndependence(compare = “row,” fisher = TRUE,

              

               gtest = FALSE, chisq = FALSE) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Pairwise Fisher test results of comparing different 
employment statuses in their proportions of different races of the American 
Community Survey data”)

Table 5.25. Pairwise Fisher Test Results of Comparing Different Employment Sta-
tuses in Their Proportions of Different Races of the American Community Survey 
Data

Comparison p.Fisher p.adj.
Fisher

not in labor force : unemployed 0.01320 0.0198
not in labor force : employed 0.81700 0.8170
unemployed : employed 0.00737 0.0198

We conclude that based on the adjusted p-values from the pairwise Fisher 
test “p.adj.Fisher”:

• The “not in labor force” had significantly different race proportions 
than the “unemployed” status. For example, the White proportion 
in “not in labor force” is 0.79 compared to 0.68 in “unemployed” 
status.

• The “not in labor force” had statistically equivalent race proportions 
to the “employed” status. For example, the White proportion in “not 
in labor force” is 0.79 compared to 0.79 in “employed” status.

• The “unemployed” had significantly different race proportions 
than the “employed” status. For example, the White proportion in 
“unemployed” status is 0.68 compared to 0.79 in “employed” status.
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We can also use the pairwiseNominalIndependence function to find which 
races in the columns are different in their proportions.

acs12 %>% count(race, employment) %>% drop_na() %>%

 pivot_wider(names_from = “race,” values_from = “n”) %>%

 column_to_rownames(“employment”) %>% as.matrix() %>%

 pairwiseNominalIndependence(compare = “column,” fisher = TRUE,

              

               gtest = FALSE, chisq = FALSE) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Pairwise Fisher test results of comparing different 
races in their proportions of different employment statuses of the American 
Community Survey data”)

Table 5.26. Pairwise Fisher Test Results of Comparing Different Races in their 
Proportions of Different Employment Statuses of the American Community Survey 
Data

Comparison p.Fisher p.adj.Fisher
white : black 0.00804 0.0482
white : asian 0.94000 0.9400
white : other 0.14600 0.2920
black : asian 0.13000 0.2920
black : other 0.53700 0.6440
asian : other 0.29500 0.4420

We conclude that based on the adjusted p-values from the pairwise Fisher 
test “p.adj.Fisher”:

• Only the White race had significantly different employment status 
proportions than the Black race. For example, the unemployed 
proportion in White is 0.057 compared to 0.123 in Black.

• All other race comparisons (white : asian, white : other, black : 
asian, black : other, and asian : other) had statistically equivalent 
employment status proportions to each other.
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5.4.2.3. Fisher Test of the Different Force Types Applied on the 
Different Races
The null hypothesis is that the proportions of force types are the same in the 
different races. The alternative hypothesis is that at least, two force types are 
different from each other.

To conduct this test, we must have a matrix of columns and rows for the 
count of force types in the different races as done before. Then, we use the 
fisher_test function from the rstatix package. Because we have a larger than 
2X2 table, we use the argument simulate.p.value = TRUE.

set.seed(123)

mn_police_use_of_force %>% count(race, force_type) %>% drop_na() %>%

 pivot_wider(names_from = “race,” values_from = “n,” values_fill = 0) %>%

 column_to_rownames(“force_type”) %>%

 fisher_test(simulate.p.value = T) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Fisher test results of different force types applied on 
the different races from the Minneapolis police use of force data”)

Table 5.27. Fisher Test Results of Different Force Types Applied on the Different 
Races from the Minneapolis Police Use of Force Data

n p p.signif
11,901 0.0005 ***

We see that:
• The Table 5.27 contains the p-value which is lower than the cut-off 

value of 0.05.
• The p_value is significant, so we reject the null hypothesis and 

conclude that the force type proportions are different in the different 
races or the race proportions are different in the different force types.

A significant Fisher test can be followed by a pairwise Fisher test using the 
pairwiseNominalIndependence function to find which force types in the rows 
are different in their proportions. However, due to the many zeros in many force 
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types, we must group them to focus on the 5 most frequent types using the 
fct_lump_n function as before. We also use the argument simulate.p.value = 
TRUE because of the large cell counts.

set.seed(123)

mn_police_use_of_force %>%

 mutate(force_type = fct_lump_n(force_type, n=5)) %>%

 count(race, force_type) %>% drop_na() %>%

 pivot_wider(names_from = “race,” values_from = “n,” values_fill = 0) %>%

 column_to_rownames(“force_type”) %>% as.matrix() %>%

 pairwiseNominalIndependence(compare = “row,” fisher = TRUE,

              

               gtest = FALSE, chisq = FALSE,

              

               simulate.p.value = TRUE) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Pairwise Fisher test results of comparing different 
force types in their proportions of different races of the Minneapolis police 
use of force data”)

Table 5.28. Pairwise Fisher Test Results of Comparing Different Force Types in 
Their Proportions of Different Races of the Minneapolis Police Use of Force Data

Comparison p.Fisher p.adj.
Fisher

Bodily Force : Chemical Irritant 0.0005 0.0015
Bodily Force : Improvised Weapon 0.7030 0.7110
Bodily Force : Taser 0.1040 0.2600
Bodily Force : Other 0.5600 0.6460
Bodily Force : Maximal Restraint 
Technique 0.4100 0.6120

Chemical Irritant : Improvised 
Weapon 0.0005 0.0015
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Comparison p.Fisher p.adj.
Fisher

Chemical Irritant : Taser 0.0005 0.0015
Chemical Irritant : Other 0.0005 0.0015
Chemical Irritant : Maximal Re-
straint Technique 0.0005 0.0015

Improvised Weapon : Taser 0.7110 0.7110
Improvised Weapon : Other 0.3940 0.6120
Improvised Weapon : Maximal 
Restraint Technique 0.3280 0.6120

Taser : Other 0.4190 0.6120
Taser : Maximal Restraint Tech-
nique 0.5080 0.6350

Other : Maximal Restraint Tech-
nique 0.4490 0.6120

We conclude that based on the adjusted p-values “p.adj.Fisher”:
• The “Bodily Force” type had significantly different race proportions 

than the “Chemical Irritant” force type.
• The “Chemical Irritant” force type had significantly different race 

proportions than the “Improvised Weapon,” “Taser,” “Other,” and 
“Maximal Restraint Technique” force types.

• All other pairwise force-type comparisons are statistically equivalent.
We can also use the pairwiseNominalIndependence function to find which 

races in the columns are different in their proportions of different force types.

set.seed(123)

mn_police_use_of_force %>%

 mutate(force_type = fct_lump_n(force_type, n=5)) %>%

 count(race, force_type) %>% drop_na() %>%

 pivot_wider(names_from = “race,” values_from = “n,” values_fill = 0) %>%

 column_to_rownames(“force_type”) %>% as.matrix() %>%

 pairwiseNominalIndependence(compare = “column,” fisher = TRUE,
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               gtest = FALSE, chisq = FALSE,

              

               simulate.p.value = TRUE) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Pairwise Fisher test results of comparing different 
races in their proportions of different force types of of the Minneapolis police 
use of force data”)

Table 5.29. Pairwise Fisher Test results of Comparing Different Races in Their 
Proportions of Different Force Types of the Minneapolis Police Use of Force Data

Comparison p.Fisher p.adj.Fisher
Asian : Black 0.0045 0.00750
Asian : Native American 0.0005 0.00107
Asian : Other/Mixed Race 0.1170 0.17600
Asian : Pacific Islander 0.7430 0.85700
Asian : White 0.0005 0.00107
Black : Native American 0.0005 0.00107
Black : Other/Mixed Race 0.0010 0.00188
Black : Pacific Islander 1.0000 1.00000
Black : White 0.0005 0.00107
Native American : Other/Mixed 
Race 0.0005 0.00107

Native American : Pacific Is-
lander 0.3950 0.53900

Native American : White 0.0005 0.00107
Other/Mixed Race : Pacific Is-
lander 1.0000 1.00000

Other/Mixed Race : White 0.0005 0.00107
Pacific Islander : White 0.5810 0.72600

We conclude that based on the adjusted p-values “p.adj.Fisher”:
• The Asian race had significantly different force-type proportions 

than the Black, Native American, and White races.
• The Black race had significantly different force-type proportions 

than the Native American, Other/Mixed, and White races.
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• The Native American race had significantly different force type 
proportions than the Other/Mixed and White races.

• The Other/Mixed race had significantly different force type 
proportions than the White race.

5.4.2.4. Fisher Test of the Different Force Types Applied in the 
Different Neighborhoods
The null hypothesis is that the proportions of force types are the same in the 
different neighborhoods. The alternative hypothesis is that at least, two force 
types are different from each other.

To conduct this test, we must have a matrix of columns and rows for the 
count of force types in the different races as done before. Then, we use the 
fisher_test function from the rstatix package. Because we have a larger than 
2X2 table, we use the argument simulate.p.value = TRUE.

set.seed(123)

mn_police_use_of_force %>% count(neighborhood, force_type) %>%

 filter(!neighborhood==““) %>%

 drop_na() %>%

 pivot_wider(names_from = “force_type,” values_from = “n,”

      

       values_fill = 0) %>%

 column_to_rownames(“neighborhood”) %>%

 fisher_test(simulate.p.value = T) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Fisher test results of different force types applied 
in the different neighborhoods from the Minneapolis police use of force data”)
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Table 5.30. Fisher Test Results of Different Force Types Applied in the Different 
Neighborhoods from the Minneapolis Police Use of Force Data

n p p.signif
12,921 0.0005 ***

We see that:
• The Table 5.30 contains the p-value which is lower than the cut-off 

value of 0.05.
• The p_value is significant, so we reject the null hypothesis and 

conclude that the force type proportions are different in the different 
neighborhoods or that the neighborhood proportions are different in 
the different force types.

A significant Fisher test can be followed by a pairwise Fisher test using the 
pairwiseNominalIndependence function to find which force types in the columns 
are different in their proportions. However, due to the many zeros in many force 
types, we must group them to focus on the 5 most frequent types using the 
fct_lump_n function as before. We also use the argument simulate.p.value = 
TRUE because of the large cell counts.

set.seed(123)

mn_police_use_of_force %>%

 mutate(force_type = fct_lump_n(force_type, n=5)) %>%

 count(neighborhood, force_type) %>%

 filter(!neighborhood==““) %>%

 drop_na() %>%

 pivot_wider(names_from = “force_type,” values_from = “n,”

      

       values_fill = 0) %>%

 column_to_rownames(“neighborhood”) %>% as.matrix() %>%

 pairwiseNominalIndependence(compare = “column,” fisher = TRUE,

              

               gtest = FALSE, chisq = FALSE,
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               simulate.p.value = TRUE) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Pairwise Fisher test results of comparing different 
force types in their proportions of different neighborhoods of the Minneapolis 
police use of force data”)

Table 5.31. Pairwise Fisher Test Results of Comparing Different Force Types in 
Their Proportions of Different Neighborhoods of the Minneapolis Police Use of 
Force Data

Comparison p.Fisher p.adj.Fisher
Bodily Force : Chemical Irritant 0.0005 0.000536
Bodily Force : Maximal Restraint 
Technique 0.0005 0.000536

Bodily Force : Taser 0.0005 0.000536
Bodily Force : Other 0.0005 0.000536
Bodily Force : Improvised Weapon 0.0030 0.003000
Chemical Irritant : Maximal Re-
straint Technique 0.0005 0.000536

Chemical Irritant : Taser 0.0005 0.000536
Chemical Irritant : Other 0.0005 0.000536
Chemical Irritant : Improvised 
Weapon 0.0005 0.000536

Maximal Restraint Technique : Taser 0.0005 0.000536
Maximal Restraint Technique : Other 0.0005 0.000536
Maximal Restraint Technique : Im-
provised Weapon 0.0005 0.000536

Taser : Other 0.0005 0.000536
Taser : Improvised Weapon 0.0005 0.000536
Other : Improvised Weapon 0.0005 0.000536

We conclude that based on the adjusted p-values “p.adj.Fisher”:
• All force types (“Bodily Force,” “Chemical Irritant,” “Maximal 

Restraint Technique, “Taser,” “Improvised Weapon,” and “Other”) 
have different neighborhood proportions than each other.
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We can also use the pairwiseNominalIndependence function to find which 
neighborhoods in the rows are different in their proportions of different force 
types. However, due to many zeros in many neighborhoods, we must group 
them to focus on the 20 most frequent neighborhoods using the fct_lump_n 
function as before. We also use the argument simulate.p.value = TRUE because 
of the large cell counts.

set.seed(123)

mn_police_use_of_force %>%

 mutate(neighborhood = fct_lump_n(neighborhood, n=20)) %>%

 count(neighborhood, force_type) %>%

 filter(!neighborhood==““) %>%

 drop_na() %>%

 pivot_wider(names_from = “force_type,” values_from = “n,”

      

       values_fill = 0) %>%

 column_to_rownames(“neighborhood”) %>% as.matrix() %>%

 pairwiseNominalIndependence(compare = “row,” fisher = TRUE,

              

               gtest = FALSE, chisq = FALSE,

              

               simulate.p.value = TRUE) %>%

 flextable() %>% theme_box() %>%

 set_caption(caption = “Pairwise Fisher test results of comparing different 
neighborhoods in their proportions of different force types of the Minneapolis 
police use of force data”)
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Table 5.32. Pairwise Fisher Test Results of Comparing Different Neighborhoods in 
Their Proportions of Different Force Types of the Minneapolis Police Use of Force 
Data

Comparison p.Fisher p.adj.
Fisher

CARAG : Cedar Riverside 0.0005 0.00135
CARAG : Downtown West 0.0005 0.00135
CARAG : East Phillips 0.0720 0.09630
CARAG : Elliot Park 0.0070 0.01300
CARAG : Folwell 0.3430 0.38900
CARAG : Hawthorne 0.0355 0.05320
CARAG : Jordan 0.4910 0.52600
CARAG : Loring Park 0.0005 0.00135
CARAG : Lowry Hill East 0.0005 0.00135
CARAG : Lyndale 0.0615 0.08550
CARAG : Marcy Holmes 0.0030 0.00624
CARAG : Near – North 0.3930 0.43400
CARAG : North Loop 0.0005 0.00135
CARAG : Powderhorn Park 0.0010 0.00247
CARAG : Steven’s Square – Loring Heights 0.0025 0.00530
CARAG : Ventura Village 0.1340 0.16500
CARAG : Webber – Camden 0.0430 0.06310
CARAG : Whittier 0.6910 0.71100
CARAG : Willard – Hay 0.3510 0.39600
CARAG : Other 0.0630 0.08700
Cedar Riverside : Downtown West 0.0005 0.00135
Cedar Riverside : East Phillips 0.0035 0.00700
Cedar Riverside : Elliot Park 0.0005 0.00135
Cedar Riverside : Folwell 0.0005 0.00135
Cedar Riverside : Hawthorne 0.0020 0.00442
Cedar Riverside : Jordan 0.0005 0.00135
Cedar Riverside : Loring Park 0.0020 0.00442
Cedar Riverside : Lowry Hill East 0.0005 0.00135
Cedar Riverside : Lyndale 0.0005 0.00135
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Cedar Riverside : Marcy Holmes 0.0115 0.02060
Cedar Riverside : Near – North 0.0005 0.00135
Cedar Riverside : North Loop 0.0040 0.00778
Cedar Riverside : Powderhorn Park 0.5500 0.58000
Cedar Riverside : Steven’s Square – Loring 
Heights 0.0005 0.00135

Cedar Riverside : Ventura Village 0.0010 0.00247
Cedar Riverside : Webber – Camden 0.0550 0.07800
Cedar Riverside : Whittier 0.0005 0.00135
Cedar Riverside : Willard – Hay 0.0005 0.00135
Cedar Riverside : Other 0.0005 0.00135
Downtown West : East Phillips 0.0005 0.00135
Downtown West : Elliot Park 0.0005 0.00135
Downtown West : Folwell 0.0005 0.00135
Downtown West : Hawthorne 0.0005 0.00135
Downtown West : Jordan 0.0005 0.00135
Downtown West : Loring Park 0.0005 0.00135
Downtown West : Lowry Hill East 0.0005 0.00135
Downtown West : Lyndale 0.0005 0.00135
Downtown West : Marcy Holmes 0.0005 0.00135
Downtown West : Near – North 0.0005 0.00135
Downtown West : North Loop 0.0005 0.00135
Downtown West : Powderhorn Park 0.0005 0.00135
Downtown West : Steven’s Square – Loring 
Heights 0.0005 0.00135

Downtown West : Ventura Village 0.0005 0.00135
Downtown West : Webber – Camden 0.0005 0.00135
Downtown West : Whittier 0.0005 0.00135
Downtown West : Willard – Hay 0.0005 0.00135
Downtown West : Other 0.0005 0.00135
East Phillips : Elliot Park 0.0635 0.08720
East Phillips : Folwell 0.1580 0.18900
East Phillips : Hawthorne 0.0255 0.03940
East Phillips : Jordan 0.1250 0.15600
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East Phillips : Loring Park 0.0035 0.00700
East Phillips : Lowry Hill East 0.0005 0.00135
East Phillips : Lyndale 0.1360 0.16600
East Phillips : Marcy Holmes 0.0855 0.11200
East Phillips : Near – North 0.4470 0.48400
East Phillips : North Loop 0.0205 0.03210
East Phillips : Powderhorn Park 0.4180 0.46000
East Phillips : Steven’s Square – Loring Heights 0.0010 0.00247
East Phillips : Ventura Village 0.4450 0.48400
East Phillips : Webber – Camden 0.9310 0.94000
East Phillips : Whittier 0.0750 0.09970
East Phillips : Willard – Hay 0.0035 0.00700
East Phillips : Other 0.0910 0.11900
Elliot Park : Folwell 0.0005 0.00135
Elliot Park : Hawthorne 0.0005 0.00135
Elliot Park : Jordan 0.0025 0.00530
Elliot Park : Loring Park 0.5660 0.59400
Elliot Park : Lowry Hill East 0.0005 0.00135
Elliot Park : Lyndale 0.6990 0.71600
Elliot Park : Marcy Holmes 0.0195 0.03080
Elliot Park : Near – North 0.0080 0.01470
Elliot Park : North Loop 0.0035 0.00700
Elliot Park : Powderhorn Park 0.0480 0.07000
Elliot Park : Steven’s Square – Loring Heights 0.0085 0.01550
Elliot Park : Ventura Village 0.5810 0.60400
Elliot Park : Webber – Camden 0.0165 0.02670
Elliot Park : Whittier 0.0245 0.03810
Elliot Park : Willard – Hay 0.0010 0.00247
Elliot Park : Other 0.1320 0.16300
Folwell : Hawthorne 0.0070 0.01300
Folwell : Jordan 0.7150 0.72900
Folwell : Loring Park 0.0005 0.00135
Folwell : Lowry Hill East 0.0005 0.00135
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Folwell : Lyndale 0.0150 0.02500
Folwell : Marcy Holmes 0.0010 0.00247
Folwell : Near – North 0.1230 0.15500
Folwell : North Loop 0.0005 0.00135
Folwell : Powderhorn Park 0.1100 0.14000
Folwell : Steven’s Square – Loring Heights 0.0015 0.00354
Folwell : Ventura Village 0.1860 0.21900
Folwell : Webber – Camden 0.3610 0.40300
Folwell : Whittier 0.3540 0.39800
Folwell : Willard – Hay 0.0030 0.00624
Folwell : Other 0.0130 0.02280
Hawthorne : Jordan 0.0010 0.00247
Hawthorne : Loring Park 0.0005 0.00135
Hawthorne : Lowry Hill East 0.0005 0.00135
Hawthorne : Lyndale 0.0005 0.00135
Hawthorne : Marcy Holmes 0.0550 0.07800
Hawthorne : Near – North 0.3390 0.38700
Hawthorne : North Loop 0.0145 0.02460
Hawthorne : Powderhorn Park 0.0160 0.02650
Hawthorne : Steven’s Square – Loring Heights 0.0005 0.00135
Hawthorne: Ventura Village 0.0020 0.00442
Hawthorne: Webber – Camden 0.4390 0.48000
Hawthorne : Whittier 0.0020 0.00442
Hawthorne : Willard – Hay 0.0005 0.00135
Hawthorne : Other 0.0005 0.00135
Jordan : Loring Park 0.0005 0.00135
Jordan : Lowry Hill East 0.0005 0.00135
Jordan : Lyndale 0.0800 0.10600
Jordan : Marcy Holmes 0.0005 0.00135
Jordan : Near – North 0.0500 0.07190
Jordan : North Loop 0.0005 0.00135
Jordan : Powderhorn Park 0.0195 0.03080
Jordan : Steven’s Square – Loring Heights 0.0195 0.03080
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Jordan : Ventura Village 0.5290 0.56300
Jordan : Webber – Camden 0.1540 0.18500
Jordan : Whittier 0.5720 0.59800
Jordan : Willard – Hay 0.0145 0.02460
Jordan : Other 0.0020 0.00442
Loring Park : Lowry Hill East 0.0005 0.00135
Loring Park : Lyndale 0.1870 0.21900
Loring Park : Marcy Holmes 0.0020 0.00442
Loring Park : Near – North 0.0005 0.00135
Loring Park : North Loop 0.0015 0.00354
Loring Park : Powderhorn Park 0.1830 0.21700
Loring Park : Steven’s Square – Loring Heights 0.0010 0.00247
Loring Park : Ventura Village 0.2370 0.27500
Loring Park : Webber – Camden 0.0025 0.00530
Loring Park : Whittier 0.0005 0.00135
Loring Park : Willard – Hay 0.0005 0.00135
Loring Park : Other 0.0135 0.02320
Lowry Hill East : Lyndale 0.0005 0.00135
Lowry Hill East : Marcy Holmes 0.0005 0.00135
Lowry Hill East : Near – North 0.0005 0.00135
Lowry Hill East : North Loop 0.0005 0.00135
Lowry Hill East : Powderhorn Park 0.0005 0.00135
Lowry Hill East : Steven’s Square – Loring 
Heights 0.0005 0.00135

Lowry Hill East : Ventura Village 0.0005 0.00135
Lowry Hill East : Webber – Camden 0.0005 0.00135
Lowry Hill East : Whittier 0.0005 0.00135
Lowry Hill East : Willard – Hay 0.0005 0.00135
Lowry Hill East : Other 0.0005 0.00135
Lyndale : Marcy Holmes 0.0420 0.06210
Lyndale : Near – North 0.0125 0.02210
Lyndale : North Loop 0.0120 0.02140
Lyndale : Powderhorn Park 0.0925 0.12000
Lyndale : Steven’s Square – Loring Heights 0.0485 0.07020
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Lyndale : Ventura Village 0.9650 0.96500
Lyndale : Webber – Camden 0.0400 0.05960
Lyndale : Whittier 0.1030 0.13200
Lyndale : Willard – Hay 0.0150 0.02500
Lyndale : Other 0.8980 0.91100
Marcy Holmes : Near – North 0.0595 0.08330
Marcy Holmes : North Loop 0.4500 0.48500
Marcy Holmes : Powderhorn Park 0.0710 0.09560
Marcy Holmes : Steven’s Square – Loring 
Heights 0.0005 0.00135

Marcy Holmes : Ventura Village 0.0165 0.02670
Marcy Holmes : Webber – Camden 0.1480 0.17900
Marcy Holmes : Whittier 0.0025 0.00530
Marcy Holmes : Willard – Hay 0.0005 0.00135
Marcy Holmes : Other 0.0315 0.04790
Near – North : North Loop 0.0135 0.02320
Near – North : Powderhorn Park 0.0335 0.05060
Near – North : Steven’s Square – Loring Heights 0.0005 0.00135
Near – North : Ventura Village 0.0645 0.08800
Near – North : Webber – Camden 0.6660 0.68900
Near – North : Whittier 0.3910 0.43400
Near – North : Willard – Hay 0.0015 0.00354
Near – North : Other 0.0040 0.00778
North Loop : Powderhorn Park 0.0300 0.04600
North Loop : Steven’s Square – Loring Heights 0.0005 0.00135
North Loop : Ventura Village 0.0055 0.01050
North Loop : Webber – Camden 0.0575 0.08100
North Loop : Whittier 0.0005 0.00135
North Loop : Willard – Hay 0.0005 0.00135
North Loop : Other 0.0105 0.01900
Powderhorn Park : Steven’s Square – Loring 
Heights 0.0005 0.00135

Powderhorn Park : Ventura Village 0.2950 0.34000
Powderhorn Park : Webber – Camden 0.5310 0.56300
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Powderhorn Park : Whittier 0.0040 0.00778
Powderhorn Park : Willard – Hay 0.0005 0.00135
Powderhorn Park : Other 0.3240 0.37200
Steven’s Square – Loring Heights : Ventura Vil-
lage 0.1000 0.12900

Steven’s Square – Loring Heights : Webber – 
Camden 0.0005 0.00135

Steven’s Square – Loring Heights : Whittier 0.0070 0.01300
Steven’s Square – Loring Heights : Willard – 
Hay 0.0015 0.00354

Steven’s Square – Loring Heights : Other 0.0005 0.00135
Ventura Village : Webber – Camden 0.1470 0.17800
Ventura Village : Whittier 0.2230 0.26000
Ventura Village : Willard – Hay 0.0660 0.08940
Ventura Village : Other 0.9500 0.95500
Webber – Camden : Whittier 0.1290 0.16000
Webber – Camden : Willard – Hay 0.0005 0.00135
Webber – Camden : Other 0.1120 0.14200
Whittier : Willard – Hay 0.0165 0.02670
Whittier : Other 0.0055 0.01050
Willard – Hay : Other 0.0005 0.00135

We conclude that based on the adjusted p-values “p.adj.Fisher”:
• The “CARAG” neighborhood had significantly different force type 

proportions than the “Cedar Riverside,” “Downtown West,” “Elliot 
Park,” “Loring Park,” “Lowry Hill East.” “Marcy Holmes,” “North 
Loop,” “Powderhorn Park,” and “Steven’s Square – Loring Heights” 
neighborhoods, while has statistically equivalent proportions to all 
other neighborhoods.

• Other neighborhoods can be noted similarly based on their adjusted 
p-values.
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