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Preface

The first edition of Statistics in a Nutshell was a resounding success, but all books
can be improved, and I'm grateful to have the opportunity to revise this one. My
basic approach to the material hasn't changed: this is much more a book for people
who want to think about and understand statistics than it is a book showing you
how to use a particular computing package or delving into the mathematical theory
behind statistics formulas. This book is also a little different from many titles in the
O’Reilly Nutshell series—it’s really somewhere between a handbook for people who
already know statistics and an introductory textbook for people learning statistics
for the first time.

Despite the continued infiltration of statistics into many realms of life, one thing
hasn't changed: telling people I work as a statistician is still the best way to derail a
promising conversation at a party. For some reason, this seems to prompt people to
tell me about how much they hated the required statistics class they needed for their
college major or to prompt them to quote that old chestnut popularized by Mark
Twain that there are three kinds of lies: lies, damned lies, and statistics.

Personally, I find statistics fascinating, and I love working in this field. I like teaching
statistics as well, and I like to believe that I communicate this enthusiasm to others.
It’s often an uphill battle, however; many people seem to believe that statistics is no
more than a set of tricks and manipulations whose purpose is to twist reality to
mislead other people. Others take the opposite view, believing that statistics is a
collection of magical procedures that will do their thinking for them.

OK, Just What Is Statistics?
Before you jump into the technical details of learning and using statistics, step back
for a minute and consider what can be meant by the word “statistics.” Don’t worry
if you don’t understand all the vocabulary immediately; it will become clear over the
course of reading this book.
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When people speak of statistics, they usually mean one or more of the following:

1. Numerical data, such as the unemployment rate, the number of persons who
die annually from bee stings, or the population of New York City in 2006 as
compared to 1906.

2. Numbers used to describe samples of data as opposed to parameters (numbers
used to describe populations). For instance, an advertising firm might be inter-
ested in the average age of people who subscribe to Sports Illustrated. To answer
this question, it could draw a random sample of subscribers, calculate the mean
of that sample (a statistic), and use that as an estimate of the mean of the entire
population of subscribers (a parameter).

3. Particular procedures used to analyze data, and the results of those procedures,
such as the t statistic or the chi-square statistic.

4. A field of study that develops and uses mathematical procedures to describe
data and make decisions regarding it.

The type of statistics referred to in definition number 1 is not the primary concern
of this book. If you simply want to find the latest figures on unemployment, health,
or any of the myriad other topics on which governments and other organizations
regularly release statistical data, your best bet is to consult a reference librarian or
subject matter expert. If, however, you want to know how to interpret those figures
(to understand why the mean is often misleading as a statement of average value,
for instance, or the difference between crude and standardized mortality rates),
Statistics in a Nutshell can definitely help you.

The concepts included in definition number 2 will be discussed in Chapter 3, which
introduces inferential statistics, but these concepts also permeate the entire book. It
is partly a question of vocabulary (statistics are numbers that describe samples,
whereas parameters are numbers that describe populations) but underscores a fun-
damental point about the practice of statistics. The concept of using information
gained from studying a sample to make statements about a population is the basis
of inferential statistics, and inferential statistics is the primary focus of this book (as
it is of most books about statistics).

Definition number 3 is also fundamental to most chapters of this book. The process
of learning statistics is to some extent the process of learning particular statistical
procedures, including how to calculate and interpret them, how to choose the ap-
propriate statistic for a given situation, and so on. In fact, many new students of
statistics subscribe primarily to this definition; learning statistics to them means
learning to execute a set of statistical procedures. This is not so much an invalid
approach to statistics as it is incomplete; learning to execute statistical procedures
is a necessary part of the practice of statistics, but it is far from being the entire story.
What’s more, since computer software has made it increasingly easy for anyone,
regardless of mathematical background, to produce statistical analyses, the need to
understand and interpret statistics has far outstripped the need to learn how to do
the calculations themselves.
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Definition number 4 is nearest to my heart because I chose statistics as my profes-
sional field. If you are a secondary or post-secondary student, you are probably aware
of this definition of statistics because many universities and colleges today either
have a separate department of statistics or include statistics as a field of specialization
within the department of mathematics. Statistics is increasingly taught in high school
as well, and in the United States, enrollment in advanced placement (AP) statistics
classes is increasing rapidly.

Statistics is not only a specialist subject at the university level. Many university de-
partments require students to take one or more statistics courses alongside subjects
in their major. In addition, it’s worth knowing that many important techniques in
modern statistics have been developed by people who learned and used statistics as
part of their work in another field. Stephen Raudenbush, a pioneer in the develop-
ment of hierarchical linear modeling, studied Policy Analysis and Evaluation Re-
search at Harvard, and Edward Tufte, perhaps the world’s leading expert on statis-
tical graphics, began his career as a political scientist: he wrote his PhD dissertation
at Yale on the American Civil Rights movement.

Because the use of statistics in many professions and at all levels from management
to line workers is increasing, acquiring a basic knowledge of statistics has become a
necessity for many people who have been out of school for years. Such individuals
are often ill served by textbooks aimed at introductory college courses, which are
too specialized, too focused on calculation, and too expensive.

Finally, statistics cannot be left to the statisticians because it’s also a necessity to
take part in modern civic life, in particular to understand much of what you read in
the newspaper and hear on the television and radio. A working knowledge of sta-
tistics is the best check against the proliferation of misleading or outright false nu-
merical claims (whether by politicians, advertisers, or social reformers), which seem
to occupy an ever-increasing portion of our daily news diet. There’s a reason that
Darryl Huff’s 1954 classic How to Lie with Statistics remains in print: statistics are
easy to misuse, the common techniques of statistical distortion have been around
for decades, and the best defense against those who would lie with statistics is to
educate yourself so you can spot the lies and stop the liars in their tracks.

The Focus of This Book
There are so many statistics books already on the market that you might well wonder
why I feel the need to add another to the pile. The primary reason is that I haven’t
found any statistics books that answer the needs I have addressed in Statistics in a
Nutshell. In fact, if I may wax poetic for a moment, the situation is, to paraphrase
the plight of Coleridge’s Ancient Mariner, “books, books, everywhere, nor any with
which to learn.” The issues I have tried to address with this book are the following:

• The need for a book that focuses on using and understanding statistics in a
research or applications context, not as a discrete set of mathematical techni-
ques but as part of the process of reasoning with numbers.

Preface | xi



• The need to integrate discussion of issues such as measurement and data man-
agement into an introductory statistics text.

• The need for a statistics book that isn’t focused on a particular subject area.
Elementary statistics is largely the same across subjects (a t-test is pretty much
the same whether the data comes from medicine, finance, or criminal justice),
so there’s no need for a proliferation of texts presenting the same information
with a slightly different spin.

• The need for an introductory statistics book that is compact, inexpensive, and
easy for beginners to understand without being condescending or overly
simplistic.

So who is the intended audience of Statistics in a Nutshell? I see three groups whose
needs it particularly addresses:

• Students taking introductory statistics classes in high schools, colleges, and
universities

• Adults who need to learn statistics as part of their current jobs or to be eligible
for a promotion

• People who are interested in learning about statistics out of intellectual curiosity

My focus throughout Statistics in a Nutshell is not on particular techniques, although
many are taught within this work, but on statistical reasoning. You might say that
the focus in this book is less on doing statistics and more on thinking statistically.
What does that mean? Several things are necessary to be able in the process of
thinking with numbers. More particularly, I focus on thinking about data and using
statistics to aid in that process. Most chapters include some practice exercises, but
these are meant to provide an opportunity to review the material presented and think
about the important concepts covered in the chapter; they are not meant to be
mindless calculation.

All the material in Statistics in a Nutshell has been revised, and most of the chapters
beefed up with new examples and exercises. In particular, more examples working
with proportions have been added, as have additional examples using real data sets,
from sources such as the United Nations Human Development Project and the Be-
havioral Risk Factor Surveillance System; both data sets are available for free down-
load from the Internet, so students can experiment with them as well as replicate
the analyses in this book. One new chapter has been added to this edition: Chap-
ter 19. I added this chapter because of my observation that, particularly for people
learning statistics for vocational reasons, the ability to communicate statistical in-
formation is at least as important as the ability to perform statistical computations.
Several new appendixes have also been added, mainly to make the book more self-
sufficient and user-friendly. These include probability tables for the most common
distributions, a bibliography of online sources of information, and a glossary and
table of statistical notation.

xii | Preface



Statistics in the Age of Information
It’s become fashionable to say that we’re living in the Age of Information, when so
many facts are collected and disseminated that no one could possibly keep up with
them. This is one cliché based in truth; as a society, we are drowning in data, and
the problem seems likely to increase. There are both positive and negative sides to
this circumstance. On the positive side, wide access to computing technology and
electronic means of data storage and dissemination have made information easier
to access, so researchers have less need to travel to a particular library or archive to
peruse printed copies of records.

However, data has no meaning in and of itself. It has to be organized and interpreted
by human beings before it becomes meaningful, so participating fully in the Infor-
mation Age requires becoming fluent in understanding data, including the ways it
is collected, analyzed, and interpreted. And because the same data can often be
interpreted in many ways to support radically different conclusions, even people
who don’t engage in statistical work themselves need to understand how statistics
work and how to identify invalid claims and arguments based on the misuse of data.

Organization of This Book
Statistics in a Nutshell is organized in three parts: introductory material (Chapters
1–4) that lays the necessary foundation for the chapters that follow; inferential stat-
istical techniques (Chapters 5–13), specialized techniques used in different profes-
sional fields (Chapters 14–16); and ancillary topics that are often part of the statis-
tician’s job, even if they are not strictly statistical (Chapters 17–20).

Here’s a more detailed breakdown of the chapters:

Chapter 1, Basic Concepts of Measurement
Discusses foundational issues for statistics, including levels of measurement,
operationalization, proxy measurement, random and systematic error, reliabil-
ity and validity, and types of bias.

Chapter 2, Probability
Introduces the basics of probability, including trials, events, independence,
mutual exclusivity, the addition and multiplication laws, combinations and
permutations, conditional probability, and Bayes’ theorem.

Chapter 3, Inferential Statistics
Introduces some basic concepts of inferential statistics, including probability
distributions, independent and dependent variables, populations and samples,
common types of sampling, the central limit theorem, hypothesis testing, Type
I and Type II errors, confidence intervals and p-values, and data transformation.

Chapter 4, Descriptive Statistics and Graphic Displays
Introduces common measures of central tendency and dispersion, including
mean, median, mode, range, interquartile range, variance, and standard devi-
ation, and discusses outliers. Some of the most commonly used graphical tech-
niques for presenting statistical information are also covered in this chapter,

Preface | xiii



including frequency tables, bar charts, pie charts, Pareto charts, stem and leaf
plots, boxplots, histograms, scatterplots, and line graphs.

Chapter 5, Categorical Data
Reviews the concepts of categorical and interval data and introduces the R×C
table. Statistics covered in this chapter include the chi-squared tests for inde-
pendence, equality of proportions, and goodness of fit, Fisher’s exact test,
McNemar’s test, large-sample tests for proportions, and measures of associa-
tion for categorical and ordinal data.

Chapter 6, The t-Test
Discusses the t-distribution and the theory and use of the one-sample t-test, the
two independent samples t-test, the repeated measures t-test, and the unequal
variance t-test.

Chapter 7, The Pearson Correlation Coefficient
Introduces the concept of association with graphics displaying different
strengths of association between two variables and discusses the Pearson Cor-
relation Coefficient and the Coefficient of Determination.

Chapter 8, Introduction to Regression and ANOVA
Relates linear regression and ANOVA to the concept of the General Linear
Model and discusses assumptions made when using these designs. Simple (bi-
variate) regression, one-way ANOVA, and post hoc testing are discussed and
demonstrated.

Chapter 9, Factorial ANOVA and ANCOVA
Discusses more-complex ANOVA designs, including two-way and three-way
ANOVA and ANCOVA, and presents the topic of interaction.

Chapter 10, Multiple Linear Regression
Extends the multiple regression model to include multiple predictors. Topics
covered include relationships among predictor variables, standardized and un-
standardized coefficients, dummy variables, methods of model building, and
violations of assumptions of linear regression, including nonlinearity, autocor-
relation, and heteroscedasticity.

Chapter 11, Logistic, Multinomial, and Polynomial Regression
Expands the technique of regression to data with binary outcomes (logistic re-
gression), categorical outcomes (multinomial regression), and nonlinear mod-
els (polynomial regression) and discusses the problem of overfitting a model.

Chapter 12, Factor Analysis, Cluster Analysis, and Discriminant Function Analysis
Demonstrates three advanced statistical procedures, factor analysis, cluster
analysis, and discriminant function analysis, and discusses the types of prob-
lems for which each technique might be useful.

Chapter 13, Nonparametric Statistics
Discusses when to use nonparametric rather than parametric statistics and
presents nonparametric statistics for between-subjects and within-subjects de-
signs, including the Wilcoxon Rank Sum and Mann-Whitney U tests, the sign
test, the median test, the Kruskal-Wallis H test, the Wilcoxon signed rank test,
and the Friedman test.
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Chapter 14, Business and Quality Improvement Statistics
Demonstrates statistical procedures commonly used in business and quality
improvement contexts. Analytical and statistical procedures covered include
index numbers; time series; the minimax, maximax, and maximin decision cri-
teria; decision making under risk; decision trees; and control charts.

Chapter 15, Medical and Epidemiological Statistics
Introduces concepts and demonstrates statistical procedures particularly rele-
vant to medicine and epidemiology. Concepts and statistics presented include
the definition and use of ratios, proportions, and rates; measures of prevalence
and incidence; crude and standardized rates; direct and indirect standardiza-
tion; measures of risk; confounding; the simple and Mantel-Haenszel odds ra-
tio; and precision, power, and sample-size calculations.

Chapter 16, Educational and Psychological Statistics
Introduces concepts and statistical procedures commonly used in the fields of
education and psychology. Subjects covered include percentiles; standardized
scores; methods of test construction; classical test theory; the reliability of a
composite test; measures of internal consistency, including coefficient alpha;
and procedures for item analysis. An overview of item response theory is also
provided.

Chapter 17, Data Management
Discusses practical issues in data management, including codebooks, the unit
of analysis, procedures to troubleshoot an existing file, methods for storing data
electronically, string and numeric data, and missing data.

Chapter 18, Research Design
Discusses observational and experimental studies, common elements of good
research designs, the steps involved in data collection, types of validity, and
methods to limit or eliminate the influence of bias.

Chapter 19, Communicating with Statistics
Covers general issues about communicating statistical information to different
audiences and then provides more detail about writing for a professional jour-
nal, for the general public, and for the workplace.

Chapter 20, Critiquing Statistics Presented by Others
Offers guidelines for reviewing the use of statistics, including a checklist of
questions to ask of any statistical presentation and examples of when legitimate
statistical procedures may be manipulated to support questionable conclusions.

Six appendixes cover topics that are a necessary background to the material covered
in the main text and provide references to supplemental reading:

Appendix A, Review of Basic Mathematics
Provides a self-test and review of basic arithmetic and algebra for people whose
memory of their last math course is fast receding on the distant horizon. Topics
covered include the laws of arithmetic, exponents, roots and logs, methods to
solve equations and systems of equations, fractions, factorials, permutations,
and combinations.
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Appendix B, Introduction to Statistical Packages
Provides an introduction to some of the most common computer programs used
for statistical applications, demonstrates basic analyses in each program, and
discusses their relative strengths and weaknesses. Programs covered include
Minitab, SPSS, SAS, and R; the use of Microsoft Excel (not a statistical package)
for statistical analysis is also discussed.

Appendix C, References
An annotated bibliography organized by chapters that includes published
works and websites cited in the text and others that are good starting points for
people researching a particular topic.

Appendix D, Probability Tables for Common Distributions
Includes tables for the most commonly used statistical distributions—normal,
t, binomial, and chi-square—as well as directions for using the tables. Even in
the age of the computer and the Internet, it’s worth knowing how to read a
distribution table, and it’s convenient to have the tables available in printed
form.

Appendix E, Online Resources
A bibliography of some of the best sites on the Internet for people who are
learning, using, or teaching statistics. This appendix is organized into general
resources, glossaries, probability tables, online calculators, and online
textbooks.

Appendix F, Glossary of Statistical Terms
Includes a table of the Greek alphabet (the bane of many a beginning statisti-
cian), a table of statistical notation, and a brief glossary of the major statistical
terms used in this book.

This book is a tool that can be adapted according to the background and needs of
individual readers. Some of the chapters cover subjects that are often skipped in
introductory statistics books but that I think are important; these include data man-
agement, writing about statistics, and reading statistical articles written by others.
These chapters also serve as useful references for people who suddenly find them-
selves placed in charge of managing the data for a project or who have been ap-
pointed, more or less out of the blue, to create a statistical presentation about their
team’s work. Neither scenario, unfortunately, is particularly uncommon.

Classification of what is elementary and what is advanced depends on an individual’s
background and purposes. I designed Statistics in a Nutshell to answer the needs of
many types of users. For this reason, there’s no perfect way to organize the material
to meet everyone’s needs, which brings us to an important point: there’s no reason
you should feel the need to read the chapters in the order they are presented here.
Statistics presents many chicken-and-egg dilemmas. For instance, you can’t design
experiments without knowing what statistics are available to you, but you can’t
understand how statistics are used without knowing something about research de-
sign. Similarly, it might seem logical that someone assigned to manage data should
already have experience in statistical analysis, but I’ve advised many research assis-
tants and project managers who are put in charge of large data sets before they’ve
completed a single course in statistics. So use the chapters in the way that best
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facilitates your specific purposes, and don’t be shy about skipping around and fo-
cusing on whatever meets your particular needs.

Not all the material in this book will be relevant to everyone; this is most obviously
the case with Chapters 14–16, which are written with particular subject areas in
mind (business and quality improvement, medicine and epidemiology, and educa-
tion and psychology, respectively). However, it’s wise to keep an open mind re-
garding what statistics you need to know. You might currently believe that you will
never need to conduct a nonparametric test or a logistic regression analysis, but you
never know what will come in handy in the future. It’s also a mistake to compart-
mentalize too much by subject field; because statistical techniques are ultimately
about numbers rather than content, techniques developed in one field often prove
to be useful in another. For instance, control charts (covered in Chapter 14) were
developed in a manufacturing context but are now used in many fields from medi-
cine to education, whereas the odds ratio (covered in Chapter 15) was developed in
epidemiology but is now applied to all sorts of data.

Conventions Used in This Book
The following typographical conventions are used in this book:

Plaintext
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code
in this book in your programs and documentation. You do not need to contact us
for permission unless you’re reproducing a significant portion of the code. For ex-
ample, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quot-
ing example code does not require permission. Incorporating a significant amount
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of example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Statistics in a Nutshell by Sarah
Boslaugh (O’Reilly). Copyright 2013 Sarah Boslaugh, 978-1-449-31682-2.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand
digital library that delivers expert content in both book and video form
from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and
creative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for or-
ganizations, government agencies, and individuals. Subscribers have access to thou-
sands of books, training videos, and prepublication manuscripts in one fully search-
able database from publishers like O’Reilly Media, Prentice Hall Professional, Ad-
dison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press,
Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks,
Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones
& Bartlett, Course Technology, and dozens more. For more information about Safari
Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/stats-nutshell.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our
website at http://www.oreilly.com.
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1
Basic Concepts of Measurement

Before you can use statistics to analyze a problem, you must convert information
about the problem into data. That is, you must establish or adopt a system of as-
signing values, most often numbers, to the objects or concepts that are central to
the problem in question. This is not an esoteric process but something people do
every day. For instance, when you buy something at the store, the price you pay is
a measurement: it assigns a number signifying the amount of money that you must
pay to buy the item. Similarly, when you step on the bathroom scale in the morning,
the number you see is a measurement of your body weight. Depending on where
you live, this number may be expressed in either pounds or kilograms, but the prin-
ciple of assigning a number to a physical quantity (weight) holds true in either case.

Data need not be inherently numeric to be useful in an analysis. For instance, the
categories male and female are commonly used in both science and everyday life to
classify people, and there is nothing inherently numeric about these two categories.
Similarly, we often speak of the colors of objects in broad classes such as red and
blue, and there is nothing inherently numeric about these categories either. (Al-
though you could make an argument about different wavelengths of light, it’s not
necessary to have this knowledge to classify objects by color.)

This kind of thinking in categories is a completely ordinary, everyday experience,
and we are seldom bothered by the fact that different categories may be applied in
different situations. For instance, an artist might differentiate among colors such as
carmine, crimson, and garnet, whereas a layperson would be satisfied to refer to all
of them as red. Similarly, a social scientist might be interested in collecting infor-
mation about a person’s marital status in terms such as single—never married,
single—divorced, and single—widowed, whereas to someone else, a person in any of
those three categories could simply be considered single. The point is that the level
of detail used in a system of classification should be appropriate, based on the rea-
sons for making the classification and the uses to which the information will be put.
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Measurement
Measurement is the process of systematically assigning numbers to objects and their
properties to facilitate the use of mathematics in studying and describing objects
and their relationships. Some types of measurement are fairly concrete: for instance,
measuring a person’s weight in pounds or kilograms or his height in feet and inches
or in meters. Note that the particular system of measurement used is not as important
as the fact that we apply a consistent set of rules: we can easily convert a weight
expressed in kilograms to the equivalent weight in pounds, for instance. Although
any system of units may seem arbitrary (try defending feet and inches to someone
who grew up with the metric system!), as long as the system has a consistent rela-
tionship with the property being measured, we can use the results in calculations.

Measurement is not limited to physical qualities such as height and weight. Tests to
measure abstract constructs such as intelligence or scholastic aptitude are commonly
used in education and psychology, and the field of psychometrics is largely con-
cerned with the development and refinement of methods to study these types of
constructs. Establishing that a particular measurement is accurate and meaningful
is more difficult when it can’t be observed directly. Although you can test the accu-
racy of one scale by comparing results with those obtained from another scale known
to be accurate, and you can see the obvious use of knowing the weight of an object,
the situation is more complex if you are interested in measuring a construct such as
intelligence. In this case, not only are there no universally accepted measures of
intelligence against which you can compare a new measure, there is not even com-
mon agreement about what “intelligence” means. To put it another way, it’s difficult
to say with confidence what someone’s actual intelligence is because there is no
certain way to measure it, and in fact, there might not even be common agreement
on what it is. These issues are particularly relevant to the social sciences and edu-
cation, where a great deal of research focuses on just such abstract concepts.

Levels of Measurement
Statisticians commonly distinguish four types or levels of measurement, and the
same terms can refer to data measured at each level. The levels of measurement differ
both in terms of the meaning of the numbers used in the measurement system and
in the types of statistical procedures that can be applied appropriately to data meas-
ured at each level.

Nominal Data
With nominal data, as the name implies, the numbers function as a name or label
and do not have numeric meaning. For instance, you might create a variable for
gender, which takes the value 1 if the person is male and 0 if the person is female.
The 0 and 1 have no numeric meaning but function simply as labels in the same way
that you might record the values as M or F. However, researchers often prefer nu-
meric coding systems for several reasons. First, it can simplify analyzing the data
because some statistical packages will not accept nonnumeric values for use in
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certain procedures. (Hence, any data coded nonnumerically would have to be re-
coded before analysis.) Second, coding with numbers bypasses some issues in data
entry, such as the conflict between upper- and lowercase letters (to a computer, M
is a different value than m, but a person doing data entry might treat the two char-
acters as equivalent).

Nominal data is not limited to two categories. For instance, if you were studying the
relationship between years of experience and salary in baseball players, you might
classify the players according to their primary position by using the traditional sys-
tem whereby 1 is assigned to the pitchers, 2 to the catchers, 3 to first basemen, and
so on.

If you can’t decide whether your data is nominal or some other level of measurement,
ask yourself this question: do the numbers assigned to this data represent some
quality such that a higher value indicates that the object has more of that quality
than a lower value? Consider the example of coding gender so 0 signifies a female
and 1 signifies a male. Is there some quality of gender-ness of which men have more
than women? Clearly not, and the coding scheme would work as well if women were
coded as 1 and men as 0. The same principle applies in the baseball example: there
is no quality of baseball-ness of which outfielders have more than pitchers. The
numbers are merely a convenient way to label subjects in the study, and the most
important point is that every position is assigned a distinct value. Another name for
nominal data is categorical data, referring to the fact that the measurements place
objects into categories (male or female, catcher or first baseman) rather than meas-
uring some intrinsic quality in them. Chapter 5 discusses methods of analysis ap-
propriate for this type of data, and some of the techniques covered in Chapter 13
on nonparametric statistics are also appropriate for categorical data.

When data can take on only two values, as in the male/female example, it can also
be called binary data. This type of data is so common that special techniques have
been developed to study it, including logistic regression (discussed in Chapter 11),
which has applications in many fields. Many medical statistics, such as the odds
ratio and the risk ratio (discussed in Chapter 15), were developed to describe the
relationship between two binary variables because binary variables occur so fre-
quently in medical research.

Ordinal Data
Ordinal data refers to data that has some meaningful order, so that higher values
represent more of some characteristic than lower values. For instance, in medical
practice, burns are commonly described by their degree, which describes the amount
of tissue damage caused by the burn. A first-degree burn is characterized by redness
of the skin, minor pain, and damage to the epidermis (outer layer of skin) only. A
second-degree burn includes blistering and involves the superficial layer of the der-
mis (the layer of skin between the epidermis and the subcutaneous tissues), and a
third-degree burn extends through the dermis and is characterized by charring of
the skin and possibly destruction of nerve endings. These categories may be ranked
in a logical order: first-degree burns are the least serious in terms of tissue damage,
second-degree burns more serious, and third-degree burns the most serious.
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However, there is no metric analogous to a ruler or scale to quantify how great the
distance between categories is, nor is it possible to determine whether the difference
between first- and second-degree burns is the same as the difference between second-
and third-degree burns.

Many ordinal scales involve ranks. For instance, candidates applying for a job may
be ranked by the personnel department in order of desirability as a new hire. This
ranking tells you who is the preferred candidate, the second most preferred, and so
on, but does not tell you whether the first and second candidates are in fact very
similar to each other or the first-ranked candidate is much more preferable than the
second. You could also rank countries of the world in order of their population,
creating a meaningful order without saying anything about whether, say, the differ-
ence between the 30th and 31st countries was similar to that between the 31st and
32nd countries. The numbers used for measurement with ordinal data carry more
meaning than those used in nominal data, and many statistical techniques have been
developed to make full use of the information carried in the ordering while not
assuming any further properties of the scales. For instance, it is appropriate to cal-
culate the median (central value) of ordinal data but not the mean because it assumes
equal intervals and requires division, which requires ratio-level data.

Interval Data
Interval data has a meaningful order and has the quality of equal intervals between
measurements, representing equal changes in the quantity of whatever is being
measured. The most common example of the interval level of measurement is the
Fahrenheit temperature scale. If you describe temperature using the Fahrenheit
scale, the difference between 10 degrees and 25 degrees (a difference of 15 degrees)
represents the same amount of temperature change as the difference between 60 and
75 degrees. Addition and subtraction are appropriate with interval scales because a
difference of 10 degrees represents the same amount of change in temperature over
the entire scale. However, the Fahrenheit scale has no natural zero point because 0
on the Fahrenheit scale does not represent an absence of temperature but simply a
location relative to other temperatures. Multiplication and division are not appro-
priate with interval data: there is no mathematical sense in the statement that 80
degrees is twice as hot as 40 degrees, for instance (although it is valid to say that 80
degrees is 40 degrees hotter than 40 degrees). Interval scales are a rarity, and it’s
difficult to think of a common example other than the Fahrenheit scale. For this
reason, the term “interval data” is sometimes used to describe both interval and ratio
data (discussed in the next section).

Ratio Data
Ratio data has all the qualities of interval data (meaningful order, equal intervals)
and a natural zero point. Many physical measurements are ratio data: for instance,
height, weight, and age all qualify. So does income: you can certainly earn 0 dollars
in a year or have 0 dollars in your bank account, and this signifies an absence of
money. With ratio-level data, it is appropriate to multiply and divide as well as add
and subtract; it makes sense to say that someone with $100 has twice as much money
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as someone with $50 or that a person who is 30 years old is 3 times as old as someone
who is 10.

It should be noted that although many physical measurements are interval-level,
most psychological measurements are ordinal. This is particularly true of measures
of value or preference, which are often measured by a Likert scale. For instance, a
person might be presented with a statement (e.g., “The federal government should
increase aid to education”) and asked to choose from an ordered set of responses
(e.g., strongly agree, agree, no opinion, disagree, strongly disagree). These choices
are sometimes assigned numbers (e.g., 1—strongly agree, 2—agree, etc.), and this
sometimes gives people the impression that it is appropriate to apply interval or ratio
techniques (e.g., computation of means, which involves division and is therefore a
ratio technique) to such data. Is this correct? Not from the point of view of a statis-
tician, but sometimes you do have to go with what the boss wants rather than what
you believe to be true in absolute terms.

Continuous and Discrete Data
Another important distinction is that between continuous and discrete data. Con-
tinuous data can take any value or any value within a range. Most data measured by
interval and ratio scales, other than that based on counting, is continuous: for in-
stance, weight, height, distance, and income are all continuous.

In the course of data analysis and model building, researchers sometimes recode
continuous data in categories or larger units. For instance, weight may be recorded
in pounds but analyzed in 10-pound increments, or age recorded in years but ana-
lyzed in terms of the categories of 0–17, 18–65, and over 65. From a statistical point
of view, there is no absolute point at which data becomes continuous or discrete for
the purposes of using particular analytic techniques (and it’s worth remembering
that if you record age in years, you are still imposing discrete categories on a con-
tinuous variable). Various rules of thumb have been proposed. For instance, some
researchers say that when a variable has 10 or more categories (or, alternatively, 16
or more categories), it can safely be analyzed as continuous. This is a decision to be
made based on the context, informed by the usual standards and practices of your
particular discipline and the type of analysis proposed.

Discrete variables can take on only particular values, and there are clear boundaries
between those values. As the old joke goes, you can have 2 children or 3 children
but not 2.37 children, so “number of children” is a discrete variable. In fact, any
variable based on counting is discrete, whether you are counting the number of
books purchased in a year or the number of prenatal care visits made during a preg-
nancy. Data measured on the nominal scale is always discrete, as is binary and rank-
ordered data.

Operationalization
People just starting out in a field of study often think that the difficulties of research
rest primarily in statistical analysis, so they focus their efforts on learning mathe-
matical formulas and computer programming techniques to carry out statistical
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calculations. However, one major problem in research has very little to do with either
mathematics or statistics and everything to do with knowing your field of study and
thinking carefully through practical problems of measurement. This is the problem
of operationalization, which means the process of specifying how a concept will be
defined and measured.

Operationalization is always necessary when a quality of interest cannot be meas-
ured directly. An obvious example is intelligence. There is no way to measure intel-
ligence directly, so in the place of such a direct measurement, we accept something
that we can measure, such as the score on an IQ test. Similarly, there is no direct
way to measure “disaster preparedness” for a city, but we can operationalize the
concept by creating a checklist of tasks that should be performed and giving each
city a disaster-preparedness score based on the number of tasks completed and the
quality or thoroughness of completion. For a third example, suppose you wish to
measure the amount of physical activity performed by individual subjects in a study.
If you do not have the capacity to monitor their exercise behavior directly, you can
operationalize “amount of physical activity” as the amount indicated on a self-re-
ported questionnaire or recorded in a diary.

Because many of the qualities studied in the social sciences are abstract, operation-
alization is a common topic of discussion in those fields. However, it is applicable
to many other fields as well. For instance, the ultimate goals of the medical profession
include reducing mortality (death) and reducing the burden of disease and suffering.
Mortality is easily verified and quantified but is frequently too blunt an instrument
to be useful since it is a thankfully rare outcome for most diseases. “Burden of dis-
ease” and “suffering,” on the other hand, are concepts that could be used to define
appropriate outcomes for many studies but that have no direct means of measure-
ment and must therefore be operationalized. Examples of operationalization of bur-
den of disease include measurement of viral levels in the bloodstream for patients
with AIDS and measurement of tumor size for people with cancer. Decreased levels
of suffering or improved quality of life may be operationalized as a higher self-
reported health state, a higher score on a survey instrument designed to measure
quality of life, an improved mood state as measured through a personal interview,
or reduction in the amount of morphine requested for pain relief.

Some argue that measurement of even physical quantities such as length require
operationalization because there are different ways to measure even concrete prop-
erties such as length. (A ruler might be the appropriate instrument in some circum-
stances, a micrometer in others.) Even if you concede this point, it seems clear that
the problem of operationalization is much greater in the human sciences, when the
objects or qualities of interest often cannot be measured directly.

Proxy Measurement
The term proxy measurement refers to the process of substituting one measurement
for another. Although deciding on proxy measurements can be considered as a sub-
class of operationalization, this book will consider it as a separate topic. The most
common use of proxy measurement is that of substituting a measurement that is
inexpensive and easily obtainable for a different measurement that would be more
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difficult or costly, if not impossible, to collect. Another example is collecting infor-
mation about one person by asking another, for instance, by asking a parent to rate
her child’s mood state.

For a simple example of proxy measurement, consider some of the methods police
officers use to evaluate the sobriety of individuals while in the field. Lacking a
portable medical lab, an officer can’t measure a driver’s blood alcohol content di-
rectly to determine whether the driver is legally drunk. Instead, the officer might rely
on observable signs associated with drunkenness, simple field tests that are believed
to correlate well with blood alcohol content, a breath alcohol test, or all of these.
Observational signs of alcohol intoxication include breath smelling of alcohol, slur-
red speech, and flushed skin. Field tests used to evaluate alcohol intoxication quickly
generally require the subjects to perform tasks such as standing on one leg or tracking
a moving object with their eyes. A Breathalyzer test measures the amount of alcohol
in the breath. None of these evaluation methods provides a direct test of the amount
of alcohol in the blood, but they are accepted as reasonable approximations that are
quick and easy to administer in the field.

To look at another common use of proxy measurement, consider the various meth-
ods used in the United States to evaluate the quality of health care provided by
hospitals and physicians. It is difficult to think of a direct way to measure quality of
care, short of perhaps directly observing the care provided and evaluating it in rela-
tion to accepted standards (although you could also argue that the measurement
involved in such an evaluation process would still be an operationalization of the
abstract concept of “quality of care”). Implementing such an evaluation method
would be prohibitively expensive, would rely on training a large crew of evaluators
and relying on their consistency, and would be an invasion of patients’ right to
privacy. A solution commonly adopted instead is to measure processes that are as-
sumed to reflect higher quality of care: for instance, whether anti-tobacco counseling
was appropriately provided in an office visit or whether appropriate medications
were administered promptly after a patient was admitted to the hospital.

Proxy measurements are most useful if, in addition to being relatively easy to obtain,
they are good indicators of the true focus of interest. For instance, if correct execution
of prescribed processes of medical care for a particular treatment is closely related
to good patient outcomes for that condition, and if poor or nonexistent execution
of those processes is closely related to poor patient outcomes, then execution of
these processes may be a useful proxy for quality. If that close relationship does not
exist, then the usefulness of the proxy measurements is less certain. No mathematical
test will tell you whether one measure is a good proxy for another, although com-
puting statistics such as correlations or chi-squares between the measures might help
evaluate this issue. In addition, proxy measurements can pose their own difficulties.
To take the example of evaluating medical care in terms of procedures performed,
this method assumes that it is possible to determine, without knowledge of indi-
vidual cases, what constitutes appropriate treatment and that records are available
that contain the information needed to determine what procedures were performed.
Like many measurement issues, choosing good proxy measurements is a matter of
judgment informed by knowledge of the subject area, usual practices in the field in
question, and common sense.
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Surrogate Endpoints
A surrogate endpoint is a type of proxy measurement sometimes used in clinical
trials as a substitute for a true clinical endpoint. For instance, a treatment might
be intended to prevent death (a true clinical endpoint), but because death from
the condition being treated might be rare, a surrogate endpoint may be used to
accrue evidence more quickly about the treatment’s effectiveness. A surrogate
endpoint is usually a biomarker that is correlated with a true clinical endpoint.
For instance, if a drug is intended to prevent death from prostate cancer, a surro-
gate endpoint might be tumor shrinkage or reduction in levels of prostate-specific
antigens.

The problem with using surrogate endpoints is that although a treatment might
be effective in producing improvement in these endpoints, it does not necessarily
mean that it will be successful in achieving the clinical outcome of interest. For
instance, a meta-analysis by Stefan Michiels and colleagues (listed in Appen-
dix C) found that for locally advanced head and neck squamous-cell carcinoma,
the correlation between locoregional control (a surrogate endpoint) and overall
survival (the true clinical endpoint) ranged from 0.65 to 0.76 (if results had been
identical for both endpoints, the correlation would have been 1.00), whereas the
correlation between event-free survival (a surrogate endpoint) and overall survival
ranged from 0.82 to 0.90.

Surrogate endpoints are sometimes misused by being added after the fact to a
clinical trial, being used as substitutes for outcomes defined before the trial begins,
or both. Because a surrogate endpoint might be easier to achieve (e.g., improve-
ment in progression-free survival in the trial for an anti-cancer drug rather than
improvement in overall survival), this can lead to a new drug being approved on
the basis of effectiveness when it might have little effect on the true endpoint or
even have a deleterious effect. For further general discussion of issues relating to
surrogate endpoints, see the article by Thomas R. Fleming cited in Appendix C.

True and Error Scores
We can safely assume that few, if any, measurements are completely accurate. This
is true not only because measurements are made and recorded by human beings but
also because the process of measurement often involves assigning discrete numbers
to a continuous world. One concern of measurement theory is conceptualizing and
quantifying the degree of error present in a particular set of measurements and eval-
uating the sources and consequences of that error.

Classical measurement theory conceives of any measurement or observed score as
consisting of two parts: true score (T) and error (E). This is expressed in the following
formula:

X = T + E

where X is the observed measurement, T is the true score, and E is the error. For
instance, a bathroom scale might measure someone’s weight as 120 pounds when
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that person’s true weight is 118 pounds, and the error of 2 pounds is due to the
inaccuracy of the scale. This would be expressed, using the preceding formula, as:

120 = 118 + 2

which is simply a mathematical equality expressing the relationship among the three
components. However, both T and E are hypothetical constructs. In the real world,
we seldom know the precise value of the true score and therefore cannot know the
exact value of the error score either. Much of the process of measurement involves
estimating both quantities and maximizing the true component while minimizing
error. For instance, if you took a number of measurements of one person’s body
weight in a short period (so that his true weight could be assumed to have remained
constant), using a recently calibrated scale, you might accept the average of all those
measurements as a good estimate of that individual’s true weight. You could then
consider the variance between this average and each individual measurement as the
error due to the measurement process, such as slight malfunctioning in the scale or
the technician’s imprecision in reading and recording the results.

Random and Systematic Error
Because we live in the real world rather than a Platonic universe, we assume that all
measurements contain some error. However, not all error is created equal, and we
can learn to live with random error while doing whatever we can to avoid systematic
error. Random error is error due to chance: it has no particular pattern and is as-
sumed to cancel itself out over repeated measurements. For instance, the error scores
over a number of measurements of the same object are assumed to have a mean of
zero. Therefore, if someone is weighed 10 times in succession on the same scale, you
may observe slight differences in the number returned to you: some will be higher
than the true value, and some will be lower. Assuming the true weight is 120 pounds,
perhaps the first measurement will return an observed weight of 119 pounds (in-
cluding an error of −1 pound), the second an observed weight of 122 pounds (for an
error of +2 pounds), the third an observed weight of 118.5 pounds (an error of −1.5
pounds), and so on. If the scale is accurate and the only error is random, the average
error over many trials will be 0, and the average observed weight will be 120 pounds.
You can strive to reduce the amount of random error by using more accurate in-
struments, training your technicians to use them correctly, and so on, but you cannot
expect to eliminate random error entirely.

Two other conditions are assumed to apply to random error: it is unrelated to the
true score, and the error component of one measurement is unrelated to the error
component of any other measurement. The first condition means that the value of
the error component of any measurement is not related to the value of the true score
for that measurement. For instance, if you measure the weights of a number of in-
dividuals whose true weights differ, you would not expect the error component of
each measurement to have any relationship to each individual’s true weight. This
means that, for example, the error component should not systematically be larger
when the true score (the individual’s actual weight) is larger. The second condition
means that the error component of each score is independent and unrelated to the
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error component for any other score. For instance, in a series of measurements, a
pattern of the size of the error component should not be increasing over time so that
later measurements have larger errors, or errors in a consistent direction, relative to
earlier measurements. The first requirement is sometimes expressed by saying that
the correlation of true and error scores is 0, whereas the second is sometimes ex-
pressed by saying that the correlation of the error components is 0 (correlation is
discussed in more detail in Chapter 7).

In contrast, systematic error has an observable pattern, is not due to chance, and
often has a cause or causes that can be identified and remedied. For instance, a scale
might be incorrectly calibrated to show a result that is 5 pounds over the true weight,
so the average of multiple measurements of a person whose true weight is 120
pounds would be 125 pounds, not 120. Systematic error can also be due to human
factors: perhaps the technician is reading the scale’s display at an angle so that she
sees the needle as registering higher than it is truly indicating. If a pattern is detected
with systematic error, for instance, measurements drifting higher over time (so the
error components are random at the beginning of the experiment, but later on are
consistently high), this is useful information because we can intervene and recali-
brate the scale. A great deal of effort has been expended to identify sources of sys-
tematic error and devise methods to identify and eliminate them: this is discussed
further in the upcoming section “Measurement Bias” on page 14.

Reliability and Validity
There are many ways to assign numbers or categories to data, and not all are equally
useful. Two standards we commonly use to evaluate methods of measurement (for
instance, a survey or a test) are reliability and validity. Ideally, we would like every
method we use to be both reliable and valid. In reality, these qualities are not abso-
lutes but are matters of degree and often specific to circumstance. For instance, a
survey that is highly reliable when used with demographic groups might be unreli-
able when used with a different group. For this reason, rather than discussing reli-
ability and validity as absolutes, it is often more useful to evaluate how valid and
reliable a method of measurement is for a particular purpose and whether particular
levels of reliability and validity are acceptable in a specific context. Reliability and
validity are also discussed in Chapter 18 in the context of research design, and in
Chapter 16 in the context of educational and psychological testing.

Reliability
Reliability refers to how consistent or repeatable measurements are. For instance, if
we give the same person the same test on two occasions, will the scores be similar
on both occasions? If we train three people to use a rating scale designed to measure
the quality of social interaction among individuals, then show each of them the same
film of a group of people interacting and ask them to evaluate the social interaction
exhibited, will their ratings be similar? If we have a technician weigh the same part
10 times using the same instrument, will the measurements be similar each time? In
each case, if the answer is yes, we can say the test, scale, or rater is reliable.
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Much of the theory of reliability was developed in the field of educational psychol-
ogy, and for this reason, measures of reliability are often described in terms of eval-
uating the reliability of tests. However, considerations of reliability are not limited
to educational testing; the same concepts apply to many other types of measure-
ments, including polling, surveys, and behavioral ratings.

The discussion in this chapter will remain at a basic level. Information about calcu-
lating specific measures of reliability is discussed in more detail in Chapter 16 in the
context of test theory. Many of the measures of reliability draw on the correlation
coefficient (also called simply the correlation), which is discussed in detail in Chap-
ter 7, so beginning statisticians might want to concentrate on the logic of reliability
and validity and leave the details of evaluating them until after they have mastered
the concept of the correlation coefficient.

There are three primary approaches to measuring reliability, each useful in particular
contexts and each having particular advantages and disadvantages:

• Multiple-occasions reliability

• Multiple-forms reliability

• Internal consistency reliability

Multiple-occasions reliability, sometimes called test-retest reliability, refers to how
similarly a test or scale performs over repeated administration. For this reason, it is
sometimes referred to as an index of temporal stability, meaning stability over time.
For instance, you might have the same person do two psychological assessments of
a patient based on a videotaped interview, with the assessments performed two
weeks apart, and compare the results. For this type of reliability to make sense, you
must assume that the quantity being measured has not changed, hence the use of
the same videotaped interview rather than separate live interviews with a patient
whose psychological state might have changed over the two-week period. Multiple-
occasions reliability is not a suitable measure for volatile qualities, such as mood
state, or if the quality or quantity being measured could have changed in the time
between the two measurements (for instance, a student’s knowledge of a subject she
is actively studying). A common technique for assessing multiple-occasions relia-
bility is to compute the correlation coefficient between the scores from each occasion
of testing; this is called the coefficient of stability.

Multiple-forms reliability (also called parallel-forms reliability) refers to howsimilarly
different versions of a test or questionnaire perform in measuring the same entity.
A common type of multiple-forms reliability is split-half reliability in which a pool
of items believed to be homogeneous is created, then half the items are allocated to
form A and half to form B. If the two (or more) forms of the test are administered
to the same people on the same occasion, the correlation between the scores received
on each form is an estimate of multiple-forms reliability. This correlation is some-
times called the coefficient of equivalence. Multiple-forms reliability is particularly
important for standardized tests that exist in multiple versions. For instance, differ-
ent forms of the SAT (Scholastic Aptitude Test, used to measure academic ability
among students applying to American colleges and universities) are calibrated so
the scores achieved are equivalent no matter which form a particular student takes.
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Internal consistency reliability refers to how well the items that make up an instru-
ment (for instance, a test or survey) reflect the same construct. To put it another
way, internal consistency reliability measures how much the items on an instrument
are measuring the same thing. Unlike multiple-forms and multiple-occasions relia-
bility, internal consistency reliability can be assessed by administering a single in-
strument on a single occasion. Internal consistency reliability is a more complex
quantity to measure than multiple-occasions or parallel-forms reliability, and several
methods have been developed to evaluate it; these are further discussed in Chap-
ter 16. However, all these techniques depend primarily on the inter-item correlation,
that is, the correlation of each item on a scale or a test with each other item. If such
correlations are high, that is interpreted as evidence that the items are measuring the
same thing, and the various statistics used to measure internal consistency reliability
will all be high. If the inter-item correlations are low or inconsistent, the internal
consistency reliability statistics will be lower, and this is interpreted as evidence that
the items are not measuring the same thing.

Two simple measures of internal consistency are most useful for tests made up of
multiple items covering the same topic, of similar difficulty, and that will be scored
as a composite: the average inter-item correlation and the average item-total corre-
lation. To calculate the average inter-item correlation, you find the correlation be-
tween each pair of items and take the average of all these correlations. To calculate
the average item-total correlation, you create a total score by adding up scores on
each individual item on the scale and then compute the correlation of each item with
the total. The average item-total correlation is the average of those individual item-
total correlations.

Split-half reliability, described previously, is another method of determining internal
consistency. This method has the disadvantage that, if the items are not truly ho-
mogeneous, different splits will create forms of disparate difficulty, and the reliability
coefficient will be different for each pair of forms. A method that overcomes this
difficulty is Cronbach’s alpha (also called coefficient alpha), which is equivalent to
the average of all possible split-half estimates. For more about Cronbach’s alpha,
including a demonstration of how to compute it, see Chapter 16.

Validity
Validity refers to how well a test or rating scale measures what it is supposed to
measure. Some researchers describe validation as the process of gathering evidence
to support the types of inferences intended to be drawn from the measurements in
question. Researchers disagree about how many types of validity there are, and
scholarly consensus has varied over the years as different types of validity are sub-
sumed under a single heading one year and then separated and treated as distinct
the next. To keep things simple, this book will adhere to a commonly accepted
categorization of validity that recognizes four types: content validity, construct val-
idity, concurrent validity, and predictive validity. The face validity, which is closely
related to content validity, will also be discussed. These types of validity are dis-
cussed further in the context of research design in Chapter 18.
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Content validity refers to how well the process of measurement reflects the important
content of the domain of interest and is of particular concern when the purpose of
the measurement is to draw inferences about a larger domain of interest. For in-
stance, potential employees seeking jobs as computer programmers might be asked
to complete an examination that requires them to write or interpret programs in the
languages they would use on the job if hired. Due to time restrictions, only limited
content and programming competencies may be included on such an examination,
relative to what might actually be required for a professional programming job.
However, if the subset of content and competencies is well chosen, the score on such
an exam can be a good indication of the individual’s ability on all the important
types of programming required by the job. If this is the case, we may say the exami-
nation has content validity.

A closely related concept to content validity is known as face validity. A measure
with good face validity appears (to a member of the general public or a typical person
who may be evaluated by the measure) to be a fair assessment of the qualities under
study. For instance, if a high school geometry test is judged by parents of the students
taking the test to be a fair test of algebra, the test has good face validity. Face validity
is important in establishing credibility; if you claim to be measuring students’
geometry achievement but the parents of your students do not agree, they might be
inclined to ignore your statements about their children’s levels of achievement in
this subject. In addition, if students are told they are taking a geometry test that
appears to them to be something else entirely, they might not be motivated to co-
operate and put forth their best efforts, so their answers might not be a true reflection
of their abilities.

Concurrent validity refers to how well inferences drawn from a measurement can be
used to predict some other behavior or performance that is measured at approxi-
mately the same time. For instance, if an achievement test score is highly related to
contemporaneous school performance or to scores on similar tests, it has high con-
current validity. Predictive validity is similar but concerns the ability to draw infer-
ences about some event in the future. To continue with the previous example, if the
score on an achievement test is highly related to school performance the following
year or to success on a job undertaken in the future, it has high predictive validity.

Triangulation
Because every system of measurement has its flaws, researchers often use several
approaches to measure the same thing. For instance, American universities often
use multiple types of information to evaluate high school seniors’ scholastic ability
and the likelihood that they will do well in university studies. Measurements used
for this purpose can include scores on standardized exams such as the SAT, high
school grades, a personal statement or essay, and recommendations from teachers.
In a similar vein, hiring decisions in a company are usually made after consideration
of several types of information, including an evaluation of each applicant’s work
experience, his education, the impression he makes during an interview, and pos-
sibly a work sample and one or more competency or personality tests.
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This process of combining information from multiple sources to arrive at a true or
at least more accurate value is called triangulation, a loose analogy to the process in
geometry of determining the location of a point in terms of its relationship to two
other known points. The key idea behind triangulation is that, although a single
measurement of a concept might contain too much error (of either known or un-
known types) to be either reliable or valid by itself, by combining information from
several types of measurements, at least some of whose characteristics are already
known, we can arrive at an acceptable measurement of the unknown quantity. We
expect that each measurement contains error, but we hope it does not include the
same type of error, so that through multiple types of measurement, we can get a
reasonable estimate of the quantity or quality of interest.

Establishing a method for triangulation is not a simple matter. One historical at-
tempt to do this is the multitrait, multimethod matrix (MTMM) developed by
Campbell and Fiske (1959). Their particular concern was to separate the part of a
measurement due to the quality of interest from that part due to the method of
measurement used. Although their specific methodology is used less today and full
discussion of the MTMM technique is beyond the scope of a beginning text, the
concept remains useful as an example of one way to think about measurement error
and validity.

The MTMM is a matrix of correlations among measures of several concepts (the
traits), each measured in several ways (the methods). Ideally, the same several meth-
ods will be used for each trait. Within this matrix, we expect different measures of
the same trait to be highly related; for instance, scores of intelligence measured by
several methods, such as a pencil-and-paper test, practical problem solving, and a
structured interview, should all be highly correlated. By the same logic, scores re-
flecting different constructs that are measured in the same way should not be highly
related; for instance, scores on intelligence, deportment, and sociability as measured
by pencil-and-paper questionnaires should not be highly correlated.

Measurement Bias
Consideration of measurement bias is important in almost every field, but it is a
particular concern in the human sciences. Many specific types of bias have been
identified and defined. They won’t all be named here, but a few common types will
be discussed. Most research design textbooks treat measurement bias in great detail
and can be consulted for further discussion of this topic. The most important point
is that the researcher must always be alert to the possibility of bias because failure
to consider and deal with issues related to bias can invalidate the results of an other-
wise exemplary study.

Bias can enter studies in two primary ways: during the selection and retention of the
subjects of study or in the way information is collected about the subjects. In either
case, the defining feature of bias is that it is a source of systematic rather than ran-
dom error. The result of bias is that the data analyzed in a study is incorrect in a
systematic fashion, which can lead to false conclusions despite the application of
correct statistical procedures and techniques. The next two sections discuss some
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of the more common types of bias, organized into two major categories: bias in
sample selection and retention and bias resulting from information collection and
recording.

Bias in Sample Selection and Retention
Most studies take place on samples of subjects, whether patients with leukemia or
widgets produced by a factory, because it would be prohibitively expensive if not
entirely impossible to study the entire population of interest. The sample needs to
be a good representation of the study population (the population to which the results
are meant to apply) for the researcher to be comfortable using the results from the
sample to describe the population. If the sample is biased, meaning it is not repre-
sentative of the study population, conclusions drawn from the study sample might
not apply to the study population.

Selection bias exists if some potential subjects are more likely than others to be se-
lected for the study sample. This term is usually reserved for bias that occurs due to
the process of sampling. For instance, telephone surveys conducted using numbers
from published directories by design remove from the pool of potential respondents
people with unpublished numbers or those who have changed phone numbers since
the directory was published. Random-digit-dialing (RDD) techniques overcome
these problems but still fail to include people living in households without tele-
phones or who have only a cell (mobile) phone. This is a problem for a research
study because if the people excluded differ systematically on a characteristic of in-
terest (and this is a very common occurrence), the results of the survey will be biased.
For instance, people living in households with no telephone service tend to be poorer
than those who have a telephone, and people who have only a cell phone (i.e., no
land line) tend to be younger than those who have residential phone service. If pov-
erty or youth are related to the subject being studied, excluding these individuals
from the sample will introduce bias into the study.

Volunteer bias refers to the fact that people who volunteer to be in studies are usually
not representative of the population as a whole. For this reason, results from entirely
volunteer samples, such as the phone-in polls featured on some television programs,
are not useful for scientific purposes (unless, of course, the population of interest is
people who volunteer to participate in such polls). Multiple layers of nonrandom
selection might be at work in this example. For instance, to respond, the person
needs to be watching the television program in question. This means she is probably
at home; hence, responses to polls conducted during the normal workday might
draw an audience largely of retired people, housewives, and the unemployed. To
respond, a person also needs to have ready access to a telephone and to have what-
ever personality traits would influence him to pick up the telephone and call a num-
ber he sees on the television screen. The problems with telephone polls have already
been discussed, and the probability that personality traits are related to other qual-
ities being studied is too high to ignore.

Nonresponse bias refers to the other side of volunteer bias. Just as people who vol-
unteer to take part in a study are likely to differ systematically from those who do
not, so people who decline to participate in a study when invited to do so very likely
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differ from those who consent to participate. You probably know people who refuse
to participate in any type of telephone survey. (I’m such a person myself.) Do they
seem to be a random selection from the general population? Probably not; for in-
stance, the Joint Canada/U.S. Survey of Health found not only different response
rates for Canadians versus Americans but found nonresponse bias for nearly all
major health status and health care access measures [results are summarized here].

Informative censoring can create bias in any longitudinal study (a study in which
subjects are followed over a period of time). Losing subjects during a long-term study
is a common occurrence, but the real problem comes when subjects do not drop out
at random but for reasons related to the study’s purpose. Suppose we are comparing
two medical treatments for a chronic disease by conducting a clinical trial in which
subjects are randomly assigned to one of several treatment groups and followed for
five years to see how their disease progresses. Thanks to our use of a randomized
design, we begin with a perfectly balanced pool of subjects. However, over time,
subjects for whom the assigned treatment is not proving effective will be more likely
to drop out of the study, possibly to seek treatment elsewhere, leading to bias. If the
final sample of subjects we analyze consists only of those who remain in the trial
until its conclusion, and if those who drop out of the study are not a random selection
of those who began it, the sample we analyze will no longer be the nicely randomized
sample we began with. Instead, if dropping out was related to treatment ineffec-
tiveness, the final subject pool will be biased in favor of those who responded ef-
fectively to their assigned treatment.

Information Bias
Even if the perfect sample is selected and retained, bias can enter a study through
the methods used to collect and record data. This type of bias is often called infor-
mation bias because it affects the validity of the information upon which the study
is based, which can in turn invalidate the results of the study.

When data is collected using in-person or telephone interviews, a social relationship
exists between the interviewer and the subject for the course of the interview. This
relationship can adversely affect the quality of the data collected. When bias is
introduced into the data collected because of the attitudes or behavior of the inter-
viewer, this is known as interviewer bias. This type of bias might be created unin-
tentionally when the interviewer knows the purpose of the study or the status of the
individuals being interviewed. For instance, interviewers might ask more probing
questions to encourage the subject to recall chemical exposures if they know the
subject is suffering from a rare type of cancer related to chemical exposure. Inter-
viewer bias might also be created if the interviewer displays personal attitudes or
opinions that signal to the subject that she disapproves of the behaviors being stud-
ied, such as promiscuity or drug use, making the subject less likely to report those
behaviors.

Recall bias refers to the fact that people with a life experience such as suffering from
a serious disease or injury are more likely to remember events that they believe are
related to that experience. For instance, women who suffered a miscarriage are likely
to have spent a great deal of time probing their memories for exposures or incidents
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that they believe could have caused the miscarriage. Women who had a normal birth
may have had similar exposures but have not given them as much thought and thus
will not recall them when asked on a survey.

Detection bias refers to the fact that certain characteristics may be more likely to be
detected or reported in some people than in others. For instance, athletes in some
sports are subject to regular testing for performance-enhancing drugs, and test re-
sults are publicly reported. World-class swimmers are regularly tested for anabolic
steroids, for instance, and positive tests are officially recorded and often released to
the news media as well. Athletes competing at a lower level or in other sports may
be using the same drugs but because they are not tested as regularly, or because the
test results are not publicly reported, there is no record of their drug use. It would
be incorrect to assume, for instance, that because reported anabolic steroid use is
higher in swimming than in baseball, the actual rate of steroid use is higher in swim-
ming than in baseball. The observed difference in steroid use could be due to more
aggressive testing on the part of swimming officials and more public disclosure of
the test results.

Social desirability bias is caused by people’s desire to present themselves in a favor-
able light. This often motivates them to give responses that they believe will please
the person asking the question. Note that this type of bias can operate even if the
questioner is not actually present, for instance when subjects complete a pencil-and-
paper survey. Social desirability bias is a particular problem in surveys that ask about
behaviors or attitudes that are subject to societal disapproval, such as criminal be-
havior, or that are considered embarrassing, such as incontinence. Social desirability
bias can also influence responses in surveys if questions are asked in a way that
signals what the “right,” that is, socially desirable, answer is.

Exercises
Here’s a review of the topics covered in this chapter.

Problem

What potential types of bias should you be aware of in each of the following sce-
narios, and what is the likely effect on the results?

1. A university reports the average annual salary of its graduates as $120,000,
based on responses to a survey of contributors to the alumni fund.

2. A program intended to improve scholastic achievement in high school students
reports success because the 40 students who completed the year-long program
(of the 100 who began it) all showed significant improvement in their grades
and scores on standardized tests of achievement.

3. A manager is concerned about the health of his employees, so he institutes a
series of lunchtime lectures on topics such as healthy eating, the importance of
exercise, and the deleterious health effects of smoking and drinking. He con-
ducts an anonymous survey (using a paper-and-pencil questionnaire) of
employees before and after the lecture series and finds that the series has been
effective in increasing healthy behaviors and decreasing unhealthy behaviors.
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Solution

1. Selection bias and nonresponse bias, both of which affect the quality of the
sample analyzed. The reported average annual salary is probably an overesti-
mate of the true value because subscribers to the alumni magazine were prob-
ably among the more successful graduates, and people who felt embarrassed
about their low salary were less likely to respond. One could also argue a type
of social desirability bias that would result in calculating an overly high average
annual salary because graduates might be tempted to report higher salaries than
they really earn because it is desirable to have a high income.

2. Informative censoring, which affects the quality of the sample analyzed. The
estimate of the program’s effect on high school students is probably overesti-
mated. The program certainly seems to have been successful for those who
completed it, but because more than half the original participants dropped out,
we can’t say how successful it would be for the average student. It might be that
the students who completed the program were more intelligent or motivated
than those who dropped out or that those who dropped out were not being
helped by the program.

3. Social desirability bias, which affects the quality of information collected. This
will probably result in an overestimate of the effectiveness of the lecture pro-
gram. Because the manager has made it clear that he cares about the health
habits of his employees, they are likely to report making more improvements
in their health behaviors than they have actually made to please the boss.

The Likert Scale
The Likert scale might be the most common type of rating scale used in human-
subject research. This type of scale was first described in 1932 by Rensis Likert
(1903–1981), an organizational psychologist who served as director of the Uni-
versity of Michigan Institute for Social Research from 1946 to 1970. Questions
using the Likert scale typically present a statement, and subjects are invited to
choose their response to it from an ordered, odd-numbered set of choices (most
often five but sometimes seven or nine). An example follows.

The United States should adopt a national system of health insurance.

1. Strongly agree

2. Agree

3. Neither agree nor disagree

4. Disagree

5. Strongly disagree

Sometimes an even number of responses is provided, so that there is no neutral
middle choice: this is called the forced choice method because the respondent is
forced to make the choice to agree or disagree with the statement. Often the order
of responses is changed one or more times within a questionnaire so that
sometimes 1 = Strongly disagree and sometimes 1 = Strongly agree to detect
whether people are automatically selecting the first or last choices without reading
the items.
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Data gathered by Likert scale is ordinal because although the choices are ordered,
there is no reason to believe that there are equal intervals between them. For in-
stance, we have no way of knowing whether the distance between “Strongly agree”
and “Agree” is the same as the distance between “Agree” and “Neither agree nor
disagree.”

Dewey Defeats Truman
Several United States presidential elections have featured inaccurate predictions
based on biased samples. It’s always humorous to see a respected publication or
organization get it completely wrong, but these incidents also serve as a cautionary
tale of what can happen when statistics conducted on a biased sample are assumed
to apply to the general population.

In 1936, the Literary Digest magazine, which had correctly predicted the winner
of the U.S. presidential elections of 1916, 1920, 1924, 1928, and 1932, predicted
that Republican Alf Landon would defeat Democrat Franklin Roosevelt by a land-
slide. However, history shows that Roosevelt won the 1936 election in a landslide.
The problem with the Literary Digest prediction was that although it was based
on a large sample (over 2.3 million respondents out of 10 million invited to take
part), the sample was biased because it consisted of people who owned automo-
biles or telephones or who subscribed to the Literary Digest. In 1936, such indi-
viduals tended to be wealthier than the general population and more likely to be
Republican. Because it was necessary to return a postcard to participate in the
poll, the Literary Digest sample was subject to volunteer bias as well.

In 1948, every major poll predicted that the Republican Thomas Dewey would
defeat the Democrat Harry S. Truman for president. The Chicago Tribune even
printed papers with the front-page headline, “Dewey Defeats Truman.” Although
polling techniques had improved since 1936, several sources of bias were still
present in the polls, which led to this inaccurate prediction. One problem was that
telephone surveys were used without statistical correction for the fact that tele-
phone ownership was far more common among the affluent, who were also more
likely to support Dewey. Another factor was that there were large numbers of
undecided voters in the days leading up to the election, and none of the polls had
a good method for predicting for whom these individuals would ultimately vote
and how. A third problem was that Dewey’s support was stronger in the eastern
U.S. than in the western states. Due to the different time zones, the results from
eastern states were reported first, and the Tribune decided to print papers an-
nouncing the result based on those early returns. What the Tribune did not an-
ticipate was that Truman would carry many western states, including California,
and thus amass sufficient electoral votes to win the election.
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2
Probability

Probability theory is fundamental to statistics. Some people find probability to be
an intimidating topic, but there’s no reason anyone willing to put in the time can’t
come to understand it at the level necessary to succeed in statistics. As is the case in
many fields of study, advanced probability theory can become very complex and
difficult to understand, but the basic principles of probability are intuitive and easy
to comprehend. What’s more, most people are already familiar with probabilistic
statements, from the weather report that tells you there is a 30% chance of rain this
afternoon to the warning on cigarette packages that smoking increases your risk of
developing lung cancer.

If, like most adults, you hold one or more insurance policies, you are already engaged
in an enterprise based on probabilistic reasoning. If you drive or own an automobile,
for instance, you probably have an automobile insurance policy, which should really
be called an automobile expenses insurance policy because it protects the policy-
holder against the extreme expenses that can be incurred due to an accident. People
don’t purchase insurance policies because they are planning to get into a crash;
rather, they acknowledge that there is a nonzero probability of such an event oc-
curring in the future.

Governments often require automobile owners to have insurance policies for the
same reason; this requirement is not a judgment that you are a bad driver, just an
acknowledgment that accidents do happen and few individuals would be able to
cover the costs of a major accident out of their own pocket. The insurance industry
employs a cadre of statisticians to calculate how much you should be charged for a
policy, taking into consideration (among other things) the probability that you will
be in an accident or file a claim for any other reason, and the amount that such a
claim would cost the company.

You need no more mathematical expertise than that usually covered in high school
to understand the basics of probability as presented in this chapter, and under-
standing these concepts provides the basis for understanding the statistical techni-
ques presented in subsequent chapters. Mastering the content of this chapter will
also enable you to understand a large proportion of the statistics you are ever likely
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to encounter unless you are doing advanced work or have decided to make statistics
your field of study. In addition, you will be able to understand probabilistic state-
ments as used in everyday speech and to recognize when they are used incorrectly.

About Formulas
People who haven’t done well in math classes in the past often dislike formulas,
feeling they are an arcane system of communication invented by mathematicians as
a barrier to keep the uninitiated away and reserve all the good jobs for themselves.
Although I would never argue that math and statistics are easy subjects, the as-
sumption that formulas are a barrier to understanding is wrong. In fact, formulas
are a condensed and unambiguous way of communicating important information
and can be considered as a set of instructions written in the language of mathematics.
As one of my calculus professors used to say, “Look at the formula, then do what
the formula tells you to do.”

Mathematical formulas have the advantage of not depending on language, so math-
ematics can be communicated and understood among people regardless of their
native language or national origin. It doesn’t matter if you grew up speaking English
or Russian or Farsi; as long as you understand the language of mathematics, you can
communicate with your colleagues about mathematical topics somewhat independ-
ently of the barriers imposed by human languages.

Consider the example of the formula for calculating the arithmetic mean, known in
common language as the average of a set of numbers, presented in Figure 2-1.

Figure 2-1. Formula for calculating the mean

It may look like Greek to you (in fact, some of it is!), but it’s really just a set of
directions telling you how to do the necessary calculations. Let’s break it down into
parts:

• x is the number whose mean we are calculating.

• The symbol  (read as “x-bar”) means the mean of x, which is what we are
calculating.

• The symbol xi (read as “x sub i”) means a particular value of x.

• n means the number of values of x being used to compute the mean.

• The summation symbol, Σ, means to add together a number of cases, in this
case all values of x. The notations above and below the summation symbol mean
to add together all values of x, starting with the first value (x1) and going to the
last value (xn).
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The formula tells you to calculate the mean by adding together all the values of x,
then dividing by the number of cases that you just added together. Note that mul-
tiplying by 1/n is the same as dividing by n.

Suppose we want to calculate the mean of three numbers: 1, 3, and 5. In terms of
variable notation, we would call them x1, x2, and x3. In this example, n = 3 because
we have three numbers, so to execute the formula, we add the numbers from x1 to
x3 and multiply by 1/3, as presented in Figure 2-2.

Figure 2-2. Calculating the mean of three numbers

You will encounter more complicated formulas as you progress in your statistical
studies, but the process for using them is the same:

1. Identify the meaning of each symbol used and the operation required.

2. Identify the values to be substituted for each symbol.

3. Substitute the values into the equation, perform the specified operations, and
you have your result.

Basic Definitions
Here are some basic concepts to know for a discussion of probability.

Trials
Probability is concerned with the outcome of trials, which are also called experi-
ments or observations. The crucial fact, whichever term is used, is that they refer to
an event whose outcome is unknown. If the outcome of a trial were known, after
all, there would be no need to consider its probability. A trial can be as simple as
flipping a coin or drawing a card from a deck, or as complex as observing whether
a person diagnosed with breast cancer is still alive five years after the diagnosis. We
will reserve the term “trial” for a single observation, such as one coin flip, and the
term “experiment” for multiple trials, such as the results from flipping one coin five
times.

Sample Space
The sample space, signified by S, is the set of all possible elementary outcomes of a
trial. If the trial is flipping a coin once, then the sample space is S = {heads, tails}
(often abbreviated S = {h, t}) because those two alternatives represent all the possible
outcomes for the experiment. The flip may come up either heads (h) or tails (t). If
the experiment is rolling a single six-faced die (the plural is dice), the sample space
is S = {1, 2, 3, 4, 5, 6}, representing the six faces of the die that may turn up in a
single roll. These elementary outcomes are also referred to as sample points. If the
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experiment consists of multiple trials, all possible combinations of outcomes of the
trials must be specified as part of the sample space. For instance, if the trial consists
of flipping a coin twice, the sample space is S = {(h, h), (h, t), (t, h), (t, t)} because
the results could be heads on both flips, heads on the first and tails on the second,
tails on the first and heads on the second, or tails on both flips.

Events
An event, usually signified by E or any capital letter other than S, is the specification
of the outcome of a trial and can consist of a single outcome or a set of outcomes.
If the outcome or set of outcomes occurs, we say “the outcome satisfied the event”
or “the event occurred.” For instance, the event of “heads in flipping one coin” could
be specified as E = {heads}, whereas the event of “odd number in rolling one die”
could be specified as E = {1, 3, 5}. A simple event is the outcome of a single experi-
ment or observation, such as a single coin flip. Simple events can be combined into
compound events, as in the union and intersection examples below. Events can be
defined by listing the outcomes or by defining them logically. For instance, if the
trial is rolling two dice, and we are interested in how often the sum is less than 6,
we could specify this as either E = {2, 3, 4, 5} or E = {sum is less than 6}.

A common way to portray the probability of events and combinations of events
graphically is through Venn diagrams in which a rectangle represents the sample
space and circles represent particular events. Venn diagrams are used in Figures
2-3 through 2-6.

Venn Diagrams
Anyone who was brought up on the new math probably remembers Venn dia-
grams from elementary school math textbooks. Although the wisdom of intro-
ducing set theory to grade schoolers might be debatable, that is surely no fault of
the British mathematician John Venn (1834–1923) or his diagrams. Venn dia-
grams are widely used in mathematics and related fields to display the logical
relationship between sets of objects, and they have been adapted by other disci-
plines, such as literature, as well. Venn spent most of his adult life teaching at
Caius College, Cambridge University, where his primary interest was logic, and
he published three textbooks, including Symbolic Logic (1881), which introduced
Venn diagrams. Caius students and faculty today have a daily reminder of Venn’s
accomplishments: he has been immortalized by stained glass windows in the col-
lege dining hall, which portray a Venn diagram with three overlapping sets signi-
fied by three circles of different colors.

Union
The union of several simple events creates a compound event that occurs if one or
more of the events occur. The union of E and F is written E ∪ F and means “either
E or F or both E and F.” Note that the ∪nion symbol is similar to a capital letter U.
The union of E and F is the shaded area in the Venn diagram in Figure 2-3. Note
that this figure portrays two complete circles that partially overlap; the meaning of
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this diagram is that any point in the shaded area (any point in E, F, or both E and
F) satisfies the condition E ∪ F. To take an example, suppose the event is rolling a
six-sided die and that E = {1, 3} and F = {1, 2}. The event E ∪ F is satisfied with an
outcome of 1, 2, or 3; we can also say that E ∪ F = {1, 2, 3}.

Figure 2-3. The union of E and F (shaded area)

Intersection
The intersection of two or more simple events creates a compound event that occurs
only if all the simple events occur. The intersection of E and F is written E ∩ F and
means “both E and F.” The intersection of E and F is the shaded area in the Venn
diagram in Figure 2-4; note that only points that belong to both E and F satisfy the
condition. To continue with our example, if the event is rolling a six-sided die, and
E = {1, 3} and F = {1, 2}, the event E ∩ F is satisfied only with the outcome of 1
because 1 is a member of both sets, so E ∩ F = {1}.

Figure 2-4. The intersection of E and F (shaded area)

Complement
The complement of an event means everything in the sample space that is not that
event. The complement of event E is written variously as ~E, Ec, or Ē, and is read
as “not E” or “E complement.” For instance, if E = (numbers > 0), ~E = (numbers
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≤ 0). Continuing with our example, if the event is rolling a six-sided die and E = {1,
3}, ~E = {2, 4, 5, 6}. The complement of F is the shaded area in the Venn diagram
in Figure 2-5.

Figure 2-5. The complement of F (shaded area)

Mutual Exclusivity
If events cannot occur together, they are mutually exclusive. To put it another way,
if two sets have no events in common, they are mutually exclusive. For instance, the
event A = (salary is greater than $100K) and event B = (salary is less than or equal
to $100K) are mutually exclusive, as are the sets A = (even integers) and B = (odd
integers). The mutually exclusive sets E and F are presented in the Venn diagram in
Figure 2-6; note that they have no points in common.
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Figure 2-6. E and F are mutually exclusive; they have no points in common

Independence
If two trials are independent, the outcome of one trial does not influence the outcome
of another. To put it another way, if the trials are independent, knowing the outcome
of one trial gives you no information about the outcome of the other. The classic
example of independence is flipping an ordinary coin; if you flip the coin twice, the
outcome of the first trial has no influence on the outcome of the second trial.

Permutations
In probability theory, permutations are all the possible ways elements in a set can be
arranged. For instance, if a set consists of the elements (a, b, c), then the permutations
of this set are (a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), and (c, b, a). Note that the
order of elements is important in permutations: (a, b, c) is a different permutation
than (a, c, b).

You can calculate the number of permutations of any set of distinct elements (mean-
ing that none of the elements repeats within the set) by using factorials, which are
signified by a number followed by an exclamation point. Many calculators have an
x! key to calculate factorials, but factorials can also be calculated by multiplying the
number by all lower integers down to 1. Here’s an example:

3! = 3 × 2 × 1 = 6

3! is read as “3 factorial.” For a set of three nonrepeated elements, there are 3! or 6
permutations, which agrees with the result we found by listing the preceding dif-
ferent permutations. This makes logical sense because if you have three elements,
you have three choices for the first element (a, b, c in our example), two choices for
the second element (minus whatever was chosen for the first element), and one
choice for the third element (whatever element remains after the first two are
chosen). Therefore, you have 3 × 2 × 1 = 6 different ways of arranging the elements.
Permutations become large very quickly. For instance, 5! = 120 and 10! = 3,628,800.
20! is so large that it cannot be displayed on most calculators except through scien-
tific notation: 20! = 2.432902008E18.
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Scientific Notation
Scientific notation is used to indicate the value of numbers that are very large or
very small. Using scientific notation not only saves space (because you don’t have
to write out lots of zeros) but improves accuracy in communication because it is
easy to misread a number including a lot of zeros. The concept behind scientific
notation is that any number can be written as a number greater than or equal to
1 and less than 10 (called the coefficient) multiplied by a power of 10 (called the
base). So the number 1234 can be written as 1.234E3 (the E stands for exponent),
which means 1.234 × 103, that is, 1.234 × 1000. Similarly, 1.234E − 4 means 1.234
× 10−4 or 1.234 × 0.0001, which is 0.0001234. Another way to interpret E is as an
indication of how many places to the left or right to move the decimal point.
Therefore, 1.234E3 tells you to move it three places to the right, producing 1,234,
whereas 1.234E − 4 tells you to move it four places to the left for 0.0001234.

Combinations
Combinations are similar to permutations with the difference that the order of ele-
ments is not significant in combinations. Therefore, (a, b, c) is the same combination
as (b, a, c). For this reason, there is only one combination of the set (a, b, c).

One use of combinations and permutations in statistics is to calculate the number
of ways a subset of specified size can be drawn from a set, which allows the calcu-
lation of the probability of drawing any particular subset from a set. The general
case is that the set in question contains no duplicates, and you will use this assump-
tion in the following discussion. There are several ways to denote permutations and
combinations; these are demonstrated in Appendix A along with a few problems.
This section will stick to a simple system of notation, using P for permutations and
C for combinations. Using this notation, the number of permutations possible when
drawing 2 elements from a set of 3 is written 3P2, and the number of combinations
of 2 elements from a set of 3 is as 3C2. Continuing with the preceding example, for
the set (a, b, c), 3P2 = 6 because there are 6 permutations of 2 elements drawn from
a set of 3: (a, b), (a, c), (b, c), (b, a), (c, a), and (c, b). Three combinations of 2 are
possible from this set, so 3C2 = 3: (a, b), (a, c), and (b, c).

The number of permutations of subsets of size k drawn from a set of size n is calcu-
lated as shown in Figure 2-7.

Figure 2-7. The formula for calculating a permutation

Using this formula, the number of permutations of size 2 that can be drawn from a
set of size 8 is shown in Figure 2-8.
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Figure 2-8. Calculating the permutation 8P2

If you have to calculate a permutation by hand, it helps to remember the principle
of canceling factors: if you express the numerator and denominator as the product
of factors, you can cancel those that appear in both the numerator and denominator.
For instance:

12/6 = (2 × 2 × 3)/(2 × 3) = 2

because you can cancel (2 × 3) from both the numerator and denominator.

In the case of the 8P2 permutation, it’s not necessary to multiply out each factorial
before dividing because you can cancel many of the terms. In this example:

8! = 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1

and

6! = 6 × 5 × 4 × 3 × 2 × 1

so you can cancel most of the numerator, leaving you with:

8P2 = 8 × 7 = 56

Given the same values for n and k, there will always be fewer combinations than
permutations because a different order of the same elements counts as a different
permutation but not as a different combination. This is clear in the formula for a
combination, which is the formula for the permutation divided by the factorial of
the number of objects selected, as shown in Figure 2-9.

Figure 2-9. The formula for calculating a combination

Using this formula, you calculate the number of combinations of size 2 that can be
drawn from a set of size 8, as shown in Figure 2-10.

Figure 2-10. Calculating the combination 8C2
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Defining Probability
There are several technical ways to define probability, but a definition useful for
statistics is that probability tells us how often something is likely to occur when an
experiment is repeated. For instance, the probability that a coin will come up heads
can be estimated by executing a number of coin flips and observing how many times
it is heads rather than tails. Perhaps the most important single fact about probability
is this:

The probability of an event is always between 0 and 1.

If the probability of an event is 0, that means there is no chance that it will occur,
whereas if the probability of an event is 1, that means it is certain to occur. It is
conventional in mathematics to specify probability using decimals, so we say that
the probability of an event is between 0 and 1, but it is equally acceptable (and more
common in everyday speech) to speak in terms of percentages, so it is equally correct
to say that the probability of an event is always between 0% and 100%. To move
from decimals to percent, multiply by 100 (per cent = per 100), so a probability of
0.4 is also a probability of 40% (0.4 × 100 = 40), and a probability of 0.85 may also
be stated as 85% probability.

Negative probability and probabilities greater than 100% are logical impossibilities
that exist only as figures of speech. The fact that probability is bounded by 0 and 1
has mathematical implications that are explored further when considering logistic
regression in Chapter 11. This fact also provides a useful check on your calculations.
If you come up with a probability lower than 0 or greater than 1, you have certainly
made a mistake somewhere along the way. Furthermore, if someone tells you there
is a 200% chance that you will make a killing in the stock market if you follow his
system, you should probably look for a new investment advisor.

Another useful fact about probability is that:

The probability of the sample space is always 1.

Because the sample space represents all possible outcomes of a trial, the total prob-
ability of the sample space must add up to 1. This is a useful fact because although
we may know the probability of some events in a sample space, there can be others
about which we have no information. However, because we know that the proba-
bility of the total sample space equals 1, we can assign a probability to those events
about which we have no information based on what probability remains after the
known probabilities are considered.

A third useful fact that follows from the first two is that:

The probability of an event and its complement is always 1.

This fact follows from the definition of a complement: everything in the sample space
that is not the event E is the complement of E. Therefore, E and ~E together must
make up the entire sample space, and the probability of E and ~E together must
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equal 1. This should be clear from Figure 2-5: the rectangular box represents the
sample space, the circle the event E, and the shaded area within the box but outside
the circle ~E. Together, E and ~E comprise the entire sample space, and their union
(E ∪ ~E) has a probability of 1.

Expressing the Probability of an Event
It is typical to write probability statements as follows:

P(E) = 0.5

This is read as “the probability of event E is 0.5” or “there is a 50% probability of
event E” (or just “the probability of E is 0.5” or “there is a 50% probability of E”).
Using this format, you can write your first fact about probability, that the probability
of an event is always between 0 and 1, as:

0 ≤ P(E) ≤ 1

The second fact about probability, which follows from the definition of the sample
space S as including all possible outcomes of a trial, may be written as:

P(S) = 1

The third fact about probability, that the probability of an event and its complement
is always equal to 1, can be written as:

P(E) + P(~E) = 1

which provides us with the important corollary:

P(~E) = 1 − P(E)

This will prove very handy in later calculations. If we know the probability of E, we
automatically know the probability of ~E, which is 1 − P(E). So, if P(E) = 0.4,
P(~E) = 1 − 0.4 = 0.6.

Conditional Probabilities
Often we want to know the probability of some event, given that another event has
occurred. This is expressed symbolically as P(E|F) and read as “the probability of
E given F.” The second event is known as the condition, and the process is sometimes
referred to as “conditioning on F.” Conditional probability is an important concept
in statistics because often we are trying to establish that a factor has a relationship
with an outcome, for instance that people who smoke cigarettes are more likely to
develop lung cancer. Another way to say that a factor has a relationship with an
outcome is to say that the probability of the outcomes differs depending on the
presence or absence of the factor. To express symbolically that the probability of
developing lung cancer (the outcome) is higher for those who smoke (the factor)
than for those who do not, we can write:
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P(lung cancer|smoker) > P(lung cancer|nonsmoker)

Conditional probabilities can also be used to define independence. Two variables
are said to be independent if the following relationship holds:

P(E|F) = P(E)

This equation states that the probability of E is the same whether or not variable F
is present. To continue with the same example, the equation to state that the prob-
ability of having lung cancer is unrelated to smoking would be:

P(lung cancer|smoker) = P(lung cancer)

This equation states that the probability of lung cancer for a person who smokes is
the same as the probability for the population in general, smokers and nonsmokers
alike. This is just an example, and I’m not implying that it is true; many studies have
shown that the probability of lung cancer for a smoker is much higher than the rate
in the general population.

Calculating the Probability of Multiple Events
To calculate the probability of any of several events occurring (the union of several
events), add the probabilities of the individual events. The specific equation used
will depend on whether the events are mutually exclusive (meaning both cannot
occur).

Union of mutually exclusive events

If the events are mutually exclusive, as in Figure 2-6, the equation is simply:

P (E ∪ F) = P(E) + P(F)

For a practical example, imagine a college that does not allow double majors. Define
the event E = (English major) as having a probability of 0.2 and F = (French major)
as having a probability of 0.1. These events are mutually exclusive because students
are allowed only one major, so you would calculate the probability of the event
(either English or French major) as:

P(E ∪ F) = 0.2 + 0.1 = 0.3

Union of events that are not mutually exclusive

Often, events are not mutually exclusive. For instance, at a college that does allow
double majors, the events (English major) and (French major) are not mutually ex-
clusive because conceivably one person could be both an English major and a French
major. In this situation, the equation calculating P(English major or French major)
must include a term correcting for this overlap. Looking at Figure 2-4, the overlap
is the area contained in both circles E and F (their intersection, represented by the
shaded area). If you fail to take into consideration that a college that allows students
to elect more than one major could have people majoring in both English and French,
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you risk counting some people twice. (Those with double majors in French and
English would be counted both as French majors and as English majors.)

To correct for this potential overlap, use the following equation to calculate the
probability of the occurrence of either of two events that are not mutually exclusive:

P(E ∪ F) = P(E) + P(F) − P(E ∩ F)

Suppose that P(English major) = 0.2, P(French major) = 0.1, and P(double major in
French and English) = 0.05. The probability of a student being either an English or
a French major is therefore:

P(E ∪ F) = 0.2 + 0.1 − 0.05 = 0.25

Intersection of independent events

To calculate the probability of all of several events occurring (the intersection of
several events), multiply their individual probabilities. The specific formula used
depends on whether the events are independent.

If the two events E and F are independent, the probability of both E and F occurring
is calculated as simply:

P(E ∩ F) = P(E) × P(F).

Suppose you are flipping a fair coin (one whose probability of heads is 0.5, whose
probability of tails is 0.5, and whose results on each flip is independent). Label the
trials so that E = (heads on first flip) and F = (heads on second flip). You have already
specified that the probability of heads on either flip is 0.5, and the two trials are
independent, so you can compute the probability (heads on both flips) as:

P(E ∩ F) = 0.5 × 0.5 = 0.25

Intersection of nonindependent events

If two events are not independent, you have to know their conditional probability
to calculate the probability of both occurring. The formula to use is:

P(E ∩ F) = P(E) × P(F|E)

Suppose you are drawing two cards without replacement from a standard deck of
52, meaning that you do not put the cards back in the deck after you draw them.
Half of all cards in a standard deck are red and half are black. These events (your
first and second draws) are not independent because the probability for the second
draw depends on the result of the first draw. If you are interested in the probability
of drawing two black cards in these two trials, you can calculate this as follows:

P(E) = P (black card drawn on first trial) = 26/52 = 0.5
P(F|E) = P(black card drawn on second trial|black card drawn on first trial) =
25/51 = 0.49
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Note that because you are drawing without replacement, there are only 51 cards in
the deck for the second draw, and only 25 black cards because you removed 1 black
card in the first draw. Using this information, you can calculate the probability that
you will draw black cards on both trials as (the intersection of E and F):

P(E ∩ F) = 0.50 × 0.49 = 0.245

Bayes’ Theorem
Bayes’ theorem, also known as Bayes’ formula, is one of the most common appli-
cations of conditional probabilities. A typical use of Bayes’ theorem in the medical
field is to calculate the probability that a person who tests positive on a screening
test for a particular disease actually has the disease. Bayes’ theorem also uses several
of the basic concepts of probability previously introduced, so careful study of Bayes’
formula is a good review for the entire chapter as well. Bayes’ theorem for any two
events A and B is presented in Figure 2-11.

Figure 2-11. Bayes’ theorem

You would use this formula if you know P(A), P(B), and P(B|A) but want to know
P(A|B). The numerator of Bayes’ theorem uses the fact that the probability of the
intersection of two events is the probability of the first event multiplied by the
conditional probability of the second event given the first. In this example, the con-
ditional probability of B given A is multiplied by the probability of A, giving the
probability of the intersection of A and B, that is, of both A and B occurring.

The denominator uses this same fact plus the fact that any event plus its complement
comprises the entire sample space, and together an event and its complement have
a probability of 1, so the sum of the conditional probabilities of (B given A) times
the probability of A, and (B given ~A) times the probability of ~A, equals the prob-
ability of B.

Suppose you have a screening test that is 95% effective in detecting disease in those
who have the disease and 99% effective in not falsely diagnosing disease in those
who are free of it. Clinicians would say that this test has 95% sensitivity and 99%
specificity. Suppose also that the rate of disease in the population is 1%. Using the
symbols D for disease, ~D for absence of disease, T for a positive test, and ~T for
a negative test, these probabilities can be stated as:

Sensitivity = P(T|D) = 0.95
Specificity = P(~T|~D) = 0.99
Probability of disease in the population = P(D) = 0.01

These are very high values for sensitivity and specificity. Many commonly used tests
and procedures are less accurate. However, these tests are not perfect, and it is
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possible that a person who tests positive will not in fact have the disease (a false
positive) and that a person who tests negative can in fact have the disease (a false
negative). Often what you really want to know is, for an individual who has tested
positive, what is the probability that he actually has the disease? Using conditional
probability notation, you want to know P(D|T). You can calculate this probability
by using Bayes’ theorem plus the information about sensitivity, specificity, and dis-
ease rate in the population previously given, as shown in Figure 2-12.

Figure 2-12. Bayes’ theorem, expressed in terms of disease and test results

Looking at this formula, it is clear that the probability of having the disease, given
a positive test, is simply the probability of having both a positive test and the disease
divided by the probability of having a positive test (whether or not the person has
the disease).

Using the fact that an event plus its complement constitutes the entire sample space,
and together they have a probability of 1, you know that the false positive rate is
1 − specificity:

P(T|~D) = 1 − 0.99 = 0.01.

For the same reason, you know that the probability in the population of not having
the disease is 1 − the probability of having the disease:

P(~D) = 1 − P(D) = 1 − 0.01 = 0.99.

Using these facts plus the information previously supplied, we can calculate
P(D | T), as shown in Figure 2-13.

Figure 2-13. Using Bayes’ theorem to calculate the possibility of having a disease, given a
positive test

This example demonstrates an important and underappreciated (at least by the
public) fact about screening tests. Even with a highly specific and sensitive screening
test, if the disease is rare, the false positive rate will be high relative to the true positive
rate. In this example, you expect that about half the people who test positive will be
false positives, that is that they won’t have the disease. This is not necessarily a reason
not to use the test, particularly if the disease has serious consequences and there is
an accurate follow-up test to separate the true and false positives. However, any
proposal to institute universal screening (whether for a disease or in some other
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context such as luggage screening at the airport) should always consider the false
positive rate and its potential consequences.

It should be noted that the false positive rate depends on the rate of disease in the
population as well as the sensitivity and specificity of the screening test. If the disease
rate were 0.005 instead of 0.01, fewer of the positives would be true positives and
more would be false positives, as shown in the calculations in Figure 2-14.

Figure 2-14. Another example of using Bayes’ theorem to calculate the probability of disease,
given a positive test; note the lower rate of true positives, due to a lower rate of disease in the
population

In this example, less than one third of the positives are true positives.

The Reverend Thomas Bayes
Bayes’ theorem was developed by a British Nonconformist minister, the Reverend
Thomas Bayes (1702–1761). Bayes studied logic and theology at the University of
Edinburgh and earned his livelihood as a minister in Holborn and Tunbridge
Wells, England. However, his fame today rests on his theory of probability, which
was developed in his essay, published after his death by the Royal Society of Lon-
don. There is an entire field of study today known as Bayesian statistics, which is
based on the notion of probability as a statement of strength of belief rather than
as a frequency of occurrence. However, it is uncertain whether Bayes himself
would have embraced this definition because he published relatively little on
mathematics during his lifetime.

Enough Exposition, Let’s Do Some Statistics!
Statistics is something you do, not something you read about, so the real purpose
of the preceding theoretical presentation is to give you the information you need to
perform calculations about the probability of events and to use the concepts intro-
duced to be able to reason using your knowledge of statistics. This chapter also
introduced concepts, such as independence and mutual exclusivity, which you will
need to understand to use more advanced statistical procedures.

The purpose of the problems that follow is to give you some experience in working
with the concepts of basic probability. If you are a person who likes to work through
many problems to understand a topic, many excellent textbooks focus on proba-
bility; several are suggested in Appendix C.

If you are new to solving problems in elementary probability, it may help to follow
this procedure:
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1. Define the trial, experiment, or both.

2. Define the sample space.

3. Define the event.

4. Specify the relevant probabilities, and do the calculations.

At some point, you might not feel it is necessary to go through all these steps, but
they may help you get started working with the exercises. In some cases, an alter-
native solution, using a different approach to the problem, is provided.

Dice, Coins, and Playing Cards
Because many of the examples in this chapter use dice, coins, and playing cards, this
section starts by describing their characteristics.

Dice
The standard die (the singular of dice) used in the Western world is a cube with
six sides, each displaying a different number of dots from 1 to 6. A standard
assumption in probability calculations is that all sides of the die are equally
likely to land facing up when the die is rolled or thrown, so one roll of the die
has six equally likely outcomes: 1, 2, 3, 4, 5, and 6. In technical terms, the set
of outcomes from rolling one die has a discrete uniform distribution because
the possible outcomes can be enumerated, and each outcome is equally likely.
The results of two or more dice thrown at once (or multiple throws of the same
die) are assumed to be independent of each other, so the probabilities of each
combination of numbers are calculated by multiplying the probability of each
result.

In the interests of precision, remember that the “equal probability for all sides”
holds only for casino dice, in which the pips (circles used to mark the numbers
on each side) are painted on. You might be more familiar with dice in which
the pips are drilled into the cube face rather than painted on, resulting in un-
equal weight and, thus, unequal probabilities for the different sides. However,
in theoretical discussions of probability, this distinction is usually ignored, and
you assume that all sides of the dice are equally probable.

Coins
The standard coin used in probability experiments has two sides, heads and
tails. Often, a fair coin is assumed, meaning it is equally likely to come up heads
or tails on any toss or flip. For any coin, fair or not, the probability of heads and
tails is assumed to be constant on each flip so that the results of previous flips
have no influence on later flips, and the results of multiple flips are independent
of each other. As with dice, the probability of an actual coin landing heads or
tails is seldom exactly 50–50 for a number of physical reasons, including coin
design and wear and off-center technique on the part of the person performing
the flip, but for the sake of probability exercises, ignore these details unless they
are specified in the problem. Sometimes, in the interests of safety, experiments
are conducted by spinning coins rather than flipping them (resulting in fewer
projectiles flying through the air in a crowded classroom). However, the 50–50
assumption applies even less here, although for the purposes of doing
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calculations (as opposed to actually spinning coins and recording the results),
assume that it applies equally. For more on these issues, see this website.

Playing cards
The standard pack or deck of playing cards today has 52 cards in four suits:
spades, clubs, diamonds, and hearts. Spades and clubs are black cards, and
diamonds and hearts are red cards. There are 13 cards in each suit: an ace,
numbered cards from 2 through 10, and 3 face cards—the jack, queen, and
king. In experiments involving drawing cards from the deck, it is assumed that
the cards have been shuffled so any card in the deck is equally likely on a given
draw.

Exercises
Problem

If I draw one card from an ordinary deck of 52 playing cards, what is the probability
that it will be a red card?

Solution

1. The trial is a single draw of one card from a deck of 52.

2. The sample space is all the possible cards, each of which has an equal probability
of being drawn.

3. The event is E = {red card}.

4. Because there are 52 cards in the deck and half (26) are red, the probability of
drawing a red card is 26/52 or 0.5. The answer is that you have a 50% probability
of drawing a red card on a single draw from a full deck of cards.

Problem

If I roll a die once, what is the probability of getting a number lower than 5?

Solution

1. The trial is a single roll of a six-sided die.

2. The sample space is the numbers (1, 2, 3, 4, 5, 6), all of which are equally likely.

3. The event is E = (any of 1, 2, 3, 4), which can also be considered the union of
four simple events, that is, E = (E = 1) ∪(E = 2∪(E = 3) ∪(E = 4).

4. Four of the six simple events or possible outcomes that constitute the sample
space satisfy the event E, so the probability of E is 4/6 or 0.67 (rounded).

Alternative solution

Another way to look at this is to calculate the probability of each simple event that
satisfies the event E and then add them together because the events are mutually
exclusive. Using this approach, the probability of each simple event in E is 1/6; that
is, there is a 1 in 6 chance that the number will be 1, 1 in 6 that the number will be
2, and so on. Using this approach, the probability of E is 1/6 + 1/6 + 1/6 + 1/6 or
4/6, which is the same answer as the preceding one.
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Problem

If I flip a fair coin twice, what is the probability that I will get at least one head?

Solution

1. The experiment is two flips of a fair (P = 0.5 for either heads or tails) coin, that
is, two independent trials, each with a probability of 0.5.

2. The sample space is {(h, h), (h, t), (t, h), (t, t)}, all of which are equally likely.

3. The event is E = (at least one head). Three of the events in the sample space
satisfy this condition: (h, h), (h, t), and (t, h).

4. Each of the outcomes is equally likely, and three of the four satisfy the event
E, so the probability of E is 3/4 or 0.75.

Alternative solution

You can also find this result mathematically by calculating the probability of the
complement of this event and then subtracting it from 1 to get the probability of the
event. If the event E is (at least one head), its complement is ~E = (no heads, that
is, two tails). You know that the probability of getting a tail on any flip of a fair coin
is 0.5, and the flips are independent, so the probability of (t, t) is 0.5 × 0.5 or 0.25.
Using the definition of a complement, 1 − P(~E) = P(E), so 1 − 0.25 = 0.75, or
P(E). The probability of at least one head from two flips is 0.75, the same answer as
the previous solution.

Problem

If I draw one card from a standard 52-card deck, what is the probability that it will
be a black (clubs or spades) face card (king, queen, or jack)?

Solution

1. The trial is drawing one card from a 52-card deck.

2. The sample space is all 52 cards, each of which has equal probability of being
drawn.

3. The event is E = (black face card); six cards satisfy this condition, the jack,
queen, or king of either spades or clubs.

4. The probability is 6/52 or 0.115.

Mathematical solution

P(face card) = 12/52 or 0.231 P(black card) = 26/52 or 0.5 P(black face card) =
P(face card) × P(black card) = 0.231 × 0.5 = 0.116

Note that this mathematical solution is possible because the
probability of drawing a black card and the probability of draw-
ing a face card are independent.
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Problem

If I draw one card from a standard 52-card deck, what is the probability that it will
be either black (clubs or spades) or a face card (king, queen, or jack)?

Solution

1. The trial is drawing one card from a 52-card deck.

2. The sample space is all 52 cards, each of which has an equal probability of being
drawn.

3. The event is E = (either black card or face card), meaning any of the 26 black
cards or any of the 12 face cards will satisfy the event.

4. The two types of cards that will satisfy the condition are not mutually exclusive;
some black cards are also face cards and vice versa. There are 26 black cards:
ace through king of spades (13) and ace through king of clubs (13). There are
12 face cards: jack, king, and queen for each of hearts, diamonds, clubs, and
spades. There are six cards that are members of both categories: the jack, king,
and queen of spades, and the jack, king, and queen of clubs, so 26 + 12 − 6 =
32 cards satisfy this event, and the probability is 32/52 or 0.615.

Mathematical solution

P(black card) = 26/52 or 0.500 P(face card) = 12/52 or 0.231 P (black face card)
= 6/52 or 0.115 P(black card or face card) = 0.500 + 0.231 − 0.115 = 0.616

The slight difference in solutions (0.615 versus 0.616) is due to rounding error.

Problem:

If I draw a single card from a 52-card deck and it is black, what is the probability
that its suit is clubs?

Solution

1. The trial is drawing one card from a 52-card deck.

2. The sample space is all black cards because we are interested in the conditional
probability of a card being a club, given that it is a black card. Our sample space
is therefore the 26 black cards.

3. The event is E = (club|black card).

4. The probability of the card being a club, given that it is a black card, is 13/26
or 0.5.

Note that in this example we are calculating a conditional prob-
ability (the probability of clubs, conditioned on the fact that the
card is black). The unconditional probability of the card being
a club, if we had no information about its color, is 13/52 or 0.25.
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Mathematical solution

P(clubs|black card) = P(clubs and a black card)/ P(black card) = 0.25/0.5 = 0.5

Note that clubs are by definition black cards.

Problem

If order is not significant, how many ways are there to select a subset of 5 students
from a classroom of 20?

Solution

This is a combinatorial problem that is too lengthy to solve by listing all possible
subsets. Instead, use the combinational formula nCk. In this case, n = 20 and k = 5;
apply the formula shown in Figure 2-15.

Figure 2-15. Using the combination formula to determine the number of ways to choose a
subset of 5 individuals from a set of 20

Problem

Eighty students are attending a conference: 40 boys and 40 girls. Thirty of the boys
are majoring in math, as are 20 of the girls. You know that if you pick a boy at
random, there is a 75% chance that he is a math major. You want to know, however,
if you pick a math major at random, the probability that the student is male? Hint:
use Bayes’ theorem.

Solution

P (male) = 40/80 = 0.5
P (~male) = 40/80 = 0.5
P (math|male) = 30/40 = 0.75
P (math|~male) = 20/40 = 0.5

The calculations are shown in Figure 2-16.
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Figure 2-16. Using Bayes’ theorem to find the probability that a math major, selected at
random, will be male

The probability is 60% that a math major, chosen at random, is male.

Closing Note: The Connection between Statistics and Gambling
Statisticians like to illustrate probability by using dice, coin flips, and playing cards
as examples, objects that are also used in gambling (or gaming, in the industry’s
preferred terminology). One reason is that these objects are familiar to most people.
Another is that probabilities of the different outcomes are known and unchanging
and, thus, can be used to create simple examples to illustrate the basic concepts of
probability, including independence and mutual exclusivity. Their advantage also
is that problems can be solved using the concrete objects in question (for instance,
by selecting from a standard deck of cards), as well as through mathematical
equations.

However, there is also a historical connection because many of the laws of proba-
bility were discovered in connection with games of chance and skill involving dice
and playing cards. In fact, gambling has been the motivation for many inquiries into
the probabilities of different events and combinations of events because the ability
of a gambler to win rather than lose money depends in large part on her under-
standing the probability of different events within the chosen game.

Many historians trace the beginning of modern probability theory to the Chevalier
de Mere, a gentleman gambler in seventeenth-century France. He was fond of betting
that he would roll at least one six in four rolls of a single die: the wisdom of this bet
will be demonstrated in the following paragraphs. However, he also believed that it
was a good bet to propose that he would roll one or more double sixes in 24 rolls of
a pair of dice: this turned out to be a losing proposition. Fortunately for future
statisticians, the Chevalier took this problem to his friend, the philosopher Blaise
Pascal, who discussed it with his friend, the mathematician Pierre de Fermat. Con-
sideration of this type of question led to the development of, among other things,
Pascal’s triangle, the binomial distribution, and the modern concept of probability.

In an even bet among friends, when there is no “house” taking a percentage of the
proceeds, a good bet is one you are likely to win more than 50% of the time. To put
it another way, a good bet is one in which your likelihood of winning is 0.5 or greater.
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The Chevalier’s first bet met this standard: the probability of rolling at least one six
in four rolls of a die is 0.518. This is easily calculated by considering the probability
of rolling no sixes in four trials, which is (5/6)4. Rolling at least one six is the com-
plement of rolling no sixes, so the P(at least one six in four trials) is 1 − (5/6)4 or
1 − 0.482, which is 0.518. This means that about 52% of the time, the Chevalier
won this bet.

However, betting that you will roll at least one double six in 24 rolls of a pair of dice
is not a wise bet. There are 36 combinations of numbers in each of 2 rolls of a pair
of dice, and only one combination is double sixes; therefore, on each roll, the prob-
ability is 35/36 that double sixes will not come up. Because each roll of the dice is
independent, you can multiply the probabilities for each roll together. Because the
probabilities do not change, this means multiplying (35/36) by itself 24 times, which
is the same as raising (35/36) to the power of 24. The probability of rolling at least
one double six is 1 − P(no double sixes) or 1 − 0.509, which is 0.491. Because this
probability is less than 0.5, this is a losing bet.

If you are interested in learning more about how probability theory applies to games
of chance and skill such as roulette, craps, blackjack, horse racing, and poker, take
a look at Edward Packel’s The Mathematics of Games and Gambling, published by
the Mathematical Association of America and listed in Appendix C.
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3
Inferential Statistics

Statistical inference is the science of characterizing or making decisions about a
population by using information from a sample drawn from that population. Most
of the practice of statistics is concerned with inferential statistics, and many sophis-
ticated techniques have been developed to facilitate this type of inference. The con-
cept of inferential statistics can be a bit tricky, so it’s worth taking a few minutes to
think about what it means to use statistics for inferential reasoning.

The term “inference” is given two definitions by the Merriam-Webster online dic-
tionary:

a) The act of passing from one proposition, statement, or judgment considered
as true to another whose truth is believed to follow from that of the former

b) The act of passing from statistical sample data to generalizations (as of the
value of population parameters) usually with calculated degrees of certainty

The second meaning, which is specific to statistics, is closely related to the first.
Inference in general is a method of making judgments about an unknown, drawing
on what is already known to be true. Statistical inference is a specific kind of infer-
ence in which you make judgments about a population, as stated earlier.

People are sometimes confused about the difference between descriptive statistics
(discussed in Chapter 4) and inferential statistics, in part because some statistical
procedures are used in both types of statistics, although there can be subtle differ-
ences in the formulas as well as in the interpretation of the results. For instance, the
same basic procedure is used for calculating the mean of a set of data, whether the
data represent a population or a sample: add up all the data values and divide by the
number of values. However, there are differences in the way the formula to calculate
the mean is written. For a population, you use the Greek letter µ (mu) to represent
the mean (which is properly called a parameter because it is a number that describes
a population), whereas for a sample, you use the Latin letter x with a bar over it, 
(pronounced “x-bar”), to represent the mean (properly called a statistic because it
is a number that describes a sample).
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In other cases, there are more important differences between the formulas used for
populations and samples. One well-known example is the formula for the variance.
When dealing with a population, you divide by n (the number of cases), but if dealing
with a sample, you divide by n−1 (one less than the number of cases). These two
formulas are explained in detail in Chapter 4 (in the “Measures of Disper-
sion” on page 90), and if you are new to the study of statistics, read that entire
chapter before tackling this one because descriptive statistics are conceptually sim-
pler than inferential statistics.

You might use both kinds of statistics within the same project (for example, de-
scriptive statistics to describe your study sample and then inferential statistics to
address the primary questions of your study), but you need to be clear about which
type you are using in any particular analysis. It can help to think about the purpose
of your analysis: is it merely to describe the data set upon which you are performing
the calculations? Or is it to generalize to a larger group that you can’t study directly?
In the first case, you should be doing descriptive statistics, and in the second,
inferential statistics. Here are two rules that state the same information slightly
differently:

If the cases you are studying represent the entire population of interest, and you
do not wish to generalize beyond those cases, you should be using descriptive
statistics.
If the cases you are studying do not represent the entire population of interest,
and you do wish to generalize beyond those cases, you should be doing infer-
ential statistics.

Probability Distributions
The practice of statistical inference frequently relies on making assumptions about
the way data is distributed, so much so that it is common in statistical work to
transform data to make it fit some known distribution better. For this reason, this
topic of statistical inference begins with a presentation of the concept of a theoretical
probability distribution and a review of two commonly used distributions.

A theoretical probability distribution is defined by a formula that specifies what
values can be taken by data points within the distribution and how common each
value will be (or, in the case of continuous distributions, how common a given range
of values will be). Theoretical probability distributions are often presented in graph-
ical form as well; the familiar bell curve of the normal distribution is one example.

Theoretical probability distributions are useful in inferential statistics because their
properties and characteristics are known. If the actual distribution of a given data
set is reasonably close to that of a theoretical probability distribution, many calcu-
lations can be performed on the actual data by using assumptions drawn from the
theoretical distribution. In addition, thanks to the central limit theorem (discussed
later in this chapter), under certain circumstances you can assume that the distri-
bution of sample means is normal even if the population from which the samples
were drawn is not normally distributed.
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Probability distributions are commonly classified as continuous, meaning the data
can take any value within a specified range, or discrete, meaning the data can take
only certain values. This chapter examines the normal distribution as an example
of a continuous distribution and the binomial distribution as an example of a discrete
distribution.

The Normal Distribution
The normal distribution is arguably the most commonly used distribution in statis-
tics. This is partly because the normal distribution is a reasonable description of how
many continuous variables are distributed in reality, from industrial process varia-
tion to intelligence test scores. A second reason for the widespread use of the normal
distribution is that under specified conditions, we may assume that sampling dis-
tributions of statistics such as the sample mean are normally distributed, even if the
samples are drawn from populations that are not normally distributed. This is dis-
cussed further in the section on the central limit theorem later in this chapter. The
normal distribution is also referred to as the bell curve due to its characteristic shape,
and as the Gaussian distribution in honor of the eighteenth-century physicist and
mathematician Karl Gauss, who used this distribution to analyze astronomical data.

There is an infinite number of normal distributions, all of which have the same basic
shape but differ according to their mean µ (the Greek letter mu) and standard devi-
ation σ (the Greek letter sigma). Examples of three normal distributions with dif-
ferent means and standard deviations are displayed in Figure 3-1.

Figure 3-1. Three normal distributions

The normal distribution with a mean of 0 and standard deviation of 1 is known as
the standard normal distribution or Z distribution. Any normal distribution can be
transformed to the standard normal distribution by converting the original values
to standardized scores (a process discussed later in this chapter and further in
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Chapter 16), a procedure that facilitates comparison among populations with dif-
ferent means and standard deviations.

All normal distributions, regardless of their mean and standard deviation, share
certain characteristics. These include:

• Symmetry

• Unimodality (a single most common value)

• A continuous range from −∞ to +∞ (from negative infinity to positive infinity)

• A total area under the curve of 1

• A common value for the mean, median, and mode

As noted earlier, there is an infinite number of normal distributions, but they all
share certain properties. For the sake of convenience, we often describe normal dis-
tributions in terms of units of standard deviation rather than raw numbers because
that allows us to apply the same description to any normal distribution.

Because all normal distributions have the same basic shape, we can make some
assumptions about how data is distributed within any normal distribution. The em-
pirical rule states that for any normal distribution:

• About 68% of the data will fall within one standard deviation of the mean.

• About 95% of the data will fall within two standard deviations of the mean.

• About 99% of the data will fall within three standard deviations of the mean.

This is illustrated in Figure 3-2, which expresses values in units of standard deviation.

Figure 3-2. Percent of data falling into specified ranges of the normal distribution

Knowledge of these properties of the normal distribution offers a way to judge
whether a particular value is typical or atypical compared to other values in the
population. The process of making such comparisons is facilitated by converting
raw scores (scores in their natural metric, for instance, weight measured in pounds
or kilograms) into Z-scores, which express the value of the score in terms of units
of the standard deviation. Converting all the values in a data set to Z-scores is anal-
ogous to transforming a normally distributed population to the standard normal
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distribution. For this reason, Z-scores are sometimes referred to as normalized
scores, the process of converting raw scores to Z-scores as normalizing the scores,
and the standard normal distribution as the Z distribution.

A Z-score is the distance of a data point from the mean, expressed in units of standard
deviation. The formula to calculate a Z-score for a value from a population with a
known mean and standard deviation is shown in Figure 3-3.

Figure 3-3. The formula for calculating a Z-score

If the variable x is distributed normally with a mean of 100 and standard deviation
of 5, that is, x ~ N (100, 5), a value of 105 has a Z-score of 1, as shown in Figure 3-4.

Figure 3-4. The Z-score for a value of 105 from a population ~N(100, 5)

This tells us that the value of 105 is located one standard deviation above the pop-
ulation mean. Similarly, a value of 110 from this population has a Z-score of 2.00,
and a value of 85 has a Z-score of −3. Using the empirical rule previously cited, we
classify the value of 105 as above average but not remarkable among the population
(about 15.9% of the population would be expected to have higher Z-scores). A score
of 110 is more unusual (about 2.5% of the population would be expected to have
higher Z-scores), and a score of 85 is below average and quite unusual (less than half
of 1% of the population would be expected to have scores this low or lower).

One great advantage of Z-scores is that they facilitate comparison of scores from
populations with different means and standard deviations. For instance, looking at
one population x ~ N (100, 5) and another population y ~ N (50, 10), we can’t
immediately say whether a score of 95 from the first population is more or less
unusual than a score of 35 from the second population. However, this comparison
is easily made using Z-scores, as shown in Figures 3-5 and 3-6.

Figure 3-5. The Z-score for a value of 95 from a population ~N(100, 5)
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Figure 3-6. The Z-score for a value of 35 from a population ~N(50, 10)

Conversion to Z-scores places both populations on the same metric, and we can see
that although both scores are below average for their populations, the second score
is more extreme because −1.5 is further from 0, the mean of the standard normal
distribution, than −1.0.

The Binomial Distribution
We will use the binomial distribution as an example of a discrete distribution, that
is, a distribution for a variable for which only certain values are possible. Consider
the case of flipping a coin five times: the number of times the coin comes up heads
can take integer values such as 0, 1, 2, 3, 4, or 5 but not values such as 3.2 or 4.6.
The variable “number of heads in five coin flips” is therefore a discrete variable. The
binomial distribution applies to many types of real-life data with dichotomous out-
comes (outcomes that can take only two values), from machine parts that are either
defective or acceptable to students who either pass or fail a class.

Events in a binomial distribution are generated by a Bernoulli process. A single trial
within a Bernoulli process is called a Bernoulli trial. The binomial distribution de-
scribes the number of successes in n trials of a Bernoulli process. “Success” in this
case doesn’t necessarily mean something good, just that the outcome we are looking
for has occurred. For instance, if we were describing how many machine parts out
of a sample of 10 were defective, each part would be considered a separate trial, and
the trial would be classified as a success if the part were defective. The binomial
distribution describes how likely it is that a particular number of parts from the
sample of 10 will be defective, given some estimate of the overall rate of defective
parts.

Data represented by the binomial distribution must meet four requirements:

1. The outcome of each trial is one of two mutually exclusive outcomes.

2. Each trial is independent, so the result of one trial has no influence on the result
of any other trial.

3. The probability of success, denoted as p, is constant for every trial.

4. There is a fixed number of trials, denoted as n.

Examples of the type of data that could be described by the binomial distribution
include the number of heads in 10 flips of a coin, where the probability of heads on
any toss is known to be 50%; the number of males in a sample of 5 drawn from a
large population known to be 65% male (the population must be large enough for
the proportion of males not to change appreciably by the removal of 5 people from
the total); and the number of defective items in a sample of 20, drawn from a large
population whose defect rate is known to be 1%.
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The formula to calculate the probability of a particular number of successes on a
particular number of trials is shown in Figure 3-7.

Figure 3-7. The formula for the binomial distribution

The formula for a combination is shown in Figure 3-8.

Figure 3-8. The formula for calculating a combination

A combination, as discussed in Chapter 2, expresses the number of ways k items
can be chosen from a set of n objects, ignoring order. Note that when the binomial
formula is written, the parentheses form specifies the combination to make the entire
formula easier to read, but the meaning is the same as the nCk notation we used in
Chapter 2.

The symbol ! in this equation means factorial: n! = (n)(n − 1)(n − 2) . . . (1). For
instance, 5! = 5 × 4 × 3 × 2 × 1 = 120. n is the number of trials. If we are flipping a
coin 10 times, n = 10. k is the number of successes. If we want to know the probability
of 5 successes in 10 trials, k = 5. p, a number between 0 and 1, is the probability of
success. If we are flipping a fair coin and the event is heads, p = 0.5 (meaning the
probability of heads on each flip is 0.50 or 50%).

The binomial formula can be used to calculate the probability of getting a particular
number of successes given a fixed probability of success per trial and a fixed number
of trials. The abbreviated way to specify a binomial probability is b(k;n,p) or P(k =
k;n,p), where k is the number of successes in n trials, each of which has probability
p of success. If we wanted to calculate the probability of 2 successes in 20 trials, with
p = 0.4, we could write b(2;20,0.4) or P(k = 2;20,0.4).

Figure 3-9 shows the graph for three binomial distributions. (Note that each com-
bination of p and n will produce a different distribution.)
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Figure 3-9. Three binomial distributions

As n increases, holding p constant, the binomial distribution more closely resembles
the normal distribution. A common rule of thumb is that if both np and n(1 − p) are
greater than or equal to 5, the binomial distribution may be approximated by the
normal distribution. In Figure 3-9, the distribution (p = 0.5, n = 40) qualifies for the
normal approximation according to this rule because:

np = 40(0.5) = 20 n (1 − p) = 40(1 − 0.5) = 20

However, a distribution with p = 0.1 and n = 40 does not qualify for use of the normal
approximation to the binomial because:

np = 40(0.1) = 4

Complex calculations based on the binomial distribution are usually done using
computer software, but a simple example will demonstrate how the formula works.
Suppose we are flipping a fair coin five times; what is the probability that we will
get exactly one head? We will define “heads” as a success and use the binomial
formula to solve this problem. In this example:

p = 0.5 (the definition of a fair coin is that heads and tails are equally likely)
n = 5 (because we are conducting five trials)
k = 1 (because we are calculating the probability of exactly one success)

The probability of exactly one success in five trials, given a probability of success on
each trial as 0.5, is calculated in Figure 3-10.
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Figure 3-10. Calculating b(1;5,0.5)

Breaking down the steps, Figure 3-11 shows how to calculate the combination.

Figure 3-11. Calculating 5C1

And Figure 3-12 shows the entire calculation.

Figure 3-12. Detailed calculation of b(1;5,0.5)

We can also get this result by using the binomial table in Figure D-8, Appendix D.

Independent and Dependent Variables
There are many ways to characterize variables: one of the most common is by the
roles they play in a research design or data analysis. Using these criteria, a simple
way to describe variables is as either dependent, if they represent an outcome of the
study, or independent, if they are presumed to influence the value of the dependent
variable(s). Many study designs include a third category, control variables, which
might influence the dependent variable but are not the main focus of interest.

Note that the labels “independent,” “dependent,” and “control” relate to the roles
played by the variables in a given design or experiment. This means that a given
variable (for instance, weight) could be an independent variable in one study, a
dependent variable in another, and a control variable in a third. In addition, other
labels are used to describe dependent and independent variables, with some authors
preferring to reserve specific labels for particular types of studies. Control variables
are particularly problematic because many types of control variables have been de-
fined, depending on their relationship to the independent and dependent variables
of interest and the type of study design employed. Control variables are discussed
further in Chapter 18, but this discussion will concentrate on independent and de-
pendent variables.
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We will use the example of a regression equation to illustrate the concept of inde-
pendent and dependent variables. This is just a brief introduction; the topic of re-
gression is covered in detail in Chapters 8, 10, and 11.

In a standard linear model such as an OLS regression equation, the outcome or
dependent variable is customarily indicated by the letter Y, whereas the independent
variables are indicated by X. Subscripts identify each individual X variable: X1, X2,
and so on. (OLS means Ordinary Least Squares, the most common type of regres-
sion; if not otherwise specified, in this book “regression equation” means “OLS
regression equation.”)

This should be clear from the conventional way of notating a regression equation,
as shown in Figure 3-13.

Figure 3-13. A regression equation

The e in this equation means “error” and reflects the fact that we don’t assume any
regression equation will perfectly predict Y; instead, we expect that there will always
be some error of prediction. Note that each X in the equation is preceded by a β,
which is called its regression coefficient: β1 is the regression coefficient for X1, β2 is
the regression coefficient for X2, and so on. The values for these regression coeffi-
cients are determined through a mathematical process to create the best possible
equation for predicting the value of Y from the values of the Xs in a given data set.

Because of this notational convention, the dependent variable is also referred to as
the “Y variable” and the independent variables as the “X variables.” Other terms
used for the dependent variable include the outcome variable, the response vari-
able, and the explained variable. Other names for independent variables include
regressors, predictor variables, and explanatory variables.

Some researchers believe that the terms “independent” and “dependent” should be
reserved for experimental studies (for instance, a randomized controlled drug trial).
In this interpretation, the terms “independent” and “dependent” imply causality,
that is, that the value of the dependent variable depends at least in part on the values
of the independent variables, a statement that is difficult if not impossible to estab-
lish in a nonexperimental study. (The distinction between experimental and non-
experimental studies is discussed in detail in Chapter 18.) This book does not
embrace this rule because questions of causality are far more complex than the dis-
tinction between experimental and nonexperimental studies; thus, we will use
“independent variable” to identify the variables that reflect the outcome of a study
and “dependent variable” to mean the variables believed to influence the outcome.

Populations and Samples
The concept of populations and samples, which is also discussed in Chapter 4, is
crucial to understanding inferential statistics. The process of defining the population
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and selecting an appropriate sampling method can be quite complex (in fact, many
doctoral-level statisticians specialize in this type of work) and requires more study
than can be covered here. Instead, the basic issues and concepts will be discussed,
and the reader interested in further information on the subject should consult a
specialized textbook (several are listed in Appendix C) or take an advanced course
in sampling theory.

The population of interest (often called simply “the population”) consists of all the
people or other entities (for instance, airplane parts or Atlantic salmon) that the
researchers would like to study if they had infinite resources. To look at it another
way, the population of interest is all the entities about which the researchers would
like to generalize their results. Defining the population of interest is the first step in
drawing a sample. It might be, for instance, everyone living in the United States in
2007 or men aged 65–75 with a diagnosis of congestive heart failure.

Samples and Censuses
Almost all statistical research is based on a study sample drawn from a population
rather than the population itself. The rare exceptions are studies based on data
collected from entire populations. When data is systematically collected from an
entire population, the result is a census. Many national governments conduct a
regular census of their population. For instance, the United States conducts a
census every 10 years, and the results are used for a variety of purposes, including
allocating seats in the House of Representatives. Even though a census intends to
collect information from every individual in a population, in practice this is rarely
achieved; some people are never counted, and some are counted more than once.
For these reasons, some statisticians argue that a well-chosen sample can yield a
more accurate estimate of population characteristics than that produced by census
data, or that the census data should be supplemented by sample data. For a read-
able discussion of these issues and a good list of references to more detailed in-
formation, see the article by Ivars Peterson listed in Appendix C.

Nonprobability Sampling
There are many ways to draw a sample. Unfortunately, some of the most convenient
are based on nonprobability sampling, which leaves them subject to sampling bias.
This means there is a high probability that the sample drawn using a nonprobability
method will not be representative of the population of interest, and there is no way
to correct the sample statistically, so any conclusions about the population based
on sample calculations will be questionable. Nonprobability sampling methods are
popular because the researcher can bypass the more cumbersome process of drawing
a probability sample, but a price is paid for this convenience. Conclusions based on
data using nonprobability sampling methods are of limited usefulness in generalizing
to a larger population (the usual reason for drawing a sample in the first place)
because there is no way to know how the sample relates to the population of interest,
and, thus, little faith may be had in conclusions about that population based on
results from the sample.
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Volunteer samples are a common type of nonprobability sample. Here’s an example:
a researcher advertises in the newspaper for study subjects and accepts those who
answer the ad and volunteer to take part in the study. This is a convenient way to
get subjects, but unfortunately people who volunteer for studies can’t be assumed
to be representative of any general population. Use of volunteer samples is best
reserved for circumstances in which it would be difficult to select a sample randomly
from a population, for instance in a study about people who use illegal drugs. Even
with limited ability to generalize, useful information can be gained from volunteer
samples, particularly in the early stages of a project. For instance, you might use
volunteer subjects to gather information about drug use within a community, in-
formation that you could then use to construct a questionnaire that would be ad-
ministered to a random sample from the community. Still, results from volunteer
samples have limited usefulness if the goal is to generalize beyond the sample.

Convenience samples are another common type of nonprobability sample. Like vol-
unteer samples, convenience samples can be used to collect information in the early
stages of a study but have limited usefulness if the goal is to generalize beyond the
sample. Here’s an example of a convenience sample: you collect information about
the shopping habits of people in a particular geographical area by interviewing 50
people shopping at a mall within that area. The problem with this type of sampling
is that because those 50 people are not a random selection of area residents, it would
not be valid to conclude that their opinions reflect those of the area as a whole.
However, you might use the information gained from a survey administered to a
convenience sample to construct a questionnaire for a more scientific sample of the
area’s population.

Quota sampling is a nonprobability sampling method in which the data collector is
instructed to get responses from a certain number or proportion of subjects within
broad classifications. For instance, in the shopping mall example, the data collector
might be instructed to collect data from a sample of 25 men and 25 women or to
include at least 20 nonwhite individuals in the sample. Quota sampling is a slight
improvement over convenience sampling because it can ensure representation of
different demographic groups within the sample. For instance, without the quota
requirements, the shopping mall sample might consist of 45 women and 5 men, and
no nonwhite individuals at all. However, because quota sampling is a nonprobability
sampling method, you still have no way of knowing whether the people in the sample
are representative of the population of interest. You might have an even represen-
tation of men and women in a quota sample, for instance, but are those in the sample
representative of all the men and women who shop at the mall, let alone who live
in the area? Quota sampling can also be subject to a particular type of selection bias,
which is also a risk in convenience sampling. The data collector might approach
people who seem most like himself (for instance in age) or who seem the friendliest
or most approachable, rendering the sample even less useful as a means to acquire
information about a larger population.
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Probability Sampling
In probability sampling, every member of the population has a known probability
to be selected for the sample. Although more complex to execute than nonproba-
bility sampling, probability sampling is preferred because the researcher can gener-
alize the results obtained from the sample to the population of interest.

Drawing a probability sample from a population requires devising some type of
sampling frame so the researcher can identify and sample members of the popula-
tion. Sometimes an obvious sampling frame exists. If the population is students
enrolled at a particular school, a list of all enrolled students could serve as the sam-
pling frame. Other times, a less optimal sampling frame must be used. For instance,
a telephone directory or block of phone numbers in use can be employed for a survey
carried out by telephone. A problem with either type of telephone sampling frame
is that people without phone service are not included in the population from which
the sample is drawn although they might be included in the population of interest.
People with unlisted telephone numbers or only callphone service, can also be ex-
cluded from a telephone sample drawn using these methods although they might be
part of the population of interest. Weighting and other procedures can be used dur-
ing analysis to make results from the study sample more applicable to the population
of interest.

The most basic type of probability sampling is simple random sampling (SRS). In
SRS, all samples of a given size have an equal probability of being selected. Suppose
you wanted to draw a random sample of 50 students attending a particular school.
You obtain a list of the students and select 50 at random from the list, using a random
number table or random number generator. Because the list represents an enumer-
ation of the entire population and the choice of whom to include in the sample is
completely random, every student has an equal probability of being selected for the
sample, as does every combination of students. (In this example, all samples of size
50 are equally likely.)

In most cases, SRS has the most desirable statistical properties of any kind of sam-
pling, including the smallest confidence intervals around parameter estimates, and
requires the least complex procedures to analyze. However, SRS can be impossible
or prohibitively expensive to execute in some contexts, so other methods of proba-
bility sampling have been developed when SRS is not possible or practical.

Systematic sampling is similar to SRS. To draw a systematic sample, you need a list
or other enumeration of your population. You decide the size of the sample you wish
to draw and then compute the number n, which dictates how you will select the
sample. You calculate n by dividing the size of the population by the number of
subjects you want in your sample. Suppose you have a population of 500 and want
to draw a sample of 25; in this case, n = 20 because 500/25 = 20.

You then choose a start number at random between 1 and n and include in your
sample the object representing the start number and every nth object following.
Suppose you want to draw a random sample of 100 objects from a population of
1,000. The steps to draw a systematic sample are the following:
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1. Set n = 10 because 1,000/100 = 10.

2. Choose a number at random between 1 and 10.

3. Select the object with that number and every 10th object thereafter.

If the number chosen at random was 7, your sample would include the 7th object,
the 17th, the 27th, and so on up to the 997th object.

Systematic sampling technique is particularly useful when the population accrues
over time and there is no predetermined list of population members. For instance,
suppose you want to survey people making court appearances in the upcoming year.
At the start of your study, you don’t know who those people will be, so you make
an estimate of the population of interest based on the court caseload in the previous
year, decide on your sample size, and calculate n as previously described. You then
keep an ordered list of people making court appearances, select your random starting
point, and then survey the person corresponding to your random starting point and
every nth person afterward who appears in court. If you determine that n is 14 and
your random starting point is 10, you would then survey the 10th person, the 24th
person, 38th person, and so on until you have your desired sample size.

One caution when using systematic sampling is that you must ensure that the data
is not cyclic in a way that corresponds with your random starting point and value
of n. For instance, if particular hours or days in court are reserved for particular types
of cases, and if your combination of starting point and n means that people whose
court dates were scheduled for those times have no possibility of being selected, your
sample will not be a random selection of everyone making court appearances.

There are many types of complex random samples, an umbrella term for probability
sampling methods that impose one or more layers of complexity beyond that of SRS.
In a stratified sample, the population of interest is divided into nonoverlapping
groups or strata based on common characteristics. For people, these characteristics
might be gender or age; for cities, they might be population size or type of govern-
ment; and for hospitals, they might be type of governance or number of beds. If
comparing different strata or making estimates of the characteristics of subgroups
is a primary goal of the study, stratified sampling is a good choice because it can be
designed to ensure adequate sampling from each stratum of interest. For instance,
a sample drawn using SRS might not include sufficient older adults to estimate their
characteristics accurately or compare them with middle-aged people. A stratified
sample, in contrast, can be designed to oversample the older adults, and the sample
can then be statistically adjusted to correct for the oversampling.

In a cluster sample, the population is sampled by using preexisting groups. This
technique is often used in national surveys that require in-person interviews or the
collection of physical specimens (e.g., blood samples) because sending survey per-
sonnel to interview one person in Ruckersville, Virginia, one in Chadron, Nebraska,
one in Barrow, Alaska, and so on would be prohibitively expensive. A more eco-
nomical procedure is to create a sampling plan that incorporates several levels of
random selection. On a national level, a cluster sampling plan could be devised that
selects geographic regions, then states within regions, cities within states, and so on
down to individual households and individuals within households. Precision is
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decreased with cluster sampling because objects that are clustered within units (for
instance, households within cites and cities within states) tend to be more similar
than objects selected through SRS. Offsetting this loss of precision is that a larger
sample can be collected because the cost savings of cluster sampling are usually
substantial.

Cluster sampling can be combined with the technique of sampling proportional to
size. For instance, you might wish to draw a sample of elementary school students.
There is no national list of all elementary school students (at least, not in the United
States), but you could compile a list of all elementary schools, and each school would
have a list of its students. Therefore, you could select schools at random, possibly
in a multistage process, and then draw a random sample from the selected schools.
Because schools enroll different numbers of students, you might want to incorporate
this information into your sampling plan so that you don’t have a disproportionate
number of students from small schools (which are more numerous but contain fewer
students as compared to large schools). Then you would select a different number
of students from each sampled school, based on the number enrolled in the school.
This means that you would select twice as many students from a school with an
enrollment of 400 as from a school with an enrollment of 200. In this way, your final
sample will have a representative proportion of students from both large and small
schools.

The Central Limit Theorem
The central limit theorem states that the sampling distribution of the sample mean
approximates the normal distribution, regardless of the distribution of the popula-
tion from which the samples are drawn if the sample size is sufficiently large. This
fact enables us to make statistical inferences based on the properties of the normal
distribution, even if the sample is drawn from a population that is not normally
distributed.

The central limit theorem can be stated as follows with regard to the sample mean:

Let X1, . . . Xn be a random sample from some population with mean µ and
variance σ2. Then for large n,

even if the underlying distribution of individual observations in the population
is not normal.

The  symbol represents “approximately distributed,” and the formula can be
read as “the mean of X is approximately normally distributed with mean µ and
variance σ2/n”.1

1. Rosner, Bernard. 2000. Fundamentals of Biostatistics, 5th ed.; Brooks/Cole, Pacific
Grove, CA, 174.
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The application of the central limit theorem in practice can be seen through com-
puter simulations that repeatedly draw samples of specified size from a nonnormal
population. Figure 3-14 displays a histogram for a population of randomly generated
data (100 cases) with a uniform distribution of values ranging from 0 to 100.

Figure 3-14. Histogram of a uniformly distributed population (N = 100) with range 0–100

The distribution in Figure 3-14 is decidedly not normal. However, the central limit
theorem says that when samples of sufficient size are drawn from a nonnormal pop-
ulation, the means of those samples tend to assume a normal distribution. Note that
the theorem does not define what constitutes a sufficient size. Analysts have devel-
oped rules of thumb regarding this issue, such as the often-repeated rule that the
sample size should be 30 or larger, but no absolute rule applies in all cases. For
samples drawn from a population that is approximately normal, the sampling dis-
tribution of the sample mean might be approximately normal with a sample size as
small as 10 or 15, whereas with highly skewed distribution, the sample size required
can be 40 or more.

The phrase “sampling distribution of the sample mean” is a mouthful, but its mean-
ing is straightforward. We have already looked at two theoretical distributions (the
normal and the binomial), but the fact is that random variables also have distribu-
tions. In this case, we are interested in the distribution of means calculated from
samples of a given size drawn from a particular population. If we repeatedly draw
samples of a given size, calculate the mean of each sample, and plot the distribution
of those means, the result is the sampling distribution of the sample mean. We expect
that the samples will differ somewhat from each other and thus will have different
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means, producing a distribution of means. We can predict the general shape that
this distribution of sample means will take based on factors such as the population
distribution and the sample size.

You can see the influence of sample size on the sampling distribution of the sample
mean by comparing Figure 3-15 and Figure 3-16. Figure 3-15 displays the distribu-
tion of the means of 100 samples of size n = 2 drawn from the population shown in
Figure 3-14; Figure 3-16 displays the distribution of the means of 100 samples of
size n = 25 drawn from the same population. Figure 3-15 still looks much like a
uniform distribution, indicating that a sample size of 2 is not sufficient to invoke the
central limit theorem for this population.

Figure 3-15. Histogram of the means of 100 samples of size n = 2 drawn from a uniform
distribution

Figure 3-16 displays the distribution of 100 means calculated from samples of size
n = 25 drawn from the uniform distribution displayed in Figure 3-14. This distri-
bution is much closer to a normal distribution, so a sample size of 25 appears to be
sufficient to invoke the central limit theorem for this population.
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Figure 3-16. Histogram of the means of 100 samples of size n = 25 drawn from a population
with uniform distribution

Figures 3-17 to 3-19 demonstrate the same principle by using samples drawn from
a skewed (nonsymmetric) population. Figure 3-17 shows the distribution of values
for a data set of size 100 with a strongly skewed distribution.

Figures 3-18 and 3-19 demonstrate how the distribution of sample means drawn
from this skewed population changes with the size of the samples. Figure 3-18 shows
the distribution of means calculated from 100 samples of size n = 2, whereas Fig-
ure 3-19 shows the distribution of means from 100 samples of size n = 25. As with
the previous uniform data example, a sample of size n = 2 is not sufficient to invoke
the central limit theorem for this data, although a sample of 25 seems to be sufficient.
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Figure 3-17. Histogram of skewed population (N = 100)

Figure 3-18. Histogram of the means of 100 samples of size n = 2, drawn from a population
with skewed distribution
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Figure 3-19. Distribution of the means of 100 samples of size n = 25, drawn from a population
with skewed distribution

Hypothesis Testing
Hypothesis testing is fundamental to inferential statistics because it allows us to use
statistical methods to make decisions about real-life problems. Several conceptual
steps are involved in hypothesis testing:

1. Develop a research hypothesis that can be tested mathematically.

2. Formally state the null and alternative hypotheses.

3. Decide on an appropriate statistical test, gather data, and do the calculations.

4. Make your decision based on the results.

Take the example of evaluating a new medication to treat high blood pressure (hy-
pertension). The manufacturer wants to establish that it works better than currently
available treatments for the same condition, so the research hypothesis might be
something like, “Hypertensive patients treated with the new drug X will show greater
lowering of their blood pressure than hypertensive patients treated with the currently
available drug Y.” If we use µ1 to signify the mean lowering of blood pressure in the
group treated with drug X and µ2 to signify the mean lowering of blood pressure in
the group receiving drug Y, we can state our null and alternative hypotheses as
follows:

H0: µ1 ≤ µ2
HA: µ1 > µ2
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H0 is called the null hypothesis. In this example, the null hypothesis states that drug
X is no improvement over drug Y because the lowering of blood pressure achieved
by drug X is less than or equal to that achieved by drug Y. HA, sometimes written
as H1, is called the alternative hypothesis. In this example, the alternative hypothesis
states that drug X is more effective than standard treatment because patients treated
with drug X show more lowering of their blood pressure than patients treated with
drug Y. Note that the null and alternative hypotheses must be both mutually exclu-
sive (no result could satisfy both conditions) and exhaustive (all possible results will
satisfy one of the two conditions).

In this example, the alternative hypothesis is single-tailed: we state that the group
treated with drug X must achieve greater lowering of blood pressure than the group
treated with drug Y for the null hypothesis to be rejected. We could also state a two-
tailed alternative hypothesis if that were more appropriate to our research question.
For instance, if we were interested in whether the blood pressure of patients treated
with drug X was different, either higher or lower, than that of patients receiving drug
Y, we would state this using a two-tailed alternative hypothesis:

H0: µ1 = µ2
HA: µ1 ≠ µ2

Two-tailed hypotheses are more common in statistical testing because usually you
want to retain the ability to find a difference in either direction.

After the data is collected and the statistics calculated, we can make one of two
decisions:

• Reject the null hypothesis.

• Fail to reject the null hypothesis.

Note that if we fail to reject the null hypothesis, this does not mean that we have
proven the null hypothesis to be true, only that our study did not find sufficient
evidence to reject it.

Rejecting the null hypothesis is sometimes called “finding significance” or “finding
significant results” because our statistical analysis must show not only that there
are, say, differences in the group means but that those differences are statistically
significant. The informal meaning of statistically significant is “probably not due to
chance,” and the process of determining whether results are significant involves not
only statistical calculations but the application of customary rules that might vary
based on the field of study or other factors.

The process of statistical testing involves choosing a probability level or p-value (a
topic treated in greater detail later) that defines when sample results will be consid-
ered strong enough to support rejection of the null hypothesis. In practice, the p-
value is most commonly set at 0.05. Why this particular value? It’s a somewhat
arbitrary cutoff point and dates back to the early twentieth century, when statistics
were computed by hand and the results compared to published tables used to de-
termine whether a result was significant. The use of p < 0.05 as the standard for
significant results has been challenged (see the next sidebar, “Controversies Re-
garding Hypothesis Testing”) but remains a common standard for research in many

Hypothesis Testing | 65

Inferential
Statistics



fields. Alternative lower p-values are sometimes used, such as p < 0.01 or p < 0.001,
but no one has been successful in legitimizing the general use of a larger value, such
as p < 0.10.

Inferential statistics is a powerful tool that allows us to make probabilistic statements
about data. However, because those statements are probabilistic rather than abso-
lute, the possibility of error is inherent in the process. Statisticians have defined two
types of error possible when making decisions using inferential statistics and have
established levels for error rates that are commonly considered acceptable. The two
types of error are displayed in Table 3-1.

Controversies Regarding Hypothesis Testing
Despite the ubiquity of hypothesis testing in modern statistical practice and the
canonical place that the α = 0.05 significance level has achieved, neither practice
has gone unchallenged. One of the chief critics is Jacob Cohen, whose arguments
are presented in, among other places, his 1994 article, “The Earth Is Round (p <
0.05)”.2 There are valid criticisms of both hypothesis testing in general and the
0.05 value in particular, but neither seems likely to be going away any time soon.
On the one hand, we need to establish some standard for statistical significance
to minimize the possibility of attributing significance to differences due to sam-
pling error or other chance factors. On the other hand, there’s nothing magical
about the 0.05 level, even if it is sometimes treated as such. In addition, the sig-
nificance level of results calculated on a sample is affected by many factors, in-
cluding the size of the sample involved, and overemphasis on the p-value of a result
ignores the many reasons a particular study may or may not have found signifi-
cance. It’s a common saying among statisticians that if you have a large enough
sample, even a tiny effect will be statistically significant. The take-home message
is that statistical methods are powerful tools, but they don’t relieve researchers of
the need to use their common sense as well.

Table 3-1. Type I and Type II errors

  True state of population  

  H0 true HA true

Decision based on
sample statistic

Fail to reject H0 Correct decision: H0 true and H0 not
rejected

Type II error or β

 Reject H0 Type I error or α Correct decision: H0 false and
H0 rejected

The diagonal boxes represent correct decisions: H0 is true and is not rejected in the
study, or H0 is false and is rejected in the study. The other two boxes (the off-diagonal
boxes) represent Type I and Type II errors. A Type I error, also known as alpha or
α, represents the error made when the null hypothesis is true but is rejected in a
study. A Type II error, also called beta or β, represents the error made when H0 is
false but is not rejected in a study.

2. American Psychologist, December 1994, 997–1003.

66 | Chapter 3: Inferential Statistics



I have set up this matrix to compare the true state of the population (which, of course,
is generally unknown to the researcher) with a decision made about the population,
based on analysis of a sample. Another way to look at it is to consider a trial in which
the null hypothesis is that the defendant is innocent. In a trial situation, there is a
true state of affairs (did the defendant commit the crime as charged?), and then there
is the jury members’ decision based on the information presented to them (did they
find the client guilty or not guilty?). The jury doesn’t know the true state of affairs
any more than a statistician knows the true state of the population, so it might make
a correct decision, or it might commit a Type I or Type II error. If the jury finds an
innocent client guilty, that is equivalent to a Type I error (it rejects the null hypothesis
of innocence when it should not), whereas if it finds a guilty client not guilty, it
commits a Type II error (failing to reject the null hypothesis of innocence when it
should have rejected it).

The level of acceptability for Type I error is conventionally set at 0.05, as noted
previously. Setting alpha at 0.05 means that we accept a 5% probability of Type I
error. To put it another way, we understand when setting the alpha level at 0.05 that
in our study we have a 5% chance of rejecting the null hypothesis when we should
fail to reject it.

Type II error has received less attention in statistical theory because historically it
has been considered a less serious error to fail to make an inference that is true (Type
II error) than to make an inference that is false (Type I error). Conventional levels
of acceptability for Type II error are β = 0.1 or β = 0.2. If β = 0.1, that means the
study has a 10% probability of a Type II error; that is, there is a 10% chance that
the null hypothesis will be false but will fail to be rejected in the study. To put it
another way, it means that in a study that should return significant results based on
the true state of the population, there is a 10% chance that the results of the study
will not be significant.

The reciprocal of Type II error is power, defined as 1 − β. The importance of setting
an appropriate power level has become more appreciated in recent years, particularly
in the medical field. Researchers and funding agencies have become concerned with
power and, thus, with Type II error, in part because they don’t want to invest time,
effort, and expense in a study unless it has a reasonable probability of finding sig-
nificant results if it should find them. Power calculations play an important role in
planning studies, particularly in determining the sample size required for adequate
power; these issues are discussed in more detail in Chapter 15.

Confidence Intervals
When we calculate a single statistic, such as the mean, to describe a sample, that is
referred to as calculating a point estimate because the number represents a single
point on the number line. Although the sample mean is the best unbiased estimate
of the population mean, we know that if we drew a different sample, the mean
calculated from that sample would probably be different. We certainly don’t expect
that every sample we draw will have exactly the same mean. It is reasonable to ask
how much a point estimate is likely to vary by chance, and for this reason, it has
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become a common practice in many professional fields to report both point esti-
mates and interval estimates. In contrast to a point estimate, which is a single num-
ber, an interval estimate is a range of numbers.

One common interval estimate is the confidence interval, which is the interval be-
tween two values that represent the upper and lower confidence limits or confidence
bounds for a statistic. The formula used to calculate the confidence interval depends
on the statistic being used and will be included in the relevant chapters. In this
section, our purpose is to convey the concept of the confidence interval. It is calcu-
lated using a predetermined significance level, often called α (the Greek letter
alpha), which is most often set at 0.05, as discussed previously. The confidence co-
efficient is calculated as (1 − α) or, as a percentage, 100(1 − α)%. Thus, if α = 0.05,
the confidence coefficient is 0.95 or 95%. The latter usage is more common; for
instance, people often speak of 95% confidence intervals, and professional journals
often require you to report the 95% confidence interval along with point estimate
statistics.

Confidence intervals are based on the idea that if a study were repeated an infinite
number of times, each time drawing a different sample of the same size from the
same population, and a confidence interval based on each sample were constructed,
x% of the time the confidence interval would contain the true parameter value that
the study seeks to estimate, where x is the size of the confidence interval. For in-
stance, if our test statistic is the mean and we are using a 95% confidence interval,
over an infinite number of repetitions of drawing a sample and computing its mean,
95% of the time the confidence interval thus constructed would contain the true
mean of the population.

The confidence interval conveys important information about the precision of a
point estimate. For instance, suppose we have two samples of students, and in both
cases, the mean IQ score for the group is 100 (average intelligence). In one case,
however, the 95% confidence interval is (95, 105), whereas in the other case, the
95% confidence interval is (80, 120). Because the first confidence interval is much
narrower than the second, the estimate of the mean is more precise for the first
sample. In addition, the wider confidence interval for the second sample suggests
that those students are drawn from a population with greater variability in IQ than
the students in the first sample (although further analysis would be necessary to
confirm or reject this hypothesis).

p-values
It is a fact of life when working with inferential statistics that we are generally trying
to estimate something that we can’t measure directly. For instance, we can’t collect
data from every hypertensive adult in the world, but we can collect data from a
sample of hypertensive adults and make inferences based on that sample. We know
that there is always some probability of error in this type of reasoning, including the
possibility that significant results can be due to chance factors such as sampling error
rather than to the factors of interest in our study.
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A p-value expresses the probability that results at least as extreme as those obtained
in an analysis of sample data are due to chance. The phrase “at least as extreme” is
included in the definition because many statistical tests involve comparing the test
statistic to some hypothetical distribution, and often (as is the case with the normal
distribution), scores closer to the center of the distribution are the most common,
whereas scores further from the center of the distribution (the more extreme scores)
are less likely. Even if a distribution is not symmetrical (as is the case with the chi-
squared distribution, for instance), more extreme results are usually less probable
results, so the principle of determining the probability of results at least as extreme
as those found in a study remains useful.

This might become clearer by considering a simple illustration. Suppose we are en-
gaged in an experiment involving flipping a coin that we believe to be fair, that is, a
coin for which heads (h) or tails (t) are equally likely outcomes for any single flip.
We can express this formally as:

P(h) = P(t) = 0.5.

We will call each flip a trial. Because the probability of heads on any flip is 0.5, our
best guess is that we will get 5 heads on 10 trials, although we also know that on
any particular set of 10 trials, we might get a different number of heads. Suppose we
flip the coin 10 times, and 8 times it comes up heads. We want to know the p-value
of this result, that is, how likely is it that a coin with a probability of 0.5 for heads
on any single trial would produce 8 heads in 10 trials?

Using a binomial table, computer software, or the binomial formula, we find that
the probability of this exact result (8 heads in 10 trials) is 0.0439, meaning that less
than 5% of the time would we expect to get exactly 8 heads in 10 flips with a fair
coin. The probability for 9 heads in 10 trials is 0.0098, and for 10 heads in 10 trials
is 0.0010. This demonstrates that as results move further away from the expected
result of 5 heads in 10 trials, they become less likely.

If we are evaluating the probability that the coin is fair, results that are far from our
expectation (5 heads in 10 trials) give us strong evidence that it is fair. With this type
of question, we usually calculate the probability not just of the result we obtained
in our experiment but of results at least as extreme as those we obtained. In this case,
the probability of getting 8, 9, or 10 heads in 10 flips of a fair coin is 0.0439 + 0.0098
+ 0.0010, or 0.0547. This is the p-value for the result of at least 8 heads in 10 trials,
using a coin where P(heads) = 0.5.

p-values are commonly reported for most research results involving statistical cal-
culations, in part because intuition is a poor guide to how unusual a particular result
is. For instance, many people might think it is unusual to get 8 or more heads on 10
trials using a fair coin. There is no statistical definition of what constitutes “unusual”
results, so we will use the common standard that the p-value for our results must be
less than 0.05 for us to reject the null hypothesis (which is, in this case, that the coin
is fair). In this example, somewhat surprisingly, this standard is not met. The p-value
for our result (8 heads in 10 trials) does not allow us to reject the null hypothesis
that the coin is fair, that is, that P(heads) = 0.5, because 0.0547 is greater than 0.05.
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The Z-Statistic
The Z-statistic is analogous to the Z-score discussed earlier, with one important
difference: instead of asking what the probability of a particular score is, we are now
interested in the probability of a particular sample mean. The Z-statistic is an im-
portant example of the application of the central limit theorem, which allows us to
compute the probability of a sample result by using the normal distribution, even if
we don’t know the distribution of the population from which the sample was drawn.

The formula for calculating the Z-statistic (Figure 3-20) is similar to that for calcu-
lating a Z-score (Figure 3-3).

Figure 3-20. Formula for the Z-statistic

In this formula,  is the mean of our sample,
µ is the population mean,
σ is the population standard deviation, and
n is the sample size.

The big difference between the Z-score and the Z-statistic formulas is in the de-
nominator: for a Z-score we divide by σ, whereas for the Z-statistic we divide by σ/
√n. Note that to calculate the Z-statistic, we must know the population mean and
standard deviation; if we know the mean but not the standard deviation, we can
calculate the t-statistic instead (discussed in Chapter 6). It might help to think of the
Z-score as a Z-statistic for a sample of 1, so the denominator is σ/√1, which is the
same as σ and gives us the familiar Z-score formula.

The denominator of the Z-statistic is called the standard error of the mean, some-
times abbreviated SEM or written as . The standard error of the mean is the stan-
dard deviation of the sampling distribution of the sample mean. Because the de-
nominator of the standard error of the mean is divided by √n, larger samples will
tend to produce larger Z-statistics, all else held equal. This will be clear if we calculate
the Z-statistic for several samples that differ only in sample size. Suppose we draw
three samples from a population with a mean of 50 and a standard deviation of 10:

Sample 1:  = 52, n = 30
Sample 2:  = 52, n = 60
Sample 3:  = 52, n = 100

The calculations for the Z-statistic for each sample are presented in Figures 3-21,
3-22, and 3-23.
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Figure 3-21. Z-statistic for a sample (  = 52, n = 30) from a population ~N(50, 10)

Figure 3-22. Z-statistic for a sample (  = 52, n = 60) from a population ~N(50, 10)

Figure 3-23. Z-statistic for a sample (  = 52, n = 100) from a population ~N(50, 10)

It is clear from these examples that sample size has an important influence on our
results and that, all else held equal, a larger sample will result in a more extreme
Z-score. This topic is taken up in greater detail in the section on sample size and
power in Chapter 15, but we will note here that this result makes intuitive sense.
The Z-statistic is calculated by dividing a numerator by a denominator, and a larger
sample size (larger n) will result in dividing by a smaller denominator, thus a more
extreme Z-score (assuming the numerator does not change). We say “more extreme”
because if the numerator is negative, the Z-score will be smaller with a larger n (all
else held equal) but also further from 0. For instance, in this example, if our sample
mean were 48 instead of 52, the Z-values would be −1.10, −1.55, and −2.00.

Suppose we are testing a two-tailed hypothesis with an alpha level of 0.05. In this
case, we would also want the p-values for each result, which are:

Sample 1: p = 0.2713
Sample 2: p = 0.1211
Sample 3: p = 0.0455

Only the third sample gives us significant results; that is, only the p-value from the
third sample is less than our alpha level of 0.05 and thus allows us to reject the null
hypothesis. This underlines the importance of having adequate sample size when
conducting a study.

You can find the p-value for a given Z value in several ways: by using statistical
software, by using one of the many online calculators, or by using probability tables.
Probability tables for several of the most common distributions, including the
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standard normal distribution, are included in Appendix D, along with instructions
for using the tables.

Data Transformations
Many of the most common statistical procedures are known as parametric statistics,
meaning that they make certain assumptions about the distribution of the popula-
tion from which the sample was drawn. If the sample data indicate that these as-
sumptions have not been met, the researcher has several options for analyzing the
data. One is to use alternate, nonparametric statistical procedures, which make fewer
or no assumptions about the data distribution. Nonparametric statistics are dis-
cussed in Chapter 13. Another possibility is to transform the data in some way so
that the assumptions of the desired parametric statistical procedure are met. There
are many ways to transform data, depending on the distribution involved and the
assumptions violated. We will examine one case, the transformation of a data set to
make it close to a normal distribution, but the principles we discuss apply to other
data transformation problems as well. For further information about data transfor-
mations, consult a more advanced textbook such as that by Mosteller and Tukey
(listed in Appendix C).

The first step in data transformation is to evaluate the data set and decide which, if
any, transformations might be appropriate. Two approaches are recommended to
evaluate a data set for this purpose. One is to graph the data, for instance, by creating
a histogram with a superimposed normal curve. This allows a visual evaluation of
the general shape of the data as well as the opportunity to identify outliers (extreme
or unusual data values). Observing the general shape of the data can also help suggest
which transformations to try. The second approach is to compute one of the statistics
designed to test whether the data fits a particular distribution. Two statistics com-
monly used for this purpose are the Anderson–Darling and the Kolmogorov–
Smirnov. Routines to calculate these statistics are included in many statistical
packages, and various statistical calculators available on the Internet will also cal-
culate one or both of them. For instance, a statistical calculator to compute the
Kolmogorov–Smirnov test is available here.

Data that is right skewed (assuming a shape in which lower values are more common,
and a tail of higher values with lower frequencies extends some distance to the right)
may be made more normal by application of the square-root or log transformations.
The square-root transformation computes the square root of each value. If the raw
data value is 4, the transformed value is 2 because √4 = 2. The log transformation
computes the natural log of each value, so if the raw data value is 4, the transformed
value is 1.386 because ln(4) = 1.386. Either transformation can be accomplished
easily with statistical software, a pocket calculator, or a spreadsheet program.

Figure 3-24 displays a right-skewed data set. Figure 3-25 shows the same data after
a square-root transformation (the values graphed are the square roots of the data in
Figure 3-24), and Figure 3-26 shows the same data after a log transformation (the
values graphed are the natural logs of the data displayed in Figure 3-24).
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Figure 3-24. Histogram of right-skewed data set (raw values)

Figure 3-25. Histogram of right-skewed data after square-root transformation
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Figure 3-26. Histogram of right-skewed data after natural log transformation

Comparing the three graphs visually, Figure 3-24 is definitely right skewed and does
not fit the superimposed normal distribution curve. Figure 3-25 seems to be a much
better fit to the normal distribution, and Figure 3-26 seems to have replaced the right
skew with a left skew, so it is also nonnormal.

We can also compute statistical tests to see whether either of the transformations
has resulted in an acceptably distributed data set. For this purpose, we will calculate
the one-sample Kolmogorov–Smirnov (K–S) statistic (using SPSS software, although
it is available in other statistical programs as well) to evaluate how closely each data
set corresponds to a perfect normal distribution. Results for the three data sets are
shown in Table 3-2.

Table 3-2. The Kolmogorov-Smirnov Z statistics and p-values for three data sets

 Raw data Square-root transformation Natural log transformation

Kolmogorov–Smirnov Z 1.46 0.66 1.41

p 0.029 0.78 0.04

The null hypothesis for the one-sample K–S test is that the data follow the specified
distribution, in this case the normal distribution; the alternative hypothesis is that
the data do not follow that distribution. SPSS returns both a K–S statistic (the K–S
Z) and a p-value for this statistic, and we will apply the rule that we will reject the
null hypothesis if p < 0.05. For the results in Table 3-2, we reject the null hypothesis
for the raw data and the natural log transformed data but fail to reject it for the
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square-root transformation. Therefore, if we want to use this data in a procedure
that calls for normally distributed data, we should use the square-root−transformed
data.

If a variable has a left or negative skew, that is, a concentration of high values with
a tail of less-frequent lower values to the left, you can reflect the data and then apply
the square-root or log transformation. To reflect a variable, add 1 to the largest value
in the data set and then subtract each value of the variable from the new number.
For instance, if the largest value in the data set is 35, subtract each value from 36
(i.e., 35 + 1) to get the reflected values. This means that the raw value of 1 becomes
the reflected value 35 (36 − 1), the raw value of 2 becomes the reflected value of 34
(36 − 2), and so on, up to the raw value of 35, which becomes the reflected value of
1 (36 − 35). Reflection changes a left-skewed distribution to a distribution with a
right skew, and then the square root and log transformations can be applied to see
whether they improve normality.

Data transformation is not a guaranteed solution to a distribution problem; some-
times it makes the problem worse or introduces a new problem! For this reason, the
transformed data should always be evaluated for normality, as we did previously, to
see whether the transformation resulted in data with the desired distribution. Note
also that a transformation changes the unit of the data. For instance, if you apply
the log transformation to a population of blood pressure scores, your unit of meas-
urement becomes the log of blood pressure scores. If you reflect a variable, this
reverses the values (what was the highest score is now the lowest), so the interpre-
tation of any statistic based on those values is also reversed. For these reasons, the
effects of any data transformations must be kept in mind when reporting and inter-
preting the statistical results.

Exercises
Problem

In each of the following sets of variables, which are likely candidates to be treated
as independent and which as dependent within a research study?

1. Gender, alcohol consumption, and driving record

2. High school GPA (grade point average), university freshman year GPA, choice
of university major (selected before enrollment), race/ethnicity, and gender

3. Age, race/ethnicity, smoking habits, and occurrence of breast cancer

4. Accuracy on a coding task, type of instructions given, practice time, and anxiety
level

Solution

Note that there is more than one possible answer to these questions. The following
answers are simply the most likely research designs.

1. Gender is an independent variable (neither alcohol consumption nor driving
record could influence gender). Alcohol consumption would most likely be an
independent variable and driving record a dependent variable, so the study
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would examine the influence of gender and alcohol consumption on driving
record. However, one could conceivably design an experiment in which the
roles of alcohol consumption and driving record were reversed, perhaps to test
the hypothesis that people are inclined to lower their alcohol consumption after
being in a serious accident.

2. University freshman-year GPA is the most likely dependent variable. For tem-
poral reasons, high school GPA would be an independent variable (because high
school occurs before university). Race/ethnicity and gender are also independ-
ent variables because they are characteristics of a person. For temporal reasons,
choice of university major would be an independent variable, if freshman-year
GPA is the dependent variable, because the variable description states that the
major is chosen before enrolling in university, whereas the freshman-year GPA
is calculated after one year of enrollment.

3. Breast cancer is the most likely dependent variable, with age, race/ethnicity,
and smoking habits being independent variables.

4. Accuracy is the most likely dependent variable, with type of instructions given,
practice time, and anxiety level all independent variables.

Problem

Why is the central limit theorem of primary importance to the practice of inferential
statistics?

Solution

The central limit theorem states that the sampling distribution of the sample mean
approximates the normal distribution, regardless of the distribution of the popula-
tion from which the samples are drawn if the sample size is sufficiently large. This
is important because if sample size is sufficient, we can use the normal distribution
to calculate the probability of results calculated on a sample, even if we don’t know
the distribution of the population from which the sample was drawn.

Problem

Which type of sampling is described by each of the following scenarios?

1. The goal is to collect information on iron deficiency, obtained through blood
tests, on the U.S. population. A sampling plan is devised so that units are se-
lected from successively smaller regions of the country. Regions are selected at
random, then states within regions, and so on down to individual households
within census block groups.

2. The goal is to find out how elementary school students are reacting to a recently
appointed principal. The researcher wants to include equal numbers of male
and female students in the sample, so the interviewer is sent to the school with
instructions to interview 10 male and 10 female students from among those on
the playground after school one day.

3. The goal is to learn more about the domestic life of police officers working in a
major city, including how home life is affected when the police officer’s spouse
is employed outside the home. A complete list of all men and women working
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as police officers in this city is available, and a computer draws a random sample
of 200 from this list. Members of the sample are then interviewed by telephone.

4. A factory supervisor is concerned that the quality of parts produced might not
be equal on all shifts or at all times within a shift. (The factory operates 24 hours
per day.) A sampling plan is devised to collect samples of 30 parts at 9 times
during the work day, with the times of collection selected randomly within time
blocks for each of the three daily shifts. Within each shift, one sample will be
drawn within the first 2 hours, one within the middle 6 hours, one within the
last 2 hours.

Solution

1. Cluster sampling

2. Quota sampling (and convenience sampling)

3. Simple random sampling

4. Stratified sampling

Problem

You are taking a multiple-choice test with 10 items, in which there is no penalty for
wrong answers. There are 5 possible answers for each question, so just by guessing,
you have a 20% chance of getting the right answer on each question. Assuming that
you simply guess at the right answers, what is the probability that you will get
exactly 3 answers right?

Solution

This question can be answered by using the binomial distribution with n = 10, k =
3, and p = 0.2, as shown in Figure 3-27.

Figure 3-27. Calculating b(3; 10, 0.2)

Therefore, the probability is 0.20 or 20 percent that you will get exactly 3 questions
right, under these conditions.

Using Figure D-8 (the binomial probability table in Appendix D), the table proba-
bility is 0.20133, which rounds to 0.20.

Problem

Given the same conditions as in the previous question, what is the probability of
getting 3 or more questions right?

Solution

This question can also be answered by using the binomial distribution with n = 10,
k = 3, and p = 0.20. It is easier to calculate the probability of getting no more than
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2 questions right and then subtracting it from 1, so that is the approach we will use.
We can do this because total probability always equals 1, and “at least 3 questions
right” and “no more than 2 questions right” together account for all possible out-
comes. Applying the binomial formula, we find these probabilities:

P(k = 0) = 0.11
P(k = 1) = 0.27
P(k = 2) = 0.30
P(k ≥= 3) = 1 − P(k ≤= 2) = 1 − (0.11 + 0.27 + 0.30) = 0.32

Therefore, the probability of getting 3 or more answers right, under these conditions,
is 0.32 or 32 percent.

Using Figure D-9 (the cumulative binomial probability table in Appendix D), the
table probability for b(2; 10, 0.5) is 0.67780; 1 − 0.67780 = 0.3222, which rounds
to 0.32.

Problem

Calculate the Z-scores of the following data values, assuming they came from a
normal population with µ = 100 and σ = 2, and use the standard normal table
(Figure D-3 in Appendix D) to find the probability of a score this large or larger for
each. Instructions about how to use the probability table are included in Appen-
dix D, along with detailed solutions for each of these problems.

a. 108

b. 95

c. 98

Solution

a. Z = 4; P(Z ≥ 4.00) = 1 − (0.50000 + 0.49997) = 0.00003

Figure 3-28. Z-score for value of 108 from population ~N(100, 2)

b. Z = −2.5 ; P(Z ≥ −2.50) = 0.50000 + 0.49379 = 0.99379

Figure 3-29. Z-score for value of 95 from population ~N(100, 2)
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c. Z = −1.0; P(Z ≥ −1.00) = 0.50000 + 0.34134 = 0.84134

Figure 3-30. Z-score for value of 98 from population ~N(100, 2)

Problem

Which of the following raw scores has a more extreme Z-score, that is, has a Z-score
further (in either a positive or negative direction) from 0?

a. A score of 190, from a population with µ = 180 and σ = 4

b. A score of 175, from a population with µ = 200 and σ = 5

Solution

The second score is more extreme because −5.0 is further from 0 than 2.5 (Figures
3-31 and 3-32).

Figure 3-31. Z-score for value of 190 from population ~N(180, 4)

Figure 3-32. Z-score for value of 175 from population ~N(200, 5)

Problem

Compute the Z-statistic for each of the following samples, which were drawn from
a population with a mean of 40 and a standard deviation of 5. Use the standard
normal table (Figure D-3 in Appendix D) to find the probability of a result at least
as low as each result.

a. = 42, n = 35

b. = 42, n = 50

c. = 39, n = 40

d. = 39, n = 80
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Solution

a. Z = 2.37; P(Z ≤ 2.37) = 0.50000 + 0.49111 = 0.99889

Figure 3-33. Z-statistic for a sample (  = 42, n = 35) from a population ~N(40, 5)

b. Z = 2.83; P(Z ≤ 2.83) = 0.50000 + 0.49767 = 0.99767

Figure 3-34. Z-statistic for a sample (  = 42, n = 50) from a population ~N(40, 5)

c. Z = −1.26; P(Z ≤ −1.26) = 1 − P(Z ≥ −1.26) = 1 − (0.50000 + 0.39617) = 0.10383

Figure 3-35. Z-statistic for a sample (  = 39, n = 40) from a population ~N(40, 5)

d. Z = −1.79; P(Z ≤ −1.79) = 1 − P(Z ≥ −1.79) = 1 − (0.50000 + 0.46327) = 0.03673

Figure 3-36. Z-statistic for a sample (  = 39, n = 80) from a population ~N(40,5)

Problem

You are a principal in an elementary school. As part of a comprehensive evaluation,
one of your students was given an IQ (intelligence) test and received a score of 80.
You know that for this student’s age group in the population at large, scores on this
test are distributed normally (µ = 100, σ = 15). What statistic will help you interpret
this student’s score?
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Solution

A Z-score will place this student’s score of 80 in the context of the distribution of
scores for other students of his age. As shown in Figure 3-37, this student scored
1.33 standard deviations below the average for her age group. Although many factors
can affect the score on an IQ test (hence, the need for a comprehensive evaluation),
a below-average score does suggest that this student might have more difficulty in
school than pupils who test higher on IQ tests.

Figure 3-37. Z-score for a value of 80 from a population ~N(100, 15)

Using the standard normal distribution table (Figure D-3 in Appendix D), you see
that only about 9% of students (p = 0.09176) would be expected to have an IQ score
this low or lower.

P(Z ≤ −1.33) = 1 − P(Z ≥ −1.33) = 1 − (0.50000 + 0.40824) = 0.09176

Problem

You are a medical researcher studying the effects of a vegetarian diet on cholesterol
levels. Assume the cholesterol level for U.S. men ages 20–65 is distributed normally,
with a mean of 210 mg/dL (mg = milligrams, dL = deciliter) and a standard deviation
of 45 mg/dL. You are studying a sample of 40 men from this age group who have
followed a vegetarian diet for at least one year and find that their mean cholesterol
level is 190mg/dL. Which statistic can help you place this result in context?

Solution

You compute the Z-statistic, which places the mean cholesterol level for your veg-
etarian sample in the context of the total U.S. male population for their age group.
As shown in Figure 3-38, the average cholesterol for the vegetarian group is 2.81
standard deviations below the mean for the total population of men in their age
group, suggesting that consuming a vegetarian diet is associated with lower choles-
terol. As with the IQ example, many factors can affect cholesterol level, and a medical
study designed to address this question would normally include more variables; this
is a simplified example to illustrate the use of the Z-statistic.

Figure 3-38. (  = 190, n = 40) from a population ~N(210, 45)
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Using the standard normal distribution table (Figure D-3 in Appendix D), you find
that the probability of a result at least this extreme, using a two-tailed test, is 0.00496,
so if your alpha value is 0.05, this result is sufficient to reject the null hypothesis (in
this case, that a vegetarian diet has no effect on cholesterol).

(Z ≤ −2.81) = 1 − P(Z ≥ −2.81) = 1 − (0.50000 + 0.49752) = 0.00248
P(Z ≥ 2.81) = 0.00248 (because the Z-distribution is symmetric)
P[(Z ≤ −2.81) OR (Z ≥ 2.81)] = 2 × (0.00248) = 0.00496
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4
Descriptive Statistics and

Graphic Displays

Most of this book, as is the case with most statistics books, is concerned with stat-
istical inference, meaning the practice of drawing conclusions about a population by
using statistics calculated on a sample. However, another type of statistics is the
concern of this chapter: descriptive statistics, meaning the use of statistical and
graphic techniques to present information about the data set being studied. Nearly
everyone involved in statistical work works with both types of statistics, and often,
computing descriptive statistics is a preliminary step in what will ultimately be an
inferential statistical analysis. In particular, it is a common practice to begin an
analysis by examining graphical displays of a data set and to compute some basic
descriptive statistics to get a better sense of the data to be analyzed. You can never
be too familiar with your data, and time spent examining it is nearly always time
well spent. Descriptive statistics and graphic displays can also be the final product
of a statistical analysis. For instance, a business might want to monitor sales volumes
for different locations or different sales personnel and wish to present that informa-
tion using graphics, without any desire to use that information to make inferences
(for instance, about other locations or other years) using the data collected.

Populations and Samples
The same data set may be considered as either a population or a sample, depending
on the reason for its collection and analysis. For instance, the final exam grades of
the students in a class are a population if the purpose of the analysis is to describe
the distribution of scores in that class, but they are a sample if the purpose of the
analysis is to make some inference from those scores to the scores of other students
(perhaps students in different classes or different schools). Analyzing a population
means your data set is the complete population of interest, so you are performing
your calculations on all members of the group of interest to you and can make direct
statements about the characteristics of that group. In contrast, analyzing a sample
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means you are working with a subset drawn from a larger population, and any
statements made about the larger group from which your sample was drawn are
probabilistic rather than absolute. (The reasoning behind inferential statistics is
discussed further in Chapter 3.) Samples rather than populations are often analyzed
for practical reasons because it might be impossible or prohibitively expensive to
study all members of a population directly.

The distinction between descriptive and inferential statistics is fundamental, and a
set of notational conventions and terminology has been developed to distinguish
between the two. Although these conventions differ somewhat from one author to
the next, as a general rule, numbers that describe a population are referred to as
parameters and are signified by Greek letters such as µ (for the population mean)
and σ (for the population standard deviation); numbers that describe a sample are
referred to as statistics and are signified by Latin letters such as  (the sample mean)
and s (the sample standard deviation).

Measures of Central Tendency
Measures of central tendency, also known as measures of location, are typically
among the first statistics computed for the continuous variables in a new data set.
The main purpose of computing measures of central tendency is to give you an idea
of what a typical or common value for a given variable is. The three most common
measures of central tendency are the arithmetic mean, the median, and the mode.

The Mean
The arithmetic mean, or simply the mean, is often referred to in ordinary speech as
the average of a set of values. Calculating the mean as a measure of central tendency
is appropriate for interval and ratio data, and the mean of dichotomous variables
coded as 0 or 1 provides the proportion of subjects whose value on the variable is
1. For continuous data, for instance measures of height or scores on an IQ test, the
mean is simply calculated by adding up all the values and then dividing by the num-
ber of values. The mean of a population is denoted by the Greek letter mu (µ) whereas
the mean of a sample is typically denoted by a bar over the variable symbol: for
instance, the mean of x would be written  and pronounced “x-bar.” Some authors
adapt the bar notation for the names of variables also. For instance, some authors
denote “the mean of the variable age” by , which would be pronounced
“age-bar.”

Suppose we have a population with only five cases, and these are the values for
members of that population for the variable x:

100, 115, 93, 102, 97

We can calculate the mean of x by adding these values and dividing by 5 (the number
of values):

µ = (100 + 115 + 93 + 102 + 97)/5 = 507/5 = 101.4

84 | Chapter 4: Descriptive Statistics and Graphic Displays



Statisticians often use a convention called summation notation, introduced in Chap-
ter 1, which defines a statistic by describing how it is calculated. The computation
of the mean is the same whether the numbers are considered to represent a
population or a sample; the only difference is the symbol for the mean itself. The
mean of a population, as expressed in summation notation, is shown in Figure 4-1.

Figure 4-1. Formula to calculate the mean

In this formula, µ (the Greek letter mu) is the population mean for x, n is the number
of cases (the number of values for x), and xi is the value of x for a particular case.
The Greek letter sigma (Σ) means summation (adding together), and the figures
above and below the sigma define the range over which the operation should be
performed. In this case, the notation says to sum all the values of x from 1 to n. The
symbol i designates the position in the data set, so x1 is the first value in the data set,
x2 the second value, and xn the last value in the data set. The summation symbol
means to add together or sum the values of x from the first (x1) to the last (xn). The
population mean is therefore calculated by summing all the values for the variable
in question and then dividing by the number of values, remembering that dividing
by n is the same thing as multiplying by 1/n.

The mean is an intuitive measure of central tendency that is easy for most people to
understand. However, the mean is not an appropriate summary measure for every
data set because it is sensitive to extreme values, also known as outliers (discussed
further later) and can also be misleading for skewed (nonsymmetrical) data.

Consider one simple example. Suppose the last value in our tiny data set was 297
instead of 97. In this case, the mean would be:

µ = (100 + 115 + 93 + 102 + 297)/5 = 707/5 = 141.4

The mean of 141.4 is not a typical value for this data, In fact, 80% of the data (four
of the five values) are below the mean, which is distorted by the presence of one
extremely high value.

The problem here is not simply theoretical; many large data sets also have a distri-
bution for which the mean is not a good measure of central tendency. This is often
true of measures of income, such as household income data in the United States. A
few very rich households make the mean household income in the United States a
larger value than is truly representative of the average or typical household, and for
this reason, the median household income is often reported instead (more about
medians later).

The mean can also be calculated using data from a frequency table, that is, a table
displaying data values and how often each occurs. Consider the following simple
example in Table 4-1.

Measures of Central Tendency | 85

Descriptive Stats
and Graphics



Table 4-1. Simple frequency table

Value Frequency

1 7

2 5

3 12

4 2

To find the mean of these numbers, treat the frequency column as a weighting vari-
able. That is, multiply each value by its frequency. For the denominator, add the
frequencies to get the total n. The mean is then calculated as shown in Figure 4-2.

Figure 4-2. Calculating the mean from a frequency table

This is the same result as you would reach by adding each score (1+1+1+1+ . . .)
and dividing by 26.

The mean for grouped data, in which data has been tabulated by range and exact
values are not known, is calculated in a similar manner. Because we don’t know the
exact values for each case (we know, for instance, that 5 values fell into the range of
1–20 but not the specific values for those five cases), for the purposes of calculation
we use the midpoint of the range as a stand-in for the specific values. Therefore, to
calculate the mean, we first calculate this midpoint for each range and then multiply
it by the frequency of values in the range. To calculate the midpoint for a range, add
the first and last values in the range and divide by 2. For instance, for the 1–20 range,
the midpoint is:

(1 + 20)/2 = 10.5

A mean calculated in this way is called a grouped mean. A grouped mean is not as
precise as the mean calculated from the original data points, but it is often your only
option if the original values are not available. Consider the following grouped data
set in Table 4-2.

Table 4-2. Grouped data

Range Frequency Midpoint

1–20 5 10.5

21–40 25 30.5

41–60 37 50.5

61–80 23 70.5

81–100 8 90.5
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The mean is calculated by multiplying the midpoint of each interval by the number
of values in the interval (the frequency) and dividing by the total frequency, as shown
in Figure 4-3.

Figure 4-3. Calculating the mean for grouped data

One way to lessen the influence of outliers is by calculating a trimmed mean, also
known as a Winsorized mean. As the name implies, a trimmed mean is calculated
by trimming or discarding a certain percentage of the extreme values in a distribution
and then calculating the mean of the remaining values. The purpose is to calculate
a mean that represents most of the values well and is not unduly influenced by
extreme values. Consider the example of the second population with five members
previously cited, with values 100, 115, 93, 102, and 297. The mean of this population
is distorted by the influence of one very large value, so we calculate a trimmed mean
by dropping the highest and lowest values (equivalent to dropping the lowest and
highest 20% of values). The trimmed mean is calculated as:

(100 + 115 + 102)/3 = 317/3 = 105.7

The value of 105.7 is much closer to the typical values in the distribution than 141.4,
the value of the mean including all the data values. Of course, we seldom would be
working with a population with only five members, but the principle applies to large
populations as well. Usually, a specific percentage of the data values are trimmed
from the extremes of the distribution, and this decision would have to be reported
to make it clear what the calculated mean actually represents.

The mean can also be calculated for dichotomous data by using 0–1 coding, in which
case the mean is equivalent to the percentage of values with the number 1. Suppose
we have a population of 10 subjects, 6 of whom are male and 4 of whom are female,
and we have coded males as 1 and females as 0. Computing the mean will give us
the percentage of males in the population:

µ= (1+1+1+1+1+1+0+0+0+0)/10 = 6/10 = 0.6 or 60% males

The Median
The median of a data set is the middle value when the values are ranked in ascending
or descending order. If there are n values, the median is formally defined as the (n
+1)/2th value, so if n = 7, the middle value is the (7+1)/2th or fourth value. If there
is an even number of values, the median is the average of the two middle values.
This is formally defined as the average of the (n /2)th and ((n /2)+1)th value. If there
are six values, the median is the average of the (6/2)th and ((6/2)+1)th value, or the
third and fourth values. Both techniques are demonstrated here:
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Odd number (5) of values: 1, 4, 6, 6, 10; Median = 6 because (5+1)/2 = 3, and
6 is the third value in the ordered list.
Even number (6) of values: 1, 3, 5, 6, 10, 15; Median = (5+6)/2 = 5.5 because
6/2 = 3 and [(6/2) +1] = 4, and 5 and 6 are the third and fourth values in the
ordered list.

The median is a better measure of central tendency than the mean for data that is
asymmetrical or contains outliers. This is because the median is based on the ranks
of data points rather than their actual values, and by definition, half of the data values
in a distribution lie below the median and half above the median, without regard to
the actual values in question. Therefore, it does not matter whether the data set
contains some extremely large or small values because they will not affect the median
more than less extreme values. For instance, the median of all three of the following
distributions is 4:

Distribution A: 1, 1, 3, 4, 5, 6, 7
Distribution B: 0.01, 3, 3, 4, 5, 5, 5
Distribution C: 1, 1, 2, 4, 5, 100, 2000

Of course, the median is not always an appropriate measure to describe a population
or a sample. This is partly a judgment call; in this example, the median seems rea-
sonably representative of the data values in Distributions A and B, but perhaps not
for Distribution C, whose values are so disparate that any single summary measure
can be misleading.

The Mode
A third common measure of central tendency is the mode, which refers to the most
frequently occurring value. The mode is most often useful in describing ordinal or
categorical data. For instance, imagine that the following numbers reflect the favored
news sources of a group of college students, where 1 = newspapers, 2 = television,
and 3 = Internet:

1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3

We can see that the Internet is the most popular source because 3 is the modal (most
common) value in this data set.

When modes are cited for continuous data, usually a range of values is referred to
as the mode (because with many values, as is typical of continuous data, there might
be no single value that occurs substantially more often than any other). If you intend
to do this, you should decide on the categories in advance and use standard ranges
if they exist. For instance, age for adults is often collected in ranges of 5 or 10 years,
so it might be the case that in a given data set, divided into ranges of 10 years, the
modal range was ages 40–49 years.

Comparing the Mean, Median, and Mode
In a perfectly symmetrical distribution (such as the normal distribution, discussed
in Chapter 3), the mean, median, and mode are identical. In an asymmetrical or
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skewed distribution, these three measures will differ, as illustrated in the data sets
graphed as histograms in Figures 4-4, 4-5, and 4-6. To facilitate calculating the mode,
we have also divided each data set into ranges of 5 (35–39.99, 40–44.99, etc.).

Figure 4-4. Symmetric data

Figure 4-5. Right-skewed data

Measures of Central Tendency | 89

Descriptive Stats
and Graphics



Figure 4-6. Left-skewed data

The data in Figure 4-4 is approximately normal and symmetrical with a mean of
50.88 and a median of 51.02; the most common range is 50.00–54.99 (37 cases),
followed by 45.00–49.99 (34 cases). In this distribution, the mean and median are
very close to each other, and the two most common ranges also cluster around the
mean.

The data in Figure 4-5 is right skewed; the mean is 58.18, and the median is 56.91;
a mean higher than a median is common for right-skewed data because the extreme
higher values pull the mean up but do not have the same effect on the median. The
modal range is 45.00–49.99 with 16 cases; however, several other ranges have 14
cases, making them very close in terms of frequency to the modal range and making
the mode less useful in describing this data set.

The data in Figure 4-6 is left skewed; the mean is 44.86, and the median is 47.43. A
mean lower than the median is typical of left-skewed data because the extreme lower
values pull the mean down, whereas they do not have the same effect on the median.
The skew in Figure 4-6 is greater than that in Figure 4-5, and this is reflected in the
greater difference between the mean and median in Figure 4-6 as compared to Fig-
ure 4-5. The modal range for Figure 4-6 is 45.00–49.99.

Measures of Dispersion
Dispersion refers to how variable or spread out data values are. For this reason,
measures of dispersions are sometimes called measures of variability or measures of
spread. Knowing the dispersion of data can be as important as knowing its central
tendency. For instance, two populations of children may both have mean IQs of
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100, but one could have a range of 70 to 130 (from mild retardation to very superior
intelligence) whereas the other has a range of 90 to 110 (all within the normal range).
The distinction could be important, for instance, to educators, because despite hav-
ing the same average intelligence, the range of IQ scores for these two groups sug-
gests that they might have different educational and social needs.

The Range and Interquartile Range
The simplest measure of dispersion is the range, which is simply the difference be-
tween the highest and lowest values. Often the minimum (smallest) and maximum
(largest) values are reported as well as the range. For the data set (95, 98, 101, 105),
the minimum is 95, the maximum is 105, and the range is 10 (105–95). If there are
one or a few outliers in the data set, the range might not be a useful summary meas-
ure. For instance, in the data set (95, 98, 101, 105, 210), the range is 115, but most
of the numbers lie within a range of 10 (95–105). Inspection of the range for any
variable is a good data screening technique; an unusually wide range or extreme
minimum or maximum values might warrant further investigation. Extremely high
or low values or an unusually wide range of values might be due to reasons such as
data entry error or to inclusion of a case that does not belong to the population under
study. (Information from an adult might have been included mistakenly in a data
set concerned with children.)

The interquartile range is an alternative measure of dispersion that is less influenced
than the range by extreme values. The interquartile range is the range of the middle
50% of the values in a data set, which is calculated as the difference between the
75th and 25th percentile values. The interquartile range is easily obtained from most
statistical computer programs but can also be calculated by hand, using the follow-
ing rules (n = the number of observations, k the percentile you wish to find):

1. Rank the observations from smallest to largest.

2. If (nk)/100 is an integer (a round number with no decimal or fractional part),
the kth percentile of the observations is the average of the ((nk)/100)th and
((nk)/100 + 1)th largest observations.

3. If (nk)/100 is not an integer, the kth percentile of the observation is the (j + 1)th
largest measurement, where j is the largest integer less than (nk)/100.

4. Calculate the interquartile range as the difference between the 75th and 25th
percentile measurements.

Consider the following data set with 13 observations (1, 2, 3, 5, 7, 8, 11, 12, 15, 15,
18, 18, 20):

1. First, we want to find the 25th percentile, so k = 25.

2. We have 13 observations, so n = 13.

3. (nk)/100 = (25 × 13)/100 = 3.25, which is not an integer, so we will use the
second method (#3 in the preceding list).

4. j = 3 (the largest integer less than (nk)/100, that is, less than 3.25).
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5. Therefore, the 25th percentile is the ( j + 1)th or 4th observation, which has the
value 5.

We can follow the same steps to find the 75th percentile:

• (nk)/100 = (75*13)/100 = 9.75, not an integer.

• j = 9, the smallest integer less than 9.75.

• Therefore, the 75th percentile is the 9 + 1 or 10th observation, which has the
value 15.

• Therefore, the interquartile range is (15 − 5) or 10.

The resistance of the interquartile range to outliers should be clear. This data set has
a range of 19 (20 − 1) and an interquartile range of 10; however, if the last value was
200 instead of 20, the range would be 199 (200 − 1), but the interquartile range
would still be 10, and that number would better represent most of the values in the
data set.

The Variance and Standard Deviation
The most common measures of dispersion for continuous data are the variance and
standard deviation. Both describe how much the individual values in a data set vary
from the mean or average value. The variance and standard deviation are calculated
slightly differently depending on whether a population or a sample is being studied,
but basically the variance is the average of the squared deviations from the mean,
and the standard deviation is the square root of the variance. The variance of a
population is signified by σ2 (pronounced “sigma-squared”; σ is the Greek letter
sigma) and the standard deviation as σ, whereas the sample variance and standard
deviation are signified by s2 and s, respectively.

The deviation from the mean for one value in a data set is calculated as (xi − µ) where
xi is value i from the data set and µ is the mean of the data set. If working with sample
data, the principle is the same, except that you subtract the mean of the sample
( ) from the individual data values rather than the mean of the population. Written
in summation notation, the formula to calculate the sum of all deviations from the
mean for the variable x for a population with n members is shown in Figure 4-7.

Figure 4-7. Formula for the sum of the deviations from the mean

Unfortunately, this quantity is not useful because it will always equal zero, a result
that is not surprising if you consider that the mean is computed as the average of all
the values in the data set. This may be demonstrated with the tiny data set (1, 2, 3,
4, 5). First, we calculate the mean:

µ = (1 + 2 + 3 + 4 + 5)/5 = 3
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Then we calculate the sum of the deviations from the mean, as shown in Figure 4-8.

Figure 4-8. Calculating the sum of the deviations from the mean

To get around this problem, we work with squared deviations, which by definition
are always positive. To get the average deviation or variance for a population, we
square each deviation, add them up, and divide by the number of cases, as shown
in Figure 4-9.

Figure 4-9. Calculating the sum of the squared deviations from the mean

The sample formula for the variance requires dividing by n − 1 rather than n; the
reasons are technical and have to do with degrees of freedom and unbiased estima-
tion. (For a detailed discussion, see the Wilkins article listed in Appendix C.) The
formula for the variance of a sample, notated as s2, is shown in Figure 4-10.

Figure 4-10. The formula for a sample variance

Continuing with our tiny data set with values (1, 2, 3, 4, 5), with a mean value of 3,
we can calculate the variance for this population as shown in Figure 4-11.
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Figure 4-11. Calculating the variance for a population

If we consider these numbers to be a sample rather than a population, the variance
would be computed as shown in Figure 4-12.

Figure 4-12. Calculating the variance for a sample

Note that because of the different divisor, the sample formula for the variance will
always return a larger result than the population formula, although if the sample
size is close to the population size, this difference will be slight.

Because squared numbers are always positive (outside the realm of imaginary num-
bers), the variance will always be equal to or greater than 0. (The variance would be
zero only if all values of a variable were the same, in which case the variable would
really be a constant.) However, in calculating the variance, we have changed from
our original units to squared units, which might not be convenient to interpret. For
instance, if we were measuring weight in pounds, we would probably want measures
of central tendency and dispersion expressed in the same units rather than having
the mean expressed in pounds and variance in squared pounds. To get back to the
original units, we take the square root of the variance; this is called the standard
deviation and is signified by σ for a population and s for a sample.

For a population, the formula for the standard deviation is shown in Figure 4-13.
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Figure 4-13. Formula for the standard deviation for a population

Note that this is simply the square root of the formula for variance. In the preceding
example, the standard deviation can be found as shown in Figure 4-14.

Figure 4-14. The relationship between the standard deviation and the variance

The formula for the sample standard deviation is shown in Figure 4-15.

Figure 4-15. Formula for the standard deviation of a sample

As with the population standard deviation, the sample standard deviation is the
square root of the sample variance (Figure 4-16).

Figure 4-16. The relationship between the standard deviation and the variance

In general, for two groups of the same size and measured with the same units (e.g.,
two groups of people, each of size n = 30 and both weighed in pounds), we can say
that the group with the larger variance and standard deviation has more variability
among their scores. However, the unit of measure affects the size of the variance,
which can make it tricky to compare the variability of factors measured in different
units. To take an obvious example, a set of weights expressed in ounces would have
a larger variance and standard deviation than the same weights measured in pounds.
When comparing completely different units, such as height in inches and weight in
pounds, it is even more difficult to compare variability. The coefficient of variation
(CV), a measure of relative variability, gets around this difficulty and makes it pos-
sible to compare variability across variables measured in different units. The CV is
shown here using sample notation but could be calculated for a population by sub-
stituting σ for s. The CV is calculated by dividing the standard deviation by the mean
and then multiplying by 100, as shown in Figure 4-17.
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Figure 4-17. The formula for the coefficient of variation (CV)

For the previous example, this would be calculated as shown in Figure 4-18.

Figure 4-18. Calculating the coefficient of variation (CV)

The CV cannot be calculated if the mean of the data is 0 (because you cannot divide
by 0) and is most useful when the variable in question has only positive values. If a
variable has both positive and negative values, the mean can be close to zero although
the data actually has quite a broad range, and this can produce a misleading CV
value because the denominator will be a small number, potentially producing a large
CV value even if the standard deviation is fairly moderate.

The usefulness of the CV should be clear by considering the same data set as ex-
pressed in feet and inches; for instance, 60 inches is the same as 5 feet. The data as
expressed in feet has a mean of 5.5566 and a standard deviation of 0.2288; the same
data as expressed in inches has a mean of 66.6790 and a standard deviation of
2.7453. However, the CV is not affected by the change in units and produces the
same result either way, except for rounding error:

5.5566/0.2288 = 24.2858 (data in feet)
66.6790/2.7453 = 24.2884 (data in inches)

Outliers
There is no absolute agreement among statisticians about how to define outliers, but
nearly everyone agrees that it is important that they be identified and that appro-
priate analytical techniques be used for data sets that contain outliers. An outlier is
a data point or observation whose value is quite different from the others in the data
set being analyzed. This is sometimes described as a data point that seems to come
from a different population or is outside the typical pattern of the other data points.
Suppose you are studying educational achievement in a sample or population, and
most of your subjects have completed from 12 to 16 years of schooling (12 years =
high school graduation, 16 years = university graduation). However, one of your
subjects has a value of 0 for this variable (implying that he has no formal education
at all) and another has a value of 26 (implying many years of post-graduate educa-
tion). You will probably consider these two cases to be outliers because they have
values far removed from the other data in your sample of population. Identification
and analysis of outliers is an important preliminary step in many types of data
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analysis because the presence of just one or two outliers can completely distort the
value of some common statistics, such as the mean.

It’s also important to identify outliers because sometimes they represent data entry
errors. In the preceding example, the first thing to do is check whether the data was
entered correctly; perhaps the correct values are 10 and 16, respectively. The second
thing to do is investigate whether the cases in question actually belong to the same
population as the other cases. For instance, does the 0 refer to the years of education
of an infant when the data set was supposed to contain only information about
adults?

If neither of these simple fixes solves the problem, it is necessary to make a judgment
call (possibly in consultation with others involved in the research) about what to do
with the outliers. It is possible to delete cases with outliers from the data set before
analysis, but the acceptability of this practice varies from field to field. Sometimes a
statistical fix already exists, such as the trimmed mean previously described, al-
though the acceptability of such fixes also varies from one field to the next. Other
possibilities are to transform the data (discussed in Chapter 3) or use nonparametric
statistical techniques (discussed in Chapter 13), which are less influenced by
outliers.

Various rules of thumb have been developed to make the identification of outliers
more consistent. One common definition of an outlier, which uses the concept of
the interquartile range (IQR), is that mild outliers are those lower than the 25th
quartile minus 1.5 × IQR or greater than the 75th quartile plus 1.5 × IQR. Cases this
extreme are expected in about 1 in 150 observations in normally distributed data.
Extreme outliers are similarly defined with the substitution of 3 × IQR for 1.5 × IQR;
values this extreme are expected about once per 425,000 observations in normally
distributed data.

Graphic Methods
There are innumerable graphic methods to present data, from the basic techniques
included with spreadsheet software such as Microsoft Excel to the extremely specific
and complex methods available in computer languages such as R. Entire books have
been written on the use and misuse of graphics in presenting data, and the leading
(if also controversial) expert in this field is Edward Tufte, a Yale professor (with a
Master’s degree in statistics and a PhD in political science). His most famous work
is The Visual Display of Quantitative Information (listed in Appendix C), but all of
Tufte’s books are worthwhile reading for anyone seriously interested in the graphic
display of data. It would be impossible to cover even a fraction of the available
methods to display data in this section, so instead, a few of the most common meth-
ods are presented, including a discussion of issues concerning each.

It’s easy to get carried away with fancy graphical presentations, particularly because
spreadsheets and statistical programs have built-in routines to create many types of
graphs and charts. Tufte’s term for graphic material that does not convey informa-
tion is “chartjunk,” which concisely conveys his opinion of such presentations. The
standards for what is considered junk vary from one field of endeavor to another,
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but as a general rule, it is wise to use the simplest type of chart that clearly presents
your information while remaining aware of the expectations and standards within
your chosen profession or field of study.

Frequency Tables
The first question to ask when considering how best to display data is whether a
graphical method is needed at all. It’s true that in some circumstances a picture may
be worth a thousand words, but at other times, frequency tables do a better job than
graphs at presenting information. This is particularly true when the actual values of
the numbers in different categories, rather than the general pattern among the cat-
egories, are of primary interest. Frequency tables are often an efficient way to present
large quantities of data and represent a middle ground between text (paragraphs
describing the data values) and pure graphics (such as a histogram).

Suppose a university is interested in collecting data on the general health of their
entering classes of freshmen. Because obesity is a matter of growing concern in the
United States, one of the statistics they collect is the Body Mass Index (BMI), cal-
culated as weight in kilograms divided by squared height in meters. The BMI is not
an infallible measure. For instance, athletes often measure as either underweight
(distance runners, gymnasts) or overweight or obese (football players, weight throw-
ers), but it’s an easily calculated measurement that is a reliable indicator of a healthy
or unhealthy body weight for many people.

The BMI is a continuous measure, but it is often interpreted in terms of categories,
using commonly accepted ranges. The ranges for the BMI shown in Table 4-3, es-
tablished by the Centers for Disease Control and Prevention (CDC) and the World
Health Organization (WHO), are generally accepted as useful and valid.

Table 4-3. CDC/WHO categories for BMI

BMI range Category

< 18.5 Underweight

18.5–24.9 Normal weight

25.0–29.9 Overweight

30.0 and above Obese

Now consider Table 4-4, an entirely fictitious list of BMI classifications for entering
freshmen.

Table 4-4. Distribution of BMI in the freshman class of 2005

BMI range Number

< 18.5 25

18.5–24.9 500

25.0–29.9 175

30.0 and above 50
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This simple table tells us at a glance that most of the freshman are of normal body
weight or are moderately overweight, with a few who are underweight or obese.
Note that this table presents raw numbers or counts for each category, which are
sometimes referred to as absolute frequencies; these numbers tell you how often each
value appears, which can be useful if you are interested in, for instance, how many
students might require obesity counseling. However, absolute frequencies don’t
place the number of cases in each category into any kind of context. We can make
this table more useful by adding a column for relative frequency, which displays the
percent of the total represented by each category. The relative frequency is calculated
by dividing the number of cases in each category by the total number of cases (750)
and multiplying by 100. Table 4-5 shows the both the absolute and the relative
frequencies for this data.

Table 4-5. Absolute and relative frequency of BMI categories for the freshmen class of 2005

BMI range Number Relative frequency

< 18.5 25 3.3%

18.5–24.9 500 66.7%

25.0–29.9 175 23.3%

30.0 and above 50 6.7%

Note that relative frequencies should add up to approximately 100%, although the
total might be slightly higher or lower due to rounding error.

We can also add a column for cumulative frequency, which shows the relative fre-
quency for each category and those below it, as in Table 4-6. The cumulative fre-
quency for the final category should always be 100% except for rounding error.

Table 4-6. Cumulative frequency of BMI in the freshman class of 2005

BMI range Number Relative frequency Cumulative frequency

< 18.5 25 3.3% 3.3%

18.5–24.9 500 66.7% 70.0%

25.0–29.9 175 23.3% 93.3%

30.0 and above 50 6.7% 100%

Cumulative frequency tells us at a glance, for instance, that 70% of the entering class
is normal weight or underweight. This is particularly useful in tables with many
categories because it allows the reader to ascertain specific points in the distribution
quickly, such as the lowest 10%, the median (50% of the cumulative frequency), or
the top 5%.

You can also construct frequency tables to make comparisons between groups. You
might be interested, for instance, in comparing the distribution of BMI in male and
female freshmen or for the class that entered in 2005 versus the entering classes of
2000 and 1995. When making comparisons of this type, raw numbers are less useful
(because the size of the classes can differ) and relative and cumulative frequencies
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more useful. Another possibility is to create graphic presentations such as the charts
described in the next section, which can make such comparisons clearer.

Bar Charts
The bar chart is particularly appropriate for displaying discrete data with only a few
categories, as in our example of BMI among the freshman class. The bars in a bar
chart are customarily separated from each other so they do not suggest continuity;
although in this case, our categories are based on categorizing a continuous variable,
they could equally well be completely nominal categories such as favorite sport or
major field of study. Figure 4-19 shows the freshman BMI information presented in
a bar chart. (Unless otherwise noted, the charts presented in this chapter were cre-
ated using Microsoft Excel.)

Figure 4-19. Absolute frequency of BMI categories in freshman class

Absolute frequencies are useful when you need to know the number of people in a
particular category, whereas relative frequencies are more useful when you need to
know the relationship of the numbers in each category. Relative frequencies are
particularly useful, as we will see, when comparing multiple groups, for instance
whether the proportion of obese students is rising or falling over the years. For a
simple bar chart, the absolute versus relative frequencies question is less critical, as
can be seen by comparing a bar chart of the student BMI data, presented as relative
frequencies in Figure 4-20 with the same data presented as absolute frequencies in
Figure 4-19. Note that the two charts are identical except for the y-axis (vertical axis)
labels, which are frequencies in Figure 4-19 and percentages in Figure 4-20.
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Figure 4-20. Relative frequency of BMI categories in freshman class

The concept of relative frequencies becomes even more useful if we compare the
distribution of BMI categories over several years. Consider the fictitious frequency
information in Table 4-7.

Table 4-7. Absolute and relative frequencies of BMI for three entering classes

BMI range 1995 2000 2005

Underweight < 18.5 50 8.9% 45 6.8% 25 3.3%

Normal 18.5–24.9 400 71.4% 450 67.7% 500 66.7%

Overweight

25.0–29.9

100 17.9% 130 19.5% 175 23.3%

Obese 30.0 and above 10 1.8% 40 6.0% 50 6.7%

Total 560 100.0% 665 100.0% 750 100.0%

Because the class size is different in each year, the relative frequencies (percentages)
are most useful in observing trends in weight category distribution. In this case, there
has been a clear decrease in the proportion of underweight students and an increase
in the number of overweight and obese students. This information can also be dis-
played using a bar chart, as in Figure 4-21.

This is a grouped bar chart, which shows that there is a small but definite trend over
10 years toward fewer underweight and normal weight students and more over-
weight and obese students (reflecting changes in the American population at large).
Bear in mind that creating a chart is not the same thing as conducting a statistical
test, so we can’t tell from this chart alone whether these differences are statistically
significant.
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Figure 4-21. Bar chart of BMI distribution in three entering classes

Another type of bar chart, which emphasizes the relative distribution of values within
each group (in this case, the relative distribution of BMI categories in three entering
classes), is the stacked bar chart, illustrated in Figure 4-22.

Figure 4-22. Stacked bar chart of BMI distribution in three entering classes

In this type of chart, each bar represents one year of data, and each bar totals to
100%. The relative proportion of students in each category can be seen at a glance
by comparing the proportion of area within each bar allocated to each category. This
arrangement facilitates comparison in multiple data series (in this case, the three
years). It is immediately clear that the proportion of underweight students has de-
clined, and the proportion of overweight and obese students has increased over time.

Pie Charts
The familiar pie chart presents data in a manner similar to the stacked bar chart: it
shows graphically what proportion each part occupies of the whole. Pie charts, like
stacked bar charts, are most useful when there are only a few categories of informa-
tion and the differences among those categories are fairly large. Many people have
particularly strong opinions about pie charts, and although pie charts are still com-
monly used in some fields, they have also been aggressively denounced in others as
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uninformative at best and potentially misleading at worst. So you must make your
own decision based on context and convention; I will present the same BMI infor-
mation in pie chart form (Figure 4-23), and you may be the judge of whether this is
a useful way to present the data. Note that this is a single pie chart, showing one
year of data, but other options are available, including side-by-side charts (to facil-
itate comparison of the proportions of different groups) and exploded sections (to
show a more detailed breakdown of categories within a segment).

Figure 4-23. Pie chart showing BMI distribution for freshmen entering in 2005

Florence Nightingale and Statistical Graphics
Most people are at least vaguely familiar with Florence Nightingale’s role in es-
tablishing nursing as a profession and with her heroic efforts to improve hygiene
and the quality of nursing provided to British soldiers during the Crimean War.
Fewer are aware of her contributions to statistical graphics, including her effective
use of graphs and charts to communicate medical information. Nightingale also
developed a new type of graph, the polar area diagram (which she called a coxcomb
chart and others have termed a Nightingale rose diagram), to display comparative
information such as the causes of death (from wounds received in battle, disease,
and other causes) each month for British soldiers. Nightingale’s charts brought
attention to the high proportion of soldiers’ deaths caused by disease and enabled
her to make her case for the importance of improved sanitation and hygiene to the
military authorities. Many of Nightingale’s graphics are available for viewing on
the Internet along with a discussion of her accomplishments in this field. One
example is Julie Rehmeyer’s Science News article from November 26, 2008, “Flor-
ence Nightingale: The Passionate Statistician”.

Pareto Charts
The Pareto chart or Pareto diagram combines the properties of a bar chart and a line
chart; the bars display frequency and relative frequency, whereas the line displays
cumulative frequency. The great advantage of a Pareto chart is that it is easy to see
which factors are most important in a situation and, therefore, to which factors most
attention should be directed. For instance, Pareto charts are often used in industrial
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contexts to identify factors that are responsible for the preponderance of delays or
defects in the manufacturing process. In a Pareto chart, the bars are ordered in de-
scending frequency from left to right (so the most common cause is the furthest to
the left and the least common the furthest to the right), and a cumulative frequency
line is superimposed over the bars (so you see, for instance, how many factors are
involved in 80% of production delays). Consider the hypothetical data set shown in
Table 4-8, which displays the number of defects traceable to different aspects of the
manufacturing process in an automobile factory.

Table 4-8. Manufacturing defects by department

Department Number of defects

Accessory 350

Body 500

Electrical 120

Engine 150

Transmission 80

Although we can see that the Accessory and Body departments are responsible for
the greatest number of defects, it is not immediately obvious what proportion of
defects can be traced to them. Figure 4-24, which displays the same information
presented in a Pareto chart (produced using SPSS), makes this clearer.

Figure 4-24. Major causes of manufacturing defects

This chart tells us not only that the most common causes of defects are in the Body
and Accessory manufacturing processes but also that together they account for
about 75% of defects. We can see this by drawing a straight line from the bend in
the cumulative frequency line (which represents the cumulative number of defects
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from the two largest sources, Body and Accessory) to the right-hand y-axis. This is
a simplified example and violates the 80:20 rule (discussed in the next sidebar about
Vilfredo Pareto) because only a few major causes of defects are shown. In a more
realistic example, there might be 30 or more competing causes, and the Pareto chart
is a simple way to sort them out and decide which processes should be the focus of
improvement efforts. This simple example does serve to display the typical charac-
teristics of a Pareto chart. The bars are sorted from highest to lowest, the frequency
is displayed on the left-hand y-axis and the percent on the right, and the actual
number of cases for each cause are displayed within each bar.

Vilfredo Pareto
Vilfredo Pareto (1843–1923) was an Italian economist who discovered what is
now called the Pareto principle, also known as the principle of “the vital few and
the trivial many” or “the 80:20 rule.” The Pareto principle states that in many
circumstances, 80% of the activity or outcomes stem from 20% of the causes. For
instance, in many countries, approximately 80% of the wealth is owned by ap-
proximately 20% of the people; it is often the case in industrial production that
20% of production errors are responsible for 80% of the defects in manufactured
products; and in health services usage, 20% of the patients typically use 80% of
medical services. The vital few in the Pareto principle are the 20% of people, errors,
and so on that account for most of the activity, and the trivial many are the other
80% that collectively account for only 20% of the activity. Pareto is best known
today for the Pareto chart, which is commonly used in quality control to help
identify which processes are causing most of the difficulties, whether customer
complaints or defective products.

The Stem-and-Leaf Plot
The types of charts discussed so far are most appropriate for displaying categorical
data. Continuous data has its own set of graphic display methods. One of the sim-
plest ways to display continuous data graphically is the stem-and-leaf plot, which
can easily be created by hand and presents a quick snapshot of a data distribution.
To make a stem-and-leaf plot, divide your data into intervals (using your common
sense and the level of detail appropriate to your purpose) and display each data point
by using two columns. The stem is the leftmost column and contains one value per
row, and the leaf is the rightmost column and contains one digit for each case be-
longing to that row. This creates a plot that displays the actual values of the data set
but also assumes a shape indicating which ranges of values are most common. The
numbers can represent multiples of other numbers (for instance, units of 10,000 or
of 0.01) if appropriate, given the data values in question.
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Here’s a simple example. Suppose we have the final exam grades for 26 students and
want to present them graphically. These are the grades:

61, 64, 68, 70, 70, 71, 73, 74, 74, 76, 79, 80, 80, 83, 84, 84, 87, 89, 89, 89, 90
92, 95, 95, 98, 100

The logical division is units of 10 points, for example, 60–69, 70–79, and so on, so
we construct the stem of the digits 6, 7, 8, 9 (the tens place for those of you who
remember your grade school math) and create the leaf for each number with the
digit in the ones place, ordered left to right from smallest to largest. Figure 4-25
shows the final plot.

Figure 4-25. Stem-and-leaf plot of final exam grades

This display not only tells us the actual values of the scores and their range (61–100)
but the basic shape of their distribution as well. In this case, most scores are in the
70s and 80s, with a few in the 60s and 90s, and one is 100. The shape of the leaf side
is in fact a crude sort of histogram (discussed later) rotated 90 degrees, with the bars
being units of 10.

The Boxplot
The boxplot, also known as the hinge plot or the box-and-whiskers plot, was devised
by the statistician John Tukey as a compact way to summarize and display the dis-
tribution of a set of continuous data. Although boxplots can be drawn by hand (as
can many other graphics, including bar charts and histograms), in practice they are
usually created using software. Interestingly, the exact methods used to construct
boxplots vary from one software package to another, but they are always constructed
to highlight five important characteristics of a data set: the median, the first and
third quartiles (and hence the interquartile range as well), and the minimum and
maximum. The central tendency, range, symmetry, and presence of outliers in a data
set are visible at a glance from a boxplot, whereas side-by-side boxplots make it easy
to make comparisons among different distributions of data. Figure 4-26 is a boxplot
of the final exam grades used in the preceding stem-and-leaf plot.

The dark line represents the median value, in this case, 81.5. The shaded box enc-
loses the interquartile range, so the lower boundary is the first quartile (25th per-
centile) of 72.5, and the upper boundary is the third quartile (75th percentile) of
87.75. Tukey called these quartiles hinges, hence the name hinge plot. The short
horizontal lines at 61 and 100 represent the minimum and maximum values, and
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together with the lines connecting them to the interquartile range box, they are called
whiskers, hence the name box-and-whiskers plot. We can see at a glance that this
data set is symmetrical because the median is approximately centered within the
interquartile range, and the interquartile range is located approximately centrally
within the complete range of the data.

This data set contains no outliers, that is, no numbers that are far outside the range
of the other data points. To demonstrate a boxplot that contains outliers, I have
changed the score of 100 in this data set to 10. Figure 4-27 shows the boxplots of
the two data sets side by side. (The boxplot for the correct data is labeled “final,”
whereas the boxplot with the changed value is labeled “error.”)

Figure 4-27. Boxplot with outlier (created in SPSS)

Figure 4-26. Boxplot of exam data (created in SPSS)
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Note that except for the single outlier value, the two data sets look very similar; this
is because the median and interquartile range are resistant to influence by extreme
values. The outlying value is designated with an asterisk and labeled with its case
number (26); the latter feature is not included in every statistical package.

Boxplots are often used to compare two or more real data sets side by side. Fig-
ure 4-28 shows a comparison of two years of final exam grades from 2007 and 2008,
labeled “final2007” and “final2008,” respectively.

Without looking at any of the actual grades, I can see several differences between
the two years:

• The highest scores are the same in both years.

• The lowest score is much lower in 2008 than in 2007.

• There is a greater range of scores in 2008, both in the interquartile range (middle
50% of the scores) and overall.

• The median is slightly lower in 2008.

That the highest score was the same in both years is not surprising because this exam
had a range of 0–100, and at least one student achieved the highest score in both
years. This is an example of a ceiling effect, which exists when scores or measure-
ments can be no higher than a particular number and people actually achieve that
score. The analogous condition, if a score can be no lower than a specified number,
is called a floor effect. In this case, the exam had a floor of 0 (the lowest possible
score), but because no one achieved that score, no floor effect is present in the data.

Figure 4-28. Boxplot comparing final exam scores from 2007 and 2008 (created in SPSS)
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The Histogram
The histogram is another popular choice for displaying continuous data. A histogram
looks similar to a bar chart, but in a histogram, the bars (also known as bins because
you can think of them as bins into which values from a continuous distribution are
sorted) touch each other, unlike the bars in a bar chart. Histograms also tend to have
a larger number of bars than do bar charts. Bars in a histogram do not have to be
the same width, although frequently they are. The x-axis (vertical axis) in a histogram
represents a scale rather than simply a series of labels, and the area of each bar
represents the proportion of values that are contained in that range.

Figure 4-29 shows the final exam data presented as a histogram created in SPSS with
four bars of width ten and with a normal distribution superimposed. Note that the
shape of this histogram looks quite similar to the shape of the stem-and-leaf plot of
the same data (Figure 4-25), but rotated 90 degrees.

Figure 4-29. Histogram with a bin width of 10

The normal distribution is discussed in detail in Chapter 3; for now, it is a commonly
used theoretical distribution that has the familiar bell shape shown here. The normal
distribution is often superimposed on histograms as a visual reference so we can
judge how similar the values in a data set are to a normal distribution.
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For better or for worse, the choice of the number and width of bars can drastically
affect the appearance of the histogram. Usually, histograms have more than four
bars; Figure 4-30 shows the same data with eight bars, each with a width of five.

Figure 4-30. Histogram with a bin width of 5

It’s the same data, but it doesn’t look nearly as normal, does it? Figure 4-31 shows
the same data with a bin width of two.

It’s clear that the selection of bin width is important to the histogram’s appearance,
but how do you decide how many bins to use? This question has been explored in
mathematical detail without producing any absolute answers. (If you’re up for a very
technical discussion, see the Wand article listed in Appendix C.). There is no abso-
lute answer to this question, but there are some rules of thumb. First, the bins need
to encompass the full range of data values. Beyond that, one common rule of thumb
is that the number of bins should equal the square root of the number of points in
the data set. Another is that the number of bins should never be fewer than about
six. These rules clearly conflict in our data set because √26 = 5.1, which is less than
6, so common sense also comes into play, as does trying different numbers of bins
and bin widths. If the choice drastically changes the appearance of the data, further
investigation is in order.
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Bivariate Charts
Charts that display information about the relationship between two variables are
called bivariate charts: the most common example is the scatterplot. Scatterplots
define each point in a data set by two values, commonly referred to as x and y, and
plot each point on a pair of axes; this method should be familiar if you ever worked
with Cartesian coordinates in math class. Conventionally the vertical axis is called
the y-axis and represents the y-value for each point. The horizontal axis is called the
x-axis and represents the x-value. Scatterplots are a very important tool for exam-
ining bivariate relationships among variables, a topic further discussed in Chapter 7.

Univariate, Bivariate, Multivariate
People sometimes get confused about the meaning of terms such as univariate and
bivariate. However, it’s easy to keep them straight if you recall that uni- means
one and bi- means two. Think of a unicycle, which has one wheel, and a bicycle,
which has two. Multi- means many and in statistics, it often means more than two.
Univariate statistics such as the mean therefore describe characteristics of one
variable, and the bar chart and histogram are examples of univariate graphic dis-
plays. Bivariate statistics such as Pearson’s correlation coefficient describe the

Figure 4-31. Histogram with a bin width of two
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relationship between two variables, and bivariate graphs such as the scatterplot
display the relationship between two variables. Multivariate statistics such as the
multiple correlation and multivariate regression describe the relationship between
more than two variables.

Scatterplots
Consider the data set shown in Table 4-9, which consists of the verbal and math
SAT (Scholastic Aptitude Test) scores for a hypothetical group of 15 students.

Table 4-9. SAT scores for 15 students

Math Verbal

750 750

700 710

720 700

790 780

700 680

750 700

620 610

640 630

700 710

710 680

540 550

570 600

580 600

790 750

710 720

Other than the fact that most of these scores are fairly high (the SAT is calibrated so
that the median score is 500, and most of these scores are well above that), it’s
difficult to discern much of a pattern between the math and verbal scores from the
raw data. Sometimes the math score is higher, sometimes the verbal score is higher,
and often both are similar. However, creating a scatterplot of the two variables, as
in Figure 4-32, with math SAT score on the y-axis (vertical axis) and verbal SAT
score on the x-axis (horizontal axis), makes the relationship between scores much
clearer.
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Figure 4-32. Scatterplot of verbal and math SAT scores

Despite some small inconsistencies, verbal and math scores have a strong linear
relationship. People with high verbal scores tend to have high math scores and vice
versa, and those with lower scores in one area tend to have lower scores in the other.

Not all strong relationships between two variables are linear, however. Fig-
ure 4-33 shows a scatterplot of variables that are highly related but for which the
relationship is quadratic rather than linear.

Figure 4-33. Quadratic relationship among variables

In the data presented in this scatterplot, the x-values in each pair are the integers
from −10 to 10, and the y-values are the squares of the x-values, producing the
familiar quadratic plot. Many statistical techniques assume a linear relationship
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between variables, and it’s hard to see if this is true or not simply by looking at the
raw data, so making a scatterplot of all important data pairs is a simple way to check
this assumption.

Line Graphs
Line graphs are also often used to display the relationship between two variables,
usually between time on the x-axis and some other variable on the y-axis. One re-
quirement for a line graph is that there can only be one y-value for each x-value, so
it would not be an appropriate choice for data such as the SAT data presented above.
Consider the data in Table 4-10 from the U.S. Centers for Disease Control and
Prevention (CDC), showing the percentage of obesity among U.S. adults, measured
annually over a 13-year period.

Table 4-10. Percentage of obesity among U.S. adults, 1990–2002 (CDC)

Year Percent obese

1990 11.6%

1991 12.6%

1992 12.6%

1993 13.7%

1994 14.4%

1995 15.8%

1996 16.8%

1997 16.6%

1998 18.3%

1999 19.7%

2000 20.1%

2001 21.0%

2002 22.1%

We can see from this table that obesity has been increasing at a steady pace; occa-
sionally, there is a decrease from one year to the next, but more often there is a small
increase in the range of 1% to 2%. This information can also be presented as a line
chart, as in Figure 4-34, which makes this pattern of steady increase over the years
even clearer.

Although this graph represents a straightforward presentation of the data, the visual
impact depends partially on the scale and range used for the y-axis (which in this
case shows percentage of obesity). Figure 4-34 is a sensible representation of the
data, but if we wanted to increase the effect, we could choose a larger scale and
smaller range for the y-axis (vertical axis), as in Figure 4-35.
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Figure 4-34. Obesity among U.S. adults, 1990–2002 (CDC)

Figure 4-35. Obesity among U.S. adults, 1990–2002 (CDC), using a restricted range to inflate
the visual impact of the trend

Figure 4-35 presents exactly the same data as Figure 4-34, but a smaller range was
chosen for the y-axis (10%–22.5% versus 0%–30%), and the narrower range makes
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the differences between years look larger. Figure 4-35 is not necessarily an incorrect
way to present the data (although many argue that you should also include the 0
point in a graph displaying percent), but it does point out how easy it is to manipulate
the appearance of an entirely valid data set. In fact, choosing a misleading range is
one of the time-honored ways to “lie with statistics.” (See the sidebar “How to Lie
with Statistics” on page 117 for more on this topic.)

The same trick works in reverse; if we graph the same data by using a wide range
for the vertical axis, the changes over the entire period seem much smaller, as in
Figure 4-36.

Figure 4-36. Obesity among U.S. adults, 1990–2002 (CDC), using a wide range on the y-axis
to decrease the visual impact of the trend

Figure 4-36 presents the same obesity data as Figure 4-34 and Figure 4-35, with a
large range on the vertical axis (0%–100%) to decrease the visual impact of the trend.

So which scale should be chosen? There is no perfect answer to this question; all
present the same information, and none, strictly speaking, are incorrect. In this case,
if I were presenting this chart without reference to any other graphics, the scale
would be 7–34 because it shows the true floor for the data (0%, which is the lowest
possible value) and includes a reasonable range above the highest data point. Inde-
pendent of the issues involved with choosing the range for an individual chart, one
principle that should be observed if multiple charts are compared to each other (for
instance, charts showing the percent obesity in different countries over the same
time period or charts of different health risks for the same period), they should all
use the same scale to avoid misleading the reader.
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How to Lie with Statistics
Darrell Huff was a freelance writer who also worked as an editor at Look magazine,
Better Homes and Gardens, and Liberty, among other publications. His greatest
claim to fame, however, is the classic book How to Lie with Statistics, first pub-
lished in 1954. Some say it is the most widely read statistics book in the world.
Huff was not a trained statistician, his presentation of the topic can be charitably
described as informal, and some of the illustrations in How to Lie with Statistics
would be quite offensive if they were included in a contemporary book. Yet this
slim volume has retained its popularity over the years; it is still in print and has
been translated into many languages.

Huff draws many of his examples of “lies,” by which he means the misleading
presentation of information, from the contemporary media and political and com-
mercial discourse. Some of his most insightful examples are in his chapters on
graphic presentation, from the use of a graph with a deliberately misleading scale
to another that lacks any axis labels. One reason for the continuing popularity of
How to Lie with Statistics, unfortunately, is that many of the misleading techniques
he identified in 1954 are still in use today.

Exercises
Like any other aspect of statistics, learning the techniques of descriptive statistics
requires practice. The data sets provided are deliberately simple because if you can
apply a technique correctly with 10 cases, you can also apply it with 1,000.

My advice is to try solving the problems several ways, for instance, by hand, using
a calculator, and using whatever software is available to you. Even spreadsheet pro-
grams such as Microsoft Excel offer many simple mathematical and statistical func-
tions. (Although the usefulness of such functions for serious statistical research is
questionable, they might be adequate for initial exploratory work; see the references
on Excel in Appendix C for more on this.) In addition, by solving a problem several
ways, you will have more confidence that you are using the hardware and software
correctly.

Most graphic presentations are created using software, and although each package
has good and bad points, most can produce most, if not all, of the graphics presented
in this chapter and quite a few other types of graphs as well. The best way to become
familiar with graphics is to investigate whatever software you have access to and
practice graphing data you currently work with. (If you don’t currently work with
data, plenty that you can experiment with is available for free download from the
Internet.) Remember that graphic displays are a form of communication, and keep
in mind the point you are trying to make with any graphic.

Problem

When is each of the following an appropriate measure of central tendency? Think
of some examples for each from your work or studies.
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• Mean

• Median

• Mode

Solution

• The mean is appropriate for interval or ratio data that is continuous, symmet-
rical, and lacks significant outliers.

• The median is appropriate for continuous data that might be skewed (asym-
metrical), based on ranks, or contain extreme values.

• The mode is most appropriate for categorical variables or for continuous data
sets where one value dominates the others.

Problem

Find some examples of the misleading use of statistical graphics, and explain what
the problem is with each.

Solution

This shouldn’t be a difficult task for anyone who follows the news media, but if you
get stuck, try searching on the Internet for phrases like “misleading graphics.”

Problem

One of the following data sets could be appropriately displayed as a bar chart and
one as a histogram; decide which method is appropriate for each and explain why.

a. A data set of the heights (in centimeters) of 10,000 entering freshmen at a
university

b. A data set of the majors elected by 10,000 entering freshmen at a university

Solution

a. The height data would be best displayed as a histogram because these meas-
urements are continuous and have a large number of possible values.

b. The majors data would be more appropriately displayed as a bar chart because
this type of information is categorical and has a restricted set of possible values
(although if there is a large number of majors, the less frequent majors might
be combined for the sake of clarity).

Problem

One of the following data sets is appropriate for a pie chart, and one is not. Identify
which is which, and explain why.

a. Influenza cases for the past two years, broken down by month

b. The number of days missed due to the five leading causes for absenteeism at a
hospital (the fifth category is “all other,” including all absences attributed to
causes other than the first four)
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Solution

a. A pie chart would not be a good choice for the influenza data set because it
would have too many categories (24), many of the categories are probably sim-
ilar in size (because influenza cases are rare in the summer months), and the
data doesn’t really reflect parts making up a whole. A better choice might be a
bar chart or line chart showing the number of cases by month or season.

b. The absenteeism data would be a good candidate for a pie chart because there
are only five categories, and the parts do add up to 100% of a whole. One
question that can’t be answered from this description is whether the different
categories (or slices of the pie) are clearly of different size; if so, that would be
a further argument in favor of the use of a pie chart.

Problem

What is the median of this data set?

8 3 2 7 6 9 1 2 1

Solution

3. The data set has 9 values, which is an odd number; the median is therefore the
middle value when the values are arranged in order. To look at this question more
mathematically, because there are n = 9 values, the median is the (n + 1)/2th value;
thus, the median is the (9 + 1)/2th or fifth value.

Problem

What is the median of this data set?

7 15 2 6 12 0

Solution

6.5. The data set has 6 values, which is an even number; the median is therefore the
average of the middle two values when the values are arranged in order, in this case,
6 and 7. To look at this question more mathematically, the median for an even-
numbered set of values is the average of the (n /2)th and (n /2)th + 1 value; n = 6 in
this case, so the median is the average of the (6/2)th and (6/2)th + 1 values, that is,
the third and fourth values.

Problem

What are the mean and median of the following (admittedly bizarre) data set?

1, 7, 21, 3, −17

Solution

The mean is ((1 + 7 + 21 + 3 + (−17))/5 = 15/5 = 3.

The median, because there is an odd number of values, is the (n + 1)/2th value, that
is, the third value. The data values in order are (−17, 1, 3, 7, 21), so the median is
the third value, or 3.
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Problem

What are the variance and standard deviation of the following data set? Calculate
this by using both the population and sample formulas. Assume µ = 3.

1 3 5

Solution

The population formula to calculate variance is shown in Figure 4-37.

Figure 4-37. Formula for population variance

The sample formula is shown in Figure 4-38.

Figure 4-38. Formula for sample variance

In this case, n = 3,  = 3, and the sum of the squared deviation scores = (−2)2 + 02

+ 22 = 8. The population variance is 8/3, or 2.67, and the population standard de-
viation is the square root of the variance, or 1.63. The sample variance is 8/2, or 4,
and the sample standard deviation is the square root of the variance, or 2.
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5
Categorical Data

A categorical variable is a variable in which the possible responses consist of a set of
categories rather than numbers that measure an amount or quantity of something
on a continuous scale. For instance, a person might describe his or her gender in
terms of male or female, or a machine part might be classified as acceptable or de-
fective. More than two categories are also possible. For instance, a person in the
United States might describe his political affiliation as Republican, Democrat, or
independent.

Categorical variables may be inherently categorical (such as political party affilia-
tion), with no numeric scale underlying their measurement, or they may be created
by categorizing a continuous or discrete variable. Blood pressure is a measure of the
pressure exerted on the walls of the blood vessels, measured in millimeters of mer-
cury (Hg). Blood pressure is usually measured continuously and recorded with spe-
cific measurements such as 120/80 mmHg, but it is often analyzed using categories
such as low, normal, prehypertensive, and hypertensive. Discrete variables (those
that can be taken only on specific values within a range) may also be grouped into
categorical variables. A researcher might collect exact information on the number
of children per household (0 children, 1 child, 2 children, 3 children, etc.) but choose
to group this data into categories for the purpose of analysis, such as 0 children, 1–
2 children, and 3 or more children. This type of grouping is often used if there are
large numbers of categories and some of them contain sparse data. In the case of the
number of children in a household, for instance, a data set might include a relatively
few households with large numbers of children, and the low frequencies in those
categories can adversely affect the power of the study or make it impossible to use
certain analytical techniques.

Although the wisdom of classifying continuous or discrete measurements into
categories is sometimes debatable (some researchers refer to it as throwing away
information because it discards all the information about variability within the cat-
egories), it is a common practice in many fields. Categorizing continuous data is
done for many reasons, including custom (if certain categorizations may have
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become accepted in a professional field), and as a means to solve distribution prob-
lems within a data set.

Categorical data techniques can also be applied to ordinal variables, meaning those
measured on a scale in which the categories might be ranked in order but do not
meet the requirement of equal distance between each category. (Ordinal variables
are discussed at more length in Chapter 1.) The well-known Likert scale, in which
people choose their responses to questions from a set of ordered categories (such as
Strongly Agree, Agree, Neutral, Disagree, and Strongly Disagree) is a classic example
of an ordinal variable. A special set of analytic techniques, discussed later in this
chapter, has been developed for ordinal data that retain the information about the
order of the categories. Given a choice, specific ordinal techniques are preferred over
categorical techniques for the analysis of ordinal data because they are generally
more powerful.

A host of specific techniques has been developed to analyze categorical and ordinal
data. This chapter discusses the most common techniques used for categorical and
ordinal data, and a few techniques for these types of data are included in other
chapters as well. The odds ratio, risk ratio, and the Mantel-Haenszel test are covered
in Chapter 15, and some of the nonparametric methods covered in Chapter 13 are
applicable to ordinal or categorical data.

The R×C Table
When an analysis concerns the relationship of two categorical variables, their dis-
tribution in the data set is often displayed in an R×C table, also referred to as a
contingency table. The R in R×C refers to row and the C to column, and a specific
table can be described by the number of rows and columns it contains. Rows and
columns are always named in this order, a convention also followed in describing
matrixes and in subscript notation. Sometimes, a distinction is made between 2×2
tables, which display the joint distribution of two binary variables, and tables of
larger dimensions. Although a 2×2 table can be thought of as an R×C table where
R and C both equal 2, the separate classification can be useful when discussing
techniques developed specifically for 2×2 tables. The phrase “R×C” is read as “R by
C,” and the same convention applies to specific table sizes, so “3×2” is read as “3
by 2.”

Suppose we are interested in studying the relationship between broad categories of
age and health, the latter defined by the familiar five-category general health scale.
We decide on the categories to be used for age and collect data from a sample of
individuals, classifying them according to age (using our predefined categories) and
health status (using the five-point scale). We then display this information in a con-
tingency table, arranged like Table 5-1.

This would be described as a 4×5 table because it contains four rows and five col-
umns. Each cell would contain the count of people from the sample with the pair of
characteristics described: the number of people under 18 years in excellent health,
the number aged 18–39 years in excellent health, and so on.
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Table 5-1. Contingency table displaying health status by age category

 Excellent Very good Good Fair Poor

< 18 Years      

18–35 Years      

40–64 Years      

≥ 65 Years      

Measures of Agreement
The types of reliability described here are useful primarily for continuous measure-
ments. When a measurement problem concerns categorical judgments, for instance
classifying machine parts as acceptable or defective, measurements of agreement are
more appropriate. For instance, we might want to evaluate the consistency of results
from two diagnostic tests for the presence or absence of disease, or we might want
to evaluate the consistency of results from three raters who are classifying the class-
room behavior of particular students as acceptable or unacceptable. In each case, a
rater assigns a single score from a limited set of choices, and we are interested in
how well these scores agree across the tests or raters.

Percent agreement is the simplest measure of agreement; it is calculated by dividing
the number of cases in which the raters agreed by the total number of ratings. For
instance, if 100 ratings are made and the raters agree 80% of the time, the percent
agreement is 80/100 or 0.80. A major disadvantage of simple percent agreement is
that a high degree of agreement can be obtained simply by chance; thus, it is difficult
to compare percent agreement across different situations when agreement due to
chance can vary.

This shortcoming can be overcome by using another common measure of agreement
called Cohen’s kappa, the kappa coefficient, or simply kappa. This measure was orig-
inally devised to compare two raters or tests and has since been extended for use
with larger numbers of raters. Kappa is preferable to percent agreement because it
is corrected for agreement due to chance (although statisticians argue about how
successful this correction really is; see the following sidebar for a brief introduction
to the issues). Kappa is easily computed by sorting the responses into a symmetrical
grid and performing calculations as indicated in Table 5-2. This hypothetical ex-
ample concerns the agreement of two tests for the presence (D+) or absence (D−) of
disease.

Table 5-2. Agreement of two tests on a dichotomous outcome

  Test 2   

  + −  

Test 1 + 50 10 60

 − 10 30 40

  60 40 100
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The four cells containing data are commonly identified as follows:

 + −

+ a b

− c d

Cells a and d represent agreement (a contains the cases classified as having the dis-
ease by both tests, d contains the cases classified as not having the disease by both
tests), whereas cells b and c represent disagreement.

The formula for kappa is:

where Po = observed agreement, and Pe = expected agreement.

Po = (a + d)/(a + b + c + d)

that is, the number of cases in agreement divided by the total number of cases. In
this case,

Po = 80/100 = 0.80
Pe = [(a + c)(a + b)]/(a + b + c + d)2 + [(b + d)(c + d)]/(a + b + c + d)2

and is the number of cases in agreement expected by chance. Expected agreement
in this example is:

(60*60)/(100*100) + (40*40)/(100*100) = 0.36 + 0.16 = 0.52

Kappa, in this case, is therefore calculated as:

Kappa has a range of −1 to +1; the value would be 0 if observed agreement were the
same as chance agreement and 1 if all cases were in agreement. There are no absolute
standards by which to judge a particular kappa value as high or low; however, some
researchers use the guidelines published by Landis and Koch (1977):

< 0 Poor
0–0.20 Slight
0.21–0.40 Fair
0.41–0.60 Moderate
0.61–0.81 Substantial
0.81–1.0 Almost perfect

By this standard, our two tests exhibit moderate agreement. Note that the percent
agreement in this example is 0.80, but kappa is 0.58. Kappa is always less than or
equal to the percent agreement because kappa is corrected for chance agreement.
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For an alternative view of kappa (intended for more advanced statisticians), see the
following sidebar.

Controversies over Kappa
Cohen’s kappa is a commonly taught and widely used statistic, but its application
is not without controversy. Kappa is usually defined as representing agreement
beyond that expected by chance or, simply, agreement corrected for chance. It has
two uses: as a test statistic to determine whether two sets of ratings agree more
often than would be expected by chance (which is a dichotomous, yes/no decision)
and as a measure of the level of agreement (which is expressed as a number between
0 and 1).

Although most researchers have no problem with the first use of kappa, some
object to the second. The problem is that calculating agreement expected by
chance between any two entities, such as raters, is based on the assumption that
the ratings are independent, a condition not usually met in practice. Because kappa
is often used to quantify agreement for multiple individuals rating the same case,
whether it is a child’s classroom behavior or a chest X-ray from a person who might
have tuberculosis, we would tend to expect more than chance agreement. In these
cases, kappa overestimates the agreement among tests, raters, and so on by un-
derestimating the amount of observed agreement that is in fact due to chance.

Criticisms of kappa, including a lengthy bibliography of relevant articles, can be
found on the website of John Uebersax, PhD.

The Chi-Square Distribution
When we do hypothesis testing with categorical variables, we need some way to
evaluate whether our results are significant. With R×C tables, the statistic of choice
is often one of the chi-square tests, which draw on the known properties of the
chi-square distribution. The chi-square distribution is a continuous theoretical prob-
ability distribution that is widely used in significance testing because many test sta-
tistics follow this distribution when the null hypothesis is true. The ability to relate
a computed statistic to a known distribution makes it easy to determine the proba-
bility of a particular test result.

The chi-square distribution is a special case of the gamma distribution and has only
one parameter, k, which specifies the degrees of freedom. The chi-square distribu-
tion has only positive values because it is based on the sum of squared quantities,
as you will see, and is right-skewed. Its shape varies according to the value of k, most
radically when k is a low value, as appears in the four chi-square distributions pre-
sented in Figure 5-1. As k approaches infinity, the chi-square distribution ap-
proaches (becomes very similar to) a normal distribution.
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Figure 5-1. Chi-square probability distributions with different degrees of freedom

Figure D-11 contains a list of critical values for the chi-square distribution, which
can be used to determine whether the results of a study are significant. For instance,
the critical value, assuming α = 0.05, for the chi-square distribution with one degree
of freedom is 3.84. Any test result above this value will be considered significant for
a chi-square test of independence for a 2×2 table (described next).

Note that 3.84 = 1.962 and that 1.96 is the critical value for the Z-distribution (stan-
dard normal distribution) for a two-tailed test when α = 0.05. This result is not
coincidental but is due to a mathematical relationship between the Z and chi-square
distributions.

Stated formally: if Xi are independent, standard normally distributed variables with
µ = 0 and σ = 1, and the random variable Q is defined as:

Q will follow a chi-square distribution with k degrees of freedom.

Two important points to remember are that you must know the degrees of freedom
to evaluate a chi-square value and that the critical values generally increase with the
number of degrees of freedom. If α = 0.05, the critical value for a one-tailed chi-
square test with one degree of freedom is 3.84, whereas for 10 degrees of freedom,
it is 18.31.
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The Chi-Square Test
The chi-square test is one of the most common ways to examine relationships be-
tween two or more categorical variables. Performing the chi-square test involves
calculating the chi-square statistic and then comparing the value with that of the
chi-square distribution to find the probability of the test results. There are several
types of chi-square test; unless otherwise indicated, in this chapter “chi-square test”
means the Pearson’s chi-square test, which is the most common type.

There are three versions of the chi-square test. The first is called the chi-square test
for independence. For a study with two variables, the chi-square test for independ-
ence tests the null hypothesis that the variables are independent of each other, that
is, that there is no relationship between them. The alternative hypothesis is that the
variables are related, so they are dependent rather than independent.

For instance, we might collect data on smoking status and diagnosis with lung cancer
from a random sample of adults. Each of these variables is dichotomous: a person
currently smokes or does not and has a lung cancer diagnosis or does not. We arrange
our data in a frequency table as shown in Table 5-3.

Table 5-3. Smoking status and lung cancer diagnosis

 Lung cancer diagnosis No lung cancer diagnosis

Currently smoke 60 300

Do not currently smoke 10 390

Just looking at this data, it seems plausible that there is a relationship between
smoking and lung cancer: 20% of the smokers have been diagnosed with lung cancer
versus only about 2.5% of the nonsmokers. Appearances can be deceiving, however,
so we will conduct a chi-square test for independence. Our hypotheses are:

H0: smoking status and lung cancer diagnosis are independent.
HA: smoking status and lung cancer diagnosis are not independent.

Although chi-square tests are usually performed using a computer, particularly for
larger tables, it is worthwhile to go through the steps of calculation for a simple
example by hand. The chi-square test relies on the difference between observed and
expected values in each of the cells of the 2×2 table. The observed values are simply
what you found (observed) in your sample or data set, whereas the expected values
are what you would expect to find if the two variables were independent. To calcu-
late the expected value for a given cell, use the formula shown in Figure 5-2.

Figure 5-2. Calculating the expected value for a cell
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In this formula, Eij is the expected value for cell ij, and i and j designate the rows and
columns of the cell. This subscript notation is used throughout statistics, so it’s
worth reviewing here. Table 5-4 shows how subscript notation is used to identify
the parts of a 2×2 table.

Table 5-4. Subscript notation for a 2×2 table

Cell11 Cell12 Row 1 (i = 1)

Cell21 Cell21 Row 2 (i = 2)

Column 1 (j = 1) Column 2 (j = 2)  

Table 5-5 adds row and column totals to our smoking/lung cancer example.

Table 5-5. Smoking and lung cancer data with row and column totals

 Lung cancer diagnosis No lung cancer diagnosis Total

Currently smoke 60 300 360

Do not currently smoke 10 390 400

Total 70 690 760

The frequency for cell11 is 60, the value for cell12 is 300, the total for row 1 is 360,
the total for column 1 is 70, and so on. Using dot notation, the total for row 1 is
designated as 1., the total for row 2 is 2., the total for column 1 is .1, and .2 is the
total for column 2. The logic of this notation is that, for instance, the total for row
1 includes the values for both columns 1 and 2, so the column place is replaced with
a dot. Similarly, a column total includes the values for both rows, so the row place
is replaced by a dot. In this example, 1. = 360, 2. = 400, .1 = 70, and .2 = 690.

The values for column and row totals are called marginals because they are on the
margin of the table. They reflect the frequency of one variable in the study without
regard to its relationship with the other variable, so the marginal frequency for lung
cancer diagnosis in this table is 70, and the marginal frequency for smoking is 360.
The numbers within the table (60, 300, 10, and 390 in this example) are called joint
frequencies because they reflect the number of cases having specified values on both
variables. For instance, the joint frequency for smokers with a lung cancer diagnosis
is 60 in this table.

If the two variables are not related, we would expect that the frequency of each cell
would be the product of its marginals divided by the sample size. To put it another
way, we would expect the joint frequencies to be affected only by the distribution
of the marginals. This means that if smoking and lung cancer were unrelated, we
would expect the number of people who smoke and have lung cancer to be deter-
mined only by the number of smokers and the number of people with lung cancer
in the sample. By this logic, the probability of lung cancer should be about the same
in smokers and nonsmokers if it is true that smoking is not related to the develop-
ment of lung cancer.
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Using the preceding formula, we can calculate the expected values for each of the
cells as shown in Figure 5-3.

Figure 5-3. Computing the expected cell frequencies

The observed and expected values for the lung cancer data are presented in Ta-
ble 5-6; expected values for each cell are in parentheses. We need some way to
determine whether the discrepancies can be attributed to chance or represent a sig-
nificant result. We can make this determination using the chi-square test.

Table 5-6. Observed and expected values for the smoking and lung cancer data

 Lung cancer diagnosis No lung cancer diagnosis Total

Currently smoke 60 (33.16) 300 (326.84) 360

Do not currently smoke 10 (36.84) 390 (363.16) 400

Total 70 690 760

The chi-square test is based on the squared difference between observed and ex-
pected values in each cell, using the formula shown in Figure 5-4.

Figure 5-4. The formula for calculating a chi-square value

The steps for using this formula are:

1. Calculate the observed/expected values for cell11.

2. Square the difference, and divide by the expected value.

3. Do the same for the remaining cells.

4. Add the numbers calculated in steps 1–3.
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Continuing with our example, for cell11, this quantity is:

Continuing with the other cells, we find values of 2.2 for cell12, 19.6 for cell21, and
2.0 for cell22. The total is 45.5, which is within rounding error for the value we found
using the SPSS statistical analysis program, (45.474).

To interpret a chi-square statistic, you need to know its degrees of freedom. Each
chi-square distribution has a different number of degrees of freedom and thus has
different critical values. For a simple chi-square test, the degrees of freedom are
(r − 1)(c − 1), that is, (the number of rows minus 1) times (the number of columns
minus 1). For a 2×2 table, the degrees of freedom are (2 − 1)(2 − 1), or 1; for a 3×5
table, they are (3 − 1)(5 − 1), or 8.

Having calculated the chi-square value and degrees of freedom by hand, we can
consult a chi-square table to see whether the chi-squared value calculated from our
data exceeds the critical value for the relevant distribution. According to Fig-
ure D-11 in Appendix D, the critical value for α = 0.05 is 3.841, whereas our value
of 45.5 is much larger, so if we are working with α = 0.05, we have sufficient evidence
to reject the null hypothesis that the variables are independent. If you are not familiar
with the process of hypothesis testing, you might want to review that section of
Chapter 3 before continuing with this chapter. Computer programs usually return
a p-value along with the chi-square value and degrees of freedom, and if the p-value
is less than our alpha level, we can reject the null hypothesis. In this example, assume
we are using an alpha value of 0.05. According to SPSS, the p-value for our result of
45.474 is less than 0.0001, which is much less than 0.05 and indicates that we should
reject the null hypothesis that there is no relationship between smoking and lung
cancer.

The chi-square test for equality of proportions is computed exactly the same way as
the chi-square test for independence, but it tests a different kind of hypothesis. The
test for equality of proportions is used for data that has been drawn from multiple
independent populations, and the null hypothesis is that the distribution of some
variable is the same in all the populations. For instance, we could draw random
samples from different ethnic groups and test whether the rates of lung cancer di-
agnosis are the same or different across the populations; our null hypothesis would
be that they are the same. The calculations would proceed as in the preceding ex-
ample: people would be classified by ethnic group and lung cancer status, expected
values would be computed, the value of the chi-square statistic and degrees of free-
dom computed, and the statistic compared to a table of chi-square values for the
appropriate degrees of freedom, or the exact p-value obtained from a statistical soft-
ware package.

The chi-square test of goodness of fit is used to test the hypothesis that the distribution
of a categorical variable within a population follows a specific pattern of proportions,
whereas the alternative hypothesis is that the distribution of the variable follows
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some other pattern. This test is calculated using expected values based on hypothe-
sized proportions, and the different categories or groups are designated with the
subscript i, from 1 to g (as shown in Figure 5-5).

Figure 5-5. Formula for the chi-square test of goodness of fit

Note that in this formula, there are only single subscripts, for instance Ei rather than
Eij. This is because data for a chi-square goodness of fit is usually arranged into a
single row, hence the need for only one subscript. The degrees of freedom for a chi-
square test of goodness of fit is (g − 1).

Suppose we believe that 10% of a particular population has low blood pressure
(hypotension), 40% normal blood pressure, 30% prehypertension, and 20% hyper-
tension. We can test this hypothesis by drawing a sample and comparing the ob-
served proportions to those of our hypothesis (which are the expected values); we
will use alpha = 0.05. Table 5-7 shows an example using hypothetical data.

Table 5-7. Expected and observed values for the distribution of blood pressure levels

 Hypotension Normal Prehypertension Hypertension Total

Expected proportion 0.10 0.40 0.30 0.20 1.00

Expected count 10 40 30 20 100

Observed count 12 25 50 13 100

The computed chi-square value for this data is 21.8 with 3 degrees of freedom and
is significant. (The critical value for α = 0.05 is 7.815, as can be seen from the chi-
square table in Figure D-11 in Appendix D.) Because the value calculated on our
data exceeds the critical value, we should reject the null hypothesis that the blood
pressure levels in the population follow this hypothesized distribution.

The Pearson’s chi-square test is suitable for data in which all observations are inde-
pendent (the same person is not measured twice, for instance) and the categories
are mutually exclusive and exhaustive (so that no case may be classified into more
than one cell, and all potential cases can be classified into one of the cells). It is also
assumed that no cell has an expected value less than 1, and no more than 20% of
the cells have an expected value less than 5. The reason for the last two requirements
is that the chi-square is an asymptotic test and might not be valid for sparse data
(data in which one or more cells have a low expected frequency).

Yates’s correction for continuity is a procedure developed by the British statistician
Frank Yates for the chi-square test of independence when applied to 2×2 tables. The
chi-square distribution is continuous, whereas the data used in a chi-square test is
discrete, and Yates’s correction is meant to correct for this discrepancy. Yates’s
correction is easy to apply. You simply subtract 0.5 from the absolute value of
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(observed – expected) in the formula for the chi-square statistic before squaring; this
has the effect of slightly reducing the value of the chi-square statistic. The chi-square
formula, with Yates’s correction for continuity, is shown in Figure 5-6.

Figure 5-6. The chi-square formula with Yates’s correction for continuity

The idea behind Yates’s correction is that the smaller chi-square value reduces the
probability of Type I error (wrongly rejecting the null hypothesis). Use of Yates’s
correction is not universally endorsed, however; some researchers feel that it might
be an overcorrection leading to a loss of power and increased probability of a Type
II error (wrongly failing to reject the null hypothesis). Some statisticians reject the
use of Yates’s correction entirely, although some find it useful with sparse data,
particularly when at least one cell in the table has an expected cell frequency of less
than 5. A less controversial remedy for sparse categorical data is to use Fisher’s exact
test, discussed later, instead of the chi-square test, when the distributional assump-
tions previously named (no more than 20% of cells with an expected value less than
5 and no cell with an expected value of less than 1) are not met.

The chi-square test is often computed for tables larger than 2×2, although computer
software is usually used for those analyses because as the number of cells increases,
the calculations required quickly become lengthy. There is no theoretical limit on
the number of columns and rows that may be included, but two factors impose
practical limits: the possibility of making a coherent interpretation of the results (try
this with a 30×30 table!) and the necessity to avoid sparse cells, as noted earlier.
Sometimes, data is collected in a large number of categories but collapsed into a
smaller number to get around the sparse cell problem. For instance, information
about marital status may be collected using many categories (married, single never
married, divorced, living with partner, widowed, etc.), but for a particular analysis,
the statistician may choose to reduce the categories (e.g., to married and unmarried)
because of insufficient data in the smaller categories.

Fisher’s Exact Test
Fisher’s Exact Test (often called simply Fisher’s) is a nonparametric test similar to
the chi-square test, but it can be used with small or sparsely distributed data sets
that do not meet the distributional requirements of the chi-square test. Fisher’s is
based on the hypergeometric distribution and calculates the exact probability of
observing the distribution seen in the table or a more extreme distribution, hence
the word “exact” in the title. It is not an asymptotic test and therefore is not subject
to the sparseness rules that apply to the chi-square tests. Computer software is usu-
ally used to calculate Fisher’s, particularly for tables larger than 2×2, because of the
repetitious nature of the calculations. A simple example with a 2×2 table follows.
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Suppose we are interested in the relationship between use of a particular street drug
and sudden cardiac failure in young adults. Because the drug is both illegal and new
to our area, and because sudden cardiac death is rare in young adults, we were not
able to collect enough data to conduct a chi-square test. Table 5-8 shows the data
for analysis.

Table 5-8. Fisher’s Exact Test: calculating the relationship between the use of a novel street
drug and sudden cardiac death in young adults

 Cardiac death No cardiac death Total

Used drug 7 2 9

Didn’t use drug 5 6 11

Total 12 8 20

Our hypotheses are:

H0: risk of sudden cardiac death is no more common among users of the new
drug than in nonusers. H1: risk of sudden cardiac death is greater in people
using the new drug.

Fisher’s Exact Test calculates the probability of results at least as extreme as those
found in the study. A more extreme result in this study would be one in which the
difference in proportion of drug users versus nondrug users suffering sudden cardiac
death was even greater than in the actual data (keeping the same sample size). One
more extreme result is shown in Table 5-9.

Table 5-9. More extreme data distribution for drug use/cardiac death example

 Cardiac death No cardiac death Total

Used drug 8 1 9

Didn’t use drug 4 7 11

Total 12 8 20

The formula to calculate the exact probability for a 2×2 table is shown in Figure 5-7.

Figure 5-7. Formula for Fisher’s Exact Test

In this formula, ! means factorial (4! = 4×3×2×1), and cells and marginals are iden-
tified using the notation shown in Table 5-10.
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Table 5-10. Table notation

a b r1

c d r2

c1 c2 n

In this case, a = 8, b = 1, c = 4, d = 7, r1 = 9, r2 = 11, c1 = 12, c2 = 8, and n = 20. Why
is this table more extreme than our observed results? Because if there were no rela-
tionship between use of the drug and sudden cardiac death, we would expect to see
the distribution in Table 5-11.

Table 5-11. Expected data, assuming independence

 Cardiac death No cardiac death Total

Used drug 5.4 3.6 9

Didn’t use drug 6.6 4.4 11

Total 12 8 20

In our observed data, there is a stronger relationship between using the drug and
cardiac death (more deaths than the expected value for drug users), so any table in
which that relationship is even stronger than in our observed data is more extreme
and hence less probable if drug use and cardiac death are independent.

To find the p-value for Fisher’s Exact Test by hand, we would have to find the
probability of all the more extreme tables and add them up. Fortunately, algorithms
to calculate Fisher’s are included in most statistical software packages, and many
online calculators also can calculate this statistic for you. Using the calculator avail-
able on a page maintained by John C. Pezzullo, a retired professor of pharmacology
and biostatistics, we find that the one-tailed p-value for Fisher’s Exact Test for the
data in Table 5-7 is 0.157. We use a one-tailed test because our hypothesis is one-
tailed; our interest is in whether use of the new drug increases the risk for cardiac
death. Using an alpha level of 0.05, this result is not significant, so we do not reject
our null hypothesis that the new drug does not increase the risk of cardiac death.

McNemar’s Test for Matched Pairs
McNemar’s test is a type of chi-square test used when the data comes from paired
samples, also known as matched samples or related samples. For instance, we might
use McNemar’s to examine the results of an opinion poll on some issue before and
after a group of individuals viewed a political advertisement. In this example, each
person would contribute two opinions, one before and one after viewing the adver-
tisement. We cannot treat two opinions on the same issue as independent, so we
can’t use a Pearson’s chi-square; instead, we assume that two opinions collected
from the same person will be more closely related than two opinions collected from
two people. The McNemar’s test would also be appropriate if we collected opinions
from pairs of siblings or husband–wife pairs on some issue. In siblings and husband–
wife examples, although information is collected from different individuals, the
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individuals in each pair are so closely related or affiliated that we would expect them
to be more similar than two people chosen at random from the population. McNe-
mar’s can also be used to analyze data collected from groups of individuals who have
been so closely matched on important characteristics that they can no longer be
considered independent. For instance, medical studies sometimes look at the oc-
currence of a particular disease related to a risk factor among groups of individuals
matched on multiple characteristics such as age, gender, and race/ethnicity, and use
paired data techniques such as McNemar’s because the individuals are so closely
matched that they are considered related rather than independent samples.

Suppose we want to measure the effectiveness of a political advertisement in chang-
ing people’s opinions about capital punishment. One way to do this would be to
ask people whether they are for or against capital punishment, collecting their opin-
ions both before and after they view a 30-second commercial advocating the aboli-
tion of capital punishment. Consider the hypothetical data set in Table 5-12.

Table 5-12. McNemar’s test of opinions on capital punishment before and after viewing a
television commercial

  After viewing the commercial  

  For capital
punishment

Against capital
punishment

Total

Before viewing the
commercial

For capital
punishment

15 25 40

Against capital
punishment

10 20 30

  25 45 70

More people were against capital punishment after viewing the commercial as com-
pared to the same people before viewing the commercial, but is this difference sig-
nificant? We can test this using McNemar’s chi-square test, calculated using the
formula in Figure 5-8.

Figure 5-8. Formula for McNemar’s chi-square test

This formula uses a method of referring to cells by letters, using the plan shown in
Table 5-13.

Table 5-13. Method of referring to cells in a 2×2 table by letters

a b

c d
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Note that this formula is based exclusively on the distribution of discordant pairs
(b and c), in this case those in which a person changed his or her opinion after viewing
the commercial. McNemar’s has a chi-squared distribution with one degree of free-
dom. The calculations are shown in Figure 5-9.

Figure 5-9. Computing McNemar’s chi-square test

As you can see from the chi-square table (Figure D-11 in Appendix D), when alpha
= 0.05, the critical value for a chi-square distribution is 3.84, so this result provides
evidence that we should reject the null hypothesis that viewing the commercial has
no effect on people’s opinions about capital punishment. I also determined from a
computer analysis that the exact probability of getting a chi-square statistic with one
degree of freedom at least as extreme as 6.43 is 0.017 if people’s opinions did not
change before and after viewing the commercial, reinforcing the fact that the result
from this study is significant, and we should reject the null hypothesis.

Proportions: The Large Sample Case
A proportion is a fraction in which all the cases in the numerator are also in the
denominator. For instance, we could speak of the proportion of female students in
a particular university. The numerator would be the number of female students, and
the denominator would be all students (both male and female) at the university. Or
we could speak of the number of students majoring in chemistry at a particular
university. The numerator would be the number of chemistry majors, and the de-
nominator all students at the university (of whatever major). Proportions are
discussed in more detail in Chapter 15. Data that can be described in terms of pro-
portions is a special case of categorical data in which there are only two categories:
male and female in the first example, chemistry major and non-chemistry major in
the second.

Many of the statistics discussed in this chapter, such as Fisher’s Exact Test and the
chi-square tests, can be used to test hypotheses about proportions. However, if
the data sample is sufficiently large, additional types of tests can be performed using
the normal approximation to the binomial distribution; this is possible because, as
discussed in Chapter 3, the binomial distribution comes to resemble the normal
distribution as n (the sample size) increases. How large a sample is large enough?
One rule of thumb is that both np and n(1 − p) must be greater than or equal to 5.

Suppose you are a factory manager, and you claim that 95% of a particular type of
screw produced by your plant has a diameter between 0.50 and 0.52 centimeters. A
customer complains that a recent shipment of screws contains too many outside the
specified dimensions, so you draw a sample of 100 screws and measure them to see
how many meet the standard. You will conduct a one-sample Z-test to see whether
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your hypothesized proportion of 95% of screws meeting the specified standard is
correct with the following hypotheses:

H0: π ≥ 0.95, H1: π < 0.95

where π is the proportion of screws in the population meeting the standard (diameter
between 0.50 and 0.52 centimeters). Note that this is a one-tailed test; you will be
happy if at least 95% of the screws meet the standard and happy if more than 95%
meet it. (You would be happiest, of course, if 100% met the standard, but no man-
ufacturing process is perfectly precise.) In your sample of 100 screws, 91 were within
the specified dimensions. Is this result sufficient, using the standard of alpha = 0.05,
to reject the null hypothesis that at least 95% of the screws of this type manufactured
in our plant meet the standard?

The formula to calculate the one-sample Z-test for a proportion is given in Fig-
ure 5-10.

Figure 5-10. Formula for the one-sample Z statistic for a proportion

In this formula, π0 is the hypothesized population proportion,
p is the sample proportion, and
n is the sample size.

Plugging the numbers into this formula gives us a Z-score of −1.835, as shown in
Figure 5-11.

Figure 5-11. Calculating the one-sample Z statistic for a proportion

The critical value for a one-tailed Z-test, given our hypotheses and alpha-level, is
−1.645. Our value of −1.835 is more extreme than this value, so we will reject our
null hypothesis and conclude that less than 95% of this type of screw, as manufac-
tured in our plant, meet the specified standard.

We can also test for differences in population proportions in the large-sample case.
Suppose we are interested in the proportion of high school students who are current
tobacco smokers and want to compare this proportion across two countries. Our
null hypothesis is that the proportion is the same in both countries, so this will be
a two-sided test with the hypotheses:

Proportions: The Large Sample Case | 137

Categorical Data



H0: π1 = π2, H1: π1 ≠ π2

Assuming that our assumptions about sample size are met (np ≥ 5, n(1 – p) ≥ 5 for
both samples), we can use the formula in Figure 5-12 to compute a Z-statistic for
the differences in proportions between two populations.

Figure 5-12. Formula for the Z-statistic for the difference in two proportions

In this formula, p1 is the proportion in sample 1,
p2 is the proportion in sample 2,
n1 is the size of sample 1,
n2 is the size of sample 2, and

 is the pooled proportion, calculated as the sum of successes in both samples
(in this case, the number of smokers), divided by the sum of the sample sizes.

Suppose we drew a sample of 500 high school students from each of two countries;
in country 1, the sample included 90 current smokers; in country 2, it included 70
current smokers. Given this data, do we have sufficient information to reject our
null hypotheses that the same proportion of high school students smoke in each
country? We can test this by calculating the two-sample Z test, as shown in Fig-
ure 5-13.

Figure 5-13. Calculating the Z-statistic for the difference in two proportions

Note that our pooled proportion is:

(90 + 70)/(500 + 500) = 160/1000 = 0.16

This Z-value is less extreme than 1.96 (the value needed to reject the null hypothesis
at alpha = 0.05; you can confirm this using the normal table [Figure D-3 in Appen-
dix D]), so we fail to reject the null hypothesis that the proportion of smokers among
high school students in the two countries is the same.

Correlation Statistics for Categorical Data
The most common measure of association for two variables, Pearson’s correlation
coefficient (discussed in Chapter 7) requires variables measured on at least the
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interval level. However, several measures of association have been developed for
categorical and ordinal data, and they are interpreted similarly to the Pearson cor-
relation coefficient. These measures are often produced using a statistical software
package or an online calculator, although they can also be calculated by hand.

As with Pearson’s correlation coefficient, the correlation statistics discussed in this
section are measures of association only, and statements about causality cannot be
supported by a correlation coefficient alone. There is a plethora of these measures,
some of which are known under several names; a few of the most common are
discussed here. A good approach if you’re using a new statistical software package
is to see which measures are supported by that package and then investigate which
of those measures are appropriate for your data because there are so many correla-
tion statistics.

Binary Variables
Phi is a measure of the degree of association between two binary variables (two
categorical variables, each of which can have only one of two values). Phi is calcu-
lated for 2×2 tables; Cramer’s V is analogous to phi for tables larger than 2×2. Using
the method of cell identification described in Table 5-10, the formula to calculate
phi is shown in Figure 5-14.

Figure 5-14. Formula for the phi statistic

We can calculate phi for the smoking/lung cancer data in Table 5-3 as shown in
Figure 5-15.

Figure 5-15. Calculating the phi statistic

Phi can also be calculated by dividing the chi-square statistic by n and then taking
the square root of the result as shown in Figure 5-16.

Figure 5-16. An alternative formula for the phi statistic

Note that in the first method of calculation, the result can be either positive or neg-
ative, whereas in the second, it can only be positive because the chi-square statistic
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is always positive. The value of phi using the chi-square statistic found using the
second formula can be thought of as the absolute value of the value found using the
first formula. This is clear from considering the data in Table 5-14.

Table 5-14. Phi example

10 20

20 10

Calculating phi by the first method, we get −0.33, and by the second method, 0.33.
You can confirm this using a statistical computer package or an online calculator,
or by performing the calculations by hand. Of course, if we changed the order of the
two columns, we would get a positive result using either method. If the columns
have no natural order (e.g., if they represent nonordered categories such as color),
we might not care about the direction of the association but only its absolute value.
In other cases, we might, for instance if the columns represent the presence or ab-
sence of disease. In the latter case, we need to be careful about how we arrange the
data in the table to avoid producing a misleading result.

Interpreting phi is less straightforward than interpreting the Pearson’s correlation
coefficient because the range of phi depends on the marginal distribution of the data.
If both variables have a 50-50 split (half one value, half the other), the range of phi
is (−1, +1), using the first method, or (0, 1), using the second method. If the variables
have any other distribution, the potential range of phi is less. This is discussed further
in the article by Davenport and El-Sanhurry listed in Appendix C. Keeping this lim-
itation in mind, the interpretation of phi is similar to that of the Pearson correlation
coefficient, so a value of −0.33 would indicate a moderate negative relationship (also
keeping in mind that there is no absolute definition of “a moderate relationship”
and that this result might be considered large in one field of study and rather small
in another).

Cramer’s V is an extension of phi for tables larger than 2×2. The formula for Cramer’s
V is similar to the second method for calculating phi, as shown in Figure 5-17.

Figure 5-17. The formula for Cramer’s V

where the denominator is n (sample size) times the minimum of (r − 1) and (c − 1),
that is, the minimum of two values: the number of rows minus 1, and the number
of columns minus 1. For a 4×3 table, this number would be 2, that is, 3 − 1. For a
2×2 table, the formula for Cramer’s V is identical to the formula for the second way
of calculating phi.

Suppose the chi-square value for a 3×4 table with an n of 200 is 16.70. Cramer’s V
for this data is shown in Figure 5-18.
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Figure 5-18. Calculating Cramer’s V

The Point-Biserial Correlation Coefficient
The point-biserial correlation coefficient is a measure of association between a di-
chotomous variable and a continuous variable. Mathematically, it is equivalent to
the Pearson correlation coefficient (discussed in detail in Chapter 7), but because
one of the variables is dichotomous, a different formula can be used to calculate it.

Suppose we are interested in the strength of association between gender (dichoto-
mous) and adult height (continuous). The point-biserial correlation is symmetric,
like the Pearson correlation coefficient, but for ease of notation we designate height
as X and gender as Y and code Y so 0 = males and 1 = females. We draw a sample
of men and women and calculate the point-biserial correlation by using the formula
shown in Figure 5-19.

Figure 5-19. Formula for the point-biserial correlation coefficient

In this formula, 1 = the mean height for females and 0 =the mean height for
males
p = the proportion of females
sx = the standard deviation of X

Suppose in our sample, the mean height for males is 69.0 inches, for females 64.0
inches, the standard deviation for height is 3.0 inches, and the sample is 55% female.
We calculate the correlation between gender and adult height as shown in Fig-
ure 5-20.

Figure 5-20. The point-biserial correlation of gender and height

A correlation of −0.829 is a strong relationship, indicating that there is a close rela-
tionship between gender and adult height in the U.S. population. The correlation is
negative because we coded females (who are on average shorter) as 1 and males as
0; had we coded our cases the other way around, our correlation would have been
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0.829. Note that the means and standard deviation used in this equation are close
to the actual values for the U.S. population, so a strong relationship between gender
and height exists in reality as well as in this exercise.

Ordinal Variables
The most common correlation statistic for ordinal data (in which data is ordered
but cannot be assumed to have equal distance between values) is Spearman’s rank-
order coefficient, also called Spearman’s rho or Spearman’s r, and also designated by
rs. Spearman’s rho is based on the ranks of data points (first, second, third, and so
on) rather than on their values. Class rank in a school is an example of ratio-level
data; the person with the highest GPA (grade point average) is ranked first, the
person with the next-highest GPA is ranked second, and so on, but you don’t know
whether the difference between the 1st and 2nd students is the same as the difference
between the 2nd and 3rd. Even if you have data measured on a ratio scale, such as
GPA in high school, class ranks are sometimes used in college admissions and schol-
arship decisions because of the difficulty of comparing grading systems across dif-
ferent classes and different schools.

To calculate Spearman’s rho, rank the values of each variable separately, averaging
the ranks of any tied values. Then calculate the difference in ranks for each pair of
values, and calculate Spearman’s rho by using the formula shown in Figure 5-21.

Figure 5-21. Formula for Spearman’s rho

Suppose we are interested in the relationship between weekly hours of study and
score on a final exam. We collect data for both variables as shown in Table 5-15 (a
data set for illustrative purposes to minimize the hand-calculations needed):

Table 5-15. Weekly hours of study and final exam score

Student Hours of study Rank Final exam score Rank di di squared

1 10 7 93 7 0 0

2 12 9 98 8 1 1

3 8 5 99 9 −4 16

4 15 10 100 10 0 0

5 4 1 92 6 −5 25

6 11 8 90 5 3 9

7 6 3 80 2 1 1

8 7 4 82 3 1 1

9 9 6 84 4 2 4
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Student Hours of study Rank Final exam score Rank di di squared

10 5 2 75 1 1 1

It looks like more studying is associated with a higher grade, although the relation-
ship is not perfect. (Student #3 got a high grade with only an average amount of
studying, and student #5 got a good grade with a relatively low amount of studying.)
We will calculate Spearman’s rho to get a more precise estimate of this relationship.
Note that because we square the rank difference, it doesn’t matter whether you
subtract study rank from exam rank (as we did) or the other way around. The sum
of di

2 is 58, and Spearman’s rho for this data is shown in Figure 5-22.

Figure 5-22. Calculating Spearman’s rho

This confirms what we guessed from just looking at the data: there is a strong but
imperfect relationship between the amount of time spent studying and the outcome
on a test.

Goodman and Kruskal’s gamma, often called simply gamma, is a measure of asso-
ciation for ordinal variables that is based on the number of concordant and
discordant pairs between two variables. It is sometimes called a measure of monot-
onicity because it tells you how often the variables have values in the order expected.
If I tell you that two variables in a data set have a positive relationship and that case
2 has a higher value on the first variable than does case 1, you would expect that
case 2 also has a higher value on the second variable. This would be a concordant
pair. If case 2 had a lower value on the second variable, it would be a discordant
pair. To calculate gamma by hand, we would first create a frequency distribution
for the two variables, retaining their natural order.

Consider a hypothetical data set relating BMI (body mass index, a measure of weight
relative to height) and blood pressure levels. In general, high BMI is associated with
high blood pressure, but this is not the case for every individual. Some overweight
people have normal blood pressure, and some normal-weight people have high
blood pressure. Is there a strong relationship between weight and blood pressure in
the data set shown in Table 5-16?

Table 5-16. Example data to calculate gamma

  Blood pressure

  Normal Prehypertensive Hypertensive

BMI Normal 25 15 5

 Overweight 10 10 25

The equations to calculate gamma rely on the cell designations shown in Table 5-17.
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Table 5-17. Cell designations to compute gamma

a b c

d e f

First, we have to find the number of concordant pairs (P) and discordant pairs (Q),
as follows:

P = a (e + f) + bf = 25(10 + 25) + 15(25) = 875 + 375 = 1250,
Q = c (d + e) + bd = 5(10 + 10) + 15(10) = 100 + 150 = 250

Gamma is then calculated as shown in Figure 5-23.

Figure 5-23. Calculating Goodman and Kruskal’s gamma

The reasoning behind gamma is clear: if there is a strong relationship between the
two variables, there should be a higher proportion of concordant pairs; thus, gamma
will have a larger value than if the relationship were weaker. Gamma is a symmetrical
measure because it does not matter which variable is considered the predictor and
which the outcome; the value of gamma will be the same in either case. Gamma does
not correct for tied ranks within the data.

Maurice Kendall developed three slightly different types of ordinal correlation as
alternatives to gamma. Statistical computer packages sometimes use more complex
formulas to calculate these statistics, so the exact formula any particular program
uses should be confirmed with the software manual. All Kendall’s tau statistics, like
gamma, are symmetrical measures.

Kendall’s tau-a is based on the number of concordant versus discordant pairs, divi-
ded by a measure based on the total number of pairs (n = the sample size), as shown
in Figure 5-24.

Figure 5-24. Formula for Kendall’s tau-a

Kendall’s tau-b is a similar measure of association based on concordant and dis-
cordant pairs, adjusted for the number of ties in ranks. Assuming our two variables
are X and Y, tau-b is calculated as (P − Q) divided by the geometric mean of the
number of pairs not tied on X (X0) and the number of pairs not tied on Y (Y0). Tau-
b can approach 1.0 or −1.0 only for square tables (tables with the same number of
rows and columns). The formula for Kendall’s tau-b is shown in Figure 5-25.
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Figure 5-25. Formula for Kendall’s tau-b

In this formula, X0 = the number of pairs not tied on X, and Y0 = the number of pairs
not tied on Y.

Kendall’s tau-c is used for nonsquare tables and is calculated as shown in Figure 5-26.

Figure 5-26. Formula for Kendall’s tau-c

In this formula, m is the number of rows or columns, whichever is smaller, and n is
the sample size.

Somers’s d is an asymmetrical version of gamma, so calculation of the statistic varies
depending on which variable is considered the predictor and which the outcome.
Somers’s d also differs from gamma because it is corrected for the number of pairs
tied on the predictor variable. If the study is set up with the hypothesis involving
X predicting Y, Somers’s d is corrected for the number of pairs tied on X. If the
hypothesis is that Y predicts X, it is corrected for the number of pairs tied on Y. As
in tau-b, in Somers’s d, tied pairs are removed from the denominator. Using the
notation that X0 = the number of pairs not tied on X and Y0 = the number of pairs
not tied on Y, Somers’s d is calculated as shown in Figure 5-27.

Figure 5-27. Formulas for Somers’s d

A symmetric value of Somers’s d can be calculated by averaging the two asymmetric
values calculated with these formulas.

The Likert and Semantic Differential Scales
Several types of scales have been developed to measure qualities that have no natural
metric, such as opinions, attitudes, and perceptions. The best known of these scales
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is the Likert scale, introduced by Rensis Likert in 1932 and widely used today in
fields ranging from education to health care to business management. In a typical
Likert scale question, a statement is presented and the respondent is asked to choose
from an ordered list of responses. For instance:

My classes at Lincoln East High School prepared me for university studies.

1. Strongly agree
2. Agree
3. Neutral
4. Disagree
5. Strongly disagree

This is a classic ordinal scale; we can be reasonably sure that “strongly agree” rep-
resents more agreement than “agree,” and “agree” represents more agreement than
“neutral,” but we can’t be sure whether the increment of agreement between “agree”
and “strongly agree” is the same as the increment between “neutral” and “agree” or
if these increments are the same for each respondent.

Categorical and ordinal methods, as described in this chapter, are appropriate for
the analysis of Likert scale data, and so are some of the nonparametric methods
described in Chapter 13. The fact that Likert scale responses are often identified
with numbers has sometimes led researchers to analyze the data as if it were collected
on an interval scale. For instance, you can find published articles that report the
mean and variance for data collected using a Likert scale. A researcher choosing to
follow this path (treating Likert data as interval) should be aware that this is a con-
troversial approach that will be rejected by many editors and that the burden is on
the researcher to justify any departure from ordinal or categorical methods of anal-
ysis for Likert scale data.

Five levels of response are commonly used with Likert scales because three is thought
not to allow sufficient variation of response, whereas seven is believed to offer too
many choices. There is also some evidence that people are reluctant to select the
extreme values of a scale when a large number of choices is offered. However, some
researchers prefer to use an even number of responses, usually four or six, to avoid
a middle category that might be chosen by default by some respondents.

The semantic differential scale is similar to the Likert scale except that individual
data points are not labeled, merely the extreme values. The preceding Likert question
could be rewritten as a semantic differential question as follows:

Please rate your academic preparation at Lincoln East High School in relation to 
the demands of university study.

Excellent preparation  1    2    3    4    5    Inadequate preparation

Because individual data points do not have to be labeled, semantic differential items
often offer more data points to the respondent. Ten data points is a popular choice
because people are familiar with a 10-point judging scale (hence the popular phrase
“a perfect 10”). Like Likert scales, semantic differential scales are by nature ordinal,
although when a larger number of data points is offered, some researchers argue that
they can be analyzed as interval data.
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Rensis Likert (1903−1981)
Rensis Likert (pronounced Lick-urt, with the accent on the first syllable) was an
American social scientist who specialized in research on organizational behavior
and management theory. Likert received his BA in sociology from the University
of Michigan in 1926 and his PhD in psychology from Columbia University in 1932;
he developed the Likert scale as part of his dissertation research. Likert was a
founder of the University of Michigan Institute for Social Research and served as
its director from 1946 to 1970; he spent his later years consulting for corporations
and writing books on management theory. A central aspect of his work will endear
him to self-motivated students and employees around the world: Likert intro-
duced the concepts of participation management and the human-centered orga-
nization, based on his findings that there was an inverse relationship between
coercive management supervision and employee productivity.

Exercises
Here are some review questions on the topics covered in this chapter.

Problem

What are the dimensions of Tables 5-18 and 5-19? What would be the degrees of
freedom for an independent-samples chi-square test calculated from data of these
dimensions?

Table 5-18. R×C table a

    

    

    

Table 5-19. R×C table b

   

   

   

   

Solution

The table dimensions are 3×4 (table a) and 4×3 (table b). Remember, tables are
described as R×C, that is, (number of rows) by (number of columns). The degrees
of freedom are 6 for the first table [(3 − 1)(4 − 1)] and 6 for the second [(4 − 1)(3 −
1)] because degrees of freedom for chi-square is calculated as [(r − 1)(c − 1)].

Problem

Given the distribution of data in the following table, calculate percent agreement
and kappa.
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Table 5-20. Agreement between two raters

  Rater 2   

  + −  

Rater 1 + 70 15 85

 − 30 25 55

  100 40 140

Solution

Percent agreement = 95/140 = 0.68,
Kappa = 0.30,
Po = (70 + 25)/140 = 0.68,
Pe = (85*100)/(140*140) + (40*55)/(140*140) = 0.54

Figure 5-28. Calculating kappa

Problem

What is the null hypothesis for the chi-square test of independence?

Solution

The variables are independent, which also means that the joint probabilities may be
predicted using only the marginal probabilities.

Problem

What is the null hypothesis for the chi-square test for equality of proportions?

Solution

The null hypothesis is that two or more samples drawn from different populations
have the same distribution on the variable(s) of interest.

Problem

What is an appropriate statistic to measure the relationship between the two inde-
pendent variables displayed in Table 5-21? What is the value of that statistic, and
what conclusion would you draw from it?

Table 5-21. Two independent variables

 D+ D−

E+ 25 10

E− 2 5
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Solution

Because this is a 2×2 table and two of the cells have expected values of less than five
(cells c and d), Fisher’s Exact Test should be used. The value is 0.077 (obtained using
computer software), which does not provide sufficient evidence to reject the null
hypothesis of no relationship between E and D.

Problem

What are the expected values for the cells in Table 5-22? What is the value of the
chi-square statistic? What conclusion would you draw about the relationship be-
tween exposure and disease, given this data?

Table 5-22. Calculating expected values

 D+ D−

E+ 25 30

E− 15 5

Solution

The expected values are given in Table 5-23.

Table 5-23. Expected values: solution

 D+ D−

E+ 29.3 25.7

E− 10.7 9.3

Chi-square (1) = 5.144, p = 0.023. This is sufficient evidence to reject the null hy-
pothesis that exposure and disease are unrelated. We draw the same conclusion by
using the chi-square table (Figure D-11) in Appendix D: 5.144 exceeds the 0.025
critical value (5.024) for a single-tailed chi-square test with one degree of freedom,
indicating that we should reject the null hypothesis if α = 0.05.

Problem

Table 5-24 represents political affiliations of married couples. Compute the appro-
priate statistic to see whether the affiliations of husbands and wives are independent
of those of their spouses.

Table 5-24. Political affiliations of husbands and wives

  Wife

  Republican Democrat

Husband Republican 20 30

Democrat 20 20

Exercises | 149

Categorical Data



Solution

McNemar’s test is appropriate because the data comes from related pairs. The cal-
culations are shown in Figure 5-29. The value of McNemar’s chi-square is 2.00,
which is not above the critical value for chi-square with one degree of freedom, at
alpha = 0.05, so we do not have evidence sufficient to reject the null hypothesis that
the political affiliations of spouses are independent of the affiliation of the other
spouse.

Figure 5-29. Calculating McNemar’s test

Problem

Which of Kendall’s tau statistics would be appropriate for the data in Table 5-25?

Table 5-25. Educational level and job satisfaction

  Satisfaction with job

  Dissatisfied Neutral Satisfied

Educational Level <HS 45 20 10

HS grad 15 15 20

Some college 30 10 25

College grad or higher 10 15 30

Solution

Kendall’s tau-c should be used because the table is not square (it has four rows and
three columns).

Problem

What is the argument against analyzing Likert and similar attitude scales as interval
data?

Solution

There is no natural metric for constructs such as attitudes and opinions. We can
devise scales that are ordinal (the responses can be ranked in order of strength of
agreement, for instance) to measure such constructs, but it is impossible to deter-
mine whether the intervals among points on such scales are equally spaced. There-
fore, data collected using Likert and similar types of scales should be analyzed at the
ordinal or categorical level rather than at the interval or ratio level.

Problem

In what circumstance would you compute the Cramer’s V statistic?
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Solution

Cramer’s V is an extension of the phi statistic and should be calculated to determine
the strength of association between two categorical variables that have more than
two levels. For binary variables, Cramer’s V is equivalent to phi.

Problem

You read about a national poll stating that 30% of university students are dissatisfied
with their appearance. You wonder whether the proportion at your local university
(enrollment 20,000 students) is the same, so you draw a random sample of 150
students and find that 30 report being dissatisfied with their appearance. Conduct
the appropriate test to see whether the proportion of students at your university
differs significantly from the national result.

Solution

This question calls for a one-sample Z-statistic with a two-tailed test (because you
are interested in whether the proportion at your school differs from the national
figure in either direction). The test statistic is shown in Figure 5-30.

Figure 5-30. Calculating the one-sample Z-statistic for a proportion

Using the standard of alpha = 0.05 and a two-tailed test, the critical Z-value is 1.96
(as you can find using Figure D-3 in Appendix D). The Z-value from your sample is
more extreme than this, so you reject the null hypothesis that the proportion of
students dissatisfied with their appearance at your school is the same as at the na-
tional level.

Simpson’s Paradox
Simpson’s paradox is a circumstance in which the direction of an association re-
verses when data from several groups is combined. This paradox is well known
among baseball fans. For instance, it is possible for player A to have a higher batting
average (proportion of hits) than player B in each of two years, yet player A may
have a lower batting average than player B when data from the two years are
combined. Consider the example in Table 5-26.

Player B had a higher batting average each year yet, over both years combined, a
lower average. This phenomenon occurs due to the different number of cases ob-
served for each player in each year.
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Table 5-26. Simpson’s paradox in baseball

 2000 2001 Combined

Player Hits At-bats Average Hits At-bats Average Hits At-bats Average

A 10 50 0.200 200 600 0.333 210 650 0.323

B 85 400 0.213 50 145 0.345 135 545 0.248

          

Simpson’s paradox was at the root of a controversy about gender discrimination
in university admissions a few years ago. A lawsuit filed against the University of
California was denied when it was shown that apparent gender discrimination (a
lower percentage of women than men admitted overall to the university) could
be explained by the fact that admissions were determined on a department-by-
department basis and that most women applied to departments in which the per-
centage of applicants accepted was low, whereas most men applied to departments
in which the percentage of applicants accepted was higher. In fact, in most de-
partments, a slightly lower percentage of men than women were accepted, but this
distinction was reversed when admissions data from all departments was
combined.

Simpson’s paradox is also apparent in the evaluation of medical treatments when
treatment A might be superior to treatment B in each of two samples yet inferior
when the samples are combined. Some statisticians argue that circumstances such
as this should not be called a paradox at all because to do so implies that there is
a causal relationship between the two variables.

Table 5-27. Summary of tests covered in this chapter

Name of test Type of data What is being tested

Percent agreement One categorical variable, two
raters

How well do the raters agree?

Cohen’s kappa One categorical variable, two
raters

How well do the raters agree after correction for
chance?

Chi-square test of
independence

Two or more categorical vari-
ables

Are the variables independent?

Chi-square test of equality
of proportions

One categorical variable, sam-
ples from two or more popula-
tions

Does the variable have the same distribution in the
populations from which the samples were drawn?

Chi-square test for good-
ness of fit

One categorical variable, a hy-
pothesized distribution for it

Does the variable have the hypothesized distribution
in the population from which the sample was drawn?

Fisher’s Exact Test Two categorical variables; data
may be sparse

Are the variables independent?

McNemar’s test One dichotomous variable,
measured on matched pairs

Are there changes in proportions among the
matched pairs?

Large-sample Z test for a
proportion

Dichotomous variable, one sam-
ple, large sample (np ≥ 5, n(1 −
p) ≥ 5)

Does a population proportion differ from a specified
proportion?
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Name of test Type of data What is being tested

Large-sample Z test for the
difference in two propor-
tions

Dichotomous variable, two sam-
ples, both large samples (np ≥ 5,
n(1 − p) ≥ 5)

Does the proportion of some variable differ in the
populations from which the samples were drawn?

Phi Two binary variables How strongly are the variables associated?

Cramer’s V Two categorical variables How strongly are the variables associated?

Point-biserial correlation One dichotomous and one con-
tinuous variable

How strongly are the variables associated?

Spearman’s rho Two ranked variables How strongly are the variables associated?

Goodman and Kruskal’s
gamma

Two ordinal variables How strongly are the variables associated (based on
concordant and discordant pairs)?

Kendall’s tau-a Two ordinal variables How strongly are the variables associated (based on
concordant and discordant pairs)?

Kendall’s tau-b Two ordinal variables How strongly are the variables associated (based on
concordant and discordant pairs; corrected for ties)?

Kendall’s tau-c Two ordinal variables How strongly are the variables associated (based on
concordant and discordant pairs; may be used for
nonsquare tables)?
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6
The t-Test

The t distribution was introduced by a chemist working in quality control for the
Guinness brewery in Ireland, William Sealy Gosset. Gosset described the t distri-
bution in an article under the pseudonym Student; hence, the t distribution is some-
times called the Student’s t distribution and the t-test the Student’s t-test. There are
three major types of t-test, all of which are concerned with testing the difference
between means and involve comparing a test statistic to the t distribution to deter-
mine the probability of that statistic if the study’s null hypothesis is true. The one-
way analysis of variance (ANOVA) procedure with two groups is mathematically
equivalent to the t-test, but the t-test is used so commonly that it deserves its own
chapter. In addition, understanding the logic of the t-test should make it easier to
follow the logic of more complex ANOVA designs.

The t Distribution
If you’re not familiar with inferential statistics, it might be wise to review Chap-
ter 3 before continuing with this chapter. One basis for inferential statistics is the
use of known probability distributions to make inferences about real data sets. In
Chapter 3, we discussed the normal and binomial distributions; in this chapter, we
discuss the t distribution. Like the normal distribution, the t distribution is contin-
uous and symmetrical. Unlike the normal distribution, the shape of the t distribution
depends on the degrees of freedom for a sample, meaning the number of values that
are allowed to vary. For the t distribution, the main influence on degrees of freedom
is the sample size, and tests on larger sample sizes generally have more degrees of
freedom than smaller sample sizes. Calculation of the degree of freedom for the
different types of t-test will be discussed in the section covering each test.

As noted, Gosset developed the t distribution for practical reasons. While employed
in quality assurance for the Guinness brewery, he was trying to solve the problem
of making inferences from samples of limited size. Gosset’s key observation was the
influence of sample size in determining the probability that the mean of the popu-
lation lies within a given distance of the mean of the sample. There are two main
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reasons for using the t distribution to test differences in means: when we are working
with small samples from a population we believe has an approximately normal dis-
tribution and when we do not know the standard deviation of a population and need
to use the standard deviation of the sample as a substitute for the population stan-
dard deviation. If we are working with a sample size too small to invoke the central
limit theorem and we do not believe that the population from which our sample was
drawn has an approximately normal distribution, we need to use a nonparametric
method (discussed in Chapter 13) instead.

As Figure 6-1 shows, the t distribution looks quite similar to the normal, the main
difference being the thicker tails that mean extreme values are more probable in the
t distribution than in the normal. As sample size (hence degrees of freedom) increa-
ses, the t distribution comes to look more like the normal distribution.

Figure 6-1. Four t distributions

Gosset found that when samples are drawn from a normally distributed population
and the sample standard deviation is used to estimate the population variance, the
distribution of sample means for some variable x drawn from this population can
be described by the formula in Figure 6-2.

Figure 6-2. Formula for the t distribution
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In this formula,  is the sample mean,
µ is the population mean,
s is the population standard deviation, and
n is the sample size.

This formula is similar to the formula for the Z-statistic presented in Chapter 3; the
only difference is that for the t-statistic, we use the sample standard deviation,
whereas for the Z-statistic, we use the population standard deviation.

Appendix D includes a table (Figure D-7) with the upper critical values of the t
distribution for different degrees of freedom; we say “upper critical values” because
the t distribution is symmetric, so there is no need to print the lower critical values.
(They would be the negatives of the numbers in this table.) Because only positive
values are included in the table, to find the critical value for a two-tailed t-test, we
use the column for the α value, which is half of what we want. For a two-tailed test
with α = 0.05, we use the column for 0.25. Not surprisingly, as sample size increases,
the critical values for the t distribution approach those for the standard normal dis-
tribution. For instance, we know (from Figure D-7 in Appendix D as well as the
discussion in Chapter 3) that the upper critical value in the standard normal distri-
bution for a two-tailed test with alpha = 0.05 is 1.96. For a two-tailed test using the
t distribution, with alpha = 0.05, the upper critical value depends on the degrees of
freedom (df). For 1 df, the upper critical value is 12.706; for 10 df, the upper critical
value is 2.228; for 30 df, 2.042; for 50 df, 2.009; for 100 df, 1.984; and for infinite
degrees of freedom, 1.96.

William Sealy Gosset
William Sealy Gosset is often considered the first industrial statistician of modern
times. Although his work was motivated by the pragmatic concerns of his em-
ployer (Arthur Guinness, Son & Co, the brewers), his applied work gave rise to a
set of major inferential statistical tests based on the distribution that he identified.
After systematically working through related techniques such as correlation to
solve problems at his workplace, he identified the fundamental constraint of small
samples and the limitation of techniques that assume large numbers of observa-
tions and/or experiments to determine reliability. Later techniques, such as the
analysis of variance developed by R. A. Fisher, relied heavily on Gosset’s exposi-
tion of the t distribution. Gosset’s life and work provide excellent examples of the
interaction between applied science and theoretical development.

The One-Sample t-Test
One way the t-test is used is to compare the mean of a sample to a population with
a known mean. The null hypothesis is usually that there is no significant difference
between the mean in the population from which your sample was drawn and the
mean of the known population. For instance, you might be interested in the effects
of lead exposure on intelligence in children. You know that for 5-year-old children
in the United States as a whole, the average score on a particular intelligence test is
100. You have a sample of 15 5-year-old children who have been exposed to lead,
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and you want to know whether this exposure has affected their intelligence as meas-
ured by this particular test. You also know that intelligence scores generally assume
a normal distribution in this population. Your null hypothesis is that there is no
difference in the intelligence scores of the lead-exposed group and the population
as a whole, and you will conduct a two-tailed test with alpha = 0.05.

The formula for the one-sample t-test is shown in Figure 6-3.

Figure 6-3. Formula for the one-sample t-test

In this formula,  is the mean of your sample,
µ0 is the reference mean (in this case, the average intelligence score for all 5-
year-olds in the United States),
s is the standard deviation of your sample, and
n is the sample size.

The formulas to calculate the mean and standard deviation of a sample are shown
in Figures 6-4 and 6-5.

Figure 6-4. Calculating the sample mean

Figure 6-5. Calculating the sample standard deviation

In this formula, xi is a single x value,
 is the sample mean,

s is the sample standard deviation, and
n is the sample size.

There is also a computational formula for the sample standard deviation, which is
mathematically identical to the formula in Figure 6-4 but less laborious to calculate
if you must do the computations by hand, as shown in Figure 6-6.
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Figure 6-6. Computational formula for the sample standard deviation

If you want to practice using these formulas, a fully solved example is included at
the end of this chapter. For this example, assume the sample mean is 90, the standard
deviation is 10, and the sample size is 15, and use this information to calculate the
t-statistic, as shown in Figure 6-7.

Figure 6-7. Calculating the one-sample t-test

The degrees of freedom for the one sample t-test is n–1; in this example, df = 15 − 1
= 14. From the table of upper critical values for the t distribution (Figure D-7 in
Appendix D), we see that the upper critical value for a two-tailed t-test with 14
degrees and alpha = 0.05 is 2.145. Because the absolute value of the t-statistic for
our data exceeds the upper critical value (|−3.87| > 2.145), we reject the null hy-
pothesis that the lead-exposed children have the same average intelligence test scores
as children their age in the entire population. Because the difference in means and
the t-statistic are negative, we can also say that the mean intelligence score is lower
for children exposed to lead as compared to the average for children of the same age
in the population as a whole.

Confidence Interval for the One-Sample t-Test
We often want to report a confidence interval as well as a test statistic and signifi-
cance test. The confidence interval is a range of values around the mean, with the
following meaning: if we drew an infinite number of samples of the same size from
the same population, x% of the time the true population mean would be included
in the confidence interval calculated from the samples. If we compute a 95% confi-
dence interval (the most common type), x = 95, so we can say that 95% of the
confidence intervals calculated from an infinite number of samples of the same size,
drawn from the same population, can be expected to contain the true population
mean. More generally, a confidence interval gives us information about the precision
of a point estimate such as the sample mean. A wide confidence interval tells us that
if we had drawn a different sample, we might get a quite different sample mean,
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whereas a narrow confidence interval suggests that if we drew a different sample,
the sample mean would probably be fairly close to that from the sample we did draw.

The formula to compute a two-tailed confidence interval (CI) for the mean for the
one-sample t-test is shown in Figure 6-8.

Figure 6-8. Confidence interval formula for a one-sample t-test

In our example, α = 0.05,
 = 90,

df = n − 1 = 14,
s = 10,
t0.025,14 = 2.145 (from the table in Figure D-7 in Appendix D), and
n = 15.

Putting these values in the formula gives us the result shown in Figure 6-9.

Figure 6-9. Calculating the confidence interval formula for a one-sample t-test

The 95%, two-tailed confidence interval for our estimate of the population mean is
(84.46, 95.54). Note that these numbers are sometimes called the lower boundary
and upper boundary of the confidence interval; in this example, the lower boundary
is 84.46, and the upper boundary is 95.54.

If you want to calculate a one-sided confidence interval, change the ± to either plus
or minus, as appropriate, and use the upper critical value from the t table for α rather
than α/2. To calculate a confidence interval for a different size, use the appropriate
upper critical value from the t table. For instance, for a one-sided, 90% confidence
interval with 20 df, the upper critical value for t is 1.325.

The Independent Samples t-Test
The t-test for independent samples, also known as the two-sample t-test, compares
the means of two samples. The purpose of this test is to determine whether the means
of the populations from which the samples were drawn are the same. The subjects
in the two samples are assumed to be unrelated (no one is tested twice, no sibling
pairs, etc.) and to have been independently selected from their populations. In ad-
dition, we assume that the populations from which the samples were selected have
an approximately normal distribution, unless the samples are large enough to invoke
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the central limit theorem, and that the populations have approximately equal var-
iance. The independent samples t-test is commonly used in many professional fields
and is usually calculated using computer software that can include both a test of the
assumption of equal variance in the populations (e.g., Levene’s test, the Brown-
Forsythe test, or Bartlett’s test) and a statistical fix if this assumption is not met.

The formula to calculate the independent samples t-test is shown in Figure 6-10.

Figure 6-10. Formula for the independent samples t-test

In this formula, 1 and 2 are the means of the two samples,
µ1 and µ2 are the means of the two populations,
s2

p is the pooled variance,
n1 and n2 are the two sample sizes, and
s2

1 and s2
2 are the variances of the two samples.

Note that often the null hypothesis for an independent samples t-test is that the
difference between the population means is 0, in which case the (µ1 − µ2) term can
be dropped from the equation.

The degrees of freedom for the two-sample t-test is (n1 + n2 − 2), that is, 2 fewer than
the number of cases when both samples are combined.

This is a complex formula, but it’s worth stepping back and looking at the general
form of the equation before getting caught up in the details. The formula for the
independent samples t-test is similar to the one-sample t-test formula in that the
numerator is a difference between means, and the denominator is a measure of var-
iability incorporating both the variability observed within the samples and the size
of the samples. The test-statistic for the paired t-test will also follow this basic form,
although differing in some details.

Let’s look at an example. An age-old physical performance question is whether male
football players (soccer players, for American readers) are fitter than male ballet
dancers, so a sports physiologist organizes a study in partnership with a local hospital
research team to answer the question. The two groups are independent populations
because no football player is also a ballet dancer. Two lists of ballet dancers and
football players that are maintained by their respective professional associations are
also located all over the country, and study members are randomly selected from

The Independent Samples t-Test | 161

The t-Test



each group. Because ballet dancers and football players are very busy, only 10 study
members from each group can be recruited. All participants are tested on a range of
human performance tasks, including walking, running, and stepping, and corre-
sponding physiological measures associated with fitness, including heart-rate vari-
ability, pulse-wave velocity, and so on. These measures are then combined to form
a single fitness score ranging from 0 to 100. Experience using this method of eval-
uation has demonstrated that fitness scores calculated using the algorithm used in
this study are approximately normally distributed in the population.

The participants are all tested in the same facility at the same time of day, and their
responses are assessed and combined using the same clinicians. The results for the
two groups are shown in Table 6-1.

Table 6-1. Fitness results for football players and ballet dancers

Ballet dancers Football players

89.2 79.3

78.2 78.3

89.3 85.3

88.3 79.3

87.3 88.9

90.1 91.2

95.2 87.2

94.3 89.2

78.3 93.3

89.3 79.9

We will use an alpha value of 0.05 for this study. You can calculate the t-statistic
entirely by hand, using the formulas for calculating the standard deviation presented
earlier in this chapter (and remembering that variance is the square of standard
deviation). To speed things along, we calculated the necessary quantities for you,
calling the ballet dancers sample 1 and the football players sample 2:

1 = 87.95
2 = 85.19

s1
2 = 32.38

s2
2 = 31.18

If we were using a software program, we would check the assumption of equal var-
iance using Levene’s test (or one of the alternatives; this is discussed more in the
section on the unequal means t-test that follows), which tests the null hypothesis
that the two populations do have equal variance. (If we fail to reject the null hy-
pothesis of equal, we can continue with the t-test.)

The pooled sample variance is calculated as shown in Figure 6-11.
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Figure 6-11. Calculating the pooled variance

The degrees of freedom are df = n1 + n2 − 2 = 18. Our null hypothesis is that the
mean fitness for the two groups is equal, that is, µ1 − µ2 = 0. To test this null hy-
pothesis, we compute the t-statistic, as shown in Figure 6-12.

Figure 6-12. Calculating the t-statistic

From Figure D-7 in Appendix D, we see that the upper critical value for a two-tailed t-
test with alpha = 0.05 and 18 df is 2.101. The absolute value of our t-value is below
that value (i.e., it is closer to 0), so we fail to reject the null hypothesis and conclude
that this study did not provide any evidence of a difference in fitness between foot-
ballers and ballet dancers.

Confidence Interval for the Independent Samples t-Test
To calculate the two-sided confidence interval for the independent samples t-test,
we use the formula shown in Figure 6-13.

Figure 6-13. Formula for the confidence interval for the independent samples t-test

There are several points worth noting about this formula:

• It is actually a confidence interval for the difference in the means of the two
populations.

• For the value of:

The Independent Samples t-Test | 163

The t-Test



t , df 

we use the upper critical t-value for the df, and half the specified alpha level,
from a t-table such as the one in Figure D-7 in Appendix D.

• If this were a one-sided confidence interval, we would use the upper critical t-
value for α rather than α/2 and would use either plus or minus rather than ±,
depending on the direction of the confidence interval.

• The formula includes the denominator of the independent samples t-test as
previously calculated.

For our data, we will use alpha = 0.05 and calculate a 95%, two-tailed confidence
interval; the result is shown in Figure 6-14.

Figure 6-14. Calculating a 95%, two-sided confidence interval for the independent samples
t-test

Note that this confidence interval includes 0, which is our null value (the value we
posited for the difference in means in our null hypothesis); this result is expected
because for this data set, we did not find significant results and thus did not reject
the null hypothesis.

Repeated Measures t-Test
With the repeated measures t-test, also known as the related samples t-test, the
matched samples t-test, or the dependent samples t-test, the units that make up the
two samples are not independent but are related in some way. Sometimes, the data
in the samples are measurements taken twice from the same people, such as blood
pressure before and after taking a prescription drug. Sometimes, the data is collected
from people related by affiliation or genetics, such as husbands and wives or siblings.
Sometimes, the data is collected from samples of different people who have been
closely matched on key characteristics so that they are considered too similar to be
treated as independent samples. The measurements are considered as pairs, so the
two samples must be of the same size.

The formula to calculate the t-statistic for the repeated measures t-test is based on
the difference scores as calculated from each pair of samples. The test statistic is
shown in Figure 6-15.

Figure 6-15. Formula for the repeated measures t-test
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In this formula,  = the mean of the difference scores,
µ1 and µ2 are the means of the two populations,
sd is the standard deviation of the difference scores, and
n is the number of pairs.

The null hypothesis for the repeated measures t-test is usually that the mean of the
difference scores ( ) is 0, whereas the alternative hypothesis is that this mean is not
0. As with the two-sample t-test, often the quantity (µ1 − µ2) is hypothesized to be
0 and, in that case, may be dropped from the equation.

A difference score is simply the difference between the two values in a pair of
measurements, such as the blood pressure after treatment for one person minus the
blood pressure before treatment. We calculate a difference score for every pair and
then calculate the mean and standard deviation of the difference scores to calculate
the t-statistic. Note that n in the context of the repeated measures t-test refers to the
number of pairs, not the number of measurements. The degrees of freedom is df =
n − 1.

This might be clearer after working through an example. Suppose we want to test
the efficacy of a diet and exercise program in lowering total cholesterol levels in
middle-aged men. We decide on a matched pairs t-test because we will test the
cholesterol of each subject twice, before they begin the program and again after they
complete it. This is sometimes referred to as “using subjects as their own controls”
because by measuring the same subjects twice, we hope to remove or minimize the
influence of all individual differences other than the one we are interested in, which
is how the subject’s cholesterol levels respond to the diet and exercise program. We
believe that changes in the response to a program such as ours have an approximately
normal distribution in the population, and we have only 10 subjects, so the matched
pairs t-test is an appropriate measure. Data from this experiment is shown in Ta-
ble 6-2.

Table 6-2. Cholesterol before and after an exercise and diet program

Before After Difference (d) (after-before)

220 200 −20

240 210 −30

225 210 −15

180 170 −10

210 220 10

190 180 −10

195 190 −5

200 190 −10

210 220 10

240 210 −30
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Clearly, most subjects had lower cholesterol after completing this program, but was
the difference statistically significant? To find out, we compute the repeated meas-
ures t-statistic, using the following values calculated from the sample:

 = −11

sd = 13.9

We will conduct a two-tailed, repeated measures t-test with alpha = 0.05. Our null
hypothesis is that the population means are equal, that is, that their difference is 0,
so the t-statistic for our data is shown in Figure 6-16.

Figure 6-16. Calculating the repeated measures t-test

Because we have 10 pairs, we have 9 degrees of freedom (df = n − 1). Using the table
of upper critical values for the t distribution (Figure D-7 in Appendix D), we deter-
mine that the critical value for a two-tailed t-test with 9 df and alpha = 0.05 is 2.262.
The absolute value of our t-statistic exceeds this value, so we reject the null hypoth-
esis and conclude that the exercise and diet program has an effect on total choles-
terol. Because the mean difference and the t-statistic are negative, we can also say
that the program lowered the total cholesterol of the participants.

You might wonder what the two populations are in this example. The sample meas-
urements drawn before the program began are considered to have been drawn from
the general population of middle-aged men, and the sample measurements after
completion of the program are considered to have been drawn from the population
of middle-aged men who have completed the exercise and diet program. Granted,
the second population is theoretical because this is a new program, so what we are
really doing is hypothesizing about the changes that would occur in the total cho-
lesterol levels of the first population if it followed the diet and exercise program.

Confidence Interval for the Repeated Measures t-Test
To calculate the confidence interval for the repeated measures t-test, use the formula
shown in Figure 6-17.

Figure 6-17. Formula for the confidence interval for the repeated measures t-test

For the data in our example, the calculation is shown in Figure 6-18.
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Figure 6-18. Calculating the two-sided, 95% confidence interval for the repeated measures t-
test

Note that this confidence interval does not include the null value of 0; this is to be
expected because we found significant results with the t-test, that is, we rejected the
null hypothesis that the mean difference was 0.

Unequal Variance t-Test
One of the assumptions of the independent samples t-test is that the two populations
from which the samples were drawn have approximately equal variance; this is also
known as the assumption of homogeneity of variance or, simply, the assumption of
homogeneity. If this assumption is not met and the population variances are in fact
heterogeneous, the risk of both Type I and Type II errors is increased. This is because
the sample variances are pooled in the independent samples t-test, and the results
of the test would be seriously distorted if they were not drawn from populations
with approximately equal variance. The problem of hypothesis testing between two
independent samples in which variances are known to be unequal is the Behrens-
Fisher problem, and there have been several proposed solutions.

If you are using statistical software to calculate an independent samples t-test, chan-
ces are it includes algorithms to calculate one or more tests of the homogeneity of
variance. Examples of this type of test include Levene’s test, the Brown-Forsythe
test, and the Bartlett test. Levene’s test is based on the mean, whereas the Brown-
Forsythe test is an extension of Levene’s test, which uses a trimmed mean or the
median. The Bartlett test is the most sensitive to departures from normality (which
is not the same thing as unequal variances), so it should be used only if you feel
secure that the populations from which your samples were drawn are approximately
normally distributed. The important point, however, is to use one of these tests if it
is available to you to check whether the assumption of homogeneity is met. The
technical details of the different tests, with references to the professional literature
regarding them, are available from the Engineering Statistics Handbook of the Na-
tional Institute for Standards and Testing, a public domain document available
online.

If the homogeneity assumption is not met, you can use one of the nonparametric
substitutes for the independent samples t-test (discussed in Chapter 13) or use the
unequal variance t-test, also known as Welch’s t-test. Choosing one of these alter-
natives is particularly wise when you are working with small sample sizes or when
you wish to be conservative in drawing inferences. Welch’s t-test uses a slightly
different formula to calculate the t-statistic and a complex formula to calculate the
degrees of freedom.

Welch’s t-test uses the formula shown in Figure 6-19 to calculate the t-statistic.
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Figure 6-19. Formula for Welch’s t-test

In this formula, 1 and 2 are the sample means,
s1

2 and s2
2 are the sample variances, and

n1 and n2 are the sample sizes.

Note that the formula for Welch’s t-test does not use pooled variance. The real work
comes when calculating the degrees of freedom for Welch’s t-test, as shown in
Figure 6-20.

Figure 6-20. Formula for the degrees of freedom for Welch’s t-test

Having calculated the t-statistic and degrees of freedom, you proceed as you would
with any other t-statistic, comparing your result with a table of critical values for
the t-distribution (such as Figure D-7 in Appendix D) and making your decision
accordingly.

Exercises
Although you can use a statistical package such as Minitab, SPSS, STATA, or SAS
to compute t-tests and their significance levels, working through some examples by
hand will make the underlying concepts easier to understand. Furthermore, if you
consider scenarios from work or school that involve small samples, you might begin
to develop a sense of how to approach them inferentially by using t-tests. If you
understand the details of computing a t-test by hand, then using a statistical package
will be much easier for you. Also, the output generated by many statistical packages
is confusing if you don’t understand what you should be looking for, so having
worked through some examples by hand can make it easier to spot the information
you need in a sea of output.
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Problem

A factory manager is disturbed by the number of accidents in the plant she manages,
so she institutes a safety program that includes worker education, better lighting in
the plant, and incentives for units who improve their safety record. The average
number of accidents per week before instituting the safety program was 5, and the
distribution was approximately normal. She wants to know whether this has
changed since the program began. She draws a sample of 15 post-program weeks
and uses administrative records to determine the number of accidents that occurred
during each sample week. This data is displayed in Table 6-3. What test should she
use to determine whether the average number of accidents per week has changed
since the safety program began? What is the test statistic, and what can you conclude
from it about the effectiveness of the program?

Table 6-3. Number of accidents per week

Week ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of accidents 5 6 6 4 5 3 2 7 5 4 1 0 3 2 5

Solution

She should compute the one-sample t-test, comparing the mean accidents per week
as calculated from her sample of 15 post-safety-program weeks, with the population
mean before the program. She should use a two-tailed test because it is possible that
the accident rate increased after the safety program began, and she would surely
want to detect this if it happened. She will therefore conduct a two-tailed, one-
sample t-test with the null hypothesis that there is no difference in the means of the
sample or the population, and she will use the alpha = 0.05 standard.

Here is the information needed to calculate this statistic:

µ0= 5 (given)
n = 15 (given)

= 3.87
s = 2.00

First, we calculate the sample mean and sample standard deviation as shown in
Figures 6-21 and 6-22.

Figure 6-21. Calculating the sample mean
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Figure 6-22. Calculating the sample standard deviation

Then we plug these numbers into the formula for the one-sample t-statistic, as shown
in Figure 6-23.

Figure 6-23. Calculating the one-sample t-test

We have 14 degrees of freedom (df = n − 1). According to Figure D-7 in Appen-
dix D, the upper critical value for a two-tailed test with 14 df if alpha = 0.05 is 2.145.
The absolute value of our t-statistic exceeds the critical value, so we reject the null
hypothesis that there was no difference in the number of accidents per week after
the safety program began. Because the difference between the sample mean and
population mean is negative, as is the t-statistic, we can also conclude that the pro-
gram lowered the accident rate.

Problem

What is the 95%, two-tailed confidence interval for our estimate of the population
mean, given these sample results?

Solution

We calculate the 95%, two-tailed confidence as shown in Figure 6-24.

Figure 6-24. Calculating a 95%, two-sided confidence interval for the one-sample t-test

Note that the upper critical value, 4.97, is very close to the population mean. This
is to be expected because our sample t-statistic barely exceeded the critical value for
alpha = 0.05; that is, we barely achieved the standard for rejecting the null hypothesis
that the difference between the sample and population means is 0.
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Problem

What is the 90%, two-tailed confidence interval for our estimate of the population
mean, given these sample results?

Solution

To calculate a 90% confidence interval, all we need to change from the formula used
for the previous question is the upper critical t-value. Using the table in Fig-
ure D-7 in Appendix D, we see that the value for alpha = 0.10, two-tailed, with df =
14 is 1.761. Plugging this into the formula, we get the result shown in Figure 6-25.

Figure 6-25. Calculating a 90%, two-sided confidence interval for the one-sample t-test

Note that the 90% confidence interval is narrower than the 95% confidence interval
for the same sample data. This is to be expected because of the smaller critical t-
value used for the 90% confidence interval. To put it another way, the 90% confi-
dence interval includes less of the total probability than the 95% confidence interval,
so it’s not surprising that it is narrower.

Table 6-4. The different t-tests and their uses

t-test Data type Question being answered

One-sample t-test One sample, continuous data, approximate
normality

Does the sample come from a
population with a specified mean?

Two-sample t-test Two independent samples, continuous data, approx-
imate normality, approximately equal variance

Do the two samples come from
populations with equal means?

Repeated measures
t-test

Two related samples, equal sample sizes, continuous
data, approximate normality of difference scores

Do the two samples come from
populations with equal means?

Unequal variance
t-test

Two independent samples, continuous data,
approximate normality

Do the two samples come from
populations with equal means?
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7
The Pearson Correlation

Coefficient

The Pearson correlation coefficient is a measure of linear association between two
interval- or ratio-level variables. Although there are other types of correlation (sev-
eral are discussed in Chapter 5, including the Spearman rank-order correlation co-
efficient), the Pearson correlation coefficient is the most common, and often the
label “Pearson” is dropped, and we simply speak of “correlation” or “the correlation
coefficient.” Unless otherwise specified in this book, “correlation” means the Pear-
son correlation coefficient. Correlations are often computed during the exploratory
stage of a research project to see what kinds of relationships the different continuous
variables have with each other, and often scatterplots (discussed in Chapter 4) are
created to examine these relationships graphically. However, sometimes correla-
tions are statistics of interest in their own right, and they can be tested for significance
and reported as inferential statistics as well. Understanding the Pearson correlation
coefficient is fundamental to understanding linear regression, so it’s worth taking
the time to learn this statistic and understand well what it tells you about the rela-
tionship between two variables. A key point about correlation is that it is a measure
of an observed relationship but cannot by itself prove causation. Many variables in
the real world have a strong correlation with each other, yet these relationships can
be due to chance, to the influence of other variables, or to other causes not yet
identified. Even if there is a causal relationship, the causality might be in the opposite
direction of what we assume. For these reasons, even the strongest correlation is not
in itself evidence of causality; instead, claims of causation must be established
through experimental design (discussed in Chapter 18). In this chapter, we discuss
the general meaning of association in the context of statistics and then examine the
Pearson correlation coefficient in detail.
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Association
Ordinary life is full of variables that appear to be associated with or related to each
other, and explicating these relationships is a chief task of the sciences. There’s
nothing obscure or arcane about thinking about how variables relate to each other,
however; people think in terms of associations all the time and often attribute cau-
sality to those associations. Parents who order their children to eat more vegetables
and less junk food probably do so because they believe there is a relationship between
diet and health, and athletes who put in long hours of practice at their sport are most
likely doing so because they believe diligent training will lead to success. Sometimes
these types of commonsense notions are supported by empirical research, sometimes
not, but it seems to be a normal human tendency to take note when things seem to
occur together and, often, to believe as well that one is causing the other. As scientists
(or just people who understand statistics), we need to be in the habit of questioning
whether an apparent association actually exists and, if it does exist, if it is truly causal.

Here are a few examples of conclusions that, although based in some way on ob-
servable data, are obviously false:

• There is a strong association between sales of ice cream and the number of
deaths by drowning, so the reason must be that people are going in the water
too soon after eating ice cream, thus getting cramps and drowning.

• There is a strong association between score on a vocabulary test and shoe size,
so the explanation must be that tall people have bigger brains and hence can
remember more words.

• There is a strong association between the number of storks in an area and the
human birth rate in that area, so obviously storks really do deliver babies.

• A town mayor notes a strong correlation between local sports teams winning
championships and ticker-tape parades and decides to hold more parades to
improve the performance of the local teams.

Here are the real explanations:

• Both ice cream consumption and swimming are more common in the hotter
months of the year, so the apparent relationship is due to the influence of a third
variable, that of temperature (or season).

• The data was gathered on schoolchildren and was not controlled for age. We
expect that older children will be taller (and have bigger feet) and have acquired
larger vocabularies than younger children; hence, the observed association is
due to the influence of a third variable, age.

• Storks are more common in rural areas, and birth rates are also higher in rural
areas, so the association is due to the influence of a third variable, location.

• This is reversed causality—the parades are held after the championships are
won, so the teams’ successful seasons are the cause of the parades rather than
the parades causing the teams to have good seasons.
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It’s worth noting that even if two variables have no logical reason at all to be asso-
ciated, simply by chance they may show some association. This is particularly true
in studies with large sample sizes in which a very slight association can be statistically
significant, yet have no practical meaning. It’s also worth noting that even among
variables that are strongly related, such as smoking and lung cancer, there can be
significant variation in that relationship among individuals. Some people smoke for
years and never get sick, whereas some unfortunate individuals come down with
lung cancer despite never having smoked in their lives.

Scatterplots
The scatterplot is a useful tool with which to explore the relationships between vari-
ables, and usually, creating scatterplots for pairs of continuous variables is part of
the exploratory phase of working with a data set. A scatterplot is a graph of two
continuous variables. If the research design specifies that one variable is independent
and the other is dependent, the explanatory variable is graphed on the x-axis (hor-
izontal) and the dependent variable on the y-axis (vertical); if no such relationship
is specified, it doesn’t matter which variable is graphed on which axis. Each member
of a sample corresponds to one data point on the graph, described by a set of coor-
dinates (x, y); if you ever plotted Cartesian coordinates in school, you are already
familiar with this process. Scatterplots give you a sense of the overall relationship
between the two variables, including direction (positive or negative), strength
(strong or weak), and shape (linear, quadratic, etc.). Scatterplots are also a good way
to get a general sense of the range of the data and to see whether there are any
outliers, cases that don’t seem to belong with the others.

One important reason for inspecting bivariate relationships (relationships between
two variables) is that many common procedures assume that these relationships are
linear, an assumption that might not be met with any particular pair of variables in
any particular data set. Linear in this context means “arranged as a straight line,”
whereas any other relationship is considered nonlinear, although we can also apply
a more specific description to nonlinear relationships, such as quadratic or expo-
nential. We don’t expect a real data set to perfectly fit any mathematically defined
pattern, of course; if the data seems to cluster around a straight line, that’s what we
mean by a linear relationship.

We can also create a scatterplot matrix, which is a display of multiple scatterplots
arranged so we can easily see the relationships among pairs of variables. Fig-
ure 7-1 displays a scatter plot matrix created by Lloyd Currie of the National Institute
of Standards and Technology to inspect the relationships among four pollutants in
a data sample: potassium, lead, iron, and sulfur oxide. The scatterplot for each pair
of variables is located where the corresponding row and column intersect, so cell (1,
2) (first row, second column) shows the relationship between potassium and lead,
cell (1, 3), the relationship between potassium and iron, and so on.
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Figure 7-1. Scatterplot matrix of four pollutants

Relationships Between Continuous Variables
In linear algebra, we often describe the relationship between two variables with an
equation of the form:

y = ax + b

In this formula, y is the dependent variable,
x is the independent variable,
a is the slope, and
b is the intercept.

Note that m is sometimes used in place of a in this equation; this is just a different
notational convention and does not change the meaning of the equation. Both a and
b can be positive, negative, or 0. To find the value of y for a given value of x, you
multiply x by a and then add b. An equation such as this expresses a perfect rela-
tionship (given the values of x, a, and b, we can find the exact value of y), whereas
equations describing real data generally include an error term, signifying our un-
derstanding that the equation gives us a predicted value of y that might not be the
same as the actual value. It’s worth looking at some graphs of data defined by equa-
tions, however, to get a sense of what perfect relationships look like when graphed;
this should make it easier to spot similar patterns in real data.

Figure 7-2 shows the association between two variables, x and y, that have a perfect
positive association: x = y. In this equation, b = 0, a = 1, and for every case, the values
of x and y are the same. This equation expresses a positive relationship because as
the value of x increases, so does the value of y; in a graph of a positive relationship,
the points run from the lower left to the upper right.
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Figure 7-2. Graph of the model y = x

Figure 7-3 shows a negative relationship between x and y: these points are described
by the equation y = − x. In this equation, a = −1, b = 0. Note that in a negative
relationship such as this one, as the value of x increases, the value of y decreases,
and the points in the graph run from the upper left to the lower right.

Figure 7-3. Graph of the model y = −x

Figure 7-4 shows a positive relationship between x and y as specified by the model
y = 3x + 2. Note that this relationship is still perfect (meaning that given the model
and a value for x, we can compute the exact value for y) and is represented by a
straight line. Unlike the previous two graphs, however, the line no longer runs
through the origin (0, 0) because the value for b (the intercept) is 2 rather than 0.
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Figure 7-4. Graph of the model y = 3x + 2

In the previous three graphs, the equation of a straight line indicated a strong rela-
tionship between the variables. This is not always the case, however; it’s possible
for the equation of a straight line to indicate no relationship between the variables.
When one variable is a constant (meaning it always has the same value) while the
value of the other variable varies, this relationship can still be expressed through the
equation (and graph) of a straight line, but the variables have no association. Con-
sider the equation x = −3, displayed in Figure 7-5; no matter what the value of y, x
always has the same value, so there is no association or relationship between the
values of x and y. The slope of this equation is undefined because the equation used
to calculate the slope has a denominator of 0.

Figure 7-5. Graph of the model x = −3
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The equation for calculating the slope of a line is given in Figure 7-6.

Figure 7-6. Equation for calculating the slope of a straight line

where x1 and x2 are any two x-values in the data, and y1 and y2 are the corresponding
y-values. If x1and x2 have the same value, this fraction has a denominator of 0, so
the equation and the slope are undefined.

The equation y = −3 also expresses no relationship between x and y, in this case
because the slope is 0. In this equation, it doesn’t matter what the value of x is, the
value of y is always −3. The graph of this equation is a horizontal line, as shown in
Figure 7-7.

Figure 7-7. Graph of the model y = −3

In real data sets, we don’t expect that an equation will perfectly describe the rela-
tionships among the variables, and we don’t expect the graph to be a perfect straight
line, even if the linear relationship is quite strong. Consider the graph in Fig-
ure 7-8, which displays almost the same data as shown in Figure 7-4; the difference
is that we added some random error to the data so the data no longer form a perfect
line. The relationship between x and y is still strongly linear and positive, but we
can no longer predict the exact value of y, given the value of x, from an equation.
To put it slightly differently, knowing the value of x helps us predict the value of y
(versus predicting the value of y without any knowledge of the value of x), but we
realize that our predicted value for y might be somewhat different than the actual
value in the data set.
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Figure 7-8. Graph of a strong positive relationship

It’s unusual to find as close a relationship between x and y in a real data set as is
displayed in Figure 7-8. The data in Figure 7-9 is more typical of what we usually
find. Note that even though the points are more scattered than in previous examples,
the relationship between x and y still seems to be positive and linear.

Figure 7-9. Graph of a weaker positive relationship

Two variables may have a strong relationship that is not linear. To take a familiar
example, the equation y = x2 expresses a perfect relationship because, given the value
of x, we know exactly what the value of y is. However, this relationship is quadratic
rather than linear, as can be seen in Figure 7-10. Spotting this type of strong but
nonlinear relationship is one of the best reasons for graphing your data.
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Figure 7-10. Graph of a perfect quadratic relationship

Figure 7-11 shows another common type of nonlinear relationship, a logarithmic
relationship defined by the equation y = LN(x), where LN means “the natural log-
arithm of.”

Figure 7-11. Graph of a perfect logarithmic relationship

If your data shows a nonlinear relationship, it might be possible to transform the
data to make the relationship more linear; this is discussed further in Chapter 3.
Recognizing these nonlinear patterns and knowing different ways to fix them, is an
important task for anyone who works with data. For the data in Figure 7-10, if we
transformed y by taking its square root and then graphed x and √y, we would see
that the variables now have a linear relationship. Similarly, for the data graphed in
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Figure 7-11, if we transformed y to ey and then graphed it against x, we would see
a linear relationship between the variables.

The Pearson Correlation Coefficient
Scatterplots are an important visual tool for examining the relationships between
pairs of variables. However, we might also want a statistical estimate of these rela-
tionships and a test of significance for them. For two variables measured on the
interval or ratio level, the most common measure of association is the Pearson cor-
relation coefficient, also called the product-moment correlation coefficient, written as
ρ (the Greek letter rho) for a population and r for a sample.

Pearson’s r has a range of (−1, 1), with 0 indicating no relationship between the
variables and the larger absolute values indicating a stronger relationship between
the variables (assuming neither variable is a constant, as in the data displayed in
Figure 7-5 and Figure 7-7). The value of Pearson’s r can be misleading if the data
have a nonlinear relationship, which is why you should always graph your data. The
labels “strong” and “weak” do not have strict numerical definitions, but a relation-
ship described as strong will have a more linear relationship, with points clustered
more closely around a line drawn through the data, than will data with a weak
relationship. Some of the definition of strong and weak depends on the field of study
or practice, so you will need to learn the conventions for your own field. A few
examples of scatterplots of data with different r values are given in Figures 7-12,
7-13, and 7-14 to give you an idea of what different strengths of relationship look like.

Figure 7-12. Scatterplot (r = 0.84)
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Figure 7-13. Scatterplot (r = 0.55)

Figure 7-14. Scatterplot (r = 0.09)

Although correlation coefficients are often calculated using computer software, they
can also be calculated by hand. The formula for the Pearson correlation coefficient
is given in Figure 7-15.

Figure 7-15. Formula for the Pearson correlation coefficient
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In this formula, SSx is the sum of squares of x,
SSy is the sum of squares of y, and
SSxy is the sum of squares of x and y.

None of the steps in this calculation is difficult, but the process can be laborious,
particularly with a large data set. The steps to calculate the sum of squares for x are
as follows:

1. For each x score, subtract the mean of x as calculated from the sample. This is
called the deviation score.

2. Square each deviation score.

3. Add the deviation scores together (hence the name sum of squares).

Figure 7-16 shows this written as a formula.

Figure 7-16. Formula for the sum of squares of x

In this formula, xi is an individual x score,
 is the sample mean for x, and

n is the sample size.

This formula makes the meaning of SSx clear, but it can be time-consuming to cal-
culate. The sum of squares can also be calculated using a computational formula
that is mathematically identical but less laborious if the calculations must be carried
out by hand, as shown in Figure 7-17.

Figure 7-17. Computational formula for the sum of squares of x

The first part of the computational formula tells you to square each x and then add
up the squares. The second part tells you to add up all the x scores, square that total,
and then divide by the sample size. Then, to get SSx, subtract the second quantity
from the first.

To calculate the sum of squares for y, follow the same process but with the y scores
and mean of y.

The process to compute the covariance is similar, but instead of squaring the devi-
ation scores for x or y for each case, you multiply the deviation score for x by the
deviation score for y. Written as a formula, it appears as shown in Figure 7-18.
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Figure 7-18. Calculating the sum of squares of x and y

There is also a computational formula for the sum of squares of x and y, as shown
in Figure 7-19.

Figure 7-19. Computational formula for the sum of squares of x and y

The use of these formulas might become clearer after working through an example.
Suppose we drew a sample of 10 American high school seniors and recorded their
scores on the verbal and mathematics portions of the Scholastic Aptitude Test (SAT),
as shown in Table 7-1. (Each section of the SAT has a range of 200–800.) To make
the data easier to read, we have arranged the scores by verbal score in ascending
order, but this is not necessary to perform the calculations.

Table 7-1. Verbal and mathematics scores on the SAT

Student Verbal Mathematics

1 490 560

2 500 500

3 530 510

4 550 600

5 580 600

6 590 620

7 600 550

8 600 630

9 650 650

10 700 750

Here is the information you need to use the computational formulas (or to check
yourself if you calculated these quantities by hand):

n = 10
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Next, we plug this information into the computational formulas, as shown in Fig-
ure 7-20.

Figure 7-20. Calculating r for the SAT verbal and math scores

The correlation between the verbal and math SAT scores is 0.87, a strong positive
relationship, indicating that students who score highly on one aspect of the test also
tend to score highly on the other. Note that correlation is a symmetrical relationship,
so we do not need to posit that one variable causes the other, only that we have
observed a relationship between them.

Testing Statistical Significance for the Pearson Correlation
We also want to determine whether this correlation is significant. The null hypoth-
esis for designs involving correlation is usually that the variables are unrelated, that
is, r = 0, and that is the hypothesis we will test for this example; the alternative
hypothesis is that r ≠ 0. We will use an alpha level of 0.05 and compute the statistic
in Figure 7-21 to test whether our results are significantly different from 0. This
statistic has a t distribution with (n − 2) degrees of freedom; degrees of freedom is a
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statistical concept referring to how many things can vary in a given design. It is also
a number we need to know to use the correct t-distribution to evaluate our results.

Figure 7-21. Formula for the significance test for the Pearson correlation coefficient

In Figure 7-21, r is the Pearson correlation for the sample, and n is the sample size.

For our data, the calculations are shown in Figure 7-22.

Figure 7-22. Calculating the significance test for the correlation between SAT math and verbal
scores

According to the t-table (Figure D-7 in Appendix D), the critical value for a two-
tailed t-test with 8 degrees of freedom at α = 0.05 is 2.306. Because our computed
value of 5.02 exceeds this critical value, we will reject the null hypothesis that the
SAT math and verbal scores are unrelated. We also calculated the exact p-value for
this data by using an online calculator and found the two-tailed p-value to be 0.0011,
also indicating that our result is highly improbable if the verbal and math scores are
truly unrelated in the population from which our sample was drawn.

The Coefficient of Determination
The correlation coefficient indicates the strength and direction of the linear rela-
tionship between two variables. You might also want to know how much of the
variation in one variable can be accounted for by the other variable. To find this,
you can calculate the coefficient of determination, which is simply r2. In our SAT
example, r2 = 0.872 = 0.76. This means that 76% of the variation in SAT verbal scores
can be accounted for by SAT math scores and vice versa. We will expand further on
the concept of the coefficient of determination in the chapters on regression because
very often one of the purposes in building a regression model is to find a set of
predictor variables that can account for a high proportion of the variation in our
outcome variable.
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Exercises
Problem

Which of the following scatterplots (Figures 7-23, 7-24, and 7-25) suggest that the
two graphed variables have a linear relationship? For those that do, identify the
direction of the relationship and guess its strength, that is, the Pearson’s correlation
coefficient for the data. Note that no one expects you to be able to guess an exact
correlation coefficient by eye, but it is useful to be able to make a plausible estimate.

Figure 7-23. Scatterplot a

Figure 7-24. Scatterplot b
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Figure 7-25. Scatterplot c

Solution

a. Strong positive linear relationship (r = 0.84).

b. Weak relationship (r = 0.11).

c. Nonlinear, quadratic relationship. Note that r = –0.28 for this data, a respect-
able correlation coefficient, so that without the scatterplot, we could easily have
missed the nonlinear nature of the relationship between these two variables.

Problem

Find the coefficient of determination for each of the data sets from the previous
problem, if appropriate, and interpret them.

Solution

a. r2 = 0.842 = 0.71; 71% of the variability in one variable can be explained by the
other variable.

b. r2 = 0.112 = 0.01; 1% of the variability in one variable can be explained by the
other variable. This result points out how weak a correlation of 0.11 really is.

c. r and r2 are not appropriate measures for variables whose relationship is not
linear.

Problem

Several studies have found a weak positive correlation between height and intelli-
gence (the latter as measured by the score on an IQ test), meaning that people who
are taller are also on average slightly more intelligent. Using the formulas presented
in this chapter, compute the Pearson correlation coefficient for the data presented
in Table 7-2, which represent height (in inches) and scores on an IQ test for 10 adult
women. Then test the correlation for significance (do a two-tailed test with alpha =
0.05), compute the coefficient of determination, and interpret the results. For the
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sake of convenience, we will designate height as the x variable and IQ score as the
y variable.

Table 7-2. Height and IQ

Student Height (inches) IQ score

1 60 103

2 62 100

3 63 98

4 65 95

5 65 110

6 67 108

7 68 104

8 70 110

9 70 97

10 71 100

Solution

The calculations are shown in Figures 7-26 and 7-27.

n = 10
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Figure 7-26. Calculating the correlation between height and IQ

Coefficient of determination = r2 = 0.018

Figure 7-27. Calculating the t-statistic for the correlation between height and IQ

In this data, we observe a weak (r = 0.135, r2 = 0.018) positive relationship between
height and IQ score; however, this relationship is not significant (t = 0.385, p > 0.05),
so we do not reject our null hypothesis of no relationship between the variables.

If you are interested in this issue, see the paper by Case and Pearson in Appen-
dix C; although primarily concerned with the relationship between height and in-
come, it also summarizes research about height and intelligence.
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8
Introduction to Regression and

ANOVA

Regression and analysis of variance (ANOVA) are two techniques within the general
linear model (GLM). If you’re not comfortable with the concept of a linear function,
you should review the discussion of the Pearson correlation coefficient in Chap-
ter 7. In Chapters 8 through 11, we cover a number of statistical techniques, some
of them fairly complex but all built on this basic principle of the linear relationship
among two or more variables. This chapter presents the most basic linear models,
simple regression and one-way ANOVA; Chapters 9 through 11 present more com-
plex techniques within the GLM family. The types of analysis presented in these
chapters are nearly always performed using computer software; fortunately, most
of them are common enough to be included in any statistical computing package.
Also fortunately, it’s usually not difficult to figure out how to use a given package if
you understand the theory underlying the model. For this reason, we concentrate
on explaining how these models work and keep our advice sufficiently broad that it
should apply to most systems.

The General Linear Model
Underlying all techniques within the GLM family is the assumption that a dependent
variable is the function of one or more independent variables. We often speak in
terms of predicting or explaining a dependent variable, using a set of independent
variables, but step back for a minute to consider what it means for one variable to
be a function of another variable (or set of variables—to keep it simple for now we’ll
stick to the simplest case of one dependent and one independent variable). You
probably remember functions of the type y = f(x) from studying algebra; this equa-
tion says that if you know the value of x, you can compute the value of y by following
the procedure specified by the f(x) function. Here are a few examples of functions:
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• y = x means that the value of y is the same as the value of x, so (x, y) = (1, 1),
(2, 2), (3, 3). The notation (x, y) = (1, 1), (2, 2), and so on, is just a compact
way of saying, “if x = 1, y = 1; if x = 2, y = 2;” and so on.

• y = ax means that the value of y is the product of the value of x and the constant
a. If a = 3, (x, y) = (1, 3), (2, 6), (3, 9), and so on; the value of y is always 3 times
the value of x. If a = 0.5, (x, y) = (1, 0.5), (2, 1), (3, 1.5), and so on. In this type
of model, a is often called the slope of the equation.

• y = ax + b means that the value of y is the product of the value of x and the
constant a plus the value of the constant b. Note that x is multiplied by a, and
then the value of b is added to this product. If a = 1 and b = 5, (x, y) = (1, 6),
(2, 7), (3, 8), and so on. In this type of model, b is often called the constant of
the equation because its value does not change; whatever the value of x, the
value of b is always the same, so the value of b is constant.

• y = x2 means that the value of y is the square of the value of x, that is, the value
of x multiplied by itself. Therefore, (x, y) = (1, 1), (2, 4), (3, 9), and so on.

In this chapter, we discuss the bivariate case, equations with only two variables; this
type of equation can always be described by y = ax + b (remembering that b is a
constant, not a variable).

Writing Linear Equations
There are several ways to write a linear equation, but the important parts of the
equation remain the same. For describing a simple linear equation with one pre-
dictor and a constant, the y = ax + b method is sufficient. In this equation, y is the
dependent variable or outcome, a is the slope or coefficient, and b is the constant or
intercept. The term intercept refers to the value at which the line described by the
equation crosses the y-axis; it’s the value of y when x = 0. Slope refers to the
relationship between x and y: how much change in y is predicted for 1 unit change
in x? You might remember your algebra textbook referring to slope as rise over
run; rise in this case refers to change in the y variable, run to change in the x
variable. If you feel you need a review of the algebra of linear equations, you should
review “Relationships Between Continuous Variables” on page 176 in Chapter 7
and try a few of the relevant practice problems in Appendix A.

Another type of notation is used more commonly in statistics when writing linear
equations, particularly for equations with multiple predictors. In this notation, a
simple linear equation is written in the format of y = β0 + β1x1 + e, where β0 is the
intercept, β1 the slope or coefficient, and e the residual or error term, which is
included because when working with real data (as opposed to manipulating alge-
braic equations), we don’t expect to be able to predict the value of y perfectly from
an equation. The residual or error term represents the difference between the value
of y as observed and the value of y as predicted from the equation.

In statistics, the term “coefficient” is more often used than slope when referring
to the β1 term because we often work with equations with many predictor variables
(multiple linear regression), in which case, no one predictor variable entirely de-
termines the line’s slope. The meaning of the coefficient in a multiple linear equa-
tion is the predicted change in y for a one-unit change in x, holding the value of all
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other x variables constant. So, in the equation y = β0 + B1x1 + B2x2 + B3x3 + e,
there are three predictor variables (x1, x2, and x3), and the coefficient B1 expresses
the predicted change in y for a one-unit change in x1, holding x2 and x3 constant.

Linear Regression
Suppose the model y = ax + b describes the relationship between two variables, x
and y. In algebra, we can have perfect relationships so that the value of y is always
perfectly predicted by the value of x. The examples we gave previously are this type
of model. If we say, for instance, that y = 2x + 7, we know that if the value of x is 0,
the value of y will be 7. In this type of case, the correlation coefficient between x and
y will always be 1.00, indicating a perfect relationship—we can always predict the
value of y from the value of x without error.

In statistics, however, we are often trying to fit an equation to a real set of data. In
this case, we don’t expect a perfect relationship between x and y. That is, we don’t
assume that we will always be able to predict the value of y, given the value of x,
without error. Real life is much more variable than the closed system of mathematics,
and even the strongest relationships observed in the real world are seldom perfect
in the mathematical sense.

Consider the relationship between height and weight in adults. It makes intuitive
sense that these two variables should have a strong positive relationship; in general,
tall people weigh more than short people. However, this relationship is not perfect;
we can all think of short people who are quite heavy and tall people who are quite
thin. Similarly, we expect to see a positive relationship between years of education
and income among people of working age; in general, people with more years of
education earn more money. However, this relationship is not perfect either; one of
the richest men in the world, Bill Gates, did not graduate from college, and many
university towns are full of people with advanced degrees working at low-paying
jobs. When working with real data, we don’t expect to find perfect relationships,
but we do try to find useful ones. For instance, we don’t expect to be able to develop
an equation to predict someone’s weight perfectly from his height (or even from a
much more complex equation including many other predictor variables). Instead,
we want to build an equation that is useful for our purposes and that improves our
predictive ability, meaning that if we know a person’s height, we can use the equation
to make a better prediction of his weight than we could if we didn’t know his height.

We could explore the relationship between height and weight by using scatterplots
and the correlation coefficient, but linear regression takes us a step further. When
doing a regression analysis, we imagine drawing a straight line (the regression line)
representing the relationship between two variables; such a line is often superim-
posed over a scatterplot to clarify the relationship between the variables further.
Consider the scatterplot in Figure 8-1.
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Figure 8-1. Scatterplot of height in meters and weight in kilograms for 436 American adults

This is a scatterplot of the height (in meters) and weight (in kilograms) for 436
American adults; the data comes from a random subsample of data collected for the
2010 BRFSS (Behavioral Risk Factor Surveillance System), a health survey conducted
annually in the United States. [You can read more about the BRFSS and download
data for your own analyses from this website.] As expected, the relationship is pos-
itive and somewhat linear (the data somewhat cluster around a line) but is far from
perfect: most data points do not lie on the regression line (the line superimposed
over the scatterplot), and some are quite far from it. This is typical of the kind of
results you get with real-world data; relationships are not perfect, but if your model
is good, they might be strong enough to be useful.

In this case, the correlation (r) between height and weight is 0.47, and the coefficient
of determination (r2) is 0.22. This means that about 22% of the variation in weight
can be accounted for by height, not exactly a perfect prediction or explanation but
much better than 0. The regression equation for this data is:

y = 91x − 74

The slope is 91, the constant −74. To find the predicted weight for a person, you
replace x with her height in meters and do the math. This equation predicts that a
person who is 1.8 meters tall would weigh 89.8 kilograms because:

y = 91(1.8) − 74 = 89.8.
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Of course, if we were really interested in predicting weight, we would develop a more
complex model including factors such as gender and age, but this example serves
well enough to illustrate the basic concepts of simple regression. You might have
noticed that although correlation does not require you to specify which variable is
the predictor and which is the outcome, you do have to make that choice when
working with regression. I designated weight as the outcome and height as the pre-
dictor, which makes logical sense because height is fixed in adulthood and could
logically be considered a causal factor for weight. (All else being equal, including
build, tall people do tend to weight more than short people.) I don’t think I could
make an argument that weight has a causal relationship with height.

It is possible to calculate a regression line by hand (I did it in graduate school, and
before computers came into wide use, everyone did it that way), but it is much more
common to use a statistical computing package to do this calculation. Regression is
an extremely common procedure, and almost any statistical package you might be
using will probably include the routines to do regression calculations. For those who
wish to go through the process of calculating regression parameters by hand, a solved
example is included at the end of this chapter.

Even if you are never planning to calculate a regression equation by hand, it is worth
considering the logic behind the process. When a statistical package produces a
regression line for a set of data, it calculates the equation that will produce the line
that is as close as possible to all the data points considered together. This is some-
times described as minimizing the squared deviations, where the squared deviations
are the sum of the squared deviations between each data point and the regression
line. This is easy to visualize with simple regression because only two dimensions
are involved (the predictor and outcome variables); the same principle applies for
more complex models (with more variables), but it is more difficult to illustrate
because of the greater number of dimensions involved.

Consider Figure 8-2. It’s a scatterplot for a small data set, with a superimposed
regression line. Note that although the regression line is fairly close to all the points,
none of them actually lie on the line; this is not unusual, particularly with small data
sets, because the goal is to produce the line that is the closest to all the points, even
if it contains none of them. In Figure 8-2, you could draw vertical lines from each
point to the regression line; the length of each vertical line represents the error of
prediction, or deviation, for each individual point. If you squared the length of each
line and added them up, that would be the sum of the squared deviations for this
data set. The regression line is drawn so as to minimize all those squared deviations
so it is as close as a straight line can be to all the points in this data set. The difference
between each point and the regression line is also called the residual because it rep-
resents the variability in the actual data points not accounted for by the equation
generating the line. “Minimizing the squared deviations” can also be expressed as
“minimizing the errors of prediction” or “minimizing the residuals.” 
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Figure 8-2. Errors of prediction in a small data set

Assumptions
As with most statistical procedures, linear regression makes certain assumptions
about the data used in an analysis; if these assumptions are violated, the results of
the analysis might not be valid. Key assumptions for simple linear regression include:

Data appropriateness
The outcome variable should be continuous, measured at the interval or ratio
level, and be unbounded (or at least cover a wide range); the predictor variables
should be continuous or dichotomous. Categorical predictors with more than
two categories can be recoded into a series of dichotomous dummy variables;
this is covered in Chapter 10.

Independence
Each value of the outcome variable is independent of each other value. This
would be violated if there were some pattern of time dependency, for instance,
or if some of the dependent variables were measured from subjects clustered
into larger units (such as members of the same family or children studying in
the same classroom) in some way that affected their value on the dependent
variable. This assumption is checked by your knowledge of the data and how
it was collected.
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Linearity
The relationship between the predictor and outcome variable resembles a
straight line. This assumption is checked by graphing the data; if it resembles
a shape other than a straight line, you might need to transform one or both
variables or choose another procedure.

Distribution
The continuous variables are approximately normally distributed and do not
have extreme outliers. The distribution of continuous variables may be checked
by creating a histogram (eyeballing the data) and by a statistical test for nor-
mality such as the Kolmogorov-Smirnov. An outlier is defined as a data value
that is far from the other values for the same variable in a data set; sometimes
it is described as a data value that doesn’t seem to belong with the others. Outlier
detection is partly a matter of judgment, is further discussed in Chapter 17, and
can be a multistep process. (An unusual data value can be the result of an error
in data entry, for instance, or it might be an apparently valid value.)

Homoscedasticity
The errors of prediction are constant over the entire data range. This means that
the errors are not, for instance, smaller when the y value is small and larger
when the y value is large. This assumption is checked by graphing the stand-
ardized residuals against the standardized predicted values; the data should
resemble a cloud without any indication that the errors of prediction are not
constant over the whole range of the data. Figure 8-3 shows homoscedastic data
and Figure 8-4 heteroscedastic data.

Independence and normality of the errors
The error of prediction for each data point should be independent of the error
of prediction for each other data point, and the errors should be normally dis-
tributed. The independence assumption is checked by the Durbin-Watson test
(discussed later), and the normality assumption is checked by graphing the re-
siduals (error terms).

Suppose we are interested in adolescent fertility (the rate of childbirth to women age
15–19 years) and in what factors at the country level are associated with adolescent
fertility. Our first idea is that gender inequality might be related to adolescent fer-
tility, and we hypothesize that adolescent fertility is lower in countries where women
are treated more equally. We will do a regression analysis to test this hypothesis,
using data downloaded from the United Nations Human Development Project. We
will use the Gender Inequality Index as our predictor variable; this index is composed
of five variables measuring aspects of women’s reproductive health, empowerment,
and labor force participation, and has a range of approximately 0–100 (in our data
set, from 6.5 to 79.1), with lower numbers signifying greater equality.

Note that this is what is known as ecological or aggregated data; the value for each
variable relates to a measurement on a country rather than on an individual. There’s
nothing wrong with using ecological data, but you must be careful to draw conclu-
sions only for data at the same level of aggregation as the data you analyzed; in this
case, our results will apply at the country level, not at the level of the individual.

Linear Regression | 199

Intro to Regression
and ANOVA

http://hdr.undp.org/en/statistics/data/


Figure 8-3. Homoscedasticity

Figure 8-4. Heteroscedasticity
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We start by running through our assumptions. A frequency table confirms that both
variables are continuous and have substantial ranges, and we have 135 cases with
values on both variables, which is more than enough for a simple regression analysis.
Our data is also independent because data for each country was collected separately.
Our third assumption, linearity, can be examined with a scatterplot. Here, as shown
in Figure 8-5, we encounter a problem: the relationship is curvilinear rather than
linear.

Figure 8-5. Scatterplot of adolescent fertility and the Gender Inequality Index

We perform a natural log transformation (discussed in Chapter 3) of the adolescent
fertility rate and find that the relationship between these two variables is much more
linear. The scatterplot for the transformed variable and the Gender Inequality Index
is presented in Figure 8-6.

We will check the normality of our variables with histograms and the Kolmogorov-
Smirnov (K-S) statistic. The K-S statistic compares the distribution of a variable with
a reference distribution. (In this case, the reference distribution is the normal dis-
tribution.) The null hypothesis for the K-S statistic is that the variable was drawn
from the reference distribution, so in this example, if we fail to reject this null hy-
pothesis, we can proceed on the assumption that the variables were drawn from
normally distributed populations. Both histograms (not shown) look acceptably
normal, and the Kolmogorov-Smirnov statistics are not significant (K-S = 1.139, p
= 0.149 for the natural log of adolescent fertility rate; K-S = 1.223, p = 0.101 for the
Gender Inequality Index).

We will examine assumptions 5 and 6 after running our regression analysis. We
believe that gender inequality influences adolescent fertility, and we have
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transformed the adolescent fertility rate by taking its natural log (LN), so our re-
gression model is:

LN(adolescent fertility) = β0 + β1(GII) + e

This is a different style of notation than we used earlier in this chapter, but this style
is more commonly used when discussing regression, so now is a good time to make
a switch. Our Y variable or outcome in this case is LN(adolescent fertility); our
intercept or constant, formerly written as b, is now written as β0; and our slope,
formerly written as a, is now written as β1. This notation will be particularly handy
when we discuss regression with multiple predictors because they can be designated
as β1, β2, and so on; these terms are called coefficients.

Different statistical packages produce different output, but there is enough com-
monality among them that you should be able to produce the basic regression output
produced by any of the major systems if you understand how to read the output
from any one of them. We will present the most important information from our
analyses in simple tables to avoid favoring one system over another.

The first thing we want to do is evaluate the overall fit of our model. Overall model
fit is usually expressed in terms of an F statistic and probability value, and evaluates
whether the entire model is better than no model. Another way to look at this is that
the F statistic and probability evaluates our model against a model in which all the
predictor variables have a weight of 0 (the null model). We are also interested in
how much variance in the outcome variable is explained by our model; particularly

Figure 8-6. Scatterplot of the natural log-transform of adolescent fertility and the Gender
Inequality Index
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with a large data set, it is possible to have a model that has significant predictors yet
explains very little of the variance in the outcome.

This model has an F statistic of 190.964 with 1 and 185 degrees of freedom and a p-
value of <0.001; we therefore conclude that it is better than the null model. The
R-value or correlation is 0.714 and a coefficient of determination or R2 value of
0.509; this means that the Gender Inequality Index can explain more than 50% of
the variation in adolescent fertility rates among the countries in our data set. Note
that although in this case we are working with only two variables, correlations in
regression are conventionally denoted with a capital R, and we have followed that
convention here. The Durbin-Watson statistic for this data is 2.076, signifying that
the error terms in our data are independent (good). The Durbin-Watson statistic
ranges from 0 to 4, and a value of 2 indicates complete independence; our value is
very close to 2, so we can consider the assumption of the independence of error
terms met.

The regression coefficients for this analysis are displayed in Table 8-1.

Table 8-1. Coefficients table for a regression analysis of the Gender Inequality Index and the
natural log of the adolescent fertility rate

 Unstandardized coefficients Standardized coefficients   

 B Std. error Beta t Sig.

Constant 1.798 0.112  16.118 < 0.001

GII 4.446 0.244 0.845 18.221 < 0.001

The column labeled B under Unstandardized Coefficients gives us the coefficients
to write our regression equation. In this case, that equation would be:

LN(adolescent fertility) = 1.798 + 4.446(GII) + e

This tells us that the natural log of the adolescent fertility rate increases about 4.4
units for every 1 unit increase in the Gender Inequality Index; the relationship is
positive, confirming our hunch that greater gender inequality was associated with
higher adolescent fertility. The Std. Error column presents the standard errors for
the coefficient estimates. The Beta column under Standardized Coefficients
presents, as the name suggests, the standardized regression coefficient; this can be
useful in regression analyses with multiple predictors measured on different scales.
The t column shows the t-statistic for each coefficient and is calculated by dividing
B by its standard error. For instance, for GII:

t = 4.446/0.244 = 18.221

The final column is the significance of the t-statistic. We usually aren’t concerned
with the significance of the constant (all that tells us is whether it is significantly
different from 0, which is not ordinarily a question of interest), but we are interested
in the significance of the coefficients for our predictors. In this case, GII is a highly
significant predictor (p < 0.001) of adolescent fertility.
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It might be helpful to think about what we are testing with this analysis. Our main
interest is whether gender inequality predicts the adolescent fertility rate; if the t-
statistic for gender inequality in the coefficients table is not significant, this means
that we could drop the term for gender inequality from our equation. To put it
another way, a nonsignificant result for gender inequality would mean that the co-
efficient for that term was not significantly different from 0, so it could be dropped
from our equation without harming the equation’s ability to predict or explain the
outcome variable.

Our final steps are to finish checking our assumptions to be sure that our results are
valid. We can check homoscedasticity (assumption 5) by graphing the standardized
residuals against the standardized predicted values; results are shown in Figure 8-7.

Figure 8-7. Scatterplot of the standardized residuals and standardized predicted values

This is a classic data cloud, providing no evidence that the error of prediction is not
constant, so the assumption of homoscedasticity is met. Finally, we will check the
normality of our residuals by creating a histogram (not pictured) of them and cal-
culating the Kolmogorov-Smirnov statistic; the value of the Kolmogorov-Smirnov
statistic is 1.355 (p = 0.51), so our analysis barely passes the test of normality.

Not all statistical analyses produce significant results. In Table 8-2, we present the
results of a regression analysis using the size of the female population in a country
(measured in 1,000s) to predict the country’s Gender Inequality Index score.
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Table 8-2. Coefficients table for a regression analysis predicting a country’s Gender Inequality
Index by the size of its female population (measured in 1,000s)

 Unstandardized coefficients Standardized coefficients   

 B Std. error Beta t Sig.

Constant 0.282 0.074  3.806 0.002

Female population (1,000s) 0.000 0.000 0.306 1.285 0.217

We can see from the t-value (1.285) and significance (0.217) that the size of the
female population is not a significant predictor of gender equality; another clue of
this result is the unstandardized coefficient of 0.000 for this predictor, meaning that
the value of this coefficient, carried to three decimal places, is essentially zero. A
scatterplot of the two variables (Figure 8-8) indicates a basically random relationship
between them, and logically speaking, there’s no reason countries with large female
populations (which means a country with large populations, period) should have a
consistently higher or lower level of gender equality than countries with small female
populations, so we will not pursue this analysis further.  

Figure 8-8. Scatterplot of female population (measured in 1000s) and Gender Inequality Index
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Analysis of Variance (ANOVA)
Analysis of variance (ANOVA) is a statistical procedure used to compare the mean
values on some variable between two or more independent groups. It’s called anal-
ysis of variance because the procedure involves partitioning variance, attributing the
variance observed in a data set to different causes or factors, including group mem-
bership. However, because it is usually used to compare the means between groups,
many a student has privately thought that the real name should be A-MEAN-A.
Nevertheless, ANOVA is a useful technique, particularly when analyzing data from
designed experiments (such as the differences between the control and experimental
groups in a clinical trial).

The major test statistic for an ANOVA is the F ratio, which can be used to determine
whether statistically significant differences exist between the groups. For example,
we might be interested in testing the efficacy of three drugs intended to lower blood
pressure; we could form four groups of hypertensive patients and give each group
one of the drugs (plus one group to act as a control, meaning they receive either no
medication or standard care). After a period, we would measure the blood pressure
on the patients in this study to see whether any of the drugs in the experiment had
produced significant reductions in their blood pressure and whether there were dif-
ferences among the drugs in this result. An ANOVA would produce an F ratio com-
paring the group means, which we would test for significance using a predetermined
standard such as p < 0.01 or p < 0.05.

The simplest type of ANOVA includes only one group or predictor variable and one
outcome variable; for this reason, it is called one-way ANOVA. Chapter 9 covers
more complex types of ANOVA, including two-way and three-way ANOVA (fac-
torial ANOVA), and designs that include a continuous covariate (ANCOVA).

One-Way ANOVA
The simplest form of ANOVA is one-way ANOVA, in which only one variable is
used to form the groups to be compared. This variable is often called a factor, and
that terminology is even more often used with more complex ANOVA designs.
Suppose we are interested in the efficacy of a new drug intended to lower blood sugar
in Type II diabetics; we could test this with an ANOVA, comparing the new drug
to another drug already in use. The factor in this design is the drug administered,
and it has two levels: the new drug and the drug already in use. The factor used in
a one-way ANOVA can have more than two levels: in the previous example of com-
paring three hypertension drugs and a control group, we had one factor with four
levels.

A one-way ANOVA with two levels is equivalent to performing a t-test. Our null
hypothesis in this type of design is usually that the two groups have the same mean,
whereas the alternative is either that they have different means (a two-sided test) or
differ in one direction only (a one-sided test). Even if there is a significant difference
in group means, we don’t expect that there will be no overlap among members of
the groups; in fact, it would be unusual if there were no overlap. We also expect that
there will be variability within each group, and the calculations for one-way ANOVA
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are concerned with comparing the variability within groups (for instance, the vari-
ability observed in blood sugar among the patients receiving the new drug) and the
variability between groups (the difference between the patients taking the experi-
mental drug and the patients taking the standard drug).

ANOVA also has assumptions that must be met for the technique to be used
appropriately. Because linear regression and ANOVA are really just two ways of
looking at data using the general linear model, it is not surprising that some of the
assumptions of ANOVA are also assumptions of regression.

Data appropriateness
The outcome variable should be continuous, measured at the interval or ratio
level, and be unbounded (or at least cover a wide range); the factors (group
variables) should be dichotomous or categorical.

Independence
Each value of the outcome variable is independent of each other value. This
would be violated if there was some pattern of time dependency, for instance,
or if some of the dependent variables were measured from subjects clustered
into larger units (such as members of the same family or children studying in
the same classroom) in some way that affected their value on the dependent
variable. This assumption is checked by your knowledge of the data and how
it was collected.

Distribution
The continuous variable is approximately normally distributed within each
group. The distribution of the continuous variable can be checked by creating
a histogram (eyeballing the data) and by a statistical test for normality such as
the Kolmogorov-Smirnov.

Homogeneity of variance
The variance of each of the groups should be approximately equal. This is
checked by a procedure such as the Levene statistic; the null hypothesis is that
the variance is homogeneous, so if the results of the Levene statistic are not
statistically significant (normally, the criterion of α < 0.05 is used), that means
the variances are sufficiently homogeneous to proceed.

ANOVA is considered a robust procedure, meaning that it can produce good results
even when some assumptions are violated; for instance, when group sizes are equal,
the F-statistic produced by ANOVA is reliable even if the distribution of the con-
tinuous variable is nonnormal. Similarly, when group sizes are equal, the F-statistic
is robust to violations of the assumption of homogeneity. If you want to read more
about the debates surrounding these issues, a relevant article by Glass is listed in
Appendix C. However, violations of the assumption of independence can seriously
distort your results, so you need to be sure that this assumption is met before using
ANOVA with your data.

Suppose we are comparing two methods of weight training, and our measurement
is how much improvement we have observed in the total lifted in a full squat after
three months of training with one method or the other. Our null hypothesis is that
the means are the same in both groups after the training; in other words, that on
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average neither method of training produces better results than the other. We ran-
domly assigned our subjects at the start of the experiment and measured their max-
imum squat; it was approximately equal in both groups. The box plots in Fig-
ure 8-9 show the improvement in weight lifted after three months; it is clear that
people training with the first method made, on average, more improvement because
group 1 has a higher median, represented by the black line in the center of the box,
and the range is higher. However, it is also clear that there was variability between
the two groups and that there were also considerable overlaps between the two
groups. It is not the case that everyone in group 1 improved more than everyone in
group 2, simply that on average, group 1 showed more improvement.

Figure 8-9. Improvement in weight lifted after three months of training with one of two
methods

In fact, group 1 improved by an average of 34.21 pounds and group 2 by an average
of 26.42 pounds. Is this difference statistically significant? To answer this, we will
conduct a one-way ANOVA. First, we compute some basic statistics on this data,
as presented in Table 8-3.

Table 8-3. Descriptive statistics for weightlifting data (two methods of training)

Group N Mean Std. dev. 95% CI lower bound 95% CI upper bound

1 15 34.21 7.38 30.13 38.31

2 15 26.42 6.16 23.01 29.83

Total 30 30.32 7.76 27.41 33.22
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We note that we have equal numbers of subjects in each group, approximately equal
variance, and that the 95% confidence intervals for the mean between the two groups
do not overlap (although they come very close). We also computed the Levene sta-
tistic to see whether our two groups had homogeneous variance; our results (0.626,
p = 0.435) tell us not to reject the assumption of homogeneity, so we can proceed
to interpret our ANOVA results.

The statistical results for an ANOVA are customarily presented in a table similar to
Table 8-4.

Table 8-4. One-way ANOVA results for the weightlifting data (two methods of training)

 Sum of squares df Mean square F Sig.

Between groups 455.86 1 455.86 9.86 0.004

Within groups 1294.52 28 46.23   

Total 1750.38 29    

By the standard of α < 0.05, these are significant results, so we can reject the null
hypothesis that the means of the two groups are equal; in fact, method 1 produced
significantly better results than method 2. This is a simple ANOVA table because
we have only one factor and two levels, but it’s worth taking some time to look at
the different parts of it because that will help you understand more complex ANOVA
tables.

The table has three rows: one presents the data for between groups variance, one
for within groups variance, and one for total variance. Adding up the sums of squares
and the degrees of freedom (df) for between and within groups gives us the value for
the total data set. Between groups variance refers to that attributed to group mem-
bership, that is, the variation in individual scores attributed to the method of training
used. Within groups variance refers to the variance within each training group; as
we saw in the box plot in Figure 8-9, there was substantial variation within each
group as well as between the two groups. The degrees of freedom refers to how
many things can vary when computing each part of the statistics; total degrees of
freedom is n − 1 (1 less than the total number of subjects), between groups degrees
of freedom is k − 1 (one less than the number of groups), and within groups degrees
of freedom is n − k. The sum of squares (SS) is the sum of the squared deviation
scores for between groups, within groups, and the total, whereas the mean square
(MS) is the sum of squares divided by the degrees of freedom, so in this example:

SS(between) = 455.86/1 = 455.86
SS(within) = 1294.52/28 = 46.23

The F-statistic is the ratio of the sum of squares between and within groups, so in
this example:

F = 455.86/46.23 = 9.86

Our statistical package calculated the significance of the F-statistic automatically,
but we could have also compared it to the values on an F table (similar to the normal
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distribution table and other tables included in Appendix D). Because F tables have
two degrees of freedom (for the numerator and denominator), they are quite bulky,
so we have not included one in this book; however, you can find a public domain F
table here.

Post Hoc Tests
If you have only two groups, a significant F-test means that the two groups differ
from each other. However, with more than two groups, your ANOVA analysis might
have returned a significant F-test (called an omnibus test), meaning that the group
means are not identical, yet you might still be left wondering which groups differ
from which others. To answer this question, it is possible to conduct a post hoc
test; as the name implies, post hoc tests are conducted after the fact, after you have
found a significant omnibus F-test. There are a number of post hoc tests, and some
are more typically used in some fields, others in other fields. One good choice is the
Scheffe test, which tests all comparisons among the groups for significance and is
adjusted statistically to control for conducting multiple tests on the same data. (Us-
ing the Scheffe test controls the experiment-wise error rate and does not increase the
probability of a Type I error.)

Suppose we were comparing three methods of weight training instead of two. The
descriptive statistics for this data are presented in Table 8-5.

Table 8-5. Descriptive statistics for weightlifting data (three methods of training)

Group N Mean Std. dev. 95% CI lower bound 95% CI upper bound

1 15 34.21 7.38 30.13 38.31

2 15 26.42 6.16 23.01 29.83

3 15 30.04 9.22 24.94 35.15

Total 45 30.32 7.76 27.41 33.22

We have the same sample size for all three groups, which is the optimal setup for an
ANOVA. Looking at the group means, method 3 seems to produce results lower
than group 1 but higher than group 2. The 95% confidence interval for group 3 does
overlap with both groups, so it will be interesting to see what our post hoc results
tell us about these three methods of training.

The Levene test has a value of 1.447 (p = 0.247), so the homogeneity of variance
assumption is met. The results of the ANOVA are presented in Table 8-6.

Table 8-6. ANOVA results for the weightlifting data (three methods of training)

 Sum of squares df Mean square F Sig.

Between groups 456.04 2 228.30 3.86 0.029

Within groups 2483.76 42 59.14   

Total 2940.36 44    
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The F-statistic is significant, meaning that the means of the three groups differ.
However, we want to know more—are the results from the group using method 1
significantly better than both the groups using methods 2 and 3, for instance? Are
the results produced by method 3 significantly better than those produced by
method 2? To answer these questions, we conduct a Scheffe post hoc test, producing
the results presented in Tables 8-7 and 8-8.

Table 8-7. Results from the Scheffe post hoc test for the weightlifting data (three methods of
training)

I Group J Group
Mean difference
(I–J) Std. error Sig. 95% CI lower bound

95% CI upper
bound

1 2 7.80 2.81 0.029 0.67 14.92

1 3 4.17 2.81 0.341 −2.95 11.30

2 1 −7.80 2.81 0.029 −14.92 −0.67

2 3 −3.62 2.81 0.442 −10.75 3.50

3 1 −4.17 2.81 0.341 −11.30 2.95

3 2 3.62 2.81 0.442 −3.50 10.75

Table 8-8. Homogeneous subsets from the Scheffe post hoc test (three methods of training)

  Subset for α = 0.05

Group N 1 2

2 15 26.42  

3 15 30.04 30.04

1 15  34.22

Sig.  0.442 0.341

Tables 8-7 and 8-8 present the same conclusion, but the information is arranged
differently. Looking at either table, we can see that the mean of group 1 differs from
the mean of group 2 but that the mean of group 1 does not differ from the mean of
group 3, nor does the mean of group 2 differ from the mean of group 3.

Table 8-7 presents all possible pairwise comparisons between the groups; half the
table is redundant because both the comparison of group 1 with group 2 and group
2 with group 1 are presented. For instance, the first row presents the comparison of
group 1 with group 2 (the notations “I group” and “J group” are conventional). The
mean difference in the means of these two groups is 7.80, and the difference is sig-
nificant (p = 0.029). The 95% confidence interval for this difference in means is
(0.67, 14.92); note that it does not cross zero. The second row of Table 8-7 presents
the comparison between group 1 and group 3; the mean difference is 4.17, and it is
not significant (p = 0.341). Note for comparison that the confidence interval does
cross zero (−2.95, 11.30). The third row compares group 2 with group 1; the results
are the same as in row 1, except that the signs are reversed (because in row 3, the
mean of group 1 is subtracted from the mean of group 2, whereas in row 1, the mean
of group 2 was subtracted from the mean of group 1). Row 4 compares the means
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for groups 2 and 3; the mean difference is −3.62, and this is not significant (p =
0.442). Rows 5 and 6 are redundant with rows 2 and 4.

Table 8-8 presents a column for each set of groups that form a homogeneous subset;
in a homogeneous subset, the means of the groups included do not differ signifi-
cantly from each other. In this case, groups 2 and 3 form a homogeneous subset
(column 1); groups 1 and 3 also form a homogeneous subset (column 2).

Calculating Simple Regression by Hand
Regression coefficients can be calculated by hand, using the sums of squares, var-
iances of X and Y, and a few other quantities that can all be calculated without the
use of a computer. The problem with hand calculations is not that any particular
step of the process is difficult but that with a data set of any size, the work involved
quickly becomes tedious and prone to error. However, going through a modified
version of this process can be useful in understanding the meaning of the regression
coefficients, and it is in that spirit that the following section is provided.

We noted earlier that, when dealing with real data, we don’t expect the predictions
made by a regression equation to be perfect. In fact, we assume that there will be
some differences between the observed values in a data set and the predicted values
as computed using the regression equation. We also discussed the squared devia-
tions, which are the square of the difference between each observed data point and
its predicted value according to the regression equation. The sum of these squared
deviations is the sum of squares of errors, or SSE, and is computed as shown in
Figure 8-10.

Figure 8-10. The sum of squares of errors

In this formula, yi is an observed data value, and i is the predicted value (according
to the regression equation) for that value. Because the value of i is determined by
the regression equation (axi + b), the sum of squares of errors can also be written as
shown in Figure 8-11.

Figure 8-11. Another way to write the sum of squares of errors
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The purpose of the regression equations is to minimize the SSE, that is, to make the
predicted values as close as possible to the observed values. The computational for-
mulas for the elements necessary to compute a simple regression equation are given
in Figures 8-12 to 8-15. Note that Sxx is the variance of x, and Sxy is the covariance
of x and y.

Figure 8-12. Computing the variance of x

Figure 8-13. Computing the covariance of x and y

Figure 8-14. Computing the slope of a simple regression equation

Figure 8-15. Computing the intercept of a simple regression equation

Suppose you have been given the values in Figure 8-16 computed from a data set
relating IQ (y) to height in meters (x); you can use this information to calculate the
regression line for that data set. You could also compute these quantities by hand,
but that process is extremely laborious with even a moderately sized data set—so
laborious, in fact, that you are apt to forget why you were doing the calculations in
the first place.
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Figure 8-16. Data needed to compute a simple regression equation

Using the equations plus the values presented in Figure 8-16, we calculate the re-
gression equation as follows:

Σx/n = 33.25/21 = 1.58
Σy/n = 2,486/21 = 118.38
Sxx = 53.01 − (33.25)2 / 21 = 0.36
Sxy = 3,973.04 − (33.25)(2,486)/21 = 36.87
a = 36.87/0.36 = 102.42
b = 118.38 − [(102.42)(1.58)] = −43.44

The regression equation is:

y = 102.42x − 43.44 + e

or

IQ = 102.42(height) − 43.44 + e

For a person of 2 meters in height, the equation predicts an IQ of 161.40 (genius
level!) because:

102.42(2) − 43.44 = 161.40

Needless to say, this is a fictitious example that demonstrates the technique of re-
gression; no slur is intended toward the intelligence of anyone, regardless of stature.

Exercises

Regression
The first set of questions uses data from the United Nations Development Project
to examine variables related to adolescent fertility (the birth rate for women aged
15–19 in a given country, expressed as the number of births per 1,000 women in
this age group). You decided to look at the level of education in the country, using
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the “mean years of adult schooling” variable, thinking that countries in which the
average years of school completed is higher might have a lower adolescent fertility
rate.

Problem

Figure 8-17 presents the scatterplot of the two variables (using the natural log of
adolescent fertility as discussed in this chapter). What does it suggest about their
relationship, and does it seem to support a simple regression analysis with these two
variables?

Figure 8-17. Scatterplot of the natural log-transform of adolescent fertility and the mean years
of adult schooling

Solution

The scatterplot indicates a moderately strong negative relationship. (Higher levels
of education are associated with lower levels of adolescent fertility.) Both variables
appear continuous and have a reasonable range to support a regression analysis.

Problem

The regression analysis produced the information in Table 8-9; fill in the missing
value for R square and interpret the information provided in Table 8-9.

Table 8-9. Model information

R R square Durbin-Watson

0.663  2.199
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Solution

The R2 value is 0.440 (found by squaring 0.663). This is the coefficient of determi-
nation for the model and means that 44.0% of the variation in this data set in the
log-transformed adolescent fertility rate can be explained by variation in the mean
years of adult schooling. The Durbin-Watson statistic tests the assumption that the
error terms are independent; a value of 2 signifies absolute independence, and be-
cause our value (2.199) is close to 2, we can conclude that this assumption has been
met.

Problem

Table 8-10 presents the coefficients table from this same regression analysis. Fill in
the values for the missing t-statistics, write the regression equation for this analysis,
and interpret the information provided in the table.

Table 8-10. Coefficients table for a regression analysis predicting the natural log of the
adolescent fertility rate from the mean years of adult schooling in a country

 Unstandardized coefficients Standardized coefficients   

 B Std. error Beta t Sig.

Constant 5.248 0.146   < 0.001

Mean years of schooling (adults) −0.217 0.019 −0.663  < 0.001

Solution

The t-statistics are 35.945 for the constant and −11.421 for the mean years of school-
ing; they are found by dividing the B for each term by its standard error. For the
constant, this is:

5.248/0.146 = 35.945

The regression equation for this analysis is:

Log_adoles_fertility = 5.248 − 0.217(mean years adult schooling)

This equation says that the predicted log of adolescent fertility decreases by 0.217
units for every year’s increase in mean years of adult schooling in a country. The t-
statistics and their significance tests tell us that both coefficients are significantly
different from zero. The Beta coefficient (−0.663) for mean years of schooling is the
standardized value of the regression coefficient for this term (−0.217); it is not par-
ticularly useful for a simple regression equation, but for an equation with multiple
predictors measured on different scales, it can be used to compare the importance
of the different predictors.

This analysis supports the assertion that there is a significant negative relationship
between the level of education in a country and the adolescent fertility rate: on aver-
age, the adolescent fertility rate is lower in countries where adults have completed
more years of schooling.
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ANOVA
These questions use data from the 2010 BRFSS (Behavioral Risk Factors Surveillance
System, an annual survey of health-related information for the United States). Al-
though you can download data from the BRFSS, the analysis in this section is based
on a random sample from the 2010 data, so you shouldn’t expect to find exactly the
same results if you do the analysis yourself.

You are interested in whether there is a relationship between asthma and body
weight. You will use an ANOVA to examine whether there is a significant difference
in body weight between people who have ever received a diagnosis of asthma (life-
time asthma diagnosis) and those who have not. Your group variable, asthma
diagnosis, is dichotomous, and your outcome variable, body weight, is continuous.
Because your audience is U.S. officials, you will use weight in pounds rather than
kilograms. (Both measurements are provided in the data set.)

Problem

Figure 8-18 presents the box plot for lifetime asthma diagnosis and body weight in
pounds. What information can you glean about the data from this box plot? If you
are unfamiliar with box plots, you can review the relevant section in Chapter 3.

Figure 8-18. Box plots for current asthma diagnosis and body weight in pounds
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Solution

All sorts of alarms should be going off in your head from looking at this box plot,
which presents a fine example of why data screening is important. First of all, there
are three groups for lifetime asthma diagnosis rather than 2; a quick perusal of the
code book [also available here] tells us that 7 is a missing value, so we should exclude
cases with that value from this analysis. Both valid groups (with and without an
asthma diagnosis) have outliers; those are the data points identified by circles, and
the number next to each is the case number that has that particular value. This makes
us question whether body weight is normally distributed, so we will examine that
before continuing. Finally, the median weights for those with and without an asthma
diagnosis are almost the same, suggesting that this variable might not be the most
promising if our interest is identifying factors strongly related to asthma. Nonethe-
less, we will continue with our analysis because a finding of nonsignificance can also
provide us with useful information.

Problem

We created a histogram for weight and computed the Kolmogorov-Smirnov statistic
for this variable; the histogram is presented in Figure 8-19, and the Kolmogorov-
Smirnov statistic was 1.898 (p − .001). Together, what do they tell us about the
distribution of weight in this data set?

Figure 8-19. Histogram for weight in pounds
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Solution

The histogram has a positive skew (high values are more common than would be
expected by the normal distribution); this is clear when comparing the distribution
of the actual data (the histogram bars) to the superimposed normal curve (repre-
senting a perfect normal distribution). The Kolmogorov-Smirnov statistic is highly
significant, indicating that the null hypothesis that the variable has a normal distri-
bution should be rejected.

Problem

We did a natural log transformation of weight and checked normality again; in this
case, the histogram (not shown) looked approximately normal, and the
Kolmogorov-Smirnov statistic was 0.961 (p = 0.314), indicating acceptable normal-
ity. We also computed the Kolmogorov-Smirnov statistic for each group separately;
neither was significant, so we are confident that the distribution within each group
is normal. The box plots for the transformed variable are shown in Figure 8-20; what
do they suggest about this data?

Figure 8-20. Box plots with transformed weight variables

Solution

The group without an asthma diagnosis still has a cluster of outliers, but because
the data is acceptably normal, we will continue with our analysis. The group with
an asthma diagnosis has a slightly higher median than the group without the
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diagnosis, but there is considerable overlap between the two groups as well. We will
proceed with our ANOVA for this data.

Problem

The Levene statistic for this ANOVA is < 0.001 (p = 0.983). Why did we compute
the Levene statistic, and what do these results tell us?

Solution

The Levene statistic tests whether the assumption of homogeneity of variance has
been met. The null hypothesis is that the variances of the different groups are ho-
mogeneous; in this case, we do not have a significant value for this statistic, so we
can consider the homogeneity of variance assumption upheld.

Problem

Table 8-11 presents some descriptive data about the transformed weight variable in
this data set. What do you notice in this table, and what are the implications for the
analysis?

Table 8-11. Descriptive statistics for the transformed weight variable for people with and
without a lifetime asthma diagnosis

Group N Mean Std. dev. 95% CI lower bound 95% CI upper bound

Asthma diagnosis 44 5.19 0.24 5.12 5.27

No asthma diagnosis 390 5.13 0.24 5.10 5.15

Total 434 5.16 0.24 5.11 5.16

Solution

The first thing to notice is that the sample sizes are highly unequal, suggesting that
this data set might not be the optimal candidate for an ANOVA analysis to answer
this question (because ANOVA works best with a balanced design). The second is
that the means of both groups are quite similar, and the 95% confidence intervals
overlap quite a bit, suggesting that there is not a strong relationship between lifetime
asthma diagnosis and body weight. It’s still worth completing the analysis, however;
nonsignificant results can also provide useful information.

Problem

The ANOVA results are presented in Table 8-12; what do they tell you about the
relationship between lifetime asthma diagnosis and body weight? Use the standard
of alpha = 0.05 for significance testing.

Table 8-12. One-way ANOVA results for lifetime asthma diagnosis and body weight

 Sum of squares df Mean square F Sig.

Between groups 456.04 2 228.30 3.86 0.029

Within groups 2483.76 42 59.14   

Total 2940.36 44    
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Solution

This analysis found a significant relationship (F = 3.86, p = 0.029) between lifetime
asthma diagnosis and body weight. Referring to Table 8-11, people who have ever
been diagnosed as having asthma have on average a higher body weight than those
who have never been diagnosed with asthma.

Because we transformed weight to its natural log, our means
table (Table 8-11) reports the natural logs of weight. To make
these figures more meaningful to our audience, we need to
transform these results back into their original units (pounds).
We can do this by taking the antilog of the means in Table 8-11:

e5.19 = 179.5

e5.13 = 169.0

We can then add this information to the second sentence of our answer so it reads,
“People who have ever been diagnosed as having asthma have on average a higher
body weight (mean = 179.5 lbs) than those who have never been diagnosed with
asthma (mean = 169.0 lbs). Converting back to the original units also points up a
danger when working with transformed units: a difference that might look small in
the transformed units (5.19 versus 5.13) can be much more impressive in the original
units (179.5 versus 169.0).

Because the BRFSS data is a survey collected at a single point in
time, it cannot answer questions of causality regarding body
weight and obesity. It might be that asthma leads to increased
body weight (perhaps by making it more difficult to exercise),
or it might be that increased body weight leads to asthma (per-
haps by stressing the lungs more). It’s also possible that one or
more additional factors can explain this observed relationship,
for instance, both increased body weight and asthma might be
associated with poverty.
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9
Factorial ANOVA and ANCOVA

Chapter 8 introduced simple regression and ANOVA. In this chapter, we present
more complex types of ANOVA: factorial ANOVA (ANOVA with more than one
grouping variable, or factor) and ANCOVA, which is an ANOVA design that in-
cludes a continuous covariate. Chapter 10 presents similar extensions of the simple
regression model introduced in Chapter 8.

In research, most ANOVA designs include at least two grouping variables or factors;
these models rely on the same basic principles as one-way ANOVA, but the addi-
tional complexity introduces additional concerns, including the evaluation of inter-
actions between the factors. These types of analyses are nearly always done with a
computer statistical package, but fortunately, there is enough commonality among
those packages that generally if you can read the output from one, you can easily
learn to read the output from another. We present information from the analyses as
generically as possible to make it understandable no matter what computer program
you are using.

Factorial ANOVA
It’s relatively rare in real-life studies that we are interested in the influence of a single
factor. Instead, we are often interested in the influence of several factors and, pos-
sibly, how they interact as well. Factorial designs (ANOVAs including several fac-
tors) help us understand the combined effect of multiple factors on a dependent
variable. We might be interested in both main effects—the effect of each factor
considered alone—and interaction effects—the effects of the different factors in
combination. As with one-way ANOVA, factorial ANOVA is most suited for de-
signed experiments and equal cell sizes, i.e., approximately equal numbers of sub-
jects in each subgroup or cell created by any combination of the factors. The major
assumptions for factorial ANOVA are the same as for one-way ANOVA, as presented
in Chapter 8. Independence of observations and the homogeneity of variance are
particularly important; fortunately, statistical packages generally provide statistical
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tests of homogeneity of variance, such as Levene’s test, whereas independence of
observations is generally dealt with at the experimental design stage.

The most common factorial designs are a × b (two-way, two factors) and a × b × c
(three-way, three factors). It’s possible to have more complex designs, but the results
become increasingly difficult to interpret, and higher levels of complexity may be
more easily accommodated in a linear regression design. As with one-way ANOVA,
each factor is a categorical variable with at least two levels, whereas the outcome or
dependent variable is a continuous variable measured at the interval or ratio level.

Interaction
With more than one factor, you need to be concerned with interaction among the
factors. The definition of interaction is that the effect of one variable depends on the
level of another variable; in other words, the effect of one variable is different, de-
pending on the value of the other variable. This might be easier to understand by
looking at some graphs showing extreme examples of interaction and lack of inter-
action; you will seldom find cases this obvious using real data, but the graphs are
useful to illustrate the concept.

Let’s consider some hypothetical data on the relationship among grip strength (the
outcome, measured in PSI, pounds per square inch) and two factors, gender and
alcohol consumption. If we graph the data and there is no interaction between the
factors, the graph might look something like Figure 9-1.

Figure 9-1. Data without interaction
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This graph shows no interaction between alcohol consumption and gender; grip
strength (the y axis) decreases for both men and women as alcohol consumption
increases (the x axis). The rate of decrease is the same for both genders, so the lines
are parallel, and men have a stronger grip strength at every level of alcohol con-
sumption.

Figure 9-2 displays data that does contain an interaction; alcohol consumption in-
fluences grip strength differently for men than for women. In fact, the effect is op-
posite: alcohol consumption increases grip strength for women while diminishing
it for men.

Figure 9-2. Data with an interaction

Lines do not have to cross for there to be an interaction; Figure 9-3 shows an inter-
action characterized by lines that are not parallel but diverge, showing that the effect
of alcohol on grip strength is greater for women than for men.

In both Figure 9-2 and Figure 9-3, we see that the effect of alcohol on grip strength
depends on the level or value of a third variable, gender; the relationship between
alcohol and grip strength is different for men than for women. Of course, we can’t
tell by looking at a graph whether an interaction is significant; for that, we need
statistical testing.
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Figure 9-3. Data with an interaction

Two-Way ANOVA
Physical performance measures often vary in populations, and declines in grip
strength, for instance, might be correlated with a number of clinical conditions. Your
research team is interested in studying how two factors, gender and alcohol con-
sumption, are related to grip strength and in how these factors interact. You have
three primary research questions:

1. Does gender influence grip strength?

2. Does alcohol consumption influence grip strength?

3. Do gender and alcohol consumption interact to influence grip strength?

We will treat alcohol consumption as a dichotomous variable, contrasting those that
consume alcohol at least weekly with those who do not.

Our hypotheses can be stated verbally as:

Main effect for gender

H0: there is no difference in grip strength between men and women.
H1: there is a difference in grip strength between men and women.
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Main effect for alcohol

H0: there is no difference in grip strength between men and women.
H1: there is a difference in grip strength between men and women.

Interaction of gender and alcohol

H0: the influence of alcohol consumption on grip strength is the same for men
and women.
H1: the influence of alcohol consumption on grip strength is not the same for
men and women.

Table 9-1 shows sample data for the first 12 cases collected in the grip strength lab
(total n = 50). Six women and six men had their grip strength measured, and each
gender group had three drinkers and three nondrinkers (defined as drinking at least
weekly or never drinking).

Table 9-1. Relationship between grip strength (DV) and gender and alcohol consumption (IVs)

Gender Alcohol Grip strength (psi)

Female Yes 19

Female Yes 20

Female Yes 21

Female No 30

Female No 25

Female No 28

Male Yes 31

Male Yes 30

Male Yes 35

Male No 32

Male No 35

Male No 32

The two main effects are testing mean population differences based on the null
hypotheses:

µmales − µfemales = 0
µalcohol − µnoalcohol = 0

Note that the null hypotheses for the main effects are stated in terms of difference
scores; stating that two quantities are the same is equivalent to stating that their
difference is 0. Interaction hypotheses are usually expressed in terms of differences
of differences. In this example, saying that there is no difference in the influence of
alcohol on grip strength for men and women can be expressed as:

µmen/alcohol − µmen/noalcohol = µwomen/alcohol − µwomen/noalcohol
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This study was very close to balanced, with 24 females and 26 males and 24 alcohol
drinkers versus 26 abstainers. The R2 for the model (coefficient of determination)
was 0.566, meaning that the two factors plus their interaction accounted for 56.6%
of the variation in grip strength observed in this data set. Levene’s test (F = 0.410,
p = 0.746) indicated that the assumption of homogeneity was met. The sample
means are:

• Gender main effect: female (25.25), male (31.65)

• Alcohol main effect: alcohol (26.71), no alcohol (30.31)

The means by gender and alcohol consumption are presented in Figure 9-4.

Figure 9-4. Means plot for the effects of gender and alcohol consumption on grip strength

There appear to be both main effects and an interaction effect: in our sample, men
have greater grip strength than women, those who do not consume alcohol have
greater grip strength than those who do, and the effect of alcohol consumption on
grip strength is greater for men than for women. To see whether these differences
are statistically significant, we need to perform a two-way ANOVA.

Some statistical packages produce many tables, but a few are particularly useful. In
our case, we are interested in testing the significance of the main effects and inter-
action effect in this model. The key data from the ANOVA is presented in Table 9-2.
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Table 9-2. ANOVA testing differences in grip strength (DV) for gender and alcohol
consumption (IVs)

Source Sum of squares df Mean square F Sig.

Corrected model 733.085 3 244.362 20.033 < 0.001

Intercept 40426.436 1 40426.436 3299.504 < 0.001

Gender 504.806 1 504.806 41.385 < 0.001

Alcohol 148.325 1 148.325 12.160 0.001

Gender* alcohol 80.769 1 80.769 6.622 0.013

Error 561.095 46 12.198   

Total 42135.000 50    

Corrected total 1294.180 49    

Using the standard of alpha = 0.05, the rows for gender (main effect), alcohol (main
effect), and gender*alcohol (interaction effect) tell us that, as we guessed from the
means plot, all three effects are significant. A summary of the results of this analysis
follow.

Both main effects and the interaction tested in the design are significant:

Gender main effect: F(1, 46) = 41.385, p < 0.001
The direction of the effect shows that women generally have lower grip strength
than men.

Alcohol main effect: F(1, 46) = 12.160, p = 0.001
The direction of the effect shows that those who consume alcohol generally
have a lower grip strength than those who do not consume alcohol.

Gender × alcohol interaction: F(1, 46) = 6.622, p = 0.013
The interaction shows that gender and alcohol interact, with alcohol consump-
tion associated with a greater loss of grip strength in women as compared with
men.

Note that we must be wary of presenting causal statements (alcohol consumption
harms grip strength) because this is an observational study—we asked people
whether they drank and measured their grip strength, but we did not administer
alcohol to them and record the changes in their grip strength. The association be-
tween alcohol consumption and grip strength could be due to any number of factors.
For instance, athletes might forgo alcohol consumption as part of their training rules
and might also have increased grip strength because of their training.

Three-Way ANOVA
The two-way factorial model can easily be extended to three factors. After demon-
strating significant main effects for gender and alcohol consumption on grip
strength, your research team investigates other possible factors that might influence
grip strength. In the literature, there appears to be a lot of discussion about the
influence of age on grip strength, with a marked decline appearing after the age of
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40. You decide to add an age category (below 40 or above 40) to determine whether
age has any influence or as much influence on grip strength as the other factors.

Table 9-3 shows the first 12 cases for this study.

Table 9-3. Relationship among grip strength (DV) and gender, alcohol consumption, and age
(IVs)

Gender Alcohol Grip strength (psi) Age

Female Yes 19 Below 40

Female Yes 20 Above 40

Female Yes 21 Below 40

Female No 30 Above 40

Female No 25 Below 40

Female No 28 Above 40

Male Yes 31 Below 40

Male Yes 30 Above 40

Male Yes 35 Below 40

Male No 32 Above 40

Male No 35 Below 40

Male No 32 Above 40

Hypothesis testing becomes more complicated with three factors because we have
potentially seven hypotheses: main effects for gender, alcohol, and age; two-way
interactions of gender*alcohol, gender*age, and alcohol*age; and a three-way inter-
action, gender*alcohol*age. We’ve already demonstrated how to verbalize two-way
interactions. The null hypothesis we are testing with our three-way interaction can
be stated as “the difference in the influence of alcohol consumption on grip strength
between men and women does not vary with age category.”

To produce a means plot with three factors, we actually have to produce two plots:
one for subjects below 40, the other for subjects above 40. The means plots are
displayed in Figure 9-5.

The means plot suggests that age will be an important factor in clarifying the rela-
tionships of interest because it appears to interact with both gender and alcohol use.
The key results of this analysis are presented in Table 9-4. We will use the standard
of alpha = 0.05 to evaluate the significance of the effects in this model.
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Figure 9-5. Means plot for a three-way ANOVA

Table 9-4. Three-way ANOVA testing differences in grip strength by gender, alcohol
consumption, and age

Source Sum of squares df Mean square F Sig.

Corrected model 864.583 7 123.512 12.075 <0.001

Intercept 35902.885 1 35902.885 3510.081 <0.001

Gender 548.630 1 548.630 53.637 <0.001

Alcohol 128.214 1 128.214 12.535 0.001

Age 0.003 1 0.003 0.000 0.986

Gender*alcohol 33.446 1 33.446 2.370 0.078

Gender*age 75.758 1 75.758 7.407 0.009

Alcohol*age 0.226 1 0.226 0.022 0.883

Gender*alcohol*age 49.491 1 49.491 4.839 0.033

Error 429.597 42 10.229   

Total 42135.000 50    

Corrected total 1294.180 49    
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Two of the three main effects in this model are significant:

Gender main effect: F(1, 42) = 53.637, p < 0.001
The direction of the effect shows that women generally have lower grip strength
than men.

Alcohol main effect: F(1, 42) = 12.535, p = 0.001
The direction of the effect shows that those who consume alcohol generally
have a lower grip strength than those who do not consume alcohol.

Age main effect: F(1, 42) = 0.000, p = 0.986 (not significant)

One of the two-way interactions is significant:

Gender × alcohol interaction: F(1, 42) = 2.370, p = 0.078 (not significant)
Gender × age interaction: F(1, 42) = 7.407, p = 0.009

The difference in grip strength for those who do and do not use alcohol is much
different for men in the two age groups, whereas for women, the pattern does
not change much. Grip strength for men age 40 and older is little affected by
whether they use alcohol; for men younger than age 40, alcohol use is associated
with a decline in grip strength. The decline in grip strength with alcohol use is
somewhat greater for women age 40 and older as compared with younger
women, but this difference by age category is not as extreme as the difference
for men.

Alcohol × age interaction: F(1, 42) = 0.022, p = 0.883 (not significant)

The three-way interaction is significant:

Gender × alcohol × age interaction: F(1, 42) = 4.839, p = 0.033

These results are interesting because although the main effect of age is not signifi-
cant, one two-way interaction including age is significant (gender*age), as is the
three-way interaction gender*alcohol*age. It’s also interesting that the gender*alco-
hol interaction was not significant in the three-way model but was significant in the
two-way model. This demonstrates a point, which applies to regression as well:
when you add or remove terms from a model, often the significance of other variables
in the model will change as well. When reporting results from a complex model, it
is always necessary to specify exactly what model was tested because, very often,
predictors interact with each other; in a different analysis, perhaps age would be a
significant predictor of grip strength.

Even though age does not have a significant main effect in this model, we should
keep it in the analysis because it is usual to include any variable that is significant as
an interaction as a main effect also. The results of this analysis are both interesting
enough and intriguing enough to suggest that we should investigate further. One
option that might be helpful would be to switch to a regression equation and include
age as a continuous predictor (use age in years as a predictor rather than dichoto-
mizing it to under/over 40). Another possibility is that two categories for age are not
sufficient, and perhaps 40 is not the ideal dividing line; we could investigate this
with further analyses as well.

232 | Chapter 9: Factorial ANOVA and ANCOVA



ANCOVA
Analysis of covariance (ANCOVA) is a variation of factorial ANOVA that allows a
continuous covariate to be included in the model. The most common reason for
using this model is to control for a potentially confounding effect of a covariate. For
instance, you might be interested in the earnings of college graduates according to
their field of study (science, humanities, business, etc.). This could be addressed
with a one-way ANOVA with salary as the dependent variable and field of study as
the categorical factor. However, if your data set includes not just recent graduates
but people who have been in the working world for substantially different lengths
of time, you realize this might affect their salaries because, in general, people’s sal-
aries increase with age and/or with the number of years they have been working in
a field. You could control for years on the job, or age, by adding one of those variables
as a continuous covariate to your ANOVA design, giving you an ANCOVA. You
can use more than one covariate in an ANCOVA. Although adding covariates to
control for confounders is not a perfect solution, it’s better than ignoring the po-
tential confounders altogether. One way to think of this use of ANCOVA is that by
controlling for the effect of the continuous covariate(s), you are examining what the
relationship between the factors and the continuous outcome would be if all cases
had the same value for the covariate(s). For instance, in the field of study and salary
example, by using age as a continuous covariate, you are examining what the rela-
tionship between those two factors would be if all the subjects in your study were
the same age.

Another typical use of ANCOVA is to reduce the residual or error variance in a
design. We know that one goal of statistical modeling is to explain variance in a data
set and that we generally prefer models that can explain more variance, and have
lower residual variance, than models that explain less. If we can reduce the residual
variance by including one or more continuous covariates in our design, it might be
easier to see the relationships between the factors of interest and the dependent
variable.

The assumptions of ANOVA apply to ANCOVA, and there are two additional as-
sumptions (numbers 5 and 6) as well for ANCOVA:

Data appropriateness
The outcome variable should be continuous, measured at the interval or ratio
level, and be unbounded (or at least cover a wide range); the factors (group
variables) should be dichotomous or categorical; the covariate(s) should be
continuous, measured at the interval or ratio level, and be unbounded or cover
a wide range. This assumption is checked by inspecting the data through fre-
quency tables, histograms, and so on.

Independence
Each value of the outcome variable should be independent of each other value.
This would be violated if there were some pattern of time dependency, for in-
stance, or if some of the dependent variables were measured from subjects
clustered into larger units (e.g., members of the same family or children studying
in the same classroom) in some way that affected their value on the dependent
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variable. This assumption is checked by your knowledge of the data and how
it was collected.

Distribution
The outcome variable should be approximately normally distributed within
each group. The distribution of outcome variable may be checked by creating a
histogram (eyeballing the data) and by a statistical test for normality such as
the Kolmogorov-Smirnov.

Homogeneity of variance
The variance of each of the groups should be approximately equal. This is
checked by a procedure such as the Levene statistic; the null hypothesis is that
the variance is homogeneous, so if the results of the Levene statistic are not
statistically significant (normally, the criterion of a < 0.05), that means the var-
iances are sufficiently homogeneous to proceed.

Independence of the covariates and the effect of the factors
The variance explained by the covariate should be unique and not overlap with
the variance explained by the factors. This is most often a problem in observa-
tional studies in which random assignment is not used; if the two groups vary
on the covariate and it explains some of the variance of the outcome variable,
there is no way to separate the variance explained by the factors from that ex-
plained by the covariates. If random assignment is not possible, the next best
approach is to determine whether the levels of the covariate differ significantly
among your groups; if they do, don’t use the covariate. Common sense also
plays a role here: can you make a reasonable case that the variance explained
by your covariate will explain unique variance in the outcome variable? If not,
don’t use the covariate.

Homogeneity of regression slopes
The relationship between the covariate and the dependent variable should be
the same for all groups. This can be checked by creating and plotting regression
lines for the covariate and dependent variable, separately for each group, and
by creating interaction terms and testing them for significance. The regression
lines should be approximately parallel; their slopes should be approximately
equal. The interaction terms should not be significant.

Continuing with the grip strength example, the research team becomes concerned
that they’ve left an important variable out of the model: whether a person exercises.
It makes intuitive sense that working out could improve grip strength, so they decide
to add one more variable to the model: the minutes each week the individual spends
in physical activity. This is a continuous variable with a broad range, so it can be
added as a continuous covariate to the gender and alcohol consumption (IVs) and
grip strength (DV).

The first assumption we have to check is whether our covariate explains unique
variance (assumption 5). We can make a logical case that time spent exercising could
explain unique variance in grip strength, and we can compute the means of this
covariate in the groups; if these means are not significantly different, we will proceed
with the analysis. For the purposes of demonstration, we’re dropping back to our
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two-way model with the gender and alcohol consumption factors and adding the
covariate exercise, operationalized as the minutes exercised per week.

We did two one-way ANOVAs (analogous to t-tests) for the mean of minutes exer-
cised by gender and alcohol consumption; the key results are presented in Table 9-5.

Table 9-5. Results of one-way ANOVAs weekly minutes of exercise by gender and alcohol
consumption

Variable Subgroup Mean F Sig.

Gender Males 100.74 1.069 0.306

 Females 87.64   

Alcohol consumption Yes 106.01 3.209 0.080

 No 83.78   

As you can see, although there are differences in the average minutes exercised per
week between men and women and between those who do and do not consume
alcohol, these differences are not significant at the α = 0.05 standard.

We also need to check the homogeneity of the regression slopes (assumption 6). As
with evaluating normality, we will do both a graphical and a statistical test of this
assumption. For the graphical test, we will create scatterplots with regression lines
for the relationship between grip strength (the outcome) and exercise (the covariate)
for males versus females and for alcohol versus no alcohol. For each of the pairs, the
slopes should be approximately equal. The scatterplots and regression lines for gen-
der are presented in Figure 9-6 and the scatterplots and regression lines for alcohol
in Figure 9-7.

There’s nothing too alarming in either figure; the slopes appear to be approximately
equal, and that’s good news for the assumption of homogeneity of slopes. We will
also conduct a statistical test of this assumption by creating a model including an
interaction term of the covariate and the factor. (We will do separate models for
each factor.) If this interaction term is not significant, we will consider the assump-
tion of homogeneity of slopes to be upheld for this data. The data from these analyses
is presented in Tables 9-6 and 9-7.

Table 9-6. Testing the homogeneity of slopes assumption for gender and exercise

Source Sum of squares df Mean square F Sig.

Corrected model 560.053 3 186.684 11.698 <0.001

Intercept 7807.479 1 7807.479 489.212 <0.001

Gender 69.358 1 69.358 4.346 0.043

Exercise 40.686 1 40.686 2.549 0.117

Gender*exercise 2.363 1 2.363 0.148 0.702

Error 734.127 46 15.959   

Total 42135.000 50    

Corrected total 1294.180 49    

ANCOVA | 235

Factorial ANOVA
and ANCOVA



Figure 9-6. The relationship between weekly minutes of exercise and grip strength for men
and women

Figure 9-7. The relationship between weekly minutes of exercise and grip strength for those
who do and do not consume alcohol
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Table 9-7. Testing the homogeneity of slopes assumption for alcohol and exercise

Source Sum of squares df Mean square F Sig.

Corrected model 161.863 3 53.954 2.192 0.012

Intercept 6619.891 1 6619.891 268.931 <0.001

Alcohol 29.800 1 29.800 1.211 0.277

Exercise 0.019 1 0.019 0.001 0.978

Alcohol*exercise 0.146 1 0.146 0.006 0.939

Error 1132.317 46 24.616   

Total 42135.000 50    

Corrected total 1294.180 49    

Note that the only reason we are running these models is to check on the significance
of the interaction terms; we’re not testing a theory, so we don’t care about model
fit, significance of other terms, and so on. As you can see in Tables 9-6 and 9-7,
neither of the interaction terms is significant; for gender*exercise, the p-value is
0.702, and for alcohol*exercise, the p-value is 0.939. These results tell us that, using
the standard of alpha = 0.05, the homogeneity of slopes assumption is upheld for
this analysis (and this data set), so we can continue with our ANCOVA.

The Levene’s test for our ANCOVA for grip strength including the factors alcohol
consumption and gender and the covariate exercise has a value of 0.292 (p = 0.381);
this is not significant, so the assumption of equal variance is upheld. The R2 for this
model is 0.576, so these factors explain about 57.6% of the variance in grip strength
in this data. This is a small improvement on the R2 of 0.566 for the two-way ANOVA
(factors = gender, alcohol) discussed earlier in this chapter. The ANCOVA results
are presented in Table 9-8.

Table 9-8. ANCOVA for grip strength, with factors gender and alcohol consumption, and
covariate weekly minutes of exercise

Source Sum of squares df Mean square F Sig.

Corrected model 745.596 4 186.399 15.290 <0.001

Intercept 7289.554 1 7289.554 597.957 <0.001

Exercise 12.511 1 12.511 1.026 0.316

Gender 517.299 1 517.299 42.434 <0.001

Alcohol 117.498 1 117.498 9.638 0.003

Gender*alcohol 78.573 1 78.573 6.445 0.015

Error 548.584 45 12.191   

Total 42135.000 50    

Corrected total 1294.180 49    
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Both our factors and their interaction are significant, but the covariate is not.

• For gender, F(1, 45) = 42.434, p = <0.001

• For alcohol, F(1, 45) = 9.638, p = 0.003

• For gender*alcohol, F(1, 45) = 6.445, p = 0.015

• For exercise F(1, 45) = 1.026, p = 0.316 (not significant)

Because we didn’t improve model fit much by adding this covariate, we might con-
sider whether there is a better way to measure exercise. The type of exercise could
be important: those who engage in weightlifting probably improve their grip strength
more than those who do distance running, for instance. Perhaps exercise would be
more useful as a dichotomous or categorical variable; maybe the difference between
doing any exercise and none is more important than the time spent in exercise (in
which case, exercise would become a factor rather than a covariate). This illustrates
why any research project is usually an ongoing concern: you begin with an idea, test
it, and then refine your idea and test it again. Lather, rinse, and repeat, as they say
in the advertising world—don’t expect to create the perfect model the first time
around.

Exercises
Problem

You are planning to conduct a two-way ANOVA; as part of the process, you conduct
Levene’s test, which has a p-value of 0.045. What does this mean for your analysis?

Solution

Levene’s test is a test of the homogeneity assumption for ANOVA, that each group
has approximately the same variance. The null hypothesis is that the variances are
equal, so if Levene’s test is not significant, the assumption of equal variance is up-
held, and you can proceed with the ANOVA. In this case, using the conventional
standard of α = 0.05, Levene’s test is significant, meaning that you should reject the
assumption of homogeneity and should not proceed with the ANOVA without
transforming your data or otherwise remedying the problem.

Problem

You are working on a two-way ANOVA; one of your factors has two levels, the other,
three levels. As part of the process of working through this analysis, you create the
means plot displayed in Figure 9-8. Interpret this graphic and its significance for
your analysis.

Solution

There may be an interaction between your factors. In general, levels 1 and 3 of factor
1 are associated with lower levels of the outcome and level 2 of factor 1 with a higher
level of the outcome. However, this effect is greater for cases with level 1 of factor
2, so it seems that the effect of factor 1 might partly depend on the level of factor 2.
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Problem

Table 9-9 presents the results from the two-way ANOVA whose means plot was
presented in the previous problem. What can you conclude from the table and the
means plot together about the relationship between the factors and the outcome in
this analysis? Use the standard of alpha = 0.05 for significance testing.

Table 9-9. ANOVA with two factors

Source Sum of squares df Mean square F Sig.

Corrected model 145.392 5 29.078 0.172 0.971

Intercept 198801.665 1 298801.665 1766.133 0.000

Factor1 103.782 2 51.891 0.307 0.739

Factor2 17.849 1 17.849 0.105 0.748

Factor1*factor2 23.762 2 11.881 0.070 0.932

Error 4060.418 24 169.184   

Total 303007.475 30    

Corrected total 4205.810 29    

Figure 9-8. Means plots for an ANOVA
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Solution

Neither of the factors is significantly related to the outcome, and their interaction is
not significantly related to the outcome. The results are:

Factor1: F(2, 24) = 0.307, p = 0.739 (not significant)
Factor2: F(1, 24) = 0.105, p = 0.748 (not significant)
Factor1*Factor2: F(2, 24) = 0.070, p = 0.932 (not significant)

This is an illustration of the fact that not all analyses produce significant results and
that you shouldn’t get too excited about reading means plots. In this case, the means
plot suggested there might be an interaction in the data, but the ANOVA demon-
strates that this interaction is not significantly different from 0 and neither are the
main effects of either factor, so it’s back to the drawing board for this research team.
The R2 for this model was 0.035, meaning that the model explained less than 4% of
the variability in the outcome.

Problem

You are planning an ANCOVA with one continuous covariate and one factor with
three levels. As part of checking the assumptions for ANCOVA, you created the
graphs in Figure 9-9. What do these graphs represent, what assumption are they
checking, and what can you conclude from them?

Figure 9-9. Graphs checking an ANCOVA assumption
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Solution

These graphs are scatterplots with superimposed regression lines for the outcome
variable (y-axis) and the covariate (x-axis); each level of the factor is represented by
a different graph. This type of graph is created to test the assumption of homogeneity
of slopes, which states that the relationship of the covariate and outcome should be
the same for all levels of the factor. If this is true, the slope of the regression line for
the covariate and outcome should be approximately the same for all levels of the
factor. In this case, the slope for level 2 of the factor is steeper than for level 1 and
level 3, but it’s hard to tell whether the difference is significant without performing
a statistical test.

Problem

Continuing with testing the assumptions for the ANCOVA described in the previous
problem, we conducted an analysis that produced the data presented in Ta-
ble 9-10. Use the standard of alpha = 0.05.

Table 9-10. Data from an analysis testing an assumption of ANCOVA

Source Sum of squares df Mean square F Sig.

Corrected model 742.689 5 148.538 1.029 0.453

Intercept 19233.663 1 19233.663 133.292 0.000

Factor 93.367 2 46.683 0.324 0.727

Covariate 487.758 1 487.758 3.380 0.078

Factor*covariate 129.749 2 64.875 0.450 0.643

Error 3463.121 24 144.297   

Total 303007.475 30    

Corrected total 4205.810 29    

Solution

This is a statistical test of the assumption of homogeneity of slopes; if the slopes are
homogeneous, the interaction term factor*covariate should not be significant. In
these results, the interaction term is not significant (F = 0.450, p = 0.643), so the
difference in slopes is not significant, and we can continue with the ANCOVA.

Problem

Continuing with the problem of trying to predict grip strength discussed throughout
this chapter, the research team decides that strength training, rather than exercise
in general, might be a better predictor of grip strength than exercise in general. They
add a continuous covariate, minutes per week spent in strength training, to the two-
way model with the dichotomous factors gender (male/female) and alcohol con-
sumption (yes/no). After checking the ANCOVA assumptions for this model, they
proceeded with testing it, producing the results presented in Table 9-11. The R2 for
this ANCOVA was 0.628. Interpret this R2 and the information in Table 9-11 and
these results with those of the ANCOVA with exercise as a covariate, presented in
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Table 9-8. Use the standard of alpha = 0.05 to evaluate the significance of the effect
in this model.

Table 9-11. ANCOVA for grip strength with factors gender and alcohol consumption and
covariate weekly minutes of strength training

Source Sum of squares df Mean square F Sig.

Corrected model 813.327 4 203.332 19.029 <0.001

Intercept 6622.003 1 6622.003 619.711 <0.001

Strength train 80.242 1 80.242 7.509 0.009

Gender 388.763 1 388.763 36.382 <0.001

Alcohol 63.086 1 63.086 5.904 0.019

Gender*alcohol 34.597 1 34.597 3.238 0.079

Error 480.853 45 10.686   

Total 42135.000 50    

Corrected total 1294.180 49    

Solution

This model explains somewhat more variance (62.8%) than the model including
exercise as a covariate (57.6%). In this model, both factors and the covariate are
significantly related to the outcome, grip strength; the interaction of the factors is
not significant. The key results are:

• For gender, F(1, 45) = 36.382, p = <0.001

• For alcohol, F(1, 45) = 5.094, p = 0.019

• For gender*alcohol, F(1, 45) = 3.238, p = 0.079 (not significant)

• For strength training F(1, 45) = 7.509, p = 0.009
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10
Multiple Linear Regression

In Chapter 8, we introduced simple linear regression, in which one independent
variable is used to predict or explain the value of one dependent variable. This model
is useful for introducing the principles of linear regression, but in real-world situa-
tions, simple regression is rarely used. Multiple linear regression, in which two or
more independent variables are related to a single dependent variable, is much more
common. Multiple regression is a common research technique used in many fields,
including the sciences, medicine, the social sciences, and education. One attraction
of multiple regression is flexibility; predictor variables can be continuous, categori-
cal, or dichotomous, and any combination of these variable types can be used in a
single equation. If a categorical variable is used, it must be recoded into dichotomous
dummy variables. We cover this technique also in this chapter. With the additional
complication of multiple predictor variables, additional assumptions must be met,
and these are discussed in this chapter as well. Finally, the ability to use multiple
predictors means that model-building strategies are useful to build the best model
for a particular purpose; these strategies are also discussed in this chapter.

Multiple Regression Models
The study of simple linear regression models and the bivariate correlation coefficient
and its square (the coefficient of determination) are useful as an introduction to the
concepts of regression analysis; in reality, very few fields of study spend much time
working with regression equations involving only two variables. Consider models
used to study climate change, such as General Circulation Models (GCMs) and even
more sophisticated Atmosphere-Ocean General Circulation Models (AOGCMs).
These models have been developed over the past 30 years to facilitate the increasingly
accurate forecast of weather patterns. The models involve understanding and quan-
tifying relationships between potentially hundreds and thousands of variables in
many qualitative categories. For example, in the mid-1970s, models focused on
variables derived from atmospheric conditions, whereas in the near future, models
will be available that are based on atmospheric data combined with land surface,
ocean and sea ice, sulphate and nonsulphate aerosol, carbon cycle, dynamic
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vegetation, and atmospheric chemistry data. By combining these additional sources
of variation into a large-scale statistical model, predictions of weather activity of
qualitatively different types have been made possible at different spatial and tem-
poral scales.

In this chapter, we will be working with multiple regression on a much smaller scale.
This is not unrealistic from a real-world point of view; in fact, useful regression
models may be built using a relatively small number of predictor variables (say, from
2 to 10), although the people building the model might consider far more predictors
for inclusion before selecting those to keep in the final model. There are many ways
to build a regression model and many purposes; there is not one best way to build
a model, but there might be a best way to build a particular model for a particular
purpose. The advice offered in this chapter will be general, so it’s up to you to learn
about the conventions and expectations of the particular professional field in which
you work. To take a simple example, a regression model can be built on the guiding
principle of parsimony (including a relatively small number of variables, each of
which explains a large proportion of variance) or on the principle of explaining the
maximum amount of variance (in which case more variables will probably be in-
cluded in the model, each explaining some additional but perhaps small proportion
of variance). Neither approach is best in all circumstances, so it’s best to know what
the expectations are in your field of study or work.

Another difference among fields and places of employment is the extent to which
theory is expected to guide statistical work. In academia, theory is highly valued,
and building a model based only on the relationships found in a particular data set
is greatly frowned on. In the business world, however, building models using auto-
mated methods (e.g., forward and backward entry, discussed later in this chapter)
can be completely acceptable. I tend toward the theory-driven side of the issue be-
cause I’ve spent most of my career in academia, but there are specific situations in
which a less theoretical approach may be called for. The point, once again, is to
know the customs and expectations of your field and to be clear about what you are
doing and why.

Two general principles apply to regression modeling. First, each variable included
in the model should carry its own weight, meaning it should explain unique variance
in the outcome variable. Often, the rule applied is that each variable must explain a
statistically significant amount of variation. It’s a fact that you can’t make a regres-
sion model worse, in the sense of making it explain less variance, by adding a new
variable, but even models built on the principle of maximizing the variance explained
generally have some rules to determine whether a particular variable improves the
model sufficiently to keep it in the model. Second, when you deal with multiple
predictors, you have to expect that some of them will be correlated with one another
as well as with the dependent variable; this means that adding or subtracting one
will probably change the coefficients of all the other variables in the model. This is
very important when interpreting your results because it’s not enough to say that
variable A is or is not a significant predictor of outcome E; you have to say that
variable A is or is not a significant predictor in a model that also includes variables
B, C, and D.
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Formally, multiple linear regression models take the form:

Y = β0 + β1X1 + β2X2 + . . . βnXn + e

where Y is the dependent variable, β0 is the intercept, X1, X2, . . . Xn are the inde-
pendent variables, β1, β2, . . . βn are the coefficients, and e is the residual or error
term. We introduced this model in Chapter 8, but it’s worth reviewing its main
features here. The dependent variable (Y) and independent variables (X1, X2, . . .
Xn) are observed data, whereas the intercept (β0) and coefficients (β1, β2, . . . βn) are
values computed by the multiple linear regression algorithm to minimize the residual
or error (e) in the model. For a given case (i), the predicted Y value Yi is calculated
by multiplying the observed values for that case (X1, X2, etc.) with their correspond-
ing coefficients (β1, β2, etc.) and adding the intercept β0. The difference between the
observed value of Yi and the predicted value i is the error of prediction or residual
ei for that case. The coefficients are determined to minimize the total squared re-
sidual. (The residuals have to be squared because some are positive, some are neg-
ative, and they sum to 0 if not squared.)

The assumptions of simple regression (discussed in Chapter 8) also hold for multiple
regression. In addition, as soon as we use more than one predictor, we have to worry
about multicollinearity. This means that none of our predictor variables should
correlate highly with any other predictor. In particular, no variable can be a linear
combination of other variables; this means that you can’t include as predictors the
variables A, B, and A + B. You may laugh, but it’s easy to create a new variable and
forget to remove its component parts from the predictors list. Predictor variables
that are highly correlated tend to explain much the same as variance in an outcome
variable, obscuring the relationship of each individual predictor with the outcome.
In addition, models containing predictors that are highly correlated tend to be un-
stable, so adding or removing one variable from the model can radically change the
coefficients and significance of the other predictors. (We expect a little change when
adding or subtracting a variable, but not major change.) Fortunately, most statistical
computing packages have a built-in function to check multicollinearity in regression
models, so this can be assessed after the model has been run

We will build a regression model to predict adolescent fertility (the birth rate for
girls ages 15–19, expressed as births per 1,000) from a number of other demographic
variables. We’ll use data from the United Nations Development Project; you can
download the same data here and try the analysis yourself on whatever statistical
system you use, or see whether you can build a better model. We will be working
with only a few variables here to keep our demonstration simple, but there’s no
reason to limit your own analyses to just those variables. One other important note:
this is ecological data, measured at the country level; therefore, any relationships we
see should only be generalized to the country level (not, for instance, to individual
people).

Our first step is to look at our candidate variables. As discussed in Chapter 8, the
adolescent fertility rate is not normally distributed, but the natural log transforma-
tion is, so we will use the transformed variable as our outcome. Figure 10-1 shows
a histogram of the natural log transformation of adolescent fertility; it looks fairly
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normal, and the Kolmogorov-Smirnov statistic (evaluating the probability of the
variable coming from a population with a normal distribution, as discussed in
Chapter 8) for this variable is 1.139 (p = 0.149), so it is acceptably normal.

Figure 10-1. Histogram of the natural log transform of the adolescent fertility rate

One variable we think might make a good predictor is life expectancy at birth, which
can be interpreted as an indicator of the general level of health in a country. However,
the histogram of life expectancy, displayed in Figure 10-2, is definitely not normal.
In fact, there seem to be two groups of countries, one with fairly low life expectancy
and an almost uniform distribution across a range from the mid-40s to the mid-60s,
and another group with high life expectancy with the values approximately normally
distributed with a central value in the mid-70s. We believe that the important dis-
tinction is between countries with low versus high life expectancy (versus between
high and very high life expectancy), so we will dichotomize the cases to reflect this
belief. About one-third of cases have values of 66 years or fewer, and this is in the
range of where the break seems to occur between a smaller group of low-life-
expectancy countries and a larger group of high-life-expectancy countries, so we
will use the value of 66.0 years to dichotomize life expectancy into low and high
categories.

Another variable that might help our model is GNI (gross national income) per
capita, expressed in international dollars in PPP (purchasing power parity) terms;
this figure allows us to compare the relative wealth or poverty of different countries.
In general, higher-income countries have lower adolescent fertility, so this should
be a good predictor for our model. The advantage of using GNI in PPP terms is that
it is expressed in terms that express the ability to purchase equivalent goods in the
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different countries and, thus, includes information about the different price levels
in each country while avoiding issues of fluctuating international exchange rates.
The latter would be a problem if a particular currency, such as the U.S. dollar, were
used to express income in other countries. A histogram of GNI per capita is presented
in Figure 10-3; it has a strong right skew. We compute a natural log transformation
of GNI, as presented in Figure 10-4; this looks much closer to a normal distribution,
and the Kolmogorov-Smirnov statistic also indicates acceptable normality (K-S =
0.737, p = 0.649), so we will use the log-transformed GNI in our model.

Another variable that might be useful to us is expected years of schooling; it’s logical
to hypothesize that countries willing and able to invest in the education of their
children might also have lower rates of adolescent fertility. This variable expresses
how many years of school children currently entering primary school are expected
to complete based on current age-specific enrollment figures. Figure 10-5 shows the
distribution of expected years of school; the gap at the upper right is because this
statistic is capped at 18 years. Nevertheless, the Kolmogorov-Smirnov statistic in-
dicates acceptable normality (K-S = 0.975, p = 0.298), so we can include it in our
model without transformation.

Figure 10-2. Histogram of life expectancy at birth
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Figure 10-4. Histogram of the natural log transformation of GNI (PPP 2005 international
dollars) per capita

Figure 10-3. Histogram of GNI (PPP 2005 international dollars) per capita
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Figure 10-5. Histogram of expected years of schooling

Finally, we consider including the percent urbanized, meaning the percent of the
population of a given country that lives in an urban area. This variable is acceptably
normal, as shown by its histogram (Figure 10-6) and the Kolmogorov-Smirnov test
(K-S = 0.893, p = 0.403).

The next thing we need to check is linearity; the relationship between our continuous
predictor variables and the outcome should resemble a straight line. The scatterplots
(not shown) all indicate linear relationships, so we consider this assumption upheld.

Although our regression analysis will produce multicollinearity statistics, we will
also look at the relationships among our predictor variables by creating a correlation
matrix; among other things, this will show us whether two of our predictors are
closely related. The correlation matrix (upper triangle) for our three continuous
predictors is displayed in Table 10-1.

Table 10-1. Correlation matrix for the natural log of GNI, percent urban, and expected years
of schooling

 Log_gni Pct. urban Exp. yrs schooling

Log_gni 1.000 0.723 0.805

Pct. urban  1.000 0.644

Exp. yrs schooling   1.000

Not surprisingly, all three are highly correlated. We will keep this in mind while
building our model. We can also look at the relationship between our dichotomous
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variable and the other three by doing one-way ANOVAS for the mean differences in
the continuous variables for the two groups. Not surprisingly, all three tests are
highly significant, as shown in Table 10-2; countries with higher life expectancy are
more urbanized, have higher per capita incomes, and have more expected years of
schooling for children.

Table 10-2. Means and one-way ANOVA results in countries with high and low life
expectancies on the natural log of GNI, percent urban, and expected years of schooling

Variable Life exp. Mean Std. dev. F Sig.

Pct urban < 66 yrs 35.5 15.8 89.158 < 0.001

 ≥ 66 yrs 63.8 21.0   

Log_gni < 66 yrs 7.3 0.9 188.163 < 0.001

 ≥ 66 yrs 9.2 1.0   

Exp. yrs schooling < 66 yrs 8.6 2.5 206.874 < 0.001

 ≥ 66 yrs 13.3 2.0   

Theory suggests that all the variables we are considering are closely related to ado-
lescent fertility, so we begin with a model that includes all of them as predictors.
This model is a significant improvement on the null model (F (4, 182) = 53.500, p
< 0.001) and has an R of 0.735 and an R2 of 0.540, meaning that it explains 54% of

Figure 10-6. Histogram of the percent of the population living in urban areas
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the variation in the adolescent fertility rate. The key statistics from the regression
analysis are presented in Table 10-3.

Table 10-3. Coefficients table for model 1

 Unstandardized coefficients Standardized coefficients   

 B Std. error Beta t Sig.

Constant 7.706 0.377  20.949 < 0.001

Log_gni −0.360 0.072 −0.487 −4.993 < 0.001

Pct. urban 0.002 0.003 0.059 0.794 0.428

Exp. yrs. schooling −0.073 0.029 −0.233 −2.513 0.013

Life_exp_dichot −0.234 0.159 −0.114 −1.474 0.142

As with simple regression, each line of this table presents the information about one
of the predictors in the model; the difference from simple regression is that the in-
fluence of each predictor is evaluated in the context of the entire model. Because we
know our predictors are highly related to each other, we assume that they overlap
in terms of the variance they explain in the outcome variable. In a regression model,
when all predictors are entered at the same time (as we did here), each predictor
only gets credit for the unique variance it explains; this could explain why variables
that seem as though they should be good predictors of adolescent fertility (percent
urbanized and life expectancy) are not significant in this model.

The key results for the individual predictors are:

Log_gni: β = −0.360, t = −4.993, p < 0.001
Per capita income is a significant predictor of the adolescent fertility rate in a
model also including the percent urban, expected years of schooling, and di-
chotomized life expectancy. The coefficient is negative, indicating that coun-
tries with higher per capita incomes have on average lower rates of adolescent
fertility.

Pct. urban: β = −0.002, t = 0.794, p = 0.428
Percent of population living in an urban area is not a significant predictor of the
adolescent fertility rate in a model also including the log of GNI, expected years
of schooling, and dichotomized life expectancy.

Expected years of schooling: β = −0.073, t = −2.153, p = 0.013
Expected years of schooling is a significant predictor of the adolescent fertility
rate in a model also including the percent urban, log of GNI, and dichotomized
life expectancy. The coefficient is negative, indicating that countries with more
years of expected schooling have on average lower rates of adolescent fertility.

Dichotomized life expectancy: β = −0.234, t = −1.474, p = 0.142
Life expectancy at birth (dichotomized into < 66 yrs and ≥ 66 yrs) is not a
significant predictor of the adolescent fertility rate in a model including the
percent urban, expected years of schooling, and log of GNI.

Because we have multiple predictors in this model, it’s worth taking a look at the
standardized coefficients (Beta) in this table. The absolute values of these coefficients
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tell us which predictors are explaining the most variance in the model (something
we can’t determine directly by the coefficients because they are measured on
different scales). By this standard, log_gni is explaining the most variance (Beta =
−0.487), followed by expected years of schooling (Beta = −0.233), dichotomized life
expectancy (−0.114), and percent urban (Beta = 0.059); not surprisingly, the two
significant predictors have the highest absolute Beta coefficients.

We will rerun this model with only the significant predictors, but one other thing is
worth noting. In factorial ANOVA (Chapter 9), interactions among variables are
automatically tested. This is not the case with regression; if you want an interaction
tested, you have to specify it in the model. We deal with this issue after we have
decided which predictors we want to include in our model.

We ran a second model, including only log_gni and expected years of schooling.
This model is significantly better than the null model (F (2, 184) = 105.21, p < 0.001)
and has an R of 0.685 and an R2 of 0.470, so omitting two variables from the model
resulted in a decrease of only 7% in the explained variance for the model. This
suggests, as we expected, that because our predictors are closely related, they were
explaining much of the same variance in the adolescent fertility rate. The key sta-
tistics from the regression analysis are presented in Table 10-4.

Table 10-4. Coefficients table for model 2

 Unstandardized coefficients Standardized coefficients   

 B Std. error Beta t Sig.

Constant 7.837 0.345  22.730 < 0.001

Log_gni −0.366 0.063 −0.495 −5.827 < 0.001

Exp. yrs. schooling −0.085 0.027 −0.271 −3.190 0.002

Both predictors are significant, and the absolute values of their coefficients and t-
statistics have increased (particularly for expected years of schooling), further sug-
gesting that they overlapped with the two variables we have omitted from this model.
The key results for the individual predictors are:

Log_gni: β = −0.366, t = −5.827, p < 0.001
Per capita income is a significant predictor of the adolescent fertility rate in a
model including expected years of schooling. The coefficient is negative, indi-
cating that countries with higher per capita incomes have on average lower rates
of adolescent fertility.

Expected years of schooling: β = −0.085, t = −3.190, p = 0.002
Expected years of schooling is a significant predictor of the adolescent fertility
rate in a model including per capita income. The coefficient is negative, indi-
cating that countries with more years of expected schooling have on average
lower rates of adolescent fertility.
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The next thing we want to do is test for an interaction between per capita income
and expected years of schooling. We do this by adding an interaction term,
log_gni*exp_schooling, to the model and seeing whether it is significant. This model
explains more variance (R2= 0.546) and produces an interesting result in terms of
our predictor variables, as shown in Table 10-5.

Table 10-5. Coefficients table for model 3

 Unstandardized
coefficients Standardized coefficients

  

 B Std. error Beta t Sig.

Constant 5.039 1.280  3.936 < 0.000

Log_gni −0.019 0.165 0.026 −0.118 0.906

Exp. yrs. schooling 0.159 0.111 0.507 1.436 0.153

Log_gni*expected_schooling −0.029 0.013 −1.193 −2.267 0.025

Adding the interaction term changes everything. Per capita income and expected
years of schooling are no longer significant predictors in a model including the in-
teraction term, and the direction of influence of expected years of schooling has
reversed. The interaction term is the only significant predictor in the model, but we
will keep all three terms because the interaction is only meaningful in the context of
the main effects. A significant interaction term means that the effect of one variable
is modified by the level of the other variable; in this case, the effect of per capita
national income on adolescent fertility is modified by expected years of schooling,
and the influence of expected years of schooling is modified by per capita national
income. Explaining interactions when using continuous variables is particularly
tricky, but the picture might become clearer by looking at a graphic of this
relationship.

Figure 10-7 presents the means plot for the log of adolescent fertility rate (the y-axis)
at low, medium, and high levels of expected years of schooling (the separate lines)
and log of per capita national income (the x-axis). The low level is defined as the
bottom third of values for the given variable, the middle level as the central third of
values, and the high level as the upper third of values.

What Figure 10-7 makes clear is that although increased per capita national income
and increased expected years of schooling are both associated with lowered levels
of adolescent fertility, the amount of decrease does depend on the interaction of the
two variables. Note also that for the highest level of schooling, there were no coun-
tries in the lowest third of national per capita income, which is why that line only
has two data points.
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Figure 10-7. Means for the natural log of the adolescent fertility rate for low, medium, and
high levels of the log of per capita national income and expected years of schooling

For countries with a low level of expected years of schooling, there is an almost linear
decrease in the adolescent fertility rate among the three levels of per capita income.
For countries with a medium level of schooling, the decrease from low to medium
per capita income is relatively small, whereas the decrease from medium to high per
capita income is much greater. For countries with a high level of schooling, the
decrease in adolescent fertility from a medium to a high level of per capita income
is much greater than the decrease for countries with either a low or a medium level
of schooling.

Figure 10-8 shows another way to look at this interaction. In this figure, we have
created scatterplots of the expected years of schooling and the natural log of ado-
lescent fertility at low, medium, and high levels of per capita national income. The
slope of the regression line (indicating the relationship between the natural log of
adolescent fertility and years of expected schooling) is noticeably steeper for the
highest level of the natural log of per capita national income, again indicating an
interaction between the two predictor variables. Also interesting is the fact that al-
though over the whole range of data the relationship between the natural log of
adolescent fertility and expected years of schooling is fairly strong (R2 = 0.44), within
any one of the three categories of national income, this relationship is much weaker
(0.118 for the lowest income countries, 0.052 for the middle income countries, and
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0.168 for the high income countries), indicating the strong relationship between our
predictor variables.

Clearly, we haven’t exhausted the possibilities for exploring the relationship among
per capita national income, expected years of schooling, and adolescent fertility
rates. Equally clearly, we won’t explain adolescent fertility rates with just two vari-
ables, but for the purposes of this demonstration, we have a model we can work
with. The Durbin-Watson statistic for this model is 0.195, very close to the null value
of 2, so we can assume the assumption of independence of errors is upheld. The
Kolmogorov-Smirnov statistic for the standardized residuals for this model is 0.663
(p = 0.772), and the histogram presented in Figure 10-9 looks close to normal, so
we can consider the assumption of normality of residuals upheld.

We will evaluate the assumption of homoscedasticity by plotting the standardized
residuals against the standardized predicted values, as shown in Figure 10-10.

This graph is pretty much a cloud of points with no indications of heteroscedasticity,
so we will assume the assumption of homoscedasticity upheld.

We also need to look at multicollinearity among our predictor variables. We do this
by calculating the tolerance and VIF (variance inflation factor) for the predictors in

Figure 10-8. The relationship between the natural log of adolescent fertility and expected years
of schooling for low, middle, and high income countries
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our model; this is an option provided with many regression algorithms. Note that
VIF is just the reciprocal of tolerance (VIF = 1/tolerance), so interpreting either
statistic will provide the same result. There are various rules of thumb for
interpreting tolerance and VIF; one popular rule is that tolerance should not be
greater than 10 or VIF lower than 0.10. By that standard, we have a problem with
this data, as shown in Table 10-6.

Table 10-6. Multicollinearity diagnostics for model 3

Predictor Tolerance VIF

Log_gni 0.50 20.04

Expected years of schooling 0.20 50.35

Log_gni*expected years of schooling 0.01 11.73

However, other scholars believe that the conventional values of VIF and tolerance
do not indicate an invalid regression model; see for instance the O’Brien article listed
in Appendix C. We know that our predictor variables are highly correlated, so if we
were to continue with this analysis, we would consider more variables for inclusion
in the model, might drop one or both of these, and might combine these two vari-
ables (possibly along with some others) into an index term for inclusion in the model.
For the purposes of this example, we will continue to interpret this model.

Figure 10-9. Histogram of standardized residuals for model 3
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The regression equation for our data is:

Log_fert = 5.039 − 0.019(log_gni) + 0.159(exp_schooling) −
0.029(log_gni*exp_schooling) + e

Although the coefficients of log_gni and exp_schooling are not significantly different
from 0 in this analysis, we keep them in the equation because the interaction term
only has meaning in the context of the equation including the variables that make
up the interaction. Note also that it would be a mistake to interpret the coefficients
of log_gni or exp_schooling without reference to their interaction; instead, each
coefficient has to be interpreted in the context of the entire equation.

We can use this equation to predict values for the adolescent fertility rate for a
country, given its values of per capita national income and years of expected school-
ing. Note that both our fertility and national income variables are natural log trans-
formations, so if we are given these variables in their raw form, we must transform
them before putting them into the equation. Our results from this equation will be
in terms of the log of the rate of adolescent fertility; because this might not be a
meaningful value for most people, we can convert it to the rate of adolescent fertility,
which is more easily understood. Note also that we want to keep the input for our
predictions within the range of values included in this data set; to do otherwise
would be reasoning beyond the range of the values, and we don’t want to do that
because we can’t assume that our regression equation is valid outside the range of
values used to create it.

Figure 10-10. Histogram of standardized residuals for model 3
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Suppose we want to calculate the predicted adolescent fertility rate for a country
with a gross national per capita income of 12,000 (in PPP international dollars, as
previously defined) and 12 years of expected schooling. We first need to covert the
income statistic to its natural log:

LN(12,000) = 9.393

We can then plug these values into the equation and do the math:

Predicted(Log_fert) = 5.039 − 0.019(9.393) + 0.159(12) − 0.029(9.393*12)
= 3.500

Note that we removed the error term (e) because we are now calculating predicted
log_fert; we know that there may be an error of prediction between this predicted
value and the actual, measured value for a country with these values on the X vari-
ables. We now convert our predicted value for log_fert by taking the antilog:

e3.500 = 33.12

This tells us that, according to our regression model, a country with 12 years of
expected schooling and a per capita income of 12,000 PPP international dollars has
a predicted adolescent fertility rate of 33.12 per 1,000.

Dummy Variables
Multiple linear regression can accommodate predictor variables that are either con-
tinuous or dichotomous. However, sometimes we need to work with a variable with
more than two categories. In this case, we need to recode the categorical variable
into a number of dichotomous or dummy variables. Suppose a college wants to do
some research into the initial annual salaries for its graduates from the class of 2010;
the data is also coded to indicate the student’s GPA and general field of study (hu-
manities, sciences, social sciences, or education). GPA is recorded to two decimal
places with a defined ceiling of 4.0 (a perfect or straight-A average) and a floor of
0.0 (failure to pass any courses), although the actual range of the data is from 2.5 to
4.0; these are graduates, so we would expect higher than average grades compared
to all college students. Salary is expressed in thousands of dollars and has a range of
19.6 to 58.6.

We would like to include field of study in a model predicting initial salary, but first
we must recode it into dummy (dichotomous) variables. We can’t simply include it
in the model because the statistical package will interpret the numbers used to code
this variable as having numerical importance (e.g., 2 is greater than 1) when in fact
they are simply labels that indicate categories. There are several ways to code dummy
variables; we present one of the most common methods here.

We have a categorical variable with four categories; therefore, we need to create
three dummy variables to code the information contained in this variable. Speaking
more generally, if a variable has k categories, you need k − 1 dummy variables to
replace it. We need to choose one category to serve as our reference category; the
other categories will be compared to this one.
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For this analysis, we choose humanities as our reference category because it has the
lowest average salary among the four groups, as shown in Table 10-7; choosing the
group with the lowest salary will give us positive coefficients for the other categories,
which might be easier to explain to general audiences (for instance, the parents of
prospective students).

Table 10-7. Average annual starting salaries for college graduates from four general fields of
study

Field Average salary (thousands of dollars) Standard deviation of salary

Humanities 22.7 11.4

Sciences 56.3 9.3

Social sciences 28.9 10.1

Education 28.0 8.1

Our dummy coding scheme is presented in Table 10-8.

Table 10-8. Dummy coding for field of study

Field X1 X2 X3

Humanities 0 0 0

Sciences 1 0 0

Social sciences 0 1 0

Education 0 0 1

We create three new dummy variables, X1, X2, and X3, and give them a value of 0
or 1, depending on the value of the field of study. For our reference category, hu-
manities, all three dummy variables have a value of 0. For each of the other three
fields, one of the dummy variables has a value of 1, and the others have a value of
0. This combination of three dummy variables uniquely identifies each field of study;
if a case has values X1 = 0, X2 = 1, and X3 = 0, we know the field of study is the social
sciences.

The regression equation predicting salary from field of study is:

Y = β0 + β1X1 + β2X2 + β3X3 + e

In this equation, β0 will be the mean salary for humanities majors, and the other
coefficients will be the difference in mean salary between that field of study and the
mean salaries for humanities majors. For instance, β1will represent the difference
between science majors and humanities majors. The regression coefficients table for
this data is presented in Table 10-9.
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Table 10-9. Regression results for regression equation prediction including dummy variables

 Unstandardized coefficients Standardized coefficients   

 B Std. error Beta t Sig.

Constant 22.682 3.102  7.313 <0.000

X1 33.611 4.386 0.905 7.662 <0.000

X2 6.247 4.386 0.168 1.434 0.163

X3 5.288 4.386 0.142 1.206 0.236

The equation for this data is:

Average_salary = 22.682 + 33.611(X1) + 6.247(X2) + 5.288(X3) + e

To calculate the average salary for any of our four fields of study, we simply plug
the values for the X variables into this equation and solve it. For instance, for some-
one from the field of education, the relevant values are X1 = 0, X2 = 0, and X3 = 1.
Putting these values in the equation gives us:

Predicted_Average_salary (education) = 22.682 + 33.611(0) + 6.247(0) +
5.288(1) = 27.97

This is the average salary for graduates from the education field and matches the
figure in Table 10-7 (within rounding error). If you go through the same exercise for
the other three fields, you will find that the values calculated using the regression
equation for these fields also match the values presented in Table 10-7. The t-tests
for each coefficient are testing whether they are different from 0. Because they are
dummy variables, and because we coded them using the humanities field as our
reference group, the t-test tells us whether starting salaries for students from a par-
ticular field are significantly different from the starting salaries in the humanities
field. We can see from Table 10-9 that there is a significant difference between initial
salaries in the sciences and in the humanities because X1 is significantly different
from 0 (t = 7.662, p < 0.001), whereas the other two comparisons are not significant.
This brings up an important point about dummy coding—if you have particular
comparisons in mind, be sure to code your dummy variables to facilitate those
comparisons.

Methods for Building Regression Models
We’ve been looking at fairly simple regression models, but often the model-building
process begins with 10, 20, or even more predictor variables under consideration
for inclusion, and even with a smaller number of predictors, you might want to use
a formal model-building process. Many statistical packages include several choices
of algorithms for model-building, and in some systems, you can combine different
methods or algorithms within the same model.

There are two categories of model building: stepwise methods for considering pre-
dictors for inclusion and exclusion and blocking methods to designate which pre-
dictors should be considered for inclusion in a given step. The term “block” refers
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to a group of predictor variables that are entered as a group into a model or that are
under consideration for inclusion as a group; in the models in this chapter, we’ve
entered all our predictors in a single block, but other choices are available, as we
will see. The term “stepwise” refers to how predictor variables are selected for in-
clusion within a block; stepwise methods are generally automated and select which
variables within a block to add to or retain within a model, using criteria you specify.

Automated methods of model building are not accepted in all fields of study, mainly
because these methods build a model based on the data in your sample rather than
according to theory. Because we often build models with the intent of generalizing
beyond our sample, this raises obvious concerns. Another criticism of automated
methods is that they amount to conducting many significance tests on the same data
without any correction for the inflation of the experiment-wise error rate, increasing
the probability of committing a Type I error. However, automated models are con-
sidered to be acceptable in some fields of study and work, and if they are acceptable
within your specific area of application, there’s no reason you shouldn’t use them.
One thing you should keep in mind, however, is that the three stepwise methods
can result in three regression models, so you should have a reason for choosing
whichever method you decide to use.

Automated methods of model building rely in part on a measurement called partial
correlation; this means the correlation between two variables with the effects of one
or more other variables removed from the correlation. In automated regression al-
gorithms, partial correlation is used to identify the unique variance explained by a
predictor variable to choose the predictor that has the strongest relationship with
the outcome when evaluated in the presence of other predictors. Even in a model in
which you decide which predictors to include and their order of entry, examining
the partial correlations (which can be automatically generated by many statistical
packages) can be useful in evaluating the importance of particular predictors in the
presence of other predictors.

There are three basic stepwise methods of model building:

Backward removal
All predictors in a block are added to the model at once and then removed one
by one until the removal of a variable significantly damages the fit of the model.
This algorithm considers variables for removal according to the amount of
unique variance they explain in the full model. The variable that explains the
least unique variance (that has the smallest partial correlation) is the first to be
considered for removal, and then the variable explaining the least variance in
the model that remains after the first variable is removed, and so on. The user
specifies the criteria for removal of a variable and for evaluating model fit.

Forward entry
Predictor variables are added one at a time to the model, beginning with the
predictor that has the largest absolute correlation with the dependent variable;
for the second and subsequent predictors, the variable is chosen that has the
largest partial correlation with the predictor, that is, the variable that explains
the most unique variance in the dependent variable. Each variable must meet
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user-specified criteria for entering the model, generally based on improving
model fit or the individual significance of the predictor.

Stepwise
The stepwise method is a combination of forward entry and backward removal.
Predictors are entered in the regression model one at a time based on how much
they will improve model fit. Each time a new predictor is added, the predictors
already in the model are evaluated and may be removed if they no longer sig-
nificantly improve the fit of the model.

Blocking methods are not automated but are a way you can enter or test variables
in groups. In this chapter, we have been entering all variables in one block, but there
are times when you might want to enter variables in separate blocks. One example
is when you want to see how much a set of variables can improve model fit after
another set of variables is already in the model. For instance, you might have devel-
oped an intervention to encourage people to improve their health through exercise.
You know that many demographic factors (gender, race or ethnicity, income, etc.)
are also related to exercise and health, and you want to separate the variance in
people’s exercise habits and health that can be attributed to your intervention from
the variance that can be attributed to demographic factors. To accomplish this, you
would enter the demographic variables into the equation as a block and then enter
the variables related to your intervention in a second block; that way, any variance
in outcomes explained by your study will be variance above and beyond that ex-
plained by the demographic variables. This type of model is particularly useful in
observational studies in which you can’t use random assignment to attempt to con-
trol the influence of variables (such as demographics) that might be related to your
outcome.

Blocking can also be combined with automated model building because it is possible
to use one automated method in one block and another (or no automated method)
in another block. Continuing with the preceding example, you might have meas-
urements of a number of demographic characteristics and not be sure which are
most useful in explaining variance in your model. If it is acceptable in your field to
use automated processes of model building, you could enter all the demographics
in a single block and let the algorithm decide which are most useful in explaining
the variance in your outcome variable. You could then enter the variables for your
own study in a second block to see how much variance they explain after that ex-
plained by the demographic variables; in the second block, you do not need to use
any automated model-building method but can simply enter all your variables at
once in this block.

Let’s look at a simple example to examine the effect of using different stepwise
techniques. Imagine you are an educator interested in the relationship between IQ
and traditional measures of general ability such as performance on numerical, read-
ing, verbal, and reasoning skills as well as nontraditional measures such as musical
and physical performance. A subset of the sample data is shown in Table 10-10.
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Table 10-10. Data showing the relationship between traditional measures and nontraditional
measures of general ability and IQ

IQ Numerical Reading Verbal Physical Musical Reasoning

85.0 3.0 5.0 7.0 10.0 6.0 10.0

90.0 3.0 6.0 7.0 10.0 6.0 10.0

95.0 4.0 6.0 7.0 9.0 7.0 8.0

100.0 4.0 7.0 8.0 9.0 7.0 5.0

100.0 5.0 7.0 8.0 8.0 8.0 6.0

100.0 5.0 8.0 8.0 7.0 9.0 5.0

105.0 6.0 8.0 8.0 6.0 8.0 4.0

105.0 6.0 8.0 8.0 5.0 7.0 5.0

110.0 7.0 9.0 8.0 4.0 6.0 6.0

110.0 7.0 9.0 8.0 3.0 6.0 9.0

115.0 8.0 10.0 9.0 3.0 5.0 10.0

120.0 9.0 10.0 9.0 1.0 4.0 9.0

You decide to explore the relationships between the variables, calculating all pair-
wise correlations and their statistical significance, as shown in Table 10-11 (upper
triangle only). Unsurprisingly, the most traditional measures (numerical, reading,
and verbal) are highly positively correlated with IQ (** = p < 0.01). Also not sur-
prisingly, many of these measures of ability are highly correlated with each other,
meaning that any regression model including several of them will probably have a
high degree of collinearity. However, reasoning does not show a strong relationship
with most of the other variables (except musical performance), and physical per-
formance has a strong negative relationship to IQ and several of the other measure-
ments of ability. The lack of a significant bivariate relationship between IQ and
musical performance is also surprising.

Table 10-11. Pairwise relationships between traditional measures and nontraditional
measures of general ability and IQ

 IQ Numerical Reading Verbal Physical Musical Reasoning

IQ 1.000 0.978** 0.976** 0.914** −0.955** −0.427 −0.073

Numerical  1.000 0.963** .887** −0.986** −0.481 0.026

Reading   1.000 .912** −0.954** −0.381 −0.055

Verbal    1.000 −0.836** −0.337 −0.103

Physical     1.000 0.503 −0.062

Musical      1.000 −0.738**

Reasoning       1.000

If you are more interested in exploring relationships among the variables in this data
set than in testing a particular model based on theory, you might decide to use an
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automated method to build your model. You decide to build two models, using two
methods (forward entry and backward removal), and then compare these models.
For forward entry, you set the criteria for entry at p <= 0.05 (the coefficient for any
predictor must meet that standard to be included in the model); for backward entry,
you set the criteria for removal at F >= 0.100 (variables will be removed if the level
of change in the probability of the F-statistic is not below 0.100).

Forward entry

In the forward entry method, the predictor with the strongest pairwise correlation
with IQ (r = 0.978), numerical skills, is entered first into the model. For this model,
R2 = 0.956, and the overall model is significant, with F(1, 10) = 217.36, p = 0.000.
None of the other predictors makes a significant improvement in model fit, so this
is also our final model, with coefficients as shown in Table 10-12. This result is both
surprising (because other researchers have found variables such as verbal skills to
be closely related to IQ) and not surprising (because most of our predictors are so
highly correlated that we would expect a large amount of overlap in any variance
they can explain in IQ).

Table 10-12. Final regression model built using the automated forward entry method

 Unstandardized coefficients Standardized coefficients

 B Std. error Beta t Sig.

Constant 74.318 2.043  36.374 0.000

Numerical 5.122 0.347 0.978 14.743 0.000

Table 10-13 displays information about the variables excluded from the final model.
You can see from looking at the t-statistics and significance columns that some of
them came very close to inclusion, particularly Reading (t = 2.239, p = 0.052), so
it’s easy to imagine that if you had drawn a different sample of subjects, Reading
might have been included in the model and Numerical excluded. The regression
model arrived at through forward entry regression is:

IQ = 74.318 + 5.122(Numerical) + e

Table 10-13. Variables excluded from the final regression model built using the automated
forward entry method

Model Beta in t Sig. Partial correlation Tolerance

Reading .467 2.239 0.052 0.598 0.072

Verbal .219 1.648 0.134 0.482 0.213

Physical .288 .716 0.492 0.232 0.029

Musical .057 .737 0.480 0.239 0.768

Reasoning −.098 −1.594 0.146 −0.469 0.999

One great advantage of using the forward method of model building is that you
quickly arrive at the smallest model that explains the greatest amount of variance
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given your data set. This is particularly useful if you have a large number of predic-
tors, no particular theory about how they relate to each other or to the outcome,
and just want the best model for this data. This approach is similar to data mining
in that you simply want to know what your data can tell you without any intent to
treat it as a sample from a larger population or to generalize from your results to
other data. The problem with this approach is that a model built using automated
methods can be highly dependent on the specific data set used to build the model;
this is a problem if you intend to generalize from your data set to a larger population.
When many of your predictors have high correlations with each other and with the
outcome variable, as in our example, small differences in those correlations can
result in highly unstable models; if you drew a different sample, the model generated
using the same automated methods could look quite different from the model gen-
erated from your first sample.

Backward removal

Backward removal models begin by putting all the designated predictor variables in
the model and then removing them one by one, beginning with the variable that
makes the least contribution to prediction; the model is rerun each time a variable
is removed, so the contributions made by each variable are calculated for each new
model.

Table 10-14 shows the five models produced en route to the final model; after each
iteration, one IV is removed, starting with Verbal and proceeding through Physical,
Musical, and Reasoning. Table 10-15 shows the coefficients for each model iteration
as well as the corresponding t values and their significance.

Recall that the forward method resulted in only one IV—Numerical skills—being
included in the model; it’s interesting that by using the backward method, we arrive
at a final model including two predictors, Numerical skills and Reading skills. It’s
also instructive to observe how the coefficients change as variables are removed from
the model; this emphasizes that usually adding or subtracting a variable from a
model will change the coefficients for most or all the other variables.

Table 10-14. Backward stepwise model for linear regression

Model Variables entered
Variables
removed Method

1 Reasoning, numerical,
musical, verbal, read-
ing, physical

. Enter

2 . Verbal Backward (criterion: probability of F-to-remove ≥ 0.100).

3 . Physical Backward (criterion: probability of F-to-remove ≥ 0.100).

4 . Musical Backward (criterion: probability of F-to-remove ≥ 0.100).

5 . Reasoning Backward (criterion: probability of F-to-remove ≥ 0.100).
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Table 10-15. Standardized coefficients for each model iteration

  Unstandardized coefficients Standardized coefficients   

Model  B Std. Error Beta t Sig.

1 Constant 64.480 20.702  3.115 0.026

 Numerical 3.827 2.369 0.731 1.616 0.167

 Reading 3.070 1.749 0.487 1.755 0.140

 Verbal .048 2.628 0.003 0.018 0.986

 Physical 1.011 1.423 0.305 0.710 0.509

 Musical −1.222 0.864 −0.167 −1.414 0.216

 Reasoning −.742 0.445 −0.169 −1.668 0.156

2 Constant 64.514 18.819  3.428 0.014

 Numerical 3.851 1.822 0.735 2.114 0.079

 Reading 3.088 1.301 0.490 2.373 0.055

 Physical 1.026 1.040 0.310 0.986 0.362

 Musical −1.224 0.777 −0.167 −1.575 0.166

 Reasoning −.743 0.402 −0.169 −1.848 0.114

3 Constant 80.511 9.530  8.448 0.000

 Numerical 2.449 1.137 0.467 2.153 0.068

 Reading 2.863 1.279 0.454 2.239 0.060

 Musical −1.179 0.775 −0.161 −1.522 0.172

 Reasoning −0.785 0.399 −0.179 −1.968 0.090

4 Constant 68.274 5.524  12.360 0.000

 Numerical 3.149 1.122 0.601 2.806 0.023

 Reading 2.476 1.352 0.393 1.831 0.105

 Reasoning −0.294 0.253 −0.067 −1.161 0.279

5 Constant 64.655 4.649  13.908 0.000

 Numerical 2.765 1.093 0.528 2.529 0.030

 Reading 2.945 1.316 0.467 2.239 0.050

The final regression model produced by the backward elimination method (model
#5 in Table 10-14) is:

IQ = 64.655 + 2.765(Numerical) + 2.945(Reading) + e

This model explains 97.2% of the variance in IQ slightly more than the model created
by the forward method (95.6%). Although both models explain almost the same
amount of variance, it’s interesting to note how the coefficients differ. The model
produced using the forward method has a larger intercept and a larger coefficient
for Numerical. These differences are probably explained by the fact that some of the
variance explained by Numerical in the first model is explained by Reading in the
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second and that the inclusion of a second predictor naturally lowers the intercept
because each IQ score is now explained by two aptitude scores rather than one.

Exercises
Multiple linear regression can be used to investigate a number of types of research
questions, as shown in the following examples.

Example 1
As a human resources specialist, you are interested in the motivational factors that
are associated with productivity (the outcome) in IT teams, based on the KLOC
metric (thousands of lines of code written per week). There are four motivational
factors believed to influence productivity; these may be based on either intrinsic or
extrinsic motivation and may be either self-reported or observed. Four scales are
developed to measure these types of factors and are used as predictor variables in
the model:

• Intrinsic self-report (IS)

• Intrinsic observed (IO)

• Extrinsic self-report (ES)

• Extrinsic observed (EO)

KLOC is expressed as thousands of lines of code; the four predictors are measured
on a scale from 0 to 100. Descriptive statistics for these variables are presented in
Table 10-16.

Table 10-16. Descriptive statistics for four types of motivational factors and KLOC

Variable n Mean Std. dev.

Productivity (KLOC) 50 3.5 2.3

Intrinsic self-report (IS) 50 41.3 14.8

Intrinsic observed (IO) 50 54.7 19.4

Extrinsic self-report (ES) 50 27.1 16.5

Extrinsic observed (EO) 50 40.7 25.5

The upper triangle of the correlation matrix for these variables is shown in Ta-
ble 10-17; correlations with a p-value of 0.05 or less are marked with an asterisk (*).
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Table 10-17. Correlation matrix for four types of motivational factor and KLOC

 KLOC IS IO ES EO

KLOC 1.00 0.25 0.12 0.43* 0.67*

IS  1.00 −3.70* −1.70 0.35*

IO   1.00 0.18 −0.18

ES    1.00 0.61*

EO     1.00

Problem

What do you notice in the correlation matrix that can help guide your creation of a
regression model using this data?

Solution

First, two of the four predictors have a significant bivariate correlation with the
outcome: extrinsic self-report (r = 0.43, p = 0.002) and extrinsic observed (r = 0.67,
p < 0.001); the specific p-values were not included in Table 10-17, but are from the
computer printout. Second, some of our predictors have significant correlations with
each other, something we should keep in mind while building our model; these pairs
of closely related predictors are intrinsic self-report and intrinsic observed (r = −0.
37, p = 0.008), intrinsic self-report and extrinsic observed (r = 0.35, p = 0.013), and
extrinsic self-report and extrinsic observed (r = 0.612, p < 0.001).

You decide to include all four predictors in your regression model; this model ex-
plains 51.5% of the variance in KLOC and produces the coefficients and significance
tests presented in Table 10-18. The overall test of fit for this model produces the
result F(4, 45) = 11.927, p < 0.001.

Table 10-18. Coefficients table for a regression analysis predicting KLOC from four types of
psychological factor

 Unstandardized coefficients Standardized coefficients   

 B Std. error Beta t Sig.

Constant −0.989 1.253  −0.790 0.434

IS 0.022 0.023 0.129 0.970 0.337

IO 0.023 0.009 0.280 2.370 0.017

ES 0.003 0.023 0.019 0.124 0.902

EO 0.062 0.015 0.660 4.044 < 0.001

Problem

Interpret the information in Table 10-18, write the regression equation, and suggest
what the next step might be in your effort to understand the relationship among
these variables.
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Solution

The regression equation for this data is:

KLOC = –0.989 + 0.022(IS) + 0.023(IO) +0.003(ES) + 0.062(EO) + e

This model is significantly better than the null model, but only two of the four pre-
dictor variables are significantly different from 0: IO (t = 2.370, p = .017) and EO
(t = 4.044, p < 0.001). Depending on the purpose for your analysis, you could stop
here or continue exploring the data. You know from the correlations table that IS is
significantly correlated to both IO and EO in this data set; that might explain its lack
of significance in this model, so you might try running a model with just IS as a
predictor to see how much variance it explains by itself. You also might add more
variables to the model, such as gender; it’s possible that men and women have dif-
ferent structures of motivation.

Example 2
You are a management consultant working in the retail sector, conducting a time-
in-motion study to determine which of two predictors (barcode scanner size and
operator accuracy) has the greatest effect on the outcome of throughput at the
checkout counter, measured in items per second. The question is difficult to answer
because the units of measurement in each case are different; the scanner size is
measured in square centimeters, whereas operator accuracy is measured as the pro-
portion of times the operator scans an item successfully on the first try. Your client
wants to increase throughput because customers have complained that queues in
the store are long. However, larger scanners are more expensive than smaller ones,
and training courses for staff require expenditure while not necessarily increasing
accuracy. The manager wants to know whether to spend money on more training
(or hiring better staff) or purchasing larger scanners, so you decide to conduct a
study see which variable contributes more to throughput: scanner size or operator
accuracy.

Throughput and accuracy are continuous variables; although size is theoretically a
continuous variable, in this data set it has only three values (2 sq cm, 4 sq cm, and
6 sq cm), so you decide to treat it as a categorical value. There are three scanners of
each size in the study; descriptive information about the continuous variables is
presented in Table 10-19.

Table 10-19. Descriptive information for throughput and operator accuracy

Variable N Mean Std. dev. Minimum Maximum

Throughput 30 0.76 0.36 0.20 1.50

Accuracy 30 81.31 4.38 73.62 91.13

Exercises | 269

M
ultiple Linear
Regression



Problem

Your first task is to create a dummy coding scheme for scanner size. Treat the small-
est scanner size as the reference category, and assign values to as many X variables
as are needed to code the values for scanner size uniquely.

Solution

The most obvious coding scheme is presented in Table 10-20; note that variables
maintain the order of values for the variable. The 2 sq cm value must be coded with
the value of 0 for both X1 and X2, whereas the codes for the 4 sq cm and 6 sq cm
sizes could be exchanged, and the coding would still meet the specification of 2 sq
cm as the reference category.

Table 10-20. A dummy coding scheme

Size X1 X2

2 sq cm 0 0

4 sq cm 1 0

6 sq cm 0 1

Assume you have checked all the necessary assumptions and run the regression
analysis, using the dummy coding scheme previously presented. This model is sig-
nificantly better than the null model (F(3, 26) = 21.805, p < 0.001) and explains
68.3% of the variance in throughput. The coefficients table for this analysis is pre-
sented in Table 10-19.

Problem

Write the regression equation based on the information in Table 10-21, and make
a recommendation to the manager, backed up with information from this analysis.

Table 10-21. Descriptive information for throughput and operator accuracy

 Unstandardized coefficients Standardized coefficients   

 B Std. error Beta t Sig.

Constant 0.737 0.917  0.803 0.429

Accuracy −0.003 0.011 −0.034 −0.246 0.808

X1 0.071 0.094 0.094 0.756 0.456

X2 0.685 0.015 0.909 6.491 <0.001

Solution

The regression equation is:

Throughput = 0.737 − 0.003(Accuracy) +0.071(X1) + 0.685(X2) + e

A regression analysis (n = 30) examined the effects of operator accuracy (the pro-
portion of times the operator scans an item successfully on the first try) and scanner
size (measured in square centimeters) on throughput (measured in items scanned)
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per second. The practical context of this study is a retail environment in which the
goal is to increase throughput. Three sizes of scanner were included in the study (2
sq cm, 4 sq cm, and 6 sq cm). Throughput and accuracy were both approximately
normally distributed; throughput had a range of 0.20 to 1.50, a mean of 0.76, and
a standard deviation of 0.36; accuracy had a range of 73.62 to 91.13 with a mean of
81.31 and a standard deviation of 4.38.

The regression model explained 68.3% of the variance in throughput. Operator ac-
curacy was not related to throughput (t = −0.246, p = 0.808), but scanner size was;
the largest scanner (6 sq cm) was a significant improvement over the smallest (2 sq
cm) (t = 6.491, p = 0.000). The medium-sized scanner (4 cm) showed no improve-
ment in accuracy over the smallest (t = 0.756, p = 0.456). My recommendation is to
purchase a 6 sq cm scanner because that size of scanner is the variable most strongly
related to increased throughput.
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11
Logistic, Multinomial, and

Polynomial Regression

Multiple linear regression is a powerful and flexible technique that can handle many
types of data. However, there are many other of types of regression that are more
appropriate for particular types of data or to express particular relationships among
the data. We discuss a few of these regression techniques in this chapter. Logistic
regression is appropriate when the dependent variable is dichotomous rather than
continuous, multinomial regression when the outcome variable is categorical (with
more than two categories), and polynomial regression is appropriate when the re-
lationship between the predictors and the outcome variable is best expressed
through an equation including polynomial terms (such as x2 or x3). If you are un-
familiar with odds ratios, it would be good to read the section of Chapter 15 covering
them before reading this chapter because the odds ratio plays a key role in inter-
preting the output of logistic regression.

Logistic Regression
Multiple linear regression may be used to find the relationship between a single,
continuous outcome variable and a set of predictor variables that might be contin-
uous, dichotomous, or categorical; if categorical, the predictors must be recoded
into a set of dichotomous dummy variables.

Logistic regression is in many ways similar to multiple linear regression, but it’s used
when the outcome variable is dichotomous (when it can take only two values). The
outcome might be dichotomous by nature (a person is either a high school graduate
or she is not) or represent a dichotomization of a continuous or categorical variable.
(Blood pressure is measured on a continuous scale, but for the purposes of analysis,
people might simply be classified as having high blood pressure or not.) Outcome
variables in logistic regression are conventionally coded as 0–1, with 0 representing
the absence of a characteristic and 1 its presence. The outcome variable in linear
regression is a logit, which is a transformation of the probability of a case having the
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characteristic in question; you can easily convert logits to probabilities and back, as
will be demonstrated.

You might be wondering why you can’t use multiple linear regression with a cate-
gorical outcome. There are two reasons:

1. The assumption of homoscedasticity (common variance) is not met with cate-
gorical variables.

2. Multiple linear regression can return values outside the permissible range of 0–
1 (presence or absence).

The logit is also called the log odds for reasons that are clear from its definition. If
p is the probability of a case having some characteristic, then the logit for this case
is defined as in Figure 11-1.

Figure 11-1. Definition of a logit

The natural log (base e) is used to convert probabilities to logits.

Apart from having an outcome expressed as a logit, the form of a logistic regression
equation with n predictor variables looks very similar to that of a linear regression
equation, as can be seen in Figure 11-2.

Figure 11-2. The logistic regression equation

As with linear regression, we have measures of model fit for the entire equation
(evaluating it against the null model with no predictor variables) and tests for each
coefficient (evaluating each against the null hypothesis that the coefficient is not
significantly different from 0). The interpretation of the coefficients is different,
however; instead of interpreting them in terms of linear changes in the outcome, we
interpret them in terms of odds ratios (discussed in this chapter and in Chapter 15;
note that odds ratios are used frequently in medical and epidemiological statistics).

As with linear regression, logistic regression makes several assumptions about the
data:

Independence of cases
As with multiple linear regression, each case should be independent of other
cases, so you should not have multiple measurements on the same person,
members of the same family, and so on (if family membership is likely to make
cases more related than two cases chosen at random).
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Linearity
There is a linear relationship between the logit of the outcome variable and any
continuous predictor. This is tested by creating a model with the logit as out-
come and as predictors, each continuous predictor, its own natural logs, and
an interaction term of each predictor and its natural log. If the interaction terms
are not significant, we can assume the linearity criterion has been met.

No multicollinearity
As with multiple linear regression, no predictor should be a linear function of
other predictors, and predictors should not be too closely related to each other.
The first part of this definition is absolute (usually violated only due to the
researcher’s absentmindedness, as when including the predictors a, b, and a +
b in an equation); the latter is open to interpretation and is assessed through
multicollinearity statistics produced during the regression analysis. As dis-
cussed in Chapter 10, statisticians disagree on how much of a threat less than
absolute multicollinearity presents to a regression model.

No complete separation
The value of one variable cannot be perfectly predicted by the value(s) of an-
other variable or set of variables. This is a problem that most frequently arises
when you have several dichotomous or categorical variables in your model; you
can test for it by doing cross-tabulation tables on these variables and checking
that there are no empty cells.

Suppose you are interested in factors to health insurance coverage in the United
States. You decide to use a random sample of 500 cases from the 2010 BRFSS data
set, an annual survey of U.S. adults. (For more on the BRFSS, see Chapter 8.) In-
surance coverage is dichotomous; after examining several potential predictors, you
decide to use gender (dichotomous) and age (continuous) as predictors. In this data
set, 87.4% of the respondents have health insurance, their mean age is 56.4 years
(standard deviation 17.1 years), and the respondents are 61.7% female.

Looking at the assumptions for logistic regression, the first is met because we know
the BRFSS data is collected by trained researchers following a national sampling
plan. To evaluate linearity between the logit and age, we construct a regression
model including age, the natural log of age, and the interaction of those two terms.
The results are shown in Table 11-1.

Table 11-1. Testing age for linearity with the logit

 B Std. error Wald df Sig. Exp(B)

Age 1.305 1.136 1.321 1 0.250 3.690

Ln(Age) −9.353 7.884 1.407 1 0.235 0.000

Age*ln(age) −0.218 0.198 1.209 1 0.271 0.804

Constant 15.862 13.055 1.476 1 0.224 7.74E6

For this analysis, the only thing we are interested in is whether the interaction terms
are significant. This is tested by the Wald statistic, a type of chi-square. As we can
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see from the significance column, the interaction term in this model is not significant,
so we can consider the assumption of linearity in the logit met.

We will evaluate multicollinearity by running a linear regression model with multi-
collinearity diagnostics. We found tolerance values of 0.999 and VIF (variance in-
flation factor) of 1.001 for both variables, indicating that multicollinarity is not a
problem. As discussed in Chapter 10, a standard rule of thumb is that tolerance
should not be greater than 10 or VIF less than 0.10. The lack of multicollinearity is
not surprising because these data come from a randomized national sample, and
over a broad range of ages (18 and older in this case), there is no expected relationship
between gender and age.

To check for complete separation, we create a cross-tabulation table between our
dichotomous predictor (gender) and outcome (health insurance coverage). The
cross-tabulated frequencies are presented in Table 11-2.

Table 11-2. Testing for complete separation

  Gender  

  Female Male

Insurance No 32 20

 Yes 234 167

We have no empty cells; in fact, we have no nearly empty cells. The latter can be a
problem because although it does not constitute complete separation, it can produce
estimates with very high standard errors, hence wide confidence intervals.

To see what complete separation looks like, consider the hypothetical data presented
in Table 11-3.

Table 11-3. Hypothetical data showing complete separation

  Gender  

  Female Male

Insurance No 62 0

 Yes 234 167

In this example, all persons who do not have insurance are female. Therefore, if we
know that a case does not have insurance, we also know that the case’s gender is
female; that is what is meant by complete separation. In practice, complete separa-
tion is more likely to occur when you have many categorical predictors (imagine that
we included employment status, marital status, and educational level in this model
as well) and some of them are sparsely distributed in some categories. A logistic
regression model will not run if the data have complete separation, so the best sol-
ution is to see whether you can recode the variable. If marital status has six categories
(married, widowed, divorced, single never married, living with same-sex partner,
living with opposite-sex partner), perhaps you can combine them to produce only
two or three categories, each of which includes sufficient cases to avoid the problem
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of separation. Of course, you need to be able to defend your choice of which cate-
gories to combine. For instance, if you could make a case that the most important
information is simply whether a person is married versus not married, you should
feel free to recode the variable to reflect that information. Even if you don’t have
complete separation, it’s wise to avoid a variable with only a few cases in some of
its categories because this can produce estimates with extremely wide confidence
intervals, as noted earlier.

Having met the assumptions, we continue with the analysis. In logistic regression,
overall model fit is evaluated in several ways. First, there is an omnibus test of the
model coefficients, testing whether our entire model is better than the null model
with no coefficients; the model passes this test with a chi-square statistic (2 df) of
16.686 (p < 0.001). We also get three measures of model fit: the −2 log likelihood,
the Cox & Snell R2, and the Nagelkerke R2. The −2 log likelihood is somewhat
analogous to the residual sum of squares from a linear regression. It’s hard to inter-
pret the value of the −2 log likelihood by itself, but it is useful when comparing two
or more nested models (models in which the larger model includes all the predictors
from the smaller model) because a smaller −2 log likelihood indicates better model
fit. We can’t compute a Pearson’s R or R2 for a regression model, but two pseudo-
R2 statistics are possible: the Cox & Snell and Nagelkerke R2. Both are based on the
log likelihood of the model versus the null model; because the range of the Cox &
Snell R2 never reaches the theoretical maximum of 1.0, Nagelkerke’s R2 includes a
correction, which results in it having a higher value. Both are interpreted the same
as the coefficient of determination in linear regression, that is, as the amount of
variance in the outcome explained by the model. Because of the correction, Nagel-
kerke’s R2 generally has a higher value than Cox & Snell’s R2 for a given model. For
this model, the −2 log likelihood is 301.230, the Cox & Snell R2 is 0.038, and the
Nagelkerke R2 is 0.073.

The coefficients table for this model is presented in Table 11-4.

Table 11-4. Coefficients table for a logistic regression model predicting insurance status from
age and gender

       95% CI for Exp(B)

 B Std. error Wald df Sig. Exp(B) Lower Upper

Male 0.030 0.310 0.010 1 0.922 1.031 0.561 1.893

Age 0.035 0.009 16.006 1 < 0.001 1.036 1.018 1.054

Constant 0.118 0.475 0.062 1 0.804 1.125   

We recoded gender into a new variable, Male, with values 0 for female and 1 for
male; this is easier to interpret because we don’t have to remember how the category
was coded. As with linear regression, the value and significance tests for the constant
in logistic regression are usually not our focus of interest. Predictors are evaluated
in logistic regression by the Wald chi-square; the significant values are interpreted
just like the p-values for any other statistic. In this case, we see that age is a significant
predictor of insurance status (Wald chi-square (1 df) = 16.006, p <0.001), whereas
male is not significant (Wald chi-square (1 df) = 0.010, p = 0.922). Remembering
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that we coded insurance status so that 0 = no insurance and 1 = insurance, we see
that because the coefficient for age is positive (0.035), increasing age is associated
with increasing probability of having insurance.

The Exp(B) column gives the odds ratio for each predictor and the outcome variable,
adjusted for all the other variables in the model; the last two columns give the 95%
confidence interval for the adjusted odds ratio. If you are unfamiliar with odds ratios,
you should read the section covering them in Chapter 15 before proceeding because
only a brief explanation will be offered here. An odds ratio is, as the name implies,
the ratio of the odds for two conditions. In the case of the first row in this table, the
odds ratio for Male is the ratio of the odds of having insurance, if you are male, to
the odds of having insurance if you are female. The neutral value for the odds ratio
is 1; values higher than 1 indicate increased odds, values lower than 1, decreased
odds. Because the odds ratio for male is higher than 1 (1.031), this indicates that in
this data set, men have better odds of having insurance than do females. However,
this result is not significant, as can be seen from the p-value for the Wald statistic
(0.922) and the fact that the 95% confidence interval for the odds ratio (0.561, 1.893)
crosses the neutral value of 1. We can therefore say that in a model predicting in-
surance status from gender and age, gender was not a significant predictor.

Looking at the second line of the table, we see that age is a significant predictor of
insurance status in a model also including gender. The adjusted odds ratio is 1.036,
and the 95% confidence interval is (1.018, 1.014); note that the confidence interval
does not cross 1. The odds ratio for age and male look small (barely higher than 1,
in fact), but remember that this is the difference in odds for an increase in age of 1
year; for instance, it is the odds of insurance for someone who is 35 compared to
someone who is 34 (adjusted for gender). To find the expected change for a larger
number of years, you exponentiate the odds ratio by the number of years. For in-
stance, the predicted change in the odds of having insurance for an age difference
of 10 years (adjusted for gender) is:

1.03610 = 1.424

It’s often useful to report a few hypothetical examples like this along with your
results to help your audience understand the importance of variables measured on
a continuous scale. The logistic regression equation for this model is:

Logit(p) = 0.118 + 0.030(male) + 0.035(age) + e

As noted earlier, though our model is significantly better than the null model at
predicting insurance status, it doesn’t explain much of the variance in our data (de-
termined by examining the pseudo-R2 statistics). This is not surprising because there
are probably many other variables besides age and gender related to whether a per-
son has insurance; if we were to continue this analysis, we would certainly test the
effects of employment and income, for instance. We might also try dichotomizing
age to under/over 65 years because we know that virtually everyone over the age of
65 is entitled to insurance coverage under the federal Medicare insurance program.
We might also consider running an equation for just people younger than 65 because
we don’t expect to see much variation in insurance status for people age 65 and older.
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Converting Logits to Probabilities
People outside the field of statistics are unlikely to be familiar with the logit, and it’s
often better to present results to them in units they understand. For logistic regres-
sion, the obvious choice is probabilities. Fortunately, a logistic equation for any set
of predictors can be converted to a probability by using the following formula:

Predicted probability = elogistic regression equation / (1 + elogistic regression equation )

Continuing with our previous BRFSS example, we can find the probability of an
individual having insurance by plugging his or her X values into our equation and
then using that equation in the formula presented earlier. For instance, for a male
(X1 = 1) of age 40 (X2 = 40), the predicted logit is:

Predicted logit(p) = 0.118 + 0.030(1) + 0.035(40) = 1.548

We then put this value into the equation to predict probability:

Predicted probability = e1.548 / (1+ e1.548 ) = 0.825 or 82.5%

Multinomial Logistic Regression
If you have a data set that would be suitable for logistic regression, except that the
outcome variable is categorical (with more than two categories), it might be a good
candidate for multinomial logistic regression. Returning to the BRFSS data, we are
interested in what variable predicts health status. Fortunately for us, the BRFSS
includes a variable measuring health status on a scale that is commonly accepted
and used in the fields of medicine and public health. Often described as self-reported
general health, this variable asks people to indicate which of five categories best
describes their general health:

1. Excellent

2. Very good

3. Good

4. Fair

5. Poor

The responses to this question in our sample are displayed in Table 11-5.

Table 11-5. Self-reported general health

 Frequency Percent Cumulative percent

Excellent 64 14.7 14.7

Very good 149 34.3 49.0

Good 136 31.3 95.2

Fair 65 14.9 80.2

Poor 21 4.8 100.0

Multinomial Logistic Regression | 279

Logistic and M
ulti-

nom
ial Regression



We will use age (continuous) and gender (dichotomous) in a multinomial regression
equation to predict self-reported health status. Because we have relatively sparse
data in one of our outcome categories, we will do a cross-tabs table with gender to
see whether we have empty or nearly empty cells; if so, this would be a problem for
the same reason (complete or near-complete separation) discussed in the logistic
regression example. The results are shown in Table 11-6.

Table 11-6. Cross-tabulation of general health status and gender

Health status Female Male

Excellent 36 28

Very good 92 57

Good 80 56

Fair 45 20

Poor 15 6

This is mixed news: although we don’t have any empty cells, a cell of size 6 (males
in poor health) might give us quite wide confidence intervals. We decide to combine
the two lowest categories and proceed with our analysis. We need to choose one of
the categories to serve as a reference category for the analysis; the computer algo-
rithm will compare each of the other categories to this one to see whether there is
any significant difference among them. We choose the Excellent category.

The model fit information for multinomial logistic regression is similar to that for
binomial logistic regression. The −2 log likelihood for this model is 660.234 (this
might come in handy if we want to compare the fit of this model to more complex
models), and our model predicts significantly better than the null model without
predictor variables (χ2 (6 df) = 19.194, p = 0.004). The pseudo-R2 statistics tell us
that we aren’t explaining much of the variance (Cox & Snell’s R2 = 0.043, Nagel-
kerke’s R2 = 0.046), but we’re not surprised: we expect that many more things than
gender and age would influence a person’s general health status. We also get likeli-
hood ratio tests, which tell us how model fit changes if one of the predictors is
removed. If model fit is significantly lowered (as tested with a chi-square statistic),
that means the variable is making a significant contribution to predicting the out-
come variable. Data from the likelihood ratio test is presented in Table 11-7.

Table 11-7. Likelihood ratio tests for a multinomial regression model predicting general health
status from age and gender

     

 −2 log likelihood of reduced model Chi-square df Sig.

Intercept 660.234 0.000 0 .

Age 675.719 15.485 3 0.001

Male 660.609 3.375 3 0.337
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The “reduced model” in each case is the model lacking the variable tested. From this
table, we can see that age is a significant predictor of general health status, but gender
is not. The intercept is not tested because removing it does not change the degrees
of freedom of the model. As we said earlier, a lower −2 log likelihood indicates better
fit, so we are not surprised to see a substantial increase in the −2 log likelihood when
Age is removed from the model (675.719 vs. 660.234) but very little change (660.608
vs. 660.234) when Male is removed.

The parameter estimates for our full model are presented in Table 11-8. Note that
this is really three models at once because different coefficients are estimated for
each of our comparisons (very good versus excellent, good versus excellent, and fair/
poor versus excellent).

Table 11-8. Parameter estimates for a multinomial regression model predicting general health
status from age and gender

        95% CI for Exp(B)

Gen hlth
category

 
B Std. error Wald df Sig. Exp(B)

Lower
bound

Upper
bound

Very
good

Intercept 0.681 0.519 1.723 1 0.189    

 Age 0.001 0.009 0.004 1 0.949 1.001 0.984 1.018

 Male = 1 0.227 0.003 0.562 1 0.454 1.255 0.693 2.274

          

Good Intercept −0.142 0.542 0.068 1 0.794    

 Age 0.015 0.009 2.836 1 0.092 1.015 0.998 1.033

 Male = 1 0.095 0.307 0.096 1 0.057 1.100 0.602 2.009

          

Fair/
poor

Intercept −1.766 0.638 7.740 1 0.005    

 Age 0.030 0.010 8.701 1 0.003 1.030 1.010 1.051

 Male = 1 0.559 0.348 2.581 1 0.108 1.748 0.884 3.457

Our misgivings at seeing such low pseudo-R2 statistics are upheld in this model
because only one predictor in one of our comparisons is significant: Age for the
comparison of Fair/poor versus Excellent health. Because the coefficient is positive
(0.030), and the Exp(B) or odds ratio is greater than one, we can see that increased
age is associated with increased probability of having Fair/poor versus Excellent
health. Note also that the 95% confidence interval for Age in this comparison (1.010,
1.051) does not cross the null value of 1.0, a result expected because the Wald chi-
square test is significant for this predictor in this comparison.
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Polynomial Regression
So far, you have largely learned about model fitting when the relationship between
a DV and one or more IVs is linear, that is, the value of a DV can be predicted by a
weighted linear sum of the IVs plus an intercept value. In the two-dimensional plane,
such relationships can be viewed as straight lines that have nonzero slope. However,
many phenomena have nonlinear relationships, and you need to be able to model
these relationships as well. Any relationship that is not entirely linear is, by defini-
tion, nonlinear, so any discussion of nonlinear modeling must be very broad indeed.
In this section, you learn about two of the most commonly used regression models,
which are based on quadratic and cubic polynomials.

A quadratic model has both a linear and squared term for the IV, whereas the cubic
model has a linear, squared, and cubic term for the IV; the principle is that you
include all lower order terms as well as the highest order term. Each curve has a
number of extreme points equal to the highest order term in the polynomial, so a
quadratic model will have a single maximum, whereas a cubic model has both a
relative maximum and a minimum. Figure 11-3 shows a quadratic model (Y = X2)
and Figure 11-4, a cubic model (Y = X3).

Figure 11-3. Quadratic model (Y = X2)

Let’s look at an example from sports psychology. The Yerkes-Dodson Law, first
formulated in 1908, predicts a quadratic relationship between arousal (the predictor
variable) and performance (the outcome variable). For many athletes, achieving the
optimal level of physiological arousal—corresponding to the single maxima of the
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DV—corresponds to their goal of producing their best possible athletic perfor-
mance. If athletes are not aroused enough, their performance will be poor; con-
versely, if athletes are over-aroused, their performance will also be poor.

However, if the relationship between arousal and performance is actually cubic,
increasing arousal even further might result in improvements in performance, which
would be a contrary prediction to the quadratic model. Polynomial regression can
be used to determine the goodness of fit for both the quadratic and cubic models,
and the one with the best goodness of fit can be taken as the most accurate descrip-
tion of the relationship between arousal and athletic performance.

Watters, Martin, and Schreter (1997)1 designed an experiment to determine whether
there was a quadratic relationship between caffeine (a drug that produces arousal)
and cognitive performance on a battery of tests. The experimental setup required a
dose of caffeine to be administered at regular intervals in a single session (6 × 100
mg); this would introduce practice effects and would lead to an increase in perfor-
mance session to session, independent of arousal. Any residual variation accounted
for by a quadratic term would then indicate the underlying relationship between
arousal and performance.

You might be wondering why participants in the study were not simply invited back
several times to complete the test, with the caffeine dosage randomly assigned on
each occasion. The reasoning was ethical; the researchers wanted to observe any
adverse reactions at low dosages, which would be impossible on the first trial in a

Figure 11-4. Cubic model (Y = X3)

1. Watters, P.A., Martin, F., & Schreter, Z. (1997). “Caffeine and cortical arousal: The nonlinear
Yerkes-Dodson Law.” Human psychopharmacology: clinical and experimental, 12, 249–258.
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truly randomized design because some of the subjects would be receiving the highest
dosage on their first trial, and the researchers wanted to minimize the number of
return visits. To obtain a higher degree of experimental control, a repeated measures
design was used, in which each participant attended a placebo and treatment session
(single blind). If the experimenter noted an adverse reaction, the experiment would
be halted. The order of attendance for either the placebo or treatment condition was
randomized.

As designed, the experiment had both a within-subjects and between-subjects com-
parison, with the former showing the dose-response relationship and the latter
confirming that the dose-response relationship observed was not the product of
chance (or practice). Only the within-subjects analysis is shown here. The analysis
proceeds by adding terms progressively into the model, starting with caffeine, fol-
lowed by the square and cube of caffeine. Table 11-9 shows some sample data that
may be obtained in this type of experiment.

Table 11-9. Relationship between caffeine and cognitive performance

0mg 100mg 200mg 300mg 400mg 500mg 600mg

10.0 15.0 17.0 18.0 15.0 13.0 11.0

8.0 10.0 14.0 16.0 12.0 10.0 9.0

15.0 16.0 18.0 24.0 20.0 17.0 15.0

14.0 17.0 21.0 22.0 21.0 17.0 13.0

15.0 16.0 18.0 20.0 18.0 16.0 12.0

10.0 15.0 17.0 18.0 15.0 13.0 11.0

8.0 10.0 14.0 16.0 12.0 10.0 9.0

15.0 16.0 18.0 24.0 20.0 17.0 15.0

14.0 17.0 21.0 22.0 21.0 17.0 13.0

15.0 16.0 18.0 20.0 18.0 16.0 12.0

For the linear model Y = β0 + β1X1 + e, where Y is performance and x is caffeine,
there was virtually no relationship between the two variables: R2 = 0.001, and the
F-statistic also showed that the coefficient for caffeine was not significantly different
from 0 (F(1, 68) = 0.097, p = 0.757).

For the quadratic plus linear model, Y = β0 + β1X1 + β2X1
2 + e for the same variables

found a significant relationship between caffeine and performance. For this model,
R2 = 0.462, F(2, 67) = 28.81, and p < 0.001. The coefficients table for this model,
Table 11-10, shows that both the linear and quadratic terms made a significant
contribution to the model fit, with a strongly linear effect accompanied by a negative
quadratic term. The relative contribution that both terms make to the model, as
demonstrated by the absolute value of their beta coefficients, is comparable (βlinear
= 2.314 versus βquadratic = −2.448).
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Table 11-10. Quadratic model predicting performance from caffeine consumption

 Unstandardized coefficients  Standardized coefficients

 B Std. error Beta t Sig.

Caffeine 0.044 0.006 2.314 7.166 <0.001

Caffeine ** 2 −7.429E−5 0.000 −2.448 −7.580 <0.001

(Constant) 12.014 0.784  15.324 <0.001

The cubic plus quadratic plus linear model Y = β0 + β1X1 + β2X1
2 + β3X1

3 + e did
not explain a significant additional amount of variation in performance, and the
coefficient for the cubic term was not significant, confirming that the linear and
quadratic relationship model best explains the relationship between caffeine con-
sumption and athletic performance.

Overfitting
One of the more amazing features of modern statistical computing packages is that
you can automatically specify and perform any number of tedious statistical tests at
the click of a button. This ability to run many models quickly can be useful if you
are simply exploring the data, or if your a priori hypotheses have failed to meet
expectations and you are trying to figure out what is actually going on in the data.
However, many statisticians frown on building models based purely on a given data
set, deeming it “going on a fishing expedition” and, when nonlinear regression is
involved, arbitrary curve-fitting. We discussed the dangers of mechanical model-
building in Chapter 10, but the cautions apply even more here because you are not
simply adding and subtracting predictor variables but also changing their form.
However, this type of model building is acceptable in some fields, so if that is the
case in your workplace or school, there’s no reason you shouldn’t take advantage
of all the possibilities offered by modern computer packages. Some statistical pack-
ages allow you to request that all possible linear and nonlinear relationships between
two variables be calculated, and then you can simply select the one that does the
best job of explaining the data.

If you’re going to engage in this type of model fitting, you should be aware of the
dangers inherent in the process. We illustrate these with a simple example. Imagine
that you are a nutritionist interested in the relationship between smoking and blood
pressure, with the results obtained from a small study shown in Table 11-11. You
know that there is a relationship between the two, but as an expert witness in a court
case, you are under pressure to prove the strongest possible link between the two
variables. Some of the data, showing the diastolic blood pressure and daily cigarette
consumption for the first few cases, is shown in Table 11-11.
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Table 11-11. Relationship between diastolic blood pressure and daily cigarette smoking

DiastolBP Daily cigs

80.0 0.0

75.0 0.0

90.0 1.0

80.0 0.0

75.0 0.0

95.0 10.0

90.0 20.0

100.0 25.0

110.0 30.0

140.0 35.0

Summary results from a few models (with diastolic blood pressure as the outcome,
and daily cigarettes smoked as the predictor) are displayed in Table 11-12. As you
can see from Table 11-12, there are many types of relationships two variables can
have besides linear. Even more surprising, a model including linear and quadratic
terms explains 97% of variability in diastolic blood pressure. No one has ever re-
ported a cubic relationship between the two variables before, so you think you have
discovered a very convincing argument.

Table 11-12. Relationship between diastolic blood pressure and daily cigarette smoking

Equation
Model
summary

   Parameter
estimates

 

 R square F df1 df2 Sig. Constant b1 b2 b3

Linear 0.781 28.518 1 8 0.001 78.423 1.246   

Quadratic 0.869 23.118 2 7 0.001 80.984 −0.386 0.053  

Cubic 0.970 64.155 3 6 0.000 79.069 3.975 −0.299 0.007

Compound 0.813 34.853 1 8 0.000 79.007 1.013   

Growth 0.813 34.853 1 8 0.000 4.370 0.012   

Exponential 0.813 34.853 1 8 0.000 79.007 .0120   

Do the R2 values computed by such an approach have any real meaning? Yes and
no; one real risk with fishing expeditions is overfitting. This means your data fits
your data set too well and explains the random variation in it as well as the significant
relationships. Because the purpose of inferential statistical analysis is to find results
that will generalize to other samples drawn from the same population, overfitting
defeats the whole purpose of conducting the analysis in the first place. You might
have a model that fits your particular data set remarkably well, but it won’t neces-
sarily fit any other data set, so it hasn’t produced any useful knowledge for your field.
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The best protection against overfitting is to build your models based on theory. If
you decide to use mechanical procedures to build your model, you should test it
across multiple samples to be sure you are modeling major relationships within the
data instead of random noise. If only limited samples are available, such as in de-
structive testing environments, resampling techniques such as bootstrapping and the
jackknife may be employed; these are discussed in the Efron book listed in Appen-
dix C.

Exercises
Problem

You are comparing two nested logistic regression models (models in which the larger
models include all the predictor variables included in the smaller models). Model A
has a −2 log likelihood of 200.465; Model B has a −2 log likelihood of 210.395. Which
model fits the data better?

Solution

Model A has the better fit; when comparing two nested models, the model with the
smaller −2 log likelihood fits the data better.

Problem

You are planning a logistic regression analysis, using one dichotomous and one
categorical predictor. The following table presents cross-tabulation results for the
Y variable and the two predictors (X1 and X2). Do any alarm bells go off when you
read this table? If so, how would you fix the problem?

  X1 = 1 X1 = 2 X1 = 3

Y = 0     

 X2 = 1 25 32 20

 X2 = 2 27 17 32

Y = 1     

 X2 = 1 34 6 23

 X2 = 2 41 36 5

Solution

Although there are no empty cells, two are sparsely populated (with 6 and 5 cases,
respectively), which might result in wide confidence intervals. If possible (and the-
oretically defensible, based on the meanings of the categories for variable X1), the
best solution may be to combine the second and third categories for this variable.

Problem

You have conducted a logistic regression analysis to predict the probability of high
school students becoming dropouts, using their GPA and gender as predictors. This
is your regression equation:
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Logit(p) = 4.983 + 1.876(male) −2.014(GPA) + e
Dropout (the Y variable) is coded so 1 = dropped out, 0 = not dropped out.
GPA is a continuous variable ranging from 0.00 to 4.00.
Male (the gender variable) is coded so 0 = female and 1 = male.

What is the predicted probability of dropout for a female with a 3.0 GPA?

Solution

To calculate this probability, plug the values for female and GPA into the logistic
regression equation and then use the following formula to calculate the predicted
probability of dropout:

Predicted probability = elogistic regression equation/(1 + elogistic regression equation )

The predicted logit is:

Logit(p) = 4.983 + 1.876(0) − 2.014(3.0) = −1.059

The predicted probability of dropping out is:

Predicted probability = e–1.059/ (1 + e–1.059) = 0.258 = 25.8%.

Problem

Continuing with the problem of predicting who will drop out of high school, you
decide to add another variable to the equation: whether the student’s mother grad-
uated from high school (coded so 0 = no, 1 = yes). After doing the appropriate data
checks, you run the equation, which produces the coefficients and significance tests
shown in Table 11-13. This model is significantly better than the null model in
predicting high school dropouts (chi-square (3) = 28.694, p < 0.001); the value for
the Cox & Snell R2 is 0.385 and, for the Nagelkerke R2, 0.533.

Table 11-13. Coefficients for a logistic regression equation predicting the high school dropout
from gender, GPA, and mother’s education

       95% CI for Exp(B)

 B Std. error Wald df Sig. Exp(B) Lower Upper

Male 2.107 0.770 7.495 1 0.006 8.224 1.819 37.170

GPA −1.599 0.756 4.466 1 0.035 0.202 0.046 0.890

Mother HS graduate −2.430 1.104 4.847 1 0.028 0.088 0.010 0.766

Constant 5.021 2.420 4.305 1 0.038 151.526   

Interpret the information in this table, including specifying which predictors are
significant, in which direction, and what the Exp(B) column and its 95% confidence
interval means.
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Solution

All the predictor variables in this model are significantly related to the probability
of a student dropping out of high school. Males are more likely than females to drop
out (B = 2.107; Wald chi-square (1) = 7.495, p = 0.006). Higher GPA predicts a lower
probability of dropping out (B = −1.599; Wald chi-square (1) = 4.466, p = 0.035),
as does having a mother who graduated from high school (B = −2.430; Wald chi-
square (1) = 4.867, p = 0.028).

The Exp(B) column presents the adjusted odds ratios for each of the predictor vari-
ables. As expected, male gender has an odds ratio greater than 1 (8.224), indicating
that males are more than 8 times as likely as females to drop out, after adjusting for
GPA and mother’s education; the 95% confidence interval for male gender is (1.819,
37.170). The odds ratios for GPA and having a mother who graduated from high
school are less than 1, indicating that a higher GPA or a mother who is a high school
grad are associated with a lower probability of dropping out. The odds ratios and
the 95% confidence intervals are 0.202 (0.046, 0.890) for GPA and 0.088 (0.010,
0.766) for having a mother who graduated from high school. Note that none of the
confidence intervals cross the neutral value of 1; this is expected because all the
predictors are significant.
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12
Factor Analysis, Cluster Analysis,

and Discriminant Function
Analysis

There are more statistical techniques in use today than could possibly be covered in
a single book. In fact, there are more types of statistics out there than anyone could
hope to master in a lifetime. However, it’s often useful to be familiar with a techni-
que, even if you don’t know how to perform it yourself. You might need to read
articles using techniques you have not mastered yourself, for instance, or you might
decide you need to learn a technique or hire a consultant familiar with the technique
after reading about how it was used in someone else’s research. This chapter intro-
duces several advanced statistical techniques by providing some specific examples
of how they have been used; the techniques themselves will not be taught because
the intent is to help the reader identify when one of these techniques is appropriate
for a given research question. Methodologies covered in this chapter include factor
analysis, cluster analysis, and discriminant function analysis.

Factor Analysis
Factor analysis (FA) uses standardized variables to reduce data sets by using principal
components analysis (PCA), the most widely used data reduction technique. It is
based on an orthogonal decomposition of an input matrix to yield an output matrix
that consists of a set of orthogonal components (or factors) that maximize the
amount of variation in the variables from the input matrix. This process usually
produces a smaller, more compact number of output components. In linear algebra
terms, PCA works from the covariance matrix to produce a set of eigenvectors and
eigenvalues. The components in the output matrix are linear combinations of the
input variables; the components are created so the first component maximizes the
variance captured, and each subsequent component captures as much of the residual
variance as possible while taking on an uncorrelated direction in space. A more
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general version of PCA is Hotelling’s canonical correlation analysis (CCA), which—
assuming multivariate normality—can be used to test whether two sets of variables
are independent.

PCA is primarily used for three major purposes:

• In hypothesis testing, to use techniques based on the general linear model to
produce variables that are orthogonal

• To compress a large number of variables into a smaller, more manageable data
set

• To identify latent variables in large data sets that are represented by highly
correlated input variables

Although the first two purposes are usually achieved by PCA, the third is typically
approached using factor analysis (FA), which is also based on orthogonal decom-
position but can involve more complex techniques such as variance maximizing
rotation (varimax). You will learn about some of these techniques in this chapter.
Note that in FA, the retained principal components are known as common factors,
and correlations with the input variables are called factor loadings.

Let’s look at an example from the field of psychometrics. Historically, FA has been
used to test various theories of mental performance and intelligence, including the
hypothesis that a single general factor underlies intelligence and the rival hypothesis
that multiple orthogonal factors comprise intelligence. In turn, the general findings
derived from large-scale studies of intelligence and cognitive function in the popu-
lation have allowed reliable understanding of individual differences to be determined
from a number of test instruments. The process of understanding individual differ-
ences, and compensating for them, was heavily influenced by the thinking of Carl
Friedrich Gauss, the inventor of the Gaussian or normal distribution, followed by
the later work of Bessel, who developed a personal equation to make corrections in
observations made by different astronomers.

Early attempts to understand intelligence and measurable variables began with sci-
entists such as James Cattell, who tried to quantify intelligence in terms of a set of
mental tests such as reaction times, rate of movement, and grip strength. Later work
showed that results from these tests were uncorrelated with actual academic per-
formance. However, work by Charles Spearman on the general intelligence factor,
g, extracted from the results of a battery of psychological tests, led to the widespread
adoption of FA and PCA-like methods in psychometrics. Later work by Louis Leon
Thurstone and others suggested that there must be at least two independent cogni-
tive factors underlying intelligence: a linguistic factor, L, and a quantitative factor,
Q. Even today, this characterization of intelligence is seen in standardized tests such
as the Scholastic Aptitude Test (SAT), taken by many American students planning
to attend university, and the Graduate Record Examination (GRE), taken by many
before entering graduate school. Both have three major components—verbal, writ-
ing, and math—corresponding roughly to the linguistic (verbal and writing) and
quantitative (math) breakdown suggested by Thurstone.

Let’s look at a typical psychometric example in which a set of cognitive and mental
performance scores is taken as the input matrix, and an output matrix is then
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produced that is of lower dimension. The term matrix here just refers to numerical
information arranged in a pattern corresponding to the meaning of each piece of
information. This process might be driven by a hypothesis. For instance, a specific
psychological theory might predict two factors (e.g., L and Q), so only the two factors
accounting for the highest proportion of variance would be selected. On the other
hand, if the work is more exploratory, the data might be allowed to determine par-
tially how many factors are retained, following some standard criterion or rule. The
most commonly used criterion for factor retention is the Guttman-Kaiser criterion,
which only retains eigenvalues greater than 1 (in the case of FA); following this rule,
factors are retained if the variation they account for is greater than the average for
the variable if variation were equally distributed across the input data set. Other
retention criteria include the Velicer partial correlation procedure, Bartlett’s test, and
the broken stick model, while a more graphical approach is to use the scree plot of
eigenvalues to determine which factors to retain. With a scree plot, you graph the
eigenvalues and retain those before the slope levels out like the scree (loose rock)
that accumulates at the foot of a mountain.

Suppose you have a data set containing the results from the administration of a
standard battery of tests; data for the first five participants is displayed in Ta-
ble 12-1. A psychologist is interested in determining whether a general intelligence
factor underlies performance across all these components of intelligence or whether
there are distinct factors on which individual variables are highly loaded. For ex-
ample, is an L factor strongly associated with reading and verbal ability, and a sep-
arate Q factor associated with arithmetical and geometrical ability?

Table 12-1. Psychometric test results

Reading Music Arithmetic Verbal Sports Spelling Geometry

8 9 6 8 5 9 10

5 6 5 5 6 5 5

2 3 2 6 8 6 4

8 9 10 9 8 10 6

10 7 1 10 5 10 2

The first way to begin exploring the data is to create a matrix for the bivariate cor-
relations among all the variables; Table 12-2 shows the upper triangle of this matrix.
This is a good way to see which variables have significant relationships with each
other and which do not. The first line for each pair displays the Pearson’s r, the
second line its significance level.

Table 12-2. Correlations among psychometric test variables

  Reading Music Arithmetic Verbal Sports Spelling Geometry

Reading r 1.000 0.535 −0.253 0.860 −0.469 0.762 −0.386

 p  0.111 0.481 0.001 0.172 0.010 0.270

Music r  1.000 0.249 0.262 −0.263 0.380 0.069

 p   0.488 0.464 0.463 0.278 0.850
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  Reading Music Arithmetic Verbal Sports Spelling Geometry

Arithmetic r   1.000 −0.501 0.206 −0.307 0.758

 p    0.140 0.568 0.389 0.011

Verbal r    1.000 −0.236 0.895 −0.569

 p     0.511 0.001 0.086

Sports r     1.000 0.054 0.266

 p      0.881 0.458

Spelling r      1.000 −0.291

 p       0.415

Geometry r       1.000

 p        

These correlations appear to support the idea of separate Q and L factors.

For L:

• Verbal performance and reading scores appear to be highly correlated (r = 0.860,
p = 0.001).

• Reading and spelling scores are highly correlated (r = 0.762, p = 0.010).

• Verbal performance and spelling scores are also correlated (r = 0.895, p < 0.001).

For Q:

• Geometry and arithmetic scores are highly correlated (r = 0.758, p = 0.011).

None of the other variables (e.g., sporting or musical performance) are significantly
correlated with any other variables, so you could expect that two interpretable fac-
tors will result from the FA.

The first step after computing PCA is to examine what proportion of variance is
accounted for by the factor structure. This is done by examining the communali-
ties, as shown in Table 12-3 in the column labeled Extraction. Here, you can see that
some variables, such as music, have relatively low communality (0.779), whereas
others, such as spelling, have very high communality (0.967). Variables with high
communality have a large proportion of their variance explained by the extracted
factors, whereas those with a low communality have a lot of unexplained variance
remaining.

Table 12-3. Communalities

 Initial Extraction

Reading 1.000 0.929

Music 1.000 0.779

Arithmetic 1.000 0.868

Verbal 1.000 0.955

Sports 1.000 0.943
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 Initial Extraction

Spelling 1.000 0.967

Geometry 1.000 0.814

Tables 12-4 through 12-6 show the initial eigenvalues, the extraction sums of
squared loadings, and the rotation sums of squared loadings resulting from this FA.
These tables are the most important as the most significant part of the results for
interpretation. In Table 12-4, you can see that the first three factors extracted ac-
count for 89.378% of the variance; thus, you can immediately see the power of PCA
because it has reduced seven variables to three factors while still accounting for
almost all the variation within the data! Table 12-5 shows the three extracted factors
before rotation, and Table 12-6 shows the extracted factors after rotation was per-
formed using varimax with the Kaiser normalization. The varimax rotation rotates
the axes of the factors so that orthogonality is preserved while maximizing the sum
of variances of the loadings. Note that this does not affect the total amount of var-
iance accounted for by the three factors, but the relative proportion of variance
between factors does change.

Table 12-4. Initial eigenvalues

Component Initial eigenvalues

 Total % of variance Cumulative %

1 3.488 49.829 49.829

2 1.651 23.591 73.420

3 1.117 15.958 89.378

4 0.425 6.069 95.446

5 0.234 3.343 98.789

6 0.067 0.952 99.742

7 0.018 0.258 100.000

Table 12-5. Extraction sums of squared loadings

Extraction sums of squared loadings

Total % of variance Cumulative %

3.488 49.829 49.829

1.651 23.591 73.420

1.117 15.958 89.378
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Table 12-6. Rotation sums of squared loadings

Rotation sums of squared loadings

Total % of variance Cumulative %

2.846 40.653 40.653

2.066 29.517 70.170

1.345 19.208 89.378

People new to FA sometimes feel that there must be some trickery with rotation,
especially because it is used as an aid to interpreting factor loadings and to discov-
ering the existence of latent structure. However, it’s really a legitimate technique
that serves a very useful purpose in helping the researcher tease out which variables
are most closely associated with each factor.

The benefits of rotation can be seen by comparing Tables 12-7 and 12-8, which show
the component matrixes for this analysis before and after rotation. For component
1, which corresponds to the latent L factor, you can see that rotation has the effect
of increasing the relative loadings of the most relevant variables so that spelling,
reading, and verbal skills have the highest loadings on this factor. After rotation,
component 2, which corresponds to the Q factor, has higher loadings for arithmetic
and geometry, whereas the loadings for unrelated variables such as music are now
relatively decreased. Component 3 has a high loading only for sports, so although
it does represent a distinct factor, it does not reflect any latent structure and will be
disregarded in this analysis. Thus, rotation has helped us clarify which test scores
(reading, music, etc.) are most closely related to our two components.

Table 12-7. Unrotated component matrix

 Component

 1 2 3

Reading 0.902 0.328 −0.085

Music 0.386 0.775 −0.174

Arithmetic −0.582 0.727 0.028

Verbal 0.955 0.009 0.209

Sports −0.403 −0.059 0.882

Spelling 0.819 0.235 0.491

Geometry −0.664 0.597 0.130

Table 12-8. Rotated component matrix

 Component

 1 2 3

Reading 0.859 −0.144 −0.412

Music 0.593 0.490 −0.433

Arithmetic −0.158 0.917 0.050
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 Component

 1 2 3

Verbal 0.869 −0.438 −0.088

Sports −0.046 0.176 0.954

Spelling 0.955 −0.164 0.169

Geometry −0.246 0.846 0.195

Graphical examination of the data can also help clarify relationships among the
variables. Returning to the question of the selection of eigenvalues, Figure 12-1
shows the scree plot resulting from this analysis; each circle responds to one of the
eigenvalues in Table 12-4. Higher values explain more variance, and it’s clear that
after the third eigenvalue, there’s not much gain in explanation with each additional
eigenvalue. If you picture the eigenvalues as rocks tumbling down a mountain, it’s
clear that there’s a bend toward the horizontal at the third or fourth eigenvalue
(there’s a subjective element to interpreting scree plots), whereas eigenvalues 4
through 7 are just heaped up at the foot of the mountain. Therefore, we have two
or three components worth retaining in this analysis, and this corresponds to the
results using the Guttman-Kaiser criterion; component 3 has a value barely above
the cutpoint of 1.0.

Figure 12-1. Scree plot

Figure 12-2 shows the effect of rotating the data in three-dimensional space; you can
see that the variables associated with the L factor (spelling, verbal, and reading) are
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closely clustered in 3D space, as are the variables associated with the Q factor (arith-
metic and geometry). Note that the other two variables (sports and music) are then
roughly equidistant from the centroids of the two component-oriented clusters. The
impact of the rotation is often easier to observe in three-dimensional space than by
looking at the loading tables.

Figure 12-2. Component plot in rotated space

Table 12-9 shows the output matrix from the FA procedure. This shows the scores
for the three components computed for the first five study participants; if this were
the GRE or SAT, these are the scores that would be reported back to the test takers.
Note that the precision of the results depends on your computer package.

Table 12-9. Component scores for each participant

Subject Component 1 (L) Component 2 (Q) Component 3 (Sports)

1 0.518 1.132 −0.095

2 −1.170 −0.128 0.084

3 −1.396 −1.207 1.619

4 1.094 1.198 1.128

5 0.706 −1.049 0.014

298 | Chapter 12: Factor Analysis, Cluster Analysis, and Discriminant Function Analysis



As with all the other techniques you have learned about in this book, PCA and FA
have some basic prerequisites that must be met for the results to be valid and/or
reliable. Large data sets are most commonly used for PCA and FA because in general
as the data set grows larger, the results become more reliable. In the case of psy-
chometrics, reliability is usually established when a test has been administered to
hundreds of thousands of individuals across different national and linguistic groups.
The other main requirement is that the number of cases must always be larger than
the number of variables in the input matrix. Normally, tests for statistical signifi-
cance are not performed with PCA, so outliers and other potential sources of bias
are much less likely to cause problems than, say, with ANOVA. For PCA, the as-
sumptions of linear correlation also hold; that is, that variables must be linearly
related, and none should have either zero or perfect correlation.

Cluster Analysis
Cluster analysis is a set of techniques that allows cases to be grouped based on their
values for one or more variables. Some cluster analysis techniques allocate cases to
groups by partition, whereas other techniques provide for hierarchical trees that
show the taxonomic relationship between groups and their ancestors. A related
technique, discriminant function analysis (DFA), can be used to develop rules to
assign cases to groups, based on an understanding of the parametric structure of the
groups; DFA is better at predicting group membership than cluster analysis alone.
Often, the two techniques are used in conjunction with each other. Cluster analysis
may be used when the number of groups is initially unknown; once this number has
been established, DFA may be used for the prediction of individual group member-
ship for each case.

Cluster analysis is very useful for two scenarios. First, you might already know how
many groups you expect to find in the data, so you pass this number of groups to
the algorithm and let it take care of the allocation (k-means). Alternatively, you might
not know how many groups exist, in which case you can ask the algorithm to esti-
mate how many groups there actually are.

Cluster analysis is a highly empirical tool; its success depends largely on the quality
of data supplied. Cluster analysis works by taking an input vector of Y, with n cases
and p variables, and allocating each of n cases to one of k groups. Each of the p
variables measures some aspect of an object under study. Continuing with the psy-
chometric example, each variable may represent a score on a particular type of ability
test (reading, spelling, etc.). The algorithm works by randomly creating k clusters,
identifying the centroids or cluster centers, and assigning each case to the closest
centroid. Cases are moved between clusters to minimize within-cluster variability
and maximize between-cluster variability. The process continues until it converges
according to some predefined criterion. Note that because some randomness is in-
troduced by the initial assignment of centroids, you don’t always get the same
answer.

The computational goal of cluster analysis is to ensure that all members of groups
1 . . . k are similar to other members of their group and dissimilar to members of
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other groups. Similarity—or dissimilarity—is determined by the use of a specific
distance measure. A number of measures have been developed, including the fol-
lowing:

Euclidean distance
This is the geometric distance between two points in a multidimensional space.

Manhattan distance
This is a city-block distance that reduces the influence of outliers.

Mahalanobis distance
Within-cluster distances tend to be increased, whereas between-cluster distan-
ces are decreased.

Let’s revisit the psychometric example. Having shown that three factors underlie
student abilities, the psychologist is now interested in determining whether there
might be some basis for classifying students in different educational groups based
on this latent structure because the identified factors for L, Q, and Sports were or-
thogonal. The issue is specialization; if students are identified as being good at
sports, linguistic, or quantitative work, they could be streamed appropriately into
classes specializing in those areas. (The question of at what age such specialization
should occur is a question for another day.) The main problem with this approach
is that some students might be good at more than one of these skills, and the idealized
view provided by the rotated loading matrix shown in Figure 12-2 might not apply
to all cases.

The psychologist decides to use cluster analysis to determine whether three distinct
groups are in this data set, corresponding to distinct members of the proposed
Linguistic, Quantitative, and Sports tracks. Because we believe there are three groups,
we pass k = 3 to the algorithm and ask it to identify three groups and then assign
each student to a class.

The initial cluster centers are shown in Table 12-10, and after several iterations, the
algorithm converges to a solution, with the final cluster membership for the first five
cases, the final cluster centers, and pairwise distances between the final clusters
shown in Tables 12-11 through 12-13 (upper triangle only for Table 12-13). The
initial cluster centers are related to the correlations and the corresponding principal
components extracted in the previous analysis. Cluster 1 is strongly associated with
reading, verbal, and spelling; cluster 2 with arithmetic and geometry; and cluster 3
with sports. Although there are some changes during the iterative process, these
groupings tend not to change. The resulting group allocations are simply a function
of the distance from each centroid. The pairwise distances between each centroid
are also reasonably consistent with each other; that is, the between-group distances
appear to have been successfully maximized, and there does not appear to have been
difficulty in separating them. Adding more cases into the analysis would almost
certainly improve the reliability of the result.
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Table 12-10. Initial cluster centers

 Cluster

 1 2 3

Reading 10.00 3.00 2.00

Music 9.00 9.00 3.00

Arithmetic 3.00 10.00 2.00

Verbal 10.00 2.00 6.00

Sports 6.00 6.00 8.00

Spelling 10.00 4.00 6.00

Geometry 3.00 9.00 4.00

Table 12-11. Cluster solution: cluster membership

Case number Cluster Distance

1 1 6.565

2 3 2.915

3 3 2.915

4 1 7.078

5 1 4.468

Table 12-12. Cluster solution: final cluster centers

 Cluster

 1 2 3

Reading 8.57 3.00 3.50

Music 8.86 9.00 4.50

Arithmetic 4.00 10.00 3.50

Verbal 9.00 2.00 5.50

Sports 5.14 6.00 7.00

Spelling 9.00 4.00 5.50

Geometry 3.86 9.00 4.50

Table 12-13. Cluster solution: pairwise distances between final cluster centers

Cluster 1 2 3

1  12.971 8.562

2   9.925

Table 12-14 shows the ANOVA results for the significance of each variable in terms
of discriminability. The results are not intended to be a strict test of statistical sig-
nificance in the sense of hypothesis testing but are useful in examining which vari-
ables helped differentiate among the clusters. Spelling, verbal, and reading scores
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were all significant (unsurprisingly), but the scores making up the second and third
clusters (arithmetic and geometry and sports) were not significant. The first result
makes sense because scoring highly on spelling, verbal, and reading does discrimi-
nate between the first and second groups, but the lack of discriminability for the
third cluster is a surprise (although recall from the preceding PCA that the third
factor, Sports, had an eigenvalue barely above 1 and accounted for only 15% of the
variance).

Table 12-14. ANOVA results for discriminability

 Cluster Error F Sig.

 Mean square df Mean square df   

Reading 28.893 2 1.745 7 16.558 0.002

Music 15.321 2 1.622 7 9.443 0.010

Arithmetic 17.000 2 9.214 7 1.845 0.227

Verbal 26.950 2 0.643 7 41.922 0.000

Sports 2.771 2 4.122 7 0.672 0.541

Spelling 17.550 2 1.786 7 9.828 0.009

Geometry 11.571 2 8.194 7 1.412 0.305

Discriminant Function Analysis
Discriminant function analysis (DFA) is used to construct rules that allow classifi-
cation of cases into two or more groups, based on a linear combination of variables;
the groups are known before the analysis begins, and the goal of the analysis is to
find variables that do the best job of predicting the group membership of new cases.
I was once involved in a study to predict the racial and ethnic group for university
students who had failed to fill out that part of a questionnaire (information needed
for reporting to the federal government). In this case, we knew what categories the
federal government used for race and ethnicity and had to use other information in
the students’ records to try to assign them to the appropriate group.

The goal in DFA is to determine a function or functions that maximize the separation
between groups, hence achieving the greatest possible accuracy in assigning cases
to groups. These functions are typically linear combinations of the input variables
and are called linear discriminant functions (LDFs). Cluster analysis and classifica-
tion analysis are in some ways trying to solve the same problem by different means;
both want to find the maxima of different functions (e.g., maximizing distance or
classification accuracy).

We return to the psychometric example. Given the group allocations provided by
cluster analysis, DFA can be used to determine a set of discriminant functions that
provides maximum separation between the groups. It is then possible to test the null
hypothesis of the equality of group means for each variable. In the two-group case,
this can be evaluated using a t-test; with more than two groups, an F-test can be
performed. The results shown in Table 12-15 indicate that there are significant
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differences for reading, F(2, 7) = 16.558, p = 0.002; music, F(2, 7) = 9.443, p = 0.010;
verbal, F(2, 7) = 41.922, p = 0.001; and spelling, F(2, 7) = 9.828, p = 0.009. Thus,
in terms of discriminability, you could retain only the tests for reading, music, verbal,
and spelling and still maximize the distance between groups.

Table 12-15. Tests of equality of group means

 Wilks’s lambda F df1 df2 Sig.

Reading 0.174 16.558 2 7 0.002

Music 0.270 9.443 2 7 0.010

Arithmetic 0.655 1.845 2 7 0.227

Verbal 0.077 41.922 2 7 < 0.001

Sports 0.839 0.672 2 7 0.541

Spelling 0.263 9.828 2 7 0.009

Geometry 0.713 1.412 2 7 0.305

Table 12-16 shows the two canonical discriminant functions required to classify the
cases into groups. Interestingly, the first function captures 96% of the variance,
whereas the second function captures only 4%.

Table 12-16. Canonical discriminant functions

Function Eigenvalue % of variance Cumulative % Canonical correlation

1 79.224 96.0 96.0 0.994

2 3.287 4.0 100.0 0.876

Table 12-17 shows the computed values for Wilks’s lambda, which can be used to
evaluate the significance of the discriminant functions in a multivariate sense. The
row labeled 1 through 2 shows the significance for both functions; the row labeled
2 shows the significance of the second function alone. Unfortunately, in this analysis,
even the two functions together cannot significantly differentiate between the
groups. This probably reflects the fact that function 1 accounts for such a high pro-
portion of variance, and the data set is relatively small, so the analysis is lacking in
power.

Table 12-17. Wilks’s lambda

Test of function(s) Wilks’s lambda Chi-square df Sig.

1 through 2 0.003 23.362 14 0.055

2 0.233 5.822 6 0.443

Table 12-18 shows the standardized canonical discriminant function coefficients.
These are analogous to standardized regression coefficients and show the relation-
ship between each of the measures of ability and the functions derived in this
analysis.
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Table 12-18. Standardized canonical discriminant function coefficients

 Function

 1 2

Reading −0.706 −0.141

Music 1.838 −0.368

Arithmetic −0.364 −0.707

Verbal 3.686 1.409

Sports −0.150 1.309

Spelling −1.884 −2.030

Geometry 1.916 0.945

Table 12-19 shows the structure matrix; the values in the table are canonical variate
correlation coefficients and can be interpreted as factor loadings, so they tell us the
contribution of each variable to each variate. In this table, you can see loadings of
reading and music on function 1 and loadings of spelling, verbal, arithmetic, geom-
etry, and sports on function 2. These are slightly different from what you might have
expected, say, from PCA or cluster analysis, but keep in mind that the algorithms
used for each type of analysis have different computational goals, so it’s not sur-
prising that their results are not identical.

Table 12-19. Structure matrix

 Function  

 1 2

Reading 0.243 −0.140

Music 0.188 0.034

Arithmetic 0.115 −0.708

Verbal 0.379 0.433

Sports −0.046 −0.331

Spelling −0.055 −0.225

Geometry −0.043 0.121

Finally, Table 12-20 shows the relationship between the two discriminant functions
and the group centroids.

Table 12-20. Functions at group centroids

Cluster number of case Function

1 4.804 −0.169

2 −14.483 −3.465

3 −9.573 2.324
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Exercises
Find some examples of professional articles in your field that use the techniques
demonstrated in this chapter, and observe how the technique is used and the results
explained. Here are a few examples to start you off:

• Depken, Craig A., and Darren Grant. 2011. “Product pricing in Major League
Baseball: A principal components analysis.” Economic Inquiry 49 (April): 474–
488.

Depken and Grant use principal components analysis to investigate factors
affecting the pricing of concessions, tickets, and parking for Major League
baseball games.

• Williamson, Hannah C., Thomas N. Bradbury, Thomas E. Trail, and Benjamin
R. Karney. 2011. “Factor analysis of the Iowa Family Interaction rating scales.”
Journal of Family Psychology 25(6): 993–999.

Williamson and colleagues use factor analysis to discover the factor structure
of an instrument describing different types of verbal and nonverbal behaviors
couples use to communicate; their innovation is using an instrument previously
applied to white, middle-class couples to a sample of low-income, racially di-
verse couples.

• Tuma, Michael N., Reinhold Decker, and Sören W. Scholz. 2011. “A survey of
the challenges and pitfalls of cluster analysis application in market segmenta-
tion.” International Journal of Market Research 53(3): 391–414.

Tuma, Decker, and Scholz look at some ways cluster analysis has been used in
market segmentation work in the past 50 years and suggest best practices in
this type of work.

• Kaye, Barbara K., and Thomas J. Johnson. 2011. “Hot diggity blog: A cluster
analysis examining motivations and other factors for why people judge different
types of blogs as credible.” Mass Communication and Society 14(2): 236–263.

Kaye and Johnson use cluster analysis to identify groups of people who judge
different types of blogs (general information, media/journalism, war, military,
political, corporate, and personal) as highly credible.

• Gonzalez, Richard. 2012. “Determination of sex from juvenile crania by means
of discriminant function analysis.” Journal of Forensic Sciences 57(1): 24–34.

Gonzalez uses discriminant function analysis based on craniofacial measure-
ments to differentiate between the skulls of males and females (from individuals
of European descent, age 5–16 years); he achieves 78–89% accuracy in classi-
fication.
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13
Nonparametric Statistics

The basis of inferential statistics is parameter estimation, estimation of the param-
eters of a population from information gained from a random sample presumed to
have been drawn from that population. Many of the most common statistical tech-
niques rely on the underlying distribution being of a particular type, such as the
normal distribution, for inferences made from the relevant statistical tests to be valid;
hence, these techniques are called parametric statistics. What about scenarios in
which you know or suspect that the population does not meet the assumptions for
a particular statistical test? In these cases, a different set of statistical techniques,
known as nonparametric statistics, can be used. These techniques are often known
as distribution-free statistics because they make few or no assumptions about the
underlying distribution of the data; some prefer the term “distribution-free-er” be-
cause some nonparametric tests do require assumptions about the population dis-
tribution, although those assumptions are generally less stringent than those made
by common parametric tests.

Nonparametric statistics are often applied to data sets in which data has been col-
lected as ranks rather than as raw scores, or rank data is substituted for raw scores
due to concerns about the distribution of the raw data. Rank data by definition is
ordinal, as discussed in Chapter 1, and should not be analyzed using procedures
meant for interval- and ratio-level data. Class rank is a familiar example: students
in a school may be ranked by their grades, and although we can be sure of the order
(student #1 has higher grades than student #2), we can’t be sure of the interval
between the ranks. (Students #1 and #2 might have almost the same grades, or there
may be a large gap between them.)

If your research design suggests you should calculate a particular parametric statistic
but your data do not meet the assumptions for that statistic, often you can use a
nonparametric equivalent instead. There are many nonparametric statistics besides
the few covered in this chapter, and William Conover’s textbook, Practical Non-
parametric Statistics, listed in Appendix C, includes a chart showing which non-
parametric test to choose for which combination of data and statistical problem.
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You can find this type of chart on the Internet as well; a reference for one such chart,
from the Department of Health of the United Kingdom, is listed in Appendix C.

This chapter presents the median test, the Mann-Whitney U test, the Wilcoxon
matched pairs signed rank test, the Kruskal-Wallis test, and the Friedman test. A
few nonparametric tests are covered in Chapter 5, including the chi-square test,
Fisher’s Exact Test, McNemar’s test, phi, Cramer’s V, the Spearman correlation,
Goodman and Kruskal’s gamma, Kendall’s tau, and Somers’s d. The median and
interquartile range, both of which are often used with nonnormal data, are discussed
in Chapter 4.

Nonparametric techniques are more robust than their parametric counterparts,
meaning they are less influenced by departures from model assumptions or unusual
values (such as outliers) but are typically less powerful than their parametric equiv-
alents. For this reason, if your data meets the assumptions for a parametric test, you
should do the parametric test; if not, use the nonparametric equivalent (or transform
your data as described in Chapter 3).

Between-Subjects Designs
This section reviews some commonly used nonparametric tests for between-subjects
designs, generally based on the rank sum and mean rank measures.

The Wilcoxon Rank Sum Test
Two main descriptive statistics are used to characterize ordinal data: the rank sum
and the mean rank. To illustrate how these statistics can be used, consider an ex-
ample. An Olympic Games selection committee must choose a champion tae kwon
do team from two states (California and Nevada) to represent the United States.
Bacause there are both individual and group events for which the members have
trained together, the teams can’t be combined to produce a composite team of the
most highly performing individuals; instead, one or the other of the teams must be
selected as a whole. Each team member has been given an overall performance score,
based on the number of bricks they managed to break during a five-minute testing
session. The results are shown in Table 13-1.

Table 13-1. Performance scores for tae kwon do teams from two states

California Nevada

4 2

5 3

6 3

6 4

7 4

8 5

9 10

9 10
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California Nevada

9 11

9 11

A higher score here indicates greater skill (more bricks broken). Trying to interpret
the results just by visual inspection is difficult; the scores for the California team are
more consistent and clustered in a smaller range, whereas the Nevada results have
a greater range and clusters of both high and low scorers. Because the top four per-
formers are from Nevada, you might be tempted to select this team, but the median
score for Nevada is just 4.5, whereas the median for California is 7.5.

There is no reason to believe that the data in this sample is drawn from a normal
distribution, and the sample size of 10 is not large enough to use the central limit
theorem. Neither can we assume the data is equal-interval; whereas two bricks is
certainly twice as many as one, we can’t be sure that breaking two bricks indicates
twice as much tae kwon do achievement as breaking one. (In fact, this interpretation
is almost certainly not true.) We are much more comfortable with the interpretation
that breaking two bricks represents more achievement than breaking one, without
being sure how much more.

The most appropriate way to describe this data is by ranks rather than values. We
will assign a rank to each case and then add all the ranks for each team. To assign
ranks, the two teams are combined, and every team member from both teams is
ranked from low to high. (A higher rank means more bricks broken.) Table 13-2
shows this process.

Table 13-2. Team rankings

California Nevada Rank

 2 1

 3 2

 3 3

4  4

 4 5

 4 6

5  7

 5 8

6  9

6  10

7  11

8  12

9  13

9  14

9  15
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California Nevada Rank

9  16

 10 17

 10 18

 11 19

 11 20

What about the ties? Where tied ranks occur, the average rank is instead computed
from the sum of the ranks concerned and divided by their number; for instance, a
tie for second and third is given a rank of 2.5. Table 13-3 shows the new ranking,
including tied ranks.

Table 13-3. Ranks for individual tae kwon do performance scores, including ties

California Nevada Rank

 2 1

 3 2.5

 3 2.5

4  5

 4 5

 4 5

5  7.5

 5 7.5

6  9.5

6  9.5

7  11

8  12

9  14.5

9  14.5

9  14.5

9  14.5

 10 17.5

 10 17.5

 11 19.5

 11 19.5

The rank sum is then calculated for each group by adding their respective ranks, as
shown in Figure 13-1.
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Figure 13-1. Calculating the rank sums

If the two groups are approximately equal, we would expect the means of the rank
sums to be approximately equal. This comparison is only fair when we have equal
sample sizes, as we do in this example. We can also compute a mean rank, a better
measure for groups of unequal sizes, as shown in Figure 13-2.

Figure 13-2. Calculating the mean ranks

Comparing the mean ranks shows us that the California team ranks higher than the
Nevada team. Thus, using rank-based methods, the selectors should select the Cal-
ifornia team because the mean rank is higher. What if we want to test whether the
difference between the two teams is significant? We can calculate a Z-test to deter-
mine whether the difference between the two groups is statistically significant by
using the standard alpha = 0.05. Under the null hypothesis, the two groups have
equal mean ranks, so we can compute the expected sum of ranks as shown in Fig-
ure 13-3.

Figure 13-3. Calculating the expected sum of ranks

where n1 and n2 are the number of cases in the first and second groups. Note that
this expected sum of ranks is based on the number of cases, not on their values; if
you have two groups of 10 cases and the null hypothesis is that the two groups have
the same average rank, the expected sum of ranks will always be 105. In the preceding
example, you can see that one group (California) has a rank sum above the expected
mean, and the other group (Nevada) has a rank sum below the expected mean. The
Z-test can be computed from the mean and standard deviation of W, as shown in
Figure 13-4.
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Figure 13-4. Formula for the Z-test for ranks

In this formula, W is the smaller of the two rank sums, µW is the expected sum of
ranks as calculated previously, and σW is the standard error, calculated as shown in
Figure 13-5.

Figure 13-5. Calculating the estimated standard deviation for ranks

In this formula, n1 and n2 are the number of cases in the first and second groups,
and 12 is a constant. Note that the standard deviation of ranks depends only on the
number of cases, not on their value.

The value for the Z-test for this data is calculated as shown in Figure 13-6.

Figure 13-6. Calculating the Z-test for ranks

Using the standard normal table (Figure D-3 in Appendix D), we find that this result
has a p-value greater than 0.05; thus, we fail to reject the null hypothesis.

In this example, we used the normal approximation to the Wilcoxon rank sum test
because both n1 ≥ 10 and n2 ≥ 10. For smaller samples, we calculate the sums of
ranks for each group as previously and then compare the sums to a table of proba-
bilities for different values of T. Such a table is available here.

The Mann-Whitney U test, which will produce the same Z-score for a given set of
data, is also used with this type of data. Either test can be used as a substitute for
the two-sample t-test in which the normality assumption of the underlying data is
questionable.

The Sign Test
The sign test is a nonparametric analog to the one-sample t-test and is used to test
whether a sample has a hypothesized median. Often, the sign test uses ranks and
the binomial distribution to test hypotheses about dichotomous data, meaning data
with only two possible outcomes. Data values in the sample are classified as above
(+) or below (−) the hypothesized median; the number of cases with a value above
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the median is n+, the number below the median is n−. Under the null hypothesis
that the sample is drawn from a population with the specified median, these classi-
fications have a binomial distribution with π = 0.5; each data point is considered a
trial, and the result is either + or −, either result having a probability of 0.5. Note
that π (the Greek letter pi) is the designation for probability in a population, just as
p is the designation for probability in a sample. The sign test uses the binomial
probability distribution to find the probability of an observed result, assuming the
null hypothesis to be true.

Suppose you are a medical researcher studying a new metabolic disorder, provi-
sionally termed Type X diabetes. It seems to you that Type X diabetes has a later age
of onset (the age at which the individual first has symptoms of a disease) than Type
II diabetes; the median age of onset for the latter is 35.5 years. Your null hypothesis
is that π ≤ 0.50, that is, no more than 50% of the people with Type X diabetes have
an age of onset of 35.5 or older; the alternative hypothesis is that π > 0.50, or more
than 50% of people with Type X diabetes have an age of onset of 35.5 or older. You
find that in a clinical sample of 40 patients with Type X diabetes, 36 had an age of
onset greater than 35.5 years: n+ = 36. Using an alpha level of 0.05, you use the
normal approximation to the binomial with continuity adjustment to see how likely
this result is and whether the null hypothesis is true. The calculations are shown in
Figure 13-7.

Figure 13-7. Calculating the sign test

Here, X is the number of observed values greater than the median (n+),
0.5 is the continuity correction (negative in this case because our hypothesis is
that π > 0.5),
np is the mean of the binomial distribution (the expected value for X if the null
hypothesis is true),

 is the standard deviation of the binomial distribution,
and n is the sample size.

Using the standard normal table (Figure D-3 in Appendix D), you see that the prob-
ability of a result at least this extreme is 0.00002, far less than your chosen alpha
value of 0.05, so you reject the null hypothesis that the median age of onset for Type
X diabetes is equal to or lower than that for Type II diabetes.

The Median Test
Further metabolic research in the lab subsequently suggests that there might be two
subtypes of Type X diabetes—Type X1 and X2—and raises the question of whether
subtypes are associated with age. You decide to look at another sample of 40 cases,
20 of which have been provisionally given Type X1 diagnoses and 20 classified as
Type X2. You decide to use the median test, which classifies cases in two samples

Between-Subjects Designs | 313

Nonparam
etric

Statistics



as being above or below the median for the pooled sample (the cases from both
samples). In this data, the median of the pooled sample is 36.4 years; you decide to
use the alpha level of 0.05 and to conduct a two-tailed test because you want to find
an age difference in either direction.

For Type X1, 12 cases were above the median age, and 8 cases were below the median
age. For Type X2, 9 cases were above the median age, and 11 cases were below the
median age. The null hypothesis is that π is the same in both groups. If any of the
cases had the exact median value, they would be removed from the sample. Ta-
ble 13-4 shows the tabulated frequencies.

Table 13-4. Frequencies of age of occurrence for Type X1 and Type X2 diabetes

 Above median Below median Total

Type X1 12 8 20

Type X1 9 11 20

Total 21 19 40

A chi-square test for independence (discussed in Chapter 5) can be used to test these
data for significance. You can use the fast computational formula for χ2 analysis, in
which the cells are described as in Table 13-5, and then find the probability of the
resulting chi-square under the null hypothesis of independence (that individuals
from either population are equally likely to have an age below the median).

Table 13-5. Cell labels for chi-square test for significance

Type Above median Below median Row sums

X1 a b a + b

X2 c d c + d

Column sums a + c b + d n

The calculations for this data are:

Using the chi-square table (Figure D-11 in Appendix D), with 1 degree of freedom,
we find the probability results at least as extreme as ours (χ2Q:  = 0.902) to have a
probability greater than 0.10. We therefore fail to reject the null hypothesis and
conclude that our study has produced no evidence that the age of onset is different
for Type X1 diabetes and Type X2 diabetes.

Kruskal-Wallis H Test
The Kruskal-Wallis H test is a nonparametric analogue to one-way ANOVA. It can
also be thought of as an extension of the Wilcoxon Rank Sum test for more than
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two groups. The Kruskal-Wallis H test tests the hypothesis that several groups have
the same median, and it does not require the samples to be the same size.

Suppose we are evaluating the performance of three sales teams, one with six mem-
bers and two with five members. Our goal is to pick the best overall team judging
by its recent sales performance. Their sales for the last quarter (in thousands of
dollars) are shown in Table 13-6.

Table 13-6. Quarterly sales in thousands of dollars

Team A Team B Team C

10 8 6

10 8 8

12 9 10

13 9 14

14 14 15

15   

Our first step is to rank the individual sales totals, without regard to team member-
ship, and assign the average rank to any ties, as shown in Table 13-7.

Table 13-7. Ranked quarterly sales

Team A Team B Team C Rank

  6 1

  8 3

 8  3

 8  3

 9  5.5

 9  5.5

  10 8

10   8

10   8

12   10

13   11

14   13

 14  13

  14 13

  15 15.5

15   15.5

Between-Subjects Designs | 315

Nonparam
etric

Statistics



We will use the Kruskal-Wallis H test with alpha = 0.05 to see whether there is any
statistically significant difference among the performance of these three teams. The
Kruskal-Wallis H formula is shown in Figure 13-8.

Figure 13-8. Formula for the Kruskal-Wallis H test

In this formula, N is the total sample size (all three samples added together),
ni is the sample size for sample i,
Ti is the sum of ranks for sample i, and
12 and 3 are constants.

For this data:

N = 6 + 5 + 5 = 16

The Ti calculation for each team is shown in Figure 13-9.

Figure 13-9. Calculating the sums of ranks

Plug these values into the Kruskal-Wallis H formula, as shown in Figure 13-10.

Figure 13-10. Calculating the Kruskal-Wallis H test

To see whether our chi-square value of 2.96 is significant, we compare it to the chi-
square value for 2 degrees of freedom (1 less than the number of groups) in Appen-
dix D. Our chi-square value is less than the table value (5.991) for alpha = 0.05 and
df = 2, so we fail to reject the null hypothesis that the three groups have the same
median.
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Within-Subjects Designs
This section reviews some commonly used nonparametric tests for within-subjects
designs.

Wilcoxon Signed Ranks Test
The Wilcoxon signed ranks test can be used as a nonparametric substitute for the
repeated measures t-test. It is appropriate when the data represent measurements
on pairs of subjects, such as before and after scores for the same person or meas-
urements on siblings or husband–wife pairs. The null hypothesis for this test is usu-
ally that the mean of the differences between the pairs is 0. The Wilcoxon signed
ranks test does not assume normality but does assume at least a symmetric distri-
bution, so it is not appropriate for data that are highly skewed.

Suppose we are interested in the effects of exercise on mental functioning and mood
state. We have a sample of 40 sedentary adults who have volunteered to take part
in an exercise program and to undergo a battery of psychological tests before be-
ginning the program and again after completing it. The measurement of interest in
this particular study is a 100-point measure of mood state in which 0 is very low
affect, and 10 is very high affect. We administer the mood state instrument to the
study sample before they begin the exercise program and again after they complete
it. We will conduct a two-tailed test with the null hypothesis that exercise makes no
difference in mood state and use an alpha value of 0.05.

In Table 13-8, we show an excerpt from the following data set to illustrate the process
of calculating this test. (The process is mechanical and follows ranking procedures
discussed previously.) For each pair of scores, we compute the difference score and
then the absolute value of the difference score. We rank the absolute difference
scores and then reaffix the sign to each rank. Any cases with difference scores of 0
are eliminated from the analysis, and tied ranks are given the average rank (so cases
with a tie for ranks 3-4-5 are given a rank of 4).

Table 13-8. Exercise and mood state

Subject
Before
exercise

After
exercise

Difference
(after −
before)

Absolute
difference

Rank of absolute
difference

Signed
rank

1 60 68 8 8 5 5

2 65 70 5 5 3 3

3 52 50 −2 2 1 −1

4 74 85 11 11 6 6

5 65 60 −5 5 3 −3

... ... ... ... ... ... ...

40 70 77 7 7 4 4
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Five cases had difference scores of 0, so after eliminating them n = 35, giving us a
sufficiently large sample (rule of thumb: n ≥ 25) to use the large-sample approxi-
mation to the Wilcoxon signed ranks test, which gives us a Z-value whose proba-
bility we can determine using a standard normal table. The sum of the positive ranks
was 380.

After removing tied pairs, we have 35 pairs, so we calculate the normal approxima-
tion to the Wilcoxon signed ranks test by using the formula shown in Figure 13-11.

Figure 13-11. Large-sample Wilcoxon signed ranks test

In this formula, T+ is the sum of the positive ranks,
n is the number of pairs, and
4 and 24 are constants.

Note the similarity to the Z-statistic:

is the expected value for the rank sum, and:

is the standard error, so this formula asks us to compare the value we found from
our sample calculations with an expected value (analogous to population mean) and
divides that difference by a measure of variability.

Using our values produces the result shown in Figure 13-12.

Figure 13-12. Large-sample Wilcoxon signed ranks test, with values
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Using the standard normal table (Figure D-3 in Appendix D), we find the probability
of a value at least this extreme to be 0.28914, far above our alpha value of 0.05, so
we fail to reject the null hypothesis.

If we had had a smaller data set (n <25), we would have used the small-sample form
of the Wilcoxon signed ranks test. For the small-sample test, you assign signed ranks
to your cases as for the large-sample case and then calculate the rank sums for both
the positive ranks (T+) and the negative ranks (T−). You then compare these values
to a table of critical values for the Wilcoxon signed ranks test. (Such a table is in-
cluded in the Wilcoxon [1957] article cited in Appendix C, and versions are available
in statistical reference books and on the Internet.) For a two-tailed test, you reject
the null hypothesis if either T+ or T− is less than the critical value in the table for
your sample size.

Friedman Test
The Friedman test is an extension of the matched pairs signed rank test for more
than two related samples; you can also think of it as a nonparametric equivalent to
repeated measures ANOVA. Suppose we have been brought in to evaluate the fitness
level of a tae kwon do team. One of our concerns is that, because competitions might
require multiple performances over several hours, we need to know whether these
athletes can perform consistently over a long period. We conduct a mock competi-
tion and evaluate the sparring performance of each athlete on a 10-point scale (10
is the best performance, 0 the worst) after one hour of competition, two hours, and
three hours. We believe this scale to be ordinal (a score of 9 represents better per-
formance than a score of 8) but not equal-interval or ratio. (We don’t know whether
the difference between 8 and 9 is the same as the difference between 7 and 8, or
whether 8 represents a performance twice as good as 4.) Therefore, we will conduct
the Friedman test to examine changes in performance over the three time periods.
Our null hypothesis is that performance will not change over the three time periods,
so we are conducting a two-tailed test, and we will use an alpha level of 0.05.

The data from this trial is presented in Table 13-9.

Table 13-9. Sparring performance scores at three hourly time periods

Athlete 1 Hour 2 Hours 3 Hours

1 9 8 7

2 9 7 8

3 6 8 7

4 8 7 6

5 8 7 6

6 9 8 7

7 9 8 7

8 7 5 6
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Our first step is to rank the performance within athletes; for example, for Athlete 1,
the lowest score was at three hours, the second lowest at two hours, and the highest
at one hour. These rankings are shown in Table 13-10. Note also the last row, which
is the rank sum for each time period.

Table 13-10. Sparring performance ranks at three different hourly time periods

Athlete 1 Hour 2 Hours 3 Hours

1 3 2 1

2 3 1 2

3 1 3 2

4 3 2 1

5 3 2 1

6 3 2 1

7 3 2 1

8 3 1 2

Rank Sum 22 15 11

The formula for the Friedman test is given in Figure 13-13.

Figure 13-13. Formula for the Friedman test

In this formula, b is the sample size,
t is the number of measurements on each subject,
si are the rank sums for each time period,
and 12 and 3 are constants.

In this example, b = 8, t = 3, and the values for si are 22, 15, and 11. Plugging these
values into the equation gives us the result shown in Figure 13-14.

Figure 13-14. Calculating the Friedman test

This statistic has a chi-square distribution with 2 degrees of freedom (df = t − 1 = 2).
Using Figure D-11 in Appendix D, we see that the critical value for a chi-square with
2 df and alpha = 0.05 is 5.991; our test statistic exceeds this number, so we reject
the null hypothesis that there is no difference in performance over the different time
periods. Looking at the raw data, we can see that performance deteriorates over
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time for most of the athletes, suggesting that they need to invest more time in
conditioning.

The use of the Friedman test is not limited to measures made over time but could
also be used to evaluate the effect of drug treatments or any other experimental
situation in which a nonparametric approach might be most appropriate.

Exercises
Here are some exercises to review the topics covered in this chapter.

Problem

Suppose you want to conduct the Friedman test but find that there are ties within
the data. For instance, in the example of testing the performance of members of a
tae kwon do team over three time periods, some of the athletes might have received
a score more than once. In this case, you have tied ranks and need to use the values
for the mid-rank. Table 13-11 presents the results on a scale evaluating the sparring
performance of eight athletes; measurements were taken at one, two, and three hours
into a simulated competition. Conduct the Friedman test for this data, using the null
hypothesis that performance is the same at all three time periods and alpha = 0.05,
and decide whether to accept or reject the null hypothesis. For tied ranks, assign the
mid-rank score; that is, for scores of (6, 6, 5), the ranks would be (2.5, 2.5, 1).

Table 13-11. Sparring performance scores at three time periods (with ties)

Athlete 1 Hour 2 Hours 3 Hours

1 8 8 6

2 6 6 7

3 6 8 7

4 8 7 6

5 9 9 7

6 9 8 7

7 8 7 6

8 8 7 7

Solution

The scores are ranked and rank sums computed in Table 13-12.

Table 13-12. Sparring performance ranks at three hourly time periods (with ties)

Athlete 1 Hour 2 Hours 3 Hours

1 2.5 2.5 1

2 1.5 1.5 3

3 1 3 2

4 3 2 1
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Athlete 1 Hour 2 Hours 3 Hours

5 2.5 2.5 1

6 3 2 1

7 3 2 1

8 3 1.5 1.5

Rank Sum 19.5 17 11.5

The Friedman test is calculated as shown in Figure 13-15.

Figure 13-15. Calculating the Friedman test with tied ranks

There are 2 degrees of freedom (df = t − 1). From the chi-square table (Figure D-11
in Appendix D), we see that the critical value for alpha = 0.05 with 2 df is 5.991; our
test statistic is lower than this value, so we fail to reject the null hypothesis.

Problem

A marketing professional is interested in collecting demographic information about
fans of different football (soccer, for Americans) teams. Because specific marketing
campaigns are often developed for different age groups, one question is the median
age of supporters of different teams. You are the statistician on this project and draw
a random sample of members of fan clubs devoted to two teams (A and B); you
collect demographic data on them, including age, through a telephone survey. You
determine that the overall median age (for both groups) is 27.5 and classify each
supporter as above or below this median. Your data is presented in Table 13-13. If
you are conducting a study whose null hypothesis is that there is no difference in
median age between the two groups, with alpha = 0.01, what is your decision?

Table 13-13. Comparing age for fans of two football teams

Team Above median Below median Row sums

A 30 70 100

B 60 40 100

Column sums 90 110 200

Solution

You decide to perform the median test and thus calculate the chi-square value for
this data, testing the null hypothesis of independence (because if the medians are
the same for fans of both teams, that means age is unrelated to which team you
follow). You use the fast computational formula for χ2 analysis, presented in the
chapter section on the median test, and compare your results to the critical chi-
square value.
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The computations are shown in Figure 13-16.

Figure 13-16. Calculating chi-square for the median test

From the chi-square table (Figure D-11 in Appendix D), you see that the critical
value for df = 2 and alpha = 0.01 is 9.210. Your test statistic is larger than this value,
so you reject the null hypothesis of equal median age among followers of the two
teams. The result is χ2 = 18.18, p < 0.01. Looking at the data table, you see that fans
of team A tend to be younger than fans of team B because only 30% of team A fans
are above the median age as compared to 60% of team B fans.
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14
Business and Quality

Improvement Statistics

Many of the statistics used in business and quality improvement applications are
those within the common repertoire of basic statistics, including the chi-square test
(covered in Chapter 5), t-tests (Chapter 6), and regression and ANOVA (Chap-
ter 8 to Chapter 11). However, other techniques have been developed for the specific
needs of business and quality improvement applications, and those techniques will
be the subjects of this chapter.

Index Numbers
Index numbers are commonly used in business to measure the change in quantity
or price over time for some good or combination of goods and services. One well-
known example is the Consumer Price Index (CPI), which represents the average
price of a quantity of consumer goods and services believed to be typical household
purchases in the United States. The U.S. CPI is calculated monthly by the Bureau of
Labor Statistics of the U.S. Department of Labor; it’s used as a measure of inflation
and to calculate cost of living adjustments for pensions and wages. Although many
criticisms have been made of the CPI, it has proven highly useful as a summary
measure of the average cost of living and allows comparison across historical periods
and geographic areas. Other countries that calculate a CPI or similar index include
Canada, China, Israel, New Zealand, Australia, and many countries in Europe.

Calculation of indexes can be very simple (when the index reflects the change in the
price or quantity of a single commodity) or very complex (when the index reflects a
weighted average of a number of goods and services, as is true for the CPI). A simple
index number displays the change in time of the price or quantity of a single com-
modity such as the number of television sets sold or the price of an ounce of gold.
To calculate a simple index, you must choose a base period to be used for compar-
ison. The index will then represent the change in price or quantity relative to that
base period. To calculate a simple index, three steps are required:
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1. Obtain the price or quantity of the commodity for the time period of interest.

2. Select a base period, and obtain the price or quantity for that year.

3. Calculate the index number for each time period, using the formula in Fig-
ure 14-1.

Figure 14-1. Formula for a simple index

In this formula, It = the index at time t,
Yt = the price or quantity at time t, and
Y0 = the price or quantity in the base period.

Suppose we wanted to track the health of the automobile manufacturing industry
in the United States over the past 20 years. As part of this research, we could create
an index expressing the number of automobiles manufactured each year in terms of
the first year of the time period. If we had data for 1986–2005, 1986 would be the
base year, and the quantity of cars manufactured that year would be Y0. Consider
Table 14-1, which shows a small and entirely hypothetical data set to demonstrate
calculation of a simple index.

Table 14-1. Data for simple index calculation

Year Number of automobiles manufactured

1986 (base year) 5,000

2005 4,000

For this data, the index for 2005 is shown in Figure 14-2.

Figure 14-2. Calculating a simple index

An index of 100 represents the same quantity or price as the base period. An index
less than 100 indicates a decline in quantity or price, and an index greater than 100
indicates an increase in quantity or price compared to the base period. One of the
great advantages of index numbers is that they put quantities measured on different
scales and with different ranges of scores into a common metric. For instance, using
indexes, we can easily compare the relative increase or decrease over time in pro-
duction of automobiles, motorbikes, and bicycles.
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A composite index combines information about the price or quantity of several types
of goods or services. For instance, we might calculate the quantity of beer sold by
the three largest breweries in Scotland by adding the quantity sold by each manu-
facturer. If we performed this calculation for a number of years and selected one year
to use as the base period, we could calculate an index number for each year, as we
did the simple index in the preceding example. This type of index is known as a
simple composite index because it is calculated by combining information from sev-
eral sources without using any type of weighting.

When some type of weighting is used to create the totals used to calculate the index
number, this is known as a weighted composite index. Price indexes are often
weighted by the quantity of goods sold, for instance. There are several ways to apply
a weighting scheme because the quantities of items purchased can change from one
time period to the next, and the choice of weights can have an important influence
on the results of the index calculations. Once a scheme of weighting is selected,
however, calculations are straightforward. The total price is calculated for each time
period, and the index numbers for each time period are calculated using a procedure
analogous to that used for the simple index.

A Laspeyres index uses the base period quantities as weights, so inflation or deflation
is measured for a fixed basket of goods or services. The CPI is an example of a
Laspeyres index; the quantities used for weighting are based on samples of purchases
by more than 30,000 families from 1982 to 1984. The steps in calculating a Laspeyres
index are:

1. Collect price information (P1t, P2t, . . . Pkt) for each time period for each item
(1 through k) to be included in the index.

2. Collect purchase quantity information (Q1t0, Q2t0, ...Qkt0) for the base period
for each item to be included in the index.

3. Select a base period (t0).

4. Calculate the weighted totals for each time period, using the formula shown in
Figure 14-3.

Figure 14-3. Formula to calculate weighted totals for one time period

5. Calculate the Laspeyres index, It, by dividing the weighted total for each time
period by the weighted total for the base period and multiplying by 100, as
shown in Figure 14-4.
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Figure 14-4. Formula for the Laspeyres index

Table 14-2 shows a simple example of the calculation of the Laspeyres index for a
market basket containing only two types of goods.

Table 14-2. Laspeyres index example

Product Base quantity (2000) 2000 price 2005 price

Bread 10 1.00 1.50

Milk 20 2.00 4.00

The weighted total for 2000 is:

(10 × 1.00) + (20 × 2.00) = 50.00

The 2005 weighted total is:

(10 × 1.50) + (20 × 4.00) = 95.00

The Laspeyres index for this basket of goods in 2005, using 2000 as the base year,
is therefore shown in Figure 14-5.

Figure 14-5. Calculating the Laspeyres index

A Paasche index calculates weighted totals by using the quantities of items purchased
in each time period. This has the advantage of adjusting for changes in consumer
habits. For instance, if the price of a good rises, people tend to buy less of it and
purchase less expensive substitutes. An example of substitution would be if the price
of beef rose faster than the price of chicken, and people responded by buying more
chicken and less beef. This change in consumer habits would not be reflected in the
Laspeyres index but would be reflected in the Paasche index.

The steps to calculate a Paasche index are similar to those for a Laspeyres index. The
main difference is that information about the quantities purchased in each time
period must also be collected and used to calculate the weighted totals.
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1. Collect price information (P1t , P2t, . . . Pkt) for each time period for each item
(1 through k) to be included in the index.

2. Collect purchase quantity information (Q1t , Q2t, ...Qkt) for each time period
for each item to be included in the index.

3. Select a base period (t0).

4. Calculate the weighted totals for each time period, using the formula shown in
Figure 14-6.

Figure 14-6. Formula to calculate the weighted totals for one time period with the Paasche
index

5. Calculate the Paasche index, It, by dividing the weighted total for each time
period by the weighted total for the base period and multiplying by 100, as
shown in Figure 14-7.

Figure 14-7. Formula for the Paasche index

We will use the data in Table 14-3 to calculate a Paasche index.

Table 14-3. Calculating a Paasche index

Product 2000 quantity 2000 price 2005 quantity 2005 price

Bread 10 1.00 15 1.50

Milk 20 2.00 15 4.00

The 2000 weighted total is:

(10 × 1.00) + (20 × 2.00) = 50.00

The 2005 weighted index is:

(15 × 1.50) + 15 × 4.00) = 82.50

The Paasche index for this basket of goods in 2005, using 2000 as the base year, is
shown in Figure 14-8:
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Figure 14-8. Calculating the Paasche index

Note that although the prices were the same in each example, the different methods
of weighting resulted in substantial differences in the two index numbers (190 versus
165). The Paasche index has the advantage of comparing prices for a basket of goods
at purchase levels appropriate to each time period. It has the disadvantage of re-
quiring this information (quantities of each type of good purchased) to be collected
for each time period, which might be prohibitively expensive. Another disadvantage
of the Paasche index is that because both prices and quantities can change from one
period to another, it is difficult to compare Paasche index numbers for any two
periods when one of the periods is not the base period.

Criticisms of the U.S. Consumer Price Index (CPI)
The CPI is the principal measure of price changes in the United States and has
been produced in some form by the Bureau of Labor Statistics since 1919. It is
used for many purposes, including as a measurement of inflation and in calculating
cost of living adjustments for negotiated wage packages and social security and
civil service retirement benefits. Not surprisingly, an index used for so many pur-
poses also comes under criticism from many quarters.

Among the principal criticisms, all of which tend to lead to the CPI overstating
inflation, are the following:

Quality change and new product bias
The CPI does not account for the improved quality of some items, such as
electronics. A DVD player that sells for $150 in 2005 might be of a substan-
tially higher quality and therefore worth more to the consumer than one that
cost $100 in 2000, but this increase in quality is not reflected in the CPI.
Similarly, because a fixed market basket of items is used, new items are not
included in the index in a timely fashion. The result is that early declines in
price (typical among new electronics products, for instance) are not captured
in the index.

Substitution bias
The use of a fixed basket of goods (weights are updated about once every 10
years) does not allow for changes in consumer purchasing patterns in re-
sponse to changes in price. For instance, if the price of meat rises faster than
that of other protein foods such as poultry or eggs, consumers can respond
by purchasing more poultry and eggs and less meat, but this shift will not be
reflected in the CPI.
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Outlet substitution bias
Because price information is gathered from traditional sales outlets such as
department stores, newer outlets such as big-box discounters or Internet sales
are not fully represented in the CPI surveys.

Time Series
Time series are used frequently in business statistics to chart the changes in some
quantity over time. Strictly speaking, a time series is a sequence of measurements of
some quantity taken at different times, often but not necessarily at equally spaced
intervals. The previous example of the number of automobiles manufactured in each
of the years from 1986 to 2005 would qualify, as would the measurements discussed
later in this chapter in the section on control charts. Time series may be used for
either descriptive or inferential purposes; the latter includes forecasting, or predict-
ing values for time periods that have not yet occurred. The reader should bear in
mind, however, that time series analysis is a complex topic with many specialized
techniques and that this section can introduce only some of the terminology and a
few simple examples. Anyone planning to work in this area should consult a text-
book devoted to the subject, such as Robert S. Shumway’s Time Series and Its Ap-
plications: With R Examples (Springer). Note also that some authors (e.g., Tabach-
nick and Fidell) specify that at least 50 data points are required for the appropriate
use of time series techniques.

One characteristic of time series data is that data points in sequence are assumed to
be not independent, as would be required for the standard general linear model and
many other analytical techniques, but autocorrelated. This means that the value for
a given time point is expected to be related to the points before and after it, and
perhaps to points more distant in the series as well.

Time series data is assumed to be stationary, meaning that properties such as mean,
variance, and autocorrelation structure are constant over the entire range of the data.
Sometimes data has to be preprocessed by differencing to achieve stationarity; this
means subtracting each data point from some previous point. The distance between
the two points is called the lag. Techniques to test for the types of differencing re-
quired and to perform them automatically are included in software packages dedi-
cated to time series analysis. Other transformations, such as taking the square root
or logarithm of the data to stabilize the variance, may also be applied before the time
series analysis begins.

Additive models are often used to describe the components of a time series, such as:

Yt = Tt + Ct + St + Rt

The components of the trend Yt in this model are:

Tt
Secular or long-term trend, the overall trend over the time studied
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Ct
The cyclical effect, fluctuations about the secular trend due to business or eco-
nomic conditions, such as periods of general economic recession or expansion

St
The seasonal effect, fluctuations due to time of year such as the summer versus
the winter months

Rt
The residual or error effect, what remains after the secular, cyclical, and seasonal
effects have been accounted for; may include both random effects and effects
due to rare events such as hurricanes or epidemics.

Much of time series analysis is devoted to resolving the variance observed over time
in these components. The concept is similar to partitioning the variance in ANOVA
models, although the mathematics involved is different.

Exact measurements plotted over time, also known as raw time series, will almost
always show a great deal of minor variation that can obscure major trends that could
help explain the pattern and make accurate future forecasts. Various types of
smoothing have been devised to deal with this problem. They can be divided into
two types: moving average or rolling average techniques, which involve taking some
kind of average over a series of consecutive points and substituting this average for
the raw values, and exponential techniques, in which an exponential series is used to
weight the data points.

To calculate a simple moving average (SMA), take the unweighted mean of a specified
number of data points (n) prior to the time point in question. The size of n is some-
times described as a window because the idea is that a window including n data
points (a window of width n) is used to calculate the moving average. As you progress
forward in time through the data, the window moves so you can see different data
points each time, and the average is calculated using the points included in the
window for each time point. For instance, a five-point SMA would be the average
of a given value and the previous four data points.

The SMA for each new data point drops only one value and adds only one new value,
reducing the fluctuation from point to point. This attribute gave rise to the term
rolling average because the last value rolls off the series as the new value rolls on.
This is similar to the methodology used to compute player standings on professional
tennis tours, although in that case a total rather than an average is computed. Each
player’s total points in a given week is the sum of their points from the previous 52
weeks, and each week the total is recalculated as the oldest week’s points are drop-
ped from the total and the newest week’s points added in.

The greater the size of the window used to calculate an SMA, the greater the smooth-
ing because each new data point has less influence relative to the total. At some
point, the data might become so smoothed that important information about the
pattern is lost. In addition, the larger the window, the more data points that have to
be discarded (because you need more points to calculate each average). This may be
seen in the example in Figure 14-9 and Table 14-4.
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Figure 14-9. Raw data and moving averages with n = 2 and n = 4

Table 14-4. Simple moving average with different-sized windows

Time 1 2 3 4 5 6 7 8 9 10

Raw
data

5 6 3 7 4 6 8 5 2 6

n = 2  5.5 4.5 5 5.5 5 7 6.5 3.5 4

n = 4    5.25 5 5 6.25 5.75 5.25 5.25

As would be expected, the largest fluctuations appear in the raw data, with less
fluctuation with the width of size 2 and very little fluctuation when the window is
increased to size 4.

When a window of size 2 is used, only one data point has to be dropped from the
moving average (the first because it has no prior point to use in calculating the
average). When a window of 4 is used, the first three points have to be dropped
because none of them has three prior points to use in calculating the average. This
is less of an issue when there are many data points but results in a serious loss of
information with a data set containing only 10 observations.

The central moving average (CMA) is similar to the moving average but uses a win-
dow of size n with both past and future data used to calculate the average for each
point. For a CMA of size 3, for instance, the value at time 2 would be 4.67 or (5 +
6 + 3)/3. Note that the future points are measured data, not forecasts; they are future
only in that they are measured at a later time than the central data point for a given
CMA. Table 14-5 shows an example.

Table 14-5. Central moving average (n = 3) for previous data

Time 1 2 3 4 5 6 7 8 9

Raw data 5 6 3 7 4 6 8 5 2

CMA (n = 3)  4.67 5.33 4.67 5.67 6.00 6.33 5.00  
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The weighted moving average (WMA) uses values from a window of size n but assigns
greater weight to the data points closer to the point in question. If not otherwise
specified, arithmetic rather than exponential weights are used. A typical system as-
signs the weight n to the day whose weight is being calculated, where n is the number
of days included in the weight. Every other day included in the WMA is weighted
one less for each day it is removed from the day being weighted. Using this system,
in a five-day WMA, the day being weighted would be given a weight of five, the
previous day a weight of four, and so on down to four days previous, which would
have a weight of one. This weighted sum is divided by the sum of the weight factors,
which will be [n (n − 1)]/2. The WMA makes intuitive sense in any situation when
consecutive points can be assumed to be the most closely related, with the relation-
ship lessening as the length of time between data points increases.

The exponential moving average (EMA) also applies more weight to closer meas-
urements, but the weights allocated to data points farther from the point in question
decrease exponentially rather than arithmetically. To calculate an EMA, an expo-
nential smoothing constant α between 0 and 1 is selected. This constant is related
to the number of time points included, n, by the equation presented in Figure 14-10.

Figure 14-10. Formula to calculate the constant for an exponential moving average

Here, α = 0.2 is equivalent to n = 9 because (2/10 = 0.2). α is then applied as shown
in Figure 14-11, which is continued until the terms become so small as to become
negligible.

Figure 14-11. Formula for the exponential moving average

In the above formula, p1 is the measure at the given time point for which the EMA
is being calculated, p2 is one time point removed, p3 is two time points removed,
and so on. The denominator approaches 1/α as the number of points included in-
creases, and 86% of the total weight in the calculation will be included in the first
n time points. n is not the number of data points included in calculating the EMA
because it is in the simple and weighted moving averages; the stopping point will be
determined by the value chosen for α and by the researcher’s decision about what
constitutes a negligible value.

Decision Analysis
We all make decisions every day, but how do we go about making the best decision,
particularly in a situation when a lot (for instance, a large amount of money) is at
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stake? Decision analysis is a body of professional practices, methodologies, and the-
ories used to systematize the decision-making process in the service of improving
the process. There are many schools of thought within decision theory, and each
can be useful in a particular context. This section concentrates on several of the most
common decision analysis methods, which will help introduce the student to the
types of processes involved as well as provide concrete assistance in particular
decision-making contexts. The decision-making process will be described in terms
of financial costs and payoffs but can be used with other metrics as well (for instance,
personal satisfaction or improved quality of life) if they can be quantified.

In decision analysis, the process of making a decision is usually conceived of as a
series of steps that is not unlike the process involved in hypothesis testing. They are
also not that different—except for the selection and application of a mathematical
model in steps 5 and 6—from the ordinary type of decision-making process we
engage in every day. Besides the potential to lead to better decisions, going through
these steps (and justifying and documenting them) should make the reasons for a
particular decision easier to explain and justify to someone who wasn’t involved in
the process. The basic steps are the following:

1. Define the situation or context, including states of nature (any situation in the
real world that might influence the outcomes). States of nature must be stated
as mutually exclusive and exhaustive alternatives, for instance, strong/medium/
weak market or inadequate rainfall/adequate rainfall.

2. Identify the choices at hand, that is, the alternative decisions that could be made;
these are known as actions.

3. Identify the possible outcomes or consequences.

4. Assign costs and profits associated with all possible combinations of choices
and outcomes.

5. Select an appropriate mathematical model.

6. Apply the model using the information from steps 2 to 4.

7. Make a decision based on the best expected outcome, as predicted by the model.

Choice of a decision theory methodology depends in part on how much is known
about a situation. There are three types of contexts in which one can apply decision
theory:

• Decision making under certainty

• Decision making under uncertainty

• Decision making under risk

Decision making under certainty means that the future state of nature is known, so
the decision-making process requires only stating the alternatives and payoffs to be
able to pick the choices that will invariably lead to the best outcome. This situation
will not be further discussed because no mathematical modeling is required and
there is no uncertainty about what is the best choice.

Decision making under uncertainty is a more common situation; we don’t know the
probabilities of each state of nature and must make our decision based only on the
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gains or losses from different actions under each state. For instance, if we are choos-
ing from several cities in which to open a restaurant, the success of the restaurant
depends in part on the economic climate in each city when the restaurant opens,
but we might not have good estimates of the future economic climates in these cities.
Similarly, when choosing which crop or variety to plant, our success at harvest time
depends partly on the amount of rainfall during the growing season, but we might
feel that we don’t have sufficient information to estimate this in advance.

In decision making under risk, we know the probabilities of each outcome (or have
reasonable estimates of them) and can combine this information with information
about expected payoffs to determine which decision is optimal.

Minimax, Maximax, and Maximin
The information needed to make a decision under uncertainty may be summarized
in a payoff table, where each row represents a possible action taken and each column
a state of nature. The numbers within the cells of the table represent the outcome
expected under different combinations of actions and states of nature. Suppose we
are considering whether to invest in staging an event in a large outdoor venue or a
smaller indoor venue, with a third alternative not to invest in the event at all. Suppose
also that the event is to be held in a climate where rainstorms are common during
the season of the year when the event will take place, and we don’t feel we can assign
reasonable probabilities to the chance of rain on a particular day. It will cost us
$50,000 to stage the event. The payoff table might look like Table 14-6.

Table 14-6. Payoff table for investing in an event

  Weather  

  Rain No rain

Action Outdoor venue −$50,000 $500,000

 Indoor venue $200,000 $200,000

 Do not invest $0 $0

The outdoor venue is larger than the indoor, so if it doesn’t rain that night, we stand
to make a large profit (gain of $500,000). If it rains, the event will be canceled, and
we will lose our investment and make no revenue (loss of $50,000). On the other
hand, the indoor venue should return about the same profit ($200,000) whether it
rains or not: less than the outdoor venue if the weather is good, more than the
outdoor venue if it rains. Finally, we might decide that investing in staged events is
too risky and choose to apply our money elsewhere.

We can create an opportunity loss table, which expresses the amount of money we
lost the opportunity to make by choosing a particular course of action. For our
hypothetical event-investment-in-rainy-country scheme, the opportunity loss table
would look like Table 14-7.
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Table 14-7. Opportunity loss table for investing in an event

  Weather  

  Rain No rain

Action Outdoor venue $250,000 $0

 Indoor venue $0 $300,000

 Do not invest $200,000 $500,000

Note that there are no negative numbers in an opportunity loss table. The best action
for a given state of nature has a loss of $0, whereas the others represent the amount
of money lost by not choosing the best action for that state of nature.

Three procedures have been developed for decision making under uncertainty:
minimax, maximax, and maximin. The minimax procedure involves choosing the
action that will minimize opportunity loss. To make a minimax decision, we use the
opportunity loss table to identify the maximum opportunity loss for each action and
then choose the action with the lowest opportunity loss. In this example:

Maximum opportunity loss (outdoor venue) = $250,000
Maximum opportunity loss (indoor venue) = $300,000
Maximum opportunity loss (do not invest) = $500,000

Using the minimax procedure, we would decide to finance the event at the outdoor
venue because it has the smallest maximum opportunity loss of the three choices.

The maximin strategy involves choosing the action that has the largest minimal out-
come. This has been described as the strategy for pessimists because it chooses the
alternative with the highest minimal gain or smallest loss— the best outcome under
unfavorable conditions. In this example:

Minimum gain (outdoor venue) = -$50,000
Minimum gain (indoor venue) = $200,000
Minimum gain (do not invest) = $0

Using the maximin strategy, we would choose the indoor venue because the worst
we could do is make $200,000, regardless of weather conditions.

The maximax strategy involves choosing the action that has the highest maximum
outcome. For this reason, it might be called the strategy for optimists because it
chooses the strategies that provide the best outcome under the most favorable state
of nature. In this example:

Maximum gain (outdoor venue) = $500,000
Maximum gain (indoor venue) = $200,000
Maximum gain (do not invest) = $0

Using the maximax strategy, we would choose the outdoor venue because it offers
the highest maximum outcome.
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Decision Making under Risk
If the probabilities of different states of nature are known or can be reasonably es-
timated, we are in a decision making under risk situation. Let’s say that in the pre-
vious example, we also had information about the probability of rain on the night
when the event is scheduled. If the probability of rain is 0.6, that means the proba-
bility of no rain is 0.4 because they are mutually exhaustive states of nature. We add
this information to Table 14-8.

Table 14-8. Expected payoff from various actions, given probabilities of different states of
nature

  Rain No rain Expected payoff

 Probability 0.6 0.4  

Action Outdoor venue −$50,000 $500,000 $170,000

 Indoor venue $200,000 $200,000 $200,000

 Do not invest $0 $0 $0

The expected payoff is calculated by multiplying the payoff under each combination
of actions and states of nature by the probability of the state of nature. For instance,
for the outdoor venue option:

E(payoff) = (.6)(−50,000) + (.4)(500,000) = −30,000 + 200,000 = 170,000

We choose the option with the greatest expected payoff. In this case, we would
choose to stage our event indoors. This method requires us to have reasonable es-
timates of the probability of the states of nature. If they were reversed in the pre-
ceding example, the highest expected payoff would come from the outdoor venue.

Decision Trees
If the probability of various outcomes given particular actions is known, a decision
tree can be constructed that displays the actions and payoffs under different states
of nature, and it can be used to clarify the outcomes of different combinations. The
decision tree containing the same information as Table 14-8 is shown in Fig-
ure 14-12.

The purpose of a decision tree is to display decision-making information, including
available actions, states of nature, and expected payoffs, in a clear and graphical
manner. It does not include any rules for making decisions but can aid decision-
making by presenting the relevant information in one graphical summary.
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Figure 14-12. Decision tree for event venue example

Quality Improvement
The roots of quality improvement (QI) date back to the 1920s, when Walter
Shewhart began developing a statistical approach to studying variation in manufac-
turing processes. Interest in QI got a major boost in the 1950s with the work of W.
Edwards Deming, who developed a statistical approach to QI based on Shewhart’s
work. Ironically, Deming’s approach was initially rejected in his native country (the
United States) but enthusiastically embraced in Japan, where QI techniques were
applied to manufacturing so successfully that Japanese companies were able to
challenge and in some cases surpass the American supremacy in manufacturing. In
response, American companies began adopting QI approaches in the 1980s;
Motorola and General Electric are among the best-known early adopters.

There are multiple approaches to QI, including a popular program known as Six
Sigma (6σ), which is part of a general approach known as Total Quality Management
(TQM). This section concentrates on the basics of QI, which are common to many
such programs, and avoids getting into the specifics of jargon and acronyms of any
particular program. It also concentrates on the statistical methodology used in QI,
although the reader should bear in mind that most QI programs are multifaceted
and include psychological and organizational strategies as well as statistical meas-
urement and analytic techniques.

Although QI began in the manufacturing sector, it is now applied in other areas,
including health care and education. “Quality” may be the buzzword of the new
century, so consideration of the basic aspects of quality measurement and improve-
ment might prove useful to people working in widely disparate fields. Anywhere
quality can be defined and measured, the QI field might provide useful tools.

The first step in measuring anything is defining it. Quality in the QI context is gen-
erally defined in terms of the customer; a high-quality product satisfies the needs
and preferences of the customer. In manufacturing, this might mean machine parts
with specified dimensions and durability. In health care, it might mean a doctor’s
visit that answers the patient’s concerns and does not involve excessive waiting or
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other aversive experiences. The customer’s needs and preferences must be translated
into product variables that can be measured. Picking up on the healthcare example,
“no excessive waiting time” might be operationalized into “waiting time of no more
than 10 minutes.” This would allow each visit to be evaluated as to whether the
standard was met. Similarly, specific dimensions can be established for machine
parts and specific parts evaluated as to whether they fall into the acceptable range
as specified by the customer.

The language of QI is drawn from manufacturing and commonly refers to prod-
ucts that are created by processes, which are part of a larger system. For instance, a
company might manufacture bolts (the product) through a series of processes (such
as cutting, stamping, and polishing), which are part of a larger system that transforms
inputs (such as metal) into outputs (the bolts). An inherent fact about any process is
that it is variable. For instance, not every manufactured bolt will have exactly the
same dimensions. QI largely is concerned with defining acceptable limits of varia-
tion, tracking variation within processes, and identifying causes and finding solu-
tions when products are not within the acceptable range of variation.

Run Charts and Control Charts
Control charts, developed by Walter Shewhart in the 1920s, are a basic graphical
technique used to monitor process variation. The control chart is a refinement of
the basic run chart, which is simply a time series chart displaying some characteristic
of the product in question on the y-axis and time or order of production on the x-
axis. Often, the graphed data points represent a statistic such as the mean, calculated
from small samples of product rather than individual values.

Graphing sample means allows us to invoke the central limit theorem and assume
an underlying normal distribution for the data points without regard to the distri-
bution of the individual values in the population. This is essential when using the
decision rules that follow for determining when a process is going out of statistical
control. If individual data points are represented in the control chart, these rules
cannot be used unless the underlying process is normal, but graphing the points can
still be useful as a graphical representation of the variation present in the process.

We expect to find variation in the output from any process but do not expect the
distribution of the output to change, either in location (mean or median) or spread
(standard deviation or range). If the distribution of output from a process is consis-
tent over time, we say the process is in statistical control or simply in control. If it
changes, the process is said to be out of statistical control or simply out of control.
The process of monitoring and eliminating sources of variation for some process to
bring it into or keep it in statistical control is called statistical process control.

There are two basic sources of the total variation of any process: common causes and
special or assignable causes. Common causes of variation are those that are attribut-
able to the design of a process and affect all output of the process. For a manufac-
turing process, common causes might include lighting in a factory, the quality of
raw materials, and worker training. If the amount of variation due to common causes
is too great, the process must be redesigned. Perhaps the lighting can be improved,
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workers can be given more training, the tasks can be broken down into smaller
segments that can be performed more accurately, or a more consistent source can
be found for the raw materials used in the manufacturing process. This type of cor-
rection is generally the responsibility of management and does not figure in the type
of analysis discussed in this section.

For the purposes of this section, a process that has only common causes of variation
is a process that is in control. Instead, we focus on special causes of variation, which
are actions or events that are not part of the process design. Special causes are usually
temporary and affect only small parts of the process. A worker might become fa-
tigued and fail to execute his job accurately, or a machine might get out of adjustment
and start producing products outside the range of acceptable values. Control charts
are used to identify when processes are going out of statistical control and might aid
in identifying special causes of variation.

Control charts usually include a centerline drawn at the process mean or median.
The centerline acts as a reference point to evaluate the data points, for instance, to
evaluate whether data points are close to or distant from a central value. The value
of this centerline is usually specified in advance by the analyst and represents the
expected value when the process is in control (running correctly, producing accept-
able output) rather than the mean of the sample points. One other convention in
control charts is the addition of lines connecting each consecutive point, which
makes it easier to see the pattern across the sequence of measurements. Both features
are displayed in the hypothetical run chart in Figure 14-13.

Figure 14-13. Control chart of weight in ounces for 40 screws (individual values) with a process
mean of 3.0

This run chart displays the weight of 40 consecutively produced screws from a hy-
pothetical manufacturing process. The y-axis displays the weight in ounces of each
screw, the x-axis displays the order of observation, and the centerline displays the
process mean of 3.0. We can observe therefore that the first three screws were slightly
below the mean, the fourth was above, and so on. We can also see that the pattern
is random and centered on the process mean and that the longest run (consecutive
values in the same direction) involves four data points (values 29–32).

No particular pattern in the data is presented in Figure 14-14 (not surprising because
it was created using a random number generator!), one of the indications that a
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process is in control. The charts in Figures 14-14 through 14-19 display some of the
patterns that can be spotted by a run chart and might signal the need for further
investigation.

Figure 14-14. Control chart with an upward trend

Note that at this stage, because we are looking at individual data points, we are
looking for general patterns rather than performing statistical tests. More formal
rules are discussed shortly that may be used to determine when a data pattern cannot
be attributed to random variation but should be investigated as evidence that a pro-
cess is going out of control.

Figure 14-15. Control chart with a downward trend

Figure 14-16. Control chart with a cyclical pattern
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When a control chart is based on sample means, thanks to the central limit theorem
we can use the normal distribution to identify values or patterns that would be highly
improbable for a process in statistical control. A number of rules have been deter-
mined that indicate a process is going out of control, based on the expected distri-
bution of values of the data points if they were based on samples drawn from a
normal distribution with mean and variance specified from the process when it is in
control.

Figure 14-17. Control chart with increasing variability

Figure 14-18. Control chart with a shock or outlier (single extreme value)

Figure 14-19. Control chart with a change of level (upward shift of mean)
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Use of the standard deviation to define acceptable ranges of values for the outputs
from a process is the source of the name for the Six Sigma program because sigma
(σ) is the symbol for standard deviation. The idea behind the Six Sigma program is
to reduce variability sufficiently that output in the range of ±3σ will still be acceptable
to the customer.

As discussed in Chapter 3, with normally distributed data, the probability of data
points within particular ranges is known. The percentage of data from a normal
distribution contained in different ranges, defined by standard deviations from the
mean, is displayed in Figure 14-20.

Figure 14-20. Probability of data points in particular ranges in a normal distribution

As discussed in Chapter 3, this figure tells us that, in a normal distribution, the
probability of a data point within one standard deviation of the mean is about 68.2%.
The probability of a data point in the range between one and two standard deviations
above or below the mean is about 27.2%, the probability of a point between two
and three standard deviations above or below the mean is about 4.2%, and the
probability of a point beyond three standard deviations above or below the mean is
about 0.2%. To look at it another way, in repeated samples from a normally dis-
tributed population, we would expect about 68% of the sample means to fall within
one standard deviation of the mean, about 95% within two standard deviations, and
about 99% to be within three standard deviations.

A control chart with the addition of control limits translates this information so the
distribution of points is on the y-axis, whereas the x-axis displays the time or order
of samples charted. The different ranges are often labeled as shown in Figure 14-21.

In this chart:

1. Zone A, or the three-sigma zone, is the area between two and three σ of the
centerline.

2. Zone B, or the two-sigma zone, is the area between one and two σ of the cen-
terline.

3. Zone C, or the one-sigma zone, is the area within one σ of the centerline.
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These zones are used in conjunction with a set of pattern analysis rules to determine
when a process has gone out of control.

Because both the mean value and variability of the samples are important when
determining whether a process is in control, control charts are usually produced in
pairs, one representing mean values of the samples and one representing their var-
iability. For continuous data, an x-bar chart (so called because , pronounced x-bar,
is the statistical symbol for a sample mean) is used to track the mean value. Varia-
bility is represented with either an s-chart displaying the standard deviation of the
samples or an r-chart representing the range of the samples.

The following pattern analysis rules are used to interpret data from the x-bar chart
but could be applied to any of the various types of control charts. This list is an
amalgam of several sets of rules, including the Western Electric rules developed at
the Western Electric Company (now part of AT&T) and first published in 1956, and
the Nelson rules developed by Lloyd S. Nelson and first published in 1984.

The circumstances under which a process is judged out of control under pattern
analysis rules are:

1. If any point falls outside Zone A

2. If 9 consecutive points fall in Zone C or beyond (farther from the centerline) on
the same side of the centerline

3. If 6 consecutive points fall in the same direction, that is, all increasing or all
decreasing

4. If 14 consecutive points alternate up and down

5. If 2 out of 3 consecutive points fall in Zone A or beyond on the same side of the
centerline

6. If 4 out of 5 consecutive points fall in Zone B or beyond on the same side of the
centerline

Figure 14-21. Control chart with sigma ranges
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7. If 15 points in a row fall in Zone C

8. If 11 consecutive points fall in Zone B or beyond

If data is binary rather than continuous (for instance, if items are simply classified
as defective or acceptable), p-charts or np-charts based on the binomial distribution
can be created in place of the x-bar chart. Note that binomial data is often referred
to as attribute data within the field of quality control. If the interest is the number of
defects rather than the number of defective units (if a unit can have more than one
defect and the total count of defects is the variable of interest), c-charts and u-
charts can be created in place of the x-bar chart. Because these charts are usually
created using computer software (as are x-bar charts), they will not be discussed in
detail here. The key point is that the principles of interpretation are the same as for x-
bar charts. The following set of rules should help clarify which type of chart to use
for each type of data:

1. Data points represent sample means from continuous data (x-bar chart).

2. Data points represent the number of defective items per sample, and all samples
are the same size (np-chart).

3. Data points represent the proportion of defective items per sample, and samples
are of different sizes (p-chart).

4. Data points represent the average number of defects per unit, and all samples
are the same size (c-chart).

5. Data points represent the average number of defects per unit, and samples are
of different sizes (u-chart).

W. Edwards Deming and Japan
Japan was not always the manufacturing powerhouse we know today. In the first
half of the twentieth century, Japan was noted primarily for the manufacture of
inexpensive products, and the industrial infrastructure of the country was severely
damaged during the Second World War. However, after the war, the victorious
Allied command assigned a group of engineers to help Japan rebuild its economy.

One aspect of this rebuilding was teaching Japanese manufacturers about statis-
tical quality control methods. In 1950, W. Edwards Deming (1900–1993), a sta-
tistician who had studied with Walter Shewhart, was invited to present a series of
lectures on statistical quality improvement under the auspices of the Japanese
Union of Scientists and Engineers. During his visit, Deming also met with the top
executives of many major Japanese companies.

Deming so impressed the Japanese industrial leaders that they established two
annual awards in his name for achievements in the field of quality: the Deming
Prize for Individuals (awarded to individuals who have made important contri-
butions in the study, methodology, or dissemination of TQM) and the Deming
Application Prize (awarded for outstanding performance improvement through
application of TQM principles). Further information about these prizes is avail-
able from the Deming Institute website.
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Exercises
Here’s a quick review of the topics covered in this chapter.

Problem

Calculate the simple index for 2000, using each of the other years (shown in Ta-
ble 14-9) as a base year. What do the results tell you about the selection of the base
period?

Table 14-9. Data for calculating an index using different base years

Year Price

1970 1,000

1980 1,500

1990 2,000

2000 1,500

Solution

I2000 = 150 when 1970 is the base year, 100 when 1980 is the base year, and 75 when
1990 is the base year. This demonstrates the importance of the choice of the base
year in index calculations and why it is important not to allow politics or other
extraneous considerations to affect this choice.

Calculations when 1970 is the base year:

I 2000 = (1,500/1,000)×100 = 150

When 1980 is the base year:

I 2000 = (1,500/1,500)×100 = 100

When 1990 is the base year:

I 2000 = (1,500/2,000)×100 = 75

Problem

Calculate the Laspeyres index and Paasche index for 2000 for the data in Ta-
ble 14-10, using 1990 as the base year. Why do they differ?

Table 14-10. Data for comparing the Laspeyres index and Paasche index

Product 1990 quantity 1990 price 2000 quantity 2000 price

Beef 100 pounds $3.00/pound 50 pounds $5.00/pound

Chicken 100 pounds $3.00/pound 150 pounds $3.50/pound
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Solution

The Laspeyres index is 141.67; the Paasche index is 87.50. The difference is due to
different systems of weighting: the Laspeyres index uses the weights from the base
year, but the Paasche index uses the weights from the index year. In this case, the
same amount of meat was purchased in 1990 and 2000, but less beef and more
chicken was purchased in 2000 relative to 1990. An inflation index based on the
Laspeyres index would miss this change in consumer habits.

Figure 14-22 shows the calculations for the Laspeyres index.

Figure 14-22. Calculating the Laspeyres index

Figure 14-23 shows the calculations for the Paasche index.

Figure 14-23. Calculating the Paasche index

Problem

Calculate the SMA and CMA for n = 3 and n = 5 for the sixth time point for the data
shown in Table 14-11.

Table 14-11. Data for calculating the SMA and CMA

Time 1 2 3 4 5 6 7 8 9

Raw data 3 5 2 7 6 4 8 7 9

Solution

SMA(n = 3) = (7 + 6 + 4)/3 = 5.7
SMA(n = 5) = (5 + 2 + 7 + 6 + 4)/5 = 4.8
CMA(n = 3) = (6 + 4 + 8)/3 = 6.0
CMA(n = 5) = (7 + 6 + 4 + 8 + 7)/5 = 6.4

Notice that because there is a general trend upward in this data, the CMA estimates
are higher, particularly with the larger window.

Problem

Suppose you were considering whether to open a stationer’s shop in a small or a
large city. Greater potential profit is to be made in the large city but also greater
potential loss (due to the greater expenses of setting up business there). The success
of the shop will largely depend on the local business climate when you open. If other
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businesses in the city are expanding, you have a good chance to land some large
orders, but if they are struggling, you might barely make enough sales to meet your
expenses.

Table 14-12 contains data of payoffs under two states of nature. Calculate the min-
imax, maximax, and maximin decisions for this situation.

Table 14-12. Data for comparing investment prospects for a stationer’s shop

  Business climate  

  Good Poor

Location Large city $200,000 $10,000

 Small city $100,000 $20,000

Solution

For the minimax solution, construct an opportunity loss table like Table 14-13.

Table 14-13. Opportunity loss table for the prospects for a stationer’s shop

  Business climate  

  Good Poor

Location Large city $0 $10,000

 Small city $100,000 $0

The minimax solution is to choose the action that minimizes opportunity loss; in
this case, we would choose to place our store in the large city.

The maximax solution is to select the action that has the highest maximum outcome,
so in this case, we would place our store in the large city.

The maximin solution is to select the action that has the largest minimal outcome,
so in this case, we would place our store in the small city.

Problem

What pattern analysis rules are violated in the control chart in Figure 14-24?

Note that for the in-control process for this example, the mean = 3 and the standard
deviation = 0.5, so the centerline is at 3.0, the 3-sigma limits are at 1.5 and 4.5, the
2-sigma limits are at 4.0 and 2.0, and the 1-sigma limits are at 3.5 and 2.5.

Solution

The violations are identified in Figure 14-25 and listed after the figure.

1. Nine points in a row on the same side of the centerline (rule 2)

2. One point outside three-sigma range, that is, outside zone A (rule 1)

3. Six points in a row in the same direction (rule 3)

4. Four out of five consecutive points beyond the one-sigma range (zone B or
beyond) on the same side of the centerline (rule 6)
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Figure 14-24. Control chart with pattern violations

Figure 14-25. Control chart with pattern violations flagged
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15
Medical and Epidemiological

Statistics

Many of the statistics used in medicine and epidemiology are common to other
fields; examples include the t-test (covered in Chapter 6), the correlation coefficient
(covered in Chapter 7), and the various types of regression and ANOVA (covered
in Chapters 8 through 11). However, some statistics have been developed specifically
to meet the needs of medical and epidemiological research (such as the odds ratio),
and others, although common to many fields, are used so frequently in medicine
and epidemiology that they are covered in this chapter (for instance, power and
sample size calculations).

Measures of Disease Frequency
Before getting into specific measures of disease frequency, it is worthwhile to discuss
the meanings of several terms in common usage that are often confused. We can
always report disease frequency in terms of the number of cases. For instance, there
were 256 cases of tuberculosis (TB) in city A and 471 in city B last year. Raw numbers
are useful for people who allocate current resources and plan future monetary and
space allocation because they need to know how many cases of TB (and other dis-
eases) to expect in the coming year so they can allocate resources accordingly. How-
ever, for research and planning at the national and international level, disease oc-
currence is more usefully described in terms of relative rather than absolute
occurrence because we often want to look at trends over time or across different
geographical areas with different population sizes. For instance, the preceding hy-
pothetical raw numbers suggest that city B has a worse problem with TB than city
A, but if city B has five times the population, the opposite would be true. Similarly,
the number of cases of a disease can increase because the population is also increas-
ing, so to make comparisons, we often need to translate counts into other metrics.
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Ratio, Proportion, and Rate
Three related types of metrics are the ratio, the proportion, and the rate. A ratio
expresses the magnitude of one quantity in relation to the magnitude of another
quantity without making further assumptions about the two numbers and without
requiring the two numbers to share a common unit. Ratios may be expressed as A:B,
or A per B, and are often converted to standard metrics for easy comparison, such
as 1:B or A per 10,000. We might be interested in the ratio of men to women living
with AIDS in the United States. According to the Centers for Disease Control and
Prevention (CDC), 769,635 men and 186,383 women were living with AIDS in the
United States in 2005. The ratio of men to women living with AIDS is therefore
769,635:186,383, which can also be expressed as 4.13:1. The second formulation
makes it clearer that just over four times as many men as women were living with
AIDS in the United States in 2005.

Two types of ratios often used in epidemiology and public health are the risk ratio
and the odds ratio, which this chapter further discusses. Ratios do not require the
quantities compared to be measured in the same units; a common measure used to
compare health care availability in different countries is the ratio of hospital beds to
the population size. This is often expressed as the number of hospital beds per 10,000
people. According to the World Health Organization, the United Kingdom had 39.0
hospital beds per 10,000 people in 2005, whereas Sudan had 7.0 and Peru 11.0,
suggesting that hospital care was more readily available in the United Kingdom than
in the other two countries. This type of ratio is sometimes referred to as a rate,
although it does not meet the strict definition of rate (discussed later) because the
denominator does not include a measure of time.

A proportion is a particular type of ratio in which all cases included in the numerator
are also included in the denominator. To return to the previous example, if we want
to know what proportion of people living with AIDS in the United States were male,
we would divide the number of males by the total number of cases (the number of
cases in males plus the number of cases in females), as shown in Figure 15-1.

Figure 15-1. Calculating a proportion

Proportions are often expressed as percents, which means, literally, per cent or per
100. (Cent is Latin for 100.) To translate proportions to percents, multiply by 100.

0.805 × 100 = 80.5%

The proportion of males among all people living with AIDS in the United States
could also be expressed as 80.5 percent, or 80.5%.

A rate, strictly speaking, is a proportion in which the denominator includes a meas-
ure of time. For instance, we commonly measure a person’s heart rate in terms of
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beats per minute and disease or injury occurrence in terms of the number of cases
per week, month, or year. Morbidity and mortality (disease and death) statistics are
often reported in terms of the rate per 1,000 or 100,000 per time unit because it is
easier to interpret numbers such as 3.57 versus 12.9 annually per 100,000 population
than 0.0000357 versus 0.0000129 annually per person.

Converting rates to standard quantities facilitates comparison across populations of
different sizes. For instance, the CDC reports that the annual death rate in the United
States in 2004 was 816.5 per 100,000 population compared to 1,076.4 per 100,000
in 1940 and 954.7 per 100,000 in 1960. There were more deaths in 2004 than in any
of the comparison years (2,397,615 in 2004 versus 1,417,269 in 1940 and 1,711,982
in 1960), but because the population of the United States was also increasing, the
annual death rate per 100,000 decreased.

A simple example using hypothetical data (Table 15-1) illustrates this.

Table 15-1. Population and death figures for several years

Year Deaths Population Deaths per 100,000

1940 75 50,000 150.0

1950 95 60,000 158.3

1960 110 75,000 146.7

1970 125 90,000 138.9

We can see that although deaths increased each year, the population increased even
faster, so the annual death rate per 100,000 population decreased in each year stud-
ied. To calculate the death rate per 100,000, use the formula in Figure 15-2.

Figure 15-2. Calculating the death rate per 100,000

So, given the data in Table 15-1, the death rate per 100,000 for 1940 is calculated
as shown in Figure 15-3.

Figure 15-3. Calculating the death rate per 100,000 population for 1940

One issue in computing rates over a long period of time, such as a year, is to decide
what number to use in the denominator because the population cannot be assumed
to be constant over the period. One typical solution is to use the population at the
midpoint of the period (e.g., the year).
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There are several other issues involved in reporting disease incidence. One is whether
the number of individuals with a condition or the number of conditions itself is being
reported. For instance, if you were studying oral health, you might be interested in
tooth decay, but a single person could have more than one cavity. Are you interested
in the number of people who had at least one cavity or the total number of cavities?

A similar issue arises if you are studying a transient condition. For instance, if your
topic is homelessness, are you interested in how many people had been homeless at
least once over a time period, or would you count each instance of homelessness,
with the understanding that some people might have been homeless more than once
in the time period in question? These are problems of unit of analysis, meaning that
you need to decide what entity you are studying (a person who might develop one
or more cavities or a number of individual teeth, each of which can develop a cavity)
and collect and analyze data with that definition in mind. Unit of analysis is discussed
further in Chapter 3.

Prevalence and Incidence
In epidemiology and medicine, when we speak of the number of cases of a disease,
we make a basic distinction about whether we are counting all the existing cases of
a disease or only counting new cases. This might seem like hairsplitting to the average
person, but it is important to people working in medicine and epidemiology because
we often want to separate new cases of a disease from existing cases. We can deter-
mine whether a sanitation campaign is effective in preventing new cases of disease,
for instance. We separate existing from new cases by measuring two types of disease
frequency: prevalence and incidence.

Prevalence describes the number of cases that exist in a population at a particular
point in time. Prevalence describes the disease burden on a population without dif-
ferentiating between new versus existing cases; a diabetic diagnosed the day a survey
is conducted is counted equally as having the condition as a diabetic who has been
living with the condition for 20 years. Prevalence is particularly useful to people
involved in resource allocation and planning because they need to know the disease
burden in the population as well as what it will be like in the future. Prevalence has
assumed increasing importance as the focus on epidemiology in the industrialized
world has shifted from infectious to chronic diseases and conditions. This is because
chronic diseases and conditions are often not curable but not rapidly fatal either, so
a person can live for years with the disease or condition if appropriate medical care
is provided.

Prevalence is defined as the proportion of individuals in a population who have the
disease at a particular point in time and is calculated as shown in Figure 15-4.

Figure 15-4. Calculating prevalence
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If a survey of a city with a population of 150,000 people found that 671 were dia-
betics, the prevalence of diabetes at the time of the survey in that city would be 671
per 150,000 or 447.3 per 100,000. For ease of comparison, standards such as per
100,000 are commonly used when reporting data. Because prevalence tells you the
disease status of a population at a particular point in time, it is sometimes called
point prevalence. Note that the “point” can be a calendar time, such as a day, or a
time in the life cycle or other course of events, such as the onset of menopause or
the first day following surgery. Prevalence is sometimes referred to as prevalence
rate, particularly when longer time intervals such as a year are used, although this
is not strictly correct because there is no unit of time in the denominator.

Incidence is more complicated to calculate because it requires three elements to be
defined. Incidence describes the number of new cases of a disease or condition that
develop in a population at risk during a particular time interval. Population at risk
means people who have the potential to develop the condition. Men are not at
risk for pregnancy, for instance, so they would not be included in the population at
risk. Similarly, after a person is infected with HIV (the virus that causes AIDS), that
person cannot become infected again (or become uninfected, so far as we know), so
the population at risk for HIV infection is restricted to those individuals who are not
already HIV positive. Both incidence and prevalence are also used to describe health
behaviors as well as diseases and conditions; for instance, we can refer to the prev-
alence of smoking in Mexico or the incidence of smoking onset in 2005 among
teenagers at a particular school.

There are two types of incidence, cumulative incidence and incidence density. Cu-
mulative incidence (CI) is the proportion of people who contract a disease during a
specific time interval and is calculated as shown in Figure 15-5.

Figure 15-5. Cumulative incidence formula

CI is used to estimate the probability that an individual at risk will develop a disease
or condition within a specified period, so it is important for the period to be iden-
tified. The CI of a woman developing breast cancer in a 1-year period following
initial use of oral contraceptives will be different from the CI for a 10-year period.

The formula to calculate CI assumes the entire population at risk can be studied for
the entire specified period; this means that, unless otherwise qualified, incidence is
a proportion. If the population at risk changes over the period included in the inci-
dence calculations, the incidence density (ID), also known as the incidence rate (IR),
should be calculated instead. This would be necessary if people entered a study after
it began or dropped out before it was completed. Calculation of the IR requires
expressing the denominator in person-time units, which represent the amount of
time each person was observed. The time of observation for each person is often
referred to as the time each person contributed to the study.
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The calculation of person-time units is demonstrated in Table 15-2. It represents
hypothetical data on the annual rate of postsurgical infections at two hospitals. Be-
cause the hospitals serve different numbers of patients and patients are in the hos-
pital for different lengths of time, we need to calculate the IR using person-time units
in the denominator. Our statistic of comparison will be the number of complications
per 100 patient-days. Each patient-day can be considered an opportunity for an
infection to occur, so using patient-days in the denominator corrects for the different
exposure to risk at the two hospitals.

Table 15-2. Data on postsurgical infections at two hospitals

Hospital Patient ID Days followed Infection?

1 1 30 N

1 2 25 Y

1 3 15 N

Total for Hospital 1 70 1  

2 1 45 Y

2 2 30 N

2 3 50 N

2 4 75 Y

Total for Hospital 2 200 2  

The rate of infections per 100 patient-days is calculated as shown in Figure 15-6.

Figure 15-6. Calculating the infection rate per 100 patient-days

So for this example, the rates are shown in Figure 15-7 for hospital 1 and Fig-
ure 15-8 for hospital 2.

Figure 15-7. The infection rate per 100 patient-days for hospital 1

Figure 15-8. The infection rate per 100 patient-days for hospital 2
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Even though hospital 1 had more postsurgical infections in the period studied, these
occurred during proportionally more patient-days, so hospital 2 has a lower rate of
postsurgical infections than hospital 1.

The relationship between incidence and prevalence for a particular disease depends
largely on the duration of the disease. If a disease has short duration (such as the
common cold), prevalence will be low relative to incidence. In contrast, if a disease
has a long duration (typical of many chronic diseases such as diabetes), the preva-
lence will be high relative to incidence. Changes in prevalence across time periods
can be due either to changes in incidence or in duration. For instance, incidence of
a fatal disease might decrease, but prevalence might increase if new treatments are
developed that allow people to live for longer periods with the disease without curing
it (an increase in the duration of the average case of the disease). Similarly, the in-
cidence of a disease can increase but the prevalence decrease if the duration of the
disease is shortened through the development of new treatments that promote faster
recovery.

Prevalence may be expressed mathematically as the product of incidence times aver-
age duration, as shown in Figure 15-9.

Figure 15-9. The relationship among prevalence, incidence, and duration

If two of these variables are known, the third can be calculated. For instance, if the
incidence of a disease is 75 per 100,000 and the average annual prevalence is 45 per
100,000, the average duration can be calculated as shown in Figure 15-10.

Figure 15-10. Calculating average duration, given prevalence and incidence

This assumes steady-state conditions for the time period under study and no major
changes in disease incidence or duration. The formula can also be used to calculate
how prevalence would change if either incidence or duration changes. For instance,
if incidence of a particular disease remains steady at 125 per 100,000 but duration
drops from 0.6 years to 0.1 years, prevalence will decrease from 75 per 100,000 per
year to 12.5 per 100,000 per year. Similarly, if duration increases, prevalence will
increase. If incidence of some disease remains steady at 200 per 100,000 per year
but duration increases from 0.5 years to 2 years, prevalence will increase from 100
per 100,000 per year to 400 per 100,000 per year.

Crude, Category-Specific, and Standardized Rates
If not otherwise qualified, the term rate usually means the crude rate. The crude rate
is the rate for the entire population under study with no weighting or adjustment.
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A common example is the crude death rate. According to the CDC, the crude death
rate for cancer in the United States in 2003 was 195.5 per 100,000. There is nothing
wrong with crude rates, but sometimes we want more specific information, or we
need to make adjustments in the rates to make comparisons more meaningful. For
instance, the crude death rate for cancer in the United States in 2003 was not con-
stant across ethnic groups, age groups, or genders, nor was it constant across types
of cancer. Exploring these differences might be of interest to researchers, in which
case they will want to look at the category-specific rates, in which both the numerator
and denominator represent one population group or one type of disease. In the
United States in 2003, the cancer mortality rate for men was 201.4/100,000; for
women, it was 182.0/100,000. In the same year, the crude mortality rate for lung
cancer was 76.9/100,000, whereas for skin melanomas, it was 2.7/100,000.

For white Americans in 2003, the crude cancer death rate was 203.8/100,000; for
African-Americans, it was 164.3/100,000, a finding that might seem paradoxical
until we consider that increased life expectancy is often associated with increased
cancer mortality. Someone who dies as an infant is unlikely to have died of cancer,
but someone who lives into her eighties has a much higher probability of a cancer-
related death. This is true of general mortality as well. Under most circumstances,
a person who is 90 years old has a much higher probability of dying in the next year
than a person who is 12 years old. For this reason, death rates used to make com-
parisons across different populations or time periods are usually standardized by
age and may also be standardized by categories such as ethnicity or gender.

The importance of age adjustment can be seen by comparing the crude and age-
adjusted cancer mortality figures for the United States in 2003 in Table 15-3.

Table 15-3. Crude and age-adjusted cancer mortality rates (per 100,000) for the United States
in 2003

 Crude Age-adjusted

Overall 191.5 190.1

White 203.8 188.3

African American 164.3 234.5

Asian/Pacific Islander 79.4 114.3

American Indian/Alaska Native 69.3 121.0

Hispanic 60.3 127.4

This makes it clear that although the crude death rate from cancer is highest among
white Americans, this result is due in part to a longer life expectancy. A longer life
expectancy means that there are more white Americans in the older age categories,
when mortality from cancer is higher. When age adjustment is considered, African-
Americans have the highest death rate from cancer.

There are two types of standardization, direct and indirect. Both are used to compare
morbidity and mortality in different populations while removing the influence of
other population characteristics such as age or gender distribution. In direct stand-
ardization, a population is chosen to serve as the standard, and adjusted rates for
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the populations to be compared are calculated using weights from the standard
population. Consider the hypothetical example of the prevalence of arthritis by em-
ployment status in Table 15-4.

Table 15-4. Arthritis prevalence by employment status

Employment status Population Persons with arthritis Rate per 1,000

Employed 10,000 387 38.7

Unemployed 5,000 892 178.4

The rate (really the proportion) of arthritis is more than twice as high among persons
not employed as among employed persons, according to this data. Could this be
due to people being forced out of the labor market due to severe arthritis? Does
working help keep arthritis at bay? Both are possible, but a more logical explanation
is that people over the age of 65 are more likely not to be employed and more likely
to have a diagnosis of arthritis. To test the hypothesis that age distribution is the
reason for the observed differences in rate of arthritis diagnosis by employment sta-
tus, we need to compute age-adjusted rates of arthritis by using a standard popula-
tion. First, we need to calculate age-specific rates for employed and unemployed
individuals, as in Table 15-5.

Table 15-5. Age-specific rates of arthritis diagnosis

 Employed   Unemployed   

Age group Population
Persons with
arthritis Rate/1,000 Population

Persons with
arthritis Rate/1,000

18–44 5,000 127 25.4 1,000 32 32.0

45–64 4,500 260 57.7 1,500 100 66.7

65+ 500 105 210.0 2,500 760 304.0

Total 10,000 387 38.7 5,000 892 178.4

Looking at the age distribution and age-specific rates for the employed versus un-
employed populations, we see that for each age group, the rates of arthritis are
somewhat higher in the unemployed group than in the employed group (the oppo-
site pattern from that seen when data from all the age categories is combined). We
also see, as we suspected, that a much higher proportion of the unemployed group
(50%) as compared to the employed group (5%) is in the 65+ age category, where
the rates of arthritis are highest.

Note that we used very broad age categories (corresponding to young working adult,
older working adult, and retirement age) in this table for ease of calculation. Often,
smaller categories are used, such as 10-year age ranges.

We can use age-specific rates to calculate the expected numbers of persons with
arthritis in each age category for the two employment groups, using the age distri-
bution from a hypothetical standard population. Usually, data from a recognized
source is used for the standard population in these calculations, such as the U.S.
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population in 2000 as determined by the U.S. Census Bureau. The expected number
of persons with arthritis is shown in Table 15-6.

Table 15-6. Expected numbers of persons with arthritis by age category and employment
category

 Standard
population Employed

 
Unemployed

 

Age group Population Rate/1,000
Expected
diagnoses Rate/1,000

Expected
diagnoses

18–44 100,000 25.4 2,540.0 32.0 3,200.0

45–64 70,000 57.7 4,039.0 66.7 4,669.0

65+ 30,000 210.0 6,300.0 304.0 9,120.0

Total 200,000  12,879  16,989

The expected cases within each age and employment category are calculated by
applying the age-specific rates for each population to the number of people in that
age category in the standard population. This may be considered a type of weighting
and is equivalent to saying how many cases of diagnoses we would expect to see in
each population if the age distribution were the same as in the standard population.
For instance, for the 18–44 age group in the employed population, the calculation
is shown in Figure 15-11.

Figure 15-11. Expected cases for the employed, age 25–44, category

For the 65+ age category in the unemployed population, it would be as shown in
Figure 15-12.

Figure 15-12. Expected cases for the unemployed, age 65+ category

The total expected diagnoses for employed and unemployed people are found by
adding up the expected diagnoses for each age group within the category. We can
see that, if the two populations had the same age distribution, employed people
would be expected to have fewer arthritis cases (12,879) than people who were
unemployed (16,989). We can further refine this finding by calculating the age-
adjusted arthritis rates for each population by dividing the number of expected cases
by the total size of the reference population and then multiplying by 1,000 (to get
the rate per 1,000). For employed people, this would be as shown in Figure 15-13.
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Figure 15-13. Age-adjusted arthritis rate for employed people

For unemployed people, the age-adjusted arthritis rate would be 84.9 per 1,000.
Comparing these rates shows us that the rate of arthritis is higher in unemployed
persons than in employed persons, but the difference is much less than the rates in
Table 15-5. Note that the age-adjusted rates calculated through direct standardiza-
tion do not represent the actual rates in any population; they represent what rate
would be expected in one or more particular populations if they had the age distri-
bution of some reference population.

Indirect standardization takes the reverse approach. It applies the category-specific
rates from some standard population to the actual category distribution in two or
more populations. Applying indirect standardization to our arthritis example, we
will calculate the expected number of arthritis diagnoses if both populations had the
same age-specific rate of diagnosis but kept their own specific population age dis-
tribution. The rates (which are hypothetical) are shown in Table 15-7.

Table 15-7. Indirect method of standardization

 Standard Employed  Unemployed  

Age group rate/1,000 population Expected diagnoses population Expected diagnoses

18–44 30.0 5,000 150 1,000 30

45–64 60.0 4,500 270 1,500 90

65+ 200.0 500 100 2,500 500

Total  10,000 520 5,000 620

We can use these numbers to calculate the standardized morbidity ratio (morbidity
means disease) by dividing the observed number of diagnoses (from Table 15-5) by
the expected number of diagnoses (from Table 15-7). The standardized morbidity
ratio for employed people is shown in Figure 15-14.

Figure 15-14. Standardized morbidity ratio for employed persons

For the unemployed group, the standardized morbidity ratio is 0.695 or 69.5%. If
the standardized morbidity ratio is 1.0, we have the same number of observed and
expected cases. In our example, the standardized morbidity ratio for both the em-
ployed and unemployed groups is less than 1.0, meaning that we observed fewer
cases than expected. A standardized morbidity ratio higher than 1.0 means that more
cases are observed than were expected.
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If we were dealing with deaths rather than diagnoses of arthritis, we could use the
same technique to calculate the standardized mortality ratio (SMR), a statistic com-
monly used to compare mortality (death) across populations; the difference is that
we would be counting deaths rather than cases of disease.

The Risk Ratio
Many medical and epidemiological studies are concerned with the relationship be-
tween two dichotomous variables. A common example is the exposure to some risk
factor (such as asbestos or tobacco smoke) and the development of some disease or
condition (such as asbestosis or lung cancer). The exposure can be an inherent
quality, such as gender or ethnicity, and need not be negative; for instance, engaging
in regular physical activity is an exposure that has been shown to have a positive
influence on health.

The relationship between two dichotomous variables is often presented in a cross-
tabulation or contingency table, also called a 2×2 or two-by-two table because of its
dimensions (two rows and two columns). Contingency tables are also discussed in
Chapter 5, and the same principles apply here. However, there is a standard way to
set up a contingency table for epidemiological studies, as illustrated in Table 15-8.

Table 15-8. The 2×2 table

  Disease  Total

  D+ D−  

Exposure E+ a b a + b

 E− c d c + d

Total  a + c b + d a + b + c + d

E+ means the person had the exposure, E− that he did not. D+ means the person
has the disease, D− that he does not. The arrangement of categories (exposure as
rows, disease as columns) and order of categories (so cell a is E+, D+) is common
to many epidemiological studies, so it’s a good idea to follow it unless you have a
reason to do otherwise. Individuals in a study are classified by their exposure and
disease status, and the cells labeled a, b, c, and d contain the frequencies for each
combination of exposure and disease. For instance, cell a holds the frequency for
people who have the exposure and have the disease, and cell d holds the frequency
for people who have neither exposure nor disease.

The frequencies in the four cells a, b, c, and d are sometimes referred to as joint
frequencies because the people in those cells are classified on both exposure and
disease. On the margins of the table are the row and column totals, often referred
to as marginal frequencies. For instance, a + c is the total number of people in the
study with the disease regardless of exposure status, whereas a + b is the total number
of people with the exposure regardless of disease status. The total number of people
in the study is a + b + c + d.
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The risk ratio, also called the relative risk, estimates the likelihood of developing the
disease for people with the exposure relative to people without the exposure. It is
the ratio of the proportion of the exposed that develop the disease to the proportion
of the unexposed that develop it. The risk ratio is calculated as shown in Fig-
ure 15-15.

Figure 15-15. Formula for the risk ratio

The risk ratio can also be thought of as the ratio of disease incidence in the exposed
(Ie) versus unexposed (I0) populations, as shown in Figure 15-16.

Figure 15-16. Risk ratio using disease incidence

For studies in which the denominator is person-time units, the calculation is anal-
ogous but uses the ratio of the incidence densities (ID) for the two populations, as
shown in Figure 15-17.

Figure 15-17. Risk ratio using incidence densities

Let’s look at data from a hypothetical study designed to investigate whether there
is a relationship between consumption of a high-fat diet (the exposure) and Type II
diabetes (the disease). The data is presented in Table 15-9.

Table 15-9. Relationship between consumption of a high-fat diet and Type II diabetes

 D+ D− Total

E+ 350 1200 1550

E− 200 1900 2100

Total 550 3100 3650

The risk of Type II diabetes, given consumption of a high-fat diet, is calculated as
shown in Figure 15-18.
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Figure 15-18. Risk for the exposed group

This is the number of people with both exposure and disease (those who consumed
a high-fat diet and had Type II diabetes) divided by all who had the exposure (those
who consumed a high-fat diet, without regard to their disease state).

The risk of Type II diabetes for someone without the exposure—someone not con-
suming a high-fat diet—is shown in Figure 15-19.

Figure 15-19. Risk for the unexposed group

The relative risk of developing diabetes, comparing those consuming a high-fat diet
with those who do not, is the ratio of these two risks (hence the term risk ratio), as
shown in Figure 15-20.

Figure 15-20. Risk ratio for exposed versus unexposed

A relative risk greater than 1 indicates that the exposure increases the risk of the
disease. If there is no relation between exposure and risk, the relative risk will be 1,
but if the exposure is protective (associated with lower risk of disease), the risk ratio
will be less than 1. In this case, we would say that people consuming a high-fat diet
have 2.38 times the risk of Type II diabetes compared to people consuming a low-
fat or normal diet.

Like many other statistics, risk ratios are usually reported along with their confidence
interval (CI). Calculations of this confidence interval must take into account that
the risk ratio is right skewed because it has a lower bound of 0 but no upper bound.
To deal with this skew, we take the natural logarithm (ln) of the risk ratio, which
transforms it to an approximately normal distribution. The procedure for calculating
the CI for RR (risk ratio) requires taking the natural logarithm of RR, finding the
confidence interval for this ln(RR), and then taking the natural antilogarithm of the
confidence interval limits to return to the original units. Note that in statistical no-
tation, ex is sometimes written as exp(x).

There are several ways to calculate the confidence interval for a risk ratio, the most
common being to use statistical software. However, the calculation can also be done
by hand, as shown in the formula in Figure 15-21 for the general case.
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Figure 15-21. General formula for the CI for a risk ratio

In this formula, z is the value of the standard normal distribution associated with
the desired confidence level; most often, this value is 1.96, resulting in a two-sided,
95% confidence interval. When the RR is estimated using the odds ratio (discussed
later) from a case-control study, the CI may be calculated using values from the 2×2
table, using the formula in Figure 15-22.

Figure 15-22. CI formula for a risk ratio estimated by an odds ratio

Using values from Table 15-9 and assuming a two-sided, 95% confidence interval,
this translates to the result shown in Figure 15-23.

Figure 15-23. Computing the CI, using the odds ratio formula

Because this CI does not include the null value of 1.0, we conclude that the rela-
tionship between consumption of a high-fat diet and diagnosis with Type II diabetes
is significant.

The time period over which data is collected is important in interpreting relative
risk. The risk of developing many chronic diseases increases with duration of expo-
sure, for instance, so the risk of a high-fat diet for development of Type II diabetes
would be expected to be higher in a 10-year study than in a 1-year study. This is
particularly true for studies of mortality because if a study is continued long enough,
the probability of mortality for all the subjects is 100%!

Attributable Risk, Attributable Risk Percentage, and Number
Needed to Treat
Because there is often some risk of disease for people without the exposure being
studied, epidemiology also uses the concept of attributable risk (AR). Attributable
risk is the absolute effect of the exposure on disease occurrence, meaning the excess
risk of disease in the exposed versus the unexposed group. AR is useful as a measure
of the public health cost or benefit of some exposure because it subtracts from the
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exposed group the cases that would be assumed to have occurred anyway. AR can
also be used to estimate the impact of a proposed intervention to remove an exposure
by calculating how many cases of disease would be saved—would not occur—if the
exposure were eliminated. Attributable risk is calculated by subtracting the inci-
dence rate in the unexposed (I0) from the rate in the exposed (Ie). In our example
relating a high-fat diet and Type II diabetes, this would be as shown in Figure 15-24.

Figure 15-24. Calculating attributable risk (AR)

Therefore, a high-fat diet accounts for about 131 excess cases of Type II diabetes per
1,000 people. If there is no relationship between exposure and disease, there would
be no excess cases in the exposed group, and the AR would equal 0.

The attributable risk percentage (AR%, also called the etiologic fraction) is the pro-
portion of cases in the exposed population that can be attributed to the exposure
and would be prevented by eliminating the exposure. It is calculated, continuing
with our example, as shown in Figure 15-25.

Figure 15-25. Calculating the attributable risk percentage (AR%)

We would interpret this by saying that 58.0% of the cases among the exposed groups
are due to the exposure.

The AR% can also be calculated using RR as shown in Figure 15-26.

Figure 15-26. Calculating the attributable risk percentage using the risk ratio

The number needed to treat (NNT) is the number of patients who would need to be
treated with a procedure (as opposed to standard treatment or placebo) or to avoid
an exposure to reduce the number of cases (people with the disease) in the popula-
tion by 1. The NNT is useful in putting the expected gains from a new treatment
into perspective and is calculated using the attributable risk (AR):

NNT = 1/AR

In our example, the AR was 0.131. The NNT would therefore be:

NNT = 1/0.131 = 7.6
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NNT estimates are usually rounded up to the next whole number (no fractional
patients, please!), so in this case, we would say that eight people need to avoid a
high-fat diet for there to be one fewer case of Type II diabetes in the population.

The Odds Ratio
The odds ratio was developed for use in case-control studies, a methodology devel-
oped in epidemiology to facilitate research into diseases that are rare or slow to
develop so that a conventional prospective study would be impractical. In the case-
control study, individuals are selected based on their disease status; cases have the
disease or condition under study; controls do not. The two groups are then compared
on exposure status. Risk ratios cannot be calculated in case-control studies because
risk ratios are sensitive to the number of controls (people without the disease), and
this number is determined in case-control studies by the study design rather than
the rate of disease in a population. As will be demonstrated, the odds ratio has the
beneficial quality of being insensitive to the number of controls (persons without
the disease), whereas the risk ratio does not share this property.

The odds ratio is the ratio of the odds of exposure for the case group to the odds of
exposure for the control group. This is mathematically equivalent to the ratio of the
odds of disease for the exposed group to the odds of disease for the unexposed group,
so you might see odds ratios explained either way. In a 2×2 table, the odds of ex-
posure given disease are a/c, and the odds of exposure given no disease are b/d. The
odds ratio is calculated using the formula shown in Figure 15-27:

Figure 15-27. Formula for the odds ratio

Suppose we have a case-control study examining the effect of smoking on breast
cancer. The hypothetical data is shown in Table 15-10.

Table 15-10. Relationship of smoking and breast cancer

 D+ D− Total

E+ 50 2,000 2,050

E− 25 1,900 1,925

Total 75 3,900 3,975

The odds ratio may be calculated as shown in Figure 15-28.

Figure 15-28. Calculating the odds ratio
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Note that the risk ratio for this data is similar, as shown in Figure 15-29.

Figure 15-29. Calculating the risk ratio

If a disease or condition is rare (a rule of thumb is that disease incidence must be
less than 10% in all exposure groups), the odds ratio provides a reasonable estimate
of the risk ratio. The reason for the “rare disease” requirements is that as a disease
becomes more common in a data set, the odds ratio diverges further from the risk
ratio. This is demonstrated in the data presented in Table 15-11, which represents
data from a hypothetical case-control study of smoking and lung cancer.

Table 15-11. Smoking and lung cancer

 D+ D− Total

E+ 50 50 100

E− 20 100 120

Total 70 125 195

The disease is common in both exposed and unexposed subjects; 50% of the exposed
subjects have lung cancer, as do 16.7% of the unexposed. The odds ratio for this
data is shown in Figure 15-30 and the risk ratio is shown in Figure 15-31.

Figure 15-30. Calculating the odds ratio

Figure 15-31. Calculating the risk ratio

The difference between 5.0 and 3.0 is substantial and can be attributed to the fact
that the 10% standard was violated; in such data sets, the OR is not a good estimator
of the RR for this data.

The RR is also sensitive to changes in the number of controls, whereas the OR is
not. Suppose that because controls are easier to find than cases, we increased the
number of controls ten-fold (unlikely, because diminishing returns set in for control-
case ratios at about 4:1, but useful to demonstrate this point). This would give us
the data shown in Table 15-12.
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Table 15-12. Smoking and lung cancer, ten-fold increase in controls

 D+ D− Total

E+ 50 500 550

E− 20 1,000 1,020

Total 70 1,500 1,570

The odds ratio does not change from that calculated from the data in Table 15-11,
as shown in Figure 15-32…but the RR does, as shown in Figure 15-33.

Figure 15-32. The odds ratio is unaffected by an increased number of controls

Figure 15-33. The risk ratio is affected by an increased number of controls

Confidence intervals for the OR may be calculated using the method described in
the preceding section “The Risk Ratio” on page 362.

Odds
The odds ratio is an important statistic in medical and statistical research, yet it is
based upon a concept that is not intuitive or familiar to most people: that of odds.
The odds of an event are simply another way to express the likelihood of an event,
similar to probability; the difference is that although probability is computed by
dividing the number of events by the total number of trials, odds are calculated
by dividing the number of events by the number of nonevents. To take an epide-
miological example, the odds of a smoker contracting lung cancer is calculated by
dividing the number of smokers with lung cancer by the number of smokers
without lung cancer (a/b in a 2×2 table). The probability of lung cancer for smokers
would be calculated by dividing the number of smokers with lung cancer by the
total number of smokers (a/(a + b)).

Because both odds and probability are based on the same information, you can
convert one to the other using the following formulas:

Odds = probability/(1 − probability), Probability = odds (1 + odds)

Suppose P(A) = 0.5 or 50%. The odds of A are therefore 0.5/1 − 0.5 = 1.0. This
should make intuitive sense: 50% probability means an even chance of an event
happening or not happening, whereas odds of 1.0 also means an even chance of
the event happening. Working in reverse, if odds = 1.0, probability = 1.0/(1.0+1.0)
= 0.5.
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The odds ratio is simply the ratio of two odds, for instance, the odds of lung cancer
for smokers and the odds of lung cancer for nonsmokers (mathematically equal
to the odds of smoking for those with lung cancer compared to the odds of smoking
for those without lung cancer). The odds ratio can be computed using probabilities
with this formula (where odds1 and odds2 are the odds of the outcome under the
two conditions, and p1 and p2 are the probabilities of the outcome under the two
conditions), as shown in Figure 15-34.

Figure 15-34. Calculating the odds ratio using probabilities

Confounding, Stratified Analysis, and the Mantel-Haenszel
Common Odds Ratio
Confounding is a condition in which an observed statistical association is due at least
in part to differences in the study groups other than the exposure of interest in the
study. Confounding is sometimes described as the “third variable” problem; the
relationship between two variables, say exposure and disease, is mixed up or con-
founded with the influence of a third variable related to both of them. More than
one variable can be involved in confounding, but for the sake of simplicity, we
demonstrate methods to deal with a single confounding variable.

Researchers in epidemiology need to be alert to the potential for confounding in
their data, particularly in observational studies when group membership is not under
the control of the investigator. For instance, studies of the effects of smoking on
health have to take into account the fact that smoking is a voluntary behavior (people
choose to smoke or not to smoke) and people who smoke can differ in many other
ways (such as alcohol consumption, diet, or level of education) from those who do
not.

If possible, it is preferable to control for confounding in the study design. Random-
ization is the method of choice for intervention studies because it theoretically con-
trols for all potential confounders at once. This is because, on average, random
assignment to groups should result in approximately the same distribution of any
potential confounder in each group, including confounders of which the researcher
is not aware.

Two other methods that may be used in observational studies to control for known
or suspected confounders are restriction and matching. Both have the disadvantage
of implementing control only over the confounders included in the design. With
restriction, the researcher studies only a subset of the population, selected based on
their values on the potential confounder. For instance, medical studies are some-
times done only on men or only on women to remove the influence of gender on the
relationship between the exposure and disease. This has the disadvantage of
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restricting the applicability of study results; if a relationship between alcohol con-
sumption and psychopathology is found in a group of men, that does not immedi-
ately justify generalizing the conclusions to women because women were not
included in the study.

Matching is another technique that attempts to control for known confounders by
a different method. Matching includes all levels of the confounders but controls
enrollment in the study or assignment to groups so that the confounders will be
equally distributed across the groups. Matching is commonly used in case-control
studies in which controls are selected to match the cases already enrolled in the
study. There are different systems for matching, but the basic concept is that cate-
gories are constructed for the confounding variables, and assignment to groups is
controlled so that the distribution of the confounders is the same in each group.

There are two ways to implement matching. In direct matching, individuals are
matched on a one-to-one basis. In frequency matching, assignment to the groups is
directed or monitored so that equal numbers of the confounders are present in each
group. If the confounders are gender and age category, in direct matching a woman
of age 60–70 years in the treatment group would be matched by a woman of age 60–
70 years in the control group. In frequency matching, the project manager would
monitor enrollment to see that an equal number of females and persons in the dif-
ferent age categories were included in the treatment and control groups. Frequency
matching is sometimes called matching on cell because you can think of the different
combinations of characteristics as forming different cells (for instance, men aged
20–29, men aged 30–39, etc.), and you want the groups to have equal numbers in
each cell. Frequency matching is particularly common in case-control subjects be-
cause often, all the cases are enrolled and then controls selected to match them.
Because you know the distribution of the cases’ characteristics, you can then select
controls with the same distribution of characteristics.

If it is not possible to control for confounding in the research design, it can be dealt
with during the analysis. There are numerous statistical methods to control for con-
founding after the fact, including multivariable methods that can become quite
complex. However, confounding is often treated more simply in epidemiology and
regression, particularly in studies focused on a single exposure and disease. This
presentation demonstrates one of the most common methods to evaluate and con-
trol for confounding: computation and comparison of the crude and Mantel-
Haenszel common odds ratio.

There is no implication of causality in classifying a variable as a confounder; in fact,
many of the most common confounders are assumed to be only correlates of another
factor. To qualify as a confounder, a variable must meet three requirements:

1. It must be related to the exposure.

2. It must be related to the disease independent of its association with the
exposure.

3. It must not be wholly intermediate in the causal pathway between exposure
and disease.
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A fourth requirement, which is practical rather than theoretical, is that to function
as a confounder in a particular study, a variable must be unequally distributed among
groups in the study. For instance, we know that age could serve as a confounder for
mortality, but if in a particular study the age distribution is the same among all
groups studied, then age cannot act as a confounder in that particular study.

Let’s take as an example a study of the protective effect of voluntary leisure-time
physical activity (exposure) on the occurrence of heart attack (myocardial infarction,
or MI, the disease); we believe this relationship may be confounded by age. All three
requirements are met:

1. Age is related to physical activity. (On average, young people exercise more than
older people.)

2. Age is a risk factor for MI independent of physical activity. (On average, older
people are more likely to have an MI.)

3. Age is not wholly intermediate in the causal pathway between physical activity
and MI. (There is no way physical activity could affect a person’s age, which
would then affect her probability of MI.)

One method to control confounding is the use of stratified analysis, in which the
groups to be studied are divided into strata or subgroups based on values of the
confounding variable. Stratification by age category is a common example. As dis-
cussed in the section earlier on standardized rates, the populations of different
countries have different age structures; some countries have relatively more young
people, others relatively more older people. Age is related to mortality and many
types of morbidity. For these reasons, comparison of morbidity and mortality be-
tween populations is often accomplished by stratifying by age category and then
standardizing so the age distribution is comparable in the populations being com-
pared.

An example demonstrates the need to evaluate confounding. In 2007, mortality rate
in the United States was 8.26 deaths per 1,000, whereas in Ecuador, it was 4.21 per
1,000. Should this be interpreted as evidence that Ecuadorans lead more salubrious
lifestyles than Americans? That’s an intriguing possibility but is not supported by
examination of detailed life tables, which show that Ecuadorans have higher death
rates than Americans in each specific age category. For instance, for the 45–49 age
group, the probability of death for Americans is 0.00341; for Ecuadorans, it is
0.00513.

The difference in mortality is due to the differences in age structure between the two
populations. Ecuador, like most developing countries, has a higher percentage of its
population in younger age groups. The United States, like most industrialized coun-
tries, has a higher percentage of people in the older age categories, when the risk of
mortality increases. This distinction would be missed if only crude mortality rates
were considered but becomes clear when a stratified analysis removes the influence
of the confounding variable (age) from the outcome (mortality).

There is no absolute test for confounding, but there are ways to examine the effects
of potential confounders on the relationship of interest and make a reasoned decision
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about whether confounding is present. The general steps to follow in assessing con-
founding are as follows:

1. Calculate the crude measure of association, ignoring the confounding variable.

2. Stratify the study population by the confounding variable, that is, divide the
population into smaller subgroups based on values of the confounding variable.

3. Calculate an adjusted measure of association.

4. Compare the crude and adjusted measures; a difference of 10% or more is gen-
erally considered evidence of confounding.

The appropriate measure of association depends on the study design; we will
demonstrate stratified analysis using the crude odds ratio and the Mantel-Haenszel
adjusted odds ratio. Note that to use the Mantel-Haenszel method, two assumptions
must be met: the overall sample size must be large, and the association between
exposure and outcome should be in the range of approximately 0.5 to 2.5.

The Mantel-Haenszel (MH) estimator of the common odds ratio for stratified data
allows information to be combined from a series of two or more 2×2 tables, using
the formula shown in Figure 15-35.

Figure 15-35. Formula for the Mantel-Haenszel odds ratio

In this formula, there are k individual tables,
i represents one of the tables (one strata of the population),
n is the sample size for that table,
and ai , bi, ci, and di are the values of cells within that table.

Suppose we are interested in the relationship between smoking and liver disease.
We know that people who smoke are also more likely to consume alcohol, alcohol
consumption is an independent risk factor for liver disease, and alcohol consump-
tion is not wholly intermediate in the hypothesized causal chain between smoking
and liver disease. Alcohol consumption is therefore a potential confounder in this
study, which we examine by stratifying our study population on alcohol consump-
tion (as a dichotomy: those who drink alcohol versus those who don’t) and exam-
ining the difference (if any) between the crude and adjusted odds ratios for our
population.

The data looks like Table 15-13 before we consider the effect of alcohol
consumption.
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Table 15-13. Smoking/liver disease data before stratification

 D+ D− Total

E+ 50 100 150

E− 30 120 150

Total 800 220 300

The crude odds ratio for this data is shown in Figure 15-36.

Figure 15-36. Calculating the crude odds ratio

This is a strong positive OR and indicates that smoking is positively associated with
liver disease: smokers are twice as likely to have liver disease as nonsmokers. To
examine whether alcohol consumption is a confounding factor, we construct sepa-
rate 2×2 tables for those who do and don’t consume alcohol (Table 15-14 and
Table 15-15).

Table 15-14. Smoking/liver disease for those who don’t consume alcohol

 D+ D− Total

E+ 40 35 75

E− 30 45 75

Total 70 80 150

Table 15-15. Smoking/liver disease for those who do consume alcohol

 D+ D− Total

E+ 60 15 75

E− 50 25 75

Total 110 40 150

We can compute the MH common odds ratio for this data as shown in Figure 15-37.

Figure 15-37. Calculating the MH common odds ratio
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Because this is more than 10% different from the crude odds ratio of 2.00, we con-
clude that alcohol consumption is a confounder in the relationship between smoking
and liver disease and should be included as such in our analyses.

Power Analysis
This section deals with the theory of power and sample size and presents a few simple
examples. Sample and power calculations are frequently simple, but they are also
specific; every type of research design uses a different formula, and there’s no point
in listing them all when they are available in reference books. For those working in
medicine and epidemiology, one particularly recommended source is the chapter on
sample size calculation in the Handbook of Epidemiology (Springer). Many software
packages, such as SAS and Minitab, include packaged routines to do power and
sample size calculations, and there are various power and sample size calculators on
the Web as well; a good collection of links to online calculators may be found here.

The practice of doing inferential statistics always includes the possibility of making
a wrong decision because inferential statistics uses calculations on a sample to make
conclusions about a population. As discussed in Chapter 3, there are two kinds of
common errors in inferential statistics:

1. Type I error or α, when you incorrectly reject the null hypothesis

2. Type II error or β, when you fail to reject the null hypothesis when you should
have rejected it

Another way to look at this is to say that Type I error is finding significance where
none exists, while Type II error is failing to find significance when it does exist.

Power is 1 − β and is the probability of rejecting the null hypothesis when you should
reject it. We’d all like to have high power all the time, but practical considerations,
in particular the cost and availability of subjects, usually force us to compromise. A
rule of thumb is that you should have at least 80% power, that is, 80% chance of
finding significant results in your sample if they exist in the population. That means
that 20% of the time, you won’t find significance when you should. The standard
of 90% power is regularly used as well.

The following four main factors affect power.

1. α level, that is, P(Type I error) (higher α increases power)

2. Difference in outcome between the populations (greater difference increases
power)

3. Variability (reduced variability increases power)

4. Sample size (larger sample size increases power)

A change in any one of these factors while the others are held constant will change
the power level for a given design. The α level is usually chosen to be 0.05 or less
(for instance, 0.01); a larger value of α increases power. A greater difference in out-
come between the populations increases power. Differences in outcome can be
increased by improving the intervention so it has a stronger effect or by choosing
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study groups to increase the expected difference in outcomes between them. Re-
duced variability also increases power. Variability can sometimes be decreased by
improving measurement or through selection of study subjects (such as restricting
them to a particular age range or income level). However, our ability to exert control
over these factors is usually minor in a given study.

We are then left with sample size, the one factor primarily under the control of the
experimenter at the planning stages of his research project. All things being equal,
more subjects = greater power. However, recruiting more subjects usually costs more
money and requires more effort on the part of the research team. The goal of power
analysis is to find a reasonable compromise in which you have acceptable power but
are not going bankrupt or collecting more data than is necessary.

The concept of power, as well as of Type I and Type II error, may be clarified by
considering Figure 15-38.

Figure 15-38. Power diagram for two normally distributed populations

Figure 15-38 illustrates aspects of a power calculation in which the null hypothesis
is that the mean of the population is 100, whereas the alternative hypothesis is that
the population mean is 115. Both populations are assumed to have an approximately
normal distribution. In this figure, the leftmost (light gray) distribution is the null
population, which represents the distribution of the population if the null hypothesis
is true and the population mean is 100. The right-most (dark gray) distribution is
the alternative population, which represents the data distribution if the alternative
hypothesis is true and the population mean is 115.

Power calculations are always carried out with respect to a particular alternative
hypothesis. In this case, the alternative is not simply that the population mean is
greater than 100 but that the mean is 115. Note that hypothesis testing involves the
location of population means, although the hypotheses are tested using means cal-
culated from samples. For simplicity’s sake in this example, both populations are
assumed to have equal standard deviations of 15.

The hypothesis being tested is one-tailed, so a single cut point or critical value,
represented by the dotted line, is established. If the sample mean is above this cut
point, the null hypothesis will be rejected. If the sample mean is below this cut point,
the null hypothesis will not be rejected. The location of the cut point, 112.5, was set
with regard to the null population, which has a mean of 100 and a standard deviation
of 15; it is the critical value for a significance test when α = 0.05 because 95% of the
null population lies to the left of 112.5 and 5% to the right.
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The area of the null population above (to the right of) the cut point represents the
P(Type I error) or the probability of rejecting the null hypothesis when it is true. In
this example, P (Type I error) is 0.05.

The area of the alternative population below (to the left of) the cut point represents
β or the P(Type II error) if the alternative hypothesis (population mean = 115) is
true. This is the probability that if the true mean is 115, the sample value will be
below the cut point of 112.5.

The area of the alternative population to the right of the cut point is the power of
the test for this specific null hypothesis. This represents the probability that if the
alternative hypothesis is true and the population mean is 115, the sample mean will
be above the cut point of 112.5, and we will conclude that the population mean is
significantly greater than 100.

Let’s consider how each of the four factors cited could increase power in this ex-
ample, assuming that only one factor can change at once:

1. If α were increased to 0.10, the cut point would be lower (farther to the left),
and the power would increase, while P(Type II error) would decrease. The area
below the cut point would decrease, representing a reduction in P(Type II error).

2. If the effect size were greater, for instance if the mean of the alternative popu-
lation were 120 instead of 115, the distribution for the alternative population
would be shifted up the number line. The result would be a decrease in P(Type
II error) and an increase in power.

3. If the standard deviation were decreased, the two populations would have nar-
rower distributions (more closely clustered around their mean) and thus would
overlap less. This would result in a reduction in the probability of Type II error
and an increase in power.

4. If sample size were increased, this would have a similar effect to decreasing
standard deviation and would result in a reduction in the probability of Type
II error and an increase in power.

One good way to become familiar with the influence of different factors on power
is to experiment with a graphical power calculator; one example is the Statistical
Power Applet created by Claremont Graduate University.

Sample Size Calculations
As mentioned before, each type of power or sample size calculation requires the
appropriate formula to be used. However, if the principles of research design as well
as power analysis are understood, finding the correct formula is not difficult. Two
simple examples of sample size calculations are demonstrated here because they are
a good illustration of the principles at work and are easily performed using only a
hand calculator.
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Confidence Interval for a Proportion
One common sample size problem is determining the sample size required to cal-
culate a proportion with acceptable precision. For instance, you might be calculating
agreement among different employees assigned to do medical chart reviews, and you
want an estimate of the proportion in agreement, plus or minus five percentage
points. Alternatively, you might be conducting a survey of the proportion of adults
immunized against influenza in a population and want to estimate the proportion
immunized plus or minus 10 percentage points. This is not a power calculation
because no hypothesis is being tested, but it is a sample size calculation because you
need to determine the minimum sample size required for a specified level of
precision.

The formula used for a two-sided confidence interval is shown in Figure 15-39.

Figure 15-39. Sample size formula for a two-sided confidence interval of specified precision
for a proportion

In this formula, n is the required sample size,
π (Greek letter pi) is the hypothesized population proportion,
Z is the value from the standard normal distribution table corresponding to half
the alpha level, and
ω (Greek letter omega) is the half-width of the desired confidence interval. The
half-width is half the confidence interval. If we use a confidence interval of 10
percentage points, the half-width is 5 percentage points.

We want to calculate a two-sided confidence interval with α = 0.05, so Z = 1.96. We
believe π to be 0.8, and we want a confidence interval of 10 percentage points (0.10),
so ω = 0.05. Plugging these values into the equation gives us the result in Fig-
ure 15-40.

Figure 15-40. Calculating the sample size required for a confidence interval of specified
precision for a proportion

We round this estimate up to 246 because there generally are no fractional subjects
available! So we need 246 subjects, assuming our estimate of π is correct, to have an
estimate with a 95% confidence interval of 0.10 (0.05 above and 0.05 below the
estimate).
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Power for the Test of the Difference between Two Sample Means
(Independent Samples t-Test)
For an example of a simple power calculation, let’s assume we want to calculate how
many subjects per group we need to conduct a two-tailed independent samples t-
test with acceptable power. The formula is given in Figure 15-41, where δ is effect
size, calculated as shown in Figure 15-42.

Figure 15-41. Sample size formula for an independent samples t-test

Figure 15-42. Effect size for an independent samples t-test

σ in this case is determined using whichever method of calculating the standard
deviation for a t-test is appropriate for the data in question. (See Chapter 6 for de-
tails.) We need Z-values for both α and β to use this formula. We will stick with the
95% confidence interval for a two-tailed test used in the previous example, so the
Z-value for 1 − α /2 will be 1.96. We will compute the sample size required for 80%
power, so the Z-value for 1 − β will be 0.84. Note that if we were doing a one-tailed
test, Zα would be 1.645, and if we were calculating 90% power, Z1 − β would be 1.28.

The effect size is the difference between the two populations divided by the appro-
priate measure of variance, as noted earlier. If µ1 = 25, µ2 = 20, and σ = 10, the effect
size is 0.5. We can plug these numbers into the sample size formula as shown in
Figure 15-43.

Figure 15-43. Calculating the sample size needed for an independent samples t-test

We round fractional results up to the next whole number, so we need at least 63
subjects per group to have an 80% probability of finding a significant difference
between two groups when the effect size is 0.5.
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How to Lie with Percentages
You can’t work in statistics for very long before someone demonstrates her clev-
erness by quoting some form of the aphorism, attributed to the British politician
Benjamin Disraeli and popularized in the United States by Mark Twain, that there
are three kinds of lies: lies, damned lies, and statistics. There’s even a popular book
called How to Lie with Statistics by Darrell Huff (Norton), which is sometimes said
to be the most-read statistics book in the world. One purpose of Huff’s book, and
this one as well, is not to teach you how to lie with statistics but to help you spot
other people lying.

One of the easiest ways to lie (or mislead, if you prefer) with statistics is to quote
percentages without reference to the raw numbers underlying them, a practice
beloved of politicians but not exclusively practiced by them. For instance, if you
heard that there was a 100% increase in cholera cases in the United States, you
might find that cause for alarm, until you learned that the increase was from one
case to two. Similarly, a 50% increase in cancer risk for some rare exposure (af-
fecting, say, only 15 people nationally) might not have as much public health
significance as a 5% increase of a common exposure (which might affect millions
of people).

Another reason interpreting percentages can be confusing is that people often
forget that percentage increases and decreases are not symmetrical. If you increase
the number of college graduates by 10% one year, then decrease it by 10% the
next year, you are not back to your original total. Say you have 100,000 college
graduates to begin with. A 10% increase gives you 110,000. A 10% decrease of
the new total gives you 99,000 (110,000 × 0.9), which is fewer than you started
with.

Exercises
Here’s a set of questions to help you review the topics covered in this chapter.

Problem

A classic example of the use of contingency tables in epidemiology is investigation
of food poisoning outbreaks. When a number of people become ill after eating at a
restaurant, the public health department will launch an investigation to identify the
food or foods responsible. This effort is complicated by the fact that the people who
got sick probably ate many foods, and some people who ate the same foods might
not have gotten sick. One approach to sorting out this information is to interview
the customers to ascertain what they ate and whether they got sick. The data is then
arranged into a series of 2×2 tables, as in Tables 15-16 and 15-17, in which the
exposure is the particular food in question and the disease is food poisoning. Cal-
culate the risk ratios for the two foods listed and justify a decision about whether
they are a likely cause of food poisoning.
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Table 15-16. Contingency table for roast beef and food poisoning

 D+ D−

E+ 15 85

E− 20 80

Table 15-17. Contingency table for chicken salad and food poisoning

 D+ D−

E+ 80 20

E− 20 80

Solution

The RR for roast beef is calculated in Figure 15-44.

Figure 15-44. Calculating the risk ratio for roast beef and food poisoning

The RR for chicken salad is shown in Figure 15-45.

Figure 15-45. Calculating the risk ratio for chicken salad and food poisoning

Looking at just these two foods, it appears that the culprit is chicken salad because
people who ate it had four times the risk of food poisoning compared to people who
didn’t eat it. Roast beef seems to have a slightly protective effect, perhaps because
people who ate the roast beef were less likely to eat the chicken salad; people who
ate roast beef had only three-quarters of the risk of food poisoning as compared to
people who did not eat roast beef.

Problem

Compute the odds ratio and confidence interval for the data shown in Ta-
ble 15-18 from a case-control study of oral contraceptive use and breast cancer. Do
the data show a significant relationship between the two?

Table 15-18. Contingency table for oral contraceptive use and breast cancer

 D+ D−

E+ 30 70

E− 20 80
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Solution

The odds ratio is shown in Figure 15-46.

Figure 15-46. Calculating the odds ratio for oral contraceptive use and breast cancer

To see whether this is significantly different from the null value of 1.0, compute the
95% confidence interval as shown in Figure 15-47.

Figure 15-47. Calculating the 95% CI for the odds ratio for oral contraceptive use and breast
cancer

The CI of (.89, 3.28) includes the null value of 1.0, so we conclude that this study
does not demonstrate a significant relationship between oral contraceptive use and
breast cancer.

Problem

Calculate and interpret the attributable risk, attributable risk percentage, and num-
ber needed to treat, given the following information:

Incidence of disease in exposed = 0.05
Incidence of disease in the unexposed = 0.02

Solution

The calculations required are shown in Figure 15-48.
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Figure 15-48. Calculating attributable risk, attributable risk percentage, and number needed
to treat

The excess occurrence of disease due to the exposure is 0.02, or 20 per 1,000. Forty
percent of disease among the exposed is attributable to the exposure, and it would
be necessary to prevent 50 exposures to prevent one new case of disease in the
population.

Problem

Calculate the sample size needed to estimate a proportion with a 95% confidence
interval of plus or minus 10 percentage points when the hypothesized proportion is
0.70.

Solution

Use the sample size formula for a proportion, and plug in the numbers:

Z1−α/2 = 1.96 ω = 0.10 π = 0.70

These calculations (Figure 15-49) show that you need a sample size of 81.

Figure 15-49. Calculating the sample size needed to estimate a sample proportion

Problem

Calculate the sample size needed when testing for the difference in means, using an
independent samples t-test with a one-tailed hypothesis, 90% power, and an effect
size of 0.4.

Solution

Use the sample size formula presented, and plug in the numbers:

Zα = 1.645 Z1 − β = 1.28 δ = 0.4
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These calculations (Figure 15-50) show that you need 107 subjects per group.

Figure 15-50. Calculating the sample size needed for an independent samples t-test
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16
Educational and Psychological

Statistics

Many statistical techniques used in education and psychology are common to other
fields of endeavor: these include the t-test (covered in Chapter 6), various regression
and ANOVA models (covered in Chapters 8 through 11), and the chi-square test
(covered in Chapter 5). The discussion of measurement in Chapter 1 will also prove
useful because much of educational and psychological research involves constructs
that cannot be observed directly and have no obvious units of measurement. Ex-
amples of such constructs include mechanical aptitude, self-efficacy, and
resistance to change. This chapter concentrates on statistical procedures used in the
field of psychometrics, which is concerned with the creation, validation, and use of
tests and measurements applied to human intelligence, knowledge, abilities, and
psychological characteristics such as personality traits.

The first question you may ask with regard to the use of statistics in education and
psychology is why they are necessary at all. After all, isn’t every person an individual,
and isn’t the point of both education and psychology to perceive each person in all
his individual richness, not to reduce the individual to a set of numbers or place him
in comparison with others?

This is a valid concern and underscores what anyone working in the human sciences
knows already: doing research on human beings is in many ways much more difficult
than doing research in the hard sciences or in manufacturing because people are
infinitely more varied than chemical molecules or lug nuts. The diversity and indi-
viduality of people makes research in those fields particularly difficult. It’s also true
that although some educational and psychological research is aimed toward making
general statements about groups of people, a great deal of it is focused on under-
standing and helping individuals, each of whom has her own specific social circum-
stances, family histories, and other contextual complexities, making direct compar-
isons between one person and another very difficult.
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However, standard statistical procedures can be useful even in the most specific and
individual therapeutic circumstances, such as when the goal of an encounter is to
devise an appropriate educational plan for one student or therapeutic regimen for
one patient. Making such decisions is difficult but would be even more difficult
without the aid of formal educational and psychological tests that yield numeric
values and can be compared to scores for other individuals. No one would suggest
that only formal, standardized tests and questionnaires be used in these contexts;
interviews and observational testing play an important role in educational and psy-
chological evaluations as well. But the advantages of including formal testing pro-
cedures and standardized tests in clinical and educational evaluations include the
following considerations:

1. Objective comparisons are facilitated by the use of a normative group. For in-
stance, is this patient, recovering from trauma, experiencing more side effects
than is common among others who have experienced the same injury? Are the
reading skills of this pupil comparable to others of his age and grade level?

2. Standardized testing can yield results quickly; you needn’t wait for the end of
the school term to discover which pupils are struggling because of poor language
proficiency, and you don’t need a lengthy interview or practical examination to
discover that a patient is suffering from serious memory deficits.

3. Standardized tests are presented in a regulated situation and under specified
conditions and can be scored objectively, so the only issue being evaluated is
the student’s or patient’s performance, not her appearance, sociability (unless
that is germane to the context), or other irrelevant factors.

4. Most standardized tests do not require great skill to administer (unlike clinical
interviews, for example) and can be given to groups of people at once, making
the tests particularly useful as screening procedures.

Percentiles
In many countries, school-age children are evaluated by tests that report their results
in percentiles, also known as percentile ranks; one student might score in the 70th
percentile in reading and the 85th percentile in math, but another scores in the 80th
percentile in reading and the 95th percentile in math. Percentiles are a form of norm-
referenced scoring, so called because an individual score is placed in the context of
a norm group, meaning people similar to the test-taker. For school-age children, the
norm group is often other children in the same grade within their country. Norm-
referenced scoring is used in all kinds of testing situations in which an individual’s
rank in relation to some comparison group is more important than his absolute
score.

The percentile rank of an individual score refers to the percentage in the norm group
that scored lower than that individual score, so a percentile score of 90 indicates that
90% of the norm group scored lower. Here’s a brief example illustrating how to find
percentile ranks for scores on an exam that was given to 100 students. (On national
exams, the norm group would be much larger and the scores would reflect a greater
range, but this example will illustrate the point.)
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The first step in translating from raw scores to percentiles is to create a frequency
table that includes a column for cumulative percentage, as illustrated in Ta-
ble 16-1. To find the percentile rank for a particular score, use the cumulative per-
centage from the next-highest score, the row just above in the table. In this example,
someone who scored 96 on the exam was in the 75th percentile rank (meaning 75%
of the test-takers scored below 96), whereas someone who scored 85 was in the 25th
percentile rank. There can be no 100th percentile rank because, logically speaking,
100% of the test-takers couldn’t have scored below a score that is included in the
table. You can have a 0th percentile, however; a person who scored 53 would be in
the 0th percentile because no one achieved a lower score.

Table 16-1. Scores of 100 students on an exam

Score Frequency Percentage Cumulative percentage

53 1 1.0% 1.0%

55 2 2.0% 3.0%

58 1 1.0% 4.0%

61 2 2.0% 6.0%

65 3 3.0% 9.0%

67 1 1.0% 10.0%

70 2 2.0% 12.0%

71 3 3.0% 15.0%

78 2 2.0% 17.0%

80 4 4.0% 21.0%

82 2 2.0% 23.0%

84 2 2.0% 25.0%

85 5 5.0% 30.0%

86 4 4.0% 34.0%

88 3 3.0% 37.0%

90 5 5.0% 42.0%

91 7 7.0% 49.0%

92 8 8.0% 57.0%

93 7 7.0% 64.0%

94 5 5.0% 69.0%

95 6 6.0% 75.0%

96 4 4.0% 79.0%

97 3 3.0% 82.0%

98 7 7.0% 89.0%

99 6 6.0% 95.0%

100 5 5.0% 100.0%
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In situations such as standardized testing at the national level, the norm group used
to map the scores to percentiles is much larger, and generally, calculation of per-
centiles for individual students is not necessary. Instead, the test manufacturer usu-
ally provides a chart that relates raw scores to percentile ranks.

Standardized Scores
The standardized score, also known as the normal score or the Z-score, transforms a
raw score into units of standard deviation above or below the mean. This translates
the scores so they can be evaluated in reference to the standard normal distribution,
which is discussed in detail in Chapter 3. Standardized scores are frequently used in
education and psychology because they place a score in the context of other scores
and can therefore be considered a type of norm-referenced scoring. For frequently
used scales such as the Wechsler Adult Intelligence Scale (WAIS), population means
and standard deviations are known and may be used in the calculations; for the
WAIS, the mean is 100, and the standard deviation is 15. To convert a raw score to
a standardized score, use the formula shown in Figure 16-1.

Figure 16-1. Formula for the Z-score

In this formula, X is the raw score,
µ is the population mean,
and σ is the population standard deviation.

The conversion to Z-scores puts all scores on a common scale, that of the standard
normal distribution with a mean of 0 and a variance of 1. In addition, Z-score prob-
abilities are distributed with the known properties of the normal distribution. (For
instance, about 66% of the scores will be within one standard deviation of the mean.)
We can convert a raw score of 115 on the WAIS to a Z-score as shown in Figure 16-2.

Figure 16-2. Computing a Z-score

Using the table for the standard normal distribution (Z distribution) in Figure D-3
from Appendix D, we see that a Z-score of 1.00 means that 84.1% of individuals
score at or below that individual’s raw score. Standardized scores are particularly
useful when comparing scores on tests with different scales. For example, let’s say
we also administer a test of mathematical aptitude that has a mean of 50 and a
standard deviation of 5. If a person scores 105 on the WAIS (Figure 16-3) and 60 on
the mechanical aptitude (Figure 16-4), we can easily compare those scores in terms
of Z-scores.
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Figure 16-3. Computing a Z-score (WAIS)

Figure 16-4. Computing a Z-score (mechanical aptitude test)

The Z-scores tell us that this person scored slightly above average in intelligence but
far above average in mechanical aptitude.

Some people find standardized scores confusing, particularly because a person can
have a Z-score that is 0 or negative (and in the standard normal distribution, half
the scores are below average and therefore negative). For this reason, Z-scores are
sometimes converted to T-scores, which use a more intuitive scale, with a mean of
50 and a standard deviation of 10. Z-scores may be converted to T-scores by using
the following formula:

T = Z(10) + 50

If a person has a Z-score of 2.0 (meaning he or she scored two standard deviations
above the mean), this can be converted to a T-score as follows:

T = (2.0 × 10) + 50 = 70.

Similarly, someone with a Z-score of −2.0 would have a T-score of 30. Because hardly
anyone ever scores five standard deviations or more below the mean, T-scores are
almost always positive, which makes them easier for many people to understand.
For instance, the clinical scales of the Minnesota Multiphase Personality Inventory-
II (MMPI-II), commonly used to identify and evaluate psychiatric conditions, are
reported as T-scores.

Stanines offer another method to translate raw scores into scores based on the stan-
dard normal distribution. The term “stanine” is an abbreviation of “standard nine”
and refers to the fact that stanines divide scores into nine categories (1−9), each
category or band representing half a standard deviation of the standard normal dis-
tribution. The mean of the stanine scale is 5, and this category includes scores that
translate to standard scores from −0.25 to 0.25 (one quarter of a standard deviation
below or above the mean). The primary advantage of using stanines instead of Z- or
T-scores is that reporting categories rather than specific scores might get around the
human tendency to obsess over small differences in reported scores.

Because scores near the central value of the normal distribution are more common
than extreme scores, stanines near the central value of 5 are more common than
scores near the extremes of 1 or 9. Note also that the distribution of stanine scores
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is symmetrical, as is the distribution of scores in the standard normal distribution,
so a stanine of 1 is as common as a stanine of 9, a stanine of 2 is as common as a
stanine of 8, and so on. The application of these two principles can be seen in
Table 16-2, which shows the stanine score, the corresponding standard (Z) scores,
and the percentage of the distribution contained within each stanine category.

Table 16-2. Stanines

Stanine Z-score range Percent of total

1 Z < −1.75 4%

2 −1.75 < Z <= −1.25 7%

3 −1.25 < Z <= −0.75 12%

4 −0.75 < Z <= −0.25 17%

5 −0.25 < Z <= 0.25 20%

6 0.25 < Z <= 0.75 17%

7 0.75 < Z <= 1.25 12%

8 1.25 < Z <= 1.75 7%

9 Z > 1.75 4%

Stanines may be calculated from Z-scores by using the following formula:

Stanine = (2 × Z) + 5

Stanines are rounded to the nearest whole number; values with a decimal of 0.5 are
rounded down. Suppose we have a Z-score of −1.60. This translates to a stanine of
2, as shown below:

Stanine = (2 × −1.60) + 5 = 1.8

The nearest whole number is 2, and this corresponds to the stanine value for a Z-
score of −1.60 given in Table 16-2.

A Z-score of 1.60 translates to a stanine of 8 because:

Stanine = 2(1.60) + 5 = 8.2.

The nearest whole number is 8, and this stanine value corresponds with the value
indicated in Table 16-2 for a Z-score of 1.60.

Test Construction
Most tests in psychology and education are used for what is called subject-centered
measurement, in which the purpose is to place individuals on a continuum with
respect to particular characteristics such as language-learning ability or anxiety.
Creating and validating a test is a huge amount of work. (When I was in graduate
school, students were barred from writing a dissertation that required creating and
validating a new test out of fear that they would never complete the process.) The
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burden is entirely on the test’s creator to convince others working in the same field
that the test scores are meaningful. Therefore, the first move for someone beginning
to investigate a field is to check whether any existing, validated tests would be ade-
quate. However, particularly if you are researching a new topic or dealing with a
previously ignored population, no existing test might be adequate to your purpose,
in which case the only option is to create and validate a new test.

Tests can be either norm-referenced or criterion-referenced. Norm-referenced tests
have already been discussed; their purpose is to place an individual in the context
of some group. In contrast, the purpose of a criterion-referenced test is to compare
an individual to some absolute standard, say, to see whether he has obtained a de-
fined minimum competency in an academic subject. In a criterion-referenced test,
everyone taking the test could receive a high score, or everyone could receive a low
score, because the individuals are evaluated with reference to a predetermined stan-
dard rather than in reference to each other. Although criterion-referenced tests can
yield a continuous outcome (for instance, a score on a scale of 1−100), a cut point
(single score) is often established as well so that everyone who achieves that score
or above passes, and everyone with a score below it fails.

Most tests are composed of numerous individual items, often written questions,
which are combined (often simply added together) to produce a composite test score.
For instance, a test of language ability might be constructed of 100 items with each
correct item scored as a 1 and each incorrect item as a 0. The composite score for
an individual could then be determined by adding up the number of correct items.
Many of the statistical procedures used in examining tests have to do with the rela-
tionship among individual items and the relation between individual items and the
composite score.

Although composite test scores are commonly used, they can be misleading meas-
ures of ability or achievement. One difficulty is that typically all items are assigned
the same weight toward the total score, although they might not all be of equal
difficulty. The distinction between someone who misses some easy questions but
gets more difficult questions correct versus someone who gets the easy questions
correct but can’t answer the difficult questions is lost when a composite score is
formed by simply summing the scores of items of differing homogeneity.

The mean and variance of dichotomous items (those scored as either right or wrong)
are calculated using the value for item difficulty, signified as p. Item difficulty is the
proportion of examinees who answer a question correctly. If N people are in the
group of examinees used to establish item difficulty, p is calculated for one item (j)
as shown in Figure 16-5.

Figure 16-5. Formula for item difficulty

With dichotomous items scored 0 or 1 (0 for incorrect, 1 for correct), the mean is
the same as the proportion answering the item correctly (Figure 16-6).
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Figure 16-6. Formula for item difficulty for dichotomous items

In this formula, Xj are the individual items,
and N is the number of examinees

Variance for an individual dichotomous item pj may be calculated as shown in
Figure 16-7.

Figure 16-7. Formula for dichotomous item variance

The correlation coefficient between two dichotomous items, also called the phi co-
efficient, is discussed in Chapter 5.

Computing the variance of a composite score requires knowing both the individual
item variances and their covariances. Unless all pairs of variables are completely
uncorrelated or are negatively correlated, the variance of a composite score will al-
ways be greater than the sum of the individual item variances. Although composite
variance is usually computed using statistical software, the formula is useful to know
because it outlines the relationship among the relevant quantities. The covariance
for a pair of items j and k (whether the items are dichotomous or continuous) may
be computed as shown in Figure 16-8.

Figure 16-8. Formula for item covariance for a pair of items

In this formula, σjk is the covariance of the two items,
ρjk is the correlation between the two items,
and σj and σk are the individual item variances.

Often, we are interested in the variance of a composite such as a test score Y con-
sisting of numerous items. Because there are two covariance pairs for each item pair
(the covariance of j with k, and the covariance of k with j, which are identical), the
covariance of a composite Y may be calculated as shown in Figure 16-9.

Figure 16-9. Formula for covariance of a composite

392 | Chapter 16: Educational and Psychological Statistics



The stipulation i < j in the preceding formula stipulates that we compute only unique
covariance terms. To get the right number of covariance terms, we then multiply
each unique covariance by 2.

As items are added to a test, the number of covariance terms increases more quickly
than the number of variance terms. For instance, if we add 5 items to a test that has
5 items to start with, the number of variance terms increases from 5 to 10, but the
number of covariance items increases from 20 to 90. The number of unique cova-
riance terms for n items is calculated as n(n − 1); therefore, a test with 5 items has
5(4) = 20 covariance terms. A 10-item test would have 10(9) = 90 covariance terms.
The number of unique covariance terms is [n (n − 1)]/2, so 5 items yield 10 unique
covariance terms, and 10 items yield 45 unique covariance terms.

In most cases, adding items to a composite increases the variance of the composite
because the variance of the composite is increased by the variance of the individual
item plus its covariance with all the existing items on the test. The proportional
increase is greater when items are added to a short test than to a long test and is
greatest when items are highly correlated because that results in larger covariances
among items. All else being equal, the greatest composite variance is produced by
items of medium difficulty (p = 0.5 produces the largest covariance scores) that are
highly correlated with one another.

Classical Test Theory: The True Score Model
In an ideal world, all tests would have perfect reliability, meaning that if the same
individuals were tested repeatedly under the same conditions for some stable char-
acteristic, they would receive identical scores each time, and there would be no
systematic error (defined later) in the score. In this case, we would have no problem
saying that a person’s observed score on the test was the same as the person’s true
score and that the observed score was an accurate reflection of that person’s score
on whatever the test was designed to measure. In the real world, however, many
factors can influence observed scores, and repeated tests on the same material taken
by the same individual often yield different scores. For this reason, we must differ-
entiate between the true score and the observed score. We do this by introducing
the concept of measurement error, which is the part of the observed score that causes
it to deviate from the true score.

Measurement error can be either random or systematic. Random measurement er-
ror is the result of chance circumstances such as room temperature, variance in
administrative procedure, or fluctuation in the individual’s mood or alertness. We
do not expect random error to affect an individual’s score consistently in one direc-
tion or the other. Random error makes measurement less precise but does not sys-
tematically bias results because it can be expected to have a positive effect on one
occasion and a negative effect on another, thus canceling itself out over the long run.
Because there are so many potential sources for random error, we have no expect-
ation that it can be completely eliminated, but we desire to reduce it as much as
possible to increase the precision of our measurements. Systematic measurement
error, on the other hand, is error that consistently affects an individual’s score in
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one direction but has nothing to do with the construct being tested. An example
would be measurement error on a mathematics exam that is caused by poor language
skills so that the examinee cannot read the directions to take the exam properly.
Systematic measurement error is a source of bias and should be eliminated from
testing whenever possible.

The psychologist Charles Spearman introduced the classic concepts of true and error
scores in the early twentieth century. Spearman described the observed score X (the
score actually received by an individual on a testing occasion), which is composed
of a true component (T) and a random error component (E):

X = T + E

Over an infinite number of testing occasions, the random error component is as-
sumed to cancel itself out, so the mean or expected value of the observed scores is
the same as the true score. For individual j, this can be written as:

Tj = E(Xj) = µXj

where Tj is the true score for individual j, E(Xj) is that individual’s expected observed
score over an infinite number of testing occasions, and µXj is the mean observed
score for that individual over the same occasions. Error is therefore the difference
between an individual’s observed score and her true score:

Ej = Xj − Tj

Over an infinite number of testing occasions, the expected value of the error for one
individual is 0. Because “error” in this definition means random error only, true and
error scores are assumed to have the following properties:

• Over a population of examinees, the mean of the error scores is 0.

• Over a population of examinees, the correlation between true and error scores
is 0.

• The correlation between error scores by two randomly chosen examinees on
two forms of the same test, or two testing occasions using the same form, is 0.

Reliability of a Composite Test
When we administer a test to an individual, one of our concerns is how well the
observed score on that test represents the person’s true score. In theoretical terms,
what we seek is the reliability index for the test, which is the ratio of the standard
deviation of the true scores to the standard deviation of the observed scores. The
reliability index is calculated as shown in Figure 16-10.
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Figure 16-10. Formula for the reliability index

In this formula, σT is the standard deviation of the true scores for a population
of examinees,
and σX is the standard deviation of their observed scores.

The reliability of a test is sometimes described as the proportion of total variation
on the test scores that is explained by true variation (as opposed to error).

In practice, true scores are unknown, so the reliability index must be estimated using
observed scores. One way to do this is to administer two parallel tests to the same
group of examinees and use the correlation between their scores on the two forms,
known as the reliability coefficient, as an estimate of the reliability index. Parallel
tests must satisfy two conditions: equal difficulty and equal variance.

The reliability coefficient is an estimate of the ratio of true score variance to observed
score variance and can be interpreted similarly to the coefficient of determination
(r2) in the general linear model. If a test reports a reliability coefficient of 0.88, we
can interpret this as meaning that 88% of the observed score variance from admin-
istrations of this test is due to true score variance, whereas the remaining 0.12 or
12% is due to random error. To find the correlation between true and observed
scores for this test, we take the square root of the reliability coefficient, so for this
test, the correlation between true and observed scores is estimated as √0.88, or 0.938.

The reliability coefficient can be estimated using one of several methods. If we esti-
mate the reliability coefficient by administering the same test to the same examinees
on two occasions, this is called the test-retest method, and the correlation between
test scores in this case is known as the coefficient of stability. We could also estimate
the reliability coefficient by administering two equivalent forms of a test to the same
examinees on the same occasion; this is the alternate form method, and the correla-
tion between scores is the coefficient of equivalence. If both different forms and
different occasions of testing are used, correlation between the scores under these
conditions is called the coefficient of stability and equivalence. Because this coefficient
has two sources of error, forms and occasions, it is generally expected to be lower
than either the coefficient of stability or the coefficient of equivalence would be for
a given group of examinees.

Measures of Internal Consistency
A different approach to estimating reliability is to use a measure of internal consis-
tency that can be calculated from a single administration of a test to a single group
of examinees. Consistency measurements are used to estimate reliability because a
composite test is often conceived of as being composed of test items sampled from
a large domain of potential items. An internal consistency estimate is a prediction
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of how similar an individual’s score would be if a different subset of items from that
domain had been chosen.

Consider the task of creating an exam to test student competence in high school
algebra. The first steps in creating this test would be to decide what topics to cover.
Then a pool of items would be written that evaluate student mastery of those topics.
A subset of items would then be chosen to create the final test. The purpose of this
type of exam is not merely to see how well the students score on the specific items
included in the test they took but how well they mastered all the content considered
to be within the domain of high school algebra. If the items used on the test are a
fair selection from this content domain, the test score should be a reliable indicator
of the students’ mastery of the material. Item homogeneity is also a valued charac-
teristic of this type of test because it is an indication that the items are testing the
same content and do not have technical flaws such as misleading wording or incor-
rect scoring that would cause performance on an item to be unrelated to mastery of
algebra.

Teaching to the Test
In some educational contexts, students are required to take a series of what have
become known as high-stakes tests that are used to determine whether they may
be allowed to progress through the school system (for instance, to move from 5th
grade to 6th grade) or to graduate (for instance, from high school). Because ad-
ministrators and teachers are understandably concerned for their students to do
well on these exams, some schools allot part of the school day specifically to prep-
aration for the exam. (Besides their concern for the students’ educational progress,
teachers and administrators can also be evaluated based on how well their students
perform on the high-stakes exams.) When instruction is aimed toward improving
performance on a specific exam rather than on increasing subject skill and knowl-
edge, this is often referred to as teaching to the test. For instance, students might
devote time to solving items in the exact format used by the upcoming test or
confine their study to the known range of problems or information that will be
covered on an upcoming test instead of studying a broad range of content and
practicing applying their skills in many ways.

What is wrong with teaching to the test? The problem is that achievement tests
are generally based on the assumption that items on a specific test represent a fair
sample of its domain and that performance on the sample of items included in a
particular test is a good indication of mastery of the domain as a whole. Under
this assumption, if a different sample of items were selected, student performance
should be similar. This assumption does not hold up if the students and teachers
know in advance what the sample will be and prepare only for that sample; in that
case, it is impossible to generalize from the performance on the sample to the
mastery of the domain as a whole.

Suppose students are studying for a test to determine their competency in high
school algebra. One of the topics included is geometric proofs; students should
be able to construct a two-column proof demonstrating why a known algebraic
theorem is true. If students are taught a general method for writing proofs, their
knowledge should be equally applicable to any proof questions on the test, so their
performance on the test should be a good indication of their general achievement
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in this aspect of algebra. However, if their instructor determines that only a few
types of proofs appear on the exams from year to year, he could simply have the
students memorize how to do those particular proofs. This is an example of teach-
ing to the test. In this case, the students’ ability to construct the types of proofs
they have memorized bears no necessary relationship to their ability to construct
other types of proofs. Thus, it is impossible to generalize from their performance
on the test to their mastery of the domain of geometric proofs as a whole.

Split-Half Methods
Split-half methods to measure internal consistency require a test to be split into two
parts or forms, usually two halves of equal length, which are intended to be parallel.
All items on the full-length test are completed by each examinee. The split can be
achieved by several methods, including alternate assignment (even-numbered items
to one form, odd-numbered to the other), content matching, or random assignment.
Whichever method is used, if the original test had 100 items, the two halves will
each have 50 items. The correlation coefficient between examinee scores for the two
forms is called the coefficient of equivalence. The coefficient of equivalence is an
underestimate of the reliability for the full-length test because longer tests are usually
more reliable than shorter tests. The Spearman-Brown prophecy formula can be used
to estimate the reliability of the full-length test from the coefficient of equivalence
for the two halves, using the formula shown in Figure 16-11.

Figure 16-11. Spearman-Brown prophecy formula (for the coefficient of equivalence)

In this formula, ρXX’ is the estimated reliability of the full-length test,
and ρAB is the observed correlation, that is, coefficient of equivalence, between
the two half-tests.

For this formula to be accurate, the two half-tests must be strictly parallel. If the
coefficient of equivalence for the two half-tests is 0.5, the estimated reliability of the
full-length test is shown in Figure 16-12.

Figure 16-12. Calculating the coefficient of equivalence

A second method to estimate reliability of a full-length test using the split-half
method is to calculate the difference between scores on the two halves for each
examinee. The variance of that difference score is an estimate of error variance of
reliability, so the 1 minus the ratio of error variance to total variance may also be
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used as an estimate of reliability. Figure 16-13 presents the formula to use for the
second method.

Figure 16-13. An alternative formula for the coefficient of equivalence

In this formula, σ2
D is the variance of the difference scores,

and σ2
X is the variance of the observed scores.

Estimates of reliability using either method will be identical when the variance of
the two half-tests is identical. The more dissimilar the two variances, the larger the
estimate using the Spearman-Brown formula will be relative to estimates using the
difference-score method. Estimation of reliability by either method depends on how
the items are chosen for the two halves because a different split will result in different
correlations between the halves and a different set of difference scores.

Coefficient Alpha
Several methods of estimating reliability using item covariances avoid the problem
of multiple split-half reliabilities; three of these methods follow. Cronbach’s alpha
may be used for either dichotomous or continuously scored items, whereas the two
Kuder-Richardson formulas are used only for dichotomous items. The measure of
internal consistency computed by any of these methods is commonly referred to as
coefficient alpha and is equivalent to the mean of all possible split-half coefficients
computed using the difference-score method. Coefficient alpha is, strictly speaking,
not an estimate of the reliability coefficient but of its lower bound (sometimes called
the coefficient of precision). This nicety is often ignored in interpretation, however,
and coefficient alpha is usually reported without further interpretation.

Note that computing coefficient alpha for a test of any considerable length is tedious
and therefore generally accomplished using computer software. Still, it is useful to
know the formulas and work through a simple calculation to understand what fac-
tors affect coefficient alpha.

Cronbach’s alpha is the most common method for calculating coefficient alpha and
is the name often given for coefficient alpha in computer software packages designed
for reliability analysis. It is computed using the formula shown in Figure 16-14.

Figure 16-14. Formula for Cronbach’s alpha
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In this formula, k is the number of items,
 is the variance of item i, and
 is the total test variance.

Suppose we have a 5-item test, with a total test variance of 100 and individual item
variances of 10, 5, 6.5, 7.5, and 13. Cronbach’s alpha for this data set is shown in
Figure 16-15.

Figure 16-15. Calculating Cronbach’s alpha

There are several Kuder-Richardson formulas to calculate coefficient alpha; two
useful for dichotomous items are presented here. Note that KR-21 is a simplified
version of the KR-20 formula; it assumes all items are of equal difficulty. KR-20 and
KR-21 yield identical results if all items are of equal difficulty; if they are not, KR-21
yields lower results than KR-20. The KR-20 formula is shown in Figure 16-16.

Figure 16-16. Formula for KR-20

In this formula, k is the number of items,
pi is the difficulty for a given item, and

 is the total variance.

Note that the KR-20 formula is identical to the Cronbach’s alpha formula with the
exception that the item variance term has been restated to take advantage of the fact
that KR-20 is used for dichotomous items.

The KR 20 formula can be simplified by assuming all items have equal difficulty, so
it is not necessary to compute and sum the individual item variances. This simpli-
fication yields the KR 21 formula (Figure 16-17).

Figure 16-17. Formula for KR-21
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In this formula, k is the number of items,
 is the overall mean for the test (usually estimated by ), and
 is the total variance for the test (usually estimated by s2

x.

Item Analysis
Test construction often proceeds by creating a large pool of items, pilot-testing them
on examinees similar to those for whom the test is intended, and selecting a subset
for the final test that makes the greatest contributions to test validity and reliability.
Item analysis is a set of procedures used to examine and describe examinees’ re-
sponses to the items under consideration, including the distribution of responses to
each item and the relationship between responses to each item and other criteria.

One of the first things usually computed in an item analysis is the mean and variance
of each item. For dichotomous items, the mean is also the proportion of examinees
who answered the item correctly and is called the item difficulty or p, as previously
discussed. The total test score for one examinee is the sum of the item difficulties,
which is the same as the sum of questions answered correctly. The average item
difficulty is the sum of the item difficulties divided by the number of items, as shown
in Figure 16-18.

Figure 16-18. Formula for average item difficulty

In this formula pi is the difficulty of item i,
and k is the total number of items.

Because item difficulty is a proportion, the variance for an individual item is:

σ2
i = pi(1 − pi)

Often, items are selected to maximize variance to increase the test’s efficiency in
discriminating among individuals of different abilities. Variance is maximized when
p = 0.5, a fact that you can confirm for yourself by calculating the variance for some
other values of p:

If p = 0.50, σ2
i = 0.5(0.5) = 0.2500

If p = 0.49, σ2
i = 0.49(0.51) = 0.2499

If p = 0.48, σ2
i = 0.48(0.52) = 0.2496

If p = 0.40, σ2
i = 0.40(0.60) = 0.2400

Note that the variances for p = 0.49 and p = 0.51 are identical, as are the variances
for p = 0.48 and p = 0.52, and so on.

In many common test formats, most obviously multiple choice, examinees might
raise their scores by guessing if they don’t know the correct answer. This means that

400 | Chapter 16: Educational and Psychological Statistics



the p value of an item will often be higher than the proportion of examinees who
actually know the material tested by the item. To put it another way, the observed
scores will be systematically higher than the true scores because the observed scores
have been raised by successful guessing. For this reason, when an item format allows
guessing (for instance, with multiple choice items that carry no penalty for incorrect
answers), an additional step is necessary to calculate the observed difficulty of an
item to maximize item variance. This is done by adding the quantity 0.5/m to the
item difficulty, where m is the number of choices for an item. This formula assumes
that the choices are equally likely to be selected if the examinee doesn’t know the
correct answer to the item. The observed difficulty p0 of an item that is assumed to
have a true difficulty of 0.5 (half the examinees know the correct answer without
guessing) for different values of m would be as shown in Table 16-3.

Table 16-3. Item difficulties, corrected for guessing

Number of choices p0

2 0.5 + 0.5/2 = 0.75

3 0.5 + 0.5/3 = 0.67

4 0.5 = 0.5/4 = 0.625

Item discrimination refers to how well an item differentiates between examinees with
high versus low amounts of the quality being tested, whether it is knowledge of
geography, musical aptitude, or depression. Normally, the test creator selects items
that have positive discrimination, meaning they have a high probability of being an-
swered correctly or positively by those who have a large amount of the quality, and
incorrectly or negatively by those who have a small amount. For instance, if you are
measuring mathematical aptitude, questions with positive discrimination are much
more likely to be answered correctly by students with high mathematical aptitude
as opposed to those with low mathematical aptitude, who are unlikely to answer
correctly. The reverse quality is negative discrimination; continuing with this exam-
ple, an item with negative discrimination would be more likely to be answered cor-
rectly by a student with low aptitude than a student with high aptitude. Negative
discrimination is usually grounds to eliminate an item from the pool unless it is being
retained to catch people who are faking their answers (for instance, on a mental
health inventory).

Four indices of item discrimination are discussed in this section, followed by an
index of item discrimination that can be related either to total test score or to an
external criterion. If all items are of moderate difficulty (which is typical of many
testing situations), all five discrimination indices will produce similar results.

The index of discrimination is only applicable to dichotomously scored items; it
compares the proportion of examinees in two groups that answered the item cor-
rectly. The two groups are often formed by examinee scores on the entire test; for
instance, the upper 50% of examinees is often compared to the lower 50% or the
upper 30% to the lower 30%. The formula to calculate the index of discrimination
(D) is:
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D = pu − ftpl

where pu is the proportion in the upper group that got the item correct, and
pl is the proportion in the lower group that got it correct.

If 80% of the examinees in the upper group got an item correct, but only 30% of
those in the lower group got it correct, the index of discrimination would be:

D = 0.8 − 0.3 = 0.5

The range of D is (−1, +1). D = 1.0 would mean that everyone in the upper group
got the item correct and no one in the lower group did, so the item achieved perfect
discrimination; D = 0 would mean that the same proportion in the upper and lower
groups got the item correct, so the item did not discriminate between them at all.
The index of discrimination is affected by how the upper and lower groups are
formed; for instance, if the upper group were the top 20% and the lower group the
bottom 20%, we would expect to find a larger index of discrimination than if the
upper 50% and lower 50% were used.

There are no significance tests for the index of discrimination and no absolute rules
about what constitutes an acceptable value. A rule of thumb suggested by Ebel
(1965; full citation in Appendix C) is that D > 0.4 is satisfactory (items can be used),
D < 0.2 is unsatisfactory (items can be discarded), and the range between suggests
that the items should be revised to raise D above 0.4.

The point-biserial correlation coefficient, discussed in Chapter 5, is a measure of
association between a dichotomous and a continuous variable; it may be used to
measure the correlation between a single dichotomous item and the total test score
(assuming the test contains enough items that the scores are continuous).

The biserial correlation coefficient may be calculated for dichotomous items if it is
assumed that performance on the item is due to a latent quality that is normally
distributed. The formula to calculate the biserial correlation coefficient is given in
Figure 16-19.

Figure 16-19. Formula for the biserial correlation coefficient

In this formula, µ+ is the average total test score for examinees who answered
the item correctly,
µX is the average total score for the entire examinee group,
σX is the standard deviation on the total score for the entire group,
p is the item difficulty, and
Y is the Y-coordinate (height of the curve) from the standard normal distribution
for the item difficulty (e.g., from Figure D-3 in Appendix D).
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Suppose for a given item, µ+ = 80, µX = 78, σX = 5, and p = 0.5. The biserial correlation
coefficient for this item is shown in Figure 16-20.

Figure 16-20. Calculating the biserial correlation coefficient

The value of the biserial correlation is systematically higher than the point-biserial
correlation for the same data, and the difference increases sharply if p < 0.25 or p >
0.75. The biserial correlation coefficient is the preferred item difficulty statistic when
a dichotomous item is assumed to reflect an underlying normal distribution, and
the goal is to select items that are very easy or very difficult or if the test will be used
with future groups of examinees with a wide range of ability.

The phi coefficient, discussed in Chapter 5, expresses the relationship between two
dichotomous variables. If the variables are not true dichotomies but have been cre-
ated by dichotomizing values from a continuous variable with an underlying normal
distribution (such as a pass/fail score determined by establishing a single cut point
for a continuous variable), the tetrachoric correlation coefficient is preferred over the
phi coefficient because the range of phi is restricted when the item difficulties are
not equal. Tetrachoric correlations are also used in factor analysis and structural
equation modeling. The tetrachoric correlation coefficient is rarely computed by
hand but is included in some of the standard statistical software packages, including
SAS and R.

Item Response Theory
Although analyses based on classical test theory are still used in many fields, item
response theory (IRT) offers an important alternative approach. Anyone working in
psychometrics should be aware of IRT, and it is being used increasingly in other
fields, from medicine to criminology. IRT will probably be used even more in the
future because IRT capabilities are implemented into commonly used statistical
packages. IRT is a complex topic and can be only briefly introduced here; those who
wish to pursue it should consult a textbook such as Hambleton, Swaminathan, and
Rogers (1991) or a similar introductory textbook. An inventory of computer pack-
ages for IRT is available from the Rasch SIG.

IRT addresses several failings of classic test theory chief among them is the fact that
methods based on classic test theory cannot separate examinee characteristics from
test characteristics. In classic theory, an examinee’s ability is defined in terms of a
particular test, and the difficulty of a particular test is defined in terms of a particular
group of examinees. This is because the difficulty of a test item is defined in classic
theory as the proportion of examinees getting it correct; with one group of exam-
inees, an item might be classified as difficult because few got it correct, whereas for
another group of examinees, it might be classified as easy because most got it correct.
Similarly, on one test, an examinee might be rated as having high ability or having
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mastered a body of material because she got a high score on the test, whereas on
another test ostensibly covering the same basic material, she might be rated as having
low ability or mastery because she got a low score.

The fact that estimates of item difficulty and examinee ability are intertwined in
classic test theory means that it is difficult to make an equivalent estimation of ability
comparing examinees who take different tests or to rate the difficulty of items ad-
ministered to different groups of examinees. Classic test theory has tried various
procedures to deal with these issues, such as including a common body of items on
different forms of a test, but the central problem remains:

• Performance of a given examinee on a given item can be explained by the ex-
aminee’s ability on whatever the item is testing, and ability is considered to be
a latent, unobservable trait.

• An item characteristic curve (ICC) can be drawn to express the relationship
between the performance of a group of examinees on a given item and their
ability.

Ability is usually represented by the Greek letter theta (θ), whereas item difficulty is
expressed as a number from 0.0 to 1.00. The ICC is drawn as a smooth curve on a
graph in which the vertical axis represents the probability of answering an item
correctly, and the horizontal axis represents examinee ability on a scale in which θ
has a mean of 0 and a standard deviation of 1. The ICC is a monotonically increasing
function, so that examinees with higher ability (those with a higher value of θ) will
always be predicted to have a higher probability of answering a given item correctly.
This is shown in the theoretical ICC shown in Figure 16-21.

Figure 16-21. Theoretical ICC
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IRT models, in relation to classic test theory models, have the following advantages:

1. IRT models are falsifiable; the fit of an IRT model can be evaluated and a de-
termination made as to whether a particular model is appropriate for a partic-
ular set of data.

2. Estimates of examinee ability are not test-dependent; they are made in a common
metric that allows comparison of examinees who took different tests.

3. Estimates of item difficulty are not examinee-dependent; item difficulty is ex-
pressed in a common metric that allows comparison of items administered to
different groups.

4. IRT provides individual estimates of standard errors for examinees rather than
assuming (as in classic test theory) that all examinees have the same standard
error of measurement.

5. IRT takes item difficulty into account when estimating examinee ability, so two
people with the same number of items correct on a test could have different
estimates of ability if one answered more difficult questions correctly than did
the other.

One consequence of points 2 and 3 is that in IRT, estimates of examinee ability and
item difficulty are invariant. This means that, apart from measurement error, any
two examinees with the same ability have the same probability of answering a given
item correctly, and any two items of comparable difficulty have the same probability
of being answered correctly by any examinee.

Note that although in this discussion we assume items are scored as right or wrong
(hence, language such as “the probability of answering the item correctly”), IRT
models can also be applied in contexts in which there is no right or wrong answer.
For instance, in a psychological questionnaire measuring attitudes, the meaning of
item difficulty could be described as “the probability of endorsing an item” and θ as
the degree or amount of the quality being measured (such as favorable attitude to-
ward civic expansion).

Several models are commonly used in IRT that differ according to the item charac-
teristics they incorporate. Two assumptions are common to all IRT models.

Unidimensionality
Items on a test measure only one ability; this is defined in practice by the re-
quirement that performance on test items must be explicable with reference to
one dominant factor.

Local independence
If examinee ability is held constant, there is no relationship between examinee
responses to different items; that is, responses to the items are independent.

The simplest IRT model includes only one characteristic of the item, item difficulty,
signified by bi. This is the one-parameter logistic model, also called the Rasch
model because it was developed by the Danish mathematician Georg Rasch. The
ICC for the one-parameter logistic model is computed using:
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where Pi (θ) is the probability that an examinee with ability θ will answer item
i correctly,
and bi is the difficulty parameter for item i.

Item difficulty is defined as the point on the ability scale (x-axis) where the proba-
bility of an examinee getting the item correct is 0.5. For more-difficult items, greater
examinee ability is required before half the examinees are predicted to get it right,
whereas for easier items, a lower level of ability is required to reach that point. In
the Rasch model, the ICCs for items of differing difficulties have the same shape and
differ only in location. This is apparent in Figure 16-22, which displays ICCs for
several items of equal discrimination that vary in difficulty.

Figure 16-22. ICCs for several items of identical discrimination but varying difficulty: item A
is the most difficult, item B the easiest

Bearing in mind that θ is a measure of examinee ability, one can see that a greater
amount of ability is required to have a 50% probability of answering item A correctly
compared with items further to the left. It is also clear that among the items graphed
here, the least amount of θ is required to have a 50% chance of answering item B
correctly. Therefore, we would say that item B is the easiest among these items and
item A the most difficult. You can demonstrate this to yourself by drawing a hori-
zontal line across the graph at y = 0.5 and then a vertical line down to the x-axis
where the horizontal line intersects each curve. The point where each vertical line
intersects the x-axis is the amount of θ required to have a 50% probability of an-
swering the item correctly, and this quantity is clearly larger for item A than for
item B.

The two-parameter IRT model includes an item discrimination factor, ai. The item
discrimination factor allows items to have different slopes. Items with steeper slopes
are more effective in differentiating among examinees of similar abilities than are
items with flatter slopes because the probability of success on an item changes more
rapidly relative to changes in examinee ability.
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Item difficulty is proportional to the slope at the point where bi = 0.5, that is, where
half the examinees would be expected to get the item correct. The usual range for
ai is (0, 2) because items with negative discrimination (those that an examinee with
less ability has a greater probability to answer correctly) are usually discarded and
because, in practice, item discrimination is rarely greater than 2. The two-parameter
logistic model also includes a scaling parameter, D, which is added to make the
logistic function as close as possible to the cumulative normal distribution.

The ICC for a two-level logistic model is computed using the following formula:

Two items that differ in both difficulty and discrimination are illustrated in Fig-
ure 16-23.

Figure 16-23. ICCs for two items that differ in both difficulty and discrimination

The three-level logistic model includes an additional parameter, ci, which is techni-
cally called the pseudo-chance-level parameter. This parameter provides a lower
asymptote for the ICC that represents the probability of examinees with low ability
answering the item correctly by chance. This parameter is often called the guessing
parameter because one way low-ability applicants could get a difficult question cor-
rect is by guessing the right answer. However, often ci is lower than would be ex-
pected by random guessing because of the skill of test examiners in devising wrong
answers that can seem correct to an examinee of low ability. The ICC for the three-
parameter logistic model is calculated using this formula:
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A three-parameter model is shown in Figure 16-24; it has a substantial guessing
parameter, which can be seen from the fact that the curve intersects the x-axis around
0.20. This means that a person with very low θ would still have about a 20% chance
of answering this item correctly.

Figure 16-24. ICC for item with substantial guessing parameter

Exercises
Here is a set of questions to review the topics covered in this chapter.

Problem

Given the data distribution in Table 16-1:

1. What is the percentile rank for a score of 80?

2. What score corresponds to a score at the 75th percentile?

Solution

You find the percentile by looking at the cumulative probability for the score just
above the score you are interested in. To find a score corresponding to a percentile
rank, reverse the process.

1. A score of 80 is in the 17th percentile.

2. A score of 96 is in the 75th percentile.

Problem

Assume you are working with a published test whose mean is 100 and whose
variance is 400. Convert the following individual scores to Z-scores, T-scores, and
stanines.

1. 70

2. 105
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Solution

1. For 70, Z = −1.5, T = 35, and stanine = 2.

2. For 105, Z = 0.25, T = 52.5, and stanine = 5.

The computations for a score of 70 are shown in Figure 16-25 and below.

Figure 16-25. Calculating the Z-score

T = −1.5(10) + 50 = 35
Stanine = 2(−1.5) + 5 = 2.0

The computations for a score of 105 are shown in Figure 16-26 and below.

Figure 16-26. Calculating the Z-score

T = 0.25(10) + 50 = 52.5
Stanine = 0.25(2) + 5 = 5.5; rounds down to 5.

Exercises | 409

Educational and
Psych Statistics

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>





17
Data Management

You might wonder what a chapter on data management is doing in a book about
statistics. Here’s the reason: the practice of statistics usually involves analyzing data,
and the validity of the statistical results depends in large part on the validity of the
data analyzed, so if you will be working with statistics, you need to know something
about data management, whether you will be performing the management tasks
yourself or delegating them to someone else.

Oddly enough, data management is often ignored in statistics classes, as well as in
many offices and labs; some professors and project managers seem to believe that
data will magically organize into a usable form without human intervention. How-
ever, people who work with data on a daily basis have quite a different view of the
matter. Many describe the relationship of data management to statistical analysis
by invoking the 80/20 rule, meaning that on average 80% of the time devoted to
working with data is spent preparing the data for analysis, and only 20% of the time
is spent actually analyzing the data. In my view, data management consists of both
a general approach to the problem and the knowledge of how to perform a number
of specific tasks. Both can be taught and learned, and although it’s true that some
people can pick up this knowledge on an informal basis (through the college of hard
knocks, so to speak), there is no good reason to leave such matters up to chance.
Instead, it makes more sense to treat data management as a skill that can be learned
like any other, and there’s no reason not to take advantage of the collective wisdom
of those who have gone before you.

The quality of an analysis depends in part on the quality of the data, a fact enshrined
in a phrase that originated in the world of computer programming: garbage in,
garbage out, or GIGO. The same concept applies to statistics; the finest statistician
cannot produce valid results if the data is a mess. The process of data collection by
its nature is messy, and seldom does a data file arrive in perfect shape and ready for
analysis. This means that at some point between data collection and data analysis,
someone has to get her hands dirty working directly with the data file, cleaning,
organizing, and otherwise getting it ready for analysis. There’s usually no mystery
about what needs to be done during this process, but it does require a systematic
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approach guided by knowledge of the data and the uses to which it will be put as
well as an inquisitive attitude informed by common sense.

GIGO has another meaning that applies equally well to statistical analysis: garbage
in, gospel out. This phrase refers to the distressing tendency of some people to believe
that anything produced by a computer must be correct, which we can extend to the
equally distressing belief that any analytic results produced using statistical proce-
dures must be correct. Unfortunately, there’s no getting around the need for human
judgment in either case; computers and statistical procedures can both produce
nonsense instead of valid results if the data provided to them is faulty. To take an
elementary example, the fact that you can calculate the mean and variance of any
set of numbers (even if they represent measurements on a nominal or ordinary scale,
for instance) does not mean that those numbers are meaningful, let alone that they
provide a reasonable summary of the data. The burden is on the analyst to provide
correct data and to choose an appropriate procedure to analyze it because a statistical
package simply performs the operations you request on the data you provide and
cannot evaluate whether the data is accurate or the procedures appropriate and
meaningful.

If your interest is restricted to learning statistical procedures, you might want to skip
this chapter. Similarly, if you have no practical experience working with data, this
chapter might seem entirely abstract, and you might want to skim or pass over it
until you’ve actually handled some data. On the other hand, in either circumstance,
you might still find having a basic understanding of what is involved in the process
of data management useful and want to become aware of what can happen when it
isn’t done correctly. In addition, it’s always good to know more than you need to
for your immediate circumstances, particularly given that career change is a salient
feature of modern life. You never know when a little knowledge of data management
will give you an edge in a job interview, and reading this chapter should help you
speak convincingly on topic, giving you an advantage over many other candidates.
In addition, if in the future data management should become one of your responsi-
bilities, the information in this chapter will start you off with a good understanding
of why data management is important and how it is done.

An Approach, Not a Set of Recipes
Because many methods and computer programs are used to collect, store, and an-
alyze data, it’s impossible to write a chapter spelling out how to carry out data man-
agement procedures that will work in all circumstances. For that reason, this chapter
focuses on a general approach to data management, including consideration of issues
common to many situations as well as a generalized process for transforming raw
data into a data set ready for analysis.

If I had to give one piece of advice concerning data management, it would be this:
assume nothing. Don’t assume that the data file supplied to you is the file you are
actually supposed to analyze. Don’t assume that all the variables transferred cor-
rectly when the file was translated from one program to another. (Volumes could
be written on this subject alone, and every version of any software seems to include
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a new set of problems.) Don’t assume that appropriate quality control was exercised
during the data entry process or that anyone else has examined the data for out-of-
range or otherwise impossible values. Don’t assume that the person who gave you
the project is aware that an important variable is missing for 50% of the cases or that
another variable hasn’t been coded in the way specified by the codebook. Data col-
lection and data entry are activities performed by human beings who have been
known to make mistakes now and then. A large part of the data management process
involves discovering where those mistakes were made and either correcting them or
thinking of ways to work around them so the data can be analyzed appropriately.

The Chain of Command
Without getting too carried away with the military metaphor, it is true that efficient
data management for a large project requires establishing a structure or hierarchy
of people who are responsible for different aspects of the process. Equally important,
everyone involved in the project should know who is authorized to make what de-
cisions so that when a problem arises, it can be resolved quickly and reasonably.
This might sound like simple common sense, but in fact, it is not always exercised
in practice. If the data entry clerk notices that data is coming in with lots of variables
missing, for instance, he should know exactly who to report this problem to so it
can be corrected while the project is still in the data collection phase. If an analyst
finds out-of-range values during initial inspection of the data file, she should know
who is authorized to make the decision about what to do with those values so they
can be corrected or recoded before the main analysis begins. Make it difficult for
such issues to be resolved, and the staff is likely to impose its own ad hoc solutions
or give up trying to deal with them, leaving you with a data set of uncertain quality.

Codebooks
The codebook is a classic tool of research, and the principle of the codebook applies
to any project that involves collecting and analyzing data. The codebook is simply
a means to collect and organize important information about a project. Sometimes
the codebook is a physical object such as a spiral notebook or a three-ring binder,
and sometimes it is an electronic file (or a collection of files) stored on a computer.
Some projects use a hybrid system in which most of the codebook information is
stored electronically, but some or all of it is also printed and kept in a binder. The
bottom line is that it doesn’t matter what method you choose as long as the vital
information about the project and the data set is reliably recorded and stored for
future reference.

At a minimum, the codebook needs to include information in the following
categories:

• The project itself and data collection procedures used

• Data entry procedures

• Decisions made about the data

• Coding procedures
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Details about the project include its goals, timeline, funding, and some statement
of the personnel involved (original plus any changes) and their duties. Information
about data collection procedures includes when the data was collected, what pro-
cedures were used, whether any sort of quality control was used, and who actually
collected the data. If a form like a questionnaire was used, a copy should be included
in the codebook, as should any instructions given to the data collection team. De-
cisions made about the data include matters such as definitions of outliers (a case
whose value is far different from others in the data set) or other unusual values,
details about any cases that were excluded from analysis and why, and any impu-
tation or other missing data procedures that were followed. Information about cod-
ing procedures include the meaning of variables and their values, how and why
variables were recoded, and the codes and labels applied to them.

Recording information about data entry procedures is particularly important when
data is collected in one medium, for instance by using paper questionnaires, and
analyzed in another, such as in an electronic file. However, even if a CATI (computer-
assisted telephone interviewing) system or other method of electronic data collection
was used, the codebook should explain how the individual files were collected and
transferred. Usually, electronic file transfer works smoothly, but not always, and
every time a file is transferred it creates an opportunity for a data file to become
corrupted. If the file for analysis is discovered to be corrupted, it might be necessary
to trace backward through the transfer process to determine what happened and to
develop a way to correct it. Information about the training of data entry personnel
and any quality control methods used (such as double entry of a sample of the data)
should also be recorded.

In my experience, companies whose data consists of the records of their day-to-day
business operations do a better job of documentation than academics and others
working on small projects with data collected specifically for each project. Several
factors are involved here. One is that when data collection and storage processes are
ongoing, it is relatively easy to establish a set of procedures and follow them. Another
is that large companies that deal with data on a regular basis often have a staff of
people assigned specifically to manage that data, and those people receive special
training relevant to their job. In academia, the opposite situation is often the rule; a
lab might be involved in a number of projects, each involving different data and each
data set having its own set of quirks. Matters are often complicated by the fact that
the responsibilities of collecting and organizing this data can be relegated to under-
graduates with minimal experience or training or to PhDs or MDs who are subject
matter experts but unfamiliar with (and possibly uninterested in) the day-to-day
issues of data management.

The main reason you need a codebook or its equivalent is to create a repository of
information about each project and its data, so that people who join a project or
analyze the data long after the collection process has ceased know what the data is
and how to interpret it. The existence of a reliable codebook is also helpful for people
who have been involved in a project from the start because no one’s memory is
perfect, and it’s easy to forget what decisions were made six months or two years
ago. Having the codebook information easily accessible is also a great time-saver
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when it’s time to write up your results or when you need to explain the project to a
new analyst.

Seldom is data ready to be analyzed exactly as it has been collected. Before analysis
begins, someone needs to examine the data file and make decisions about problems
such as out-of-range values and missing data. All these decisions should be recorded,
as well as the location of each version of the file. An archived version of the original
data file should be stored somewhere it can’t be changed in case you want to reverse
a coding decision later or in case the edited file becomes corrupt and has to be
recreated. It’s also sensible to store versions of the file after each major round of
editing in case you decide that decisions made in rounds 1, 2, 3, and 5 were valid
but not those of round 4. Being able to go back to version 3 of the data file saves you
from having to process the original version from scratch. The number of variables
and cases in each version of the file, as well as the file layout, should also be recorded.
Every time a file is transferred, you need to confirm that the right number of cases
and variables appear in the new version, and the file layout is useful when you need
to refer to variables by position rather than name (for instance, if the last variable in
the file didn’t survive a transfer). If any method such as imputation is used to deal
with missing data, details on the method used and how this changed the data file
should also be recorded.

Records of the coding procedures used for a project will probably occupy the largest
part of your codebook. Information that should be recorded here includes the orig-
inal variable names, labels added to variables and data values, definitions of missing
value codes and how they were applied, and a list of any new variables and the
process by which they were created (for instance, by transforming an existing vari-
able or recoding a continuous variable into categories).

The Rectangular Data File
There are many ways to store data electronically, but the most common format is
the rectangular data file. This format should be familiar to anyone who has used a
spreadsheet program such as Microsoft Excel, and although statistical packages such
as SAS and SPSS can read data stored in many formats, the rectangular data file is
often used because it facilitates the exchange of data among different programs.

The most important aspect of a rectangular data file is the way it is laid out. For data
prepared for statistical analysis, the usual convention is that each row represents a
case and each column represents a variable. The definition of a case depends partly
on the analysis planned and involves the concept known as the unit of analysis
(discussed further in the sidebar “Unit of Analysis” on page 417). Because some-
times data about one case is recorded on multiple lines or data about multiple cases
is recorded on a single line, some prefer to say that one line represents one record
rather than one case.

Figure 17-1 displays an excerpt of data from the General Social Survey of 1993, a
nationally representative survey that has been conducted by the National Opinion
Research Center at the University of Chicago almost every year since 1972. Each line
holds data collected from one individual, identified by the variable id in the first
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column. Each column represents data pertaining to a particular variable. For in-
stance, the second column holds values for the variable wrkstat, which is the indi-
vidual’s response to a question about her work status, and the third column holds
values for the variable marital, which is the individual’s response to a question about
her marital status.

Figure 17-1. Rectangular data file in Excel

Figure 17-2 shows the same excerpt from the same data file in SPSS. The chief dif-
ference is that in Excel, the first row stores variable names (id, wrkstat, etc.), whereas
in SPSS, variable names are linked to the data but do not appear as a line in the data
file. This difference in storage procedure means that when moving a data file from
Excel to SPSS, there will appear to be one fewer case in SPSS than in Excel, but in
fact, the difference is due to the row of data names used in Excel but not in SPSS.
Transferring data from one program to another often involves this type of quirk, so
it’s good to know something about each system or program through which the data
will pass.

Although other data arrangements are possible in spreadsheets, such as placing
variables in rows and cases in columns, these methods are generally not used for
data that will be imported into a statistical program. In addition, although spread-
sheets allow for the inclusion of other types of information beyond data and variable
names, such as titles and calculated fields, that information should be removed be-
fore the data is imported into a statistical program.

The main consideration when setting up a system of electronic data storage should
be to facilitate whatever you plan to do with it. In particular, remember that whatever
program or statistical package you intend to use to analyze this data (Minitab, SPSS,
SAS, or R) has specific requirements, and it is your responsibility to provide the data
in a form that your chosen program can use. Fortunately, many statistical analysis
packages provide built-in routines to transform data files from one format to an-
other, but it remains the responsibility of the data manager and/or statistical analyst
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to determine which format is required for a particular procedure and to get the data
into that format before beginning the analysis.

Unit of Analysis
The unit of analysis in a research project is the major entity that is the focus of
interest for a particular analysis. For example, a study about school achievement
could have as its unit of analysis the student, the classroom, the school, the neigh-
borhood, or the city. A study of health care usage could use as its unit of analysis
the visit, the patient, the physician, the unit, or the hospital. We refer to the unit
of analysis because the same data could be analyzed using different units. For
instance, one analysis of a data set might look at the academic achievement of
individual schoolchildren, whereas another analysis of the same data could look
at achievement levels among different schools, and a third could look at differences
in academic achievement across a number of cities.

Data that is specific to one unit of analysis is often referred to as belonging to a
particular level. In the school data example, the variables collected about individ-
ual schoolchildren (age, gender, etc.) would be called individual-level data, and
the variables collected about schools (such as enrollment or type of funding) would
be called school-level data. Although in some fields it is still acceptable to mix data
from different levels in a conventional statistical analysis, this can produce mis-
leading results. Instead, it is increasingly becoming the expectation that specialized
techniques such as multilevel modeling will be used if data from different levels is
combined in a single analysis.

Figure 17-2. Rectangular data file in SPSS
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Spreadsheets and Relational Databases
Even if a project’s data will ultimately be analyzed using a specialized statistical
analysis package, it is common to collect and/or enter the data by using a different
program such as Excel, Microsoft Access, or FileMaker. These programs can be
simpler to use for data entry than a statistical package, and many people have them
installed on their computers anyway (particularly Excel), limiting the number of
licenses of specialized statistical software that must be purchased. Excel is a spread-
sheet, and Access and Filemaker are relational databases. All three can open
electronic files from other programs and write files that can be opened by other
programs, making them good choices if data will be transferred among programs.
In addition, all three can also be used to inspect the data and compute elementary
statistics.

For small projects with simple data sets, a spreadsheet can be completely adequate
for data entry. The advantage of spreadsheets is their simplicity; you can create a
new data file simply by opening a new spreadsheet and typing the data into the
window, and the entire data set can be contained in a single document. Beginners
find spreadsheets easy to use, and the spreadsheet format encourages entering data
in the rectangular data file form, facilitating data sharing among programs.

Relational databases can be a better choice for larger or more complex projects. A
relational database consists of a number of separate tables, each of which looks
similar to a spreadsheet page. In a well-designed database, each table holds one
particular type of data, and the tables are linked by key variables. This means that
within the database, data for one case (for instance, for one person) might be con-
tained in many separate, specialized tables. A student database might have one table
for student home addresses, one for birth dates, one for enrollment dates, and so
on. If data needs to be transferred to a different program for analysis, the relational
database program can be used to write a rectangular data file that contains all the
desired information in a single table. The chief advantage of a relational database is
efficiency; data need never be entered more than once, and multiple records can
draw on the same data. In the school example, this would mean that several siblings
could draw on the same home address record, but in a spreadsheet, that information
would have to be entered separately for each child, raising the possibility of typing
or transcription errors.

Inspecting a New Data File
Let’s assume you have just been sent a new data file to analyze. You have read the
background information on the project and know what type of analysis you need to
perform, but you need to confirm that the file is in good shape before you proceed.
In most cases, you will need to answer the following questions (at least) before you
begin to analyze the data. To answer these questions, you must open the data file
and, in some cases, run some simple procedures such as creating frequency tables
(discussed in Chapter 4). Some statistical packages have special procedures to aid
in the process of inspecting a new data file, but almost any package allows you to
perform most of the basic procedures required. However, you might also wish to
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consult one of the specialized manuals that explain the specific data inspection and
cleaning techniques available with particular statistical packages; several such books
are listed in Appendix C.

The following are some basic questions for a new data file:

1. How many cases are in the file?

2. How many variables are in the file?

3. Are there any (unintended) duplicate cases?

4. Did the variable values, names, and labels transfer correctly?

5. Is all the data within reasonable range?

6. How much data is missing and in what patterns?

You should know how many cases are expected to be in the data file you received.
If that does not match up with the number actually in the file, perhaps you were sent
the wrong file (which is not an uncommon occurrence), or the file was corrupted
during the transfer process (also not uncommon). If the number of cases in your file
does not match what you were expecting, you need to go back to the source and get
the correct, uncorrupted file before continuing in your investigation.

Assuming the number of cases is correct, you also need to confirm that the correct
number of variables is included in the file. Aside from being sent the wrong data file,
missing variables can also be due to the file becoming corrupted during transfer.
One thing in particular to be aware of is that some programs have restrictions on
the number of variables they will handle; if so, you need to find another way to
transfer the complete file. If this is not possible, another option is to create a subset
of the variables you plan to include in your analysis (assuming you won’t be using
all the variables in the original file) and just transfer that smaller file instead. A third
possibility is to transfer the file in sections and then recombine them.

Assuming you have a file with the correct number of cases and variables, you next
want to see whether it contains any unintended duplicate cases. This requires com-
munication with whoever is in charge of data collection on the project to find out
what constitutes a duplicate case and whether the data includes a key variable (see
the upcoming sidebar “Unique Identifiers” on page 420 if this term is unfamiliar)
to identify unique cases. The definition of a duplicate case depends on the unit of
analysis. For instance, if the unit of analysis is hospital visits, it would be appropriate
for the same person to have multiple records in the file (because one person could
have made multiple hospital visits). In a file of death records, on the other hand, you
would expect only one record per individual. Different methods are available to
identify duplicate records, depending on the software being used as well as the
specifics of the data set. Sometimes it is as simple as confirming that no unique
identifier (for instance, an ID number) appears more than once, whereas in other
cases, you might need to search for multiple records that have the same values on
several or all variables.
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Unique Identifiers
The concept of the unique identifier is vital to data management and familiar to
people who work with databases but might be a new concept to those who have
never constructed a database or otherwise worked in data management. An iden-
tifier is a code, usually a number, that identifies cases in a data set. A unique
identifier is a code that is unique for each case. The simplest way to assign a unique
identifier to each case is to use numeric ID codes, assigned sequentially; in other
cases, you might want to use preexisting ID codes (such as registration numbers
for patients in a medical system). Even if unique, preexisting codes are available,
however, a simple sequential ID code is often preferred because it reduces concerns
about breaches of confidentiality.

Most data sets need at least one unique identifier for each potential unit of analysis.
For instance, if data from a medical clinic could be analyzed at either the patient
level or the visit level, one identifier is required that is unique for each patient but
common to all the records for one patient, and a second identifier is required to
identify all the records belonging to a specific patient visit (chart notes, blood tests,
etc.). The unique identifier is useful to confirm that there are no duplicate records,
to identify common records belonging to one unit (for instance, all the clinic visits
for an individual), and to avoid confusing records for different individuals. Mul-
tiple Bill Smiths might be in a large file, for instance, and you wouldn’t want to
mix up their records. By the same principle, a particular Bill Smith might come to
the clinic five times in a year; when looking at his health care history, you want to
be able to identify easily all the records relating to him.

Checking that variable values, names, and labels are correct is the next step in in-
specting a data file. Correct transfer of data values is the most important issue be-
cause names and labels can be recreated, but the data must be correct, and many
unexpected things can happen to data in the file transfer process. Among the things
you should check are correct variable type (sometimes numeric variables are unex-
pectedly translated to string variables or vice versa; see the following section on string
and numeric variables), length of string variables (which are often truncated or pad-
ded during transfer), and correct values, particularly for date variables. Most stat-
istical packages have a way to display the type, length, and labels associated with
each character, and this should be used to see that everything transferred as ex-
pected.

Variable names can change unexpectedly during the file transfer process due to dif-
ferent programs having different rules about what is allowable in a variable name.
For instance, Excel allows variable names to begin with a number, but SAS and SPSS
do not. Some programs allow names up to 64 characters in length, whereas others
truncate names at 8 characters, a process that can result in duplicate variable names
or the substitution of generic names such as var1. Although data can usually be
analyzed no matter how the individual variables are named, odd and nonmeaningful
names impose an extra burden on the user and can make the analytical process less
efficient. Some advance planning is in order if data will be shared among several
programs. In particular, someone needs to confirm the naming conventions for each
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program whose use is anticipated and to create variable names that will be compat-
ible with all the programs that will be used.

Variable and value labels are a great convenience when working with a data file but
often create problems when files are moved from one program or platform to an-
other. Variable labels are text phrases attached to a variable that provide one way
to work around name length restrictions. For instance, the variable wrkstat in the
GSS example could be assigned the label “Work status in the previous six months,”
which does a much better job of conveying what the variable actually measures.
Value labels are assigned to variable labels but are assigned to the values of individual
variables. Continuing with the previous example, for the variable wrkstat, we might
assign the label “Full-time employment” to the value 1, “Part-time employment” to
the value 2, and so on. Convenient as variable and value labels might be, they often
don’t transfer correctly from one program to another because each program stores
this information differently. One solution, if you know that the data will be shared
across several platforms and/or programs, is to use simple variable names such as
v1 and v2 and simple numeric codes for values (0, 1, 2, etc.), and write a piece of
code (a short computer program) to be run on each platform or program that assigns
the variable and value labels.

The next step is to examine the actual values in the data set and see whether they
seem reasonable. Some simple statistical procedures (such as calculating the mean
and variance of numeric variables) can help confirm that the data values were trans-
ferred correctly (assuming you have the values for mean and variance for the data
set before it was transferred). Date variables should be checked particularly carefully;
they are a frequent source of trouble because of the different ways dates are stored
in different programs. Generally, the value of a date is stored as a number reflecting
the number of units of time (days or seconds) from a particular reference date. Un-
fortunately, each program seems to use a different reference date, and some use
different time units as well, with the consequence that date values often do not
transfer correctly from one program to another. If date values cannot transfer cor-
rectly, they can be translated to string variables, which can then be used to recreate
the date values in the new program.

Even if you have confirmed that the file transferred correctly, there might still be
problems with the data. One thing you have to check for is impossible or out-of-
range variables, which is easily done by looking at frequencies (or the minimum and
maximum values if a variable has many values) to see whether they make sense and
match with the way the variable was coded. (Frequency tables are discussed in
Chapter 4.) If a data file is small, it might also be feasible simply to sort each variable
and look at the largest and smallest values. A third option, if you are using Excel, is
to use the data filter option to identify all the values for a particular variable. Typical
problems to watch out for include out-of-range data (someone with an age of 150
years), invalid values (3 entered in response to a question that has only two valid
values, 0 and 1), and incongruous patterns (newborn infants reported as college
graduates). If you find unusual values or obvious errors after confirming that the file
transferred correctly, someone will have to make a judgment call about how to deal
with these problems because once you begin statistical analysis, the program will
treat all the data you supply for an analysis as valid.
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The final step before beginning an analysis is to examine the amount of missing data
and its patterns. Your first goal is to discover the extent of the missing data, a task
that can be accomplished using frequency procedures. The second is to examine the
patterns of missing data across multiple variables. For instance, is data frequently
missing on particular sets of variables? Are there some cases with lots of missing
data, whereas others are entirely or primarily complete? Does the file include infor-
mation about why data is missing (for instance, because a person declined to provide
information versus because a question did not apply to her) and, if so, how is that
information coded? Finally, you need to decide how you will deal with the missing
data, a topic that is discussed later in this chapter.

String and Numeric Data
One distinction observed in most electronic data processing and statistical analysis
systems is the difference between string and numeric variables, although they might
use different names for the concepts. The values stored in string variables, which are
also called character or alphanumeric variables, can include letters, numbers, blanks,
and symbols such as #. (The specific characters allowed vary across different sys-
tems.) String variables are stored as a series of coded values; the coding systems most
commonly used are EBCDIC (Extended Binary Coded Decimal Interchange Code)
and ASCII (American Standard Code for Information Interchange). Because string
variables are stored as a series of codes, each with a defined position within the
variable, certain procedures are possible that refer to the position of the characters.
For instance, many programming systems allow you to perform tasks such as se-
lecting the first three characters of a string variable and storing it in a new string
variable.

Numeric variables are stored as values rather than as the characters that are used to
write those values. They may be used in mathematical and statistical procedures
such as addition and subtraction, whereas string variables may not. In some systems,
certain symbols such as the decimal point, comma, and dollar sign are also allowed
within numeric variables. One point to be aware of is that the values of string vari-
ables coded with leading zeroes (0003) will lose those leading zeroes (3) if converted
to numeric variables.

The specific method used to store the values of numeric variables differs across
platforms and systems, as does the precision with which those values are stored.
You should be aware that when transferring electronic files from one system to an-
other, the variable type can change, or certain values that were read as valid in the
first system might be recoded as missing in the second. This is a problem that must
be handled on a file-by-file basis; the specific problems that occur when transferring
files from Excel to SPSS, for instance, might be different from those that occur when
transferring files from Access to SAS.
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Missing Data
Missing data is a common problem in data analysis. Despite the ubiquity of missing
data, however, there is not always a simple solution to deal with this problem. In-
stead, a variety of procedures and fixes is available, and analysts must decide what
approach they will take and how many resources they can afford to dedicate to the
problem of missing data. This discussion can only introduce the main concepts
concerning missing data and suggest some practical fixes. For a more in-depth and
academic discussion, see the classic text, Statistical Analysis with Missing Data, by
Little and Rubin (Wiley) listed in Appendix C.

Data can be missing for many reasons, and it is useful if the reasons are recorded
within the data set. Often, programs allow you to use specific data codes to differ-
entiate among different types of missing data, using values such as negative numbers
that cannot appear as true values for the variable in question. An individual com-
pleting a survey might refuse a particular question, might not have the information
requested, or the question might simply not apply to him. These three types of re-
sponses could be assigned different codes (say, −7, −8, and −9) and the meaning of
each code recorded in the codebook. Some systems also allow you to record the
meaning of these codes by using value labels. The reason for differentiating among
types of missingness is so you can use the information to perform further analyses.
You might want to examine whether those who declined to answer a particular
question differed in terms of gender or age from those who did not know the answer
to the question.

Missing data poses two major problems. It reduces the number of cases available
for analysis, thereby reducing statistical power (your ability to find true differences
in the data, a topic discussed further in Chapter 15), and it can also introduce bias
into the data. The first point is based on the fact that, all things being equal, statistical
power is increased as the number of cases increases, so any loss of cases might result
in a loss of power. To explain the second point requires an excursion into missing
data theory.

Missing data is traditionally classified into three types: missing completely at random
(MCAR), missing at random (MAR), and nonignorable. MCAR means that the fact
that a piece of data is missing is not related to either its own value or the value of
other variables in the data set. This is the easiest type of missing data to deal with
because the complete cases can be considered to be a random sample drawn from
the entire data set. Unfortunately, MCAR data rarely occurs in practice. MAR data
is a missing piece of data that is not related to its own value but is related to the
values of other variables in the analysis. Failure to complete a survey item about
household income can be related to an individual’s level of education. Nonignorable
missing data is unfortunately the most common type and the type most likely to
introduce bias into a statistical analysis. Nonignorable refers to data whose miss-
ingness is related to its own value. For instance, overweight people might refuse to
supply information about how much they weigh, and people with low-prestige jobs
might be less likely to complete an occupational survey.
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This discussion might seem a bit theoretical; how can you tell which type of missing
data you have when you, by definition, don’t know the values of the data that is
missing? The answer is that you have to make a judgment based on knowledge of
the population surveyed and your experience in the field. Because the most common
methods of statistical analysis assume you have complete, unbiased data, if a data
set has a large quantity of missing data, you (or whoever is empowered to make such
decisions) will have to decide how to deal with it. Implementing some of the fol-
lowing solutions suggested might require calling in a statistical consultant or using
software designed specifically for dealing with missing data, so the departmental
budget and availability of such experts and software will also play a role in the de-
cision. Some potential solutions are listed here. The most preferable is the first,
although this solution might not always be possible (and even if attempted might
not be successful). Solution 3 is the second most preferable in most circumstances.
Solutions 5 through 7 are seldom justified from a statistical point of view, although
they are sometimes used in practice.

1. Make an extra effort to collect the missing data by following up with the source,
which solves the problem by making the missing data no longer missing.

2. Consider a different analytical design, such as a multilevel model rather than a
classic repeated-measures model.

3. Impute values for the missing data using maximum likelihood methods, such
as those available in the SPSS MVA module, or use multiple imputation capa-
bilities provided in programs such as SAS PROC MI to generate a distribution
for the missing values. An imputation process provides substitute values for
those that are missing based on the values that do exist in the data, creating a
complete data set.

4. Include a dummy (0, 1) variable in your analysis that indicates that data is
missing, along with an imputed value replacing the missing data.

5. Drop the cases or variables with large amounts of missing data from the analysis.
(This is feasible only if the problem is confined to a small percentage of cases
and/or variables that are not central to your analysis, and it can introduce bias
if the data is not MCAR.)

6. Use conditional imputation by using available values to impute missing values
(not recommended because it can result in an underestimate of variance).

7. Use simple imputation to substitute a value such as the population mean for
the missing value (not recommended because it nearly always results in an ex-
treme underestimate of variance).
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18
Research Design

Often, one of the responsibilities of a statistician is to design research studies. To do
this well, you must be familiar with the different types of research designs, know
their strengths and weakness, and be able to draw on this knowledge to design
studies to examine different types of questions. You also need to be familiar with
the customs and practices of your profession, such as what type of study is generally
used for a particular type of data or to answer a particular type of question. Research
design is a larger subject than can be covered in a single chapter, so this chapter can
only introduce the major issues in designing research studies and discuss some of
the most common types of designs. Typically, designing a study involves compro-
mise between what the researcher would ideally like to do and what is feasible, and
the choice and execution of a design should be guided by consideration of what is
most important to the research question and the traditions and standard practices
in the relevant field of study. We’d all love to conduct research that is both perfectly
controlled (meaning the experimenter can manipulate or otherwise control all the
factors relevant to the research) and perfectly naturalistic (meaning that whatever is
being measured is being so in a realistic, natural environment). However, the char-
acteristics of control and naturalism are often in competition with each other, and
learning to judge how much to emphasize one versus the other is one aspect of
becoming a competent research designer. One influence on these decisions is the
purpose of the research. Is it to determine some underlying cause for a phenomenon,
as is common in science, or to optimize the yield or output for a specific process
while minimizing expense and effort, as is often the case in business and technology
research? Practical and ethical considerations also come into play—some research
designs can simply be impossible to execute, prohibitively expensive, or considered
unethical—and the researcher must be aware of community as well as scientific
standards concerning the ethical conduct of research.
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Basic Vocabulary
Research designs can be divided into three types: experimental, quasi-experimental,
and observational. For a design to be experimental, subjects must be randomly as-
signed to groups or categories. The classic experimental design is the randomized
controlled trial used in medicine, in which subjects are randomly assigned to ex-
perimental and control groups, administered some treatment, and the outcomes
collected for both groups. The controlled experiment is considered the strongest
type of research design as far as drawing conclusions from the results of research (in
fact, some refer to the results from experimental controlled trials as the gold standard
of evidence), but it is not always possible or practical to conduct this type of research.
The next strongest design is the quasi-experimental, in which some sort of control
or comparison group is used, but subjects are not randomly assigned to experimental
and control groups. In an observational study, the researcher makes no assignments
to groups or treatments but observes the relationships of different factors and out-
comes as they exist in the real world. Although experimental designs are preferred
for their ability to minimize systematic error or bias (a topic discussed in Chap-
ter 1), quasi-experimental and observational designs have the advantage of mini-
mizing experimenter intrusion into natural processes. This is important particularly
in studies with human subjects because human behavior is highly situational, and
a person’s behavior in a lab situation where she knows she is being observed might
be quite different from the way she behaves in her normal life. Again, decisions about
which kind of design to use depend on what is most important for the research and
possible from a practical and ethical point of view.

A factor is an independent variable (predictor variable) in a research design, that is,
a variable that is believed to exert some influence on the value of a dependent variable
(outcome variable) in the design. Often, experimental designs include multiple fac-
tors. If you were studying childhood obesity, factors that you might include in your
study include parental obesity, poverty, diet, physical activity level, gender, and age.
Some researchers call any research design that includes more than one factor a
factorial design; others reserve this terms for designs in which all possible combina-
tions of factors appear, also called a fully crossed or fully factorial design. You might
be interested in the influence of each of these variables alone (main effects) and in
their joint influence (interaction effects). You might believe that diet plays a role in
child obesity (a main effect) but that the influence of diet is different depending on
whether the study subject is male or female (an interaction effect).

Studies can also be classified by the relationship between the time when events oc-
curred and the time when information about them is collected for use in the study.
In a prospective study, data is collected from the starting point of the study into the
future. A group that shares a common point of origin, such as their time of entry
into the study or their year of birth, is called a cohort, so a prospective cohort study
is one that follows a group of people (or other objects of study) forward in time,
collecting information about them for analysis. In contrast, a retrospective study
collects information about events that occurred at some time before the study began.
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In terms of data types, researchers often differentiate between primary and secon-
dary data. Primary data is collected and analyzed for a particular research project,
whereas secondary data is collected for some purpose and later analyzed for some
other purpose. There are tradeoffs between the two, and some researchers might
work only with one or the other, other researchers with both. The greatest advantage
of primary data is its specificity; because it is collected as part of the project that will
also analyze it, it can answer the specific needs of a particular research project. In
addition, the people analyzing primary data are most likely familiar with when and
how it was collected. On the downside, because data collection is expensive, the
scope of data collected by any one researcher or research team is limited. The greatest
advantage of secondary data is scope. Because secondary data sets are often collected
by governmental entities or major research institutions such as the National Opinion
Research Center (located in Chicago), they are often national or international in
scope and may be collected over many years, achieving a breadth of coverage of
which individual researchers can only dream. The downsides with secondary data
are that you have to take the data as it is, it might not correspond exactly to the
purposes of your study, and there might be limitations on what data you are allowed
to use. (For instance, confidentiality concerns can mean that individual-level data is
not available.)

A final consideration is the unit of analysis in a study. The unit of analysis (further
discussed in Chapter 17) is the primary focus of a research study. In human research,
the unit of analysis is often the individual person, but it also can be collections or
populations of individuals who are members of some larger unit such as a school, a
factory, or a country. Studies in which the unit of analysis is populations rather than
individuals are known as ecological studies. Although ecological studies can be useful
in identifying potential areas of research (the relationship between a high-fat diet
and heart disease) and are relatively cheap to carry out because they generally rely
on secondary data, conclusions from ecological studies must be interpreted with
caution because they are subject to the ecological fallacy. The ecological fallacy refers
to the belief that relationships that exist at one level of aggregation (say, the country)
also exist at a different level (the individual). In fact, the strength and/or direction
of the relationship analyzed with one unit of analysis can be quite different when
the same data is analyzed using a different unit of analysis. A classic paper by W.S.
Robinson, listed in Appendix C, demonstrated the ecological fallacy with a series of
analyses of the relationship between race and literacy in the United States at different
levels of geographic aggregation.

Cook and Campbell Notation
Thomas D. Cook and Donald T. Campbell developed a style of notation for re-
search design that has been adopted and adapted by many researchers. The key
elements of this notation include O for an observation (collection of data), X for
an intervention, R for randomization, a dashed line to indicate groups formed
without randomization, and subscripts to indicate the order of observations or
interventions. In Cook and Campbell notation, a randomized pretest-posttest de-
sign with an experimental and control group would be notated as shown in Fig-
ure 18-1.

Basic Vocabulary | 427

Research Design



Figure 18-1. Randomized pretest-posttest design

This notation means that subjects are randomly assigned to treatment and control
groups, initial measurements are taken from both groups, a treatment or inter-
vention is delivered to the treatment but not to the control groups, and then
measurements are taken again on both groups. This type of design is common in
medical studies, in which the experimental intervention is a drug or other type of
treatment; the control group does not receive this intervention but receives either
standard treatment or no treatment. In the latter case, the members are sometimes
called the placebo group.

In contrast, a quasi-experimental pretest-posttest design is notated as shown in
Figure 18-2.

Figure 18-2. Quasi-experimental pretest-posttest design

The difference in the quasi-experimental design is that subjects are not randomly
assigned to groups. Often in this type of design, preexisting groups such as a
classroom or a school are used rather than the random assignment of individuals
to groups; the group that does not receive the intervention is called the compari-
son group.

Cook and Campbell’s notation is simple and flexible, which explains its continued
popularity. They also did a great deal to call attention to the use of weak designs
in educational and social research and to point out the problems with trying to
draw any conclusions from the data produced from poorly designed studies. Their
catalogue of threats to validity and threats to reliability is an excellent reminder
to researchers of the many factors that can bring into question the conclusions of
even well-designed studies. Cook and Campbell’s classic textbook on research
design has been updated by William Shadish and is listed in Appendix C.

Observational Studies
Observational studies are generally conducted when it is not possible to conduct an
experimental study or when collecting information from subjects in a natural envi-
ronment is more valued than the control that is possible in an experimental setting.
For an example of the first reason, consider research into the effects of cigarette
smoking on human health. This research can be done only through observational
studies because it would be unethical to assign some people to take up tobacco
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smoking, a practice known to be harmful to human health. Instead, we observe
people who choose to smoke and compare their health outcomes with those of peo-
ple who do not smoke. As an example of the second reason, consider research into
disruptive behavior by primary school students. Because the disruptive behavior
might be set off by specific triggers that occur in the school setting, researchers might
choose to observe students in their usual classrooms rather than bringing them into
the lab for observation.

One well-known type of observational study is the case control design, often used in
medicine to study diseases that are rare or take a long time to develop. A prospective
cohort study is an impractical design to study a rare or slow-developing disease
because you would need to follow an extremely large cohort to have a chance of a
sufficient number developing the disease in question, and the study might have to
last 20 or 30 years (or longer) before members of the cohort begin to be diagnosed
with the disease. A case control design circumvents these difficulties by beginning
with people who have the disease (the cases), then collecting another group of people
(the controls) who do not have the disease but who are similar in other ways to the
cases. Case control research generally focuses on identifying factors (diet, exposure
to occupational chemicals, smoking habits, use of prescription drugs) that differ-
entiate the cases and controls in the hope of finding a key factor or factors that could
explain why the cases have the disease and the controls do not. Some would classify
the case control design as quasi-experimental because it includes a control group;
however, the term “quasi-experimental” is more often used to describe prospective
experiments in which groups are designated and then observed going forward in
time.

The strength of a case-control study rests in large part on the quality of the match
between cases and controls; ideally, the controls should be like the case in every way
except that they do not have the disease. As a practical matter, matching is more
often done on just a few variables that are considered important in terms of risk for
the disease such as age, gender, presence of comorbidities (other diseases), and
smoking habits. A recent method to improve matching is the use of a propensity
score, which uses various factors to predict the probability of a given individual being
a case or a control. Donald Rubin and Paul Rosenbaum first proposed use of the
propensity score; see Appendix C for the citation to the article in which they intro-
duced this approach.

A cross-sectional design involves a single time of observation; the most common
example of cross-sectional design is a survey that collects data through a question-
naire or interview. The data collected by this type of design is like a snapshot that
captures the state of the individuals surveyed at a particular moment. Although
cross-sectional studies can be extremely helpful in tracking population trends and
in collecting a wide variety of information from a large number of people, they are
less useful in terms of establishing causality because of the lack of temporal sequence
in the data. For instance, a cross-sectional survey might ask how many hours of
television per week a person watches and about his height and weight. From this
information, a researcher can calculate the BMI (body mass index, a measure of
obesity) for all the individuals surveyed and investigate the association between tel-
evision viewing habits and obesity. She could not, however, claim that excessive
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television watching causes obesity because all the data was collected at one point in
time. In other words, even if the data shows that obese people on average watch
more television than thin people, it can’t tell you whether the obese people watched
a lot of television and then became obese, or they became obese first and then took
up watching television because more active pursuits became too difficult.

A cohort study can also be observational. A good example is the famous Framingham
Heart Study, which began following a cohort of more than 5,000 men living in
Framingham, Massachusetts (U.S.) in 1948 to identify factors associated with car-
diovascular disease (heart disease). The men in the study, who were between the
ages of 30 and 62 and without symptoms of cardiovascular disease at the start of the
study, have returned every two years to allow researchers to gather data from them
based on lab tests, a physical exam, and a medical history. The study is still active
and has enrolled two subsequent cohorts, including spouses, children, and grand-
children of the original participants. The Framingham Heart Study has made im-
portant contributions toward identifying major risk factors for heart disease (high
blood pressure, smoking, diabetes, high cholesterol, and lack of physical activity)
as well as the relationships between heart disease and factors such as age, blood
triglycerides, and psychosocial factors.

The major criticism of observational studies is that it is difficult if not impossible to
isolate the effects due to individual variables. For instance, some observational stud-
ies have noted that moderate wine consumption is associated with a higher level of
health as compared to abstinence, but it is impossible to know whether this effect
is due to the wine consumption or to other factors characteristic of people who drink
wine. Perhaps wine drinkers eat better diets than people who don’t drink at all, or
perhaps they are able to drink wine because they are in better health. (Treatment for
certain illnesses precludes alcohol consumption, for instance.) To try to eliminate
these alternative explanations, researchers often collect data on a variety of factors
other than the factor of primary interest and include the extra factors in the statistical
model. Such variables, which are neither the outcome nor the main predictors of
interest, are called control variables because they are included in the equation to
control for their effect on the outcome. Variables such as age, gender, socioeconomic
status, and race/ethnicity are often included in medical and social science studies,
although they are not the variables of interest, because the researcher wants to know
the effect of the main predictor variables on the outcome after the effects of these
control variables have been accounted for. Such corrections after the fact are always
imperfect, however, because you can never know all the variables that might affect
your outcome, and there are practical limitations to how much data you can collect
and how much you can include in any analysis.

Although observational studies are generally considered weaker in terms of statis-
tical inference, they have one important characteristic: response variables (such as
human behavior) can often be observed within the natural environment, enhancing
their ecological validity, or the sense in which what is being observed has not been
artificially constrained by engaging in a narrowly defined experimental paradigm.
Going one step further, some observational studies use participant observation
methods in which a researcher becomes involved in the activity under study. If this
participation is hidden from the actual participants, ethical issues can arise around
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the use of deception, so safeguards must be built into the study to see that no inad-
vertent harm occurs because of the experimental procedures.

Quasi-Experimental Studies
Quasi-experimental studies are similar to experimental studies in that they use a
control or comparison group but differ in that participants are not randomly as-
signed to those groups. Quasi-experimental designs are often used in field research
(research in which data is collected in a natural setting as opposed to the laboratory
or other obviously experimental setting) and are particularly popular in education
and social science research, in situations in which experimental designs would often
be impractical. For instance, if you want to study the effects of a new approach to
teaching math, you can assign one preexisting classroom to use the new method and
another to continue using the old method; at the end of the school year, you would
then compare student achievement in the two classrooms. This is not an experi-
mental design because students were not randomly assigned to the treatment (new
method) and control (old method) groups, but a true experimental design would be
impractical in a school setting. Instead, selecting a comparable group of students to
use as a comparison group to the students who get the experimental treatment (the
new method of teaching) is a compromise solution and is better than having no
source of comparison at all.

The usefulness of a quasi-experimental design might be clearer if we contrast it with
some weaker designs often used out of expediency. The terminology and notation
used in this section was developed by Thomas D. Cook and Donald T. Campbell
(see the sidebar “Cook and Campbell Notation” on page 427 and the Shadish ref-
erence in Appendix C), and it has become a widely used research design. Three
particularly weak yet commonly used designs are the one-group posttest-only de-
sign, the posttest-only nonequivalent groups design, and the one-group pretest–
posttest design. As Cook and Campbell note, results from studies using these designs
could be due to so many reasons other than the factor of interest that it is difficult
to draw any conclusions from them.

In the posttest only design, an experimental treatment is delivered and data collected
on the group that received the treatment, as shown in Figure 18-3.

Figure 18-3. One-group posttest-only design

This design is as simple as it looks; you deliver an intervention to a single group and
then observe the members once. It can be useful if information is available from
other sources about the condition of the experimental group before the intervention,
and it may be used in the very early stages of research to gather descriptive infor-
mation used to create a stronger design for the main study. However, without con-
textual information, this design amounts to little more than “We did some stuff, and
then we took some measurements.” True enough, but what is the value of the
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resulting data? It is difficult, if not impossible, to justify drawing causal inferences
from this design because so many factors other than the intervention could also be
responsible for any observed outcomes. Without knowing the precise state of the
group before the intervention, it is difficult to say anything about how the members
might have changed, and without a control group, it is not possible to say that the
changes were due to the intervention. Other possible explanations include chance,
the influence of events outside the study, maturation (normal growth processes; this
cause is particularly relevant when studying children and adolescents), and the ef-
fects of being studied.

The posttest-only non-equivalent groups design adds one refinement to the one-group
posttest-only design: a comparison group that does not receive the intervention but
is measured or observed at the same time as the intervention group, as shown in
Figure 18-4.

Figure 18-4. Non-equivalent groups posttest-only design

This design might provide useful preliminary descriptive data if information is avail-
able from another source about the state of the two groups before administration of
the intervention, and the use of a comparison group (ideally one as similar as possible
to the experimental group, such as a comparable class within the same school) pro-
vides some information that might help place the measurements in context. Data
from the comparison group also helps eliminate some alternative explanations such
as maturation (assuming the two groups are the same age and have roughly com-
parable experience regarding whatever is being measured). However, differences
observed between the experimental and comparison groups could be due to initial
differences between the two groups rather than to the intervention, and the lack of
random assignment, as well as the lack of pretest information, makes it difficult to
eliminate this explanation for any differences observed between the groups.

The one-group pretest-posttest design uses only one group but adds an observation
(the pretest) before the intervention is delivered, as shown in Figure 18-5.

Figure 18-5. One-group pretest-posttest design

Although the collection of information about the experimental group prior to the
intervention is certainly useful, it is still not possible to draw causal inference from
data collected from this type of design. The reason is that so many other explanations
for the observed results are possible. Besides obvious issues such as maturation and
influence from outside events, statistical regression (also called regression to the
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mean) must always be considered with this type of design, particularly if the
experimental group was selected due to high or low performance on some measure
related to the purpose of the study. Suppose a group of children who score poorly
on a reading test (the pretest) is given extra coaching in reading (the intervention)
and then tested again (the posttest). They may well perform better on the posttest
than on the pretest, but ascribing this change to the influence of the intervention
requires a leap of faith not supported by the study design because all measurements
include a component of random error. (This is further discussed in Chapter 16.) For
instance, each student in our hypothetical study has a true level of competency in
reading, but any particular measurement of his reading competency (the score on a
reading test) includes some error of measurement that might make his observed
score higher or lower than the true score that reflects actual competency. Thus, a
student who scores low on one reading exam might score higher on the next simply
due to this random error of measurement, without her level of competency in reading
having changed at all. If a study group is selected for its extreme scores (for instance,
children who perform poorly on a reading test), the probability of regression to the
mean resulting in higher scores on a second testing occasion is increased.

Cook and Campbell present many quasi-experimental designs that are preferable to
these three (see the Shadish, Cook, and Campbell book in Appendix C for more on
this topic); all represent attempts to improve control in situations when it is not
possible to include random assignment to groups. One simple example is the pretest-
posttest design with comparison group illustrated in Figure 18-6.

Figure 18-6. Pretest-posttest design with comparison group

In this design, a comparison group is selected that is similar to the experimental
group, but subjects are not assigned randomly to either group; instead, most often,
preexisting groups are used. Measurements are taken on both groups, the interven-
tion is delivered to the experimental group, and measurements are taken on both
groups again. The main downside to this design is that without random assignment,
the experimental and comparison groups might not be truly comparable; adminis-
tering the pretest to both groups helps but does not completely overcome this
difficulty. Other threats to this design include the fact that simply receiving any
intervention can cause a difference in the outcome (for this reason, the control group
sometimes receives a different intervention not believed to affect the outcome) and
that the two groups might have different experiences outside of the experimental
context. Different classrooms have different teachers; different towns might have
different economic conditions, and so on.

The interrupted time series shown in Figures 18-7 and 18-8 is a quasi-experimental
design that might or might not include a comparison group.
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Figure 18-7. Interrupted time series with a comparison group

Figure 18-8. Interrupted time series (no comparison group)

The number of observations can vary from one study to another, but the basic idea
is that a series of measurements is recorded over a period of time, an intervention is
delivered, and then another series of measurements is recorded over a period of time.
This design is often used to judge the effects of legal or social policies that affect
large groups of people, such as passage of a law requiring drivers to wear seat belts
or increasing fees charged to households for waste disposal. Multiple measurements
are taken over a period of time before the intervention to establish a baseline level
and again after the intervention to establish the new level. Multiple measurements
are necessary to control for the natural fluctuation of the phenomena. For instance,
even without any change in laws, the number of traffic accidents varies from one
month to the next. Ideally, the baseline measurements should be stable around a
particular value, and the post-intervention measurements should be stable but
around a different value and in the expected direction. The addition of a comparison
group to this design strengthens the researcher’s ability to draw conclusions because
it can help control for nonintervention influences that might influence the results.
(A public conservation campaign might influence people to begin recycling and
composting, independent of the effect of the higher trash disposal fees.)

Suppose a state is concerned about the number of traffic deaths and decides to lower
the speed limit on highways, a decision that it believes will result in fewer deaths.
Because the reduced speed limit will affect everyone who drives in that state, it is
not possible to have a control group; instead, a neighboring state with similar dem-
ographics and traffic death rates is chosen to serve as a comparison group. Data from
this study is presented in Figure 18-9.

The black line represents traffic deaths in the intervention state, the grey line those
in the comparison state; the vertical dotted line shows when the intervention (the
new speed limit) took effect. As can be seen, the two states had comparable rates of
traffic deaths in the five months preceding the intervention; then deaths dropped in
the intervention state and became stable around a new, lower level, as would be
expected if the law were effective in reducing traffic deaths. No such change was
observed in the comparison state (in fact, the rate of traffic deaths might have risen
slightly), giving support to the contention that the law, rather than any other influ-
ence, was responsible for the observed decline in traffic deaths. Of course, we would
also conduct a statistical investigation to see whether the change was significant, but
the graph suggests that the intervention did have an effect in the desired direction.
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Is the Sports Illustrated Jinx Real?
You might have heard of the Sports Illustrated jinx: the claim that athletes who
appear on the cover of the weekly magazine Sports Illustrated (SI) are subject to a
curse of sorts, reflected in poor subsequent performance in their sport or other
misfortune. Believers can cite many instances to support their claim. Golfer Ben
Hogan, one of the greatest players of his era, was featured on the cover of SI on
January 10, 1949, only to suffer career-threatening injuries in an automobile ac-
cident a few weeks later. Belarus gymnast Ivan Ivankov, lauded on a September
2000 SI cover as the best gymnast in the world, was shut out of the medals at the
2000 Olympic Summer Games shortly thereafter.

Everyone knows that anecdotes are not the same thing as evidence, so three SI
writers sat down to tally up the fates of the athletes appearing on almost 2,000
SI covers. Their conclusion: more than one third (37.2 percent) of the cover sub-
jects suffered a misfortune relatively soon after appearing on the cover, with
misfortune defined to include anything from a decline in individual or team per-
formance to injury or death. Of course, to test this result for statistical significance,
we’d need a lot more information, including the frequency of misfortune for each
athlete through his career; because collecting such data would be extremely time-
consuming, if not impossible, the issue will probably never be settled.

A much simpler explanation is at hand, however: regression to the mean. Athletes
selected to appear on the SI cover are usually top performers in their sport at the
time of their selection, and because everyone’s performance fluctuates, it’s un-
derstandable that their performance would not always remain at that high level.
For the superstitious, this decline in performance could easily be interpreted as a
jinx rather than as natural variability. For more on this subject, see the article by
Alexander Wolff and colleagues cited in Appendix C.

Figure 18-9. Effects of a speed limit on traffic deaths
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Experimental Studies
Experimental studies provide the strongest evidence for causal inference because a
well-designed experiment can control or eliminate the influence of many sources of
variation, making us more comfortable in asserting that observed effects are due to
the experimental intervention rather than to any other cause. There are three ele-
ments to an experimental study, and the configuration of the design can range from
the very simple to the very complex:

Experimental units
The objects under examination. In human experiments, units are generally re-
ferred to as participants, given their active engagement in the experimental
process.

Treatments
The interventions applied to each unit in the experimental setting.

Responses
The data collected after the treatment has been delivered that form the basis for
evaluating the effects of the treatment.

Besides the treatments that are the focus of the study, other variables might be be-
lieved to affect the responses. Some of these are characteristics of the experimental
subjects; in the case of human subjects, they might include qualities such as age and
gender. These characteristics can be of interest to the researchers (it might be hy-
pothesized that a treatment is more successful with males than with females), or
they might simply be nuisance variables or control variables that might obscure the
relationship between treatment and response. For nuisance or control variables, you
want to neutralize their effects on the response variables, and normally this is done
by having approximately equal representation on the important nuisance or control
variables in the experimental and control groups. Normally, random assignment
will make the distribution of characteristics such as gender and age approximately
equal in each group; if this is not sufficient, matching or blocking procedures can
also be used, as described later.

In some experimental designs, a comparison is made between a baseline measure-
ment for each unit before treatment and the measurement for the unit after treatment
(also known as pretest and posttest responses). This type of design is known as a
within-subjects design and provides a high degree of experimental control because
measurements on units are made only with themselves; participants act as their own
controls. The example of the matched-pairs t-test discussed in Chapter 6 is an ex-
ample of a within-subjects design. In a between-subjects design, comparisons are
made between different units, and frequently, the units are matched on one or more
characteristics to ensure the least confounded comparison of the treatment on units
from the control and experimental groups.

Ingredients of a Good Design
The goal of an experiment is to determine the effect of an experimental treatment;
this is often measured by the differences in response values for members of the
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treatment and control groups. It’s important to use good procedures for allocating
experimental units to treatment and control; indeed, the method of allocating units
is a basic difference that separates experimental from observational studies. A major
goal of any experimental design is to minimize or preferably eliminate systematic
errors or biases in the data collected.

For many reasons—including ethical and resource considerations—the amount of
data collected should be minimally sufficient to answer a particular research
question. The use of effective sampling and power calculations (discussed in Chap-
ter 16) ensures that the smallest number of experimental units is subjected to ex-
perimentation and that a result can be achieved with the least cost and effort.

An effective research design makes analysis much easier later on. For example, if
you design your experiment so that you will not encounter missing observations,
you will not need to worry about coding missing data and any limitations of inter-
pretation from your results that might subsequently arise (a topic explored further
in Chapter 17), including the biases that might accompany nonrandom missing data.

Statistical theory is flexible to the extent that many sophisticated types of designs
are mathematically possible, but in practice, most statistics (and therefore designs)
are structured according to the requirements of the general linear model. This sim-
plifies analysis because many techniques, such as correlation and regression, are
based on this model. However, to make valid use of the general linear model, an
experiment must be designed with several important factors in mind, including bal-
ance and orthogonality.

Balance means that treatments are administered in equal numbers within each ex-
perimental block; they will occur with the same frequency. Balanced designs are
more powerful than unbalanced designs for the same number of subjects, and an
unbalanced design can also reflect a failure in the process of subject allocation. Ran-
domization of group allocation, blinding, and identifying biases are all mechanisms
for ensuring that balance is maintained; these are discussed later in this chapter.

Orthogonality means that the effects of different treatments can be independently
estimated without interfering with each other. For example, if you have two treat-
ments in an experiment and you build up a statistical model that measures their
effects on experimental units, you should be able to remove either treatment from
the model and get the same answer for the remaining treatment.

None of this is as complicated as it first sounds, and if you stick to some well-known
recipes and templates for factorial design, you won’t need to worry about more
exotic exceptional cases.

Gathering Experimental Data
So, you want to run an experiment, but where do you start? This section offers a
general outline of the research process, roughly in the order in which you need to
carry out each step, but your plan should also consider how experiments such as
the one you are planning are usually approached in your field of work or study. Stand
on the shoulders of giants, in other words; if you are running experiments in a
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scientific discipline, look at some articles from research journals in that specific dis-
cipline, and ensure that the designs and analyses that you carry out are consistent
with what others are using in the field. The process of peer review, although not
flawless, ensures that the methodology used in an article has been vetted by at least
two experts. If you have an advisor or supervisor, you might ask her for advice as
well—there’s no sense in reinventing the wheel. In industry or manufacturing, it
might be harder to find guidance, but company technical reports and previous anal-
yses should provide some previous examples—even if they have not been peer-
reviewed—that you might find instructive.

Having said that, you will be surprised at just how much variation and urban myth-
ology surrounds experimental design, so let’s walk through the steps one by one:

1. Identify the experimental units you want to measure.

2. Identify the treatments you want to administer and the control variables you
will use.

3. Specify treatment levels.

4. Identify the response variables you will measure from the experimental units.

5. Generate a testable hypothesis that predicts what effect the treatment will have
on the response variables.

6. Run the experiment.

7. Analyze the results.

Design (steps 1–5) can seem easy when looked at in the abstract, but let’s look at
each step in detail to see what’s really involved.

Identifying Experimental Units
Recall that statistics are calculated on samples and are estimates of the parameters
of the populations from which the samples were drawn. To ensure that these esti-
mates are accurate estimates, most statistical procedures rely on the assumption that
you have selected these units randomly from the population. (Matched and paired
designs are an obvious exception to this rule.) Bias can very easily creep into a design
at this first stage, and yet, circumstances might dictate that bias cannot be easily
avoided.

For example, many research studies in psychology use undergraduate psychology
students as participants. This serves two purposes. First, as part of their coursework,
students are exposed to a wide variety of experimental designs and get to experience
firsthand what is involved in running an experiment; second, the participant group
is easily accessible for psychological researchers. In some ways, the homogeneity of
the students serving as the subject pool provides a type of control because the par-
ticipants can be of similar ages, have an even split in terms of sex, come from the
same geographical area, have similar cultural tastes, and so on. However, they are
not a random sample from the general population, and this might limit the inferences
you can make from your data. Research papers based on a sample of college students
might tell us more about the behavior of college students than about the population
at large; whether this is an important distinction depends on the type of research
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being conducted. This problem is not limited to psychology; despite the expecta-
tions of random selection of subjects, in practice, researchers in many fields select
their subjects nonrandomly. For instance, medical research is often performed with
patients in a particular hospital or people who receive care at particular clinic, yet
the results are generalized to a much larger population; the justification is that bio-
logical processes are not dependent on matters of geography, so results from one set
of patients should generalize to similar patients as well. It’s important to know what
the expectations and standard practices are in your particular field in terms of sample
selection and the validity of generalizing results from a sample because no one rule
applies in all fields of study.

What is meant by random selection in this context? Imagine a lottery in which every
citizen of a country receives a ticket. All the tickets are deposited in a large box,
which is mixed by rotation through many angles. An assistant is then asked to pick
one ticket by placing his hand in the box and selecting the first ticket he touches. In
this case, every ticket has an equal chance of being selected. If you needed 100
members for a control and 100 for an experimental group, you could select them
using a similar process by which the first 100 selections are allocated to a control
group, and the next 100 are allocated to the treatment group. Of course, you could
alternate selection by allocating the first ticket to a control group, the next to the
treatment group, the third to a control group, and so on. If the sampling is truly
random, the two techniques will be equivalent. It’s important, for the selection to
be random, that the allocation of any particular individual must be truly independent
of the selection of any of the others.

Different procedures for drawing samples are discussed further in Chapter 3. The
main point to remember here is that in real-world situations, it is often not possible
or feasible to draw a random sample from the population, and practical concerns
dictate that your sample will be drawn from a population smaller than the one you
wish to generalize to (that you believe your results apply to). This is not a problem
if you are clear about where and how your sample was obtained. Imagine that you
are a microbiologist interested in examining bacteria present in hospitals. If you use
a filter with pores of diameter one µm (micrometer), any bacteria smaller than this
will not be part of the population that you are observing. This sampling limitation
will introduce systematic bias into the study; however, as long as you are clear that
the population about which you can make inferences is bacteria of diameter greater
than one µm, and nothing else, your results will be valid. In reality, we often want
to generalize to a larger population than we sampled from, and whether we can do
this depends on a number of factors.

In terms of medical or biological research, generalizing far beyond the population
that was sampled is common because of the belief that basic biological processes
are common to all people. For this reason, the results of medical research conducted
with patients in one hospital can be assumed to apply to patients all over the world.
(Of course, not every medical result generalizes this easily.) Another fact to keep in
mind is that by explicitly stating the limitations of your sample, you can produce
valid results that add to the general body of knowledge. Because many such studies
are conducted in a particular field, it might be possible to generalize the results to
the general population as well. For example, carrying out tests of reaction time to
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English words might be used to make inferences about the perceptual and cognitive
processing performance of English-speaking people. Subsequent experiments aimed
at increasing the possibility of generalizing the finding might include the same ex-
periment but with German words displayed to German speakers, French words to
French speakers, and so on. Indeed, this is the way more general results are built up
in science.

Identifying Treatments and Controls
Treatments are the manipulations or interventions that you want to perform to
demonstrate an experimental effect. Suppose a pharmaceutical company has spent
millions of dollars developing on a new smart drug, and after many years of testing
in the lab, it now wants to see whether it works in practice. It sets up a clinical trial
in which it selects 1,000 participants by randomly selecting names from a national
phone book, giving a truly representative sample of the population on significant
parameters such as age, gender, and so on. Luckily, it has a 100% success rate in
recruiting participants for the study (everyone wants to be smarter, right?), so they
don’t have to worry about the selected sample refusing to participate or dropping
out (both of which could introduce bias into the sample). All participants will be
tested on the same day in identical experimental conditions (exactly the same loca-
tion, temperature, lighting, chair, desk, etc.). At nine in the morning, participants
are administered an intelligence test by computer; at noon, they are given an oral
dose of the smart drug with water; and at 3 P.M., they sit for the same intelligence
test again. The results show an average increase in intelligence of 15%! The company
is ecstatic, and it releases the results of the test to the stock exchange, resulting in a
large increase in the company’s share price. Nevertheless, what’s wrong with the
treatments administered in this experiment?

First, because everyone was tested in exactly the same place and under exactly the
same experimental conditions, the result cannot be automatically assumed to apply
to other locations and environments. If the test were administered under a different
temperature, the results might be different. In addition, some aspect of the testing
facility might have biased the result—say, the chair or desk used or building oxygen
levels—and it’s difficult to rule these confounding influences out.

Second, the fact that the baseline and experimental conditions were always carried
out in the same order and the same test used twice will almost certainly have been
a contributing factor in the 15% increase in intelligence. It’s not unreasonable to
assume that there will have been a learning effect from the first time that participants
undertook the test to the second time, given that the questions were exactly the same
(or even if they were of the same general form).

Third, there is no way the researchers can be sure that some other confounding
variable was not responsible for the result because there was no experimental control
in the overall process; for example, there could be some physiological response to
drinking water at noon (in this paradigm) that increases intelligence levels in the
afternoon.
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Finally, participants could be experiencing the placebo effect by which they expect
that having taken the drug, their performance will improve. This is a well-known
phenomenon in psychology and requires the creation of an additional control group
to be tested under similar circumstances but with an inert rather than active sub-
stance being administered.

There are numerous such objections that could be made to the design as it stands,
but fortunately, there are well-defined ways in which the design can be strengthened
by using experimental controls. For example, if half of the randomly selected sample
was then randomly allocated to a control group and the remaining half allocated to
an experimental group, an inert control tablet could be administered to the control
group and the smart drug to the experimental group. In this case, the learning effect
from taking the test twice, as well as the effects of being part of an experiment, can
be estimated from the control group, and any performance differences between the
two groups can be determined statistically after the treatment has been applied.

Of course, in real clinical drug trials, the research designs are structured quite dif-
ferently, and investigations are staged in phased trials that have explicit goals at each
step, starting with broad dose-response relationships, investigations of toxicity, and
so on, with controls being tightened at each stage until an optimal and safe dosage
can be identified that produces the desired clinical outcome. Participants are virtu-
ally never a random selection of the population but instead are required to meet a
particular set of restrictions (age, health, etc.). However, after the study sample is
selected, subjects are generally randomly assigned to treatment and control groups,
an important point in experimental design that helps control bias by making the
treatment and control groups as equal as possible.

Specifying Treatment Levels
In practice, you might not be specifically interested in determining whether some
factors are influencing the experimental result—you might simply wish to cancel
out any systematic errors that can arise. This can often be achieved by balancing the
design to ensure that equal numbers of participants are tested in different levels of
the treatment. For example, if you are interested in whether the smart drug increases
intelligence in general, your sampling should ensure that there is an equal number
of male and female participants, a spread of testing times, and so on. However, if
you are interested in determining whether sex or time of drug administration influ-
ences the performance of the drug treatment, these variables would need to be ex-
plicitly recognized as experimental factors and their levels specified in the design.
For categorical variables such as sex, the levels or categories (male and female) are
easy to specify. However, for continuous variables (such as time of day), it might be
easier to collapse the levels to hourly times (in which case there will be 24 levels,
assuming equal dosage across the 24-hour day) or simply to morning, afternoon,
and evening (3 levels). The research question guides the selection of levels and the
experimental effects that you are interested in. Otherwise, counterbalancing and
randomization can be used to mitigate error arising from bias. Indeed, replication
of the results while extending or being able to generalize across spatial and temporal
scales is important for establishing the possibility of generalizing the result.
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After treatment levels have been determined, researchers generally refer to the treat-
ments and their levels as a formal factorial design, in the form of A1 (n1) × A2 (n2)
× . . . Ax (nx), where A1..Ax are the treatments and n1 . . . nxare the levels within each
treatment. For example, if you wanted to determine the effect of sex and time of
drug administration on intelligence, and you had a control and experimental group,
there would be three treatments, with their levels as follows:

SEX: male/female
TIME: morning/afternoon/evening
DRUG: smart/placebo

Thus, the design can be expressed as SEX (2) × TIME (3) × DRUG (2), which can
be read as a 2 by 3 by 2 design. The analysis of main effects within and interactions
between these treatments is discussed in the analysis chapters.

Treatments or Characteristics?
One important difference arises between the physical and social sciences in the
definition of treatments. The word “treatment” implies an active process of ap-
plying a process that is transformative, such as administering a drug to improve
intelligence. However, in the social sciences, treatments are quite often made up
of fixed characteristics such as gender. Should such characteristics be regarded as
treatments because no transformation takes place? Are designs that use such
treatments experimental, quasi-experimental, or actually observational? The issue
is fundamental to demonstrating a causal relationship between treatments and
responses because using a nontransformative treatment leaves open the question
of which characteristic of the experimental units is actually responsible for any
differences in responses observed between treatment levels. For this reason, some
researchers prefer to call characteristics such as gender independent variables
rather than treatments, and some use the term “independent variables” for all
variables believed to influence outcomes. Ultimately, the type of inferences that
can be made from any research design are limited by such considerations. In tech-
nological research, an experiment can have a more explicit optimization goal, such
as the estimation of an effect size, to determine the optimal combination and pro-
portions of different treatments and levels that will maximize the value of the
response variable.

Specifying Response Variables
Sometimes the response variable will be obvious, but in other cases, more than one
response variable might need to be measured, depending on how precisely the vari-
able can be operationalized from some abstract concept. Intelligence is a good ex-
ample; the abstract concept might appear to be straightforward to the layperson, yet
there is no single test to measure intelligence directly. Instead, many measures of
general ability across different skills (numerical, analytical, etc.) are measured as
response variables and might be combined to form a single number (an intelligence
quotient, or IQ), representing some latent structure among the correlated responses.
There are advanced techniques (covered in Chapter 12) that describe how to
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combine and reduce the number of response variables to a smaller, more meaningful
(in the sense of interpretation) set.

The safest bet when working with a complex and problematic concept such as in-
telligence might be to use a number of instruments to obtain response variables and
then determine how much they agree with one another. Indeed, techniques for de-
termining the mutual consistency of response variables play an important role in
validating experimental designs.

There are three main types of response variables: baseline, response, and intermedi-
ate. In the previous section, we saw how a baseline measure of intelligence was used
to estimate a direct experimental effect on a response variable (intelligence). An
intermediate variable is used to explain the relationship between the treatment and
response variable when this relationship is indirect but controllable. If you’re inter-
ested in establishing a causal relationship as part of an explanatory model, you
clearly want to be aware of all the variables involved in a process.

In some designs, the distinction between treatments and intermediate variables
might not be important. For instance, if you are a chemist and you are interested in
the chemical properties of water, you might be happy to work at the level of atomic
particles (protons, neutrons, electrons) rather than at the subatomic level in your
analysis. In psychology studies, in contrast, intermediate variables often receive
much more attention, particularly if the goal of the research is to specify how some
psychological process operates.

In very complicated systems, unanticipated interventions (or unobservable inter-
mediate variables) can influence the result, especially if such variables are highly
correlated with a treatment or the act of performing the experiment changes the
behavior of what is being observed. Thus, it might be hard to draw out causally
whether a treatment is specifically responsible for a change in response. Another
general principle is that the longer the delay between a treatment being administered
and a response being observed, the greater the likelihood of some intermediate vari-
able affecting the result and possibly leading to spurious conclusions. For example,
seasonal factors, such as temperature, humidity, and so on, exert a very strong in-
fluence on the outcomes of agricultural production, and these influences can be
greater than that of the intervention (a new type of fertilizer) that is the focus of the
study.

Hypothesis Testing Versus Data Mining
Given that a statistical significance level p < 0.05 implies that 1 in 20 experiments
will result in a Type I error, the onus is on the researcher to construct experiments
that are consistent with, or attempt to explain, phenomena based on a model or
theory. However, it is the practice of some researchers to collect a large amount
of data on many response variables and try to relate these to explicit treatments
of known characteristics of the sample. When undertaken on a large scale, this
approach is known as data mining. Data mining—as a form of secondary analysis
—is incredibly useful in exploring large data sets, often collected through obser-
vation or aggregated from different sources. At its simplest, the purpose of data
mining is to determine correlations between many variables, which might later
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form the basis for constructing experimental designs. Alternatively, in industrial
settings, data mining may be used to create decision rules in production systems
based on relationships observed in the data. For example, a financial database
might reveal that bank customers with income greater than $100,000 and living
at an address longer than 3 years have never defaulted on a home loan. Thus, the
bank might decide to offer loans to customers who meet these requirements and
who currently do not have a loan. However, generally no causal inference is made;
the decision rules are pragmatic in nature.

The data mining approach is less defensible in traditional experimental contexts;
it’s not considered appropriate to forgo the process of stating hypotheses and
testing them, and conducting many statistical tests in the hope that something will
come up significant is called fishing (as in fishing for results). The reason is that
p-values are valid for a single test, not for a variety of similar tests on the same
data. When multiple tests are performed, the experiment-wise Type I error rate is
almost certainly higher than the p-value for a single experiment. (The exception
is if all the tests are completely independent.) Several statistical procedures have
been established to adjust p-values for multiple testing, including the Greenhouse-
Geisser correction and the Bonferroni correction.

Blinding
You might have heard of the so-called placebo effect, in which participants in an
experiment who have been allocated to a control group appear to exhibit some of
the effects of the treatment. This effect arises from many sources, including an ex-
pectancy effect (because in drug trials, for example, the experimental substance and
its known effects and risks would be disclosed to participants) as well as bias intro-
duced by the behavior of the treatment allocators or response gatherers in an ex-
periment. For example, if a treatment allocator knows that a participant will receive
the treatment, she might act more cautiously toward the participant than if the al-
locator were administering a control. Conversely, the response gatherer (the person
responsible for observing and measuring data in an experiment) might also be in-
fluenced by membership knowledge of the treatment and control groups.

Using single-, double-, or triple-blind experimental methods can effectively control
these sources of error.

Single-blind
The participant does not know whether he has been allocated to a treatment or
control group.

Double-blind
Neither the participant nor the treatment allocator knows whether the partici-
pant has been allocated to a treatment or control group.

Triple-blind
The participant, the treatment allocator, nor the response gatherer knows
whether the participant has been allocated to a treatment or control group.

In small laboratories, the roles of treatment allocator and response gatherer can be
carried out by the same individual; thus, triple-blind status can often be as easily
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achieved as double-blind status. Although blinding is highly desirable, it might not
always be possible to achieve at one or more of the levels. For example, most adults
are familiar with the physiological effects of drinking alcohol, so coming up with a
placebo that simulated the effects of alcohol yet did not affect reaction time in an
experiment on the effects of alcohol consumption on reaction time would be diffi-
cult. (If it affected reaction time, it would no longer be an effective control.) In other
cases, it might be possible to create an effective placebo so that the participants will
not know which group they were assigned to. The principle is that experiments
should use blinding when possible; this is part of the general effort to restrict effects
on the treatment group to those caused by the intervention and to prevent extrane-
ous factors from confusing the picture.

Retrospective Adjustment
The previous section mentioned the potential bias of the response gatherer arising
from not being blind to the treatment status of participants. Another potential source
of bias arises when there are multiple response gatherers or when different instru-
ments are used to gather response data, making essentially independent judgments
of responses in either control or experimental treatments. Good training of the
judges or response gatherers can help limit this source of bias, and other ways can
be used to reduce it. For instance, responses from multiple judges could be averaged
to reach a consensus value. Another possibility is to examine the overall set of de-
cisions made by each judge and attempt a retrospective adjustment for perceived
bias.

Blocking and the Latin Square
The purpose of blocking is to set up experiments in such a way that comparable (and
preferably identical) responses can be elicited from the same treatment. The idea is
to use as much a priori information as possible about experimental units to allocate
them to experimental blocks so that all units in a specific block give the same re-
sponse to a treatment. Perhaps the most famous example of blocking is the use of
identical twins in psychological research to examine the effect of nature versus nur-
ture because identical twins have exactly the same genetic makeup. When the twins
have been separated at birth, for example, or sent to different schools, the impact
of differences in environment can be determined while controlling for genetic fac-
tors. The advantage of blocking with identical twins is that variation due to one
factor (genetics) can be tightly controlled; the disadvantage is that the subject pool
is limited, and the numbers of separated identical twins are even fewer.

Matching can be used to limit the influences extraneous factors exert in experimental
design. The differences in responses between subjects can be controlled by matching
on as many potentially confounding (or unit treatment–correlated) factors as pos-
sible. In psychological research, this typically means matching on factors such as
age, sex, and IQ but can also include quite specific controls such as visual acuity or
color blindness in perceptual experiments.
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It might not be possible to match participants on all possible sources of influence
extraneous to the research question, but most scientific fields have a set of well-
known criteria on which matching has been shown to be effective. The advantage
of matched designs is that, on a per-unit basis, you can establish more confidence
that an experimental effect genuinely occurs for all units rather than hoping ran-
domization will iron out any differences. A further refinement is to use a randomized
block design, which allows the researcher to allocate treatments to matched units in
a random way, thus gaining the control of matching while also preserving the re-
duction in bias achieved through randomization.

A rule of thumb in research design is to block wherever possible
and when you can’t block, to randomize.

Recall that a matched-pair design attempts to control extraneous factors by match-
ing experimental and control treatment units on important variables. Further con-
trol can be achieved by allowing units to act as their own controls in a within-subjects
design (as in the examples discussed in the paired-samples t-test section in Chap-
ter 6), although it might not always be physically possible or practical to do this.
Within-subjects designs are used extensively in psychology; however, because many
of the experiments involve some modification of behavior or cognition, you might
wonder whether there isn’t a possible confounding learning effect. If all units were
given the control treatment first and then administered the experimental treatment
(or vice versa), there certainly would be potential for a learning effect (or maturation
bias) to influence the results.

However, randomization again provides an antidote in the form of a Latin square,
which provides an unbiased way to randomize the allocation of participants to
treatments. In any design in which y conditions are presented to each participant
(T1, T2, . . . , Ty), the trials for each participant are grouped together and randomized,
using a Latin square to ensure that no sequence is ever repeated for different subjects.
For example, if the reaction time to five objects is measured with trials T1, T2, T3,
T4, and T5, so y = 5, and there are five participants, a randomized Latin square would
produce the design shown in the following table, governing the order of stimulus
presentation.

T1 T5 T2 T3 T4

T3 T2 T4 T5 T1

T4 T3 T5 T1 T2

T5 T4 T1 T2 T3

T2 T1 T3 T4 T5

Using a Latin square in this way ensures that any between-subjects variation affects
all treatments in an equal way. Note that there are 161,279 other possible random-
izations of the 5×5 Latin square that would retain their characteristic property of no
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orthogonal (row or column) having the same number more than once. If your design
required at least one instance of the ordinal presentation of treatments (T1, T2, T3,
T4, and T5), the reduced form could be used—because the first row and column
would preserve ordinality—but would yield only 55 possible randomizations. Latin
squares for a few conditions are easily constructed by hand, but you can find a table
of Latin squares online as well as a simple algorithm to construct them.

Example Experimental Design
This section reviews a real example of an experiment and discusses the design de-
cisions made, comparing how it could have been conducted using two common
experimental designs, and provides examples that highlight the relative strengths
and/or weaknesses of each strategy.

Frances H. Martin and David A.T. Siddle (2003; full citation is included in Appen-
dix C) set out to investigate the main effects of alcohol and tranquilizers on reaction
time, P300 amplitude and P300 latency, as well as their interaction. P300 amplitude
and latency are measures derived from event-related potentials in the brain at 300ms.
All three responses are related to different information-processing mechanisms in
the brain.

The research question was based on previous studies that had independently
demonstrated the impact of alcohol or tranquilizers on these response variables but
not their interaction. In addition, studies investigating the effect of alcohol on the
response variables tended to use large doses, and studies looking at tranquilizers
focused on strong tranquilizers, whereas in this study, a mild tranquilizer, Temaze-
pam, was selected. Thus, three questions were posed:

1. Does alcohol have a significant main effect on any of the response variables?

2. Does Temazepam have a significant main effect on any of the response vari-
ables?

3. Do alcohol and Temazepam interact?

The experiment used a within-subjects design so that participants acted as their own
controls. The factorial design was 2 (alcohol, control) ×2 (tranquilizer, control);
thus, every participant performed the same experiment four times with the following
conditions:

• No alcohol and no Temazepam

• Alcohol only

• Temazepam only

• Both alcohol and Temazepam

The results indicated a significant main effect for Temazepam on P300 amplitude
(that is, this effect was present with or without alcohol) and significant main effect
for alcohol on P300 latency and reaction time. However, there was no significant
interaction between the two factors. Given that alcohol and Temazepam have dif-
ferent main effects, and because they don’t interact, the study supports the idea that
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alcohol and Temazepam independently affect different information-processing
mechanisms in the brain.

If you were designing this experiment, what would you have done? Would you have
selected a matched-pair design instead of a within-subjects design? This would have
reduced the number of trials that each participant had to complete, but in this in-
stance, using a within-subjects design also allowed for smaller participant numbers
to be used (N = 24), whereas a larger sample might have been needed to demonstrate
an effect between subjects. No doubt you would have randomized the selection of
participants, perhaps by selecting names from a phone book, using page numbers
and columns generated by a random number generator. Content validity would not
be a concern because the response variables used are widely accepted in the field as
reflecting information-processing characteristics of the brain. You would also have
ensured blinding of the researcher administering the alcohol or Temazepam, ensur-
ing that the control for each was physically the same in appearance. Would you have
chosen to increase the number of factors rather than having a 2×2? For example,
perhaps there would only be an interaction between alcohol and Temazepam at high
respective dosages, so perhaps a 3×3 design would have been more appropriate. The
question here is not necessarily experimental but ethical; you want to limit the
amount of tranquilizer being administered to each participant, and in the absence
of a compelling theoretical reason (or clinical evidence or observation) to suspect
otherwise, the choice of a 2×2 study makes sense.
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19
Communicating with Statistics

If you’ve been called upon to do statistics as part of your job or coursework, chances
are your responsibility does not end with the calculations—you probably need to
communicate the results of those calculations and the conclusions drawn from them
to someone else. That someone else might be your boss, a group of coworkers, an
audience of professional statisticians, a journalist, your instructors, your class-
mates…the possibilities are as diverse as the contexts in which statistics are used
today.

The key to successful communication is to consider the audience and to shape your
writing or presentation appropriately. Sometimes, the expectations are explicit. If
you are writing an article for a professional journal, the expected format (covering
everything from the parts of the article to the way references should be cited) is
probably clearly specified, and you can consult articles previously published in the
same journal for further guidance. Writing for a more general audience—as for a
daily newspaper or popular magazine—poses a different set of challenges because
you need to communicate your major points without confusing your readers (or
worse, causing them to simply give up and move on) with a lot of technical jargon.
Writing an article or presentation for your workplace poses yet another set of chal-
lenges because you must often communicate simultaneously with people of vastly
different levels of statistical understanding.

The emphasis in this chapter is on writing, but much of the advice also applies to
oral presentations, including talks at professional conferences. There are many good
resources discussing matters such as organizing a useful slide presentation, and a
few of these are listed in Appendix C.

General Notes
Unless you are writing a technical article for an audience of professional statisticians,
the statistics themselves will probably play a supporting role, and the topic of your
presentation or article will take the lead. For this reason, it’s a good general practice
to state your conclusion first and then follow with the statistic(s) that support the
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conclusion. “Participants in the exercise and diet condition lost an average of 20
pounds over the six-month course of the study compared to those in the diet-only
condition, who lost an average of 15 pounds; this difference was statistically signif-
icant (t = 2.75, p = .0071)” communicates your point about the relative effectiveness
of two weight-loss plans more effectively than “We found a t-statistic of 2.75, indi-
cating a significant difference in the groups.” Some refer to this as the BLUF ap-
proach, for Bottom Line Up Front.

Consider what level of precision is appropriate to your purpose, and round your
numbers accordingly. Just because a statistical program gives results to eight decimal
places does not mean you need to report all of them, and doing so might actually
obscure your message. Particularly in tables of data, it’s tedious to read numbers
with lots of decimal places and difficult to compare them, so you are generally better
served by rounding 10.77953201 to 10.8 or 10.78. If you are dealing with very large
or very small numbers, scientific notation (2.38 × 10−5 instead of 0.0000238) data
or the “x per y” convention can make the values clearer; the latter is commonly used
when reporting population statistics, such as hospital beds per 1,000 population or
murders per 100,000 population.

Remember that your audience is not as familiar with your analysis as you are and
thus must do more work to grasp the meaning of your results. Don’t be afraid to
make the same point in more than one way—for instance, once in the text and a
second time with a table or chart. This principle is particularly important when
dealing with general audiences, who might have little understanding of statistics (or
simply skip paragraphs with numbers in them) but who can easily grasp concepts
presented in a well-designed graphic.

It’s always wise to specify the source of the data you analyzed, particularly if you
did not collect the data yourself. “Data from the Quarterly Census of Employment
& Wages released yesterday by the U.S. Bureau of Labor Statistics indicates . . .” lets
your readers know that you used a standard source and aids them in interpreting
your results because every data set has its own set of limitations and peculiarities.
This rule particularly applies when the data comes from a source that has an interest
in the results of the analysis, so if your story on the health benefits of tangerine
consumption is based on data collected by the Tangerine Growers Association, you
owe it to your readers to state that information up front.

It is often material to include some information about the sample and techniques of
data collection. In a professional article, you will discuss these matters in detail, but
even in a general-audience article, you probably want to include information about
the sample size, method of sample selection, and method of data collection. If your
statistics were calculated on a convenience sample of 20, and if the data is entirely
self-reported (meaning that you asked people about their behavior rather than
measuring it yourself), this should be clearly stated so that the reader can use this
information in weighing the meaningfulness of your results.

If you cite percentages, you need to include the base as well; saying that violent crime
has doubled in Town A can mean an increase from 1 to 2 violent crimes or an increase
from 500 to 1,000. Both examples represent a doubling, but the implications
are quite different. The possibilities for deception or misunderstanding using
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percentages are even greater when comparing two or more entities of different sizes.
If you will report that Town B had a 25% increase in violent crime, but Town C had
only a 15% increase, you should also let your readers know that Town B has a
population of 300 and experienced only four violent crimes the previous year,
whereas Town C has a population of 3,000,000 and experienced 50,000 crimes the
previous year.

If you are reporting data from a survey, including the actual text of some or all the
questions might be advisable, particularly if the survey is short. Even if it is not
possible to include the actual wording of the questions, you should at least make
their scope clear. For instance, a survey about drug use might frame questions in
terms of lifetime use, use in the past year, use in the past 30 days, or habitual use,
and each of these frames would result in a different percentage of people classified
as drug users.

Writing for a Professional Journal
In one sense, this is the easiest type of statistical writing to do because the expecta-
tions regarding audience and format are the clearest. Professionals quickly learn to
write in the style of the journals most central to their field, so these remarks are
oriented more toward students and young researchers working on their first articles.
It goes without saying that you should use all the resources available to you, includ-
ing your professors or supervisors, the published guidelines of your target journal
(the one you want to publish in), the journal’s guidelines for reviewers (these are
sometimes available on the journal’s website), and articles published in previous
editions of the journal. Often, universities and research organizations have a journal
club to help their students and employees keep in touch with current research, and
you should certainly take advantage of such an opportunity if available. (Journal
club presentations are discussed in Chapter 20.) Getting oriented to the major jour-
nals in your field, and to the types of research they publish, is one of the most useful
things young scholars can do to further their careers.

The obvious beginning point in writing an article is that you have something to say—
something important that will interest others in your field. To have something to
say, you need to be familiar with the major issues and discussions in your field, a
knowledge gained from your own reading as well as interactions with your peers
and supervisors. This knowledge will also help you choose a target journal. Many
fields have a clear hierarchy of journals, and you need to choose one that publishes
articles of the type you are writing. In addition, you might be concerned about the
quality or relative standard of the journal because, presumably, you want your work
to be widely read and to have an impact in your field. One thing you might consider
is the impact factor of the journal, the average number of citations an article in a
particular journal has received in the preceding two years; a higher impact factor
indicates more citations. Choosing an appropriate target journal can require some
insider knowledge that a more experienced colleague can provide and is something
of a trial-and-error process. It’s not uncommon to send an article to a journal that
might be a bit of a stretch, with plans to resubmit to other journals if the more
prestigious journal rejects your article.
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Writing the Article
Of course, writing an article for a particular journal means that you will follow the
format of that journal. Fortunately, although there is a multitude of scholarly jour-
nals, there are many commonalities among the styles they use because the style is
meant to serve a common goal, to facilitate communicating your findings to a spe-
cialist audience.

Many journals have a strict format for their articles that specifies the major parts of
the article and their order and the format to be used for references (footnotes or
endnotes). Many scholars use software (e.g., EndNote) to organize their references
because this makes changing the citation format easy if an article is rejected by one
journal and needs to be submitted to a different one using a different format. Journals
generally have rules about the style used in the text also. For instance, when should
numbers be spelled out (“one”) and when should numerals be used (“1”)? Use active
or passive voice? Most adhere to one of several common styles that dictate these
matters. Common styles include APA (American Psychological Association), ASA
(American Sociological Association), Chicago/Turabian, AP (Associated Press), and
ICJME (International Committee of Medical Journal Editors); the point is to find
out the style used by the journal to which you are submitting and to follow it.

Professional research articles generally include the following sections (although they
can be called by different names):

Abstract
This is a summary of your research and conclusions and is generally limited in
length (e.g., 250 words) as specified by the journal. The abstract is the section
of your article most likely to be read, so it is important for it to be compelling
as well as concise; you want the abstract to communicate that you have some-
thing important to say and to deliver a summary of your major results.

Background/literature review
This section reviews the current state of knowledge in the field and sets the stage
for your original contribution. It’s easy to get hung up with trying to read ev-
erything ever written on your topic and never publish any research of your own.
Your advisor, supervisor, and/or colleagues can help you find a happy medium.

Methods
This section explains what you did in your research, including details such as
the sample studied and any instruments used. Readers often skim this section
if the abstract suggested that your article might be of interest to them, so be sure
that this section answers all the important questions about how you conducted
your research.

Results
This section presents what you found in your study, including the results of any
statistical tests you conducted. Next to the abstract, this is probably the most
important section in terms of communicating the importance of your research.
Basically, people want to know what you found out in your work.
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Discussion
In this section, you interpret your results, place them in the context of other
studies, discuss limitations (perhaps your sample came from only one geo-
graphic area or was limited to people whose first language is English), and sug-
gest further directions for research.

Usually, each section, and possibly subsections within them, is identified by head-
ings. This standardized style is meant to facilitate the communication of informa-
tion, bearing in mind that the typical reader does not read most professional articles
from beginning to end. Instead, it is more typical to skim a number of articles (or
perhaps simply their abstracts), looking at more sections (perhaps the methods and
results) of those that seem most relevant and finally selecting a few to read in their
entirety.

Tables and graphs (discussed in Chapter 4) play a key role in many scientific papers.
Just as readers often skim the abstract, methods, and results to see whether an article
is of interest, so they might glance at the tables and graphs to see whether anything
is worth a further investment of their time. For this reason, if you are going to use
tables and graphs, it is important to use them well. Each table or graph should tell
a story and should be labeled so it is self-sufficient (meaning the reader doesn’t need
to search through the text to figure out what a graph or table means).

The Peer Review Process
Every journal has its own process for working with authors, and if you are lucky,
this process will be explained on its website. In general, the peer review process runs
something like this:

1. You submit your article (these days, this is usually done electronically).

2. The editor and/or several volunteer reviewers (generally peers—other profes-
sionals in the field) read your article and reply with one of several decisions:

• Accept (with or without minor revisions)

• Revise and resubmit

• Reject

3. You respond accordingly. Celebrate the acceptance, make the requested revi-
sions and resubmit, or submit to a different journal.

In most journals, it’s rare for an article to be accepted as submitted, meaning that
no changes are required. Some accepted articles require minor revisions, and even
if your article is accepted as is, you should still expect to have a back-and-forth
conversation (most often through email these days) about editorial matters.

The revise-and-resubmit response is common and should not be cause for discour-
agement; it means that the reviewers like your article enough that they are willing
to work with you to make it acceptable for publication in the journal. Most reviewers
sincerely want to help you make your article better, so you should consider their
suggestions seriously. Usually, after you have revised your article, you send it back
along with a cover letter specifying how you have responded to each of the reviewers’
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suggestions for revision. If you have a reason for not following one of the suggestions,
be sure to explain this in your response. You don’t necessarily have to do what the
reviewers say, but failing to respond suggests you either didn’t read the comments
carefully or that you are ignoring them; neither is a good attitude to take if you want
the journal to publish your article.

Sometimes, your article never makes it to peer review; many journals use a system
in which an editor decides whether the article is within the journal’s scope and does
a rough estimation of quality before deciding whether it is worth sending out to
review. If the editor decides to send an article on to peer review, those reviewers
might still recommend that the article should be rejected. If your article is rejected
entirely, you may submit it to another journal (unless you conclude, based on the
reviewers’ comments or other feedback, that it is simply not worth publishing). Even
if you are submitting to a different journal, you should consider the reviewers’ com-
ments; you might want to act on some of them to strengthen your article before
sending it elsewhere. On the other hand, you don’t want to get too wrapped up in
pleasing one set of reviewers before sending your paper to a different set. There’s no
guarantee that the second set will agree with the first, and you can end up undoing
some of your changes for the second journal.

The review process can be frustrating, particularly when you are dealing with it for
the first time. There’s no denying that some reviewers can be difficult or unfair and
that politics are sometimes involved, but if you want a career in research, you need
to learn to deal with the peer review process. My best advice is not to take the process
personally but to learn how to work with it and use the wisdom of your senior
colleagues as you find your way through the process.

Historically, peer review has been an anonymous process. However, some journals,
such as those published in the Public Library of Science (PLoS), encourage open peer
review (in which case, the author of an article knows the names of the reviewers for
his article). There have been discussions within the scientific community of alter-
natives to peer review or of ways to reform the process to make it more cooperative
and less contentious, but for most journals, any such changes lie in the future if they
take place at all.

Writing for the General Public
Writing for a broader public, such as writing an article in a newspaper or general-
interest magazine, poses a different set of challenges. You can’t assume that most of
your audience knows or cares much about statistics; instead, they are probably in-
terested in the subject matter (health, ecology, education, etc.) of your article. This
means that you need to highlight your results and their practical implications, rather
than the details of your methodology, and that you must clearly explain any essential
statistical concepts in everyday language.

Just as with professional journals, popular publications generally have style guide-
lines and intended audiences, and you should be knowledgeable about both before
you begin to write. Few things are more irritating to editors than receiving articles
that are clearly not appropriate to their publication. There’s an art to matching an
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article with a publication outlet, but it’s your problem to solve, not the concern of
the editor, and sending out-of-scope articles simply suggests you haven’t bothered
to read the publication before submitting your article.

People who write on technical issues for the public often describe their job as story-
telling. You don’t want just to throw a lot of information and numbers at your
audience; you want to organize it into a narrative that includes a context and com-
municates the importance of whatever you have to say. You also need to be selective.
You can’t include all the information in a 100-page government study in a single
news story, so pick out one or a few main points and organize them into a story line.

Popular science writing often relies on images to convey abstractions (either real
pictures or word pictures) and should be written in everyday language with any
technical terms paraphrased so they can be easily understood by a layperson. You
also need to tell the reader why your topic is important; perhaps a new study has
identified an important risk to health or found that there’s no evidence that a sup-
posed societal trend is really happening at all. As a general rule, the more surprising
or contrarian the result, the more time you need to spend explaining it and the more
evidence you need to present to support the result.

Writing for Your Workplace
Writing a report or presentation for your workplace can be tricky because you might
be addressing quite a mixed audience in terms of technical and statistical under-
standing, and the stakes might be high as well; company policy might be guided by
the results you present, for instance. It’s helpful in such instances to think in terms
of providing both an executive summary and a detailed report. In a written docu-
ment, the executive summary is a short, concise summary of a longer and more
detailed report, written in nontechnical language and including the key points of the
longer report. As the title implies, the executive summary is written for upper-level
managers who might have neither the time nor the technical expertise to tackle the
entire report yet need to know something about the information contained within
it. Often, executive summaries offer not only information but also recommendations
or a set of choices for the person who will be the decision maker.

When writing a statistical report, it’s easy to see how the concept of the executive
summary applies; you write the full report, including all the details necessary, and
then write a shorter summary of it, including your main points and recommenda-
tions, using plain language. You should be able to back up any statements in the
executive summary with data and analysis from the detailed report. The executive
summary is not the place to introduce new points or to throw in unsupported opin-
ions but is meant as a summary of the findings reported in the longer document.

How does the executive summary concept apply to presentations? If called upon to
present to an audience including both technical and nontechnical staff, you need to
think in terms of preparing two presentations: an executive presentation that can be
followed with little or no technical knowledge and a more detailed presentation with
all the details and calculations that the technical staff will want to see. The trick is
that you might need to do both presentations simultaneously. In this case, your slides
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should tell the executive version of the story, perhaps with a bit of detail included
as asides or footnotes. You can also prepare a handout keyed to your presentation,
with all the details that the technical staff will be interested in. Because you, as the
statistical expert, already know the technical details of your project, preparing a two-
level presentation in this way shouldn’t require a lot of extra work.

When addressing a mixed audience, you should also be prepared to explain the
technical details of any major issue (why did you use that particular statistical test,
and what do the results mean?) in a way that your nontechnical listeners as well as
the technical staff can understand. Nothing destroys your credibility faster than
being unable to explain an important point in your presentation, and your audience
will quickly become impatient if you can’t address them at their own level.

456 | Chapter 19: Communicating with Statistics



20
Critiquing Statistics Presented by

Others

This chapter explains how to read and critique statistics presented by someone else,
including statistics contained in published research articles and workplace presen-
tations. It begins with a general outline of how to critique a research article and then
focuses more narrowly on ways to critique the statistics chosen and their presenta-
tion, as well as common ways authors and presenters try to cover up weaknesses in
their data. In some ways, this chapter has the broadest applicability of any in this
book because even if you never plan or carry out a statistical analysis yourself, there’s
a good chance you will consume statistics presented by others, whether in your
workplace, at school, or simply in your daily life as an informed citizen.

Evaluating the Whole Article
Often, you are called upon to evaluate not just the statistics used in an article but
the entire article. This can be intimidating, particularly the first time you face such
a task, but following a systematic process can make it easier. If you are reviewing an
article for a specific journal, there may be a checklist or other form provided to guide
your evaluation process. If not, check other publications in the field to see whether
they have a checklist or set of guidelines that might be useful to you. For instance,
Preventing Chronic Disease, a journal published by the Centers for Disease Control
and Prevention, has a peer review checklist. This chapter presents a basic outline
that provides some guidance, in the form of questions you should ask of each part
of the article, for reviewing any research article.

Abstract
Is the research question interesting and relevant? Is enough detail included in
the abstract (including statistical results) to give you confidence that the article
is based on original and significant research? Are the claims in the abstract sup-
ported by the results presented in the article? (Surprisingly often, they aren’t.)
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Literature review
Does the literature review set up the research question, convincing you that it
is important and necessary? Is the research cited current? It’s fine for a review
to include older articles, particularly if they are classics in the field, but the
absence of any articles from the past several years suggests a paper that has been
in the trunk (written but not published) for several years. The lack of current
articles can also indicate a research question that is no longer central to its field
or a literature review drawn from an older article and not updated.

Study design
What kind of a design is used—observational, quasi-experimental, experimen-
tal? What specific statistical methods are used—ANOVA, linear regression,
factor analysis, and so on? Is the design appropriate to the data and the research
question? Could a stronger design have been used instead? Are the hypotheses
presented clearly?

Data
Is it clear how the sample was obtained and why? Is the process of data collec-
tion, processing, and analysis described in detail? Do you see any red flags, such
as different sample sizes in different analyses, that are not discussed adequately?
Are the data appropriate to the research question?

Results and conclusions
Are the results presented clearly and related to the hypotheses? Do the results
support the conclusions drawn? Is sufficient information presented in tables
and figures (not just the results from statistical tests) so that you have a good
feel for the study and its results? Are there any potential biases or flaws in the
study that should have been discussed but weren’t? Do the results have practical
as well as statistical significance? Are the limitations of the study presented
clearly?

It’s possible to be too critical—all studies are performed in the real world, after all,
and we don’t want the perfect to be the enemy of the good, let alone the excellent.
When evaluating research, it is important to know what standards are expected in
the professional field in question, and more experienced colleagues can provide ex-
cellent guidance in this regard.

The Misuse of Statistics
Broadly, the misuse of statistics falls into two very distinct categories: ignorance and
intention. The ignorant use of statistics arises when a person attempts to use de-
scriptive or inferential statistics to support an argument, yet the technique, test, or
methodology is inappropriate. The intentional misuse of statistics arises when a
person attempts to conceal, obfuscate, or overinterpret results that have been ob-
tained. Intuitively, you might think that ignorance arises mostly with complex stat-
istical procedures such as multivariate analysis—and it certainly does—but even
basic descriptive statistical procedures are routinely misused. Intentional misuse is
rife in descriptive statistics as well, from using misleading scales on graphs to ig-
noring the assumptions of inferential testing necessary to make their results valid.
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In this chapter, some examples are drawn from the contemporary debate surround-
ing climate change and global warming because the public mood in most countries
has clearly changed over the past few years. The purpose is not to convince you one
way or the other regarding climate change but simply to provide real-world examples
of some of the difficulties of doing statistical research and interpreting and commu-
nicating the results.

Common Problems
If you are presented with a set of dazzling statistics that are meant to prove or support
some argument, theory, or proposition, begin with the following checklist to start
asking the tough questions:

Representative sampling
If the investigator is attempting to make inferences about a population by using
a sample, how was the sample selected? Was it truly randomly selected? Were
there any biases in the selection process? The results of any inferential tests will
be valid only if the sample is truly representative of the population that the
investigator wants to make inferences about. In some cases, samples can be
maliciously constructed to prove a particular fallacious argument. Alternatively,
a volunteer bias might arise when some members of a population respond to a
sampling request while others do not. For inferences about a population to be
valid, the sample must be truly representative with all sources of bias removed.

Response bias
If the data was obtained through interviews or surveys, how were the questions
worded and the responses collected? Be cognizant not only of push-polling (a
poll whose true purpose is not to gain information but to influence public opin-
ion) but also of social desirability bias (the tendency for respondents to give the
response they think the data collector wants to hear and/or that makes them
look like a better person).

Conscious bias
Are arguments presented in a disinterested, objective fashion or is there a clear
intention to report a result at any cost?

Missing data and refusals
How is missing data treated in the analysis? If participants were selected ran-
domly but some refused to participate, how were they counted in the analysis?
How is attrition (loss of subjects after a study begins) handled?

Sample size
Were the sample sizes selected large enough for a null hypothesis to be rejected?
Were the sample sizes so large that almost any null hypothesis would be rejec-
ted? Was the sample size selected on the basis of a power calculation?

Effect sizes
If a result is statistically significant, was an effect size reported? If not, how was
the importance of the result established? Was it meaningful in the context of
the phenomenon under investigation?
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Parametric tests
Was the data analyzed using a parametric test when a nonparametric test might
have been more appropriate?

Test selection
Was the correct inferential test used for the scale of variable? Different techni-
ques are used for different DV (dependent variable) and IV (independent vari-
able) combinations of categorical, ordinal, interval, or ratio data.

Association and causality
Is the only evidence for a causal relationship between two variables a measure
of association, such as correlation? In this situation, it is incorrect to assert a
causal relationship, even if one variable is labeled dependent on an independent
variable.

Training and test data
Has a model been developed using one data set and then tested using the same
data set? If so, is there any acknowledgement that the model might not work as
well on a different data set? This problem occurs frequently in pattern recog-
nition applications.

Operationalization
Is the variable selected to measure some particular phenomenon actually meas-
uring it? If not, does the operationalization of the phenomenon seem reason-
able? This is a common problem in psychology, when latent variables (such as
intelligence) are measured indirectly by performance on different cognitive
tasks.

Assumptions
Have the assumptions that underlie the validity of the test been met? How has
the investigator ensured that they have been met? For example, if a test assumes
that a population is normally distributed and it is in fact bimodal, the results of
the test will be meaningless.

Testing the null hypothesis
To determine whether two groups are drawn from the same or different popu-
lations, it is common practice to test the null hypothesis that they are drawn
from the same population. This derives from basic scientific methodology in
which theories are supported by numerous and reliable sets of tests of null
hypotheses that are rejected rather than the (apparently) more straightforward
approach of testing the hypothesis directly. Beware of any piece of research that
attempts to prove a theory by a single experiment.

Blinding
Was the study single-, double-, or triple-blinded? For example, could the par-
ticipants or investigators have introduced some bias by having knowledge of
the treatment or control conditions in an experiment?

Controls
If the effect of a treatment is demonstrated in a pre-treatment or post-treatment
model, are matched controls receiving a placebo within the same experimental
paradigm to control for the placebo effect? A designed experiment is the best
(some would say the only) way to draw causal inferences reliably from data.

460 | Chapter 20: Critiquing Statistics Presented by Others

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



Quick Checklist
Investigations supported by statistics follow a surprisingly standard life cycle. If you
are reviewing a piece of work, try to determine what the sequence of events was
during the investigation. Did the investigators start with one hypothesis and change
their minds after the results were in? Did they try numerous tests with various post
hoc adjustments to make sure that they could report a significance-test result? Have
they split results from one study into several articles to increase the length of their
CVs? Asking searching questions about the research process is like a detective asking
questions about movements at a certain date and time—inconsistencies and story-
changing can be very revealing!

Investigations based on statistics should proceed along the following general lines:

• Assuming that a period of observation and exploration has preceded the start
of an investigation, research questions should be stated up front. Investigators
must have formulated hypotheses (and the corresponding null hypotheses) well
before they begin to collect data. Otherwise, the use of hypothesis testing is
invalid, and the investigation can take on the flavor of a fishing expedition.
Given that a p = 0.05 result represents a 1 in 20 chance of making a Type I error,
and because thousands of studies are published each year in the scientific lit-
erature alone, many “facts” must surely be open to question. This is when in-
dependent repeatability and reliability are critical to the integrity of the scientific
method.

• The relationship between the population of interest and the sample obtained
must be clearly understood. It’s not acceptable to make inferences about the
entire human population based on a sample of highly educated, healthy,
middle-class college students from one college.

• Hypotheses must relate to the effect of specific independent (predictor) vari-
ables on dependent (outcome) variables. Thus, it’s critical to know as much
about the dependent variables as possible, especially every source of variation
in them. This is particularly important when dependent variables are thought
or known to be highly correlated (i.e., multicollinearity). The dependent vari-
ables must be measurable and must operationalize underlying concepts
completely.

• In complex designs, when there are both main effects and interactions to con-
sider, all the possible combinations of main effects and interactions and their
possible interpretations must be noted.

• Procedures for random sampling and handling missing data or refusals must be
formalized early on to prevent bias from arising. Remember that a truly repre-
sentative sample must be randomly selected. Where purely random sampling
is not feasible, it might be possible to identify particular strata within the
population and sample those in proportion to their occurrence within the pop-
ulation. If random sampling will not be used (and frequently it is not), this
limitation must be acknowledged and addressed.
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• The simplest test that is adequate to the purpose should be selected, that is, the
simplest test that will allow you to explore the inferences that you need to ex-
amine. Multivariate techniques are incredibly important, but if you need to
make only simple comparisons, they might be inappropriate.

• Tests should be selected based on known or expected characteristics of the data.

• Ideally, every result should be reported, even if the study did not find statistical
significance. Failure to do so leads to publication bias, in which only significant
results are published, creating a misleading picture of our state of knowledge.
Don’t be afraid to report deviations, nonsignificant test results, and failure to
reject null hypotheses—not every experiment can or should result in a major
scientific result!

Publication Bias and the Funnel Plot
It’s easy to fall into the naïve belief that the published research literature presents
a fair picture of our collective knowledge in any research field. If you do a proper
literature search and find four research articles demonstrating the effectiveness of
a particular drug and no articles saying it is ineffective, that’s pretty good evidence
that the drug works, right? Unfortunately, not always. The reason is publication
bias (also known as the file drawer problem), the tendency for articles presenting
statistically significant results to be published and articles without such results to
remain unpublished (and in the file drawer). Other biases also influence the picture
we obtain from public research. For instance, research published in English might
be more readily available than equally good or better research published in other
languages and thus more likely to be cited repeatedly by other articles. (The num-
ber of citations is sometimes used as a measure of an article’s importance or
influence.)

One way to evaluate publication bias on a topic is to create a funnel plot, a graph
in which each data point represents a published study, with the log odds ratio of
the study on the horizontal axis and the standard error of the study on the vertical
axis. If there is no publication bias, we expect to see a pattern similar to an inverted
funnel, as in Figure 20-1.

Note that in studies with a larger standard error (less precise studies), there is a
greater variability of results (a wider range of values for the log odds ratio), whereas
for more precise studies, the log odds ratio clusters more closely around a single
value. Note also that this plot is basically symmetrical, indicating that a range of
studies with positive, negative, and nonsignificant results has been published. A
funnel plot with the general shape shown in Figure 20-1 suggests that publication
bias is not a large concern in this particular area of research.

A funnel plot that looks more like Figure 20-2 does suggest publication bias; about
half of the funnel is missing because few studies have been published with a neutral
or negative result. The plot alone does not prove publication bias (several other
possibilities are discussed in the Cochrane Collaboration document listed in Ap-
pendix C), but it does suggest it as a possibility.
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Figure 20-1. A funnel plot suggesting little to no publication bias

Figure 20-2. A funnel plot suggesting publication bias

Issues in Research Design
Generally, the design of an investigation of a question of interest needs to follow the
guidelines presented in Chapter 18 if meaningful inferences are eventually to be
made. However, many investigations do not follow these types of guidelines at all—
especially if the investigation was produced for a publication that relies on sensa-
tional headlines to grab the attention of an inattentive reader or viewer. Even if a
study followed appropriate procedures and produced valid results, the meaning of
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those results can be distorted if a news report extrapolates from the results of a single
study to indicate a fundamental shift in knowledge.

Variation
Understanding variation is critical to all systems. Variation can arise from legitimate
sources (true variation in the population) but also from measurement error. Varia-
tion can be cyclical, so cross-sectional designs might not always correctly identify
that local minima might be perfectly acceptable in the life cycle of a system. In cli-
matic systems, for example, variation in temperature occurred prior to the Industrial
Revolution and the consequent increase in the release of greenhouse gases; how do
you separate the variation expected due to normal cyclical effects from that which
can be directly attributed to human activity? This is one of the critical issues facing
environmental science because the atmosphere definitely warmed since the last ice
age, without any human interference, until the Industrial Revolution. The point is
that a scientific article should discuss the issue of variation and place its results in
the context of expected natural variation.

Population
Scope in defining a population is critical in accurately specifying the limits of infer-
ence that can be made from a particular study. If all members of a population are
measured in some way, and there is no missing data or refusals, you don’t need
statistics at all because you can calculate parameters of interest directly. However,
this situation rarely arises in research. Part of the problem in defining a population
is when there is some fundamental misunderstanding of the population in question.
Imagine that a survey of attitudes is undertaken in Utah and the results extrapolated
to apply to the population of California, or a survey taken in Italy but applied to the
population of Denmark. This might not seem farfetched because in the first example,
both states are not only located in the same country but are relatively close in geo-
graphical terms, and in the second they are both part of Western Europe. However,
in either case, there are also many differences: the size and diversification of the
economies, the ethnic and racial makeup of the populations, and so on, and the
burden is always on the researcher to make the case that such a generalization is
appropriate.

Sampling
There are two key aspects of sampling: size and randomness. A truly representative
sample must be both large enough and randomly selected to give an accurate esti-
mate (statistic) of any population parameters. Being sufficiently large to represent
the population is a difficult problem—calculations of statistical power (discussed in
Chapter 15) certainly provide a basis for this in terms of inferential testing—but
more sophisticated sampling schemes will attempt to identify all sources of variation
in the population that might introduce bias and sample within those appropriately.
Drawing a random sample is the best way to avoid many types of bias in selection,
but it is not always possible. An article should always report how the study sample
was selected and discuss any consequences from the use of nonrandom sampling.
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Controls
A recent study indicated that the administration of antidepressant medication to a
large number of participants in a clinical study was no more effective than a placebo.
Thus, the expectation of receiving a cure resulted in the same improvement in de-
pressive symptoms as receiving a tablet with the active ingredient. The placebo effect
is very powerful in humans, and most studies should provide some type of explicit
control when the effect of a treatment is intended to be demonstrated. In clinical
and pharmaceutical sciences, the methods and processes for controls are well es-
tablished. When control groups are not possible (for instance, in climate modeling),
the article should provide some other sort of context, if possible, for the results
presented (historical data, results from other studies).

The Power of Coincidence
When statistical significance is measured at the p = 0.01 or 0.05 level, this means
that there is a 1 in 100 or a 1 in 20 chance, respectively, of a Type I error being
committed. Thus, in the case of p = 0.05, a repetition of the experiment would lead
to 19 out of 20 cases being significant and 1 out of 20 being insignificant. This is
why independent replication and repeatability are so important. In addition, the
world is full of coincidences, and experiments are subject to measurement error. The
interaction of coincidence and measurement error can lead to some downright
wacky and unexpectedly “significant” findings to which no actual significance
should be attached. Imagine that there are 20 earths surrounding the sun, and you
choose one to examine the effects of global warming. You find a correlation between
increases in industrial activity and temperatures for the past 200 years. Because you
know that there is a 1 in 20 chance of committing a Type I error, you would check
out at least some of the other planets or perform an experiment on them all, with
half acting as matched controls for the others.

You can see the difficulty here in understanding the causal sources of global warm-
ing. There are no other 19 planets that you can experiment with or verify your model
against—but at the same time, you know there is a strong possibility of committing
a Type I error. A similar problem arises in the case of disease clusters; some geo-
graphical areas seem to have unusually high rates of a particular disease, leading
residents to suspect an environmental cause. However, this type of reasoning is also
susceptible to the shooting-the-barn fallacy in which you shoot first and then draw
the target around where the bullets struck; the implication is that the geographical
area was defined after the disease cluster was noted. In addition, purely by chance,
some towns, counties, and so on will have unusually high rates of disease just as
when, flipping a coin many times, you can expect long runs of heads and tails from
time to time. The point is that you should always be alert for studies that appear to
capitalize on chance, particularly if their results contradict what is known from
other, better-designed studies.
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Descriptive Statistics
The issues surrounding the appropriate interpretation of inferential tests are com-
plex and prone to error. However, the use of descriptive statistics also has enormous
potential to introduce errors in reasoning and understanding. Some of these errors
are deliberate attempts to misguide and mislead. Others are simply poor choices. In
this section, you learn about some common problems associated with descriptive
statistics, especially measures of central tendency and graphing.

Measures of Central Tendency
The issue of selecting an appropriate measure of central tendency applies whenever
data is not normally distributed, and the more extreme the departure (particularly
due to the presence of outliers), the more important the choice. In right-skewed
populations (those with a relatively small number of high values), the mean will be
higher than the median, and if the high values are far removed from the rest of the
population, the mean can be quite misleading as an average value. This is the reason
information such as income and home values are usually reported as medians rather
than means—the presence of a few very rich people or a few very expensive homes
within a population can distort the mean while having minimal effect on the median.

Measures of central tendency can also be misleading when the sample and/or the
population changes from measurement to measurement. Average house prices are
a classic example; these are based solely on sales in a particular period such as one
year. From year to year, the sample from which the average is calculated will almost
certainly change, unless all houses sold in one year are resold the next and no other
houses are sold. This would surely be a very unlikely event. And yet eager home-
owners often take a 10% average rise in house prices to mean that their home’s value
has increased by the same proportion. Where the population itself changes—such
as where many new homes are built and sold in one year—the median will almost
certainly rise. And yet existing houses might sell for exactly the same price (or less)
than the year before. A more valid method of determining the average house price
would be to sample among the population so that each house has an equal chance
of being valued and added to the sample. Furthermore, because the proportion of
existing houses to new builds is known, the sample could be further stratified so
that average prices for both types of houses could be reported and/or aggregated
afterward.

To avoid undue influence from extreme cases, sometimes a rule is followed to re-
move them from analysis. For instance, cases that lie two standard deviations above
or below the mean might be dropped before the statistics are calculated, or a certain
proportion, such as the upper and lower 10%, might be dropped, a practice known
as trimming. Removing extreme cases from analysis also helps minimize measure-
ment error effects; in reaction time experiments, for example, it’s not uncommon
for participants to become incredibly bored and miss a stimulus. If the computer
program waits only for two seconds to accept a response, but the stimulus is missed,
a reaction time that is usually on the order of 20–80ms is now recorded as 2,000ms,
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which is up to two orders of magnitude greater. If this case is not culled, the mean
would be greatly overestimated.

The key point in this example is that although there are legitimate reasons to remove
outliers, any alteration of the study sample after it is collected must be reported and
strongly justified by the authors. A good practice when reviewing articles is to check
reported sample sizes throughout the article: if the sample drawn is not the sample
analyzed, is a reasonable explanation provided? If cases were removed by the re-
searcher, is this clearly explained and justified? Was a sensitivity analysis performed;
that is, was the data analyzed twice, once with all the cases and once with the outliers
removed, to examine the effect of removing the outliers?

Standard Error and Confidence Intervals
The standard error   for the data should be reported, especially if the article is com-
paring the means of two groups. The standard error is an estimate of the standard
deviation of a sampling distribution (such as the sampling distribution of the sample
mean) and is thus an estimate of the variability of a reported statistic.

Normally, the standard error is estimated by using the standard deviation divided
by the square root of n; thus, all else held equal, as the sample size increases, the
standard error decreases, and the parameter estimates become more reliable. In most
fields, the confidence interval for any point estimate (e.g., the mean) is generally
reported as well as the standard error of the mean. The confidence interval provides
a measure of the precision of the point estimate, and the article should not only
provide confidence intervals but discuss their meaning. If the confidence intervals
are wide, this should be discussed in terms not only of the precision of the particular
study but in terms of generalizing the results.

Graphical Presentation of Data
Graphs provide an accessible way to communicate numerical information. How-
ever, graphs can be misused in a number of ways; for example, axes might be unla-
beled, meaning that they cannot be correctly interpreted, or manipulated to obscure
or enhance the real relationship between variables. In scientific work, actual data
values should be presented as well as graphical displays; often in the popular media,
only graphs are presented, which heightens the possibilities for deception.

The old adage “A picture tells a thousand words” is certainly true, but the thousand
words can change dramatically depending on the choice of scale. Figure 20-3 shows
a fictional set of temperatures that increase, ranging from 70–77 degrees Fahrenheit,
over a 100-year time span. The rise in temperature is almost perfectly correlated with
the year (r = 0.94); this fact can be either illuminated or obscured in the graphic
presentation. Figure 20-3 certainly shows a strongly linear rise.
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Figure 20-3. Temperature rise over 100 years

However, by stretching out the horizontal axis, suddenly the visual effect is of an
overall slower rise in temperature, as shown in Figure 20-4.

Figure 20-4. Stretched horizontal axis

Note that if the temperature scale is now adjusted to start at 0 degrees rather than
68, the relationship is even further flattened, and the two variables visually appear
to be uncorrelated, as shown in Figure 20-5.
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Figure 20-5. Increased range vertical axis

Of course, if you took the opposite view, you could always stretch the temperature
axis vertically and make the temperature rise look even more dramatic, as shown in
Figure 20-6.

Figure 20-6. Stretched vertical axis
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You will seldom find graphs as misleading as Figure 20-5 and Figure 20-6 in scholarly
publications, but it’s always wise to be alert to attempts to mislead the reader
through peculiar choices of ranges, axes, or other tricks. Unfortunately, such de-
ceptions are more common in the popular press, so you need to be particularly alert
when interpreting graphical information from publications meant for a general
readership.

Extrapolation and Trends
A common tool used in marketing is extrapolation of a known relationship between
two variables, outside a measured range, to forecast a trend. For example, if the S&P
500 index has increased by 10 points for each of the past 10 weeks, a gambler might
feel some confidence in betting that the index might increase by 10 points during
the following week. In this case, using simple linear extrapolation provides the best
estimate possible—but because the stock market is subject to a lot of random var-
iation, the index will not always rise in accordance with previous experience. If the
system is not a linear one, linear extrapolation is not appropriate.

Looking at trends can be useful, and it’s a common practice in many fields. However,
when the system under study is not deterministic, subject to random error, or
chaotic, the usefulness of trending is limited and can give wildly inaccurate and
potentially misleading results. Any forecasts reported in an article should be clearly
identified as such and justified, as should any extrapolations beyond the range of
the measured data.

Inferential Statistics
So far, you have learned about key problems in research design and descriptive sta-
tistics that are often present in reports of statistical work performed. In some cases,
deception might be behind the incorrect presentation of an analysis, and the omis-
sion of key statistics should raise your suspicions. With inferential statistics, you
must also be alert to the incorrect or inappropriate use of some tests. The most
significant problem is that the assumptions of multivariate tests are routinely ig-
nored, and yet the results of these tests are extremely sensitive to any violation of
the assumptions. A research article should explain clearly how the appropriate as-
sumptions were tested and what remedies, if any, were taken before the data was
analyzed.

Assumptions of Statistical Tests
Here are some typical violations of the assumptions of common statistical tests and
mechanisms to test whether the assumptions are violated. If an article does not
discuss how the appropriate assumptions were tested, you should be suspicious of
the results.
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t-tests

Two-sample t -tests assume that the samples are unrelated; if they are related, then
a paired t -test should be used. (t-tests are discussed further in Chapter 6.) Unrelated
in this context means independent—you can test for linear independence by using
the correlation coefficient. Serial correlation might become an issue if data is col-
lected over a period of time.

t-tests are also influenced by outliers, so the article should mention whether the data
was screened for outliers and, if any were found, what was done with them. Note
that discarding outliers on the basis of sound statistical measures is an entirely sep-
arate activity from discarding data that happens to be unfavorable, and removing
cases simply to strengthen the results is unethical.

t-tests assume that the underlying population variances of the two groups are equal
(because the variances are pooled as part of the test), so the article should state that
one of the tests for homogeneity of variance was used, what corrective measures
were taken if necessary, or whether a test that does not rely on homogeneous variance
(e.g., Welch’s t-test or a nonparametric test) was used instead of the standard t-test.

Normality of the distributions of both variables is another assumption of the t-test,
unless sample sizes are large enough to apply the central limit theorem. Again, there
should be some mention of how this assumption was tested and, if necessary, what
corrective measures were taken.

ANOVA

ANOVA has a large number of assumptions that need to be met, which usually
requires directly determining whether the assumption is met (rather than hoping
that it is met or ignoring it). ANOVA (discussed further in Chapter 8 and Chap-
ter 9) assumes independence and normality, but the most important assumption
from a practitioner’s perspective is the equality of variances.

ANOVA is most reliable when the study is balanced (when the sample sizes are
approximately equal) and when the population variances are equal; skewed distri-
butions and unequal variances can make the interpretation of the F-test unreliable.
An article using ANOVA should report how all these assumptions were tested and
what remedial measures or adjustments, if any, were taken.

Linear regression

Linear regression (further discussed in Chapter 8 and Chapter 10) assumes the in-
dependence of errors in the independent and dependent variables. This assumption
might not be met if there is a seasonal effect, for instance. (Sales of ice cream tend
to be higher in hot months.) The article should describe how this assumption
was tested (generally, through a residuals analysis) and what was done if noninde-
pendence in the error terms was discovered (e.g., the use of time series analysis
instead of linear regression).
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Presenting at the Journal Club
Many research institutions and academic departments have a journal club, which
is a group of people who meet on a regular basis to discuss published work in their
field. Pizza or other culinary enticements might be included to improve attend-
ance. Often, meetings are structured around one or two articles, each of which is
presented and critiqued by a member of the club. How can you prepare best when
it’s your turn to present? Of course, you will follow any guidelines provided by
the club, but here are a few suggestions that might be helpful:

1. Pick an article worth presenting. Remember that you might be taking up an
hour or more of your colleagues’ time, and they’re just as busy as you are.
Start by reading abstracts from a number of articles, and then pick one with
an interesting hypothesis, a good research design, and adequate data to draw
a firm conclusion.

2. Read the article at least three times, once to get a general feel for the author’s
arguments, the second time critically, and the third time to pick out the major
points you want to emphasize in your presentation. Avoid the temptation
simply to run through the material in the order presented in the article. Before
you present, you should know this material so well that you can speak to
issues rather than simply regurgitating the information on the page.

3. Put the article in context. Who else is working on this topic, how does the
theory in this article relate to others in the field, and so on? In addition, who
funded the research, and is there any obvious conflict of interest?

4. Briefly define any essential technical terms or statistical techniques that might
be unfamiliar to your audience, including, if appropriate, a critique of how
they are used in the article.

5. Outline your presentation, keeping in mind the time allotted to you and al-
lowing time for questions and discussion. Many people find it helpful to
sketch out the different sections of their presentation (sort of a crude outline)
to be sure they’re allotting adequate time to the most important issues.

6. It’s not cheating to plant several questions with colleagues you know will be
in attendance in case the discussion is slow to get started. This is also a good
way to direct the discussion toward points on which you would like to elab-
orate further.
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A
Review of Basic Mathematics

You don’t need to be an ace in mathematics to learn statistics, and nowadays pocket
calculators and computer programs can do much of the calculation drudgery for
you. However, a good understanding of how numbers work, including the basic
laws of arithmetic and algebra, is a prerequisite to being able to reason statistically.
Although anyone can learn to churn out calculations, if you don’t understand the
meaning of the numbers thus produced, your efforts can be useless or counterpro-
ductive. Besides, it’s always more fun to understand what you are doing, and if you
truly understand numbers and can explain them to others, you’ll find you have a
great advantage over other candidates, whether in school or at work.

If the math you learned in school has faded to a distant memory, don’t worry; you
have lots of company! Even if you did well in high school algebra, a brief review of
the basic concepts can ease your path into statistics, and working through some
elementary problems will help sharpen your mind before you take on more complex
calculations. Running through simple calculations is also a good way to get ac-
quainted with a new calculator or a new software program. Start by working with
calculations in which you know the right answer, and you’ll be much more confident
in using the technology to tackle new problems.

I had a calculus teacher in college who told us that most of the errors students made
in their homework were errors in algebra. Not only was he right, but many of our
mistakes came in when using principles we had learned in junior high school! The
same principle applies in statistics; nothing is complicated about the math you need,
at least at the beginning level, but you need to be very comfortable with the material,
and you need it fresh in your mind. To that end, this appendix offers a friendly review
of some basic mathematics, which I hope will reduce the anxiety and refresh the
memories of those who don’t quite remember the last time they multiplied expo-
nents or plotted Cartesian coordinates.
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If you want to see how much you remember, you can go straight to the quiz at the
end of the chapter; if you do well on all the topics, you can safely skip this appendix.
On the other hand, if you do poorly on the quiz, you might want to supplement the
materials in this appendix by working through an algebra review text aimed at the
high school or college freshman market. If you discover that you like statistics so
much you want to major in it, you will eventually need to take several semesters of
calculus as well as calculus-based statistics courses, but that level of math is far
beyond anything you will need for the techniques presented in this book.

Laws of Arithmetic
It’s often helpful to think of numbers as points along a number line, in which lower
numbers are to the left and higher numbers are to the right. You might remember
the number line from primary school (Figure A-1).

Figure A-1. Number line

The concept of the number line is useful in statistics because we often refer to a value
in a distribution as being “farther to the right” when what we really mean is “of a
higher value.” The statement that a value is “at least as extreme” or “at least as far
from the mean” as another value, which you will frequently encounter in hypothesis
testing, also refers to the number line. Distributions such as the normal distribution
are symmetrical and have a single most common central value; as values get farther
from that central value (farther to the left or right), they become less likely.

Numbers may be written with either a positive or negative sign; if no sign is included,
positive value is assumed. The absolute value of a is written |a| and means the dis-
tance a occupies on the number line, whether in a negative or positive direction.
This means that if a = −5 and b = 5, the absolute values of a and b are identical: |a|
= |b| = 5. Another way to look at it is that the absolute value of the number is the
same as the value of the number after any negative sign is removed. By this rule,
|−5| is larger than |4|, even though 4 is larger (farther to the right) than −5, because
5 (the absolute value of |−5|) is larger than 4 (the absolute value of |4|)

To add numbers with like signs, add their absolute values and keep the sign:

3 + 5 + 8 −3 + −5 = −8

To add two numbers with different signs, subtract their absolute values and keep
the sign of the number with the larger absolute value:

−3 + 5 = 2 3 + −5 = −2
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To add more than two numbers with different signs, group them by signs, add the
absolute values of each set, and then subtract the negatives from the positives:

−3 + 5 + −2 + 4 = (5 + 4) − (3 + 2) = 4

As you can see, adding a negative number is the same as subtracting a positive num-
ber. This is formalized in the following law:

a − b = a + −b

So:

2 − 5 = 2 + (−5) = −3

To multiply numbers with like signs, multiply their absolute values. If all values are
positive, the result is positive. If all are negative, count the number of negative signs.
If there is an even number of negative signs, the result is positive; if an odd number,
the result is negative:

4(2) = 8, −4(−2) = 8, −4(−2)(−3) = −24

To multiply numbers with unlike signs, multiply the absolute values and then count
the number of negative signs; if even, the result is positive; if odd, the result is
negative:

−4(2)(−3) = 24, −4(2)(3) = −24

To divide numbers with like signs, divide the absolute values and make the result
positive. To divide numbers with unlike signs, divide the absolute values and make
the result negative:

10/5 = 2, −10/−5 = 2, 10/−5 = −2

Order of Operations
In general, we solve arithmetic expressions from left to right but perform arithmetic
operations within an expression in the following order:

1. Anything in parentheses

2. Exponents and roots

3. Multiplication and division

4. Addition and subtraction

Legions of schoolchildren have learned this by the mnemonic “Please excuse my
dear aunt Sally”: parentheses, exponents and roots, multiply and divide, add and
subtract. If there are multiple layers of parentheses, you solve the expressions in
order, beginning with the innermost parentheses. Table A-1 shows some examples.
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Table A-1. Order of operations examples

Expression Rule Result

2 + 5 × 10 Multiplication before addition 52

(2 + 5) × 10 Expressions in parentheses first 70

10 × 22 Exponents before multiplication 40

(10 × 2)2 + 5 Expressions in parentheses first, then exponents, then addition 405

10 − 4/(2 + 2) Expressions in parentheses first, then division, then subtraction 9

[5 + 3(4 + 6)]/(3 + 2) Innermost parentheses first and multiplication before addition 7

Properties of Real Numbers
Real numbers are the types of numbers familiar from everyday life and that are used
most often in math and statistics. They can be written using decimals and therefore
include rational numbers, such as 4 and 7/5, and irrational numbers, such as π
(3.1415 . . .) and the square root of 2 (1.4142 . . .), but not imaginary or complex
numbers (numbers that are negative when squared). Unless otherwise specified, real
numbers are assumed throughout this review. Some properties of real numbers in-
clude:

• The associative property for addition and multiplication:

(a + b) + c = a + (b + c) so (1 + 2) + 3 = 1 + (2 + 3) = 6, a (b × c) = (a × b) c so
2 × (3 × 4) = (2 × 3) × 4 = 24

• The commutative property for addition and multiplication:

a + b = b + a so 5 + 4 = 4 + 5 = 9, a × b = b × a so 2 × 3 = 3 × 2 = 6

• The distributive property of multiplication:

a (b + c) = ab + ac so 5(2 + 3) = 5(2) + 5(3) = 10 + 15 = 5(5) = 25

• The additive identity of 0: any number plus 0 = the number itself:

a + 0 = a so 5 + 0 = 5

• The multiplicative identity of 0: any number times 0 = 0:

a × 0 = 0 so 5(0) = 0

• The multiplicative identity of 1: any number times 1 = the number itself:

a(1) = a so 5(1) = 5

• The inverse property of addition: the sum of any number and its inverse is 0:

a + − a = 0 and − a + a = 0 so 5 + −5 = 0 and −5 + 5 = 0

• The rule of double negatives: pairs of negatives cancel each other out:

−(− a) = a so −(−5) = 5
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• The inverse property of multiplication:

a × (1/a) = 1 if a ≠ 0 (because division by 0 is undefined) so 5 × (1/5) = 1

Exponents and Roots
An exponent tells you to multiply the base number by itself as many times as the
exponent says:

• an = a × a × a . . . n times, where a is the base and n the exponent, so 24 = 2 × 2
× 2 × 2= 16

• a2 is often referred to as “a squared” and a3 as “a cubed”; they can also be read
as “a to the second power” or “a to the second” and so on, and this system is
used for powers above 3 (a7 would be read as “a to the seventh power”).

• Multiplying exponential numbers with a common base: add the exponents and
keep the base:

am × an = am + n so 32 × 33 = 32 + 3 = 35 = 243

• Power rules for exponents:

(am)n = amn so (22)3 = 26 = 64, (ab)n = anbn so (5 × 4)2 = 52 × 42 = 400 = 25 × 16
(a/b)n = an/bn so (3/4)2 = 32/42 = 9/16, assuming y ≠ 0

• Zero exponent: any number other than 0, with an exponent of 0, = 1:

a0 = 1 so 2450 = 1 and −80 = 1 (00 is undefined)

• A negative exponent is the same as dividing by the base raised to the power of
the exponent:

a−1 = 1/a and a−2 = 1/a2 so 2−1 = 1/2 and 2−2 = 1/22 = 1/4, (a/b)−n = (b/a)n so
(5/3)−2 = (3/5)2 = 9/25

• When dividing exponential numbers with a common base, subtract the
exponents:

am/an = am − n (assuming a ≠ 0) so 35/32 = 35 − 2 = 33 = 27

Taking the root of a number is the inverse of raising it to an exponential value: the
nth root of x is the number a such that an = x. This might be easier to understand if
we consider the square root, which is the second root of a number. The square root
of 9 is 3 because 32 = 9. Technically speaking, 3 is the principal square root of 9
(−3 is also a square root of 9), but this distinction is often ignored in practice. Sim-
ilarly, the third root of 125 is 5 because 53 = 125. The third root is also called the
cube root; beyond 3, the usual terminology is fourth root, fifth root, and so on.

Properties of Roots
Figures A-2 to A-4 show several important rules for working with roots.
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Figure A-2. Rule for multiplying roots

Figure A-3. Rule for dividing roots

Figure A-4. Rule for roots with exponents

You can demonstrate these rules for yourself by using your calculator, as shown in
Figure A-5.

Figure A-5. Applying the rules for roots

A logarithm (often abbreviated log) is the power to which you need to raise a given
base to produce a particular number. Using a base of 10, log10 100 = 2 because
102 = 100. Although any number can serve as a base, in statistics we often work with
base-e exponential functions. These are also called natural logarithms or Naperian
logarithms and are written ln x which means loge x. The base e is the irrational
number 2.718 . . . and is useful to describe many processes in the natural sciences,
hence the name “natural log.” Scientific calculators usually have an LN key to cal-
culate natural logs, and many computer programs have built-in functions for the
same purpose. Be forewarned, however; sometimes, the function to compute a nat-
ural log is abbreviated LOG rather than LN, so you need to determine the correct
symbol for the calculator or computer program you are using.

The equation ln x = 1.5 is equivalent to writing e1.5 = x. In this case, x = 4.48 (roun-
ded) because e1.5 = 4.48, and we can say that the natural log of 4.48 is 1.5. The
following principles hold for logarithms of whatever base (the base is signified by
b in these examples):
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• logb 1 = 0 because b0 = 1 (because any number to the 0th power = 1)

• logb b = 1 because b1 = b (because any number to the first power equals itself)

• logb bx = x (because by definition the log of bx is x if the base is b)

•  where x > 0 (because logb x is the exponent to which you raise b to get x)

The following properties of logarithms are also useful in statistics:

• logb MN = logb M + logb N (The logarithm of a product is the sum of the
logarithms.)

• logb M/N = logb M − logb N (The logarithm of a quotient is the difference of the
logarithms.)

• logb Mp = p logb M

You can demonstrate these principles to yourself by using a pocket calculator. For
instance, using natural logs:

ln (2 × 4) = ln 2 + ln 4 = 0.693 + 1.386 = 2.079
ln (2/5) = ln 2 − ln 5 = 0.693 − 1.609 = −0.916
ln 23 = 3 ln 2 = 3(0.693) = 2.079

Note that logarithms for numbers between 0 and 1 are negative, and logarithms for
numbers less than 0 are undefined. (You’ll get an error message on your calculator
if you try to find ln − 1.)

Solving Equations
The following properties of equality will help you solve equations:

• If a = b, then a + c = b + c (Adding a constant to both sides of an equality does
not change the equality.)

• If a = b, then a − c = b − c (Subtracting a constant from both sides of an equality
does not change the equality.)

• If a = b, then ac = bc (Multiplying both sides of an equality by a constant does
not change the equality.)

• If c ≠ 0, then a/c = b/c (Dividing both sides of an equality by a nonzero constant
does not change the equality.)

These properties come in handy, as do the properties of the preceding real numbers,
when solving linear equations. For instance, to solve:

5(x − 4) = 40

Multiply out the left side:

5x − 20 = 40

Then isolate x by adding 20 to both sides:

5x = 60
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Then divide both sides by 5:

x = 12

To check the solution, we substitute 12 back into the original equation:

5(12 − 4) = 5(8) = 40, which is correct.

For more complex problems, we need to combine like terms as follows:

2(3x + 1) = 5(x + 2)  

6x + 2 = 5x + 10 Multiply out both sides.

x + 2 = 10 Subtract 5x from both sides.

x = 8 Subtract 2 from both sides.

2(24 + 1) = 5(8 + 2) = 50 Check: substitute 8 for x in the original equation.

Logarithms are useful for solving equations that include exponents; you can take
the log of both sides and then use the properties of logarithms to solve for the un-
known. For instance, using a base of 10:

5x = 3  

log 5x = log 3 Take the log of both sides.

x log 5 = log 3 Use the law of exponents and logs.

x = log 3 /log 5 = 0.683 Divide both sides by log 5.

50.683 = 3 Check: substitute 0.683 for x in the original equation.

Systems of Equations
A system of equations, also known as a system of simultaneous equations, is a set of
algebraic equations with common variables. Solving a system of equations means
finding a common solution, values for the variables that will be correct for all equa-
tions in the system. If there is a common solution (which is the case with all the
systems presented here), the system is called consistent; if not, the system is called
inconsistent. Systems of equations can be solved by graphing (by drawing the lines
represented by the equations; the solution is the point of intersection) or by using
algebra. We will present only the latter method here.

Solving some system of equations problems is a good review of algebra and logical
reasoning. A simple approach to solving systems of equations, which will work for
the examples presented here, is to simplify each equation as much as possible and
then use either the method of substitution or the method of addition and subtraction
to solve the system. We’ll demonstrate with systems of two equations in two un-
knowns, although the same principles can be used to solve larger systems such as
three equations in three unknowns. That’s about the point, however, when it
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becomes more convenient to solve more complex problems using matrices, a topic
that is beyond this basic review.

Here is a demonstration of the method of substitution used to solve a system of two
equations in two unknowns (the unknowns are x and y):

2x + y = 6, 3x − 2y = 16

Solve the first equation for y:

y = 6 − 2x

Substitute this value for y into the second equation:

3x − 2(6 − 2x) = 16

Solve the second equation for x:

3x − 12 + 4x = 16, 7x = 28, x = 4

Substitute this value into the first equation to solve for y:

y = 6 − (2 × 4) = −2

So the solution is (4, − 2). That is, x = 4, y = −2. Check by substituting these values
into the equations:

2(4) + (−2) = 6, 3(4) − (2 × −2) = 16

To use the method of addition (or subtraction) to solve the same system of equations,
you add or subtract the like terms from the two equations so that one of the variables
drops out and then solve for the other variable. An additional step is often necessary,
which is to multiply one or both equations by a constant so that one of the variables
(x or y) will drop out when the systems are added or subtracted. In this case, we
multiply the first equation by 2:

2[2x + y = 6] becomes 4x + 2y = 12

We then substitute this equation (which is equivalent to the original expression
because all we have done is multiply both sides by a constant) in the system and add
it to the second equation. Figure A-6 continues with the system of equations from
the previous example.
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Figure A-6. Solving a system of equations using the method of addition

We can then use this value to solve either equation for y.

2(4) + y = 6 so y = −2, 3(4) − 2y = 16 so y = −2

This gives us the same solution as with the substitution method: (4, −2).

Graphing Equations
Points in multidimensional space are often described using Cartesian coordinates,
also called rectangular coordinates, which are simply the values on each dimension
in a system that locate a particular point. We will demonstrate this system by using
two dimensions because that is easier to display on a printed page, but the same
concepts can be applied to higher numbers of dimensions.

Identifying the location of points in two-dimensional space is done using a plane
with two axes, x (horizontal) and y (vertical), as in Figure A-7. Each point in this
plane is identified by two numbers, the x-coordinate and the y-coordinate, always
listed in that order. For instance, the point (2, 3) has an x-coordinate of 2 and a y-
coordinate of 3; the point (−1.5, −2.5) has an x-coordinate of −1.5 and a y-coordinate
of −2.5.

Linear equations may be written in the form y = mx + b, where m is called the
slope and b is the y-intercept; this method of notation is called the slope-intercept
form of a line. Lines can also be written using an alternative notation, y = ax + b, in
which case a is the slope and b is the y-intercept. Either method of notation gives you
the slope-intercept form of a line. To plot a linear equation (one that does not include
squares or higher-order terms) using Cartesian coordinates, find two or more pairs
of coordinates that satisfy the equation and then draw a straight line connecting
them. Here’s a simple example:

y = 2x + 4

Here are some possible solutions. (Note: There are an infinite number of solutions
to this equation.)

x = 0, y = 4; x = 1, y = 6; x = −2, y = 0

Graphing these solutions can be done as in Figure A-8.
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Figure A-8. Line representing the equation y = 2x + 4

The interpretation of the line’s components:

Slope
The amount of increase in y for a one-unit increase in x

Figure A-7. The Cartesian coordinate system
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Intercept
The value of y when x = 0, that is, the value when the line crosses the y-axis

Even without drawing a graph, you can interpret the equation and predict new values
of y given x. Look at the following equation:

y = −3x + 6

Because the slope of this line is negative, we know that the line will run from the
upper left to lower right of the graph (the opposite of the line graphed in Fig-
ure A-8, which has a positive slope). We also know that as x increases, y decreases,
and vice versa. The intercept (6) also tells us that the line will cross the y-axis at 6.
We can calculate some points on the line as follows (it’s often easier to find the x -
intercept and y-intercept immediately). Table A-2 shows some possible values.

Table A-2. Some values for the line y = −3x + 6

x y

2 0

0 6

1 3

The graph of this equation is shown in Figure A-9.

Figure A-9. Graph of the equation y = −3x + 6
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Another way to write the equation of a straight line is by using what is called the
point-slope form. This format relies on the fact that if we know the slope of the line
and one point on it, we can draw the line and calculate the coordinates of any point
on the line. Similarly, if we know two points on the line, we can calculate the slope.
To put it another way, a straight line can be uniquely identified by two points or by
one point plus its slope. The point-slope form of a line is written as:

y − y1 = m(x − x 1)

where m is the slope of the line and (x, y) and (x1, y1) are two points on the line. We
can find the slope, given two points on the line, using the formula shown in Fig-
ure A-10.

Figure A-10. Formula for the slope of a line

You might remember this as “slope = rise over run,” where rise is the change in y-
values (the change on the vertical axis), and run is the change in x-values (the change
on the horizontal axis) between the two points. If we have the points (0, 6) and (2,
0), the slope of the line that contains them is shown in Figure A-11.

Figure A-11. Finding the slope of a line

This corresponds to the slope that we found in the previous example. If instead our
line included the points (6, 6) and (4, 2), its slope would be as shown in Figure A-12.

Figure A-12. Finding the slope of a line

Continuing with this example, if we know that a line with slope 2 runs through the
point (6, 6), we can find the y-coordinate for 4 using the point-slope equation:

y − y1 = m(x − x1), 6 − y1 = 2(6 − 4), −y1 = 4 − 6 = −2 y1 = 2
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Linear Inequalities
An equation connects two expressions with an equals sign; for instance, y = mx +
b is the equation of a line. Often, we want to connect two expressions with inequal-
ities, signs stating that the two sides of the equation are not equal. Some commonly
used symbols for inequalities are shown in Table A-3.

Table A-3. Commonly used inequalities

Sign, abbreviation Meaning Examples

≠, <>, NE Not equal a ≠ b, a <> b, a NE 5

<, LT Less than a < b, a LT 5

>, GT Greater than a > b, a GT 5

≤, <=, LE Less than or equal a ≤ b, a <= b, a LE 5

≥, >=, GE Greater than or equal a ≥ b, a >= b, a GE 5

≈ Approximately equal a ≈ b, a ≈ 5

The alphabetical abbreviations such as GE and LT in particular are often used to
indicate inequalities when writing computer code.

We can evaluate inequalities for their logical or truth value. For instance, if a = 5
and b = 6, then a < 6 and a < b are both true, whereas a > 5 and a > b are both false.
The following laws govern linear inequalities:

1. If the same number is added or subtracted from both sides of an inequality, the
inequality remains in the same direction.

If a < b, then a + x < b + x and a − x < b − x. 6 < 10, so (6 + 4) < (10 + 4) and
(6 − 1) < (10 −1).

2. If the same positive number is used to multiply or divide both sides of an in-
equality, the inequality remains in the same direction.

If a > b, then ax > bx and a/x > b/x. 5 > 3, so (5 × 2) > (3 × 2) and (5/2) > (3/2).

3. If the same negative number is used to multiply or divide both sides of an in-
equality, the direction of the inequality is reversed.

If a < b, then a(−x) > b(−x). 2 < 4, so 2(−3) > 4(−3) and 2/−3 > 4/−3, i.e., −6 >
−12 and −2/3 > −4/3.

A linear inequality can be solved using the same steps used to solve linear equations.
For instance:

4(3x + 2) < 20
12x + 8 < 20
12x < 12
x < 1
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Fractions
A fraction is simply a way of expressing one number divided by another. The top
number is called the numerator, and the bottom number is the denominator, as
shown in Figure A-13.

Figure A-13. The numerator and denominator of a fraction

Figure A-14 presents some basic properties of fractions. (All assume no division by
0.)

Figure A-14. Properties of fractions

Note that property 4 follows from property 3: anything divided by itself = 1, so
multiplying by c/c as in this case is simply multiplying by 1 and does not change the
value of the fraction. This property also allows us to simplify fractions by dividing
out common factors, as shown in Figure A-15.

Figure A-15. Simplifying fractions

Remember from our review of exponents that y−1 = 1/y.
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To add or subtract fractions, they need to have a common denominator. You might
remember from grade school an exercise called “finding the least common denom-
inator” or “finding the LCD,” but for our purposes, any common denominator will
do. When you have a common denominator, you just add or subtract the numerators
and keep the denominator, as shown in Figure A-16.

Figure A-16. Adding fractions with a common denominator

If the fractions don’t have a common denominator, you need to multiply or divide
as necessary to get a common denominator, and then do the addition or subtraction
and simplify the result by dividing out the common factors—for instance, as in
Figure A-17.

Figure A-17. Adding fractions by using a common denominator

1 1/3 is called a mixed number because it has both an integer part and a fractional
part. 4/3 is called an improper fraction because its numerator is larger than its de-
nominator. To convert an improper fraction to a mixed number, remove as many
whole units as possible from the fraction, so the final expression is the whole units
plus the remainder expressed as a fraction, as in Figure A-18.

Figure A-18. Converting an improper fraction to a mixed number

To multiply fractions, multiply the numerators and denominators separately and
simplify the result, as in Figure A-19.

Figure A-19. Multiplying fractions
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To divide fractions, invert and multiply. This is possible because dividing by x is the
same as multiplying by 1/x (that is, dividing is the same as multiplying by the re-
ciprocal of the divisor). This is shown in Figure A-20.

Figure A-20. Dividing fractions

Fractions can also be expressed as decimals or percents. A percent is just a fraction
in which the denominator is 100 (cent = 100 in Latin). With calculators, it’s easy to
convert any fraction to a decimal and then convert it to a percent by multiplying by
100; some calculators even have a special key to return divisions automatically as
percents. So:

1/4 = 0.25 = 25%, 6/4 = 1.5 = 150%

To take a percent of a number, multiply by the decimal equivalent of that number.
For instance, 40% of 30 = 0.4(30) = 12. To calculate an increase over some base
number, multiply by 1.0 plus the increase; for instance, calculate a 20% increase by
multiplying by 1.2 because multiplying by 1.0 gives you the original number, and
multiplying by 0.2 gives you the 20% increase. For this reason, a 100% increase,
which is the same as doubling, means multiplying by 2.0 (1.0 for the original number,
1.0 for the increase). To find a decrease from a total, multiply by 1 − the decrease;
for instance, to find the number that represents a 10% decrease from 100, multiply
100 by 0.9, so 100(.9) = 90.

Factorials, Permutations, and Combinations
The factorial of a number is that number multiplied by all the smaller integers down
to 1. The factorial of n is written n! and means n(n − 1)( n − 2) . . . (1), so:

5! = 5(4)(3)(2)(1) = 120

and:

10! = 10(9)(8)(7)(6)(5)(4)(3)(2)(1) = 3,628,800

Many calculators have a factorial key, usually indicated by ! or x!, as well as per-
mutation and combination keys, often indicated by nPr and nCr. If your calculator
has these keys, experiment with them as you work through this section. Fractions
that include factorials can often be simplified by canceling common factors, a useful
property because factorials quickly become very large numbers, as we saw in the
example of 10!. The utility of canceling common factors should be clear from the
example in Figure A-21.
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Figure A-21. Cancelling common factors in a factorial problem

Factorials are useful in problems in which you are concerned with arranging a finite
number of objects in order. For instance, how many ways are there to arrange five
books on a shelf? You have five choices for the first book, four for the second (because
the first book has already been used and can’t be chosen again), three for the third,
two for the fourth, and one for the fifth. The answer is therefore 5! = 120.

If you are interested in the number of ways to arrange a subset of objects from a
finite set of distinct objects (that is, all the objects are different), you can use per-
mutations to calculate the answer. In fact, the number of ways to arrange five out of
five objects, as in the previous paragraph, is a permutation problem in which the
subset is the same as the entire set. However, more typically, a permutation question
deals with something like the number of ways to arrange three books from a set of
five. There are several conventions in permutation notation, so see Figure A-22,
which denotes the number of ways to arrange r objects chosen from a set of n.

Figure A-22. Formula for a permutation

The number of ways to arrange three objects selected from five is shown in Fig-
ure A-23.

Figure A-23. Solving a permutation

Note that, by convention, 0! is defined as 1, not 0, to avoid the problem of division
by 0.

In a permutation, the order of objects is significant. If we were arranging sets of three
from the first five letters of the alphabet, for instance, (a, b, c) would be a different
permutation than (a, c, b). If order is not a concern, we are dealing with combinations
rather than permutations. In a combination, we are interested in the number of dis-
tinct sets of r objects that can be selected from a set of n objects but do not count
different orders of the same objects as a different set. When choosing sets of three
from the first five letters of the alphabet, (a, b, c) would be considered the same
combination as (a, c, b). Like permutations, there is not one standard notation for
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combinations, and you might see any of the equations in Figure A-24 used to denote
the number of combinations of r objects from a set of n.

Figure A-24. Different ways to write a combination

The number of ways to select three objects from five, when order is not important,
is shown in Figure A-25.

Figure A-25. Solving a combination

Exercises
Here’s a review of the concepts in this appendix.

Laws of Arithmetic and Real Numbers
You will get a better diagnosis of your current state of mathematical understanding
if you do the first seven sections without using a pocket calculator—that is, if you
use your knowledge of algebra to solve them by hand. In the case of answers with
unresolved variables (such as x or y), just restate them in simplest form.

1. 3 + (−8) =

2. 6/−3 =

3. (−8y)(−6z) =

4. 2 + 5/10 =

5. (2 + 5)/10 =

6. 6 + 32 − 5 =

7. (3 + 2)2 =

8. [12(5) − 2(3)] / (3 × 2) =

9. −(3 − 5x) =

10. 6(4 + 2x) − x(5) =

11. 3(4/x) =

12. 5x (4 − 2) =

13. (5x + 6)(3) =
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Exponents, Roots, and Logarithms
1. 20 =

2. (1/4)2 =

3. (−x)4 =

4. (x3)2 =

5. 22(23) =

6. x5(x−2) =

7. (4 × 2)2 =

8. 2−1 =

9. x2/x4 =

10. (2/3)2 =

11. (7y2)1 =

12. (5/9)−1 =

13. x5/x−2 =

14. (27/8)−⅓ =

15. (4/9)½ =

16.

17.

18.

19.

20.

Natural Logarithms
1. e0 =

2. ln 1 =

3. log10 100 =

4. log10 (5 × 2) =

5. ln e3 =
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Solving Equations for x
1. 3x + 7 = 20

2. (1/3)x = 6

3. 3(x + 2) = 2(x + 1)

4. 4x = 3(x − 2) + 7

Systems of Linear Equations
1. 3x − 2y = 6 and x + 2y = 14

2. x + 3y = −1 and 2x + y = 3

Linear Equations and Cartesian Coordinates
1. Given a line with the equation y = 3x + 2, fill in the following table.

Table A-4. Solving for Cartesian coordinates

x y

0  

 0

1  

−1  

2. In the equation y = −x + 5, what is the slope and what is the y-intercept?

3. Given the equation y = 6 − 2x, if x increases by 2, what happens to y?

4. Find the slope for the following pair of points: (5, 3) and (2, −1).

5. Given a line with slope −1 that runs through the point (2, 4), find the y-
coordinate for the line when it passes through x = −3.

Linear Equalities
1. If a < b, what is the relationship of 3a to 3b?

2. If a < b, what is the relationship of −2a to −2b?

3. Solve down to an inequality for x: 5(2x −1) > 8

4. Solve down to an equality for x: 3x(2) GE 4

Fractions, Decimals, and Percents
1.

2.
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3.

4.

5.

6.

7.

8.

Note: You may use a calculator for the next four questions.

9. What is 20% of 75?

10. What is the decimal equivalent of 7/21?

11. If we sold 500 units last year and sales increased by 10% this year, how many
units did we sell this year?

12. If we sold 500 units last year and sales declined by 20% this year, how many
units did we sell this year?

Factorials, Permutations, and Combinations
You may use a calculator for this section.

1. 7! =

2. 6P4 =

3. 8C3 =

4.

5. How many ways are there to choose a batting lineup (9 players) from 15 players
total (order does count)?

6. How many unique combinations (order does not count) of 5 items can you
select from 10 unique items?
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Answers

Laws of Arithmetic and Real Numbers
1. 3 + (−8) = −5

2. 6/−3 = −2

3. (−8y)(−6z) = 48yz

4. 2 + 5/10 = 2.5 or 2 1/2

5. (2 + 5)/10 = 7/10 or 0.7

6. 6 + 32 − 5 = 10

7. (3 + 2)2 = 25

8. [12(5) − 2(3)] / (3 × 2) = 9

9. −(3 − 5x) = −3 + 5x

10. 6(4 + 2x) − x(5) = 24 + 12 x − 5x = 24 + 7x

11. 3(4/x) = 12/x or 12x−1

12. 5x (4 − 2) = 10x

13. (5x + 6)(3) = 15x + 18

Exponents, Roots, and Logarithms
1. 20 = 1

2. (1/4)2 = 1/16 or 0.0625

3. (−x)4 = x4

4. (x3)2 = x6

5. 22 (23) = 25 = 32

6. x5 (x−2) = x3

7. (4 × 2)2 = 82 = 64

8. 2−1 = 1/2 or 0.5

9. x2/x4 = x−2 or 1/x2

10. (2/3)2 = 4/9 or 0.444...

11. (7y2)1 = 7y2

12. (5/9)−1 = 9/5 or 1 4/5 or 1.8

13. x5/ x−2 = x7

14. (27/8)−1/3 = 2/3

15. (4/9)1/2 = 2/3

16.

17.

18. 8
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19.

20.

Natural Logarithms
1. e0 = 1

2. ln 1 = 0

3. log10 100 = 2

4. log10 (5 × 2) = 1

5. ln3 = 3

Solving Equations for x
1. 3x + 7 = 20: x = 13/3 or 4 1/3

2. (1/3)x = 6: x = 18

3. 3(x + 2) = 2(x + 1): x = −4

4. 4x = 3(x − 2) + 7: x = 1

Solving Systems of Linear Equations
1. 3x − 2y = 6 and x + 2y = 14: solution = (5, 4.5)

2. x + 3y = −1 and 2 x + y = 3: solution = (2, −1)

Linear Equations and Cartesian Coordinates
1. x y

0 2

−2/3 0

1 5

−1 −1

2. Slope = −1, y−intercept = 5

3. y decreases by 4.

4. 4/3

5. y1 = 9
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Linear Equalities
1. 3a < 3b

2. −2a > −2b

3. 10x > 13 or x > 13/10

4. x GE 4/6 or x GE ⅔

Fractions, Decimals, and Percents
1.

2.

3.

4.

5.

6.

7.

8.

9. 15

10. 0.333

11. 550

12. 400

Factorials, Permutations, and Combinations
1. 7! = 5040

2. 6P4 = 360

3. 8C3 =56

4. x

5. 15P9 = 1,816,214,400

6. 10C5 = 252
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B
Introduction to Statistical

Packages

At some point in your statistics career, you will probably need to use statistical
software; theoretical understanding and a pocket calculator can take you only so
far. Fortunately, we live in an age when many types of software are available to make
the task of doing statistics easier. Most statisticians work with one or more of the
standard statistical packages, such as SAS or SPSS. A statistical package is basically
a collection of software routines with a common interface that has been designed to
simplify the job of performing statistical analysis and related tasks such as data
management. The main thing to remember with regard to statistical packages is that,
like any computer software, they are only a means to an end. Each package has its
advantages and disadvantages, and at least at the beginning level, you will probably
need to use whatever is available at your workplace or at your school. If you then
need to learn a new package (say, for a different job) it should not pose great diffi-
culty. If you have a good theoretical understanding of statistics and at least minimal
computer aptitude, you can figure out how to use just about any statistical package.

However, starting to work with a new statistical package might seem a daunting
task, particularly if your boss or instructor assumes that you are already an expert
in it! Printed manuals or online help files might or might not be useful at the very
start; a surprising number assume you are already familiar with the software in
question when that familiarity is the very thing you lack. Therefore, the purpose of
this appendix is to give you a brief overview of several of the most popular packages,
with particular emphasis on matters that might be crucial to the new user or are not
always clearly stated in the documentation.

Another thing I try to accomplish in this appendix is to provide a sense of the par-
ticular strengths and weaknesses of each package and what typical uses are for each.
Of course, I can speak only from my experience, and my thoughts are certainly not
the last word on the subject. Many reviews of different types of software are available,
and if you are ever in the position of needing to choose a package to purchase for
your department that will perform specific functions, you might want to begin by
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searching the Internet, the literature, or both of your profession for phrases such as
“comparison of statistical packages.”

Minitab
Minitab is a statistical package developed at Pennsylvania State University in the
1980s and now sold by the privately owned company Minitab, Inc. It is commonly
used as instructional software in beginning statistics classes and is commonly used
for business and quality improvement applications. Although Minitab is a propri-
etary product, a free 30-day trial copy may be downloaded from the company web-
site.

Minitab is favored in some beginning statistics classes because it is easy to use; ac-
cording to the company website, it is the most common statistical software used for
instruction in colleges and universities worldwide. The standard installation in-
cludes an extensive system of help files and demonstrations, which makes it popular
with beginners. However, the features that make it easy for beginners to learn, such
as reliance on a menu interface and the provision of only a limited number of ana-
lytical choices, can make it unsuitable for more advanced applications.

Minitab can import and export files in several formats, including its proprietary
Minitab worksheet (identified with the extension *.mtw) and Minitab project
(*.mpj) formats and Excel (*.xls) and text (*.txt) files. Data is stored in rectangular
files, as shown in Figure B-1. Rows are numbered, and columns are identified as C1,
C2, and so on. Variable names may be added in the shaded row between the column
label and data set. Both data and variable names may be typed directly into the
Minitab worksheet.

Figure B-1. Minitab worksheet

Commands in Minitab are usually generated through the menu interface; they are
recoded in the session window along with output that can be expressed as text; an
excerpt of a session window for a binary logistic regression analysis is shown in
Figure B-2. Each graphical result is written to a separate window (which can make
for quite a proliferation of open windows during an analysis!). All results plus the
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data set for an analysis may be saved as a Minitab project, and data sets and graphs
may be saved as separate files in a number of formats.

Figure B-2. Minitab session window

Minitab can perform many basic descriptive statistics, graphical displays, power and
sample size calculations, random number generation, and some more advanced
statistical analyses such as linear and logistic regression; however, the options avail-
able are often surprisingly limited compared to statistical packages such as SPSS or
SAS. Therefore, if Minitab is under consideration for purchase, it is wise to run some
proposed analyses by using the trial copy to see whether these limitations will be a
problem for your proposed uses.
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The greatest strength of Minitab might be in quality control and related business
applications; it is the world leader in that context, according to the company website.
Minitab is often the statistical package taught in conjunction with Six Sigma and
similar types of quality improvement training. Specific business and quality control
functions are easily produced in Minitab, including DOE (Design of Experiments)
analyses, run charts, control charts (Minitab was used to create the control charts
for Chapter 14 of this book), time series methods, fishbone diagrams (cause and
effect diagrams), Pareto charts, and capability analyses.

Many guides to Minitab are on the market, as well as statistical textbooks that in-
corporate Minitab; a search on amazon.com or your favorite technical bookstore
should turn up many possibilities. In addition, the Minitab home page includes a
number of tutorials and papers to assist Minitab users. A web search will reveal many
tutorials and other help sites for Minitab as well.

SPSS
SPSS is a general-purpose statistical computing package that was first released in
1968. It is widely used by social scientists (the name originally meant Statistical
Package for the Social Sciences) and is used extensively in other areas, including
health research, business, and education. This software package has had several
names over its history. A version called SPSS-X was released in the 1980s (this name
is reflected in a major listserv devoted to SPSS); from 2009 to 2010, SPSS was called
PASW; and since SPSS was bought by IBM in 2010, new releases of the software
have been called IBM SPSS (such as IBM SPSS Statistics 19.0, released in August
2010). For the sake of simplicity, we will stick with the name SPSS for all versions
of this software.

SPSS can be characterized as offering capabilities somewhere between Minitab and
SAS; it is more complex and offers many more analytical possibilities than Minitab
but is more limited than SAS. On the other hand, many beginners find SPSS easier
to learn than SAS, and many feel SPSS is superior for data formatting and docu-
mentation. Particularly since its acquisition by IBM, SPSS has placed strong
emphasis on developing applications for predictive analytics and thus might partic-
ularly appeal to people working in that field.

SPSS can import and export data in many formats and in nonrectangular configu-
rations; however, the data set is always translated to an SPSS rectangular data file,
known as a system file (using the extension *.sav). Metadata (information about the
data) such as variable formats, missing values, and variable and value labels are
stored with the data set. Two views are offered of the data: the data view (Fig-
ure B-3) and the variable view (Figure B-4), which shows the metadata. You can type
directly into either window, so data may be typed into the data view and variable
names, labels, and so on typed into the variable view window.
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Figure B-3. SPSS data view

Figure B-4. SPSS variable view

SPSS can be operated entirely through syntax (computer code), which may be typed
directly into the syntax window, or written using any text or word processing pro-
gram and pasted into the syntax window (Figure B-5). SPSS syntax files are stored
with the extension *.sps. SPSS syntax is relatively easy to write and interpret, as
should be evident in the code excerpt in Figure B-5. You can probably guess what
this code is doing without ever having used SPSS. Here’s a hint: lines beginning with
* are comments, notes to the programmer rather than executable lines of code. The
actual program recodes the continuous variable exercise into the dichotomous vari-
able exerc_cat, adds labels to the new variable and its values, and creates a cross-
tabulation table and frequency table for the two variables.
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Figure B-5. SPSS syntax window

Some people prefer to use the menu interface, and almost any statistical analysis or
data management function in SPSS can be accomplished by either means. I prefer
to think of the menu system as an alternative way of generating code that can be
saved in a syntax file so I can enjoy the best of both worlds. I can use the menus to
write the syntax for an unfamiliar command and then save the syntax as a record of
the analysis performed, and I can reuse or alter the syntax for subsequent analyses.
The second paragraph of syntax in Figure B-5 was created using the menu interface;
the tell-tale sign of menu-generated syntax is the capitalized commands (RECODE,
VARIABLE LABELS, and so on). To generate syntax by using the menu system,
make all relevant selections in the menu command interface and then select Paste
rather than OK as the final step, as shown in Figure B-6. This results in the syntax
being saved in a syntax file or appended to an existing syntax file if one is already
open. On the other hand, if you simply want to run an analysis and don’t care about
saving the syntax, click OK instead, and the analysis executes immediately. The
statistical results are the same either way.

It would be impossible in this brief space to enumerate all the types of analyses
available; an overview of SPSS capabilities can be found on the SPSS web page. It is
an expensive program, but educational prices are lower, and often universities obtain
a site license so they can provide students and employees with access to SPSS free
or at a much lower cost.

SAS
SAS is a statistical software package developed at North Carolina State University
in the 1960s, and since 1976 it has been a commercial product sold by SAS Institute.
SAS is a step up in complexity from SPSS. It is somewhat more difficult to use but
offers much more in terms of the types of analyses available and the flexibility
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provided for specifying and executing those analyses. The major disadvantage for
beginners is that SAS is a syntax-based system, and there are so many choices to be
made for even a simple analysis that it can seem overwhelming at first. SAS is also
less friendly in terms of managing data files and metadata; for instance, it stores
formats in files separate from the data file and requires the format location to be
specified in the syntax every time the data file is opened (rather than attaching the
format information to the data file, as SPSS does). However, SAS has become the
standard language in many professional fields, and there is more assistance for
learning and using SAS, both from the SAS web page and help desk and from many
published books and websites, than is available for SPSS.

SAS is similar to SPSS in many ways. It is a comprehensive statistical package that
can conduct more types of analyses than can possibly be enumerated here and can
read and write data sets in many formats. SAS is expensive for an individual to buy
but might be affordable if your school or place of business has a site license. One
major difference between SAS and SPSS is that SAS is primarily a syntax-based sys-
tem. Many statisticians prefer to work with syntax anyway, partly because they (like
me!) are so old they learned to use computers before graphical interfaces were avail-
able and partly because (as mentioned in the SPSS section) syntax may be shared
and reused. In addition, writing syntax forces programmers to think through an
analysis in a way that can be avoided if the analysis is conducted just by clicking the
menus. To someone just starting out in statistics, however, the lack of a menu in-
terface might seem more of a barrier than an advantage. This can be somewhat
ameliorated by using the time-tested method of altering someone else’s code to fit
your needs, and so much annotated SAS code is available on the Internet that you
could teach yourself to write SAS programs just by using this method.

Figure B-6. Using the SPSS menu system to generate syntax
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SAS has three main windows: the syntax window, where you can type your syntax
or paste it in from another text or word processing program; the log window, which
contains a record or log of everything done in a particular session, including warn-
ings and other messages from the SAS system; and the output window, where output
from statistical procedures is sent by default. (It can be directed to other locations,
such as through an HTML or *.rtf file or through the ODS system.) To use SAS, you
open an SAS data set or import another type of data (such as a file stored in Excel
or text format), submit commands through the syntax window, and check the out-
put in the output window. The log and syntax windows are illustrated in Figure B-7.

Figure B-7. SAS log and syntax windows

The syntax window (Editor − Untitled2*) illustrates three main features of SAS pro-
gramming. The first is that the location of SAS data files is declared using the lib-
name command and the data files themselves referenced with a two-part name:
library.datasetname. In this case, we declared the library y (the actual name is arbi-
trary, and many people use one-letter libnames because they are easier to type) to
exist at the physical location:

C:\Documents and Settings\sboslaugh\Desktop\CHQE Projects\
BH Dip Analysis\

and then referenced the y.sbdip0607 data set that is stored in that location.

SAS programs consist primarily of two types of steps:
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1. DATA steps, which open, manipulate, and save data file

2. PROC steps, which perform statistical analyses on the files

The log window (Log - (Untitled)) echoes the syntax submitted and contains mes-
sages from the SAS system—for instance, that our libname command was successful.

Figure B-8 shows an excerpt from an SAS output window.

Figure B-8. SAS output

SAS has two other windows that may be toggled between by use of the tabs in their
lower corners. The Results window (Figure B-9) shows an outline of the results pro-
duced during a session; clicking any folder causes the next greater level of detail to
be displayed. The Explorer window (Figures B-10 and B-11) allows access to differ-
ent SAS libraries. (Any libraries created by the user, such as y in this case, must have
been declared by a libname command during the current SAS session.) Clicking the
folders moves the display to the next greater level of detail.

Figure B-9. SAS Results window
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Figure B-10. SAS Explorer window

Figure B-11. Contents of a data library (three SAS data files) from the SAS Explorer window

Note that it is possible to open an SAS data set in spreadsheet form (as in Fig-
ure B-12), which SAS calls Viewtable format, by clicking it in the Explorer window,
and that it is possible to enter or edit data directly by this method. Normally, how-
ever, in SAS, these procedures are accomplished using syntax.

There are many books to help you learn SAS and many good Internet resources as
well, and this community of SAS programmers is a major plus for anyone using this
language.
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Figure B-12. SAS data set in Viewtable format

R
R is a programming language that also functions as a statistical package because of
the many prewritten statistical routines (computer code written to perform a
particular task) available for it. It differs from the other packages discussed in this
appendix because, rather than being a proprietary product sold or licensed by a
corporation, R is freely available for download from the Internet. R is an extremely
powerful language, and new routines are constantly being written and made avail-
able on the Internet by statisticians and programmers from all over the world.

Free is a tough price point to beat, so you might wonder why everyone isn’t already
using R to do their statistical work. The answer is that R is harder to use than the
other packages discussed in this appendix, particularly at first and for someone who
doesn’t have a lot of aptitude or experience as a programmer. Using R also requires
the programmer to think about what she is doing to a greater extent than when
programming in SPSS or SAS. Although this is certainly an educational advantage,
people who just want to produce a few simple statistics might feel that the investment
of time required to get over the initial hurdles of using R is too great.

On the other hand, if you start out learning R at the same time you learn about
statistics, it might be no more difficult to learn than any other package. Several GUI
implementations are available, and as R becomes increasingly common, even more
user-friendly adaptations might be developed. A sort of natural experiment is cur-
rently taking place as R is increasingly being adopted as a teaching language for
beginning statistics, so perhaps in 10 years we will be able to answer this question.
If you are serious about statistics as a career, you need to become familiar with R
because it is the most powerful and flexible language available and might become
the lingua franca of statistical programming in the near future.

To use R, you must first download it to your computer. The easiest way to do this
is to go to the CRAN (Comprehensive R Archive Network) web page and follow the
instructions. The next step, unless you are very stout of heart (or already an ace
programmer), is to find a good instructional text for R; numerous books are avail-
able, and many resources are available on the Internet as well, including those avail-
able here.
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R is a command-oriented language; you type commands at a command prompt, and
the R-interpreter responds interactively, either executing the command or giving you
an error message. The commands are quite compact compared to those used in SPSS
and SAS and can appear cryptic to the uninitiated; however, after you learn to use
R, you might come to appreciate this efficiency. Even more so than with the other
languages discussed in this appendix, the best way to get comfortable with R is to
get some basic instructional materials and run through some very simple examples
on your computer. The logic of the R language is easier to recognize through use
and practice than by reading someone else’s explanation.

Another thing you should know about R is that it is an object-oriented language (as
are Java, C++, and Smalltalk, among others); this means that everything you create
using R is an object that can be further manipulated by other commands. An object
is also a member of a class, meaning that it has certain characteristics and internal
organization that allow you to perform operations on it.

Microsoft Excel
Microsoft Excel is, properly speaking, not a statistical package at all, although it is
sometimes used as one. Excel is a spreadsheet application produced by the Microsoft
Corporation that is frequently used for data management because of its ubiquity (it
is preloaded on many new computers sold in the United States, for instance), ease
of use, and the fact that several major statistical packages have prewritten routines
to import and export data in Excel format. Excel also can produce graphs and charts
and perform some statistical analyses, although you should know that Excel has
some well-known flaws in statistical accuracy, so the advisability of using it for any-
thing beyond the most basic displays and calculations is arguable. On the other
hand, Excel might be entirely adequate for your needs, or it might be the software
of choice in a class you are taking. Just remember that Excel is a spreadsheet appli-
cation, not a statistical package, and proceed accordingly.

Excel stores data in individual spreadsheets, which it calls worksheets; multiple
worksheets are collected into workbooks. Individual data points are stored in cells
(the rectangular boxes in the worksheets) identified by column and row. For exam-
ple, cell A1 is the intersection of column A and row 1. Both individual worksheets
and workbooks use the extension *.xls (or *.xlsx for newer versions). A spreadsheet
looks like a rectangular data set but has many more capabilities, including built-in
functions to perform computations on sets of cells such as rows or columns of data.
Excel also offers many choices regarding how data is stored, how it appears on the
screen, and how it is printed; a given cell, column, or row can be formatted for string
or numeric data, to appear in different date formats, and so on.

In Figure B-13, you can see a worksheet (Sheet3, as you can tell from the lower tab)
within a workbook that includes three worksheets; you maneuver between work-
sheets by clicking the tabs at the bottom of the window (labeled Sheet1, Sheet2, and
Sheet3 in this example). Rows are horizontal, as in the standard rectangular data
set, so we have row 1, row 2, and so on. Columns are vertical, so we have column
A, column B, and so on. Individual cells are defined by row and column, so the cell
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in the upper left corner is A1, the next to its right is B1, and the next below is A2.
The designations A1, A2, and so on are called cell references.

Figure B-13. Microsoft Excel worksheet

Data can be entered simply by typing in the worksheet, in which case Excel applies
default formats based on its best guess of the type of data entered. These formats
can be changed using the menu commands Format/Format Cells; Figure B-14 shows
some of the choices available for date-format data. If you are using Excel to collect
data that will be transferred to a different program for analysis, you should be aware
that formatting is often lost or garbled in the transfer process. For this reason,
particularly when working with time and date variables (which, because of their
complexity and the different ways they are stored in the different programs, are
frequently mistranslated between programs), some researchers prefer to use text
format for all Excel data to be imported and to format it after importation into the
program in which it will be analyzed.

Variable names can be added in the first row, and many statistical packages include
the option to retain those names when importing data. However, because the row
containing the variable names is counted as a data row in Excel but not in programs
such as SPSS and SAS, the imported file will have one fewer row than the Excel file.
This might cause panic because it appears a case has been lost, but in fact, the dis-
crepancy is just due to differing ways of storing data.

Another trap for the unwary when transferring data between systems is the fact that
each system has a different set of rules for variable names. It can be disheartening
to spend a lot of time entering meaningful variable names in a spreadsheet only to
have them appear as Var1, Var2, and so on when the file is imported into a statistical
package. If you are going to import variable names, follow the rules of the target
program, so if you are going to import the data into SPSS, follow the SPSS naming
conventions when entering the names in your Excel spreadsheet. Another solution

Microsoft Excel | 511

Intro to Statistical
Packages

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



is to use simple names (such as v1, v2, and so on) in Excel and then write code in
the target program to add meaningful names to the variables after they are imported.

Excel can create many types of charts and graphs. To create a chart or graph, you
insert it into a worksheet, and it can then be saved as a separate object or inserted
into other programs such as Microsoft Word.

You can easily do basic arithmetic in Excel, and its spreadsheet capabilities are par-
ticularly useful if you need to do calculations on many rows or columns of numbers.
Excel also includes a number of built-in functions that allow you to compute basic
statistics for any collection of cells, and you can perform arithmetic operations by
specifying the equation to be performed. In either case, the function or formula is
entered into a cell, which will also be used to store the results of the calculation.

Figure B-14. Some examples of formatting available in Excel
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D
Probability Tables for Common

Distributions

Probability tables for different distributions are available in many reference books
and online; the tables in this section are included for your convenience and include
solved examples from the main text. One caution: there is more than one way to
display the probability values for any distribution, so it is always wise to spend a few
minutes observing how a given table is constructed before you start to use it.

Probability tables are partly a vestige of an era before statistical calculators and soft-
ware packages were readily available, but they serve a useful purpose even in our
electronic age. To use a probability table correctly, you have to think about the
distribution in question and how it applies to your research question, so a few mi-
nutes working with a probability table is worthwhile even if you expect to do most
or all of your statistical calculations with a computer software package.

The tables included in this chapter, except those for the binomial distribution, are
taken from the NIST/SEMATECH e-Handbook of Statistical Methods, a public do-
main resource available online from the National Institute of Standards and Tech-
nology in the United States. The binomial distribution tables, also in the public
domain, were created by William Knight, a former professor of computer science
and mathematics at the University of New Brunswick, and are available from his
website.

Note that for continuous distributions such as the normal distribution, we always
speak in terms of the probability of an area of the distribution (which is equivalent
to the probability of all the results included in that area) rather than the probability
of a single point in the distribution. This means that we can find P(Z > 2.00) or P(Z <
−1.80) but not P(Z = 2.00) or P(Z = −1.80). The reason is technical; in a discrete
distribution, a point (such as 2.00) has no area and, thus, no probability. This re-
striction is specific to continuous distributions, and for discrete distributions such
as the binomial, we can find the probability of specific values.
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The Standard Normal Distribution
Figure D-3 is a table of the area under the normal curve, expressing the probability
that (0 < x < |a|), the probability that a value of x lies in the range between 0 and
the absolute value of some value a. Suppose a = 0.5. The area (0 < x < 0.5) is rep-
resented by the shaded area in Figure D-1.

Figure D-1. Area (0 < x < 0.5) of the standard normal distribution

We can see from the normal table presented in Figure D-3 that the area of this region,
which is the same as the probability of a value in the range (0, 0.5), is 0.19146.
(Remember, the total area under the normal curve is 1.0.) We find this value by
going down the column labeled x until we come to the row for 0.5 and then going
across that row to the 0.00 column. The value in the cell where the column and row
intersect is the probability of a value in the range between 0 and the absolute value
of a (in this case, between 0 and 0.5). This value, 0.19146, is both the area under
the normal curve between 0 and 0.5 and the probability, in a standard normal dis-
tribution, of a value between 0 and 0.5.

Because the standard normal distribution is symmetric, only positive values are given
in this table, but the area for a value of a less than 0 can be found easily. For instance,
P(0 < x < 0.5) = P(0 > x > −0.5) = P(−0.5 < x < 0). The shaded area in Figure D-2
represents the area (−0.5 < x < 0), and its area and probability are 0.19146.

Figure D-2. Area (−0.5 < x < 0) of the standard normal distribution
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One way to orient yourself with respect to an unfamiliar distribution table is to find
a few familiar values. For instance, the Z-value of 1.96 should be familiar to you due
to its association with 95% two-tailed confidence intervals. If you find the cell where
1.9 (row) and .06 (column) intersect, you will see the cell value of 0.47500. This is
P(0 < x < 1.96), and if you double it, adding in the probability for P(−1.96 < x < 0),
you get 0.95 or 95%. To look at it another way, 0.025 of the area in the standard
normal distribution lies above the value of 1.96 and 0.025 below the value of −1.96,
so only 5% of the values in a standard normal distribution lie outside the range
(−1.96, 1.96). This is why, when we use the alpha value of 0.05 for a statistical test
based on the normal distribution, a result that translates to a standard normal score
outside the range (−1.96, 1.96) is considered significant; a value this extreme would
occur less than 5% of the time if the null hypothesis were true.

Working a few examples might make this table easier to understand. Often, finding
the probability of a result involves adding probabilities from both sides of 0. For
instance, in Chapter 3 (Figure 3-4) we found that the Z-value for a score of 105, from
a population distributed x ~ N(100, 5), was 1.00. To find the probability of a value

Figure D-3. Probability table for the standard normal distribution
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at least as high as 105, given a population distributed x ~ N(100, 5), is the same thing
as finding the probability of a Z-score at least as high as 1.00 in the standard normal
distribution. The easiest way to find P(Z > 1.0) is to find the area below Z = 1.00
and then subtract that area from 1.0 (the total area under the normal curve). The
area below Z = 1.00 includes the area from negative infinity to zero and the area
from 0 to 1.00. We know the former is 0.5 (because half the area in the standard
normal distribution lies below 0 and half above 0), and using the table, we find the
latter is 0.34134. Therefore, if we denote the score as X:

P(X < 105) = P(Z < =1.00) = 0.50000 + 0.34134 = 0.84134, P(X > 105) = P(Z
> 1.00) = 1 − 0.84134 or 0.15866.

Returning to the original problem, this result tells us that there is about a 15.9%
chance of a score greater than 105, if the scores in a population are distributed
~N(100, 5). To put it another way, a score of 105 from such a population ranks in
about the top 16% of this population. The shaded area in Figure D-4 represents this
area.

Figure D-4. Area of the standard normal distribution for P (Z > 1.00)

We also calculate in Chapter 3 (Figure 3-5) that a value of 95, from a population
distributed N~(100, 5), translates to a Z-score of −1.00. Suppose we want to know
what proportion of values lie below this score. To do this, we use two facts:

• By the definition of the standard normal distribution, the area below 0 (between
negative infinity and 0) is 0.5000.

• The area between −1.00 and 0 is 0.34134 (the same as the area between 0 and
1.00).

Therefore, the area below −1.00 is 0.5000 − .34134, or 0.15866. Note that this is the
same area as that above Z = 1.00, not a surprising result given the symmetry of the
standard normal distribution. The shaded area in Figure D-5 represents this area.
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Figure D-5. Area of the standard normal distribution for P(Z < −1.00)

It is easy to get confused about which area you are calculating when working with
a probability table, so it might help to draw a sketch to indicate exactly what you
need to add or subtract to come up with the answer.

In Chapter 3 (Figure 3-6), we calculate that a value of 35, from a population ~N(50,
10), translates to a Z-score of −1.50. To calculate the probability of a score higher
than 35 from this population, we note that the answer will include the area between
−1.5 and 0, and the area above 0 (between 0 and positive infinity).

P(Z > −1.5) = .43319 + 0.50000 = 0.93319.

Therefore, the probability of a score above 35 in this population is 93.3%. This
corresponds to the shaded area in Figure D-6.

Figure D-6. Area of the standard normal distribution for P(Z > −1.50)

For the purpose of finding probabilities using a standard normal table, it doesn’t
matter whether a Z-value represents a single score or a sample mean. In Chapter 3
(Figure 3-21), we calculated the Z-statistic for a sample mean of 52 from a sample
of 30 drawn from a population with a mean of 50 and a standard deviation of 10.
This sample mean corresponds to a Z-statistic of 1.10. To find the probability of a
Z-statistic at least this high, we calculate as follows:

P(Z > 1.10) = 1 − P(Z < 1.10) = 1 − (0.5000 + 0.36433) = 0.13567

The Standard Normal Distribution | 531

Probability Tables



If instead we were interested in the probability of a score at least this low, we would
calculate:

P(Z < 1.10) = (0.5000 + 0.36433) = 0.86433

As previously, the 0.5000 represents the probability from negative infinity to 0,
whereas 0.36433 represents the probability from 0 to 1.10.

Here are the probabilities for the other Z-distribution examples from Chapter 3.

Figure 3-22: Z = 1.55

P(Z > 1.55) = 1 − P(Z < 1.55) = 1 − (0.50000 + 0.43943) = 0.06057 P(Z < 1.55)
= (0.50000 + 0.43943) = 0.93943

Figure 3-23: Z = 2.00

P(Z > 2.00) = 1 − P(Z < 2.00) = 1 − (0.50000 + 0.47725) = 0.02275 P(Z < 2.00)
= (0.50000 + 0.47725) = 0.97725

The t-Distribution
Because the t-statistic has a different distribution for every degree of freedom, t-tables
are usually abbreviated to show only certain critical values (otherwise, the tables
would be immense). In the table presented in Figure D-7, the column labeled ν
represents degrees of freedom, whereas the columns 0.10, 0.05, and so on present
the probability of exceeding the critical value for a t-distribution with the degrees of
freedom indicated by ν. These are one-tailed values and, because the t-distribution
is symmetric, to get the two-tailed probability, you choose the probability column
whose value is half of the α-value you want.

Suppose you want to find the critical value for a two-tailed t-test with 20 degrees of
freedom and α = 0.05. You choose the column for 0.025 (because 0.05/2 = 0.025),
read down to the row ν = 20, and find the critical value of 2.086. This means that
the t-statistic from your experiment must be greater than 2.086, or less than −2.086,
for you to reject the null hypothesis.

If we were performing a one-tailed test with ν = 20 and α = 0.05, we would use the
column labeled 0.05, go down to the row ν = 20 as before, and find that our critical
value is 1.725.
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Figure D-7. Selected critical values for the t-distribution
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Although this t-table will not give you the precise probability of every t-value, you
can use it for hypothesis testing. For instance, in Chapter 6, Figure 6-7, we calculated
a t-statistic of −3.87 for a one-sample t-test with 14 degrees of freedom. For a two-
tailed test with an alpha value of 0.05, the critical value is 2.145 (in Figure D-7, the
row for 14 df and a probability of 0.25). Our value as calculated from the data is
more extreme than this, so we reject the null hypothesis.

In Chapter 6, Figure 6-12, we calculated the t-statistic of 1.01 for a two-tailed t-test
for two independent groups with 18 degrees of freedom and alpha = 0.05. Looking
at Figure D-7, we see that the critical value in this case is 2.101. The t-statistic cal-
culated from our data is less extreme (closer to 0) than the critical value, so for this
data, we fail to reject the null hypothesis.

The Binomial Distribution
Because the binomial has a different distribution for every combination of n and p,
binomial tables can be quite large. Fortunately, the normal distribution can be used
to approximate the binomial when np and n(1 − p) are both greater than or equal to
5, hence there is less need for tables with large values for n. We include an excerpt
here from binomial probability and cumulative binomial probability tables gener-
ated by University of New Brunswick professor William Knight; the complete tables
are available from his website. Figure D-8 presents binomial probabilities for n = 3
− 10, whereas Figure D-9 presents cumulative binomial probabilities for n = 3 −
10.

To find a binomial probability, you need to know n (the number of trials), k (the
number of successes), and p (the probability of success on any trial). First find the
table for n, and then find where the row for k and the column for p intersect; that
cell holds the binomial probability (in Figure D-8) or cumulative binomial proba-
bility (in Figure D-9) for the specified result. For example, in Chapter 3 (Fig-
ure 3-10), we calculated b(1;5, 0.5), the probability of exactly 1 success in 5 trials,
with p = 0.5, to be 0.16. To confirm this probability in Figure D-8, we find the table
for n = 5 and then the intersection of the row for k = 1 and the column for p = 0.5.
The probability of this result is 0.15625, which, after rounding, is the same as the
value we calculated. If we want to know the probability of no more than 1 success
in 5 trials—the probability of 0 or 1 successes—we would use the cumulative prob-
ability table (Figure D-9). Following the same procedure, we find that the cumulative
probability for 0 or 1 successes in 5 trials at p = 0.5 is 0.18750. We could have gotten
the same value by adding the probabilities of 0 and 1 success from Figure D-8:
0.03125 + 0.156250 = 0.18750.

Suppose we want to answer a different question: what is the probability of at least
1 success in 5 trials, with p = 0.5? The easiest way to answer this is to calculate the
probability of 0 successes and then subtract that probability from 1. Because b(0;5,
0.5) = 0.03125 (the probability of 0 successes), the probability of more than 0 suc-
cesses, that is, 1 or more successes, is 1 − 0.03125, or 0.96875.
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Figure D-8. Binomial probabilities for n = 3 − 10
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Figure D-9. Cumulative binomial probabilities for n = 3 − 10
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The Chi-Square Distribution
The chi-square distribution is not symmetrical, as can be seen from Figure D-10,
and for this reason, the upper and lower critical values differ. In practice, the upper
critical values are used far more commonly, and therefore only the upper critical
values are included in this appendix. The shape of the chi-square distribution varies
according to the degrees of freedom, and each distribution has a separate set of
critical values. In the interest of space, we have included a chi-square table for up to
40 degrees of freedom; a table for up to 100 degrees of freedom, as well as a table of
lower-tail critical values, is available online in the NIST/SEMATECH e-Handbook of
Statistical Methods.

Figure D-10. Chi-square distribution, two-tailed test

To use the chi-square table in Figure D-11, find the row corresponding to the degrees
of freedom (labeled ν) and then go across to the column for the correct upper-tail
probability (assuming a one-tailed test). For a chi-square test with 1 degree of free-
dom and α = 0.05, the critical value is 3.841. This is the value that the test statistic
must exceed to reject the null hypothesis. To put it another way, if the null hypoth-
esis is true, there is only a 5% chance of an experiment with one degree of freedom
returning a chi-square statistic of 3.841 or greater. For a chi-square test with 5 de-
grees of freedom and α = 0.01, the critical value is 15.086.

Consider the example from Table 5-7 in Chapter 5. The experiment returned a chi-
square value of 21.8 with 3 degrees of freedom. We can see from the chi-square table
in Figure D-11 that the critical value for alpha = 0.5 and 3 degrees of freedom is
7.815. Our value is larger than that, so we will reject the null hypothesis.
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Figure D-11. Upper-tail chi-square critical values
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E
Online Resources

There are many statistical resources available on the Internet, and no published list
could possibly be complete, nor would it want to be; too much information can be
as bad as too little. As is true of the Internet in general, not every resource online is
accurate or reliable, so it’s up to the user to decide whether a particular resource is
appropriate to his use. The web pages listed here are all maintained by reputable
sources, including the federal government, university departments of statistics, pro-
fessional statisticians, and companies that produce widely used statistical products.

General Resources
• The Statistics Online Computational Resource

Many resources, including interactive tools and course materials, from the
UCLA Statistics Online Computational Resource.

• Rice Virtual Lab in Statistics

A collection of resources, including an online textbook, simulations and dem-
onstrations, cases studies, and statistical analysis tools.

• Web Pages that Perform Statistical Calculations

Links to many tools, including statistical decision trees, free statistical software,
online calculators, and graphing programs, maintained by John C. Pezzullo, a
retired professor of biostatistics and pharmacology.

• Wolfram Demonstrations Project: Statistics

A collection of interactive tools related to statistical topics from the Wolfram
Demonstrations Project; none require Mathematica, and all are open-code and
designed to run on any standard computer running Windows, Macintosh, or
Linux.
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• StatLib: Data, Software and News from the Statistics Community

A website dedicated to distributing statistical software, data sets, and informa-
tion, maintained on the website of Carnegie Mellon University.

• CAUSEweb

A large collection of links relevant to statistics education, compiled by Juha
Puranen of the University of Helsinki, and maintained on the website of the
Consortium for the Advancement of Undergraduate Statistics Education
(CAUSE). Categories include course materials, data sets, demonstrations, stat-
istical software, and texts; many of the links will be useful to practicing statis-
ticians as well as educators.

• “Ask Dr. Math.”

Searchable archive of answers to mathematical and statistical questions, ranging
in difficulty from elementary school through college.

• Mathematics Review Manual, Department of Mathematics and Statistics,
McMaster University

Provides a review of mathematical concepts from basic algebra through calcu-
lus, along with advice about how to learn and understand mathematics. There
are solved problems and a quiz for each topic covered.

• The World Wide Web Virtual Library: Statistics

A collection of links compiled by the University of Florida Department of
Statistics; categories include data sources, educational institutions, professional
organizations, software venders, mailings lists, and news groups.

• College Board: AP Statistics Course Home Page

A collection of links to materials relevant to the AP Statistics course (taught in
American high schools), compiled by the College Board (the company that de-
velops and administers the test). Categories include information about the test
itself (including practice tests), teaching materials, and short articles on statis-
tical topics relevant to the course.

Glossaries
• StatSoft Statistics Glossary

A detailed glossary maintained by the company that produces Statistica
software.

• EXCITE! Glossary of Epidemiology Terms

A glossary of epidemiological terms maintained by the U.S. Centers for Disease
Control and Prevention (CDC); definitions are drawn from Principles of
Epidemiology in Public Health Practice, 3rd edition, a self-study course devel-
oped by the CDC for health care professionals.
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• Pocket Dictionary of Statistics

A glossary of terms used in business statistics, written by Hardeo Sahai and
Anwer Khurshid and maintained on the website of the Higher Education divi-
sion of the publisher, McGraw-Hill.

• Six Sigma Glossary

A glossary of terms used in the Six Sigma quality control program, maintained
on the website of MiC Quality, a company that provides Six Sigma training
courses and educational materials.

• A Glossary for Multilevel Analysis

A glossary of terms relevant to multilevel analysis, written by Dr. Ana V. Diez
Roux, a Columbia University professor, and maintained on the website of the
Pan American Health Organization.

Probability Tables
• Tables for Probability Distributions

Public domain tables for the standard normal distribution, t-distribution,
F-distribution, and chi-square distribution, from the National Institute of
Standards and Technology.

• William Knight: Public Domain Tables

Public domain tables for confidence intervals for the median, the U-test, the
sign test, binomial coefficients, binomial probabilities, the standard normal
distribution (including a short table for teaching), the t-distribution, the chi-
square distribution, the F-distribution, and square roots, from Professor
William Knight of the University of New Brunswick.

Online Calculators
• QuickCalcs: Online Calculators for Scientists

Page containing a variety of online statistical calculators, maintained by the
scientific software company, GraphPad.

• Applets for the Cybergnostics Project

A collection of statistical calculators and graphical demonstrations of statistical
concepts, written by R. Webster West, a professor of statistics at Texas A&M;
this collection is particularly useful in teaching because it allows students to
perform simulations and to change the parameters of different distributions and
observe how the shape of the distributions change.

• Power and Sample Size Programs

Links to many power and sample size calculators, and related information and
software, on a site maintained by Steve Shiboski, a professor in the UCSF Dept.
of Epidemiology and Biostatistics.
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• Java Applets for Power and Sample Size

Graphical interface to address many common power and sample size questions,
maintained by Russell V. Lenth, a professor of statistics and actuarial science
at the University of Iowa; the software may be run on the site or downloaded
to the user’s PC.

Online Textbooks
• General Statistics Curriculum E-Book

Online textbook for the AP statistics course, from the UCLA Statistics Online
Computational Resource.

• Statistics at Square One

Statistics at Square One, now in its ninth edition, is an introductory statistics
textbook particularly useful for medical personnel.

• Research Methods Knowledge Base

The Research Methods Knowledge Base, a web-based textbook created by Wil-
liam M.K. Trochim, a professor of policy analysis and management at Cornell
University; it covers topics usually taught in a social science research methods
course, including research design, sampling, analytical techniques, and writing
the results.

• StatSoft Electronic Statistics Textbook

The StatSoft Electronic Statistics Textbook, from the company that created
Statistica; it includes information about many advanced techniques, including
CHAID analysis, data mining techniques, and structural equation modeling.
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F
Glossary of Statistical Terms

One challenge in any profession is learning the specific vocabulary required. This
appendix provides a quick guide to key terms and notation used in this book; stat-
istical vocabulary is covered in far greater detail in reference books such as The
Cambridge Dictionary of Statistics (Cambridge University Press, 2010) and The
Concise Encyclopedia of Statistics (Springer, 2008).

Table F-1. The Greek alphabet

Capital letter Lowercase letter Greek name Capital letter Lowercase letter Greek name

A α Alpha N ν Nu

B β Beta Ξ ξ Xi

Γ γ Gamma O o Omicron

Δ δ Delta Π δ Pi

E ε Epsilon P ρ Rho

Z ζ Zeta Σ σ Sigma

H η Eta T τ Tau

Θ θ Theta Y υ Upsilon

I ι Iota Φ ϕ Phi

K κ Kappa X χ Chi

Λ λ Lambda Ψ ψ Psi

M µ Mu Ω ω Omega

Table F-2. Statistical notation

Symbol Meaning

S Sample space (probability theory)

E Event (probability theory)

∪ Union of sets
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Symbol Meaning

∩ Intersection of sets

P(A) Probability of event A

P(A|B) Probability of event A, given event B

P(~A) Probability of A complement (probability of not-A)

e Euler’s constant, the irrational number 2.718 . . .

ln Natural logarithm (logarithm to base e)

logx Logarithm to base x

xi The ith member of sample x

Sample mean

µ Population mean

s Sample standard deviation

σ Population standard deviation

s2 Sample variance

s2
p Pooled sample variance

σ2 Population variance

n Sample size

N Population size

r Sample correlation

rpb Point-biserial correlation

rs Spearman rank-order correlation (Spearman’s rho)

γ Goodman and Kruskal’s gamma

τa, τB, τC Kendall’s tau-A, tau-B, tau-C

ϕ Phi (measure of association between two binary variables)

P Concordant pairs (ordinal measures of association)

Q Discordant pairs (ordinal measures of association)

ρ Population correlation

χ2 Chi-square

O Observed value (chi-square)

E Expected value (chi-square)

R×C A table with R rows and C columns

E Expected value (for calculating chi-square)

H0 Null hypothesis

HA, H1 Alternate hypothesis

α Alpha, the probability of Type I error

β Beta, the probability of Type II error

Σ Summation

nPk Permutation
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Symbol Meaning

nCk Combination

n! n factorial, that is, n × (n − 1) × (n − 2) × ... 1

t Student’s t

df Degrees of freedom

Z Standard normal score/distribution

SS Sums of squares

MS Mean square

It Index for time t (business statistics)

Qit Quantity of product i for time t (business statistics)

Pit Price of product i for time t (business statistics)

Tt Secular trend (time series)

Ct Cyclical effect (time series)

St Seasonal effect (time series)

Rt Residual or error effect trend (time series)

RR Risk ratio (relative risk)

OR Odds ratio

ORMH Mantel-Haenszel odds ratio

D+, D− Disease, no disease (epidemiology)

E+, E− Exposure, no exposure (epidemiology)

δ Delta, effect size (sample size and power calculations)

T True score, true component (measurement theory)

E Error component (measurement theory)

X Observed score (measurement theory)

Estimated reliability (Spearman-Brown prophecy formula, measurement theory)

Coefficient alpha (measurement theory)

KR20, KR21 Kuder-Richardson 20, Kuder-Richardson 21 (measurement theory)

Absolute value
The numerical value of a number, disregarding its sign; the absolute values of
−4 and 4 are both 4. Using notation: |−4| = |4| = 4.

Alpha (α)
In experimental design, the probability of a Type I error, that is, the probability
of rejecting the null hypothesis when it is true.

A priori hypothesis
A hypothesis specified before any testing is done.

Beta (β)
In experimental design, the probability of a Type II error, that is, the probability
of failing to reject the null hypothesis when it is false. 1 − β = power.
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Bias
Error that is systematic and might lead to incorrect interpretation of results.

Binary variables
Variables that can take only two values; also called dichotomous variables.

Blinding
In experimental design, keeping the people involved in a study ignorant of
important aspects of the study, for instance, which participants received an
experimental treatment and which received a placebo. In a single-blind trial,
information is withheld from the participants. In a double-blind trial, informa-
tion is withheld from both the subjects and the researchers administering the
treatment. In a triple-blind trial, information is withheld from the participants,
the researchers administering the treatment, and the researchers evaluating the
data.

Categorical data
See nominal data.

Cohort
A group of people having a time-related factor in common (for instance, being
born in 1950 or entering college in 2000).

Confounding variable
In research design, a variable that correlates with both the independent and
dependent variables and is not in the causal pathway between them.

Construct validity
The extent to which a measurement, or series of measurements, adequately
measures a construct (such as intelligence).

Content validity
The extent to which an instrument (such as a test) adequately reflects the con-
tent domain it is intended to represent.

Continuous data
Data that might take any value or any value within a range.

Criterion validity
The extent to which a measurement correlates with something else, for instance,
how well scores on an IQ test correlate with grades in school.

Control variables
Variables included in a study design not because they are the focus of interest
but because they are believed to influence the variables of interest and the re-
searcher wants to control for their effect.

Cross-sectional study
A study in which data is collected at a single point in time.

Degrees of freedom
The number of values free to vary in an equation or statistic.

Dependent variables
In research design, variables that are assumed to be influenced by other, inde-
pendent variables included in the design.
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Detection bias
Bias because some qualities might be more likely to be detected in some people
than in others.

Dichotomous variables
See binary variables.

Discrete data
Data that might take only specified values.

Double blind
See blinding.

Error score
In measurement theory, the error component of an observed score.

Factorial design
A design including two or more categorical variables and their interactions; in
a full factorial design, all possible combinations of the variables are included in
the study.

Incidence
In medicine and epidemiology, the number of new cases of a disease or condi-
tion in a population at risk over some period.

Independent variables
In research design, variables that are believed to exert influence on other, de-
pendent variables included in the design.

Index numbers
In business and economic statistics, a number used to measure the changes in
quantity and/or price over time for a good or combination of goods; a well-
known example is the Consumer Price Index (CPI).

Information bias
Bias due to the way data is collected and recorded.

Interaction variable
A variable for which the relationships between two other variables are different,
depending on the level of the interaction variable.

Internal consistency
In test theory, the extent to which the items on an instrument (for instance, a
test) measure the same thing.

Interquartile range
The range of numbers that contains the central 50% of the values of a variable.

Interval data
Data that may be ordered, and in which equal intervals between consecutive
values may be assumed; also known as equal interval data.

Likert scale
A type of ordinal rating scale developed by the psychologist Rensis Likert; a
Likert scale presents a statement and asks people to indicate their agreement or
disagreement using an ordered scale.
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Maximax
A method of decision making under uncertainty, with the goal of maximizing
the largest anticipated gain.

Maximin
A method of decision making under uncertainty, with the goal of maximizing
the smallest anticipated gain.

Mean
The arithmetic average of a set of numbers.

Median
The central value of a set of numbers when they are ranked by value.

Minimax
A method of decision making under uncertainty, with the goal of minimizing
opportunity loss.

Mode
The most common value of a variable.

Nominal data
Data that do not have numeric meaning and for which numeric values serve
only as labels (such as gender or color). Also called categorical data.

Nonparametric statistics
Statistics not based on assumptions about the distribution of the population(s)
from which the study data have been drawn or which make less stringent as-
sumptions than parametric statistics.

Nonprobability sampling
Sampling in which the probability of selection for any unit or combination of
units is unknown; examples include convenience sampling and quota sampling.

Nonresponse bias
Bias due to some members of a sample declining to participate in a study or
declining to supply some requested information.

Observed score
In measurement theory, the value of something as observed, including the error
of measurement.

Operationalization
In research, the process of specifying how a concept will be defined and meas-
ured.

Ordinal data
Data that may be ordered, that is, ranked in size but without the assumption of
equal intervals between consecutive values.

Parametric statistics
Statistics based on assumptions about the distribution of the population(s) from
which the study data have been drawn.

Placebo
In experimental design, a treatment that is expected to have no effect on the
outcome.
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Post hoc test
Tests conducted after some other test; for instance, post hoc tests can be con-
ducted after the overall F-test for an ANOVA to see which groups differ from
other groups.

Power
In study design, the probability of rejecting the null hypothesis when it is false.
Power = 1 − β, that is, 1 − P(Type II error).

Prevalence
In medicine and epidemiology, the number of cases of a disease or condition at
some point in time; prevalence includes both new and existing cases.

Probability sampling
Sampling methods in which all combinations of members of the population
have a known probability of selection; examples include simple random sam-
pling and stratified sampling.

Proportion
A ratio in which all the cases in the numerator are also included in the denom-
inator, for instance, the proportion of females with cancer in the United States
(the denominator is all people, both male and female, with cancer in the United
States).

Prospective study
A study in which individuals are followed (and data collected) moving forward
in time.

Proxy measurement
Substituting one measurement for another.

Random error
Error that is due to chance. Random error makes measurement less precise but
does not introduce bias.

Range
The difference between the highest and lower values of a variable.

Rate
A proportion expressed to include a unit of time, such as injuries per year on a
job site.

Ratio
A method of expressing the relationship between the magnitude of two num-
bers; the numbers do not need to share a common unit (for instance, hospital
beds per 1,000 population).

Ratio data
Data that may be ordered, is equal interval, and has a natural zero value.

Recall bias
Bias because life experiences can make some people better able to recall events.

Reliability
How consistent or repeatable measurements are over time.
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Retrospective study
A study of events that have already taken place.

Selection bias
Bias due to the way a sample is selected.

Sensitivity
In medicine and epidemiology, the probability that a person who has a disease
will test positive for it.

Single blind
See blinding.

Social desirability bias
Bias due to the human tendency to present oneself in the best possible light.

Specificity
In medicine and epidemiology, the probability that a person without a disease
will test negative for it.

Standard deviation
The square root of variance; for a set of numbers, the square root of the mean
squared deviations from the mean.

Standard error
The standard deviation of the sampling distribution of the sample mean.

Statistical significance
A result that is unlikely to be due to chance.

Systematic error
Error due to some cause other than chance; systematic error can make observed
values consistently higher or lower than true values and thus introduce bias.

Triple blind
See blinding.

True score
In measurement theory, the value of something when measured without error.

Type I error
In experimental design, rejecting the null hypothesis when it is true.

Type II error
In experimental design, failing to reject the null hypothesis when it is false.

Unique identifier
A code or variable used to identify all the records belonging to a single unit of
analysis (for instance, a patient ID to identify all the hospital services provided
to a single patient).

Validity
How closely a measurement actually measures what it is intended to measure.
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Variance
A measure of the variability of a range of numbers, calculated as the mean
squared difference from the mean.

Volunteer bias
A type of selection bias resulting from collecting data from a sample of
volunteers.
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repeated measures (related samples) t-
test, 166–167

confounding, 370–373
confounding variable, 546
Conover, William, Practical

Nonparametric Statistics, 307
consistency measurements, 395
construct validity, 546
Consumer Price Index (CPI), 325, 330
content validity, 13, 546
contingency tables

R×C table, 122
two-by-two table, 362

continuous data
definition of, 546
vs. discrete data, 5

continuous variables, relationships
between, 176–182

control charts and run charts, 340
control variables

about, 53
definition of, 546
in observational studies, 430

controls
in experimental design, 440
issues with, 465

convenience samples, 56
Cook, Thomas D., 427, 431, 433
correlation statistics for categorical data,

139–145
correlations

about, 173
associations, 174–175
coefficient of determination, 187
correlation coefficient, 182–187
partial, 261
relationships between continuous

variables, 176–182
scatterplots as visual tool, 175–176
testing statistical significance for, 186–

187
CPI (Consumer Price Index), 325, 330
Cramer’s V, 140
criterion for factor retention, 293
criterion validity, 546
criterion-referenced tests, 391
critiquing presentations about statistics

checklist for statistics based
investigations, 461–462

common problems in presentations,
459–460

evaluating whole article, 457–458
incorrect use of tests in inferential

statistics, 470–471
interpretation of descriptive statistics,

466–470
issues in research design, 463–465
misusing statistics, 458–459

Cronbach’s alpha (coefficient alpha), 11
cross-sectional design, 429–430
cross-sectional study, 546
cross-tabulation, 362
crude rate, 357–358
cubic regression model, 282–285
cumulative frequency, 99
Cumulative Incidence (CI), 355
CV (Coefficient of Variation), 95–96

D
data

converting information into, 1
critiquing in articles, 458
gathering experimental data, 437–447
meaning of, xiii
missing data, 422–424
types of, 1–7
unit of analysis, 417

data management
about, 411–412
approach to, 412–413
codebooks, 413–415
data entry software, 418
in projects, 413
inspecting new data file, 418–422
missing data, 422–424
spreadsheets and relational databases

for, 418
storing data electronically in

rectangular data file, 413–
417

string and numeric data, 422
unique identifier in, 420
variable names in transfer process to

software, 420
data mining vs. hypothesis testing, 443
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data transformations, 72–75
data types, 427
databases, for data management, 418
decision analysis, 334–338
decision trees, 338
decision-making

under certainty, 335
under risk, 336
under uncertainty, 335

degrees of freedom, 546
Deming, W. Edwards, 339, 346
dependent variables

definition of, 546
independent variables and, 53–54

descriptive statistics
about, 83
critiquing an article, 466–470
graphical methods

about, 97–100
bar charts, 100–102
bivariate charts, 111
boxplot, 106–108
frequency tables, 98–100
histogram, 109–111
line graphs, 114–116
Pareto charts, 103–105
pie charts, 102
scatterplots, 112–114, 175–182
stem-and-leaf plot, 105

interpretation of, 466–470
measures of central tendency, 84–90

critiquing choice in article of, 466–
467

mean, 84–87, 88–90
median, 87–88–90
mode, 88–90

measures of dispersion
about, 90–91
range and interquartile range, 91–

92
variance and standard deviation,

92–96
outliers in, 96–97
vs. inferential statistics, 45–46, 84

designing research studies
about, 425
blinding, 444
blocking and Latin square, 445

classification of studies, 426
communicating with statistics, 449–

456
data types, 427
example of, 447–448
experimental studies, 436
factor in, 426
factorial design, 426
gathering experimental data, 437–447
hypothesis testing vs. data mining,

443
ingredients of good design, 436–437
issues in, 463–465
observational studies, 428–430
physical vs. social sciences definition of

treatments, 442
quasi-experimental studies, 431–434
retrospective adjustment, 445
style of notation, 427
types of design, 426
unit of analysis in study, 427

detection bias, 17, 547
deviation score, 184
deviations from mean, sum of, 93
DFA (Discriminant Function Analysis),

299, 302–304
dice, 37
dichotomous items, in testing, 391
direct matching, 371
direct standardization, 358–362
discrete data

definition of, 547
vs. continuous data, 5

discrete distribution, binomial
distribution as, 50–53

Discriminant Function Analysis (DFA),
299, 302–304

discussion section, writing, 452
disease frequency, measures of, 351
dispersion, measures of

about, 90–91
range and interquartile range, 91–92
variance and standard deviation, 92–

96
double blind, 444, 546
Durbin-Watson statistic, 203
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E
EBCDIC (Extended Binary Coded

Decimal Interchange Code),
422

ecological
fallacy, 427
studies, 427
validity, 430

educational and psychological statistics
about, 385–386
classical test theory, 393–394
item analysis, 400–403
item response theory, 403–408
measures of internal consistency, 395–

399
percentiles, 386–388
reliability of composite test, 394–395
standardized scores, 388–390
test construction, 390–393

80–20 rule, 105
EMA (Exponential Moving Average), 334
email addresses and web page, for book,

xviii
Engineering Statistics Handbook

(National Institute of Standards
and Technology), 167

epidemiological and medical statistics
about, 351
category-specific rates, 358–362
confounding, 370–373
crude rate, 357–358
incidence, 355–357
Mantel-Haenszel (MH) common odds

ratio, 373–375
measures of disease frequency, 351
odds ratio, 367–369
power analysis, 375–377
prevalence, 354–355, 357
ratio, proportion, and rate, 354–355
risk ratio, 362–367
standardization, 358–362
stratified analysis, 372–373

equations
graphing, 482–485
linear, 482
linear equations, 194
linear inequalities, 486

solving, 479–481
systems of, 480–482

error scores
definition of, 547
true scores and, 8–10

etiologic fraction, 366
Euclidean distance, 300
events, definition of, 24
Excel

bar charts in, 100
for data management, 418
graphing in, 97
rectangular data file in, 416
using for statistical package, 510–512

expected values, 127
experimental design

about, 425
blinding, 444
blocking and Latin square, 445
classification of studies, 426
communicating with statistics, 449–

456
data types, 427
example of, 447–448
experimental studies, 436
factor in, 426
factorial design, 426
gathering experimental data, 437–447
hypothesis testing vs. data mining,

443
ingredients of good design, 436–437
issues in, 463–465
observational studies, 428–430
physical vs. social sciences definition of

treatments, 442
quasi-experimental studies, 431–434
retrospective adjustment, 445
style of notation, 427
types of, 426
unit of analysis in study, 427

experimental units
about, 436
identifying, 438–440

Exponential Moving Average (EMA), 334
exponents, 476–477
Extended Binary Coded Decimal

Interchange Code (EBCDIC),
422
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extrapolation and trends
critiquing in articles, 470

F
F-test, omnibus, 210
face validity, 13
Factor Analysis (FA), 291–292
factor, in research design, 426
factorial

ANCOVA (Analysis of Covariance),
233–238

ANOVA
about, 223–224
interaction among factors, 224–

225
three-way, 229–232
two-way, 226–229

factorial design, 426, 547
factorials, 27, 489–490
Fisher’s Exact Test, 132–134
floor effect, 108
forecasting, 331
formulas, 22–23
forward entry, in stepwise methods for

building regression models, 261,
264–265

fractions, properties of, 487–489
frequency matching, 371
frequency tables

calculating mean using, 85–86
graphical methods and, 98–100

Friedman test, 319–321
fully crossed design, 426
funnel plot, evaluating publication bias

using, 462

G
gambling and statistics, 42–43
gamma (Goodman and Kruskal’s gamma),

143–144
General Electric, 339
General Linear Model (GLM)

about, 193–194
Analysis of Covariance (ANCOVA),

233–238
Analysis of Variance (ANOVA), 206–

212

arbitrary curve-fitting, 285–287
cubic regression model, 282–285
factorial ANOVA, 223–232
linear regression, 195–205
logistic regression, 273–279
multinomial logistic regression, 279–

281
multiple linear regression

about, 243–244
adding interaction term, 253–255
assumptions, 245
creating a correlation matrix, 249–

251
dummy variables, 258–260
methods for building regression

models, 260–267
modeling principles, 243–244
regression equation for data, 257–

258
results for individual predictors,

251
standardized coefficients, 251
variables in model, 245–249

polynomial regression, 282–285
quadratic regression model, 282–285
research design structured toward,

437
general public, writing for, 454–455, 459–

460
glossary of statistical terms, 543–551
Goodman and Kruskal’s gamma, 143–

144
Gosset, William Sealy, 157
Graduate Record Examination (GRE),

292
graphical methods

about, 97–100, 97–100
bar charts, 100–102
bivariate charts

about, 111
line graphs, 114–116
scatterplots, 112–114, 175–182

boxplot, 106–108
frequency tables, 98–100
histogram, 109–111
Pareto charts, 103–105
pie charts, 102
stem-and-leaf plot, 105
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graphical power calculator, 377
graphical presentation of data, critiquing

in articles, 467–470
graphing equations, 482–485
Greek alphabet table, 543
grouped bar chart, 101
grouped data, mean for, 86
grouped mean, calculating, 86
Guttman-Kaiser criterion, 293, 297

H
high-stakes tests, 396
histogram, 109–111
Hotelling’s Canonical Correlation

Analysis (CCA), 292
How to Lie with Statistics (Huff), 117,

380
hypothesis testing, 64, 443

I
ICC (Item Characteristic Curve), 404
identifying treatments and controls, in

gathering experimental data,
440

incidence, 355–357, 547
Incidence Density (ID), 355
Incidence Rate (IR), 355
independent samples (two-sample) t-test,

160–164, 378
independent trials, 27
independent variables

definition of, 547
dependent variables and, 53–54

index numbers, 325–330, 547
index of discrimination, 401
index of temporal stability, 11
indirect standardization, 361–362
inferential statistics

about, 45–46
central limit theorem, 59–62
confidence intervals, 67–68
data transformations, 72–75
hypothesis testing, 64
incorrect use of tests in inferential

statistics, 470–471
independent variables and dependent

variables, 53–54

mean in, 45
p-values, 68–69
populations and samples, 54–59
probability distributions in, 46–53
vs. descriptive statistics, 45–46, 84
Z-statistic, 70–72

information bias, 16, 547
information, converting data into, 1
informative censoring, 16
interaction effects, 426
interaction variable, 547
intercept, 483
intermediate response variable, 443
internal consistency, 547
internal consistency reliability, 12
internal consistency, measures of, 395–

399
interquartile range, 91–92, 547
interrupted time series, 433
intersection

of independent events, 33
of nonindependent events, 33
of simple events, 25

interval data
about, 4
definition of, 547

interval estimates, 68
interviewer bias, 16
invariant difficulty, 405
investigations, checklist for statistics

based, 461–462
item analysis, 400–403
Item Characteristic Curve (ICC), 404
item difficulty (signified as p), 391, 400
item discrimination, 401
Item Response Theory (IRT), 403–408

J
joint frequencies, 128, 362
journal clubs, presenting at, 472
journals

checklist for statistics based
investigations, 461–462

common problems in articles, 459–
460

critiquing descriptive statistics, 466–
470
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incorrect use of tests in inferential
statistics, 470–471

issues in research design, 463–465
peer review process, 453–454
writing for, 451–453, 451–454

K
Kaiser normalization, 295
kappa (kappa coefficient), 123–125
Kendall, Maurice, 144–145
Kendall’s tau-a, 144, 145
Kendall’s tau-b, 144–145
Kendall’s tau-c, 145
Knight, William, binomial distribution

probability tables, 534
Kolmogorov–Smirnov test, 72–74
Kruskal-Wallis H test, 314–316
Kuder-Richardson formulas, 398, 399

L
lag, 331
large-sample Z test for proportions, 136–

138
Laspeyres index, 327–328
Latin square, in experimental design, 446
LDFs (Linear Discriminant Functions),

302
Levene’s test, 167
Likert scale, 18, 145, 547
Likert, Rensis, 147
line graphs, 114–116
linear algebra, 176
Linear Discriminant Functions (LDFs),

302
linear equations, 194, 482
linear inequalities, 486
linear regression

about, 195–197
arbitrary curve-fitting, 285–287
assumptions, 198–205
calculating by hand, 212–214
cubic regression model, 282–285
logistic regression, 273–279
logit outcome variable, 273
multinomial logistic regression, 279–

281
multiple

about, 243–244
adding interaction term, 253–255
assumptions, 245
creating a correlation matrix, 249–

251
dummy variables, 258–260
methods for building regression

models, 260–267
modeling principles, 244–245
regression equation for data, 257–

258
results for individual predictors,

251
standardized coefficients, 251
variables in model, 245–249

polynomial regression, 282–285
quadratic, 282–285
violations of assumptions of, 471

literature review
critiquing in articles, 458
writing, 452

Little, Donald B., 422–424
local independence assumption, 405
logarithms (log)

about, 478–479
in solving equations, 480

logistic regression, 273–279
logit outcome variable, 273, 279

M
Mahalanobis distance, 300
main effects, 426
Manhattan distance, 300
Mann-Whitney U test, 312
Mantel-Haenszel (MH) common odds

ratio, 373–375
marginal frequencies, 362
marginals, 128
matching, 371
The Mathematics of Games and Gambling

(Packel), 43
maturation bias, 446
maximax decision making procedure,

336–337, 548
maximin decision making procedure,

336–337, 548
McNemar’s chi-square test, 134–136
mean
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definition of, 548
formula for, 22
in descriptive statistics, 84–87
in inferential statistics, 45
sum of deviations from, 93

mean rank, 308
measurement

about, 2
random errors vs. systematic errors, 9–

10
reliability and validity, 10–14
types of, 1–7

measurement bias, types of, 14–17
measurement error, 393
measures of central tendency

about, 84
critiquing choice in article of, 466–

467
in descriptive statistics

mean, 84–87, 84–87
mean

in descriptive statistics, 84–87
in inferential statistics, 45

median, 87–88
vs. median and mode, 88–90

mode in, 88–90
measures of disease frequency, 351
measures of dispersion

about, 90–91
range and interquartile range, 91–92
variance and standard deviation, 92–

96
measures of internal consistency, 395–

399
median, 87–88, 548
median test, 313–314
medical and epidemiological statistics

about, 351
category-specific rates, 358–362
confounding, 370–373
crude rate, 357–358
incidence, 355–357
Mantel-Haenszel (MH) common odds

ratio, 373–375
measures of disease frequency, 351
odds ratio, 367–369
power analysis, 375–377
prevalence, 354–355, 357

ratio, proportion, and rate, 352–354
risk ratio, 362–367
standardization, 358–362
stratified analysis, 372–373

methods for building regression models
automated, 261
blocking, 260–261
stepwise

about, 260–264
methods section, writing, 452
Microsoft Access, for data management,

418
Microsoft Excel

bar charts in, 100
for data management, 418
graphing in, 97
rectangular data file in, 416
using for statistical package, 510–512

minimax decision making procedure,
336–337, 548

Minitab, 500–502
Minnesota Multiphase Personality

Inventory- II (MMPI-II), 389
misusing statistics, 458–459
MMPI-II (Minnesota Multiphase

Personality Inventory- II), 389
mode, 88, 548
Motorola, 339
MTMM (multitrait, multimethod matrix),

14
multicollinearity, 245
multinomial logistic regression, 279–281
multiple linear regression

about, 243–244
adding interaction term, 253–255
assumptions, 245
creating a correlation matrix, 249–251
dummy variables, 258–260
methods for building regression

models, 260–267
modeling principles, 243–244
regression equation for data, 257–258
results for individual predictors, 251
standardized coefficients, 251
variables in model, 245–249

multiple-forms (parallel-forms) reliability,
11, 395
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multiple-occasions reliability (test-retest
reliability), 11, 395

multivariate, 111
mutual exclusive events, 26

N
Naperian logarithms, 478
National Institute of Standards and

Technology
Engineering Statistics Handbook, 167

National Institute of Standards and
Technology (U.S. (NIST/
SEMATECH e-Handbook of
Statistical Methods)), 527

natural logarithms, 478
negative discrimination, 401
Nelson quality control rules, 345
Nelson, Lloyd S., 345
Nightingale, Florence, 103
NIST/SEMATECH e-Handbook of

Statistical Methods (National
Institute of Standards and
Technology (U.S.)), 527

NNT (Number Needed to Treat), 366
nominal data

about, 2–3
definition of, 548

nonparametric statistics
about, 307
definition of, 548
parametric statistics and, 72, 307

nonprobability sampling, 55–56, 548
nonresponse bias, 15, 548
norm group, 386
norm-referenced

scoring, 386
tests, 391

normal distribution, 47–50, 109
normal distribution, standard, 528–532
normal score, 48–50, 386
normalized scores, 48–50
null hypothesis, 65
number line, 472, 474
Number Needed to Treat (NNT), 366
numeric and string data, 422

O
observational studies, 428–430
observed score, 548
observed values, 127
odds ratio, 367–369
odds, calculating, 369
OLS (Ordinary Least Squares) regression

equation, 54
omnibus F-test, 210
one-group pretest-posttest design, 432
one-sample t-test, 157–160
one-way ANOVA

about, 206–210
t-test and, 155

online resources, 539–542
operationalization, 5, 548
opportunity loss table, 336
ordinal data

about, 3–4, 122
definition of, 548
mean rank, 308
measures of agreement, 123–125
rank sum, 308
R×C table, 122

ordinal variables, correlation statistics for
gamma, 143–144
Kendall’s tau-a, 144, 145
Kendall’s tau-b, 144–145
Kendall’s tau-c, 145
Somers’s d, 145
Spearman’s rank-order coefficient,

142
Ordinary Least Squares (OLS) regression

equation, 54
orthogonality, in research design

structure, 437
outliers, 96–97
overfitting, 285–287

P
p-values

about, 68–69
of Z value, 71

Paasche index, 328–330
Packel, Edward, The Mathematics of

Games and Gambling, 43
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parallel-forms (multiple-forms) reliability,
11

parameters, in descriptive statistics, 45,
84

parametric statistics, 72, 307, 548
Pareto charts (diagrams), 103–105
Pareto, Vilfredo, 105
partial correlation, 261
PCA (Principal Components Analysis),

291–292, 294, 299
Pearson correlation coefficient

about, 138, 140, 173
about correlation coefficient, 182–187
associations, 174–175
coefficient of determination, 187
relationships between continuous

variables, 176–182
scatterplots as visual tool, 175–176
testing statistical significance for, 186–

187
Pearson’s chi-square test (see chi-square

test)
peer review process, journal, 453–454
percent agreement measures, 123
percentages, interpreting, 380
percentiles, 386–388
permutations, 490–491
permutations of elements, 27
phi coefficient, 139–140, 403
physical vs. social sciences, definition of

treatments, 442
pie charts, 102
placebo, 548
placebo effect, 444, 546
playing cards, 38
point estimates, calculating, 67
point-biserial correlation coefficient, 141–

142, 402
polynomial regression, 282–285
populations

in descriptive statistics
calculating variance, 93
formula for standard deviation, 94
mean, 84–87
samples and, 83–84

in inferential statistics
mean, 45
samples and, 54–59

variance, 46
issues in research design with, 464

positive discrimination, 401
post hoc test, 210–212, 549
posttest only design, 431
posttest-only non-equivalent groups

design, 432
power, 549
power analysis, 375–377, 436
power of coincidence, issues in research

design with, 465
Practical Nonparametric Statistics

(Conover), 307
presidential elections, predictions of, 19
pretest-posttest design with comparison

group, 433
prevalence, 354–355, 357, 549
primary data, 427
Principal Components Analysis (PCA),

291–292
probability

conditional, 31–32
definition of, 30–34
of events, 31

probability distributions, in inferential
statistics, 46–53

probability sampling, 57–59, 549
probability tables for distributions

about, 527–537
binomial distribution, 534
chi-square distribution, 537
standard normal distribution, 528–

532
t-distribution, 532–534

probability theory
about, 21–22
Bayes’ theorem and, 34–36
defining probability, 30–34
definitions in, 23–29
formulas, 22–23
gambling and, 42–43

product-moment correlation coefficient,
182

propensity score, 429
properties of equality, 479
proportion

about, 352
definition of, 549
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formula for, 352
large-sample Z tests for, 136–138

prospective cohort study, 426
prospective study, 426, 549
proxy measurement, 6–7, 549
pseudo-chance-level parameter, 407
psychological and educational statistics

about, 385–386
classical test theory, 393–394
item analysis, 400–403
item response theory, 403–408
measures of internal consistency, 395–

399
percentiles, 386–388
reliability of composite test, 394–395
standardized scores, 388–390
test construction, 390–393

psychometrics, 385
publication bias, 462

Q
quadratic regression model, 282–285
Quality Improvement (QI), 339–346
quasi-experimental

research design type, 426
studies, 431–434

quota sampling, 56

R
R programming language, 97, 509–510
random errors

definition of, 549
vs. systematic errors, 9–10

random measurement error, 393–394
Random-Digit-Dialing (RDD) techniques,

15
randomization, 370
randomized block design, 446
range, 549
range and interquartile range, 91–92
rank sum, 308
Rasch model, 405
Rasch, Georg, 405
rate

about, 352–353
crude rate as, 357–358
definition of, 549

ratio
about, 352
definition of, 549

ratio data
about, 4–5
definition of, 549

raw time series, 332
real numbers, properties of, 476
recall bias, 16, 549
rectangular coordinates (Cartesian

coordinates), 482
rectangular data file, storing data

electronically in, 413–417
regression

about, 193
arbitrary curve-fitting, 285–287
calculating by hand, 212–214
cubic regression model, 282–285
independent variables and dependent

variables, 53–54
linear

about, 195–197
assumptions, 198–205

logistic, 273–279
modeling principles, 244–245
multinomial logistic, 279–281
multiple linear

about, 243–244
adding interaction term, 253–255
assumptions, 245
creating a correlation matrix, 249–

251
dummy variables, 258–260
methods for building regression

models, 260–267
regression equation for data, 257–

258
results for individual predictors,

251
standardized coefficients, 251
variables in model, 245–249

polynomial, 282–285
quadratic regression model, 282–285
to the mean, 435

regression equations, independent
variables and dependent
variables in, 54

regression to the mean, 432
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related samples t-test, 164–167
relational databases, for data

management, 418
relative frequency, 99, 101
relative risk, 363–365
reliability

about, 10–12
definition of, 549
validity and, 10–14

reliability coefficient, 395
reliability index, 394
repeated measures (related samples) t-test,

164–167
research articles

checklist for statistics based
investigations, 461–462

common problems with, 459–460
critiquing descriptive statistics, 466–

470
incorrect use of tests in inferential

statistics, 470–471
issues in research design, 463–465
writing, 452–453

research design
about, 425
blinding, 444
blocking and Latin square, 445
classification of studies, 426
communicating with statistics, 449–

456
data types, 427
example of, 447–448
experimental studies, 436
factor in, 426
factorial design, 426
gathering experimental data, 437–447
hypothesis testing vs. data mining,

443
ingredients of good design, 436–437
issues in, 463–465
observational studies, 428–430
physical vs. social sciences definition of

treatments, 442
quasi-experimental studies, 431–434
retrospective adjustment, 445
style of notation, 427
types of, 426
unit of analysis in study, 427

response variables, specifying in
experimental design, 442–443

responses, experimental, 436
restriction, 370
results section

critiquing in articles, 458
writing, 452

retrospective adjustment, 445
retrospective study, 426, 550
risk ratio, 362–367
Robinson, W.S., 427
rolling average, 332
roots, properties of, 478–479
Rosenbaum, Paul, 429
Rubin, Donald, 429
Rubin, Roderick J.A., 422–424
run charts and control charts, 340
R×C table (contingency table), 122

S
Safari Books Online, xviii
sample size calculations, 377–379
sample space, definition of, 23–24
samples

in descriptive statistics
calculating variance, 94
formula for standard deviation, 95
populations and, 83–84

in inferential statistics
mean, 45
populations and, 46, 54–59

one-sample t-test, 157–160
related samples t-test, 164–167
two-sample t-test, 160–164
U.S. Census and, 55

sampling distribution of the sample mean,
60

sampling proportional to size technique,
59

sampling, issues in research design with,
464

SAS, 504–508
scatterplot matrixes, creating, 175–176
scatterplots, 112–114, 175–182
Scheffe post hoc test, 211–212
Scholastic Aptitude Test (SAT), 292
scientific calculators, 478
scientific notation, 28

566 | Index

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

! 
e
B
o
o
k 

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>



scientific papers
checklist for statistics based

investigations, 461–462
common problems with, 459–460
incorrect use of tests in inferential

statistics, 470–471
issues in research design, 463–465,

466–470
writing, 452–453

secondary data, 427
selection bias, 15, 550
semantic differential scale, 146
sensitivity, 550
Shadish, William, 427, 433
Shewhart, Walter, 339, 340
Shumway, Robert S., Time Series and Its

Applications, 331
sign test, 312–313
simple composite index, 327
simple events, 24
simple index numbers, 325
Simple Moving Average (SMA), 332–333
Simple Random Sampling (SRS), 57
Simpson's paradox, 151
single blind, 444, 546
single-tailed hypothesis, 65
Six Sigma (6σ), 339, 344
slope, 179, 194, 483–485
smoothing, types of, 332
SMR (Standardized Mortality Ratio), 362
social desirability bias, 17, 550
social sciences vs. physical, definition of

treatments, 442
Somers’s d, 145
Spearman, Charles, 292, 394
Spearman-Brown prophecy formula, 397
Spearman’s rank-order coefficient

(Spearman’s r, Spearman’s rho),
142–143

special causes of variation, 341
specificity, 550
split-half methods, 397
Sports Illustrated jinx, 435
spreadsheets, for data management, 418
SPSS, 74, 502–504

boxplot in, 107
rectangular data file in, 416, 417

SRS (Simple Random Sampling), 57

stacked bar chart, 102
standard deviation

definition of, 550
normal distributions and, 47–49
of population, 94
of sample, 95
variance and, 92–96

standard error, 467, 550
standard normal distribution, 47, 528–

532
standardization, types of, 358–362
Standardized Mortality Ratio (SMR), 362
standardized scores, 388–390
stanines (standard nines), 389–390
states of nature, 335
stationary data, 331
Statistical Analysis with Missing Data

(Little and Rubin), 422–424
statistical inference, 83

(see also inferential statistics)
statistical notation table, 543–545
statistical packages

about, 499–500
Minitab, 500–502
R programming language, 509–510
SAS, 504–508
SPSS, 74, 502–504
using Excel for, 510–512

Statistical Power Applet (Claremont
Graduate University), 377

statistical process control, 340
statistical regression, 432
statistical significance

definition of, 550
testing correlations for, 186–187

statistical terms, glossary of, 543–551
statistics

about, ix–xi
checklist for statistics based

investigations, 461–462
communicating with, 449–456
critiquing presentations about, 457–

458
common problems in

presentations, 459–460
incorrect use of tests in inferential

statistics, 470–471
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interpretation of descriptive
statistics, 466–470

issues in research design, 463–465
misusing statistics, 458–459

in Age of Information, xiii
stem-and-leaf plot, 105
stepwise methods for building regression

models
about, 260–264
backward removal, 261, 265–267
forward entry, 262, 264–265
stepwise, 262

storing data electronically, 413–417
stratified analysis, 372–373
stratified samples, 58
string and numeric data, 422
study design, critiquing in articles, 458
subject-centered measurement, 390
sum of squares, 184–185
surrogate endpoint, 8
Symbolic Logic (Venn), 24
systematic errors

definition of, 550
minimizing in data, 436
vs. random errors, 9–10

systematic sampling, 57–58
systems of equations (systems of

simultaneous equations), 480–
482

T
t distribution

about, 155–157
probability tables for, 532–534

t-test
about, 155
for independent samples, 160–164
one-sample, 157–160
repeated measures (related samples),

164–167
unequal variance, 167–168
violations of assumptions of, 470–471
Welch’s t-test, 167–168

teaching to the test, 396
temporal stability , index of, 11
test construction, 390–393
test theory, classical, 393–394
test-retest method, 395

test-retest reliability (multiple-occasions
reliability), 11

tetrachoric correlation coefficient, 403
theoretical probability distributions

about, 46
continuous distribution, 46, 47–50

three-way ANOVA, 229–232
Thurstone, Louis Leon, 292
time series, 331–334
Time Series and Its Applications

(Shumway), 331
Total Quality Management (TQM), 339
treatments, in experimental design

about, 436
identifying, 440
physical vs. social sciences definition

of, 442
specifying treatment levels, 441

trends and extrapolation
critiquing in articles, 470

trials, definition of, 23
triangulation, 13
trimmed mean, calculating, 86–87
triple blind, 444, 546
true scores

definition of, 550
true and error scores, 8–10, 393–394

two-by-two table, 362
two-sample t-test, 160–164
two-tailed hypotheses, 65
two-way ANOVA, 226–229
Type I errors

definition of, 550
level of acceptability for, 67

Type II errors
definition of, 550
level of acceptability for, 67

U
u-charts, 346
U.S. Census, samples and, 55
unequal variance t-test, 167–168
unidimensionality assumption, 405
union

of mutually exclusive events, 32
of not mutually exclusive, 32
of simple events, 24–25

unique identifier

568 | Index



definition of, 550
in data management, 420

unit of analysis, 417, 427
univariate, 111

V
validity

about, 12
definition of, 550
reliability and, 10–14

variable names, in transfer process to
software, 420

variance
definition of, 551
formula for, 93
in inferential statistics, 46
standard deviation and, 92–96

variation, in research design, 464
Velicer partial correlation procedure, 293
Venn diagrams, 24
Venn, John, Symbolic Logic, 24
The Visual Display of Quantitative

Information (Tufte), 97
volunteer bias, 15, 551
volunteer samples, 56

W
Watters, P.A, “Caffeine and cortical

arousal”, 282–283
web page and email addresses, for book,

xviii
weighted composite index, 327
Weighted Moving Average (WMA), 334
Welch’s t-test, 167–168
Western Electric quality control rules,

345
Wilcoxon rank sum test, 308–312
Wilcoxon signed ranks test, 317–319
Wilks’s lambda, 303
Winsorized mean, 86–87
within-subjects designs, tests for, 317–

321, 446
workplace, writing for, 455–456, 459–

460
writing about statistics

articles, 452–453

checklist for statistics based
investigations, 461–462

common problems with, 459–460
critiquing descriptive statistics, 466–

470
for general public, 454–455
for workplace, 455–456
incorrect use of tests in inferential

statistics, 470–471
issues in research design, 463–465
scientific papers, 452–453

Y
Yates’s correction for continuity, in chi-

square test for independence,
131

Z
Z distribution, 47
Z-scores, 48–50, 386–388
Z-statistic, 70–72
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