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Probability

1.1 Introduction

The study of probability stems from the analysis of certain games of chance, and it has found applications in
most branches of science and engineering. In this chapter the basic concepts of probability theory are presented.

1.2 Sample Space and Events

A. Random Experiments:

In the study of probability, any process of observation is referred to as an experiment. The results of an obser-
vation are called the outcomes of the experiment. An experiment is called a random experiment if its outcome
cannot be predicted. Typical examples of a random experiment are the roll of a die, the toss of a coin, drawing a
card from a deck, or selecting a message signal for transmission from several messages.

B. Sample Space:

The set of all possible outcomes of a random experiment is called the sample space (or universal set), and it is
denoted by S. An element in S is called a sample point. Each outcome of a random experiment corresponds to a
sample point.

EXAMPLE 1.1 Find the sample space for the experiment of tossing a coin (a) once and (b) twice.
(a) There are two possible outcomes, heads or tails. Thus:
S={H,T}
where H and T represent head and tail, respectively.

(b) There are four possible outcomes. They are pairs of heads and tails. Thus:
S ={HH, HT, TH, TT}

EXAMPLE 1.2 Find the sample space for the experiment of tossing a coin repeatedly and of counting the number
of tosses required until the first head appears.

Clearly all possible outcomes for this experiment are the terms of the sequence 1, 2, 3, ... Thus:
S={1,2,3,..}

Note that there are an infinite number of outcomes.
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EXAMPLE 1.3 Find the sample space for the experiment of measuring (in hours) the lifetime of a transistor.

Clearly all possible outcomes are all nonnegative real numbers. That is,
S={t:0=1= o}

where T represents the life of a transistor in hours.

Note that any particular experiment can often have many different sample spaces depending on the observa-
tion of interest (Probs. 1.1 and 1.2). A sample space S is said to be discrete if it consists of a finite number of
sample points (as in Example 1.1) or countably infinite sample points (as in Example 1.2). A set is called
countable if its elements can be placed in a one-to-one correspondence with the positive integers. A sample
space S is said to be continuous if the sample points constitute a continuum (as in Example 1.3).

C. Events:

Since we have identified a sample space S as the set of all possible outcomes of a random experiment, we will
review some set notations in the following.
If € is an element of S (or belongs to S), then we write

ces
If S is not an element of S (or does not belong to S), then we write

CES
A set A is called a subset of B, denoted by
ACB

if every element of A is also an element of B. Any subset of the sample space S is called an event. A sample point
of S is often referred to as an elementary event. Note that the sample space S is the subset of itself: that is, S C
S. Since S is the set of all possible outcomes, it is often called the certain event.

EXAMPLE 1.4 Consider the experiment of Example 1.2. Let A be the event that the number of tosses required
until the first head appears is even. Let B be the event that the number of tosses required until the first head appears
is odd. Let C be the event that the number of tosses required until the first head appears is less than 5. Express
events A, B, and C.

A=1{2,4,6,.)
B=1{1,3,5 .}
C=1{1,2,3,4}

1.3 Algebra of Sets

A. Set Operations:

1. Equality:
Two sets A and B are equal, denoted A = B, if and only if A C B and B C A.

2. Complementation: B
Suppose A C S. The complement of set A, denoted A, is the set containing all elements in S but not in A.

A={C:CESandL&A}
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3. Union:
The union of sets A and B, denoted A U B, is the set containing all elements in either A or B or both.

AUB={C:C€AorCEB}

4. Intersection:
The intersection of sets A and B, denoted A N B, is the set containing all elements in both A and B.

ANB={C:C€AandC € B}

5. Difference:
The difference of sets A and B, denoted A\ B, is the set containing all elements in A but not in B.

AB={C:CEAandT & B}
Note that AAB = A N B.

6. Symmetrical Difference:
The symmetrical difference of sets A and B, denoted A A B, is the set of all elements that are in A or B but not
in both.

AAB={C:CEAorCEBandC & AN B}
Note that A A B = (A N B) U (A N B) = (A\B) U (B\A).

7. Null Set:
The set containing no element is called the null set, denoted &J. Note that

g==5

8. Disjoint Sets:
Two sets A and B are called disjoint or mutually exclusive if they contain no common element, that is,
ifANB=(.

The definitions of the union and intersection of two sets can be extended to any finite number of sets as
follows:

JA=4UA,U--UA4,
i=1

={C:LEA orEEA or-LEA,)

(A=A NAN--NA,

i=1

={¢:{EA and{EA,and---LEA,}

Note that these definitions can be extended to an infinite number of sets:

UJA =404 U4 U--

i=1

(4 =4 NANA N

i=1
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In our definition of event, we state that every subset of S is an event, including S and the null set &. Then

S = the certain event

& = the impossible event
If A and B are events in S, then

A = the event that A did not occur
A U B = the event that either A or B or both occurred
A N B = the event that both A and B occurred

Similarly, if A, A,, ..., A are a sequence of events in §, then
n
U A; = the event that at least one of the A; occurred

A; = the event that all of the A; occurred

D= I

1

l

9. Partition of S:
k
IfA,MA = & fori=j and U A; =S, then the collection {A;; 1 =i = k} is said to form a partition of S.
' i=1
10. Size of Set:
When sets are countable, the size (or cardinality) of set A, denoted | A | , is the number of elements contained
in A. When sets have a finite number of elements, it is easy to see that size has the following properties:

() FANB=(, then |AUB| = |A| + |B].
(i) |@] =o0.
(iii)) IfACB, then |A| = |B]|.
(iv) |AUB|+ |ANB|=|A| + |B|.
Note that the property (iv) can be easily seen if A and B are subsets of a line with length |A| and | B|, respectively.

11. Product of Sets:
The product (or Cartesian product) of sets A and B, denoted by A x B, is the set of ordered pairs of elements
from A and B.

C=AxB=1{ab):a€EA bEB}
Note that A x BB x A,and |C| = |Ax B| = |A| x |B].
EXAMPLE 1.5 LetA = {a,, a,, a;} and B = {b, b,}. Then
C=AXxB={a,b),(a, by, (a,, b)), (a,, b)), (a5, b)), (a;, b,)}

D=BxA={b,a), b, a), b, a), (b, a), (b, a), (b, a)}

B. Venn Diagram:

A graphical representation that is very useful for illustrating set operation is the Venn diagram. For instance, in
the three Venn diagrams shown in Fig. 1-1, the shaded areas represent, respectively, the events A U B, A N B,
and A. The Venn diagram in Fig. 1-2(a) indicates that B C A, and the event A N B = A\B is shown as the shaded
area. In Fig. 1-2(b), the shaded area represents the event A A B.



CHAPTER 1 Probability 5

S S

Ao, LA

A B B

(@) Shaded region: A U B (b) Shaded region: AN B

S

(c) Shaded region: A

Fig. 1-1

()

@BCA (b) Shaded area: A A B
Shaded area: A NB=A\B

Fig. 1-2

C. Identities:

By the above set definitions or reference to Fig. 1-1, we obtain the following identities:

S=0 (1.1)
=S5 (1.2)
A=A (1.3)
SUA =S (14)
SNA=A (1.5)
AUA=S (1.6)
ANA=0 1.7
AU =A (1.3)
AND =0 (19
A\B=ANB (1.10)
S\A=A (1.11)
A\D = A (1.12)
AAB=ANBU@ANB) (1.13)
The union and intersection operations also satisfy the following laws:
Commutative Laws:
AUB=BUA (1.14)

ANB=BNA (1.15)
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Associative Laws:

AUBUC) =AUBUC (1.16)
ANBNC) =ANBNC 1.17)

Distributive Laws:
ANBUO=ANBUMANCOC) (1.18)
AUBNC) =AUBNEAUC) (1.19)

De Morgan’s Laws:
AUB=ANB (1.20)
ANB=AUB (121)

These relations are verified by showing that any element that is contained in the set on the left side of he equal-
ity sign is also contained in the set on the right side, and vice versa. One way of showing this is by means of
a Venn diagram (Prob. 1.14). The distributive laws can be extended as follows:

Am(OB,. =

i=1 i

(ANB) (122)

-

1

AU

-

(AUB)) (123)

n
5|=
i=1

Similarly, De Morgan’s laws also can be extended as follows (Prob. 1.21):

A (1.24)

=

A.

1

—

Il
=)
2|

(1.25)

1.4 Probability Space

A. Event Space:

We have defined that events are subsets of the sample space S. In order to be precise, we say that a subset A of
S can be an event if it belongs to a collection F of subsets of S, satisfying the following conditions:

(i) SEF (1.26)
(i) ifAEF thenAEF (1.27)
(iii) if A; EF fori=1,then | JA, EF (1.28)

i=1
The collection F is called an event space. In mathematical literature, event space is known as sigma field (o-field)
or o-algebra.

Using the above conditions, we can show that if A and B are in F, then so are

ANB,A\B, A A B (Prob. 1.22).
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EXAMPLE 1.6  Consider the experiment of tossing a coin once in Example 1.1. We have § = {H, T'}. The set
{S, D},{S, D, H, T} are event spaces, but {S, &, H} is not an event space, since H = T is not in the set.

B. Probability Space:

An assignment of real numbers to the events defined in an event space F is known as the probability measure
P. Consider a random experiment with a sample space S, and let A be a particular event defined in F. The prob-
ability of the event A is denoted by P(A). Thus, the probability measure is a function defined over F. The triplet
(S, F, P) is known as the probability space.

C. Probability Measure

a. Classical Definition:
Consider an experiment with equally likely finite outcomes. Then the classical definition of probability of
event A, denoted P(A), is defined by

P(A)=m (129)
5] "

If A and B are disjoint, i.e., AN B = &, then |[AUB| = |A| + | B|.Hence, in this case

P(AUB)=|AUB|=|A|+|B|=m+m=P(A)+P(B) (1.30)
Isf sl Is] s
We also have
P(S)=m=1 (1.31)
S| ‘
P(Z)=@=—|S|_|A|=1—m=1—P(A) (1.32)
|| 1s] N

EXAMPLE 1.7 Consider an experiment of rolling a die. The outcome is

S = {C]’ Cz? CS’ C4’ gs? Cﬁ} = {132’ 3’4’576}

Define:
A: the event that outcome is even,i.e., A = {2,4,6}
B: the event that outcome is odd, i.e., B ={1,3,5}
C: the event that outcome is prime,ie., C = {1,2,3,5}

A B C
Then PA) = =2=0, PB)==2=0, PO=rq=c=3

Note that in the classical definition, P(A) is determined a priori without actual experimentation and the
definition can be applied only to a limited class of problems such as only if the outcomes are finite and equally
likely or equally probable.
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b. Relative Frequency Definition:
Suppose that the random experiment is repeated n times. If event A occurs n(A) times, then the probability of
event A, denoted P(A), is defined as

P(A) = lim )

n—w n

(133)

where n(A)/n is called the relative frequency of event A. Note that this limit may not exist, and in addition, there
are many situations in which the concepts of repeatability may not be valid. It is clear that for any event A, the
relative frequency of A will have the following properties:

1. 0 =n(A)/n = 1,where n(A)/n = 0 if A occurs in none of the n repeated trials and n(A)/n = 1 if A
occurs in all of the n repeated trials.

2. If A and B are mutually exclusive events, then

n(A U B) = n(A) + n(B)

and
n(AUB) _n(4)  N(B)
. " ! (1.34)
PAU B) = lim MAYB) _ i A o VB pay 4 pes) '
n—oo n n—o n n—o n

c. Axiomatic Definition:
Consider a probability space (S, F', P). Let A be an event in F. Then in the axiomatic definition, the probability
P(A) of the event A is a real number assigned to A which satisfies the following three axioms:

Axiom 1: P(A) =0 (1.35)
Axiom2: P(S) =1 (1.36)
Axiom3: P(AUB)=PA)+ P(B) ifANB=y (137)

If the sample space S is not finite, then axiom 3 must be modified as follows:

Axiom 3": If ALA,, ... is an infinite sequence of mutually exclusive events in S AN Aj =
for i #j), then

=Y P(4) (138)
i=1

i=1

These axioms satisfy our intuitive notion of probability measure obtained from the notion of relative frequency.

d. Elementary Properties of Probability:
By using the above axioms, the following useful properties of probability can be obtained:

1. PA) =1-PA) (1.39)
2. P@)=0 (1.40)
3. P(A) = P(B) ifACB (141)
4. PA)=1 (1.42)
5. PAAUB) = PA)+ PB)-PANB) (143)
6. P(A\B) = P(A) — PANB) (1.44)
7. If A, A,, ..., A aren arbitrary events in §, then

=EP(Ai)—EP(AiﬂAj)+ E P(A;NA; NAY)
i=1 i*j i#j#k (1.45)

—(=D"'P(A NA,N-NA,)

P

U
i=1
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where the sum of the second term is over all distinct pairs of events, that of the third term is over all

distinct triples of events, and so forth.

8. IfA, A, ..., A, is a finite sequence of mutually exclusive events in § (A, N Aj = fori #j), then

P(O A,.] = iP(Ai)
i=1 i=1

and a similar equality holds for any subcollection of the events.

(1.46)

Note that property 4 can be easily derived from axiom 2 and property 3. Since A C S, we have

PA) = P(S) =1

Thus, combining with axiom 1, we obtain

0=PA)=1 (1.47)
Property 5 implies that
P(A U B) = P(A) + P(B) (1.48)
since P(A N B) = 0 by axiom 1.
Property 6 implies that
P(A\B) = P(A) — P(B) if BCA (1.49)
sinceAN B = Bif BCA.
1.5 Equally Likely Events
A. Finite Sample Space:
Consider a finite sample space S with n finite elements
§={¢,.C,....C}
where C’s are elementary events. Let P(T,) = p,. Then
1. 0=p =1 i=1,2,...,n (1.50)
2. ipi=pl+p2+--~+pn=l (1.51)
3. IfA= U ;. where I is a collection of subscripts, then
i€1
PAY= > PE)= p, (152)

G EA i€l

B. Equally Likely Events:

When all elementary events Ci(i =1, 2, ..., n) are equally likely, that is,

Py =P, = TP,
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then from Eq. (1.51), we have

1

pi=— i=1,2,...,n
n
and P(A):M
n

(153)

(1.54)

where n(A) is the number of outcomes belonging to event A and n is the number of sample points in S. [See

classical definition (1.29).]

1.6 Conditional Probability

A. Definition:

The conditional probability of an event A given event B, denoted by P(A |B), is defined as

P(ANB
P ="A0E) gy =g (155)
where P(A N B) is the joint probability of A and B. Similarly,
P(ANB
pslay="A0E )= (156)
P(A)
is the conditional probability of an event B given event A. From Eqgs. (1.55) and (1.56), we have
P(A N B) = P(A|B) P(B) = P(B|A)P(A) (1.57)
Equation (1.57) is often quite useful in computing the joint probability of events.
B. Bayes’ Rule:
From Eq. (1.57) we can obtain the following Bayes’ rule:
P(B|A)P(A
P(A|B)=M (158)
P(B)
1.7 Total Probability
Theevents A, A, ..., A, are called mutually exclusive and exhaustive if
UA=4UAU--UA =S ad ANA=0 i#] (1.59)
i=1
Let B be any event in S. Then
P(B)=Y P(BNA)= Y P(B|A)P(4,) (1.60)

i=1 i=1
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which is known as the fotal probability of event B (Prob. 1.57). Let A = A, in Eq. (1.58); then, using Eq. (1.60),
we obtain
P(B|A;)P(A.
Pa| By =L EAPA)

S P(BA)P(A)

i=1

(1.61)

Note that the terms on the right-hand side are all conditioned on events A,, while the term on the left is condi-
tioned on B. Equation (1.61) is sometimes referred to as Bayes’ theorem.

1.8 Independent Events

Two events A and B are said to be (statistically) independent if and only if
P(A N B) = P(A)P(B) (1.62)
It follows immediately that if A and B are independent, then by Eqgs. (1.55) and (1.56),

PA | B)= P@A) and P(B | A)= P(B) (1.63)

If two events A and B are independent, then it can be shown that A and B are also independent; that is (Prob. 1.63),
P(A N B) = P(A)P(B) (1.64)

P(ANB) _

Then P(A|B)= P(A) (1.65)

Thus, if A is independent of B, then the probability of A’s occurrence is unchanged by information as to whether
or not B has occurred. Three events A, B, C are said to be independent if and only if

P(AN BN C)=P(A)P(B)P(C)
P(AN B)= P(A)P(B)
P(ANC)=P(A)P(C) (1.66)
P(BN C)=P(B)P(C)

We may also extend the definition of independence to more than three events. The events A , A,, ..., A areinde-
pendent if and only if for every subset {A,, A.,, ... A,;} (2 = k = n) of these events,

PA, NA, N NAY =p@A,) P@A,) - PA,) (1.67)

Finally, we define an infinite set of events to be independent if and only if every finite subset of these events is
independent.

To distinguish between the mutual exclusiveness (or disjointness) and independence of a collection of events,
we summarize as follows:

1. {A,i=1,2,...,n}isasequence of mutually exclusive events, then

~ N pA) (1.68)
1

=

P

U
i=1
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If{A,i=1,2, ..., n}is a sequence of independent events, then
n n
PINA =] ]PA) (1.69)
i=1 i=1

and a similar equality holds for any subcollection of the events.

SOLVED PROBLEMS

Sample Space and Events

1.1. Consider a random experiment of tossing a coin three times.

1.2

(a) Find the sample space S, if we wish to observe the exact sequences of heads and tails obtained.

(b) Find the sample space S, if we wish to observe the number of heads in the three tosses.

(@)

(b)

The sampling space S| is given by
S, ={HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

where, for example, HTH indicates a head on the first and third throws and a tail on the second throw.
There are eight sample points in §.

The sampling space S, is given by
s,=4{0,1,2,3}

where, for example, the outcome 2 indicates that two heads were obtained in the three tosses.
The sample space S, contains four sample points.

Consider an experiment of drawing two cards at random from a bag containing four cards marked with
the integers 1 through 4.

(a) Find the sample space S, of the experiment if the first card is replaced before the second is drawn.

(b) Find the sample space S, of the experiment if the first card is not replaced.

(@)

(b)

The sample space S, contains 16 ordered pairs (i, j), | =i=4, 1 = j=4, where the first number
indicates the first number drawn. Thus,

D 1,2y 1,3 d.4)
2,) 2,2) 2,3) 2.4
L 3,1D) 3,2) (3,3) 3.4
“4,1) 4,2) 4,3) 4.4

The sample space S, contains 12 ordered pairs (i, j), i #j, | =i=4,1 =j =4, where the first number
indicates the first number drawn. Thus,

1,2) (1,3) (1,4)
2, (2,3) 2,4
271G, (3,2) (3,4)
4,1 (4,2) (4,3)
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1.3.

1.4.

1.5.

An experiment consists of rolling a die until a 6 is obtained.
(a) Find the sample space S if we are interested in all possibilities.

(b) Find the sample space S, if we are interested in the number of throws needed to get a 6.
(a) The sample space S, would be
S] =16,

16,26, 36, 46, 56,
116,126,136,146,156, ...}

where the first line indicates that a 6 is obtained in one throw, the second line indicates that a 6 is obtained
in two throws, and so forth.

(b) In this case, the sample space S, is

S,={i:i=1}={1,2,3,...}

where i is an integer representing the number of throws needed to get a 6.

Find the sample space for the experiment consisting of measurement of the voltage output v from a
transducer, the maximum and minimum of which are + 5 and — 5 volts, respectively.

A suitable sample space for this experiment would be

S={v: —-5=v=5}

An experiment consists of tossing two dice.

(a) Find the sample space S.

(b) Find the event A that the sum of the dots on the dice equals 7.

(c) Find the event B that the sum of the dots on the dice is greater than 10.

(d) Find the event C that the sum of the dots on the dice is greater than 12.

(a) For this experiment, the sample space S consists of 36 points (Fig. 1-3):
S={G,j):i,j=1,2,3,4,5,6}

where i represents the number of dots appearing on one die and j represents the number of dots appearing on
the other die.

(b) The event A consists of 6 points (see Fig. 1-3):
A={(1,6),(2,5),(3,4),(4,3),(5,2),(6, D}
(c) The event B consists of 3 points (see Fig. 1-3):
B ={(5,6),(6,5),(6,6)}

(d) The event Cis an impossible event, that is, C = .
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Fig. 1-3

1.6. An automobile dealer offers vehicles with the following options:

1.7.

1.8.

(@)
)
(©
()

With or without automatic transmission
With or without air-conditioning
With one of two choices of a stereo system

With one of three exterior colors

’ L0820 6.6 (4,6 58 66
2585 @5 6565 |
- (L4 RYB A4 6.4 6.9

- (1.9 23 3,364,963 69

- L) 22 B2 496262
SN @) G @) 6061

1 1 1 1 1 |~”\
A

If the sample space consists of the set of all possible vehicle types, what is the number of outcomes in
the sample space?

The tree diagram for the different types of vehicles is shown in Fig. 1-4. From Fig. 1-4 we see that the number
of sample points in Sis 2 X 2 X2 X 3 =24.

Transmission Automatic Manual

Air-conditioning

Stereo

Color

Fig. 1-4

State every possible event in the sample space S = {a, b, ¢, d}.

There are 2*= 16 possible events in S. They are &; {a}, {b}, {c}, {d}; {a, b}, {a, c},{a, d},{b, c},{b, d},
{e,d}:{a, b, c},{a, b, d},{a,c,d},{b,c,d};S={a, b, c,d}.

How many events are there in a sample space S with n elementary events?

LetS = {s,,s,, .
S, be the set consisting of two statements, that is,

..»$,}. Let Q be the family of all subsets of S. (Q is sometimes referred to as the power set of S.) Let

S, = {Yes, the s,is in; No, the s,is not in}
Then €2 can be represented as the Cartesian product

Q=S X§, X+ XS,
={(51,82, ..., 8,85, €ES; fori=1,2, ...,n}



CHAPTER 1 Probability 15

Since each subset of S can be uniquely characterized by an element in the above Cartesian product, we obtain
the number of elements in Qby

n(Q) = n(S,)n(S,) - n(Ss,)=2"

where 7(S;) = number of elements in §;= 2.

An alternative way of finding n(€2) is by the following summation:

S (n < n!
=3 (i):E i —i)!

i=0 i=0

The last sum is an expansion of (1+1)"=2".

Algebra of Sets

1.9. Consider the experiment of Example 1.2. We define the events

A={k: kisodd}
B={k:4=k=T7}
C={k:1=k=10}

where k is the number of tosses required until the first H (head) appears. Determine the events A,B,C,
AUB,BUC,ANB,ANC,BN C,and AN B.

A={k: kiseven}={2, 4, 6,...}
B={k:k=1,2,30rk=8}
C={k: k=11}

AUB={k: kisoddor k=4, 6}

BUC=C

ANB={5,7}

ANC={1,3,5,7,9}

BNC=B

ANB={4,6}

1.10. Consider the experiment of Example 1.7 of rolling a die. Express

AUB,ANC,B,C,B\C,C\B,BAC.

From Example 1.7, we have S = {1,2,3,4,5,6},A={2,4,6},B={1,3,5},and C ={1,2,3,5}.
Then
AUB={1,2,3,4,5,6} =S, ANC={2}, B=1{2,4,6}=A, C=1{4,6}
B\C=BNC={&}, C\B=CNB=1{2},
BAC=(B\C)U(C\B) ={J}U {2} = {2}
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1.11. The sample space of an experiment is the real line express as

(a) Consider the events

Determine the events

(b) Consider the events

Determine the events

(a) It is clear that

S={vi-o<y <o}

Il
——
<
<
IA
[ —

Il Il

< <

< <

I I
S I e e
— ——

JA={:0=v<1}

i=1

Noting that the A;’s are mutually exclusive, we have

NA =2
i=1

(b) Noting that B, DB, D --- DB, D -, we have

UBi:BI:{v:vS%} and (B, ={v:v=0}
i=1 i=1

CHAPTER 1 Probability

1.12. Consider the switching networks shown in Fig. 1-5. Let A, A,, and A, denote the events that the
switches s, s,, and s, are closed, respectively. Let A, denote the event that there is a closed path
between terminals a and b. Express A, interms of A, A,, and Ay for each of the networks shown.
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s
Sy S2 S3 s, v
20— —eo —o —ob a o—eo — S, :I—o b
_./
@)
()
Sy
— o s s
5, _| S g S
a o rd o b a o— Sy l—o b
o | —
L&
(d)

Fig. 1-5

(a) From Fig. 1-5(a), we see that there is a closed path between a and b only if all switches s,, s,, and s, are
closed. Thus,

A,=A NANA,

(b) From Fig. 1-5(b), we see that there is a closed path between a and b if at least one switch is closed.
Thus,

A,=A UA UA,
() From Fig. 1-5(c), we see that there is a closed path between a and b if s, and either s, or s, are closed. Thus,
A,=A NA,UA)
Using the distributive law (1.18), we have
A,=A NAYUMA NA)

which indicates that there is a closed path between a and b if s, and s, or s, and s, are closed.

(d) From Fig. 1-5(d), we see that there is a closed path between a and b if either s, and s, are closed or s, is
closed. Thus

A,=@A NA)UA,

1.13. Verify the distributive law (1.18).

Lets€[AN(BUC)].Then s €A and s € (B U C). This means either that s € A and s € B or that s € A and
s € C; thatis,s € (AN B) or s € (AN C). Therefore,

ANBUC)CI[ANBUMANCO)]

Next,letsE[(ANB)UANC)]. Thens€AandsEBors&Aand sE C. Thus,sEAand (sEBors& ().
Thus,

[ANBY)UMANC)CANBUC)
Thus, by the definition of equality, we have

ANBUC)=ANBIUANC)
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1.14. Using a Venn diagram, repeat Prob. 1.13.

Fig. 1-6 shows the sequence of relevant Venn diagrams. Comparing Fig. 1-6(b) and 1.6(e),
we conclude that

CHAPTER 1 Probability

1.15

1.16.

1.17.

ANBUC)=ANBUMANC)

C

(@) Shaded region: B U C (b) Shaded region: AN (B U C)

C C

(c) Shaded region: AN B (d) Shaded region: AN C

Cc

(e) Shaded region: AN B) U (AN C)

Fig. 1-6

Verify De Morgan’s law (1.24)

ANB=AUB

Suppose that s € AN B, then s €A N B. So s & {both A and B}. This means that either s A or s & Bor s & A
and s & B. This implies that s €A U B. Conversely, suppose that s EA U B, that is either sEA ors EB or s €
{both A and B}. Then it follows that s & A or s & B or s & {both A and B}; that is, s&A N BorsE€ ANB. Thus,
we conclude that ANB = A U B.

Note that De Morgan’s law can also be shown by using Venn diagram.

Let A and B be arbitrary events. Show that A C B if and only if A N B = A.

“If” part: We show thatif AN B =A,then ACB.Lets €A. ThensE (AN B),since A=A N B. Then by the
definition of intersection, s € B. Therefore, A C B.

“Only if” part: We show that if A C B, then A N B = A. Note that from the definition of the intersection,
(ANB)CA. Suppose sEA.If AC B, then s € B. So s €A and s € B; that is, s € (A N B). Therefore, it follows
that A C (A N B). Hence, A = A N B. This completes the proof.

Let A be an arbitrary event in S and let & be the null event. Verify Egs. (1.8) and (1.9),i.e.
@ AU =A (1.8)
b ANG=Y (1.9
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(a) AU ={s:s€EAorsE€J}
But, by definition, there are no s € &. Thus,

AU ={s:s€EA}=A

b)) AND={s:sEAandsE D}

But, since there are no s € J, there cannot be an s such that s €A and s € &. Thus,
AN =0

Note that Eq. (1.9) shows that & is mutually exclusive with every other event and including
with itself.

1.18. Show that the null (or empty) set & is a subset of every set A.

From the definition of intersection, it follows that
(ANB)CA and (ANB)CB (1.70)

for any pair of events, whether they are mutually exclusive or not. If A and B are mutually exclusive events,
that is, AN B = &, then by Eq. (1.70) we obtain

JCA and JCB (1.71)
Therefore, for any event A,
JCA (1.72)

that is, & is a subset of every set A.

1.19. Show that A and B are disjoint if and only if AAB = A.

First,if A\B=ANB = A, then
ANB=ANBNB=ANBNB =ANT =0

and A and B are disjoint.
Next, if A and B are disjoint,then AN B =J, and A\B=AN B=A.
Thus, A and B are disjoint if and only if A\B = A.

1.20. Show that there is a distribution law also for difference; that is,
AB)NC=ANOC\NBNC)
By Eq. (1.8) and applying commutative and associated laws, we have
ABNC=ANBNC=ANBNC)=ANC)NB

Next,

ANC\(BNC)=ANC)NBNC) by Eq. (1.10)
=ANC)NBUC) by Eq. (1.21)
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=[(ANC)NBIU[ANC)NC] by Eq. (1.19)
=[ANC)NBIUAN(CN )] by Eq. (1.17)
=[(ANC)NBIU[ANJ] by Eq. (1.7)
=[(ANC)NBIUY by Eq. (1.9)
=ANC)NB by Eq. (1.8)
Thus, we have
ABNC=ANC\BNC)
1.21. Verify Egs. (1.24) and (1.25).
n n
(@) Suppose first that s € UAi ;then s & UAi .
i=1 i=1
That is, if s is not contained in any of the events A, i = 1, 2, ..., n, then s is contained in K[ for all
i=1,2,...,n. Thus
n —
sE ﬂ A
i=1
Next, we assume that
n —
sE ﬂ A
i=1
Then s is contained in Kl. for all i = 1, 2, ..., n, which means that s is not contained in A, for any
i=1,2,...,n,implying that
n
s JA
i=1
n
Thus, s E UAi
i=1

(b)

This proves Eq. (1.24).

Using Eqgs. (1.24) and (1.3), we have

which is Eq. (1.25).
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Probability Space

1.22.

1.23.

1.24.

Consider a probability space (S, F, P). Show that if A and B are in an event space (o-field) F, so are
AN B,A\B,and A A B.

By condition (ii) of F, Eq. (1.27),if A, BE F, then A, B € F. Now by De Morgan’s law (1.21),
we have

ANB= EF by Eq. (1.28)

2> |
=1

U

ANB=ANBEF by Eq. (1.27)
Similarly, we see that
ANBEF and ANBEF
Now by Eq. (1.10), we have
AB=ANBEF
Finally, by Eq. (1.13), and Eq. (1.28), we see that

AAB=ANBYUMANBEF

Consider the experiment of Example 1.7 of rolling a die. Show that {S, &J, A, B} are event spaces but
{S,J,A}and {S, I, A, B, C} are not event spaces.
Let F = {S, D, A, B}. Then we see that

SEF,S=0€EF,J=SEF,A=BEF,B=A€EF

and

SUB =SUA=SUB=SEF,JUA=AUJ=AEF,
SUB=BUJ=BEF,AUB=BUA=SEF

Thus, we conclude that {S, &, A, B} is an event space (o-field).

Next, let F = {S, &, A}.Now A = B¢ F. Thus {S, @, A} is not an event space. Finally, let F = {S, &, A, B, C},
but C = {2,6} & F.Hence, {S, &, A, B, C} is not an event space.

Using the axioms of probability, prove Eq. (1.39).

We have
S=AUA and ANA=0

Thus, by axioms 2 and 3, it follows that
P(S) =1 = P(A) + P(A)

from which we obtain

PA)=1— P(A)
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1.25.

1.26.

1.27.

Verity Eq. (1.40).

From Eq. (1.39), we have
P(A) =1 — P(A)
Let A = &. Then, by Eq. (1.2),A = & = S, and by axiom 2 we obtain
P@)=1—-PS)=1—-1=0

Verify Eq. (1.41).

Let A C B. Then from the Venn diagram shown in Fig. 1-7, we see that

B=AU@A NB) and ANANB =0

Hence, from axiom 3,
P(B) = P(A) + P(A N B)
However, by axiom 1, P(A N B) = 0. Thus, we conclude that

P(A)<P(B) ifACB

Shaded region: A N B

Fig. 1-7

Verify Eq. (1.43).

CHAPTER 1 Probability

(1.74)

From the Venn diagram of Fig. 1-8, each of the sets A U B and B can be represented, respectively,

as a union of mutually exclusive sets as follows:

AUB=AU (A NB) and B=ANBUMANB)

Thus, by axiom 3,

P(AUB) = P(A) + P(A N B)
and P(B) = P(ANB) + P(A N B)
From Eq. (1.76), we have

P(ANB)=P(B)— P(ANB)
Substituting Eq. (1.77) into Eq. (1.75), we obtain

P(AUB) = P(A) + P(B) — P(AN B)

(1.75)

(1.76)

(1.77)
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S

(1)

Shaded region: ANB

S

A@B

Shaded region: A N B

1.28. Let P(A) = 0.9 and P(B) = 0.8. Show that P(A N B) = 0.7.

From Eq. (1.43), we have

P(ANB) = P(A) + P(B) — P(AU B)

By Eq. (1.47),0 = P(AU B) = 1. Hence,

P(ANB) = P(A) + P(B) — 1

Substituting the given values of P(A) and P(B) in Eq. (1.78), we get

Equation (1.77) is known as Bonferroni’s inequality.

1.29. Show that

PANB)=09+08—-1=0.7

P(A) = P(A N B) + P(A N B)

From the Venn diagram of Fig. 1-9, we see that

A=ANBUMANB)

Thus, by axiom 3, we have

1.30. Given that P(A) = 0.9, P(B) = 0.8, and P(A N B) = 0.75, find (a) P(A U B); (b) P(A N B); and

() P N B).

(a) By Eq.(1.43), we have

P(AUB) = P(A) + P(B)— PANB)=0.9 + 0.8 —0.75 = 0.95

ANBNMANB) =0

P(A)=P(ANB) + PANB)

AUB

ANB

23

(1.78)

(1.79)

(1.80)
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1.31.

1.32.

CHAPTER 1 Probability

(b) By Eq.(1.79) (Prob. 1.29), we have
PANB)=PA) —PANB) =09 —-0.75=0.15
(c) By De Morgan’s law, Eq. (1.20), and Eq. (1.39) and using the result from part (a), we get

P(ANB)=P(AUB)=1—-P(AUB)=1-0.95=0.05

For any three events A, A,, and A, show that

P(A,UA,UA) = P@A,) + PA,) + PA,) — P(A, N A)
— P(A, NA) — PA,NA) + PA, NA,NAY

Let B = A, UA,. By Eq. (1.43), we have
P(A,UB)=P(A) + P(B) — P(A, N B)
Using distributive law (1.18), we have
ANB=ANMA,UA)=A NA)UA NA))
Applying Eq. (1.43) to the above event, we obtain

P(A,NB) = P(A, NA,)) + P(A, N A, — P[(A, N A,) N (A, NA,)]
= P(A,NA,) + P(A, NA;) — P(A, NA,NA,)

Applying Eq. (1.43) to the set B = A, UA;, we have
P(B) = P(A, UA,) = P(A,)) + P(A;) — P(A,N Ay

Substituting Eqgs. (1.84) and (1.83) into Eq. (1.82), we get

PAJUA,UA ) =PA) + PA,) + P(Ay)) — P(A,NA) — P(A, NA,)
—PA,NA)+PA NA,NA)

Prove that

(U]Em
i=1 i=1

which is known as Boole’s inequality.

We will prove Eq. (1.85) by induction. Suppose Eq. (1.85) is true for n = k.

k
P(OAiJSEP(Ai)

Pt =1

k+1

Ua

i=1

Then P P UA;,

[OAi

i=1
P
i
k+1

k
= D PA)+P(A )= Y P(A)
i=1

i=1

A

1

C~=

IA

+P(Ak+])

1

(1.81)

(1.82)

(1.83)

(1.84)

(1.85)

[by Eq.(1.48)]
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Thus, Eq. (1.85) is also true for n = k + 1. By Eq. (1.48), Eq. (1.85) is true for n = 2. Thus, Eq. (1.85) is true
orn=2.

1.33. Verify Eq. (1.46).

Again we prove it by induction. Suppose Eq. (1.46) is true for n = k.

k
P(UAi
i=1

k
= X P(A)
i=1

k1
Then P(UAi =P UAg
=1

(OA,-

i=1

Using the distributive law (1.22), we have

k k k
(UAi]nAkJrl :U(AimAk+l):U®:®

i=1 i=1 i=1

since A, N Aj = Jfor i # j. Thus, by axiom 3, we have

k+1
+P(A )= Y P(4)

i=1

k+1

Ua
i=1

k

Ua

i=1

P =P

which indicates that Eq. (1.46) is also true for n = k + 1. By axiom 3, Eq. (1.46) is true for n = 2. Thus, it is
true forn =2.

1.34. A sequence of events {A , n = 1} is said to be an increasing sequence if [Fig. 1-10(a)]

A CA,C CACA, C- (1.86a)

whereas it is said to be a decreasing sequence if [Fig. 1-10(b)]

A DA, DDA DA, D (1.86b)

Fig. 1-10

If {A , n = 1} is an increasing sequence of events, we define a new event A by

n’

n—>o0 )
i=1



26 CHAPTER 1 Probhability

Similarly, if { A , n = 1} is a decreasing sequence of events, we define a new event A by

A,=lmA =4 (1.88)
e i=1

Show that if {A,, n = 1} is either an increasing or a decreasing sequence of events, then

lim P(A )= P(A) (1.89)
n—s00
which is known as the continuity theorem of probability.
If {A,n =1} is an increasing sequence of events, then by definition

n—1
U Ai = An—l
i=1

Now, we define the events B ,n =1, by

=4
B2=A20A1
B =ANA _
n n n—1

Thus, B, consists of those elements in A that are not in any of the earlier A;, k < n. From the Venn diagram
shown in Fig. 1-11, it is seen that B, are mutually exclusive events such that

.C:
C=

B. =

i
1 i

®© n
A foralln=1and | JB, = JA, =4,
i=1 i=1

1

1

<

s

\ R
/

A, N A, AN A

Fig. 1-11
Thus, using axiom 3', we have
U

i=1

P(A,)=P

s

=P( Bi]= iP(Bi)
i i=1

1

Cs

1

=lim ¥ P(B,)= lim P|| J B,
s e Ni= (1.90)

Cs

= lim P

n—so

i=l

Ai) = lim P(A,)
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Next, if {A , n = 1} is a decreasing sequence, then {K" n > 1} is an increasing sequence. Hence, by Eq. (1.89),
we have

= lim P(A,)

v
p—
] 8

A
i=1

From Eq. (1.25),

Thus, P = lim P(A,)

n—>o (1.91)

A

i=1

Using Eq. (1.39), Eq. (1.91) reduces to

1-P

ﬂA[] = lim [1 — P(A,)] =1~ lim P(A,)
i=1 (1.92)

Thus, P

DX

1

A-] =P(A,)= lim P(A,)

i=l1

Combining Eqs. (190) and (1.92), we obtain Eq. (1.89).

Equally Likely Events

1.35.

1.36.

Consider a telegraph source generating two symbols, dots and dashes. We observed that the dots were
twice as likely to occur as the dashes. Find the probabilities of the dots occurring and the dashes
occurring.

From the observation, we have
P(dot) = 2P(dash)

Then, by Eq. (1.51),
P(dot) + P(dash) = 3P(dash) =1
Thus, Pash) =1 and  P(dop = 2
The sample space S of a random experiment is given by
S={a,b,c,d}
with probabilities P(a) = 0.2, P(b) = 0.3, P(c) = 0.4, and P(d) = 0.1. Let A denote the event {a, b},

and B the event {b, c, d}. Determine the following probabilities: (@) P(A); (b) P(B); (c) P(A);
(d) P(A U B); and (e) P(A N B).
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Using Eq. (1.52), we obtain

(@ PA)=Pa)+Pb)=024+03=0.5

(b) P(B)=P(b)+Pc)+Pd)=03+04+0.1=0.8
(¢) A={c,d};P(A)=Plc)+Pd)=04+0.1=0.5
(d AUB={a,b,c,d}=S;P(AUB)=P(S) =1

(¢) ANB={b};PANB) =Pb)=0.3

1.37. An experiment consists of observing the sum of the dice when two fair dice are thrown (Prob. 1.5).
Find (a) the probability that the sum is 7 and (b) the probability that the sum is greater than 10.

(a) Let Cij denote the elementary event (sampling point) consisting of the following outcome: C” = (i, j), where i
represents the number appearing on one die and j represents the number appearing on the other die. Since the
dice are fair, all the outcomes are equally likely. So P(Cij) = 3%- Let A denote the event that the sum is 7. Since
the events CU are mutually exclusive and from Fig. 1-3 (Prob. 1.5), we have

P(A) =P, UL UL, UL, UL, UL
=P(§¢) + P(Eys) + P&y + P(Ey) + PEs,) + P&

[ L)1
36) 6

(b) Let B denote the event that the sum is greater than 10. Then from Fig. 1-3, we obtain

P(B)ZP(€56UC()5UC()()):P(CSG)J'_P(Cﬁs)+P(C66)
“ )+
=3l—|=—
36 12

1.38. There are n persons in a room.
(@) What is the probability that at least two persons have the same birthday?
(b) Calculate this probability for n = 50.
(¢) How large need n be for this probability to be greater than 0.5?
(a) As each person can have his or her birthday on any one of 365 days (ignoring the possibility of

February 29), there are a total of (365)" possible outcomes. Let A be the event that no two persons
have the same birthday. Then the number of outcomes belonging to A is

n(A) = (365)(364) --- (365 -n + 1)
Assuming that each outcome is equally likely, then by Eq. (1.54),

n(A) _ (365)(364) -+ (365 —n+1)
n(s) (365)"

P(A) = (1.93)

Let B be the event that at least two persons have the same birthday. Then B = A and by Eq.(1.39),
PB)=1-P(A).

(b) Substituting n = 50 in Eq. (1.93), we have
P(A)=0.03 and P(B)=1—-0.03 =0.97
(¢) From Eq. (1.93), when n = 23, we have
P(A)=0.493 and P(B)=1— P(A)=0.507

That is, if there are 23 persons in a room, the probability that at least two of them have the same
birthday exceeds 0.5.
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1.39. A committee of 5 persons is to be selected randomly from a group of 5 men and 10 women.
(a) Find the probability that the committee consists of 2 men and 3 women.

(b) Find the probability that the committee consists of all women.

(a) The number of total outcomes is given by

n(S):(IS]
5

It is assumed that “random selection” means that each of the outcomes is equally likely. Let A be the
event that the committee consists of 2 men and 3 women. Then the number of outcomes belonging to

{17

Ais given by

Thus, by Eq. (1.54),

(b) Let Bbe the event that the committee consists of all women. Then the number of outcomes belonging

to Bis
5110
(A

n(B)=

Thus, by Eq. (1.54),

1.40. Consider the switching network shown in Fig. 1-12. It is equally likely that a switch will or will not
work. Find the probability that a closed path will exist between terminals a and b.

Sy
a o— Sg b
Sy —
_/_ 34
_/
Fig. 1-12

Consider a sample space S of which a typical outcome is (1, 0,0, 1), indicating that switches 1 and 4 are
closed and switches 2 and 3 are open. The sample space contains 2= 16 points, and by assumption, they are
equally likely (Fig. 1-13).
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LetA,,i=1,2,3, 4 be the event that the switch s, is closed. Let A be the event that there exists a closed
path between a and b. Then

A=A UA,NAH)UMA,NA)
Applying Eq. (1.45), we have

P(A)=PA; U (4, NA3)U (4, N A,)]
=P(A)) + P(A, N Ay) + P(A, N A,)
— P[A; N (A, N A= PLA N (4, N A= PI(A; N AN (A, N A,)]
+ P[A, N (A, NA)N (A, N AL
=P(A,) + P(A, N Ay) + P(A, N A,)
—P(A, NA, NA)— P(A NA, NA,)— P(A, NA; N A,)
+P(A, NA, NA;NA,)

Now, for example, the event A, M A, contains all elementary events with a 1 in the second and third places.
Thus, from Fig. 1-13, we see that

nA)=8 n(A,NA)=4 n(A,NA)=4
nANANA)=2  n(ANANA)=2
A, NANA)=2  n(ANANANA)=1

Thus,

4 .4 2 2 2 1 11
pay=2p bt 2 2 2, 1 11
16 16 16 16 16 16 16 16

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

----po

- g----
o

o -t o -t o -t o
- o= OO O|®|O|=|O|=|O

o

|

Fig. 1-13

1.41. Consider the experiment of tossing a fair coin repeatedly and counting the number of tosses required
until the first head appears.

(a) Find the sample space of the experiment.
(b) Find the probability that the first head appears on the kth toss.
(¢) Verify that P(S) = 1.
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(a) The sample space of this experiment is
S = {el, e,, ey, = {ek: k=1,2,3,...}

where e, is the elementary event that the first head appears on the kth toss.
(b) Since a fair coin is tossed, we assume that a head and a tail are equally likely to appear. Then
P(H) = P(T) =} Let
P(e,) = p, k=1,2,3,...

Since there are 2* equally likely ways of tossing a fair coin k times, only one of which consists of (k — 1)
tails following a head we observe that

1
P(ek)=pk=2—k k=1,2,3,... (1.94)
(¢c) Using the power series summation formula, we have

©

1

oo e k —

P(S)= Y Pe)=3 iﬁz(l) =l (199
k=1 s 2 2\2 5

1.42. Consider the experiment of Prob. 1.41.
(@) Find the probability that the first head appears on an even-numbered toss.

(b) Find the probability that the first head appears on an odd-numbered toss.

(a) LetA be the event “the first head appears on an even-numbered toss.” Then, by Eq. (1.52) and using
Eq. (1.94) of Prob. 1.41, we have

1
o0 oo <) m —_—
PAY=py +pytpg =S pan= ) 2%: E(i) 4 _

m=1 m=1 m=1

(b) Let B be the event “the first head appears on an odd-numbered toss.” Then it is obvious that B = A. Then,
by Eq. (1.39), we get

—P(A)=1-P(A)=1—1=2
P(B)=P(A)=1—P(A)=1 33

As a check, notice that

©

— 1 I (1Y 1] 1 2
P(B) = + + +.oo= = - =_ | ==— ==
(B)=p, + p3+ps m§:0P2m+1 m§:022"’+1 > E (4) 5 3

Conditional Probability

1.43. Show that P(A | B) defined by Eq. (1.55) satisfies the three axioms of a probability, that is,
(@ PA|B)=0 (1.96)
b)) PS|B=1 1.97)
() PA/UA,|B)=PA,|B) +PA,|BifA NA, =0 (1.98)
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(a) From definition (1.55),

P(A|B)=P(AmB) P(B)>0
P(B)
By axiom 1, P(AN B) = 0. Thus,
PA|B=0

(b) ByEq.(1.5),SNB = B.Then

p(s|my=PEOB _PB) _,

(c¢) By definition (1.55),

P[(AUA,)N B]
P(B)

P(A{UA,|B)=
Now by Eqgs. (1.14) and (1.17), we have
A, UA)NB=A NBUMA,NB)
and A| N A, = @ implies that (A, N B) N (A, N B) = &. Thus, by axiom 3 we get
P(A,NB)+PA,NB) _P(ANB) n P(A, N B)

P(B) P(B) P(B)
=P(A|B)+P(A)|B)  ifANA =0

P(A{UA,|B)=

1.44. Find PA | B)if (a) AN B = J, (b) A C B,and (c) B C A.

(@ IfANB=,then P(ANB) = P(J) = 0. Thus,

P(AlB):P(AﬂB):P(@):O

(b) IfACB,thenAN B =Aand

P(ANB) _ P(A)
P(B) P(B)

P(A|B)=

(¢) IfBCA,thenANB=Band

1.45. Show that if P(A | B) > P(A), then P(B | A) > P(B).

IfP(A|B):P(£mB)

> P(A), then P(A N B)> P(A)P(B). Thus,

P(ANB) - P(A)P(B)

PEN="20 P(A)

=P(B) or  P(BJA)>P(B)
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1.46. Show that
P(A|B)=1—P(A|B)

By Eqgs. (1.6) and (1.7), we have

Then by Egs. (1.97) and (1.98), we get
P(AUA|B)=P(S|B)=1=P(A|B) + P(A|B)
Thus we obtain
P(A|B)=1—-P(A|B)
note that Eq. (1.99) is similar to property 1 (Eq. (1.39)).
1.47. Show that
P(A, U A,|B)=P(A,|B) + P(A,| B) — P(A, N A;| B)
Using a Venn diagram, we see that
A UA, =AUMANA)=A UM, NA)
and
AUMA,NA)=D
By Eq. (1.98) we have
P(A U Ay B)= P[4, U(A, N 4))|B]=P(A|B) + P(4, N 4| B)
Again, using a Venn diagram, we see that
A, =(ANA)UMANA)=(A NA)UA, NA)
and
A NAUMA,NA)=0
By Eq. (1.98) we have

P(4;|B)=P[(A, N A,)U (4, N 4,)|B]=P(A, N 4,|B) + P(4, N 4|B)

33

(1.99)

(1.100)

(1.100)
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Thus,
P(A,NA||B)=P(A,|B)~ P(A N Ay[B) (1.101)
Substituting Eq. (1.101) into Eq. (1.100), we obtain
P(A UA,|B)=P(A||B)+P(A,|B)—P(A N A,|B)
Note that Eq. (1.100) is similar to property 5 (Eq. (1.43)).

1.48. Consider the experiment of throwing the two fair dice of Prob. 1.37 behind you; you are then informed
that the sum is not greater than 3.

(a) Find the probability of the event that two faces are the same without the information given.

(b) Find the probability of the same event with the information given.

(a) LetA be the event that two faces are the same. Then from Fig. 1-3 (Prob. 1.5) and by Eq. (1.54),

we have
A={G,0:i=1,2,...,6}
and
pay="A_6 _1
n(S) 36 6

(b) Let Bbe the event that the sum is not greater than 3. Again from Fig. 1-3, we see that

B=A{G)):i+j=3}={1,1),(.2),2, D}
and

Now A N B is the event that two faces are the same and also that their sum is not greater than 3. Thus,

ANB) _ 1
P(AOB)=7n(n(S) )=£

Then by definition (1.55), we obtain

1
pap =408 _36_1
P(B) 1 3
12
Note that the probability of the event that two faces are the same doubled fromé to ;— with the
information given.

Alternative Solution:

There are 3 elements in B, and 1 of them belongs to A. Thus, the probability of the same event with

the information given is % .

1.49. Two manufacturing plants produce similar parts. Plant 1 produces 1,000 parts, 100 of which are
defective. Plant 2 produces 2,000 parts, 150 of which are defective. A part is selected at random and
found to be defective. What is the probability that it came from plant 1?
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1.50.

1.51.

Let B be the event that “the part selected is defective,” and let A be the event that “the part selected came from
plant 1.” Then A N B is the event that the item selected is defective and came from plant 1. Since a part is
selected at random, we assume equally likely events, and using Eq. (1.54), we have

PANB) =0 1
3000 30

Similarly, since there are 3000 parts and 250 of them are defective, we have

papy— 250 _ 1
3000 12

By Eq. (1.55), the probability that the part came from plant 1 is

Alternative Solution:

There are 250 defective parts, and 100 of these are from plant 1. Thus, the probability that the defective

part came from plant 1 is ;%8 =04.

Mary has two children. One child is a boy. What is the probability that the other child is a girl?

Let S be the sample space of all possible events S = {B B, B G, G B, G G} where B B denotes the events the
first child is a boy and the second is also a boy, and BG denotes the event the first child is a boy and the
second is a girl, and so on.

Now we have

P[{BB}]= P[{BG}]= P[{GB}]=P[{GG}]=1/4

Let B be the event that there is at least one boy; B = {B B, B G, G B}, and A be the event that there is at least
one girl; A= {BG,GB, G G}

Then
ANB={BG,GB} and P(ANB)=1/2
P(B)=3/4

Now, by Eq. (1.55) we have

P(AlB):P(AﬂB): 1/2) _2
P(B) (3/4) 3

Note that one would intuitively think the answer is 1/2 because the second event looks independent of the
first. This problem illustrates that the initial intuition can be misleading.

A lot of 100 semiconductor chips contains 20 that are defective. Two chips are selected at random,
without replacement, from the lot.

(@) What is the probability that the first one selected is defective?
(b) What is the probability that the second one selected is defective given that the first one was defective?

(c) What is the probability that both are defective?
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(a) LetA denote the event that the first one selected is defective. Then, by Eq. (1.54),

- 20 _
P(A) 00 0.2
(b) Let B denote the event that the second one selected is defective. After the first one selected is defective,
there are 99 chips left in the lot, with 19 chips that are defective. Thus, the probability that the second
one selected is defective given that the first one was defective is

P(B | A) =é—9=0.192

]

(c) By Eq. (1.57), the probability that both are defective is

P(ANB) = P(B | A)P(A) = (é—g) (0.2) = 0.0384

1.52. A number is selected at random from {1, 2, ..., 100). Given that the number selected is divisible by 2,
find the probability that it is divisible by 3 or 5.

Let A, = event that the number is divisible by 2
A, = event that the number is divisible by 3
A, = event that the number is divisible by 5

Then the desired probability is

_ Pl(A;UA)NA,]

P(A; U A|Ay) A [Eq.(1.55)]
_ PI(A3;NAHUAs N AY)] [Eq.(1.18)]
P(A,)
:P(A3 NA))+P(AsNA)—P(A;NAsNA,) [Eq.(1.44)]
P(A,)
Now A, N A, = event that the number is divisible by 6

Ag N A, = event that the number is divisible by 10
A; N A; N A, = event that the number is divisible by 30

16 10 3
d PANA)=—  PA.NA)=—  PANANA)=——
an (4N 4) =150 AN 4) =100 (AN A0 4) =100
16 10 3
100 100 100 _ 23
Thus, P(A; U A|A, =T=%=O.46
100

1.53. Show that

P(AﬂBﬂC)=P(A)P(B|A)P(C|AﬂB) (1.102)
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1.54.

1.55.

1.56.

By definition Eq. (1.55) we have

P(BNA) P(CNANB)
P(A) P(AN B)

=P(ANBNC)

P(A)P(B|A)P(C|AN B)=P(A)

since PBNA) = P(ANB)and ICNANB)=PANBNC).

LetA,, A,, ..., A, be events in a sample space S. Show that
PA NA,N---NA)=PA)PA, | ADPA, | A NA,) - PA, | ANAN---NA _) (1.103)
We prove Eq. (1.103) by induction. Suppose Eq. (1.103) is true for n = k:
PA,NA,N---NA)=PA)PA, | ADPA, | A, NA) - PA A NAN---NA_)
Multiplying both sides by P4, ., | A, N A, N - NA,), we have

PA, NA, N -~ NAYPA,, | A NA, N NAY=PA NAN--NA

k+1 k+l)

and PA,NA, N - NA, ) =PADPA, |[ADPA, | A, NA) - PA,, | A, NA,N--NA)

Thus, Eq. (1.103) is also true for n = k + 1. By Eq. (1.57), Eq. (1.103) is true for n = 2. Thus, Eq. (1.103) is
true forn =2.

Two cards are drawn at random from a deck. Find the probability that both are aces.

Let A be the event that the first card is an ace, and let B be the event that the second card is an ace. The desired
probability is P(B N A). Since a card is drawn at random, P(A) = ;‘—2. Now if the first card is an ace, then there
will be 3 aces left in the deck of 51 cards. Thus, P(B | A) = 5% By Eq. (1.57),

P(BM A)= P(B|A)P(A) = (?31)(%) - ﬁ

Check :

By counting technique, we have

4
P(BNA)= (2) = WS _ 1
(52) (52)51) 221

2

There are two identical decks of cards, each possessing a distinct symbol so that the cards from each deck
can be identified. One deck of cards is laid out in a fixed order, and the other deck is shuffled and the
cards laid out one by one on top of the fixed deck. Whenever two cards with the same symbol occur in
the same position, we say that a match has occurred. Let the number of cards in the deck be 10. Find
the probability of getting a match at the first four positions.

LetA;,i=1,2,3, 4, be the events that a match occurs at the ith position. The required probability is

P(A,NA,NANA)
By Eq. (1.103),

P(A, NA,NA;NA) =PA)PA, | ADPA, | A, NA)PA, | A, NA, NA;)
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There are 10 cards that can go into position 1, only one of which matches. Thus, P(A)) = 1L0 P(A, | A))is
the conditional probability of a match at position 2 given a match at position 1. Now there are 9 cards left
to go into position 2, only one of which matches. Thus, P(A, | A)= é. In a similar fashion, we obtain

P(A; | A NA) =¢and P(A, | A;NA,NA) =1 Thus,

P 04,0404 = (70) (5) (5)(7) = 503

Total Probability

1.57. Verify Eq. (1.60).

Since BN S = B [and using Eq. (1.59)], we have
B=BNS=BN(AUA,U--UA,) (1.104)
=(BNADUBNA)U---U(BNA,)

Now the events BNA,i=1,2,...,n,are mutually exclusive, as seen from the Venn diagram of Fig. 1-14.
Then by axiom 3 of probability and Eq. (1.57), we obtain

P(B)=P(BN )= E P(BNA;)= E P(B|A)P(A;)
i=1 i=1

1.58. Show that for any events A and B in S,

P(B) = P(B | A)P(A) + P(B | A)P(A) (1.105)
From Eq. (1.78) (Prob. 1.29), we have
P(B) = P(BNA) + P(BNA)
Using Eq. (1.55), we obtain
P(B) = P(B | A)P(A)+ P(B | A)P(A)

Note that Eq. (1.105) is the special case of Eq. (1.60).
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1.59.

1.60.

1.61.

Suppose that a laboratory test to detect a certain disease has the following statistics. Let
A = event that the tested person has the disease
B = event that the test result is positive

It is known that
PB|A) =099 and PB|A) =0.005

and 0.1 percent of the population actually has the disease. What is the probability that a person has the
disease given that the test result is positive?

From the given statistics, we have
P(A)=0.001 then P(A) =0.999
The desired probability is P(A | B). Thus, using Eqs. (1.58) and (1.105), we obtain

P(B|A)P(A)
P(B|A)P(A)+ P(B|A)P(A)
_ (0.99)(0.001)
(0.99)(0.001) + (0.005)(0.999)

P(A|B)=

=0.165

Note that in only 16.5 percent of the cases where the tests are positive will the person actually have the
disease even though the test is 99 percent effective in detecting the disease when it is, in fact, present.

A company producing electric relays has three manufacturing plants producing 50, 30, and 20 percent,

respectively, of its product. Suppose that the probabilities that a relay manufactured by these plants is

defective are 0.02,0.05, and 0.01, respectively.

(a) If arelay is selected at random from the output of the company, what is the probability that it is
defective?

(b) If arelay selected at random is found to be defective, what is the probability that it was
manufactured by plant 2?

(a) Let Bbe the event that the relay is defective, and let A, be the event that the relay is manufactured by plant i
(i=1,2,3). The desired probability is P(B). Using Eq. (1.60), we have

3
P(B)=) P(B|A)P(A)
i=1

=(0.02)(0.5) + (0.05)(0.3) + (0.01)(0.2) = 0.027

(b) The desired probability is P(A, | B). Using Eq. (1.58) and the result from part (a), we obtain

P(B|A,)P(A,) _ (0.05)0.3)
P(B) 0.027

=0.556

P(Ay|B)=

Two numbers are chosen at random from among the numbers 1 to 10 without replacement. Find the
probability that the second number chosen is 5.

LetA,i=1,2,..., 10 denote the event that the first number chosen is i. Let B be the event that the second

number chosen is 5. Then by Eq. (1.60),

10
P(B)= ) P(B|A)P(A)

i=1
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Now P(A,) = 1L0 P(B | A)) is the probability that the second number chosen is 5, given that the first is i.

Ifi=>5,then P(B|A) =0.Ifi#5,then P(B | A) = é—. Hence,

- (1)1 1
P(B)= Y P(B|A)P(A)=9|—

o)\ 70 ) 10

1.62. Consider the binary communication channel shown in Fig. 1-15. The channel input symbol X may
assume the state O or the state 1, and, similarly, the channel output symbol ¥ may assume either the
state O or the state 1. Because of the channel noise, an input O may convert to an output 1 and vice
versa. The channel is characterized by the channel transition probabilities p, g,, p,, and ¢, defined by

Po = P(y, |x0) and P =Py, |x1)

g0 = Py |x0) and q =Py |x1)
where x, and x, denote the events (X = 0) and (X = 1), respectively, and y, and y, denote the events (¥ = 0)
and (Y = 1), respectively. Note thatp, + g, = 1 = p | + ¢q,.Let P(x j)) = 0.5,p, = 0.1,and p, = 0.2.
(a) Find P(y,) and P(y,).
(b) If a0 was observed at the output, what is the probability that a O was the input state?
(¢c) Ifal was observed at the output, what is the probability that a 1 was the input state?
(d) Calculate the probability of error P,.

Fig. 1-15

(a) We note that
P(x)=1-P(x))=1-05=05
P(yy|x) =gy =1-p,=1-0.1=09
P(y|x)=¢,=1-p =1-02=08
Using Eq. (1.60), we obtain
P(35) = P(o| %)P(x0) + P(yo| %,)P(x;) = 0.9(0.5) + 0.2(0.5) = 0.55
P(yy) =Py | %0)P(x) + P(y| x)P(x;) =0.1(0.5) + 0.8(0.5) = 0.45

(b) Using Bayes’rule (1.58), we have

P(x0)P(Yo| %) _ (0.5)(0.9)
P(y,) 0.55

=0.818

P(xol)’o):

(¢) Similarly,

_ PGPy | x) _ (0.5)(0.8)
P(y;) 045

P(x, | ) =0.889

(d) The probability of error is
P, = P(y, |x0)P(xO) + P(y, | x)P(x,)=0.1(0.5) +0.2(0.5) =0.15.
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Independent Events

1.63. Let A and B be events in an event space F. Show that if A and B are independent, then so are (a) A and B,
(b) A and B, and (c) A and B.

(a) From Eq. (1.79) (Prob. 1.29), we have
P(A)=P(ANB)+ P(ANB)
Since A and B are independent, using Egs. (1.62) and (1.39), we obtain

P(AN B)=P(A)— P(AN B)=P(A) — P(A)P(B)

_ 1.106
=P(A)[1 = P(B)] = P(A)P(B) ( )
Thus, by definition (1.62), A and B are independent.
(b) Interchanging A and B in Eq. (1.106), we obtain
P(BNA) = P(B) P(A)
which indicates that A and B are independent.
(¢) We have
P(AN B)=P[(AU B)] [Eq.(1.20)]
=1—P(AUB) [Eq.(1.39)]
=1—P(A)— P(B)+ P(ANB) [Eq.(1.44)]
=1-"P(A)— P(B)+ P(A)P(B) [Eq.(1.62)]
=1-P(A)— P(B)[1— P(A)]
=[1-P@AI1 - P(B)]
= P(A)P(B) [Eq.(1.39)]

Hence, A and B are independent.

1.64. Let A and B be events defined in an event space F. Show that if both P(A) and P(B) are nonzero, then
events A and B cannot be both mutually exclusive and independent.

Let A and B be mutually exclusive events and P(A) #0, P(B) #0. Then P(A N B) = P(J) = 0 but P(A)P(B) #0.
Since
P(AN B)#P(A)P(B)

A and B cannot be independent.

1.65. Show that if three events A, B, and C are independent, then A and (B U C) are independent.

We have
PIANMBUC)] =PI(ANB)UANC)] [Eq. (1.18)]
=PANB)+PANC)-PANBNC) [Eq. (1.44)]
= P(A)P(B) + P(A)P(C) - P(A)P(B)P(C) [Eq. (1.66)]
= P(A)P(B) + P(A)P(C) - P(A)P(BNC) [Eq. (1.66)]
= P(A)[P(B) + P(C)-P(BN C)]
= PA)PBUC) [Eq. (1.44)]

Thus, A and (B U C) are independent.
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1.66. Consider the experiment of throwing two fair dice (Prob. 1.37). Let A be the event that the sum of the
dice is 7, B be the event that the sum of the dice is 6, and C be the event that the first die is 4. Show
that events A and C are independent, but events B and C are not independent.

From Fig. 1-3 (Prob. 1.5), we see that

A= {G Goso Tyyo G50 G500 B3
B={C5 5y G330 Gy G5y
C= {§4] > §427 t—’43’ t—’44’ C’45’ C46}

and ANC={C,} BNC={C,}

_6_1 _5 _6_1
Now P(A) = % 6 P(B) 56 P(C) %6
and P(ANC) = % = P(A)P(C)

Thus, events A and C are independent. But

P(BNC)= % # P(B)P(C)

Thus, events B and C are not independent.

1.67. In the experiment of throwing two fair dice, let A be the event that the first die is odd, B be the event
that the second die is odd, and C be the event that the sum is odd. Show that events A, B, and C are
pairwise independent, but A, B, and C are not independent.

From Fig. 1-3 (Prob. 1.5), we see that

im—piy 81
P(A) = P(B) = P(C) = 32 =
P(AﬂB)=P(AnC)=P(BﬂC)=%=i
Thus P(ANB)= % = P(A)P(B)
P(ANC) =4 = PAP(O)
P(BNC)= i = P(B)P(C)

which indicates that A, B, and C are pairwise independent. However, since the sum of two odd numbers is even,
{ANBNC)=Jand

PANBNC)=0# % = P(A)P(B)P(C)
which shows that A, B, and C are not independent.
1.68. A system consisting of n separate components is said to be a series system if it functions when all n

components function (Fig. 1-16). Assume that the components fail independently and that the probability
of failure of component i is p,, i = 1, 2, ..., n. Find the probability that the system functions.
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1.69.

1.70.

[of S [EX) S 0
L L= L=

Fig. 1-16 Series system.

Let A, be the event that component s, functions. Then
P(A)=1-P@A)=1-p,

Let A be the event that the system functions. Then, since A.’s are independent, we obtain

n

=[Tr@an=]]a-pr» (1.107)
i=1

i= i=1

P(A)=P

n
A
i=1

A system consisting of n separate components is said to be a parallel system if it functions when at
least one of the components functions (Fig. 1-17). Assume that the components fail independently and
that the probability of failure of component i is p,, i = 1, 2, ..., n. Find the probability that the system
functions.

]

gt

S

2

:

]

Fig. 1-17 Parallel system.

Let A be the event that component s, functions. Then
P(A) = p,

Let A be the event that the system functions. Then, since K[,’s are independent, we obtain

ﬂAi)=l—Hpi (1.108)
i=1 i=1

P(A)=1-P(A)=1-P

Using Eqgs. (1.107) and (1.108), redo Prob. 1.40.

From Prob. 1.40, p, = % i=1,2,3,4, where p,is the probability of failure of switch s,. Let A be the event
that there exists a closed path between a and b. Using Eq. (1.108), the probability of failure for the parallel

- —(L)L)=t
P34 = P3P4 2 |\ 2 4

Using Eq. (1.107), the probability of failure for the combination of switches 2, 3, and 4 is

1 1 3.5
=1—-|l1—-=ll1-=]=1-===
Pass ( 2)( 4) g8 8

combination of switches 3 and 4 is
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1.72.
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Again, using Eq. (1.108), we obtain

1 5 5 11
P(A)=1— 122222t
(A) PiP23a (2)(8) 6 16

A Bernoulli experiment is a random experiment, the outcome of which can be classified in but one of
two mutually exclusive and exhaustive ways, say success or failure. A sequence of Bernoulli trials
occurs when a Bernoulli experiment is performed several independent times so that the probability of
success, say p, remains the same from trial to trial. Now an infinite sequence of Bernoulli trials is
performed. Find the probability that (a) at least 1 success occurs in the first » trials; (b) exactly k
successes occur in the first n trials; (¢) all trials result in successes.

(a) In order to find the probability of at least 1 success in the first n trials, it is easier to first compute the
probability of the complementary event, that of no successes in the first n trials. Let A; denote the event
of a failure on the ith trial. Then the probability of no successes is, by independence,

P(A,NA,N---NA)=PA)PA,) - PA)=(1-p) (1.109)

Hence, the probability that at least 1 success occurs in the first n trials is 1 — (1 — p)".
(b) In any particular sequence of the first n outcomes, if k successes occur, where k =0, 1, 2, ..., n, thenn—k

n
failures occur. There are (k) such sequences, and each one of these has probability p* (1 — p)"~*.

n _
Thus, the probability that exactly k successes occur in the first n trials is given by (k)pk(l -p) k.
(¢) Since Ki denotes the event of a success on the ith trial, the probability that all trials resulted in successes
in the first n trials is, by independence,

P(A,NA,N--NA)=PA)PA,) - PA)=p (1.110)

Hence, using the continuity theorem of probability (1.89) (Prob. 1.34), the probability that all trials
result in successes is given by

P(i

Let S be the sample space of an experiment and S = {A, B, C}, where P(A) = p, P(B) = g,and P(C) = r.
The experiment is repeated infinitely, and it is assumed that the successive experiments are independent.
Find the probability of the event that A occurs before B.

n

lim () 4;
1T

0 p<i1
1 p=

=P

1

s

n—ow n—ow

n
= lim P(ﬂAi
i=1

= limp"={
1

Suppose that A occurs for the first time at the nth trial of the experiment. If A is to have occurred before B, then
C must have occurred on the first (n— 1) trials. Let D be the event that A occurs before B.

Then

where D, is the event that C occurs on the first (n — 1) trials and A occurs on the nth trial. Since D,’s are
mutually exclusive, we have

P(D)= P(D,)
n=1
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1.73.

Since the trials are independent, we have

P(D) = [P(O" ' PA)=r""p

S e o p p
ThUS, P(D): r ]pzp rk = =
,Zl ,Zo l=r ptq
P(A
or P(D)=# (1.111)
P(A)+ P(B)

sincept+qg+r=1.

In a gambling game, craps, a pair of dice is rolled and the outcome of the experiment is the sum of the
dice. The player wins on the first roll if the sum is 7 or 11 and loses if the sum is 2, 3, or 12. If the
sumis 4,5,6,8,9,or 10, that number is called the player’s “point.” Once the point is established,
the rule is: If the player rolls a 7 before the point, the player loses; but if the point is rolled before a 7,

the player wins. Compute the probability of winning in the game of craps.

Let A, B, and C be the events that the player wins, the player wins on the first roll, and the player gains point,
respectively. Then P(A) = P(B) + P(C). Now from Fig. 1-3 (Prob. 1.5),

6 2 2
P(B)=Psum=7) +Pum=11)=2 + = = =
(B) (sum = 7) (sum ) 36 360
Let A, be the event that point of k occurs before 7. Then
P(C)= D P(A)P(point = k)
kE{4,5,6,8,9,10}
By Eq. (1.111) (Prob. 1.72),
P =k
P(A) = (sum = &) (1.112)
P(sum = k) + P(sum =7)
Again from Fig. 1-3,
3 4 5
P(sum=4)=— P(sum=5)=— P(sum =6)=—
( ) 76 ( ) 36 ( ) 36
5 4 3
P(sum =8)=— P(sum=9)=— P(sum =10)=—
( ) 36 ( ) 36 ( ) 36
Now by Eq. (1.112),
1 2 5
P(A)==  P(A5)==  P(A)=—
(A4) 3 (As) 3 (Ag) v
5 2 1
P(Ag)=— P(Ay)== P(A) ==
(Ag T (Ag) 3 (Ayo) 3

Using these values, we obtain

2,134
P(A)=P(B) + P(C) == +——=049293
(A=PB)+PCO)=5+ 55
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SUPPLEMENTARY PROBLEMS

1.74. Consider the experiment of selecting items from a group consisting of three items {a, b, c}.
(a) Find the sample space S, of the experiment in which two items are selected without replacement.

(b) Find the sample space S, of the experiment in which two items are selected with replacement.
1.75. Let A and B be arbitrary events. Then show that A C B if and only if AU B = B.
1.76. Let A and B be events in the sample space S. Show that if A C B, then B CA.
1.77. Verify Eq. (1.19).
1.78. Show that
(ANB)\C=(A\C)N(B\CO)

1.79. Let A and B be any two events in S. Express the following events in terms of A and B.
(a) At least one of the events occurs.

(b) Exactly one of two events occurs.

1.80. Show that A and B are disjoint if and only if

AUB=AAB

1.81. LetA, B, and Cbe any three events in S. Express the following events in terms of these events.
(a) Either Bor C occurs, but not A.
(b) Exactly one of the events occurs.

(¢) Exactly two of the events occur.
1.82. Show that F = {S, J} is an event space.

1.83. LetS={1,2,3,4}and F, = {S, D, {1,3},{2,4}}, F, = {S, ,{1,3}}. Show that F, is an event space, and
F, is not an event space.

1.84. In an experiment one card is selected from an ordinary 52-card deck. Define the events: A = select a King,
B = select a Jack or a Queen, C = select a Heart.

Find P(A), P(B), and P(C).

1.85. A random experiment has sample space S ={a, b, c}. Suppose that P({a, c¢}) =0.75 and P({b, ¢)} = 0.6. Find
the probabilities of the elementary events.

1.86. Show that
(@) PAUB)=1-PANB)
(b) P(ANB)=1-P(A)-P(B)
(¢) P(AAB)=PAUB)-PANB)
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1.87.

1.88.

1.89.

1.90.

1.91.

1.92.

1.93.

1.94.

1.95.

1.96.

1.97.

1.98.

1.99.

47

Let A, B, and C be three events in S. If P(A) = P(B) = }T, P(C) =
P(BNC)=0,find PAUBU C).

.PANB)=L PANC) = and

L L
3 8

Verify Eq. (1.45).

Show that

PA,NA, N NA)=PA,)+PA)+ -+ PA)-(n—1)

In an experiment consisting of 10 throws of a pair of fair dice, find the probability of the event that at least
one double 6 occurs.

Show that if P(A) > P(B), then P(A | B) > P(B | A).

Show that
(@ PA|A)=1
by PANB|C)=PA|C)PB|ANC)

Show that

PANBNC)=PA|BNC)PB | C)PC)

An urn contains 8 white balls and 4 red balls. The experiment consists of drawing 2 balls from the urn without
replacement. Find the probability that both balls drawn are white.

There are 100 patients in a hospital with a certain disease. Of these, 10 are selected to undergo a drug treatment
that increases the percentage cured rate from 50 percent to 75 percent. What is the probability that the patient
received a drug treatment if the patient is known to be cured?

Two boys and two girls enter a music hall and take four seats at random in a row. What is the probability that
the girls take the two end seats?

Let A and B be two independent events in S. It is known that P(A N B) = 0.16 and P(A U B) = 0.64. Find P(A)
and P(B).

Consider the random experiment of Example 1.7 of rolling a die. Let A be the event that the outcome is an odd
number and B the event that the outcome is less than 3. Show that events A and B are independent.

The relay network shown in Fig. 1-18 operates if and only if there is a closed path of relays from left to right.
Assume that relays fail independently and that the probability of failure of each relay is as shown.
What is the probability that the relay network operates?

o2 |
0.2
° 0.4 0.4 0.1 o
(o3 |
03

Fig. 1-18
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ANSWERS TO SUPPLEMENTARY PROBLEMS

1.74. (@) S, ={ab,ac, ba, bc, ca, cb}
(b) S, ={aa,ab, ac, ba, bb, bc, ca, cb, cc}

1.75. Hint: Draw a Venn diagram.

1.76. Hint: Draw a Venn diagram.

1.77. Hint: Draw a Venn diagram.

1.78. Hint: Use Eqgs. (1.10) and (1.17).
1.79. (@) AUB; (b) AAB

1.80. Hint: Follow Prob. 1.19.

1.81. (@) AN(BUC)
() {ANBUOC)}IU{BNAUC)}U{CNAUB)}
(©) {ANBNCYU{ANC)NBYU{(BNC)N A}

1.82. Hint: Follow Prob. 1.23.

1.83. Hint: Follow Prob. 1.23.

1.84. P(A)=1/13,P(B)=2/13,P(C)=13/52
1.85. P(a) =0.4, P(b)=0.25, P(c) =0.35

1.86. Hint: (a) Use Egs. (1.21)and (1.39).
(b) Use Egs. (1.43), (1.39), and (1.42).

(¢) Usea Venn diagram.
13
1.87. =
24
1.88. Hint: Prove by induction.
1.89. Hint: Use induction to generalize Bonferroni’s inequality (1.77) (Prob. 1.28).

1.90. 0.246

1.91. Hint: Use Eqgs. (1.55) and (1.56).
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1.92.

1.93.

1.94.

1.95.

1.96.

1.97.

1.98.

1.99.

Hint:  Use definition Eq.(1.55).

Hint:  Follow Prob. 1.53.

0.424

0.143

1

6

P(A)=PB)=0.4

Hint:  Show that P(A N B) = P(A)P(B) = 1/6.

0.865



Random Variables

2.1 Introduction

In this chapter, the concept of a random variable is introduced. The main purpose of using a random variable is
so that we can define certain probability functions that make it both convenient and easy to compute the prob-
abilities of various events.

2.2 Random Variables

A. Definitions:

Consider a random experiment with sample space S. A random variable X(T) is a single-valued real function that
assigns a real number called the value of X(C) to each sample point T of S. Often, we use a single letter X for
this function in place of X(C) and use r.v. to denote the random variable.

Note that the terminology used here is traditional. Clearly a random variable is not a variable at all in the
usual sense, and it is a function.

The sample space S is termed the domain of the r.v. X, and the collection of all numbers [values of X(T)] is
termed the range of the r.v. X. Thus, the range of X is a certain subset of the set of all real numbers (Fig. 2-1).

Note that two or more different sample points might give the same value of X(C), but two different num-
bers in the range cannot be assigned to the same sample point.

A 4

X(©)

Fig. 2-1 Random variable X as a function.

EXAMPLE 2.1 In the experiment of tossing a coin once (Example 1.1), we might define the r.v. X as (Fig. 2-2)

XH) =1 X(T)=20

50
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Note that we could also define another r.v., say Y or Z, with

YH)=0,YT)=1 or ZH)=0,ZT)=0

' >
0 1 R
Fig. 2-2 One random variable associated with coin tossing.
B. Events Defined by Random Variables:
If X is ar.v. and x is a fixed real number, we can define the event (X = x) as
X =x) ={C X© = x} (2.1

Similarly, for fixed numbers x, x,, and x,, we can define the following events:
X=x={ X0 =x}
X >x) = {C X©) > x} 22)
(x, <X=1x,)={Cx <X© =x,}

These events have probabilities that are denoted by
P(X =x) = P{C: X©) = x}
PX =x)=P{T X© =x} (2.3)

P(X > x) = P{C: X(©) > x}
P(x, <X =x,) = P{C: x; < X(©) = x,}

EXAMPLE 2.2 In the experiment of tossing a fair coin three times (Prob. 1.1), the sample space S, consists of
eight equally likely sample points S, = {HHH, ..., TTT}.If X is the r.v. giving the number of heads obtained,
find (@) P(X = 2); (b) PX < 2).

(a) LetA C S, be the event defined by X = 2. Then, from Prob. 1.1, we have

A=(X=2)={C X©) =2} = {HHT, HTH, THH}

Since the sample points are equally likely, we have
3
P(X=2)=PA)= 3

(b) Let B C S, be the event defined by X < 2. Then

B=(X<2)={&:X(©)<2}={HTT, THT, TTH, TTT }

and P(X<2)=P(B)=%=%
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2.3 Distribution Functions

A. Definition:

The distribution function [or cumulative distribution function (cdf)] of X is the function defined by
F,(x) = P(X=x) —o <y < @ 24

Most of the information about a random experiment described by the r.v. X is determined by the behavior
of F,(x).

B. Properties of F,(x):

Several properties of F(x) follow directly from its definition (2.4).

1. 0=F(x=1 2.5)

2. Fylx) = Fylx) if x;, <x, (2.6)

3. }1—{2 F,(x) = Fy() =1 2.7

4 xl)irchX(x) =F (- =0 2.8)
1 = + = + = 1

5 xll}}} F,(x) = F(a") = Fy(a) a 0520 a+ e 9

Property 1 follows because F',(x) is a probability. Property 2 shows that F,(x) is a nondecreasing function
(Prob. 2.5). Properties 3 and 4 follow from Eqs. (1.22) and (1.26):

lim P(X < x)= P(X = ) = P(S) =1

x— o

lim P(X <x)=P(X=-o)=P(D)=0

x—>—

Property 5 indicates that F', (x) is continuous on the right. This is the consequence of the definition (2.4).

TABLE 2-1

x X=yx) FX(x)
1 > 0

0 {TTT} é

1 {TTT, TTH, THT, HTT} %:%

2 {TTT,TTH,THT,HTT, HHT, HTH, THH} %

3 S 1

4 S 1

EXAMPLE 2.3 Consider the r.v. X defined in Example 2.2. Find and sketch the cdf F (x) of X.

Table 2-1 gives F,(x) = P(X = x) forx = —1,0, 1, 2, 3, 4. Since the value of X must be an integer, the
value of F,(x) for noninteger values of x must be the same as the value of F, (x) for the nearest smaller integer
value of x. The F, (x) is sketched in Fig. 2-3. Note that F* , (x) has jumps at x = 0, 1,2, 3, and that at each jump
the upper value is the correct value for F (x).
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F0)
1r- ¢
3 H |
4l :
1L i
3 5
L | | | | »
-1 0 1 2 3 4 X
Fig. 2-3

C. Determination of Probabilities from the Distribution Function:

From definition (2.4), we can compute other probabilities, such as P(a < X = b), P(X > a),and P(X < b)
(Prob. 2.6):

Pla < X = b) = F,(b) - F,(a) (2.10)
PX>a)=1— F,(a) @2.11)
P(X<b)=Fy(b") b= lim b—e (2.12)

2.4 Discrete Random Variables and Probability Mass Functions

A. Definition:

Let X be ar.v. with cdf F,(x). If F,(x) changes values only in jumps (at most a countable number of them) and is
constant between jumps —that is, F',(x) is a staircase function (see Fig. 2-3) —then X is called a discrete random
variable. Alternatively, X is a discrete r.v. only if its range contains a finite or countably infinite number of points.
The r.v. X in Example 2.3 is an example of a discrete r.v.

B. Probability Mass Functions:

Suppose that the jumps in F,(x) of a discrete r.v. X occur at the points x,, x,, ..., where the sequence may be
either finite or countably infinite, and we assume x, < X, if i <j.

Then Fyx)—Fyx)=PX=x) - PX=x,_)=PX=x) (2.13)
Let Py(x) = PX = x) (2.14)

The function p,(x) is called the probability mass function (pmf) of the discrete r.v. X.

Properties of p, (x):

1. 0=p,(x)=1 k=1,2,... (2.15)

2. py@) =0 ifxzx, (k=1,2,..) (2.16)

3. pr(xk)=1 (2.17)
k

The cdf F, (x) of a discrete r.v. X can be obtained by

Fy()=PX=x)= Y py(x) (2.18)

X=X
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2.5 Continuous Random Variables and Probability Density Functions

A. Definition:

Let X be ar.v. with cdf F,(x). If F,(x) is continuous and also has a derivative dF',(x)/dx which exists everywhere
except at possibly a finite number of points and is piecewise continuous, then X is called a continuous random
variable. Alternatively, X is a continuous r.v. only if its range contains an interval (either finite or infinite) of
real numbers. Thus, if X is a continuous r.v., then (Prob. 2.18)

PX=2x)=0 (2.19)

Note that this is an example of an event with probability O that is not necessarily the impossible event .
In most applications, the r.v. is either discrete or continuous. But if the cdf F(x) of a r.v. X possesses fea-
tures of both discrete and continuous r.v.’s, then the r.v. X is called the mixed r.v. (Prob. 2.10).

B. Probability Density Functions:

Let fx(x)= dFx () (2.20)
dx
The function f, (x) is called the probability density function (pdf) of the continuous r.v. X.
Properties of f,(x):
1. f,)=0 221
2. fj’ fe()dx=1 (2.22)
3. fy(x) is piecewise continuous.
b
4. P(a<X=b) :fa fx(x) dx (2.23)
The cdf F,(x) of a continuous r.v. X can be obtained by
FX(x)=P(X5x)=f_me(§) d§ (2.24)
By Eq. (2.19), if X is a continuous r.v., then
Pa<X=b)=Pla=X=b)=Pa=X<b)=Pa<X<b)
b (2.25)
=fa Sfx(x) dx = Fy(b) — Fy(a)
2.6 Mean and Variance
A. Mean:
The mean (or expected value) of ar.v. X, denoted by u,, or E(X), is defined by
E X px () X: discrete
uy =E(X)=1* (2.26)

f j; Xfy(x)dx X: continuous
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B. Moment:

The nth moment of ar.v. X is defined by

2 X" Py (x) X: discrete
EX =11, 2.27)
f __X"fxy(x)dx  X: continuous

Note that the mean of X is the first moment of X.

C. Variance:

The variance of ar.v. X, denoted by o7} or Var (X), is defined by
oy = Var(X) = E{[X — EX)I*} (2.28)

Thus,

E(xk — Uy )2 Px(x) X: discrete
ol =1*% (2.29)
f_m(x — Uy )2 fx(x)dx  X: continuous

Note from definition (2.28) that
Var(X) = 0 (2.30)

The standard deviation of ar.v. X, denoted by o, is the positive square root of Var(X).
Expanding the right-hand side of Eq. (2.28), we can obtain the following relation:

Var(X) = EX*) — [EX)P (231

which is a useful formula for determining the variance.

2.7 Some Special Distributions

In this section we present some important special distributions.
A. Bernoulli Distribution:
A r.v. X is called a Bernoulli r.v. with parameter p if its pmf is given by
pyk) = PX = k) = p(1 — p)'~* k=0,1 (2.32)
where 0 = p = 1. By Eq. (2.18), the cdf F,(x) of the Bernoulli r.v. X is given by
0 x<0

Fy(x)=11—-p 0=x<1 (2.33)

1 x=1
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Fig. 2-4 illustrates a Bernoulli distribution.

px(x) FX(X)
1p-------- *——
pl-----e-- (P
1-p 1-p
> : >
0 1 X 0 1 X

Fig. 2-4 Bernoulli distribution.

The mean and variance of the Bernoulli r.v. X are

uy =EX)=p
oy = VarX) = p(1 — p)

(2.34)
(2.35)

A Bernoulli r.v. X is associated with some experiment where an outcome can be classified as either a “success”
or a “failure,” and the probability of a success is p and the probability of a failure is 1 — p. Such experiments are

often called Bernoulli trials (Prob. 1.71).

B. Binomial Distribution:

A r.v. X is called a binomial r.v. with parameters (n, p) if its pmf is given by
n e
pX(k)IP(XZk)I( k)pk(l—p) ko k=0,1,...,n

where 0 = p = 1 and

W

which is known as the binomial coefficient. The corresponding cdf of X is

n

Fx(x):E (n]pk(l—p)"k n=x<n+l1
i—o \ k

Fig. 2-5 illustrates the binomial distribution forn = 6 and p = 0.6.

FyX)
Py(X) 1.0+ 0.9533 ——
35331
0.4} 0.81 !
i 0.7667
0.3- 0.2765 0.6 i
0.4557'
- | Gl
02r 51382 0.1866 04 5
0.1}k 0.2 0.1792;
0.0369 I |0.0467 0041 T
0.00414—1 1y  0.0041
0 1 2 3 4 5 6 x 0 1 2 3 4 5 6 x
(@) (b)

Fig. 2-5 Binomial distribution with n = 6, p = 0.6.

(2.36)

(2.37)
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The mean and variance of the binomial r.v. X are (Prob. 2.28)

uy = EX) = np (2.38)
oy = Var(X) = np(1 — p) (2.39)
A binomial r.v. X is associated with some experiments in which n independent Bernoulli trials are performed

and X represents the number of successes that occur in the n trials. Note that a Bernoulli r.v. is just a binomial
r.v. with parameters (1, p).

C. Geometric Distribution:
Ar.v. X is called a geometric r.v. with parameter p if its pmf is given by

X =PX=x)=0—-pyr'p x=1,2,.. (2.40)
where 0 = p = 1. The cdf F(x) of the geometric r.v. X is given by

FX)=PX=x)=1—-(1—-p)* x=1,2,.. (241)

Fig. 2-6 illustrates the geometric distribution with p = 0.25.

PyX)
0.25 A 0.25
0.20 +
0.1875
0.15 +
0.1406

0.10 - 0.1055

E 0.0791
0.05 0.0445

E 0.0188

] 1 0.0059

0.00 | T ¢ ¢ o >

0 5 10 15 x

Fig. 2-6 Geometric distribution with p = 0.25.
The mean and variance of the geometric r.v. X are (Probs. 2.29 and 4.55)

1
uxy =E(X)=— (2.42)
P

02 = Var(X) =1 P (2.43)

A geometric r.v. X is associated with some experiments in which a sequence of Bernoulli trials with prob-
ability p of success is obtained. The sequence is observed until the first success occurs. The r.v. X denotes the
trial number on which the first success occurs.
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Memoryless property of the geometric distribution:
If X is a geometric r.v., then it has the following significant property (Probs. 2.17,2.57).

PX>i+jlX>i)=PX>)) i,j=1 (2.44)

Equation (2.44) indicates that suppose after i flips of a coin, no “head” has turned up yet, then the proba-

bility for no “head” to turn up for the next j flips of the coin is exactly the same as the probability for no “head”
to turn up for the first i flips of the coin.

Equation (2.44) is known as the memoryless property. Note that memoryless property Eq. (2.44) is only valid
when i, j are integers. The geometric distribution is the only discrete distribution that possesses this property.

D. Negative Binomial Distribution:

Ar.v. X is called a negative binomial r.v. with parameters p and k if its pmf is given by
-1 -
Px(x)=P<x:x>=(; l)p"a—mx O x=kk+ (2.45)

where 0 = p = 1.
Fig. 2-7 illustrates the negative binomial distribution for k = 2 and p = 0.25.

PxXX) 01085

?e
011 0094 400989
o
@ 0.0890
0.08 1 ¢ 0.0779
0.0625 o 0.0667
006+ ¢ ¢ 0.0563
[ )
[ )
0.04 ¢
0.0208
0.02 ‘ ‘
0.0067
0.00 L IITT"T'Q. >
5 10 15 X
Fig. 2-7 Negative binomial distribution with k = 2 and p = 0.25.
The mean and variance of the negative binomial r.v. X are (Probs. 2.80, 4.56).
k
uxy =E(X)=— (2.46)
p
1 —
o2 =Var(X)= "(—2”) (2.47)
p

A negative binomial r.v. X is associated with sequence of independent Bernoulli trials with the probability of
success p, and X represents the number of trials until the kth success is obtained. In the experiment of flipping a



CHAPTER 2 Random Variahles 59

coin, if X = x, then it must be true that there were exactly kK — 1 heads thrown in the first x — 1 flippings, and a

head must have been thrown on the xth flipping. There are ( * J sequences of length x with these properties,

and each of them is assigned the same probability of p*~! (1 — p)* .

Note that when k = 1, X is a geometrical r.v. A negative binomial r.v. is sometimes called a Pascal r.v.

E. Poisson Distribution:

A r.v. X is called a Poisson r.v. with parameter A (> 0) if its pmf is given by

k
px(k):P(sz)=e*"% k=0,1, ... (2.48)
The corresponding cdf of X is
n )\,k
FX(x)=e_)“E— n=x<n+l1 (249)
k!
k=0
Fig. 2-8 illustrates the Poisson distribution for A = 3.
FX(x)
1ok 0.9664 0-988 0.9961
0.916
0.8152.
Py 0.8 - ?—
0.6472 "
03 0.6 |
0.2240 0.2240 :
0.4232 !
®2T 61404 0.1680 o4r :
0. 1008 0.1992
0 0422;« 00504 T :
: 0 0216 '
0 0081 > 0'04980_: 1 1 1 1 1 1 1 >
0 3 8 X 0 1 2 3 4 5 6 7 8 x
(a) (b)
Fig. 2-8 Poisson distribution with A = 3.
The mean and variance of the Poisson r.v. X are (Prob. 2.31)
u, =EX) =24 (2.50)
o7 = Var(X) = A 2.51)

The Poisson r.v. has a tremendous range of applications in diverse areas because it may be used as an approx-
imation for a binomial r.v. with parameters (n, p) when n is large and p is small enough so that np is of a mod-
erate size (Prob. 2.43).

Some examples of Poisson r.v.’s include

1. The number of telephone calls arriving at a switching center during various intervals of time
2. The number of misprints on a page of a book
3. The number of customers entering a bank during various intervals of time
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F. Discrete Uniform Distribution:

Ar.v. X is called a discrete uniform r.v. if its pmf is given by

px()c)=P(X=x)=l I=|x=n (2.52)
n

The cdf F,(x) of the discrete uniform r.v. X is given by

0 0<x<l1
| x]
Fy(x)=P(X=x)=1— 1<x<n (2.53)
n
1 n=x

where | x | denotes the integer less than or equal to x.

Fig. 2-9 illustrates the discrete uniform distribution for n = 6.

Py Fy 9
A it —
a —
%r i ~—
1 i
ot e—
> : ! ! ! ! ! >
0o 1 2 3 4 5 6 X 0 1 2 3 4 5 6 X
@) (b)
Fig. 2-9 Discrete uniform distribution with n = 6.
The mean and variance of the discrete uniform r.v. X are (Prob. 2.32)
1
Uy =E(X)=E(n+1) (2.54)
0} =Var(X)= é (n*—1) (2.55)

The discrete uniform r.v. X is associated with cases where all finite outcomes of an experiment are equally
likely. If the sample space is a countably infinite set, such as the set of positive integers, then it is not possi-
ble to define a discrete uniform r.v. X. If the sample space is an uncountable set with finite length such as the
interval (a, b), then a continuous uniform r.v. X will be utilized.
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G. Continuous Uniform Distribution:

Ar.v. X is called a continuous uniform r.v. over (a, b) if its pdf is given by

1

a<x<b

fxx)=4{b—a

0 otherwise

The corresponding cdf of X is

0 XxX=a
Fe)=12"%  a<x<b

b—a

1 x=b

Fig. 2-10 illustrates a continuous uniform distribution.
The mean and variance of the uniform r.v. X are (Prob. 2.34)

61

(2.56)

(2.57)

(2.58)

(2.59)

+b
uy =EX)=1
2
0'2 = Var(X) = M
X 12
£ x) Fyx)
1
L
b-a ! !
0 a b X’ 0

Fig. 2-10 Continuous uniform distribution over (a, b).

(b)

2 4

A uniform r.v. X is often used where we have no prior knowledge of the actual pdf and all continuous values

in some range seem equally likely (Prob. 2.75).

H. Exponential Distribution:

Ar.v. X is called an exponential r.v. with parameter A (> 0) if its pdf is given by

A x>0

fx(x):{o x<0

which is sketched in Fig. 2-11(a). The corresponding cdf of X is

l—e ™ x=0
Fx(x):
0 x<0

(2.60)

2.61)
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which is sketched in Fig. 2-11(b).

fyX) F )
A T
re™
l-e™
>
0 X 0 x>
(@) (b)
Fig. 2-11 Exponential distribution.
The mean and variance of the exponential r.v. X are (Prob. 2.35)
1
oy = EX) =~ (2.62)
> 1
Oy =Var(X)=F (2.63)

Memoryless property of the exponential distribution:
If X is an exponential r.v., then it has the following interesting memoryless property (cf. Eq. (2.44)) (Prob. 2.58)

PX>s+1]|X>s)=PX>0 5,t=0 (2.64)

Equation (2.64) indicates that if X represents the lifetime of an item, then the item that has been in use for
some time is as good as a new item with respect to the amount of time remaining until the item fails. The
exponential distribution is the only continuous distribution that possesses this property. This memoryless
property is a fundamental property of the exponential distribution and is basic for the theory of Markov
processes (see Sec. 5.5).

I. Gamma Distribution:

Ar.v. X is called a gamma r.v. with parameter (o, A) (a > 0 and A > 0) if its pdf is given by

)\,e_)"x ()Lx)a_l
—_— x>0
Sx(x)= I'(a) (2.65)
0 x<0
where I'(r) is the gamma function defined by
()= f: e X dx a>0 (2.66)
and it satisfies the following recursive formula (Prob. 2.26)
IFa+)=aTl(a) a>0 (2.67)

The pdf f,(x) with (o, A) = (1, 1), (2, 1), and (5, 2) are plotted in Fig. 2-12.
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Fxx)

0.8
a=1,A=1

a=2,A=1
04
a=5,A=2

02

0 I I I I >
0 1 2 3 4 X

Fig. 2-12 Gamma distributions for selected values of a and A

The mean and variance of the gamma r.v. are (Prob. 4.65)

oy = EX) = (2.68)
02 =Var(X)= % (2.69)

Note that when a = 1, the gamma r.v. becomes an exponential r.v. with parameter A [Eq. (2.60)], and when
a = n/2, A = 1/2, the gamma pdf becomes

B (1/2)e—x/2 (x/z)n/Z—l
fx(x)= T/ (2.70)

which is the chi-squared r.v. pdf with n degrees of freedom (Prob. 4.40). When o = n (integer), the gamma
distribution is sometimes known as the Erlang distribution.

J. Normal (or Gaussian) Distribution:

Ar.v. X is called a normal (or Gaussian) r.v. if its pdf is given by

1 —-w?ied®)
X)=——e¢€ 2.71
= s @7
The corresponding cdf of X is
1 CE— 2 22 1 (x—wlo _2
Fy(x)= e G0N e e 5"%d 272
KW= s= =, 3 272)

This integral cannot be evaluated in a closed form and must be evaluated numerically. It is convenient to use the
function ®(z), defined as

®()=—=[ e E2 g 2.73)

¥~
S
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to help us to evaluate the value of F,(x). Then Eq. (2.72) can be written as

FX(x)=(I>( x_“) (2.74)
(02

Note that
P(—2)=1—- D) (2.75)

The function ®(z) is tabulated in Table A (Appendix A). Fig. 2-13 illustrates a normal distribution.

0.5

B =

> = >
0 X X
@) (b)
Fig. 2-13 Normal distribution.
The mean and variance of the normal r.v. X are (Prob. 2.36)
e = EX) = (2.76)
o = Var(X) = o? .77)

We shall use the notation N(u; o?) to denote that X is normal with mean y and variance 2. A normal r.v. Z
with zero mean and unit variance—that is, Z = N(0; 1)—is called a standard normal r.v. Note that the cdf of the
standard normal r.v. is given by Eq. (2.73). The normal r.v. is probably the most important type of continuous r.v.
It has played a significant role in the study of random phenomena in nature. Many naturally occurring random phe-
nomena are approximately normal. Another reason for the importance of the normal r.v. is a remarkable theorem
called the central limit theorem. This theorem states that the sum of a large number of independent r.v.’s, under cer-
tain conditions, can be approximated by a normal r.v. (see Sec. 4.8C).

2.8 Conditional Distributions

In Sec. 1.6 the conditional probability of an event A given event B is defined as

P(AN B)

P(A|B) = 2B)

P(B)>0

The conditional cdf Fy (x | B) of ar.v. X given event B is defined by

_P{(X=0)NB}

Fy(x|B)=P(X =x|B) 5B)

(2.78)
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The conditional cdf F,(x | B) has the same properties as F (). (See Prob. 1.43 and Sec. 2.3.) In particular,

Fy(—» | B)=0 Fy=| B) =1 (2.79)
P@a<X=b|B) =Fyb|B) — Fya | B) (2.80)

If X is a discrete r.v., then the conditional pmf p,(x, | B) is defined by

P{(X=x,)N B}

X, |B)=P(X=x,|B)= 2.81
Px(x|B)=P(X =x|B) 7B (2.81)
If X is a continuous r.v., then the conditional pdf f, (x | B) is defined by
dF, B
fx(x|B)=—X§| ) (2.82)

SOLVED PROBLEMS

Random Variables

2.1.

2.2.

Consider the experiment of throwing a fair die. Let X be the r.v. which assigns 1 if the number that
appears is even and O if the number that appears is odd.

(@) What is the range of X?
() Find P(X = 1)and P(X = 0).

The sample space S on which X is defined consists of 6 points which are equally likely:

§=1{1,2,3,4,5,6}

(a) Therange of Xis R, = {0, 1}.
(b) (X=1)={2,4,6}.Thus,P(X=1) =§= % Similarly, (X = 0) = {1,3,5}, and P(X = 0) =%.

Consider the experiment of tossing a coin three times (Prob. 1.1). Let X be the r.v. giving the number
of heads obtained. We assume that the tosses are independent and the probability of a head is p.

(@) What is the range of X?
(b) Find the probabilities P(X = 0), P(X = 1), P(X = 2),and P(X = 3).

The sample space S on which X is defined consists of eight sample points (Prob. 1.1):

S = {HHH, HHT, ..., TTT}

(a) Therange of Xis R, = {0, 1, 2, 3}.

(b) IfP(H)=p,then P(T) =1 — p. Since the tosses are independent, we have

P(X=0)=P{TTT}] =1 — p)}

P(X=1)=P{HTT} + PH{THT}] + P{TTH}] =3(1 —p)’p
P(X=2)=P[{HHT}| + P{HTH}] + P{THH}] = 3(1 — p)p
P(X =3) = P[{HHH}] = p*
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2.3. An information source generates symbols at random from a four-letter alphabet {a, b, ¢, d} with
probabilities P(a) = 1 Pb) = > and P(c) = Pd) = é. A coding scheme encodes these symbols into
binary codes as follows:

24.

a 0

b 10
c 110
d 111

Let X be the r.v. denoting the length of the code—that is, the number of binary symbols (bits).

(@)
(b)

(@)
(b)

What is the range of X?

Assuming that the generations of symbols are independent, find the probabilities P(X = 1),
P(X =2),PX = 3),and P(X > 3).

The range of X is R, = {1,2,3}.
PX=1) = P[{a}] = P(a) =
P(X=2)=P[b}] = P(b) =

P(X =3) = Pl{c,d}] = P(c) + P(d) =
PX>3)=P)=0

| ==

Consider the experiment of throwing a dart onto a circular plate with unit radius. Let X be the r.v.
representing the distance of the point where the dart lands from the origin of the plate. Assume that the
dart always lands on the plate and that the dart is equally likely to land anywhere on the plate.

(a)
(b)

(@)
(b)

What is the range of X?
Find (i) PX < a) and (ii) P(a < X < b),wherea < b = 1.

The range of Xis R, = {x: 0 =x<1}.

(i) (X < a) denotes that the point is inside the circle of radius a. Since the dart is equally likely to fall
anywhere on the plate, we have (Fig. 2-14)
_ mad®

P(X<a)==—5=a",0=a<l.
l

(i) (a <X <b) denotes the event that the point is inside the annular ring with inner radius a and outer
radius b. Thus, from Fig. 2-14, we have

m(b® —a’) _ b2

= —a*,0=a<b<l.
T

Pla<X<b)=

Distribution Function

2.5. Verify Eq. (2.6).

Letx, <x,. Then (X = x)) is a subset of (X = x,); that is, (X = x,) C(X = x,). Then, by Eq. (1.41), we have

PX=x)=PX=ux,) or Fy(x) =F,(x,)
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Fig. 2-14
2.6. Verity (a) Eq. (2.10); (b) Eq. (2.11); (¢) Eq. (2.12).
(a) SinceX=b)=X=a)U@<X=bandX=a)N(a<X=b)=J,wehave

PX=b)=PX=a)+Pa<X=Db)
or Fy(b) = Fy(a) + Pl@a<X=b)
Thus, P(a <X =b) = Fyb) — F(a)

(b) Since X=a)UX>a)=Sand X =a)N (X >a) =T, we have

P(X<a)+ P(X>a)=P®S) =1

Thus, PX>a)=1-PX=a)=1-Fya)
(¢) Now P(X<b)=P[lin(1)XSb—s]=linéP(XSb—s)
£>0 £>0

=lim Fy(b =€) = Fy(b7)

>0

2.7. Show that

(@) Pla=X=b)=PX=a)+ Fyb) — Fya) (2.83)
(b) Pla <X <b)=Fb) — Fya) — PX = b) (2.84)
(€©) Pla=X<b)=PX=a)+ F,b) — Fya) — PX = b) (2.85)

(a) Using Egs. (1.37) and (2.10), we have

Pa=X=b)=P[(X=a)U@<X=D)]
=PX=a)t+Pa<X=Db)
=PX=a)+ F(b) — Ffa)

(b) We have

Pla<X=b)=Pl(a<X<b)U(X=b)]
= Pla<X<b)+PX=b)
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Again using Eq. (2.10), we obtain
Pla<X<b)y=Pa<X=b)— PX=0b)
=F,(b) — F(a) — P(X = b)

(¢) Similarly, Pa=X=b)=Pla=X<b)UX=0>)]
=Pla=X<b)+ PX=0>b)

Using Eq. (2.83), we obtain

Pa<=X<b)=Pla=X=b)—PX=h)
= P(X = a) + F(b) — F\(a) — P(X = b)

2.8. Let X be the r.v. defined in Prob. 2.3.
(a) Sketch the cdf F,(x) of X and specify the type of X.
(b) Find (1)) PX = 1), (ii) P(1 < X = 2), (iii) P(X > 1), and (iv) P(1 = X = 2).

(a) From the result of Prob. 2.3 and Eq. (2.18), we have

0 x<l1

l 1=x<2
Fen=P(X=x)=1>

é 2=x<3

4

1 x=3

which is sketched in Fig. 2-15. The r.v. X is a discrete r.v.

(b) (i)  We see that
PX=1)=F(l) = 12

(ii) By Eq. (2.10),

Pl <X=2)=F,/2)—-F/(l)== —

IS

L_1
2 4

(iiiy By Eq. (2.11),

PX>1)=1-F()=1-

L
2

o=

(iv) By Eq. (2.83),

P(I=X=2)=PX=1)+Fy2) — F(1) :15+

NS
o=
ENR

Fy)
1 ¢
—
1 —_—
!
: | | >
0 1 2 3 X

Fig. 2-15
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2.9. Sketch the cdf F(x) of the r.v. X defined in Prob. 2.4 and specify the type of X.

From the result of Prob. 2.4, we have

0 x<0
Fy(x)=P(X =x)={x* 0=x<1
1 1=x

which is sketched in Fig. 2-16. The r.v. X is a continuous r.Vv.

Fyfx)
1+
; >
0 1 X
Fig. 2-16
2.10. Consider the function given by
0 x<0
1 1
Fx)y={x+= 0=x<-
2 2
1 x= 1
2

(a) Sketch F(x) and show that F(x) has the properties of a cdf discussed in Sec. 2.3B.

(b) If X is the r.v. whose cdf is given by F(x), find (i) P(X = ), (ii) P(O < X = %), (iii) P(X = 0), and
(iV\PO=X<= ‘_1‘).

(c) Specify the type of X.

(a) The function F(x) is sketched in Fig. 2-17. From Fig. 2-17, we see that 0 = F(x) = 1 and F(x) is a
nondecreasing function, F(—) =0, F(©) = 1, F(0) = %, and F(x) is continuous on the right. Thus, F(x)
satisfies all the properties [Egs. (2.5) to (2.9)] required of a cdf.

(b) (i) We have

plx<l|=plLl]=l,1_3
4 4) 4 2 4
(ii) By Eq. (2.10),
plocx=L|=rlL|-Foy=3-1-1
4 4 4 2 4
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(iii) By Eq. (2.12),

P(X=0)=P(XSO)—P(X<0)=F(0)—F(07)=%—0=l

2
(iv) By Eq. (2.83),
Plosx=L|=px=0)+F|L|-Foy=L+3-1-3
4 4 2 4 2 4
(¢) Ther.v. Xis a mixedr.v.
Fy)
1
1
2
. L . L
0 1 1 x>
2
Fig. 2-17

2.11. Find the values of constants a and b such that

_ . —x/b
Flx)= 1—ae x=0
0 x<0

is a valid cdf.

To satisfy property 1 of F\(x) [0 = F\(x) = 1], we must have 0 =a = 1 and b > 0. Since b > 0, property 3 of

F(x) [Fy(0) = 1] is satisfied. It is seen that property 4 of F,(x) [F (—%) = 0] is also satisfied. For 0 =a = 1 and

b >0, F(x) is sketched in Fig. 2-18. From Fig. 2-18, we see that F(x) is a nondecreasing function and continuous on
the right, and properties 2 and 5 of F,(x) are satisfied. Hence, we conclude that F(x) given is a valid cdf if 0 =a =1
and b > 0. Note that if a = 0, then the r.v. Xis a discrete r.v.; if @ = 1, then Xis a continuous r.v.; and if 0 <a <1,
then X is a mixed r.v.

1—a ¢

o 4

Fig. 2-18
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Discrete Random Variables and Pmf’s

2.12. Suppose a discrete r.v. X has the following pmfs:

Py =3¢

ool —

py(h =1 Py =7 Py =

(a) Find and sketch the cdf F, (x) of the r.v. X.
(h) Find (i) PX =1),3G1) Pl <X =3), (i) P(1 =X =3).

(a) By Eq. (2.18), we obtain

0 x<l1

l 1=x<2

2
Fy(x)=P(X=x)= % 2=x<3

z 3=x<4

8

1 x=4

which is sketched in Fig. 2-19.
(b) (1) ByEq.(2.12), we see that

PX<1)=F(17)=0
(i) By Eq. (2.10),

1

7
PUSX=3)=F(3) - F)=g ==

oo | w

(iii) By Eq. (2.83),

1,7 1_7
PUI=X=3)=P(X=D)+F,Q3) - F()=—+———=—
( )=P( )+ Fx(3) = Fx(1) S t3 7273

Fy&)
1F —
[ —
- ._I

.1 1
E | I

A

1 ] ] ] >
0 1 2 3 4 X

2.13. (a) Verify that the function p(x) defined by

Ei x=0,1,2,...
p(X)=1 4\ 4

0 otherwise

is a pmf of a discrete r.v. X.
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(b) Find (i) PX = 2), (1) PX = 2), (ii1) PX = 1).
(a) Itisclear that 0 =p(x) =1 and
» (1) S W
/ 4 4,1
4
Thus, p(x) satisfies all properties of the pmf [Eqs. (2.15) to (2.17)] of a discrete r.v. X.
(b) (i) By definition (2.14),
3 2
P(X=2)=p2)==|—| =—
( )=p(2) 4[ 1 J

(ii) By Eq.(2.18),

2
3(, 1, 1)_63
P(XSZ)—Ep(i)—[l-i--i-)—
< 4" 4 16) o4

(iii) By Eq. (1.39),

PX=1)=1-P(X=0)=1—p0)=1—

Alw
-

2.14. Consider the experiment of tossing an honest coin repeatedly (Prob. 1.41). Let the r.v. X denote the
number of tosses required until the first head appears.

(a) Find and sketch the pmf p,(x) and the cdf F,(x) of X.
(b) Find (i) P(1 < X = 4), (ii)) PX > 4).

(a) From the result of Prob. 1.41, the pmf of X is given by

k
pX(x)=pX(k)=P(X=k)=(;) k=12, ...

Then by Eq. (2.18),

& | K
Fy(x)=P(X=x)= Y px(k)= E(%)

k=1 k=1

where Ix| is the integer part of x or

0 x<l1

l 1=x<2
2

g 2=x<3
4

Fx(x)=

n
1—() n=x<n-+1

These functions are sketched in Fig. 2-20.
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(b) () ByEq.(2.10),

15 1 7
PI<X=4)=Fy@4) —F()=——~=
( )= Fy(4)— Fx(1) 6 216

(ii) By Eq. (1.39),

73

15 1
PX>4)=1-PX=4)=1-F,4)=1—-—=—
( ) ( ) x(4) 616
Py Fibo)
1+ 1
i 1
1 1L —
2 l 2 !
I T ? 1 > i 1
0 1 2 3 4 X 0 1 2
Fig. 2-20

2.15 Let X be a binomial r.v. with parameters (n, p).
(a) Show that p,(x) given by Eq. (2.36) satisfies Eq. (2.17).
() FindPX > 1)ifn=6andp =0.1.

(a) Recall that the binomial expansion formula is given by

(a+b)'= S (n)akb"_k
2

Thus, by Eq. (2.36),
D=3y (")p"(lp)"" =(p+1=p)'=1"=1
k=0 k=0 k

(b) Now P(X>1)=1-P(X=0)—P(X=1)

=1- 6
0

=1-(0.9)* —6(0.1)(0.9)° =0.114

0.1°(0.9)° —( f)(0.1)1(0.9)5

2.16. Let X be a geometric r.v. with parameter p.
(@) Show that p, (x) given by Eq. (2.40) satisfies Eq. (2.17).
(b) Find the cdf F(x) of X.

(a) Recall that for a geometric series, the sum is given by

oo
S -
n=0

a
1—

ar" =

INZE

|r|<l

<

n=1

Thus,

(2.86)

(2.87)
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(b) Using Eq. (2.87), we obtain

(-pfp _

PX>H= 3 (—p)'p= 1-p) 2.88

(X >k F;f P,y TP (2.88)

Thus, PX=k=1-PX>k=1-(1—pk (2.89)
and F ) =PX=x)=1—(1 —p) x=1,2,.. (2.90)

Note that the r.v. X of Prob. 2.14 is the geometric r.v. with p = 15

2.17. Verify the memoryless property (Eq. 2.44) for the geometric distribution.
PX>i+j|X>i)=PX>) Lhj=1
From Eq. (2.41) and using Eq. (2.11), we obtain

PX>i)=1—-PX=1)=(l —py fori= 1 (2.91)

Now, by definition of conditional probability, Eq. (1.55), we obtain

PUX>i+ j}N{X>i}]
P(X>1i)
CP(X>i+))
P(X>i)
_a-pt
(1-p)

PX>i+j|X>i)=

=(1-pY=P(X>j) i, j>1

2.18. Let X be a negative binomial r.v. with parameters p and k. Show that p,(x) given by Eq. (2.45) satisfies
Eq. (2.17) for k = 2.

From Eq. (2.45)

x—1 —
px() = pra—py* x=kk+1, ...
k—1
Letk=2and 1 — p = ¢g. Then
— x—1 2 x—2 _ _ 2 x—2 _ 2.92
px(x)= L] =(x—1p°q x=2,3, ... (2.92)
> px) =Y (x =D p’q" 7 =p’ +2p%q+3p’¢’ +4p’q +-- (2.93)
x=2 x=2
Now let
S=p*+2p*q+3p’q* +4p ¢ + -
Then

gS=p’q+2p>q* +3p°q +4piqt+
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Subtracting the second series from the first series, we obtain

A-q)S=p° +p’q+p°q* +p’q’ +--

1
:p2(1+q+q2+q3+~~):p2§

and we have

Thus,
Y px(n=1
x=2

2.19. Let X be a Poisson r.v. with parameter A.
(a) Show that p,(x) given by Eq. (2.48) satisfies Eq. (2.17).
(b) Find P(X > 2) with A = 4.
(a) By Eq.(2.48),
w g A
E px(k)=e EF=€ e =1
k=0 k=0 "

(b) With A =4, we have

k

_4 4
—_ 4T
px(k)=e o

2
and P(X=2)= Y py(k)=¢ *(1+4+8)=0238
k=0

Thus, PX>2)=1-PX=2)=1-0.238=0.762

Continuous Random Variables and Pdf’s
2.20. Verify Eq. (2.19).
From Eqs. (1.41) and (2.10), we have
PX=x)=Px—e<X=x)=Fx) — Fx— ¢

for any £ = 0. As F(x) is continuous, the right-hand side of the above expression approaches 0 as ¢ = 0.

Thus, P(X = x) = 0.

2.21. The pdf of a continuous r.v. X is given by

l 0<x<l1
3

Kx)=12 1<x<2
3
0 otherwise

Find the corresponding cdf F,(x) and sketch f,(x) and F,(x).
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By Eq. (2.24), the cdf of X is given by

CHAPTER 2 Random Variables

0 x<0
[ lag=2 0=x<l
03 3
Fx(x)=4 11 x2 2 1
f0§d§+fl§d§—§x—§ 1=x<2
11 22
f0§d§+fl §d§:1 2=x
The functions f,(x) and F(x) are sketched in Fig. 2-21.
£ ) Fy)
1 e e et
2 2
— ~ -
3 I 1 3
| 1
i I il
3 : 3
1 : 1 1
0 1 2 x> 0 1 2 x>
(@) (b)
Fig. 2-21
2.22. Let X be a continuous r.v. X with pdf
o) kx 0<x<l1
x =
X 0 otherwise

where k is a constant.

(@) Determine the value of k and sketch f, (x).
(b) Find and sketch the corresponding cdf F, (x).
(¢) Find P(% <X=2).

(a) By Eq.(2.21), we must have k > 0, and by Eq. (2.22),

f(;kxdx=§=1

Thus, k = 2 and

X 0<x<l1

otherwise

2
fx()= 0

which is sketched in Fig. 2-22(a).
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(b) By Eq.(2.24), the cdf of X is given by

0 x<0

Fy(x)= f(f2§d§=x2 0=x<l1

folzgda;:l l=x

which is sketched in Fig. 2-22(b).

1+

) 4

Fig. 2-22

(c) By Eq. (2.25),

1

P 4<X§2)=FX(2)—FX

2
L U U 0 e b}
4 4 16

2.23. Show that the pdf of a normal r.v. X given by Eq. (2.71) satisfies Eq. (2.22).

From Eq. (2.71),
=) 1 © —(x— 2/(20_2)
() dx = — e T dx
S I

Lety = (x — w/(V20). Then dx = V2o dy and

L= e-wleoh L=
e dx=—f eV dy
T | 7=l

Let fio e dy=1

Then I'= [f_:e”‘2 dx][f_mwe’yz dy]= [° 7 e aray

77
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Letting x = rcos Band y = r sin 60 (that is, using polar coordinates), we have

I'= foznf:e_rzr dr do = 2nf:e_’zr dr=m

Thus, 1= " e ay=\n (2.94)
o 1 o _.2 1
and Ndx=—~ | e dy=—In=1
| In J.. I
2.24. Consider a function
f(X)ZLe(ﬂCz”*“) —o< x <o
Jr

Find the value of a such that f(x) is a pdf of a continuous r.v. X.

F) = I o L @ xtvara-1a)
Jr Jr
1 =122 | —(a—
:{ o1 ]e (a-1/4)
7

If f(x) is a pdf of a continuous r.v. X, then by Eq. (2.22), we must have

f°° Fyde=e @V (7 Ly
— N

Now by Eq. (2.52), the pdf of N T A T
y q - > p 2 ’ 2 \/E . .

o 1 1) ® —(a—1/4)
—e dx=1 and (x)dx=e =1

from which we obtain a = i.

2.25. Ar.v. X is called a Rayleigh r.v. if its pdf is given by
X —x%i20?) £>0
fx(x)=10? (2.95)
0 x<0

(@) Determine the corresponding cdf F, (x).
(b) Sketch f, (x) and F, (x) for o = 1.

(a) By Eq.(2.24), the cdf of X is
= 156 00 gg x=0
0 52

Lety = £2/(20?). Then dy = (1/0%)E dE, and

2 2
Fy(x)= f; 2o )e—y dy=1-— e—Xz/(ZUZ) (2.96)
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(b) With o= 1, we have

Fe) = xef’cz/2 x>0
0 x<0

—x2/2
and Fy(x)= l—e™ x=0
0 x<0

These functions are sketched in Fig. 2-23.

fyX) Fyx)
0.6 - 1+
0.8
0.4 -
0.6 -
0.2} 04
0.2 -
0 | | » 0 | | | »
0 1 2 3 X 0 1 2 3 X

Fig. 2-23 Rayleigh distribution with o = 1.

2.26. Consider a gamma r.v. X with parameter (o, A) (a > 0 and A > 0) defined by Eq. (2.65).

(@) Show that the gamma function has the following properties:

1. T(a+1)=al(x) a>0 (2.97)
2. Ttk +1)=k! k (= 0): integer (2.98)
3. T(4)=+x (2.99)

(b) Show that the pdf given by Eq. (2.65) satisfies Eq. (2.22).

(@) Integrating Eq. (2.66) by parts (u = x*~!, dv = e ¥ dx), we obtain

Nay=—e s [ + [T *(@= 1" ax
o 0 (2.100)

=(a—1) f:e‘*x“‘2 dx=(a—Dl(a—1)

Replacing aby a + 1 in Eq. (2.100), we get Eq. (2.97).
Next, by applying Eq. (2.97) repeatedly using an integral value of o, say a = k, we obtain

I'tk+1) =kI'tk) =k(tk — 1DI'(k— 1) = k(k — 1) --- (2)I'(1)
Since r(h= [ dr=1

it follows that I'(k + 1) = k!. Finally, by Eq. (2.66),

L)_ > —x 12
I‘(z)—foe X dx
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Lety = x"/2. Then dy = % x~ 12 dx, and

F( ! )—21‘:6_”2 dy:foc e_y2 dy:\/;

B —o

in view of Eq. (2.94).
(b) Now

= o pede PO A% e g e
[ rax= [ e dx—r(a) Sl e ax

Lety = Ax. Then dy = A dx and

a a

*© A © —y a1 A
dx = y = T(@)=1
ffoc‘fx(x) I‘(Ot))na fO ey Y r(a))ba (a)

Mean and Variance

2.27. Consider a discrete r.v. X whose pmf is given by

l x=-—1,0,1
px(x) =33
0 otherwise

Plot p,(x) and find the mean and variance of X.

(@)
(b) Repeat (a) if the pmf is given by
1 x=-2,0,2

px(x)=13
0 otherwise

(@) The pmf p,(x) is plotted in Fig. 2-24(a). By Eq. (2.26), the mean of Xis

MX=E(X)=%(—1+O+1)=O

By Eq. (2.29), the variance of X is

0% = Var(X) = E[(X — "] = E(X?) = %[H)Z +(0) + (1] =§

(b) The pmf p,(x) is plotted in Fig. 2-24(b). Again by Eqgs. (2.26) and (2.29), we obtain

,uX=E(X)=%(—2+O+2)=O

Py P
1 1
| | | | > | | | | >
—2 - 0 1 2 X -2 -1 0 1 2 X
@ ()

Fig. 2-24
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0% =Var(X) = %[(—2)2 +(0)* +(2)°] =§

Note that the variance of X is a measure of the spread of a distribution about its mean.

2.28. Let ar.v. X denote the outcome of throwing a fair die. Find the mean and variance of X.

Since the die is fair, the pmf of Xis

1
Px()=pxR) =2 k=126

By Eqgs. (2.26) and (2.29), the mean and variance of X are

MX=E(X)=%(1+2+3+4+5+6)=%=3.5
| 7 2 7 2 7 2 7 2 7 2 7 2 35
ox=—|[1==| +|2-=| +|3-2| +|4—=| +|5—=| +|6—-=| |==
6 2 2 2 2 2 2 12

Alternatively, the variance of X can be found as follows:

E(X2)=é(12+22 +32+42+52+62)=%

Hence, by Eq. (2.31),

2
2 B —EP =2 [ L] =32
oy =E(X")—[E(X)] o (2 o

2.29. Find the mean and variance of the geometric r.v. X defined by Eq. (2.40).

81

To find the mean and variance of a geometric r.v. X, we need the following results about the sum of a geometric

series and its first and second derivatives. Let

g(r)=2ar"=& |r|<1

n=0

®

' dg(r) n-1 a
Th =2 gyt = 4
e § a2 (1—r)

n=1

vy d78(r) _ w2 _ 2a
g'(r)= e = nzzan(n —r = - r)3

By Eqgs. (2.26) and (2.40), and letting ¢ = 1 — p, the mean of X is given by

where Eq. (2.102) is used witha = pand r = q.
To find the variance of X, we first find E[X(X — 1)]. Now,

E[X(X —D]= Y x(x=Dg*'p="y pgx(x—Dg*
x=1 x=2
- 2pq _2pq_29_20-p)

a-q° p° p P

where Eq. (2.103) is used with a = pg and r = q.

(2.101)

(2.102)

(2.103)

(2.104)

(2.105)
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Since E[X(X — 1)] = E(X? — X) = E(X?) — E(X), we have

B = EX(X -+ By =212 L 27 p (2.106)
p

Then by Eq. (2.31), the variance of Xis

0% =Var(X)=E(X*)—

-5 = (2.107)

2.30. Let X be a binomial r.v. with parameters (n, p). Verify Egs. (2.38) and (2.39).

By Egs. (2.26) and (2.36), and letting ¢ = 1 — p, we have

E(X)= ikpxac)— Sk (Z)p"q’”
i

k=0 k=C
i n—k
“ 5 (n— k)'k‘

(n—1)! Plgnk
pE(n oie—” 4

Letting i = k — 1 and using Eq. (2.86), we obtain

(n—l)' i n-l-i
—i)li!

_npz( e

=np(p+q)" " =np)" ' =np

HD—WE

Next, E[X(x-l)]zik(k—l)px(k)—gk(k—l)( ) n—k
k=0 k=0
— < _ k n—k
21« Do _k),k, r'q
(n—2)! k=2 n—k
=n(n—1 =
e kzz —k)(k—2)!

Similarly, letting i = k — 2 and using Eq. (2.86), we obtain

(n=2)! i n—=2-i
2 (n—=2—=0li!

_n(n_l)pZE( ] ’q"727i

i=0

E[X(X —D]=n(n—1)p* 2

=n(n—=Dp°(p+q)' > =nn—1p
Thus, E(X)* =E[X(X - D]+ EX)=n(n—1)p*> +np (2.108)

and by Eq. (2.31),

oy = Var(x) =n(n —1)p* +np — (np)> = np(1 — p)
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2.31.

2.32.

2.33.

Let X be a Poisson r.v. with parameter A. Verify Egs. (2.50) and (2.51).

By Egs. (2.26) and (2.48),

i=1 (k—1)!
_ —Ai )kal _ 45 Afl:)»e’le)‘—)b
&2, (k=D! & il
Next E[X(X_l]zi k(k—l)ef)‘}h—k:)bze”‘i Ak-2
’ k=0 k! = (k=2)!

=A% 2 % =A% *et = A2

i=0
Thus, EXH)=EX(X-D]+EX)=A>+ 2
and by Eq. (2.31),

02 =Var(X) = EX?) — [EX)PP =2+ A— A2 =14

Let X be a discrete uniform r.v. defined by Eq. (2.52). Verify Egs. (2.54) and (2.55), i.e.,

1 2 1 -

=EX)==(m+1) oy =Var(X)=—(n"—1)

2 12

By Eqgs. (2.52) and (2.26), we have
1 n

< 11 1
EX)=Fxpy )= Fx=—-nm+h=_(+D

:

x=1 x=1

E(Xz)_zx px ()= %E 2—i;n(n+l)(n+;)—;(n-i-])(n-‘r;)
x=1

x=1
Now, using Eq. (2.31), we obtain

Var(X) = E(X?) — [E(X)]?

:%m+n

1 1 2
—|-=m+1
n+2) 4(n )

B (n+1)(n—1) B (n" =1

Find the mean and variance of the r.v. X of Prob. 2.22.

From Prob. 2.22, the pdf of X is

2x 0<x<l1

fx(0)= {0

otherwise

By Eq. (2.26), the mean of X is

1
2

3
—_— — 1 —_— x\
u,=EX)= [ x2x)dx=2 5

0

83

(2.109)
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By Eq. (2.27), we have

4!
E(x2)=f;x2(2x)dx=2%

Thus, by Eq. (2.31), the variance of X is

2
0% = Var(X) = E(X*) ~ [ECX)]* = % - (i) =1

2.34. Let X be a uniform r.v. over (a, b). Verify Egs. (2.58) and (2.59).
By Eqgs. (2.56) and (2.26), the mean of Xis

b

2
L
b—a b—a2a

uy =EQ0 =[x

By Eq. (2.27), we have

b 1 1 %
E(X*)= A=
S f" b—a b—a 3 ’

:%(b2+ab+a2) (2.110)

Thus, by Eq. (2.31), the variance of X is
2 _ _ 2y _ 2
oy =Var(X)=E(X") — [E(X)]
1 2 2 1 2 1 2
=—(b*+ab+da’)——(b+a)=—(Ob-
3 (4" +ab+a”) 1 (bta) B b—a)
2.35. Let X be an exponential r.v. X with parameter A. Verify Eqgs. (2.62) and (2.63).
By Eqgs. (2.60) and (2.26), the mean of Xis
uy =EX)= [ :x)be*’“ dx

Integrating by parts (u = x, dv = Ae”*dx) yields

R £ Y LTI §
E(X)=—xe 0+f0e dx

A

Next, by Eq. (2.27),
E(X2)=f:x2)»e_}‘x dx
Again integrating by parts (u = x2, dv = Ae~* dx), we obtain

2

2N .2 —ax|® © . —Ax —
E(X?)=—x’¢ 0+2f0xe dx = (2.111)
Thus, by Eq. (2.31), the variance of X is
2 1 ’ 1
2 2 2
0 =EX)-[EX) =25 —|—| =—
% =EBO) —[EQOF = (A) v
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2.36.

2.37.

Let X = N(u; 0?). Verify Egs. (2.76) and (2.77).
Using Eqs. (2.71) and (2.26), we have

0 (2 2
xe (T207) 4

1
Uy =EX)=—o
X N2mo f‘“’
Writing x as (x — w) + u, we have
E(X)=

f°° (=1 o CmwPI2et) gy u f‘” o120y g

1 1
N2mo N2ro

Letting y = x — win the first integral, we obtain

1 o _2 2 ©
E(X)=mf_wye YR dy o [T f(x)dx

The first integral is zero, since its integrand is an odd function. Thus, by the property of pdf Eq. (2.22),
we get

we=EX) = u
Next, by Eq. (2.29),

© 2 2
02 = EI(X — = — [ (=) e 0 gy
2no

N
From Eqs. (2.22) and (2.71), we have

=) (2 2
fﬁw e TWICN) gy =g \2m
Differentiating with respect to o, we obtain

0 — 2 N2 2
[7 G et g o
— % o

Multiplying both sides by 0?/V 2, we have

1 T e ) e et g 2
Wor [ —we o
Thus, 0% = Var(X)= 0"
Find the mean and variance of a Rayleigh r.v. defined by Eq. (2.95) (Prob. 2.25).

Using Egs. (2.95) and (2.26), we have

o A 2 1 o _.2 2
MXZE(X):fO x?e X/(za)dx:?fo xze X/(za)dx

Now the variance of N(0; 0?) is given by

1 % _2 2
fﬁm x2€ x“/Q2o )dx=02

N2mo

85
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2.38.

2.39.
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Since the integrand is an even function, we have

1 © 2 —x2/20?) L 5
—_— x“e dx=—0
\J2mo fo 2
© 2 _x220% . _ 1 3_ | 3
x‘e dx=—\2n0” =, |— O
or fo 5 N, /2
Then MX=E(X)=% /g 3= go (2.112)
(2 X %00 1o 3320067
Next, EXH=[ x*=e* de=— [ x dx
fo 02 02 fo

Lety = x*/(20?). Then dy = x dx/ 02, and so
E(X*)=20" [ ye ' dy=20" (2.113)

Hence, by Eq. (2.31),

oy =EX*)—[EX)) = (2 - ’2’] o’ =04290° (2.114)

Consider a continuous r.v. X with pdf f, (x). If f,(x) = 0 for x < 0, then show that, for any a > 0,
PX=a)=Hx (2.115)
a
where u, = E(X). This is known as the Markov inequality.
From Eq. (2.23),

P(Xza)=f:fx(x) dx
Since f,(x) = 0 forx <0,
u =EX) = [Cxfy@de= [Cxfe@diz=a [ fe(x)dx
Hence, fwa(x) dx=P(X=a)= g
a a
For any a > 0, show that

2
Ox

P(|X—MX|2a)sa—2 (2.116)

where u, and o} are the mean and variance of X, respectively. This is known as the Chebyshev
inequality.

From Eq. (2.23),

P(lx_‘uxlza):ffiiafx(x)dx_kf:x+afx(x)dx: ‘I“X_MX‘Zan(X)dX
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By Eq. (2.29),

CTX2 =f:°(x_ﬂx)2fx(x) dx2f

v = ux]

L)’ rwdv=a’ [ () dx

—uy|=a

o’ o2
Hence, f‘x_ux‘zafx(x)dxsa% or P(|X—HX|2a)sai2

Note that by setting a = ko, in Eq. (2.116), we obtain

1

e (2.117)

P(|X ~ x| =ko,) =

Equation (2.117) says that the probability that a r.v. will fall k or more standard deviations from its mean
is = 1/k*. Notice that nothing at all is said about the distribution function of X. The Chebyshev inequality
is therefore quite a generalized statement. However, when applied to a particular case, it may be quite
weak.

Special Distributions

2.40. A binary source generates digits 1 and O randomly with probabilities 0.6 and 0.4, respectively.
(@) What is the probability that two 1s and three Os will occur in a five-digit sequence?

(b) What is the probability that at least three 1s will occur in a five-digit sequence?

(a) LetXbe the r.v. denoting the number of 1s generated in a five-digit sequence. Since there are only two
possible outcomes (1 or 0), the probability of generating 1 is constant, and there are five digits, it is
clear that X is a binomial r.v. with parameters (n, p) = (5, 0.6). Hence, by Eq. (2.36), the probability that
two 1Is and three Os will occur in a five-digit sequence is

P(X=2)= ( Z ) (0.6)* (04)° =023

(b) The probability that at least three 1s will occur in a five-digit sequence is

P(X=3)=1-P(X=<2)

2
5
where P(X<2)= E
k=0

Hence, P(X=3)=1-0317=0.683

0.6)* (04 *=0317

2.41. A fair coin is flipped 10 times. Find the probability of the occurrence of 5 or 6 heads.

Let the r.v. X denote the number of heads occurring when a fair coin is flipped 10 times. Then X is a binomial
r.v. with parameters (n, p) = (10, %). Thus, by Eq. (2.36),

6 10 | k | 10—k
P=X=6)= ( )() () =0451
,25 k2] 2

2.42. Let X be a binomial r.v. with parameters (n, p), where 0 < p < 1. Show that as k goes from O to n, the
pmf p,(k) of X first increases monotonically and then decreases monotonically, reaching its largest value
when k is the largest integer less than or equal to (n + 1)p.
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By Eq. (2.36), we have

(")pk(l—p)“
px _ \k _(n—k+Dp

pX(k_l) (kil)pk—l(l_p)ﬂ_k-#l k(l_p)

(2.118)

Hence, py(k) = p, (k — 1) if and only if (n —k + 1)p = k(1 — p) or k= (n + 1)p. Thus, we see that p, (k)
increases monotonically and reaches its maximum when k is the largest integer less than or equal to
(n + 1)p and then decreases monotonically.

2.43. Show that the Poisson distribution can be used as a convenient approximation to the binomial
distribution for large n and small p.

From Eq. (2.36), the pmf of the binomial r.v. with parameters (n, p) is

nn—1)n—-2)---(n—k+1) pk

_ n—k
! (I—=p)

n "
Px(k)=( k)p"(l—m ‘=
Multiplying and dividing the right-hand side by n*, we have

1-—[[1==]1-5=

(Z)p"(lmnk( i)( i)( kgl)(np)k(lzp)”

k!

If we let n — o in such a way that np = Aremains constant, then

e

n—k 2 n A —k
(l_npj :(1_) (1_) e fm=e

n n n

where we used the fact that

)\' n
lim (1 - ) =
el [

Hence, in the limit as n — %@ with np = A (and as p = A/n —0),

h n—k _a Ak
— 1- et — np=A
(k )p (I=p) p— x p

Thus, in the case of large n and small p,

nl nk A MK _
(k)p I=-p)""=e o np==»A (2.119)

which indicates that the binomial distribution can be approximated by the Poisson distribution.

2.44. A noisy transmission channel has a per-digit error probability p = 0.01.
(a) Calculate the probability of more than one error in 10 received digits.

(b) Repeat (a), using the Poisson approximation Eq. (2.119).
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(@)

(b

89

It is clear that the number of errors in 10 received digits is a binomial r.v. X with parameters (, p) = (10,

0.01). Then, using Eq. (2.36), we obtain

P(X>1)=1-P(X=0)—P(X=1)

E

=0.0042
Using Eq. (2.119) with A = np = 10(0.01) = 0.1, we have

P(X>D)=1-P(X=0)—P(X=1)

01 0D 01 (0.1)
0! 1!

=0.0047

1(? ) 0.01)° (0.99)'° —( 110)(0.01)1 0.99)°

2.45. The number of telephone calls arriving at a switchboard during any 10-minute period is known to be a
Poisson r.v. X with A = 2.

(@)
®)

(@)

(b)

Find the probability that more than three calls will arrive during any 10-minute period.

Find the probability that no calls will arrive during any 10-minute period.

From Eq. (2.48), the pmf of X is

k
pX(k)=P(X=k)=e_2% k=0,1,...

3 2k
Thus, P(X>3)=1-P(X<3)=1— Ee_z—
L,k

:1—e‘2(1+2+i2+%)zo.143

P(X=0)=p0) =e=2=0.135

2.46. Consider the experiment of throwing a pair of fair dice.

(a)
(b)

(@)

(b)

Find the probability that it will take less than six tosses to throw a 7.

Find the probability that it will take more than six tosses to throw a 7.

From Prob. 1.37(a), we see that the probability of throwing a 7 on any toss is 1 Let X denote the number of
tosses required for the first success of throwing a 7. Then, it is clear that X is a geometric r.v. with parameter

p= é. Thus, using Eq. (2.90) of Prob. 2.16, we obtain

3

5
P(X<6)=P(X55)=FX(5)=1—( 6) ~0.598

Similarly, we get
P(X>6)=1—-P(X=6)=1—F;(6)

RS

=1—-
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2.47. Consider the experiment of rolling a fair die. Find the average number of rolls required in order to
obtain a 6.

Let X denote the number of trials (rolls) required until the number 6 first appears. Then X is given by
geometrical r.v. with parameter p = é. From Eq. (2.104) of Prob. 2.29, the mean of X is given by

Thus, the average number of rolls required in order to obtain a 6 is 6.

2.48. Consider an experiment of tossing a fair coin repeatedly until the coin lands heads the sixth time. Find
the probability that it takes exactly 10 tosses.

The number of tosses of a fair coin it takes to get 6 heads is a negative binomial r.v. X with parameters
p =0.5 and k = 6. Thus, by Eq. (2.45), the probability that it takes exactly 10 tosses is

10—1 ° *
e -3
6—1 2 2
9 1 6 1 4 ) 10
IHE R
5/\2 2 5141\ 2
2.49. Assume that the length of a phone call in minutes is an exponential r.v. X with parameter A = Loof

someone arrives at a phone booth just before you arrive, find the probability that you will have to wait
(a) less than 5 minutes, and (b) between 5 and 10 minutes.

(a) From Eq. (2.60), the pdf of Xis

—e x>0

fxx)={10
0 x<0

Then

5
=1—-¢%=0393

PX<5)= fs%e”"“o dx=—e¢ 0
0

(b) Similarly,
P(5<X<10)= f‘oie*"“‘) dr=e¢ % —¢'=0239
510

2.50. All manufactured devices and machines fail to work sooner or later. Suppose that the failure rate is
constant and the time to failure (in hours) is an exponential r.v. X with parameter A.

(@) Measurements show that the probability that the time to failure for computer memory chips in a
given class exceeds 10* hours is e~ ! (=0.368). Calculate the value of the parameter A.

(b) Using the value of the parameter A determined in part (a), calculate the time x,, such that the
probability that the time to failure is less than x, is 0.05.
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(@)

(b

From Eq. (2.61), the cdf of X is given by

1—e™ x>0
Fo=1 ¢
0 x<0

Now P(X>10")=1-P(X=<10*)=1—-F,(10*)

0% a0t -
=1—(1— ¢ M0"y= 20 _

from which we obtain A = 1074,

We want

Fy(x)) = P(X=x,) =0.05
Hence, 1—e™=1—¢ 0% =005
or e 107 =095

from which we obtain

x, = —10%1n (0.95) = 513 hours

2.51. A production line manufactures 1000-ohm (€2) resistors that have 10 percent tolerance. Let X denote the
resistance of a resistor. Assuming that X is a normal r.v. with mean 1000 and variance 2500, find the
probability that a resistor picked at random will be rejected.

Let A be the event that a resistor is rejected. Then A = {X <900} U {X > 1100}. Since {X <900} N
{X> 1100} = J, we have

P(A) = P(X <900) + P(X>1100) = F,,(900) + [1 — F,(1100)]

Since X is a normal r.v. with u = 1000 and o2 = 2500 (o = 50), by Eq. (2.74) and Table A (Appendix A),

900 —1000

Fy(900) =
x(900) ( =

)=<1>(—2)=1—c1>(2)

1100 — 1000

F,(1100)=®
oo 100~

)—<I>(2)

Thus, P(A)=2[1 — ®(2)] = 0.045

2.52. The radial miss distance [in meters (m)] of the landing point of a parachuting sky diver from the center
of the target area is known to be a Rayleigh r.v. X with parameter o> = 100.

(a)

®)

(@)

(b)

Find the probability that the sky diver will land within a radius of 10 m from the center of the
target area.

Find the radius r such that the probability that X > r is e”! (=0.368).
Using Eq. (2.96) of Prob. 2.25, we obtain
P(X=10) = F(10) = 1 — ¢ 100200 = | — ¢70550.393
Now
PX>n=1-PX=r=1-F.r)

=1- (1 _ e*rl/ZOO) — e*r2/200 — e—]

from which we obtain r? = 200 and r = V' 200 = 14.142 m.
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Conditional Distributions

2.53. Let X be a Poisson r.v. with parameter A. Find the conditional pmf of X given B = (X is even).

From Eq. (2.48), the pdf of X is

k

px(k):e_}‘% k=0,1,...

Then the probability of event B is

0 )\,k
P(B)=P(X=0,2,4,...)= er L
k=even k'
Let A = {Xis odd}. Then the probability of event A is
00 A,k
P(A)=P(X=1,3,5,..)= el
k =odd k'

Now

k =even k=odd k=0
By o k
A A - —A 2= -
E 17_26172612( Y gyt = g2
k=even k! k=odd k! k=0 k!

Hence, adding Eqs. (2.120) and (2.121), we obtain

©

AR “22
P(B)= E e FZE(I—H’ )

k =even

Now, by Eq. (2.81), the pmf of X given Bis

P{(X=k)NB}

k|B)=
Px( | ) P(B)

Ifkiseven, X =k)CBand X =k)NB=(X=k).Ifkis odd, (X =k) N B = J. Hence,

PX=k _ 2" 2

P(B) it SYIve = k even
pxtk1B)=1 e K
PO _ k odd
P(B)

2.54. Show that the conditional cdf and pdf of X given the event B = (a < X = D) are as follows:

0 XxX=a

Fy(x) — Fy(a)

Fo(xla<X=b)= a<x=b
Kl T Re) - @
1 x>b
0 x=a
fx(xla<X=b)= G a<x=b

I @ ae
0 x>b

(2.120)

(2.121)

(2.122)

(2.123)

(2.124)
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2.55.

2.56.

Substituting B = (¢ < X = b) in Eq. (2.78), we have

FX(x|a<XSb):P(XSx|a<XSb):P{(ng)m(a<xsb)}
Pla<X=b)
1G] xX=a
Now X=x)N@<X=b)=1a<X=x) a<x=b
(a<X=b) x>b
Hence, FX(x|a<XSb)=L®)= x=<a
Pla<X=b)

Pla<X=x)_Fy(x)—Fx(a)
Pla<X=b) Fy(b)—Fy(a)
Pa<X=b) _,
Pla<X=b)

Fy(xla<X=b)= a<x=<bh

Fy(x|la<X=b)= x>b

93

By Eq. (2.82), the conditional pdf of X given a < X = b is obtained by differentiating Eq. (2.123) with respect

to x. Thus,
0 X=a
O AW =
Fx(x|a<XSb)= Fy (b) — Fy (a) fbfx(g)dg a<x=
0 x>b

Recall the parachuting sky diver problem (Prob. 2.48). Find the probability of the sky diver landing
within a 10-m radius from the center of the target area given that the landing is within 50 m from the

center of the target area.
From Eq. (2.96) (Prob. 2.25) with 0> = 100, we have
FX(X) =1- e—xZ/Z()O

Setting x = 10 and b = 50 and a = — % in Eq. (2.123), we obtain

P(X =10|X =50)= Fy (10| X =50) = Fy10)
Fy (50)
[ — 1007200
= 1 — o 25007200 ~0.393
Let X = N(0; 0?). Find E(X | X > 0) and Var(X | X > 0).
From Eq. (2.71), the pdf of X = N(0; 0?) is
L 2007
(x)=——ce
Ix \N2mo
Then by Eq. (2.124),
0 x<0
fr(x| X>0)= Sx(x) 51 P e T B

[ @ 270

Hence, E(X| X >0) =2 [ e 100" gy

N2mo 0

(2.125)
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2.57.
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Lety = x%/(20?). Then dy = x dx/0?, and we get

20 > 2
EX|X>0)="= [ e7d =0\P (2.1206)

x| ) N2 fO Y T

1 © 5 _32/20?)

Next E(X*|X>0)=2 [ xe dx
’ 2o Y0
- [7 %219 gy = Var(x) = 0 (2.127)
2o YT '

Then by Eq. (2.31), we obtain

Var(X| X >0)= E(X*| X >0)— [E(X| X > 0)]’

1—2)%0.363 o’
JT

L, (2.128)
=0

If X is a nonnegative integer valued r.v. and it satisfies the following memoryless property [see Eq. (2.44)]
PX>i+j|X>i)=PX>)) iLhj=1 (2.129)
then show that X must be a geometric r.v.

Letp, = PX=k), k=1,2,3,...,then
PX>j)= Y p =S (2.130)
k=j+1
By Eq. (1.55) and using Eqs. (2.129) and (2.130), we have

P(X>i+j)_Si+j
P(X >i) S,

1

P(X>i+j|X>i)=

=P(X>j)=5,

Hence,
S =88, (2.131)

Setting i = j = 1, we have
S,=8,8=S838,=8

S

— ¢3 — Qi+l
, =S8, ....,and S, | =S|

1
Now
S =PX>1)=1-PX=1)=1-p
Thus,
S =PX>x)=S8=0—-py

Finally, by Eq. (2.130), we get

PX=x)=PX>x—1)— P(X>x)
=1 -p'=-01-pr
= =-pr'I-U0-pl=U-pr'p x=1,2,..

Comparing with Eq. (2.40) we conclude that X is a geometric r.v. with parameter p.
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2.58. If X is nonnegative continuous r.v. and it satisfies the following memoryless property (see Eq. (2.64))

PX>s+1t|X>s)=PX>1) 5,t=0 (2.132)
then show that X must be an exponential r.v.

By Eq. (1.55), Eq. (2.132) reduces to

PUX>s+13N{X>s}) _ P(X>s+1)

P(X>s+1t|X>s5)= PX=s) >3] =P(X>1)

Hence,

PX>s+1)=PX>s)P(X>1) (2.133)
Let

PX>1) =g t=0
Then Eq. (2.133) becomes
g(s + 1) =g(s)g) s,t=0
which is satisfied only by exponential function, that is,
g = e

Since P(X > ) =0 we let « = — A(A > 0), then

P(X>x) = gx) = e ** x=0 (2.134)

Now if X is a continuous r.V.
F)=PX=x)=1-PX>x)=1—¢? x=0

Comparing with Eq. (2.61), we conclude that X is an exponential r.v. with parameter A.

SUPPLEMENTARY PROBLEMS

2.59.

2.60.

2.61.

Consider the experiment of tossing a coin. Heads appear about once out of every three tosses. If this experiment is
repeated, what is the probability of the event that heads appear exactly twice during the first five tosses?

Consider the experiment of tossing a fair coin three times (Prob. 1.1). Let X be the r.v. that counts the number
of heads in each sample point. Find the following probabilities:

(@ PX=1); (b) P(X>1); and (¢) PO <X<3).

Consider the experiment of throwing two fair dice (Prob. 1.31). Let X be the r.v. indicating the sum of the
numbers that appear.

(a) What is the range of X?
(b) Find (i) P(X = 3); (ii) P(X = 4); and (iii)) PG <X =17).
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2.62.

2.63.

2.64.

2.65.

2.66.

2.67.

2.68.

2.69.

2.70.

2.71.

CHAPTER 2 Random Variables

Let X denote the number of heads obtained in the flipping of a fair coin twice.
(a) Find the pmf of X.

(b) Compute the mean and the variance of X.

Consider the discrete r.v. X that has the pmf

P = x=1,2,3, ..
LetA={C:X(©)=1,3,5,7,...}. Find P(A).

Consider the function given by

ko _
()= x—z x=1,2,3,...

0  otherwise

where k is a constant. Find the value of & such that p(x) can be the pmf of a discrete r.v. X.

It is known that the floppy disks produced by company A will be defective with probability 0.01. The
company sells the disks in packages of 10 and offers a guarantee of replacement that at most 1 of the 10 disks
is defective. Find the probability that a package purchased will have to be replaced.

Consider an experiment of tossing a fair coin sequentially until “head” appears. What is the probability that
the number of tossing is less than 5?

Given that X is a Poisson r.v. and p,(0) = 0.0498, compute E(X) and P(X = 3).

Adigital transmission system has an error probability of 1076 per digit. Find the probability of three or more
errors in 10° digits by using the Poisson distribution approximation.

Show that the pmf p,(x) of a Poisson r.v. X with parameter 4 satifsies the following recursion formula:

px(k+1)=

_k
1 px (k) px(k—D= 7 px (k)

The continuous r.v. X has the pdf

k(x—2x%) 0<x<l

0 otherwise

fx(x) ={
where k is a constant. Find the value of k and the cdf of X.

The continuous r.v. X has the pdf

kQx—x%) 0<x<2
0 otherwise

fx(x) ={

where k is a constant. Find the value of kand P(X > 1).
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2.72.

2.73.

2.74.

2.75.

2.76.

2.77.

2.78.

2.79.

2.80.

Ar.v. X is defined by the cdf

0 x<0
Fy(x)= %x 0=x<l1

k 1=x

(a) Find the value of k.
(b) Find the type of X.
(¢) Find (i) P(% <X=1);@Gi)P (% < X < 1); and (iii) P(X > 2).

It is known that the time (in hours) between consecutive traffic accidents can be described by the exponential
r.v. X with parameter A :6%' Find (i) P(X = 60); (ii) P(X > 120); and (iii) P(10 < X = 100).

Binary data are transmitted over a noisy communication channel in a block of 16 binary digits. The
probability that a received digit is in error as a result of channel noise is 0.01. Assume that the errors
occurring in various digit positions within a block are independent.

(a) Find the mean and the variance of the number of errors per block.

(b) Find the probability that the number of errors per block is greater than or equal to 4.

Let the continuous r.v. X denote the weight (in pounds) of a package. The range of weight of packages is
between 45 and 60 pounds.

(a) Determine the probability that a package weighs more than 50 pounds.

(b) Find the mean and the variance of the weight of packages.

In the manufacturing of computer memory chips, company A produces one defective chip for every nine good
chips. Let X be time to failure (in months) of chips. It is known that X is an exponential r.v. with parameter A
=L for a defective chip and A = llo with a good chip. Find the probability that a chip purchased randomly will

fail before (a) six months of use; and (b) one year of use.

The median of a continuous r.v. X is the value of x = x, such that P(X = x;) = P(X = x,,). The mode of X is the

value of x = x at which the pdf of X achieves its maximum value.
(a) Find the median and mode of an exponential r.v. X with parameter A.

(b) Find the median and mode of a normal r.v. X = N(u, 0?).

Let the r.v. X denote the number of defective components in a random sample of » components, chosen
without replacement from a total of N components, » of which are defective. The r.v. X is known as the
hypergeometric r.v. with parameters (N, r, n).

(a) Find the pmf of X.

(b) Find the mean and variance of X.

Alot consisting of 100 fuses is inspected by the following procedure: Five fuses are selected randomly, and if
all five “blow” at the specified amperage, the lot is accepted. Suppose that the lot contains 10 defective fuses.
Find the probability of accepting the lot.

Let X be the negative binomial r.v. with parameters p and k. Verify Eqs. (2.46) and (2.47), that is,

iy = E<X)—§ o = Var(x)=X1-P)


http://73.It
http://76.In

98

CHAPTER 2 Random Variables

2.81. Suppose the probability that a bit transmitted through a digital communication channel and received in error
is 0.1. Assuming that the transmissions are independent events, find the probability that the third error occurs

2.82.

2.83.

at the 10th bit.

Ar.v. X is called a Laplace r.v. if its pdf is given by

Fe@) =ke il a>o0,

where k is a constant.
(a) Find the value of k.
(b) Find the cdf of X.

(¢) Find the mean and the variance of X.

Ar.v. Xis called a Cauchy r.v. if its pdf is given by

()=
Ix a® + x?
where a (> 0) and k are constants.

(a) Find the value of k.

(b) Find the cdf of X.

(¢) Find the mean and the variance of X.

ANSWERS TO SUPPLEMENTARY PROBLEMS

2.59.

2.60.

2.61.

2.62.

2.63.

2.64.

2.65.

2.66.

2.67.

0.329

@ 5 ® 5 © 3

(@) R,=1{2,3,4,..,12}

N IR TR |
(b) (1) ]_8, (11) 6’ (111) 2

@ pO =5 pD) =5 p@ =7
(b) EQO =1, Var(X) = %

2

3
k=6/x2
0.004
0.9375

EX)=3,PX=3)=0.5767

—oo < x < ©

—oo < x <
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2.68. 0.08

2.69. Hint: Use Eq. (2.48).

0 x=0
2.70. k=06; Fy(x)= 32 -2 0<x=l1
1 x>1
2.71. k=§;P(X>1)=1—
4 2

2.72. (a) k=1.
(b) Mixedr.v.
© O 3 G 33 (i) 0

2.73. (i) 0.632; (ii) 0.135; (iii) 0.658

2.74. (@) EX)=0.16, Var(X) = 0.158
(b) 0.165x 1074

2.75. Hint: Assume that X is uniformly distributed over (45, 60).

(a) %3; (b) EX)=52.5,Var(X) = 18.75

2.76. (a) 0.501; (b)y 0.729

2.77. (@) x,=(In2)/A=0.693/A,x, =0

D) x,=x,=u

2.78. Hint: To find E(X), note that

W fo B DB 114 e

To find Var(X), first find E[X(X — 1)].

(@) pX(x)=% x=0,1,2,...,min{r,n}
.

BN | O (O Bl

N NN\ N—-1

2.79. Hint: LetXbear.v.equal to the number of defective fuses in the sample of 5 and use the result of Prob. 2.78.
0.584

(b) EX)= n(r

,Var(X)=n
N X)
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2.80. Hint: To find E(X), use Maclaurin’s series expansions of the negative binomial 4(g) = (1 — ¢)~"and its
derivatives /'(¢g) and h"(g), and note that

Wp=1-g =3 (”"_l)qk: E(jii)q’”

=0 r—1

To find Var (X), first find E[(X — 1) (X — r — 1)] using 1"(q).

2.81. 0.017
le}”x x<0
2.82. (a) k=A2 B) Fy(x)=12
1 e x=0
(¢) E(X)=0,Var(X)=2/A>
1 1 -1 X
2.83. (a) k=alm (b) Fy(x)=—=+—tan (—)
2 a

(¢) E(X)=0,Var(X)does not exist.



Multiple Random Variables

3.1 Introduction

In many applications it is important to study two or more r.v.’s defined on the same sample space. In this chapter,
we first consider the case of two r.v.’s, their associated distribution, and some properties, such as independence of
the r.v.’s. These concepts are then extended to the case of many r.v.’s defined on the same sample space.

3.2 Bivariate Random Variables

A. Definition:

Let S be the sample space of a random experiment. Let X and Y be two r.v.’s. Then the pair (X, Y) is called a
bivariate r.v. (or two-dimensional random vector) if each of X and Y associates a real number with every ele-
ment of S. Thus, the bivariate r.v. (X, Y) can be considered as a function that to each point T in S assigns a point
(x, y) in the plane (Fig. 3-1). The range space of the bivariate r.v. (X, Y) is denoted by R and defined by

R, = A, y); LESand X(8) = x, Y(©) = y}
Ifther.v.’s X and Y are each, by themselves, discrete r.v.’s, then (X, Y) is called a discrete bivariate r.v. Sim-

ilarly, if X and Y are each, by themselves, continuous r.v.’s, then (X, Y) is called a continuous bivariate r.v. If
one of X and Y is discrete while the other is continuous, then (X, Y) is called a mixed bivariate r.v.

Fig. 3-1 (X, Y) as a function from S to the plane.

101



102 CHAPTER 3 Multiple Random Variables

3.3 Joint Distribution Functions

A. Definition:

The joint cumulative distribution function (or joint cdf) of X and Y, denoted by F),, (x, ¥), is the function defined by

Fy,(t,y) = PX=x,Y=y)

3.1)

The event (X = x, Y = y) in Eq. (3.1) is equivalent to the event A N B, where A and B are events of

S defined by

A={EES; X(E&)=x} and B={LeS8 Y =y}
and PA) = Fy(x) P(B) = F,(»)
Thus, Fy,(, y) =PANB)

If, for particular values of x and y, A and B were independent events of S, then by Eq. (1.62),

Fyy(x, y) = P(AN B) = P(AA)P(B) = Fy(x)F(y)

B. Independent Random Variables:

Two r.v.’s X and Y will be called independent if

Fyy(x y) = Fy(OF, (v)

for every value of x and y.

C. Properties of F, (X, y):
The joint cdf of two r.v.’s has many properties analogous to those of the cdf of a single r.v.

I. 0=F,xy=1

2. Ifx, =x,,andy, =y,, then
Fyy@, ) = Fyy (o, ) = Fyy (45, 5,)
Fyy@ys y) = Fyy (8, 9)) = Fyy (%, 9,)

3. lim Fyy(x,y) = Fyy(%,0)=1

y%OO
4. Xiifnm Fy,(x,y) = Fy (=%, y) = 0
y_}lznw Fo,(x,y) = Fy,(x, =) =0
5. lim Fy, (x,y) = Fyy @, y) = Fyy @)
Jim Fi(x,3) = Fylx, b*) = Fy,(x, b)
6. Px, <X=ux,Y=y)=F,, 0,y — F,.,
PX=x,y, <Y =y, = Fylx,y,) = Fy, (&, y)

7. Ifx, =x,andy, =y,,then

Note that the left-hand side of Eq. (3.12) is equal to P(x; < X = x,, y, < ¥ =y,) (Prob. 3.5).

(32)

3.3)

34

(3.5)

(3.6a)

(3.6b)

(3.7)

(3.8a)
(3.8b)
(3.9a)
(3.9b)
(3.10)

@3.11)

(3.12)
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D. Marginal Distribution Functions:
Now ImX=x,Y=y)=X=x,Y=x=X=x

y—>®©

since the condition y = % is always satisfied. Then

My () = Fyyx,29) = F ) (3.13)
Similarly, ylLr?ony(x, y) = Fy, (%, y) = F,(y) (3.14)

The cdf’s F,(x) and F,(y), when obtained by Eqs. (3.13) and (3.14), are referred to as the marginal cdf’s of X and
Y, respectively.

3.4 Discrete Random Variables—Joint Probability Mass Functions

A. Joint Probability Mass Functions:

Let (X, Y) be a discrete bivariate r.v., and let (X, Y) take on the values (x,, y].) for a certain allowable set of inte-
gers i and j. Let '

Py y) = PX = x. ¥ = ) (3.15)

The function p,, (x;, ) is called the joint probability mass function (joint pmf) of (X, Y).

B. Properties of p,, (x,, yj):

L. 0=pyk,y) =1 (3.16)
2. 2Py y) =1 (3.17)
3. P[X,))EA]l=3 3 LY, 3.18

(X, ¥) € A] - Pxy (¥ ) (3.18)

where the summation is over the points (x,, y],) in the range space R, corresponding to the event A. The joint cdf
of a discrete bivariate r.v. (X, Y) is given by

Foy ()= Y pxy (.57 (3.19)

X =x yj =y

C. Marginal Probability Mass Functions:

Suppose that for a fixed value X = x,, the r.v. Y can take on only the possible values y;(j=1,2,....n). Then

P(X:xi):px(xi):pry(xi’)’j) (3.20)

Yj
where the summation is taken over all possible pairs (x;, y].) with x; fixed. Similarly,
P(Y:yj):pY(yj):EpXY(xiayj) (321)
where the summation is taken over all possible pairs (x;, yj) with Y fixed. The pmf’s p, (x,) and py(yj), when

obtained by Egs. (3.20) and (3.21), are referred to as the marginal pmf’s of X and Y, respectively.

D. Independent Random Variables:
If X and Y are independent r.v.’s, then (Prob. 3.10)

P 3) = PP, () (3.22)
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3.5 Continuous Random Variables—Joint Probability Density Functions

CHAPTER 3 Multiple Random Variables

A. Joint Probability Density Functions:

Let (X, Y) be a continuous bivariate r.v. with cdf F,, (x, y) and let

azny(xs)’)

X,y)=
Jxy (x, ) ox dy

(3.23)

The function f,(x, y) is called the joint probability density function (joint pdf) of (X, Y). By integrating

Eq. (3.23), we have

B. Properties of f,,(x, y):

L. fxy(x7 )’) =0

[\

W

e

Foyoy) = [ [7 fey@mdnds

: f,wf,wfxy(x’ ydxdy=1
. fyy(x, y) is continuous for all values of x or y except possibly a finite set.

P[(X,Y)EA]:fffxy(X,)’)dXdy
Ry

d b
5. P(a<Xsb,c<st)=fCfafxy(x,y)dxdy

Since PX = a) = PX = b) = P(Y = c) = P(Y = d)= 0 [by Eq. (2.19)], it follows that

Pa<X=b,c<Y=d)=Pa=X=b,c=Y=d)=Pa=X<b,c=Y <d)

d b
=P(a<X<b,c<Y<d)=foafXY(x,y)dxdy

C. Marginal Probability Density Functions:

By Eq. (3.13),

Hence,

or

Similarly,

Fe(x) = Fey (o) = [* 7 fey (Em)dnd§

dFy(x)

dx = f:ofxy (x,m)dn

fx(x)=
Fe@ =" fry(x.y)dy

FO=[_ fur(ey)d

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(331)

The pdf’s f,(x) and f(y), when obtained by Egs. (3.30) and (3.31), are referred to as the marginal pdf’s of X and

Y, respectively.
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D. Independent Random Variables:
If X and Y are independent r.v.’s, by Eq. (3.4),

Fyy (x,y) = Fx (X)Fy (y)

62ny(x’y)_ d d
Then T@-an(x)a—yFy()’)
or Ty )= fx () fy (v) (3.32)

analogous with Eq. (3.22) for the discrete case. Thus, we say that the continuous r.v.’s X and Y are independent
r.v.’s if and only if Eq. (3.32) is satisfied.

3.6 Conditional Distributions

A. Conditional Probability Mass Functions:

If (X, Y) is a discrete bivariate r.v. with joint pmf p,.(x,, yj), then the conditional pmf of Y, given that X = x,,
is defined by

Pxy (X, y;)
Prix Olr) === py(x)>0 (3.33)
Px(x;)
Similarly, we can define py |, (x;|y ) as
_ Pxy (x;5 )’j)
Py iy =—"—"L" py(3)>0 (3.34)
Py (yj)
B. Properties of leX(yj |x;):
1. 0= pylx(yj|xi) =1 (3.35)
Notice that if X and Y are independent, then by Eq. (3.22),
py|x(yj|xi) = PY(YJ) and px|y(-xi|yj) = px(xi) (337)

C. Conditional Probability Density Functions:

If (X, Y) is a continuous bivariate r.v. with joint pdf f, ,(x, y), then the conditional pdf of Y, given that X = x,
is defined by

) 3.38
fyx OGP = SN =0 (338)
Jx(x)
Similarly, we can define fx| y(x]y) as
Jxy (x,¥) (3.39)

Fypy (Gl = F»>0

fr»
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D. Properties of leX(y|x):

1. fylx(y|x) =0 (3.40)
2. [, leX(y|x) dy =1 (341)
As in the discrete case, if X and Y are independent, then by Eq. (3.32),
Fox010 = £,0) and Far@ly) = £ (342)
3.7 Covariance and Correlation Coefficient
The (k, n)th moment of a bivariate r.v. (X, Y) is defined by
E E xiky? Pxy (Xi,¥;) (discrete case)
m,, =E(X*y"y=1"" (343)
f :O f io x5y fyy (X, ¥) dx dy (continuous case)
If n = 0, we obtain the kth moment of X, and if kK = 0, we obtain the nth moment of Y. Thus,
my, = EX) = u, and my, = E(Y) = u, (3.44)
If (X, Y) is a discrete bivariate r.v., then using Eqgs. (3.43), (3.20), and (3.21), we obtain
uy =EX)= E ExipXY(xi’yj)
Yj X
szi[pry(xi,yj)}zzxipx(xi) (3.45a)
Xi yj X
uy =EY)= EzyijY(x[syj)
X Yj
=3[ D pxy iy = D yipy ) (3.45b)
Yj X Yj
Similarly, we have
E(X*) =Y N xl pyy (5. 3)) = 3 57 px (%) (3.462)
Yj X Xi
EX?) =Y yipxy (5. 3) = ¥ y;py () (3.46b)
Yj i yj
If (X, Y) is a continuous bivariate r.v., then using Eqs. (3.43), (3.30), and (3.31), we obtain
ux =EX) = [7_ [ xfyy () dxdy
- f:ox[ [7 vy dy] de=[" xfy(x)dx (347a)
uy =EY) = [* 7 yfyy(x.y)dxdy
= [ pa =7 yhmay (3.47b)
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Similarly, we have
E(X?) ij;fj; xzfxy (x,y)dx dy =fjow x2fx (x) dx (3.48a)
B =[" [V fyndedy=[" V) dy (3.48b)
The variances of X and Y are easily obtained by using Eq. (2.31). The (1, 1)th joint moment of (X, Y),
m,, = EXY) (349)

is called the correlation of X and Y. If E(XY) = 0, then we say that X and Y are orthogonal. The covariance of

X and Y, denoted by Cov(X, Y) or 0y, is defined by
Cov(X,Y) = oy, = E[X — u,) (Y — u)] (3.50)
Expanding Eq. (3.50), we obtain
Cov(X, Y) = E(XXY) — EX)E(Y) 3.51)

If Cov(X, Y) = 0, then we say that X and Y are uncorrelated. From Eq. (3.51), we see that X
and Y are uncorrelated if

EXXY) = EX)E(Y) (3.52)

Note that if X and Y are independent, then it can be shown that they are uncorrelated (Prob. 3.32), but the
converse is not true in general; that is, the fact that X and Y are uncorrelated does not, in general, imply that
they are independent (Probs. 3.33, 3.34, and 3.38). The correlation coefficient, denoted by p(X, Y) or p,,,, is
defined by

Cov(X,Y) O
PXY) = pyy = WD) T (3.53)
Ox Oy Ox Oy

It can be shown that (Prob. 3.36)
| pyy | =1 or —-1=p,=1 (3.54)

Note that the correlation coefficient of X and Y is a measure of linear dependence between X and Y (see Prob. 4.46).

3.8 Conditional Means and Conditional Variances

If (X, Y) is a discrete bivariate r.v. with joint pmf p,, (x,, yj), then the conditional mean (or conditional expecta-
tion) of Y, given that X = X, is defined by

Uy, =E(Y|xi)=2yjpy‘x(yj|xi) (3.55)

Yj

The conditional variance of Y, given that X = X, is defined by

O'}z,‘xi = Var(Y|xi) =E[(Y — My‘xi )2 |x,’] = E(y]' - ‘uy‘xi )2 py‘x()’j |xi) (3.56)
Yj
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which can be reduced to

Var(Y | x) = E(Y?| x) — [E(Y |xi)]2 (3.57)
The conditional mean of X, given that Y = y, and the conditional variance of X, given that Y = y;» are given by
similar expressions. Note that the conditional mean of Y, given that X = X, is a function of X, alone. Similarly,
the conditional mean of X, given that ¥ = Yo is a function of Y; alone.

If (X, Y) is a continuous bivariate r.v. with joint pdf f,(x, y), the conditional mean of Y, given that X =
x, is defined by

by, =EQ 0= [T yfyxl0dy (3.58)

The conditional variance of Y, given that X = x, is defined by

oy, = Var(Y [0) = EIY =y, P [¥1= [ (0= 11y ) fyp Ox) dly (3.59)

which can be reduced to
Var(Y | x) = E(Y? | x) — [E(Y | x)]? (3.60)
The conditional mean of X, given that ¥ = y, and the conditional variance of X, given that Y = y, are given by

similar expressions. Note that the conditional mean of Y, given that X = x, is a function of x alone. Similarly,
the conditional mean of X, given that ¥ = y, is a function of y alone (Prob. 3.40).

3.9 N-Variate Random Variables

In previous sections, the extension from one r.v. to two r.v.’s has been made. The concepts can be extended easily
to any number of r.v.’s defined on the same sample space. In this section we briefly describe some of the extensions.

A. Definitions:

Given an experiment, the n-tuple of r.v.’s (X, X,, ..., X)) is called an n-variate r.v. (or n-dimensional random
vector) ifeach X, i = 1,2, ..., n, associates a real number with every sample point C € S. Thus, an n-variate
r.v. is simply a rule associating an n-tuple of real numbers with every § € S.
Let (X,, ..., X)) be an n-variate r.v. on S. Then its joint cdf is defined as
Fy '_‘Xn(xl, X)) =PX, =x,....X =x) (3.61)
Note that
Fyy o, 59 = 1 (3:62)

The marginal joint cdf’s are obtained by setting the appropriate X,’s to + < in Eq. (3.61). For example,

F

X Xy -1

Fxlxz(xl, x,) = Fxlxzx3 X"(x], Xy, O, ¢+, ®) (3.64)

(x

1,...,x,_1)=FX]m s X, > @) (3.63)

Xy vun
Xn—1 Xn( 1’

A discrete n-variate r.v. will be described by a joint pmf defined by

n

Px, x, O e x) = PX, = x5 0.0, X, = x) (3.65)
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The probability of any n-dimensional event A is found by summing Eq. (3.65) over the points in the n-dimen-
sional range space R, corresponding to the event A:

PI(X, s X,)EAl= Y 3 py iy, (X1ses X,) (3.66)
(X 50Xy )ERY

Properties of p,  , (X;, ..., X,):

Lo 0=py @ sx) =1 (3.67)

N3 Py x, G %) =1 (3.68)

The marginal pmf’s of one or more of the r.v.’s are obtained by summing Eq. (3.65) appropriately. For example,

Pxy ey G eeos X)) = O, Py, (X105 %) (3.69)
Py, (x) = E prl (XpaeanX,) (3.70)

Conditional pmf’s are defined similarly. For example,

p (x19-"’xn)
Pt [y Xy Con [0 2y 2) = (3.1
le.‘.Xnil(xl,...,xn_l)
A continuous n-variate r.v. will be described by a joint pdf defined by
9" Fy .x, (X, %,)
Ty, Goeees %) = o, o, (3.72)
Then Fooy Gy =" [ f (& E,) dE - dE, (3.73)
and PI(Xp,... X,)EAl= [ [ fyx, Gioenn §)) dE; - dE, (3.74)
(X 5o Xy )E Ry
Properties of f Xyy =eey X,):

Lo fy o Xy, ox) =0 (3.75)
o Sy, ) dy e dx, =1 (3.76)

The marginal pdf’s of one or more of the r.v.’s are obtained by integrating Eq. (3.72) appropriately. For
example,

Iy X (xl,...,xn,l)=f_mfxlmxn (X{5...,X,) dx, (3.77)

1

P GO = [ [ F (nes,) dy oo d, (3.78)
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Conditional pdf’s are defined similarly. For example,

Jxy o x, (515005 X,)

Tx 1x; x| Ko Xy ) = (3.79)
Xn‘Xl Xp—1 | fX]...Xn_l(-xl,---,xnfl)
Ther.v.’s X, ..., X, are said to be mutually independent if
Py, Grses %) = [ [ Py, () (3.80)
i=1
for the discrete case, and
n
fxl.,.Xn(xl,...,xn)ZHin(xi) (3.81)
i=1
for the continuous case.
The mean (or expectation) of X; in (X, ..., X)) is defined as
E...Exipxl“_xn (C (discrete case)
w=EX)=1y" " (3.82)
fm---fﬁ)cifx1 wx, (Xp,.05x,) dx; -+ dx,  (continuous case)
The variance of X, is defined as
07 = Var(X) = EI(X, = )] (3.83)
The covariance of X; and X] is defined as
0, = Cov(X,, X) = EIX, = u)}X, — w)] (3.84)
The correlation coefficient of X, and X, is defined as
Cov(X;, X; o;;
i = (X; J)= / (3.85)

00; 00;

3.10 Special Distributions

A. Multinomial Distribution:

The multinomial distribution is an extension of the binomial distribution. An experiment is termed a multino-
mial trial with parameters p,, p,, ..., p,,if it has the following conditions:

1. The experiment has k possible outcomes that are mutually exclusive and exhaustive, say A, A,, ..., A,.

k
2. PA)=p, i=1,...,k and Ep,:l (3.86)
i=1

Consider an experiment which consists of n repeated, independent, multinomial trials with parameters p 1 Py e
P, Let X, be the r.v. denoting the number of trials which result in A, Then (X Xy oeen X)) is called the multino-
mial r.v. with parameters (1, p,, p,, ..., p,) and its pmf is given by (Prob. 3.46)

n!
Px x,---x, (X1, X950, ) = ,Plxll’zxz e pt (3.87)

xl!X2!"'.xk
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k
forx, =0,1,...,n,i =1, ..., k,such thatZ1 X, = n.
=z

Note that when k = 2, the multinomial distribution reduces to the binomial distribution.

B. Bivariate Normal Distribution:

A bivariate r.v. (X, Y) is said to be a bivariate normal (or Gaussian) r.v. if its joint pdf is given by

1
fxy (X, y)= TR CXP[—EQ(X, y)] (3.88)

1
2n0,0,(1— p2)

2 2
where q(x,y)= 12 (x(—j_‘ux) _ZP(X_'UX )(y My)+[y My) (3.89)

1—-p x o, o, o,

and u, u, 072, Ovz are the means and variances of X and Y, respectively. It can be shown that p is the correlation
coefficient of X and Y (Prob. 3.50) and that X and Y are independent when p = 0 (Prob. 3.49).

C. N-variate Normal Distribution:

Let (X, ..., X)) be an n-variate r.v. defined on a sample space S. Let X be an n-dimensional random vector
expressed as an n X 1 matrix:

X=|: (3.90)

Let x be an n-dimensional vector (n X 1 matrix) defined by

X
x=|: 3.91)
xn
The n-variate r.v. (X, ..., X)) is called an n-variate normal r.v. if its joint pdf is given by
1 1 T 1
fX(x)=ﬁeXp ——x—w K (x—w (3.92)
(2m)""* |det K| 2
where T denotes the “transpose,” W is the vector mean, K is the covariance matrix given by
12! E(X))
w=EX]=|: [=| (3.93)
W] [EX,)
o Oln
K=|: oo 0;; =Cov(X;, X;) (3.94)
o o

and det K is the determinant of the matrix K. Note that f,(x) stands for le G R

n
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SOLVED PROBLEMS

Bivariate Random Variables and Joint Distribution Functions

3.1. Consider an experiment of tossing a fair coin twice. Let (X, Y) be a bivariate r.v., where X is the
number of heads that occurs in the two tosses and Y is the number of tails that occurs in the two tosses.

(a) What is the range R, of X?

(b) What is the range R, of Y?

(c) Find and sketch the range R,,, of (X, Y).

(d FindPX=2,Y=0),PX=0,Y=2),andPX =1,Y=1).

The sample space S of the experiment is
S={HH,HT,TH, TT}

(@ R,={0,1,2}
(b) R,=1{0,1,2}
(©) Ry, ={(2,0),(1,1),(0,2)} which is sketched in Fig. 3-2.

(d) Since the coin is fair, we have

PX=2,Y=0) = P{HH} =
P(xzo,Yzz):P{TT}:}L
PX=1,Y=1) = P{HT, TH}:%

y
A
©0,2)
S
N
1.1
:_/.
@.0)
\_’/ "
Fig. 3-2

3.2. Consider a bivariate r.v. (X, Y). Find the region of the xy plane corresponding to the events
A={X+Y=2} B={X*2+Y*<4}
C ={min(X, Y) =2} D = {max(X, Y) = 2}
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X+y=2 (y=2-x)

%’ 2) 2,0 /

» X X
/ 2,0
@) (b)
y y
A A
7
2,2 0, 2) ©,2
(2, 0)
» X » X

() (@)

Fig. 3-3 Regions corresponding to certain joint events.

113

The region corresponding to event A is expressed by x + y = 2, which is shown in Fig. 3-3(a), that is, the

region below and including the straight line x +y =2.

The region corresponding to event B is expressed by x*> + y> < 22, which is shown in Fig. 3-3(b), that is, the

region within the circle with its center at the origin and radius 2.

The region corresponding to event Cis shown in Fig. 3-3(c), which is found by noting that

(min(X, V) =2} =(X=2)U(Y=2)

The region corresponding to event D is shown in Fig. 3-3(d), which is found by noting that

{max(X,Y) =2} = (X=2) N (Y =2)

3.3. Verify Egs. (3.7), (3.8a), and (3.8b).
Since {X = o, Y = »} = Sand by Eq. (1.36),

P(X =, Y =00)=F, (o, =P(S) =1
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Next, as we know, from Eq. (2.8),

P(X=—0)=P(Y=—%)=0

Since X=-0,Y=y)CX=—» and X=x,Y=-0)C (Y= —x)
and by Eq. (1.41), we have

PX=—»Y=y)=F (%, =0
PX=x,Y=—)=F,(x,~®) =0

3.4. Verify Egs. (3.10) and (3.11).

Clearly X=x,Y=syy=X=x,Y=yux <X=x, Y=y

The two events on the right-hand side are disjoint; hence by Eq. (1.37),
PX=x,,Y=y)=PX=x,Y=y)+P(x;<X=x,, Y=y
or Px,<X=x,,Y=y)=PX=x,,Y=y) - PX=x,Y=y)
= Fyy(xy, 9) = Fyp (X, y)
Similarly,

X=x,Y=y)=X=x,Y=y)UX=xy, <Y=y,)

Again the two events on the right-hand side are disjoint, hence

PX=xY=y)=PX=x,Y=y)+PX=x,y <Y=y,)
or PX=x,y, <Y=y)=PX=xY=y,) - PX=x,Y=y)=F,xy)— Fxy)

3.5. Verify Eq. (3.12).
Clearly
(o <X=x,Y=y)= <X=x,Y=y)Ux <X=x,y <V¥=y,)
The two events on the right-hand side are disjoint; hence
Px, <X=x,,Y=y,)=Px, <X=x, Y=y)+Px <X=x,y, <V=y,)
Then using Eq. (3.10), we obtain

Px, <X=x,y, <Y=y)=Pkx <X=x,Y=y) Pk <X=x,Y=y)
= Fyy (63, 55) = Fyy (5 9,) = [Fy (x5, y,) = Fiylxy, vl
= ny(x27 yz) - ny(xlvyz) - ny(xza yl) + ny(-xlayl) (395)

Since the probability must be nonnegative, we conclude that
Fyy(xy 93) = Fifxps ¥) = Filxy, y)) + Fyylxy, ) =0

ifx,=x andy, =y,.
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3.6.

3.7.

3.8.

Consider a function

1—e¢ &ty 0=x<o0,0=y<ow

F(x,y)Z{O

otherwise

Can this function be a joint cdf of a bivariate r.v. (X, Y)?

It is clear that F(x, y) satisfies properties 1 to 5 of a cdf [Egs. (3.5) to (3.9)]. But substituting F(x, y) in

Eq. (3.12) and setting x, =y, = 2and x, =y, = 1, we get

FQ2,2)—F(1,2) —F2, D)+ F(, )=l —-eH—(1—eH—(1—e)+ (1 —e?)

=—e¢*+2e 3 —et=—(e2—e )2 <0

Thus, property 7 [Eq. (3.12)] is not satisfied. Hence, F(x, y) cannot be a joint cdf.

Consider a bivariate r.v. (X, Y). Show that if X and Y are independent, then every event of the form

(a < X = b) is independent of every event of the form (¢ < Y = d).
By definition (3.4), if X and Y are independent, we have

Fy(x, y) = Fy()Fy(y)

Setting x, = a,x, = b,y, = c,and y, = din Eq. (3.95) (Prob. 3.5), we obtain

Pla<X=b,c<Y=d)=Fyxy(b,d)— Fyy(a,d)— Fxy(b,c) + Fxy(a,c)
= FX(b)Fy(d) - Fx(a)Fy(d) - Fx(b)Fy(C) + Fy(a) Fy(c)
=[Fx () — Fx(@)][Fy (d) — Fy (0)]
=Pa<X=b)P(c<Y=d)

which indicates that event (¢ < X = b) and event (¢ < Y = d) are independent [Eq. (1.62)].

The joint cdf of a bivariate r.v. (X, Y) is given by

A—e*™)1—e ) x=0,y=0,a,>0
0 otherwise

ny(x,y)z{

(a) Find the marginal cdf’s of X and Y.
(b) Show that X and Y are independent.
(¢) FindPX=1,Y=1),PX=1),PX¥>1),and PX > x, Y >y).

(a) By Egs. (3.13) and (3.14), the marginal cdf’s of X and Y are

1—e ™ x>0
Fy(x) = Fyy(x,%) = 0

x<<O0

B =Fy =] ¢ 720
= 0 =

y Y xy (%, Y 0 y<0

(b) Since Fy,(x, y) = F\(x)F(y), X and Y are independent.

115
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(© PX=1,Y=1)=F,(1,1)=(1—-e91—eh)
PX=1)=F()=(1—e
PY>1)=1-P¥=1)=1-F,(I)=¢F

By De Morgan’s law (1.21), we have

X>0NE>y)=X>)UF>)=X=x)UF =y)
Then by Eq. (1.44),

P[(X>x)NY >P]=PX=x)+PY =y)—P(X=x,Y =y)
:Fx(x)+Fy()7)7ny(X,)’)
=(l-e™)+(1-—eM—1-e™)1-e™)
=1—e e h

Finally, by Eq. (1.39), we obtain
PX>x,Y>y)=1-P[(X>0)N{Y >y)]=e % e P

3.9. The joint cdf of a bivariate r.v. (X, Y) is given by

0 x<0 or y<O

)2 0=x<a, 0=y<b
Fyy(x,y)=1P> x=Za, 0=y<b

p; 0=x<a, y=b

1 xX=a, y=b

(a) Find the marginal cdf’s of X and Y.
(b) Find the conditions on P> Pys and D5 for which X and Y are independent.

(a) By Eq. (3.13), the marginal cdf of X is given by

0 x<0
Fy(x) = Fyy(x,0)=1p; 0=x<a
1 xX=a
By Eq. (3.14), the marginal cdf of Yis given by
0 y<<O0
F () =Fy(e,y)=1p, 0=y<b
1 y=b

(b) For X and Y to be independent, by Eq. (3.4), we must have F, (x,y) = F,(x)F, (). Thus, for0 =x <a,0 =
y < b, we must have p, = p, p, for X and Y to be independent.

Discrete Bivariate Random Variables—Joint Probability Mass Functions
3.10. Verify Eq. (3.22).
If X and Y are independent, then by Eq. (1.62),

P 3) = PX=x, Y =y) = PX=x)P(Y = y) = p,(x)p, ()
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3.11. Two fair dice are thrown. Consider a bivariate r.v. (X, ¥). Let X = 0 or 1 according to whether the first die
shows an even number or an odd number of dots. Similarly, let ¥ = 0 or 1 according to the second die.

(a) Find the range R, of (X, Y).
(b) Find the joint pmf’s of (X, Y).

(a) Therange of (X, Y) is
Ry, ={(0,0), (0, 1),(1,0), (1, )}

(b) Itis clear that X and Y are independent and

vy =31
PX=0)=PX=1)=3=1%
S B |
PY=0=P¥=1)=3=%
Thus Pyylis)) = P(X =i, Y =j) = P(X = )P(Y = j) :}1 i,j=0,1

3.12. Consider the binary communication channel shown in Fig. 3-4 (Prob. 1.52). Let (X, Y) be a bivariate r.v.,
where X is the input to the channel and Y is the output of the channel. Let PX = 0) = 0.5, P(Y = 1| X =
0)=0.1,andP¥Y=0]|X=1)=0.2.

(a) Find the joint pmf’s of (X, Y).
(b) Find the marginal pmf’s of X and Y.
(¢) Are X and Y independent?

(a) From the results of Prob. 1.62, we found that

PX=1)=1-PX=0)=0.5
P(Y=0|X=0)=0.9 PY=1|X=1=0.8
Then by Eq. (1.57), we obtain

PX=0,Y=0)=P(Y=0|X=0PX=0)=0.9(0.5) =0.45
PX=0,Y=1)=P(Y=1|X=0)P(X=0)=0.1(0.5) =0.05
PX=1,Y=0)=P(Y=0|X=1)PX=1)=0.2(0.5 =0.1
PX=1,Y=1)=P¥=1|X=1)PX=1)=0.8(0.5)=0.4

Hence, the joint pmf’s of (X, Y) are

Pyy(0,0) = 0.45 Pyy(0, 1) =0.05
Pyy(1,0)=0.1 Py(1,1) =0.4

(b) By Eq. (3.20), the marginal pmf’s of X are

px(0)= pry(o,yj) =045+0.05=05

Vi

px(D= pry(l,yj) =0.1+04=05

Vi
By Eq. (3.21), the marginal pmf’s of Y are

Py =" pyy(x,,0)=045+0.1=0.55

X

Py(D="Y pxy(x;;1)=005+0.4 =045

X
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Fig. 3-4 Binary communication channel.

(¢) Now
p(0)p,(0) =0.5(0.55) = 0.275 # p,,(0,0) = 0.45

Hence, X and Y are not independent.

3.13. Consider an experiment of drawing randomly three balls from an urn containing two red, three white,
and four blue balls. Let (X, Y) be a bivariate r.v. where X and Y denote, respectively, the number of red
and white balls chosen.

(a) Find the range of (X, Y).

(b) Find the joint pmf’s of (X, Y).

(¢) Find the marginal pmf’s of X and Y.
(d) Are X and Y independent?

(a) Therange of (X, Y) is given by
Ry, ={(0,0),(0,1),(0,2),(0,3),(1,0), (1, 1), (1,2),(2,0), (2, D}
(b) The joint pmf’s of (X, ¥)
P, G, ))=PX=1iY=)) i=0,1,2 j=0,1,2,3

are given as follows:

0.2)= 3 4 91 12 0.3)= 3 91 1

Pxy(0,2)= ) 1 3 _874 Pxy(0,3)= 3 3 _87
(24 9) 12 (2)(3) 4 9)_24

SR H (R 1Y Y W

1.2) = 23 91 6
Pxy(, —1 ) 3 —g

2 0)= 2\ 4 91 4 2 1= 213 91 3
pXY(’ )_ 2 1 3 _g pXY(’)_ ) 1 3 —g

which are expressed in tabular form as in Table 3-1.



CHAPTER 3 Multiple Random Variables 119

(¢) The marginal pmf’s of X are obtained from Table 3-1 by computing the row sums, and the marginal pmf’s
of Y are obtained by computing the column sums. Thus,

35 42 7
0)=— H=—= 2)=
prx(0) 4 px(D Y] rx(2) )
20 45 18 1
0)==2 H=_1 2)=—> 3=
py(0) 84 py(D) 84 py(2) 84 py(3) g4

TABLE 3-1 p, (i, j)

J
i 0 1 2 3
0 | s | & | & | &
1 e i -
2 =110 0

(d) Since

4 35(20
0,0)=—# 0 0)=—|—
Pxy(0,0) 34 Px(0)py (0) 84(84)

X and Y are not independent.

3.14. The joint pmf of a bivariate r.v. (X, Y) is given by

k(2xi+yj) xl.=1,2;yj=1,2
pXY(xi’yj) = .
0 otherwise

where k is a constant.

(a) Find the value of k.

(b) Find the marginal pmf’s of X and Y.
(¢) Are X and Y independent?

(a) ByEq.(3.17),

2 2
DV y)= ¥ k2x+y))

X yj x=1y;=1

=k[QR+D)+2+2)+@+D)+ @4 +2)]=k(18)=1

Thus, k=1,
18

(b) By Eq. (3.20), the marginal pmf’s of X are

2
1
Px(xi)=szy(xi’}’j)= E E(Z)Ci +y;)

Yj Yi=

1 1 1
=—Qx+ D)+ —Q2x; +2)=—“4x; +3 X, =1,2
18( ;D 18( . +2) 18( . +3) :
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By Eq. (3.21), the marginal pmf’s of Y are

2
Py(yj)zszy(xi,yj): E é(zﬁ +y,~)

X; x=1

1 1 1
=—QR+y)+—@A+y)=—Q2y; +6 .=1,2
18( y) 18( yj) 18( y;+6) Y
(¢) Now p(x)p, (yj) 7 Pyy(Xss yj); hence X and Y are not independent.

3.15. The joint pmf of a bivariate r.v. (X, Y) is given by

2 — 1Ay —
kxiyj xi—1,2,yj—1,2,3
0 otherwise

ny(xi,yj‘):{

where k is a constant.

(a) Find the value of k.

(b) Find the marginal pmf’s of X and Y.
(¢) Are X and Y independent?

(@) ByEq.(3.17),

2 3
Eszy(xi’yj): E 2 kxizyj

Xy x=ly;=1

=k(1+2+3+4+8+12)=k(30)=1

Thus, k = L.
30

(b) By Eq. (3.20), the marginal pmf’s of X are

3

1 1
px(xi):EpXY(xi!yj): E %xizyjzgxiz x =12

Vi yj=1

By Eq. (3.21), the marginal pmf’s of Y are

2
1 1
Py(yj)=2pxy(x,-,y,)= 2 ﬁxiz)’j :g

X; x; =1

¥j y;=12,3
(¢) Now

1
Px(x)py(y;)= 7xi2yj = Pxy (x5 ¥;)

30

Hence, X and Y are independent.

3.16. Consider an experiment of tossing two coins three times. Coin A is fair, but coin B is not fair, with
PH) = 1 and P(T) = 3 Consider a bivariate T.v. (X, Y), where X denotes the number of heads
resulting from coin A and Y denotes the number of heads resulting from coin B.

(a) Find the range of (X, ).
(b) Find the joint pmf’s of (X, V).
(¢) FindPX=Y),PX>Y),andP(X + Y = 4).
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(a) The range of (X, Y) is given by
R, ={G.j)ij=0,1,2,3}

(b) Itis clear that the r.v.’s X and Y are independent, and they are both binomial r.v.’s with parameters
(n p) = (3, 15) and (n, p) = (3, %), respectively. Thus, by Eq. (2.36), we have

3 3
—px=0y=|" —px=n=|>|L] =3
ST s 4] -2
3 3
(2|
3 10 3 ’
oI
3 12 3 9
Py(2)—P(Y—2)—(2)(4) (4)_64

N‘»—
0| —

N‘»—
Il
oo | w

PX(3):P(X:3):(i

py(1>=P<Y=1>=(f)(

(3

=

~

=

(98]

e

Il

~

~~

F<

Il

(98]

@

Il
—_
W W
~——
—
-lk‘.—
SN————
—_—
NS
SN——

(=]

Il

2

Since X and Y are independent, the joint pmf’s of (X, Y) are
Pxy(is J) = (i) py(J) ,j=0,1,2,3

which are tabulated in Table 3-2.
(¢) From Table 3-2, we have

3
1 136
P(X=Y)= j,i)=——27+81+27+1)=—
X=1)= 3 pay ()= =35

i=0

3
p(X>Y)= E Pxy (@, J) = Pxy (1,0)+ Pyy (2,0) + Pyy (3,0) + pxy 2, 1) + pyy (3, 1) + pxy (3,2)

i>j

=L(81 +81+27+81+27 -i-9)=%E
512 512

Table 3-2 p, (i, J)

J
i 0 1 2 3
o |z |z | 2|2
512 512 512 512
T N L -+ A I
512 512 512 512
o | s | s | 2| &
512 512 512 512
3 |z |z | o | L
512 512 512 512

PX+Y>4)= 3 py(i,))=Py(2,3)+ Py (3.2)+ Py, (3,3)

i+j>4
:L(3+9+1):£
512 512
Thus, P(X+y=4) =1-P(X+Y >4)=1— > =29

512 512
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Continuous Bivariate Random Variables—Probability Density Functions

3.17. The joint pdf of a bivariate r.v. (X, Y) is given by

kx+y) 0<x<2,0<y<2
Sxr(x,y)= 0

otherwise

where k is a constant.

(a) Find the value of k.

(b) Find the marginal pdf’s of X and Y.
(¢) Are X and Y independent?

(@) By Eq. (3.26),

f:cffwfxy(x,}’)dXdy:kfozfoz(x-i-y)dxdy

) x=2
— 2 X

dy
=k [l@+2y)dy=8k=1

x=0

Thus, k= %.
(b) By Eq. (3.30), the marginal pdf of X is

S 0= [7 S e dy =< [r 0 ) dy

1 y2
=_ + 2
(=3)

y=2 1
—(x+1 0<x<2
=44
0

y= 0 otherwise

Since f,,(x, y) is symmetric with respect to x and y, the marginal pdf of Yis

1
—(v+1D) 0<y<?2
fy(y)={4(y ) 0=y

0 otherwise

(c) Since fy,(x,y) # fy(x)f,(y), X and Y are not independent.

3.18. The joint pdf of a bivariate r.v. (X, Y) is given by

kxy 0<x<1,0<y<l
Jxy (1, )= 0

otherwise
where k is a constant.

(a) Find the value of k.

(b) Are X and Y independent?

(¢) FindP(X + Y <1).
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Fig. 3-5

(a) The range space R, is shown in Fig. 3-5(a). By Eq. (3.26),

1

0

B - 2
f—oo f_mfxy(x,y)dXdy:kf;f;xydxdy:kf; y[xz

1y k
=k | =dy=—=1
02 Y 4

Thusk=4.
(b) To determine whether X and Y are independent, we must find the marginal pdf’s of X and Y. By Eq. (3.30),

f(:4xydy:2x 0<x<l1

0 otherwise

fx(x):{

By symmetry,

2y 0<y<l1
fy(y):{o

otherwise
Since f,,(x,y) = f,(X)f,(y), X and Y are independent.

(¢) The region in the xy plane corresponding to the event (X + Y << 1) is shown in Fig. 3-5()) as a shaded

area. Then
11—y 1 2|
Px+y<n={ [ >4xydxdy=f04y % dy
o

1 1 2 1
= 4y|—1—y)?|dy==
N y[ 5=y ] =<
3.19. The joint pdf of a bivariate r.v. (X, Y) is given by

kxy 0<x<y<l
Jxy(x,y)= 0

otherwise

where k is a constant.
(a) Find the value of k.
(b) Are X and Y independent?
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y
dy
0

(a) The range space R,, is shown in Fig. 3-6. By Eq. (3.26),

o £ 2
f_wf_wfxy(X,y)dXdkaf(;foyxydxdy=kf;y();

3
1y k
N A N
02 V7%
4
A
Rxy
I
y=x
> X
0
Fig. 3-6

Thus k= 8.
(b) By Eq.(3.30), the marginal pdf of Xis

. {f18xydy=4x(1—x2) 0<x<l
x(X) =977

otherwise

By Eq. (3.31), the marginal pdf of Yis

y 3
8xydx=4y" 0<y<l1
fy(y)={0f°

otherwise

Since fy,(x,y) # f(x) f,(y), X and Y are not independent.

Note that if the range space R, depends functionally on x or y, then X and Y cannot be independent r.v.’s .

3.20. The joint pdf of a bivariate r.v. (X, Y) is given by

k 0<y=x<l1
Sy (e, y)= 0

otherwise

where k is a constant.

(a) Determine the value of k.

(b) Find the marginal pdf’s of X and Y.
(¢) FindP(O<X < % 0<Y< %).

(a) The range space R, is shown in Fig. 3-7. By Eq. (3.26),

Jod oo drdy=k ffdxdy=k><area(ny)=k(;):1

Ryy

Thus k= 2.
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(b) By Eq. (3.30), the marginal pdf of X is

2dy=2x 0<x<lI
fuo={d0
X 0

otherwise
By Eq. (3.31), the marginal pdf of Yis

1
2dx=2(1-y) 0<y<l1
K= ({y

otherwise

(¢) The region in the xy plane corresponding to the event (0 <X < %, 0<rY< %) is shown in Fig. 3-7 as the
shaded area Rl‘,. Then

P 0<X<L,O<Y<l =P
2 2

0<X<;,O<Y<X)

:{ffxy(x,y)dxdy=2{{dxdyzZXarea(Rs)=2(é)=i

s

Note that the bivariate r.v. (X, Y) is said to be uniformly distributed over the region R, if its pdf is

k (x,y)E Ryy

3.96
0 otherwise (

fxy(x’)’):{

where kis a constant. Then by Eq. (3.26), the constant k must be k = 1/(area of R,,).

3.21. Suppose we select one point at random from within the circle with radius R. If we let the center of the
circle denote the origin and define X and Y to be the coordinates of the point chosen (Fig. 3-8), then
(X, Y) is a uniform bivariate r.v. with joint pdf given by

s k x>+ y2 =R?
(x,y)=

X 0 x>+ y2 > R’

where k is a constant.

(a) Determine the value of k.

(b) Find the marginal pdf’s of X and Y.

(c) Find the probability that the distance from the origin of the point selected is not greater than a.
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Fig. 3-8

(@) By Eq. (3.26),

ffwflfxy(x,)’)dx@:k ff dx dy=k(wR*)=1

x2 +y25R2

Thus, k = 1/nR?.
(b) By Eq. (3.30), the marginal pdf of X is

I ) 2 2 2 2 _ 2
fX(x):nRz fﬂaez—xz) dy:nRz R —x X" =R

2_JR = |x|=r

Hence, fx()= TR
0 |x| >R

By symmetry, the marginal pdf of Yis

2

foy= | are VB T bI=R

S e
0 |y|>R

(¢) ForO=a=R,

PX*+v*=a)= [ fu(xy)dxdy

x2+y25a2
1 wa®  a*
= dedy="-==_
TR , +{2f5a2 aR* R’

3.22. The joint pdf of a bivariate r.v. (X, Y) is given by

ke (X thy) x>0,y>0

0 otherwise

Jxr (X, ) :{

where a and b are positive constants and k is a constant.
(a) Determine the value of k.

(b) Are X and Y independent?
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(@) By Eq. (3.26),

fio fi, Sy (x,y)dxdy =k f: f: @ gy gy
k

= kf:ef‘”dxf:efbydy = - =1
a

Thus, k = ab.
(b) By Eq. (3.30), the marginal pdf of X is

Sfx(x)=abe™ " : e dy=qe ™ x>0

By Eq. (3.31), the marginal pdf of Yis
fr=abe™ [Ce ™ dx=be™  y>0

Since fy, (x,y) = f(x)f, (), X and Y are independent.

3.23. A manufacturer has been using two different manufacturing processes to make computer memory
chips. Let (X, Y) be a bivariate r.v., where X denotes the time to failure of chips made by process
A and Y denotes the time to failure of chips made by process B. Assuming that the joint pdf of
(X, Y)is

abe™ (@Y x>0,y>0

0 otherwise

fxy(X,y):{

where a = 107* and b = 1.2(10™%), determine P(X > Y).

The region in the xy plane corresponding to the event (X > Y) is shown in Fig. 3-9 as the shaded area. Then

P(X>Y)= abf:fgef(“”by)dy dx

_ © —ax| ¥ _—by _ © —ax,q _ —bx
=ab o€ [Oe ‘dy]dx—afoe (1—e")dx

b 120107

T ath (1+12)10™%

Fig. 3-9
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3.24. A smooth-surface table is ruled with equidistant parallel lines a distance D apart. A needle of length L,
where L = D, is randomly dropped onto this table. What is the probability that the needle will intersect
one of the lines? (This is known as Buffon’s needle problem.)

We can determine the needle’s position by specifying a bivariate r.v. (X, ©), where X is the distance from the
middle point of the needle to the nearest parallel line and © is the angle from the vertical to the needle (Fig. 3-
10). We interpret the statement “the needle is randomly dropped” to mean that both X and ® have uniform
distributions and that X and © are independent. The possible values of X are between 0 and D/2, and the
possible values of ® are between 0 and 5t/2. Thus, the joint pdf of (X, ®) is

i =x= 2 ,0=60= E
Ffxo(x,0)= fx(0) fo(0)=1 7D 2 2
0 otherwise

x99

%

-

Fig. 3-10 Buffon’s needle problem.

«— O —le— T —>

From Fig. 3-10, we see that the condition for the needle to intersect a line is X < L/2 cos 6. Thus, the
probability that the needle will intersect a line is

L /2 ((LI12)cosO
P X<2cos9)—f0 fo fxe(x,6) dx df
:i n/Z[f(L/Z)COSde] 46
aD Yo 0
=i mzécosed9=£
xDY0 2 D
Conditional Distributions
3.25. Verify Egs. (3.36) and (3.41).
(a) By Egs. (3.33) and (3.20),
Epyx(xi,y,-)
j (%)
p (Y'xi):y] :pX i/ =1
% T J| Px(x;) Px(x;)

(b) Similarly, by Egs. (3.38) and (3.30),

f:ofyx(x,)’) dy _ fx® -

Joatixoto= Fe ) Fe )
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3.26. Consider the bivariate r.v. (X, Y) of Prob. 3.14.
(@) Find the conditional pmf’s p, (v, | x,) and Pxr®; | ¥)-

(b)) FindP(Y=2|X=2)and PX =2|Y =2).
(a) From the results of Prob. 3.14, we have
1

pxy(-x,',xj) =418
0 otherwise

2x; +y;) x=L2y;=12

px(x;) =i(4xi +3) x; =12
18
1

Py(yi):E(ZYi"‘@ v =12

Thus, by Eqgs. (3.33) and (3.34),

p (y'|x‘):2xi+yj yi=L2x=12

Yix Vit 4x +3 g , 25 X; ,
_2xi+)’j A

pX\Y(xi|yj)_2yj+6 x =12y =12

(b) Using the results of part (a), we obtain

42)+3 1
22)+2_3
20)+6 5

P(Y =2|X =2)=p,,2[2)= 22)+2 —%

P(X=2y=2)= pX‘Y(2|2) =

3.27. Find the conditional pmf’s p,|  (v; | x) and p x|/ |y ;) for the bivariate r.v. (X, ¥) of Prob. 3.15.
From the results of Prob. 3.15, we have

1 5
—Xy; x;=1,2;y.=1,2,3
Pxr(x.y;)=130""" i i

0 otherwise
pX(xl-)=%xi2 x; =12
1
py(yj)=gy,« y;=1,2,3
Thus, by Eqgs. (3.33) and (3.34),
1
Exi Yiq
pY‘X(yj|xi)= 1 =gyj‘ y;i=L2,3x=12
—x
5
1
2t Vi 1
PX\Y(X;‘ |y]- )= 30] :gxiz x=1,2; Yi = 1,2,3

Vi

Note that Pylx(yj | x) = py(yj) and Py Y | y/.) = py(x,), as must be the case since X and Y are independent, as
shown in Prob. 3.15.
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3.28. Consider the bivariate r.v. (X, Y) of Prob. 3.17.
(@) Find the conditional pdf’s f, (v | x) and Fyppx | ).
(b) Find P(0 < Y<% [ X =1).

(a) From the results of Prob. 3.17, we have

1

—(x+y) 0<x<2,0<y<2

Sxy(x,y)=178
0 otherwise

fX(x)=%(x+1) 0<x<2

fy(y):%(yﬂ) 0<y<2

Thus, by Egs. (3.38) and (3.39),

FrxOpo=8——== 0<x<2,0<y<2

Sy Gy =B—— == 0<x<2,0<y<2

(b) Using the results of part (a), we obtain

1y, . ri2 L opew2f 14y 5
P(0<Y<§|X—l)—f0 fy‘x(y|x71)75f0 (Z)dy&

3.29. Find the conditional pdf’s f yO|x)and f x| ,(x|y) for the bivariate r.v. (X, Y) of Prob. 3.18.

From the results of Prob. 3.18, we have

4xy 0<x<1, 0<y<l1
Sy )= 0 otherwise
fx(x)=2x 0<x<l1
=2y 0<y<l
Thus, by Eqgs. (3.38) and (3.39),
4xy
fy‘x(y|x):E:2y 0<y<l,0<x<l
fx‘y(x|y)=42—xy=2x 0<x<1,0<y<l
y

Again note that fy‘X(y | x) = fy(y) and fx| y & |y = fy(x), as must be the case since X and Y are independent, as
shown in Prob. 3.18.

3.30. Find the conditional pdf’s f, | v | x) and fx| e | y) for the bivariate r.v. (X, ¥) of Prob. 3.20.

From the results of Prob. 3.20, we have

2 0<y=x<lI
Sy (6 3) = 0 otherwise
fx(x)=2x 0<x<l1

f»mM=21—-y) 0<y<l1
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Thus, by Egs. (3.38) and (3.39),
J’yp((y|X):l y=x<1,0<x<l
X
fx\y(xm:% y=x<1,0<x<1
-y

3.31. The joint pdf of a bivariate r.v. (X, Y) is given by
1 —xly =y
—e e x>0,y>0

Sxy (e, )=y
0 otherwise

(@) Show that f,, (x, y) satisfies Eq. (3.26).
() FindP(X > 1]|Y =y).

(a) We have
f:of:ofxy(X, y)dx dy = f:f:i e dy 0

L[
0 y 0

_ wl —y|_ . —xly X:w]
0 ye [ ye o dy
:f(:c e Ydy=1

(b) First we must find the marginal pdf on Y. By Eq. (3.31),
© 1 v P
fy(y)=f7wfxy(x,y)dx=;e )foe D dx

1 _, TR _
=—e Y|—ye x/y =e 7
x=0

y

By Eq. (3.39), the conditional pdf of X is

=
ny(X,y) —e y x>0,y>0

B e =200

0 otherwise

Then P(X>1|Y:y):f:cfx‘y(x,y)dx :f%ﬂ’y dx

— X =0 —
=—¢ xly = 1y

x=1

Covariance and Correlation Coefficients

3.32. Let (X, Y) be a bivariate r.v. If X and Y are independent, show that X and Y are uncorrelated.

If (X, Y) is a discrete bivariate r.v., then by Eqs. (3.43) and (3.22),

E(XY)= E ExiyijY(xi’yj) = 2 Exi)’jpx(xi)Py )
Yi X

Yji X

= [Ex,»px(x,»)] [2 y,-py<y,~>] = E(X)E(Y)

i Yj

131
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If (X, Y) is a continuous bivariate r.v., then by Eqs. (3.43) and (3.32),

EC) =" " fyCawdedy= [ [T x fx00fy ) dxdy

= [* @ dx[” ¥y (o) dy=ECOE®)

Thus, X and Y are uncorrelated by Eq. (3.52).

3.33. Suppose the joint pmf of a bivariate r.v. (X, Y) is given by

L on.a0.e
ny(x,',)’j): 3
0 otherwise

(@) Are X and Y independent?
(b) Are X and Y uncorrelated ?

(a) By Eq.(3.20), the marginal pmf’s of X are
1
px(0)= El’xy(os)’j) =pxy(0,1)= 3
Yj

1
Px(l)zszy(l,yj):ny(l,o)zg

Vi

Px@ =S px 2.3 = prr D=5

Yj
By Eq. (3.21), the marginal pmf’s of Y are

Pr(O)= 3 Py (5. 0)= pyy (LO)= 3

X

2
py(H= pry(xi’ D=pxy 0,1+ pxy(2,1)= 3

X

1 2
and Pxy (0, 1)= 3 # px(0)py (D)= 5

Thus, X and Y are not independent.
(b) By Eqgs. (3.45a), (3.45b), and (3.43), we have

EX) = S xipx () =(0) (;) +<1>(;]+ @) (;) :1

x ]:

i

W
W

EW) =S yp,0)=(0) (;)Jr(l)(

Vi

E(XY):EExiyijy(xi’yj)

Yj Xi

_ 1 1 L
—(0)(1)( 3 )+(1)(0)( 3 )+(2)(1)( 3 )

[SSEN S
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Now by Eq. (3.51),

Cov(X, Y)= E(XY)— E(X)E(Y)= % - (1)(?) 0

Thus, X and Y are uncorrelated.
3.34. Let (X, Y) be a bivariate r.v. with the joint pdf

2 2
X +y e*(x2+y2)/2

—oo<x<oo,—oo<y<oo
4

fXY(x’y):

Show that X and Y are not independent but are uncorrelated.

By Eq. (3.30), the marginal pdf of Xis

1 © 2.2
fx(x):7f_ (x2 +y2)e (X2 +y )/zdy

¥ A

—x%

S ey ]
2N2m 27

) © 1 _2
e’ /zdy-i-f ye " Pdy

27

Noting that the integrand of the first integral in the above expression is the pdf of N(0; 1) and the second
integral in the above expression is the variance of N(0; 1), we have

1
fX(X)72\/E

2
x+De " —00 < x <0

Since fy,(x, y) is symmetric in x and y, we have

1 _2
fy()’):m(yz"'l)ey/z —o<y<®

Now f,,(x,y) # f,(x) f,(y), and hence X and Y are not independent. Next, by Eqs. (3.47a) and (3.47b),

EX)= [ xfy(x)dx=0

EY)=[" vy (»ndy=0

since for each integral the integrand is an odd function. By Eq. (3.43),

E(XY) =fj°wflxyfxy(x,y) dxdy=0

The integral vanishes because the contributions of the second and the fourth quadrants cancel those of the first
and the third. Thus, E(XY) = E(X)E(Y), and so X and Y are uncorrelated.

3.35. Let (X, Y) be a bivariate r.v. Show that
[EXY)])?> = EX®E(Y?) 3.97)

This is known as the Cauchy-Schwarz inequality.
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Consider the expression E[(X — aY)?] for any two r.v.’s X and Y and a real variable o.. This expression, when
viewed as a quadratic in a, is greater than or equal to zero; that is,

E[(X—aY)’]=0
for any value of a.. Expanding this, we obtain
E(X?) —2aE(XY) + «*E(Y?) =0

Choose a value of a for which the left-hand side of this inequality is minimum,

o= E(XY)
E(Y?)
which results in the inequality
[EXY)P 2 2\ gy?
E(XX*)———— E(XY)P < E(X*)E(Y
(X% YD) - or [E(XY)] (XDEX?)

3.36. Verify Eq. (3.54).

From the Cauchy-Schwarz inequality [Eq. (3.97)], we have

{EI(X — uy )Y — )1} = E[(X — )P 1ELY — uy)*]

2 2 2
or Oy =0xOy

2 o5

— Oxr
Then Pxy =—F 5 =1
OxOy
Since p,, is a real number, this implies
| oy | =1 or -1=p,=1

3.37. Let (X, Y) be the bivariate r.v. of Prob. 3.12.
(a) Find the mean and the variance of X.
(b) Find the mean and the variance of Y.
(¢) Find the covariance of X and Y.

(d) Find the correlation coefficient of X and Y.

(a) From the results of Prob. 3.12, the mean and the variance of X are evaluated as follows:

E(X)= Y x;px(x)=(0)05)+(1)(0.5)=05

X

E(X*) =Y 5 py(x)=(0)*(0.5)+ (1*(0.5)=0.5

Xi

oy =E(X*)—[E(X)IF =05 —(0.5)* =0.25

(b) Similarly, the mean and the variance of Y are

E(Y)=y;py(y;)=(0)(0.55) + (1)(0.45) = 0.45
Yj
EY*)= Eyf.py(yj) =(0)2(0.55) + (1)*(0.45) = 0.45
Yj

o2 =EY?)—[EQ)* =045 —(045)* =0.2475



CHAPTER 3 Multiple Random Variables 135

(¢) ByEq.(343),

E(XY)= szi}’jpxy(xi’yj')

= (0)(0)(0.45) + (0)(1)(0.05) + (1)(0)(0.1) + (1)(1)(0.4)
=04

By Eq. (3.51), the covariance of X and Yis

Cov(X,Y)=EXY) - EX)EY)=04 —(0.5)(0.45) =0.175

(d) By Eq. (3.53), the correlation coefficient of X and Yis

Cov(X,Y) 0.175
= = =0.704
04Oy J(0.25)(0.2475)

XY

3.38. Suppose that a bivariate r.v. (X, Y) is uniformly distributed over a unit circle (Prob. 3.21).
(@) Are X and Y independent?
(b) Are X and Y correlated?

(a) Setting R =1 in the results of Prob. 3.21, we obtain
P +yr <1

1
Sxy(x,y)=37
0 xX2+y*>1

fX(x):z«/l—xz |x|<1
JT
2

fy(y):;x/l—yz |y|<1

Since fy,(x, y) # f(x) f, (), X and Y are not independent.
(b) By Eqgs. (3.47a) and (3.47b), the means of X and Y are
2 rl 2
EX)== [0 x1-x* dx=0
xd-1

E(Y)zifily,h—yz dy=0

since each integrand is an odd function.

Next, by Eq. (3.43),

E(XY)=l ffxydxdy=0

T
x2+yz<l

The integral vanishes because the contributions of the second and the fourth quadrants cancel those of the
first and the third. Hence, E(XY) = E(X)E(Y) = 0 and X and Y are uncorrelated.

Conditional Means and Conditional Variances

3.39. Consider the bivariate r.v. (X, Y) of Prob. 3.14 (or Prob. 3.26). Compute the conditional mean and the
conditional variance of Y given x, = 2.
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From Prob. 3.26, the conditional pmpr‘X(yj | x,) is

et =1,2x,=1,2
py‘x(yjlx,')_ 4x 13 yi=Lax=1
_Aty, _
Thus, Py‘x(y,»|2)— T yi=L2

and by Egs. (3.55) and (3.56), the conditional mean and the conditional variance of Y given x, = 2 are

4+y;
Hyja :E(Y|xl- =2):Eyjpyx(yj|2)zzyj( 11 : )
i Vi

5 6) 17
=2 |+@)| = |=L~1545
“(11)“ )(11) 11

2 2
17 17)(4+y;
Yy — — =2|= —— J

Yj

6\'(s sY(6) 330
= (—)-f-(—) (—)=—~0.248
(11) 11/ \11) \11/ 1331

3.40. Let (X, Y) be the bivariate r.v. of Prob. 3.20 (or Prob. 3.30). Compute the conditional means E(Y | x)
and E(X | y).

2
UY‘Z =FE

From Prob. 3.30,

1
fyx Ol == y=x<1,0<x<I
X

1
&V@b)=f—f y=x<1,0<x<1
—y

By Eq. (3.58), the conditional mean of Y, given X = x, is

y=x
E(Y|x)=fwwyfyx(y|x)dy=f;y()lc)dy=;i =% 0<x<l1
y=0
Similarly, the conditional mean of X, given Y =y, is
o 1 1 x> ! 1+y
EX|y= [ afyyGlyde= [ 1_y)dx—2(1_y)| =—2  0<y<I
x=y

Note that E(Y | x) is a function of x only and E(X | y) is a function of y only.

3.41. Let (X, Y) be the bivariate r.v. of Prob. 3.20 (or Prob. 3.30). Compute the conditional variances
Var(Y | x) and Var(X | y).

Using the results of Prob. 3.40 and Eq. (3.59), the conditional variance of ¥, given X = x, is

2
Var(Y | x) = E{[Y — E(Y | x)Px} = [~ (y—;‘) Fyx Ol dy

2 3PPEX 5

=[x L P O X

o|” 2 X Y 3xy 2 12
y



CHAPTER 3 Multiple Random Variables 137

Similarly, the conditional variance of X, given ¥ =y, is

2
1
—;y) fx‘y(xly)dx

> 31 =1 ,
:fl(x_1+y)( 1 )dx: 1 (x_l-i-y) _ -y
y 2 ) \1-y 3(1-y) 2 12
x=y

Var(X|y)=E{[X — E(X]| y)]zyl} = f:(x

N-Dimensional Random Vectors

3.42. Let (X,, X,, X;, X,) be a four-dimensional random vector, where X, (k = 1,2, 3, 4) are independent
Poisson r.v.’s with parameter 2.

(@ FindPX, =1,X,=3,X,=2,X,=1).
(b) Find the probability that exactly one of the X,’s equals zero.
(a) By Eq.(248), the pmf of X, is

. L2t
Py D=PX =i=e? 2 =01, (3.98)

Since the X,’s are independent, by Eq. (3.80),

P(X; =1,X, =3,X;=2,X, =1)= py, (Dpx, Q) px,2)px, (1)
-2 “243\( ,~242\( -2 847
_[e72)fe 27 e 27 (e "2) _e "2 ~3.58(107%)
1! 3! 2! 1! 12

(b) First, we find the probability that Xk =0,k=1,2,3,4. From Eq. (3.98),

P(X,=0)=e¢2 k=1,2,3,4

Next, we treat zero as “success.” If Y denotes the number of successes, then Yis a binomial r.v. with
parameters (1, p) = (4, ¢~2). Thus, the probability that exactly one of the X,’s equals zero is given by
[Eq. (2.36)]

PY =1 —(T )(ez)(l —e 2P =035

3.43. Let (X, Y, Z) be a trivariate r.v., where X, Y, and Z are independent uniform r.v.’s over (0, 1). Compute
P(Z = XY).

Since X, Y, Z are independent and uniformly distributed over (0, 1), we have

fxvz(x, ¥, 2= fx () fy W fz(2) =1 0<x<1,0<y<1,0<z<1
1ol opl
Then P(Z=XY) :ffffxyz(x,y,z)dxdydz:fofofxydzdydx
z>xy

3
=f(;f01(1—xy)dydx=f;(l—;)dx=4
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3.44. Let (X, Y, Z) be a trivariate r.v. with joint pdf

ke (@FTE) 1 >0,9y>0,2>0

0 otherwise

fXYZ(xvy’z):{

where a, b, ¢ > 0 and k are constants.

(a) Determine the value of k.

(b) Find the marginal joint pdf of X and Y.
(¢) Find the marginal pdf of X.

(d) AreX, Y, and Z independent?

(@) By Eq.(3.76),
ffwffwfifxyz(x, v,2)dx dydz = kf:f:f: e~ WD) gy dy dz
= kf: ef‘”‘dxfooo eibydyf: e “dz= ﬁ =1

Thus, k = abc.
(b) By Eq. (3.77), the marginal joint pdf of X and Yis

For @)= [ foz (e v, de=abe [ e @D g

= abce_("”by)f;c e “dz = abe” T x>0,y>0

(¢) By Eq. (3.78), the marginal pdf of Xis

5= [ fapy.dyde=abe [T [T @D gy g

=abce” ™ f: ey f: e “dz=ae ™ x>0
(d) Similarly, we obtain
fy(y)=ffwffwfxyz(&y,z) dx dz =be ™ y>0
fz(Z)=ffwffwaYZ(x,y,z)dx dy=ce © z>0

Since fy,,(x, v, 2) = f(x) f,(0 f,(2), X, Y, and Z are independent.

3.45. Show that

Tz ¥, 2) = fx 4@ | x, Wy xO | ) () (3.99)
By definition (3.79),
A
(zlx, y) ===
Taper 2.y Sxr (%, )

Hence Fxrz (63,2 = fpx y @) o (5.9 (3.100)
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Now, by Eq. (3.38),
fxy(x’y):fy‘x(ylx)fx(x)

Substituting this expression into Eq. (3.100), we obtain

fxyz(x9 Vs Z) = fz‘x,y(z|xv y)fy|X(y|x)fx(x)

Special Distributions

3.46.

3.47.

3.48.

Derive Eq. (3.87).

Consider a sequence of n independent multinomial trials. Let A, (i = 1, 2, ..., k) be the outcome of a single trial.
The r.v. X is equal to the number of times A, occurs in the n trials. If x|, x,, ..., x, are nonnegative integers such
that their sum equals 7, then for such a sequence the probability that A, occurs x times, i = 1, 2, ..., k—that is,
P(X, = x,X, = x,, ..., X, = x,)—can be obtained by counting the number of sequences containing exactly x, A,’s,
X, Ay’s, ..., x, A’s and multiplying by pi'p32:-- p;*. The total number of such sequences is given by the number of

ways we could lay out in a row n things, of which x, are of one kind, x, are of a second kind, ..., x, are of a kth

=X

n
); after having put the A,’s in their

kind. The number of ways we could choose x, positions for the A,’s is (
X

n—x
position, the number of ways we could choose positions for the A,’s is ( X )’ and so on. Thus, the total
2

number of sequences with x; A’s, x,A)’s, ..., x, A’s is given by
nif n—x | =X X n=X =X 7 T X
X Xy X3 x,
_ n! (n—x))! (n—x; —x, = —x !
xl(n—x)! x M (n—x; — x)! x;.10!
n!
X1y e xy !

Thus, we obtain

n!
Pxxy X (K15 s ooy X ) = ﬁpl}quz e ppk
xplxy ey !
Suppose that a fair die is rolled seven times. Find the probability that 1 and 2 dots appear twice each;
3,4, and 5 dots once each; and 6 dots not at all.

Let (X, X,, ..., X,) be a six-dimensional random vector, where X, denotes the number of times i dots appear in
seven rolls of a fair die. Then (X, X,, ..., X,) is a multinomial r.v. with parameters (7, p,, p,., ..., D) Where p, = 1

6
(i=1,2,...6). Hence, by Eq. (3.87),

2 2 1 1 1 0

7! LYy (o)) (1)

PO, =2,X,=2X,=LX, =1 X; =L X, =0)=————| — | [ || || = || - || =
i ? L 2!2!1!1!1!0!(6)(6)(6)(6)(6)(6)

7
!
__f1 :§g0.0045
21211 6 6°

Show that the pmf of a multinomial r.v. given by Eq. (3.87) satisfies the condition (3.68); that is,
22 -~~2pX1X2__‘Xk(x1,x2, cnx) =1 (3.101)

where the summation is over the set of all nonnegative integers X, X ., X, whose sum is n.

LR
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The multinomial theorem (which is an extension of the binomial theorem) states that

(a +a, +-+a,) _E(x . " . )alxlazxz-“akx" (3.102)
1 X2 Xy

wherexl +x, ot x =

n . n!
XXy xy, ) Xlxpleexg !

is called the multinomial coefficient, and the summation is over the set of all nonnegative integers x,, x,, ..., X,
whose sum is n.

Thus, setting a, = p,in Eq. (3.102), we obtain
PIDINE szlxz...xk(xwxz’ v X) =@ Fp, e p)t=1) =1

3.49. Let (X, Y) be a bivariate normal r.v. with its pdf given by Eq. (3.88).
(a) Find the marginal pdf’s of X and Y.
() Show that X and Y are independent when p = 0.

(a) By Eq. (3.30), the marginal pdf of Xis

Fe= [ forCrydy

From Egs. (3.88) and (3.89), we have

1 1
f (x’y)Z—eX - (x,y)]
XY 27t0X0y(1*p2)1/2 p zq
1 ’ ’
RS [ N PNt
_ Oy Oy Oy Oy
Rewriting ¢(x, y),
2 2
1 - X X
q(x,y) = . ()’ .“y) _p( HX) +( HX)
1—p oy Ox Ox

2 2
+| T
Ox

Y e ST
a-pHo [T 7 Ty

2
1 x—uy
2\ oy

exp
) ] ]
Th x)= ex {_7 X, )]d
en fX( \/EOX fﬁm\/ﬂo'y(l—p2)1/2 p qu( y y
2
1 o
h ()= |y~ ty =P~ ay)
where q,(x,y (1*,02)0),2 [y Uy PGX Ux ]

Comparing the integrand with Eq. (2.71), we see that the integrand is a normal pdf with mean u, + p(0, /0y)
(x — u,) and variance (1 — pz)cryz. Thus, the integral must be unity and we obtain

_ 1 —(x—uy )
fX (.X) \/EO'X exp[ 20’;(

(3.103)
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In a similar manner, the marginal pdf of Yis

_ 1 O~y
K \/ﬂoy exp [ 20_Yz

(3.104)

(b) When p =0, Eq. (3.88) reduces to

2 2
fxy(x’Y):¥exp 1[()6_‘”?() +( y—,uy)

2m0x 0Oy 2 Oy oy

2 2
1 1 x—puy 1 L y—uy
= exp|—— exp|——
N2roy [ 2 ( Oy ] 2oy [ 2 ( Oy

= fxfy ()

Hence, X and Y are independent.

3.50. Show that p in Eq. (3.88) is the correlation coefficient of X and Y.

By Egs. (3.50) and (3.53), the correlation coefficient of X and Yis

pxy =E

X-ux [ Y~y
Ox Oy

e

where f,,(x,y) is given by Eq. (3.88). By making a change in variables v = (x — w) /o, and w = (y — u,) /0, we
can write Eq. (3.105) as

(3.105)
Sxy (x,y)dx dy

=T

dv dw

= W exp|— vo—=2pvw+w
Pxy f—oof—oo 2n(1—p2)1/2 p[ 2(1—/02)( P )

© W © v v —pw)’ w22
= exp|— dvie dw
f—oo ’2.77: {foo '2.77:(17[)2)1/2 |: 2(17p2)
The term in the curly braces is identified as the mean of V = N(pw ; 1 — 0?), and so
W e > o 1 _p
= ——(pw)e dw = w ——ce dw
Pxr =L A T
The last integral is the variance of W = N(0; 1), and so it is equal to 1 and we obtain p,, = p.

3.51. Let (X, Y) be a bivariate normal r.v. with its pdf given by Eq. (3.88). Determine E(Y | x).

By Eq. (3.58),
EY|0)= [ 350l 00 dy (3.106)

h _ Loy 3.107
where fy\x()’|x) e ( )
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Substituting Eqs. (3.88) and (3.103) into Eq. (3.107), and after some cancellation and rearranging, we obtain

Oy
o

1 1 2
fx0l0= Doy (1—pH) P 20,20 p) [yip 0T “Y]

which is equal to the pdf of a normal r.v. with mean w, + p(0, /0 )(x — u ) and variance (1 — p*)o}. Thus, we get

o
E(Y|x):,uy+p—y(x—ux) (3.108)
Ox

Note that when X and Y are independent, then p = 0 and E(Y |x) =u,= EY).

The joint pdf of a bivariate r.v. (X, Y) is given by

fXY(x,y)Zz;exp —l(xZ—xy+y2+x—2y+1) —oo < x,y<<oo

\/gn 3

(a) Find the means of X and Y.
(b) Find the variances of X and Y.

(¢) Find the correlation coefficient of X and Y.

We note that the term in the bracket of the exponential is a quadratic function of x and y, and hence f,, (x,
y) could be a pdf of a bivariate normal r.v. If so, then it is simpler to solve equations for the various
parameters. Now, the given joint pdf of (X, Y) can be expressed as

_ 7.1
fir(e. )= ﬁﬂexp[ 2q(x,y)]

2

where q(x,y) =§(X2 —xy+y +x—2y+1)
22 _12
—3[x x(y=D+(y—1)]

Comparing the above expressions with Egs. (3.88) and (3.89), we see that f,,(x, y) is the pdf of a
bivariate normal r.v. with u, = 0, u, = 1, and the following equations:

270 4Oyl — > = 23w

(1= pho} =1 pHoi =3
2 __2
oxoy(1—-p*) 3

Solving for 02, 0%, and p, we get

Oy =0y =

Hence,
(a) The mean of X is zero, and the mean of Yis 1.
(b) The variance of both X and Yis 2.

(¢) The correlation coefficient of X and Y is 12
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3.53. Consider a bivariate r.v. (X, Y), where X and Y denote the horizontal and vertical miss distances,
respectively, from a target when a bullet is fired. Assume that X and Y are independent and that the
probability of the bullet landing on any point of the xy plane depends only on the distance of the point
from the target. Show that (X, Y) is a bivariate normal r.v.

From the assumption, we have
P, 3) = fx®) f(») = 8(x? +y?) (3.109)
for some function g. Differentiating Eq. (3.109) with respect to x, we have
Fr@f,(y) =2xg'(x? +y?) (3.110)

Dividing Eq. (3.110) by Eq. (3.109) and rearranging, we get

fr() _ g +y?) (3.111)
2xfy (x) g(x2 + yz)

Note that the left-hand side of Eq. (3.111) depends only on x, whereas the right-hand side depends only on
x% + y?; thus,

S _ (3.112)
Xfy (x)

where c is a constant. Rewriting Eq.(3.112) as

[ _
Sx(x)

d
or —[In fy(x)]=cx

dx[ Sx ()] (3.113)
and integrating both sides, we get

In fy(x)= %xz +a or fx(x)= ke”‘z/2

where a and k are constants. By the properties of a pdf, the constant ¢ must be negative, and setting ¢ = — 1/02,
we have

fe(0)= ke—x2/(202)

Thus, by Eq. (2.71), X = N(0; 0?) and

L _2ppo?y
(x)=—F—=—¢"
Ix N2 o

In a similar way, we can obtain the pdf of Y as

1 -2 /(26%)
= e
fY(y) \/EO’

Since X and Y are independent, the joint pdf of (X, Y) is

Sy )= fx O fy (0) = %e*(xzﬂ'z)/(z(f?)
2mo

which indicates that (X, Y) is a bivariate normal r.v.
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3.54. Let (X,, X,, ..., X)) be an n-variate normal r.v. with its joint pdf given by Eq. (3.92). Show that if the
covariance of X, and Xj is zero for i # j, that is,

Cov(X;, X;)=0;; ={gi =) (3.114)

then X, X,, ..., X are independent.

From Eq. (3.94) with Eq. (3.114), the covariance matrix K becomes

o’ 0 0
0 o, - 0
K=|" 2 : (3.115)
0 0 o,’
It therefore follows that
|detK|1/2:0102---an:Hoi (3.116)
i=1
and
oy
0
1
o 0 — - 0
K '= o, (3.117)
0 0 %
o, |
Then we can write
" 3 2
(x—u)TK‘(x—u)=E(x"O“l') (3.118)
i=1 i

Substituting Eqs. (3.116) and (3.118) into Eq. (3.92), we obtain

2

1 Ixaf x—

X,y X,) = ——————exp|—— » | L
Txx, (1 ) - ] P[ 2;( o, ]

P Hoi (3.119)
i=
Now Eq. (3.119) can be rewritten as
Sxpex, (oo %) = | | fx, () (3.120)
1 n i
i=1
where
fe(x) = 1 oG 1207%)
N am oo,

Thus we conclude that X, X,, ..., X, are independent.
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SUPPLEMENTARY PROBLEMS

3.55. Consider an experiment of tossing a fair coin three times. Let (X, Y) be a bivariate r.v., where X denotes the
number of heads on the first two tosses and Y denotes the number of heads on the third toss.

(a) Find the range of X.

(b) Find the range of Y.

(¢) Find the range of (X, Y).

(d Find()PX=2,Y=1)@{)PX=1,Y=1);and (iii) PX =0, Y =0).

3.56. Let F,,(x,y) be a joint cdf of a bivariate r.v. (X, Y). Show that
PXX>a,Y>c)=1—F/a) = Fy(c) + Fy,(a, c)

where F, (x) and F,(y) are marginal cdf’s of X and Y, respectively.

. Let the joint pmf of (X, Y) be given by

k(x; +yj) X; =1,2,3;yj =1,2

X, y;)=
Py (% Vi ) {O otherwise

where k is a constant.
(a) Find the value of k.
(b) Find the marginal pmf’s of Xand Y.

3.58. The joint pdf of (X, Y) is given by

ke @) x>0,y>0
Sxy(x,y)= 0

otherwise

where k is a constant.
(a) Find the value of k.
(b) FindP(X>1,Y<1),PX<Y),and PX=2).

3.59. Let (X, Y) be a bivariate r.v., where X is a uniform r.v. over (0, 0.2) and Y'is an exponential r.v. with parameter
5, and X and Y are independent.

(a) Find the joint pdf of (X, Y).
() Find PY=X).

3.60. Let the joint pdf of (X, Y) be given by

xe *OD x>0, y>0

fxy(x,y)={

0 otherwise

(a) Show that f,,(x, y) satisfies Eq.(3.26).
(b) Find the marginal pdf’s of X and Y.

. The joint pdf of (X, Y) is given by

KA —y)  x<y<2x,0<x<2
Sy (X, y) =

0 otherwise
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where k is a constant.
(a) Find the value of k.
(b) Find the marginal pdf’s of X and Y.

3.62. The joint pdf of (X, Y) is given by

—2 %

e x>0,y>0
foreon =12 Y
0 otherwise

(a) Find the marginal pdf’s of X and Y.
(b) Are X and Yindependent?

3.63. The joint pdf of (X, Y) is given by

~(x+y) S0 y>
Fop (6 y) = e x>0,y>0
0 otherwise
(a) Are X and Yindependent ?
(b) Find the conditional pdf’s of X and Y.
3.64. The joint pdf of (X, Y) is given by
For(5.3) e’ 0<x=y
X, y)= .
Y 0 otherwise

(a) Find the conditional pdf’s of Y, given that X = x.
(b) Find the conditional cdf’s of Y, given that X = x.

3.65. Consider the bivariate r.v. (X, Y) of Prob. 3.14.
(a) Find the mean and the variance of X.
(b) Find the mean and the variance of Y.
(¢) Find the covariance of X and Y.

(d) Find the correlation coefficient of X and Y.

3.66. Consider a bivariate r.v. (X, Y') with joint pdf

1 —(2 49222
fxy(x,)’)zizn 7€ TR0 —o<x,y<<o

(0}
Find P[(X, Y) | ¥ + y? = a?].

3.67. Let(X,Y) be a bivariate normal r.v., where X and Y each have zero mean and variance o2, and the correlation
coefficient of X and Yis p. Find the joint pdf of (X, Y).

3.68. The joint pdf of a bivariate r.v. (X, Y) is given by

1 2
Frr (5.3) = exp —§<x2 —xy+5%)
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(a) Find the means and variances of X and Y.

(b) Find the correlation coefficient of X and Y.

3.69. Let(X,Y,Z) be a trivariate r.v., where X, ¥, and Z are independent and each has a uniform distribution over (0,
1). Compute PX=Y=1Z).

ANSWERS TO SUPPLEMENTARY PROBLEMS

3.55. (a) R,={0,1,2}
() R,=1{0,1}
(© Ry, =4{(0,0),(0,1),(1,0),(1,1),(2,0), (2, D}

@ (HPX=2,Y=1)=1G()PX=1,Y=<1) :%;and(iii)P(XSO,YSO) =1L

e}

3.56. Hint: Setx, =a,y, =c,and x, =y, = ©in Eq. (3.95) and use Eqgs. (3.13) and (3.14).

1
3.57. (a) k72—1

) ) =525 +3)  x=1,2,3
PO)=26+3y)  y=1,2
358. (@) k=2

() PX>1,Y<1)=e !l —e?=~0318; PX<Y)= %;P(XS 2)=1-e¢220.865

25¢ Y 0<x<02,y>0

0 otherwise

3.59. (a) fxy(x,y)={

b)) PY=X)=e¢'7=0.368

3.60. b) fy(x)=e* x>0
1
= 0
fr O +1? y=>

3.61. (a) k=3i

2
(b) fx(x)=352x3(4;x) 0<x<2
(;2)274(4y)y3 0<y<2
fr )= (352);(4”[8;yg) r<y<4
0 otherwise

3.62. (@) fy(x) =xe ™2 x>0

fyo) =ye?  y>0
(b) Yes
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3.63. (a) Yes
B fyxln=er x>0
fy|X(y|x):eiy y>0

3.64. (@) fyx0 | x) = e y=x

0
b) F =
( ) y‘X(ylx) {l—e‘x—y

29 77
3.65. E(X)="—,Var(X)=—
(a) E(X) m X) 324

14 20
b) EY)=—,Var(Y)="
(b) EY) 9,ar()gl

L
(¢) Cov(X,Y)= 162

(d) p=-0.025
3.66. 1 — ¢ /(207

X - 2pxy + y2
o’(1-p*)

3.67. fxv(x yF;eXP—l
67, Jxy (X, 2002 (1— p2)? P

3.68. (@) uy=wu,=0 oi=o0l=1
® p=5

1
3.69. 6



CHAPTER 4

Functions of Random Variables,
Expectation, Limit Theorems

4.1 Introduction

In this chapter we study a few basic concepts of functions of random variables and investigate the expected value
of a certain function of a random variable. The techniques of moment generating functions and characteristic func-
tions, which are very useful in some applications, are presented. Finally, the laws of large numbers and the cen-
tral limit theorem, which is one of the most remarkable results in probability theory, are discussed.

4.2 Functions of One Random Variable

A. Random Variable g(X):

Given ar.v. X and a function g(x), the expression
Y = g(X) (4.1)
defines anew r.v. Y. With y a given number, we denote D), the subset of R _(range of X) such that g(x) < y. Then
Y=y =[X)=yl=XED,) (4.2)
where (X € D,) is the event consisting of all outcomes £ such that the point X(§) € D,.. Hence,
Fy(y) = P(Y =y) = P[gX) = y] = PXE D)) (4.3)

If X is a continuous r.v. with pdf f, (x), then

;= [, fxxde (44)

B. Determination of £, (y) from f,(x):

Let X be a continuous r.v. with pdf f,(x). If the transformation y = g(x) is one-to-one and has the inverse trans-
formation

x=g'() = h() 4.5)
149
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then the pdf of Y is given by (Prob. 4.2)

fr ()= fxx)

. 4hQy) 46
% fx[h(y)]‘ n ‘ (4.6)

Note that if g(x) is a continuous monotonic increasing or decreasing function, then the transformation
y = g(x) is one-to-one. If the transformation y = g(x) is not one-to-one, f,(Y) is obtained as follows:
Denoting the real roots of y = g(x) by X that is,

Y= g) = = gl = “.7)
_ Sx ()
M=) ~=—=
then Ky ; |g'(xk)| . 4.8)
=g (xg)

where g'(x) is the derivative of g(x).

4.3 Functions of Two Random Variables

A. One Function of Two Random Variables:

Given twor.v.’s X and Y and a function g(x, y), the expression
Z=gX,Y) 4.9)

defines a new r.v. Z. With z a given number, we denote D, the subset of R, [range of (X, Y)] such that g(x, y) = z.
Then

Z=29=pX,Y)=zl={X,Y)ED,} (4.10)
where {(X, Y) € D,} is the event consisting of all outcomes £ such that point {X(), Y(§)} € D,. Hence,
F()=PZ=2z=PgX,Y)=z]=P{X,Y)ED,} (4.11)

If X and Y are continuous r.v.’s with joint pdf f,,(x, y), then

F; @)= [[ fxy () dxdy (4.12)
Dz

B. Two Functions of Two Random Variables:

Given two r.v.’s X and Y and two functions g(x, y) and A(x, y), the expression
Z=gX,Y) W=hX,Y) (4.13)

defines two new r.v.’s Z and W. With z and w two given numbers, we denote D, the subset of R, [range of
(X, Y)] such that g(x, y) = z and h(x, y) = w. Then

Z=zW=w=gX,.Y)=z,hX Y)=w]={X,Y)ED,,} (4.14)
where {(X, Y) € D, } is the event consisting of all outcomes £ such that point {X({), Y(§)} € D,,,. Hence,

Foy(zw)=P(Z=z,W=w)=Pg(X,Y)=z,h(X.,Y)=w]

(4.15)
=P{(X,Y)ED,,}



CHAPTER 4 Functions of Random Variables, Expectation

In the continuous case, we have

Fow(z,w)= ff Sy (x,y)dxdy

151

(4.16)
Dzy
Determination of £, (z, w) from f,, (x, y):
Let X and Y be two continuous r.v.’s with joint pdf f, ,(x, y). If the transformation
z =g, y) w = h(x, y) (4.17)
is one-to-one and has the inverse transformation
x =gz, w) y =r(z, w) (4.18)
then the joint pdf of Z and W is given by
T @ w) = fy, (e, ]I, y) |7 4.19)
where x = ¢g(z, w),y = r(z, w), and
o og| | o
dx dy dx dy
J(x,y)= = 4.20
(x,) ah on||ow aw (4.20)
dx dy dx dy
which is the Jacobian of the transformation (4.17). If we define
ag oq| |ox ax
- Jdz  ow dz ow
J(z,w)= =
(z,w) o or| loy oy (421)
dz  ow az  dw
then [T |=|J@n[ (4.22)
and Eq. (4.19) can be expressed as
Fow@w) = fyylg @ w), rie, wT @ ow) | (4.23)
4.4 Functions of n Random Variables
A. One Function of n Random Variables:
Givennrv.’s X, ..., X and a function g(x,, ..., x,), the expression
Y=g, ....X) (4.24)
defines a new r.v. Y. Then
Y=y =[gX,,....X)=y] = [X,..... X)) ED,] (4.25)
and F,(») = PlgX,,....X ) =y] = PIX,, .... X)) ED,] (4.26)
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where D, is the subset of the range of (X, ..., X)) such that g(x,, ..., x ) = y. If X|, ..., X are continuous r.v.’s
with joint pdf le’ ”_’x”(xl, ..., X ), then
Fy(y)=ny"-ffxl.‘.x,,(xl,---,xn)dxl s dx, 4.27)

B. n Functions of n Random Variables:

When the joint pdf of n r.v.’s X, ..., X is given and we want to determine the joint pdf of n r.v.’s Y|, ..., ¥ ,
where

Y, =g(,,....X,)

: (4.28)
Y, =g,X,,....X,)
the approach is the same as for two r.v.” s. We shall assume that the transformation
=8, x,)
: (4.29)
Yn = gn(xl ""’xn)
is one-to-one and has the inverse transformation
-xl :hl(yl’---syn)
: (4.30)
xn :hn(y17--~syn)
Then the joint pdf of ¥}, ..., Y ,is given by
le O ) = fy (g x) | JCx,, ox )| ! (4.31)
ox; ax,,
where J(xp,enx)= 1 T (4.32)
98, ... 98
dx; dx,,

which is the Jacobian of the transformation (4.29).

4.5 Expectation

A. Expectation of a Function of One Random Variable:

The expectation of ¥ = g(X) is given by

E g(x)px(x;) (discrete case)

E(Y)=Elg(X)] =1 " 433)
f _8() fx(x)dx (continuous case)
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B. Expectation of a Function of More Than One Random Variable:
LetX,,...,X benrv’s,andlet Y = g(X, ..., X ). Then
2 Eg(xl,...,xn) Py, x, (X505 X,) (discrete case)

EY)=E[gX)]=1% ™ (4.34)
f_oo -~f_mg(xl,...,xn)fxl,,,xn (xp5..0ox, ) dxy -+ dx, (continuous case)

C. Linearity Property of Expectation:

Note that the expectation operation is linear (Prob. 4.45), and we have

n
YaiXi
i=1

where a;’s are constants. If r.v.’s X and Y are independent, then we have (Prob. 4.47)

n

=Y a E(X)) (435)

i=1

E

E[g(X)h(Y)] = E[gX)IE[A(Y)] (4.36)

The relation (4.36) can be generalized to a mutually independent set of n r.v.’s X, ..., X

n

E

[Tex)
i=1

=[JEl&:x) (437)
i=1

D. Conditional Expectation as a Random Variable:

In Sec. 3.8 we defined the conditional expectation of Y given X = x, E(Y | x) [Eq. (3.58)], which is, in general,
a function of x, say H(x). Now H(X) is a function of the r.v. X; that is,

HX) = EY | X) (4.38)
Thus, E(Y | X) is a function of the r.v. X. Note that E(Y | X) has the following property (Prob. 4.38):

E[EY | X)] = E(Y) (4.39)

E. Jensen’s Inequality:

A twice differentiable real-valued function g(x) is said to be convex if g” (x) = 0 for all x; similarly, it is said to
be concave if g" (x) = 0.

Examples of convex functions include x2, | X | , ¢, x log x (x = 0), and so on. Examples of concave functions
include log x and Vx (x = 0). If g(x) is convex, then h(x) = — g(x) is concave and vice versa.

Jensen’s Inequality:
If g(x) is a convex function, then

E[g(x)] = g(E[X]) (4.40)

provided that the expectations exist and are finite.
Equation (4.40) is known as Jensen’s inequality (for proof see Prob. 4.50).
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F. Cauchy-Schwarz Inequality:
Assume that E(X?), E(Y?) < o, then

E(|XY|)=JEX*) EY?) (4.41)

Equation (4.41) is known as Cauchy-Schwarz inequality (for proof see Prob. 4.51).

4.6 Probability Generating Functions

A. Definition:

Let X be a nonnegative integer-valued discrete r.v. with pmf p, (x). The probability generating function
(or z-transform) of X is defined by

Gy Q=EE)= py 07" (4.42)
x=0
where z is a variable.
Note that
|Gy @)=Y |px @]|z] =Y px =1 for |z]|<1 (4.43)
x=0 x=0

B. Properties of G,(2):
Differentiating Eq. (4.42) repeatedly, we have

Gy =Y xpy () =py D+2py Q) z+3py 3% +--- (4.44)
x=1
Gy ()= x(x=1) py () 7" =2py (2)+32 py Bz +--- (4.45)
x=2
In general,
G @)=Y xx=D—n+hpy "=y (x Jn!px ()" (4.46)
Then, we have
(1) py(0) = PX = 0) = G,(0) (4.47)
@) Py =P(X=m)=-LG," ©) (448)
B3) EX)=G'(1) ' (4.49)
@ EXX-1DX—-2)--X—n+1D]= GX<”)(1) 4.50)

One of the useful properties of the probability generating function is that it turns a sum into product.

E(;0+ %)) = E(;% % )= E(;% ) E(;%) 451)
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Suppose that X, X, ..., X are independent nonnegative integer-valuedr.v.’s,and let ¥ = X + X, + -+ + X . Then

5) Gy (=]]6x® (4.52)

i=1

Note that property (2) indicates that the probability generating function determines the distribution.
Property (4) is known as the nth factorial moment.
Setting n = 2 in Eq. (4.50) and by Eq. (4.35), we have

EIX(X — 1)] = EX? — X) = EX?) — EX) = G} (1) (4.53)
Thus, using Eq. (4.49)
EX?» =G,/ () + G, (1) (4.54)
Using Eq. (2.31), we obtain
Var(X) = G/ (1) + G," (1) — [G, (D] (4.55)
C. Lemma for Probability Generating Function:

Lemma 4.1: If two nonnegative integer-valued discrete r.v.’s have the same probability generating
functions, then they must have the same distribution.

4.7 Moment Generating Functions

A. Definition:

The moment generating function of ar.v. X is defined by

E e"ipy(x;) (discrete case)
My(t)=E@EX)=1" (4.56)
f . e fx (x) dx (continuous case)

where 7 is a real variable. Note that M, () may not exist for all r.v.’s X. In general, M () will exist only for those
values of 7 for which the sum or integral of Eq. (4.56) converges absolutely. Suppose that M,(f) exists. If we
express ¢X formally and take expectation, then

My(t)=E('*)=E 1+tX+%(tX)2 +---+%(tX)k +e

5 . (4.57)
=l+tE(X)+%E(X2)+-~~+%E(Xk)+---
and the kth moment of X is given by
m, = EX* = M,®(0) k=1,2, ... (4.58)
*) d*
where My (0)= F My (1) (4.59)

t=0
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Note that by substituting z by €', we can obtain the moment generating function for a nonnegative integer-
valued discrete r.v. from the probability generating function.

B. Joint Moment Generating Function:

The joint moment generating function M, (t,, ¢,) of two r.v.’s X and Y is defined by

M, (1, t,) = E[eMX* 121 (4.60)
where ¢, and ¢, are real variables. Proceeding as we did in Eq. (4.57), we can establish that
0 0 ¢ kt n
Myy (ty,1,) = E["¥ 2= 5 N 2 p(xfy™) (4.61)
k!n!
k=0 n=0
and the (k, n) joint moment of X and Y is given by
my, = EXY") = My,/%0,0) (4.62)
X ak+n
where My "™ (0,0) = ——— Myy (1.1, (4.63)
1=12=0
In a similar fashion, we can define the joint moment generating function of n r.v.’s X, ..., X by
MX1 Xn(tl, ey b)) = [elXit X)) (4.64)
from which the various moments can be computed. If X, ..., X, are independent, then
My (yoroty) = B[+ 5050] = p(en . )
! (4.65)
=E("1)... E(¢"¥n) = My, () My (t,)
C. Lemmas for Moment Generating Functions:
Two important lemmas concerning moment generating functions are stated in the following:
Lemma 4.2: If two r.v.’s have the same moment generating functions, then they must have the same
distribution.
Lemma 4.3: Givencdf’s F(x), F,(x), F,(x), ... with corresponding moment generating functions M(z),
M (6), M), ..., then F (x) = F(x) if M (t) = M(?).
4.8 Characteristic Functions
A. Definition:
The characteristic function of ar.v. X is defined by
E e py(x;) (discrete case)
W, (w)=E@™X)=1" (4.66)

f 7wej‘"x Sx(x) dx (continuous case)
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where w is a real variable and j = V—1. Note that W, (w) is obtained by replacing 7 in M, (¢) by jow if M, (?)
exists. Thus, the characteristic function has all the properties of the moment generating function. Now

[Pt =| e

SE |eijipx(xi)|: pr(xi) =1<e
for the discrete case and
[Wa@ =] [ e ds|= [ e ds|= 7 o de=1<o0

for the continuous case. Thus, the characteristic function W, (w) is always defined even if the moment generating
function M, (¢) is not (Prob. 4.76). Note that W, (w) of Eq. (4.66) for the continuous case is the Fourier transform
(with the sign of j reversed) of f, (x). Because of this fact, if W, (w) is known, f, (x) can be found from the inverse
Fourier transform; that is,

fr(x)= i 7 wy@e " do (4.67)

B. Joint Characteristic Functions:
The joint characteristic function W, (w,, @,) of two r.v.’s X and Y is defined by
Wy (), 0y) = E[/@XF 1]

P CERE) X, discrete case
2 D Pxy (%2 3) ( ) (4.68)

- X
f :0 f :O e/t ) £ (x,y)dxdy  (continuous case)

where 0, and , are real variables.
The expression of Eq. (4.68) for the continuous case is recognized as the two-dimensional Fourier transform
(with the sign of j reversed) of f, (x, y). Thus, from the inverse Fourier transform, we have

1 0 © —i(wx
fxy ()= W‘Lw f_wlpxy(wl ,wy) e 1) doy dw, (4.69)

From Eqgs. (4.66) and (4.68), we see that

Yy(@)=Wyy(w,0) Wy(w)=Wyy(0,0) (4.70)

which are called marginal characteristic functions.

Similarly, we can define the joint characteristic function of n r.v.’s X, ..., X by
leX] X, (@),...,0,)= E[ej(le1 +---+w,1X,,)] 4.71)
As in the case of the moment generating function, if X, ..., X are independent, then

Wy . .x, (@,....0,) =W (o) ¥ (@,) 4.72)
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C. Lemmas for Characteristic Functions:

As with the moment generating function, we have the following two lemmas:

Lemma 4.4: A distribution function is uniquely determined by its characteristic function.

Lemma 4.5:  Given cdf’s F(x), F(x), F,(x), ... with corresponding characteristic functions W(w), ¥, (w),
W(w), ..., then F, (x) = F(x) at points of continuity of F(x) if and only if ¥ (w) — W(w) for every w.

4.9 The Laws of Large Numbers and the Central Limit Theorem

A. The Weak Law of Large Numbers:

Let X, ..., X be asequence of independent, identically distributed r.v.’s each with a finite mean E(X,) = u. Let
I v« _1
_E (X, +--+X,) 4.73)
n < n

Then, for any ¢ > 0,

lim P(|X |>£)=0 4.74)

n—so

Equation (4.74) is known as the weak law of large numbers, and X , is known as the sample mean.

B. The Strong Law of Large Numbers:

LetX,, ..., X, be a sequence of independent, identically distributed r.v.’s each with a finite mean EX) = u. Then,
forany € > 0,
(@;IX —u|>8) 0 (4.75)

where X is the sample mean defined by Eq. (4.73). Equation (4.75) is known as the strong law of large numbers.

Notice the important difference between Eqs. (4.74) and (4.75). Equation (4.74) tells us how a sequence of
probabilities converges, and Eq. (4.75) tells us how the sequence of r.v.’s behaves in the limit. The strong law
of large numbers tells us that the sequence (X)) is converging to the constant u.

C. The Central Limit Theorem:

The central limit theorem is one of the most remarkable results in probability theory. There are many versions
of this theorem. In its simplest form, the central limit theorem is stated as follows:
LetX,, ..., X beasequence of independent, identically distributed r.v.’s each with mean u and variance 0. Let

_ Xt X, —nu _ X,

" on a/\/—

V4

(4.76)

where X R is defined by Eq. (4.73). Then the distribution of A tends to the standard normal as n — oc; that is,

lim Zn = N(O 5 1) (477)

n—o

or

lim F, (z)= lim P(Z, =2)=d(2) 4.78)
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where ®(z) is the cdf of a standard normal r.v. [Eq. (2.73)]. Thus, the central limit theorem tells us that for large n,
the distribution of the sum § = X, + --- + X is approximately normal regardless of the form of the distribution
of the individual X;’s. Notice how much stronger this theorem is than the laws of large numbers. In practice,
whenever an observed r.v. is known to be a sum of a large number of r.v.’s, then the central limit theorem gives
us some justification for assuming that this sum is normally distributed.

SOLVED PROBLEMS

Functions of One Random Variable

4.1. If X is N(u; 0?), then show that Z = (X — u)/o is a standard normal r.v.; that is, N(0; 1).

The cdf of Zis

Fz(Z)IP(ZSZ)=P(X_OMSz — P(X =0 + 1)

ot 1 —-piao?)
= —e dx
f“” N2mo
By the change of variable y = (x — u)/ o (that is, x = oy + u), we obtain

1 _2
Fz(z):P(zsn:f;me Y2 gy

dF.(x) _ 1 _2p

e
dz N2

and fZ(Z) —
which indicates that Z = N(0; 1).

4.2. Verify Eq. (4.6).

Assume that y = g(x) is a continuous monotonically increasing function [Fig. 4-1(a)]. Since y = g(x) is
monotonically increasing, it has an inverse that we denote by x = g = '(y) = h(y). Then

Fy () =P =)= PIX =h(y)] = Fx [h(y)] (4.79)
" 0= R =Lirnon
dy dy

Applying the chain rule of differentiation to this expression yields

=1L he)
dy

which can be written as

fy(y)=fx(x)d—x x=h(y) (4.80)
dy
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If y = g(x) is monotonically decreasing [Fig. 4-1(b)], then

Fy(y)=P(Y =y)=P[X > h(y)] =1— Fy[h(y)] (4.81)

Thus, O =LRm=- 0% x=hy) (4.82)
dy dy

In Eq. (4.82), since y = g(x) is monotonically decreasing, dy/dx (and dx/dy) is negative. Combining Eqs.
(4.80) and (4.82), we obtain

dh(y)

fr ()= fx(x) Ty

dx|
dy‘ = fx[h(Y)]‘

which is valid for any continuous monotonic (increasing or decreasing) function y = g(x).

Fig. 4-1

4.3. LetX bear.v. with cdf F, (x) and pdf f, (x). Let Y = aX + b, where a and b are real constants and a # 0.
(a) Find the cdf of Y in terms of F, (x).
(b) Find the pdf of ¥ in terms of f, (x).

(a) Ifa>0,then [Fig. 4-2(a)]

Fy(y)=P(Y5y)=P(aX+b5y>=P[Xsy;l’)ﬂx(y_b) 4.83)

If a <0, then [Fig. 4-2(b)]

F,()=PY =<y)=PaX+b=y)=PaX=<y—b)

=PlX= y—b) (since a < 0, note the change in the inequality sign)
a
=1-P|X< y_b)
a
=1—P[Xs Y_b )i p[x= y_b)
a a
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=1-Fy

y_b)+P(X= y_b) (4.84)
a a

Note that if X is continuous, then P[X = (y — b)/a] = 0, and

y— b

Fy(y)=1—Fy

) a<o (4.85)

(b) From Fig. 4-2, we see that y = g(x) = ax + b is a continuous monotonically increasing (a > 0) or
decreasing (a < 0) function. Its inverse is x = g ~ '(y) = h(y) = (y — b)/a, and dx/dy = 1/a. Thus, by
Eq. (4.6),

fY()’)=1fX( y;b) (4.86)

|a]

Note that Eq. (4.86) can also be obtained by differentiating Eqs. (4.83) and (4.85) with respect to y.

Fig. 4-2

44. LetY = aX + b.Determine the pdf of Y, if X is a uniform r.v. over (0, 1).

The pdf of X is [Eq. (2.56)]

|t 0<x<l1
&= 0 otherwise
Then by Eq. (4.86), we get
1 b ! YER
- o Y
K =—f|2—=|=1lal (4.87)
|a] a

0 otherwise
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a>0 a<o

Fig. 4-3
The range R, is found as follows: From Fig. 4-3, we see that

Fora >0: R,={y:b<y<a+b}
Fora <0: R,={yia+b<y<b}

4.5. LetY = aX + b. Show that if X = N(u; 0 ?), then Y = N(au + b; a* 0?), and find the values of a
and b so that Y = N(0; 1).

Since X = N(u; 0?), by Eq. (2.71),

SR TV S P
Jx &) \/EOGXP[ 202(x M)]

Hence, by Eq. (4.86),

2
R S S A
fy()’) \/ﬂlal(f exp{ 20_2 [[ a ) ‘LL:| }

- \/ﬂ1| p |o exp{— 2a102 [y —(ap+ b)]z}

(4.88)

which is the pdf of N(au + b; a>0?). Hence, Y = N(au + b; a*0'?). Next, let au + b = 0 and a*0? = 1, from
which we geta = 1/oand b = — u/o. Thus, Y = (X — w)/ois N(O; 1) (see Prob. 4.1).

4.6. LetX bear.v. with pdf f,(x). Let Y = X2. Find the pdf of Y.
The event A = (Y =) in R, is equivalent to the event B = (—Vy =X =VYy) in R, (Fig. 4-4). If y = 0, then
F,0)=P¥=y)=0

and f,(y) = 0.If y >0, then

F=PY=y=P(-y=x=y)=F{\y)~Fx(-y) (4.89)
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d d d 1
and 0= F 0= B () = () = S (W) + A ()]
1
— (= >0
Thus, =12y [ (Vo) + e ()] Y (4.90)
0 y=0
y
y=x
_________ y
: ! > X
x==y 0 x=Jy
Fig. 4-4

Alternative Solution:

If y <0, then the equation y = x? has no real solutions; hence, £, =0.If y>0,theny = x? has two solutions, X, = \/)7
and x, = —\/y_. Now, y = g(x) = x> and g'(x) = 2x. Hence, by Eq. (4.8),

1

[+ (=) v>0

F =12y
0 y<O0
4.7. Let Y = X2 Find the pdf of Y if X = N(0; 1).
Since X = N(0; 1)
1
fX (X) m e
Since fy(x) is an even function, by Eq. (4.90), we obtain
SR ame >0
fr»m =1y 2my 4.91)
0 y<O0

4.8. LetY = X2 Find and sketch the pdf of Y if X is a uniform r.v. over (—1, 2).
The pdf of Xis [Eq. (2.56)] [Fig. 4-5(a)]

1 —1<x<2
fx(x)=43
0

otherwise
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In this case, the range of Yis (0, 4), and we must be careful in applying Eq. (4.90). When 0 <y <1, both \/7
and =V y arein R, = (—1,2), and by Eq. (4.90),

=_1 =_1
wo-sl5 1)

1+1

When 1 <y <4,Vy isinR,=(—1,2)but = Vy < —1,and by Eq. (4.90),

1 1 1
= |2 4+0l=——_
W 2\/;( 3 ) 6.y
'—Lf 0<y<l
30
1
= — 1<y<4
Thus, S 6\/5 y
0 otherwise
which is sketched in Fig. 4-5(b).
fAY)
A
fyX)
A
1
3 1
T 3|---
1 1 1
- \_
: : > 6 1 1 1 i >y
-1 0 2 0 1 2 3 4
@) (b)
Fig. 4-5

4.9. LetY = ¢*. Find the pdf of Y if X is a uniform r.v. over (0, 1).

The pdf of Xis
0<x<l1

1
&@F{O

otherwise

The cdf of Yis

F()=P¥=y)=PE*=y)=P(X=Iny)

=f1n:fx(x)dx=f;nydx=lny I<y<e
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d d 1
Thus, M =—FKy=—hy== 1<y<e (4.92)
dy dy y

Alternative Solution:

The function y = g(x) = ¢*is a continuous monotonically increasing function. Its inverse is x = g~ ' (y) = h(y)
= Iny. Thus, by Eq. (4.6), we obtain

d 1 1 0<lny<l
Fr(M=fx(ny) Zlny =—fx(ny)=1y
Y Y 0 otherwise
1 I<y<e
or fy(Y): y
0 otherwise
4.10. Let Y = ¢*. Find the pdf of Y if X = N (u; 0?).
The pdf of X is [Eq. (2.71)]
Kw=pbep| Lot e
J2ro 202

Thus, using the technique shown in the alternative solution of Prob. 4.9, we obtain

1 1 1
fy()’)z;fx(ln)’):yma eXP[_?‘Z(lﬂ)’_H)Z} 0<y<w (4.93)

Note that X = In Yis the normal r.v.; hence, the r.v. Yis called the log-normal r.v.

4.11. Let X be ar.v. with pdf f, (x). Let ¥ = 1/X. Find the pdf of Y in terms of f, (x).
We see that the inverse of y = 1/xis x = 1/y and dx/dy = — 1/y%. Thus, by Eq. (4.6)
fr =" (‘)
YO =3k (4.94)
4.12. Let Y = 1/X and X be a Cauchy r.v. with parameter a. Show that Y is also a Cauchy r.v. with parameter 1/a.

From Prob. 2.83, we have

alm
() =——7 —olyx <o
a’ +x?

By Eq. (4.94)

1 1
fon=—+ almw _ (MVayr

= —o << y<<o
Vad+ly? (Ual+y Y

which indicates that Y'is also a Cauchy r.v. with parameter 1/a.
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4.13. Let Y = tan X. Find the pdf of Y if X is a uniform r.v. over (—m/2, t/2).

The cdf of X is [Eq. (2.57)]

0 X=—m/2
Fy(x)= l(x+7t/2) —m/2<x<m/2
4
1 x=m/2
Now F()=PY =y)=P(tanX=<y)=P(X <tan 'y)
=FX(tan71y)=l tan71y+i =l+ltan71y —o<ly<oo
T 2 2 m
Then the pdf of Yis given by
d 1
YW =—kKY=—"—7 Te<y<®
dy Jr(1+y )

Note that the r.v. Yis a Cauchy r.v. with parameter 1.

4.14. Let X be a continuous r.v. with the cdf F,, (x). Let Y = F, (X). Show that Y is a uniform r.v. over (0, 1).

Notice from the properties of a cdf that y = F, (x) is a monotonically nondecreasing function. Since 0 = F, (x)
= 1 for all real x, y takes on values only on the interval (0, 1). Using Eq. (4.80) (Prob. 4.2), we have

AW,

_ 0<y<l
dFy(0)/dx  fy(x)

- 1 _
(= fx(x) /s fx(x)

Hence, Yis a uniform r.v. over (0, 1).

4.15. Let Y be a uniform r.v. over (0, 1). Let F(x) be a function which has the properties of the cdf of a
continuous r.v. with F(a) = 0, F(b) = 1, and F(x) strictly increasing for a < x < b, where a and b
could be —o0 and o, respectively. Let X = F~'(Y). Show that the cdf of X is F(x).

F(x) = PX =x) = P[F'(Y) =x]

Since F(x) is strictly increasing, F~!(Y) = xis equivalent to Y = F(x), and hence

F,(x) = P(X=x) = P[Y = F(x)]

Now Yis a uniform r.v. over (0, 1), and by Eq. (2.57),
F,(0) =PY=y)=y 0<y<l
and accordingly,
F (x) =PX=x) =P[Y=F(x)] = F(x) 0<Fx)<l1

Note that this problem is the converse of Prob. 4.14.
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4.16. Let X be a continuous r.v. with the pdf

* x>0

e
fx(x)_{o x<0

Find the transformation ¥ = g(X) such that the pdf of Y is

1
— 0<y<l
frM=12y

0 otherwise

The cdf of X is

x Yetd 1—e™* 0
Fx(x):fmfx(g)dEZ{Ofoe ‘§={0 ¢ izo

Then from the result of Prob. 4.14, the r.v. Z = 1 — ¢ ¥is uniformly distributed over (0, 1). Similarly, the cdf of Yis

F,(y)=

y 1
foz\/ﬁdn:][ﬁ 0<y<l

0 0 otherwise

and ther.v. W=V Y isuniformly distributed over (0, 1). Thus, by setting Z = W, the required transformation is
Y=(1—e %7

Functions of Two Random Variables

4.17. Consider Z = X + Y. Show that if X and Y are independent Poisson r.v.’s with parameters A, and 4,,
respectively, then Z is also a Poisson r.v. with parameter A, + A4,.

We can write the event

(X+Y=n)=LnJ(X=i,Y=n7i)
i=0

where events (X =i, Y=n—1),i =0, 1, ..., n, are disjoint. Since X and Y are independent, by Eqs. (1.62) and
(2.48), we have

PZ=m=P(X+Y=n)= Y P(X=0,Y =n—i)= Y P(X=i) P(Y =n —i)
i=0 i=0

n i n—i n iq n—i
=N et Al g AR
i!
i=0

(n—1)! S itn—10)!

—(Mt+Ay) n |

e n! in n—i
- L Y

n! “~ [l(n—1i)!
i=0

o 1tha) .,

=T(Al+)u2)

which indicates that Z = X + Yis a Poisson r.v. with 4, + 4,.
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4.18. Consider two r.v.’s X and Y with joint pdf f,, (v, y). LetZ = X + Y.
(a) Determine the pdf of Z.
(b) Determine the pdf of Z if X and Y are independent.

‘X\N

P

.

\

)
@@
£
)

(a) The range R, of Z corresponding to the event (Z = z) = (X + Y = 7) is the set of points (x, y) which lie on
and to the left of the line z = x + y (Fig. 4-6). Thus, we have

F)=PX+Y=p)=[" [fj;xfxy(x,y)dy]dx (4.95)

Then £,(2) :diz F@=[" {dizfj;xfxy(x,y)dy] dx (4.96)

= f:ofxy(x,z — Xx)dx
(b) If X and Y are independent, then Eq. (4.96) reduces to
L@= 7 @) fy(z—x)dx (4.97)

The integral on the right-hand side of Eq. (4.97) is known as a convolution of f,(z) and f,(z). Since the
convolution is commutative, Eq. (4.97) can also be written as

H@= " fOfx@—ydy (4.98)

4.19. Using Eqs. (4.19) and (3.30), redo Prob. 4.18(a); that is, find the pdf of Z = X + Y.

LetZ =X+ Yand W = X. The transformation z = x + y, w = x has the inverse transformationx =w,y =z — w,

and
o
J(xy) ax 9y 11 1
X,9)= = =
Y dw  Iw 1 0

ox  dy
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By Eq. (4.19), we obtain

Hence, by Eq. (3.30), we get

L@=[" twewydw=[" fowv.z—wydw=[" fo(x,2—x)dx

4.20. Suppose that X and Y are independent standard normal r.v.’s. Find the pdf of Z = X + Y.

The pdf’s of X and Y are

. 1
fX e . fY(y):me vz

I
ﬁ —
Bl

Then, by Eq. (4.97), we have

£ 7 fe0f v de= [ :ﬁ e ﬁ R

:Lf‘” @2t g
2x Y~

Now, 22 — 2zx + 2x2 = (V2 x — 2/V2 )2 + 72/2, and we have

£, = J_ e* /4J_f ~(V2x— z/f 2 0

,2 1 —u?
/4 f e gy

2n

with the change of variables u = V2 x — z/ V2. Since the integrand is the pdf of N(O; 1), the integral is equal
to unity, and we get

1 _2 2
et 12(42)

£(2)= #6*12/4 _
2 a2 V272

which is the pdf of N(0; 2). Thus, Zis a normal r.v. with zero mean and variance 2.

4.21. Let X and Y be independent uniform r.v.’s over (0, 1). Find and sketch the pdf of Z = X + Y.
Since X and Y are independent, we have

0<x<1,0<y<l

0 otherwise

Sy (6, 9) = fx (0 fy ()= {

The range of Zis (0, 2), and

F,@=PX+Y=2= [[ fuyydedy= [[ dcdy

xty=z xty=z
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If 0 <z<1 [Fig. 4-7(a)],

and

If | <z <2 [Fig. 4-7(b)],

CHAPTER 4 Functions of Random Variables, Expectation

2
F,(2)= ff dx dy = shaded area = %

x+y<z

HO=LE@=:
dz

2
F@= [ dx dy = shaded area = 1 — 2~ 2

and

Hence,

x+y<z 2

=L @=2-2
dz

z 0<z<l1
f7()=42-z 1<z<2
0 otherwise

which is sketched in Fig. 4-7(c). Note that the same result can be obtained by the convolution of f, (z) and f, (z).

> X

f,(2)

r' N
1 |—

! > 7z
0 1 2
(c)
Fig. 4-7

4.22. Let X and Y be independent exponential r.v.’s with common parameter A and let Z = X + Y. Find f,(z).

From Eq. (2.60) we have

fr@)=2e

x>0, fLo)=2Are ™ y>0
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In order to apply Eq. (4.97) we need to rewrite f,(x) and f(y) as
) =2Ae * u(x) — o< x < oo, £, =2de " u(y) —e<y< e
where u(&) is a unit step function defined as

1 £>0

0 £<0 (4.99)

u(&) ={

Now by Eq. (4.97) we have
fz()= fiol e u(x)r e M Tz — x) dx

Using Eq. (4.99), we have

1 0<x<z
0 otherwise

u(x)u(z —x)= {
Thus,

(@)= Are ™ foz dx = Azze_)‘zu(z)

Note that X and Y are gamma r.v.’s with parameter (1, A) and Z is a gamma r.v. with parameter (2, A)
(see Prob. 4.23).

4.23. Let X and Y be independent gamma r.v.’s with respective parameters (c, A) and (f3, A). Show thatZ = X + Y
is also a gamma r.v. with parameters (a + f3, A).

From Eq. (2.65),
)\-ei)bx()\.x)ail

x>0

Sx(x)= I'(a)
0 x<0
Ae ™M (Ax)P ! y>0

= (B)
0 y<0

The range of Zis (0, ), and using Eq. (4.97), we have
_ 1 2, —Ax a=14 —A(z—x) _ Bl
fZ (Z) = Wr(ﬁ)fo Ae (}LX) Ae Z [}\,(Z X)] dx
AaJrﬁ

— Az (% a—1,_ B-1
rar ¢ o eI

By the change of variable w = x/z, we have
}"a+ﬂ
L(@)L(B)

— ke*}»zzoﬁrﬁfl

_ 1l e _
e Azza+[3’ lfowa l(l—W)ﬁ ldw

f2(0)=
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where k is a constant which does not depend on z. The value of k is determined as follows: Using Eq. (2.22) and
definition (2.66) of the gamma function, we have

f:ofl(z) dz = kfozef}tzzmﬁfl dz

Aaliﬁ f:efvvaw*l dv (Az=V)

__k _
7WF(a+ﬁ)fl

Hence, k = A%+ #/T (a + B) and

}La+ﬁ Cheatpo1 _ Ae—}»x(}bz)oﬁﬂ—l

e — z z>0
T(a+ ) T(a+p)

f2(0)=
which indicates that Z is a gamma r.v. with parameters (o + f3, 1).

4.24. Let X and Y be two r.v.’s with joint pdf f, , (x, y).andletZ = X — Y.
(a) Find f, (2).
(b) Find f,(z) if X and Y are independent.

(a) From Eq. (4.12) and Fig. 4-8 we have

©

F@=PX-Y=0=[" [ fy(.ydrdy

y=

Then

fio =22 fj;w[ L ey dx}dy

dz dz V= (4.100)
=7 oGtz dy
y
4
X—-y=z
> X
y’z
-z
Fig. 4-8
(b) If X and Yare independent, by Eq. (3.32), Eq. (4.100) reduces to
L@= " KOG+ LGy (4.101)

which is the convolution of f,(—z) with f, (z).
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4.25. Consider two r.v.’s X and Y with joint pdf f,,(x, y). Determine the pdf of Z = XY.

4.26.

4.27.

173

Let Z= XY and W = X. The transformation z = xy, w = x has the inverse transformation x = w, y = z/w, and

J(z,w)= z 0w =l . |l=—=
LA T o L
oz ow| W
Thus, by Eq. (4.23), we obtain
1 Z
fZW(Z,W)=‘* fxy(W,)
w w
and the marginal pdf of Zis
0 l z
L= |- fxy(w,)dw
w w

Let X and Y be independent uniform r.v.’s over (0, 1). Find the pdf of Z = X'Y.

We have

The range of Zis (0, 1). Then

1 0<x<1,0<y<1
Sxy (x,9)= 0

otherwise

otherwise

Z 1 0<w<l1,0<z/w<l
Sxy|w,—|= 0

1 0<z<w<l

Fer | w, ==
or el B 0 otherwise

By Eq. (4.103),

11
fz(z)=fZ;dw=—lnz 0<z<l

Thus, fz(2)= {

Consider two r.v.’s X and Y with joint pdf f,(x, y). Determine the pdf of Z = X/Y.

—Inz 0<z<l1

0 otherwise

(4.102)

(4.103)

Let Z= X/Y and W = Y. The transformation z = x/y, w = y has the inverse transformation x = zw, y = w, and

J(z,w)=

x ox
azawzwzz
ay o ay| fo1

dz  ow
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Thus, by Eq. (4.23), we obtain
Fan@w) = |[w] fy,aw, w) (4.104)

and the marginal pdf of Zis

=" |w| fyaw.w) dw (4.105)

4.28. Let X and Y be independent standard normal r.v.’s. Find the pdf of Z = X/Y.

Since X and Y are independent, using Eq. (4.105), we have

fz(Z):f_Z|W|fX(zw)fY(w) dwzfj’w|w|Le—w2(1+z2)/2 dw

27
1 © 2 2 1 po0 _2 2
_ we wo(1+z7)/2 dW_—f we w(1+z7)/2 dw
27 70 2wy >
:;2 _°°<Z<°°
a(l+z%)

which is the pdf of a Cauchy r.v. with parameter 1.

4.29. Let X and Y be two r.v.’s with joint pdf f,, (x, y) and joint cdf F,,(x, ). Let Z = max(X, Y).
(a) Find the cdf of Z.
(b) Find the pdf of Z if X and Y are independent.

(a) The region in the xy plane corresponding to the event {max(X, Y) = z} is shown as the shaded area in
Fig. 4-9. Then

F,0)=PZ=2=PX=zY=2=F,(z2 (4.106)
(b) If Xand Y are independent, then
F,(z) = Fy(2)F, (2)
and differentiating with respect to z gives

f2(2) = fx@F,(2) + Fy(2) fy(2) (4.107)

<

N

700,

Fig. 49
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4.30. Let X and Y be two r.v.’s with joint pdf f,, (x, y) and joint cdf F,, (x, y). Let W = min(X, Y).
(a) Find the cdf of W.
(b) Find the pdf of W if X and Y are independent.

(a) The region in the xy plane corresponding to the event {min(X, Y) = w} is shown as the shaded area in
Fig. 4-10. Then

PW=w)=P{(X=w)U (¥ =w)}
=PX=w)+PY =w)—P{X=w)N¥ =w)}
Thus, Fw(W):Fx(W)+Fy(W)_ny(W7W) (4.108)
(b) If Xand Y are independent, then

Fpy W) = Fyy (W) + F, (W) — Fyy WF, (w)

and differentiating with respect to w gives

Sww) = fxw) + fy(w) = fxy(W)Fy (w) = Fy (W) fy (w)
= fxWIL = F, W)+ fy(w)l = Fy(w)] (4.109)

7

4.31. Let X and Y be two r.v.’s with joint pdf f,, (x,y). Let Z = X* + Y. Find f (z).
As shown in Fig. 4-11, D, (X? + Y2 =< 2) represents the area of a circle with radius Vz.

y

A

Vz

X +y2=z

ol 4

Fig. 4-11
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Hence, by Eq. (4.12)

and

Fz<z>=fy f\/—fxy(xy)dxdy

2= dFZ(Z) I [ fH Fer (5, y)dx]dy
vz z
- faz[fJ_yfxy(x’Y)dx N J_fxy(x y)dx} (4.110)

){\Eﬁ[fXY (\/Z -y’ 7y)+ Txy (* NE y)] dy

4.32. Let X and Y be independent normal r.v.’s with u, = u, = Oand 0,* = 0,> = 0% LetZ = X? + Y2

Find f,(z).

Since X and Y are independent, from Eqs. (3.32) and (2.71) we have

and

1
—— %)
20

Fir(e.3) = @ f () =5 ! @111

b (o242 1
fXY(HJ’) : 7€ 202(Z Y ): 1 7 ¢ 207
e e

fXY(_ =Yy ’y): 26 20 = 28 20

2mo 2n0

Thus, using Eq. (4.110), we obtain

1

1 1
N I 1 I
fz(Z)=fi7\E72 e (2 e ]dy— S f dy

2n0

70> IZ_yZ

Lety = VZ sin 6. Then V'z —y> = Vz(1 —sin? 6)= Vzcos Oand dy = Vzcos 8d6

and

Hence,

fﬁ 1 d :fn/Z\/Zcosedgzﬁ

0 lz_yz "o Jz cos 6 2

1
-2
fz(z):—zlze 20° 2>0 (4.112)
o

which indicates that Zis an exponential r.v. with parameter 1/(2 0?).
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4.33. Let X and Y be two r.v.’s with joint pdf f, (x, y). Let

R=yX?+Y? ©=tan'
Find f,, (r, 0) in terms of f}, (x, y).

We assume that r = 0 and 0 = 6 < 2z. With this assumption, the transformation

has the inverse transformation
x=rcos 0 y=rsin 0
Since

ox Ox

or % _|lcos@ —rsinf|_

J(x,y)=ay gy| [sin® reos@ "

ar 00

by Eq. (4.23) we obtain

fre(rs 0) = rfy(rcos 0, rsin 0)

4.34. A voltage V is a function of time ¢ and is given by
V() = X cos wr + Ysin wt

in which w is a constant angular frequency and X = Y = N (0; 0) and they are independent.

(a) Show that V(f) may be written as

V(t) = R cos (wt — ©)
(b) Find the pdf’s of r.v.’s R and ® and show that R and © are independent.
(a) We have

V(t)= X cos wt +Y sin wt

_ [y2ov2 X Y
W e Y e

=Jx>+v? (cos O cos wt + sin O sin wt)
= R cos(wt — ©)

Where R:«/X2+Y2 and ® = tan

which is the transformation (4.113).

cos wt + sin wt

LY
X

(b) Since X =Y = N (0; 0?) and they are independent, we have

1 —(x2 42202
fxy(x’y)zz e (x*+y9)I(207)
JTO

177

(4.113)

(4.114)

(4.115)

(4.116)
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Thus, using Eq. (4.114), we get

Fro(rs0)=r fiy (r cos 0,7 sin ) =—— ¢ 710" (4.117)
2m0
— [ _ =t (2, T —ie?)
Now o= [ fror0)dO= e [, d0=—5e r=0 (4.118)
_ © _ 1 ) —r2/(20'2) _ ]
fo®= [, fRe(r,O)dr—Wfo re dr=-—.0=0<21 (4.119)

and fo(r, 0) = fp(r) fo(6); hence, R and © are independent.
Note that R is a Rayleighr.v. (Prob. 2.26), and © is a uniform r.v. over (0, 27).

Functions of N Random Variables

4.35. Let X, Y, and Z be independent standard normal r.v.’s. Let W = (X2 4+ Y2 + Z?)"2. Find the pdf of W.

We have
1 L2 a2
Txrz(6 9, 0= fx(O Wz =—F5¢ CERRIRER
(2m)
and Fyw)=PW =w)=P(X2 +Y>+ 22 =w?)
1 R CaRs SR T apTp)
- fff i ¢ dx dy dz
Ry, (2ﬂ)

where R, = {(x, y, 2): ¥ + y* + z2 = w?). Using spherical coordinates (Fig. 4-12), we have

2yt =2

dx dydz=r*sin 0 dr d6 dg

and Fyy (w) :W ST [T fre ™ sin0 dr a dg
)
_ 1 2w L. wo—r2 2
=G fo dq;fo sm@d@foe r*dr (4.120)
1 w 2
:W(zn)(z) [ e Par
Thus, the pdf of Wis
2 2 —win
d \/:w e w>0
fW(W):%FW(w): 7 (4.121)

0 w<0
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4.36.

4.37.

—~ >y

Fig. 4-12 Spherical coordinates.

LetX|, ..., X, be n independentr.v.’s each with the identical pdf f(x). Let Z = max(X|, ..., X ). Find
the pdf of Z.

The probability P(z < Z < z + dz) is equal to the probability that one of the r.v.’s falls in (z, z + dz) and
all others are less than z. The probability that one of X, (i = 1, ..., n) falls in (z, z + dz) and all others are
all less than zis

a7 s
Since there are n ways of choosing the variables to be maximum, we have
f@=nf)|f fwf(xwlx)r1 = nfQUF (4.122)
When n = 2, Eq. (4.122) reduces to
£@=2@) [° fde=2f(F ) (4.123)
which is the same as Eq. (4.107) (Prob. 4.29) with f,(z) = f,(2) = f(z) and F,.(z) = F,(z) = F(2).

Let X,, ..., X be n independent r.v.’s each with the identical pdf f(x). Let W = min(X,, ..., X ). Find
the pdf of W.

The probability P(w < W < w + dw) is equal to the probability that one of the r.v.’s falls in (w, w + dw) and

all others are greater than w. The probability that one of X, (@=1,..,n falls in (w, w + dw) and all others are
greater than wis

n—1
F(w) dw( ) : F(x) dx)
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4.39.
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Since there are n ways of choosing the variables to be minimum, we have

o n—1
fun=nfon( 7 fds]  =nfo - FI'! (4.124)

When n = 2, Eq. (4.124) reduces to

Jww)=2f(w) f:f(X) dx =2f(w)[l—F(w)] (4.125)

which is the same as Eq. (4.109) (Prob. 4.30) with f,(w) = f,(w) = f(w) and F\,(w) = F,(w) = F(w).
LetX,i=1,...,n,ben independent gamma r.v.’s with respective parameters (a, A,i=1,...,n Let

n
Y=X, +-+X, =Exi
i=1
Show that Y is also a gamma r.v. with parameters (27 _, &, 4).

We prove this proposition by induction. Let us assume that the proposition is true for n = k; that is,

k
Z:X1+~~+Xk:EX,-
i=1

k
is a gamma r.v. with parameters (8,A)= [ E a;, 7»]-
i=1

k+1
Let W=Z+Xk+l=EXi

i=1

Then, by the result of Prob. 4.23, we see that Wis a gamma r.v. with parameters (8 + o, , ,, 1) = & a, V).

+1° i=1

Hence, the proposition is true for n = k + 1. Next, by the result of Prob. 4.23, the proposition is true for n =
2. Thus, we conclude that the proposition is true for any n = 2.

LetX,, ..., X be n independent exponential r.v.’s each with parameter A. Let

n
Y=X +-+X, =YX,
i=1

Show that Y is a gamma r.v. with parameters (n, A).

We note that an exponential r.v. with parameter A is a gamma r.v. with parameters (1, A). Thus, from the result
of Prob. 4.38 and setting o, = 1, we conclude that Yis a gamma r.v. with parameters (n, A4).

LetZ,, ..., Z be n independent standard normal r.v.’s. Let

n
Y=2Z+--+272 :Ez}
i=1
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441.

Find the pdf of Y.

LetY, = Zl.z. Then by Eq. (4.91) (Prob. 4.7), the pdf of Y is

1 —y/2
——e y>0
Jy, () =127y
0 y<0

Now, using Eq. (2.96), we can rewrite

1 —yn -1 1 —yp 121
— /2 —e /2
1 e 2f 72) ¢ O

R

and we recognize the above as the pdf of a gamma r.v. with parameters (iz, lz) [Eq. (2.65)]. Thus, by the result
of Prob. 4.38, we conclude that Y is the gamma r.v. with parameters (n/2, lz) and

1 - _
e y/Z(y/z)n/Z 1 e*y/Zyn/Z*l

K= T2 2"T@/2)
0 y< 0

y>0 (4.126)

When 7 is an even integer, I'(n/2) = [(n/2) — 1]!, whereas when n is odd, I'(n/2) can be obtained from I'(a) =
(a— 1) I'(a—1)[Eq.(2.97)] and I‘(i2) = \/J;[Eq. (2.99)].

Note that Equation (4.126) is referred to as the chi-square (x?) density function with n degrees of freedom,
and Y is known as the chi-square ()*) r.v. with n degrees of freedom. It is important to recognize that the sum
of the squares of n independent standard normal r.v.’s is a chi-square r.v. with n degrees of freedom. The chi-
square distribution plays an important role in statistical analysis.

Let X, X,, and X, be independent standard normal r.v.’s. Let
Y, =X, +X,+X,
Y,=X —X,

Y, =X, — X,

Determine the joint pdf of Y|, ¥,, and Y.
Let Y =X tx, Ty
Y, =X X, (4.127)

Y3 T X T X3
By Eq. (4.32), the Jacobian of transformation (4.127) is
1 1 1

J(x;,x,x3)=|1 —1 0|=3
0 1 -1
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Thus, solving the system (4.127), we get

1

X :g(yl +2y, +y3)
1

X :g()ﬁ —»ty)

1
X3 :g()’l — Y2 —2y3)

Then by Eq. (4.31), we obtain

VWEZy, Y oy Ty, Tty oy Ty, T2y

1
Ty, 15 Y25 ¥3) =§fxlxzx3 )

3 3
Since X|, X, , and X, are independent,
3
- 1 —(xp+xo+x7)2
fxxx(xl’xz’x3):fo,-(xi):73/2€ o
14243 e (2”)
_ 1 =q(y1,y2,¥3)/2
Hence, fy1y2y3(yl,)727Y3)_We 1-Y2-Y3
+2y + ? 2y + ’ 2 2 :
where q(yl,yz,y3)=(y‘ zz y3) +(y‘ ? y3) +(yl Y,
1 2 2 2
=—y,+Zy,+Zy,+=
3)’12 3)’22 3)’32 3)’2)’3

Expectation

4.42. Let X be a uniform r.v. over (0, 1) and Y = .
(@) Find E(Y) by using f,(y).
(b) Find E(Y) by using f,(x).

(a) From Eq. (4.92) (Prob. 4.9),

1

— 1I<y<e
Sr()=1Y
0 otherwise
Hence, EW)=[" yfy(mdy= [ldy=e—1
(b) The pdfof Xis

Fo) 1 0<x<l1
X) =

X 0  otherwise

Then, by Eq. (4.33),

EW)=[7 o fyydi= [ ede=c"

(4.128)
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4.43. Let Y = aX + b, where a and b are constants. Show that
(a) EY)=E@X + b)=aEX)+ b (4.129)

b) Var(Y) = Var(aX + b) = a® Var(X) (4.130)

We verify for the continuous case. The proof for the discrete case is similar.

(a) By Eq.(4.33),
E(Y)=E@X +b)= [~ (ax +b) fy(x) dx

=af” dfy@dx+b [ fi(x)dv=aEX)+b

(b) Using Eq. (4.129), we have

Var(Y) = Var(aX + b) = E{(aX + b —[aE(X) + b])*}
=E{d*[X — EX)} =a’E{[X — EX)*} = a* Var(X)

4.44. Verify Eq. (4.39).
Using Eqgs. (3.58) and (3.38), we have
ELEY [01= [ B¢ [0 fds= [ [ [7 s 0 dv] fyo e
Sy I *
[P vy S| pa ey
= [7 My dy=ElY]

4.45. Let Z = aX + bY, where a and b are constants. Show that
E(Z) = E(aX + bY) = aE(X) + bEY) (4.131)

We verify for the continuous case. The proof for the discrete case is similar.

E@Z)=E@X +bY)= [~ [7 (ax+by)fyy (x.y) dx dy
=af” [* dfy.yydedy+b[" [ vy (x.y)dx dy
=af " A [ e ay|axeb 75 [ fte x| ay

=af” sy dx+b " 3y (y) dy=aE(X)+bEXY)

Note that Eq. (4.131) (the linearity of E) can be easily extended to nr.v.’s:

n

=Y aE(X)) (4.132)
i=1

E aX.

'

TOR

i=1
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4.46. LetY = aX + b.
(a) Find the covariance of X and Y.

(b) Find the correlation coefficient of X and Y.
(a) By Eq. (4.131), we have

E(XY) = E[X(aX + b)] = aE(X?) + bE(X)
E(Y)=E(aX +b)=aE(X)+b

Thus, the covariance of X and Yis [Eq. (3.51)]

Cov(X,Y)=o0yy = E(XY)— E(X)E(Y)
=aE(X2)+bE(X)—E(X)[aE(X)+b] (4.133)
=a{E(X*)—[E(X)I} = a0}

(b) By Eq. (4.130), we have o, = |a| 0. Thus, the correlation coefficient of X and Y'is [Eq. (3.53)]

2 >
= Oxr __ a0y _4 —{ I a=0 (4.134)

1 a<O0

4.47. Verify Eq. (4.36).

Since X and Y are independent, we have

ElgCORMI = [ [7 g fiy (x. ) dx dy
= [7 [ (RO fy () fy () dx dy
= [7 s fx 0 dx [ () fy(y) dy
= E[gCOER(Y)]

The proof for the discrete case is similar.

4.48. Let X and Y be defined by
X =cos©® Y =sin@®

where O is a random variable uniformly distributed over (0, 27).
(a) Show that X and Y are uncorrelated.

(b) Show that X and Y are not independent.

(a) We have

1
Jo®)=12m
0 otherwise

0<6<2m

_r (2 _ 1 2 _
Then, EX) = [ fx()de= [ "cos fo(6)dO = Efo cos8do=0
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.. 1 2
Similarly, EY)=— sin6do =0
W=-;

1 2m 1 27
E(XY)=— cos 0sin 0 df = — sin20d0 =0=E(X)E(Y
X =—, el | (XEY)
Thus, by Eq. (3.52), X and Y are uncorrelated.

1 2 > 1 2 1
b EX>)=— [Tcos’0do=— 1+cos20)do ==
(b) xXH=—/, vl IR )do ==

1 27 1 p2n 1
EY?)=— [sin?0d0=— 1—cos20)do ==
) 2nf0 4nf0 ( ) 2

1 2 1 2 1
EX?Y?)=— [ cos® 0sin> 0 do=— 1—cos46)do =~
( ) ano 16J'L'f0 ( ) 8

Hence,

EXX?Y?) = ]g # = = E(X2E)(Y?)

EN

If X and Y were independent, then by Eq. (4.36), we would have E(X?Y?) = E(X?)E(Y?). Therefore, X and Y
are not independent.

4.49. Let X,, ..., X benrv.’s. Show that

Var 2 a;X; |= E Eaiaj Cov(X;, X)) (4.135)
i=1 i=1 j=1
If X,, ..., X are pairwise independent, then
Var| ¥ a;X; [= a Var(X,) (4.136)
i=1 i=1
Let Y=Y aX,
i=1

Then by Eq. (4.132), we have

n 2

Y alX; — E(X))]

i=1

Var(Y)=E{[Y —EXY)"}=E

E{E N aa,X; - EKOIX; —E(X,»)]}

i=1 j=1

Il
M-
\YE

I
.
I

a;a;E{[X; — E(X)IX; — E(X))I}

I
R
(\Y%E

I
.
I
—

a;a; Cov(X;, X;)
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If X,, ..., X are pairwise independent, then (Prob. 3.22)

Var(X,) i=j

Cov(X.,X,)=
(X3 X) {0 i#j

and Eq. (4.135) reduces to

4.50 Verify Jensen’s inequality (4.40),

Elg(x)] = g(E[X)) g(x) is a convex function

Expanding g(x) in a Taylor’s series expansion around u = E(x), we have
’ 1 "
() =)+ g Wx )+~ g'E)(x — &’

where &is some value between x and w. If g(x) is convex, then g"(£) = 0 and we obtain

8(x)=g(w) + g'(u)(x — w
Hence,

gX) = g(w + g' (WX — w (4.137)
Taking expectation, we get

E[g(x)]= g(u)+ g'(WEX — u) = g(u) = g(E[X])

4.51. Verify Cauchy-Schwarz inequality (4.41),
E(XY|)=JEX»E®Y?)
We have

E(o| X|—|Y|P) = E(X|")a® —2E( XY |)a + E(Y|*) (4.138)

The discriminant of the quadratic in o appearing in Eq. (4.138) must be nonpositive because the quadratic
cannot have two distinct real roots. Therefore,

(QE[|XY|])? —4 EX®)E(Y?)=0

and we obtain
(EL|XY|])* = E(X*)E(Y?)

or (E[|XY[]= JEXDHE®X?)
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Probability Generating Functions

4.52. Let X be a Bernoulli r.v. with parameter p.

(a)
®)

(@)

(b)

Find the probability generating function G,(z) of X.

Find the mean and variance of X.
From Eq. (2.32)
py)=p (1 —p)l~—*=prq = g=1-—p x=0,1

By Eq. (4.42)
1
Gy()= Y py(0 = py O+ py)z=g+pz  g=1-p
x=0
Differentiating Eq. (4.139), we have
G,'@=p G," (=0
Using Eqgs. (4.49) and (4.55), we obtain

u=EX) =G,'()=p
o2 =Var(X) = G,'(1) + G,"(1) = [G/(DP? =p = p* =p(1 = p)

4.53. Let X be a binomial r.v. with parameters (n, p).

(@)
)
(©

(@)

(b)

Find the probability generating function G, (z) of X.
Find P(X = 0) and P(X = 1).

Find the mean and variance of X.

From Eq. (2.36)

n e
Px(x)_( ]p"q Y g=1-p x=0,1,...
X

By Eq. (4.41)

Gy(x)= E (z )p‘q”_‘zx = E (z )(pZ)Xq"_" =(pz+q@" qg=1-p

x=0 x=0
From Eqgs. (4.47) and (4.140)

PX=0)=G,0)=q"=(1 —p)
Differentiating Eq. (4.140), we have
G/ =np(pz+ g™
Then from Eq. (4.48)

PX=1)=G/0)=npq"~ ' =np(l —py !
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(4.139)

(4.140)

(4.141)
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(c) Differentiating Eq. (4.141) again, we have

Gy = n(n — 1) p* (pz + g 2 (4.142)

Thus, using Egs. (4.49) and (4.53), we obtain

u=EX)=G/()=np(p+¢q" "=np since (p+¢q) = 1.
o=Var(X) =G,/ () +G" (1) = [Gy(DP =np+nn—1)p*—n*p>*=np( —p)

4.54. Let X, X,, ..., X be independent Bernoulli r.v.’s with the same parameter p,and let Y = X + X, + ---
+ X,. Show that Y is a binomial r.v. with parameters (1, p).

By Eq. (4.139)
Gxi(z):q-i-pz qg=1—p,i=12,...n

Now applying property 5 Eq. (4.52), we have

Gy@=]]Gy@=(+p)" q=1-p

i=1

Comparing with Eq. (4.140), we conclude that Yis a binomial r.v. with parameters (7, p).

4.55. Let X be a geometric r.v. with parameter p.
(a) Find the probability generating function G,(z) of X.

(b) Find the mean and variance of X.
(a) From Eq. (2.40) we have
PX)=(0—=py~'p=qg~'p qg=1-p x=1,2,..

Then by Eq. (4.42)

@m=§fﬂﬂ=§§@V

x=1 x=1

- 1
=P E(Zq)x—l =P —1|=_2 |zq|<l
9|5, g\l—zq l—2zq
Thus,
1
Gy@=—L— |z]<- gq=1-p (4.143)
1—2zq q

(b) Differentiating Eq. (4.143), we have

' p pq p
Gx(@)= + = 4.144
TUlmg -2 (29 144

" _ 2Pq
G = 4.145
D= (4.145)
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Thus, using Egs. (4.49) and (4.55), we obtain

2

: : : 1, 2p—p) 1 _1-
o? =Var(X) Gy () + Gy ()~ Gy P =L+ 220=p) 1 _1=p
pop roop

4.56. Let X be a negative binomial r.v. with parameters p and .
(a) Find the probability generating function G,(z) of X.

(b) Find the mean and variance of X.
(a) From Eq. (2.45)

x—1

x=1] & Xk
=P(X=x)= 1— —
px(x)=P(X =x) (k_l)p( p) (k_l

)pquk g=1-p x=k,k+1,...

By Eq. (4.42)

Gx()= ( z_i)p"q"" Z*
x=k
K+D oy kDG +2)

_ kk
pz{l+qu+ 2! 3!

(qz)’ +- (4.146)

k
- Z 1
:pkzk(]_qz)k:(p) |z]<—
1—2zq q

(b) Differentiating Eq. (4.146), we have

k+1 k-1
—kph =
1—Zq) T
(k—1DzF 72 +2¢74!
(1 _Zq)k+2

Gy (2)=k pkz“(

Gy (2)=k pk[

Then,
) 1 P k
G, ()=kp* =kp X
X (l_q)kﬂ pk+1 )
oo p|lk=D)+20—p)| _k(k+1-2p) k(k+1) 2k
Gy )=kp [ ) = 2 A R
p p P p

Thus, by Eqgs. (4.49) and (4.55), we obtain

u=EX)=Gy (=X
p

k(k+1) 2k k> _k(1—p)
te—m 3= 2
p P p p

0% = Var(X) = Gy (1) + G () — [Gy (D = X
P
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4.58.

4.59.
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Let X, X,, ..., X, be independent geometric r.v.’s with the same parameter p, and let ¥ = X, + X, +--- +
X,. Show that Y is a negative binomial r.v. with parameters p and k.

By Eq. (4.143) (Prob.4.55)

1
Gy@=—L— |z]<= g¢=1-p
I—zp q

Now applying Eq. (4.52), we have

k
n 1
Gy(2)= Gxi(z)—(”’) lz|]<= q=1-p

Comparing with Eq. (4.146) (Prob. 4.56), we conclude that Yis a negative binomial r.v. with parameters p and k.

Let X be a Poisson r.v. with parameter A.
(a) Find the probability generating function of G, (z) of X.

(b) Find the mean and variance of X.

(a) From Eq. (2.48)

X

px(x)=ef)”)t— x=0,1,...
X
By Eq. (4.42)

Gy(@)= 3 py ()" = 2 e (M) e E (M) e e =t (4.147)

x=0 x=0

(b) Differentiating Eq. (4.147), we have
G,'(2) = Aet™ DA, G, (2) = A2 e D%
Then,
G,/ (H)=A,G,"(1)=»
Thus, by Eq. (4.49) and Eq. (4.55), we obtain
u=EX)=G/(1)=24

O2=Var(X) =G, (D +G," (1) — [G, DP=A+2—22=2

LetX,, X, ..., X be independent Poisson r.v.’s with the same parameter A and let Y = X +X, + -+
X . Show that Y is a Poisson r.v. with parameter nA.

Using Eq. (4.147) and Eq. (4.52), we have

Gy@=]]Gy@=]]e " =€ (4.148)
i=1 i=1

which indicates that Yis a Poisson r.v. with parameter nA.
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Moment Generating Functions

4.60. Let the moment of a discrete r.v. X be given by

EXY =08 k=1,2,...

(a) Find the moment generating function of X.
(b) Find P(X = 0)and P(X = 1).

(a) By Eq. (4.57), the moment generating function of X is

2 k
Mx(t):1+IE(X)+LE(X2)+«~~+;—E(XI‘)+...

i

=1+08{t+—+- +—+ —1+082—
2!

k!

© _k
=02+08 ), % —02+08¢'

(b) By definition (4.56),
My () =E@™) =Y e"ipy(x))

Thus, equating Egs. (4.149) and (4.150), we obtain

py(0) = PX=0) =0.2 pe()=PX=1)=0.8

4.61. Let X be a Bernoulli r.v.
(a) Find the moment generating function of X.

() Find the mean and variance of X.

(a) By definition (4.56) and Eq. (2.32),

My(D)=E(™) =Y " py(x))

i

=" Ppy(0)+ ' Vpy()=(1— p)+ pe'

which can also be obtained by substituting z by e'in Eq. (4.139).

(b) By Eq. (4.58),

EX)=Mx©)=pe|_,=p

E(X*)=My©)=pe'|  =p

Hence, Var(X) = E(X*)—[E(X)] = p— p> = p(1 - p)

191

(4.149)

(4.150)

(4.151)
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4.62. Let X be a binomial r.v. with parameters (n, p).
(a) Find the moment generating function of X.

(b) Find the mean and variance of X.

(a) By definition (4.56) and Eq. (2.36), and letting ¢ = 1 — p, we get

n k — n
( )(e’p) g =(q+ pe')
K=o\ K
which can also be obtained by substituting z by ¢’ in Eq. (4.140).

(b) The first two derivatives of M, (7) are

M (1) =n(g + pe")" ™" pe'

MYy (1) = n(q + pe")" ' pe' +n(n—1)(g + pe')" *(pe')*

Thus, by Eq. (4.58),

uy =E(X)=Myx(0)=np
E(X?) =M} (0)=np + n(n —1)p*
Hence, 0,2( =E(X?) —[EX)T =np( - p)

4.63. Let X be a Poisson r.v. with parameter A.
(a) Find the moment generating function of X.

(b) Find the mean and variance of X.

(a) By definition (4.56) and Eq. (2.48),

My(t)= E(e®)= E e )L—
i=0 i!

N A
_ Ay i =
:gxz( ) R e D
i!
i=0

which can also be obtained by substituting z by ¢"in Eq. (4.147).

(b) The first two derivatives of M, (¢) are
My ()= Aele™e D
MYy ()= ()»et)ze;“(el D4 gt

Thus, by Eq. (4.58),
EX)=M,0) =2 E(X2)=M);’(O)=)»2+A

Hence, Var(X) = EX?) — [EX)PP =R+ A1—- A=A

(4.152)

(4.153)
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4.64. Let X be an exponential r.v. with parameter A.
(@) Find the moment generating function of X.

() Find the mean and variance of X.

(a) By definition (4.56) and Eq. (2.60),

My (t)=E(*)= f: Ae M dx

00)
- * POt - _* A>t
t—A 0o At
(b) The first two derivatives of M,(r) are
A 27
Myt =—— My(t)=———
x (D) G0 x(® G0

Thus, by Eq. (4.58),

E(X)=MS((0)=% E(X2)=M;’((0)=%

2
Hence, Var(X)=E(X>) - [EX)] = % - (;) =

4.65. Let X be a gamma r.v. with parameters (a, A).
(a) Find the moment generating function of X.

(b) Find the mean and variance of X.

(a) By definition (4.56) and Eq. (2.65)

wetxxafl)\’aef/lx A% f

My =E@)= |, ,

dx =
0 () ()

Lety = (A —t)x,dy = (A — t)dx. Then

a—1
A o dy _ A%
M = =
x () F(a)fo()ut) 0= G-

Since [ y*~ e dy = T'(a) (Eq. (2.66)) we obtain

Mx(’):(xft)

(b) The first two derivatives of M,(t) are

1
e

xa—le—()»—t)x dx

Sy e dy

M ()= ar“(A—0"@ O, M/ () =a(a+1)A2(A—n @2

193
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(4.155)
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Thus, by Eq. (4.58)

ala+1)
22

u=EX)=My (0)= % E(X*)=My (0)=

Hence,

:a(a+l)_a2 a

FE VAT

o? =Var(X) = E(X?) —[E(X)T?
4.66. Find the moment generating function of the standard normal r.v. X = N(0; 1), and calculate the first
three moments of X.

By definition (4.56) and Eq. (2.71),
My (1)=E(*)= fx L 2 gy
X *\2x

Combining the exponents and completing the square, that is,

_N2 2
*X—thx:fi(x D +
2 2 2

we obtain

Myy=e" [~ 7; TR gy = 2 (4.156)
iy

since the integrand is the pdf of N(z; 1).

Differentiating M, () with respect to 7 three times, we have

M=t ML= +De? MO = +3ne"

Thus, by Eq. (4.58),
EX)=My(0)=0 EX»)=My©0)=1 EX’)=M>0)=0

4.67. Let Y = aX + b. Let M, (#) be the moment generating function of X. Show that the moment generating
function of Y is given by

My(l‘) = e’bMX(at) 4.157)
By Egs. (4.56) and (4.129),

My(z) _ E(e’y) _ E[et(aX+b)]
= E(e"™)=¢"M  (at)



CHAPTER 4 Functions of Random Variables, Expectation 195

4.68. Find the moment generating function of a normal r.v. N(u; 0?).

If Xis N(O; 1), then from Prob. 4.1 (or Prob. 4.43), we see that Y = oX + wis N(u; 0?). Then by setting a =
oand b = uin Eq. (4.157) (Prob. 4.67) and using Eq. (4.156), we get

My (1) = e My (01) = &'l 7)"12 = ot + 07712 (4.158)

4.69. Suppose thatr.v. X = N (0;1). Find the moment generating function of ¥ = X2.

By definition (4.56) and Eq. (2.71)

My = E(e") = E(eX°)

I XZL —x2n :L
—fﬁwe' \/Ee dx \/ﬂfﬂo

. © 4 .
Using f e “ dx=_|= weobtain
o \/ P

M, (1) = 1 T 1
Y \/2n\/1_t Ji—2 (4.159)
2
4.70. Let X, ..., X be n independentr.v.’s and let the moment generating function of X, be Mx,-(t)- Let

Y =X, + ... + X . Find the moment generating function of Y.
By definition (4.56),

My(t) — E(etY) — E[et(x‘+"‘+x”)] — E(etxl ___erxn)

=E(e™1)... E(e’X”) (independence) (4.160)
=My, (1) "'MXn(’)

4.71. Show that if X, ..., X are independent Poisson r.v.’s X, having parameter A,, then ¥ = X + --- + X

is also a Poisson r.v. with parameter A = A, + --- + A .

Using Eqgs. (4.160) and (4.153), the moment generating function of Yis

n
I _ N I _ I_
M) = He)»i(e D = &2 1) — D)

i=1

which is the moment generating function of a Poisson r.v. with parameter A. Hence, Y is a Poisson r.v. with
parameter A =3A = A + - + A .

Note that Prob. 4.17 is a special case forn = 2.



196

4.72.

4.73.

4.74.
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Show that if X, ..., X are independent normal r.v.’s and X, = N(u;; ol.z), then Y = X, + --- + X is
also a normal r.v. with mean u = w, + --- + u and variance 0> = 0> + --- + 0 2.

Using Eqgs. (4.160) and (4.158), the moment generating function of Yis

n
22 2),2 22
it+o 1712 Su)t+\Zoj 1712
MY(t)=He('“’ o) _ Cun+(E0? )22 _ ot
i=1
which is the moment generating function of a normal r.v. with mean p and variance o 2. Hence, Yis a normal

r.v. with mean u = p, + --- + u, and variance 0> = 0> + --- + 0 2.
Note that Prob. 4.20 is a special case for n = 2 with ;= 0 and 0> = 1.

Find the moment generating function of a gamma r.v. Y with parameters (n, A).

From Prob. 4.39, we see thatif X, ..., X are independent exponential r.v.’s, each with parameter A, then
Y=X, + ..+ X isagammar.v. with parameters (n, A). Thus, by Egs. (4.160) and (4.154), the moment
generating function of Yis

n( A 2 Y
_ _ (4.161)
oI55 -2

Suppose that X, X, ..., X be independent standard normal r.v.’s and X, = N(0;1). Let ¥ = X12 +
X22 + ...+ an

(a) Find the moment generating function of Y.

(b) Find the mean and variance of Y.

(a) By Eqgs. (4.159) and (4.160)

My (D) =E@") = f[(l 2y P =-207"" (4.162)

i=1

(b) Differentiating Eq. (4.162), we obtain

My ()=n(—20) 2, My"O=nmn+2)1-20) 2

Thus, by Eq. (4.58)

E(Y)=M,(©0)=n (4.163)
E(Y?) =M, (0) = n(n + 2) (4.164)
Hence,
Var (Y) = E(Y2) — [ED)? = n(n +2) —n =2n (4.165)
Characteristic Functions
4.75. The r.v. X can take on the values x, = —1 and x, = +1 with pmf’s p,(x,) = p,(x,) = 0.5. Determine

the characteristic function of X.
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By definition (4.66), the characteristic function of Xis

W, () =05¢ 7 +0.5¢/° = %(ejw +e Yy =cosw

4.76. Find the characteristic function of a Cauchy r.v. X with parameter o and pdf given by

=4 —o < x <o
fX(X) JT()C2 +a2) ¥

By direct integration (or from the Table of Fourier transforms in Appendix B), we have the following Fourier
transform pair:

—a)x| 2a
e «>

o +ad’

Now, by the duality property of the Fourier transform, we have the following Fourier transform pair:

4 s oge 0l = e 1@l
x> +a?
or (by the linearity property of the Fourier transform)
a e fa‘ w‘
n(x2 + az)
Thus, the characteristic function of X is
Y (w)=e* lol (4.166)

Note that the moment generating function of the Cauchy r.v. X does not exist, since E(X") — < for
n=2.

4.77. The characteristic function of a r.v. X is given by

o [11el el
X 0 |a)|>l

Find the pdf of X.

From formula (4.67), we obtain the pdf of X as

fy(x)= i 7wy (@e 7" do

— 1 0 —jox 1 _ — jox ]
_E[fil(l-l-w)e daH-fO(l w)e dw

1
27X

_ L sin(x/2)
2m| x/2

SQ2—e—e )= %(1 — cos x)
X

2
} —o<x<®
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4.78. Find the characteristic function of a normal r.v. X = N(u; 0?).
The moment generating function of N(u; 0?) is [Eq. (4.158)]

Mx([) = put+ o2t2/2

Thus, the characteristic function of N(u; 02) is obtained by setting = jw in M,(9); that is,

. 2 2
22 _ jou—o w2
Wy ()=t - ¢ (4.167)
=jw

4.79. Let Y = aX + b. Show that if W,(w) is the characteristic function of X, then the characteristic function
of Y is given by
W, () ='W, (aw) (4.168)
By definition (4.66),
¥, (0)= E(eij ) _ E[ejw(aXer)]
_ ejwbE(ejan) _ ejwbqjx(aw)
4.80. Using the characteristic equation technique, redo part (b) of Prob. 4.18.
Let Z= X + Y, where X and Y are independent. Then

lpz(w):E(eij):E(ejw(X+Y)):E(eij)E(eij)

4.169
=Vy(0)¥ y(w) ( )

Applying the convolution theorem of the Fourier transform (Appendix B), we obtain

@ =F ¥, (0)]=F " [¥y(0)¥y ()]
= K@* @)= [ fOfy (2= x)dx

The Laws of Large Numbers and the Central Limit Theorem

4.81. Verify the weak law of large numbers (4.74); that is,

lim P(P?n —u |>£):0 for any &

where X, = l (X, +--+X,))and E(X;)=u, Var(X;) = o2
n

Using Eqs. (4.132) and (4.136), we have

2
E(X,)=u and Var(X,)=Z (4.170)
n
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4.82.

4.83

D

Then it follows from Chebyshev’s inequality [Eq. (2.116)] (Prob. 2.39) that

_ )
P(X,—u|>e="5 (4.171)
ne

L 0%/ (ne?) =0, we get

—

Since lim,,

lim P(X, —u|>e)=0

Let X be ar.v. with pdf f,(x) and let X, ..., X, be a set of independent r.v.’s each with pdf f,(x). Then

the setof r.v.’s X, ..., X is called a random sample of size n of X. The sample mean is defined by
= 1 1 ¢
Xn=—(X1+---+Xn)=—2Xi (4.172)
n niz
Let X, ..., X be arandom sample of X with mean y and variance o>. How many samples of X should

be taken if the probability that the sample mean will not deviate from the true mean u by more than
0/10 is at least 0.95?

Setting € = /10 in Eq. (4.171), we have

2
- o = o o 100
P||X,—u|>—|=1-P||X, —u|=—|=—F—=—7
(' nH 10) (' n 10] no®/100  n
= o 100
or PlIX,—p|l=—|=1——
(I i 10) p

Thus, if we want this probability to be at least 0.95, we must have 100/n = 0.05 or n = 100/0.05 = 2000.

Verify the central limit theorem (4.77).

LetX,, ..., X be a sequence of independent, identically distributed r.v.’s with E(X)) = wand Var(X) = .
Consider the sum §,=X, + -+ + X . Then by Egs. (4.132) and (4.136), we have E(S,) = nuand Var(S,) = no?.

Let
S, —nu 1 - X,—u
7 ="5n - i
S 3

(4.173)

Then by Eqgs. (4.129) and (4.130), we have E(Z,) = 0 and Var(Z)) = 1. Let M(7) be the moment generating
function of the standardized r.v. ¥, = (X, — w)/o. Since E(Y,) = 0 and E(Yl.z) = Var(Y¥,) = 1, by Eq. (4.58),
we have

M) = 1 M'(0) = E(Y)=0 M"(0) = E(Y?) =1

Given that M'(f) and M''(f) are continuous functions of 7, a Taylor (or Maclaurin) expansion of M(¢) about t = 0

can be expressed as
2 2
M(1)= M) + M'(0) + M"(s, %:1 + M”(zl)% 0=1=1
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By adding and subtracting #*/2, we have
1,,1. .., 2
M(t)=1+5t +5[M () — 1]z (4.174)

Now, by Egs. (4.157) and (4.160), the moment generating function of Z is

My, (t)=[M(\/t_)] (4.175)
n

Using Eqs. (4.174), Eq. (4.175) can be written as

n

My ()=

2 2
1 ¢ 1 t
1+ —| +=[M"@)—1]| —=
2( Jn ) 2 ! Jn
where now ¢, is between 0 and #/V' n . Since M"(¢) is continuous at = 0 and ¢, — 0 as n — =, we have

lim [M"(t;))—1]=M"(0)—1=1—-1=0

n—so

Thus, from elementary calculus, lim, (1 + x/n)" = e*, and we obtain

— 00

2 n
lim M, ()= lim {1 + 1 Ly - 1];2}
n—e N n—> 2n  2n

2 n
= lim (1 + 7:/2) = e’z/2

n—sw n

The right-hand side is the moment generating function of the standard normal r.v. Z = N(0; 1) [Eq. (4.156)].
Hence, by Lemma 4.3 of the moment generating function,

limZ, = N(0;1)

n—so0

4.84. Let X, ..., X be n independent Cauchy r.v.’s with identical pdf shown in Prob. 4.76. Let

1 1 ¢
Y, ==X+ X)== Y X
n n( 1 n) i

n=1
(a) Find the characteristic function of V.
(b) Find the pdfof Y.

(¢) Does the central limit theorem hold?
(a) From Eq. (4.166), the characteristic function of X;is
W, (o) = 1ol

LetY =X, + --- + X . Then the characteristic function of Yis

Wy (@)= E(e) = E[e/ X0 | < [Tw (@) = ¢ ™! (4.176)

i=1
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4.85.

Now Y = (1/n)Y. Thus, by Eq. (4.168), the characteristic function of Y is

Wy (0)=W, (;"]—e"“””" = ¢ dlol (4.177)

(b) Equation (4.177) indicates that Y, is also a Cauchy r.v. with parameter a, and its pdf is the same as
that of X .

(c) Since the characteristic function of Y, is independent of n and so is its pdf, ¥, does not tend to a normal
r.v. as n — . Random variables in the given sequence all have finite mean but infinite variance. The
central limit theorem does hold but for infinite variances for which Cauchy distribution is the stable (or
convergent) distribution.

Let Y be a binomial r.v. with parameters (n, p). Using the central limit theorem, derive the
approximation formula

PY=y)=d

&J (4.178)

Jnp(1—p)

where ®(z) is the cdf of a standard normal r.v. [Eq. (2.73)].

We saw in Prob. 4.54 thatif X, ..., X are independent Bernoulli r.v.’s, each with parameter p, then ¥ = X + ...
+ X is a binomial r.v. with parameters (n, p). Since X,’s are independent, we can apply the central limit theorem
to the r.v. Z defined by

1 E X, —E(X)
Zn Var(X;)

l:1

(4.179)

Thus, for large n, Z, is normally distributed and
P(Z, = x) = ®(x) (4.180)

Substituting Eq. (4.179) into Eq. (4.180) gives

G )

PY <=y)~®

= P[Y = xJnp(1=p) + np] = ®(x)

y— np
Jnp(1—p)

or

Because we are approximating a discrete distribution by a continuous one, a slightly better approximation is
given by

1
ytoonp
PY=y)~®| —=—— (4.181)

Jnp(l—p)

Formula (4.181) is referred to as a continuity correction of Eq. (4.178).
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Let Y be a Poisson r.v. with parameter A. Using the central limit theorem, derive approximation
formula:

—A
P(Y =y)=o|2 (4.182)
Ji
We saw in Prob. 4.71 that if X|, ..., X, are independent Poisson r.v.’s X, having parameter A, then ¥ = X, + ---

+ X is also a Poisson r.v. with parameter A = 4, + --- + A . Using this fact, we can view a Poisson r.v. ¥ with
parameter A as a sum of independent Poisson r.v.’s X,i=1,--,n,each with parameter A/n; that is,

Y=X +--+X,
A
E(X;)= - = Var(X;)
The central limit theorem then implies that the r.v. Z is defined by

_Y—EQY)_Y-1

Z P,
Var(Y) JA (4.183)

is approximately normal and

P(Z=2)=P(z) (4.184)

Substituting Eq. (4.183) into Eq. (4.184) gives

P( Y\/_z’l 5z)=P(Ys\/Iz+A)MI>(z)

—A
=y =~o|
PY =y) (\/Z)

or

Again, using a continuity correction, a slightly better approximation is given by

1
yto—A (4.185)

Ja

PY <y)=~®

SUPPLEMENTARY PROBLEMS

4.87.

4.88.

4.89.

Let Y =2X + 3. Find the pdf of Yif X is a uniform r.v. over (—1, 2).
Let X be ar.v. with pdf f,(x). Let Y = | X |. Find the pdf of Y in terms of f,(x).

Let Y = sin X, where X is uniformly distributed over (0, 2m). Find the pdf of Y.
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4.90.

4.91.

4.92.

4.93.

4.94.

4.95.

4.96.

4.97.

4.98.

4.99.

4.100.

4.101.

Let X and Y be independent r.v.’s, each uniformly distributed over (0, 1). LetZ=X + Y, W= X — Y. Find the
marginal pdf’s of Z and W.

Let X and Y be independent exponential r.v.’s with parameters « and f3, respectively. Find the pdf of (@) Z=X — Y}
(b)Z=X/Y; (c)Z=max(X,Y); (d) Z=min(X, Y).

Let X denote the number of heads obtained when three independent tossings of a fair coin are made. Let ¥ = X2,
Find E(Y).

Let X be a uniform r.v. over (—1,1). Let Y = X",
(a) Calculate the covariance of X and Y.

(b) Calculate the correlation coefficient of X and Y.

What is the pmf of r.v. X whose probability generating function is Gy (z) = 5 !

Let Y = a X + b. Express the probability generating function of ¥, G, (z), in terms of the probability
generating function of X, G,(2).

Let the moment generating function of a discrete r.v. X be given by
M(t) = 0.25¢' + 0.35¢% + 0.40e’

Find P(X = 3).

Let X be a geometric r.v. with parameter p.
(a) Determine the moment generating function of X.

(b) Find the mean of X for p = %

Let X be a uniform r.v. over (a, b).
(a) Determine the moment generating function of X.

(b) Using the result of (a), find E(X), E(X?), and E(X?).
Consider a r.v. X with pdf

1 7?32
fy(x)=———e @ —o<x <o
32w

Find the moment generating function of X.
Let X = N(0; 1). Using the moment generating function of X, determine E(X").

Let X and Y be independent binomial r.v.’s with parameters (n, p) and (m, p), respectively. Let Z=X + Y.
What is the distribution of Z?
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4.102. Let (X, Y) be a continuous bivariate r.v. with joint pdf

Py x>0,y>0
Sy (x, )= 0

otherwise

(a) Find the joint moment generating function of X and Y.

(b) Find the joint moments m, ,, m,, and m,.
4.103. Let (X, Y) be a bivariate normal r.v. defined by Eq. (3.88). Find the joint moment generating function of X and Y.

4.104. LetX,, ..., X benindependentr.v.’sand X, > 0. Let

n
Y=X, X, :HXi
i=1
Show that for large n, the pdf of Yis approximately log-normal.

4.105. LetY = (X — A)/V/A, where X is a Poisson r.v. with parameter A. Show that Y= N(0; 1) when A s sufficiently
large.

4.106. Consider an experiment of tossing a fair coin 1000 times. Find the probability of obtaining more that 520
heads (a) by using formula (4.178), and (b) by formula (4.181).

4.107. The number of cars entering a parking lot is Poisson distributed with a rate of 100 cars per hour. Find the
time required for more than 200 cars to have entered the parking lot with probability 0.90 (a) by using
formula (4.182), and (b) by formula (4.185).

ANSWERS TO SUPPLEMENTARY PROBLEMS

l I<y<7
487. f,(y)=16
0 otherwise

SO+ fx(=y) y>0

4.88. fy()’):{o y<0

1
S —1<y<l
4.89. fy(y) =1 71— y?
0 otherwise
Z 0<z<l1 w+l —1<w<O0

490. f,()=1{—z+2 1<z<2 fowm)=1-w+1 0<w<lI
0 otherwise 0 otherwise
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4.91.

4.92.

4.93.

4.94.

4.95.

4.96.

4.97.

4.98.

4.99.

4.100.

4.101.

4.102.

Of)ﬁ e~ z>0 af
o 9P
(@  f()= ap ()  fr(2)=1(az+p)
arp’ <0 0
©  f=leecas Py +pe - >0
‘ 0 z<0
(a+ PP >0
d =
@  fz(2) 0 20
3
1 n=odd 3(2n+1)
(a) Cov(X,Y)={n+2 b) pyy = n+2
0 n=even

1 x+1
px(x)= (7)

G, (@) = Gy ().

0.35

(@ My()= pett t<-Ing,q=1-p &) EX)=3

1—ge

etb _ eta

t(b—a)

(@) Mx()=

®) E(X)=%(b+a), E(X2)=é(b2+ab+a2), E(X3)=i(b3+b2a+ba2+a3)

— ,—Tt+812
M1 =e

EX) = 0 n=1,3,5,...
1-3---+(n—1) n=2,4.6,...

Hint: Use the moment generating functions.

Z1is a binomial r.v. with parameters (n + m, p).

1

3

(@) Myy(t), t))=———— b) myy=1my =1,m,; =1

A—t)A—1t,)

2

205

z>0

z<0

n=odd

n=cven
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4.103.

4.104.

4.105.

4.106.

4.107.
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M _ iy oty (20 x* 42000 yoy p+120y )2
xr (1) =e

Hint: Take the natural logarithm of Y and use the central limit theorem and the result of Prob. 4.10.
Hint:  Find the moment generating function of Y and let A — oo.
(@) 0.1038 (b) 0.0974

(@) 2.189h (b) 2.1946 h



Random Processes

5.1 Introduction

In this chapter, we introduce the concept of a random (or stochastic) process. The theory of random processes
was first developed in connection with the study of fluctuations and noise in physical systems. A random process
is the mathematical model of an empirical process whose development is governed by probability laws. Ran-
dom processes provides useful models for the studies of such diverse fields as statistical physics, communica-
tion and control, time series analysis, population growth, and management sciences.

5.2 Random Processes

A. Definition:

A random process is a family of r.v.’s {X(#), t € T'} defined on a given probability space, indexed by the param-
eter ¢, where ¢ varies over an index set 7.

Recall that a random variable is a function defined on the sample space S (Sec. 2.2). Thus, a random process
{X(®),t € T} is really a function of two arguments {X(t, £),t € T, £ € S}. For a fixed #(= t,), X(¢,, ) = X,({)
is a r.v. denoted by X(#,), as & varies over the sample space S. On the other hand, for a fixed sample point
Cl. € S, X, f;l.) = X (1) is a single function of time 7, called a sample function or a realization of the process.
(See Fig. 5-1.) The totality of all sample functions is called an ensemble.

Of course if both ¢ and ¢ are fixed, X(¢,, Cl.) is simply a real number. In the following we use the notation
X(t) to represent X(z, §).

Sample space X,

N\ A

QOutcome

Fig. 5-1 Random process.

207
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B. Description of Random Process:

In a random process {X(¢), t € T}, the index set T is called the parameter set of the random process. The
values assumed by X() are called states, and the set of all possible values forms the state space E of the ran-
dom process. If the index set 7" of a random process is discrete, then the process is called a discrete-parameter
(or discrete-time) process. A discrete-parameter process is also called a random sequence and is denoted by {X ,
n=1,2,..}. If T is continuous, then we have a continuous-parameter (or continuous-time) process. If the
state space E of a random process is discrete, then the process is called a discrete-state process, often referred
to as a chain. In this case, the state space E is often assumed to be {0, 1, 2, ...}. If the state space E is con-
tinuous, then we have a continuous-state process.
A complex random process X(¢) is defined by

X(1) = X, (1) + jX,(1)
where X (¢) and X, (7) are (real) random processes and j = V —1. Throughout this book, all random processes are

real random processes unless specified otherwise.

5.3 Characterization of Random Processes

A. Probabilistic Descriptions:

Consider a random process X(?). For a fixed time ¢, X(z)) = X, is ar.v.,and its cdf F(x,; 7,) is defined as
Fy(x;st) = P{X(t) = x} 5.1

F(x; t,) is known as the first-order distribution of X(¢). Similarly, given ¢, and z,, X(¢,) = X, and X(z,) = X,
represent two r.v.’s. Their joint distribution is known as the second-order distribution of X(f) and is given by

Fy(x,, x,5 8, 1) = PIX(t) = x,, X(,) = x,} (52)
In general, we define the nth-order distribution of X(f) by

Fo(xp, x5t

n> "1

cat)=PXEt) =x, ..., X(t)=x} (5.3)
If X(7) is a discrete-state process, then X(¢) is specified by a collection of pmf’s:
DXy s X5ty b)) = PIX@) = x,, .., X)) = x )} 54

If X(7) is a continuous-time process, then X(¢) is specified by a collection of pdf’s:

O F (X X3ty ees )
0x; -+ 0x,

Sx (s x5ty .00t,) (5.5)

n

The complete characterization of X(¢) requires knowledge of all the distributions as n — <. Fortunately, often
much less is sufficient.

B. Mean, Correlation, and Covariance Functions:

As in the case of r.v.’s, random processes are often described by using statistical averages. The mean of X(¢) is
defined by

uy (@) = E[X(®)] (5.6)

where X(7) is treated as a random variable for a fixed value of 7. In general, u,(7) is a function of time, and it is
often called the ensemble average of X(t). A measure of dependence among the r.v.’s of X(¢) is provided by its
autocorrelation function, defined by

Ry (., 5) = E[X()X(s)] (5.7
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Note that

R, (,5) = R(s, 1) (5.8)
and R,(t, 1) = E[X*(1)] (5.9)
The autocovariance function of X(f) is defined by

Ky (t. 5) = CovIX(0). X(5)] = E{X(0) — i, 0OlIX(s) — ()]}
= Ry(t, 5) = uy(pay(s) (5.10)

It is clear that if the mean of X(?) is zero, then K (t, s) = R,(t, s). Note that the variance of X(¢) is given by
0, (1) = Var[X(0)] = E{{X(t) — w, ()} = Ky(t, 1) (5.11)

If X(?) is a complex random process, then its autocorrelation function R, (#, s) and autocovariance function
K, (t, s) are defined, respectively, by

R, (1, ) = E[X()X*(s)] (5.12)

and Ky (t, s) = E{X(0) — uyOIX(s) — py(s)]*} (5.13)

where * denotes the complex conjugate.

5.4 Classification of Random Processes

If a random process X(r) possesses some special probabilistic structure, we can specify less to characterize
X(#) completely. Some simple random processes are characterized completely by only the first-and second-order
distributions.

A. Stationary Processes:

A random process {X(), t € T} is said to be stationary or strict-sense stationary if, for all n and for every set
of time instants (t, €T, i = 1, 2, ..., n},

Fyx S Xy e ) = F(ey, e, X5 1

n’ "1

T +T, ..t + D (5.14)
for any 7. Hence, the distribution of a stationary process will be unaffected by a shift in the time origin, and X(¥)

and X(+ + ) will have the same distributions for any 7. Thus, for the first-order distribution,

Foo, )= Fyxt+ 1) = Fy(x) (5.15)
and Felw 1) = fy0) (5.16)
Then u, (= EX®] = u (5.17)
Var[X(1)] = o? (5.18)

where u and 0? are constants. Similarly, for the second-order distribution,
Fy(xp, x5 8, 1) = Fy(x), x,5 1, — 1)) (5.19)
and Fyleps x5 1, 1) = flx), x5 8, — 1) (5.20)

Nonstationary processes are characterized by distributions depending on the points ¢, t,, ..., f,.



210 CHAPTER 5 Random Processes

B. Wide-Sense Stationary Processes:

If stationary condition (5.14) of a random process X(f) does not hold for all n but holds for n = k, then we say
that the process X(7)is stationary to order k. If X(¢) is stationary to order 2, then X(¢) is said to be wide-sense
stationary (WSS) or weak stationary. If X(¢) is a WSS random process, then we have

1. E[X(®)] = u (constant) (5.21)
2. R(t, 5) = E[X(®X(s)] = RX(| s—1]) (5.22)

Note that a strict-sense stationary process is also a WSS process, but, in general, the converse is not true.

C. Independent Processes:

In a random process X(f), if X(t) fori = 1,2, ..., n are independent r.v.’s, so that forn = 2, 3, ...,
Fy (e %3 s £,) = [ [ Fx (3 17) (5.23)
i=1

then we call X(7) an independent random process. Thus, a first-order distribution is sufficient to characterize an
independent random process X(7).

D. Processes with Stationary Independent Increments:

A random process {X(#), t = 0)} is said to have independent increments if whenever 0 <, <, <..- <t,
X(0), X(¢)) — X(0), X(r,) — X)), ..., X(r,) — X, )

are independent. If {X(¢), r = 0)} has independent increments and X(f) — X(s) has the same distribution as X(t + h)
— X(s + h) forall s, r, h = 0, s < t, then the process X(¢) is said to have stationary independent increments.

Let {X(#), t = 0} be a random process with stationary independent increments and assume that X(0) = 0.
Then (Probs. 5.21 and 5.22)

E[X®)] = u,t (5.24)
where u, = E[X(1)] and
Var[X(1)] = o0,*t (5.25)

where 0,2 = Var[X(1)].

From Eq. (5.24), we see that processes with stationary independent increments are nonstationary. Examples
of processes with stationary independent increments are Poisson processes and Wiener processes, which are dis-
cussed in later sections.

E. Markov Processes:

A random process {X(¢), t € T} is said to be a Markov process if

PIX(t,, ) =x  |XU)=x,X(t)=x,, ...X(1t)=x}=PX@t,,)=x, |Xt)=x} (526)

n+1

whenevert, <, <. <t <t .
A discrete-state Markov process is called a Markov chain. For a discrete-parameter Markov chain {X , n = 0}
(see Sec.5.5), we have for every n

P, =j|X, =i, X, =i, ....X, =i)=PX =j|X =i (5.27)



CHAPTER 5 Random Processes 211

Equation (5.26) or Eq. (5.27) is referred to as the Markov property (which is also known as the memoryless
property). This property of a Markov process states that the future state of the process depends only on the
present state and not on the past history. Clearly, any process with independent increments is a Markov
process.

Using the Markov property, the nth-order distribution of a Markov process X(f) can be expressed as
(Prob. 5.25)

n
Fy(Xpseis Xty t,)) = Py (X131)) HP{X(tk)Sxk X(t,_ ) =%} (5.28)
k=2

Thus, all finite-order distributions of a Markov process can be expressed in terms of the second-order distributions.

F. Normal Processes:

A random process {X(¢), t € T} is said to be a normal (or Gaussian) process if for any integer n and any subset
{t,, ..., 1t} of T, the n r.v.’s X(z,), ..., X(¢) are jointly normally distributed in the sense that their joint characteris-
tic function is given by

Wyi-xa,) (@5, 0,) = E{exp jlo; X(t)) +---+ o, X(#,)]}

= exp{j > o, E[X(t;) ~ % > Y woy CovIX(1;), X(ty )]} (5.29)

i=1 i=1 k=1

where w,, ..., m are any real numbers (see Probs. 5.59 and 5.60). Equation (5.29) shows that a normal process
is completely characterized by the second-order distributions. Thus, if a normal process is wide-sense stationary,
then it is also strictly stationary.

G. Ergodic Processes:

Consider a random process {X(f), — % < r < %} with a typical sample function x(f). The time average of x(¢) is
defined as

.1 T2
(x()) = lim - f EOr (5.30)
Similarly, the time autocorrelation function Rx (T) of x(¢) is defined as
Ry (1) = (x(Dx(t + 1) = lim [ xx+0)dr (531
X T—ew T -T2

A random process is said to be ergodic if it has the property that the time averages of sample functions of the
process are equal to the corresponding statistical or ensemble averages. The subject of ergodicity is extremely
complicated. However, in most physical applications, it is assumed that stationary processes are ergodic.

5.5 Discrete-Parameter Markov Chains

In this section we treat a discrete-parameter Markov chain {X , n = 0} with a discrete state space £ = {0, 1,2, ... },
where this set may be finite or infinite. If X = i, then the Markov chain is said to be in state i at time n
(or the nth step). A discrete-parameter Markov chain {X , n = 0} is characterized by [Eq. (5.27)]

PX ., =j|x

n+1 0

=in X, =i, ... X, =i)=PX,,, =j|X, =i (5.32)
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where P{x ., = j|X = i} are known as one-step transition probabilities. If P{x , , = j|X = i} is independ-
ent of n, then the Markov chain is said to possess stationary transition probabilities and the process is referred
to as a homogeneous Markov chain. Otherwise the process is known as a nonhomogeneous Markov chain. Note
that the concepts of a Markov chain’s having stationary transition probabilities and being a stationary random
process should not be confused. The Markov process, in general, is not stationary. We shall consider only homo-

geneous Markov chains in this section.

A. Transition Probability Matrix:

Let {X , n = 0} be a homogeneous Markov chain with a discrete infinite state space £ = {0, 1,2, ... }. Then

p; = PX

n+1

=jlx, =i}y i=0,j=0 (5.33)

regardless of the value of n. A transition probability matrix of {X , n = 0} is defined by

Poo  Por  Po2
P=[p,l= P Pu P2
P P21 Pxn
where the elements satisfy
py=0 Y py=1  i=0,12,.. (5.34)
j=0
In the case where the state space E is finite and equal to {1, 2, ..., m}, P is m X m dimensional; that is,
Pu P2 0 Pim
Py Pan " P2
P=[p;l=| . T :m
Pm1i Pm2 " Pwum
m
where pij=0 Epij =1 i=L2,...m (5.35)
j=1

A square matrix whose elements satisfy Eq. (5.34) or (5.35) is called a Markov matrix or stochastic matrix.

B. Higher-Order Transition Probabilities—Chapman-Kolmogorov Equation:

Tractability of Markov chain models is based on the fact that the probability distribution of {X , n = 0} can be
computed by matrix manipulations.
LetP = [pl.j] be the transition probability matrix of a Markov chain {X , n = 0}. Matrix powers of P are
defined by
P? = PP

with the (7, j)th element given by

2) _
p[j( )= Epikpkj
k
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Note that when the state space E is infinite, the series above converges, since by Eq. (5.34),
Epikpkj = Epik =1
3 3

Similarly, P3> = PP? has the (i, j)th element

3) — (2)
pij = E Pix Prj
k

and in general, P"*! = PP" has the (i, j)th element
(n+1)

_ (n)
pij = E Pik Pkj (5.36)
k

Finally, we define P° = I, where I is the identity matrix.
The n-step transition probabilities for the homogeneous Markov chain {X , n = 0} are defined by

PX, =j|X0 =1
Then we can show that (Prob. 5.90)
pij(”) =PX =j|X,=1) (5.37)

We compute p, by taking matrix powers.
The matrix identity

prtm = pnpm n,m=0

when written in terms of elements
(n+m) _ (n) - (m)
pii "= P Py (5.38)
3

is known as the Chapman-Kolmogorov equation. It expresses the fact that a transition from i to j in n + m steps
can be achieved by moving from i to an intermediate k in n steps (with probability p,®, and then proceeding
to j from k in m steps (with probability pkj(”')). Furthermore, the events “go from i to k in n steps” and “go from
k to j in m steps” are independent. Hence, the probability of the transition from i to j in n + m steps via i, k, j
is p,p, . Finally, the probability of the transition from i to j is obtained by summing over the intermediate
state k.

C. The Probability Distribution of {X , n = 0}:
Letp(n) = P(X, = i) and
p() = [p,(m) p,(n) py(n) -]
where Spm) =1
Then p(0) = P(X, = i) are the initial-state probabilities,
p0) = [p,©) p, ) p,O) ...

is called the initial-state probability vector, and p(n) is called the state probability vector after n transitions or
the probability distribution of X . Now it can be shown that (Prob. 5.29)

p(n) = pO)P" (5.39)
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which indicates that the probability distribution of a homogeneous Markov chain is completely determined by
the one-step transition probability matrix P and the initial-state probability vector p (0).

D. Classification of States:

1. Accessible States:

State j is said to be accessible from state i if for some n = 0, pij(”) > 0, and we write i — j. Two states i and j
accessible to each other are said to communicate, and we write i <> j. If all states communicate with each other,
then we say that the Markov chain is irreducible.

2. Recurrent States:
Let TJ be the time (or the number of steps) of the first visit to state j after time zero, unless state j is never vis-
ited, in which case we set TJ = oo, Then Tj is a discrete r.v. taking values in {1, 2, ..., o}.

Let

£, = P(T, = m|X, =) = PX, = j. X, #j. k= 1,2, ...m = 1]X, = i) (5.40)

and f;,© = 0 since T, = 1. Then
g J

£,0 = P(T, = 1]X, = i) = PX, = j|X, = ) = p, (5.41)
(m) _ (m—1) _
and K™= pu ki m=2,3,... (5.42)
k#j

The probability of visiting j in finite time, starting from i, is given by

= E £ " =P(T; <oo|X, =i) (543)
n=0

Now state j is said to be recurrent if
f;=PT; < ©|X,=j) =1 (5.44)

That is, starting from j, the probability of eventual return to j is one. A recurrent state j is said to be positive
recurrent if

E(Tj|X0 =j)< o (5.45)
and state j is said to be null recurrent if
E(Tj|X0 =j)=o» (5.46)
Note that
E(T|X, =)=y nf;;" (547
n=0

3. Transient States:
State j is said to be transient (or nonrecurrent) if

f; =PI, < o|X, =) <1 (548)

In this case there is positive probability of never returning to state ;.
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4. Periodic and Aperiodic States:
We define the period of state j to be

d(j) = ged{n = 1: p > 0}

where ged stands for greatest common divisor.
If d(j) > 1, then state j is called periodic with period d(j). If d(j) = 1, then state j is called aperiodic.
Note that whenever p; > 0, j is aperiodic.

5. Absorbing States:
State j is said to be an absorbing state if p; = 1; that is, once state j is reached, it is never left.

E. Absorption Probabilities:

Consider a Markov chain X(n) = {X , n = 0} with finite state space £ = {1, 2, ..., N} and transition probabil-
ity matrix P. Let A = {1, ..., m} be the set of absorbing states and B = {m + 1, ..., N} be a set of nonabsorb-
ing states. Then the transition probability matrix P can be expressed as

1 0 0 0 0
0 1 0 0 0
: Do : : : I 0
P= 0 - 1 0 0 = .
R 0 } (549a)
Pm+1,1 ° " Pm+iom Pm+im+1 0 Pmi N
Pn.1 T DPNm Pnm+1 " PNN
where [ is an m X m identity matrix, 0 is an m X (N — m) zero matrix, and
-Pm+1,1  Pmtlm Pm+1,m+1 " Pm+1 N
R=| i i o=| : E (5.49b)
| PNt 0 PNom PN,m+1 0 PNN

Note that the elements of R are the one-step transition probabilities from nonabsorbing to absorbing states, and
the elements of Q are the one-step transition probabilities among the nonabsorbing states.
LetU = [ukj], where

u, = P{X, = JE€ A) |X, = kE B)}

It is seen that U is an (N — m) X m matrix and its elements are the absorption probabilities for the various
absorbing states. Then it can be shown that (Prob. 5.40)

U=({- Q) 'R=®R (5.50)

The matrix ® = (I — Q) ! is known as the fundamental matrix of the Markov chain X(n). Let T, denote the
total time units (or steps) to absorption from state k. Let

T= [Tm+l Tm+2 TN:I
Then it can be shown that (Prob. 5.74)
N
ET)= Y ¢, k=m+1,..,N (5.51)

i=m+l

where ¢, is the (k, i)th element of the fundamental matrix ®.
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F. Stationary Distributions:

Let P be the transition probability matrix of a homogeneous Markov chain {X , n = 0}. If there exists a prob-
ability vector p such that

pP=p (5.52)

then p is called a stationary distribution for the Markov chain. Equation (5.52) indicates that a stationary distri-
bution p is a (left) eigenvector of P with eigenvalue 1. Note that any nonzero multiple of p is also an eigen-
vector of P. But the stationary distribution p is fixed by being a probability vector; that is, its components sum
to unity.

G. Limiting Distributions:

A Markov chain is called regular if there is a finite positive integer m such that after m time-steps, every
state has a nonzero chance of being occupied, no matter what the initial state. Let A > O denote that every
element a;; of A satisfies the condition a; > 0. Then, for a regular Markov chain with transition probabil-
ity matrix P, there exists an m > 0 such that P > O. For a regular homogeneous Markov chain we have
the following theorem:

THEOREM 5.5.1

Let {X , n = 0} be a regular homogeneous finite-state Markov chain with transition matrix P. Then

lim P" =P (5.53)

n—o

where P is a matrix whose rows are identical and equal to the stationary distribution p for the Markov chain
defined by Eq. (5.52).

5.6 Poisson Processes

A. Definitions:

Let ¢ represent a time variable. Suppose an experiment begins at + = 0. Events of a particular kind occur ran-
domly, the first at 7', the second at 7, and so on. The r.v. T, denotes the time at which the ith event occurs, and
the values ¢, of T, (i = 1,2, ...) are called points of occurrence (Fig. 5-2).

— Z; —pte—— 2, ——»e—Z;—> e— 2, —»
] ] ] ] ] ] ]

0 t s t s t, t

v

1

Fig. 5-2

Let Z =T —T, (5.54)

1

and T, = 0. Then Z denotes the time between the (n — 1)st and the nth events (Fig. 5-2). The sequence
of ordered r.v.’s {Z , n = 1} is sometimes called an interarrival process. If all r.v.’s Z are independent and
identically distributed, then {Z , n = 1} is called a renewal process or a recurrent process. From Eq. (5.54), we
see that

T =Z +Z,+ - +2

where T, denotes the time from the beginning until the occurrence of the nth event. Thus, {T,,n=0} is some-
times called an arrival process.
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B. Counting Processes:

A random process {X(7), t = 0} is said to be a counting process if X(t) represents the total number of “events”
that have occurred in the interval (0, 7). From its definition, we see that for a counting process, X(f) must sat-
isfy the following conditions:

X() = 0 and X(0) = 0.

X(1) is integer valued.

X)) =X ifs <t

X(f) — X(s) equals the number of events that have occurred on the interval (s, 7).

B W N =

A typical sample function (or realization) of X(¢) is shown in Fig. 5-3.

A counting process X(f) is said to possess independent increments if the numbers of events which occur in
disjoint time intervals are independent. A counting process X(¢) is said to possess stationary increments if the
number of events in the interval (s + h, t + h)—that is, X(r + h) — X(s + h)—has the same distribution as
the number of events in the interval (s, r)—that is, X(f) — X(s)—foralls < tand h > 0.

x(t)

4t —_—
o —
2| ,_.
= —_—

' L — >
0 t, t, ty t, t

Fig. 5-3 A sample function of a counting process.

C. Poisson Processes:

One of the most important types of counting processes is the Poisson process (or Poisson counting process),
which is defined as follows:

DEFINITION 5.6.1

A counting process X(f) is said to be a Poisson process with rate (or intensity) A(> 0) if

1. X(©)=0.
X(7) has independent increments.

3. The number of events in any interval of length 7 is Poisson distributed with mean At; that is, for
alls, >0,

P[X(t—f—s)—X(s):n]:e_’“% n=0,1,2,... (5.55)

It follows from condition 3 of Def. 5.6.1 that a Poisson process has stationary increments and that
E[X@®)] = At (5.56)
Then by Eq. (2.51) (Sec. 2.7E), we have
Var[X(1)] = At (5.57)

Thus, the expected number of events in the unit interval (0, 1), or any other interval of unit length, is just A
(hence the name of the rate or intensity).
An alternative definition of a Poisson process is given as follows:
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DEFINITION 5.6.2

A counting process X(f) is said to be a Poisson process with rate (or intensity) A (> 0) if

X(0) = 0.

X(t) has independent and stationary increments.
PIX(t + At) — X(r) = 1] = A At + o(Ar)
PIX(t + Ar) — X(1) = 2] = o(A1)

AW N =

where o(Af) is a function of Az which goes to zero faster than does Af; that is,

. o(Ar)
lim ——=0
Atlino A (5.58)
Note: Since addition or multiplication by a scalar does not change the property of approaching zero, even when
divided by At, o(Ar) satisfies useful identities such as o(Af) + o(Af) = o(At) and ao(Af) = o(A¥) for all
constant a.

It can be shown that Def. 5.6.1 and Def. 5.6.2 are equivalent (Prob. 5.49). Note that from conditions 3 and
4 of Def. 5.6.2, we have (Prob. 5.50)

PIX(t + Aty — X(©) = 0] = 1 — A At + o(Ar) (5.59)

Equation (5.59) states that the probability that no event occurs in any short interval approaches unity as
the duration of the interval approaches zero. It can be shown that in the Poisson process, the intervals between
successive events are independent and identically distributed exponential r.v.’s (Prob. 5.53). Thus, we also iden-
tify the Poisson process as a renewal process with exponentially distributed intervals.

The autocorrelation function R, (#, s) and the autocovariance function K, (7, s) of a Poisson process X(7)
with rate A are given by (Prob. 5.52)

R,(t, s) = Amin(t, s) + A%ts (5.60)
K, (t, s) = A min(t, 5) (5.61)

5.7 Wiener Processes

Another example of random processes with independent stationary increments is a Wiener process.

DEFINITION 5.7.1

A random process {X(f), t = 0} is called a Wiener process if

1. X(¢) has stationary independent increments.

2. The increment X(¢#) — X(s)(t > s) is normally distributed.
3. E[X(]=0.

4. X(0)=0.

The Wiener process is also known as the Brownian motion process, since it originates as a model for Brownian
motion, the motion of particles suspended in a fluid. From Def. 5.7.1, we can verify that a Wiener process is a
normal process (Prob. 5.61) and

EX®] =0 (5.62)
Var[X()] = o (5.63)
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where o” is a parameter of the Wiener process which must be determined from observations. When o® = 1, X(¢)
is called a standard Wiener (or standard Brownian motion) process.

The autocorrelation function R, (#, s) and the autocovariance function K, (¢, s) of a Wiener process X(7) are
given by (see Prob. 5.23)

Ry, 5) = K,(1, 5) = 0® min(, s) 5,1=0 (5.64)

DEFINITION 5.7.2

A random process {X(7), t = 0} is called a Wiener process with drift coefficient n if

1. X(?) has stationary independent increments.
2. X(#) is normally distributed with mean uz.
3. X(@0)=o0.

From condition 2, the pdf of a standard Wiener process with drift coefficient u is given by

I _—un?ien
(x)= o~ (x—ut)
Txw o (5.65)

5.8 Martingales

Martingales have their roots in gaming theory. A martingale is a random process that models a fair game. It is
a powerful tool with many applications, especially in the field of mathematical finance.

A. Conditional Expectation and Filtrations:

The conditional expectation E(Y | X, ..., X ) is a r.v. (see Sec. 4.5 D) characterized by two properties:

1. The value of E(Y |X], e X)) depends only on the values of X, ..., X, that is,

E(Y|X1,...,Xn=g(Xl,...,Xn) (5.66)
2. E[E(Y|X1, LX) = EX) (5.67)
If X,, ..., X, is a sequence of r.v.’s , we will use F, to denote the information contained in X, ..., X, and we

write E(Y |F) for E(Y | X, ..., X)), that is,

EY|X,,....X)=EY|F) (5.68)
We also define information carried by r.v.’s X|, ..., X in terms of the associated event space (o-field),
oX,, ..., X ). Thus,
F o=o0X,...X) (5.69)
and we say that F, is an event space generated by X, ..., X,. We have
F CF, if l=n=m (5.70)

A collection {F, n = 1,2, ...} satisfying Eq. (5.70) is called a filtration.
Note that if a r.v. Z can be written as a function of X, ..., X , it is called measurable with respect to

X,, ..., X ,or F -measurable.
1 n n
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Properties of Conditional Expectations:

1. Linearity:
E@Y, + bY,|F)=aEQY,|F)+ bEY,|F) 5.71)
where a and b are constants.
2. Positivity:
If Y = 0, then EY|F)=0 (5.72)
3. Measurablity:
If Y is F -measurable, then EY|F)=Y (5.73)
4. Stability:
If Z is F -measurable, then E(YZ|F)=ZEXY|F) (5.74)
5. Independence Law:
If Y is independent of F , then EY | F) = EY) (5.75)
6. Tower Property:
E[E(Y|F)|F,1=EY|F,) ifm=n (5.76)
7. Projection Law:
E[E(Y |F )] = E(Y) (5.77)

8. Jensen’s Inequality:
If g is a convex function and E(| Y |) < o, then

E@g(Y)|F,) = g(E (Y|F) (5.78)

B. Martingale in Discrete Time:
Definition:

A discrete-time random process {M,, n = 0} is a martingale with respect to F, if

(1) E(|M,])< o foralln = 0
(2 EM . |F)=M, for all n (5.79)

It immediately follows from Eq. (5.79) that for a martingale
2)EM |F)=M, form =n (5.80)
A discrete-time random process {M,, n = 0} is a submartingale (supermartingale) with respect to F, if

() E(M )< foralln = 0
2 EM,, |F)=(E=M, for all n (5.81)

While a martingale models a fair game, the submartingale and supermartingale model favorable and unfa-
vorable games, respectively.

Theorem 5.8.1

Let {M , n = 0} be a martingale. Then for any given n

EM)=EM, )= ..=EM,) (5.82)
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Equation (5.82) indicates that in a martingale all the r.v.’s have the same expectation (Prob. 5.67).
Theorem 5.8.2 (Doob decomposition)

Let X = {X , n = 0} be a submartingale with respect to F',. Then there exists a martingale M = {M , n = O}
and a process A = {A , n = 0} such that

(1) M is a martingale with respect to F;
(2) Ais anincreasing process A |, = A ;
?3) A, is F,_ ,-measurable for all n;

@ X =M +A.

(For the proof of this theorem see Prob. 5.78.)

C. Stopping Time and the Optional Stopping Theorem:
Definition:

Ar.v. T is called a stopping time with respect to F if

1. T takes values from the set {0, 1,2, ..., %}
2. Theevent{T = n} is F -measurable.

EXAMPLE 5.1: A gambler has $100 and plays the slot machine at $1 per play.

1. The gambler stops playing when his capital is depleted. The number 7' = n, of plays that it takes the
gambler to stop play is a stopping time.

2. The gambler stops playing when his capital reaches $200. The number 7' = n, of plays that it takes
the gambler to stop play is a stopping time.

3. The gambler stops playing when his capital reaches $200, or is depleted, whichever comes first. The
number 7' = min(n,, n,) of plays that it takes the gambler to stop play is a stopping time.

EXAMPLE 5.2 A typical example of the event T is not a stopping time; it is the moment the stock price attains
its maximum over a certain period. To determine whether 7 is a point of maximum, we have to know the future
values of the stock price and event {T = n} & F.

Lemma 5.8.1

1. If T, and T, are stopping times, then sois 7', + 7.
2. If T, and T, are stopping times, then T = min(n,, n,) and T = max(n,, n,) are also stopping times.

3. min (7, n) is a stopping time for any fixed 7.

Let I, denote the indicator function of A, that is, the r.v. which equals 1 if A occurs and 0 otherwise. Note

that I{T> ay the indicator function of the event {7 > n}, is F -measurable (since we need only the information

up through time n to determine if we have stopped by time n).

Optional Stopping Theorem:
Suppose {M,, n = 0} is a martingale and T is a stopping time. If

(1 ET) <o (5.83)

(2 E(|M,|) < (5.84)

®) lim E(|M,[1;-,))=0 (5.85)
Then

EM,) = EM,) (5.86)

Note that Egs. (5.84) and (5.85) are always satisfied if the martingale is bounded and P(T < o) = 1.
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D. Martingale in Continuous Time

A continuous-time filtration is a family {F, t = 0} contained in the event space F such that ¥ C F, for s < t.
The continuous random process X(?) is a martingale with respect to F, if

(1) E(|X @®)]) < (5.87)
2) EX(®)|F)=X(s) for t =s (5.88)

Similarly, continuous-time submartingales and supermartingales can be defined by replacing equal (=) sign
by = and =, respectively, in Eq. (5.88).

SOLVED PROBLEMS

Random Processes

5.1. LetX,, X,, ... be independent Bernoulli r.v.’s (Sec. 2.7A) with P(X, = 1) = pand PX, = 0) =g =1 —
p for all n. The collection of r.v.’s {X , n = 1} is a random process, and it is called a Bernoulli process.
(a) Describe the Bernoulli process.

(b) Construct a typical sample sequence of the Bernoulli process.
(a) The Bernoulli process {X,, n = 1} is a discrete-parameter, discrete-state process. The state space is £ = {0,
1}, and the index setis 7= {1, 2, ...}.

(b) Asample sequence of the Bernoulli process can be obtained by tossing a coin consecutively. If a head
appears, we assign 1, and if a tail appears, we assign 0. Thus, for instance,

n 1 2 3 4 5 6 7 8 9 10
Coin tossing H T T H H H T H H T
X 1 0 0 1 1 1 0 1 1 0

n

The sample sequence {x } obtained above is plotted in Fig. 5-4.

Xn
1 ° ° ° ° e o
1 é é 1 1 1 ry 1 1 & 1 1 >
0 2 4 6 8 10
Fig. 5-4 A sample function of a Bernoulli process.
5.2. LetZ,, Z,, ... be independent identically distributed r.v.’s with P(Z = 1) = pand PZ = — 1) = g =

1 — p for all n. Let

anzz,. n=1,2,... (5.89)
i=1

and X, = 0. The collection of r.v.’s {Xn, n = 0} is a random process, and it is called the simple random
walk X(n) in one dimension.

(a) Describe the simple random walk X(n).

(b) Construct a typical sample sequence (or realization) of X(n).
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(@)

(b

The simple random walk X(n) is a discrete-parameter (or time), discrete-state random process. The state
spaceis E={...,—2, —1,0,1, 2, ...}, and the index parameter setis 7= {0, 1,2, ...}.

Asample sequence x(n) of a simple random walk X(n) can be produced by tossing a coin every second and
letting x(n) increase by unity if a head appears and decrease by unity if a tail appears. Thus, for instance,

n 0 1 2 3 4 5 6 7 8 9 10
Coin tossing H T T H H H T H H T
x(n) 0 1 (S| 0 1 2 1 2 3 2

The sample sequence x(n) obtained above is plotted in Fig. 5-5. The simple random walk X(n) specified in
this problem is said to be unrestricted because there are no bounds on the possible values of X .

The simple random walk process is often used in the following primitive gambling model: Toss a coin. If
a head appears, you win one dollar; if a tail appears, you lose one dollar (see Prob. 5.38).

5.3. Let{X , n = 0} be a simple random walk of Prob. 5.2. Now let the random process X() be defined by

(@)
)

(@)

(b)

X =X, n=t<n-+1

Describe X(1).

Construct a typical sample function of X(7).

The random process X(¢) is a continuous-parameter (or time), discrete-state random process. The state
spaceis E={...,—2,—1,0,1,2, ...}, and the index parameter setis 7= {r, 1 =0}.

Asample function x() of X(#) corresponding to Fig. 5-5 is shown in Fig. 5-6.

Fig. 5-5 A sample function of a random walk.

—1 —

Fig. 5-6
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5.4. Consider a random process X(f) defined by

X(t) = Y cos wt t=0

where w is a constant and Y is a uniform r.v. over (0, 1).
(a) Describe X().
(b) Sketch a few typical sample functions of X(7).

(a) The random process X(7) is a continuous-parameter (or time), continuous-state random process. The state
space is £ = {x: —1 <x < 1} and the index parameter setis 7= {t: t =0}.

(b) Three sample functions of X() are sketched in Fig. 5-7.

v

Fig. 5-7

5.5. Consider patients coming to a doctor’s office at random points in time. Let X denote the time (in
hours) that the nth patient has to wait in the office before being admitted to see the doctor.

(a) Describe the random process X(n) = {X ,n = 1}.
(b) Construct a typical sample function of X(n).

(a) The random process X(n) is a discrete-parameter, continuous-state random process. The state space is
E = {x: x=0), and the index parameter setis 7= {1, 2, ...}.

(b)  Asample function x(n) of X(n) is shown in Fig. 5-8.

Characterization of Random Processes

5.6. Consider the Bernoulli process of Prob. 5.1. Determine the probability of occurrence of the sample
sequence obtained in part (b) of Prob. 5.1.
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Since X ’s are independent, we have
PX, =x,X,=x,,....,X, =x)=PX, =x)PX, =x,) ... (X, = x) (5.90)
Thus, for the sample sequence of Fig. 5-4,

PX,=1,X,=0,X,=0,X,=1,X,=1,X,=1,X,=0,X,=1,X, =1,X,,=0) = pq*

2 4 6 8 10 12

Sy

Fig. 5-8

5.7. Consider the random process X(#) of Prob. 5.4. Determine the pdf’s of X(¢) at ¢ = 0, n/4w, /2w, 7/ w.
Fort=0, X(0) = Ycos O =Y. Thus,

1 0<x<l1
fX(o)(x)z{O

otherwise
For ¢ = m/4w, X(n/4w) = Y cos w/4 = 1/\/2 Y. Thus,

V2 0<x<1/\2

0 otherwise

Fx o) = {

For t = /2w, X(7w/2w) = Y cos /2 = 0; that is, X(s1/2w) = 0 irrespective of the value of Y. Thus, the pmf of
X(w/2w) is

Pyainw® =PX=0)=1
Fort = ww, X(ww) = Y cos w = — Y. Thus,

1 —1<x<0

0 otherwise

Fx (%)= {

5.8. Derive the first-order probability distribution of the simple random walk X(n) of Prob. 5.2.
The first-order probability distribution of the simple random walk X(n) is given by

p,(k) = P(X, = k)
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where kis an integer. Note that P(X, = 0) = 1. We note that p (k) =0 if n < | k| because the simple random
walk cannot get to level kin less than|k|steps. Thus,n =|k |.

Let N, " and N, ~ be the r.v.’s denoting the numbers of +1s and —1s, respectively, in the first n steps.

Then

n=N"*+N "~ (5.91)
X,=N," =N~ (5.92)

Adding Egs. (5.91) and (5.92), we get
N, =2+ x,) (5.93)

Thus, X = kif and only if N * = % (n + k). From Eq. (5.93), we note that 2N * = n + X must be even. Thus,
X, must be even if n is even, and X, must be odd if 7 is odd. We note that Nn+ is a binomial r.v. with parameters
(n, p). Thus, by Eq. (2.36), we obtain

q=1—p (5.94)

n n n—
Patk) =( )p< g

(n+k)/2

where n = |k |, and n and k are either both even or both odd.

5.9. Consider the simple random walk X(#) of Prob. 5.2.
(a) Find the probability that X(n) = —2 after four steps.
(b) Verify the result of part (a) by enumerating all possible sample sequences that lead to the value
X(n) = —2 after four steps.
(a) Setting k= —2 and n = 4 in Eq. (5§.94), we obtain
PSP I - 3 _1_
P(Xy==2)=py(=2)= L7 =4pq q=1-p
x(n) x(n) x(n) x(n)
2 2 2F 2r-
1- o 1+ 1+ 1+
op—L oL 1 op—L ¢ L | op—L L 1 1 5 op—L 1L 1 1
2 4 2 4 2 4 2 4
1 o A ® o 4 @ [ ] 1 @
-2 [ ] -2 [ ] -2 [ [ -2 [ [
-3 -3 -3 -3 )
Fig. 59
(b)  All possible sample functions that lead to the value X, = —2 after four steps are shown in Fig. 5-9. For
each sample sequence, P(X, = —2) = pg®. There are only four sample functions that lead to the value X,

= —2 after four steps. Thus, P(X, = —2) = 4pq°>.
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5.10 Find the mean and variance of the simple random walk X(n) of Prob. 5.2.
From Eq. (5.89), we have
=X _,tZ n=1,2,.. (5.95)
and X, =0and Z (n = 1, 2, ...) are independent and identically distributed (iid) r.v.’s with
PZ,=+)=p  PZ=—-1)=g=1-p

From Eq. (5.95), we observe that

X, =X, +2,=2
X,=X,+2,=2,+72,

(5.96)
X, =Z,+2Z,++2,
Then, because the Z are iid r.v.’s and X; = 0, by Eqs. (4.132) and (4.136), we have
E(X,)=E i Z, |=nEZ,)
k=1
Var(X,) = Var i Z, |=nVar(Z,)
k=1
Now EZ)=Wp+(—1)g=p—gq (5.97)
EZH=0)Yp+(-1yYg=p+g=1 (5.98)
Thus, Var(Z,) = E(Z,*) — [EZ)P=1—(p — 9> = 4pq (5.99)
Hence, EX,) =nlp —q) g=1-p (5.100)
Var (X)) = 4npq gq=1—-p (5.101)
Note thatif p = ¢ = %, then
EX)=0 (5.102)
Var(X,) = n (5.103)
5.11. Find the autocorrelation function R (n, m) of the simple random walk X(n) of Prob. 5.2.
From Eq. (5.96), we can express X, as
x,=37 =12 (5.104)
i=0

where Z) = X, = 0and Z (i = 1) are iid r.v.’s with
P(Z=+1)=p PZ=—-1)=q=1-p
By Eq. (5.7),

R (n, m) = E[X(n)X(m)] = EX,X,)

nom
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Then by Eq. (5.104),

n o m min(n,m) nom
Ry(n,m)=> N E(Z;Z)= Y EZ)+ Y Y EZ)EZ) (5.105)
i=0 k=0 i=0 i=0 k=0 '
i#k
Using Eqgs. (5.97) and (5.98), we obtain
R (n, m) = min(n, m) + [nm — min(n, m)|(p — ¢)* (5.106)
_ N2
or Ry(n,my=]" T mp =g m<n (5.107)
n~¥—(nm—n)(p—q)2 n<m
Note thatif p =g = %, then
R (n, m) = min(n, m) n,m=>0 (5.108)
5.12. Consider the random process X(¢) of Prob. 5.4; that is,
X(t) = Y cos wt t=0
where  is a constant and Y is a uniform r.v. over (0, 1).
(a) Find E[X(®)].
(b) Find the autocorrelation function R (7, s) of X(?).
(c) Find the autocovariance function K (¢, s) of X(7).
(a) From Egs. (2.58) and (2.110), we have E(Y) = % and E(Y?) = % Thus,
E[X()] = E(Y cos wt) = E(Y) cos wt = %cos wt (5.109)
(b) By Eq.(5.7), we have
Ry (t,s)=E[X(t)X(s)] = E(Y? cos wt cos ws)
1 (5.110)
= E(Yz) COS Wt COs Ws = 3 COSs Wt Cos WS
(c) By Eq.(5.10), we have
Ky (t,5)=Rx(t,s) — E[X(1)]E[X(s)]
-1 COS wf COS WS — 1 COS Wt COS WS
3 4 (5.111)

1
= —COS Wt COS WS
12

5.13. Consider a discrete-parameter random process X(n) = {X , n = 1} where the X ’s are iid r.v.’s with
common cdf F (x), mean u, and variance o2.

(a) Find the joint cdf of X(n).
(b) Find the mean of X(n).
(c) Find the autocorrelation function R (n, m) of X(n).

(d) Find the autocovariance function K (n, m) of X(n).
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(a) Since the X ’s are iid r.v.’s with common cdf F (x), the joint cdf of X(n) is given by

Fy(oees )= [ [F ) =[Fy 01" (5.112)
i=1

(b)  The mean of X(n) is

wn) =EX)=u for all n (5.113)

(¢) Ifn#m, by Egs.(5.7) and (5.113),

R(n,m)=EX,X,)=EX)EX,)=u

If n = m, then by Eq. (2.31),

E(X,%)=Var(X,) +[E(X,)] =0 +u*
2

Hence, u nEm
Ry(n,m)=+y" (5.114)
o°+u n=m
(d) By Eq.(5.10),
0 n=m
KX(n,m)—RX<n,m)—mrz)m:n)—{o2 L (5.115)

Classification of Random Processes

5.14.

5.15.

Show that a random process which is stationary to order 7 is also stationary to all orders lower than 7.

Assume that Eq. (5.14) holds for some particular #; that is,
PX(t)=x,...X@t)=x}=PXt, +tD=x,...Xt, +7)=x}
for any 7. Letting x, — o, we have [see Eq. (3.63)]

PX(t) = x,, .., X(t, )=x,_}=PXlt, +D=x,....Xt,  +D=x_}

and the process is stationary to order n — 1. Continuing the same procedure, we see that the process is
stationary to all orders lower than n.

Show that if {X(r), r € T} is a strict-sense stationary random process, then it is also WSS.

Since X(?) is strict-sense stationary, the first- and second-order distributions are invariant through time
translation for all T&€ T. Then we have

w0 = EX(0] = E[X¢ + 7] = p(t + 1)
And, hence, the mean function w (f) must be constant; that is,
E[X(1)] = u(constant)
Similarly, we have

E[X(5)X()] = E[X(s + DX(t + 7]
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5.16.

5.17.

5.18.
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so that the autocorrelation function would depend on the time points s and  only through the difference | — s |.
Thus, X(r) is WSS.

Let {X , n = 0} be a sequence of iid r.v.’s with mean 0 and variance 1. Show that {X , n = 0} is a WSS
process.

By Eq. (5.113),
E(X,) = 0 (constant) for all n

and by Eq. (5.114),

E(X)E(X,.,)=0 k#0

Ry(n,n+k)=E(X, X, ;)=
E(X,?)=Var(X,)=1 k=0

which depends only on k. Thus, {X } is a WSS process.

Show that if a random process X(7) is WSS, then it must also be covariance stationary.

If X(7) is WSS, then

E[X(1)] = u(constant) for all ¢

R(t, 1+ D] =R, (D) for all 1
Now K (1, t + 1) = Cov[X(DX(t + D] = Ry(¢t, t + ©) — EIX(DIEIX(t + D]
=R(v) — 1?

which indicates that K,(z, 1 + 1) depends only on 7; thus, X(7) is covariance stationary.

Consider a random process X(f) defined by

X() = U cos wt + V sin wt —o <t < ® (5.116)

where w is constant and U and V arer.v.’s.

(@) Show that the condition

EU)=EV)=0 (5.117)

is necessary for X(7) to be stationary.

(b) Show that X(¢r) is WSS if and only if U and V are uncorrelated with equal variance; that is,
EUV)=20 EU? = E(V?) = o? (5.118)
(a) Now
u () = E[X(0] = E(U) cos wt + E(V) sin wt
must be independent of  for X(#) to be stationary. This is possible only if u (#) = 0, that is, E(U) = E(V) = 0.

(b) I X(r) is WSS, then

E[X2(0)] = E| X? =Ryy(0)=0,*

i
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5.19.

5.20.

But X(0) = U and X(7t/2w) = V; thus,
E(U?) =E(V») =o0,>=0"
Using the above result, we obtain
R (t,t+ v = E[X(HX(t + D]
= E{(Ucos wt + Vsin wf)[U cos w(t + 7) + Vsin w(t + 7]}

= 0% cos wt + E(UV) sinQRwt + w1) (5.119)

which will be a function of Tonly if E(UV) = 0. Conversely, if E(UV) = 0 and E(U?) = E(V?) = o2, then from
the result of part (@) and Eq. (5.119), we have

w@®=0
R(t,1+ 1) = 0% cos wT = R (7)

Hence, X(¢) is WSS.

Consider a random process X(f) defined by

X()=Ucost+ Vsint —o <<

where U and V are independent r.v.’s, each of which assumes the values —2 and 1 with the probabilities
% and %, respectively. Show that X(#) is WSS but not strict-sense stationary.

We have

EU)=EV)= %(—2) +%(1) =0

EU*=EWV?) = %(—2)2 + %(1)2 =2

Since U and V are independent,
EUV)=EWU)EV)=0
Thus, by the results of Prob. 5.18, X(¢) is WSS. To see if X(¢) is strict-sense stationary, we consider E[X>(1)].

E[X3(1)] = E[(Ucos t + Vsin 1)°]
= E(U?) cos® t + 3E(U?V) cos® tsin t + 3E(UV?) cos tsin®t + E(V?) sin’ ¢

Now E(U3) = E(V3) = %(—2)3 + %(1)3 =2
E(U? V) = E(UY)E(V) =0 E(UV?) = E(D)E(V?) =0
Thus, E[X3(f)] = —2(cos® t + sin® £)

which is a function of . From Eq. (5.16), we see that all the moments of a strict-sense stationary process must
be independent of time. Thus, X(?) is not strict-sense stationary.

Consider a random process X(¢) defined by

X(t) = A cos(wt + ©) —o << ®

where A and w are constants and © is a uniform r.v. over (—a, ;). Show that X(r) is WSS.
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From Eq. (2.56), we have

1

— <0<z
Jo(@®)=12m
0 otherwise
Then ux(t)=ifﬂ cos(wt +6)do =0 (5.120)
¥ Adiud

Setting s =t + 7in Eq. (5.7), we have

2
Ryg(ior +1) =22 [ cos(ar +0) cos[a(t +T) + 0)1dO
X A

_ A%
¥ Al
2
= —COS wWT
2

%[COS wt + cosRQuwt + 26 + wt)] dO (5.121)

Since the mean of X(7) is a constant and the autocorrelation of X(7) is a function of time difference only, we
conclude that X(7) is WSS.

5.21. Let {X(7), t = 0} be a random process with stationary independent increments, and assume that
X(0) = 0. Show that

EX(O] = u,t (5.122)
where u, = E[X(1)].

Let S = E[X(n] = E[X(1) — X(0)]

Then, for any 7 and s and using Eq. (4.132) and the property of the stationary independent increments, we have

F@t+5) = E[X(t + 5) — X(0)]
= E[X(t + 5) — X(5) + X(s) — X(0)]
= E[X(t + 5) — X(s)] + E[X(s) — X(0)]
= E[X(r) — X(0)] + E[X(s) — X(0)]
=f(0) + f(s) (5.123)

The only solution to the above functional equation is f(¢) = ct, where c is a constant. Since ¢ = f(1) = E[X(1)],
we obtain

E[X(D] = u,t w = E[X(1)]

5.22. Let {X(7), t = 0} be a random process with stationary independent increments, and assume that
X(0) = 0. Show that

(a) Var [ X(1)] = o, 2 (5.124)
o) Var[X() — X = 0,2(t —5) 1> (5.125)
where 0,2 = Var[X(1)].

(a) Let g(t) = Var[X(¢)] = Var[X(r) — X(0)]
Then, for any 7 and s and using Eq. (4.136) and the property of the stationary independent increments, we get

g(t+s) = Var[X(tr + 5) — X(0)]
= Var[X(¢t + s) — X(s) + X(s) — X(0)]
= Var[X(z + 5) — X(s)] + Var[X(s) — X(0)]
= Var[X(r) — X(0)] + Var[X(s) — X(0)]
=g + g(s)
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5.23. Let {X(7), t = 0} be a random process with stationary independent increments, and assume that

5.24.

which is the same functional equation as Eq. (5.123). Thus, g(f) = kz, where k is a constant. Since

k = g(1) = Var[X(1)], we obtain
Var[X(1)] = 0, %t 0,% = Var[X(1)]
(b) Lett>s. Then

Var [X(#)] = Var[X(r) — X(s) + X(s) — X(0)]
= Var[X(r) — X(s)] + Var[X(s) — X(0)]
= Var[X(r) — X(s)] + Var[X(s)]

Thus, using Eq. (5.124), we obtain

Var[X(1) — X(s)] = Var[X(1)] — Var[X(s)] = 0,2 (t — 5)

X(0) = 0. Show that

Cov[X(n), X(s)] = K, (t, s) = 0,% min(z, 5)
where 0,2 = Var[X(1)].
By definition (2.28),

Var[X(1) — X(5)] = EQX(1) — X(s) — E[X(1) = X(9)]}?)
= E[({X(1) — EIX(O]} — {X(s) — E[X(9)]})’]

233

(5.126)

= E{X(®) — E[X(O]}* — 2{X(1) — EIX(O]} {X(s) — E[X()]} + {X(s) — E[X(9)]}?)

= Var[X(r)] — 2 Cov[X(?), X(s)] + Var[X(s)]
Thus, Cov[X(1), X(s)] = % {Var[X(t)] + Var[X(s)] — Var[X(¢r) — X(s)]}

Using Egs. (5.124) and (5.125), we obtain

lOlz[t—l—s—()f—s)]=alzs t>s
Ky(t,s)=
Eof[t +s—(s—0]=0 s>t
or Ky(t,s)= 012 min(z, s)
where 0,? = Var[X(1)].
(@) Show that a simple random walk X(n) of Prob. 5.2 is a Markov chain.

(b) Find its one-step transition probabilities.

(@) From Eq. (5.96) (Prob. 5.10), X(n) = {X , n = 0} can be expressed as
X,=0 X, = Ez n=1

where Z (n = 1,2, ...) are iid r.v.’s with

P(Zn:k):ak (k:l,_l) and a, =p a,|:q:1—p
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Then X(n) = {X,, n =0} is a Markov chain, since

PX

n+1 n

:P(Zn+1 +in:in+1|X():O’Xl :il’ ""Xn:in)
=P(Xn+l =in+l|Xn=in)

=i X, =0.X, =i, ... X, =)

=PZ, =i TR =

since Z, | is independent of X, X, ..., X, .

n

(b) The one-step transition probabilities are given by

p k=j+1
Py =PX,=k|X,_,=j)=1q=1-p k=j—1
0 otherwise

which do not depend on n. Thus, a simple random walk X(n) is a homogeneous Markov chain.

5.25. Show that for a Markov process X(7), the second-order distribution is sufficient to characterize X(r).
Let X(#) be a Markov process with the nth-order distribution

t,t

Fo(x), Xy o5 X s e 1) = PIX (1) = x, X(8,) = x,, ..., X(1) = x,}

1°

Then, using the Markov property (5.26), we have

Fo(x,, %y, o, x50, 1, ..., 1) = P{X(z) an|X(tl) =x,Xt)=x,,....X¢t,_)=x,_ .}
X P{X(t)=x,X(t) =x,, ... X(t, _)=x,_,}

=PXt)=x|Xt, _D)=x _ IFx,....x, _ it ...t _))

Applying the above relation repeatedly for lower-order distribution, we can write
n
Fy (X, Xy e X3 5ty 5 e nty) = Fx (X, 1)) nP{X(tk) =x; |X(tk,1) =Xt (5.127)
k=2

Hence, all finite-order distributions of a Markov process can be completely determined by the second-order
distribution.

5.26. Show that if a normal process is WSS, then it is also strict-sense stationary.

By Eq. (5.29), a normal random process X(f) is completely characterized by the specification of the mean E[X(?)]
and the covariance function K,(z, s) of the process. Suppose that X(7) is WSS. Then, by Egs. (5.21) and (5.22),
Eq. (5.29) becomes

n n n
. 1
qu(tl)-uX(t")(wl""’wn):exp{] Eﬂwi _EE Ky (1; _tk)wiwk} (5.128)
i=1 i=1 k=1
Now we translate all of the time instants ¢,, ,, ..., 1, by the same amount 7. The joint characteristic function of

the new r.v.’s X(r, + 7),i = 1,2, ..., n, is then

N | =
=
INZE

n
Wx+1) - X0, +1) (@15, @) = €Xp {J E mw; =
i=1

= eXP{j iuwi -

Kylt; +7— (1, +r)]wiwk}

1k

i 1

Ky (t; — t;)m0, }

k=1

| —
MS
S

i=1

=W xi,) @1 0,) (5.129)
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5.27.

which indicates that the joint characteristic function (and hence the corresponding joint pdf) is unaffected by a
shift in the time origin. Since this result holds for any n and any set of time instants (t, €7,i =1, 2, ..., n), it
follows that if a normal process is WSS, then it is also strict-sense stationary.

Let {X(r), —o0 < t < %} be a zero-mean, stationary, normal process with the autocorrelation function

kd

—_——— — << <

Ry =177 FT=v=1 (5.130)
0 otherwise

Let {X(z),i = 1,2, ..., n} be a sequence of n samples of the process taken at the time instants

l‘,~=iZ i=12,...,n
2

Find the mean and the variance of the sample mean
i =liX(t) (5.131)
n n “ 1 °

Since X(?) is zero-mean and stationary, we have

E[X(t)]=0
T
and Ry (t;, 1) =E[X(t;)X(t,)]= Ry (t, —t;) =Ry [(k - i)E]
~ 1 & 1 &
Thus, E(i,)=E ;;X(ti) =;;E[X(ti)]=0 (5.132)
and Var(it,) = E{[ft, — E(t,)'} = E(@1,”)

n

1
2 X@)

i=1

:E{

1 n
= ¥ X(t) }
=

1

_nﬁi iE[X(t")X(Z")]=nL2§ in[(k—i)g]

i=1 k=1 i=1 k=1

By Eq. (5.130),

1 k=i
Ry[(k—DT/2]= % |k —il=1
0 [k —i|>2
Var(ji )—l M +2(n—1) Lliol=1 @2n—1)
Thus, atty) =7 |" A I i e (5.133)

Discrete-Parameter Markov Chains

5.28.

Show that if P is a Markov matrix, then P" is also a Markov matrix for any positive integer n.

Pu P2 0 Pim
P Pn D2
Let P:[pij]: : : . -

Pmi Pm2 =" Pmm
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Then by the property of a Markov matrix [Eq. (5.35)], we can write

Pu P2 P | [1 1

P Pn Pom | |1 _ 1

Pm1 Pm2 Pmm 1 1
or Pa=a (5.134)
where a’=[1 1...1]

Premultiplying both sides of Eq. (5.134) by P, we obtain
Pla=Pa=a
which indicates that P? is also a Markov matrix. Repeated premultiplication by P yields
Pra=a

which shows that P" is also a Markov matrix.

Verify Eq. (5.39); that is,
p(n) = p(0)P"

We verify Eq. (5.39) by induction. If the state of X, is i, state X; will be j only if a transition is made from i to j.
The events {X; =i,i=1,2,...} are mutually exclusive, and one of them must occur. Hence, by the law of total
probability [Eq. (1.44)],

P(X, = j)= EP(XO =)P(X, = j|X, =1)

or p,)=YpOp,;  j=12,... (5.135)
In terms of vectors and matrices, Eq. (5.135) can be expressed as
p(1) = p(0)P (5.136)
Thus, Eq. (5.39) is true for n = 1. Assume now that Eq. (5.39) is true for n = k; that is,
p(k) = p(0)P*
Again, by the law of total probability,
P(Xysy =)= ) P(Xp =DP(X; 1y = j|X, =)
or pj(k+1)=2pi(k)pij ji=12,... (5.137)
In terms of vectors and matrices, Eq. (5.137) can be expressed as
pk + 1) = p(k)P = p(0)P*P = p(0)Pk *! (5.138)
which indicates that Eq. (5.39) is true for k + 1. Hence, we conclude that Eq. (5.39) is true foralln = 1.
5.30. Consider a two-state Markov chain with the transition probability matrix
1—a a
= 0<a<l1,0<b<1 (5.139)
b 1-b
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(@) Show that the n-step transition probability matrix P" is given by

u 1 b a . a —a
P = +(1—a—>b) (5.140)
atb||b a -b b
() Find P" when n — .
(a) From matrix analysis, the characteristic equation of Pis

c(A)-|M—P|—‘A_(1_a) - ‘

—b A—(1—b)
=A-DA—1+a+b)=0

Thus, the eigenvalues of Pare A, = 1 and A, = 1 — a — b. Then, using the spectral decomposition
method, P" can be expressed as

P'=A"E, + A, E, (5.141)

where E| and E, are constituent matrices of P, given by

E = [P-AI] E,=

[P—21] 5.142
S P G142

Substituting A, = 1 and A, = 1 — a — b in the above expressions, we obtain

1 [b a 1 a —a
E = E, =
a+b|b a a+b|—b b
Thus, by Eq. (5.141), we obtain
P'=E +(1—-a—-D)E,
1 b a [ a —a (5.143)
= +(0—a—>b)
a+b||b a -b b

(b) If0<a<1,0<b<1,then0<1—a<1and|1—a—b|<1.Solimnﬁm(1—a—b)”:Oand

lim P" = !
n—o a+b

boa 5.144
b a (5.144)
Note that a limiting matrix exists and has the same rows (see Prob. 5.47).

5.31. An example of a two-state Markov chain is provided by a communication network consisting of the
sequence (or cascade) of stages of binary communication channels shown in Fig. 5-10. Here X

Fig. 5-10 Binary communication network.
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denotes the digit leaving the nth stage of the channel and X, denotes the digit entering the first stage.
The transition probability matrix of this communication network is often called the channel matrix and
is given by Eq. (5.139); that is,

1—a a
P= 0<a<l1,0<bh<l1
b 1-b

Assume that @ = 0.1 and b = 0.2, and the initial distribution is P(X, = 0) = P(X, = 1) = 0.5.
(a) Find the distribution of X .
(b) Find the distribution of X, when n — oo,

(a) The channel matrix of the communication network is

09 0.1
pP=
[0.2 0.8}

and the initial distribution is
p(0) =10.5 0.5]
By Eq. (5.39), the distribution of X is given by

n

. 09 0.1
p(n)=p(0)P" =[0.5 0.5][02 08]

Letting a = 0.1 and » = 0.2 in Eq. (5.140), we get

[0.9 0.1}"_1 02 0.1}+(0.7)"[ 0.1 —0.1]
02 08| 03(02 01| 03 |-02 02
2+(0.7"  1-(0.7)"
_ 3 3
2-2(0.7)" 1+2(0.7)"
3 3

Thus, the distribution of X is

2+(0.7)"  1-(0.7)

pm=[05 o0s]| 3 3
2207 14207
3 3

_|2_©0n" 1 " 0.7)"

3 6 3 6

that is,

1,07

2_07 and P(X,=1)=—+
3 6

P(X =0)=—
(X, )3 5

(b) Since lim (0.7)" = 0, the distribution of X whenn — «is

n—s0

P(X, =0)=% and P(X, =1)=%
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5.32. Verify the transitivity property of the Markov chain; that is, if i = j and j — k, theni — k.

By definition, the relations i — jand j — k imply that there exist integers n and m such that p, >0 and p,
> 0. Then, by the Chapman-Kolmogorov equation (5.38), we have

P§:+M) = E Piy(n)Prk(m) = Pij(n)ij(m) >0 (5.145)
r
Therefore, i — k.

5.33. Verify Eq. (5.42).

If the Markov chain {X } goes from state i to state j in m steps, the first step must take the chain from i to some
state k, where k # j. Now after that first step to k, we have m — 1 steps left, and the chain must get to state j,
from state k, on the last of those steps. That is, the first visit to state j must occur on the (m — 1)st step,
starting now in state k. Thus, we must have

_ -1 _
fij(m)_zpik fk(jm b om=23..
k#j

5.34. Show that in a finite-state Markov chain, not all states can be transient.

Suppose that the states are 0, 1, ..., m, and suppose that they are all transient. Then by definition, after a
finite amount of time (say 7)), state O will never be visited; after a finite amount of time (say 7)), state 1 will
never be visited; and so on. Thus, after a finite time 7 = max{7,, T, ..., T,}, no state will be visited. But as
the process must be in some state after time 7, we have a contradiction. Thus, we conclude that not all states
can be transient and at least one of the states must be recurrent.

5.35. A state transition diagram of a finite-state Markov chain is a line diagram with a vertex corresponding to
each state and a directed line between two vertices i and j if p; > 0.In such a diagram, if one can move
from i and j by a path following the arrows, then i — j. The diagram is useful to determine whether a
finite-state Markov chain is irreducible or not, or to check for periodicities. Draw the state transition
diagrams and classify the states of the Markov chains with the following transition probability matrices:

0 0 05 05
"0 05 05
(@ P=|05 0 05 (b)P—l 0 0
AR e ' o1 0o o
05 05 0
L 01 0 0
03 04 0 0 03
0 1 0 0 0
() P=|0 0 0 06 04
0 0 0 0
0 0 1 0 0
0 1
1 2
0.5 0.5 0.5
0
)
0.5
"
0.5 3

@ (b)
Fig. 5-11 State transition diagram.
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(a) The state transition diagram of the Markov chain with P of part (a) is shown in Fig. 5-11(a). From
Fig. 5-11(a), it is seen that the Markov chain is irreducible and aperiodic. For instance, one can get back to
state 0 in two steps by going from O to 1 to 0. However, one can also get back to state O in three steps by
going from 0 to 1 to 2 to 0. Hence O is aperiodic. Similarly, we can see that states 1 and 2 are also aperiodic.

(b) The state transition diagram of the Markov chain with P of part (b) is shown in Fig. 5-11(b). From
Fig. 5-11(b), it is seen that the Markov chain is irreducible and periodic with period 3.

(¢) The state transition diagram of the Markov chain with P of part (¢) is shown in Fig. 5-11(c). From
Fig. 5-11(c), it is seen that the Markov chain is not irreducible, since states O and 4 do not communicate,
and state 1 is absorbing.

5.36. Consider a Markov chain with state space {0, 1} and transition probability matrix
1 0
P=|1 1
2 2
(a) Show that state O is recurrent.

(b) Show that state 1 is transient.

(a) By Egs.(5.41) and (5.42), we have

1
foo(l) =po =1 fl()(l) =P~ Py
1
foo(2) = Poi flo(l) = (O)E =0

fo™=0  n=2

Then, by Eqgs. (5.43),

foo = P(Ty < |X,=0)= Ef00<">=1+0+0+-~-=1
n=0

Thus, by definition (5.44), state 0 is recurrent.

(b) Similarly, we have

1
fll(l) =Pu= 2 fm(l) =pp1 =0

1
fn(z) =P fm(l) = (2)0 =0

=0 n=2

©

and f,,=P(Tl<oo|xo=1):Efl1<">=1+0+0+.-.=1<1
n=0 2 2

Thus, by definition (5.48), state 1 is transient.

5.37. Consider a Markov chain with state space {0, 1, 2} and transition probability matrix

03 3
P=11 0 o
1 0 0
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Show that state O is periodic with period 2.

The characteristic equation of P is given by

Thus, by the Cayley-Hamilton theorem (in matrix analysis), we have P> = P. Thus, forn =1,

o L oo
O 2 3 3 2] |p LI

@m _ p2 _ -0 5 3

PPZ=P"=11 0 oll1 0 o 2 2
1o oll1 o of oL 1L
s 2 2
RN
033

Q2n+l) _ p_

P P=11 0 o
10 0

Therefore, d0) =ged{n= lzpoo(’” >0} = gcd{2,5,6,...} =2

Thus, state 0 is periodic with period 2.

Note that the state transition diagram corresponding to the given P is shown in Fig. 5-12. From Fig. 5-12,
it is clear that state O is periodic with period 2.

N =

1
2

Fig. 5-12

5.38. Let two gamblers, A and B, initially have k dollars and m dollars, respectively. Suppose that at each
round of their game, A wins one dollar from B with probability p and loses one dollar to B with
probability ¢ = 1 — p. Assume that A and B play until one of them has no money left. (This is known
as the Gambler’s Ruin problem.) Let X be A’s capital after round n, where n = 0, 1, 2, ... and X, = k.

(a) Show that X(n) = {X , n = 0} is a Markov chain with absorbing states.
(b) Find its transition probability matrix P.
(a) The total capital of the two players at all times is
k+m=N
LetZ, (n=1) be independent r.v.’s with P(Z = 1) = pand P(Z = —1) =g =1 — pforall n.
Then

+Z, n=1,2,...

and X, = k. The game ends when X, = 0 or X,=N. Thus, by Probs. 5.2 and 5.24, X(n) = {X”, n=0}isa
Markov chain with state space E = {0, 1, 2, ..., N}, where states O and N are absorbing states. The
Markov chain X(n) is also known as a simple random walk with absorbing barriers.
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(b) Since
P =PX, =i+ LX,=i=p
P =PX, =i 1]X,=)=¢q
b, =PX,,, =ilX,=)=0  i+0,N

pO,OZP(Xn+1 :O|Xn:O):1
Py>y :P(Xn+1 :N|X;,:N):1

the transition probability matrix Pis

1 0 0 O 0
qg 0 p O 0
0 g 0 p 0
P=|: : (5.146)
g 0 p
0 0 0 1
Forexample,whenp=q=%andN=4,
(1 0 0 0 O
1 0 1 0 0
2 2
P=]0 1 0 1 0
2 2
0 0 1 0 1
2 2
0 0 0 0 1

5.39. Consider a homogeneous Markov chain X(n) = {X , n = 0} with a finite state space £ = {0, 1, ..., N},
of whichA = {0, 1, ...,m},m = 1, is a set of absorbing states and B = {m + 1, ..., N} is a set of
nonabsorbing states. It is assumed that at least one of the absorbing states in A is accessible from any
nonabsorbing states in B. Show that absorption of X(n) in one or another of the absorbing states is

certain.

If X, €A, then there is nothing to prove, since X(n) is already absorbed. Let X) € B. By assumption, there is at
least one state in A which is accessible from any state in B. Now assume that state kK € A is accessible from j € B.
Let ny (< ) be the smallest number n such that pjk(”) > 0. For a given state j, let n, be the largest of n, as k varies
and n' be the largest of n;as j varies. After n’ steps, no matter what the initial state of X(n), there is a probability
p >0 that X(n) is in an absorbing state. Therefore,

P{X €By=1-p
and 0 <1 — p < 1. It follows by homogeneity and the Markov property that

P{X,,, EB}=(1 — p) k=1,2, ...

")

Now since lim, __ (1 — p)* =0, we have

k—

lim P{X,EB}=0 or lim P{X,EB=A}=1

n—o

which shows that absorption of X(n) in one or another of the absorption states is certain.
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5.40. Verify Eq. (5.50).
Let X(n) = {X,, n = 0} be a homogeneous Markov chain with a finite state space E = {0, 1, ..., N}, of which
A={0,1,...,m},m=1,1is a set of absorbing states and B = {m + 1, ..., N} is a set of nonabsorbing states.

Let state k € B at the first step go to i € E with probability p,,. Then

w; = P{X, = j(E A)|X, = k(€ B)}

N _ _ (5.147)
= pPi{X, = J(EA|X, =i}
i=1
1 i=j
Now P{X,=j(EA),X,=i}=10 i€EAI#]
u;; iI€EB,i=m+1,...,.N
Then Eq. (5.147) becomes
N
Wy = Py + E putti;  k=m+1_ . Nij=1..m (5.148)

i=m+l

Butpk/., k=m+1,...,N;j=1,...,m,are the elements of R, whereas p,, k=m + 1, ....,N;i=m+1,....N
are the elements of O [see Eq. (5.49a)]. Hence, in matrix notation, Eq. (5.148) can be expressed as

U=R+ QU or (I—QU=R (5.149)
Premultiplying both sides of the second equation of Eq. (5.149) with (/ — Q)"!, we obtain
U=I—-Q)'R=®R
5.41. Consider a simple random walk X(n) with absorbing barriers at state O and state N = 3 (see Prob. 5.38).

(a) Find the transition probability matrix P.

(b) Find the probabilities of absorption into states O and 3.

(a) The transition probability matrix P is [Eq. (5.146)]

01 2 3
oftr o 0 0
1 0 0
P:‘] p
210 ¢ 0 p
310 0 0 1

(b) Rearranging the transition probability matrix P as [Eq. (5.49a)],

0o 3 1 2
oft o 0 0
310 1 0 O
pP=
1{¢g 0 0 p
210 p g O

and by Eq. (5.49b), the matrices Q and R are given by

R:Pm P |_ |4 0 Q:Pu P12:0 p
Px P23 0 p P P2 g 0
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Then IQ=[ ! _p]

1
and @=(1—Q)1=[ p] (5.150)

By Eq. (5.50),

U:“m”ls:q)R:l Loplfg 0]_ 1
Uyy Uy I=pg|lqg 1||0 p| 1-pg

Thus, the probabilities of absorption into state O from states 1 and 2 are given, respectively, by

q p°
¢ p

q2

q =
1= pg

1= pg

Uy and Uy

and the probabilities of absorption into state 3 from states 1 and 2 are given, respectively, by
p

_ P
1= pgq

1= pq

U3 and Uys

Note that

+p* _ 1—-p+p’
”10+”13:q L PP
l=pg 1=pd—p)
CHp_q+0-q _,
l=pg 1-(-q)q

Ugo T lpy3 =
which confirm the proposition of Prob. 5.39.

Consider the simple random walk X(n) with absorbing barriers at 0 and 3 (Prob. 5.41). Find the
expected time (or steps) to absorption when X, = 1 and when X; = 2.

The fundamental matrix ® of X(n) is [Eq. (5.150)]

&= ou ] 1 L p
. $n| l—pglg 1

Let T, be the time to absorption when X, = i. Then by Eq. (5.51), we get

1 1
E(Tl):q(l"‘l’) E(T2)=m(q+l) (5.152)

Consider the gambler’s game described in Prob. 5.38. What is the probability of A’s losing all his
money?

Let P(k),k=0,1,2, ..., N, denote the probability that Aloses all his money when his initial capital is k

dollars. Equivalently, P(k) is the probability of absorption at state O when X, = k in the simple random walk

X(n) with absorbing barriers at states 0 and N. Now if 0 < k < N, then

P(k) = pP(k + 1) + gP(k — 1) k=1,2,...,N—1 (5.153)

(5.151)
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where pP(k + 1) is the probability that Awins the first round and subsequently loses all his money and gP(k — 1)
is the probability that Aloses the first round and subsequently loses all his money. Rewriting Eq. (5.153), we have

P(k+1)—lp(k)+ﬁp(k—1)=0 k=1,2,...N—1 (5.154)
p p

which is a second-order homogeneous linear constant-coefficient difference equation. Next, we have

P0) = 1 and P(N) =0 (5.155)

since if kK = 0, absorption at O is a sure event, and if £k = N, absorption at N has occurred and absorption at 0 is
impossible. Thus, finding P(k) reduces to solving Eq. (5.154) subject to the boundary conditions given by
Eq. (5.155). Let P(k) = *. Then Eq. (5.154) becomes
rkﬂflrkJrgrk*l:O ptqg=1
p p
Setting kK = 1 (and noting thatp + ¢ = 1), we get
q

r21r+q=(r1)(r)=0
p p p

from which we get r = 1 and r = ¢/p. Thus,

k
P(k)=cl+c2(q) qFp (5.156)
p
where ¢, and ¢, are arbitrary constants. Now, by Eq. (5.155),
P0)=1—c¢ tc,=1
N
P(N)=0—¢, +c2(q) =0
p
Solving for ¢, and ¢,, we obtain
_ —@p)” _ 1
1 2
1= (g/p)" 1= (/p)"
k_ N
Hence, P(k)=M #+p (5.157)
1=(q/p)
Note that if N> k,
1 q>p
k
P(k)= (5.158)
(q) rP>q
p
Setting r = ¢g/p in Eq. (5.157), we have
k_ N
r—r k
P(k)= = ?l—f
Thus, whenp = ¢ = %,
(5.159)

__k
PU)=1=
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Show that Eq. (5.157) is consistent with Eq. (5.151).

Substituting k = 1 and N = 3 in Eq. (5.134), and noting that p + ¢ = 1, we have

(a/p)—(a/p)’ _a(p* —q*)
P(l)= =
D=7 (q/p)’ r’—q)
__q9ptq _ q __ 4
prHpat+qt (p+q’—pg 1-pq

Now from Eq. (5.151), we have

= —21—=P(l)
1=pq

Consider the simple random walk X(n) with state space E = {0, 1,2, ..., N}, where O and N are
absorbing states (Prob. 5.38). Let r.v. T, denote the time (or number of steps) to absorption of X(n)
when X; = k, k= 0,1, ..., N. Find E(T)).

Let Y(k) = E(T,). Clearly, if k = 0 or k = N, then absorption is immediate, and we have
Y(0)=YWN)=0 (5.160)

Let the probability that absorption takes m steps when X;; = k be defined by

P(k,m) = P(T, = m) m=1,2,.. (5.161)
Then, we have (Fig. 5-13)
P(k,m)=pP(k+1,m—1)+qgP(k—1,m—1) (5.162)
and Y(k)y=ET,)= i mP(k,m)=p i mP(k+1,m—1)+gq i mP(k—1,m—1)
m=1 m=1 m=1

Setting m — 1 =i, we get

Y(k)=p E(i+1)P(k+1,i)+q E(i—H)P(k—l,i)
i=0 i=0

=p EiP(k+1,i)+q EiP(k—l,i)—i—pEP(k—i—l,i)—i—qEP(k—l,i)
i=0 i=0 i=0 i=0

x(n) = k—1 >
m g >
° ° °
° ° °
° °
a+1F e °
P
ae
q
a—1 e ° °
. ° o
° °
° °
0 1 1 1 1 1 1 1 1 1 1 & »
o 1 2 3 k n

Fig. 5-13 Simple random walk with absorbing barriers.
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Now by the result of Prob. 5.39, we see that absorption is certain; therefore,
EP(k-H,i): Ep(k—l,i):l
i=0 =0

Thus, Yy =pY(k+1)+qgY(k—1)+p+gq
or Y(k) =pY(k+ 1) + qY(k—1) + 1 k=1,2,...,.N—1 (5.163)
Rewriting Eq. (5.163), we have

Y+ -ty +Lygk—1=—1 (5.164)
p p p

Thus, finding P(k) reduces to solving Eq. (5.164) subject to the boundary conditions given by Eq. (5.160). Let
the general solution of Eq. (5.164) be

Y(k) = Y,(k) + Y ()

where Y, (k) is the homogeneous solution satisfying

Yh(k+1)—%Yh(k)+%Yh(k—l)=0 (5.165)

and Yp(k) is the particular solution satisfying

v, ()=, + Ly k—1y=—— (5.166)
P P P

Let Yp(k) = ak, where ais a constant. Then Eq. (5.166) becomes
(k+Do— ko + L k-1 =—1
p p p

from which we get o= 1/(q - p) and
A — q#p 5.167
p q-7p (5. )

Since Eq. (5.165) is the same as Eq. (5.154), by Eq. (5.156), we obtain

k
Yh(k)=c1+cz(Z) q#p (5.168)

where ¢, and c, are arbitrary constants. Hence, the general solution of Eq. (5.164) is

k
YW =c to| L] +—L g#p (5.169)
p q9—p

Now, by Eq. (5.160),

Y0)=0—c¢ +¢,=0

N N
Y(N)=0-c, +c2(") +— =0
4 q9—p

Solving for ¢, and ¢,, we obtain

o= _Ng=p) _Nig—p)

=)y 2 1—(g/p)"
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Substituting these values in Eq. (5.169), we obtain (for p # q)

. k
Y= E(T,)=—— [k —N[l /)
q=p

1=(q/p)"

|

Whenp =¢q = %, we have

1
Y(k)=E(T},)=k(N — k) P=4=7

Consider a Markov chain with two states and transition probability matrix

(a)
®)

(@)

(b)

101
P 10
Find the stationary distribution p of the chain.

Find lim, _, P".

By definition (5.52),

pP=p

0
or (p1 P2l [1

which yields p, = p,. Since p, + p, = 1, we obtain
0 1
n=1,3,5,...
Now 10
P’ =

. P"does not exist.

—

and limn

Consider a Markov chain with two states and transition probability matrix

(@)
®)
(©

(@)

= AW
N [—= A=

Find the stationary distribution p of the chain.
Find lim,_  P".

—

Find lim, _ , P" by first evaluating P".

By definition (5.52), we have

~
I
=33

or

[p P2l =[p p,l

= W =
= N|—=

(5.170)

(5.171)
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which yields
3 1
p + — =
2 P 2 P2 =D
r .1 _
2 P 2 P2 = P2

Each of these equations is equivalent to p, = 2p,. Since p, + p, = 1, we obtain

L 21
P 33
(b) Since the Markov chain is regular, by Eq. (5.53), we obtain
317 21
lim P =1im |4 4| =[P|=]3 3
e EAE N I A
2 2 3 3

(¢) Settinga = % and b = % in Eq. (5.143) (Prob. 5.30), we get

21 L1 1

pro|3 3| ( 1)V 303

21| 4) |2 2

33 303

Since lim,__ (i)" =0, we obtain

317 g2 1

lim P"=1im [+ 4| =3 3

n—>o nee| 11 21

2 2 3 3

Poisson Processes

5.48. Let T, denote the arrival time of the nth customer at a service station. Let zZ, denote the time interval
between the arrival of the nth customer and the (n — 1)st customer; that is,

Z =T —T,_, n=1 (5.172)
and T, = 0. Let {X(¢), t = 0} be the counting process associated with {7, n = 0}. Show that if X(z)
has stationary increments, then Z , n = 1,2, ..., are identically distributed r.v.’s.
We have

P(Z,>2)=1-PZ =2)=1-F,()

By Eq. (5.172), PZ,>7)=PT,—-T, ,>2=PT,>T,  +2)

n

Suppose that the observed value of T, _,is ¢, _,. The event (T, > T _ + z| T,_, =1,_,) occurs if and only if
X(7) does not change count during the time interval (¢, _, 7 _, + z) (Fig. 5-14). Thus,

P(Zn>Z|Tn*1 = tn*l) =P(Tn> Tn*l +Z|Tn*l = tn*l)
=PIX(t, , +2)—X(t, )=0]
or P@Z <z|T, =1, _)=1-PXt, , +2)— Xt ,)=0] (5.173)
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Since X(#) has stationary increments, the probability on the right-hand side of Eq. (5.173) is a function only
of the time difference z. Thus,

P(Z,=z|T, =1, ))=1-P[X(z)=0] (5.174)

which shows that the conditional distribution function on the left-hand side of Eq. (5.174) is independent of
the particular value of n in this case, and hence we have

F, (@) =PZ,=2=1-PX@ =0] (5.175)

which shows that the cdf of Z is independent of 7. Thus, we conclude that the Z ’s are identically distributed r.v.’s .

— 7, —Pie— 7, —> — 7z —>

| | | | |
0 t

v

Fig. 5-14

Show that Definition 5.6.2 implies Definition 5.6.1.
Letp (1) = P[X(?) = n]. Then, by condition 2 of Definition 5.6.2, we have

po(t + At) = P[X(t + Ar) = 0] = P[X(1) = 0, X(¢ + Ar) — X(0) = 0]
= P[X(r) = 0] P[X(¢t + Ar) — X(r) = 0]
Now, by Eq. (5.59), we have

P[X(t+At)— X(t)=0]=1— A Ar + o(Ar)
Thus, Po(t + A1) = py(O[1 — A At + o(A1)]

Pot + A — py(t) _ o(At)
At At

or —Apy(t)+

Letting Az — 0, and by Eq. (5.58), we obtain
Plo(t) = = Apy(0) (5.176)
Solving the above differential equation, we get
Po(t) = ke = *
where kis an integration constant. Since p,(0) = P[X(0) = 0] = 1, we obtain
Py =e” ™ (5.177)
Similarly, forn >0,

P,(t+ At)=P[X(t + At)=n]
=P[X(#)=n,X@+ At)— X(0)=0]

+PX()=n—1,X(t+At)— X(0)=1]+ E PIX(t)=n—k, X(t + At) — X(0) = k]
k=2

Now, by condition 4 of Definition 5.6.2, the last term in the above expression is o(Af). Thus, by conditions 2
and 3 of Definition 5.6.2, we have
p,(t+At)=p,(O[1— A At +o(A)]+ p,_(OIA At + o(A1)] + o(At)

Pt A)—p, (1) _ o(At)
At At

Thus _A'pn(t)+kpn*1(t)+
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and letting Ar — 0 yields
PO+ Ap (1) =2p,_ ) (5.178)
Multiplying both sides by e, we get

' (6 + A, @] = 2eMp, ()
Hence, %[eh (D] = A p. (D) (5.179)
Then by Eq. (5.177), we have

L1 p01=
or ()= (At +c)e ™
where ¢ is an integration constant. Since p,(0) = P[X(0) = 1] = 0, we obtain

p,(t) = Ate™ (5.180)
To show that

pa)=e 7();:,) i

we use mathematical induction. Assume that it is true for n — 1; that is,

e (!

P ®=¢ 0T

Substituting the above expression into Eq. (5.179), we have

L i

ar < P T )
Integrating, we get

At

eltpn(t): ( n‘) +C1

Since pn(O) =0, ¢ = 0, and we obtain
py=e i P (5.181)
" n!

which is Eq. (5.55) of Definition 5.6.1. Thus we conclude that Definition 5.6.2 implies Definition 5.6.1.

Verify Eq. (5.59).

We note first that X(7) can assume only nonnegative integer values; therefore, the same is true for the counting
increment X(¢ + Af) — X(#). Thus, summing over all possible values of the increment, we get

i PIX(t+At)— X(t)=k]=P[X(t + At)— X(t)=0]
k=0

+ PIX(t + At)— X(1) = 1]+ P[X(t + At) — X (1) = 2]
=1
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Substituting conditions 3 and 4 of Definition 5.6.2 into the above equation, we obtain

PIX(t + At) — X(t) = 0] = 1 — AAt + o(A1)

(a) Using the Poisson probability distribution in Eq. (5.181), obtain an analytical expression for the
correction term o (Af) in the expression (condition 3 of Definition 5.6.2)

PIX(t + An) — X(©) = 1] = L At + o(Ar) (5.182)
(b) Show that this correction term does have the property of Eq. (5.58); that is,

im 240 _
At—0 At

0

(a) Since the Poisson process X(f) has stationary increments, Eq. (5.182) can be rewritten as
P[X(A) = 1] = p,(A) = A At + o(Ar) (5.183)
Using Eq. (5.181) [or Eq. (5.180)], we have

Py(AD = AAre AN = A AK(1 + e M — 1)
= AAL+ AAt(e*8 — 1)

Equating the above expression with Eq. (5.183), we get
AAt+ o(Af) = LAt + A At(e” 22— 1)
from which we obtain
o(An) = L At(e™ M — 1) (5.184)
(b) From Eq. (5.184), we have

A At(e™ M —1 _
fim 2B, A4 )~ Jim A(e Y —1)=0
A—0 At At—0 At At—0

Find the autocorrelation function R, (¢, s) and the autocovariance function K, (¢, s) of a Poisson process
X(r) with rate A.

From Egs. (5.56) and (5.57),
E[X(t)] = M Var[X(1)] = At

Now, the Poisson process X(¢) is a random process with stationary independent increments and X(0) = 0.
Thus, by Eq. (5.126) (Prob. 5.23), we obtain

K, (1, s) = 0,> min(t, ) = Amin(z, 5) (5.185)

since 0, 2 = Var[X(1)] = A. Next, since E[X(¢)] E[X(s)] = A’ts, by Eq. (5.10), we obtain
R,(t,5) = Amin(t, s) + Ats (5.186)
Show that the time intervals between successive events (or interarrival times) in a Poisson process X(f)

with rate A are independent and identically distributed exponential r.v.’s with parameter A.

LetZ,,Z,, ... be the r.v.’s representing the lengths of interarrival times in the Poisson process X(#). First, notice that
{Z, > t} takes place if and only if no event of the Poisson process occurs in the interval (0, #), and thus by Eq. (5.177),

P(Z, >0 =PXH=0}=e ¥

or F,()=PZ =n=1-¢ M
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Hence, Z, is an exponential r.v. with parameter A [Eq. (2.61)]. Let f (¢) be the pdf of Z . Then we have

P(Z,>1)= [P(Z,> Nz, =) fi(v)dr
= [PIX(t +7) = X(@) = 0]f,(v) dv
=¥ ffl(r)dpe*’“ (5.187)

which indicates that Z, is also an exponential r.v. with parameter A and is independent of Z, . Repeating the
same argument, we conclude that Z , Z,, ... are iid exponential r.v.’s with parameter A.

Let T, denote the time of the nth event of a Poisson process X(¢) with rate A. Show that 7, is a gamma
r.v. with parameters (n, A).

Clearly,

r=2+2,+-+27
where Z ,n =1, 2, ..., are the interarrival times defined by Eq. (5.172). From Prob. 5.53, we know that Z are
iid exponential r.v.’s with parameter A. Now, using the result of Prob. 4.39, we see that T is a gamma r.v. with
parameters (n, A), and its pdf is given by [Eq. (2.65)]:

gt M - t>0
fr, @)= (n—1)! (5.188)
0 t<0

The random process {7, n = 1} is often called an arrival process.

Suppose ¢ is not a point at which an event occurs in a Poisson process X(f) with rate A. Let W(¢) be the
r.v. representing the time until the next occurrence of an event. Show that the distribution of W(7) is
independent of # and W(¢) is an exponential r.v. with parameter A.

Let s (0 = s <1) be the point at which the last event [say the (n — 1)st event] occurred (Fig. 5-15). The event
{W(r) > 1} is equivalent to the event

Z,>t—s+1|2 >1— s}

—z ——>

| | | | | | >

0 t, t, s t t, t

t . —w(t) —»
Fig. 515
Thus, using Eq. (5.187), we have
PIWt)>T]=P(Z,>t—s+7|Z,>1—s)
_P(Z,>t—s+T) M0 e
P(Z,>t—ys) e MY

and PWH)=<t]=1—¢€" (5.189)

which indicates that W(z) is an exponential r.v. with parameter A and is independent of ¢. Note that W(7) is
often called a waiting time.
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1

5.56. Patients arrive at the doctor’s office according to a Poisson process with rate A = 16 minute. The doctor

will not see a patient until at least three patients are in the waiting room.
(a) Find the expected waiting time until the first patient is admitted to see the doctor.
(b) What is the probability that nobody is admitted to see the doctor in the first hour?
(a) LetT,denote the arrival time of the nth patient at the doctor’s office. Then
T,=Z +Z,++Z,
where Z ., n =1, 2, ..., are iid exponential r.v.’s with parameter A= %. By Egs. (4.132) and (2.62),

E(T,)=E Ea]=2Euu=n; (5.190)

-y

The expected waiting time until the first patient is admitted to see the doctor is
E(T,) = 3(10) = 30 minutes

(b) Let X(¢) be the Poisson process with parameter A = %), The probability that nobody is admitted to see the
doctor in the first hour is the same as the probability that at most two patients arrive in the first 60
minutes. Thus, by Eq. (5.55),

P[X(60) — X(0) =< 2] = P[X(60) — X(0)= 0]+ P[X(60) — X(0) = 1] + P[X(60) — X(0)=2]

2
— om0 —eono| 60}, oo 1 60
10 2{ 10

=e %1+ 6+18)~0.062

5.57. Let T, denote the time of the nth event of a Poisson process X(#) with rate A. Suppose that one event has
occurred in the interval (0, 7). Show that the conditional distribution of arrival time 7| is uniform over (0, 7).

Fort=1,

PIT,<7,X(1)=1]
PIX(1)=1]

_PIX(@=1,X(1)— X()=0]

- PIX(1)=1]

_ P[X(r)=1P[X(t) — X(7)=0]

- PIX(1)=1]
;u_eflref?n(rfr)

_ _z (5.191)
e t

PIT, =7|X(1)=1]=

which indicates that 7 is uniform over (0, ?) [see Eq. (2.57)].

5.58. Consider a Poisson process X(f) with rate A, and suppose that each time an event occurs, it is classified
as either a type 1 or a type 2 event. Suppose further that the event is classified as a type 1 event with
probability p and a type 2 event with probability 1 — p. Let X,(#) and X,() denote the number of type 1
and type 2 events, respectively, occurring in (0, #). Show that {X,(¢), t = 0} and {X,(#), t = 0} are both
Poisson processes with rates Ap and A(1 — p), respectively. Furthermore, the two processes are
independent.

We have

X() = X, (1) + X,(1)
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First we calculate the joint probability P[X,(?) = k, X,(¢) = m].

PIX\(t)=k,X,(t)=m]= E PIX,(t)=k,X,(t)=m| X(t)=n]P[X(¢) =n]
n=0

Note that

P[Xl(t)=k,X2(t):m|X(t)=n] =0 whenn +k+m

Thus, using Eq. (5.181), we obtain

PLX,(t) =k, X,(1) = m] = PLX,(t) = k, X, (t) = m| X(t) = k + m]P[X(t) = k + m]

B - ~ B 7;” ()\,l‘)ker
=P X,()=k,X,()=m|X(@t)=k+ m]le U +m)

Now, given that k + m events occurred, since each event has probability p of being a type 1 event and probability
1 — pof being a type 2 event, it follows that

k+m) , n
PIX, (1) =k, X, (1) =m|X(t) =k + m]= . p(1-p)

k+m
Thus, P[Xl(t)—k,Xz(t)—m]—(k J]Zm)pk(l—p)me_’”(;‘t)

(k +m)!

(tml sy i RO
k!m! (k +m)!

o (Apt)* o H1=py (20— py]”
k!

(5.192)

m!

Then PIX,(0=kI= Y PIX,(1)=k, X,(t)=m]

m=1

— (Apt)* M= i [Ad— px]"
k!

!
m=1 m!

k
— e*)mpt (A'Zf) e*}»(l*p)te}»(l*p)t

k
- e%w()“llzif) (5.193)

which indicates that X (¢) is a Poisson process with rate Ap. Similarly, we can obtain

PIX,(1)=m]= Y PIX,(t) =k, X,(t) =m]
k=1

— o MIp A=px]"

(5.194)
m!
and so X,(#) is a Poisson process with rate A(1 — p). Finally, from Egs. (5.193), (5.194), and (5.192), we see that

PIX, (1) = k, X,(t) = m] = P[X,(1) = kP [X,(1) = m]

Hence, X, (¢) and X, (7) are independent.
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Wiener Processes

5.59. Let X|, ..., X be jointly normal r.v.’s. Show that the joint characteristic function of X , ..., X is given by

n n n
. 1
IIJX] X, (a)l,...,a)n) =exp|J E w; U; _EE E ;0,0 (5195)
i=1 =1 k=1
where u, = E(X)) and g, = Cov(X,, X)).
Let
Y=aX +aX,+ - +alX
By definition (4.66), the characteristic function of Yis
W (w) = E[e/™@Xit T aX)) = ‘IJX1 ey (@@, ..., wa,) (5.196)

Now, by the results of Prob. 4.72, we see that Yis a normal r.v. with mean and variance given by [Eqgs. (4.132)
and (4.135)]

Uy =E(Y)=iaiE(Xi)=’Elai W (5.197)
i=1

i=1

a;a; oy (5.198)

\|M=

oy> =Var(Y)= E E a; a, Cov(X;, X, E
i=1 k=1 i=1

Thus, by Eq. (4.167),

N | —

Wy ()= exp[jwuy - ayzwz]

=CXp jwz a;u; — i

i=1

4,a,0, (5.199)

u M=

Equating Eqs. (5.199) and (5.196) and setting w = 1, we get

Wy ..x,(a,...a,)=exp ji a;u; E Eaakalk
i=1

By replacing a;’s with w,’s, we obtain Eq. (5.195); that is,

Wy, x, (@10,) = exp J’E%‘%E E 0

i=1

W W, Oy = Oy
Let pn=|: o= K=[o,]=| ¢ . i
u, , Oy 0 Oy

Then we can write
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5.60.

5.61.

and Eq. (5.195) can be expressed more compactly as

1
Wy, (@....0,) =exp (jmru - 2mTKw) (5.200)
Let X,, ..., X be jointly normal r.v.’s Let
Y, =a;, X+ +a,X,
: (5.201)
Y,=a,. X ++a,X,
where a, (i =1, ...,m;j =1, ..., n) are constants. Show that ¥, ..., ¥, are also jointly normal r.v.’s .
X, e a4
Let X=|: Y=|: A=[ay]=]| :
Xn Ym Ay [
Then Eq. (5.201) can be expressed as
Y = AX
Y Wy ap Ain
Let ux =EX)=|: 0= : KX:[oik]: o (5.202)
u, W,, Aup 0 Oy
Then the characteristic function for Y can be written as
Yo, ..., 0,)= E(ei®"v) = E(e/®"sx)
= E[e/A®"X] = P, (ATw)
Since X is a normal random vector, by Eq. (5.177) we can write
T T
v (ATw)= exp[ jAT@) g — %(AT(D) Ky (ATm)]
=exp [jmTA Wx — %mTAKXATm}
Thus, lI’Y(wl,---,wm)—exp(jmTp,Y —;mTKYm) (5.203)
where By = Apy K, = AKAT (5.204)

Comparing Eqgs. (5.200) and (5.203), we see that Eq. (5.203) is the characteristic function of a random vector
Y. Hence, we conclude that Y, ..., Y, are also jointly normal r.v.’s

Note that on the basis of the above result, we can say that a random process {X(#), t € T} is a normal process
if every finite linear combination of the r.v.’s X(z)), , € T is normally distributed.

Show that a Wiener process X(f) is a normal process.

Consider an arbitrary linear combination

iaix(ti) =a,X(t) + a, X(t,) + -+ a,X(1,) (5.205)

i=1
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where 0 =7, <... <t and g, are real constants. Now we write

EalX(ti) =(ay+--+a)X(t)— XO)]+(ay +--+a,)[X(t,) — X(#)]
i=1

+-+(a,_, ta)lXt,_))— Xt,_)]l+a,lX(t,)— X(t,_,)] (5.206)

Now from conditions 1 and 2 of Definition 5.7.1, the right-hand side of Eq. (5.206) is a linear combination of
independent normal r.v.’s. Thus, based on the result of Prob. 5.60, the left-hand side of Eq. (5.206) is also a
normal r.v.; that is, every finite linear combination of the r.v.’s X(z) is a normal r.v. Thus, we conclude that
the Wiener process X() is a normal process.

A random process {X(¢), t € T} is said to be continuous in probability if for every ¢ > Q0 and t € T,
lim P{X(t+h) = X@®)|>¢e}=0 (5.207)

Show that a Wiener process X(f) is continuous in probability.

From Chebyshev inequality (2.116), we have

Var[ X(t + h) — X(1)]

2

P{|X(t+h)—X(t)|>g}s -

e>0

Since X(7) has stationary increments, we have
Var[X(t + h) — X(£)] = Var[X(h)] = ¢Ph

in view of Eq. (5.63). Hence,

o’h
lim P{| X(t + h) = X(1)] > e} = lim = =0
h—=0 h=0 ¢

Thus, the Wiener process X(#) is continuous in probability.

Martingales

5.63.

Let Y = X, + X, + X, where X, is the outcome of the ith toss of a fair coin. Verify the tower property
Eq. (5.76).

Let X, = 1 when it is a head and X, = 0 when it is a tail. Since the coin is fair, we have

P(X; =1)=P(X; =0)=% and E(Xi):%

and X;’s are independent. Now

E[E (Y|F,)|F,]1=E[E(Y|X,,X)|X|]
=EX, + X, +E(X3)|X])
=X, T EX,) +EX;)) =X, +1
and
E(Y|Fl) = E(Y|X1) =EX, +X,+ X3|X1)
=X, + EX, + X))
=X, +EX,) + EX)) =X, +1
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Thus,

E[E(Y|F,)|F,1 = EY|F))
5.64. Let X, X,, ... be i.i.d. r.v.’s with mean u. Let

n
S=2Xi=X1+X2+---+Xn

i=1
Let F denote the information contained in X, ..., X . Show that
E(Sn|Fm) =S5, +t0m—mu m<n (5.208)
Let m < n, then by Eq. (5.71)
ES|F)=EX, +--+X |F)+EX, , +--+X]|F)
Since X, + X, + --- + X is measurable with respect to F, , by Eq. (5.73)
EX +-+X |F)=X +--+X =S5

Since X, + -~ + X, is independent of X, ..., X, , by Eq. (5.75)

EX

ot X |F)=EX,, + o+ X) =0 —mu
Thus, we obtain
ES|F)=S +n—mu m<n
5.65. LetX,, X,, ... be i.i.d. r.v.’s with E(X,) = O and E(X,?) = o for all i. Let § = él X =
X, +X,+ -+ X . LetF, denote the information contained in X, ..., X,
Show that

ES,?|F,) =S,> + (n — m) o m<n (5.209)
Letm <n, then by Eq. (5§.71)

ES2|F,)=E(S, + (S, — S)I*|F,)
=ES,*|F )+ 2ES, (S, —S)|F,1+EIS,—S)I*|F,)
Since S, is dependent only on X, ..., X , by Egs. (5.73) and (5.75)
ES 2|F)=S82EIS,—S)|F]=ES, —S)>=Var(S, — )= (n—m)o>

m m

since E(X) = u =0, Var(X)) = E(X,*) = 0% and Var(§, — §,) = Var(X_ ., + ... + X ) = (n — m)o*. Next, by
Eq. (5.74)

E[SITI(SIZ - Slll) |FI7‘I] = SITI E[(Sll - Sm) |Fm] = Sm E(Sll - SI)‘I) = O

Thus, we obtain

ES2|F)=S8 2%+ (n—m o> m<n
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5.66. Verify Eq. (5.80), that is
E(Mm|Fn) =M, form=n
By condition (2) of martingale, Eq. (5.79), we have
EM, |F)=M, for all n
Then by tower property Eq. (5.76)

E(Mn+2|Fn) = E[E(Mn+2|Fn+l)|Fn] = E(Mn+l|Fn) =M,

n

and so on, and we obtain Eq. (5.80), that is

EM |F)=M, form=n

5.67. Verify Eq. (5.82), that is

EM)=EM, )= --=EM,)

n—

Since {M,, n =0} is a martingale, we have
EM, |F)=M, for all n
Applying Eq. (5.77), we have
E[EM,, |F)I=EM,  )=EM,)
Thus, by induction we obtain

EM,)=EM,_)) = =EM,)

5.68. Let X, X,, ... be a sequence of independent r.v.’s with E[|X |] = < o and E(X ) = O for all n. Set

S, =0, = 2n] X, =X +X,+ -~ + X .Show that {§ , n = 0} is a martingale.
n i=1 1 n

n’

El[S, 1= (X, |+ -+ |X,D=E(X, ) + - + E(|X,|) <=
E(Sn+l |Fn) = E(Sn +X1+l |Fn)

n

= Sn + E(Xn+l|Fn) = Sn + E(Xn+l) = Sn

since E(X,) = 0 for all n.

Thus, {S,, n =0} is a martingale.

5.69. Consider the same problem as Prob. 5.68 except E(X,) = O for all n. Show that {S , n = 0} is a
submartingale.

Assume max E(|X |) = k < o, then

E[S,|1=E(|X,|+ ... + |X,|) = E(|X,]) + ... + E(|X,|) < nk <o
E(Sn+l |Fn) = E(Sn + Xn+1 |Fn)
=S, +E(X”+1|Fn) =S TEX,, )=S,
since E(X) = 0 for all n.

Thus, {S ,n =0} is a submartingale.
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5.70. Let X,, X,, ... be a sequence of Bernoulli r.v.’s with

i

¥ = 1 with probability p
—1 with probability g=1—p

LetS, = Z X=X +X +.. + X Show that (1) if p = 1 then {S,} is amartingale. (2) if p > 3 then
{§,}isa submamngale and 3) 1f p <=z then {§}isa supermartmgale

EX)=p(H)+1—-p)(-DH=2p—-1
(1) Ifp =%,E(Xi)= 0, and

ELIS, 1= E(X|+ -+ [X,D = E(X, ) + - + E(X,[) =0 <
E(Sn+l |Fn) = E(Sn + X}H—l |Fn)
:Sn +E(Xn+1|Fn) :Sn +E(Xn+]) =5

n

Thus, {S } is a martingale.
(2) Ifp >%, 0 <E(X)=1,and

E[IS,,I]SE(IX1|+ XD =EX D+ A E(X D =n<oe
AF)=ES +X . |F)
=Sn +E(Xn+1|Fn) =S)1+E(Xn+l)>Sn

n+

Thus, {S,} is a submartingale.
(3) Ifp < ,E(X) <0, and

E(S71+I|F) E(S +X+1|F)
=S +EX  |F)=S +EX  )<S,

Thus, {S,} is a supermartingale.

Note that this problem represents a tossing a coin game, “heads” you win $1 and “tails” you lose $1. Thus, if
p =5 ,itis a fair coin and if p > , the game is favorable, and if p < , the game is unfavorable.

5.71. Let X,, X,, ... be a sequence of i.i.d. r.v.’s with E(X,) = u > 0. Set

S, =0,S

) =3 X =X, +X,+ - +X, and
i=1 n

M, =S, —nu (5.210)

n

Show that {M , n = 0} is a martingale.

n’

E(|Mn|)=E(|Sn—nu|)SE(|Sn|)+nuSE nE|Xi| +nu=2nu <o

i=1

Next, using Eq. (5.208) of Prob. 5.64, we have

E(M)1+1|Fn)=E(Sn+l _(}’1+ I)Man)
ES, |F)—(m+Du
=S tu-—-m+Hu=S —nu=M,

Thus, {M ,n =0} is a martingale.
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5.72. LetX, X,, ... be i.i.d. r.v.’s with E(X)) = 0 and E(X,?) = o* foralli.Let S, = 0,S = é] X, =
X, +X,+ -+ X and

M, =S, —no’ (5.211)

Show that {M , n =0} is a martingale.
n 2 n
M,=S8—no’*= EX,- —n02=EXi2+22Xin—n02
i=1 i=1 i<j

Using the triangle inequality, we have

E(|M,|)= iE(XiZ)-i-ZE E(|XX;|)+no’

i=1 i<j

Using Cauchy-Schwarz inequality (Eq. (4.41)), we have

E(| XX, || =EQDEXE) = 0?

Thus,

nn—1)

0% +no? =13 o
2 2

E(|Mn|)Sn02+ <

Next,

EM

n+1

|F,) = ElX,,,+5)>—(+1)0*|F,]

n+1

=EX?, , +2X,,,S +S2—(n+1)c*F,]

n+1 n+1%n

= Mn + E(Xiﬂ) + ZE(X"H)Sn — 0?
=M +o0*—0*=M,

Thus, {M,, n =0} is a martingale.
5.73. Let X, X,, ... be a sequence of i.i.d. r.v.’s with E(X)) = u and E(|X;|) < o for all i. Show that
1 n
M, =—T[x (5212)
Hia
is a martingale.

‘un

‘un

E(M,|)=E = == |=1<w

1 n
ol

i=1

] n
—J[E&xD)
Wi

1
E(Mi1+l|Fn)=E(Mnan+1|Fn

n

1
:MHEE(XH-H):Mnﬁ:M

=

Thus, {M,} is a martingale.
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5.74.

5.75.

An urn contains initially a red and black ball. At each time n = 1, a ball is taken randomly, its color
noted, and both this ball and another ball of the same color are put back into the urn. Continue
similarly after n draws, the urn contains n + 2 balls. Let X, denote the number of black balls after n
draws.Let M, = X / (n + 2) be the fraction of black balls after n draws. Show that {M , n = 0} is a
martingale. (This is known as Polya’s Urn.)

X, = land X, is a (time-homogeneous) Markov chain with transition

+2+k
P(X,,H=k+1|xn=k)=n+ and P(xnﬂ=1<|xn:k):”nT2
X
and X takes values in {1,2,...,n + 1} and E(Xn+1|Xn):Xn+ n_
! n+2
Now,
g, )= e[l <t
n+2 n+2
and
1
E(MnJrlan):E n+3 Xn+1|Xn
_ 1 1 X, \_ X, _
n E(X,,+1|Xn) n+3(Xn+n+2) n+2 M,

Thus, {M,, n =0} is a martingale.

Let X,, X,, ... be a sequence of independent r.v.’s with

P{X=1}=P{X=—1}=%

We can think of X as the result of a tossing a fair coin game where one wins $1 if heads come up and loses
$1 if tails come up. The one way of betting strategy is to keep doubling the bet until one eventually wins.
At this point one stops. (This strategy is the original martingale game.) Let S, denote the winnings (or
losses) up through n tosses. S, = 0. Whenever one wins, one stops playing,so P(S, , = 1|S = 1) = 1.
Show that {S , n = 0} is a martingale—that is, the game is fair.

Suppose the first n tosses of the coin have turned up tails. So the loss S, is given by
S =—(1+2+4+ - +2""H=—-2"-1)

At this time, one double the bet again and bet 2" on the next toss. This gives

P, =1]S,= =@ = 1) =1 PG, =-2"-DIS,=-2"—1)=1
and
1 ] n
E(SHH|Fn):E(SnH):E(1)+E [_(2 +1 _1)]
AR SR
= 5 2" + > (2 1) Sn
Thus, {Sn, n=0} is a martingale.
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5.76.

5.77.

5.78.

5.79.

CHAPTER 5 Random Processes

Let {X , n = 0} be a martingale with respect to the filtration | and let g be a convex function such
that E[g(X )] < cfor all n = 0. Then show that the sequence {Z , n = 0} defined by

Z, = 8X,) (5213)
is a submartingale with respect to F, .
E(|Z,|) = E(|gXn]) <
By Jensen’s inequality Eq. (4.40) and the martingale property of X , we have

EZ,, ,|F)=ElgX, D|F]1=gEX,, |[F)=8X)=Z

Thus, {Z ,n =0} is a submartingale.

Let F, be a filtration and E(X) < c°. Define

X = EX|F) (5.214)
Show that {X , n = 0} is a martingale with respect to F, .
n+l|F E[E( n+1)|F;1:|
= E(x|F,) by Eq.(5.76)
=X,
Thus, {X,, n =0} is a martingale with respect to F,.

Prove Theorem 5.8.2 (Doob decomposition).

Since X is a submartingale, we have
EX, |F)=X, (5.215)
Let
d=EX,,, —X|F)=EX,  |F)—X =0 (5.216)
and d is F -measurable.

SetAy=0.A,=£d =d +d,+ - +d,_, andM, =X, — A _Then itis easily seen that (2), (3), and (4) of
Theorem 5.82 are satisfied. Next,

E(Mn+1|E1):E(Xn+I_An+1|E1):E(Xn+I|F;1)_An+I
—X+d—2d =X, nzld =X, —A, =M,

i=1 i=1
Thus, (1) of Theorem 5.82 is also verified.

Let {M , n = 0} be a martingale. Suppose that the stopping time 7" is bounded, that is T = k. Then
show that

EM,) = EM,) (5217)
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5.80.

Note that / Ty the indicator function of the event {T = j}, is F,-measurable (since we need only the

information up to time n to determine if we have stopped by time 7). Then we can write

k
My = EOM/' Ir— )
~

and
k=1
E(MT|Fk—1):E(Mk I{T=k}|Fk*1)+ E E(Mj I{T:j}|Fk—1)
j=0

Forjskfl,MjI

;18 F,_,-measurable, thus,

EM; Ly p|Fio) =MLy

Since T'is known to be no more than k, the event {7 = k} is the same as the event {7 > k — 1 which is

F, _-measurable. Thus,

E(My Ty | Fiod )= E(Mi Ipo | i)
=liropy E(Mk | Fk—l): Hpspoyy My
since {M,} be a martingale. Hence,

k-1
E(MT|Fk—1): I{T>k*1}Mk*1 + 2 E(Mj I{T=j})

Jj=0
In a similar way, we can derive
k=2
E(M;|Fs)= oy Myt > E(M; Iy _y)
j=0

And continue this process until we get
EM,|F) =M,
and finally

E[EM,|F)] = EM,) = EM,)

Verify the Optional Stopping Theorem.
Consider the stopping times T, = min{T, n}. Note that

M, =M, +M,I MI (5.218)

rhrsny — Mdlirsay

Hence,

EM) =EM,)+EMJI,. )~ EM,]I

> (5.219)

Since T is a bounded stopping time, by Eq. (5.217), we have

E(M, ) = E(M,) (5.220)
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and lim P(T > n) = 0, then if £( | M,.|) <, (condition (1), Eq. (5.83)) we have. lirrgc(|MT |1{T>n}) =0. Thus,

by condition (3), Eq. (5.85), we get. limv(|MT |I{T>n}) = 0. Hence, by Eqgs. (5.219) and (5.220), we obtain

E(M,) = E(M,)

5.81. Let two gamblers, A and B, initially have a dollars and b dollars, respectively. Suppose that at each
round of tossing a fair coin A wins one dollar from B if “heads” comes up, and gives one dollar to B if
“tails” comes up. The game continues until either A or B runs out of money.

(@) What is the probability that when the game ends, A has all the cash?

(b) What is the expected duration of the game?

(@ LetX,,X,,... be the sequence of play-by-play increments in A’s fortune; thus, X; = * 1 according to whether
ith toss is “heads” or “tails.” The total change in A’s fortune after n plays is § = _in The game continues
until time 7'where T'= min{n: s, = —aor +b}. It is easily seen that T'is a stopp’i_rllg time with respect to
F,=o0X,X,,...,X)and {S } is a martingale with respect to F,. (See Prob. 5.68.) Thus, by the Optional
Stopping Theorem, for each n <

0=E(Sy) = E(Smincr,n))
=—aP (T =nandS; =—a)+bP(T =nand Sy =b) + E(S, I;75,,)

As n — o, the probability of the event {T'> n} converges to zero. Since §, must be between —a and b on

the event {T > n}, it follows that E(S, 1

T >n}) converges to zero as n —> . Thus, letting n — %, we obtain

—aP(S; = —a) + bP(S,=b) =0 (5.221)
Since S, must be —a or b, we have
P(S,=—a)+ P(S,=b) =1 (5.222)
Solving Egs. (5.221) and (5.222) for P(S, = —a) and P(S, = b), we obtain (cf. Prob. 5.43)

b a
P(S; =—a)=——, P(S;=b)=
(57 @) a (57 ) a+b

(5.223)
+b

Thus, the probability that when the game ends, Ahas all the cash is a/(a + b).

(b) Itis seen that {S *> — n} is a martingale (see Prob. 5.72, 0 = 1). Then the Optional Stopping Theorem
implies that, foreachn =1, 2, ...,

E (Sfmn(r,n) —min(7, n)) =0 (5.224)

Thus,

Ein(T,m) = E(S2ur.n) = (S5 Lrzn) + E(S7 Ir-) (5.225)

Now, as n — o, min(7, n) — T'and S, I, — 8,2, and lim E[min(T, n)] = E(T)

T=n}

JEE(STZI{TSn})—E(S%)—az(aib)-i-bz(aib)—ab

Since $? is bounded on the event {T > n}, and since the probability of this event converges to zero as
n—> o, E(SiI{T >n}) — 0 as n —> . Thus, as n — %, Eq. (5.225) reduces to

E(T) = ab (5.226)
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5.82. Let X(¢) be a Poisson process with rate A > 0. Show that x(f) — Ar is a martingale.
We have
E(|X(1) — M|) = E[X(0)] + At =24 < 0
since X(7) = 0 and by Eq. (5.56), E[X(1)] = A.

E[X(t) — M|F ] = E[X(s) — At + X(1) — X(s)| F ]
= E[X(s) — M|F] + E[X(1) — X(s)| F]
= X(s) — At + E[X(1)— X(s)]
=X(s) — A+ At — 5) = X(s) — As

Thus, x(f) — Atis a martingale.

SUPPLEMENTARY PROBLEMS

5.83. Consider a random process X(n) = {X ,n = 1}, where
X =2Z+2Z+ - +2Z

and Z are iid r.v.’s with zero mean and variance &*. Is X(n) stationary?

5.84. Consider a random process X(#) defined by
X(t) = Ycos(wt + ©)
where Y and © are independent r.v.’s and are uniformly distributed over (—A, A) and (—, ), respectively.
(a) Find the mean of X(r).
(b) Find the autocorrelation function R,(z, s) of X(7).
5.85. Suppose that a random process X(7) is wide-sense stationary with autocorrelation
R(t,t +1)=¢ I7I?2
(a) Find the second moment of the r.v. X(5).
(b) Find the second moment of the r.v. X(5) — X(3).
5.86. Consider a random process X(f) defined by
X({t)y=Ucost+ (V+1)sint —o << ™
where U and V are independent r.v.’s for which
EWU)=EWV)=0 EWU* =EV? =1

(a) Find the autocovariance function K,(z, s) of X().

(b) Ts X(f) WSS?
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5.87. Consider the random processes

X(1) = A, cos(w,t + ©) Y(t) = A, cos(wt + @)

where A, A, ®,, and w, are constants, and r.v.’s © and ® are independent and uniformly distributed over (—z, 7).
(a) Find the cross-correlation function of Ry, (¢, t + ) of X(¢) and Y(7).
(b) Repeat (a)if @ = D.

5.88. Given a Markov chain {X , n =0}, find the joint pmf

P(Xy =iy X, =ijs X, = 1)

n

5.89. Let{X

n’

n =0} be a homogeneous Markov chain. Show that

PX . =k,..X

n+1 1 n+m

=k, | X, =iy X, = ) = PXX, = kysre, X, = k, | X, = i)

5.90. Verify Eq. (5.37).

5.91. Find P" for the following transition probability matrices:

Lo 1 00 1 0 0
(a) P=[05 05] ®) P=[0 1 0 © P=l0 1 0
’ ' 00 1 03 02 05

5.92. Acertain product is made by two companies, Aand B, that control the entire market. Currently, Aand B have
60 percent and 40 percent, respectively, of the total market. Each year, Aloses % of its market share to B, while

B loses 51 of its share to A. Find the relative proportion of the market that each hold after 2 years.

5.93. Consider a Markov chain with state {0, 1, 2} and transition probability matrix

L o
o S N~

Is state O periodic?

5.94. Verify Eq. (5.51).

5.95. Consider a Markov chain with transition probability matrix

06 02 02
pP=104 05 0.1
06 0 04

Find the steady-state probabilities.

5.96. Let X(1) be a Poisson process with rate A. Find E[X?(¢)].
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5.97.

5.98.

5.99.

5.100.

5.101.

5.102.

5.103.

5.104.

5.105.

5.106.

Let X(¢) be a Poisson process with rate A. Find E{[X(t) — X(s)]*} for ¢ > 5.

Let X(¢) be a Poisson process with rate A. Find

PIXt—d)=k|X()=j] d>0
Let T, denote the time of the nth event of a Poisson process with rate A. Find the variance of T,.

Assume that customers arrive at a bank in accordance with a Poisson process with rate A = 6 per hour, and
suppose that each customer is a man with probability% and a woman with probability % Now suppose that 10

men arrived in the first 2 hours. How many woman would you expect to have arrived in the first 2 hours?

LetX,,..., X, be jointly normal r.v.’s. Let

Y. =X +c i=1,...,n

where ¢, are constants. Show that Y, ..., Y are also jointly normal r.v.’s.

Derive Eq. (5.63).

Let X, X,, ... be a sequence of Bernoulli r.v.’s in Prob. 5.70. Let M, = S — n(2p — 1). Show that {M } is a
martingale.

Let X, X,, ... be i.i.d. r.v.’s where X, can take only two values 3and ! with equal probability.
i 2 2

LetM,=1and M, =ﬁ1 X,. Show that {M,, n = 0} is a martingale.
i=

n Sn
Consider {X } of Prob. 5.70 and S, = E X;. LetY, = (q) - Show that {Y } is a martingale.
p

i=1

Let X(7) be a Wiener’s process (or Brownian motion). Show that {X(#)} is a martingale.

ANSWERS TO SUPPLEMENTARY PROBLEMS

5.83.

5.84.

5.85.

5.86.

5.87.

No.
(a) E[X(nH]=0; (D) Ry(t,5) = éAz cos w(t — s)
(@) EX*9)]=1; (b) E{X(5) —X(3)Pr=2(1—e)

(@) K(t,s)=cos(s — 1); (b) No.

(@) Ryy(t,t+1)]=0

(b) Ryy(tt+1)= % cos[(w; — wy)t + w;T]
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5.88. Hint:  Use Eq. (5.32).
2, O pp, P

in—1in

5.89. Use the Markov property (5.27) and the homogeneity property.

5.90. Hint: Write Eq. (5.39) in terms of components.

1 0 0 0] boo
591. (@) P"= +(0.5)"[ ® P"=|0 1 0
10 -1 1
- . 00 1
10 0 0 0 0
© P'={0 1 0|+0535"] o0 0 o0
06 04 0 -06 —04 1

5.92. Ahas 43.3 percent and B has 56.7 percent.

5.93. Hint: Draw the state transition diagram.

No.

594. Hint: LetN = [N,], where Njk is the number of times the state k(€ B) is occupied until absorption takes
place when X(n) starts in state j(€ B). Then T, = EN Ny calculate E(N,,).

_[322
595. P [9 9 9]

5.96. Ar+ A7

k=m+1

5.97. Hint: Use the independent stationary increments condition and the result of Prob. 5.76.

Mt — 5) + A2(t — 5)?

N k -k
598, —Jt [17d)|d
k(G —k)! t t

5.99. n/A?

5.100. 4

5.101. Hint: See Prob. 5.60.

5.102. Hint: Use condition (1) of a Wiener process and Eq. (5.102) of Prob. 5.22.
5.103. Hint: Note that M, is the random number S minus its expected value.

5.106. Hint: Use definition 5.7.1.



CHAPTER 6

Analysis and Processing of
Random Processes

6.1 Introduction

In this chapter, we introduce the methods for analysis and processing of random processes. First, we introduce
the definitions of stochastic continuity, stochastic derivatives, and stochastic integrals of random processes.
Next, the notion of power spectral density is introduced. This concept enables us to study wide-sense stationary
processes in the frequency domain and define a white noise process. The response of linear systems to random
processes is then studied. Finally, orthogonal and spectral representations of random processes are presented.

6.2 Continuity, Differentiation, Integration

In this section, we shall consider only the continuous-time random processes.

A. Stochastic Continuity:

A random process X(7) is said to be continuous in mean square or mean square (m.s.) continuous if
1in% E{[X(+&)— XO]’}=0 6.1)
£

The random process X(¢) is m.s. continuous if and only if its autocorrelation function is continuous at t = s

(Prob. 6.1). If X(¢) is WSS, then it is m.s. continuous if and only if its autocorrelation function R,(t) is con-
tinuous at T = 0. If X(¢) is m.s. continuous, then its mean is continuous; that is,

gi_r)r(l) py (t +&)=uy (1) (6.2)

which can be written as
lim E[X(t +¢&)]=E[lim X(t + ¢)] 6.3)
e—0 e—0 .
Hence, if X(f) is m.s. continuous, then we may interchange the ordering of the operations of expectation and
limiting. Note that m.s. continuity of X(r) does not imply that the sample functions of X(¢) are continuous. For

instance, the Poisson process is m.s. continuous (Prob. 6.46), but sample functions of the Poisson process have
a countably infinite number of discontinuities (see Fig. 5-3).

271
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B. Stochastic Derivatives:

A random process X(7) is said to have a m.s. derivative X'(t) if

m.X(t-l-s)—X(t)

l.i. =X'(t) (6.4)
£—0 £
where 1.i.m. denotes /imit in the mean (square); that is,
2
im E{[M_X/(,)] }zo ©5)
£— £

The m.s. derivative of X(¢) exists if azRX (t, s)/0t ds exists at t = s (Prob. 6.6). If X(¢r) has the m.s. derivative
X'(1), then its mean and autocorrelation function are given by

ELX'(1)] :%E[X(m = (1) 6.6)
_ PRy (t.5)
Ry (1) = =—X05 6.7)

Equation (6.6) indicates that the operations of differentiation and expectation may be interchanged. If X(7) is a
normal random process for which the m.s. derivative X'(¢) exists, then X'(f) is also a normal random process
(Prob. 6.10).

C. Stochastic Integrals:

A m.s. integral of a random process X(7) is defined by
t
Y#)=| X(a)da=lim.) X(t;)At; 6.8
0= [, X@da Az}i%?z (1) A, ©.8)

where 1) <1, < .- <tandAt, =t , — I,
The m.s. integral of X(¢) exists if the following integral exists (Prob. 6.11):

J. [, Rte.p)dadp 6.9)

This implies that if X(¢) is m.s. continuous, then its m.s. integral Y(7) exists (see Prob. 6.1). The mean and the
autocorrelation function of Y(7) are given by

My(t)=E[ f,; X(ar) da]= f,; E[X(a)] da = ft’o iy () dot (6.10)

Ry (1, s)ZE[ ft’o X(@) da fto X(B) dﬁ]
(6.11)

= [ [ EX(@x(p)dpda= [, [ Ry(c.p)dp de

Equation (6.10) indicates that the operations of integration and expectation may be interchanged. If X(¥) is a nor-
mal random process, then its integral ¥(¢) is also a normal random process. This follows from the fact that X,
X(t,) At, is a linear combination of the jointly normal r.v.’s. (see Prob. 5.60).



CHAPTER 6 Analysis and Processing of Random Processes 273

6.3 Power Spectral Densities

In this section we assume that all random processes are WSS.

A. Autocorrelation Functions:

The autocorrelation function of a continuous-time random process X(¢) is defined as [Eq. (5.7)]

R, (1) = E[X()X(t + D] (6.12)
Properties of R (7):
1. Ry,(—1) =R(7) (6.13)
2. |Ry(™| =R, (0) (6.14)
3. Ry (0) = EX*(n]=0 (6.15)

Property 3 [Eq. (6.15)] is easily obtained by setting T = 0 in Eq. (6.12). If we assume that X(¢) is a voltage wave-
form across a 1-Q resistor, then E[X?(f)] is the average value of power delivered to the 1-Q resistor by X(z). Thus,
E[X?(f)] is often called the average power of X(t). Properties 1 and 2 are verified in Prob. 6.13.

In case of a discrete-time random process X(n), the autocorrelation function of X(n) is defined by

Ry(k) = EIX()X(n + k)] (6.16)

Various properties of R, (k) similar to those of R,(7) can be obtained by replacing T by k in Egs. (6.13)
to (6.15).

B. Cross-Correlation Functions:

The cross-correlation function of two continuous-time jointly WSS random processes X(¢) and Y(¢) is defined by

R, (1) = E[X®OY(t + 7)] 6.17)
Properties of R, (7):
1. R, (-1 =R, (D (6.18)
2. Ry, ()| = VR,OO)R,(0) (6.19)
3. |R,,(D)| = % [R,(0) + R, (0)] (6.20)

These properties are verified in Prob. 6.14. Two processes X(r) and Y(¢) are called (mutually) orthogonal if
Ry, (t) =0 forallt (6.21)

Similarly, the cross-correlation function of two discrete-time jointly WSS random processes X(n) and Y(n) is
defined by

Ry, (k) = EIX(0)Y(n + k)] (6.22)

and various properties of R, (k) similar to those of R, () can be obtained by replacing 7 by k in Egs. (6.18)
to (6.20).
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C. Power Spectral Density:

The power spectral density (or power spectrum) S, (w) of a continuous-time random process X(?) is defined as
the Fourier transform of R, (7):

Sy@)= [* Ry(n)e " dt (6.23)
Thus, taking the inverse Fourier transform of S, (w), we obtain
_ 1 *® jot
Ry(m)=— [ Sy(@)e’”" dw (6.24)
2w Y

Equations (6.23) and (6.24) are known as the Wiener-Khinchin relations.

Properties of S, (w):

1. S(w)isreal and S, (w) = 0. (6.25)

2. S(—) = S(w) (6.26)

3. E[Xz(z)]:RX(O)zi [7 Sx(@)do (627)
2w Y *®

Similarly, the power spectral density S, (€2) of a discrete-time random process X(n) is defined as the Fourier trans-
form of R, (k):

Sx@)= Y Ry(k)e ™ (6.28)
k=—0o0

Thus, taking the inverse Fourier transform of S,(€2), we obtain

Re()=— [ Sy(@¢™ dg (6.29)
Properties of S, (Q2):
1. S(Q + 2m) = SUQ) (6.30)
2. S/Q)isreal and S(Q) = 0. (6.31)
3. S(—Q) = Q) (6.32)
4. E[X2(n)]=RX(0)=if” S5 (Q)dQ (6.33)
2 v w

Note that property 1 [Eq. (6.30)] follows from the fact that e /** is periodic with period 2. Hence, it is suffi-
cient to define §,(€2) only in the range (—u, 7).

D. Cross Power Spectral Densities:

The cross power spectral density (or cross power spectrum) S, (w) of two continuous-time random processes
X(r) and Y(7) is defined as the Fourier transform of R, (7):

Syy @)= [ Ryy(D)e /" dr (6.34)

Thus, taking the inverse Fourier transform of S, (w), we get

1 (e ot
RXY(T):g fﬁwsxy(w)ef dw (6.35)
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Properties of S, (w):
Unlike S,(w), which is a real-valued function of w, Sy, (w), in general, is a complex-valued function.

1. Sy (@) = S,,(—) (6.36)
2. Sy (—w) = S% () (6.37)

Similarly, the cross power spectral density S, (€2) of two discrete-time random processes X(n) and Y(n) is defined
as the Fourier transform of R, ,(k):

Sxy (@)=Y Ryy (ke ™ (6.38)

k=—o

Thus, taking the inverse Fourier transform of S, (), we get

1 pn :
Ry ()=~ I S @ aa (6.39)

Properties of S,,(Q):
Unlike S, (Q2), which is a real-valued function of w, S, (€2), in general, is a complex-valued function.

1. 5,(Q +2m) = S$,,(Q) (6.40)
2. 85,Q) =S,,(-Q) (6.41)
3.08,,(—Q) = S5Q) (6.42)

6.4 White Noise

A continuous-time white noise process, W(t), is a WSS zero-mean continuous-time random process whose auto-
correlation function is given by

R, (1) = 025(1) (6.43)

where (7) is a unit impulse function (or Dirac  function) defined by

7 8¢ dr=9(0) (644)

where ¢(7) is any function continuous at T = 0. Taking the Fourier transform of Eq. (6.43), we obtain
Sw(@)=0” [~ s(x)e " dr =0 (6.45)

which indicates that X(¢) has a constant power spectral density (hence the name white noise). Note that the aver-
age power of W(?) is not finite.

Similarly, a WSS zero-mean discrete-time random process W(n) is called a discrete-time white noise if its
autocorrelation function is given by

R, (k) = 0?6 (k) (6.46)
where 6 (k) is a unit impulse sequence (or unit sample sequence) defined by

5(k) = {1 k=0 (6.47)
0 k#0
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Taking the Fourier transform of Eq. (6.46), we obtain

Sy(Q)=0" E S(ke " =0  —g<Q<ax (6.48)
k=—o0

Again the power spectral density of W(n) is a constant. Note that §,(Q + 2m) = §,,(Q) and the average power
of W(n) is o2 = Var{W(n)], which is finite.

6.5 Response of Linear Systems to Random Inputs

A. Linear Systems:

A system is a mathematical model of a physical process that relates the input (or excitation) signal x to the out-
put (or response) signal y. Then the system is viewed as a transformation (or mapping) of x into y. This trans-
formation is represented by the operator T as (Fig. 6-1)

y=Tx (6.49)
X y

Sys_lt_em

Fig. 6-1

If x and y are continuous-time signals, then the system is called a continuous-time system, and if x and y are
discrete-time signals, then the system is called a discrete-time system. If the operator T is a linear operator
satisfying

T, + %3 = Txy + T, =y, +y, (Additivity)
T{ax} = oTx = ay (Homogeneity)

where o is a scalar number, then the system represented by T is called a linear system. A system is called
time-invariant if a time shift in the input signal causes the same time shift in the output signal. Thus, for a
continuous-time system,

Tix(t — 1)} = y(t — 1)
for any value of lys and for a discrete-time system,
T{x(n — ny)}y = y(n — ny)

for any integer n,. For a continuous-time linear time-invariant (LTI) system, Eq. (6.49) can be expressed as

Yoy =" h(x(t — 1) da (6.50)
where h() = T{6()} (6.51)

is known as the impulse response of a continuous-time LTI system. The right-hand side of Eq. (6.50) is com-
monly called the convolution integral of h(f) and x(f), denoted by h(f) « x(f). For a discrete-time LTI system,
Eq. (6.49) can be expressed as

©

Y=Y hixn—i) (6.52)

i=—o
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where h(n) = T{S(n)} (6.53)

is known as the impulse response (or unit sample response) of a discrete-time LTI system. The right-hand side
of Eq. (6.52) is commonly called the convolution sum of h(n) and x(n), denoted by h(n) + x(n).

B. Response of a Continuous-Time Linear System to Random Input:

When the input to a continuous-time linear system represented by Eq. (6.49) is a random process {X(r),t € T },
then the output will also be a random process {Y(¢), t € Ty}; that is,

TX®.t€T}={0,1 €T} (6.54)
For any input sample function x (), the corresponding output sample function is
(0 =T} (6.55)
If the system is LTI, then by Eq. (6.50), we can write
Y0 = [ h()X(@— 1) dh (6.56)
Note that Eq. (6.56) is a stochastic integral. Then
ElY()l= [~ hE[X(t = M) dA 6.57)
The autocorrelation function of Y(¢) is given by (Prob. 6.24)
Ryt.5)= [~ 7 Weh(B)Ry(t —a.s—B)dadp (6.58)
If the input X(¢) is WSS, then from Eq. (6.57),
ElY(0)=py [~ h(A)dA=uy H(0) (6.59)

where H(0) = H(w)|, _ , and H(w) is the frequency response of the system defined by the Fourier transform of
h(t); that is,

H(@)= [~ h@)e ™ dt (6.60)
The autocorrelation function of Y(7) is, from Eq. (6.58),
R(t.9)= [~ [* mea)h(B)Ry(s—t+ 0 —p)dadp 6.61)
Setting s = ¢ + T, we get
Rett+1)= [T 7 Wa)h(B)Ry(x +a— p)dadB=Ry(v) (6.62)

From Eqgs. (6.59) and (6.62), we see that the output Y(¢) is also WSS. Taking the Fourier transform of Eq. (6.62),
the power spectral density of Y(r) is given by (Prob. 6.25)

Sy@)= [~ Ry(m)e " dr =|H(w)[ Sy () (6.63)

Thus, we obtain the important result that the power spectral density of the output is the product of the power spec-
tral density of the input and the magnitude squared of the frequency response of the system.
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When the autocorrelation function of the output R (7) is desired, it is easier to determine the power spectral
density S, (w) and then evaluate the inverse Fourier transform (Prob. 6.26). Thus,

1 = i 1 e 2 j
Ry(t)=— | Sy(w)e’”" do=— H)|" Sy (@)e’" dw (6.64)
Y (T) 2”f_my() 2”f_wl @)[ Sy ()
By Eq. (6.15), the average power in the output Y() is

ElY2()]= Ry (0) = —— [7 |H@)[Sx()do (6.65)
2m Y

C. Response of a Discrete-Time Linear System to Random Input:

When the input to a discrete-time LTI system is a discrete-time random process X(n), then by Eq. (6.52), the
output Y(n) is

Y(n)= E h()X(n — i) (6.66)

i=—o

The autocorrelation function of Y(n) is given by

Re,my= Y N hOADRy(n —iym—1) (6.67)

i=—ow [=—x

When X(n) is WSS, then from Eq. (6.66),

E[Y(m]=uy Y, h(i) =y H(O) (6.68)

i=—

where H(0) = H(Q)| o — o and H(Q) is the frequency response of the system defined by the Fourier transform of
h(n):

H(Q)= i h(n)e /<" (6.69)

n=-—o

The autocorrelation function of Y(n) is, from Eq. (6.67),

Ry (n,m)= E 2 h(iYh(DRy(m —n +i—1) (6.70)
j=—0 [=—ow
Setting m = n + k, we get
Ry(n,n+k)= E E h(Dh(DRy(k +i—1)= Ry (k) (6.71)
j=—o00 |[=—0o0

From Egs. (6.68) and (6.71), we see that the output Y(n) is also WSS. Taking the Fourier transform of Eq.
(6.71), the power spectral density of Y(n) is given by (Prob. 6.28)

S,(Q) = |HQ) |2 S,(Q) (6.72)

which is the same as Eq. (6.63).
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6.6 Fourier Series and Karhunen-Loéve Expansions

A. Stochastic Periodicity:

A continuous-time random process X(¢) is said to be m.s. periodic with period T if
E{Xt +T)— X®*} =0 (6.73)

If X(r) is WSS, then X(¢) is m.s. periodic if and only if its autocorrelation function is periodic with period T;
that is,

Ryt + T) = Ry(1) (6.74)

B. Fourier Series:

Let X() be a WSS random process with periodic R, (7) having period T. Expanding R, (7) into a Fourier series,
we obtain

©

Ry(m)= Y ¢, e wy=2x/T (6.75)
where ¢, :% f oT Ry (T) e T gr (6.76)
Let X (¢) be expressed as
X(t)= Yy X, " wy=2x/T (6.77)
where X arer.v.’s given by
1 T — jnwot
X, = f | X(0)e dt (6.78)

Note that, in general, X are complex-valued r.v.’s. For complex-valued r.v.’s, the correlation between two r.v.’s
X and Y is defined by E(XY*). Then X(¢) is called the m.s. Fourier series of X(f) such that (Prob. 6.34)

E{|X() — X0)|} =0 (6.79)
Furthermore, we have (Prob. 6.33)
E(X,) =y () = {1 =0 (6.80)
= n = 0
n~Hx 0 n#0
E(X, X)) =c,0n—my=1" "7
=c,0n—m)=
n Am n 0 ntm (6.81)
C. Karhunen-Loéve Expansion
Consider a random process X(f) which is not periodic. Let X(r) be expressed as
(6.82)

X(t)= Ex,,¢n(t) 0<t<T
n=1



280 CHAPTER 6 Analysis and Processing of Random Processes

where a set of functions {¢, (1} is orthonormal on an interval (0, T') such that

I 6,00, (0 di = 51— m) (6.83)
and X arer.v.’s given by
X, = OT X(0)p, (1) dt (6.84)
Then X(¢) is called the Karhunen-Loéve expansion of X(f) such that (Prob. 6.38)
E{|X0) — X0} =0 (6.85)
Let R, (¢, s) be the autocorrelation function of X(#), and consider the following integral equation:
[ R0, (5 ds =2, 4,(1)  0<1<T (6.86)

where A, and ¢ (¢) are called the eigenvalues and the corresponding eigenfunctions of the integral equation (6.86).
It is known from the theory of integral equations that if R, (z, 5) is continuous, then ¢ () of Eq. (6.86) are ortho-
normal as in Eq. (6.83), and they satisfy the following identity:

Ry(t,9)= Y k() (5) (6.87)
n=1

which is known as Mercer’s theorem.
With the above results, we can show that Eq. (6.85) is satisfied and the coefficient X are orthogonal r.v.’s
(Prob. 6.37); that is,

. A =
E(X, X.)= 4, 8(n—m) ={ no (6.88)
0 n#m

6.7 Fourier Transform of Random Processes

A. Continuous-Time Random Processes:

The Fourier transform of a continuous-time random process X(¢) is a random process X(w) given by
X@)= [~ X" dr (6.89)
which is the stochastic integral, and the integral is interpreted as a m.s. limit; that is,

4

Note that X(w) is a complex random process. Similarly, the inverse Fourier transform

2
X(w) — f f’w X(0)e '™ dr ‘ } =0 (6.90)

I S e 6.91)
X(0)=— [ X(@)e™ do

is also a stochastic integral and should also be interpreted in the m.s. sense. The properties of continuous-time
Fourier transforms (Appendix B) also hold for random processes (or random signals). For instance, if Y(¢) is the
output of a continuous-time LTI system with input X(¢), then

Y(w) = X(w)H(w) (6.92)

where H(w) is the frequency response of the system.
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Let Ex(wl, m,) be the two-dimensional Fourier transform of R, (z, s); that is,
Rx(@.0)= [~ [* Ry(t.5)e /"2 dr ds (6.93)

Then the autocorrelation function of )N((w) is given by (Prob. 6.41)

Ry(w,, ®)) = EX(w) X*(w,)] = R (0, —w,) (6.94)
If X(¢) is real, then
EX(0) X(0,)] = R (w,, ®,) (6.95)
X(—w) = X¥(w) (6.96)
R(—w,, —0) = Ri(w,, ) (6.97)

If X(z) is a WSS random process with autocorrelation function R,(t, s) = R,(t — s) = R () and power spectral
density S, (w), then (Prob. 6.42)

Ryw,, ®) = 2a8,(w) (w, + @,) (6.98)
Ry(w,, w,) = 278, (w)d (v, — w,) (6.99)

Equation (6.99) shows that the Fourier transform of a WSS random process is nonstationary white noise.

B. Discrete-Time Random Processes:
The Fourier transform of a discrete-time random process X(n) is a random process )?(Q) given by (in m.s. sense)

oo

X(Q)= E X(n)e /" (6.100)

n=-—o0

Similarly, the inverse Fourier transform
1 po < iQ
X(n)y=— X(Q)e™" dQ 6.101
m=—[" X (6.101)

should also be interpreted in the m.s. sense. Note that )?(Q) + 2m) = }?(Q) and the properties of discrete-time
Fourier transforms (Appendix B) also hold for discrete-time random signals. For instance, if Y(r) is the output
of a discrete-time LTT system with input X(n), then

Y(Q) = X(QH(RQ) (6.102)

where H(S2) is the frequency response of the system.
Let R, (R, Q,) be the two-dimensional Fourier transform of R, (n, m):

Ry(@,9)= > > Ry(n,mye/m+am (6.103)

n=—w m=—o0

Then the autocorrelation function of }?(Q) is given by (Prob. 6.44)

Ry(Q,, Q,) = E[X(Q) X¥(Q)] = R(Q,, —Q,) (6.104)
If X(n) is a WSS random process with autocorrelation function R, (n, m) = R, (n — m) = R, (k) and power spec-

tral density S, (€2), then
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R,(Q,, Q) =2715,(RQ)8(Q, + Q) (6.105)
Ry(Q,, Q) = 275,(Q)0(Q, — Q) (6.106)

Equation (6.106) shows that the Fourier transform of a discrete-time WSS random process is nonstationary
white noise.

SOLVED PROBLEMS

Continuity, Differentiation, Integration

6.1. Show that the random process X(¢) is m.s. continuous if and only if its autocorrelation function R,(z, s)
is continuous.

We can write

E{[X(t + &) — X()]2} = E[X2(t + &) — 2X(t + &)X(1) + X2(1)]
=R+ e 1+e—2R,(t+e 1)+ R (1,1 (6.107)

Thus, if R, (2, s) is continuous, then
lin}) E{{Xt+e)—XO}= lin}) {Ry(t+e,t+&)—2Ry(t+¢&,1)+ Ry(t,1)} =0
£—> E—>

and X(7) is m.s. continuous. Next, consider

Ryt + ¢, 1+ &) — Ry(1, 1) = E{[X(t + &) — XWXt + &,) — X(D)]}
+ E{[X( + £,) — X(OIX(1)} + E{[X( + &,) — X()IX(1)}

Applying Cauchy-Schwarz inequality (3.97) (Prob. 3.35), we obtain

Rt + &, 1+ &) — Ry(1, 1) = (E{[X( + &,) — X(OPIE{[X(t + &,) — X()*})'
+ (E{[X(t + &) — X(OIPYE[X* (D))" + (E{[X(t + &,) — X(D]*IE[X* ())'?

Thus, if X(¢) is m.s. continuous, then by Eq. (6.1) we have
lim Ry(t+eé,t+e)— Ry(t,t)=0
£1,69—>0

that is, R, (¢, s) is continuous. This completes the proof.

6.2. Show that a WSS random process X(¢) is m.s. continuous if and only if its autocorrelation function
R,(7) is continuous at T = 0.

If X(t) is WSS, then Eq. (6.107) becomes
E{[X(t + &) — X(®*} = 2[R, (0) — R, (#)] (6.108)
Thus if R, (7) is continuous at T = 0, that is,
lim [Ry () = Ry(0)] =0
then Eli_r)rz)E{[X(z-i—s)—X(z)]z}:O

that is, X(7) is m.s. continuous. Similarly, we can show that if X(¢) is m.s. continuous, then by Eq. (6.108),
R, (7) is continuous at T=0.
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6.3.

6.4.

6.5.

6.6.

Show that if X(7) is m.s. continuous, then its mean is continuous; that is,
lirr}) Uy (t+e)=pux (@)
e

We have

Var[X(t + &) = X(0] = E{[X(t + &) = X(N]*} — {E[X( + &) = X(N]}* =0
Thus, E{[X(t + &) = X0} = {E[X(t + &) = XD} = [uy(t + &) — u, (O

If X(#) is m.s. continuous, then as € — 0, the left-hand side of the above expression approaches zero. Thus,

lim [+ €)= pe1=0  or  lim [uy(r + &)= py(t)

Show that the Wiener process X(f) is m.s. continuous.
From Eq. (5.64), the autocorrelation function of the Wiener process X(7) is given by
R, (1, s) = 0% min(t, s)
Thus, we have
|R,(t+e,1+¢&)— R, (t,0)] =0* | min(t+¢,1+¢)—1| =0*min(¢, &) = 0> max(g,, &,)

Since lim max(g;, &,)=0
£1,69—>0

R, (t, 5) is continuous. Hence, the Wiener process X(¢) is m.s. continuous.
Show that every m.s. continuous random process is continuous in probability.
Arandom process X(f) is continuous in probability if, for every and a > 0 (see Prob. 5.62),
lim P{|X(t +&)— X(t)|>a} =0
=0
Applying Chebyshev inequality (2.116) (Prob. 2.39), we have

El| Xt +&)— X()[']

a2

P{|X(t+e)= X(1)|>a}=
Now, if X(¢) is m.s. continuous, then the right-hand side goes to 0 as ¢ — 0, which implies that the left-hand

side must also go to 0 as € = 0. Thus, we have proved that if X(¢) is m.s. continuous, then it is also continuous
in probability.

Show that a random process X(7) has a m.s. derivative X'(¢) if 62RX(t, s)/0t ds exists at s = .

_ X@te) = X@)

Let Y(t;e) (6.109)
By the Cauchy criterion (see the note at the end of this solution), the m.s. derivative X'() exists if

Jlim E{[Y(re,) = Y (1 ey =0 (6.110)
Now E{[Y(1; &) — Y(1; € )} = E[Y(1; &) — 2Y(1; £,))Y(1; €)) + Y*(t; €))]

= E[YX(1; &,)] — 2E[Y(5; &,)Y(5; )] + E[Y(5; €))] (6.111)
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and E[Y (t; &)Y (t; €))] =£E{[X(t +&)— XX +¢)— X}
162

:L[Rx(t+£2,t+£|)—RX(t+82,t)—RX(t,t +¢)+ Ry(t,1)]

16
_ LRy te,t+e)—Ry(t+e&,1) Ryt t+¢&)—Ry(@,1)
& £ £
. P Ry(t,s
Thus, lim E[Y(z;sz)Y(t;gl)]:ﬁ =R,
e.62—>0 at ds

provided 62Rx(t, 5)/0t ds exists at s = . Setting ¢, = ¢, in Eq. (6.112), we get

lim E[Y?(t;¢,)] = limOE[Yz(t; £)]=R,
&y —>

g —0

and by Eq. (6.111), we obtain

lim OE{[Y(z; &)=Y (t;e)’y =R, —2R, + R, =0

£1,6)—>

(6.112)

(6.113)

Thus, we conclude that X(¢) has a m.s. derivative X'(¢) if azRX(t, s)/dt ds exists at s = r. If X(¢) is WSS, then the

above conclusion is equivalent to the existence of 82RX(1:)/021: att=0.

Note: In real analysis, a function g(¢) of some parameter € converges to a finite value if

lim [g(e;) = g(e)]=0

£),8) >

This is known as the Cauchy criterion.

6.7. Suppose a random process X(¢) has a m.s. derivative X'(f).
(a) Find E[X'(1)].
(b) Find the cross-correlation function of X(r) and X'(¢).

(¢) Find the autocorrelation function of X'(¢).

(a) We have
E[X'(1)] :E[l,i,m.w]
e—0 e
= limE[M}
e—0 €

— Ji M F Eg)_.ux(t) = W (®)

e—0

(b) From Eq. (6.17), the cross-correlation function of X(¢) and X'(¢) is

Ryx (1,9) = EIX(OX ()] = E[X(t) 1.1.%1_M
e €

— lim EXOX(s + )] — E[X(D)X(5)]
£—0 £

— lim Ry(t,s +&) = Ry(t,s5) _ 0Rx(1,5)
e—0 £ as

(6.114)

(6.115)
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(¢) Using Eq. (6.115), the autocorrelation function of X'(¢) is

X(t+e)— X(t)]
' &

Ry (t,)=E[X' ()X '(s)]= E{[l.i.l’([)l X’(s)}

— lim E[X(t+e)X'(s)] — E[X(®)X'(s)]

e—0 £
. Ryy(t+e,5)— Ryy(t,s)
= lim
e—0 £

_ Ry (t, ) _ GZRX(Z,S)
ot ot ds

6.8. If X(7) is a WSS random process and has a m.s. derivative X'(), then show that

(@) Ryy(1)= iRX(r)
drt

42
() Ry (t)=-— d?RX ()

285

(6.116)

(6.117)

(6.118)

(a) Fora WSS process X(1), R, (t, s) = R, (s — 1). Thus, setting s — ¢ = 7in Eq. (6.115) of Prob. 6.7, we obtain

IR (s — 1)/ds = dR,(7)/dT and

Ry (6,1 + 1) = Ry (v) = TRx @
dr

(b) Now dR, (s — n/dt = —dR(v)/dv. Thus, 0°R, (s — /3t s = d*R,(7)/d7?, and by Eq. (6.116) of Prob. 6.7,

we have

4>
Ry (1,1 +7) = Ry (T) = ——— Ry (7)
dt

6.9. Show that the Wiener process X(f) does not have a m.s. derivative.
From Eq. (5.64), the autocorrelation function of the Wiener process X(7) is given by

2 st t>s
Ry(t,s)=0” min(t,5)=y ,
ot t<s

o’ t>s

d 2
Thus, —Ry(t,s)=0c"u(t —s)=
as x(0.5) ( ) {O t<s

where u(f — ) is a unit step function defined by

1 t>5
ut =)= 0 t<s

(6.119)

and it is not continuous at s = ¢ (Fig. 6-2). Thus, 9> R, (t, 5)/dt ds does not exist at s = t, and the Wiener process

X(1) does not have a m.s. derivative.
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u(t—s)

~v

0 s

Fig. 6-2 Shifted unit step function.

Note that although a m.s. derivative does not exist for the Wiener process, we can define a generalized
derivative of the Wiener process (see Prob. 6.20).

6.10. Show that if X(7) is a normal random process for which the m.s. derivative X'(¢) exists, then X'(7) is also
a normal random process.

Let X(7) be a normal random process. Now consider

7.)= X(t+¢)— X(1)

Then,nr.v.’s Y (t), Y (1), ..., Y,(z,) are given by a linear transformation of the jointly normal r.v.’s X(z), X(z,
+¢), X(1,), X(t, + ¢), ..., X(t), X(t, + ¢). It then follows by the result of Prob. 5.60 that Y (¢,), Y (z,), ..., Y (¢
are jointly normal r.v.’s, and hence Y (7) is a normal random process. Thus, we conclude that the m.s.
derivative X'(t), which is the limit of Y (#) as ¢ = 0, is also a normal random process, since m.s. convergence
implies convergence in probability (see Prob. 6.5).

6.11. Show that the m.s. integral of a random process X(¢) exists if the following integral exists:
t t
hh&@mmm
Am.s. integral of X(¢) is defined by [Eq. (6.8)]
!
YO)=[ X =l.i.m.) X(,) At
) fto (o) do Atl,»E%) 2 (t;) A

Again using the Cauchy criterion, the m.s. integral Y(¢) of X(¢) exists if

At;, At =0

2
lim E“:EX(ti)Atizx(tk)Atk] }=o (6.120)
i k
As in the case of the m.s. derivative [Eq. (6.111)], expanding the square, we obtain
E{[E X(t) At — S X(ty) Atkr}
7 X

=E| Y ¥ X@)X@) Aty A+ > N X)X (1) Aty Ay =23 X(1)X (1) At; Aty
ik ik ik

= N Ryl 1) Aty At + 3 N Ry(t,1) At At = 23 N Ry(t;,1,) Aty Aty
[ k i k i k

1

and Eq. (6.120) holds if

lim Ry (t;,1,) At; At
A’ivAlk—’OEZ X(l k) i k
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exists, or, equivalently,

S I Ru(ew. pdacdp

exists.

6.12. Let X(¢) be the Wiener process with parameter o2. Let

(@)
(b)

(@)

(b)

Y(t)= f; X() da

Find the mean and the variance of Y(¢).

Find the autocorrelation function of Y(¢).

By assumption 3 of the Wiener process (Sec. 5.7), that is, E[X(¢)] = 0, we have

E[Y(t)]:E[f(;X(a)da]:féE[X(a)] da=0 (6.121)

Then Var[Y (1) = E[Y*(1)] = f (; f (j E[X()X(B)] do df

= [ [\ Ry(a. pydacdpp

By Eq. (5.64), R, (a, B) = o? min(a, B); thus, referring to Fig. 6-3, we obtain

Var[Y (t)] = o f (; f é min(a, B) da dB

) R 2,3 (6.122)
=o‘2f0dﬁf0ﬁa d(X+02 f()daf() ﬂdﬂ:%
Let t > s = 0 and write
Y= 0 X(a)yda+ [ :[X(a) — X(s)] da + (t — )X(s)
=Y(s)+ f :[X(a) — X(s)]da + (t — $)X(5)
Then, fort>s=0,
Ry (t,5) = E[Y ()Y ()]
(6.123)

= Y1+ [T E{X(@) ~ X ()} da -+ (@ = ) EX Y (6)]

Fig. 6-3
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Now by Eq. (6.122),

2
0S3

E[Y?(s)] = Var[Y (5)] =
Using assumptions 1, 3, and 4 of the Wiener process (Sec. 5.7), and since s = a = t, we have
JEAX@ = X6 @) da= [ E{1X(@) ~ X)) [ X(B) dp} de

= [ [ EXIX(e) = X)) [X(B) ~ X(0)]} dB dax

= [ [, ElX(e) = X(s)IELX(s) = X(0)] dB dex =0
Finally, for 0 < = s,

(t = EXSY (9] = — ) [ EIX()IX(B)]dB
=(t=5) [ Ry(s.p)dp=(t =) [ o min(s. ) dp
=a’(t=s) [ Bdp=0"(t - s)g

Substituting these results into Eq. (6.123), we get

2
O'S3

2
1
+oi(t— s)% =— 023Gt — )

Ry(tss): 6

Since R(t, ) = R, (s, 1), we obtain

l02s2(3t*s) t>5=0

Ry(t.5)=1, (6.124)
gcx2z2(3s—z) §s>1=0

Power Spectral Density

6.13. Verify Egs. (6.13) and (6.14).
From Eq. (6.12),
Ry (1) = EIX()X(1 + )]
Setting r + 7= s, we get
Ry () = E[X(s — DX(9)] = E[X(9)X(s — T)] = Ry(—7)
Next, we have
E{X() = Xt + D]} =0
Expanding the square, we have
EIX2() = 2X(OX(t + 7) + X2(r + T)] = 0
or E[X2()] = 2E[X()X (1 + )] + E[X2(t + D] =0
Thus, 2R, (0) = 2R,(1) =0
from which we obtain Eq. (6.14); that is,

Ry(0) = | Ry(7) |
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6.14.

6.15.

Verify Eqs. (6.18) to (6.20).
By Eq. (6.17),
R, (—7) = E[X(HY(t — 7)]
Setting t — T =5, we get
Ry (=) = E[X(s + DY(s)] = EY()X(s + )] = Ry ()
Next, from the Cauchy-Schwarz inequality, Eq. (3.97) (Prob. 3.35), it follows that

{E[X(H)Y(t + D]}* = E[X?*(D]E[Y?(t + 7T)]
or [RXY(T)]2 =R, (0)R,(0)
from which we obtain Eq. (6.19); that is,

| Ryy(D | = VR, (0)R,(0)
Now E{[X() — Yt + D]} =0

Expanding the square, we have

E[X*(H) = 2X@0OY(t + 1)+ Y2t + 7] =0
or E[X?(n] = 2E[X(NY(t + T)] + E[Y*>(t + D] =0
Thus, Ry(0) = 2R, (v) + R, (0) =0
from which we obtain Eq. (6.20); that is,

Ry (D) = lz[RX(O) + R, (0)]

Two random processes X(7) and Y(¢) are given by
X(t) = A cos(wt + ©) Y(t) = A sin(wt + ©)

where A and w are constants and © is a uniform r.v. over (0, 2). Find the cross-correlation function of
X(#) and Y(¢) and verify Eq. (6.18).

From Eq. (6.17), the cross-correlation function of X(¢) and Y(¥) is

Ryy(t,t +T)=E[X()Y (t + 7)]

= E{A2 cos(wt + O)sin[w(t + 1)+ O]}
2
= A? E[sinQRwt + wt + 20) —sin(—wt)]

A2
=751na)r=RXY(r) (6.125)

Similarly,

Ryy(t,t +1)= E[Y()X(t +T)]

= E{A%sin(wt + ©)cos[w(r + T) + O]}
2
= % E[sinRwt + wt + 20) + sin(—wt)]

A2
z—jsina}r:Ryx(r) (6.126)
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From Eqgs. (6.125) and (6.126), we see that

2 2
Ryy(—1)= A? sinw(—T)=— %Sin ot = Ryy (1)

which verifies Eq. (6.18).

6.16. Show that the power spectrum of a (real) random process X(¢) is real and verify Eq. (6.26).

From Eq. (6.23) and expanding the exponential, we have
Sy@)= [" Ry(x)e /" dv
= f:o Ry (7) (cos wt — jsinwr) dt
:f:RX(r)cosw‘rdr—jfjomRX(‘r)sinandr (6.127)

Since R, (—7) = R, (1), R,(T) cos wTis an even function of rand R () sin wris an odd function of 7, and
hence the imaginary term in Eq. (6.127) vanishes and we obtain

SX(w)=f:°RX(r)coswr dt (6.128)

which indicates that S, (w) is real. Since cos (—w7) = cos(w7), it follows that
Sy(—w) = S, ()

which indicates that the power spectrum of a real random process X(¢) is an even function of frequency.

6.17. Consider the random process
Y = (~ 1%

where X(7) is a Poisson process with rate A. Thus, Y(¢) starts at ¥(0) = 1 and switches back and forth
from +1 to —1 at random Poisson times T}, as shown in Fig. 6-4. The process Y () is known as the
semirandom telegraph signal because its initial value Y(0) = 1 is not random.

(a) Find the mean of Y(z).

(b) Find the autocorrelation function of Y(r).

(a) We have

v 1 if X(¢)is even
O=1_1 if x(r)is odd

Thus, using Eq. (5.55), we have

P[Y (t)=1]= P[X(t) = even integer]
(At

2
1+T‘)+~~]=e_}”’cosh)»l

PlY(t)=—1]= P[X(¢) = odd integer]

3
=l 2
3!

— e—At

= ¢ Msinh At
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6.18.

yt)

~v

Fig. 6-4 Semirandom telegraph signal.
Hence, w, () = E[Y(1)] = (DP[Y(1) = 1] + (—)P[Y(t) = —1]
= e *(cosh At — sinh Ar) = ¢ 2M (6.129)

(b) Similarly, since Y(#)Y(t + 7) = 1 if there are an even number of events in (¢, ¢ + 7) for > 0 and
Y(®)Y(t + t) = —1 if there are an odd number of events, then fort>0and ¢+ >0,

Ry(t,t +1)= E[Y(OIY (¢t + T)]

— —At (7A7)n _ —At (Ar)n
7(1)n§me n! +( 1)néde n!

©

_ At - _
:e}n'z( ') = M’e M::e 2At
n.

n=0
which indicates that R (¢, f + 7) = R, (1), and by Eq. (6.13),
R,(7) = e 2*I7l (6.130)

Note that since E[Y(¢)] is not a constant, Y(¢) is not WSS.

Consider the random process
Z(@t) = AY(®)

where Y(7) is the semirandom telegraph signal of Prob. 6.17 and A is a r.v. independent of Y(¢) and takes
on the values * 1 with equal probability. The process Z(¥) is known as the random telegraph signal.

(a) Show that Z(r) is WSS.
(b) Find the power spectral density of Z(7).

(a) Since E(A) = 0 and E(A2) = 1, the mean of Z(f) is
ut) = E[Z(1)] = E(A)E[Y(1)] =0 (6.131)
and the autocorrelation of Z(¢) is
R,(t, 1+ ) = E[A2 Y(O)Y( + D)] = E(A2) E[Y()Y(t + D] = R,(t, 1+ 1)
Thus, using Eq. (6.130), we obtain
R,(t,t+ 1) =R, (1) = ¢ 27l (6.132)

Thus, we see that Z(r) is WSS.
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(b) Taking the Fourier transform of Eq. (6.132) (see Appendix B), we see that the power spectrum of Z(7) is
given by

42

S - -
2(@) w? +4A?

(6.133)

6.19. Let X(r) and Y(¢) be both zero-mean and WSS random processes. Consider the random process Z(f)
defined by

Z() = X(@) + Y(@)

(a) Determine the autocorrelation function and the power spectral density of Z(f), (i) if X(¢) and Y(r) are
jointly WSS; (ii) if X(#) and Y(¢) are orthogonal.

(b) Show that if X(r) and Y(¢) are orthogonal, then the mean square of Z(¢) is equal to the sum of the
mean squares of X(7) and Y(¢).

(a) The autocorrelation of Z(¢) is given by

R,(t, s) = E[Z(DZ(s) ] = E{[X(®) + Y(OI[X(s) + Y()]}
= E[X()X(s)] + E[X(HY(s)] + E[Y(D)X(s)] + E[Y(H)Y(s)]
=R (t,5) + Ry, (1, 5) + R, (1, $) + R, (¢, 5)

(1) If X(#) and Y(?) are jointly WSS, then we have
R,(T) = R (7) + R, ,(7) + R, (7) + R, (D)
where T = s — t. Taking the Fourier transform of the above expression, we obtain
S, (w) =S (w) + Syy(w) + S, (w) + S, (w)
(ii) If X(#) and Y(r) are orthogonal [Eq. (6.21)],

R,y (1) =R, (1) =0
Then R,(7) = Ry(7) + R (D) (6.134a)
S, (w) =S (w) + S, (w) (6.134b)

(b) Setting 7= 0 in Eq. (6.134a), and using Eq. (6.15), we get
E[Z*(1] = E[X*(n)] + E[Y*(1)]

which indicates that the mean square of Z() is equal to the sum of the mean squares of X(7) and Y(7).

White Noise

6.20. Using the notion of generalized derivative, show that the generalized derivative X'(¢) of the Wiener
process X(#) is a white noise.

From Eq. (5.64),
R, (t, 5) = o> min(t, 5)

and from Eq. (6.119) (Prob. 6.9), we have

iRx(t,s):ozu(t—s) (6.135)
as
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6.21.

Now, using the é function, the generalized derivative of a unit step function u(?) is given by

d

—u(t)=0(t

7 u(r)=0(t)
Applying the above relation to Eq. (6.135), we obtain

2

d
R = g2 — O =g25(t —
ras v(t,8)=0 Py u(t —s)=o6(t—s) (6.136)

which is, by Eq. (6.116) (Prob. 6.7), the autocorrelation function of the generalized derivative X'(7) of the
Wiener process X(7); that is,

Ry (t,5) = 028(t — 5) = 528(1) (6.137)

where T =t — s. Thus, by definition (6.43), we see that the generalized derivative X'(r) of the Wiener process
X(7) is a white noise.

Recall that the Wiener process is a normal process and its derivative is also normal (see Prob. 6.10). Hence,
the generalized derivative X'(7) of the Wiener process is called white normal (or white Gaussian) noise.
Let X(r) be a Poisson process with rate A. Let
Yo = X(r) — M
Show that the generalized derivative Y'(¢) of Y(¢) is a white noise.
Since Y(r) = X(¢r) — At, we have formally

Y'(t)=X'() — A (6.138)
Then E[Y'(1)] = EIX'(t) — A] = E[X'(®)] — A (6.139)
R,(t,5) = E[Y'()Y'(s)] = E{[X'() — Al[X'(s) — Al}
= EIX'(0X'(s) — AX'(s) — AX'() + A?]
= E[X'()X'(s)] — AE[X'(s)] — AE[X'(1)] + A2 (6.140)

Now, from Egs. (5.56) and (5.60), we have

EX()] = M
R, (t,5) = Amin(t, s) + A’ts
Thus, EX' ()] = A and E[X'(s)] = A (6.141)
and from Eqgs. (6.7) and (6.137),
2
E[X'(1)X'(s)] = Ry (t,5) = % =A(t — s)+ A? (6.142)
s

Substituting Eq. (6.141) into Eq. (6.139), we obtain
E[Y'(0]=0 (6.143)
Substituting Egs. (6.141) and (6.142) into Eq. (6.140), we get
R,(t,s) = A8(t — s) (6.144)

Hence, we see that Y'(7) is a zero-mean WSS random process, and by definition (6.43), Y'(¢) is a white noise
with 02 = A. The process Y'(¢) is known as the Poisson white noise.
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6.22. Let X(¢) be a white normal noise. Let

Y(t)= f;X(a) do

(a) Find the autocorrelation function of Y(z).
(b) Show that Y(¢) is the Wiener process.

(a) From Eq. (6.137) of Prob. 6.20,
R, (1, 5) = 020(1 — 5)

Thus, by Eq. (6.11), the autocorrelation function of Y(¢) is

Ry(t,9)= [ [ Ry(a, p)dp der
=fgf(2026(a—/3’)dad/3
=a2f0su(z—/3)dﬁ

=Ozf(;nin(t’s)d/3’=02 min(l,s) (6.145)

(b) Comparing Eq. (6.145) and Eq. (5.64), we see that Y(¢) has the same autocorrelation function as the
Wiener process. In addition, Y(#) is normal, since X(#) is a normal process and Y(0) = 0. Thus, we
conclude that Y(7) is the Wiener process.

6.23. Let Y(n) = X(n) + W(n), where X(n) = A (for all n) and A is a r.v. with zero mean and variance o2, and
W(n) is a discrete-time white noise with average power o2. It is also assumed that X(n) and W(n) are
independent.

(a) Show that Y(n) is WSS.
(b) Find the power spectral density S,,(€2) of Y(n).

(a) The mean of Y(n) is
E[Y(n)] = E[X(n)] + E[W(n)] = E(A) + E[W(n)] =0
The autocorrelation function of Y(n) is

Ry(n, n + k) = E{[X(n) + W)I[X(n + k) + W(n + )]}
= E[X(WX(n + ©)] + EIXMWIEIWx + k)] + E[WmIEX(n + k)] + EIWmW(n + k)]
= E(A%) + R, (k) = 0,% + 028(k) = R, (k) (6.146)

Thus, Y(n) is WSS.
(b) Taking the Fourier transform of Eq. (6.146), we obtain

5,(Q) = 2710,28(Q) + 02 —r<Q<m (6.147)

Response of Linear Systems to Random Inputs

6.24. Derive Eq. (6.58).

Using Eq. (6.56), we have
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Ry (t,5)=E[Y ()Y (5)]
- E[ [* WXt —ayda [~ n(p)X(s - B)dp

= f :0 f :,h(a)h(ﬁ)E[X(t —a)X(s — B)lda dp
= [ [ hh(BRy(t a5~ B dadp
6.25. Derive Eq. (6.63).

From Eq. (6.62), we have

Ry@=[" " Mah(B)Ry(x +a—~p)da dp

Taking the Fourier transform of R,(t), we obtain
Sy@=[" R@e " dr={" [" [ WOhPBRy(x+a~p)e " dadpdr
Letting T+ o — = A, we get

Sy@) =" [7 [ ne@hBRyM)e P dadp dA

= 7 mee™ da [* (e dp [ Re(2)e " dr
= H(—w)H(w)Sx(w)

6.26. A WSS random process X(#) with autocorrelation function

RX(T) = eialrl

where a is a real positive constant, is applied to the input of an LTI system with impulse response

h(t) = e Pu(r)

where b is a real positive constant. Find the autocorrelation function of the output Y(¢) of the system.

The frequency response H(w) of the system is

H(w)=F[h(n)] = o+h

The power spectral density of X(7) is

2a
Sy(w)=F[Ry(r)] = m

By Eq. (6.63), the power spectral density of Y(¢) is

Sy (@) =| H@)[ Sx()= (1)(20)

w® +b> \w* +a?

_ a 2b _ b 2a
@ +vH\o® +b* ) (@* -bHb\w® +d°
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Taking the inverse Fourier transform of both sides of the above equation, we obtain

1

—ble| _p a7l
———(ae be
(a* —b2)b( )

Ry(7)=

6.27. Verify Eq. (6.25), that is, the power spectral density of any WSS process X(¢) is real and S, (w) = 0.

The realness of S, (w) was shown in Prob. 6.16. Consider an ideal bandpass filter with frequency response (Fig. 6-5)

1 o<|o|<o,

H(w)={

0 otherwise

with a random process X(¢) as its input.

From Eq. (6.63), it follows that the power spectral density S, (w) of the output ¥(7) equals

P Sy(@) o <|o|<o,
w =
v (@) 0 otherwise

Hence, from Eq. (6.27), we have
1 © 1 )
EY*0]l=— [ Sy(@do=2— ["7Sy(@)dw=0
2 e1=o— [ Sy@do=2_—[ "Sx(@)dw

which indicates that the area of S, (w) in any interval of wis nonnegative. This is possible only if S, (w) =0
for every w.

\4

Fig. 6-5

6.28. Verify Eq. (6.72).

From Eq. (6.71), we have
Ry (k)= 2 2 h(h(DRy (k + i —1)
j=—o [=—w
Taking the Fourier transform of R, (k), we obtain

© © ©

S, (Q)= i Rekye ™ =3 S S hOhORyk+i—De

k=—o k=—0 j=—0 [=—wn
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Letting k +i — [ = n, we get

SY(Q)zi i ih(i)h(l)RX(n)e_jQ("_H”

n=—ow j=—ow [=—w
= i h(i)e’™™ i 0 i Ry (n)e /<"
i=—x [=—0 n=-—o

H(—Q)H (Q)5x(Q)
= H*(QH (@S (@) = | HQ)[" S (@)
6.29. The discrete-time system shown in Fig. 6-6 consists of one unit delay element and one scalar multiplier

(a < 1). The input X(n) is discrete-time white noise with average power 0. Find the spectral density
and average power of the output Y(n).

X(n) () Yin)
+ r' 3 +
a
Y
Unit |
Yin—1) delay
Fig. 6-6

From Fig. 6-6, Y(n) and X(n) are related by
Y(n) =a¥Y(n — 1) + X(n) (6.148)
The impulse response /(n) of the system is defined by
h(n) = ah(n — 1) + d(n) (6.149)
Solving Eq. (6.149), we obtain
h(n) = a"u(n) (6.150)

where u(n) is the unit step sequence defined by

1 n=0
M=y n<o

Taking the Fourier transform of Eq. (6.150), we obtain

. 1
H@)= Y a'e ™ =

W a<1,|Q|<n
n=0

Now, by Eq. (6.48),

5,(Q) = 02 Q| <x
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and by Eq. (6.72), the power spectral density of Y(n) is

Sy (@) =|HQ)[ Sx(Q) = H(QH (-)S ()

(1= ae 21— ae’®)
0,2

_1+a2—2acos9

|Q|<x (6.151)

Taking the inverse Fourier transform of Eq. (6.151), we obtain

2

—_9 I
Ry (k)= — a
Thus, by Eq. (6.33), the average power of Y(n) is
2
E[Y*(n)] = Ry(0) = ——
l—a

6.30. Let Y(¢) be the output of an LTI system with impulse response A(f), when X(¢) is applied as input.

Show that
(@) Ry (t.5)= [* h(B)Ry(t.5— B)dp (6.152)
(b) Ry(t.5)= [* h(@)Ry (t —a.5) dar (6.153)

(a) Using Eq. (6.56), we have

Ryy (1,9)= EIX()Y (5)] = E[X(z) [ nBxes—p dﬁ]
= [T HPEXOX(s = BdB= [ h(B)R(t,s— B)dp
(b) Similarly,
Ry (t,s)=E[Y ()Y (s)] = E[ f :oh(a)X(t —a)da Y(s)]

= [7 W@EX(t —a)Y()lda= [~ h@)Ry(t —a. s)da

6.31. Let Y(¢) be the output of an LTI system with impulse response 4(f) when a WSS random process X(¢) is
applied as input. Show that

(@) Syy(w) = H(w)S,(w) (6.154)
(b) S,(w) = H*(@)S, () (6.155)

(a) If X(r)is WSS, then Eq. (6.152) of Prob. 6.30 becomes
Ryy(t,9)= [~ h(B)Ry(s —1 —P)dp (6.156)
which indicates that R, (¢, s) is a function of the time difference T = s — t only. Hence,

Ry ()= [ h(B)Ry(x — B)dp (6.157)
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Taking the Fourier transform of Eq. (6.157), we obtain
Sxy @)= [~ Ryy(@e ™ dr= [~ [ n(B)Ry(z — Pre”""dp dv
=7 [7 hBR(M)e T HPdp dr
= [T wp e dp [ Ry(e ™ dh = H(w)Sy (@)
(b) Similarly, if X(7) is WSS, then by Eq. (6.156), Eq. (6.153) becomes
Ry(t.5)= [~ h(@)Ry (s —t+a)da
which indicates that R, (z, s) is a function of the time difference T = s — t only. Hence,
Ry(m)= [ ha)Ry (t + ) da (6.158)

Taking the Fourier transform of R, (7), we obtain

Sy(w)= f:c Ry(v)e ""dt = fio f: @) Ryy (T + a)e *“"da dv
= fio f:oh(a)ny (A)eijw(;ﬁa)da dA

= [7 W)™ da [~ Ry, (M)e "dA
= H(— 0)Syy (@) = H*(0)Syy ()

Note that from Eqs. (6.154) and (6.155), we obtain Eq. (6.63); that is,
Sy(w) = H* (0)Sy,(w) = H* (0)H(0)Sy () = | H(w) |*Sy ()

6.32. Consider a WSS process X(#) with autocorrelation function R, (7) and power spectral density S, (w). Let
X'(t) = dX(t)/dt. Show that

@ Ry (@)= Ry() (6.159)
dt
d2
(b) Ry (7)== Ry(7) (6.160)
dt
©) Sy (w)=w*Sy(w) (6.161)

(a) If X() is the input to a differentiator, then its output is Y(f) = X'(¢). The frequency response of a
differentiator is known as H(w) = jw. Then from Eq. (6.154),

Syy(w) = Hw)Sy(w) = joS,(w)
Taking the inverse Fourier transform of both sides, we obtain
d
Ry (T) = — Ry (7)
dt

(b) From Eq. (6.155),

Sy (w) = H*(0)Syy (0) = — joS, . (®)



300 CHAPTER 6 Analysis and Processing of Random Processes

Again taking the inverse Fourier transform of both sides and using the result of part (a), we have

d d*
Ry (1) =~ E Ryy (1) =— F Ry (7)

(¢) From Eq. (6.63),
Sy(w) = | Hw) |*S,(w) = | jo |2Sy () = 0, (w)

Note that Egs. (6.159) and (6.160) were proved in Prob. 6.8 by a different method.

Fourier Series and Karhunen-Loéve Expansions
6.33. Verify Egs. (6.80) and (6.81).

From Eq. (6.78),

X, = % JIXWe ™ dr wy=21/T

Since X(r) is WSS, E[X(1)] = u,, and we have

Uy
Ex,) =~ [T ELX @)1 ™ dr
n T 0
— L er — jnwpt —
—ux;foe dt = uy 8(n)
Again using Eq. (6.78), we have

N — L pr * Jmags
E(XnXm)—E[Xn?fo X*(s5)e!™™* ds

1 o1 -
= * Jjmags
. fo E[X, X*(s)]e ds

Now E[X,X*(s)]= E[% ) OT X(t)e " gy X*(s)}
=% ) OTE[X(r)x*(s)]e*f""’o’ dt

— 1 T _ — jnawgt
—?fo Ry(t —s)e "™ dr
Letting t — s = 7, and using Eq. (6.76), we obtain
1 p7 _ )
* =_ Jnwg (T+s)
E[X, X*(s)] - fo Ry(T)e drt

B {%f U Ry(z)e dr}e_jm“ =c,e (6.162)

* T _ .
Thus’ E(anm) = %fo Cpe anosejmwos ds

=c, %fOT e Inmmwos go — ¢, 0(n —m)
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6.34. Let X(r) be the Fourier series representation of X(¢) shown in Eq. (6.77). Verify Eq. (6.79).

|

xe0 - 3 X; e"'"""””

From Eq. (6.77), we have

X(t) — E X, e/t

n=-o

E{| X(1)— )2(:)|2} = E4

:E{ |

=E[|x)f] = > EIX,X@le "™

n=—ow

X(@t) — E X, el

n=—o n=—o

= > EX, X1+ Y Y E[X, X, e/

n=—o n=—0© m=—w

Now, by Egs. (6.81) and (6.162), we have
E[X, X(0)] = c,e/™™"
E[X, X *(1)] = c,e "™

EX, X )=c,0(n—m)

n“tm

Using these results, finally we obtain

©

E{|X(r)—f((t)|2}=RX(0) -Y - i ¢, + i ¢, =0

n=—c0 n=—c0 n=—c0
since each sum above equals R, (0) [see Eq. (6.75)].

6.35. Let X(r) be m.s. periodic and represented by the Fourier series [Eq. (6.77)]

X@t) =Y X" w,=2x/T,

Show that
2 - 2
EIX01 =Y (E]X,]) (6.163)
n=—w
From Eq. (6.81), we have
E(|X,|%) = EX, X*) =c, (6.164)
Setting 7= 0 in Eq. (6.75), we obtain
Elxo1=Re@= 3 ¢,= 3 E(X,[")

Equation (6.163) is known as Parseval’s theorem for the Fourier series.
6.36. If a random process X(¢) is represented by a Karhunen-Loéve expansion [Eq. (6.82)]

X(t)= 2 X, 0,1 0<t<T
n=1
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and X ’s are orthogonal, show that ¢ (r) must satisfy integral equation (6.86); that is,

[ R, () ds = 2,0,()  O<t<T

Consider

X(1)X, = 2 X, X, (1)

m=1

Then EIX(0X,1= 3 E(X,,X,19,, () = E( X, [, () (6.165)

m=1
since X ’s are orthogonal; that is, E(Xij: ) =0 if m # n. But by Eq. (6.84),
ELX0X]1= E[X() [ X* ()¢, ) ds
= [ EIX@ X* ()14, (s) ds
= [ Ry(t. )9, (5) ds (6.166)
Thus, equating Eqs. (6.165) and (6.166), we obtain

. Re(t.5)0,(5) ds = E (| X, ), (1) = 4,8, (1)

where A, = E(| X |%).

6.37. Let X() be the Karhunen-Loéve expansion of X(7) shown in Eq. (6.82). Verify Eq. (6.88).
From Egs. (6.166) and (6.86), we have
ELX()X,,1= [ Ry(,5)6,(5)ds = 2,,,(0) (6.167)
Now by Eqgs. (6.83), (6.84), and (6.167) we obtain

E[X, X 1= E[ [, X)) dr x;] = [ ELX@)X), 19, (1)

= [ A 0101t = Ay [ 6,0 47 0)
= A,,0(m —n)=A,0(n — m) (6.168)

6.38. Let X(r) be the Karhunen-Loéve expansion of X(r) shown in Eq. (6.82). Verify Eq. (6.85).

2}
P EIOEDY X:¢Z<r>”

n=1

From Eq. (6.82), we have

X =Y X,9,(1)

n=1

~ 2
El|x()—X()| 1= E{

:E{

=E[|X()['1- > ELX (X, 1, (1)

n=1

X0 = Y X9, (1)

n=1

= Y EX*OX, 16,0+ > > E(X,X,,)8,(1),, (1)
n=1

n=1 m=1
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6.39.

Using Egs. (6.167) and (6.168), we have

X0~ X[ 1= Re .= S 28, 0050~ S 40,0070+ S 2,8, (0950)
n=1 n=1 n=1

=0

since by Mercer’s theorem [Eq. (6.87)]

Ry(t,0)="Y %,8,(), (1)

n=1
and A =E(X |>=2%
Find the Karhunen-Loéve expansion of the Wiener process X(7).
From Eq. (5.64),

2s s<t

. o
RX(z,s):a2 min(t, s) = 5
ot s>t

Substituting the above expression into Eq. (6.86), we obtain
2 (T .
o fo min(z, )g, (s)ds = A,9,(1)  0<t<T (6.169)

o o [ sp,(s)ds+ 0% [ ,(5)ds = 2,9,() (6.170)
Differentiating Eq. (6.170) with respect to ¢, we get
o> [ 9, (5) ds = 3,4, (1) 6.171)

Differentiating Eq. (6.171) with respect to 7 again, we obtain

o2
¢,’i(l)+7¢n(t):0 (6.172)
A general solution of Eq. (6.172) is
¢,(t) =a,sin ot + b cos wt w,=0/VA

In order to determine the values of @, b, ,and A (or w ), we need appropriate boundary conditions. From Eq.
(6.170), we see that ¢ (0) = 0. This implies that b, = 0. From Eq. (6.171), we see that ¢/ (T') = 0. This implies that

2n—1 [n_;)n
w, = :( n—lz n=12,...

o
SN 2T T

Therefore, the eigenvalues are given by

( 1)2 R (6.173)
n——|
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The normalization requirement [Eq. (6.83)] implies that

2
T . a, T 2
fo (ansma)nt)zdt: ”2 =1—a,= /?

Thus, the eigenfunctions are given by

2 1|\x
t)y=,—sinjln——|—t 0<t<T 174
wor=Efo-1): -
and the Karhunen-Loéve expansion of the Wiener process X(¢) is
X(t) = }Eix sinln——+|%:  o<i<T
T & n T (6.175)

where X are given by

2 e . 1|\m
X, =.= X(t) sinjn——|—t
"N Joxo ( 2 ) T
and they are uncorrelated with variance 4, .

Find the Karhunen-Loéve expansion of the white normal (or white Gaussian) noise W().
From Eq. (6.43),
R, (t,5) = 0%(t— )
Substituting the above expression into Eq. (6.86), we obtain
o [Tt = )9, (s)ds =, 4,(t)  O<1<T
or [by Eq. (6.44)]

o2 = A,¢,(0) (6.176)

which indicates that all A = o and ¢, (1) are arbitrary. Thus, any complete orthogonal set {¢, (1)} with
corresponding eigenvalues A = o can be used in the Karhunen-Loéve expansion of the white Gaussian noise.

Fourier Transform of Random Processes

6.41.

Derive Eq. (6.94).
From Eq. (6.89),
X@)= [~ XWe " dt  X(@)= [~ X(s)e " ds
Then Ry (0, 0,) = E[X())X * ()] = E[fio f:o X)X *(5)e 1 @99 gy g
=7 [T EX(0)X*()le /' dr ds
=7 [T Ry(t.)e 0D dr ds = Ry (o0, — )

in view of Eq. (6.93).
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6.42. Derive Egs. (6.98) and (6.99).

Since X(7) is WSS, by Eq. (6.93), and letting  — s = 7, we have

Ry(@. )= [~ [7 Ryt —s)e 2 dr ds
=fm Ry(T)e /™" dt foo e i@t g

=Sy(o) [~ eIt ds
From the Fourier transform pair (Appendix B) 1 <> 278(w), we have
[7 e dr =275(0)

Hence, ﬁx(wl, ) =2a8(w)d(w, + w,)

Next, from Eq. (6.94) and the above result, we obtain

Ry(w,, 0,) = R (w,, —0,) = 278, (0,)0(0, — w,)

6.43. Let )N((w) be the Fourier transform of a random process X(r). If )N((w) is a white noise with zero mean and
autocorrelation function g(w )d(w, —m,), then show that X(r) is WSS with power spectral density

q(w)/ 2.
By Eq. (6.91),
X(1)= i [~ X(@e™ do
Then EIX()]= - [7 EX(@)e™™ do=0 (6.177)
2g Y —*

Assuming that X(7) is a complex random process, we have

Ry(t.5)= E[X()X *(5)] = E[Tjﬁ J7 7 X@)X @)™ day do,
1 ®© o oy v (it —wys
=7 [ EX (@)X * (@)l "~ do, do,
1 * * j(wit—wys
:mffwfqu(w' (w, — @,)e’ 2 doy, dow,

=5 [T ) doy (6.178)
n oo

which depends only on ¢ — s = 7. Hence, we conclude that X(¢) is WSS. Setting  — s = Tand w, = win Eq. (6.178),
we have

1 po , 1, [ 1 )
Ry(1)=— w)e!" do=— [— a)]e"‘”dw
(0= [ a e I (D)

1 = :
=— Sy (@)e’" dw
27 f*‘” x(@e

in view of Eq. (6.24). Thus, we obtain S, (w) = g(w)/ 2.



306 CHAPTER 6 Analysis and Processing of Random Processes

6.44. Verify Eq. (6.104).

By Eq. (6.100),

X(Q)= i X(n)e X #(Q,)= i X *(m)e/2m

n=—o m=—ow

Then Ry(Q,Q2)= E[X@Q@)X*(@)]= Y > E[X(mX*(m)le /G m
Y Ry(n,mye 1Hm M = R (@)~ Q)

© m=—0w

s

n

in view of Eq. (6.103).

6.45. Derive Egs. (6.105) and (6.106).

If X(n) is WSS, then R (n, m) = R, (n — m). By Eq. (6.103), and letting n — m = k, we have

©

2 i Ry(n— m)e*j(ﬁmﬂzzm)

n=—ow m=—w

2 Rx(k)efjglk E e J (@it R)m

k=—o m=—oo

=5,(Q)) E e ST Q)m

m=—o

Rx(Q,.9Q,)

From the Fourier transform pair (Appendix B) x(n) = 1 <= 2725(Q), we have

Y e M) =276(Q, + Q)
m=—x
Hence, TQX (Q,,9Q,) =275 (RQ))0(Q, +Q,)
Next, from Eq. (6.104) and the above result, we obtain

Ry(Q,, Q) = Ry(Q,, —Q,) = 275,(Q)d(Q, — Q,)

SUPPLEMENTARY PROBLEMS
6.46. Is the Poisson process X(f) m.s. continuous?
6.47. Let X(¢) be defined by (Prob. 5.4)
X(t) = Ycos wt t=0

where Y is a uniform r.v. over (0, 1) and wis a constant.
(a) Is X(t) m.s. continuous?

(b) Does X(t) have a m.s. derivative?
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6.48.

6.49.

6.50.

6.51.

6.52.

6.53.

6.54.

6.55.

Let Z(¢) be the random telegraph signal of Prob. 6.18.
(a) 1Is Z(t) m.s. continuous?

(b) Does Z(t) have a m.s. derivative?

Let X(7) be a WSS random process, and let X'(f) be its m.s. derivative. Show that E[X(H)X'(t)] = 0.
L 7(1) = 2 t+T/2X d
et == I (o) dax

where X(7) is given by Prob. 6.47 with w = 2x/T.
(a) Find the mean of Z(r).

(b) Find the autocorrelation function of Z().

Consider a WSS random process X(7) with E[X(#)] = u,. Let

(xo), = [1) X0 d

T2
The process X(7) is said to be ergodic in the mean if

Lim (X(1), = E[X(1)] = ux

T —>x

Find E [(X (1)),].

Let X(r) = A cos(w, t + @), where A and w, are constants, © is a uniform r.v. over (—, x) (Prob. 5.20). Find
the power spectral density of X(7).

Arandom process Y(7) is defined by
Y(r) = AX(7) cos(w,t + ©)
where A and w,_ are constants, © is a uniform r.v. over (—u, ), and X(¢) is a zero-mean WSS random process

with the autocorrelation function R,(7) and the power spectral density Sy (w). Furthermore, X(¢) and © are
independent. Show that Y(¢) is WSS, and find the power spectral density of Y(7).

Consider a discrete-time random process defined by

X(n)= E a; cos(Q;n +06;)
i=1

where a, and Q, are real constants and ©, are independent uniform r.v.’s over (=, 7).
(a) Find the mean of X(n).

(b) Find the autocorrelation function of X(n).

Consider a discrete-time WSS random process X(n) with the autocorrelation function
R, (k) = 10e705 Ikl

Find the power spectral density of X(n).
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6.56.

6.57.

6.58.

6.59.

6.60.

6.61.

6.62.

6.63.

CHAPTER 6 Analysis and Processing of Random Processes

Let X(7) and Y(7) be defined by

X() = Ucos w,t + Vsin w,t

Y(t) = Vcos wyt — Usin w, t

where @, is constant and U and V are independent r.v.’s both having zero mean and variance 0.
(a) Find the cross-correlation function of X() and Y(7).

(b) Find the cross power spectral density of X(#) and Y(7).
Verify Egs. (6.36) and (6.37).

Let Y(r) = X(1) + W(), where X(r) and W(¢) are orthogonal and W(7) is a white noise specified by Eq. (6.43) or
(6.45). Find the autocorrelation function of Y(z).

Azero-mean WSS random process X(#) is called band-limited white noise if its spectral density is given by
Find the autocorrelation function of X(¢).

_Ny/2 |o|=w,
R A

AWSS random process X(¢) is applied to the input of an LTI system with impulse response h(f) = 3¢~ >u(r).
Find the mean value of Y(7) of the system if E[X(1)] = 2.

The input X(#) to the RC filter shown in Fig. 6-7 is a white noise specified by Eq. (6.45). Find the mean-square
value of Y().

WWWW

R

pe—— X — o
(@]
Il
1
b—— S — e

Fig. 6-7 RC filter.

The input X(¢) to a differentiator is the random telegraph signal of Prob. 6.18.
(a) Determine the power spectral density of the differentiator output.

(b) Find the mean-square value of the differentiator output.

Suppose that the input to the filter shown in Fig. 6-8 is a white noise specified by Eq. (6.45). Find the power
spectral density of Y(7).

X() ‘@ Y(i’)k
+ A
a
A
o | Delay
" T

Fig. 68
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6.64.

6.65.

6.66.

6.67.

6.68.

6.69.

6.70.

Verify Eq. (6.67).

Suppose that the input to the discrete-time filter shown in Fig. 6-9 is a discrete-time white noise with average
power o2. Find the power spectral density of Y(n).

X(n) e Y(n)
+ F 3 +
a
A
| Unit
“| delay
Fig. 6-9

Using the Karhunen-Loéve expansion of the Wiener process, obtain the Karhunen-Loéve expansion of the
white normal noise.

Let Y(¢) = X(¢) + W(¢), where X(¢) and W(r) are orthogonal and W() is a white noise specified by Eq. (6.43) or
(6.45). Let ¢,(?) be the eigenfunctions of the integral equation (6.86) and A the corresponding eigenvalues.

(a) Show that ¢ (¢) are also the eigenfunctions of the integral equation for the Karhunen-Loéve expansion of
Y(r) with R (2, 5).

(b) Find the corresponding eigenvalues.

Suppose that

X(t)= Y X, e

n

where X arer.v.’s and ) is a constant. Find the Fourier transform of X(7).

Let X(w) be the Fourier transform of a continuous-time random process X(#). Find the mean of X(w).

Let

X(Q) = i X(n)e ™"

n=—%x

where E[X(n)] = 0 and E[X(n)X(k)] = on2 O0(n — k). Find the mean and the autocorrelation function of )N((Q).

ANSWERS TO SUPPLEMENTARY PROBLEMS

6.46.

Hint:  Use Eq. (5.60) and proceed as in Prob. 6.4.
Yes.
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6.47. Hint: Use Eq. (5.87) of Prob. 5.12.
(a) Yes; (b) yes.

6.48. Hint: Use Eq. (6.132) of Prob. 6.18.
(a) Yes; (b) no.

6.49. Hint: Use Egs. (6.13) [or (6.14)] and (6.117).

6.50. (a) — 1 sin wt
b1

(b) R,(t,s)= iz sin wt sin ws
3

6.51. u,

2
6.52. Sy(w)= AT” [8(e — wp) + 8w + wg)]

2
6.53. Sy(w)= AT [Sy(w—w,)+ Sx(w+w,)]

6.54. (a) E[X(n)]=0
1 m
(b) Ry(n,n+k)= Eg}a,? cos(R; k)
6.32

6.55. Sx(Q)= —a<Q<nrm
1.368 —1.213 cos Q

6.56. (@) Ry, (1,1+ 1 =—0%sinw,T

(b) Syy() = jo?Ad (@ — 0y) = d( + 0,)]
6.57. Hint: Substitute Eq. (6.18) into Eq. (6.34).

6.58. R,(1,5) =R, (1, s) + 028(t — 5)

6.59. Ry(r)="No¥p SN 05T
WpT
6.60. Hini: Use Eq. (6.59).
3

6.61. Hint: Use Eqgs. (6.64) and (6.65).
0%/(2RC)

4Aw?
w? + 42>
(b) E[Y*(1)]=o

6.62. (a) Sy(w)=



CHAPTER 6 Analysis and Processing of Random Processes

6.63.

6.64.

6.65.

6.66.

6.67.

6.68.

6.69.

6.70.

S (w) = 0*(1 +a®+ 2acos wT)
Hint: Proceed as in Prob. 6.24.
S,(Q) = 0*(1 +a® + 2acos Q)
Hint: Take the derivative of Eq. (6.175) of Prob. 6.39.
\/ZEW,,COS n—i Ty 0<t<T

T <~ 2)T

n=1

where W are independent normal r.v.’s with the same variance o2.

Hint: Use the result of Prob. 6.58.
) A, + o?

X(w)= E 27X, 8(w — nawy)
Flux®]= [ uye ™ dr where py () = E[X(1)]

EIX@]=0  Ry(@.Q)= 3 0,2 /@ %

n=—o

311



Estimation Theory

7.1 Introduction

In this chapter, we present a classical estimation theory. There are two basic types of estimation problems. In
the first type, we are interested in estimating the parameters of one or more r.v.’s, and in the second type, we are
interested in estimating the value of an inaccessible r.v. Y in terms of the observation of an accessible r.v. X.

7.2 Parameter Estimation

Let X be a r.v. with pdf f(x) and X,, ..., X a set of n independent r.v.’s each with pdf f(x). The set of r.v.’s

(X,, ..., X ) is called a random sample (or sample vector) of size n of X. Any real-valued function of a random
sample s(X|, ..., X)) is called a statistic.
Let X be ar.v. with pdf f(x; 6) which depends on an unknown parameter 6. Let (X,, ..., X ) be a random

sample of X. In this case, the joint pdf of X, ..., X is given by

F(x0)=f(x,0x,30) =T ] f(x:26) (7.1)
i=1
where x,, ..., x_are the values of the observed data taken from the random sample.
An estimator of 0 is any statistic s(X,, ..., X, ), denoted as
0=sX,....X) (7.2)

For a particular set of observatiops X, = x,...,X = x ,the value of the estimator s(x,, ..., x ) will be called
an estimate of 6 and denoted by 6. Thus, an estimator is a r.v. and an estimate is a particular realization of it. It
is not necessary that an estimate of a parameter be one single value; instead, the estimate could be a range of
values. Estimates which specify a single value are called point estimates, and estimates which specify a range

of values are called interval estimates.

7.3 Properties of Point Estimators

A. Unbiased Estimators:

An estimator ©® = s(X|, ..., X)) is said to be an unbiased estimator of the parameter 6 if

E®) =0 (7.3)

312
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for all possible values of 6. If ® is an unbiased estimator, then its mean square error is given by
E[(® — 0y] = E{[® — E(©)’} = Var(©) (714
That is, its mean square error equals its variance.
B. Efficient Estimators:
An estimator ©, is said to be a more efficient estimator of the parameter 6 than the estimator 0, if

1. ©, and ©, are both unbiased estimators of 6.
2. Var(®)) < Var(0,).

The estimator ©,,, = s(X
of the parameter 6 if

1> --+» X)) is said to be a most efficient (or minimum variance) unbiased estimator

1. It is an unbiased estimator of 0.
2. Var(®,,) = Var(0®) for all B.

M V)

C. Consistent Estimators:

The estimator ©, of 6 based on a random sample of size 7 is said to be consistent if for any small € > 0,

lim P(|®, — 6] <&)=1 (75)
or equivalently,
lim P(|®, —60|=¢)=0 (7.6)

The following two conditions are sufficient to define consistency (Prob. 7.5):

1. lim E©®,) = 6 7.7
2. lim Var(®,) =0 (7.8)

7.4 Maximum-Likelihood Estimation

Let f(x; 0) = f(x,, ..., x,; 6) denote the joint pmf of the r.v.’s X, ..., X, when they are discrete, and let it be
their joint pdf when they are continuous. Let

L) = f(x; 0) = f(x, ..., x,; 6) (7.9)

Now L (0) represents the likelihood that the values x,, ..., x, will be observed when 6 is the true value of the
parameter. Thus, L (0) is often referred to as the likelihood function of the random sample. Let 6,, = s(x,, ...,
x,) be the maximizing value of L (6); that is,

L(GML) ZmQaX L(6) (7.10)
Then the maximum-likelihood estimator of 0 is
0, =X, ....X) (7.11)

and 6, is the maximum-likelihood estimate of 6.
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Since L(0) is a product of either pmf’s or pdf’s, it will always be positive (for the range of possible values
of 6). Thus, In L () can always be defined, and in determining the maximizing value of 6, it is often useful to
use the fact that L (6) and In L (6) have their maximum at the same value of 6. Hence, we may also obtain 6,
by maximizing In L ().

7.5 Bayes’ Estimation

Suppose that the unknown parameter 0 is considered to be a r.v. having some fixed distribution or prior pdf f(6).
Then f(x; 6) is now viewed as a conditional pdf and written as f(x|6), and we can express the joint pdf of the
random sample X s X) and 0 as

fe, nx, 0) = f(x,, ..., x, |0) f(0) (7.12)
and the marginal pdf of the sample is given by
f(xl,...,xn)IfRBf(xl,...,xn,B)dH (7.13)

where R, is the range of the possible value of 6. The other conditional pdf,

f(xl,...,xn,H) :f(xl,...,xn|0)f(0)
f(xl,...,xn) f(xl,...,xn)

f(0]x....x,)= (7.14)

is referred to as the posterior pdf of 6. Thus, the prior pdf f(60) represents our information about 0 prior to the
observation of the outcomes of X, ..., X, and the posterior pdf f(6 |x1, ..., X)) represents our information about
0 after having observed the sample.

The conditional mean of 6, defined by

O, =E(8|x1,...,xn)=fRHBf(6|x1,...,xn)d6 (7.15)
is called the Bayes’ estimate of 6, and

®,=E@6|X, ....X) (7.16)

n

is called the Bayes’ estimator of 6.

7.6 Mean Square Estimation

In this section, we deal with the second type of estimation problem—that is, estimating the value of an inac-
cessible r.v. Y in terms of the observation of an accessible r.v. X. In general, the estimator ¥ of Y is given by a
function of X, g(X). Then Y — ¥ = Y — g(X) is called the estimation error, and there is a cost associated with
this error, C[Y — g(X)]. We are interested in finding the function g(X) that minimizes this cost. When X and Y
are continuous r.v.’s, the mean square (m.s.) error is often used as the cost function,

ClY — gX)] = E{[Y — gXI*} (7.17)
It can be shown that the estimator of Y given by (Prob. 7.17),

Y=g = EY |X) (7.18)

is the best estimator in the sense that the m.s. error defined by Eq. (7.17) is a minimum.
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7.7 Linear Mean Square Estimation

315

Now consider the estimator ¥ of Y given by
Y=gX)=aX+b
We would like to find the values of @ and b such that the m.s. error defined by
e = E(Y = VY] = E{Y — (@X + b)I’}
is minimum. We maintain that ¢ and » must be such that (Prob. 7.20)
E{Y— (X + D)X} =0
and a and b are given by

o o
a= —X§ =—Lpyy b
oy~ Oy

= Uy —auy
and the minimum m.s. error ¢, is (Prob. 7.22)

¢, = 031 = p}y)

(7.19)

(7.20)

(721)

(722)

(723)

where 0y, = Cov(X, Y) and p,,, is the correlation coefficient of X and Y. Note that Eq. (7.21) states that the opti-
mum linear m.s. estimator ¥ = aX + b of Y is such that the estimation error Y — ¥ = ¥ — (aX + b) is orthog-
onal to the observation X. This is known as the orthogonality principle. The line y = ax + b is often called a

regression line.

Next, we consider the estimator ¥ of ¥ with a linear combination of the random sample (X,, ..., X ) by

Y= iaiXi
i=1

(7.24)

Again, we maintain that in order to produce the linear estimator with the minimum m.s. error, the coefficients
a, must be such that the following orthogonality conditions are satisfied (Prob. 7.35):

Xj =0 j=1...,n

E [Y— i aX;

i=1
Solving Eq. (7.25) for a,, we obtain
a=Rr

where

a=|: r=|: r=E(YX;) R=

and R~! is the inverse of R.

R, = E(X;X;)

(7.25)

(7.26)
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SOLVED PROBLEMS

Properties of Point Estimators

7.1. Let(X|, ..., X )be arandom sample of X having unknown mean u. Show that the estimator of u defined by

:I»—

i (727)

is an unbiased estimator of u. Note that X is known as the sample mean (Prob. 4.64).

By Eq. (4.108),

%2 ;iE(X)—lzlu—inu) u
Thus, M is an unbiased estimator of u.
7.2. Let(X \» --+» X ) be arandom sample of X having unknown mean u and variance o2. Show that the
estimator of o? defined by
§* = % E (X, — X)* (7.28)
i=1

where X is the sample mean, is a biased estimator of 0.

By definition, we have
o’ = E[(Xi - “)2]

{,112 (X,-—u)—(X—m]z}

Now E(Sz) —E

:E{IE[(Xf — ) =2(X; — (X — ) + (X _M)z]}
ni=

o |

= LS B, — )= X = 0?1= 0% — 01’
i=1

06— 102 = n(X —

i=1

By Eqgs. (4.112) and (7.27), we have

=i " (7.29)

1
Thus, ESH=0>—=0¢*=
n

which shows that S? is a biased estimator of o2.
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7.3. Let(X,, ..., X)) be a random sample of a Poisson r.v. X with unknown parameter A
(a) Show that

A, :12)(,. and A, :%(x1 +X,)

are both unbiased estimators of A.

(b) Which estimator is more efficient?

(a) By Egs. (2.50) and (4.132), we have

n

E(Al)ziiE(X,-)zl(nA):A
i=1

E(Ay) == [E(X,)+ E(X,)]= (2A)=A

I\J\—

Thus, both estimators are unbiased estimators of A.

(b) By Egs.(2.51) and (4.136),

1 ¢ 1 1 A
Var(A;) =n—2;Var(Xi)——le]Var(Xi)=n—2(nh)=;
Var(A,) =%(2A)=%

Thus, if n>2, A, is a more efficient estimator of Athan A,, since A/n < A/2.

74. Let(X,, ..., X,) be a random sample of X with mean u and variance o?. A linear estimator of u is
defined to be a linear function of X, ..., X, X, ..., X,). Show that the linear estimator defined by
[Eq. (7.27)],

1 n
= 2
is the most efficient linear unbiased estimator of .

Assume that

is a linear unbiased estimator of u with lower variance than M. Since M, is unbiased, we must have

n

EM)= Y aEX)=uYa;=

i=1 i=1

3

which implies that };_,a; =1.By Eq. (4.136),

xll

1 n
Var(M)=~0> and  Var(M,)= 022 a’
n =1
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By assumption,

2 21 2
o Ya " <—o or a7 <— 7.30
2H < 2u < (7.30)

Consider the sum

i=1 n i=1 n n
n 5 2 n 1
= )aq; Eai-i-
i=1 = n
n
1
:Eaiz
n

which, by assumption (7.30), is less than 0. This is impossible unless a, = 1/n, implying that M is the most
efficient linear unbiased estimator of .

7.5. Show that if

lim £(©,)=60 and  lim Var(®,)=0

n—o

n— oo
then the estimator ©, is consistent.
Using Chebyshev’s inequality (2.116), we can write
2
ple, —0|=e=EO—1_1 pye —re,)+E®©,) -0}
& &
1
=—E{®,~E®, I +[E®,)— 6] +2[0, — E©,)I[E®,) - 0]}
1
=—(Var(®,) + E{[E(®,) — 01’} +2E{[®, — EO)I[E®,) 61}
£
Thus, if
lim E©,)=6 and  lim Var(®,)=0
then lim P(©, —6|=¢)=0

n—ow

that is, ©, is consistent [see Eq. (7.6)].

7.6. Let(X,, ..., X ) be a random sample of a uniform r.v. X over (0, a), where a is unknown. Show that

n

A = max(X,, X,, ..., X)) (7.31)
is a consistent estimator of the parameter a.

If X is uniformly distributed over (0, a), then from Eqgs. (2.56), (2.57), and (4.122) of Prob. 4.36, the pdf of
Z = max(X|, ..., X)) is

fz(z)=nfx(1)[FX(z)]"1=Z[2)n] 0<z<a (7.32)
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a n a n
Thus, E(A)=| zf.(9)dz=—| 7'dz= a
(A)= [y af@di== [z =
and lim E(A)=a
2\_ (4.2 _n ra p1, _ N 2
Next, E(A )—foz f(d —a—nfoz dz—n+2a
2 2 2
Var(4) = E(A?) — [E(A)f = - 0 = &
n+2 (m+1? (m+2)m+1)
and lim Var(A)=0
Thus, by Eqgs. (7.7) and (7.8), A is a consistent estimator of parameter a.
Maximum-Likelihood Estimation
7.7. Let(X,, ..., X)) be arandom sample of a binomial r.v. X with parameters (m, p), where m is assumed to

be known and p unknown. Determine the maximum-likelihood estimator of p.

The likelihood function is given by [Eq. (2.36)]

- oy ™) x g — ) [T} s\
L(p)= f(x(s--s%,5 P) o ]P 1-=p) )P I-p)
1 n

= (m) (m)pELIXi (1- p)(”'”_E;L]Xi)
X1 X,

Taking the natural logarithm of the above expression, we get

lnL(p):1nc+[ixiJlnp+(mn— ixiJln(l_p)

i=1 i=1

n m
where c= H( )
Xi

i=1

and d—lnL(p)——Ex —(mn—zx)

Setting d[In L(p)]/dp = 0, the maximum-likelihood estimate p,,, of p is obtained as

T ]

or Py :szl_ (7.33)

HM:

Hence, the maximum-likelihood estimator of p is given by

1 n
Py =—> X;=
mn =

1
=X
2 - (7.34)

7.8. Let(X e X)) be a random sample of a Poisson r.v. with unknown parameter A. Determine the
maximum-likelihood estimator of A.

The likelihood function is given by [Eq. (2.48)]

n_—Ajx *n}u DNES
)»’ A
L) =[x, X, A) = ||

xpleeex, !
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Thus, InL(A)=—nA+lAY x —Inc
i=1
where c=1 1N
[
d 1
and ﬁln L()L)——n-l—;lzlxi

Setting d[In L(A)]/dA = 0, the maximum-likelihood estimate }LML of A1is obtained as
i =1 7.35
)‘ML = ;E Xl- ( . )
Hence, the maximum-likelihood estimator of A is given by

1 -
AML=s(X1,...,X,,)=fEX,-=X (7.36)
nis

Let (X,, ..., X ) be a random sample of an exponential r.v. X with unknown parameter A. Determine the
maximum-likelihood estimator of A.

The likelihood function is given by [Eq. (2.60)]

LAY = (e iy = [ [ = a0
i=1
Thus, InL(A)=nlnA=2Yx
i=1
d n o«
and d71n L(A)= 27 E X;

i=1

Setting d[In L(A)]/dA = 0, the maximum-likelihood estimate )ALML of Ais obtained as

~ n
)\. =
ML (7.37)
2%
i=1
Hence, the maximum-likelihood estimator of A is given by
n 1
A =S(X,...,X): ==
e et X (7.38)
PR
i=1
Let (X, ..., X)) be a random sample of a normal random r.v. X with unknown mean y and unknown

variance 0. Determine the maximum-likelihood estimators of u and o?.

The likelihood function is given by [Eq. (2.71)]

1—[” 1 1 2
L ) = LR n; > = —— —_—— P
(‘Ll O) f(xl Xps U O) 11 \/ﬁo' exp[ 2 2 (X l,{) ]

o
n/2
(),
27 o

1 « 2
ey (xi - .U)
202 121
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n 1 < )
Thus, In L(u,0)=——=In2x) —nlno ——~ ;=
(#,0) === InQ27) ~n 202;(’6 n)

In order to find the values of u and o maximizing the above, we compute

a 1 n
—In L(u,0)=— ) (x; —
" (1,0) 62,2,(' )

n

F) 1 )
—IL(wo)=——+— ;—
o5 Lk, 0) o igl(x, 1

n
o
Equating these equations to zero, we get

i(xi ) =0
=

1 n

e Gt 2 =
Solving for fi,,, and G, , the maximum-likelihood estimates of uand o are given, respectively, by
N 1 ¢
Ao =;;x,~ (1.39)
PR A2
Oymr :;E(Xi - MML) (7.40)

I
-

Hence, the maximum-likelihood estimators of uand o® are given, respectively, by

1S =

My =—SX,=X

==X, (7.41)
171 _

S = ;E(X,- - Xy (7.42)

Bayes’ Estimation

7.11. Let (X,, ..., X)) be the random sample of a Bernoulli r.v. X with pmf given by [Eq. (2.32)]
fesp)=pd—p' x=0,1 (743)
where p, 0 = p = 1, is unknown. Assume that p is a uniform r.v. over (0, 1). Find the Bayes’ estimator of p.
The prior pdf of p is the uniform pdf; that is,
fp) =1 0<p<l
The posterior pdf of p is given by

DACITRRIE MY )

f(plxl,.--,xn): f('xl""’x")

Then, by Eq. (7.12),

f(xl""’xn?p):f(xl""sxnlp)f(p)

_ pEizlxi(l _p)"—Eizlxi =p"(1—py"™
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where m = Ef’_lxi and by Eq. (7.13),

FGseens %)= [ F s p)dp = [ (1= p)" " dp

Now, from calculus, for integers m and k, we have

m!k!

1
ml_ kd —
Jor"A=p)dp (m+k+1)

(7.44)

Thus, by Eq. (7.14), the posterior pdf of p is

SOy X, ) _ m+D!p"a-p) "
f(xp,..0x,) m!(n —m)!

f(p|x,,...,x,,):

and by Eqgs. (7.15) and (7.44),

E(plxl,---,xn)=f;pf(plxp---,xn)dp
— (n—"_l)‘ Lot _ n—m
—mfop d=p) dp
_ (+D! (m+Dlin—m)!
m!(n —m)! (n+2)!

:m-l-l: 1 Exi+1
n+2 n+2{<

Hence, by Eq. (7.16), the Bayes’ estimator of pis

1
Py :E(p|x1,...,x,,)—,sz

E X; +1] (7.45)
i=1

7.12. Let (X,, ..., X,) be a random sample of an exponential r.v. X with unknown parameter A. Assume that A
is itself to be an exponential r.v. with parameter a. Find the Bayes’ estimator of A.

The assumed prior pdf of Ais [Eq. (2.48)]

—aA
ae a,A>0
A)= ’
f@) {O otherwise
Now f(xls"'sxnl)‘) = H)Le—?»xi — Ane*AEi =l _ Ao
i=1

where m=73"_ x;. Then, by Eqgs. (7.12) and (7.13),

f(xl,...,xn):f:f(xl,...,ng)f(A) da
=f0w Ale M ae P dA
n!

= Me@mip =g
fO (a+m)n+1

By Eq. (7.14), the posterior pdf of Ais given by

n+tlan —(at+m)r
f(/x|xl,...,xn)=f(xlwwxnll)f(/l)=(a+m) e
FCo,ex,) a
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Thus, by Eq. (7.15), the Bayes’ estimate of Ais

},\\43 =E()Llxl,...,xn)=f0w)»f()tlxl,...,xn)dﬂt

(a+m)n+1 fo )LnJrl —(a+m)ir i
_(a -i-m)"+l (n+1)! (7.46)
n! (a+m)"?

n+1 n+1

and the Bayes’ estimator of Ais

n+1 n+1
A 7.47
o+ 2 X; arn (7:47)
i=1
7.13. Let (X,, ..., X ) be a random sample of a normal r.v. X with unknown mean u and variance 1. Assume

that u is itself to be a normal r.v. with mean O and variance 1. Find the Bayes’ estimator of .

The assumed prior pdf of wis

f(u)=\/;—”e’“2’2
Then by Eq. (7.12),
T X ) = F Qx50 X, [0 f(10)
= (zﬂ)m E(X —2M) \/;_e—uz/z

n )C2

exp —E—i

I W Il JO GRS g,
EY A T L el

2

2
n 1 n

exp E# exp Ex,- 2

( 21 2 2(""1‘1)[[._1 ] (nJ’_l)(H 1 n ]

= Qm) R eXp|— 2

Then, by Eq. (7.14), the posterior pdf of uis given by

f(xl’ n’;u)
f f(-xl’ n,[/{)d‘u

2
_ (n+1) =
Cexp|— 5 [ E )

where C = C(x,, ..., x,) is independent of u. However, Eq. (7.48) is just the pdf of a normal r.v. with mean

f(u|x1,..., =

(7.48)
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and variance

1
n+1

Hence, the conditional distribution of u given x|, ..., x, is the normal distribution with mean

and variance

1
n+1
Thus, the Bayes’ estimate of uis given by
~ 1 &
M3=ﬂuhwnwﬂ=n+h;% (7.49)
and the Bayes’ estimator of uis
1 G n =
My= X = X
5 n+1; = (7.50)
Let (X,, ..., X)) be a random sample of a r.v. X with pdf f(x; 6), where 6 is an unknown parameter. The

statistics L and U determine a 100(1 — «) percent confidence interval (L, U) for the parameter 6 if
PL<O<U)=1-—«a 0<a<l (7.51)

and 1 — «a is called the confidence coefficient. Find L and U if X is a normal r.v. with known variance
0? and mean u is an unknown parameter.

If X = N(u; 0?), then
_X-u

o/\n 1

is a standard normal r.v., and hence for a given a we can find a number z_, , from Table A (Appendix A) such that

X.

1

I |~
I\ZE

Z where X=

1

X—u
Ploz, <2 H < |=1-a 752
Iy 2 ( )

For example, if 1 — a =0.95,thenz,, =z, ,,s = 1.96,andif | — a=0.9,thenz,, =z, = 1.645. Now,
recalling that 0> 0, we have the following equivalent inequality relationships;

X—u
T <= <Zap
“ 0/\/; “

2 (0 1N) <X =< z4y(0 /)
—}?—za,z(o/\/Z)<—u<—)?+za,2(o/\/;)
and X+ 2,0 /\n)y>u>X—2z,,(0/\n)

Thus, we have

PIX + zyp(0/Nn)<u< X +z,n(0/Nn)l=1—a (7.53)
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and so

L=X—z,,(c/n) and U=X+2z,,(0/n)
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(7.54)

7.15. Consider a normal r.v. with variance 1.66 and unknown mean u. Find the 95 percent confidence interval

for the mean based on a random sample of size 10.

As shown in Prob. 7.14, for 1 — o= 0.95, we have Zan = %0005 = 1.96 and

2,0(0/n) =196(\/1.66 /1/10)=0.8

Thus, by Eq. (7.54), the 95 percent confidence interval for uis

X—-08,X+08)

Mean Square Estimation

7.16.

7.17.

Find the m.s. estimate of a r.v. ¥ by a constant c.

By Eq. (7.17), the m.s. error is

e=EIY —o)’1= [ (= f()dy

Clearly the m.s. error e depends on ¢, and it is minimum if

d oo
=2 -af(dy=0
or of  fody=c={" ) ds

Thus, we conclude that the m.s. estimate c of Yis given by
y=e=[ ¥ dy=EX)
Find the m.s. estimator of a r.v. ¥ by a function g(X) of the r.v. X.

By Eq. (7.17), the m.s. error is
e=E{lY =P} =" _[" [v= (P f(x. ) dx dy

Since f(x,y) = f(y|x) f(x), we can write

e= f:of(x) f:o[y — g f(y]x) dy} dx

Since the integrands above are positive, the m.s. error e is minimum if the inner integrand,

[ =P fo]x) dy

(7.55)

(7.56)

(7.57)

(7.58)
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is minimum for every x. Comparing Eq. (7.58) with Eq. (7.55) (Prob. 7.16), we see that they are the same form
if cis changed to g(x) and f(y) is changed to f(y |x). Thus, by the result of Prob. 7.16 [Eq. (7.56)], we conclude
that the m.s. estimate of Yis given by

Y=g =" y(y|x)dy=E¥|x) (7.59)
Hence, the m.s. estimator of Yis

Y = g(X) = E(Y|X) (7.60)

Find the m.s. error if g(x) = E(Y|x) is the m.s. estimate of Y.
As we see from Eq. (3.58), the conditional mean E(Y|x) of ¥, given that X = x, is a function of x, and by Eq. (4.39),
E[E(Y|X)] = E(Y) (7.61)

Similarly, the conditional mean E[g(X, Y)|x] of g(X, Y), given that X = x, is a function of x. It defines,
therefore, the function E[g(X, Y)|X] of the r.v. X. Then

XY XD = [ [ [ srnfs [0y rax
=7 7 s fO |2 fx) ddy (7.62)
= [ 7 ey f(x,y)dxdy=E[g(X.Y)]
Note that Eq. (7.62) is the generalization of Eq. (7.61). Next, we note that
Elg,(X),(V) |x] = Elg,()g,(V)]x] = g, WEIg,(¥)]] (7.63)
Then by Eqgs. (7.62) and (7.63), we have
Elg,(X)g,(Y)] = E{E[g,(X)g,(¥) | XI} = E{g,(X)E(g,(¥)| X1} (7.64)
Now, setting g,(X) = g(X) and g,(¥) = Y in Eq. (7.64), and using Eq. (7.18), we obtain
Elg(X)Y] = Elg(OE(Y|X)] = E[g*(X)]
Thus, the m.s. error is given by

e = E{[Y — g} = E(Y?) — 2E[g(X)Y] + E[g*(X)]
= E(Y?) — E[g°(X)] (7.65)

Let Y = X? and X be a uniform r.v. over (—1, 1). Find the m.s. estimator of Y in terms of X and its m.s. error.
By Eq. (7.18), the m.s. estimate of Yis given by
g) = EY|x) = EX?|X = x) = x*
Hence, the m.s. estimator of Yis
7V =x2 (7.66)
The m.s. error is

e=E{[Y — ¢gX)*} = E{{X>* - X*’}=0 (7.67)
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Linear Mean Square Estimation

7.20.

7.21.

7.22.

Derive the orthogonality principle (7.21) and Eq. (7.22).
By Eq. (7.20), the m.s. error is
e(a, b) = E{[Y — (aX + b)])*}
Clearly, the m.s. error e is a function of a and b, and it is minimum if de/da = 0 and de/db = 0. Now

% =E{2[Y —(aX +D)I(—X)} = —2E{[Y — (aX + b)]1X}
a

de

> =E{2[Y —(aX +Db)I(—1)} = —2E{[Y — (aX +D)]}

Setting de/da = 0 and de/db = 0, we obtain

E{[Y — (aX + b)]X} =0 (7.68)
E[Y— (aX+b)] =0 (7.69)

Note that Eq. (7.68) is the orthogonality principle (7.21).
Rearranging Eqs. (7.68) and (7.69), we get

E(X®a + EX)b = E(XY)
EX)a + b= E(Y)

Solving for a and b, we obtain Eq. (7.22); that is,

_ E(XY)— E(X)E®Y) :M:&
EXD—[EXF o ox ¥

b=E(Y)—aE(X)= uy — apiy

where we have used Eqs. (2.31), (3.51), and (3.53).

Show that m.s. error defined by Eq. (7.20) is minimum when Eqgs. (7.68) and (7.69) are satisfied.
Assume that ¥ = ¢X + d, where ¢ and d are arbitrary constants. Then

e(c,d) =E{lY —(cX+DP}=E{{Y—(@X+b)+ (a— )X+ (b—d))}
= E{[Y — (aX + b)]’} + E{[(a — )X + (b — D)’}
+2(a — OE{[Y — (aX + b)IX} + 2(b — D)E{[Y — (aX + )]}
=e(a,b) + E{[(a — o)X + (b — d))*}
+2(a — OE{[Y — (aX + D)X} + 2(b — d)E{[Y — (aX + b)]}

The last two terms on the right-hand side are zero when Eqgs. (7.68) and (7.69) are satisfied, and the second term on
the right-hand side is positive if @ # c and b #+ d. Thus, e(c, d) = e(a, b) for any ¢ and d. Hence, e(a, b) is minimum.

Derive Eq. (7.23).
By Eqgs. (7.68) and (7.69), we have

E{[Y — (aX + b)laX} = 0 = E{[Y — (aX + b)]b}
Then e =e(a,b) = E{[Y — (aX + b)]} = E{[Y — (aX + B)I[Y — (aX + b)]}
= E{[Y — (aX + b)]Y} = E(Y?) — aE(XY) — bE(Y)
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Using Eqgs. (2.31), (3.51), and (3.53), and substituting the values of a and b [Eq. (7.22)] in the above
expression, the minimum m.s. error is

e, =0y" tuy® —a(oxy + pyuy) = (y —apyuy

2 2_ O > 2 Oxy’ 2 2

=0y —a0yy =0y _LYZZOY (1_?/2):‘7}' (= pxy”)
Ox Ox Oy

which is Eq. (7.23).

Let Y = X?, and let X be a uniform r.v. over (—1, 1) (see Prob. 7.19). Find the linear m.s. estimator of
Y in terms of X and its m.s. error.

The linear m.s. estimator of Y in terms of Xis
VY=aX+b
where a and b are given by [Eq. (7.22)]

o
_9xy - _
=—3 b=uy —auy
oy

Now, by Egs. (2.58) and (2.56),
uy =E(X)=0
E(XXY)=EXX>)=EX>)= %filf dx=0
By Eq. (3.51),
0,, = Cov(XY) = E(XY) — EX)E(Y) =0
Thus,a = 0 and b = E(Y), and the linear m.s. estimator of Yis
Y=b=E®Y) (7.70)
and the m.s. error is

e=E{[Y— E)]*} = o2 (7.71)

Find the minimum m.s. error estimator of Y in terms of X when X and Y are jointly normal r.v.’s.
By Eq. (7.18), the minimum m.s. error estimator of Y in terms of Xis
Y=E{Y|X)

Now, when X and Y are jointly normal, by Eq. (3.108) (Prob. 3.51), we have

o o
EY | X)=Pyy =X+ Uy — Pyy —- iy
Ox Ox

Hence, the minimum m.s. error estimator of Yis

N o o
Y=E(Y|X)=pXY7YX+:uY_pXY7yMX (7.72)
Ox Ox

Comparing Eq. (7.72) with Eqs. (7.19) and (7.22), we see that for jointly normal r.v.’s the linear m.s.
estimator is the minimum m.s. error estimator.
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SUPPLEMENTARY PROBLEMS

7.25.

7.26.

7.27.

7.28.

7.29.

7.30.

7.31.

7.32.

7.33.

7.34.

7.35.

Let (X, ..., X)) be a random sample of X having unknown mean u and variance 0. Show that the estimator of
o? defined by

n

> X — X

i=1

52 =

n—1
where X is the sample mean, is an unbiased estimator of o?. Note that 512 is often called the sample variance.

Let (X, ..., X,) be a random sample of X having known mean u and unknown variance o2. Show that the
estimator of o2 defined by

n

1
S ==Y (X, — )
=YX

i=1

is an unbiased estimator of 2.

Let (X, ..., X)) be a random sample of a binomial r.v. X with parameter (m, p), where p is unknown. Show that
the maximum-likelihood estimator of p given by Eq. (7.34) is unbiased.

Let (X,, ..., X)) be a random sample of a Bernoulli r.v. X with pmf f(x; p) = p*(1 — p)'*, x=0,1, where p,
0 = p =1, is unknown. Find the maximum-likelihood estimator of p.

The values of a random sample, 2.9,0.5,1.7,4.3, and 3.2, are obtained from a r.v. X that is uniformly
distributed over the unknown interval (a, b). Find the maximum-likelihood estimates of a and b.

In analyzing the flow of traffic through a drive-in bank, the times (in minutes) between arrivals of 10
customers are recorded as 3.2,2.1,5.3,4.2,1.2,2.8,6.4,1.5,1.9, and 3.0. Assuming that the interarrival
time is an exponential r.v. with parameter A, find the maximum likelihood estimate of A.

Let (X, ..., X ) be a random sample of a normal r.v. X with known mean p and unknown variance 0. Find the
maximum likelihood estimator of o?.

Let (X,, ..., X)) be the random sample of a normal r.v. X with mean u and variance 0%, where u is unknown.
Assume that u is itself to be a normal r.v. with mean yu, and variance o7. Find the Bayes’ estimate of u.

Let (X, ..., X,) be the random sample of a normal r.v. X with variance 100 and unknown p. What sample size n
is required such that the width of 95 percent confidence interval is 5?

Find a constant a such that if Yis estimated by aX, the m.s. error is minimum, and also find the minimum m.s. error e,

Derive Eqgs. (7.25) and (7.26).

ANSWERS TO SUPPLEMENTARY PROBLEMS

7.25.

7.26.

Hint:  Show that §,> = ——— §  and use Eq.(7.29).

Hint: Proceed as in Prob. 7.2.
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7.27.

7.28.

7.29.

7.30.

7.31.

7.32.

7.33.

7.34.

7.35.

Hint:  Use Eq. (2.38).

i&=f
i=1

Gy, =min x; =0.5,
1

Py, =

I | =

by, =max x; =4.3
1

IR
&

b= o mx ) /L =
. (‘712 ‘72)/(‘712 o’

n=62

S =

Il
—_

a = E(XY)/E(X?) e, = E(Y?) — [EXY)/[EX)P

Hint: Proceed as in Prob. 7.20.
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CHAPTER 8

Decision Theory

8.1 Introduction

There are many situations in which we have to make decisions based on observations or data that are random
variables. The theory behind the solutions for these situations is known as decision theory or hypothesis test-
ing. In communication or radar technology, decision theory or hypothesis testing is known as (signal) detection
theory. In this chapter we present a brief review of the binary decision theory and various decision tests.

8.2 Hypothesis Testing

A. Definitions:

A statistical hypothesis is an assumption about the probability law of r.v.’s. Suppose we observe a random sam-
ple (X, ..., X)) of ar.v. X whose pdf f(x; 0) = f(x,, ..., x; ) depends on a parameter 6. We wish to test the
assumption 6 = 6, against the assumption 6 = 6,. The assumption 6 = 0, is denoted by H, and is called the
null hypothesis. The assumption 6 = 6, is denoted by H, and is called the alternative hypothesis.

H;: 6=0,

H.: 0=26

1

(Null hypothesis)

| (Alternative hypothesis)

A hypothesis is called simple if all parameters are specified exactly. Otherwise it is called composite. Thus,
suppose H,: 6 = 6, and H: 6 7 6; then H, is simple and H, is composite.

B. Hypothesis Testing and Types of Errors:

Hypothesis testing is a decision process establishing the validity of a hypothesis. We can think of the decision
process as dividing the observation space R" (Euclidean n-space) into two regions R, and R,. Let x = (x, ..., x,)
be the observed vector. Then if x € R, we will decide on H,j; if x € R, we decide on H,. The region R is known
as the acceptance region and the region R, as the rejection (or critical) region (since the null hypothesis is
rejected). Thus, with the observation vector (or data), one of the following four actions can happen:

H, true; accept H
H, true; reject H, (or accept H,)
H,| true; accept H|

N O I S

H, true; reject H, (or accept H)

The first and third actions correspond to correct decisions, and the second and fourth actions correspond to
errors. The errors are classified as

331
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1. Type Ierror: Reject H, (or accept H|) when Hj is true.
2. Type Il error: Reject H, (or accept H)) when H| is true.

Let P and P denote, respectively, the probabilities of Type I and Type II errors:

P, = P(D |H) = P(x ER,; H) 8.1
P, = P(D,|H) = Px ER; H)) (8.2)

where D, (i = 0, 1) denotes the event that the decision is made to accept H,. P, is often denoted by « and is known
as the level of significance, and Py is denoted by  and (1 — ) is known as the power of the test. Note that since
a and f3 represent probabilities of events from the same decision problem, they are not independent of each other
or of the sample size n. It would be desirable to have a decision process such that both o and  will be small.
However, in general, a decrease in one type of error leads to an increase in the other type for a fixed sample size
(Prob. 8.4). The only way to simultaneously reduce both types of errors is to increase the sample size (Prob.
8.5). One might also attach some relative importance (or cost) to the four possible courses of action and mini-
mize the total cost of the decision (see Sec. 8.3D).
The probabilities of correct decisions (actions 1 and 3) may be expressed as

P(D,|Hy) = P(x € R; Hy) (83)
P(D,|H,) = Px ER,; H,) (8.4)

In radar signal detection, the two hypotheses are

H,: No target exists

H,: Targetis present

In this case, the probability of a Type I error P, = P(D,|H,) is often referred to as the false-alarm probability
(denoted by P,), the probability of a Type II error P, = P(D,|H,) as the miss probability (denoted by P, ), and
P(D, |H,) as the detection probability (denoted by P,)). The cost of failing to detect a target cannot be easily deter-
mined. In general we set a value of P,. which is acceptable and seek a decision test that constrains P, to this value
while maximizing P, (or equivalently minimizing P,,). This test is known as the Neyman-Pearson test
(see Sec. 8.3C).

8.3 Decision Tests

A. Maximum-Likelihood Test:

Let x be the observation vector and P(x|H,), i = 0.1, denote the probability of observing x given that H, was
true. In the maximume-likelihood test, the decision regions R, and R, are selected as

R, = {x: P(x|Hy) > P(x|H,)}

(8.5)
R, = {x: P(x|H) < P(x|H )}
Thus, the maximum-likelihood test can be expressed as
H if Px|Hy)>Px|H,)
aoo={"0 TPEIH I (8.6)
H,  ifP(x|H)<Px|H)
The above decision test can be rewritten as
P(x|H,) ™
Pa|H) & 6

=
P(x|H) Ho
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If we define the likelihood ratio A(x) as

Aoy =P (8.8)
P(x | Hy) ’
then the maximum-likelihood test (8.7) can be expressed as
Hy
Ax) =1 (8.9)
Hy
which is called the likelihood ratio test, and 1 is called the threshold value of the test.
Note that the likelihood ratio A(x) is also often expressed as
x| H
AX)= M (8.10)
fx | Hy)

B. MAP Test:

Let P(H,|x),i = 0,1, denote the probability that H, was true given a particular value of x. The conditional prob-
ability P(H,|x) is called a posteriori (or posterior) probability, that is, a probability that is computed after an
observation has been made. The probability P(H,), i = 0, 1, is called a priori (or prior) probability. In the max-
imum a posteriori (MAP) test, the decision regions R, and R, are selected as
R, = {x: P(H,|x) > P(H,|x)} (8.11)
R, = {x: P(H,|x) < P(H,|x)}

Thus, the MAP test is given by

H, ifPH,|x)>PH, |x)
dxy=4"° ol | (8.12)
H, if P(Hy|x)<P(H,|x)
which can be rewritten as
P(H, |x) 1
P [x) = (8.13)
P(H, | x) Ho
Using Bayes’ rule [Eq. (1.58)], Eq. (8.13) reduces to
P(x|H,)P(H,) %
(X| 1)P(H,) =1 (8.14)

P(x|Hy)P(H,) Ho

Using the likelihood ratio A(x) defined in Eq. (8.8), the MAP test can be expressed in the following likelihood
ratio test as

4 _P(Hy 8.15
A2 P(H,) ®1

where n = P(H,)/P(H,) is the threshold value for the MAP test. Note that when P(H,) = P(H,), the maximum-
likelihood test is also the MAP test.

C. Neyman-Pearson Test:

As mentioned, it is not possible to simultaneously minimize both a(= P)) and B(= Pp). The Neyman-Pearson test
provides a workable solution to this problem in that the test minimizes f for a given level of a. Hence, the Neyman-
Pearson test is the test which maximizes the power of the test 1 — f for a given level of significance o. In the
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Neyman-Pearson test, the critical (or rejection) region R, is selected such that 1 — f = 1 — P(D0|H1) = P(D, |H D
is maximum subject to the constraint & = P(D,|H,) = «,. This is a classical problem in optimization: maximizing
a function subject to a constraint, which can be solved by the use of Lagrange multiplier method. We thus construct
the objective function

J=({0-pB)— Ma— o) (8.16)

where 4 = 0 is a Lagrange multiplier. Then the critical region R, is chosen to maximize J. It can be shown that
the Neyman-Pearson test can be expressed in terms of the likelihood ratio test as (Prob. 8.8)

H
A(X) 2] n=»>x (8.17)
Hoy

where the threshold value 1 of the test is equal to the Lagrange multiplier A, which is chosen to satisfy the
constraint a = «,.

D. Bayes’ Test:

Let Cij be the cost associated with (D, Hj), which denotes the event that we accept H, when HJ is true. Then the
average cost, which is known as the Bayes’ risk, can be written as

C = C, P(D,, H) + C,, PD,, H) + C,,P(D,, H) + C,PD,, H)) (8.18)
where P(D,, Hj) denotes the probability that we accept H, when H; is true. By Bayes’ rule (1.42), we have
C = C,, P(D,|H)P(H,) + C,, P(D,|H)P(H,) + C,,P(D,|H)PH,) + C,P(D,|H)P(H,) (8.19)

In general, we assume that

c,>C

00 and C

0 > C

(8.20)

10 11

since it is reasonable to assume that the cost of making an incorrect decision is higher than the cost of making
a correct decision. The test that minimizes the average cost C is called the Bayes’ test, and it can be expressed
in terms of the likelihood ratio test as (Prob. 8.10)

H' (Cio = Cop) P(Hy)

AX)=n= (8.21)
Hy (Co —C)P(H))
Note that when C,, — C,, = C;;, — C,,, the Bayes’ test (8.21) and the MAP test (8.15) are identical.
E. Minimum Probability of Error Test:
If we set C, = C,; = 0and C;;, = C,, = 1 in Eq. (8.18), we have
C=P®D, H)+ PD, H)=P, (8.22)

which is just the probability of making an incorrect decision. Thus, in this case, the Bayes’ test yields the min-
imum probability of error, and Eq. (8.21) becomes

i, P(H,)
Ax) = n=—"U :
(x) P =3 ) (8.23)

We see that the minimum probability of error test is the same as the MAP test.
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F. Minimax Test:

We have seen that the Bayes’ test requires the a priori probabilities P(H,)) and P(H ). Frequently, these probabil-
ities are not known. In such a case, the Bayes’ test cannot be applied, and the following minimax (min-max)
test may be used. In the minimax test, we use the Bayes’ test which corresponds to the least favorable P(H,)
(Prob. 8.12). In the minimax test, the critical region R¥ is defined by

max C[P(H,), Rf] =min max C[P(H,),R]< max C[P(H,),R,] (8.24)
P(Hy) R P(Hy) P(Hy)

for all R, # R’ In other words, R7 is the critical region which yields the minimum Bayes’ risk for the least favor-
able P(H,)). Assuming that the minimization and maximization operations are interchangeable, then we have

min max C[P(H,), R, 1= max min C[P(H,),R,] (8.25)
R, P(Hp) P(Hy) R

The minimization of C [P(H,), R,] with respect to R, is simply the Bayes’ test, so that

min C[P(Hy). Ri]1= C*[P(H,)] (8.26)
1

where C*[P(H,)] is the minimum Bayes’ risk associated with the a priori probability P(H). Thus, Eq. (8.25)
states that we may find the minimax test by finding the Bayes’ test for the least favorable P(H,), that is, the P(H,)
which maximizes C [P(H,)].

SOLVED PROBLEMS

Hypothesis Testing

8.1. Suppose a manufacturer of memory chips observes that the probability of chip failure is p = 0.05. A
new procedure is introduced to improve the design of chips. To test this new procedure, 200 chips could
be produced using this new procedure and tested. Let r.v. X denote the number of these 200 chips that fail.
We set the test rule that we would accept the new procedure if X = 5. Let

H;: p =005 (No change hypothesis)

H: p<005 (Improvement hypothesis)

Find the probability of a Type I error.

If we assume that these tests using the new procedure are independent and have the same probability of failure
on each test, then X is a binomial r.v. with parameters (n, p) = (200, p). We make a Type I error if X = 5 when
in fact p = 0.05. Thus, using Eq. (2.37), we have

P, =P(D,|H,)=P(X=5; p=005)

5
- E (200) (0.05)4(0.95)20*
k=0 k

Since n is rather large and p is small, these binomial probabilities can be approximated by Poisson
probabilities with A = np = 200(0.05) = 10 (see Prob. 2.43). Thus, using Eq. (2.119), we obtain

5 k
—10 10
o710

A= X!

=0.067
k=0

Note that H,, is a simple hypothesis but H, is a composite hypothesis.
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8.2. Consider again the memory chip manufacturing problem of Prob. 8.1. Now let
Hy

H: p=002 (Improvement hypothesis)

p =0.05 (No change hypothesis)

Again our rule is, we would reject the new procedure if X > 5. Find the probability of a Type II error.
Now both hypotheses are simple. We make a Type II error if X > 5 when in fact p = 0.02. Hence, by Eq. (2.37),
Py =P(Dy|H)=P(X>5;p=002)

= E (200) (0.02)¢(0.98)20 ¢
k=6 k

Again using the Poisson approximation with A = np = 200(0.02) = 4, we obtain

5 k

4 4
~1_ 44 _
By=~1 /Zoe 7 =0215
8.3. Let(X,, ..., X ) be a random sample of a normal r.v. X with mean u and variance 100. Let
Hy: w=350

Hp: w=u, (>50)

and sample size n = 25. As a decision procedure, we use the rule to reject H if X = 52, where X is the
value of the sample mean X defined by Eq. (7.27).

(a) Find the probability of rejecting H: u = 50 as a function of u (> 50).
(b) Find the probability of a Type I error a.
(c) Find the probability of a Type Il error 8 (i) when u, = 53 and (ii) when u, = 55.

(a)  Since the test calls for the rejection of H;: u = 50 whenx = 52, the probability of rejecting H, is given by
8w = P(X=52; ) (8.27)

Now, by Eqgs. (4.136) and (7.27), we have

_ 1 100
Var(X)=o0y’=—0>=——=4
X)=ox" =] 25
Thus, X is N(u; 4), and using Eq. (2.74), we obtain
X - 52— 52—
o) =P 2# 22!@“)_141,( 5 “) ©=50 (8.28)

The function g(u) is known as the power function of the test, and the value of g(u) at u = u,, g(u,), is
called the power at u, .

(b)  Note that the power at u = 50, g(50), is the probability of rejecting H: u = 50 when H, is true —that is,
a'Type I error. Thus, using Table A (Appendix A), we obtain

a=PF :g(5O)=1—<D(52;50)=1—<D(1):O.1587
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8.4. Consider the binary decision problem of Prob. 8.3. We modify the decision rule such that we reject

337

Note that the power at u = u,, g(u ), is the probability of rejecting H,: u = 50 when u = u,. Thus, 1 — g(u,)

is the probability of accepting H, when u = u, —that is, the probability of a Type II error 3.

(i) Setting u = w, = 53 in Eq. (8.28) and using Table A (Appendix A), we obtain

1

ﬁ=ﬁl=1—g<53>=<1>(52;53)=<1>(— !

=1-®|—|=03085
2 (2)

(i1) Similarly, for u = u, = 55 we obtain
B=P;=1—g(55)= @(52255) = @(—2) =1- cb(“;’) =0.0668

Notice that clearly, the probability of a Type II error depends on the value of u,.

Hjifx=c.

(a) Find the value of ¢ such that the probability of a Type I error a = 0.05.

(b) Find the probability of a Type Il error 8 when u, = 55 with the modified decision rule.

(@)

(b)

Using the result of part (b) in Prob. 8.3, c is selected such that [see Eq. (8.27)]
a=g(50) = P(X=c; u=50) =0.05

However, when u = 50,X = N(50; 4), and [see Eq. (8.28)]

2(50)=P }(25‘)20250;M—so)—1—¢( 6250)—0‘05

From Table A (Appendix A), we have ® (1.645) = 0.95. Thus,

c—50

=1.645 and c=50+2(1.645)=53.29

The power function g(u) with the modified decision rule is

=P(X=5329u)=P
g(u) = P( w 2 > 2

X—u 253.29;4,“)_1_(1)( 53.29#)

Setting u = u, = 55 and using Table A (Appendix A), we obtain

B=F=1-g(55=a

( 53.29 - 55 )-@(—0.855)

=1—®(0.855)=0.1963

Comparing with the results of Prob. 8.3, we notice that with the change of the decision rule, o is reduced

from 0.1587 to 0.05, but Bis increased from 0.0668 to 0.1963.

8.5. Redo Prob. 8.4 for the case where the sample size n = 100.

(@)

With n = 100, we have

2 _100_
100

Var(}?)=oxz=lo 1
n
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As in part (a) of Prob. 8.4, cis selected so that
a=g(50) =P(X=c; u=50)=0.05

Since X = N(50; 1), we have

g(50)—P(X1502C150;

u-SO)-l—d)(c—SO)—0.0S
Thus, c-50=1.645 and c=51.645
(b) The power function is
g(w)=P(X=51.645; )

X—pu _51645—u,
1 1 ’

=P

u)=1—<1>(51.645 _—)

Setting = u, = 55 and using Table A (Appendix A), we obtain
B=P,=1—g(55) =D(51.645 — 55) = ®(—3.355) =0.0004

Notice that with sample size n = 100, both o and f have decreased from their respective original values
of 0.1587 and 0.0668 when n = 25.

Decision Tests

8.6.

In a simple binary communication system, during every 7 seconds, one of two possible signals s,(r) and
5,(t) is transmitted. Our two hypotheses are

Hy

H, : s,t) was transmitted.

5,() was transmitted.

‘We assume that
5o =0 and s (=1 0<t<T

The communication channel adds noise n(f), which is a zero-mean normal random process with variance
1. Let x(r) represent the received signal:

x(t) = s + n(o) i=0,1

We observe the received signal x(f) at some instant during each signaling interval. Suppose that we
received an observation x = 0.6.

(@) Using the maximum likelihood test, determine which signal is transmitted.
(b) Find P, and P,.

(a) The received signal under each hypothesis can be written as

1+n

=
Il


http://6.In

CHAPTER 8 Decision Theory 339

Then the pdf of x under each hypothesis is given by

f(leO): 1 e*x2/2

V2r

S|y = e

y

The likelihood ratio is then given by

AX) = f&|Hy) = 1)
f@|Hy)
By Eq. (8.9), the maximum likelihood test is

12y O
T =
Hy

Taking the natural logarithm of the above expression, we get

14 Hq
x——=0 or x=—
2 Hy Hy 2

Since x = 0.6 > %, we determine that signal s,(¢) was transmitted.

(b) The decision regions are given by

Ry = x:x<l = —00,—1 R, = x:x>l = —l,oo
2 2 2 2
Then by Eqgs. (8.1) and (8.2) and using Table A (Appendix A), we obtain

B =P(D;|Hy) = le f(x|Hy)dx= ﬁ f:ze_lez dx=1- q)(;) =0.3085
Py = P(D, |H1):fR0f(x|H,)dx:ﬁf_'fe*“‘*”z’2 dx

- ﬁ [ e ay= cp(—;] =0.3085
8.7. In the binary communication system of Prob. 8.6, suppose that P(H,) = % and P(H|) = %

(@) Using the MAP test, determine which signal is transmitted when x = 0.6.
(b) Find P and P.

(a) Using the result of Prob. 8.6 and Eq. (8.15), the MAP test is given by

)
Hy P(H,)

Taking the natural logarithm of the above expression, we get

14 Hq
x——=1In2 or x=—+In2=1.193
2 Hy Hy 2
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Since x = 0.6 < 1.193, we determine that signal s,(r) was transmitted.

(b) The decision regions are given by

Ry = {x:x<1.193} = (— =, 1.193)
R, = {x:x>1.193} = (1.193, %)

Thus, by Egs. (8.1) and (8.2) and using Table A (Appendix A), we obtain

P, :P(D1|H0)=fR] f(x|H0)dx=ﬁffme*"2/2 dx=1—®(1.193)=0.1164

1 1193 _(_1)2
PH:P(DO|H1):fROf(x|H1)dx:ﬁf7w D2 g

1

0.193 _ 2
=— e " dy=®(0.193) =0.5765
N2mw f*‘”

8.8. Derive the Neyman-Pearson test, Eq. (8.17).
From Eq. (8.16), the objective function is
J=(—p) — Ma— a)=PD,|H)— MPD, |H,) — &] (8.29)

where A is an undetermined Lagrange multiplier which is chosen to satisfy the constraint a = ¢,. Now, we
wish to choose the critical region R, to maximize J. Using Egs. (8.1) and (8.2), we have

J=lef(x|H1)dx—A[lef(x|H0)dx—a0
:le [f(x|H)) = Af(x| Hy)ldx + Aa (8.30)

To maximize J by selecting the critical region R, we select x €R, such that the integrand in Eq. (8.30) is
positive. Thus, R, is given by

R, ={x: [f(x|H) — A f(x|H,)] >0}
and the Neyman-Pearson test is given by

_f|Ep I

A =
® f(XlHo) Ho

and A is determined such that the constraint
a=P= P(D1|H0)=fRI f(x|Hy)dx=a,
is satisfied.

8.9. Consider the binary communication system of Prob. 8.6 and suppose that we require that

a= P =025,
(@) Using the Neyman-Pearson test, determine which signal is transmitted when x = 0.6.
(b) Find P.

(a) Using the result of Prob. 8.6 and Eq. (8.17), the Neyman-Pearson test is given by

1y M
VD = )
Hy
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Taking the natural logarithm of the above expression, we get

15 Hiq
x——=InA or x=—+Ini
2H0 Hy

The critical region R, is thus
1
R ={xx>—+IhA
2
Now we must determine A such that & = P, = P(D, |H0) =0.25. By Eq. (8.1), we have

1 © _xl 1
A =P(D1|Ho)=lef(x|Ho)dX=ﬁf”2ﬂnAe 2 dx=1—¢(2+lnlj

Thus, I—Q(;-Hn )L)=0.25 or CD(;—F]H A)=0.75

From Table A (Appendix A), we find that ®(0.674) = 0.75. Thus,

%+lnA:0.674—>A:1.19

Then the Neyman-Pearson test is

H

1
x =0.674
Hy

Since x = 0.6 < 0.674, we determine that signal s,(r) was transmitted.

(b) By Eq.(8.2), we have

0.674

P11:P(DO|H1):fROf(x|H1)dx= f_m T2 gy

1
N2

—0326 _ 25 _
e dy=®(—0.326)=0.3722

1
i
8.10. Derive Eq. (8.21).
By Eq. (8.19), the Bayes’risk is
C = C,, P(D,|Hy)P(H,) + C,, P(D,|H)P(H,) + C, P(D,|H,)P(H,) + C, P(D,|H)P(H,)
Now we can express
P(Di|Hj)=fRif(x|Hj)dx i=0,1;j=0,1 (8.31)

Then C can be expressed as

C=Cy P(HO)fRO F(x|Hy)dx +C P(Hy) [, J(x|Hy)dx
(8.32)
+Co P(H) [ f(x|H))dx+C, WPHD [ f(x|H\)dx
Since RyU R, = Sand Ry N R, = ¢, we can write
fROf(x|Hj)dx=L f(x|Hj)dx—fR1f(x|Hj)dx=1—lef(x|Hj)dx

Then Eq. (8.32) becomes

C=CyP(Hy)+ CyP(H,) + le {[(Cyp — Con) P(Hy) f (x| H)I = [(Co; — C\)P(H,) f (x| H)]} dx
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The only variable in the above expression is the critical region R,. By the assumptions [Eq. (8.20)] C,, > C,,
and C;, > C,,, the two terms inside the brackets in the integral are both positive. Thus, C is minimized if R, is
chosen such that

(C()] - C”)P(H]) f(lel) > (C]O - Coo)P(Ho) f(leo)
for all x € R,. That is, we decide to accept H, if

(Cy, — C,)DP(H)) f(x|H,) > (C,, — C,)P(H,) f(x|H,)
In terms of the likelihood ratio, we obtain

_ S| HD B (Chp = Cp) P(Hy)
f(x|Hy) Hy (Cy — Cyy)P(H))

A(x)
which is Eq. (8.21).

8.11. Consider a binary decision problem with the following conditional pdf’s:

1 -
f(x|H0)=—e | x]
2
fx | H)= e_ZM
The Bayes’ costs are given by

Cp=¢C,=0 C

01

=2 C,=1

(a) Determine the Bayes’ test if P(H,) = % and the associated Bayes’ risk.
(b) Repeat (a) with P(H,) = %

(a) The likelihood ratio is

_f&[H) _ e

AX) =21
f&[Hy) 1] (8.33)
2
By Eq. (8.21), the Bayes’ test is given by
2

o H (1_0)5 . ol

20z 31 o hI=z=2

H, (2_0)% Hy 2

Taking the natural logarithm of both sides of the last expression yields

Hy 1
|x| s —ln(2)=0.693

Ho
Thus, the decision regions are given by

Ry={x:|x|>0.693} R ={x:x]|<0.693}

_ T I o
Then Pl—P(D1|H0)—f_0'6%Ee dx—ZfO Ee dx=0.5

_ _ —0.693 » © ) _ o ) _
Py=P(Dy|H)=[ e Ydo [ e de=2 [ e dx=025



CHAPTER 8 Decision Theory 343
and by Eq. (8.19), the Bayes’risk is

C=P(D,|Hy)P(H,)+2P(Dy| H)P(H)=(0.5)

2 1)
3)+2(0.25)(3) =05

(b) The Bayes’test is

1
H 1=0)~ H
2011 = 721 =1 ozl
" @-0 2 Ho 4

Again, taking the natural logarithm of both sides of the last expression yields
Hy 1
|x|=—In|—|=1386
Hy 4
Thus, the decision regions are given by
Ry ={x:|x|>12386} R, ={x:|x| <1386}
_ 1386l
Then R =P(D,|Hy)=2 [, J¢ dx=075
Py =P(Dy|H)=2 [ 1“38662* dx =0.0625

and by Eq. (8.19), the Bayes’risk is

C= (0.75)(;) + 2(0.0625)(;) =04375
8.12. Consider the binary decision problem of Prob. 8.11 with the same Bayes’ costs. Determine the
minimax test.

From Eq. (8.33), the likelihood ratio is

_SGIHD gy

A =
= Hy)

In terms of P(H,)), the Bayes’ test [Eq. (8.21)] becomes

el 21 _PHY o D1 P(H)
Hy 2 1— P(H,) Hy 4 1—P(H,)

Taking the natural logarithm of both sides of the last expression yields

H _
|x|§] In 41 P(HO)]:

8.34
0 P(H,) (839

For P(H) > 0.8, d becomes negative, and we always decide H,. For P(H,) < 0.8, the decision regions are

R, = {x:|x|> &} R, = {x:|x|< &}
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Then, by setting C;, = C;, =0, C,; = 2,and C;, = 1 in Eq. (8.19), the minimum Bayes’riské* can be
expressed as a function of P(H,) as

C*[P(Ho)]—P(HO)f Lol g 1201 - P(H, )] [f Hrdx+ [Te Zde]

=P(H,) fo e " dx+4[1— P(H,)] fé e dx
=P(Hy)(1— e °)+2[1— P(H)le > (8.35)
From the definition of d [Eq. (8.34)], we have

o _ 41— P(HY)]
P(Hj)

0 P(Hy) s P(Hy)

Thus, and e e ——
4[1—P(H)] 16[1— P(H,)]

Substituting these values into Eq. (8.35), we obtain

8P(H,)— 9P*(H,)

CHP(HY ==
0

Now the value of P(H,)) which maximizes C* can be obtained by setting dé*[P(HO)]/dP(HO) equal to zero and
solving for P(H,)). The result yields P(H) = % Substituting this value into Eq. (8.34), we obtain the following
minimax test: ;

4f1-2
3 —in2=0.69
D

3

H,
|x| =
H,

8.13. Suppose that we have n observations X, i = 1, ..., n, of radar signals, and X; are normal iid r.v.’s under
each hypothesis. Under H,, X, have mean u, and variance 0, while under H,, X, have mean g, and
variance 02, and u, > u,. Determine the maximum likelihood test.

By Eq. (2.71) for each X,, we have

1
f(xi|H0)=mexp

1
T2 T Mo)z]

1
FlulHy) = J_n ep[ ZOz(x,«—uoz]

Since the X; are independent, we have

f(leo Hf(x |H0 e P[ 20 2 E(x .“0)

f(leo— f(x |H))= iy (x w)’
J_ 20

|

With u, — u, > 0, the likelihood ratio is then given by

S(x|H}) 1|
Ax)= f(xllH(l)) =exp {202{; 2(u — po)x; — ”(Mlz - .“02)
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8.14.

Hence, the maximum likelihood test is given by

1 n
exp {2 [E 200 = )% — n(wy” = g”)
20014

Hy
=1
Hy

Taking the natural logarithm of both sides of the above expression yields

.uo E ‘ n(M] _Ho %)

(8.36)
+
or 1 E S Mo

Equation (8.36) indicates that the statistic

provides enough information about the observations to enable us to make a decision. Thus, it is called the
sufficient statistic for the maximum likelihood test.

Consider the same observations X,i=1,..,n, of radar signals as in Prob. 8.13, but now, under H,,,
X, have zero mean and variance 002, while under H 1» X; have zero mean and variance 012, and 012 > 002.
Determine the maximum likelihood test.

In a similar manner as in Prob. 8.13, we obtain

1 1 <
T oy exp[_ : 2 ""2)

1 I Qo2
f(x|H))= exp|— x;
| 1 (2na]2)n/2 2012 E

With 012 — 002 > 0, the likelihood ratio is

AX)= 4f(X|H1) — (‘70)” ex
fx|Hy) \o

02 —0,% ) w
p 22 Exi

20,70,

and the maximum likelihood test is

(Oo) exp
oy
Taking the natural logarithm of both sides of the above expression yields

n H, 2 2_2
Sl

O — 0y

(ot 35

i=1

Note that in this case,

n
sXpeos X,)= Y X7
i=1

is the sufficient statistic for the maximum likelihood test.
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8.15. In the binary communication system of Prob. 8.6, suppose that we have n independent observations
X, =X),i=1,...,n,where0 <t < - <t =T.

(a) Determine the maximum likelihood test.

(b) Find P, and P forn = Sandn = 10.

(a) Setting w, = 0and u, = 1 in Eq. (8.36), the maximum likelihood test is

n Hyq
— X; = —
niE H
1 n
(b) Let Yy = - E X,

Then by Eqs. (4.132) and (4.136), and the result of Prob. 5.60, we see that Y'is a normal r.v. with zero
mean and variance 1/n under H,,and is a normal r.v. with mean 1 and variance 1/n under H,. Thus,

n_ = any
a=qu@5&ﬁQWQ@=%EL/<m;@

1 o
= i R dg=1-0(n/2)
Jn —(n/2)(y—1)*
PH:P(D0|H1):fR0fy(y|H1)dy: ﬁfl&e RO gy

e e =1 o

Note that P, = P};. Using Table A (Appendix A), we have

Py=1—-®(1.118) =0.13138 forn=75
P=P;=1—®(1.581) =0.057 forn=10

8.16. In the binary communication system of Prob. 8.6, suppose that s,() and s,(¢) are arbitrary signals and
that n observations of the received signal x(¢) are made. Let n samples of s,(t) and s,(?) be represented,
respectively, by

So = [So;» Sgas -+ S, 1" and S, =[5> S50 oo sy, 1T

> “ln

where T denotes “transpose of.” Determine the MAP test.

For each X, we can write
1 1 2
fOxi|Ho) = ﬁexp ~5 (x; = So;)

1 1 2
x| H)=—==¢exp|—=(x; —5y;
f(ll 1) \/ﬂ pl: 2(1 lt)jl
Since the noise components are independent, we have

)= sy =01
i=1
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and the likelihood ratio is given by

n

_meQZLI

n

f(X|HO) l_[ exp [*%(xi - SO[)Z]
i=1

exp [— %(xi - sli)z]

A(X)

i=

=eXp ) (Sli - SOi)xi _1(511‘2 - 301'2)
2
Thus, by Eq. (8.15), the MAP test is given by

- )
Hy

n
L 2 o
exp E(sl'—so-)x-—f(sl' — Soi )
[il i i/ ol i P(Hl)

Taking the natural logarithm of both sides of the above expression yields

P(H,)

. 4 L 2
(51, — Sp;)x; = n +—(s; — So;) (8.38)
Z o [P(Hl)] PR

SUPPLEMENTARY PROBLEMS

8.17. Let(X,, ..., X)) be arandom sample of a Bernoulli r.v. X with pmf
fap=p d-p*  x=0,1

where it is known that 0 <p = 12 Let

and n = 20. As a decision test, we use the rule to reject H if E:’:lxi =6.

(a) Find the power function g(p) of the test.

(b) Find the probability of a Type I error c.

(c) Find the probability of a Type Il error 3 (i) when p, = :1‘ and (ii) when p, = %).

. Let (Xl s ...,Xn) be a random sample of a normal r.v. X with mean u and variance 36. Let
Hy: u=350
H: wu=355

As a decision test, we use the rule to accept H,, if ¥ < 53, where & is the value of the sample mean.

(a) Find the expression for the critical region R, .

(b) Find aand Bforn =16.



348 CHAPTER 8 Decision Theory

8.19. Let(X,, ..., X)) be arandom sample of a normal r.v. X with mean u and variance 100. Let
Hy: u=50
Hi: u=355

As a decision test, we use the rule that we reject H, if ¥ = c. Find the value of ¢ and sample size n such that
a=0.025and =10.05.

8.20. Let X be a normal r.v. with zero mean and variance o2. Let

Determine the maximum likelihood test.

8.21. Consider the binary decision problem of Prob. 8.20. Let P(H,)) = % and P(H)) = % Determine the MAP test.

8.22. Consider the binary communication system of Prob. 8.6.
(a) Construct a Neyman-Pearson test for the case where o =0.1.

(b) Find .

8.23. Consider the binary decision problem of Prob. 8.11. Determine the Bayes’ test if P(H,) = 0.25 and the
Bayes’ costs are

ANSWERS TO SUPPLEMENTARY PROBLEMS

&( 20 1
817. (@) gp)=Y| " [Pa-p** o0<p=—
k=0 k 2
(b) «=00577; (c) (i) f=02142, (i) f=0.0024
8.18. (@) R ={(x,...,xy);X¥=53}  wherex= 1 Y x
n n=1
(b) «=00228,=0.0913

8.19. ¢=52.718,n=52
H,
8.20. |x|=136
Ho
H,
8.21. |x|=1923
Hy
H,
822, (a) |x|=1282; (b) B=06111
Ho

H;
8.23. [x[=1.10
0



CHAPTER 9

Queueing Theory

9.1 Introduction

Queueing theory deals with the study of queues (waiting lines). Queues abound in practical situations. The ear-
liest use of queueing theory was in the design of a telephone system. Applications of queueing theory are found
in fields as seemingly diverse as traffic control, hospital management, and time-shared computer system design.
In this chapter, we present an elementary queueing theory.

9.2 Queueing Systems

A. Description:

A simple queueing system is shown in Fig. 9-1. Customers arrive randomly at an average rate of A . Upon
arrival, they are served without delay if there are available servers; otherwise, they are made to wait in the queue
until it is their turn to be served. Once served, they are assumed to leave the system. We will be interested in
determining such quantities as the average number of customers in the system, the average time a customer
spends in the system, the average time spent waiting in the queue, and so on.

Arrivals Departures
Queue Service p———>p

v
v

Fig. 9-1 A simple queueing system.

The description of any queueing system requires the specification of three parts:

1. The arrival process
2. The service mechanism, such as the number of servers and service-time distribution
3. The queue discipline (for example, first-come, first-served)

B. Classification:

The notation A/B/s/K is used to classify a queueing system, where A specifies the type of arrival process,
B denotes the service-time distribution, s specifies the number of servers, and K denotes the capacity of the sys-
tem, that is, the maximum number of customers that can be accommodated. If K is not specified, it is assumed
that the capacity of the system is unlimited. For example, an M/M /2 queueing system (M stands for Markov)
is one with Poisson arrivals (or exponential interarrival time distribution), exponential service-time distribution,

349
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and 2 servers. An M/G/1 queueing system has Poisson arrivals, general service-time distribution, and a single
server. A special case is the M/D/1 queueing system, where D stands for constant (deterministic) service time.
Examples of queueing systems with limited capacity are telephone systems with limited trunks, hospital emer-
gency rooms with limited beds, and airline terminals with limited space in which to park aircraft for loading and
unloading. In each case, customers who arrive when the system is saturated are denied entrance and are lost.

C. Useful Formulas:

Some basic quantities of queueing systems are

the average number of customers in the system

the average number of customers waiting in the queue

the average number of customers in service

the average amount of time that a customer spends in the system
: the average amount of time that a customer spends waiting in the queue
: the average amount of time that a customer spends in service

s
Many useful relationships between the above and other quantities of interest can be obtained by using the
following basic cost identity:
Assume that entering customers are required to pay an entrance fee (according to some rule) to the system.
Then we have

~
Rall>

=3I F0

Average rate at which the system earns = A_ X average amount an entering customer pays 9.1
where A  is the average arrival rate of entering customers

A, = lim X®

t—ow f

and X(¢) denotes the number of customer arrivals by time 7.
If we assume that each customer pays $1 per unit time while in the system, Eq. (9.1) yields

L=AW (92)

Equation (9.2) is sometimes known as Little’s formula.
Similarly, if we assume that each customer pays $1 per unit time while in the queue, Eq. (9.1) yields

L =AW, 9.3)
If we assume that each customer pays $1 per unit time while in service, Eq. (9.1) yields

L =AW 94
Note that Egs. (9.2) to (9.4) are valid for almost all queueing systems, regardless of the arrival process, the num-

ber of servers, or queueing discipline.

9.3 Birth-Death Process

We say that the queueing system is in state S, if there are n customers in the system, including those being served.
Let N(r) be the Markov process that takes on the value n when the queueing system is in state S, with the fol-
lowing assumptions:

1. If the system is in state S, it can make transitions only to S, _,orS ., n=1;that is, either a
customer completes service and leaves the system or, while the present customer is still being
serviced, another customer arrives at the system; from S,)» the next state can only be § -

2. [If the system is in state S, at time ¢, the probability of a transition to S, , | in the time interval
(¢, t + Ar) is a, At. We refer to a, as the arrival parameter (or the birth parameter).
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3. If the system is in state S at time ¢, the probability of a transition to S, _ | in the time interval
(¢, t + Ar) is d At. We refer to d, as the departure parameter (or the death parameter).

The process N(f) is sometimes referred to as the birth-death process.
Let p (1) be the probability that the queueing system is in state S, at time #; that is,

p,(0) = P{N(@) = n} 9.5)

Then we have the following fundamental recursive equations for N(7) (Prob. 9.2):

p:l(t) = _(an + dn)pn(t) + an*lpnf l(t) + dn+ lpn+l(t) n=1
Pot) = —(ay + d)py() + d,p, (1) 9.6)

Assume that in the steady state we have
lim p, ()= p, .7
11—

and setting p(#) and p/(t) = 0 in Egs. (9.6), we obtain the following steady-state recursive equation:

(an+dn)pn:anf1pnfl+d

n+1pn+l

n=1 9.8)
and for the special case with d, = 0,
a,p, = d, p, 9.9

Equations (9.8) and (9.9) are also known as the steady-state equilibrium equations. The state transition diagram
for the birth-death process is shown in Fig. 9-2.

a, a4 a, 4 a,
OHONO OHOND
d1 d2 dn dn +1

Fig. 9-2 State transition diagram for the birth-death process.

Solving Egs. (9.8) and (9.9) in terms of p,, we obtain

= a_o
P 4, Po
— Gy
= 9.10
P dyd, Po ( )
_ Gody et Gy
Pn d]dzdn Po
where p, can be determined from the fact that
Sy =1450 + B0 gy =1 (9.11)
=0 d dd,

provided that the summation in parentheses converges to a finite value.
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9.4 The M/M/1 Queueing System

In the M/M/1 queueing system, the arrival process is the Poisson process with rate A (the mean arrival rate) and
the service time is exponentially distributed with parameter u (the mean service rate). Then the process N(f)
describing the state of the M/M/1 queueing system at time 7 is a birth-death process with the following state inde-
pendent parameters:

a = A n=0 d =u n=1 9.12)
Then from Egs. (9.10) and (9.11), we obtain (Prob. 9.3)

po=1-2=1-p 9.13)
u

pn=b—£J(§)=a—pm" 9.14)

where p = A /u < 1, which implies that the server, on the average, must process the customers faster than their
average arrival rate; otherwise, the queue length (the number of customers waiting in the queue) tends to infin-
ity. The ratio p = A /u is sometimes referred to as the traffic intensity of the system. The traffic intensity of the
system is defined as

mean service time _ mean arrival rate

Traffic intensity = - : - -
mean interarrival time  mean service rate

The average number of customers in the system is given by (Prob. 9.4)

L=_P -+ (9.15)
I—p u—=4

Then, setting A, = A in Egs. (9.2) to (9.4), we obtain (Prob. 9.5)

w=_1 -1 (9.16)
u—A uld-p)
A I 9.17)
T ouu—2  ud-p)
22 0
L=—" = 9.18
¢ uw—x) 1-p ©19

9.5 The M/M/s Queueing System

In the M/M/s queueing system, the arrival process is the Poisson process with rate A and each of the s servers
has an exponential service time with parameter w. In this case, the process N(¢) describing the state of the M/M/s
queueing system at time ¢ is a birth-death process with the following parameters:

nu 0<n<s
a, =A n=0 d,= 9.19)
suU n=s

Note that the departure parameter d, is state dependent. Then, from Egs. (9.10) and (9.11) we obtain (Prob. 9.10)

s—1 -1

o0, (sp)"

=, n! sl(1—p) (9.20)

Po =
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n
%1’0 n<s
Pa=1 0 921)
B py n=s
s!

where p = A /(su) < 1. Note that the ratio p = A /(sw) is the traffic intensity of the M/M/s queueing system.
The average number of customers in the system and the average number of customers in the queue are given,
respectively, by (Prob. 9.12)

L:&+M)2p0 (9.22)
u o sl1-p)
LI 9.23)
s!(1—p) u
By Eqgs. (9.2) and (9.3), the quantities W and W, are given by
L
wW== 9.24
N (9.24)
L 1
w,=Lo w1 (9.25)
A u

9.6 The M/M/1/K Queueing System

In the M/M/1/K queueing system, the capacity of the system is limited to K customers. When the system reaches
its capacity, the effect is to reduce the arrival rate to zero until such time as a customer is served to again make
queue space available. Thus, the M/M/1/K queueing system can be modeled as a birth-death process with the fol-
lowing parameters:

(A 0=n<K g = _
a, = 0 n=K L= u n=1 (9.26)

Then, from Egs. (9.10) and (9.11) we obtain (Prob. 9.14)

1-(AMp) _ 1-p

Do = = #1 9.27)
0 I_M/M)KH 1_pl<+1 P
A _a—pp”
Ppn=|—| Po= n=1,....K (9.28)
(M ) 0 l_pK+1

where p = A /u. It is important to note that it is no longer necessary that the traffic intensity p = A/u be less than
1. Customers are denied service when the system is in state K. Since the fraction of arrivals that actually enter the
system is 1 — p,, the effective arrival rate is given by

A, =Ml —py (9.29)
The average number of customers in the system is given by (Prob. 9.15)

_ K K+1
L= p oK Dot +Kp bt ©.30)

(1= p)d—p**h u
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Then, setting A, = A in Egs. (9.2) to (9.4), we obtain

L L
W=—=—— 9.31
e M- pp) ©3D
W, =W -1 ©32)
q u -
L, =XW, =A(1—pW, (9.33)

9.7 The M/M/s/K Queueing System

Similarly, the M/M/s/K queueing system can be modeled as a birth-death process with the following
parameters:

A 0=n<KkK nu 0<n<s
a, = d, = (9.34)
0 n=K su n=s
Then, from Egs. (9.10) and (9.11), we obtain (Prob. 9.17)
s—1 n s K—s+1 -
(sp)"  (sp) (1—p
= +
Po ,20 PR i (9.35)
n
(sp) . n<s
n!
Pn=y (9.36)
p's

where p = A /(sw). Note that the expression for p, is identical in form to that for the M/M/s system, Eq. (9.21).
They differ only in the p, term. Again, it is not necessary that o = A /(su) be less than 1. The average number
of customers in the queue is given by (Prob. 9.18)

L, :Po% Q=11+ (1= p)(K — )} ©37)

The average number of customers in the system is

A A
L=L,+=2=L +=(—pg) 9.38
T (9.38)
The quantities W and W, are given by
L 1
W=—=L,+— (9.39)
e o ou
L L
W, = 9 —=__""9 (9.40)
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SOLVED PROBLEMS

9.1.

9.2.

9.3.

Deduce the basic cost identity (9.1).

Let T'be a fixed large number. The amount of money earned by the system by time 7 can be computed by
multiplying the average rate at which the system earns by the length of time 7. On the other hand, it can also be
computed by multiplying the average amount paid by an entering customer by the average number of customers
entering by time 7', which is equal to A T, where 4 _is the average arrival rate of entering customers. Thus, we have

Average rate at which the system earns X 7' = average amount paid by an entering customer X (A T')

Dividing both sides by 7 (and letting 7' — ), we obtain Eq. (9.1).
Derive Eq. (9.6).

From properties 1 to 3 of the birth-death process N(f), we see that at time ¢ + At the system can be in state S, in
three ways:

1. By being in state S, at time ¢ and no transition occurring in the time interval (¢, # + A ). This happens with
probability (1 —a, AH(1 —d Af)=1 — (a, + d ) At[by neglecting the second-order effect a d (A H?].

2. By being in state §, _, at time ¢ and a transition to §, occurring in the time interval (7, 7 + A 7). This
happens with probability a, | Ar.

3. By being in state S, , | at time 7 and a transition to S, occurring in the time interval (¢, r + A 7). This

n+1

happens with probability d , , At.

n+1
Let p; (= P[N(1) = i]
Then, using the Markov property of N(f), we obtain

p(t+A)=[1—(a,+d)Ap (1) +a, Atp (H+d Atp . () n=1
ot + Ay = [1 = (a, + d) Adlp, () + d, At p,(1)

Rearranging the above relations

Pu(t +AD)—p, (1) _
At

ot + A = py(t) _
At

—(a, +d,)p, () ta, p,_ )+t d, 1 p (&)  n=1
—(ag +dy)po (1) +dypy (1)
Letting At — 0, we obtain
P = —(a,+d)p,0) +a,_ p,_ O +d . p,. O n=1
P = —(ay, + dppy(t) + d, p,(D)
Derive Egs. (9.13) and (9.14).

Settinga, =\, d, =0,and d = uin Eq. (9.10), we get
A
P1=—Po=PPo
u

2
A 2

P2 =|—| Po =P Po
u

(A)n n
Pn=|—| Po =P Do
u
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where p, is determined by equating

Epn=l’0 Epn=l70 1%=1 |p|<1
n=0 n=0 P

from which we obtain

A
po=1-p=1-=
u
Y . AT
u )\ u

Since p,, is the steady-state probability that the system contains exactly n customers, using Eq. (9.14), the
average number of customers in the M/M/1 queueing system is given by

9.4. Derive Eq. (9.15).

©

L= 20 np, = Y n(l—p)p" =(1- ”)Eo"pn (9.41)

n=0

where p = A /u < 1. Using the algebraic identity

Zonx" = ﬁ |x]<1 (9.42)

we obtain

o _ Mu A

:l—p 1—Aluy u—=~A

9.5. Derive Egs. (9.16) to (9.18).

Since A, = A, by Egs. (9.2) and (9.15), we get

which is Eq. (9.16). Next, by definition,
W, =W-W (9.43)
where W = 1/u, that is, the average service time. Thus,

L O S
Tu=2 ow owu—2) ud-p)

which is Eq. (9.17). Finally, by Eq. (9.3),

2 2
Lq:)bwq:}‘i: p
wu—21 1-p

which is Eq. (9.18).
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9.6.

9.7.

Let W, denote the amount of time an arbitrary customer spends in the M/M/1 queueing system. Find
the distribution of W,

We have

PW,=a}= E P{W,= a| n in the system when the customer arrives}
n=0
X P{n in the system when the customer arrives} (9.44)

where 7 is the number of customers in the system. Now consider the amount of time W, that this customer will spend
in the system when there are already n customers when he or she arrives. Whenn = 0, then W = Ws(a), that is, the
service time. When n = 1, there will be one customer in service and n — 1 customers waiting in line ahead of this
customer’s arrival. The customer in service might have been in service for some time, but because of the memoryless
property of the exponential distribution of the service time, it follows that (see Prob. 2.58) the arriving customer
would have to wait an exponential amount of time with parameter u for this customer to complete service. In
addition, the customer also would have to wait an exponential amount of time for each of the other n — 1 customers
in line. Thus, adding his or her own service time, the amount of time W, that the customer will spend in the system
when there are already n customers when he or she arrives is the sum of n + 1 iid exponential r.v.’s with parameter u.
Then by Prob. 4.39, we see that this r.v. is a gamma r.v. with parameters (n + 1, u). Thus, by Eq. (2.65),

. . - 1)"
P{W, = a| n in the system when customer arrives} = fj ue M @ dt
n!

From Eq. (9.14),

n
P{n in the system when customer arrives} = p, = (1 - A) ()
w)\u

Hence, by Eq. (9.44),

N oA Ay
Fy =P{W,<a}= w WOy AN A g
Y o =ar ngo fo‘ue n! u u

:f:(uf?»)ef‘” 20():;[')" dt

= [ =R P dr =1 - he (9.45)

Thus, by Eq. (2.61), W_is an exponential r.v. with parameter u — A. Note that from Eq. (2.62), E(W ) = 1/(u
— A), which agrees with Eq. (9.16), since W = E(W ).

Customers arrive at a watch repair shop according to a Poisson process at a rate of one per every
10 minutes, and the service time is an exponential r.v. with mean 8 minutes.

(a) Find the average number of customers L, the average time a customer spends in the shop W, and
the average time a customer spends in waiting for service W,

(b) Suppose that the arrival rate of the customers increases 10 percent. Find the corresponding changes
in L, W, and Wq.

(a) The watch repair shop service can be modeled as an M/M/1 queueing system with A = 1]—0, u= ]§ . Thus,
from Eqgs. (9.15), (9.16), and (9.43), we have

1
L=t 10 _y
u—2a 1_ 1
8 10
1 1 .
W=——= = 40 minutes
A1 1
8 10

-
W, =W — W, =40 — 8 = 32 minutes
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(b) Now A= ,y=1§.Then

0 | —
O | —

W = ——=———="72 minutes

O | —

1
8
W, =W —W, =72 — 8 = 64 minutes

It can be seen that an increase of 10 percent in the customer arrival rate doubles the average number of
customers in the system. The average time a customer spends in queue is also doubled.

A drive-in banking service is modeled as an M/M/1 queueing system with customer arrival rate of 2 per
minute. It is desired to have fewer than 5 customers line up 99 percent of the time. How fast should the

service rate be?

From Eq. (9.14),

©

P{5 or more customers in the system} = E D, = E A-p)p" = p5 14 =%
n=>5 n=3>

In order to have fewer than 5 customers line up 99 percent of the time, we require that this probability be less
than 0.01. Thus,

from which we obtain

s A2
wW="—="_=3200 or u=5024
001 001

Thus, to meet the requirements, the average service rate must be at least 5.024 customers per minute.

People arrive at a telephone booth according to a Poisson process at an average rate of 12 per hour, and
the average time for each call is an exponential r.v. with mean 2 minutes.
(a) What is the probability that an arriving customer will find the telephone booth occupied?

(b) Itis the policy of the telephone company to install additional booths if customers wait an average
of 3 or more minutes for the phone. Find the average arrival rate needed to justify a second booth.

(a) The telephone service can be modeled as an M/ M/ 1 queueing system with A = lg , U= 15’ and p= Alu=
2; . The probability that an arriving customer will find the telephone occupied is P(L > 0), where L is the
average number of customers in the system. Thus, from Eq. (9.13),

P(L>0)=1—p0=1—(1—p)=p=§=0.4

(b) From Eq. (9.17),

W = A = A
9 u(u—2a) 0505— 1)

=
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from which we obtain A = 0.3 per minute. Thus, the required average arrival rate to justify the second booth is
18 per hour.

9.10. Derive Egs. (9.20) and (9.21).

From Eqgs. (9.19) and (9.10), we have

A\ 1
2= 9.46
pol_[(k-l-l)u O(M) P n<s ( )

n—1 n
A A 1
= — n=s (9.47)
pol_[(k-i-l)uk - S po(u) sls"™*

Let p = A /(sw). Then Egs. (9.46) and (9.47) can be rewritten as

(sp)"

pPo n<s

Using the summation formula

Ex": |x|<1 (9.48)

we obtain Eq. (9.20); that is,

provided p = A /(su) < 1.

9.11. Consider an M/M /s queueing system. Find the probability that an arriving customer is forced to join
the queue.

An arriving customer is forced to join the queue when all servers are busy —that is, when the number of
customers in the system is equal to or greater than s. Thus, using Egs. (9.20) and (9.21), we get

©

P(a customer is forced to join queue) = E D, = po E o' =py ‘((lp ) )
n=s ! s P
(sp)’
sid = p) (9.49)
< 6P, (sp)

=, n! si(1—p)
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Equation (9.49) is sometimes referred to as Erlang’s delay (or C ) formula and denoted by C(s, A /u). Equation
(9.49) is widely used in telephone systems and gives the probability that no trunk (server) is available for an
incoming call (arriving customer) in a system of s trunks.

9.12. Derive Egs. (9.22) and (9.23).

Equation (9.21) can be rewritten as

Then the average number of customers in the system is

L=EWN)= Y np, = p, E (S") 3 o

n=0 |n=0 n=s+1

_ (sp)"~ S

Do|S E =1 s!ngﬂnp
=po TpE(SP) (Enpn_znpn)l
n=0 n=0
Using the summation formulas,

S = — <1
rzonx = = B |x| (9.50)

R A (R |
EI’UC =

T |x|<1 (9.51)
n=0

and Eq. (9.20), we obtain

s—1 n K s+1 s
L=po(sp2(sf) +SS'{ p___plsp™ —(s+Dp +11})

2 on! (1-p) (1-p)
s—1 n K}
_ (sp) (sp) p(ps)’
po{sp ,Zo o si—p) +s‘(1—p) }
_ 1 pGp)
= I T i Sod nC AN
P, s!(l-p)z}
—sp+ psp)’ _* L _pGsp)

-2 T w sa=p)?

Next, using Eqgs. (9.21) and (9.50), the average number of customers in the queue is

(1= 9)p, = E(n—s>"

_ (Sp)s _ n—s _ (Sp)x < k
=P Zo« OP" =P ,Zokp

_ pGsp)
sl(1—

HMS

2[70
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9.13. A corporate computing center has two computers of the same capacity. The jobs arriving at the center
are of two types, internal jobs and external jobs. These jobs have Poisson arrival times with rates 18
and 15 per hour, respectively. The service time for a job is an exponential r.v. with mean 3 minutes.

(a) Find the average waiting time per job when one computer is used exclusively for internal jobs and
the other for external jobs.

(b) Find the average waiting time per job when two computers handle both types of jobs.

(a) When the computers are used separately, we treat them as two M/M/1 queueing systems. Let W, and
W _, be the average waiting time per internal job and per external job, respectively. For internal jobs,

q= lﬁ=3—andu =L Then, from Eq. (9.16)

160 10 13 ? U
3

Wq1:¢:27mm
It 3
3( 3 10
. _15_1 _1

Forexternal]obs,}nzf@fzanduzfg,and
1
_ 4

(b) When two computers handle both types of jobs, we model the computing service as an M/M/2 queueing
system with

18+15 11 1 A 33
= = — u=- =—

A =—, p=2 =
60 20 3 2u 40

Now, substituting s = 2 in Eqgs. (9.20), (9.22), (9.24), and (9.25), we get

2p)’ 1-p
=|1+2p+ = 52
Po Pt i "1, (9.52)
4,03 1-p 2p
L=2p+ =
P 2(1_p)2(1+p) 7 (9.53)
w=L- 1.1 2 ] (9.54)

A A a S
Thus, from Eq. (9.54), the average waiting time per job when both computers handle both types of jobs
is given by

(i)
W, = =6.39 min

e T N2
11 1— 33
20 40
From these results, we see that it is more efficient for both computers to handle both types of jobs.

9.14. Derive Egs. (9.27) and (9.28).

From Eqs. (9.26) and (9.10), we have

Y .
Pn:(u) Po =P Do O0=n=K (9.55)
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From Eq. (9.11), p, is obtained by equating

K K
> p=po 0" =1
n=0 n=0
Using the summation formula
LS 1—x
E "= (9.56)
we obtain

__1-p _(1=p)p"
Po _l_pK-H and Pn = 1= pF

Note that in this case, there is no need to impose the condition that p = A /u<1.

9.15. Derive Eq. (9.30).

Using Eqs. (9.28) and (9.51), the average number of customers in the system is given by

K K

1- n
L=EN)= Y p, :1_% S np
n=0 p n=0
_ 1-p [plkp" " —(K +Dp" +1]
1=ptH! (1= p)’

1—(K +DpX + KkpXH!
a-p)a-p*th

9.16. Consider the M/M/1/K queueing system. Show that

L,=L—(1-py) (9.57)

W, -1 (9.58)
u

W=+ (9.59)
u

In the M/M/1/K queueing system, the average number of customers in the system is

K

K
L=E(N)= Enpn and Epn:1
n=0 n=0

The average number of customers in the queue is

K K K
L,=EWN)=Y (—=p,= ¥ np,— > p,=L—(1-p,)
n=1

n=0 n=1

Acustomer arriving with the queue in state S has a wait time T, that is the sum of n independent exponential
r.v.’s, each with parameter u. The expected value of this sum is n/u [Eq. (4.132)]. Thus, the average amount of
time that a customer spends waiting in the queue is

K n 1 & 1
W, =ET,)= E—pn =—Enpn =—L
n=0 n=0 u



CHAPTER 9 Queueing Theory

Similarly, the amount of time that a customer spends in the system is

n=1 n=0 n=0

K K
W=E<T>=E(”;”pn=;( S, + Epn}—@ﬂ)

Note that Eqgs. (9.57) to (9.59) are equivalent to Eqgs. (9.31) to (9.33) (Prob. 9.27).
9.17. Derive Egs. (9.35) and (9.36).

As in Prob. 9.10, from Egs. (9.34) and (9.10), we have

n—1 A ”1
n<s
pon(k+l)u (u) n!
n—1 n
A A 1
= s=n=K
pon(kﬂ)ukzssu p"(u) 15

Let p = A /(sw). Then Egs. (9.60) and (9.61) can be rewritten as

Gpr n<s
_ n!
Pn = pnss
— Po s=n=K

s!

which is Eq. (9.36). From Eq. (9.11), p, is obtained by equating

Qo) 8 &
Po = E l +§ gp
-s—l n s K s—1
|G, s n n
= + 2 _
E n! [n—()p P )

=3 n! std—p)
which is Eq. (9.35).

9.18. Derive Eq. (9.37).

Using Eq. (9.36) and (9.51), the average number of customers in the queue is given by

K
2 (n=$)p, = E (n=s)p"

s K—s
— (SP) E(n ns: (P) Emp

_ - (sp)° pIK —s)p* " ”'—(K—s+1)p’( 1]
o (1=p?
plsp)’

_ _ _ K—s
—Pos!(l p2{1 [I+d—=p)K—=9)]p" °}
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9.19.

9.20.
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Consider an M/M/s/s queueing system. Find the probability that all servers are busy.

Setting K = s in Egs. (9.60) and (9.61), we get

p,,=p0() — O=n=ys (9.62)

and p, is obtained by equating

A\ 1
EPn—Po 2(] - =1
n=0 n=0 M n
I
Thus, Po=|, AL (9.63)
n=0 u n!
The probability that all servers are busy is given by
AV 1 Gy s
Ps = Po (MJ prin s(ui (9.64)
> lw" In!
n=0

Note that in an M/M/s/s queueing system, if an arriving customer finds that all servers are busy, the customer will turn
away and is lost. In a telephone system with s trunks, p_is the portion of incoming calls which will receive a busy
signal. Equation (9.64) is often referred to as Erlang’s loss (or B) formula and is commonly denoted as B(s, A /u).

An air freight terminal has four loading docks on the main concourse. Any aircraft which arrive when all
docks are full are diverted to docks on the back concourse. The average aircraft arrival rate is 3 aircraft
per hour. The average service time per aircraft is 2 hours on the main concourse and 3 hours on the back
concourse.

(@) Find the percentage of the arriving aircraft that are diverted to the back concourse.

(b) If a holding area which can accommodate up to 8 aircraft is added to the main concourse, find the
percentage of the arriving aircraft that are diverted to the back concourse and the expected delay time
awaiting service.

(a) The service system at the main concourse can be modeled as an M/M/s/s queueing system with s = 4, A =
3,u= 1—2, and A /u = 6. The percentage of the arriving aircraft that are diverted to the back concourse is

100 X P(all docks on the main concourse are full)

From Eq. (9.64).

E (6" /n!)
n=0

Thus, the percentage of the arriving aircraft that are diverted to the back concourse is about 47 percent.

(b) With the addition of a holding area for 8 aircraft, the service system at the main concourse can now be modeled
as an M/M/s/K queueing system with s =4, K = 12, and p = A/(su) = 1.5. Now, from Egs. (9.35) and (9.36),

3 n 4 _ 9
36,6115
PATTI e

1.5'24%

~(0.00024

Po =

D1z po =~0.332
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Thus, about 33.2 percent of the arriving aircraft will still be diverted to the back concourse.
Next, from Eq. (9.37), the average number of aircraft in the queue is

1.5(6)

L, =0.00024 1-[1+(1-15)8](1.5°%} = 6.0565
’ s T8Iy

Then, from Eq. (9.40), the expected delay time waiting for service is

L, 60565

w, = = == 3.022 hours
AMl—pp)  3(1-0.332)

Note that when the 2-hour service time is added, the total expected processing time at the main concourse
will be 5.022 hours compared to the 3-hour service time at the back concourse.

SUPPLEMENTARY PROBLEMS

9.21.

9.22.

9.23.

9.24.

9.25.

9.26.

9.27.

9.28.

Customers arrive at the express checkout lane in a supermarket in a Poisson process with a rate of 15 per hour.
The time to check out a customer is an exponential r.v. with mean of 2 minutes.

(a) Find the average number of customers present.
(b) What is the expected idle delay time experienced by a customer?

(¢) What is the expected time for a customer to clear a system?

Consider an M/M/1 queueing system. Find the probability of finding at least k customers in the system.

In a university computer center, 80 jobs an hour are submitted on the average. Assuming that the computer
service is modeled as an M/M/1 queueing system, what should the service rate be if the average turnaround time
(time at submission to time of getting job back) is to be less than 10 minutes?

The capacity of a communication line is 2000 bits per second. The line is used to transmit 8-bit characters,
and the total volume of expected calls for transmission from many devices to be sent on the line is 12,000
characters per minute. Find (a) the traffic intensity, (b) the average number of characters waiting to be
transmitted, and (c) the average transmission (including queueing delay) time per character.

Abank counter is currently served by two tellers. Customers entering the bank join a single queue and go to

the next available teller when they reach the head of the line. On the average, the service time for a customer is

3 minutes, and 15 customers enter the bank per hour. Assuming that the arrivals process is Poisson and the service
time is an exponential r.v., find the probability that a customer entering the bank will have to wait for service.

Apost office has three clerks serving at the counter. Customers arrive on the average at the rate of 30 per hour,
and arriving customers are asked to form a single queue. The average service time for each customer is 3
minutes. Assuming that the arrivals process is Poisson and the service time is an exponential r.v., find (a) the
probability that all the clerks will be busy, (b) the average number of customers in the queue, and (c¢) the
average length of time customers have to spend in the post office.

Show that Eqgs. (9.57) to (9.59) and Eqgs. (9.31) to (9.33) are equivalent.

Find the average number of customers L in the M/M/1/K queueing system when A = p.
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9.29. Agas station has one diesel fuel pump for trucks only and has room for three trucks (including one at the
pump). On the average, trucks arrive at the rate of 4 per hour, and each truck takes 10 minutes to service.
Assume that the arrivals process is Poisson and the service time is an exponential r.v.

(a) What is the average time for a truck from entering to leaving the station?
(b) What is the average time for a truck to wait for service?

(c) What percentage of the truck traffic is being turned away?

9.30. Consider the air freight terminal service of Prob. 9.20. How many additional docks are needed so that at least
80 percent of the arriving aircraft can be served in the main concourse with the addition of holding area?

ANSWERS TO SUPPLEMENTARY PROBLEMS
9.21. (a) 1; (b) 2 min; (¢) 4 min
9.22. pF=(A/w*

9.23. 1.43 jobs per minute

9.24. (a) 0.8; (b) 3.2 (¢) 20 ms
9.25. 0.205
9.26. (a) 0.237; (b)y 0.237; (¢) 3.947 min

9.27. Hint: Use Eq. (9.29).

9.28. K/2

9.29. (a) 20.15 min; (b) 10.14 min; (c¢) 12.3 percent

9.30. 4



CHAPTER 10

Information Theory

10.1 Introduction

Information theory provides a quantitative measure of the information contained in message signals and allows
us to determine the capacity of a communication system to transfer this information from source to destination.
In this chapter we briefly explore some basic ideas involved in information theory.

10.2 Measure of Information

A. Information Sources:

An information source is an object that produces an event, the outcome of which is selected at random accord-
ing to a probability distribution. A practical source in a communication system is a device that produces mes-
sages, and it can be either analog or discrete. In this chapter we deal mainly with the discrete sources, since
analog sources can be transformed to discrete sources through the use of sampling and quantization techniques.
A discrete information source is a source that has only a finite set of symbols as possible outputs. The set of
source symbols is called the source alphabet, and the elements of the set are called symbols or letters.

Information sources can be classified as having memory or being memoryless. A source with memory is one
for which a current symbol depends on the previous symbols. A memoryless source is one for which each symbol
produced is independent of the previous symbols.

A discrete memoryless source (DMS) can be characterized by the list of the symbols, the probability assign-
ment to these symbols, and the specification of the rate of generating these symbols by the source.

B. Information Content of a Discrete Memoryless Source:

The amount of information contained in an event is closely related to its uncertainty. Messages containing
knowledge of high probability of occurrence convey relatively little information. We note that if an event is
certain (that is, the event occurs with probability 1), it conveys zero information.

Thus, a mathematical measure of information should be a function of the probability of the outcome and
should satisfy the following axioms:

1. Information should be proportional to the uncertainty of an outcome.
2. Information contained in independent outcomes should add.

367
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1. Information Content of a Symbol:
Consider a DMS, denoted by X, with alphabet {x,, x,, ..., xm}. The information content of a symbol X, denoted
by I(x)), is defined by

I(x;) = log, = —log, P(x;) (10.1)

1
P(x;)

where P(x,) is the probability of occurrence of symbol x,. Note that /(x,) satisfies the following properties:

Ix) =0 for P(x) =1 (10.2)
Ix)=0 (10.3)
I(x) > I(x) if P(x) < P(x) (104)
I(xl.xj) = I(x) + I(xj) if x; and x; are independent (10.5)

The unit of I(x,) is the bit (binary unif) if b = 2, Hartley or decit if b = 10, and nat (natural uniz) if b = e. It
is standard to use b = 2. Here the unit bit (abbreviated “b”’) is a measure of information content and is not to be
confused with the term bit meaning “binary digit.” The conversion of these units to other units can be achieved
by the following relationships.

Ina loga

log,a=——=

10.6
In2 log2 ( )

2. Average Information or Entropy:
In a practical communication system, we usually transmit long sequences of symbols from an information source.
Thus, we are more interested in the average information that a source produces than the information content of a
single symbol.

The mean value of I(x,) over the alphabet of source X with m different symbols is given by

H(X)=E[I(x)]= 2 P(x)I(x;)
o (10.7)
=— E P(x;)log, P(x;) b/symbol
i=1

The quantity H(X) is called the entropy of source X. It is a measure of the average information content per
source symbol. The source entropy H(X) can be considered as the average amount of uncertainty within source
X that is resolved by use of the alphabet.

Note that for a binary source X that generates independent symbols 0 and 1 with equal probability, the source
entropy H(X) is

1 11 1
H(X):_510g2§_510g2521 b/symbol (10.8)

The source entropy H(X) satisfies the following relation:
0 =HX)=log,m (10.9)

where m is the size (number of symbols) of the alphabet of source X (Prob. 10.5). The lower bound corresponds
to no uncertainty, which occurs when one symbol has probability P(x,) = 1 while Px)=0 forj # i, so X emits
the same symbol x; all the time. The upper bound corresponds to the maximum uncertainty which occurs when
P(x) = 1/m for all i—that is, when all symbols are equally likely to be emitted by X.

3. Information Rate:
If the time rate at which source X emits symbols is r (symbols/s), the information rate R of the source is given by

R = rHX) b/s (10.10)
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10.3 Discrete Memoryless Channels

A. Channel Representation:

A communication channel is the path or medium through which the symbols flow to the receiver. A discrete
memoryless channel (DMC) is a statistical model with an input X and an output Y (Fig. 10-1). During each unit
of the time (signaling interval), the channel accepts an input symbol from X, and in response it generates an out-
put symbol from Y. The channel is “discrete” when the alphabets of X and Y are both finite. It is “memoryless”
when the current output depends on only the current input and not on any of the previous inputs.

S a4

X2. .y2

> X ——> Plylx) —> v<

X o L7
. °
Xm. ) K L[] yn

Fig. 10-1 Discrete memoryless channel.

A diagram of a DMC with m inputs and n outputs is illustrated in Fig. 10-1. The input X consists of input
symbols x,, x,, ..., x,. The a priori probabilities of these source symbols P(x,) are assumed to be known.
The output Y consists of output symbols y,, y,, ..., y,. Each possible input-to-output path is indicated along
with a conditional probability P(y, |x,), where P( Y |x,) is the conditional probability of obtaining output y; given
that the input is x,, and is called a channel transition probability.

B. Channel Matrix:

A channel is completely specified by the complete set of transition probabilities. Accordingly, the channel of
Fig. 10-1 is often specified by the matrix of transition probabilities [P(Y | X)], given by

P(y1|x1) P(y2|x1) P(yn|‘x1)
[P(Y|X)]= P(y1|x2) P(y2|x2) P(yn|x2) (10.11)
P(yl|xm) P(y2|xm) P(yn|xm)

The matrix [P(Y | X)] is called the channel matrix. Since each input to the channel results in some output, each
row of the channel matrix must sum to unity; that is,

N P(y;|x)=1 foralli (10.12)
j=1

Now, if the input probabilities P(X) are represented by the row matrix

[PX)] = [P(x)) P(x,) ... Pk)] (10.13)
and the output probabilities P(Y) are represented by the row matrix

[PN] = [PG) Py, ... PO (10.14)

then [P(Y)] = [PCOIPY | X)] (10.15)
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If P(X) is represented as a diagonal matrix

P) O .. O
0 Px) .. 0
[P(X)], = (x2) (10.16)
0 0 .. Pkx,)
then [P(X. Y)] = [POOL,[P(Y | X)] (10.17)

where the (i, j) element of matrix [P(X, Y)] has the form P(x,, yj). The matrix [P(X, Y)] is known as the joint
probability matrix, and the element P(x,, yj) is the joint probability of transmitting x, and receiving Y

C. Special Channels:

1. Lossless Channel:

A channel described by a channel matrix with only one nonzero element in each column is called a lossless channel.
An example of a lossless channel is shown in Fig. 10-2, and the corresponding channel matrix is shown in Eq.
(10.18).

1
3160 0
4 4
1 2
[PY|X)]=|0 0 3 3 0 (10.18)
00 0 0 1
3
/.y1
»- Y
X1 l ] 2
4 3
X2—\><: Y3
2 Y4
Xs\i\‘
1 Vs

Fig. 10-2 Lossless channel.

It can be shown that in the lossless channel no source information is lost in transmission. [See Eq. (10.35) and
Prob. 10.10.]

2. Deterministic Channel:

A channel described by a channel matrix with only one nonzero element in each row is called a deterministic chan-
nel. An example of a deterministic channel is shown in Fig. 10-3, and the corresponding channel matrix is
shown in Eq. (10.19).

Fig. 10-3 Deterministic channel.
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[P(Y|X)]= (10.19)

S O O = =
S = = O O
- O O O O

Note that since each row has only one nonzero element, this element must be unity by Eq. (10.12). Thus, when
a given source symbol is sent in the deterministic channel, it is clear which output symbol will be received.

3. Noiseless Channel:

A channel is called noiseless if it is both lossless and deterministic. A noiseless channel is shown in Fig. 10-4.
The channel matrix has only one element in each row and in each column, and this element is unity. Note that
the input and output alphabets are of the same size; that is, m = n for the noiseless channel.

1

Xy @ > * Yy

Xy P> Y2
1

Xm » ym
1

Fig. 10-4 Noiseless channel.

4. Binary Symmetric Channel:
The binary symmetric channel (BSC) is defined by the channel diagram shown in Fig. 10-5, and its channel
matrix is given by

[P(YIX)]=[1_p p] (10.20)
p 1-p

The channel has two inputs (x, = 0, x, = 1) and two outputs (y, = 0, y, = 1). The channel is symmetric because
the probability of receiving a 1 if a O is sent is the same as the probability of receiving a O if a 1 is sent. This
common transition probability is denoted by p.

X, =1 > y2:1
1-p

Fig. 10-5 Binary symmetrical channel.

10.4 Mutual Information

A. Conditional and Joint Entropies:
Using the input probabilities P(x,), output probabilities P(yj), transition probabilities P(yj | x,), and joint probabil-

ities P(x;, yj), we can define the following various entropy functions for a channel with m inputs and n outputs:

H(X)=—§P(x,»)log2 P(x;) (10.21)

i=1
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H(Y)==Y P(y)log, P(y;) (10.22)
j=1
HX|V)==3 3 P(x;,y))log, P(x;| y)) (10.23)
j=1i=1
HY|[X)==  P(x,yplog, P(y;| x,) (10.24)
j=1i=1
HX,Y)==  P(x,y;)log, P(x;, ;) (10.25)
j=1i=1

These entropies can be interpreted as follows: H(X) is the average uncertainty of the channel input, and H(Y) is
the average uncertainty of the channel output. The conditional entropy H(X | Y) is a measure of the average
uncertainty remaining about the channel input after the channel output has been observed. And H(X | Y) is some-
times called the equivocation of X with respect to Y. The conditional entropy H(Y | X) is the average uncertainty
of the channel output given that X was transmitted. The joint entropy H(X, Y) is the average uncertainty of the
communication channel as a whole.

Two useful relationships among the above various entropies are

H(X,Y)= HX|Y) + H(Y) (10.26)
HX,Y) = HY | X) + HX) (10.27)

Note that if X and Y are independent, then

HX|Y) = HX) (10.28)
HY | X) = HY) (10.29)
HX,Y) = H(X) + H(Y) (10.30)

B. Mutual Information:
The mutual information I(X; Y) of a channel is defined by
IX;Y)=HX)—- HX|Y) b/symbol (10.31)

Since H(X) represents the uncertainty about the channel input before the channel output is observed and H(X | Y)
represents the uncertainty about the channel input after the channel output is observed, the mutual information
I(X; Y) represents the uncertainty about the channel input that is resolved by observing the channel output.

Properties of I(X; Y):

1. IX;Y)=IY;X) (10.32)
2. IX;Y)=0 (10.33)
3. IX;Y)=HY)—- HY|X) (10.34)
4. IX;Y)=HX)+ HY)—- HX,Y) (10.35)
5. IX;Y)=0 if X and Y are independent (10.36)

Note that from Eqs. (10.31), (10.33), and (10.34) we have

6. HX)= HX|Y) (10.37)
7. HY) = H(Y |X) (10.38)

with equality if X and Y are independent.
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C. Relative Entropy:

The relative entropy between two pmf’s p(x,), and g(x,) on X is defined as

p(x;)
D(pllq)= log, /=12 10.39
(/9 zpoc)og2 o (10.39)

The relative entropy, also known as Kullback-Leibler divergence, measures the “closeness” of one distribution
from another. It can be shown that (Prob. 10.15)

D@p/lq)=0 (10.40)
and equal zero if p(x,) = q(x,). Note that, in general, it is not symmetric, that is, D(p // q) # D(q // p).

The mutual information /(X; Y) can be expressed as the relative entropy between the joint distribution
Pyy (x, y) and the product of distribution p,(x) p,, (v); that is,

IX;Y) = D(py, (x, ) I p, %) py, () (1041)
= Eszy(xi,y-)logzM (10.42)
Xy ! Px(xi)PY()’j)

10.5 Channel Capacity

A. Channel Capacity per Symbol C_:
The channel capacity per symbol of a DMC is defined as

C.= max I(X;Y b/symbol
s 7 pmax, (X3Y) Yy (10.43)

where the maximization is over all possible input probability distributions {P(x,)} on X. Note that the channel
capacity C| is a function of only the channel transition probabilities that define the channel.

B. Channel Capacity per Second C:

If » symbols are being transmitted per second, then the maximum rate of transmission of information per sec-
ond is rC,. This is the channel capacity per second and is denoted by C (b/s):

C=rC,  bls (10.44)

C. Capacities of Special Channels:

1. Lossless Channel:
For a lossless channel, H(X | Y) = 0 (Prob. 10.12) and

IX; Y) = HX) (10.45)

Thus, the mutual information (information transfer) is equal to the input (source) entropy, and no source infor-
mation is lost in transmission. Consequently, the channel capacity per symbol is

C. = max H(X)=log, m
s T (X) =log, (10.46)

where m is the number of symbols in X.
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2. Deterministic Channel:
For a deterministic channel, H(Y | X) = 0 for all input distributions P(x;), and

IX;Y)=H(Y) (1047)
Thus, the information transfer is equal to the output entropy. The channel capacity per symbol is

C,= max H(Y)=log, n .
T 5] (10.48)

where 7 is the number of symbols in Y.

3. Noiseless Channel:
Since a noiseless channel is both lossless and deterministic, we have

IX;Y)=HX)=HY) (10.49)
and the channel capacity per symbol is
C, = log,m = log,n (10.50)

4. Binary Symmetric Channel:
For the BSC of Fig. 10-5, the mutual information is (Prob. 10.20)

IX;Y)=HY) + plog,p + (1 — p)log,(1 — p) (10.51)
and the channel capacity per symbol is

C =1+plog,p+ (1—p)log,(l1 —p) (10.52)

10.6 Continuous Channel

In a continuous channel an information source produces a continuous signal x(#). The set of possible signals is
considered as an ensemble of waveforms generated by some ergodic random process. It is further assumed that
x(f) has a finite bandwidth so that x(¢) is completely characterized by its periodic sample values. Thus, at any
sampling instant, the collection of possible sample values constitutes a continuous random variable X described
by its probability density function f,(x).

A. Differential Entropy:

The average amount of information per sample value of x(¢) is measured by

H(X)=— f_°° fy(0)log, fy(x)dx  b/sample (10.53)
The entropy defined by Eq. (10.53) is known as the differential entropy of a continuous r.v. X with pdf f, (x).
Note that as opposed to the discrete case (see Eq. (10.9)), the differential entropy can be negative (see Prob. 10.24).
Properties of Differential Entropy:

() HX + ¢) = HX) (10.54)

Translation does not change the differential entropy. Equation (10.54) follows directly from the definition
Eq. (10.53).

(2) H@X)=H X) + log,|a| (10.55)

Equation (10.55) is proved in Prob. 10.29.
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B. Mutual Information:
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The average mutual information in a continuous channel is defined (by analogy with the discrete case) as

IX; Y) = HX) — HX |Y)
or IX; Y) = HY) — HY | X)

where HY)=—=[" f,("log, fy (»)dy
H(X| Y)= _ffwffwfxy(x’y)l()gz fx(xly) dx dy
HY|X) == [7 7 fey(x.y)log, fy (y]x) dx dy

C. Relative Entropy:

(10.56)
(10.57)

(10.58)

(10.59)

(10.60)

Similar to the discrete case, the relative entropy (or Kullback-Leibler divergence) between two pdf’s f, (x) and

8y (x) on continuous r.v. X is defined by

D(f//g>=f°°mfx<x>1og2( £ )dx
gy (x)

From this definition, we can express the average mutual information /(X; Y) as

1X;Y) = D(fyy 0, ) 11 f @) £ )

:fiwfiwaY(Xi,y]')logz m dx dy

D. Properties of Differential Entropy, Relative Entropy, and Mutual Information:

1. D(f/lgy=0

with equality iff f = g. (See Prob. 10.30.)
2. IX;Y)=0

3. HX)=HX|Y)

4. HY)=HY |X)

with equality iff X and Y are independent.

10.7 Additive White Gaussian Noise Channel

(10.61)

(10.62)

(10.63)

(10.64)

(10.65)
(10.66)
(10.67)

A. Additive White Gaussian Noise Channel:

An additive white Gaussian noise (AWGN) channel is depicted in Fig. 10-6.

Z:

1

Fig. 10-6 Gaussian channel.
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This is a time discrete channel with output Y, at time i, where Y, is the sum of the input X; and the noise Z..
Y, =X + Z (10.68)

The noise Z, is drawn i.i.d. from a Gaussian distribution with zero mean and variance N. The noise Z, is assumed
to be independent of the input signal X,. We also assume that the average power of input signal is finite. Thus,

ExX}) =S (10.69)
EZ) =N (10.70)

The capacity C, of an AWGN channel is given by (Prob. 10.31)

1
C,= max I(X;Y)=—lo
R 7 8

1+i) (10.71)
N

where S/N is the signal-to-noise ratio at the channel output.

B. Band-Limited Channel:

A common model for a communication channel is a band-limited channel with additive white Gaussian noise.
This is a continuous-time channel.

Nyquist Sampling Theorem

Suppose a signal x(¢) is band-limited to B; namely, the Fourier transform of the signal x(¢) is O for all frequen-
cies greater than B(Hz). Then the signal x(7) is completely determined by its periodic sample values taken at the
Nyquist rate 2B samples/sec. (For the proof of this sampling theorem, see any Fourier transform text.)

C. Capacity of the Continuous-Time Gaussian Channel:

If the channel bandwidth B(Hz) is fixed, then the output y(7) is also a band-limited signal. Then the capacity C(b/s)
of the continuous-time AWGN channel is given by (see Prob. 10.32)

C = Blog, (1 + %) bls (10.72)

Equation (10.72) is known as the Shannon-Hartley law.

The Shannon-Hartley law underscores the fundamental role of bandwidth and signal-to-noise ratio in com-
munication. It also shows that we can exchange increased bandwidth for decreased signal power (Prob. 10.35)
for a system with given capacity C.

10.8 Source Coding

A conversion of the output of a DMS into a sequence of binary symbols (binary code word) is called source coding.
The device that performs this conversion is called the source encoder (Fig. 10-7).

Discrete
.| Source
memoryless encoder
source Xi Binary
sequence
X = oes X}

Fig. 10-7 Source coding.
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An objective of source coding is to minimize the average bit rate required for representation of the source
by reducing the redundancy of the information source.

A. Code Length and Code Efficiency:

Let X be a DMS with finite entropy H(X) and an alphabet {x,, ..., x, } with corresponding probabilities of occur-
rence P(x,)(i = 1, ..., m). Let the binary code word assigned to symbol x; by the encoder have length n,, meas-
ured in bits. The length of a code word is the number of binary digits in the code word. The average code word
length L, per source symbol, is given by

L= P(x)n, (10.73)
i=1

The parameter L represents the average number of bits per source symbol used in the source coding process.
The code efficiency 1 is defined as

n= L% (10.74)

where L . is the minimum possible value of L. When 7 approaches unity, the code is said to be efficient.
The code redundancy v is defined as

y=1—-n (10.75)

B. Source Coding Theorem:
The source coding theorem states that for a DMS X with entropy H(X), the average code word length L per sym-
bol is bounded as (Prob. 10.39)

L= HX) (10.76)

and further, L can be made as close to H(X) as desired for some suitably chosen code.
Thus, with L_. = H(X), the code efficiency can be rewritten as

n= M (10.77)
L
C. Classification of Codes:

Classification of codes is best illustrated by an example. Consider Table 10-1 where a source of size 4 has been
encoded in binary codes with symbol 0 and 1.

TABLE 10-1 Binary Codes

x; CODE 1 CODE 2 CODE 3 CODE 4 CODE 5 CODE 6
X, 00 00 0 0 0 1

X, 01 01 1 10 01 01

Xy 00 10 00 110 011 001
X, 11 11 11 111 0111 0001
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1. Fixed-Length Codes:
A fixed-length code is one whose code word length is fixed. Code 1 and code 2 of Table 10-1 are fixed-length
codes with length 2.

2. Variable-Length Codes:
A variable-length code is one whose code word length is not fixed. All codes of Table 10-1 except codes 1 and
2 are variable-length codes.

3. Distinct Codes:
A code is distinct if each code word is distinguishable from other code words. All codes of Table 10-1 except code
1 are distinct codes—notice the codes for x, and x;.

4. Prefix-Free Codes:

A code in which no code word can be formed by adding code symbols to another code word is called a prefix-free
code. Thus, in a prefix-free code no code word is a prefix of another. Codes 2, 4, and 6 of Table 10-1 are prefix-
free codes.

5. Uniquely Decodable Codes:

A distinct code is uniquely decodable if the original source sequence can be reconstructed perfectly from the
encoded binary sequence. Note that code 3 of Table 10-1 is not a uniquely decodable code. For example, the
binary sequence 1001 may correspond to the source sequences x,x, x, or x,x, X, x,. A sufficient condition to ensure
that a code is uniquely decodable is that no code word is a prefix of another. Thus, the prefix-free codes 2, 4, and
6 are uniquely decodable codes. Note that the prefix-free condition is not a necessary condition for unique decod-
ability. For example, code 5 of Table 10-1 does not satisfy the prefix-free condition, and yet it is uniquely decod-

able since the bit 0 indicates the beginning of each code word of the code.

6. Instantaneous Codes:

A uniquely decodable code is called an instantaneous code if the end of any code word is recognizable without
examining subsequent code symbols. The instantaneous codes have the property previously mentioned that no
code word is a prefix of another code word. For this reason, prefix-free codes are sometimes called instantaneous
codes.

7. Optimal Codes:
A code is said to be optimal if it is instantaneous and has minimum average length L for a given source with a
given probability assignment for the source symbols.

D. Kraft Inequality:

Let X be a DMS with alphabet {x;} (i = 1, 2, ..., m). Assume that the length of the assigned binary code word
corresponding to x; is n,.
A necessary and sufficient condition for the existence of an instantaneous binary code is

m
K= E 27 <1 (10.78)

which is known as the Kraft inequality. (See Prob. 10.43.)

Note that the Kraft inequality assures us of the existence of an instantaneously decodable code with code word
lengths that satisfy the inequality. But it does not show us how to obtain these code words, nor does it say that
any code that satisfies the inequality is automatically uniquely decodable (Prob. 10.38).

10.9 Entropy Coding

The design of a variable-length code such that its average code word length approaches the entropy of the DMS
is often referred to as entropy coding. This section presents two examples of entropy coding.
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A. Shannon-Fano Coding:

An efficient code can be obtained by the following simple procedure, known as Shannon-Fano algorithm:

1.
2.

List the source symbols in order of decreasing probability.

Partition the set into two sets that are as close to equiprobable as possible, and assign O to the upper
set and 1 to the lower set.

Continue this process, each time partitioning the sets with as nearly equal probabilities as possible
until further partitioning is not possible.

An example of Shannon-Fano encoding is shown in Table 10-2. Note that in Shannon-Fano encoding the ambi-
guity may arise in the choice of approximately equiprobable sets. (See Prob. 10.46.) Note also that Shannon-
Fano coding results in suboptimal code.

TABLE 10-2 Shannon-Fano Encoding

P(x) STEP 1 STEP 2 STEP 3 STEP 4 CODE 5
0.30 0 0 00
0.25 0 1 01
0.20 1 0 10
0.12 1 1 0 110
0.08 1 1 1 0 1110
0.05 1 1 1 1 1111

H(X) = 2.36 b/symbol
L = 2.38 b/symbol
n = HX)/L = 0.99

B. Huffman Encoding:

In general, Huffman encoding results in an optimum code. Thus, it is the code that has the highest efficiency
(Prob. 10.47). The Huffman encoding procedure is as follows:

1.
2.

4.

5.

List the source symbols in order of decreasing probability.

Combine the probabilities of the two symbols having the lowest probabilities, and reorder the
resultant probabilities; this step is called reduction 1. The same procedure is repeated until there are
two ordered probabilities remaining.

Start encoding with the last reduction, which consists of exactly two ordered probabilities. Assign 0
as the first digit in the code words for all the source symbols associated with the first probability;
assign 1 to the second probability.

Now go back and assign 0 and 1 to the second digit for the two probabilities that were combined in
the previous reduction step, retaining all assignments made in Step 3.

Keep regressing this way until the first column is reached.

An example of Huffman encoding is shown in Table 10-3.

H(X) = 2.36 b/symbol
L = 2.38 b/symbol
n =0.99
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TABLE 10-3 Huffman Encoding

00 00 00 1 0
X 030 ——0.30 ———0.30 0.45 0.55—
01 01 01 00
X, 025 —— 025 ——0.25 0.30—\4F 0.45—1
11 11 10
X, 020 ——0.20 0.25 — 0.25—01
101 100
Xy 0.12 0.13—— [~0.20 ——
11
1000
X 0.08 —— No.12 ——
101
X, 0.05 —
1001

Note that the Huffman code is not unique depending on Huffman tree and the labeling (see Prob. 10.33).

SOLVED PROBLEMS

Measure of Information

10.1. Consider event E occurred when a random experiment is performed with probability p. Let I(p) be the
information content (or surprise measure) of event E, and assume that it satisfies the following axioms:

1. I(p)=0

2. I1)=0

3. I(p)>1I1q) if p<gq

4. I(p) is a continuous function of p.

5. Ipq) = I(p) + I 0<p=1,0<g=1

Then show that I(p) can be expressed as

I(p) = — Clog,p (10.79)

where C is an arbitrary positive integer.

From Axiom 5, we have
I(p*) =I(pp) = I(p) + I(p) =2 I(p)
and by induction, we have
I(p™) = mI(p) (10.80)

Also, for any integer n, we have

Kp)=1(p" - p!™ = nI(p'™)

and 1(p") =L 1(p) (10.81)
n
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10.2.

10.3.

Thus, from Egs. (10.80) and (10.81), we have

1(pm’”)=%1(p)

or I(p") = rI(p)

where ris any positive rational number. Then by Axiom 4

I(p*) = al(p) (10.82)

where «a is any nonnegative number.

Leta = —log, p (0 <p=1). Then p = (1/2)*and from Eq. (10.82), we have
I(p) =1((1/2)*) = al(1/2) = —1(1/2) log, p = —Clog, p

where C = 1(1/2) > I(1) = 0 by Axioms 2 and 3. Setting C = 1, we have I(p) = —log, p bits.

Verify Eq. (10.5); that is,
I(xl,xj) = I(x,) + I(xj) if x, and x; are independent
If x, and x; are independent, then by Eq. (3.22)

P(xx) = P(x) P(x)

By Eq. (10.1)
I(x;x;)=lo ! =lo !
T8 b ) £Px, )P(x;)
1
=log +log
P(x;) P(xj)

= 1(x) + I(x;)

A DMS X has four symbols x,, x,, x,, x, with probabilities P(x,) = 0.4, P(x,) = 0.3, P(x;) = 0.2,

P(x,) = 0.1.
(a) Calculate H(X).

(b) Find the amount of information contained in the messages x, x,x, x, and x,x,x, x,, and compare
with the H(X) obtained in part (a).

4
(@) H(X) == p(x))logs[P(x;)]
i=1

=—04log, 04 —0.3log, 0.3/—0.2l0og,0.2 —0.11og, 0.1
=1.85 b/symbol

(b) P(x,x,x,x;) = (0.4)(0.3)(0.4)(0.2) = 0.0096
I(x, x,x,x;) = —log, 0.0096 = 6.70 b/symbol

Thus, I(x, x,x,x;) <7.4 [=4H(X)] b/symbol
P(x,x,x,x,) = (0.1)(0.2)*(0.3) = 0.0012
I(x,xyxx,) = —10g, 0.0012 = 9.70b/symbol

Thus, I(x,xyx,x,) > 7.4 [= 4H(X)] b/symbol
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Consider a binary memoryless source X with two symbols x, and x,. Show that H(X) is maximum
when both x, and x, are equiprobable.

Let P(x) = a. P(x)) = 1 — a.

HX)=—alog,a—(1—a)log,(1—a) (10.83)
X _ 41 10g, a — (1 a)log, (1 - )]
da da
Using the relation
log, y =—log, e—
we obtain
aH(X) =—log, a +log,(1—a)=log, 1za
da a

The maximum value of H(X) requires that

dH(X):0
do
that is,
l_iazl_)a:l
o 2

Note that H(X) = 0 when o = 0 or 1. When P(x,) = P(x,) = %, H(X) is maximum and is given by
1 1
H(X):Elog22+510g22:1 b/symbol (10.84)

Verify Eq. (10.9); that is,
0 = HX) = log,m
where m is the size of the alphabet of X.

Proof of the lower bound: Since 0 = P(x) = 1,

! =1 and logZLZO
P(x;) P(x;)

Then it follows that

1
Jlog,——=0
p(x;)log, P(x)

m 1
Thus, H(X)= ) P(x;)log, ——=0 10.85
us Zl 2 P(x) ( )

1

Next, we note that

P(xi)logzﬁ =0

if and only if P(x,) = 0 or 1. Since

M=

P(x)=1
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10.6.

when P(x;) = 1, then P(xj) = 0 forj # i. Thus, only in this case, H(X) =
Proof of the upper bound: Consider two probability distributions {P(x,) = P} and {Q(x,) = Q,} on the
alphabet {x},i=1,2,...,m, such that

ipi 1 and in:l (10.86)

i=1 i=1

Using Eq. (10.6), we have

m m
o _ 1 9
Plog,=~=—) PIn=
121 ! P, 1“2,21 P
Next, using the inequality
na=a—1 a=0 (10.87)

and noting that the equality holds only if & = 1, we get

if’zl“%’ i”i(%—l)=i<Qi—m

i=1 i=1 i=1

(10.88)
=20~ 3h=0
i=1 i=1
by using Eq. (10.86). Thus,
\ O
P log,=-=0 10.8
21 2 (10.89)
where the equality holds only if O, = P, for all i. Setting
1 .
0, =— i=12,....,m (10.90)
m
we obtain Plog,—=— ) Plog, ., — ) Plog, m
,legzp,-m ;ngt;th
=H(X)—log2mEPi (10.91)
=H(X)—log,m=0
Hence, H(X)=log, m

and the equality holds only if the symbols in X are equiprobable, as in Eq. (10.90).

Find the discrete probability distribution of X, p, (x,), which maximizes information entropy H(X).

From Egs. (10.7) and (2.17), we have

H(X)==) px(x)In py(x;) (10.92)

i=1

Y px() =1 (10.93)
i=1
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Thus, the problem is the maximization of Eq. (10.92) with constraint Eq. (10.93). Then using the method of
Lagrange multipliers, we set Lagrangian J as

J——pr(xi)lnpx(xi)-i-A(pr(xi)—l) (10.94)
i=1 i=1

where Ais the Lagrangian multiplier. Taking the derivative of J with respect to p,(x,) and setting equal to zero,
we obtain

aJ
=—Inpy(x;,)—1+A=0
dpx(x;) X
and Inp,(x)=A—1=p,(x)=e"" (10.95)

This shows that all p_(x,) are equal (because they depend on A only) and using the constraint Eq. (10.93), we obtain
p(x)) = 1/m. Hence, the uniform distribution is the distribution with the maximum entropy. (cf. Prob. 10.5.)

A high-resolution black-and-white TV picture consists of about 2 X 10° picture elements and 16
different brightness levels. Pictures are repeated at the rate of 32 per second. All picture elements are
assumed to be independent, and all levels have equal likelihood of occurrence. Calculate the average
rate of information conveyed by this TV picture source.

16
1 1
H(X)=-— Eglog2 E:4 b/element

i=1

r=2(10°)(32) = 64(10°) elements /s
Hence, by Eq. (10.10)

R =rH(X) = 64(10%)(4) = 256(10° b/s = 256 Mb/s

Consider a telegraph source having two symbols, dot and dash. The dot duration is 0.2 s. The dash
duration is 3 times the dot duration. The probability of the dot’s occurring is twice that of the dash,
and the time between symbols is 0.2 s. Calculate the information rate of the telegraph source.

P(dot) =2 P(dash)
P(dot) + P(dash) = 3P(dash) =1

Thus, P(dash) = % and P(dot)= %

By Eq. (10.7)

H(X) = —P(dot)log, P(dot) — P(dash) log, P(dash)
=0.667(0.585) +0.333(1.585) =0.92 b/symbol
t, =02s t, . =0.6s t =0.2s

dot dash space

Thus, the average time per symbol is

+1 =0.5333 s/symbol

ash space

T = P(dot), , + P(dash)t,

and the average symbol rate is

1
r=—=1.875 symbols/s
Ts
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Thus, the average information rate of the telegraph source is

R=rH(X)=1.875(0.92) =1.725b/s

Discrete Memoryless Channels

10.9. Consider a binary channel shown in Fig. 10-8.

0.9
Plxy) X4 > Y4
P(x,)  Xo 0=8 Y2
Fig. 10-8

(a) Find the channel matrix of the channel.
(b) Find P(y,) and P(y,) when P(x,) = P(x,) = 0.5.

(c) Find the joint probabilities P(x,, y,) and P(x,, y,) when P(x,) = P(x,) = 0.5.

(a) Using Eq. (10.11), we see the channel matrix is given by

P P
[P(Y|X)]= Onfx0) (yzlxl)]: [0.9 0.1}

P(Yllxz) P(Yzlxz) 02 038

(b) Using Egs. (10.13), (10.14), and (10.15), we obtain

[P(Y)] =[P [P(Y 1 X)]

09 0.1
0.2 0.8]
=[055 045]=[P(y)P(y,)]

=[05 05] [

Hence, P(y,) = 0.55 and P(y,) = 0.45.
(¢) Using Eqgs. (10.16) and (10.17), we obtain

[P(X. )] =[P(X)], [P(Y| X)]
05 017709 0.1
=[ 0 0.5H0.2 0.8]
045 0.05 P(x;,y) P(x,y,)
[ 0.1 04 ] P(xy,y) P(xz,yz)]

Hence, P(x,, y,) = 0.05 and P(x,,y,) =0.1.

10.10. Two binary channels of Prob. 10.9 are connected in a cascade, as shown in Fig. 10-9.

Y1

L 54
©
yo
©

0.8 Ys 0.8

Fig. 10-9

385
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(a) Find the overall channel matrix of the resultant channel, and draw the resultant equivalent channel
diagram.

(b) Find P(z,) and P(z,) when P(x)) = P(x,) = 0.5.
(@) By Eq.(10.15)

[PON]=[P(X)][PY|X)]
[P(2)]=[P(Y)][P(Z|Y)]
=[PCOILPY | X)IP(Z|Y)]
=[P(X)][P(Z| X)]
Thus, from Fig. 10-9

[P(Z|X)]=[PY|XI[P(Z|Y)]
_[09 0.17[09 0.1] [083 0.17
_[0.2 O.SHO.Z 0.8]_[0.34 0.66]

The resultant equivalent channel diagram is shown in Fig. 10-10.

(b) [P(2)]=[P(X)][P(Z| X)]
083 0.17

=105 0.5]
034 0.66

]= [0.585 0.415]

Hence, P(z,) = 0.585 and P(z,) = 0.415.

0.83
Xy »- Z4
0.17
0.34
X, S z,
0.66
Fig. 10-10

10.11. A channel has the following channel matrix:

(10.96)

1— 0
[P<Y|X>]=[ pr }

0 p 1-p

(a) Draw the channel diagram.

(b) If the source has equally likely outputs, compute the probabilities associated with the channel
outputs for p = 0.2.

(a) The channel diagram is shown in Fig. 10-11. Note that the channel represented by Eq. (10.96)
(see Fig. 10-11) is known as the binary erasure channel. The binary erasure channel has two inputs
x, = 0and x, = I and three outputs y, =0, y, = ¢, and y, = 1, where ¢ indicates an erasure; that is, the
output is in doubt, and it should be erased.
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Y,=¢€

1-p

x,=0 > — y;=0
p
p

X2=1 » 'y3:1
1-p

Fig. 10-11 Binary erasure channel.
(b) By Eq.(10.15)

08 02 0
[P(Y)]=[0.5 0.5][ }

0 02 08
=[04 02 04]

Thus, P(y,) = 0.4, P(y,) = 0.2, and P(y,) = 0.4.

Mutual Information

10.12. For a lossless channel show that

HX|Y)=0

387

(10.97)

When we observe the output Y in a lossless channel (Fig. 10-2), it is clear which x; was transmitted; that is,

P(xl,|y/.) =0orl
Now by Eq. (10.23)

n

HX[)=Y iP(xi,yj)logz P(x|y))

j=1i=1

=— ip(yj)iP(xilyj)logz P(x;|y;)
j=1 i=1

(10.98)

(10.99)

Note that all the terms in the inner summation are zero because they are in the form of 1 X log, 1 or 0 X log,

0. Hence, we conclude that for a lossless channel

HX|Y)=0

10.13. Consider a noiseless channel with m input symbols and m output symbols (Fig. 10-4). Show that

H(X) = H(Y)
and HY|X)=0

For a noiseless channel the transition probabilities are

1 i=j
PO;|x)=1 i+

(10.100)
(10.101)

(10.102)
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P(x,) i=j

10.103
0 i#j ( )

Hence, P(xi’yj):P(lexi)P(xi):{

and P(y)) = P(x;,y,)=P(x)) (10.104)
i=1

Thus, by Egs. (10.7) and (10.104)

HY)=="Y P(y)log,P (y))

j=1

=— iP(xl-)log2 P(x;)=H(X)
i=1

Next, by Egs. (10.24), (10.102), and (10.103)

3

m

HY|[X)== ¥ P(x;,yp)log, P(y;] %)

j=1i=1

§

2 P(x; >Elog2 P(y|x)
= Jj=

i=1

=— EP(xi)10g21=0

i=1

10.14. Verify Eq. (10.26); that is,
HX,Y)=HX|Y)+ H(Y)

From Eqgs. (3.34) and (3.37)

P(x,, y) = P(x;|y)P(y)

m

and EP(x y)=P(y)

So by Eq. (10.25) and using Eqgs. (10.22) and (10.23), we have

H(X,Y>=—E EP(x ) log P(x;.y;)

j=li=

Py og [Pa]ypP0o)]

~.
Il

Il

|
(\YE
ﬁM:

nom

=—2§ P(x;,y,) log P(x; | y))

j=li=1

m

EP(x )

log P(y;)

=H(X|Y)= Y P(y)) log P(y;)

J=1

=H(X|Y)+H(Y)



CHAPTER 10 Information Theory 389

10.15.

10.16.

10.17.

10.18.

Verify Eq. (10.40); that is,
D(p/lq)=0

By definition of D(p // g), Eq. (10.39), we have

D(pllq)= ! p(xf)—E[—l q(x")) 10.105
(p!q9) gp(xl)ogz ) % ( )

Since minus the logarithm is convex, then by Jensen’s inequality (Eq. 4.40), we obtain

—log, q(x) ) —log, E(Q(xi) )
p(x;)

D(pllq)=E s

Now

—log, E [ZE))—— 0g, (Ep(x) 9, ))—1og2(2q(x,.))——1og21—o

Thus, D(p// q) = 0. Next, when p(x,) = q(x,), then log, (¢/ p) = log, 1 =0, and we have D(p// q) = 0. On
the other hand, if D(p // q) = 0, then log,(¢/ p) = 0, which implies that g/ p = 1; that is, p(x) = g(x ).
Thus, we have shown that D(p // q) = 0 and equality holds iff p(x,) = q(x,).

Verify Eq. (10.41); that is,
IX; Y) = D(py, (x, W/ pyp, ()
From Eqgs. (10.31) and using Egs. (10.21) and (10.23), we obtain
I(X;Y)=H(X)— H(X|Y)

== pr(xi)logZ p(x;)+ EEPXY (xi’)’j)k)gz Px|y ('xi |)’j)

7E{EPXY XisYj )]1°g217x(x)+2217xy xl’yj)l‘)gz PX\Y( i|yj)

J L

EEPXY x,,yj)logz M

< Px ()

pXY( Lvyj)
= Pxy (%, ¥;)logy ———==D(pxy (x,¥)// px (x) py (¥
22 XY ]) 2px( )py(y/) ( XY( ) X( ) Y( ))
Verify Eq. (10.32); that is,
IX; Y) = I(Y; X)
Since py,(x, ¥) = piy (¥, X), Py () py, ) = py (V) py(x), by Eq. (10.41), we have

I(X; Y) = D(py,(x, ¥) 1 py(x) p(¥))
= D(py (v, %) I py, (¥) py(x)) = I(Y; X)

Verify Eq. (10.33); that is
IX;Y)=0
From Egs. (10.41) and (10.40), we have

IX;Y) = D(py,(x, y) I py(x) p(3) = 0
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10.19. Using Eq. (10.42) verify Eq. (10.35); that is
IX;Y)=HX) + HY) — HX, Y)
From Eq. (10.42) we have
1(X:Y) =D (pxy (x.3)/1px (x) py (¥))

_EEPXY X,y 10g2 pxy)(x,y)

Px\X)Py ()’)
:EEPXY x,y)(log2 Pxy (X’Y) log, px (x) —log, py ()’))

:—H(X Y)—- EEPXY X,y 10g2 Px Eszy X,y Ing Py( )

=—H(X,Y)— EIng Px (EPXY X, )’) EIngpy (El’xy X’)’))
=—HX,Y)— EPX 10g2 PX Epy 10g2 Py )

=—HX,Y)+ HX)+H(Y)
=H(X)+H®Y)—-H(X,Y)

10.20. Consider a BSC (Fig. 10-5) with P(x,) = c.
(@) Show that the mutual information /(X; Y) is given by
IX;Y)=HY)+ plog,p+ (1 —p)log, (1 —=p) (10.106)

(b) Calculate I(X; Y) fora = 05andp = 0.1.
(¢) Repeat (b) for ¢ = 0.5 and p = 0.5, and comment on the result.

Figure 10-12 shows the diagram of the BSC with associated input probabilities.

1-p

Px)=o X 2

Y2

Fig. 10-12
(a) Using Egs. (10.16), (10.17), and (10.20), we have

[z ISGHI;IJ lfp]

_ a(l—p) ap _ P(x;,y)  P(xp,y,)
(I-—a)p (I=—a)1l=p)| |POo.») P(xy,y,)

[P(X.7)]

Then by Eq. (10.24)

H(Y|X)==P(x;,y)log, P(y|x) = P(x;,y,) log, P(y;|x,)
—P(x,, ) 1og, P(y|xy) = P(x,.,) log, P(y,]x,)
=—a(l—p)log,(1—-p)—aplog, p
—(l—a)plog, p—(1—a)(l—p)log,(1—p)
=—plog, p—(1—p)log,(1-p) (10.107)
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Hence, by Eq. (10.31)

IX;Y)=HY)— HY|X)
=HY)+plog,p+ (1 —p)log,(1 —p)

(b) When a=0.5andp =0.1, by Eq. (10.15)

09 0.1
[P)]=[05 0.5][0l 09]=[0.s 05]

Thus, P(y,) = P(y,) = 0.5.
By Eq. (10.22)

H(Y) = — P(y)) log, P(y,) — P(y,) log, P(y,)
= —0.510g,0.5 —0.510g,0.5 =1
plog,p+ (1 —p)log, (1 —p)=0.11log,0.1 +0.9log,0.9

= —0.469
Thus, IX;Y)=1-0.469 =0.531
(¢) Whena=05andp=0.5,
[P(Y)]=[0.5 0.5] 0.5 05 =[05 05]
= "7los o0s T

HY)=1

plog,p+ (1 —p)log, (1 —p)=0.51og,0.5+0.51log,0.5
=-1

Thus, IX;Y)=1-1=0

Note that in this case (p = 0.5) no information is being transmitted at all. An equally acceptable
decision could be made by dispensing with the channel entirely and “flipping a coin” at the receiver.
When I(X; Y) = 0, the channel is said to be useless.

Channel Capacity

10.21. Verify Eq. (10.46); that is,

C, = log, m

where C_ is the channel capacity of a lossless channel and m is the number of symbols in X.

For a lossless channel [Eq. (10.97), Prob. 10.12]
HX|Y)=0
Then by Eq. (10.31)
IX;Y)=HX)—- HX|Y)=HX) (10.108)
Hence, by Eqgs. (10.43) and (10.9)

C,= max I(X;Y)= max H(X)=log, m
{P(X)} {P(x)}
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10.22. Verify Eq. (10.52); that is,
C,=1+plog,p+ (1 —p)log,(1—p)
where C_ is the channel capacity of a BSC (Fig. 10-5).

By Eq. (10.106) (Prob. 10.20) the mutual information /(X; Y) of a BSC is given by

IX; Y) = H(Y) + plog,p + (1 = p) log, (1 — p)
which is maximum when H(Y) is maximum. Since the channel output is binary, H(Y') is maximum when each
output has a probability of 0.5 and is achieved for equally likely inputs [Eq. (10.9)]. For this case H(Y) =1,

and the channel capacity is

C,=max I(X;Y)=1+plog,p+(1—p)log, (1—p)
{P(X)}

10.23. Find the channel capacity of the binary erasure channel of Fig. 10-13 (Prob. 10.11).

Let P(x,) = a. Then P(x,) = 1 — a. By Eq. (10.96)

1-p
Px;) =a X4 P> —e Y,
P
Yo
p
P(Xz) =1-a Xy > Y3
1-p
Fig. 10-13

1— 0
[mﬂxn=[ per ]

P(y|x) P(y|x) P(ys|x)
0 p 1-p

P(Y1|x2) P(Yzlxz) P(Y3|x2)

By Eq. (10.15)

0 p 1—p
=la(l-p)p(1—a)(1—p)]
=[P(y) P(») P(y3)]

[PV =[a 1a][1p P 0}

By Eq. (10.17)

e 0 1-p p 0
[P(X’Y)]__o 1—a” 0 p l—p]

_ [a(l— p) ap 0
0 (-ap amapJ

_ [P(x;,y)  P(xp,y,)  P(xp,y3)
_P(xzs)’1) P(xy,y,) P(xy,y3)
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In addition, from Eqgs. (10.22) and (10.24) we can calculate

3
HY)== P(y))log, P(y))
j=1

=—a(l—p)log, a(l—p)—plog, p—(1—a)(l—p)log,[(1—a)1— p)]
=(1-p)l-alog, a—(1—-a)log, (1-a)]
—plog, p—(1—p)log, 1—p) (10.109)

3 2
HY|X)==Y ¥ P(x;,y,)log, P(y;| x))
j=li=1

=—a(l—p)log, (1-p)—aplog, p
—(l—a)plog, p—(1—a)(1—p)log,(1—p)
=—plog, p— (- p)log,(1—p) (10.110)

Thus, by Eqs. (10.34) and (10.83)

I(X;Y)=HY)—H{Y|X)
=(1-p)l-alog, a —(1-a)log,(1 - )]

=(1-p) H(X) (10.111)
And by Eqgs. (10.43) and (10.84)
C; = max I(X;Y)= max (1-p)H(X)=(1—p) max HX)=1—p (10.112)
{P(X)} {P(x)} {P(x}

Continuous Channel

10.24. Find the differential entropy H(X) of the uniformly distributed random variable X with probability
density function

l 0=x=a
fxx)=1a
0 otherwise

for (@ya=1, (b)a = 2,and (c)a =

=

By Eq. (10.53)

HOO=~["_fr(0log, fy(x)dx

1 1
=—faflog27dx=log2a (10.113)
0a a

(@ a=1,HX)=1log,1=0
() a=2,HX)log,2 =1
(©) a:lz,H(X):logzlz:—logZZZ—l

Note that the differential entropy H(X) is not an absolute measure of information, and unlike discrete
entropy, differential entropy can be negative.

10.25. Find the probability density function f, (x) of X for which differential entropy H(X) is maximum.

Let the support of f,(x) be (a, b). [Note that the support of f, (x) is the region where f,(x) > 0.] Now

H(X):—fjfx(x)lnfx(x) dx (10.114)

[ fede=1 (10.115)
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Using Lagrangian multipliers technique, we let
J=— fabfx(x)lnfx(x)dx + A(fabfx (x) dx—l) (10.116)

where A is the Lagrangian multiplier. Taking the functional derivative of J with respect to f, (x) and setting
equal to zero, we obtain

o _ _
TR AT (10.117)
or Inf,@=4A-1=f (x)=¢"! (10.118)

s0 fy(x) is a constant. Then, by constraint Eq. (10.115), we obtain

fx(x):% a<x<b (10.119)
—a

Thus, the uniform distribution results in the maximum differential entropy.

Let X be N (0; 0?). Find its differential entropy.
The differential entropy in nats is expressed as

H(X)=ff:fx(x)lnfx(x)alx (10.120)
By Eq. (2.71), the pdf of N(0, 0?) is

fy(x)=——=e (10.121)

Then

2

lan(x)=72)i7*1nJ2n02 (10.122)

Thus, we obtain

2
H(X)=*f fX(x)( =~ 3 ln\/2ﬂ02)dx
it 20
1 5 1 ( 2) 1 1 ( 2)
=—EX")+-In270°) ==+ —-In\270
20 2 2 2

= %ln e+ %ln (2n02) = %ln (2neaz) nats/sample (10.123)

Changing the base of the logarithm, we have

H(X)= % log, (2ne02) bits/sample (10.124)

Let (X,, ..., X ) be an n-variate r.v. defined by Eq. (3.92). Find the differential entropy of (X,,..., X)).

n

From Eq. (3.92) the joint pdf of (X, ..., X)) is given by

xx) = T8 exp[—%(x—u)TKfl(x—u) (10.125)

1
(22)"IK
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where
W E(X))
n=EX)=|:|=| ! (10.126)
u, ] [EX,)
on Ol
K=| & " f=[oy] . 0, =Cov(X;, X;) (10.127)
O, O,

Then, we obtain

H(X)=— [ fx (x)In fy (x)dx

= [ )] K )i 2) i)

g
2

2 —u) (K55 (X, — ;)
L)

1 n
+-In@27) K|

g
2

;j(xi =) (X = (K7

1 n
+-In@7) K|

=3 DG~ (6~ ] 1) + S m 2 K

ij
:%EEK” K™, +%ln Q)" [K|
Joi

1 - 1 .
=52 (KK™);; + @)K
J

1 1 .
:52 1+ @) [K]
J

=g + % In 27)" K|
=% In 27e)" K] nats /sample (10.128)
= % log, (27e)" K| bits /sample (10.129)

10.28. Find the probability density function f,(x) of X with zero mean and variance o for which differential
entropy H(X) is maximum.

The differential entropy in nats is expressed as

HOO=~ " fx(0In f(x) d (10.130)

The constraints are
fifx(X)dFl (10.131)
[ f@xde=0 (10.132)

fifx(x)xzcbc:a2 (10.133)
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Using the method of Lagrangian multipliers, and setting Lagrangian as

J=- f:ofx(x) In fy (x) dx + A (f:ofx(x) dx — 1)
+4 (f:ofx(x)xdx) + ?Lz(f:fx(x)xzdx - 02)

and taking the functional derivative of J with respect to f, (x) and setting equal to zero, we obtain

aJ
3 f(x)
In fy(x)=Ag—1+Ax+ A, x*

=—Infy(X)—1+A,+Ax+A, x> =0

or fx(x): e)»n*l+)»1x+)»2xz — C()\{))ellﬁrlzxz (10.134)

It is obvious from the generic form of the exponential family restricted to the second order polynomials that
they cover Gaussian distribution only. Thus, we obtain N(0; %) and

fx(x):%e**“"z) —o< x< o (10.135)
JTTO

Verify Eq. (10.55); that is,
H@X) = H (X) + log,|a|

Let Y = a X. Then by Eq. (4.86)

=L pl 2
la| "\ a

and

H@X)=H¥)=—[" f,()log, f(¥)dy

w ] 1
== _m*fx = log, | — fx X dy
a| a |a| a
After a change of variables y/ a = x, we have

H@X) =~ [ fy()log, f(x) dx— log, ﬁ [ fod
=—H(X) +log,|d|
Verify Eq. (10.64); that is,
D(f/lg=0

By definition (10.61), we have
D)= " Fu)l gX(x))d
flg=[" fex ng(fx(x) x

=log, f ) fx(x) (gx(x))dx (by Jensen's inequality (4.40))
o fx(x)

=log, f:ogx(x)dx =log,1=0

Thus, D (f// g) = 0. We have equality in Jensen’s inequality which occurs iff f = g.
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Additive White Gaussian Noise Channel

10.31.

10.32.

Verify Eq. (10.71); that is,

C, = max I(X;Y)=llog2 1+i
{fx ()} 2 N

From Eq. (10.68), Y = X + Z. Then by Eq. (10.57) we have

I(X;Y)=HY)-HY|X)=HY)- HX+Z|X)
=HY)-HZ|X)=H(Y)—-H(Z) (10.136)

since Z is independent of X.

Now, from Eq. (10.124) (Prob. 10.26) and setting 0> = N, we have

H(Z):%logz (2meN) (10.137)

Since X and Z are independent and E(Z) = 0, we have

E(v?)=E[(x+2)]=E(x*)+2E(0E(Z2) + E(2?) =5 + N (10.138)

Given E(Y?) = S + N, the differential entropy of Y is bounded by % log, 2me(S + N), since the Gaussian
distribution maximizes the differential entropy for a given variance (see Prob. 10.28). Applying this result
to bound the mutual information, we obtain

I(X;Y)=H{Y)— H(z)

= %log2 2me(S+N)— %log2 2meN

1 2me(S+N)| 1 N
=—log,| ———~|==log, |1+ —
2 gz( 2meN ) 2 gz( N)

Hence, the capacity CS of the AWGN channel is

fx(x

1 N
C, = I(X;Y)=—~log, |1+
T =5 OgZ( N)
Verify Eq. (10.72); that is,
S .
C = Blog, 1+W bits/second

Assuming that the channel bandwidth is B Hz, then by Nyquist sampling theorem we can represent both
the input and output by samples taken 1/(2B) seconds apart. Each of the input samples is corrupted by the
noise to produce the corresponding output sample. Since the noise is white and Gaussian, each of the
noise samples is an i.i.d. Gaussian r.v.. If the noise has power spectral density N,/ 2 and bandwidth B,
then the noise has power (N, / 2) 2B = N, B and each of the 2BT noise samples in time t has variance N,BT
/ (2BT) = N,/ 2. Now the capacity of the discrete time Gaussian channel is given by (Eq. (10.71))

1 S .
C.=—log,|l+— bits/sample
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Let the channel be used over the time interval [0, T']. Then the power per sample is ST/ (2 BT) =S/ (2 B),
the noise variance per sample is N, / 2, and hence the capacity per sample is

S/(2B
C, = % log, (1 + ()) -1 log, (1 + NSB) bits/sample (10.139)

Ny/2 ) 2 A

Since there are 2B samples each second, the capacity of the channel can be rewritten as

) = Blog, [1 + Ii) bits/second

C=Blog,|1+ S
NyB

where N = N, B is the total noise power.

Show that the channel capacity of an ideal AWGN channel with infinite bandwidth is given by
1 S S
C,=———=144— b/s
n2 7 n (10.140)

where S is the average signal power and 71 /2 is the power spectral density of white Gaussian noise.

The noise power N is given by N = nB. Thus, by Eq. (10.72)

C—Blogz[l—i-s)
nB

Let S/(nB) = A. Then

+
=5 oga+n=L30A+A)
ni In

i A (10.141)

Now C, = lim Blog, [1 + S)
B—x r]B
=L§1m In(1+ A)

i

In2nars0 A
Since lim [In(1 + A)]/A = 1, we obtain
A0

CDO=L£%1.44E b/s
In2 n n

Note that Eq. (10.140) can be used to estimate upper limits on the performance of any practical
communication system whose transmission channel can be approximated by the AWGN channel.

Consider an AWGN channel with 4-kHz bandwidth and the noise power spectral density
1 /2 = 1072 W/ Hz. The signal power required at the receiver is 0.1 mW. Calculate the
capacity of this channel.

B = 4000 Hz $=0.1(10")W
N =nB=2(10""2)(4000) = 8(10 ) W
-3
Thus, 5_01107) _ 1.25(10%)

N 87107
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And by Eq. (10.72)

S
C=Blog, (1 +N)

= 4000 log, [1+1.25(10*)] = 54.44(10°) b/s

10.35. An analog signal having 4-kHz bandwidth is sampled at 1.25 times the Nyquist rate, and each sample
is quantized into one of 256 equally likely levels. Assume that the successive samples are statistically
independent.

(@)
(b)

©
(d)

(@)

(b)

()

(d)

What is the information rate of this source?

Can the output of this source be transmitted without error over an AWGN channel with a
bandwidth of 10 kHz and an S/ N ratio of 20 dB?

Find the S/ N ratio required for error-free transmission for part (b).

Find the bandwidth required for an AWGN channel for error-free transmission of the output of this
source if the S/ N ratio is 20 dB.

fy = 4(10°)Hz
Nyquist rate = 2f,, = 8(10%) samples /s
r=8(103)(1.25) = 10* samples/s
H(X) =log, 256 = 8 b/sample

By Eq (10.10) the information rate R of the source is
R=rH(X)=10*8)b/s = 80 kb/s

By Eq. (10.72)
C=Blog, [1 +;] =10"* log, (1+10%)=66.6(10%) b/s

Since R > C, error-free transmission is not possible.

The required S/N ratio can be found by

C=10"log, (1 +Ii]z 8(10%)

S
or log, (1 +N) =8

or 1+ 3 =28 =256 >3 =255 (=24.1dB)
N N

Thus, the required S/N ratio must be greater than or equal to 24.1 dB for error-free transmission.

The required bandwidth B can be found by

C = Blog, (1+100) = 8(10*)
8(10%)

or " log, (1+100)

=1.2(10*)Hz = 12kHz

and the required bandwidth of the channel must be greater than or equal to 12 kHz.
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Source Coding

10.36. Consider a DMS X with two symbols x, and x, and P(x;) = 0.9, P(x,) = 0.1. Symbols x, and x, are
encoded as follows (Table 10-4):

TABLE 10-4
X, P(x) CODE
, 0.9 0
x, 0.1 1

Find the efficiency 1 and the redundancy ¥y of this code.

By Eq. (10.73) the average code length L per symbol is
2
L= E P(xpn, =09)D)+O.H1)=1b
i=1
By Eq. (10.7)

2
H(X)=— EP(x» log, P(x;)

i=1

=—-0.91log, 0.9 —0.1log, 0.1=0.469 b/symbol

Thus, by Eq. (10.77) the code efficiency nis

SHX) 0.469 =46.9%

By Eq. (10.75) the code redundancy yis
y=1—-n=0.531=53.1%

10.37. The second-order extension of the DMS X of Prob. 10.36, denoted by X?, is formed by taking the source
symbols two at a time. The coding of this extension is shown in Table 10-5. Find the efficiency 7 and
the redundancy y of this extension code.

TABLE 10-5
a P@) CODE
a, = x,x, 0.81 0
a, = x,x, 0.09 10
a; = X,x, 0.09 110
a, = x,x, 0.01 111

L= P(a;)n; =0.81(1) +0.09(2) + 0.09(3) + 0.01(3)

i=1

=1.29 b/symbol

4


http://.lo

CHAPTER 10 Information Theory 401

10.38.

The entropy of the second-order extension of X, H(X?), is given by

4
H(X*)=Y P(a))log, P(a;)
i=1

=—0.811log, 0.81—0.09 log, 0.09 —0.09 log, 0.09 —0.011og, 0.01
=10.938 b/symbol

Therefore, the code efficiency nis

2
n= HXT) _0938 _ 1 0rr 7279,
L 129

and the code redundancy y is
y=1-1n=0.273=273%

Note that H(X?) = 2H(X).

Consider a DMS X with symbols x,, i = 1, 2, 3, 4. Table 10-6 lists four possible binary codes.

TABLE 10-6
X; CODE A CODE B CODE C CODE D
X, 00 0 0 0
X, 01 10 11 100
X 10 11 100 110
X, 11 110 110 111

(@) Show that all codes except code B satisty the Kraft inequality.

(b) Show that codes A and D are uniquely decodable but codes B and C are not uniquely decodable.

(a) From Eq. (10.78) we obtain the following:

For code A : n=n,=ny=n, =2
4
K:ET"':—+—+1 LR
“~ 4 4 4 4
For code B : n=1 n=ny=2 n,=3

For code C : m=1 n=2 ny=n,=3
4
K:EZ‘”':l+l+l+l71
“~ 2 4 8 8
For code D : m=1 n,=ny;=ny4=3

All codes except code B satisfy the Kraft inequality.
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(b) Codes A and D are prefix-free codes. They are therefore uniquely decodable. Code B does not satisfy the
Kraft inequality, and it is not uniquely decodable. Although code C does satisfy the Kraft inequality, it
is not uniquely decodable. This can be seen by the following example: Given the binary sequence
0110110. This sequence may correspond to the source sequences x, X, X, X, OF X, X, X,.

Verify Eq. (10.76); that is,

L= HX)

where L is the average code word length per symbol and H(X) is the source entropy.

From Eq. (10.89) (Prob. 10.5), we have

m Q
Plog, =+=0
iZ] ; 108, P

i

where the equality holds only if O, = P,. Let

where K= E 27"

which is defined in Eq. (10.78). Then

-
and E F; log,

:—EPi log, P, _iﬁni —(log, K)iP,-

i=1 i=1 i=1

=H(X)—L—-log, K=0

From the Kraft inequality (10.78) we have

log, K=0
Thus, HX) - L=log,K=0
or L= HX)

The equality holds when K = 1 and P, = Q,.

Let X be a DMS with symbols x; and corresponding probabilities P(x,) = P,,

that for the optimum source encoding we require that

m
K=Y2"=1
i=1

1
and n; 2103252 i

1

(10.142)

(10.143)

(10.144)

(10.145)

(10.146)

(10.147)

=1,2,...,m. Show

(10.148)

(10.149)
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where n, is the length of the code word corresponding to x; and /; is the information content of x..

From the result of Prob. 10.39, the optimum source encoding with L = H(X) requires K = 1 and P, = Q,.
Thus, by Eqgs. (10.143) and (10.142)

K:Ef"i:l (10.150)
i=1
and P,=Q =27 (10.151)
1
Hence, n; =—log, F; =log, P I;

Note that Eq. (10.149) implies the following commonsense principle: Symbols that occur with high
probability should be assigned shorter code words than symbols that occur with low probability.

Consider a DMS X with symbols x; and corresponding probabilities P(x) = P,, i = 1,2, ..., m. Let
n, be the length of the code word for x, such that

1 1
log, —=n. =<log, —+1
%) P i 125) P (10.152)

l l

Show that this relationship satisfies the Kraft inequality (10.78), and find the bound on K in Eq. (10.78).

Equation (10.152) can be rewritten as

—log, P,=n,= —log, P, + 1 (10.153)

or log, P,= —n,=log, P, — 1

Then 2logyPj = 2 =m; = Dlogy Py —1
or P=2" =P, (10.154)
Th \ ﬁ 1 i (10.155)

us, P= 27 = P, .
i=1 i=1 24
ul 1

1= )27 =~ 10.156
or D > ( )

which indicates that the Kraft inequality (10.78) is satisfied, and the bound on K'is

=K=1 (10.157)

Consider a DMS X with symbols x, and corresponding probabilities P(x) = P, i = 1,2, ..., m.
Show that a code constructed in agreement with Eq. (10.152) will satisfy the following relation:
HX)=L=HX) + 1 (10.158)

where H(X) is the source entropy and L is the average code word length.

Multiplying Eq. (10.153) by P, and summing over i yields

—EPlogzP-s ni1352pi(—1ogzp,.+1) (10.159)



404

10.43.

10.44.

CHAPTER 10 Information Theory

Now

s

'(—logy P +D)==Y Plog, B+ > P
i=1 i=1
=HX)+1
Thus, Eq. (10.159) reduces to

HX)=L=HX)+ 1

Verify Kraft inequality Eq. (10.78); that is,

Consider a binary tree representing the code words; (Fig. 10-14). This tree extends downward toward
infinity. The path down the tree is the sequence of symbols (0, 1), and each leaf of the tree with its unique
path corresponds to a code word. Since an instantaneous code is a prefix-free code, each code word eliminates
its descendants as possible code words.

level 1
level 2

level 3 0

000 001 o010 011 100 101 110 111

Fig. 10-14 Binary tree.

Letn_,  be the length of the longest code word. Of all the possible nodes at a level of n_ , some may be code

a: max’

words, some may be descendants of code words, and some may be neither. A code word of level n, has 2"max ™"
descendants at level n_ . The total number of possible leaf nodes at level n_ is 2"mx. Hence, summing over
all code words, we have

m
E 2Mmax M < D max

i=1

Dividing through by 2"mx, we obtain

Conversely, given any set of code words with length n, (i = 1, ..., m) which satisfy the inequality, we can
always construct a tree. First, order the code word lengths according to increasing length, then construct
code words in terms of the binary tree introduced in Fig. 10.14.

Show that every source alphabet X = {x,, ..., x } has a binary prefix code.

Given source symbols x, ..., x, , choose the code length 7, such that 2" = m; that is, n, = log, m. Then

iz,_ il (1) |
< —=m|l—1=
=1 = m

Thus, Kraft’s inequality is satisfied and there is a prefix code.
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Entropy Coding

10.45. A DMS X has four symbols x,, x,, x;, and x, with P(x|) = %, Px,) = %, and P(x;) = P(x,) =

1
3

405

Construct a Shannon-Fano code for X; show that this code has the optimum property that n, = I(x,)
and that the code efficiency is 100 percent.

The Shannon-Fano code is constructed as follows (see Table 10-7):

TABLE 10-7
X; P(x;) STEP 1 STEP 2 STEP 3 CODE
X, 3 0 0
X, 1 1 0 10
X 1 1 1 0 110
X, 3 1 1 1 111

1
I(x1)=—10g25=1=n1

1
I()c3):—10g2§:3:n3

- ! 1 1 1
H(X)= izlP(xi)I(xi) =S OF QLB+ 3=175

1
I()c2)=—10g22=2=n2

1
I(x4):—10g2§:3:n4

: 1 1 1 1
L= IZ]P(%)",- = 5(1) +Z(2) +§(3) +§(3) =175

10.46. A DMS X has five equally likely symbols.

(a)
(b)
(©)

(@)

Construct a Shannon-Fano code for X, and calculate the efficiency of the code.
Construct another Shannon-Fano code and compare the results.

Repeat for the Huffman code and compare the results.

A Shannon-Fano code [by choosing two approximately equiprobable (0.4 versus 0.6) sets] is

constructed as follows (see Table 10-8):

_HX) _

=1=100%

TABLE 10-8
X; P(x;) STEP 1 STEP 2 STEP 3 CODE
X, 0.2 0 0 00
X, 0.2 0 1 01
X, 0.2 1 0 10
Xy 0.2 1 1 0 110
X5 0.2 1 1 1 111
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5
H(X)== P(x,) log, P(x,)=5(~02log, 0.2)=2.32
=1

5
L= POn =022 +2+2+3+3)=24

i=1
The efficiency nis

_HX) 232 9679679
L 24

(b) Another Shannon-Fano code [by choosing another two approximately equiprobable (0.6 versus 0.4)
sets] is constructed as follows (see Table 10-9):

TABLE 10-9
X; P(x;) STEP 1 STEP 2 STEP 3 CODE
X 0.2 0 0 00
X, 0.2 0 1 0 010
X, 0.2 0 1 1 011
Xy 0.2 1 0 10
X5 0.2 1 1 11

5
L= P(n =022 +3+3+2+2)=24

i=1

Since the average code word length is the same as that for the code of part (a), the efficiency is the same.

(¢) The Huffman code is constructed as follows (see Table 10-10):

5
L= POin; =022 +3+3+2+2)=24
i=1

Since the average code word length is the same as that for the Shannon-Fano code, the efficiency is
also the same.

TABLE 10-10
x;  Pkx;  CODE
01 1 1 0
X, 02 ——_ —04 0.4 0.6 —
01 00
X, 02 _ %00 0.2 04— [ 04—
s 001 0y 000 0s
X3 2 — . .
0.2 10 0.2 v
X —_— 2 —
4 ' | 001
X5 0.2 11
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10.47. A DMS X has five symbols x,, x,, x5, x,,
P(x,) = 0.15,and P(x;) = 0.1.

and x; with P(x,) = 0.4, P(x,) = 0.19, P(x;) = 0.16,

(a) Construct a Shannon-Fano code for X, and calculate the efficiency of the code.

(b) Repeat for the Huffman code and compare the results.

(a) The Shannon-Fano code is constructed as follows (see Table 10-11):

TABLE 10-11

x; P(x;) STEP 1 STEP 2 STEP 3 CODE
X, 0.4 0 0 00
X, 0.19 0 1 01
X, 0.16 1 0 10
X, 0.15 1 1 110
X5 0.1 1 1 111

5
H(X)==Y P(x;) log, P(x;)
i=1

=—041og, 04 —0.191og, 0.19 —0.16 log, 0.16

—0.151log, 0.15—0.11og, 0.1

=2.15
5
L= E P(x;)n;
i=1
=04(2)+0.19(2) +0.16(2) + 0.15(3) + 0.1(3) =225
SHX) 215 0.956 =95.6%
L 225

(b) The Huffman code is constructed as follows (see Table 10-12):

5
L= E P(x;)n;
i=1

=041)+(0.19+0.16+0.15+0.1)(3) =22

TABLE 10-12
% Pk  CODE
1 1 1 0
X, 04 0.4 0.4 0.6 ——
000 01 00
X, 0.19 0.25 035 J:0.4 1
001 000
X 016 019 ——— [N 025 —
010
no 015 —— No16—
%o 01 011
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p=1100 215577 - 775

The average code word length of the Huffman code is shorter than that of the Shannon-Fano code, and
thus the efficiency is higher than that of the Shannon-Fano code.

SUPPLEMENTARY PROBLEMS

10.48.

10.49.

10.50.

10.51.

10.52.

10.53.

Consider a source X that produces five symbols with probabilities -, %, 18 ’1]%

entropy H(X).

,and ;E. Determine the source

[

Calculate the average information content in the English language, assuming that each of the 26 characters
in the alphabet occurs with equal probability.

Two BSCs are connected in cascade, as shown in Fig. 10-15.

Y1

A
o
¥yo
3

0.8 A 0.7
Fig. 10-15

(a) Find the channel matrix of the resultant channel.

(b) Find P(z,) and P(z,) if P(x,) = 0.6 and P(x,) = 0.4.

Consider the DMC shown in Fig. 10-16.

Fig. 10-16

(a) Find the output probabilities if P(x,) = % and P(x,) = P(xy) = i.
(b) Find the output entropy H(Y).

Verify Eq. (10.35), that is,

IX;Y) = HX) + HY) — HX, Y)

Show that H(X, Y) = H(X) + H(Y) with equality if and only if X and Y are independent.
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10.54.

10.55.

10.56.

10.57.

10.58.

10.59.

10.60.

10.61.

10.62.

10.63.

10.64.

10.65.

10.66.

Show that for a deterministic channel
HY|X)=0

Consider a channel with an input X and an output Y. Show that if X and Y are statistically independent, then
HX|Y)=HX)and I(X;Y) =0.

Achannel is described by the following channel matrix.
(a) Draw the channel diagram.

(b) Find the channel capacity.

S N~
S N

Let X be a random variable with probability density function f,(x), and let ¥ = aX + b, where a and b are
constants. Find H(Y) in terms of H(X).

Show that H(X + ¢) = H(X), where c is a constant.

Show that H(X) = H(X | Y),and H(Y) = H(Y | X).

Verify Eq. (10.30), that is, H(X, Y) = H(X) + H(Y), if X and Y are independent.

Find the pdf f, (x) of a continuous r.v X with E(X) = u which maximizes the differential entropy H(X).
Calculate the capacity of AWGN channel with a bandwidth of 1 MHz and an S/N ratio of 40 dB.

Consider a DMS X with m equiprobable symbols X, 1= 1,2, ....,m.
(a) Show that the use of a fixed-length code for the representation of x;is most efficient.

(b) Letn,be the fixed code word length. Show that if n, = log,m, then the code efficiency is 100 percent.
Construct a Huffman code for the DMS X of Prob. 10.45, and show that the code is an optimum code.

ADMS X has five symbols x,, x,, x5, x,, and x; with respective probabilities 0.2, 0.15, 0.05, 0.1, and 0.5.
(a) Construct a Shannon-Fano code for X, and calculate the code efficiency.

(b) Repeat (a) for the Huffman code.

Show that the Kraft inequality is satisfied by the codes of Prob. 10.46.

ANSWERS TO SUPPLEMENTARY PROBLEMS

10.48.

10.49.

10.50.

10.51.

1.875 b/symbol

4.7 b/character

0.62 0.38
(a)
038 0.62

(b) P(z))=0524, P(z,)=0476

(@) P(y,)=17/24, P(y,) = 17/48, and P(y,) = 17/48
(b) 1.58 b/symbol
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10.52.

10.53.

10.54.

10.55.

10.56.

10.57.

10.58.

10.59.

10.60.

10.61.

10.62.

10.63.

10.64.

10.65.

10.66.
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Hint:  Use Eqgs. (10.31) and (10.26).
Hint:  Use Eqs. (10.33) and (10.35).
Hint:  Use Eq. (10.24), and note that for a deterministic channel P(yj| x,) are either O or 1.
Hint:  Use Eqgs. (3.32) and (3.37) in Egs. (10.23) and (10.31).
(a) See Fig. 10-17.
(b) 1b/symbol
1
2
X1 > —e y1
1
2 Ve
X2 -~ > y3
Fig. 10-17
H(Y) = HX) +log,a
Hint: LetY = X + c and follow Prob. 10.29.
Hint:  Use Eqgs. (10.31), (10.33), and (10.34).
Hint:  Use Eqgs. (10.28), (10.29), and (10.26).
1 —x/u
fxx)=—e x=0
u
13.29 Mb/s
Hint:  Use Eqs. (10.73) and (10.76).
Symbols: X, X, X, X,
Code: 0 10 110 111
(a) Symbols: X, X, X, X, X5
Code: 10 110 1111 1110 0
Code efficiency 1 = 98.6 percent.
(b) Symbols: X, X, X, X, X
Code: 11 100 1011 1010 0

Code efficiency 1 = 98.6 percent.

Hint:  Use Eq. (10.78)
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APPENDIX A

Normal Distribution

<I>(Z) = ﬁj;e & dE

®(-z)=1-(z)

Fig. A

TABLE A Normal Distribution ®(z)

4 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359
0.1 0.5399 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753
0.2 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141
0.3 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517
0.4 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879
0.5 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224
0.6 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549
0.7 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7703 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852
0.8 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133
0.9 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8364 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389
1.0 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621
1.1 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830
1.2 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015
1.3 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 09115 | 0.9131 | 09147 | 09162 | 09177
1.4 09192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319

411
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TABLE A—Continued

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

1.5 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441
1.6 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545
1.7 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633
1.8 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706
1.9 09713 | 09719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767
2.0 09772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817
2.1 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857
2.2 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890
23 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916
24 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936
2.5 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952
2.6 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964
2.7 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974
2.8 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9078 | 0.9979 | 0.9979 | 0.9980 | 0.9981
2.9 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9085 | 0.9985 | 0.9986 | 0.9986
3.0 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990
3.1 0.9990 | 0.9991 | 0.9991 | 0.9991 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9993
32 0.9993 | 0.9993 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9995 | 0.9995 | 0.9995
33 0.9995 | 0.9995 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9997
34 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9998 | 0.9998
3.5 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998
3.6 0.9998 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999

The material below refers to Fig. A.

a 0.2 0.1 0.05 0.025 0.01 0.005
1282 1.645 1960 2240 2576 2.807

Z0:/2
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Fourier Transform

B.1 Continuous-Time Fourier Transform

Definition:
X(w)= e " dt H=—/[ X)) d
@)= xve xO)= 5[ X@)™ do
TABLE B-1 Properties of the Continuous-Time Fourier Transform
PROPERTY SIGNAL FOURIER TRANSFORM
x(1) X(w)
x1(t) X](a))
xz(t) XZ(CO)
Linearity ax, (1) + ayx,(1) a,X,(w)+a,X,(®)
Time shifting x(t = 1) e 10X (w)
Frequency shifting e/00x(1) X(w— )
Time scaling x(ar) iX @
|a| a
Time reversal x(—1) X(—w)
Duality X(1) 21mx(— ®)
Time differentiation M JoX(w)
e a dX ()
Frequency differentiation (—jx(t) “do
1
Integration |' x@ar 7X(0)3(@) +——+ X(@)
o J
Convolution x, (1) % x,(1) :J.iq x (Dx,(t —1)dT X, (0)X, ()
1
Multiplication x,(0x,(1) — X, (0) * X, (@)

Real signal

Even component
Odd component

Parseval’s theorem

x(1) = x,(1) + x,(0)

50
xo(t)

© 2 1o 2
| x@ P ar= . |” x@/P do

2r )
= |7 XWX, @=2)d
X(w) = A(w) + jB(w)
X(~ )= X*(@)

Re{X(m)} = A(®)
JIm{X(w)} = jB(w)
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APPENDIX B Fourier Transform

TABLE B-2 Common Continuous-Time Fourier Transform Pairs

x(@® X(w)
1. 6(z) 1
2. 8(1 —1t,) e %%
3. 1 2nd(w)
4. el 2n6(w — @)
5. cos Wt n[(w — ®,) + 6(® + 0,)]
6. sin @, —jrld(@ — o,) — 8(w + o,)]
1 >0 1
7. u(t) = né(w +—
0 {0 a @+
8. e "ut) a>0 - !
Jjo+ta
0. te”“ut) a>0 _
(jo +ay’
10. e M g>0 2a
a’ -l-Co2
1 —alol
11. _ e
a’+1
12. efat2 a>0 \/Ee—cona
a
1 |t|<a Sin(oa
13. 1=
p,(® {0 > a 2a P
" sinar pa(co)={l ol < a
it 0 lol>a
1 t>0
15. | sgnt= 2z
-1 <0 Jjo
- = 2
16. Y, 8t —kT) w, Y, 8o~ kay), 0 ="
k=—co k=—oo

B.2 Discrete-Time Fourier Transform

Definition:
0o ) 1 . )
— —-jQn - Jjn
X(Q) n Em x(n)e x(n) - f_n X(Q)e’™ dQ
TABLE B-3 Properties of the Discrete-Time Fourier Transform

PROPERTY SEQUENCE FOURIER TRANSFORM

x(n) X(€2)

x,(n) X, ()

x,(n) X,(€2)
Periodicity x(n) X(Q+2n)=X(Q)
Linearity a,x,(n) + a,x,(n) a, X, () + a,X,(Q)
Time shifting x(n—n,) e X (Q)




APPENDIX B Fourier Transform

TABLE B-3—Continued

Real sequence

Even component

Odd component

Parseval’s theorem

x(n)=x,(n) + x,(n)

x,(n)

x0(1)

S 1x(m)P = 217: [ 1x@rae

n=—oo

PROPERTY SEQUENCE FOURIER TRANSFORM
Frequency shifting e’ Q"nx(n) X(Q—-Q)
Time reversal x(—n) X(—Q)
Frequency differentiation nx(n) LdX(Q)

n dQ

- 3 x(k) _ 1
Accumulation TX(0)6(Q)+ 0 X(Q)
k==co l—e

Convolution x,(n) *x,(n) = 2 x,(k)xy(n — k) X, (Q)X, (L)

k=—co
Multiplication x,(n)x,(n) ZLX Q) ®X,(Q)

T

1 (=
- [ xx,@—ndn

X(Q) = A(Q) + jB(Q)
X(—Q) =X*(Q)
Re{X(Q) = A(Q)
J Im{X(Q)} = jBQ)

TABLE B-4 Common Discrete-Time Fourier Transform Pairs

x[n] X(Q)
1 =0
Ll sm=, " 1
0 n#0
2. d(n—ny) e M
3. x(n)=1 2md( Q)
4. /% 2m3(Q - Q)
5. cos Q1 8(Q — Q) +8(Q+Q,)]
6. sin Q — JR8Q—Q,) — 8Q +Q,)]
1 n=0 1
= wo(Q) + —
7. | uln) {0 e "
8. | dun) lal<1 L
1—ae @
9. | (n+Da"u(n) |a|<1 1 ‘
(1—ae ')?
n| 1—a?
0. & jal<t M
1—2acos Q+a’
11. x(n)zl Inl=nN, sin{Q(Nl+lﬂ
0 |n|>N, 2
sin(€2/2)
12, | S0, 0<W<mr X(Q):l 0=1[QI=W
nn 0 wW<|Ql=rn
- = 2
13. 2. 8(n—kN) Q, Y, 8(Q-kQ) QOZN_
k=—co k=—oco 0
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a priori probability, 333
a posteriori probability, 333
Absorbing barrier, 241

states, 215
Absorption, 215

probability, 215
Acceptance region, 331
Accessible states, 214
Additive white gaussian noise channel, 397
Algebra of sets, 2-6, 15
Alternative hypothesis, 331
Aperiodic states, 215
Arrival (or birth) parameter, 350
Arrival process, 216,253
Assemble average, 208
Autocorrelation function, 208, 273
Autocovariance function, 209
Average information, 368
Axioms of probability, 8

Band-limited, channel, 376
white noise, 308
Bayes’, estimate, 314
estimator, 314
estimation, 314, 321
risk, 334
rule, 10
test, 334
theorem, 10
Bernoulli, distribution, 55
experiment, 44
process, 222
r.v., 55
trials, 44, 56
Best estimator, 314
Biased estimator, 316
Binary, communication channel, 117-118
erasure channel, 386, 392
symmetrical channel (BSC), 371
Binomial, distribution, 56
coefficient, 56
r.v., 56
Birth-death process, 350
Birth parameter, 350

Bivariate, normal distribution, 111
r.v., 101, 122
Bonferroni’s inequality, 23
Boole’s inequality, 24
Brownian motion process (see Wiener process)
Buffon’s needle, 128

Cardinality, 4
Cauchy, criterion, 284
r.v., 98
Cauchy-Schwarz inequality, 133, 154, 186
Central limit theorem, 64, 158, 198-199
Chain, 208
Markov, 210
Channel, band-limited, 376
binary symmetrical, 371
capacity, 391, 393
continuous, 374, 393
deterministic, 370
discrete memoryless (DMC), 369
lossless, 370
matrix, 238, 369
noiseless, 371
representation, 369
transition probability, 369
Chapman-Kolomogorov equation, 212
Characteristic function, 156-157, 196
Chebyshev inequality, 86
Chi-square (x?) r.v., 181
Code, classification, 377
distinct, 378
efficiency, 377
Huffman, 380
instantaneous, 378
length, 377
optimal, 378
prefix-free, 378
redundancy, 377
Shannon-Fano, 405
uniquely decidable, 378
Coding, entropy, 378, 405
source, 400
Complement of set, 2
Complex random process, 208, 280
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Composite hypothesis, 331
Concave function, 153
Conditional, distribution, 64, 92, 105, 128
expectation, 107,219
mean, 107, 135
probability, 10, 31
probability density function (pdf), 105
probability mass function (pmf), 105
variance, 107, 135
Confidence, coefficient, 324
interval, 324
Consistent estimator, 313
Continuity theorem of probability, 26
Continuity correction, 201
Convex function, 153
Convolution, 168,276
integral, 276
sum, 277
Correlation, 107
coefficient, 106107, 131, 208
Counting process, 217
Poisson, 217
Covariance, 106-107, 131, 208
matrix, 111
stationary, 230
Craps, 45
Critical region, 331
Cross-correlation function, 273,

Cross power spectral density (or spectrum), 274

Cumulative distribution function (cdf), 52

Death parameter, 351
Decision test, 332, 338
Bayes’, 334
likelihood ratio, 333
MAP (maximum a posteriori), 333
maximum-likelihood, 332
minimax (min-max), 335
minimum probablity of error, 334
Neyman-Pearson, 333
Decision theory, 331
De Morgan’s laws, 6, 18
Departure (or death) parameter, 351
Detection probability, 332
Differential entropy, 394
Dirac 6 function, 275
Discrete, memoryless channel (DMC), 369
memoryless source (DMS), 369
r.v., 71,116
Discrete-parameter Markov chain, 235
Disjoint sets, 3
Distribution:
Bernoulli, 55
binomial, 56

conditional 64, 92, 105, 128
continuous uniform, 61
discrete uniform, 60
exponential, 61
first-order, 208
gamma, 62
geometric, 57
limiting, 216
multinomial, 110
negative binomial, 58
normal (or gaussian), 63
nth-order, 208
Poisson, 59
second-order, 208
stationary, 216
uniform, continuous, 61
discrete, 60

Distribution function, 52, 66
cumulative (cdf), 52

Domain, 50, 101

Doob decomposition, 221

Efficient estimator, 313
Eigenvalue, 216
Eigenvector, 216
Ensemble, 207

average, 208
Entropy, 368

coding, 378, 405

conditional, 371

differential, 374

joint, 371

relative, 373, 375
Equally likely events, 9, 27
Equivocation, 372
Ergodic, in the mean, 307

process, 211

Erlang’s, delay (or C) formula, 360

loss (or B) formula, 364
Estimates, Bayes’, 314

point, 312

interval, 312

maximum likelyhood, 313
Estimation, 312

Bayes’, 314

error, 314

mean square, 314

maximum likelihood, 313, 319

mean square, 314, 325
linear, 315
parameter, 312
theory, 312
Estimator, Bayes’ 314
best, 314

Index
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biased, 316
consistent, 313
efficient, 313
most, 313
maximum-likelihood, 313
minimum mean square error, 314
minimum variance,313
point, 312,316
unbiased, 312
Event, 2,12, 51
certain, 2
elementary, 2
equally likely, 9, 27
impossible, 4
independent, 11, 41
mutually exclusive, 8,9
and exhaustive, 10
space (or o-field), 6
Expectation, 54, 152-153, 182
conditional, 107, 153,219
properties of, 220
Expected value (see Mean)
Experiment, Bernoulli, 44
random, 1
Exponential, distribution, 61
r.v., 61

Factorial moment, 155
False-alarm probability, 332
Filtration, 219, 222
Fn—measurable, 219
Fourier series, 279, 300
Perseval’s theorem for, 301
Fourier transform, 280, 304
Functions of r.v.’s, 149-152, 159, 167, 178
Fundamental matrix, 215

Gambler’s ruin, 241
Gamma, distribution, 62
function, 62, 79
r.v.,62, 180
Gaussian distribution (see Normal distribution)
Geometric, distribution, 57
memoyless property, 58, 74
r.v.,57

Huffman, code, 380
Encoding, 379
Hypergeometric r.v., 97
Hypothesis, alternative, 331
composite, 331
null, 331
simple, 331
Hypothesis testing, 331, 335

level of significance, 332
power of, 332

Impulse response, 276
Independence law, 220
Independent (statistically), events, 11

increments, 210

process, 210

r.v.’s, 102, 105
Information, content, 368

measure of, 367

mutual, 371-372

rate, 368

source, 367

theory, 367
Initial-state probability vector, 213
Interarrival process, 216
Intersection of sets, 3
Interval estimate, 312

Jacobian, 151
Jenson’s inequlity, 153, 186, 220
Joint, characteristic function, 157
distribution function,102, 112
moment generating function, 156
probability density function (pdf),
104,122
probability mass function (pmf),
103,116
probability matrix, 370

Karhunen-Loéve expansion, 280, 300
Kraft inequality, 378, 404
Kullback-Leibler divergence, 373

Lagrange multiplier, 334, 384, 394, 396
Laplacer.v., 98
Law of large numbers, 158, 198
Level of significance, 332
Likelihood, function, 313
ratio, 333
test, 333
Limiting distribution, 216
Linearity, 153, 220
Linear mean-square estimation, 314, 327
Linear system, 276, 294
continuous-time, 276
impulse response of, 276
response to random inputs, 277,294
discrete-time, 276
impulse (or unit sample) response, 277
response to random inputs, 278,294
Little’s formula, 350
Log-normal r.v., 165
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MAP (maximum a posteriori) test, 333
Marginal, distribution function, 103
cumulative distribution function (cdf), 103
probability density function (pdf), 104
probability mass function (pmf), 103
Markov, chains, 210
discrete-parameter, 211, 235
fundamental matrix, 215
homogeneous, 212
irreducible, 214
nonhomogeneous, 212
regular, 216
inequality, 86
matrix, 212
process, 210
property, 211
Maximum likelihood estimator, 313, 319
Mean, 54, 86, 208
conditional, 107
Mean square, continuity, 271
derivative, 272
error, 314
minimum, 314
estimation, 314, 325
linear, 315
integral, 272
Median, 97
Memoryless property (or Markov property), 58, 62,
74,94, 211
Mercer’s theorem, 280
Measurability, 220
Measure of information, 380
Minimax (min-max) test, 335
Minimum probability of error test, 334
Minimum variance estimator, 313
Mixed r.v., 54
Mode, 97
Moment, 55, 155
Moment generating function, 155, 191
joint, 156
Most efficient estimator, 313
Multinomial, coefficient, 140
distribution, 110
r.v., 110
theorem, 140
trial, 110
Multiple r.v., 101
Mutual information, 367, 371, 387
Mutually exclusive, events, 3,9
and exhaustive events, 10
sets, 3

Negative binomial r.v., 58
Neyman-Pearson test, 332, 340

Nonstationary process, 209
Normal, distribution, 63, 411
bivariate, 111
n-variate, 111
process, 211, 234
r.v., 63
standard, 64
Null, event (set), 3
hypothesis, 331
recurrent state, 214

Optimal stopping theorem, 221, 265
Orthogonal, processes, 273

r.v., 107
Orthogonality principle, 315
Outcomes, 1

Parameter estimation, 312
Parameter set, 208
Parseval’s theorem, 301
Periodic states, 215
Point estimators, 312
Point of occurrence, 216
Poisson, distribution, 59
process, 216, 249
r.v., 59
white noise, 293
Polya’s urn, 263
Positive recurrent states, 214
Positivity, 220
Posterior probability, 333
Power, function, 336
of test, 332
Power spectral density (or spectrum), 273, 288
cross, 274
Prior probability, 333
Probability, 1
conditional, 10, 31
continuity theorem of, 26
density function (pdf), 54
distribution, 213
generating function, 154, 187
initial state, 213
mass function (pmf), 53
measure, 7-8
space, 67, 21
total, 10, 38
Projection law, 220

Queueing, system, 349
M/M/1,352
M/M/1/K, 353
M/M/s, 352
M/M/s/K, 354
theory, 349
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Random, experiment, 1
process, 207
complex, 208
Fourier transform of, 280
independent, 210
real, 208
realization of, 207
sample function of, 207
sample, 199, 312
sequence, 208
telegraph signal, 291
semi, 290
variable (r.v.), 50
continuous, 54
discrete, 53
function of, 149
mixed, 54
uncorrelated, 107
vector, 101, 108, 111, 137
walk, 222
simple, 222
Range, 50, 101
Rayleigh r.v., 78, 178
Real random process, 208
Recurrent process, 216
Recurrent states, 214
null, 214
positive, 214
Regression line, 315
Rejection region, 331
Relative frequency, 8
Renewal process, 216

Sample, function, 207
mean, 158, 199, 316
point, 1
random, 312
space, 1, 12
variance, 329
vector (see Random sample)

Sequence, decreasing, 25
increasing, 25

Sets, 1
algebra of, 2-6, 15
cardinality of, 4
countable, 2
difference of, 3

symmetrical, 3
disjoint, 3
intersection of, 3
mutually exclusive, 3
product of, 4
size of, 4
union of, 3

421

Shannon-Fano coding, 379
Shannon-Hartley law, 376
Sigma field (see event space)
Signal-to-noise (S/N) ratio, 370
Simple, hypothesis, 331
random walk, 222
Source, alphabet, 367
coding, 376, 400
theorem, 377
encoder, 376
Stability, 220
Standard, deviation, 55
normal r.v., 63
State probability vector, 213
State space, 208
States, absorbing, 215
accessible, 214
aperiodic, 215
periodic, 215
recurrent, 214
null, 214
positive, 214
transient, 214
Stationary, distributions, 216
independent increments, 210
processes, 209
strict sense, 209
weak, 210
wide sense (WSS), 210
transition probability, 212
Statistic, 312
sufficient, 345
Statistical hypothesis, 331
Stochastic, continuity, 271
derivative, 272
integral, 272
matrix (see Markov matrix)
periodicity, 279
process (see Random process)
Stopping time, 221
optimal, 221
System, linear, 276
linear time invariance (LTT), 276
response to random inputs,
276,294
parallel, 43
series, 42

Threshold value, 333
Time-average, 211

Time autocorrelation function, 211
Total probability, 10, 38

Tower property, 220

Traffic intensity, 352
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Transient states, 214
Transition probability, 212
matrix, 212
stationary, 212
Type I error, 332
Type I error, 332

Unbiased estimator, 312
Uncorrelated r.v.’s, 107
Uniform, distribution, 60-61
continuous, 60
r.v., 60
discontinuous, 61
r.v., 61
Union of sets, 3
Unit, impulse function (see Dirac 6 function)
impulse sequence, 275
sample response, 277

sample sequence, 275
step function, 171
Universal set, 1

Variance, 55
conditional, 107

Vector mean, 111

Venn diagram, 4

Waiting time, 253
White noise, 275, 292
normal (or gaussian), 293
Poisson, 293
Wiener-Khinchin relations, 274
Wiener process, 218, 256, 303
standard, 218
with drift coefficient, 219

Z-transform, 154
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