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PREFACEPREFACE

Probability theory had its beginnings in the early seventeenth century as a result of investigations of 
various games of chance.    Since then many leading mathematicians and scientists made contribu tions to 
this theory.    However, despite its long and active history, probability theory was not axiomatized until 
the twentieth century.    This axiomatic development, called modern probability theory, was then able to 
make the concepts of probability precise and place them on a firm mathematical foundation.

This book is designed for an introductory course in probability with high school algebra as the main 
prerequisite.    It can serve as a text for such a course, or as a supplement to all current comparable texts.    
The book should also prove to be useful as a supplement to texts and courses in statistics.    Furthermore, 
the book can easily be used for self-study if the reader has a basic understanding of calculus.

This new edition includes and expands the content of the first edition.    It begins with a chapter on 
sets and their operations, and then with a chapter on techniques of counting.    Next comes a chapter 
on probability spaces, and then a chapter on conditional probability and independence.    The fifth and 
main chapter is on random variables where we define expectation, variance, and standard deviation, 
and prove Chebyshev’s inequality and the law of large numbers.    Although calculus is not a prerequi-
site, both discrete and continuous random variables are considered.    We follow with a separate chap-
ter on specific distributions, mainly the binomial, normal, and Poisson distributions.    Here the central 
limit theorem is given in the context of the normal approximation to the binomial distribution.    The 
seventh and last chapter offers a thorough elementary treatment of Markov chains with applications.

This new edition also has two new appendixes.    The first is on descriptive statistics where expec-
tation, variance, and standard deviation are again defined, but now in the context of statistics.    This 
appendix also treats bivariate data, including scatterplots, the correlation coefficient, and methods of 
least squares.    The second appendix discusses the chi-square distribution and various applications in 
the context of testing hypotheses.    These two new appendixes motivate many of the concepts which 
appear in the chapters on probability, and also make the book even more useful as a supplement to texts 
and courses in statistics.

The positive qualities that distinguished the first edition have been retained.    Each chapter begins  
with clear statements of pertinent definitions, principles, and theorems together with illustra-
tive and other descriptive material.    This is followed by graded sets of solved and supplementary  
problems.    The solved problems serve to illustrate and amplify the theory, and provide the repetition 
of basic principles so vital to effective learning.    Proof of most of the theorems is included among the  
solved problems.    The supplementary problems serve as a complete review of the material of each 
chapter.

Finally, we wish to thank the staff of McGraw-Hill, especially Barbara Gilson and Maureen Walker, 
for their excellent cooperation.

SEYMOUR LIPSCHUTZ

Temple University

MARC LARS LIPSON

University of Virginia



This page intentionally left blank 



PREFACECONTENTS

CHAPTER 1 Set Theory 1
1.1 Introduction. 1.2 Sets and Elements, Subsets.
1.3 Venn Diagrams. 1.4 Set Operations. 1.5 Finite and
Countable Sets. 1.6 Counting Elements in Finite Sets,
Inclusion-Exclusion Principle. 1.7 Products Sets. 1.8 Classes
of Sets, Power Sets, Partitions. 1.9 Mathematical Induction.

CHAPTER 2 Techniques of Counting 32
2.1 Introduction. 2.2 Basic Counting Principles. 2.3 Factorial
Notation. 2.4 Binomial Coefficients. 2.5 Permutations.
2.6 Combinations. 2.7 Tree Diagrams.

CHAPTER 3 Introduction to Probability 59
3.1 Introduction. 3.2 Sample Space and Events. 3.3 Axioms
of Probability. 3.4 Finite Probability Spaces. 3.5 Infinite
Sample Spaces. 3.6 Classical Birthday Problem.

CHAPTER 4 Conditional Probability and Independence 85
4.1 Introduction. 4.2 Conditional Probability. 4.3 Finite
Stochastic and Tree Diagrams. 4.4 Partitions, Total
Probability, and Bayes’ Formula. 4.5 Independent Events.
4.6 Independent Repeated Trials.

CHAPTER 5 Random Variables 119
5.1 Introduction. 5.2 Random Variables. 5.3 Probability
Distribution of a Finite Random Variable. 5.4 Expectation of
a Finite Random Variable. 5.5 Variance and Standard
Deviation. 5.6 Joint Distribution of Random Variables.
5.7 Independent Random Variables. 5.8 Functions of a
Random Variable. 5.9 Discrete Random Variables in General.
5.10 Continuous Random Variables. 5.11 Cumulative
Distribution Function. 5.12 Chebyshev’s Inequality and the
Law of Large Numbers.

v



CHAPTER 6 Binomial and Normal Distributions 177
6.1 Introduction. 6.2 Bernoulli Trials, Binomial Distribution.
6.3 Normal Distribution. 6.4 Evaluating Normal Probabilities.
6.5 Normal Approximation of the Binomial Distribution.
6.6 Calculations of Binomial Probabilities Using the Normal
Approximation. 6.7 Poisson Distribution. 6.8 Miscellaneous
Discrete Random Variables. 6.9 Miscellaneous Continuous
Random Variables.

CHAPTER 7 Markov Processes 224
7.1 Introduction. 7.2 Vectors and Matrices. 7.3 Probability
Vectors and Stochastic Matrices. 7.4 Transition Matrix of a
Markov Process. 7.5 State Distributions. 7.6 Regular Markov
Processes and Stationary State Distributions.

APPENDIX A Descriptive Statistics 245
A.1 Introduction. A.2 Frequency Tables, Histograms.
A.3 Measures of Central Tendency; Mean and Median.
A.4 Measures of Dispersion: Variance and Standard Deviation.
A.5 Bivariate Data, Scatterplots, Correlation Coefficients.
A.6 Methods of Least Squares, Regression Line, Curve Fitting.

APPENDIX B Chi-Square Distribution 282
B.1 Introduction. B.2 Goodness of Fit, Null Hypothesis,
Critical Values. B.3 Goodness of Fit for Uniform and Prior
Distributions. B.4 Goodness of Fit for Binomial Distribution.
B.5 Goodness of Fit for Normal Distribution. B.6 Chi-Square
Test for Independence. B.7 Chi-Square Test for Homogeneity.

Index 309

vi CONTENTS

Random Variable Models

Markov Chains



CHAPTER 1

Set Theory

1.1 INTRODUCTION

This chapter treats some of the elementary ideas and concepts of set theory which are necessary
for a modern introduction to probability theory.

1.2 SETS AND ELEMENTS, SUBSETS

A set may be viewed as any well-defined collection of objects, and they are called the elements or
members of the set. We usually use capital letters, A, B, X, Y, . . . to denote sets, and lowercase
letters, a, b, x, y, . . . to denote elements of sets. Synonyms for set are class, collection, and family.

The statement that an element a belongs to a set S is written

a � S

(Here � is the symbol meaning ‘‘is an element of’’.) We also write

a, b �S

when both a and b belong to S.
Suppose every element of a set A also belongs to a set B, that is, suppose a � A implies

a � B. Then we may say that A is a subset of B, that A is contained in B, or that A is included
in B. This is written as

A � B or B � A

Two sets are equal if they both have the same elements or, equivalently, if each is contained in the
other. That is,

A � B if and only if A � B and B � A

The negations of a � A, A � B, and A � B are written a � A, A � B, and A � B, respectively.

Remark 1: It is common practice in mathematics to put a vertical line ‘‘�’’ or slanted line ‘‘/’’
through a symbol to indicate the opposite or negative meaning of the symbol.
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Remark 2: The statement A� B does not exclude the possibility that A � B. In fact, for any set
A, we have A � A since, trivially, every element in A belongs to A. However, if A � B and A � B,
then we say that A is a proper subset of A (sometimes written A � B).

Remark 3: Suppose every element of a set A belongs to a set B, and every element of B belongs
to a set C. Then clearly every element of A belongs to C. In other words, if A � B and B � C, then
A � C.

The above remarks yield the following theorem.

Theorem 1.1: Let A, B, C be any sets. Then:

(i) A � A.

(ii) If A � B and B � A, then A � B.

(iii) If A � B and B � C, then A � C.

Specifying Sets

There are essentially two ways to specify a particular set. One way, if possible, is to list its
elements. For example,

A � {1, 3, 5, 7, 9}

means A is the set consisting of the numbers 1, 3, 5, 7, and 9. Note that the elements of the set are
separated by commas and enclosed in braces { }. This is called the tabular form or roster method of
a set.

The second way, called the set-builder form or property method, is to state those properties which
characterize the elements in the set, that is, properties held by the members of the set but not by
nonmembers. Consider, for example, the expression

B � {x : x is an even integer, x � 0}

which is read:

‘‘B is the set of x such that x is an even integer and x � 0’’

It denotes the set B whose elements are positive even integers. A letter, usually x, is used to denote
a typical member of the set; the colon is read as ‘‘such that’’ and the comma as ‘‘and.’’

EXAMPLE 1.1

(a) The above set A {1, 3, 5, 7, 9} can also be written as

A � {x : x is an odd positive integer, x � 10}

We cannot list all the elements of the above set B, but we frequently specify the set by writing

B � {2, 4, 6, . . .}

where we assume everyone knows what we mean. Observe that 9 � A but 9 � B. Also 6 � B, but
6 � A.

(b) Consider the sets

A � {1, 3, 5, 7, 9}, B � {1, 2, 3, 4, 5}, C � {3, 5}

Then C � A and C � B since 3 and 5, the elements C, are also members of A and B. On the other hand,
A � B since 7 � A but 7 � B, and B � A since 2 � B but 2 � A.

(c) Suppose a die is tossed. The possible ‘‘number’’ or ‘‘points’’ which appears on the uppermost face of the
die belongs to the set {1, 2, 3, 4, 5, 6}. Now suppose a die is tossed and an even number appears. Then
the outcome is a member of the set {2, 4, 6} which is a (proper) subset of the set {1, 2, 3, 4, 5, 6} of all possible
outcomes.

2 SET THEORY [CHAP. 1
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Special Symbols, Real Line R, Intervals

Some sets occur very often in mathematics, and so we use special symbols for them. Some such
symbols follow:

N � the natural numbers or positive integers:

{1, 2, 3, . . .}

Z � all integers, positive, negative, and zero:

{. . ., �2, �1, 0, 1, 2, . . .}

R � the real numbers

Thus we have N � Z � R.
The set R of real numbers plays an important role in probability theory since such numbers are

used for numerical data. We assume the reader is familiar with the graphical representation of R as
points on a straight line, as pictured in Fig. 1-1. We refer to such a line as the real line or the real
line R.

Important subsets of R are the intervals which are denoted and defined as follows (where a and
b are real numbers with a � b):

Open interval from a to b � (a, b) � {x : a � x � b}

Closed interval from a to b � [a, b] � {x : a � x � b}

Open-closed interval from a to b � (a, b] � {x : a � x � b}

Closed-open interval from a to b � [a, b) � {x : a � x � b}

The numbers a and b are called the endpoints of the interval. The word ‘‘open’’ and a parenthesis
‘‘(’’ or ‘‘)’’ are used to indicate that an endpoint does not belong to the interval, whereas the word
‘‘closed’’ and a bracket ‘‘[’’ or ‘‘]’’ are used to indicate that an endpoint belongs to the interval.

Universal Set and Empty Set

All sets under investigation in any application of set theory are assumed to be contained in some
large fixed set called the universal set or universe of discourse. For example, in plane geometry, the
universal set consists of all the points in the plane; in human population studies, the universal set
consists of all the people in the world. We will let

U

denote the universal set unless otherwise stated or implied.
Given a universal set U and a property P, there may be no elements in U which have the property

P. For example, the set

S � {x : x is a positive integer, x2 � 3}

3SET THEORYCHAP. 1]
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Every set is defined by some property P. Given a universal set U, there may be no elements in U which have 

the property P. For example, the set



has no elements since no positive integer has the required property. Such a set with no elements is
called the empty set or null set, and is denoted by

�

There is only one empty set: If S and T are both empty, then S � T since they have exactly the same
elements, namely, none.

The empty set � is also regarded as a subset of every other set. Accordingly, we have the
following simple result which we state formally:

Theorem 1.2: For any set A, we have � � A � U.

Disjoint Sets

Two sets A and B are said to be disjoint if they have no elements in common. Consider, for
example, the sets

A � {1, 2}, B � {2, 4, 6}, C � {4, 5, 6, 7}

Observe that A and B are not disjoint since each contains the element 2, and B and C are not disjoint
since each contains the element 4, among others. On the other hand, A and C are disjoint since they
have no element in common. We note that if A and B are disjoint, then neither is a subset of the
other (unless one is the empty set).

1.3 VENN DIAGRAMS

A Venn diagram is a pictorial representation of sets where sets are represented by enclosed areas
in the plane. The universal set U is represented by the points in a rectangle, and the other sets are
represented by disks lying within the rectangle. If A � B, then the disk representing A will be entirely
within the disk representing B, as in Fig. 1-2(a). If A and B are disjoint, that is, have no elements in
common, then the disk representing A will be separated from the disk representing B, as in
Fig. 1-2(b).

On the other hand, if A and B are two arbitrary sets, it is possible that some elements are in A but
not in B, some elements are in B but not in A, some are in both A and B, and some are in neither A
nor B; hence, in general, we represent A and B as in Fig. 1-2(c).

1.4 SET OPERATIONS

This section defines a number of set operations, including the basic operations of union,
intersection, and complement.

4 SET THEORY [CHAP. 1
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Union and Intersection

The union of two sets A and B, denoted by A B, is the set of all elements which belong to A or
to B, that is,

A B {x : x A or x B}

Here, ‘‘or’’ is used in the sense of and/or. Figure 1-3(a) is a Venn diagram in which A B is
shaded.

The intersection of two sets A and B, denoted by A B, is the set of all elements which belong
to both A and B, that is,

A B {x : x A and x B}

Figure 1-3(b) is a Venn diagram in which A B is shaded.

5SET THEORYCHAP. 1]

(b)   Let U be the set of business students invited to attend a recruiting event, and let A and B denote, respectively, those 
who had already submitted an application for a position at the firm hosting the event and those who had not.    Then 
U is the disjoint union of A and B, that is,

U = A ∪ B  and  A ∩ B = ∅

     This comes from the fact that every student in U has either applied for a position or has not.    That is, A and B 
are disjoint.

The following properties of the union and intersection should be noted:

(i) Every element x in A B belongs to both A and B; hence, x belongs to A and x belongs to
B. Thus, A B is a subset of A and of B, that is,

A B A and A B B

(ii) An element x belongs to the union A B if x belongs to A or x belongs to B; hence, every
element in A belongs to A B, and every element in B belongs to A B. That is,

A A B and B A B

We state the above results formally.

Recall that sets A and B are said to be disjoint if they have no elements in common or, using the
definition of intersection, if A B , the empty set. If

S A B and A B

then S is called the disjoint union of A and B.

EXAMPLE 1.2

(a) Let A {1, 2, 3, 4}, B {3, 4, 5, 6, 7}, C {2, 3, 8, 9}. Then

A B {1, 2, 3, 4, 5, 6, 7}, A C {1, 2, 3, 4, 8, 9}, B C {3, 4, 5, 6, 7, 8, 9},
A B {3, 4}, A C {2, 3}, B C {3}

(a) A B (.dedahssi b) A B is shaded.

Fig. 1-3

A B

{2, 3, 4, 5, 6, 7, 8, 9},



Theorem 1.3: For any sets A and B, we have

A 	 B � A � A 
 B and A 	 B � B � A 
 B

The operations of set inclusion is closely related to the operations of union and intersection, as
shown by the following theorem (proved in Problem 1.16).

Theorem 1.4: The following are equivalent: A � B, A 	 B � A, A 
 B � B.

Other conditions equivalent to A � B are given in Problem 1.55.

Complements, Difference, Symmetric Difference

Recall that all sets under consideration at a particular time are subsets of a fixed universal set
U. The absolute complement or, simply, complement of a set A, denoted by Ac, is the set of elements
which belong to U but which do not belong to A, that is,

Ac � {x : x � U, x � A}

Some texts denote the complement of A by A� or Ā. Figure 1-4(a) is a Venn diagram in which Ac is
shaded.

The relative complement of a set B with respect to a set A or, simply, the difference between A and
B, denoted by A 	 B, is the set of elements which belong to A but which do not belong to B, that is,

A 	 B � {x : x � A, x � B}

The set A 	 B is read ‘‘A minus B’’. Some texts denote A 	 B by A � B or A � B. Figure 1-4(b) is
a Venn diagram in which A 	 B is shaded.

The symmetric difference of the sets A and B, denoted by A � B, consists of those elements which
belong to A or B, but not both. That is,

A � B � (A 
 B) 	 (A 	 B) or A � B � (A 	 B) 
 (B 	 A)

Figure 1-4(c) is a Venn diagram in which A � B is shaded.

EXAMPLE 1.3 Let U � N � {1, 2, 3, . . .} be the universal set, and let

A � {1, 2, 3, 4}, B � {3, 4, 5, 6, 7}, C � {2, 3, 8, 9}, E � {2, 4, 6, . . .}

[Here E is the set of even positive integers.] Then

Ac � {5, 6, 7, . . .}, Bc � {1, 2, 8, 9, 10, . . .}, Ec � {1, 3, 5, . . .}

That is, Ec is the set of odd integers. Also

A 	 B � {1, 2}, A 	 C � {1, 4}, B 	 C � {4, 5, 6, 7}, A 	 E � {1, 3},

B 	 A � {5, 6, 7}, C 	 A � {8, 9}, C 	 B � {2, 8, 9}, E 	 A � {6, 8, 10, . . .}

6 SET THEORY [CHAP. 1

(a) Ac is shaded. (b) A 	 B is shaded. (c) A � B is shaded.

Fig. 1-4

The operation of set inclusion ⊆ is closely related to

(A ∩ B)

Note that we have defined E as the set of positive integers. Then



Furthermore

A � B � (A 	 B) 
 (B 	 A) � {1, 2, 5, 6, 7}, B � C � {2, 4, 5, 6, 7, 8, 9},

A � C � (A 	 C) 
 (C 	 A) � {1, 4, 8, 9}, A � E � {1, 3, 6, 8, 10, . . .}

Algebra of Sets

Sets under the operations of union, intersection, and complement satisfy various laws (identities)
which are listed in Table 1-1. In fact, we formally state:

Theorem 1.5: Sets satisfy the laws in Table 1-1.

Table 1-1 Laws of the Algebra of Sets

Idempotent Laws
1a. A 
 A � A 1b. A 	 A � A

Associative Laws
2a. (A 
 B) 
 C � A 
 (B 
 C) 2b. (A 	 B) 	 C � A 	 (B 	 C)

Commutative Laws
3a. A 
 B � B 
 A 3b. A 	 B � B 	 A

Distributive Laws
4a. A 
 (B 	 C) � (A 
 B) 	 (A 
 C) 4b. A 	 (B 
 C) � (A 	 B) 
 (A 	 C)

Identity Laws
5a. A 
 � � A 5b. A 	 U � A

6a. A 
 U � U 6b. A 	 � � �

Involution Law
7. (Ac)c � A

Complement Laws
8a. A 
 Ac � U 8b. A 	 Ac � �

9a. Uc � � 9b. �c � U

DeMorgan’s Laws
10a. (A 
 B)c � Ac 	 Bc 10b. (A 	 B)c � Ac 
 Bc

Remark: Each law in Table 1-1 follows from an equivalent logical law. Consider, for example,
the proof of DeMorgan’s law:

(A 
 B)c � {x : x � (A or B)} � {x : x � A and x � B} � Ac 	 Bc

Here we use the equivalent (DeMorgan’s) logical law:

�� (p � q) � �� p � �� q

where �� means ‘‘not’’, � means ‘‘or’’, and � means ‘‘and’’. (Sometimes Venn diagrams are used to
illustrate the laws in Table 1-1 as in Problem 1.17.)

7SET THEORYCHAP. 1]



Duality

The identities in Table 1-1 are arranged in pairs, as, for example, 2a and 2b. We now consider the
principle behind this arrangement. Let E be an equation of set algebra. The dual E* of E is the
equation obtained by replacing each occurrence of 
, 	, U, � in E by 	, 
, �, U, respectively. For
example, the dual of

(U 	 A) 
 (B 	 A) � A is (� 
 A) 	 (B 
 A) � A

Observe that the pairs of laws in Table 1-1 are duals of each other. It is a fact of set algebra, called
the principle of duality, that, if any equation E is an identity, then its dual E* is also an identity.

1.5 FINITE AND COUNTABLE SETS

Sets can be finite or infinite. A set S is finite if S is empty or if S consists of exactly m elements
where m is a positive integer; otherwise S is infinite.

EXAMPLE 1.4

(a) Let A denote the letters in the English alphabet, and let D denote the days of the week, that is, let

A � {a, b, c, . . ., y, z} and D � {Monday, Tuesday, . . ., Sunday}

Then A and D are finite sets. Specifically, A has 26 elements and D has 7 elements.

(b) Let R � {x : x is a river on the earth}. Although it may be difficult to count the number of rivers on the
earth, R is still a finite set.

(c) Let E be the set of even positive integers, and let I be the unit interval; that is, let

E � {2, 4, 6, . . .} and I � [0, 1] � {x : 0 � x � 1}

Then both E and I are infinite sets.

Countable Sets

A set S is countable if S is finite or if the elements of S can be arranged in the form of a sequence,
in which case S is said to be countably infinite. A set is uncountable if it is not countable. The above
set E of even integers is countably infinite, whereas it can be proven that the unit interval I � [0, 1] is
uncountable.

1.6 COUNTING ELEMENTS IN FINITE SETS, INCLUSION-EXCLUSION PRINCIPLE

The notation n(S) or �S � will denote the number of elements in a set S. Thus n(A) � 26 where
A consists of the letters in the English alphabet, and n(D) � 7 where D consists of the days of the
week. Also n(�) � 0, since the empty set has no elements.

The following lemma applies.

Lemma 1.6: Suppose A and B are finite disjoint sets. Then A 
 B is finite and

n(A 
 B) � n(A) 
 n(B)

This lemma may be restated as follows:

Lemma 1.6: Suppose S is the disjoint union of finite sets A and B. Then S is finite and

n(S) � n(A) 
 n(B)

8 SET THEORY [CHAP. 1



Proof: In counting the elements of A 
 B, first count the elements of A. There are n(A) of
these. The only other elements in A 
 B are those that are in B but not in A. Since A and
B are disjoint, no element of B is in A. Thus, there are n(B) elements which are in B but not
in A. Accordingly, n(A 
 B) � n(A) 
 n(B).

For any sets A and B, the set A is the disjoint union of A 	 B and A 	 B (Problem 1.45). Thus,
Lemma 1.6 gives us the following useful result.

Corollary 1.7: Let A and B be finite sets. Then

n(A 	 B) � n(A) � n(A 	 B)

That is, the number of elements in A but not in B is the number of elements in A minus the number
of elements in both A and B. For example, suppose an art class A has 20 students and 8 of the
students are also taking a biology class B. Then there are

20 � 8 � 12

students in the class A which are not in the class B.
Given any set A, we note that the universal set U is the disjoint union of A and Ac. Accordingly,

Lemma 1.6 also gives us the following result.

Corollary 1.8: Suppose A is a subset of a finite universal set U. Then

n(Ac) � n(U) � n(A)

For example, suppose a class U of 30 students has 18 full-time students. Then there are

30 � 18 � 12

part-time students in the class.

Inclusion-Exclusion Principle

There is also a formula for n(A 
 B), even when they are not disjoint, called the inclusion-
exclusion principle. Namely,

Theorem (Inclusion-Exclusion Principle) 1.9: Suppose A and B are finite sets. Then A 	 B and
A 
 B are finite and

n(A 
 B) � n(A) 
 n(B) � n(A 	 B)

That is, we find the number of elements in A or B (or both) by first adding n(A) and n(B)
(inclusion) and then subtracting n(A 	 B) (exclusion) since its elements were counted twice.

We can apply this result to get a similar result for three sets.

Corollary 1.10: Suppose A, B, C are finite sets. Then A 
 B 
 C is finite and

n(A 
 B 
 C) � n(A) 
 n(B) 
 n(C) � n(A 	 B) � n(A 	 C) � n(B 	 C) 
 n(A 	 B 	 C)

Mathematical induction (Section 1.9) may be used to further generalize this result to any finite
number of finite sets.

EXAMPLE 1.5 Suppose list A contains the 30 students in a mathematics class and list B contains the 35 students
in an English class, and suppose there are 20 names on both lists. Find the number of students:

(a) Only on list A (c) On list A or B (or both)

(b) Only on list B (d) On exactly one of the two lists
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(a) List A contains 30 names and 20 of them are on list B; hence 30 � 20 � 10 names are only on list A. That
is, by Corollary 1.7,

n(A 	 B) � n(A) � n(A 	 B) � 30 � 20 � 10

(b) Similarly, there are 35 � 20 � 15 names only on list B. That is,

n(B 	 A) � n(B) � n(A 	 B) � 35 � 20 � 15

(c) We seek n(A 
 B). Note we are given that n(A 	 B) � 20.
One way is to use the fact that A 
 B is the disjoint union of A 	 B, A 	 B, and B 	 A (Problem 1.54),

which is pictured in Fig. 1-5 where we have also inserted the number of elements in each of the three sets
A 	 B, A 	 B, B 	 A. Thus

n(A 
 B) � 10 
 20 
 15 � 45

Alternately, by Theorem 1.8,

n(A 
 B) � n(A) 
 n(B) � n(A 	 B) � 30 
 35 � 20 � 45

In other words, we combine the two lists and then cross out the 20 names which appear twice.

10 SET THEORY [CHAP. 1

1.7 PRODUCT SETS

Consider two arbitrary sets A and B. The set of all ordered pairs (a, b) where a � A and b � B
is called the product, or Cartesian product, of A and B. A short designation of this product is A � B,
which is read ‘‘A cross B’’. By definition,

A � B � {(a, b) : a � A, b � B}

One frequently writes A2 instead of A � A.
We note that ordered pairs (a, b) and (c, d) are equal if and only if their first elements, a and c,

are equal and their second elements, b and d, are equal. That is,

(a, b) � (c, d) if and only if a � c and b � d

EXAMPLE 1.6 R denotes the set of real numbers, and so R2 � R � R is the set of ordered pairs of real numbers.
The reader is familiar with the geometrical representation of R2 as points in the plane, as in Fig. 1-6. Here each
point P represetns an ordered pair (a, b) of real numbers, and vice versa; the vertical line through P meets the x
axis at a, and the horizontal line through P meets the y axis at b. R2 is frequently called the Cartesian plane.

represents

(d)   By (a) and (b), there are 10 + 15 = 25 names on exactly one of the two lists; so n(A ⊕ B) = 25.  Alternatively, 

by the Venn diagram in Fig. 1-5, the number of elements in A ⊕ B can be calculated from the union and inter-

section of A and B; hence 

n(A ⊕ B) = n(A < B) – n(A ∩ B) = 45 – 20 = 25

A 
 B is shaded.

Fig. 1-5



EXAMPLE 1.7 Let A � {1, 2} and B � {a, b, c}. Then

A � B � {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}

B � A � {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)}

Also, A � A � {(1, 1), (1, 2), (2, 1), (2, 2)}

There are two things worth noting in the above Example 1.7. First of all, A � B � B � A. The
Cartesian product deals with ordered pairs, so naturally the order in which the sets are considered is
important.

Secondly, using n(S) for the number of elements in a set S, we have:

n(A � B) � 6 � 2 · 3 � n(A) · n(B)

In fact, n(A � B) � n(A) · n(B) for any finite sets A and B. This follows from the observation that,
for each a � A, there will be n(B) ordered pairs in A � B beginning with a. Hence, altogether there
will be n(A) times n(B) ordered pairs in A � B.

We state the above result formally.

Theorem 1.11: Suppose A and B are finite. Then A � B is finite and

n(A � B) � n(A) · n(B)

The concept of a product of sets can be extended to any finite number of sets in a natural
way. That is, for any sets A1, A2, . . ., Am, the set of all ordered m-tuples (a1, a2, . . ., am), where a1 � A1,
a2 � A2, . . ., am � Am, is called the product of the sets A1, A2, . . ., Am and is denoted by

A1 � A2 � · · · � Am or
m�

i�1

Ai

Just as we write A2 instead of A � A, so we write Am for A � A � · · · � A, where there are m
factors.

Furthermore, for finite sets A1, A2, . . ., Am, we have

n(A1 � A2 � · · · � Am) � n(A1)n(A2) · · · n(Am)

That is, Theorem 1.11 may be easily extended, by induction, to the product of m sets.
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1.8 CLASSES OF SETS, POWER SETS, PARTITIONS

Given a set S, we may wish to talk about some of its subsets. Thus, we would be considering a
‘‘set of sets’’. Whenever such a situation arises, to avoid confusion, we will speak of a class of sets or
a collection of sets. The words ‘‘subclass’’ and ‘‘subcollection’’ have meanings analogous to subset.

EXAMPLE 1.8 Suppose S � {1, 2, 3, 4}. Let A be the class of subsets of S which contains exactly three elements
of S. Then

A � [{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}]

The elements of A are the sets {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, and {2, 3, 4}.
Let B be the class of subsets of S which contains the numeral 2 and two other elements of S. Then

B � [{1, 2, 3}, {1, 2, 4}, {2, 3, 4}]

The elements of B are {1, 2, 3}, {1, 2, 4}, and {2, 3, 4}. Thus B is a subclass of A . (To avoid confusion, we will
usually enclose the sets of a class in brackets instead of braces.)

Power Sets

For a given set S, we may consider the class of all subsets of S. This class is called the power set
of S, and it will be denoted by P (S). If S is finite, then so is P (S). In fact, the number of elements
in P (S) is 2 raised to the number of elements in S, that is,

n(P (S)) � 2n(S)

(For this reason, the power set of S is sometimes denoted by 2S.) We emphasize that S and the empty
set � belong to P (S) since they are subsets of S.

EXAMPLE 1.9 Suppose S � {1, 2, 3}. Then

P (S) � [�, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, S]

As expected from the above remark, P (S) has 23 � 8 elements.

Partitions

Let S be a nonempty set. A partition of S is a subdivision of S into nonoverlapping, nonempty
subsets. Precisely, a partition of S is a collection {Ai} of nonempty subsets of S such that

(i) Each a in S belongs exactly to one of the Ai.

(ii) The sets of {Ai} are mutually disjoint; that is, if

Ai � Aj, the Ai 	 Aj � �

The subsets in a partition are called cells. Figure 1-7 is a Venn diagram of a partition of the
rectangular set S of points into five cells, A1, A2, A3, A4, A5.
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EXAMPLE 1.10 Consider the following collections of subsets of S � {1, 2, 3, . . ., 8, 9}:

(i) [{1, 3, 5}, {2, 6}, {4, 8, 9}]

(ii) [{1, 3, 5}, {2, 4, 6, 8}, {5, 7, 9}]

(iii) [{1, 3, 5}, {2, 4, 6, 8}, {7, 9}]

Then (i) is not a partition of S since 7 in S does not belong to any of the subsets. Furthermore, (ii) is not a
partition of S since {1, 3, 5} and {5, 7, 9} are not disjoint. On the other hand, (iii) is a partition of S.

Indexed Classes of Sets

An indexed class of sets, usually presented in the form

{Ai : i � I} or simply {Ai}

means that there is a set Ai assigned to each element i � I. The set I is called the indexing set and the
sets Ai are said to be indexed by I. The union of the sets Ai, written 
i�I Ai or simply 
i Ai, consists
of those elements which belong to at least one of the Ai; and the intersection of the sets Ai, written
	i�I Ai or simply 	i Ai, consists of those elements which belong to every Ai.

When the indexing set is the set N of positive integers, the indexed class {A1, A2, . . .} is called a
sequence of sets. In such a case, we also write


�
i�1 Ai � A1 
 A2 
 · · · and �

i�1 Ai � A1 	 A2 	 · · ·

for the union and intersection, respectively, of a sequence of sets.

Definition: A nonempty class A of subsets of U is called an algebra (
-algebra) of sets if it has the
following two properties:

(i) The complement of any set in A belongs to A .

(ii) The union of any finite (countable) number of sets in A belongs to A .

That is, A is closed under complements and finite (countable) unions.

It is simple to show (Problem 1.40) that any algebra (
-algebra) of sets contains U and � and is
closed under finite (countable) intersections.

1.9 MATHEMATICAL INDUCTION

An essential property of the set N � {1, 2, 3, . . .} of positive integers which is used in many proofs
follows:

Principle of Mathematical Induction I: Let A(n) be an assertion about the set N of positive integers,
that is, A(n) is true or false for each integer n � 1. Suppose A(n) has the following two properties:

(i) A(1) is true.

(ii) A(n 
 1) is true whenever A(n) is true.

Then A(n) is true for every positive integer.

We shall not prove this principle. In fact, this principle is usually given as one of the axioms when
N is developed axiomatically.
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EXAMPLE 1.11 Let A(n) be the assertion that the sum of the first n odd numbers is n2; that is,

A(n) : 1 
 3 
 5 
 · · · 
 (2n � 1) � n2

(The nth odd number is 2n � 1 and the next odd number is 2n 
 1.)
Observe that A(n) is true for n � 1 since

A(1) : 1 � 12

Assuming A(n) is true, we add 2n 
 1 to both sides of A(n), obtaining

1 
 3 
 5 
 · · · 
 (2n � 1) 
 (2n 
 1) � n2 
 (2n 
 1) � (n 
 1)2

However, this is A(n 
 1). That is, A(n 
 1) is true assuming A(n) is true. By the principle of mathematical
induction, A(n) is true for all n � 1.

There is another form of the principle of mathematical induction which is sometimes more
convenient to use. Although it appears different, it is really equivalent to the above principle of
induction.

Principle of Mathematical Induction II: Let A(n) be an assertion about the set N of positive integers
with the following two properties:

(i) A(1) is true.

(ii) A(n) is true whenever A(k) is true for 1 � k � n.

Then A(n) is true for every positive integer.

Remark: Sometimes one wants to prove that an assertion A is true for a set of integers of
the form

{a, a 
 1, a 
 2, . . .}

where a is any integer, possibly 0. This can be done by simply replacing 1 by a in either of the above
Principles of Mathematical Induction.

Solved Problems

SETS, ELEMENTS, SUBSETS

1.1. List the elements of the following sets; here N � {1, 2, 3, . . .}:

(a) A � {x : x � N, 2 � x � 9},

(b) B � {x : x � N, x is even, x � 15},

(c) C � {x : x � N, x 
 5 � 2},

(d) D � {x : x � N, x is a multiple of 5}

(a) A consists of the positive integers between 2 and 9; hence A � {3, 4, 5, 6, 7, 8, 9}.

(b) B consists of the even positive integers less than or equal to 15; hence B � {2, 4, 6, 8, 10, 12, 14}.

(c) There are no positive integers which satisfy the condition x 
 5 � 2; hence C contains no
elements. In other words, C � �, the empty set.

(d) D is infinite, so we cannot list all its elements. However, sometimes we write D � {5, 10, 15, 20, . . .}
assuming everyone understands that we mean the multiples of 5.

1.2. Which of these sets are equal: {r, s, t}, {t, s, r}, {s, r, t}, {t, r, s}?

They are all equal. Order does not change a set.
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1.3. Describe in words how you would prove each of the following:

(a) A is equal to B.

(b) A is a subset of B.

(c) A is a proper subset of B.

(d) A is not a subset of B.

(a) Show that each element of A also belongs to B, and then show that each element of B also belongs
to A.

(b) Show that each element of A also belongs to B.

(c) Show that each element of A also belongs to B, and then show that at least one element of B is not
in A. (Note that it is not necessary to show that more than one element of B is not in A.)

(d) Show that one element of A is not in B.

1.4. Show that A � {2, 3, 4, 5} is not a subset of B � {x : x � N, x is even}.

It is necessary to show that at least one element in A does not belong to B. Now 3 � A, but 3 � B
since B only consists of even integers. Hence A is not a subset of B.

1.5. Show that A � {3, 4, 5, 6} is a proper subset of C � {1, 2, 3, . . ., 8, 9}.

Each element of A belongs to C; hence A � C. On the other hand, 1 � C but 1 � A; hence A � C.
Therefore, A is a proper subset of C.

1.6. Consider the following sets where U � {1, 2, 3, . . ., 8, 9}:

�, A � {1}, B � {1, 3}, C � {1, 5, 9}, D � {1, 2, 3, 4, 5}, E � {1, 3, 5, 7, 9}

Insert the correct symbol � or � between each pair of sets:

(a) �, A

(b) A, B

(c) B, C

(d) B, E

(e) C, D

( f) C, E

(g) D, E

(h) D, U

(a) � � A since � is a subset of every set.

(b) A � B since 1 is the only element of A and it belongs to B.

(c) B � C since 3 � B but 3 � C.

(d) B � E since the elements of B also belong to E.

(e) C � D since 9 � C but 9 � D.

( f) C � E since the elements of C also belong to E.

(g) D � E since 2 � D but 2 � E.

(h) D � U since the elements of D also belong to U.

1.7. Determine which of the following sets are equal: �, {0}, {�}.

Each is different from the other. The set {0} contains one element, the number zero. The set �
contains no element; it is the empty set. The set {�} also contains one element, the null set.

1.8. A pair of dice are tossed and the sum of the upfaces is recorded. Find the smallest set S which
includes all possible outcomes.

The faces of the die are the numbers 1 to 6. Thus, no sum can be less than 2 nor greater than 12.
Also, every number between 2 and 12 could occur. Thus

S � {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
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SET OPERATIONS

1.9. Let U � {1, 2, . . ., 9} be the universal set, and let

A � {1, 2, 3, 4, 5},

B � {4, 5, 6, 7},

C � (4, 5, 6, 7, 8, 9},

D � {1, 3, 5, 7, 9},

E � {2, 4, 6, 8},

F � {1, 5, 9}

Find:

(a) A 
 B and A 	 B

(b) B 
 D and B 	 D

(c) A 
 C and A 	 C

(d) D 
 E and D 	 E

(e) E 
 E and E 	 E

( f) D 
 F and D 	 F

Recall that the union X 
 Y consists of those elements in either X or in Y (or both), and the
intersection X 	 Y consists of those elements in both X and Y.

(a) A 
 B � {1, 2, 3, 4, 5, 6, 7},

(b) B 
 D � {1, 3, 4, 5, 6, 7, 9},

(c) A 
 C � (1, 2, 3, 4, 5, 6, 7, 8, 9} � U,

(d) D 
 E � {1, 2, 3, 4, 5, 6, 7, 8, 9} � U,

(e) E 
 E � {2, 4, 6, 8} � E,

( f) D 
 F � {1, 3, 5, 7, 9} � D,

A 	 B � {4, 5}

B 	 D � {5, 7}

A 	 C � {4, 5}

D 	 E � �

E 	 E � {2, 4, 6, 8} � E

D 	 F � {1, 5, 9} � F

(Observe that F � D; hence, by Theorem 1.4, we must have D 
 F � D and D 	 F � F.)

1.10. Consider the sets in the preceding Problem 1.9. Find:

(a) Ac, Bc, Dc, Ec; (b) A 	 B, B 	 A, D 	 E, F 	 D; (c) A � B, C � D, E � F.

(a) The complement Xc consists of those elements in the universal set U which do not belong to
X. Hence:

Ac � {6, 7, 8, 9}, Bc � {1, 2, 3, 8, 9}, Dc � {2, 4, 6, 8} � E, Ec � {1, 3, 5, 7, 9} � D

(Note D and E are complements; that is, D 
 E � U and D 	 E � �.)

(b) The difference X 	 Y consists of the elements in X which do not belong to Y. Therefore

A 	 B � {1, 2, 3}, B 	 A � {6, 7}, D 	 E � {1, 3, 5, 7, 9} � D, F 	 D � �

(Since D and E are disjoint, we must have D 	 E � D; and since F � D, we must have F 	 D � �.)

(c) The symmetric difference X � Y consists of the elements in X or in Y but not in both X and Y. In
other words, X � Y � (X 	 Y) 
 (Y 	 X). Hence:

A � B � {1, 2, 3, 6,7}, C � D � {1, 3, 8, 9}, E � F � {2, 4, 6, 8, 1, 5, 9} � E 
 F

(Since E and F are disjoint, we must have E � F � E 
 F.)

1.11. Show that we can have A 	 B � A 	 C without B � C.

Let A � {1, 2}, B � {2, 3}, C � {2, 4}. Then A 	 B � {2} and A 	 C � {2}; hence
A 	 B � A 	 C.

However, B � C.

1.12. Show that we can have A 
 B � A 
 C without B � C.

Let A � {1, 2}, B � {1, 3}, C � {2, 3}. Then A 
 B � {1, 2, 3} and A 
 C � {1, 2, 3}; hence
A 
 B � A 
 C.

However, B � C.
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1.13. Prove: B 	 A � B 	 Ac. Thus, the set operation of difference can be written in terms of the
operations of intersection and complement.

B 	 A � {x : x � B, x � A} � {x : X � B, x � Ac} � B 	 Ac

1.14. Consider the following intervals:

A � [�3, 5), B � (3, 8), C � [0, 4], D � (�7, �3]

(a) Rewrite each interval in set-builder form.

(b) Find: A 	 B, A 	 C, A 	 D, B 	 C, B 	 D, C 	 D.

(a) Recall that a parenthesis means that the endpoint does not belong to the interval, and that a bracket
means that the endpoint does belong to the interval. Thus:

A � {x : �3 � x � 5},

B � (x : 3 � x � 8},

C � {x : 0 � x � 4},

D � {x : �7 � x � �3}

(b) Using the short notation for intervals, we have:

A 	 B � (3, 5),

B 	 C � (3, 4],

A 	 C � [0, 4] ,

B 	 D � �,

A 	 D � {�3},

C 	 D � �

1.15. Under what condition will the intersection of two intervals be an interval?

The intersection of two intervals will always be an interval, or a singleton set {a}, or the empty set
�. Thus, if we view

[a, a] � {x : a � x � a} � {a} and (a, a) � {x : a � x � a} � �

as intervals, then the intersection of any two intervals is always an interval.

1.16. Prove Theorem 1.4: The following are equivalent:

A � B, A 	 B � A, A 
 B � B

The theorem can be reduced to the following two cases:

(a) A � B is equivalent to A 	 B � A.

(b) A � B is equivalent to A 
 B � B.

(a) Suppose A � B and let x � A. Then x � B, and so x � A 	 B. Thus, A � A 	 B. Moreover, by
Theorem 1.3, (A 	 B) � A. Accordingly, A 	 B � A.

On the other hand, suppose A 	 B � A and let x � A. Then x � A 	 B; hence x � A and
x � B. Therefore, A � B.

Both results show that A � B is equivalent to A 	 B � A.

(b) Suppose again that A � B. Let x � (A 
 B). Then x � A or x � B. If x � A, then x � B because
A � B. In either case x � B. Thus, A 
 B � B. By Theorem 1.3, B � A 
 B. Accordingly,
A 
 B � B.

On the other hand, suppose A 
 B � B and let x � A. Then x � A 
 B, by definition of union
of sets. However, A 
 B � B; hence x � B. Thus, A � B.

Both results show that A � B is equivalent to A 
 B � B.

Thus, all three statements, A � B, A 	 B � A, A 
 B � B, are equivalent.
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VENN DIAGRAMS, ALGEBRA OF SETS, DUALITY

1.17. Illustrate DeMorgan’s Law (A 
 B)c � Ac 	 Bc (proved in Section 1.4) using Venn diagrams.

Shade the area outside A 
 B in a Venn diagram of sets A and B. This is shown in Fig. 1-8(a); hence
the shaded area represents (A 
 B)c. Now shade the area outside A in a Venn diagram of A and B with
strokes in one direction ( / / / ), and then shade the area outside B with strokes in another direction
( 	 	 	 ). This is shown in Fig. 1-8(b); hence the cross-hatched area (area where both lines are present)
represents the intersection of Ac and Bc, that is, Ac 	 Bc. Both (A 
 B)c and Ac 	 Bc are represented by
the same area; thus the Venn diagrams indicate (A 
 B)c � Ac 	 Bc. (We emphasize that a Venn diagram
is not a formal proof but it can indicate relationships between sets.)

1.18. Prove the Distributive Law: A 	 (B 
 C) � (A 	 B) 
 (A 	 C) [Theorem 1.5 (4b)].

By definition of union and intersection,

A 	 (B 
 C) � {x : x � A, x � B 
 C}
� {x : x � A, x � B or x � A, x � C} � {A 	 B) 
 (A 	 C)

Here we use the analogous logical law p � (q � r) 	 (p � q) � (p � r) where � denotes ‘‘and’’ and �
denotes ‘‘or’’.

1.19. Describe in words: (a) (A 
 B) 	 (A 	 B) and (b) (A 	 B) 
 (B 	 A). Then prove they are the
same set. (Thus, either one may be used to define the symmetric difference A � B.)

(a) (A 
 B) 	 (A 	 B) consists of the elements in A or B but not in both A and B.

(b) (A 	 B) 
 (B 	 A) consists of the elements in A which are not in B, or the elements in B which are not
in A.

Using X 	 Y � X 	 Yc and the laws in Table 1-1, including DeMorgan’s law, we obtain:

(A 
 B) 	 (A 	 B) � (A 
 B) 	 (A 	 B)c � (A 
 B) 	 (Ac 	 Bc)
� (A 	 Ac) 
 (A 	 Bc) 
 (B 	 Ac) 
 (B 	 Bc)
� � 
 (A 	 Bc) 
 (B 	 Ac) 
 �

� (A 	 Bc) 	 (B 	 Ac) � (A 	 B) 
 (B 	 A)

1.20. Write the dual of each set equation:

(a) (U 	 A) 
 (B 	 A) � A

(b) (A 
 B 
 C)c � (A 
 C)c 	 (A 
 B)c

(c) (A 	 U) 	 � 
 Ac) � �

(d) (A 	 U)c 	 A � �

Interchange 	 and 
 and also U and � in each set equation:

(a) (� 
 A) 	 (B 
 A) � A

(b) (A 	 B 	 C)c � (A 	 C)c 
 (A 	 B)c

(c) (A 
 �) 
 (U 
 Ac) � U

(d) (A 
 )c 
 A � U
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FINITE SETS AND COUNTING PRINCIPLE, COUNTABLE SETS

1.21. Determine which of the following sets are finite:

(a) A � {seasons in the year}

(b) B � {states in the United States}

(c) C � {positive integers less than 1}

(d) D � {odd integers}

(e) E � {positive integral divisors of 12}

( f) F � {cats living in the United States}

(a) A is finite since there are four seasons in the year, that is, n(A) � 4.

(b) B is finite because there are 50 states in the United States, that is, n(B) � 50.

(c) There are no positive integers less than 1; hence C is empty. Thus, C is finite and n(C) � �.

(d) D is infinite.

(e) The positive integer divisors of 12 are 1, 2, 3, 4, 6, 12. Hence E is finite and n(E) � 6.

( f) Although it may be difficult to find the number of cats living in the United States, there is still a finite
number of them at any point in time. Hence F is finite.

1.22. Suppose 50 science students are polled to see whether or not they have studied French (F) or
German (G), yielding the following data:

25 studied French, 20 studied German, 5 studied both

Find the number of students who: (a) studied only French, (b) did not study German, (c)
studied French or German, (d) studied neither language.

(a) Here 25 studied French, and 5 of them also studied German; hence 25 � 5 � 20 students only studied
French. That is, by Corollary 1.7,

n(F 	 G) � n(F) � N(F 	 G) � 25 � 5 � 20

(b) There are 50 students of whom 20 studied German; hence 50 � 20 � 30 did not study German. That
is, by Corollary 1.8,

n(Gc) � n(U) � n(G) � 50 � 20 � 30

(c) By the inclusion-exclusion principle in Theorem 1.9,

n(F 
 G) � n(F) 
 n(G) � n(F 	 G) � 25 
 20 � 5 � 40

That is, 40 students studied French or German.

(d) The set F c 	 Gc consists of the students who studied neither language. By DeMorgan’s law,
F c 	 Gc � (F 
 G)c. By (c), 40 studied at least one of the languages; hence

n(F c 	 Gc) � n(U) � n(F 
 G) � 50 � 40 � 10

That is, 10 students studied neither language.

1.23. Each student at some college has a mathematics requirement M (to take at least one
mathematics course) and a science requirement S (to take at least one science course). A poll
of 140 sophomore students shows that:

60 completed M, 45 completed S, 20 completed both M and S

Use a Venn diagram to find the number of students who had completed:

(a) At least one of the two requirements

(b) Exactly one of the two requirements

(c) Neither requirement
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Translating the above data into set notation yields:

n(M) � 60, n(S) � 45, n(M 	 S) � 20, n(U) � 140

Draw a Venn diagram of sets M and S with four regions, as in Fig. 1-9(a). Then, as in Fig. 1-9(b), assign
numbers to the four regions as follows:

20 completed both M and S, so n(M 	 S) � 20

60 � 20 � 40 completed M but not S, so n(M 	 S) � 40

45 � 20 � 25 completed S but not M, so n(S 	 M) � 25

140 � 20 � 40 � 25 � 55 completed neither M nor S

By the Venn diagram:

(a) 20 
 40 
 25 � 85 completed M or S. Alternately, we can find n(M 
 S) without the Venn diagram
by using the inclusion-exclusion principle:

n(M 
 S) � n(M) 
 n(S) � n(M 	 S) � 60 
 45 � 20 � 85

(b) 40 
 25 � 65 completed exactly one of the requirements. That is, n(M � S) � 65.
(c) 55 completed neither requirement. That is, n(Mc 	 Sc) � 55.

1.24. Prove Theorem 1.9 (Inclusion-exclusion principle): Suppose A and B are finite sets. Then
A 
 B and A 	 B are finite and

n(A 
 B) � n(A) 
 n(B) � n(A 	 B)

Suppose A and B are finite. Then clearly A 	 B and A 
 B are finite.
Suppose we count the elements of A and then count the elements of B. Then, every element in

A 	 B would be counted twice, once in A and once in B. Hence, as required,

n(A 
 B) � n(A) 
 n(B) � n(A 	 B)

Alternately (Problem 1.54):

(i) A is the disjoint union of A 	 B and A 	 B.

(ii) B is the disjoint union of B 	 A and A 	 B.

(iii) A 
 B is the disjoint union of A 	 B, A 	 B, and B 	 A.

Therefore, by Lemma 1.6 and Corollary 1.7,

n(A 
 B) � n(A 	 B) 
 n(A 	 B) 
 n(B 	 A)
� [n(A) � n(A 	 B)] 
 n(A 	 B) 
 [n(B) � n(A 	 B)]
� n(A) 
 n(B) � n(A 	 B)
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1.25. Show that each set is countable: (a) Z, the set of integers, (b) N � N.

A set S is countable if: (a) S is finite or (b) the elements of S can be listed in the form of a sequence
or, in other words, there is a one-to-one correspondence between the positive integers (counting numbers)
N � {1, 2, 3, . . .} and S.

(a) The following shows a one-to-one correspondence between N and Z:

Counting numbers N:

Integers Z:

1

↓
0

2

↓
1

3

↓
�1

4

↓
2

5

↓
�2

6

↓
3

7

↓
�3

8

↓
4

. . .

. . .

That is, n � N corresponds to either n/2, when n is even, or (1 � n)/2, when n is odd:

f(n) � 
n/2
(1 � n)/2

for n even,
for n odd.

Thus Z is countable.

(b) Figure 1-10 shows that N � N can be written as an infinite sequence as follows:

(1, 1), (2, 1), (1, 2), (1, 3), (2, 2), . . .

Specifically, the sequence is determined by ‘‘following the arrows’’ in Fig. 1-10.

ORDERED PAIRS AND PRODUCT SETS

1.26. Find x and y given that (2x, x � 3y) � (6, �9).

Two ordered pairs are equal if and only if the corresponding entries are equal. This leads to the
equations

2x � 6 and x � 3y � �9

Solving the equations yields x � 3, y � 4.

1.27. Given: A � {1, 2, 3} and B � {a, b}. Find: (a) A � B, (b) B � A, (c) B � B.

(a) A � B consists of all ordered pairs (x, y) where x � A and y � B. Thus

A � B � {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}
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(b) B � A consists of all ordered pairs (x, y) where x � B and y � A. Thus

B � A � {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}

(c) B � B consists of all ordered pairs (x, y) where x, y � B. Thus

B � B � {(a, a), (a, b), (b, a), (b, b)}

Note that, as expected from Theorem 1.11, n(A � B) � 6, n(B � A) � 6, n(B � B) � 4; that is,
the number of elements in a product set is equal to the product of the numbers of elements in the
factor sets.

1.28. Given A � {1, 2}, B � {x, y, z}, C � {3, 4}. Find A � B � C.

A � B � C consists of all ordered triples (a, b, c) where a � A, b � B, c � C. These elements of
A � B � C can be systematically obtained by a so-called ‘‘tree diagram’’ as in Fig. 1-11. The elements of
A � B � C are precisely the 12 ordered triplets to the right of the diagram.

Observe that n(A) � 2, n(B) � 3, n(C) � 2 and, as expected,

n(A � B � C) � 12 � n(A) � n(B � n(C)

1.29. Each toss of a coin will yield either a head or a tail. Let C � {H, T} denote the set of
outcomes. Find C3, n(C3), and explain what C3 represents.

Since n(C) � 2, we have n(C3) � 23 � 8. Omitting certain commas and parenthesis for notational
convenience,

C3 � {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

C3 represents all possible sequences of outcomes of three tosses of the coin.
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1.30. Prove: A � (B 	 C) � (A � B) 	 (A � C).

A � (B 	 C) � {(x, y) : x � A, y � B 	 C}
� {(x, y) : x � A, y � B, y � C}
� {(x, y) : x � A, y � B, x � A, y � C}
� {(x, y) : (x, y) � A � B, (x, y) � A � C}
� (A � B) 	 (A � C)

23SET THEORYCHAP. 1]

CLASSES OF SETS AND PARTITIONS

1.31. Consider the set A � [{1, 2, 3}, {4, 5}, {6, 7, 8}]. (a) Find the elements of A. (b) Find n(A).

(a) A is a collection of sets; its elements are the sets {1, 2, 3}, {4, 5}, and {6, 7, 8}.

(b) A has only three elements; hence n(A) � 3.

(c) True. {6, 7, 8} is one of the elements of A.

(d) True. {{4, 5}}, the set consisting of the element {4, 5}, is a subset of A.

(e) False. The empty set � is not an element of A, that is, it is not one of the three sets listed as
elements of A.

( f) True. The empty set � is a subset of every set; even a class of sets.

1.33. List the elements of the power set P (A) of A � {a, b, c, d }.

The elements of P (A) are the subsets of A. Hence:

P (A) � [A, {a, b, c}, {a, b, d }, {a, c, d }, {b, c, d }, {a, b}, {a, c},
{a, d }, {b, c}, {b, d }, {c, d }, {a}, {b}, {c}, {d}, �]

As expected, P (A) has 24 � 16 elements.

1.34. Let S � {a, b, c, d, e, f, g}. Determine which of the following are partitions of S:

(a) P1 � [{a, c, e}, {b}, {d, g}]

(b) P2 � [{a, e, g}, {c, d }, {b, e, f }]

(c) P3 � [{a, b, e, g}, {c}, {d, f }]

(d) P4 � [{a, b, c, d, e, f, g}]

(a) P1 is not a partition of S since f � S does not belong to any of the cells.

(b) P2 is not a partition of S since e � S belongs to two of the cells, {a, e, g} and {b, e, f }.

(c) P3 is a partition of S since each element in S belongs to exactly one cell.

(d) P4 is a partition of S into one cell, S itself.

(b)  False.  {1, 2, 3} is not a subset of A; it is one of the elements of A.    If, on the other hand, one had 

specified a set whose element was {1, 2, 3}, such as {{1, 2, 3}}, then it would be a set containing the 

single element {1, 2, 3} from A and would be a subset. 

1.32. Consider the class A of sets in Problem 1.31. Determine whether or not each of the following
is true or false:

(a) 1 � A

(b) {1, 2, 3} � A

(c) {6, 7, 8} � A

(d) {{4, 5}} � A

(e) � � A

( f) � � A

(a) False. 1 is not one of the three elements of A.



1.35. Find all partitions of S � {a, b, c, d }.

Note first that each partition of S contains either one, two, three, or four distinct cells. The partitions
are as follows:

(1) [{a, b, c, d }] � [S]

(2a) [{a}, {b, c, d }], [{b}, {a, c, d }], [{c}, {a, b, d }], [{d }, {a, b, c}]

(2b) [{a, b}, {c, d }], [{a, c}, {b, d }], [{a, d }, {b, c}]

(3) [{a}, {b}, {c, d }], [{a}, {c}, {b, d }], [{a}, {d }, {b, c}], [{b}, {c}, {a, d }],
[{b}, {d }, {a, c}], [{c}, {d }, {a, b}]

(4) [{a}, {b}, {c}, {d }]

[Note (2a) refers to partitions with one-element and three-element cells, whereas (2a) refers to partitions
with two two-element cells.] There are 1 
 4 
 3 
 6 
 1 � 15 different partitions of S.

1.36. Let N � {1, 2, 3, . . .} and, for each n � N, let

An � {x : x is a multiple of n} � {n, 2n, 3n, . . .}

Find: (a) A3 	 A5, (b) A4 	 A6, (c) 
i�Q Ai, where Q � {2, 3, 5, 7, 11, . . .} is the set of prime
numbers.

(a) Those numbers which are multiples of both 3 and 5 are the multiples of 15; hence

A3 	 A5 � A15

(b) The multiples of 12 and no other numbers belong to both A4 and A6; hence

A4 	 A6 � A12

(c) Every positive integer except 1 is a multiple of at least one prime number; hence


i�Q Ai � {2, 3, 4, . . .} � N 	 {1}

1.37. For each n � N, let Bn � (0, 1/n), the open interval from 0 to 1/n. [For example, B1 � (0, 1),
B2 � (0, 1/2), B5 � (0, 1/5).] Find:

(a) B3 
 B7 and B3 	 B7

(b) 
n�A Bn where A is a nonempty subset of N

(c) 	n�N Bn

(a) Since B7 is a subset of B3, we have B3 
 B7 � B3 and B3 	 B7 � B7.

(b) Let k be the smallest element of A. Then 
n�A Bn � Bk.

(c) Let x be any real number. Then there is at least one k � N such that x � (0, 1/k) � Bk. Thus
	n�N Bn � �.

1.38. Prove: Let {Ai : i � I} be an indexed collection of sets, and let i0 � I. Then

	i�I Ai � Ai0 � 
i�I Ai

Let x � 	i�I Ai; then x � Ai for every i � I. In particular x � Ai0. Hence 	i�I Ai � Ai0. Now let
y � Ai0. Since i0 � I, y � 
i�I Ai. Hence Ai0 � 
i�I Ai.
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1.39. Prove (DeMorgan’s law): For any indexed collection {Ai : i � I} of sets,

(
i Ai)c � 	i Ai
c

Using the definitions of union and intersection of indexed classes of sets, we get:

(
i Ai)c � {x : x � 
i Ai} � {x : x � Ai, for every i}
� {x : x � Ai

c, for every i} � 	i Ai
c

1.40. Let A be an algebra (
-algebra) of subsets of U. Show that:

(a) U and � belong to A . (b) A is closed under finite (countable) intersections.

Recall that, by definition, A is nonempty and A is closed under complements and finite (countable)
intersections.

(a) Since A is nonempty, there is a set A � A . Hence the complement Ac belongs to A . Therefore,
the union and complement,

A 
 Ac � U and Uc � �

belong to A , as required.

(b) Let {Ai} be a finite (countable) collection of sets belonging to A . Therefore, by DeMorgan’s law
(Problem 1.39),

(
i Ai
c)c � 	i Ai

cc � 	i Ai

Hence 	i Ai belongs to A , as required.

MATHEMATICAL INDUCTION

1.41. Prove the assertion A(n) that the sum of the first n positive integers is 1–
2n(n 
 1); that is,

A(n) : 1 
 2 
 3 
 · · · 
 n � 1–
2n(n 
 1)

The assertion holds for n � 1 since

A(1) : 1 � 1–
2(1)(1 
 1)

Assuming A(n) is true, we add n 
 1 to both sides of A(n). This yields

1 
 2 
 3 
 · · · 
 n 
 (n 
 1) � 1–
2n(n 
 1) 
 (n 
 1)

� 1–
2[n(n 
 1) 
 2(n 
 1)]

� 1–
2[(n 
 1)(n 
 2)]

which is A(n 
 1). That is, A(n 
 1) is true whenever A(n) is true. By the principle of induction, A(n)
is true for all n � 1.

1.42. Prove the following assertion (for n � 0):

A(n) : 1 
 2 
 22 
 23 
 · · · 
 2n � 2n
1 � 1

A(0) is true since 1 � 21 � 1. Assuming A(n) is true, we add 2n
1 to both sides of A(n). This
yields:

1 
 2 
 22 
 23 
 · · · 
 2n 
 2n
1 � 2n
1 � 1 
 2n
1

� 2(2n
1) � 1
� 2n
2 � 1

which is A(n 
 1). Thus, A(n 
 1) is true whenever A(n) is true. By the principle of induction, A(n) is
true for all n � 0.
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1.43. Prove: n2 � 2n 
 1 for n � 3.

Since 32 � 9 and 2(3) 
 1 � 7, the formula is true for n � 3. Assuming n2 � 2n 
 1, we have

(n 
 1)2 � n2 
 2n 
 1 � (2n 
 1) 
 2n 
 1 � 2n 
 2 
 2n � 2n 
 2 
 1 � 2(n 
 1) 
 1

Thus, the formula is true for n 
 1. By induction, the formula is true for all n � 3.

1.44. Prove: n! � 2n for n � 4.

Since 4! � 1 · 2 · 3 · 4 � 24 and 24 � 16, the formula is true for n � 4. Assuming n! � 2n and
n 
 1 � 2, we have

(n 
 1)! � n!(n 
 1) � 2n(n 
 1) � 2n(2) � 2n
1

Thus, the formula is true for n 
 1. By induction, the formula is true for all n � 4.

MISCELLANEOUS PROBLEMS

1.45. Show that A is the disjoint union of A 	 B and A 	 B; that is, show that:

(a) A � (A 	 B) 
 (A 	 B), (b) (A 	 B) 	 (A 	 B) � �.

(a) By Problem 1.13, A 	 B � A 	 Bc. Using the Distributive Law and the Complement Law, we get

(A 	 B) 
 (A 	 B) � (A 	 Bc) 
 (A 	 B) � A 	 (Bc 
 B) � A 	 U � A

(b) Also,

(A 	 B) 	 (A 	 B) � (A 	 Bc) 	 (A 	 B) � A 	 (Bc 	 B) � A 	 � � �

1.46. Prove Corollary 1.10. Suppose A, B, C are finite sets. Then A 
 B 
 C is finite and

n(A 
 B 
 C) � n(A) 
 n(B) 
 n(C) � n(A 	 B) � n(A 	 C) � n(B 	 C) 
 n(A 	 B 	 C)

Clearly A 
 B 
 C is finite when A, B, C are finite. Using

(A 
 B) 	 C � (A 	 C) 
 (B 	 C) and (A 	 B) 	 (B 	 C) � A 	 B 	 C

and using Theorem 1.9 repeatedly, we have

n(A 
 B 
 C) � n(A 
 B) 
 n(C) � n[(A 	 C) 
 (B 	 C )]
� [n(A) 
 n(B) � n(A 	 B)] 
 n(C) � [n(A 	 C) 
 n(B 	 C) � n(A 	 B 	 C)]
� n(A) 
 n(B) 
 n(C) � n(A 	 B) � n(A 	 C) � n(B 	 C) 
 n(A 	 B 	 C)

as required.

Supplementary Problems

SETS, ELEMENTS, SUBSETS

1.47. Which of the following sets are equal?

A � {x : x2 � 4x 
 3 � 0},
B � {x : x2 � 3x 
 2 � 0},

C � {x : x � N, x � 3},
D � {x : x � N, x is odd, x � 5},

E � {1, 2},
F � {1, 2, 1},

G � {3, 1},
H � {1, 1, 3}
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1.48. List the elements of the following sets if the universal set is the English alphabet U � {a, b, c, . . ., y, z}.
Furthermore, identify which of the sets are equal.

A � {x : x is a vowel},
B � {x : x is a letter in the word ‘‘little’’},

C � {x : x precedes f in the alphabet},
D � {x : x is a letter in the word ‘‘title’’}

1.49. Let A � {1, 2, . . ., 8, 9}, B � {2, 4, 6, 8}, C � {1, 3, 5, 7, 9}, D � {3, 4, 5}, E � {3, 5}.

Which of the above sets can equal a set X under each of the given conditions?

(a) X and B are disjoint

(b) X � D but X � B

(c) X � A but X � C

(d) X � C but X � A

SET OPERATIONS

1.50. Given the universal set U � {1, 2, 3, . . ., 8, 9} and the sets:

A � {1, 2, 5, 6}, B � {2, 5, 7}, C � {1, 3, 5, 7, 9}

Find: (a) A 	 B and A 	 C, (b) A 
 B and A 
 C, (c) Ac and C c.

1.51. For the sets in Problem 1.50, find: (a) A 	 B and A 	 C, (b) A � B and A � C.

1.52. For the sets in Problem 1.50, find: (a) (A 
 C) 	 B, (b) (A 
 B)c, (c) (B � C) 	 A.

1.53. Let A � {a, b, c, d, e}, B � {a, b, d, f, g}, C � {b, c, e, g, h}, D � {d, e, f, g, h}. Find:

(a) A 	 (B 
 D)

(b) B 	 (C 
 D)

(c) (A 	 D) 
 B

(d) (A 
 D) 	 C

(e) B 	 C 	 D

( f) (C 	 A) 	 D

(g) (A � C) 	 B

(h) (A � D) 	 B

1.54. Let A and B be any sets. Prove A 
 B is the disjoint union of A 	 B, A 	 B, and B 	 A.

1.55. Prove the following:

(a) A � B if and only if A 	 Bc � �.

(b) A � B if and only if Ac 
 B � U.

(c) A � B if and only if Bc � Ac.

(d) A � B if and only if A 	 B � �.

(Compare with Theorem 1.4.)

1.56. The formula A 	 B � A 	 Bc defines the difference operation in terms of the operations of intersection and
complement. Find a formula which defines the union A 
 B in terms of the operations of intersection
and complement.

VENN DIAGRAMS, ALGEBRA OF SETS, DUALITY

1.57. The Venn diagram in Fig. 1-12 shows sets A, B, C. Shade the following sets:

(a) A 	 (B 
 C) (b) Ac 	 (B 
 C) (c) (A 
 C) 	 (B 
 C)
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1.58. Write the dual of each equation:

(a) A 
 (A 	 B) � A (b) (A 	 B) 
 (Ac 	 B) 
 (A 	 Bc) 
 (Ac 	 Bc) � U

1.59. Use the laws in Table 1-1 to prove: (A 	 B) 
 (A 	 Bc) � A.

FINITE SETS AND THE COUNTING PRINCIPLE, COUNTABLE SETS

1.60. Determine which of the following sets are finite:

(a) Lines parallel to the x axis

(b) Letters in the English alphabet

(c) Animals living on the earth

(d) Circles through the origin (0, 0)

1.61. Given n(U) � 20, n(A) � 12, n(B) � 9, n(A 	 B) � 4. Find:

(a) n(A 
 B) (b) n(Ac) (c) n(Bc) (d) n(A 	 B) (e) n(�)

1.62. Among 120 Freshmen at a college, 40 take mathematics, 50 take English, and 15 take both mathematics
and English. Find the number of the Freshmen who:

(a) Do not take mathematics

(b) Take mathematics or English

(c) Take mathematics but not English

(d) Take English but not mathematics

(e) Take exactly one of the two subjects

( f) Take neither mathematics nor English

1.63. In a survey of 60 people, it was found that 25 read Newsweek magazine, 26 read Time, and 23 read
Fortune. Also, 9 read both Newsweek and Fortune, 11 read Newsweek and Time, 8 read both Time and
Fortune, and 3 read all three magazines.

(a) Figure 1-13 is a Venn diagram of three sets, N (Newsweek), T (Time), and F (Fortune). Fill in the
correct number of people in each of the eight regions of the Venn diagram.

(b) Find the number of people who read: (i) only Newsweek, (ii) only Time, (iii) only Fortune, (iv)
Newsweek and Time, but not Fortune, (v) only one of the magazines, (vi) none of the magazines.

1.64. Let A1, A2, A3, . . . be a sequence of finite sets. Show that the union S � 
i Ai is countable.

1.65. Let A1, A2, A3, . . . be a sequence of pairwise disjoint countably infinite sets. Show that the union
T � 
i Ai is countable.

PRODUCT SETS

1.66. Find x and y if: (a) (x 
 3, 3) � (5, 3x 
 y), (b) (x � 3y, 5) � (7, x � y).

1.67. Find x, y, z if (2x, x 
 y, x � y � 2z) � (4, �1, 3).
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1.68. Let A � {a, b} and B � {1, 2, 3, 4}. Find (a) A � B and (b) B � A.

1.69. Let C � {H, T}, the set of possible outcomes if a coin is tossed. Find:

(a) C2 � C � C and (b) C4 � C � C � C � C.

1.70. Suppose n(A) � 2 and n(B) � 6. Find the number of elements in:

(a) A � B, B � A, (b) A2, B2, A3, B3, (c) A � A � B � A.

CLASSES OF SETS AND PARTITIONS

1.71. Find the power set P (A) of A � {a, b, c, d, e}.

1.72. Let S � {1, 2, 3, 4, 5, 6}. Determine whether each of the following is a partition of S:

(a) [{1, 3, 5}, {2, 4}, {3, 6}]

(b) [{1, 5}, {2}, {3, 6}]

(c) [{1, 5}, {2}, {4}, {3, 6}]

(d) [{1}, {3, 6}, {2, 4, 5}, {3, 6}]

(e) [{1, 2, 3, 4, 5, 6}]

( f) [{1}, {2}, {3}, {4}, {5}, {6}]

1.73. Find all partitions of S � {1, 2, 3}.

1.74. For each positive integer n � N, let An � {n, 2n, 3n, . . .}, the multiples of n. Find:

(a) A2 	 A7, (b) A6 	 A8, (c) A5 
 A20, (d) A5 	 A20, (e) As 
 Ast, where s, t � N,
( f) As 	 Ast, where s, t � N.

1.75. Prove: If J � N is infinite, then 	(Ai : i � J) � �. (Here the Ai are the sets in Problem 1.74.)

1.76. Let [A1, A2, . . ., Am] and [B1, B2, . . ., Bn] be partitions of S. Show that the collection of sets

[Ai 	 Bj; i � 1, . . ., m, j � 1, . . ., n] 	 �

(where the empty set � is deleted) is also a partition of S. (It is called the cross partition.)

1.77. Prove: For any indexed class of sets {Ai : i � I} and any set B:

(a) B 
 (	i Ai) � 	i(B 
 Ai), (b) B 	 (
i Ai) � 
i(B 	 Ai)

1.78. Prove (DeMorgan’s law): (
i Ai)c � 	i Ai
c.

1.79. Show that each of the following is an algebra of subsets of U:

(a) A � {�, U}, (b) B � {�, A, Ac, U}, (c) P(U), the power set of U

1.80. Let A and B be algebras (
-algebras) of subsets of U. Prove that the intersection A 	 B is also an
algebra (
-algebra) of subsets of U.

MATHEMATICAL INDUCTION

1.81. Prove: 2 
 4 
 6 
 · · · 
 2n � n(n 
 1).

1.82. Prove: 1 
 4 
 7 
 · · · 
 (3n � 2) � 2n(3n � 1).

1.83. Prove: 12 
 22 
 32 
 · · · 
 n2 �
n(n 
 1)(2n 
 1)

6
.

1.84. Prove: For n � 3, we have 2n � n2.

1.85. Prove:
1

1 · 3



1
3 · 5



1

5 · 7

 · · · 


1
(2n � 1)(2n 
 1)

�
1

2n 
 1
.

29SET THEORYCHAP. 1]



Answers to Supplementary Problems

1.47. B � C � E � F; A � D � G � H.

1.48. A � {a, e, i, o, u}; B � D � {1, i, t, e}; C � {a, b, c, d, e}.

1.49. (a) C and E; (b) D and E; (c) A, B, D; (d) None.

1.50. (a) A 	 B � {2, 5}, A 	 C � {1, 5}; (b) A 
 B � {1, 2, 5, 6, 7}, B 
 C � {1, 2, 3, 5, 7, 9};
(c) Ac � {3, 4, 7, 8, 9}, Cc � {2, 4, 6, 8}.

1.51. (a) A 	 B � {1, 6}, A 	 C � {2, 6}; (b) A � B � {1, 6, 7}, A � C � {2, 3, 6, 7, 9}.

1.52. (a) (A 
 C) 	 B � {1, 3, 6, 9}; (b) {A 
 B)c � {3, 4, 8, 9}; (c) {B � C) 	 A � {3, 9}.

1.53. (a) A 	 (B 
 D) � {a, b, d, e}; (b) B 	 (C 
 D) � {a}; (c) (A 	 D) 
 B � {a, b, d, e, f, g};
(d) (A 
 D) 	 C � {a, d, f }; (e) B 	 C 	 D � (g}; ( f) (C 	 A) 	 D � �; (g) (A � C) 	 B � {a, d, g};
(h) (A � D) 	 B � {c, h}.

1.56. A 
 B � (Ac 	 Bc)c.

1.57. See Fig. 1-14.

1.58. (a) A 	 (A 
 B) � A; (b) (A 
 B) 	 (Ac 
 B) 	 (A 
 Bc) 	 (Ac 
 Bc) � �.

1.60. (a) Infinite; (b) finite; (c) finite; (d) infinite.

1.61. (a) n(A 
 B) � 17; (b) n(Ac) � 8; (c) n(Bc) � 11; (d) n(A 	 B) � 8; (e) n(�) � 0.

1.62. (a) 80; (b) 75; (c) 25; (d) 35; (e) 60; ( f) 45.

1.63. (a) See Fig. 1-15; (b) (i) 8, (ii) 10, (iii) 9, (iv) 8, (v) 27, (vi) 11.
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1.64. Let B1 � A1, B2 � A2 	 B1, B3 � A3 	 B2, . . ., that is, Bn � Ak 	 Bk�1. Then the Bk are finite and pairwise
disjoint, and S � 
i Ai � 
i Bi. Say

Bk � {bk1, bk2, . . ., bknk
}

Then S can be written as a sequence as follows:

S � {b11, b12, . . ., b1n1
, b21, b22, . . ., b2n2

, . . .}

That is, first write down the elements of B1, then the elements of B2, and so on.

1.65. Suppose

A1 � {a11, a12, a13, . . .}, A2 � {a21, a22, a23, . . .}, . . .

For n � 1, define Dn � {aij : i 
 j � n}. For example,

D2 � {a11}, D3 � {a12, a21}, D4 � {a31, a22, a13}, . . .

Each Dk is finite and T � 
i Di. By Problem 1.64, T is countable.

1.66. (a) x � 2, y � �3; (b) x � 6, y � �1.

1.67. x � 2, y � �3, z � 1.

1.68. (a) A � B � {(a, 1), (a, 2), (a, 3), (a, 4), (b, 1), (b, 2), (b, 3), (b, 4)};
(b) B � A � {(1, a), (2, a), (3, a), (4, a), (1, a), (2, a), (3, a), (4, a)}.

1.69. Note n(C2) � 22 � 4 and n(C4) � 24 � 16.
(a) C2 � C � C � {HH, HT, TH, TT};
(b) C4 � C � C � C � C � {HHHH, HHHT, HHTH, HHTT, HTHH, HTHT, HTTH, HTTT, THHH,

THHT, THTH, THTT, TTHH, TTHT, TTTH, TTTT}.

1.70. (a) 12, 12; (b) 4, 36, 8, 216; (c) 48.

1.71. Note P (A) has 25 � 32 elements; that is, there are 32 subsets of A. Each subset has at most five elements,
and we list them in terms of their numbers of elements:

None (1): �
One (5): {a}, {b}, {c}, {d }, {e}
Two (10): {a, b}, {a, c}, {a, d }, {a, e}, {b, c}, {b, d }, {b, e}, {c, d }, {c, e}, {d, e}
Three (10): {a, b, c}, {a, b, d }, {a, b, e}, {a, c, d }, {a, c, e}, {a, d, e}, {b, c, d }, {b, c, e}, {b, d, e}, {c, d, e}
Four (5): {a, b, c, d }, {a, b, c, e}, {a, b, d, e}, {a, c, d, e}, {b, c, d, e}
Five (1): A � {a, b, c, d, e}

1.72. (a) and (b): No. Others: Yes.

1.73. There are five: [S], [{1, 2}, {3}], [{1, 3}, {2}], [{1}, {2, 3}], [{1}, {2}, {3}].

1.74. (a) A14; (b) A24; (c) A20; (d) A5; (e) Ast; ( f) As.

1.75. Let n � N and let B � 	(Ai : i � J). Since J is infinite, there exists k � J such that n � k. Thus n � Ak

and so n � B. That is, for every n, we have shown n � B. Thus B � �.
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CHAPTER 2

Techniques
of Counting

2.1 INTRODUCTION

This chapter develops some techniques for determining, without direct enumeration, the number
of possible outcomes of a particular experiment or event or the number of elements in a particular set.
Such sophisticated counting is sometimes called combinatorial analysis.

2.2 BASIC COUNTING PRINCIPLES

There are two basic counting principles which are used throughout this chapter. One involves
addition and the other involves multiplication.

Sum Rule Principle

The first counting principle follows:

Sum Rule Principle: Suppose some event E can occur in m ways
and a second event F can occur in n ways, and suppose both
events cannot occur simultaneously. Then E or F can occur in
m 
 n ways.

This principle can be stated in terms of sets, and it is simply a restatement of Lemma 1.6.

Sum Rule Principle: Suppose A and B are disjoint sets. Then

n(A 
 B) � n(A) 
 n(B)

Clearly, this principle can be extended to three or more events. That is, suppose an event E1 can
occur in n1 ways, a second event E2 can occur in n2 ways, a third event E3 can occur in n3 ways, and
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so on, and suppose no two of the events can occur at the same time. Then one of the events can occur
in n1 
 n2 
 n3 
 . . . ways.

EXAMPLE 2.1

(a) Suppose there are 8 male professors and 5 female professors teaching a calculus class. A student can choose
a calculus professor in 8 
 5 � 13 ways.

(b) Suppose there are 3 different mystery novels, 5 different romance novels, and 4 different adventure novels
on a bookshelf. Then there are

n � 3 
 5 
 4 � 12

ways to choose one of the novels.

Product Rule Principle

The second counting principle follows:

Product Rule Principle: Suppose an event E can occur in m ways
and, independent of this event, an event F can occur in n
ways. Then combinations of events E and F can occur in mn
ways.

This principle can also be stated in terms of sets, and it is simply a restatement of Theorem
1.11.

Product Rule Principle: Suppose A and B are finite sets. Then:

n(A � B) � n(A) � n(B)

Clearly, this principle can also be extended to three or more events. That is, suppose an event E1

can occur in n1 ways, then a second event E2 can occur in n2 ways, then a third event E3 can occur in
n3 ways, and so on. Then all of the events can occur in n1 � n2 � n3 � . . . ways.

EXAMPLE 2.2

(a) Suppose a restaurant has 3 different appetizers and 4 different entrees. Then there are

n � 3(4) � 12

different ways to order an appetizer and an entree.

(b) Suppose airline A has 3 daily flights between Boston and Chicago, and airline B has 2 daily flights between
Boston and Chicago.

(1) There are n � 3(2) � 6 ways to fly airline A from Boston to Chicago, and then airline B from Chicago
back to Boston.

(2) There are m � 3 
 2 � 5 ways to fly from Boston to Chicago; and hence n � 5(5) � 25 ways to fly from
Boston to Chicago and then back again.

(c) Suppose a college has 3 different history courses, 4 different literature courses, and 2 different science
courses (with no prerequisites).

(1) Suppose a student has to choose one of each of the courses. The number of ways to do this is:

n � 3(4)(2) � 24
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(2) Suppose a student only needs to choose one of the courses. Clearly, there are

m � 3 
 4 
 2 � 9

courses, and so the student will have 9 choices. In other words, here the sum rule is used rather than
the multiplication rule since only one of the courses is chosen.

2.3 FACTORIAL NOTATION

The product of the positive integers from 1 to n inclusive occurs very often in mathematics and
hence it is denoted by the special symbol n!, read ‘‘n factorial’’. That is,

n! � 1 � 2 � 3 · · · (n � 2)(n � 1)n � n(n � 1)(n � 2) · · · 3 � 2 � 1

In other words, n! may be defined by

1! � 1 and n! � n � (n � 1)!

It is also convenient to define 0! � 1.

EXAMPLE 2.3

(a) 2! � 2 � 1 � 2; 3! � 3 � 2 � 1 � 6; 4! � 4 � 3 � 2 � 1 � 24; 5! � 5 � 4! � 5 � 24 � 120

(b)
8!
6!

�
8 � 7 � 6!

6!
� 8 � 7 � 56; 12 � 11 � 10 �

12 � 11 � 10 � 9!
9!

�
12!
9!

(c)
12 � 11 � 10

3 � 2 � 1
� 12 � 11 � 10 �

1
3!

�
12!
3!9!

(d) n(n � 1) · · · (n � r 
 1) �
n(n � 1) · · · (n � r 
 1)(n � r)(n � r � 1) · · · 3 � 2 � 1

(n � r)(n � r � 1) · · · 3 � 2 � 1
�

n!
(n � r)!

(e) Using (d), we get:

n(n � 1) · · · (n � r 
 1)
r(r � 1) · · · 3 � 2 � 1

� n(n � 1) · · · (n � r 
 1) �
1
r!

�
n!

(n � r)!
�

1
r!

�
n!

r!(n � r)!

Stirling’s Approximation to n!

A direct evaluation of n! when n is very large is impossible, even with modern-day computers.
Accordingly, one frequently uses the approximation formula

n! � �2�nnn e�n

(Here e � 2.718 28. . . .) The symbol � means that as n gets larger and larger (that is, as n → �), the
ratio of both sides approaches 1.

2.4 BINOMIAL COEFFICIENTS

The symbol �n
r 
 , where r and n are positive integers with r � n [read: ‘‘nCr’’ or ‘‘n choose r’’],

is defined as follows:

�n
r 
 �

n(n � 1)(n � 2) · · · (n � r 
 1)
r(r � 1) · · · 3 · 2 · 1

or �n
r 
 �

n!
r!(n � r)!

The equivalence of the two formulas is shown in Example 2.3(e).
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Note that n � (n � r) � r. This yields the following important relation:

Lemma 2.1: � n
n � r
 � �n

r 
 or, equivalently, �n
a
 � �n

b
, where a 
 b � n.

Remark: Motivated by the second formula for �n
r 
 and the fact that 0! � 1, we define

�n
0
 �

n!
0!n!

� 1 and, in particular, �0
0
 �

0!
0!0!

� 1

EXAMPLE 2.4

(a) �8
2 
 �

8 � 7
2 � 1

� 28; �9
4 
 �

9 � 8 � 7 � 6
4 � 3 � 2 � 1

� 126; �12
5 
 �

12 � 11 � 10 � 9 � 8
5 � 4 � 3 � 2 � 1

� 792;

�10
3 
 �

10 � 9 � 8
3 � 2 � 1

� 120; �13
1 
 �

13
1

� 13

Note that �n

r 
 has exactly r factors in both the numerator and the denominator.

(b) Suppose we want to compute �10
7 
 . By definition,

�10
7 
 �

10 � 9 � 8 � 7 � 6 � 5 � 4
7 � 6 � 5 � 4 � 3 � 2 � 1

� 120

On the other hand, 10 � 7 � 3; hence using Lemma 2.1 we get:

�10
7 
 � �10

3 
 �
10 � 9 � 8
3 � 2 � 1

� 120

Observe that the second method saves both space and time.

Binomial Coefficients and Pascal’s Triangle

The numbers �n
r 
 are called the binomial coefficients since they appear as the coefficients in the

expansion of (a 
 b)n. Specifically, the following Binomial Theorem gives the general expression for
the expansion of (a 
 b)n:

Theorem 2.2 (Bionomial Theorem): (a 
 b)n �

n�
k�0

�n
k
 an�k k.

This theorem is proved in Problem 2.34 using mathematical induction.

The coefficients of the successive powers of a 
 b can be arranged in a triangular array of numbers,
called Pascal’s triangle, as pictured in Fig. 2-1. The numbers in Pascal’s triangle have the following
interesting properties:

(i) The first and last number in each row is 1.

(ii) Every other number in the array can be obtained by adding the two numbers appearing
directly above it. For example, 10 � 4 
 6, 15 � 5 
 10, 20 � 10 
 10.
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Since the numbers appearing in Pascal’s triangle are the binomial coefficients, property (ii) of
Pascal’s triangle comes from the following theorem (proved in Problem 2.7):

Theorem 2.3: �n 
 1
r 
 � � n

r � 1
 
 �n
r 


2.5 PERMUTATIONS

Any arrangement of a set of n objects in a given order is called a permutation of the objects (taken
all at a time). Any arrangement of any r � n of these objects in a given order is called an r
permutation or a permutation of the n objects taken r at a time. Consider, for example, the set of letters
a, b, c, d. Then:

(i) bdca, dcba, acdb are permutations of the four letters (taken all at a time).

(ii) bad, adb, cbd, bca are permutations of the four letters taken three at a time.

(iii) ad, cb, da, bd are permutations of the four letters taken two at a time.

The number of permutations of n objects taken r at a time will be denoted by

P(n, r)

Before we derive the general formula for P(n, r) we consider a particular case.

EXAMPLE 2.5 Find the number of permutations of six objects, say A, B, C, D, E, F, taken three at a time. In
other words, find the number of ‘‘three-letter words’’ using only the given six letters without repetitions.

Let the general three-letter word be represented by the following three boxes:

The first letter can be chosen in 6 different ways; following this, the second letter can be chosen in 5 different ways;
and, following this, the last letter can be chosen in 4 different ways. Write each number in the appropriate box
as follows:

6 5 4

Accordingly, by the product rule principle, there are 6 � 5 � 4 � 120 possible three-letter words without repetitions
from the six letters, or there are 120 permutations of six objects taken three at a time. Thus, we have
shown that

P(6, 3) � 120

36 TECHNIQUES OF COUNTING [CHAP. 2

(a 
 b)0 � 1

(a 
 b)1 � a 
 b

(a 
 b)2 � a2 
 2ab 
 b2

(a 
 b)3 � a3 
 3a2 b 
 3ab2 
 b3

(a 
 b)4 � a4 
 4a3 b 
 6a2 b2 
 4ab3 
 b4

(a 
 b)5 � a5 
 5a4 b 
 10a3 b2 
 10a2 b3 
 5ab4 
 b5

(a 
 b)6 � a6 
 6a5 b 
 15a4 b2 
 20a3 b3 
 15a2 b4 
 6ab5 
 b6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fig. 2-1. Pascal’s triangle.
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10
44

44
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Derivation of the Formula for P(n, r)

The derivation of the formula for the number of permutations of n objects taken r at a time, or
the number of r permutations of n objects, P(n, r), follows the procedure in the preceding example. The
first element in an r permutation of n objects can be chosen in n different ways; following this, the
second element in the permutation can be chosen in n � 1 ways; and, following this, the third element
in the permutation can be chosen in n � 2 ways. Continuing in this manner, we have that the rth (last)
element in the r permutation can be chosen in n � (r � 1) � n � r 
 1 ways. Thus, by the funda-
mental principle of counting, we have

P(n, r) � n(n � 1)(n � 2) · · · (n � r 
 1)

By Example 2.3(e), we see that

n(n � 1)(n � 2) · · · (n � r 
 1) �
n(n � 1)(n � 2) · · · (n � r 
 1) � (n � r)!

(n � r)!
�

n!
(n � r)!

Thus, we have proven the following theorem.

Theorem 2.4: P(n, r) �
n!

(n � r)!
.

Consider the case that r � n. We get

P(n, n) � n(n � 1)(n � 2) · · · 3 � 2 � 1 � n!

Accordingly,

Corollary 2.5: There are n! permutations of n objects (taken all at a time).

For example, there are 3! � 1 � 2 � 3 � 6 permutations of the three letters a, b, c. These are

abc, acb, bac, bca, cab, cba

Permutations with Repetitions

Frequently we want to know the number of permutations of a multiset, that is, a set of objects some
of which are alike. We will let

P(n; n1, n2, . . ., nr)

denote the number of permutations of n objects of which n1 are alike, n2 are alike, . . ., nr are
alike. The general formula follows:

Theorem 2.6: P(n; n1, n2, . . ., nr) �
n!

n1!n2! · · · nr!

We indicate the proof of the above theorem by a particular example. Suppose we want to form
all possible five-letter ‘‘words’’ using the letters from the word ‘‘BABBY’’. Now there are 5! � 120
permutations of the objects B1, A, B2, B3, Y, where we have distinguished the three B’s. Observe that
the following 6 permutations produce the same word when the subscripts are removed:

B1 B2 B3 AY, B1 B3 B2 AY, B2 B1 B3 AY, B2 B3 B1 AY, B3 B1 B2 AY, B3 B2 B1 AY

The 6 comes from the fact that there are 3! � 3 � 2 � 1 � 6 different ways of placing the three B’s in the
first three positions in the permutation. This is true for each set of three positions in which the three
B’s can appear. Accordingly, there are

P(5; 3) �
5!
3!

�
120

6
� 20

different five-letter words that can be formed using the letters from the word ‘‘BABBY’’.
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EXAMPLE 2.6

(a) Find the number m of seven-letter words that can be formed using the letters of the word ‘‘BENZENE’’.
We seek the number of permutations of seven objects of which three are alike, the three E’s, and two

are alike, the two N’s. By Theorem 2.6,

m � P(7; 3, 2) �
7!

3!2!
�

7 � 6 � 5 � 4 � 3 � 2 � 1
3 � 2 � 1 � 2 � 1

� 420

(b) Find the number m of different signals, each consisting of eight flags in a vertical line, that can be formed
from four indistinguishable red flags, three indistinguishable white flags, and a blue flag.

We seek the number of permutations of eight objects of which four are alike, the red flags, and three
are alike, the white flags. By Theorem 2.6,

m � P(8; 4, 3) �
8!

4!3!
�

8 � 7 � 6 � 5 � 4 � 3 � 2 � 1
4 � 3 � 2 � 1 � 3 � 2 � 1

� 280

Ordered Samples

Many problems in combinatorial analysis and, in particular, probability are concerned with
choosing an element from a set S containing n elements (or a card from a deck or a person from a
population). When we choose one element after another from the set S, say r times, we call the choice
an ordered sample of size r. We consider two cases:

(i) Sampling with Replacement: Here the element is replaced in the set S before the next element
is chosen. Since there are n different ways to choose each element (repetitions are allowed),
the product rule principle tells us that there are

r times

n � n � n · · · n � nr

different ordered samples with replacement of size r.

(ii) Sampling without Replacement: Here the element is not replaced in the set S before the next
element is chosen. Thus, there are no repetitions in the ordered sample. Accordingly, an
ordered sample of size r without replacement is simply an r permutation of the elements in the
set S with n elements. Thus, there are

P(n, r) � n(n � 1)(n � 2) · · · (n � r 
 1) �
n!

(n � r)!

different ordered samples without replacement of size r from a population (set) with n
elements. In other words, by the product rule, the first element can be chosen in n ways, the
second in n � 1 ways, and so on.

EXAMPLE 2.7 Three cards are chosen in succession from a deck with 52 cards. Find the number of ways this
can be done: (a) with replacement, (b) without replacement.

(a) Since each card is replaced before the next card is chosen, each card can be chosen in 52 ways. Thus,

52(52)(52) � 523 � 140,608

is the number of different ordered samples of size r � 3 with replacement.

(b) Since there is no replacement, the first card can be chosen in 52 ways, the second card in 51 ways, and the
last card in 50 ways. Thus,

P(52, 3) � 52(51)(50) � 132,600

is the number of different ordered samples of size r � 3 without replacement.

38 TECHNIQUES OF COUNTING [CHAP. 2






2.6 COMBINATIONS

Suppose we have a collection of n objects. A combination of these n objects taken r at a time is
any selection of r of the objects where order doesn’t matter. In other words, an r combination of a set
of n objects is any subset of r elements. For example, the combinations of the letters a, b, c, d taken
three at a time are

{a, b, c}, {a, b, d }, {a, c, d }, {b, c, d } or simply abc, abd, acd, bcd

Observe that the following combinations are equal:

abc, acb, bac, bca, cab, cba

That is, each denotes the same set {a, b, c}.

The number of combinations of n objects taken r at a time will be denoted by

C(n, r)

Before we derive the general formula for C(n, r), we consider a particular case.

EXAMPLE 2.8 Find the number of combinations of four objects, a, b, c, d, taken three at a time.
Each combination consisting of three objects determines 3! � 6 permutations of the objects in the

combination as pictured in Fig. 2-2. Thus, the number of combinations multiplied by 3! equals the number of
permutations. That is,

C(4, 3) � 3! � P(4, 3) or C(4, 3) �
P(4, 3)

3!

But P(4, 3) � 4 � 3 � 2 � 24 and 3! � 6. Thus C(4, 3) � 4, which is noted in Fig. 2-2.

Formula for C(n, r)

Since any combination of n objects taken r at a time determines r! permutations of the objects in
the combination, we can conclude that

P(n, r) � r!C(n, r)
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Combinations

abc

abd

acd

bcd

Permutations

abc, acb, bac, bca, cab, cba

abd, adb, bad, bda, dab, dba

acd, adc, cad, cda, dac, dca

bcd, bdc, cbd, cdb, dbc, dcb

Fig. 2-2



Thus we obtain the following formula for C(n, r):

Theorem 2.7: C(n, r) �
P(n, r)

r!
�

n!
r!(n � r)!

.

Recall that the binomial coefficient �n
r 
 was defined to be

n!
r!(n � r)!

. Accordingly,

C(n, r) � �n
r 


We shall use C(n, r) and �n
r 
 interchangeably.

EXAMPLE 2.9

(a) Find the number m of committees of 3 that can be formed from 8 people.
Each committee is, essentially, a combination of the 8 people taken 3 at a time. Thus

m � C(8, 3) � �8
3 
 �

8 � 7 � 6
3 � 2 � 1

� 56

(b) A farmer buys 3 cows, 2 pigs, and 4 hens from a person who has 6 cows, 5 pigs, and 8 hens. How many
choices does the farmer have?

The farmer can choose the cows in �6
3 
 ways, the pigs in � 5

2
 ways, and the hens in �8
4 
 ways.

Accordingly, altogether the farmer can choose the animals in

�6
3 
 �

5
2 
 �

8
4 
 �

6 � 5 � 4
3 � 2 � 1

�
5 � 4
2 � 1

�
8 � 7 � 6 � 5
4 � 3 � 2 � 1

� 20 � 10 � 70 � 14,000 ways

EXAMPLE 2.10 Find the number m of ways that 9 toys can be divided between 4 children if the youngest is to
receive 3 toys and each of the others 2 toys.

There are C(9, 3) � 84 ways to first choose 3 toys for the youngest. Then there are C(6, 2) � 15 ways to
choose 2 of the remaining 6 toys for the oldest. Next, there are C(4, 2) � 6 ways to choose 2 of the remaining
4 toys for the second oldest. The third oldest receives the remaining 2 toys. Thus, by the product rule,

m � 84(15)(6) � 7560

Alternately, based on the theorem proved later in Problem 2.37,

m �
9!

3!2!2!2!
� 7560

EXAMPLE 2.11 Find the number m of ways that 12 students can be partitioned into 3 teams, T1, T2, T3, so that
each team contains 4 students.

Method 1: Let A be one of the students. Then there are C(11, 3) ways to choose 3 other students to be on
the same team as A. Now let B denote a student who is not on the same team as A; then there are C(7, 3)
ways to choose 3 students out of the remaining students to be on the same team as B. The remaining 4
students constitute the third team. Thus, altogether, the number m of ways to partition the students is as
follows:

m � C(11, 3) � C(7, 3) � �11
3 
 � �7

3 
 � 165 � 35 � 5775

40 TECHNIQUES OF COUNTING [CHAP. 2



Method 2: Each partition [T1, T2, T3] of the students can be arranged in 3! � 6 ways as an ordered
partition. By Problem 2.37 (or using the method in Example 2.10), there are

12!
4!4!4!

� 34,650
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Fig. 2-3

*For additional information on combinations with replacement, please see the end of this chapter (page 58) for Section 2.8.

2.7 TREE DIAGRAMS

A tree diagram is a device used to enumerate all the possible outcomes of a sequence of
experiments or events where each event can occur in a finite number of ways. The construction of
tree diagrams is illustrated in the following examples.

EXAMPLE 2.12 Find the product set A � B � C where

A � {1, 2}, B � {a, b, c}, C � {3, 4}

The tree diagram for the A � B � C appears in Fig. 2-3. Observe that the tree is constructed from left to
right and that the number of branches at each point corresponds to the number of possible outcomes of the next
event. Each endpoint of the tree is labeled by the corresponding element of A � B � C. As expected from
Theorem 1.11, A � B � C contains n � 2 � 3 � 2 � 12 elements.

such ordered partitions. Thus there are m = 34,650/6 = 5775 (unordered) partitions.*

(2, a, 3)



EXAMPLE 2.13 Marc and Erik are to play a tennis tournament. The first person to win 2 games in a row or
who wins a total of 3 games wins the tournament. Find the number of ways the tournament can occur.

The tree diagram showing the possible outcomes of the tournament appears in Fig. 2-4. Specifically, there
are 10 endpoints which correspond to the following 10 ways that the tournament can occur:

MM, MEMM, MEMEM, MEMEE, MEE, EMM, EMEMM, EMEME, EMEE, EE

The path from the beginning of the tree to the endpoint describes who won which game in the individual
tournament.

Solved Problems

FACTORIAL NOTATION AND BINOMIAL COEFFICIENTS

2.1. Compute: (a) 4!, 5!, 6!, 7!, 8!, 9!, 10!; (b) 50!

(a) Use (n 
 1)! � (n 
 1)n! after calculating 4! and 5!:

4! � 1 � 2 � 3 � 4 � 24, 7! � 7(6!) � 7(720) � 5040
5! � 1 � 2 � 3 � 4 � 5 � 5(24) � 120, 8! � 8(7!) � 8(5040) � 40,320
6! � 6(5!) � 6(120) � 720, 9! � 9(8!) � 9(40,320) � 362,880

10! � 10(9!) � 10(362,880) � 3,628,800

(b) Since n is very large, we use Stirling’s approximation that n! � �2�nnn e�n (where e � 2.718). Let

N � �100� 5050 e�50 � 50!

Evaluating N using a calculator, we get N � 3.04 � 1064 (which has 65 digits).
Alternately, using (base 10) logarithms, we get

log N � log(�100� 5050 e�50)
� 1–

2 log 100 
 1–
2 log � 
 50 log 50 � 50 log e

� 1–
2 (2) 
 1–

2 (0.497 2) 
 50(1.699 0) � 50(0.434 3)
� 64.483 6

The antilog yields N � 3.04 � 1064.
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2.2. Compute: (a)
11!
9!

, (b)
6!
9!

.

(a)
11!
9!

�
11 � 10 � 9 � 8 � 7 � 6 � 5 � 4 � 3 � 2 � 1

9 � 8 � 7 � 6 � 5 � 4 � 3 � 2 � 1
� 11 � 10 � 110

Alternately, this could be solved as follows:

11!
9!

�
11 � 10 � 9!

9!
� 11 � 10 � 110

(b)
6!
9!

�
6!

9 � 8 � 7 � 6!
�

1
9 � 8 � 7

�
1

504

2.3. Simplify: (a)
n!

(n � 1)!
, (b)

(n 
 2)!
n!

.

(a)
n!

(n � 1)!
�

n(n � 1)(n � 2) · · · 3 � 2 � 1
(n � 1)(n � 2) · · · 3 � 2 � 1

� n

or simply
n!

(n � 1)!
�

n(n � 1)!
(n � 1)!

� n

(b)
(n 
 2)!

n!
�

(n 
 2)(n 
 1)n(n � 1)(n � 2) · · · 3 � 2 � 1
n(n � 1)(n � 2) · · · 3 � 2 � 1

� (n 
 2)(n 
 1) � n2 
 3n 
 2

or simply
(n 
 2)!

n!
�

(n 
 2)(n 
 1)n!
n!

� (n 
 2)(n 
 1) � n2 
 3n 
 2

2.4. Compute: (a) �14
3 
 , (b) �11

4 
 .

Recall that there are as many factors in the numerator as in the denominator.

(a) �14
3 
 �

14 � 13 � 12
3 � 2 � 1

� 364, (b) �11
4 
 �

11 � 10 � 9 � 8
4 � 3 � 2 � 1

� 330

2.5. Compute: (a) �8
6
 , (b) �10

7 
 .

(a) �8
6 
 �

8 � 7 � 6 � 5 � 4 � 3
6 � 5 � 4 � 3 � 2 � 1

� 28

or, since 8 � 6 � 2, we can use Lemma 2.1 to obtain:

�8
6 
 � �8

2 
 �
8 � 7
2 � 1

� 28

(b) Since 10 � 7 � 3, Lemma 2.1 tells us that

�10
7 
 � �10

3 
 �
10 � 9 � 8
3 � 2 � 1

� 120
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2.6. Prove: �17
6 
 � �16

5 
 
 �16
6 


Now �16
5 
 
 �16

6 
 �
16!

5!11!



16!
6!10!

. Multiply the first fraction by
6
6

and the second by
11
11

to obtain

the same denominator in both fractions; and then add:

�16
5 
 
 �16

6 
 �
6 � 16!

6 � 5! � 11!



11 � 16!
6! � 11 � 10!

�
6 � 16!
6! � 11!



11 � 16!
6! � 11!

�
6 � 16! 
 11 � 16!

6! � 11!
�

(6 
 11) � 16!
6! � 11!

�
17 � 16!
6! � 11!

�
17!

6! � 11!
� �17

6 


2.7. Prove Theorem 2.3: �n 
 1
r 
 � � n

r � 1
 
 �n
r 
 .

(The technique in this proof is similar to that of the preceding problem.)

Now � n

r � 1 
 
 �n

r 
 �
n!

(r � 1)! � (n � r 
 1)!



n!
r! � (n � r)!

. To obtain the same denominator in

both fractions, multiply the first fraction by
r

r
and the second fraction by

n � r 
 1
n � r 
 1

. Hence

� n

r � 1 
 
 �n

r 
 �
r � n!

r � (r � 1)! � (n � r 
 1)!



(n � r 
 1) � n!
r! � (n � r 
 1) � (n � r)!

�
r � n!

r!(n � r 
 1)!



(n � r 
 1) � n!
r!(n � r 
 1)!

�
r � n! 
 (n � r 
 1) � n!

r!(n � r 
 1)!
�

[r 
 (n � r 
 1)] � n!
r!(n � r 
 1)!

�
(n 
 1)n!

r!(n � r 
 1)!
�

(n 
 1)!
r!(n � r 
 1)!

� �n 
 1
r 


COUNTING PRINCIPLES

2.8. Suppose a bookcase shelf has 5 history texts, 3 sociology texts, 6 anthropology texts, and 4
psychology texts. Find the number n of ways a student can choose: (a) one of the texts; (b) one
of each type of text.

(a) Here the sum rule applies; hence n � 5 
 3 
 6 
 4 � 18.

(b) Here the product rule applies; hence n � 5 � 3 � 6 � 4 � 360.

2.9. A restaurant has a menu with 4 appetizers, 5 entrees, and 2 desserts. Find the number n of
ways a customer can order an appetizer, entree, and dessert.

Here the product rule applies since the customer orders one of each. Thus n � 4 � 5 � 2 � 40.

2.10. A history class contains 8 male students and 6 female students. Find the number n of ways that
the class can elect: (a) 1 class representative; (b) 2 class representatives, 1 male and 1 female;
(c) 1 president and 1 vice-president.

(a) Here the sum rule is used; hence n � 8 
 6 � 14.

(b) Here the product rule is used; hence n � 8 � 6 � 48.

(c) There are 14 ways to elect the president, and then 13 ways to elect the vice-president. Thus,
n � 14 � 13 � 182.
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2.11. There are 5 bus lines from city A to city B and 4 bus lines from city B to city C. Find the
number n of ways a person can travel by bus:

(a) from A to C by way of B, (b) round-trip from A to C by way of B,
(c) round-trip from A to C by way of B, without using a bus line more than once.

(a) There are 5 ways to go from A to B and 4 ways to go from B to C; hence, by the product rule,
n � 5 � 4 � 20.

(b) There are 20 ways to go from A to C by way of B and 20 ways to return. Thus, by the product rule,
n � 20 � 20 � 400.

(c) The person will travel from A to B to C to B to A. Enter these letters with connecting arrows as
follows:

A → B → C → B → A

There are 5 ways to go from A to B and 4 ways to go from B to C. Since a bus line is not to be used
more than once, there are only 3 ways to go from C back to B and only 4 ways to go from B back
to A. Enter these numbers above the corresponding arrows as follows:

A →5 B →4 C →3 B →4 A

Thus, by the product rule, n � 5 � 4 � 3 � 4 � 240.

2.12. Suppose there are 12 married couples at a party. Find the number n of ways of choosing a man
and a woman from the party such that the two are: (a) married to each other, (b) not married
to each other.

(a) There are 12 married couples and hence there are n � 12 ways to choose one of the couples.

(b) There are 12 ways to choose, say, one of the men. Once the man is chosen, there are 11 ways to
choose the women, anyone other than his wife. Thus, n � 12(11) � 132.

2.13. Suppose a password consists of 4 characters, the first 2 being letters in the (English) alphabet
and the last 2 being digits. Find the number n of:

(a) passwords, (b) passwords beginning with a vowel

(a) There are 26 ways to choose each of the first 2 characters and 10 ways to choose each of the last 2
characters. Thus, by the product rule,

n � 26 � 26 � 10 � 10 � 67,600

(b) Here there are only 5 ways to choose the first character. Hence n � 5 � 26 � 10 � 10 � 13,000.

PERMUTATIONS AND ORDERED SAMPLES

2.14. State the essential difference between permutations and combinations, with examples.

Order counts with permutations, such as words, sitting in a row, and electing a president,
vice-president, and treasurer. Order does not count with combinations, such as committees and teams
(without counting positions). The product rule is usually used with permutations since the choice for
each of the ordered positions may be viewed as a sequence of events.

2.15. Find the number n of ways that 4 people can sit in a row of 4 seats.

The 4 empty seats may be pictured by

, , , .

The first seat can be occupied by any one of the 4 people, that is, there are 4 ways to fill the first
seat. After the first person sits down, there are only 3 people left and so there are 3 ways to fill the second
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seat. Similarly, the third seat can be filled in 2 ways, and the last seat in 1 way. This is pictured by

4 , 3 , 2 , 1

Thus, by the product rule, n � 4 � 3 � 2 � 1 � 4! � 24.
Alternately, n is the number of permutations of 4 things taken 4 at a time, and so

n � P(4, 4) � 4! � 24

2.16. A family has 3 boys and 2 girls. (a) Find the number of ways they can sit in a row. (b) How
many ways are there if the boys and girls are each to sit together?

(a) The 5 children can sit in a row in 5 � 4 � 3 � 2 � 1 � 5! � 120 ways.

(b) There are 2 ways to distribute them according to sex: BBBGG or GGBBB. In each case, the boys
can sit in 3 � 2 � 1 � 3! � 6 ways and the girls can sit in 2 � 1 � 2! � 2 ways. Thus, altogether, there
are 2 � 3! � 2! � 2 � 6 � 2 � 24 ways.

2.17. Find the number n of distinct permutations that can be formed from all the letters of each word:
(a) THOSE, (b) UNUSUAL, (c) SOCIOLOGICAL.

This problem concerns permutations with repetitions.

(a) n � 5! � 120, since there are 5 letters and no repetitions.

(b) n �
7!
3!

� 840, since there are 7 letters of which 3 are U and no other letter is repeated.

(c) n �
12!

3!2!2!2!
, since there are 12 letters of which 3 are O, 2 are C, 2 are I, and 2 are L.

2.18. Find the number n of different signals, each consisting of 6 flags hung in a vertical line, that can
be formed from 4 identical red flags and 2 identical blue flags.

This problem concerns permutations with repetitions. Thus n �
6!

4!2!
� 15, since there are 6 flags of

which 4 are red and 2 are blue.

2.19. Find the number n of ways that 7 people can arrange themselves: (a) in a row of 7 chairs, (b)
around a circular table.

(a) The 7 people can arrange themselves in a row in n � 7 � 6 � 5 � 4 � 3 � 2 � 1 � 7! ways.

(b) One person can sit at any place at the circular table. The other 6 people can then arrange
themselves in n � 6 � 5 � 4 � 3 � 2 � 1 � 6! ways around the table.

This is an example of a circular permutation. In general, n objects can be arranged in a circle
in (n � 1)(n � 2) · · · 3 � 2 � 1 � (n � 1)! ways.

2.20. Suppose repetitions are not allowed. (a) Find the number n of three-digit numbers that can
be formed from the six digits: 2, 3, 5, 6, 7, 9. (b) How many of them are even? (c) How many
of them exceed 400?

There are 6 digits, and the three-digit number may be pictured by

, , .

In each case, write down the number of ways that one can fill each of the positions.

(a) There are 6 ways to fill the first position, 5 ways for the second position, and 4 ways for the third
position. This may be pictured by: 6 , 5 , 4 . Thus n � 6 � 5 � 4 � 120.

Alternately, n is the number of permutations of 6 things taken 3 at a time, and so

n � P(6, 3) � 6 � 5 � 4 � 120
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(b) Since the numbers must be even, the last digit must be either 2 or 6. Thus the third position is filled
first and it can be done in 2 ways. Then there are now 5 ways to fill the middle position and 4 ways
to fill the first position. This may be pictured by: 4 , 5 , 2 . Thus 4 � 5 � 2 � 40 of the
numbers are even.

(c) Since the numbers must exceed 400, they must begin with 5, 6, 7, or 9. Thus we first fill the first
position and it can be done in 4 ways. Then there are 5 ways to fill the second position and 4 ways
to fill the third position. This may be pictured by: 4 , 5 , 4 . Thus 4 � 5 � 4 � 80 of the
numbers exceed 400.

2.21. A class contains 8 students. Find the number of ordered samples of size 3:

(a) with replacement, (b) without replacement.

(a) Each student in the ordered sample can be chosen in 8 ways; hence there are 8 � 8 � 8 � 83 � 512
samples of size 3 with replacement.

(b) The first student in the sample can be chosen in 8 ways, the second in 7 ways, and the last in 6
ways. Thus there are 8 � 7 � 6 � 336 samples of size 3 without replacement.

2.22. Find n if: (a) P(n, 2) � 72, (b) 2P(n, 2) 
 50 � P(2n, 2).

(a) P(n, 2) � n(n � 1) � n2 � n; hence

n2 � n � 72 or n2 � n � 72 � 0 or (n � 9)(n 
 8) � 0

Since n must be positive, the only answer is n � 9.

(b) P(n, 2) � n(n � 1) � n2 � n and P(2n, 2) � 2n(2n � 1) � 4n2 � 2n. Hence

2(n2 � n) 
 50 � 4n2 � 2n or 2n2 � 2n 
 50 � 4n2 � 2n

or 50 � 2n2 or n2 � 25

Since n must be positive, the only answer is n � 5.

COMBINATIONS AND PARTITIONS

2.23. There are 12 students who are eligible to attend the National Student Association annual
meeting. Find the number n of ways a delegation of 4 students can be selected from the 12
eligible students.

This concerns combinations, not permutations, since order does not count in a delegation. There are
‘‘12 choose 4’’ such delegations. That is,

n � C(12, 4) � �12
4 
 �

12 � 11 � 10 � 9
4 � 3 � 2 � 1

� 495

2.24. A student is to answer 8 out of 10 questions on an exam.

(a) Find the number n of ways the student can choose the eight questions.
(b) Find n if the student must answer the first three questions.

(a) The 8 questions can be selected ‘‘10 choose 8’’ ways. That is,

n � C(10, 8) � �10
8 
 � �10

2 
 �
10 � 9
2 � 1

� 45

(b) If the first 3 questions are answered, then the student must choose the other 5 questions from the
remaining 7 questions. Hence

n � C(7, 5) � �7
5 
 � �7

2 
 �
7 � 6
2 � 1

� 21
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(a) A 4-member committee can be selected from the students.

(b) A 4-member committee with 2 men and 2 women.

(c) The class can elect a president, vice-president, treasurer, and secretary.

(a) This concerns combinations, not permutations, since order does not count in a committee. There are
‘‘10 choose 4’’ such committees. That is,

n � C(10, 4) � �10
4 
 �

10 � 9 � 8 � 7
4 � 3 � 2 � 1

� 210

(b) The 2 men can be chosen from the 6 men in �6
2 
 ways and the 2 women can be chosen from the 4

women in �4
2 
 ways. Thus, by the product rule,

n � �6
2 
 �

4
2 
 �

6 � 5
2 � 1

�
4 � 3
2 � 1

� 15(6) � 90 ways

2.25.  A class contains 10 students, of which 6 identify as men and 4 identify as women. Find the number 

n of ways:

 (c)  This concerns permutations, not combinations, since order does count. Thus

n = P(10, 4) = 10 ∙ 9 ∙ 8 ∙ 7 = 5040

2.27. Let A, B, . . ., L be 12 given points in the plane R2 such that no 3 of the points lie on the same
line. Find the number n of:

(a) Lines in R2 where each line contains two of the points.

(b) Lines in R2 containing A and one of the other points.

(c) Triangles whose vertices come from the given points.

(d) Triangles whose vertices are A and two of the other points.

Since order does not count, this problem involves combinations.

(a) Each pair of points determines a line; hence

n � ‘‘12 choose 2’’ � C(12, 2) � �12
2 
 �

12 � 11
2 � 1

� 66

(b) We need only choose one of the 11 remaining points; hence n � 11.

(c) Each triple of points determines a triangle; hence

n � ‘‘12 choose 3’’ � C(12, 3) � �12
3 
 � 220

2.26. A box contains 7 blue socks and 5 red socks. Find the number n of ways two socks can be
drawn from the box if: (a) They can be any color; (b) They must be the same color.

(a) There are ‘‘12 choose 2’’ ways to select 2 of the 12 socks. That is,

n � C(12, 2) � �12
2 
 �

12 � 11
2 � 1

� 66

(b) There are C(7, 2) � 21 ways to choose 2 of the 7 blue socks and C(5, 2) � 10 ways to choose 2 of the
5 red socks. By the sum rule, n � 21 
 10 � 31.



(d) We need only choose two of the 11 remaining points; hence n � C(11, 2) � 55. (Alternately, there
are C(11, 3) � 165 triangles without A as a vertex; hence 220 � 165 � 55 of the triangles do have A
as a vertex.)

2.28. There are 12 students in a class. Find the number n of ways that 12 students can take 3
different tests if 4 students are to take each test.

There are C(12, 4) � 495 ways to choose 4 students to take the first test; following this, there are
C(8, 4) � 70 ways to choose 4 students to take the second test. The remaining students take the third
test. Thus

n � 70(495) � 34,650

2.29. Find the number n of ways 12 students can be partitioned into 3 teams A1, A2, A3, so that each
team contains 4 students. (Compare with the preceding Problem 2.28.)

Let A denote one of the students. There are C(11, 3) � 165 ways to choose 3 other students to be
on the same team as A. Now let B be a student who is not on the same team as A. Then there are
C(7, 3) � 35 ways to choose 3 from the remaining students to be on the same team as B. The remaining
4 students form the third team. Thus, n � 35(165) � 5925.

Alternately, each partition [A1, A2, A3] can be arranged in 3! � 6 ways as an ordered partition. By
the preceding Problem 2.28, there are 34,650 such ordered partitions. Thus, n � 34,650/6 � 5775.

2.30. Find the number n of committees of 5 with a given chairperson that can be selected from 12
persons.

Method 1: The chairperson can be chosen in 12 ways and, following this, the other 4 on the
committee can be chosen from the remaining 11 people in C(11, 4) � 330 ways. Thus,

n � 12(330) � 3960

Method 2: The 5-member committee can be chosen from the 12 persons in C(12, 5) � 792 ways.
Each committee can then select a chairman in 5 ways. Thus

n � 5(792) � 3960

2.31. There are n married couples at a party. (a) Find the number N of (unordered) pairs at the
party. (b) Suppose every person shakes hands with every other person other than his or her
spouse. Find the number M of handshakes.

(a) There are 2n people at the party, and so there are ‘‘2n choose 2’’ pairs. That is,

N � C(2n, 2) �
2n(2n � 1)

2
� n(2n � 1) � 2n2 � n

(b) M is equal to the number of pairs who are not married. There are n married pairs. Thus,
using (a),

M � 2n2 � n � n � 2n2 � 2n � 2n(n � 1)
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TREE DIAGRAMS

2.32. Construct the tree diagram that gives the permutations of {a, b, c}.

The tree diagram, drawn downward with the ‘‘root’’ on the top, appears in Fig. 2-5. Each path from
the root to an endpoint (‘‘leaf’’) of the tree represents a permutation. There are 6 such paths which yield
the following 6 permutations:

abc, acb, bac, bca, cab, cba

2.33. Audrey has time to play roulette at most 5 times. At each play she wins or loses $1. She
begins with $1 and will stop playing before 5 plays if she loses all her money.

(a) Find the number of ways the betting can occur.

(b) How many cases will she stop before playing 5 times?

(c) How many cases will she leave without any money?

Construct the appropriate tree diagram as shown in Fig. 2-6. Each number in the diagram denotes
the number of dollars she has at that moment in time. Thus, the root, which is circled, is labeled with the
number 1.
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(a) There are 14 paths from the root of the tree to an endpoint (‘‘leaf’’), so the betting can occur in 14
different ways.

(b) There are only 2 paths with less than 5 edges, so Audrey will not play 5 times in only 2 of the
cases.

(c) There are 4 paths which end in 0 or, in other words, only 4 of the leaves are labeled with 0. Thus,
Audrey will leave without any money in 4 of the cases.

MISCELLANEOUS PROBLEMS

2.34. Prove Theorem 2.2 (binomial theorem): (a 
 b)n �

n�
k�0

�n
k
 an�k bk.

The theorem is true for n � 1, since

1�
r�0

�1
r 
 a1�r br � �1

0 
 a1 b0 
 �1
1 
 a0 b1 � a 
 b � (a 
 b)1

We assume the theorem holds for (a 
 b)n and prove it is true for (a 
 b)n
1

(a 
 b)n
1 � (a 
 b)(a 
 b)n

� (a 
 b) �an 
 �n

1 
 an�1 b 
 · · · 
 � n

r � 1 
 an�r
1 br�1 
 �n

r 
 an�r br 
 · · · 
 �n

1 
 abn�1 
 bn�
Now the term in the product which contains br is obtained from

b � � n

r � 1 
 an�r
1 br�1� 
 a � �n

r 
 an�r br� � � n

r � 1 
 an�r
1 br 
 �n

r 
 an�r
1 br

� � � n

r � 1 
 
 �n

r 
 � an�r
1 br

But, by Theorem 2.3 � n

r � 1 
 
 �n

r 
 � �n 
 1
r 
 . Thus, the term containing br is

�n 
 1
r 
an�r
1 br

Note that (a 
 b)(a 
 b)n is a polynomial of degree n 
 1 in b. Consequently,

(a 
 b)n
1 � (a 
 b)(a 
 b)n �

n
1�
r�0

�n 
 1
r 
 an�r
1 br

which was to be proved.

2.35. Prove: �4
0
 
 �4

1
 
 �4
2
 
 �4

3
 
 �4
4
 � 16.

Note that 16 � 24 � (1 
 1)4. Expanding (1 
 1)4, using the binomial theorem, yields:

16 � (1 
 1)4 � �4
0 
14 
 �4

1 
13 11 
 �4
2 
12 12 
 �4

3 
11 13 
 �4
4 
14

� �4
0 
 
 �4

1 
 
 �4
2 
 
 �4

3 
 
 �4
4 
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2.36. Let n and n1, n2, . . ., nr be nonnegative integers such that n1 
 n2 
 · · · 
 nr � n. The multi-
nomial coefficients are denoted and defined by

� n
n1, n2, . . ., nr


 �
n!

n1!n2! · · · nr!

Compute the following multinomial coefficients:

(a) � 6
3, 2, 1
 , (b) � 8

4, 2, 2, 0
 , (c) � 10
5, 3, 2, 2


Use the above formula to obtain:

(a) � 6
3, 2, 1 
 �

6!
3!2!1!

�
6 � 5 � 4 � 3 � 2 � 1
3 � 2 � 1 � 2 � 1 � 1

� 60

(b) � 8
4, 2, 2, 0
 �

8!
4!2!2!0!

�
8 � 7 � 6 � 5 � 4 � 3 � 2 � 1

4 � 3 � 2 � 1 � 2 � 1 � 2 � 1 � 1
� 420

(Here we use the act that 0! � 1.)

(c) The expression � 10
5, 3, 2, 2
 has no meaning, since 5 
 3 
 2 
 2 � 10.

2.37. Suppose S contains n elements, and let n1, n2, . . ., nr be positive integers such that

n1 
 n2 
 · · · 
 nr � n

Prove there exists

� n
n1, n2, . . ., nr


 �
n!

n1!n2! · · · nr!

different ordered partitions of S of the form [A1, A2, . . ., Ar] where A1 contains n1 elements, A2

contains n2 elements, . . ., Ar contains nr elements.

We begin with n elements in S; hence there are � n

n1

 ways of selecting the cell A1. Following this,

there are n � n1 elements left in S, that is, in S 	 A1; hence there are �n � n1

n2

 ways of selecting the cell

A2. Similarly, for i � 3, 4, . . ., r, there are �n � n1 � · · · � ni�1

ni

 ways of selecting the cell Ai.

Accordingly, there are

� n

n1

 �n � n1

n2

 �n � n1 � n2

n2

 · · · � n � n1 � · · · � nr�1

nr

 (*)

different ordered partitions of S. Now (*) is equal to

n!
n1!(n � n1)!

�
(n � n1)!

n2!(n � n1 � n2)!
�

(n � n1 � n2)!
n3!(n � n1 � n2 � n3)!

� · · · �
(n � n1 � · · · � nr�1)!

nr!(n � n1 � n2 � · · · � nr)!

But this is equal to

� n

n1, n2, . . ., nr

 �

n!
n1!n2! · · · nr!

since each numerator after the first is cancelled by the second term in the preceding denominator and since
(n � n1 � · · · � nr)! � 0! � 1. Thus, the theorem is proved.
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Supplementary Problems

FACTORIAL NOTATION AND BINOMIAL COEFFICIENTS

2.38. Find: (a) 10!, 11!, 12! (b) 60! (Hint: Use Stirling’s approximation to n!.)

2.39. Compute: (a)
16!
14!

, (b)
14!
11!

, (c)
8!
10!

, (d)
10!
13!

.

2.40. Simplify: (a)
(n 
 1)!

n!
, (b)

n!
(n � 2)!

, (c)
(n � 1)!
(n 
 2)!

, (d)
(n � r 
 1)!
(n � r � 1)!

.

2.41. Compute: (a) �5
2 
 , (b) �7

3 
 , (c) �14
2 
 , (d) �6

4 
 , (e) �20
17
 , ( f) �18

15
.

2.42. Show that: (a) �n

0 
 
 �n

1 
 
 �n

2 
 
 �n

3 
 
 · · · 
 �n

n
 � 2n,

(b) �n

0 
 � �n

1 
 
 �n

2 
 � �n

3 
 
 · · · � �n

n
 � 0.

2.43. Evaluate the following multinomial coefficients (defined in Problem 2.36):

(a) � 6
2, 3, 1 
 , (b) � 7

3, 2, 2, 0
 , (c) � 9
3, 5, 1 
 , (d) � 8

4, 3, 2 
 .

2.44. Find the (a) ninth and (b) tenth rows of Pascal’s triangle, assuming the following is the eighth row:

1 8 28 56 70 56 28 8 1

COUNTING PRINCIPLES, SUM AND PRODUCT RULES

2.45. A store sells clothes for men. It has 3 different kinds of jackets, 7 different kinds of shirts, and 5 different
kinds of pants. Find the number of ways a person can buy:

(a) one of the items for a present, (b) one of each of the items for a present.

2.46. A restaurant has, on its dessert menu, 4 kinds of cakes, 2 kinds of cookies, and 3 kinds of ice cream. Find
the number of ways a person can select: (a) one of the desserts, (b) one of each kind of dessert.

2.47. A class contains 8 male students and 6 female students. Find the number of ways that the class can elect:
(a) a class representative; (b) 2 class representatives, 1 male and 1 female; (c) a president and a
vice-president.

2.48. Suppose a password consists of 4 characters where the first character must be a letter of the (English)
alphabet, but each of the other characters may be a letter or a digit. Find the number of:

(a) passwords, (b) passwords beginning with one of the 5 vowels.

2.49. Suppose a code consists of 2 letters followed by 3 digits. Find the number of:

(a) codes, (b) codes with distinct letters, (c) codes with the same letters.

2.50. There are 6 roads between A and B and 4 roads between B and C. Find the number n of ways a person
can drive: (a) from A to C by way of B, (b) round-trip from A to C by way of B, (c) round-trip from A
to C by way of B without using the same road more than once.
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PERMUTATIONS AND ORDERED SAMPLES

2.51. Find the number n of ways a judge can award first, second, and third places in a contest with 18
contestants.

2.52. Find the number n of ways 6 people can ride a toboggan where: (a) anyone can drive, (b) one of 3 must
drive.

2.53. A debating team consists of 3 boys and 3 girls. Find the number n of ways they can sit in a row where:
(a) there are no restrictions, (b) the boys and girls are each to sit together, (c) just the girls are to sit
together.

2.54. Find the number n of permutations that can be formed from all the letters of each word:
(a) QUEUE, (b) COMMITTEE, (c) PROPOSITION, (d) BASEBALL.

2.55. Find the number n of different signals, each consisting of 8 flags hung in a vertical line, that can be formed
from 4 identical red flags, 2 identical blue flags, and 2 identical green flags.

2.56. Find the number n of ways 5 large books, 4 medium-size books, and 3 small books can be placed on a shelf
so that all books of the same size are together.

2.57. A box contains 12 light bulbs. Find the number n of ordered samples of size 3:

(a) with replacement, (b) without replacement.

2.58. A class contains 10 students. Find the number n of ordered samples of size 4:

(a) with replacement, (b) without replacement.

COMBINATIONS

2.59. A restaurant has 6 different desserts. Find the number of ways a customer can choose 2 of the
desserts.

2.60. A store has 8 different mystery books. Find the number of ways a customer can buy 3 of the books.

2.61. A box contains 6 blue socks anda 4 white socks. Find the number of ways two socks can be drawn from
the box where: (a) there are no restrictions, (b) they are different colors, (c) they are to be the same
color.

2.62. A class contains 9 boys and 3 girls. Find the number of ways a teacher can select a committee of 4.

2.63. Repeat Problem 2.62, but where: (a) there are to be 2 boys and 2 girls, (b) there is to be exactly 1 girl, (c)
there is to be at least 1 girl.

2.64. A woman has 11 close friends. Find the number of ways she can invite 5 of them to dinner.

2.65. Repeat Problem 2.64, but where 2 of the friends are married and will not attend separately.

2.66. Repeat Problem 2.64, but where 2 of the friends are not on speaking terms and will not attend
together.

2.67. A person is dealt a poker hand (5 cards) from an ordinary deck with 52 cards. Find the number of ways
the person can be dealt: (a) four of a kind, (b) a flush.

2.68. A student must answer 10 out of 13 questions. (a) How many choices are there? (b) How many if the
student must answer the first 2 questions? (c) How many if the student must answer the first or second
question but not both?
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PARTITIONS

2.69. Find the number of ways 6 toys may be divided evenly among 3 children.

2.70. Find the number of ways 6 students can be partitioned into 3 teams containing 2 students each. (Compare
with Problem 2.69.)

2.71. Find the number of ways 6 students can be partitioned into 2 teams where each team contains 2 or more
students.

2.72. Find the number of ways 9 toys may be divided among 4 children if the youngest is to receive 3 toys and
each of the others 2 toys.

2.73. There are 9 students in a class. Find the number of ways the students can take 3 tests if 3 students are
to take each test.

2.74. There are 9 students in a class. Find the number of ways the students can be partitioned into 3 teams
containing 3 students each. (Compare with Problem 2.73.)

TREE DIAGRAMS

2.75. Teams A and B play in the world series of baseball where the team that first wins 4 games wins the
series. Suppose A wins the first game and that the team that wins the second game also wins the fourth
game. (a) Find the number n of ways the series can occur, and list the n ways the series can occur.
(b) How many ways will B win the series? (c) How many ways will the series last 7 games?

2.76. Suppose A, B, . . ., F in Fig. 2-7 denote islands, and the lines connecting them bridges. A person begins
at A and walks from island to island. The person stops for lunch when he or she cannot continue to walk
without crossing the same bridge twice. (a) Construct the appropriate tree diagram, and find the number
of ways the person can walk before eating lunch. (b) At which islands can he or she eat lunch?

Answers to Supplementary Problems

2.38. (a) 3,628,800; 39,916,800; 479,001,600. (b) log(60!) � 81.92, so 60! � 6.59 � 1081.

2.39. (a) 240; (b) 2184; (c) 1/90; (d) 1/1716.

2.40. (a) n 
 1; (b) n(n � 1) � n2 � n; (c) 1/[n(n 
 1)(n 
 2)]; (d) (n � r)(n � r 
 1).

2.41. (a) 10; (b) 35; (c) 91; (d) 15; (e) 1140; ( f) 816.
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2.42. Hint: Expand (a) (1 
 1)n; (b) (1 � 1)n.

2.43. (a) 60; (b) 210; (c) 504; (d) Not defined.

2.44. (a) 1, 9, 36, 84, 126, 126, 84, 36, 9, 1; (b) 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1.

2.45. (a) 15; (b) 105.

2.46. (a) 9; (b) 24.

2.47. (a) 14; (b) 48; (c) 182.

2.48. (a) 26 � 363; (b) 5 � 363.

2.49. (a) 262 � 103 � 676,000; (b) 26 � 25 � 103 � 650,000; (c) 26 � 103 � 26,000.

2.50. (a) 24; (b) 242 � 576; (c) 360.

2.51. n � 18 � 17 � 16 � 4896.

2.52. (a) 6! � 720; (b) 3 � 5! � 360.

2.53. (a) 6! � 720; (b) 2 � 3! � 3! � 72; (c) 4 � 3! � 3! � 144.

2.54. (a) 30; (b)
9!

2!2!2!
� 45,360; (c)

11!
2!3!2!

� 1,663,200; (d)
8!

2!2!2!
� 5040.

2.55. n �
8!

4!2!2!
� 420.

2.56. 3!5!4!3! � 103,680.

2.57. (a) 123 � 1728; (b) 1320.

2.58. (a) 104 � 10,000; (b) 10 � 9 � 8 � 7 � 5040.

2.59. C(6, 2) � 15.

2.60. C(8, 3) � 56.

2.61. (a) C(10, 2) � 45; (b) 6 � 4 � 24; (c) C(6, 2) 
 C(4, 2) � 21 or 45 � 24 � 21.

2.62. C(12, 4) � 495.

2.63. (a) C(9, 2) � C(3, 2) � 108; (b) C(9, 3) � 3 � 252;
(c) 9 
 108 
 252 � 369 or C(12, 4) � C(9, 4) � 495 � 126 � 369.

2.64. C(11, 5) � 462.

2.65. 210.

2.66. 252.
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2.67. (a) 13 � 48 � 624; (b) 4 � C(13, 5) � 5148.

2.68. (a) C(13, 10) � C(13, 3) � 286; (b) 2 � C(11, 9) � 2 � C(11, 2) � 110.

2.69. 90.

2.70. 15.

2.71. (Hint: The number of subsets excluding � and the 6 singleton subsets.) 25 � 1 � 6 � 25.

2.72.
9!

3!2!2!2!
� 7560.

2.73.
9!

3!3!3!
� 1680.

2.74.
1680

3!
� 280.

2.75. Construct the appropriate tree diagram as in Fig. 2-8. Note that the tree begins at A, the winner of the first
game, and that there is only one choice in the fourth game, the winner of the second game. (a) The diagram
shows that n � 15 and that the series can occur in the following 15 ways:

AAAA, AABAA, AABABA, AABABBA, AABABBB, ABABAA, ABABABA, ABABABB,
ABABBAA, ABABBAB, ABABBB, ABBBAAA, ABBBAAB, ABBBAB, ABBBB

(b) 6; (c) 8.
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C(11, 8) = 165; (c) 2 · C(11, 9) = 2 · C(11, 2) = 110. 



2.76. (a) See Fig. 2-9. There are 11 ways to take his walk. (b) B, D, or E.
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2.8 COMBINATIONS WITH REPLACEMENT

We have just discussed the number of combinations possible when we select from n objects taken r at a 

time. Selecting r objects at one time from a set is the same as selecting r objects without replacement from that 

set. It is also possible to select r objects from a set of n objects with replacement. In this case, ordering still does 

not matter (we are looking at combinations, not permutations), but we can select an object more than once.

Consider the three letters a, b, and c. If we draw two letters without replacement, we can select the following 

combinations:

ab, ac, bc

The number C(3, 2) = 3!/(2!1!) = 3. If, instead, we select with replacement, we have the following 

combinations:

aa, ab, ac, bb, bc, cc

The number of combinations with replacement is 6. The formula for this (given without proof) is

⎛
⎝
n + r – 1 ⎞

⎠r



CHAPTER 3

Introduction to
Probability

3.1 INTRODUCTION

Probability theory is a mathematical modeling of the phenomenon of chance or randomness. If
a coin is tossed in the air, it can land heads or tails, but we do not know which of these will occur in
a single toss. However, suppose we repeat this experiment of tossing a coin; let s be the number of
successes, that is, that a head appears, and let n be the number of tosses. Then it has been empirically
observed that the ratio f � s/n, called the relative frequency of the outcome, becomes stable in the long
run, that is, the ratio f � s/n approaches a limit. If the coin is perfectly balanced, then we expect that
the coin will land heads approximately 50 percent of the time or, in other words, the relative frequency
will approach 1/2. Alternately, assuming the coin is perfectly balanced, we can arrive at the value 1/2
deductively. That is, one side of the coin is as likely to occur as the other; hence the chances of getting
a head is one in two which means the probability of getting a head is 1/2. Although the specific
outcome on any one toss is unknown, the behavior over the long run is determined. This stable
long-run behavior of random phenomena forms the basis of probability theory.

Consider another experiment, the tossing of a six-sided die (Fig. 3-1) and observing the number
of dots, or pips, that appear on the top face. Suppose the experiment is repeated n times and let s be
the number of times 4 dots appear on top. Again, as n increases, the relative frequency f � s/n of the
outcome 4 becomes more stable. Assuming the die is perfectly balanced, we would expect that the
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stable or long-run value of this ratio is 1/6, and we say the probability of getting a 4 is 1/6. Alternately,
we can arrive at the value 1/6 deductively. That is, with a perfectly balanced die, any one side of the
die is as likely as any other to occur on top. Thus, the chances of getting a 4 is one in six or, in other
words, the probability of getting a 4 is 1/6. Again, although the specific outcome on any one toss is
unknown, the behavior over the long run is determined.

The historical development of probability theory is similar to the above discussion. That is,
letting E denote the outcome of an experiment, called an event, there were two ways to obtain the
probability p of E:

(a) Classical (A Priori) Definition: Suppose an event E can occur in s ways out of a total of n
equally likely possible ways. Then p � s/n.

(b) Frequency (A Posteriori) Definition: Suppose after n repetitions, where n is very large, an event
E occurs s times. Then p � s/n.

Both of the above definitions have serious flaws. The classicial definition is essentially circular since
the idea of ‘‘equally likely’’ is the same as that of ‘‘with equal probability’’ which has not been
defined. The frequency definition is not well defined since ‘‘very large’’ has not been defined.

The modern treatment of probability theory is axiomatic using set theory. Specifically, a
mathematical model of an experiment is obtained by arbitrarily assigning probabilities to all the
events, except that the assignments must satisfy certain axioms listed below. Naturally, the reliability
of our mathematical model for a given experiment depends upon the closeness of the assigned
probabilities to the actual limiting relative frequencies. This then gives rise to problems of testing and
reliability, which form the subject matter of statistics.
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3.2 SAMPLE SPACE AND EVENTS

The set S of all possible outcomes of some experiment is called the sample space. A particular
outcome, that is, an element of S, is called a sample point. An event A is a set of outcomes or, in other
words, a subset of the sample space S. The event {a} consisting of a single point a � S is called an
elementary event. The empty set � and S are subsets of S and hence they are events; � is sometimes
called the impossible or null event, and S is sometimes called the certain or sure event.

Events can be combined to form new events using the various set operations:

(i) A 
 B is the event that occurs iff A occurs or B occurs (or both).

(ii) A 	 B is the event that occurs iff A occurs and B occurs.

(iii) Ac, the complement of A, is the event that occurs iff A does not occur.

(Here ‘‘iff’’ is an abbreviation of ‘‘if and only if’’.)
Events A and B are called mutually exclusive if they are disjoint, that is, if A 	 B � �. In other

words, A and B are mutually exclusive if they cannot occur simultaneously. Three or more events are
mutually exclusive if every two of them are mutually exclusive.

EXAMPLE 3.1

(a) Experiment: Toss a die and observe the number (of dots) that appears on top face.
The sample space S consists of the six possible numbers, that is,

S � {1, 2, 3, 4, 5, 6}

Let A be the event that an even number occurs, B that an odd number occurs, and C that a number greater
than 3 occurs, that is, let

A � {2, 4, 6}, B � {1, 3, 5}, C � {4, 5, 6}

*Event A is also said to be an element of an event space. The set of possible sets, the event space, is referred to as a σ-field.

numbers;

occurs;

S.*

Thus



Then

A 
 C � {2, 4, 5, 6} � the event that an even number or a number exceeding 3 occurs

A 	 C � {4, 6} � the event that an even number and a number exceeding 3 occurs

Cc � {1, 2, 3} � the event that a number exceeding 3 does not occur.

Note that A and B are mutually exclusive, that is, that A 	 B � �. In other words, an even number and
an odd number cannot occur simultaneously.

(b) Experiment: Toss a coin three times and observe the sequence of heads (H) and tails (T) that appears.
The sample space S consists of the following eight elements:

S � {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

Let A be the event that two or more heads appear consecutively and B that all the tosses are the same;
that is,

A � {HHH, HHT, THH} and B � {HHH, TTT}

Then A 	 B � {HHH} is the elementary event in which only heads appear. The event that five heads
appear is the empty set �.

(c) Experiment: Toss a coin until a head appears, and then count the number of times the coin is tossed.
The sample space of this experiment is S � {1, 2, 3, . . ., �}. Here � refers to the case when a head never

appears, and so the coin is tossed an infinite number of times. Since every positive integer is an element
of S, the sample space is infinite. In fact, this is an example of a sample space which is countably
infinite.

(d) Experiment: Let a pencil drop, head first, into a rectangular box and note the point at the bottom of the box
that the pencil first touches. Here S consists of all the points on the bottom of the box. Let the rectangular
area in Fig. 3-2 represent these points. Let A and B be the events that the pencil drops into the
corresponding areas illustrated in Fig. 3-2. Then A 	 B is the event that the pencil drops in the shaded
region in Fig. 3-2.

Remark: The sample space S in Example 3.1(d) is an example of a continuous sample
space. (A sample space S is continuous if it is an interval or a product of intervals.) In such a case,
only special subsets (called measurable sets) will be events. On the other hand, if the sample space
S is discrete, that is, if S is finite or countably infinite, then every subset of S is an event.

EXAMPLE 3.2 Toss of a pair of dice A pair of dice is tossed and the two numbers appearing on the top faces
are recorded. There are six possible numbers, 1, 2, . . ., 6, on each die. Thus S consists of the pairs of numbers
from 1 to 6, and hence n(S) � 6 � 6 � 36. Figure 3-3 shows these 36 pairs of numbers arranged in an array where
the rows are labeled by the first die and the columns by the second die. Let A be the event that the sum of the
two numbers is 6, and let B be the event that the largest of the two numbers is 4. That is, let

A � {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}
B � {(1, 4), (2, 4), (3, 4), (4, 4), (4, 3), (4, 2), (4, 1)}
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These events are pictured in Fig. 3-3. Then the event ‘‘A and B’’ consists of those pairs of integers whose sum
is 6 and whose largest number is 4 or, in other words, the intersection of A and B. Thus

A 	 B � {(2, 4), (4, 2)}

Similarly, ‘‘A or B’’, the sum is 6 or the largest is 4, is the union A 
 B, and ‘‘not A’’, the sum is not 6, is the
complement Ac.

EXAMPLE 3.3 Deck of cards A card is drawn from an ordinary deck of 52 cards which is pictured in
Fig. 3-4(a). The sample space S consists of the four suits, clubs (C), diamonds (D), hearts (H), and spades (S),
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where each suit contains 13 cards which are numbered 2 to 10, and jack (J), queen (Q), king (K), and ace
(A). The hearts (H) and diamonds (D) are red cards, and the spades (S) and clubs (C) are black cards. Figure
3-4(b) pictures 52 points which represent the deck S of cards in the obvious way. Let E be the event of a picture
card, that is, a jack (J), queen (Q), or king (K), and let F be the event of a heart. Then

E 	 F � {JH, QH, KH}

is the event of a heart and a picture card, as shaded in Fig. 3-4(b).

3.3 AXIOMS OF PROBABILITY

Let S be a sample space, let C be the class of all events, and let P be a real-valued function defined
on C . Then P is called a probability function, and P(A) is called the probability of the event A, when
the following axioms hold:

[P1] For any event A, we have P(A) � 0.

[P2] For the certain event S, we have P(S) � 1.

[P3] For any two disjoint events A and B, we have

P(A 
 B) � P(A) 
 P(B)

[P3� ] For any infinite sequence of mutually disjoint events A1, A2, A3, . . ., we have

P(A1 
 A2 
 A3 
 · · ·) � P(A1) 
 P(A2) 
 P(A3) 
 · · ·

Furthermore, when P does satisfy the above axioms, the sample space S will be called a probability
space.

The first axiom states that the probability of any event is nonnegative, and the second axiom states
that the certain or sure event S has probability 1. The next remarks concern the two axioms [P3] and
[P3� ]. The axiom [P3] formalizes the natural assumption that if A and B are two disjoint events, then
the probability of either of them occurring is the sum of their individual probabilities. Using
mathematical induction, we can then extend this additive property for two sets to any finite number of
disjoint events, that is, for any mutually disjoint sets A1, A2, . . ., An, we have

P(A1 
 A2 
 · · · 
 An) � P(A1) 
 P(A2) 
 · · · 
 P(An) (*)

We emphasize that [P3� ] does not follow from [P3], even though (*) is true for every positive integer
n. However, if the sample space S is finite, then only [P3] is needed, that is, [P3� ] is superfluous.

Theorems on Probability Spaces

The following theorems follow directly from our axioms, and will be proved here. We use to
indicate the end of a proof.

Theorem 3.1: The impossible event or, in other words, the empty set � has probability zero, that is,
P(�) � 0.

Proof: For any event A, we have A 
 � � A where A and � are disjoint. By [P3],

P(A) � P(A 
 �) � P(A) 
 P(�)

Adding �P(A) to both sides gives P(�) � 0.

The next theorem, called the complement rule, formalizes our intuition that if we hit a target, say,
p � 1/3 of the times, then we miss the target q � 1 � p � 2/3 of the times. [Recall that Ac denotes the
complement of the set A.]
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Theorem 3.2 (Complement Rule): For any event A, we have

P(Ac) � 1 � P(A)

Proof: S � A 
 Ac where A and Ac are disjoint. By [P2], P(S) � 1. Thus, by [P3],

1 � P(S) � P(A 
 Ac) � P(A) 
 P(Ac)

Adding �P(A) to both sides gives us P(Ac) � 1 � P(A).

The next theorem tells us that the probability of any event must lie between 0 and 1. That is,

Theorem 3.3: For any event A, we have 0 � P(A) � 1.

Proof: By [P1], P(A) � 0. Hence we need only show that P(A) � 1. Since S � A 
 Ac where
A and Ac are disjoint, we get

1 � P(S) � P(A 
 Ac) � P(A) 
 P(Ac)

Adding �P(Ac) to both sides gives us P(A) � 1 � P(Ac). Since P(Ac) � 0, we get P(A) � 1, as
required.

The following theorem applies to the case that one event is a subset of another event.

Theorem 3.4: If A � B, then P(A) � P(B).

Proof: If A � B, then, as indicated by Fig. 3-5(a), B � A 
 (B 	 A) where A and B 	 A are
disjoint. Hence

P(B) � P(A) 
 P(B 	 A)

By [P1], we have P(B 	 A) � 0; hence P(A) � P(B).

The following theorem concerns two arbitrary events.

Theorem 3.5: For any two events A and B, we have

P(A 	 B) � P(A) � P(A 	 B)

Proof: As indicated by Fig. 3-5(b), A � (A 	 B) 
 (A 	 B) where A 	 B and A 	 B are dis-
joint. Accordingly, by [P3],

P(A) � P(A 	 B) 
 P(A 	 B)

from which our result follows.

The next theorem, called the general addition rule, or simply addition rule, is similar to the
inclusion-exclusion principle for sets.
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Theorem (Addition Rule) 3.6: For any two events A and B,

P(A 
 B) � P(A) 
 P(B) � P(A 	 B)

Proof: As indicated by Fig. 3-5(c), A 
 B � (A 	 B) 
 B where A 	 B and B are disjoint
sets. Thus, using Theorem 3.5,

P(A 
 B) � P(A 	 B) 
 P(B) � P(A) � P(A 	 B) 
 P(B)

� P(A) 
 P(B) � P(A 	 B)

which is our result.

Applying the above theorem twice (Problem 3.34), we obtain:

Corollary 3.7: For any events, A, B, C, we have

P(A 
 B 
 C) � P(A) 
 P(B) 
 P(C) � P(A 	 B) � P(A 	 C) � P(B 	 C) 
 P(A 	 B 	 C)

Clearly, like the analogous inclusion-exclusion principle for sets, the addition rule can be extended
by induction to any finite number of sets.

3.4 FINITE PROBABILITY SPACES

Consider a finite sample space S where we assume, unless otherwise stated, that the class C of all
events consists of all subsets of S. As noted above, S becomes a probability space by assigning
probabilities to the events in C so they satisfy the probability axioms. This section shows how this
is usually done when the sample space S is finite. The next section discusses infinite sample spaces.

Finite Equiprobable Spaces

Suppose S is a finite sample space, and suppose the physical characteristics of the experiment
suggest that the various outcomes of the experiment be assigned equal probabilities. Such a
probability space S, where each point is assigned the same probability, is called a finite equiprobable
space. Specifically, if S has n elements, then each point in S is assigned the probability 1/n and each
event A containing r points is assigned the probability r/n. In other words,

P(A) �
number of elements in A
number of elements in S

�
n(A)
n(S)

or

P(A) �
number of ways that the event A can occur

number of ways that the sample space S can occur

We emphasize that the above formula for P(A) can only be used with respect to an equiprobable
space, and cannot be used in general.

We state the above result formally.

Theorem 3.8: Let S be a finite sample space and, for any subset A of S, let P(A) � n(A) /n(S). Then
P satisfies axioms [P1], [P2], and [P3].

The expression ‘‘at random’’ will be used only with respect to an equiprobable space; formally, the
statement ‘‘choose a point at random from a set S’’ shall mean that S is an equiprobable space where
each point in S has the same probability.
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EXAMPLE 3.4 A card is selected at random from an ordinary deck of 52 playing cards. (See Fig. 3-4.) Consider
the following events [where a face card is a jack (J), queen (Q), or king (K)]:

A � {heart} and B � {face card}

(a) Find P(A), P(B), and P(A 	 B). (b) Find P(A 
 B).

(a) Since we have an equiprobable space,

P(A) �
number of hearts
number of cards

�
13
52

�
1
4

, P(B) �
number of face cards

number of cards
�

12
52

�
3
13

,

P(A 	 B) �
number of heart face cards

number of cards
�

3
52

(b) Since we want P(A 
 B), the probability that the card is a heart or a face card, we can count the number
of such cards and use Theorem 3.8. Alternately, we can use (a) and the Addition Rule Theorem 3.6 to
obtain

P(A 
 B) � P(A) 
 P(B) � P(A 	 B) �
1
4



3
13

�
3
52

�
22
52

�
11
26

EXAMPLE 3.5 Suppose a student is selected at random from 80 students where 30 are taking mathematics, 20
are taking chemistry, and 10 are taking mathematics and chemistry. Find the probability p that the student is
taking mathematics (M) or chemistry (C).

Since the space is equiprobable, we have

P(M) �
30
80

�
3
8

, P(C) �
20
80

�
1
4

, P(M and C) � P(M 	 C) �
10
80

�
1
8

Thus, by the Addition Rule (Theorem 3.6),

p � P(M or C) � P(M 
 C) � P(M) 
 P(C) � P(M 	 C) �
3
8



1
4

�
1
8

�
1
2

Finite Probability Spaces

Let S be a finite sample space, say S � {a1, a2, . . ., an}. A finite probability space, or finite
probability model, is obtained by assigning to each point ai in S a real number pi, called the probability
of ai, satisfying the following properties:

(i) Each pi is nonnegative, that is, pi � 0.

(ii) The sum of the pi is 1, that is,

�pi � p1 
 p2 
 · · · 
 pn � 1

The probability P(A) of an event A is defined as the sum of the probabilities of the points in A;
that is,

P(A) ��
ai�A

P(ai) ��
ai�A

pi

For notational convenience, we write P(ai) instead of P({ai}).
Sometimes the points in a finite sample space S and their assigned probabilities are given in the

form of a table as follows:

Outcome

Probability

a1 a2 · · · an

p1 p2 · · · pn

Such a table is called a probability distribution.
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The fact that P(A), the sum of the probabilities of the points in A, does define a probability space
is stated formally below (and proved in Problem 3.32).

Theorem 3.9: The above function P(A) satisfies the axioms

[P1], [P2], and [P3].

EXAMPLE 3.6 Experiment Let three coins be tossed and the number of heads observed. [Compare with
Example 3.1(b).] Then the sample space is S � {0, 1, 2, 3}. The following assignments on the elements of S
define a probability space:

Outcome

Probability

0

1/8

1

3/8

2

3/8

3

1/8

That is, each probability is nonnegative, and the sum of the probabilities is 1. Let A be the event that at least
one head appears, and let B be the event that all heads or all tails appear; that is, let

A � {1, 2, 3} and B � {0, 3}

Then, by definition,

P(A) � P(1) 
 P(2) 
 P(3) �
3
8



3
8



1
8

�
7
8

and

P(B) � P(0) 
 P(3) �
1
8



1
8

�
1
4

EXAMPLE 3.7 Three horses A, B, C are in a race; A is twice as likely to win as B, and B is twice as likely to
win as C.

(a) Find their respective probabilities of winning; that is, find P(A), P(B), P(C).

(b) Find the probability that B or C wins.

(a) Let P(C) � p. Since B is twice as likely to win as C, P(B) � 2p, and since A is twice as likely to win as B,
P(A) � 2P(B) � 2(2p) � 4p. Now the sum of the probabilities must be 1; hence

p 
 2p 
 4p � 1 or 7p � 1 or p �
1
7

Accordingly, P(A) � 4p �
4
7

, P(B) � 2p �
2
7

, P(C) � p �
1
7

(b) Note {B, C} is the event that B or C wins, so we want P({B, C}). By definition, we simply add up the
probabilities of the points in {B, C}. Thus

P({B, C}) � P(B) 
 P(C) �
2
7



1
7

�
3
7

3.5 INFINITE SAMPLE SPACES

This section considers infinite sample spaces S. There are two cases, the case where S is countably
infinite and the case where S is uncountable. We note that a finite or a countably infinite probability
space S is said to be discrete, whereas an uncountable space S is said to be nondiscrete. Moreover,
an uncountable space S which consists of a continuum of points, such as an interval or product of
intervals, is said to be continuous.
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Countably Infinite Sample Spaces

Suppose S is a countably infinite sample space; say

S � {a1, a2, a3, . . .}

Then, as in the finite case, we obtain a probability space by assigning each ai � S a real number pi,
called its probability, such that:

(i) Each pi is nonnegative, that is, pi � 0.

(ii) The sum of the pi is equal to 1, that is,

p1 
 p2 
 p3 
 · · · �

��
i�1

pi � 1

The probability P(A) of an event A is then the sum of the probabilities of its points.

EXAMPLE 3.8 Consider the sample space S � {1, 2, 3, . . ., �} of the experiment of tossing a coin until a head
appears; here n denotes the number of times the coin is tossed. A probability space is obtained by setting

p(1) �
1
2

, p(2) �
1
4

, p(3) �
1
8

, . . ., p(n) �
1
2n , . . ., p(�) � 0

Consider the events:

A � {n is at most 3} � {1, 2, 3} and B � {n is even} � {2, 4, 6, . . .}

Find P(A) and P(B).
Adding the probabilities of the points in the sets (events) yields:

P(A) � P(1, 2, 3) �
1
2



1
4



1
8

�
7
8

P(B) � P(2, 4, 6, 8, . . .) �
1
4



1
42 


1
43 
 · · ·

Note that P(B) is a geometric series with a � 1/4 and r � 1/4; hence

P(B) �
a

1 � r
�

1/4
3/4

�
1
3

Uncountable Spaces

The only uncountable sample spaces S which we will consider here are those with some finite
geometrical measurement m(S), such as length, area, or volume, and where a point in S is selected at
random. The probability of an event A, that is, that the selected point belongs to A, is then the ratio
of m(A) to m(S). Thus

P(A) �
length of A
length of S

or P(A) �
area of A
area of S

or P(A) �
volume of A
volume of S

Such a probability space S is said to be uniform.

EXAMPLE 3.9 A point is chosen at random inside a rectangle measuring 3 by 5 in. Find the probability p that
the point is at least 1 in from the edge.

Let S denote the set of points inside the rectangle and let A denote the set of points at least 1 in from the
edge. S and A are pictured in Fig. 3-6. Note that A is a rectangular area measuring 1 in by 3 in. Thus

p �
area of A

area of S
�

1 � 3
3 � 5

�
1
5
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3.6 CLASSICAL BIRTHDAY PROBLEM

The classical birthday problem concerns the probability that n people have distinct birthdays
where n � 365. Here we ignore leap years and assume that a person’s birthday can fall on any day
with equal probability.

Since there are n people and 365 different days, there are 365n ways in which the n people can have
their birthdays. On the other hand, if the n persons are to have distinct birthdays, then:

(i) The first person can be born on any of the 365 days.

(ii) The second person can be born on the remaining 364 days.

(iii) The third person can be born on the remaining 363 days, and so on.

Thus there are:

365 � 364 � 363 · · · (365 � n 
 1)

ways that n persons can have distinct birthdays. Therefore

P(n people have distinct birthdays) �
365 � 364 � 363 · · · (365 � n 
 1)

365n

Accordingly, the probability p that two or more people have the same birthday is as follows:

p � 1 � [probability that no two people have the same birthday]

� 1 �
365 � 364 � 363 · · · (365 � n 
 1)

365n

The value of p where n is a multiple of 10 up to 60 follows:

n

p

10

0.117

20

0.411

30

0.706

40

0.891

50

0.970

60

0.994

We note that p � 0.476 for n � 22 and that p � 0.507 for n � 23. Accordingly:

In a group of 23 people, it is more likely
that at least two of them have the same birthday

than that they all have distinct birthdays.

The above table also tells us that, in a group of 60 or more people, the probability that two or more
of them have the same birthday exceeds 99 percent.
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Solved Problems

SAMPLE SPACES AND EVENTS

3.1. Let A and B be events. Find an expression and exhibit the Venn diagram for the event:

(a) A but not B, (b) neither A nor B, (c) either A or B, but not both.

(a) Since A but not B occurs, shade the area of A outside of B, as in Fig. 3-7(a). Note that Bc, the
complement of B, occurs, since B does not occur; hence A and Bc occur. In other words, the event
is A 	 Bc.

(b) ‘‘Neither A nor B’’ means ‘‘not A and not B’’ or Ac 	 Bc. By DeMorgan’s law, this is also the set
(A 
 B)c; hence shade the area outside of A and outside of B, that is, outside A 
 B, as in
Fig. 3-7(b).

(c) Since A or B, but not both, occurs, shade the area of A and B, except where they intersect, as
in Fig. 3-7(c). The event is equivalent to the occurrence of A but not B or B but not A. Thus,
the event is (A 	 Bc) 
 (B 	 Ac). Alternately, the event is A � B, the symmetric difference of A
and B.

3.2. Let A, B, C be events. Find an expression and exhibit the Venn diagram for the event:

(a) A and B but not C occurs, (b) only A occurs.

(a) Since A and B but not C occurs, shade the intersection of A and B which lies outside of C, as in
Fig. 3-8(a). The event consists of the elements in A, in B, and in Cc (not in C), that is, the event is
the intersection A 	 B 	 Cc.

(b) Since only A is to occur, shade the area of A which lies outside of B and C, as in Fig. 3-8(b). The
event consists of the elements in A, in Bc (not in B), and in Cc (not in C), that is, the event is the
intersection A 	 Bc 	 Cc.
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Fig. 3-7

(a) A and B but not C occurs. (b) Only A occurs.
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3.3. Let a coin and a die be tossed; and let the sample space S consist of the 12 elements:

S � {H1, H2, H3, H4, H5, H6, T1, T2, T3, T4, T5, T6}

Express explicitly the following events:

(a) A � {heads and an even number}, (b) B � {a number less than 3},
(c) C � {tails and an odd number}.

(a) The elements of A are those elements of S which consist of an H and an even number; hence

A � {H2, H4, H6}

(b) The elements of B are those elements of S whose second component is less than 3, that is, 1 or 2;
hence

B � {H1, H2, T1, T2}

(c) The elements of C are those elements of S which consist of a T and an odd number; hence

C � {T1, T3, T5}

3.4. Consider the events A, B, C in the preceding Problem 3.3. Express explicitly the event that:

(a) A or B occurs. (b) B and C occur. (c) Only B occurs.

Which pair of the events A, B, C are mutually exclusive?

(a) ‘‘A or B’’ is the set union A 
 B; hence

A 
 B � {H2, H4, H6, H1, T1, T2}

(b) ‘‘B and C’’ is the set intersection B 	 C; hence

B 	 C � {T1}

(c) ‘‘Only B’’ consists of the elements of B which are not in A and not in B, that is, the set intersection
B 	 Ac 	 Cc; hence

B 	 Ac 	 Cc � {H1, T2}

Only A and C are mutually exclusive, that is, A 	 C � �.

3.5. A pair of dice is tossed and the two numbers appearing on the top are recorded. Recall that
S consists of 36 pairs of numbers which are pictured in Fig. 3-3. Find the number of elements
in each of the following events:

(a) A � {two numbers are equal}

(b) B � {sum is 10 or more}

(c) C � {5 appears on first die}

(d) D � {5 appears on at least one die}

Use Fig. 3-3 to help count the number of elements in each of the events:

(a) A � {(1, 1), (2, 2), . . ., (6, 6)}, so n(A) � 6.

(b) B � {(6, 4), (5, 5), (4, 6), (6, 5), (5, 6), (6, 6)}, so n(B) � 6.

(c) C � {(5, 1), (5, 2), . . ., (5, 6), so n(C) � 6.

(d) There are six pairs with 5 as the first element, and six pairs with 5 as the second element. However,
(5, 5) appears in both places. Hence

n(D) � 6 
 6 � 1 � 11

Alternately, count the pairs in Fig. 3-3 which are in D to get n(D) � 11.
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FINITE EQUIPROBABLE SPACES

3.6. Determine the probability p of each event:

(a) An even number appears in the toss of a fair die.

(b) At least one tail appears in the toss of 3 fair coins.

(c) A white marble appears in the random drawing of 1 marble from a box containing 4 white,
3 red, and 5 blue marbles.

Each sample space S is an equiprobable space. Hence, for each event E, use

P(E) �
number of elements in E

number of elements in S
�

n(E)
n(S)

(a) The event can occur in three ways (a 2, 4, or 6) out of 6 equally likely cases; hence p � 3/6 � 1/2.

(b) Assuming the coins are distinguished, there are 8 cases:

HHH, HHT, HTH, HTT, THH, THT, TTH, TTT

Only the first case is not favorable; hence p � 7/8.

(c) There are 4 
 3 
 5 � 12 marbles of which 4 are white; hence p � 4/12 � 1/3.

3.7. A single card is drawn from an ordinary deck S of 52 cards. (See Fig. 3-4.) Find the probability
p that the card is a: (a) king, (b) face card (jack, queen, or king), (c) red card (heart or
diamond), (d) red face card.

Here n(S) � 52.

(a) There are 4 kings; hence p � 4/52 � 1/13.

(b) There are 4(3) � 12 face cards; hence p � 12/52 � 3/13.

(c) There are 13 hearts and 13 diamonds; hence p � 26/52 � 1/2.

(d) There are 6 face cards which are red; hence p � 6/52 � 3/26.

3.8. Consider the sample space S and events A, B, C in Problem 3.3 where a coin and a die are
tossed. Suppose the coin and die are fair; hence S is an equiprobable space. Find:

(a) P(A), P(B), P(C), (b) P(A 
 B ), P(B 	 C), P(B 	 Ac 	 Cc)

Since S is an equiprobable space, use P(E) � n(E)/n(S). Here n(S) � 12. We need only count the
number of elements in each given set, and then divide by 12.

(a) By Problem 3.3, P(A) � 3/12, P(B) � 4/12, P(C) � 3/12 1/4.

(b) By Problem 3.4, P(A 
 B) � 6/12 P(B 	 C) � 1/12, P(B 	 Ac
	 Cc) � 2/12 .

3.9. A box contains 15 billiard balls which are numbered from 1 to 15. A ball is drawn at random
and the number recorded. Find the probability p that the number is:

(a) even, (b) less than 5, (c) even and less than 5, (d) even or less than 5.

(a) There are 7 numbers, 2, 4, 6, 8, 10, 12, 14, which are even; hence p � 7/15.

(b) There are 4 numbers, 1, 2, 3, 4, which are less than 5, hence p � 4/15.

(c) There are 2 numbers, 2 and 4, which are even and less than 5; hence p � 2/15.

(d) By the addition rule (Theorem 3.6),

p �
7
15



4
15

�
2
15

�
9
15

Alternately, there are 9 numbers, 1, 2, 3, 4, 6, 8, 10, 12, 14, which are even or less than 5; hence
p � 9/15.
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There are C(4, 2) � �4
2 
 � 6 ways to draw 2 of the sox. Only two pairs will yield a match. Thus

p � 2/6 � 1/3.

3.11. Five horses are in a race. Audrey picks 2 of the horses at random and bets on them. Find the
probability p that Audrey picked the winner.

There are C(5, 2) � �5
2 
 � 10 ways to pick 2 of the horses. Four of the pairs will contain the

3.10.  A box contains 2 white socks and 2 blue socks. Two socks are drawn at random without replacement. 
Find the probability p they are a match (same color).

10 ways to pick 2 of the horses. Since the winning horse must be selected

by Audrey along with one of the remaining four horses, there are 4 pairs that contain the winner. Thus 
p = 4/10 = 2/5.

3.12. A class contains 10 men and 20 women of which half the men and half the women have brown
eyes. Find the probability p that a person chosen at random is a man or has brown eyes.

Let A � {men}, B � {brown eyes}. We seek P(A 
 B). First find:

P(A) �
10
30

�
1
3

, P(B) �
15
30

�
1
2

, P(A 	 B) �
5
30

�
1
6

Thus, by the addition rule (Theorem 3.6),

P(A 
 B) � P(A) 
 P(B) � P(A 	 B) �
1
3



1
2

�
1
6

�
2
3

3.13. Six married people are standing in a room. Two people are chosen at random. Find the
probability p that: (a) they are married; (b) one is male and one is female.

There are C(12, 2) � 66 ways to choose 2 people from the 12 people.

(a) There are 6 married couples; hence p � 6/66 � 1/11.

(b) There are 6 ways to choose the male and 6 ways to choose the female; hence p � (6 � 6)/66 �
36/66 � 6/11.

3.14. Suppose 5 marbles are placed in 5 boxes at random. Find the probability p that exactly 1 of
the boxes is empty.

If exactly 1 box is empty, then 1 box contains 2 marbles and each of the remaining boxes contains 1 marble.     
There are 5 ways to select the empty box, then 4 way to select the box containing 2 marbles, and C(5, 2) = 10 
ways to select 2 marbles to go into this box.     Finally, there are 3! ways to distribute the remaining 3 marbles 
among the remaining 3 boxes.   Given that we can place more than one marble in a box, there 55 ways to place 
5 marbles in 5 boxes.     Thus the probability that exactly one box is empty is

p �
5 � 4 � 10 � 3!

55 �
48

125

6 ways to draw 2 of the socks.
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There are C(52, 2) � 1326 ways to choose 2 cards from the 52-card deck. In other words,
n(S) � 1326.

(a) There are C(13, 2) � 78 ways to draw 2 hearts from the 13 hearts; hence

p �
number of ways 2 hearts can be drawn
number of ways 2 cards can be drawn

�
78

1326
�

3
51

(b) There are 13 hearts and 13 spades, so there are 13 � 13 � 169 ways to draw a heart and a spade.
Thus, p � 169/1326 � 13/102.

FINITE PROBABILITY SPACES

3.16. A sample space S consists of four elements, that is, S � {a1, a2, a3, a4}. Under which of the
following functions P does S become a probability space?

(a) P(a1) � 0.4, P(a2) � 0.3, P(a3) � 0.2, P(a4) � 0.3.

(b) P(a1) � 0.4, P(a2) � �0.2, P(a3) � 0.7, P(a4) � 0.1.

(c) P(a1) � 0.4, P(a2) � 0.2, P(a3) � 0.1, P(a4) � 0.3.

(d) P(a1) � 0.4, P(a2) � 0, P(a3) � 0.5, P(a4) � 0.1.

(a) The sum of the values on the points in S exceeds one; hence P does not define S to be a probability
space.

(b) Since P(a2) is negative, P does not define S to be a probability space.

(c) Each value is nonnegative and their sum is one; hence P does define S to be a probability space.

(d) Although P(a2) � 0, each value is still nonnegative and their sum does equal. Thus, P does define
S to be a probability space.

3.17. A coin is weighted so that heads is twice as likely to appear as tails. Find P(T) and P(H).

Let P(T) � p; then P(H) � 2p. Now set the sum of the probabilities equal to one, that is, set
p 
 2p � 1. Then p � 1/3. Thus P(H) � 1/3 and P(B) � 2/3.

3.18. Suppose A and B are events with P(A) � 0.6, P(B) � 0.3, and P(A 	 B) � 0.2. Find the
probability that:

(a) A does not occur.

(b) B does not occur.

(c) A or B occurs.

(d) Neither A nor B occurs.

(a) By the complement rule, P(not A) � P(Ac) � 1 � P(A) � 0.4.

(b) By the complement rule, P(not B) � P(Bc) � 1 � P(B) � 0.7.

(c) By the addition rule,

P(A or B) � P(A 
 B) � P(A) 
 P(B) � P(A 	 B)

� 0.6 
 0.3 � 0.2 � 0.7

(d) Recall [Fig. 3-7(b)] that neither A nor B is the complement of A 
 B. Therefore

P(neither A nor B) � P((A 
 B)c) � 1 � P(A 
 B) � 1 � 0.7 � 0.3

Thus

one.  Thus P does define 

,

3.15.  Two cards are drawn at random without replacement from an ordinary deck of 52 cards.   (See  
Fig. 3-4.) Find the probability p that: (a) both are hearts, (b) one is a heart and one is a spade.



3.19. A die is weighted so that the outcomes produce the following probability distribution:

Outcome

Probability

1

0.1

2

0.3

3

0.2

4

0.1

5

0.1

6

0.2

Consider the events:

A � {even number}, B � {2, 3, 4, 5}, C � {x : x � 3}, D � {x : x � 7}

Find the following probabilities:

(a) P(A) (b) P(B) (c) P(C) (d) P(D)

For any event E, find P(E) by summing the probabilities of the elements in E.

(a) A � {2, 4, 6}, so P(A) � 0.3 
 0.1 
 0.2 � 0.6.

(b) P(B) � 0.3 
 0.2 
 0.1 
 0.1 � 0.7.

(c) C � {1, 2}, so P(C) � 0.1 
 0.3 � 0.4.

(d) D � �, the empty set. Hence P(D) � 0.

3.20. For the data in Problem 3.19, find: (a) P(A 	 B), (b) P(A 
 C), (c) P(B 	 C).

First find the elements in the event, and then add the probabilities of the elements.

(a) A 	 B � {1, 2, 4, 6}, so P(A 	 B) � 0.3 
 0.1 � 0.4.

(b) A 
 C � {1, 2, 3, 4, 5} � {6} , soc P(A 
 C) � 1 � 0.2 � 0.8.

(c) B 	 C � {2}, so P(B 	 C) � 0.3.

3.21. Let A and B be events such that P(A 
 B) � 0.8, P(A) � 0.4, and P(A 	 B) � 0.3. Find:
(a) P(Ac); (b) P(B); (c) P(A 	 Bc); (d) P(Ac 	 Bc).

(a) By the complement rule, P(Ac) � 1 � P(A) � 1 � 0.4 � 0.6.

(b) By the addition rule, P(A 
 B) � P(A) 
 P(B) � P(A 	 B). Substitute in this formula to obtain:

0.8 � 0.4 
 P(B) 0.3 or P(B) � 0.70

(c) P(A 	 Bc) � P(A 	 B) � P(A) � P(A 	 B) � 0.4 � 0.3 � 0.1.

(d) By DeMorgan’s law, (A 
 B)c � Ac 	 Bc. Thus

P(Ac 	 Bc) � P((A 
 B)c) � 1 � P(A 
 B) � 1 � 0.8 � 0.2

3.22. Suppose S � {a1, a2, a3, a4}, and suppose P is a probability function defined on S.

(a) Find P(a1) if P(a2) � 0.4, P(a3) � 0.2, P(a3) � 0.1.

(b) Find P(a1) and P(a2) if P(a3) � P(a4) � 0.2 and P(a1) � 3P(a2).

(a) Let P(a1) � p. For P to be a probability function, the sum of the probabilities on the sample points
must equal one. Thus, we have

p 
 0.4 
 0.2 
 0.1 � 1 or p � 0.3

(b) Let P(a2) � p so P(a1) � 3p. Thus

3p 
 p 
 0.2 
 0.2 � 1 or p � 0.15

Hence P(a2) � 0.15 and P(a1) � 0.45.
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ODDS

3.23. Suppose P(E) � p. The odds that E occurs is defined to be the ratio p : (1 � p). Find p if the
odds that E occurs are a to b.

Set the ratio p : (1 � p) to a : b to obtain

p

1 � p
�

a

b
or bp � a � ap or ap 
 bp � a or p �

a

a 
 b

3.24. The odds that an event E occurs is 3 to 2. Find the probability of E.

Let p � P(E). Set the odds equal to p : (1 � p) to obtain

p

1 � p
�

3
2

or 2p � 3 � 3p or 5p � 3 or p �
3
5

Alternately, use the formula in Problem 3.21 to directly obtain

p �
a

a 
 b
�

3
3 
 2

�
3
5

3.25. Suppose P(E) � 5/12. Express the odds that E occurs in terms of positive integers.

First compute 1 � P(E) � 7/12. The odds that E occurs are

P(E)
1 � P(E)

�
5/12
7/12

�
5
7

Thus, the odds are 5 to 7.

UNCOUNTABLE UNIFORM SPACES

3.26. A point is chosen at random inside a circle. Find the probability p that the point is closer to
the center of the circle than to its circumference.

Let S denote the set of points inside the circle with radius r, and let A denote the set of points inside
the concentric circle with radius 1–

2r, as pictured in Fig. 3-9(a). Thus, A consists precisely of those points
of S which are closer to the center than to its circumference. Therefore

p � p(A) �
area of A

area of S
�

�(r/2)2

�r2 �
1
4
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Fig. 3-9

(m, n 
 1) (m 
 1, n 
 1)



3.27. Consider the plane R2, and let X denote the subset of points with integer coordinates. A coin
of radius 1/4 is tossed randomly on the plane. Find the probability that the coin covers a point
of X.

Let S denote the set of points inside a square with corners

(m, n), (m, n 
 1), (m 
 1, n), (m 
 1, n 
 1)

where m and n are integers. Let A denote the set of points in S with distance less than 1/4 from any
corner point, as pictured in Fig. 3-9(b). Note that the area of A is equal to the area inside a circle of radius
1/4. Suppose the center of the coin falls in S. Then the coin will cover a point in X if and only if its
center falls in A. Accordingly,

p �
area of A

area of S
�

�(1/4)2

1
�

�

16
� 0.2

(Note: We cannot take S to be all of R2 since the area of R2 is infinite.)

3.28. On the real line R, points a and b are selected at random such that 0 � a � 3 and �2 � b � 0,
as shown in Fig. 3-10(a). Find the probability p that the distance between a and b is greater
than 3.

The sample space S consists of the ordered pairs (a, b) and so forms a rectangular region shown in
Fig. 3-10(b). On the other hand, the set A of points (a, b) for which d � a � b � 3 consists of those points
which lie below the line x � y � 3, and hence form the shaded region in Fig. 3-10(b). Thus

p � P(A) �
area of A

area of S
�

2
6

�
1
3
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Observation is correct: The length of A should be half the distance between the two lines (the space on 
either side 1/4 the distance).

Fig. 3-11

3.29.  Three points are selected at random from the circumference of a circle. Find the probability p that 
the three points lie on a semicircle.

Suppose the length of the circumference is 2S. Let x denote the clockwise length from a to the closer point b 

and y denote the length from a to the further point c. Note that if x ≥ S, then the three points are in the semicir-

cle that is counterclockwise from a. If x ≤ S, then the three are in the semicircle clockwise from a if y ≤ S. The 

probability they are in a semicircle is therefore P(x ≥ S) + P(x ≤ S and y ≤ S). Thus the probability they are on 

a semicircle is 1/2 + (1/2 ∙ 1/2) = 3/4. (See Fig. 3-11.)

3.30. A coin of diameter 1/2 is tossed randomly onto the plane R2. Find the probability p that the
coin does not intersect any line of the form x � k where k is an integer.

The lines are all vertical, and the distance between adjacent lines is one. Let S denote a horizontal
line segment between adjacent lines, say, x � k and x � k 
 1; and let A denote the points of S which are
at least 1/4 from either end, as pictured in Fig. 3-12. Note that the length of S is 1 and the length of A
is 1/2. Suppose the center of the coin falls in S. Then the coin will not intersect the lines if and only if
its center falls in A. Accordingly

Fig. 3-12

S

p �
length of A

length of S
�

1/2
1

�
1
2

Accordingly, 



MISCELLANEOUS PROBLEMS

3.31. Show that axiom [P3] follows from axiom [P3
� ].

First we show that P(�) � 0 using [P3
� ] instead of [P3]. We have � � � 
 � 
 � 
 · · · where the

empty sets are disjoint. Say P(�) � a. Then, by [P3
� ],

P(�) � P(� 
 � 
 � 
 · · ·) � P(�) 
 P(�) 
 P(�) 
 · · ·

However, zero is the only real number a satisfying a � a 
 a 
 a 
 · · · . Therefore, P(�) � 0.
Suppose A and B are disjoint. Then A, B, �, �, . . . are disjoint, and

A 
 B � A 
 B 
 � 
 � 
 . . .

Hence, by [P3
� ],

P(A 
 B) � P(A 
 B 
 � 
 � 
 · · ·) � P(A) 
 P(B) 
 P(�) 
 P(�) 
 · · ·

� P(A) 
 P(B) 
 0 
 0 
 · · · � P(A) 
 P(B)

which is [P3].

3.32. Prove Theorem 3.9. Suppose S � {a1, a2, . . ., an} and each ai is assigned the probability pi

where: (i) pi � 0, and (ii) �pi � 1. For any event A, let

P(A) � �(pj : aj � A)

Then P satisfies: (a) [P1], (b) [P2], (c) [P3].

(a) Each pj � 0; hence P(A) � �pj � 0.

(b) Every aj � S; hence P(S) � p1 
 p2 
 · · · 
 pn � 1.

(c) Suppose A and B are disjoint, and

P(A) � �(pj : aj � A), and P(B) � �(pk : ak � B)

Then the aj’s and ak’s are distinct. Therefore,

P(A 
 B) � �(pt : pt � A 
 B) � �(pt : at � A) 
 �(pt : at � B) � P(A) 
 P(B)

3.33. Let S � {a1, a2, . . ., as} and T � {b1, b2, . . ., bt} be finite probability spaces. Let the number
pij � P(ai)P(bj) be assigned to the ordered pair (ai, bj) in the product set

S � T � {(s, t) : s � S, t � T}

Show that the pij define a probability space on S � T; that is, show that:

(i) The pij are nonnegative. (ii) The sum of the pij equals one.

(This is called the product probability space. We emphasize that this is not the only probability
function that can be defined on the product set S � T.)

Since P(ai), P(bj) � 0, for each i and each j, we have pij � P(ai)P(bj) � 0. Hence (i) is true.
Also, we have

p11 
 p12 
 · · · 
 p1t 
 p21 
 p22 
 · · · 
 p2t 
 · · · 
 ps1 
 ps2 
 · · · 
 pst

� P(a1)P(b1) 
 · · · 
 P(a1)P(bt) 
 · · · 
 P(as)P(b1) 
 · · · 
 P(as)P(bt)

� P(a1)[P(b1) 
 · · · 
 P(bt)] 
 · · · 
 P(as)[P(b1) 
 · · · 
 P(bt)]

� P(a1) � 1 
 · · · 
 P(as) � 1 � P(a1) 
 · · · 
 P(as) � 1
That is,

�
i,j

ij ��
i,j

P(ai)P(bj) � �
i

P(ai)�
j

P(bj) ��
i

P(ai) � 1 ��
i

P(ai) � 1

Thus (ii) is true.
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3.34. Prove Corollary 3.7: For any events A, B, C, we have:

P(A 
 B 
 C) � P(A) 
 P(B) 
 P(C) � P(A 	 B) � P(A 	 C) � P(B 	 C) 
 P(A 	 B 	 C)

Let D � B 
 C. Then A 	 D � A 	 (B 
 C) � (A 	 B) 
 (A 	 C). Using the addition rule
(Theorem 3.6), we get

P(A 	 D) � P[(A 	 B) 
 (A 	 C)] � P(A 	 B) 
 P(A 	 C) � P(A 	 B 	 A 	 C)

� P(A 	 B) 
 P(A 	 C) � P(A 	 B 	 C)

Using the addition rule (Theorem 3.6) again, we get

P(A 
 B 
 C) � P(A 
 D) � P(A) 
 P(D) � P(A 	 D) � P(A) 
 P(B 
 C) � P(A 	 D)

� P(A) 
 [P(B) 
 P(C) � P(B 	 C)] � [P(A 	 B) 
 P(A 	 C) � P(A 	 B 	 C)]

� P(A) 
 P(B) 
 P(C) � P(A 	 B) � P(A 	 C) � P(B 	 C) 
 P(A 	 B 	 C)

3.35. A die is tossed 100 times. The following table lists the six numbers and the frequency with
which each number appeared:

Number

Frequency

1

14

2

17

3

20

4

18

5

15

6

16

(a) Find the relative frequency f of each of the following events:

A � {3 appears}, B � {5 appears}, C � {even number appears}

(b) Find a probability model of the data.

(a) The relative frequency f �
number of successes
total number of trials

. Thus

fA �
20

100
� 0.20, fB �

15
100

� 0.15, fC �
17 
 18 
 16

100
� 0.52
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Supplementary Problems

SAMPLE SPACES AND EVENTS

3.36. Let A and B be events. Find an expression and exhibit the Venn diagram for the event that:

(a) A or not B occurs, (b) only A occurs.

3.37. Let A, B, and C be events. Find an expression and exhibit the Venn diagram for the event that:

(a) A or C, but not B occurs,

(b) exactly one of the three events occurs,

(c) none of the events occurs,

(d) at least two of the events occur.

(b)  Since a die is a cube and all faces are of equal size, we assume an equal probability space.     Statis tics 
is then used to decide whether or not the given data supports the assumption of a fair die.



3.38. A penny, a dime, and a die are tossed. Describe a suitable sample space S, and find n(S).

3.39. For the space S in Problem 3.38, express explicitly the following events:

A � {two heads and an even number}, B � {2 appears}

C � {exactly one head and an odd number}

3.40. For the events A, B, C in Problem 3.39, express explicitly the event:

(a) A and B, (b) only B, (c) B and C, (d) A but not B.

FINITE EQUIPROBABLE SPACES

3.41. Determine the probability of each event:

(a) An odd number appears in the toss of a fair die.

(b) 1 or more heads appear in the toss of 4 fair coins.

(c) Both numbers exceed 4 in the toss of 2 fair dice.

(d) Exactly one 6 appears in the toss of 2 fair dice.

(e) A red or a face card appears when a card is randomly selected from a 52-card deck.

3.42. A student is chosen at random to represent a class with 5 freshmen, 4 sophomores, 8 juniors,
and 3 seniors. Find the probability that the student is

(a) a sophomore (b) a senior (c) a junior or a senior

3.43. One card is selected at random from 25 cards numbered 1 to 25. Find the probability that the number
on the card is: (a) even, (b) divisible by 3, (c) even and divisible by 3, (d) even or divisible by 3,
(e) ends in the digit 2.

3.44. Three bolts and three nuts are in a box. Two parts are chosen at random. Find the probability that one
is a bolt and one is a nut.

3.45. A box contains 2 white sox, 2 blue sox, and 2 red sox. Two sox are drawn at random. Find the
probability they are a match (same color).

3.46. Of 120 students, 60 are studying French, 50 are studying Spanish, and 20 are studying both French and
Spanish. A student is chosen at random. Find the probability that the student is studying:

(a) French and Spanish

(b) French or Spanish

(c) neither French nor Spanish

(d) only French

(e) exactly one of the two languages.

3.47. Of 10 girls in a class, 3 have blue eyes. Two of the girls are chosen at random. Find the
probability that:

(a) both have blue eyes

(b) neither has blue eyes

(c) at least one has blue eyes

(d) exactly one has blue eyes.

3.48. Ten students A, B, . . . are in a class. A committee of 3 is chosen from the class. Find the
probability that

(a) A belongs to the committee.

(b) B belongs to the committee.

(c) A and B belong to the committee.

(d) A or B belongs to the committee.
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FINITE PROBABILITY SPACES

3.49. Under which of the following functions does S � {a1, a2, a3} become a probability space?

(a) P(a1) � 0.3, P(a2) � 0.4, P(a3) � 0.5

(b) P(a1) � 0.7, P(a2) � �0.2, P(a3) � 0.5

(c) P(a1) � 0.3, P(a2) � 0.2, P(a3) � 0.5

(d) P(a1) � 0.3, P(a2) � 0, P(a3) � 0.7

3.50. A coin is weighted so that heads is three times as likely to appear as tails. Find P(H) and P(T).

3.51. Suppose A and B are events with P(A) � 0.7, P(B) � 0.5, and P(A 	 B) � 0.4. Find the probability
that

(a) A does not occur.

(b) A or B occurs.

(c) A but not B occurs.

(d) Neither A nor B occurs.

3.52. Consider the following probability distribution:

Outcome

Probability

1

0.1

2

0.3

3

0.1

4

0.2

5

0.2

6

0.1

Consider the following events:

A � {even number}, B � {2, 3, 4, 5}, C � {1, 2}

Find: (a) P(A), (b) P(B), (c) P(C), (d) P(�), (e) P(S).

3.53. For the events A, B, C in Problem 3.52, find:

(a) P(A 	 B), (b) P(A 
 C), (c) P(B 	 C), (d) P(Ac), (e) P(B 	 Cc).

3.54. Three students A, B, and C are in a swimming race. A and B have the same probability of winning and
each is twice as likely to win as C. Find the probability that

(a) B wins (b) C wins (c) B or C wins

3.55. Let P be a probability function on S � {a1, a2, a3}. Find P(a1) if

(a) P(a2) � 0.3, P(a3) � 0.5;

(b) P(a1) � 2P(a2) and P(a3) � 0.7;

(c) P({a2, a3}) � 2P(a1);

(d) P(a3) � 2P(a2) and P(a2) � 3P(a1).

ODDS

3.56. Find the probability of an event E if the odds that it will occur are: (a) 2 to 1, (b) 5 to 11.

3.57. Find the odds that an event E occurs if: (a) P(E) � 2/7, (b) P(E) � 0.4.

3.58. In a swimming race, the odds that A will win are 2 to 3 and the odds that B will win are 1 to 4. Find the
probability p and the odds that: (a) A will lose, (b) A or B will win, (c) neither A nor B will win.

NONCOUNTABLE UNIFORM SPACES

3.59. A point is chosen at random inside a circle with radius r. Find the probability p that the point is at most
1–
3r from the center.

3.60. A point A is selected at random inside an equilateral triangle whose side length is 3. Find the probability
p that the distance of A from any corner is greater than 1.
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3.61. A coin of diameter 1/2 is tossed randomly onto the plane R2. Find the probability p that the coin does
not intersect any line of the form: (a) x � k or y � k where k is an integer, (b) x 
 y � k where k is an
integer.

3.62. A point X is selected at random from a line segment AB with midpoint O. Find the probability p that
the line segments AX, XB, and AO can form a triangle.

MISCELLANEOUS PROBLEMS

3.63. A die is tossed 50 times. The following table gives the 6 numbers and their frequency of occurrence:

Number

Frequency

1

7

2

9

3

8

4

7

5

9

6

10

Find the relative frequency of each event: (a) 4 appears, (b) an odd number appears, (c) a number greater
than 4 appears.

3.64. Use mathematical induction to prove: For any events A1, A2, . . ., An,

P(A1 
 · · · 
 An) � �
i

P(Ai) � �
i�j

P(Ai 	 Aj) 
 �
i�j�k

P(Ai 	 Aj 	 Ak) � · · · � P(A1 	 · · · 	 An)

Remark: This result generalizes Theorem 3.6 (addition rule) for two sets and Corollary 3.7 for
three sets.

3.65. Consider the countably infinite sample space S � {a1, a2, a3, . . .}. Suppose P(a1) � 1/4 and suppose
P(ak
1) � rP(ak) for k � 1, 2, . . .. Find r and P(a3).

Answers to Supplementary Problems

3.36. (a) A 
 Bc; (b) A 	 Bc.

3.37. (a) (A 
 C) 	 B; (b) (A 	 Bc 	 Cc) 
 (Ac 	 B 	 Cc) 
 (Ac 	 Bc 	 C); (c) (A 
 B 
 B)c � Ac 	 Bc 	 Cc;
(d) (A 	 B) 
 (A 	 C) 
 (B 	 C).

3.38. n(S) � 24; S � {H, T} � {H, T) � {1, 2, , . . ., 6} � {HH1, . . ., HH6, HT1, . . ., TT6}.

3.39. A � {HH2, HH4, HH6}; B � {HH2, HT2, TH2, TT2}; C � {HT1, HT3, HT5, TH1, TH3, TH5}.

3.40. (a) {HH2}; (b) {HT2, TH2, TT2}; (c) �; (d) {HH4, HH6}.

3.41. (a) 3/6; (b) 15/16; (c) 4/36; (d) 10/36; (e) 32/52.

3.42. (a) 4/20; (b) 3/20; (c) 11/20.

3.43. (a) 12/25; (b) 8/25; (c) 4/25; (d) 16/25; (e) 3/25.

3.44. 9/15 � 3/5.

3.45. 3/15 � 1/5.
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3.46. (a) 1/6; (b) 3/4; (c) 1/4; (d) 1/3; (e) 7/12.

3.47. (a) 1/15; (b) 7/15; (c) 8/15; (d) 7/15.

3.48. (a) 3/10; (b) 3/10; (c) 1/15; (d) 8/15.

3.49. (c) and (d).

3.50. P(H) � 3/4; P(T) � 1/4.

3.51. (a) 0.3; (b) 0.8; (c) 0.2; (d) 0.2.

3.52. (a) 0.6; (b) 0.8; (c) 0.4; (d) 0; (e) 1.

3.53. (a) 0.5; (b) 0.7; (c) 0.3; (d) 0.4; (e) 0.5.

3.54. (a) 2/5; (b) 1/5; (c) 3/5.

3.55. (a) 0.2; (b) 0.2; (c) 1/3; (d) 0.1.

3.56. (a) 2/3; (b) 5/16.

3.57. (a) 2 to 5; (b) 2 to 3.

3.58. (a) p � 3/5, odds 3 to 2; (b) p � 3/5, odds 3 to 2; (c) p � 2/5, odds 2 to 3.

3.59. 1/9.

3.60. 1 � 2�/(9�3) � 1 � 2�3�/27.

3.61. (a) 1/4; (b) 1 � �2/2.

3.62. 1/2.

3.63. (a) 7/50; (b) 24/50; (c) 19/50.

3.65. r � 3/4; P(a3) � 9/64.
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CHAPTER 4

Conditional
Probability and

Independence

4.1 INTRODUCTION

The notions of conditional probability and independence will be motivated by two well-known
examples.

(a) Gender Gap: Suppose candidate A receives 54 percent of the entire vote, but only 48 percent
of the female vote. Let P(A) denote the probability that a random person voted for A, but let
P(A �W) denote the probability that a random woman voted for A. Then

P(A) � 0.54 but P(A �W) � 0.48

P(A �W) is called the condition probability of A given W. Note that P(A �W) only looks at the
reduced sample space consisting of women. The fact that P(A) � P(A �W) is called the gender
gap in politics. On the other hand, suppose P(A) � P(A �W). We then say there is no gender
gap, that is, the probability that a person voted for A is ‘‘independent’’ of the gender of the
voter.

(b) Insurance Rates: Auto insurance rates usually depend on the probability that a random person
will be involved in an accident. It is well known that male drivers under 25 years old get into
more accidents than the general public. That is, letting P(A) denote the probability of an
accident and letting E denote male drivers under 25 years old, the data tell us that

P(A) � P(A �E)

Again we use the notation P(A �E) to denote the probability of an accident given that the driver
is male and under 25 years old.

This chapter formally defines conditional probability and independence. We also cover finite
stochastic processes, Bayes’ theorem, and independent repeated trials.

85



4.2 CONDITIONAL PROBABILITY

Suppose E is an event in a sample space S with P(E) � 0. The probability that an event A occurs
once E has occurred or, specifically, the conditional probability of A given E, written P(A �E), is defined
as follows:

P(A �E) �
P(A 	 E)

P(E)

As pictured in the Venn diagram in Fig. 4-1, P(A �E) measures, in a certain sense, the relative
probability of A with respect to the reduced space E.

Now suppose S is an equiprobable space, and we let n(A) denote the number of elements in the
event A. Then

P(A 	 E) �
n(A 	 E)

n(S)
, P(E) �

n(E)
n(S)

, and so P(A �E) �
P(A 	 E)

P(E)
�

n(A 	 E)
n(E)

We state this result formally.

Theorem 4.1: Suppose S is an equiprobable space and A and B are events. Then

P(A �E) �
number of elements in A 	 E

number of elements in E
�

n(A 	 E)
n(E)

EXAMPLE 4.1 A pair of fair dice is tossed. The sample space S consists of the 36 ordered pairs (a, b) where
a and b can be any of the integers from 1 to 6. (See Fig. 3-3.) Thus the probability of any point is 1/36. Find
the probability that one of the dice is 2 if the sum is 6. That is, find P(A �E) where

E � {sum is 6} and A � {2 appears on at least one die}

Also find P(A).

Now E consists of five elements, specifically

E � {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}

Two of them, (2, 4) and (4, 2), belong to A, that is, A 	 E � {(2, 4), (4, 2)}. By Theorem 4.1, P(A �E) � 2/5.

On the other hand, A consists of 11 elements, specifically:

A � {(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (1, 2), (3, 2), (4, 2), (5, 2), (6, 2)}

and S consists of 36 elements; hence P(A) � 11/36.

EXAMPLE 4.2 Suppose a couple has two children. The sample space is S � { , bg, gb, gg} where we assume
an equiprobable space, that is, we assume probability 1/4 for each point. Find the probability p that both children
are boys if it is known that: (a) At least one of the children is a boy. (b) The older child is a boy.

(a) Here the reduced sample space consists of three elements {bb, bg, gb}; hence p � 1/3.

(b) Here the reduced sample space consists of two elements {bb, bg}; hence p � 1/2.
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Multiplication Theorem for Conditional Probability

Suppose A and B are events in a sample space S with P(A) � 0. By definition of conditional
probability and using A 	 B � B 	 A, we obtain

P(B �A) �
P(A 	 B)

P(A)

Multiplying both sides by P(A) gives us the following useful formula:

Theorem 4.2 (Multiplication Theorem for Conditional Probability):

P(A 	 B) � P(A)P(B �A)

The multiplication theorem gives us a formula for the probability that events A and B both
occur. It can be extended to three or more events. For three events, we get

Corollary 4.3: P(A 	 B 	 C) � P(A)P(B �A)P(C �A 	 B)

That is, the probability that A, B, and C occur is equal to the product of the following:

(i) The probability that A occurs.

(ii) The probability that B occurs, assuming that A occurred.

(iii) The probability that C occurs, assuming that A and B have occurred.

We apply this result in the following example.

EXAMPLE 4.3 A lot contains 12 items of which 4 are defective. Three items are drawn at random from the
lot one after another without replacement. Find the probability p that all 3 are nondefective.

We compute the following 3 probabilities:

(i) The probability that the first item is nondefective is 8––
12 since 8 of 12 items are nondefective.

(ii) Assuming that the first item is nondefective, the probability that the second item is nondefective is 7––
11 since

only 7 of the remaining 11 items are nondefective.

(iii) Assuming that the first and second items are nondefective, the probability that the third item is nondefective
is 6––

10 since only 6 of the remaining 10 items are now nondefective.

Accordingly, by the multiplication theorem,

p �
8
12

�
7
11

�
6
10

�
14
55

4.3 FINITE STOCHASTIC PROCESSES AND TREE DIAGRAMS

A finite stochastic process is a finite sequence of experiments where each experiment has a finite
number of outcomes with given probabilities. A convenient way of describing such a process is by
means of a labeled tree diagram, as illustrated below. The multiplication theorem (Theorem 4.2)
can then be used to compute the probability of an event which is represented by a given path of
the tree.

EXAMPLE 4.4 Suppose the following three boxes are given:

Box X has 10 lightbulbs of which 4 are defective.

Box Y has 6 lightbulbs of which 1 is defective.

Box Z has 8 lightbulbs of which 3 are defective.

A box is chosen at random, and then a bulb is randomly selected from the chosen box.
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(a) Find the probability p that the bulb is nondefective.

(b) If the bulb is nondefective, find the probability that it came from box Z.

Here we perform a sequence of two experiments:

(i) Select one of the three boxes.

(ii) Select a bulb which is either defective (D) or nondefective (N).

The tree diagram in Fig. 4-2 describes this process and gives the probability of each edge of the tree. The
multiplication theorem tells us that the probability of a given path of the tree is the product of the probabilities
of each edge of the path. For example, the probability of selecting box X and then a nondefective bulb N from
box X is as follows:

1
3

�
3
5

�
1
5

(a) Since there are three disjoint paths which lead to a nondefective bulb N, the sum of the probabilities of these
paths gives us the required probability. Namely

p � P(N) �
1
3

�
3
5



1
3

�
5
6



1
3

�
5
8

�
247
360

� 0.686

(b) Here we want to compute P(Z �N), the conditional probability of box Z given a nondefective bulb N.
Now box Z and a nondefective bulb N, that is, the event Z 	 N, can only occur on the bottom

path. Therefore

P(Z 	 N) �
1
3

�
5
8

�
5
24

By part (a), we have P(N) � 247/360. Accordingly, by the definition of conditional probability,

P(Z �N) �
P(Z 	 N)

P(N)
�

5/24
247/360

�
75

247
� 0.304

In other words, we divide the probability of the successful path by the probability of the reduced sample
space consisting of all the paths leading to N.

EXAMPLE 4.5 Suppose a coin, weighted so that P(H) � 2/3 and P(T) � 1/3, is tossed. If heads appears, then
a number is selected at random from the numbers 1 through 9; if tails appears, then a number is selected at random
from the numbers 1 through 5. Find the probability that an even number appears.

Note that the probability of selecting an even number from the numbers 1 through 9 is 4–
9 since there are 4 even

numbers out of the 9 numbers, whereas the probability of selecting an even number from the numbers 1 through
5 is 2–

5 since there are 2 even numbers out of the 5 numbers. Thus, Fig. 4-3 is the tree diagram with the respective
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probabilities which represents the above stochastic process. (Here E means an even number is selected and O
means an odd number is selected.) There are two paths in the tree which lead to an even number, HE and
TE. Thus

p � P(E) �
2
3

�
4
9



1
3

�
2
5

�
58

135
� 0.43

4.4 PARTITIONS, TOTAL PROBABILITY, AND BAYES’ FORMULA

Suppose a set S is the union of mutually disjoint subsets A1, A2, . . ., An, that is, suppose the sets
A1, A2, . . ., An form a partition of the set S. Furthermore, suppose E is any subset of S. Then, as
illustrated in Fig. 4-4 for the case n � 3,

E � E 	 S � E 	 (A1 
 A2 
 . . . 
 An) � (E 	 A1) 
 (E 	 A2) 
 . . . 
 (E 	 An)

Moreover, the n subsets on the right in the above equation, are also mutually disjoint, that is, form a
partition of E.

Law of Total Probability

Now suppose S is a sample space and the above subsets A1, A2, . . ., An, E are events. Since the
E 	 Ak are disjoint, we obtain

P(E) � P(E 	 A1) 
 P(E 	 A2) 
 · · · 
 P(E 	 An)

Using the multiplication theorem for conditional probability, we also obtain

P(E 	 Ak) � P(Ak 	 E) � P(Ak)P(E �Ak)

Thus we arrive at the following theorem:

Theorem 4.4 (Total Probability): Let E be an event in a sample space S, and let A1, A2, . . ., An, be
mutually disjoint events whose union is S. Then

P(E) � P(A1)P(E �A1) 
 P(A2)P(E �A2) 
 · · · 
 P(An)P(E �An)
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The equation in Theorem 4.4 is called the law of total probability. We emphasize that the sets A1,
A2, . . ., An are pairwise disjoint and their union is all of S, that is, that the A’s form a partition of S.

EXAMPLE 4.6 A factory uses three machines X, Y, Z to produce certain items. Suppose:

(1) Machine X produces 50 percent of the items of which 3 percent are defective.

(2) Machine Y produces 30 percent of the items of which 4 percent are defective.

(3) Machine Z produces 20 percent of the items of which 5 percent are defective.

Find the probability p that a randomly selected item is defective.

Let D denote the event that an item is defective. Then, by the law of total probability,

P(D) � P(X)P(D �X) 
 P(Y)P(D �Y) 
 P(Z)P(D �Z)

� (0.50)(0.03) 
 (0.30)(0.04) 
 (0.20)(0.05) � 0.037 � 3.7%

Bayes’ Theorem

Suppose the events A1, A2, . . ., An do form a partition of the sample space S, and E is any
event. Then, for k � 1, 2, . . ., n, the multiplication theorem for conditional probability tells us that
P(Ak 	 E) � P(Ak)P(E �Ak). Therefore

P(Ak �E) �
P(Ak 	 E)

P(E)
�

P(Ak)P(E �Ak)
P(E)

Using the law of total probability (Theorem 4.4) for the denominator P(E), we arrive at the next
theorem.

Theorem 4.5 (Bayes’ Formula): Let E be an event in a sample space S, and let A1, A2, . . ., An be
disjoint events whose union is S. Then, for k � 1, 2, . . ., n,

P(Ak �E) �
P(Ak)P(E �Ak)

P(A1)P(E �A1) 
 P(A2)P(E �A2) 
 · · · 
 P(An)P(E �An)

The above equation is called Bayes’ rule or Bayes’ formula, after the English mathematician
Thomas Bayes (1702–1761). If we think of the events A1, A2, . . ., An as possible causes of the event
E, then Bayes’ formula enables us to determine the probability that a particular one of the A’s
occurred, given that E occurred.

EXAMPLE 4.7 Consider the factory in Example 4.6. Suppose a defective item is found among the out-
put. Find the probability that it came from each of the machines, that is, find P(X �D), P(Y �D), and P(Z �D).

Recall that P(D) � P(X)P(D �X) 
 P(Y)P(D �Y) 
 P(Z)P(D �Z) � 0.037. Therefore, by Bayes’ formula,

P(X �D) �
P(X)P(D �X)

P(D)
�

(0.50)(0.03)
0.037

�
15
37

� 40.5%

P(Y �D) �
P(Y)P(D �Y)

P(D)
�

(0.30)(0.04)
0.037

�
12
37

� 32.5%

P(Z �D) �
P(Z)P(D �Z)

P(D)
�

(0.20)(0.05)
0.037

�
10
37

� 27.0%
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of this chapter).

Stochastic Interpretation of Total Probability and Bayes’ Formula*

Frequently, problems involving the total probability law and Bayes’ formula can be interpreted as a two-
step stochastic process. Figure 4-5 gives the stochastic tree corresponding to Fig. 4-4 where the first step in 
the tree involves the events A

1
, A

2
, A

3
 which partition S and the second step involves the arbitrary event E.

Ak’s form a partition of S.

,



Suppose we want P(E). Using the tree diagram, we obtain

P(E) � P(A1)P(E �A1) 
 P(A2)P(E �A2) 
 P(A3)P(E �A3)

Furthermore, for k � 1, 2, 3,

P(Ak �E) �
P(Ak 	 E)

P(E)
�

P(Ak)P(E �Ak)
P(E)

�
P(Ak)P(E �Ak)

P(A1)P(E �A1) 
 P(A2)P(E �A2) 
 P(A3)P(E �A3)

Observe that the above two formulas are simply the total probability law and Bayes’ formula, for the
case n � 3. The stochastic approach also applies to any positive integer n.

EXAMPLE 4.8 Suppose a student dormitory in a college consists of:

(1) 30 percent freshmen of whom 10 percent own a car

(2) 40 percent sophomores of whom 20 percent own a car

(3) 20 percent juniors of whom 40 percent own a car

(4) 10 percent seniors of whom 60 percent own a car

(a) Find the probability that a student in the dormitory owns a car.

(b) If a student does own a car, find the probability that the student is a junior.

Let A, B, C, D denote, respectively, the set of freshmen, sophomores, juniors, and seniors, and let E denote
the set of students owning a car. Figure 4-6 is a stochastic tree describing the given data.
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(a) We seek P(E). By the law of total probability or by using Fig. 4-6, we obtain

P(E) � (0.30)(0.10) 
 (0.40)(0.20) 
 (0.20)(0.40) 
 (0.10)(0.60)

� 0.03 
 0.08 
 0.08 
 0.06 � 0.25 � 25%

(b) We seek P(C �E). By Bayes’ formula,

P(C �E) �
P(C)P(E �C)

P(E)
�

(0.20)(0.40)
0.25

�
8
25

� 32%

4.5 INDEPENDENT EVENTS

Events A and B in a probability space S are said to be independent if the occurrence of one of them
does not influence the occurrence of the other. More specifically, B is independent of A if P(B) is the
same as P(B �A). Now suppose we substitute P(B) for P(B �A) in the multiplication theorem that
P(A 	 B) � P(A)P(B �A). This yields

P(A 	 B) � P(A)P(B)

We formally use the above equation as our definition of independence.

Definition: Events A and B are independent if P(A 	 B) � P(A)P(B); otherwise they are
dependent.

We emphasize that independence is a symmetric relationship. In particular

P(A 	 B) � P(A)P(B) implies both P(B �A) � P(B) and P(A �B) � P(A)

Note also that disjoint (mutually exclusive) events are not independent unless one of them has
zero probability. That is, suppose A 	 B � � and A and B are independent. Then

P(A)P(B) � P(A 	 B) � 0 and so P(A) � 0 or P(B) � 0

EXAMPLE 4.9 A fair coin is tossed three times yielding the equiprobable space

S � {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

Consider the events:

A � {first toss is heads} � {HHH, HHT, HTH, HTT}

B � {second toss is heads} � {HHH, HHT, THH, THT}

C � {exactly two heads in a row} � {HHT, THH}

Clearly A and B are independent events; this fact is verified below. On the other hand, the relationship between
A and C and between B and C is not obvious. We claim that A and C are independent, but that B and C are
dependent. Note that

P(A) �
4
8

�
1
2

, P(B) �
4
8

�
1
2

, P(C) �
2
8

�
1
4

Also

P(A 	 B) � P({HHH, HHT}) �
1
4

, P(A 	 C) � P({HHT}) �
1
8

, P(B 	 C) � P({HHT, THH}) �
1
4
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Accordingly,

P(A)P(B) �
1
2

�
1
2

�
1
4

� P(A 	 B); hence A and B are independent.

P(A)P(C) �
1
2

�
1
4

�
1
8

� P(A 	 C); hence A and C are independent.

P(B)P(C) �
1
2

�
1
4

�
1
8

� P(B 	 C); hence B and C are not independent.

Frequently, we will postulate that two events are independent, or the experiment itself will imply
that two events are independent.

EXAMPLE 4.10 The probability that A hits a target is 1–
4, and the probability that B hits the target is 2–

5. Both
shoot at the target. Find the probability that at least one of them hits the target; that is, find the probability that
A or B (or both) hits the target.

Here P(A) � 1–
2 and P(B) � 2–

5, and we seek P(A 
 B)

Furthermore, we assume that A and B are independent events, that is, that the probability that A or B hits
the target is not influenced by what the other does. Therefore,

P(A 	 B) � P(A)P(B) �
1
4

�
2
5

�
1
10

Accordingly, by the addition rule in Theorem 3.6,

P(A 
 B) � P(A) 
 P(B) � P(A 	 B) �
1
4



2
5

�
1
10

�
11
20

Independence of Three or More Events

Three events A, B, C are independent if the following two conditions hold:

(1) They are pairwise independent, that is,

P(A 	 B) � P(A)P(B), P(A 	 C) � P(A)P(C), P(B 	 C) � P(B)P(C)

(2) P(A 	 B 	 C) � P(A)P(B)P(C)

Example 4.11 below shows that condition (2) does not follow from condition (1); that is, three events
may be pairwise independent but not independent themselves. [Problem 4.32 shows that condition
(1) does not follow from condition (2).]

Independence of more than three events is defined analogously. Namely, the events A1, A2, . . .,
An are independent if any proper subset of them is independent and

P(A1 	 A2 	 . . . 	 An) � P(A1)P(A2) . . . P(An)

EXAMPLE 4.11 A pair of fair coins is tossed yielding the equiprobable space S � {HH, HT, TH, TT}. Con-
sider the events:

A � {head on first toss} � {HH, HT}, B � {head on second toss} � {HH, TH},

C � {head on exactly one coin} � {HT, TH}

Then P(A) � P(B) � P(C) � 2–
4 � 1–

2. Also,

P(A 	 B) � P({HH}) �
1
4

, P(A 	 C) � P({HT}) �
1
4

, P(B 	 C) � P({TH}) �
1
4
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Thus, condition (1) is satisfied, that is, the events are pairwise independent. On the other hand,

A 	 B 	 C � � and so P(A 	 B 	 C) � P(�) � 0 � P(A)P(B)P(C)

Thus, condition (2) is not satisfied, and so the three events are not independent.

4.6 INDEPENDENT REPEATED TRIALS

Previously, we discussed probability spaces which were associated with an experiment repeated a
finite number of times, such as the tossing of a coin three times. This concept of repetition is
formalized as follows:

Definition: Let S be a finite probability space. The probability space of n independent or repeated
trials, denoted by Sn, consists of ordered n-tuples of elements of S with the probability of
an n-tuple defined to be the product of the probability of its components, that is,

P((s1, s2, . . ., sn)) � P(s1)P(s2) · · · P(sn)

EXAMPLE 4.12 Suppose that whenever three horses a, b, c race together, their respective probabilities of
winning are 1/2, 1/3, and 1/6. In other words,

S � {a, b, c} with P(a) �
1
2

, P(b) �
1
3

, and P(c) �
1
6

Suppose the horses race twice. Then the sample space S2 of the two repeated trials follows:

S2 � {aa, ab, ac, ba, bb, bc, ca, cb, cc}

For notational convenience, we have written ac for the ordered pair (a, c). The probability of each point of S2

follows:

P(aa) � P(a)P(a) �
1
2

�
1
2

�
1
4

, P(ba) �
1
6

, P(ca) �
1
12

P(ab) � P(a)P(b) �
1
2

�
1
3

�
1
6

, P(bb) �
1
9

, P(cb) �
1
18

P(ac) � P(a)P(c) �
1
2

�
1
6

�
1
12

, P(bc) �
1
18

, P(cc) �
1
36

Thus, the probability that c wins the first race and a wins the second race is P(ca) � 1––
12.

Repeated Trials as a Stochastic Process

From another point of view, the probability space of a repeated-trials process may be viewed as
a stochastic process whose tree diagram has the following properties:

(i) Each branch point has the same outcomes.

(ii) All branches leading to the same outcome have the same probability.

For example, the tree diagram for the repeated-trials process in Example 4.12 appears in Fig. 4-7.
Observe that

(i) Each branch point has outcomes a, b, c.

(ii) All branches leading to outcome a have probability 1–
2, to outcome b have probability 1–

3, and to
outcome c have probability 1–

6.

These two properties are expected as noted above.
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Fig. 4-7

Solved Problems

CONDITIONAL PROBABILITY

4.1. Three fair coins, a penny, a nickel, and a dime, are tossed. Find the probability p that they are
all heads if: (a) the penny is heads, (b) at least one of the coins is heads, (c) the dime is tails.

The sample space has eight elements:

S � {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

(a) If the penny is heads, the reduced sample space is A � {HHH, HHT, HTH, HTT}. All coins are
heads in only 1 of the 4 cases; hence p � 1/4.

(b) If one or more of the coins is heads, the reduced sample space is

B � {HHH, HHT, HTH, HTT, THH, THT, TTH}

All coins are heads in only 1 of the 7 cases; hence p � 1/7.

(c) If the dime (third coin) is tails, the reduced sample space is C � {HHT, HTT, THT, TTT}. None
contains all heads; hence p � 0.

4.2. A billiard ball is drawn at random from a box containing 15 billiard balls numbered 1 to 15, and
the number n is recorded.

(a) Find the probability p that n exceeds 10.

(b) If n is even, find the probability p that n exceeds 10.

(a) The n can be one of the 5 numbers, 11, 12, 13, 14, 15. Hence p � 5/15 � 1/3.

(b) The reduced sample space E consists of the 7 even numbers, that is,
E � {2, 4, 6, 8, 10, 12, 14}. Of these, only 12, and 14, exceed 10. Hence p � 2/7.

4.3. A pair of fair dice is thrown. Find the probability p that the sum is 10 or greater if:

(a) 5 appears on the first die, (b) 5 appears on at least one die.

Figure 3-3 shows the 36 ways the pair of dice can be thrown.
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(a) If 5 appears on the first die, the reduced sample space A has six elements:

A � {(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)}

The sum is 10 or more on 2 of the 6 outcomes, (5, 5) and (5, 6). Thus p � 2/6 � 1/3.

(b) If 5 appears on at least one die, the reduced sample space B has 11 elements:

B � {(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (1, 5), (2, 5), (3, 5), (4, 5), (6, 5)

The sum is 10 or more on 3 of the 11 outcomes, (5, 5), (5, 6), and (6, 5). Thus p � 3/11.

4.4. In a certain college, 25 percent of the students failed mathematics, 15 percent failed chemistry,
and 10 percent failed both mathematics and chemistry. A student is selected at random.

(a) If the student failed chemistry, what is the probability that he or she failed mathematics?

(b) If the student failed mathematics, what is the probability that he or she failed chemistry?

(c) What is the probability that the student failed mathematics or chemistry?

(d) What is the probability that the student failed neither mathematics nor chemistry?

(a) We seek P(M �C), the probability that the student failed mathematics, given that he or she failed
chemistry. By definition,

P(M �C) �
P(M 	 C)

P(C)
�

0.10
0.15

�
10
15

�
2
3

(b) We seek P(C �M), the probability that the student failed chemistry, given that he or she failed
mathematics. By definition,

P(C �M) �
P(M 	 C)

P(M)
�

0.10
0.25

�
10
25

�
2
5

(c) By the addition rule (Theorem 3.6),

P(M 
 C) � P(M) 
 P(C) � P(M 	 C) � 0.25 
 0.15 � 0.10 � 0.30

(d) Students who failed neither mathematics nor chemistry form the complement of the set M 
 C; that
is, form the set (M 
 C)c. Hence

P((M 
 C)c) � 1 � P(M 
 C) � 1 � 0.30 � 0.70

4.5. A pair of fair dice is thrown. If the two numbers appearing are different, find the probability
p that: (a) the sum is 6, (b) one die shows a single spot, (c) the sum is 4 or less.

There are 36 ways the pair of dice can be thrown (Fig. 3-3) and 6 of them, (1, 1), (2, 2), . . ., (6, 6), have
the same numbers. Thus the reduced sample space E will consist of 36 � 6 � 30 elements.

(a) The sum 6 can appear in 4 ways: (1, 5), (2, 4), (4, 2), (5, 1). [We cannot include (3, 3) since the
numbers must be different.] Thus p � 4/30 � 2/15.

(b) An ace can appear in 10 ways: (1, 2), (1, 3), . . ., (1, 6) and (2, 1), (3, 1), . . ., (6, 1). [We cannot
include (1, 1) since the numbers must be different.] Thus p � 10/30 � 1/3.

(c) The sum is 4 or less in 4 ways: (3, 1), (1, 3), (2, 1), (1, 2). [We cannot include (1, 1) and (2, 2) since
the numbers must be different.] Thus p � 4/30 � 2/15.

4.6. Let A and B be events with P(A) � 0.6, P(B) � 0.3, and P(A 	 B) � 0.2. Find:

(a) P(A �B) and P(B �A), (b) P(A 
 B), (c) P(Ac) and P(Bc).

(a) By definition of conditional probability,

P(A �B) �
P(A 	 B)

P(B)
�

0.2
0.3

�
2
3

, P(B �A) �
P(A 	 B)

P(A)
�

0.2
0.6

�
1
3
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(b) By the addition rule (Theorem 3.6),

P(A 
 B) � P(A) 
 P(B) � P(A 	 B) � 0.6 
 0.3 � 0.2 � 0.7

(c) By the complement rule,

P(Ac) � 1 � P(A) � 1 � 0.6 � 0.4 and P(Bc) � 1 � P(B) � 1 � 0.3 � 0.7

4.7. Consider the data in Problem 4.6. Find: (a) P(Ac �Bc), (b) P(Bc �Ac).

First compute P(Ac 	 Bc). By DeMorgan’s law, (A 
 B)c � Ac 	 Bc. Hence, by the complement
rule,

P(Ac 	 Bc) � P((A 
 B)c) � 1 � P(A 
 B) � 1 � 0.7 � 0.3

(a) P(Ac �Bc) �
P(Ac 	 Bc)

P(Bc)
�

0.3
0.7

�
3
7

(b) P(Bc �Ac) �
P(Ac 	 Bc)

P(Ac)
�

0.3
0.4

�
3
4

4.8. Let A and B be events with P(A) � 3–
8, P(B) � 5–

8, and P(A 
 B) � 3–
4. Find P(A �B) and

P(B �A).

First find P(A 	 B) using the addition rule that P(A 
 B) � P(A) 
 P(B) � P(A 	 B). We have

3
4

�
3
8



5
8

� P(A 	 B) or P(A 	 B) �
1
4

Now use the definition of conditional probability to get

P(A �B) �
P(A 	 B)

P(B)
�

1/4
5/8

�
2
5

and P(B �A) �
P(A 	 B)

P(A)
�

1/4
3/8

�
2
3

4.9. Find P(B �A) if: (a) A is a subset of B, (b) A and B are mutually exclusive (disjoint).
[Assume P(A) � 0.]

(a) If A is a subset of B [as pictured in Fig. 4-8(a)], then whenever A occurs, B must occur; hence
P(B �A) � 1. Alternately, if A is a subset of B, then A 	 B � A; hence

P(B �A) �
P(A 	 B)

P(A)
�

P(A)
P(A)

� 1

(b) If A and B are mutually exclusive, that is, disjoint [as pictured in Fig. 4-8(b)], then whenever A occurs,
B cannot occur; hence P(B �A) � 0. Alternately, if A and B are disjoint, then A 	 B � �; hence

P(B �A) �
P(A 	 B)

P(A)
�

P(�)
P(A)

�
0

P(A)
� 0
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4.10. Let E be an event for which P(E) � 0. Show that the conditional probability function P(* �E)
satisfies the axioms of a probability space, that is

[P1] For any event A, we have P(A �E) � 0.

[P2] For any certain event S, we have P(S �E) � 1.

[P3] For any two disjoint events A and B, we have

P(A 
 B �E) � P(A �E) 
 P(B �E)

[P3
� ] For any infinite sequence of mutually disjoint events A1, A2, . . ., we have

P(A1 
 A2 
 · · · �E) � P(A1 �E) 
 P(A2 �E) 
 · · ·

(a) We have P(A 	 E) � 0 and P(E) � 0; hence

P(A �E) �
P(A 	 E)

P(E)
� 0

Thus, [P1] holds.

(b) We have S 	 E � E; hence

P(S �E) �
P(S 	 E)

P(E)
�

P(E)
P(E)

� 1

Thus, [P2] holds.

(c) If A and B are disjoint events, then so are A 	 E and B 	 E. Furthermore,

(A 
 B) 	 E � (A 	 E) 
 (B 	 E)

Hence,

P[(A 
 B) 	 E] � P[(A 	 E) 
 (B 	 E)] � P(A 	 E) 
 P(B 	 E)

Therefore

P(A 
 B �E) �
P[(A 
 B) 	 E]

P(E)
�

P(A 	 E) 
 P(B 	 E)
P(E)

�
P(A 	 E)

P(E)



P(B 	 E)
P(E)

� P(A �E) 
 P(B �E)

Thus, [P3] holds.

(d) [Similar to (c).] If A1, A2, . . . are mutually disjoint events, then so are A1 	 E, A2 	 E, . . .. Also,
by the generalized distributive law,

(A1 
 A2 
 · · ·) 	 E � (A1 	 E) 
 (A2 	 E) 
 · · ·

Thus

P[(A1 
 A2 
 · · ·) 	 E] � P[(A1 	 E) 
 (A2 	 E) 
 · · ·]

� P(A1 	 E) 
 P(A2 	 E) 
 · · ·

Therefore

P(A1 
 P2 
 · · · �E) �
P[(A1 
 A2 
 · · ·) 	 E]

P(E)

�
P(A1 	 E) 
 P(A2 	 E) 
 · · ·

P(E)
�

P(A1 	 E)
P(E)



P(A2 	 E)

P(E)

 · · ·

� P(A1 �E) 
 P(A2 �E) 
 · · ·

Thus, [P3
� ] holds.
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MULTIPLICATION THEOREM

4.11. A class has 12 men and 4 women. Suppose 3 students are selected at random from the
class. Find the probability p that they are all men.

The probability that the first student is a man is 12/16 since there are 12 men out of the 16
students. If the first student is a man, then the probability that the second student is a man is 11/15 since
there are 11 men left out of the 15 students left. Finally, if the first 2 students are men, then the
probability that the third student is a man is 10/14 since there are now only 10 men out of the 14 students
left. Accordingly, by the Multiplication Theorem 4.2, the probability that all 3 are men is

p �
12
16

�
11
15

�
10
14

�
11
28

Another Method: There are C(16, 3) � 560 ways to select 3 students out of 16 students, and
C(12, 3) � 220 ways to select 3 men from the 12 men. Thus

p �
220
560

�
11
28

A Third Method: Suppose the students are selected one after the other. Then there are 16 � 15 � 14
ways to select 3 students, and there are 12 � 11 � 10 ways to select the 3 men. Thus

p �
12� 11� 10
16� 15� 14

�
11
28

4.12. A person is dealt 4 cards from an ordinary 52-card deck (Fig. 3-4). Find the probability p that
they are all spades.

The probability that the first card is a spade is 13/52, that the second is a spade is 12/51, that the third
is a spade is 11/50, and that the fourth is 10/49. (We assume in each case that the previous cards were
pades.) Thus, by the Multiplication Theorem 4.2,

p �
13
52 51 50 49

�
12

�
11

�
10

�
17,160

6,497,400
0.00264

Another Method: There are C(52, 5) ways to select 5 cards from the 52-card deck, and C(13, 5) ways
to select 5 spades from the 13 spades. Thus

p �
C(13, 5)
C(52, 5)

� 0.000 49

4.13. A box contains 7 red marbles and 3 white marbles. Three marbles are drawn from the box one
after the other. Find the probability p that the first 2 are red and the third is white.

The probability that the first marble is red is 7/10 since there are 7 red marbles out of the 10
marbles. If the first marble is red, then the probability that the second marble is red is 6/9 since there are
6 red marbles out of the remaining 9 marbles. Finally, if the first 2 marbles are red, then the probability
that the third marble is white is 3/8 since there are 3 white marbles out of the remaining 8 marbles in the
box. Accordingly, by the Multiplication Theorem 4.2,

p �
7
10

�
6
9

�
3
8

�
7
40

� 0.175 � 17.5%

4.14. Students in a class are selected at random, one after the other, for an examination. Find the
probability p that the men and women in the class alternate if:

(a) the class consists of 4 men and 3 women, (b) the class consists of 3 men and 3 women.
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(a) If the men and women are to alternate, then the first student must be a man. The probability that
the first is a man is 4/7. If the first is a man, the probability that the second is a woman is 3/6 since
there are 3 women out of the 6 students left. Continuing in this manner, we obtain that the
probability that the third is a man is 3/5, the fourth is a woman is 2/4, that the fifth is a man is 2/3,
that the sixth is a woman is 1/2, and that the last is a man is 1/1. Thus

p �
4
7

�
3
6

�
3
5

�
2
4

�
2
3

�
1
2

�
1
1

�
1
35

(b) There are two mutually exclusive cases: the first student is a man and the first is a woman. If the
first student is a man, then, by the multiplication theorem, the probability p1 that the students
alternate is

p1 �
3
6

�
3
5

�
2
4

�
2
3

�
1
2

�
1
1

�
1
20

If the first student is a woman, then, by the multiplication theorem, the probability p2 that the
students alternate is

p2 �
3
6

�
3
5

�
2
4

�
2
3

�
1
2

�
1
1

�
1
20

Thus, p � p1 
 p2 � 1––
20 
 1––

20 � 1––
10.

FINITE STOCHASTIC PROCESSES

4.15. Let X, Y, Z be three coins in a box. Suppose X is a fair coin, Y is two-headed, and Z is
weighted so that the probability of heads is 1/3. A coin is selected at random and is
tossed. (a) Find the probability that heads appears, that is, find P(H). (b) If heads appears,
find the probability that it is the fair coin X, that is, find P(X �H). (c) If tails appears, find the
probability it is the coin Z, that is, find P(Z �T).

Construct the corresponding two-step stochastic tree diagram in Fig. 4-9(a).

(a) Heads appears along three of the paths; hence

P(H) �
1
3

�
1
2



1
3

� 1 

1
3

�
1
3

�
11
18

(b) Note X and heads H appear only along the top path in Fig. 4-9(a); hence

P(X 	 H) � (1/3)(1/2) � 1/6 and so P(X �H) �
P(X 	 H)

P(H)
�

1/6
11/18

�
3
11
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(c) P(T) � 1 � P(H) � 1 � 11/18 � 7/18. Alternately, tails appears along two of the paths and so

P(T) �
1
3

�
1
2



1
3

�
2
3

�
7
18

Note Z and tails T appear only along the bottom path in Fig. 4-9(a); hence

P(Z 	 T) � (1/3)(2/3) � 2/9 and so P(Z �T) �
P(Z 	 T)

P(T)
�

2/9
7/18

�
4
7

4.16. Suppose the following three boxes are given:

Box A contains 3 red and 5 white marbles.

Box B contains 2 red and 1 white marbles.

Box C contains 2 red and 3 white marbles.

A box is selected at random, and a marble is randomly drawn from the box. If the marble is
red, find the probability that it came from box A.

Construct the corresponding stochastic tree diagram as in Fig. 4-9(b). We seek P(A �R), the
probability that A was selected, given that the marble is red. Thus, it is necessary to find P(A 	 R) and
P(R). Note that A and R only occur on the top path; hence P(A 	 R) � (1/3)(3/8) � 1/8. There are
three paths leading to a red marble R; hence

P(R) �
1
3

�
3
8



1
3

�
2
3



1
3

�
2
5

�
173
360

� 0.48

Thus

P(A �R) �
P(A 	 R)

P(R)
�

1/8
173/360

�
45

173
� 0.26

4.17. Box A contains 9 cards numbered 1 through 9, and box B contains 5 cards numbered 1 through
5. A box is selected at random, and a card is randomly drawn from the box. If the number
is even, find the probability that the card came from box A.

Construct the corresponding stochastic tree diagram as in Fig. 4-10(a). We seek P(A �E), the
probability that A was selected, given that the number is even. Thus, it is necessary to find P(A 	 E) and
P(E). Note that A and E only occur on the top path; hence P(A 	 E) � (1/2)(4/9) � 2/9. Two paths
lead to an even number E; hence

P(E) �
1
2

�
4
9



1
2

�
2
5

�
19
45

and so P(A �E) �
P(A 	 E)

P(E)
�

2/9
19/45

�
10
19

� 0.53
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4.18. A box contains 3 red marbles and 7 white marbles. A marble is drawn from the box and the
marble is replaced by a marble of the other color. A second marble is drawn from the box.

(a) Find the probability p that the second marble is red.

(b) If both marbles were of the same color, find the probability p that they both were white.

Construct the corresponding stochastic tree diagram as in Fig. 4-10(b).

(a) Two paths lead to a red marble R; hence

p �
3
10

�
2
10



7
10

�
4
10

�
17
50

� 0.34

(b) Note that W appears twice only on the bottom path; hence P(WW) � (7/10)(6/10) � 21/50 is the
probability that both were white. There are two paths, the top path and the bottom path, where the
marbles are the same color. Thus

P(RR or WW) �
3
10

�
2
10



7
10

�
6
10

�
12
25

is the probability of the same color, the reduced sample space. Therefore

p �
21/50
12/25

�
7
8

� 0.875

4.19. A box contains a fair coin A and a two-headed coin B. A coin is selected at random and tossed
twice.

(a) If heads appears both times, find the probability p that the coin is two-headed.

(b) If tails appears both times, find the probability p that the coin is two-headed.

Construct the corresponding stochastic tree diagram as in Fig. 4-11.

(a) We seek P(B �HH). Heads appears twice only in the top path and in the bottom path. Hence

P(HH) �
1
2

�
1
4



1
2

� 1 �
5
8

On the other hand, P(B 	 HH) � P(B) � 1–
2. Thus

p � P(B �HH) �
P(B 	 HH)

P(B)
�

1/2
5/8

�
4
5

(b) If tails appears then it could not be the two-headed coin B. Hence p � 0.
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4.20. Suppose the following two boxes are given:

Box A contains 3 red and 2 white marbles.

Box B contains 2 red and 5 white marbles.

A box is selected at random; a marble is drawn and put into the other box; then a marble is
drawn from the second box. Find the probability p that both marbles drawn are of the same
color.

Construct the corresponding stochastic tree diagram as in Fig. 4-12. Note that this is a three-step
stochastic process: (1) choosing a box, (2) choosing a marble, (3) choosing a second marble. Note that
if box A is selected and a red marble R is drawn and put into box B, then box B will have 3 red marbles
and 5 white marbles.

There are 4 paths which lead to 2 marbles of the same color; hence

p �
1
2

�
3
5

�
3
8



1
2

�
2
5

�
3
4



1
2

�
2
7

�
2
3



1
2

�
5
7

�
1
2

�
901
1680

� 0.536

LAW OF TOTAL PROBABILITY, BAYES’ RULE

4.21. In a certain city, 40 percent of the people consider themselves Conservatives (C), 35 percent
consider themselves to be Liberals (L), and 25 percent consider themselves to be Independents
(I). During a particular election, 45 percent of the Conservatives voted, 40 percent of the
Liberals voted and 60% of the Independents voted. Suppose a person is randomly selected.

(a) Find the probability that the person voted.
(b) If the person voted, find the probability that the voter is

(i) Conservative, (ii) Liberal, (iii) Independent.
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(a) Let V denote the event that a person voted. We need P(V). By the law of total probability,

P(V) � P(C)P(V �C) 
 P(L)P(V �L) 
 P(I)P(V �I)

� (0.40)(0.45) 
 (0.35)(0.40) 
 (0.25)(0.60) � 0.47

(b) Use Bayes’ rule:

(i) P(C �V) �
P(C)P(V �C)

P(V)
�

(0.40)(0.45)
0.47

�
18
47

� 38.3%

(ii) P(L �V) �
P(L)P(V �L)

P(V)
�

(0.35)(0.40)
0.47

�
14
47

� 29.8%

(iii) P(I �V) �
P(I)P(V �I)

P(V)
�

(0.25)(0.60)
0.47

�
15
47

� 31.9%

4.22. In a certain college, 4 percent of the men and 1 percent of the women are taller than 6 feet.
Furthermore, 60 percent of the students are women. Suppose a randomly selected student is
taller than 6 feet. Find the probability that the student is a woman.

Let A � {students taller than 6 feet}. We seek P(W �A), the probability that a student is a woman,
given that the student is taller than 6 feet. By Bayes’ formula,

P(W �A) �
P(W)P(A �W)

P(W)P(A �W) 
 P(M)P(A �M)
�

(0.60)(0.01)
(0.60)(0.01) 
 (0.40)(0.04)

�
3
11

4.23. Three machines A, B, and C produce, respectively, 40 percent, 10 percent, and 50 percent of the
items in a factory. The percentage of defective items produced by the machines is, respectively,
2 percent, 3 percent, and 4 percent. An item from the factory is selected at random.

(a) Find the probability that the item is defective.

(b) If the item is defective, find the probability that the item was produced by:

(i) machine A,

(ii) machine B,

(iii) machine C.

(a) Let D denote the event that an item is defective. Then, by the law of total probability,

P(D) � P(A)P(D �A) 
 P(B)P(D �B) 
 P(C)P(D �C)

� (0.40)(0.02) 
 (0.10)(0.03) 
 (0.50)(0.04) � 0.031 � 3.1%

(b) Use Bayes’ formula to obtain

(i) P(A �D) �
P(A)P(D �A)

P(D)
�

(0.40)(0.02)
0.031

�
8
31

� 25.8%

(ii) P(B �D) �
P(B)P(B �Y)

P(D)
�

(0.10)(0.03)
0.031

�
3
31

� 9.7%

(iii) P(C �D) �
P(C)P(D �C)

P(D)
�

(0.50)(0.04)
0.031

�
20
31

� 64.5%
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4.24. Suppose a student dormitory in a college consists of:

(1) 40 percent freshmen of whom 15 percent are New York residents

(2) 25 percent sophomores of whom 40 percent are New York residents

(3) 20 percent juniors of whom 25 percent are New York residents

(4) 15 percent seniors of whom 20 percent are New York residents

A student is randomly selected from the dormitory.

(a) Find the probability that the student is a New York resident.

(b) If the student is a New York resident, find the probability that the student is a:
(i) freshman, (ii) junior.

Let A, B, C, D denote, respectively, the set of freshmen, sophomores, juniors, and seniors, and let E
denote the set of students who are New York residents.

(a) We find P(E) by the law of total probability. We have

P(E) � (0.40)(0.15) 
 (0.25)(0.40) 
 (0.20)(0.25) 
 (0.15)(0.20)

� 0.06 
 0.10 
 0.05 
 0.03 � 0.24 � 24%

(b) Use Bayes’ formula to obtain

(i) P(A �E) �
P(A)P(E �A)

P(E)
�

(0.40)(0.15)
0.24

�
6
24

� 25%

(ii) P(C �E) �
P(C)P(E �C)

P(E)
�

(0.20)(0.25)
0.24

�
5
24

20.83%

4.25. A box contains 10 coins where 5 coins are two-headed, 3 coins are two-tailed, and 2 are fair
coins. A coin is chosen at random and tossed.

(a) Find the probability that a head appears.

(b) If a head appears, find the probability that the coin is fair.

Let X, Y, Z denote, respectively, the two-headed coins, the two-tailed coins, and the fair coins. Then
P(X) � 0.5, P(Y) � 0.3, P(Z) � 0.2. Note P(H �X) � 1; that is, a two-headed coin must yield a
head. Similarly, P(H �Y) � 0 and P(H �Z) � 0.5. Figure 4-13 is a stochastic tree (with the root at the
top) describing the given data.

(a) By the law of total probability or by adding the probabilities of the three paths in Fig. 4-13 leading
to H, we get

P(H) � (0.5)(1) 
 (0.3)(0) 
 (0.2)(0.5) � 0.6

(b) By Bayes’ rule,

P(Z �H) �
P(Z)P(H �Z)

P(H)
�

(0.2)(0.5)
0.6

�
1
6

� 16.7%
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INDEPENDENT EVENTS

4.26. Two men A and B fire at a target. Suppose P(A) � 1–
3 and P(B) � 1–

5 denote their probabilities
of hitting the target. (We assume that the events A and B are independent.) Find the
probability that:

(a) A does not hit the target.

(b) Both hit the target.

(c) One or both hit the target.

(d) Neither hits the target.

(a) By the complement rule,

P(not A) � P(Ac) � 1 � P(A) � 1 �
1
3

�
2
3

(b) Since the events A and B are independent,

P(A and B) � P(A 	 B) � P(A) � P(B) �
1
3

�
1
5

�
1
15

(c) By the addition rule (Theorem 3.6),

P(A or B) � P(A 
 B) � P(A) 
 P(B) � P(A 	 B) �
1
3



1
5

�
1
15

�
7
15

(d) By DeMorgan’s law, ‘‘neither A nor B’’ is the complement of A 
 B. [See Problem 3.1(b).]
Hence

P(neither A nor B) � P((A 
 B)c) � 1 � P(A 
 B) � 1 �
7
15

�
8
15

4.27. Box A contains 5 red marbles and 3 blue marbles and Box B contains 3 red and 2 blue. A
marble is drawn at random from each box.

(a) Find the probability p that both marbles are red.

(b) Find the probability p that one is red and one is blue.

(a) The probability of choosing a red marble from A is 5–
8 and a red marble from B is 3–

5. Since the events
are independent,

p �
5
8

�
3
5

�
3
8

(b) There are two (mutually exclusive) events:

X: a red marble from A and a blue marble from B

Y: a blue marble from A and a red marble from B

We have

P(X) �
5
8

�
2
5

�
1
4

and P(Y) �
3
8

�
3
5

�
9
40

Accordingly, since X and Y are mutually exclusive,

p � P(X) 
 P(Y) �
1
4



9
40

�
19
40
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4.28. Let A be the event that a man will live 10 more years, and let B be the event that his wife lives
10 more years. Suppose P(A) � 1–

4 and P(B) � 1–
3. Assuming A and B are independent events,

find the probability that, in 10 years

(a) Both will be alive.

(b) At least one will be alive.

(c) Neither will be alive.

(d) Only the wife will be alive.

(a) We seek P(A 	 B). Since A and B are independent events,

P(A 	 B) � P(A) � P(B) �
1
4

�
1
3

�
1
12

(b) We seek P(A 
 B). By the addition rule (Theorem 3.6),

P(A 
 B) � P(A) 
 P(B) � P(A 	 B) �
1
4



1
3

�
1
12

�
1
2

(c) By DeMorgan’s law, ‘‘neither A nor B’’ is the complement of A 
 B. [Problem 3.1(b).] Hence

P(Ac 	 Bc) � P((A 
 B)c) � 1 � P(A 
 B) � 1 �
1
2

�
1
2

Alternately, we have P(Ac) � 3–
4 and P(Bc) � 2–

3; and, since Ac and Bc are independent,

P(Ac 	 Bc) �
3
4

�
2
3

�
1
2

(d) We seek P(Ac 	 B). Since Ac and B are also independent,

P(Ac 	 B) �
3
4

�
1
3

�
1
4

4.29. Consider the following events for a family with children:

A � {children of both sexes}, B � {at most one boy}

(a) Show that A and B are independent events if a family has 3 children.

(b) Show that A and B are dependent events if a family has only 2 children.

(a) We have the equiprobable space S � {bbb, bbg, bgb, bgg, gbb, gbg, ggb, ggg}. Here

A � {bbg, bgb, bgg, gbb, gbg, ggb} and so P(A) �
6
8

�
3
4

B � {bgg, gbg, ggb, ggg} and so P(B) �
4
8

�
1
2

A 	 B � {bgg, gbg, ggb} and so P(A 	 B) �
3
8

Since P(A)P(B) � 3–
4 � 1–

2 � 3–
8 � P(A 	 B), A and B are independent.

(b) We have the equiprobable space S � {bb, bg, gb, gg}. Here

A � {bg, gb} and so P(A) �
1
2

B � {bg, gb, gg} and so P(B) �
3
4

A 	 B � {bg, gb} and so P(A 	 B) �
1
2

Since P(A)P(B) � P(A 	 B), A and B are dependent.
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4.30. Three men A, B, C fire at a target. Suppose P(A) � 1/6, P(B) � 1/4, P(C) � 1/3 denote their
probabilities of hitting the target. (We assume that the events that A, B, C hit the target are
independent.)

(a) Find the probability p that they all hit the target.

(b) Find the probability p that they all miss the target.

(c) Find the probability p that at least one of them hits the target.

(a) We seek P(A 	 B 	 C). Since A, B, C are independent events,

P(A 	 B 	 C) � P(A) � P(B) � P(C) �
1
6

�
1
4

�
1
3

�
1
72

� 1.4%

(b) We seek P(Ac 	 Bc 	 Cc). We have P(Ac) � 1 � P(A) � 5/6. Similarly, P(Bc � 3/4 and
P(Cc) � 2/3. Since A, B, C are independent events, so are Ac, Bc, Cc. Hence

P(Ac 	 Bc 	 Cc) � P(Ac) � P(Bc) � P(Cc) �
5
6

�
3
4

�
2
3

�
5
12

� 41.7%

(c) Let D be the event that one or more of them hit the target. Then D is the complement of the event
Ac 	 Bc 	 Cc, that they all miss the target. Thus

P(D) � P((Ac 	 Bc 	 Cc)c) � 1 �
5
12

�
7
12

� 58.3%

4.31. Consider the data in Problem 4.30. (a) Find the probability p that exactly one of them hits the
target. (b) If the target is hit only once, find the probability p that it was the first man A.

(a) Let E be the event that exactly one of them hit the target. Then

E � (A 	 Bc 	 Cc) 
 (Ac 	 B 	 Cc) 
 (Ac 	 Bc 	 C)

That is, if only one man hit the target then it was only A, A 	 Bc 	 Cc, or only B, Ac 	 B 	 Cc,
or only C, Ac 	 Bc 	 C. These three events are mutually exclusive. Thus, we obtain (using
Problem 4.79)

p � P(E) � P(A 	 Bc 	 Cc) 
 P(Ac 	 B 	 Cc) 
 P(Ac 	 Bc 	 C)

�
1
6

�
3
4

�
2
3



5
6

�
1
4

�
2
3



5
6

�
3
4

�
1
3

�
1
12



5
36



5
24

�
31
72

� 43.1%

(b) We seek P(A �E), the probability that A hit the target given that only one man hit the target. Now
A 	 E � A 	 Bc 	 Cc is the event that only A hit the target. Also, by (a), P(A 	 E) � 1/12 and
P(E) � 31/72; hence

P(A �E) �
P(A 	 E)

P(E)
�

1/12
31/72

�
6
31

� 19.4%

4.32. Let S � {a, b, c, d } be an equiprobable space; hence each elementary event has probability 1/4.
Consider the events:

A � {a, d }, B � {b d }, C � {c, d }

(a) Show that A, B, C are pairwise independent.

(b) Show that A, B, C are not independent.
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(a) Here P(A) � P(B) � P(C) � 1/2. Since A 	 B � {d },

P(A 	 B) � P({d }) �
1
4

� P(A)P(B)

Hence A and B are independent. Similarly, A and C are independent and B and C are
independent.

(b) Here A 	 B 	 C � {d }, and so P(A 	 B 	 C) � 1/4. Therefore

P(A)P(B)P(C) �
1
8

� P(A 	 B 	 C)

Accordingly, A, B, C are not independent.

4.33. Suppose S � {1, 2, 3, 4, 5, 6, 7, 8} is an equiprobable space; hence each elementary event has
probability 1/8. Consider the events:

A � {1, 2, 3, 4}, B � {2, 3, 4, 5}, C � {4, 6, 7, 8}

(a) Show that P(A 	 B 	 C) � P(A)P(B)P(C).

(b) Show that

(i) P(A 	 B) � P(A)P(B),

(ii) P(A 	 C) � P(A)P(C),

(iii) P(B 	 C) � P(B)P(C).

(a) Here P(A) � P(B) � P(C) � 4/8 � 1/2. Since A 	 B 	 C � {4},

P(A 	 B 	 C) �
1
8

� P(A)P(B)P(C)

(b) (i) A 	 B � {3, 4, 5}, so P(A 	 B) � 3/8. But P(A)P(B) � 1/4; hence P(A 	 B) � P(A)P(B).

(ii) A 	 C � {4}, so P(A 	 C) � 1/8. But P(A)P(C) � 1/4; hence P(A 	 C) � P(A)P(C).

(iii) B 	 C � {4}, so P(B 	 C) � 1/8. But P(B)P(C) � 1/4; hence P(B 	 C) � P(B)P(C).

4.34. Prove: Suppose A and B are independent events. Then Ac and Bc are independent events.

We need to show that P(Ac 	 Bc) � P(Ac) � P(Bc). Let P(A) � x and P(B) � y. Then P(Ac) � 1 � x
and P(Bc) � 1 � y. Since A and B are independent, P(A 	 B) � P(A) � P(B) � xy. Thus, by the
addition rule (Theorem 3.6),

P(A 
 B) � P(A) 
 P(B) � P(A 	 B) � x 
 y � xy

By DeMorgan’s law, (A 
 B)c � Ac 	 Bc; hence

P(Ac 	 Bc) � P((A 
 B)c) � 1 � P(A 
 B) � 1 � x � y 
 xy

On the other hand,

P(Ac) � P(Bc) � (1 � x)(1 � y) � 1 � x � y 
 xy

Thus, P(Ac 	 Bc) � P(Ac) � P(Bc), and so Ac and Bc are independent.
Similarly, one can show that A and Bc, as well as Ac and B, are independent.

INDEPENDENT REPEATED TRIALS

4.35. A fair coin is tossed three times. Find the probability that there will appear:

(a) three heads, (b) exactly two heads, (c) exactly one head, (d) no heads.
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Let H denote a head and T a tail on any toss. The three tosses can be modeled as an equiprobable
space in which there are eight possible outcomes:

S � {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

However, since the result on any one toss does not depend on the result of any other toss, the three tosses
may be modeled as three independent trials in which P(H) � 1–

2 and P(T) � 1–
2 on any one trial. Then

(a) P (three heads) � P(HHH) � 1–
2 � 1–

2 � 1–
2 � 1–

8

(b) P (exactly two heads) � P(HHT or HTH or THH) � 1–
2 � 1–

2 � 1–
2 
 1–

2 � 1–
2 � 1–

2 
 1–
2 � 1–

2 � 1–
2 � 3–

8

(c) As in (b), P (exactly one head) � P (exactly two tails) � 3–
8

(d) As in (a), P (no heads) � P(TTT) � 1–
8

4.36. Suppose only horses a, b, c, d race together yielding the sample space S � {a, b, c, d }, and
suppose the probabilities of winning are as follows:

P(a) � 0.2, P(b) � 0.5, P(c) � 0.1, P(d) � 0.2

They race three times.

(a) Describe and find the number of elements in the product probability space S3.

(b) Find the probability that the same horse wins all three races.

(c) Find the probability that a, b, c each wins one race.

(a) By definition, S3 � S � S � S � {(x, y, z) : x, y, z � S} and

P((x, y, z) � P(x)P(y)P(z))

Thus, in particular, S3 contains 43 � 64 elements.

(b) Writing xyz for (x, y, z), we seek the probability of the event

A � {aaa, bbb, ccc, ddd }

By definition,

P(aaa) � (0.2)3 � 0.008, P(ccc) � (0.1)3 � 0.001

P(bbb) � (0.5)3 � 0.125, P(ddd) � (0.2)3 � 0.008

Thus, P(A) � 0.0008 
 0.125 
 0.001 
 0.008 � 0.142.

(c) We seek the probability of the event

B � {abc, acb, bac, bca, cab, cba}

Every element in B has the same probability (0.2)(0.5)(0.1) � 0.01. Hence P(B) � 6(0.01) � 0.06.

4.37. A certain soccer team wins (W) with probability 0.6, loses (L) with probability 0.3, and ties (T)
with probability 0.1. The team plays three games over the weekend. (a) Determine the
elements of the event A that the team wins at least twice and does not lose, and find P(A).
(b) Determine the elements of the event B that the team wins, loses, and ties in some order, and
find P(B).

(a) A consists of all ordered triples with at least two W’s and no L’s. Thus

A � {WWW, WWT, WTW, TWW}

Since these events are mutually exclusive,

P(A) � P(WWW) 
 P(WWT) 
 P(WTW) 
 P(TWW)

� (0.6)(0.6)(0.6) 
 (0.6)(0.6)(0.1) 
 (0.6)(0.1)(0.6) 
 (0.1)(0.6)(0.6)

� 0.216 
 0.036 
 0.036 
 0.036 � 0.324 � 32.4%
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(b) Here B � {WLT, WTL, LWT, LTW, TWL, TLW}. Each element in B has the probability
(0.6)(0.3)(0.1) � 0.018. Hence

P(B) � 6(0.108) � 0.108 � 10.8%

4.38. A certain type of missile hits its target with probability p � 0.3. Find the minimum number n
of missiles that should be fired so that there is at least an 80 percent probability of hitting the
target.

The probability of missing the target is q � 1 � p � 0.7. Hence the probability that n missiles miss
the target is (0.7)n. Thus, we seek the smallest n for which

1 � (0.7)n � 0.80 or equivalent (0.7)n � 0.20

Compute:

(0.7)1 � 0.7, (0.7)2 � 0.49, (0.7)3 � 0.343, (0.7)4 � 0.2401, (0.7)5 � 0.16807

Thus, at least n � 5 missiles should be fired.

4.39. The probability that a man hits a target is 1/3. He fires at the target n � 6 times. (a) Describe
and find the number of elements in the sample space S. (b) Let E be the event that he hits the
target exactly k � 2 times. List the elements of E and find the number n(E) of elements in
E. (c) Find P(E).

(a) S consists of all 6-element sequences consisting of S’s (successes) and F’s (failures); hence S contains
26 � 64 elements.

(b) E consists of all sequences with two S’s and four F’s; hence E consists of the following elements:

SSFFFF, SFSFFF, SFFSFF, SFFFSF, SFFFFS, FSSFFF, FSFSFF, FSFFSF,

FSFFFS, FFSSFF, FFSFSF, FFSFFS, FFFSSF, FFFSFS, FFFFSS

Observe that the list contains 15 elements. [This is expected since we are distributing k � 2 letters
S among the n � 6 positions in the sequence, and C(6, 2) � 15.] Thus n(E) � 15.

(c) Here P(S) � 1/3, so P(F) � 1 � P(S) � 2/3. Thus each of the above sequences occurs with the same
probability

p � (1/3)2 (2/3}4 �
16

729

Hence P(E) � 15(16/729) � 80/243 � 33%.

4.40. Let S be a finite probability space and let T be the probability space of n independent trials in
S. Show that T is well defined. That is, show

(i) The probability of each element of T is nonnegative.

(ii) The sum of their probabilities is 1.

Suppose S � {a1, a2, . . ., ar}. Then each element of T is of the form

ai1 ai2 · · · ain where i1, i2, . . ., in � {1, 2, . . ., r}

Since each P(ai) � 0, we have

P(ai1 ai2 · · · ain) � P(ai1)P(ai2) · · · P(ain) � 0

for every element of T. Hence (i) holds.
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We prove (ii) by induction on n. It is obviously true for n � 1. Therefore, we consider n � 1 and
assume (ii) has been proved for n � 1. We have

r�
i1, . . ., in�1

P(ai1 ai2 · · · ain) �

r�
i1, . . ., in�1

P(ai1)P(ai2) · · · P(ain) �

r�
i1, . . ., in�1�1

P(ai1)P(ai2) · · · P(ain�1
)

r�
in�1

P(ain)

�

r�
i1, . . ., in�1�1

P(ai1)P(ai2) · · · P(ain�1
) � 1

where the last equality follows from the inductive hypothesis. Thus, (ii) also holds.

Supplementary Problems

CONDITIONAL PROBABILITY

4.41. A fair die is tossed. Consider events A � {1, 3, 5}, B � {2, 3, 5}, C � {1, 2, 3, 4}. Find:

(a) P(A 	 B) and P(A 
 C)

(b) P(A �B) and P(B �A)

(c) P(A �C) and P(C �A)

(d) P(B �C) and P(C �B)

4.42. A digit is selected at random from the digits 1 through 9. Consider the events A � {1, 3, 5, 7, 9},
B � {2, 3, 5, 7}, C � {6, 7, 8, 9}. Find:

(a) P(A 	 B) and P(A 
 C)

(b) P(A �B) and P(B �A)

(c) P(A �C) and P(C �A)

(d) P(B �C) and P(C �B)

4.43. A pair of fair dice is tossed. If the faces appearing are different, find the probability that:

(a) the sum is even, (b) the sum exceeds nine.

4.44. Let A and B be events with P(A) � 0.6, P(B) � 0.3, and P(A 	 B) � 0.2. Find:

(a) P(A 
 B), (b) P(A �B), (c) P(B �A).

4.45. Referring to Problem 4.44, find: (a) P(A 	 Bc), (b) P(A �Bc).

4.46. Let A and B be events with P(A) � 1–
3, P(B) � 1–

4, and P(A 
 B) � 1–
2.

(a) Find P(A �B) and P(B �A). (b) Are A and B independent?

4.47. A woman is dealt 3 spades from an ordinary deck of 52 cards. (See Fig. 3-4.) If she is given two more
cards, find the probability that both of the cards are also spades.

4.48. Two marbles are selected one after the other without replacement from a box containing 3 white marbles
and 2 red marbles. Find the probability p that:

(a) The two marbles are white.

(b) The two marbles are red.

(c) The second is white if the first is white.

(d) The second is red if the first is red.

4.49. Two marbles are selected one after the other with replacement from a box containing 3 white marbles and
2 red marbles. Find the probability p that:

(a) The two marbles are white.

(b) The two marbles are red.

(c) The second is white if the first is white.

(d) The second is red if the first is red.

112 CONDITIONAL PROBABILITY AND INDEPENDENCE [CHAP. 4



4.50. Two different digits are selected at random from the digits 1 through 5.

(a) If the sum is odd, what is the probability that 2 is one of the numbers selected?

(b) If 2 is one of the digits, what is the probability that the sum is odd?

4.51. Three cards are drawn in succession (without replacement) from a 52-card deck. Find the probability
that:

(a) There are three aces.

(b) If the first is an ace, then the other two are aces.

(c) If the first two are aces, then the third is an ace.

4.52. A die is weighted to yield the following probability distribution:

Number

Probability

1

0.2

2

0.1

3

0.1

4

0.3

5

0.1

6

0.2

Let A � {1, 2, 3}, B � {2, 3, 5}, C � {2, 4, 6}. Find:

(a) P(A), P(B), P(C)

(b) P(Ac), P(Bc), P(Cc)

(c) P(A �B), P(B �A)

(d) P(A �C), P(C �A)

(e) P(B �C), P(C �B)

4.53. In a country club, 65 percent of the members play tennis, 40 percent play golf, and 20 percent play both
tennis and golf. A member is chosen at random. Find the probability that the member:

(a) Plays tennis or golf.

(b) Plays neither tennis nor golf.

(c) Plays golf if he or she plays tennis.

(d) Plays tennis if he or she plays golf.

4.54. Suppose 60 percent of the freshmen class of a small college are women. Furthermore, suppose 25 percent
of the men and 10 percent of the women in the class are studying mathematics. A freshman student is
chosen at random. Find the probability that:

(a) The student is studying mathematics.

(b) If the student is studying mathematics, then the student is a woman.

4.55. Three students are selected at random one after another from a class with 10 boys and 5 girls. Find the
probability that:

(a) The first two are boys and the third is a girl.

(b) The first and third are boys and the second is a girl.

(c) All three are of the same sex.

(d) Only the first and third are of the same sex.

FINITE STOCHASTIC PROCESSES

4.56. Two boxes are given as follows:

Box A contains 5 red marbles, 3 white marbles, and 8 blue marbles.

Box B contains 3 red marbles and 5 white marbles.

A box is selected at random and a marble is randomly chosen. Find the probability that the marble is:
(a) red, (b) white, (c) blue.
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4.57. Refer to Problem 4.56. Find the probability that box A was selected if the marble is:

(a) red, (b) white, (c) blue.

4.58. Consider Box A and Box B in Problem 4.56. A fair die is tossed; if a 3 or 6 appears, a marble is randomly
chosen from A, otherwise a marble is chosen from B. Find the probability that the marble is:

(a) red, (b) white, (c) blue.

4.59. Refer to Problem 4.58. Find the probability that box A was selected if the marble is:

(a) red, (b) white, (c) blue.

4.60. A box contains three coins, two of them fair and one two-headed. A coin is randomly selected and tossed
twice. If heads appear both times, what is the probability that the coin is two-headed?

4.61. A box contains a fair coin and a two-headed coin. A coin is selected at random and tossed. If heads
appears, then the other coin is tossed; if tails appears, then the same coin is tossed a second time. Find
the probability that:

(a) Heads appears on the second toss.

(b) If heads appears on the second toss, then it also appeared on the first toss.

4.62. Two boxes are given as follows:

Box A contains x red marbles and y white marbles.

Box B contains z red marbles and t white marbles.

(a) A box is selected at random and a marble is drawn. Find the probability that the marble is red.

(b) A marble is selected from A and put into B, and then a marble is drawn from B. Find the
probability that the marble is red.

TOTAL PROBABILITY AND BAYES’ FORMULA

4.63. A city is partitioned into districts A, B, C having 20 percent, 40 percent, and 40 percent of the registered
voters, respectively. The registered voters listed as Democrats are 50 percent in A, 25 percent in B, and
75 percent in C. A registered voter is chosen randomly in the city.

(a) Find the probability that the voter is a listed Democrat.

(b) If the registered voter is a listed Democrat, find the probability that the voter came from
district B.

4.64. Refer to Problem 4.63. Suppose a district is chosen at random, and then a registered voter is randomly
chosen from the district.

(a) Find the probability that the voter is a listed Democrat.

(b) If the voter is a listed Democrat, what is the probability that the voter came from district A?

4.65. Women in City College constitute 60 percent of the freshmen, 40 percent of the sophomores, 40 percent
of the juniors, and 45 percent of the seniors. The school population is 30 percent freshmen, 25 percent
sophomores, 25 percent juniors, and 20 percent seniors. A student from City College is chosen at
random.

(a) Find the probability that the student is a woman.

(b) If a student is a woman, what is the probability that she is a sophomore?
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4.66. Refer to Problem 4.65. Suppose one of the four classes is chosen at random, and then a student is
randomly chosen from the class.

(a) Find the probability that the student is a woman.

(b) If the student is a woman, what is the probability that she is a sophomore?

4.67. A company produces lightbulbs at three factories A, B, C.

Factory A produces 40 percent of the total number of bulbs, of which 2 percent are defective.

Factory B produces 35 percent of the total number of bulbs, of which 4 percent are defective.

Factory C produces 25 percent of the total number of bulbs, of which 3 percent are defective.

A defective bulb is found among the total output. Find the probability that it came from

(a) factory A, (b) factory B, (c) factory C.

4.68. Refer to Problem 4.67. Suppose a factory is chosen at random, and one of its bulbs is randomly
selected. If the bulb is defective, find the probability that it came from (a) factory A, (b) factory B, (c)
factory C.

INDEPENDENT EVENTS

4.69. Let A and B be independent events with P(A) � 0.3 and P(B) � 0.4. Find: (a) P(A 	 B) and P(A 
 B),
(b) P(A �B) and P(B �A).

4.70. Box A contains 5 red marbles and 3 blue marbles and Box B contains 2 red and 3 blue. A marble is drawn
at random from each box. Find the probability p that (a) Both marbles are red. (b) One is red and one
is blue.

4.71. Box A contains 5 red marbles and 3 blue marbles and Box B contains 2 red and 3 blue. Two marbles are
drawn at random from each box. Find the probability p that (a) They are all red. (b) They are all the
same color.

4.72. Let A and B be independent events with P(A) � 0.2 and P(B) � 0.3. Find:

(a) P(A 	 B) and P(A 
 B)

(b) P(A 	 Bc) and P(A 
 Bc)

(c) P(A �B) and P(B �A)

(d) P(A �Bc) and P(Bc �A)

4.73. Let A and B be events with P(A) � 0.3, P(A 
 B) � 0.5, and P(B) � p. Find p if:

(a) A and B are disjoint, (b) A and B are independent, (c) A is a subset of B.

4.74. The probability that A hits a target is 1/4 and the probability that B hits a target is 1/3. They each fire
once at the target. Find the probability that

(a) They both hit the target.

(b) The target is hit exactly once.

(c) If the target is hit only oonce, then A hit the target.

4.75. The probability that A hits a target is 1/4 and the probability that B hits a target is 1/3. They each fire
twice. Find the probability that the target is hit: (a) at least once, (b) exactly once.

4.76. The probabilities that three men hit a target are, respectively, 0.3, 0.5, and 0.4. Each fires once at the
target. (As usual, assume that the three events that each hits the target are independent.)

(a) Find the probability that they all: (i) hit the target, (ii) miss the target.

(b) Find the probability that the target is hit: (i) at least once, (ii) exactly once.

(c) If only one hits the target, what is the probability that it was the first man?
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4.77. Three fair coins are tossed. Consider the events:

A � {all heads or all tails}, B � {at least two heads}, C � {at most two heads}

Of the pairs (A, B), (A, C), and (B, C), which are independent?

4.78. Suppose A and B are independent events. Show that A and Bc are independent, and that Ac and B are
independent.

4.79. Suppose A, B, C are independent events. Show that:

(a) Ac, B, C are independent; (b) Ac, Bc, C are independent; (c) Ac, Bc, Cc are independent.

4.80. Suppose A, B, C are independent events. Show that A and B 
 C are independent.

INDEPENDENT REPEATED TRIALS

4.81. Whenever horses a, b, c race together, their respective probabilities of winning are 0.3, 0.5, 0.2. They race
three times.

(a) Find the probability that the same horse wins all three races.

(b) Find the probability that a, b, c each wins one race.

4.82. A team wins (W) with probability 0.5, loses (L) with probability 0.3, and ties (T) with probability 0.2. The
team plays twice. (a) Determine the sample space S and the probability of each elementary event. (b)
Find the probability that the team wins at least once.

4.83. A certain type of missile hits its target with probability p � 1–
3. (a) If 3 missiles are fired, find the

probability that the target is hit at least once. (b) Find the minimum number n of missiles that should be
fired so that there is at least a 90 percent probability of hitting the target.

4.84. In any game, the probability that the Hornets (H) will defeat the Rockets (R) is 0.6. Find the probability
that the Hornets will win a best-out-of-three series.

4.85. The batting average of a baseball player is .300. He comes to bat 4 times. Find the probability that he
will get: (a) exactly two hits, (b) at least one hit.

4.86. Consider a countably infinite probability space S � {a1, a2, . . .}. Let

T � Sn � {(s1, s2, . . ., sn) : si � S} and P(s1, s2, . . ., sn) � P(s1)P(s2) · · · P(sn)

Show that T is also a countably infinite probability space. (This generalizes the definition of independent
trials to a countably infinite space.)

Answers to Supplementary Problems

4.41 (a) 2/6, 5/6; (b) 2/3, 2/3; (c) 1/2, 2/3; (d) 1/2, 2/3.

4.42. (a) 3/9, 7/9; (b) 3/4, 3/5; (c) 1/2, 2/5; (d) 1/4, 1/4.

4.43. (a) 12/30; (b) 4/30.

4.44. (a) 0.7; (b) 2/3; (c) 1/3.
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4.45. (a) 0.4; (b) 4/7.

4.46. (a) 1/3; 1/4; (b) No.

4.47. C(10, 2)/C(49, 2).

4.48. (a) 3/10; (b) 1/10; (c) 1/2; (d) 1/4.

4.49. (a) 9/25; (b) 4/25; (c) 3/5; (d) 2/5.

4.50. (a) 1/3; (b) 3/4.

4.51. (a) 1/(13 � 17 � 25) � 0.014%; (b) 1/1275 � 0.08%; (c) 1/50 � 2%.

4.52. (a) 0.4, 0.3, 0.6; (b) 0.6, 0.7, 0.4; (c) 2/3, 1/2; (d) 1/6, 1/4; (e) 1/6, 1/3.

4.53. (a) 85%; (b) 15%; (c) 20/65 � 30.1%; (d) 1/2 � 50%.

4.54. (a) 16%; (b) 6/16 � 37.5%.

4.55. (a) 15/91 � 16.5%; (b) 15/91 � 16.5%; (c) 5/21 � 23.8%.

4.56. (a) 11/32; (b) 13/32; (c) 8/32.

4.57. (a) 5/11; (b) 3/13; (c) 1.

4.58. (a) 17/48 � 35.4%; (b) 23/48 � 47.9%; (c) 8/48 � 16.7%.

4.59. (a) 5/17 � 29.4%; (b) 3/23 � 13.0%; (c) 1.

4.60. 2/3.

4.61. (a) 5/8; (b) 4/5.

4.62. (a) 1–
2 � x

x 
 y 

z

z 
 t � ; (b)
xz 
 x 
 yz

(x 
 y)(z 
 t 
 1).

4.63. (a) 50%; (b) 20%.

4.64. (a) 50%; (b) 1/3.

4.65. (a) 47%; (b) 10/47 � 21.3%.

4.66. (a) 46.25%; (b) 21.6%.

4.67. (a) 80/295 � 27.1%; (b) 140/295 � 47.5%; (c) 75/295 � 25.574%.

4.68. (a) 2/9; (b) 4/9; (c) 3/9.

4.69. (a) 0.12, 0.58; (b) 0.3, 0.4.

4.70. (a) 1/4; (b) 21/40.

4.71. (a) 1/28; (b) 1/28 
 9/280 � 19/280.
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4.72. (a) 0.06, 0.44; (b) 0.14, 0.76; (c) 0.25, 0.30; (d) 0.20, 0.80.

4.73. (a) 0.2; (b) 2/7; (c) 0.5.

4.74. (a) 1/12; (b) 5/12; (c) 2/5.

4.75. (a) 1 � 1–
4 � 3–

4; (b) 1–
6 
 1–

4 � 5––
12.

4.76. (a) 6%, 21%; (b) 79%, 44%; (c) 9/44 � 20.45%.

4.77. Only A and B are independent.

4.81. (a) P(aaa or bbb or ccc) � 0.26; (b) 6(0.03) � 0.18.

4.82. (a) S � {WW, WL, WT, LW, LL, LT, TW, TL, TT}; 0.25, 0.15, 0.10, 0.15, 0.09, 0.06, 0.10, 0.06, 0.04;
(b) 1 � 0.25 � 0.75.

4.83. (a) 1 � (2/3)3 � 19/27; (b) (2/3)n � 10% so n � 6.

4.84. P(HH or HRH or RHH) � 64.8%.

4.85. (a) 6(0.44) � 26.5%; (b) 1 � P(MMMM) � 76%.
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IMPORTANT NOTE

It is useful to consider how the conditional probabilities calculated above differ from the marginal (prior) 
probability. The marginal probability is the probability of an item coming from a given machine. This prior 
is multiplied by the ratio of the conditional probability of a defect occurring in that machine and the proba-
bility of a defect occurring in any machine. Since for machine X the conditional probability of a defect from 
machine X is less than the probability of a defect occurring at all, we reduce the prior to get the posterior 
probability of the defect coming from machine X. Thus 40.5 percent is less than 50 percent. 



CHAPTER 5

Random Variables

5.1 INTRODUCTION

Random variables play an important role in probability. This chapter formally defines a random
variable and presents its basic properties. The next chapter treats special types of random
variables.

A random variable is a special kind of a function, so we recall some notation and definitions about
functions. Let S and T be sets. Suppose to each s � S there is assigned a unique element of T; the
collection f of such assignments is called a function from S into T, and it is written

f : S → T

We write f(s) for the element of T that f assigns to s � S, and f(s) is called the image of s under f or
the value of f at s. The image f(A) of any subset A of S, and the pre-image f �1(B) of any subset B
of T are defined as follows:

f(A) � { f(s) : s � A} and f �1(B) � {s : f(s) � B}

In words, f(A) consists of the images of the points in A, and f �1(B) consists of those points in S whose
image belongs to B. In particular, the set f(S) of all the image points of elements in S is called the
image set (or image or range) of the function f.

5.2 RANDOM VARIABLES

Let S be a sample space of an experiment. As noted previously, the outcome of the experiment,
or the points in S, need not be numbers. For example, in tossing a coin, the outcomes are H (heads)
or T (tails), and in tossing a pair of dice, the outcome are pairs of integers. However, we frequently
wish to assign a specific number to each outcome of the experiment. For example, in the tossing of
a pair of dice, we may want to assign the sum of the two integers to the outcome. Such an assignment
of numerical values to the points in S is called a random variable. Specifically, we have the following
definition.

Definition: A random variable X on a sample space S is a function from S into the set R of real
numbers such that the pre-image of any interval of R is an event in S.

We emphasize that if S is a discrete sample space in which every subset of S is an event, then
clearly every real-valued function on S is a random variable. On the other hand, if S is uncountable,
then it can be shown that certain real-valued functions on S are not random variables.
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The notation RX will be used to denote the image of a random variable X, that is, RX is the set of
those numbers assigned by X to a sample space S. We will refer to RX as the range space of X. This
chapter will mainly investigate discrete random variables, where the range space RX is finite or
countable. Continuous random variables are those where the range space RX is a continuum of
numbers such as an interval or a union of intervals. Such random variables, which may require some
calculus for their investigation, will be treated near the end of the chapter.

EXAMPLE 5.1 A pair of fair dice is tossed. (See Example 3.2.) The sample space S consists of the 36 ordered
pairs (a, b) where a and b can be any integers between 1 and 6, that is,

S � {(1, 1), (1, 2), . . ., (6, 6)}

Let X assign to each point (a, b) the maximum of its numbers, that is, X(a, b) � max(a, b). For example,

X(1, 1) � 1, X(3, 4) � 4, X(5, 2) � 5, X(6, 6) � 6

Then X is a random variable where any number between 1 and 6 could occur, and no other number can
occur. Thus, the range space RX of X is as follows:

RX � {1, 2, 3, 4, 5, 6}

Now let Y assign to each point (a, b) the sum of its numbers, that is, Y(a, b) � a 
 b. For example,

Y(1, 1) � 2, Y(3, 4) � 7, Y(6, 3) � 9, Y(6, 6) � 12

Then, Y is a random variable where any number between 2 and 12 could occur, and no other number can
occur. Thus, the range space RY of Y is as follows:

RY � {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

EXAMPLE 5.2

(a) A box contains 12 items of which 3 are defective. A sample of 3 items is selected from the box. The
sample space S consists of the C(12, 3) � 220 different samples of size 3. Let X denote the number of
defective items in the sample; then X is a random variable with range space RX � {0, 1, 2, 3}.

(b) A coin is tossed until a head occurs. The sample space follows:

S � {H, TH, TTH, TTTH, TTTTH, . . .}

Let X denote the number of times the coin is tossed. Then, X is a random variable with range space

RX � {1, 2, 3, 4, . . ., �}

(We include the number � for the case that only tails occurs.) Here X is an infinite but discrete random
variable.

(c) A point is chosen in a circle C of radius r. Let X denote the distance of the point from the center. Then,
X is a random variable whose value can be any number between 0 and r, inclusive. Thus, the range space
RX of X is a closed interval:

RX � [0, r] � {x : 0 � x � r}

Here, X is a continuous random variable.
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Sums and Products of Random Variable

Let X and Y be a random variable on the same sample space S. Then X 
 Y, X 
 k, kX, and XY
(where k is a real number) are the functions on S defined as follows (where s is any point in S):

(X 
 Y)(s) � X(s) 
 Y(s), (kX)(s) � kX(s),

(X 
 k)(s) � X(s) 
 k, (XY)(s) � X(s)Y(s)

More generally, for any polynomial, exponential, or continuous function h(t), we define h(X) to be the
function on S defined by

[h(X)](s) � h[X(s)]

One can show that these are also random variables on S. (This is trivially true for the case that every
subset of S is an event.)

We use the short notation P(X � a) and P(a � X � b), respectively, for the probability that ‘‘X
maps into a’’ and ‘‘X maps into the interval [a, b]’’. That is,

P(X � a) is short for P({s � S : X(s) � a}

P(a � X � b) is short for P({s � S : a � X(s) � b}

Analogous meanings are given to

P(X � a), P(X � a, Y � b), P(a � X � b), c � Y � d)

and so on.

5.3 PROBABILITY DISTRIBUTION OF A FINITE RANDOM VARIABLE

Let X be a finite random variable on a sample space S; that is, X assigns only a finite number of
values to S. Say

RX � {x1, x2, . . ., xn}

(We assume that x1 � x2 � · · · � xn.) Then X induces a function f which assigns probabilities to the
points in RX as follows:

f(xk) � P(X � xk) � P({s � S : X(s) � xk}

The set of ordered pairs [xi, f(xi)] is usually given in the form of a table as follows:

x

f(x)

x1

f(x1)

x2

f(x2)

x3

f(x3)

· · ·

· · ·

xn

f(xn)

This function f is called the probability distribution or, simply, distribution of the random variable X;
it satisfies the following two conditions:

(i) f(xk) � 0 and (ii) �
k

f(xk) � 1

Accordingly, the range space RX with the above assignment of probabilities is a probability space.

Remark: It is convenient sometimes to extend a probability distribution f to all real numbers by
defining f(x) � 0 when x does not belong to RX. A graph of such a function f(x) is called a probability
graph.

Notation: Sometimes a probability distribution will be given using the pairs [xi, pi] or [xi, P(xi)] or
[x, P(X � x)] rather than the functional notation [x, f(x)].
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Equiprobable Spaces

Now suppose X is a random variable on a finite equiprobable space S. Then, X is a finite random
variable, and the following theorem tells us how to obtain the distribution of X:

Theorem 5.1: Let S be a finite equiprobable space, and let X be a random variable on S with range
space RX � {x1, x2, . . ., xt}. Then

pk � P(xk) �
number of points in S whose image is xk

number of points in S

The proof appears in Problem 5.41. It essentially follows from the fact that S is an equiprobable
space, and hence

pk � P({s : X(s) � xk} �
n({s : X(s) � xk})

n(S)

We apply this theorem in the next examples.

EXAMPLE 5.3 Let S be the sample space when a pair of fair dice is tossed. Then S is a finite equiprobable
space consisting of the 36 ordered pairs (a, b) where a and b are any integers between 1 and 6:

S � {(1, 1), (1, 2), (1, 3), . . ., (6, 6)}

Let X and Y be the random variables on S in Example 5.1, that is, X denotes the maximum of the numbers,
X(a, b) � max(a, b), and Y denotes the sum of the numbers, Y(a, b) � a 
 b.

(a) Find the distribution f of X. (b) Find the distribution g of Y.

Also, exhibit their probability graphs.
Here S is an equiprobable space with 36 points so we can use Theorem 5.1 and simply count the number of

points with the given numerical value.

(a) Random Variable X. We compute the distribution f of X as follows:

(1) Only one toss (1, 1) has the maximum value 1; hence f(1) � 1––
36.

(2) Three tosses, (1, 2), (2, 2), (2, 1), have the maximum value 2; hence f(2) � 3––
36.

(3) Five tosses, (1, 3), (2, 3), (3, 3), (3, 2), (3, 1), have the maximum value 3; hence f(3) � 5––
36.

Similarly, f(4) �
7
36

, f(5) �
9
36

, f(6) �
11
36

Thus, the distribution f of X is as follows:

x

f(x)

1

1––
36

2

3––
36

3

5––
36

4

7––
36

5

9––
36

6

11––
36

The probability graph of X is pictured in Fig. 5-1(a).

(b) Random Variable Y. The distribution g of the random variable Y is as follows:

y

g(y)

2

1––
36

3

2––
36

4

3––
36

5

4––
36

6

5––
36

7

6––
36

8

5––
36

9

4––
36

10

3––
36

11

2––
36

12

1––
36

We obtain, for example, g(6) � 5––
36 from the fact that exactly five of the tosses have sum 6:

(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)

The other entries are obtained similarly. The probability graph of Y is pictured in Fig. 5-1(b).
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EXAMPLE 5.4 Suppose a fair coin is tossed three times yielding the following sample space:

S � {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

Let X be the random variable which assigns to each point in S the number of heads. Then clearly X can only
be 0, 1, 2, or 3. That is, the following is its range space:

RX � {0, 1, 2, 3}

Observe that:

(i) There is only one point TTT where X � 0.

(ii) There are three points, HTT, THT, TTH, where X � 1.

(iii) There are three points, HHT, HTH, THH, where X � 2.

(iv) There is only one point HHH where X � 3.

Since the coin is fair, S is an 8-element equiprobable space. Hence Theorem 5.1 tells us that the distribution f
of X is as follows:

x

f(x)

0

1–
8

1

3–
8

2

3–
8

3

1–
8

EXAMPLE 5.5 Suppose a coin is tossed three times, but now suppose the coin is weighted so that P(H) � 2–
3 and

P(T) � 1–
3. The sample space is again

S � {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

Let X be the random variable which assigns to each point in S its number of heads. Find the distribution f of X.
Now S is not an equiprobable space. Specifically, the probabilities of the points in S are as follows:

P(HHH) �
8
27

, P(HHT) �
4
27

, P(HTH) �
4
27

, P(HTT) �
2
27

P(THH) �
4
27

, P(THT) �
2
27

, P(TTH) �
2
27

, P(TTT) �
1
27

Since S is not an equiprobable space, we cannot use Theorem 5.1 to find the distribution f of X. We find
f directly by using its definition. Namely,

f(0) � P(TTT) �
1
27

, f(1) � P({HTT, THT, TTH}) �
2
27



2
27



2
27

�
6
27
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f(2) � P({HHT, HTH, THH}) �
4
27



4
27



4
27

�
12
27

, f(3) � P(HHH) �
8
27

Thus, the distribution f of X is as follows:

x

f(x)

0

1––
27

1

6––
27

2

12––
27

3

8––
27

The probability graph of f is shown in Fig. 5-2(a). An alternate picture of f is by a histogram which appears in
Fig. 5-2(b). One may view the histogram as making the random variable continuous where X � 1 means X lies
between 0.5 and 1.5.

5.4 EXPECTATION OF A FINITE RANDOM VARIABLE

Let X be a finite random variable, and suppose the following is its distribution:

x

f(x)

x1

f(x1)

x2

f(x2)

x3

f(x3)

· · ·

· · ·

xn

f(xn)

Then the mean, or expectation (or expected value) of X, denoted by E(X), or simply E, is defined by

E � E(X) � x1 f(x1) 
 x2 f(x2) 
 · · · 
 xn f(xn) �� xi f(xi)

Equivalently, when the notation [xi, pi] is used instead of [x, f(x)],

E � E(X) � x1 p1 
 x2 p2 
 · · · 
 xn pn �� xi pi

Roughly speaking, if the xi are numerical outcomes of an experiment, then E is the expected value of
the experiment. We may also view E as the weighted average of the outcomes where each outcome
is weighted by its probability. (For notation convenience we omit the limits of the index in the above
summations.)

124 RANDOM VARIABLES [CHAP. 5

Fig. 5-2



EXAMPLE 5.6 A pair of fair dice are tossed. Let X and Y be the random variables in Example 5.1; that is,
X denotes the maximum of the numbers, X(a, b) � max(a, b), and Y denotes the sum of the numbers,
Y(a, b) � a 
 b. Using the distribution of X, which appears in Example 5.3, the expectation of X is computed
as follows:

E(X) � 1� 1
36
 
 2� 3

36
 
 3� 5
36
 
 4� 7

36
 
 5� 9
36
 
 6�11

36
 �
161
36

� 4.47

Using the distribution of Y, which also appears in Example 5.3, the expectation of Y is computed as follows:

E(Y) � 2� 1
36
 
 3� 2

36
 
 4� 3
36
 
 · · · 
 12� 1

36
 �
252
36

� 7

EXAMPLE 5.7 Let X and Y be random variables with the following respective distributions:

xi

pi

2

0.2

3

0.2

6

0.5

10

0.1

yi

pi

�8

0.2

�2

0.3

0

0.1

3

0.3

7

0.1

Then

E(X) �� xi pi � 2(0.2) 
 3(0.2) 
 6(0.5) 
 10(0.1)
� 0.4 
 0.6 
 3.0 
 1.0 � 5

E(Y) �� yi pi � �8(0.2) � 2(0.3) 
 0(0.1) 
 3(0.3) 
 7(0.1)
� �1.6 � 0.6 
 0 
 0.9 
 0.7 � �0.6

Remark: Example 5.7 shows that the expectation of a random variable may be negative. It
also shows that we can talk about the distribution and expectation of a random variable X without
any reference to the original sample space S.

EXAMPLE 5.8 Suppose a fair coin is tossed 6 times. One can show (Section 6.2) that the number xi of heads
occurs with probability pi as follows:

xi

pi

0

1––
64

1

6––
64

2

15––
64

3

20––
64

4

15––
64

5

6––
64

6

1––
64

Then the expected number E of heads is as follows:

E � 0� 1
64
 
 1� 6

64
 
 2�15
64
 
 3�20

64
 
 4�15
64
 
 5� 6

64
 
 6� 1
64
 � 3

This agrees with our intuition that when a fair coin is repeatedly tossed, about half the tosses should be
heads.

The following theorems (proved in Problems 5.44 and 5.45) relate the notion of expectation to
operations on random variables defined in Section 5.2.

Theorem 5.2: Let X be a random variable, and let k be a real number. Then

(i) E(kX) � kE(X) and (ii) E(X 
 k) � E(X) 
 k

Thus, for any real numbers a and b,

E(aX 
 b) � E(aX) 
 b � aE(X) 
 b

Theorem 5.3: Let X and Y be random variables on the same sample space S. Then

E(X 
 Y) � E(X) 
 E(Y)
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A simple induction argument yields the following:

Corollary 5.4: Let X1, X2, . . ., Xn be random variables on the same sample space S. Then

E(X1 
 X2 
 · · · 
 Xn) � E(X1) 
 E(X2) 
 · · · 
 E(Xn)

Expectation and Games of Chance

Frequently, a game of chance consists of n outcomes a1, a2, . . ., an occurring with respective
probabilities p1, p2, . . ., pn. Suppose the payoff to a player is wi for the outcome ai, where a positive
wi denotes a win for the player and a negative wi denotes a loss. Then the expected value E of the
game for the player is the quantity

E � w1 p1 
 w2 p2 
 · · · 
 wn pn

The assignment of wi to ai may be viewed as a random variable X, and the expectation E(X) of X is
the expected value of the game. The game is fair if E � 0, favorable to the player if E is positive, and
unfavorable to the player if E is negative.

EXAMPLE 5.9 A fair die is tossed. If 2, 3, or 5 occurs, the player wins that number of dollars, but if 1, 4, or
6 occurs, the player loses that number of dollars. The possible payoffs for the player and their respective
probabilities follow:

x

f(x)

2

1–
6

3

1–
6

5

1–
6

�1

1–
6

�4

1–
6

�6

1–
6

The negative numbers �1, �4, �6 refer to the fact that the player loses when 1, 4, or 6 occurs. Then the
expected value E of the game is as follows:

E � 2�1
6 
 
 3�1

6 
 
 5�1
6 
 � 1�1

6 
 � 4�1
6 
 � 6�1

6 
 � �
1
6

Thus, the game is unfavorable to the player since the expected value E is negative.

Mean and Expectation

Suppose X is a random variable with n distinct values x1, x2, . . ., xn and suppose each xi occurs with
the same probability pi. Then each pi � 1

n. Accordingly

E(X) � x1�1
n
 
 x2�1

n
 
 · · · 
 xn �1
n
 �

x1 
 x2 
 · · · 
 xn

n

This is precisely the average or mean value of the numbers x1, x2, . . ., xn. (See Appendix A.) For
this reason E(X) is called the mean of the random variable X. Furthermore, since the Greek letter
� (read ‘‘mu’’) is used for the mean value of a population, we also use � for the expectation of
X. That is,

� � �X � E(X)

The mean � is an important parameter for a probability distribution, and in the next section,
Section 5.4, we introduce another important parameter, denoted by the Greek letter 
 (read ‘‘sigma’’),
called the standard deviation of X.
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5.5 VARIANCE AND STANDARD DEVIATION

The mean of a random variable X measures, in a certain sense, the ‘‘average’’ value of X. The
concepts in this section, variance and standard deviation, measure the ‘‘spread’’ or ‘‘dispersion’’
of X.

Let X be a random variable with mean � � E(X) and the following probability distribution:

x

f(x)

x1

f(x1)

x2

f(x2)

x3

f(x3)

· · ·

· · ·

xn

f(xn)

The variance of X, denoted by var(X), is defined by

var(X) � (x1 � �)2 f(x1) 
 (x2 � �)2 f(x2) 
 · · · 
 (xn � �)2 f(xn)

�� (xi � �)2 f(xi) � E((X � �)2)

The standard deviation of X, denoted by 
X or simply 
, is the nonnegative square root of var(X);
that is


X � �var(X)

Accordingly, var(X) � 
2
X. Both var(X) and 
2

X or simply 
2 are used to denote the variance of a
random variable X.

The next theorem gives us an alternate and sometimes more useful formula for calculating the
variance of a random variable X.

Theorem 5.5: var(X) � x1
2 f(x1) 
 x2

2 f(x2) 
 · · · 
 x2
n f(xn) � �2 �� xi

2 f(xi) � �2 � E(X 2) � �2

Proof: Using � xi f(xi) � � and � f(xi) � 1, we obtain

� (xi � �)2 f(xi) �� (xi
2 � 2�xi 
 �2) f(xi)

�� xi
2 f(xi) � 2�� xi f(xi) 
 �2� f(xi)

�� xi
2 f(xi) � 2�2 
 �2 �� xi

2 f(xi) � �2

This proves the theorem.

Remark: Both the variance var(X) � 
2 and the standard deviation 
 measure the weighted
spread of the values xi about the mean �; however, one advantage of the standard deviation 
 is that
it has the same units as �.

EXAMPLE 5.10 Let X denote the number of times heads occurs when a fair coin is tossed 6 times. The
distribution of X appears in Example 5.8 where its mean � � 3 is computed. The variance of X is computed using
its definition as follows:

var(X) � (0 � 3)2 1
64


 (1 � 3)2 6
64


 (2 � 3)2 15
64


 · · · 
 (6 � 3)2 1
64

� 1.5

Alternately, by Theorem 5.5,

var(X) � 02 1
64


 12 6
64


 22 15
64


 32 20
64


 42 15
64


 52 6
64


 62 1
64

� 1.5

Thus the standard deviation is 
 � �1.5 � 1.225 (heads).
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EXAMPLE 5.11 A pair of fair dice are tossed. Let X and Y be the random variables in Example 5.1; that is,
X denotes the maximum of the numbers, X(a, b) � max(a, b), and Y denotes the sum of the numbers,
Y(a, b) � a 
 b. The distributions of X and Y appear in Example 5.3, and their expectations were computed in
Example 5.6, yielding

�X � E(X) � 4.47 and �Y � E(Y) � 7

Find the variance and standard deviation of: (a) X, (b) Y.

(a) First we compute E(X 2) as follows:

E(X 2) �� xi
2 f(xi) � 12 � 1

36 
 
 22 � 3
36
 
 32 � 5

36
 
 42 � 7
36
 
 52 � 9

36
 
 62 �11
36
 �

791
36

� 21.97

Hence

var(X) � E(X 2) � �X
2 � 21.97 � 19.98 � 1.99 and 
X � �1.99 � 1.4

(b) First we compute E(Y 2) as follows:

E(Y 2) �� yi
2 f(yi) � 22 � 1

36 
 
 32 � 2
36
 
 42 � 3

36
 
 · · · 
 122 � 1
36
 �

1974
36

� 54.8

Hence

var(Y) � E(Y 2) � �Y
2 � 54.8 � 49 � 5.8 and 
Y � �5.8 � 2.4

We establish (Problem 5.46) an important property of the variance and standard deviation.

Theorem 5.6: Let X be a random variable, and let a and b be constants. Then

var(aX 
 b) � a2 var(X) and 
aX
b � �a �
X

There are two special cases of Theorem 5.6 which occur frequently, the first where a � 1 and the
second where b � 0. Specifically, for any constant k

(i) var(X 
 k) � var(X) and hence 
X
k � 
X.

(ii) var(kX) � k2 var(X) and hence 
kX � �k �
X.

Remark: There are physical interpretations of the mean and variance. Suppose the x axis is a
thin wire and at each point xi there is a unit with mass pi. Then, if a fulcrum or pivot is placed at the
point � [Fig. 5-3(a)], the system will be balanced. Hence � is called the center of mass of the
system. On the other hand, if the system were rotating about the center of mass � [Fig. 5-3(b)], then
the variance 
2 measures the system’s resistance to stopping, called the moment of inertia of the
system.
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Standardized Random Variable

Let X be a random variable with mean � and standard deviation 
 � 0. The standardized
random variable Z is defined by

Z �
X � �




Important properties of Z are contained in the next theorem (proved in Problem 5.48).

Theorem 5.7: The standardized random variable Z has mean �Z � 0 and standard deviation

Z � 1.

EXAMPLE 5.12 Suppose a random variable X has the following distribution:

x

f(x)

2

0.1

4

0.2

6

0.3

8

0.4

(a) Compute the mean � and standard deviation 
 of X.

(b) Find the probability distribution of the standardized random variable Z � (X � �)/
, and show that �Z � 0
and 
Z � 1, as predicted by Theorem 5.6.

(a) We have

� � E(X) �� xi f(xi) � 2(0.1) 
 4(0.2) 
 6(0.3) 
 8(0.4) � 6

E(X 2) �� xi
2 f(xi) � 22(0.1) 
 42(0.2) 
 62(0.3) 
 82(0.4) � 40

Now using Theorem 5.5, we obtain


2 � var(X) � E(X 2) � �2 � 40 � 62 � 4 and 
 � 2

(b) Using z � (x � �)/
 � (x � 6)/2 and f(z) � f(x), we obtain the following distribution for Z:

z

f(z)

�2

0.1

�1

0.2

0

0.3

1

0.4

Then

�Z � E(Z) �� zi f(zi) � �2(0.1) � 1(0.2) 
 0(0.3) 
 1(0.4) � 0

E(Z2) �� zi
2 f(zi) � (�2)2(0.1) 
 (�1)2(0.2) 
 02(0.3) 
 12(0.4) � 1

Using Theorem 5.5, we obtain


2
Z � var(Z) � E(Z2) � �2 � 1 � 02 � 1 and 
Z � 1

(The results �Z � 0 and 
Z � 1 were predicted by Theorem 5.7.)

5.6 JOINT DISTRIBUTION OF RANDOM VARIABLES

Let X and Y be random variables on the same sample space S with respective range spaces

RX � {x1, x2, . . ., xn} and RY � {y1, y2, . . ., ym}

The joint distribution or joint probability function of X and Y is the function h on the product space
RX � RY defined by

h(xi, yj) 	 P(X � xi, Y � yj) 	 P({s � S : X(s) � xi, Y(s) � yj})
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The function h is usually given in the form of a table as in Fig. 5-4. The function h has the
properties

(i) h(xi, yj) � 0 (ii) �
i
�

j

h(xi, yj) � 1

Thus, h defines a probability space on the product space RX � RY.

Y

X
y1 y2 · · · yj · · · ym Sum

x1

x2

· · ·
xi

· · ·
xm

Sum

h(x1 y1)
h(x2, y1)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
h(xi, y1)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
h(xn, y1)

g(y1)

h(x1, y2)
h(x2, y2)

h(xi, y2)

h(xn, y2)

g(y2)

· · ·
· · ·

· · ·

· · ·

· · ·

h(x1, yj)
h(x2, yj)

h(xi, yj)

h(xn, yj)

g(yj)

· · ·
· · ·

· · ·

· · ·

· · ·

h(x1, ym)
h(x2, ym)

h(xi, ym)

h(xn, ym)

g(ym)

f(x1)
f(x2)
· · ·

f(xi)
· · ·

f(xn)

Fig. 5-4
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The functions f and g on the right side and the bottom side, respectively, of the joint distribution
table in Fig. 5-4 are defined by

f(xi) � �
j

h(xi, yj) and g(yj) � �
i

h(xi, yj)

That is, f(xi) is the sum of the entries in the ith row and g(yj) is the sum of the entries in the jth
column. They are called the marginal distributions, and are, in fact, the (individual) distributions of
X and Y, respectively (Problem 5.42).

Covariance and Correlation

Let X and Y be random variables with the joint distribution h(x, y), and respective means �X and
�Y. The covariance of X and Y, denoted by cov(X, Y), is defined by

cov(X, Y) � �
i, j

(xi � �X)(yj � �Y)h(xi, yj) � E[(X � �X)(Y � �Y)]

Equivalently (Problem 5.47),

cov(X, Y) � �
i, j

xi yj h(xi, yj) � �X �Y � E(XY) � �X �Y

We are often interested in the degree to which two random variables move together. This correlation is 
commonly measured in two ways: the covariance and the correlation coefficient. 

The correlation coefficient, denoted by r(X, Y), is defined by

The correlation � is dimensionless and has the following properties:

(i) �(X, Y) � �(Y, X),

(ii) �1 � � � 1,

(iii) �(X, X) � 1, �(X, �X) � �1,

(iv) �(aX 
 b, cY 
 d) � �(X, Y) if a, c � 0.

r(X, Y) =
cov(X, Y )

s
x

s
y

,

, and

 and



We note (Example 5.14) that a pair of random variables with identical individual distributions can
have distinct covariances and correlations. Thus, cov(X, Y) and �(X, Y) are measurements of the way
that X and Y are interrelated.

EXAMPLE 5.13 Let S be the sample space when a pair of fair dice is tossed, and let X and Y be the random
variables on S in Example 5.1. That is, to each point (a, b) in S, X assigns the maximum of the numbers and Y
assigns the sum of the numbers:

X(a, b) � max(a, b) and Y(a, b) � a 
 b

The joint distribution of X and Y appears in Fig. 5-5. The entry h(3, 5) � 2––
36 comes from the fact that (3, 2) and

(2, 3) are the only points in S whose maximum number is 3 and whose sum is 5, that is,

h(3, 5) 	 P(X � 3, Y � 5) � P{(3, 2), (2, 3)} � 2––
36

The other entries are obtained in a similar manner.

Y

X
2 3 4 5 6 7 8 9 10 11 12 Sum

1
2
3
4
5
6

1––
36

0
0
0
0
0

0
2––
36

0
0
0
0

0
1––
36
2––
36

0
0
0

0
0
2––
36
2––
36

0
0

0
0
1––
36
2––
36
2––
36

0

0
0
0
2––
36
2––
36
2––
36

0
0
0
1––
36
2––
36
2––
36

0
0
0
0
2––
36
2––
36

0
0
0
0
1––
36
2––
36

0
0
0
0
0
2––
36

0
0
0
0
0
1––
36

1––
36
3––
36
5––
36
7––
36
9––
36
11––
36

Sum 1––
36

2––
36

3––
36

4––
36

5––
36

6––
36

5––
36

4––
36

3––
36

2––
36

1––
36

Fig. 5-5

Observe that the right side sum column does give the distribution f of X and the bottom sum row does give
the distribution g of Y which appear in Example 5.3.

We compute the covariance and correlation of X and Y. First we compute E(XY) as follows:

E(XY) �� xi yj h(xi, yj)

� 1(2)� 1
36
 
 2(3) � 2

36
 
 2(4) � 1
36
 
 · · · 
 6(12)� 1

36
 �
1232
36

� 34.2

By Example 5.6, �X � 4.47 and �Y � 7, and by Example 5.11, 
X � 1.4 and 
Y � 2.4; hence

cov(X, Y) � E(XY) � �X �Y � 34.2 � (4.47)(7) � 2.9

and

�(X, Y) �
cov(X, Y)

�X �Y

�
2.9

(1.4)(2.4)
� 0.86
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EXAMPLE 5.14 Let X and Y be random variables with joint distribution as shown in Fig. 5-6(a), and let X � and
Y � be random variables with joint distribution as shown in Fig. 5-6(b). The marginal entries in Fig. 5-6 tell us that
X and X � have the same distribution and that Y and Y � have the same distribution, as follows:

x

f(x)

1

1–
2

3

1–
2

y

g(y)

4

1–
2

10

1–
2

Distribution of X and X � Distribution of Y and Y �

Thus

�X � �X� � 1�1
2 
 
 3�1

2 
 � 2 and �Y � �Y� � 4�1
2 
 
 10 �1

2 
 � 7

We show that cov(X, Y) � cov(X �, Y �) and hence �(X, Y) � �(X �, Y �). First we compute E(XY) and
E(X �Y �) as follows:

E(XY) � 1(4)�1
4 
 
 1(10)�1

4 
 
 3(4) �1
4 
 
 3(10)�1

4 
 � 14

E(X �Y �) � 1(4)(0) 
 1(10)�1
2 
 
 3(4) �1

2 
 
 3(10)(0) � 11

Since �X � �X� � 2 and �Y � �Y� � 7, we obtain

cov(X, Y) � E(XY) � �X �Y � 0 and cov(X �, Y �) � E(XY) � �X �Y � �3

Y

X
4 10 Sum

Y �

X �
4 10 Sum

1
3

Sum

1/4
1/4

1/2

1/4
1/4

1/2

1/2
1/2

1
3

Sum

0
1/2

1/2

1/2
0

1/2

1/2
1/2

(a) (b)

Fig. 5-6

Remark: The notion of a joint distribution h is extended to any finite number of random variables
X, Y, . . ., Z in the obvious way; that is, h is a function on the product set RX � RY � · · · � RZ defined by

h(xi, yj, . . ., zk) 	 P(X � xi, Y � yj, . . ., Z � zk)

As in the case of two random variables, h defines a probability space on the product set RX � RY � · · · � RZ.

5.7 INDEPENDENT RANDOM VARIABLES

Let X, Y, . . ., Z be random variables on the same sample space S. Then X, Y, . . ., Z are said to
be independent if, for any values xi, yj, . . ., zk, we have

P(X � xi, Y � yj, . . ., Z � zk) � P(X � xi)P(Y � yj) · · · P(Z � zk)
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In particular, X and Y are independent if

P(X � xi, Y � yj) � P(X � xi)P(Y � yj)

Now suppose X and Y have respective distribution f and g and joint distribution h. Then the above
equation may be written as

h(xi, yj) � f(xi)g(yj)

Thus, random variables X and Y are independent if each entry h(xi, yj) in the joint distribution table
is the product of its marginal entries f(xi) and g(yj).

EXAMPLE 5.15 Let X and Y be random variables with the joint distribution in Fig. 5-7. Then X and Y are
independent random variables since each entry in the joint distribution can be obtained by multiplying its marginal
entries. For example,

P(1, 2) � P(X � 1)P(Y � 2) � (0.30)(0.20) � 0.06

P(1, 3) � P(X � 1)P(Y � 3) � (0.30)(0.50) � 0.15

P(1, 4) � P(X � 1)P(Y � 4) � (0.30)(0.30) � 0.09

And so on.

Y

X

1
2

Sum

2

0.06
0.14

0.20

3

0.15
0.35

0.50

4

0.09
0.21

0.30

Sum

0.30
0.70

Fig. 5-7

EXAMPLE 5.16 A fair coin is tossed twice giving the equiprobable space S � {HH, HT, TH, TT}.

(a) Let X and Y be random variables on S defined as follows:

(i) X � 1 if the first toss is H and X � 0 otherwise.

(ii) Y � 1 if both tosses are H and Y � 0 otherwise.

The joint distribution of X and Y appears in Fig. 5-8(a). Note that X and Y are not independent random
variables. For example, P(0, 0) is not equal to the product of the marginal entries. Namely,

P(0, 0) � 1–
2 � (1–

2)(3–
4) � P(X � 0)P(Y � 0)

(b) Now let X and Y be random variables on S defined as follows:

(i) X � 1 if the first toss is H and X � 0 otherwise.

(ii) Y � 1 if the second toss is H and Y � 0 otherwise.

The joint distribution of X and Y appears in Fig. 5-8(b). Note that X and Y are now independent.
Specifically, each of the four entries is 1–

4, and each entry is the product of its marginal entries:

P(i, j) � 1–
4 � (1–

2)(1–
2) � P(X � i)P(Y � j)
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Y

X
0 1 Sum

Y

X
0 1 Sum

0
1

Sum

1–
2
1–
4

3–
4

0
1–
4

1–
4

1–
2
1–
2

0
1

Sum

1–
4
1–
4

1–
2

1–
4
1–
4

1–
2

1–
2
1–
2

(a) (b)

Fig. 5-8

The following theorems (proved in Problems 5.49 and 5.50) give important properties of
independent random variables which do not hold in general.

Theorem 5.8: Let X and Y be independent random variables. Then:

(i) E(XY) � E(X)E(Y),

(ii) var(X 
 Y) � var(X) 
 var(Y),

(iii) cov(X, Y) � 0.

Part (ii) in the above theorem generalizes as follows:

Theorem 5.9: Let X1, X2, . . ., Xn be independent random variables. Then

var(X1 
 · · · 
 Xn) � var(X1) 
 · · · 
 var(Xn)

5.8 FUNCTIONS OF A RANDOM VARIABLE

Let X and Y be random variables on the same sample space S. Then Y is said to be a function
of X if Y can be represented Y � �(X) for some real-valued function � of a real variable, that is, if
Y(s) � �[X(s)] for every s � S. For example, kX, X 2, X 
 k, and (X 
 k)2 are all functions of X with
�(x) � kx, x2, x 
 k, and (x 
 k)2, respectively. We have the following fundamental result (proved
in Problem 5.43):

Theorem 5.10: Let X and Y be random variables on the same sample space S with Y � �(X).

Then

E(Y) �

n�
i�1

�(xi) f(xi)

where f is the distribution function of X.

Similarly, a random variable Z is said to be a function of X and Y if Z can be represented
Z � �(X, Y) where � is a real-valued function of two real variables, that is, if

Z(s) � �[X(s), Y(s)]

for every s � S. For example, X 
 Y is a function of X and Y with �(x, y) � x 
 y.
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Corresponding to the above theorem, we have the following analogous result:

Theorem 5.11: Let X, Y, Z be random variables on the same sample space S with Z � �(X, Y).
Then

E(Z) � �
i, j

�(xi, yj)h(xi, yj)

where h is the joint distribution of X and Y.

We note that the above two theorems have been used implicitly in the preceding discussion and
theorems. The proof of Theorem 5.11 will be given as a supplementary problem; it generalizes to a
function of n random variables in the obvious way.

EXAMPLE 5.17 Let X and Y be the dependent (nonindependent) random variables in Example 5.16(a), and let
Z � X 
 Y. We show that

E(Z) � E(X) 
 E(Y) but var(Z) � var(X) 
 var(Y)

[Thus, Theorem 5.8 need not hold for dependent (nonindependent) random variables.]
The joint distribution of X and Y appears in Fig. 5-8(a). The right marginal distribution is the distribution

of X; hence

�X � E(X) � 0�1
2 
 
 1�1

2 
 �
1
2

and E(X 2) � 02 �1
2 
 
 12�1

2 
 �
1
2

Var(X) � E(X 2) � �X
2 �

1
2

�
1
4

�
1
4

The bottom marginal distribution is the distribution of Y; hence

�Y � E(Y) � 0�3
4 
 
 1�1

4 
 �
1
4

and E(Y 2) � 02 �3
4 
 
 12�1

4 
 �
1
4

var(Y) � E(Y 2) � �Y
2 �

1
4

�
1
16

�
3
16

The random variable Z � X 
 Y assumes the values 0, 1, 2 with respective probabilities 1–
2,

1–
4,

1–
4. Thus

�Z � E(Z) � 0�1
2 
 
 1�1

4 
 
 2�1
4 
 �

3
4

and E(Z 2) � 02�1
2 
 
 12�1

4 
 
 22�1
4 
 �

5
4

var(Z) � E(Z 2) � �2
Z �

5
4

�
9
16

�
11
16

Therefore

E(X) 
 E(Y) �
1
2



1
4

�
3
4

� E(Z) but var(X) 
 var(Y) �
1
4



3
16

�
7
16

�
11
16

� var(Z)

EXAMPLE 5.18 Let X and Y be the independent random variables in Example 5.16(b), and let Z � X 
 Y. We
show that

E(Z) � E(X) 
 E(Y) and var(Z) � var(X) 
 var(Y)

The equation for E(Z) is always true, and the equation for var(Z) is expected since X and Y are independent.

The joint distribution of X and Y appears in Fig. 5-8(b). The right and bottom marginal distributions are the
distributions of X and Y, respectively, and they are identical. Thus

�X � �Y � 0�1
2 
 
 1�1

2 
 �
1
2

and E(X 2) � E(Y 2) � 02 �1
2 
 
 12�1

2 
 �
1
2

var(X) � var(Y) � E(X 2) � �X
2 �

1
2

�
1
4

�
1
4
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The random variable Z � X 
 Y assumes the values 0, 1, 2 but now with respective probabilities 1/4, 1/2,
1/4. Thus:

�Z � E(Z) � 0�1
4 
 
 1�1

2 
 
 2�1
4 
 � 1 and E(Z 2) � 02 �1

4 
 
 12�1
2 
 
 22�1

4 
 �
3
2

var(Z) � E(Z 2) � �Z
2 �

3
2

� 1 �
1
2

Therefore

E(X) 
 E(Y) �
1
2



1
2

� 1 � E(Z)
and

var(X) 
 var(Y) �
1
4



1
4

�
1
2

� var(Z)

5.9 DISCRETE RANDOM VARIABLES IN GENERAL

Now suppose X is a random variable on a sample space S with a countable infinite range space,
say RS � {x1, x2, . . .}. As in the finite case, X induces a function f on RX, called the distribution of X,
defined by

f(xi) 	 P(X � xi)

The distribution is frequently presented by a table as follows:

x

f(x)

x1

f(x1)

x2

f(x2)

x3

f(x3)

· · ·

· · ·

The distribution f has the following two properties:

(i) f(xi) � 0, (ii)
��

i�1

f(xi) � 1

Thus, RX with the above assignment of probabilities is a probability space.
The expectation E(X) and variance var(X) of the above random variable X are defined by the

following series when the relevant series converge absolutely:

E(X) � x1 f(x1) 
 x2 f(x2) 
 x3 f(x3) 
 · · · �

��
i�1

xi f(xi)

var(X) � (x1 � �)2 f(x1) 
 (x2 � �)2 f(x2) 
 · · · �

��
i�1

(xi � �)2 f(xi)

It can be shown that var(X) exists if and only if � � E(X) and E(X 2) both exist and in this case the
following formula holds just as in the finite case:

var(X) � E(X 2) � �2

When var(X) does exist, the standard deviation 
X is defined just as in the finite case:


X � �var(X)

The notions of joint distribution, independent random variables, and functions of random
variables are the same as in the finite case. Moreover, suppose X and Y are defined on the same
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sample space S and that var(X) and var(Y) both exist. Then the covariance of X and Y, written cov(X ,Y),
is defined by the following series which can also be shown to converge absolutely:

cov(X, Y) � �
i, j

(xi � �X)(yj � �Y)h(xi, yj)

In addition, the relation

cov(X, Y) � �
i, j

xi yj h(xi, yj) � �X �Y � E(XY) � �X �Y

holds just as in the finite case.

Remark: To avoid technical difficulties, we will establish many of the theorems in this chapter
only for finite random variables.

5.10 CONTINUOUS RANDOM VARIABLES

Suppose that X is a random variable on a sample space S whose range space RX is a continuum
of numbers such as an interval. Recall from the definition of a random variable that the set
{a � X � b} is an event in S, and therefore the probability P(a � X � b) is well defined. We assume
there is a piecewise continuous function f : R → R such that P(a � X � b) is equal to the area under
the graph of f between x � a and x � b, as shown in Fig. 5-9. In the language of calculus,

P(a � X � b) �
b�

a

f(x) dx

In this case X is said to be a continuous random variable. The function f is called the distribution or
the continuous probability function (or density function) of X; it satisfies the conditions:

(i) f(x) � 0, and (ii)
��

��

f(x) dx � 1

That is, f is nonnegative, and the total area under its graph is 1.

The expectation E(X) for a continuous random variable X is defined by the following integral when
it exists:

E(X) �
��

��

xf(x) dx

Functions of random variables are defined just as in the discrete case. Furthermore, if Y � �(X), then
it can be shown that

E(Y) �
��

��

�(x) f(x) dx

when it exists.
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The variance var(X) is defined by the following integral when it exists:

var(X) � E((X � �)2) �
��

��

(x � �)2 f(x) dx

Just as in the discrete case, it can be shown that var(X) exists if and only if � � E(X) and E(X 2) both
exist, and then

var(X) � E(X 2) � �2 �
��

��

x2 f(x) dx � �2

When var(X) does exist, the standard deviation 
X is defined as in the discrete case by


X � �var(X)

EXAMPLE 5.19 Let X be a random variable with the following distribution function f:

f(x) � 

1–
2x

0
if 0 � x � 2
elsewhere

The graph of f appears in Fig. 5-10. Then

P(1 � X � 1.5) � area of shaded region in diagram �
5
16

Using calculus, we are able to compute the expectation, variance, and standard deviation of X as follows:

E(X) �
��

��

xf(x) dx �
2�

0

1
2

x2 dx � �x3

6 �
2

0

�
4
3

E(X 2) �
��

��

x2 f(x) dx �
2�

0

1
2

x3 dx � �x4

8 �
2

0

� 2

var(X) � E(X 2) � �2 � 2 �
16
9

�
2
9

and 
X � �2
9

�
1
3

�2

Independent Continuous Random Variables

A finite number of continuous random variables X, Y, . . ., Z are said to be independent if, for any
intervals [a, a�], [b, b�], . . ., [c, c�], we have

P(a � X � a�, b � Y � b�, . . ., c � Z � c�) � P(a � X � a�)P(b � Y � b�) · · · P(c � Z � c�)

Observe that intervals play the same role in the continuous case as points did in the discrete case.
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5.11 CUMULATIVE DISTRIBUTION FUNCTION

Let X be a random variable (discrete or continuous). The cumulative distribution function F of
X is the function F : R → R defined by

F(a) � P(X � a)

Suppose X is a discrete random variable with distribution f. Then F is the ‘‘step function’’
defined by

F(x) � �
xi�x

f(xi)

On the other hand, suppose X is a continuous random variable with distribution f. Then

F(x) �
x�

��

f(t) dt

In either case, F has the following two properties:

(i) F is monotonically increasing; that is,

F(a) � F(b) whenever a � b

(ii) The limit of F to the left is 0 and to the right is 1:

lim
x→��

F(x) � 0 and lim
x→�

F(x) � 1

EXAMPLE 5.20 Let X be a discrete random variable with the following distribution function f:

x

f(x)

�2

1/4

1

1/8

2

1/2

4

1/8

The graph of the cumulative distribution function F of X appears in Fig. 5-11. Observe that F is a ‘‘step function’’
with a step at xi with height f(xi).

EXAMPLE 5.21 Let X be a continuous random variable with the following distribution function f:

f(x) � 

1–
2x

0
if 0 � x � 2
elsewhere

The cumulative distribution function F of X follows:

F(x) � 

0
1–
4x2

1

if x � 0
if 0 � x � 2
if x � 2

139RANDOM VARIABLESCHAP. 5]

Fig. 5-11. Graph of F.

f(x)

(x)

f (x)

x



Here we use the fact that, for 0 � x � 2,

F(x) �
x�

0

1
2

t dt �
1
4

x2

The graph of f appears in Fig. 5-12(a), and the graph of F appears in Fig. 5-12(b).

5.12 CHEBYSHEV’S INEQUALITY AND THE LAW OF LARGE NUMBERS

The standard deviation 
 of a random variable X measures the spread of the values of X about
the mean � of X. Accordingly, for smaller values of 
, we would expect that X will be closer to its
mean �. This intuitive expectation is made more precise by the following inequality, named after the
Russian mathematician P. L. Chebyshev (1921–1994):

Theorem 5.12 (Chebyshev’s Inequality): Let X be a random variable with mean � and standard
deviation 
. Then, for any positive number k, the probability that a value of X lies
in the interval [� � k
, � 
 k
] is at least 1 � 1/k2. That is,

P(� � k
 � X � � 
 k
) � 1 �
1
k2

A proof of this important theorem is given in Problem 5.51. We illustrate the use of this theorem
in the next example.

EXAMPLE 5.22 Suppose X is a random variable with mean � � 100 and standard deviation 
 � 5.

(a) Find the conclusion that one can derive from Chebyshev’s inequality for k � 2 and k � 3.
Setting k � 2, we get

� � k
 � 100 � 2(5) � 90, � 
 k
 � 100 
 2(5) � 110, 1 �
1
k2 � 1 �

1
22 �

3
4

Thus; from Chebyshev’s inequality, we can conclude that the probability that X lies between 90 and 110 is at least
3/4, that is

P(90 � X � 110) �
3
4

Similarly, setting k � 3, we get

� � k
 � 100 � 3(5) � 85, � 
 k
 � 100 
 3(5) � 115, 1 �
1
k2 �

8
9

Thus P(85 � X � 115) �
8
9
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(b) Estimate the probability that X lies between 100 � 20 � 80 and 100 
 20 � 120.
Here k
 � 20. Since 
 � 5, we get 5k � 20 and so k � 4. Thus, by Chebyshev’s inequality,

P(80 � X � 120) � 1 �
1
k2 � 1 �

1
42 �

15
16

� 0.94

(c) Find an interval [a, b] about the mean � � 100 for which the probability that X lies in the interval is at least
99 percent.

Here we set 1 � 1/k2 � 0.99 and solve for k. This yields

1 � 0.99 �
1
k2 or 0.01 �

1
k2 or k2 �

1
0.01

� 100 or k � 10

Thus the desired interval is

[a, b] � [� � k
, � 
 k
] � [100 � 10(5), 100 
 10(5)] � [50, 150]

Sample Mean and the Law of Large Numbers

The intuitive idea of probability is the so-called law of averages; that is, if an event A occurs with
probability p, then the ‘‘average number of occurrences of A’’ approaches p as the number n of
(independent) trials increases. This concept is made precise by the law of large numbers which is
stated below. First, however, we need to define the notion of the sample mean.

Let X be the random variable corresponding to some experiment. The notion of n independent
trials of the experiment was defined above. We may view the numerical value of each particular trial
to be a random variable with the same mean as X. Specifically, we let Xk denote the outcome of the
kth trial, where k � 1, 2, . . ., n. The average value of all n outcomes is also a random variable, denoted
by X̄n and called the sample mean. That is,

X̄n �
X1 
 X2 
 · · · 
 Xn

n

The law of large numbers says that as n increases, the probability that the value of sample mean X̄n

is close to � approaches 1.

EXAMPLE 5.23 Suppose a fair die is tossed 8 times with the following outcomes:

x1 � 2, x2 � 5, x3 � 4, x4 � 1, x5 � 4, x6 � 6, x7 � 3, x8 � 2

Then the corresponding value of the sample mean X̄8 follows:

x̄8 �
2 
 5 
 4 
 1 
 4 
 6 
 3 
 2

8
�

27
8

� 3.375

For a fair die, the mean � � 3.5. The law of large numbers tells us that as n gets larger, the probability that the
sample mean X̄n will get close to 3.5 becomes larger and, in fact, approaches one.

A technical statement of the law of large numbers follows.

Theorem 5.13 (Law of Large Numbers): For any positive number �, no matter how small,

P(� � � � X̄n � � 
 �) → 1 as n → �

That is, the probability that the sample mean X̄n has a value in the interval
[� � �, � 
 �] approaches 1 as n approaches infinity.

The following remarks are in order.
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Remark 1: We prove Chebyshev’s inequality only for the discrete case. The continuous case
follows from an analogous proof which uses integrals instead of summations.

Remark 2: We prove the law of large numbers only in the case that the variance var(Xi) of the
Xi exists, that is, does not diverge. We note that the theorem is true whenever the expectation E(Xi)
exists.

Remark 3: The above law of large numbers is proved in Problem 5.52 using Chebyshev’s
inequality. A stronger version of the theorem, called the strong law of large numbers, is given in more
advanced treatments of probability theory.

Solved Problems

RANDOM VARIABLES AND EXPECTED VALUE

5.1. Suppose a random variable X takes on the values �3, �1, 2, and 5 with respective
probabilities

2k � 3
10

,
k � 2

10
,

k � 1
10

,
k 
 1

10

(a) Determine the distribution of X. (b) Find the expected value E(X) of X.

(a) Set the sum of the probabilities equal to 1, and solve for k obtaining k � 3. Then put k � 3 into the
above probabilities yielding 0.3, 0.4, 0.2, 0.1. Thus, the distribution of X is as follows:

x

P(X � x)

�3

0.3

�1

0.1

2

0.2

5

0.4

(b) The expected value E(X) is obtained by multiplying each value of X by its probability and taking the
sum. Thus

E(X) � (�3)(0.3) 
 (�1)(0.1) 
 2(0.2) 
 5(0.4) � 1.4

5.2. A fair coin is tossed 4 times. Let X denote the number of heads occurring. Find:

(a) distribution f of X, (b) E(X), (c) probability graph and histogram of X.

The sample space S is an equiprobable space consisting of 24 � 16 sequences made up of H ’s
and T ’s.

(a) Since X is the number of heads, and each sequence consists of four elements, X takes on the values
of 0, 1, 2, 3, 4, that is, RX � {0, 1, 2, 3, 4}.

(i) One point TTTT has 0 heads; hence f(1) � 1/16.

(ii) Four points, HTTT, THTT, TTHT, TTTH, have 1 head; hence f(1) � 4/16.

(iii) Six points, HHTT, HTHT, HTTH, THHT, THTH, TTHH, have 2 heads; hence f(2) � 6/16.

(iv) Four points, HHHT, HHTH, HTHH, THHH, have 1 head; hence f(1) � 4/16.

(v) One point, HHHH, has 4 heads; hence f(4) � 1/16.

The distribution f of X follows:

x

f(x)

0

1––
16

1

4––
16

2

6––
16

3

4––
16

4

1––
16
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(b) The expected value E(X) is obtained by multiplying each value of X by its probability and taking the
sum. Hence

E(X) � 0� 1
16
 
 1� 4

16
 
 2� 6
16
 
 3� 4

16
 
 4� 1
16
 � 2

This agrees with our intuition that, when a fair coin is repeatedly tossed, about half of the tosses
should be heads.

(c) The probability bar chart of X appears in Fig. 5-13(a), and the probability histogram appears in
Fig. 5-13(b).

5.3. A fair coin is tossed until a head or five tails occurs. Find the expected number E of tosses of
the coin.

The sample space S consists of the six points

H, TH, TTH, TTTH, TTTTH, TTTTT

with respective probabilities (independent trials)

1
2

, �1
2 


2

�
1
4

, �1
2 


3

�
1
8

, �1
2 


4

�
1
16

, �1
2 


5

�
1
16

, �1
2 


5

�
1
16

The random variable X of interest is the number of tosses in each outcome. Thus

X(H) � 1 X(TTH) � 3 X(TTTTH) � 5
X(TH) � 2 X(TTTH) � 4 X(TTTTT) � 5

These X values are assigned the following probabilities:

P(1) 	 P(H) �
1
2

, P(2) 	 P(TH) �
1
4

, P(3) 	 P(TTH) �
1
8

P(4) 	 P(TTTH) �
1
16

, P(5) 	 P({TTTTH, TTTTT}) �
1
32



1
32

�
1
16

Accordingly, E � E(X) � 1�1
2 
 
 2�1

4 
 
 3�1
8 
 
 4� 1

16
 
 5� 1
16
 � 1.9
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5.4. A random sample with replacement of size n � 2 is chosen from the set {1, 2, 3} yielding the
9-element equiprobable space

S � {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}

Let X denote the sum of the two numbers. (a) Find the distribution f of X. (b) Find the
expected value E(X).

(a) The random variable X assumes the values 2, 3, 4, 5, 6, that is, RX � {2, 3, 4, 5, 6}. We compute the
distribution f of X:

(i) One point (1, 1) has sum 2; hence f(2) � 1/9.

(ii) Two points, (1, 2), (2, 1), have sum 3; hence f(3) � 2/9.

(iii) Three points, (1, 3), (2, 2), (1, 3), have sum 4; hence f(4) � 3/9.

(iv) Two points, (2, 3), (3, 2), have sum 5; hence f(5) � 2/9.

(v) One point (3, 3) has sum 6; hence f(6) � 1/9.

Thus, the distribution f of X is as follows:

x

f(x)

2

1/9

3

2/9

4

3/9

5

2/9

6

1/9

(b) The expected value E(X) is obtained by multiplying each value of x by its probability and taking the
sum. Thus

E(X) � 2�1
9 
 
 3�2

9 
 
 4�3
9 
 
 5�2

9 
 
 6�1
9 
 � 4

5.5. Let Y denote the minimum of the two numbers in each element of the probability space S in
Problem 5.4. (a) Find the distribution g of Y. (b) Find the expected value E(Y).

(a) The random variable Y only assumes the values 1, 2, 3, that is, RY � {1, 2, 3}. We compute the
distribution g of Y:

(i) Five points, (1, 1), (1, 2), (1, 3), (2, 1), (3, 1), have minimum 1; hence g(1) � 5/9.

(ii) Three points, (2, 2), (2, 3), (3, 2), have minimum 2; hence g(2) � 3/9.

(iii) One point (3, 3) has minimum 3; hence g(3) � 1/9.

Thus the distribution g of Y is as follows:

y

g(y)

1

5/9

2

3/9

3

1/9

(b) Multiply each value of y by its probability and take the sum obtaining:

E(Y) � 1�5
9 
 
 2�3

9 
 
 3�1
9 
 �

14
9

� 1.556

5.6. Five cards are numbered 1 to 5. Two cards are drawn at random without replacement to
yield the following equiprobable space S with C(5, 2) � 10 elements:

S � [{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}]

Let X denote the sum of the numbers drawn. (a) Find the distribution f of X. (b) Find
E(X).
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(a) The random variable X assumes the values 3, 4, 5, 6, 7, 8, 9, that is, RX � {3, 4, 5, 6, 7, 8, 9}. The
distribution f of X is obtained as follows:

(i) One point, {1, 2}, has sum 3; hence f(3) � 0.1.

(ii) One point, {1, 3}, has sum 4; hence f(4) � 0.1.

(iii) Two points, {1, 4}, {2, 3}, have sum 5; hence f(5) � 0.2.

And so on. This yields the following distribution f of X:

x

f(x)

3

0.1

4

0.1

5

0.2

6

0.2

7

0.2

8

0.1

9

0.1

(b) The expected value E(X) is obtained by multiplying each value x of X by its probability f(x) and
taking the sum. Thus

E(X) � 3(0.1) 
 4(0.1) 
 5(0.2) 
 6(0.2) 
 7(0.2) 
 8(0.1) 
 9(0.1) � 6

5.7. Let Y denote the minimum of the two numbers in each element of the probability space S in
Problem 5.6. (a) Find the distribution g of Y. (b) Find E(Y).

(a) The random variable Y only assumes the values 1, 2, 3, 4, that is, RY � {1, 2, 3, 4}. The distribution
g of Y is obtained as follows:

(i) Four points, {1, 2}, {1, 3}, {1, 4}, {1, 5}, have minimum 1; hence g(1) � 0.4.

(ii) Three points, {2, 3}, {2, 4}, {2, 5}, have minimum 2; hence g(2) � 0.3.

(iii) Two points, {3, 4}, {3, 5}, have minimum 31; hence g(3) � 0.2.

(iv) One point, {4, 5}, has minimum 4; hence g(4) � 0.1.

Thus, the distribution g of Y is as follows:

y

g(y)

1

0.4

2

0.3

3

0.2

4

0.1

(b) Multiply each value of y by its probability g(y) and take the sum, obtaining

E(Y) � 1(0.4) 
 2(0.3) 
 3(0.2) 
 4(0.1) � 2.0

5.8. A player tosses two fair coins yielding the equiprobable space

S � {HH, HT, TH, TT}

The player wins $2 if 2 heads occur and $1 if 1 head occurs. On the other hand, the player loses
$3 is no heads occur. Find the expected value E of the game. Is the game fair? (The game
is fair, favorable, or unfavorable to the player accordingly as E � 0, E � 0, or E � 0.)

Let X denote the player’s gain to yield

X(HH) � $2, X(HT) � X(TH) � $1, X(TT) � �$3

Thus, the distribution of X is as follows:

x

P(X � x)

2

1/4

1

2/4

�3

1/4
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The expectation of X follows:

E � E(X) � 2�1
4 
 
 1�2

4 
 � 3�1
4 
 �

1
4

� $0.25

Since E(X) � 0, the game is favorable to the player.

5.9. A player tosses two fair coins. The player wins $3 if 2 heads occur and $1 if 1 head
occurs. For the game to be fair, how much should the player lose if no heads occur?

Let Y denote the player’s gain; then the distribution of Y is as follows where k denotes the unknown
payoff to the player:

y

P(Y � y)

3

1/4

1

2/4

k

1/4

Thus E � E(Y) � 3�1
4 
 
 1�2

4 
 
 k �1
4 
 �

5 
 k

4

For a fair game, E(Y) should be zero. This yields k � �5. Thus, the player should lose $5 if no heads
occur.

5.10. A box contains 8 lightbulbs of which 3 are defective. A bulb is selected from the box and
tested. If it is defective, another bulb is selected and tested, until a nondefective bulb is
chosen. Find the expected number E of bulbs chosen.

Writing D for defective and N for nondefective, the sample space S has the four elements

N, DN, DDN, DDDN

with respective probabilities

5
8

,
3
8

�
5
7

�
15
56

,
3
8

�
2
7

�
5
6

�
5
56

,
3
8

�
2
7

�
1
6

�
5
5

�
1
56

The number X of bulbs chosen has the values

X(N) � 1, X(DN) � 2, X(DDN) � 3, X(DDDN) � 4

with the above respective probabilities. Hence

E(X) � 1� 5
8 
 
 2�15

56
 
 3� 5
56
 
 4� 1

56
 �
3
2

� 1.5

5.11. A coin is weighted so that P(H) � 3–
4 and P(T) � 1–

4. The coin is tossed 3 times yielding the
following 8-element probability space:

S � {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

Let X denote the number of heads that appears. (a) Find the distribution f of X. (b) Find
E(X).

(a) The points in S have the following respective probabilities:

P(HHH) �
3
4

�
3
4

�
3
4

�
27
64

, P(THH) �
1
4

�
3
4

�
3
4

�
9
64

P(HHT) �
3
4

�
3
4

�
1
4

�
9
64

, P(THT) �
1
4

�
3
4

�
1
4

�
3
64
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P(HTH) �
3
4

�
1
4

�
3
4

�
9
64

, P(TTH) �
1
4

�
1
4

�
3
4

�
3
64

P(HTT) �
3
4

�
1
4

�
1
4

�
3
64

, P(TTT) �
1
4

�
1
4

�
1
4

�
1
64

Since X denotes the number of heads,

X(HHH) � 3 X(HHT) � X(HTH) � X(THH) � 2

X(HHT) � X(THT) � X(TTH) � 1 X(TTT) � 0

Thus, RX � {0, 1, 2, 3} is the range space of X. Also,

f(0) � P(TTT) �
1
64

, f(2) � P(HHT) 
 P(HTH) 
 P(THH) �
27
64

f(1) � P(HTT) 
 P(THT) 
 P(TTH) �
9
64

, f(3) � P(HHH) �
27
64

The distribution of X follows:

x

f(x)

0

1––
64

1

9––
64

2

27––
64

3

27––
64

(b) Multiply each value of x by its probability f(x) and take the sum to obtain

E(X) � 0� 1
64
 
 1� 9

64
 
 2�27
64
 
 3�27

64
 �
144
64

� 2.25

5.12. Concentric circles of radius 1 and 3 in are drawn on a circular target of radius 5 in as pictured
in Fig. 5-14. A person fires at the target and, as indicated by Fig. 5-14, receives 10, 5, or 3 points
according to whether the target is hit inside the smaller circle, inside the middle annular region,
or inside the outer annular region, respectively. Suppose the person hits the target with
probability 1–

2, and then is just as likely to hit one point of the target as the other. Find the
expected number E of points scored each time the person fires.

The probability of scoring 10, 5, 3, or 0 points follows:

f(10) �
1
2

�
area of 10 points

area of target
�

1
2

�
�(1)2

�(5)2 �
1
50

f(5) �
1
2

�
area of 5 points
area of target

�
1
2

�
�(3)2 � �(1)2

�(5)2 �
8
50
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f(3) �
1
2

�
area of 3 points
area of target

�
1
2

�
�(5)2 � �(3)2

�(5)2 �
16
50

f(0) �
1
2

Thus, E � 10 � 1
50
 
 8� 8

50
 
 3�16
50
 
 0�1

2 
 �
122
50

� 2.44.

5.13. A coin is weighted so that P(H) � p and hence P(T) � q � 1 � p. The coin is tossed until a
head appears.

Let E denote the expected number of tosses. Prove E � 1/p.
That sample space is

S � {H, TH, TTH, . . ., T n H, . . ., T �}

where T n denotes n tosses of T and T � denotes the case that heads never appear. Let X denote the
number of tosses. Accordingly, X assumes the values 1, 2, 3, . . ., � with corresponding probabilities

p, qp, q2 p, . . ., qn p, . . ., 0

Thus E �� nqn�1 p � p�� nqn�1

where the sum is from 1 to �. Let

y � � qn �
1

1 � q

The derivative with respect to q yields

dy

dq
�� nqn�1 �

1
(1 � q)2

Substituting this value of �nqn�1 in the formula for E yields

E �
p

(1 � q)2 �
p

p2 �
1
p

Note that calculus is used to evaluate the infinite series.

Remark: This is an example of an infinite discrete sample space.

5.14. A linear array EMPLOYEE has n elements. Suppose NAME appears randomly in the array,
and there is a linear search to find the location K of NAME, that is, to find K such that
EMPLOYEE [K] � NAME. Let f(n) denote the number of comparisons in the linear
search.

(a) Find the expected value of f(n).

(b) Find the maximum value (worst case) of f(n).

(a) Let X denote the number of comparisons. Since NAME can appear in any position in the array with
the same probability of 1/n, we have X � 1, 2, 3, . . ., n, each with probability 1/n. Hence

E(X) � 1 �
1
n


 2 �
1
n


 3 �
1
n


 · · · 
 n �
1
n

� (1 
 2 
 · · · 
 n) �
1
n

�
n(n 
 1)

2
�

1
n

�
n 
 1

2

(b) If NAME appears at the end of the array, then f(n) � n, which is the worst possible case.
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MEAN, VARIANCE, AND STANDARD DEVIATION

5.15. Find the mean � � E(X), variance 
2 � var(X), and standard deviation 
 � 
X of each
distribution:

(a) x

f(x)

2

1/3

3

1/2

11

1/6

(b) x

f(x)

1

0.4

3

0.1

4

0.2

5

0.3

Use the formulas,

� � E(X) � x1 f(x1) 
 x2 f(x2) 
 · · · 
 xm f(xm) � �xi f(xi)

E(X 2) � x1
2 f(x1) 
 x2

2 f(x2) 
 · · · 
 x2
m f(xm) � �xi

2 f(xi)

Then use the formulas


2 � var(X) � E(X 2) � �2 and 
 � 
X � �var(X)

to obtain 
2 � var(X) and 
.

(a) Use the above formulas to first obtain:

� � �xi f(xi) � 2�1
3 
 
 3�1

2 
 
 11 �1
6 
 � 4

E(X 2) � �xi
2 f(xi) � 22�1

3 
 
 32�1
2 
 
 112 �1

6 
 � 26

Then 
2 � var(X) � E(X 2) � �2 � 26 � 16 � 10


 � �var(X) � �10 � 3.2

(b) Use the above formulas to first obtain:

� � �xi f(xi) � 1(0.4) 
 3(0.1) 
 4(0.2) 
 5(0.3) � 3

E(X 2) � �xi
2 f(xi) � 1(0.4) 
 9(0.1) 
 16(0.2) 
 25(0.3) � 12

Then 
2 � var(X) � E(X 2) � �2 � 12 � 9 � 3


 � �var(X) � �3 � 1.7

5.16. Find the mean � � E(X), variance 
2 � var(X), and standard deviation 
 � 
X of each
distribution:

(a) xi

pi

�5

1/4

�4

1/8

1

1/2

2

1/8

(b) xi

pi

1

0.3

3

0.1

5

0.4

7

0.2

Here the distribution is presented using xi and pi instead of x and f(x). The following are the
analogous formulas:

� � E(X) � x1 p1 
 x2 p2 
 · · · 
 xm pm � �xi pi

E(X 2) � x1
2 p1 
 x2

2 p2 
 · · · 
 x2
m pm � �xi

2 pi

Then, as before,


2 � var(X) � E(X 2) � �2 and 
 � 
X � �var(X)

(a) � � E(X) � �xi pi � �5 �1
4 
 � 4�1

8 
 
 1�1
2 
 
 2�1

8 
 � �1

E(X 2) � �xi
2 pi � 25�1

4
 
 16 �1
8 
 
 1�1

2 
 
 4�1
8 
 � 9.25
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Then 
2 � var(X) � E(X 2) � �2 � 9.25 � (�1)2 � 8.25


 � �var(X) � �8.25 � 2.9

(b) � � E(X) � �xi pi � 1(0.3) 
 3(0.1) 
 5(0.4) 
 7(0.2) � 4.0

E(X 2) � �xi
2 pi � 12(0.3) 
 32(0.1) 
 52(0.4) 
 72(0.2) � 21.0

Then 
2 � var(X) � E(X 2) � �2 � 21 � (4)2 � 5


 � �var(X) � �5 � 2.24

5.17. A fair die is tossed yielding the equiprobable space

S � {1, 2, 3, 4, 5, 6}

Let X denote twice the number appearing. Find the distribution f, mean �X, variance 
2
X, and

standard deviation 
X of X.

Here X(1) � 2, X(2) � 4, X(3) � 6, X(4) � 8, X(5) � 10, X(6) � 12. Also, each number has
probability 1/6. Thus, the following is the distribution f of X:

x

f(x)

2

1/6

4

1/6

6

1/6

8

1/6

10

1/6

12

1/6

Accordingly

�X � E(X) � �xi f(xi)

� 2 �1
6 
 
 4�1

6 
 
 6�1
6 
 
 8�1

6 
 
 10 �1
6 
 
 12 �1

6 
 �
42
6

� 7

E(X 2) � �xi
2 f(xi)

� 4 �1
6 
 
 16 �1

6 
 
 36 �1
6 
 
 64 �1

6 
 
 100�1
6 
 
 144�1

6 
 �
354
6

� 60.7

Then 
2
X � var(X) � E(X 2) � �2

X � 60.7 � (7)2 � 11.7


X � �var(X) � �11.7 � 3.4

5.18. A fair die is tossed yielding the equiprobable space

S � {1, 2, 3, 4, 5, 6}

Let Y be 1 or 3 accordingly as an odd or even number appears. Find the distribution g,
expectation �Y, variance 
2

Y, and standard deviation 
Y of Y.

Here Y(1) � 1, Y(2) � 3, Y(3) � 1, Y(4) � 3, Y(5) � 1, Y(6) � 3. Then RY � {1, 3} is the range
space of Y. Therefore

g(1) � P(Y � 1) � P({1, 3, 5}) �
3
6

�
1
2

and g(3) � P(Y � 3) � P({2, 4, 6}) �
3
6

�
1
2

Thus, the distribution g of Y is as follows:

y

g(y)

1

1/2

3

1/2
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Accordingly, �Y � E(Y) � �yi g(yi) � 1�1
2 
 
 3�1

2 
 � 2

E(Y 2) � �yi
2 g(yi) � 1�1

2 
 
 9�1
2 
 � 5

Then 
2
Y � var(Y) � E(Y 2) � �2

Y � 5 � (1)2 � 1


Y � �var(Y) � �1 � 1

5.19. Let X and Y be the random variables in Problems 5.17 and 5.18 which are defined on the same
sample space S. Recall that Z � X 
 Y is the random variable on S defined by

Z(s) � X(s) 
 Y(s)

Find the distribution, expectation, variance, and standard deviation of Z � X 
 Y. Also, verify
that E(Z) � E(X 
 Y) � E(X) 
 E(Y).

The sample space is still S � {1, 2, 3, 4, 5, 6} and each sample point still has probability 1/6. Use
Z(s) � X(s) 
 Y(s) and the values of X and Y from Problems 5.17 and 5.18 to obtain

Z(1) � X(1) 
 Y(1) � 2 
 1 � 3

Z(2) � X(2) 
 Y(2) � 4 
 3 � 7

Z(3) � X(3) 
 Y(3) � 6 
 1 � 7

Z(4) � X(4) 
 Y(4) � 8 
 3 � 11

Z(5) � X(5) 
 Y(5) � 10 
 1 � 11

Z(6) � X(6) 
 Y(6) � 12 
 3 � 15

The range space of Z is RZ � {3, 7, 11, 15}. Also, 3 and 15 are each assumed at only one sample point and
hence have a probability 1/6; whereas 7 and 11 are each assumed at two sample points and hence have a
probability 2/6. Thus, the distribution of Z � X 
 Y is as follows:

zi

P(zi)

3

1/6

7

2/6

11

2/6

15

1/6

Therefore �Z � E(Z) � �zi P(zi) � 3�1
6 
 
 7�2

6 
 
 11 �2
6 
 
 15 �1

6 
 �
54
6

� 9

E(Z 2) � �zi
2 P(zi) � 9�1

6 
 
 49 �2
6 
 
 121�2

6 
 
 225�1
6 
 �

574
6

� 95.7

Then 
2
Z � var(Z) � E(Z 2) � �2

Z � 95.7 � (9)2 � 14.7


Z � �var(Z) � �14.7 � 3.8

Moreover, E(Z) � E(X 
 Y) � 9 � 7 
 2 � E(X) 
 E(Y). On the other hand,

var(X) 
 var(Y) � 11.7 
 1 � 12.7 � var(Z)

5.20. Let X andY be the random variable in Problems 5.17 and 5.18 which are defined on the same
sample space S. Recall that W � XY is the random variable on S defined by

W(s) � X(s) � Y(s)

Find the distribution, expectation, variance, and standard deviation of W � XY.

The sample space is still S � {1, 2, 3, 4, 5, 6} and each sample point still has a probability 1/6. Use
W(s) � (XY)(s) � X(s)Y(s) and the values of X and Y from Problems 5.17 and 5.18 to obtain

W(1) � X(1)Y(1) � 2(1) � 2,

W(2) � X(2)Y(2) � 4(3) � 12,

W(3) � X(3)Y(3) � 6(1) � 6,

W(4) � X(4)Y(4) � 8(3) � 24

W(5) � X(5)Y(5) � 10(1) � 10

W(6) � X(6)Y(6) � 12(3) � 36
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Each value of W � XY is assumed at just one sample point; hence the distribution of W is as follows:

wi

P(wi)

2

1/6

6

1/6

10

1/6

12

1/6

24

1/6

36

1/6

Therefore

�w � E(W) � �wi P(wi) �
2
6



6
6



10
6



12
6



24
6



36
6

�
90
6

� 15

E(W 2) � �wi
2 P(wi) �

4
6



36
6



100
6



144
6



576
6



1296

6
�

2156
6

� 359.3

Then 
2
W � var(W) � E(W 2) � �2

W � 359.3 � (15)2 � 134.3


W � �var(W) � �134.3 � 11.6

[Note: E(W) � E(XY) � 15 � E(X)E(Y) � 7(2) � 14.]

5.21. Let X be a random variable with distribution

x

P(x)

1

0.3

2

0.5

3

0.2

Find the mean �X, variance 
2
X, and standard deviation 
X of X.

The formulas for �X and E(X 2) yield

�X � E(X) � �xi P(xi) � 1(0.3) 
 2(0.5) 
 3(0.2) � 1.9

E(X 2) � �xi
2 P(xi) � 12(0.3) 
 22(0.5) 
 32(0.2) � 4.1

Then 
2
X � var(X) � E(X 2) � �2 � 4.1 � (1.9)2 � 0.49


X � �var(X) � �0.49 � 0.7

5.22. Consider the random variables X in the preceding Problem 5.21. Find the distribution,
mean �Y, variance 
2

Y, and standard deviation 
Y of the random variable Y � �(X) where
(a) �(x) � x3, (b) �(x) � 2x, (c) �(x) � x2 
 3x 
 4.

The distribution of any arbitrary random variable Y � �(X) where P(y) � P(x) is as follows:

y

P(y)

�(1)

0.3

�(2)

0.5

�(3)

0.2

(a) Using 13 � 1, 23 � 8, 33 � 27, the distribution of Y � X 3 is as follows:

y

P(y)

1

0.3

8

0.5

27

0.2

Therefore

�Y � E(Y) � ��(xi)P(xi) � �yi P(yi) � 1(0.3) 
 8(0.5) 
 27(0.2) � 9.7

E(Y 2) � �yi
2 P(yi) � 12(0.3) 
 82(0.5) 
 272(0.2) � 178.1

Then 
2
Y � var(Y) � E(Y 2) � �2 � 178.1 � (9.7)2 � 84.0


Y � �var(Y) � �84.0 � 9.17
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(b) Using 21 � 2, 22 � 4, 23 � 8, the distribution of Y � 2X is as follows:

y

P(y)

2

0.3

4

0.5

8

0.2

Therefore �Y � E(Y) � �yi P(yi) � 2(0.3) 
 4(0.5) 
 8(0.2) � 4.2

E(Y 2) � �yi
2 P(yi) � 2 (0.3)2 
 4 (0.5)2 
 8 (0.2)2 � 22

Then 
2
Y � var(Y) � E(Y 2) � �2 � 22 � (4.2)2 � 4.36


Y � �var(Y) � �4.36 � 2.088

(c) Substitute x � 1, 2, 3 in �(x) � x2 
 3x 
 4 to obtain �(1) � 8, �(2) � 14, �(3) � 22. Then the
distribution of Y � X 2 
 3X 
 4 is as follows:

y

P(y)

8

0.3

14

0.5

22

0.2

Therefore �Y � E(Y) � �y Pi (yi) � 8(0.3) 
 14(0.5) 
 22(0.2) � 13.8

E(Y 2) � �yi
2 P(yi) � 82(0.3) 
 142(0.5) 
 222(0.2) � 214

Then 
2
Y � var(Y) � E(Y 2) � �2 � 214 � (13.8)2 � 23.56


Y � �var(Y) � �23.56 � 4.8539

5.23. Let X be a random variable with distribution

x

P(X � x)

1

0.4

3

0.3

5

0.2

7

0.1

(a) Find the mean �X, variance 
2
X, and standard deviation 
X of X.

(b) Find the distribution of the standardized random variables Z � (X � �)/
 of X, and show
that �Z � 0 and 
Z � 1 (as predicted by Theorem 5.6).

(a) The formulas for �X and E(X 2) yield

�X � E(X) � �xi P(xi) � 1(0.4) 
 3(0.3) 
 5(0.2) 
 7(0.1) � 3

E(X 2) � �xi
2 P(xi) � 12(0.4) 
 32(0.3) 
 52(0.2) 
 72(0.1) � 13

Then 
2
X � E(X 2) � �2 � 13 � (3)2 � 4 and 
X � 2

(b) Using Z � (X � �)/
 � (x � 3)/2 and P(z) � P(x), we obtain the following distribution of Z:

z

P(z)

�1

0.4

0

0.3

1

0.2

2

0.1

Therefore �Z � �zi P(zi) � �1(0.4) 
 0(0.3) 
 1(0.2) 
 2(0.1) � 0

E(Z 2) � �zi
2 P(zi) � (�1)2(0.4) 
 02(0.3) 
 12(0.2) 
 22(0.1) � 1

Then 
2
Z � E(Z 2) � �2

Z � 1 � (0)2 � 1 and 
Z � 1
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5.24. Let X denote the number of heads when a fair coin is tossed 4 times. By Problem 5.2, the
mean �X � 2 and its distribution is as follows:

x

P(x)

0

1/16

1

4/16

2

6/16

3

4/16

4

1/16

(a) Find the standard deviation 
X of X.

(b) Find the distribution of the standardized random variable Z � (X � �)/
 of X, and show
that �Z � 0 and 
Z � 1 (as predicted by Theorem 5.6).

(a) First compute E(X 2) as follows:

E(X 2) � �xi
2 pi � 02� 1

16
 
 12� 4
16
 
 22� 6

16
 
 32� 4
16
 
 42� 1

16
 �
80
16

� 5

Using �X � 2, we obtain


2
X � E(X 2) � �2 � 5 � (2)2 � 1 and 
X � 1

(b) Using Z � (X � �)/
 � (x � 2)/1 and P(z) � P(x), we obtain the following distribution of Z:

z

P(z)

�2

1/16

�1

4/16

0

6/16

1

4/16

2

1/16

Therefore

�Z � �zi P(zi) � �2� 1
16
 � 1� 4

16
 
 0� 6
16
 
 1� 4

16
 
 2� 1
16
 �

0
16

� 0

E(Z 2) � �zi
2 P(zi) � 4� 1

16
 
 1� 4
16
 
 0� 6

16
 
 1� 4
16
 
 4� 1

16
 �
16
16

� 1

Then 
2
Z � E(Z 2) � �2

Z � 1 � (0)2 � 1 and 
Z � 1

JOINT DISTRIBUTION AND INDEPENDENT RANDOM VARIABLES

5.25. Let X and Y be random variables with joint distribution as shown in Fig. 5-15.

(a) Find the distributions of X and Y.

(b) Find cov(X, Y), the covariance of X and Y.

(c) Find �(X, Y), the correlation of X and Y.

(d) Are X and Y independent random variables?

Y

X

1
3

Sum

�3

0.1
0.3

0.4

2

0.2
0.1

0.3

4

0.2
0.1

0.3

Sum

0.5
0.5

Fig. 5-15
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(a) The marginal distribution on the right of the joint distribution is the distribution of X, and the
marginal distribution on the bottom is the distribution of Y. Thus, the distributions of X and Y are
as follows:

x

f(x)

1

0.5

3

0.5

y

g(y)

�3

0.4

2

0.3

4

0.3

Distribution of X Distribution of Y

(b) First compute �X and �Y as follows:

�X � �xi f(xi) � 1(0.5) 
 3(0.5) � 2

�Y � �yi g(yi) � �3(0.4) 
 2(0.3) 
 4(0.3) � 0.6

Next compute E(XY) as follows:

E(XY) � �xi yj f(xi)g(yj)

� 1(�3)(0.1) 
 1(2)(0.2) 
 1(4)(0.2) 
 3(�3)(0.3) 
 3(2)(0.1) 
 3(4)(0.1) � 0

Then cov(X, Y) � E(XY) � �X �Y � 0 � 2(0.6) � 1.2

(c) First compute 
X as follows:

E(X 2) � �xi
2 f(xi) � 12(0.5) 
 32(0.5) � 5


2
X � E(X 2) � �2

X � 5 � 22 � 1 and 
X � 1

Next compute 
Y as follows:

E(Y 2) � �yi
2 g(yi) � (�3)2(0.4) 
 22(0.3) 
 42(0.3) � 9.6


2
Y � E(Y 2) � �2

Y � 9.6 � (0.6)2 � 9.24 and 
Y � 3.04

Then �(X, Y) �
cov(X, Y)


X 
Y

�
�1.2
1(3.04)

� �0.395

(d) X and Y are not independent since the entry h(1, �3) � 0.1 is not equal to
f(1)g(�3) � (0.5)(0.4) � 0.2, the product of its marginal entries, that is,

P(X � 1, Y � �3) � P(X � 1)P(Y � �3)

5.26. Let X and Y be independent random variables with the following distributions:

x

f(x)

1

0.6

2

0.4

y

g(y)

5

0.2

10

0.5

15

0.3

Distribution of X Distribution of Y

Find the joint distribution h of X and Y.

Since X and Y are independent, the joint distribution h can be obtained from the marginal
distributions f and g. Specifically, first construct the joint distribution table with only the marginal
distributions as shown in Fig. 5-16(a). Then multiply the marginal entries to obtain the interior entries,
that is, set h(xi, yj) � f(xi)g(yj). This yields the joint distribution of X and Y appearing in Fig. 5-16(b).
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Y

X

1
2

Sum

5

0.2

10

0.5

15

0.3

Sum

0.6
0.4

Y

X

1
2

Sum

5

0.12
0.08

0.2

10

0.30
0.20

0.5

15

0.18
0.12

0.3

Sum

0.6
0.4

(a) (b)

Fig. 5-16

5.27. A fair coin is tossed 3 times yielding the following 8-element equiprobable space:

S � {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

(Thus, each point in S occurs with probability 1/8.) Let X equal 0 or 1 accordingly as a head or
a tail occurs on the first toss, and let Y equal the total number of heads that occurs.

(a) Find the distribution f of X and the distribution g of Y.

(b) Find the joint distribution h of X and Y.

(c) Determine whether or not X and Y are independent.

(d) Find cov(X, Y), the covariance of X and Y.

(a) We have X(HHH) � 0, X(HHT) � 0, X(HTH) � 0, X(HTT) � 0

X(THH) � 1, X(THT) � 1, X(TTH) � 1, X(TTT) � 1

Also Y(HHH) � 3, Y(HHT) � 2, Y(HTH) � 2, Y(HTT) � 1

Y(THH) � 2, Y(THT) � 1, Y(TTH) � 1, Y(TTT) � 0

Thus, the distributions of X and Y are as follows:

x

f(x)

0

1–
2

1

1–
2

y

g(y)

0

1–
8

1

3–
8

2

3–
8

3

1–
8

Distribution of X Distribution of Y

(b) The joint distribution h of X and Y appears in Fig. 5-17. The entry h(0, 2) is obtained using

h(0, 2) 	 P(X � 0, Y � 2) � P({HTH, HHT}) � 2–
8

The other entries are obtained similarly.

Y

X

0
1

Sum

0

0
1–
8

1–
8

1

1–
8
2–
8

3–
8

2

2–
8
1–
8

3–
8

3

1–
8

0

1–
8

Sum

1–
2
1–
2

Fig. 5-17
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(c) X and Y are not independent. For example, the entry h(0, 0) � 0 is not equal to f(0)g(0) � 1–
2 � 1–

8, the
product of the marginal entries. That is,

P(X � 0, Y � 0) � P(X � 0)P(Y � 0)

(d) First compute �X, �Y, and E(XY) as follows:

�X � �xi f(xi) � 0�1
2 
 
 1�1

2 
 �
1
2

�Y � �yi g(yi) � 0�1
8 
 
 1�3

8 
 
 2�3
8 
 
 3�1

8 
 �
3
2

E(XY) � �xi yj f(xi)g(yj) � 1(1)�2
8 
 
 1(2) �1

8 
 
 terms with a factor 0 �
1
2

Then cov(X, Y) � E(XY) � �X �Y �
1
2

�
1
2 �

3
2 
 � �

1
4

5.28. Let X and Y be the random variables in Problem 5.27. Recall that Z � X 
 Y is the random
variable on the same sample space S defined by

Z(s) � X(s) 
 Y(s)

(a) Find the distribution Z.

(b) Show that E(Z) � E(X 
 Y) � E(X) 
 E(Y).

(c) Find var(X), var(Y), and var(Z), and compare var(Z) with var(X) 
 var(Y).

(a) Here X assumes the values 0 and 1, and Y assumes the values 0, 1, 2, 3; hence Z can only
assume the values 0, 1, 2, 3, 4. Hence the range space of Z is RZ � {0, 1, 2, 3, 4}. To find
P(Z � z) � P(X 
 Y � z), we add up the corresponding probabilities from the joint distribution of
X and Y. For instance,

P(Z � 3) � P(X 
 Y � 3) � P(0, 3) 
 P(1, 2) � 1–
8 
 1–

8 � 1–
4

Similarly, we obtain the following distribution of Z:

z

P(z)

0

0

1

1–
4

2

1–
2

3

1–
4

4

0

[Since P(Z � 0) � 0 and P(Z � 4) � 0, we may delete the first and last entries in the distribution
of Z.]

(b) From the distribution of Z we obtain

�Z � E(Z) � 1�1
4 
 
 2�1

2 
 
 3�1
4 
 � 2

From Problem 5.27, E(X) � �X � 1–
2 and E(Y) � �Y � 3–

2. Hence E(Z) � E(X) 
 E(Y) (which is
expected from Theorem 5.3).

(c) From the distributions of X, Y, Z we obtain

E(X 2) � 02�1
2 
 
 12�1

2 
 �
1
2

E(Y 2) � 02�1
8 
 
 12�3

8 
 
 22�3
8 
 
 32�1

8 
 �
24
8

� 3

E(Z 2) � 12�1
4 
 
 22�1

2 
 
 32�1
4 
 �

9
2

157RANDOM VARIABLESCHAP. 5]



Therefore: var(X) � E(X 2) � �2
X �

1
2

� �1
2 


2

�
1
4

var(Y) � E(Y 2) � �2
Y � 3 � �3

2 

2

�
3
4

var(Z) � E(Z 2) � �2
Z �

9
2

� 22 �
1
2

Thus, var(Z) � var(X) 
 var(Y). (This may be expected since X and Y are not independent random
variables.)

5.29. A sample with replacement of size n � 2 is randomly selected from the numbers 1 to 5. This
then yields the equiprobable space S consisting of all 25 ordered pairs (a, b) of numbers
from 1 to 5. That is,

S � {(1, 1), (1, 2), . . ., (1, 5), (2, 1), . . ., (5, 5)}

Let X � 0 if the first number is even and X � 1 otherwise; let Y � 1 if the second number is odd
and Y � 0 otherwise.

(a) Find the distributions of X and Y.

(b) Find the joint distribution of X and Y.

(c) Determine if X and Y are independent.

(a) There are 10 sample points in which the first entry is even, that is, where

a � 2 or 4 and b � 1, 2, 3, 4, 5

Thus, P(X � 0) � 10/25 � 0.4, and so P(X � 1) � 0.6. There are 15 sample points in which the
second entry is odd, that is, where

a � 1, 2, 3, 4, 5 and b � 1, 3, 5

Thus, P(Y � 1) � 15/25 � 0.6, and so P(Y � 0) � 0.4. Therefore, the distributions of X and Y are
as follows:

x

P(x)

0

0.4

1

0.6

y

P(y)

0

0.4

1

0.6

(Note that X and Y are identically distributed.)

(b) For the joint distribution of X and Y, we have

P(0, 0) � P(a even, b even) � P{(2, 2), (2, 4), (4, 2), (4, 4)} � 4/25 � 0.16

P(0, 1) � P(a even, b odd) � P{(2, 1), (2, 3), (2, 5), (4, 1), (4, 3), (4, 5)} � 6/25 � 0.24

Similarly P(1, 0) � 6/25 � 0.24 and P(1, 1) � 9/25 � 0.36. Thus, Fig. 5-18 gives the joint distribution
of X and Y.
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X

Y

0
1

Sum

0

0.16
0.24

0.4

1

0.24
0.36

0.6

Sum

0.4
0.6

Fig. 5-18



(c) The product of the marginal entries do give the four interior entries; for example,

P(0, 0) � 0.16 � (0.4)(0.4) � P(X � 0)P(Y � 0)

Thus, X and Y are independent random variables, even though they are identically distributed.

5.30. Let X and Y be the random variables in Problem 5.29, and let Z � X 
 Y.

(a) Find the distribution Z.

(b) Show that E(Z) � E(X 
 Y) � E(X) 
 E(Y).

(c) Find var(X), var(Y), and var(Z), and compare var(Z) with var(X) 
 var(Y).

(a) Here X assumes the values 0 and 1 and Y assumes the values 0 and 1; hence Z � X 
 Y
can only assume the values 0, 1, 2. Hence the range space of Z is RZ � {0, 1, 2}. To find
P(Z � z) � P(X 
 Y � z), we add up the corresponding probabilities from the joint distribution of
X and Y. Thus

P(Z � 0) � P(X � 0, Y � 0) � 0.16

P(Z � 1) � P(X � 0, Y � 1) 
 P(X � 1, Y � 0) � 0.24 
 0.24 � 0.48

P(Z � 2) � P(X � 1, Y � 1) � 0.36

Thus, the distribution of Z is as follows:

z

P(z)

0

0.16

1

0.48

2

0.36

(b) From the distributions of X, Y, Z we obtain

�X � E(X) � 0(0.4) 
 1(0.6) � 0.6 �Y � E(Y) � 0(0.4) 
 1(0.6) � 0.6

�Z � E(Z) � 0(0.16) 
 1(0.48) 
 2(0.36) � 1.2

Hence E(Z) � E(X) 
 E(Y) (which is expected from Theorem 5.3).

(c) From the distributions of X, Y, Z we obtain

E(X 2) � 02(0.4) 
 12(0.6) � 0.6, E(Y 2) � 02(0.4) 
 12(0.6) � 0.6

E(Z 2) � 02(0.16) 
 12(0.48) 
 22(0.36) � 1.92

Accordingly, var(X) � E(X 2) � �2
X � 0.6 � (0.6)2 � 0.24

var(Y) � E(Y 2) � �2
Y � 0.6 � (0.6)2 � 0.24

var(Z) � E(Z 2) � �2
Z � 1.92 � (1.2)2 � 0.48

Thus var(Z) � var(X) 
 var(Y). (This is expected since X and Y are independent random
variables.)

5.31. Let X be the random variable with the following distribution, and let Y � X 2:

x

f(x)

�2

1–
4

�1

1–
4

1

1–
4

2

1–
4

(a) Find the distribution g of Y.

(b) Find the joint distribution h of X and Y.
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(c) Find cov(X, Y) and �(X, Y).

(d) Determine whether or not X and Y are independent.

(a) Since Y � X 2, the random variable Y only has the values 4 and 1, and each occurs with probability
1–
4 
 1–

4 � 1–
2. Thus, the distribution of Y is as follows:

y

g(y)

1

1–
2

4

1–
2

(b) The joint distribution h of X and Y appears in Fig. 5-19. Note that if X � �2, then Y � 4. There-
fore

h(�2, 1) � 0 and h(�2, 4) � f(�2) �
1
4

The other entries are obtained in a similar manner.

Y

X
1 4 Sum

�2
�1

1
2

0
1/4
1/4
0

1/4
0
0

1/4

1/4
1/4
1/4
1/4

Sum 1/2 1/2

Fig. 5-19

(c) First compute �X, �Y, and E(XY) as follows:

�X � �xi f(xi) � �2 �1
4 
 � 1�1

4 
 
 1�1
4 
 
 2�1

4 
 � 0

�Y � �yi g(yi) � 1 �1
2 
 
 4�1

2 
 �
5
2

E(XY) � �xi yj f(xi)g(yj) � �8 �1
4 
 � 1�1

4 
 
 1�1
4 
 
 8�1

4 
 � 0

Then cov(X, Y) � E(XY) � �X �Y � 0 � 0 �
5
2

� 0 and so �(X, Y) � 0

(d) X and Y are not independent. For example, the entry h(�2, 1) � 0 is not equal to f(�2)g(1) � 1–
2 � 1–

4,
the product of the marginal entries. That is,

P(X � �2, Y � 1) � P(X � �2)P(Y � 1)

Remark: Although X and Y are not independent and, in particular, Y is a function of X, this
example shows that it is still possible for the covariance and correlation to be 0, which is always true when
X and Y are independent.

160 RANDOM VARIABLES [CHAP. 5

∑ xyh(x, y)



5.32. Let X1, X2, X3 be independent random variables that are identically distributed with mean
� � 100 and standard deviation 
 � 2. Let Y � (X1 
 X2 
 X3)/3. Find:

(a) the mean �Y of Y and (b) the standard deviation 
Y of Y.

(a) Theorem 5.2 and Corollary 5.4 yield

�Y � E(Y) � E�X1 
 X2 
 X3

3 
 �
E(X1 
 X2 
 X3)

3

�
E(X1) 
 E(X2) 
 E(X3)

3
�

100 
 100 
 100
3

� 100

Note �Y � �.

(b) We use Theorem 5.6 and, since X1, X2, X3 are independent, we can also use Theorem 5.9 to
obtain


2
Y � var(Y) � var �X1 
 X2 
 X3

3 
 �
var(X1 
 X2 
 X3)

9

�
var(X1) 
 var(X2) 
 var(X3)

9
�

22 
 22 
 22

9
�

12
9

�
4
3

Thus


Y � �4
3

�
2

�3
�




�3

Remark: Suppose Y were the sum of n independent, identically distributed random variables with
mean � and standard deviation 
. Then one can similarly show that

�Y � � and 
Y �



�n

That is, the above result is true in general.

CHEBYSHEV’S INEQUALITY

5.33. Suppose a random variable X has mean � � 25 and standard deviation 
 � 2. Use
Chebyshev’s inequality to estimate: (a) P(X � 35) and (b) P(X � 20).

(a) By Chebyshev’s inequality (Section 5.12),

P(� � k
 � X � � 
 k
) � 1 �
1
k2

Substitute � � 25, 
 � 2 in � 
 k
 and solve the equation 25 
 2k � 35 for k, getting
k � 5. Then

1 �
1
k2 � 1 �

1
25

�
24
25

� 0.96

Since � � k
 � 25 � 10 � 15, Chebyshev’s inequality gives

P(15 � X � 35) � 0.96

The event corresponding to X � 35 contains as a subset the event corresponding to
15 � X � 35. Therefore,

P(X � 35) � P(15 � X � 35) � 0.96

Hence, the probability that X is less than or equal to 35 is at least 96 percent.
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(b) Substitute � � 25, 
 � 2 in � � k
 and solve the equation 25 � 2k � 20 for k, getting
k � 2.5. Then

1 �
1
k2 � 1 �

1
6.25

� 0.84

Since � 
 2
 � 25 
 5 � 30, Chebyshev’s inequality gives

P(20 � X � 30) � 0.84

The event corresponding to X � 20 contains as a subset the event corresponding to
20 � X � 30. Therefore,

P(X � 20) � P(20 � X � 30) � 0.84

which says that the probability that X is greater than or equal to 20 is at least 84 percent.

Remark: This problem illustrates that Chebyshev’s inequality can be used to estimate P(X � b)
when b � �, and to estimate P(X � a) when a � �.

5.34. Let X be a random variable with mean � � 40 and standard deviation 
 � 5. Use Chebyshev’s
inequality to find a value b for which P(40 � b � X � 40 
 b) � 0.95.

First solve 1 �
1
k2 � 0.95 for k as follows:

0.05 �
1
k2 k2 �

1
0.05

� 20 k � �20 � 2�5

Then, by Chebyshev’s inequality, b � k
 � 10�5 � 23.4. Hence, P(16.6 � X � 63.6) � 0.95.

5.35. Let X be a random variable with mean � � 80 and unknown standard deviation 
. Use
Chebyshev’s inequality to find a value of 
 for which P(75 � X � 85) � 0.9.

First solve 1 �
1
k2 � 0.9 for k as follows:

0.1 �
1
k2 or k2 �

1
0.1

� 10 or k � �10

Now, since 75 is 5 units to the left of � � 80 and 85 is 5 units to the right of �, we can solve either
� � k
 � 75 or � 
 k
 � 85 for 
. From the latter equation, we get

80 
 �10
 � 85 or 
 �
5

�10
� 1.58

MISCELLANEOUS PROBLEMS

5.36. Let X be a continuous random variable with the following distribution:

f(x) � 

1–
6x 
 k
0

if 0 � x �

elsewhere

(a) Evaluate k. (b) Find P(1 � X � 2).

(a) The graph of f is drawn in Fig. 5-20(a). Since f is a continuous probability function, the shaded
region A must have area 1. Note that A forms a trapezoid with parallel bases of length k and k 
 1–

2

and altitude 3. Setting the area of A equal to 1 yields

� 1
2 
 � 1 or k �

1
12
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(b) P(1 � X � 2) is equal to the area of B which is under the graph of f between x � 1 and x � 2, as
shown in Fig. 5-20(b). Note:

f(1) �
1
6



1
12

�
3
12

and f(2) �
1
8



1
12

�
5
12

Hence P(1 � X � 2) � area of B �
1
2 �

3
12



5
12
 (1) �

1
3

5.37. Let X be the continuous random variable whose distribution function f forms an isosceles
triangle above the unit interval I � [0, 1] and 0 elsewhere (as pictured in Fig. 5-21).

(a) Find k, the height of the triangle. (b) Find the formula which defines f.

(c) Find the mean � � E(X) of X.

(a) The shaded region A in Fig. 5-21 must have area 1. Hence

1–
2(1)k � 1 or k � 2

(b) Note that f is linear between x � 0 and x � 1/2 with slope m � (2/(1/2)) � 4, and f is linear between
x � 1/2 and x � 1 with slope m � �4. Hence

f(x) � 

4x

�4x 
 4
0

if 0 � x � 1/2
if 1/2 � x � 1
elsewhere
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(c) Recall that we may view probability as weight or mass and the mean as the center of gravity. Since
the triangle is symmetric, it is intuitively clear that

� � 1–
2

the midpoint of the base of the triangle between 0 and 1. We verify this mathematically using
calculus:

� � E(X) �
��

��

xf(x) dx �
1/2�

0

x(4x) dx 

1�

1/2

x(�4x 
 4) dx

�
1/2�

0

4x2 dx 

1�

1/2

(�4x2 
 4x) dx

� � [4x3]/3�
1/2

0


 � [�4x3]/3 
 2x2�
1

1/2

� (1/6) 
 [(�4/3) 
 2 
 (1/6) � (1/2)] � 1/2

5.38. Let h be the joint distribution of random variables X and Y.

(a) Show that the distribution f of the sum Z � X 
 Y can be obtained by summing the
probabilities along the diagonal lines x 
 y � zk, that is,

f(z) � �
zk�xi
yj

h(xi, yj) � �
xi

h(xi, zk � xi)

(b) Let X and Y be random variables whose joint distribution h appears in Fig. 5-22 (where
the marginal entries have been omitted). Apply (a) to obtain the distribution f of the sum
Z � X 
 Y.

Y

X
�2 �1 0 1 2 3

0
1
2

0.05
0.10
0.03

0.05
0.05
0.12

0.10
0.05
0.07

0
0.10
0.06

0.05
0
0.03

0.05
0.05
0.04

Fig. 5-22

(a) The events {X � xi, Y � yj; xi 
 yj � zk} are disjoint. Therefore

f(z) � P(Z � zk) � �
zk�xi
yj

P(X � xi, Y � yj) � �
zk�xi
yj

h(xi, yj) � �
xi

h(xi, zk � xi)

(b) Note first that Z � X 
 Y takes on all integer values between z � �2 (obtained when X � 0 and
Y � �2) and z � 5 (obtained when X � 2 and Y � 3). Adding along the diagonal lines in Fig. 5-22
(from lower left to upper right) yields

f(�2) �

f(�1) �

f(0) �

f(1) �

0.05, f(2) � 0.07 
 0.10 
 0.05 � 0.22

0.10 
 0.05 � 0.15, f(3) � 0.06 
 0 
 0.05 � 0.11

0.03 
 0.05 
 0.10 � 0.18, f(4) � 0.03 
 0.05 � 0.08

0.12 
 0.05 
 0 � 0.17, f(5) � 0.04

Thus, the distribution f of Z � X 
 Y is as follows:

z

f(z)

�2

0.05

�1

0.15

0

0.18

1

0.17

2

0.22

3

0.11

4

0.08

5

0.04
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5.39. Let X be a discrete random variable with distribution function f. The rth moment Mr of X is
defined by

Mr � E(X r) �� xi
r f(xi)

Find the first five moments of X if X has the following distribution:

x

f(x)

�2

0.3

1

0.5

3

0.2

(Note that M1 is the mean of X and M2 is used in computing the variance and standard deviation
of X.)

Use the formula for Mr to obtain

M1 � �xi f(xi) � �2(0.3) 
 1(0.5) 
 3(0.2) � 0.5

M2 � �xi
2 f(xi) � �22(0.3) 
 12(0.5) 
 32(0.2) � 3.5

M3 � �xi
3 f(xi) � �23(0.3) 
 13(0.5) 
 33(0.2) � 3.5

M4 � �xi
4 f(xi) � �24(0.3) 
 14(0.5) 
 34(0.2) � 21.5

M5 � �xi
5 f(xi) � �2 (0.3)5 
 1(0.5) 
 3 (0.2)5 � 39.5

5.40. Find the distribution function f of the continuous random variable X whose cumulative
distribution function F follows:

(a) F(x) � 

0
x3

1

x � 0
0 � x � 1
x � 1

(b) F(x) � 

0
sin x
1

x � 0
0 � x � �/2
x � �/2

Recall that F(x) � �x

��
f(t) dt. Calculus tells us that f(x) � F �(x), the derivative of F(x). Thus:

(a) f(x) � 

0
3x2

0

x � 0
0 � x � 1
x � 1

(b) f(x) � 

0
cos x

0

x � 0
0 � x � �/2
x � �/2

PROOF OF THEOREMS

Remark: In all proofs, X is a random variable with distribution f, Y is a random variable with
distribution g, and h is their joint distribution.

5.41. Prove Theorem 5.1. Let S be an equiprobable space, and let X be a random variable on S with
range space RX � {x1, x2, . . ., xt}. Then

pk � P(xk) �
number of points in S whose image is xk

number of points in S
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Let S have n points and let s1, s2, . . ., sr be the points in S with image xi. We wish to show that
pi � f(xi) � r/n. By definition,

pi � f(xi) � sum of the probabilities of the points in S whose image is xi

� P(s1) 
 P(s2) 
 · · · 
 P(sr)

Since S is an equiprobable space, each of the n points in S has probability 1/n. Hence

pi � f(xi) �

r times

1
n



1
n


 · · · 

1
n

�
r

n

5.42. Show that the marginal distributions, f(xi) � �j h(xi, yj) and g(yj) � �i h(xi, yj), are the
(individual) distributions of X and Y.

Let Ai 	 {X � xi} and Bj 	 {Y � yj}, that is, let Ai � X �1(xi) and Bj � Y �1(yj). Thus, the Bj are
disjoint and S � 
j Bj. Hence

Ai � Ai 	 S � Ai 	 (
j bj) � 
j(Ai 	 Bj)

where the Ai 	 Bj are also disjoint. Accordingly

f(xi) � P(X � xi) � P(Ai) � �
j

P(Ai 	 Bj)

� �
j

P(X � xi, Y � yj) � �
j

h(xi, yj)

The proof for g is similar.

5.43. Prove Theorem 5.10. Let X and Y be random variables on S with Y � �(X). Then
E(Y) � �i �(xi) f(xi) where f is the distribution of X.

(Proof is given for the case where X is discrete and finite.)

Suppose X takes on the values xi, . . ., xn and �(xi) takes on the values y1, . . ., yn as i runs
from 1 to n. Then clearly the possible values of Y � �(X) are y1, . . ., yn and the distribution
g of Y is given by

g(yj) � �
{i:�(xi)�yj}

f(xi)

Therefore

E(Y) � �
j�1

y gj (yj) � �
j�1

yj �
{i:0(xi)�yj}

f(xi)

�

n�
i�1

f(xi) �
{ j:�(xi)�yj}

yj �

n�
i�1

f(xi)�(xi)

which proves the theorem.

5.44. Prove Theorem 5.2. Let X be a random variable and let k be a real number. Then

(i) E(kx) � kE(X). (ii) E(X 
 k) � E(X) 
 k.

(Proof is given for the general discrete case and the assumption that E(X) and E(Y) both
exist.)

(i) Now kX � �(X) where �(x) � kx. Therefore, by Theorem 5.10 (Problem 5.43),

E(kX) � �i kxi f(xi) � k �i xi f(xi) � kE(X)

(ii) Here X 
 k � �(X) where �(x) � x 
 k. Therefore, using �i f(xi) � 1,

E(X 
 k) � �i (xi 
 k) f(xi) � �i xi f(xi) 
 k �i f(xi) � E(X) 
 k
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n n



5.45. Prove Theorem 5.3. Let X and Y be random variables on S. Then

E(X 
 Y) � E(X) 
 E(Y)

(Proof is given for the general discrete case and the assumption that E(X) and E(Y) both
exist.)

Now X 
 Y � �(X, Y) where �(x, y) � x 
 y. Therefore, by Theorem 5.10 (Problem 5.43),

E(X 
 Y) � �
i
�

j

(xi 
 yj)h(xi, yj)

� �
i
�

j

xi h(xi, yj) 
 �
i
�

j

yj h(xi, yj)

By Problem 5.42, f(xi) � �j h(xi, yj) and g(yj) � �i h(xi, yj). Thus

E(X 
 Y) � �
i

xi f(xi) 
 �
j

yj g(yj) � E(X) 
 E(Y)

5.46. Prove Theorem 5.6. var(aX 
 b) � a2 var(X).

We prove separately that: (i) var(X 
 k) � var(X), and (ii) var(kX) � k2 var(X), from which the
theorem follows. By Theorem 5.2, �X
k � �X 
 k and �kX � k�X. Also, �xi f(xi) � �X and � f(xi) � 1.
Therefore

var(X 
 k) �

�

�

�

�(xi 
 k)2 f(xi) � �2
X
k

�xi
2 f(xi) 
 2k�xi f(xi) 
 k2 � f(xi) � (�X 
 k)2

�xi
2 f(xi) 
 2k�X 
 k2 � (�2

X 
 2k�X 
 k2)

�xi f(xi) � �2
X � var(X)

and

var(kX) �

�

�(kxi)2 f(xi) � �2
kX � k2 �xi

2 f(xi) � (k�X)2

k2 �xi
2 f(xi) � k2 �2

X � k2(�xi
2 f(xi) � �2

X) � k2 var(X)

5.47. Show that

cov(X, Y) � �
i, j

(xi � �X)(yj � �Y)h(xi, yj) ��
i, j

xi yj h(xi, yj) � �X �Y

(Note that the last term is E(XY) � �X �Y.)

(Proof is given for the case that X and Y are discrete and finite.)
We have

�
i, j

yj h(xi, yj) � �
j

yj g(yj) � �Y, �
i, j

xi h(xi, yj) � �
i

xi f(xi) � �X, �
i, j

h(xi, yj) � 1

Therefore

�
i, j

(xi � �X)(yj � �Y)h(xi, yj)

� �
i, j

(xi yj � �X yj � �Y xi 
 �X �Y)h(xi, yj)

� �
i, j

xi yj h(xi, yj) � �X�
i, j

yj h(xi, yj) � �Y�
i, j

xi h(xi, yj) 
 �X �Y�
i, j

h(xi, yj)

� �
i, j

xi yj h(xi, yj) � �X �Y � �X �Y 
 �X �Y

� �
i, j

xi yj h(xi, yj) � �X �Y
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5.48. Prove Theorem 5.7. The standardized random variable Z has mean �Z � 0 and standard
deviation 
Z � 1.

By definition Z �
X � �



where X has mean � and standard deviation 
 � 0. Using E(X) � � and

Theorem 5.2, we get

�Z � E� X � �


 
 � E �X



�

�



 �
1



E(X) �
�



�

�



�

�



� 0

Also, using Theorem 5.6, we get

var(Z) � var�X � �


 
 � var �X



�

�


 
 �
1

2 var(X) �


2


2 � 1

Therefore, 
Z � �var(Z) � �1 � 1.

5.49. Prove Theorem 5.8. Let X and Y be independent random variables on S. Then:

(i) E(XY) � E(X)E(Y).

(ii) var(X 
 Y) � var(X) 
 var(Y).

(iii) cov(X, Y) � 0.

(Proof is given for the case when X and Y are discrete and finite.)
Since X and Y are independent, h(xi, yj) � f(xi)g(yj). Thus

E(XY) � �
i, j

xi yj h(xi, yj) � �
i, j

xi yj f(xi)g(yj)

� �
i

xi f(xi)�
j

yj g(yj) � E(X)E(Y)

and

cov(X, Y) � E(XY) � �X �Y � E(X)E(Y) � �X �Y � 0

In order to prove (ii) we also need

�X
Y � �X 
 �Y, �
i, j

xi
2 h(xi, yj) � �

i

xi
2 f(xi), �

i, j

yj
2 h(xi, yj) � �

j

yj
2 g(yj)

Hence

var(X 
 Y) � �
i, j

(xi 
 yj)2 h(xi, yj) � �2
X
Y

� �
i, j

xi
2 h(xi, yj) 
 2�

i, j

xi yj h(xi, yj) 
 �
i, j

yj
2 h(xi, yj) � (�X 
 �Y)2

� �
i

xi
2 f(xi) 
 2�

i

xi f(xi)�
j

yj g(yj) 
 �
j

yj
2 g(yj) � �2

X � 2�X �Y � �2
Y

� �
i

xi
2 f(xi) � �2

X 
 �
j

yj
2 g(yj) � �2

Y � var(X) 
 var(Y)

5.50. Prove Theorem 5.9. Let X1, X2, . . ., Xn be independent random variables on S. Then

var(X1 
 X2 
 · · · 
 Xn) � var(X1) 
 var(X2) 
 · · · 
 var(Xn)

(Proof is given for the case when X1, X2, . . ., Xn are all discrete and finite.)
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We take for granted the analogs of Problem 5.49 and Theorem 5.11 for n random variables. Then

var(X1 
 · · · 
 Xn) � E((X1 
 · · · 
 Xn � �X1
···
Xn
)2)

� � (x1 
 · · · 
 xn � �X1
···
Xn
)2 h(x1, . . ., xn)

� � (x1 
 · · · 
 xn � �X1
� · · · � �Xn

)2 h(x1, . . ., xn)

� �
�
i
�

j

xi xj 
 �
i
�

j

�Xi
�Xj

� 2�
i
�

j

�Xi
xj�h(x1, . . ., xn)

where h is the joint distribution of X1, . . ., Xn, and �X1
···
Xn
� �X1


 · · · 
 �Xn
. Since the Xi are pairwise

independent, �xi xj h(x1, . . ., xn) � �Xi
�Xj

for i � j. Hence

var(X1 
 · · · 
 Xn) � �
i�j

�Xi
�Xj 


n�
i�1

E(Xi
2) 
 �

i
�

j

�Xi
�Xj

� 2�
i
�

j

�Xi
�Xj
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�

n�
i�1

E(Xi
2) �

n�
i�1

(�Xi
)2 �

n�
i�1

var(Xi) � var(X1) 
 · · · 
 var(Xn)

as required.

5.51. Prove Theorem 5.12 (Chebyshev’s Inequality). For any k � 0,

P(� � k
 � X � � 
 k
) � 1 �
1
k2

Note first that

P(�X � � � � k
) � 1 � P(�X � � � � k
) � 1 � P(� � k
 � X � � 
 k
)

By definition


2 � var(X) � �(xi � �)2 pi

Delete all terms from the summation for which xi is in the interval [� � k
, � 
 k
], that is, delete all
terms for which �xi � � � � k
. Denote the summation of the remaining terms by �*(xi � �)2 pi. Then


2 � �*(xi � �)2 pi � �*k2 
2 pi � k2 
2 �*pi

� k2 
2 P(�X � � � � k
)

� k2 
2[1 � P(� � k
 � X � � 
 k
)]

E Xi

i

n

i

n

X X

j

n

X X

i j

n

i j i j
( )2

1

∑ ∑∑ ∑μ μ μ μ= − +
= ≠

If 
 � 0, then dividing by k2 
2 gives

1
k2 � 1 � P(� � k
 � X � � 
 k
)

or

P(� � k
 � X � � 
 k
) � 1 �
1
k2

which proves Chebyshev’s inequality for 
 � 0. If 
 � 0, then xi � � for all pi � 0, and

P(� � k � 0 � X � � 
 k � 0) � P(X � �) � 1 � 1 �
1
k2

which completes the proof.



5.52. Let X1, X2, . . ., Xn be n independent and identically distributed random variables, each with
mean � and variance 
2, and let X̄n be the sample mean, that is,

X̄n �
X1 
 X2 
 · · · 
 Xn

n

(a) Prove that the mean of X̄n is � and the variance is 
2/n.

(b) Prove Theorem 5.13 (weak law of large numbers): For any � � 0,

P(� � � � X̄n � � 
 �) → 1 as n → �

(a) Using Theorems 5.2 and 5.3, we get

�X̄n
� E(X̄n) � E� X1 
 X2 
 · · · 
 Xn

n 
 �
1
n

E(X1 
 X2 
 · · · 
 Xn)

�
1
n

[E(X1) 
 E(X2) 
 · · · 
 E(Xn)] �
n�

n
� �

Now using Theorems 5.3 and 5.9, we get

var(X̄n) � var� X1 
 X2 
 · · · 
 Xn

n 
 �
1
n2 var(X1 
 X2 
 · · · 
 Xn)

�
1
n2 [var(X1) 
 var(X2) 
 · · · 
 var(Xn)] �

n
2

n2 �

2

n

(b) The proof is based on an application of Chebyshev’s inequality to the random variable X̄n. First
note that by making the substitution k
 � �, Chebyshev’s inequality can be written as

P(� � � � X � � 
 �) � 1 �

2

�2

Applying Chebyshev’s inequality in the form above, we get

P(� � � � X̄n � � 
 �) � 1 �

2

n�2

from which the desired result follows.

Supplementary Problems

RANDOM VARIABLES AND EXPECTED VALUE

5.53. Suppose a random variable X takes on the values �4, 2, 3, 7 with respective probabilities

k 
 2
10

,
2k � 3

10
,

3k � 4
10

,
k 
 1

10

Find the distribution and expected value of X.

5.54. A pair of dice is thrown. Let X denote the minimum of the two numbers which occur. Find the
distribution and expectation of X.

5.55. A fair coin is tossed 4 times. Let Y denote the longest string of heads. Find the distribution and
expectation of Y. (Compare with the random variable X in Problem 5.2.)
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5.56. A coin, weighted so that P(H) � 3/4 and P(T) � 1/4, is tossed 3 times. Let X denote the number of heads
that appear. (a) Find the distribution of X. (b) Find E(X).

5.57. A coin, weighted so that P(H) � 1/3 and P(T) � 2/3, is tossed until 1 head or 5 tails occur. Find the
expected number E of tosses of the coin.

5.58. The probability of team A winning any game is 1/2. Suppose A plays B in a tournament. The first team
to win 2 games in a row or 3 games wins the tournament. Find the expected number E of games in the
tournament.

5.59. A box contains 10 transistors of which 2 are defective. A transistor is selected from the box and tested until
a nondefective one is chosen. Find the expected number E of transistors to be chosen.

5.60. Solve the preceding Problem 5.59 for the case when 3 of the 10 items are defective.

5.61. Five cards are numbered 1 to 5. Two cards are drawn at random (without replacement). Let X denote
the sum of the numbers drawn. (a) Find the distribution of X. (b) Find E(X).

5.62. A lottery with 500 tickets gives 1 prize of $100, 3 prizes of $50 each, and 5 prizes of $25 each. (a) Find
the expected winnings of a ticket. (b) If a ticket costs $1, what is the expected value of the game?

5.63. A player tosses 3 fair coins. The player wins $5 if 3 heads occur, $3 if two heads occur, and $1 if only 1
head occurs. On the other hand, the player loses $15 if 3 tails occur. Find the value of the game to the
player.

5.64. A player tosses 2 fair coins. The player wins $3 if 2 heads occur and $1 if 1 head occurs. For the game
to be fair, how much should the player lose if no heads occur?

MEAN, VARIANCE, AND STANDARD DEVIATION

5.65. Find the mean �, variance 
2, and standard deviation 
 of each distribution:

(a) x

f(x)

2

1/4

3

1/2

8

1/4

(b) x

f(x)

�2

1/3

�1

1/2

7

1/6

5.66. Find the mean �, variance 
2, and standard deviation 
 of each distribution:

(a) x

f(x)

�1

0.3

0

0.1

1

0.1

2

0.3

3

0.2

(b) x

f(x)

1

0.2

2

0.1

3

0.3

6

0.1

7

0.3

5.67. Let X be a random variable with the following distribution:

x

f(x)

1

0.4

3

0.1

4

0.2

5

0.3

Find the mean �, variance 
2, and standard deviation 
 of X.

5.68. Let X be the random variable in Problem 5.67. Find the distribution, mean �, variance 
2, and standard
deviation 
 of each random variable Y: (a) Y � 3X 
 2, (b) Y � X 2, (c) Y � 2X.
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5.69. Let X be a random variable with the following distribution:

x

f(x)

�1

0.2

1

0.5

2

0.3

Find the mean �, variance 
2, and standard deviation 
 of X.

5.70. Let X be the random variable in Problem 5.69. Find the distribution, mean �, variance 
2, and standard
deviation 
 of the random variable Y � �(X) where

(a) �(x) � x4, (b) �(x) � 3x, (c) �(x) � 2x
1

5.71. Find the mean �, variance 
2, and standard deviation 
 of the following two-point distribution where
p 
 q � 1:

x

f(x)

a

p

b

q

5.72. Show that 
X � 0 if and only if X is a constant function, that is, X(s) � k for every s � S or simply
X � k.

5.73. Two cards are selected from a box which contains 5 cards numbered 1, 1, 2, 2, and 3. Let X denote the
sum and Y the maximum of the 2 numbers drawn. Find the distribution, mean, variance, and standard
deviation of the random variables: (a) X, (b) Y, (c) Z � X 
 Y, (d) W � XY.

JOINT DISTRIBUTIONS, INDEPENDENT RANDOM VARIABLES

5.74. Consider the joint distribution of X and Y in Fig. 5-23(a). Find: (a) E(X) and E(Y), (b) cov(X, Y),
(c) 
X, 
Y, and �(X, Y).

5.75. Consider the joint distribution of X and Y in Fig. 5-23(b). Find: (a) E(X) and E(Y), (b) cov(X, Y),
(c) 
X, 
Y, and �(X, Y).

Y

X
�4 2 7 Sum

Y

X
�2 �1 4 5 Sum

1
5

1/8
1/4

1/4
1/8

1/8
1/8

1/2
1/2

1
2

0.1
0.2

0.2
0.1

0
0.1

0.3
0

0.6
0.4

Sum 3/8 5/8 1/4 Sum 0.3 0.3 0.1 0.3

(a) (b)

Fig. 5-23

5.76. Suppose X and Y are independent random variables with the following respective distributions:

x

f(x)

1

0.7

2

0.3

y

g(y)

�2

0.3

5

0.5

8

0.2

Find the joint distribution h of X and Y, and verify that cov(X, Y) � 0.

172 RANDOM VARIABLES [CHAP. 5



5.77. Consider the joint distribution of X and Y in Fig. 5-24(a). (a) Find E(X) and E(Y). (b) Determine
whether X and Y are independent. (c) Find cov(X, Y).

5.78. Consider the joint distribution of X and Y in Fig. 5-24(b). (a) Find E(X) and E(Y). (b) Determine
whether X and Y are independent. (c) Find the distribution, mean, and standard deviation of the random
variable Z � X 
 Y.

Y

X
2 3 4 Sum

Y

X
�2 �1 0 1 2 3 Sum

1
2

0.06
0.14

0.15
0.35

0.09
0.21

0.30
0.70

0
1
2

0.05
0.10
0.03

0.05
0.05
0.12

0.10
0.05
0.07

0
0.10
0.06

0.05
0
0.03

0.05
0.05
0.04

0.30
0.35
0.35

Sum 3/8 5/8 1/4
Sum 0.18 0.22 0.22 0.16 0.08 0.14

(a) (b)

Fig. 5-24

5.79. A fair coin is tossed 4 times. Let X denote the number of heads occurring, and let Y denote the longest
string of heads occurring. (See Problems 5.2 and 5.55.)

(a) Determine the joint distribution of X and Y.

(b) Find cov(X, Y) and �(X, Y).

5.80. Two cards are selected at random from a box which contains 5 cards numbered 1, 1, 2, 2, and 3. Let X
denote the sum and Y the maximum of the 2 numbers drawn. (See Problem 5.73.) (a) Determine the
joint distribution of X and Y. (b) Find cov(X, Y) and �(X, Y).

CHEBYSHEV’S INEQUALITY

5.81. Let X be a random variable with mean � and standard deviation 
. Use Chebyshev’s inequality to
estimate P(� � 3
 � X � � 
 3
).

5.82. Let Z be the standard normal random variable with mean � � 0 and standard deviation 
 � 1. Use
Chebyshev’s inequality to find a value b for which P(�b � Z � b) � 0.9.

5.83. Let X be a random variable with mean � � 0 and standard deviation 
 � 1.5. Use Chebyshev’s
inequality to estimate P(�3 � X � 3).

5.84. Let X be a random variable with mean � � 70. For what value of 
 will Chebyshev’s inequality yield
P(65 � X � 75) � 0.95?

5.85. Let X be a random variable with mean � � 100 and standard deviation 
 � 10. Use Chebyshev’s
inequality to estimate: (a) P(X � 120) and (b) P(X � 75).

MISCELLANEOUS PROBLEMS

5.86. Let X be a continuous random variable with the following distribution:

f(x) � 
1/8
0

if 0 � x � 8
elsewhere

Find: (a) P(2 � X � 5), (b) P(3 � X � 7), (c) P(X � 6).
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5.87. Determine and plot the graph of the cumulative distribution function F of the random variable X in
Problem 5.86.

5.88. Let X be a continuous random variable with the following distribution:

f(x) � 
kx

0
if 0 � x � 5
elsewhere

Evaluate k and find: (a) P(1 � X � 3), (b) P(2 � X � 4), (c) P(X � 3).

5.89. Plot the graph of the cumulative distribution function F of the discrete random variable X with the
following distribution:

x

f(x)

�3

1/4

2

1/2

6

1/4

5.90. Find the distribution function f(x) of the continuous random variable X whose cumulative distribution
function F follows:

(a) F(x) � 

0
x5

1

if x � 0
if 0 � x � 1
if x � 1

(b) F(x) � 

0
sin �x

1

if x � 0
if 0 � x � 1/2
if x � 1/2

[Hint: f(x) � F�(x), the derivative of F(x), wherever it exists.]

5.91. Let X be a random variable for which 
X � 0. Show that �(X, X) � 1 and �(X, �X) � �1.

5.92. Prove Theorem 5.11. Let X, Y, Z be random variables on S with Z � �(X, Y). Then

E(Z) � �
i, j

�(xi, yj)h(xi, yj)

where h is the joint distribution of X and Y.

Answers to Supplementary Problems

The following notation will be used:

[x1, . . ., xn; f(x1), . . ., f(xn)] for the distribution f � {(xi, f(xi)};

[xi; yj; row by row] for the joint distribution h � {[(xi, yj), h(xi, yj)]}

5.53. k � 2; [�4, 2, 3, 7; 0.4, 0.1, 0.2, 0.3]; E(X) � 1.3.

5.54. [1, 2, 3, 4, 5, 6; 11/36, 9/36, 7/36, 5/36, 3/36. 1/36]; E(X) � 91/36 � 2.5.

5.55. [0, 1, 2, 3, 4; 1/16, 7/16, 5/16, 2/16, 1/16]; E(X) � 27/16 � 1.7.

5.56. (a) [0, 1, 2, 3; 1/64, 9/64, 27/64, 27/64]; (b) E(X) � 2.25.

5.57. E � 211/81 � 2.6.

5.58. E � 23/8 � 2.9.
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5.59. E � 11/9 � 1.2.

5.60. E � 11/8 � 1.4.

5.61. (a) [3, 4, 5, . . ., 9; 0.1, 0.1, 0.2, 0.2, 0.2, 0.1, 0.1]; (b) E(X) � 6.

5.62. (a) 0.75; (b) �0.25.

5.63. 0.25.

5.64. $5.

5.65. (a) � � 4, 
2 � 5.5, 
 � 2.3; (b) � � 0, 
2 � 10, 
 � 3.2.

5.66. (a) � � 1, 
2 � 2.4, 
 � 1.5; (b) � � 4.0, 
2 � 5.6, 
 � 2.37.

5.67. �X � 3, 
2
X � 3, 
X � �3 � 1.7.

5.68. (a) [5, 11, 14, 17; 0.4, 0.1, 0.2, 0.3], �Y � 11, 
2
Y � 27, 
Y � 5.2;

(b) [1, 9, 16, 25; 0.4, 0.1, 0.2, 0.3], �Y � 12, 
2
Y � 103.2, 
Y � 10.2;

(c) [2, 8, 16, 32; 0.4, 0.1, 0.2, 0.3], �Y � 14.4, 
2
Y � 159.0, 
Y � 12.6.

5.69. �X � 0.9; 
2
X � 1.09; 
X � 1.04.

5.70. (a) [1, 1, 16; 0.2, 0.5, 0.3], �Y � 5.5, 
2
Y � 47.25, 
Y � 6.87;

(b) [1/3, 3, 9; 0.2, 0.5, 0.3], �Y � 4.67, 
2
Y � 5.21, 
Y � 2.28;

(c) [1, 2, 8; 0.2, 0.5, 0.3], �Y � 3.6, 
2
Y � 8.44, 
Y � 2.91.

5.71. 
 � ap 
 bq; 
2 � pq(a � b)2; 
 � �a � b ��pq.

5.73. (a) [2, 3, 4, 5; 0.1, 0.4, 0.3, 0.2], �X � 3.6, 
2
X � 0.84, 
X � 0.9;

(b) [1, 2, 3; 0.1, 0.5, 0.4], �Y � 2.3, 
2
Y � 0.41, 
Y � 0.64;

(c) [3, 5, 6, 7, 8; 0.1, 0.4, 0.1, 0.2, 0.2], �Z � 5.9, 
2
Z � 2.3, 
Z � 1.5;

(d) [2, 6, 8, 12, 15; 0.1, 0.4, 0.1, 0.2, 0.2], �W � 8.8, 
2
W � 17.6, 
W � 4.2.

5.74. (a) E(X) � 3, E(Y) � 1; (b) cov(X, Y) � 1.5; (c) 
X � 2, 
Y � 4.3, �(X, Y) � 0.17.

5.75. (a) E(X) � 1.4, E(Y) � 1; (b) cov(X, Y) � �0.5; (c) 
X � 0.49, 
Y � 3.1, �(X, Y) � �0.3.

5.76. [1, 2; �2, 5, 8; 0.21, 0.35, 0.14; 0.09, 0.15, 0.06].

5.77. (a) E(X) � 1.7, E(Y) � 3.1; (b) yes; (c) must equal 0 since X and Y are independent.

5.78. (a) E(X) � 1.05, E(Y) � 0.16;
(b) no;
(c) [�2, �1, 0, 1, 2, 3, 4, 5; 0.05, 0.15, 0.18, 0.17, 0.22, 0.11, 0.08, 0.04], �Z � 1.21, 
Z � �3.21 � 1.79.

5.79. (a) [0, 1, 2, 3, 4; 0, 1, 2, 3, 4; 1/16, 0, 0, 0, 0; 0, 4/16, 0, 0, 0; 0, 3/16, 3/16, 0, 0; 0, 0, 2/16, 2/16;
0, 0, 0, 0, 1/16];

(b) cov(X, Y) � 0.85, �(X, Y) � 0.89.

5.80. (a) [2, 3, 4, 5; 1, 2, 3; 0.1, 0, 0; 0, 0.4, 0; 0, 0.1, 0.2; 0, 0, 0.2]; (b) cov(X, Y) � 0.52, �(X, Y) � 0.9.

5.81. P � 1 � 1––
32 � 0.89.
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5.82. b � �10 � 3.16.

5.83. P � 0.75.

5.84. 
 � 5/�20 � 1.12.

5.85. (a) P � 0.75; (b) P � 0.84.

5.86. (a) 3/8; (b) 1/2; (c) 1/4.

5.87. F(x) is equal to: 0 if x � 0, x/8 if 0 � x � 8, and 1 if x � 8. See Fig. 5-25(a).

5.88. k � 2/25: (a) 8/25; (b) 12/25; (c) 9/25.

5.89. See Fig. 5-25(b).

5.90. (a) f(x) � 5x4 between 0 and 1 and f(x) � 0 elsewhere;
(b) f(x) � � cos x between 0 and 1/2 and f(x) � 0 elsewhere.
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CHAPTER 6

Binomial
and

Normal
Distributions

6.1 INTRODUCTION

The last chapter defined a random variable X on a probability space S and its probability
distribution f(x). It was observed that one can discuss X and f(x) without referring to the original
probability space S. In fact, there are many applications of probability theory which give rise to the
same probability distribution. This chapter mainly discusses two such important distributions in
probability—the binomial distribution and the normal distribution. In addition, we will also briefly
discuss other distributions, including the Poisson and multinomial distributions. Furthermore, we
indicate how each distribution might be an appropriate probability model for some applications.

The central limit theorem, which plays a major role in probability theory, is also discussed in this
chapter. This theorem may be viewed as a generalization of the fact that the discrete binomial
distribution may be approximated by a continuous normal distribution.

6.2 BERNOULLI TRIALS, BINOMIAL DISTRIBUTION

Two outcomes, one labeled a success (S) and the other labeled a failure (F).    (We will let p denote the 
probability of success in such an experiment and let q = 1 – p denote the probability of failure.)    Suppose 
the experiment e is repeated and suppose the trials are independent, that is, suppose the outcome of any trial 
does not depend on any previous outcomes, such as tossing a coin.    Such independent repeated trials of 
an experiment with two outcomes are called Bernoulli trials, named after the Swiss mathematician Jacob 
Bernoulli (1654–1705).
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A binomial experiment consists of a fixed number, say n, of Bernoulli trials. (The term
‘‘binomial’’ comes from Theorem 6.1 below.) Such a binomial experiment will be denoted by

B(n, p)

That is, B(n, p) denotes a binomial experiment with n trials and probability p of success.
Frequently, we are interested in the probability of a certain number of successes in a binomial

experiment and not necessarily in the order in which they occur. The following theorem (proved in
Problem 6.11) applies.

Theorem 6.1: The probability of exactly k success in a binomial experiment B(n, p) is given by

P(k) � P(k successes) � �n
k
 pk qn�k

The probability of one or more successes is 1 � qn.

Here (n
k ) is the binomial coefficient which is defined and discussed in Chapter 2. Recall that

C(n, k) is also used for the binomial coefficient. Accordingly, we may alternately write

P(k) � C(n, k) pk qn�k

Observe that qn denotes the probability of no successes, and hence 1 � qn denotes the probability
of one or more successes. Moreover, the probability of getting at least k successes, that is, k or more
successes, is given by

P(k) 
 P(k 
 1) 
 P(k 
 2) 
 · · · 
 P(n)

This follows from the fact that the events of getting k and k� successes are disjoint for k � k�.

EXAMPLE 6.1 The probability that Ann hits a target at any time is p � 1–
3; hence she misses with probability

q � 1 � p � 2–
3. Suppose she fires at the target 7 times. This is a binomial experiment with n � 7 and

p � 1–
3. Find the probability that she hits the target: (a) Exactly 3 times. (b) At least 1 time.

(a) Here k � 3 and hence n � k � 4. By Theorem 6.1, the probability that she hits the target 3 times is

P(3) � �7
3 
 �

1
3 


3

�2
3 


4

�
560
2187

� 0.26

(b) The probability that she never hits the target, that is, all failures, is:

P(0) � q7 � �2
3 


7

�
128
2187

� 0.06

Thus, the probability that she hit the target at least once is

1 � q7 �
2059
2187

� 0.94 � 94%

EXAMPLE 6.2 A fair coin is tossed 6 times; call heads a success. This is a binomial experiment with n � 6 and
p � q � 1–

2. Find the probability that: (a) Exactly 2 heads occur. (b) At least 4 heads occur. (c) At least 1 head
occurs.

(a) Here k � 2 and hence n � k � 4. Theorem 6.1 tells us that the probability that exactly 2 heads occur
follows:

P(2) � �6
2 
 �

1
2 


2

�1
2 


4

�
15
64

� 0.23
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(b) The probability of getting at least 4 heads, that is, where k � 4, 5 or 6, follows:

P(4) 
 P(5) 
 P(6) � �6
4 
 �

1
2 


4

�1
2 


2


 �6
5 
 �

1
2 


5

�1
2 
 
 �6

6 
 �
1
2 


6

�
15
64



6
64



1
64

�
22
64

� 0.34

(c) The probability of getting no heads (that is, all failures) is q6 � (1/2)6 � 1/64, so the probability of 1 or more
heads is

1 � qn � 1 � 1––
64 � 63––

64 � 0.984

Binomial Distribution

Consider a binomial experiment B(n, p). That is, B(n, p) consists of n independent repeated trials
with two outcomes, success or failure, and p is the probability of success and q � 1 � p is the
probability of failure. Let X denote the number of successes in such an experiment. Then X is a
random variable with the following distribution:

k

P(k)

0

qn

1

� n

1 
 qn�1 p

2

� n

2 
qn�2 p2

· · ·

· · ·

n

pn

This distribution for a binomial experiment B(n, p) is called the binomial distribution since it
corresponds to the successive terms of the following binomial expansion:

(q 
 p)n � qn 
 �n
1
 qn�1 p 
 �n

2
 qn�2 p2 
 · · · 
 pn

Thus, B(n, p) will also be used to denote the above binomial distribution.

EXAMPLE 6.3 Suppose a fair coin is tossed 6 times, and heads is called a success. This is a binomial experiment
with n � 6 and p � q � 1–

2. By Example 6.2,

P(2) � 15––
64, P(4) � 15––

64, P(5) � 6––
64, P(6) � 1––

54

Similarly,

P(0) � 1––
64, P(1) � 6––

54, P(3) � 20––
64

Thus, the binomial distribution B(6, 1–
2) follows:

k

P(k)

0

1––
64

1

6––
64

2

15––
64

3

20––
64

4

15––
64

5

6––
64

6

1––
64

Properties of the binomial distribution follow:

Theorem 6.2:
Binomial distribution B(n, p)

Mean or expected number of successes
Variance
Standard deviation

� � np


2 � npq


 � �npq

This theorem is proved in Problem 6.18.
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EXAMPLE 6.4

(a) The probability that John hits a target is p � 1/4. He fires 100 times. Find the expected number � of times
he will hit the target and the standard deviation 
.

Here p � 1/4 and so q � 3/4. Hence

� � np � 100 · 1–
4 � 25 and 
 � �npq � �100 · 1–

4 · 3–
4 � 4.33

(b) A fair die is tossed 180 times. Find the expected number � of times the face 6 will appear and the standard
deviation 
.

Here p � 1/6 and so q � 5/6. Hence

� � np � 180 · 1–
6 � 30 and 
 � �npq � �180 · 1–

6 · 5–
6 � 5

(c) Find the expected number E(X) of correct answers obtained by guessing in a 30-question true-false test.
Here p � 1–

2. Hence E(X) � np � 30 · 1–
2 � 15.

6.3 NORMAL DISTRIBUTION

Let X be a random variable on an infinite sample space S where, by definition, {a � X � b} is an
event in S. Recall (Section 5.10) that X is said to be continuous if there is a function f(x) defined on
the real line R � (��, �) such that

(i) f is nonnegative.

(ii) The area under the curve of f is one.

(iii) The probability that X lies in the interval [a, b] is equal to the area under f between
x � a and x � b.

These properties may be restated as follows where we use the language of calculus for the area under
a curve:

(i) f(x) � 0, (ii)
��

��

f(x) dx � 1, (iii) P(a � X � b) �
b�

a

f(x) dx

The function f(x) is called the probability density function or, simply, distribution of X.
As discussed in Chapter 5, the expected value � � E(X) and the variance var (X) of a

continuous random variable X, with density function f(x), is defined by the integrals

E(X) �
��

��

xf(x) dx and var(X) �
��

��

(x � �)2 f(x) dx

As in the case of a discrete random variable, the standard deviation 
 of X is the nonnegative square
root of var(X).

Normal Random Variable

The most important example of a continuous random variable X is the normal random variable,
whose density function has the familar bell-shaped curve. This distribution was discovered by De
Moivre in 1733 as the limiting form of the binomial distribution. Although the normal distribution is
sometimes called the ‘‘Gaussian distribution’’ after Gauss who discussed it in 1809, it was actually
already known in 1774 by LaPlace.

Formally, a random variable X is said to be normally distributed if its density function f(x) has the
following form:

f(x) �
1

�2� 

exp��

1
2�x � �


 

2

�
where � is any real number and 
 is any positive number.
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The above distribution, which depends on the parameters � and 
, will be denoted by

N(�, 
2)

Thus, we say that X is N(�, 
2) if the above function f(x) is its distribution.
The two diagrams in Fig. 6-1 show the changes in the bell-shaped normal curves as � and 


vary. Specifically, Fig. 6-1(a) shows the distribution for three values of � and a constant value of 
.
In Fig. 6-1(b) � is constant and three values of 
 are used.

Observe that each curve in Fig. 6-1 reaches its highest point at x � �, and that the curve is
symmetric about x � �. The inflection points, where the direction of the bend of the curve changes,
occur when x � � 
 
 and x � � � 
. Furthermore, although the distribution is defined for all real
numbers, the probability of any large deviation from the mean � is extremely small and hence may be
neglected in most practical applications.

Properties of the normal distribution follow:

Theorem 6.3:
Normal distribution N(�, 
2)

Mean or expected value
Variance
Standard deviation

�


2




That is, the mean, variance, and standard deviation of the normal distribution
N(�, 
2) are �, 
2, and 
, respectively. This is why the symbols � and 
 are used as
the parameters in the definition of the above density function f(x).

Standardized Normal Distribution

Suppose X is any normal distribution N(�, 
2). Recall that the standardized random variable
corresponding to X is defined by

Z �
X � �
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We note that Z is also a normal distribution and that � � 0 and 
 � 1, that is, Z is N(0, 1). The
density function for Z, obtained by setting z � (x � �)/
 in the above formula for N(�, 
2), follows:

�(z) �
1

�2�
e�z2/2

The graph of this function is shown in Fig. 6-2.
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Figure 6-2 also tells us that the percentage of area under the standardized normal curve �(z) and
hence also under any normal distribution X is as follows:

68.2% for �1 � z � 1 and for � � 
 � x � � 
 


95.4% for �2 � z � 2 and for � � 2
 � x � � 
 2


99.7% for �3 � z � 3 and for � � 3
 � x � � 
 3


This gives rise to the so-called

68–95–99.7 rule

Fig. 6-2. Normal distribution N(0, 1).

2.15% 2.15%

z

y

y =   (z)

13.6% 13.6%

34.1% 34.1%

0.4

0.2

–3 –2 –1 0 1 2 3

This rule says that, in a normally distributed population, 68 percent (approximately) of the population
falls within one standard deviation of the mean, 95 percent falls within two standard deviations of the
mean, and 99.7 percent falls within three standard deviations of the mean.

6.4 EVALUATING NORMAL PROBABILITIES

Consider any continuous random variable X with density function f(x). Recall that the
probability P(a � X � b) is equal to the area under the curve f between x � a and x � b. In the
language of calculus,

P(a � X � b) �
b�

a

f(x) dx

However, if X is a normal distribution, then we are able to evaluate such areas without calculus. We
show how in this section in two steps: first with the standard normal distribution Z, and then with any
normal distribution X.
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Evaluating Standard Normal Probabilities

Table 6-1 gives the area under the standard normal curve � between 0 and z, where 0 � z � 4 and
z is given in steps of 0.01. This area is denoted by �(z), as indicated by the illustration in the
table.

EXAMPLE 6.5 Find: (a) �(1.72), (b) �(0.34), (c) �(2.3), (d) �(4.3).

(a) To find �(1.72), look down on the left for the row labeled 1.7, and then continue right for the column labeled 2.
The entry in the table corresponding to row 1.7 and column 2 is 0.457 3. Thus, �(1.72) � 0.457 3.

(b) To find �(0.46), look down on the left for the row labeled 0.4, and then continue right for the column labeled 6.
The entry corresponding to row 0.4 and column 6 is 0.177 2. Thus, �(0.46) � 0.177 2.

(c) To find �(2.3), look on the left for the row labeled 2.3. The first entry 0.489 3 in the row corresponds to
2.3 � 2.30. Thus, �(2.3) � 0.489 3.

(d) The value of �(z) for any z � 3.9 is 0.500 0. Thus, �(4.3) � 0.500 0, even though 4.3 is not in the table.

Using Table 6-1 and the symmetry of the curve, we can find P(z1 � Z � z2), the area under the
curve between any two values z1 and z2, as follows:

P(z1 � Z � z2) � 

�(z2) 
 �(�z1�)
�(z2) � �(z1)
�(�z1 �) � �(�z2 �)

if z1 � 0 � z2

if 0 � z1 � z2

if z1 � z2 � 0

These cases are pictured in Fig. 6-3.

EXAMPLE 6.6 Find the following probabilities for the standard normal distribution Z:

(a) P(�0.5 � Z � 1.1)

(b) P(�0.38 � Z � 1.72)

(c) P(0.2 � Z � 1.4)

(d) P(�1.5 � Z � �0.7)

(a) Referring to Fig. 6-3(a),

P(�0.5 � Z � 1.1) � �(1.1) 
 �(0.5) � 0.364 3 
 0.191 5 � 0.555 8

(b) Referring to Fig. 6-3(a),

P(�0.38 � Z � 1.72) � �(1.72) 
 �(0.38) � 0.457 3 
 0.148 0 � 0.605 3

(c) Referring to Fig. 6-3(b),

P(0.2 � Z � 1.4) � �(1.4) � �(0.2) � 0.419 2 � 0.079 3 � 0.339 9

(d) Referring to Fig. 6-3(c),

P(�1.5 � Z � �0.7) � �(1.5) � �(0.7) � 0.433 2 � 0.258 0 � 0.175 2
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Table 6-1 Standard Normal Curve Areas

This table gives areas �(z) under the standard
normal distribution � between 0 and z � 0 in steps
of 0.01.

z 0 1 2 3 4 5 6 7 8 9

0.0
0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8
0.9

1.0
1.1
1.2
1.3
1.4

1.5
1.6
1.7
1.8
1.9

2.0
2.1
2.2
2.3
2.4

2.5
2.6
2.7
2.8
2.9

3.0
3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8
3.9

0.0000
0.0398
0.0793
0.1179
0.1554

0.1915
0.2258
0.2580
0.2881
0.3159

0.3413
0.3643
0.3849
0.4032
0.4192

0.4332
0.4452
0.4554
0.4641
0.4713

0.4772
0.4821
0.4861
0.4893
0.4918

0.4938
0.4953
0.4965
0.4974
0.4981

0.4987
0.4990
0.4993
0.4995
0.4997

0.4998
0.4998
0.4999
0.4999
0.5000

0.0040
0.0438
0.0832
0.1217
0.1591

0.1950
0.2291
0.2612
0.2910
0.3186

0.3438
0.3665
0.3869
0.4049
0.4207

0.4345
0.4463
0.4564
0.4649
0.4719

0.4778
0.4826
0.4864
0.4896
0.4920

0.4940
0.4955
0.4966
0.4975
0.4982

0.4987
0.4991
0.4993
0.4995
0.4997

0.4998
0.4998
0.4999
0.4999
0.5000

0.0080
0.0478
0.0871
0.1255
0.1628

0.1985
0.2324
0.2642
0.2939
0.3212

0.3461
0.3686
0.3888
0.4066
0.4222

0.4357
0.4474
0.4573
0.4656
0.4726

0.4783
0.4830
0.4868
0.4898
0.4922

0.4941
0.4956
0.4967
0.4976
0.4982

0.4987
0.4991
0.4994
0.4995
0.4997

0.4998
0.4999
0.4999
0.4999
0.5000

0.0120
0.0517
0.0910
0.1293
0.1664

0.2019
0.2357
0.2673
0.2967
0.3238

0.3485
0.3708
0.3907
0.4082
0.4236

0.4370
0.4484
0.4582
0.4664
0.4732

0.4788
0.4834
0.4871
0.4901
0.4925

0.4943
0.4957
0.4968
0.4977
0.4983

0.4988
0.4991
0.4994
0.4996
0.4997

0.4998
0.4999
0.4999
0.4999
0.5000

0.0160
0.0557
0.0948
0.1331
0.1700

0.2054
0.2389
0.2704
0.2996
0.3264

0.3508
0.3729
0.3925
0.4099
0.4251

0.4382
0.4495
0.4591
0.4671
0.4738

0.4793
0.4838
0.4875
0.4904
0.4927

0.4945
0.4959
0.4969
0.4977
0.4984

0.4988
0.4992
0.4994
0.4996
0.4997

0.4998
0.4999
0.4999
0.4999
0.5000

0.0199
0.0596
0.0987
0.1368
0.1736

0.2088
0.2422
0.2734
0.3023
0.3289

0.3531
0.3749
0.3944
0.4115
0.4265

0.4394
0.4505
0.4599
0.4678
0.4744

0.4798
0.4842
0.4878
0.4906
0.4929

0.4946
0.4960
0.4970
0.4978
0.4984

0.4989
0.4992
0.4994
0.4996
0.4997

0.4998
0.4999
0.4999
0.4999
0.5000

0.0239
0.0636
0.1026
0.1406
0.1772

0.2123
0.2454
0.2764
0.3051
0.3315

0.3554
0.3770
0.3962
0.4131
0.4279

0.4406
0.4515
0.4608
0.4686
0.4750

0.4803
0.4846
0.4881
0.4909
0.4931

0.4948
0.4961
0.4971
0.4979
0.4985

0.4989
0.4992
0.4994
0.4996
0.4997

0.4998
0.4999
0.4999
0.4999
0.5000

0.0279
0.0675
0.1064
0.1443
0.1808

0.2157
0.2486
0.2794
0.3078
0.3340

0.3577
0.3790
0.3980
0.4147
0.4292

0.4418
0.4525
0.4616
0.4693
0.4756

0.4808
0.4850
0.4884
0.4911
0.4932

0.4949
0.4962
0.4972
0.4979
0.4985

0.4989
0.4992
0.4995
0.4996
0.4997

0.4998
0.4999
0.4999
0.4999
0.5000

0.0319
0.0714
0.1103
0.1480
0.1844

0.2190
0.2518
0.2823
0.3106
0.3365

0.3599
0.3810
0.3997
0.4162
0.4306

0.4429
0.4535
0.4625
0.4699
0.4761

0.4812
0.4854
0.4887
0.4913
0.4934

0.4951
0.4963
0.4973
0.4980
0.4986

0.4990
0.4993
0.4995
0.4996
0.4997

0.4998
0.4999
0.4999
0.4999
0.5000

0.0359
0.0754
0.1141
0.1517
0.1879

0.2224
0.2549
0.2852
0.3133
0.3389

0.3621
0.3830
0.4015
0.4177
0.4319

0.4441
0.4545
0.4633
0.4706
0.4767

0.4817
0.4857
0.4890
0.4916
0.4936

0.4952
0.4964
0.4974
0.4981
0.4986

0.4990
0.4993
0.4995
0.4997
0.4998

0.4998
0.4999
0.4999
0.4999
0.5000
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The ‘‘tail end’’ of a one-sided probability for the standard normal distribution Z can also be
obtained from Table 6-1 by using the fact that the total area under the normal curve is 1 and hence
half the area is 1/2. There are two cases, the probability that Z � z1 and the probability that
Z � z1.

The probability in the first case follows:

P(Z � z1) � 
0.500 0 
 �(z1)
0.500 0 � �(�z1 �)

if 0 � z1

if z1 � 0

These two possibilities are pictured in Fig. 6-4(a).
The probability in the second case follows:

P(Z � z1) � 
0.500 0 � �(z1)
0.500 0 
 �(�z1 �)

if 0 � z1

if z1 � 0

These two possibilities are pictured in Fig. 6-4(b).

EXAMPLE 6.7 Find the following one-sided probabilities for the standard normal distribution Z:

(a) P(Z � 0.75) (b) P(Z � �1.2) (c) P(Z � 0.60) (d) P(Z � �0.45)

(a) Referring to Fig. 6-4(a),

P(Z � 0.75) � 0.5 
 �(0.75) � 0.500 0 
 0.2734 � 0.7734

(b) Referring to Fig. 6-4(a),

P(Z � �1.2) � 0.5 � �(1.2) � 0.500 0 � 0.384 9 � 0.115 1

(c) Referring to Fig. 6-4(b),

P(Z � 0.60) � 0.5 � �(0.60) � 0.500 0 � 0.225 8 � 0.274 2
(d) Referring to Fig. 6-4(b),

P(Z � �0.45) � 0.5 
 �(�0.45) � 0.500 0 
 0.173 6 � 0.673 6
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Evaluating Arbitrary Normal Probabilities

Suppose X is a normal distribution, say X is N(�, 
2). We evaluate P(a � X � b) by first
changing a and b into corresponding standard units as follows:

z1 �
a � �



and z2 �

b � �




Then P(a � X � b) � P(z1 � Z � z2)

This is the area under the standard normal curve between z1 and z2 which can be found, as above, using
Table 6-1 on page 184.

One-sided probabilities are obtained similarly. Namely,

P(X � a) � P(Z � z) and P(X � a) � P(Z � z)

Here again a is changed into its corresponding standard unit using z � (a � �)/
.

EXAMPLE 6.8 Suppose X is the normal distribution N(70, 4). Find:

(a) P(68 � X � 74) (b) P(72 � X � 75) (c) P(63 � X � 68) (d) P(X � 73)

X has mean � � 70 and standard deviation 
 � �4 � 2. With reference to Figs. 6-3 and 6-4, we make the
following computations:

(a) Transform a � 68, b � 74 into standard units as follows:

z1 �
68 � �



�

68 � 70
2

� �1, z2 �
74 � �



�

74 � 70
2

� 2

Therefore [Fig. 6-3(a)]

P(68 � X � 74) � P(�1 � Z � 2) � �(2) 
 �(1)

� 0.477 2 
 0.341 3 � 0.818 4

(b) Transform a � 72, b � 75 into standard units:

z1 �
72 � 70

2
� 1, z2 �

75 � 70
2

� 2.5

Accordingly [Fig. 6-3(b)]:

P(72 � X � 75) � P(1 � Z � 2.5) � �(2.5) � �(1)

� 0.493 8 � 0.341 3 � 0.152 5

(c) Transform a � 63, b � 68 into standard units:

z1 �
63 � 70

2
� �3.5, z2 �

68 � 70
2

� �1

Therefore [Fig. 6-3(c)]

P(63 � X � 68) � P(�3.5 � Z � �1) � �(3.5) � �(1)

� 0.499 8 � 0.341 3 � 0.158 5

(d) Transform a � 73 into the standard unit z � (73 � 70)/2 � 1.5. Thus [Fig. 6.4(b)]

P(X � 73) � P(Z � 1.5) � 0.5 � �(1.5)

� 0.500 0 � 0.433 2 � 0.066 8
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EXAMPLE 6.9 Verify the above 68–95–99.7 rule, that is, for a normal random variable X, show that:

(a) P(� � 
 � X � � 
 
) � 0.68, (b) P(� � 2
 � X � � 
 2
) � 0.95,

(c) P(� � 3
 � X � � 
 3
) � 0.997

In each case, change to standard units and then use Table 6-1:

(a) P(� � 
 � X � � 
 
) � P(�1 � Z � 1) � 2�(1) � 2(0.341 3) � 0.68

(b) P(� � 2
 � X � � 
 2
) � P(�2 � Z � 2) � 2�(2) � 2(0.477 2) � 0.95

(c) P(� � 3
 � X � � 
 3
) � P(�3 � Z � 3) � 2�(3) � 2(0.498 7) � 0.997

Remark: Let X be any continuous random variable, which includes the normal random
variables. Then X has the property that

P(X � a) 	 P(a � X � a) � 0

Accordingly, for continuous data, such as heights, weights, and temperatures (whose measurements are
really approximations), we usually ask for the probability that X lies in some interval [a, b]. On the
other hand, we may sometimes ask for the probability that ‘‘X � a’’, where we mean the probability
that X lies in some small interval [a � �, a 
 �] centered at a. (Here the � corresponds to the accuracy
of the measurement.) This is illustrated in the next example.

EXAMPLE 6.10 Suppose the heights (in inches) of American men are (approximately) normally distributed
with mean � � 68 and standard deviation 
 � 2.5. Find the percentage of American men who are:

(a) Between a � 66 and b � 71 in tall, (b) (Approximately) 6 ft tall

(a) Transform a and b into standard units obtaining

z1 �
66 � 68

2.5
� �0.80 and z2 �

71 � 68
2.5

� 1.20

Here z1 � 0 � z2. Hence

P(66 � X � 71) � P(�0.8 � Z � 1.2) � �(1.2) 
 �(0.8)

� 0.384 9 
 0.288 1 � 0.673 0

That is, approximately 67.3 percent of American men are between 66 and 71 in tall.

(b) Assuming heights are rounded off to the nearest inch, we are really asking the percentage of American men
who are between a � 71.5 and b � 72.5 inches tall. Transform a and b into standard units obtaining

z1 �
71.5 � 68

2.5
� 1.4 and z2 �

72.5 � 68
2.5

� 1.8

Here 0 � z1 � z2. Therefore

P(71.5 � X � 72.5) � P(1.4 � Z � 1.8) � �(1.8) � �(1.4)

� 0.464 1 � 0.419 2 � 0.044 9

That is, about 4.5 percent of American men are (approximately) 6 ft tall.

6.5 NORMAL APPROXIMATION OF THE BINOMIAL DISTRIBUTION

The binomial probabilities P(k) � �n
k
 pk qn�k become increasingly difficult to compute as n

gets larger. However, there is a way to approximate P(k) by means of a normal distribution when an
exact computation is impractical. This is the topic in this section.
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Probability Histogram for B(n, p)

The probability histograms for B(10, 0.1), B(10, 0.5), B(10, 0.7) are pictured in Fig. 6-5. (Rectangles
whose heights are less than 0.01 have been omitted.) Generally speaking, the histogram of a binomial
distribution B(n, p) rises as k approaches the mean � � np and falls off as k moves away from
�. Furthermore:

(1) For p � 0.5, the histogram is symmetric about the mean � as in Fig. 6-5(b).

(2) For p � 0.5, the graph is skewed to the right as in Fig. 6-5(a).

(3) For p � 0.5, the graph is skewed to the left as in Fig. 6-5(c).

Consider now the following distribution for B(20, 0.7) where an asterisk (*) indicates that P(k) is
less than 0.01:

k

P(k)

0

*

1

*

· · ·

· · ·

8

*

9

0.01

10

0.03

11

0.07

12

0.11

13

0.16

14

0.19

15

0.18

16

0.13

17

0.07

18

0.03

19

0.01

20

*

The probability histogram for B(20, 0.7) appears in Fig. 6-6.
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Fig. 6-5

Fig. 6-6. Histogram of B(20, 0.7); distribution of N(14, 4.2).
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Although p � 0.5, observe that the histogram for B(20, 0.7) is still nearly symmetric about the
mean � � np � 20(0.7) � 14 for values of k between 8 and 20. Also, for k outside that range, P(k) is
practically 0. Furthermore, the standard deviation for B(20, 0.7) is (approximately) 
 � 2. Accord-
ingly, the interval [8, 20] is approximately [� � 3
, � 
 3
]. These results are typical for binomial
distributions B(n, p) in which both np and nq are at least 5. We state these results more formally:

Basic Property of the Binomial Probability Histogram: For np � 5 and nq � 5, the probability
histogram for B(n, p) is nearly symmetric about � � np over the interval [� � 3
, � 
 3
], where

 � �npq, and outside this interval P(k) � 0.

Normal Approximation, Central Limit Theorem

The density curve for the normal distribution N(14, 4.2) is superimposed on the probability
histogram for the binomial distribution B(20, 0.7) in Fig. 6-6. Here � � 14 and 
 � �4.2 for both
distributions. The following is the fundamental relationship between any two such distributions:

For any integer value of k between � � 3
 and � 
 3
, the area under the normal curve between
k � 0.5 and k 
 0.5 is approximately equal to P(k), the area of the rectangle at k.

In other words:

The binomial probability P(k) can be approximated by the normal probability
P(k � 0.5 � X � k 
 0.5)

The following fundamental central limit theorem is the theoretical justification for the above
approximation of B(n, p) by N(np, npq).

Central Limit Theorem 6.4: Let X1, X2, X3, . . . be a sequence of independent random variables with
the same distribution and with mean � and variance 
2. Let

Zn �
X̄n � �


/�n

where X̄n � (X1 
 X2 
 · · · 
 Xn)/n. Then for large n and any interval
{a � x � b},

P(a � Zn � b) � P(a � � � b)

where � is the standard normal distribution.

Recall that X̄n was called the sample mean of the random variables X1, . . ., Xn. Thus, Zn in the
above theorem is the standardized sample mean. Roughly speaking, the central limit theorem says
that in any sequence of repeated trials the standardized sample mean approaches the standard normal
curve as the number of trials increases.
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6.6 CALCULATIONS OF BINOMIAL PROBABILITIES USING THE NORMAL
APPROXIMATION

Let BP denote the binomial probability and let NP denote the normal probability. As noted
above, for any integer value of k between � � 3
 and � 
 3
, we have

BP(k) � NP(k � 0.5 � X � k 
 0.5)

Accordingly, for nonnegative integers n1 and n2,

BP(n1 � k � n2) � NP(n1 � 0.5 � X � n2 
 0.5)

These formulas are used in the following examples.

EXAMPLE 6.11 A fair coin is tossed 100 times. Find the probability P that heads occur exactly 60 times.
This is a binomial experiment B(n, p) with n � 100, p � 0.5, and q � 1 � p � 0.5. First we find

� � np � 100(0.5) � 50, 
2 � npq � 100(0.5)(0.5) � 25, and so 
 � 5

We use the normal distribution to approximate the binomial probability P(60). We have

BP(60) � NP(59.5 � X � 60.5)

Transforming a � 59.5 and b � 60.5 into standard units yields

z1 �
59.5 � 50

5
� 1.9 and z2 �

60.5 � 50
5

� 2.1

Here 0 � z1 � z2. Therefore [Fig. 6-3(b)]

P � BP(60) � NP(59.5 � X � 60.5) � NP(1.9 � Z � 2.1)

� �(2.1) � �(1.9) � 0.482 1 � 0.471 3 � 0.010 8

Thus, 60 heads will occur approximately 1 percent of the time.

Remark: The above result agrees with the exact value of BP(60) to four decimal places. That is, to four
decimal places:

BP(60) � �100
60 
 (0.5)60 (0.5)30 � 0.010 8

However, calculating BP(60) directly is difficult.

EXAMPLE 6.12 A fair coin is tossed 100 times (as in Example 6.11). Find the probability P that heads occur
between 48 and 53 times inclusive.

Again, we have the binomial experiment B(n, p) with n � 100, p � 0.5, and q � 0.5; and again we have

� � np � 100(0.5) � 50 and 
 � �npq � �25 � 5

We seek BP(48 � k � 53) or, assuming the data are continuous, NP(47.5 � X � 53.5). Transforming a � 47.5
and b � 53.5 into standard units yields

z1 �
47.5 � 50

5
� �0.5 and z2 �

53.5 � 50
5

� 0.7

Here, z1 � 0 � z2. Accordingly [Fig. 6-3(a)]

P � BP(48 � k � 53) � NP(47.5 � X � 53.5) � NP(�0.5 � Z � 0.7)

� �(0.7) 
 �(0.5) � 0.258 0 
 0.191 5 � 0.449 5

Thus, 48 to 53 heads will occur approximately 45 percent of the time.
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Approximation of One-Sided Binomial Probabilities

The following formulas are used for the normal approximation to one-sided binomial probabilities:

BP(k � n1) � NP(X � n1 
 0.5) and BP(k � n1) � NP(X � n1 � 0.5)

The following remark justifies these one-sided approximations.

Remark: For the binomial distribution B(n, p), the binomial variable k lies between 0 and n.
Thus we should actually replace:

BP(k � n1) by BP(0 � k � n1) and BP(k � n1) by BP(n1 � k � n)

This would yield the following approximations:

BP(0 � k � n1) � NP(�0.5 � X � n1 
 0.5) � NP(X � n1 
 0.5) � NP(X � �0.5)

BP(n1 � k � n) � NP(n1 � 0.5 � X � n 
 0.5) � NP(X � n1 � 0.5) � NP(X � n 
 0.5)

However, NP(X � �0.5) and NP(X � 0.5) are very small when is large and can therefore be
neglected. This is the reason for the above one-sided approximations.

EXAMPLE 6.13 A fair coin is tossed 100 times (as in Example 6.11). Find the probability P that heads occur
less than 45 times.

Again, we have the binomial experiment B(n, p) with n � 100, p � 0.5, and q � 0.5; and again we have

� � np � 100(0.5) � 50 and 
 � �npq � �25 � 5

We seek BP(k � 45) � BP(k � 44) or, approximately, NP(X � 44.5). Transforming a � 44.5 into standard units
yields

z1 � (44.5 � 50)/5 � �1.1

Here z1 � 0. Accordingly [Fig. 6-4(a)]

P � BP(k � 44) � NP(X � 44.5) � NP(Z � 1.1)

� 0.5 � �(1.1) � 0.5 � 0.3643 � 0.1357

Thus, fewer than 45 heads will occur approximately 13.6 percent of the time.

6.7 POISSON DISTRIBUTION

A discrete random variable X is said to have the Poisson distribution with parameter � � 0 if X
takes on nonnegative integer values k � 0, 1, 2, . . . with respective probabilities

P(k) � f(k; �) �
�k e��

k!

Such a distribution will be denoted by POI(�). (This distribution is named after S. D. Poisson who
discovered it in the early part of the nineteenth century.)

The values of f(k; �) can be obtained by using Table 6-2 which gives values of e�� for various
values of �, or by using logarithms.
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Table 6-2 Values of e��

�

e��

�

e��

0.0

1.000

1

0.368

0.1

0.905

2

0.135

0.2

0.819

3

0.0498

0.3

0.741

4

0.0183

0.4

0.670

5

0.00674

0.5

0.607

6

0.00248

0.6

0.549

7

0.000912

0.7

0.497

8

0.000335

0.8

0.449

9

0.000123

0.9

0.407

10

0.000045

The Poisson distribution appears in many natural phenomena, such as the number of telephone
calls per minute at some switchboard, the number of misprints per page in a large text, and the number
of � particles emitted by a radioactive substance. Bar charts of the Poisson distribution for various
values of � appear in Fig. 6-7.

Properties of the Poisson distribution follow:

Theorem 6.5:
Poisson distribution with parameter �

Mean or expected value
Variance
Standard deviation

� � �


2 � �


 � ��

Although the Poisson distribution is of independent interest, it also provides us
with a close approximation of the binomial distribution for small k provided p is small
and � � np (Problem 6.43). This property is indicated in Table 6-3 which compares
the binomial and Poisson distributions for small values of k with n � 100, p � 1/100,
and � � np � 1.
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Table 6-3 Comparison of Binomial and Poisson Distributions with n � 100, p � 1/100, and
� � np � 1

k

Binomial
Poisson

0

0.366
0.368

1

0.370
0.368

2

0.185
0.184

3

0.061 0
0.061 3

4

0.014 9
0.015 3

5

0.002 9
0.003 07

EXAMPLE 6.14 Suppose 2 percent of the items produced by a factory are defective. Find the probability P that
there are 3 defective items in a sample of 100 items.

The binomial distribution with n � 100 and p � 0.02 applies. However, since p is small, we can use the
Poisson approximation with � � np � 2. Thus

P � f(3, 2) �
23

3!
� 8(0.135)/6 � 0.180

On the other hand, using the binomial distribution, we would need to calculate

P(3) � C(100, 3)(0.02) (0.98)3 97 � (161,700)(0.02) (0.98)3 97 � 0.182

Thus the difference is only about 0.002, or 0.2 percent.

6.8 MISCELLANEOUS DISCRETE RANDOM VARIABLES

This section discusses a number of miscellaneous discrete random variables. Recall that a
random variable X is discrete if its range space is finite or countably infinite.

(a) Multinomial Distribution:

The binomial distribution is generalized as follows. Suppose the sample space S of an experiment �
is partitioned into, say, s mutually exclusive events A1, A2, . . ., As with respective probabilities p1, p2,
. . ., ps. (Hence p1 
 p2 
 · · · 
 ps � 1.) Then

Theorem 6.6: In n repeated trials, the probability that A1 occurs k1 times, A2 occurs k2 times, . . .,
As occursand ks times is equal to

n!
k1! k2! · · · ks!

p1
k1 p2

k2 · · · ps
ks

where k1 
 k2 
 · · · 
 ks � .

The above numbers form the so-called multinomial distribution since they are precisely the terms
in the expansion of the expression (p1 
 p2 
 · · · 
 ps)n. Observe that when s � 2 we obtain the
binomial distribution discussed at the beginning of the chapter.

The process of repeated trials of the above experiment � implicitly defines s discrete random
variables X1, X2, . . ., Xs. Specifically, define X1 to be the number of times A1 occurs when � is
repeated n times. Define X2 to be the number of times A2 occurs when � is repeated n times. And
so on. (Observe that the random variables are not independent since the knowledge of any s � 1 of
them gives the remaining one.)

EXAMPLE 6.15 A fair die is tossed 8 times. Find the probability p of obtaining 5 and 6 exactly twice and the
other numbers exactly once.

Here we use the multinomial distribution to obtain

p �
8!

2! 2! 1! 1! 1! �1
6 


2

�1
6 


2

�1
6 
 �

1
6 
 �

1
6 
 �

1
6 
 �

35
5832

� 0.006
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(b) Hypergeometric Distribution:

Consider a binomial experiment B(n, p), that is, the experiment is repeated n times where each time
the probability of success is p and the probability of failure is q � 1 � p. This experiment may be
modeled as follows:

(i) Choose a population of N elements where pN of the elements are designated as success and the
remaining qN elements are designated as failures.

(ii) Choose a sample S of n elements with replacement, that is, each time a sample element is chosen,
it is replaced in the population before the next sample element is chosen.

194 BINOMIAL AND NORMAL DISTRIBUTIONS [CHAP. 6

Let us now consider an experiment where the successes are drawn from the population without replacement.    This will 

be used to illustrate, and then solve for, the hypergeometric distribution.

As noted, the binomial distribution is the distribution of the number of successes in a binomial experiment— 
a series of independent binomial trials. This binomial experiment can be equivalently described as choosing 
a sample from a population of predetermined successes and failures with replacement as follows:

EXAMPLE 6.16 Consider the binomial experiment B(5, 0.6). Here p � 0.6 and q � 0.4. One model would be
a box with N � 10 marbles of which Np � 6 have the color white (success) and Nq � 4 have the color red
(failure). The probability of choosing a white marble is p � 6/10 � 0.6, as required. Suppose a random sample
S of size n � 5 is chosen, with replacement. The probability of success for each of the n � 5 choices will be
p � 0.6, and hence we have a model of the binomial experiment B(5, 0.2).

The probability P(3) that our sample has exactly 3 white (and hence 2 red) marbles follows:

P(3) � C(5, 3)(0.6)3 (0.4)2 � 10(0.6)3 (0.4)2 � 0.345

EXAMPLE 6.17 A class with N � 10 students has M � 6 men. Hence there are N � M � 4 women. Suppose
a random sample of n � 5 students are selected. Find the probability p � P(3) that exactly k � 3 men (and hence
n � k � 2 women) are selected.

The probability follows:

p � P(3) �
C(M, k) C(N � M, n � k)

C(N, n)
�

C(6, 3) C(4, 2)
C(10, 5)

�
(20)(6)

252
� 0.476

The denominator C(10, 5) denotes the number of possible ways of selecting a sample of n � 5 from the 10
students. The C(6, 3) denotes the number of possible ways of selecting 3 men from the 6 men, and the C(4, 2)
denotes the number of possible ways of selecting 2 women from the 4 women.

Theorem 6.7: Suppose positive integers N, M, n are given with M, n � N. Then the following is a
discrete probability distribution:

P(k) �
C(M, k) C(N � M, n � k)

C(N, n)
for k � 1, 2, . . ., min(M, n)

The above numbers form the so-called hypergeometric distribution; it is characterized by three
parameters, n, N, M, and it is sometimes denoted by HYP(n, N, M). A random variable X with this
distribution is called a hypergeometric random variable.

If n is much smaller than M and N, then the hypergeometric distribution approaches the binomial
distribution. Roughly speaking, with a large population, sampling with or without replacement is
almost identical.

The following theorem applies where min(M, n) means the minimum of the two numbers.

P(k) � C(n, k) pk qn�k

The hypergeometric distribution is the distribution that describes the number of successes in the above set-
ting if the sample S of the elements is drawn without replacement.    In effect, rather than each trial being 
independent, the probability of a success depends on the earlier draws.

Let us begin by considering a standard binomial experiment.    By Theorem 6.1, the probability P(k) 
that the sample S has K successes is

B(5, 0.6).
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(c) Geometric Distribution:

Consider repeated trials of a Bernoulli experiment � with probability p of success and q � 1 � p of
failure. Let X denote the number of times � must be repeated until finally obtaining a success. (For
example, one may continually fire at a target until finally hitting the target.) Then X is a random
variable with the following distribution:

k

P(k)

1

p

2

qp

3

q2 p

4

q3 p

5

q4 p

· · ·

· · ·

In other words, � will be repeated k times only in the case that there is a sequence of k � 1 failures
followed by a success. Thus, P(k) � qk�1 p � pqk�1, as indicated by the above distribution table.

First we show that the above is a probability distribution, that is, that �qk�1 p � 1. Recall that the
geometric series

1 
 q 
 q2 
 · · · �
1

1 � q

Hence, using p � 1 � q, we have

� qk�1 p � p(1 
 q 
 q2 
 · · ·) �
p

1 � q
�

p
p

� 1

as required.
The above distribution is called the geometric distribution; it is characterized by a single parameter

p since q � p � 1, and it is sometimes denoted by GEO(p). A random variable X with such a
distribution is called geometric random variable.

The following theorem applies.

Theorem 6.8: Let X be a geometric random variable with distribution GEO(p). Then

(i) Expectation E(X) � 1/p.

(ii) Variance var(X) � q/p2.

(iii) Cumulative distribution F(k) � 1 � qk.

(iv) P(k � r) � qr.

(See Problems 6.78, 6.90, and 6.91.)

EXAMPLE 6.18 Suppose the probability of a rocket hitting a target is p � 0.2, and a rocket is repeatedly fired
until the target is hit.

(a) Find the expected number E of rockets which will be fired.

(b) Find the probability P that 4 or more rockets will be needed to finally hit the target.

(a) By Theorem 6.8, E � 1/p � 1/(0.2) � 5.

(b) First find q � 1 � 0.2 � 0.8. Then, by Theorem 6.8,

P(k � 3) � q3 � (0.8)3 � 0.512

That is, there is about a 50–50 chance of hitting the target with less than 4 rockets.
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6.9 MISCELLANEOUS CONTINUOUS RANDOM VARIABLES

This section discusses another two continuous random variables, one with a uniform distribution
on an interval and the other with an exponential distribution. Recall that a random variable X is
continuous if its range space is noncountable and if there exists a density function f(x) defined on
R � (��, �) such that

(i) f(x) � 0, (ii)
��

��

f(x) dx � 1, (iii) P(a � X � b) �
b�

a

f(x) dx

That is,

(i) f is nonnegative.

(ii) The area under its curve is one.

(iii) The probability that X lies in the interval [a, b] is equal to the area under f between x � a and
x � b.

The cumulative distribution function F(x) for the density function f(x) is defined by

F(x) �
x�

��

f(t) dt

Frequently, a continuous random variable X is defined by simply giving its density function
f(x). Also, if f(x) is explicitly given for only certain values of x, then we assume f(x) � 0 for the
remaining values of x in R.

(a) Uniform Distribution on an Interval:

A continuous random variable X is said to have a uniform distribution on an interval I � [a, b], where
a � b, if its density function f(x) has the constant value k on the interval and zero elsewhere. Since
the area under f must be 1, we easily get that k(b � a) � 1 or that k � 1/(b � a). That is,

f(x) � 

1

b � a
0

for a � x � b

elsewhere

The notation UNIF(a, b) is sometimes used to denote this distribution; its graph is exhibited in Fig.
6-8(a).

The following theorem, proved in Problem 6.48, applies.
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Theorem 6.9: Let X be a continuous random variable with distribution UNIF(a, b). Then

(i) Expectation E(X) �
a 
 b

2

(ii) Variance var(X) �
(b � a)2

12

(iii) Cumulative distribution function:

F(x) � 

0

x � a
b � a

1

for x � a

for a � x � b

for x � b

The cumulative distribution function F(x) of UNIF(a, b) is exhibited in Fig. 6-8(b). Observe that
F(x) is 0 before the interval [a, b], increases linearly from 0 to 1 on the interval [a, b], and then remains
at 1 after the interval [a, b].

(b) Exponential Distribution:
A continuous random variable X is said to have an exponential distribution with parameter � (where
� � 0) if its density function f(x) has the form

f(x) �
1
�

e�x/�, x � 0

and 0 elsewhere. The notation EXP(�) is sometimes used to denote such a distribution. A picture
of this distribution for various values of � appears in Fig. 6-9.

The following theorem applies:

Theorem 6.10: Let X be a continuous random variable with distribution EXP(�). Then

(i) Expectation E(X) � �

(ii) Variance var(X) � �2

(iii) Cumulative distribution function:

F(x) � 1 � e�x/�, x � 0
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The exponential distribution also has the following important ‘‘no-memory property’’.

Theorem 6.11: Let X have an exponential distribution. Then

P(X � a 
 t � X � a) � P(X � t)

That is, suppose the lifetime of a certain solid-state component X is exponential. Theorem 6.11
states that the probability that X will last t units after it has already lasted a units is the same as the
probability that X will last t units when X was new. In other words, a used component is just as
reliable as a new component.

EXAMPLE 6.19 Suppose the lifetime X (in days) of a certain component C is exponential with � � 120. Find
the probability that the component C will last:

(a) less than 60 days, (b) more than 240 days.

The following are the distribution f(x) and cumulative distribution F(x) with � � 120:

f(x) �
1

120
e�x/120 and F(x) � 1 � e�x/120

(a) The probability that C will last less than 60 days is

P(X � 60) � F(60) � 1 � e�0.5 � 0.393

(b) The probability that C will last less than 240 days is

P(X � 240) � F(240) � 1 � e�2 � 0.865

Hence P(X � 240) � 1 � F(240) � 1 � 0.865 � 0.135

These probabilities are pictured in Fig. 6-10.

EXAMPLE 6.20 Consider the component C in Example 6.19. If C is still working after 100 days, find the
probability that it will last more than 340 days.

By the ‘‘no-memory property’’ Theorem 6.11 of the exponential distribution:

P(X � 340 � X � 100) � P(X � 240) � 0.135

That is, after working 100 days, the life expectancy of the used component C is the same as a new component.
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Solved Problems

BINOMIAL DISTRIBUTION

6.1. Compute P(k) for the binomial distribution B(n, p) where

(a) n � 5, p � 1–
3, k � 2; (b) n � 10, p � 1–

2, k � 7; (c) n � 4, p � 1–
4, k � 3

Use Theorem 6.1 that P(k) � � n

k 
 pk qn�k where q � 1 � p.

(a) Here q �
2
3

, so P(2) � �5
2 
 �

1
3 


2

�2
3 


3

�
5 · 4
2 · 1 �1

9 
 �
8
27
 �

80
243

� 0.329

(b) Here q �
1
2

, so P(7) � �10
7 
 �1

2 

7

�1
2 


3

� 120 � 1
128 
 �

1
8 
 �

15
128

� 0.117

(c) Here q �
3
4

, so P(3) � �4
3 
 �

1
4 


3

�3
4 
 � 4 � 1

64
 �
3
4 
 �

3
64

� 0.047

6.2. A fair coin is tossed 3 times. Find the probability that there will appear:

(a) 3 heads, (b) exactly 2 heads, (c) exactly 1 head, (d) no heads.

Method 1: We obtain the following equiprobable space with 8 elements:

S � {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT }

Then we simply count the number of ways the event can occur.

(a) 3 heads HHH occurs only once; hence

P(3 heads) � 1/8.

(b) 2 heads occurs 3 times, HHT, HTH, THH; hence

P(exactly 2 heads) � 3/8.

(c) 1 head occurs 3 times, HTT, THT, TTH; hence

P(exactly 1 head) � 3/8.

(d) No heads, that is, 3 tails TTT, occurs only once; hence

P(no heads) � P(3 tails) � 1/8.

Method 2: Use Theorem 6.1 with n � 3 and p � q � 1/2.

(a) Here k � 3, so P � P(3) � �1
2 


3

�
1
8

� 0.125.

(b) Here k � 2, so P � P(2) � �3
2 
 �

1
2 


2

�1
2 


1

� 3 �1
4 
 �

1
2 
 �

3
8

� 0.375.

(c) Here k � 1, so P � P(1) � �3
1 
 �

1
2 


1

�1
2 


2

� 3 �1
2 
 �

1
4 
 �

3
8

� 0.375.

(d) Here k � 0, so P � P(0) � �1
2 


3

�
1
8

� 0.125.
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6.3. The probability that John hits a target is p � 1/4. He fires n � 6 times. Find the probability
that he hits the target: (a) exactly 2 times, (b) more than 4 times, (c) at least once.

This is a binomial experiment with n � 6, p � 1/4, and q � 1 � p � 3/4; hence use Theorem 6.1.

(a) P(2) � �6
2 
 (1/4)2 (3/4)4 � 15(34)/(46) � 1215/4096 � 0.297.

(b) John hits the target more than 4 times if he hits it 5 or 6 times. Hence

P(X � 4) � P(5) 
 P(6) � �6
5 
 (1/4)5 (3/4)1 
 (1/4)6

� 18/46 
 1/46 � 19/46 � 19/4096 � 0.004 6

(c) Here q6 � (3/4)6 � 729/4096 is the probability that John misses all 6 times; hence

P(one or more) � 1 � 729/4096 � 3367/4096 � 0.82

6.4. Suppose 20 percent of the items produced by a factory are defective. Suppose 4 items are
chosen at random. Find the probability that:

(a) 2 are defective, (b) 3 are defective, (c) none is defective.

This is a binomial experiment with n � 4, p � 0.2 and q � 1 � p � 0.8, that is, B(4, 0.2). Hence use
Theorem 6.1.

(a) Here k � 2 and P(2) � �4
2 
 (0.2)2 (0.8)2 � 0.153 6.

(b) Here k � 3 and P(3) � �4
3 
 (0.2)3 (0.8) � 0.025 6.

(c) Here P(0) � q4 � (0.8)4 � 0.409 5. Hence

P(X � 0) � 1 � P(0) � 1 � 0.409 5 � 0.590 4

6.5. Team A has probability 2/3 of winning whenever it plays. Suppose A plays 4 games. Find the
probability that A wins more than half of its games.

This is a binomial experiment with n � 4, p � 2/3 and q � 1 � p � 1/3. A wins more than half its
games if it wins 3 or 4 games. Hence

P(X � 2) � P(3) 
 P(4) � C(4, 3)(2/3)3 (1/3) 
 (2/3)4

� 32/81 
 16/81 � 48/81 � 0.593

6.6. A family has 6 children. Find the probability P that there are: (a) 3 boys and 3 girls, (b) fewer
boys than girls. (Assume that the probability of any particular child being a boy is 1/2.)

This is a binomial experiment with n � 6 and p � q � 1/2.

(a) P � P(3 boys) � C(6, 3)(1/2)3 (1/2)3 � 20/64 � 5/16.

(b) There are fewer boys than girls if there are 0, 1 or 2 boys. Hence

P � P(0) 
 P(1) 
 P(2)

� (1/2)6 
 C(6, 1)(1/2)5 (1/2) 
 C(6, 2)(1/2)4 (1/2)2

� 22/64 � 11/32

Alternatively, the probability of different numbers of boys and girls is 1 � 5/16 � 11/16. Half of these
cases will have fewer boys than girls; hence

P � (1/2)(11/32) � 11/64
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6.7. Find the number of dice that must be thrown so that there is a better-than-even chance of
obtaining at least one six.

The probability of not obtaining a six on n dice is q � (5/6)n. Thus, we seek the smallest
n such that q is less than 1/2. Compute:

(5/6)1 � 5/6, (5/6)2 � 25/36, (5/6)3 � 125/216, (5/6)4 � 625/1296 � 1/2

Thus, 4 dice must be thrown.

6.8. A certain type of missile hits its target with probability p � 0.3. Find the number of missiles
that should be fired so that there is at least a 90 percent probability of hitting the target.

The probability of missing the target is q � 1 � p � 0.7. Hence the probability that n missiles miss
the target is (0.7)n. Thus, we seek the smallest n for which

1 � (0.7)n � 0.90 or equivalently (0.7)n � 0.10

Compute

(0.7)1 � 0.7, (0.7)2 � 0.49, (0.7)3 � 0.343, (0.7)4 � 0.240, (0.7)5 � 0.168, (0.7)6 � 0.118, (0.7)7 � 0.0823

Thus, at least 9 missiles should be fired.

6.9. The mathematics department has 8 graduate assistants who are assigned to the same
office. Each assistant is just as likely to study at home as in the office. Find the minimum
number m of desks that should be put in the office so that each assistant has a desk at least 90
percent of the time.

This problem can be modeled as a binomial experiment where

n � 8 � number of assistants assigned to the office

p � 1–
2 � probability that an assistant will study in the office

X � number of assistants studying in the office

Suppose there are k desks in the office, where k � 8. Then a graduate student will not have a desk if
X � k. Note that

P(X � k) � P(k 
 1) 
 P(k 
 2) 
 · · · 
 P(8)

We seek the smallest value of k for which P(X � k) is less than 10 percent.
Compute P(8), P(7), P(6), . . . until the sum exceeds 10 percent. Using Theorem 6.1 with n � 8 and

p � q � 1/2, we obtain

P(8) � (1/2)8 � 1/256, P(7) � 8(1/2)7 (1/2) � 8/256, P(6) � 28(1/2)6 (1/2)2 � 28/256

Now P(8) 
 P(7) 
 P(6) � 37/256 � 10 percent but P(8) 
 P(7) � 10 percent. Thus, m � 6 desks are
needed.

6.10. A man fires at a target n � 6 times and hits it k � 2 times. (a) List the different ways that this
can happen. (b) How many ways are there?

(a) List all sequences with 2 S ’s (successes) and 4 F ’s (failures):

SSFFFF, SFSFFF, SFFSFF, SFFFSF, SFFFFS, FSSFFF, FSFSFF, FSFFSF,
FSFFFS, FFSSFF, FFSFSF, FFSFFS, FFFSSF, FFFSFS, FFFFSS

(b) There are 15 different ways as indicated by the list.

Observe that this is equal to C(6, 2) � � 6
2 
 since we are distributing k � 2 letters S among the

n � 6 positions in the sequence.
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6.11. Prove Theorem 6.1. The probability of exactly k successes in a binomial experiment
B(n, p) is

P(k) � P(k successes) � �n
k
 pk qn�k

The probability of one or more successes is 1 � qn.
The sample space of the n repeated trials consists of all n-tuples (that is, n-element sequences) whose

components are either S (success) or F (failure). Let A be the event of exactly k successes. Then A
consists of all n-tuples of which k components are S and n � k components are F. The number of such
n-tuples in the event A is equal to the number of ways that k letters S can be distributed among the n

components of an n-tuple; hence A consists of C(n, k) � � n

k 
 sample points.

The probability of each point in A is pk qn�k; hence

P(A) � � n

k 
 pk qn�k

In particular, the probability of no successes is

P(0) � � n

0
 p0 qn � qn

Thus, the probability of one or more successes is 1 � qn.

EXPECTED VALUE AND STANDARD DEVIATION

6.12. Four fair coins are tossed. Let X denote the number of heads occurring. Calculate the
expected value of X directly and compare with Theorem 6.2.

X is binomially distributed with n � 4 and p � q � 1–
2. We have

P(0) �
1
16

, P(1) �
4
16

, P(2) �
6
16

, P(3) �
4
16

, P(4) �
1
16

Thus, the expected value is

E(X) � 0� 1
16
 
 1� 4

16
 
 2� 6
16
 
 3� 4

16
 
 4� 1
16
 �

32
16

� 2

This agrees with Theorem 6.2, which states that

E(X) � np � 4�1
2 
 � 2

6.13. A family has 8 children. [We assume male and female children are equally probable.] (a)
Determine the expected number E of girls. (b) Find the probability P that the expected
number of girls does occur.

(a) The number of girls is binomially distributed with n � 8 and p � q � 0.5. By Theorem 6.2,

E � np � 8(0.5) � 4

(b) We seek the probability of 4 girls. By Theorem 6.1, with k � 4,

P � P(4 girls) � �8
4 
 (0.5)4 (0.5)4 � 0.27 � 27%

202 [CHAP. 6RANDOM VARIABLE MODELS



6.14. The probability that a man hits a target is p � 1/10 � 0.1. He fires n � 100 times. Find the
expected number E of times he will hit the target and the standard deviation 
.

This is a binomial experiment B(n, p) where n � 100, p � 0.1, and q � 1 � p � 0.9. Thus, apply
Theorem 6.2 to obtain

E � np � 100(0.1) � 10, 
2 � npq � 100(0.1)(0.9) � 9, 
 � �9 � 3

6.15. The probability is 0.02 that an item produced by a factory is defective. A shipment of 10,000
items is sent to a warehouse. Find the expected number E of defective items and the standard
deviation 
.

This is a binomial experiment B(n, p) with n � 10,000, p � 0.02, and q � 1 � p � 0.98. By
Theorem 6.2,

E � np � (10,000)(0.02) � 200, 
2 � npq � (10,000)(0.02)(0.98) � 196, 
 � �196 � 14

6.16. A student takes an 18-question multiple-choice exam, with 4 choices per question. Suppose
one of the choices is obviously incorrect, and the student makes an ‘‘educated’’ guess of
the remaining choices. Find the expected number E of correct answers and the standard
deviation 
.

This is a binomial experiment B(n, p) where n � 18, p � 1/3, and q � 1 � p � 2/3. Thus, apply
Theorem 6.2 to obtain

E � np � 18(1/3) � 6, 
2 � npq � 18(1/3)(2/3) � 4, 
 � �4 � 2

6.17. A fair die is tossed 300 times. Find the expected number E and the standard deviation 
 of
the number of 2’s.

The number of 2’s is binomially distributed with n � 300 and p � 1/6. Also, q � 1 � p � 5/6. By
Theorem 6.2,

E � np � 300(1/6) � 50, 
2 � npq � 300(1/6)(5/6) � 41.67, 
 � �41.67 � 6.45

6.18. Prove Theorem 6.2. Let X be the binomial random variable B(n, p). Then:

(i) � � E(X) � np, (ii) var(X) � npq.

On the sample space of n Bernoulli trials, let Xi (for i � 1, 2, . . ., n) be the random variable which has
the value 1 or 0 according as the ith trial is a success or a failure. Then each Xi has the following
distribution:

x

P(x)

0

q

1

p

and the total number of successes is X � X1 
 X2 
 · · · 
 Xn.

(i) For each i, we have

E(Xi) � 0(q) 
 1(p) � p

Using the linearity property of E [Theorem 5.3 and Corollary 5.4], we have

E(X) � E(X1 
 X2 
 · · · 
 Xn)

� E(X1) 
 E(X2) 
 · · · 
 E(Xn)

� p 
 p 
 · · · 
 p � np
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(ii) For each i, we have

E(Xi
2) � 02(q) 
 12(p) � p

and

var(Xi) � E(Xi
2) � [E(X)i]2 � p � p2 � p(1 � p) � pq

The n random variables Xi are independent. Therefore, by Theorem 5.9,

var(X) � var(X1 
 X2 
 · · · 
 Xn)

� var(X1) 
 var(X2) 
 · · · 
 var(Xn)

� pq 
 pq 
 · · · 
 pq � npq

6.19. Give a direct proof of Theorem 6.2(i). Let X be the binomial random variable B(n, p). Then
� � E(X) � np.

Using the notation P(k) � (n
k) pk qn�k, we obtain the following where the last expression is obtained

by dropping the term with k � 0, since its value is 0, and by factoring out np from each term:

E(X) �

n�
k�0

kP(k) �

n�
k�0

k
n!

k!(n � k)!
pk qn�k

� np
n�

k�1

(n � 1)!
(k � 1)!(n � k)!

pk�1 qn�k

Let s � k � 1 in the above sum. As k runs through the values 1 to n, s runs through the values 0 to
n � 1. Therefore

E(X) � np
n�1�
s�0

(n � 1)!
s!(n � 1 � s)!

ps qn�1�s � np

where, by the binomial theorem,
n�1�
s�0

(n � 1)!
s!(n � 1 � s)!

ps qn�1�s � (p 
 q)n�1 � 1n�1 � 1

Thus, the theorem is proved.

6.20. Give a direct proof of Theorem 6.2(ii). Let X be the binomial random variable B(n, p). Then
var(X) � npq.

We first compute E(X 2). We have

E(X 2) �

n�
k�0

k2 P(k) �

n�
k�0

k2 n!
k!(n � k)!

pk qn�k

� np
n�

k�1

k
(n � 1)!

(k � 1)!(n � k)!
pk�1 qn�k

Again we let s � k � 1 in the above sum and obtain

E(X 2) � np
n�1�
s�0

(s 
 1)
(n � 1)!

s!(n � 1 � s)!
ps qn�1�s

� np
n�1�
s�0

s
(n � 1)!

s!(n � 1 � s)!
ps qn�1�s 
 np

n�1�
s�0

(n � 1)!
s!(n � 1 � s)!

ps qn�1�s

Using Theorem 6.2(i), the first sum in the last expression is equal to (n � 1) p; and, by the binomial
theorem, the second sum is equal to 1. Thus

E(X 2) � np(n � 1) p 
 np � (np)2 
 np(1 � p) � (np)2 
 npq
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Hence,

var(X) � E(X 2) � � 2
X � (np)2 
 npq � (np)2 � npq

Thus, the theorem is proved.

NORMAL DISTRIBUTION

6.21. The mean and standard deviation on an examination are � � 74 and 
 � 12, respectively. Find
the scores in standard units of students receiving: (a) 65, (b) 74, (c) 86, (d) 92.

(a) z �
x � �



�

65 � 74
12

� �0.75, (c) z �
x � �



�

86 � 74
12

� 1.0

(b) z �
x � �



�

74 � 74
12

� 0, (d) z �
x � �



�

92 � 74
12

� 1.5

6.22. The mean and standard deviation on an examination are � � 74 and 
 � 12, respectively. Find
the grades corresponding to standard scores: (a) �1, (b) 0.5, (c) 1.25, (d) 1.75.

Solving z �
x � �



for x yields x � 
z 
 �. Thus

(a) x � 
z 
 � � (12)(�1) 
 74 � 62,

(b) x � 
z 
 � � (12)(0.5) 
 74 � 80,

(c) x � 
z 
 � � (12)(1.25) 
 74 � 89

(d) x � 
z 
 � � (12)(1.75) 
 74 � 95

6.23. Table 6-1 (page 184) uses �(z) to denote the area under the standard normal curve � between
0 and z. Find: (a) �(1.63), (b) �(0.75), (c) �(1.1), (d) �(4.1).

Use Table 6-1 as follows:

(a) To find �(1.63), look down the first column on the left for the row labeled 1.6, and then continue right
for the column labeled 3. The entry is 0.448 4. That is, the entry corresponding to row 1.6 and
column 3 is 0.448 4. Hence �(1.63) � 0.448 4.

(b) To find �(0.75), look down the first column on the left for the row labeled 0.7, and then continue right
for the column labeled 5. The entry is 0.273 4. That is, the entry corresponding to row 0.7 and
column 5 is 0.273 4. Hence �(0.75) � 0.273 4.

(c) To find �(1.1), look on the left for the row labeled 1.1. The first entry in this row is 0.364 3 which
corresponds to 1.1 � 1.10. Hence �(1.1) � 0.364 3.

(d) The value of �(z) for any z � 3.9 is 0.500 0. Thus, �(4.1) � 0.500 0 even though 4.1 is not in the
table.

6.24. Let Z be the random variable with standard normal distribution �. Find the value of z if

(a) P(0 � Z � z) � 0.442 9, (b) P(Z � z) � 0.796 7, (c) P(z � Z � 2) � 0.100 0.

(a) Here z � 0. Thus, draw a picture of z and P(0 � Z � z) as in Fig. 6-11(a). Here Table 6-1 can be
used directly. The entry 0.442 9 appears to the right of row 1.5 and under column 8. Thus,
z � 1.58.

(b) Note z must be positive since the probability is greater than 0.5. Thus, draw z and P(Z � z) as in
Fig. 6-11(b). We have

�(z) � P(0 � Z � z) � P(Z � z) � 0.5 � 0.796 7 � 0.500 0 � 0.296 7

Since 0.296 7 appears in row 0.8 and column 3, we get z � 0.83.

205CHAP. 6] RANDOM VARIABLE MODELS



(c) Since �(2) � 0.4772 exceeds 0.1000, z must lie between 0 and 2. Thus, draw z and P(z � Z � 1)
as in Fig. 6-11(c). Then

�(z) � �(2) � P(z � Z � 2) � 0.4772� 0.1000 � 0.3772

From Table 6-1, we get z � 1.16.

6.25. Let Z be the random variable with standard normal distribution �. Find:

(a) P(0 � Z � 1.35), (b) P(�1.21 � Z � 0), (c) P(Z � 1.5).

(a) By definition �(z) is the area under the curve � between 0 and z. Therefore, using Table 6-1,

P(0 � Z � 1.35) � �(1.35) � 0.4115

(b) By symmetry and Table 6-1,

P(�1.21 � Z � 0) � P(0 � Z � 1.21) � �(1.21) � 0.3869

(c) The area under a single point a � 1.5 is 0; hence

P(Z � 1.5) � 0

6.26. Let Z be the random variable with standard normal distribution �. Find:

(a) P(�1.37 � Z � 2.01), (b) P(0.65 � Z � 1.26), (c) P(�1.79 � Z � �0.54).

Use the following formula (pictured in Fig. 6-3):

P(z1 � Z � z2) � 

�(z2) 
 �(�z1 �)
�(z2 � �(z1)
�(�z1 �) � �(�z2 �)

if z1 � 0 � z2

if 0 � z1 � z2

if z1 � z2 � 0

(a) Here �1.37 � 0 � 2.01, which is the first condition in the formula. Hence

P(�1.37 � Z � 2.01) � �(2.01) 
 �(1.37) � 0.4778 
 0.4147 � 0.8925

(b) Here 0 � 0.65 � 1.26, which is the second condition in the formula. Hence

P(0.65 � Z � 1.26) � �(1.26) � �(0.65) � 0.3962 � 0.2422 � 0.1540

(c) Here �1.79 � �0.54 � 0, which is the third condition in the formula. Hence

P(�1.79 � Z � �0.54) � �(1.79) � �(0.54) � 0.4633 � 0.2054 � 0.2579

6.27. Let Z be the random variable with standard normal distribution �. Find the following
one-sided probabilities:

(a) P(Z � �0.22), (b) P(Z � 0.33), (c) P(Z � 0.44), (d) P(Z � �0.55)
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Figure 6-4 shows how to compute one-sided probabilities:

(a) P(Z � �0.22) � 0.5 � �(0.22) � 0.5 � 0.0871 � 0.4129

(b) P(Z � 0.33) � 0.5 
 �(0.33) � 0.5 
 0.1293 � 0.6293

(c) P(Z � 0.44) � 0.5 � �(0.44) � 0.5 � 0.1700 � 0.3300

(d) P(Z � �0.55) � 0.5 
 �(0.55) � 0.5 
 0.2088 � 0.7088

6.28. Suppose that the student IQ scores form a normal distribution with mean v � 100 and standard
deviation 
 � 20. Find the percentage P of students whose scores fall between:

(a) 80 and 120,

(b) 60 and 140,

(c) 40 and 160,

(d) 100 and 120,

(e) over 160,

( f) less than 80.

All the scores are units of the standard deviation 
 � 20 from the mean � � 100; hence we can use
the 68–95–99.7 rule or Fig. 6-2 instead of Table 6-1 to obtain P as follows:

(a) P � P(80 � IQ � 120) � P(�1 � Z � 1) � 68%

(b) P � P(60 � IQ � 140) � P(�2 � Z � 2) � 95%

(c) P � P(40 � IQ � 160) � P(�3 � Z � 3) � 99.7%

(d) P � P(100 � IQ � 120) � P(0 � Z � 1) � 68%/2 � 34%

(e) Using (c) and symmetry, we have

P � P(IQ � 160) � P(Z � 3) � [1 � 99.7%]/2 � 0.3%/2 � 0.15%

(f) P � P(IQ � 80) � P(Z � �1) � 50% � 34% � 16%

6.29. Suppose the temperature T during May is normally distributed with mean � � 68� and standard
deviation 
 � 6�. Find the probability p that the temperature during May is:

(a) between 70� and 80�, (b) less than 60�.

First convert the T values into Z values in standard units, using z � (t � �)/
, draw the appropriate
picture, and then use Table 6-1.

(a) We convert as follows:

When t � 70, we get z � (70 � 68)/6 � 0.33.

When t � 80, we get z � (80 � 68)/6 � 2.00.

Since 0 � 0.33 � 2.00, draw Fig. 6-12(a). Then

p � P(70 � T � 80) � P(0.33 � Z � 2.00)

� �(2.00) � �(0.33) � 0.4772 � 0.1293 � 0.3479
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(b) First we convert as follows:

When t � 60, we get z � (60 � 68)/6 � �1.33.

This is a one-sided probability with �1.33 � 0; hence draw Fig. 6-12(b). Using symmetry and that
half the area under the curve is 0.500 0, we obtain

P � P(T � 60) � P(Z � �1.33) � P(Z � 1.33)

� 0.5 � �(1.33) � 0.5000 � 0.4082 � 0.0918

6.30. Suppose the weights W of 800 male students are normally distributed with mean � � 140 lb and
standard deviation 
 � 10 lb. Find the number N of students with weights:
(a) between 138 and 148 lb, (b) more than 152 lb.

First convert the W values into Z values in standard units, using z � (w � �) 
, draw the appropriate
figure, and then use Table 6-1 (page 184).

(a) We convert as follows:

When w � 138, we get z � (138 � 140)/10 � �0.2.

When w � 148, we get z � (148 � 140)/10 � 0.8.

Since �0.2 � 0 � 0.8, draw Fig. 6-13(a). Then

P(138 � W � 148) � P(�0.2 � Z � 0.8)

� �(0.8) 
 �(�0.2) � 0.2881 
 0.0793 � 0.3674

Thus, N � 800(0.3674) � 294.

(b) We first convert as follows:

When w � 152, we get z � (152 � 140)/10 � 1.20

This is a one-sided probability with 0 � 1.20; hence draw Fig. 6-13(b). Using the fact that half the
area under the curve is 0.5000, we obtain

P(W � 152) � P(Z � 1.2) � 0.5 � �(1.2) � 0.5000 � 0.3849 � 0.1151

Thus, N � 800(0.1151) � 92.

6.31. Let Z be the random variable with standard normal distribution �. Find the value of z if

(a) P(z � Z � 1) � 0.4766, (b) P(z � Z � 1) � 0.7122.

By Table 6.1, �(1) � 0.3413, and so 2�(1) � 0.6826.(a) We have �(1) � 0.4766 � 2�(1).

Therefore, z is negative and �z � 1. Thus, draw z, �z, and P(z � Z � 1) as in Fig. 6-14(a).

Using symmetry, we obtain

�(�z) � 0.4766 � 0.3413 � 0.1353

Using Table 6.1 and interpolating linearly, we find that �z � 0.34 (0.1353 0.1331)/(0.1368

0.1331) . Hence z � �0.3459.
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(b) We have 2�(1) � 0.7122. Therefore, z is negative and �z � 1. Thus, draw z, �z, and
P(z � Z � 1) as in Fig. 6-14(b). Using symmetry, we obtain

�(�z) � 0.7122 � 0.3413 � 0.3709

By Table 6.1, �z � 1.13. Hence z � �1.13.

6.32. Use linear interpolation in Table 6-1, which only gives values of �(z) in steps of 0.01 for z, to
solve the following:

(a) Find �(1.233) (b) Find z to the nearest thousandth, if �(z) � 0.2917.

(a) The linear interpolation is indicated in Fig. 6-15(a). We have

x

17
�

3
10

or x � 5 and so P � 3907 
 5 � 3912

Thus, �(1.233) � 0.3912.

(b) The linear interpolation is indicated in Fig. 6-15(b) where, by Table 6-1, 2917 lies between 2910 and
2939. We have

x

10
�

7
29

or x � 4 and so Q � 0.814

That is, z � 0.814.

NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION

This section of problems uses BP to denote the binomial probability and NP to denote the normal
probability.

6.33. A fair coin is tossed 12 times. Determine the probability P that the number of heads occurring
is between 4 and 7 inclusive by using: (a) the binomial distribution, (b) the normal
approximation to the binomial distribution.
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(a) Let heads denote a success. By Theorem 6.1, with n � 12 and p � q � 1/2,

BP(4) � �12
4 
 �1

2

4

�1
2 


8

�
495
4096

BP(6) � �12
6 
 �1

2 

6

�1
2 


6

�
924
4096

BP(5) � �12
5 
 �1

2

5

�1
2 


7

�
792
4096

BP(7) � �12
7 
 �1

2 

7

�1
2 


5

�
792
4096

Hence P �
495
4096



792
4096



924
4096



792
4096

�
3003
4096

� 0.733 2.

(b) Here

� � np � 12(1–
2) � 6, 
2 � npq � 12(1–

2)(1–
2) � 3, 
 � �3 � 1.73

Let X denote the number of heads occurring. We seek BP(4 � X � 7) which corresponds to the
shaded area in Fig. 6-16(a). On the other hand, if we assume the data are continuous, in order to
apply the binomial approximation, we must find NP(3.5 � X � 7.5), as indicated in Fig. 6-16(a). We
convert x values to z values in standard units using Z � (X � �)
. Thus:

3.5 in standard units � (3.5 � 6)/1.73 � �1.45

7.5 in standard units � (7.5 � 6)/1.73 � 0.87

Then, as indicated by Fig. 6-13(b),

P � NP(3.5 � X � 7.5) � NP(�1.45 � Z � 0.87)

� �(0.87) 
 �(1.45) � 0.308 7 
 0.426 5 � 0.734 3

(Note that the relative error e � �(0.733 2 � 0.734 3)/0.733 2 � � 0.001 5 is less than 0.2 percent.)
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6.34. A fair die is tossed 180 times. Determine the probability P that the face 6 will appear:

(a) between 29 and 32 times inclusive, (b) between 31 and 35 times inclusive,

(c) less than 22 times.

This is a binomial experiment B(n, p) with n � 180, p � 1/6 and q � 1 � p � 5/6. Then

� � np � 180(1/6) � 30, 
2 � npq � 180(1/6)(5/6) � 25, 
 � 5

Let X denote the number of times the face 6 appears.

(a) We seek BP(29 � X � 32) or, assuming the data are continuous, NP(28.5 � X � 32.5). Converting
x values into standard units, we get:

28.5 in standard units � (28.5 � 30)/5 � �0.3

32.5 in standard units � (32.5 � 30)/5 � 0.5

Thus, as shown in Fig. 6-17(a),

P � NP(28.5 � X � 32.5) � NP(�0.3 � Z � 0.5)

� �(0.5) 
 �(0.3) � 0.191 5 
 0.117 9 � 0.309 4

(b) We seek BP(31 � X � 35) or, assuming the data are continuous, NP(30.5 � X � 35.5). Converting
x values into standard units, we get:

30.5 in standard units � (30.5 � 30)/5 � 0.1

35.5 in standard units � (35.5 � 30)/5 � 1.1

Thus, as shown in Fig. 6-17(b),

P � NP(30.5 � X � 35.5) � NP(0.1 � Z � 1.1)

� �(1.1) � �(0.1) � 0.364 3 � 0.039 8 � 0.324 5

(c) We seek the one-sided probability P(X � 22) or, approximately, NP(X � 21.5). (See remark below
and in Section 6.6 on one-sided probabilities.) We have

21.5 in standard units � (21.5 � 30)/5 � �1.7

Therefore, as shown in Fig. 6-17(c), using symmetry and that half the area under the curve is 0.500 0,

P � NP(X � 21.5) � NP(Z � �1.7) � 0.500 0 � �(1.7) � 0.500 0 � 0.455 4 � 0.044 6

Remark: Since the binomial variable is never negative, we should actually replace BP(X � 22) by

BP(0 � X � 22) � NP(�0.5 � X � 21.5) � NP(�6.1 � Z � �1.7)

� NP(Z � �1.7) � P(Z � �6.1)

However, P(Z � �6.1) is very small and so it is neglected.
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6.35. Among 10,000 random digits, find the probability P that the digit 3 appears: (a) between 975
and 1025 times, (b) at most 950 times.

This is a binomial experiment B(n, p) with n � 10,000, p � 0.1 and q � 1 � p � 0.9. Then

� � np � 10,000(0.1) � 1000, 
2 � npq � 10,000(0.1)(0.9) � 900, 
 � 30

Let X denote the number of times 3 appears.

(a) We seek BP(975 � X � 1025) or, approximately, NP(974.5 � X � 1025.5). We have

974.5 in standard units � (974.5 � 1000)/30 � �0.85

1025.5 in standard units � (1025.5 � 1000)/30 � 0.85

Therefore,

P � NP(974.5 � X � 1025.5) � NP(�0.85 � Z � 0.85)

� 2�(0.85) � 2(0.3023) � 0.6046

(b) We seek the one-sided probability BP(X � 950) or, approximately, NP(X � 950.5). (See remark
Section 6.6.) We have

950.5 in standard units � (950.5 � 1000)/30 � �1.65

Therefore

P � NP(X � 950.5) � NP(Z � �1.65)

� 0.5000 � �(1.65) � 0.5000 � 0.4505 � 0.0495

6.36. Assume that 4 percent of the population over 65 years old has Alzheimer’s disease. Suppose
a random sample of 3500 people over 65 is taken. Find the probability P that fewer than 150
of them have the disease.

This is a binomial experiment B(n, p) with n � 3500, p � 0.04, and q � 1 � p � 0.96. Then

� � np � (3500)(0.04) � 140, 
2 � npq � (3500)(0.04)(0.96) � 134.4, 
 � �134.4 � 11.6

Let X denote the number of people with Alzheimer’s disease.
We seek BP(X � 150) or, approximately, NP(X � 149.5). We have

149.5 in standard units � (149.5 � 140)/11.6 � 0.82

Therefore,

P � NP(X � 149.5) � NP(Z � 0.82) � 0.5000 
 �(0.82) � 0.5000 
 0.2939 � 0.7939

POISSON DISTRIBUTION

6.37. Find: (a) e�1.3, (b) e�2.5.
Use Table 6-2 (page 192) and the law of exponents.

(a) e�1.3 � (e�1)(e�0.3) � (0.368)(0.741) � 0.273

(b) e�2.5 � (e�2)(e�0.5) � (0.135)(0.607) � 0.0819
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6.38. For the Poisson distribution P(k) � f(k; �) �
�k e��

k!
, find:

(a) f(2; 1), (b) f(3; 1–
2), (c) f(2; 0.7).

Use Table 6-2 to obtain e��.

(a) f(2; 1) �
12 e�1

2!
�

e�1

2
�

0.368
2

� 0.184.

(b) f(3, 1–
2) �

(1/2)3 e�0.5

3!
�

e�0.5

48
�

0.607
48

� 0.013.

(c) f(2; 0.7) �
(0.7)2 e�0.7

2!
�

(0.49)(0.497)
2

� 0.12.

6.39. Suppose 300 misprints are distributed randomly throughout a book of 500 pages. Find the
probability P that a given page contains: (a) exactly 2 misprints, (b) 2 or more misprints.

We view the number of misprints on one page as the number of successes in a sequence of Bernoulli
trials. Here n � 300 since there are 300 misprints, and p � 1/500, the probability that a misprint appears
on a given page. Since p is small, we use the Poisson approximation to the binomial distribution (see

� � np � 0.6.

(a) P � f(2; 0.6) �
(0.6)2 e�0.6

2!
�

(0.36)(0.549)
2

� 0.0988 � 0.1.

(b) We have

P(0 misprint) � f(0; 0.6) �
(0.6)0 e�0.6

0!
� e�0.6 � 0.549

P(1 misprint) � f(1; 0.6) �
(0.6)1 e�0.6

1!
� (0.6)(0.549) � 0.329

Then P � 1 � P(0 or 1 misprint) � 1 � (0.549 
 0.329) � 0.122.

6.40. Suppose 2 percent of the items produced by a factory are defective. Find the probability P that
there are 3 defective items in a sample of 100 items.

The binomial distribution with n � 100 and p � 0.2 applies. However, since p is small, we use the
Poisson approximation with � � np � 2. Thus

P � f(3; 2) �
23 e�2

3!
�

8(0.135)
6

� 0.180

6.41. Show that the Poisson distribution f(k; �) is a probability distribution, that is,
��

k�0

f(k; �) � 1

By known results of analysis, e� �

��
k�0

�k/k!. Hence

��
k�0

f(k; �) �

��
k�0

�k e��

k!
� e��

��
k�0

�k

k!
� e�� e� � 1
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6.42. Prove Theorem 6.5. Let X be a random variable with the Poisson distribution f(k; �). Then
(i) E(X) � �, (ii) var(X) � �. Hence 
X � ��.

(i) Using f(k; �) � �k e��/k!, we obtain the following where, in the last sum, we drop the term k � 0,
since its value is 0, and we factor out � from each term:

E(X) �

��
k�0

k · f(k; �) �

��
k�0

k
�k e��

k!
� �

��
k�1

�k�1 e��

(k � 1)!

Let s � k � 1 in the above last sum. As k runs through the values 1 to �, s runs through the values
0 to �. Using ��

s�0 f(s; �) � 1 by the preceding Problem 6.41, we get

E(X) � �

��
s�0

�s e��

s!
� �

��
s�0

f(s; �) � �

Thus, (i) is proved.

(ii) We compute E(X 2) as follows where, again, in the last sum, we drop the term k � 0, since its value
is 0, and we factor out � from each term:

E(X 2) �

��
k�0

k2 f(k; �) �

��
k�0

k2 �k e��

k!
� �

��
k�1

k
�k�1 e��

(k � 1)!

Again we let s � k � 1 and obtain:

E(X 2) � �

��
s�0

(s 
 1)
�s e��

s!
� �

��
k�0

(s 
 1) f(s; �)

We break up the last sum into two sums to obtain the following where we use (i) to obtain � for the
first sum and Problem 6.41 to obtain 1 for the second sum:

E(X 2) � �

��
k�0

sf(s; �) 
 �

��
k�0

f(s; �) � �(�) 
 �(1) � �2 
 �

Hence var(X) � E(X 2) � � 2
X � �2 
 � � �2 � �

Thus, (ii) is proved.

6.43. Show that if p is small and n is large, then the binomial distribution B(n, p) is approximated by
the Poisson distribution POI(�) where � � np. That is, using

BP(k) � �n
k
 pk qn�k and f(k; �) �

�k e��

k!

we get BP(k) � f(k; �) where np � �.

We have BP(0) � (1 � p)n � (1 � �/n)n. Taking the natural logarithm of both sides yields:

ln BP(0) � n ln(1 � �/n)

The Taylor expansion of the natural logarithm follows:

ln(1 
 x) � x �
x2

2



x3

3
� · · ·

Thus ln�1 �
�

n
 � �
�

n
�

�2

2n2 �
�3

3n3 � · · ·

Therefore, when n is large,

ln BP(0) � n ln�1 �
�

n 
 � � � �
�2

2n
�

�3

3n2 � · · · � � �

Hence BP(0) � e��.
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Furthermore, if p is very small, then q � 1. Thus

BP(k)
BP(k � 1)

�
(n � k 
 1) p

kq
�

np � (k � 1) p

kq
�

� � (k � 1) p

kq
�

�

k

That is, BP(k) � �BP(k � 1)/k. Thus, using BP(0) � e��, we get

BP(1) � �e��, BP(2) � �2 e��/2!, BP(3) � �3 e��/3!

And so on. That is, by induction, BP(k) � �k e��/k! � f(k; �)

MISCELLANEOUS DISTRIBUTIONS AND PROBLEMS

6.44. The painted light bulbs produced by a factory are 50 percent red, 30 percent green, and 20
percent blue. In a sample of 5 bulbs, find the probability P that 2 are red, 1 is green, and 2 are
blue.

This is a multinomial distribution. By Theorem 6.6,

P �
5!

2! 1! 2!
(0.5)2 (0.3)(0.2)2 � 0.9

6.45. A committee of 4 is selected at random from a class with 12 students of whom 7 are men. Find
the probability P that the committee contains: (a) exactly 2 men, (b) at least 2 men.

This is a hypergeometric distribution with N � 12, M � 7, n � 5. There are N � M � 5 women.

(a) There are C(12, 4) ways to choose the 4-person committee, C(7, 2) ways to choose the 2 men, and
C(5, 2) ways to choose the 2 women. Thus (Theorem 6.7)

P � P(2) �
C(7, 2) C(5, 2)

C(12, 4)
�

(21)(10)
495

� 0.424 � 42.4%

(b) Here P � P(2) 
 P(3) 
 P(4). Hence

P �
C(7, 2) C(5, 2) 
 C(7, 3) C(5, 1) 
 C(7, 4)

C(12, 4)
� 0.848 � 84.8%

6.46. Suppose the probability that team A wins each game in a tournament is 60 percent. A
plays until it loses.

(a) Find the expected number E of games that A plays.

(b) Find the probability P that A plays in at least 4 games.

(c) Find the probability P that A wins the tournament if the tournament has 64 teams. (Note
that with 64 teams, there will be 6 rounds of play, and therefore, the winning team must
win 6 games.)

This is a geometric distribution with p � 0.4 and q � 0.6. (A plays until A loses.)

(a) By Theorem 6.8, E � 1/p � 1/0.4 � 2.5.

(b) The only way A plays at least 4 games is if A wins the first 3 games. Thus (Theorem 6.8(iv))

P � P(k � 3) � q3 � (0.6)3 � 0.216 � 21.6%

(c) Here A must win all 6 games; hence P � (0.6)6 � 0.046 7 � 4.67%
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6.47. Let X be a random variable with the following geometric distribution:

k

P(k)

1

p

2

qp

3

q2p

4

q3p

5

q4p

· · ·

· · ·

Prove Theorem 6.8(i): E(X) � 1/p.

Here all sums over k are from 1 to �. We have

E(X) � �kqk�1 p � p �� kqk�1

Let y �� qk �

1
1 � q

The derivative with respect to q yields

dy

dq
�� kqk�1 �

1
(1 � q)2

Substituting this value for � kqk�1 in the formula for E yields

E �
p

(1 � q)2 �
p

p2 � p

(Note that calculus is used to help evaluate the infinite series.)

6.48. Let X be the (uniform) continuous random variable with distribution UNIF(a, b), that is, whose
distribution function f is a constant k � 1/(b � a) on the interval I � [a, b] and zero else-
where. [See Fig. 6-8.] Prove Theorem 6.9: (i) E(X) � (a 
 b)/2. (ii) var(X) � (b � a)2/12,
(iii) cumulative distribution F(x) is equal to:

(1) 0 for x � a; (2) (x � a)/(b � a) for a � x � b; (3) 1 for x � b. [See Fig. 6-8(b).]

(i) If we view probability as weight or mass, and the mean as the center of gravity, then it is intuitively
clear that � � (a 
 b)/2. We verify this mathematically using calculus:

� � E(X) �
��

��

xf(x) dx �
b�

a

x

b � a
dx

� � x2

2(b � a) �
b

a

�
b2

2(b � a)
�

a2

2(b � a)
�

a 
 b

2

(ii) We have

E(X 2) �
��

��

x2 f (x) dx �
b�

a

x2

b � a
dx

� � x3

3(b � a) �
b

a

�
b3

3(b � a)
�

a3

3(b � a)
�

b2 
 ab 
 a2

3

Then

var(X) � E(X 2) � [E(X)]2 �
b2 
 ab 
 a2

3
�

a2 
 2ab 
 b2

4
�

(b � a)2

12
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(iii) We have three cases:

(1) For x � a:

F(x) �
x�

��

f(t) dt �
x�

��

0 dt � 0

(2) For a � x � b:

F(x) �
x�

��

f(t) dt �
x�

a

1
b � a

dt � � t

b � a �
x

a

�
x � a

b � a

(3) For x � b:

Since F(x) is a cumulative distribution function, F(x) � F(b) � 1. But

F(x) � P(X � x) � 1

Hence F(x) � 1.

6.49. Consider the following normal distribution:

f(x) �
1


�2�
exp[�1/2(x � �)2/
2]

Show that f(x) is a continuous probability distribution, that is, show that
��

��

f(x) dx � 1.

Substituting t � (x � �)/
 in
��

��

f(x) dx, we obtain the integral

I �

1

�2�

��
��

e�t2/2 dt

It suffices to show that I 2 � 1. We have

I 2 �
1

2�

��
��

e�t2/2 dt
��

��

e�s2/2 ds �
1

2�

��
��

��
��

e�(s2�t2)/2 ds dt

We introduce polar coordinates in the above double integral. Let s � r cos � and t � r sin �. Then
ds dt � r dr d�, 0 � � � 2�, and 0 � r � �. That is,

I 2 �
1

2�

2��
0

��
0

re�r2/2 dr d�

But
��

0

re�r2/2 dr � ��e�r2/2 �
�

0

� 1

Hence I 2 �
1

2�

2��
0

d� � 1 and the theorem is proved.
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6.50. Prove Theorem 6.3. Let X be a random variable with the normal distribution

f(x) �
1


�2�
exp[�1/2(x � �)2/
2]

Then (i) E(X) � � and (ii) var(X) � 
2. Hence 
X � 
.

(i) By definition, E(X) �
1


�2�

��
��

x exp[�1/2(x � �)2/
2] dx. Setting t � (x � �)/
, we obtain

E(X) �
1

�2�

��
��

(
t 
 �) e�t2/2 dt �
1

�2�

��
��

te�t2/2 dt 
 �
1

�2�

��
��

e�t2/2 dt

But g(t) � te�t2/2 is an odd function, that is, g(�t) � �g(t); hence
��

��

te�t2/2 dt � 0. Furthermore,

1

�2�

��
��

e�t2/2 dt � 1, by the preceding problem. Accordingly, E(X) �



�2�
· 0 
 � · 1 � � as

claimed.

(ii) By definition, E(X 2) �
1


�2�

��
��

x2 exp[�1/2(x � �)2 
2] dx. Again setting t � (x � �)/
, we

obtain

E(X 2) �
1

�2�

��
��

(
t 
 �)2 e�t2/2 dt

� 
2 1

�2�

��
��

t2 e�t2/2 dt 
 2�

1

�2�

��
��

te�t2/2 dt 
 �2 1

�2�

��
��

e�t2/2 dt

which reduces as above to E(X 2) � 
2 1

�2�

��
��

t2 e�t2/2 dt 
 �2.

We integrate the above integral by parts. Let u � t and dv � te�t2/2 dt. Then v � �e�t2/2 and
du � dt. Thus

1

�2�

��
��

t2 e�t2/2 dt �
1

�2�
��te�t2/2 �

�

��



1

�2�

��
��

e�t2/2 dt � 0 
 1 � 1

Consequently, E(X) � 
2 · 1 
 �2 � 
2 
 �2 and

var(X) � E(X 2) � �2
X � 
2 
 �2 � �2 � 
2

Thus the theorem is proved.

Supplementary Problems

BINOMIAL DISTRIBUTION

6.51. Find P(k) for the binomial distribution B(n, p) where:

(a) n � 5, p � 1/3, k � 2; (b) n � 7, p � 1/2, k � 3; (c) n � 4, p � 1/4, k � 2.

6.52. A card is drawn and replaced 3 times from an ordinary 52-card deck. Find the probability that:
(a) 2 hearts were drawn, (b) 3 hearts were drawn, (c) at least 1 heart was drawn.
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6.53. A box contains 3 red marbles and 2 white marbles. A marble is drawn and replaced 3 times from the
box. Find the probability that:
(a) 1 red marble was drawn, (b) 2 red marbles were drawn, (c) at least 1 red marble was drawn.

6.54. The batting average of a baseball player is 0.300. (That is, the probability that he gets a hit is 0.300.) He
comes to bat 4 times. Find the probability that he will get: (a) exactly 2 hits, (b) at least 1 hit.

6.55. The probability that Tom scores on a three-point basketball shot is p � 0.4. He shoots n � 5 times. Find
the probability that he scores: (a) exactly 2 times, (b) at least once.

6.56. Team A has probability p � 0.4 of winning each time it plays. Suppose A plays 4 games. Find the
probability that A wins: (a) half of the games, (b) at least 1 game, (c) more than half of the games.

6.57. An unprepared student takes a 5-question true-false quiz and guesses every answer. Find the probability
that the student will pass the quiz if at least 4 correct answers is the passing grade.

6.58. A certain type of missile hits its target with probability p � 1/5. (a) If 3 missiles are fired, find the
probability that the target is hit at least once. (b) Find the number of missiles that should be fired so that
there is at least a 90 percent probability of hitting the target (at least once).

6.59. A card is drawn and replaced in an ordinary 52-card deck. Find the number of times a card must be
drawn so that: (a) there is an even chance of drawing a heart, (b) the probability of drawing a heart is
greater than 75 percent.

6.60. A fair die is repeatedly tossed. Find the number of times the die must be tossed so that: (a) there is an
even chance of tossing a 6, (b) the probability of tossing a 6 is greater than 80 percent.

EXPECTED VALUE AND STANDARD DEVIATION

6.61. Team B has probability p � 0.6 of winning each time it plays. Let X denote the number of times B wins
in 4 games. (a) Find the distribution of X. (b) Find the mean �, variance 
2, and standard deviation

 of X.

6.62. Suppose 2 percent of the bolts produced by a factory are defective. In a shipment of 3600 bolts from the
factory, find the expected number E of defective bolts and the standard deviation 
.

6.63. A fair die is tossed 180 times. Find the expected number E of times the face 6 occurs and the standard
deviation 
.

6.64. Team A has probability p � 0.8 of winning each time it plays. Let X denote the number of times A will
win in n � 100 games. Find the mean �, variance 
2, and standard deviation 
 of X.

6.65. Let X be a binomially distributed random variable B(n, p) with E(X) � 2 and var(X) � 4/3. Find n
and p.

6.66. Consider the binomial distribution B(n, p). Show that

(a) P(k)
P(k � 1)

�
(n � k 
 1) p

kq
.

(b) P(k � 1) � P(k) for k � (n 
 1) p and P(k � 1) � P(k) for k � (n 
 1) p.
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NORMAL DISTRIBUTION

6.67. Let Z be the standard normal random variable. Find

(a) P(�0.81 � Z � 1.13)

(b) P(�0.23 � Z � 1.6)

(c) P(0.53 � Z � 2.03)

(d) P(0.15 � Z � 1.50)

6.68. Let Z be the standard normal random variable. Find

(a) P(Z � 0.73)

(b) P(Z � 1.8)

(c) P(Z � 0.2)

(d) P(Z � �1.5)

(e) P(Z � 1.8)

( f) P(�Z � � 0.25)

6.69. Let X be normally distributed with mean � � 8 and standard deviation 
 � 2. Find the following without
using Table 6-1,

(a) P(6 � X � 10)

(b) P(4 � X � 12)

(c) P(4 � X � 10)

(d) P(4 � X � 6)

(e) P(6 � X � 12)

( f) P(8 � X � 10)

6.70. Let X be normally distributed with mean � � 8 and standard deviation 
 � 4. Find:

(a) P(5 � X � 10)

(b) P(10 � X � 15)

(c) P(3 � X � 9)

(d) P(3 � X � 7)

(e) P(X � 15)

( f) P(X � 5)

6.71. Suppose the weights of 2000 male students are normally distributed with mean � � 155 lb and standard
deviation 
 � 20 lb. Find the number of students with weights:

(a) not more than 100 lb,

(b) between 120 and 130 lb (inclusive),

(c) between 150 and 175 lb (inclusive),

(d) greater than or equal to 200 lb.

6.72. Suppose the diameter d of bolts manufactured by a company is normally distributed with mean � � 0.5 cm
and standard deviation 
 � 0.4 cm. A bolt is considered defective if d � 0.45 cm or d � 0.55 cm. Find
the percentage of defective bolts manufactured by the company.

6.73. Suppose the scores on an examination are normally distributed with mean � � 76 and standard deviation

 � 15. The top 15 percent of the students receive A’s and the bottom 10 percent receive F ’s. Find: (a)
the minimum score to receive an A, (b) the minimum score to pass (not to receive an F).

NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION

6.74. A fair coin is tossed 10 times. Find the probability of obtaining between 4 and 7 heads inclusive by
using:

(a) the binomial distribution, (b) the normal approximation to the binomial distribution.

6.75. A fair coin is tossed 400 times. Find the probability that the number of heads which occurs differs from
200 by:

(a) more than 10, (b) more than 25 times.

6.76. A fair die is tossed 720 times. Find the probability that the face 6 will occur:
(a) between 100 and 125 times inclusive, (b) more than 135 times, (c) less than 110 times.

6.77. Among 625 random digits, find the probability that the digit 7 appears:
(a) between 50 and 60 times, (b) between 60 and 70 times, (c) more than 75 times.
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POISSON DISTRIBUTION

6.78. Find: (a) e�1.6, (b) e�2.3

6.79. For the Poisson distribution f(k, �) � �k e��/k!, find:

(a) f(2; 1.5), (b) f(3; 1), (c) f(2; 0.6).

6.80. Suppose 220 misprints are distributed randomly throughout a book of 200 pages. Find the probability
that a given page contains: (a) no misprints, (b) 1 misprint, (c) 2 misprints, (d) 2 or more misprints.

6.81. Suppose 1 percent of the items made by a machine are defective. In a sample of 100 items, find the
probability that the sample contains: (a) no defective item, (b) 1 defective item, (c) 3 or more defective
items.

6.82. Suppose 2 percent of the people on the average are left-handed. Find the probability of 3 or more
left-handed among 100 people.

6.83. Suppose there is an average of 2 suicides per year per 50,000 population. In a city of 100,000, find the
probability that in a given year the number of suicides is: (a) 0, (b) 1, (c) 2, (d) 2 or more.

MISCELLANEOUS DISTRIBUTIONS

6.84. A die is loaded so that the faces occur with the following probabilities:

k

P(k)

1

0.1

2

0.15

3

0.15

4

0.15

5

0.15

6

0.3

The die is tossed 6 times. Find the probability that: (a) each face occcurs once, (b) the faces 4, 5, 6 each
appear twice.

6.85. A box contains 5 red, 3 white, and 2 blue marbles. A sample of 6 marbles is drawn with replacement, that
is, each marble is replaced before the next marble is drawn. Find the probability that:
(a) 3 are red, 2 are white, 1 is blue; (b) 2 are red, 3 are white, 1 is blue; (c) 2 of each color appear.

6.86. A box contains 8 red and 4 white marbles. Find the probability that a sample of size n � 4 will contain
2 red and 2 white marbles if the sampling is done: (a) without replacement, (b) with replacement.

6.87. Driving down a main street, the probability is 0.8 that the car meets a green light (go) instead of a red light
(stop). (a) Find the expected number E of green lights the car meets before it must stop. (b) If the car
‘‘makes’’ the first 3 lights (they are green), find the expected number F of additional green lights the car
meets before it must stop.

6.88. Let X be the continuous uniform random variable UNIF(1, 3). Find E(X), var(X), and cumulative
distribution F(x).

6.89. Suppose the life expectancy X (in hours) of a transistor tube is exponential with � � 180, that is, the
following are the distribution f(x) and cumulative distribution F(x) of X:

f(x) � (1/180) e�x/180 and F(x) � 1 � e�x/180

Find the probability that the tube will last: (a) less than 36 h, (b) between 36 and 90 h, (c) more
than 90 h.
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6.90. Let X be the geometric random variable GEO(p). Using the relation ��
k�1 k2 qk � [q(q 
 1)]/(1 � q)3,

show that

(a) E(X 2) � (2 � p)/p2, (b) var(X) � (1 � p)/p2

6.91. Let X be the geometric random variable GEP(p). Prove Theorem 6.8: (iii) Cumulative distribution
F(k) � 1 � qk. (iv) P(k � r) � qr.

6.92. Show that the geometric random variable X � GEO(p) has the ‘‘no memory’’ property, that is,

P(k � r 
 s � k � s) � P(k � r)

Answers to Supplementary Problems

6.51. (a) 80/243; (b) 21/128; (c) 27/128.

6.52. (a) 9/64; (b) 1/64; (c) 37/64.

6.53. (a) 36/1215; (b) 54/125; (c) 117/125.

6.54. (a) 0.254 6; (b) 0.759 9.

6.55. (a) 0.345 6; (b) 0.922.

6.56. (a) 216/625; (b) 544/625; (c) 112/625.

6.57. 6/32 � 18.75%.

6.58. (a) 1 � 64/125 � 61/125; (b) 11.

6.59. (a) 3; (b) 5.

6.60. (a) 4; (b) 9.

6.61. (a) [0, 1, 2, 3, 4; 16/625, 96/625, 216/625, 216/625, 81/625]; (b) � � 2.4, 
2 � 0.96, 
 � 0.98.

6.62. E � 72, 
 � 8.4.

6.63. E � � � 30, 
 � 5.

6.64. � � 80, 
2 � 16, 
 � 4.

6.65. n � 6, p � 1/3.

6.67. (a) 0.661 8; (b) 0.536 2; (c) 0.276 9; (d) 0.334 5.

6.68. (a) 0.767 3; (b) 0.964 1; (c) 0.420 7; (d) 0.933 2; (e) 0; ( f)0.197 4.

6.69. (a) 68.2%; (b) 95.4%; (c) 81.8%; (d) 13.6%; (e) 81.8%; ( f) 34.1%.

6.70. (a) 0.464 9; (b) 0.268 4; (c) 0.493 1; (d) 0.295 7; (e) 0.040 1; ( f) 0.226 6.
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6.71. (a) 6; (b) 131; (c) 880; (d) 24.

6.72. 7.3%.

6.73. (a) 92; (b) 57.

6.74. (a) 0.773 4; (b) 0.771 8.

6.75. (a) 0.293 8; (b) 0.010 8.

6.76. (a) 0.688 6; (b) 0.001 1.

6.77. (a) 0.351 8; (b) 0.513 1; (c) 0.041 8.

6.78. (a) 0.202; (b) 0.100.

6.79. (a) 0.251; (b) 0.061 3; (c) 0.988.

6.80. (a) 0.333; (b) 0.366; (c) 0.201; (d) 0.301.

6.81. (Here � � 1.) (a) 0.368; (b) 0.368; (c) 0.080.

6.82. 0.325.

6.83. (a) 0.018 3; (b) 0.073 2; (c) 0.146 4; (d) 0.909.

6.84. (a) 0.010 9; (b) 0.001 03.

6.85. (a) 0.135; (b) 0.081 0; (c) 0.081 0.

6.86. (a) [(28)(6)]/495 � 0.339 � 33.9%; (b) 8/27 � 0.296 � 29.6%.

6.87. (a) E � 1/0.2 � 5; (b) (No memory) F � 1/0.2 � 5.

6.88. (a) (Theorem 6.9.) E(X) � 2, var(X) � 1/3, F(x) � (x � 1)/2.

6.89. (a) 0.181; (b) 0.212; (c) 0.607.

6.90. (a) E(X 2) � � k2 pqk�1 � (p/q) � k2 qk � (2 � p)p2.

6.91. Hint: Use 1 
 q 
 q2 
 · · · 
 qk�1 � (1 � qk)/(1 � q).
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CHAPTER 7

Markov Processes

7.1 INTRODUCTION

This chapter investigates a sequence of repeated trials of an experiment in which the outcome at
any step in the sequence depends, at most, on the outcome of the preceding step and not on any other
previous outcome. Such a sequence is called a Markov chain or Markov process.

EXAMPLE 7.1

(a) A box contains 100 light bulbs of which 8 are defective. One light bulb after another is selected from the
box and tested to see if it is defective. This is not an example of a Markov process. The outcome of the
third trial does depend on the preceding two trials.

(b) Three children, A, B, C, are throwing a ball to each other. A always throws the ball to B, and B always
throws the ball to C. However, C is just as likely to throw the ball to B as to A. This is an example
of a Markov process. Namely, the child throwing the ball is not influenced by those who previously had
the ball.

Elementary properties of vectors and matrices, especially the multiplication of matrices, are
required for this chapter. Thus, we begin with a review of vectors and matrices. The entries in our
vectors and matrices will be real numbers, and the real numbers will also be called scalars.

7.2 VECTORS AND MATRICES

A vector u is a list of n numbers, say, a1, a2, . . ., an. Such a vector is denoted by

u � [a1, a2, . . ., an]

The numbers ai are called the components or entries of u. If all the ai � 0, then u is called the zero
vector. By a scalar multiple ku of u (where k is a real number), we mean the vector obtained from
u by multiplying each of its components by k, that is,

ku � [ka1, ka2, . . ., kan]

Two vectors are equal if and only if their corresponding components are equal.

A matrix A is a rectangular array of numbers usually presented in the form

A � �
a11

a21

· · · · · · · · · · · · · · · · · · ·
am1

a12

a22

am2

· · ·
· · ·

· · ·

a1n

a2n

amn

�
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The m horizontal lists of numbers are called the rows of A, and the n vertical lists of numbers are its
columns. Thus, the following are the rows of the matrix A:

[a11, a12, . . ., a1n], [a11, a12, . . ., a1n], . . ., [a11, a12, . . ., a1n]

Furthermore, the following are the columns of the matrix A:

�
a11

a21

· · ·
am1

� , �
a12

a22

· · ·
am2

� , . . ., �
a1n

a2n

· · ·
amn

�
Observe that the element aij of A, called the ij entry, appears in row i and column j. We frequently
denote such a matrix by writing A � [aij].

A matrix with m rows and n columns is called an m by n matrix, written m � n. The pair of
numbers m and n is called the size of the matrix. Two matrices A and B are equal, written A � B,
if they have the same size and if corresponding elements are equal. Thus, the equality of two m � n
matrices is equivalent to a system of mn equalities, one for each corresponding pair of elements.

A matrix with only one row may be viewed as a vector and vice versa. A matrix whose entries
are all zero is called a zero matrix and will usually be denoted by 0.

Square Matrices

A square matrix is a matrix with the same number of rows and columns. In particular, a square
matrix with n rows and n columns or, in other words, an n � n matrix, is said to be of order n and is
called an n-square matrix.

The diagonal (or main diagonal) of an n-square matrix A � [aij] consists of the elements

a11, a22, . . ., ann

The n-square matrix with 1’s on the diagonal and 0’s elsewhere is called the unit matrix or identity
matrix, and will usually be denoted by In or simply I.

Multiplication of Matrices

Now suppose A and B are two matrices such that the number of columns of A is equal to the
number of rows of B, say A is an m � p matrix and B is a p � n matrix. Then the product of A and
B, denoted by AB, is the m � n matrix C whose ij entry is obtained by multiplying the elements of row
i of A by the corresponding elements of column j of B and then adding. That is, if A � [aik] and
B � [bkj], then

AB � �
a11

·
ai1

·
am1

· · ·
· · ·
· · ·
· · ·
· · ·

a1p

·
aip

·
amp

� �
b11

·
·
·

bp1

· · ·
· · ·
· · ·
· · ·
· · ·

b1j

·
·
·

bpj

· · ·
· · ·
· · ·
· · ·
· · ·

b1n

·
·
·

bpn

� � �
c11

·
·
·

cm1

· · ·
· · ·
cij

· · ·
· · ·

c1n

·
·
·

cmn

� � C

where cij � ai1 b1j 
 ai2 b2j 
 · · · 
 aip bpj �

p�
k�1

aik bkj

Namely, the product AB is the matrix C � [cij], where cij is defined above.
The product AB is not defined if A is an m � p matrix and B is a q � n matrix and p � q. That

is, AB is not defined if the number of columns of A is not equal to the number of rows of B.
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There are special cases of matrix multiplication which are of special interest for us. Suppose A
is an n-square matrix. Then we can form all the powers of A, that is,

A2 � AA, A3 � AA2, A4 � AA3, . . .

In addition, if u is a vector with n components, then we can form the product

uA

which is, again, a vector with n components. We call u � 0 a fixed vector or fixed point of A if u is ‘‘left
fixed’’, that is, not changed, when multiplied by A, that is, if

uA � u

In this case, for any scalar k � 0, one can show that

(ku) A � k(uA) � ku

This yields the following theorem.

Theorem 7.1: If u is a fixed vector of a matrix A, then every nonzero scalar multiple ku of u is also
a fixed vector of A.

EXAMPLE 7.2

(a) Let A � �1
3

2
4 � . Then

A2 � �1
3

2
4 � �

1
3

2
4 � � � 1 
 6

3 
 12
2 
 8
6 
 16� � � 7

15
10
22�

(b) Let u � [2, �1] and A � �2
2

1
3 � . Then

uA � [2, �1] �2
2

1
3 � � [4 � 2, 2 � 3] � [2, �1] � u

Thus, u is a fixed vector of A. Then, as expected from the above theorem, 2u � [4, �2] is also a fixed vector
of A, namely,

(2u) A � [4, �2] �2
2

1
3 � � [8 � 4, 4 � 6] � [4, �2] � 2u

7.3 PROBABILITY VECTORS AND STOCHASTIC MATRICES

A vector q � [q1, q2, . . ., qn] is called a probability vector if its entries are nonnegative and their
sum is 1, that is, if:

(i) Each qi � 0, (ii) q1 
 q2 
 · · · 
 qn � 1.

Recall that the probability distribution of a sample space S with n points has these two propereties and
hence forms a probability vector.

A square matrix P � [pij] is called a stochastic matrix if each row of P is a probability
vector. Thus, a probability vector may also be viewed as a stochastic matrix.

The following theorem (proved in Problem 7.8) applies. (The proof uses the fact that if u is a
probability vector, then uA is also a probability vector.)

Theorem 7.2: Suppose A and B are stochastic matrices. Then the product AB is also a stochastic
matrix. Thus, in particular, all powers An are stochastic matrices.

We now define an important class of stochastic matrices.

Definition: A stochastic matrix P is said to be regular if, for some m, all the entries of Pm are gre-
ter than zero.
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EXAMPLE 7.3

(a) The nonzero vector u � [3, 1, 0, 5] is not a probability vector since the sum of its entries is 9, not
1. However, since the components of u are nonnegative, there is a unique probability vector qv which is a
scalar multiple of u. This probability vector qv can be obtained by multiplying u by the reciprocal of the
sum of its components. That is, the following is the unique probability vector which is a multiple of u:

qv �
1
9

v � [3/9, 1/9, 0, 5/9]

(b) Consider the following two matrices:

A � � 0
1/2

1
1/2� and B � � 1

1/2
0

1/2�
Both of them are stochastic matrices. In particular, A is regular since, as follows, all entries in A2 are
positive:

A2 � � 0
1/2

1
1/2� �

0
1/2

1
1/2� � � 1/2

1/4
1/2
3/4�

On the other hand, one can show that B is not regular. Specifically

B2 � � 1
3/4

0
1/4 � B3 � � 1

7/8
0

1/8 � B4 � � 1
15/16

0
1/16�

and every power Bm of B will have 1 and 0 in the first row. Accordingly, B is not regular.

The fundamental property of regular stochastic matrices is contained in the following theorem
whose proof lies beyond the scope of this text.

Theorem 7.3: Let P be a regular stochastic matrix. Then:

(i) P has a unique fixed probability vector t, and the components of t are all
positive.

(ii) The sequence P, P2, P3, . . . of powers of P approaches the matrix T whose rows
are each the fixed point t.

(iii) If q is any probability vector, then the sequence of vectors

q, qP, qP2, qP3, . . .

approaches the fixed point t.

Note that Pn approaches T means that each entry of Pn approaches the corresponding entry
of T, and qPn approaches t means that each component of qPn approaches the corresponding
component of t.

227MARKOV PROCESSESCHAP. 7]

row.*

EXAMPLE 7.4 Consider the following stochastic matrix P [which is regular since P5 has only positive
entries]:

P � �
0
0

1/2

1
0

1/2

0
1
0�

Find its unique fixed probability vector t for P.

*Since the first row contains a number (in this case 0) that is not greater than zero, B is not regular.

):

(which



Method 1: We seek the probability vector t with three components such that tP � t. The vector t can be
represented in the form [x, y, 1 � x � y]. Accordingly, we form the following matrix equation:

[x, y, 1 � x � y]�
0
0

1/2

1
0

1/2

0
1
0�� [x, y, 1 � x � y]

Multiply the left side of the matrix equation, and then set corresponding components equal to each other. This
yields the following system of linear equations:



1–
2 � 1–

2x � 1–
2y � x

x 
 1–
2 � 1–

2x � 1–
2y � y or

y � 1 � x � y

 3x 
 y � 1

x � 3y � �1 or
x 
 2y � 1



x � 1–

5

y � 2–
5

Thus t � [1/5, 2/5, 2/5].

Method 2: We first seek any fixed vector u � [x, y, z] of the matrix P. Thus we form the matrix equation:

[x, y, z] �
0
0

1/2

1
0

1/2

0
1
0� � [x, y, z] or x 


1–
2z � x
1–
2z � y

y � z

We know that the system has a nonzero solution; hence we can arbitrarily assign a value to one of the
unknowns. Set z � 2. Then by the first equation x � 1 and by the third equation y � 2. Thus u � [1, 2, 2] is
a fixed point of P. But every multiple of u is also a fixed point of P. Accordingly, multiply u by 1/5 to obtain
the following unique fixed probability vector of P:

t � 1–
5u � [1/5, 2/5, 2/5]

7.4 TRANSITION MATRIX OF A MARKOV PROCESS

A Markov process or chain consists of a sequence of repeated trials of an experiment whose
outcomes have the following two properties:

(i) Each outcome belongs to a finite set {a1, a2, . . ., an} called the state space of the system; if the
outcome on the kth trial is ai, then we say the system is in state ai at time k or at the kth step.

(ii) The outcome of any trial depends, at most, on the outcome of the preceding trial and not on any
other previous outcome.

Accordingly, with each pair of states (ai, aj), there is given the probability pij that aj occurs immediately
after ai occurs. The probabilities pij form the following n-square matrix:

M � �
p11

p21

· · · · · · · · · · · · · · · · · ·
pn1

p12

p22

pn2

· · ·
· · ·

· · ·

p1n

p2n

pnn

�
This matrix M is called the transition matrix of the Markov process.

Observe that with each state ai there corresponds the ith row [pi1, pi2, . . ., pin] of the transition
matrix M. Moreover, if the system is in state ai, then this row represents the probabilities of all the
possible outcomes of the next trial and so it is a probability vector. We state this result formally.

Theorem 7.4: The transition matrix M of a Markov process is a stochastic matrix.
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EXAMPLE 7.5

(a) A man either takes a bus or drives his car to work each day. Suppose he never takes the bus 2 days in a
row; but if he drives to work, then the next day he is just as likely to drive again as he is to take the bus.

This stochastic process is a Markov chain since the outcome on any day depends only on what happened
the preceding day. The state space is {b(bus), d(drive)} and the transition matrix M follows:

M �
b

d �
b

0
1/2

d

1
1/2 �

The first row of the matrix M corresponds to the fact that the man never takes the bus 2 days in a row, and
so he definitely will drive the day after he takes the bus. The second row of M corresponds to the fact that
the day after he drives he will drive or take the bus with equal probability.

(b) Three children, Ann (A), Bill (B), and Casey (C), are throwing a ball to each other. Ann always throws
the ball to Bill, and Bill always throws the ball to Casey. However, Casey is just as likely to throw the ball
to Bill as to Ann. The ball throwing is a Markov process with the following transition matrix:

M �

A

B

C �
A

0
0

1/2

B

1
0

1/2

C

0
1
0 �

The first row of the matrix corresponds to the fact that Ann always throws the ball to Bill. The second row
of the matrix corresponds to the fact that Bill always throws the ball to Casey. The last row of the matrix
corresponds to the fact that Casey always throws the ball to Ann or Bill with equal probability (and does
not throw the ball to himself).

[Observe that this is the Markov process given in Example 7.1(b).]

(c) An elementary school contains 200 boys and 150 girls. One student is selected after another to take an eye
examination. Let Xn denote the sex of the nth student who takes the examination; hence the following is
the state space of the stochastic process:

S � {m(male), f(female)}

This process is not a Markov process. For example, the probability that the third student is a girl depends
not only on the outcome of the first trial but on the outcomes of both the first and second trials.

7.5 STATE DISTRIBUTIONS

Consider a Markov process with transition matrix M. The kth state distribution of the Markov
process is the following probability vector:

qk � [qk1, qk2, . . ., qkn]

where qki is the probability that the state ai occurs at the kth trial of the Markov chain.
Suppose the initial state distribution q0 (at time t � 0) is given. Then the subsequent state

distributions can be obtained by multiplying the preceding state distribution by the transition matrix
M. Namely,

q0 M � q1, q1 M � q2, q2 M � q3, . . .

Accordingly

q2 � q1 M � (q0 M) M � q0 M2 q3 � q2 M � (q0 M2) M � q0 M3

and so on. We state this result formally.

Theorem 7.5: Suppose an initial state distribution q0 is given. Then, for k � 1, 2, . . .,

qk � qk�1 M � q0 Mk
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EXAMPLE 7.6 Consider the Markov chain in Example 7.5(b) with transition matrix M. Suppose Casey is the
first person with the ball, that is, suppose q0 � [0, 0, 1] is the initial probability distribution. Then

q1 � q0 M � [0, 0, 1] �
0
0

1/2

1
0

1/2

0
1
0� � [1/2, 1/2, 0]

q2 � q1 M � [1/2, 1/2, 0]�
0
0

1/2

1
0

1/2

0
1
0� � [0, 1/2, 1/2]

q3 � q2 M � [0, 1/2, 1/2] �
0
0

1/2

1
0

1/2

0
1
0� � [1/4, 1/4, 1/2]

Thus, after 3 throws, the probability that Ann has the ball is 1/4, that Bill has the ball is 1/4, and that Casey has
the ball is 1/2.

7.6 REGULAR MARKOV PROCESSES AND STATIONARY STATE DISTRIBUTIONS

A Markov chain is said to be regular if its transition matrix M is regular. Recall Theorem 7.3: if
M is regular then M has a unique fixed probability vector t and, for any probability vector q, the
sequence

q, qM, qM2, qM3, . . .

approaches the unique fixed point t. Thus, Theorems 7.3 and 7.5 give us the next basic result.

Theorem 7.6: Suppose the transition matrix M of a Markov chain is regular. Then, in the long run,
the probability that any state aj occurs is approximately equal to the component tj of
the unique fixed probability vector t of M.

Thus, we see that the effect of the initial state distribution in a regular Markov process wears off
as the number of steps increases. That is, every sequence of state distributions approaches the fixed
probability vector t of M, which is called the stationary distribution of the Markov chain.

EXAMPLE 7.7

(a) Consider the Markov process in Example 7.5(b) where Ann, Bill, and Casey throw a ball to each other with
the following transition matrix:

M � �
0
0

1/2

1
0

1/2

0
1
0 �

By Example 7.4, t � [1/5, 2/5, 2/5] is the unique fixed probability vector of M. Thus, in the long run, Ann
will be thrown the ball 20 percent of the time, and Bill and Casey will be thrown the ball 40 percent of
the time.

(b) Consider the Markov process in Example 7.5(a) where a man takes a bus or drives to work with the following
transition matrix:

M � � 0
1/2

1
1/2 �

Find the stationary distribution of the Markov process.
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We seek a probability vector t � [x, 1 � x] such that tM � t. Thus, set

[x, 1 � x] � 0
1/2

1
1/2 � � [x, 1 � x]

Multiply the left side of the matrix equation to obtain

[1–
2 � 1–

2x, 1–
2 
 1–

2x] � [x, 1 � x] or 

1–
2 � 1–

2x � x
1–
2 
 1–

2x � 1 � x
or x � 1–

3

Thus, t � [1/3, 1 � 1/3] � [1/3, 2/3] is the unique fixed probability vector of M. Therefore, in the long run,
the man will take the bus to work 1/3 of the time, and drive to work the other 2/3 of the time.

Solved Problems

MATRIX MULTIPLICATION

7.1. Let u � [1, �2, 4] and A � �
1
0
4

3
2
1

�1
5
6
� . Find uA.

The product of the three-component vector u by the 3 � 3 matrix A is again a three-component
vector. To obtain the first component of uA, multiply the elements of u by the corresponding elements
of the first column of A and then add as follows:

[1, �2, 4] �
1
0
4

3
2
1

�1
5
6� � [1(1) � 2(0) 
 4(4), , ] � [17, , ]

To obtain the second component of uA, multiply the elements of u by the corresponding elements of the
second column of A and then add as follows:

[1, �2, 4] �
1
0
4

3
2
1

�1
5
6� � [17, 1(3) � 2(2) 
 4(1), ] � [17, 3, ]

To obtain the third component of uA, multiply the elements of u by the corresponding elements of the
third column of A and then add as follows:

[1, �2, 4] �
1
0
4

3
2
1

�1
5
6� � [17, 3, 1(�1) � 2(5) 
 4(6)] � [17, 3, 13]

Namely, uA � [17, 3, 13]

7.2. Find AB where A � �1
2

3
�1� and B � �2

5
0

�2
�4

6� .

Since A is 2 � 2 and B is 2 � 3, the product AB is defined and AB is a 2 � 3 matrix. To obtain the
first row of the product AB, multiply the first row (1, 3) of A by the corresponding elements of each of

the columns �2
3 � , � 0

�2� , ��4
6� of B and then add

AB � �2 
 15 0 � 6 �4 
 18� � �17 �6 14�
To obtain the second row of the product AB, multiply the second row (2, �1) of A by the corresponding
elements of each of the columns of B, and then add

AB � � 17
4 � 5

�6
0 
 2

14
�8 � 6� � � 17

�1
�6

2
14

�14�
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Remark: B is a 2 � 3 matrix and A is a 2 � 2 matrix, so the number 3 of columns of B is not equal
to the number 2 of rows of A; hence the product BA is not defined.

7.3. Let A � �13 2
5� and B � �4

0
6

�2� . Find AB and BA.

We have

AB � � 4 
 0
12 
 0

6 � 4
18 � 10 � � � 4

12
2
8�

and BA � �4 
 18
0 � 6

8 
 30
0 � 10� � � 22

�6
38

�10�
Remark: Although the products AB and BA are defined, they are not equal. In other words,

matrix multiplication does not satisfy the commutative law that AB � BA.

7.4. Let A � �12 3
4� . Find: (a) A2, (b) A3.

(a) A2 � AA � �1
2

3
4 � �1

2
3
4 �

� �1(1) 
 3(2)
2(1) 
 4(2)

1(3) 
 3(4)
2(3) 
 4(4) � � � 7

10
15
22�

(b) A3 � AA2 � �1
2

3
4 � � 7

10
15
22�

� �1(7) 
 3(10)
2(7) 
 4(10)

1(15) 
 3(22)
2(15) 
 4(22) � � �37

54
81

118 �

PROBABILITY VECTORS AND STOCHASTIC MATRICES

7.5. Find a multiple of each vector v which is a probability vector qv:

(a) v � [2, 1, 2, 0, 3],

(b) v � [1/2, 2/3, 2, 5/6],

(c) v � [2/3, 1, 3/5, 5/6],

(d) v � [0, 0, 0, 0]

(a) The sum of the components of v is 8; hence multiply v by 1/8, that is, multiply each component of
v by 1/8 to obtain the probability vector

qv � [1/4, 1/8, 1/4, 0, 3/8]

(b) First multiply the vector v by 6 to eliminate fractions. This yields the vector v� � [3, 4, 12, 5]. The
sum of the components of v� is 24. Then multiply each component of v� by 1/24 to obtain the
probability vector

qv � [1/8, 1/6, 1/2, 5/24]

However, qv is also a multiple of v.

(c) First multiply the vector v by 30 to obtain v� � [20, 30, 18, 25]. The sum of the components of v� is
93. Then multiply each component of v� by 1/93 to obtain

qv � [20/93, 30/93, 18/93, 25/93]

(d) Every scalar multiple of the zero vector is the zero vector whose components add up to 0. Thus, no
multiple of the zero vector is a probability vector.
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7.6. Determine which of the following are stochastic matrices:

A � �1/3
1/2

1/3
0

1/3
1/2� , B � �3/4

2/3
1/4
2/3� , C � �3/2

1/4
�1/2

3/4�, D � �3/4
1/2

1/4
1/2� .

A is not a stochastic matrix since it is not a square matrix.
B is not a stochastic matrix since the sum of the entries in the second row exceeds 1.
C is not a stochastic matrix since an entry is negative.
D is a stochastic matrix.

7.7. Suppose A � [aij] is an n-square stochastic matrix, and u � [u1, u2, . . ., un] is a probability
vector. Prove that uA is also a probability vector.

By matrix multiplication:

uA � [u1, u2, . . ., un] �
a11

a21

· · · · · · · · · · · · · · · · · ·
an1

a12

a22

an2

· · ·
· · ·

· · ·

a1n

a2n

ann

�
� [�i ui ai1, �i ui ai2, . . ., �i ui ain]

Since the ui and the aij are nonnegative, the components of uA are also nonnegative. Thus, it only
remains to show that the sum S of the components of uA is equal to one. Using the fact that the sum
of the entries in any row of A is equal to one and that the sum of the components of u is equal to one,
that is, using �j aij � 1, for any i, and �i ui � 1, we get

S � �i ui ai1 
 �i ui ai2 
 · · · 
 �i ui ain

� u1 �j a1j 
 u2 �j a2j 
 · · · 
 un �j anj

� u1(1) 
 u2(1) 
 · · · 
 un(1)

� u1 
 u2 
 · · · 
 un � 1

Thus, uA is a probability vector.

7.8. Prove Theorem 7.2. Suppose A and B are stochastic matrices. Then the product AB is also
a stochastic matrix. Thus, in particular, all powers An are stochastic matrices.

Let si denote the ith row of the product matrix AB. Then si is obtained by multiplying the ith row
ri of A by the matrix B, that is,

si � ri B

Since ri is a probability vector and B is a stochastic matrix, the product si is also a probability vector by
the preceding Problem 7.7. Thus, AB is a stochastic matrix since each row is a probability vector.

7.9. Let p � [p1, p2, . . ., pn] be a probability vector, and let T be a matrix whose rows are all the same
vector t � [t1, t2, . . ., tn]. Prove that pT � t.

Here we use the fact that p1 
 p2 
 · · · 
 pn � � pi � 1. We have

pT � [p1, p2, . . ., pn] �
t1

t1

· · · · · · · · · · · · · ·
t1

t2

t2

t2

· · ·
· · ·

· · ·

tn

tn

tn

�
� [� pi t1, � pi t2, . . ., � pi tn]

� [t1 � pi, t2 � pi, . . ., tn � pi]

� [t1, t2, . . ., tn] � t
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REGULAR STOCHASTIC MATRICES AND FIXED PROBABILITY VECTORS

7.10. Find the unique fixed probability vector t of the regular stochastic matrix A � �3/4
1/2

1/4
1/2� .

Which matrix does An approach as n becomes larger?

We seek a probability vector t � [x, 1 � x] such that tA � t. Thus, set

[x, 1 � x] �3/4
1/2

1/4
1/2 � � [x, 1 � x]

Multiply the left side of the above matrix equation and then set corresponding components equal to each
other to obtain the following two equations:

3–
4x 
 1–

2 � 1–
2x � x and 1–

4x 
 1–
2 � 1–

2x � 1 � x

Solve either equation to obtain x � 2/3. Thus, t � [2/3, 1/3].
The matrix An approaches the matrix T whose rows are each the fixed point t; hence An

approaches

T � �2/3
2/3

1/3
1/3 �

7.11. Consider the general 2 � 2 stochastic matrix M � �1 � a
b

a
1 � b� . Prove that the vector

u � [b, a] is a fixed point M. (Note that the fixed point u of M consists of the nondiagonal
elements of M.)

Matrix multiplication yields

uM � [b, a] �1 � a

b

a

1 � b� � [b � ab 
 ab, ab 
 a � ab] � [b, a] � u

Thus, u is a fixed point of M.

7.12. Use Problem 7.11 to find the unique fixed probability vector t of each stochastic matrix:

(a) A � �1/3
1

2/3
0 � , (b) B � �1/2

2/3
1/2
1/3� , (c) C � �0.7

0.8
0.3
0.2� .

(a) By Problem 7.11, u � [1, 2/3] is a fixed point of A. Multiply u by 3 to obtain the fixed point [3, 2]
of A which has no fractions. Since the sum of the components of [3, 2] is 5, multiply [3, 2] by 1/5
to obtain the required probability vector t � [3/5, 2/5].

(b) By Problem 7.11, u � [2/3, 1/2] is a fixed point of B. Multiply u by 6 to obtain the fixed point [4, 3]
of B which has no fractions. Since the sum of the components of [4, 3] is 7, multiply [4/3] by 1/7 to
obtain the required probability vector t � [4/7, 3/7].

(c) By Problem 7.11, u � [0.8, 0.3] is a fixed point of C. Hence [8, 3] and the probability vector
t � [8/11, 3/11] are also fixed points of C.

7.13. Find the unique fixed probability vector t of the following regular stochastic matrix:

P � �
0

1/6
0

1
1/2
2/3

0
1/3
1/3

�
Which matrix does Pn approach as n becomes larger?
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We first seek any fixed vector u � [x, y, z] of P. Thus, set

[x, y, z] �
0

1/6
0

1
1/2
2/3

0
1/3
1/3� � [x, y, z]

Multiply the left side of the above matrix equation and then set corresponding components equal to each
other to obtain the following system of three equations:



1–
6y � x

x 
 1–
2y 
 2–

3z � y or
1–
3y 
 1–

3z � z 

y � 6x

6x 
 3y 
 4z � 6y or
y 
 z � 3z 


y � 6x

6x 
 4z � 3y

y � 2z

We know the system has a nonzero solution; hence we can arbitrarily assign a nonzero value to one of the
unknowns. Set x � 1. By the first equation y � 6 and by the last equation z � 3. Thus, u � [1, 6, 3] is
a fixed point of P. Since 1 
 6 
 3 � 10, the vector

t � [1/10, 6/10, 3/10]

is the required unique fixed probability vector of P.
The matrix Pn approaches the matrix T whose rows are each the fixed point t; hence Pn

approaches

T � �
1/10
1/10
1/10

6/10
6/10
6/10

3/10
3/10
3/10�

7.14. Suppose P is a stochastic matrix. [Assume P is not a 1 � 1 matrix.]

(a) Suppose t � [1/4, 0, 1/2, 1/4, 0] is a fixed point of P. Explain why P is not regular.

(b) Suppose P has 1 on the diagonal. Show that P is not regular.

(a) Theorem 7.3 tells us that if P is regular, then P has a unique probability vector whose components
are all positive. Since t has zero components, P is not regular.

(b) Let ek be the vector with 1 in the kth position and 0’s elsewhere, that is, ek has the following
form:

ek � [0, . . ., 0, 1, 0, . . ., 0]

Suppose the kth diagonal entry of P is 1. Since P is a stochastic matrix, ek must be the kth row of
P. By matrix multiplication, ek will be the kth row of all powers of P. Thus, P is not regular.

7.15. Determine which of the following stochastic matrices are regular:

(a) A � �0
1

1
0� (b) B � �

1/2
0

1/2

1/4
1

1/2

1/4
0
0
� (c) C � �

0
1/2
0

0
1/4
1

1
1/4
0
�

Recall that a stochastic matrix is regular if a power of the matrix has only positive entries.

(a) We have

A2 � �0
1

1
0 � �

0
1

1
0 � � �1

0
0
1 � � the unit matrix I

A3 � �1
0

0
1 � �

0
1

1
0 � � �0

1
1
0 � � A

Thus, every even power of A is the unit matrix I, and every odd power of A is the matrix A. Thus,
every power of A has zero entries, and so A is not regular.
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(b) The matrix B is not regular since it has a 1 on its diagonal.

(c) Computing C2 and C3 yields

C2 � �
0

1/8
1/2

1
5/16
1/4

0
9/16
1/4 � C3 � �

1/2
5/32
1/8

1/4
41/64
5/16

1/4
13/64
9/16 �

Since all entries in C3 are positive, C is regular.

MARKOV PROCESSES

7.16. Bob’s study habits are as follows. If he studies one night, he is 70 percent sure not to study the
next night. On the other hand, if he does not study one night, he is only 60 percent sure not
to study the next night as well. Find out how often, in the long run, Bob studies.

This is a Markov process where the states of the system are S (studying) and T (not studying). The
transition matrix M of the process is as follows:

M �
S

T �
S

0.3
0.4

T

0.7
0.6 �

To discover what happens in the long run, we must find the unique fixed probability vector t of M. By
Problem 7.11, u � [0.4, 0.7] is a fixed point of M and so t � [4/11, 7/11] is the required fixed probability
vector. Thus, in the long run, Bob studies 4/11 of the time.

7.17. A psychologist makes the following assumptions concerning the behavior of mice subjected to
a particular feeding schedule. For any particular trial, 80 percent of the mice that went right
on a previous experiment will go right on this trial, and 60 percent of those mice that went left
on the previous experiment will go right on this trial. Suppose 50 percent of the mice went
right on the first trial.

(a) Find the prediction of the psychologist for the next two trials.

(b) When will the process stabilize?

The states of the system are R (right) and L (left), and the transition matrix M of the process is as
follows:

M �
R

L �
R

0.8
0.6

L

0.2
0.4 �

The probability distribution for the first (initial) trial is q � [0.5, 0.5].

(a) To predict the probability distribution for the next step (second trial), multiply q by M. This
yields

[0.5, 0.5] �0.8
0.6

0.2
0.4 � � [0.7, 0.3]

Thus, the psychologist predicts 70 percent of the mice will go right and 30 percent will go left on the
second trial. To predict the probability distribution for the next step (third trial), multiply the
previous distribution by M. This yields

[0.7, 0.3] �0.8
0.6

0.2
0.4 � � [0.74, 0.26]

Thus, the psychologist predicts 74 percent of the mice will go right and 26 percent will go left on the
third trial.

236 MARKOV CHAINS [CHAP. 7



(b) The process will stabilize when it reaches its fixed probability distribution t. By Problem 7.11,
u � [0.6, 0.2] is a fixed point of M and so t � [3/4, 1/4] � [0.75, 0.25]. The fourth trial, rounded to
two decimal places, gives the state distribution [0.75, 0.25]. Thus, the process stabilizes after the
third trial.

7.18. Consider a Markov process with initial probability distribution q0 � [1/2, 0, 1/2] and the
following transition matrix:

M � �
0

1/2
0

1/2
1/2
1

1/2
0
0
�

(a) Find the following three probability distributions q1, q2, and q3.

(b) Find the matrix that Mn approaches as n gets larger.

(a) Multiply q0 by M to obtain q1:

q1 � q0 M � [1/2, 0, 1/2] �
0

1/2
0

1/2
1/2
1

1/2
0
0 � � [0, 3/4, 1/4]

Multiply q1 by M to obtain q2:

q2 � q1 M � [0, 3/4, 1/4] �
0

1/2
0

1/2
1/2
1

1/2
0
0 � � [3/8, 5/8, 0]

Multiply q2 by M to obtain q3:

q3 � q2 M � [3/8, 5/8, 0] �
0

1/2
0

1/2
1/2
1

1/2
0
0 � � [5/16, 1/2, 3/16]

(b) Mn approaches the matrix T whose rows are each the unique fixed probability vector t of M. To find
t, first find any fixed vector u � [x, y, z] of M. Thus

[x, y, z] �
0

1/2
0

1/2
1/2
1

1/2
0
0 � � [x, y, z] or 


1–
2y � x
1–
2x 
 1–

2y 
 z � y
1–
2x � z

Find any nonzero solution of the above system of linear equations. Set z � 1. By the third
equation x � 2, and by the first equation y � 4. Thus, u � [2, 4, 1] is a fixed point of M and so
t � [2/7, 4/7, 1/7]. Accordingly, Mn approaches the following matrix:

T � �
2/7 4/7 1/7
2/7 4/7 1/7
2/7 4/7 1/7�

7.19. A salesman S sells in only three cities, A, B, and C. Suppose S never sells in the same city on
successive days. If S sells in city A, then the next day S sells in city B. However, if S sells in
either B or C, then the next day S is twice as likely to sell in city A as in the other city. Find
out how often, in the long run, S sells in each city.
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The transition matrix of the Markov process follows:

M �

A

B

C �
A

0
2/3
2/3

B

1
0

1/3

C

0
1/3
0 �

The first row [0, 1, 0] comes from the fact that if S sells in city A, then S will always sell in city B the next
day. The 2/3 and 1/3 in the second row and third row come from the fact that if S sells in either city B
or C, then S is twice as likely to sell in city A the next day than in the other city. (S is never in the same
city 2 days in a row.)

We seek the unique fixed probability vector t of the transition matrix M. To find t, we first find any
fixed vector u � [x, y, z] of M. Thus

[x, y, z] �
0

2/3
2/3

1
0

1/3

0
1/3
0 � � [x, y, z] or 


2–
3y 
 2–

3 � x

x 
 1–
3z � y

1–
3y � z

We find any nonzero solution of the above system of linear equations. Set z � 1. By the third
equation y � 3, and by the first equation x � 8/3. Thus, u � [8/3, 3, 1]. Also, 3u � [8, 9, 3] is a
fixed point of M. Multiply 3u by 1/(8 
 9 
 3) � 1/20 to obtain the unique fixed probability vector
t � [2/5, 9/20, 3/20] � [0.40, 0.45, 0.15]. Thus, in the long run, S sells 40 percent of the time in city A, 45
percent of the time in B, and 15 percent of the time in C.

7.20. There are 2 white marbles in box A and 3 red marbles in box B. At each step in the process,
a marble is selected from each box and the 2 marbles are interchanged. (Thus, box A always
has 2 marbles and box B always has 3 marbles.) The system may be described by three states,
s0, s1, s2, which denote, respectively, the number of red marbles in box A.

(a) Find the transition matrix P of the system.

(b) Find the probability that there are 2 red marbles in box A after 3 steps.

(c) Find the probability that, in the long run, there are 2 red marbles in box A.

The three states, s0, s1, s2, may be described as follows:

Box A

Box B

s0

2W

3R

s1

1W, 1R

1W, 2R

s2

2R

2W, 1R

(a) There are three cases according to the state of the system.

(1) Suppose the system is in state s0. Then a white marble must be chosen from box A and a red
marble from box B, so the system must move to state s1. Thus, the first row of P must be
[0, 1, 0].

(2) Suppose the system is in state s1. There are three subcases:

(i) The system can move to state s0 if and only if a red marble is selected from
box A and a white marble from box B. The probability that this happens is
(1/2)(1/3) � 1/6.

(ii) The system can move to state s2 if and only if a white marble is selected from
box A and a red marble from box B. The probability that this happens is
(1/2)(2/3) � 1/3.

(iii) By (i) and (ii), the system remains in state s1 with probability 1 � 1/6 � 1/3 � 1/2.

Thus, the second row of P must be [1/6, 1/2, 1/3].
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(3) Suppose the system is in state s2. A red marble must be drawn from box A. If a red marble
is selected from box B, probability 1/3, then the system remains in state s2; but if a white marble
is selected from box B, then the system moves to state s1. The system can never move from
s2 to s0. Thus, the third row of P must be [0, 2/3, 1/3].

Therefore, the required transition matrix is as follows:

P �

s0

s1

s2
�

s0

0
1/6
0

s1

1
1/2
2/3

s2

0
1/3
1/3�

(b) The system begins in state s0. Thus, the initial probability distribution is q0 � [1, 0, 0]. There-
fore:

q1 � q0 P � [0, 1, 0] q2 � q1 P � [1/6, 1/2, 1/3] q3 � q2 P � [1/12, 23/36, 5/18]

Accordingly, the probability that there are 2 red marbles in box A after three steps is 5/18.

(c) We seek the unique fixed probability vector t of the transition matrix P. To find t, we first find any
fixed vector [x, y, z] of P. Thus:

[x, y, z] �
0

1/6
0

1
1/2
2/3

0
1/3
1/3� � [x, y, z] or 


1–
6y � x

x 
 1–
2y 
 2–

3z � y
1–
3y 
 1–

3z � z

We find any nonzero solution of the above system of linear equations. Set, say, x � 1. By the first
equation y � 6, and by the third equation z � 3. Thus, u � [1, 6, 3] is a fixed point of P. Multiply
u by 1/(1 
 6 
 3) � 1/10 to obtain the unique fixed probability vector t � [0.1, 0.6, 0.3]. Thus, in the
long run, 30 percent of the time there will be 2 red marbles in box A.

MISCELLANEOUS PROBLEMS

7.21. The transition probabilities of a Markov process may be described by a diagram, called a
transition diagram as follows. The states are points (vertices) in the diagram, and a positive
probability pij is denoted by an arrow (edge) from state ai to the state aj labelled by pij. Find
the transition matrix P of each transition diagram in Fig. 7-1.
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(a) The state space is S � [a1, a2, a3], and hence the transition matrix P has the following form:

P �

a1

a2

a3
�

a1 a2 a3

�
Row i of P is obtained by finding the arrows which emanate from ai in the diagram; the number attached
to the arrow from ai to aj is the jth component of row i. Thus, the following is the required transition
matrix:

P �

a1

a2

a3
�

a1

0
1/2
1/2

a2

0
0
0

a3

1
1/2
1/2�

(b) The state space is S � {a1, a2, a3, a4}. The required transition matrix is as follows:

P �

a1

a2

a3

a4

�
a1

0
0

1/2
0

a2

1/2
1/2
0
0

a3

0
0
0
1

a4

1/2
1/2
1/2
0
�

7.22. Suppose the following is the transition matrix of a Markov process:

P �

a1

a2

a3

a4

�
a1

1/2
1/2
1/4
1/4

a2

1/2
1/2
1/4
1/4

a3

0
0

1/4
1/4

a4

0
0

1/4
1/4

�
Show that the Markov process is not regular.

Note that once the system enters state a1 or a2, then it can never move to state a3 or a4, that is, the
system remains in the state subspace {a1, a2}. Thus, every power of P will have 0 entries in the 3rd and
4th positions of the first and second rows.

(1, 3), (1, 4), (2, 3), (2, 4)

Supplementary Problems

MATRIX MULTIPLICATION

7.23. Given A � �
1
4
5

�2
1
2

3
�1

3� . Find uA where: (a) u � [1, �3, 2], (b) u � [3, 0, �2],

(c) u � [4, �1, �1].
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7.24. Given A � �1
3

�1
1

4
5 � and B � �

2
6
1

1
�3
�2� . Find AB and BA.

7.25. Given A � �2
3

2
�1� . Find A2 and A3.

7.26. Given A � �1
0

2
1 � . Find (a) A2, (b) A3, (c) An.

PROBABILITY VECTORS AND STOCHASTIC MATRICES

7.27. Which vectors are probability vectors?

u � [1/4, 1/2, �1/4, 1/2], v � [1/2, 0, 1/3, 1/6, 1/6], w � [1/12, 1/2, 1/6, 0, 1/4]

7.28. Find a scalar multiple of each vector v which is a probability vector:

(a) v � [3, 0, 2, 5, 3], (b) v � [2, 1–
2, 0, 1–

4,
3–
4, 1], (c) v � [1–

2,
1–
6, 0, 1–

4].

7.29. Which matrices are stochastic?

A � � 0
1/2

1
1/4

0
1/4 � , B � �1

0
0
1 � , C � � 0

1/2
1

1/4 � , D � �1/2
1/2

1/2
1/2 �

REGULAR STOCHASTIC MATRICES AND FIXED PROBABILITY VECTORS

7.30. Find the unique fixed probability vector t of each matrix:

(a) A � �2/3
2/5

1/3
3/5 � , (b) B � �0.2

0.5
0.8
0.5 � , (c) C � �0.7

0.6
0.3
0.4 �

7.31. Find the unique fixed probability vector t of each matrix:

(a) A � �
0

1/3
0

1/2
2/3
1

1/2
0
0 � , (b) B � �

0
1/2
1/2

1
0

1/4

0
1/2
1/4�

7.32. Consider the following stochastic matrix:

P � �
0

1/2
0

3/4
1/2
1

1/4
0
0 �

(a) Show that P is regular.

(b) Find the unique fixed probability vector t of P.

(c) What matrix does Pn approach?

(d) What vector does [1/4, 1/4, 1/2] Pn approach?
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7.33. Consider the following stochastic matrix:

P � �
0

1/2
0
0

1/2
1/4
0

1/2

1/2
0
0
0

0
1/4
1

1/2
�

(a) Show that P is regular.

(b) Find the unique fixed probability vector t of P.

(c) What matrix does Pn approach?

(d) What vector does [1/4, 0, 1/2, 1/4] Pn approach?

7.34. Consider the following general 3 � 3 stochastic matrix:

P � �
1 � a � b

c

e

a

1 � c � d

f

b

d

1 � e � f�
Show that the following vector v is a fixed point of P:

v � [cf 
 ce 
 de, af 
 bf 
 ae, ad 
 bd 
 bc]

MARKOV PROCESSES

7.35. John either drives or takes the train to work. If he drives to work, then the next day he takes the train
with probability 0.2. On the other hand, if he takes the train to work, then the next day he drives with
probability 0.3. Find out how often, in the long run, he drives to work.

7.36. Mary’s gambling luck follows a pattern. If she wins a game, the probability of winning the next game is
0.6. However, if she loses a game, the probability of losing the next game is 0.7. There is an even chance
that she wins the first game.

(a) Find the transition matrix M of the Markov process.

(b) Find the probability that she wins the second game.

(c) Find the probability that she wins the third game.

(d) Find out how often, in the long run, she wins.

7.37. Suppose q0 � [1/4, 3/4] is the initial state distribution for a Markov process with the following transition
matrix:

M � �1/2
3/4

1/2
1/4 �

(a) Find q1, q2, and q3. (b) Find the vector v that q0 Mn approaches. (c) Find the matrix that Mn

approaches.

7.38. Suppose q0 � [1/2, 1/2, 0] is the initial state distribution for a Markov process with the following transition
matrix:

M � �
1/2
1

1/4

0
0

1/2

1/2
0

1/4�
(a) Find q1, q2, and q3. (b) Find the vector v that q0 Mn approaches. (c) Find the matrix that Mn

approaches.
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7.39. Each year Ann trades her car for a new car. If she has a Buick, she trades it in for a Plymouth. If she
has a Plymouth, she trades it in for a Ford. However, if she has a Ford, she is just as likely to trade it in
for a new Ford as to trade it in for a Buick or for a Plymouth. In 1995 she bought her first car which was
a Ford.

(a) Find the probability that she has bought: (i) a 1997 Buick, (ii) a 1998 Plymouth, (iii) a 1998 Ford.

(b) Find out how often, in the long run, she will have a Ford.

MISCELLANEOUS PROBLEMS

7.40. Find the transition matrix corresponding to each transition diagram in Fig. 7-2.

7.41. Draw a transition diagram for each transition matrix:

(a) P �
a1

a2
�

a1

1/2
1/3

a2

1/2
2/3 � , (b) P �

a1

a2

a3
�

a1

0
1/4
0

a2

1/2
1/4
1/2

a3

1/2
1/2
1/2�

7.42. Consider the vector ei � [0, . . . ., 0, 1, 0, . . . ., 0] which has 1 in the ith position and 0’s elsewhere. Show
that, whenever defined, ei A � ri, where ri is the ith row of A.

Answers to Supplementary Problems

7.23. (a) [�1, �1, 12]; (b) [�7, �10, 3]; (c) [�5, �11, 10].

7.24. AB � � 0
17

�4
�10� ; BA � �

5
�3
�5

�1
�9
�3

13
9

�6� .

7.25. A2 � �10
3

2
7 � ; A3 � �26

27
18

�1� .

7.26. A2 � �1
0

4
1 � ; A3 � �1

0
6
1 � ; An � �1

0
2n

1 � .
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7.27. Only w.

7.28. (a) 1––
13 [3, 0, 2, 5, 3]; (b) 1––

18 [8, 2, 0, 1, 3, 4]; (c) 1––
11 [6, 2, 0, 3].

7.29. Only B and D.

7.30. (a) [6/11, 5/11]; (b) [5/13, 8/13]; (c) [2/3, 1/3].

7.31. (a) [2/9, 6/9, 1/9]; (b) [5/15, 6/15, 4/15].

7.32. (a) P3 has only positive entries; (b) t � [4/13, 8/13, 1/13]; (c) all rows are t. (d) t.

7.33. (a) P3 has only positive entries; (b) t � [2/11, 4/11, 1/11, 4/11]; (c) all rows are t. (d) t.

7.35. Transition matrix M � �0.8
0.3

0.2
0.7 � . John drives 60 percent of the time.

7.36. (a) M � �0.6
0.3

0.4
0.7 � ; (b) 45 percent; (c) 43.5 percent; (d) 3/7 � 42.9 percent.

7.37. (a) q1 � [11/16, 5/16], q2 � [37/64, 27/64], q3 � [155/256, 101/256]; b [3/5, 2/5]; (c) �3/5
3/5

2/5
2/5 � .

7.38. (a) q1 � [3/4, 0, 1/4], q2 � [7/16, 2/16, 7/16], q3 � [29/64, 14/64, 21/64]; (b) [3/6, 1/6, 2/6];
(c) all rows are [3/6, 1/6, 2/6].

7.39. (a) (i) 1/9, (ii) 7/27, (iii) 16/27; (b) 50 percent of the time.

7.40. (a) �
1/2
0

1/2

1/2
1/2
1/4

0
1/2
1/4� ; (b) �

0
1/4
1/2
1/2

0
1/2
0

1/2

1
0
0
0

0
1/4
1/2
0
� .

7.41. See Fig. 7-3.
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A.1 INTRODUCTION

Statistics means, on the one hand, lists of numerical data.    For example, the weights of the  
students at a university, or the number of children per family in a city.    Statistics as a science, on the  
other hand, is that branch of mathematics which organizes, analyzes, and interprets such raw data. 

This appendix will mainly cover topics related to the gathering and description of data, called  
descriptive statistics.    It is closely related to probability theory in that the probability model that one  
develops for the events of a space usually depends on the relative frequencies of such events.    The  
topics of inferential statistics, such as estimation and testing hypothesis, lie beyond the scope of this  
appendix and text.

The numerical data x
1
, x

2
, … one might wish to describe could consist of either the full possible set of 

observations (the population) or a sample drawn at random from that population.    For example, in a study of 
blood pressure in a city, we might measure the blood pressure of every person in the city or we might select 
a random sample of individuals from the city and measure their blood pressure.    Statisticians distinguish 
between the two cases using different notation as follows:

Note that Greek letters are used with the population and are called parameters, whereas Latin letters  
are used with the samples and are called statistics.    The formulas for corresponding parameters and 
statistics are often quite similar. In this appendix, we will focus on the statistics that describe samples and 
only describe how the corresponding population measures are calculated.

APPENDIX A

Descriptive
Statistics

A.2 FREQUENCY TABLES, HISTOGRAMS

One of the first things that one usually does with a large list of numerical data is to collect them
into groups (grouped data). A group, sometimes called a category, refers to the set of numbers all
of which have the same value xi, or to the set (class) of numbers in a given interval where the midpoint
xi of the interval, called the class value, serves as an approximation to the values in the interval. We
assume there are k such groups with fi denoting the number of elements (frequency) in the group with
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value xi or class value xi. Such grouped data yields a table, called a frequency distribution, as
follows:

Value (or class value)

Frequency

x1 x2 x3 · · · xk

f1 f2 f3 · · · fk

Thus, the total number of data items is

n � f1 
 f2 
 · · · 
 fk �� fi

As usual, � will denote a summation over all the values of the index, unless otherwise specified.

Our frequency distribution table usually lists, when applicable, the ends of the class intervals,
called class boundaries or class limits. We assume all intervals have the same length called the class
width. If a data item falls on a class boundary, it is usually assigned to the higher class.

Sometimes the table also lists the cumulative frequency function Fs where Fs is defined by

Fs � f1 
 f2 
 · · · 
 fs � �
i�s

fi

That is, Fs is the sum of the frequencies up to fs. Thus, Fk � n, the number of data items.

The number k of groups that we decide to use to collect our data should not be too small or too
large. If it is too small, then we will lose much of the information of the given data; if it is too large,
then we will lose the purpose of grouping the data. The rule of thumb is that k should lie between
5 and 12. We illustrate the above with two examples. Note that any such frequency distribution can
then be pictured as a histogram or frequency polygon.

EXAMPLE A.1 Suppose an apartment house has n � 45 apartments, with the following numbers of tenants:

2, 1, 3, 5, 2, 2, 2, 1, 4, 2, 6, 2, 4, 3, 1

2, 4, 3, 1, 4, 4, 2, 4, 4, 2, 2, 3, 1, 4, 2

3, 1, 5, 2, 4, 1, 3, 2, 4, 4, 2, 5, 1, 3, 4

Observe that the only numbers which appear in the list are 1, 2, 3, 4, 5, and 6. The frequency distribution,
including the cumulative frequency distribution, follows:

Number of people

Frequency

Cumulative frequency

1 2 3 4 5 6

8 14 7 12 3 1

8 22 29 41 44 45

The sum of the frequencies is n � 45, which is also the last entry in the cumulative frequency row.

Figure A-1 shows the histogram corresponding to the above frequency distribution. The
histogram is simply a bar graph where the height of the bar is the frequency of the given number in
the list. Similarly, the cumulative frequency distribution could be presented as a histogram; the
heights of the bars would be 8, 22, 29, . . ., 45.
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EXAMPLE A.2 Suppose the 6:00 p.m. temperatures (in degrees Fahrenheit) for a 35-day period are as
follows:

72.4, 78.2, 86.7, 93.4, 106.1, 107.6, 98.2, 92.0, 81.4, 77.2

87.9, 82.4, 91.6, 95.0, 92.1, 83.9, 76.4, 78.4, 73.2, 81.4

86.2, 92.4, 93.6, 84.8, 107.5, 99.2, 94.7, 86.1, 81.0, 77.7

73.5, 76.0, 80.2, 88.8, 91.3

In this instance, rather than find the frequency of specific temperature, it makes more sense to use classes of
temperatures with a width of 5 degrees. This yields the following histogram (note that 95.0 is assigned to the
95 to 100 class):

Class boundaries

Class value
Frequency
Cumulative frequency

70–75

72.5
3
3

75–80

77.5
6
9

80–85

82.5
7

16

85–90

87.5
5

21

90–95

92.5
8

29

95–100

97.5
3

32

100–105

102.5
0

32

105–110

107.5
3

35

The class width for this distribution is w � 5. The sum of the frequencies is n � 35; it is also the last entry in the
cumulative frequency row.

Figure A-2 shows the histogram corresponding to the above frequency distribution. It also shows
the frequency polygon of the data, which is the line graph obtained by connecting the midpoints of the
tops of the rectangles in the histogram. Observe that the line graph is extended to the class value 67.5
on the left and to 112.5 on the right. In such a case, the sum of the areas of the rectangles equals the
area bounded by the frequency polygon and the x axis.

A.3 MEASURES OF CENTRAL TENDENCY; MEAN AND MEDIAN

There are various ways of giving an overview of data. One way is by graphical descriptions such
as the frequency histogram or the frequency polygon discussed above. Another way is to use certain
numerical descriptions of the data. Numbers, such as the mean and median, give, in some sense, the
central or middle values of the data. The central tendency of our data is discussed in this section.
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The next section discusses other numbers, the variance and standard deviation, which measure the
dispersion or spread of the data about the mean, and the quartiles, which measure the dispersion or
spread of the data about the median.

Many formulas will be designated as (a) or (b) where (a) indicates ungrouped data and (b)
indicates grouped data. Unless otherwise stated, we assume that our data come from a random
sample of a (larger) population. Separate formulas are given for data which come from the total
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When we are analyzing grouped data, we calculate the mean of the midpoints m
1
, m

2
, . . ., m

k
 of k classes 

where we have f
1
, f

2
, . . .,  f

k
 observations in each class, respectively. This mean will still be denoted x– and 

is defined as

Mean (Arithmetic Mean)

The arithmetic mean or simply mean of a sample x1, x2, . . ., xn of n numerical values, denoted by
x̄ (read: x-bar), is the sum of the values divided by the number of values. That is,

Sample mean: x̄ �
x1 
 x2 
 · · · 
 xn

n
�

� xi

n
(A-1a)

EXAMPLE A.3

(a) Consider the data in Example A.1. Using the frequency distribution, rather than adding up the 45 numbers,
we obtain the mean as follows:

x̄ �
8(1) 
 14(2) 
 7(3) 
 12(4) 
 3(5) 
 1(6)

45
�

126
45

� 2.8

In other words, there is an average of 2.8 people living in an apartment.

(b) Consider the data in Example A.2. Using the frequency distribution with class values, rather than the exact
35 numbers, we obtain the mean as follows:

x̄ �
3(72.5) 
 6(77.5) 
 7(82.5) 
 5(87.5) 
 8(92.5) 
 3(97.5) 
 0(102.5) 
 3(107.5)

35

�
3052.5

35
� 87.2

That is, the average 6:00 p.m. temperature is approximately 87.2�F.

Median

Suppose a list x1, x2, . . ., xn of n data values is sorted in increasing order. The median of the data,
denoted by

x̃ (read: x-tilda)

is defined to be the midvalue (if n is odd) or the average of the two middle values (if n is
even). That is,

Median: x̃ � 

xk
1

xk 
 xk
1

2

when n is odd and n � 2k 
 1

when n is even and n � 2k
(A-2)

Note that x̃ is the average of the (n/2)th and [(n/2) 
 1]th terms when n is even.

Sample mean: x̄ �
f1 x1 
 f2 x2 
 · · · 
 fk xk

f1 
 f2 
 · · · 
 fk
�

� fi xi

� fi
(A-1b)

The mean x̄ is frequently called the average value.

1 1 2 2

1 2

=
+ + +

+ + +
=

∑

∑
x

f m f m f m

f f f

f m

f
k k

k
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Suppose, for example, the following two lists of sorted numbers are given:

List A: 3, 3, 5, 7, 8

List B: 1, 2, 5, 5, 7, 8, 8, 9

List A has 5 terms; hence the middle term is the third term. Thus, its median x̃ � 5. List B has 8
terms; hence there are two middle terms, the fourth term 5 and the fifth term 7. Thus, its median
x̃ � 6, the average of the two middle terms.

The cumulative frequency distribution can be used to find the median of an arbitrary set
of data.

One property of the median x̃ is that there are just as many numbers less than x̃ as there are
greater than x̃.

Suppose the data are grouped. The cumulative frequency distribution can be used to find the
class with the median. Then the class value is sometimes used as an approximation to the median or,
for a better approximation, one can linearly interpolate in the class to find an approximation to the
median.

EXAMPLE A.4

(a) Consider the data in Example A.1 which gives the number of tenants in 45 apartments. Here n � 45; hence
the median x̃ is the twenty-third value. The cumulative frequency row tells us that x̃ � 3.

(b) Consider the data in Example A.2 which gives the 6:00 p.m. temperatures for a 35-day period. The median
is the eighteenth value, and its exact value can be found by using the original data before they are grouped
into classes. Using the grouped data, we can find an approximation to the median in two ways. Note, first,
using the cumulative frequency row, that the median is the second value in the group 85–90 which has five
values. Thus:

(i) Simply let x̃ � 87.5, the class value of the group.

(ii) Linearly interpolate in the class to obtain

x̃ � 85 
 2–
5(5) � 87.0

Clearly (ii) will usually give a better approximation to the median.

Midrange

The midrange of a sorted sample x1, x2, . . ., xn is the average of the smallest value x1 and the largest
value xn. That is,

Midrange: mid �
x1 
 xn

2
(A-3)
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If the data are grouped, the midrange of the grouped data would be the average of the largest and smallest 
class midpoints. (We could also find the midrange of the underlying data, of course.)

For the data in Example A.2, x1 � 72.5 and xn � 107.5. Thus

mid �
72.5 
 107.5

2
� 90.0



List B: x̄ �

Additional Measurements

(1) Weighted Mean (Weighted Arithmetic Mean): Suppose each value xi is associated with a
nonnegative weighting factor wi. Then the weighted mean is defined as follows:
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Please be aware that in many settings the number of observations in each sample will be the same, 
and the grand mean will not have to be weighted by the number of observations.    It would then be 
equal to the simple average of all the means.    This distinction is (unfortunately) overlooked in many 
discussions of the grand mean.

Although both lists have the same first and last elements, the values in list A are clustered more closely
about the mean than the values in list B. This section will discuss important ways of measuring such
dispersions of data.

Grand mean: x̄̄ �
� ni x̄i

� ni
�

n1 x̄1 
 n2 x̄2 
 · · · 
 nk x̄k

n1 
 n2 
 · · · 
 nk
(A-5)

Here � wi is the total weight. Note that Formula (A-1b) is a special case of Formula (A-3) where
the weight of xi is its frequency.

(2) Grand Mean: Suppose there are k samples and the ith sample has mean x̄i and ni ele-
ments. Then the grand mean, denoted by x̄̄ (read: x-double bar) is defined as follows:

Weighted mean: x̄ �
� wi xi

� wi
�

w1 x1 
 w2 x2 
 · · · 
 wk xk

w1 
 w2 
 · · · 
 wk
(A-4)

A.4 MEASURES OF DISPERSION: VARIANCE AND STANDARD DEVIATION

Consider the following two samples of n � 7 numerical values:

List A: 7, 9, 9, 10, 10, 11, 14

List B: 7, 7, 8, 10, 11, 13, 14

Observe that the median (middle value) of each list is x̃ � 10. Furthermore, the following shows that
both lists have the same mean x̄ � 10:

List A: x̄ �

x–
B

x–
A �

7 
 9 
 9 
 10 
 10 
 11 
 14
7

�
70
7

� 10

�
7 
 7 
 8 
 10 
 11 
 13 
 14

7
�

70
7

� 10

Population Mean

Suppose x1, x2, . . ., xN are the N numerical values of some population. The formula for the
population mean, denoted by the Greek letter � (read: mu), follows:

Population mean: � �
x1 
 x2 
 · · · 
 xN

N
�

� xi

N



Sample variance: s2 �
f1(x1 � x̄)2 
 f2(x2 � x̄)2 
 · · · 
 fk(xk � x̄)2

f1 
 f2 
 · · · 
 fk � 1
�

� fi(xi � x̄)2

� fi � 1
(A-6b)

The nonnegative square root of the sample variance s2, denoted by s, is called the sample standard
deviation. That is,

Sample standard deviation: s � �s2 (A-7)

( ) ( ) ( )

1

( )

1

1 1
2

2 2
2 2

1 2

2− + − + + −
+ + + −

=
−
−
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∑

f m x f m x f m x

f f f

f m x

f
k k

k
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( )
The data in most applications and examples will come from some sample; hence we may simply

say variance and standard deviation, omitting the adjective ‘‘sample’’.
Since each squared deviation is nonnegative, so is the variance s2. Moreover, s2 is zero precisely

when all the data values are all equal (and, therefore, are all equal to the mean x̄). Accordingly, if
the data are more spread out, then the variance s2 and the standard deviation s will be larger.

One advantage of the use of the standard deviation s over the variance s2 is that the standard
deviation s will have the same units as the original data.

EXAMPLE A.5 Consider the lists A and B above.

(a) List A has a mean x̄ � 10. The following are the deviations of the 7 data values:

7 � 10 � �3, 9 � 10 � �1, 9 � 10 � �1, 10 � 10 � 0, 10 � 10 � 0, 11 � 10 � 1, 14 � 10 � 4

The squares of the deviations are as follows:

(�3)2 � 9, (�1)2 � 1, (�1)2 � 1, 02 � 0, 02 � 0, 12 � 1, 42 � 16

Also, n � 1 � 7 � 1 � 6. Therefore, the sample variance s2 and standard deviation s are derived as
follows:

s2 �
9 
 1 
 1 
 0 
 0 
 1 
 16

6
�

28
6

� 4.67

and s � �4.67 � 2.16

(b) List B also has a mean x̄ � 10. The deviations of the data and their squares follow:

(�3)2 � 9, (�3)2 � 9, (�2)2 � 4, 02 � 0, 12 � 1, 32 � 9, 42 � 16

Again, n � 1 � 6. Accordingly, the sample variance s2 and standard deviation s are derived as follows:

s2 �
9 
 9 
 4 
 0 
 1 
 9 
 16

6
�

48
6

� 8

and s � �8 � 2.83

Note that list B, which exhibits more dispersion than A, has a larger variance and standard deviation than
list A.

Variance and Standard Deviation

Consider a sample of values x1, x2, . . ., xn, and suppose x̄ is the mean of a sample. The difference
xi � x̄ is called the deviation of the data value xi from the mean x̄; it is positive or negative accordingly
as xi is greater or less than x̄. The sample variance, denoted by s2, is defined as the sum of the squares
of the deviations divided by n � 1. Namely,

Sample variance: s2 �
(x1 � x̄)2 
 (x2 � x̄)2 
 · · · 
 (xn � x̄)2

n � 1
�

�(xi � x̄)2

n � 1
(A-6a)
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Sample variance: s2 �
� fi xi

2 � (� fi xi)2/� fi

� fi � 1
(A-8b)

g ( )
Although Formulas (A-8a) and (A-8b) may look more complicated than Formulas (A-6a) and

(A-6b), they are usually more convenient to use. In particular, these formulas only use one
subtraction in the numerator, and they can be used without first calculating the sample mean x̄.

EXAMPLE A.6 Consider the following n � 9 data values:

3, 5, 8, 9, 10, 12, 13, 15, 20

Find: (a) mean x̄, (b) variance s2 and standard deviation s.
First construct the following table where the two numbers on the right, 95 and 1217, denote the sums � xi and

� xi
2, respectively:

xi

xi
2

3 5 8 9 10 12 13 15 20
9 25 64 81 100 144 169 225 400

95
1217

(It is currently common practice and notationally convenient to write numbers and their sum horizontally rather
than vertically.)

(a) By Formula (A-1a), where n � 9,

x̄ � (� xi)/n � 95/9 � 10.56

(b) Here we use Formula (A-8a) with n � 9 and n � 1 � 8:

s2 �
1217 � (95)2/9

8
�

1217 � 1002.78
8

� 26.78

Then s � �26.78 � 5.17

Note that if we used Formula (A-6a), we would need to subtract x � 10.56 from each xi before squaring.

EXAMPLE A.7 Consider the data in Example A.1 which gives the number of tenants in 45 apartments. The
sample mean x̄ � 2.8 was obtained in Example A.3. Find the sample variance s2 and the sample standard
deviation s.

First extend the frequency distribution table of the data as follows (where SUM refers to � fi, � fi xi, and
� fi xi

2):

Number of people xi

Frequency fi

fi xi

xi
2

fi xi
2

1 2 3 4 5 6

8 14 7 12 3 1
8 28 21 48 15 6
1 4 9 16 25 36
8 56 63 192 75 36

SUM

45
126

430

( )Σ − Σ /Σ
Σ −1

2 2f m f m f

f
i i i i i

i

Alternate Formulas for Sample Variance

Alternate formulas for the sample variance, that is, which are equivalent to Formulas (A-6a) and
(A-6b) are as follows:

Sample variance: s2 �
� xi

2 � (� xi)2/n
n � 1

(A-8a)
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Then s2 �
430 � (126)2/45

44
� 1.75 and s � 1.32

Note that n � 45 and n � 1 � 44.

Measures of Position: Quartiles and Five-Number Summary

Consider a set of n data values x1, x2, . . ., xn which are arranged in increasing order. Recall that
the median M � x̃ of the data values has been defined as a number for which, at most, half of the values
are less than M and, at most, half of the numbers are greater than M. Here ‘‘half’’ means n/2 when
n is even and (n � 1)/2 when n is odd. Specifically

Median M � 

xk 
 xk
1

2
xk
1

when n is even and n � 2k

when n is odd and n � 2k 
 1

The first, second, and third quartiles, Q1, Q2, Q3, are defined as follows:

Q1 � median of the first half of the values

Q2 � M � median of all the values

Q3 � median of the second half of the values

The 5-number summary of the data is the following quintuple:

[L, Q1, M, Q3, H]

where L � x1 is the lowest value, Q1, M � Q2, Q3, are the quartiles, and H � xn is the highest value.
The range of the above data is the distance between the lowest and highest value, and the

interquartile range (IQR) is the distance between the first and third quartiles; namely,

range � H � L and IQR � Q3 � Q1

Observe that

Range Interval: [L, H] contains 100 percent of the data values.

IQR Interval: [Q1, Q3] contains about 50 percent of the data values.

Also, observe that the 5-number summary [L, Q1, M, Q3, H] or, equivalently, the 4 intervals,

[L, Q1], [Q1, M], [M, Q3], [Q3, H]

divide the data into 4 sets where each set contains about 25 percent of the data values.

EXAMPLE A.8 Consider the following two lists of n � 7 numerical values:

List A: 7, 9, 9, 10, 10, 11, 14

List B: 7, 7, 8, 10, 11, 13, 14

The median of both lists is the fourth value M � 10. Find the quartiles Q1 and Q3, the 5-number summary
[L, Q1, M, Q3, H], and the range and interquartile range (IQR) of each list. Compare the range and IQR of
both lists.

(a) The median M � 10 of list A divides the set into the first half {7, 9, 9} and the second half {10, 11, 14}. Hence
Q1 � 9 and Q3 � 11. Also, L � 7 is the lowest value and H � 14 is the highest value. Thus, the 5-number
summary of list A follows:

[L, Q1, M, Q3, H] � [7, 9, 10, 11, 14]

Furthermore

range � H � L � 14 � 7 � 7 and IQR � Q3 � Q1 � 11 � 9 � 2
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(b) The median M � 10 of list B divides the set into the first half {7, 7, 8} and the second half {11, 13, 14}. Hence
Q1 � 7 and Q3 � 13. Also, L � 7 is the lowest value and H � 14 is the highest value. Thus, the 5-number
summary of list B is as follows:

[L, Q1, M, Q3, H] � [7, 7, 10, 13, 14]

Furthermore range � 14 � 7 � 7 and IQR � 13 � 7 � 6

Although list B exhibits more dispersion than list A, the ranges of both lists are the same. However, the IQR � 6
of list B is much larger than the IQR � 2 of list A. Generally speaking, the IQR usually gives a more accurate
description of the dispersion of a list than the range since the range may be strongly influenced by a single small
or large value.

EXAMPLE A.9 Consider the following list of n � 30 numerical values:

4 5 5 7 8 8 9 10 10 11 11 11 12 12 12

13 13 14 14 14 15 16 16 18 18 19 19 20 22 25

Find the median M, the quartiles Q1 and Q3, the 5-number summary [L, Q1, M, Q3, H], and the range and
interquartile range (IQR) of the data.

Here n � 30 is even, so the median M is the average of the fifteenth and sixteenth values. Thus

M �
12 
 13

2
� 12.5

The first quartile Q1 is the mean of the first half (first 15) numbers, so Q1 � 10, the eighth number of the first half
sublist. The third quartile Q3 is the mean of the second half (second 15) numbers, so Q3 � 16, the eighth number
of the second half sublist. Here, L � 4 and H � 25, so the 5-number summary follows:

[L, Q1, M, Q3, H] � [4, 10, 12.5, 16, 25]

Furthermore: range � H � L � 25 � 4 � 21 and IQR � Q3 � Q1 � 16 � 10 � 6

A.5 BIVARIATE DATA, SCATTERPLOTS, CORRELATION COEFFICIENTS

Quite often in statistics it is desired to determine the relationship, if any, between two variables,
such as between age and weight, weight and height, years of education and salary, amount of daily
exercise and cholesterol level, and so on. Letting x and y denote the two variables, the data will
consist of a list of pairs of numerical values

(x1, y1), (x2, y2), (x3, y3), . . ., (xn, yn)

where the first values correspond to the variable x and the second values correspond to y.
As with a single variable, we can describe such bivariate data both graphically and numeri-

cally. Our primary concern is to determine whether there is a mathematical relationship, such as a
linear relationship, between the data.

It should be kept in mind that a statistical relationship between two variables does not necessarily
imply there is a causal relationship between them. For example, a strong relationship between weight
and height does not imply that one variable causes the other. On the other hand, eating more does
usually increase the weight of a person but it does not usually mean there will be an increase in the
height of the person.

Scatterplots

Consider a list of pairs of numerical values representing variables x and y. The scatterplot of the
data is simply a picture of the pairs of values as points in a coordinate plane R2. The picture
sometimes indicates a relationship between the points as illustrated in the following examples.
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EXAMPLE A.10

(a) Consider the following data where x denotes the ages of 6 children and y denotes the corresponding number
of correct answers in a 10-question test:

x 5 6 6 7 7 8

y 6 6 7 8 9 9

The scatterplot of the data appears in Fig. A-3(a). The picture of the points indicates, roughly speaking, that
the number of correct answers increases as the age increases. We then say that x and y have a positive
correlation.

(b) Consider the following data where x denotes the average daily temperature, in degrees Fahrenheit, and y
denotes the corresponding daily natural gas consumption, in cubic feet:

x

y

50

2.5

45

5.0

40

6.2

38

7.4

32

8.3

40

4.7

55

1.8

The scatterplot of the data appears in Fig. A-3(b). The picture of the points indicates, roughly speaking,
that the gas consumption decreases as the temperature increases. We then say that x and y have a negative
correlation.

(c) Consider the following data where x denotes the average daily temperature, in degrees Fahrenheit, over a
6-day period and y denotes the corresponding number of defective traffic lights:

x

y

72

4

78

5

75

5

74

2

78

2

76

3

The scatterplot of the data appears in Fig. A-3(c). The picture of the points indicates that there is no
apparent relationship between x and y.
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Correlation Coefficient

Scatterplots indicate graphically whether there is a linear relationship between two variables x and
y. A numeric indicator of such a linear relationship is the sample correlation coefficient r of x and y,
which is defined as follows:

Sample correlation coefficient: r �
�(xi � x̄)(yi � ȳ)

��(xi � x̄)2 �(yi � ȳ)2
(A-9)

We assume the denominator in Formula (A-9) is not zero. It can be shown that the correlation
coefficient r has the following properties:

(1) �1 � r � 1.

(2) r � 0 if y tends to increase as x increases and r � 0 if y tends to decrease as x increases.

(3) The stronger the linear relationship between x and y, the closer r is to �1 or 1; the weaker the
linear relationship between x and y, the closer r is to 0.

An alternate formula for computing r is given below; we then illustrate the above properties of r with
examples.

Another numerical measurement of bivariate data with variables x and y is the sample covariance
which is denoted and defined as follows:

Sample covariance of x and y: sxy �
�(xi � x̄)(yi � ȳ)

n � 1
(A-10)

Formula (A-9) can now be written in the more compact form as

Sample correlation coefficient: r �
sxy

sx sy

where sx and sy are the sample standard deviations of x and y, respectively, and sxy is the sample
covariance of x and y defined above.

An alternate formula for computing the correlation coefficient r follows:

r �
�xi yi � (� xi)(� yi)/n

�� xi
2 � (� xi)2/n �� yi

2 � (� yi)2/n
(A-11)

This formula is very convenient to use after forming a table with the values of xi, yi, xi
2, yi

2, xi yi, and
their sums, as illustrated below.

EXAMPLE A.11 Find the correlation coefficient r for each data set in Example A.10.

(a) Construct the following table which gives the x, y, x2, y2, and xy values, and the last column gives the
corresponding sums:

x

y

x2

y2

xy

5
6

25
36
30

6
6

36
36
36

6
7

36
49
42

7
8

49
64
56

7
9

49
81
63

8
9

64
81
72

39
45

259
347
299

Now use Formula (A-11) and the number of points is n � 6 to obtain

r �
299 � (39)(45)/6

�259 � (39)2/6 �347 � (45)2/6
�

6.50

�5.50 �9.50
� 0.899
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Here r is close to 1, which is expected since the scatterplot in Fig. A-3(a) indicates a strong positive linear
relationship between x and y.

(b) Construct the following table which gives the x, y, x2, y2 and xy values, and the last column gives the
corresponding sums:

x

y

x2

y2

xy

50
2.5

2,500
6.25

125.0

45
5.0

2,025
25.00
225.0

40
6.2

1,600
38.44
248.0

38
7.4

1,444
54.76
281.2

32
8.3

1,024
68.89
265.6

40
4.7

1,600
22.09
188.0

55
1.8

3,025
3.24
99.0

300
35.9

13,218
218.67
1,431.8

Formula (A-11), with n � 7, yields

r �
1431.8 � (300)(35.9)/7

�13,218 � (300)2/7 �218.67 � (35.9)2/7
�

�106.77

�360.86 �34.554
� �0.956 2

Here r is close to �1, and the scatterplot in Fig. A-3(b) indicates a strong negative linear relationship
between x and y.

(c) Construct the following table which gives the x, y, x2, y2, and xy values, and the last column gives the
corresponding sums:

x

y

x2

y2

xy

72
4

5,184
16

288

78
5

6,084
25

390

75
5

5,625
25

375

74
2

5,476
4

148

78
2

6,084
4

156

76
3

5,776
9

228

453
21

34,229
83

1,585

Formula (A-11), with n � 6, yields

r �
1585 � (453)(21)/6

�34,229 � (453)2/6 �83 � (21)2/6
�

�0.500

�27.50 �9.5
� �0.031

Here r is close to 0, which is expected since the scatterplot in Fig. A-3(c) indicates no linear relationship
between x and y.

A.6 METHODS OF LEAST SQUARES, REGRESSION LINE, CURVE FITTING

Suppose a scatterplot of the data points (xi, yi) indicates a linear relationship between variables x
and y or, alternately, suppose the correlation coefficient r of x and y is close to 1 or �1. Then the next
step is to find a line L that, in some sense, fits the data. The line L we choose is called the least-squares
line. This section discusses this line, and then we discuss more general types of curve fitting.

Least-Squares Line

Consider a given set of data points Pi(xi, yi) and any (nonvertical) linear equation L. Let yi
*

denote the y value of the point on L corresponding to xi. Furthermore, let di � yi � yi
*, the difference

between the actual value of y and the value of y on the curve or, in other words, the vertical (directed)
distance between the point Pi and the line L, as shown in Fig. A-4. The sum

� di
2 � d 1

2 
 d 2
2 
 · · · 
 dn

2

is called the squares error between the line L and the data points.
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The least-squares line or the line of best fit or the regression line of y on x is, by definition, the line
L whose squares error is as small as possible. It can be shown that such a line L exists and is
unique. Let a denote the y intercept of the line L and let b denote its slope, that is, suppose the
following is the equation of the line L:

y � a 
 bx

Then a and b can be obtained from the following two equations, called the normal equations, in the
two unknowns a and b where n is the number of points:

Normal equations: 
 na 
 (� xi)b � � yi

(� xi)a 
 (� xi
2)b � � xi yi

(A-12)

In particular, the slope b and y intercept a can also be obtained from the following formula (where r
is the correlation coefficient):

b �
rsy

sx
and a � ȳ � bx̄ (A-13)

Formula (A-13) is usually used instead of Formula (A-12) when one needs, or has already found, the
means x̄ and ȳ, the standard deviations sx and sy, and the correlation r of the given data points.

Graphing the line L of best fit requires at least two points on L. The second equation in Formula
(A-13) tells us that (x̄, ȳ) lies on the regression line L since

ȳ � (ȳ � bx̄) 
 bx̄ � a 
 bx̄

also, the first equation in Formula (A-13) then tells us that the point (x 
 sx, y 
 rsy) is also on L.
These points are also pictured in Fig. A-5.

Remark: Recall that the above line L which minimizes the squares of the vertical distances
from the given points Pi to L is called the regression line of y on x; it is usually used when one
views y as a function of x. A line L� also exists which minimizes the squares of the horizontal
distances of the points Pi from L�; it is called the regression line of x on y. Given any two variables,
the data usually indicate that one of them depends upon the other; we then let x denote the
independent variable and let y denote the dependent variable. For example, suppose the variables
are age and height. We normally assume height is a function of age, so we would let x denote age
and y denote height. Accordingly, unless otherwise stated, our least-squares lines will be regression
lines of y on x.
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EXAMPLE A.12 Find the line L of best fit for the first two scatterplots in Fig. A-3.

(a) By the table in Example A.11(a),

� xi � 39 � yi � 45 � xi
2 � 259 � xi yi � 299

Also, there are n � 6 points. Substitution in the normal equations in Formula (A-12) yields the following
system:

6a 
 39b � 45

39a 
 259b � 299

The solution of the system follows:

a � �
2
11

� �0.18 b �
13
11

� 1.18

Thus, the following is the line L of best fit.

y � �0.18 
 1.18x

To graph L, we need only plot two points on L and then draw the line through these points. Setting x � 5
and x � 8, we obtain the two points:

A(5, 5.7) and B(8, 9.3)

and then we draw L, as shown in Fig. A-6(a).

(b) Here we use Formula (A-13) rather than Formula (A-12). By Example A.11(b), with n � 7, we obtain

r � �0.956 2 x̄ � 300/7 � 42.86 ȳ � 35.9/7 � 5.129

Using Formulas (A-8) and (A-9), we obtain

sx � �13,218 � (300)2/7
6

� 7.755 2 and sy � �218.67 � (35.9)2/7
6

� 2.399 8
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Substituting these values in Formula (A-12), we get

b �
(�0.956 2)(2.399 8)

7.755 2
� �0.295 9 and a � 5.128 6 � (�0.295 9)(42.857) � 17.810

Thus, the line L of best fit follows:

y � 17.810 � 0.295 9x

The graph of L, obtained by plotting (30, 8.933) and (42.857 1, 5.128 6) (approximately) and drawing the line
through these points, is shown in Fig. A-6(b).

Curve Fitting

Sometimes the scatterplot does not indicate a linear relationship between the variables x and y,
but one may visualize some other standard (well-known) curve, y � f(x), which may approximate the
data, called an approximate curve. Several such standard curves, where letters other than x and y
denote constants, follow:

(1) Parabolic curve: y � a0 
 a1 x 
 a2 x2

(2) Cubic curve: y � a0 
 a1 x 
 a2 x2 
 a3 x3

(3) Hyperbolic curve: y �
1

a 
 bx
or

1
y

� a 
 bx

(4) Exponential curve: y � abx or log y � a0 
 a1 x

(5) Geometric curve: y � axb or log y � log a 
 b log x

(6) Modified exponential curve: y � abx 
 c

(7) Modified geometrical curve: y � axb 
 c

Pictures of some of these standard curves appear in Fig. A-7.

Generally speaking, it is not easy to decide which curve to use for a given set of data points. On
the other hand, it is usually easier to determine a linear relationship by looking at the scatterplot or
by using the correlation coefficient. Thus, it is standard procedure to find the scatterplot of
transformed data. Specifically:

(a) If log y versus x indicates a linear relationship, use the exponential curve (type 4).

(b) If 1/y versus x indicates a linear relationship, use the hyperbolic curve (type 3).

(c) If log y versus log x indicates a linear relationship, use the geometric curve (type 5).

Once one decides upon the type of curve to be used, then that particular curve is the one that
minimizes the squares error. We state this formally:
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Definition: Consider a collection of curves and a given set of data points. The best-fitting or
least-squares curve C in the collection is the curve which minimizes the sum

� di
2 � d1

2 
 d2
2 
 · · · 
 dn

2

(where di denotes the vertical distance from a data point Pi(xi, yi) to the curve C).

Just as there are formulas to compute the constants a and b in the regression line L for a set of
data points, so there are formulas to compute the constants in the best-fitting curve C in any of the
above types (collections) of curves. The derivation of such formulas usually involves calculus.

EXAMPLE A.13 Consider the following data which indicates exponential growth:

x

y

1

6

2

18

3

55

4

160

5

485

6

1460

Find the least-squares exponential curve C for the data, and plot the data points and C on the plane R2.

The curve C has the form y � abx where a and b are unknowns. The logarithm (to base 10) of y � abx

yields

log y � log a 
 x log b � a� 
 b�x

where a� � log a and b� � log b. Thus, we seek the least-squares line L for the following data:

x

log y

1

0.7782

2

1.2553

3

1.7404

4

2.2041

5

2.6857

6

3.1644

Using the normal equations in Formula (A-12) for L, we get

a� � 0.3028 b� � 0.4767

These values, in turn, imply (approximately) that

a � 2.0 b � 3.0

Thus, y � 2(3x) is the required exponential curve C. The data points and C are plotted in Fig. A-8.
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Solved Problems

FREQUENCY DISTRIBUTION, MEAN AND MEDIAN

A.1. Consider the following frequency distribution which gives the number f of students who got x
correct answers on a 20-question exam:

x (correct answers)

f (number of students)

9 10 12 13 14 15 16 17 18 19 20

1 2 1 2 7 2 1 7 2 6 4

(a) Display the data in a histogram and a frequency polygon.

(b) Find the mean x̄, median M, and midrange of the data.

(a) The histogram appears in Fig. A-9. The frequency polygon also appears in Fig. A-9; it is obtained
from the histogram by connecting the midpoints of the tops of the rectangle in the histogram.

(b) First we extend our frequency table to include the cumulative distribution function cf, the products
fi i, and the sums � fi and � fi i as follows:

f

cf

f

9

1
1
9

10

2
3

20

12

1
4

12

13

2
6

26

14

7
13
98

15

2
15
30

16

1
16
16

17

7
23

119

18

2
25
36

19

6
31

114

20

4
35
80

35

560

Here we use Formula (A-1b) which gives the mean x̄ for grouped data:

x̄ �
� fi i

� fi

�
560
35

� 16
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There are n � 35 scores, so the mean M is the eighteenth score. The row cf in the table tells us that
16 is the sixteenth score, and 17 is the seventeenth to twenty-third scores. Hence the mean

M � 17, the eighteenth score

The midrange is the average of the first score 9 and the last score 20; hence:

mid �
9 
 20

2
� 14.5

A.2. Consider the following n � 20 data items:

3 5 3 4 4 7 6 5 2 4

2 5 5 6 4 3 5 4 5 5

(a) Construct the frequency distribution f and cumulative distribution cf of the data, and
display the data in a histogram.

(b) Find the mean x̄, median M, and midrange of the data.

(a) Construct the following frequency distribution table which also includes the products fi xi and the
sums � fi and � xi fi:

x

f

cf

fx

2

2
2
4

3

3
5
9

4

5
10
20

5

7
17
35

6

2
19
12

7

1
20
7

20

87

Note that the first line of the table consists of the range of numbers, from 2 to 7. The second line
(frequency) can be obtained by either counting the number of times each number occurs or by going
through the list one number after another and keeping a tally count, a running account as each
number occurs. The histogram is shown in Fig. A-10(a).

(b) Here we use Formula (A-1b) which gives the mean x̄ for grouped data:

x̄ �
� fi xi

� fi

�
87
20

� 4.7
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There are n � 20 numbers, so the mean M is the average of the tenth and eleventh numbers. The
row cf in the table tells us that 4 is the tenth number and 5 is the eleventh number. Hence

M �
4 
 5

2
� 4.5

The midrange is the average of the first number 2 and the last number 7; hence

mid �
2 
 7

2
� 4.5

A.3. Consider the following n � 20 scores on a statistic exam:

74 80 65 85 95 72 76 72 93 84

75 75 60 74 75 63 78 87 90 70

(a) Construct the frequency distribution f table where the data are grouped into four
classes:

60–70, 70–80, 80–90, 90–100

The table should include the midpoints of the classes mi and the cumulative distribution
cf of the data. (Recall that if a number falls on a class boundary, it is assigned to the
higher class.) Also, display the data in a histogram.

(b) Find the mean x̄, median M, and midrange of the data.

(a) Construct the following frequency distribution table which also includes the products fi xi and the
sums � fi and � xi fi:

Class
i

f

cf

f i

60–70
65

3
3

195

70–80
75

10
13

750

80–90
85

4
17

340

90–100
95

3
20

285

20

1570

The histogram is shown in Fig. A-10(b).

(b) Using the class values i, Formula (A-1b) yields

x̄ �
� fi i

� fi

�
1570
20

� 78.5

There are n � 20 numbers, so the mean M is the average of the tenth and eleventh class scores which
we approximate using their class values. The row cf in the table tells us that 75 is the approximation
of the tenth and eleventh scores. Thus

M � 75

The midrange is the average of the first class value 65 and the last class value 95; hence

mid �
65 
 95

2
� 80

A.4. The yearly rainfall, measured to the nearest tenth of a centimeter, for a 30-year period
follows:

42.3 35.7 47.5 31.2 28.3 37.0 41.3 32.4 41.3 29.3

34.3 35.2 43.0 36.3 35.7 41.5 43.2 30.7 38.4 46.5

43.2 31.7 36.8 43.6 45.2 32.8 30.7 36.2 34.7 35.3
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(a) Construct the frequency distribution f table where the data are grouped into 10 classes:

28–30, 30–32, 32–34, . . ., 46–48

The table should include the midpoint of the class values (cv) mi and the cumulative distri-
data.

(b) Find the mean x̄, median M, and midrange of the data.

(a) Construct the following frequency distribution table which also includes the products fi xi and the
sums � fi and � xi fi:

Class
cv i

f

cf

f i

28–30
29

2
2

58

30–32
31

4
6

124

32–34
33

2
8

66

34–36
35

6
14

210

36–38
37

4
18

148

38–40
39

1
19
39

40–42
41

3
22

123

42–44
43

5
27

215

44–46
45

1
28
45

46–48
47

2
30
94

30

1122

(b) Using the class values i, Formula (A-1b) yields

x̄ �
� fi i

� fi

�
1122
30

� 37.4

There are n � 30 numbers, so the mean M is the average of the fifteenth and sixteenth class
values. The row cf in the table tells us that 37 is the fifteenth and sixteenth class value. Thus

M � 37

The midrange is the average of the first class value 29 and the last class value 47; hence

mid �
29 
 47

2
� 39

MEASURES OF DISPERSION: VARIANCE, STANDARD DEVIATION, IQR

A.5. Consider the following n � 10 data values:

1, 2, 2, 3, 4, 5, 7, 8, 9, 9

(a) Find the sample mean x̄.

(b) Find the variance s2 and standard deviation s.

(c) Find the median M, 5-number summary [L, Q1, M, Q2, H], range, and interquartile range
(IQR) of the data.

(a) The mean x̄ is the ‘‘average’’ of the numbers, the sum of the values divided by the number n � 10
of values:

x̄ �
1 
 2 
 2 
 3 
 4 
 5 
 7 
 8 
 9 
 9

10
�

50
10

� 5

(b) Method 1: Here we use Formula (A-6a). We have

s2 �
� (xi � x̄)2

n � 1
�

16 
 9 
 9 
 4 
 1 
 0 
 4 
 9 
 16 
 16
9

�
84
9

� 9.33 and s � �9.33 � 3.05
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Method 2: Here we use Formula (A-8a). First construct the following table where the two
numbers on the right, 50 and 334, denote the sums � xi and � xi

2, respectively:

x

xi
2

1

1

2

4

2

4

3

9

4

16

5

25

7

49

8

64

9

81

9

81

50

334

We have

s2 �
� xi

2 � (� xi)2/n
n � 1

�
334 � (50)2/10

9
�

84
9

� 9.33 and s � �9.33 � 3.05

(c) Here n � 10 is even; hence the median M is the average of the fifth and sixth values. Thus

M �
4 
 5

2
� 4.5

The mean M � 4.5 divides the 10 items into two halves, A � {1, 2, 2, 3, 4} and B � {5, 7, 8, 9, 9}, each
with 5 numbers. The first quartile Q1 is the median (middle element) of the first half A, so Q1 � 2;
the third quartile Q3 is the median (middle number) of the second half B, so Q3 � 8. Here L � 1
is the lowest number and H � 9 is the highest number. Thus, the 5-number summary of the data
follows:

[L, Q1, M, Q2, H] � [1, 2, 4.5, 8, 9]

Furthermore: range � H � L � 9 � 1 � 8 and IQR � Q3 � Q1 � 8 � 2 � 6

A.6. The ages of n � 30 children living in an apartment complex are as follows:

2 3 3 1 2 2 3 4 4 3 2 2 6 2 4

1 2 6 4 2 2 3 7 1 2 3 2 4 2 6

(a) Find the frequency distribution of the data.

(b) Find the sample mean x̄, variance s2, and standard deviation s for the data.

(c) Find the median M, the 5-number summary [L, Q1, M, Q2, H], the range, and the IQR
(interquartile range) of the data.

(a) Construct the following frequency table which also includes the cumulative distribution cf function;
products fi xi, xi

2, fi xi
2; and the sums � fi, � fi xi, and � fi xi

2:

x

f

cf

fx

x2

fx2

1

3
3
3
1
3

2

12
15
24
4

48

3

6
21
18
9

54

4

5
26
20
16
80

5

0
26
0

25
0

6

3
29
18
36

108

7

1
30
7

49
49

30

90

342

(b) We have

x̄ �
� fi xi

� fi

�
90
30

� 3

Also s2 �
� fi xi

2 � (� fi xi)2/n
n � 1

�
342 � (90)2/30

29
�

72
29

� 2.48 and s � �2.48 � 1.58
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(c) Here n � 30 is even; hence the median M is the average of the fifteenth and sixteenth ages. The row
cf in the table tells us that 2 is the fifteenth age and 3 is the sixteenth age. Thus

M �
2 
 3

2
� 2.5

The mean M � 2.5 divides the 30 items into two halves, each with 15 ages. The first quartile Q1 is
the median of the first 15 ages, so Q1 is the eighth age; the third quartile Q3 is the median of the last
15 ages, so Q3 is the twenty-third age. Using the cf row in the table, we obtain

Q1 � 2 and Q3 � 4

Furthermore, L � 1 is the lowest number and H � 7 is the highest number. Thus, the 5-number
summary of the data follows:

[L, Q1, M, Q2, H] � [1, 2, 2.5, 4, 7]

Furthermore: range � H � L � 7 � 1 � 6 and IQR � Q3 � Q1 � 4 � 2 � 2

A.7. Consider the following list of n � 18 data values:

2, 7, 4, 1, 6, 4, 8, 15, 12, 7, 3, 16, 1, 2, 11, 5, 15, 4

(a) Find the median M.

(b) Find the quartiles Q1 and Q3, the 5-number summary [L, Q1, M, Q2, H], the range, and the
IQR (interquartile range) of the data.

(a) First arrange the data in numerical order:

1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, 8, 11, 12, 15, 15, 16

There are n � 18 values, so the median M is the average of the ninth and tenth values. Thus

M �
5 
 6

2
� 5.5

(b) Q1 is the median of the nine values, from 1 to 5, less than M. Thus, Q1 � 3, the fifth value. Q3 is
the median of the nine values, from 6 to 16, greater than M. Thus, Q3 � 11, the fifth value. Also,
L � 1 is the lowest number and H � 16 is the highest number. Thus, the 5-number summary of the
data follows:

[L, Q1, M, Q2, H] � [1, 3, 5.5, 11, 16]

Furthermore: range � H � L � 16 � 1 � 15 and IQR � Q3 � Q1 � 11 � 3 � 8

A.8. Consider the following frequency distribution:

x

f

1

2

2

4

3

6

4

8

5

3

6

2

(a) Find the sample mean x̄, variance s2, and standard deviation s for the data.

(b) Find the median M, the quartiles Q1 and Q3, the 5-number summary [L, Q1, M, Q2, H], the
range, and the IQR (interquartile range) of the data.

267DESCRIPTIVE STATISTICSAPPENDIX A]



(a) Extend the frequency table to include the cumulative distribution cf function; products fi xi, xi
2, fi xi

2;
and the sums � fi, � fi xi, and � fi xi

2 as follows:

x

f

cf

fx

x2

fx2

1

2
2
2
1
2

2

4
6
8
4

16

3

6
12
18
9

54

4

8
20
32
16

128

5

3
23
15
25
75

6

2
25
12
36
72

25

87

347

Therefore x̄ �
� fi xi

� fi

�
87
25

� 3.48

Also s2 �
� fi xi

2 � (� fi xi)2/n
n � 1

�
347 � (87)2/25

24
�

44.24
24

� 1.84 and s � �1.84 � 1.36

(b) Here n � 25 is odd; hence the median M is the thirteenth number. The row cf in the table tells us
that M � 4. The mean M � 4 divides the 25 numbers into two halves, each with 12 numbers. The
first quartile Q1 is the median of the first 12 number, so Q1 is the average of the sixth number 2 and
the seventh number 3. Thus, Q1 � 2.5. The third quartile Q3 is the median of the last 12 numbers,
the fourteenth to twenty-fifth numbers, so Q3 is the average of the nineteenth number 4 and
twentieth number 4. Thus, Q3 � 4. Furthermore, L � 1 is the lowest number and H � 6 is the
highest number. Thus, the 5-number summary of the data is as follows:

[L, Q1, M, Q2, H] � [1, 2.5, 4, 4, 6]

Furthermore: range � H � L � 6 � 1 � 5 and IQR � Q3 � Q1 � 4 � 2.5 � 1.5

MISCELLANEOUS PROBLEMS INVOLVING ONE VARIABLE

A.9. An English class for foreign students consists of 20 French students, 25 Italian students, and 15
Spanish students. On an exam, the French students average 78, the Italian students 75, and the
Spanish students 76. Find the grand mean grade for the class.

Here we use Formula (A-5) for the grand mean (the weighted mean of the means) with

n1 � 20 n2 � 25 n3 � 15 x1 � 78 x2 � 75 x3 � 76

This yields x̄̄ �
� ni x̄i

� ni

�
20(78) 
 25(75) 
 15(76)

20 
 25 
 15
�

4575
60

� 76.25

That is, 76.25 is the mean grade for the class.

A.10. A history class contains 10 freshmen, 15 sophomores, 10 juniors, and 5 seniors. On an exam,
the freshmen average 72, the sophomores 76, the juniors 78, and the seniors 80. Find the grand
mean grade for the class.

Here we use Formula (A-5) for the grand mean with

n1 � 10, n2 � 15, n3 � 10, n4 � 5, x1 � 72, x2 � 76, x3 � 78, x4 � 80

Therefore:

x̄̄ �
� ni x̄i

� ni

�
10(72) 
 15(76) 
 10(78) 
 5(80)

10 
 15 
 10 
 5
�

3040
40

� 76

That is, 76 is the mean grade for the class.
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BIVARIATE DATA

A.11. Consider data sets whose scatterplots appear in Fig. A-11. Estimate the correlation coefficient
r for each data set if the choice is one of �1.5, �0.9, 0.0, 0.9, 1.5.

The correlation coefficient r must lie in the interval [�1, 1]. Moreover, r is close to 1 if the data are
approximately linear with positive slope, r is close to �1 if the data are approximately linear with negative
slope, and r is close to 0 if there is no relationship between the points. Accordingly:

(a) r is close to 1 since there appears to be a strong linear relationship between the points with positive
slope; hence r � 0.9.

(b) r � 0.0 since there appears to be no relationship between the points.

(c) r is close to �1 since there appears to be a strong linear relationship between the points but with
negative slope; hence r � �0.9.

A.12. Consider the following list of data values:

x

y

4

8

2

12

10

4

5

10

8

2

(a) Plot the data in a scatterplot.

(b) Compute the correlation coefficient r.

(c) For the x and y values, find the means x̄ and ȳ, and standard deviations sx and sy.

(d) Find L, the least-squares line y � a 
 bx.

(e) Graph L on the scatterplot in part (a).

(a) The scatterplot (with L) is shown in Fig. A-12(a).

(b) Construct the following table which contains the x, y, x2, y2, and xy values and where the last column
gives the corresponding sums:

x

y

x2

y2

xy

4
8

16
64
32

2
12
4

144
24

10
4

100
16
40

5
10
25

100
50

8
2

64
4

16

29
36

209
328
162

Now use Formula (A-11) and the number of points n � 5 to obtain

r �
162 � [(29)(36)]/5

�209 � (29)2/5 �328 � (36)2/5
�

�46.8

�40.8 �68.8
� �0.883 3
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(The fact that r is close to �1 is expected since the scatterplot indicates a strong linear relationship
with negative slope.)

(c) Use the above table and Formula (A-1a) to obtain

x̄ � � xi/n � 29/5 � 5.8 and ȳ � � yi/n � 36/5 � 7.2

Also, by Formulas (A-8a) and (A-7),

sx � �209 � (29)2/5
4

� 3.194 and sy � �328 � (36)2/5
4

� 4.147

(d) Substitute r, sx, sy into Formula (A-13) to obtain the slope b of the least-squares line L:

b �
rsy

sx

�
(�0.883 3)(4.147)

3.194
� �1.147

Now substitute x̄, ȳ, and b into Formula (A-13) to determine the y intercept a of L:

a � ȳ � bx̄ � 7.2 � (�1.147)(5.8) � 13.85

Hence L is

y � 13.85 � 1.147x

Alternately, we can find a and b using the normal equations in Formula (A-12) with n � 5:

na 
 � xb �

� xa 
 � x2 b �

�y

� xy
or

5a 
 29b � 36
29a 
 209b � 162

(These equations would be used if we did not also want r, x̄ and ȳ, and sx and sy.)

(e) To graph L, we find two points on L and draw the line through them. One of the two points is

(x̄, ȳ) � (5.8, 7.2)

(which always lies on any least-squares line). Another point is (10, 2.4), which is obtained by
substituting x � 10 in the regression equation L and solving for y. The line L appears in the
scatterplot in Fig. A-12(a).
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A.13. Repeat Problem A.12 for the following data:

x

y

1

3

3

4

4

8

7

10

(a) The scatterplot (with L) is shown in Fig. A-12(b).

(b) Construct the following table which contains the x, y, x2, y2, and xy values and where the last column
give the corresponding sums:

x

y

x2

y2

xy

1
3
1
9
3

3
4
9

16
12

4
8

16
64
32

7
10
49

100
70

15
25
75

189
117

Now use Formula (A-11) and the number of points n � 4 to obtain

r �
117 � [(15)(25)]/4

�75 � (15)2/4 �189 � (25)2/4
�

23.25

�18.75 �32.75
� 0.938 2

(The fact that r is close to 
1 is expected since the scatterplot indicates a strong linear relationship
with positive slope.)

(c) Use the above table and Formula (A-1a) to obtain

x̄ � � xi/n � 15/4 � 3.75 and ȳ � � yi/n � 25/4 � 6.25

Also, by Formulas (A-8a) and (A-7):

sx � �75 � (15)2/4
3

� 2.5 and sy � �189 � (25)2/4
3

� 3.304

(d) Substitute r, sx, sy into Formula (A-13) to obtain the slope b of the least-squares line L:

b �
rsy

sx

�
(0.9675)(4.03)

2.5
� 1.24

Now substitute x̄, ȳ, and b into Formula (A-13) to determine the y intercept a of L:

a � ȳ � bx̄ � 6.25 � (1.24)(3.75) � 1.60

Hence L is

y � 1.60 
 1.24x

Alternately, we can find a and b using the normal equations in Formula (A-12) with n � 4:

na 
 � xb �

� xa 
 � x2 b �

�y

� xy
or

4a 
 15b � 25
15a 
 75b � 117

(These equations would be used if we did not also want r, x̄ and ȳ, and sx and sy.)

(e) To graph L, we find two points on L and draw the line through them. One point is
(x̄, ȳ) � (3.75, 6.25). Another point is (0, 1.60), the y intercept. The line L appears on the
scatterplot in Fig. A-12(b).
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A.14. The definition of the sample covariance sxy of variables x and y follows:

sxy �
�(xi � x̄)(yi � ȳ)

n � 1

Find sxy for the data in: (a) Problem A.12, (b) Problem A.13.

(a) The above formula for sxy yields

sxy � [(4 � 5.8)(8 � 7.2) 
 (2 � 5.8)(12 � 7.2) 
 (10 � 5.8)(4 � 7.2) 
 (5 � 5.8)(10 � 7.2)

 (8 � 5.8)(2 � 7.2)]

� [�1.44 � 18.24 � 13.44 � 2.24 � 11.44]/4 � �46.8/4 � �11.7

We note that the variances sx and sy are always nonnegative but the covariance sxy can be negative,
which indicates that y tends to decrease as x increases.

(b) The above formula for sxy yields

sxy � [(1 � 3.75)(3 � 6.25) 
 (3 � 3.75)(4 � 6.75)(4 � 3.75)(6 � 8.25) 
 (7 � 3.75)(10 � 6.25)]/3

� [8.937 5 
 2.062 5 � 0.562 5 
 12.187 5]/3 � 22.625/3 � 7.542

The covariance here is positive which indicates that y tends to increase as x increases.

A.15. Let W denote the number of American women graduating with a doctoral degree in
mathematics in a given year. Suppose that, for certain years, W has the following values:

Year

W

1985

28

1990

36

1995

40

2000

45

We assume that the increase, year by year, is approximately linear and that it will increase
linearly in the near future. Estimate W for the years 2005, 2008, and 2010.

Our estimation will use a least-squares line L. For notational and computational convenience we let
the year 1980 be a base for our x values. Hence we set

x � year � 1980 and y � number W of women getting doctoral degrees

Thus, we seek the line y � a 
 bx of best fit for the data where the unknowns a and b will be determined
by the following normal equations (A-12):

na 
 (� x)b � � y (� x)a 
 (� x2)b � � xy

[We do not use Formula (A-13) for a and b since we do not need the correlation coefficient r nor do we
need the values sx, sy, x̄, and ȳ.]

The sums in the above system are obtained by constructing the following table which contains the x,
y, x2, and xy values and where the last column gives the corresponding sums:

x

y

x2

xy

5
28
25

140

10
36

100
360

15
40

225
600

20
45

400
900

50
149
750

2000

Substitution in the above normal equations, with n � 4, yields

4a 
 50b � 149
50a 
 750b � 2000

or
4a 
 50b � 149
a 
 15b � 40

The solution of the system is a � 23.5 and b � 1.1. Thus, the following is our least-square line L:
y � 23.5 
 1.1x (A-14)

The (x, y) points and the line L are plotted in Fig. A-13(a).
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Substitute 25 (2005), 28 (2008), and 30 (2010) for x in Formula (A-14) to obtain 51, 54.3, and 56.5,
respectively. Thus, one would expect that, approximately, W � 51, W � 54, and W � 57 women will
receive doctoral degrees in the years 2005, 2008, and 2010, respectively.

A.16. Find the least-square parabola C for the following data:

x

y

1

5

3

7

5

8

6

7

9

5

10

3

Plot C and the data points in the plane R2.

The parabola C has the form y � a 
 bx 
 cx2 where the unknowns a, b, c are obtained from the
following normal equations [which are analogous to the normal equations for the least-square line L in
Formula (A-12)]:

na 
 (� x)b 
 (� x2)c � � y

(� x)a 
 (� x2)b 
 (� x3)c � � xy

(� x2)a 
 (� x3)b 
 (� x4)c � � x2 y

The sums in the above system are obtained by constructing the following table which contains the x,
y, x2, x3, x4, xy, and x2 y values and where the last column gives the corresponding sums:

x

y

x2

x3

x4

xy

x2 y

1
5
1
1
1
5
5

3
7
9

27
81
21
63

5
8

25
125
625
40

200

6
7

36
216

1,296
42

252

9
5

81
729

6,561
45

405

10
3

100
1,000

10,000
30

300

34
35

252
2,098

18,564
183

1,225

Substitution in the above normal equations, with n � 6, yields

6a 
 34b 
 252c � 35, 34a 
 252b 
 2098c � 183, 252a 
 2098b 
 18,564c � 1225
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The solution of the system yields

a �
12,845
3,687

� 3.48 b �
4,179
2,458

� 1.70 c � �
1,279
7,374

� �0.173

Thus, the required parabola C follows:

y � 3.48 
 1.70x � 0.173x2

The given data points and C are plotted in Fig. A-13(b).

A.17. Derive the normal equations Formula (A-12) for the least-squares line L for n data points
Pi(xi, yi).

We want to minimize the following least-square error:

D � � di
2 � � [yi � (a 
 bxi)]2 � � [a 
 bxi � yi]2

where D may be viewed as a function of a and b. The minimum may be obtained by setting the partial
derivatives Da and Db, equal to zero. The partial derivatives follow:

Da � �2(a 
 bxi � yi) and Db � �2(a 
 bxi � yi)xi

Setting Da � 0 and Db � 0, we obtain the following required equations:

na 
 (� xi)b � � yi (� xi)a 
 (� xi
2)b � � xi yi

Supplementary Problems

FREQUENCY DISTRIBUTIONS, MEAN AND MEDIAN

A.18. The frequency distribution of the weekly wages, in dollars, of a group of unskilled workers follows:

Weekly wages

Workers

140–160

18

160–180

24

180–200

32

200–220

20

220–240

8

240–260

6

260–280

2

(a) Display the data in a histogram and a frequency polygon.

(b) Find the mean x̄, median M, and midrange of the data.

A.19. The amounts of 45 personal loans from a loan company follow:

$700 $450 $725 $1125 $675 $1650 $750 $400 $1050

$500 $750 $850 $1250 $725 $475 $925 $1050 $925

$850 $625 $900 $1750 $700 $825 $550 $925 $850

$475 $750 $550 $725 $575 $575 $1450 $700 $450

$700 $1650 $925 $500 $675 $1300 $1125 $775 $850

(a) Group the data into classes with class width w � $200 and beginning with $400, and construct the
frequency and cumulative frequency distribution for the grouped data.

(b) Display the frequency distribution in a histogram.

(c) Find the mean x̄, median M, and midrange of the data.
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A.20. The daily number of station wagons rented by an automobile rental agency during a 30-day period
follows:

7 10 6 7 9 4 7 9 9 8 5 5 7 8 4

6 9 7 12 7 9 10 4 7 5 9 8 9 5 7

(a) Construct the frequency and cumulative frequency distribution for the data.

(b) Find the mean x̄, median M, and midrange of the data.

A.21. The following denotes the number of people living in each of 35 apartments:

1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 4 4 4 4 4 5 5 5 6 6 7

(a) Construct the frequency and cumulative frequency distribution for the data.

(b) Find the mean x̄, median M, and midrange of the data.

A.22. The students in a mathematics class are divided into four groups:

(a) much greater than the median,

(b) little above the median,

(c) little below the median,

(d) much below the median.

On which group should the teacher concentrate in order to increase the median of the class? Mean of
the class?

MEASURES OF DISPERSION: VARIANCE, STANDARD DEVIATION, IQR

A.23. The prices of 1 lb of coffee in 7 stores follow:

$5.58, $6.18, $5.84, $5.75, $5.67, $5.95, $5.62

(a) Find the mean x̄, variance s2, and standard deviation s.

(b) Find the median M, 5-number summary, and IQR of the data.

A.24. For a given week, the following were the average daily temperatures:

35�F, 33�F, 30�F, 36�F, 40�F, 37�F, 38�F

(a) Find the mean x̄, variance s2, and standard deviation s.

(b) Find the median M, 5-number summary, and IQR of the data.

A.25. During a given month, the 10 salespeople in an automobile dealership sold the following number of
automobiles:

13, 17, 10, 18, 17, 9, 17, 13, 15, 14

(a) Find the mean x̄, variance s2, and standard deviation s.

(b) Find the median M, 5-number summary, and IQR of the data.

A.26. The ages of students at a college dormitory are recorded, producing the following frequency distribution:

Age x

Frequency f

17

5

18

20

19

17

20

6

21

2

(a) Find the sample mean x̄ and standard deviation s.

(b) Find the median M, 5-number summary, and IQR of the data.
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A.27. The following distribution gives the number of hours of overtime during 1 month for employees of a
company:

Overtime, hours

Employees

0

10

1

2

2

4

3

2

4

6

5

4

6

2

7

4

8

6

9

2

10

8

(a) Find the sample mean x̄ and standard deviation s.

(b) Find the median M, 5-number summary, and IQR.

A.28. The following are 40 test scores:

52 55 58 58 60 61 64 66 66 68 72 75 75 75 76 76 77 77 78 78

80 80 81 82 82 84 85 85 85 86 88 90 92 95 95 95 100 100 100 100

(a) Group the data into 5 classes with class width w � 10 beginning with 50 and construct the frequency
and cumulative frequency distribution for the grouped data.

(b) Find the sample mean x̄ and standard deviation s of the grouped data.

(c) Find the median M, 5-number summary, and IQR of the original data.

(d) Find the median M, 5-number summary, and IQR of the grouped data.

A.29. The following distribution gives the number of visits for medical care by 80 patients during a 1-year
period:

Number of visits x

Number of patients f

0

14

1

21

2

8

3

15

4

7

6

10

8

5

(a) Find the sample mean x̄ and standard deviation s.

(b) Find the median M, 5-number summary, and IQR.

MISCELLANEOUS PROBLEMS INVOLVING ONE VARIABLE

A.30. The students at a small school are divided into 4 groups: A, B, C, D. The number n of students in each
group and the mean score x̄ of each group follow:

A: n � 80, x̄ � 78; B: n � 60, x̄ � 74; C: n � 85, x̄ � 77; D: n � 75, x̄ � 80

Find the mean of the school.

A.31. The mode of a list of numerical data is the value which occurs most often and more than once. Find the
mode of the data in Problems: (a) A.20, (b) A.21, (c) A.26, (d) A.27.

BIVARIATE DATA

A.32. Consider the following list of data values:

x

y

3

7

1

2

6

14

3

8

4

10

(a) Draw a scatterplot of the data.

(b) Compute the correlation coefficient r. [Hint: First find � xi, � yi, � xi
2, � yi

2, � xi yi and then use
Formula (A-11).]
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(c) For the x and y values, find the means x̄ and ȳ and standard deviations sx and sy.

(d) Find L, the least-squares line y � a 
 bx.

(e) Graph L on the scatterplot in part (a).

A.33. Repeat Problem A.32 for the following list of data values:

x

y

1

5

2

4

4

3

6

1

A.34. Find the covariance sxy of the variables x and y in: (a) Problem A.32, (b) Problem A.33.
(See Problem A.14 for the definition of sxy.)

A.35. Suppose 7 people in a company are interviewed, yielding the following data where x is the number of years
of service and y is the number of people who reviewed the work of the person:

x

y

2

15

3

14

3

13

5

11

6

10

6

9

8

7

(a) Draw a scatterplot of the data.

(b) Find L, the least-squares line y � a 
 bx.

(c) Graph L on the scatterplot in part (a).

(d) Predict the number y of people who reviewed the work of another person if the number of years
worked by the person is: (i) x � 1, (ii) x � 7, (iii) x � 9.

A.36. Consider the following bivariate data:

x

y

0.2

3.0

0.4

1.0

0.9

0.5

1.2

0.4

3.0

0.2

(a) Find the correlation coefficient r. [Hint: First find � xi, � yi, � xi
2, � yi

2, � xi yi and then use Formula
(A-11).]

(b) Plot x against y in a scatterplot.

(c) Find the least-squares line L for the data and graph L on the scatterplot in (b).

(d) Find the least-squares hyperbolic curve C which has the form y � 1/(a 
 bx) or 1/y � a 
 bx and plot
C on the scatterplot in (b). [Hint: Find the least-squares line for the data points (xi, 1/yi).]

(e) Which curve, L or C, best fits the data?

A.37. The following table lists average male weight, in pounds, and height, in inches, for certain ages which range
from 1 to 21:

Age
Weight
Height

1
20
28

3
30
36

6
45
44

10
60
50

13
95
60

16
140
66

21
155
70

Find the correlation coefficient r for: (a) age and weight, (b) age and height, (c) weight and height.

A.38. Let x � age, y � height in Problem A.37. (a) Plot x against y in a scatterplot. (b) Find the line L of best
fit. (c) Graph L on the scatterplot in part (a).
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A.39. Let x � weight, y � height in Problem A.37. (a) Plot x against y in a scatterplot. (b) Find the line L of
best fit. (c) Graph L on the scatterplot in part (a).

A.40. Find the least-squares exponential curve y � abx for the following data:

x

y

1

6

2

12

3

24

4

50

5

95

6

190

Answers to Supplementary Problems

A.18. (a) See Fig. A-14(a); (b) x̄ � $190.36, M � $190, mid � $210.

A.19. (a) The frequency distribution (where the wage is divided by $100 for notational convenience)
follows:

Amount/100
Number of loans

4–6
11

6–8
14

8–10
10

10–12
4

12–14
2

14–16
1

16–18
3

(b) The histogram is shown in Fig. A-14(b).

(c) x̄ � $842.22, M � $700, mid � $1100.

A.20. (a) The distributions follow:

Daily number of wagons
Frequency
Cumulative frequency

4
3
3

5
4
7

6
2
9

7
8

17

8
3

20

9
7

27

10
2

29

11
0

29

12
1

30

(b) x̄ � 7.3, M � 7, mid � 8.
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A.21. (a) The frequency and cumulative frequency distributions follow:

Number of people
Frequency
Cumulative frequency

1
7
7

2
13
20

3
4

24

4
5

29

5
3

32

6
2

34

7
1

35

(b) x̄ � 2.8, M � 2, mid � 4.

A.22. Group (c) to increase the median; likely (b) and (c) to increase the mean.

A.23. (a) x̄ � $5.80, s2 � 0.021 8, s � 0.15; (b) M � $5.75, [5.58, 5.62, 5.75, 5.95, 6.18], IQR � $0.33.

A.24. (a) x̄ � 35.67, s2 � 2.37, s � 1.54; (b) M � 36.5, [30, 33, 36.5, 38, 40], IQR � 5.

A.25. (a) x̄ � 14.3, s2 � 9.57, s � 3.1; (b) M � 14.5, [9, 13, 14.5, 17, 18], IQR � 4.

A.26. (a) x̄ � 18.6, s2 � 0.939, s � 0.97; (b) M � 18.5, [17, 18, 18.5, 19, 21], IQR � 1.

A.27. (a) x̄ � 4.92, s2 � 12.97h2, s � 3.60h; (b) M � 5, [0, 2, 5, 8, 10], IQR � 6.

A.28. (a) The distributions with class values follow:

Scores
Frequency
Cumulative frequency
Class value

50–60
4
4

55

60–70
6

10
65

70–80
10
20
75

80–90
11
31
85

90–100
9

40
95

Remark: The scores 100 are put in the 90–100 group since there are no scores higher than 100. If
there were scores higher than 100, then the scores 100 would be put the next higher 100–110 group.

(b) x̄ � 78.8, s2 � 222.93, s � 14.9.

(c) M � 79, [52, 69, 79, 87, 100], IQR � 18.

(d) M � 80, [50, 70, 80, 85, 100], IQR � 15.

A.29. (a) x̄ � 2.625, s2 � 5.43, s � 2.3; (b) M � 2, [0, 1, 2, 4, 8], IQR � 3.

A.30. x̄̄ � 77.42.

A.31. (a) 7; (b) 2; (c) 18; (d) 0.

A.32. (a) See Fig. A-15(a).

(b) � xi � 17, � yi � 41, � xi
2 � 71, � yi

2 � 413, � xi yi � 171, r �
31.6

�13.2 �76.8
� 0.99.

(c) x̄ � 3.5, ȳ � 8.2, sx
2 � 3.30, sx � 1.82, sy

2 � 19.2, sy � 4.38.

(d) y � �0.13 
 2.38x.

A.33. (a) See Fig. A-15(b).

(b) � xi � 13, � yi � 13, � xi
2 � 57, � yi

2 � 51, � xi yi � 31, r � �
11.25

�14.75 �8.75
� �0.99.

(c) x̄ � 3.25, ȳ � 3.25, sx
2 � 4.92, sx � 2.22, sy

2 � 2.92, sy � 1.71.

(d) y � 5.75 � 0.77x.
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A.34. (a) sxy � (15.5 
 0.60 
 0.10 
 0.90 
 14.5)/4 � 7.90.

(b) sxy � (�3.937 5 � 0.937 5 � 0.187 5 � 6.187 5)/3 � �3.75.

A.35. (a) and (c) See Fig. A-16(a); (b) y � 18.5 � 1.5x; (d) (i) 17, (ii) 8, (iii) 5.

A.36. (a) � xi � 5.7, � yi � 5.1, � xi
2 � 11.45, � yi

2 � 10.45, � xi yi � 2.53, r � �
3.284

�4.952 �5.248
� �0.644.

(b) See Fig. A-16(b).

(c) y � 1.78 � 0.66x and Fig. A-16(b).

(d) y � 1/1.6x and Fig. A-16(b).

(e) C is a better fit.
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A.37. (a) r � 0.98; (b) r � 0.98; (c) r � 0.97.

A.38. (a) and (c) See Fig. A-17(a); (b) y � 29.22 
 2.13x.

Fig. A-17

A.39. (a) and (c) See Fig. A-17(b); (b) y � 28.55 
 0.28x.

A.40. y � 3(2x).

281DESCRIPTIVE STATISTICSAPPENDIX A]



APPENDIX B

Chi-Square
Distribution

B.1 INTRODUCTION

One fundamental question in probability and statistical analysis is whether or not a pattern of
observed data fits a given distribution such as a uniform, binomial, or normal distribution or some
prior distribution. Clearly, the data would not fit the distribution exactly, so we would want to have
some criteria of ‘‘goodness of fit’’. The chi-square distribution, denoted by �2 and defined below,
gives such criteria. (Here � is the Greek letter chi.)

The chi-square distribution is also used to decide whether or not certain variables are indepen-
dent. For example, a pollster might want to know whether or not, say, the sex, ethnic background,
or salary range of a person is a factor in his or her vote in an election or for some type of
legislation.

The formal definition of the �2 distribution follows.

Definition: Let Z1, Z2, . . ., Zk be k independent standard normal distributions. Then

�2 � Z1
2 
 Z2

2 
 · · · 
 Zk
2

is called the chi-square distribution with k degrees of freedom.

The number k of degrees of freedom, which can be any positive integer including 1, is frequently
denoted by ‘‘df’’. Thus, there is a �2 distribution for each k. Figure B-1 pictures the distribution for
k � 1, 4, 6, 8. The distribution is not symmetric and is skewed to the right. However, for large k the
distribution is close to the normal distribution.
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Fig. B-1. Chi-square distribution for k degrees of freedom.



B.2 GOODNESS OF FIT, NULL HYPOTHESIS, CRITICAL VALUES

Suppose a collection of data, say, given by a frequency distribution with n categories, is obtained
from a sample size exceeding 30. Moreover, suppose we want to decide by some test whether or not
the data fit some specific distribution. Let H0 denote the assumption that it does, that is:

H0: Hypothesis that the data fits a given distribution.

Here H0 is called the null hypothesis.

Letting ‘‘obs’’ denote observed data and letting ‘‘exp’’ denote expected data (obtained from the
given distribution), the chi-square value or chi-square statistic for the given data measures the weighted
squares of the differences, that is,

�2 � � (obs � exp)2

exp

Assuming that the expected values are not too small (usually, not less than 5), then the above random
variable has (approximately) the chi-square distribution with

df � n � 1

degrees of freedom. The formula df � n � 1 comes from the fact that a given frequency distribution
with n categories involves probabilities where n � 1 of the probabilities determines the nth
probability. (See remark below.)

Clearly, the smaller the �2 value, the better the fit. However, if �2 is too ‘‘large’’, that is, if �2

exceeds some given critical value c, we say that the fit is poor, and we reject H0. The critical value c
is determined by preassigning a significance level � where:

� � probability that �2 exceeds critical value c � P(�2 � c)

Frequently used choices of � are � � 0.10, � � 0.05, and � � 0.005.
Table B-1 gives critical values for some commonly used significance levels. The significance level

� represents the shaded area in the graph appearing in the table. We emphasize that if the �2 value
exceeds the critical value c (falls in the shaded area), then we say that we reject the null hypothesis
H0 at the � significance level.

The following remarks are in order:

Remark 1: The observed data come from a sample from a larger population, so the chi-square
values form a discrete random variable. This random variable closely approximates the continuous
�2 distribution when the sample size exceeds 30.

Remark 2: The �2 distribution also assumes that each individual expected value is not too small;
one rule-of-thumb (noted above) is that no expected value is less than 5.

Remark 3: The formula df � n � 1 assumes that the size is the only statistic of the sample that
is used. If additional statistics of the sample are used, such as the mean x̄ or standard deviation s, then
the degrees of freedom df will be smaller. (See Examples B.4 and B.6.)
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Table B-1 Chi-Square Distribution
(� � Probability That �2 Exceeds Critical Value c)

�

df

1
2
3
4
5

6
7
8
9

10

11
12
13
14
15

16
17
18
19
20

25
30
40
50

100

0.10

2.71
4.61
6.25
7.78
9.24

10.64
12.02
13.36
14.68
16.99

17.28
18.55
19.81
21.06
22.31

23.54
24.77
25.99
27.20
28.41

34.38
40.26
51.81
63.17

118.50

0.05

3.84
5.99
7.81
9.49

11.07

12.59
14.07
15.51
16.92
18.31

19.68
21.03
22.36
23.68
25.00

26.30
27.59
28.87
30.14
31.41

37.65
43.77
55.76
67.51

124.30

0.025

5.02
7.38
9.35

11.14
12.83

14.45
16.01
17.54
19.02
20.48

21.92
23.34
24.74
26.12
27.49

28.85
30.19
31.53
32.85
34.17

40.65
46.98
59.34
71.42

129.60

0.010

6.63
9.21

11.34
13.28
15.09

16.81
18.48
20.09
21.67
23.21

24.72
26.22
27.69
29.14
30.58

32.00
33.41
34.81
36.19
37.57

44.31
50.89
63.69
76.15

135.80

0.005

7.88
10.60
12.84
14.86
16.75

18.55
20.28
21.96
23.59
25.19

26.76
28.30
29.82
31.32
32.80

34.27
35.72
37.16
38.58
40.00

46.93
53.67
66.77
79.49

140.20
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B.3 GOODNESS OF FIT FOR UNIFORM AND PRIOR DISTRIBUTIONS

This section gives applications of the �2 distribution to goodness-of-fit problems involving a
uniform distribution and a prior distribution.

EXAMPLE B.1 Uniform Distribution A company introduces a new product in 4 locations, A, B, C, D. The
number of items sold during a weekend follow:

Location

Number of items sold

A

80

B

65

C

70

D

85

Let H0 be the (null) hypothesis that location does not make a difference. Apply the chi-square test at the
� � 0.10 significance level (90 percent reliability) to accept or reject the null hypothesis H0.

The total number of items sold was 300. Assuming the null hypothesis H0 of a uniform distribution, the
expected sales at each location would be 75. The �2 value for the data follows:

�2 � � (obs � exp)2

exp

�
(80 � 75)2

75



(65 � 75)2

75



(70 � 75)2

75



(85 � 75)2

75
� 3.33

There are df � 4 � 1 � 3 degrees of freedom. This is derived from the fact that, assuming the number of
items sold is 300, the sales at 3 of the locations determine the sales at the fourth location. Table B-1 shows that
the critical �2 value for df � 3 at the � � 0.10 significance level is c � 6.25, which is pictured in Fig. B-2. Since
3.33 � 6.25, we accept the null hypothesis H0 of a uniform distribution, that is, that the evidence indicates that
location does not make a difference.

EXAMPLE B.2 Prior Distribution The following table lists the percentage of grades of a professor in a certain
course for previous years and the number of such grades for 100 of a professor’s students for the current year:

Grade

Previous years

Current years

A

10%

15

B

30%

23

C

40%

32

D

15%

22

F

5%

8

Consider the following null hypothesis:

H0: Current students are typical compared to previous students.

Use a chi-square test at the � � 0.05 significance level to accept or reject the null hypothesis H0.
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to test the null hypothesis H0.

3.33 < 6.25, we fail to reject the null hypothesis H0 of a uniform distribution, that is, we find no evidence that location 
makes a difference.

Fail to Reject H0

test the null hypothesis H0.



There are 100 current student grades, so the number of students also gives the percentage. Thus the �2 value
of the data follows:

�2 � � (obs � exp)2

exp

�
(15 � 10)2

10



(23 � 30)2

30



(32 � 40)2

40



(22 � 15)2

15



(8 � 5)2

5
� 10.8

There are df � 5 � 1 � 4 degrees of freedom. This is derived from the fact that there are 100 students so
that any 4 of the entries in the distribution table tell us the fifth entry. Table B-1 shows that the critical �2 value
for df � 4 at the � � 0.05 significance level is c � 9.45, which is pictured in Fig. B-3. Since 10.8 � 9.45, we reject
the null hypothesis H0 that the current students are typical of previous students.

B.4 GOODNESS OF FIT FOR BINOMIAL DISTRIBUTION

This section gives applications of the �2 distribution to goodness-of-fit problems involving the
binomial distribution.

EXAMPLE B.3 Binomial Distribution with Probability p Given There are 4 special tourist sights A, B, C, D
in a city. A poll of 600 tourists indicated the following number of sights visited by each tourist:

Number of sights

Number of tourists

0

130

1

240

2

170

3

52

4

8

Let H0 be the null hypothesis that the distribution is binomial with p � 0.70. Test the hypothesis at the � � 0.10
significance level.

The binomial distribution with n � 4 and p � 0.7 follows:

P(0) � (0.7)4 � 0.240,

P(1) � 4(0.3)(0.7)3 � 0.412,

P(2) � 6(0.3)2 (0.7)2 � 0.265,

P(3) � 4(0.3)3 (0.7) � 0.076

P(4) � (0.3)4 � 0.008

Multiplying the probabilities by the number of 600 tourists gives the following expected data:

Number of sights

Expected number of tourists

0

144

1

247

2

159

3

45

4

5
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The �2 value of the data follows:

�2 � � (obs � exp)2

exp
�

(130 � 144)2

144



(240 � 247)2

247



(170 � 159)2

159



(52 � 45)2

45



(8 � 5)2

5
� 5.21

There are df � 5 � 1 � 4 degrees of freedom. This is derived from the fact that the 5 numbers in the table
are related by the equation that their sum is 600. Thus, any 4 of the numbers determine the fifth number.

Table B-1 tells us that c � 7.78 is the critical value for df � 4 and � � 0.10, and this relationship is pictured
in Fig. B-4. Since 5.21 � 7.78, we accept the null hypothesis H0 that the distribution is binomial with p � 0.70.

Remark: Suppose only 200 tourists were polled instead of 600. Although the sample size does satisfy the
condition that it exceeds 30, the expected number of tourists visiting all 4 sights would only be 2, which is less than
5. Thus, with a sample of 200, we would not use the chi-square test to test the hypothesis that the distribution
is binomial with p � 0.7.

EXAMPLE B.4 Binimial Distribution Using the Sample to Estimate p A factory makes light bulbs and
ships them in packets of 4. Suppose 5000 packets are tested and the number of defective bulbs in each packet
is recorded yielding the following distribution:

Number of defective bulbs

Number of packets

0

1975

1

2170

2

740

3

110

4

5

Let H0 be the null hypothesis that the distribution of defective bulbs is binomial. Test the hypothesis at the
� � 0.05 significance level.

Here n � 4 but p is not given. Thus, we use the sample proportion p̂ (read: p hat) of defective bulbs as an
estimate of p. The number d of defective bulbs in all the packets follows:

d � 0(1975) 
 1(2170) 
 2(740) 
 3(110) 
 4(5) � 4000

The total number b of bulbs is 4(5,000) � 20,000. Thus, we set

p � p̂ �
d

b
�

4,000
20,000

� 0.2

The binomial distribution with n � 4, p � 0.2 and q � 1 � 0.2 � 0.8 follows:

P(0) � (0.8)4 � 0.4096,

P(1) � 4(0.2)(0.8)3 � 0.4096,

P(2) � 6(0.2) (0.8)2 2 � 0.1536,

P(3) � 4(0.2) (0.8)3 � 0.0256,

P(4) � (0.2)4 � 0.0016
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Fail to Reject H0

in Fig. B-4.    Since 5.21 < 7.78, we fail to reject the null hypothesis H0 that the distribution is binomial with p = 0.70.



Multiplying the probabilities by 5000, the number of packets, yields the following expected distribution:

Number of defective bulbs

Expected number of packets

0

2048

1

2048

2

768

3

128

4

8

The �2 value of the data follows:

�2 � � (obs � exp)2

exp
�

(1975 � 2048)2

2048



(2170 � 2048)2

2048



(740 � 768)2

768



(110 � 128)2

128



(5 � 8)2

8
� 14.5

Finding the number of degrees of freedom in this example is different than in the previous example. Here
there are two statistics taken from the sample: (a) the size of the sample (5000 packets) and (b) the proportion
p̂ of defective bulbs (or equivalently, 4000 defective bulbs). Thus, the five entries in the frequency table are
related by the following two equations:

x0 
 x1 
 x2 
 x3 
 x4 � 5000 0x0 
 1x1 
 2x2 
 3x3 
 4x4 � 20,000

where xk denotes the number of packets with k defective bulbs. Accordingly, there are only df � 5 � 2 � 3
degrees of freedom; that is, any three of the data entries in the table will yield the remaining two using the two
equations.

Table B-1 tells us that c � 7.81 is the critical value for df � 3 and � � 0.05, as pictured in Fig. B-5. Since
14.5 � 7.81, we reject the null hypothesis H0 that the distribution is binomial.

B.5 GOODNESS OF FIT FOR NORMAL DISTRIBUTION

This section gives applications of the �2 distribution to goodness-of-fit problems involving the
normal distribution.

EXAMPLE B.5 Normal Distribution with Given � and � Suppose the commuting time T, in minutes, of 300
students at a college has the following distribution:

Time

Number of students

�20

13

20–30

75

30–40

120

40–50

66

�50

26

Consider the following null hypothesis:

H0: Distribution is normal with mean � � 35 and standard deviation 
 � 10.

Test the null hypothesis at the � � 0.10 significance level.
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Using the formula z � (T � �)/
, we derive the following z values corresponding to the above T values:

T value

z value

20

�1.5

30

�0.5

40

0.5

50

1.5

Figure B-6 shows the normal curve with the T values, the corresponding z values, and the probability distribution
for these values obtained from Table 6-1 (page 184) of the standard normal distribution.

Multiplying each probability in Fig. B-6 by 300 gives the following expected numbers of students for the given
time periods:

Time

Expected number of students

�20

20

20–30

72.5

30–40

115

40–50

72.5

�50

20

The �2 value of the data follows:

�2 � � (obs � exp)2

exp
�

(13 � 20)2

20



(75 � 72.5)2

72.5



(120 � 115)2

115



(66 � 72.5)2

72.5



(26 � 20)2

20
� 5.14

There are df � 5 � 1 � 4 degrees of freedom. This is derived from the fact that the five numbers in the table
are related by the equation that their sum is 300. Thus, any four of the numbers determine the fifth number.

Table B-1 tells us that c � 7.78 is the critical value for df � 4 and � � 0.10. Since 5.14 � 7.78, we accept the
null hypothesis H0 that the distribution of commuting times are normal with � � 35 and 
 � 10.

EXAMPLE B.6 Normal Distribution Using Sample for � and � Suppose the heights h, in inches, of a sample
of 500 male students at a college have mean x̄ � 66, standard deviation s � 4, and the following distribution:

Height

Number of students

�58

7

58–62

72

62–66

162

66–70

176

70–74

65

�74

18

Consider the following null hypothesis:

H0: Distribution is normal with � � x̄ � 66 and 
 � s � 4.
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reject the null hypothesis H0 that the distribution of commuting times are normal with μ = 35 and σ = 10.
Since 5.14 < 7.78, we fail to



We emphasize that, unlike the previous example, the mean � and standard deviation 
 of the normal distribution
is not given but is estimated from the sample. Test the null hypothesis H0 at the: (a) � � 0.10 significance level,
(b) � � 0.05 significance level.

Using the formula z � (h � �)/
, we derive the following z values corresponding to the above h values:

h value

z value

58

�2

62

�1

66

0

70

1

74

2

Figure B-7 shows the normal curve with the h values, the corresponding z values, and the probability distribution
for these values obtained from Table 6-1 of the standard normal distribution.

Multiplying each probability in Fig. B-7 by 500 gives the following expected numbers of students for the given
height ranges:

Height

Expected number of students

�58

11

58–62

68

62–66

171

66–70

171

70–74

68

�74

11

The �2 value of the data follows:

�2 � � (obs � exp)2

exp
�

(7 � 11)2

11



(72 � 68)2

68



(162 � 171)2

171



(176 � 171)2

171



(65 � 68)2

68



(18 � 11)2

11
� 6.89

Finding the number of degrees of freedom in this example is different than in the previous example. Here
there are three statistics taken from the sample: the size, the mean, and the standard deviation. Each statistic
yields an equation relating the six numbers in the frequency table: the sum is 500, the mean is 66, and the standard
deviation is 4—and the three equations are independent. Thus, any three of the six data entries in the table will
yield the remaining three data entries using the three equations. Accordingly, in this example, there are only
df � 6 � 3 � 3 degrees of freedom, not 5 as in the previous example.

(a) Table B-1 tells us that c � 6.25 is the critical value for df � 3 and � � 0.10. Since 6.89 � 6.25, we reject the
null hypothesis H0 that the distribution of heights is normal at the � � 10% significance level.

(b) Table B-1 tells us that c � 7.81 is the critical value for df � 3 and � � 0.05. Since 6.89 � 7.81, we accept the
null hypothesis H0 that the distribution of heights is normal at the � � 5% significance level.
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reject the null hypothesis H0 that the distribution of heights is normal at the α = 5% significance level.
Since 6.89 < 7.81, we fail to



B.6 CHI-SQUARE TEST FOR INDEPENDENCE

This section gives applications of the �2 distribution to problems involving the independence of
various attributes. For example, one may want to test whether or not there is a ‘‘gender gap’’ (or ‘‘age
gap’’) in an election, that is, whether the vote for a given candidate or for some piece of legislation does
or does not depend on the gender (or age) of the voter.

Since the chi-square test is not accurate for small values, we will assume, as before, that our sample
exceeds 30 and that no expected frequency is less than 5.

EXAMPLE B.7 An engineering college has 4 programs:

(i) electrical, (ii) chemical, (iii) mechanical, (iv) civil

Suppose 500 students, of which 300 are male and 200 are female, are distributed in the 4 programs as follows:

Male

Female

Total

Electrical

100

50

150

Chemical

80

50

130

Mechanical

70

50

120

Civil

50

50

100

Total

300

200

500

The 300 and 200 in the last column and the 150, 130, 120, 100 in the last row are called marginal totals, and the
500 is called the grand total.

Let H0 be the null hypothesis that the program choice is independent of gender. Test the null hypothesis
at the: (a) � � 0.10 significance level, (b) � � 0.05 significance level.

First we want to find the expected eight entries in the table assuming independence. Note 300/500 � 60
percent of the students are male and 150/500 � 30 percent of the students are studying electrical engineer-
ing. Thus, the expected number of male students taking electrical engineering is obtained by multiplying the
product of the probabilities by the total number of students, yielding

(60%)(30%)(500) � 90

Equivalently, the expected number can be obtained by multiplying the two marginal totals and dividing by the
grand total, that is,

Expected entry �
(row total)(column total)

grand total
�

(300)(150)
500

� 90

This formula is derived from the fact that

(60%)(30%)(500) �
300
500

·
150
500

· 500 �
(300)(150)

500
� 90

The other seven expected numbers are obtained similarly.
Furthermore, rather than forming a new table with the expected values, we list each expected value after the

corresponding observed value in the above table, say, as follows:

Male

Female

Total

Electrical

100/90

50/60

150

Chemical

80/78

50/52

130

Mechanical

70/72

50/48

120

Civil

50/60

50/40

100

Total

300

200

500
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Some texts place the expected value below or diagonally down from the observed value. The �2 value of the data
is easily obtained from the table as follows:

�2 � � (obs � exp)2

exp

�
(100 � 90)2

90



(80 � 78)2

78



(70 � 72)2

72



(50 � 60)2

60



(50 � 60)2

60



(50 � 52)2

52



(50 � 48)2

48



(50 � 40)2

40
� 7.21

There are df � (2 � 1)(4 � 1) � 3 degrees of freedom. This is derived from the fact that the marginal values
are given, and so:

(i) Any one value in a column will determine the other value.

(ii) Any three columns will determine the fourth column.

Thus, for example, given the first three entries in the first row will give us the other five entries in the table.

(a) Table B-1 tells us that c � 6.25 is the critical value for df � 3 and � � 0.10. Since 7.21 � 6.25, we reject the
null hypothesis H0 at the � � 0.10 significance level that the program choice at the college is independent
of gender.

(b) Table B-1 tells us that c � 7.81 is the critical value for df � 3 and � � 0.05. Here 7.21 � 7.81. Thus, at the
� � 0.05 significance level, we accept the null hypothesis H0 that the program choice at the college is
independent of gender.

Remark: The above calculation for the degrees of freedom df is true in general. That is, suppose an
attribute A has r categories and another attribute B has c categories yielding a table with r rows and c columns.
Then

df � (r � 1)(c � 1)

gives the number of degrees of freedom. This comes from the fact that:

(i) Any r � 1 entries in a column determine the rth entry in the column.

(ii) Any c � 1 columns determine the cth column.

EXAMPLE B.8 A town asks its voters whether or not it should build a new park where the vote could be:

(i) yes, (ii) no, (iii) abstain.

A poll of 1000 of the voters yields the following data where voters were divided into three age categories, 18–30,
30–50, 50–70:

18–30

31–50

51–70

Total

Yes

170

255

175

600

No

60

140

100

300

Abstain

20

55

25

100

Total

250

450

300

1000

Let H0 be the null hypothesis that the vote is independent of age. (That is, there is no age gap in the vote.)
Test the null hypothesis at the � � 0.10 significance level.
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First we find the expected nine entries in the table where we assume independence. Specifically, we use the
formula:

Expected entry �
(row total)(column total)

grand total

We add the nine expected values to the above table as follows:

18–30

31–50

51–70

Total

Yes

170/150

255/270

175/180

600

No

60/75

140/135

100/90

300

Abstain

20/25

55/45

25/30

100

Total

250

450

300

1000

The �2 value of the data follows:

�2 � � (obs � exp)2

exp
�

(170 � 150)2

150



(60 � 75)2

75



(20 � 25)2

25



(255 � 270)2

270



(140 � 135)2

135



(55 � 45)2

45



(175 � 180)2

180



(100 � 90)2

90



(25 � 30)2

30
� 5.32

The number of degrees of freedom, as noted by the above remark, is obtained by

df � (r � 1)(c � 1) � (3 � 1)(3 � 1) � 4

This is derived from the fact that the marginal values are given and so:

(i) Any two values in a column will determine the third value.

(ii) Any two columns will determine the third column.

Thus, for example, given the four entries in the upper left corner of the table, we can obtain the other five
entries.

Table B-1 tells us that c � 7.78 is the critical value for df � 4 and � � 0.10. Since 5.32 � 7.78, we accept the
null hypothesis H0 that the vote for the park is independent of age.

B.7 CHI-SQUARE TEST FOR HOMOGENEITY

Two populations are said to be homogeneous with respect to some grouping criteria if they have
the same percentage distribution. This section gives applications of the �2 distribution to problems
involving homogeneity, that is, whether different populations are homogeneous.

The �2 test of homogeneity in this section uses the same type of data table which was used in the
�2 test for independence in the last section. We note, however, that the �2 test of independence
involves a single population whereas the �2 test for homogeneity involves two different populations.

Again we note that the �2 test is not accurate for small values; hence, as before, we assume that
our sample exceeds 30 and that no expected frequency is less than 5.
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EXAMPLE B.9 A sociologist decides to study the distribution of adults (18 years and above) in two cities, New
York and Boston, where the distribution has three categories, under 30 years, 30–60 years, over 60 years. She
takes a sample of 150 from New York and a sample of 100 from Boston and obtains the following data:

New York

Boston

Total

�30

51

29

80

30–60

77

63

140

�60

22

8

30

Total

150

100

250

Let H0 be the null hypothesis that the adult age distribution in New York and Boston is homogeneous. Test the
null hypothesis at the � � 0.05 significance level.

The following is the main idea behind our testing procedure:

If the cities are homogeneous, then the data from the combined population will give a better estimate of
the age percentages than the data from either individual city.

Thus, we estimate

Percentage under 30 �
total number under 30 in two cities

total number sampled
�

column total
grand total

�
80

250
� 32%

Accordingly, with a sample of 150 from New York and 100 from Boston, we would expect the following number
of adults under 30 in each sample:

New York: 32%(150) � 48 Boston: 32%(100) � 32

Observe that we are multiplying each row total by the corresponding percentage (column total/grand
total). Accordingly, we can again obtain these results using the following formula:

Expected entry �
(row total)(column total)

grand total

Thus, we could have proceeded as follows:

New York:
(150)(80)

250
� 48 Boston:

(100)(80)
250

� 32

The other four expected entries are obtained similarly.
We add the six expected values to our original table as follows:

New York

Boston

Total

�30

51/48

29/32

80

30–60

77/84

63/56

140

�60

22/18

8/12

30

Total

150

100

250
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The �2 value of the data follows:

�2 � � (obs � exp)2

exp
�

(51 � 48)2

48



(77 � 84)2

84



(22 � 18)2

18



(29 � 32)2

32



(63 � 56)2

56



(8 � 12)2

12

�
9
48



49
84



16
18



9
32



49
56



16
12

� 4.15

There are df � (2 � 1)(3 � 1) � 2 degrees of freedom. This is derived from the fact that the marginal values
are given, and so:

(i) Any one value in a column will determine the other value.

(ii) Any two columns will determine the third column.

Thus, for example, given the first two entries in the first row, we can obtain the other four entries in the table.
Table B-1 tells us that c � 4.61 is the critical value for df � 2 and � � 0.10. Since 4.15 � 4.62, we accept the

null hypothesis H0 at the � � 0.10 significance level, that is, that the age distribution of adults in New York and
Boston is homogeneous.

Remark: The above calculation for the degrees of freedom df is true in general, that is, if the data table has
r rows and c columns. Then the following formula gives the number of degrees of freedom:

df � (r � 1)(c � 1)

As noted above, this formula comes from the fact that any r � 1 entries in a column determine the rth entry in
the column, and any c � 1 columns determine the cth column.

Solved Problems

GOODNESS OF FIT

B.1. A die is tossed 60 times yielding the following distribution:

Face value

Frequency

1

7

2

11

3

10

4

14

5

6

6

12

Let H0 be the null hypothesis that the die is fair.

(a) Find the �2 value. (b) Find the degrees of freedom df.

(c) Test H0 at the � � 0.10 significance level.

(a) The die was tossed 60 times and there are 6 possible face values. Therefore, assuming the die is fair,
the expected number of times each face occurs is 10. Thus, the �2 value for the data follows:

�2 � � (obs � exp)2

exp
�

(7 � 10)2

10



(11 � 10)2

10



(10 � 10)2

10



(14 � 10)2

10



(6 � 10)2

10



(12 � 10)2

10

�
9
10



1
10



0
10



16
10



16
10



4
10

� 4.6
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(b) There are df � 6 � 1 � 5 degrees of freedom. This is derived from the fact that the die was tossed
60 times, so the number of times 5 of the faces occur determines the number of times the sixth face
occurs.

(c) Table B-1 shows that the critical �2 value for df � 5 at the � � 0.10 significance level is
c � 9.24. Since 4.6 � 9.24, we accept the null hypothesis H0 that the die is fair.

B.2. Suppose the following table gives the percentage of the number of persons per household in the
United States for a given year.

Number of persons

Percentage of households

1

20

2

30

3

18

4

15

5 or more

17

Suppose a survey of 1000 households in Philadelphia for the year yielded the following data:

Number of persons

Number of households

1

270

2

210

3

200

4

100

5 or more

220

Let H0 be the (null) hypothesis that the distribution of people in households in Philadelphia is
the same as the national distribution.

(a) Find the �2 value.

(b) Find the degrees of freedom df.

(c) Test H0 at the � � 0.10 significance level.

(d) Test H0 at the � � 0.05 significance level.

(a) Since there are 1000 households, we divide each data value by 1000 to obtain the following
percentages for Philadelphia:

Number of persons

Percentage of households

1

27

2

21

3

20

4

10

5 or more

22

Thus, the �2 value for the data follows:

�2 � � (obs � exp)2

exp
�

(27 � 20)2

20



(21 � 30)2

30



(20 � 18)2

18



(10 � 15)2

15



(22 � 17)2

17

�
49
20



81
30



4
18



25
15



25
17

� 8.50

(b) There are df � 5 � 1 � 4 degrees of freedom. This is derived from the fact that four of the five
percentages determines the fifth percentage.

(c) Table B-1 shows that the critical �2 value for df � 4 at the � � 0.10 significance level is
c � 7.78. Since 8.50 � 7.78, we reject (at the � � 0.10 significance level) the null hypothesis H0 that
the Philadelphia distribution is similar to the national distribution.

(d) Table B-1 shows that the critical �2 value for df � 4 at the � � 0.05 significance level is
c � 9.49. Since 8.50 � 9.49, we accept (at the � � 0.05 significance level) the null hypothesis H0 that
the Philadelphia distribution is similar to the national distribution.

B.3. A poll is taken of 160 families in New York with 4 children yielding the following family sex
distribution (where B denotes boys and G denotes girls):

Sex distribution

Frequency

4B

9

3B, 1G

46

2B, 2G

54

1B, 3G

38

4G

13
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Let H0 be the null hypothesis that the New York distribution is binomial with p � 1/2.

(a) Find the expected distribution.

(b) Find the �2 value.

(c) Find the degrees of freedom df.

(d) Test H0 at the � � 0.10 significance level.

(a) The binomial distribution with n � 4 and p � 0.5 follows:

x

P(x)

0

1/16

1

4/16

2

6/16

3

4/16

4

1/16

Multiplying the probabilities by 160, the number of families, gives the following expected
distribution.

Sex distribution

Expected frequency

4B

10

3B, 1G

40

2B, 2G

60

1B, 3G

40

4G

10

(b) Thus, the �2 value for the data follows:

�2 � � (obs � exp)2

exp
�

(9 � 10)2

10



(46 � 40)2

40



(54 � 60)2

60



(38 � 40)2

40



(13 � 10)2

10

�
1
10



36
40



36
60



4
40



9
10

� 2.9

(c) There are df � 5 � 1 � 4 degrees of freedom. This is derived from the fact that the sum of the five
numbers in the table is 160, so any four of the numbers determine the fifth number.

(d) Table B-1 shows that the critical �2 value for df � 4 at the � � 0.10 significance level is
c � 7.78. Since 2.9 � 7.78, we accept the null hypothesis H0 that the distribution is binomial with
p � 1/2.

B.4. A resort has 200 cabins which can sleep up to 4 people. Suppose the following table gives the
overnight occupancy of the cabins for some night.

Number of people in room

Number of rooms

0

7

1

34

2

55

3

80

4

24

Let H0 be the null hypothesis that the occupancy distribution is binomial.

(a) Find the expected distribution.

(b) Find the �2 value.

(c) Find the degrees of freedom df.

(d) Test H0 at the � � 0.10 significance level.

Here n � 4 but p is not given. Thus, we use the sample proportion p̂ of the number of occupied beds
as an estimate of p. The number s of people in all the rooms follows:

s � 0(7) 
 1(34) 
 2(55) 
 3(80) 
 4(24) � 480

The total number b of beds is 4(200) � 800. Thus, we set

p � p̂ �
s

b
�

480
800

� 0.6
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(a) The binomial distribution with n � 4, p � 0.6 and q � 1 � 0.6 � 0.4 follows:

P(0) � (0.4)4 � 0.025 6,

P(1) � 4(0.6)(0.4)3 � 0.153 6,

P(2) � 6(0.6)2 (0.4)2 � 0.345 6,

P(3) � 4(0.6)3 (0.4) � 0.345 6

P(4) � (0.6)4 � 0.129 6

Multiplying the probabilities by 200, the number of rooms, yields the following expected distribution:

Number of people in room

Expected number of rooms

0

5

1

31

2

69

3

69

4

26

(b) Thus, the �2 value for the data follows:

�2 � � (obs � exp)2

exp
�

(7 � 5)2

5



(34 � 31)2

31



(55 � 69)2

69



(80 � 69)2

69



(24 � 26)2

26

�
4
5



9
31



196
69



121
69



4
26

� 5.84

(c) There are df � 5 � 1 � 4 degrees of freedom. This is derived from the fact that the sum of the five
numbers in the table is 200, so any four of the numbers determine the fifth number.

(d) Table B-1 shows that the critical �2 value for df � 4 at the � � 0.10 significance level is
c � 7.78. Since 5.84 � 7.78, we accept the null hypothesis H0 that the distribution is binomial.

GOODNESS OF FIT FOR NORMAL DISTRIBUTION

B.5. Suppose the weights W, in pounds, of male students of 500 students at a college have the
following distribution:

Weight

Number of students

�120

37

120–140

91

140–160

128

160–180

150

180–200

75

�200

19

Let H0 be the null hypothesis that the distribution is normal with mean � � 160 and standard
deviation 
 � 25.

(a) Find the expected distribution.

(b) Find the �2 value.

(c) Find the degrees of freedom df.

(d) Test H0 at the following significance levels:

(i) � � 0.10, (ii) � � 0.05.

Using the formula z � (W � �)/
, we derive the following z values corresponding to the above W
values:

W value

z value

120

�1.6

140

�0.8

160

0

180

0.8

200

1.6

Figure B-8 shows the normal curve with the W values, the corresponding z values, and the probability
distribution for these z values obtained from Table 6-1 (page 184) of the standard normal distribution.
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(a) Multiplying the probabilities in Fig. B-8 by 500 gives the following expected numbers of students for
the given weight intervals:

Weight

Number of students

�120

28

120–140

78

140–160

144

160–180

144

180–200

78

�200

28

(b) The �2 value for the data follows:

�2 � � (obs � exp)2

exp
�

(37 � 28)2

28



(91 � 78)2

78



(128 � 144)2

144



(150 � 144)2

144



(75 � 78)2

78



(19 � 28)2

28

�
81
28



169
78



196
144



36

144



9
78



81
28

� 9.67

(c) There are df � 6 � 1 � 5 degrees of freedom. This is derived from the fact that the sum of the six
numbers in the table is 500, so any five of the numbers determines the sixth number.

(d) The row df � 4 in Table B-1 shows that the critical �2 value is c � 9.24 for � � 0.10 and c � 11.07 for
� � 0.05. Since �2 � 9.67, we: (i) reject H0 for � � 0.10, (ii) accept H0 for � � 0.05.

B.6. Suppose the average hourly daily workload x of 600 American employees yielded the following
data:

Hourly workload x

Number of employees

�5

8

5–6

45

6–7

150

7–8

210

8–9

130

9–10

40

�10

17

Suppose x̄ � 7.5 is the sample mean and s � 1.2 is the sample standard deviation. Let H0 be
the null hypothesis that the distribution is normal with the estimation that the mean � � x̄ � 7.5
and the standard deviation 
 � s � 1.2.

(a) Find the expected distribution.

(b) Find the �2 value.

(c) Find the degrees of freedom df.

(d) Test H0 at the following significance levels:

(i) � � 0.10, (ii) � � 0.05.
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Using the formula z � (x � �)/
, we derive the following z values corresponding to the above x
values:

x value

z value

5

�2.08

6

�1.25

7

�0.42

8

0.42

9

1.25

10

2.08

Figure B-9 shows the normal curve with the x values, the corresponding z values, and the probability
distribution for these z values obtained from Table 6-1 of the standard normal distribution.

(a) Multiplying the probabilities in Fig. B-9 by 600 gives the following expected numbers of employees
for the given time intervals:

Hourly workload

Number of employees

�5

11

5–6

52

6–7

139

7–8

196

8–9

139

9–10

52

�10

11

(b) The �2 value for the data follows:

�2 � � (obs � exp)2

exp
�

(8 � 11)2

11



(45 � 52)2

52



(150 � 139)2

139



(210 � 196)2

196



(130 � 139)2

139



(40 � 52)2

52



(17 � 11)2

11

�
9
11



49
52



121
139



196
196



81

139



49
52



36
11

� 8.43

(c) The seven numbers in our table are related by three equations, one determined by the size n � 600,
one by the sample mean x̄ � 7.5, and one by the sample standard deviation s � 1.2. Thus, there are
only df � 7 � 3 � 4 degrees of freedom.

(d) The row df � 4 in Table B-1 shows that the critical �2 value is c � 7.78 for � � 0.10 and c � 9.49 for
� � 0.05. Since �2 � 8.43, we: (i) reject H0 for � � 0.10, (ii) accept H0 for � � 0.05.
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INDEPENDENCE

B.8. Voters in a certain town can only register as Democratic, Republican, or Independent. A poll
of 800 registered voters yields the following gender distribution:

Male

Female

Total

Democratic

140

160

300

Republican

192

158

350

Independent

68

82

150

Total

400

400

800

Let H0 be the hypothesis that the party affiliation is independent of gender.

(a) Find the �2 value. (b) Find the degrees of freedom df.

(c) Test H0 at the following significance levels: (i) � � 0.10, (ii) � � 0.05.

The expected six entries in the table, assuming independence, are obtained by the formula:

Expected entry �
(row total)(column total)

grand total

For example, the expected number of males to register as Democrats, Republicans, and Independents,
respectively, follow:

(400)(300)
800

� 150,
(400)(350)

800
� 175,

(400)(150)
800

� 75

Listing the expected values next to the results in the above table yields the following:

Male

Female

Total

Democratic

140/150

160/150

300

Republican

192/175

158/175

350

Independent

68/75

82/75

150

Total

400

400

800

(a) Using the above table for the (obs � exp)2 values, we obtain the �2 value as follows:

�2 � � (obs � exp)2

exp
�

100
150



289
175



49
75



100
150



289
175



49
75

� 5.94

(b) The number of degrees of freedom is obtained by

df � (r � 1)(c � 1) � (2 � 1)(3 � 1) � 2

This is derived from the fact that the marginal values are given; hence:

(i) Any value in a column will determine the other value.

(ii) Any two values in a row will determine the third value.

Thus, for example, given the first two values in the first row, we can determine the remaining four
values.

(c) The row df � 2 in Table B-1 shows that the critical �2 value is c � 4.61 for � � 0.10 and c � 5.99 for
� � 0.05. Since �2 � 5.94, we: (i) reject H0 for � � 0.10, (ii) accept H0 for � � 0.05.

301CHI-SQUARE DISTRIBUTIONAPPENDIX B]

fail to reject H0 for α = 0.05.



B.10. A grocery chain of stores carries four brands A, B, C, D of a certain type of cereal. The chain
recorded the brand of the cereal sold and the age of the buyer, where the buyers were divided
into three age categories: younger than 20, 20–40, older than 40. The frequency distribution
during 1 week follows:

�20

20–40

�40

Total

A

90

88

62

240

B

64

78

58

200

C

78

70

52

200

D

48

64

48

160

Total

280

300

220

800

Let H0 be the hypothesis that the cereal choice is independent of age. (a) Find the �2

value. (b) Find the degrees of freedom df. (c) Test H0 at the � � 0.10 significance level.

The expected 12 entries in the table, assuming independence, are obtained by the formula:

Expected entry �
(row total)(column total)

grand total

Listing the expected values next to the results in the above table yields the following:

�20

20–40

�40

Total

A

90/84

88/90

62/66

240

B

64/70

78/75

58/55

200

C

78/70

70/75

52/55

200

D

48/56

64/60

48/44

160

Total

280

300

220

800

(a) The �2 value for the data follows:

�2 � � (obs � exp)2

exp
�

36
84



36
70



64
70



64
56



4
90



9
75



25
75



16
60



16
66



9
55



4
55


 �
16
44

4.6978

(b) The number of degrees of freedom is obtained by

df � (r � 1)(c � 1) � (3 � 1)(4 � 1) � 6

This is derived from the fact that the marginal values are given; hence any two values in a column
will determine the third value, and any three values in a row will determine the fourth value. Thus,
for example, the first three values in the first two rows, determines the remaining six values.

(c) Table B-1 shows that the critical �2 value for df � 6 and � � 0.10 is c � 10.64. Since 4.61 � 10.64,
we accept the null hypothesis H0 that the choice of cereal is independent of age.
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HOMOGENEITY

B.11. Suppose an opinion poll on a referendum in 4 city districts yields the following data:

District 3

District 8

District 11

District 16

Total

Yes

18

26

20

28

92

No

20

16

24

12

72

Undecided

12

8

6

10

36

Total

50

50

50

50

200

Let H0 by the hypothesis that the voter opinion on the referendum is homogeneous in the 4
districts. (a) Find the �2 value. (b) Find the degrees of freedom df. (c) Test H0 at the
� � 0.10 significance level.

First we find the 12 expected entries in the table. Assuming the combined population of 200 voters
will give a better estimate of voter opinion than either individual district, we find the expected entries using
the following formula:

Expected entry �
(row total)(column total)

grand total

Listing the expected values next to the results in the above table yields the following:

District 3

District 8

District 11

District 16

Total

Yes

18/23

26/23

20/23

28/23

92

No

20/18

16/18

24/18

12/18

72

Undecided

12/9

8/9

6/9

10/9

36

Total

50

50

50

50

200

(a) The �2 value for the data follows:

�2 � � (obs � exp)2

exp
�

25
23



4
18



9
9



9
23



4
18



1
9



9
23



36
18



9
9



25
23



36
18


 �
1
9

9.62

(b) The number of degrees of freedom is obtained by

df � (r � 1)(c � 1) � (4 � 1)(3 � 1) � 6

This is derived from the fact that the marginal values are given; hence any three values in a column
will determine the fourth value, and any two values in a row will determine the third value.

Thus, for example, the first two values in the first three rows determines the remaining six values.
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(c) Table B-1 shows that the critical �2 value for df � 6 and � � 0.10 is c � 10.64. Since 9.62 � 10.64,
we accept the null hypothesis H0 that the voter opinion on the referendum is homogeneous in the
4 districts.

B.12. Suppose the following table gives the distribution of geometry grades in 2 high schools.

High school 1

High school 2

Total

A

27

28

55

B

39

51

90

C

60

120

180

D

42

68

110

F

32

33

65

Total

200

300

500

Let H0 be the hypothesis that the grade distributions are homogeneous in the 2 high
schools. (a) Find the �2 value. (b) Find the degrees of freedom df. (c) Test H0 at the
following significance levels: (i) � � 0.10, (ii) � � 0.05.

First we find the 10 expected entries in the table. Assuming the combined population of 500 students
will give a better estimate of the grade distribution than either individual school, we find the expected
entries using the following formula:

Expected entry �
(row total)(column total)

grand total

Listing the expected values next to the results in the above table yields the following:

High school 1

High school 2

Total

A

27/22

28/33

55

B

39/36

51/54

90

C

60/72

120/108

180

D

42/44

68/66

110

F

32/26

33/39

65

Total

200

300

500

(a) The �2 value for the data follows:

�2 � � (obs � exp)2

exp
�

25
22



9
36



144
72



4
44



36
26



25
33



9
54



144
108



4
66



36
39

� 8.10

(b) The number of degrees of freedom is obtained by

df � (r � 1)(c � 1) � (2 � 1)(5 � 1) � 4

This is derived from the fact that the marginal values are given; hence:

(i) Any value in a column will determine the other value.

(ii) Any four values in a row will determine the fifth value.

Thus, for example, the first four values in the first row determines the remaining six values.

(c) The row df � 4 in Table B-1 shows that the critical �2 value is c � 7.78 for � � 0.10 and c � 9.49 for
� � 0.05. Since �2 � 8.10, we: (i) reject H0 for � � 0.10, (ii) accept H0 for � � 0.05.
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Supplementary Problems

GOODNESS OF FIT

B.13. A coin is tossed 80 times yielding 48 heads and 32 tails. Let H0 be the hypothesis that the coin is fair.

(a) Find the �2 value and the degrees of freedom df.

(b) Test H0 at the following significance levels: (i) � � 0.10, (ii) � � 0.05.

B.14. Suppose the frequency of each digit in the first 100 digits in a random number yields the following
distribution:

Digit

Frequency

0

7

1

11

2

12

3

9

4

6

5

13

6

11

7

10

8

9

9

12

Let H0 be the hypothesis that each digit occurs with the same probability. (a) Find the �2 value and the
degrees of freedom df. (b) Test H0 at the � � 0.05 significance level.

B.15. The following table lists the grading policy of a department for a sophomore mathematics course and the
number of such grades by a professor for 120 of her students.

Grade

Policy
Course

A

10%
18

B

40%
55

C

35%
34

D

10%
7

F

5%
6

Let H0 be the hypothesis that the professor conforms to department policy. (a) Find the expected
distribution. (b) Find the �2 value and the degrees of freedom df. (c) Test H0 at the following
significance levels: (i) � � 0.10, (ii) � � 0.05.

B.16. It is estimated that 60 percent of cola drinkers prefer Coke over Pepsi. In a random poll of 600 cola
drinkers, 330 preferred Coke over Pepsi. (a) Find the expected distribution and the �2 value. (b) Test
the hypothesis H0 that the estimate is correct at the � � 0.10 significance level.

B.17. It is estimated that the political preferences in a certain town are as follows:

35% Democrat, 40% Republican, 15% Independent, 10% other

A random sample of 200 people resulted in the following preferences:

64 Democrat, 76 Republican, 38 Independent, 22 other

Let H0 be the hypothesis that the estimate is correct

(a) Find the �2 value and the degrees of freedom df.

(b) Test H0 at the � � 0.10 significance level.

B.18. The following table gives the age percentages of people living in the United States for some given year
(using four age categories: under 20, 20–39, 40–64, 65 and over), and the age distribution of a sample of
500 people living in Florida:

Age

United States

Florida

�20

28%

115

20–39

24%

130

40–64

32%

155

�65

16%

100
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Let H0 be the hypothesis that the age distribution in Florida is the same as the national distribution. (a)
Find the expected distribution. (b) Find the �2 value and the degrees of freedom df. (c) Test H0 at the
� � 0.10 significance level.

BINOMIAL DISTRIBUTION

B.19. Applicants for a civil service position take a national test with three separate parts. The following table
gives the number of parts passed by each of 500 applicants:

Number of parts passed

Number of applicants

0

180

1

200

2

100

3

20

Let H0 be the hypothesis that the distribution is binomial with p � 0.3. (a) Find the expected distribution.
(b) Find the �2 value and the degrees of freedom df. (c) Test H0 at the � � 0.10 significance level.

B.20. A study is made of the number of children in a 4-child family who have attended college. Interviews with
600 families produced the following data:

Number of children

Number of families

0

75

1

170

2

150

3

90

4

15

Let H0 be the hypothesis that the distribution is binomial. (a) Find the population proportion p̂ of
children attending college. (b) Find the expected distribution using p � p̂. (c) Find the �2 value and the
degrees of freedom df. (d) Test H0 at the � � 0.10 significance level.

NORMAL DISTRIBUTION

B.21. Suppose the following table gives the average daily minutes of time T spent watching television by a
sample of 400 10-year-old children.

Time

Number of children

�600

20

600–1000

82

1000–1400

160

1400–1800

100

�1800

38

Let H0 be the hypothesis that the distribution is normal with mean � � 1200 and standard deviation

 � 400. (a) Find the z values corresponding to T � 600, 1000, 1400, 1800. (b) Find the expected
distribution. (c) Find the �2 value and the degrees of freedom df. (d) Test H0 at the following
significance levels: (i) � � 0.10, (ii) � � 0.05.

B.22. Suppose the following gives the number x of eggs produced annually by 200 chickens at a farm.

Eggs

Number of chickens

�280

10

280–300

33

300–320

70

320–340

55

340–360

20

�360

12

Furthermore, suppose x̄ � 315 is the sample mean and s � 25 is the sample standard deviation. Let H0

be the hypothesis that the distribution is normal with the estimation that the mean � � x̄ � 315 and the
standard deviation 
 � s � 25. (a) Find the z values corresponding to x � 280, 300, 320, 340, 360.
(b) Find the (approximate) expected distribution. (c) Find the �2 value and the degrees of freedom df.
(d) Test H0 at the � � 0.10 significance level.
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INDEPENDENCE

B.23. Voters in a certain town can only register as Democratic, Republican, or Independent. A poll of 500
registered voters yields the following gender distribution:

Male

Female

Total

Democratic

95

105

200

Republican

125

100

225

Independent

40

35

75

Total

260

240

500

Let H0 be the hypothesis that the party affiliation is independent of gender. (a) Find the expected
distribution. (b) Find the �2 value and the degrees of freedom df. (c) Test H0 at the � � 0.10 significance
level.

B.24. Suppose a large university wants to determine the student opinion (favor or oppose) on the requirement
of a certain dress code for attending classes. A poll of 100 students per class is taken yielding the
following table:

Favor

Oppose

Total

Freshman

35

65

100

Sophomore

42

58

100

Junior

45

55

100

Senior

58

42

100

Total

180

220

400

Let H0 be the hypothesis that the opinion is independent of the class of the student. (a) Find the �2 value
and the degrees of freedom df. (b) Test H0 at the � � 0.10 significance level.

HOMOGENEITY

B.25. A study is made of political party affiliation of voters in three regions of the country, northeast, south, and
west. Interviews with 500 voters yielded the following distribution:

Northeast

South

West

Total

Democrat

105

60

65

230

Republican

79

82

79

240

Other

16

8

6

30

Total

200

150

150

500

Let H0 be the hypothesis that the distribution is homogeneous.
(a) Find the expected distribution. (b) Find the �2 value and the degrees of freedom df.
(c) Test H0 at the following significance levels: (i) � � 0.10, (ii) � � 0.05, (iii) � � 0.025.
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B.26. A study is made of the grades of full-time and parttime students for a freshman mathematics course at a
university yielding the following data:

Full time

Part time

Total

A

32

18

50

B

58

32

90

C

70

50

120

D

50

30

80

F

30

30

60

Total

240

160

400

Let H0 be the hypothesis that the distribution is homogeneous. (a) Find the expected distribution.
(b) Find the �2 value and the degrees of freedom df. (c) Test H0 at the � � 0.10 significance level.

Answers to Supplementary Problems

B.13. (a) �2 � 64/45 
 64/35 � 3.25, df � 1; (b) (i) no, (ii) yes.

B.14. (a) �2 � 4.6, df � 9; (b) yes.

B.15. (a) [12, 48, 42, 12, 6]; (b) �2 � 36/12 
 49/48 
 64/42 
 25/12 
 0/6 � 7.62, df � 4; (c) (i) no, (ii) yes.

B.16. (a) [360, 240], �2 � 900/360 
 900/240 � 6.25; (b) no.

B.17. (a) �2 � 36/70 
 16/80 
 64/30 
 4/20 � 3.05, df � 3; (b) yes.

B.18. (a) [140, 120, 160, 80]; (b) �2 � 10.45, df � 3; (c) no.

B.19. (a) [171.5, 220.5, 94.5, 13.5]; (b) �2 � 72.25/171.5 
 420.25/220.5 
 30.25/94.5 
 36.25/13.5 � 5.33, df � 3;
(c) yes.

B.20. (a) p̂ � 0.4; (b) [64.8, 172.8, 172.8, 76.8, 12.8];

(c) �2 �
104.04
64.8



7.84

172.8



519.84
172.8



174.24
76.8



4.84
15

� 7.26, df � 4; (d) yes.

B.21. (a) [�1.5, �0.5, 0.5, 1.5]; (b) [27, 96, 153, 96, 27];
(c) �2 � 49/27 
 196/96 
 49/153 
 9/96 
 121/27 � 8.75, df � 4; (d) (i) no, (ii) yes.

B.22. (a) [�1.4, �0.6, 0.2, 1.0, 1.8]; (b) [16, 39, 61, 52, 25, 7];
(c) �2 � 36/16 
 36/39 
 81/61 
 9/52 
 25/25 
 25/7 � 9.25, df � 3; (d) no.

B.23. (a) [104, 117, 39; 96, 108, 36]; (b) �2 � 81/104 
 64/117 
 1/39 
 81/96 
 64/108 
 1/36 � 2.72, df � 2;
(c) yes.

B.24. (a) �2 � 11.23, df � 3; (b) no.

B.25. (a) [92, 96, 12; 69, 72, 9; 69, 72, 9];

(b) �2 �
169
92



289
96



16
12



81
69



100
72



1
9



16
69



49
72



9
9

� 10.76, df � 4; (c) no, no, yes.

B.26. (a) [30, 54, 72, 48, 36; 20, 36, 48, 32, 24];

(b) �2 �
4
30



16
54



4
72



4
48



36
36



4
20



16
36



4
48



4
32



36
24

� 3.92, df � 4; (c) yes.
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Addition rule, 64
Additive property, 63
Algebra of sets, 7, 13
Approximate curve, 258
Average value, 248

B(n, p), binomial distribution, 179
BP(k), binomial probability, 190
Bayes’ formula, 90, 103
Bernoulli trials, 177
Best-fit line, 258
Binomial:

coefficients, 34, 42
theorem, 35

Binomial distribution, 177, 179
normal approximation, 187

Binomial theorem, 35
Birthday problem, 69
Bivariate data, 254
Boundaries, class, 246

C(n, r), 39
c, critical value, 283
Cards, deck of, 62
Cartesian plane, 10
Category, 245
Cells, 12
Central limit theorem, 189
Chain (Markov), 224
Chebyshev’s inequality, 140, 161, 173
Chi-square distribution Table, 284
Chi-square distribution, 282

Table of values, 284
Class:

boundaries, 246
limits, 246
value, 245
width, 246

Classes of sets, 12, 23
Coefficient, correlation, 256
Collection, 1
Combinations, 39, 47
Combinatorial analysis, 32
Complement:

of a set, 6
rule, 63

Conditional probability, 86, 95
Contained, 1

Continuous random variable, 120
expectation, 137
independent, 138
standard deviation, 138
variance, 138

Continuous sample space, 61, 67
Correlation, 130, 255

coefficient, 256
Countable sets, 8, 14
Countably infinite sample space, 61, 68
Counting, 32, 44
Covariance, 130, 256, 272
Critical value c, 283
Cumulative distribution functions, 139
Cumulative frequency, 246
Curve fitting, 260
Curves, 258

df, Degrees of freedom, 282
De Morgan’s laws, 7
Deck of cards, 62
Degrees of freedom (df), 282
Density function, 137
Dependent events, 92
Descriptive statistics, 245
Diagonal of a matrix, 225
Dice, 61, 62
Difference of sets, 6
Discrete:

probability space, 61
random variable, 120, 136

Disjoint sets, 4, 5
Distribution (of a random variable), 121
Distribution:

binomial, 177
chi-square, 282
Gaussian, 180
joint, 129
marginal, 130
multinomial, 193
normal, 180
Poisson, 191
probability, 66
standard normal, 181

Distribution function, cumulative, 139
Duality, 8, 14

E(X), expectation, 124, 136, 137
EXP(*), exponential distribution, 197
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Independent:
events, 93, 106
random variables, 133, 138
repeated trials, 94, 109

Indexed sets, 13
Induction, 13
Integers, 3
Interquartile range (IQR), 253
Intersection of sets, 5
Intervals, 3

Joint distribution, 129

L, lowest values, 253
Large numbers, law of, 141
Law of large numbers, 141
Least-squares, 257

curve, 261
line, 257

Line:
of best fit, 258
least-squares, 257

M, median, 248
Marginal distributions, 130
Markov process, 228
Mathematical induction, 13, 25
Matrix, 224

stochastic, 226
transition, 228

Mean, 124, 126
arithmetic, 248
grand, 250
population, 250
weighted, 250

Measures of position, 253
Median, 248
Memory property, 198
Midrange, 249
Multinomial distribution, 193
Multiplication theorem, 87, 99
Mutually exclusive events, 60

N, natural numbers, 3
N(�, 
2), normal distribution, 181
NP(X), normal probability, 190
Negative correlation, 255
Normal distribution, 180

approximation of binomial distribution, 187
probabilities, evaluating, 182, 186
standardized, 181
Table 6-1, 184

Normal equations, 258
Null hypothesis, 283

Element, 1
Empty set, 3
Equiprobable space, 65, 72, 122
Error, square, 257
Event, 60, 70
Expectation, 124, 126, 137
Exponential:

curve, 260
distribution, 197

Factorial (n!), 34, 42
Fair game, 126
Finite:

equiprobable space, 65
probability space, 65
sets, 8, 14

Five-number summary, 253
Fixed vector, 226

probability vector, 227
Frequency:

distribution, 245
relative, 59

Function, 119
cumulative distribution, 139
of random variables, 134
probability, 63

GEO(p), geometric distribution, 195
Game, 126
Gaussian (normal) distribution, 180
Geometric:

curve, 260
distribution, 195

Goodness of fit, 283
binomial distribution, 286
normal distribution, 288
prior distribution, 285
uniform distribution, 285

Grand mean, 250
Graph, probability, 121

H, highest value, 253
H0, null hypothesis, 283
Histogram, 246
Homogeneity, test of, 293
Homogeneous, 293
Hyperbolic curve, 258
Hypergeometric distribution, 194
Hypothesis, null, 283

IQR, interquartile range, 253
Image of a function, 119
Impossible event, 60
Inclusion-exclusion, 9
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Odds, 76
One-sided binomial probabilities, 191
Ordered pairs, 10, 21

P(n, r), 37
Partition of a set, 12, 23
Pascal’s triangle, 35, 36
Permutations, 36, 45

with repetitions, 37
Picture cards, 63
Plane R2, 10
Poisson distribution, 191
Positive correlation, 255
Power set, 12
Probability, 59, 63

axioms, 63
distribution, 66, 121
function, 63
histogram, 188
joint, 129
space, finite, 65
vectors, 226

Product:
of random variables, 121
of sets, 10, 21
probability space, 79
rule, 33

Proper subset, 2

Q1, first quartile, 253
Q3, third quartile, 253
Quartiles, 253

R, real numbers, 3
R2, plane, 10
Random, 65
Random variable, 119

normal, 180
standardized, 129

Random variables,
functions of, 134
independent, 133

Range:
of a data set, 253
space, 119

Real line R, 3
Regression line, 258
Regular stochastic matrix, 226
Repeated trials, 94

Sample:
mean, 141, 189
spaces, 60, 67, 70
standard deviation, 251
variance, 251, 252

Sample covariance, 272
Sampling, 38

Scatterplot, 254
Sets, 1

algebra of, 7
countable, 8
finite, 8, 14
product of, 10

Significance level �, 283
Space, 65, 74
Squares error, 257
Standard deviation, 127, 136, 138, 250
Standardized:

normal curve, 184
normal distribution, 181
random variable, 129

State:
distribution, 119
space of a Markov process, 228

Stationary state distribution, 230
Statistics, descriptive, 245
Step function, 139
Stirling’s approximation, 34
Stochastic:

matrix, 226
process, 87, 100

Subset, 1
Suits, 62
Sum:

of random variables, 121
rule, 32

Sure event, 60
Symmetric difference, 6

Total probability, law of, 89, 103
Transition:

diagram, 239
matrix, 228

Tree diagram, 41, 50, 87

U, universal set, 3
UNIF(a, b), uniform distribution, 196
Uncountable sample spaces, 68
Uniform:

distribution, 196
space, 68, 76

Union of sets, 5
Universal set, 3

Variable, random, 119
Variance, 127, 136, 138, 250
Vectors, 224

probability, 226
Venn diagram, 4, 14

Weighted mean, 250
Width, class, 246

Z, integers, 3
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