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PREFACE

Probability: With Applications and R is a probability textbook for undergraduates.
The second edition contains modest changes from the first, including some reorga-
nization of material. It assumes knowledge of differential and integral calculus (two
semesters of calculus, rather than three semesters). Double integrals are introduced
to work with joint distributions in the continuous case, with instruction in working
with them provided in an appendix. While the material in this book stands on its
own as a “terminal” course, it also prepares students planning to take upper level
courses in statistics, stochastic processes, and actuarial sciences.

There are several excellent probability textbooks available at the undergraduate
level, and we are indebted to many, starting with the classic Introduction to Proba-
bility Theory and Its Applications by William Feller.

Our approach is tailored to our students and based on the experience of teach-
ing probability at a liberal arts college. Our students are not only math majors
but come from disciplines throughout the natural and social sciences, especially
biology, physics, computer science, and economics. Sometimes we will even get a
philosophy, English, or arts history major. They tend to be sophomores and juniors.
These students love to see connections with “real-life” problems, with applications
that are “cool” and compelling. They are fairly computer literate. Their mathemati-
cal coursework may not be extensive, but they like problem solving and they respond
well to the many games, simulations, paradoxes, and challenges that the subject
offers.

Several features of our textbook set it apart from others. First is the emphasis on
simulation. We find that the use of simulation, both with “hands-on” activities in
the classroom and with the computer, is an invaluable tool for teaching probability.

xi
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xii PREFACE

We use the free software R and provide supplemental resources (on the text website)
for getting students up to speed in using and understanding the language. We rec-
ommend that students work through the introductory R supplement, and encourage
use of the other supplements that enhance the code and discussion from the textbook
with additional practice. The book is not meant to be an instruction manual in R;
we do not teach programming. But the book does have numerous examples where
a theoretical concept or exact calculation is reinforced by a computer simulation.
The R language offers simple commands for generating samples from probability
distributions. The book references numerous R script files, that are available for
download, and are contained in the R supplements, also available for download
from the text website. It also includes many short R “one-liners” that are easily
shown in the classroom and that students can quickly and easily duplicate on their
computer. Throughout the book are numerous “R” display boxes that contain these
code and scripts. Students and instructors may use the supplements and scripts to
run the book code without having to retype it themselves. The supplements also
include more detail on some examples and questions for further practice.

In addition to simulation, another emphasis of the book is on applications. We try
to motivate the use of probability throughout the sciences and find examples from
subjects as diverse as homelessness, genetics, meteorology, and cryptography. At
the same time, the book does not forget its roots, and there are many classical chest-
nuts like the problem of points, Buffon’s needle, coupon collecting, and Montmort’s
problem of coincidences. Within the context of the examples, when male and female
are referred to (such as in the example on colorblindness affecting males more than
females), we note that this refers to biological sex, not gender identity. As such, we
use the term “sex” not “gender” in the text.

Following is a synopsis of the book’s 11 chapters.
Chapter 1 begins with basics and general principles: random experiment, sample

space, and event. Probability functions are defined and important properties
derived. Counting, including the multiplication principle, permutations, and
combinations (binomial coefficients) are introduced in the context of equally
likely outcomes. A first look at simulation gives accessible examples of sim-
ulating several of the probability calculations from the chapter.

Chapter 2 emphasizes conditional probability, along with the law of total prob-
ability and Bayes formula. There is substantial discussion of the birthday
problem. It closes with a discussion of independence.

Random variables are the focus of Chapter 3. The most important discrete
distributions—binomial, Poisson, and uniform—are introduced early and
serve as a regular source of examples for the concepts to come.

Chapter 4 contains extensive material on discrete random variables, including
expectation, functions of random variables, and variance. Joint discrete
distributions are introduced. Properties of expectation, such as linearity, are
presented, as well as the method of indicator functions. Covariance and
correlation are first introduced here.



�

� �

�

PREFACE xiii

Chapter 5 highlights several families of discrete distributions: geometric,
negative binomial, hypergeometric, multinomial, and Benford’s law.
Moment-generating functions are introduced to explore relationships
between some distributions.

Continuous probability begins with Chapter 6. Expectation, variance, and joint
distributions are explored in the continuous setting. The chapter introduces
the uniform and exponential distributions.

Chapter 7 highlights several important continuous distributions starting with the
normal distribution. There is substantial material on the Poisson process, con-
structing the process by means of probabilistic arguments from i.i.d. exponen-
tial inter-arrival times. The gamma and beta distributions are presented. There
is also a section on the Pareto distribution with discussion of power law and
scale invariant distributions. Moment-generating functions are used again to
illustrate relationships between some distributions.

Chapter 8 examines methods for finding densities of functions of random vari-
ables. This includes maximums, minimums, and sums of independent ran-
dom variables (via the convolution formula). Transformations of two or more
random variables are presented next. Finally, there is material on geometric
probability.

Chapter 9 is devoted to conditional distributions, both in the discrete and contin-
uous settings. Conditional expectation and variance are emphasized as well as
computing probabilities by conditioning. The bivariate normal is introduced
here to illustrate many of the conditional properties.

The important limit theorems of probability—law of large numbers and central
limit theorem—are the topics of Chapter 10. Applications of the strong law
of large numbers are included via the method of moments and Monte Carlo
integration. Moment-generating functions are used to prove the central limit
theorem.

Chapter 11 has optional material for supplementary discussion and/or projects.
These three sections center on random walks on graphs and Markov chains,
culminating in an introduction to Markov chain Monte Carlo. The treatment
does not assume linear algebra and is meant as a broad strokes introduction.

There is more than enough material in this book for a one-semester course. The
range of topics allows much latitude for the instructor. We feel that essential material
for a first course would include Chapters 1–4, 6, and parts of Chapters 7, 9, and 10.

The second edition adds learning outcomes for each chapter, the R supplements,
and many of the chapter review exercises, as well as fixes many typos from the first
edition (in both the text and the solutions).

Additional features of the book include the following:

• Over 200 examples throughout the text and some 800 end-of-chapter exercises.
Includes short numerical solutions for most odd-numbered exercises.
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xiv PREFACE

• Learning outcomes at the start of each chapter provide information for instruc-
tors and students. The learning outcome with a (C) is a computational learning
outcome.

• End-of-chapter summaries highlight the main ideas and results from each
chapter for easy access.

• Chapter review exercises, which are provided online, offer a good source of
additional problems for students preparing for midterm and/or final exams.

• Starred subsections are optional and contain more challenging material and
may assume a higher mathematical level.

• The R supplements (available online) contain the book code and scripts with
enhanced discussion, additional examples, and questions for practice for inter-
ested students and instructors.

• The introductory R supplement introduces students to the basics of R.
(Enhanced version of first edition Appendix A, available online as part of the
R supplements.)

• A website containing relevant material (including the R supplements, script
files, and chapter review exercises) and errata has been established. The URL
is www.wiley.com/go/wagaman/probability2e.

• An instructor’s solutions manual with detailed solutions to all the exercises is
available for instructors who teach from this book.

Amy
Amherst, MA

September 2020
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INTRODUCTION

All theory, dear friend, is gray, but the golden tree of life springs ever green.
—Johann Wolfgang von Goethe

Probability began by first considering games of chance. But today, it has practi-
cal applications in areas as diverse as astronomy, economics, social networks, and
zoology that enrich the theory and give the subject its unique appeal.

In this book, we will flip coins, roll dice, and pick balls from urns, all the standard
fare of a probability course. But we have also tried to make connections with real-life
applications and illustrate the theory with examples that are current and engaging.

You will see some of the following case studies again throughout the text. They
are meant to whet your appetite for what is to come.

I.1 WALKING THE WEB

There are about one trillion websites on the Internet. When you google a phrase
like “Can Chuck Norris divide by zero?,” a remarkable algorithm called PageRank
searches these sites and returns a list ranked by importance and relevance, all in the
blink of an eye. PageRank is the heart of the Google search engine. The algorithm
assigns an “importance value” to each web page and gives it a rank to determine
how useful it is.

PageRank is a significant accomplishment of mathematics and linear algebra. It
can be understood using probability. Of use are probability concepts called Markov
chains and random walks, explored in Chapter 11. Imagine a web surfer who starts
at some web page and clicks on a link at random to find a new site. At each page,

xix
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xx INTRODUCTION

the surfer chooses from one of the available hypertext links equally at random. If
there are two links, it is a coin toss, heads or tails, to decide which one to pick. If
there are 100 links, each one has a 1% chance of being chosen. As the web surfer
moves from page to random page, they are performing a random walk on the web.

What is the PageRank of site x? Suppose the web surfer has been randomly walk-
ing the web for a very long time (infinitely long in theory). The probability that they
visit site x is precisely the PageRank of that site. Sites that have lots of incoming
links will have a higher PageRank value than sites with fewer links.

The PageRank algorithm is actually best understood as an assignment of prob-
abilities to each site on the web. Such a list of numbers is called a probability
distribution. And since it comes as the result of a theoretically infinitely long ran-
dom walk, it is known as the limiting distribution of the random walk. Remarkably,
the PageRank values for billions of websites can be computed quickly and in real
time.

I.2 BENFORD’S LAW

Turn to a random page in this book. Look in the middle of the page and point to the
first number you see. Write down the first digit of that number.

You might think that such first digits are equally likely to be any integer from 1
to 9. But a remarkable probability rule known as Benford’s law predicts that most
of your first digits will be 1 or 2; the chances are almost 50%. The probabilities go
down as the numbers get bigger, with the chance that the first digit is 9 being less
than 5% (Fig. I.1).

Benford’s law, also known as the “first-digit phenomenon,” was discovered over
100 years ago, but it has generated new interest in recent years. There are a huge
number of datasets that exhibit Benford’s law, including street addresses, popula-
tions of cities, stock prices, mathematical constants, birth rates, heights of moun-
tains, and line items on tax returns. The last example, in particular, caught the eye

First digit

1

0.30

0.20

0.10

0.00
2 3 4 5 6 7 8 9

Pr
ob

ab
ili

ty

FIGURE I.1: Benford’s law describes the frequencies of first digits for many real-life
datasets.
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BIG DATA xxi

of business Professor Mark Nigrini who showed that Benford’s law can be used in
forensic accounting and auditing as an indicator of fraud [2012].

Durtschi et al. [2004] describe an investigation of a large medical center in the
western United States. The distribution of first digits of check amounts differed
significantly from Benford’s law. A subsequent investigation uncovered that the
financial officer had created bogus shell insurance companies in her own name and
was writing large refund checks to those companies. Applications to international
trade were investigated in Cerioli et al. [2019].

I.3 SEARCHING THE GENOME

Few areas of modern science employ probability more than biology and genetics.
A strand of DNA, with its four nucleotide bases adenine, cytosine, guanine, and
thymine, abbreviated by their first letters, presents itself as a sequence of outcomes
of a four-sided die. The enormity of the data—about three billion “letters” per strand
of human DNA—makes randomized methods relevant and viable.

Restriction sites are locations on the DNA that contain a specific sequence of
nucleotides, such as G-A-A-T-T-C. Such sites are important to identify because
they are locations where the DNA can be cut and studied. Finding all these loca-
tions is akin to finding patterns of heads and tails in a long sequence of coin tosses.
Theoretical limit theorems for idealized sequences of coin tosses become practi-
cally relevant for exploring the genome. The locations for such restriction sites are
well described by the Poisson process, a fundamental class of random processes that
model locations of restriction sites on a chromosome, as well as car accidents on the
highway, service times at a fast food chain, and when you get your text messages.

On the macrolevel, random processes are used to study the evolution of DNA
over time in order to construct evolutionary trees showing the divergence of species.
DNA sequences change over time as a result of mutation and natural selection. Mod-
els for sequence evolution, called Markov processes, are continuous time analogues
of the type of random walk models introduced earlier.

Miller et al. [2012] analyze the sequenced polar bear genome and give evidence
that the size of the bear population fluctuated with key climactic events over the past
million years, growing in periods of cooling and shrinking in periods of warming.
Their paper, published in the Proceedings of the National Academy of Sciences, is
all biology and genetics. But the appendix of supporting information is all prob-
ability and statistics. Similar analyses, rooted in probability theory, continue to
be performed investigating relationships between species, as described in Mather
et al. [2020].

I.4 BIG DATA

The search for the Higgs boson, the so-called “God particle,” at the Large Hadron
Collider in Geneva, Switzerland, generated 200 petabytes of data (1 petabyte = 1015
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bytes). That is as much data as the total amount of printed material in the world at
the time! In physics, genomics, climate science, marketing, even online gaming and
film, the sizes of datasets being generated are staggering. How to store, transmit,
visualize, and process such data is one the great challenges of science.

Probability is being used in a central way for such problems in a methodology
called compressed sensing.

In the average hospital, many terabytes (1 terabyte = 1012 bytes) of digital mag-
netic resonance imaging (MRI) data are generated each year. A half-hour MRI scan
might collect 100 Mb of data. These data are then compressed to a smaller image,
say 5 Mb, with little loss of clarity or detail. Medical and most natural images are
compressible since lots of pixels have similar values. Compression algorithms work
by essentially representing the image as a sum of simple functions (such as sine
waves) and then discarding those terms that have low information content. This is a
fundamental idea in signal processing, and essentially what is done when you take
a picture on your cell phone and then convert it to a JPEG file for sending to a friend
or uploading to the web.

Compressed sensing asks: If the data are ultimately compressible, is it really
necessary to acquire all the data in the first place? Can just the final compressed data
be what is initially gathered? And the startling answer is that by randomly sampling
the object of interest, the final image can be reconstructed with similar results as
if the object had been fully sampled. Random sampling of MRI scans produces an
image of similar quality as when the entire object is scanned. The new technique has
reduced MRI scan time to one-seventh the original time, from about half an hour
to less than 5 minutes, and shows enormous promise for many other applied areas.
For more information on this topic, the reader is directed to Mackenzie [2009].

I.5 FROM APPLICATION TO THEORY

Having sung the praises of applications and case studies, we come back to the impor-
tance of theory.

Probability has been called the science of uncertainty. “Mathematical probabil-
ity” may seem an oxymoron like jumbo shrimp or civil war. If any discipline can
profess a claim of “certainty,” surely it is mathematics with its adherence to rigorous
proof and timeless results.

One of the great achievements of modern mathematics was putting the study
of probability on a solid scientific foundation. This was done in the 1930s, when
the Russian mathematician Andrey Nikolaevich Kolmogorov built up probability
theory in a rigorous way similarly to how Euclid built up geometry. Much of his
work is the material of a graduate-level course, but the basic framework of axiom,
definition, theory, and proof sets the framework for the modern treatment of the
subject.
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One of the joys of learning probability is the compelling imagery we can exploit.
Geometers draw circles and squares; probabilists toss coins and roll dice. There is
no perfect circle in the physical universe. And the “fair coin” is an idealized model.
Yet when you take real pennies and toss them repeatedly, the results conform so
beautifully to the theory.

In this book, we use the computer program R. R is free software and an
interactive computing environment available for download at http://www.r-
project.org/. If you have never used R before, we encourage you to work
through the introductory R supplement to familiarize yourself with the language.
As you work through the text, the associated supplements support working with
the code and script files. The script files only require R. For working with the
supplements, you can read the pdf versions, or if you want to run the code yourself,
we recommend using RStudio to open these RMarkdown files. RStudio has a free
version, and it provides a useful user interface for R. RMarkdown files allow R
code to be interwoven with text in a reproducible fashion.

Simulation plays a significant role in this book. Simulation is the use of random
numbers to generate samples from a random experiment. Today, it is a bedrock tool
in the sciences and data analysis. Many problems that were for all practical purposes
impossible to solve before the computer age are now easily handled with simulation.

There are many compelling reasons for including simulation in a probability
course. Simulation helps build invaluable intuition for how random phenomena
behave. It will also give you a flexible platform to test how changes in assump-
tions and parameters can affect outcomes. And the exercise of translating theoretical
models into usable simulation code (easy to do in R) will make the subject more
concrete and hopefully easier to understand.

And, most importantly, it is fun! Students enjoy the hands-on approach to the sub-
ject that simulation offers. It is thrilling to see some complex theoretical calculation
“magically” verified by a simulation.

To succeed in this subject, read carefully, work through the examples, and do as
many problems as you can. But most of all, enjoy the ride!

The results concerning fluctuations in coin tossing show that widely held beliefs . . . are
fallacious. They are so amazing and so at variance with common intuition that even
sophisticated colleagues doubted that coins actually misbehave as theory predicts. The
record of a simulated experiment is therefore included . . . .

—William Feller, An Introduction to Probability Theory and Its Applications,
Vol. 1, Third Edition (1968), page xi.
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The beginning is the most important part of the work.
—Plato

Learning Outcomes

1. Define basic probability and set theory terms.

2. Give examples of sample spaces, events, and probability models.
3. Apply properties of probability functions.
4. Solve problems involving equally likely outcomes and using counting

methods.
5. (C) Explore simulation basics in R with a focus on reproducibility.

1.1 RANDOM EXPERIMENT, SAMPLE SPACE, EVENT

Probability begins with some activity, process, or experiment whose outcome is
uncertain. This can be as simple as throwing dice or as complicated as tomorrow’s
weather.

Given such a “random experiment,” the set of all possible outcomes is called
the sample space. We will use the Greek capital letter Ω (omega) to represent the
sample space.

Perhaps the quintessential random experiment is flipping a coin. Suppose a coin
is tossed three times. Let H represent heads and T represent tails. The sample space is

Ω = {HHH,HHT,HTH,HTT,THH,THT,TTH,TTT},

Probability: With Applications and R, Second Edition. Amy S. Wagaman and Robert P. Dobrow.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/wagaman/probability2e
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consisting of eight outcomes. The Greek lowercase omega 𝜔 will be used to denote
these outcomes, the elements of Ω.

An event is a set of outcomes, and as such is a subset of the sample space Ω.
Often, we refer to events by assigning them a capital letter near the beginning of the
alphabet, such as event A. The event of getting all heads in three coin tosses can be
written as

A = {Three heads} = {HHH}.

Event A contains a single outcome, and clearly, A ⊆ Ω. More commonly, events
include multiple outcomes. The event of getting at least two tails is

B = {At least two tails} = {HTT ,THT ,TTH,TTT}.

We often desire probabilities of events. But before learning how to find these prob-
abilities, we first learn to identify the sample space and relevant event for a given
problem.

□■Example 1.1 The weather forecast for tomorrow says rain. The number of umbrel-
las students bring to class can be considered an outcome of a random experiment.
If at most each of n students brings one umbrella, then the sample space is the set
Ω = {0, 1, . . . , n}. The event that between 2 and 4 umbrellas are brought to class is
A = {2, 3, 4}. ◼

Dice are often used to illustrate probability concepts. Unless stated otherwise, in
this text, rolling a die refers to rolling a fair six-sided die with the usual numeric
labels of the numbers 1 through 6.

□■ Example 1.2 Roll a pair of dice. Find the sample space and identify the event that
the sum of the two dice is equal to 7.

The random experiment is rolling two dice. Keeping track of the roll of each die
gives the sample space

Ω = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), . . . , (6, 5), (6, 6)}.

The event is A = {Sum is 7} = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}.

The sample space can also be presented using an array format, where the rows
denote the first roll and the columns denote the second roll. The cell entries are
the sum of the row and column numbers. All 36 outcomes will be represented in the
resulting cells. The event A can then be identified by finding the cells that correspond
to the desired criteria. ◼

□■ Example 1.3 Yolanda and Zach are running for president of the student associ-
ation. One thousand students will be voting, and each voter will pick one of the
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two candidates. We will eventually ask questions like, What is the probability that
Yolanda wins the election over Zach by at least 100 votes? But before actually find-
ing this probability, first identify (i) the sample space and (ii) the event that Yolanda
beats Zach by at least 100 votes.

(i) The outcome of the vote can be denoted as (x, 1000 − x), where x is the number
of votes for Yolanda, and 1000 − x is the number of votes for Zach. Then the sample
space of all voting outcomes is

Ω = {(0, 1000), (1, 999), (2, 998), . . . , (999, 1), (1000, 0)}.

(ii) Let A be the event that Yolanda beats Zach by at least 100 votes. The event
A consists of all outcomes in which x − (1000 − x) ≥ 100, or 550 ≤ x ≤ 1000. That
is, A = {(550, 450), (551, 449), . . . , (999, 1), (1000, 0)}. ◼

□■ Example 1.4 Diego will continue to flip a coin until heads appears. Identify the
sample space and the event that it will take Diego at least three coin flips to get
a head.

The sample space is the set of all sequences of coin flips with one head preceded
by some number of tails. That is,

Ω = {H,TH,TTH,TTTH,TTTTH,TTTTTH, . . . }.

The desired event is A = {TTH,TTTH,TTTTH, . . . }. Note that in this case both
the sample space and the event A are infinite, meaning they contain an infinite num-
ber of outcomes. ◼

1.2 WHAT IS A PROBABILITY?

What does it mean to say that the probability that A occurs or the probability of A
is equal to x?

From a formal, purely mathematical point of view, a probability is a number
between 0 and 1 that satisfies certain properties, which we will describe later. From
a practical, empirical point of view, a probability matches up with our intuition of the
likelihood or “chance” that an event occurs. An event that has probability 0 “never”
happens. An event that has probability 1 is “certain” to happen. In repeated coin
flips, a fair coin comes up heads about half the time, and the probability of heads is
equal to one-half.

Let A be an event associated with some random experiment. One way to under-
stand the probability of A is to perform the following thought exercise: imagine
conducting the experiment over and over, infinitely often, keeping track of how often
A occurs. Each experiment is called a trial. If the event A occurs when the experi-
ment is performed, that is a success. The proportion of successes is the probability
of A, written P(A).
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This is the relative frequency interpretation of probability, which says that the
probability of an event is equal to its relative frequency in a large number of trials.

When the weather forecaster tells us that tomorrow there is a 20% chance of rain,
we understand that to mean that if we could repeat today’s conditions—the air pres-
sure, temperature, wind speed, etc.—over and over again, then 20% of the resulting
“tomorrows” will result in rain. Closer to what weather forecasters actually do in
coming up with that 20% number, together with using satellite and radar informa-
tion along with sophisticated computational models, is to go back in the historical
record and find other days that match up closely with today’s conditions and see
what proportion of those days resulted in rain on the following day.

There are definite limitations to constructing a rigorous mathematical theory out
of this intuitive and empirical view of probability. One cannot actually repeat an
experiment infinitely many times. To define probability carefully, we need to take
a formal, axiomatic, mathematical approach. Nevertheless, the relative frequency
viewpoint will still be useful in order to gain intuitive understanding. And by the
end of the book, we will actually derive the relative frequency viewpoint as a con-
sequence of the mathematical theory.

1.3 PROBABILITY FUNCTION

We assume for the next several chapters that the sample space is discrete. This means
that the sample space is either finite or countably infinite.

A set is countably infinite if the elements of the set can be arranged as a sequence.
The natural numbers 1, 2, 3, . . . is the classic example of a countably infinite set.
And all countably infinite sets can be put in one-to-one correspondence with the
natural numbers.

If the sample space is finite, it can be written as Ω = {𝜔1, . . . , 𝜔k}. If the sample
space is countably infinite, it can be written as Ω = {𝜔1, 𝜔2, . . . }.

The set of all real numbers is an infinite set that is not countably infinite. It is
called uncountable. An interval of real numbers, such as (0,1), the numbers between
0 and 1, is also uncountable. Probability on uncountable spaces will require differ-
ential and integral calculus and will be discussed in the second half of this book.

A probability function assigns numbers between 0 and 1 to events according to
three defining properties.

PROBABILITY FUNCTION

Given a random experiment with discrete sample space Ω, a probability function
P is a function on Ω with the following properties:

1.
P(𝜔) ≥ 0, for all 𝜔 ∈ Ω.
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2. ∑
𝜔∈Ω

P(𝜔) = 1. (1.1)

3. For all events A ⊆ Ω,
P(A) =

∑
𝜔∈A

P(𝜔). (1.2)

You may not be familiar with some of the notation in this definition. The symbol
∈ means “is an element of.” So 𝜔 ∈ Ω means 𝜔 is an element of Ω. We are also
using a generalized Σ-notation in Equations 1.1 and 1.2, writing a condition under
the Σ to specify the summation. The notation

∑
𝜔∈Ω means that the sum is over all 𝜔

that are elements of the sample space, Ω, that is, all outcomes in the sample space.
In the case of a finite sample space Ω = {𝜔1, . . . , 𝜔k}, Equation 1.1 becomes∑

𝜔∈Ω
P(𝜔) = P(𝜔1) + · · · + P(𝜔k) = 1.

And in the case of a countably infinite sample space Ω = {𝜔1, 𝜔2, . . . }, this gives

∑
𝜔∈Ω

P(𝜔) = P(𝜔1) + P(𝜔2) + · · · =
∞∑

i=1

P(𝜔i) = 1.

In simple language, probabilities sum to 1. The third defining property of a prob-
ability function says that the probability of an event is the sum of the probabilities of
all the outcomes contained in that event. We might describe a probability function
with a table, function, graph, or qualitative description. Multiple representations are
possible, as shown in the next example.

□■ Example 1.5 A type of candy comes in red, yellow, orange, green, and purple
colors. Choose a piece of candy at random. What color is it? The sample space is
Ω = {R,Y ,O,G,P}. Assuming the candy colors are equally likely outcomes, here
are three equivalent ways of describing the probability function:

1. . R Y O G P

0.20 0.20 0.20 0.20 0.20

2. P(𝜔) = 1∕5, for all 𝜔 ∈ Ω.
3. The five colors are equally likely. ◼

In the discrete setting, we will often use probability model and probability
distribution interchangeably with probability function. In all cases, to specify a
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probability function requires identifying (i) the outcomes of the sample space and
(ii) the probabilities associated with those outcomes.

Letting H denote heads and T denote tails, an obvious model for a simple coin
toss is P(H) = P(T) = 0.50.

Actually, there is some extremely small, but nonzero, probability that a coin will
land on its side. So perhaps a better model would be

P(H) = P(T) = 0.49999999995 and P(Side) = 0.0000000001.

Ignoring the possibility of the coin landing on its side, a more general model is

P(H) = p and P(T) = 1 − p,

where 0 ≤ p ≤ 1. If p = 1∕2, we say the coin is fair. If p ≠ 1∕2, we say that the coin
is biased. In this text, assume coins are fair unless otherwise specified.

In a mathematical sense, all of these coin tossing models are “correct” in that
they are consistent with the definition of what a probability is. However, we might
debate which model most accurately reflects reality and which is most useful for
modeling actual coin tosses.

□■ Example 1.6 Suppose that a college has six majors: biology, geology, physics,
dance, art, and music. The percentage of students taking these majors are 20, 20,
5, 10, 10, and 35, respectively, with double majors not allowed. Choose a random
student. What is the probability they are a science major?

The random experiment is choosing a student. The sample space is

Ω = {Bio, Geo, Phy, Dan, Art, Mus}.

The probability model is given in Table 1.1. The event in question is

A = {Science major} = {Bio, Geo, Phy}.

Finally,

P(A) = P({Bio, Geo, Phy}) = P(Bio) + P(Geo) + P(Phy)

= 0.20 + 0.20 + 0.05 = 0.45. ◼

TABLE 1.1. Probability model for majors.

Bio Geo Phy Dan Art Mus
0.20 0.20 0.05 0.10 0.10 0.35



�

� �

�

PROPERTIES OF PROBABILITIES 7

This example is probably fairly clear and may seem like a lot of work for a simple
result. However, when starting out, it is good preparation for the more complicated
problems to come to clearly identify the sample space, event, and probability model
before actually computing the final probability.

□■ Example 1.7 In three coin tosses, what is the probability of getting at least two
tails?

Although the probability model here is not explicitly stated, the simplest and
most intuitive model for fair coin tosses is that every outcome is equally likely. As
the sample space

Ω = {HHH,HHT ,HTH,THH,HTT ,THT ,TTH,TTT}

has eight outcomes, the model assigns to each outcome the probability 1∕8.
The event of getting at least two tails can be written as A = {HTT ,THT ,TTH,

TTT}. This gives

P(A) = P({HTT ,THT ,TTH,TTT})

= P(HTT) + P(THT) + P(TTH) + P(TTT)

= 1
8
+ 1

8
+ 1

8
+ 1

8
= 1

2
. ◼

1.4 PROPERTIES OF PROBABILITIES

Events can be combined together to create new events using the connectives “or,”
“and,” and “not.” These correspond to the set operations union, intersection, and
complement.

For sets A,B ⊆ Ω, the union A ∪ B is the set of all elements of Ω that are in either
A or B or both. The intersection AB is the set of all elements of Ω that are in both
A and B. (Another common notation for the intersection of two events is A ∩ B.)
The complement Ac is the set of all elements of Ω that are not in A.

In probability word problems, descriptive phrases are typically used rather than
set notation. See Table 1.2 for some equivalences.

A Venn diagram is a useful tool for working with events and subsets. A rectan-
gular box denotes the sample space Ω, and circles are used to denote events. See
Figure 1.1 for examples of Venn diagrams for the most common combined events
obtained from two events A and B.

One of the most basic, and important, properties of a probability function is the
simple addition rule for mutually exclusive events. We say that two events are mutu-
ally exclusive, or disjoint, if they have no outcomes in common. That is, A and B
are mutually exclusive if AB = ∅, the empty set.
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TABLE 1.2. Events and sets.

Description Set notation

Either A or B or both occur A ∪ B
A and B AB
Not A Ac

A implies B; A is a subset of B A ⊆ B
A but not B ABc

Neither A nor B AcBc

At least one of the two events occurs A ∪ B
At most one of the two events occurs (AB)c = Ac ∪ Bc

A or B occur A and B occur Neither A nor B occurs

B occurs Exactly one of A or B occurs B does not occur

Only A occurs

A B A B A B

A B A B A B

A B A B

A and B mutually exclusive A implies B

A
B

FIGURE 1.1: Venn diagrams.

ADDITION RULE FOR MUTUALLY EXCLUSIVE EVENTS

If A and B are mutually exclusive events, then

P(A or B) = P(A ∪ B) = P(A) + P(B).

The addition rule is a consequence of the third defining property of a probability
function. We have that

P(A or B) = P(A ∪ B) =
∑

𝜔∈A∪B

P(𝜔)
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=
∑
𝜔∈A

P(𝜔) +
∑
𝜔∈B

P(𝜔)

= P(A) + P(B),

where the third equality follows because the events are disjoint, so no outcome 𝜔

will be counted twice. The addition rule for mutually exclusive events extends to
more than two events.

EXTENSION OF ADDITION RULE FOR MUTUALLY EXCLUSIVE
EVENTS

Suppose A1,A2, . . . is a sequence of pairwise mutually exclusive events. That
is, Ai and Aj are mutually exclusive for all i ≠ j. Then

P(at least one of the Ai’s occurs) = P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai).

Next, we highlight other key properties that are consequences of the defining
properties of a probability function and the addition rule for disjoint events.

PROPERTIES OF PROBABILITIES

1. If A implies B, that is, if A ⊆ B, then P(A) ≤ P(B).
2. P(A does not occur) = P(Ac) = 1 − P(A).
3. For all events A and B,

P(A or B) = P(A ∪ B) = P(A) + P(B) − P(AB). (1.3)

Each property is derived next.

1. As A ⊆ B, write B as the disjoint union of A and BAc. By the addition rule for
disjoint events,

P(B) = P(A ∪ BAc) = P(A) + P(BAc) ≥ P(A),

because probabilities are nonnegative.
2. The sample space Ω can be written as the disjoint union of any event A and

its complement Ac. Thus,

1 = P(Ω) = P(A ∪ Ac) = P(A) + P(Ac).

Rearranging gives the result.
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3. Write A ∪ B as the disjoint union of A and AcB. Also write B as the disjoint
union of AB and AcB. Then P(B) = P(AB) + P(AcB) and thus,

P(A ∪ B) = P(A) + P(AcB) = P(A) + P(B) − P(AB).

Observe that the addition rule for mutually exclusive events follows from
Property 3 because if A and B are disjoint, then P(AB) = P(∅) = 0.

□■ Example 1.8 In a city, suppose 75% of the population have brown hair, 40% have
brown eyes, and 25% have both brown hair and brown eyes. A person is chosen at
random from the city. What is the probability that they

1. Have brown eyes or brown hair?

2. Have neither brown eyes nor brown hair?

To gain intuition, draw a Venn diagram, as in Figure 1.2. Let H be the event of
having brown hair; let E denote brown eyes.

1. The probability of having brown eyes or brown hair is

P(E or H) = P(E) + P(H) − P(EH) = 0.75 + 0.40 − 0.25 = 0.90.

Notice that E and H are not mutually exclusive. If we made a mistake and used
the simple addition rule P(E or H) = P(E) + P(H), we would mistakenly get
0.75 + 0.40 = 1.15 > 1.

2. The complement of having neither brown eyes nor brown hair is having brown
eyes or brown hair. Thus,

P(EcHc) = P((E or H)c) = 1 − P(E or H) = 1 − 0.90 = 0.10.
◼

H (brown hair) E (brown eyes)

0.50 0.25 0.15

0.10

FIGURE 1.2: Venn diagram.
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1.5 EQUALLY LIKELY OUTCOMES

The simplest probability model for a finite sample space is that all outcomes are
equally likely. If Ω has k elements, then the probability of each outcome is 1∕k, as
probabilities sum to 1. That is, P(𝜔) = 1∕k, for all 𝜔 ∈ Ω.

Computing probabilities for equally likely outcomes takes a fairly simple form.
Suppose A is an event with s elements, with s ≤ k. As P(A) is the sum of the prob-
abilities of all the outcomes contained in A,

P(A) =
∑
𝜔∈A

P(𝜔) =
∑
𝜔∈A

1
k
= s

k
= Number of elements of A

Number of elements of Ω
.

In other words, probability with equally likely outcomes reduces to counting
elements in A and Ω.

□■ Example 1.9 A palindrome is a word that reads the same forward or backward.
Examples include mom, civic, and rotator. Pick a three-letter “word” at random
choosing from D, O, or G for each letter. What is the probability that the resulting
word is a palindrome? (Words in this context do not need to be real words in English,
e.g., OGO is a palindrome.)

There are 27 possible words (three possibilities for each of the three letters). List
and count the palindromes: DDD, OOO, GGG, DOD, DGD, ODO, OGO, GDG,
and GOG. The probability of getting a palindrome is 9∕27 = 1∕3. ◼

□■ Example 1.10 A bowl has r red balls and b blue balls. A ball is drawn randomly
from the bowl. What is the probability of selecting a red ball?

The sample space consists of r + b balls. The event A = {Red ball} has r ele-
ments. Therefore, P(A) = r∕(r + b). ◼

A model for equally likely outcomes assumes a finite sample space. Interestingly,
it is impossible to have a probability model of equally likely outcomes on an infinite
sample space. To see why, suppose Ω = {𝜔1, 𝜔2, . . . } and P(𝜔i) = c for all i, where
c is a nonzero constant. Then summing the probabilities gives

∞∑
i=1

P(𝜔i) =
∞∑

i=1

c = ∞ ≠ 1.

While equally likely outcomes are not possible in the infinite case, there are
many ways to assign probabilities for an infinite sample space where outcomes
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are not equally likely. For instance, let Ω = {𝜔1, 𝜔2, . . . } with P(𝜔i) = (1∕2)i, for
i = 1, 2, . . . . Then, using results for geometric series,

∞∑
i=1

P(𝜔i) =
∞∑

i=1

(1
2

)i
=
(1

2

) 1
1 − (1∕2)

= 1.

We introduce some basic counting principles in the next two sections because
counting plays a fundamental role in probability when outcomes are equally likely.

1.6 COUNTING I

Counting sets is sometimes not as easy as 1, 2, 3, . . . . But a basic counting principle
known as the multiplication principle allows for tackling a wide range of problems.

MULTIPLICATION PRINCIPLE

If there are m ways for one thing to happen, and n ways for a second thing to
happen, there are m × n ways for both things to happen.

More generally—and more formally—consider an n-element sequence
(a1, a2, . . . , an). If there are k1 possible values for the first element, k2 possible
values for the second element, . . . , and kn possible values for the nth element,
there are k1 × k2 × · · · × kn possible sequences.

For instance, in tossing a coin three times, there are 2 × 2 × 2 = 23 = 8 possible
outcomes. Rolling a die four times gives 6 × 6 × 6 × 6 = 64 = 1296 possible rolls.

□■ Example 1.11 License plates in Minnesota are issued with three letters from A to
Z followed by three digits from 0 to 9. If each license plate is equally likely, what
is the probability that a random license plate starts with G-Z-N?

The solution will be equal to the number of license plates that start with G-Z-N
divided by the total number of license plates. By the multiplication principle,
there are 26 × 26 × 26 × 10 × 10 × 10 = 263 × 103 = 17,576, 000 possible license
plates.

For the number of plates that start with G-Z-N, think of a six-element plate of the
form G-Z-N- - - . For the three blanks, there are 10 × 10× 10 possibilities. Thus,
the desired probability is 103∕(263 × 103) = 1∕263 = 0.0000569. ◼

□■ Example 1.12 A DNA strand is a long polymer string made up of four
nucleotides—adenine, cytosine, guanine, and thymine. It can be thought of as a
sequence of As, Cs, Gs, and Ts. DNA is structured as a double helix with two
paired strands running in opposite directions on the chromosome. Nucleotides
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always pair the same way: A with T and C with G. A palindromic sequence is
equal to its “reverse complement.” For instance, the sequences CACGTG and
TAGCTA are palindromic sequences (with reverse complements GTGCAC and
ATCGAT, respectively), but TACCAT is not (reverse complement is ATGGTA).
Such sequences play a significant role in molecular biology.

Suppose the nucleotides on a DNA strand of length six are generated in such
a way so that all strands are equally likely. What is the probability that the DNA
sequence is a palindromic sequence?

By the multiplication principle, the number of DNA strands is 46 because there
are four possibilities for each site. A palindromic sequence of length six is com-
pletely determined by the first three sites. There are 43 palindromic sequences. The
desired probability is 43∕46 = 1∕64. ◼

□■ Example 1.13 Logan is taking four final exams next week. His studying was
erratic and all scores A, B, C, D, and F are equally likely for each exam. What
is the probability that Logan will get at least one A?

Take complements (often an effective strategy for “at least” problems). The com-
plementary event of getting at least one A is getting no A’s. As outcomes are equally
likely, by the multiplication principle there are 44 exam outcomes with no A’s (four
grade choices for each of four exams). And there are 54 possible outcomes in all.
The desired probability is 1 − 44∕54 = 0.5904. ◼

1.6.1 Permutations

Given a set of distinct objects, a permutation is an ordering of the elements of the
set. For the set {a, b, c}, there are six permutations:

(a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), and (c, b, a).

How many permutations are there of an n-element set? There are n possibilities
for the first element of the permutation, n − 1 for the second, and so on. The result
follows by the multiplication principle.

COUNTING PERMUTATIONS

There are n × (n − 1) × · · · × 1 = n! permutations of an n-element set.

The factorial function n! grows very large very fast. In a classroom of 10 peo-
ple with 10 chairs, there are 10! = 3,628,800 ways to seat the students. There are
52! ≈ 8 × 1067 orderings of a standard deck of cards, which is “almost” as big as the
number of atoms in the observable universe, which is estimated to be about 1080

.

Functions of the form cn, where c is a constant, are said to exhibit exponen-
tial growth. The factorial function n! grows like nn, which is sometimes called
super-exponential growth.
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The factorial function n! is pervasive in discrete probability. A good approxima-
tion when n is large is given by Stirling’s approximation

n! ≈ nne−n
√

2𝜋n. (1.4)

More precisely,

lim
n→∞

n!
nne−n

√
2𝜋n

= 1.

We say that n! “is asymptotic to” the function nne−n
√

2𝜋n.
For first impressions, it looks like the right-hand side of Equation 1.4 is more

complicated than the left. However, the right-hand side is made up of relatively
simple, elementary functions, which makes it possible to obtain useful approxima-
tions of factorials. Modern computational methods swap to computing logarithms
of factorials to handle large computations, so in practice, you will likely not need
to employ this formula.

How do we use permutations to solve problems? The following examples illus-
trate some applications.

□■ Example 1.14 Maria has three bookshelves in her dorm room and 15 books—5
are math books and 10 are novels. If each shelf holds exactly five books and books
are placed randomly on the shelves (all orderings are equally likely), what is the
probability that the bottom shelf contains all the math books?

There are 15! ways to permute all the books on the shelves. There are 5! ways to
put the math books on the bottom shelf and 10! ways to put the remaining novels on
the other two shelves. Thus, by the multiplication principle, the desired probability
is (5!10!)∕15! = 1∕3003 = 0.000333. ◼

□■ Example 1.15 A bag contains six Scrabble tiles with the letters A-D-M-N-O-R.
You reach into the bag and take out tiles one at a time. What is the probability that
you will spell the word R-A-N-D-O-M?

How many possible words can be formed? All the letters are distinct and a
“word” is a permutation of the set of six letters. There are 6! = 720 possible words.
Only one of them spells R-A-N-D-O-M, so the desired probability is 1∕720 =
0.001389. ◼

□■ Example 1.16 Scrabble continued. Change the previous example. After you
pick a tile from the bag, write down that letter and then return the tile to the bag.
So every time you reach into the bag, it contains the six original letters. What is the
probability that you spell R-A-N-D-O-M now when drawing six tiles?

With the change, there are 6 × · · · × 6 = 66 = 46,656 possible words, and
only one still spells R-A-N-D-O-M, so the desired probability is 1∕46,656 =
0.0000214. ◼
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SAMPLING WITH AND WITHOUT REPLACEMENT

The last examples highlight two different sampling methods called sampling
without replacement and sampling with replacement. When sampling with
replacement, a unit that is selected from a population is returned to the pop-
ulation before another unit is selected. When sampling without replacement,
the unit is not returned to the population after being selected. When solving
a probability problem involving sampling (such as selecting cards or picking
balls from urns), make sure you know the sampling method before computing
the related probability.

□■ Example 1.17 When national polling organizations conduct nationwide surveys,
they often select about 1000 people sampling without replacement. If N is the
number of people in a target population, then by the multiplication principle
there are N × (N − 1) × (N − 2) × · · · × (N − 999) possible ordered samples. For
national polls in the United States, where N, the number of people age 18 or over,
is about 250 million, that gives about (250,000,000)1000 possible ordered samples,
which is a mind-boggling 2.5 with 8000 zeros after it. ◼

As defined, permutations tell us the number of possible arrangements of n objects
where all objects are distinguishable and order matters when sampling without
replacement. As in the last example, perhaps we only want to arrange k of the n
objects, k ≤ n, sampling without replacement where order matters. What changes
when we want to know the number of permutations of k objects out of n?

The first object can still be any of the n objects, while the second can be any
of the remaining n − 1 objects, etc. However, rather than continuing to the last of
the n objects, we stop at the kth object. Considering the pattern, the kth object can
be any of the remaining n − k + 1 objects at that point. Thus, the number of possi-
ble arrangements is n × (n − 1) × · · · × (n − k + 1) which is more easily written as
n!∕(n − k)! We illustrate this in the following examples.

□■ Example 1.18 A club with seven members needs to elect three officers (president,
vice president, and secretary/treasurer) for the upcoming year. Members can only
hold one position. How many sets of officers are possible?

Thinking through the problem, the president can be any of the seven members.
Once the president is in place, the vice president can be any of the remaining six
members, and finally, the secretary/treasurer can be any of the remaining five mem-
bers. By the multiplication rule, the number of possible sets of officers is 7 × 6 × 5 =
210. We obtain the same result with n = 7 and k = 3, as 7!∕4! = 210. ◼

□■ Example 1.19 A company decides to create inventory stickers for their product.
Each sticker will consist of three digits (0–9) which cannot repeat among them-
selves, two capital letters which cannot repeat, and another three digits that cannot
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repeat amongst themselves. For example, valid stickers include 203AZ348 and
091BE289, but 307JM449 is not valid. How many different possible stickers can
the company make?

We use both permutations and the multiplication rule to solve the problem. For
the three digits, there are n = 10 possible options and we need k = 3 in order. This
occurs twice. For each set of digits, there are thus n!∕(n − k)! = 10!∕7! = 10 × 9 ×
8 = 720 arrangements possible. For the capital letters, there are n = 26 options with
k = 2. Thus, the number of possible arrangements is 26 × 25 = 650. Combining
this we find the number of possible stickers is 720 × 650 × 720 = 336,960,000. The
company can keep inventory on up to almost 337 million objects with this scheme
for stickers. ◼

1.7 COUNTING II

In the last section, you learned how to count ordered lists and permutations. Here
we count unordered sets and subsets. For example, given a set of n distinct objects,
how many subsets of size k can we select when sampling without replacement?
To proceed, we first show a simple yet powerful correspondence between subsets
of a set and binary sequences, or lists. This correspondence will allow us to relate
counting results for sets to those for lists, and vice versa.

A binary sequence is a list, each of whose elements can take one of two values,
which we generically take to be zeros and ones. Our questions about subsets of size
k drawn from n distinct objects is equivalent to asking: how many binary sequences
of length n contain exactly k ones?

To illustrate, consider a group of n people lined up in a row and numbered 1 to
n. Each person holds a card. On one side of the card is a 0; on the other side is a 1.
Initially, all the cards are turned to 0. The n cards from left to right form a binary list.

Select a subset of the n people. Each person in the subset turns over his/her
card, from 0 to 1. The cards taken from left to right form a new binary list. For
instance, if n = 6 and the first and third persons are selected, the corresponding list
is (1, 0, 1, 0, 0, 0).

Conversely, given a list of zeros and ones, we select those people corresponding
to the ones in the list. That is, if a one is in the kth position in the list, then person k
is selected. If the list is (1, 0, 1, 1, 1, 1), then all but the second person are selected.

This establishes a one-to-one correspondence between subsets of {1, . . . , n} and
binary lists of length n. Table 1.3 shows the correspondence for the case n = 3.

A one-to-one correspondence between two finite sets means that both sets
have the same number of elements. Our one-to-one correspondence shows that
the number of subsets of an n-element set is equal to the number of binary lists
of length n. The number of binary lists of length n is easily counted by the
multiplication principle. As there are two choices for each element of the list, there
are 2n binary lists. The number of subsets of an n-element set immediately follows
as 2n.



�

� �

�

COUNTING II 17

TABLE 1.3. Correspondence between
subsets and binary lists.

Subset List

∅ (0, 0, 0)
{1} (1, 0, 0)
{2} (0, 1, 0)
{3} (0, 0, 1)
{1, 2} (1, 1, 0)
{1, 3} (1, 0, 1)
{2, 3} (0, 1, 1)
{1, 2, 3} (1, 1, 1)

1.7.1 Combinations and Binomial Coefficients

Our goal is to count the number of binary lists of length n with exactly k ones.
We will do so by first counting the number of k-element subsets of an n-element
set. In the subset-list correspondence, observe that every k-element subset of
{1, . . . , n} corresponds to a binary list with k ones. And conversely, every binary
list with exactly k ones corresponds to a k-element subset. This is true for each
k = 0, 1, . . . , n. For instance, in the case n = 4 and k = 2, the subsets are

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}

with corresponding lists

(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1).

Given a specific k-element subset, there are k! ordered lists that can be formed
by permuting the elements of that subset. For instance, the three-element subset
{1, 3, 4} yields the 3! = 6 lists: (1,3,4), (1,4,3), (3,1,4), (3,4,1), (4,1,3), and (4,3,1).

It follows that the number of lists of length k made up of the elements {1, . . . , n}
is equal to k! times the number of k-element subsets of {1, . . . , n}. By the mul-
tiplication principle, there are n × (n − 1) × · · · × (n − k + 1) such lists. Thus, the
number of k-element subsets of {1, . . . , n} is equal to

n × (n − 1) × · · · × (n − k + 1)
k!

= n!
k!(n − k)!

.

This quantity is so important it gets its own name. It is known as a binomial coeffi-
cient, written (n

k

)
= n!

k!(n − k)!
,

and read as “n choose k.” On calculators, the option may be shown as “nCr.”
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TABLE 1.4. Common values
of binomial coefficients.

Binomial coefficients(
n

0

)
=
(

n

n

)
= 1(

n

1

)
=
(

n

n−1

)
= n(

n

2

)
=
(

n

n−2

)
= n(n − 1)∕2(

n

k

)
=
(

n

n−k

)

The binomial coefficient is often referred to as a way to count combinations,
numbers of arrangements where order does not matter, as opposed to permutations,
where order does matter. From the equation, one can see that the number of com-
binations of obtaining k objects from n is equal to the number of permutations of k
objects out of n objects divided by the factorial of k, the size of the subset desired
(the number of permutations of the k objects). This is accounting for the fact that in
combinations, we do not care about the order of the objects in the subset.

By the one-to-one correspondence between k-element subsets and binary lists
with exactly k ones, we have the following.

COUNTING k-ELEMENT SUBSETS AND LISTS WITH k ONES

There are
(n

k

)
k-element subsets of {1, . . . , n}.

There are
(n

k

)
binary lists of length n with exactly k ones.

There are
(n

k

)
ways to select a subset of k objects from a set of n objects when

the order the objects are selected in does not matter.

Binomial coefficients are defined for nonnegative integers n and k, where 0 ≤

k ≤ n. For k < 0 or k > n, set
(

n
k

)
= 0. Common values of binomial coefficients

are given in Table 1.4.

□■ Example 1.20 A classroom of ten students has six females and four males.
(i) What are the number of ways to pick five students for a project? (ii) How many
ways can we pick a group of two females and three males?

(i) There are
(

10
5

)
= 252 ways to pick five students.
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(ii) There are
(

6
2

)
= 15 ways to pick the females, and

(
4
3

)
= 4 ways to pick the

males. By the multiplication principle, there are 15 × 4 = 60 ways to pick
the group.

◼

□■ Example 1.21 In a poker game, players are dealt five cards from a standard deck
of 52 cards as their starting hand. The best hand in the game of poker is a royal
straight flush consisting of 10-Jack-Queen-King-Ace, all of the same suit. What is
the probability of getting dealt a royal straight flush?

There are four possible royal straight flushes, one for each suit. A five-card hand
in poker is a five-element subset of a 52-element set. Thus,

P(Royal straight flush) = 4(
52
5

) = 1.539 × 10−6
,

or about 1.5 in a million. ◼

□■ Example 1.22 Texas hold ’em. In Texas hold ’em poker, players are initially
dealt two cards from a standard deck. What is the probability of being dealt at least
one ace?

Consider the complementary event of being dealt no aces. There are
(

48
2

)
ways

of being dealt two cards neither of which are aces. The desired probability is

1 −
(48

2

)/(52
2

)
= 1 − 188

221
= 33

221
= 0.149321.

◼

□■ Example 1.23 Twenty-five people will participate in a clinical trial, where 15
people receive the treatment and 10 people receive the placebo. In a group of six
people who participated in the trial, what is the probability that four received the
treatment and two received the placebo?

There are
(

15
4

)
ways to pick the four who received the treatment, and

(
10
2

)
ways

to pick the two who received the placebo. There are
(

25
6

)
possible subgroups of six

people. The desired probability is(15
4

)(10
2

)/(25
6

)
= 351

1012
= 0.347. ◼

□■ Example 1.24 Powerball lottery. In the Powerball lottery, the player picks five
numbers between 1 and 59 and then a single “powerball” number between 1 and 35.
To win the jackpot, you need to match all six numbers. What is the probability of
winning the jackpot?
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There are
(

35
1

)(
59
5

)
possible plays. Of these, one is the jackpot winner. The

desired probability is

P(Jackpot) = 1

/
35

(59
5

)
= 5.707 × 10−9

,

or almost 1 out of 200 million.
You can win $10,000 in the Powerball lottery if you match the powerball and

exactly four of the other five numbers. The number of ways to make such a match
is
(

5
4

)(
54
1

)
. This is accomplished by selecting the matching powerball

(
1
1

)
, four

of the five selected nonpowerball numbers
(

5
4

)
, and one of the remaining nonse-

lected nonpowerball numbers
(

54
1

)
. Note that the coefficient

(
1
1

)
for selecting the

powerball winner is not shown in the computation. This is a common convention for
coefficients that evaluate to 1 or n, as shown below with

(
35
1

)
= 35. The probability

of winning $10,000 in Powerball is thus

P($10,000) =
(5

4

)(54
1

)/
35

(59
5

)
= 1.54089 × 10−6

,

about the same as the probability of being dealt a royal straight flush in poker. ◼

□■ Example 1.25 Bridge. In the game of bridge, all 52 cards are dealt out to four
players. Each player gets 13 cards. A perfect bridge hand is getting all cards of the
same suit. (i) What is the probability of being dealt a perfect hand? (ii) What is the
probability that all four players will be dealt perfect hands?

(i) There are
(

52
13

)
possible bridge hands. Of those, four contain all the same suit.

Thus, the probability of being dealt a perfect hand is

4(
52
13

) = 1
158,753, 389,900

= 6.29908 × 10−12
.

(ii) There are
(

52
13

)
ways for the first player to be dealt 13 cards. Then

(
39
13

)
ways

to deal the remaining 39 cards to the second player, and so on. There are(52
13

)(39
13

)(26
13

)(13
13

)
= 52!

13!13!13!13!

possible ways to deal out the deck. Perfect hands differ by the suit. And there
are 4! = 24 ways to permute the four suits among the four players. The desired
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probability is
4!13!13!13!13!

52!
= 4.47388 × 10−28

.
◼

Perfect Bridge Hands

According to the BBC News [2003], on January 27, 1998, in a whist club in
Bucklesham, England, four card players at a table were dealt perfect bridge
hands.

“Witnesses in the village hall where the game was being played,” reported
the BBC, “have confirmed what happened. Eighty-seven-year-old Hilda Golding
was the first to pick up her hand. She was dealt 13 clubs in the pack . . . . Hazel
Ruffles had all the diamonds. Alison Chivers held the hearts . . . .”

“Chivers insists that the cards were shuffled properly. ‘It was an ordinary pack
of cards,’ she said.”

Another report of a perfect bridge hand appeared in The Herald of Sharon,
Pa., on August 16, 2010.

An article in 2011 (https://aperiodical.com/2011/12/four-perfect-hands-an-
event-never-seen-before-right/) reported several instances of perfect bridge
hands being dealt starting in 1929.

Do you think these reports are plausible?

□■ Example 1.26 In 20 coin tosses, what is the probability of getting exactly 10
heads?

Here is a purely counting approach. There are 220 possible coin tosses. Of those,
there are

(
20
10

)
sequences of H’s and T’s with exactly 10 H’s. The desired probabil-

ity is (
20
10

)
220

= 0.176197.

A slightly different approach first counts the number of possible outcomes and
then computes the probability of each. There are

(
20
10

)
possible outcomes. By

independence, each outcome occurs with probability (1∕2)20. This gives the same
result. ◼

□■ Example 1.27 A DNA strand can be considered a sequence of As, Cs, Gs, and
Ts. Positions on the DNA sequence are called sites. Assume that the letters at each
site on a DNA strand are equally likely and independent of other sites (a sim-
plifying assumption that is not true with actual DNA). Suppose we want to find
(i) the probability that a DNA strand of length 20 is made up of 4 As and 16 Gs and
(ii) the probability that a DNA strand of length 20 is made up of 4 As, 5 Gs, 3 Ts,
and 8 Cs.
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(i) There are
(

20
4

)
binary sequences of length 20 with 4 As and 16 Gs. By inde-

pendence, each sequence occurs with probability 1∕420. The desired probability
is (

20
4

)
420

= 4.4065 × 10−9
.

(ii) Consider the positions of the letters. There are
(

20
4

)
choices for the positions

of the As. This leaves 16 positions for the Gs. There are
(

16
5

)
choices for those.

Of the remaining 11 positions, there are
(

11
3

)
positions for the Ts. And the last

eight positions are fixed for the Cs. This gives(20
4

)(16
5

)(11
3

)(8
8

)/
420 = 20!

4!5!3!8!

/
420 = 0.00317.

This last expression is an example of a multinomial probability, discussed in
Chapter 5.

◼

Binomial theorem. The classic binomial theorem describes the algebraic expan-
sion of powers of a polynomial with two terms. The algebraic proof uses induction
and is somewhat technical. Here is a combinatorial proof.

BINOMIAL THEOREM

For nonnegative integer n, and real numbers x and y,

(x + y)n =
n∑

k=0

(n
k

)
xkyn−k

.

Proof: It will help the reader in following the proof to choose a small n, say n = 3,
and expand (x + y)3 by hand.

Observe that all the terms of the expansion have the form xkyn−k, for
k = 0, 1, . . . , n. Fix k and consider the coefficient of xkyn−k in the expansion. The
product (x + y)n = (x + y) · · · (x + y) consists of n factors. There are k of these
factors to choose an x from, and the remaining n − k factors to choose a y from.
There are

(
n
k

)
ways to do this. Thus, the coefficient of xkyn−k is

(
n
k

)
, which gives

the result. ◻
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1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1

FIGURE 1.3: Pascal’s triangle.

Let x = y = 1 in the binomial theorem. This gives

2n =
n∑

k=0

(n
k

)
1k1n−k =

n∑
k=0

(n
k

)
.

There is a combinatorial interpretation of this identity. The left-hand side counts
the number of sets of size n. The right-hand side counts the number of such sets by
summing the number of subsets of size 0, size 1, . . . , and size n.

Binomial coefficients appear in the famous Pascal’s triangle, shown in Figure 1.3.
Each entry of the triangle is the sum of the two numbers above it. The entries are all
binomial coefficients. Enumerate the rows starting at n = 0 at the top. The entries
of each row are numbered from the left starting at k = 0. The kth number on the nth
row is

(
n
k

)
. The fact that each entry is the sum of the two entries above it gives the

identity (n
k

)
=
(n − 1

k − 1

)
+
(n − 1

k

)
. (1.5)

The algebraic proof of this identity is an exercise in working with factorials.(n − 1
k − 1

)
+
(n − 1

k

)
= (n − 1)!

(k − 1)!(n − k)!
+ (n − 1)!

k!(n − 1 − k)!

= (n − 1)!k
k!(n − k)!

+ (n − k)(n − 1)!
k!(n − k)!

= (n − 1)!(k + (n − k)
k!(n − k)!

= (n − 1)!n
k!(n − k)!

= n!
k!(n − k)!

=
(n

k

)
.
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Here is a combinatorial proof:

Question: There are n students in the room, including Addison. How many ways
are there to pick a group of k students?

Answer #1: Choose k students from the set of n students in
(

n
k

)
ways.

Answer #2: Pick k students that include Addison. Then pick k students that do
not include Addison. If Addison is included, there are

(
n−1
k−1

)
ways to pick

the remaining k − 1 students in the group. If Addison is not included, there
are

(
n−1

k

)
ways to pick the group (choosing from everyone except Addison).

Thus, there are
(

n−1
k−1

)
+
(

n−1
k

)
ways to pick a group of k students.

The two solutions answer the same question, proving the desired identity.

□■ Example 1.28 Ballot problem. This classic problem introduced by Joseph
Louis François Bertrand in 1887 asks, “In an election where candidate A receives
p votes and candidate B receives q votes with p > q, what is the probability that A
will be strictly ahead of B throughout the count?” The problem assumes that votes
for A and B are equally likely.

For instance, if A receives p = 3 votes and B receives q = 2 votes, the possible
vote counts are given in Table 1.5. Of the 10 possible voting outcomes, only the first
two show A always ahead throughout the count. The desired probability is 2∕10 =
1∕5.

We show that the solution to the ballot problem is (p − q)∕(p + q).
A voting outcome can be thought of as a list of length p + q with p As and q Bs.

Thus, there are
(

p+q
p

)
possible voting outcomes.

TABLE 1.5. Voting outcomes for the ballot
problem.

Net votes for A
Voting pattern during the count

AAABB 1,2,3,2,1
AABAB 1,2,1,2,1
AABBA 1,2,1,0,1
ABABA 1,0,1,0,1
ABAAB 1,0,1,2,1
ABBAA 1,0,−1,0,1
BAAAB −1,0,1,2,1
BAABA −1,0,1,0,1
BABAA −1,0,−1,0,1
BBAAA −1,−2,0,1,2

A receives three votes and B receives two votes.
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FIGURE 1.4: Illustrating the correspondence between “bad” lists that start with A and lists
that start with B.

Consider the number of outcomes in which A is always ahead. Clearly, such an
outcome must begin with a vote for A. The number of outcomes that begin with
A is

(
p+q−1

p−1

)
, because the first element of the list is fixed and there are p + q − 1

positions to fill with p − 1 A’s. Some of these outcomes are “good” (A stays ahead
throughout) and some are “bad”. We need to subtract off the number of “bad” lists.

To count such lists, we give a one-to-one correspondence between “bad” lists
that start with A and general lists that start with B. To do so, we represent a voting
outcome by a path where the vertical axis represents the number of votes for A.
Thus, when a path crosses the horizontal axis, it represents a tie.

See the example in Figure 1.4. The left diagram corresponds to the voting out-
come AABABBBAAA. The outcome is “bad” in that there is eventually a tie and
the path crosses the horizontal axis. For such a path, “reflect” the portion of the
path up until the tie across the x axis, giving the outcome in the right diagram. The
reflection results in a path that starts with B.

Conversely, consider a path that starts with B. As there are more As than Bs, at
some point in the count, there must be a tie and the path crosses the x-axis. Reflecting
the portion of the path up until the tie across the x-axis gives a “bad” path that starts
with A.

Having established a one-to-one correspondence we see that the number of “bad”
lists that start with A is equal to the number of lists that start with B. There are(

p+q−1
q−1

)
lists that start with B. This gives the desired probability

P(A is ahead throughout the count)

=
Number of good lists that start with A

Number of voting outcomes

= Number of lists that start with A − Number of bad lists that start with A
Number of voting outcomes

=

[(
p+q−1

p−1

)
−
(

p+q−1
q−1

)]
(

p+q
p

) .

We leave it to the reader to check that this last expression simplifies to (p − q)
/
(p +

q). ◼
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To round out this chapter, in the next sections, we examine some problem-solving
strategies and take a first look at simulation as tools to help in your study of
probability.

1.8 PROBLEM-SOLVING STRATEGIES: COMPLEMENTS
AND INCLUSION–EXCLUSION

Consider a sequence of events A1,A2, . . . . In this section, we consider strategies to
find the probability that at least one of the events occurs, which is the probability
of the union ∪iAi, i.e., A1 ∪ A2 ∪ A3 ∪ · · ·.

Sometimes the complement of an event can be easier to work with than the event
itself. The complement of the event that at least one of the Ais occurs is the event
that none of the Ais occur, which is the intersection ∩iA

c
i .

Check with a Venn diagram (and if you are comfortable working with sets prove
it yourself) that

(A ∪ B)c = AcBc and (AB)c = Ac ∪ Bc
.

Complements turn unions into intersections, and vice versa. These set-theoretic
results are known as DeMorgan’s laws. The results extend to infinite sequences.
Given events A1,A2, . . . ,( ∞⋃

i=1

Ai

)c

=
∞⋂

i=1

Ac
i and

( ∞⋂
i=1

Ai

)c

=
∞⋃

i=1

Ac
i .

□■ Example 1.29 Four dice are rolled. Find the probability of getting at least one 6.
The sample space is the set of all outcomes of four dice rolls

Ω = {(1, 1, 1, 1), (1, 1, 1, 2), . . . , (6, 6, 6, 6)}.

By the multiplication principle, there are 64 = 1296 elements. If the dice are fair,
each of these outcomes is equally likely. It is not obvious, without some new tools,
how to count the number of outcomes that have at least one 6.

Let A be the event of getting at least one 6. Then the complement Ac is the event
of getting no sixes in four rolls. An outcome has no sixes if the dice rolls a 1, 2, 3, 4,
or 5 on every roll. By the multiplication principle, there are 54 = 625 possibilities.
Thus, P(Ac) = 54∕64 = 625∕1296 and

P(A) = 1 − P(Ac) = 1 − 625
1296

= 0.5177. ◼

Recall the formula in Equation 1.3 for the probability of a union of two events.
We generalize for three or more events using the principle of inclusion–exclusion.
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For events A, B, and C,

P(A ∪ B ∪ C) = P(A) + P(B) + P(C) − P(AB) − P(AC) − P(BC) + P(ABC).

As we first include the sets, then exclude the pairwise intersections, then include
the triple intersection, this is called the inclusion–exclusion principle. The proof is
intuitive with the help of a Venn diagram, which we leave to the reader. Write

A ∪ B ∪ C = [A ∪ B] ∪ [C(AC ∪ BC)c].

The bracketed sets A ∪ B and C(AC ∪ BC)c are disjoint. Thus,

P(A ∪ B ∪ C) = P(A ∪ B) + P(C(AC ∪ BC)c)

= P(A) + P(B) − P(AB) + P(C(AC ∪ BC)c). (1.6)

Write C as the disjoint union

C = [C(AC ∪ BC)] ∪ [C(AC ∪ BC)c] = [AC ∪ BC] ∪ [C(AC ∪ BC)c].

Rearranging gives

P(C(AC ∪ BC)c) = P(C) − P(AC ∪ BC).

Together with Equation 1.6, we find

P(A ∪ B ∪ C) = P(A) + P(B) − P(AB)

+ P(C) − [P(AC) + P(BC) − P(ABC)].

Extending further to more than three events gives the general principle of
inclusion–exclusion. We will not prove it, but if you know how to use mathematical
induction, give it a try.

INCLUSION–EXCLUSION

Given events A1, . . . ,An, the probability that at least one event occurs is

P(A1 ∪ · · · ∪ An) =
∑

i

P(Ai) −
∑
i<j

P(AiAj)

+
∑

i<j<k

P(AiAjAk) − · · · + (−1)n+1P(A1, . . . ,An).
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□■ Example 1.30 An integer is drawn uniformly at random from {1, . . . , 1000} such
that each number is equally likely. What is the probability that the number drawn is
divisible by 3, 5, or 6?

Let D3,D5, and D6 denote the events that the number drawn is divisible by 3, 5,
and 6, respectively. The problem asks for P(D3 ∪ D5 ∪ D6). By inclusion–exclusion,

P(D3 ∪ D5 ∪ D6) = P(D3) + P(D5) + P(D6) − P(D3D5) − P(D3D6)

Let ⌊x⌋ denote the integer part of x. There are ⌊1000∕x⌋ numbers from 1 to 1000
that are divisible by x. Because all selections are equally likely,

P(D3) = ⌊1000∕3⌋∕1000 = 0.333.

P(D5) = ⌊1000∕5⌋∕1000 = 0.20.

P(D6) = ⌊1000∕6⌋∕1000 = 0.166.

A number is divisible by 3 and 5 if and only if it is divisible by 15. Thus, D3D5 =
D15. If a number is divisible by 6, it is also divisible by 3, so D3D6 = D6. Also,
D5D6 = D30. And D3D5D6 = D30. This gives

P(D3D5) = ⌊1000∕15⌋∕1000 = 0.066.

P(D3D6) = 0.166.

P(D5D6) = ⌊1000∕30⌋∕1000 = 0.033.

P(D3D5D6) = 0.033.

Putting it all together gives us that P(D3 ∪ D5 ∪ D6) is equal to

0.333 + 0.2 + 0.166 − 0.066 − 0.166 − 0.033 + 0.033 = 0.467. ◼

We have presented two different ways of computing the probability that at least
one of several events occurs: (i) a “back-door” approach of taking complements and
working with the resulting “and” probabilities and (ii) a direct “frontal-attack” by
inclusion–exclusion. Here is a third way, which illustrates decomposing an event
into a union of mutually exclusive subsets.

□■ Example 1.31 Consider a random experiment that has k equally likely outcomes,
one of which we call success. Repeat the experiment n times. Let A be the event that
at least one of the n outcomes is a success. We want to find P(A).

For instance, consider rolling a die 10 times, where success means rolling a three.
Here n = 10, k = 6, and A is the event of rolling at least one 3.

Define a sequence of events A1, . . . ,An, where Ai is the event that the ith trial is
a success. Then A = A1 ∪ · · · ∪ An and P(A) = P(A1 ∪ · · · ∪ An). We cannot use the
addition rule on this probability as the Ais are not mutually exclusive.
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To define a sequence of mutually exclusive events, let Bi be the event that the first
success occurs on the ith trial. Then the Bis are mutually exclusive. Furthermore,

B1 ∪ · · · ∪ Bn = A1 ∪ · · · ∪ An = A.

Thus, P(A) = P(B1 ∪ · · · ∪ Bn) = P(B1) + · · · + P(Bn).
To find P(Bi), observe that if the first success occurs on the ith trial, then the first

i − 1 trials are necessarily not successes and the ith trial is a success. There are k − 1
possible outcomes for each of the first i − 1 trials, one outcome for the ith trial, and
k possible outcomes for each of the remaining n − i trials. By the multiplication
principle, there are (k − 1)i−1kn−i outcomes where the first success occurs on the ith
trial, and there are kn possible outcomes in all. Thus,

P(Bi) =
(k − 1)i−1kn−i

kn
= 1

k

(k − 1
k

)i−1
= 1

k

(
1 − 1

k

)i−1
,

for i = 1, . . . , n. The desired probability is

P(A) = P(B1) + · · · + P(Bn) =
n∑

i=1

1
k

(
1 − 1

k

)i−1

= 1
k

(
1 − (1 − 1∕k)n

1 − (1 − 1∕k)

)
= 1 −

(
1 − 1

k

)n
.

For instance, the probability of rolling at least one 3 in 10 rolls of a die is

1 −
(

1 − 1
6

)10
= 1 −

(5
6

)10
= 0.8385.

◼

1.9 A FIRST LOOK AT SIMULATION

Using random numbers on a computer to simulate probabilities is called the Monte
Carlo method. Today, Monte Carlo tools are used extensively in statistics, physics,
engineering, and across many disciplines. The name was coined in the 1940s by
mathematicians John von Neumann and Stanislaw Ulam working on the Manhattan
Project. It was named after the famous Monte Carlo casino in Monaco.

Ulam’s description of his inspiration to use random numbers to simulate com-
plicated problems in physics is quoted in Eckhardt [1987]:

The first thoughts and attempts I made to practice [the Monte Carlo method] were
suggested by a question which occurred to me in 1946 as I was convalescing from an
illness and playing solitaires.
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The question was what are the chances that a Canfield solitaire laid out with 52
cards will come out successfully? After spending a lot of time trying to estimate them
by pure combinatorial calculations, I wondered whether a more practical method than
“abstract thinking” might not be to lay it out say one hundred times and simply observe
and count the number of successful plays. This was already possible to envisage with
the beginning of the new era of fast computers, and I immediately thought of problems
of neutron diffusion and other questions of mathematical physics, and more generally
how to change processes described by certain differential equations into an equivalent
form interpretable as a succession of random operations. Later [in 1946], I described
the idea to John von Neumann, and we began to plan actual calculations.

The Monte Carlo simulation approach is based on the relative frequency model
for probabilities. Given a random experiment and some event A, the probability
P(A) is estimated by repeating the random experiment many times and computing
the proportion of times that A occurs.

More formally, define a sequence X1,X2, . . . , where

Xk =
{

1, if A occurs on the kth trial
0, if A does not occur on the kth trial,

for k = 1, 2, . . . . Then
X1 + · · · + Xn

n

is the proportion of times in which A occurs in n trials. For large n, the Monte Carlo
method estimates P(A) by

P(A) ≈
X1 + · · · + Xn

n
. (1.7)

MONTE CARLO SIMULATION

Implementing a Monte Carlo simulation of P(A) requires three steps:

1. Simulate a trial: Model, or translate, the random experiment using ran-
dom numbers on the computer. One iteration of the experiment is called a
“trial.”

2. Determine success: Based on the outcome of the trial, determine whether
or not the event A occurs. If yes, call that a “success.”

3. Replication: Repeat the aforementioned two steps many times. The pro-
portion of successful trials is the simulated estimate of P(A).

Monte Carlo simulation is intuitive and matches up with our sense of how
probabilities “should” behave. We give a theoretical justification for the method in
Chapter 10, where we study limit theorems and the law of large numbers.
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Here is a most simple, even trivial, starting example.

□■ Example 1.32 Consider simulating the probability that an ideal fair coin comes
up heads. One could do a physical simulation by just flipping a coin many times and
taking the proportion of heads to estimate P(Heads).

Using a computer, choose the number of trials n (the larger the better) and type
the R command

> sample(0:1, n, replace = T)

The command samples with replacement from {0, 1} n times such that out-
comes are equally likely. Let 0 represent tails and 1 represent heads. The output
is a sequence of n ones and zeros corresponding to heads and tails. The average, or
mean, of the list is precisely the proportion of ones. To simulate P(Heads), type

> mean(sample(0:1, n, replace = T))

Repeat the command several times (use the up arrow key). These give repeated
Monte Carlo estimates of the desired probability. Observe the accuracy in the esti-
mate with one million trials:

> mean(sample(0:1, 1000000, replace = T))
[1] 0.500376
> mean(sample(0:1, 1000000, replace = T))
[1] 0.499869
> mean(sample(0:1, 1000000, replace = T))
[1] 0.498946
> mean(sample(0:1, 1000000, replace = T))
[1] 0.500115

The R script CoinFlip.R simulates a familiar probability—the probability of
getting three heads in three coin tosses.

R: SIMULATING THE PROBABILITY OF THREE HEADS IN THREE
COIN TOSSES

# CoinFlip.R
# Trial
> trial <- sample(0:1, 3, replace = TRUE)
# Success
> if (sum(trial) == 3) 1 else 0
# Replication
> n <- 10000 # Number of repetitions
> simlist <- numeric(n) # Initialize vector
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> for (i in 1:n) {
trial <- sample(0:1, 3, replace = TRUE)
success <- if (sum(trial) == 3) 1 else 0
simlist[i] <- success }

> mean(simlist) # Proportion of trials with 3 heads
[1] 0.1293

The script is divided into three parts to illustrate (i) coding the trial, (ii) deter-
mining success, and (iii) implementing the replication.

To simulate three coin flips, use the sample command. Again letting 1 represent
heads and 0 represent tails, the command

> trial <- sample(0:1, 3, replace = TRUE)

chooses a head or tails three times. The three results are stored as a three-element
list (called a vector in R) in the variable trial.

After flipping three coins, the routine must decide whether or not they are all
heads. This is done by summing the outcomes. The sum will equal three if and only
if all flips are heads. This is checked with the command

> if (sum(trial) == 3) 1 else 0

which returns a 1 for success, and 0, otherwise.
For the actual simulation, the commands are repeated n times in a loop. The

output from each trial is stored in the vector simlist. This vector will consist of
n ones and zeros corresponding to success or failure for each trial, where success is
flipping three heads.

Finally, after repeating n trials, we find the proportion of successes in all the
trials, which is the proportion of ones in simlist. Given a list of zeros and ones,
the average, or mean, of the list is precisely the proportion of ones in the list. The
command mean(simlist) finds this average giving the simulated probability of
getting three heads.

Run the script via the script file or R supplement to see that the resulting estimate
is fairly close to the exact solution 1∕8 = 0.125. Increase n to 100,000 or even a
million to get more precise estimates. ◼

Reproducibility. If you and a classmate both ran the code above exactly as pre-
sented, you would get different estimates of the probability via the simulation. This
is due to having different random numbers in your simulations. Some readers may
know that computer random number generators are really only pseudorandom. The
computer is using an algorithm that generates numbers which behave like random
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numbers would. It turns out that this is actually a plus when writing code or doing
simulations in the sense that you can make the computer regenerate the same random
numbers by “setting a seed.” You can think of a seed as telling the computer where
to start the algorithm for generating the random numbers. Then, if anyone else runs
the code (including the seed), they would get the same result that you did with that
seed (provided they have the same software and version). In R this is accomplished
with the command

> set.seed(360)

where any number can be used as the input. We will use a seed of 360 unless other-
wise specified and will not show this command in the text (though it is shown in the
supplements and scripts), but it is used before every script where random numbers
are generated. Have fun and set seeds using numbers you enjoy!

The reason that setting seeds is important is that this makes the work repro-
ducible. Reproducibility means that others can take the code and obtain the same
results, lending credibility to the work. While writing simulations, you should aim
to make sure all your code is reproducible.

□■ Example 1.33 The script Divisible356.R simulates the divisibility problem in
Example 1.30 that a random integer from {1, . . . , 1000} is divisible by 3, 5, or 6.
The problem, and the resulting code, is more complex.

The function simdivis() simulates one trial. Inside the function, the expres-
sion num%%x==0 checks whether num is divisible by x. The if statement checks
whether num is divisible by 3, 5, or 6, returning 1 if it is, and 0, otherwise.

After defining the function, typing simdivis() will simulate one trial. By
repeatedly typing simdivis() on your computer, you get a feel for how this
random experiment behaves over repeated trials.

In this script, instead of writing a loop, we use the replicate command. This
powerful R command is an alternative to writing loops for simple expressions. The
syntax is replicate(n,expr). The expression expr is repeated n times cre-
ating an n-element vector. Thus, the result of typing

> simlist <- replicate(1000, simdivis())

is a vector of 1000 ones and zeros stored in the variable simlist corresponding
to success or failure in the divisibility experiment. The average mean(simlist)
gives the simulated probability.

Play with this script. Based on 1000 trials, you might guess that the true prob-
ability is between 0.45 and 0.49. Increase the number of trials to 10,000 and the
estimates are roughly between 0.46 and 0.48. At 100,000, the estimates become
even more precise between 0.465 and 0.468.
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We can actually quantify this increase in precision in Monte Carlo simulation as
n gets large. But that is a topic that will have to wait until Chapter 11.

R: SIMULATING THE DIVISIBILITY PROBABILITY

# Divisible356.R
# simdivis() simulates one trial
> simdivis <- function() {

num <- sample(1:1000,1)
if (num%%3==0 || num%%5==0 || num%%6==0) 1 else 0
}

> simlist <- replicate(10000, simdivis())
mean(simlist)
[1] 0.4707

◼

1.10 SUMMARY

In this chapter, the first principles of probability were introduced: from random
experiment and sample space to the properties of probability functions. We start
with discrete sample spaces—sets are either finite or countably infinite. The
simplest probability model is when outcomes in a finite sample space are equally
likely. In that case, probability reduces to “counting.” Counting principles are
presented for both permutations and combinations. Binomial coefficients count:
(i) the number of k-element subsets of an n-element set and (ii) the number of
n-element binary sequences with a k ones. General properties of probabilities are
derived from the three defining properties of a probability function. The chapter
ends with problem-solving strategies and a first look at simulation.

• Random experiment: An activity, process, or experiment in which the out-
come is uncertain.

• Sample space Ω: Set of all possible outcomes of a random experiment.

• Outcome 𝜔: The elements of a sample space.

• Event: A subset of the sample space; a collection of outcomes.

• Probability function: A function P that assigns numbers to the elements 𝜔 ∈
Ω such that
1. P(𝜔) ≥ 0

2.
∑

𝜔
P(𝜔) = 1

3. For events A, P(A) =
∑

𝜔∈AP(𝜔).
• Equally likely outcomes: Probability model for a finite sample space in which

all elements have the same probability.
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• Counting
1. Multiplication principle: If there are m ways for one thing to happen, and

n ways for a second thing to happen, then there are mn ways for both things
to happen.

2. Permutations: A permutation of {1, . . . , n} is an n-element ordering of
the n numbers. There are n! permutations of an n-element set.

3. Binomial coefficient: The binomial coefficient
(

n
k

)
= n!∕(k!(n − k)!) or

“n choose k” counts: (i) the number of k-element subsets of {1, . . . , n} and
(ii) the number of n element 0 − 1 sequences with exactly k ones. Each
subset is also referred to as a combination.

• Stirling’s approximation: For large n,

n! ≈ nne−n
√

2𝜋n.

• Sampling: When sampling from a population, sampling with replacement is
when objects are returned to the population after they are sampled; sampling
without replacement is when objects are not returned to the population after
they are sampled.

• Properties of probabilities:
1. Simple addition rule: If A and B are mutually exclusive, that is, disjoint,

then P(A or B) = P(A ∪ B) = P(A) + P(B).
2. Implication: If A implies B, that is, if A ⊆ B, then P(A) ≤ P(B).
3. Complement: The probability that A does not occur P(Ac) = 1 − P(A).
4. General addition rule: For all events A and B, P(A or B) = P(A ∪ B) =

P(A) + P(B) − P(AB).
• Monte Carlo simulation is based on the relative frequency interpretation of

probability. Given a random experiment and an event A, P(A) is approximately
the fraction of times in which A occurs in n repetitions of the random experi-
ment. A Monte Carlo simulation of P(A) is based on three principles:

1. Trials: Simulate the random experiment, typically on a computer using the
computer’s random numbers.

2. Success: Based on the outcome of each trial, determine whether or not A
occurs. Save the result.

3. Replication: Repeat the aforementioned steps n times. The proportion of
successful trials is the simulated estimate of P(A).

• Setting seeds for reproducibility is vital when generating random numbers.

• Problem-solving strategies:
1. Taking complements: Finding P(Ac), the probability of the complement

of an event, might be easier in some cases than finding P(A), the prob-
ability of the event. This arises in “at least” problems. For instance, the
complement of the event that “at least one of several things occur” is
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the event that “none of those things occur.” In the former case, the event
involves a union. In the latter case, the event involves an intersection.

2. Inclusion–exclusion: This is another method for tackling “at least” prob-
lems. For three events, inclusion–exclusion gives P(A ∪ B ∪ C) equals

P(A) + P(B) + P(C) − P(AB) − P(AC) − P(BC) + P(ABC).

EXERCISES

Understanding Sample Spaces and Events

1.1 Your friend was sick and unable to make today’s class. Explain to your friend,
using your own words, the meaning of the terms (i) random experiment, (ii)
sample space, and (iii) event.

For the following problems 1.2–1.5, identify (i) the random experiment, (ii) the sample
space, and (iii) the event of interest.

1.2 Roll four dice. Consider the probability of getting all fives.

1.3 A pizza shop offers three toppings: pineapple, peppers, and pepperoni. A pizza
can have 0, 1, 2, or 3 toppings. Consider the probability that a random customer
asks for two toppings.

1.4 Bored one day, you decide to play the video game Angry Birds until you win.
Every time you lose, you start over. Consider the probability that you win in
less than 1000 tries.

1.5 In Julia’s garden, there is a 3% chance that a tomato will be bad. Julia harvests
100 tomatoes and wants to know the probability that at most five tomatoes
are bad.

1.6 In two dice rolls, let X be the outcome of the first die, and Y the outcome of
the second die. Then X + Y is the sum of the two dice. Describe the following
events in terms of simple outcomes of the random experiment:
(a) {X + Y = 4}. (Example solution: {(1, 3), (2, 2), (3, 1)}.)
(b) {X + Y = 9}.
(c) {Y = 3}.
(d) {X = Y}.
(e) {X > 2Y}.

1.7 A bag contains r red and b blue balls. You reach into the bag and take k
balls. Let R be the number of red balls you take. Let B be the number of
blue balls. Express the following events in terms of R and B, assuming valid
values for r, b, and k:
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(a) You pick no red balls. (Example solution: {R = 0}.)

(b) You pick one red and two blue balls.

(c) You pick four balls.

(d) You pick twice as many red balls as blue balls.

(e) You pick at least two red balls.

1.8 A couple plans to continue having children until they have a girl or until
they have six children, whichever comes first. Describe an appropriate sample
space for this random experiment.

Probability Functions

1.9 A sample space has four elements 𝜔1, . . . , 𝜔4 such that 𝜔1 is twice as likely
as 𝜔2, which is three times as likely as 𝜔3, which is four times as likely as 𝜔4.
Find the probability function.

1.10 A sample space has four elements 𝜔1, . . . , 𝜔4 such that 𝜔1 is ten times as
likely as 𝜔3, which is four times as likely as 𝜔4. Finally, 𝜔2 is as likely as 𝜔3
and 𝜔4 combined. Find the probability function.

1.11 A sample space has four elements. For the potential probability functions for
the sample space below, state whether they are valid or not. Provide support
for your response.

(a) P(𝜔1) = 0.6,P(𝜔2) = 0.05,P(𝜔3) = 0.4,P(𝜔4) = 0.2.

(b) P(𝜔1) = 0.5,P(𝜔2) = 0.2,P(𝜔3) = 0.2,P(𝜔4) = 0.1.

(c) P(𝜔1) = 0.15,P(𝜔2) = 0.3,P(𝜔3) = 0.1,P(𝜔4) = 0.45.

(d) P(𝜔1) = 0.3,P(𝜔2) = 0.3,P(𝜔3) = −0.2,P(𝜔4) = 0.6.

1.12 A random experiment has three possible outcomes a, b, and c, with

P(a) = p, P(b) = p2
, and P(c) = p.

What choice(s) of p makes this a valid probability model?

1.13 Let P1 and P2 be two probability functions on Ω. Define a new function P
such that P(A) = (P1(A) + P2(A))∕2. Show that P is a probability function.

1.14 Suppose P1, . . . ,Pk are probability functions on Ω. Let a1, . . . , ak be a
sequence of numbers. Under what conditions on the ai’s will

P = a1P1 + · · · + akPk

be a probability function?
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1.15 Let P be a probability function on Ω = {a, b} such that P(a) = p and P(b) =
1 − p for 0 ≤ p ≤ 1. Let Q be a function on Ω defined by Q(𝜔) = [P(𝜔)]2. For
what value(s) of p will Q be a valid probability function?

Equally Likely Outcomes and Counting

1.16 A club has 10 members including Nasir, Rose, and Devin, and is choosing a
president, vice-president, and treasurer. All selections are equally likely.
(a) What is the probability that Nasir is selected president?
(b) What is the probability that Rose is chosen president and Devin is chosen

treasurer?
(c) What is the probability that neither Nasir, Rose, or Devin obtain a posi-

tion?

1.17 A fair coin is flipped six times. What is the probability that the first two flips
are heads and the last two flips are tails? Use the multiplication principle.

1.18 Suppose that license plates can be two, three, four, or five letters long, taken
from the alphabets A to Z. All letters are possible, including repeats. A license
plate is chosen at random in such a way so that all plates are equally likely.
(a) What is the probability that the plate is “A-R-R?”
(b) What is the probability that the plate is four letters long?
(c) What is the probability that the plate is a palindrome?
(d) What is the probability that the plate has at least one “R?”

1.19 Suppose you throw five dice and all outcomes are equally likely.
(a) What is the probability that all dice are the same? (In the game of Yahtzee,

this is known as a yahtzee.)
(b) What is the probability of getting at least one 4?
(c) What is the probability that all the dice are different?

1.20 Tori is picking her fall term classes. She needs to fill three time slots, and
there are 20 distinct courses to choose from, including probability 101, 102,
and 103. She will pick her classes at random so that all outcomes are equally
likely.
(a) What is the probability that she will get probability 101?
(b) What is the probability that she will get probability 101 and probabil-

ity 102?
(c) What is the probability she will get all three probability courses?

1.21 Suppose k numbers are chosen from {1, . . . , n}, where k < n, sampling with-
out replacement. All outcomes are equally likely. What is the probability that
the numbers chosen are in increasing order?
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1.22 There are 40 pairs of shoes in Bill’s closet. They are all mixed up.

(a) If 20 shoes are picked, what is the chance that Bill’s favorite sneakers will
be in the group?

(b) If 20 shoes are picked, what is the chance that at most one shoe from each
of the 40 pairs will be picked? (Remember, a left shoe is different than a
right shoe.)

1.23 Many bridge players believe that the most likely distribution of the four suits
(spades, hearts, diamonds, and clubs) in a bridge hand is 4-3-3-3 (four cards
in one suit, and three cards of the other three).

(a) Show that the suit distribution 4-4-3-2 is more likely than 4-3-3-3.

(b) In fact, besides the 4-4-3-2 distribution, there are three other patterns of
suit distributions that are more likely than 4-3-3-3. Can you find them?

1.24 Find the probability that a bridge hand contains a nine-card suit. That is, the
number of cards of the longest suit is nine.

1.25 A chessboard is an eight-by-eight arrangement of 64 squares. Suppose eight
chess pieces are placed on a chessboard at random so that each square can
receive at most one piece. What is the probability that there will be exactly
one piece in each row and in each column?

1.26 Find the probabilities for being dealt the following poker hands. They are
arranged in increasing order of probability.

(a) Straight flush. (Five cards in a sequence and of the same suit.)

(b) Four of a kind. (Four cards of one face value and one other card.)

(c) Full house. (Three cards of one face value and two of another face value.)

(d) Flush. (Five cards of the same suit. Does not include a straight flush.)

(e) Straight. (Five cards in a sequence. Does not include a straight flush. Ace
can be high or low.)

(f) Three of a kind. (Three cards of one face value. Does not include four of
a kind or full house.)

(g) Two pair. (Does not include four of a kind or full house.)

(h) One pair. (Does not include any of the aforementioned conditions.)

1.27 A walk in the positive quadrant of the plane consists of a sequence of moves,
each one from a point (a, b) to either (a + 1, b) or (a, b + 1).
(a) Show that the number of walks from the origin (0, 0) to (x, y) is

(
x+y

x

)
.

(b) Suppose a walker starts at the origin (0, 0) and at each discrete unit of time
moves either up one unit or to the right one unit each with probability 1/2.
If x > y, find the probability that a walk from (0,0) to (x, y) always stays
above the main diagonal.
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1.28 See Example 1.24 for a description of the Powerball lottery. A $100 prize is
won by either (i) matching exactly three of the five balls and the powerball
or (ii) matching exactly four of the five balls and not the powerball. Find the
probability of winning $100.

1.29 Give a combinatorial argument (not an algebraic one) for why(n
k

)
=
( n

n − k

)
.

1.30 Give a combinatorial proof that

k∑
i=0

(m
i

)( n
k − i

)
=
(m + n

k

)
. (1.8)

Hint: How many ways can you choose k people from a group of m men and n
women? From Equation 1.8 show that

n∑
k=0

(n
k

)2
=
(2n

n

)
. (1.9)

Properties of Probabilities

1.31 Suppose P(A) = 0.50, P(AB) = 0.20, and P(A or B) = 0.70. Find

(a) P(B).
(b) P(exactly one of the two events occurs).
(c) P(neither event occurs).

1.32 Suppose P(A) = 0.40, P(B) = 0.60, and P(A or B) = 0.80. Find

(a) P(neither A nor B occur).
(b) P(AB).
(c) P(one of the two events occurs, and the other does not).

1.33 Suppose A and B are mutually exclusive, with P(A) = 0.30 and P(B) = 0.60.
Find the probability that

(a) At least one of the two events occurs.

(b) Both of the events occur.

(c) Neither event occurs.

(d) Exactly one of the two events occur.

1.34 Suppose P(A ∪ B) = 0.6 and P(A ∪ Bc) = 0.8. Find P(A).
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a b c

d e

f

g

h

BA

C

FIGURE 1.5: Venn diagram.

1.35 Let A, B, C, be three events. At least one event always occurs. But it never
happens that exactly one event occurs. Nor does it ever happen that all three
events occur. If P(AB) = 0.10 and P(AC) = 0.20, find P(B).

1.36 See the assignment of probabilities to the Venn diagram in Figure 1.5. Find
the following:

(a) P(No events occur).

(b) P(Exactly one event occurs).

(c) P(Exactly two events occur).

(d) P(Exactly three events occur).

(e) P(At least one event occurs).

(f) P(At least two events occur).

(g) P(At most one event occurs).

(h) P(At most two events occur).

1.37 Suppose that probabilities have been assigned to the Venn Diagram in
Figure 1.5 as follows: a + c = f = h, b = d = e = g = 0.1, and c = 3a. Find
the following:

(a) P(No events occur).

(b) P(Exactly two events occur).

(c) P(At most one event occurs).

(d) P(At most two events occur).

1.38 For three events A, B, and C, the following is known: P(A) = P(B) = P(C),
P(BC) = 0.2P(B ∪ C), P(AB) = P(AC) = 0, and the probability of no events
occurring is 0.1.
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(a) Sketch a Venn diagram that matches the information provided about the
three events.

(b) Find P(B).
(c) Find P(ABC).
(d) Find P[(A ∪ B) ∪ Cc].

1.39 Four coins are tossed. Let A be the event that the first two coins both come
up heads. Let B be the event that the number of heads is odd. Assume that
all 16 elements of the sample space are equally likely. Describe and find the
probabilities of (i) AB, (ii) A ∪ B, and (iii) ABc.

1.40 Two dice are rolled. Let X be the maximum number obtained. (Thus, if 1 and 2
are rolled, X = 2; if 5 and 5 are rolled, X = 5.) Assume that all 36 elements of
the sample space are equally likely. Find the probability function for X. That
is, find P(X = x), for x = 1, 2, 3, 4, 5, 6.

1.41 Judith has a penny, nickel, dime, and quarter in her pocket. So does Kory. They
both reach into their pockets and choose a coin. Let X be the greater (in cents)
of the two.

(a) Construct a sample space and describe the events {X = k} for
k = 1, 5, 10, 25.

(b) Assume that coin selections are equally likely. Find the probabilities for
each of the aforementioned four events.

(c) What is the probability that Judith’s coin is worth more than Kory’s? (It
is not 1∕2.)

1.42 A tetrahedral dice is four-sided and labeled with 1, 2, 3, and 4. When rolled
it lands on the base of a pyramid and the number rolled is the number on the
base. In five rolls, what is the probability of rolling at least one 2?

1.43 Let
Q(k) = 2

3k+1
, for k = 0, 1, 2, . . . .

(a) Show that Q is a probability function. That is, show that the terms are
nonnegative and sum to 1.

(b) Let X be defined such that P(X = k) = Q(k), for k = 0, 1, 2, . . . . Find
P(X > 2) without summing an infinite series.

1.44 The function

P(k) = c
3k

k!
, for k = 0, 1, 2, . . . ,

is a probability function for some choice of c. Find c.

1.45 Let A, B, C be three events. Find expressions for the events:

(a) At least one of the events occurs.
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(b) Only B occurs.
(c) At most one of the events occurs.
(d) All of the events occur.
(e) None of the events occur.

1.46 The odds in favor of an event is the ratio of the probability that the event occurs
to the probability that it will not occur. For example, the odds that you were
born on a Friday, assuming birthdays are equally likely, is 1 to 6, often written
1 ∶ 6 or 1 to 6, obtained from (1/7)/(6/7).
(a) In Texas Hold’em Poker, the odds of being dealt a pair (two cards of the

same denomination) is 1 ∶ 16. What is the chance of not being dealt a
pair?

(b) For sporting events, bookies usually quote odds as odds against, as
opposed to odds in favor. In the Kentucky Derby horse race, our horse
Daddy Long Legs was given 9 to 2 odds. What is the chance that Daddy
Long Legs wins the race?

1.47 An exam had three questions. One-fifth of the students answered the first
question correctly; one-fourth answered the second question correctly; and
one-third answered the third question correctly. For each pair of questions,
one-tenth of the students got that pair correct. No one got all three questions
right. Find the probability that a randomly chosen student did not get any of
the questions correct.

1.48 Suppose P(ABC) = 0.05, P(AB) = 0.15, P(AC) = 0.2, P(BC) = 0.25, P(A) =
P(B) = P(C) = 0.5. For each of the events given next, write the event using set
notation in terms of A, B, and C, and compute the corresponding probability.
(a) At least one of the three events A,B,C occur.
(b) At most one of the three events occurs.
(c) All of the three events occurs.
(d) None of the three events occurs.
(e) At least two of the three events occurs.
(f) At most two of the three events occurs.

1.49 Find the probability that a random integer between 1 and 5000 is divisible by
4, 7, or 10.

1.50 Each of the four squares of a two-by-two checkerboard is randomly colored
red or black. Find the probability that at least one of the two columns of the
checkerboard is all red.

1.51 Given events A and B, show that the probability that exactly one of the events
occurs equals

P(A) + P(B) − 2P(AB).
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1.52 Given events A,B,C, show that the probability that exactly one of the events
occurs equals

P(A) + P(B) + P(C) − 2P(AB) − 2P(AC) − 2P(BC) + 3P(ABC).

Simulation and R

1.53 Modify the code in the R script CoinFlip.R to simulate the probability of
getting exactly one head in four coin tosses.

1.54 Modify the code in the R script Divisible356.R to simulate the probability
that a random integer between 1 and 5000 is divisible by 4, 7, or 10. Compare
with your answer in Exercise 1.49.

1.55 Use R to simulate the probability of two rolled dice having values that sum
to 8.

1.56 Explain what reproducibility means to you in a few sentences.

1.57 Use R to simulate the probability in Exercise 1.41 part c.

1.58 Use R to simulate the probability in Exercise 1.42.

1.59 Make up your own random experiment and write an R script to simulate it. Be
sure your results are reproducible.

1.60 See the help file for the sample command (type ?sample). Write a function
dice(k) for generating k throws of a fair die. Use your function and R’s sum
function to generate the sum of two dice throws.

Chapter Review

Chapter review exercises are available through the text website. The URL is
www.wiley.com/go/wagaman/probability2e.
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CONDITIONAL PROBABILITY AND
INDEPENDENCE

In the fields of observation chance favors only the prepared mind.
—Louis Pasteur

Learning Outcomes

1. Define key conditional probability terms and recognize notation.

2. Solve conditional probability problems using the general multiplication rule
and techniques such as trees.

3. Identify and solve Bayes’ rule problems.

4. Give examples of independence and independent events.

5. (C) Explore simulations of conditional probability problems with a focus on
common functions and loops.

2.1 CONDITIONAL PROBABILITY

Sixty students were asked, “Would you rather be attacked by a big bear or
swarming bees?” Their answers, along with their sex, are collected in the following
contingency table, a common way to present data for two variables, in this case sex
and attack preference. The table includes row and column totals, called marginals
or marginal totals, and the overall total surveyed.

Probability: With Applications and R, Second Edition. Amy S. Wagaman and Robert P. Dobrow.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/wagaman/probability2e

45
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Big bear (B) Swarming bees (S) Total

Female (F) 27 9 36

Male (M) 10 14 24

Total 37 23 60

The table of counts is the basis for creating a probability model for selecting
a student at random and asking their sex and attack preference. The sample space
consists of the four possible responses

Ω = {(F,B), (F, S), (M,B), (M, S)},

where M is male, F is female, B is big bear, and S is swarming bees. The probability
function is constructed from the contingency table so that the probability of each
outcome is the corresponding proportion of responses from the sample. That is,

Big bear (B) Swarming bees (S)

Female (F) 27/60 = 0.450 9/60 = 0.150

Male (M) 10/60 = 0.167 14/60 = 0.233

Some questions of interest are

1. What is the probability that a student is female and would rather be attacked
by a big bear?

2. What is the probability that a female student would rather be attacked by a
big bear?

These questions are worded similarly but ask different things. Let us answer
them to see the differences. For the first question, the proportion of students who are
female and prefer a big bear attack is 27∕60 = 0.450. That is, P(F and B) = 0.450.
For the second question, the proportion of female students who prefer a big bear
attack is 27∕36 = 0.75 because there are 36 females and 27 of them prefer a big
bear attack to a swarming bees attack.

The second probability is an example of a conditional probability. In a condi-
tional probability, some information about the outcome of the random experiment
is known—in this case that the selected student is female. The probability is condi-
tional on that knowledge.

For events A and B, the conditional probability of A given that B occurs is written
P(A|B). We also read this as “the probability of A conditional on B.” Hence, the
probability the student would rather be attacked by a big bear conditional on being
female is P(B|F) = 0.75.
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The probability of preferring a big bear attack conditional on being female is
computed from the table by taking the number of students who are both female and
prefer a big bear attack as a proportion of the total number of females. That is,

P(B|F) = Number of females who prefer a big bear attack

Number of females
.

Dividing numerator and denominator by the total number of students, this is
equivalent to

P(B|F) = P(B and F)
P(F)

.

This suggests how to define the general conditional probability P(A|B).
CONDITIONAL PROBABILITY

For events A and B such that P(B) > 0, the conditional probability of A given
B is

P(A|B) = P(AB)
P(B)

. (2.1)

□■ Example 2.1 In a population, suppose 60% of the people have brown hair (H),
40% have brown eyes (E), and 30% have both (H and E). The probability that some-
one has brown eyes given that they have brown hair is

P(E|H) = P(EH)
P(H)

= 0.30
0.60

= 0.50. ◼

□■ Example 2.2 Consider the Venn diagram in Figure 2.1. If each outcome x is
equally likely, then P(A) = 5∕14, P(B) = 7∕14, P(AB) = 2∕14, P(A|B) = 2∕7, and
P(B|A) = 2∕5. ◼

X

X

X

X

X

X X X X

X

X
X

X
X

A B

FIGURE 2.1:
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□■ Example 2.3 Two dice are rolled. What is the probability that the first die is a 2
given that the sum of the dice is 7?

We use variables to notate the problem. Let X1 and X2 be the outcomes of the
first and second die, respectively. Then the sum of the dice is X1 + X2. The problem
asks for

P(X1 = 2|X1 + X2 = 7) =
P(X1 = 2 and X1 + X2 = 7)

P(X1 + X2 = 7)

=
P(X1 = 2 and 2 + X2 = 7)

P(X1 + X2 = 7)

=
P(X1 = 2 and X2 = 5)

P(X1 + X2 = 7)

= P({(2, 5)})
P({(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)})

=
1∕36

6∕36
= 1

6
.

Observe that for the second equality the variable X1 is replaced with its stated given
value 2.

It is interesting to observe that the unconditional probability P(X1 = 2) that the
first die is 2 is also equal to 1/6. In other words, the information that the sum of the
dice is 7 did not affect the probability that the first die is 2.

On the other hand, if we are given that the sum is 6, then

P(X1 = 2|X1 + X2 = 6) = P({(2, 4)})
P({(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)})

= 1
5
>

1
6
.

Information that the sum of the dice is 6 makes the probability that first die is 2 a
little more likely than if nothing was known about the sum of the two dice. ◼

R: SIMULATING A CONDITIONAL PROBABILITY

Simulating the conditional probability P(A|B) requires repeated simulations of
the underlying random experiment, but restricting to trials in which B occurs.
To simulate the conditional probability in the last example requires simulating
repeated pairs of dice tosses, but the only data that are relevant are those pairs
that result in a sum of 7.

See ConditionalDice.R. Every time a pair of dice is rolled, the routine checks
whether the sum is 7 or not. If not, the dice are rolled again until a 7 occurs. Once
a 7 is rolled, success is recorded if the first die is 2, and failure if it is not. The
proportion of successes is taken just for those pairs of dice rolls that sum to 7.
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A counter ctr is used that is iterated every time a 7 is rolled. This keeps track
of the actual trials. The while statement is a loop that continues to run while
the condition that the ctr is less than n holds. Be careful with while loops!
If the condition is always met, the loop just continues. Here, the condition will
fail once we reach the desired number of trials because then ctr is equal to n,
which exits the loop. We set the number of trials at n =10,000. However, more
than 10,000 trials will be attempted. As the probability of getting a 7 is 1∕6, the
10,000 trials are about one-sixth of the total number of trials attempted, which
we expect to be about 60,000. In each trial, two random numbers are generated,
one for each die roll. So we are likely generating about 120,000 random numbers
but only looking at results involving 20,000 of them.

# ConditionalDice.R
> n <- 10000
> ctr <- 0
> simlist <- numeric(n)
> while (ctr < n) {

trial <- sample(1:6, 2, replace = TRUE)
if (sum(trial) == 7) { # Check if sum is 7
success <- if (trial[1] == 2) 1 else 0
ctr <- ctr + 1
simlist[ctr] <- success } }

> mean(simlist)
[1] 0.1706

□■ Example 2.4 Jayden flips three fair coins. The probability of getting all heads is
(1∕2)3 = 1∕8. Suppose Aimee peeks and sees that the first coin came up heads. For
Aimee, what is the probability that Jayden gets all heads?

Aimee’s probability is conditional on the first coin coming up heads. Given the
first coin is heads, we find

P(HHH| First coin is H) = P(HHH and First coin is H)
P(First coin is H)

= P(HHH)
P(First coin is H)

=
1∕8

1∕2
= 1

4
. ◼

Warning: A common mistake when first working with conditional probability is
to write P(A|B) = P(A)∕P(B). In general, this is just wrong. However, in the special
case when A implies B, that is, A ⊆ B, then it is correct because A ∩ B = A and thus,

P(A|B) = P(A ∩ B)
P(B)

= P(A)
P(B)

.
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That is what happens in the last example, because getting all heads implies that the
first coin is heads.

2.2 NEW INFORMATION CHANGES THE SAMPLE SPACE

In Example 2.4, the fact that Aimee’s probability of getting three heads is different
from Jayden’s highlights the fact that probability is not a static property of a random
experiment. It changes based on information and context. When we ask what is the
probability of getting all heads in three coin tosses, implicit in that question is that
you have not seen the outcome of the experiment. If you see the outcome, then you
know that either all heads came up or they did not, so the probability is either 1 or 0.
On the other hand, when some part of the experiment is observed, then that partial
information becomes relevant in the probability calculation.

Partial information about the outcome of a random experiment actually changes
the set of possible outcomes, that is, it changes the sample space of the original
experiment and reduces it based on new information. So you can think of condition-
ing as asking questions about probabilities on a reduced sample space determined by
the given event. For the three coin tosses, before Aimee peeks, the sample space is

Ω = {HHH,HHT,HTH,THH,HTT,THT,TTH,TTT}.

But after she looks and sees that the first coin is heads, the sample space reduces to

Ω′ = {HHH,HHT,HTH,HTT}.

The resulting conditional probability is a probability function computed on the
restricted sample space.

Conditional probability is a probability function. In Chapter 1, a probabil-
ity function is defined based on a function satisfying three properties—taking only
nonnegative values and satisfying Equations 1.1 and 1.2. Here we show that for a
fixed event B, the conditional probability P(A|B)—as a function of A—is itself a
similarly defined probability function, but on a reduced sample space.

Starting from a random experiment and sample space Ω, let B ⊆ Ω be an event
such that P(B) > 0. We use lowercase letters b to denote the elements of B. Consider
P(A|B) as a function of A. It is better to write this as P(⋅|B) to emphasize that the
conditional probability is a function of its first argument. This function is itself a
probability function on the restricted sample space B, and as a result, satisfies the
three conditions for a probability function, listed below. That is,

1. P(b|B) ≥ 0, for all b ∈ B.

2.
∑

b∈BP(b|B) = 1.

3. For all A ⊆ B, P(A|B) = ∑
b∈AP(b|B).
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The properties are verified subsequently:

1. This is true because P(b|B) is defined as a ratio of two probabilities, which
are both nonnegative. (Recall P(B) > 0.)

2. ∑
b∈B

P(b|B) = ∑
b∈B

P({b} and B)
P(B)

=
∑
b∈B

P(b)
P(B)

= 1
P(B)

∑
b∈B

P(b) = P(B)
P(B)

= 1.

3. Let A ⊆ Ω. Then

P(A|B) = P(A ∩ B)
P(B)

=
∑

b∈A∩B

P(b)
P(B)

=
∑
b∈A

P({b} ∩ B)
P(B)

=
∑
b∈A

P(b|B).
In summary, conditional probabilities are themselves probability functions

defined on the restricted sample space of the conditioning event. To demonstrate,
consider the next example.

□■ Example 2.5 Let X be a random integer picked uniformly from 0 to 6. The prob-
ability function for X is

P(X = 0) = · · · = P(X = 6) = 1
7
.

We are told that X is odd. Then for k = 1, 3, 5,

P(X = k|X is odd) = P(X = k and X is odd)
P(X is odd)

= P(X = k)
P(X is odd)

=
1∕7

3∕7
= 1

3
.

This gives the new probability function, P̃, where

P̃(X = 1) = P̃(X = 3) = P̃(X = 5) = 1
3
,

with reduced sample space {1, 3, 5}. This relationship can be summarized as

P̃(X = k) = P(X = k|X is odd), for k = 1, 3, 5. ◼

2.3 FINDING P (A AND B)

So far we have focused on finding the conditional probability P(A|B), which
requires knowledge of P(A and B). But sometimes what is unknown is precisely
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P(A and B). Rearranging the formula P(A|B) = P(A and B)∕P(B) gives the
following, commonly referred to as the general multiplication rule.

GENERAL FORMULA FOR P (A AND B)

P(A and B) = P(AB) = P(A|B)P(B), (2.2)

This is a general formula for working with “and” probabilities. Observe that by
switching the roles of A and B, this also gives

P(A and B) = P(B|A)P(A).
□■ Example 2.6 Draw two cards from a standard deck. What is the probability of

getting two aces?
The probability of drawing an ace is 4∕52 = 1∕13. If we have already drawn an

ace, the probability of drawing a second ace is 3∕51, as there are three aces left in a
reduced deck of 51. Let A1 be the event of drawing an ace on the first card, and A2
the event of drawing an ace on the second card. Then

P(A1A2) = P(A2|A1)P(A1) =
( 3

51

)( 1
13

)
= 1

221
= 0.0045. ◼

Draw three cards from a standard deck. What is the probability of getting three
aces? Intuitively, you might guess the answer (4∕52)(3∕51)(2∕50) = 0.000178. The
three factors in the probability are (i) the probability of getting an ace on the first
card, (ii) the probability of getting an ace on the second card given that the first card
is an ace, and (iii) the probability of getting an ace on the third card given that the
first two cards are aces.

This intuition is correct and suggests the extension of Equation 2.2 for more than
two events. Given events A1,A2, and A3,

P(A1A2A3) = P(A3|A1A2)P(A2|A1)P(A1). (2.3)

To see this, let A = A1 and B = A2A3. Then

P(A1A2A3) = P(AB) = P(A|B)P(B)
= P(A1|A2A3)P(A2A3)

= P(A1|A2A3)P(A2|A3)P(A3).

More generally, for k events A1, . . . ,Ak, the general multiplication rule is

P(A1 · · ·Ak) = P(Ak|A1 · · ·Ak−1)P(Ak−1|A1 · · ·Ak−2) · · ·P(A2|A1)P(A1). (2.4)

The general result is proven using mathematical induction in a similar fashion.
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□■ Example 2.7 A subject in an experiment is given three tries to complete a task.
On the first try, the probability of success is 0.30. If they fail, the chance of success
on the second attempt is 0.50. And if they fail that, the chance of success on the
third try is 0.65. What is the probability that they complete the task, P(S)?

Let S1, S2, S3 denote the events that the task is completed on the first, second,
and third tries, respectively. Then S can be expressed as S1 ∪ S2 ∪ S3. The desired
probability P(S) is

P(S) = P(S1 ∪ S2 ∪ S3) = 1 − P(Sc
1Sc

2Sc
3)

= 1 − P(Sc
1)P(S

c
2|Sc

1)P(S
c
3|Sc

1Sc
2)

= 1 − (0.70)(0.50)(0.35) = 0.8775. ◼

Tree diagrams. Tree diagrams are useful tools for computing probabilities. They
often arise when events can be ordered sequentially (first one thing happens, then the
next). They are also great visual aids that decompose a problem into smaller logical
units. Probabilities are written on the branches of the tree, and outcomes are written
at the end of each branch. The outermost branch has unconditional probabilities,
while the inner branches have probabilities conditional on transversing that branch
of the tree.

Figure 2.2 illustrates the random experiment of picking two balls from a bag
containing two red and three blue balls. The outcome of picking two red balls is
described by the top branch of the tree. First, we select a red ball (with probability
2/5), and then we select a second red ball given that the first ball was red (with prob-
ability 1/4). The probability of the final outcome is obtained by multiplying along
the branch (1∕10 = 2∕5 × 1∕4). Observe that the branches of the tree are labeled
with conditional probabilities.

R
2/5

3/5
B

R

1/4

R

2/4

B

3/4

B

2/4

RR
1/10

RB
3/10

BR
3/10

BB
3/10

FIGURE 2.2: Tree diagram for picking two balls from a bag of two red and three blue balls.
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S

0.30

F

0.70

S

0.50

F

0.50

S

0.65

F

0.35

S

0.30

FS
(0.70)(0.50) = 0.35

FFS
(0.70)(0.50)(0.65) = 0.2275

FFF
(0.70)(0.50)(0.35) = 0.1225

FIGURE 2.3: Tree diagram for Example 2.7.

Example 2.7 lends itself naturally to a tree diagram analysis because of the
sequential nature of the random experiment. The tree is presented in Figure 2.3.
Recall that the subject is given three tries to complete a task. The event that the
subject eventually completes their task is the disjoint union of the events that the
subject completes their task on the first, second, or third try, respectively. These
are the paths that end with an S in the tree. Thus, the probability that the subject
eventually completes their task is the sum

P(S) + P(FS) + P(FFS) = 0.30 + 0.35 + 0.2275 = 0.8775.

Alternatively, using complements and finding 1 − P(FFF) also yields the probabil-
ity 0.8775.

□■ Example 2.8 Blackjack, or twenty-one, is a popular casino game. (For more
details about the game, the reader can look it up online.) To start a game, the player
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Ace

4/52

Ten

16/52

Not

32/52

Ace
3/51

Ten
16/51

Not
32/51

Ace
4/51

Ten
15/51

Not
32/51

Ace
4/51

Ten
16/51

Not
31/51

Ace−Ace
3/663

Ace−Ten
16/663

Blackjack!

Blackjack!

Ace−Not
32/663

Ten−Ace
16/663

Ten−Ten
60/663

Ten−Not
128/663

Not−Ace
32/663

Not−Ten
128/663

Not−Not
248/663

FIGURE 2.4: Tree diagram for blackjack.

is dealt two cards. A blackjack is an ace and a ten card (10, jack, queen, or king).
What is the probability of being dealt a blackjack?

We illustrate the solution with the tree diagram in Figure 2.4. Blackjack is
obtained by either getting an ace on the first card and then a ten card, or a ten card
first and then an ace. We use “Not” to denote any of the 32 cards that are neither an
ace nor a ten card.

There are two outcomes that correspond to a blackjack—being dealt an ace on the
first card and then a ten card on the second, or vice versa. Let A1 and A2 denote the
events of getting an ace on the first and second cards, respectively. Similarly, define
T1 and T2 for getting a ten card on the first and second cards. Then the events A1T2
and A2T1 are mutually exclusive and we find that

P(Blackjack) = P(A1T2 or T1A2)

= P(A1T2) + P(T1A2)
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= P(T2|A1)P(A1) + P(A2|T1)P(T1)

=
(16

51

)( 4
52

)
+
( 4

51

)(16
52

)
= 2 × 4 × 16

51 × 52
= 0.048.

◼

R: SIMULATING BLACKJACK

The script Blackjack.R simulates the blackjack probability. The numbers 1–52
represent a deck of cards. We assign the four aces to the numbers 1, 2, 3, 4, and
the 16 ten cards to the numbers 37–52. The command

> trial <- sample(1:52, 2, replace=FALSE)

chooses two cards from 1 to 52, sampling without replacement, and assigns them
to the variable trial. The command

> success <- if (trial[1] <= 4 && trial[2] >= 37
|| trial[1] >= 37 && trial[2] <= 4) 1 else 0

uses the logical operators || (or) and && (and) to determine if blackjack
occurred, returning a 1 if yes, and 0, otherwise.

# Blackjack.R
> n <- 50000
> simlist <- replicate(n, 0)
> for (i in 1:n) {

trial <- sample(1:52, 2, replace = FALSE)
success <- if (trial[1] <= 4 && trial[2] >= 37 ||
trial[1] >= 37 && trial[2] <= 4) 1 else 0
simlist[i] <- success }

> mean(simlist)
[1] 0.0462

2.3.1 Birthday Problem

The birthday problem is a classic probability delight first introduced by the mathe-
matician Richard Von Mises in 1939. Von Mises asked, “How many people must be
in a room before the probability that some share a birthday, ignoring the year and
ignoring leap days, becomes at least 50%?”

For a group of k people, let B be the event that at least two people have the
same birthday. We find P(B). Remember the problem-solving strategy of taking
complements for “at least” probabilities. The complement Bc is the event that none
of the k people have the same birthday. We compute that probability with a tree
diagram.
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364
365

363
365

362
365

.   .   . 365−(k−2)
365

365−(k−1)
365

FIGURE 2.5: Solving the birthday problem with a tree diagram.

Consider asking people one by one their birthday and checking whether their
birthday is different from the birthdays of those previously asked. The first person’s
birthday is fixed. The second person’s birthday either matches the first birthday,
which occurs with probability 1/365, or does not, with probability 364/365. Two
branches grow out of the first node labeled with these probabilities as in Figure 2.5.

The full tree will have a lot of branches. But we are only interested in one path
of the tree, where everyone’s birthday is different. So it is not necessary to draw the
entire tree, just that relevant path.

From the second node, the probability that the third person has a birthday dif-
ferent from the previous two, given that the previous two birthdays are different, is
363/365 (because two birthdays have been picked and there are 363 available ones
left). Continuing in this way, we see that the ith branch of the tree gives the proba-
bility that the (i + 1)st person’s birthday is different from the previous i birthdays,
given that the previous i birthdays are all different, which occurs with probability
(365 − i)∕365. This gives

P(Bc) =
(364

365

)(363
365

)
· · ·

(
365 − (k − 1)

365

)
=

k−1∏
i=1

(
1 − i

365

)
. (2.5)

And thus the birthday probability that at least two people have the same birthday is

P(B) = 1 − P(Bc) = 1 −
k−1∏
i=1

(
1 − i

365

)
. (2.6)

At k = 22, P(B) = 0.476, and at k = 23, P(B) = 0.507. So the answer to Von Mises’
question is, remarkably, 23 people. The number is much smaller than most peo-
ple think. Table 2.5 gives birthday probabilities for different group sizes. With just
k = 15 people there is a 25% chance of at least one birthday match. And with k = 50
people the likelihood of at least one match is virtually certain with P(B) = 0.970.

To explain the seemingly paradoxical result, intuitively observe that in a group
of 23 people there are actually 253 ways for people to be paired. And we just need
one of those pairs to have a common birthday for the desired event to occur.
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There are many fun ways to illustrate the birthday problem. Consider the
birthdays of the first 45 US presidents. With k = 45, the probability of a match is
0.941. And we find that Warren G. Harding and James K. Polk were both born on
November 2.

The (planned for in 2020) 26-player active roster of a major league baseball team
is a nice vehicle for checking the birthday problem. Each team’s roster gives a nearly
60% chance that two players on the team have the same birthday. Among the 30
teams of major league baseball, we estimate that about 18 teams will have at least
one birthday match with two players on the active roster with the same birthday.
And we invite a baseball fan to check our conjecture.

The birthday problem can be cast in a very general framework. Suppose we dis-
tribute k balls into m boxes in such a way so that each of the m boxes is equally
likely to receive any ball. Think of the boxes as birthdays and the balls as peo-
ple. The probability that some box contains two or more balls is equivalent to the
birthday probability that among k people there are two birthdays in common. This
probability is equal to

P(Some box contains at least two balls) = 1 −
k−1∏
i=1

(
1 − i

m

)
. (2.7)

If k is large, this probability does not lend itself to easy calculation or interpretation.
A simpler closed form expression can be gotten with the help of calculus, in partic-
ular Taylor series (see Appendix C). We give the derivation thinking of the birthday
problem with m = 365.

Let p =
∏k−1

i=1 (1 − i∕365). Then

ln p = ln
k−1∏
i=1

(
1 − i

365

)
=

k−1∑
i=1

ln
(

1 − i
365

)
.

The Taylor series expansion for ln(1 − x) is

ln(1 − x) = −x − x2

2
− x3

3
− · · · ,

which converges for −1 < x < 1. Truncate off all but the first term of the series
to obtain the approximation ln(1 − x) ≈ −x. The approximation is good for small
values of x close to 0.

For 1 ≤ i < k < 365, i∕365 will be “small,” justifying the use of the approxima-
tion. This gives

ln p =
k−1∑
i=1

ln
(

1 − i
365

)
≈

k−1∑
i=1

− i
365

= −k(k − 1)
2 × 365

,
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TABLE 2.1. Birthday probabilities.

k Exact Approximate

15 0.253 0.250
23 0.507 0.500
30 0.706 0.696
40 0.891 0.882
50 0.970 0.965
60 0.994 0.992

using the fact that the sum of the first k − 1 integers is k(k − 1)∕2. Exponentiating
both sides gives p ≈ e−k(k−1)∕(2×365). And the birthday probability is

P(B) ≈ 1 − e−k(k−1)∕(2×365) ≈ 1 − e−k2∕(2×365)
. (2.8)

In Table 2.1, we compare the approximation with the exact probabilities for select
values of k.

More generally, in the balls-and-boxes setting with k balls and m boxes, the
probability that some box contains two or more balls is approximately equal to
1 − e−k2∕(2m).

There are many applied settings that fit the balls-into-boxes framework of the
birthday problem as shown in the next examples.

□■ Example 2.9 In 2001, the Arizona Department of Public Safety reported, in
response to a court order, that a search of its state offender database of 65,493 DNA
profiles found a “nine-locus” DNA match, where the DNA of two samples agreed
at nine positions on the chromosome. See Troyer et al. [2001]. The estimated
probability of such a match is about 1 in 754 million. At the time, the DNA match
was said to be so unlikely as to call into question the reliability of the state’s
database and even of the use of DNA evidence in court. What is the probability of
finding two such matching profiles in the database?

If we assume that all 754 million DNA outcomes are equally likely, then
this gives an application of the birthday problem with k = 65,493 balls and
m = 7.54 × 108 boxes. The probability of a DNA match is

1 −
65,492∏

i=1

(
1 − i

7.54 × 108

)
≈ 1 − e−65,4932∕(2×7.54×108) = 0.942.

What was originally thought to be an extremely rare coincidence actually has a very
high probability of occurrence.

An intuitive explanation for this high probability is that in a database of 65,493
DNA profiles there are about two billion different pairs of profiles. An event which
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has a one in a billion chance of occurring, if the experiment is repeated two billion
times, will likely occur twice! ◼

Coincidences, like having the same birthday as your roommate, or having gone
to the same high school as the person sitting next to you on the plane, or always
seeing license plates that seem to start with the same three letters as your own,
seem to defy logic. Yet they can often be explained by the laws of probability.

If an event has a one-in-a-million chance of occurring, then in a country of
300 million you would expect about 300 occurrences.

In “Methods for Studying Coincidences,” Diaconis and Mosteller [1989]
assert the Law of Truly Large Numbers: “With a large enough sample, any
outrageous thing is likely to happen.” Their highly readable and entertaining
paper is part human psychology and gives a guide to the probabilistic and
statistical techniques for studying coincidences.

Many variations and extensions of the birthday problem have been proposed and
studied. In our discussion, we assume that the 365 days of nonleap years are equally
likely. This is not the case in the United States, where months such as July, August,
and September see more births than January. We encourage the reader to investigate
further if truly interested with references such as Borja and Haigh [2007].

The birthday problem does not ask for the probability that among k people there
will be a match of any one particular birthday, but rather that some pair of people
will have the same birthday. If you survey your classmates in your classes of about
25 students, you would expect to find that two students in a class have the same
birthday more than 50% of the time. But you might never find a student whose
birthday matches your own.

2.4 CONDITIONING AND THE LAW OF TOTAL PROBABILITY

According to the Howard Hughes Medical Institute, about 7% of men and 0.4% of
women are colorblind, meaning they either cannot distinguish red from green or
see red and green differently from most people. In the United States, about 49% of
the population is male and 51% is female. A person is selected at random. What
is the probability they are colorblind?

As you contemplate answering this question, you might find yourself saying,
“Well, it depends—on whether you are male or female.” The problem provides
conditional information based on sex but the question asks for an unconditional
probability.

In this section, we introduce a powerful technique for using conditional proba-
bility for solving “unconditional” problems.
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The event C = {Colorblind} can be decomposed into the disjoint union

{Colorblind} = {Colorblind and Male} ∪ {Colorblind and Female}.

We then obtain

P(C) = P(CM ∪ CF) = P(CM) + P(CF)

= P(C|M)P(M) + P(C|F)P(F)
= (0.07)(0.49) + (0.004)(0.51) = 0.03634.

The approach to solving this problem is known as conditioning. In this case, we
are conditioning on sex because the conditional probabilities P(C|M) and P(C|F)
are easier and more “natural” to solve than the unconditional probability P(C).

More generally, say that a collection of events {B1, . . . ,Bk} is a partition of the
sample space Ω if (i) the events have no outcomes in common and (ii) their union
is equal to Ω. Given an event A, the law of total probability shows how to find the
unconditional probability P(A) by conditioning on the Bi’s.

LAW OF TOTAL PROBABILITY

Suppose B1, . . . ,Bk is a partition of the sample space. Then

P(A) =
k∑

i=1

P(A|Bi)P(Bi). (2.9)

Observe that we can decompose A into the disjoint union

A = AB1 ∪ · · · ∪ ABk

as illustrated in Figure 2.6. The law of total probability follows by taking probabil-
ities and applying the conditional probability formula to each term of the resulting
sum because

P(A) = P

(
k⋃

i=1

ABi

)
=

k∑
i=1

P(ABi) =
k∑

i=1

P(A|Bi)P(Bi).

A common special case of the law of total probability occurs when k = 2. For
any event B, the sets B and Bc partition the sample space. This gives

P(A) = P(A|B)P(B) + P(A|Bc)P(Bc). (2.10)
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B1 B2

B3

B4 B5

AB1
AB2

AB3

AB4

AB5

FIGURE 2.6: The events B1, . . . ,B5 partition the sample space. The circle represents event
A, which is decomposed into the disjoint union A = AB1 ∪ · · · ∪ AB5.

Solving a general probability P(A) by conditioning refers to introducing “supple-
mental” disjoint events B1, . . . ,Bk. We find the “partial” probabilities P(A|B1), . . . ,
P(A|Bk) in order to find the “total” probability P(A).

□■ Example 2.10 An insurance company predicts the likelihood that a person in a
particular age group will have an auto accident during the next year. For individuals
under the age of 25, 11% are likely to have an accident, for those between 25 and
39, 3% are likely to have an accident, and for those over 40, only 2% are likely
to have an accident. The company’s policyholders are 20% under the age of 25,
30% between 25 and 39, and 50% over the age of 40. What is the probability that a
random policyholder will have an auto accident next year?

Denote the three age groups by G1, G2, and G3, respectively. Let A be the event
of having an auto accident. Conditioning on age group, the law of total probability
gives

P(A) = P(A|G1)P(G1) + P(A|G2)P(G2) + P(A|G3)P(G3)

= (0.11)(0.20) + (0.03)(0.30) + (0.02)(0.50)

= 0.041. ◼

□■ Example 2.11 How to ask a sensitive question? Statisticians are sometimes
confronted with how to obtain information on sensitive issues. What proportion of
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people use illegal drugs? How many students ever cheated on an exam? Surveying
people directly and asking these types of sensitive questions is not likely to get
honest responses and useful data.

Using probabilistic methods, statisticians have developed interesting ways to ask
sensitive questions that protect confidentiality. Here is one example.

Respondents are given a coin and told to flip it in private, not letting anyone see
the outcome. If it lands heads, they answer the sensitive question of interest (e.g.,
“Have you ever taken illegal drugs?”) (hopefully, truthfully). If tails, they answer
an innocuous question such as “Were you born in the first half of the year—January
through June?”) The respondent reports a yes or no, but does not say which question
they actually answered. And from a sample of such yes—no responses, statisticians
can estimate the parameter of interest, such as the proportion of people who have
ever taken illegal drugs. How can this be done?

Let Y and N denote responses of yes and no, respectively. Let QS denote the sensi-
tive question and QI the innocuous question. The unknown parameter that surveyors
want to estimate is p = P(Y|QS), the probability that someone answers yes given
that they were asked the sensitive question. We assume that the innocuous question
is (i) easy to answer and (ii) has a known probability of yes and no, in this case
50% each.

Consider the unconditional probability P(Y). By the law of total probability,

P(Y) = P(Y|QS)P(QS) + P(Y|QI)P(QI)

= p
(1

2

)
+
(1

2

)(1
2

)
=

p

2
+ 1

4
.

When this survey is given to n people, the final data will consist of n yes’s and no’s.
The proportion of yes responses is a simulated estimate of the unknown P(Y). And
thus

p

2
+ 1

4
= P(Y) ≈

Number of yes’s in the sample

n
.

Solving for p gives

p ≈ 2

(
Number of yes’s in the sample

n
− 1

4

)
,

which is the final estimate of the parameter of interest.
Thirty students participated in such a classroom experiment where the “sensitive”

question was “Are you wearing running shoes?” The instructor gave each student a
coin with instructions for doing the anonymous survey. Sixteen students responded
yes and 14 students responded no. The instructor estimated that p = P(Y|QS) ≈
2((16∕30) − 1∕4) = 0.567. As there were 30 students in the class, the instructor
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guessed that 30 × (0.567) = 17 students were wearing running shoes. In fact, there
were 15. ◼

□■ Example 2.12 Finding the largest number. The following problem, known
originally as the secretary problem, was first introduced by Martin Gardner in his
Mathematical Games column in Scientific American. It was originally cast in terms
of a manager trying to hire the most qualified secretary from a group of n applicants.
Versions include finding the best lottery prize among n prizes, and the following
game to find the highest number in a list of n numbers (Ferguson [1989]).

On n pieces of paper are written n distinct numbers. Let z be the largest number
in the group. You will be shown the pieces of paper one at a time and you must
decide after each number whether to choose that number—and the game stops—or
reject it and move on to the next number. Your goal is to find z. When shown the
kth number, the only information you are given is the relative rank of that number
compared to the previous k − 1 numbers.

What should your strategy be for deciding which number to choose? And using
such a strategy, what is the probability of getting the top number?

It seems at first reading that any strategy will produce a very small probability
of getting the top number. Remarkably, one can do reasonably well.

Consider the following strategy: For some r between 0 and n, reject the first r
numbers and then choose the first number that is better than the first r. We find the
probability of choosing the top number z for a fixed r. We will then find the choice
of r which does best.

Let A be the event of choosing z. Let R be the relative rank of z. Assume all
arrangements of the numbers are equally likely. (Also, we make no assumptions
about the size of the numbers.) By conditioning on R,

P(A) =
n∑

i=1

P(A|R = i)P(R = i) = 1
n

n∑
i=1

P(A|R = i).

Consider P(A|R = i), the probability of choosing the top number z given that it
is in position i.

Suppose z is at position i, where i ≤ r. Then z will be rejected, and you lose
the game.

Suppose z is at position i, where i > r. Then z will be chosen if and only if the
largest of the first i − 1 numbers is among the first r numbers. (Otherwise, the largest
of the first i − 1 numbers will be chosen.) The largest of the first i − 1 numbers can
be in one of i − 1 equally likely positions. The probability that it is among the first
r numbers is thus r∕(i − 1). This gives

P(A) = 1
n

n∑
i=1

P(A|R = i) = 1
n

n∑
i=r+1

r
i − 1

= r
n

n∑
i=r+1

1
i − 1

= r
n

n−1∑
i=r

1
i
.
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The harmonic series
∑n

i=1 1∕i diverges as n → ∞. For large n, the sum of the
series is approximately equal to log n. This gives

P(A) = r
n

n−1∑
i=r

1
i
≈ r

n
(log n − log r) = r

n
log

(n
r

)
.

To find the r that does best, maximize the function f (x) = (r∕x) log(x∕r). Taking
the derivative with respect to x and setting it equal to 0 finds that the maximum is
achieved at x = n∕e. For r = n∕e, the probability that you will choose z is

P(A) ≈
n∕e

n
log

(
n

n∕e

)
= 1

e
= 0.368.

In the following simulation, we choose from a list of n = 100 numbers, rejecting
the first n∕e ≈ 37. The simulation is repeated 10,000 times.

R: FINDING THE LARGEST NUMBER

# TopNumber.R
# Numbers are 1, ..., n
> ntrials <- 10000
> n <- 100
> r <- round(n/exp(1)) # r = n/e = 37
> simlist <- numeric(ntrials)
> for (j in 1:ntrials) {

numbers <- sample(1:n, n)
best <- which(numbers==n) # position of top number
prob <- 0
firstmax <- max(numbers[1:r]) # largest of first r
for (i in (r+1):n) { # look after r-th number

if (numbers[i] > firstmax)
{if (numbers[i] == n) prob <- 1

break}
else {prob<-0} }
simlist[j] <- prob }

> mean(simlist)
[1] 0.3749

◼

□■ Example 2.13 Random permutations. There are many settings where one
wants to generate a uniformly random permutation. Random permutations are used
in many computer algorithms. A common application is shuffling a deck of cards,
which can be considered a permutation of {1, . . . , 52}.
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The following extremely fast method of generating a uniformly random permuta-
tion is known as the Knuth shuffle, named after the computer scientist Donald Knuth.
Start with the list (1, 2, . . . , n). Move down the list from the first to the (n − 1)st
position. At each position i, swap the element in that position with a randomly cho-
sen element from positions i to n. After n − 1 such swaps, the resulting list will have
the desired distribution.

We show that a permutation produced by the Knuth shuffle has the desired
probability distribution. Let (R1,R2, . . . ,Rn) denote the final output of the Knuth
algorithm. Suppose (r1, r2, . . . , rn) is a permutation of {1, 2, . . . , n}. We need to
show that P(R1 = r1,R2 = r2, . . . ,Rn = rn) = 1∕n!.

Using the general formula for the intersection of n events,

P(R1 = r1,R2 = r2, . . . ,Rn = rn)

= P(R1 = r1)P(R2 = r2|R1 = r1) · · ·P(Rn = rn|R1 = r1, . . . ,Rn−1 = rn−1).

We have that P(R1 = r1) = 1∕n, because R1 can take any of n values, all of which
are equally likely. Observe that P(R2 = r2|R1 = r1) = 1∕(n − 1), because if R1 = r1,
then R2 can take any value except r1, all of which are equally likely. Similarly, for
each i = 2, . . . , n − 1,

P(Ri = ri|R1 = r1, . . . ,Ri−1 = ri−1) =
1

n − (i − 1)
.

Finally, P(Rn = rn|R1 = r1, . . . ,Rn−1 = rn−1) = 1, because if n − 1 values have
been assigned to the first n − 1 positions of the list, the last remaining value must
be assigned to the last position of the list. We have that

P(R1 = r1,R2 = r2, . . . ,Rn = rn) =
n−1∏
i=1

1
n − (i − 1)

= 1
n!
,

giving the result. ◼

R: SIMULATING RANDOM PERMUTATIONS

The following code implements the Knuth shuffle (KnuthShuffle.R) to generate
a uniformly random permutation. A permutation of size n = 12 is output.

> n <- 12
> perm <- 1:n
> for (i in 1:(n-1)) {
x <- sample(i:n,1)
old <- perm[i]
perm[i] <- perm[x]
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perm[x] <- old }
> perm
[1] 10 3 5 11 4 9 2 7 8 1 12 6

2.5 BAYES FORMULA AND INVERTING A CONDITIONAL
PROBABILITY

It should be clear from many previous examples that in general P(A|B) ≠ P(B|A).
The probability that someone uses hard drugs given that they smoke marijuana
(fairly low) is not equal to the probability that they smoke marijuana given that
they use hard drugs (fairly high—no pun intended). When conditional probabilities
arise in real-world problems, they can be confusing and subject to misinterpreta-
tion. Data may often be given in the form P(A|B), but what is really desired is the
“inverse probability” P(B|A).

Bayes formula, also known as Bayes theorem, is a simple but remarkably pow-
erful result for tackling such conditional probability problems.

BAYES FORMULA

For events A and B,

P(B|A) = P(A|B)P(B)
P(A|B)P(B) + P(A|Bc)P(Bc)

.

The result is a consequence of two applications of the basic conditional proba-
bility formula and the law of total probability, as follows

P(B|A) = P(BA)
P(A)

= P(AB)
P(A)

= P(AB)
P(AB) + P(ABc)

= P(A|B)P(B)
P(A|B)P(B) + P(A|Bc)P(Bc)

.

Here is a more general form of the formula: Given event A and a sequence of events
B1, . . . ,Bk that partition the sample space, then for each j = 1, . . . , k,

P(Bj|A) = P(A|Bj)P(Bj)∑k
i=1 P(A|Bi)P(Bi)

.
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□■ Example 2.14 Diagnostic tests. Diagnostic tests are commonly used to
determine the likelihood of disease. Results are never certain due to the possibility
of false positives and false negatives. Confusion about conditional probability can
lead to erroneous conclusions about the efficacy of a particular test.

Suppose a rare disease affects 1% of the population. A hypothetical blood test
to detect the disease seems to be relatively accurate. On the one hand, the test has
a 99% sensitivity, which means that if someone has the disease the chance that the
test result is “positive” is 0.99. This also means that there is a 1% chance of error,
called the false-negative rate. On the other hand, the test has a 90% specificity, which
means that if someone does not have the disease the test will be “negative” 9 times
out of 10. That is, there is a 10% false-positive rate.

The terms “sensitivity” and “specificity” are used by epidemiologists, public
health workers who study the distribution patterns of disease and health events. A
major tool in their arsenal is probability.

Suppose a random person gets tested, and the test comes back positive. What is
the probability that the person actually has the disease?

Before proceeding, you might want to test your intuition and guess the answer
without doing any computations. Is the probability of having the disease close to
10, 50, or 90%?

Many people, even experienced doctors, when asked this question assume that
the test is fairly accurate and give a high estimate for the probability of disease. Let
us solve the problem and find out what the probability is.

Let D be the event that a person has the disease. Let S be the event that the test
comes back positive. The problem is asking for P(D|S).

The probabilities provided, however, are of the form P(S|D) and P(S|Dc).
The 99% sensitivity rate means P(S|D) = 0.99. And the false-negative rate gives
P(Sc|D) = 0.01. The 90% specificity rate means that P(Sc|Dc) = 0.90. And the
false-positive rate gives P(S|Dc) = 0.10. We are also told that P(D) = 0.01.

The information provided in the problem is probabilities that are conditional on
having or not having the disease. But the problem is asking for a conditional prob-
ability given the outcome of the test. In order to solve the problem, we need to
invert the conditional probability P(D|S) to use the available information. By Bayes
formula,

P(D|S) = P(S|D)P(D)
P(S|D)P(D) + P(S|Dc)P(Dc)

= 0.99(0.01)
0.99(0.01) + 0.10(0.99)

= 0.091.

The chance of actually having the disease after testing positive is less than 10%!
While the final result might be perplexing, even paradoxical, the key to under-

standing it is the very low 1% probability of having the disease. Most people do not
have the disease. Even though the diagnostic test has a low false-positive rate, the
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low rate applied to a large population of people who do not have the disease results
in a lot of people with false positives due to the low disease rate.

Imagine a hypothetical town of 10,000 individuals. About 100 people (1%) will
have the disease. Assume the entire town is tested. Out of those who have the dis-
ease, about 99 people would test positive and one person would test negative. On the
other hand, about 9900 people do not have the disease (99%). And if everyone takes
the test, 8910 of them (90%) will test negative. But 990 (10%) will test positive.

This means that about 99 + 990 = 1089 people test positive in total. And of
those, only 99 have the disease, so the probability of having the disease given you
test positive is 99∕1089 = 0.091. ◼

Hypothetical 10,000. It may not surprise you to know that tree diagrams can be
used to help solve problems where Bayes formula is used. You should be able to
make a tree to illustrate what happens in the last example. In case you are not a fan
of trees however, there is another strategy that can help provide a visual aid for such
problems. In the last example, we imagined what would happen in a hypothetical
town of 10,000 individuals. This could be done with another n, such as 1000, or one
more convenient based on the probabilities you have, and the results displayed in a
two-way table that you might be more comfortable working with. The probability
information provided in the problem determines the values in each cell. Here, we
demonstrate what our hypothetical 10,000 table would look like for the last example
as shown in Table 2.2.

With the table, we can easily see that 1089 individuals would test positive, but
only 99 actually had the disease. Thus, P(D|S) = 99∕1089, as above.

□■ Example 2.15 Color blindness continued. Given the color-blind rates for
males and females presented at the beginning of Section 2.4, we found the prob-
ability that a random person is color-blind. Even though color blindness is fairly
unusual, it is much more common among men than women. Suppose a person is
color-blind (C). What is the probability they are male (M)? The problem asks for
P(M|C), and again, we must invert the conditional probability in order to use the
given data, which is conditional on sex, not color blindness. We show two solutions
to this problem, one using the hypothetical table with 100,000 individuals, and the
other using Bayes formula.

The information about the United States being about 49% male and 51% female
sets the marginal distribution for Sex. Then, we use the conditional probabilities

TABLE 2.2. Hypothetical 10,000 table.

Test versus Disease D Dc Total

S (+) 99 990 1089

Sc (−) 1 8910 8911

Total 100 9900 10,000
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TABLE 2.3. Hypothetical 1000 table for color
blindness.

Colorblind versus sex Male Female Total

Colorblind 3430 204 3634

Not colorblind 45,570 50,796 96,366

Total 49,000 51,000 100,000

that about 7% of men and 0.4% of women are colorblind to fill in the interior cells,
as shown in Table 2.3. Note that we chose a large n here to make sure our counts
were integers. Then, in order to find P(M|C), we find that out of 3634 color-blind
individuals, 3430 are male, so P(M|C) = 3430∕3634 = 0.944.

By Bayes formula, we simply plug the probabilities in to find that

P(M|C) = P(C|M)P(M)
P(C|M)P(M) + P(C|F)P(F)

= (0.07)(0.49)
(0.07)(0.49) + (0.004)(0.51)

= 0.944. ◼

□■ Example 2.16 Auto accidents continued. Based on insurance company data in
Example 2.10, we found the probability that a random policyholder will have a car
accident next year. The data show that adults under 25 years old are more likely to
have an accident than older people. Suppose a policyholder has an accident. What
is the probability they are under 25?

By Bayes formula,

P(G1|A) = P(A|G1)P(G1)
P(A|G1)P(G1) + P(A|G2)P(G2) + P(A|G3)P(G3)

= (0.11)(0.20)
(0.11)(0.20) + (0.03)(0.30) + (0.02)(0.50)

= 0.537. ◼

We leave it to the reader to find this probability via a tree or table for practice.
Bayesian statistics. Bayes formula is intimately connected to the field of

Bayesian statistics. Statistical inference uses data to infer knowledge about an
unknown parameter in a population. For instance, 100 fish are caught and measured
to estimate the mean length of all the fish in a lake. The 100 fish measurements are
the sampled data, and the mean length of all the fish in the lake is the unknown
parameter.

In Bayesian statistics, the unknown population parameter is itself considered ran-
dom and the tools of probability are used to make probabilistic estimates of the
parameter. One conditions on the data in order to compute the P(Parameter|Data).
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In other words, how likely are possible parameter values given the observed data?
Let us consider an example.

Suppose your friend has three coins: one is fair, one is two-headed, and one is
two-tailed. A coin is picked uniformly at random. It is tossed and comes up heads.
Which coin is it?

In a Bayesian context, the type of coin is the unknown parameter. The outcome
of the coin toss—heads in this case—is the observed data.

Let C = 1, 2, or 3, depending upon whether the coin is fair, two-headed, or
two-tailed, respectively. Let H denote heads. For c = 1, 2, 3, Bayes formula gives

P(Parameter|Data) = P(C = c|H) = P(H|C = c)P(C = c)
P(H)

= P(H|C = c)
3P(H)

.

By the law of total probability,

P(H) = P(H|C = 1)P(C = 1) + P(H|C = 2)P(C = 2) + P(H|C = 3)P(C = 3)

=
(1

2

)(1
3

)
+ (1)

(1
3

)
+ (0)

(1
3

)
= 1

2
.

This gives

P(C = c|H) = 2P(H|C = c)∕3 =
⎧⎪⎨⎪⎩

1∕3, if the coin is fair (c = 1),
2∕3, if the coin is two-headed (c = 2),
0, if the coin is two-tailed (c = 3).

In Bayesian statistics, this probability distribution is called the posterior distri-
bution of the parameter (coin) given the data. A “best guess” of your friend’s coin
is that it is two-headed. It is twice as likely to be two-headed than it is to be fair. See
the simulation in Bayes.R.

□■ Example 2.17 Bertrand’s box paradox. The French mathematician Joseph
Louis François Bertrand posed the following problem in 1889. There are three
boxes. One box contains two gold coins; one box contains two silver coins; and
one box contains one gold and one silver coin. A box is picked uniformly at ran-
dom. A coin is picked from the box and it is gold. What is the probability that the
other coin in the box is also gold?

The correct answer is 2/3. Many people feel the answer should be 1/2, according
to the following logic: The gold coin must have come from one of two boxes that are
equally likely, either the gold–gold box or the gold–silver box. Thus, the gold–gold
box is chosen half the time.

The fallacy is that once we know the coin is gold, the two boxes are not equally
likely. There are three gold coins. Two of them come from the gold–gold box, and
one from the gold–silver box. If the second coin is gold, it must have come from the
gold–gold box and the resulting probability is two out of three.
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Here is a conditional probability analysis. Let G1 and G2 denote that the first coin
and second coin chosen are gold, respectively. Then, P(G2|G1) = P(G2G1)∕P(G1).
The numerator is equal to the probability of picking the gold–gold box, which is
1/3. By conditioning on which box was chosen,

P(G1) =
1
3
(P(G1|gold–gold) + P(G1|silver–silver) + P(G1|gold–silver))

= 1
3

(
1 + 0 + 1

2

)
= 1

2
.

The desired probability is P(G2|G1) = (1∕3)∕(1∕2) = 2∕3. ◼

□■ Example 2.18 Perhaps the most well-known probability paradox of the past two
decades is the infamous Monty Hall problem. This was popularized in Marilyn vos
Savant’s Ask Marilyn column in Parade magazine in 1990 (vos Savant 2013). She
wrote,

Suppose you are on a game show, and you are given the choice of three doors: Behind
one door is a car; behind the others, goats. You pick a door, say No. 1, and the host,
who knows what is behind the doors, opens another door, say No. 3, which has a goat.
He then says to you, “Do you want to pick door No. 2?” Is it to your advantage to
switch your choice of doors?

Savant answered—correctly—that it is beneficial to switch. Without switching, the
chance of picking the right door is 1/3. If you switch, the probability increases to 2/3.

One way to see that 2/3 is correct is to observe that with the switching strategy
you always win if you initially pick a goat, which happens with probability 2/3. If
you picked a goat to start, by revealing the other goat, the host is showing you where
the car is. The only way you would lose is if you chose the car to start, which would
happen with probability 1/3.

Some 10,000 people wrote to Parade magazine, including many with PhDs and
even some mathematicians, insisting that Savant was wrong. However, one is easily
convinced after simulating the problem, either on a computer or by “playing the
game show” in class. We invite the reader to search the web for the many articles,
applets, simulations, and discussion of this intriguing problem. ◼

2.6 INDEPENDENCE AND DEPENDENCE

In the sections above, you were introduced to conditional probability, and learned
that probabilities of events can change depending on whether other events occur.
The probability that you get an A in your math class is probably dependent on how
much you study. But it probably is not dependent on the color of your roommate’s
hair. Intuitively, your grade and your roommate’s hair color are independent events.
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On the other hand, you are more likely to get an A in math class if you study hard.
Most likely,

P(A in math class|Roommate is a red head) = P(A in math class)

while
P(A in math class|Study hard) > P(A in math class).

This suggests the definition of independent events.

INDEPENDENT EVENTS

Events A and B are independent if

P(A|B) = P(A). (2.11)

Events that are not independent are said to be dependent.

□■ Example 2.19 A card is drawn from a standard deck. Let A be the event that it is
a spade. Let B be the event that it is an ace. Then

P(A|B) = P(AB)
P(B)

=
P(Ace of Spades)

P(Ace)
=

1∕52

1∕13
= 1

4
= P(A).

The two events are independent. ◼

This example illustrates that independence is not the same as mutually exclu-
sive. These terms are sometimes confused. The events A and B are not mutually
exclusive since AB = {Ace of Spades} ≠ ∅. One can tell if two events are mutually
exclusive by looking at the Venn diagram or examining their included outcomes.
Independence is more subtle. A Venn diagram alone will not identify independence.
Knowledge of probabilities is required. In particular, mutually exclusive events are
dependent because if one occurs, the other cannot occur.

If A and B are independent, then B and A are independent. And thus
P(B|A) = P(B). This follows from the defining formula Equation 2.11 as

P(B|A) = P(BA)
P(A)

= P(AB)
P(A)

= P(A|B)P(B)
P(A)

= P(A)P(B)
P(A)

= P(B).

If A and B are independent events, then rearranging the conditional probability
formula Equation 2.1 gives

P(AB) = P(A|B)P(B) = P(A)P(B).
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The equation
P(AB) = P(A)P(B) (2.12)

is sometimes used as the primary definition of independent events as it is referred
to as the (simple) multiplication rule for independent events.

The advantage of the definition of independent events and Equation 2.11 is that
it is intuitive—events are independent if knowledge of whether or not one event
occurs does not affect the probability of the other. On the other hand, Equation 2.12
highlights an important computational advantage of working with independent
events—the probability that two independent events both occur is the product
of their individual probabilities.

From a practical modeling perspective, we often decide a priori that events are
independent based on assumptions that seem plausible in a real-world context. For
instance, successive coin flips are modeled as independent events. The model may
be useful and a reasonable approximation of reality, but no model is 100% true.

COIN TOSSING IN THE REAL WORLD

In a fascinating investigation of coin tossing, Diaconis [2007] tries to analyze
the natural process of flipping a coin that is caught in the hand. They use
high-speed slow motion cameras to record data of actual coin tosses. Their
paper, which contains a lot of physics, shows that vigorously flipped coins are
slightly biased to come up the same way they started. They show that

P(Heads|Start with Heads) = 0.508 ≠ 0.50.

□■ Example 2.20 What is the probability of getting “snake-eyes”—two ones—when
rolling two dice?

In Chapter 1, we enumerated the sample space for two dice rolls. By the multipli-
cation principle, there are 6 × 6 = 36 outcomes. Assuming each outcome is equally
likely, P(Snake-eyes) = 1∕36.

Now an alternate derivation can be given using independence. Let A1 and A2
denote getting a one on the first and second rolls, respectively. Then

P(Snake-eyes) = P(A1A2) = P(A1)P(A2) =
(1

6

)(1
6

)
= 1

36
. ◼

Independence of two events means that knowledge of whether or not one event
occurs does not affect the probability of the other event occurring. Thus, if A and B
are independent events, then intuitively the pairs (A,Bc), (Ac,B), and (Ac,Bc) are
also independent events.
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To show independence of A and Bc, write A = AB ∪ ABc. Then P(A) = P(AB) +
P(ABc). Hence,

P(ABc) = P(A) − P(AB)

= P(A) − P(A)P(B)

= P(A)[1 − P(B)] = P(A)P(Bc).

Switching the roles of A and B shows independence of Ac and B. See Exercise 2.33
for showing that Ac and Bc are independent.

Mutual and pairwise independence. How should independence be defined
for more than two events? Surely if three events A, B, C are independent, then each
pair (A,B), (A,C), and (B,C) should also be independent. Generalizing the simple
multiplication rule Equation 2.12, you might also guess that independence is
equivalent to the identity P(ABC) = P(A)P(B)P(C). This, however, is not enough.
Examples can be found where this equation holds for A, B, and C, but no two of the
three events are independent (see Exercise 2.36).

For three events A, B, C, independence requires the multiplication rule to hold
for the collection of three events and for all subgroups of two events. That is,
we need

P(ABC) = P(A)P(B)P(C),

P(AB) = P(A)P(B), P(AC) = P(A)P(C), and P(BC) = P(B)P(C),

to all hold.
For larger collections of events—including infinite collections—independence

requires the multiplication rule to hold for all finite subgroups of events in the
collection. This gives the general definition.

INDEPENDENCE FOR A COLLECTION OF EVENTS

A collection of events is independent if for every finite subgroup A1, . . . ,Ak,

P(A1, . . . ,Ak) = P(A1), . . . ,P(Ak). (2.13)

This definition of independence is also called mutual independence. That is,
mutual independence is a synonym for independence.

If we restrict to the case k = 2 and only require pairs of events to satisfy
Equation 2.13, we say that the collection is pairwise independent. That is, a
collection of events is pairwise independent if the simple multiplication rule
holds for every pair of events. Clearly, mutual independence implies pairwise
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independence. However, the converse is not always true, as shown in the next
example.

□■Example 2.21 Flip two coins. Let A be the event that the first coin comes up heads;
B the event that the second comes up heads; and C the event that both coins come
up the same, either heads or tails. Check that P(A) = P(B) = P(C) = 1∕2. Also,

P(AB) = P(A)P(B) = 1
4

= P(AC) = P(A)P(C) = P(BC) = P(B)P(C).

Thus, the three events are pairwise independent. But P(ABC) = P(Two heads) =
1∕4 and

P(A)P(B)P(C) = (1∕2)(1∕2)(1∕2) = 1∕8 ≠ 1∕4.

So the three events are not mutually independent. The fact that the three events are
not independent can be seen without any calculation because if A and B both occur,
then so does C. ◼

□■ Example 2.22 Data from the Red Cross on the distribution of blood type in the
United States are given in Table 2.4.

In the case of needed blood plasma, people with blood group O (both O+ and O−)
can donate plasma to anyone. Suppose three people are selected at random. What
is the probability they are all blood group O?

Let O1, O2, O3 be the events that the first, second, and third persons selected are
from blood group O, respectively. By independence,

P(O1O2O3) = P(O1)P(O2)P(O3) = P(O1)3

= (0.374 + 0.066)3 = (0.44)3 = 0.085. ◼

TABLE 2.4. Distribution of blood type in the United States.

O+ A+ B+ AB+ O− A− B− AB−

0.374 0.357 0.085 0.034 0.066 0.063 0.015 0.006

How might independence be violated in this last example? If we chose three
people from the same family, or the same nationality or ethnicity, this would vio-
late independence, as people from such groups might be more likely to have similar
blood types. Note that without the property of independence, it would not be possi-
ble to answer the probability question without additional information.

Sampling with and without replacement. Independence is often associated
with sampling with replacement. For instance, suppose a bowl contains 10 balls
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of different colors, including red and green. Pick two balls. Let R1 be the event that
the first ball is red. Let G2 be the event that the second ball is green. If we sample
with replacement, then P(G2|R1) = 1∕10 = P(G2), and the events are independent.
After the first ball is picked, it is returned to the bowl and the second selection is
made as if nothing changed.

On the other hand, sampling without replacement gives P(G2|R1) = 1∕9, as once
the first red ball is picked there are nine balls remaining. Now consider P(G2). Not
knowing anything about the first ball, the second ball is equally likely to be any
of the 10 colors. Thus, P(G2) = 1∕10, and the events are not independent.

Typically, when sampling with replacement, successive outcomes are indepen-
dent events. When sampling without replacement, they are not independent. How-
ever, when the population size is very big (when the number of balls in the bowl is
large), the actual numerical probabilities resulting from the two sampling schemes
are practically the same. As a mind stretch, you can think of sampling without
replacement from a bowl of size n, and then let n → ∞. Sampling without replace-
ment from an “infinite bowl” gives sampling with replacement!

In statistical surveying, while many practical sampling schemes from large pop-
ulations are done without replacement, the analysis is often done with replacement
to exploit the computational advantages of working with independence.

□■ Example 2.23 Coincidences and the birthday problem. It is the first week
on campus. Six new students are sitting together in the cafeteria. They start asking
about each other. What dorm floor are you on? (There are 30 possibilities.) What
frosh seminar are you in (with 40 to choose from)? What is your Zodiac sign (there
are 12)?

Remarkably, two students have matching replies to all three questions. What a
coincidence! But is it really that remarkable?

Generalizing the birthday problem (see Section 2.3.1), the probability that none
of the six students are on the same dorm floor is (29 ⋅ 28 ⋅ 27 ⋅ 26 ⋅ 25)∕305. Similar
calculations are done for frosh seminar and Zodiac sign. If we assume that the three
categories dorm floor, seminar, and Zodiac sign are independent, then the proba-
bility that there is no match for any category among the six students at the table is
the product of the probabilities of no match in each category, which is(29

30
· · · 25

30

)(39
40

· · · 35
40

)(11
12

· · · 7
12

)
= 0.0882.

Therefore, the probability of a least one match among six people is

P(Match) = 1 − 0.0882 = 0.9118.

Not such a coincidence after all. ◼

□■ Example 2.24 A before B. The following scenario is very general. A random
experiment is performed repeatedly with independent trials. Events A and B are
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mutually exclusive, but not complements. What is the probability that A occurs
before B?

We assumed that B ≠ Ac. Why? The solution is not very interesting if B = Ac,
as then either A or B occurs and the solution is just P(A).

For ease of notation, let p = P(A), q = P(B), with p + q < 1. We give two solu-
tions to this problem—one analytical, the other probabilistic.

Solution 1: Let E be the event that A occurs before B. For E to happen, either A
occurs right away or neither A nor B occurs for one or more trials and then A occurs.
That is, for some k ≥ 0, neither A nor B occur for k trials, and then A occurs on trial
k + 1. For each k, let Ek denote the event that (i) A first occurs on trial k + 1 and
(ii) neither A nor B occur on the first k trials. Observe that the Ek’s are mutually
exclusive and E =

⋃∞
k=0 Ek.

The probability that on a particular trial neither A nor B occur is 1 − (p + q) =
1 − p − q. By independence, P(Ek) = (1 − p − q)kp. This gives,

P(E) = P

( ∞⋃
k=0

Ek

)
=

∞∑
k=0

P(Ek)

=
∞∑

k=0

(1 − p − q)kp

= p

(
1

1 − (1 − p − q)

)
=

p

p + q
.

The geometric series converges as 0 < p + q < 1 and thus 0 < 1 − p − q < 1.
Solution 2: Condition on the first trial. There are three possibilities:

(i) If A occurs on the first trial, then E occurs.

(ii) If B occurs on the first trial, then E does not occur.

(iii) If neither A nor B occur on the first trial, then we “start over again” to deter-
mine whether or not A occurs first. It is as if the first trial did not happen, and
the problem begins anew at the second trial. This is a consequence of indepen-
dence. The event that neither A nor B occur on the first trial is independent of
the event that A occurs before B. Letting C be the event that neither A nor B
occurs on the first trial, this gives that P(E|C) = P(E).

By the law of total probability,

P(E) = P(E|A)P(A) + P(E|B)P(B) + P(E|C)P(C)

= 1(p) + 0(q) + P(E)(1 − p − q)

= p + P(E)(1 − p − q).

The equation contains P(E) on both sides. Solving for P(E) gives P(E) =
p∕(p + q). We restate this useful result.
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A BEFORE B

In repeated independent trials, if A and B are mutually exclusive events, the prob-
ability that A occurs before B is

P(A)
P(A) + P(B)

(2.14)

For example, when repeatedly rolling pairs of dice, what is the probability that a
sum of 9 appears before a sum of 7?

The probability of getting nine is P({(3, 6), (4, 5), (5, 4), (6, 3)}) = 4∕36. The
probability of getting 7 is 6/36. The desired probability is

P(9 before 7) =
4∕36

4∕36 + 6∕36
= 2

5
.

◼

We make use of these ideas in the analysis of a popular casino game.

□■ Example 2.25 Craps. The dice game craps is fast-paced, exciting, and typically
offers the best odds at the casino. The player rolls two dice. If you get a 7 or 11,
you win immediately. If you get a 2, 3, or 12, you lose. For any other outcome (4,
5, 6, 8, 9, 10), the number rolled is your point. You now roll again and keep rolling
until you either roll your point again or roll a 7. If the 7 comes before the point, you
lose. If the point comes before the 7, you win. What is the probability of winning at
craps?

Let W denote winning. Conditioning on the first outcome,

P(W) =
12∑

k=2

P(W|k)P(k)
= (0)[P(2) + P(3) + P(12)] + (1)[P(7) + P(11)]

+
∑

k∈{4,5,6,8,9,10}
P(W|k)P(k)

= P(7) + P(11) +
∑

k∈{4,5,6,8,9,10}
P(k before 7)P(k),

where {k before 7} denotes the event that the point k comes up before 7 in repeated
rolls. The probability of winning at craps is thus

P(W) = P(7) + P(11) +
∑

k∈{4,5,6,8,9,10}
P(k before 7)P(k)
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= 6
36

+ 2
36

+
(

3∕36

3∕36 + 6∕36

)
3
36

+
(

4∕36

4∕36 + 6∕36

)
4

36

+
(

5∕36

5∕36 + 6∕36

)
5

36
+
(

5∕36

5∕36 + 6∕36

)
5

36

+
(

4∕36

4∕36 + 6∕36

)
4

36
+
(

3∕36

3∕36 + 6∕36

)
3

36

= 0.4929.

See the script Craps.R to simulate the game. ◼

2.7 PRODUCT SPACES*

In this section, we treat some technical issues associated with modeling independent
events.

When we repeat a random experiment several times, or combine the results of
two or more different random experiments, we are in effect creating a new sample
space.

For instance, in rolling one die, the sample space is {1, 2, 3, 4, 5, 6}.But in rolling
two dice, a larger sample space is used of all 6 × 6 = 36 pairs of dice rolls

{(1, 1), (1, 2), . . . , (6, 5), (6, 6)}.

If the two dice rolls are independent, then for each ordered pair (x, y) the probability
of rolling an x on the first die and a y on the second die P((x, y)) is equal to P(x)P(y),
the product of the individual probabilities. The larger sample space makes it pos-
sible to consider probabilities involving two dice. To consider three dice rolls, the
underlying sample space would be lists of length three

{(1, 1, 1), (1, 1, 2), . . . , (6, 6, 5), (6, 6, 6)}

and so on.
Consider two random experiments with respective sample spaces Ω and Ω′. (The

sample spaces may be the same, as in the dice example, or different.) The product
space Ω × Ω′ is the set of all ordered pairs (𝜔,𝜔′) such that 𝜔 ∈ Ω and 𝜔′ ∈ Ω′.

To define a probability function on that product space, let

P((𝜔,𝜔′)) = P(𝜔)P(𝜔′)

for all 𝜔 ∈ Ω and 𝜔′ ∈ Ω′. This gives a valid probability function because∑
(𝜔,𝜔′)∈Ω×Ω′

P((𝜔,𝜔′)) =
∑
𝜔∈Ω

∑
𝜔′∈Ω′

P((𝜔,𝜔′))
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=
∑
𝜔∈Ω

∑
𝜔′∈Ω′

P(𝜔)P(𝜔′)

=
∑
𝜔∈Ω

P(𝜔)
∑

𝜔′∈Ω′
P(𝜔′)

= (1)(1) = 1.

With this construction, the outcomes of the Ω random experiment are independent
of the outcomes of the Ω′ random experiment.

If A ⊆ Ω and B ⊆ Ω′, the event A ∩ B is not necessarily defined on Ω or Ω′, but
it is defined on the product space Ω × Ω′. And with the probability function just
defined,

P(AB) =
∑

(𝜔,𝜔′)∈AB

P((𝜔,𝜔′))

=
∑
𝜔∈A

∑
𝜔′∈B

P((𝜔,𝜔′))

=
∑
𝜔∈A

∑
𝜔′∈B

P(𝜔)P(𝜔′)

=
∑
𝜔∈A

P(𝜔)
∑
𝜔′∈B

P(𝜔′)

= P(A)P(B).

(We use the same capital letter P for what is in effect three different probabil-
ity functions—one on Ω, one on Ω′, and one on Ω × Ω′—corresponding to three
different random experiments.)

Here is an example. Roll a four-sided tetrahedral die. The sample space is Ω =
{1, 2, 3, 4}with each outcome equally likely. Draw a letter at random from a bag that
contains letters a, b, and c. The sample space is Ω′ = {a, b, c}, with each outcome
equally likely. To model the random experiment of both rolling the die and draw-
ing a letter so that outcomes of the first experiment are independent of the second,
consider the 12-element product space

Ω × Ω′ = {(1, a), (1, b), . . . , (4, b), (4, c)}

and define
P(𝜔,𝜔′) = P(𝜔)P(𝜔′) =

(1
4

)(1
3

)
= 1

12
,

for all 𝜔 ∈ Ω and 𝜔′ ∈ Ω′.
Suppose A is the event of rolling a 1 or 2 on the die. And B is the event of

drawing the letter b from the bag. Then P(A) = 1∕2 and P(B) = 1∕3. And P(AB) =
P({(1, b), (2, b)}) = P(1, b) + P(2, b) = 2∕12 = 1∕6. The events A and B are inde-
pendent.
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Product spaces are a natural construction for working with repeated random
experiments. They extend in an obvious way to more than two sample spaces. We
can even define product spaces with infinite products for modeling, say, an infi-
nite sequence of coin flips, although there are technical issues to be resolved when
working with infinite sequences and infinite products that require more advanced
analytical tools than what is presented in this first course.

2.8 SUMMARY

Conditional probability is introduced. Conditional probability can often be useful
for finding P(A and B) via the multiplication rule. Tree diagrams are useful devices
for finding probabilities, especially when a sequence of events occur in succession.
The classic birthday problem is discussed. The law of total probability is a power-
ful tool for computing probabilities by conditioning. Sometimes a problem asks for
P(A|B), but the information we are given is of the form P(B|A). This is a natural
setting for Bayes formula, which can be thought of as a way to “invert” a con-
ditional probability. The concept of independence is introduced via independent
events. Finally, technical issues about product spaces are addressed in an optional
section.

• Conditional probability formula: P(A|B) = P(AB)∕P(B).
• Conditional probability as a probability function: For fixed B, the condi-

tional probability P(A|B) as a function of its first argument is a probability
function that satisfies the three defining properties.

• General multiplication rule: P(A and B) = P(A|B)P(B) = P(B|A)P(A).
• Law of total probability: If B1, . . . ,Bk partition Ω, then

P(A) = P(A|B1)P(B1) + · · · + P(A|Bk)P(Bk).

For k = 2, this gives

P(A) = P(A|B)P(B) + P(A|Bc)P(Bc).

We say that we are conditioning on B.

• Bayes formula:

P(B|A) = P(A|B)P(B)
P(A|B)P(B) + P(A|Bc)P(Bc)

.

• Problem-solving strategies
1. Tree diagrams: Tree diagrams are intuitive and useful tools for finding

probabilities of events that can be ordered sequentially.
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2. Conditioning: Given an event A for which we want to find P(A), intro-
ducing disjoint events B1, . . . ,Bk and applying the law of total probability,
whereby the conditional probabilities P(A|Bi) are easier and more natural
to solve than P(A).

3. Hypothetical tables: Hypothetical tables can be constructed for many
scenarios involving probabilities and can be used in many of the same
situations as tree diagrams.

• Independent events: Events A and B are independent if P(A|B) = P(A).
Equivalently, P(AB) = P(A)P(B).

• Mutual independence: For general collections of events, independence
means that for every finite subcollection A1, . . . ,Ak,

P(A1, . . . ,Ak) = P(A1), . . . ,P(Ak).

Mutual independence is a synonym for independence.
• Pairwise independence: A collection of events is pairwise independent if

P(AiAj) = P(Ai)P(Aj) for all pairs of events.
• Independence notes: (i) A collection of independent events is pairwise inde-

pendent. But events that are pairwise independent are not necessarily indepen-
dent. (ii) Do not confuse independence with mutually exclusive.

• Product spaces: Product spaces are useful when modeling two or more inde-
pendent events.

EXERCISES

Basics of Conditional Probability

2.1 Your friend missed probability class today. Explain to your friend, in simple
language, the meaning of conditioning.

2.2 Your friend missed probability class today. Explain to your friend, in simple
language, what the Law of Total Probability says.

2.3 A survey of residential college students at a large university revealed the fol-
lowing breakdown of whether their major is in STEM or not and whether the
students were living in a single room or not.

STEM Not STEM

Single room 75 62

Not single room 113 207

Find the probability that a randomly selected student from the survey:
(a) Has a major in STEM.
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(b) Has a major in STEM and a single room.

(c) Has a major in STEM given that they have a single room.

(d) Does not have a single room given they have a major not in STEM.

2.4 Suppose P(A) = P(B) = 0.3 and P(A|B) = 0.5. Find P(A ∪ B).

2.5 Suppose P(A) = P(B) = p1 and P(A ∪ B) = p2. Find P(A|B).
2.6 A survey of households in a city explored access to fresh fruit (defined as

access within 15 minutes walking distance or not) and whether the home had
fresh fruit in the home that day. The following table shows the results of the
survey.

Access No access

Fresh fruit 54 11

No fresh fruit 35 16

Find the probability that a randomly selected household from the survey:

(a) Had access and fresh fruit in the home.

(b) Had no access given that they had fresh fruit in the home.

(c) Had no fresh fruit in the home given that they had access to fresh fruit.

2.7 A total of 108 students filled out a survey for a psychology class project. A
total of 36 students indicated they were athletes. Of those students, 21 said
they preferred to work out in the morning as opposed to the afternoon. For
the nonathletes, 25 said they preferred to work out in the morning. Find the
following probabilities for a randomly selected student who took the survey:

(a) P(Athlete given prefer morning workout).

(b) P(Prefer morning workout given nonathlete).

(c) P(Nonathlete given prefer nonmorning workout).

2.8 A paradox? Jayden flips three pennies.

(a) Aimee peeks and sees that the first coin lands heads. What is the proba-
bility of getting all heads?

(b) Robbie peeks and sees that one of the coins lands heads. What is the prob-
ability of getting all heads? (The two probabilities are different.)

2.9 Find a simple expression for P(A|B) under the following conditions:

(a) A and B are disjoint.

(b) A = B.

(c) A implies B.

(d) B implies A.
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FIGURE 2.7: Nontransitive dice.

2.10 Nontransitive dice: Consider three nonstandard dice. Instead of the numbers
1 through 6, die A has two 3s, two 5s, and two 7s; die B has two 2s, two 4s,
and two 9s; and die C has two 1s, two 6s, and two 8s, as in Figure 2.7.
Suppose dice A and B are rolled. (i) Show that A is more likely to get the
higher number. That is, P(A > B) > 0.50, where {A > B} denotes the event
that A beats B. Hint: Condition on the outcome of die A.

(ii) Now show that if B and C are rolled, B is more likely to get the higher
number. And, remarkably (take our word for it), if C and A are rolled, C is
more likely to get the higher number.

Many relationships in life are transitive. For instance, if Amy is taller than
Blane and Blane is taller than Chloe, then Amy is taller than Chloe. But
these dice show that the relation “more likely to roll a higher number” is not
transitive.

The dice are the basis of a magic trick. You pick any die. Then I can always
pick a die that is more likely to beat yours. If you pick A, I pick C. If you pick
B, I pick A. And if you pick C, I pick B.

2.11 True or False. Either show the statement to be true for any event A and B or
exhibit a counterexample.

(a) P(A|B) + P(A|Bc) = 1.

(b) P(A|B) + P(Ac|B) = 1.

2.12 A bag of 15 Scrabble tiles contains three each of the letters A, C, E, H, and
N. If you pick six letters one at a time, what is the chance that you spell
C-H-A-N-C-E?

2.13 In the game of poker, a flush is five cards of the same suit. Use conditional
probability to find the probability of being dealt a flush.

2.14 Box A contains one white ball and two red balls. Box B contains one white
ball and three red balls. A ball is picked at random from box A and put into
box B. A ball is then picked at random from box B. Draw a tree diagram for
this problem and use it to find the probability that the final ball picked is white.
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2.15 Eduardo is taking a test. There are two questions he is stumped on and he
decides to guess. Let A be the event that he gets the first question right; let
B be the event he gets the second question right (adapted from Blom et al.
[1991]).

(a) Obtain an expression for p1, the probability that he gets both questions
right conditional on getting the first question right.

(b) Obtain an expression for p2, the probability that he gets both questions
right conditional on getting either of the two questions right (A or B).

(c) Show that p2 ≤ p1. This may seem paradoxical. Knowledge that A or B
has taken place makes the conditional probability that A and B happens
smaller than when we know that A has happened. Can you untangle the
paradox?

2.16 Suppose P(A) = 1∕2, P(Bc|AC) = 1∕3, and P(C|A) = 1∕4. Find P(ABC).

2.17 Prove the addition rule for conditional probabilities. That is, show that for
events A, B, and C,

P(A ∪ B|C) = P(A|C) + P(B|C) − P(AB|C).

Conditioning, Law of Total Probability, and Bayes Formula

2.18 The planet Mars revolves around the sun in 687 days. Answer Von Mises’
birthday question for Martians. That is, how many Martians must be in a room
before the probability that some share a birthday becomes at least 50%?

2.19 Jimi has 5000 songs on his iPod shuffle, which picks songs uniformly at ran-
dom. Jimi plans to listen to 100 songs today. What is the chance he will hear
at least one song more than once?

2.20 A standard deck of cards has one card missing. A card is then picked from the
deck. What is the chance that it is a heart? Solve this problem in two ways:

(a) Condition on the missing card.

(b) Appeal to symmetry. That is, make a qualitative argument for why the
answer should not depend on the heart suit.

2.21 Maya has two bags of candy. The first bag contains two packs of M&Ms and
three packs of Gummi Bears. The second bag contains four packs of M&Ms
and two packs of Gummi Bears. Maya chooses a bag uniformly at random
and then picks a pack of candy. What is the probability that the pack chosen is
Gummi Bears? Solve (i) by using a tree diagram and (ii) by another method.
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2.22 In a roll of two tetrahedral dice, each labeled one to four, let X be the sum of
the dice. Let A = {X is prime} and

B1 = {X = 2},B2 = {3 ≤ X ≤ 5},B3 = {6 ≤ X ≤ 7}, and

B4 = {X = 8}.

Observe that the Bis partition the sample space.

(a) Draw a diagram as in Figure 2.6. Label all events in the diagram.

(b) Illustrate the law of total probability by writing out formula 2.9 and
finding the probabilities for each term in the equation.

2.23 Give a formula for P(A|Bc) in terms of P(A), P(B), and P(AB) only.

2.24 Lewis Carroll’s pillow problem #5. Lewis Carroll, author of Alice’s Adven-
tures in Wonderland, is the pen name of Charles Lutwidge Dodgson, who
was an Oxford mathematician and logician. Lewis Carroll’s Pillow Problems
[1958], is a collection of 72 challenging, and sometimes amusing, mathemat-
ical problems, several of which involve probability. Here is Problem #5.

A bag contains one counter, known to be either white or black. A white counter is put
in, the bag shaken, and a counter drawn out, which proves to be white. What is now
the chance of drawing a white counter?

2.25 Pillow problem #72. Here is Lewis Carroll’s last pillow problem [1958].

A bag contains two counters, as to which nothing is known except that each is either
black or white. Ascertain their colors without taking them out of the bag.

Carroll’s answer is
One is black, and the other is white.

The rationale provided for his solution is as follows:

We know that, if a bag contained three counters, two being black and one white, the
chance of drawing a black one would be 2/3; and that any other state of things would
not give this chance.

Now the chances, that the given bag contains (a) BB, (b) BW, (c) WW, are respec-
tively, 1/4, 1/2, 1/4. Add a black counter. Then the chances that it contains (a) BBB,
(b) BWB, (c) WWB are, as before, 1/4, 1/2, 1/4.

Hence, the chance of now drawing the black one is

1
4
(1) + 1

2

(2
3

)
+ 1

4

(1
3

)
= 2

3
.
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Hence, the bag now contains BBW (since any other state of things would not
give this chance). Hence, before the black counter was added, it contained BW, i.e.,
one black counter and one white.

(a) What result or concept is being applied to compute the probability of drawing a
black counter?

(b) Critique Carroll’s solution.

2.26 Consider flipping coins until either two heads HH or heads then tails HT first
occurs. By conditioning on the first coin toss, find the probability that HT
occurs before HH.

2.27 In a certain population of youth, the probability of being a smoker is 20%.
The probability that at least one parent is a smoker is 30%. And if at least
one parent is a smoker, the probability of being a smoker is 35%. Find the
probability of being a smoker if neither parent is a smoker.

2.28 According to the National Cancer Institute, for women aged 50, there is a
2.38% risk (probability) of being diagnosed with breast cancer. Screening
mammography has a sensitivity of about 85% for women aged 50, and a 95%
specificity. That is, the false-negative rate is 15% and the false-positive rate is
5%. If a woman aged 50 has a mammogram, and it comes back positive for
breast cancer, what is the probability that she has the disease?

2.29 A polygraph (lie detector) is said to be 90% reliable in the following sense:
There is a 90% chance that a person who is telling the truth will pass the
polygraph test; and there is a 90% chance that a person telling a lie will fail
the polygraph test.

(a) Suppose a population consists of 5% liars. A random person takes a poly-
graph test, which concludes that they are lying. What is the probability
that they are actually lying?

(b) Consider the probability that a person is actually lying given that the poly-
graph says that they are. Using the definition of reliability, how reliable
must the polygraph test be in order that this probability is at least 80%?

2.30 An eyewitness observes a hit-and-run accident in New York City, where 95%
of the cabs are yellow and 5% are blue. The witness asserts the cab was blue.
Police experts believe that eyewitnesses are 80% reliable. That is, an eyewit-
ness will correctly identify the color of a cab 80% of the time. What is the
probability that the cab actually was blue?

2.31 Your friend has three dice. One die is fair. One die has fives on all six sides.
One die has fives on three sides and fours on three sides. A die is chosen
at random. It comes up five. Find the probability that the chosen die is the
fair one.
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Independence

2.32 Your friend missed probability class today. Explain to your friend, in simple
language, what the difference between disjoint and independent events is.

2.33 Suppose A and B are independent events. Show that Ac and Bc are independent
events.

2.34 Suppose A, B, and C are independent events with respective probabilities 1∕3,
1∕4, and 1∕5. Find

(a) P(ABC).
(b) P(A or B or C).
(c) P(AB|C).
(d) P(B|AC).
(e) P(At most one of the three events occurs).

2.35 There is a 70% chance that a tree is infected with either root rot or bark disease.
The chance that it does not have bark disease is 0.4. Whether or not a tree has
root rot is independent of whether it has bark disease. Find the probability that
a tree has root rot.

2.36 Toss two dice. Let A be the event that the first die rolls 1, 2, or 3. Let B be the
event that the first die rolls 3, 4, or 5. Let C be the event that the sum of the dice
is 9. Show that P(ABC) = P(A)P(B)P(C), but no pair of events is independent.

2.37 The first probability problem. A gambler’s dispute in 1654 is said to have
led to the creation of mathematical probability. Two French mathematicians,
Blaise Pascal and Pierre de Fermat, considered the probability that in
24 throws of a pair of dice at least one “double six” occurs. It was commonly
believed by gamblers at the time that betting on double sixes in 24 throws
would be a profitable bet (i.e., greater than 50% chance of occurring). But
Pascal and Fermat showed otherwise. Find this probability.

2.38 A lottery will be held. From 1000 numbers, one will be chosen as the winner.
Each lottery ticket is a number between 1 and 1000. How many tickets do you
need to buy in order for the probability of winning to be at least 50%?

2.39 A local church is holding a bake sale which includes a cake raffle. One cake
will be raffled off based on raffle ticket numbers from 1 to 30. How many
tickets do you need to buy in order for the probability of winning the cake to
be at least 25%?

2.40 Coincidences. Diaconis and Mosteller [1989]. See Section 2.3.1 on the birth-
day problem. Some categories (like birthdays) are equally likely to occur, with
c possible values.



�

� �

�

90 CONDITIONAL PROBABILITY AND INDEPENDENCE

(a) Let k be the number of people needed so that the probability of at least
one match is 95%. Show k ≈ 2.45

√
c. (Hint: Use Equation 2.5.)

(b) Suppose there are m categories, all of which are independent and take c
possible values. Let k be the number of people needed so that the proba-
bility of at least one match in any category is 95%. Show k ≈ 2.45

√
c∕m.

(c) A group of k people is comparing (i) their birthdays, (ii) the last two digits
on their social security card, and (iii) the two-digit ticket number on their
movie stubs. How big should k be so that there is a 50% chance of at least
one match? A 95% chance?

Simulation and R

2.41 Make up your own random experiment involving conditional probability.
Write an R script to simulate your problem and compare the simulation to
your exact solution.

2.42 The R command

> sample(1:365, 23, replace = T)

simulates birthdays from a group of 23 people. The expression

> 2 %in% table(sample(1:365, 23, replace = T))

can be used to simulate the birthday problem. It creates a frequency table
showing how many people have each birthday, and then determines if two
is in that table; that is, whether two people have the same birthday. Use and
suitably modify the expression for the following problems.

(a) Simulate the probability that two people have the same birthday in a room
of 23 people.

(b) Estimate the number of people needed so that the probability of a match
is 95%.

(c) Find the approximate probability that three people have the same birthday
in a room of 50 people.

(d) Estimate the number of people needed so that the probability that three
people have the same birthday is 50%.

2.43 Simulate the nontransitive dice probabilities in Exercise 2.10.

2.44 The following problem appeared in the news column “Ask Marilyn” on
September 19, 2010.

Four identical sealed envelopes are on a table. One of them contains a $100 bill. You
select an envelope at random and hold it in your hand without opening it. Two of the
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three remaining envelopes are then removed and set aside, unopened. You are told
that they are empty. You are given the choice of keeping the envelope you chose or
exchanging it for the one on the table.

What should you do? (a) Keep your envelope. (b) Switch it. (c) It does not matter.

Write a simulation to find the probability of selecting the $100 bill when you
switch. Confirm the results of your simulation with an exact analysis.

2.45 Modify the Blackjack.R script to simulate the probability of being dealt two
cards of the same suit. Compare with the exact answer.

2.46 See Example 2.13 for generating a random permutation. Implement the
algorithm in R for shuffling a standard deck of cards. Use it to simulate the
probability that in a randomly shuffled deck the top and bottom cards are
the same suit.

2.47 Simulate Bertrand’s box paradox (Example 2.17).

2.48 Simulate the gambler’s dispute from 1654 in Exercise 2.37.

Chapter Review

Chapter review exercises are available through the text website. The URL is
www.wiley.com/go/wagaman/probability2e.
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INTRODUCTION TO DISCRETE
RANDOM VARIABLES

It is utterly implausible that a mathematical formula should make the future known to
us, and those who think it can would once have believed in witchcraft.

—Jacob Bernoulli, Ars Conjectandi

Learning Outcomes

1. Define the term “random variable.”

2. Give examples of discrete random variables and independent random vari-
ables.

3. Solve problems using the discrete uniform distribution and Bernoulli
sequences.

4. Distinguish between the binomial and Poisson distributions; understand their
relationship and common applications.

5. (C) Evaluate probabilities in R for the binomial and Poisson distributions.

3.1 RANDOM VARIABLES

Often, the outcomes of a random experiment take on numerical values. For instance,
we might be interested in how many heads occur in three coin tosses. Let X be the
number of heads. Then X is equal to 0, 1, 2, or 3, depending on the outcome of the
coin tosses. The object X is called a random variable. The possible values of X are
0, 1, 2, and 3. Each outcome has an associated value of the random variable.

Probability: With Applications and R, Second Edition. Amy S. Wagaman and Robert P. Dobrow.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/wagaman/probability2e
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RANDOM VARIABLE

A random variable assigns numerical values to the outcomes of a random
experiment.

Random variables are enormously useful and allow us to use algebraic expres-
sions, equalities, and inequalities when manipulating events. In many of the
previous examples, we have been working with random variables without using
the name, for example, the number of threes in rolls of a die, the number of votes
received, the number of palindromes, the number of heads in repeated coin tosses.
In particular, we have been primarily working with discrete random variables,
where the number of possible values of the random variable is countable, most
often associated with a discrete sample space for the underlying experiment.

□■ Example 3.1 In tossing three coins, let X be the number of heads. Then the event
of getting two heads can be written as {X = 2}. The probability of getting two heads
is thus

P(X = 2) = P({HHT ,HTH,THH}) = 3
8
. ◼

We write {X = 2} for the event that the random variable takes the value 2. More
generally, we write {X = x} for the event that the random variable X takes the value
x, where x is a specific number. The difference between the uppercase X (a ran-
dom variable) and the lowercase x (a number) can be confusing but is extremely
important to clarify.

Random variables as functions. Random variables are central objects in prob-
ability. However, they are really neither “random” nor a “variable” in the way that
that word is used in algebra or calculus. A random variable is actually a function, a
function whose domain is the sample space of the experiment.

A random variable assigns every outcome of the sample space a real number.
Consider the three coins example, letting X be the number of heads in three coin
tosses. Depending upon the outcome of the experiment, X takes on different values.
To emphasize the dependency of X on the outcome 𝜔, we can write X(𝜔), rather
than just X. In particular, for the three coins example,

X(𝜔) =

⎧⎪⎪⎨⎪⎪⎩

0, if 𝜔 = TTT ,

1, if 𝜔 = HTT ,THT , or TTH,

2, if 𝜔 = HHT ,HTH, or THH,

3, if 𝜔 = HHH.

The probability of getting exactly two heads is written as P(X = 2), which is
shorthand for P({𝜔 ∶ X(𝜔) = 2}).
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You may be unfamiliar with this last notation, used for describing sets. The
notation {𝜔 ∶ Property} describes the set of all 𝜔 that satisfies some property; so
{𝜔 ∶ X(𝜔) = 2} is the set of all 𝜔 with the property that X(𝜔) = 2. That is, the set
of all outcomes that result in exactly two heads, which is {HHT ,HTH,THH}.

Similarly, the probability of getting at most one head in three coin tosses is

P(X ≤ 1) = P({𝜔 ∶ X(𝜔) ≤ 1}) = P({TTT ,HTT ,THT ,TTH}).

Because of simplicity and ease of notation, authors (including us) typically use
the shorthand X in writing random variables instead of the more verbose X(𝜔).

We can approach many problems with random variables that we once solved with
direct counting.

□■ Example 3.2 If we throw two dice, what is the probability that the sum of the dice
is greater than four?

Let Y be the sum of two dice rolls. Then Y is a random variable whose possible
values are 2, 3, . . . , 12. The event that the sum is greater than 4 can be written as
{Y > 4}. The complementary event is {Y ≤ 4}, with

P(Y ≤ 4) = P(Y = 2 or Y = 3 or Y = 4) = P(Y = 2) + P(Y = 3) + P(Y = 4)

= P({(1, 1)}) + P({(1, 2), (2, 1)}) + P({(1, 3), (2, 2), (3, 1)})

= 1
36

+ 2
36

+ 3
36

= 1
6
.

The desired probability is P(Y > 4) = 1 − P(Y ≤ 4) = 1 − (1∕6) = 5∕6. ◼

□■ Example 3.3 Recall Example 1.3. One thousand students are voting. Suppose the
number of votes that Yolanda receives is equally likely to be any number from 0 to
1000. What is the probability that Yolanda beats Zach by at least 100 votes?

We approach the problem using random variables. Let Y be the number of votes
for Yolanda. Let Z be the number of votes for Zach. Then the total number of
votes is Y + Z = 1000. Thus, Z = 1000 − Y . The event that Yolanda beats Zach by
at least 100 votes is {Y − Z ≥ 100} = {Y − (1000 − Y) ≥ 100} = {2Y ≥ 1100} =
{Y ≥ 550}. The desired probability is

P(Y − Z ≥ 100) = P(Y ≥ 550) = 451∕1001,

as there are 1001 possible values of the number of votes for Yolanda and 451 of
them are greater than or equal to 550. ◼

Discrete uniform distribution. If a random variable X takes values in a finite
set, all of whose elements are equally likely, we say that X is uniformly distributed
on that set.
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UNIFORM RANDOM VARIABLE

Let S = {s1, . . . , sk} be a finite set. A random variable X is uniformly distributed
on S if

P(X = si) =
1
k
, for i = 1, . . . , k.

We write X ∼ Unif(S). The symbol ∼ stands for “is distributed as.”

□■ Example 3.4 Rachel picks an integer “at random” between 1 and 50. (i) Find the
probability that she picks 13. (ii) Find the probability that her number is between
10 and 20. (iii) Find the probability that her number is prime.

Before we find the probabilities desired, we outline a strategy to assist in solving
this and similar problems. First, define any necessary random variables or events.
Then, state what information is known about those variables or events. After that,
one can proceed to solving the problem, or laying out further steps needed. In this
particular case, we start by defining a random variable to work with.

Let X be Rachel’s number. Then X is uniformly distributed on {1, . . . , 50}.
(i) The probability that Rachel picks 13 is P(X = 13) = 1∕50 = 0.02.
(ii) There are 11 numbers between 10 and 20 (including both 10 and 20). The

desired probability is

P(10 ≤ X ≤ 20) = 11
50

= 0.22.

(iii) There are 15 prime numbers between 1 and 50. Thus,

P(X is prime) = 15
50

= 0.3. ◼

□■ Example 3.5 Roll a pair of dice. What is the probability of getting a sum of 4?
Of getting each number between 2 and 12 as the sum of the rolls?

Assuming the dice are fair, each die number is equally likely. There are six pos-
sibilities for the first roll, six possibilities for the second roll, so 6 × 6 = 36 possible
rolls. We thus assign the probability of 1/36 to each possible roll. Let X be the sum
of the two dice. Then

P(X = 4) = P({(1, 3), (3, 1), (2, 2)})

= P((1, 3)) + P((3, 1)) + P((2, 2)) = 3
( 1

36

)
= 1

12
.

Consider P(X = x) for x = 2, 3, . . . , 12. By counting all the possible combinations,
verify the probabilities in Table 3.1.

Observe that while the outcomes of each individual die are equally likely, the
values of the sum of two dice are not. ◼
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TABLE 3.1. Probability distribution for the sum of two dice.

x 2 3 4 5 6 7 8 9 10 11 12

P(X = x) 1

36

2

36

3

36

4

36

5

36

6

36

5

36

4

36

3

36

2

36

1

36

3.2 INDEPENDENT RANDOM VARIABLES

The intuitive notion of independence introduced in Chapter 2 extends to random
variables. We say that random variables X and Y are independent to mean that
knowledge of the outcome of X does not affect the probability of the outcome of
Y . That is, independence for discrete random variables means that for all x and y,
the events {X = x} and {Y = y} are independent events. For notation, X ⟂ Y may
be used to indicate that X and Y are independent.

INDEPENDENCE OF RANDOM VARIABLES

Discrete random variables X and Y are said to be independent if

P(X = x|Y = y) = P(X = x), for all x, y. (3.1)

Equivalently,

P(X = x,Y = y) = P(X = x)P(Y = y), for all x, y. (3.2)

A collection of discrete random variables, such as an infinite sequence, is inde-
pendent if for all finite subgroups X1, . . . ,Xk of the collection,

P(X1 = x1, . . . ,Xk = xk) = P(X1 = x1) · · ·P(Xk = xk),

for all x1, . . . , xk.

□■ Example 3.6 The Current Population Survey of 2010 provides data on the pro-
portion of family households in the United States by number of children under 18
years old (see Table 3.2). In a sample of four households, what is the probability
that no household has children?

TABLE 3.2. Distribution of number of children in US households.

0 1 2 3 or more

0.5533 0.1922 0.1642 0.0903
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Although the actual sampling was done without replacement, because the popu-
lation is so large, we assume sampling with replacement and independence, as the
difference is negligible. This is common practice when working with a small sample
from a much larger population.

For k = 1, 2, 3, 4, let Xk be the number of children for the kth family household
in the sample. Then the desired probability is

P(X1 = 0,X2 = 0,X3 = 0,X4 = 0)

= P(X1 = 0)P(X2 = 0)P(X3 = 0)P(X4 = 0) = (0.5533)4 = 0.0938. ◼

For a subset A of real numbers, the event {X ∈ A} is the event that X takes values
in A. For instance, if A is the interval (1, 5), then P(X ∈ A) = P(1 < X < 5). If A is
the set of positive even numbers, then

P(X ∈ A) = P(X is even) = P

( ∞⋃
k=1

{X = 2k}

)
.

With this notation, independence of random variables can be expressed more
generally as follows:

INDEPENDENT RANDOM VARIABLES

Random variables X and Y are independent if for all A,B ⊆ ℜ,

P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B).

It should be clear that this definition implies Equation 3.2. Simply take A = {x}
and B = {y}. Conversely, suppose Equation 3.2 holds. Then

P(X ∈ A,Y ∈ B) =
∑
x∈A

∑
y∈B

P(X = x,Y = y)

=
∑
x∈A

∑
y∈B

P(X = x)P(Y = y)

=

(∑
x∈A

P(X = x)

)(∑
y∈B

P(Y = y)

)
= P(X ∈ A)P(Y ∈ B).



�

� �

�

BERNOULLI SEQUENCES 99

3.3 BERNOULLI SEQUENCES

A random variable that takes only two values 0 and 1 is called a Bernoulli random
variable.

There are a vast range of applications that can be modeled as sequences of
Bernoulli random variables, starting with coin flips. We often refer to the states of
a Bernoulli variable as “success” and “failure,” with the parameter p identified as
the success parameter or probability of success.

BERNOULLI DISTRIBUTION

A random variable X has a Bernoulli distribution with parameter p if

P(X = 1) = p and P(X = 0) = 1 − p,

for 0 < p < 1. We write X ∼ Ber(p).

□■Example 3.7 A manufacturing process produces electronic components that occa-
sionally are defective. There is a one-in-a-thousand chance that a component is
defective. Furthermore, whether or not a component is defective is independent
of any other component’s status. If n components are produced in a day, find the
probability that at least one is defective.

Let

Xk =
{

1, if the kth component is defective,
0, otherwise,

for k = 1, . . . , n. Each Xk has a Bernoulli distribution with parameter p = 0.001.
The probability that at least one component is defective is

P(At least one component defective)

= 1 − P(No defective components)

= 1 − P(X1 = 0, . . . ,Xn = 0)

= 1 − P(X1 = 0) · · ·P(Xn = 0)

= 1 − (1 − 0.001) · · · (1 − 0.001) = 1 − (0.999)n.

If the manufacturer produces 500 components per day, then the probability that at
least one component will be defective is 1 − 0.999500 = 0.3936. Thus, we would
not be surprised to find at least one defective component. This would happen about
four times out of every 10 days of production of 500 components! ◼
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In this last example, the random variables X1, . . . ,Xn were all independent and
had the same Bernoulli distribution. In this case, we say that X1, . . . ,Xn is an inde-
pendent and identically distributed (i.i.d.) sequence of random variables.

INDEPENDENT AND IDENTICALLY DISTRIBUTED (i.i.d.)
SEQUENCES OF RANDOM VARIABLES

A sequence of random variables is said to be i.i.d. if the random variables are
independent and have the same probability distribution (including all distribution
parameters).

An i.i.d. sequence consisting of Bernoulli random variables is called a Bernoulli
sequence. Random samples in statistics are often modeled as i.i.d. sequences of
random variables.

□■ Example 3.8 A national pollster wants to estimate the president’s approval rating.
Let p be the unknown proportion of US adults who approve of how the presi-
dent is handling their job. A random sample of 1000 adults is taken. Each person
is asked, “Do you approve or disapprove with the president’s handling of their
job?” The responses are modeled as an i.i.d. Bernoulli sequence X1, . . . ,X1000,
where

Xk =

{
1, if the kth person in the sample approves,

0, if the kth person in the sample does not approve or did not reply.

The goal is to use these data to estimate the unknown proportion p. The proportion
of people in the sample who approve of how the president is handling their job is
(X1 + · · · + X1000)∕1000. This sample proportion is an estimate of the population
proportion p. ◼

□■ Example 3.9 A four-sided tetrahedral (a triangular prism) die labeled 1, 2, 3, 4 is
thrown four times. What is the probability of rolling a three exactly twice?

The four die rolls are modeled by four independent Bernoulli trials with common
success probability p = 1∕4. Let 3 denote rolling a three and N denote not rolling a 3.
A not-so-elegant solution is to enumerate all the possible ways to get a three exactly
twice: 33NN, 3N3N, 3NN3, N33N, N3N3, NN33. There are six possibilities. By
independence, each outcome occurs with probability (1∕4)2(3∕4)2 = 9∕256. Thus,
the probability of rolling a three exactly twice in four rolls is 6(9∕256) = 27∕128 =
0.211.

Recall that you can also count the number of arrangements with combinations,
as introduced in Chapter 1. We will generalize this problem and simplify its solution
when we introduce the binomial distribution next. ◼
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3.4 BINOMIAL DISTRIBUTION

Let X1, . . . ,Xn be a Bernoulli sequence with success parameter p. Let 1 denote “suc-
cess,” and 0 “failure.” The sum X = X1 + · · · + Xn counts the number of successes
in n trials.

For k = 0, . . . , n, consider P(X = k), the probability of obtaining exactly k suc-
cesses in n trials. Each outcome of k successes and n − k failures can be represented
by a binary list of length n with exactly k ones. We learned to count the number of
these arrangements in Chapter 1. There are

(
n
k

)
such lists. The probability of each

such outcome, by independence of the trials, is pk(1 − p)n−k. Combining these gives
the probability function of the binomial distribution.

BINOMIAL DISTRIBUTION

A random variable X is said to have a binomial distribution with parameters n
and p if

P(X = k) =
(n

k

)
pk(1 − p)n−k

, for k = 0, 1, . . . , n. (3.3)

We write X ∼ Binom(n, p) or Bin(n, p).

The probability function for the binomial distribution is indeed a valid probability
function as the terms are “nonnegative” and sum to 1. By the binomial theorem,

n∑
k=0

P(X = k) =
n∑

k=0

(n
k

)
pk(1 − p)n−k = (p + (1 − p))n = 1n = 1.

The most common setting in which the binomial distribution arises is modeling
the number of successes in n independent Bernoulli trials with constant probability
of success, p. Examples include the following:

• The number of heads in n fair coin tosses has a binomial distribution with
parameters n and p = 1∕2.

• Suppose 500 bits of data are sent through a digital transmission such that there
is a 1% chance that any bit is received in error. If bit errors are independent of
each other, then the number of errors has a binomial distribution with n = 500
and p = 0.01.

• Mutations on a DNA strand can be modeled as a sequence of independent
Bernoulli trials. The total number of mutations has a binomial distribution.
The parameters are the length of the strand n and the mutation rate p.

Probabilities that are modeled with the binomial distribution assume an under-
lying sequence of Bernoulli trials, which are i.i.d. Without independence, a fixed
number of trials n, or a constant probability p for each trial, the binomial model is
not valid.
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The following situations are not appropriate for a binomial model:

1. Ask 50 people their height: In a binomial setting, each trial has two possible
outcomes. Heights have many values.

However, if people are asked whether or not they are at least 6 feet tall,
then there are two outcomes, and the binomial model could be appropriate,
assuming independence.

2. The chance that a manuscript has a typo on any page is 1%. We will read
the manuscript until we find 10 typos: In a binomial setting, the number of
trials n is fixed. In this case, the number of pages read is not fixed.
However, if we read 100 pages and consider the probability of getting 10
typos, then the binomial setting is appropriate.

3. Five cards are dealt from a standard deck of cards: What is the probability
you were dealt one ace? In dealing cards, we are sampling without replace-
ment. Successive draws are neither independent nor have the same probability
of success. That is, successive draws are not Bernoulli trials.

However, if we replaced the card after each draw so that the sampling was
with replacement, then the binomial setting would work.

VISUALIZING THE BINOMIAL DISTRIBUTION

To visualize the binomial distribution using R, type

> n <- 8
> p <- 0.15
> barplot(dbinom(0:n, n, p), names.arg = 0:n)

with your own choices of n and p. See Figure 3.1 for four examples. The script
Binom.R has the example code for these four distributions.

□■Example 3.10 A multiple choice exam has 10 questions with four choices for each
question. If a student guesses on each question from the available choices, what is
the chance they will get exactly two questions right?

Briefly, we revisit problem-solving strategy. Before computing anything, we
define a random variable and identify a suitable distribution to work with. Then,
we work to find the probability requested.

Let X be the number of questions the student gets correct. Then X has a binomial
distribution with parameters n = 10 and p = 1∕4. This gives

P(X = 2) =
(10

2

)(1
4

)2(3
4

)8
= 0.281.
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FIGURE 3.1: Four examples of the binomial distribution.

If the question for this problem had asked, “What is the chance that the student
will get two questions right?” without the word “exactly,” the question could be
considered vague. Does it mean exactly two questions right or at least two questions
right? In the latter case,

P(X ≥ 2) = 1 − P(X ≤ 1) = 1 − P(X = 0) − P(X = 1)

= 1 −
(10

0

)(1
4

)0(3
4

)10
−
(10

1

)(1
4

)1(3
4

)9
= 0.756.

In this book, we will be careful about such vagaries. Be careful to clarify such issues
if they arise in a real-world problem. ◼

□■ Example 3.11 In a field of 100 trees, each tree has a 10% chance of being infected
by a root disease independently of other trees. What is the probability that more than
five trees are infected?
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Let X be the number of infected trees. Then X has a binomial distribution with
n = 100 and p = 0.10. This gives

P(X > 5) = 1 − P(X ≤ 5) = 1 −
5∑

k=0

P(X = k)

= 1 −
5∑

k=0

(100
k

)
(0.1)k(0.9)100−k = 0.942.

Note that independence here is a strong assumption, as you might expect clusters
of infection among the trees. However, this assumption is needed for the binomial
distribution to be applicable to the problem. ◼

R: WORKING WITH PROBABILITY DISTRIBUTIONS

R has several commands for working with probability distributions like the bino-
mial distribution. These commands are prefixed with d, p, and r. They take a
suffix that describes the distribution. For future reference, this information is
compiled in Appendix A. For the binomial distribution, these commands are the
following:

R command What it does

dbinom(k,n,p) Computes P(X = k)
pbinom(k,n,p) Computes P(X ≤ k)
rbinom(k,n,p) Simulates k random variables

To find the exact probability P(X > 5) in the last Example 3.11, type

> 1-pbinom(5,100,0.10)
[1] 0.94242
> #or pbinom(5, 100, 0.10, lower.tail = FALSE)

To simulate the probability P(X > 5) based on 10,000 repetitions, type

> runs <- 10000
> simlist <- rbinom(runs, 100, 0.10)
> sum(simlist > 5)/n
[1] 0.9456

□■ Example 3.12 According to Leder et al. [2002], many airlines consistently report
that about 12% of all booked passengers do not show up to the gate due to can-
cellations and no-shows. If an airline sells 110 tickets for a flight that seats 100
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passengers, what is the probability that the airline overbooked (sold more tickets
than seats) in terms of the number of ticket holders who show up?

Let X be the number of ticket holders who arrive at the gate. If we assume that
passengers’ gate arrivals are independent, then X has a binomial distribution with
n = 110 and p = 1 − 0.12 = 0.88.Overbooking occurs when more passengers show
up than the number of available seats. Thus, the desired probability is

P(X > 100) =
110∑

k=101

P(X = k)

=
110∑

k=101

(110
k

)
(0.88)k(0.12)110−k

= 0.137.

In R, as P(X > 100) = 1 − P(X ≤ 100), type

> 1-pbinom(100, 110, 0.88)
[1] 0.1366599

For a 100-seat flight, suppose the airline would like to sell the maximum number
of tickets such that the chance of overbooking is less than 5%. The airlines call this
a “5% bump threshold” overbooking strategy. How many tickets should the airline
sell?

Let n be the number of tickets sold. Find n so that P(X > 100) ≤ 0.05, where
X ∼ Binom(n, 0.88). We check in R.

> 1-pbinom(100, 108, 0.88)
[1] 0.04492587
> 1-pbinom(100, 109, 0.88)
[1] 0.08231748

Trial and error using R shows that for n = 108, P(X > 100) = 0.0449. And for
n = 109, P(X > 100) = 0.0823. Therefore, sell n = 108 tickets. ◼

R: SIMULATING THE OVERBOOKING PROBABILITY

To simulate the probability of overbooking when 108 tickets are sold, we could
approach the problem in one of two ways: (i) generate 108 Bernoulli random
variables with p = 0.88 or (ii) generate a single Binomial random variable with
n = 108 and p = 0.88. Now that we have the Binomial framework, it is more
convenient to use. Type

> rbinom(1, 108, 0.88)
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To check if more than 100 tickets are sold and the airline overbooks, type

> if(rbinom(1, 108, 0.88) > 100) 1 else 0

which returns a 1 if too many tickets are sold, and 0 otherwise.
Here we simulate the probability of overbooking based on 10,000 trials.

(Remember that a seed is being set for these!)

> simlist <- replicate(10000,
if (rbinom(1, 108, 0.88) > 100) 1 else 0)

> mean(simlist)
[1] 0.0421

□■ Example 3.13 The approximate frequencies of the four nucleotides in human
DNA are given in Table 3.3 based on work by Piovesan et al. [2019].

In two DNA strands of length 10, what is the probability that nucleotides will
match in exactly seven positions?

We make the assumption that the two strands are independent of each other. The
chance that at any site, there will be a match is the probability that both sites are
A, C, G, or T. The probability of a match is thus (0.296)2 + (0.204)2 + (0.204)2 +
(0.296)2 = 0.2585. The number of matches is a binomial random variable with
n = 10 and p = 0.2585. The desired probability is P(X = 7) = 0.00377345, where
X ∼ Binom(10, 0.2585).

> dbinom(7, 10, 0.2585)
[1] 0.00377345 ◼

□■ Example 3.14 Thea and Darius each toss four fair coins, independently. What is
the probability that they get the same number of heads?

Let X be the number of heads Thea gets, and let Y be the number of heads Darius
gets. The event that they get the same number of heads is

{X = Y} =
4⋃

k=0

{X = k,Y = k}.

TABLE 3.3. Nucleotide frequencies in
human DNA.

A C G T

0.296 0.204 0.204 0.296
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This gives

P(X = Y) = P

(
4⋃

k=0

{X = k,Y = k}

)

=
4∑

k=0

P(X = k,Y = k) =
4∑

k=0

P(X = k)P(Y = k)

=
4∑

k=0

[(4
k

)(1
2

)4
]2

=
(1

2

)8 4∑
k=0

(4
k

)2

= 1
256

(12 + 42 + 62 + 42 + 12) = 70
256

= 0.273,

where the third equality is due to independence. ◼

□■ Example 3.15 Random graphs. A graph is a set of vertices (or nodes), with
edges joining them. An edge can be written as a pair of vertices. In mathematics, the
study of graphs is called graph theory. Random graphs, meaning graphs generated
using a probability model, have been used as models for Internet traffic, social net-
works, and the spread of infectious diseases. To get a sense of how this can work,
we describe a model for a very simple random graph, the Erdős-Rényi graph.

Start with a graph on n vertices and no edges. For each pair of vertices, flip a coin
with heads probability p. If the coin lands heads, place an edge between that pair of
vertices. If tails, do not place an edge. Note the two extreme cases: if p = 0, there are
no edges in the graph; if p = 1, every pair of vertices gets an edge in what is called
the complete graph. The parameter p is called the edge probability. Properties of
these graphs are studied for large n as the edge probability varies from 0 to 1 (see
Fig. 3.2). Interested readers can learn more from Newman [2018].

Let X be the number of edges in a random graph of n vertices. There are
(

n
2

)
ways

to pick two vertices. Thus, there are
(

n
2

)
possible edges in a graph on n vertices.

The number of edges X thus has a binomial distribution with parameters
(

n
2

)
and p.

FIGURE 3.2: Three random graphs on n = 12 vertices generated, respectively, with p =
0.2, 0.5, and 0.9.
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In a graph, the degree of a vertex is the number of edges that contain that vertex,
also described as the number of edges incident to that vertex. Let deg(𝑣) be the
degree of vertex 𝑣 in a random graph. There are n − 1 possible edges incident to 𝑣,
as there are n − 1 vertices left in the graph, other than 𝑣. Each of those edges occurs
with probability p. Thus, for any vertex 𝑣 in our random graph, the degree deg(𝑣)
is a random variable that has a binomial distribution with parameters n − 1 and p.
That is,

P(deg(𝑣) = k) =
(n − 1

k

)
pk(1 − p)n−1−k

, for k = 0, . . . , n − 1. ◼

3.5 POISSON DISTRIBUTION

The binomial setting requires a fixed number n of independent trials. However, in
many applications, we model counts of independent outcomes, where there is no
prior constraint on the number of trials. Examples include

• The number of wrong numbers you receive on your cell phone over a month’s
time.

• The number of babies born on a maternity ward in one day.

• The number of blood cells recorded on a hemocytometer (a device used to
count cells).

• The number of chocolate chips in a cookie.

• The number of accidents on a mile-long stretch of highway.

• The number of soldiers killed by horse kick each year in each corps in the
Prussian cavalry.

The last example may seem far-fetched, but it was actually one of the first uses
of the distribution that we introduce in this section, called the Poisson distribution.

POISSON DISTRIBUTION

A random variable X has a Poisson distribution with parameter λ > 0 if

P(X = k) = e−λλk

k!
, for k = 0, 1, . . . . (3.4)

We write X ∼ Pois(λ).

See graphs of the Poisson distribution for four choices of λ in Figure 3.3.
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FIGURE 3.3: Four Poisson distributions with varying λ.

The probability function is nonnegative and sums to 1, as

∞∑
k=0

P(X = k) =
∞∑

k=0

e−λλk

k!
= e−λ

∞∑
k=0

λk

k!
= e−λeλ = 1.

(Not sure about the math above? Appendix C has useful results from calculus.)
The Poisson distribution is intimately connected to the binomial distribution

introduced in the last section. To see how it arises in a real-world context, we elab-
orate on a specific example.

Consider developing a probability model for the number of babies born on a
busy maternity ward in one day. Let X be the number of births. Note that this is not
a binomial setting because there is neither a fixed number of trials nor at this stage
even a probability to speak of. We give a heuristic argument to motivate the Poisson
distribution.
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Suppose that babies are born at some average rate of λ births per day. We break up
the day into n subintervals of length 1∕n. Babies are born at the rate of λ∕n births on
each subinterval. For instance, if n = 24, babies are born at the rate of λ∕24 births per
hour. Let n get large. The lengths of the subintervals get small and eventually on each
subinterval, it is very unlikely that two babies will be born during that small time
period. In each small subinterval, either a baby is born or not born with probability
λ∕n. If we assume that births on different subintervals are independent of each other,
then we can regard the occurrence of births on the subintervals as a sequence of n
i.i.d. Bernoulli trials with success probability λ∕n.

The total number of births in one day is the sum of the births on the n subintervals
and has a binomial distribution with parameters n and λ∕n. That is,

P(X = k) =
(n

k

)(λ
n

)k(
1 − λ

n

)n−k

, for k = 0, . . . , n.

The word “eventually” in the previous paragraph suggests a limiting process. Let
n tend to infinity. We show in Section 3.5.2 that

lim
n→∞

(n
k

)(λ
n

)k(
1 − λ

n

)n−k

= e−λλk

k!
. (3.5)

In other words, the number of babies born in one day has a Poisson distribution
with parameter λ, where λ is the average rate of births per day.

□■ Example 3.16 Data from a hospital maternity ward suggest that about 4.5 babies
are born every day. What is the probability that there will be six births on the ward
tomorrow?

Let X be the number of births on the ward tomorrow. Model X with a Poisson
distribution with λ = 4.5. Then

P(X = 6) = e−4.5(4.5)6

6!
= 0.128. ◼

The Poisson distribution is sometimes called the law of rare events. The “rarity”
of the events does not refer to the number of events that occur, but rather to whether
or not the event occurs in some small interval of time or space. What the examples at
the beginning of this section have in common is that some event (e.g., births, traffic
accidents, wrong numbers, and deaths) occur in some fixed region of time or space
at a constant rate such that occurrences in disjoint subregions are independent. The
parameter λ has the interpretation of the average number of occurrences per unit of
time or space.

□■ Example 3.17 According to the US Geological Survey, between 1970 and the
start of 2016, there have been 33 major earthquakes (7.0 or greater on the Richter
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scale) in the United States, including the Aleutian Islands. Assuming successive
major earthquakes are independent what is the probability there will be at least three
major earthquakes in the United States next year?

Let X be the number of major earthquakes next year. The data are based on 47
years. The rate of earthquake occurrence is 33 per 47 years, or 33∕47 per year. We
model X with a Poisson distribution with λ = 33∕47. Then

P(X ≥ 3) = 1 − P(X < 3) = 1 − P(X ≤ 2)

= 1 − P(X = 0) − P(X = 1) − P(X = 2)

= 1 − e−33∕47 − e−33∕47(33∕47) −
e−33∕47(33∕47)2

2

= 0.0344.

Geologists might argue whether successive earthquakes are in fact independent.
After a big earthquake, it is very common for there to be aftershocks. The depen-
dence of these residual quakes on the initial earthquake would violate the assump-
tion of independence. More sophisticated models that incorporate some dependency
structure are typically used to model seismic events. ◼

□■ Example 3.18 Death by horse kicks. In 1898, Ladislaus Bortkiewicz, a Polish
statistician, authored a book about the Poisson distribution titled The Law of Small
Numbers. In it, he studied the distribution of soldier deaths by horse kicks in the
Prussian cavalry. Over 20 years, there were 122 deaths in 10 Prussian army corps.
He divided the data into 20 × 10 = 200 corps-years. The average number of deaths
per corps-year was 122∕200 = 0.61. Bortkiewicz modeled the number of deaths
with a Poisson distribution with parameter λ = 0.61. Table 3.4 contains the data
Borkiewicz worked with, including observed number of deaths and expected num-
bers predicted by the Poisson model. The expected number is the Poisson probabil-
ity times 200. Observe how closely the model fits the data. ◼

TABLE 3.4. Deaths by horse kicks in the Prussian cavalry.

Number of
deaths

Observed Poisson
probability

Expected

0 109 0.543 108.7
1 65 0.331 66.3
2 22 0.101 20.2
3 3 0.021 4.1
4 1 0.003 0.6
5+ 0 0.000 0.0
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R: POISSON DISTRIBUTION

Commands for working with the Poisson distribution are

> dpois(x, lambda) # Computes P(X = x)
> ppois(x, lambda) # Computes P(X <= x)
> rpois(n, lambda) # Generates n random numbers

To obtain the expected counts for the number of deaths by horse kicks in the last
column of Table 3.4, type

> probs <- dpois(0:4, 0.61)
> probs <- c(probs,1 - ppois(4, 0.61))
> expected <- 200*probs
> expected
[1] 108.67 66.29 20.22 4.11 0.63 0.00

□■ Example 3.19 The number of accidents per month at a busy intersection has a
Poisson distribution with parameter λ = 7.5. Conditions at the intersection have
not changed much over time. Suppose each accident costs local government about
$25,000 for clean-up. How much do accidents cost, on average, over a year’s time?

With the interpretation that λ represents the average number of accidents per
month, it is not hard to see that the average cost is about 7.5 × 25,000 × 12 =
$2,250,000. We approach the problem using simulation below. The following
commands simulate 12 months of accidents and the associated annual cost:

R: SIMULATING ANNUAL ACCIDENT COST

> accidents <- rpois(12,7.5)
> cost <- sum(25000*accidents)
> cost
[1] 2200000
> simlist <- replicate(1000,sum(25000*rpois(12,7.5)))
> mean(simlist)
[1] 2258725

Local government can expect to pay about $2.25 million in costs.

◼

□■ Example 3.20 The Poisson distribution is a common model in genetics. The dis-
tribution is used to describe occurrences of mutations and chromosome crossovers.
Crossovers occur when two chromosomes break and then reconnect at different end
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pieces resulting in an exchange of genes. This process is known as genetic recom-
bination.

Suppose a genetics lab has a means to count the number of crossovers between
two genes on a chromosome. In 100 samples, 50 cells have no crossovers, 25 cells
have one crossover, 20 cells have two crossovers, and 5 cells have three crossovers.
Find the probability that a new sample will show at least one crossover.

The average number of crossovers from the sample is

50(0) + 25(1) + 20(2) + 5(3) = 80 crossovers per 100 cells,

or 0.80 crossovers per cell. Model the number of crossovers on the chromosome
with a Poisson distribution with λ = 0.80. This gives

P(At least one crossover) = 1 − P(No crossovers) = 1 − e−0.80 = 0.55. ◼

3.5.1 Poisson Approximation of Binomial Distribution

We have seen the close connection between the binomial and Poisson distributions.
The Poisson distribution arises as a limiting expression for the binomial distribution
letting n → ∞ and p = λ∕n → 0. For binomial problems with large n and small p,
a Poisson approximation works well with λ = np. Different rules of thumb exist
for what “large” means for n and what “small” means for p. As you can see in the
following examples, we are examining very rare events to be sure the approximation
is appropriate.

□■ Example 3.21 We have not determined the accuracy of the following story, which
has appeared in several blogs and websites, including Krantz [2005]:

On October 9, 1972, the mathematician Dr. Jeffrey Hamilton from Warwick University
wanted to show his students the effect of chance by tossing a coin. Taking a two pence
coin out of his pocket, he tossed it. The class joined him in watching the coin flip over
and over and then land on the floor—on its edge! Dozens of students witnessed the
amazing event, and after a stunned silence, they all broke into wild applause. Hamilton
later calculated that the chances of this happening are one in one billion.

Assume that the probability that a coin lands on its edge is one in one billion.
Suppose everyone in the world flips a coin. With a population of over seven billion
(still shy of eight billion) you would expect about seven coins to land on their edge.
What is the probability that between six and eight coins land on their edge?

Let X be the number of coins that land on their edge. Then X has a binomial dis-
tribution with n = 7,000,000,000 and p = 10−9 = 0.000000001. The desired prob-
ability is

P(6 ≤ X ≤ 8) =
8∑

k=6

(
7 × 109

k

)
(10−9)k (1 − 10−9)7×109−k

.



�

� �

�

114 INTRODUCTION TO DISCRETE RANDOM VARIABLES

Before calculators or computers, it would have been extremely difficult to com-
pute such a probability. In fact, the Poisson approximation was discovered almost
200 years ago in order to solve problems like this.

Let λ = np = (7 × 109)10−9 = 7. Then X has an approximate Poisson distribu-
tion with parameter λ = 7, and

P(6 ≤ X ≤ 8) ≈ e−776

6!
+ e−777

7!
+ e−778

8!
= 0.428.

In this example, the random variable X has an exact binomial distribution and an
approximate Poisson distribution. ◼

ON THE EDGE

Computing the exact probability of a coin landing on its edge is extremely hard,
especially for thin coins. In Murray and Teare [1993], a model is presented and
supported by numerical simulations. Extrapolations based on the model suggest
that the probability of a US nickel landing on its edge is approximately 1 in
6,000.

□■ Example 3.22 Mutations in DNA sequences occur from environmental factors,
such as ultraviolet light and radiation, and mistakes that can happen when a cell
copies its DNA in preparation for cell division. Nachman and Crowell [2000] esti-
mate the mutation rate per nucleotide of human DNA as about 2.5 × 10−8. There are
about 3.3 × 109 nucleotide bases in the human DNA genome. Assume that whether
or not a mutation occurs at a nucleotide site is independent of what occurs at other
sites. We expect about (3.3 × 109)(2.5 × 10−8) = 82.5 mutations. What is the prob-
ability that exactly 80 nucleotides will mutate in a person’s DNA?

Let X be the number of mutations. Then X has an exact binomial distribution
with n = 3.3 × 109 and p = 2.5 × 10−8

. Approximate X with a Poisson distribution
with λ = np = 82.5. The approximate probability P(X = 80) is

> dpois(80,82.5)
[1] 0.04288381408

The exact probability can be obtained in R.

> dbinom(80,3.3*10 ̂ 9,2.5*10 ̂ (-8))
[1] 0.04288381456

The approximation is good to eight significant digits. The approximation works
well because n is large and p is small.

But what if p is not small? Consider modeling “good” nucleotides, instead of
mutations. The probability of a nucleotide not mutating is 1 − p. What is the prob-
ability that n − 80 nucleotides do not mutate?



�

� �

�

POISSON DISTRIBUTION 115

The number of “good” nucleotides has an exact binomial distribution with
parameters n and 1 − p. The exact probability is

> n <- 3.3*10 ̂ 9
> p <- 2.5* 10 ̂ (-8)
> dbinom(n-80,n,1-p)
[1] 0.04288381

This is the same number obtained earlier, which makes sense as n − 80 “good”
nucleotides is equivalent to 80 mutations. However, the Poisson approximation
gives

> dpois(n-80,n*(1-p))
[1] 6.944694e-06

which is way off. The approximation is not good because 1 − p is large. ◼

□■ Example 3.23 Balls, bowls, and bombs. The following setting is very general.
Suppose n balls are thrown into n∕λ bowls so that each ball has an equal chance of
landing in any bowl. If a ball lands in a bowl, call it a “hit.” The chance that a ball hits
a particular bowl is 1∕(n∕λ) = λ∕n. Keeping track of whether or not each ball hits
that bowl, the successive hits form a Bernoulli sequence, and the number of hits has
a binomial distribution with parameters n and λ∕n. If n is large, the number of balls
in each bowl is approximated by a Poisson distribution with parameter n(λ∕n) = λ.

Many diverse applications can be fit into this general ball and bowl setting. In
his classic analysis of Nazi bombing raids on London during World War II, Feller
[1968] modeled bomb hits (balls) using a Poisson distribution. The city was divided
into 576 small areas (bowls) of 1∕4 km2. The number of areas hit exactly k times
was counted. There were a total of 537 hits, so the average number of hits per area
was 537∕576 = 0.9323. Feller gives the data in Table 3.5.

See the script Balls.R to simulate the London bombing example. Change the
numbers in the script file to simulate your own balls and bowls experiment. ◼

3.5.2 Poisson as Limit of Binomial Probabilities*

The Poisson probability function arises as the limit of binomial probabilities. Here
we show the limit result

lim
n→∞

(n
k

)(λ
n

)k(
1 − λ

n

)n−k

= e−λλk

k!

TABLE 3.5. Bomb hits over London during World War II.

Hits 0 1 2 3 4 ≥ 5

Data 229 211 93 35 7 1
Expected 226.7 211.4 98.6 30.67 7.1 1.6
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presented at the beginning of this section. Consider the product(n
k

)(λ
n

)k(
1 − λ

n

)n−k

.

We can reexpress this as

= n(n − 1) · · · (n − k + 1)
k!

(λ
n

)k(
1 − λ

n

)n−k

=
nk

(
1 − 1

n

)
· · ·

(
1 − k−1

n

)
k!

(
λk

nk

)(
1 − λ

n

)−k(
1 − λ

n

)n

= λk

k!

[(
1 − 1

n

)
· · ·

(
1 − k − 1

n

)](
1 − λ

n

)−k(
1 − λ

n

)n

. (3.6)

Taking limits as n → ∞, consider the four factors in this expression.

(i) As λ and k are constants, λk∕k! stays unchanged in the limit.
(ii) For fixed k, (

1 − 1
n

)
· · ·

(
1 − k − 1

n

)
→ 1k−1 = 1, and

(iii)
(

1 − λ
n

)−k
→ 1−k = 1.

(iv) For the last factor (1 − λ∕n)n, recall from calculus that the constant
e ≈ 2.71828 . . . is defined as the limit

lim
x→∞

(
1 + 1

x

)x
= e.

Make the substitution 1∕x = −λ∕n so that n = −λx. This gives

lim
n→∞

(
1 − λ

n

)n

= lim
x→∞

(
1 + 1

x

)−λx
=
[
lim
x→∞

(
1 + 1

x

)x
]−λ

= e−λ.

Substituting in the four limits in Equation 3.6 shows us that the original product

= λk

k!

[(
1 − 1

n

)
· · ·

(
1 − k − 1

n

)](
1 − λ

n

)−k(
1 − λ

n

)n

→
e−λλk

k!
,

as n → ∞.

3.6 SUMMARY

Random variables are introduced. i.i.d. sequences are introduced in the context of
Bernoulli trials and coin-flipping. The binomial distribution arises naturally as the
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distribution of the sum of n i.i.d. Bernoulli trials. Along with the binomial distri-
bution, the Poisson distribution is one of the most important discrete probability
distributions. It arises from the binomial setting when n, the number of fixed trials,
is large and p, the success probability, is small.

• Random variable X: Assigns numbers to the outcomes of a random experi-
ment. A real-valued function defined on the sample space.

• Uniform distribution (discrete): Let S = {s1, . . . , sk}. Then X is uniformly
distributed on S if P(X = si) = 1∕k, for i = 1 . . . , k.

• Independent random variables: Random variables X and Y are indepen-
dent if P(X = i,Y = j) = P(X = i)P(Y = j) for all i, j. Equivalently, P(X ∈ A,
Y ∈ B) = P(X ∈ A)P(Y ∈ B), for all A,B ⊆ ℜ.

• i.i.d. sequences: A sequence of random variables is an i.i.d. sequence if the
random variables are independent and all have the same distribution (including
all distribution parameters).

• Bernoulli distribution: A random variable X has a Bernoulli distribution with
parameter 0 < p < 1, if P(X = 1) = p = 1 − P(X = 0).

• Binomial theorem: For all x and y and nonnegative integer n,

(x + y)n =
n∑

k=0

(n
k

)
x ky n−k

.

• Binomial distribution: A random variable X has a binomial distribution with
parameters n and p if

P(X = k) =
(n

k

)
pk(1 − p)n−k

, for k = 0, 1, . . . , n.

• Binomial setting: The binomial distribution arises as the number of successes
in n i.i.d. Bernoulli trials. The binomial setting requires: (i) a fixed number n
of independent trials; (ii) trials take one of two possible values; and (iii) each
trial has a constant probability p of success.

• Poisson distribution: A random variable X has a Poisson distribution with
parameter λ > 0, if

P(X = k) = e−λλk

k!
, for k = 0, 1, . . . .

• Poisson setting: The Poisson setting arises in the context of discrete counts
of “events” that occur over space or time with small probability and where
successive events are independent.

• Poisson approximation of binomial distribution: Suppose X ∼ Binom(n, p)
and Y ∼ Pois(λ). If n → ∞ and p → 0 in such a way so that np → λ > 0,
then for all k, P(X = k) → P(Y = k). The Poisson distribution with parameter
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λ = np serves as a good approximation for the binomial distribution when n
is large and p is small.

EXERCISES

Random Variables and Independence

3.1 Your friend missed probability class today. Explain to your friend, in simple
language, what a random variable is.
For the following problems 3.2–3.5, identify and define the random variable
of interest. Then, express the probability in question in terms of the defined
random variable, but do not compute the probability.

3.2 Roll four dice. Consider the probability of getting all fives.

3.3 A pizza shop offers three toppings: pineapple, peppers, and pepperoni. A pizza
can have 0, 1, 2, or 3 toppings. Consider the probability that a random customer
asks for two toppings.

3.4 Bored one day, you decide to play the video game Angry Birds until you win.
Every time you lose, you start over. Consider the probability that you win in
less than 1000 tries.

3.5 In Julia’s garden, there is a 3% chance that a tomato will be bad. Julia harvests
100 tomatoes and wants to know the probability that at most five tomatoes
are bad.

3.6 Suppose X is a random variable that takes values on {0, 0.01, 0.02, . . . , 0.99, 1}.
If each outcome is equally likely, find

(a) P(X ≤ 0.33).
(b) P(0.55 ≤ X ≤ 0.66).

3.7 Suppose X is a random variable that takes values on all positive integers. Let
A = {2 ≤ X ≤ 4} and B = {X ≥ 4}.Describe the events (i) Ac; (ii) Bc; (iii) AB;
and (iv) A ∪ B.

3.8 Define two random variables X and Y that are not independent. Demonstrate
the dependence between the random variables.

3.9 The original slot machine had 3 reels with 10 symbols on each reel. On each
play of the slot machine, the reels spin and stop at a random position. Suppose
each reel has one cherry on it. Let X be the number of cherries that show up
from one play of the slot machine. Find P(X = k), for k = 0, 1, 2, 3.

3.10 Suppose X1,X2 are i.i.d. random variables, each uniformly distributed
on {−1, 0, 1}. Find the probability function for X1 + X2. That is, find
P(X1 + X2 = k), for k = −2, . . . , 2.
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3.11 Let X be a random variable such that P(X = k) = k∕10, for k = 1, 2, 3, 4. Let
Y be a random variable with the same distribution as X. Suppose X and Y are
independent. Find P(X + Y = k), for k = 2, . . . , 8.

3.12 In role-playing games, different dice are used for different character actions.
For dealing damage with a particular weapon in the game, a player rolls an
eight-sided die (d8). On a critical hit, the number of damage dice rolled is
doubled. Suppose X1 and X2 represent the die results of a critical hit dam-
age roll with the weapon. Find the probability function for X1 + X2, the total
amount of critical hit damage dealt by the player using the weapon.

3.13 Suppose X1,X2,X3 are i.i.d. random variables, each uniformly distributed
on {1, 2, 3}. Find the probability function for X1 + X2 + X3. That is, find
P(X1 + X2 + X3 = k), for k = 3, . . . , 9.

Binomial Distribution

3.14 Pop quiz! Cora is surprised by a pop quiz 15 questions long in a class. Each
question has four possible answers, and no question depends on the answer to
another. Cora decides to guess her way through the quiz. Using random vari-
ables, write expressions for the following probabilities and solve them with R.

(a) The probability that Cora gets exactly 4 questions right.

(b) That probability that Cora gets at most 8 questions right.

(c) The probability that Cora gets between 3 and 10 questions right.

3.15 Every person in a group of 1000 people has a 1% chance of being infected
by a virus. Assume that the process of being infected is independent from
person to person. Using random variables, write expressions for the following
probabilities and solve them with R.

(a) The probability that exactly 10 people are infected.

(b) That probability that at least 16 people are infected.

(c) The probability that between 12 and 14 people are infected.

(d) The probability that someone is infected.

3.16 Newton–Pepys problem. In 1693, Samuel Pepys wrote a letter to Isaac
Newton posing the following question (Stigler 2006).
Which of the following three occurrences has the greatest chance of success?

1. Six fair dice are tossed and at least one 6 appears.

2. Twelve fair dice are tossed and at least two 6s appear.

3. Eighteen fair dice are tossed and at least three 6s appear.

Answer Mr. Pepys’ question.
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3.17 For the following situations, identify whether or not X has a binomial distri-
bution. If it does, give n and p; if not, explain why not.

(a) Every day Alex goes out for lunch there is a 25% chance he will choose
pizza. Let X be the number of times he chose pizza last week.

(b) Brandi plays basketball, and there is a 60% chance she makes each free
throw. Let X be the number of successful free throw baskets she makes in
a game.

(c) A bowl contains 100 red candies and 150 blue candies. Carlos reaches and
takes out a sample of 10 candies. Let X be the number of red candies in
his sample.

(d) Dwayne is reading a 600-page book. On even-numbered pages, there is a
1% chance of a typo. On odd-numbered pages, there is a 2% chance of a
typo. Let X be the number of typos in the book.

(e) Evan is reading a 600-page book. The number of typos on each page has
a Bernoulli distribution with p = 0.01. Let X be the number of typos in
the book.

3.18 See Example 3.15. Consider a random graph on n = 8 vertices with edge prob-
ability p = 0.25.

(a) Find the probability that the graph has at least six edges.

(b) A vertex of a graph is said to be isolated if its degree is 0. Find the prob-
ability that a particular vertex is isolated.

3.19 A bag of 16 balls contains 1 red, 3 yellow, 5 green, and 7 blue balls. Suppose
four balls are picked, sampling with replacement.

(a) Find the probability that the sample contains at least two green balls.

(b) Find the probability that each of the balls in the sample is a different color.

(c) Repeat parts (a) and (b) for the case when the sampling is without
replacement.

3.20 Ecologists use occupancy models to study animal populations. Ecologists at
the Department of Natural Resources use helicopter surveying methods to look
for otter tracks in the snow along the Mississippi River to study which parts of
the river are occupied by otter. The occupancy rate is the probability that an
animal species is present in a region. The detection rate is the probability that
the animal will be detected. (In this case, whether tracks will be seen from a
helicopter.) If the animal is not detected, this might be due to the site not being
occupied or because the site is occupied and the tracks were not detected.

A common model used by ecologists is a zero-inflated binomial model. If
the region is occupied, then the number of detections is binomial with n the
number of sites and p the detection rate. If the region is unoccupied, the num-
ber of detections is 0.
Let 𝛼 be the occupancy rate, p the detection rate, and n the number of sites.
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(a) Find the probability of zero detections. (Hint: Condition on occupancy.)

(b) DNR ecologists searched five sites along the Mississippi River for the
presence of otter. Suppose 𝛼 = 0.75 and p = 0.50. Let Z be the number of
observed detections. Give the probability function for Z.

3.21 Sign test: A new experimental drug is given to patients suffering from
severe migraine headaches. Patients report their pain experience on a scale
of 1–10 before and after the drug. The difference of their pain measurement
is recorded. If their pain decreases, the difference will be positive (+); if the
pain increases, the difference will be negative (−). The data are ignored if the
difference is 0.

Under the null hypothesis that the drug is ineffective, and there is no dif-
ference in pain experience before and after the drug, the number of +’s will
have a binomial distribution with n equal to the number of +’s and −’s; and
p = 1∕2. This is the basis of a statistical test called the sign test.

Suppose a random sample of 20 patients are given the new drug. Of 16
nonzero differences, 12 report an improvement (+). If one assumes that
the drug is ineffective, what is the probability of obtaining 12 or more +’s,
as observed in these data? Based on these data do you think the drug is
ineffective?

3.22 I have two dice, one is a standard die. The other has three ones and three fours.
I flip a coin. If heads, I will roll the standard die five times. If tails, I will roll the
other die five times. Let X be the number of fours that appear. Find P(X = 3).
Does X have a binomial distribution?

Poisson Distribution

3.23 Suppose X has a Poisson distribution and P(X = 2) = 2P(X = 1). Find
P(X = 3).

3.24 Computer scientists have modeled the length of search queries on the web
using a Poisson distribution. Suppose the average search query contains about
three words. Let X be the number of words in a search query. Because one
cannot have a query consisting of zero words, we model X as a “restricted”
Poisson distribution that does not take values of 0. That is, let P(X = k) =
P(Y = k|Y ≠ 0), where Y ∼ Pois(3).
(a) Find the probability function of X.

(b) What is the probability of obtaining search queries longer than 10 words?

(c) Arampatzis and Kamps [2008] observe that many data sets contain very
large queries that are not predicted by a Poisson model, such as queries
of 10 words or more. They propose a restricted Poisson model for short
queries, for instance, queries of six words or less. Find P(Y = k|1 ≤ Y ≤

6) for k = 1, . . . , 6.



�

� �

�

122 INTRODUCTION TO DISCRETE RANDOM VARIABLES

TABLE 3.6. No-hitter baseball games

Number of games 0 1 2 3 4 5 6 7
Seasons 18 30 21 21 6 3 3 2

3.25 The number of eggs a chicken hatches is a Poisson random variable. The prob-
ability that the chicken hatches no eggs is 0.10. What is the probability that
she hatches at least two eggs?

3.26 Hemocytometer slides are used to count cells and other microscopic particles.
They consist of glass engraved with a laser-etched grid. The size of the grid is
known making it possible to count the number of particles in a specific volume
of fluid. A hemocytometer slide used to count red blood cells has 160 squares.
The average number of blood cells per square is 4.375. What is the probability
that one square contains between 3 and 6 cells?

3.27 Cars pass a busy intersection at a rate of approximately 16 cars per minute.
What is the probability that at least 1000 cars will cross the intersection in the
next hour? (Hint: What is the rate per hour?)

3.28 Table 1 from Huber and Glen [2007] shows the number of no hitter baseball
games that were pitched in the 104 ball seasons between 1901 and 2004. The
data are reproduced in Table 3.6.

For instance, 18 seasons saw no no-hit games pitched; 30 seasons saw one
no-hit game, etc. Use these data to model the number of no-hit games for a
baseball season. Create a table that compares the observed counts with the
expected number of no-hit games under your model.

3.29 Suppose X ∼ Pois(λ). Find the probability that X is odd. (Hint: Consider
Taylor expansions of eλ and e−λ.)

3.30 If you take the red pill, the number of colds you get next winter will have a
Poisson distribution with λ = 1. If you take the blue pill, the number of colds
will have a Poisson distribution with λ = 4. Each pill is equally likely. Suppose
you get three colds next winter. What is the probability you took the blue pill?

3.31 A physicist estimated that the probability of a US nickel landing on its edge
is one in 6000. Suppose a nickel is flipped 10,000 times. Let X be the number
of times it lands on its edge. Find the probability that X is between one and
three using

(a) The exact distribution of X.

(b) An approximate distribution of X.

3.32 A chessboard is put on the wall and used as a dart board. Suppose 100 darts
are thrown at the board and each of the 64 squares is equally likely to be
hit.
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(a) Find the exact probability that the left-top corner of the chessboard is hit
by exactly two darts.

(b) Find an approximation of this probability using an appropriate
distribution.

3.33 Give a probabilistic interpretation of the series

1
e
+ 1

2!e
+ 1

4!e
+ 1

6!e
+ · · · .

That is, pose a probability question for which the sum of the series is the
answer.

3.34 Suppose that the number of eggs that an insect lays is a Poisson random
variable with parameter λ. Further, the probability that an egg hatches and
develops is p. Egg hatchings are independent of each other. Show that the
total number of eggs that develop has a Poisson distribution with parameter
λp. Hint: Condition on the number of eggs that are laid, and find expressions
for the probability function of the number of eggs that develop using the con-
ditioning.

Simulation and R

3.35 Let X be a random variable taking values 1, 4, 8, and 16 with respective prob-
abilities 0.1, 0.2, 0.3, 0.4. Show how to simulate X.

3.36 Modify the Balls.R script to simulate the distribution of 700 red blood cells
on a hemocytometer slide as described in Exercise 3.26. Use your simulation
to estimate the probability that a square contains between 3 and 6 cells, and
compare to the exact solution.

3.37 Which is more likely: 5 heads in 10 coin flips, 50 heads in 100 coin flips, or
500 heads in 1000 coin flips? Use R’s dbinom command to find out.

3.38 Simulate the probability computed in part a of Exercise 3.19 when sam-
pling is with replacement. Repeat for the case when sampling is without
replacement.

3.39 Choose your favorite value of λ and let X ∼ Pois(λ). Simulate the probability
that X is odd. See Exercise 3.29. Compare with the exact solution.

3.40 Write an R function before(a,b) to simulate the probability, in
repeated independent throws of a pair of dice, that a appears before b, for
a, b = 2, . . . , 12.

3.41 Simulate a Prussian soldier’s death by horse kick as in Example 3.18. Create a
histogram based on 10,000 repetitions. Compare to a histogram of the Poisson
distribution using the command rpois(10000,0.61).
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3.42 Poisson approximation of the binomial: Suppose X ∼ Binom(n, p).Write an R
function compare(n,p,k) that computes (exactly) P(X = k) − P(Y = k),
where Y ∼ Pois(np). Try your function on numbers where you expect the
Poisson probability to be a good approximation of the binomial. Also try it
on numbers where you expect the approximation to be poor. Is your intuition
correct?

Chapter Review

Chapter review exercises are available through the text website. The URL is
www.wiley.com/go/wagaman/probability2e.
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EXPECTATION AND MORE WITH
DISCRETE RANDOM VARIABLES

Iacta alea est. (The die is cast.)
—From Julius Caesar, upon crossing the Rubicon.

Learning Outcomes

1. Apply definitions of probability mass function and expectation.

2. Solve problems involving joint distributions and marginal distributions.

3. Explain linearity of expectation and implications of independence in the dis-
crete setting.

4. Compute expectations of functions of random variables, variance, standard
deviation, covariance, and correlation.

5. Give examples of conditional distributions in the discrete setting.

6. (C) Verify analytical results via simulation for chapter concepts.

Introduction. Having introduced the binomial and Poisson distributions, two of
the most important probability distributions for discrete random variables, we now
look at more concepts related to random variables in general, still working in the
discrete setting. We start with some terminology.

The probability function P(X = x) of a discrete random variable X is called the
probability mass function (pmf) of X. Pmfs are the central objects in discrete prob-
ability that allow one to compute probabilities. If we know the pmf of a random
variable, in a sense we have “complete knowledge”—in a probabilistic sense—of
the behavior of that random variable.

Probability: With Applications and R, Second Edition. Amy S. Wagaman and Robert P. Dobrow.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/wagaman/probability2e
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PROBABILITY MASS FUNCTION

For a random variable X that takes values in a set S, the probability mass function
of X is the probability function

m(x) = P(X = x), for x ∈ S,

and implicitly, 0, otherwise.

Often, we leave the implicitly 0, otherwise statement out when describing a pmf,
but you should remember it is implied.

A Note on Notation

Although probability was studied for hundreds of years, many of the familiar
symbols that we use today have their origin in the mid-twentieth century. In par-
ticular, their use was made popular in William Feller’s remarkable probability
textbook An Introduction to Probability Theory and Its Applications [1968], first
published in 1950 and considered by many to be the greatest mathematics book
of the twentieth century.

You have already seen many pmfs! Table 4.1 summarizes the common distribu-
tions that you have seen so far, together with their pmfs. See Appendix B for a more
complete list of distributions covered in the text. You have also seen distributions
that do not have a special name.

TABLE 4.1. Discrete probability distributions.

Distribution Parameters Probability mass function

Bernoulli p P(X = k) =
{

p, if k = 1
1 − p, if k = 0

Binomial n, p P(X = k) =
(

n

k

)
pk(1 − p)n−k, k = 0, . . . , n

Poisson 𝜆 P(X = k) = e−𝜆𝜆k

k!
, k = 0, 1, . . .

Uniform on P(X = xk) =
1

n
, k = 1, . . . , n

{x1, . . . , xn}
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4.1 EXPECTATION

The expectation is a numerical measure that summarizes the typical, or average,
behavior of a random variable. Expectation is a weighted average of the values
of X, where the weights are the corresponding probabilities of those values. The
expectation places more weight on values that have greater probability.

EXPECTATION

If X is a discrete random variable that takes values in a set S, its expectation,
E[X], is defined as

E[X] =
∑
x∈S

xP(X = x).

The sum in the definition is over all values of X. The expectation will be finite
provided that the series is absolutely convergent. If the series is not absolutely con-
vergent, then we say that X has no finite expectation. Instead, it may be described
as infinite or simply said to not exist.

In the case when X is uniformly distributed on a finite set {x1, . . . , xn}, that is,
all outcomes are equally likely,

E[X] =
n∑

i=1

xiP(X = xi) =
n∑

i=1

xi

(1
n

)
=

x1 + · · · + xn

n
.

With equally likely outcomes, the expectation is just the regular average of the
values.

Other names for expectation are mean and expected value. In the context of
games and random experiments involving money, expected value is often used.

□■ Example 4.1 Scrabble. In the game of Scrabble, there are 100 letter tiles with
the distribution of point values given in Table 4.2. Let X be the point value of a
random Scrabble tile. What is the expectation of X?

To compute the expectation, we convert the entries of Table 4.2 to probabilities
by dividing the number of tiles by 100. The expected point value of a Scrabble tile is

E[X] = 0(0.02) + 1(0.68) + 2(0.07) + 3(0.08) + 4(0.10) + 5(0.01)

+ 8(0.02) + 10(0.02) = 1.87. ◼
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TABLE 4.2. Tile values in Scrabble.

Point value 0 1 2 3 4 5 8 10
Number of tiles 2 68 7 8 10 1 2 2

Note that in the last example, a random variable X was defined for us. If X had
not been defined, and the question had asked for the expectation of the point value
of a random Scrabble tile, it is useful to define a random variable to work with. We
suggest defining the relevant random variables as a first step in most problems and
exercises.

□■ Example 4.2 Roulette. In the game of roulette, a ball rolls around a roulette
wheel landing on one of 38 numbers. Eighteen numbers are red; 18 are black; and
2—0 and 00—are green. A bet of “red” costs $1 to play and pays out $2, for a net
gain of $1, if the ball lands on red.

Let X be a player’s winnings at roulette after one bet of red. What is the distri-
bution of X? What is the expected value, E[X]?

The player either wins or loses $1. So X = 1 or −1, with P(X = 1) = 18∕38 and
P(X = −1) = 20∕38. Now that the distribution of X is known, the expected value
can be computed:

E[X] = (1)P(X = 1) + (−1)P(X = −1)

= (1)18
38

+ (−1)20
38

= − 2
38

= −0.0526.

The expected value of the game is about −5 cents. That is, the expected loss is about
a nickel. ◼

What does E[X] = −0.0526 or, in the previous example, E[X] = 1.87, really
mean? You cannot lose 5.26 cents at roulette or pick a Scrabble tile with a value
of 1.87.

We interpret E[X] as a long-run average as it may not be a possible value of X.
That is, if you pick Scrabble tiles repeatedly for a long time (with replacement),
then the average of those tile values will be about 1.87. If you play roulette for a
long time making many red bets, then the average of all your $1 wins and losses
will be about −5 cents. What that also means is that if you play, say, 10,000 times
then your total loss will be about 5× 10,000 = 50,000 cents, or about $500.

More formally, let X1,X2, . . . be an i.i.d. sequence of outcomes of roulette bets,
where Xk is the outcome of the kth bet. Then the interpretation of expectation
is that

E[X] ≈
X1 + · · · + Xn

n
, (4.1)
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when n is large. This gives a prescription for simulating the expectation of a random
variable X: choose a large value of n, simulate n copies of X, and take the average
as an approximation for E[X].

R: PLAYING ROULETTE

The command

> sample(1:38,1)

simulates a uniform random integer between 1 and 38. Let the numbers 1 – 18
represent red. The command

> if (sample(1:38,1) <= 18) 1 else -1

returns a 1 if you roll red, and −1, otherwise.
Repeat 10,000 times and take the average to simulate the expected value.

> simlist <- replicate(10000,
if (sample(1:38,1) <= 18) 1 else -1)

> mean(simlist)
[1] -0.0612

□■ Example 4.3 Expectation of discrete uniform distribution. Let X ∼
Unif{1, . . . , n}. The expectation of X is

E[X] =
n∑

x=1

xP(X = x) =
n∑

x=1

x
n
= 1

n

(
(n + 1)n

2

)
= n + 1

2
. ◼

□■ Example 4.4 Expectation of the Poisson distribution. Let X ∼ Pois(𝜆). What
is E[X]? Before doing the calculation, think back to when the Poisson distribution
was introduced, and make an educated guess at the expectation of X.

Working out the computation, we find

E[X] =
∞∑

k=0

kP(X = k) =
∞∑

k=0

k
e−𝜆𝜆k

k!

= e−𝜆
∞∑

k=1

𝜆k

(k − 1)!
= 𝜆e−𝜆

∞∑
k=1

𝜆k−1

(k − 1)!

= 𝜆e−𝜆
∞∑

k=0

𝜆k

k!
= 𝜆e−𝜆e𝜆 = 𝜆.

The 𝜆 parameter of a Poisson distribution is the mean of the distribution. ◼
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4.2 FUNCTIONS OF RANDOM VARIABLES

Suppose X is a random variable and g is some function. Then Y = g(X) is a random
variable that is a function of X. The values of this new random variable are found
as follows. If X = x, then Y = g(x).

Functions of random variables, like X2, eX , and 1∕X, show up all the time in
probability. Often, we apply some function to the outcomes of a random experiment,
as we will see in many examples later. In statistics, it is common to transform data
using an elementary function such as the log or exponential function.

Suppose X is uniformly distributed on {−2,−1, 0, 1, 2}. That is,

P(X = k) = 1
5
, for k = −2,−1, 0, 1, 2.

Take g(x) = x2, and let Y = g(X) = X2. The possible outcomes of Y are
(−2)2, (−1)2, 02

, 12
, 22; that is, 0, 1, and 4. As Y = 0 if and only if X = 0,

Y = 1 if and only if X = ±1, and Y = 4 if and only if X = ±2, the pmf of Y is
found as

P(Y = 0) = P(X2 = 0) = P(X = 0) = 1
5
,

P(Y = 1) = P(X2 = 1) = P(X = ±1) = P(X = −1) + P(X = 1) = 2
5
,

P(Y = 4) = P(X2 = 4) = P(X = ±2) = P(X = −2) + P(X = 2) = 2
5
.

Here is one way to think of functions of random variables. Suppose there are two
rooms labeled X and Y . In the first X room, a random experiment is performed. The
outcome of the experiment is x. A messenger takes x and heads to the Y room. But
before he gets there, he applies the g function to x and delivers g(x) to the Y room.
As the random experiment is repeated, an observer looking into the X room sees the
x outcomes. An observer looking into the Y room sees the g(x) outcomes. Several
x’s may map to the same y value.

□■ Example 4.5 Tenzin spends $2 in supplies to set up his lemonade stand. He
charges 25 cents a cup. Suppose the number of cups he sells in a day has a Poisson
distribution with 𝜆 = 10. Describe his profit as a function of a random variable and
find the probability that the lemonade stand makes a positive profit.

Let X be the number of cups Tenzin sells in a day. Then X ∼ Pois(10). If he sells x
cups, then his profit is 25x − 200 cents. The random variable Y = 25X − 200 defines
his profit as a function of X, the number of cups sold. To solve probability questions
about Y , we reexpress them in terms of X, because we know its distribution.
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The probability that Tenzin makes a positive profit is

P(Y > 0) = P(25X − 200 > 0) = P(X > 8)

= 1 − P(X ≤ 8) = 1 −
8∑

k=0

e−1010k

k!
= 0.667.

The probability is easily evaluated using R:

> 1-ppois(8, 10)
[1] 0.6671803

Observe carefully the use of algebraic operations with random variables. In the
last example, we have {25X − 200 > 0} if and only if {25X > 200} if and only if
{X > 8}. We can add, subtract, multiply, and do any allowable algebraic operation
on both sides of the expression. You are beginning to see the power of working with
random variables. ◼

R: LEMONADE PROFITS

To simulate one day’s profit in cents for the lemonade stand, type

> rpois(1,10)*25 - 200

To simulate the probability of making a positive profit, type

> reps <- 10000
> simlist <- rpois(reps, 10)*25 - 200
> sum(simlist > 0)/reps
[1] 0.6706

Next, we learn how to take the expectation of a function of a random variable.

EXPECTATION OF FUNCTION OF A RANDOM VARIABLE

Let X be a random variable that takes values in a set S. Let g be a function. Then,

E[g(X)] =
∑
x∈S

g(x)P(X = x). (4.2)
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The result seems straightforward and perhaps even “obvious.” But its proof is
somewhat technical, and we leave the details for the interested reader at the end of
the chapter. It is sometimes called “the law of the unconscious statistician.”

□■ Example 4.6 A number X is picked uniformly at random from 1 to 100. What is
the expected value of X2?

The random variable X2 is equal to g(X), where g(x) = x2. This gives

E[X2] =
100∑
x=1

x2P(X = x) =
100∑
x=1

x2
( 1

100

)
=
( 1

100

) 100(101)(201)
6

= (101)(201)
6

= 3383.5,

using the fact that the sum of the first n squares is n(n + 1)(2n + 1)∕6.
You might have first thought that because E[X] = 101∕2 = 50.5, then E[X2] =

(101∕2)2 = 2550.25. We see that this is not correct. It is not true that E[X2] =
(E[X])2. Consider a simulation. We take 100,000 replications to get a good estimate.

> mean(sample(1:100, 100000, replace = TRUE)^2)
[1] 3389.155

The simulation should reinforce the fact that E[X2] ≠ E[X]2. More generally,
it is not true that E[g(X)] = g(E[X]). The operations of expectation and function
evaluation cannot be interchanged. It is very easy, and common, to make this kind
of a mistake. To be forewarned is to be forearmed. ◼

□■ Example 4.7 Create a “random sphere” whose radius R is determined by the roll
of a six-sided die. Let V be the volume of the sphere. Find E[V].

R is uniform on {1, 2, 3, 4, 5, 6}. The formula for the volume of a sphere as a
function of radius is 𝑣(r) = (4𝜋∕3)r3. The expected volume of the sphere is

E[V] = E
[4𝜋

3
R3

]
=

6∑
r=1

(4𝜋
3

r3
)

P(R = r)

= 4𝜋
3

(1
6

)
(13 + 23 + 33 + 43 + 53 + 63)

= 98𝜋. ◼

□■ Example 4.8 Suppose X has a Poisson distribution with parameter 𝜆. Find
E[1∕(X + 1)].
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We proceed using the “law of the unconscious statistician,” which gives

E
[ 1

X + 1

]
=

∞∑
k=0

1
k + 1

P(X = k)

=
∞∑

k=0

1
k + 1

(
e−𝜆𝜆k

k!

)

= e−𝜆

𝜆

∞∑
k=0

𝜆k+1

(k + 1)!

= e−𝜆

𝜆

∞∑
k=1

𝜆k

k!
= e−𝜆

𝜆

( ∞∑
k=0

𝜆k

k!
− 1

)

= e−𝜆

𝜆
(e𝜆 − 1) = 1 − e−𝜆

𝜆
.

Note how the series was reexpressed to make use of results from calculus. ◼

We gave a dire warning a few paragraphs back that in general it is not true that
E[g(X)] = g(E[X]). However, there is one notable exception. That is the case when
g is a linear function.

EXPECTATION OF A LINEAR FUNCTION OF X

For constants a and b, and a random variable X with expectation E[X],

E[aX + b] = aE[X] + b.

Let g(x) = ax + b. By the law of the unconscious statistician,

E[aX + b] =
∑

x

(ax + b)P(X = x)

= a
∑

x

xP(X = x) + b
∑

x

P(X = x)

= aE[X] + b.

That is, the expectation of a linear function of X is that function evaluated at the
expectation of X. This special case can be very useful, just remember that in general
E[g(X)] ≠ g(E[X]).
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□■ Example 4.9 A lab in France takes temperature measurements of data that are
randomly generated. The mean temperature for their data is 5∘C. The data are
transferred to another lab in the United States, where temperatures are recorded
in Fahrenheit. When the data are sent, they are first transformed using the Celsius
to Fahrenheit conversion formula f = 32 + (9∕5)c. Find the mean temperature of
the Fahrenheit data.

Let F and C denote the random temperature measurements in Fahrenheit and
Celsius, respectively. Then, because the conversion formula is a linear function,

E[F] = E
[
32 +

(9
5

)
C
]
= 32 +

(9
5

)
E[C]

= 32 +
(9

5

)
5 = 41∘F. ◼

4.3 JOINT DISTRIBUTIONS

In the case of two random variables X and Y , a joint distribution specifies the values
and probabilities for all pairs of outcomes. For two discrete variables X and Y , the
joint pmf of X and Y is the function of two variables P(X = x,Y = y).

The joint pmf is a probability function, and thus, it sums to 1. If X takes values
in a set S and Y takes values in a set T , then∑

x∈S

∑
y∈T

P(X = x,Y = y) = 1.

As in the one variable case, probabilities of events are obtained by summing over
the individual outcomes contained in the event. For instance, for constants a < b
and c < d, possible values of X and Y , respectively,

P(a ≤ X ≤ b, c ≤ Y ≤ d) =
b∑

x=a

d∑
y=c

P(X = x,Y = y).

A joint pmf can be defined for any finite collection of discrete random variables
X1, . . . ,Xn defined on a common sample space. The joint pmf is the function of n
variables P(X1 = x1, . . . ,Xn = xn).

□■ Example 4.10 Suppose the joint pmf of X and Y is

P(X = x,Y = y) = cxy, for x, y = 1, 2,

and 0, otherwise. (i) Find the constant c. (ii) Find P(X ≤ 1,Y ≥ 1).



�

� �

�

JOINT DISTRIBUTIONS 135

(i) To find c, we use the fact that the sum of the probabilities is 1. Note that

1 =
2∑

x=1

2∑
y=1

cxy = c(1 + 2 + 2 + 4) = 9c,

and thus c = 1∕9.

(ii) The desired probability is

P(X ≤ 1,Y ≥ 1) =
1∑

x=1

2∑
y=1

xy

9
= 1

9
(1 + 2) = 1

3
.

◼

□■ Example 4.11 Red ball, blue ball. A bag contains four red, three white, and
two blue balls. A sample of two balls is picked without replacement. Let R and B be
the number of red and blue balls, respectively, in the sample. (i) Find the joint pmf
of R and B. (ii) Use the joint pmf to find the probability that the sample contains at
most one red and one blue ball.

(i) Consider the event {R = r,B = b}. The number of red and blue balls in the
sample must be between 0 and 2. For 0 ≤ r + b ≤ 2, if r red balls and b blue balls are
picked, then 2 − r − b white balls must also be picked. Selecting r red, b blue, and
2 − r − b white balls can be done in

(
4
r

)(
2
b

)(
3

2−r−b

)
ways. There are

(
9
2

)
= 36

ways to select two balls from the bag. Thus, the joint pmf of (R,B) is

P(R = r,B = b) =
(4

r

)( 3
2 − r − b

)(2
b

)/
36 , for 0 ≤ r + b ≤ 2.

The joint pmf of R and B is also described by the joint probability table:

B

0 1 2

0 3/36 6/36 1/36

R 1 12/36 8/36 0

2 6/36 0 0

where the pmf has been evaluated at all possible combinations of values for R and B.
(ii) The desired probability is

P(R ≤ 1,B ≤ 1) =
1∑

r=0

1∑
b=0

P(R = r,B = b)

= 3
36

+ 12
36

+ 6
36

+ 8
36

= 29
36

. ◼
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Marginal distributions. From the joint distribution of X and Y , one can obtain
the univariate, or marginal distribution of each variable. As

{X = x} =
⋃
y∈T

{X = x,Y = y},

the pmf of X is

P(X = x) = P

(⋃
y∈T

{X = x,Y = y}

)
=
∑
y∈T

P(X = x,Y = y).

The marginal distribution or marginal pmf of X is obtained from the joint distribu-
tion of X and Y by summing over the values of y. Similarly, the marginal pmf of Y
is obtained by summing the joint pmf over the values of x.

MARGINAL DISTRIBUTIONS

If X takes values in a set S, and Y takes values in a set T , then the marginal
distribution of X is

P(X = x) =
∑
y∈T

P(X = x,Y = y) and

the marginal distribution of Y is

P(Y = y) =
∑
x∈S

P(X = x,Y = y).

□■ Example 4.12 Red ball, blue ball, continued. For the last Example 4.11,
(i) find the marginal distributions of the number of red and blue balls, respectively.
(ii) Use these distributions to find the expected number of red balls and the expected
number of blue balls in the sample.

(i) Given a joint probability table, the marginal distributions are obtained by sum-
ming over the rows and columns of the table, as shown below.

B

0 1 2

0 3/36 6/36 1/36 10/36

R 1 12/36 8/36 0 20/36

2 6/36 0 0 6/36

21/36 14/36 1/36.
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That is,

P(R = r) =
⎧⎪⎨⎪⎩

10∕36, if r = 0,
20∕36, if r = 1,
6∕36, if r = 2,

and

P(B = b) =
⎧⎪⎨⎪⎩

21∕36, if b = 0,
14∕36, if b = 1,
1∕36, if b = 2.

(ii) For the expectations,

E[R] =
2∑

r=0

rP(R = r) = 0
(10

36

)
+ 1

(20
36

)
+ 2

( 6
36

)
= 8

9
and

E[B] = 0
(21

36

)
+ 1

(14
36

)
+ 2

( 1
36

)
= 4

9
. ◼

□■ Example 4.13 A computer store has modeled the number of computers C it sells
per day, together with the number of extended warranties W. The joint pmf is

P(C = c,W = 𝑤) =
(5

2

)c e−5

𝑤!(c −𝑤)!
,

for c = 0, 1, . . . , and 𝑤 = 0, . . . , c. We explore the marginal distributions of C
and W.

To find the marginal distribution of C sum over all 𝑤. As 0 ≤ 𝑤 ≤ c,

P(C = c) =
∑
𝑤

P(C = c,W = 𝑤)

=
c∑

𝑤=0

(5
2

)c e−5

𝑤!(c −𝑤)!

=
(5

2

)c
e−5

c∑
𝑤=0

1
𝑤!(c −𝑤)!

=
(5

2

)c e−5

c!

c∑
𝑤=0

( c
𝑤

)
=
(5

2

)c e−5

c!
2c = e−55c

c!
,
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for c = 0, 1, . . . . The final expression is the pmf of a Poisson random variable with
𝜆 = 5. Thus, the marginal distribution of C, the number of computers sold, is a
Poisson distribution with 𝜆 = 5.

For the marginal distribution of W, sum over c values. As 0 ≤ 𝑤 ≤ c, the sum is
over all c ≥ 𝑤, which gives

P(W = 𝑤) =
∑

c

P(W = 𝑤,C = c)

=
∞∑

c=𝑤

(5
2

)c e−5

𝑤!(c −𝑤)!

= e−5

𝑤!

∞∑
c=𝑤

(5
2

)c 1
(c −𝑤)!

= e−5

𝑤!

(5
2

)𝑤
∞∑

c=𝑤

(5
2

)c−𝑤 1
(c −𝑤)!

= e−5

𝑤!

(5
2

)𝑤
∞∑

c=0

(5
2

)c 1
c!

= e−5

𝑤!

(5
2

)𝑤

e5∕2 =
e−5∕2(5∕2)𝑤

𝑤!
,

for 𝑤 = 0, 1, . . . . This gives the pmf of a Poisson random variable with 𝜆 = 5∕2.
That is, the marginal distribution of W, the number of extended warranties sold, is
a Poisson distribution with 𝜆 = 5∕2.

In summary, computers, according to the model, sell roughly at the rate of five
per day, and warranties sell at half that rate.

Suppose the store sells c computers on a particular day, what is the probability
they will sell 𝑤 extended warranties, where 𝑤 ≤ c?

We have posed the conditional probability

P(W = 𝑤|C = c) = P(W = 𝑤,C = c)
P(C = c)

=
(5∕2)ce−5∕(𝑤!(c −𝑤)!)

e−55c∕c!

=
( c
𝑤

)(1
2

)c
.

This is a binomial probability. We discovered that conditional on selling c comput-
ers, the number of warranties sold has a binomial distribution with parameters c and
p = 1∕2. This is the same distribution as the number of heads in c fair coin flips.

What we have learned is a probabilistic description of computer and warranty
sales at the computer store. About five computers, on average, are sold per day
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according to a Poisson distribution. For each computer sold, there is a 50–50 chance
that the extended warranty will be purchased, and thus about 2.5 warranties are sold,
per day, on average, according to a Poisson distribution. ◼

As demonstrated in the last example, learning to recognize common pmfs can
be very useful. You can then harness other information you know about the distri-
bution, such as its expectation. The same will be true when we turn our attention to
continuous probability in Chapter 6.

Random variables can arise as functions of two or more random variables. Sup-
pose g(x, y) is a real-valued function of two variables. Then Z = g(X,Y) is a random
variable, which is a function of two random variables. For expectations of such ran-
dom variables, there is a multivariate version of Equation 4.2.

EXPECTATION OF FUNCTION OF TWO RANDOM VARIABLES

E[g(X,Y)] =
∑
x∈S

∑
y∈T

g(x, y)P(X = x,Y = y). (4.3)

□■ Example 4.14 In Example 4.10, we found a probability after finding c = 1∕9.
Now suppose we want to evaluate E[XY]. We know that P(X = x,Y = y) = xy∕9.
Apply the last result with g(x, y) = xy. Thus,

E[XY] =
2∑

x=1

2∑
y=1

xyP(X = x,Y = y)

=
2∑

x=1

2∑
y=1

x2y2

9
= 1

9
(1 + 4 + 4 + 16) = 25

9
= 2.78.

In evaluating expectations of functions of random variables, note that g(x, y) could
even just be x or y. This shows you can obtain E[X] and E[Y] from joint distributions,
not just marginals. ◼

4.4 INDEPENDENT RANDOM VARIABLES

If X and Y are independent discrete random variables, then the joint pmf of X and
Y has a particularly simple form. In the case of independence,

P(X = x,Y = y) = P(X = x)P(Y = y), for all x and y.

That is, the joint distribution is the product of the marginal distributions if X ⟂ Y .
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□■ Example 4.15 Kamile rolls a die four times and flips a coin twice. Let X be
the number of ones she gets on the die. Let Y be the number of heads she gets
on the coin. It seems reasonable to assume die rolls are independent of coin flips.
(i) Find the joint pmf. (ii) Find the probability that Kamile gets the same number of
ones on the die as heads on the coin.

(i) The joint pmf of X and Y is

P(X = x,Y = y) = P(X = x)P(Y = y)

=
(4

x

)(1
6

)x(5
6

)4−x
(

2
y

)(1
2

)2
,

for x = 0, 1, 2, 3, 4 and y = 0, 1, 2. In particular, X ∼ Binom(4, 1∕6) and Y ∼
Binom(2, 1∕2). The joint probability is the product of these two binomial prob-
abilities.

(ii) The desired probability is

P(X = Y) = P(X = 0,Y = 0) + P(X = 1,Y = 1) + P(X = 2,Y = 2)

=
2∑

k=0

(4
k

)(1
6

)k(5
6

)4−k (2
k

)(1
2

)2

= 0.1206 + 0.1929 + 0.0289 = 0.3424. ◼

R: DICE AND COINS

Here is a quick simulation of the probability P(X = Y) in the die and coin
example.

> n <- 100000
> sum(rbinom(n, 4, 1/6) == rbinom(n, 2, 1/2))/n
[1] 0.33958

If X and Y are independent random variables, then knowledge of whether or not
X occurs gives no information about whether or not Y occurs. It follows that if g and
h are functions, then g(X) gives no information about whether or not h(Y) occurs
and, hence, g(X) and h(Y) are independent random variables.

FUNCTIONS OF INDEPENDENT RANDOM VARIABLES ARE
INDEPENDENT

Suppose X and Y are independent random variables, and g and h are functions,
then the random variables g(X) and h(Y) are independent.
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The following result for independent random variables has wide application.

EXPECTATION OF A PRODUCT OF INDEPENDENT RANDOM
VARIABLES

Let X and Y be independent random variables. Then for any functions g and h,

E[g(X)h(Y)] = E[g(X)]E[h(Y)]. (4.4)

Letting g and h be the identity function gives the useful result that

E[XY] = E[X]E[Y]. (4.5)

The expectation of a product of independent random variables is the product of
their expectations. A proof of the special case of identify functions follows. If X and
Y are independent,

E[XY] =
∑
x∈S

∑
y∈T

xyP(X = x,Y = y)

=
∑
x∈S

∑
y∈T

xyP(X = x)P(Y = y)

=
∑
x∈S

xP(X = x)
∑
y∈T

yP(Y = y)

= E[X]E[Y].

The general result E[g(X)h(Y)] = E[g(X)]E[h(Y)] follows similarly.

□■ Example 4.16 Random cone. Suppose the radius R and height H of a cone
are independent and each uniformly distributed on {1, . . . , 10}. Find the expected
volume of the cone.

The volume of a cone is given by the formula 𝑣(r, h) = 𝜋r2h∕3. Let V be the
volume of the cone. Then V = 𝜋R2H∕3 and

E[V] = E
[
𝜋

3
R2H

]
= 𝜋

3
E[R2H] = 𝜋

3
E[R2]E[H]

= 𝜋

3

(
10∑

r=1

r2

10

)(
10∑

h=1

h
10

)

= 𝜋

3

(77
2

)(11
2

)
= 847𝜋

12
≈ 221.744,
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where the third equality uses the independence of R2 and H, which follows from
the independence of R and H. ◼

R: EXPECTED VOLUME

The expectation is simulated with the commands

> simlist <- replicate(100000,
(pi/3)*(sample(1:10, 1)^2)*sample(1:10, 1))

> mean(simlist)
[1] 221.955

4.4.1 Sums of Independent Random Variables

Sums of random variables figure prominently in probability and statistics. To find
probabilities of the form P(X + Y = k), observe that X + Y = k if and only if X = i
and Y = k − i for some i. This gives

P(X + Y = k) = P

(⋃
i

{X = i,Y = k − i}

)
=
∑

i

P(X = i,Y = k − i). (4.6)

If X and Y are independent, then

P(X + Y = k) =
∑

i

P(X = i,Y = k − i) =
∑

i

P(X = i)P(Y = k − i). (4.7)

The limits of the sum
∑

i will depend on the possible values of X and Y . For instance,
if X and Y are nonnegative integers, then

P(X + Y = k) =
k∑

i=0

P(X = i,Y = k − i), for k ≥ 0.

□■ Example 4.17 A nationwide survey collected data on TV usage in the United
States. The distribution of US households by number of TVs per household is given
in Table 4.3. If two households are selected at random, find the probability that there
are a total of exactly two TVs in both households combined.

Let T1 and T2 be the number of TVs in the two households, respectively. Then,

P(T1 + T2 = 2)

= P(T1 = 0,T2 = 2) + P(T1 = 1,T2 = 1) + P(T1 = 2,T2 = 0)

= P(T1 = 0)P(T2 = 2) + P(T1 = 1)P(T2 = 1) + P(T1 = 2)P(T2 = 0)

= (0.01)(0.33) + (0.21)(0.21) + (0.33)(0.01) = 0.051. ◼
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TABLE 4.3. Distribution of US households by number of TVs.

TVs 0 1 2 3 4 5
Proportion of households 0.01 0.21 0.33 0.23 0.13 0.09

□■ Example 4.18 During rush hour, the number of minivans M on a fixed stretch of
highway has a Poisson distribution with parameter 𝜆M . The number of sports cars S
on the same stretch has a Poisson distribution with parameter 𝜆S. If the number of
minivans and sports cars is independent, find the pmf of the total number of these
vehicles, M + S.

For k ≥ 0,

P(M + S = k) =
k∑

i=0

P(M = i, S = k − i)

=
k∑

i=0

P(M = i)P(S = k − i)

=
k∑

i=0

(
e−𝜆M𝜆i

M

i!

)(
e−𝜆S𝜆k−i

S

(k − i)!

)

= e−(𝜆M+𝜆S)
k∑

i=0

𝜆i
M𝜆k−i

S

i!(k − i)!

= e−(𝜆M+𝜆S)

k!

k∑
i=0

(k
i

)
𝜆

i
M𝜆

k−i
S

= e−(𝜆M+𝜆S)

k!
(𝜆M + 𝜆S)k.

The last equality follows from the binomial theorem. We see from the final form of
the pmf that M + S has a Poisson distribution with parameter 𝜆M + 𝜆S. ◼

The last example illustrates a general result, which we will prove in Chapter 5.

THE SUM OF INDEPENDENT POISSON RANDOM VARIABLES IS
POISSON

Let X1, . . . ,Xk be a sequence of independent Poisson random variables with
respective parameters 𝜆1, . . . , 𝜆k. Then

Y = X1 + · · · + Xk ∼ Pois(𝜆1 + · · · + 𝜆k).



�

� �

�

144 EXPECTATION AND MORE WITH DISCRETE RANDOM VARIABLES

□■ Example 4.19 Sum of uniforms. Let X and Y be independent random variables
both uniformly distributed on {1, . . . , n}. Find the pmf of X + Y .

The sum X + Y takes values between 2 and 2n. We have that

P(X + Y = k) =
∑

i

P(X = i,Y = k − i)

=
∑

i

P(X = i)P(Y = k − i), for k = 2, . . . , 2n.

We need to take care with the limits of the sum
∑

i. The limits of i in the sum
will depend on k, with two cases, the first when 2 ≤ k ≤ n, and the second when
n + 1 ≤ k ≤ 2n. We suggest making a table to examine the setting with n = 3 to
reinforce this. For the first case, when 2 ≤ k ≤ n,

P(X + Y = k) =
k−1∑
i=1

P(X = i)P(Y = k − i) =
k−1∑
i=1

(1
n

)(1
n

)
= k − 1

n2
.

For the second case, when n + 1 ≤ k ≤ 2n,

P(X + Y = k) =
n∑

i=k−n

P(X = i)P(Y = k − i)

=
n∑

i=k−n

(1
n

)(1
n

)
= 2n − k + 1

n2
.

Summarizing,

P(X + Y = k) =
{

(k − 1)∕n2, for k = 2, . . . , n,
(2n − k + 1)∕n2, for k = n + 1, . . . , 2n.

Observe the case n = 6 gives the pmf of the sum of two independent
dice rolls. ◼

4.5 LINEARITY OF EXPECTATION

A very important property for computing expectations is the linearity property of
expectation.

LINEARITY OF EXPECTATION

For random variables X and Y , E[X + Y] = E[X] + E[Y].
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To prove this result in the discrete setting, we apply formula Equation 4.3 for the
expectation of a function of two random variables with the function g(x, y) = x + y.
This gives

E[X + Y] =
∑
x∈S

∑
y∈T

(x + y)P(X = x,Y = y)

=
∑
x∈S

∑
y∈T

xP(X = x,Y = y) +
∑
x∈S

∑
y∈T

yP(X = x,Y = y)

=
∑
x∈S

x

(∑
y∈T

P(X = x,Y = y)

)
+
∑
y∈T

y

(∑
x∈S

P(X = x,Y = y)

)

=
∑
x∈S

xP(X = x) +
∑
y∈T

yP(Y = y)

= E[X] + E[Y].

Thus, the expectation of a sum is equal to the sum of the expectations.
Linearity of expectation is an enormously useful result. Note carefully that it

makes no assumptions about the distribution of X and Y . In particular, it does not
assume independence. It applies to all random variables regardless of their joint
distribution.

Linearity of expectation extends to finite sums. That is,

E[X1 + · · · + Xn] = E[X1] + · · · + E[Xn]. (4.8)

It does not, however, extend to infinite sums in general. That is, it is not always
true that E[

∑∞
x=1 Xi] =

∑∞
x=1 E[Xi]. However, if all the Xi’s are nonnegative and if

the infinite sum
∑∞

i=1 E[Xi] converges, we leave it to the reader to show that

E

[ ∞∑
i=1

Xi

]
=

∞∑
i=1

E[Xi].

Indicator variables. Next, we turn our attention to a discrete random variable
that is useful for solving a wide range of problems. Given an event A, define a ran-
dom variable IA such that

IA =
{

1, if A occurs,
0, if A does not occur.

Therefore, IA equals 1, with probability P(A), and 0, with probability P(Ac). Such a
random variable is called an indicator variable. An indicator is a Bernoulli random
variable with p = P(A).
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The expectation of an indicator variable is important enough to highlight. Work-
ing from the definition of expectation, we see that

E[IA] = (1)P(A) + (0)P(Ac) = P(A).

This is fairly simple, but nevertheless extremely useful and interesting, because
it means that probabilities of events can be thought of as expectations of indicator
random variables.

Often random variables involving counts can be analyzed by expressing the count
as a sum of indicator variables. We illustrate this powerful technique in the next
examples.

□■ Example 4.20 Expectation of the binomial distribution. Let I1, . . . , In be a
sequence of i.i.d. Bernoulli (indicator) random variables with success probability p.
Let X = I1 + · · · + In. Then X has a binomial distribution with parameters n and p.
We want to find E[X]. By linearity of expectation,

E[X] = E

[
n∑

k=1

Ik

]
=

n∑
k=1

E[Ik] =
n∑

k=1

p = np.

This result should be intuitive. For instance, if you roll 600 dice, you would
expect 100 ones. The number of ones has a binomial distribution with n = 600,
p = 1∕6 and np = 100.

We emphasize the simplicity and elegance of the last derivation, a result of think-
ing probabilistically about the problem. Contrast this with the algebraic approach
below. If X has a binomial distribution with parameters n and p, then by the definition
of expectation,

E[X] =
n∑

k=0

kP(X = k) =
n∑

k=0

k
(n

k

)
pk(1 − p)n−k

=
n∑

k=1

n!
(k − 1)!(n − k)!

pk(1 − p)n−k

= np
n∑

k=1

(n − 1)!
(k − 1)!(n − k)!

pk−1(1 − p)n−k

= np
n∑

k=1

(n − 1
k − 1

)
pk−1(1 − p)n−k

= np
n−1∑
k=0

(n − 1
k

)
pk(1 − p)n−k−1

= np(p + (1 − p))n−1 = np,

where the next-to-last equality follows from the binomial theorem. ◼
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For the binomial example, the sequence of Bernoulli indicator variables is inde-
pendent. But they need not be to use linearity of expectation, as illustrated next.

□■ Example 4.21 Problem of coincidences. The problem of coincidences, also
called the matching problem, was introduced by Pierre Rémond de Montmort in
1703. In the French card game Recontres (Coincidences), two persons, each having
a full standard deck of cards, draw from their deck at the same time one card after
the other, until they both draw the same card. Montmort asked for the probability
that a match occurs. We consider the expected number of matches, with a modern
twist.

At their graduation ceremony, a class of n seniors, upon hearing that they have
graduated, throw their caps up into the air in celebration. Their caps fall back to the
ground uniformly at random and each student picks up a cap. What is the expected
number of students who get their original cap back (a “match”)?

Let X be the number of matches. Define

Ik =
{

1, if the kth student gets their cap back ,

0, if the kth student does not get their cap back,

for k = 1, . . . , n. Then X = I1 + · · · + In. The expected number of matches is

E[X] = E

[
n∑

k=1

Ik

]
=

n∑
k=1

E[Ik]

=
n∑

k=1

P(kth student gets their cap back)

=
n∑

k=1

1
n
= n

(1
n

)
= 1.

The probability that the kth student gets their cap back is 1∕n as there are n caps to
choose from and only one belongs to the kth student.

Remarkably, the expected number of matches is one, independent of the number
of people n. If everyone in the world throws their hat up in the air, on average about
one person will get their hat back. ◼

The indicator random variables I1, . . . , In in the matching problem are not inde-
pendent. In particular, if I1 = · · · = In−1 = 1, that is, if the first n − 1 people get their
hats back, then necessarily In = 1, the last person must also get their hat back, as
unlikely as that is to occur.

One can cast the matching problem in terms of permutations, which is useful
when simulating. Given a permutation of {1, . . . , n}, a fixed point is a number k such
that the number k is in position k in the permutation. For instance, the permutation
(2, 4, 3, 1, 5) has two fixed points—3 and 5. The permutation (3, 4, 5, 1, 2) has no
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TABLE 4.4. Fixed points of permutations for n = 3.

Permutation Number of fixed points

(1,2,3) 3
(1,3,2) 1
(2,1,3) 1
(2,3,1) 0
(3,1,2) 0
(3,2,1) 1

fixed points. Table 4.4 gives the permutations and number of fixed points for the
case n = 3.

The number of fixed points in a permutation is equal to the number of matches in
the problem of coincidences. If we pick a permutation above uniformly at random,
then the pmf of F, the number of fixed points, is

P(F = k) =
⎧⎪⎨⎪⎩

2∕6 = 1∕3, if k = 0,
3∕6 = 1∕2, if k = 1,
1∕6, if k = 3,

with expectation E[F] = 0(2∕6) + 1(3∕6) + 3(1∕6) = 1.

R: SIMULATING THE MATCHING PROBLEM

In order to simulate the matching problem, we simulate random permutations
with the command

> sample(n, n)

It is remarkable how fast this is done for even large n. Even though there are
n! ≈ nn permutations of an n-element set, the algorithm for generating a random
permutation takes on the order of n steps, not nn steps, and is thus extremely effi-
cient. (You can learn more about computational efficiency in computer science
courses.)

To count the number of fixed points in a uniformly random permutation, type

> sum(sample(n, n) == 1:n)

Here we simulate the expected number of matchings in the original game of
Recontres with a standard deck of 52 cards. The result matches the analytical
solution.
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> n <- 52
> mean(replicate(10000, sum(sample(n, n) == (1:n))))
[1] 0.9992

Now pause to reflect upon what you have actually done in the simulation. You
have simulated a random element from a sample space that contains 52! ≈ 8 ×
1067 elements, checked the number of fixed points, and then repeated the opera-
tion 10,000 times, finally computing the average number of fixed points—all in a
second or two on your computer. It would not be physically possible to write down
a table of all 52! permutations, their number of fixed points, or their corresponding
probabilities. And yet by generating random elements and taking simulations, the
problem becomes computationally feasible. Of course, in this case, we already know
the exact answer and do not need simulation to find the expectation. However, that
is not the case with many complex, real-life problems. In many cases, simulation
may be easier or it may even be the only way to go.

To learn more about the problem of coincidences, see Takacs [1980].

□■ Example 4.22 St. Petersburg paradox. I offer you the following game. Flip a
fair coin until heads appears. If it takes n tosses, I will pay you $2n. Thus, if heads
comes up on the first toss, I pay you $2. If it first comes up on the 10th toss, I pay
you $1024.

How much would you pay to play this game? Would you pay $5, $50, or $500?
Let X be the payout. Your expected payout is

E[X] =
∞∑

n=1

2n 1
2n =

∞∑
n=1

1 = +∞.

The expectation is not finite. Indeed, it appears that the expected value is infinite.
This problem, discovered by the eighteenth-century Swiss mathematician

Daniel Bernoulli, is the St. Petersburg paradox. The “paradox” is that most people
would not pay very much to play this game, and yet the expected payout appears
infinite. ◼

4.6 VARIANCE AND STANDARD DEVIATION

Expectation is a measure of the average behavior of a random variable, often termed
a measure of center. Variance and standard deviation are measures of variability or
spread. They describe how near or far typical outcomes are to the expected value
(the mean).
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VARIANCE AND STANDARD DEVIATION

Let X be a random variable with mean E[X] = 𝜇 < ∞. The variance of X is

V[X] = E[(X − 𝜇)2] =
∑

x

(x − 𝜇)2P(X = x). (4.9)

The standard deviation of X is

SD[X] =
√

V[X].

In the variance formula, (x − 𝜇) is the difference or “deviation” of an outcome
from the mean. Thus, the variance is a weighted average of the squared deviations
from the mean. The standard deviation of X is the square root of the variance.

Variance and standard deviation are always nonnegative because the deviations
from the mean are squared. The greater the variability of outcomes, the larger the
deviations from the mean, and the greater the two measures. If X is a constant,
and hence has no variability, then X = E[X] = 𝜇, and we see from the variance for-
mula that V[X] = 0. The converse is also true. That is, if V[X] = 0, then X is almost
certainly a constant. We leave the proof to Exercise 4.40.

The graphs in Figure 4.1 show four probability distributions all with expectations
equal to 4, but with different variances.

□■ Example 4.23 We find the variances for each of the distributions in Figure 4.1.
Let W, X, Y , and Z be the corresponding random variables, respectively. We have
that E[W] = E[X] = E[Y] = E[Z] = 4.

(a) W is a constant equal to 4. The variance is 0 because (4 − 4)2(1) = 0.
(b) The pmf for X is

P(X = k) =
⎧⎪⎨⎪⎩

1∕25, if k = 1, 7,
3∕25, if k = 2, 6,
5∕25, if k = 3, 5,
7∕25, if k = 4,

with variance

V[X] = 2(1 − 4)2 1
25

+ 2(2 − 4)2 3
25

+ 2(3 − 4)2 5
25

= 2.08.

(c) Outcomes are equally likely. This gives

V[Y] =
7∑

k=1

(k − 4)2 1
7
= 4.
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FIGURE 4.1: Four distributions with 𝜇 = 4. Variances are (a) 0, (b) 2.08, (c) 4, and (d) 9.

(d) We have P(Z = 1) = P(Z = 7) = 1∕2. This gives

V[Z] = (1 − 4)2 1
2
+ (7 − 4)2 1

2
= 9. ◼

The variance is a “cleaner” mathematical formula than the standard deviation
because it does not include the square root. For simplicity and for connections with
other areas of mathematics, mathematicians and probabilists often prefer variance
when working with random variables.

However, the standard deviation can be easier to interpret particularly when
working with data. In statistics, random variables are often used to model data,
which have some associated units attached to their measurements. For instance,
we might take a random person’s height and assign it to a random variable H. The
units are inches. The expected height E[H] is also expressed in inches. Because of
the square in the variance formula, the units of the variance V[H] are square inches.
The square root in the standard deviation brings the units back to the units of the
variable.

In statistics, there are analogous definitions of mean, variance, and standard
deviation for a collection of data. For a list of measurements x1, . . . , xn, the sample
mean is the average x = (x1 + · · · + xn)∕n. The sample variance is defined as∑n

i=1 (xi − x)2∕(n − 1). (The reason the denominator is n − 1 rather than n is a topic
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for a statistics class, it has to do with what is called the bias of the estimator.) The
sample standard deviation is the square root of the sample variance.

The R commands mean(vec), var(vec), and sd(vec) compute these
quantities for a vector vec. See the R supplement for an example.

When we simulate a random variable X with repeated trials, the sample mean
of the replications is a Monte Carlo approximation of E[X]. Similarly, the sample
variance of the replications is a Monte Carlo approximation of V[X].

Within two standard deviations of the mean. Many probability distributions
are fairly concentrated near their expectation in the sense that the probability that an
outcome is within a few standard deviations from the mean is high. This is particu-
larly true for symmetric, “bell-shaped” distributions such as the Poisson distribution
when 𝜆 is large and the binomial distribution when p is close to 1/2. The same is
true for many real world variables. For instance, the average height of women in the
United States is about 63.6 inches with standard deviation 2.5 inches. Roughly 95%
of all adult women’s heights are within two standard deviations of the mean, which
is within 63.6 ± 2(2.5), between 58.6 and 68.6 inches.

When we discuss the normal distribution (the “bell-shaped curve”) in Chapter
7, this will be made more precise. In the meantime, a rough “rule of thumb” is
that for many symmetric and near-symmetric probability distributions, the mean
and variance (or standard deviation) are good summary measures for describing
the behavior of “typical” outcomes of the underlying random experiment. Typi-
cally, most outcomes from such distributions fall within two standard deviations of
the mean.

Computational formula for variance. From the definition of the variance, a
little manipulation goes a long way. A useful computational formula for the vari-
ance is

V[X] = E[X2] − E[X]2. (4.10)

This is derived using properties of expectation. Remember that 𝜇 = E[X] is a
constant. Then

V[X] = E[(X − 𝜇)2] = E[X2 − 2𝜇X + 𝜇
2]

= E[X2] − 2𝜇E[X] + 𝜇
2

= E[X2] − 2𝜇2 + 𝜇
2 = E[X2] − 𝜇

2

= E[X2] − E[X]2.

□■ Example 4.24 Variance of uniform distribution. Suppose X is uniformly dis-
tributed on {1, . . . , n}. Find the variance of X.

Using the computational formula, rather than the definition of variance, we need
to find E[X2], because we already know E[X] = (n + 1)∕2.
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We find that

E[X2] =
n∑

k=1

k2P(X = k) = 1
n

n∑
k=1

k2

=
(1

n

) n(n + 1)(2n + 1)
6

= (n + 1)(2n + 1)
6

.

Plugging in, this gives

V[X] = E[X2] − E[X]2 = (n + 1)(2n + 1)
6

−
(n + 1

2

)2
= n2 − 1

12
.

For large n, the mean of the uniform distribution on {1, . . . , n} is (n + 1)∕2 ≈
n∕2, and the standard deviation is

√
(n2 − 1)∕12 ≈ n∕

√
12 ≈ n∕3.5. ◼

□■ Example 4.25 Variance of an indicator. For an event A, let IA be the corre-
sponding indicator random variable. Find V[IA].

As IA only takes values 0 and 1, it follows that (IA)2 = IA, which gives

V[IA] = E[I2
A] − E[IA]2

= E[IA] − E[IA]2

= P(A) − P(A)2

= P(A)(1 − P(A)) = P(A)P(Ac).

We summarize our results on indicator variables for later use. ◼

EXPECTATION AND VARIANCE OF INDICATOR VARIABLE

E[IA] = P(A) and V[IA] = P(A)P(Ac).

Properties of variance. The linearity properties of expectation do not extend to
the variance. What do we find instead?

If X is a random variable with expectation 𝜇, and a and b are constants, then
aX + b has expectation a𝜇 + b and

V[aX + b] = E[(aX + b − (a𝜇 + b))2] = E[(aX − a𝜇)2]

= E[a2(X − 𝜇)2] = a2E[(X − 𝜇)2] = a2V[X].
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We summarize these important properties for reference.

PROPERTIES OF EXPECTATION, VARIANCE, AND STANDARD
DEVIATION

Let X be a random variable, where E[X] and V[X] exist. For constants a and b,

E[aX + b] = aE[X] + b,

V[aX + b] = a2V[X], and

SD[aX + b] = |a|SD[X].

□■ Example 4.26 See Example 4.9. Suppose the French lab’s temperature measure-
ments have a variance of 2∘C. Then upon conversion to Fahrenheit, the variance of
the US lab’s temperature measurements is

V[F] = V
[
32 +

(9
5

)
C
]
=
(9

5

)2
V[C] = 2

(81
25

)
= 162

25
,

with standard deviation SD[F] =
√

162∕25 = 2.55∘F. ◼

Variance of the Poisson distribution. In Exercise 4.30, we invite you to show
that the variance of a Poisson random variable X with parameter 𝜆 is equal to 𝜆.
Hence,

E[X] = V[X] = 𝜆.

This is a special property of the Poisson distribution. Using the heuristic that most
observations are within two standard deviations of the mean, it would follow that
most outcomes of a Poisson random variable are contained in the interval 𝜆 ± 2

√
𝜆.

This is generally true, at least for large 𝜆.

R: SIMULATION OF POISSON DISTRIBUTION

You can observe the phenomenon that most observations are within two standard
deviations of the mean for a specific choice of 𝜆 for the Poisson distribution by
typing

> lambda <- 25
> hist(rpois(100000, lambda), prob = TRUE)
> abline(v = lambda-2*sqrt(lambda))
> abline(v = lambda+2*sqrt(lambda))
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FIGURE 4.2: Simulation of Poisson(25) distribution. Vertical lines are drawn at x = 15 and
x = 35, two standard deviations from the mean.

The output of the commands, with 𝜆 = 25, is shown in Figure 4.2. The graph
is a histogram. Think of the rectangles as bins. For each x-value, the height of
the rectangle corresponds to the number of outcomes of x. The vertical axis is
scaled so that the areas of the rectangles sum to 1. The histogram is generated
from 100,000 simulations of a Poisson(25) random variable. It thus simulates the
probability distribution of X. Vertical lines are drawn at two standard deviations
from the mean, that is, at x = 15 and x = 35.

Variances of sums and sums of variances. For random variables X and Y , con-
sider the variance of the sum V(X + Y). By definition, we have

V(X + Y) = E[(X + Y)2] − (E[X + Y])2.

Let 𝜇X = E[X] and 𝜇Y = E[Y]. Then

E[(X + Y)2] = E[X2 + 2XY + Y2] = E[X2] + 2E[XY] + E[Y2]

and
(E[X + Y])2 = (𝜇X + 𝜇Y )2 = 𝜇

2
X + 2𝜇X𝜇Y + 𝜇

2
Y .

Hence, by combining and rearranging terms,

V[X + Y] = E[(X + Y)2] − (E[X + Y])2

= E[X2] + 2E[XY] + E[Y2] − (𝜇2
X + 2𝜇X𝜇Y + 𝜇

2
Y )
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= (E[X2] − 𝜇
2
X) + (E[Y2] − 𝜇

2
Y ) + 2(E[XY] − 𝜇X𝜇Y )

= V[X] + V[Y] + 2(E[XY] − E[X]E[Y]). (4.11)

If X and Y are independent, then E[XY] = E[X]E[Y], making the last term zero,
and the variance of X + Y has a simple form.

VARIANCE OF THE SUM OF INDEPENDENT VARIABLES

If X and Y are independent, then

V[X + Y] = V[X] + V[Y]. (4.12)

For the difference of independent random variables, it might be tempting to con-
clude that V[X − Y] = V[X] − V[Y]. But this is not true. Rather, if X ⟂ Y ,

V[X − Y] = V[X + (−1)Y] = V[X] + V[(−1)Y]

= V[X] + (−1)2V[Y]

= V[X] + V[Y].

Variances always add. (If you are not completely convinced and have some nagging
doubts about V[X − Y], suppose that X and Y are independent with V[X] = 1 and
V[Y] = 2. If V[X − Y] = V[X] − V[Y] = 1 − 2 = −1, we have a problem, because
variances can never be negative.) These results extend to working with more than
two random variables.

□■ Example 4.27 Variance of binomial distribution. Recall how indicator vari-
ables are used to find the expectation of a binomial distribution. Use them again to
find the variance.

Suppose X = I1 + · · · + In is the sum of n independent indicator variables with
success probability p. Then X has a binomial distribution with parameters n and p.
As the Ik’s are independent, the variance of the sum of indicators is equal to the sum
of the variances and thus

V[X] = V

[
n∑

k=1

Ik

]
=

n∑
k=1

V[Ik] =
n∑

k=1

p(1 − p) = np(1 − p).
◼

□■ Example 4.28 Preston said he flipped 100 pennies and got 70 heads. Is this believ-
able?
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The number of heads, X, has a binomial distribution with parameters n = 100 and
p = 1∕2. The mean number of heads is E(X) = np = 50. The standard deviation is√

np(1 − p) =
√

25 = 5. The distribution is symmetric and bell-shaped. Thus, we
expect most outcomes from tossing 100 coins to fall with two standard deviations
of the mean, that is, between 40 and 60 heads. As 70 heads represents an outcome
that is four standard deviations from the mean, we are a little suspicious of Preston’s
claim. ◼

The last example illustrated how knowledge of probability and probability mod-
els can be used to help assess claims. If you continue to study statistics, you will no
doubt encounter the topics of hypothesis testing and confidence intervals. Within the
realm of hypothesis testing, p-values are probabilities computed based on a prob-
ability model. This is one reason a solid foundation in probability is necessary for
any statistician.

□■ Example 4.29 Roulette continued—how the casino makes money. In
Example 4.2, we found the expected value of a bet of “red” in roulette. We will
shift gears and look at things from the casino’s perspective. Your loss is their gain.

Let G be the casino’s gain after a player makes one red bet. Then

P(G = 1) = 20
38

and P(G = −1) = 18
38

with E[G] = 2∕38. The casino’s expected gain from one red bet is about five cents.
For the variance, E[G2] = (1)(20∕38) + (1)(18∕38) = 1, and thus,

V[G] = E[G2] − E[G]2 = 1 − (2∕38)2 = 0.99723,

with standard deviation
√

0.99723 = 0.998614, almost $1.
Suppose in one month, the casino expects customers to make n red bets. What is

the expected value and standard deviation of the casino’s total gain?
Let Gk be the casino’s gain from the kth red bet of the month, for k = 1, . . . , n. Let

T be the casino’s total gain. Write T = G1 + · · · + Gn. Unless someone is cheating,
we can assume that the Gk’s are independent.

By linearity of expectation,

E[T] = E[G1 + · · · + Gn] = E[G1] + · · · + E[Gn] =
2n
38

,

or about n nickels. If one million bets are placed, that is an expected gain of
$52,631.58.

Of interest to the casino’s accountants is the variability of total gain. If the vari-
ance is large, the casino might see big swings from month to month, where some
months they make money and some months they do not.
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By independence of the Gk’s,

V[T] = V[G1 + · · · + Gn] = V[G1] + · · · + V[Gn] = (0.99723)n,

with standard deviation
SD[T] = (0.998614)

√
n.

For one million bets, the standard deviation is $998.61. This is about one-fiftieth the
size of the mean.

By the heuristic that says that most observations are within about two standard
deviations from the mean, it is virtually certain that every month, the casino will see
a hefty positive gain of about $52,000 give or take about $2000 if one million bets
are placed. This is why for the customers, roulette is risky entertainment, but for the
casino, it is a business. ◼

R: A MILLION RED BETS

Here we simulate the casino’s gain from three different months of play, assuming
one million red bets are placed each month.

> n <- 1000000
> probs <- c(18/38, 20/38)
> sum(sample(c(-1, 1), n, probs, replace = T))
[1] 53738
> sum(sample(c(-1, 1), n, probs, replace = T))
[1] 52140
> sum(sample(c(-1, 1), n, probs, replace = T))
[1] 52686

Note this example continues use of the sample command to simulate from
the finite distribution of interest. It is a very useful command.

4.7 COVARIANCE AND CORRELATION

Having looked at measures of variability for individual and independent random
variables, we now consider measures of variability between dependent ran-
dom variables. The covariance is a measure of the association between two random
variables.
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COVARIANCE

For random variables X and Y , with respective means 𝜇X and 𝜇Y , the covariance
between X and Y is

Cov(X,Y) = E[(X − 𝜇X)(Y − 𝜇Y )]. (4.13)

Equivalently, an often more usable computational formula is

Cov(X,Y) = E[XY] − 𝜇X𝜇Y = E[XY] − E[X]E[Y]. (4.14)

We leave it as an exercise to show that Equation 4.14 follows from the definition
Equation 4.13.

Covariance will be positive when large values of X are associated with large
values of Y and small values of X are associated with small values of Y . In particular,
for outcomes x and y, covariance is positive when products of the form (x − 𝜇X)(y −
𝜇Y ) in the covariance formula tend to be positive, meaning that both terms in the
product are either positive or negative.

On the other hand, if X and Y are inversely related, most product terms (x −
𝜇X)(y − 𝜇Y ) will be negative, as when X takes values above the mean, Y will tend
to fall below the mean, and vice versa. In this case, the covariance between X and
Y will be negative.

To see examples of potential relationships, see Figure 4.3. Points on the graphs
are simulations of the points (X,Y) from four joint distributions. Vertical and hori-
zontal lines are drawn at the mean of the marginal distributions. In the graph in (a),
the main contribution to the covariance is from points in the first and third quadrants,
where products are positive. In panel (b), the main contribution is in the second and
fourth quadrants, where products are negative. In panel (c), the random variables are
independent, and each of the four quadrants are near equally represented so positive
terms cancel negative terms and the covariance is 0.

Covariance is a measure of linear association between two variables. In a sense,
the “less linear” the relationship, the closer the covariance is to 0. In the fourth
graph (d), the covariance will be close to 0 as positive products tend to cancel out
negative products, but here the random variables are not independent. There is a
strong relationship between them, although it is not linear. Both large and small
values of X are associated with small values of Y .

The sign of the covariance indicates whether two random variables are positively
or negatively associated. But the magnitude of the covariance can be difficult to
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Cov(X,Y ) > 0 Cov(X,Y) < 0

Cov(X,Y ) = 0 Cov(X,Y) = 0

(a)

(c) (d)

(b)

FIGURE 4.3: Covariance is a measure of linear association between two random variables.
Vertical and horizontal lines are drawn at the mean of the marginal distributions.

interpret due to the scales of the original variables. The correlation is an alternative
measure which is easier to interpret.

CORRELATION

The correlation between X and Y is

Corr(X,Y) = Cov(X,Y)
SD[X]SD[Y]

.

Properties of correlation:

1. −1 ≤ Corr(X,Y) ≤ 1.

2. If Y = aX + b is a linear function of X for constants a and b, then
Corr(X,Y) = ±1, depending on the sign of a.
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Correlation is a common summary measure in statistics. Dividing the covariance
by the standard deviations creates a “standardized” covariance, which is a unitless
measure that takes values between −1 and 1. The correlation is exactly equal to ±1
if Y is a linear function of X. We prove these results in Section 4.9.

Random variables that have correlation, and covariance, equal to 0 are called
uncorrelated.

UNCORRELATED RANDOM VARIABLES

We say random variables X and Y are uncorrelated if

E[XY] = E[X]E[Y],

that is, if Cov(X,Y) = 0.

For independent random variables, E[XY] = E[X]E[Y] and thus Cov(X,Y) = 0.
Thus, if random variables X and Y are independent, then they are also uncorrelated.
However, the converse is not necessarily true, as shown in the next example.

□■ Example 4.30 Let X be uniformly distributed on {−1, 0, 1}. Let Y = X2. The two
random variables are not independent as Y is a function of X. However,

Cov(X,Y) = Cov(X,X2) = E[X3] − E[X]E[X2] = 0 − 0 = 0.

The random variables are uncorrelated. ◼

□■ Example 4.31 The number of defective parts in a manufacturing process is mod-
eled as a binomial random variable with parameters n and p. Let X be the number of
defective parts, and let Y be the number of nondefective parts. Find the covariance
between X and Y .

Observe that Y = n − X is a linear function of X. Thus, Corr(X,Y) = −1.Because
“failures” for X are “successes” for Y , Y has a binomial distribution with parameters
n and 1 − p. To find the covariance, rearrange the correlation formula

Cov(X,Y) = Corr(X,Y)SD[X]SD[Y]

= (−1)
√

np(1 − p)
√

n(1 − p)p

= −np(1 − p). ◼

□■ Example 4.32 Red ball, blue ball continued. For Example 4.11, find
Cov(R,B), the covariance between the number of red and blue balls.
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Recall that the joint distribution table is

B

0 1 2

0 3/36 6/36 1/36

R 1 12/36 8/36 0

2 6/36 0 0

and from the joint table, we find

E[RB] =
∑

r

∑
b

rbP(R = r,B = b) = 8
36

= 2
9
.

Note that eight of the nine terms in the sum are equal to 0. Also, we previously
found that E[R] = 8∕9 and E[B] = 4∕9. This gives

Cov(R,B) = E[RB] − E[R]E[B]

= 2
9
−
(8

9

)(4
9

)
= −14

81
= −0.17284.

The negative result should not be surprising. There is an inverse association
between R and B as the more balls there are of one color in the sample the fewer
balls there will be of another color. ◼

One place where the covariance regularly appears is in the variance formula for
sums of random variables. We summarize results for the variance of a sum.

GENERAL FORMULA FOR VARIANCE OF A SUM

For random variables X and Y with finite variance,

V[X + Y] = V[X] + V[Y] + 2Cov(X,Y) and

V[X − Y] = V[X] + V[Y] − 2Cov(X,Y).

If X and Y are uncorrelated,

V[X ± Y] = V[X] + V[Y].
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□■ Example 4.33 After a severe storm, the number of claims received by an insur-
ance company for hail H and tornado T damage are each modeled with a Poisson
distribution with respective parameters 400 and 100. The correlation between H
and T is 0.75. Let Z be the total number of claims from hail and tornado damage.
Find the variance and standard deviation of Z. Hint: Use what you know about the
Poisson distribution.

We have

E[Z] = E[H + T] = E[H] + E[T] = 400 + 100 = 500,

and

V[Z] = V[H + T] = V[H] + V[T] + 2Cov(H,T)

= 400 + 100 + 2Corr(H,T)SD[H]SD[T]

= 500 + 2(0.75)
√

400
√

100 = 500 + 300 = 800,

with standard deviation SD[Z] =
√

800 = 28.2843. ◼

The covariance of a random variable X with itself, Cov(X,X), is just the variance
V[X], as E[(X − 𝜇X)(X − 𝜇X)] = E[(X − 𝜇X)2]. Also, the covariance is symmetric
in its terms. That is, Cov(X,Y) = Cov(Y ,X). So another way of writing the variance
of a sum of two random variables is

V[X + Y] = Cov(X,X) + Cov(Y ,Y) + Cov(X,Y) + Cov(Y ,X),

that is as a sum over all possible pairings of X and Y .
For the variance of a sum of more than two random variables, take covariances

of all possible pairs.

VARIANCE OF SUM OF N RANDOM VARIABLES

V[X1 + · · · + Xn] =
n∑

i=1

n∑
j=1

Cov(Xi,Xj)

= V[X1] + · · · + V[Xn] +
∑
i≠j

Cov(Xi,Xj)

= V[X1] + · · · + V[Xn] + 2
∑
i<j

Cov(Xi,Xj).

The penultimate sum is over all pairs of indices i ≠ j. For the last equality,
because Cov(Xi,Xj) = Cov(Xj,Xi), we can just consider indices such that i < j.
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□■ Example 4.34 Let X, Y , Z be random variables with variances equal to 1, 2, and
3, respectively. Also, Cov(X,Y) = −1, Cov(X,Z) = 0, and Cov(Y ,Z) = 3. The vari-
ance of X + Y + Z is

V[X + Y + Z]

= V[X] + V[Y] + V[Z] + 2(Cov(X,Y) + Cov(X,Z) + Cov(Y ,Z))

= 1 + 2 + 3 + 2(−1 + 0 + 3) = 10. ◼

□■ Example 4.35 Coincidences continued. In the matching problem, Example
4.21, the expectation of the number of students who get their cap back was shown
to be one using the method of indicators. What is the variance?

Let X be the number of students who get their own cap back. Write X = I1 +
· · · + In, where Ik is equal to 1, if the kth student gets their cap, and 0, otherwise,
for k = 1, . . . , n. As the Ik’s are not independent, use the general sum formula

V[X] = V

[
n∑

k=1

Ik

]
=

n∑
k=1

V[Ik] +
∑
i≠j

Cov(Ii, Ij).

We have
E[Ik] = P(kth student gets their cap) = 1

n
and

V[Ik] = P(kth student gets their cap)P(kth student does not get their cap)

=
(1

n

)(n − 1
n

)
= n − 1

n2
.

For the covariance terms, consider E[IiIj], where i ≠ j. As Ii and Ij are 0–1 vari-
ables, the product IiIj is equal to 1 if and only if both Ii and Ij are equal to 1, which
happens if the ith and jth students both get their caps back. That is, IiIj is the indicator
of the event that the ith and jth students get their caps back. Thus,

E[IiIj] = P(ith and jth students get their caps) = P(Ii = 1, Ij = 1).

Conditional on the jth student getting their cap back, the probability that the ith
student gets their cap is 1∕(n − 1) because there are n − 1 caps to choose from.
Thus,

P(I1 = 1, Ij = 1) = P(Ii = 1|Ij = 1)P(Ij = 1) =
( 1

n − 1

)(1
n

)
.

For i ≠ j, this gives

Cov(Ii, Ij) = E[IiIj] − E[Ii]E[Ij] =
1

n(n − 1)
− 1

n2
= 1

n2(n − 1)
.
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Putting all the pieces together, we have

V[X] =
n∑

i=1

n − 1
n2

+
∑
i≠j

1
n2(n − 1)

= n − 1
n

+
∑
i≠j

1
n2(n − 1).

Finally, we need to count the number of terms in the last sum. There are n2 terms
in the full double sum

∑n
i=1

∑n
j=1, and there are n terms for which i = j. This leaves

n2 − n terms for which i ≠ j. Hence,

V[X] = n − 1
n

+
∑
i≠j

1
n2(n − 1)

= n − 1
n

+ (n2 − n)
(

1
n2(n − 1)

)
= n − 1

n
+ 1

n
= 1.

The variance, and standard deviation, of the number of matchings is also equal to
1. Thus, if everyone in the world throws their hat up in the air, we expect about one
person to get their hat back give or take one or two. It would be extremely unlikely
if four or more people get their hat back. ◼

4.8 CONDITIONAL DISTRIBUTION

Chapter 2 introduced conditional probability. For jointly distributed random vari-
ables, we have the more general notion of a conditional distribution, where we can
consider the distribution of one variable given a value of another. In the discrete
setting, we define the conditional pmf.

CONDITIONAL PROBABILITY MASS FUNCTION

If X and Y are jointly distributed discrete random variables, then the conditional
probability mass function of Y given X = x is

P(Y = y|X = x) =
P(X = x,Y = y)

P(X = x)
,

when P(X = x) > 0.

The conditional pmf is a pmf. It is nonnegative and sums to 1.
If X ⟂ Y , then the conditional pmf of Y given X = x reduces to the regular pmf

of Y , as P(Y = y|X = x) = P(Y = y).
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□■Example 4.36 In a study of geriatric health and the risk of hip fractures, Schechner
et al. [2010] model the occurrence of falls and hip fractures for elderly individuals.
They assume that the number of times a person falls during one year has a Poisson
distribution with parameter 𝜆. Each fall may independently result in a hip fracture
with probability p.

Let X be the number of falls. If X = x, then conditional on the number of falls x,
the number of hip fractures Y has a binomial distribution with parameters x and p.
That is,

P(Y = y|X = x) =
(

x
y

)
py(1 − p)x−y

, for y = 0, . . . , x.

We write Y|X = x ∼ Binom(x, p) or Bin(x, p).
Now, we want to (i) find the joint pmf of X and Y , and (ii) find the marginal

distribution of the number of hip fractures Y .

(i) Rearranging the conditional probability formula gives

P(X = x,Y = y) = P(Y = y|X = x)P(X = x)

=
(

x
y

)
py(1 − p)x−y

(
e−𝜆𝜆x

x!

)
=

py(1 − p)x−ye−𝜆𝜆x

y!(x − y)!
,

for x = 0, 1, . . . , and y = 0, . . . , x, and 0, implicitly otherwise.

(ii) The marginal distribution of Y is found by summing the joint pmf over values
of x. As 0 ≤ y ≤ x, we sum over x ≥ y. This gives

P(Y = y) =
∞∑

x=y

P(X = x,Y = y) =
∞∑

x=y

py(1 − p)x−ye−𝜆𝜆x

y!(x − y)!

=
e−𝜆py

y!

∞∑
x=y

(1 − p)x−y𝜆x

(x − y)!
=

e−𝜆(𝜆p)y

y!

∞∑
x=y

(𝜆(1 − p))x−y

(x − y)!

=
e−𝜆(𝜆p)y

y!

∞∑
x=0

(𝜆(1 − p))x

x!

=
e−𝜆(𝜆p)y

y!
e𝜆(1−p) =

e−𝜆p(𝜆p)y

y!
,

for y = 0, 1, . . . . Thus, the marginal distribution of the number of hip fractures is
Poisson with parameter 𝜆p. We can interpret this distribution as a “thinned” version
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of the distribution of the number of falls X. Both are Poisson distributions. The mean
parameter of Y is p times the mean parameter of X. ◼

□■ Example 4.37 Red ball, blue ball continued. For Example 4.11, find the con-
ditional pmf of the number of red balls given that there are no blue balls in the
sample.

Recall that the joint distribution table is

B

0 1 2

0 3/36 6/36 1/36 10/36

R 1 12/36 8/36 0 20/36

2 6/36 0 0 6/36

21/36 14/36 1/36.

We have

P(R = r|B = 0) = P(R = r,B = 0)
P(B = 0)

= P(R = r,B = 0)
21∕36

.

This gives

P(R = r|B = 0) =
⎧⎪⎨⎪⎩
(3∕36)∕(21∕36) = 1∕7, if r = 0,

(12∕36)∕(21∕36) = 4∕7, if r = 1,

(6∕36)∕(21∕36) = 2∕7, if r = 2. ◼

□■ Example 4.38 During the day, Sam receives text message and phone calls. The
numbers of each are independent Poisson random variables with parameters 𝜆 and
𝜇, respectively. If Sam receives n texts and phone calls during the day, find the
conditional distribution of the number of texts he receives.

Let T be the number of texts Sam receives. Let C be the number of phone calls.
We showed in Section 4.4.1 that the sum of independent Poisson variables has a
Poisson distribution, and thus T + C ∼ Pois(𝜆 + 𝜇). For 0 ≤ t ≤ n, the conditional
pmf of T given T + C = n is

P(T = t|T + C = n) = P(T = t,T + C = n)
P(T + C = n)

= P(T = t,C = n − t)
P(T + C = n)

= P(T = t)P(C = n − t)
P(T + C = n)

=
(

e−𝜆𝜆t

t!

)(
e−𝜇𝜇n−t

(n − t)!

)(
e−(𝜆+𝜇)(𝜆 + 𝜇)n

n!

)−1
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=
(n

t

)
𝜆t𝜇n−t

(𝜆 + 𝜇)n
=
(n

t

)(
𝜆

𝜆 + 𝜇

)t(
𝜇

𝜆 + 𝜇

)n−t

.

The conditional distribution of T , given T + C = n, is binomial with parameters n
and p = 𝜆∕(𝜆 + 𝜇). ◼

□■ Example 4.39 At the beginning of this section, we said that conditional distribu-
tion generalizes the idea of conditional probability. Let A and B be events. Define
corresponding indicator random variables X = IA and Y = IB. The conditional dis-
tribution of Y , given the outcomes of X is straightforward:

P(Y = y|X = 1) =

{
P(A|B), if y = 1,

P(Ac|B), if y = 0,

and

P(Y = y|X = 0) =

{
P(A|Bc), if y = 1,

P(Ac|Bc), if y = 0.
◼

4.8.1 Introduction to Conditional Expectation

A conditional expectation is an expectation with respect to a conditional distribu-
tion.

CONDITIONAL EXPECTATION OF Y GIVEN X = x

For discrete random variables X and Y , the conditional expectation of Y given
X = x is

E[Y|X = x] =
∑

y

yP(Y = y|X = x).

Similarly, a conditional variance is a variance with respect to a conditional dis-
tribution. Conditional expectation and conditional variance will be treated in depth
in Chapter 9. We take a first look at this important concept in the discrete setting
with several examples.

□■ Example 4.40 In Example 4.38, we find that the conditional distribution of the
number of Sam’s texts T given T + C = n is binomial with parameters n and p =
𝜆∕(𝜆 + 𝜇). From properties of the binomial distribution, it follows immediately that

E[T|T + C = n] = np = n𝜆
𝜆 + 𝜇

= n

(
𝜆

𝜆 + 𝜇

)
.
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Similarly, the conditional variance is

V[T|T + C = n] = np(1 − p) = n

(
𝜆

𝜆 + 𝜇

)(
1 − 𝜆

𝜆 + 𝜇

)
= n𝜆𝜇

(𝜆 + 𝜇)2
.

◼

□■ Example 4.41 The joint pmf of X and Y is given in the following joint table, along
with the marginal probabilities. Find E[Y|X = x].

Y

1 2 6

−1 0.0 0.1 0.1 0.2

X 1 0.1 0.3 0.2 0.6

4 0.1 0.1 0.0 0.2

0.2 0.5 0.3.

For x = −1,

E[Y|X = −1] =
∑

y∈{1,2,6}
yP(Y = y|X = −1)

=
∑

y∈{1,2,6}
y

P(Y = y,X = −1)
P(X = −1)

= 1(0.0∕0.2) + 2(0.1∕0.2) + 6(0.1∕0.2) = 4.

Similarly, for x = 1,

E[Y|X = 1] = 1(0.1∕0.6) + 2(0.3∕0.6) + 6(0.2∕0.6)

= 1.9∕0.6 = 3.167.

And for x = 4,

E[Y|X = 4] = 1(0.1∕0.2) + 2(0.1∕0.2) + 6(0.0∕0.2)

= 0.3∕0.2 = 1.5

This gives

E[Y|X = x] =
⎧⎪⎨⎪⎩

4, if x = −1,

3.167, if x = 1,

1.5, if x = 4.

◼
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□■ Example 4.42 Xavier picks a number X uniformly at random from {1, 2, 3, 4}.
Having picked X = x, he shows the number to Yasmin, who picks a number Y uni-
formly at random from {1, . . . , x}. (i) Find the expectation of Yasmin’s number if
Xavier picks x. (ii) Yasmin picked the number 1. What do you think Xavier’s number
was?

(i) The problem asks for E[Y|X = x]. The conditional distribution of Y , given X =
x, is uniform on {1, . . . , x}. The expectation of the uniform distribution gives

E[Y|X = x] = x + 1
2

.

(ii) If Yasmin picked one, we will infer Xavier’s number based on the conditional
expectation of X given Y = 1. We have

E[X|Y = 1] =
4∑

x=1

xP(X = x|Y = 1)

=
4∑

x=1

x
P(X = x,Y = 1)

P(Y = 1)
.

In the numerator,

P(X = x,Y = 1) = P(Y = 1|X = x)P(X = x) = 1
x

(1
4

)
= 1

4x
.

For the denominator, condition on X and apply the law of total probability.

P(Y = 1) =
4∑

x=1

P(Y = 1|X = x)P(X = x)

=
4∑

x=1

1
4x

= 1
4
+ 1

8
+ 1

12
+ 1

16
= 25

48
.

We thus have

E[X|Y = 1] =
4∑

x=1

x
( 1

4x

) 48
25

=
4∑

x=1

12
25

= 48
25

= 1.92.

A good guess at Xavier’s number is 2!
◼
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R: SIMULATING A CONDITIONAL EXPECTATION

We simulate the conditional expectation E[X|Y = 1] from the previous example.

> trials <- 10000
> ctr <- 0
> simlist <- numeric(trials)
> while (ctr < trials) {

xav <- sample(1:4, 1)
yas <- sample(1:xav, 1)
if (yas == 1) {
ctr <- ctr + 1
simlist[ctr] <- xav}

}
> mean(simlist)
[1] 1.9372

4.9 PROPERTIES OF COVARIANCE AND CORRELATION*

The covariance Cov(X,Y) takes two arguments. In each argument, the function is
linear in the following sense.

COVARIANCE PROPERTY: LINEARITY

For random variables X, Y , and Z, and constants a, b, c,

Cov(aX + bY + c,Z) = aCov(X,Z) + bCov(Y ,Z) (4.15)

and
Cov(X, aY + bZ + c) = aCov(X,Y) + bCov(X,Z). (4.16)

Showing these properties is a straightforward application of the definition of
covariance, which we leave to the exercises.

Given a random variable X with mean 𝜇 and variance 𝜎2, the standardized vari-
able X∗ is defined as

X∗ = X − 𝜇

𝜎
.
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Observe that

E[X∗] = E

[
X − 𝜇

𝜎

]
= 1

𝜎
(E[X] − 𝜇) = 1

𝜎
(𝜇 − 𝜇) = 0

and

V[X∗] = V

[
X − 𝜇

𝜎

]
= 1

𝜎2
(V[X − 𝜇]) = 𝜎2

𝜎2
= 1.

“Standardizing” a random variable in this way gives a new random variable with
mean 0 and variance 1, often referred to in statistics as creating a “z-score” version
of the variable. The standardization can be “undone” if desired as X = 𝜇 + 𝜎X∗.

The following theorem shows that for any random variables X and Y , the corre-
lation Corr(X,Y) is always between −1 and 1. Further, the correlation is equal to ±1
if and only if one variable is a linear function of the other. Most proofs of this result
use linear algebra. The following probabilistic treatment is based on Feller [1968].

CORRELATION RESULTS

Theorem. For random variables X and Y ,

−1 ≤ Corr(X,Y) ≤ 1.

If Corr(X,Y) = ±1, then there exists constants a ≠ 0 and b such that Y = aX + b.

Proof: Given X and Y , let X∗ and Y∗ be the standardized variables. Observe that

Cov(X∗
,Y∗) = Cov

(
X − 𝜇X

𝜎X
,

Y − 𝜇Y

𝜎Y

)
= 1

𝜎X𝜎Y
Cov(X,Y)

= Corr(X,Y).

Consider the variance of X∗ ± Y∗:

V(X∗ + Y∗) = V(X∗) + V(Y∗) + 2Cov(X∗
,Y∗)

= 2 + 2Corr(X,Y)

and
V(X∗ − Y∗) = V(X∗) + V(Y∗) − 2Cov(X∗

,Y∗)

= 2 − 2Corr(X,Y).
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This gives

Corr(X,Y) = V(X∗ + Y∗)
2

− 1 ≥ −1

and
Corr(X,Y) = −V(X∗ − Y∗)

2
+ 1 ≤ 1

because the variance is nonnegative. That is, −1 ≤ Corr(X,Y) ≤ 1.
Suppose Y = aX + b is a linear function of X. In Exercise 4.45, you will show

that Corr(X,Y) = ±1 depending upon the sign of a. Conversely, if Corr(X,Y) = 1,
then V(X∗ − Y∗) = 0 and thus X∗ − Y∗ is a constant. Recall that

X∗ − Y∗ =
X − 𝜇X

𝜎X
−

Y − 𝜇Y

𝜎Y
.

Solving for X gives

X =
(
𝜎X

𝜎Y

)
Y + constant.

A similar argument holds when Corr(X,Y) = −1. ◻

4.10 EXPECTATION OF A FUNCTION OF A RANDOM VARIABLE*

Let X be a random variable. Let g be a function. Following is the proof that

E[g(X)] =
∑

x

g(x)P(X = x),

the so-called “law of the unconscious statistician.”

Proof: Let Y = g(X). Then

E[g(X)] = E[Y] =
∑

y

yP(Y = y)

=
∑

y

yP(g(X) = y)

=
∑

y

yP(X ∈ g−1(y))

=
∑

y

y
∑

x∶x∈g−1(y)

P(X = x)

=
∑

y

y
∑

x∶g(x)=y

P(X = x)
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=
∑

x

( ∑
y∶y=g(x)

y

)
P(X = x)

=
∑

x

g(x)P(X = x). ◻

Note that if g is a one-to-one function and has an inverse g−1, then g−1(y) is a
single number. However, in general, g−1(y) is a set of numbers such that x ∈ g−1(y)
if and only if g(x) = y.

4.11 SUMMARY

Random variables are the central objects of probability and this chapter introduces
them in the discrete setting. Many important concepts are first introduced in this
chapter. The pmf of a discrete random variable is its probability function P(X =
k). The expectation of a random variable is a measure of its “average” or typical
value. The variance is a measure of spread and variability. We often work with
functions of random variables g(X), and these are presented along with methods
for finding their expectation.

Numerous properties of expectation and variance are given. Most important is
linearity of expectation: the expectation of a sum is equal to the sum of the expecta-
tions. The property holds without any condition on the distribution of the underlying
random variables. If the random variables are also independent, then the variance
of a sum is equal to the sum of the variances.

For two or more random variables defined on the same sample space, we have a
joint distribution (generally speaking) and joint pmf (in the discrete case). The uni-
variate marginal distributions are obtained from the joint distribution by summing
over the other variable(s). Indicator random variables IA are introduced and shown
to be a useful method for representing counts. The covariance and correlation of two
jointly distributed random variables is a measure of the linear association between
them. The general formula for the variance of a sum requires a covariance term.

At the end of the chapter, conditional distributions are introduced. The condi-
tional pmf is defined, along with conditional expectation. Several examples demon-
strate the concept of a pmf for one variable conditional on another.

• Probability mass function: For a random variable X, the pmf is m(x) = P(X =
x).

• Expectation: E[X] =
∑

xxP(X = x).
1. For X ∼ Unif({1, . . . , n}), E[X] = (n + 1)∕2.

2. For X ∼ Ber(p), E[X] = p

3. For X ∼ Binom(n, p), E[X] = np.

4. For X ∼ Pois(𝜆), E[X] = 𝜆.
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• Functions of random variables: If g is a function, then g(X) is a random
variable that takes values g(x) whenever X = x.

• Expectation of a function of a random variable and the “law of the uncon-
scious statistician”: E[g(X)] =

∑
xg(x)P(X = x). Warning: It is not true in

general that E[g(X)] = g(E[X]). In particular, it is not true that E[X2] = E[X]2.

• Expectation of a linear function: For constants a, b, E[aX + b] = aE[X] + b.

• Joint probability mass function: For jointly distributed discrete random vari-
ables X and Y , the joint pmf is P(X = x,Y = y).

• Marginal distributions: If X and Y are jointly distributed, the marginal distri-
bution of X is found by summing over the Y variable in the discrete case. That
is P(X = x) =

∑
yP(X = x,Y = y). Similarly, P(Y = y) =

∑
xP(X = x,Y = y).

• Joint pmf for independent random variables: If X ⟂ Y , P(X = x,Y = y) =
P(X = x)P(Y = y).

• Expectation of a function of two random variables:

E[g(X,Y)] =
∑

x

∑
y

g(x, y)P(X = x,Y = y).

• Independent random variables: Functions of independent random variables
are independent. That is, if g and h are functions of independent random vari-
ables X and Y , then g(X) and h(Y) are independent.

• Expectation of a product of independent random variables: If X and Y are
independent, then E[XY] = E[X]E[Y]. Similarly,

E[g(X)h(Y)] = E[g(X)]E[h(Y)], if X ⟂ Y .

• Sum of independent random variables: If X and Y are independent, then

P(X + Y = k) =
∑

i

P(X = i)P(Y = k − i).

• Linearity of expectation: E[X + Y] = E[X] + E[Y].
• Variance: V[X] = E[(X − E[X])2] = E[X2] − (E[X])2.

1. For X ∼ Unif({1, . . . , n}), V[X] = (n2 − 1)∕12.

2. For X ∼ Ber(p), V[X] = p(1 − p).
3. For X ∼ Binom(n, p), V[X] = np(1 − p).
4. For X ∼ Pois(𝜆), V[X] = 𝜆.

• Standard deviation: SD[X] =
√

V[X].
• Properties of variance and standard deviation:

1. V[X] = 0 if and only if X is a constant.

2. V[aX + b] = a2V[X].
3. SD[aX + b] = |a|SD[X].
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• Within two standard deviation heuristic: For many near-symmetric proba-
bility distributions, “most” outcomes are (roughly) within two standard devi-
ations of the mean.

• Indicator random variables: For an event A, the indicator random variable
is defined such that IA = 1, if A occurs, and 0, if A does not occur.

• Properties of indicators: E[IA] = P(A) and V[IA] = P(A)P(Ac).
• Covariance:

Cov(X,Y) = E[(X − E[X])(Y − E[Y])] = E[XY] − E[X]E[Y].

Covariance is a measure of linear association. Independent random variables
have covariance equal to 0. If X and Y are inversely associated, the covariance
between them is negative.

• Correlation: Corr(X,Y) = Cov(X,Y)∕(SD[X]SD[Y]). Correlation always
takes values between −1 and 1. If Y = aX + b is a linear function of X, then
Corr(X,Y) = ±1, with the sign determined by a.

• Variance of sums:
1. V[X + Y] = V[X] + V[Y] + 2Cov(X,Y).
2. If X and Y are independent, V[X ± Y] = V[X] + V[Y].
3. V[X1 + · · · + Xn] =

∑n
k=1 V[Xk] + 2

∑
i<jCov(Xi,Xj).

• Uncorrelated: Random variables X and Y are uncorrelated if E[XY] =
E[X]E[Y]. Independent random variables are uncorrelated, but the converse
is not necessarily true.

• Conditional probability mass function: For jointly distributed discrete ran-
dom variables X and Y , the conditional pmf of Y , given X = x is P(Y = y|X =
x) = P(X = x,Y = y)∕P(X = x).

• Conditional expectation: E[Y|X = x] =
∑

yyP(Y = y|X = x).
• Problem-solving strategies—Using indicator random variables for

counts: Indicators are often used to model counts. For instance, if X is the
number of successes in n trials, then write X = I1 + · · · In, where Ik is the
indicator that success occurs on the kth trial. The representation of a count
as a sum of indicators allows us to use linearity of expectation in finding the
expectation of X, as

E[X] = E[I1 + · · · In] = E[I1] + · · · + E[In].

EXERCISES

Expectation

4.1 What is the average number of vehicles per household in the United States?
Table 4.5 gives data from the 2010 US Census on the distribution of available
vehicles per household. “Available vehicles” refers to the number of cars, vans,
and pickup trucks kept at home and available for use by household members.
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TABLE 4.5. Household size by vehicles available.

Available vehicles 0 1 2 3 4
Proportion of households 0.092 0.341 0. 376 0.135 0.056

Source: Data from U.S. Census.

Let X be the number of available vehicles for a randomly chosen household.
Find the expectation of X.

4.2 Find the expectation of a random variable uniformly distributed on {a, . . . , b}.

4.3 The following dice game costs $10 to play. If you roll 1, 2, or 3, you lose your
money. If you roll 4 or 5, you get your money back. If you roll a 6, you win
$24.
(a) Find the distribution of your winnings W.
(b) Find the expected value of the game.

4.4 Let X ∼ Unif{−2,−1, 0, 1, 2}.
(a) Find E[X].
(b) Find E[eX].
(c) Find E[1∕(X + 3)].

4.5 See Example 4.22 on the St. Petersburg paradox. Modify the game so that you
only receive $210 = $1024 if any number greater than or equal to 10 tosses are
required to obtain the first tail. Find the expected value of this game.

4.6 Suppose E[X2] = 1, E[Y2] = 2, and E[XY] = 3. Find E[(X + Y)2].

4.7 Suppose P(X = 1) = p and P(X = 2) = 1 − p. Show that there is no value of
0 < p < 1 such that E[1∕X] = 1∕E[X].

4.8 You have dealt five cards from a standard deck. Let X be the number of aces
in your hand. Find E[X].

4.9 Let X ∼ Pois(𝜆). Find E[X!]. For what values of 𝜆 does the expectation not
exist?

4.10 On January 13, 2016, the jackpot of the powerball lottery was $1.586 billion.
The website https://www.powerball.com/games/home has a link
to the payouts and corresponding odds for the Powerball lottery. Recall that
odds is the ratio of the probability that an event occurs to the probability that
it will not occur. Find the expected value of the January 13, 2016 game.

Joint Distribution

4.11 The number of tornadoes T and earthquakes E over a month’s time in a par-
ticular region is independent and has a Poisson distribution with parameters 4
and 2, respectively.
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(a) Find the joint pmf of T and E.

(b) What is the probability of no tornadoes and no earthquakes in that region
next month?

(c) What is the probability of at least two tornadoes and at least two earth-
quakes?

(d) What is the probability of at least two tornadoes or at most two earth-
quakes?

4.12 The joint pmf of X and Y is

P(X = x,Y = y) = x + 1
12

,

for x = 0, 1 and y = 0, 1, 2, 3. Find the marginal distributions of X and Y .
Describe their distributions qualitatively. That is, identify their distributions
as one of the known distributions you have worked with (e.g., Bernoulli, bino-
mial, Poisson, or uniform), including all distribution parameters.

4.13 Suppose X, Y , and Z have joint pmf

P(X = x,Y = y,Z = z) = c, for x = 1, . . . , n, y = 1, . . . , x, z = 1, . . . , y.

(a) Find the constant c. Of use will be the formula for the sum of the first n
squares

n∑
k=1

k2 = n(n + 1)(2n + 1)
6

.

(b) For n = 4, find P(X ≤ 3,Y ≤ 2,Z = 1).

4.14 Suppose X, Y , and Z are independent random variables that take values 1 and
2 with probability 1/2 each. Find the pmf of (X,Y ,Z).

4.15 Suppose X, Y , and Z are independent Bernoulli random variables with respec-
tive parameters 1∕2, 1∕3, and 1∕4.

(a) Find E[XYZ].
(b) Find E[eX+Y+Z].

4.16 Suppose X and Y are independent random variables. Does E[X∕Y] =
E[X]∕E[Y]? Either prove it true or exhibit a counterexample.

4.17 The joint pmf of (X,Y) is

P(X = x,Y = y) = 1
nx

, for x = 1, . . . , n, y = 1, . . . , x.
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(a) Find the marginal distribution of X. Describe the distribution qualitatively.

(b) Find E[Y∕(X + 1)].
(c) For the case n = 3, write out explicitly the joint probability table and con-

firm your result in (b).

4.18 Let X and Y be the first and second numbers obtained in two draws from the
set {1, 2, 3, 4} sampling with replacement.

(a) Give the joint distribution table for X and Y .

(b) Find P(X ≤ Y).
(c) Repeat the previous two parts assuming the sampling is done without

replacement.

4.19 A joint probability mass function is given by

P(X = 1,Y = 1) = 1
8

P(X = 1,Y = 2) = 1
4

P(X = 2,Y = 1) = 1
8

P(X = 2,Y = 2) = 1
2
.

(a) Find the marginal distributions of X and Y .

(b) Are X and Y independent?

(c) Compute P(XY ≤ 3).
(d) Compute P(X + Y > 2).

4.20 Elevator problem. An elevator containing p passengers is at the ground floor
of a building with n floors. On its way to the top of the building, the elevator
will stop if a passenger needs to get off. Passengers get off at a particular floor
with probability 1∕n. Find the expected number of stops the elevator makes.
(Hint: Use indicators, letting Ik = 1 if the kth floor is a stop. Be careful: more
than one passenger can get off at a floor.)

4.21 A bag contains r red and g green candies. We draw n candies from the bag
without replacement. Find the expected number of red candies drawn by using
indicator variables.

4.22 Take an n-by-n board divided into one-by-one squares and color each square
white or black uniformly at random. That is, for each square flip a coin and
color it white, if heads, and black, if tails. Let X be the number of two-by-two
square “subboards” of the chessboard that are all black (see Fig. 4.4). Use indi-
cator variables to find the expected number of black two-by-two subboards.

4.23 In a class of 25 students, what is the expected number of months in which at
least two students are born? Assume birth months are equally likely. Hint: Use
indicators.
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FIGURE 4.4: Randomly colored six-by-six board. There are 19 one-by-one black squares,
2 two-by-two black boards, and no three-by-three or larger black boards.

Variance, Standard Deviation, Covariance, Correlation

4.24 Find the variance for the outcome of a fair die roll two ways: (i) using the
definition of variance and (ii) using the computational formula for variance,
Equation 4.10. Which method do you prefer?

4.25 Suppose X takes values −1, 0, and 3, with respective probabilities 0.1, 0.3,
and 0.6. Find V[X].

4.26 Suppose E[X] = a, E[Y] = b, V[X] = c, and V[Y] = d. If X and Y are inde-
pendent, find:

(a) V[2X − 3Y + 4].
(b) V[3X + Y − 2].

4.27 Find the variance of the sum of n independent tetrahedral dice rolls.

4.28 In a random experiment, let A and B be two independent events with P(A) =
P(B) = p. In an outcome of the experiment, let X be the number of these events
that occur (0, 1, or 2). Find E[X] and V[X].

4.29 Suppose E[X] = 2 and V[X] = 3. Find

(a) E[(3 + 2X)2].
(b) V[4 − 5X].

4.30 Let X be a Poisson random variable with parameter 𝜆. Find the variance of X.
Hint: Write

X2 = (X2 − X) + X = X(X − 1) + X.
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4.31 Suppose A and B are events with P(A) = a, P(B) = b, and P(AB) = c. Define
indicator random variables IA and IB. Find V[IA + IB].

4.32 Define a sequence X1, . . . ,Xn of independent random variables such that for
each k = 1, . . . , n, Xk = ±1, with probability 1/2 each. Let S = X1 + · · · + Xn.
This model describes a simple symmetric random walk that starts at the origin
and moves left or right at each unit of time. Find E[S] and V[S].

4.33 In the random walk model, suppose the distribution of the Xk’s is given by
P(Xk = +1) = p and P(Xk = −1) = 1 − p. If p > 1∕2, this describes a random
walk with positive drift. Find E[S] and V[S].

4.34 A bag contains one red, two blue, three green, and four yellow balls. A sample
of three balls is taken without replacement. Let B be the number of blue balls
and Y the number of yellow balls in the sample.

(a) Find the joint probability table.

(b) Find Cov(B,Y).

4.35 Random variables X and Y have joint distribution

P(X = i,Y = j) = c(i + j), for i = 0, 1; j = 1, 2, 3

for some constant c.

(a) Find c.

(b) Find the marginal distributions of X and Y .

(c) Find Cov(X,Y).

4.36 Suppose X and Y have the same distribution and Corr(X,Y) = −0.5. Find
V[X + Y].

4.37 Let D1 and D2 be the outcomes of two dice rolls. Let X = D1 + D2 be the sum
of the two numbers rolled. Let Y = D1 − D2 be their difference. Show that X
and Y are uncorrelated, but not independent.

4.38 Suppose X and Y are independent random variables with V[X] = 𝜎2
X , and

V[Y] = 𝜎2
Y . Let Z = 𝑤X + (1 −𝑤)Y , for 0 < 𝑤 < 1. Thus, Z is a weighted

average of X and Y . Find the variance of Z. What value of 𝑤 minimizes this
variance?

4.39 Let E[X] = 1, E[X2] = 2, E[X3] = 5, and E[X4] = 15. Also E[Y] = 2,
E[Y2] = 6, E[Y3] = 22, and E[Y4] = 94. Suppose X and Y are independent.

(a) Find V[3X2 − Y].
(b) Find E[X4Y4].
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(c) Find Cov(X,X2).
(d) Find V[X2Y2]. (See also Exercise 4.58.)

4.40 It is apparent from the definition of variance that if X is a constant, then V[X] =
0. Here we show the converse.

(a) Suppose X is a nonnegative discrete random variable with E[X] = 0. Show
that P(X = 0) = 1.

(b) Let X be a discrete random variable with E[X] = 𝜇 and V[X] = 0. Show
that P(X = 𝜇) = 1.

4.41 Refer to Exercise 4.19. Find V(X), V(Y), and Cov(X,Y).

4.42 Verify the linearity properties for covariance given in Equations 4.15 and 4.16.

4.43 Show that Cov(X,Y) = E[XY] − E[X]E[Y], as a consequence of Equation
4.13.

4.44 Suppose E[X] = 1, V[X] = 2, E[Y] = 3, V[Y] = 4, and Cov(X,Y) = −1. Find
Cov(3X + 1, 2Y − 8).

4.45 Suppose Y = aX + b for constants a and b. Find Cov(X,Y).

Conditional Distribution, Expectation, Functions of Random Variables

4.46 The joint probability mass function of X and Y is

P(X = x,Y = y) = 1
e2y!(x − y)!

, x = 0, 1, . . . , y = 0, 1, . . . , x.

(a) Find the conditional distribution of Y given X = x.

(b) Describe the distribution in terms of distributions that you know.

(c) Without doing any calculations, find E[Y|X = x] and V[Y|X = x].

4.47 Leiter and Hamdan [1973] model traffic accidents and fatalities at a specific
location in a given time interval. They suppose that the number of accidents
X has a Poisson distribution with parameter 𝜆. If X = x, then the number of
fatalities Y has a binomial distribution with parameter p.

(a) Find the marginal distribution of the number of fatalities.

(b) Show that the conditional distribution of X given Y = y is a Poisson dis-
tribution with parameter 𝜆(1 − p), which has been “shifted” y units to the
right.

4.48 Let X be the first of two fair die rolls. Let M be the maximum of the two rolls.

(a) Find the conditional probability mass function of M given X = x.
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(b) Find E[M|X = x].
(c) Find the joint probability mass function of X and M.

4.49 Given events A and B, let IA and IB be the corresponding indicator variables.
Find a simple expression for the conditional expectation of IA given IB = 1.

4.50 Suppose X and Y are independent with the following binomial distributions:
X ∼ Binom(n, p) and Y ∼ Binom(m, p). Show that X + Y has a binomial dis-
tribution and give the parameters. (Hint: Find P(X + Y) = k and use Equation
1.8.)

4.51 Let X and Y be independent and identically distributed random variables.
For each of the following questions, either show that it is true or exhibit a
counter-example.

(a) Does X + Y have the same distribution as 2X?

(b) Does X + Y have the same expectation as 2X?

(c) Does X + Y have the same variance as 2X?

4.52 Let X1, . . . ,Xn be an i.i.d. Bernoulli sequence with parameter p.

(a) Find the conditional distribution of X1 given X1 + · · · + Xn = k.

(b) Find E[X1|X1 + · · · + Xn = k] and V[X1|X1 + · · · + Xn = k].

4.53 Suppose X and Y are independent random variables both uniformly distributed
on {1, . . . , n}. Find the probability mass function of X + Y .

4.54 In the original matching problem, Montmort asked for the probability of at
least one match. Find this probability and show that for large n, the probability
of a match is about 1 − e−1 = 0.632. Hint: Use inclusion–exclusion.

Simulation and R

4.55 Simulate the probability of obtaining at least one match in the problem of
coincidences (see Exercise 4.54).

4.56 Simulate the dice game in Exercise 4.3. Estimate the expectation and variance
of your winnings.

4.57 See Exercise 4.34. Simulate the mean and variance of the total number of blue
and yellow balls in the sample.

4.58 In Exercise 4.39, the random variables X and Y have Poisson distributions with
respective parameters 1 and 2. Simulate the results in that exercise.

4.59 Simulate the variance of the matching problem for a large value of n.

4.60 Let X be a random variable that takes values x = (x1, . . . , xn) with respective
probabilities p = (p1, . . . , pn). Write two R functions mymean(x,p), and
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myvariance(x,p), which find the mean and variance of X, respectively.
Use your function to find the mean and variance of the point value of a random
Scrabble tile, as in Example 4.1.

4.61 In Texas hold ’em poker, players are initially dealt two cards each. (i) In a
game of six players, simulate the probability that at least one of the players
will have a pair. (ii) A hand is said to be suited if both cards are the same suit.
Simulate the probability that at least one of the six players’ hands is suited.

4.62 See Exercise 4.35. Write an R function joint(i,j) for computing P(X =
i,Y = j), for i = 0, 1; j = 1, 2, 3. Use this function to compute the covariance
and correlation of X and Y .

Chapter Review

Chapter review exercises are available through the text website. The URL is
www.wiley.com/go/wagaman/probability2e.
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MORE DISCRETE DISTRIBUTIONS
AND THEIR RELATIONSHIPS

To us, probability is the very guide of life.
—Marcus Tullius Cicero

Learning Outcomes

1. Distinguish common discrete distributions and their applications; Solve
related problems.

2. Understand moment-generating functions and apply them to prove results.
3. Acquire insights into interesting problems such as coupon collecting and dis-

tributions of digits.*
4. (C) Use R to work with the distributions covered in the chapter.

Introduction. Previous chapters laid the foundations of probability and provided
an introduction to discrete random variables including some common distributions.
In this chapter, we present additional common discrete distributions, some of their
applications, and use the new concept of moment-generating functions to highlight
some relationships between them.

5.1 GEOMETRIC DISTRIBUTION

There are many questions one can ask about an underlying sequence of Bernoulli
trials. The binomial distribution describes the number of successes in n trials. The
geometric distribution describes the distribution of the number of trials until the first
success occurs.

Probability: With Applications and R, Second Edition. Amy S. Wagaman and Robert P. Dobrow.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/wagaman/probability2e
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Juan likes to play the “pick-3” lottery game. In the “pick-3” game, you choose
three single-digit numbers, each from 0 to 9, in order to match the winning number.
There are 1000 possible choices so the probability of winning is 1∕1000.

If Juan buys a “pick-3” ticket every day, what is the probability he will win during
the next year? And how many days can he expect to wait until he wins the lottery?

To model the number of days until Juan wins the lottery, consider successive out-
comes as an independent and identically distributed (i.i.d.). Bernoulli sequence with
success probability p = 0.001. Let X be the number of trials until the first success
occurs. That is, the number of days until Juan wins the lottery. To find the proba-
bility mass function (pmf) of X observe that X = k if success occurs on the kth trial
and the first k − 1 trials are failures. This occurs with probability (1 − p)k−1p.

GEOMETRIC DISTRIBUTION

The random variable X has a geometric distribution with parameter p if

P(X = k) = (1 − p)k−1p, for k = 1, 2, . . . . (5.1)

We write X ∼ Geom(p).

The parameter of the geometric distribution, p, is sometimes called the success
parameter. The geometric pmf is nonnegative and sums to 1, as

∞∑
k=1

(1 − p)k−1p = p

(
1

1 − (1 − p)

)
= 1.

Let X be the number of days until Juan wins the lottery. Then X ∼ Geom(0.001).
The probability that Juan will win the lottery during the following year is

P(X ≤ 365) =
365∑
k=1

P(X = k) =
365∑
k=1

0.999k−1(0.001)

= (0.001)1 − 0.999365

1 − 0.999

= 1 − 0.999365 = 0.3059,

where we have used the partial sum of the geometric series formula

n∑
k=1

rk−1 =
n−1∑
k=0

rk = 1 − rn

1 − r
, for r ≠ 1.

Another way to find the probability P(X ≤ 365) is to take complements and think
probabilistically. Consider P(X ≤ 365) = 1 − P(X > 365). The event {X > 365} is
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equal to the event that no lottery tickets are winners in the first 365 days. This occurs
with probability (1 − p)365 = 0.999365

. The desired probability is thus 1 − 0.999365
.

This derivation gives the general closed form expression for the “tail probability”
of a geometric random variable with success parameter p.

TAIL PROBABILITY OF GEOMETRIC DISTRIBUTION

If X ∼ Geom(p), then for k > 0,

P(X > k) = (1 − p)k.

□■ Example 5.1 Expectation of the geometric distribution. Let X ∼ Geom(p).
Then

E[X] =
∞∑

k=1

kP(X = k) =
∞∑

k=1

k(1 − p)k−1p = p
∞∑

k=1

k(1 − p)k−1
. (5.2)

To make progress on the last sum, observe that the expression looks like a derivative.
Consider the geometric series

∞∑
k=0

rk = 1
1 − r

, for |r| < 1.

The series is absolutely convergent and can be differentiated termwise. That is, the
derivative of the sum is equal to the sum of the derivatives. Differentiating with
respect to r gives

d
dr

∞∑
k=0

rk =
∞∑

k=1

krk−1 = d
dr

( 1
1 − r

)
= 1

(1 − r)2
.

Applying this result to Equation 5.2 with r = 1 − p, we get

E[X] = p
∞∑

k=1

k(1 − p)k−1 = p
1

(1 − (1 − p))2
=

p

p2
= 1

p
. ◼

Intuitively, this should make sense. The expected number of trials until the first
success is the inverse of the success probability. You can expect to flip two coins,
on average, until you see heads, and roll 36 pairs of dice until you see snake-eyes,
and Juan can expect to wait 1∕(0.001) = 1000 days until he wins the lottery.

We leave for the reader the pleasure of finding the variance of a geometric dis-
tribution to be 1−p

p2 . You will need to take two derivatives in a similar process (see
Exercise 5.3).
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5.1.1 Memorylessness

The geometric distribution has a unique property among discrete distributions. It is
what is called memoryless. We illustrate the concept with an example.

□■ Example 5.2 A traffic inspector is monitoring a busy intersection for moving vio-
lations. The inspector wants to know how many cars will pass by before the first
moving violation occurs. In particular, she would like to find the probability that the
first moving violation occurs after the 30th car from her arrival. Let X be the num-
ber of cars which pass the intersection until the first moving violation. The desired
probability is P(X > 30).

After 20 cars go by without a moving violation, a second inspector arrives on
the scene. He would also like to know the probability that the first moving violation
occurs after the 30th car. But given that 20 cars have gone by without any violations,
this probability is equal to the conditional probability that 50 cars in total go by
without moving violations, given that there were no violations among the first 20
cars, that is, P(X > 50|X > 20).

If the distribution of X is memoryless, it means that these two probabilities are the
same, that is, P(X > 50|X > 20) = P(X > 30). The cars that go by once the second
inspector arrives on the scene do not “remember” the 20 cars that went by before.

Assume that whether or not cars have moving violations is independent of each
other, and that the probability that any particular car has a violation is p. Then the
number of cars which pass the intersection until the first moving violation X has a
geometric distribution with parameter p. In that case,

P(X > 50|X > 20) = P(X > 50,X > 20)
P(X > 20)

= P(X > 50)
P(X > 20)

=
(1 − p)50

(1 − p)20

= (1 − p)30 = P(X > 30),

where we use the fact that if there are no violations among the first 50 cars, then
there are no violations among the first 20 cars. That is, {X > 50} implies {X > 20}
and thus {X > 50,X > 20} = {X > 50}. ◼

MEMORYLESS PROPERTY

A random variable X has the memoryless property if for all 0 < s < t,

P(X > t|X > s) = P(X > t − s).
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We see that a geometric random variable is memoryless via the following proof.
If X ∼ Geom(p), then for 0 < s < t,

P(X > t|X > s) = P(X > t,X > s)
P(X > s)

= P(X > t)
P(X > s)

=
(1 − p)t

(1 − p)s
= (1 − p)t−s

= P(X > t − s).

□■ Example 5.3 Suppose a baseball player has a 30% chance of getting a hit dur-
ing any at bat. After three times at bat, the player has not had a hit. What is the
probability the player will not get a hit after seven times at bat?

The number of times at bat until getting a hit is a geometric random variable, X,
with p = 0.3. By the memoryless property, the desired probability is P(X > 7|X >

3) = P(X > 7 − 3) = (1 − p)7−3 = (0.70)4 = 0.24. ◼

□■ Example 5.4 A hard day’s night at the casino. Brayden has been watching the
roulette table all night, and suddenly sees the roulette ball land on black 10 times in
a row. It is time for red, he reasons, by the “law of averages.” But his friend Elijah,
a student of probability, recognizes that the number of times until red comes up has
a geometric distribution and is thus memoryless. It does not “remember” the last 10
outcomes. The probability that red will come up after the 11th bet given past history
is the same as the probability of it coming up after the first. ◼

Remarkably, the geometric distribution is the only discrete distribution that is
memoryless. Here is a short derivation assuming X takes positive integer values.

Let g(x) = P(X > x). The defining property of memorylessness gives that g(t −
s) = g(t)∕g(s) or g(t) = g(s)g(t − s) for all integers 0 < s < t.

With s = 1 and t = 2, g(2) = g(1)g(1) = g(1)2. With t = 3, g(3) = g(1)g(2) =
g(1)g(1)2 = g(1)3. In general, we see that g(n) = g(1)n, for all integer n. Now, we
consider P(X = n), which we can express in terms of g( ) as follows:

P(X = n) = P(X > n − 1) − P(X > n)

= g(n − 1) − g(n) = g(1)n−1 − g(1)n = g(1)n−1[1 − g(1)],

for n = 1, 2, . . . , which is the pmf of a geometric distribution with parameter p =
1 − g(1) = P(X = 1).

5.1.2 Coupon Collecting and Tiger Counting

In a national park in India, an automatic camera photographs the number of tigers
t passing by over a 12-month period. From the photographs, it was determined that
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the number of different tigers observed was d. The total number of tigers in the park
is to be estimated from t and d (cited in Finkelstein et al. [1998]). What should the
estimate be?

The problem of estimating the number of tigers in a park will introduce the
coupon collector’s problem, with many applications from wildlife management to
electrical engineering. The coupon collector’s problem asks: If one repeatedly sam-
ples with replacement from a collection of n distinct items (“coupons”), what is the
expected number of draws required so that each item is selected at least once?

We can remember a certain fast-food chain which sold takeout meals with a Star
Wars character in each meal for a limited time. There were 10 characters in all. The
coupon collector’s problem asks: How many meals need be bought to get a complete
set of 10 characters?

Given n coupons, let X be the number of draws required to obtain a complete set
sampling with replacement. We find E[X].

As is often the case with random variables which represent counts, we will
decompose the count into simpler units. The first coupon we get will be our first
piece of the set. Let G1 = 1 for that coupon. Now, we need to get the remainder of
the set. For k = 2, . . . , n, let Gk be the number of draws required to increase the set
of distinct coupons from k − 1 to k. Then X = G1 + · · · + Gn.

For instance, if the set of coupons is {a, b, c, d} and the sequence of successive
draws is

a, a, d, b, d, a, d, b, c,

then G1 = 1, G2 = 2, G3 = 1, G4 = 5, and X = G1 + G2 + G3 + G4 = 9.
We find the distribution of the Gk’s. Consider the process of collecting coupons.

Once the first coupon is picked, successive draws might result in it being picked
again, but eventually a second coupon will get picked. There are n − 1 possibilities
for the second coupon. Successive draws are Bernoulli trials where “success” means
picking a second coupon. The number of draws until the second new coupon is
picked is a geometric random variable with parameter p = (n − 1)∕n. That is, G2 ∼
Geom((n − 1)∕n).

Similarly, once the second coupon is picked, successive draws until the third
coupon is picked form a Bernoulli sequence with p = (n − 2)∕n, and thus G3 ∼
Geom((n − 2)∕n). In general, once the (k − 1)st coupon is picked, successive draws
until the kth new coupon is picked form a Bernoulli sequence with parameter p =
(n − (k − 1))∕n, and Gk ∼ Geom((n − (k − 1))∕n).

As the expectation of a geometric distribution is the inverse of the success
probability,

E[X] = E[G1 + G2 + · · · + Gn]

= E[G1] + E[G2] + · · · + E[Gn]

= n
n
+ n

n − 1
+ · · · + n

1
= n

(1
n
+ 1

n − 1
+ · · · + 1

1

)
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= n
(

1 + 1
2
+ · · · + 1

n

)
. (5.3)

For example, the expected number of meals needed to get the full set of 10 Star
Wars characters is

E[X] = 10
(

1 + 1
2
+ · · · + 1

10

)
= 29.3 meals.

For a simulation to verify this result, see CouponCollect.R.
Observe that G1, . . . ,Gn are independent random variables. Consider Gk. Once

k − 1 coupons have been picked, the number of additional trials needed to select
the next coupon does not depend on the past history of selections. For each k, Gk
is independent of the previous G1, . . . ,Gk−1. The last expression in Equation 5.3 is
the partial harmonic series. For large n, approximations for this series give E(X) =
n ln n.

For the tiger estimation problem introduced at the beginning of this section, we
consider a slightly different version of the coupon collector’s problem, as given in
Ross [2012]. Suppose there are n coupons to choose from and t items have been
selected after repeated selections with replacement. What is the expected number
of distinct coupons in the group of t items?

For instance, for the Star Wars characters, if 12 meals are obtained what is the
expected number of different characters collected? Here n = 10 and t = 12.

Let X be the number of different items collected after drawing t items. By the
method of indicators write X = I1 + · · · + In, where

Ik =
{

1, if coupon k is contained in the set of t items,
0, if coupon k is not contained in the set of t items,

for k = 1, . . . , n. Then

E[Ik] = P(Coupon k is contained in the set of t items)

= 1 − P(Coupon k is not contained in the set of t items)

= 1 −
(

1 − 1
n

)t
,

which gives

E[X] = E[I1] + · · · + E[In] = n

[
1 −

(
1 − 1

n

)t
]
. (5.4)

Continuing with the Star Wars story, if 12 meals are obtained, the expected num-
ber of different characters is

10

[
1 −

(
1 − 1

10

)12
]
= 7.18.

So we expect about seven characters to have been collected.
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What does all this have to do with the tigers we mentioned at the start of this
section? The unknown quantity of interest is n the number of tigers in the park.
A group of t tigers has been “collected” by the park’s camera. The expectation in
Equation 5.4 gives the expected number of distinct tigers in a group of t tigers seen
on camera. Suppose the photographic analysis shows d distinct tigers. Then

d ≈ E[X] = n

[
1 −

(
1 − 1

n

)t
]
.

The data consist of t and d. Solving for n gives an estimate of the total number of
tigers in the park, which is a value of interest that is not observable itself.

Suppose the park’s camera observes 100 tigers throughout the year, and identifies
50 distinct tigers from the photographs. To estimate the number of tigers in the park,
solve

50 = n

[
1 −

(
1 − 1

n

)100
]
. (5.5)

R: NUMERICAL SOLUTION TO TIGER PROBLEM

There is no closed form algebraic solution to the nonlinear equation shown as
Equation 5.5. But there are numerical ways to solve it. In R, the uniroot
command finds the root of a general function. The script tiger.R finds the numer-
ical solution.

# tiger.R
# Define function to solve
> func <- function(n) { n*(1-(1-1/n)^ 100) - 50}

# Find root numerically inside the interval (50, 200)
> uniroot(func, c(50, 200))[1] #root is first entry
[1] 62.40844

We estimate about 62–63 tigers in the park.

There are many generalizations and extensions of the coupon collector’s prob-
lem. To learn more, see Dawkins [1991].

How R codes the geometric distribution. An alternate formulation of the geo-
metric distribution counts the number of failures X̃ until the first success, rather than
the number of trials required for the first success. As the number of trials required
for the first success is the number of such failures plus one, X = X̃ + 1. The pmf of
X̃ is

P(X̃ = k) = P(X − 1 = k) = P(X = k + 1) = (1 − p)(k+1)−1p = (1 − p)kp,
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for k = 0, 1, . . . . The expected number of failures until the first success is

E[X̃] = E[X − 1] = E[X] − 1 = 1
p
− 1 =

1 − p

p
.

And the variance is
V[X̃] = V[X − 1] = V[X].

This variation of the geometric distribution is the one which R uses in its
related commands. Bear this in mind for simulations involving geometric random
variables.

R: GEOMETRIC DISTRIBUTION

The respective R commands for the geometric distribution are

> dgeom(k, p)
> pgeom(k, p)
> rgeom(n, p)

where k represents the number of failures before the first success.
If you are working with k = the number of trials required for the first success,

as we do in this section, then use the following modifications:

> dgeom(k-1, p) # Computes P(X=x)
> pgeom(k-1, p) # Computes P(X<=x)
> rgeom(n, p)+1 # Generates n random numbers

For example, recall Juan’s issues with the lottery. To find the probability
P(X ≤ 365) that Juan will win the lottery next year, type

> pgeom(364,0.001)
[1] 0.3059301

5.2 MOMENT-GENERATING FUNCTIONS

Some expectations have special names. For k = 1, 2, . . . , the kth moment of a ran-
dom variable X is E[Xk]. For instance, the first moment of X is the expectation E[X].
The moment-generating function (mgf), as the name suggests, can be used to gener-
ate the moments of a random variable. Mgfs are also useful for demonstrating some
relationships between random variables.
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MOMENT-GENERATING FUNCTION

Let X be a random variable. The mgf of X is the real-valued function

m(t) = E[etX],

defined for all real t when this expectation exists. Also written as mX(t).

□■ Example 5.5 Geometric distribution. Let X ∼ Geom(p). The mgf of X is

m(t) = E[etX] =
∞∑

k=1

etk(1 − p)k−1p

= pet
∞∑

k=1

(et(1 − p))k−1 =
pet

1 − et(1 − p)
.

◼

How do we get moments from the mgf? Moments of X are obtained from the
mgf by successively differentiating m(t) and evaluating at t = 0. We have

m′(t) = d
dt

E[etX] = E
[ d

dt
etX

]
= E[XetX],

and m′(0) = E[X].
Taking the second derivative gives

m′′(t) = d
dt

m′(t) = d
dt

E[XetX] = E
[ d

dt
XetX

]
= E[X2etX],

and m′′(0) = E[X2].
In general, the kth derivative of the mgf evaluated at t = 0 gives the kth moment as

m(k)(0) = E[Xk], for k = 1, 2, . . . .

Remarks:

1. To define the mgf, it suffices that the expectation E[etX] exists for values of t
in an interval that contains zero.

2. For some distributions, the expectation E[etX] is not finite. This is true for the
Cauchy distribution and the t-distribution, used in statistics. However, another
type of generating function called the characteristic function can be used.
The characteristic function E[eitX] is defined for all distributions and requires
the use of complex (imaginary) numbers.
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3. In physics, the concept of moments is used to describe physical properties,
with the first moment roughly equal to the center of mass. For a probabil-
ity distribution, the first moment is the “center” of probability mass. Similar
analogies can be made with higher moments.

□■ Example 5.6 Let X be a random variable taking values −1, 0, and 1, with

P(X = −1) = p, P(X = 0) = q, and P(X = 1) = r,

with p + q + r = 1. Find the mgf of X and use it to find the mean and variance of X.
The mgf of X is

m(t) = E[etX] = pe−t + q + ret
,

with
m′(t) = −pe−t + ret and m′′(t) = pe−t + ret

.

Thus,
E[X] = m′(0) = r − p,

and
V[X] = E[X2] − E[X]2 = m′′(0) − [m′(0)]2 = (r + p) − (r − p)2.

◼

□■ Example 5.7 Poisson distribution. Let X ∼ Pois(𝜆). The mgf of X is

m(t) = E[etX] =
∞∑

k=0

etk e−𝜆𝜆k

k!
= e−𝜆

∞∑
k=0

(𝜆et)k

k!
= e−𝜆e𝜆et = e𝜆(e

t−1)
.

Differentiating gives
m′(t) = 𝜆ete𝜆(e

t−1)

with m′(0) = 𝜆 = E[X]; and

m′′(t) = (𝜆et)(𝜆et + 1)(e𝜆(et−1))

with m′′(0) = 𝜆2 + 𝜆 = E[X2]. This gives V[X] = 𝜆2 + 𝜆 − 𝜆2 = 𝜆, as expected. ◼

Here are three important properties of the mgf.

PROPERTIES OF MOMENT GENERATING FUNCTIONS

1. If X and Y are independent random variables, then the mgf of their sum is
the product of their mgfs.
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That is,
mX+Y (t) = E[et(X+Y)]

= E[etXetY ] = E[etX]E[etY ]

= mX(t)mY (t).

2. Let X be a random variable with mgf mX(t) and constants a ≠ 0 and b.
Then

maX+b(t) = E[et(aX+b)] = ebtE[e(ta)X] = ebtmX(at).

3. Mgfs uniquely determine the underlying probability distribution. That is,
if two random variables have the same mgf, then they have the same prob-
ability distribution.

□■ Example 5.8 Sum of independent Poissons is Poisson. Let X and Y be inde-
pendent Poisson random variables with respective parameters 𝜆1 and 𝜆2. Then

mX+Y (t) = mX(t)mY (t) = e𝜆1(et−1)e𝜆2(et−1) = e(𝜆1+𝜆2)(et−1)
,

which is the mgf of a Poisson random variable with parameter 𝜆1 + 𝜆2.

This constitutes a proof that the sum of independent Poisson random variables
is Poisson, a result derived by other means in Section 4.4.1. The extension to a set
of k independent Poisson random variables follows similarly. ◼

This last example gives a taste of the power of mgfs. Many results involving sums
and limits of random variables can be proven using them. This allows us to explore
relationships between distributions as well, as we will see in the next section.

5.3 NEGATIVE BINOMIAL—UP FROM THE GEOMETRIC

The geometric distribution counts the number of trials until the first success occurs
in i.i.d. Bernoulli trials. The negative binomial distribution extends this, counting
the number of trials until the rth success occurs.

NEGATIVE BINOMIAL DISTRIBUTION

A random variable X has the negative binomial distribution with parameters r
and p if

P(X = k) =
(k − 1

r − 1

)
pr(1 − p)k−r

, r = 1, 2, . . . , k = r, r + 1, . . . (5.6)

We write X ∼ NegBin(r, p).
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The pmf is derived by observing that if k trials are required for the rth success,
then (i) the kth trial is a success and (ii) the previous k − 1 trials have r − 1 successes
and k − r failures. The first event (i) occurs with probability p. For (ii), there are(

k−1
r−1

)
outcomes of k − 1 trials with r − 1 successes. By independence, each of these

outcomes occurs with probability pr−1(1 − p)k−r.

Observe that the negative binomial distribution reduces to the geometric distri-
bution when r = 1. Hence, if X ∼ Geom(p), then X ∼ NegBin(1, p) and vice versa.

Using R with the negative binomial distribution poses similar issues as with the
geometric distribution. There are several alternate formulations of the negative bino-
mial distribution, and the one that R uses is based on the number of failures X̃ until
the rth success, where X̃ = X − r.

R: NEGATIVE BINOMIAL DISTRIBUTION

The R commands are

> dnbinom(k, r, p)
> pnbinom(k, r, p)
> rnbinom(n, r, p)

where k represents the number of failures before r successes.
If you are working with k = the number of trials required for the first r suc-

cesses, as we do in this section, then use the following modifications. When X ∼
NegBin(r, p),

> dnbinom(k-r, r, p) # Computes P(X=k)
> pnbinom(k-r, r, p) # Computes P(X<=k)
> rnbinom(n, r, p)+r # Generates n random numbers

□■Example 5.9 Applicants for a new student internship are accepted with probability
p = 0.15 independently from person to person, in the order their applications were
received. Several hundred people are expected to apply. Find the probability that it
will take no more than 100 applicants to find 10 students for the program.

Let X be the number of people who apply for the internship before the 10th
student is accepted. Then X has a negative binomial distribution with parameters
r = 10 and p = 0.15. The desired probability is

P(X ≤ 100) =
100∑

k=10

P(X = k)

=
100∑

k=10

(k − 1
r − 1

)
pr(1 − p)k−r
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=
100∑

k=10

(k − 1
9

)
(0.15)10(0.85)k−10 = 0.945.

We used R to evaluate this summation by typing

> pnbinom(100-10, 10, 0.15)
[1] 0.9449054.

◼

□■ Example 5.10 World Series. Baseball’s World Series is a best-of-seven playoff
between the top teams in the American and National Leagues. The team that wins
the series is the one which first wins four games. Thus, a series can go for 4, 5, 6, or
7 games. If both teams are evenly matched, what is the expected length of a World
Series?

Let X be the number of games played in a World Series. Let Y be a random
variable with a negative binomial distribution with parameters r = 4 and p = 1∕2.
For each k = 4, 5, 6, 7, the probability that team A wins the series in k games is equal
to the probability that it takes k games for four “successes,” which is P(Y = k). As
either team A or team B could win the series, for k = 4, 5, 6, 7,

P(X = k) = 2P(Y = k)

= 2
( k − 1

4 − 1

)(1
2

)4(1
2

)k−4
= 2

(k − 1
3

)(1
2

)k
,

which gives

P(X = k) =
⎧⎪⎨⎪⎩

0.125, if k = 4,
0.25, if k = 5,
0.3125, if k = 6, 7.

The expected length of the World Series is

E[X] = 4(0.125) + 5(0.25) + 6(0.3125) + 7(0.3125) = 5.8125 games.

The actual lengths of the 112 World Series held between 1903 and 2019, not
counting the four series which went to eight games because ties were called is given
in Table 5.1.

The average length is

1
112

(4(19) + 5(28) + 6(25) + 7(40)) = 5.77 games. ◼

Expectation and variance. By expressing a negative binomial random variable
as a sum of independent geometric random variables, we show how to find the
expectation and variance of the negative binomial distribution.
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TABLE 5.1. Lengths of 112 World Series, 1903–2019.

4 5 6 7

19 28 25 40

Consider an i.i.d. sequence of Bernoulli trials X1,X2, . . . with parameter p. Let
G1 be the number of trials required for the first success. Then G1 ∼ Geom(p). Sup-
pose it takes G1 = g trials for the first success. Let G2 be the number of additional
trials required for the second success. Then G2 also has a geometric distribution
with parameter p, and G2 is independent of G1. The reason is that after trial g, the
sequence of random variables Xg+1,Xg+2, . . . is also an i.i.d. Bernoulli sequence.
The number of trials required for the first success for this sequence is exactly the
number of trials required for the second success for the original sequence. We say
that the Bernoulli sequence “restarts” itself anew after trial g.

Continuing in this way, for each k = 1, . . . , r, let Gk be the number of addi-
tional trials required after the (k − 1)st success for the kth success to occur. Then
G1, . . . ,Gr is an i.i.d. sequence of geometric random variables with parameter p.

Let X be the number of trials required for the rth success. Then X has a negative
binomial distribution with parameters r and p, and X = G1 + · · · + Gr.

We can verify this relationship using mgfs. Previously, we found that if Gi ∼
Geom(p), then the mgf of Gi is

m(t) = E[etGi ] =
pet

1 − et(1 − p)
.

Then because X = G1 + · · · + Gr, which are i.i.d. Geom(p), the mgf of X is

mX(t) = mG1
(t) × · · · × mGr

(t) =
[

pet

1 − et(1 − p)

]r

.

Now, we must verify that this is the mgf of a negative binomial random variable to
establish the relationship. From the definition, the mgf of X is

m(t) = E[etX] =
∞∑

k=r

etkP(X = k) =
∞∑

k=r

etk
(k − 1

r − 1

)
pr(1 − p)k−r

= (pet)r
∞∑

k=r

(k − 1
r − 1

)
(et)k−r(1 − p)k−r = (pet)r

∞∑
k=r

(k − 1
r − 1

)
((1 − p)et)k−r

= (pet)r
∞∑

k=0

(k + r − 1
r − 1

)
((1 − p)et)k = (pet)r(1 − et(1 − p))−r

=
[

pet

1 − et(1 − p)

]r

,
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where the final summation is recognized as a negative binomial series. Now that
we have established this relationship, we can use what we know about the geo-
metric distribution to help us find the mean and variance for the negative binomial
distribution.

The mean and variance of the geometric distribution are 1∕p and (1 − p)∕p2,
respectively. Using the Gk’s we constructed, it follows that for the negative binomial
distribution,

E[X] = E[G1 + · · · + Gr] = E[G1] + · · · + E[Gr] =
r
p

and

V[X] = V[G1 + · · · + Gr] = V[G1] + · · · + V[Gr] =
r(1 − p)

p2
.

□■ Example 5.11 Sophia is making tomato sauce for dinner and needs 10 ripe toma-
toes. In the produce department of the supermarket, there is a 70% chance that a
tomato is ripe. (i) How many tomatoes can Sophia expect to sample until she gets
what she needs? (ii) What is the standard deviation? (iii) What is the probability
Sophia will need to sample more than 15 tomatoes before she gets 10 ripe tomatoes?

(i) and (ii) Let X be the number of tomatoes that Sophia needs to sample in order
to get 10 ripe ones. Then X ∼ NegBin(10, 0.7), with expectation E[X] = 10∕(0.7) =
14.29 and standard deviation SD[X] =

√
10(0.3)∕(0.7)2 = 2.47.

(iii) The desired probability is

P(X > 15) = 1 − P(X ≤ 15)

= 1 −
15∑

k=10

(k − 1
9

)
(0.7)10(0.3)k−10 = 0.278.

To find this probability in R, type

> 1-pnbinom(15-10, 10, 0.7)
[1] 0.2783786

◼

Why “negative binomial”? You might be wondering what “negative” and “bi-
nomial” have to do with the negative binomial distribution. The reason for the choice
of words is that the distribution, in a sense, is inverse to the binomial distribution.

Consider an i.i.d. Bernoulli sequence with success probability p. The event (i)
that there are r or fewer successes in the first n trials is equal to the event (ii) that
the (r + 1)st success occurs after the nth trial.

Let B be the number of successes in the first n trials. Then B has a binomial
distribution with parameters n and p, and the probability of the first event (i) is
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P(B ≤ r). Let Y be the number of trials required for the (r + 1)st success. Then Y
has a negative binomial distribution with parameters r + 1 and p. The probability of
the second event (ii) is P(Y > n). Hence,

P(B ≤ r) = P(Y > n), (5.7)

giving
r∑

k=0

(n
k

)
pk(1 − p)n−k =

∞∑
k=n+1

(k − 1
r

)
pr+1(1 − p)k−r−1

,

which is an interesting identity in its own right.

□■ Example 5.12 Problem of points. This problem is said to have motivated the
beginnings of modern probability through a series of letters between French math-
ematicians Blaise Pascal and Pierre de Fermat in the 1600s.

Two players are repeatedly playing a game of chance, say tossing a coin. The
stakes are 100 francs. If the coin comes up heads, Player A gets a point. If it comes
up tails, Player B gets a point. The players agree that the first person to get a set
number of points will win the pot, but the game is interrupted. Player A needs a
more points to win; Player B needs b more points. How should the pot be divided?

Pascal and Fermat not only solved the problem but in their correspondence also
developed concepts that are fundamental to probability to this day. Their insight,
remarkable for its time, was that the division of the stakes should not depend on
the history of the game (i.e., not on what already took place), but what might have
happened if the game were allowed to continue.

By today’s standards, the solution is fairly simple, especially now that you know
about the negative binomial distribution. We generalize the problem from its original
formulation and allow the coin they are playing with to have probability p of coming
up heads. Suppose the game were to continue. Let X be the number of coin tosses
required for Player A to win a points. Then X has a negative binomial distribution
with parameters a and p. As Player A needs a points and Player B needs b points,
the game will be decided in a + b − 1 plays. Hence, A will win the game if and only
if X ≤ a + b − 1. The probability that A wins is

P(A wins) = P(X ≤ a + b − 1) =
a+b−1∑

k=a

( k − 1
a − 1

)
pa(1 − p)k−a

.

The pot would be divided according to this winning probability. That is,
100 × P(A wins) francs goes to Player A and the remainder 100 × P(B wins) goes
to Player B.
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R: PROBLEM OF POINTS

The exact probability that A wins is found by typing

> pnbinom(b-1, a, p)

See the script Points.R to play the “problem of points” for your choices of a, b,
and p.

For an enjoyable book-length treatment of the history and mathematics of the
problem of points, see Devlin [2008]. ◼

5.4 HYPERGEOMETRIC—SAMPLING WITHOUT REPLACEMENT

Whereas the binomial distribution arises from sampling with replacement, the
hypergeometric distribution often arises when sampling is without replacement
from a finite population.

A bag of N balls contains r red balls and N − r blue balls. A sample of n balls
is picked. If the sampling is with replacement, then the number of red balls in the
sample has a binomial distribution with parameters n and p = r∕N. Here we con-
sider when the sampling is without replacement. Let X be the number of red balls
in the sample. Then X has a hypergeometric distribution.

The probability mass function of X is obtained by a straightforward counting
argument. Consider the event {X = k} that there are k red balls in the sample. The
number of possible samples of size n with k red balls is

(
r
k

)(
N−r
n−k

)
. (Choose k reds

from the r red balls in the bag, and choose the remaining n − k blues from the N − r

blue balls in the bag.) There are
(

N
n

)
possible samples of size n. Combining these,

we obtain the pmf for the hypergeometric distribution.

HYPERGEOMETRIC DISTRIBUTION

A random variable X has the hypergeometric distribution with parameters r, N,
and n if

P(X = k) =

(
r
k

)(
N − r
n − k

)
(

N
n

) ,

for max(0, n − (N − r)) ≤ k ≤ min(n, r). The values of k are restricted by the
domain of the binomial coefficients as 0 ≤ k ≤ r and 0 ≤ n − k ≤ N − r.

We write X ∼ HyperGeo(r,N, n).



�

� �

�

HYPERGEOMETRIC—SAMPLING WITHOUT REPLACEMENT 203

The origins of this distribution go back to the 1700s when the word “hypergeo-
metric numbers” was used for what we now call factorials.

R: HYPERGEOMETRIC DISTRIBUTION

The R commands are

> dhyper(k, r, N-r, n) # Computes P(X=k)
> phyper(k, r, N-r, n) # Computes P(X<=k)
> rhyper(k, r, N-r, n)
# Generates k random numbers from the distribution

□■ Example 5.13 Independents. Suppose there are 100 political independents in
the student body of 1000. A sample of 50 students is picked. What is the probability
there will be six independents in the sample?

The number of independents in the sample I has a hypergeometric distribution
with n = 50, r = 100, and N = 1000. The desired probability is

P(I = 6) =

(
100
6

)(
900
44

)
(

1000
50

) = 0.158.

In R, type

> dhyper(6, 100, 900, 50)
[1] 0.1579155

◼

□■Example 5.14 Inferring independents and maximum likelihood. Continuing
from the last example, suppose the number of independents on campus, denoted c,
is not known. A sample of 50 students yields six independents. How can we use
these data to infer an estimate of c?

The probability of obtaining six independents in a sample of 50 students when c
is unknown is

P(I = 6) =

(
c
6

)(
1000 − c

44

)
(

1000
100

) . (5.8)

The maximum likelihood method in statistics says to estimate c with the value that
will maximize this probability. That is, estimate c with the number which gives the
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highest probability (or “likelihood”) of obtaining six independents in a sample of
50 students.

R: MAXIMIZING THE HYPERGEOMETRIC PROBABILITY

The R expression 0:1000 creates a vector of values from 0 to 1000. The com-
mand

> dhyper(6, 0:1000, 1000-(0:1000), 50)

creates a vector of probabilities for P(I = 6) at values of c from 0 to 1000. To find
the maximum value in that vector, use max(). To find the index of the vector
for where that maximum is located, use which.max().

The following commands find the value of c which maximizes the probability
Equation 5.8.

> clist <- dhyper(6, 0:1000, 1000-(0:1000), 50)
> which.max(clist)-1
[1] 120

Note that one is subtracted in the second line because the vector clist starts
at c = 0, rather than 1.

The maximum likelihood estimate is c = 120. We infer there are about 120 inde-
pendents on campus. This estimate is intuitive because 6∕50 = 12% of the sample
are independents, and 12% of the population size is 120. ◼

As mentioned above, the hypergeometric distribution often arises when sam-
pling is without replacement; the binomial distribution arises when sampling is with
replacement. As discussed in Section 2.6, when the population size N is large, there
is not much difference between sampling with and without replacement. One can
show analytically that the hypergeometric probability mass function converges to
the binomial pmf as N → ∞, and the binomial distribution serves as a good approxi-
mation of the hypergeometric distribution when N is large. See Exercise 5.35, which
includes a more precise statement of the limiting process.

Expectation and variance. The expectation of the hypergeometric distribution
can be obtained by the method of indicator variables. Let N be the number of balls
in the bag, r the number of red balls in the bag, and X the number of red balls in the
sample. Define a sequence of 0–1 indicators I1, . . . , In, where

Ik =
{

1, if the kth ball in the sample is red,
0, if the kth ball in the sample is not red,

for k = 1, . . . , n. Then X = I1 + · · · + In.
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The probability that the kth ball in the sample is red is r∕N. This can be shown
most simply by a symmetry argument as the kth ball can be any of the N balls with
equal probability. (If you need more convincing, use the law of total probability and
find the probability that the second ball in the sample is red by conditioning on the
first ball.) Now, we can compute E[X] as

E[X] = E[I1 + · · · + In] = E[I1] + · · · + E[In]

=
n∑

k=1

P(kth ball in the sample is red)

=
n∑

k=1

r
N

= nr
N
.

The variance of the hypergeometric distribution can also be found by the indi-
cator method. However, the indicators are not independent. The derivation of the
variance has similarities to the variance calculation in the matching problem (see
Example 4.35). As V[Ik] = (r∕N)(1 − r∕N), we have

V[X] = V[I1 + · · · + In]

=
n∑

i=1

V[Ii] +
∑
i≠j

Cov(Ii, Ij)

= n
( r

N

)(
1 − r

N

)
+ (n2 − n)(E[IiIj] − E[Ii]E[Ij])

= nr(N − r)
N2

+ (n2 − n)
(

E[IiIj] −
r2

N2

)
.

For i ≠ j, the product IiIj is the indicator of the event that both the ith and jth balls
in the sample are red. Thus,

E[IiIj] = P(Ii = 1, Ij = 1) = P(Ii = 1|Ij = 1)P(Ij = 1) =
( r − 1

N − 1

) r
N
,

because the sampling is without replacement. This gives

V[X] = nr(N − r)
N2

+ (n2 − n)
(

E[IiIj] −
r2

N2

)
= nr(N − r)

N2
+ (n2 − n)

(
r(r − 1)

N(N − 1)
− r2

N2

)
.

= n(N − n)r(N − r)
N2(N − 1)

.
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□■ Example 5.15 In a bridge hand (13 cards from a standard 52-card deck), what is
the mean and variance of the number of aces?

Let X be the number of aces in a bridge hand. Then X has a hypergeometric
distribution. In our balls-in-the-bag imagery, the “bag” is the deck of cards with
N = 52. The “red balls” are the aces with r = 4. The “sample” is the bridge hand
with n = 13. This gives

E[X] = 13(4)
52

= 1

and

V[X] = 13(52 − 13)(4)(52 − 4)
522(51)

= 12
17

= 0.706.

◼

R: SIMULATING ACES IN A BRIDGE HAND

To simulate, let 1, 2, 3, and 4 represent the aces in a 52-card deck. Type

> aces <-replicate(10000, sum(sample(1:52, 13)<=4))
> mean(aces)
[1] 0.985
> var(aces)
[1] 0.6968447

□■ Example 5.16 Counting the homeless. So-called capture–recapture methods
have been used for many years in ecology, public health, and social science to count
rare and elusive populations. In order to estimate the size N of a population, like
fish in a lake, researchers “capture” a sample of size r. Subjects are “tagged” and
returned to the general population. Researchers then “recapture” a second sample
of size n and count the number K which are found tagged.

If the first sample is sufficiently mixed up in the general population, then the
proportion of those tagged in the second sample should be approximately equal to
the proportion tagged in the population. That is,

K
n

≈ r
N
, so N ≈ nr

K

gives an estimate of the population size.
The number tagged in the sample K has a hypergeometric distribution and

E[K] = nr∕N. The approximation formula follows based on K ≈ E[K].
Williams [2010] describes such a methodology for estimating the homeless pop-

ulation in Plymouth, a city of a quarter million people in Britain. On a particu-
lar day, at various social service agency locations, homeless people are identified
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using several variables including sex and date of birth. At a later date, a sample of
homeless people is taken and the number of people originally identified are counted.

Suppose on the first day, 600 homeless persons are counted and identified. At
a later date, a sample of 800 homeless people is taken, which includes 100 of the
original persons. Here r = 600, K = 100, and n = 800. This gives the estimate N ≈
(nr)∕K = (800 × 600)∕100 = 4800 for the size of the homeless population.

Williams [2010] points out many difficulties with trying to reliably count the
homeless, but states that “yet for its shortcomings it remains possibly the most
rigorous method of estimation. Some researchers argue that the homeless are a
population we cannot reliably count but this is a doctrine of despair and though
capture-recapture is far from a perfect method, like so many other research methods
its use will undoubtedly lead to technical improvements” (page 55). ◼

5.5 FROM BINOMIAL TO MULTINOMIAL

In a binomial setting, successive trials take one of two possible values (e.g., success
or failure). The multinomial distribution is a generalization of the binomial distribu-
tion which arises when successive independent trials can take more than two values.
The multinomial distribution is used to model such things as follows:

1. The number of ones, twos, threes, fours, fives, and sixes in 25 dice rolls.
2. The frequencies of r different alleles among n individuals.
3. The number of outcomes of an experiment that has m possible results when

repeated n times.
4. The frequencies of six different colors in a sample of 10 candies.

Consider a random experiment repeated independently n times. At each trial, the
experiment can assume one of r values. The probability of obtaining the kth value
is pk, for k = 1, . . . , r, with p1 + · · · + pr = 1. For each k, let Xk denote the number
of times value k occurs. Then the collection of random variables, (X1, . . . ,Xr), has
a multinomial distribution.

MULTINOMIAL DISTRIBUTION

Suppose p1, . . . , pr are nonnegative numbers such that p1 + · · · + pr = 1.
Random variables X1, . . . ,Xr have a multinomial distribution with parameters
n, p1, . . . , pr if

P(X1 = x1, . . . ,Xr = xr) =
n!

x1! · · · xr!
px1

1 · · · pxr
r ,

for nonnegative integers x1, . . . , xr such that x1 + · · · + xr = n.
We write (X1, . . . ,Xr) ∼ Multi(n, p1, . . . , pr).
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TABLE 5.2. Distribution of colors in a bag of candies.

Red Orange Yellow Green Blue Purple

0.24 0.14 0.16 0.20 0.12 0.14

□■ Example 5.17 In a bag of candies, colors are distributed according to the proba-
bility distribution in Table 5.2.

Denote colors with the letters R, O, Y , G, B, P. In a sample of 10 candies, let
XR,XO,XY ,XG,XB,XP denote the number of candies of the respective colors in the
sample. Then (XR,XO,XY ,XG,XB,XP) has a multinomial distribution with parame-
ters (10, 0.24, 0.14, 0.16, 0.20, 0.12, 0.14). ◼

Deriving the joint pmf for the multinomial distribution is similar to the derivation
of the binomial pmf. Consider the event

{X1 = x1,X2 = x2, . . . ,Xr = xr}, for x1 + x2 + · · · + xr = n. (5.9)

Each outcome contained in this event can be represented as a sequence of length n
with x1 elements of type one, x2 elements of type two, and so on. Count the number
of such sequences. Of the n positions in the sequence, there are x1 positions for the

type one elements. Choose these positions in
(

n
x1

)
ways. Of the remaining n − x1

positions, choose x2 positions for the type two elements in
(

n−x1
x2

)
ways. Continuing

in this way gives the number of such sequences as(
n
x1

)(
n − x1

x2

)
· · ·

(
n − x1 − · · · − xr−1

xr

)
=
(

n!
x1!(n − x1)!

)(
(n − x1)!

x2!(n − x1 − x2)!

)
· · ·

(
(n − x1 − · · · − xr−1)!

xn!(n − x1 − . . . − xr)!

)
= n!

x1!x2! · · · xr!
,

where the final simplification for the last equality happens because of the telescoping
nature of the previous product.

Having counted the number of sequences in the event {X1,X2, . . . ,Xr}, by inde-
pendence, the probability of each sequence is px1

1 px2
2 · · · pxr

r . This gives the joint pmf
for the multinomial distribution.

Observe how the multinomial distribution generalizes the binomial distribution.
Consider a sequence of n i.i.d. Bernoulli trials with success parameter p. Let X1
denote the number of successes in n trials. Let X2 denote the number of failures.
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Then X2 = n − X1 and

P(X1 = k) = P(X1 = k,X2 = n − k) = n!
k!(n − k)!

pk(1 − p)n−k
.

This shows that X1 ∼ Binom(n, p) is equivalent to (X1,X2) ∼ Multi(n, p, 1 − p),
where X2 = n − X1.

Recall the binomial theorem. Here is the multinomial generalization.

MULTINOMIAL THEOREM

For any positive integer r and n, and real numbers z1, . . . , zr,

(z1 + · · · + zr)n =
∑

a1+···+ar=n

n!
a1!a2! · · · ar!

za1
1 za2

2 · · · zar
r ,

where the sum is over all lists of r nonnegative integers (a1, . . . , ar) which sum
to n.

Proof: The proof is analogous to that given for the binomial theorem. ◻

It will be instructive for the reader to work through this identity for the case r = 3,
z1 = z2 = z3 = 1, and n = 3.

Verifying that the multinomial pmf sums to one is an application of the multino-
mial theorem as∑

x1+···+xr=n

P(X1 = x1, . . . ,Xr = xr) =
∑

x1+···+xr=n

n!
x1! · · · xr!

px1
1 · · · pxr

r

= (p1 + · · · + pr)n = 1n = 1.

Multinomial coefficients. The quantity n!∕(x1! · · · xr!) is known as a multinomial
coefficient and generalizes the binomial coefficient, where r = 2. It is sometimes
written as (

n
x1, . . . , xr

)
= n!

x1! · · · xr!
.

Multinomial coefficients enumerate sequences of length n in which (i) each ele-
ment can take one of r possible values and (ii) exactly xk elements of the sequence
take the kth value, for k = 1, . . . , r. You can consider a set of n objects being put
into r boxes, where you count the number of objects in each box.
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□■ Example 5.18

1. How many ways can 11 students fill 4 committees, of respective sizes 4, 2, 1,
and 3?

2. How many ways can 11 balls be put into four boxes such that the first box
gets four balls, the second box gets two balls, the third box gets one ball, and
the fourth box gets four balls?

3. How many distinct ways can the letters M-I-S-S-I-S-S-I-P-P-I be permuted?

The answer to all three questions is(
11

4, 2, 1, 4

)
= 11!

4!2!1!4!
= 34,650.

◼

□■ Example 5.19 In a parliamentary election, it is estimated that parties A, B, C,
and D will receive 20, 25, 30, and 25% of the vote, respectively. In a sample of 10
voters, find the probability that there will be two supporters each of parties A and
B, and three supporters each of parties C and D.

Let XA,XB,XC,XD denote the number of supporters in the sample of parties A,
B, C, and D, respectively. Then

(XA,XB,XC,XD) ∼ Multi(10, 0.20, 0.25, 0.30, 0.25).

The desired probability is

P(XA = 2,XB = 2,XC = 3,XD = 3)

= 10!
2!2!3!3!

(0.20)2(0.25)2(0.30)3(0.25)3 = 0.0266.
◼

R: MULTINOMIAL CALCULATION

The R commands for working with the multinomial distribution are rmulti-
nom and dmultinom. The desired probability above is found by typing

> dmultinom(c(2,2,3,3),prob=c(0.20,0.25,0.30,0.25))
[1] 0.02657813

□■ Example 5.20 Genetics. The Hardy–Weinberg principle in genetics states that
the long-term gene frequencies in a population remain constant. An allele is a form
of a gene. Suppose an allele takes one of two forms A and a. For a particular
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biological trait, you receive two alleles, one from each parent. The genotypes are
the possible genetic makeups of a trait: AA, Aa, and aa.

For instance, fruit flies contain a gene for body color: A is the allele for black,
and a for brown. Genotypes AA and Aa correspond to black body color, and aa
corresponds to brown. We say black is dominant and brown is recessive.

Suppose an allele takes the form A with probability p, and a with probability
1 − p. The Hardy–Weinberg principle asserts that the proportion of individuals with
genotype AA, Aa, and aa should occur in a population according to the frequen-
cies p2, 2p(1 − p), and (1 − p)2, respectively. The frequency for Aa, for instance,
is because you can get an A allele from your mother (with probability p) and an a
allele from your father (with probability 1 − p), or vice versa.

In a sample of n fruit flies, let (X1,X2,X3) be the number of flies with genotypes
AA, Aa, and aa, respectively. Then

(X1,X2,X3) ∼ Multi(n, p2
, 2p(1 − p), (1 − p)2).

Suppose that allele A occurs 60% of the time. What is the probability, in a sample
of six fruit flies, that AA occurs twice, Aa occurs three times, and aa occurs once?

P(X1 = 2,X2 = 3,X3 = 1)

= 6!
2!3!1!

((0.60)2)2(2(0.60)(0.40))3((0.40)2)1 = 0.1376.

A common problem in statistical genetics is to estimate the allele probability p
from a sample of n individuals, where the data consist of observed genotype fre-
quencies. For instance, suppose in a sample of 60 fruit flies, we observe the gene
distribution given in Table 5.3.

If p is unknown,

P(X1 = 35,X2 = 17,X3 = 8)

= 60!
35!17!8!

(p2)35(2p(1 − p))17((1 − p)2)8

= constant × p87(1 − p)33
. (5.10)

The maximum likelihood principle, introduced in Example 5.14, says to estimate
p with the value that maximizes the probability of obtaining the observed data, that
is, the value of p that maximizes the probability given in Equation 5.10.

TABLE 5.3. Genotype frequencies
for a sample of 60 fruit flies.

AA Aa aa

35 17 8
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Differentiating this expression and setting it equal to 0 gives the equation

87p86(1 − p)33 = 33(1 − p)32p87
.

Solving for p gives the maximum likelihood estimate p̂ = 87∕120 = 0.725. ◼

Marginal distribution, expectation, variance. Let (X1, . . . ,Xr) have a multi-
nomial distribution with parameters n, p1, . . . , pr. The Xi’s are not independent as
they are constrained by X1 + · · · + Xr = n.

For each k = 1, . . . , r, the marginal distribution of Xk is binomial with parameters
n and pk. We will derive this result two ways: easy and hard.

The easy way is a consequence of a simple probabilistic argument. Think of each
of the underlying n independent trials as either resulting in outcome k or not. Then
Xk counts the number of “successes” in n trials, which gives the binomial result
Xk ∼ Binom(n, pk).

The hard way is an exercise in working sums. To find a marginal distribution, we
sum the joint probability mass function over all the other variables. Consider the
marginal distribution of X1. Summing over the outcomes of X2, . . . ,Xr gives

P(X1 = x1) =
∑

x2, . . . ,xr

P(X1 = x1,X2 = x2, . . . ,Xr = xr)

=
∑

x2+···+xr=n−x1

n!
x1!x2! · · · xr!

px1
1 px2

2 · · · pxr
r

= n!
x1!

px1
1

∑
x2+···xr=n−x1

1
x2! · · · xr!

px2
2 · · · pxr

r

= n!
x1!(n − x1)!

px1
1

∑
x2+···xr=n−x1

(n − x1)!
x2! · · · xr!

px2
2 · · · pxr

r

= n!
x1!(n − x1)!

px1
1 (p2 + · · · + pr)n−x1

= n!
x1!(n − x1)!

px1
1 (1 − p1)n−x1 ,

for 0 ≤ x1 ≤ n. The sum is over all nonnegative integers x2, . . . , xn which sum to
n − x1. The penultimate equality is because of the multinomial theorem.

We see that X1 has a binomial distribution with parameters n and p1. Similarly,
for each k = 1, . . . , r, Xk ∼ Binom(n, pk).

The marginal result gives

E[Xk] = npk and V[Xk] = npk(1 − pk).

Covariance. Let (X1, . . . ,Xr) have a multinomial distribution with parameters
n, p1, . . . , pr. For i ≠ j, consider Cov(Xi,Xj). Use indicators and write Xi = I1 +
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· · · + In, where

Ik =
{

1, if the kth trial results in outcome i,
0, otherwise,

for k = 1, . . . , n. Similarly, write Xj = J1 + · · · + Jn, where

Jk =
{

1, if the kth trial results in outcome j,
0, otherwise,

for k = 1, . . . , n.
Because of the independence of the Bernoulli trials, pairs of indicator variables

involving different trials are independent. That is, Ig and Jh are independent if g ≠ h,
and hence, Cov(Ig, Jh) = 0. On the other hand, if g = h, then IgJg = 0, because the
gth trial cannot result in both outcomes i and j. Thus,

Cov(Ig, Jg) = E[IgJg] − E[Ig]E[Jg] = −pipj.

Using the linearity properties of covariance (see Section 4.9),

Cov(Xi,Xj) = Cov

(
n∑

g=1

Ig,

n∑
h=1

Jh

)
=

n∑
g=1

n∑
h=1

Cov(Ig, Jh)

=
n∑

g=1

Cov(Ig, Jg) =
n∑

g=1

(−pipj) = −npipj.

□■ Example 5.21 In Example 5.19 for the parliamentary election, the number of sup-
porters for 4 parties out of 10 people was found to have a multinomial distribution.
Find Cov(XA,XC).

We know that

(XA,XB,XC,XD) ∼ Multi(10, 0.20, 0.25, 0.30, 0.25).

Applying the formula just derived for covariance, we have that

Cov(XA,XC) = −npApC = −10(0.20)(0.30) = −0.60. ◼

5.6 BENFORD’S LAW*

It has been observed that the pages of a much used table of common logarithms
show evidences of a selective use of the natural numbers. The pages containing the
logarithms of the low numbers 1 and 2 are apt to be more stained and frayed by use
than those of the higher numbers 8 and 9. Of course, no one could be expected to
be greatly interested in the condition of a table of logarithms, but the matter may be
considered more worthy of study when we recall that the table is used in the building
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up of our scientific, engineering, and general factual literature. There may be, in the
relative cleanliness of the pages of a logarithm table, data on how we think and how
we react when dealing with things that can be described by means of numbers.

—Frank Benford [1938]

In this book’s Introduction, we describe Benford’s law and suggest the following
classroom activity: Pick a random book in your backpack. Open up to a random
page. Let your eyes fall on a random number in the middle of the page. Write down
the number and circle the first digit, ignoring zeros.

We collect everybody’s first digits, and before looking at the data, ask students
to guess what the distribution of these numbers looks like. Many say that they will
be roughly equally distributed between 1 and 9, following a discrete uniform distri-
bution. Remarkably, they are not. Ones are most likely, then twos, which are more
likely than threes, etc. The values tend to follow Benford’s law, the distribution given
in Table 5.4.

Benford’s law is named after physicist Frank Benford who was curious about the
wear and tear of the large books of logarithms which were widely used for scientific
calculations before computers or calculators. Benford eventually looked at 20,229
data sets—everything from areas of rivers to death rates. In all cases, the first digit
was one about 30% of the time, and the digits followed a remarkably similar pattern.

Benford eventually discovered the formula

P(d) = log10

(d + 1
d

)
,

for the probability that the first digit is d = 1, . . . , 9. Observe that P is in fact a
probability distribution on {1, . . . , 9}, as

9∑
k=1

P(d) =
9∑

k=1

log10

(d + 1
d

)
=

9∑
k=1

[log10 (d + 1) − log10 d]

= (log10 2 − log10 1) + (log103 − log10 2) + · · · + (log10 10 − log10 9)

= log10 10 − log10 1 = 1,

as the terms are telescoping.
It is not easy to explain why Benford’s law works for so many empirical datasets,

and much of the mathematics is outside the scope of this book.

TABLE 5.4. Benford’s law.

1 2 3 4 5 6 7 8 9

0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046
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c1 c2 c3 c4 c5 c6 c7 c8 c9c10

1

2

3

4

5

6

7

8

9

10

FIGURE 5.1: Graph of P(n) = arn.

Ross [2011] shows why phenomenon that exhibit exponential growth or
decline—populations of cities, powers of 2, pollution levels, radioactive
decay—exhibit Benford’s law. As explained by Ross, suppose we have data
of the form P(n) = arn for constants a and r. For instance, P(n) might be the
population of a city at year n, or the half-life of a radioactive isotope after n
minutes. Consider values of n such that 1 ≤ P(n) < 10. For each d = 1, . . . , 9, let
[cd, cd+1) be the interval of values for which the first digit of P(n) is d (see Fig. 5.1).

For all values c1 ≤ n < c2, the first digit of P(n) is 1. For c2 ≤ n < c3, the first
digit of P(n) is 2, and so on. For each d = 1, . . . , 9, P(cd) = arcd = d. Taking loga-
rithms (base 10) gives

log a + cd log r = log d.

Also log a + cd+1 log r = log(d + 1). Subtracting equations gives

(cd+1 − cd) (log r) = log(d + 1) − log d.

Thus, the length of each interval [cd, cd+1) is

cd+1 − cd =
log(d + 1) − log d

log r
.

The length of the entire interval [c1, c10) is

9∑
d=1

(cd+1 − cd) =
log 10 − log 1

log r
= 1

log r
,
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due to the telescoping terms. Thus, the “fraction of the time” that the first digit of
arn is d is

cd+1 − cd

c10 − c1
= log(d + 1) − log d = log

(d + 1
d

)
.

The argument here for values of P(n) between 1 and 10 actually applies to all
intervals of values between 10k and 10k+1, for k = 0, 1, . . . .

For a wonderful introduction to Benford’s law, and its use in detecting fraud,
hear the Radiolab podcast From Benford to Erdős at www.radiolab.org. For
detailed treatment of Benford’s law in literature, the reader is directed to Berger
and Hill [2015] and Miller [2015]. The R supplements contain more examples and
applications of R packages focused on Benford’s law for the reader to explore.

5.7 SUMMARY

This chapter explores several new discrete probability distributions. Many of them
are generalizations or extensions of the ones we have studied. Mgfs are introduced
as a way of characterizing distributions and illustrating some of these relationships.
The geometric distribution arises as the number of i.i.d. Bernoulli trials required
for the first success to occur. The negative binomial generalizes the geometric dis-
tribution and counts the number of trials required for the rth first success. The
hypergeometric distribution arises when sampling is done without replacement,
in contrast to the binomial distribution which arises when sampling is done with
replacement. The multinomial distribution is a multivariate distribution which gen-
eralizes the binomial distribution. Also introduced are multinomial coefficients and
the multinomial theorem. Finally, Benford’s law is a fascinating distribution which
governs the distribution of first digits for many empirical datasets.

• Geometric distribution: A random variable X has a geometric distribution
with parameter p, if P(X = k) = (1 − p)k−1p, for k = 1, 2, . . . . The distribu-
tion arises as the number of trials required for the first success in repeated
i.i.d. Bernoulli trials.

• Memorylessness: A random variable X has the memorylessness property if
P(X > s + t)|X > t) = P(X > s) for all s, t > 0. The geometric distribution is
the only discrete distribution that is memoryless.

• Properties of geometric distribution:
1. E[X] = 1∕p.

2. V[X] = (1 − p)∕p2.

3. P(X > x) = (1 − p)x, for x > 0.

• Moments: The kth moment of X is E[Xk].
• Moment-generating function: m(t) = E[etX] defined for real t when the

expectation exists.
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• Properties of the moment-generating functions:
1. E[Xk] = m(k)(0).
2. If X and Y are independent, then mX+Y (t) = mX(t)mY (t).
3. For constants a ≠ 0 and b, maX+b(t) = etbmX(at).
4. If two random variables have the same mgf, they have the same distribution.

• Negative binomial distribution: A random variable X has a negative bino-
mial distribution with parameters r and p if

P(X = k) =
(k − 1

r − 1

)
pr(1 − p)k−r

, for r = 1, 2, . . . , k = r, r + 1, . . . .

The distribution arises as the number of trials required for the rth success in
repeated i.i.d. Bernoulli trials. If r = 1, we get the geometric distribution.

• Properties of negative binomial distribution:
1. E[X] = r∕p.

2. V[X] = r(1 − p)∕p2.

• Hypergeometric distribution: Given a bag of N balls which contains r red
balls and N − r blue balls, let X be the number of red balls in a sample of size
n taken without replacement. Then X has a hypergeometric distribution with
pmf

P(X = k) =

(
r
k

)(
N − r
n − k

)
(

N
n

)
for max(0, n − (N − r)) ≤ k ≤ min(n, r).

• Properties of hypergeometric distribution:
1. E[X] = nr∕N.

2. V[X] = n(N − n)r(N − r)∕(N2(N − 1)).
• Multinomial distribution: Random variables X1, . . . ,Xr have a multinomial

distribution with parameters n, p1, . . . , pr, where p1 + · · · + pr = 1, if

P(X1 = x1, . . . ,Xr = xr) =
n!

x1! · · · xr!
px1

1 · · · pxr
r ,

for nonnegative integers x1, . . . , xr such that x1 + · · · + xr = n. The distribu-
tion generalizes the binomial distribution (with r = 2) and arises when suc-
cessive independent trials can take more than two values.

• Multinomial counts: The multinomial coefficient(
n

x1, . . . , xr

)
= n!

x1! · · · xr!



�

� �

�

218 MORE DISCRETE DISTRIBUTIONS AND THEIR RELATIONSHIPS

counts the number of n element sequences in which (i) each element can take
one of r possible values and (ii) exactly xk elements of the sequence take the
kth value, for k = 1, . . . , r.

• Multinomial theorem: For any positive integer r and n and real numbers
z1, . . . , zr,

(z1 + · · · + zr)n =
∑

a1+···+ar=n

n!
a1! · · · ar!

za1
1 · · · zar

r ,

where the sum is over all lists of r nonnegative integers (a1, . . . , ar) which
sum to n.

• Properties of multinomial distribution:
1. Xk ∼ Binom(n, pk), for each k = 1, . . . , r.

2. Cov(Xi,Xj) = −npipj.

• Benford’s law: A random variable X has the Benford’s law distribution if
P(X = d) = log10((d + 1)∕d), for d = 1, . . . , 9. The distribution arises as the
distribution of the first digit for many datasets.

EXERCISES

Geometric Distribution

5.1 Rohit is playing five card poker with his friends. What is the expected number
of hands it will take before he is dealt a full house? A full house is three cards
of one face value and two of another face value.

5.2 What is the probability that it takes an even number of die rolls to get a four?

5.3 Find the variance of a geometric distribution. Hint: To find E[X2], write k2 =
k2 − k + k = k(k − 1) + k. You will need to take two derivatives.

5.4 Suppose X ∼ Geom(0.3). Provide appropriate commands and compute the
following probabilities in R. Pay attention to how R codes the Geometric dis-
tribution.

(a) P(X = 3).
(b) P(2 ≤ X < 9).
(c) P(X ≥ 4).

5.5 Loki spends his weekends metal detecting along a beach for fun. He picks
small areas to search, and from past experience, about 15% of these sites have
resulted in “hits” (where he finds something). Assume he picks sites indepen-
dently of each other.
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(a) Find the probability that Loki gets his first hit on a weekend on the fifth
site he visits.

(b) Find the probability that it takes at most five sites for Loki to get a hit.

(c) What is the expected number of sites it will take for Loki to get a hit?

5.6 A manufacturing process produces components which have a 1% chance of
being defective. Successive components are independent.

(a) Find the probability that it takes exactly 110 components to be produced
before a defective one occurs.

(b) Find the probability that it takes at least 110 components to be produced
before a defective one occurs.

(c) What is the expected number of components that will be produced before
a defective one occurs?

5.7 Dominic is applying to college and sending out many applications. He esti-
mates there is a 25% chance that an application will be successful. How many
applications should he send out so that the probability of at least one accep-
tance is at least 95%?

5.8 There are 15 professors in the math department. Every time Tina takes a math
class each professor is equally likely to be the instructor. What is the expected
number of math classes which Tina needs to take in order to be taught by every
math professor?

5.9 In the coupon collector’s problem, let X be the number of draws of n coupons
required to obtain a complete set. Find the variance of X.

5.10 A bag has r red and b blue balls. Balls are picked at random without replace-
ment. Let X be the number of selections required for the first red ball to be
picked.

(a) Explain why X does not have a geometric distribution.

(b) Show that the probability mass function of X is

P(X = k) =

(
r + b − k

r − 1

)
(

r + b
r

) for k = 1, 2, . . . , b + 1.

5.11 Let X ∼ Geom(p). Find E[2X] for those values of p for which the expectation
exists.

5.12 Make up your own example to show that the Poisson distribution is not mem-
oryless. That is, pick values for 𝜆, s, and t and show that P(X > t|X > s) ≠
P(X > t − s).
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MGFS

5.13 A random variable X has a mgf

m(t) = pe−t + qet + 1 − p − q,

where p + q = 1. Find all the moments of X.

5.14 A random variable X takes values −1, 0, and 2, with respective probabilities
0.2, 0.3, and 0.5. Find the mgf of X. Use the mgf to find the first two moments
of X.

5.15 Find the mean of a geometric distribution with parameter p using mgfs.

5.16 Find the mgf of a Bernoulli random variable with parameter p. Use this to find
the mgf of a binomial random variable with parameters n and p.

5.17 Identify the distributions of the following random variables based on their
provided mgfs:

(a) mX(t) = 0.8et + 0.2.

(b) mY (t) =
0.1et

1−0.9et .

(c) mW (t) = (0.3et + 0.7)14.

5.18 Suppose X ∼ Geom(0.2), and Y = 4X + 2. Find the mgf of Y .

5.19 Let X and Y be independent binomial random variables with parameters (m, p)
and (n, p), respectively. Use mgfs to show that X + Y is a binomial random
variable with parameters m + n and p.

Negative Binomial Distribution

5.20 Suppose X ∼NegBin(3, 0.4). Provide appropriate commands and compute the
following probabilities in R. Pay attention to how R codes the Negative Bino-
mial distribution.

(a) P(X = 6).
(b) P(5 ≤ X < 11).
(c) P(X ≥ 8).

5.21 A fair coin is tossed until heads appears four times.

(a) Find the probability that it took exactly 10 flips.

(b) Find the probability that it took at least 10 flips.

(c) Let Y be the number of tails that occur. Find the pmf of Y .
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5.22 Baseball teams A and B face each other in the World Series. For each game,
the probability that A wins the game is p, independent of other games. Find
the expected length of the series.

5.23 Let X and Y be independent geometric random variables with parameter p.
Find the pmf of X + Y . You should know what distribution will result.

5.24 Each student in a campus club is asked to sell 12 candy bars to support a
cause. From previous drives, the students know the probability that they make
a candy bar sale going dorm room to dorm room is about 0.2 per room.
(a) What is the probability a student sells all 12 bars by visiting at most 50

dorm rooms?
(b) How many dorm rooms should each student expect to visit to sell their 12

candy bars? (Assume they pick different dorms.)

5.25 People whose blood type is O-negative are universal donors—anyone can
receive a blood transfusion of O-negative blood. In the United States, 7.2%
of the people have O-negative blood. A blood donor clinic wants to find
10 O-negative individuals. In repeated screening, what is the chance of
finding such individuals among the first 100 people screened?

5.26 Using the relationship in Equation 5.7 between the binomial and negative
binomial distributions, recast the solution to the Problem of Points in terms
of the binomial distribution. Give the exact solution in terms of a binomial
probability.

5.27 Aidan and Bethany are playing a game worth $100. They take turns flipping
a penny. The first person to get 10 heads will win. But they just realized that
they have to be in class right away and are forced to stop the game. Aidan had
four heads and Bethany had seven heads. How should they divide the pot?

5.28 Banach’s matchbox problem. This famous problem was posed by mathe-
matician Hugo Steinhaus as an affectionate honor to fellow mathematician
Stefan Banach, who was a heavy pipe smoker. A smoker has two matchboxes,
one in each pocket. Each box has n matches in it. Whenever the smoker needs
a match, he reaches into a pocket at random and takes a match from the box.
Suppose he reaches into a pocket and finds that the matchbox is empty, find
the probability that the box in the other pocket has exactly k matches left.
(a) Let X be the number of matches in the right box when the left box is found

empty. Show that X has a negative binomial distribution with parameters
n + 1 and 1/2.

(b) Show that the desired probability is 2 × P(X = 2n + 1 − k).
(c) Work out the problem in detail for the case n = 1.

5.29 Let R ∼ Geom(p). Conditional on R = r, suppose X has a negative binomial
distribution with parameters r and p. Show that the marginal distribution of X
is geometric. What is the parameter?
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Hypergeometric Distribution

5.30 There are 500 deer in a wildlife preserve. A sample of 50 deer are caught and
tagged and returned to the population. Suppose that 20 deer are caught later
and examined to see if they are tagged.

(a) Find the mean and standard deviation of the number of tagged deer in the
sample.

(b) Find the probability that the sample contains at least three tagged deer.

5.31 The Lady Tasting Tea. This is one of the most famous experiments in the
founding history of statistics. In his 1935 book The Design of Experiments
[1935], Sir Ronald A. Fisher writes,

A lady declares that by tasting a cup of tea made with milk she can discriminate whether
the milk or the tea infusion was first added to the cup. We will consider the problem
of designing an experiment by means of which this assertion can be tested . . . Our
experiment consists in mixing eight cups of tea, four in one way and four in the other,
and presenting them to the subject for judgment in a random order. . . . Her task is to
divide the 8 cups into two sets of 4, agreeing, if possible, with the treatments received.

Consider such an experiment. Four cups are poured milk first and four cups
are poured tea first and presented to a friend for tasting. Let X be the number
of milk-first cups that your friend correctly identifies as milk-first.

(a) Identify the distribution of X.

(b) Find P(X = k) for k = 0, 1, 2, 3, 4.

(c) If in reality, your friend had no ability to discriminate and actually
guessed, what is the probability they would correctly identify all four
cups correctly?

5.32 In a town of 20,000, there are 12,000 voters, of whom 5000 are registered
democrats and 6000 are registered republicans. An exit poll is taken of 200
voters. Assume all registered voters actually voted. Use R to find:

(a) The mean and standard deviation of the number of democrats in the sam-
ple.

(b) The probability that more than half the sample are republicans.

5.33 In the card game bridge, four players are dealt 13 cards each from a standard
deck. Find the following probabilities for a bridge hand of 13 cards.

(a) The probability of being dealt exactly two red cards.

(b) The probability of being dealt four spades, four clubs, three hearts, and
two diamonds.
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5.34 Candice has 8 marigolds and 15 impatiens plants available to plant in her gar-
den. In one area of the garden, she has room for six plants. She has decided
to plant randomly this year. Let X be the number of marigolds planted in the
area with six plants. Find the following:

(a) P(X = 3).
(b) P(X ≤ 2).
(c) E(X).

5.35 Consider the hypergeometric distribution with parameters r, n, and N. Suppose
r depends on N in such a way that r∕N → p as N → ∞, where 0 < p < 1. Show
that the mean and variance of the hypergeometric distribution converges to the
mean and variance, respectively, of a binomial distribution with parameters n
and p, as N → ∞.

Multinomial Distribution

5.36 A Halloween bag contains three red, four green, and five blue candies. Tom
reaches in the bag and takes out three candies. Let R, G, and B denote the
number of red, green, and blue candies, respectively, that Tom got.

(a) Is the distribution of (R,G,B) multinomial? Explain.

(b) What is the probability that Tom gets one of each color?

5.37 In a city of 100,000 voters, 40% are Democrat, 30% Republican, 20% Green,
and 10% Undecided. A sample of 1000 people is selected.

(a) What is the expectation and variance for the number of Greens in the sam-
ple?

(b) What is the expectation and variance for the number of Greens and Unde-
cideds in the sample?

5.38 A random experiment takes r possible values, with respective probabilities
p1, . . . , pr. Suppose the experiment is repeated N times, where N has a Pois-
son distribution with parameter 𝜆. For k = 1, . . . , r, let Nk be the number of
occurrences of outcome k. In other words, if N = n, then (N1, . . . ,Nr) has a
multinomial distribution.
Show that N1, . . . ,Nr form a sequence of independent Poisson random vari-
ables and for each k = 1, . . . , r, Nk ∼ Pois(𝜆pk).

5.39 Suppose a gene allele takes two forms A and a, with P(A) = 0.20 = 1 − P(a).
Assume a population is in Hardy–Weinberg equilibrium.

(a) Find the probability that in a sample of eight individuals, there is one AA,
two Aa’s, and five aa’s.

(b) Find the probability that there are at least seven aa’s.
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5.40 In 10 rolls of a fair die, let X be the number of fives rolled, let Y be the number
of even numbers rolled, and let Z be the number of odd numbers rolled.

(a) Find Cov(X,Y).
(b) Find Cov(X,Z).

5.41 Prove the identity

4n =
∑

a1+···a4=n

n!
a1!a2!a3!a4!

,

where the sum is over all nonnegative integers that sum to 4.

Benford’s Law

5.42 Find the expectation and variance of the Benford’s law distribution.

5.43 Find a real-life dataset to test whether Benford’s law applies. Report your find-
ings.

5.44 Find a real-life journal article that uses Benford’s law. How was the law used?
What were the findings? Cite your article.

5.45 Investigate whether there are similar laws for second digits. What do you find?
Cite your sources.

Other
For the next four problems 5.46–5.49, identify a random variable and describe its
distribution before doing any computations. (For instance, for Problem 5.46, start
your solution with “Let X be the number of days when there is no homework. Then
X has a binomial distribution with n = 42 and p = . . . .”)

5.46 A professor starts each class by picking a number from a hat that contains the
numbers 1–30. If a prime number is chosen, there is no homework that day.
There are 42 class periods in the semester. How many days can the students
expect to have no homework?

5.47 Suppose eight cards are drawn from a standard deck with replacement. What
is the probability of obtaining two cards from each suit?

5.48 Among 30 raffle tickets six are winners. Jenna buys 10 tickets. Find the prob-
ability that she got three winners.

5.49 A teacher writes an exam with 20 problems. There is a 5% chance that any
problem has a mistake. The teacher tells the class that if the exam has three or
more problems with mistakes he will give everyone an A. The teacher repeats
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this in 10 different classes. Find the probability that the teacher gave out all
As at least once. Hint: How many random variables are involved here?

Simulation and R

5.50 Conduct a study to determine how well the binomial distribution approximates
the hypergeometric distribution. Consider a bag with n balls, 25% of which
are red. A sample of size (0.10)n is taken. Let X be the number of red balls in
the sample. Find P(X ≤ (0.02)n) for increasing values of n when sampling is
(i) with replacement and (ii) without replacement. Use R.

5.51 Write a function coupon(n) for simulating the coupon collector’s problem.
That is, let X be the number of draws required to obtain all n items when sam-
pling with replacement. Use your function to simulate the mean and standard
deviation of X for n = 10 and n = 52.

5.52 Let p = (p1, . . . , pn) be a list of probabilities with p1 + · · · + pn = 1. Write a
function coupon(n, p) which generalizes the function above, and sim-
ulates the coupon collector’s problem for unequal probabilities, where the
probability of choosing item i is pi. For n = 10, let p be a list of binomial
probabilities with parameters 10 and 1/2. Use your function to simulate the
mean and standard deviation of X, the number of draws required to obtain all
n items when sampling with replacement.

5.53 Read about the World Series in Example 5.10. Suppose the World Series is
played between two teams A and B such that for any matchup between A
and B, the probability that A wins is 0 < p < 1. For p = 0.25 and p = 0.60,
simulate the expected length and standard deviation of the length of the series.

Chapter Review

Chapter review exercises are available through the text website. The URL is
www.wiley.com/go/wagaman/probability2e.



�

� �

�

6
CONTINUOUS PROBABILITY

The theory of probabilities is at bottom nothing but common sense reduced to calculus;
it enables us to appreciate with exactness that which accurate minds feel with a sort of
instinct for which ofttimes they are unable to account.

—Laplace

Learning Outcomes

1. Define the terms: continuous RV, probability density function, and cumulative
density function.

2. Compute expectation and variance for continuous RVs.

3. Apply uniform and exponential distributions to appropriate problems.

4. Solve problems involving joint and marginal distributions in the continuous
setting.

5. Extend independence, covariance, and correlation concepts to the continuous
setting.

6. (C) Work with uniform and exponential distributions in R to find probabilities
and simulate problems.

Introduction. Picking a real number between 0 and 1 is an example of a random
experiment where the sample space is a continuum of values. Such sets have no gaps
between elements; they are not discrete. The elements are uncountable and cannot
be listed. We call such sample spaces continuous. The most common continuous
sample spaces in one dimension are intervals such as (a, b), (−∞, c], and (−∞,∞).

Probability: With Applications and R, Second Edition. Amy S. Wagaman and Robert P. Dobrow.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/wagaman/probability2e
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In two dimensions, regions in the Cartesian plane are often the sample spaces.
Consider the following example.

An archer shoots an arrow at a target. The target C is a circle of radius 1. The
bullseye B is a smaller circle in the center of the target of radius 1∕4. What is the
probability P(B) of hitting the bullseye?

Our probability model will be uniform on the target—all points are equally likely.
But how to make sense of that?

We start with some intuitive discussion because this example can be solved with-
out using multivariate calculus, if thought through. The technical details about using
double integrals will come later for examples where this is not the case.

If this were a discrete finite problem, the solution would be to count the number
of points in the bullseye and divide by the number of points in the target. But the
sets are uncountable. The way to “count” points in continuous sets is by integration.
As all points on the target are equally likely we will integrate in such a way so that
no point gets more “weight” than any other—all points are treated equal. That is,
we integrate a constant c over the bullseye region. This leads to

P(B) =
∫∫
B

c dx dy = c[Area (B)] = c𝜋
16

. (6.1)

What is c? As this is a probability model, the points in the sample space should “add
up” or integrate to 1. The sample space is C, the target. This gives

1 = P(C) =
∫∫
C

c dx dy = c[Area (C)] = c𝜋

and thus c = 1∕𝜋. Plugging in c to Equation 6.1 gives

P(B) = 1
Area (C) ∫∫

B

dx dy = 1
16

,

the proportion of the total area of the target taken up by the bullseye.
This gives the beginnings of a continuous uniform probability model. If Ω is a

continuous set with all points equally likely, then for subsets S ⊆ Ω,

P(S) = 1
Area (Ω) ∫∫

S

dx dy = Area (S)
Area (Ω)

.

In one dimension, the double integral becomes a single integral and area becomes
length. In three dimensions, we have a triple integral and volume.

The following examples are all meant to be approached intuitively (no calculus
required!).
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□■ Example 6.1

• A real number is picked uniformly at random from the interval (−5, 2). The
probability the number is positive is

Length (0, 2)

Length (−5, 2)
= 2

7
.

• A sphere of radius 1 is inscribed in a cube with side length 2. A point in the
cube is picked uniformly at random. The probability that the point is contained
in the sphere is

Volume (sphere)

Volume (cube)
=

4𝜋∕3

8
= 𝜋

6
.

• A student arrives to class at a uniformly random time between 8:45 and 9:05
a.m. Class starts at 9:00 a.m. The probability that the student arrives on time is

15 minutes
20 minutes

= 3
4
. ◼

All of these examples can be cast in terms of random variables. A variable X
might be a point on a target or a time in a continuous interval. But to work with
random variables in the continuous world will require some mathematical tools,
including integrals and integration techniques such as integration by parts.

6.1 PROBABILITY DENSITY FUNCTION

A continuous random variable X is a random variable that takes values in a continu-
ous set. If S is a subset of the real numbers, then {X ∈ S} is the event that X takes val-
ues in S. For instance, {X ∈ (a, b)} = {a < X < b}, and {X ∈ (−∞, c]} = {X ≤ c}.

In the discrete setting, to compute P(X ∈ S), we add up values of the probability
mass function (pmf). That is, P(X ∈ S) =

∑
x∈SP(X = x).

If X, however, is a continuous random variable, to compute P(X ∈ S)we integrate
the probability density function (pdf) over S. The pdf plays the role of the pmf. It
is the function used to compute probabilities. Observe the similarities between the
pdf for continuous random variables and the pmf.

PROBABILITY DENSITY FUNCTION

Let X be a continuous random variable. A function f is a probability density
function of X if
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1. f (x) ≥ 0, for all −∞ < x < ∞.

2. ∫
∞
−∞ f (x) dx = 1.

3. For S ⊆ ℜ,

P(X ∈ S) =
∫S

f (x) dx. (6.2)

Note: And 0, Otherwise.

When providing pdfs (and similarly with pmfs), we often describe the range (or
region) where the pdf takes positive value. Recall that the pdf must be nonneg-
ative. Thus, if a range of values is given where the pdf is positive, it is implied
that the pdf takes the value of 0 for any other value of x. Fully specifying a pdf
includes stating this explicitly, which often means a statement that the pdf is
“0, otherwise.” In the many examples to come, you will see a mix of the pdf
being fully specified and not. Just remember that it is implied that the pdf is 0
outside the described range, called its support.

When writing density functions we sometimes use subscripts, e.g., fX(x) = f (x),
to identify the associated random variable. The integral ∫S f (x) dx is taken over the
set of values in S. For instance, if S = (a, b), then

P(X ∈ S) = P(a < X < b) and
∫S

f (x) dx =
∫

b

a
f (x) dx.

If S = (−∞, c], then

P(X ∈ S) = P(X ≤ c) =
∫

c

−∞
f (x) dx.

Note that for any real number a,

P(X = a) = P(X ∈ {a}) =
∫

a

a
f (x) dx = 0.

That is, for a continuous random variable, the probability of any particular number
occurring is 0. Nonzero probabilities are assigned to intervals, not to individual or
discrete outcomes.

As [a, b) = (a, b) ∪ {a} and P(X = a) = 0, it follows that

P(X ∈ [a, b)) = P(a ≤ X < b) = P(a < X < b).
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Similarly,

P(a < X < b) = P(a ≤ X < b) = P(a < X ≤ b) = P(a ≤ X ≤ b).

□■ Example 6.2 A random variable X has density function f (x) = 3x2∕16, for −2 <

x < 2, and 0, otherwise. Find P(X > 1).
We have

P(X > 1) =
∫

2

1
f (x) dx =

∫

2

1

3x2

16
dx = 1

16
(x3)|||21 = 7

16
.

The density function is shown in Figure 6.1, with the shaded area denoting
P(X > 1). ◼

□■ Example 6.3 A random variable X has density function of the form f (x) = ce−|x|,
for all x. (i) Find c. (ii) Find P(0 < X < 1).

(i) To find c, we use the fact that the total area under the curve integrates to 1.
Solve

1 =
∫

∞

−∞
ce−|x| dx =

∫

0

−∞
cex dx +

∫

∞

0
ce−x dx

= 2c
∫

∞

0
e−x dx = 2c(−e−x)|||∞0 = 2c,

giving c = 1∕2.

(ii)

P(0 < X < 1) =
∫

1

0

e−|x|
2

dx = 1
2
(−e−x)|||10 = 1 − e−1

2
= 0.316. ◼

−2 −1 0 1 2

0.0

0.2

0.4

0.6

0.8

FIGURE 6.1: Density with shaded area indicating P(X > 1).
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0 1 2 3 4
(a)

0 1 2 3 4
(b)

0 1 2 3 4
(c)

FIGURE 6.2: Three density shapes.

Pdf and pmf—similarities and differences. It is important to understand the
similarities and differences between probability density and mass functions. Both
give measures of how likely or “probable” a particular value is. The graph of a
density function is comparable to a “smooth” probability histogram for a pmf.

See the graphs of the three density functions in Figure 6.2. The y-axis in each is
the density value. In (a), the density models a random variable which takes values
between 2 and 4, with values near 4 most likely and those near two least likely.
In (b), values between 0 and 4 are equally likely. In (c), outcomes near 2 are most
likely, with probability decreasing quickly for outcomes far from 2.

Unlike the pmf, however, the density f (x) is not the probability that X is equal
to x. That probability is always 0 for continuous variables. The value of f (x) is a
unitless measure of probability “mass” with the property that the total probability
mass, that is, the area under the density curve, is equal to 1.

For more insight into what f (x) “measures,” consider an interval (x − 𝜖∕2, x +
𝜖∕2) centered at x of length 𝜖, where 𝜖 is small. If f is continuous at x then the
probability that X falls in the interval is

P
(

x − 𝜖

2
< X < x + 𝜖

2

)
=
∫

x+𝜖∕2

x−𝜖∕2
f (t) dt ≈ f (x)𝜖,

where the integral is approximated by the area of the rectangle of height f (x) and
width 𝜖. This gives

f (x) ≈ 1
𝜖

P
(

x − 𝜖

2
< X < x + 𝜖

2

)
. (6.3)

In physics, “density” is a measure of mass per unit volume, area, or length. In prob-
ability, Equation 6.3 shows that the density function is a measure of “probability
mass” per unit length.

A function f is said to be proportional to a function g if the ratio of the two
functions is constant, that is, f (x)∕g(x) = c for some constant c. The constant c is
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called the proportionality constant. We write f (x) ∝ g(x) to signify this relationship.
Probability density functions are often specified up to a proportionality constant.

□■ Example 6.4 Suppose the random time T of a radioactive emission is propor-
tional to a decaying exponential function of the form e−𝜆t for t > 0, where 𝜆 > 0 is
a constant. Find the pdf of T .

Write f (t) = ce−𝜆t, for t > 0. Solving for the proportionality constant c gives

1 =
∫

∞

0
ce−𝜆t dt = c

𝜆
(−e−𝜆t)|||∞0 = c

𝜆
.

Thus, c = 𝜆 and f (t) = 𝜆e−𝜆t, for t > 0, and 0, otherwise. ◼

□■ Example 6.5 A random variable X has density function proportional to x + 1 on
the interval (2, 4). Find P(2 < X < 3).

Write f (x) = c(x + 1). To find c set

1 =
∫

4

2
c(x + 1) dx = c

(
x2

2
+ x

)|||||
4

2

= 8c,

giving c = 1∕8. Then,

P(2 < X < 3) =
∫

3

2

1
8
(x + 1) dx = 1

8

(
x2

2
+ x

)|||||
3

2

= 1
8

(7
2

)
= 7

16
. ◼

Problem-solving strategy—reminder. In tackling this problem, note that there
are two key steps. First, you must find the proportionality constant. Then you can
find the specified probability. When approaching any problem, it can help to break it
down into key steps. These can include identifying and defining a random variable,
figuring out which equation or formula you need, and what components in that for-
mula you need to compute. If you read over any example in the text, be sure you
understand why each step is needed, as this can help you figure out strategies for
tackling similar problems on your own.

6.2 CUMULATIVE DISTRIBUTION FUNCTION

One way to connect and unify the treatment of discrete and continuous random
variables is through the cumulative distribution function (cdf) which is defined for
all random variables.
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CUMULATIVE DISTRIBUTION FUNCTION

Let X be a random variable. The cdf of X is the function

F(x) = P(X ≤ x),

defined for all real numbers x.

The cdf plays an important role for continuous random variables in part because
of its relationship to the density function. For a continuous random variable X

F(x) = P(X ≤ x) =
∫

x

−∞
f (t) dt.

If F is differentiable at x, then taking derivatives on both sides and invoking the
fundamental theorem of calculus gives

F′(x) = f (x).

The pdf is the derivative of the cdf. Given a density for X we can, in princi-
ple, obtain the cdf, and vice versa. Thus either function can be used to specify the
probability distribution of X.

If two random variables have the same density function, then they have the same
probability distribution. Similarly, if they have the same cdf, they have the same
distribution.

If we know the cdf of a random variable, we can compute probabilities on inter-
vals. For a < b, observe that (−∞, b] = (∞, a] ∪ (a, b]. This gives

P(a < X ≤ b) = P(X ∈ (a, b])

= P(X ∈ (−∞, b]) − P(X ∈ (−∞, a])

= P(X ≤ b) − P(X ≤ a)

= F(b) − F(a).

For continuous variables,

F(b) − F(a) = P(a < X ≤ b) = P(a < X < b)

= P(a ≤ X < b) = P(a ≤ X ≤ b).

You have already seen cdfs in the context of discrete random variables when
working in R. Functions such as pbinom and ppois evaluated the cdf for their
respective distributions.
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□■ Example 6.6 The density for a random variable X is

f (x) = 2xe−x2
, for x > 0.

Find the cdf of X and use it to compute P(1 < X < 2).

For x > 0,

F(x) = P(X ≤ x) =
∫

x

0
2te−t2 dt =

∫

x2

0
e−u du = 1 − e−x2

,

where we use the u-substitution u = t2. For x ≤ 0, F(x) = 0.
We could find the probability P(1 < X < 2) by integrating the density function

over (1, 2). But because we have already found the cdf there is no need. Note that

P(1 < X < 2) = F(2) − F(1)

= (1 − e−4) − (1 − e−1) = e−1 − e−4 = 0.350. ◼

□■ Example 6.7 A random variable X has density function

f (x) =
⎧⎪⎨⎪⎩

2∕5, if 0 < x ≤ 1
2x∕5, if 1 ≤ x < 2
0, otherwise.

(i) Find the cdf of X. (ii) Find P(0.5 < X < 1.5).

(i) We need to take care as this density is defined differently on two intervals. If
0 < x < 1,

F(x) = P(X ≤ x) =
∫

x

0

2
5

dt = 2x
5
.

If 1 < x < 2,

F(x) = P(X ≤ x) =
∫

1

0

2
5

dt +
∫

x

1

2t
5

dt

= 2
5
+ x2 − 1

5
= x2 + 1

5
.

This gives

F(x) =
⎧⎪⎨⎪⎩

0, if x ≤ 0
2x∕5, if 0 < x ≤ 1
(x2 + 1)∕5, if 1 < x ≤ 2
1, if x > 2.
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FIGURE 6.3: Density function and cdf.

Observe that F(x) is continuous at all points x. See the graphs of f and F in
Figure 6.3.

(ii) The desired probability is

P(0.5 < X < 1.5) = F(1.5) − F(0.5) = (1.5)2 + 1
5

− 2(0.5)
5

= 0.45 ◼

Cumulative distribution functions for discrete random variables. Continu-
ous random variables have continuous cdfs. However, the cdf of a discrete random
variable has points of discontinuity at the discrete values of the variable, yielding a
step function.

For example, suppose X ∼ Bin(2, 1∕2). Then the pmf of X is

P(X = x) =
⎧⎪⎨⎪⎩

1∕4, if x = 0
1∕2, if x = 1
1∕4, if x = 2.

The cdf of X, graphed in Figure 6.4, is

F(x) = P(X ≤ x) =
⎧⎪⎨⎪⎩

0, if x < 0
1∕4, if 0 ≤ x < 1
3∕4, if 1 ≤ x < 2
1, if x ≥ 2,

with points of discontinuity at x = 0, 1, and 2. To fully specify the cdf (similar to
the pdf), do not forget the regions where the cdf is 0 and 1. Again, this is implied if
a range is given, but do not forget this implication.

In general, a cdf need not be continuous. However, it is always right-continuous.
The cdf is also an increasing function. That is, if a ≤ b, then F(a) ≤ F(b). This holds
because if a ≤ b, the event {X ≤ a} implies {X ≤ b} and thus P(X ≤ a) ≤ P(X ≤ b).
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1/4

3/4

1

0 1 2

FIGURE 6.4: Cumulative distribution function P(X ≤ x) for X ∼ Binom(2, 1∕2). The cdf
has points of discontinuity at x = 0, 1, 2.

The cdf is a probability and takes values between 0 and 1. It has the properties that
F(x) → 0, as x → −∞, and F(x) → 1, as x → +∞.

We summarize the four defining properties of a cdf.

CUMULATIVE DISTRIBUTION FUNCTION

A function F is a cdf, that is, there exists a random variable X whose cdf is F, if
it satisfies the following properties.

1. lim
x→−∞

F(x) = 0.

2. lim
x→+∞

F(x) = 1.

3. If a ≤ b, then F(a) ≤ F(b).
4. F is right-continuous. That is, for all real a,

lim
x→a+

F(x) = F(a).

6.3 EXPECTATION AND VARIANCE

Formulas for expectation and variance for continuous random variables follow as
expected from the discrete formulas: integrals replace sums and pdfs replace pmfs.

EXPECTATION AND VARIANCE FOR CONTINUOUS RANDOM
VARIABLES

For random variable X with density function f ,

E[X] =
∫

∞

−∞
x f (x) dx
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and

V[X] =
∫

∞

−∞
(x − E[X])2f (x) dx.

Note that these integrals must be absolutely convergent for the expectation and
variance to exist, respectively. If they are not absolutely convergent, these values do
not exist, and you will see an example where this is the case.

Properties of expectation and variance introduced in Chapter 4 for discrete ran-
dom variables transfer to continuous random variables. We remind the reader of the
most important of these.

PROPERTIES OF EXPECTATION AND VARIANCE

For constants a and b, and random variables X and Y ,

• E[aX + b] = aE[X] + b,

• E[X + Y] = E[X] + E[Y],
• V[X] = E[X2] − E[X]2, and

• V[aX + b] = a2V[X].

□■ Example 6.8 Random variable X has density proportional to x−4, for x > 1. Find
V[1 − 4X]. As you solve this problem, think carefully about the steps needed to
solve it.

First find the constant of proportionality. Solve

1 =
∫

∞

1

c
x4

dx = c
( 1
−3x3

)||||
∞

1
= c

3

giving c = 3. To find the variance, first find E[X] and E[X2]. We find

E[X] =
∫

∞

1
x
( 3

x4

)
dx =

∫

∞

1

3
x3

dx = 3
( 1
−2x2

)||||
∞

1
= 3

2
, and

E[X2] =
∫

∞

1
x2

( 3
x4

)
dx =

∫

∞

1

3
x2

dx = 3
(−1

x

)||||
∞

1
= 3.

Via the computational formula for variance, this gives

V[X] = E[X2] − (E[X])2 = 3 −
(3

2

)2
= 3

4
.
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Therefore,

V[1 − 4X] = (−4)2V[X] = 16V[X] = 16
(3

4

)
= 12. ◼

The expectation of a function of a random variable is given similarly as in the
discrete case.

EXPECTATION OF FUNCTION OF CONTINUOUS RANDOM
VARIABLE

If X has density function f , and g is a function, then

E[g(X)] =
∫

∞

−∞
g(x)f (x) dx.

□■ Example 6.9 Let X be a random variable with pdf given by f (x) = 3x2, 0 < x < 1,
and 0, otherwise. Suppose we want to find the moment-generating function of
X. Remember that the mgf is a special expectation, E(etX), which is a function of
X. Thus, we apply the last result to find the expectation as

mX(t) = E(etX) =
∫

1

0
etx3x2 dx.

The integration here may be solved by using integration by parts, and results in
finding the mgf of X to be

mX(t) =
3
t3
(et(t2 − 2t + 2) − 2). ◼

A common mistake made when computing the expectation of a function of a
random variable is that you forget to include g(x) in the integral. This will make the
integral evaluate to 1, as you are integrating the pdf over its range. Be sure you put
both the function of the random variable, g(x), and the pdf, f (x), in the integral.

Next we look at two common continuous distributions.

6.4 UNIFORM DISTRIBUTION

A uniform model on the interval (a, b) is described by a density function that is flat.
That is, f (x) is constant for all a < x < b, i.e., f (x) = c. As the density integrates to
1, to find that constant solve

1 =
∫

b

a
c dx = c(b − a),

giving c = 1∕(b − a), the reciprocal of the length of the interval.
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UNIFORM DISTRIBUTION

A random variable X is uniformly distributed on (a, b) if the density function
of X is

f (x) = 1
b − a

, for a < x < b,

and 0, otherwise. We write X ∼ Unif(a, b).

If X is uniformly distributed on (a, b), the cdf of X is

F(x) = P(X ≤ x) =
⎧⎪⎨⎪⎩

0, if x ≤ a
(x − a)∕(b − a), if a < x ≤ b
1, if x > b.

For the case when X is uniformly distributed on (0, 1), F(x) = x, for 0 < x < 1.
Probabilities in the uniform model reduce to length. That is, if X ∼ Unif(a, b)

and a < c < d < b, then

P(c < X < d) = F(d) − F(c) = d − a
b − a

− c − a
b − a

= d − c
b − a

=
Length (c, d)
Length (a, b)

.

□■ Example 6.10 Esme is taking a train from Minneapolis to Boston, a distance
of roughly 1400 miles. Her position is uniformly distributed between the two
cities. What is the probability that she is past Chicago, which is 400 miles from
Minneapolis?

Let X be Esme’s location. Then X ∼ Unif(0, 1400). The probability is

P(X > 400) = 1400 − 400
1400

= 5
7
= 0.7143. ◼

Expectation and variance. Let X ∼ Unif(a, b). Then

E[X] =
∫

b

a
x
( 1

b − a

)
dx =

( 1
b − a

) x2

2

||||
b

a
= b + a

2
,

the midpoint of the interval (a, b). Also, using the computational formula for
variance,

E[X2] =
∫

b

a
x2

( 1
b − a

)
dx =

( 1
b − a

) x3

3

||||
b

a
= b2 + ab + a2

3
,
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which yields

V[X] = E[X2] − E[X]2 = b2 + ab + a2

3
−
(b + a

2

)2
= (b − a)2

12
.

It is worthwhile to remember these results as they occur frequently. The mean of
a uniform distribution is the midpoint of the interval. The variance is one-twelfth
the square of its length. These properties are summarized for common continuous
distributions in Appendix B.

R: UNIFORM DISTRIBUTION

The R commands for the continuous uniform distribution on (a, b) are

> dunif(x, a, b) # f (x) ≠ P(X = x)
> punif(x, a, b) # P(X ≤ x)
> runif(n, a, b) # Simulates n random variables.

Default parameters are a = 0 and b = 1. To generate a uniform variable on
(0, 1), type

> runif(1)
[1] 0.973387

□■ Example 6.11 Commercial washing machines use roughly 2.5–3.5 gallons of
water per load of laundry. Suppose X, the amount of water for one load used, is
uniform over that range. Carter finds a broken washer is using three times as much
water as expected. What is the expectation and standard deviation of how much
water the broken washer is using?

Let Y be the amount of water used by the broken washer. Then Y = 3X, and
X ∼ Unif(2.5, 3.5). Based on the results above, E(X) = 3, and V(X) = 1∕12. Thus,
we find that the expectation of Y is E(Y) = E(3X) = 3E(X) = 9 gallons. For the
standard deviation, we find the variance of Y first as V(Y) = V(3X) = 9V(X) = 3∕4.
The standard deviation of Y is therefore the square root of 3∕4, or roughly 0.866
gallons. ◼

□■ Example 6.12 A balloon has radius uniformly distributed on (0, 2). Find the
expectation and standard deviation of the volume of the balloon.

Let V be the volume. Then V = (4𝜋∕3)R3, where R ∼ Unif(0, 2). This gives
f (r) = 1∕2, 0 < r < 2, and 0, otherwise. The expected volume is

E[V] = E
[4𝜋

3
R3

]
= 4𝜋

3
E[R3] = 4𝜋

3 ∫

2

0
r3
(1

2

)
dr
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= 2𝜋
3

(
r4

4

)|||||
2

0

= 8𝜋
3

= 8.378.

We find E[V2] to use the computational formula for variance as

E[V2] = E

[(4𝜋
3

R3
)2

]
= 16𝜋2

9
E[R6]

= 16𝜋2

9 ∫

2

0

r6

2
dr = 16𝜋2

9

(128
14

)
= 1024𝜋2

63
.

This gives

Var[V] = E[V2] − (E[V])2 = 1024𝜋2

63
−
(8𝜋

3

)2
= 64𝜋2

7
,

with standard deviation SD[V] = 8𝜋∕
√

7 ≈ 9.50. ◼

R: SIMULATING BALLOON VOLUME

Simulating the balloon volume is easy for R.

> volume <-(4/3)*pi*runif(100000, 0, 2)^3
> mean(volume)
[1] 8.368416
> sd(volume)
[1] 9.511729

6.5 EXPONENTIAL DISTRIBUTION

What is the size of a raindrop? When will your next text message arrive? How long
does a bee spend gathering nectar at a flower? The applications of the exponential
distribution are vast. The distribution is one of the most important in probability
both for its practical and theoretical use. It is often used to model lifetimes or times
between events.

EXPONENTIAL DISTRIBUTION

A random variable X has an exponential distribution with parameter 𝜆 > 0 if its
density function has the form

f (x) = 𝜆e−𝜆x
, for x > 0,

and 0, otherwise. We write X ∼ Exp(𝜆).
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The cdf of the exponential distribution is

F(x) =
∫

x

0
𝜆e−𝜆t dt = 𝜆

(−1
𝜆

e−𝜆t
)||||

x

0
= 1 − e−𝜆x

,

for x > 0, and 0, otherwise. The “tail probability” formula

P(X > x) = 1 − F(x) = e−𝜆x
, for x > 0,

is commonly used. We leave it to the exercises to show that

E[X] = 1
𝜆

and V[X] = 1
𝜆2

.

For the exponential distribution, the mean is equal to the standard deviation.

□■ Example 6.13 A school’s help desk receives calls throughout the day. The time
T (in minutes) between calls is modeled with an exponential distribution with
mean 4.5. A call just arrived. What is the probability no call will be received in the
next 5 minutes?

The parameter of the exponential distribution is 𝜆 = 1∕4.5. If no call is received
in the next 5 minutes, then the time of the next call is greater than five. The desired
probability is

P(T > 5) = e−5∕4.5 = 0.329. ◼

R: EXPONENTIAL DISTRIBUTION

The R commands for the exponential distribution are

> dexp(x,lambda) # Computes density value
> pexp(x,lambda) # Computes P(X <= x)
> rexp(n,lambda) # Generates n random numbers

Alternative parameterization. When working with the exponential distribu-
tion, be sure to check the form of the pdf. An alternative parameterization exists
with 𝛽 = 1∕𝜆. This parameterization is sometimes preferred for computational
problems.

6.5.1 Memorylessness

An important property of the exponential distribution is memorylessness. You were
introduced to this property in the discrete setting for the geometric distribution.
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The exponential distribution is the only continuous distribution that is memoryless.
Here is the general property.

MEMORYLESSNESS FOR EXPONENTIAL DISTRIBUTION

Let X ∼ Exp(𝜆). For 0 < s < t,

P(X > s + t|X > s) = P(X > s + t)
P(X > s)

= e−𝜆(s+t)

e−𝜆s
= e−𝜆t = P(X > t).

To illustrate in the continuous setting, suppose Adrian and Zoe are both waiting
for a bus. Buses arrive about every 30 minutes according to an exponential distri-
bution. Adrian gets to the bus stop at time t = 0. The time until the next bus arrives
has an exponential distribution with 𝜆 = 1∕30.

Zoe arrives at the bus stop 10 minutes later, at time t = 10. The memorylessness
of the exponential distribution means that the time that Zoe waits for the bus will
also have an exponential distribution with 𝜆 = 1∕30. They will both wait about the
same amount of time.

Memorylessness means that if the bus does not arrive in the first 10 minutes
then the probability that it will arrive after time t = 10 (for Zoe) is the same as the
probability that a bus arrives after time t (for Adrian). After time t = 10, the next
bus “does not remember” what happened in the first 10 minutes.

This may seem amazing, even paradoxical. Run the script file Memory.R to
convince yourself it is true. See Figure 6.5 for the simulated distributions of Adrian’s
and Zoe’s waiting times.

Adrian’s waiting times
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D
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Zoe’s waiting times

Zoe

D
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FIGURE 6.5: Zoe arrives at the bus station 10 minutes after Adrian. But the distribution of
their waiting times is the same.
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As long as the bus does not come in the first 10 minutes, Zoe waits more than
t minutes for the bus if and only if Adrian waits more than t + 10 minutes. Letting
A and Z denote Adrian and Zoe’s waiting times, respectively, this gives,

P(Z > t) = P(A > t + 10|A > 10) = P(A > t + 10)
P(A > 10)

= e−(t+10)∕30

e−10∕30
= e−t∕30 = P(A > t).

R: BUS WAITING TIME

# Memory.R
# Adrian arrives at time t=0
# Zoe arrives at time t=10

> n <- 10000
> mu <- 30
> bus <- rexp(n, 1/mu)
> Adrian <- bus
> Zoe <- bus[bus > 10]-10
> mean(Adrian)
[1] 30.23546
> mean(Zoe)
[1] 29.77742
> par(mfrow=c(1,2))
> hist(Adrian, prob = T)
> hist(Zoe, prob = T); par(mfrow=c(1,1))

Many random processes that evolve in time and/or space exhibit a lack of mem-
ory in the sense described here, which is key to the central role of the exponential
distribution in applications. Novel uses of the exponential distribution include:

• The diameter of a raindrop plays a fundamental role in meteorology, and can
be an important variable in predicting rain intensity in extreme weather events.
Marshall and Palmer [1948] proposed an exponential distribution for raindrop
size. The parameter 𝜆 is a function of rainfall intensity (see Example 7.14).The
empirically derived model has held up for many years and has found wide
application in hydrology.

• Dorsch et al. [2008] use exponential distributions to model patterns in ocean
storms off the southern coast of Australia as a way to study changes in ocean
“storminess” as a result of global climate change. They fit storm duration and
time between storms to exponential distributions with means 21.1 hours and
202.0 hours, respectively.

• The “bathtub curve” is used in reliability engineering to represent the lifetime
of a product. The curve models the failure rate, which is the frequency with
which a product or component fails, often expressed as failures per time unit.
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FIGURE 6.6: Bathtub curves are used in reliability engineering to model failure rates of a
product or component.

See Figure 6.6. In the middle of the curve, the failure rate is constant, and the
exponential distribution often serves as a good model for the time until failure.

Exponential random variables often arise in applications as a sequence of suc-
cessive times between arrivals. These times might represent arrivals of phone calls,
buses, accidents, or component failures.

Let X1,X2, . . . be an independent sequence of Exp(𝜆) random variables where
Xk is the time between the (k − 1)st and kth arrival. As the common expectation of
the Xk’s is 1∕𝜆 we expect arrival times to be about 1∕𝜆 time units apart, and there are
about 𝜆 arrivals per one unit of time. Thus, 𝜆 represents the rate of arrivals (number
of arrivals per unit time). For this reason, the parameter 𝜆 is often called the rate of
the exponential distribution.

□■ Example 6.14 The time it takes for each customer to be served at a local restau-
rant has an exponential distribution. Serving times are independent of each other.
Typically customers are served at the rate of 20 customers per hour. Arye is waiting
to be served. What is the mean and standard deviation of his serving time? Find the
probability that he will be served within 5 minutes.

Model Arye’s serving time S with an exponential distribution with 𝜆 = 20. Then
in hour units, E[S] = SD[S] = 1∕20, or 3 minutes. As the given units are hours, we
must convert the 5 minutes into hours. This means the desired probability is

P
(

S ≤
5

60

)
= FS

( 1
12

)
= 1 − e−20∕12 = 0.811.

In R, the solution is obtained by typing

> pexp(1/12,20)
[1] 0.8111244 ◼

Sequences of i.i.d. exponential random variables as described above form the
basis of an important class of random processes called the Poisson process, intro-
duced in Chapter 7.
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6.6 JOINT DISTRIBUTIONS

For two or more random variables, the joint density function or joint pdf plays the
role of the joint pmf for discrete variables. Single integrals become double integrals
for two variables and multiple integrals when working with even more. If you are not
familiar with double integrals, and want more practice after reading the examples
below, see Appendix D.

JOINT DENSITY FUNCTION

For continuous random variables X and Y defined on a common sample space,
the joint density function f (x, y) of X and Y has the following properties.

1. f (x, y) ≥ 0 for all real numbers x and y.

2. The total probability is still 1. That is,

∫

∞

−∞ ∫

∞

−∞
f (x, y) dx dy = 1.

3. For S ⊆ ℜ2,

P((X,Y) ∈ S) =
∫∫
S

f (x, y) dx dy. (6.4)

Typically in computations, the integral in Equation 6.4 will be an iterated integral
whose limits of integration are determined by S. As the joint density is a function
of two variables, its graph is a surface over a two-dimensional domain.

For continuous random variables X1, . . . ,Xn defined on a common sample space,
the joint density function f (x1, . . . , xn) is defined similarly.

□■ Example 6.15 Suppose the joint density of X and Y is

f (x, y) = cxy, for 1 < x < 4 and 0 < y < 1,

and 0, otherwise. Find c and compute P(2 < X < 3,Y > 1∕4).
First find c using property 2,

1 =
∫

1

0 ∫

4

1
cxy dx dy = c

∫

1

0
y

(
∫

4

1
x dx

)
dy

= c
∫

1

0
y
(15

2

)
dy = c

(15
2

)(1
2

)
= 15c

4
,
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FIGURE 6.7: Joint density f (x, y) = 4xy∕15, 1 < x < 4, 0 < y < 1.

giving c = 4∕15. Then,

P(2 < X < 3,Y > 1∕4) =
∫

1

1∕4 ∫

3

2

4xy

15
dx dy =

∫

1

1∕4

4y

15

(
x2

2

)|||||
3

2

dy

=
( 4

15

)(5
2

)
∫

1

1∕4
y dy =

( 4
15

)(5
2

)(15
32

)
= 5

16
.

The joint density function is graphed in Figure 6.7. The density is a surface over
the domain 1 < x < 4 and 0 < y < 1. ◼

JOINT CUMULATIVE DISTRIBUTION FUNCTION

If X and Y have joint density function f , the joint cumulative distribution function
of X and Y is

F(x, y) = P(X ≤ x,Y ≤ y) =
∫

x

−∞ ∫

y

−∞
f (s, t) dt ds

defined for all x and y. Differentiating with respect to both x and y gives

𝜕2

𝜕x 𝜕y
F(x, y) = f (x, y). (6.5)

□■ Example 6.16 Suppose X and Y have joint cdf for 2 < x < 4 and y > 0 given by

F(x, y) = (x − 2)
2

(1 − e−y∕2).

Find the joint pdf of X and Y .
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We need to take the partial derivatives of the joint cdf with respect to both x and y.
We start with the partial derivative with respect to x, as it is the easier of the two.

f (x, y) = 𝜕2

𝜕x 𝜕y
F(x, y) = 𝜕2

𝜕x 𝜕y
(x − 2)

2
(1 − e−y∕2)

= 𝜕

𝜕y
1
2
(1 − e−y∕2)

= 1
2

(1
2

e−y∕2
)
= 1

4
e−y∕2

.

This is correct for this example, because X was uniform on (2, 4), and Y was
exponentially distributed with 𝜆 = 2, with X independent of Y . We leave it to the
reader to check that the joint pdf is the product of the specified marginals.

For an additional example for practice with partial derivatives, see Example D.4
in Appendix D. ◼

Uniform model. Let S be a bounded region in the plane. By analogy with the
development of the one-dimensional uniform model, if (X,Y) is distributed uni-
formly on S, the joint density will be constant on S. That is, f (x, y) = c for all
(x, y) ∈ S. Solving

1 =
∫∫
S

f (x, y) dx dy =
∫∫
S

c dx dy = c[Area (S)]

gives c = 1∕Area (S) and the uniform model on S.

UNIFORM DISTRIBUTION IN TWO DIMENSIONS

Let S be a bounded region in the plane. Then random variables (X,Y) are uni-
formly distributed on S if the joint density function of X and Y is

f (x, y) = 1
Area (S)

, for (x, y) ∈ S,

and 0, otherwise. We write (X,Y) ∼ Unif(S).

□■ Example 6.17 Suppose X and Y have joint density f (x, y). (i) Find a general
expression for P(X < Y). (ii) Solve for the case when (X,Y) is uniformly distributed
on the circle centered at the origin of radius one.

(i) The region determined by the event {X < Y} is the set of all points in the plane
(x, y) such that x < y. Setting up the double integral gives

P(X < Y) =
∫∫

{(x,y)∶x<y}

f (x, y) dx dy =
∫

∞

−∞ ∫

y

−∞
f (x, y) dx dy.

(ii) For the special case when (X,Y) is uniformly distributed on the circle, first draw
the picture of the domain. See Figure 6.8. The joint density is f (x, y) = 1∕𝜋, if
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1−1
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−1

FIGURE 6.8: Shaded region defined by P(X < Y).

(x, y) is in the circle, and 0, otherwise. This gives

P(X < Y) =
∫

−1∕
√

2

−1 ∫

√
1−s2

−
√

1−s2

1
𝜋

dt ds +
∫

1∕
√

2

−1∕
√

2 ∫

√
1−s2

s

1
𝜋

dt ds.

Solving the integral requires trigonometric substitution. But a much easier
route is to recognize that because (X,Y) has a uniform distribution, the problem
reduces to finding areas. And then it is clear from the picture that the desired
probability is 1/2. ◼

Problems involving two or more continuous random variables will require mul-
tiple integrals. Setting these up correctly can be challenging. As an example, con-
sider the probability P(X < Y) from the last Example 6.17, but where (X,Y) has
joint density

f (x, y) =
3x2y

64
, for 0 < x < 2, 0 < y < 4.

The distribution here is not uniform so the problem cannot be reduced to finding
areas. The graph of the density function, as shown in Figure 6.9a, is a surface over
the rectangle [0, 2] × [0, 4].

The event {X < Y} determines the shaded region in the domain in Figure 6.9b.
For solving problems such as this, the most important step is to draw the picture
of the domain and identify the region corresponding to the desired probability. The
desired probability is the integral of the density f (x, y) over this shaded region.

In setting up the double integral be aware of all constraints on each variable. If,
say, x is chosen as the variable for the outer integral, then the limits of integration for
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FIGURE 6.9: (a) Joint density f (x, y) = 3x2y∕64. (b) Domain of joint density. Shaded region
shows event {X < Y}.

the outer integral will not depend on y. Otherwise, y will appear in the final answer,
which does not make sense, as the final value should be a probability.

To set up the double integral for P(X < Y), the limits for the outer integral are
0 < x < 2. For the inner integral, the constraints on y are 0 < y < 4 and y > x which
together give x < y < 4. Thus,

P(X < Y) =
∫

2

x=0 ∫

4

y=x

3x2y

64
dy dx.

Notice that we have explicitly written x and y in the limits of integration to help
keep track of which variable corresponds to which integral.

The multiple integral can also be set up with y on the outside integral and x on the
inside. If y is the first variable, then the limits for the outer integral are 0 < y < 4. For
the inner integral, the constraints on x are x < y and 0 < x < 2. This is equivalent
to 0 < x < min(y, 2). The limits of integration for x depend on y. You can see this
in the figure as the region of interest being composed of a triangle and a rectangle.
We need to break up the outer integral into two parts. For 0 < y < 2, where we are
in the triangular region, x ranges from 0 to y. For 2 < y < 4, we are in the rectangle
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and x ranges from 0 to 2. This gives

P(X < Y) =
∫

2

y=0 ∫

y

x=0

3x2y

64
dx dy +

∫

4

y=2 ∫

2

x=0

3x2y

64
dx dy.

In both cases, the final answer is P(X < Y) = 17∕20, but the computation was
much easier with only one double integral needed. Often, drawing the picture of
the domain and finding the desired region of integration will show that one setup
is easier than another. For more practice with this concept, particularly if you have
not had a multivariate calculus course, see Appendix D.

□■ Example 6.18 The joint density of X and Y is

f (x, y) = 1
x2y2

, x > 1, y > 1,

and 0, otherwise. Find P(X ≥ 2Y).
See Figure 6.10. The constraints on the variables are x > 1, y > 1, and x ≥ 2y.

Setting up the multiple integral with y as the outside variable gives

P(X ≥ 2Y) =
∫

∞

y=1 ∫

∞

x=2y

1
x2y2

dx dy =
∫

∞

y=1

1
y2

(−1
x

)||||
∞

2y
dy

=
∫

∞

y=1

1
y2

(
1
2y

)
dy =

(
−1
4y2

)|||||
∞

1

= 1
4
.

To set up the integral with x on the outside consider the constraints x > 1, x ≥ 2y,
and y > 1. As the minimum value of y is 1 and x ≥ 2y, we must have x ≥ 2 for the
outer integral. For the inside variable, we have y > 1 and y ≤ x∕2. That is, 1 < y ≤

x∕2. This gives

P(X ≥ 2Y) =
∫

∞

x=2 ∫

x∕2

y=1

1
x2y2

dy dx =
∫

∞

x=2

1
x2

(
−1
y

)|||||
x∕2

1

dx

=
∫

∞

x=2

1
x2

(
1 − 2

x

)
dx =

(−1
x

+ 1
x2

)||||
∞

2
= 1

2
− 1

4
= 1

4
. ◼

□■ Example 6.19 There are many applications in reliability theory of two-unit sys-
tems in which the lifetimes of the two units are described by a joint probability
distribution. See Harris [1968] for examples. Suppose such a system depends on
components A and B whose respective lifetimes X and Y are jointly distributed
with density function

f (x, y) = e−y
, for 0 < x < y < ∞.

Find the probability (i) that component B lasts at least three time units longer than
component A, and (ii) that both components last for at least two time units.
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FIGURE 6.10: (a) Joint density. (b) Shaded region shows event {X ≥ 2Y} in the part of the
domain displayed.

For the problem, before any constraints related to the probability desired are
examined, sketch the domain. You will note that the domain is a triangle in the
first quadrant of the Cartesian plane. Be sure you know which of the two possible
triangles you are in, to help set up bounds for the integrals. Then, for each desired
probability, consider what additional constraints are added.

(i) The desired probability is

P(Y > X + 3) =
∫

∞

x=0 ∫

∞

y=x+3
e−y dy dx

=
∫

∞

x=0
e−(x+3) dx = e−3 = 0.050.

(ii) The desired probability is

P(X > 2,Y > 2) =
∫

∞

y=2 ∫

y

x=2
e−y dx dy

=
∫

∞

y=2
(y − 2)e−y dy = e−2 = 0.135. ◼
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The joint density of X and Y captures all the “probabilistic information” about
X and Y . In principle, it can be used to find any probability which involves these
variables. From the joint density, the marginal densities are obtained by integrating
out the extra variable. (In the discrete case, we sum over the other variable.) Be
careful when bounds for one variable depend on the other, as this information must
be incorporated appropriately.

MARGINAL DISTRIBUTIONS FROM JOINT DENSITIES

fX(x) = ∫

∞

−∞
f (x, y) dy and fY (y) = ∫

∞

−∞
f (x, y) dx.

To see why these equations hold, consider

{X ≤ x} = {X ≤ x,−∞ < Y < ∞}.

Hence,

P(X ≤ x) = P(X ≤ x,−∞ < Y < ∞) =
∫

x

−∞

[
∫

∞

−∞
f (s, y) dy

]
ds.

Differentiating with respect to x, applying the fundamental theorem of calculus,
gives

fX(x) = ∫

∞

−∞
f (x, y) dy,

and similarly for fY (y).

□■ Example 6.20 Consider the joint density function from the last Example 6.19

f (x, y) = e−y
, for 0 < x < y < ∞,

and 0, otherwise. Find the marginal densities of X and Y .
The marginal density of X is

fX(x) = ∫

∞

−∞
f (x, y) dy =

∫

∞

x
e−y dy = e−x

, for x > 0,

and 0, otherwise. Note that once we integrate out the y variable, the domain of the
x variable is all positive real numbers. The dependence between x and y shows in
the limits of the integral. From the form of the density function we see that X has
an exponential distribution with parameter 𝜆 = 1.
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Similarly, the marginal density of Y is

fY (y) = ∫

y

0
e−y dx = ye−y

, for y > 0,

and 0, otherwise. ◼

Computing expectations of functions of two or more continuous random vari-
ables should offer no surprises as we use the continuous form of the “law of the
unconscious statistician.”

EXPECTATION OF FUNCTION OF JOINTLY DISTRIBUTED
RANDOM VARIABLES

If X and Y have joint density f , and g(x, y) is a function of two variables, then

E[g(X,Y)] =
∫

∞

−∞ ∫

∞

−∞
g(x, y)f (x, y) dx dy.

The expected product of random variables X and Y is thus

E[XY] =
∫

∞

−∞ ∫

∞

−∞
xy f (x, y) dx dy.

Be sure that you have both the desired function g(x, y) and the joint pdf f (x, y) in
the double integral before evaluating. A common mistake is to forget g(x, y), which
results in the integrals evaluating to 1.

□■ Example 6.21 Suppose (X,Y) is uniformly distributed on the circle of radius 1
centered at the origin. Find the expected distance D =

√
X2 + Y2 to the origin.

Let C denote the circle. Because the area of C is 𝜋, the joint density function of
X and Y is

f (x, y) = 1
𝜋
, for (x, y) ∈ C,

and 0, otherwise. This gives

E[D] = E
[√

X2 + Y2
]

=
∫

∞

−∞ ∫

∞

−∞

√
x2 + y2 f (x, y) dx dy =

∫∫
C

√
x2 + y2 1

𝜋
dx dy.

Changing to polar coordinates (r, 𝜃) gives

E[D] =
∫

2𝜋

0 ∫

1

0

√
r2
( 1
𝜋

)
r dr d𝜃 =

∫

2𝜋

0

1
3𝜋

d𝜃 = 2
3
. ◼
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6.7 INDEPENDENCE

As in the discrete case, if random variables X and Y are independent, then for all A
and B,

P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B).

In particular, for all x and y,

F(x, y) = P(X ≤ x,Y ≤ y) = P(X ≤ x)P(Y ≤ y) = FX(x)FY (y).

Take derivatives with respect to x and y on both sides of this equation. This gives
the following characterization of independence for continuous random variables in
terms of pdfs.

INDEPENDENCE AND DENSITY FUNCTIONS

Continuous random variables X and Y are independent if and only if their joint
density function is the product of their marginal densities. That is,

f (x, y) = fX(x)fY (y), for all x, y.

More generally, if X1, . . . ,Xn are jointly distributed with joint density function
f , then the random variables are mutually independent if and only if

f (x1, . . . , xn) = fX1
(x1) · · · fXn

(xn), for all x1, . . . , xn.

□■ Example 6.22 Caleb and Destiny are at the airport terminal buying tickets. Caleb
is in the regular ticket line where the waiting time C has an exponential distribution
with mean 10 minutes. Destiny is in the express line, where the waiting time D has
an exponential distribution with mean 5 minutes. Waiting times for the two lines
are independent. What is the probability that Caleb gets to the ticket counter before
Destiny?

The desired probability is P(C < D). By independence, the joint density of
C and D is

f (c, d) = fC(c) fD(d) =
1

10
e−c∕10 1

5
e−d∕5

, for c > 0, d > 0.

Then,

P(C < D) =
∫ ∫

{(c,d)∶c<d}

f (c, d) dc dd
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=
∫

∞

0 ∫

d

0

1
50

e−c∕10e−d∕5 dc dd

= 1
50 ∫

∞

0
e−d∕5 (−10e−c∕10)|||d0 dd

= 1
5 ∫

∞

0
e−d∕5(1 − e−d∕10) dd

= 1
5

(5
3

)
= 1

3
. ◼

□■ Example 6.23 Let X, Y , and Z be i.i.d. random variables with common marginal
density f (t) = 2t, for 0 < t < 1, and 0, otherwise. Find P(X < Y < Z).

Here we have three jointly distributed random variables. Results for joint distri-
butions of three or more random variables are natural extensions of the two vari-
able case. You might envision a triple integral to find the desired probability. We
also show an alternative solution that does not require any integration. To find the
desired probability, we first need the joint pdf. By independence, the joint density
of (X,Y ,Z) is,

f (x, y, z) = fX(x)fY (y)fZ(z) = (2x)(2y)(2z) = 8xyz,

for 0 < x, y, z < 1, and 0, otherwise.
To find P(X < Y < Z) integrate the joint density function over the three-

dimensional region S = {(x, y, z) ∶ x < y < z}.

P(X < Y < Z) =
∫∫∫

S

f (x, y, z) dx dy dz =
∫

1

0 ∫

z

0 ∫

y

0
8xyz dx dy dz

=
∫

1

0 ∫

z

0
8yz

(
y2

2

)
dy dz =

∫

1

0
4z

(
z4

4

)
dz = 1

6
.

An alternate solution appeals to symmetry. There are 3! = 6 ways to order X, Y ,
and Z. As the marginal densities are all the same, the probabilities for each ordered
relationship are the same. And thus

P(X < Y < Z) = P(X < Z < Y) = · · · = P(Z < Y < X) = 1
6
.

Note that in this last derivation we have not used the specific form of the density
function f . The result holds for any three continuous i.i.d. random variables.

By extension, if X1, . . . ,Xn are continuous i.i.d. random variables then for any
permutation (i1, . . . , in) of {1, . . . , n},

P(Xi1
< · · · < Xin

) = 1
n!
. ◼
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If X and Y are independent then their joint density function factors into a product
of two functions—one that depends on x and one that depends on y. Conversely,
suppose the joint density of X and Y has the form f (x, y) = g(x)h(y) for some func-
tions g and h. Then it follows that X and Y are independent with fX(x) ∝ g(x) and
fY (y) ∝ h(y). We leave the proof to the reader.

□■ Example 6.24 Are X and Y independent or dependent?

(i) The joint density of X and Y is

f (x, y) = 6e−(2x+3y)
, for x, y > 0.

The joint density can be written as f (x, y) = g(x)h(y), where g(x) = constant ×
e−2x, for x > 0; and h(y) = constant × e−3y, for y > 0. It follows that X and Y are
independent. Furthermore, X ∼ Exp(2) and Y ∼ Exp(3). This becomes clear if
we write g(x) = 2e−2x for x > 0, and h(y) = 3e−3y for y > 0.

(ii) Consider the joint density function

f (x, y) = 15e−(2x+3y)
, for 0 < x < y.

Superficially the joint density appears to have a similar form as the density
in (i). However, the constraints on the domain x < y show that X and Y are
not independent. The domain constraints are part of the function definition.
We cannot factor the joint density into a product of two functions which only
depend on x and y, respectively. ◼

6.7.1 Accept–Reject Method

Rectangles are “nice” sets to have as a domain because their areas are easy to com-
pute. If (X,Y) is uniformly distributed on the rectangle [a, b] × [c, d], then the joint
pdf of (X,Y) is

f (x, y) = 1
(b − a)(d − c)

, for a < x < b and c < y < d.

The density factors as
f (x, y) = fX(x)fY (y),

where fX is the uniform density on (a, b), and fY is the uniform density on (c, d).
This observation suggests how to simulate a uniformly random point in the rect-

angle: Generate a uniform number X in (a, b). Independently generate a uniform
number Y in (c, d). Then (X,Y) gives the desired uniform point on the rectangle.

In R, type

> c(runif(1,a,b),runif(1,c,d))

to generate (X,Y) ∼ Unif([a, b] × [c, d]).
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How can we generate a point uniformly distributed on some “complicated” set
S? The idea is intuitive. Assume S is bounded, and enclose the set in a rectangle.

1. Generate a uniformly random point in the rectangle.

2. If the point is contained in S accept it as the desired point.

3. If the point is not contained in S, reject it and generate another point and keep
doing so until a point is contained in S. When it does, accept that point.

We show that the accepted point is uniformly distributed in S. This method is
known as the accept–reject method.

Let R be a rectangle that encloses S. Let r be a point uniformly distributed in R.
And let T be the point obtained by the accept–reject method.

Proposition. The random point T generated by the accept–reject method is uni-
formly distributed on S.

Proof: To show that T ∼ Unif(S), we need to show that for all A ⊆ S,

P(T ∈ A) = Area (A)
Area (S)

.

Let A ⊆ S. If T ∈ A, then necessarily a point r was accepted. Furthermore, r ∈ A.
That is,

P(T ∈ A) = P(r ∈ A|r is accepted)

=
P(r ∈ A, r is accepted)

P(r is accepted)

= P(r ∈ A)
P(r is accepted)

=
Area (A)∕Area (R)
Area (S)∕Area (R)

= Area (A)
Area (S)

. ◻

□■ Example 6.25 See Figure 6.11. The shape in the top left is the region S between
the functions

f1(x) =
−20x2

9𝜋2
+ 6 and f2(x) = cos x + cos 2x + 2.

The region is contained in the rectangle [−5, 5] × [0, 6]. Points are generated uni-
formly on the rectangle with the commands

> x <- runif(1,-5,5)
> y <- runif(1,0,6)
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FIGURE 6.11: Accept–reject method for simulating points uniformly distributed in the
top-left set S. In the top-right, 500 points are generated uniformly on the rectangle. The 205
points inside S are accepted in the bottom left. In bottom right, the accept–reject method is
used with an initial 5000 points of which 2008 are accepted.

and accepted if they fall inside S. The accepted points are uniformly distributed on
S. See the script AcceptReject.R.

The accept–reject method for generating uniform points in planar regions extends
in a natural way to three (and higher) dimensions. ◼

□■ Example 6.26 Let (X,Y ,Z) be a point uniformly distributed on the sphere of
radius 1 centered at the origin. Estimate the mean and standard deviation for the
distance from the point to the origin.

Let D =
√

X2 + Y2 + Z2 be the distance from (X,Y ,Z) to the origin. We will
simulate D by evaluating the distance function for a uniformly random point in the
sphere.

Enclose the sphere in a cube of side length 2 centered at the origin. The command

> pt <- runif(3,-1,1)

generates a point uniformly distributed in the cube. A point (x, y, z) is contained in
the unit sphere if x2 + y2 + z2 < 1. The command

> if ((pt[1]^2 + pt[2]^2 + pt[3]^2) < 1) 1 else 0

checks whether pt lies in the sphere or not.
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FIGURE 6.12: One thousand points generated in the unit sphere using the accept–reject
method.

Here is the simulation (Distance.R). The points generated in the sphere are
shown in Figure 6.12. To estimate the mean distance to the origin simply compute
the distance to the origin for each of the simulated points and take their average.
Similarly for the standard deviation.

R: DISTANCE IN UNIT SPHERE—DISTANCE.R

# Distance in unit sphere
> n <- 10000
> # initialize n by 3 matrix
> mat <- matrix(rep(0,3*n),nrow=n)
> i <- 1
> while (i <= n) {

pt <- runif(3,-1,1)
if ((pt[1]^2 + pt[2]^2 + pt[3]^2) < 1) {

mat[i,] <- pt
i <- i+1 { {

> d <-sqrt(mat[,1]^2 + mat[,2]^2 + mat[,3]^2)
> mean(d)
[1] 0.7522634
> sd(d)
[1] 0.1923916

The exact theoretical values for the mean and standard deviation of distance are
E[D] = 3∕4 and SD[D] =

√
3∕80 ≈ 0.194. ◼
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6.8 COVARIANCE, CORRELATION

For jointly distributed continuous random variables, the covariance and correlation
are defined as for discrete random variables.

COVARIANCE

Let X and Y be jointly distributed continuous random variables with joint density
function f . Let 𝜇X = E[X] and 𝜇Y = E[Y]. The covariance of X and Y is

Cov(X,Y) = E[(X − 𝜇X)(Y − 𝜇Y )]

=
∫

∞

−∞ ∫

∞

−∞
(x − 𝜇X)(y − 𝜇Y )f (x, y) dx dy.

The correlation of X and Y is

Corr(X,Y) = Cov(X,Y)
SD[X]SD[Y]

.

For all jointly distributed random variables—continuous and discrete—we have
the computational formula for covariance: Cov(X,Y) = E[XY] − E[X]E[Y]. We
remind the reader that correlation is a standardized version of covariance.

□■ Example 6.27 A point (X,Y) is uniformly distributed on the triangle with vertices
(0, 0), (1, 0), and (1, 1). Find the covariance and correlation between X and Y .

The area of the triangle is 1/2 and is described by the constraints 0 < y < x < 1.
The joint density function is thus

f (x, y) = 2, for 0 < y < x < 1,

and 0, otherwise. Recall that to use the computational formula for covariance we
need to find E[XY], E[X], and E[Y]. We have

E[XY] =
∫

1

0 ∫

x

0
2xy dy dx =

∫

1

0
2x

(
x2

2

)
dx =

∫

1

0
x3 dx = 1

4
.

For the marginal density of X, integrate out the y variable, giving

fX(x) = ∫y
f (x, y) dy =

∫

x

0
2 dy = 2x, for 0 < x < 1.
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Thus,

E[X] =
∫

1

0
x(2x) dx = 2

3
.

For the Y variable, the marginal is

fY (y) = ∫

1

y
2 dx = 2(1 − y), for 0 < y < 1,

and

E[Y] =
∫

1

0
y 2(1 − y) dy = 1

3
.

This gives

Cov(X,Y) = E[XY] − E[X]E[Y] = 1
4
−
(2

3

)(1
3

)
= 1

36
.

For the correlation, we need the marginal standard deviations, which we get from
the variances. We find E[X2] first.

E[X2] =
∫

1

0
x2(2x) dx = 1

2
,

giving

V[X] = E[X2] − E[X]2 = 1
2
−
(2

3

)2
= 1

18
= 0.0278.

We leave it to the reader to verify that V[Y] = 1∕18, also. This gives

Corr(X,Y) = Cov(X,Y)
SD[X]SD[Y]

=
1∕36

1∕18
= 1

2
. ◼

R: SIMULATION OF COVARIANCE, CORRELATION

The accept–reject method is used to simulate uniform points in the triangle
in the script Triangle.R. The sample covariance and correlation of the simu-
lated points, computed with the R commands cov(x,y) and cor(x,y), give
Monte Carlo estimates of the theoretical covariance and correlation.

> xsim <- c()
> ysim <- c()
> x <- runif(10000)
> y <- runif(10000)
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> xsim <- x[y < x]
> ysim <- y[y < x]
> cov(xsim,ysim)
[1] 0.02789259
> cor(xsim,ysim)
[1] 0.4893518

6.9 SUMMARY

Continuous probability is introduced in this chapter. In the continuous setting, the
sample space is uncountable. Integrals replace sums and density functions replace
pmfs. Many concepts first introduced for discrete probability, such as expectation,
variance, joint and conditional distributions, extend naturally to the continuous
framework. The density function plays a similar role as that of the discrete pmf:
we integrate the density to compute probabilities. However, unlike the pmf, the
density is not a probability.

For all random variables X, discrete and continuous, there is a cdf F(x) =
P(X ≤ x). For continuous random variables, the density function is the derivative
of the cdf.

The continuous uniform and exponential distributions are introduced in this
chapter. The uniform distribution on an interval (a, b) has density function constant
on that interval. The exponential distribution is the only continuous distribution
that is memoryless.

For two or more jointly distributed random variables, there is a joint density
function. Probabilities which involve multiple random variables will require multi-
ple integrals. For independent random variables the joint density f (x, y) is a product
of the marginal densities fX(x)fY (y). Covariance and correlation extend naturally to
the continuous case.

• Continuous random variable: A random variable which takes values in a
continuous set.

• Probability density function: A function f is the density function of a con-
tinuous random variable if

1. f (x) ≥ 0 for all x.

2. ∫
∞
−∞ f (x) dx = 1.

3. For all S ⊆ ℜ, P(X ∈ S) = ∫S f (x) dx.

• Cumulative distribution function: The cdf of X is F(x) = P(X ≤ x), defined
for all real x.

• Pdf and cdf: F′(x) = f (x).
• Properties of cdf:
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1. lim
x→∞

F(x) = 1.

2. lim
x→−∞

F(x) = 0.

3. F(x) is right-continuous at all x.

4. F(x) is an increasing function of x.
• Expectation: E[X] = ∫

∞
−∞ xf (x) dx.

• Variance: V[X] = ∫
∞
−∞ (x − E[X])2f (x) dx.

• Law of unconscious statistician: If g is a function, then

E[g(X)] =
∫

∞

−∞
g(x)f (x) dx.

• Uniform distribution: A continuous random variable X is uniformly dis-
tributed on (a, b) if the density function of X is

f (x) = 1
b − a

, for a < x < b,

and 0, otherwise.

• Uniform setting: The uniform distribution arises as a model for equally likely
outcomes. Properties of the continuous uniform distribution include:
1. E[X] = (b + a)∕2.

2. V[X] = (b − a)2∕12.

3. F(x) = P(X ≤ x) = (x − a)∕(b − a), if a < x < b, 0, if x ≤ a, and 1, if
x ≥ b.

• Exponential distribution: The distribution of X is exponential with parameter
𝜆 > 0 if the density of X is f (x) = 𝜆e−𝜆x, for x > 0.

• Exponential setting: The exponential distribution is often used to model
arrival times—the time until some event occurs, such as phone calls, traffic
accidents, component failures, etc. Properties of the exponential distribution
include:
1. E[X] = 1∕𝜆.

2. V[X] = 1∕𝜆2.

3. F(x) = P(X ≤ x) = 1 − e−𝜆x.

4. The exponential distribution is the only continuous distribution which is
memoryless.

• Joint probability density function: For jointly continuous random variables
the joint density f (x, y) has similar properties as the univariate density func-
tion:
1. f (x, y) ≥ 0, for all x and y.

2. ∫
∞
−∞ ∫

∞
−∞ f (x, y) = 1.

3. For all S ⊆ ℜ2, P((X,Y) ∈ S) = ∫∫
S

f (x, y) dx dy.
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• Joint cumulative distribution function: F(x, y) = P(X ≤ x,Y ≤ y), defined
for all real x and y.

• Joint cdf and joint pdf: 𝜕2

𝜕x 𝜕y
F(x, y) = f (x, y).

• Expectation of function of two random variables: If g(x, y) is a function of
two variables, then E[g(X,Y)] = ∫

∞
−∞ ∫

∞
−∞ g(x, y)f (x, y) dx dy.

• Independence: If X and Y are jointly continuous and independent, with
marginal densities fX and fY , respectively, then the joint density of X and Y is
f (x, y) = fX(x)fY (y).

• Accept–reject method: Suppose S is a bounded set in the plane. The method
gives a way to simulate from the uniform distribution on S. Enclose S in a
rectangle R. Generate a point uniformly distributed in R. If the point is in S,
“accept”; if the point is not in S, “reject” and try again. The first accepted point
will be uniformly distributed on S.

• Covariance:

Cov(X,Y) = E[(X − E[X])(Y − E[Y])]

=
∫

∞

−∞ ∫

∞

−∞
(x − E[X])(y − E[Y])f (x, y) dx dy.

• Setting up multiple integrals: Many continuous problems involving two
random variables or functions of random variables will involve multiple inte-
grals. Make sure to define the limits of integration carefully. Several examples
in the book and Appendix D, such as P(X < Y) for different distributions of
X and Y , are good problems to practice on.

EXERCISES

Density, cdf, Expectation, Variance

6.1 A random variable X has density function

f (x) = cx, for 0 < x < 1.

(a) Find c.
(b) Find P(X < 0.5).
(c) Find E[X].
(d) Find the mgf of X, E(etX).

6.2 A random variable X has density function

f (x) = cxe−x∕2
, for 0 < x < ∞.
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(a) Find c.

(b) Find E[X].

6.3 A nonnegative continuous random variable X has cdf F(x). Find the following,
either by supplying a numeric answer or an expression in terms of F(x).
(a) F(−5).
(b) P(3 < X < 11).
(c) limit of F(x) as x goes to infinity.

(d) P(X > 12|X > 6).

6.4 Suppose that the cdf of X, time in months from diagnosis age until death for
a population of cancer patients, is F(x) = 1 − exp(−0.03x1.2), for x > 0.

(a) Find the probability of surviving at least 12 months.

(b) Find the pdf of X.

6.5 A random variable X has density function

f (x) = cex
, for − 2 < x < 2.

(a) Find c.

(b) Find P(X < −1).
(c) Find E[X].

6.6 A random variable X has density function proportional to x−5 for x > 1.

(a) Find the constant of proportionality.

(b) Find and graph the cdf of X.

(c) Use the cdf to find P(2 < X < 3).
(d) Find the mean and variance of X.

6.7 The cumulative distribution function for a random variable X is

F(x) =
⎧⎪⎨⎪⎩

0, if x ≤ 0
sin x, if 0 < x ≤ 𝜋∕2
1, if x > 𝜋∕2.

(a) Give the density of X.

(b) Find P(0.1 < X < 0.2).
(c) Find E[X].

6.8 The Laplace distribution, also known as the double exponential distribution,
has density function proportional to e−|x| for all real x. Find the mean and
variance of the distribution.
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6.9 The random variable X has density f that satisfies

f (x) ∝ 1
1 + x2

on the real numbers.

(a) Find P(X > 1).
(b) Show that the expectation of X does not exist.

6.10 Show that
f (x) = exe−ex

, for all x,

is a probability density function. If X has such a density function find the
cdf of X.

6.11 Let X ∼ Unif(a, b). Find a general expression for the kth moment E[Xk].

6.12 An isosceles right triangle has side length uniformly distributed on (0, 1). Find
the expectation and variance of the length of the hypotenuse.

6.13 Suppose f (x) and g(x) are probability density functions. Under what condi-
tions on the constants 𝛼 and 𝛽 will the function 𝛼f (x) + 𝛽g(x) be a probability
density function?

6.14 Some authors take the following as the definition of continuous random vari-
ables: A random variable is continuous if the cdf F(x) is continuous for all
real x. Show that if X is a discrete random variable, then the cdf of X is not
continuous.

6.15 For continuous random variable X and constants a and b, prove that E[aX +
b] = aE[X] + b.

Exponential Distribution

6.16 It is 9:00 p.m. The time until Julian receives his next text message has an
exponential distribution with mean 5 minutes.

(a) Find the probability that he will not receive a text in the next 10 minutes.

(b) Find the probability that the next text arrives between 9:07 and 9:10 p.m.

(c) Find the probability that a text arrives before 9:03 p.m.

(d) A text has not arrived for 5 minutes. Find the probability that none will
arrive for 7 minutes.

6.17 Let X ∼ Exp(𝜆). Suppose 0 < s < t. As X is memoryless, is it true that
{X > s + t} are {X > t} are independent events?

6.18 Derive the mean of the exponential distribution with parameter 𝜆.
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6.19 Derive the variance of the exponential distribution with parameter 𝜆.

6.20 Suppose X ∼ Exp(1∕20). Provide appropriate commands and compute the fol-
lowing probabilities in R.

(a) P(X < 18).
(b) P(15 ≤ X ≤ 23).
(c) P(X ≥ 26).

6.21 The time each student takes to finish an exam has an exponential distribution
with mean 45 minutes. In a class of 10 students, what is the probability that at
least one student will finish in less than 20 minutes? Assume students’ times
are independent.

6.22 For a continuous random variable X, the number m such that

P(X ≤ m) = 1
2

is called the median of X.

(a) Find the median of an Exp(𝜆) distribution.

(b) Give a simplified expression for the difference between the mean and the
median. Is the difference positive or negative?

6.23 Find the probability that an exponential random variable is within two standard
deviations of the mean. That is, compute

P(|X − 𝜇| ≤ 2𝜎),

where 𝜇 = E[X] and 𝜎 = SD[X].

6.24 Solve these integrals without calculus. (Hint: Think exponential distribution.)

(a) ∫
∞

0 e−3x∕10 dx.

(b) ∫
∞

0 te−4t dt.

(c) ∫
∞

0 z2e−2z dz.

Joint Distributions, Independence, Covariance

6.25 Suppose X and Y have joint pdf f (x, y) = 8xy, for 0 ≤ x ≤ y ≤ 1, and 0, other-
wise.

(a) Find P(Y < 1∕2).
(b) Find E(X).
(c) Find E(XY).
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6.26 Let X and Y be jointly distributed random variables with joint pdf given by

f (x, y) = 2(x + y), for 0 < x < y < 1.

(a) Find the marginal of Y .

(b) Find P(X < 3∕4).
(c) Find P(Y > 2X).

6.27 Refer to the joint density in Exercise 6.26.

(a) Find E(X).
(b) Find E(XY).
(c) Find Cov(X,Y).

6.28 The joint density of X and Y is

f (x, y) = 2x
9y

, for 0 < x < 3, 1 < y < e.

(a) Are X and Y independent?

(b) Find the joint cumulative distribution function.

(c) Find P(1 < X < 2,Y > 2).

6.29 The joint density of X and Y is

f (x, y) = 2e−(x+2y)
, for x > 0, y > 0.

(a) Find the joint cumulative distribution function.

(b) Find the cumulative distribution function of X.

(c) Find P(X < Y).

6.30 The joint density of X and Y is

f (x, y) = ce−2y
, for 0 < x < y < ∞.

(a) Find c.

(b) Find the marginal densities of X and Y . Do you recognize either of these
distributions?

(c) Find P(Y < 2X).

6.31 See the joint density in Exercise 6.30. Find the covariance of X and Y .

6.32 See the joint density in Exercise 6.25. Find the covariance of X and Y .
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6.33 Suppose the joint density function of X and Y is

f (x, y) = 2e−6x
, for x > 0, 1 < y < 4.

By noting the form of the joint density and without doing any calculations
show that X and Y are independent. Describe their marginal distributions.

6.34 The time until the light in Savanna’s office fails is exponentially distributed
with mean 2 hours. The time until the computer crashes in Savanna’s office
is exponentially distributed with mean 3 hours. Failure and crash times are
independent.

(a) Find the probability that neither the light nor computer fail in the next
2 hours.

(b) Find the probability that the computer crashes at least 1 hour after the
light fails.

6.35 Let (X,Y ,Z) be uniformly distributed on a three-dimensional box with side
lengths 3, 4, and 5. Find P(X < Y < Z).

6.36 A stick of unit length is broken into two pieces. The break occurs at a location
uniformly at random on the stick. What is the expected length of the longer
piece?

6.37 Suppose (X,Y) are distributed uniformly on the circle of radius 1 centered at
the origin. Find the marginal densities of X and Y . Are X and Y independent?

6.38 Suppose X and Y have joint probability density f (x, y) = g(x)h(y) for some
functions g and h which depend only on x and y, respectively. Show that X
and Y are independent with fX(x) ∝ g(x) and fY (y) ∝ h(y).

Simulation and R

6.39 Simulate the expected length of the hypotenuse of the isosceles right triangle
in Exercise 6.12.

6.40 Let X and Y be independent exponential random variables with parameter
𝜆 = 1. Simulate P(X∕Y < 1).

6.41 Use the accept–reject method to simulate points uniformly distributed on the
circle of radius 1 centered at the origin. Use your simulation to approximate
the expected distance of a point inside the circle to the origin (see Example
6.21).

6.42 Simulate the probabilities computed in Exercise 6.34.

6.43 See the R script AcceptReject.R. Make up your own interesting shape S and
use the accept–reject method to generate uniformly distributed points in S.
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Chapter Review

Chapter review exercises are available through the text website. The URL is
www.wiley.com/go/wagaman/probability2e.
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At this point an enigma presents itself which in all ages has agitated inquiring minds.
How can it be that mathematics, being after all a product of human thought which is
independent of experience, is so admirably appropriate to the objects of reality?

—Albert Einstein

Learning Outcomes

1. Distinguish common continuous distributions and their applications, includ-
ing the normal, gamma, and beta distributions.

2. Solve problems with the different RVs involved in Poisson processes.

3. Demonstrate relationships between RVs using moment-generating functions
(mgfs).

4. (C) Find probabilities involving normal, gamma, and beta distributions
using R.

7.1 NORMAL DISTRIBUTION

I know of scarcely anything so apt to impress the imagination as the wonderful form
of cosmic order expressed by “the law of error.” The law would have been personified
by the Greeks and deified, if they had known of it. It reigns with severity in complete
self-effacement amidst the wildest confusion. The huger the mob and the greater the
anarchy the more perfect is its sway. Let a large sample of chaotic elements be taken
and marshalled in order of their magnitudes, and then, however wildly irregular they
appeared, an unexpected and most beautiful form of regularity proves to have been
present all along.

—Sir Francis Galton

Probability: With Applications and R, Second Edition. Amy S. Wagaman and Robert P. Dobrow.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/wagaman/probability2e
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The “law of error” in the quotation is now known as the normal distribution. It
is perhaps the most important distribution in statistics, is ubiquitous as a model for
natural phenomenon, and arises as the limit for many random processes and dis-
tributions throughout probability and statistics. It is sometimes called the Gaussian
distribution, after Carl Friedrich Gauss, one of the greatest mathematicians in his-
tory, who discovered its utility as a model for astronomical measurement errors.
Adolphe Quetelet, the father of quantitative social science, was the first to apply it
to human measurements, including his detailed study of the chest circumferences
of 5738 Scottish soldiers. Statistician Karl Pearson penned the name “normal dis-
tribution” in 1920, although he did admit that it “had the disadvantage of leading
people to believe that all other distributions of frequency are in one sense or another
abnormal.”

NORMAL DISTRIBUTION

A random variable X has the normal distribution with parameters 𝜇 and 𝜎2, if
the density function of X is

f (x) = 1

𝜎

√
2𝜋

e
− (x−𝜇)2

2𝜎2 ,−∞ < x < ∞.

We write X ∼ Norm(𝜇, 𝜎2) or N(𝜇, 𝜎2).

The shape of the density curve is the famous “bell curve” (see Figure 7.1). The
parameters 𝜇 and 𝜎2 are, respectively, the mean and variance of the distribution.

−5 0 5 10

0.
4

0.
3

0.
2

0.
1

0.
0

Norm(0,1)
Norm(2,4)
Norm(4,9)

FIGURE 7.1: Three normal distributions.
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The density curve is symmetric about the line x = 𝜇 and takes values in the set of
all real numbers. The inflection points, where the curvature of the density function
changes, occur one standard deviation unit from the mean, that is, at the points
x = 𝜇 ± 𝜎.

Surprisingly there is no closed form expression for the normal cumulative distri-
bution function (cdf)

F(x) =
∫

x

−∞

1

𝜎

√
2𝜋

e
− (t−𝜇)2

2𝜎2 dt.

The integral has no antiderivative that is expressible with elementary functions. So
numerical methods must be used to find normal probabilities.

R: NORMAL DISTRIBUTION

The R commands for working with the normal distribution are

> dnorm(x, mu, sigma) # f(x); density value
> pnorm(x, mu, sigma) # Computes P(X <= x)
> rnorm(n, mu, sigma) # Generates n random numbers

Default values for parameters are 𝜇 = 0 and 𝜎 = 1.

Note that R uses the standard deviation 𝜎 in specifying the normal distribution,
not the variance 𝜎2 as we do. This convention differs from source to source. Always
check the syntax for your source!

Although in general it is not possible to get exact closed form expressions for
normal probabilities of the form

P(a < X < b) =
∫

b

a
f (x) dx,

it is possible with basic calculus to show that the density integrates to 1 on (−∞,∞).
It requires working in two dimensions with polar coordinates. Write

I =
∫

∞

−∞

1

𝜎

√
2𝜋

e
− (t−𝜇)2

2𝜎2 dt.

Change variables by setting x = (t − 𝜇)∕𝜎 to get

I = 1√
2𝜋 ∫

∞

−∞
e−

x2

2 dx.

Now consider

I2 = 1
2𝜋 ∫

∞

−∞ ∫

∞

−∞
e−

x2+y2

2 dx dy.
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Work in polar coordinates, setting x2 + y2 = r2 and dx dy = r dr d𝜃. Then

I2 = 1
2𝜋 ∫

∞

0 ∫

2𝜋

0
re−

r2

2 dr d𝜃 =
∫

∞

0
re−

r2

2 dr.

Solve this integral with the substitution z = r2∕2 and dz = r dr, giving

I2 =
∫

∞

0
e−z dz = 1,

and thus I = 1.
Mgf of the normal distribution. The mgf of the normal distribution is useful to

know to show several results. If X ∼ Norm(𝜇, 𝜎2), then the mgf of X is

m(t) = E[etX] = e𝜇t+𝜎2t2∕2
.

The derivation itself is left for the reader, as it is largely an exercise in algebra
and involves completing the square within the exponent.

7.1.1 Standard Normal Distribution

For real 𝜇 and 𝜎 > 0, suppose X ∼ Norm(𝜇, 𝜎2). Define the standardized random
variable

Z = X − 𝜇

𝜎
=
( 1
𝜎

)
X − 𝜇

𝜎
.

We show that Z is normally distributed with mean 0 and variance 1, using mgfs in
two ways: using the definition, and relying on properties of mgfs for linear functions
of random variables.

Let Z ∼ Norm(0, 1). Using the definition of mgf, the mgf of Z is

m(t) = E[etZ] =
∫

∞

−∞
(etz) 1√

2𝜋
e−z2∕2 dz

=
∫

∞

−∞

1√
2𝜋

e−(z
2−2tz)∕2 dz

= et2∕2

∫

∞

−∞

1√
2𝜋

e−(z−t)2∕2 dz = et2∕2
,

achieved by completing the square so that the last integral gives the density of a
normal distribution with mean t and variance one, and thus, integrates to 1.

As an alternative derivation, recall that for linear functions of random variables,
the mgf can be found as a function of the mgf of the original variable. In this
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context, the constants a and b are respectively 1∕𝜎 and −𝜇∕𝜎. Thus, the mgf
of Z is

mZ(t) = etbmX(at) = e−𝜇t∕𝜎e𝜇t∕𝜎+𝜎2t2∕2𝜎2 = et2∕2 = e0t+12t2∕2
,

which is the mgf of a normal distribution with mean 0 and variance 1, as emphasized
in the final equality. We call this the standard normal distribution and reserve the
letter Z for a standard normal random variable henceforth. Many other texts have
common notations for the standard normal probability distribution function (pdf)
and cdf of 𝜙(z) and Φ(z), respectively.

Any normal random variable X ∼ Norm(𝜇, 𝜎2) can be transformed to a standard
normal variable Z by the linear function Z = (1∕𝜎)X − 𝜇∕𝜎. In fact, any linear func-
tion of a normal random variable is normally distributed. We leave the proof of that
result to the exercises.

LINEAR FUNCTION OF NORMAL RANDOM VARIABLE

Let X be normally distributed with mean 𝜇 and variance 𝜎2. For constants a ≠ 0
and b, the random variable Y = aX + b is normally distributed with mean

E[Y] = E[aX + b] = aE[X] + b = a𝜇 + b

and variance
V[Y] = V[aX + b] = a2V[X] = a2

𝜎
2
.

That is, Y = aX + b ∼ Norm(a𝜇 + b, a2𝜎2).

The ability to transform any normal distribution to a standard normal distribution
by a change of variables makes it possible to simplify many computations. Many
statistics textbooks include tables of standard normal probabilities, and problems
involving normal probabilities can be solved by first standardizing the variables to
work with the standard normal distribution. Today this is a largely outdated practice
due to technology.

As a standard normal distribution has mean 0 and standard deviation 1,

P(|Z| ≤ z) = P(−z ≤ Z ≤ z)

is the probability that Z is within z standard deviation units from the mean. It is
also the probability that any normal random variable X ∼ Norm(𝜇, 𝜎2) is within z
standard deviation units from its mean since

P(|X − 𝜇| ≤ 𝜎z) = P

(||||X − 𝜇

𝜎

|||| ≤ z

)
= P(|Z| ≤ z).
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The probability that a normal random variable is within one, two, and three standard
deviations from the mean, respectively, is found in R.

> pnorm(1)-pnorm(-1)
[1] 0.6826895
> pnorm(2)-pnorm(-2)
[1] 0.9544997
> pnorm(3)-pnorm(-3)
[1] 0.9973002

This gives the so-called “68-95-99.7 rule” or empirical rule: For the normal distri-
bution, the probability of being within one, two, and three standard deviations from
the mean is, respectively, about 68, 95, and 99.7%. This rule can be a valuable tool
for doing “back of the envelope” calculations when technology is not available, and
holds generally for bell-shaped distribution curves, not just the normal.

□■ Example 7.1 Babies’ birth weights are normally distributed with mean 𝜇 = 120
and standard deviation 𝜎 = 20 ounces. What is the probability that a random baby’s
birth weight will be greater than 140 ounces?

Let X represent a baby’s birth weight. Then X ∼ Norm(120, 202). The desired
probability is

P(X > 140) = P

(
X − 𝜇

𝜎
>

140 − 120
20

)
= P(Z > 1).

The weight 140 = 120 + 20 is one standard deviation above the mean. As 68% of
the probability mass is within one standard deviation of the mean, the remaining
32% is evenly divided between the outer two halves of the distribution. The desired
probability is about 0.16. ◼

7.1.2 Normal Approximation of Binomial Distribution

One of the first uses of the normal distribution was to approximate binomial proba-
bilities for large n. Before the use of computers or technology, calculations involving
binomial coefficients with large factorials were extremely hard to compute. The
approximation made it possible to numerically solve many otherwise intractable
problems and also gave theoretical insight into the importance of the normal distri-
bution.

If X ∼ Binom(n, p) and n is large, then the distribution of X is approximately
normal with mean np and variance np(1 − p). Equivalently, the standardized random
variable

X − np√
np(1 − p)

has an approximate standard normal distribution.
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Binom(4, 0.1) Binom(10, 0.1) Binom(25, 0.1)

Binom(50, 0.1) Binom(100, 0.1) Binom(500, 0.1)
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FIGURE 7.2: Normal approximation of the binomial distribution. For fixed p, as n gets large
the binomial distribution tends to a normal distribution.

The result, discovered by Abraham de Moivre in early 1700s and generalized by
Laplace 100 years later, says that if X is a binomial random variable with parameters
n and p, then for a < b,

lim
n→∞

P

(
a ≤

X − np√
np(1 − p)

≤ b

)
= 1√

2𝜋 ∫

b

a
e−x2∕2 dx.

We see the normal approximation in Figure 7.2. The six binomial distributions
all have parameter p = 0.10 with differing n’s of 4, 10, 25, 50,100, and 500. Each
super-imposed curve is a normal density with mean np and variance np(1 − p).

What does n is “large” mean in this context? Broadly speaking, the approxi-
mation holds well when np and n(1 − p) are both greater than or equal to 10. See
Exercise 7.18 for more insight.

□■ Example 7.2 In 600 rolls of a die, what is the probability of rolling between 90
and 110 fours?
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Let X be the number of fours in 600 rolls. Then X ∼ Binom(600, 1∕6). Let Y be a
normal random variable with mean np = 600(1∕6) = 100 and variance np(1 − p) =
500∕6. The normal approximation of the binomial gives

P(90 ≤ X ≤ 110) ≈ P(90 ≤ Y ≤ 110) = 0.7267.

> pnorm(110,100,sqrt(500/6))-pnorm(90,100,sqrt(500/6))
[1] 0.7266783

An alternate derivation works with the standardized random variable (which
results in minor differences due to rounding) to obtain

P(90 ≤ X ≤ 110) = P

(
90 − 100√

500∕6
≤

X − np√
np(1 − p)

≤
110 − 100√

500∕6

)
≈ P(−1.095 ≤ Z ≤ 1.095)

= FZ(1.095) − FZ(−1.095) = 0.7265.

Compare the normal approximation with the exact binomial probability

P(90 ≤ X ≤ 110) =
110∑

k=90

(600
k

)(1
6

)90(5
6

)110
= 0.7501.

This probability can be found using R with

> pbinom(110,600,1/6)-pbinom(89,600,1/6)
[1] 0.7501249 ◼

Continuity correction. Accuracy can often be improved in the normal approx-
imation by accounting for the fact that we are using the area under a continuous
density curve to approximate a discrete sum.

If X is a discrete random variable taking integer values, then for integers a < b
the probabilities

P(a ≤ X ≤ b), P(a − 1∕2 ≤ X ≤ b + 1∕2), and P(a − 1 < X < b + 1)

are all equal to each other. However, if Y is a continuous random variable with
density f , then the corresponding probabilities

P(a ≤ Y ≤ b), P(a − 1∕2 ≤ Y ≤ b + 1∕2), and P(a − 1 < Y < b + 1)

are all different, as the integrals

∫

b

a
f (y) dy,

∫

b+1∕2

a−1∕2
f (y) dy, and

∫

b−1

a−1
f (y) dy

have different intervals of integration.
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The continuity correction uses the middle integral for the approximation. That is,

P(a ≤ X ≤ b) = P(a − 1∕2 ≤ Y ≤ b + 1∕2) ≈
∫

b+1∕2

a−1∕2
f (y) dy,

taking the limits of integration out one-half unit to the left of a and to the right of
b. The selection of 1∕2 as the value to shift by, rather than 1∕3 or 1∕4 is due to the
integer scale of X.

For example, suppose the normal distribution is used to approximate P(11 ≤

X ≤ 13), where X is a binomial random variable with parameters n = 20 and p =
0.5. Let Y be a normal random variable with the same mean and variance as X. The
curve in the graphs in Figure 7.3 is part of the normal density. The rectangles are
part of the probability mass function of X.

The light gray area represents the binomial probability P(11 ≤ X ≤ 13).The dark
area in the first panel represents the normal probability P(11 ≤ Y ≤ 13). However,
because the interval of integration is [11, 13], the area under the normal density
curve does not capture the area of the binomial probability to the left of 11 and to
the right of 13. In the second panel, the dark area represents P(10.5 ≤ Y ≤ 13.5),
and visually we can see that this will give a better approximation of the desired
binomial probability.

In fact, the exact binomial probability is P(11 ≤ X ≤ 13) = 0.3542. Com-
pare to the normal approximations P(11 ≤ Y ≤ 13) = 0.2375 and P(10.5 ≤ Y ≤

13.5) = 0.3528 to see the significant improvement using the continuity correction.
In R,

> sum(dbinom(11:13, 20, 0.5)) #exact
[1] 0.3542423
> pnorm(13, 10, sqrt(5))-pnorm(11, 10, sqrt(5)) #no CC

Without continuity correction
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FIGURE 7.3: Approximating the binomial probability P(11 ≤ X ≤ 13) using a normal dis-
tribution with and without the continuity correction.
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[1] 0.2375042
> pnorm(13.5, 10, sqrt(5))-pnorm(10.5, 10, sqrt(5)) #CC
[1] 0.3527692

□■ Example 7.3 Dice, continued. In Example 7.2, applying the continuity correc-
tion gives

P(90 ≤ X ≤ 110) = P(89.5 ≤ X ≤ 110.5)

= P

(
89.5 − 100

9.13
≤

X − np√
np(1 − p)

≤
110.5 − 100

9.13

)
≈ P(−1.15 ≤ Z ≤ 1.15)

= FZ(1.15) − FZ(−1.15) = 0.7499,

which improves upon the previous estimate 0.727. The exact answer is 0.7501. ◼

7.1.3 Quantiles

It is hard to escape taking standardized tests in the United States. Typically after
taking such a test when your scores are reported, they usually include your percentile
ranking. If you scored at the 80th percentile, also called the 80th quantile, this means
that you scored as well, or better, than 80% of all test takers.

QUANTILE

Let 0 < p < 1. If X is a continuous random variable, then the pth quantile is the
number q that satisfies

P(X ≤ q) = p∕100.

That is, the pth quantile separates the bottom p percent of the probability mass
from the top (1 − p)%.

The R command for finding quantiles of a probability distribution is obtained by
prefacing the distribution name with the letter q. Normal quantiles are found with
the command qnorm. To find the 25th quantile of the standard normal distribu-
tion, type

> qnorm(0.25)
[1] -0.6744898

As seen in the definition, the quantile function is inverse to the cdf for continuous
random variables. The cdf evaluated at a quantile returns the original p∕100.
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> pnorm(-0.6744899)
[1] 0.25

When finding quantiles for discrete distributions, be aware that the definition
changes slightly. We encourage the reader to investigate further if interested.

□■ Example 7.4 The 68-95-99.7 rule says that the area under the standard normal
curve between z = −2 and z = 2 is about 0.95. The area to the left of z = −2 is
about 0.025. Thus, the total area to the left of z = 2 is 0.95 + 0.025 = 0.975. Hence,
q = 2 is the approximate 97.5th quantile of the standard normal distribution.

In R, we find the exact 97.5th quantile of a standard normal distribution.

> qnorm(0.975)
[1] 1.959964 ◼

□■ Example 7.5 IQR. The interquartile range (IQR) of a distribution is the dif-
ference between the 75th and 25th quantiles, also called the third and first quartiles.
It is the range of the middle 50% of values in the distribution. If X ∼ Norm(𝜇, 𝜎2),
find the IQR of X.

Let q75 be the 75th quantile of the given normal distribution. Since

0.75 = P(X ≤ q75) = P
(

Z ≤
q75 − 𝜇

𝜎

)
,

(q75 − 𝜇)∕𝜎 is the 75th quantile of the standard normal distribution. In R, we find

> qnorm(0.75)
[1] 0.6744898.

Thus, (q75 − 𝜇)∕𝜎 = 0.6745, which gives q75 = 𝜇 + 0.6745𝜎. The normal distribu-
tion is symmetric about 𝜇. It follows that the 25th quantile is q25 = 𝜇 − 0.6745𝜎.
The IQR is

IQR = q75 − q25 = (𝜇 + 0.6745𝜎) − (𝜇 − 0.6745𝜎) = 1.35𝜎.

Many statistical software programs will flag an observation as an outlier by the
so-called 1.5 × IQR rule: an observation is labeled an outlier if it is more than 1.5 ×
IQR units above the 75th quantile, or 1.5 × IQR units below the 25th quantile. As

q75 + (1.5)IQR = (𝜇 + 0.6745𝜎) + (1.5)(1.35𝜎) = 𝜇 + 2.7𝜎

and
q25 − (1.5)IQR = (𝜇 − 0.6745𝜎) − (1.5)(1.35𝜎) = 𝜇 − 2.7𝜎,
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an observation X from a normal distribution would be labeled an outlier if it is more
than 2.7 standard deviations from the mean. The probability of this occurring is

P(|Z| > 2.7) = 2P(Z > 2.7) = 0.007.

While this probability is relatively small, it also means that in a dataset of 1000
observations taken from a normal distribution, the software would label about seven
points as outliers. ◼

□■ Example 7.6 Let X be the number of heads in 10,000 coin tosses. We expect
X ≈ 5000. What range of values of X are typically observed with high probability,
say 0.99? More precisely, what number t satisfies

P(5000 − t ≤ X ≤ 5000 + t) = 0.99?

As X ∼ Bin(10,000, 0.5), the distribution of X is approximated by a normal
distribution with mean 5000 and standard deviation

√
10,000(0.5)(0.5) = 50. n is

fairly large, so we will ease notation and omit the continuity correction, as it would
have a negligible effect. We have

P(5000 − t ≤ X ≤ 5000 + t) = P
(−t

50
≤

X − 5000
50

≤
t

50

)
≈ P

(−t
50

≤ Z ≤
t

50

)
= FZ

( t
50

)
− FZ

(−t
50

)
= FZ

( t
50

)
−
[
1 − FZ

( t
50

)]
= 2FZ

( t
50

)
− 1,

where the next-to-last equality is from the symmetry of the standard normal density
about 0. Setting the last expression equal to 0.99 gives

FZ

( t
50

)
= P

(
Z ≤

t
50

)
= 1 + 0.99

2
= 0.995.

Thus, t∕50 is the 99.5th quantile of the standard normal distribution. We find

> qnorm(0.995)
[1] 2.575829

This gives t = 50(2.576) = 128.8 ≈ 130. In 10,000 coin tosses, we expect to
observe 5000 ± 130 heads with high probability. A claim of tossing a fair coin
10,000 times and obtaining less than 4870 or more than 5130 heads would be
highly suspect. ◼
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10,000 COIN FLIPS

Mathematician John Kerrich actually flipped 10,000 coins when he was interned
in a Nazi prisoner of war camp during World War II. Kerrich was visiting
Copenhagen at the start of the war, just when the German army was occupying
Denmark. The data from Kerrich’s coin tossing experiment are given in Freed-
man et al. [2007]. Kerrich’s results are in line with expected numbers. He got
5067 heads. In Chapter 10, we use Kerrich’s data to illustrate the law of large
numbers.

Kerrich spent much of his time in the war camp conducting experiments to
demonstrate laws of probability. He is reported to have used ping-pong balls
to illustrate Bayes formula.

7.1.4 Sums of Independent Normals

The normal distribution has the property that the sum of independent normal random
variables is normally distributed. We show this is true for the sum of two indepen-
dent normal variables using mgfs.

Let X and Y be independent normal variables, with respective means 𝜇X and 𝜇Y
and variances 𝜎2

X and 𝜎2
Y .

Then using properties of mgfs, the mgf for X + Y is

mX+Y (t) = mX(t)mY (t) = e𝜇Xt+𝜎2
X

t2∕2e𝜇Y t+𝜎2
Y

t2∕2

= e(𝜇X+𝜇Y )t+(𝜎2
X
+𝜎2

Y
)t2∕2

,

which is the mgf for a normal random variable with mean 𝜇X + 𝜇Y and variance
𝜎2

X + 𝜎2
Y . Thus, X + Y ∼ N(𝜇X + 𝜇Y , 𝜎

2
X + 𝜎2

Y ).
The general result stated next can be derived similarly with mathematical

induction.

SUM OF INDEPENDENT NORMAL RANDOM VARIABLES IS
NORMAL

Let X1, . . . ,Xn be a sequence of independent normal random variables with

Xk ∼ Norm (𝜇k, 𝜎
2
k ), for k = 1, . . . , n.

Then
X1 + · · · + Xn ∼ Norm (𝜇1 + · · · + 𝜇n, 𝜎

2
1 + · · · + 𝜎

2
n ).
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□■ Example 7.7 The mass of a cereal box is normally distributed with mean 385g
and standard deviation 5g. What is the probability that 10 boxes will contain less
than 3800 g of cereal?

Let X1, . . . ,X10 denote the respective cereal weights in each of the 10 boxes.
Then T = X1 + · · · + X10 is the total weight. We have that T is normally distributed
with mean E[T] = 10(385) = 3850 and variance V[T] = 10(52) = 250.

The desired probability P(T < 3800) can be found directly with R.

> pnorm(3800,3850,sqrt(250))
[1] 0.0007827011

An alternate solution is to standardize T , giving

P(T < 3800) = P

(
T − 𝜇

𝜎
<

3800 − 3850√
250

)
= P(Z < −3.16).

We see that 3800 g is a little more than three standard deviations below the mean.
By the 68-95-99.7 rule, the probability is less than 0.003∕2 = 0.0015, which was
confirmed via the calculations above. ◼

□■ Example 7.8 According to the National Center for Health Statistics, the mean
male adult height in the United States is 𝜇M = 69.2 inches with standard devi-
ation 𝜎M = 2.8 inches. The mean female adult height is 𝜇F = 63.6 inches with
standard deviation 𝜎F = 2.5 inches. Assume male and female heights are normally
distributed and independent of each other. If a man and woman are chosen at ran-
dom, what is the probability that the woman will be taller than the man?

Let M and F denote male and female height, respectively. The desired probability
is P(F > M) = P(F − M > 0). One approach to find this probability is to obtain the
joint density of F and M and then integrate over the region {(f ,m) ∶ f > m}.

But a much easier approach is to recognize that because F and M are independent
normal variables, F − M is normally distributed with mean

E[F − M] = E[F] − E[M] = 63.6 − 69.2 = −5.6

and variance

V[F − M] = V[F] + V[M] = (2.5)2 + (2.8)2 = 14.09.

This gives

P(F > M) = P(F − M > 0) = P

(
Z >

0 − (−5.6)√
14.09

)
= P(Z > 1.492) = 0.068. ◼
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Averages. Averages of i.i.d. random variables figure prominently in probability
and statistics. If X1, . . . ,Xn is an i.i.d. sequence (not necessarily normal), let Sn =
X1 + · · · + Xn. The average of the Xi’s is Sn∕n. When working with observations
from a sample, you might see notation of Xn for Sn∕n. Results for averages are
worthwhile to highlight and remember.

AVERAGES OF i.i.d. RANDOM VARIABLES

Let X1, . . . ,Xn be an i.i.d. sequence of random variables with common mean 𝜇

and variance 𝜎2. Let Sn = X1 + · · · + Xn. Then

E

[
Sn

n

]
= 𝜇 and V

[
Sn

n

]
= 𝜎2

n
.

If the Xi’s are normally distributed, then Sn∕n ∼ Norm(𝜇, 𝜎2∕n).

The mean and variance of the average are

E

[
Sn

n

]
= E

[
X1 + · · · + Xn

n

]
= 1

n
(𝜇 + · · · + 𝜇) = n𝜇

n
= 𝜇

and

V

[
Sn

n

]
= 1

n2
V[X1 + · · · + Xn] =

1
n2

(𝜎2 + · · · + 𝜎
2) = n𝜎2

n2
= 𝜎2

n
.

□■ Example 7.9 Averages are better than single measurements. The big metal
spring scale at the fruit stand is not very precise and has a significant measurement
error. When measuring fruit, the measurement error is the difference between the
true weight and what the scale says. Measurement error is often modeled with a
normal distribution with mean 0.

Suppose the scale’s measurement error M is normally distributed with 𝜇 = 0
and 𝜎 = 2 ounces. If a piece of fruit’s true weight is 𝑤, then the observed weight
of the fruit is what the customer sees on the scale—the sum of the true weight and
the measurement error. Let X be the observed weight. Then X = 𝑤 + M. As 𝑤 is a
constant, X is normally distributed with mean E[X] = E[𝑤 + M] = 𝑤 + E[M] = 𝑤,

and variance V[X] = V[𝑤 + M] = V[M] = 4.
When a shopper weighs their fruit, the probability that the observed measurement

is within 1 ounce of the true weight is

P(|X −𝑤| ≤ 1) = P(−1 ≤ X −𝑤 ≤ 1)

= P
(−1

2
≤

X −𝑤

𝜎
≤

1
2

)
= P

(−1
2

≤ Z ≤
1
2

)
= 0.383.
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Equivalently, there is a greater than 60% chance that the scale will show a weight
that is off by more than 1 ounce.

However, a savvy shopper decides to take n independent measurements
X1, . . . ,Xn and rely on the average Sn∕n = (X1 + · · · + Xn)∕n. As Sn∕n ∼
Norm (𝑤, 4∕n), the probability that the average measurement is within 1 ounce of
the true weight is

P(|Sn∕n −𝑤| ≤ 1) = P(−1 ≤ Sn∕n −𝑤 ≤ 1)

= P

(
−1√
4∕n

≤
Sn∕n −𝑤

𝜎∕
√

n
≤

1√
4∕n

)

= P

(
−
√

n

2
≤ Z ≤

√
n

2

)

= 2F

(√
n

2

)
− 1.

If the shopper wants to be “95% confident” that the average is within 1 ounce of
the true weight, that is, P(|Sn∕n −𝑤| ≤ 1) = 0.95, how many measurements should
they take? Solve 0.95 = 2F(

√
n∕2) − 1 for n. We have

F

(√
n

2

)
= 1 + 0.95

2
= 0.975.

The 97.5th quantile of the standard normal distribution is 1.96. Thus,
√

n∕2 = 1.96
and n = (2 × 1.96)2 = 7.68. The shopper should take eight measurements. ◼

7.2 GAMMA DISTRIBUTION

The gamma distribution is a family of positive, continuous distributions with two
parameters. The density curve can take a wide variety of shapes, which allows the
distribution to be used to model variables that exhibit skewed and nonsymmetric
behavior. See Figure 7.4 for example gamma densities.

GAMMA DISTRIBUTION

A random variable X has a gamma distribution with parameters a > 0 and 𝜆 > 0
if the density function of X is

f (x) = 𝜆axa−1e−𝜆x

Γ(a)
, for x > 0,



�

� �

�

GAMMA DISTRIBUTION 289

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Gamma(1,0.25)
Gamma(1,0.333)
Gamma(7,1)
Gamma(30,2)

FIGURE 7.4: Four gamma distributions.

where

Γ(a) =
∫

∞

0
ta−1e−t dt.

We write X ∼ Gamma(a, 𝜆).

The function Γ is the gamma function. The function is continuous, defined by an
integral, and arises in many applied settings. Observe that Γ(1) = 1. Integration by
parts (see Exercise 7.22) gives

Γ(x) = (x − 1)Γ(x − 1), for all x. (7.1)

If x is a positive integer, unwinding Equation 7.1 shows that

Γ(x) = (x − 1)Γ(x − 1)

= (x − 1)(x − 2)Γ(x − 2)

= (x − 1)(x − 2) · · · (1)

= (x − 1)!

Another useful result is that Γ(1∕2) =
√
𝜋.

Note that if the first parameter a of the gamma distribution is equal to one, the
gamma density function reduces to an exponential density. The gamma distribution
is a generalization of the exponential distribution, with an additional parameter.
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In many applications, exponential random variables are used to model interar-
rival times between events, such as the times between successive highway accidents,
component failures, telephone calls, or bus arrivals. The nth occurrence, or time of
the nth arrival, is the sum of n interarrival times. It turns out that the sum of n i.i.d.
exponential random variables has a gamma distribution.

□■ Example 7.10 Sum of i.i.d. exponentials is gamma. Here we show that the
sum of i.i.d. exponential random variables has a gamma distribution using mgfs.
First, find the mgf of the exponential distribution.

Let X ∼ Exp(𝜆). The mgf of X is

mX(t) = E[etX] =
∫

∞

0
etx

𝜆e−𝜆x dx

= 𝜆

𝜆 − t ∫

∞

0
(𝜆 − t)e−(𝜆−t)x dx

= 𝜆

𝜆 − t
,

defined for all 0 < t < 𝜆.
Now find the mgf of the gamma distribution. Let Y ∼ Gamma(a, 𝜆). The mgf

of Y is

mY (t) = E[etY ] =
∫

∞

0
ety 𝜆

aya−1e−𝜆y

Γ(a)
dy

=
∫

∞

0

𝜆aya−1e−(𝜆−t)y

Γ(a)
dy

=
(

𝜆

𝜆 − t

)a

∫

∞

0

(𝜆 − t)aya−1e−(𝜆−t)y

Γ(a)
dy

=
(

𝜆

𝜆 − t

)a
.

That is, mY (t) = [mX(t)]a. For a positive integer a, this is the mgf of the sum of a
i.i.d. exponential random variables, X1, . . . ,Xa, with parameter 𝜆. ◼

SUM OF i.i.d. EXPONENTIALS HAS GAMMA DISTRIBUTION

Let E1, . . . ,En be an i.i.d. sequence of exponential random variables with param-
eter 𝜆. Let S = E1 + · · · + En. Then S has a gamma distribution with parameters
n and 𝜆.

We demonstrate the last result with a simulation.
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FIGURE 7.5: The histogram is from simulating the sum of 20 exponential variables with
𝜆 = 2. The curve is the density of a gamma distribution with parameters a = 20 and 𝜆 = 2.

R: SIMULATING THE GAMMA DISTRIBUTION FROM A SUM OF
EXPONENTIALS

We simulate the sum of 20 independent exponential random variables with 𝜆 = 2
and compare to the gamma density with a = 20 and 𝜆 = 2 (see Figure 7.5).

> simlist <- replicate(10000, sum(rexp(20, 2)))
> hist(simlist, prob = T)
> curve(dgamma(x, 20, 2), 0, 20, add = T)

Application. Zwahlen et al. [2000] explores the process by which at-risk indi-
viduals take and retake HIV tests. The time between successive retaking of the HIV
test is modeled with an exponential distribution. The time that an individual retakes
the test for the nth time is fitted to a gamma distribution with parameters n and 𝜆.
Men and women retake the test at different rates, and statistical methods are used
to estimate 𝜆 for men and women and for different populations. Understanding the
process of test-taking can help public health officials treat at-risk populations more
effectively.

□■ Example 7.11 The times between insurance claims following a natural disaster
are modeled as i.i.d. exponential random variables. Claims arrive during the first
few days at a rate of about four claims per hour. (i) What is the probability that the
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100th insurance claim will not arrive during the first 24 hours? (ii) The probability
is at least 95% that the 100th claim will arrive before what time?

Let S100 be the time of the 100th claim (in hours). Then S100 has a gamma distri-
bution with parameters n = 100 and 𝜆 = 4.

(i) The desired probability is P(S100 > 24). In R, type

> 1-pgamma(24,100,4)
[1] 0.6450564

(ii) Solve P(S100 ≤ t) ≥ 0.95. Find the 95th quantile of S100. Type

> qgamma(0.95,100,4)
[1] 29.24928

The probability is at least 95% that the 100th claim will arrive before time t = 29.25,
which is 5 hours and 15 minutes into the second day. ◼

Expectation and variance. For the gamma distribution with parameters a and 𝜆,

the expectation 𝜇 and variance 𝜎2 are

𝜇 = a
𝜆

and 𝜎
2 = a

𝜆2
.

These should not be surprising. If a is a positive integer, consider a sum of
a i.i.d. exponential random variables with parameter 𝜆. Each exponential variable
has expectation 1∕𝜆, and the sum has a gamma distribution. Similarly, the vari-
ance of each exponential variable is 1∕𝜆2, and the variance of the sum is a∕𝜆2. The
expectation for the gamma distribution is derived in the next section.

7.2.1 Probability as a Technique of Integration

Many integrals can be solved by recognizing that the integrand is proportional to a
known probability density, such as the uniform, exponential, or normal density. You
have seen this “trick” before, such as in the last section with the normal distribution,
and in the evaluation of the exponential and gamma mgfs.

□■ Example 7.12 Solve

I =
∫

∞

0
e−3x∕5 dx.

This is an “easy” integral with a substitution. But before solving it with calculus,
recognize that the integrand is “almost” an exponential density. It is proportional to



�

� �

�

GAMMA DISTRIBUTION 293

an exponential density with 𝜆 = 3∕5. Putting in the necessary constant to make it
so gives

I = 5
3 ∫

∞

0

3
5

e−3x∕5 dx = 5
3
,

because the integrand is now a probability density, which integrates to one. ◼

□■ Example 7.13 Solve

I =
∫

∞

−∞
e−x2

dx. (7.2)

The integral looks like a normal density function, but is missing some compo-
nents. As the exponential factor of the normal density has the form e−(x−𝜇)

2∕2𝜎2
, in

order to match up with the integrand take 𝜇 = 0 and 2𝜎2 = 1, that is, 𝜎2 = 1∕2.
Reexpressing the integral as a normal density gives

I =
∫

∞

−∞
e−x2

dx =
√
𝜋
∫

∞

−∞

1√
2𝜋

√
1∕2

e
− x2

2(1∕2) dx =
√
𝜋,

where the last equality follows as the final integrand is a normal density with 𝜇 = 0
and 𝜎2 = 1∕2 and thus integrates to one. ◼

□■ Example 7.14 Meteorologists and hydrologists use probability to model numer-
ous quantities related to rainfall. Rainfall intensity, as discussed by Watkins (http://
www.sjsu.edu/faculty/watkins/raindrop.htm) is equal to the raindrop volume times
the intensity of droplet downfall. Let R denote rainfall intensity. (The units are
usually millimeters per hour.) A standard model is to assume that the intensity of
droplet downfall k (number of drops per unit area per hour) is constant and that the
radius of a raindrop D has an exponential distribution with parameter 𝜆. This gives
R = 4k𝜋D3∕3. The expected rainfall intensity is

E[R] = E

[
4k𝜋D3

3

]
= 4k𝜋

3
E[D3] = 4k𝜋

3 ∫

∞

0
x3
𝜆e−x𝜆 dx.

The integral can be solved by three applications of integration by parts. But avoid
the integration by recognizing that the integrand is proportional to a gamma density
with parameters a = 4 and 𝜆. The integral is equal to

∫

∞

0
𝜆x3e−𝜆x dx = Γ(4)

𝜆3 ∫

∞

0

𝜆4x3e−𝜆x

Γ(4)
dx = Γ(4)

𝜆3
= 6

𝜆3
.

The expected rainfall intensity is

E[R] = 4k𝜋
3

( 6
𝜆3

)
= 8k𝜋

𝜆3
. ◼
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Expectation of the gamma distribution. The expectation of the gamma distri-
bution is obtained similarly. Let X ∼ Gamma(a, 𝜆). Then

E[X] =
∫

∞

0
x
𝜆axa−1e−𝜆x

Γ(a)
dx =

∫

∞

0

𝜆axae−𝜆x

Γ(a)
dx.

Because of the xa = x(a+1)−1 term in the integrand, make the integrand look like the
density of a gamma distribution with parameters a + 1 and 𝜆. This gives

∫

∞

0

𝜆axae−𝜆x

Γ(a)
dx = Γ(a + 1)

𝜆Γ(a) ∫

∞

0

𝜆a+1xae−𝜆x

Γ(a + 1)
dx = Γ(a + 1)

𝜆Γ(a)
,

as the last integral integrates to one. From the relationship in Equation 7.1 for the
gamma function, we have

E[X] = Γ(a + 1)
𝜆Γ(a)

= aΓ(a)
𝜆Γ(a)

= a
𝜆
.

We invite the reader to use this technique to derive the variance of the gamma dis-
tribution V[X] = a∕𝜆2 in Exercise 7.23.

7.3 POISSON PROCESS

Consider a process whereby “events”—also called “points” or “arrivals”—occur
randomly in time or space. Examples include phone calls throughout the day, car
accidents along a stretch of highway, component failures, service times, and radioac-
tive particle emissions.

For many applications, it is reasonable to model the times between successive
events as memoryless (e.g., a phone call doesn’t “remember” when the last
phone call took place). Model these interarrival times as an independent sequence
E1,E2, . . . of exponential random variables with parameter 𝜆, where Ek is the time
between the (k − 1)st and kth arrival. Set S0 = 0 and let

Sn = E1 + · · · + En,

for n = 1, 2, . . . . Then, Sn is the time of the nth arrival and Sn ∼ Gamma(n, 𝜆). The
sequence S0, S1, S2, . . . is the arrival sequence, i.e., the sequence of arrival times.

For each time t ≥ 0, let Nt be the number of arrivals that occur up through time t.
Then for each t, Nt is a discrete random variable. We now show that Nt has a Poisson
distribution. The collection of Nt’s forms a random process called a Poisson process
with parameter 𝜆. It is an example of what is called a stochastic process. Formally, a
stochastic process is a collection of random variables defined on a common sample
space.
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S0 S1 S2 S3 S4 S5

E1 E2 E3 E4 E5

0 1 2 3 4 5 6s

Ns = 2

t

Nt = 5

Nt = Number of points in (0, t]
Ei = Interarrival time
Sn = E1 + ∙ ∙ ∙ + En

Nt ~ Pois(λt)
E1, E2, . . . ~  i.i.d. Exp(λ)
Sn ~ Gamma(n,λ)

FIGURE 7.6: Poisson process: relationships of underlying random variables.

Throughout this book, we have considered sequences of random variables as
models for random processes. However, the collection of Nt’s in a Poisson process
is not a sequence because Nt is defined for all real t. The Nt’s form an uncountable
collection of random variables. We write (Nt)t≥0 to denote a Poisson process.

To understand the Poisson process, it is important to understand the relationship
between the interarrival times (Ek’s), the arrival times (Sn’s), and the number of
arrivals (Nt) (see Figure 7.6).

Nt has a Poisson distribution. Although the time of arrivals is continuous, the
number of arrivals is discrete. We show that Nt, the number of arrivals up to time t,
has a Poisson distribution with parameter 𝜆t.

DISTRIBUTION OF NT FOR POISSON PROCESS WITH
PARAMETER 𝜆

Let (Nt)t≥0 be a Poisson process with parameter 𝜆. Then

P(Nt = k) = e−𝜆t(𝜆t)k

k!
, for k = 0, 1, . . . .

Consider the event {Nt = k} that there are k arrivals in (0, t]. This occurs if and
only if (i) the kth arrival occurs by time t and (ii) the (k + 1)st arrival occurs after
time t. That is, {Nt = k} = {Sk ≤ t, Sk+1 > t}. Since

Sk+1 = E1 + · · · + Ek + Ek+1 = Sk + Ek+1,

we have
P(Nt = k) = P(Sk ≤ t, Sk + Ek+1 > t).
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The sum Sk is a function of E1, . . . ,Ek, which are independent of Ek+1. Thus, Sk
and Ek+1 are independent random variables, and the joint density of (Sk,Ek+1) is the
product of their marginal densities. That is,

fSk ,Ek+1
(x, y) = fSk

(x)fEk+1
(y) = 𝜆kxk−1e−𝜆x

(k − 1)!
𝜆e−𝜆y

, for x, y > 0.

The region defined by

{Sk ≤ t, Sk + Ek+1 > t} = {Sk ≤ t,Ek+1 > t − Sk}

is the set of all (x, y) such that 0 < x ≤ t and y > t − x. This gives

P(Nt = k) = P(Sk ≤ t, Sk + Ek+1 > t)

=
∫

t

0 ∫

∞

t−x

𝜆kxk−1e−𝜆x

(k − 1)!
𝜆e−𝜆y dy dx

=
∫

t

0

𝜆kxk−1e−𝜆x

(k − 1)!

(
∫

∞

t−x
𝜆e−𝜆y dy

)
dx

=
∫

t

0

𝜆kxk−1e−𝜆x

(k − 1)!
e−(t−x)𝜆 dx

= e−t𝜆𝜆k

(k − 1)! ∫

t

0
xk−1 dx

= e−t𝜆(𝜆t)k

k!
, for k = 0, 1, . . . ,

recognizable as the Poisson distribution, which establishes the result.

□■ Example 7.15 Marketing. A commonly used model in marketing is the
so-called NBD model, introduced in late 1950s by Ehrenberg [1959] and still
popular today. (NBD stands for negative binomial distribution, but we will not
discuss the role of that distribution in our example.) Individual customers’ pur-
chasing occasions are modeled as a Poisson process. Different customers purchase
at different rates 𝜆 and often the goal is to estimate such 𝜆. Many empirical studies
show a close fit to a Poisson process.

Suppose the time scale for such a study is in days. We assume that Chase’s
purchases form a Poisson process with parameter 𝜆 = 0.5. Consider the following
questions of interest.

1. What is the average rate of purchases?

2. What is the probability that Chase will make at least three purchases within
the next 7 days?
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3. What is the probability that his 10th purchase will take place within the next
20 days?

4. What is the expected number of purchases Chase will make next month?
Assume the month has 30 days.

5. What is the probability that Chase will not buy anything for the next 5 days
given that he will not buy anything in the next 2 days?

Solutions:

1. Chase purchases at the rate of 𝜆 = 0.5 items per day.

2. The desired probability is P(N7 ≥ 3), where N7 has a Poisson distribution with
parameter 𝜆t = (0.5)7 = 3.5. This gives

P(N7 ≥ 3) = 1 − P(N7 ≤ 2) = 1 − P(N7 = 0) − P(N7 = 1) − P(N7 = 2)

= 1 − e−7∕2 − 7e−7∕2

2
− 49e−7∕2

8
= 0.679.

3. The time of Chase’s 10th purchase is S10. The desired probability is P(S10 ≤

20). Since S10 ∼ Gamma(10, 0.5), we have

P(S10 ≤ 20) =
∫

20

0

(1∕2)10x9e−x∕2

Γ(10)
dx = 0.542,

where the probability is evaluated using R.

4. The expectation is E[N30]. The variable N30 has a Poisson distribution with
parameter (0.5)30 = 15. Thus, the expected number of purchases next month
is E[N30] = 15.

5. If we consider the present time as t = 0, then the time of Chase’s next pur-
chase is E1. The desired probability is P(E1 > 5|E1 > 2). By the memoryless
property of the exponential distribution, this is equal to P(E1 > 3) = e−3𝜆 =
e−1.5 = 0.223. ◼

Properties of the Poisson process. Suppose calls come in to a call center starting
at 8 a.m. according to a Poisson process with parameter 𝜆. Jack and Jill work at the
center. Jill gets in to work at 8 a.m. Jack does not start until 10 a.m.

If we consider the process of phone call arrivals that Jack sees starting at 10
a.m., that arrival process is also a Poisson process with parameter 𝜆. Because of the
memoryless property of the exponential distribution, the process started at 10 a.m.
is a “translated” version of the original process, shifted over 2 hours.

The number of calls that Jack sees in the hour between 11 a.m. and noon has
the same distribution as the number of calls that Jill sees between 9 and 10 a.m.
(We did not say that the number of calls between 11 a.m. and noon is equal to the
number of calls between 9 and 10 a.m. Rather that their distributions are the same.)
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This is the stationary increments property of a Poisson process and is a consequence
of memorylessness. The distribution of the number of arrivals in an interval only
depends on the length of the interval, not on the location of the interval.

In addition, whether or not calls come in between 9 and 10 a.m. has no influ-
ence on the distribution of calls between 11 a.m. and noon. The number of calls in
each disjoint interval is independent of each other. This is called the independent
increments property of a Poisson process.

PROPERTIES OF POISSON PROCESS

Let (Nt)t≥0 be a Poisson process with parameter 𝜆.

Independent increments

If 0 < q < r < s < t, then Nr − Nq and Nt − Ns are independent random
variables. That is,

P(Nr − Nq = m,Nt − Ns = n) = P(Nr − Nq = m)P(Nt − Ns = n),

for all m, n = 0, 1, 2, . . . .

Stationary increments

For all 0 < s < t, Nt+s − Nt and Ns have the same distribution. That is,

P(Nt+s − Nt = k) = P(Ns = k) = e−𝜆s(𝜆s)k

k!
, for k = 0, 1, 2, . . . .

□■ Example 7.16 Starting at 6:00 a.m., birds perch on a power line according to a
Poisson process with parameter 𝜆 = 8 birds per hour.

1. Find the probability that at most two birds arrive between 7 and 7:15 a.m.
We start at time t = 0 and keep track of hours after 6:00 a.m. The desired
probability is P(N1.25 − N1 ≤ 2).By the stationary increments property, this is
equal to the probability that at most two birds perch during the first 15 minutes
(one-fourth of an hour). The desired probability is

P(N1.25 − N1 ≤ 2) = P(N0.25 ≤ 2)

= e−8∕4[1 + 2 + 22∕2]

= 5e−2 = 0.677.

2. Between 7 and 7:30 a.m, five birds arrive on the power line. What is the expec-
tation and standard deviation for the number of birds that arrive from 3:30 to
4:00 p.m?
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By the independent increments property, the number of birds that perch in the
afternoon is independent of the number that perch in the morning, so the fact
that 5 birds arrived in that half-hour in the morning is irrelevant. By the sta-
tionary increments property, the number of birds within each half-hour period
has a Poisson distribution with parameter 𝜆∕2 = 4. Hence, the desired expec-
tation is four birds and the standard deviation is two birds. ◼

□■ Example 7.17 The number of goals scored during a soccer match is modeled
as a Poisson process with parameter 𝜆. Suppose five goals are scored in the first t
minutes. Find the probability that two goals are scored in the first s minutes, s < t.

The event that two goals are scored in the time interval [0, s] and five goals are
scored in [0, t] is equal to the event that two goals are scored in [0, s] and three goals
are scored in (s, t]. Thus,

P(Ns = 2|Nt = 5) =
P(Ns = 2,Nt = 5)

P(Nt = 5)

=
P(Ns = 2,Nt − Ns = 3)

P(Nt = 5)

=
P(Ns = 2)P(Nt − Ns = 3)

P(Nt = 5)

=
P(Ns = 2)P(Nt−s = 3)

P(Nt = 5)

=
(e−𝜆s(𝜆s)2∕2!)(e−𝜆(t−s)(t − s)3∕3!)

e−𝜆t(𝜆t)5∕5!

=
(5

2

) s2(t − s)3

t5
=
(5

2

)( s
t

)2(
1 − s

t

)3
,

where the third equality is from independent increments and the fourth equality is
from stationary increments.

The final expression is a binomial probability. Extrapolating from this example
we obtain a general result: Let (Nt)t≥0 be a Poisson process with parameter 𝜆. For
0 < s < t, the conditional distribution of Ns given Nt = n is binomial with parame-
ters n and p = s∕t. ◼

R: SIMULATING A POISSON PROCESS

One way to simulate a Poisson process is to first simulate exponential interarrival
times and then construct the arrival sequence. To generate n arrivals of a Poisson
process with parameter 𝜆, type

> n <- 30 # choose a reasonable n
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> lambda <- 1/2
> inter <- rexp(n, lambda)
> arrive <- cumsum(inter)

The cumsum command returns a cumulative sum from the interarrival times.
The vector arrive contains the times of successive arrivals. The last arrival
time is

> last <- tail(arrive, 1)

For t ≤ last, the number of arrivals up to time t, Nt, is simulated by

> sum(arrive <= t)

For example, consider a Poisson process with parameter 𝜆 = 1∕2. We simu-
late the probability P(N5 − N2 = 1):

> reps <- 10000
> simlist <- numeric(reps)
> for (i in 1:n) {
inter <- rexp(n,lambda)
arrive <- cumsum(inter)
nt <- sum( 2 <= arrive & arrive <= 5)
simlist[i] <- if (nt == 1) 1 else 0 }
> mean(simlist)
[1] 0.3335

As P(N5 − N2 = 1) = P(N3 = 1), here is the exact answer:

> dpois(1,3/2)
[1] 0.3346952

□■ Example 7.18 Waiting time paradox. The following classic is from Feller
[1968]. Buses arrive at a bus stop according to a Poisson process with parameter 𝜆.
The expected time between buses is 1∕𝜆. Suppose you get to the bus stop at noon.
How long can you expect to wait for a bus? Here are two possible answers.

1. The memoryless property of the Poisson process means that the distribution
of your waiting time should not depend on when you arrive at the bus stop.
Thus, your expected waiting time is 1∕𝜆.

2. You arrive at some time between two consecutive buses. By symmetry your
expected waiting time should be half the expected time between two consec-
utive buses, that is, 1∕(2𝜆).
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We explore the issue with a simulation, assuming that buses arrive on average
every 20 minutes and 𝜆 = 1∕20. Assume you arrive at the bus stop at time t = 200.
The variable wait is your waiting time. The simulation repeats the experiment
10,000 times. See bus.R.

R: WAITING TIME PARADOX

> mytime <- 200 # arbitrary time you get to bus stop
> n <- 50
> lambda <- 1/20
> reps <- 10000
> simlist <- numeric(reps)
> for (i in 1:reps) {
arrivals <- cumsum(rexp(n, lambda))
wait <- arrivals[arrivals > mytime][1] - mytime
simlist[i] <- wait }
> mean(simlist)
[1] 19.86749

It appears the average wait is around 20 minutes.

The simulation suggests that the expected waiting time is 20 = 1∕𝜆 minutes. So
what is the fallacy of the second approach? Buses arrive on average, say, every 20
minutes. But the time between buses is random, buses may arrive one right after the
other, or there may be a long time between consecutive buses. When you get to the
bus stop, it is more likely that you get there during a longer interval between buses
rather than a shorter interval.

This phenomenon is known as length-biased or size-biased sampling. If you
reach into a bag containing pieces of string of different lengths and pick one “at
random,” you tend to pick a longer rather than shorter piece. Bus interarrival time
intervals are analogous to pieces of string.

Here is another example of size-biased sampling. Suppose you want to estimate
how much time people spend working out at the gym. If you go to the gym to ask
people at random how long they work out, you are likely to get a biased estimate
that is too big. You are more likely to sample someone who works out a lot. The
people who go to the gym for brief periods of time are likely not to be there when
you go to sample.

In the bus waiting problem, it turns out that the expected length of an interar-
rival time interval which contains a fixed time t is actually about 2∕𝜆, which is
twice as large as the expected interarrival time. To verify, we modify the simulation
code, keeping track of bus arrival times before and after the time we get to the bus
stop.
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R: WAITING TIME SIMULATION CONTINUED

> mytime <- 200
> for (i in 1:reps) {
arrivals <- cumsum(rexp(n, lambda))
indx <- which(arrivals > mytime)[1]
lengthintrvl <- arrivals[indx] - arrivals[indx-1]
simlist[i] <- lengthintrvl }
> mean(simlist)
[1] 39.99006

Repeated twice more, we find averages of 40.89851 and 39.85409.

So the second answer was not entirely wrong. Symmetry says that your expected
waiting time should be half the expected time between the two buses that arrive
before and after the time you get there. This gives the expected waiting time for a
bus as (1∕2)(2∕𝜆) = 1∕𝜆.

Finally, there is nothing special about the time t = 200. The result holds for any
fixed time. You can try out other times in the R supplement, available online. ◼

7.4 BETA DISTRIBUTION

The beta distribution generalizes the uniform distribution. A beta random variable
takes values between zero and one. The distribution is parametrized by two positive
numbers a and b (see Figure 7.7 for examples).

A random variable X has a beta distribution with parameters a > 0 and b > 0 if
the density function of X is

f (x) = Γ(a + b)
Γ(a)Γ(b)

xa−1(1 − x)b−1
, 0 < x < 1,

and 0, otherwise. We write X ∼ Beta(a, b).

When a = b = 1, the beta distribution reduces to the uniform distribution on
(0, 1). Be aware that other sources may use 𝛼 and 𝛽 for the distribution parameters.

Using integration by parts, one can show that

∫

1

0
xa−1(1 − x)b−1 dx = Γ(a)Γ(b)

Γ(a + b)
, (7.3)

for a, b > 0, and thus the beta density integrates to one.
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FIGURE 7.7: Four beta distributions.

To find the expectation of a beta distribution, use the methods of Section 7.2.1,
making integrals look like probability distributions so that they integrate to one. Let
X ∼ Beta(a, b). Then

E[X] =
∫

1

0
(x) Γ(a + b)

Γ(a)Γ(b)
xa−1(1 − x)b−1 dx = Γ(a + b)

Γ(a)Γ(b) ∫

1

0
xa(1 − x)b−1 dx.

The integrand is proportional to a beta density with parameters a + 1 and b. This
gives

E[X] = Γ(a + b)
Γ(a)Γ(b) ∫

1

0
xa(1 − x)b−1 dx

= Γ(a + b)
Γ(a)Γ(b)

(
Γ(a + 1)Γ(b)
Γ(a + 1 + b)

)
∫

1

0

Γ(a + 1 + b)
Γ(a + 1)Γ(b)

xa(1 − x)b−1 dx

= Γ(a + b)
Γ(a)Γ(b)

(
Γ(a + 1)Γ(b)
Γ(a + 1 + b)

)
= a

a + b
,

using the property Γ(x + 1) = xΓ(x) of the gamma function.
We leave it to the reader to derive the variance of the beta distribution which is

V[X] = ab
(a + b)2(a + b + 1)

,

using similar techniques in Exercise 7.38.
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As probabilities and proportions are numbers between zero and one, the beta
distribution is widely used to model an unknown probability or proportion p. For
instance, Chia and Hutchinson [1991] model the fraction of daylight hours not
receiving bright sunshine with a beta distribution. Gupta and Nadarajah [2004]
is a book-length treatment of the many and diverse applications of the beta
distribution.

□■ Example 7.19 The proportion of his daily study time that Sean devotes to prob-
ability is modeled with a density function proportional to x3(1 − x), for 0 < x < 1.
What is the probability that Sean will spend more than half his study time tomorrow
on probability?

Let X be the proportion of Sean’s study time spent on probability. The given
density function is that of a beta distribution with parameters a = 4 and b = 2. The
desired probability is

P(X > 1∕2) =
∫

1

1∕2

Γ(6)
Γ(4)Γ(2)

x3(1 − x) dx =
∫

1

1∕2
20x3(1 − x) dx = 13

16
.

In R, type

> 1-pbeta(1/2,4,2)
[1] 0.8125 ◼

□■ Example 7.20 Clarissa is responsible for monitoring a newly installed sensor net-
work to find faulty sensors that need replaced. Suppose the proportion of faulty
sensors is modeled by a Beta distribution with parameters a = 1 and b = 200. What
is the expected proportion of faulty sensors?

We have already calculated the mean of the Beta distribution as a∕(a + b), so
the expected proportion is 1∕201. However, if you did not remember this result,
we want to emphasize the power of being able to recognize density functions for
solving integrals. If the expectation was set up as defined, you would be solving

E(X) =
∫

1

0

Γ(201)
Γ(1)Γ(200)

x2(1 − x)200 dx.

Note that while the constants do not match, the structure of x2(1 − x)200 looks like
another beta distribution. By multiplying by conveniently chosen constants, you can
obtain an integrand that will integrate to one, with constants outside to evaluate, as
shown.

E(X) = Γ(201)Γ(2)
Γ(1)Γ(202) ∫

1

0

Γ(202)
Γ(2)Γ(200)

x2(1 − x)200 dx = Γ(201)Γ(2)
Γ(1)Γ(202)

= 1
201

.

◼
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Beta distributions are often used to model continuous random variables that take
values in some bounded interval. The beta distribution can be extended to the inter-
val (s, t) by the scale change

Y = (t − s)X + s.

If X has a beta distribution on (0, 1), then Y has an extended beta distribution on
(s, t). This result is an exercise for the reader in Chapter 8.

7.5 PARETO DISTRIBUTION*

The normal, exponential, gamma, Poisson, and geometric distributions all have
probability functions that contain an exponential factor of the form a−x, where a is
a positive constant. What this means is that the probability of a “large” outcome far
from the mean in the “tail” of the distribution is essentially negligible. For instance,
the probability that a normal distribution takes a value greater than six standard
deviations from the mean is about two in a billion.

In many real-world settings, however, variables take values over a wide range
covering several orders of magnitude. For instance, although the average size of US
cities is about 6000, there are American cities whose populations are a thousand
times that much.

Tens of thousands of earthquakes occur every day throughout the world, measur-
ing less than 3.0 on the Richter magnitude scale. Yet each year there are about a hun-
dred earthquakes of magnitude between 6.0 and 7.0, and one or two greater than 8.0.

The Pareto distribution is an example of a “power–law” distribution whose
density function is proportional to the power function x−a. Such distributions have
“heavy tails,” which give nonnegligible probability to extreme values. The Pareto
distribution has been used to model population, magnitude of earthquakes, size of
meteorites, maximum one-day rainfalls, price returns of stocks, Internet traffic, and
wealth in America.

The distribution was discovered by the Italian economist Vilfredo Pareto who
used it to model income distribution in Italy at the beginning of the twentieth
century.

PARETO DISTRIBUTION

A random variable X has a Pareto distribution with parameters m > 0 and a > 0
if the density function of X is

f (x) = a
ma

xa+1
, for x > m.

The distribution takes values above a minimum positive number m. We write
X ∼ Pareto(m, a).
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TABLE 7.1. Comparison of tail probabilities
for normal and Pareto distributions

P(|X − 𝜇| > k𝜎)

k Normal(3/2, 3/4) Pareto(1, 3)

1 3.173 × 10−1 7.549 × 10−2

2 4.550 × 10−2 2.962 × 10−2

3 2.700 × 10−3 1.453 × 10−2

4 6.334 × 10−5 8.175 × 10−3

5 5.733 × 10−7 5.046 × 10−3

6 1.973 × 10−9 3.331 × 10−3

7 2.560 × 10−12 2.312 × 10−3

□■ Example 7.21 Consider a Pareto distribution with parameters m = 1 and a = 3.
The expectation and variance of this distribution are 𝜇 = 3∕2 and 𝜎2 = 3∕4. In
Table 7.1, we compare the tail probability P(|X − 𝜇| > k𝜎) of falling more than k
standard deviations from the mean for this distribution and for a normal distribution
with the same mean and variance.

The data highlight the heavy tail property of the Pareto distribution. In a billion
observations of a normally distributed random variable, you would expect about
1.973 × 10−9 × 109 = 1.973 ≈ 2 observations greater than six standard deviations
from the mean. But for a Pareto distribution with the same mean and variance, you
would expect to see about 3.31 × 10−3 × 109 = 3,310, 000 such outcomes. ◼

The Pareto distribution is characterized by a special scale-invariance property.
Intuitively this means that the shape of the distribution does not change by changing
the scale of measurements. For instance, it is reasonable to model income with a
scale-invariant distribution because the distribution of income does not change if
units are measured in dollars, or converted to euros or to yen. You can see this
phenomenon in Figure 7.8. The plots show the density curve for a Pareto distribution
with m = 1 and a = 1.16 over four different intervals of the form c < x < 5c. The
shape of the curve does not change for any value of c.

SCALE-INVARIANCE

A probability distribution with density f is scale-invariant if for all positive con-
stants c,

f (cx) = g(c)f (x),

where g is some function that does not depend on x.
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FIGURE 7.8: Scale-invariance of the Pareto distribution. The density curve is for a Pareto
distribution with m = 1 and a = 1.16. The curve is shown on intervals of the form c < x < 5c,
for c = 1, 3, 9, 27.

For the Pareto distribution,

f (cx) = a
ma

(cx)a+1
=
( 1

ca+1

)
a

ma

xa+1
= 1

ca+1
f (x).

Hence, the distribution is scale-invariant.
Newman [2005] is an excellent source for background on the Pareto distribution.

He shows that a power–law distribution is the only probability distribution that is
scale-invariant.

The 80-20 rule. Ever noticed that it seems to take 20% of your time to do
80% of your homework? Or you wear 20% of your clothes 80% of the time? The
numbers 80 and 20 seem to be empirically verified by many real-life phenomena.
Pareto observed that 80% of the land in Italy was owned by 20% of the people. The
so-called 80-20 rule is characteristic of the Pareto distribution.

Suppose income is modeled with a Pareto distribution. Further suppose that
income follows an 80-20 rule with 80% of the wealth owned by 20% of the people.
How should the parameter a be determined?
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Let X be a random variable with the given Pareto distribution. Then the propor-
tion of the population with income larger than x is

P(X > x) =
∫

∞

x
a

ma

ta+1
dt =

(m
x

)a
, for x > m.

Solving 0.20 = (m∕x)a gives x = m51∕a
.

The proportion of total income in the hands of those people is estimated in
economics by the Lorenz function

L(x) =
∫

∞
x tf (t) dt

∫
∞

m tf (t) dt
=
(m

x

)a−1
.

This gives
L(m51∕a) = 5(1−a)∕a

.

If 80% of the income is owned by 20% of the people, then 0.80 = 5(1−a)∕a, which
gives log 4∕5 = (1 − a)∕a log 5, and thus a = log 5∕ log 4 = 1.16.

7.6 SUMMARY

Several families of continuous distributions and random processes are introduced
in this chapter. The normal distribution is perhaps the most important distribution
in statistics. Many key properties of the distribution are presented, such as (i) linear
functions of normal random variables are normal; (ii) sums of independent nor-
mal variables are normally distributed; and (iii) the so-called “68-95-99.7 rule,”
which quantifies the probability that a normal variable is within one, two, and three
standard deviations from the mean. The normal approximation of the binomial dis-
tribution is discussed, as well as the continuity correction used when a continuous
density curve is used to approximate a discrete probability. Quantiles are introduced,
as well as general results for sums and averages of i.i.d. random variables.

The gamma distribution arises as the sum of i.i.d. exponential random variables.
This flexible two-parameter family of distributions generalizes the exponential dis-
tribution. The Poisson process, a continuous time stochastic (random) process, is
presented. The process sees the interrelationship between gamma, exponential, and
Poisson random variables. The process arises as a model for the “arrival” of “events”
(e.g., phone calls at a call center, accidents on the highway, and goals at a soccer
game) in continuous time. The key properties of a Poisson process—stationary and
independent increments—are explained.

Also introduced in this chapter is the beta distribution, a two-parameter family of
distributions on (0, 1) that generalizes the uniform distribution. Finally, the Pareto
distribution, part of a larger class of scale-invariant, power–law distributions, is pre-
sented. Connections are drawn with the so-called 80-20 rule.
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• Normal distribution: A random variable X is normally distributed with
parameters 𝜇 and 𝜎2 if the density of X is

f (x) = 1

𝜎

√
2𝜋

e−(x−𝜇)
2∕2𝜎2

, for −∞ < x < ∞.

Parameters 𝜇 and 𝜎2 are, respectively, the mean and variance of the distribu-
tion.

• Normal setting: The bell-shaped, symmetric distribution arises as a simple
model for many complex phenomena. It has been used to model measure-
ment error, standardized test scores, and human characteristics like height and
weight.

• 68-95-99.7 rule: For any normal distribution, the probability that an outcome
is within one, two, and three standard deviations from the mean is, respec-
tively, about 68, 95, and 99.7%.

• Standard normal: A normal random variable with mean 𝜇 = 0 and variance
𝜎2 = 1 is said to have a standard normal distribution.

• Linear function: If X ∼ Norm(𝜇, 𝜎2), then for constants a ≠ 0 and b, the
random variable aX + b is normally distributed with mean a𝜇 + b and vari-
ance a2𝜎2. It follows that (X − 𝜇)∕𝜎 ∼ Norm(0, 1).

• Normal approximation of the binomial distribution: If X ∼ Binom(n, p),
and n is large, then X has an approximate normal distribution with mean
E[X] = np and variance V[X] = np(1 − p). In particular, for a < b,

lim
n→∞

P

(
a ≤

X − np√
np(1 − p)

≤ b

)
= 1√

2𝜋 ∫

b

a
e−x2∕2 dx.

• Continuity correction: Suppose X is a discrete random variable and we wish
to approximate P(a ≤ X ≤ b) using a continuous distribution whose density
function is f . Then take

P(a ≤ X ≤ b) ≈
∫

b+1∕2

a−1∕2
f (x) dx.

• Quantiles: If X is a continuous random variable and 0 < p < 1, then the pth
quantile is the number q that satisfies P(X ≤ q) = p∕100.

• Averages of i.i.d. random variables: Suppose X1, . . . ,Xn are i.i.d. with mean
𝜇 and variance 𝜎2. Let Sn = X1 + · · · + Xn. Then Sn∕n is the average and

1. E[Sn∕n] = 𝜇.

2. V[Sn∕n] = 𝜎2∕n.

3. If the Xi’s are normally distributed, then so is Sn∕n. That is, Sn∕n ∼
Norm(𝜇, 𝜎2∕n).
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• Gamma distribution: A random variable X has a gamma distribution with
parameters a and 𝜆 if the density of X is

f (x) = 𝜆axa−1e−𝜆x

Γ(a)
, for x > 0,

where Γ(a) = ∫
∞

0 ta−1e−t dt is the gamma function.

• Gamma setting: The distribution is a flexible, two-parameter distribution
defined on the positive reals. A sum of n i.i.d. exponential random vari-
ables with parameter 𝜆 has a gamma distribution with parameters n and
𝜆. The gamma distribution generalizes the exponential distribution (with
a = 1).

• Gamma distribution properties: If X ∼ Gamma(a, 𝜆), then

1. E[X] = a∕𝜆.

2. V[X] = a∕𝜆2.

• Poisson process: This is a model for the distribution of “events” or “arrivals”
in space and time. Times between arrivals are modeled as i.i.d. exponential
random variables with parameter 𝜆. Let Nt be the number of arrivals up to
time t, defined for all nonnegative t. Then Nt ∼ Pois(𝜆t). The collection of
random variables (Nt)t≥0 is a Poisson process with a parameter 𝜆.

• Properties of Poisson process:

1. Stationary increments: For 0 < s < t, the distribution of Nt+s − Nt, the
number of arrivals between times t and t + s, only depends on the length of
the interval (t + s) − t = s. That is, the distribution of Nt+s − Nt is the same
as the distribution of Ns. Hence,

P(Nt+s − Nt = k) = e−𝜆s(𝜆s)k

k!
, for k = 0, 1, . . .

2. Independent increments: For 0 < a < b < c < d, Nb − Na and Nd − Nc
are independent random variables. The number of arrivals in disjoint inter-
vals is an independent random variable.

• Beta distribution: A random variable X has a beta distribution with parame-
ters a > 0 and b > 0 if the density of X is

f (x) = Γ(a + b)
Γ(a)Γ(b)

xa−1(1 − x)b−1
, for 0 < x < 1.

• Beta setting: The distribution is a flexible two-parameter family of distri-
butions on (0, 1). It is often used to model an unknown proportion or prob-
ability. The distribution generalizes the uniform distribution on (0, 1) (with
a = b = 1).
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• Beta distribution properties: If X ∼ Beta(a, b), then
1. E[X] = a∕(a + b).
2. V[X] = ab∕((a + b)2(a + b + 1)).

• Pareto distribution: A random variable X has a Pareto distribution with
parameters m > 0 and a > 0 if the density of X is

f (x) = a
ma

xa+1
, for x > m.

• Pareto setting: The distribution is used to model heavily skewed data such as
population and income. It is an example of a “power–law” distribution with
the so-called heavy tails.

• Scale-invariance: A distribution with density function f is scale-invariant if
for all constants c, f (cx) = g(c)f (x), where g is some function that does not
depend on x. The Pareto distribution is scale-invariant.

EXERCISES

Normal Distribution

7.1 Let X ∼ Norm(−4, 25). Approximate the following probabilities without
using software:

(a) P(X > 6).
(b) P(−9 < X < 1).
(c) P(

√
X > 1).

7.2 Let X ∼ Norm(4, 4). Find the following probabilities using R:

(a) P(|X| < 2).
(b) P(eX < 1).
(c) P(X2 > 3).

7.3 Babies’ birth weights are normally distributed with mean 120 ounces and stan-
dard deviation 20 ounces. Low birth weight is an important indicator of a
newborn baby’s chances of survival. One definition of low birth weight is that
it is the fifth percentile of the weight distribution.

(a) Babies who weigh less than what amount would be considered low birth
weight?

(b) Very low birth weight is used to described babies who are born weighing
less than 52 ounces. Find the probability that a baby is born with very low
birth weight.

(c) Given that a baby is born with low birth weight, what is the probability
that they have very low birth weight?
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7.4 An elevator’s weight capacity is 1000 pounds. Three men and three women are
riding the elevator. Adult male weight is normally distributed with mean 172
pounds and standard deviation 29 pounds. Adult female weight is normally
distributed with mean 143 pounds and standard deviation 29 pounds. Find the
probability that the passengers’ total weight exceeds the elevator’s capacity.

7.5 The rates of return of ten stocks are normally distributed with mean 𝜇 = 2 and
standard deviation 𝜎 = 4 (units are percentages). Rates of return are indepen-
dent from stock to stock. Each stock sells for $10 a share. Gabrielle, Hasan,
and Ian have $100 each to spend on their stock portfolio. Gabrielle buys one
share of each stock. Hasan buys two shares from five different companies. Ian
buys ten shares from one company. For each person, find the probability that
their average rate of return is positive.

7.6 The two main standardized tests in the United States for high school students
are the ACT and SAT. ACT scores are normally distributed with mean 18 and
standard deviation 6. SAT scores are normally distributed with mean 500 and
standard deviation 100. Suppose Vanessa takes an SAT exam and scores 680.
Wyatt plans to take the ACT. What score does Wyatt need to get so that his
standardized score is the same as Vanessa’s standardized score? What per-
centile do they each score at?

7.7 In 2011, the SAT exam was a composite of three exams—in reading, math,
and writing. For 2011 college-bound high school seniors, Table 7.2 gives the
mean and standard deviation of the three exams. The data are from the College
Board [2011].
Let R, M, and W denote the reading, math, and writing scores. The College
Board also estimates the following correlations between the three exams:

Corr(R,M) = Corr(W,M) = 0.72, Corr(R,W) = 0.84.

(a) Find the mean and standard deviation of the total composite SAT score
T = R + M + W.

(b) Assume total composite score is normally distributed. Find the 80th and
90th percentiles.

(c) Chana took the SAT in 2011. Find the probability that the average of her
three exam scores is greater than 600.

TABLE 7.2. SAT statistics for 2011
college-bound seniors

Reading Math Writing

Mean 497 514 489
SD 114 117 113
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7.8 Let X ∼ Norm(𝜇, 𝜎2). Show that E[X] = 𝜇.

7.9 Find all the inflection points of a normal density curve. Show how this infor-
mation can be used to draw a normal curve given values of 𝜇 and 𝜎.

7.10 Suppose Xi ∼ Norm(i, i) for i = 1, 2, 3, 4. Further assume all the Xi’s are inde-
pendent. Find P(X1 + X3 < X2 + X4).

7.11 Let X1, . . . ,Xn be an i.i.d. sequence of normal random variables with mean 𝜇

and variance 𝜎2. Let Sn = X1 + · · · + Xn.

(a) Suppose 𝜇 = 5 and 𝜎2 = 1. Find P(|X1 − 𝜇| ≤ 𝜎).
(b) Suppose 𝜇 = 5, 𝜎2 = 1, and n = 9. Find P(|Sn∕n − 𝜇| ≤ 𝜎).

7.12 Let X ∼ Norm(𝜇, 𝜎2). Suppose a ≠ 0 and b are constants. Show that Y = aX +
b is normally distributed using mgfs.

7.13 Let X1, . . . ,Xn be i.i.d. normal random variables with mean 𝜇 and standard
deviation 𝜎. Recall that X = (X1 + · · · + Xn)∕n is the sample average. Let

S = 1
n − 1

n∑
i=1

(Xi − X)2.

Show that E[S] = 𝜎2. In statistics, S is called the sample variance.

7.14 Let Z ∼ Norm(0, 1). Find E[|Z|].
7.15 If Z has a standard normal distribution, find the distribution of Z2 using mgfs.

7.16 If X and Y are independent standard normal random variables, show that X2 +
Y2 has an exponential distribution using mgfs.

7.17 If X,Y ,Z are independent standard normal random variables, find the distri-
bution of X2 + Y2 + Z2 using mgfs.

7.18 Validate the normal approximation to the binomial requirement that np and
n(1 − p) must be greater than or equal to 10 for the approximation to work
well. Hint: think about where the majority of values for both distributions are.

7.19 Let X be a random variable with mean 𝜇 and standard deviation 𝜎. The skew-
ness of X is defined as

skew(X) = E[(X − 𝜇)3]
𝜎3

.

Skewness is a measure of the asymmetry of a distribution. Distributions that
are symmetric about 𝜇 have skewness equal to 0. Distributions that are right
skewed have positive skewness. Left-skewed distributions have negative
skewness.
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(a) Show that

skew(X) = E[X3] − 3𝜇𝜎2 − 𝜇3

𝜎3
.

(b) Use the mgfs to find the skewness of the exponential distribution with
parameter 𝜆.

(c) Use the mgfs to find the skewness of a normal distribution.

7.20 Let X be a random variable with mean 𝜇 and standard deviation 𝜎. The kurtosis
of X is defined as

kurtosis(X) = E[(X − 𝜇)4]
𝜎4

.

The kurtosis is a measure of the “peakedness” of a probability distribution.
Use the mgfs and find the kurtosis of a standard normal distribution.

Gamma Distribution, Poisson Process

7.21 Your friend missed probability class today. Explain to your friend, in simple
language, what random variables are involved in a Poisson process.

7.22 Using integration by parts, show that the gamma function satisfies

Γ(a) = (a − 1)Γ(a − 1).

7.23 Let X ∼ Gamma(a, 𝜆). Find V[X] using the methods of Section 7.2.1.

7.24 May is tornado season in Oklahoma. According to the National Weather Ser-
vice, the rate of tornadoes in Oklahoma in May is 21.7 per month, based on
data from 1950 to the present. Assume tornadoes follow a Poisson process.

(a) What is the probability that next May there will be more than 25 torna-
does?

(b) What is the probability that the 10th tornado in May occurs before
May 15?

(c) What is the expectation and standard deviation for the number of torna-
does during 7 days in May?

(d) What is the expected number of days between tornadoes in May? What
is the standard deviation?

7.25 Starting at 9 a.m., students arrive to class according to a Poisson process with
parameter 𝜆 = 2 (units are minutes). Class begins at 9:15 a.m. There are 30
students.

(a) What is the expectation and variance of the number of students in class
by 9:15 a.m.?
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(b) Find the probability there will be at least 10 students in class by 9:05 a.m.

(c) Find the probability that the last student who arrives is late.

(d) Suppose exactly six students are late. Find the probability that exactly 15
students arrived by 9:10 a.m.

(e) What is the expected time of arrival of the seventh student who gets
to class?

7.26 Solve the following integrals without calculus by recognizing the integrand as
related to a known probability distribution and making the necessary substi-
tution(s).

(a)

∫

∞

−∞
e−(x+1)2∕18 dx,

(b)

∫

∞

−∞
xe−(x−1)2∕2 dx,

(c)

∫

∞

0
x4e−2x dx,

(d)

∫

∞

0
xse−tx dx,

for positive integer s and positive real t.

7.27 Suppose (Nt)t≥0 is a Poisson process with parameter 𝜆 = 2.

(a) Find P(N4 = 7).
(b) Find P(N4 = 7,N5 = 9).
(c) Find P(N4 = 7|N5 = 9).

7.28 Suppose (Nt)t≥0 is a Poisson process with parameter 𝜆 = 1.

(a) Find P(N3 = 4).
(b) Find P(N3 = 4,N5 = 8).
(c) Find P(N3 = 4|N5 = 8).
(d) Find P(N3 = 4,N5 = 8,N6 = 10).

7.29 Suppose (Nt)t≥0 is a Poisson process with parameter 𝜆. Find P(Ns = k|Nt = n)
when s > t.

7.30 The number of accidents on a highway is modeled as a Poisson process with
parameter 𝜆. Suppose exactly one accident has occurred by time t. If 0 < s < t,
find the probability that accident occurred by time s.
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7.31 Suppose (Nt)t≥0 is a Poisson process with parameter 𝜆. For s < t, find
Cov(Ns,Nt).

7.32 If X has a gamma distribution and c is a positive constant, show that cX has a
gamma distribution using mgfs. Find the parameters.

7.33 Let X ∼ Gamma(a, 𝜆). Let Y ∼ Gamma(b, 𝜆). If X and Y are independent
show that X + Y has a gamma distribution using mgfs.

Beta Distribution

7.34 A density function is proportional to f (x) = x5(1 − x), for 0 < x < 1.
(a) Find the constant of proportionality.
(b) Find the mean and variance of the distribution.
(c) Use R to find P(X < 0.4).

7.35 A density function is proportional to f (x) = x3(1 − x)7, for 0 < x < 1.
(a) Find the constant of proportionality.
(b) Find the mean and variance of the distribution.
(c) Use R to find P(X > 0.5).

7.36 A random variable X has density function proportional to

f (x) = 1√
x(1 − x)

, for 0 < x < 1.

Use R to find P(1∕8 < X < 1∕4).

7.37 Solve the following integrals without calculus by recognizing the integrand as
related to a known probability distribution and making the necessary substi-
tution(s).
(a)

∫

1

0

1
16

x6(1 − x)3 dx.

(b)

∫

1

0
3(1 − x)7 dx.

(c)

∫

1

0
12x4(1 − x)5 dx.

7.38 Find the variance of a beta distribution with parameters a and b.
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7.39 The proportion of time that an office machine is in use during a usual 40-hour
work week, X, has a pdf which is proportional to x2(1 − x), for 0 < x < 1.

(a) Find the constant of proportionality.

(b) How many hours during the week should the office manager expect the
machine to be in use?

(c) A report from the manufacturer indicates that the machine may need early
repairs if used more than 35 hours per week. Would you worry about
needing early repairs as the office manager? Explain, using probability
to support your response.

7.40 Let X ∼ Beta(a, b), for a > 1. Find E[1∕X].

Pareto, Scale-invariant Distribution

7.41 Let X ∼ Pareto(m, a).
(a) For what values of a does the mean exist? For such a, find E[X].
(b) For what values of a does the variance exist? For such a, find V[X].

7.42 In a population, suppose personal income above $15,000 has a Pareto distri-
bution with a = 1.8 (units are $10,000). Find the probability that a randomly
chosen individual has income greater than $60,000.

7.43 In Newman [2005], the population of US cities larger than 40,000 is modeled
with a Pareto distribution with a = 2.30. Find the probability that a random
city’s population is greater than k = 3, 4, 5, and 6 standard deviations above
the mean.

7.44 Zipf’s law is a discrete distribution related to the Pareto distribution. If X has
a Zipf’s law distribution with parameters s > 0 and n ∈ {1, 2, . . . }, then

P(X = k) =
1∕ks∑n

i=1(1∕is)
, for k = 1, . . . , n.

The distribution is used to model frequencies of words in languages.

(a) Show that Zipf’s law is scale-invariant.

(b) Assume there are a million words in the English language and word fre-
quencies follow Zipf’s law with s = 1. The three most frequently occur-
ring words are, in order, “the,” “of,” and “and.” What does Zipf’s law
predict for their relative frequencies?

7.45 The “99-10” rule on the Internet says that 99% of the content generated in
Internet chat rooms is created by 10% of the users. If the amount of chat room
content has a Pareto distribution, find the value of the parameter a.
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Simulation and R

7.46 Conduct a simulation study to illustrate that sums of independent normal ran-
dom variables are normal. In particular, let X1, . . . ,X30 be normally distributed
with 𝜇 = 1 and 𝜎2 = 4. Simulate X1 + · · · + X30. Plot a histogram estimate
of the distribution of the sum together with the exact density function of a
normally distributed random variable with mean 30 and variance 120.

7.47 Suppose phone calls arrive at a Help Desk according to a Poisson process with
parameter 𝜆 = 10. Show how to simulate the arrival of phone calls.

7.48 Perform a simulation to show that the sum of four i.i.d Exponential random
variables has a Gamma distribution.

Chapter Review

Chapter review exercises are available through the text website. The URL is
www.wiley.com/go/wagaman/probability2e.
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DENSITIES OF FUNCTIONS OF
RANDOM VARIABLES

Fortes fortuna iuvat. (Fortune favors the brave.)
Pliny the Elder, attributed by his nephew, Pliny the Younger

Learning Outcomes

1. Learn how to find densities for functions of random variables, including
bivariate functions.

2. Solve problems involving minimums and maximums.

3. Apply the convolution formula to appropriate problems.

4. Use geometric thinking to solve problems.

5. (C) Simulate random variables using the inverse transform method.

Introduction. The diameter of a subatomic particle is modeled as a random
variable. The volume of the particle is a function of that random variable. The
rates of return for several stocks in a portfolio are modeled as random variables.
The portfolio’s maximum rate of return is a function of those random variables.
In previous chapters, we have explored finding expectations and variances of
functions of random variables, without finding the distribution for the new variable
directly. We have also seen a few relationships between random variables illustrated
via moment-generating functions (mgfs). There are other ways to examine these
relationships, working with density functions directly. In this chapter, we explore
ways of finding densities for functions of random variables via several methods
and for several common functions such as minimums and maximums. Geometric

Probability: With Applications and R, Second Edition. Amy S. Wagaman and Robert P. Dobrow.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/wagaman/probability2e
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thinking is also introduced as a problem-solving tool. This material may prove
challenging but is very powerful in terms of what you can accomplish working
with it.

8.1 DENSITIES VIA CDFS

In this section, you will learn how to find the distribution of a function of a ran-
dom variable. We start with an example which captures the essence of the general
approach via cumulative distribution functions (cdfs).

□■ Example 8.1 The radius R of a circle is uniformly distributed on (0, 2). Let A be
the area of the circle. Find the probability density function of A.

The area of the circle is a function of the radius. Write A = g(R), where
g(r) = 𝜋r2. Our approach to finding the density of A will be to (i) find the cdf of A
in terms of the cdf of R, and (ii) take derivatives to find the desired density function.
This is called the cdf approach to finding the density.

As R takes values between 0 and 2, A takes values between 0 and 4𝜋. For
0 < a < 4𝜋,

FA(a) = P(A ≤ a) = P(𝜋R2 ≤ a) = P(R ≤
√

a∕𝜋) = FR(
√

a∕𝜋).

Now take derivatives with respect to a. The left-hand side gives fA(a). The right-hand
side, using the chain rule, gives

d
da

FR(
√

a∕𝜋) = fR(
√

a∕𝜋)
( d

da

√
a∕𝜋

)
= fR(

√
a∕𝜋) 1

2
√

a𝜋

=
(1

2

) 1

2
√

a𝜋
= 1

4
√

a𝜋
.

That is,

fA(a) =
1

4
√

a𝜋
, for 0 < a < 4𝜋,

and 0, otherwise. Note that we could have solved the problem using either our
knowledge of the cdf of R (plugging it in before taking derivatives) or the density
(as shown). ◼

R: COMPARING THE EXACT DISTRIBUTION WITH A SIMULATION

We simulate A = 𝜋R2. The theoretical density curve fA(a) is superimposed on
the simulated histogram in Figure 8.1.
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FIGURE 8.1: Simulated distribution of A = 𝜋R2, where R ∼ Unif(0, 2). The curve is the
density function f (a) = 1∕(4

√
a𝜋).

> n <- 10000
> simlist <- pi*runif(n, 0, 2)^2
> hist(simlist,prob=T)
> curve(1/(4*sqrt(x*pi)), 0, 4*pi, add = TRUE)

This example illustrates the general approach for finding the density of a function
of a random variable. If Y = g(X), start with the cdf of Y . Express the cdf of Y in
terms of the cdf of X. Then take derivatives. Use what you know about X to simplify.

HOW TO FIND THE DENSITY OF Y = g(X)

1. Determine the possible values of Y based on the values of X and the func-
tion g.

2. Begin with the cdf FY (y) = P(Y ≤ y) = P(g(X) ≤ y). Express the cdf in
terms of the original random variable X.

3. From P(g(X) ≤ y) obtain an expression of the form P(X ≤ · · · ). The
right-hand side of the expression will be a function of y. If g is invertible
then P(g(X) ≤ y) = P(X ≤ g−1(y)).

4. Differentiate with respect to y to obtain the density fY (y).

□■ Example 8.2 Suppose X ∼ Unif(0, 1), and Y = ln(X + 1). Find the density func-
tion of Y .
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First, consider what values Y can take based on what values X can take. We see
that 0 < y < ln 2. We also know the probability distribution function (pdf) of X is
f (x) = 1, and the cdf is F(x) = x, for 0 < x < 1. We now consider the cdf of Y and
following the procedure outlined above, obtain

FY (y) = P(Y ≤ y) = P(log(X + 1) ≤ y)

= P(X + 1 ≤ ey) = P(X ≤ ey − 1)

= ey − 1.

We differentiate with respect to Y to obtain the density function. Remember chain
rule as applicable. Thus, the pdf of Y is

fY (y) =
d
dy

(ey − 1) = ey
, for 0 < y < ln 2,

and 0, otherwise. ◼

□■ Example 8.3 Linear function of a uniform random variable. Suppose
X ∼ Unif(0, 1). For a < b, let Y = (b − a)X + a. Find the density function of Y .

Because X takes values between 0 and 1, Y = (b − a)X + a takes values between
a and b. For a < y < b,

FY (y) = P(Y ≤ y) = P((b − a)X + a ≤ y)

= P
(

X ≤
y − a

b − a

)
= FX

( y − a

b − a

)
=

y − a

b − a
.

To find the density of Y , differentiate to get

fY (y) =
1

b − a
, for a < y < b.

The distribution of Y is uniform on (a, b).
Observe that we could have made this conclusion earlier by noting that the cdf

of Y is the cdf of a uniform distribution on (a, b). ◼

□■ Example 8.4 Linear function of a random variable. Suppose X is a random
variable with density fX . Let Y = aX + b, where a ≠ 0 and b are constants. Find the
density of Y .

Suppose a > 0. The cdf of Y is

FY (y) = P(Y ≤ y) = P(aX + b ≤ y)

= P

(
X ≤

y − b

a

)
= FX

(
y − b

a

)
.
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Differentiating with respect to y gives

fY (y) =
1
a

fX

(
y − b

a

)
.

If a < 0, we have

Fy(y) = P

(
X ≥

y − b

a

)
= 1 − FX

(
y − b

a

)
.

Differentiating gives

fY (y) = −1
a

fX

(
y − b

a

)
.

In either case we have

fY (y) =
1|a| fX

(
y − b

a

)
.

Observe the relationship between the density functions of X and Y . The density
of Y is obtained by translating the density of X b units to the right and stretching by
a factor of a. Then compress by a factor of |a| vertically. ◼

□■ Example 8.5 We illustrate the last result with a simple example. Suppose
X ∼ Exp(4), and Y = 6X + 11. Find the density function of Y .

From the previous result, we have a linear function where a = 6 and b = 11. We
also know that fX(x) = 4e−4x, for x > 0, and 0, otherwise. Applying the previous
result, we have

fY (y) =
1|a| fX

(
y − b

a

)
= 1

6
e−4((y−11)∕6) = 2

3
e−2(y−11)∕3

,

for y > 11, and 0, otherwise. ◼

Working through these examples, you might wonder why such approaches are
needed when we have seen examples where mgfs can be used. While mgfs are useful
in many cases, the resulting mgf may not always be identifiable as a distribution you
know, and there are times you really want the density function itself.

□■ Example 8.6 A lighthouse is one mile off the coast from the nearest point O on a
straight, infinite beach. The lighthouse sends out pulses of light at random angles Θ
uniformly distributed from −𝜋∕2 to 𝜋∕2 (it rotates only 180∘). Find the distribution
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O

X

Lighthouse

θ

FIGURE 8.2: The geometry of the lighthouse problem.

of the distance X between where the light hits the shore and O. Also find the expected
distance.

Figure 8.2 helps us to visualize the situation. Let Θ ∼ Unif(−𝜋∕2, 𝜋∕2) be
the angle of the light to the shore. Let X be the distance from where the light
hits the shore to O. By the geometry of the problem, X = tanΘ. For all real x,

FX(x) = P(X ≤ x) = P(tanΘ ≤ x)

= P(Θ ≤ tan−1x) =
tan−1x + 𝜋∕2

𝜋
.

Taking derivatives with respect to x gives,

fX(x) =
1

𝜋(1 + x2)
, −∞ < x < ∞.

This function is the density of the Cauchy distribution, also known as the
Lorentz distribution in physics, where it is used to model energy states in quantum
mechanics.

To find the expectation E[X], we can set up the integral two ways.

.

1. Use the distribution of X.

E[X] =
∫

∞

−∞
x

1
𝜋(1 + x2)

dx.

2. Use the distribution of Θ (and the law of the unconscious statistician).

E[X] = E[tanΘ] =
∫

𝜋∕2

−𝜋∕2

tan 𝜃
𝜋

d𝜃.
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However, in either case, the integral does not converge. The Cauchy distribution has
the property that its expectation does not exist.

What happens when one tries to simulate from a distribution with no expectation?

R: SIMULATING AN EXPECTATION THAT DOES NOT EXIST

The function noexp() simulates 100,000 trials of X, the distance from where
the light hits the shore and O, and then computes the average.

> noexp <- function()
mean(tan(runif(100000,-pi/2,pi/2)))}

Repeated simulations show no equilibrium. The averages are erratic; some
are close to 0; others show large magnitudes.

> noexp()
[1] 0.4331702
> noexp()
[1] 3.168341
> noexp()
[1] 12.08399
> noexp()
[1] -1.447175
> noexp()
[1] 0.5758977
> noexp()
[1] 0.6160198
> noexp()
[1] -1.768458
> noexp()
[1] -0.8728917

◼

□■ Example 8.7 Darts. Stern [1997] collected data from 590 throws at a dart
board, measuring the distance between the dart and the bullseye. To create a model
of dart throws, it is assumed that the horizontal and vertical errors H and V are inde-
pendent random variables normally distributed with mean 0 and variance 𝜎2. Let T

be the distance from the dart to the bullseye. Then, T =
√

H2 + V2 is the radial
distance. We find the distribution of T .

The radial distance is a function of two independent normals. The joint density
of H and V is the product of their marginal densities. That is,

f (h, 𝑣) =

(
1√
2𝜋𝜎

e−h2∕2𝜎2

)(
1√
2𝜋𝜎

e−𝑣
2∕2𝜎2

)
= 1

2𝜋𝜎2
e−(h

2+𝑣2)∕2𝜎2
.
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For t > 0,

P(T ≤ t) = P(
√

H2 + V2 ≤ t) = P(H2 + V2 ≤ t2)

=
∫

t

−t ∫

√
t2−𝑣2

−
√

t2−𝑣2

1
2𝜋𝜎2

e−(h
2+𝑣2)∕2𝜎2

dh d𝑣.

Changing to polar coordinates gives

P(T ≤ t) = 1
2𝜋𝜎2 ∫

t

0 ∫

2𝜋

0
e−r2∕2𝜎2

r d𝜃 dr

= 1
𝜎2 ∫

t

0
re−r2∕2𝜎2

dr = 1 − e−t2∕2𝜎2
.

Differentiating with respect to t gives

fT (t) =
t
𝜎2

e
− t2

2𝜎2 , for t > 0.

This is the density of a Weibull distribution often used in reliability theory and
industrial engineering.

In the darts model, the parameter 𝜎 is a measure of players’ accuracy. Several
statistical techniques can be used to estimate 𝜎 from the data. Estimates for two
professional darts players were made at 𝜎 ≈ 13.3. For this level of accuracy, the
probability of missing the bullseye by more than 40 mm (about 1.5 inches) is

P(T > 40) =
∫

∞

40

t
(13.3)2

e
− t2

2(13.3)2 = 0.011. ◼

8.1.1 Simulating a Continuous Random Variable

A random variable X has density f (x) = 2x, for 0 < x < 1, and 0, otherwise. Sup-
pose we want to simulate observations from X (and we did not recognize the beta
distribution). In this section, we present a simple and flexible method for simulating
from a continuous distribution. It requires that the cdf of X is invertible.

INVERSE TRANSFORM METHOD

Suppose X is a continuous random variable with cdf F, where F is invertible
with inverse function F−1. Let U ∼ Unif(0, 1). Then the distribution of F−1(U)
is equal to the distribution of X. To simulate X first simulate U and output F−1(U).
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FIGURE 8.3: Simulating from density f (x) = 2x, for 0 < x < 1 using the inverse transform
method.

To illustrate with the initial example, the cdf of X is

F(x) = P(X ≤ x) =
∫

x

0
2t dt = x2

, for 0 < x < 1.

On the interval (0, 1) the function F(x) = x2 is invertible and F−1(x) =
√

x. The

inverse transform method says that if U ∼ Unif(0, 1), then F−1(U) =
√

U has the
same distribution as X. Thus to simulate X, generate

√
U.

R: IMPLEMENTING THE INVERSE TRANSFORM METHOD

The R commands

> n <- 10000
> simlist <- sqrt(runif(n))
> hist(simlist,prob=T,main="",xlab="")
> curve(2*x,0,1,add=T)

generate the histogram in Figure 8.3, along with the super-imposed curve of the
theoretical density f (x) = 2x.

The proof of the inverse transform method is quick and easy. We need to show
that F−1(U) has the same distribution as X. For x in the range of X,

P(F−1(U) ≤ x) = P(U ≤ F(x)) = F(x) = P(X ≤ x),

using the fact that the cdf of the uniform distribution on (0, 1) is the identity function.
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□■ Example 8.8 We show how to simulate an exponential random variable using the
inverse transform method. The cdf of the exponential distribution is F(x) = 1 − e−𝜆x

with inverse function
F−1(x) = ln(1 − x)

−𝜆
.

To simulate an exponential random variable with parameter 𝜆, simulate a uniform
(0, 1) variable U and generate − ln(1 − U)∕𝜆.

Observe that if U is uniform on (0, 1), then so is 1 − U. Thus, an even simpler
method for simulating an exponential random variable is to output − ln U∕𝜆. ◼

□■ Example 8.9 Simulating the Pareto distribution. R does not have a built-in
function to simulate from the Pareto distribution. To simulate a Pareto random vari-
able, we use the inverse transform method. Let X ∼ Pareto(m, a). Then

FX(x) = 1 −
(m

x

)a

with inverse function
F−1(u) = m

(1 − u)1∕a
.

If U ∼ Unif(0, 1), then m∕(1 − U)1∕a has the desired Pareto distribution. And we can
even do a little better. Because 1 − U is also uniformly distributed on (0, 1), sim-
plify the simulation formula and use m∕U(1∕a) as an observation from a Pareto(m, a)
distribution.

To illustrate the 80-20 rule for income discussed previously, we conduct a sim-
ulation study, simulating from a Pareto distribution with parameters m = 1 and
a = log 5∕ log 4. See the script file Pareto8020.R.

R: SIMULATING THE 80-20 RULE

What percent of the population owns 80% of the income?

# Pareto8020.R
> m <- 1
> a <- log(5)/log(4)
> n <- 100000
> simlist <- m/runif(n)^(1/a)
> totalwealth <- sum(simlist)
> totalwealth80 <- 0.80*totalwealth # 80% of wealth
> indx <- which(cumsum(simlist) > totalwealth80)[1]
> 1-indx/100000 # % of pop who own 80% of income
[1] 0.24548

◼
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8.1.2 Method of Transformations

Previously, you saw that it was possible to derive a result to find densities for linear
functions of random variables in general, called the cdf method, which is applicable
to any density. While the method of cdfs is effective, it is not always necessary to
return to the cdf as the starting point for finding a pdf. In fact, some assumptions
allow for a faster computation. This result is derived as a special case based on the
cdf method.

Suppose Y = g(X), for some function g. We further assume that g is invertible.
Then by the cdf method,

FY (y) = P(Y ≤ y) = P(g(X) ≤ y) = P(X ≤ g−1(y)) = FX(g−1(y)).

Differentiating with respect to y, using the chain rule, gives

fY (y) = fX(g−1(y))
|||| d
dy

g−1(y)
|||| ,

where the absolute value results from pdfs needing to be nonnegative. You saw a
similar absolute value appear in Example 8.4.

This approach has wide application, though you must check the invertibility of
g. As a result, the approach may or may not work for g based on the values of X.
For example, if g(x) = x2, and X ∈ (0, 4), the approach will work, as g−1(y) =

√
y.

However, if X ∈ (−3, 3), then g is not invertible because not all values of Y map
back to a single X.

Other texts equivalently describe the invertible condition as requiring g to be
either an increasing or decreasing function of x for all x such that fX(x) > 0. Frame
the condition this way if it helps you, and be sure to check it!

We revisit two previous examples to show the applicability of this approach,
often called the method of transformations.

□■ Example 8.10 In Example 8.1, R ∼ Unif(0, 2), and A = 𝜋R2. Thus, we know
fR(r) = 1∕2, for 0 < r < 2, and 0, otherwise. We find the inverse function is R =√

A∕𝜋, with each value of A mapping back to a single value of R, so g is invertible.
Applying the formula above, we find the density of A is

fA(a) = fR(
√

A∕𝜋)
||||||

d
dA

(√
A
𝜋

)||||||
= 1

2
1
𝜋

1

2
√

A
= 1

4
√

a𝜋
,

for 0 < a < 4𝜋, and 0, otherwise. Note that you need to pay attention to chain rule.
This matches our previous result. ◼
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□■ Example 8.11 In Example 8.5, X ∼ Exp(4), and Y = 6X + 11, and we wanted the
density function of Y . g is invertible as X = Y−11

6
. Thus, the density of Y is

fY (y) = 4e4(y−11∕6) |||| d
dy

y − 11
6

||||
= 2

3
e−2(y−11)∕3

,

for y > 11, and 0, otherwise, as was found previously. ◼

Next, we consider other common functions of random variables and ways to find
their densities.

8.2 MAXIMUMS, MINIMUMS, AND ORDER STATISTICS

A scientist is monitoring four similar experiments and waiting for a chemical reac-
tion to occur in each. Suppose the time until the reaction has some probability
distribution and is modeled with random variables T1,T2,T3,T4, which represent
the respective reaction time for each experiment. Of interest may be the time until
the first reaction occurs. This is the minimum of the Ti’s. The time until the last
reaction is the maximum of the Ti’s.

Maximums and minimums of collections of random variables arise frequently in
applications. The key to working with them are the following algebraic relations.

INEQUALITIES FOR MAXIMUMS AND MINIMUMS

Let x1, . . . , xn, s, and t be arbitrary numbers.

1. All of the xk’s are greater than or equal to s if and only if the minimum of
the xk’s is greater than or equal to s. That is,

x1 ≥ s, . . . , xn ≥ s ⇔ min(x1, . . . , xn) ≥ s. (8.1)

2. All of the xk’s are less than or equal to t if and only if the maximum of the
xk’s is less than or equal to t. That is,

x1 ≤ t, . . . , xn ≤ t ⇔ max(x1, . . . , xn) ≤ t. (8.2)

The same results hold if partial inequalities are replaced with strict inequalities.
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□■ Example 8.12 The reliability of three lab computers is being monitored. Let
X1,X2, and X3 be the respective times until their systems crash and need to reboot.
The “crash times” are independent of each other and have exponential distributions
with respective parameters 𝜆1 = 2, 𝜆2 = 3, and 𝜆3 = 5. Let M be the time that the
first computer crashes. Find the distribution of M.

The time of the first crash is the minimum of X1,X2, and X3. Using the above
result for minimums, consider P(M > m). For m > 0,

P(M > m) = P(min(X1,X2,X3) > m)

= P(X1 > m,X2 > m,X3 > m)

= P(X1 > m)P(X2 > m)P(X3 > m)

= e−2me−3me−5m = e−10m
,

where the third equality is from independence of the Xi’s. This gives FM(m) =
P(M ≤ m) = 1 − e−10m, which is the cdf of an exponential random variable with
parameter 𝜆 = 10. The minimum has an exponential distribution. See Figure 8.4
for a comparison of simulated distributions of X1,X2,X3, and M. ◼

This example illustrates a general result—the distribution of the minimum of
independent exponential random variables is exponential.

8

0

2

4

6

λ = 2
λ = 3
λ = 5
Minimum(λ =10)

0.0 0.5 1.0 1.5 2.0 2.5

FIGURE 8.4: Simulated distribution of three independent exponential random variables and
their minimum.
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MINIMUM OF INDEPENDENT EXPONENTIAL DISTRIBUTIONS

Let X1, . . . ,Xn be independent random variables with Xk ∼ Exp(𝜆k) for
k = 1, . . . , n. Then,

min(X1, . . . ,Xn) ∼ Exp(𝜆1 + · · · + 𝜆n).

□■ Example 8.13 After a severe storm, an insurance company expects many claims
for damages. An actuary has modeled the company’s payout per claim, in thousands
of dollars, with the probability density function

f (x) = x2

9
, 0 < x < 3.

Suppose X1, . . . ,Xn represent payouts from n independent claims. Find the expected
value of the maximum payout.

Let M = max(X1, . . . ,Xn). First find the cdf of M. For 0 < m < 3,

FM(m) = P(M ≤ m) = P(max(X1, . . . ,Xn) ≤ m)

= P(X1 ≤ m, . . . ,Xn ≤ m)

= P(X1 ≤ m) · · ·P(Xn ≤ m)

= [P(X1 ≤ m)]n = [F(m)]n.

Differentiating with respect to m gives a general form of the pdf of a maximum as

fM(m) = n[F(m)]n−1f (m).

In this context, plugging in, we find that

fM(m) = n

[
∫

m

0

t2

9
dt

]n−1 [
m2

9

]
= n

[
m3

27

]n−1 [
m2

9

]
= n

9(27n−1)
m3n−1 = 3nm3n−1

27n , for 0 < m < 3.

The expectation with respect to this density is

E[M] =
∫

3

0
m

3nm3n−1

27n dm = 3n
27n ∫

3

0
m3n dm

= 3n
27n

33n+1

3n + 1
= 9n

3n + 1
.

Observe that the expected maximum payout approaches 3, meaning $3000, as the
number of claims n gets large. ◼
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□■ Example 8.14 Order statistics. Given a sequence of random variables
X1, . . . ,Xn, order the values from smallest to largest. Let X(k) denote the kth largest
value. That is,

X(1) ≤ · · · ≤ X(n).

The minimum of the n variables is X(1) and the maximum is X(n). The random vari-
ables (X(1), . . . ,X(n)) are called the order statistics.

For instance, take a sample X1, . . . ,X5, where the Xi’s are uniformly distributed
on (0, 1).

> runif(5)
[1] 0.1204 0.6064 0.5070 0.6805 0.1185

Then,

(X(1),X(2),X(3),X(4),X(5)) = (0.1185, 0.1204, 0.5070, 0.6064, 0.6805).

Consider the order statistics for n i.i.d. random variables X1, . . . ,Xn uniformly
distributed on (0, 1). We show that for each k = 1, . . . , n, the kth order statistic X(k)
has a beta distribution.

For 0 < x < 1, X(k) is less than or equal to x if and only if at least k of the Xi’s are
less than or equal to x. As the Xi’s are independent, and P(Xi ≤ x) = x, the number
of Xi’s less than or equal to x has a binomial distribution with parameters n and
p = x. Letting Y be a random variable with such a distribution gives

P(X(k) ≤ x) = P(Y ≥ k) =
n∑

i=k

(n
i

)
xi(1 − x)n−i

.

Differentiate to find the density of X(k). Consider the case k < n.

fX(k)
(x) =

n∑
i=k

(n
i

)
[ixi−1(1 − x)n−i − (n − i)(1 − x)n−i−1xi]

=
n∑

i=k

n
i!(n − i)!

ixi−1(1 − x)n−i

−
n∑

i=k

n!
i!(n − i)!

(n − i)xi(1 − x)n−i−1

=
n∑

i=k

n!
(i − 1)!(n − i)!

xi−1(1 − x)n−i

−
n−1∑
i=k

n!
i!(n − i − 1)!

xi(1 − x)n−i−1
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=
n∑

i=k

n!
(i − 1)!(n − i)!

xi−1(1 − x)n−i

−
n∑

i=k+1

n!
(i − 1)!(n − i)!

xi−1(1 − x)n−i

= n!
(k − 1)!(n − k)!

xk−1(1 − x)n−k
.

This gives the density function of a beta distribution with parameters a = k and
b = n − k + 1.

For the case k = n, the order statistic is the maximum. The density function for
the maximum of n independent uniforms is fX(n)

(x) = nxn−1, for 0 < x < 1. This is
a beta distribution with parameters a = n and b = 1. In both cases, we have the
following result.

DISTRIBUTION OF ORDER STATISTICS

Let X1, . . . ,Xn be an i.i.d. sequence uniformly distributed on (0, 1). Let
X(1), . . . ,X(n) be the corresponding order statistics. For each k = 1, . . . , n,

X(k) ∼ Beta(k, n − k + 1).

◼

□■ Example 8.15 Simulating beta random variables. We show how to simulate
beta random variables when the parameters a and b are integers using the previous
result. Suppose X1, . . . ,Xa+b−1 are i.i.d. uniform (0, 1) random variables. Then

X(a) ∼ Beta(a, (b + a − 1) − a + 1) = Beta(a, b).

To simulate a Beta(a, b) random variable, generate a + b − 1 uniform (0, 1) variables
and choose the ath largest.

This is not the most efficient method for simulating beta variables, but it works
fine for small and even moderate values of a and b. And it is easily coded. In R,
type

> sort(runif(a+b-1))[a].
◼
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8.3 CONVOLUTION

We have already seen several applications of sums of independent random variables.
Let X and Y be independent continuous variables with respective densities f and g.
We give a general expression for the density function of X + Y . As X ⟂ Y , f (x, y) =
f (x)g(y), and the cdf of X + Y is

P(X + Y ≤ t) =
∫

∞

−∞ ∫

t−y

−∞
f (x, y) dx dy

=
∫

∞

−∞

(
∫

t−y

−∞
f (x) dx

)
g(y) dy.

Differentiating with respect to t and applying the fundamental theorem of calculus
gives

fX+Y (t) = ∫

∞

−∞
f (t − y)g(y) dy. (8.3)

This is called the convolution of the densities of X and Y . Compare to the discrete
formula for the probability mass function of a sum given in Equation 4.7.

□■ Example 8.16 Once a web page goes on-line, suppose the times between succes-
sive hits received by the page are independent and exponentially distributed with
parameter 𝜆. Find the density function of the time that the second hit is received.

Let X be the time that the first hit is received. Let Y be the additional time until
the second hit. The time that the second hit is received is X + Y . We showed this
should be a Gamma distribution via mgfs previously, but now the density function
itself is desired. We find the density of X + Y two ways: (i) by using the convolution
formula and (ii) from first principles and setting up the multiple integral.

(i) Suppose the density of X is f . The random variables X and Y have the same
distribution and thus the convolution formula gives

fX+Y (t) = ∫

∞

−∞
f (t − y)f (y) dy.

Consider the domain constraints on the densities and the limits of integration.
As the exponential density is equal to 0 for negative values, the integrand
expression f (t − y)f (y) will be positive when t − y > 0 and y > 0. That is,
0 < y < t. Hence for t > 0,

fX+Y (t) = ∫

∞

−∞
f (t − y)f (y) dy

=
∫

t

0
(𝜆e−𝜆(t−y))(𝜆e−𝜆y) dy



�

� �

�

336 DENSITIES OF FUNCTIONS OF RANDOM VARIABLES

= 𝜆
2e−𝜆t

∫

t

0
dy = 𝜆

2te−𝜆t
.

(ii) First find the cdf of X + Y . For t > 0,

P(X + Y ≤ t) =
∬

{(x,y)∶x+y≤t}

f (x, y) dx dy

=
∫

t

0 ∫

t−y

0
𝜆e−𝜆x

𝜆e−𝜆y dx dy

=
∫

t

0
𝜆e−𝜆y(1 − e−𝜆(t−y)) dy

=
∫

t

0
𝜆(e−𝜆y − e−𝜆t) dy

= 1 − e−𝜆t − 𝜆te−𝜆t
.

Differentiating with respect to t gives

fX+Y (t) = 𝜆e−𝜆t − 𝜆(e−𝜆t − 𝜆te−𝜆t) = 𝜆
2te−𝜆t

, for t > 0.

As expected, the density function of X + Y is the density of a gamma distribution,
with parameters 2 and 𝜆. ◼

□■ Example 8.17 Previously, we showed that the sum of two independent normal
variables is also normal using mgfs. Now, we show it in the case of standard normal
variables via the convolution formula, Equation 8.3.

Let X and Y be independent standard normal variables. Using the convolution
formula to derive the density function of X + Y , for real t, we have

fX+Y (t) = ∫

∞

−∞
f (t − y)f (y) dy

=
∫

∞

−∞

1√
2𝜋

e−
(t−y)2

2
1√
2𝜋

e−
y2

2 dy

= 1
2𝜋 ∫

∞

−∞
e−

(2y2−2yt+t2)
2 dy. (8.4)

Consider the exponent of e in the last integral. Write

2y2 − 2yt + t2 = 2

(
y2 − yt + t2

4
+ t2

4

)
= 2

(
y − t

2

)2
+ t2

2
.
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This gives

fX+Y (t) =
1

2𝜋 ∫

∞

−∞
e
−
(

y− t
2

)2

e−
t2

4 dy

= 1√
2𝜋

√
2

e−
t2

4
∫

∞

−∞

√
2√

2𝜋
e
−
(

y− t
2

)2

dy

= 1√
2𝜋

√
2

e−t2∕4
,

where the last equality follows because the integrand is the density of a normal
distribution with mean t∕2 and variance 1∕2, and thus integrates to one. The final
expression is the density of a normal distribution with mean 0 and variance 2. That
is, X + Y ∼ Norm(0, 2). ◼

□■ Example 8.18 Sum of independent uniforms. Let X and Y be i.i.d. random
variables uniformly distributed on (0, 1). Find the density of X + Y .

Let f be the density function for the uniform distribution. We use the convolu-
tion formula. As f is equal to 0 outside the interval (0, 1), the integrand expression
f (t − y)f (y) will be positive when both factors are positive giving 0 < t − y < 1 and
0 < y < 1, or t − 1 < y < t and 0 < y < 1. We can write these two conditions as
max(0, t − 1) < y < min(1, t).

Because X + Y takes values between 0 and 2, we consider two cases:

(i) For 0 < t < 1,
max(0, t − 1) = 0 < y < min(1, t) = t

and thus 0 < y < t. In that case,

fX+Y (t) = ∫

t

0
f (t − y)f (y) dy =

∫

t

0
dy = t.

(ii) For 1 ≤ t ≤ 2,

max(0, t − 1) = t − 1 < y < min(1, t) = 1

and thus t − 1 < y < 1. In that case,

fX+Y (t) = ∫

1

t−1
f (t − y)f (y) dy =

∫

1

t−1
dy = 2 − t.

Together, we get the triangular density

fX+Y (t) =
{

t, if 0 < t ≤ 1
2 − t, if 1 < t ≤ 2,
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0.4

FIGURE 8.5: Distributions from (a) to (c): uniform, sum of two independent uniforms, sum
of three independent uniforms. Histogram is from 100,000 trials. Curve is the theoretical
density.

and 0, otherwise. See Figure 8.5 for the graph of the triangular density and the
density of the sum of three independent uniform random variables. ◼

There are several equivalent ways to tackle this problem. A different approach
using geometry is shown in the next section.

8.4 GEOMETRIC PROBABILITY

In this section, we use geometry to solve probability problems. Geometric methods
are a powerful tool for working with independent uniform random variables.

If X and Y are independent and each uniformly distributed on a bounded interval,
then (X,Y) is uniformly distributed on a rectangle. Often problems involving two
independent uniform random variables can be recast in two-dimensions where they
can be approached geometrically.

□■ Example 8.19 When Angel meets Lisa. Angel and Lisa are planning to meet
at a coffee shop for lunch. Let M be the event that they meet. Each will arrive at
the coffee shop at some time uniformly distributed between 1:00 and 1:30 p.m.
independently of each other. When each arrives they will wait for the other person
for 5 minutes, but then leave if the other person does not show up. What is the
probability that they will meet?

Let A and L denote their respective arrival times in minutes from one o’clock.
Then both A and L are uniformly distributed on (0, 30). They will meet if they both
arrive within 5 minutes of each other. Let M be the event that they meet. Then
M = {|A − L| < 5} and

P(M) = P(|A − L| < 5) = P(−5 < A − L < 5).

The analytic approach to solving this probability involves a tricky double integral
and working with the joint density function. We take a geometric approach.
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FIGURE 8.6: The shaded region is the event that Angel and Lisa meet.

Represent the arrival times A and L as a point (A,L) in a [0, 30] × [0, 30] square
in the a-l plane. As A and L are independent, the point (A,L) is uniformly distributed
on the square. The event that Angel and Lisa meet corresponds to the region five
units above and below the line L = A. See Figure 8.6.

The probability P(M) is the area of the shaded region as a proportion of the area
of the square. The area of the shaded region is best found by computing the area
of the non-shaded region, which consists of two 25 × 25 triangles for an area of
2 × 25 × 25∕2 = 625. As the area of the square is 30 × 30 = 900, this gives

P(M) = 900 − 625
900

= 11
36

= 0.306. ◼

We can use geometric methods not only to find probabilities but to derive cdfs
and density functions as well.

□■ Example 8.20 Let X and Y be independent and uniformly distributed on (0, a).
Let W = |X − Y| be their absolute difference. Find the density and expectation of W.

The cdf of W is F(𝑤) = P(W ≤ 𝑤) = P(|X − Y| ≤ 𝑤), for 0 < 𝑤 < a. Observe
that in the last example we found this probability for Angel and Lisa with a = 30
and 𝑤 = 5. Generalizing the results there with a [0, a] × [0, a] square gives

P(|X − Y| ≤ 𝑤) = a2 − (a −𝑤)2

a2
.
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0 x 1

1

0

FIGURE 8.7: Let (X,Y) be uniformly distributed on the triangle. The shaded region is the
event {X ≤ x}.

Differentiating gives the density of W

fW (𝑤) = 2(a −𝑤)
a2

, for 0 < 𝑤 < a.

The expectation of the absolute difference of X and Y is

E[W] =
∫

a

0
𝑤

2(a −𝑤)
a2

d𝑤 = 2
a2 ∫

a

0
(a𝑤 −𝑤

2) d𝑤 = 2
a2

(
a𝑤2

2
− 𝑤3

3

)|||||
a

0

= a
3
.

◼

□■ Example 8.21 A random point (X,Y) is uniformly distributed on the triangle with
vertices at (0, 0), (1, 0), and (1, 1). Find the distribution of the X-coordinate.

In Example 6.27, we gave the analytic solution using multiple integrals. Here we
use geometry. First draw the picture (see Fig. 8.7). For 0 < x < 1, the event {X ≤ x}
consists of the shaded region, with area x2∕2. The area of the large triangle is 1/2.
Thus

P(X ≤ x) =
x2∕2

1∕2
= x2

.

Differentiating gives f (x) = 2x, for 0 < x < 1.
Note that the marginal distribution of X is not uniform as the x-coordinate of the

triangle is more likely to be large than small. ◼

□■ Example 8.22 Sum of uniforms revisited. The distribution of X + Y for inde-
pendent random variables uniformly distributed on (0, 1) was derived with the con-
volution formula in Example 8.18. Here we do it geometrically.

For 0 < t < 2, consider P(X + Y ≤ t). The region x + y ≤ t in the [0, 1] × [0, 1]
square is the region below the line y = t − x. The y-intercept of the line is y = t,
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FIGURE 8.8: Region {X + Y ≤ t} for 0 < t < 1 and 1 < t < 2.

which is inside the square, if t < 1, and outside the square, if t > 1 (see Fig. 8.8).
The shaded region is the event {X + Y ≤ t} for different choices of t.

For 0 < t < 1, the area of the shaded region is t2∕2. For 1 < t < 2, the area of the
shaded region is 1 − (2 − t)2∕2. Thus,

P(X + Y ≤ t) =
⎧⎪⎨⎪⎩

0, if t ≤ 0
t2∕2, if 0 < t ≤ 1
1 − (2 − t)2∕2, if 1 < t ≤ 2
1, if t ≥ 2.

Differentiating gives

fX+Y (t) =
{

t, if 0 < t ≤ 1
2 − t, if 1 < t ≤ 2,

and 0, otherwise. ◼

□■ Example 8.23 Buffon’s needle*. The most famous problem in geometric prob-
ability is Buffon’s needle problem, introduced in 1733 by Georges-Louis Leclerc,
Comte de Buffon, who posed the question:

Suppose we have a floor made of parallel strips of wood, each the same width, and we
drop a needle onto the floor. What is the probability that the needle will lie across a
line between strips?

Assume that the lines between strips of wood are one unit apart, and the length
of the needle also has length one. It should be clear that we only need to consider
what happens on one strip of wood.

Parameterize the needle’s position with two numbers. Let D be the distance
between the center of the needle and the closest line. Let Θ be the angle that the
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needle makes with that line. Then all positions of the needle can be described by
(D,Θ), with 0 < D < 1∕2 and 0 < Θ < 𝜋. A probability model is obtained for a
random position of the needle by letting D ∼ Unif(0, 1∕2) and Θ ∼ Unif(0, 𝜋), with
D and Θ independent.

Suppose Θ = 𝜃. Consider a right triangle whose hypotenuse is the half of the
needle closest to the nearest line and with two vertices at the center and endpoint of
the needle. The length of the hypotenuse is 1/2. The triangle’s angle at the needle’s
center will either be 𝜃, if 0 < 𝜃 < 𝜋∕2, or 𝜋 − 𝜃, if 𝜋∕2 < 𝜃 < 𝜋. In either case, the
side of the right triangle opposite that angle has length (sin 𝜃)∕2. See Figure 8.9.

Considering different cases shows that the needle intersects a line if and only if
the distance of that side is greater than D. Thus, the event that the needle crosses a
line is equal to the event that sin(Θ)∕2 > D and

P(Needle crosses line) = P
( sinΘ

2
> D

)
.

The needle’s position (D, 𝜃) can be expressed as a point in the [0, 𝜋] × [0, 1∕2]
rectangle in the 𝜃-d plane. The event {sinΘ∕2 > D} is the region under the curve
d = (sin 𝜃)∕2 (see Fig. 8.10).

The area of this region is

∫

𝜋

0

sin 𝜃
2

d𝜃 = − cos 𝜃
2

||||
𝜋

0
= 1.

As a fraction of the area of the rectangle 𝜋∕2 this gives

P(Needle crosses line) = 1
𝜋∕2

= 2
𝜋

= 0.6366 . . .

D

D

sin(θ)/2

sin(θ)/2

θ

θ

FIGURE 8.9: Geometry of Buffon’s needle problem. The needle intersects a line if
sin(𝜃)∕2 > D.
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0

1/2

0

sin(θ)/2 > d

π

FIGURE 8.10: Buffon’s needle problem is solved by finding the area under the curve d =
sin(𝜃)∕2 as a proportion of the area of the [0, 𝜋] × [0, 1∕2] rectangle.

Although the number 𝜋, pervasive throughout mathematics, is not a physical
constant, here we have a physical method to simulate 𝜋: drop needles on a wooden
floor and count the number of times a line is crossed. For large n,

P(Needle crosses line) ≈ Number of needle crosses
n

,

which gives

𝜋 = 2
P(Needles crosses line)

≈ 2n
Number of needle crosses

.

◼

Ants, Fish, and Noodles

• In Ants estimate area using Buffon’s needle, Mallon and Franks [2000]
show a remarkable connection between the Buffon needle problem and how
ants measure the size of their potential nest sites. Size assessment is made
by individual ant scouts who are able to detect intersections of their tracks
along potential nest sites. The authors argue that the ants use a “Buffon
needle algorithm” to assess nest areas.

• Power plants use large volumes of water for cooling. Water is usually drawn
into the plant by means of intake pumps which have large impeller blades.
Sometimes the water contains small larval fish. In Larval fish, power plants
and Buffon’s needle, Ebey and Beauchamp [1977] extend the classic Buffon
needle problem to estimate the probability of a larval fish being killed by
an impeller blade of a pump in a power plant.
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• Among the many generalizations of Buffon’s needle, our favorite is
“Buffon’s noodle.” In this version, the needle is allowed to be a curve.
Although the probability that the noodle crosses the line depends on the
shape of the curve, remarkably the expected number of crossings does not.
That is, the expected number of lines which the noodle crosses is equal to
the expected number of lines that a straight needle will cross (see Ramaley
[1969]).

8.5 TRANSFORMATIONS OF TWO RANDOM VARIABLES*

Most of our work finding densities revolved around working with a single variable
or special functions of several random variables (sums, maximums, etc.). What if
we wanted to find the density of V = XY , where X and Y are continuous? We can use
a method like that introduced for a single variable to find the density, appropriately
adapted to a setting with two variables.

Suppose X and Y are continuous random variables with joint density fX,Y . Given
functions of two variables g1(x, y) and g2(x, y), let V = g1(X,Y) and W = g2(X,Y).
For example, if g1(x, y) = x + y and g2(x, y) = x − y, then V = X + Y and
W = X − Y . In this section, we show how to find the joint density fV ,W of V and W
from the joint density fX,Y of X and Y .

The method for finding the joint density of a function of two random variables
extends how we found the density of a function of one variable. In one dimension,
if Y = g(X), for some function g, and g is invertible, then we found earlier in the
chapter that

fY (y) = fX(g−1(y))
|||| d
dy

g−1(y)
|||| .

We see that the density of Y involves an “inverse piece” and a “derivative piece.”
For two variables, suppose g1 and g2 are “invertible” in the sense that 𝑣 = g1(x, y)

and 𝑤 = g2(x, y) can be solved uniquely for x and y with x = h1(𝑣,𝑤) and
y = h2(𝑣,𝑤). This is equivalent to saying that g1 and g2 define a one-to-one
transformation in the plane.

For instance, if g1(x, y) = x + y and g2(x, y) = x − y, then solving

𝑣 = x + y and 𝑤 = x − y

gives

x = 𝑣 +𝑤

2
and y = 𝑣 −𝑤

2
,

and thus h1(𝑣,𝑤) = (𝑣 +𝑤)∕2 and h2(𝑣,𝑤) = (𝑣 −𝑤)∕2.
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If h1 and h2 have continuous partial derivatives, let J denote the Jacobian con-
sisting of the determinant of partial derivatives

J =
||||||
𝜕h1
𝜕𝑣

𝜕h1
𝜕𝑤

𝜕h2
𝜕𝑣

𝜕h2
𝜕𝑤

|||||| =
𝜕h1

𝜕𝑣

𝜕h2

𝜕𝑤
−

𝜕h2

𝜕𝑣

𝜕h1

𝜕𝑤
.

Assume J ≠ 0. The foregoing gives the joint density function of V and W.

JOINT DENSITY OF V AND W

Under the aforementioned assumptions,

fV ,W (𝑣,𝑤) = fX,Y (h1(𝑣,𝑤), h2(𝑣,𝑤))|J|. (8.5)

The factor fX,Y (h1(𝑣,𝑤), h2(𝑣,𝑤)) is the “inverse piece,” and the Jacobian is the
“derivative piece.” We do not give the proof of the joint density formula. It follows
directly from the change of variable formula for multiple integrals in multivariable
calculus. Most multivariable calculus textbooks contain a derivation.

In our working example, with h1(𝑣,𝑤) = (𝑣 +𝑤)∕2 and h2(𝑣,𝑤) = (𝑣 −𝑤)∕2,
the Jacobian is

J =
||||||
𝜕h1
𝜕𝑣

𝜕h1
𝜕𝑤

𝜕h2
𝜕𝑣

𝜕h2
𝜕𝑤

|||||| =
||||||

𝜕

𝜕𝑣

𝑣+𝑤
2

𝜕

𝜕𝑤

𝑣+𝑤
2

𝜕

𝜕𝑣

𝑣−𝑤
2

𝜕

𝜕𝑤

𝑣−𝑤
2

||||||
=
|||||

1∕2 1∕2

1∕2 −1∕2

||||| = (−1∕4) − (1∕4) = −1∕2.

This gives the joint density of V and W in terms of the joint density of X and Y:

fV ,W (𝑣,𝑤) = 1
2

fX,Y
(
𝑣 +𝑤

2
,
𝑣 −𝑤

2

)
.

□■ Example 8.24 Suppose X and Y are independent standard normal random vari-
ables. Then from the result just derived, the joint distribution of V = X + Y and
W = X − Y is

fV ,W (𝑣,𝑤) = 1
2

fX,Y
(
𝑣 +𝑤

2
,
𝑣 −𝑤

2

)
= 1

2
f
(
𝑣 +𝑤

2

)
f
(
𝑣 −𝑤

2

)
= 1

4𝜋
e−(𝑣+𝑤)2∕8e−(𝑣−𝑤)2∕8
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= 1
4𝜋

e−(𝑣
2+𝑤2)∕4

=

(
1

2
√
𝜋

e−𝑣
2∕4

)(
1

2
√
𝜋

e−𝑤
2∕4

)
.

This is a product of two normal densities, each with mean 𝜇 = 0 and variance
𝜎2 = 2. In addition to finding the joint density of X + Y and X − Y , we have also
established an interesting result for normal random variables. If X and Y are inde-
pendent, then so are X + Y and X − Y . ◼

□■ Example 8.25 Sometimes a one-dimensional problem can be approached more
easily by working in two-dimensions. Let X and Y be independent exponential ran-
dom variables with parameter 𝜆. Find the density of X∕(X + Y).

Let V = X∕(X + Y). We consider a two-dimensional problem letting W = X + Y .
Then V = g1(X,Y), where g1(x, y) = x∕(x + y). And W = g2(X,Y), where g2(x, y) =
x + y. Solving 𝑣 = x∕(x + y) and 𝑤 = x + y for x and y gives x = 𝑣𝑤 and y = 𝑤 −
𝑣𝑤. Thus,

h1(𝑣,𝑤) = 𝑣𝑤 and h2(𝑣,𝑤) = 𝑤 − 𝑣𝑤.

The Jacobian is

J =
|||| 𝑤 𝑣

−𝑤 1 − 𝑣

|||| = 𝑤 −𝑤𝑣 +𝑤𝑣 = 𝑤.

The joint density of X and Y is

fX,Y (x, y) = 𝜆
2e−𝜆(x+y)

, x > 0, y > 0.

The joint density of V and W is thus

fV ,W (𝑣,𝑤) = fX,Y (𝑣𝑤,𝑤 − 𝑣𝑤)𝑤 = 𝜆
2
𝑤e−𝜆(𝑣𝑤+(𝑤−𝑣𝑤)) = 𝜆

2
𝑤e−𝜆𝑤,

for 0 < 𝑣 < 1 and 𝑤 > 0.
To find the density of V = X∕(X + Y), integrate out the 𝑤 variable, giving

fV (𝑣) = ∫

∞

0
𝜆

2
𝑤e−𝜆𝑤 d𝑤 = 𝜆

(1
𝜆

)
= 1, for 0 < 𝑣 < 1.

That is, the distribution of X∕(X + Y) is uniform on (0, 1). ◼

□■ Example 8.26 We consider a final example where working in two-dimensions is
beneficial. Suppose a scientist is working with a compound whose active component
is chemical X, which can be colored red or blue.

Suppose the density function for X1, the proportion of a sample of the com-
pound that is chemical X, is given by fX1

(x1) = 6x1(1 − x1), for 0 ≤ x1 ≤ 1, and 0,
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otherwise. Further suppose that the density function for X2, the proportion of red
colored chemical X out of the chemical X in the sample, is given by fX2

(x2) = 3x2
2,

for 0 ≤ x2 ≤ 1, and 0, otherwise, and also that X1and X2 are independent.
The variable Y = X1X2 represents the proportion of the sample that is red colored

chemical X. Find the probability density function for Y .
To make this two-dimensional, let W = X1. Then Y = g1(X1,X2), where

g1(x1, x2) = x1x2. And W = g2(X1,X2), where g2(x1, x2) = x1. Solving for the
inverse functions gives x1 = 𝑤 and x2 = y∕𝑤. Thus,

h1(y, 𝑤) = 𝑤 and h2(y, 𝑤) = y∕𝑤.

The Jacobian is

J =
|||| 0 1

1∕𝑤 −y∕𝑤2

|||| = 0 − 1∕𝑤 = −1∕𝑤.

By independence, the joint density of X1 and X2 is

fX1,X2
(x1, x2) = 18x1(1 − x1)x2

2, 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.

The joint density of V and W is thus

fY ,W (y, 𝑤) = fX1,X2
(𝑤, y∕𝑤)(1∕𝑤) = 18𝑤(1 −𝑤)

( y

𝑤

)2
(1∕𝑤) = 18y2 1 −𝑤

𝑤2
,

for 0 ≤ y ≤ 𝑤 ≤ 1.
For the bounds, these are obtained working from the inverse functions. Both X1

and X2 range from 0 to 1, so this gives 0 ≤ 𝑤 ≤ 1 and 0 ≤ y∕𝑤 ≤ 1. Rearranging
gives 0 ≤ y ≤ 𝑤 ≤ 1.

To find the density of Y = X1X2, integrate out the 𝑤 variable, giving

fY (y) = ∫

1

y
18y2 1 −𝑤

𝑤2
d𝑤 = 18y2(ln y + (1∕y) − 1), for 0 ≤ y ≤ 1.

We leave the reader to verify this integration. Equivalently, the density of Y could
have been obtained via a similar process if we had let W = X2. ◼

Results for transformations of more than two random variables extend naturally
from the two-variable case. Let (X1, . . . ,Xk) have joint density function fX1, . . . ,Xk

.
Given functions of k variables g1, . . . , gk, let

Vi = gi(X1, . . . ,Xk), for i = 1, . . . , k.

Assume the functions g1, . . . , gk define a one-to-one transformation in k dimensions
with inverse functions h1, . . . , hk as in the two-variable case. Then the joint density
of (V1, . . . ,Vk) is

fV1, . . . ,Vk
(𝑣1, . . . , 𝑣k) = fX1, . . . ,Xk

(h1(𝑣1, . . . , 𝑣k), . . . , hk(𝑣1, . . . , 𝑣k))|J|,
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where J is the determinant of the k × k matrix of partial derivatives whose (i, j)th
entry is 𝜕hi

𝜕𝑣j
, for i, j = 1, . . . , k.

8.6 SUMMARY

This chapter focuses on finding densities for functions of random variables. One
method relies on the density function for continuous random variables being the
derivative of the cdf. Special functions of random variables are also explored,
including maximums and minimums, and sums of independent variables.

When X and Y are independent and uniformly distributed, the random pair
(X,Y) is uniformly distributed on a rectangle in the plane. Often, such problems
can be treated geometrically. The chapter includes several examples of geometric
probability.

Transformations of two random variables are presented in the final section. The
formula for the probability density function is a consequence of the change of vari-
able formula in multivariable calculus.

• Densities of functions of random variables: Suppose Y = g(X). To find the
density of Y , start with the cdf P(Y ≤ y) = P(g(X) ≤ y). Obtain an expression
of the form P(X ≤ h(y)) for some function h. Differentiate to obtain the desired
density. Most likely you will need to apply the chain rule.

• Inverse transform method: If the cdf F of a random variable X is invertible,
and U ∼ Unif(0, 1), then F−1(U) has the same distribution as X. This gives a
method for simulating X.

• Convolution: If X and Y are continuous and independent, with respective
marginal densities fX and fY , then the density of X + Y is given by the con-
volution formula

fX+Y (t) = ∫

∞

−∞
fX(t − y)fY (y) dy.

• Geometric probability: Geometric probability is a powerful method
for solving problems involving independent uniform random variables. If
X ∼ Unif(a, b) and Y ∼ Unif(c, d) are independent, then (X,Y) is uniformly
distributed on the rectangle [a, b] × [c, d]. Finding uniform probabilities in
two-dimensions reduces to finding areas. Try to find a geometrically based
solution for these types of problems.

• Transformation of two random variables—joint density: Let X and Y have
joint density fX,Y . Suppose V = g1(X,Y) and W = g2(X,Y) with X = h1(V ,W)
and Y = h2(V ,W). Let J be the Jacobian J = 𝜕h1

𝜕𝑣

𝜕h2
𝜕𝑤

− 𝜕h2
𝜕𝑣

𝜕h1
𝜕𝑤

. Then

fV ,W (𝑣,𝑤) = fX,Y (h1(𝑣,𝑤), h2(𝑣,𝑤))|J|.
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EXERCISES

Practice with Finding Densities

8.1 Suppose X ∼ Exp(𝜆). Find the density of Y = cX for c > 0. Describe the dis-
tribution of Y .

8.2 Suppose X has the pdf given by f (x) = x
𝜃2 e−x2∕(2𝜃2), for x > 0. Find the pdf for

U = X2. (Note the distribution of X here is called the Rayleigh density.)

8.3 Suppose that X has pdf given by f (x) = (3∕2)x2 on −1 ≤ x ≤ 1.

(a) Find the pdf of Y = 2X.

(b) Find the pdf of W = X + 4.

8.4 Suppose U ∼ Unif(0, 1). Find the density of

Y = tan
(
𝜋U − 𝜋

2

)
.

8.5 Let X ∼ Unif(0, 1). Find E[eX] two ways:

(a) By finding the density of eX and then computing the expectation with
respect to that distribution.

(b) By using the law of the unconscious statistician.

8.6 The density of a random variable X is given by

f (x) =
{

3x2, for 0 < x < 1
0, otherwise.

Let Y = eX .

(a) Find the density function of Y .

(b) Find E[Y] two ways: (i) using the density of Y and (ii) using the density
of X.

8.7 Let X have a Cauchy distribution. That is, the density of X is

f (x) = 1
𝜋(1 + x2)

,−∞ < x < ∞.

Show that 1∕X has a Cauchy distribution.

8.8 Let X have an exponential distribution conditioned to be greater than 1. That
is, for t > 1, P(X ≤ t) = P(Y ≤ t|Y > 1), where Y ∼ Exp(𝜆).
(a) Find the density of X.

(b) Find E[X].
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8.9 Let X ∼ Unif(a, b). Suppose Y is a linear function of X. That is Y = mX + n,
where m and n are constants. Assume also that m > 0. Show that Y is uniformly
distributed on the interval (ma + n,mb + n).

8.10 Suppose X has density function

f (x) = e2

2(e2 − 1)
|x|e−x2∕2

, for − 2 < x < 2.

Find the density of Y = X2.

8.11 If r is a real number, the ceiling of r, denoted ⌈r⌉, is the smallest integer not
less than r. For instance, ⌈0.25⌉ = 1 and ⌈4⌉ = 4. Suppose X ∼ Exp(𝜆). Let
Y = ⌈X⌉. Show that Y has a geometric distribution.

8.12 Your friend missed probability class today. Explain to your friend, in simple
language, how the inverse transform method works.

8.13 Suppose X ∼ Exp(𝜆). Show how to use the inverse transform method to sim-
ulate X.

8.14 Suppose X has density function

f (x) = 1
(1 + x)2

, for x > 0.

Show how to use the inverse transform method to simulate X.

8.15 Let X be a continuous random variable with cdf F. As F(x) is a function of x,
F(X) is a random variable which is a function of X. Suppose F is invertible.
Find the distribution of F(X).

8.16 Let X ∼ Norm(𝜇, 𝜎2). Suppose a ≠ 0 and b are constants. Show that
Y = aX + b is normally distributed using the method of cdfs. (This was
solved using mgfs in Chapter 7.)

8.17 If Z has a standard normal distribution, find the density of Z2 without
using mgfs.

8.18 If X has a gamma distribution and c is a positive constant, show that cX has a
gamma distribution without using mgfs. Find the parameters.

8.19 Let X ∼ Beta(a, b). For s < t, let Y = (t − s)X + s. Then Y has an extended
beta distribution on (s, t). Find the density function of Y .

8.20 Let X ∼ Exp(a). Let Y = meX . Show that Y ∼ Pareto(m, a).

8.21 Let X ∼ Beta(a, b). Find the distribution of Y = 1 − X.

8.22 Let X ∼ Beta(a, 1). Show that Y = 1∕X has a Pareto distribution.
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8.23 Suppose X and Y are i.i.d. exponential random variables with 𝜆 = 1. Find the
density of X∕Y and use it to compute P(X∕Y < 1).

8.24 Let X1 and X2 be independent exponential random variables with parameter 𝜆.
Show that Y = |X1 − X2| is also exponentially distributed with parameter 𝜆.

8.25 Consider the following attempt at generating a point uniformly distributed
in the circle of radius 1 centered at the origin. In polar coordinates, pick R
uniformly at random on (0, 1). Pick Θ uniformly at random on (0, 2𝜋), inde-
pendently of R. Show that this method does not work. That is show (R,Θ) is
not uniformly distributed on the circle.

8.26 Let A = UV , where U and V are independent and uniformly distributed on
(0, 1).
(a) Find the density of A.
(b) Find E[A] two ways: (i) using the density of A and (ii) not using the density

of A.

Maxs, Mins, and Convolution

8.27 In Example 8.16 we found the distribution of the sum of two i.i.d. exponen-
tial variables with parameter 𝜆. Call the sum X. Let Y be a third independent
exponential variable with parameter 𝜆. Use the convolution formula 8.3 to
find the sum of three independent exponential random variables by finding
the distribution of X + Y .

8.28 Your friend missed probability class today. Explain to your friend, in simple
language, how the convolution formula works.

8.29 Jakob and Kayla each pick uniformly random real numbers between 0 and 1.
Find the expected value of the smaller number.

8.30 Let X1, . . . ,Xn be an i.i.d. sequence of Uniform (0, 1) random variables. Let
M = max(X1, . . . ,Xn).
(a) Find the density function of M.
(b) Find E[M] and V[M].

8.31 Perdita moved into a new apartment and put new identical lightbulbs in her
four lamps. Suppose the time to failure for each lightbulb is exponentially
distributed with 𝜆 = 1∕10, and that lightbulbs fail independently. Perdita will
replace all the bulbs when the first fails.
(a) Find the density function of M, the time that the first bulb fails.
(b) Find E[M] and V[M].

8.32 Let X, Y , and Z be i.i.d. random variables uniformly distributed on (0, 1). Find
the density of X + Y + Z.
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8.33 Let U1,U2 be independent draws from a Uniform distribution on (0, 𝜃).
(a) Find the density function of M, the maximum of U1 and U2.

(b) Find E(M).
(c) Suppose M is observed to be 6. What is a good guess for 𝜃?

8.34 Extreme value distribution. Suppose X1, . . . ,Xn is an independent sequence
of exponential random variables with parameter 𝜆 = 1. Let

Z = max(X1, . . . ,Xn) − log n.

(a) Show that the cdf of Z is

FZ(z) =
(

1 − e−z

n

)n
, z > − log n.

(b) Show that for all z,

FZ(z) → e−e−z
as n → ∞.

The limit is a probability distribution called an extreme value distribution.
It is used in many fields which model extreme values, such as hydrology
(intense rainfall), actuarial science, and reliability theory.

(c) Suppose the times between heavy rainfalls are independent and have an
exponential distribution with mean 1 month. Find the probability that in
the next 10 years, the maximum time between heavy rainfalls is greater
than 3 months in duration.

8.35 Order statistics. Suppose X1, . . . ,X100 are independent and uniformly dis-
tributed on (0, 1).
(a) Find the probability the 25th smallest variable is less than 0.20.

(b) Find E[X(95)] and V[X(95)].
(c) The range of a set of numbers is the difference between the maximum and

the minimum. Find the expected range.

8.36 If n is odd, the median of a list of n numbers is the middle value. Suppose a
sample of size n = 13 is taken from a uniform distribution on (0, 1). Let M be
the median. Find P(M > 0.55).

Geometric Probability

8.37 Suppose X and Y are independent random variables, each uniformly
distributed on (0, 2).
(a) Find P(X2 < Y).
(b) Find P(X2 < Y|X + Y < 2).
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8.38 Suppose (X,Y) is uniformly distributed on the region in the plane between
the curves y = sin x and y = cos x, for 0 < x < 𝜋∕2. Find P(Y > 1∕2).

8.39 Suppose (X,Y ,Z) is uniformly distributed on the sphere of radius 1 centered at
the origin. Find the probability that (X,Y ,Z) is contained in the inscribed cube.

8.40 Solve Buffon’s needle problem for a “short” needle. That is, suppose the length
of the needle is x < 1.

8.41 Suppose you use Buffon’s needle problem to simulate 𝜋. Let n be the number
of needles you drop on the floor. Let X be the number of needles that cross a
line. Find the distribution, expectation and variance of X.

8.42 Suppose X and Y are independent random variables uniformly distributed on
(0, 1). Use geometric arguments to find the density of Z = X∕Y .

8.43 A spatial Poisson process is a model for the distribution of points in
two-dimensional space. For a set A ⊆ ℜ2, let NA denote the number of points
in A. The two defining properties of a spatial Poisson process with parameter
𝜆 are
1. If A and B are disjoint sets, then NA and NB are independent random vari-

ables.

2. For all A ⊆ ℜ2, NA has a Poisson distribution with parameter 𝜆|A| for some
𝜆 > 0, where |A| denotes the area of A. That is,

P(NA = k) = e−𝜆|A|(𝜆|A|)k
k!

, k = 0, 1, . . .

Consider a spatial Poisson process with parameter 𝜆. Let x be a fixed point in
the plane.

(a) Find the probability that there are no points of the spatial process that are
within two units distance from x. (Draw the picture.)

(b) Let X be the distance between x and the nearest point of the spatial process.
Find the density of X. (Hint: Find P(X > x).)

Bivariate Transformations

8.44 A candy mix includes three different types of candy. Let X and Y be the pro-
portions of the first two types of candy in the mixture. Suppose that the joint
pdf of X and Y is uniform over the region where 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and
0 ≤ x + y ≤ 1, and is 0, elsewhere.

(a) Find the pdf of W = X + Y , the proportion of the first two types of candy
in the mixture.

(b) How likely is it that W will be greater than 0.5?
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8.45 Suppose X and Y are independent exponential random variables with parame-
ter 𝜆. Find the joint density of V = X∕Y and W = X + Y . Use the joint density
to find the marginal distributions.

8.46 Suppose that a point (X,Y) is chosen in the unit square with probability gov-
erned by the joint pdf f (x, y) = x + y, 0 < x < 1, 0 < y < 1. What is the pdf of
W, the area of the rectangle formed by the points (0, 0), (x, 0), (0, y), and (x, y)?

8.47 Suppose X and Y have joint density

f (x, y) = 4xy, for 0 < x < 1, 0 < y < 1.

Find the joint density of V = X and W = XY . Find the marginal density of W.

8.48 Let X and Y be jointly continuous with density fX,Y . Let (R,Θ) be the polar
coordinates of (X,Y).
(a) Give a general expression for the joint density of R and Θ.

(b) Suppose X and Y are independent with common density function
f (x) = 2x, for 0 < x < 1. Use your result to find the probability that (X,Y)
lies inside the circle of radius one centered at the origin.

8.49 Recall that the density function of the Cauchy distribution is

f (x) = 1
𝜋(1 + x2)

, for all x.

Show that the ratio of two independent standard normal random variables has
a Cauchy distribution by finding a suitable transformation of two variables.

8.50 Pairs of standard normal random variables can be generated from a pair
of independent uniforms. To investigate, we work in reverse. Let X and Y
be independent standard normal random variables. Let V = X2 + Y2 and
W = tan−1(Y∕X).
(a) Show that V and W are independent with V ∼ Exp(1∕2) and W ∼

Unif(0, 2𝜋). (Hint: x =
√
𝑣 cos𝑤 and y =

√
𝑣 sin𝑤.)

(b) Now let U1,U2 ∼ Unif(0, 1). Show that V = −2 ln U1 and W = 2𝜋U2 are
independent with distributions described above.

(c) Implement this method and plot 1000 pairs of points to show that
pairs of independent standard normal random variables can be gener-
ated from pairs of independent uniforms. In other words, show that
(U1,U2) → (V ,W) → (X,Y) yields independent standard normal random
variables.

8.51 (This exercise requires knowledge of three-dimensional determinants.) Let
(X,Y ,Z) be independent standard normal random variables. Let (Φ,Θ,R)
be the corresponding spherical coordinates. The correspondence between
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rectangular and spherical coordinates is given by

x = r sin𝜙 cos 𝜃, y = r sin𝜙 sin 𝜃, z = r cos𝜙,

for 0 ≤ 𝜙 ≤ 𝜋, 0 ≤ 𝜃 ≤ 2𝜋, and r > 0. Find the joint density of (Φ,Θ,R) and
the marginal density of R.

Simulation and R

8.51 Let R ∼ Unif(1, 4). Let A be the area of the circle of radius R. Use R to simulate
R. Simulate the mean and pdf of A and compare to the exact results. Create
one graph with both the theoretical density and the simulated distribution.

8.52 Write an R script to estimate 𝜋 using Buffon’s needle problem. How many
simulation iterations do you need to perform to be reasonably confident that
your estimation is good within two significant digits? That is, 𝜋 ≈ 3.14.

8.53 Let X be a random variable with density function f (x) = 4∕(3x2), for 1 < x <

4, and 0, otherwise. Simulate E[X] using the inverse transform method. Com-
pare to the exact value.

8.54 Make up your own example to demonstrate the inverse transform method.
State the pdf of the random variable of interest. Implement the method to sim-
ulate E(X) and compare to the exact value that you calculate.

8.55 Let X1, . . . ,Xn be independent random variables each uniformly distributed
on [−1, 1]. Let pn = P(X2

1 + · · · + X2
n < 1). Conduct a simulation study to

approximate pn for increasing values of n. For n = 2, p2 is the probability
that a point uniformly distributed on the square [−1, 1] × [−1, 1] falls in the
inscribed circle of radius 1 centered at the origin. For n = 3, p3 is the proba-
bility that a point uniformly distributed on the cube [−1, 1] × [−1, 1] × [−1, 1]
falls in the inscribed sphere of radius 1 centered at the origin. For n > 3,
you are in higher dimensions estimating the probability that a point in a
“hypercube” falls within the inscribed “hypersphere.” What happens when n
gets large?

Chapter Review

Chapter review exercises are available through the text website. The URL is
www.wiley.com/go/wagaman/probability2e.
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CONDITIONAL DISTRIBUTION,
EXPECTATION, AND VARIANCE

Conditioning is a must for martial artists.
—Bruce Lee

Learning Outcomes

1. Define the terms: conditional distribution, conditional expectation, and con-
ditional variance.

2. Find conditional distributions using relationships between joint and marginal
distributions.

3. Compute conditional expectation and variance using appropriate rules.
4. Understand the application of the conditional concepts in the bivariate normal

setting.
5. (C) Simulate conditional distributions.

INTRODUCTION

At this crossroads, we bring together several important ideas in both discrete and
continuous probability. We focus on conditional distributions and conditional
expectation, briefly introduced previously. We will introduce conditional density
functions, extend the law of total probability, present problems with both discrete
and continuous components, and expand our available tools for computing
probabilities. Finally, we explore many of these concepts via the bivariate normal
density.

Probability: With Applications and R, Second Edition. Amy S. Wagaman and Robert P. Dobrow.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/wagaman/probability2e
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9.1 CONDITIONAL DISTRIBUTIONS

Conditional distributions for discrete variables were introduced in Chapter 4. For
continuous variables, the conditional (probability) density function plays the anal-
ogous role to the conditional probability mass function.

CONDITIONAL DENSITY FUNCTION

If X and Y are jointly continuous random variables, the conditional density of Y
given X = x is

fY|X(y|x) = f (x, y)
fX(x)

, (9.1)

for fX(x) > 0.

The conditional density function is a valid probability density function, as it is
nonnegative and integrates to 1. For a given x,

∫

∞

−∞
fY|X(y|x) dy =

∫

∞

−∞

f (x, y)
fX(x)

dy = 1
fX(x) ∫

∞

−∞
f (x, y) dy =

fX(x)
fX(x)

= 1.

Geometrically, the conditional density of Y given X = x is a one-dimensional
“slice” of the two-dimensional joint density along the line X = x, but “renormal-
ized” so that the resulting curve integrates to 1 (see Fig. 9.1).

Conditional densities are used to compute conditional probabilities. For A ⊆ ℜ,

P(Y ∈ A|X = x) =
∫A

fY|X(y|x) dy.

When working with conditional density functions fY|X(y|x), it is most important to
remember that the conditioning variable x is treated as fixed. The conditional density
function is a function of its first argument y.

□■ Example 9.1 Random variables X and Y have joint density

f (x, y) =
y

4x
, for 0 < y < x < 4,

and 0, otherwise. Find P(Y < 1|X = x), for x ≥ 1, and P(Y < 1|X = 2).
As you tackle this problem, think carefully about the steps you need to

follow to find the desired probabilities, as outlined below. Note that if x < 1,
P(Y < 1|X = x) = 1.

By definition, with x ≥ 1, the first desired probability is

P(Y < 1|X = x) =
∫

1

0
fY|X(y|x) dy.



�

� �

�

CONDITIONAL DISTRIBUTIONS 359

x

0
2

4
6

8
y

0
2

(a) (b)

4
6

8

0.00
0.05
0.10

0.15
0.20

0.00
0.05
0.10

0.15

0.20

x

0
2

4

6

8
y

0
2

4
6

8

FIGURE 9.1: (a) Graph of a joint density function. (b) Conditional density of Y given X = 4.

To find the conditional density of Y given X = x, we first need the marginal density
of X. Paying attention to the range of Y , we find the marginal of X as

fX(x) = ∫

x

0

y

4x
dy = 1

4x

(
y2

2

)|||||
x

0

= x
8
, for 0 < x < 4.

The conditional density is

fY|X(y|x) = f (x, y)
fX(x)

=
y∕(4x)

x∕8
=

2y

x2
, for 0 < y < x < 4.

Now we can find the desired probability as

P(Y < 1|X = x) =
∫

1

0

2y

x2
dy = 1

x2
,

assuming x ≥ 1, and by plugging in x = 2, we find P(Y < 1|X = 2) = 1∕4. ◼

□■ Example 9.2 Random variables X and Y have joint density function

f (x, y) = e−x2y
, for x > 1, y > 0.

Find and describe the conditional distribution of Y given X = x.
The marginal density of X is

fX(x) = ∫

∞

0
f (x, y) dy =

∫

∞

0
e−x2y dy = 1

x2
, for x > 1.
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The conditional density function is

fY|X(y|x) = f (x, y)
fX(x)

= e−x2y

1∕x2
= x2e−x2y

, for y > 0.

In the conditional density function, x2 is treated as a constant. Thus, this is the
density of an exponential distribution with parameter x2. That is, the conditional
distribution of Y given X = x is exponential with parameter x2. ◼

□■ Example 9.3 Let X and Y be uniformly distributed in the circle of radius one
centered at the origin. Find (i) the marginal distribution of X and (ii) the conditional
distribution of Y given X = x.

(i) The area of the circle is 𝜋. The equation of the circle is x2 + y2 = 1. The joint
density of X and Y is

f (x, y) = 1
𝜋
, for − 1 ≤ x ≤ 1,−

√
1 − x2 ≤ y ≤

√
1 − x2,

and 0, otherwise. Integrating out the y term gives the marginal density of X as

fX(x) = ∫

√
1−x2

−
√

1−x2

1
𝜋

dy = 2
√

1 − x2

𝜋
, for − 1 ≤ x ≤ 1.

(ii) The conditional density of Y given X = x is

fY|X(y|x) = f (x, y)
fX(x)

=
1∕𝜋

2
√

1 − x2∕𝜋

= 1

2
√

1 − x2
, for −

√
1 − x2 < y <

√
1 − x2.

The function fY|X(y|x) does not depend on y. As x is treated as a constant, the

conditional distribution is uniform on the interval (−
√

1 − x2,
√

1 − x2).
Observe that while the conditional distribution of Y given X = x is uniform, the

marginal distribution of X is not. The marginal distribution of X is the distribution
of the X-coordinate of a point (X,Y) in the circle. Points tend to be closer to the
origin than to the outside of the circle as described by the half-circular marginal
density. ◼

□■ Example 9.4 Lillian is working on a project that has many tasks to complete,
including tasks A and B. Let X be the proportion of the project time she spends on
task A. Let Y be the proportion of time she spends on B. The joint density of X
and Y is

f (x, y) = 24xy, for 0 < x < 1, 0 < y < 1 − x,
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and 0, otherwise. If the fraction of the time Lillian spends on task A is x, find the
probability that she spends at least half the project time on task B.

The total fraction of the time that Lillian spends on both tasks A and B must
be less than 1. There are two cases based on the given value of x. For x < 1∕2, the
desired probability is P(Y > 1∕2|X = x). If x ≥ 1∕2, then P(Y > 1∕2|X = x) = 0.
We focus on the first case.

The marginal density of X is

fX(x) = ∫

1−x

0
24xy dy = 12x(1 − x)2, for 0 < x < 1.

You should recognize this as a beta distribution. The conditional density of Y given
X = x is

fY|X(y|x) = f (x, y)
fX(x)

=
24xy

12x(1 − x)2
=

2y

(1 − x)2
, for 0 < y < 1 − x.

Thus, for 0 < x < 1∕2,

P(Y > 1∕2|X = x) =
∫

1−x

1∕2

2y

(1 − x)2
dy = 1 − 1

4(1 − x)2
. ◼

Many random experiments are performed in stages. Consider the following
two-stage, hierarchical model. Riley picks a number X uniformly distributed in
(0, 1). Riley shows her number X = x to Miguel, who picks a number Y uniformly
distributed in (0, x). The conditional distribution of Y given X = x is uniform on
(0, x) and thus the conditional density is

fY|X(y|x) = 1
x
, for 0 < y < x < 1.

If we know that Riley picked 2/3, then the probability that Miguel’s number is
greater than 1∕3 is

P(Y > 1∕3|X = 2∕3) =
∫

2∕3

1∕3

3
2

dy = 1
2
.

On the other hand, suppose we only see the second stage of the experiment.
If Miguel’s number is 1/3, what is the probability that Riley’s original number is
greater than 2/3? The desired probability is P(X > 2∕3|Y = 1∕3). This requires the
conditional density of X given Y = y.

We are given the conditional density fY|X(y|x) and we want to find the “inverse”
conditional density fX|Y (x|y). This has the flavor of Bayes formula used to invert
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conditional probabilities. We appeal to the continuous version of Bayes formula.
By rearranging the conditional density formula,

fX|Y (x|y) = f (x, y)
fY (y)

=
fY|X(y|x)fX(x)

fY (y)

with denominator equal to

fY (y) = ∫

∞

−∞
f (t, y) dt =

∫

∞

−∞
fY|X(y|t)fX(t) dt.

This gives the continuous version of Bayes formula.

BAYES FORMULA

Let X and Y be jointly distributed continuous random variables. Then

fX|Y (x|y) = fY|X(y|x)fX(x)
∫

∞
−∞ fY|X(y|t)fX(t) dt

. (9.2)

Using Bayes formula on Riley and Miguel’s problem, we find the conditional
density of X given Y = y

fX|Y (x|y) = (1∕x)(1)

∫
1

y (1∕t)(1) dt
= −1

x ln y
, for 0 < y < x < 1.

The desired probability is

P(X > 2∕3|Y = 1∕3) =
∫

1

2∕3

−1
x ln 1∕3

dx = (ln 3)(ln 3∕2) = 0.445.

□■ Example 9.5 The time between successive tsunamis in the Caribbean is modeled
with an exponential distribution. See Parsons and Geist [2008] for the use of prob-
ability in predicting tsunamis. The parameter value of the exponential distribution
is unknown and is itself modeled as a random variable Λ uniformly distributed on
(0, 1). Suppose the time X between the last two consecutive tsunamis was 2 years.
Find the conditional density of Λ given X = 2. (We use the notation Λ since it is the
Greek capital letter lambda.)



�

� �

�

CONDITIONAL DISTRIBUTIONS 363

The conditional distribution of X given Λ = 𝜆 is exponential with parameter 𝜆.
That is, fX|Λ(x|𝜆) = 𝜆e−𝜆x, for x > 0. The (unconditional) density of Λ is fΛ(𝜆) = 1,
for 0 < 𝜆 < 1. By Bayes formula,

fΛ|X(𝜆|x) = fX|Λ(x|𝜆)fΛ(𝜆)
∫

∞
−∞ fX|Λ(x|t)fΛ(t) dt

= 𝜆e−𝜆x

∫
1

0 te−tx dt

= 𝜆e−𝜆x

(1 − e−x − xe−x)∕x2
, for 0 < 𝜆 < 1.

The conditional density of Λ given X = 2 is

fΛ|X(𝜆|2) = 𝜆e−2𝜆

(1 − e−2 − 2e−2)∕4

= 4𝜆e−2𝜆

1 − 3e−2
, for 0 < 𝜆 < 1.

Of interest to researchers is estimating 𝜆 given the observed data X = 2. One
approach is to find the value of 𝜆 that maximizes the conditional density function
(see Fig. 9.2). The density is maximized at 𝜆 = 1∕2.

In hindsight, this is not surprising. A natural estimate for 𝜆 is 2 given that the
mean of an exponential distribution with parameter 𝜆 = 1∕2 is 2, the value of X. ◼

Motivating the definition. For jointly continuous random variables X and Y , and
A ⊆ R, the probability P(Y ∈ A|X = x) is found by integrating the conditional den-
sity function. Although the probability is conditional, we cannot use the conditional

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.4

0.8

1.2

FIGURE 9.2: Graph of conditional density of Λ given X = 2. The density function takes its
largest value at 𝜆 = 1∕2.
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probability formula

P(Y ∈ A|X = x) = P(Y ∈ A,X = x)
P(X = x)

,

because if X is continuous both numerator and denominator are equal to 0, and the
conditional probability is undefined.

However, when we try to divide 0 by 0, there often is a limit lurking in the
background. To motivate the definition of the conditional density function in
Equation 9.1, we have

P(Y ∈ A|X = x) = lim
𝜖→0

P(Y ∈ A|x ≤ X ≤ x + 𝜖)

= lim
𝜖→0

P(Y ∈ A, x ≤ X ≤ x + 𝜖)
P(x ≤ X ≤ x + 𝜖)

= lim
𝜖→0

∫
x+𝜖

x ∫A f (t, y) dy dt

∫
x+𝜖

x fX(t) dt

=
lim
𝜖→0

1
𝜖
∫

x+𝜖
x ∫A f (t, y) dy dt

lim
𝜖→0

1
𝜖
∫

x+𝜖
x fX(t) dt

=
∫A f (x, y) dy

fX(x)
=
∫A

[
f (x, y)
fX(x)

]
dy

=
∫A

fY|X(y|x) dy, for all A ⊆ ℜ.

9.2 DISCRETE AND CONTINUOUS: MIXING IT UP

Hopefully the reader has appreciated the close similarity between results for dis-
crete and continuous random variables. In an advanced probability course, using the
tools of real analysis and measure theory, the two worlds are unified. A new type
of integral—called a Lebesgue integral—is used for both continuous and discrete
random variables, and for random variables that exhibit properties of both. There is
no need to treat discrete and continuous problems as two separate categories.

Such a discussion is beyond the scope of this book. However, we can, and will,
define joint and conditional distributions of random variables where one variable is
discrete and the other is continuous. Some common pairings are illustrated in the
examples below.

To illustrate, here is a “continuous-discrete” two-stage random experiment.

□■ Example 9.6 Pick a number U uniformly at random between 0 and 1. Given U =
u, consider a “biased” coin whose probability of heads is equal to u. Flip such a coin
n times and let H be the number of heads.
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The conditional distribution of H given U = u is a binomial distribution, with
parameters n and u. The conditional probability mass function of H given U = u is

P(H = h|U = u) =
(n

h

)
uh(1 − u)n−h

, h = 0, . . . , n.

We write this as H|U = u ∼ Binom(n, u). Now suppose we want to find the uncon-
ditional distribution of H.

The joint density of H and U is

f (h, u) = P(H = h|U = u)fU(u)

=
(n

h

)
uh(1 − u)n−h

, h = 0, . . . , n, 0 < u < 1. (9.3)

The function contains a discrete component and a continuous component. To com-
pute probabilities, we sum and integrate respectively:

P(H ∈ A,U ∈ B) =
∑

h ∈ A
∫B

f (h, u) du =
∑

h ∈ A
∫B

(n
h

)
uh(1 − u)n−h du.

The marginal distribution of H is obtained by integrating out u in the joint density,
giving

P(H = h) =
∫

1

0

(n
h

)
uh(1 − u)n−h du =

(n
h

)
∫

1

0
uh(1 − u)n−h du.

The integral can be solved using integration by parts, or you can recognize that
the integrand is proportional to a beta density with parameters a = h + 1 and b =
n − h + 1. Hence, the integral is equal to

Γ(h + 1)Γ(n − h + 1)
Γ(n + 2)

= h!(n − h)!
(n + 1)!

.

This gives

P(H = h) =
(n

h

) h!(n − h)!
(n + 1)!

= 1
n + 1

, for h = 0, . . . , n.

We see that H is uniformly distributed on the integers {0, . . . , n}.
Another quantity of interest in this example is the conditional density of U given

H = h. For h = 0, . . . , n,

fU|H(u|h) = f (h, u)
fH(h)

=

(
n
h

)
uh(1 − u)n−h

1∕(n + 1)

= (n + 1)!
h!(n − h)!

uh(1 − u)n−h
, 0 < u < 1.
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The density almost looks like a binomial probability expression. But h is fixed and
the density is a continuous function of u. The conditional distribution of U given
H = h is a beta distribution with parameters a = h + 1 and b = n − h + 1. ◼

The example we have used to motivate this discussion is a case of the
beta-binomial model, an important model in Bayesian statistics and numerous
applied fields.

□■ Example 9.7 Will the sun rise tomorrow? Suppose an event, such as the daily
rising of the sun, has occurred n times without fail. What is the probability that it
will occur again?

In 1774, Laplace formulated his law of succession to answer this question. In
modern notation, let S be the unknown probability that the sun rises on any day.
And let X be the number of days the sun has risen among the past n days. If S = s,
and we assume successive days are independent, then the conditional distribution of
X is binomial with parameters n and s, and P(X = n|S = s) = sn. Laplace assumed
in the absence of any other information that the “unknown” sun rising probability
S was uniformly distributed on (0, 1).

Using Bayes formula, the conditional density of the sun rising probability, given
that the sun has risen for the past n days, is

fS|X(s|n) = P(X = n|S = s)fS(s)

∫
1

0 P(X = n|S = t)fS(t) dt

= sn

∫
1

0 tn dt
= (n + 1)sn

.

Laplace computed the mean sun rising probability with respect to this conditional
density

∫

1

0
s(n + 1)sn ds = n + 1

n + 2
.

He argued that the sun has risen for the past 5000 years, or 1,826,213 days. And
thus the probability that the sun will rise tomorrow is

1,826, 214
1,826, 215

= 0.9999994524 . . . .

With such “certainty,” hopefully you will sleep better tonight! ◼

□■ Example 9.8 The following two-stage “exponential-Poisson” setting has been
used to model traffic flow on networks and highways. Consider e-mail traffic during
a 1-hour interval. Suppose the unknown rate of e-mail traffic Λ has an exponential
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distribution with parameter one. Further suppose that if Λ = 𝜆, the number of e-mail
messages M that arrive during the hour has a Poisson distribution with parameter
100𝜆. Find the probability mass function of M.

The conditional distribution of M given Λ = 𝜆 is Poisson with parameter 100𝜆.
The joint density of M and Λ is

f (m, 𝜆) = fM|Λ(m|𝜆)fΛ(𝜆) = e−100𝜆(100𝜆)m

m!
e−𝜆

= e−101𝜆(100𝜆)m

m!
, for 𝜆 > 0 and m = 0, 1, 2, . . . .

Integrating the “mixed” joint density with respect to 𝜆 gives the discrete probability
mass function

P(M = m) = 1
m! ∫

∞

0
e−101𝜆(100𝜆)m d𝜆 = 1

m!

(
m!
101

(100
101

)m
)

=
(

1 − 1
101

)m−1 1
101

, for m = 1, 2, . . . .

Written this way, we see that the number of e-mail messages that arrive during the
hour has a geometric distribution with parameter p = 1∕101. ◼

R: SIMULATING EXPONENTIAL-POISSON TRAFFIC FLOW MODEL

The following code simulates the joint distribution of Λ and M in the two-stage
traffic flow model. Letting n be the number of trials in the simulation, the data
are stored in an n × 2 matrix simarray. Each row consists of an outcome of
(Λ,M).

> n <- 1000
> simarray <- matrix(0, n, 2)
> for (i in 1:n) {
simarray[i, 1] <- rexp(1, 1)
simarray[i, 2] <- rpois(1, 100*simarray[i, 1]) }

Marginal distributions of Λ and M are simulated by simply taking the respec-
tive first and second columns of the simarray matrix.

See Figure 9.3 for graphs of the simulated joint distribution of (Λ,M) and the
marginal distributions. Compare the outcomes of M with the geometric distribu-
tion with parameter p = 1∕101. The simulation and R commands for generating
the graphs can be found in the script file Traffic.R.
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FIGURE 9.3: Simulations of (a) joint distribution of (Λ,M), (b) marginal distribution of Λ together with exponential density curve (𝜆 = 1), (c)
marginal distribution of M, and (d) geometric distribution (p = 1∕101).
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9.3 CONDITIONAL EXPECTATION

A conditional expectation is an expectation computed with respect to a conditional
distribution. We write E[Y|X = x] for the conditional expectation of Y given X = x.
Our treatment of conditional expectation combines both discrete and continuous
settings.

CONDITIONAL EXPECTATION OF Y GIVEN X = x

E[Y|X = x] =

{∑
yyP(Y = y|X = x), discrete

∫y y fY|X(y|x) dy, continuous.

Most important is that E[Y|X = x] is a function of x.

□■ Example 9.9 Random variables X and Y have joint probability mass function
such that P(X = x1,Y = 1) = 0.1,P(X = x1,Y = 2) = 0.2,P(X = x2,Y = 1) = 0.3,
and P(X = x2,Y = 2) = 0.4. Find E[Y|X = x].

We treat X = x1 and X = x2 separately. The conditional probability mass function
of Y given X = x1, is

P(Y = k|X = x1) =
{

1∕3, if k = 1
2∕3, if k = 2.

Thus,

E[Y|X = x1] = 1
(1

3

)
+ 2

(2
3

)
= 5

3
.

Similarly, the conditional pmf of Y given X = x2 is,

P(Y = k|X = x2) =
{

3∕7, if k = 1
4∕7, if k = 2,

which gives

E[Y|X = x2] = 1
(3

7

)
+ 2

(4
7

)
= 11

7
.

Writing the conditional expectation E[Y|X = x] as a function of x gives

E[Y|X = x] =
{

5∕3, if x = x1
11∕7, if x = x2.

◼
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□■ Example 9.10 Suppose X and Y have joint density

f (x, y) = 2
xy

, for 1 < y < x < e,

and 0, otherwise. Find E[Y|X = x].
The marginal density of X is

fX(x) = ∫

x

1

2
xy

dy = 2 ln x
x

, for 1 < x < e.

The conditional density of Y given X = x is

fY|X(y|x) = f (x, y)
fX(x)

=
2∕xy

2 ln x∕x
= 1

y ln x
, for 1 < y < x < e.

The conditional expectation is

E[Y|X = x] =
∫

x

1
yfY|X(y|x) dy =

∫

x

1

y

y ln x
dy = x − 1

ln x
.

◼

□■ Example 9.11 Suppose X and Y have joint density function

f (x, y) = e−y
, 0 < x < y < ∞.

Find the conditional expectations (i) E[X|Y = y] and (ii) E[Y|X = x]. Think care-
fully about the steps needed to find these expectations as you follow the solution
below.

(i) The marginal density of Y is

fY (y) = ∫

∞

−∞
f (x, y) dx =

∫

y

0
e−y dx = ye−y

, y > 0.

This gives

fX|Y (x|y) = f (x, y)
fY (y)

= e−y

ye−y
= 1

y
, 0 < x < y.

Remember that y is fixed. The conditional distribution of X given Y = y is
uniform on the interval (0, y). It immediately follows that the conditional
expectation of X given Y = y is the midpoint of the interval (0, y). That is,
E[X|Y = y] = y∕2.
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(ii) The marginal density of X is

fX(x) = ∫

∞

x
e−y dy = e−x

, x > 0.

This gives the conditional density function

fY|X(y|x) = f (x, y)
fX(x)

= e−y

e−x
= e−(y−x)

, y > x. (9.4)

The function looks like an exponential density, but it is “shifted over” x units.
Let W be an exponential random variable with parameter 𝜆 = 1. Then the con-
ditional distribution of Y given X = x is the same distribution as that of W + x.
In particular, for y > x,

P(W + x ≤ y) = P(W ≤ y − x) = 1 − e−(y−x)
.

Differentiating with respect to y shows that

fW+x(y) = e−(y−x)
, for y > x.

Because the two distributions are the same, their expectations are the same. This
gives

E[Y|X = x] = E[W + x] = E[W] + x = 1 + x.

Or, if you prefer the integral,

E[Y|X = x] =
∫

∞

y = x
ye−(y−x) dy = 1 + x.

◼

9.3.1 From Function to Random Variable

We are about to take a big leap in our treatment of conditional expectation. Please
make sure that your seat belt is securely fastened.

In the previous section, we emphasized that E[Y|X = x] is a function of x.
Temporarily write this function with functional notation as g(x) = E[Y|X = x].
As g is a function, we can define a random variable g(X). What exactly is g(X)?
When X takes the value x, the random variable g(X) takes the value g(x) =
E[Y|X = x].

We give a new name to g(X) and call it E[Y|X], the conditional expectation of Y
given X.
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CONDITIONAL EXPECTATION E[ Y|X]

For jointly distributed random variables X and Y , the conditional expectation of
Y given X, denoted E[Y|X], is a random variable, which

1. Is a function of X, and

2. Is equal to E[Y|X = x] when X = x.

□■ Example 9.12 Remember Riley and Miguel? Riley picks a random number X
uniformly distributed on (0, 1). If Riley picks x, she shows it to Miguel who picks
a number Y uniformly distributed on (0, x). Find the conditional expectation of Y
given X.

The conditional distribution of Y given X = x is provided explicitly. As the
conditional distribution is uniform on (0, x), it follows immediately that E[Y|X =
x] = x∕2, the midpoint of the interval. This holds for all 0 < x < 1, and thus
E[Y|X] = X∕2. ◼

There is much to be learned from this simple, two-stage experiment. We will
return to it again.

As much as they look the same, there is a fundamental difference between the
conditional expectations E[Y|X = x] and E[Y|X]. The former is a function of x. Its
domain is a set of real numbers. The function can be evaluated and graphed. For
instance, in the last example, E[Y|X = x] = x∕2 is a linear function of x with slope
1/2. On the other hand, E[Y|X] is a random variable. As such, it has a probability
distribution. And thus it makes sense to take its expectation with respect to that
distribution.

The expectation of a conditional expectation might be a lot to chew on. But it
leads to one of the most important results in probability.

LAW OF TOTAL EXPECTATION

For a random variable Y and any random variable X defined jointly with Y , the
expectation of Y is equal to the expectation of the conditional expectation of Y
given X. That is,

E[Y] = E[E[Y|X]]. (9.5)

We prove this for the discrete case and leave the continuous case as an exercise.
As E[Y|X] is a random variable that is a function of X, it will be helpful to write it
explicitly as E[Y|X] = g(X), where g(x) = E[Y|X = x]. When we take the expecta-
tion E[E[Y|X]] = E[g(X)] of this function of a random variable, we use the law of
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the unconscious statistician:

E[E[Y|X]] = E[g(X)] =
∑

x

g(x)P(X = x)

=
∑

x

E[Y|X = x]P(X = x)

=
∑

x

(∑
y

yP(Y = y|X = x)

)
P(X = x)

=
∑

y

y
∑

x

P(Y = y|X = x)P(X = x)

=
∑

y

y
∑

x

P(X = x,Y = y)

=
∑

y

yP(Y = y) = E[Y].

The fifth equality is achieved by changing the order of the double summation.

□■ Example 9.13 Ayesha will harvest T tomatoes in her vegetable garden, where T
has a Poisson distribution with parameter 𝜆. Each tomato is checked for defects.
The chance that a tomato has defects is p. Assume that having defects or not
is independent from tomato to tomato. Find the expected number of defective
tomatoes.

Let X be the number of defective tomatoes. Intuitively, the expected number of
defective tomatoes is E[X] = pE[T] = p𝜆.

Rigorously, observe that the conditional distribution of X given T = n is binomial
with parameters n and p. Thus, E[X|T = n] = pn. As this is true for all n, E[X|T] =
pT . By the law of total expectation,

E[X] = E[E[X|T]] = E[pT] = pE[T] = p𝜆. ◼

□■ Example 9.14 When Trinity goes to the gym, she will either run, bicycle, or row.
She will choose one of the aerobic activities with respective probabilities 0.5, 0.3,
and 0.2. And having chosen an activity the amount of time (in minutes) she spends
exercising is exponentially distributed with respective parameters 0.05, 0.025, and
0.01. Find the expectation of Trinity’s exercise time.

Let T be her exercise time, and let A be a random variable that takes values 1,
2, and 3 corresponding to her choice of running, bicycling, and rowing. The con-
ditional distribution of exercise time given her choice is exponentially distributed.
Thus, the conditional expectation of exercise time given her choice is the reciprocal
of the corresponding parameter value. By the law of total expectation,
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E[T] = E[E[T|A]] = 3∑
a=1

E[T|A = a]P(A = a)

= 1
0.05

(0.5) + 1
0.025

(0.3) + 1
0.01

(0.2) = 42 minutes.

Trinity’s expected exercise time is 42 minutes. See Exercise.R for a simulation. ◼

□■ Example 9.15 At the gym, continued. When Teagan goes to the gym, he has
similar habits as Trinity, except, whenever he chooses rowing he only rows for 10
minutes, stops to take a drink of water, and starts all over, choosing one of the three
activities at random as if he had just walked in the door. Find the expectation of
Teagan’s exercise time.

The conditional expectation of Teagan’s exercise time given that he chooses run-
ning or bicycling is the same as Trinity’s. The conditional expectation given that he
picks rowing is E[T|A = 3] = 10 + E[T] since after 10 minutes of rowing, Teagan’s
subsequent exercise time has the same distribution as if he had just walked into the
gym and started anew. His expected exercise time is

E[T] = E[E[T|A]]
= E[T|A = 1]P(A = 1) + E[T|A = 2]P(A = 2)

+ E[T|A = 3]P(A = 3)

= 0.5
0.05

+ 0.3
0.025

+ (E[T] + 10)(0.2)

= 24 + E[T](0.2).

Solving for E[T] gives E[T] = 24∕(0.8) = 30 minutes. See Exercise2.R for a
simulation. ◼

In the last example, observe carefully the difference between E[T], E[T|A = a],
and E[T|A]. The first is a number, the second is a function of a, and the third is a
random variable.

□■ Example 9.16 Recall in Example 9.12 with Riley and Miguel, that we found
E[Y|X = x] = x∕2 and E[Y|X] = X∕2. What is E[Y]?

By the law of total expectation,

E[Y] = E[E[Y|X]] = E
[X

2

]
= 1

2
E[X] = 1

4
.

As in the previous example, note the difference between E[Y], E[Y|X = x], and
E[Y|X]. The first is a number, the second is a function of x, and the third is a random
variable. ◼
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As conditional expectations are expectations, they have the same properties
as regular expectations, such as linearity. The law of the unconscious statistician
also applies. In addition, we highlight two new properties specific to conditional
expectation.

PROPERTIES OF CONDITIONAL EXPECTATION

1. (Linearity) For constants a, b, and random variables X, Y , and W,

E[aW + bY|X] = aE[W|X] + bE[Y|X].
2. (Law of the unconscious statistician) If g is a function, then

E[g(Y)|X = x] =

{∑
yg(y)P(Y = y|X = x), discrete

∫yg(y)fY|X(y|x) dy, continuous.

3. (Independence) If X and Y are independent, then

E[Y|X] = E[Y].

4. (Y function of X) If Y = g(X) is a function of X, then

E[Y|X] = E[g(X)|X] = g(X) = Y . (9.6)

We prove the last two properties. For Property 3, we show the discrete case, and
leave the similar continuous case for the reader. If X and Y are independent,

E[Y|X = x] =
∑

y

yP(Y = y|X = x) =
∑

y

yP(Y = y) = E[Y],

for all x. Thus, E[Y|X] = E[Y].
For Property 4, let Y = g(X) for some function g, then

E[Y|X = x] = E[g(X)|X = x] = E[g(x)|X = x] = g(x),

where the last equality follows because the expectation of a constant is that constant.
As E[Y|X = x] = g(x) for all x, we have that E[Y|X] = g(X) = Y .

□■ Example 9.17 Let X and Y be independent Poisson random variables with respec-
tive parameters 𝜆X > 𝜆Y . Let U be uniformly distributed on (0, 1) and independent
of X and Y . The conditional expectation E[UX + (1 − U)Y|U] is a random variable.
Find its distribution, mean, and variance.
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We have

E[UX + (1 − U)Y|U] = E[UX|U] + E[(1 − U)Y|U]

= UE[X|U] + (1 − U)E[Y|U]

= UE[X] + (1 − U)E[Y]

= U𝜆X + (1 − U)𝜆Y

= 𝜆Y + (𝜆X − 𝜆Y )U,

where the first equality uses linearity, the second equality uses Property 4, and the
third equality uses independence. As U is uniformly distributed on (0, 1), it follows
that the conditional expectation is uniformly distributed on (𝜆Y , 𝜆X).

We could use the law of total expectation for the mean, but this is not neces-
sary. Appealing to results for the uniform distribution, the mean of the conditional
expectation is the midpoint (𝜆X + 𝜆Y )∕2, and the variance is (𝜆X − 𝜆Y )2∕12. ◼

□■ Example 9.18 Suppose X and Y have joint density

f (x, y) = xe−y
, 0 < x < y < ∞.

Find E[e−Y |X]. Think carefully about the steps you need to take to find this expec-
tation.

We will need the conditional density of Y given X = x. The marginal density
of X is

fX(x) = ∫

∞

x
xe−y dy = xe−x

, for x > 0.

The conditional density of Y given X = x is

fY|X(y|x) = f (x, y)
fX(x)

= xe−y

xe−x
= e−(y−x)

, for y > x.

This gives

E[e−Y |X = x] =
∫

∞

−∞
e−yfY|X(y|x) dy =

∫

∞

x
e−ye−(y−x) dy

= ex

∫

∞

x
e−2y dy = ex

(
e−2x

2

)
= e−x

2
,

for all x > 0. Thus, E[e−Y |X] = e−X∕2. ◼

□■ Example 9.19 Let X1,X2, . . . be an i.i.d. sequence of random variables with
common mean 𝜇. Let Sn = X1 + · · · + Xn, for each n = 1, 2, . . . . Find E[Sm|Sn] for
(i) m ≤ n, and (ii) m > n.
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(i) For m ≤ n,

E[Sm|Sn] = E[X1 + · · · + Xm|Sn]

=
m∑

i = 1

E[Xi|Sn] = mE[X1|Sn], (9.7)

where the second equality is from linearity of conditional expectation, and the
last equality is because of symmetry, because all the Xi’s are identically dis-
tributed. As Sn is, of course, a function of Sn, we have that

Sn = E[Sn|Sn] = E[X1 + · · · + Xn|Sn] =
n∑

i = 1

E[Xi|Sn] = nE[X1|Sn],

where X1 is chosen for convenience. Thus, E[X1|Sn] = Sn∕n. With Equation 9.7
this gives

E[Sm|Sn] = mE[X1|Sn] =
(m

n

)
Sn.

(ii) For m > n,

E[Sm|Sn] = E[Sn + Xn+1 + · · · + Xm|Sn]

= E[Sn|Sn] +
m∑

i = n+1

E[Xi|Sn]

= Sn +
m∑

i = n+1

E[Xi] = Sn + (m − n)𝜇,

where 𝜇 is the common mean of the Xi’s. The last equality is because for i > n,
Xi is independent of (X1, . . . ,Xn)and thus Xi is independent of Sn.

Let us apply these results. Suppose the amounts that a waiter earns every day in
tips form an i.i.d. sequence with mean $50. Given that he earns $1400 in tips during
1 month (30 days), what is his expected earnings via tips for the first week? By (i),

E[S7|S30 = 1400] = (7∕30)(1400) = $326.67.

On the other hand, if the waiter makes $400 in tips in the next week, how much
can he expect to earn in tips in the next month? By (ii),

E[S30|S7 = 400] = 400 + (30 − 7)𝜇 = 400 + 23(50) = $1550. ◼
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9.3.2 Random Sum of Random Variables

Sums of random variables where the number of summands is also a random variable
arise in numerous applications. Van Der Laan and Louter [1986] use such a model
to study the total cost of damage from traffic accidents.

Let Xk be the amount of damage from an individual’s kth traffic accident. It is
assumed that X1,X2, . . . is an i.i.d. sequence of random variables with common
mean 𝜇. Furthermore, the number of accidents N for an individual driver is a random
variable with mean 𝜆. It is often assumed that N has a Poisson distribution.

The total cost of damages is

X1 + · · · + XN =
N∑

k=1

Xk.

The number of summands, N, is random. To find the expected total cost, it is not

correct to write E
[∑N

k=1 Xk

]
=
∑N

k=1 E[Xk], assuming that linearity of expectation
applies. Linearity of expectation does not apply here because the number of sum-
mands is random, not fixed. (Observe that the equation does not even make sense
as the left-hand side is a number and the right-hand side is a random variable.)

To find the expectation of a random sum, condition on the number of summands
N. Let T = X1 + · · · + XN . By the law of total expectation, E[T] = E[E[T|N]]. To
find E[T|N], consider

E[T|N = n] = E

[
N∑

k=1

Xk|N = n

]
= E

[
n∑

k=1

Xk|N = n

]

= E

[
n∑

k=1

Xk

]
=

n∑
k=1

E[Xk] = n𝜇.

The third equality follows because N is independent of the Xi’s. The equality
holds for all n, thus E[T|N] = N𝜇. By the law of total expectation,

E[T] = E[E[T|N]] = E[N𝜇] = 𝜇E[N] = 𝜇𝜆.

The result is intuitive. The expected total cost is the product of the expected number
of accidents times the expected cost per accident.

9.4 COMPUTING PROBABILITIES BY CONDITIONING

When we first introduced indicator variables, we showed that probabilities can actu-
ally be treated as expectations, since for any event A, P(A) = E[IA], where IA is the
associated indicator random variable. Applying the law of total expectation gives

P(A) = E[IA] = E[E[IA|X]].
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If X is continuous with density fX ,

P(A) = E[E[IA|X]] = ∫

∞

−∞
E[IA|X = x] fX(x) dx

=
∫

∞

−∞
P(A|X = x)fX(x) dx.

This is the continuous version of the law of total probability, a powerful tool for
finding probabilities by conditioning.

For instance, consider P(X < Y), where X and Y are continuous random vari-
ables. Treating {X < Y} as the event A, and conditioning on Y , gives

P(X < Y) =
∫

∞

−∞
P(X < Y|Y = y)fY (y) dy =

∫

∞

−∞
P(X < y|Y = y)fY (y) dy.

If X and Y are independent,

P(X < Y) =
∫

∞

−∞
P(X < y|Y = y)fY (y) dy

=
∫

∞

−∞
P(X < y)fY (y) dy

=
∫

∞

−∞
FX(y)fY (y) dy.

We apply these ideas in the following examples.

□■ Example 9.20 The times X and Y that Lief and Haley arrive to class have expo-
nential distributions with respective parameters 𝜆X and 𝜆Y . If their arrival times are
independent, the probability that Haley arrives before Lief is

P(Y < X) =
∫

∞

0
(1 − e−𝜆Y𝑤)𝜆Xe−𝜆X𝑤 d𝑤

= 1 − 𝜆X ∫

∞

0
e−𝑤(𝜆Y+𝜆X ) d𝑤

= 1 −
𝜆X

𝜆Y + 𝜆X
=

𝜆Y

𝜆Y + 𝜆X
. ◼

□■ Example 9.21 The density function of X is f (x) = xe−x, for x > 0. Given X = x,
Y is uniformly distributed on (0, x). Find P(Y < 2).

Observe that

P(Y < 2|X = x) =
{

1, if 0 < x ≤ 2
2∕x, if x > 2.
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By conditioning on X,

P(Y < 2) =
∫

∞

0
P(Y < 2|X = x)fX(x) dx

=
∫

2

0
P(Y < 2|X = x)xe−x dx +

∫

∞

2
P(Y < 2|X = x)xe−x dx

=
∫

2

0
xe−x dx +

∫

∞

2

(2
x

)
xe−x dx

= (1 − 3e−2) + 2e−2 = 1 − e−2 = 0.8647. ◼

□■ Example 9.22 We demonstrate the convolution formula Equation 8.3 for the sum
of independent random variables X + Y by conditioning on one of the variables.

P(X + Y ≤ t) =
∫

∞

−∞
P(X + Y ≤ t|Y = y)fY (y) dy

=
∫

∞

−∞
P(X + y ≤ t|Y = y)fY (y) dy

=
∫

∞

−∞
P(X ≤ t − y)fY (y) dy,

where the last equality is because of independence. Differentiating with respect to
t gives the density of X + Y

fX+Y (t) = ∫

∞

−∞
f (t − y)f (y) dy. ◼

The following example treats a random variable that has both discrete and con-
tinuous components. It arises naturally in many applications, including modeling
insurance claims.

□■ Example 9.23 Mohammed’s insurance will pay for a medical expense subject to
a $100 deductible. Suppose the amount of the expense is exponentially distributed
with parameter 𝜆. Find (i) the distribution of the amount of the insurance company’s
payment and (ii) the expected payout.

(i) Let M be the amount of the medical expense and let X be the company’s payout.
Then

X =
{

M − 100, if M > 100
0, if M ≤ 100,

where M ∼ Exp(𝜆).
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The random variable X has both discrete and continuous components. Observe
that X = 0 if and only if M ≤ 100. Thus,

P(X = 0) = P(M ≤ 100) =
∫

100

0
𝜆e−𝜆m dm = 1 − e−𝜆100

.

For x > 0, we find the cdf of X by conditioning on M. Thus,

P(X ≤ x) =
∫

∞

0
P(X ≤ x|M = m)𝜆e−𝜆m dm

=
∫

100

0
P(0 ≤ x|M = m)𝜆e−𝜆m dm

+
∫

∞

100
P(M − 100 ≤ x|M = m)𝜆e−𝜆m dm

=
∫

100

0
𝜆e−𝜆m dm +

∫

∞

100
P(M ≤ x + 100)𝜆e−𝜆m dm

= 1 − e−𝜆100 +
∫

x+100

100
𝜆e−𝜆m dm

= 1 − e−𝜆100 + (e−100𝜆 − e−𝜆(100+x))

= 1 − e−𝜆(100+x)
.

Thus, the cdf of X is

P(X ≤ x) =
{

0, if x < 0
1 − e−𝜆(100+x), if x ≥ 0.

The cdf is not continuous and has a jump discontinuity at x = 0 (see Fig. 9.4
for the graph of the cdf).

(ii) For the expected payout E[X], we apply the law of total expectation, giving

E[X] = E[E[X|M]] =
∫

∞

0
E[X|M = m]𝜆e−𝜆m dm

=
∫

∞

100
E[M − 100|M = m]𝜆e−𝜆m dm

=
∫

∞

100
(m − 100)𝜆e−𝜆m dm = e−100𝜆

𝜆
. ◼
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FIGURE 9.4: Cumulative distribution function of insurance payout has jump discontinuity
at x = 0. The distribution has both discrete and continuous components.

9.5 CONDITIONAL VARIANCE

Conceptually, the conditional variance is derived in a way similar to that of the con-
ditional expectation. It is a variance taken with respect to a conditional distribution.
The conditional variance V[Y|X = x] is defined as

CONDITIONAL VARIANCE OF Y GIVEN X = x

V[Y|X = x] =

{∑
y(y − E[Y|X = x])2P(Y = y|X = x), Y is discrete

∫y(y − E[Y|X = x])2fY|X(y|x) dy, Y is continuous.

Compare with the unconditional variance formula. Note the conditional expec-
tation E[Y|X = x] takes the place of the unconditional expectation E[Y] in the usual
variance formula.

□■ Example 9.24 Recall the two-stage uniform model in Example 9.12. Let X ∼
Unif(0, 1). Conditional on X = x, let Y ∼ Unif(0, x). Find the conditional variance
V[Y|X = x].

From the defining formula,

V[Y|X = x] =
∫

x

0
(y − E[Y|X = x])2 1

x
dy =

∫

x

0

(y − x∕2)2

x
dy = x2

12
. ◼

Properties for the regular variance transfer to the conditional variance.
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PROPERTIES OF CONDITIONAL VARIANCE

1. V[Y|X = x] = E[Y2|X = x] − (E[Y|X = x])2.

2. For constants a and b,

V[aY + b|X = x] = a2V[Y|X = x].

3. If W and Y are independent, then

V[W + Y|X = x] = V[W|X = x] + V[Y|X = x].

As with the development of conditional expectation, we define the conditional
variance, V[Y|X], as the random variable that is a function of X which takes the
value V[Y|X = x] when X = x. For instance, in Example 9.24, V[Y|X = x] = x2∕12,
for 0 < x < 1. And thus V[Y|X] = X2∕12.

While the conditional expectation formula E[Y] = E[E[Y|X]] may get credit for
one of the most important formulas in this book, the following variance formula is
perhaps the most aesthetically pleasing.

LAW OF TOTAL VARIANCE

V[Y] = E[V[Y|X]] + V[E[Y|X]].
The proof is easier than you might think. We start with the summands on the

right hand side. We have that

E[V[Y|X]] = E[E[Y2|X] − (E[Y|X])2]
= E[E[Y2|X]] − E[(E[Y|X])2]
= E[Y2] − E[(E[Y|X])2].

And

V[E[Y|X]] = E[(E[Y|X])2] − (E[E[Y|X]])2
= E[(E[Y|X])2] − (E[Y])2.

Thus,

E[V[Y|X]] + V[E[Y|X]]
= (E[Y2] − E[(E[Y|X])2]) + (E[(E[Y|X])2] − (E[Y])2)

= E[Y2] − (E[Y])2 = V[Y].
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□■ Example 9.25 We continue with the two-stage random experiment of first picking
X uniformly in (0, 1) and, if X = x, then picking Y uniformly in (0, x). Find the
variance of Y .

Recall what we already know in this setting. In Examples 9.12, 9.16, and 9.24,
we found that E[Y|X] = X∕2, E[Y] = 1∕4, and V[Y|X] = X2∕12. By the law of total
variance,

V[Y] = E[V[Y|X]] + V[E[Y|X]]
= E

[
X2

12

]
+ V

[X
2

]
= 1

12
E[X2] + 1

4
V[X]

= 1
12

(1
3

)
+ 1

4

( 1
12

)
= 7

144
= 0.04861.

The nature of the hierarchical experiment makes it easy to simulate.

R: SIMULATION OF TWO-STAGE UNIFORM EXPERIMENT

> n <- 100000
> simlist <- replicate(n, runif(1, 0, runif(1, 0, 1)))
> mean(simlist)
[1] 0.2495062
> var(simlist)
[1] 0.04868646

◼

□■ Example 9.26 During her 4 years at college, Hayley takes N exams, where N has
a Poisson distribution with parameter 𝜆. On each exam, she scores an A with prob-
ability p, independently of any other test. Let Y be the number of A’s she receives.
Find the correlation between N and Y .

We first find the covariance Cov(N,Y) = E[NY] − E[N]E[Y]. Conditional
on N = n, the number of A’s Hayley receives has a binomial distribution with
parameters n and p. Thus, E[Y|N = n] = np and E[Y|N] = Np. This gives

E[Y] = E[E[Y|N]] = E[Np] = pE[N] = p𝜆.

By conditioning on N,

E[NY] = E[E[NY|N]]

= E[NE[Y|N]] = E[N(pN)]

= pE[N2] = p(𝜆 + 𝜆
2).
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FIGURE 9.5: Number of exams versus number of A’s. Correlation is 0.775.

The second equality is because of Property 4 in Equation 9.6. We have

Cov(N,Y) = E[NY] − E[N]E[Y] = p(𝜆 + 𝜆
2) − (p𝜆)𝜆 = p𝜆.

To find the correlation, we need the standard deviations. The conditional vari-
ance is V[Z|N = n] = np(1 − p) and thus V[Z|N] = Np(1 − p). By the law of total
variance,

V[Y] = E[V[Y|N]] + V[E[Y|N]]

= E[p(1 − p)N] + V[pN] = p(1 − p)E[N] + p2V[N]

= p(1 − p)𝜆 + p2
𝜆 = p𝜆.

Thus, SD[N] SD[Y] =
√
𝜆
√

p𝜆 = 𝜆
√

p. This gives

Corr(N,Y) = Cov(N,Y)
SD[N] SD[Y]

=
𝜆p

𝜆
√

p
=
√

p.

See the script file CorrTest.R for a simulation. The graph in Figure 9.5 was
created with parameters 𝜆 = 20 and p = 0.60. The correlation between N and Y is√

0.60 = 0.775. ◼

□■ Example 9.27 Random sums continued. The number of customers N who
come in every day to Alice’s Restaurant has mean and variance 𝜇N and 𝜎2

N , respec-
tively. Customers each spend on average 𝜇C dollars with variance 𝜎2

C. Customers’
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spending is independent of each other and of N. Find the mean and standard devia-
tion of customers’ total spending.

Let C1,C2, . . . be the amounts each customer spends at the restaurant. Then the
total spending is T = C1 + · · · + CN , a random sum of random variables.

In Section 9.3.2, we showed that

E[T] = E[C1]E[N] = 𝜇C𝜇N .

For the variance, condition on N. By the law of total variance,

V[T] = V

[
N∑

k=1

Ck

]

= E

[
V

[
N∑

k=1

Ck

||||||N

]]
+ V

[
E

[
N∑

k=1

Ck

||||||N

]]
.

We have that

V

[
N∑

k=1

Ck

||||||N = n

]
= V

[
n∑

k=1

Ck

|||||N = n

]

= V

[
n∑

k=1

Ck

]
=

n∑
k=1

V[Ck]

= n𝜎2
C.

The second equality is because N and the Ck’s are independent. The third equality
is because all of the Ck’s are independent. This gives

V

[
N∑

k=1

Ck

||||||N

]
= 𝜎

2
CN.

From results for conditional expectation, we have that

E

[
N∑

k=1

Ck

||||||N

]
= E[C1]N = 𝜇CN.

This gives

V[T] = E

[
V

[
N∑

k=1

Ck

||||||N

]]
+ V

[
E

[
N∑

k=1

Ck

||||||N

]]
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= E[𝜎2
CN] + V[𝜇CN]

= 𝜎
2
CE[N] + (𝜇C)2V[N]

= 𝜎
2
C𝜇N + (𝜇C)2𝜎2

N .

Suppose, on average, 𝜆 = 100 customers arrive each day. Customers each spend
on average $14 with standard deviation $2. Then total spending at Alice’s Restaurant
has mean E[T] = (100)(14) = $1400 and standard deviation

SD[T] =
√

(22)(100) + (142)(100) =
√

20,000 = $141.42. ◼

R: TOTAL SPENDING AT ALICE’S RESTAURANT

# Alice.R
> n <- 100000
> simlist <- numeric(n)
> for (i in 1:n) {

N <- rpois(1,100) # Number of customers
cust <- rnorm(N, 14, 2)
total <- sum(cust)
simlist[i] <- total }

> mean(simlist)
[1] 1400.268
> sd(simlist)
[1] 141.0764

9.6 BIVARIATE NORMAL DISTRIBUTION*

The multivariate normal distribution for random variables (X1, . . . ,Xn) generalizes
the one-dimensional normal distribution to n dimensions. Here we introduce the
two-dimensional bivariate normal distribution for X and Y . We can explore many of
the conditional results from this chapter with this distribution.

The bivariate normal distribution is widely used in science and statistics. In Hol-
lowed et al. [2011], a bivariate normal distribution is used to model the habitat of
arrowtooth flounder in Alaska fisheries (see Fig. 9.6).

The distribution is specified by five parameters: 𝜇X , 𝜇Y , 𝜎2
X , 𝜎2

Y , and 𝜌: the means
and variances of X and Y and their correlation. If 𝜇X = 𝜇Y = 0 and 𝜎2

X = 𝜎2
Y = 1, this

gives the bivariate standard normal distribution, with correlation 𝜌. See Figure 9.7
for example contour graphs of bivariate standard normal densities with varying cor-
relations, including one with correlation 0, and Figure 9.8 for a 3-D visual.
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2003–2005

FIGURE 9.6: Distribution of arrowtooth flounder in Alaskan fisheries. Ellipses representing
30% probability contours of bivariate normal distribution fit to EBS survey CPUE data for
arrowtooth flounder for the five coldest (black; 1994, 1999, 2008–2010) and warmest (gray;
1996, 1998, 2003–2005) years from 1982 to 2010. Source: Hollowed et al. [2011].

BIVARIATE STANDARD NORMAL DISTRIBUTION

Random variables X and Y have a bivariate standard normal distribution with
correlation 𝜌 if the joint density function of (X,Y) is

f (x, y) = 1

2𝜋
√

1 − 𝜌2
e
− x2−2𝜌xy+y2

2(1−𝜌2) , (9.8)

for −∞ < x, y < ∞, where −1 < 𝜌 < 1.

Derivation. Here we derive the bivariate normal distribution and its joint density
function.

The derivation starts with a pair of independent standard normal random vari-
ables Z1 and Z2. Let −1 < 𝜌 < 1. We transform (Z1,Z2) into a pair of random vari-
ables (X,Y) such that (i) marginally X and Y each have standard normal distributions
and (ii) the correlation between X and Y is 𝜌. We then derive the joint density func-
tion of X and Y .
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FIGURE 9.7: Contour plots of standard bivariate normal densities with (a) 𝜌 = −0.75, (b)
𝜌 = 0, (c) 𝜌 = 0.5, and (d) 𝜌 = 0.9.

Let X = Z1 and Y = 𝜌Z1 +
√

1 − 𝜌2Z2. Trivially, X ∼ Norm(0, 1). As Y is the
sum of two independent normal variables, it follows that Y is normally distributed
with mean

E[Y] = 𝜌E[Z1] +
√

1 − 𝜌2E[Z2] = 0

and variance

V[Y] = 𝜌
2V[Z1] + (1 − 𝜌

2)V[Z2] = 𝜌
2 + 1 − 𝜌

2 = 1.

Because both X and Y have mean 0 and variance 1,

Corr(X,Y) = E[XY] = E[Z1(𝜌Z1 +
√

1 − 𝜌2Z2)]

= 𝜌E[Z2
1 ] +

√
1 − 𝜌2E[Z1Z2] = 𝜌.

We now show that the joint density function of X and Y is the bivariate standard
normal density using the method of transformations for two variables, Equation 8.5.
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FIGURE 9.8: Bivariate standard normal distribution.

Let g1(z1, z2) = z1 and g2(z1, z2) = 𝜌z1 +
√

1 − 𝜌2z2. Solving for the inverse
functions give

h1(x, y) = x and h2(x, y) =
y − 𝜌x√
1 − 𝜌2

.

The Jacobian is

J =
||||| 1 0

−𝜌∕
√

1 − 𝜌2 1∕
√

1 − 𝜌2

||||| = 1√
1 − 𝜌2

.

The joint density of X and Y is thus

fX,Y (x, y) =
1√

1 − 𝜌2
fZ1,Z2

(x, (y − 𝜌x)∕
√

1 − 𝜌2)

= 1

2𝜋
√

1 − 𝜌2
e−(x

2∕2+(y−𝜌x)2∕(1−𝜌2))

= 1

2𝜋
√

1 − 𝜌2
e−(x

2−2𝜌xy+y2)∕2(1−𝜌2)
.

◾
The joint density function of the general bivariate distribution is complicated.

Please, do not memorize it! Often it will suffice to work with the standard normal
bivariate density. As in the univariate case, X and Y have a bivariate normal dis-
tribution with parameters 𝜇X , 𝜇Y , 𝜎

2
X , 𝜎

2
Y , 𝜌 if and only if the standardized variables

(X − 𝜇X)∕𝜎X and (Y − 𝜇Y )∕𝜎Y have a bivariate standard normal distribution.
For completeness, we give the general expression for the bivariate normal

density.
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BIVARIATE NORMAL DENSITY

Random variables X and Y have a joint bivariate normal distribution with param-
eters 𝜇X , 𝜇Y , 𝜎2

X , 𝜎2
Y , and 𝜌, if the joint density of X and Y is

f (x, y) = 1

𝜎X𝜎Y2𝜋
√

1 − 𝜌2
exp

(
−

d(x, y)
2(1 − 𝜌2)

)
, (9.9)

where

d(x, y) =
(

x − 𝜇X

𝜎X

)2

− 2𝜌

(
x − 𝜇X

𝜎X

)(
y − 𝜇Y

𝜎Y

)
+
(

y − 𝜇Y

𝜎Y

)2

.

The parameter constraints are 𝜎X > 0, 𝜎Y > 0, and −1 < 𝜌 < 1.

□■ Example 9.28 Fathers and sons. Sir Francis Galton, one of the “founding
fathers” of statistics, introduced the concept of correlation in the late nineteenth
century in part based on his study of the relationship between heights of fathers
and their adult sons. Galton took 1078 measurements of father–son pairs. From his
data, the mean height of fathers is 69 inches, the mean height of their sons is 70
inches, and the standard deviation of height is 2 inches for both fathers and son.
The correlation is 0.5. Galton’s data are well fit by a bivariate normal distribution
(see Fig. 9.9). ◼

The bivariate normal distribution has many remarkable properties, including the
fact that both marginal and conditional distributions are normal. We summarize the
main properties for the bivariate standard normal distribution next. Results extend
naturally to the general case.

PROPERTIES OF BIVARIATE STANDARD NORMAL DISTRIBUTION

Suppose random variables X and Y have a bivariate standard normal distribution
with correlation 𝜌. Then the following properties hold.

1. Marginal distribution: The marginal distributions of X and Y are each
standard normal.

2. Conditional distribution: The conditional distribution of X given Y = y
is normally distributed with mean 𝜌y and variance 1 − 𝜌2. That is, E[X|Y =
y] = 𝜌y and variance V[X|Y = y] = 1 − 𝜌2. Similarly, the conditional dis-
tribution of Y given X = x is normal with E[Y|X = x] = 𝜌x and V[Y|X =
x] = 1 − 𝜌2.
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3. Correlation and independence: If 𝜌 = 0, that is, X and Y are uncorre-
lated, then X and Y are independent random variables.

4. Transforming X and Y to independent random variables: Let Z1 = X
and Z2 = (Y − 𝜌X)∕

√
1 − 𝜌2. Then Z1 and Z2 are independent standard

normal random variables.

5. Linear functions of X and Y: For nonzero constants a and b, aX + bY is
normally distributed with mean 0 and variance a2 + b2 + 2ab𝜌.

We remark briefly on each of the five properties.

1. Marginals: The marginal density of Y is found by a straightforward calcu-
lation, which we leave to the reader. The key step in the derivation is com-
pleting the square in the exponent of e, writing x2 − 2𝜌xy + y2 = (x − 𝜌y)2 +
(1 − 𝜌2)y2. Similarly for the marginal density of X.

2. Conditional distributions: The conditional density of Y given X = x is

fY|X(y|x) =
1

2𝜋
√

1−𝜌2
exp

(
− x2−2𝜌xy+y2

2(1−𝜌2)

)
1√
2𝜋

exp
(
− x2

2

)
= 1√

2𝜋
√

1 − 𝜌2
exp

(
−

y2 − 2𝜌xy − 𝜌2x2

2(1 − 𝜌2)

)
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FIGURE 9.9: Galton’s height data for fathers and sons are well fit by a bivariate normal
distribution with parameters (𝜇F , 𝜇S, 𝜎

2
F , 𝜎

2
S , 𝜌) = (69, 70, 22

, 22
, 0.5).
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= 1√
2𝜋

√
1 − 𝜌2

exp

(
−
(y − 𝜌x)2

2(1 − 𝜌2)

)
,

which is the density function of a normal distribution with mean 𝜌x and vari-
ance 1 − 𝜌2.

3. Correlation and independence: Independent random variables always have
correlation equal to 0. However, the converse is generally not true. For nor-
mal random variables, however, it is. Let 𝜌 = 0 in the bivariate joint density
function. The density is equal to

f (x, y) =

(
1√
2𝜋

e−x2∕2

)(
1√
2𝜋

e−y2∕2

)
,

which is the product of the marginal densities of X and Y . Thus, X and Y are
independent.

It follows that if X and Y are standard normal random variables that have
a joint bivariate normal distribution, and if E[XY] = E[X]E[Y], then X and Y
are independent.

4. Transforming X and Y: This property follows from considering the deriva-
tion of the standard normal bivariate density in reverse, as shown previously.

5. Linear functions of X and Y: Property 4 tells us that we can write X = Z1 and
Y =

√
1 − 𝜌2Z2 + 𝜌Z1, where Z1 and Z2 are independent standard normals.

Thus,

aX + bY = aZ1 + b(
√

1 − 𝜌2Z2 + 𝜌Z1) = (a + b𝜌)Z1 + b
√

1 − 𝜌2Z2.

That is, we can write aX + bY as a sum of independent random variables. The
result follows.

R: SIMULATING BIVARIATE NORMAL RANDOM VARIABLES

We generate 1000 observations from a bivariate standard normal distribution
with correlation 𝜌 = −0.75. The resulting plot is shown in Figure 9.10.

> n <- 1000
> rho <- -0.75
> xlist <- numeric(n)
> ylist <- numeric(n)
> for (i in 1:n) {

z1 <- rnorm(1)
z2 <- rnorm(1)

xlist[i] <- z1
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ylist[i] <- rho*z1 + sqrt(1-rho∧2)*z2
}

> plot(cbind(xlist,ylist))

The properties and results for the bivariate standard normal distribution extend to
the general bivariate normal distribution. We summarize the conditional distribution
results for the general case.

CONDITIONAL DISTRIBUTION OF Y GIVEN X = x

Suppose the distribution of X and Y is bivariate normal with parameters
𝜇X , 𝜇Y , 𝜎

2
X , 𝜎

2
Y , 𝜌. Then the conditional distribution of Y given X = x is normal

with conditional mean

E[Y|X = x] = 𝜇Y + 𝜌
𝜎Y

𝜎X
(x − 𝜇X)

and conditional variance

V[Y|X = x] = 𝜎
2
Y (1 − 𝜌

2).

The result is derived with the assistance of Property 4. Write X = 𝜎XZ1 + 𝜇X ,
where Z1 ∼ Norm(0, 1). Similarly, write Y = 𝜎YZ2 + 𝜇Y , where Z2 ∼ Norm(0, 1).

−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

FIGURE 9.10: Plot of 1000 observations from bivariate standard normal distribution with
𝜌 = −0.75.
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Then

E[Y|X = x] = E[𝜇Y + 𝜎YZ2|𝜇X + 𝜎XZ1 = x]

= E[𝜇Y + 𝜎YZ2|Z1 = (x − 𝜇X)∕𝜎X]

= 𝜇Y + 𝜎YE[Z2|Z1 = (x − 𝜇X)∕𝜎X]

= 𝜇Y + 𝜌
𝜎Y

𝜎X
(x − 𝜇X)

and

V[Y|X = x] = V[𝜇Y + 𝜎YZ2|𝜇X + 𝜎XZ1 = x]

= V[𝜇Y + 𝜎YZ2|Z1 = (x − 𝜇X)∕𝜎X]

= 𝜎
2
YV[Z2|Z1 = (x − 𝜇X)∕𝜎X]

= 𝜎
2
Y (1 − 𝜌

2).

□■ Example 9.29 Fathers and sons continued. We use the Galton dataset as the
basis of a model for heights for fathers and their adult sons. For a father–son pair,
let F denote father’s height and S denote son’s height. We assume (F, S) has a
bivariate normal distribution with a parameters 𝜇F = 69, 𝜇S = 70, 𝜎F = 𝜎S = 2, and
𝜌 = 0.50. (i) Find the probability that a son is taller than his father. (ii) Suppose a
father is 67 inches tall. What is the probability that his son will be over 6 feet tall?

(i) The desired probability is P(S > F) = P(S − F > 0). By Property 5, S − F is
normally distributed with mean

E[S − F] = 𝜇S − 𝜇F = 70 − 69 = 1

and variance

V[S − F] = V[S] + V[F] − 2 Cov(S,F)

= 𝜎
2
S + 𝜎

2
F − 2𝜌𝜎S𝜎F

= 4 + 4 − 2(0.5)(2)(2) = 4.

Thus S − F ∼ Norm(1, 4). The desired probability P(S > F) = P(S − F > 0)
is found in R.

> 1-pnorm(0,1,2)
[1] 0.6914625

(ii) The question asks for P(S > 72|F = 67). The conditional distribution of S given
F = f is normal with mean
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E[S|F = f ] = 70 + (0.5)2
2
(f − 69) = 70 +

f − 69
2

.

At f = 67, the conditional mean is 70 + (67 − 69)∕2 = 69. The conditional
variance is

V[S|F = 67] = (1 − (0.5)2)4 = 3.

The desired probability is obtained in R.

> 1- pnorm(72,69,sqrt(3))
[1] 0.04163226 ◼

9.7 SUMMARY

Conditional distribution, expectation, and variance are the focus of this chapter.
Many results are given for both discrete and continuous settings. For jointly dis-
tributed continuous random variables, the conditional density function is a density
function defined with respect to a conditional distribution. The continuous version
of Bayes formula is presented. Conditional distributions arise naturally in two-stage,
hierarchical models, with several related examples given throughout the chapter.

Conditional expectation is given an extensive treatment. A conditional expec-
tation is an expectation with respect to a conditional distribution. Similarly for
conditional variance, we first focus on the conditional expectation of Y given X = x
E[Y|X = x], which is a function of x. We then introduce E[Y|X], the conditional
expectation of Y given a random variable X. The law of total expectation, a central
result in probability, is presented. From the law of total expectation, we show how
to compute continuous probabilities by conditioning on random variables. The last
section presents the related law of total variance.

The bivariate normal distribution is introduced as an optional topic. Conditional
results are illustrated with the distribution. A derivation of the joint density function
of the bivariate normal distribution is also included.

• Conditional density function: The conditional density of Y given X = x is

fY|X(y|x) = f (x, y)
fX(x)

,

for fX(x) > 0.

• Continuous Bayes formula:

fX|Y (x|y) = fY|X(y|x)fX(x)
∫

∞
−∞ fY|X(y|t)fX(t) dt

.
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• Conditional expectation of Y given X = x:

E[Y|X = x] =

{
∫yyfY|X(y|x) dy, continuous∑

yyP(Y = y|X = x), discrete.

• Conditional expectation of Y given X: E[Y|X] is a random variable and
a function of X. When X = x, the random variable E[Y|X] takes the value
E[Y|X = x].

• Law of total expectation: E[Y] = E[E[Y|X]].
• Properties of conditional expectation:

1. For constants a and b,

E[aY + bZ|X] = aE[Y|X] + bE[Z|X].
2. If g is a function,

E[g(Y)|X = x] =

{∑
yg(y)P(Y = y|X = x), discrete

∫yg(y)fY|X(y|x) dy, continuous.

3. If X and Y are independent, then E[Y|X] = E[Y].
4. If Y = g(X) is a function of X, then E[Y|X] = Y .

• Law of total probability (continuous version):

P(A) =
∫

∞

−∞
P(A|X = x)fX(x) dx.

• Conditional variance:

V[Y|X = x] =

{∑
y(y − E[Y|X = x])2P(Y = y|X = x), discrete

∫y(y − E[Y|X = x])2fY|X(y|x) dy, continuous.

• Properties of conditional variance:

1. V[Y|X = x] = E[Y2|X = x] − (E[Y|X = x])2.
2. For constants a and b, V[aY + b|X = x] = a2V[Y|X = x].
3. If Y and Z are independent,

V[Y + Z|X = x] = V[Y|X = x] + V[Z|X = x].

• Law of total variance: V[Y] = E[V[Y|X]] + V[E[Y|X]].
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• Bivariate standard normal density: X and Y have a bivariate standard nor-
mal distribution with correlation 𝜌, if the joint density function is

f (x, y) = 1

2𝜋
√

1 − 𝜌2
e
− x2−2𝜌xy+y2

2(1−𝜌2) .

• Properties of bivariate standard normal distribution: If X and Y have a
bivariate standard normal distribution with correlation 𝜌, then
1. Marginal distributions of X and Y are standard normal.

2. Conditional distribution of X given Y = y is normal with mean 𝜌y and vari-
ance 1 − 𝜌2. Similarly for Y given X = x.

3. If 𝜌 = 0, X and Y are independent.

4. Let Z1 = X and Z2 = (Y − 𝜌X)∕
√

1 − 𝜌2. Then Z1 and Z2 are independent
standard normal variables.

5. For nonzero constants a and b, aX + bY is normally distributed with mean
0 and variance a2 + b2 + 2ab𝜌.

EXERCISES

Conditional Distributions

9.1 Let X and Y have joint density

f (x, y) = 12x(1 − x), for 0 < x < y < 1.

(a) Find the marginal densities of X and Y .

(b) Find the conditional density of Y given X = x. Describe the conditional
distribution.

(c) Find P(X < 1∕4|Y = 0.5).

9.2 Let X ∼ Unif(0, 2). If X = x, let Y be uniformly distributed on (0, x).
(a) Find the joint density of X and Y .

(b) Find the marginal densities of X and Y .

(c) Find the conditional densities of X and Y .

9.3 Let X and Y have joint density

f (x, y) = 4e−2x
, for 0 < y < x < ∞.

(a) Describe the steps needed to find the conditional density of Y given X.

(b) Find the conditional density of Y given X.

(c) Find P(1 < Y < 2|X = 3).
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9.4 Let X and Y be uniformly distributed on the triangle with vertices (0, 0), (1, 0),
and (1, 1).
(a) Find the joint and marginal densities of X and Y .

(b) Find the conditional density of Y given X = x. Describe the conditional
distribution.

9.5 Let X and Y be i.i.d. exponential random variables with parameter 𝜆. Find the
conditional density function of X + Y given X = x. Describe the conditional
distribution.

9.6 Let X and Y have joint density

f (x, y) =
√

2
𝜋

ye−xye−y2∕2
, for x > 0, y > 0.

(a) By examining the joint density function can you guess the conditional
density of X given Y = y? (Treat y as a constant.) Confirm your guess.

(b) Find P(X < 1|Y = 1).

9.7 Let Z ∼ Gamma(a, 𝜆), where a is an integer. Conditional on Z = z, let
X ∼ Pois(z). Show that X has a negative binomial distribution with the
following interpretation: for k = 0, 1, . . . , P(X = k) is equal to the number of
failures before a successes in a sequence of i.i.d. Bernoulli trials with success
parameter 𝜆∕(1 + 𝜆).

Conditional Expectation

9.8 Explain carefully the difference between E[Y|X] and E[Y|X = x].

9.9 Show that E[E[Y|X]] = E[Y] in the continuous case.

9.10 On one block of “Eat Street” in downtown Minneapolis there are 10 restau-
rants to choose from. The waiting time for each restaurant is exponentially
distributed with respective parameters 𝜆1, . . . , 𝜆10. Luka will decide to eat at
restaurant i with probability pi for i = 1, . . . , 10. (Note: p1 + · · · + p10 = 1).
What is Luka’s expected waiting time?

9.11 Let X and Y have joint density function

f (x, y) = e−x(y+1)
, x > 0, 0 < y < e − 1.

(a) Find and describe the conditional distribution of X given Y = y.

(b) Find E[X|Y = y] and E[X|Y].
(c) Find E[X] in two ways: (i) using the law of total expectation; (ii) using the

distribution of X.
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9.12 Let X and Y have joint density

f (x, y) = x + y, 0 < x < 1, 0 < y < 1.

Find E[X|Y = y]. (It may help you to outline the steps needed to compute the
expectation.)

9.13 Let X and Y have joint density

f (x, y) = (3∕160)(x + 2y), 0 < x < y < 4.

(a) Find the marginal pdf of Y .
(b) Find the conditional pdf of X given Y = y.
(c) Find E(X|Y = 2).

9.14 Let X and Y have joint density

f (x, y) = 24xy, 0 < x, y < 1, 0 < x + y < 1.

(a) Find the conditional pdf of Y given X = x.
(b) Find E(Y|X).
(c) Find E(Y) using the law of total expectation.

9.15 Let P(X = 0,Y = 0) = 0.1, P(X = 0,Y = 1) = 0.2, P(X = 1,Y = 0) = 0.3,
and P(X = 1,Y = 1) = 0.4. Show that

E[X|Y] = 9 − Y
12

.

9.16 Let A and B be events such that P(A) = 0.3, P(B) = 0.5, and P(AB) = 0.2.
(a) Find E[IA|IB = 0] and E[IA|IB = 1].
(b) Show that E[E[IA|IB]] = E[IA].

9.17 Let X and Y be independent and uniformly distributed on (0, 1). Let M =
min(X,Y) and N = max(X,Y).
(a) Find the joint density of M and N. (Hint: For 0 < m < n < 1, show that

M ≤ m and N > n if and only if either {X ≤ m and Y > n} or {Y ≤ m and
X > n}.)

(b) Find the conditional density of N given M = m and describe the condi-
tional distribution.

9.18 Given an event A, define the conditional expectation of Y given A as

E[Y|A] = E[YIA]
P(A)

, (9.10)

where IA is the indicator random variable.
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(a) Let Y ∼ Exp(𝜆). Find E[Y|Y > 1].
(b) An insurance company has a $250 deductible on a claim. Suppose C is the

amount of damages claimed by a customer. Let X be the amount that the
insurance company will pay on the claim. Suppose C has an exponential
distribution with mean 300. That is,

X =
{

0, if C ≤ 250
C − 250, if C > 250.

Find E[X], the expected payout by the insurance company.

9.19 Let X1,X2 be the rolls of two four-sided tetrahedral dice. Let S = X1 + X2 be
the sum of the dice. Let M = max(X1,X2) be the largest of the two numbers
rolled. Find the following:

(a) E[X1|X2].
(b) E[X1|S].
(c) E[M|X1 = x].
(d) E[X1X2|X1].

9.20 A random walker starts at one vertex of a triangle, moving left or right with
probability 1/2 at each step. The triangle is covered when the walker visits all
three vertices. Find the expected number of steps for the walker to cover the
triangle.

9.21 Repeat the last exercise. Only this time at each step the walker either moves
left, moves right, or stays put, each with probability 1/3. Staying put counts
as one step.

Computing Probabilities with Conditioning

9.22 Let X ∼ Unif(0, 1). If X = x, then Y ∼ Exp(x). Find P(Y > 1) by condition-
ing on X.

9.23 Let X ∼ Unif(0, 1). If X = x, then Y ∼ Unif(0, x).
(a) Find P(Y < 1∕4) by conditioning on X.

(b) Find P(Y < 1∕4) by using the marginal density of Y .

(c) Approximate P(Y < 1∕4) by simulation.

9.24 Suppose the density of X is proportional to x2(1 − x) for 0 < x < 1. If X = x,
then Y ∼ Binom(10, x). Find P(Y = 6) by conditioning on X.

9.25 Suppose that X is uniform on (0, 3), and that Y|X = x is uniform on the interval
(0, x2). Find P(Y < 4) by conditioning on X.
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9.26 Suppose that X has a Gamma distribution with parameters a = 4, 𝜆 = 1∕5, and
that Y|X = x is uniform on the interval (0, x2). Find P(Y > 16) by conditioning
on X.

9.27 Suppose X and Y are independent and positive random variables with density
functions fX and fY , respectively. Use conditioning to find a general expression
for the density function of

(a) XY .

(b) X∕Y .

(c) X − Y .

9.28 Let X and Y be independent uniform random variables on (0, 1). Find the den-
sity function of Z = X∕Y . Show that the mean of Z does not exist.

Conditional Variance

9.29 A biased coin has heads probability p. Let N ∼ Pois(𝜆). If N = n, we will flip
the coin n times. Let X be the number of heads.

(a) Use the law of total expectation to find E[X].
(b) Use the law of total variance to find V[X].

9.30 Suppose Λ is an exponential random variable with mean 1. Conditional on
Λ = 𝜆, N is a Poisson random variable with parameter 𝜆.

(a) Find E[N|Λ] and V[N|Λ].
(b) Use the law of total expectation to find E[N].
(c) Use the law of total variance to find V[N].
(d) Find the probability mass function of N.

(e) Find E[N] and V[N] again using the pmf of N.

9.31 Madison tosses 100 coins. Let H be the number of heads she gets. For each
head that she tosses, Madison will get a reward. The amount of each reward
is normally distributed with 𝜇 = 5 and 𝜎2 = 1. (The units are in dollars, and
Madison might get a negative “reward.”) Individual rewards are independent
of each other and independent of H. Find the expectation and standard devia-
tion of Madison’s total reward.

9.32 The joint density of X and Y is

f (x, y) = xe−3xy
, 1 < x < 4, y > 0.

(a) Describe the marginal distribution of X.

(b) Describe the conditional distribution of Y given X = x.

(c) Find E[Y|X].
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(d) Use the law of total expectation to show E[Y] = (ln 4)∕9.

(e) Find E[XY] by conditioning on X.

(f) Find Cov(X,Y).

9.33 The number of deaths by horsekick per army corps has a Poisson distribu-
tion with mean 𝜆. However, 𝜆 varies from corps unit to corps unit and can
be thought of as a random variable. Determine the mean and variance of the
number of deaths by horsekick when Λ ∼ Unif(0, 3).

9.34 Revisit Exercise 9.15. Find V[X|Y = 0] and V[X|Y = 1]. Find a general
expression for V[X|Y] as a function of Y .

9.35 Let X1, . . . ,Xn be i.i.d. random variables with mean 𝜇 and variance 𝜎2. Let
X = (X1 + · · · + Xn)∕n be the average.

(a) Find E[X|X1].
(b) Find V[X|X1].

9.36 If X and Y are independent, does V[Y|X] = V[Y]? If not, what is the relation-
ship?

9.37 If Y = g(X) is a function of X, what is V[Y|X]?
9.38 Suppose X and Y have joint pdf given by

f (x, y) = 2(x + y), 0 < x < y < 1.

(a) Find the conditional pdf of X given Y = y.

(b) Find V(X|Y).
(c) Find V(X) using the law of total variance.

9.39 An arborist is modeling heights of trees of different species. He has decided
to model the height of the trees, X, using different means for each species, but
a constant variance, so he sets up X|𝜇 ∼ N(𝜇, 𝜎2), where 𝜇 ∼ Gamma(𝛼, 𝛽),
and the Gamma distribution changes by species.

(a) Explain any concerns you have regarding the arborist’s tree height mod-
eling distribution choices.

(b) Using the arborist’s setup, find E(X).
(c) Using the arborist’s setup, find V(X).

9.40 Suppose X and Y have joint pdf given by

f (x, y) = e−y
, 0 < x < y < ∞.

(a) Find the conditional pdf of X given Y = y.

(b) Find E(X|Y) and V(X|Y). Hint: You should recognize the distribution.
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(c) Find E(X) and V(X) using the law of total expectation and law of total
variance, respectively.

Bivariate Normal Distribution

9.41 Let X and Y be independent and identically distributed normal random vari-
ables. Show that X + Y and X − Y are independent.

9.42 Let U and V have a bivariate standard normal distribution with correlation 𝜌.

(a) Find E[UV].
(b) Now suppose X and Y have a bivariate normal distribution with parame-

ters 𝜇X , 𝜇Y , 𝜎2
X , 𝜎2

Y , 𝜌. Find E[XY].

9.43 Suppose that math and reading SAT scores have a bivariate normal distribution
with the mean of both scores 500, the standard deviation of both scores 100,
and correlation 0.70. For someone who scores 650 on the reading SAT, find
the probability that they score over 700 on the math SAT.

9.44 Let (X,Y) have a bivariate standard normal distribution with correlation 𝜌.
Using results for the conditional distribution of Y given X = x, illustrate the
law of total variance and find V[Y] with a bare minimum of calculation.

9.45 Let X and Y have joint density

f (x, y) = 1

𝜋

√
3

e−
2
3
(x2−xy+y2)

,

for real x, y.

(a) Identify the distribution of X and Y and parameters.

(b) Identify the conditional distribution of X given Y = y.
(c) Use R to find P(X > 1|Y = 0.5).

9.46 Let X and Y have a bivariate normal distribution with parameters 𝜇X = −1,
𝜇y = 4, 𝜎2

X = 1, 𝜎2
Y = 25, and 𝜌 = −0.75.

(a) Find P(3 < Y < 6|X = 0).
(b) Find P(3 < Y < 6).

9.47 Let X and Y have a bivariate standard normal distribution with correlation
𝜌 = 0. That is, X and Y are independent. Let (x, y) be a point in the plane. The
rotation of (x, y) about the origin by angle 𝜃 gives the point

(u, 𝑣) = (x cos 𝜃 − y sin 𝜃, x sin 𝜃 + y cos 𝜃).

Show that the joint density of X and Y has rotational symmetry about the ori-
gin. That is, show that f (x, y) = f (u, 𝑣).
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9.48 Let X and Y have a bivariate standard normal distribution with correlation 𝜌.
Find P(X > 0,Y > 0) by the following steps.

(a) Write X = Z1 and Y = 𝜌Z1 +
√

1 − 𝜌2Z2, where (Z1,Z2) are independent
standard normal random variables. Rewrite the probability in terms of Z1
and Z2.

(b) Think geometrically. Express the event as a region in the plane.

(c) See the last Exercise 9.47. Use rotational symmetry and conclude that

P(X > 0,Y > 0) = 1
4
+ sin−1

𝜌

2𝜋
.

9.49 If X and Y have a joint bivariate normal distribution, show that

𝜌
2 = V[E[Y|X]]

V[Y]
.

Simulation and R

9.50 Suppose X has a Poisson distribution whose parameter value is the outcome
of an independent exponential random variable with parameter 𝜇. (i) Write
an R function rexppois(k,𝜇) for simulating k copies of such a random
variable. (ii) Use your function to estimate E[X] for the case 𝜇 = 1 and show
it matches up with the result of Example 9.8.

9.51 Let N be a Poisson random variable with parameter 𝜆. Write R commands for
simulating Z =

∑N
i=1 Xi, where X1,X2, . . . are i.i.d. normal random variables

with parameters 𝜇 and 𝜎2. Then show how to write a command for estimating
E[Z].

9.52 See the previous exercise. Suppose 𝜆 = 10 and 𝜇 = 𝜎 = 1. Find the mean and
variance of Z following the logic of the Alice’s restaurant example. Simulate
the distribution of Z and superimpose a normal density curve with your mean
and variance.

Chapter Review

Chapter review exercises are available through the text website. The URL is
www.wiley.com/go/wagaman/probability2e.
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We must learn our limits.
—Blaise Pascal

Learning Outcomes

1. Explain what the following results say: Markov and Chebyshev inequalities,
the weak and strong laws of large numbers, and the Central Limit Theorem.

2. Describe the different types of convergence expressed in the WLLN, SLLN,
and CLT.

3. Apply the method of moments.*

4. Solve problems using Monte Carlo Integration and the Central Limit
Theorem.

5. (C) Simulate to solve problems involving limits.

Introduction. We study limits in probability to understand the long-term behavior
of random processes and sequences of random variables. Limits can lead to sim-
plified formulas for otherwise intractable probability models, and they may give
insight into complex problems. We have already seen some limit results—the nor-
mal approximation, and the Poisson approximation, of the binomial distribution.

The use of simulation to approximate the probability of an event A is justified by
one of the most important limit results in probability—the law of large numbers. A
consequence of the law of the large numbers is that in repeated trials of a random
experiment the proportion of trials in which A occurs converges to P(A), as the

Probability: With Applications and R, Second Edition. Amy S. Wagaman and Robert P. Dobrow.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/wagaman/probability2e
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number of trials goes to infinity. This is often described as the relative frequency
interpretation of probability.

The earliest version of the law of large numbers was discovered at the beginning
of the eighteenth century by James Bernoulli, who called it his “golden theorem.”

Let X1,X2, . . . be an independent and identically distributed sequence of random
variables with finite expectation 𝜇. For n = 1, 2, . . . , let

Sn = X1 + · · · + Xn.

The law of large numbers says that the average Sn∕n converges to 𝜇, as n → ∞.
In statistics, where X1, . . . ,Xn might represent data from a random sample taken

from a population, this says that the sample mean converges to the population mean.
Recall mathematician John Kerrich’s experiment tossing 10,000 coins when

interned in a prisoner of war camp during World War II, described in Section 7.1.
His results are shown in Figure 10.1, which graphs the proportion of heads he got
for 10–10,000 tosses. The data, given in Freedman et al. [2007], illustrate the law of
large numbers. Wide fluctuations in possible outcomes at the beginning of the trials
eventually settle down and reach an equilibrium at the mean of the distribution. In
this example, X1,X2, . . . ,X10,000 represents independent coin tosses, and Sn∕n is
the proportion of heads in n tosses, with 𝜇 = 1∕2.

To see how the law of large numbers leads to the relative frequency interpre-
tation of probability, consider a random experiment and some event A. Repeat the
experiment many times, obtaining a sequence of outcomes, and let

Xk =
{

1, if A occurs on the kth trial of the experiment
0, otherwise,

for k = 1, 2, . . . . The Xk’s form an i.i.d. sequence with mean 𝜇 = E[Xk] = P(A). The
average Sn∕n = (X1 + · · · + Xn)∕n is the proportion of n trials in which A occurs.
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FIGURE 10.1: Mathematician John Kerrich tossed 10,000 coins when he was interned in a
prisoner of war camp during World War II. His results illustrate the law of large numbers.
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The law of large numbers says that Sn∕n → 𝜇 = P(A), as n → ∞. That is, the pro-
portion of n trials in which A occurs converges to P(A).

James Bernoulli’s discovery marked a historic shift in the development of prob-
ability theory. Previously most probability problems that were studied involved
games of chance where outcomes were equally likely. The law of large numbers
gave rigorous justification to the fact that any probability could be computed, or at
least estimated, with a large enough sample size of repeated trials.

Today there are two versions of the law of large numbers, each based on different
ways to define what it means for a sequence of random variables to converge. What
we now know as the weak law of large numbers (WLLN) is the “golden theorem”
discovered by Bernoulli some 300 years ago.

THE “LAW OF AVERAGES” AND A RUN OF BLACK AT THE CASINO

The law of large numbers is sometimes confused with the so-called non-existent
“law of averages,” also called the “gambler’s fallacy.” This says that outcomes
of a random experiment will “even out” within a small sample.

Darrel Huff, in his excellent and amusing book How to take a chance [1964],
tells the story of a run on black at roulette in a Monte Carlo casino in 1913:

Black came up a record 26 times in succession. Except for the question of the house
limit, if a player had made a one-louis ($4) bet when the run started and pyramided
for precisely the length of the run on black, he could have taken away 268 million
dollars. What actually happened was a near-panicky rush to bet on red, beginning
about the time black had come up a phenomenal 15 times . . . Players doubled
and tripled their stakes [believing] that there was not a chance in a million of
another repeat. In the end the unusual run enriched the Casino by some millions of
franc.

10.1 WEAK LAW OF LARGE NUMBERS

The WLLN says that for any 𝜖 > 0 the sequence of probabilities

P

(||||Sn

n
− 𝜇

|||| < 𝜖

)
→ 1, as n → ∞.

That is, the probability that Sn∕n is arbitrarily close to𝜇 converges to 1. Equivalently,

P

(||||Sn

n
− 𝜇

|||| ≥ 𝜖

)
→ 0, as n → ∞.
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FIGURE 10.2: An illustration of the weak law of large numbers for Bernoulli coin flips
with 𝜖 = 0.01.

To understand the result, it is helpful to work out a specific example in detail.
Consider i.i.d. coin flips, that is, Bernoulli trials with p = 𝜇 = 1∕2. Let 𝜖 > 0. Then

P

(||||Sn

n
− 1

2

|||| < 𝜖

)
= P

(
−𝜖 <

Sn

n
− 1

2
< 𝜖

)
= P

(n
2
− n𝜖 < Sn <

n
2
+ n𝜖

)
.

The sum Sn = X1 + · · · + Xn has a binomial distribution with parameters n and
1∕2. We find the probability P(|Sn∕n − 𝜇| < 𝜖) in R. An illustration of the limiting
behavior, with 𝜖 = 0.01, is shown in Figure 10.2. For low n, the probability fluctu-
ates, but as n increases (i.e., as a limit), the probability goes to one, as the WLLN
states.

R: WEAK LAW OF LARGE NUMBERS

The function wlln(n,𝜖) computes the probability P(|Sn∕n − 𝜇| < 𝜖) for 𝜇 =
p = 1∕2.

> wlln <- function(n,eps){
p <- 1/2
pbinom(n*p+n*eps, n, p)-pbinom(n*p-n*eps, n, p)}

> wlln(100, 0.01)
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[1] 0.1576179
> wlln(1000, 0.01)
[1] 0.4726836
> wlln(10000, 0.01)
[1] 0.9544943

10.1.1 Markov and Chebyshev Inequalities

Bernoulli’s original proof of the weak law of large numbers is fairly complicated and
technical. A much simpler proof was discovered in the mid-1800s based on what is
now called Chebyshev’s inequality by way of Markov’s. The use of inequalities to
bound probabilities is a topic of independent interest.

Markov’s inequality. Let X be a nonnegative random variable with finite expecta-
tion. Then for all 𝜖 > 0,

P(X ≥ 𝜖) ≤ E[X]
𝜖

.

Proof: We give the proof for the case when X is continuous with density function
f , and invite the reader to show it for the discrete case. We have

E[X] =
∫

∞

0
xf (x) dx ≥

∫

∞

𝜖

xf (x) dx ≥
∫

∞

𝜖

𝜖f (x) dx = 𝜖P(X ≥ 𝜖).

The first inequality is a consequence of the fact that the integrand is nonnegative
and 𝜖 > 0. Rearranging gives the result. ◻

□■ Example 10.1 Let 𝜖 = kE[X] = k𝜇 in Markov’s inequality for positive integer k.
Then

P(X ≥ k𝜇) ≤ 𝜇

k𝜇
= 1

k
.

For instance, the probability that a nonnegative random variable is at least twice its
mean is at most 1/2. ◼

Corollary. If g is an increasing positive function, then

P(X ≥ 𝜖) = P(g(X) ≥ g(𝜖)) ≤
E[g(X)]

g(𝜖)
.

By careful choice of the function g, one can often improve the Markov inequality
upper bound.
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Chebyshev’s inequality. Let X be a random variable (not necessarily positive) with
finite mean 𝜇 and variance 𝜎2. Then for all 𝜖 > 0,

P(|X − 𝜇| ≥ 𝜖) ≤ 𝜎2

𝜖2
.

Proof: Let g(x) = x2 on (0,∞). By our Corollary, applied to the nonnegative ran-
dom variable |X − 𝜇|,

P(|X − 𝜇| ≥ 𝜖) = P(|X − 𝜇|2 ≥ 𝜖
2) ≤ E[(X − 𝜇)2]

𝜖2
= 𝜎2

𝜖2
. ◻

At times, it may make sense to consider an equivalent expression using our under-
standing of complements, giving

P(|X − 𝜇| < 𝜖) > 1 − 𝜎2

𝜖2
.

□■ Example 10.2 Let X be an exponential random variable with mean and variance
equal to 1. Consider P(X ≥ 4). By Markov’s inequality,

P(X ≥ 4) ≤ 1
4
= 0.25.

To bound P(X ≥ 4) using Chebyshev’s inequality, we have

P(X ≥ 4) = P(X − 1 ≥ 3) = P(|X − 1| ≥ 3) ≤ 1
9
= 0.111. (10.1)

We see the improvement of Chebyshev’s bound over Markov’s bound.
In fact, P(X ≥ 4) = e−4 = 0.0183. So both bounds are fairly crude. However, the

power of Markov’s and Chebyshev’s inequalities is that they apply without regard
to distribution of the random variable, so long as their requirements are satisfied.

As a note, observe that the second equality in Equation 10.1 holds because

{|X − 1| ≥ 3} = {X − 1 ≥ 3 or X − 1 ≤ −3}

= {X − 1 ≥ 3 or X ≤ −2} = {X − 1 ≥ 3},

as X is a positive random variable. However, in general, for a random variable Y and
constant c,

P(Y ≥ c) ≤ P(|Y| ≥ c),

because {Y ≥ c} implies {|Y| ≥ c}. ◼



�

� �

�

WEAK LAW OF LARGE NUMBERS 413

□■ Example 10.3 Suppose X is a random variable with finite mean and variance. Let
𝜖 = k𝜎 in Chebyshev’s inequality for positive integer k. The probability that X is
within k standard deviations of the mean is

P(|X − 𝜇| < k𝜎) = 1 − P(|X − 𝜇| ≥ k𝜎) ≥ 1 − 𝜎2

k2𝜎2
= 1 − 1

k2
.

With k = 2, the probability that any random variable is within two standard devi-
ations from the mean is at least 75%. The probability that any random variable is
within k = 3 standard deviations from the mean is at least 88.89%.

For a normally distributed random variable, these probabilities are, respectively,
95 and 99.7%. But again, the utility of the inequalities is that they apply to all
random variables, regardless of distribution, if their conditions are met. ◼

□■ Example 10.4 Can Chebyshev’s inequality, as a general bound for all random
variables with finite mean and variance, be improved upon? For k ≥ 1, define a
random variable X that takes values −1, 0, and 1, with

P(X = −1) = P(X = 1) = 1
2k2

and P(X = 0) = 1 − 1
k2
.

Observe that𝜇 = E[X] = 0 and 𝜎2 = V[X] = 1∕k2. Chebyshev’s inequality gives

P(|X − 𝜇| ≥ k𝜎) ≤
1∕k2

k2𝜎2
= 1

k2
.

An exact calculation finds

P(|X − 𝜇| ≥ k𝜎) = P(|X| ≥ 1) = P(X = 1) + P(X = −1) = 1
k2
.

Thus, this random variable X achieves the Chebyshev bound. This shows that for a
general bound that applies to all distributions, Chebyshev’s bound is the best pos-
sible; it cannot be improved upon. ◼

The proof of the WLLN is remarkably easy with Chebyshev’s inequality.

WEAK LAW OF LARGE NUMBERS

Let X1,X2, . . . be an i.i.d. sequence of random variables with finite mean 𝜇 and
variance 𝜎2. For n = 1, 2, . . . , let Sn = X1 + · · · + Xn. Then

P

(||||Sn

n
− 𝜇

|||| ≥ 𝜖

)
→ 0,

as n → ∞.
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Proof: We have

E

[
Sn

n

]
= 𝜇 and V

[
Sn

n

]
= 𝜎2

n
.

Let 𝜖 > 0. By Chebyshev’s inequality,

P

(||||Sn

n
− 𝜇

|||| ≥ 𝜖

)
≤

𝜎2

n𝜖2
→ 0,

as n → ∞. ◻

Remarks:

1. The requirement that the Xi’s have finite variance 𝜎2 < ∞ is not necessary for
the WLLN to hold. We include it only to simplify the proof.

2. The type of convergence stated in the WLLN is known as convergence
in probability. More generally, say that a sequence of random variables
X1,X2, . . . converges in probability to a random variable X, if, for all 𝜖 > 0,

P(|Xn − X| ≥ 𝜖) → 0,

as n → ∞. We write Xn

p
−−→X. Thus, the weak law of large numbers says that

Sn∕n converges in probability to 𝜇.

3. In statistics, a sequence of estimators p̂1, p̂2, . . . for an unknown parameter

p is called consistent if p̂n

p
−−→ p, as n → ∞. For instance, the sample mean

Xn = (X1 + · · · + Xn)∕n is a consistent estimator for the population mean 𝜇.

The WLLN says that for large n, the average Sn∕n is with high probability close
to 𝜇. For instance, in a million coin flips we find, using the R function wlln
(n, 𝜖) given earlier, that the probability that the proportion of heads is within
one-one thousandth of the mean is about 0.954.

> wlln(1000000, 0.001)
[1] 0.9544997

However, the weak law does not say that as you continue flipping more coins
your sequence of coin flips will stay close to 1/2. You might get a run of “bad luck”
with a long sequence of tails, which will temporarily push the average Sn∕n below
1/2, further away than your 𝜖.

Recall that if a sequence of numbers x1, x2, . . . converges to a limit x, then even-
tually, for n sufficiently large, the terms xn, xn+1, xn + 2 . . . will all be arbitrarily
close to x. That is, for any 𝜖 > 0, there is some index N such that |xn − x| ≤ 𝜖 for
all n ≥ N.
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The WLLN, however, does not say that the sequence of averages S1∕1, S2∕2,
S3∕3, . . . behaves like this. It does not say that having come close to 𝜇 with high
probability the sequence of averages will always stay close to 𝜇.

It might seem that because the terms of the sequence S1∕1, S2∕2, S3∕3, . . . are
random variables it would be unlikely to guarantee such strong limiting behavior.
And yet the remarkable strong law of large numbers (SLLN) says exactly that.

10.2 STRONG LAW OF LARGE NUMBERS

The Strong Hotel has infinitely many rooms. In each room, a guest is flipping
coins—forever. Each guest generates an infinite sequence of zeros and ones. We
are interested in the limiting behavior of the sequences in each room. In six of the
rooms, we find the following outcomes:

Room 1: 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, . . .

Room 2: 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, . . .

Room 3: 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, . . .

Room 4: 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, . . .

Room 5: 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, . . .

Room 6: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . .

While the sequences in the first four rooms do not reveal any obvious pattern,
in room 5, heads appears once every three flips. And in room 6, the guest seems
to be continually flipping heads. The sequence of partial averages appears to be
converging to 1/3 in room 5, and to 1 in room 6. One can imagine many rooms in
which the guest will create sequences whose partial averages do not converge to 1/2.

However, the strong law of large numbers says that in virtually every room of the
hotel the sequence of averages will converge to 1/2. And not only will these averages
get arbitrarily close to 1/2 after a very long time, but each will stay close to 1/2 for
all the remaining terms of the sequence. Those sequences whose averages converge
to 1/2 constitute a set of “probability 1.” And those sequences whose averages do
not converge to 1/2 constitute a set of “probability 0.”

STRONG LAW OF LARGE NUMBERS

Let X1,X2, . . . be an i.i.d. sequence of random variables with finite mean 𝜇. For
n = 1, 2, . . . , let Sn = X1 + · · · + Xn. Then

P

(
lim

n→∞

Sn

n
= 𝜇

)
= 1. (10.2)

We say that Sn∕n converges to 𝜇 with probability 1.
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The proof of the strong law is beyond the scope of this book. However, we will
spend some time explaining what it says and means, as well as giving examples of
its use.

Implicit in the statement of the theorem is the fact that the set{
lim

n→∞

Sn

n
= 𝜇

}
is an event on some sample space. Otherwise, it would not make sense to take its
probability. In order to understand the strong law, we need to understand the sample
space and the probability function defined on that sample space.

In the case where X1,X2, . . . is an i.i.d. sequence of Bernoulli trials representing
coin flips, the sample space Ω is the set of all infinite sequences of zeros and ones.
A simple outcome 𝜔 ∈ Ω is an infinite sequence.

It can be shown (usually in a more advanced analysis course) that Ω is uncount-
able. The set can be identified (put in one-to-one correspondence) with the set of
real numbers in the interval (0, 1). Every real number r between 0 and 1 has a binary
base two expansion of the form

r =
x1

2
+

x2

4
+ · · · +

xk

2k
+ · · · ,

where the xk’s are 0 or 1. For every r ∈ (0, 1), the correspondence yields a 0–1
sequence (x1, x2, . . . ) ∈ Ω. Conversely, every coin-flipping sequence of zeros and
ones (x1, x2, . . . ) yields a real number r ∈ (0, 1).

The construction of the “right” probability function onΩ is also beyond the scope
of this book, and one of the important topics in an advanced probability course based
on measure theory. But it turns out that the desired probability function is equivalent
to the uniform distribution on (0, 1).

As an illustration, consider the probability that in an infinite sequence of coin
flips the first two outcomes are both tails. With our notation, we have that X1 =
X2 = 0. Sequences of zeros and ones in which the first two terms are zero yield
binary expansions of the form

0
2
+ 0

4
+

x3

8
+

x4

16
+

x5

32
+ · · · ,

where the xk’s are 0 or 1 for k ≥ 3. The set of all such resulting real numbers gives
the interval (0, 1∕4). And if U ∼ Unif(0, 1), then P(0 < U < 1∕4) = 1∕4, the prob-
ability that the first two coins come up tails.

For a 0–1 sequence 𝜔 ∈ Ω, write 𝜔 = (𝜔1, 𝜔2, . . . ). The set {Sn∕n → 𝜇} is the
set of all sequences 𝜔 with the property that (𝜔1 + · · · + 𝜔n)∕n → 𝜇, as n → ∞.
This set is in fact an event, that is, it is contained in Ω, and thus we can take its
probability. And the SLLN says that this probability is equal to 1.
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Remarks:

1. The type of convergence described in the SLLN is known as almost sure
convergence. More generally, we say that a sequence of random variables
X1,X2, . . . converges almost surely to a random variable X if P(Xn → X) = 1.

We write Xn

a.s.
−−−→X. The strong law says that Sn∕n converges almost surely

to 𝜇.

2. Notice that the SLLN talks about the probability of a limit, while the WLLN
is about a limit of a probability.

3. Almost sure convergence is a stronger form of convergence than convergence
in probability. Sequences of random variables that converge almost surely
also converge in probability. However, the converse is not necessarily true.

4. The set of 0–1 sequences whose partial averages do not converge to 1/2 is
very large. In fact, it is uncountable. Nevertheless, the SLLN asserts that
such sequences constitute a set of probability 0. In that sense, the set of such
sequences is very small!

The SLLN is illustrated in Figure 10.3, which shows the characteristic con-
vergence of Sn∕n for four sequences of 1000 coin flips. Wide fluctuations at the
beginning of the sequence settle down to an equilibrium very close to𝜇.
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FIGURE 10.3: Four realizations of convergence of Sn∕n in 1000 fair coin flips.



�

� �

�

418 LIMITS

−10

A
ve

ra
ge

0 10,000 30,000 50,000

−5

0

5

10

n

−2

−6

−4A
ve

ra
ge

0 10,000 30,000 50,000

−8

0

2

n

A
ve

ra
ge

0 10,000 30,000 50,000

0

5

10

15

n

−2A
ve

ra
ge

−3

−1

0 10,000 30,000 50,000

0

1

n

FIGURE 10.4: Sequences of averages (n = 50,000) for the Cauchy distribution whose
expectation does not exist. Observe the erratic behavior.

It is interesting to compare such convergence with what happens for a sequence
of random variables in which the expectation does not exist, and for which the SLLN
does not apply. The Cauchy distribution, with density f (x) = 1∕(𝜋(1 + x2)), for all
real x, provides such an example. The distribution is symmetric about zero, but does
not have finite expectation. Observe the much different behavior of the sequence of
averages in Figure 10.4. Several sequences display erratic behavior with no settling
down to an equilibrium as in the finite expectation case.

See Exercise 10.29 for the R code for creating the graphs in Figures 10.3 and
10.4. The code is easily modified to show the strong law for i.i.d. sequences with
other distributions.

□■ Example 10.5 The Weierstrass approximation theorem says that a continu-
ous function g on [0, 1] can be approximated arbitrarily closely by polynomials. In
particular, for 0 ≤ p ≤ 1,

n∑
k=0

g
( k

n

)(n
k

)
pk(1 − p)n−k → g(p),



�

� �

�

STRONG LAW OF LARGE NUMBERS 419

as n → ∞. The nth degree polynomial function of p on the left-hand side is known
as the Bernstein polynomial.

The result seems to have no connection to probability. However, there is a prob-
abilistic proof based on the law of large numbers. We give the broad strokes. ◼

Proof outline. Let X1,X2, . . . be an independent sequence of Bernoulli random
variables with parameter p. Then by the SLLN,

X1 + · · · + Xn

n
→ p, as n → ∞,

with probability 1. If g is a continuous function, then with probability 1,

g

(
X1 + · · · + Xn

n

)
→ g(p).

It also follows that

E

[
g

(
X1 + · · · + Xn

n

)]
→ E[g(p)] = g(p), as n → ∞.

As X1 + · · · + Xn ∼ Binom(n, p), the left-hand side is

E

[
g

(
X1 + · · · + Xn

n

)]
=

n∑
k=0

g
( k

n

)(n
k

)
pk(1 − p)n−k

,

which gives the result. ◻

Consider the problem of estimating the area of a “complicated” set. Here is a
Monte Carlo method based on the accept–reject method introduced in Section 6.7.1.

Let S be a bounded set in the plane. Suppose R is a rectangle that encloses S. Let
X1, . . . ,Xn be i.i.d. points uniformly distributed in R. Define

Ik =
{

1, if Xk ∈ S
0, otherwise,

for k = 1, . . . , n. The Ik’s form an i.i.d. sequence. Their common expectation is

E[Ik] = P(Xk ∈ S) = Area (S)
Area (R)

.

The proportion of the n points that lie in S is

I1 + · · · + In

n
→

Area (S)
Area (R)

, as n → ∞,
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with probability 1. Thus for large n,

Area (S) ≈
(

I1 + · · · + In

n

)
Area (R).

The area of S is approximately equal to the area of the rectangle R times the
proportion of the n points that fall in S.

□■ Example 10.6 Estimating the area of the United States. What is the area of
the continental United States? The distance from a line parallel to the northern-
most point in the continental United States (Lake of the Woods, Minnesota) to a
line parallel to the southernmost point (Ballast Key, Florida) is 1720 miles. From
the westernmost point (Cape Alava, Washington) to the easternmost point (West
Quoddy Head, Maine) is 3045 miles. The continental United States fits inside a
rectangle that is 1720 × 3045 = 5,237,400 square miles.

We enclosed a map of the continental United States inside a comparable rectan-
gle. One thousand points uniformly distributed in the rectangle were generated and
we counted 723 in the map (see Fig. 10.5). The area of the continental United States
is estimated as (0.723)(5,237,400) = 3,786,640 square miles.

The area of the continental United States is in fact 3,718,710 square miles. ◼

The SLLN has some other applications, including the method of moments and
Monte Carlo integration, explored in the next sections. It is not our last result for
limits though, as you will see with the central limit theorem (CLT).

FIGURE 10.5: Using probability and random numbers to estimate the area of the United
States.
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10.3 METHOD OF MOMENTS*

The method of moments is a statistical technique for using data to estimate the
unknown parameters of a probability distribution. If you continue to study statis-
tics, you are likely to see a maximum likelihood approach as well. We explore the
method of moments briefly due to its connection to the SLLN.

Recall that the kth moment of a random variable X is E[Xk]. We will also call
this the kth theoretical moment.

Let X1, . . . ,Xn be an i.i.d. sample from a probability distribution with finite
moments. Think of X1, . . . ,Xn as representing data from a random sample. The
kth sample moment is defined as

1
n

n∑
i=1

Xk
i .

In a typical statistical context, the values of the Xi’s are known (they are the obser-
vation values in the data set), and the parameters of the underlying probability
distribution are unknown.

In the method of moments, one sets up equations that equate sample moments
with corresponding theoretical moments. The equation(s) are solved for the
unknown parameter(s) of interest. The method is reasonable because if X is a
random variable from the probability distribution of interest then by the SLLN,
with probability 1,

1
n

n∑
i=1

Xk
i → E[Xk], as n → ∞,

and thus for large n,

1
n

n∑
i=1

Xk
i ≈ E[Xk].

For example, suppose a biased die has some unknown probability of coming up 5.
An experiment is performed whereby the die is rolled repeatedly until a 5 occurs.
Data are kept on the number of rolls until a 5 occurs. The experiment is repeated
10 times. The following data are generated:

3 1 4 4 1 6 4 2 9 2.

(Thus on the first experiment, the first 5 occurred on the third roll of the die. On the
second experiment, a 5 occurred on the first roll of the die, etc.)

The data are modeled as outcomes from a geometric distribution with unknown
success parameter p, where p is the probability of rolling a 5. We consider the sample
as the outcome of i.i.d. random variables X1, . . . ,X10, where Xi ∼ Geom(p).
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Let X ∼ Geom(p). The first theoretical moment is E[X] = 1∕p. The first sample
moment is

1
10

10∑
i=1

Xi =
3 + 1 + 4 + 4 + 1 + 6 + 4 + 2 + 9 + 2

10
= 3.6.

Set the theoretical and sample moments equal to each other. Solving 1∕p = 3.6 gives
p = 1∕3.6 = 0.278, which is the method of moments estimate for p.

□■Example 10.7 Hoffman [2003] suggests a negative binomial distribution to model
water bacteria counts for samples taken from a water purification system. The goal is
to calculate an upper control limit for the number of bacteria in future water samples.
Hoffman illustrates the approach for their data, and we illustrate the method on
simulated data to have a slightly larger sample size.

Suppose that 20 water samples were taken from a normally functioning water
purification system. The (simulated) data of bacteria counts per milliliter are:

1 6 3 6 28 8 4 1 8 13 14 3 11 8 6 7 8 13 11 5.

Recall that negative binomial distribution is a flexible family of discrete distri-
butions with two parameters r and p. It is widely used to model data in the form of
counts. The variation of the distribution used by R, takes nonnegative integer values
starting at 0, counting the number of failures before the rth success. An even more
general formulation of the distribution allows the parameter r to be real.

For a random variable X ∼ NegBin(r, p), using the variation of the distribution
described above, the first two theoretical moments are

E[X] =
r(1 − p)

p

and

E[X2] = V[X] + E[X]2 =
r(1 − p)

p2
+
(

r(1 − p)
p

)2

.

The first and second sample moments for these data are

1
20

20∑
i=1

Xi = 8.2 and
1
20

20∑
i=1

X2
i = 101.7.

The two methods of moments equations are thus

r(1 − p)
p

= 8.2
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and
r(1 − p)

p2
+
(

r(1 − p)
p

)2

= 101.7.

Substituting the first equality into the second equation gives

101.7 = 8.2
p

+ (8.2)2.

Solving gives p = 0.238. Back substituting then finds r = 2.05.
In reality, the data was simulated from a distribution with r = 2 and p = 0.2. The

method of moments estimators are reasonable.
How could we use our estimators? Well, suppose for quality control purposes,

engineers wanted to use the fitted model to set an upper limit of bacteria counts
for future samples. The top 5% of the distribution might be considered “unusual.”
That is, we might want to find the 95th percentile of the distribution, and state that
bacteria counts greater than that cutoff could be a warning sign that the purification
system is not functioning normally. Here, we use R to find that cutoff as 17, so we
would flag counts of 17 or higher as unusual. Under the theoretical distribution, the
cutoff is 20, so our estimators have us being slightly more cautious than we might
need to be. ◼

Method of moments estimators can be found for continuous distribution param-
eters as well, as shown in the next example.

□■ Example 10.8 Suppose we have i.i.d. random variables X1, . . . ,Xn, where
Xi ∼ Unif(0, 𝜃), and we want to estimate 𝜃. Find the method of moments estimator
for 𝜃.

From our previous results, we know that E(Xi) = 𝜃∕2. The first sample moment
is X, and the idea in method of moments is that this is an approximation for E(Xi)
for large n. Thus, if we solve for 𝜃, we find that the estimator is 𝜃 = 2X.

Suppose n = 10 values were generated from a Uniform distribution with
unknown 𝜃, with the following values observed:

8.28 3.99 7.03 12.48 3.69 9.32 13.74 8.86 1.97 2.52.

We find the sample mean, X = 7.188. Thus, the method of moments estimate of
𝜃 is twice that or 14.376.

To demonstrate the performance of the estimator, you can choose a 𝜃 value and
perform simulations. (More theoretical considerations of estimators await readers
who continue further study in statistics.) See MoM.R for an example simulation in
this setting. ◼
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10.4 MONTE CARLO INTEGRATION

We consider Monte Carlo integration as another application of the SLLN. Let g be
a continuous function on (0, 1). Consider solving the integral

I =
∫

1

0
g(x) dx,

assuming the integral converges. If g does not have a known antiderivative, solving
the integral may be hard and require numerical approximation. Although the prob-
lem does not seem to have any connection with probability, observe that we can
write the integral as the expectation of a random variable. In particular,

∫

1

0
g(x) dx = E[g(X)],

where X is uniformly distributed on (0, 1). Writing the integral as an expectation
allows for using the law of large numbers to approximate the integral in an approach
called Monte Carlo integration.

Let X1,X2, . . . be an i.i.d. sequence of uniform (0, 1) random variables. Then
g(X1), g(X2), . . . is also an i.i.d. sequence with expectation E[g(X)]. By the SLLN,
with probability 1,

g(X1) + · · · + g(Xn)
n

→ E[g(X)] = I, as n → ∞.

This gives a recipe for a Monte Carlo approximation of the integral.

MONTE CARLO INTEGRATION ON (0, 1)

Let g be a continuous function on (0, 1). The following Monte Carlo algorithm
gives an approximation for the integral

I =
∫

1

0
g(x) dx.

1. Generate n uniform (0, 1) random variables X1, . . . ,Xn.

2. Evaluate g at each Xi, giving g(X1), . . . , g(Xn).
3. Take the average as a Monte Carlo approximation of the integral. That is,

I ≈
g(X1) + · · · + g(Xn)

n
.
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□■ Example 10.9 Solve

∫

1

0
(sin x)cos x dx.

Here g(x) = (sin x)cos x. The integral has no simple antiderivative. We use Monte
Carlo approximation with n = 10,000.

R: MONTE CARLO INTEGRATION

> g <- function(x) sin(x)̂ cos(x)
> n <- 10000
> simlist <- g(runif(n))
> mean(simlist)
[1] 0.5032993

The solution can be “checked” using numerical integration. The R command
integrate numerically solves the integral within a margin of error.

> integrate(g, 0, 1)
0.5013249 with absolute error < 1.1e-09

◼

The method we have given can be used, in principle, to approximate any conver-
gent integral on (0, 1) using uniform random variables. However, the Monte Carlo
method can be used in a wider context, with different ranges of integration, types
of distributions, and with either integrals or sums.

□■ Example 10.10 Solve

∫

∞

0
x−x dx.

As the range of integration is (0,∞), we cannot express the integral as a function of
a uniform random variable on (0, 1). However, we can write

∫

∞

0
x−x dx =

∫

∞

0
x−xexe−x dx =

∫

∞

0

(e
x

)x
e−x dx.

Letting g(x) = (e∕x)x, the integral is equal to E[g(X)], where X has an exponential
distribution with parameter 𝜆 = 1. For Monte Carlo integration, generate exponen-
tial random variables, evaluate using g, and take the resulting average.
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R: MONTE CARLO INTEGRATION

> g <- function(x) (exp(1)/x)̂ x
> n <- 10000
> simlist <- g(rexp(n, 1))
> mean(simlist)
[1] 1.998325

Here is a check by numerical integration:

> h <- function(x) x ̂ (-x)
> integrate(h, 0, Inf)
1.995456 with absolute error < 0.00016

◼

As mentioned above, Monte Carlo approximation is not restricted to integrals.
Here we approximate the sum of a series using our knowledge of discrete random
variables.

□■ Example 10.11 Solve
∞∑

k=1

log k

3k
.

Write
∞∑

k=1

log k

3k
=

∞∑
k=1

log k

2

(1
3

)k−1 (2
3

)
=

∞∑
k=1

log k

2
P(X = k),

where X has a geometric distribution with parameter p = 2∕3. The last expression
is equal to E[g(X)], where g(x) = (log x)∕2.

R: MONTE CARLO SUMMATION

> g <- function(x) (log(x))/2
> n <- 10000
> simlist <- g(rgeom(n, 2/3) + 1)
> mean(simlist)
[1] 0.144658

The exact sum of the series, to seven decimal places, is 0.1452795. ◼
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□■ Example 10.12 Solve

I =
∫

∞

−∞ ∫

∞

−∞ ∫

∞

−∞
sin(x2 + 2y − z)e−(x2+y2+z2)∕2 dx dy dz.

The multiple integral can be expressed as an expectation with respect to a joint
distribution. Let (X,Y ,Z) be independent standard normal random variables. The
joint density of (X,Y ,Z) is

f (x, y, z) = 1

2𝜋
√

2𝜋
e−(x

2+y2+z2)∕2
.

Write the multiple integral as I = 2𝜋
√

2𝜋E[g(X,Y ,Z)], where g(x, y, z) = sin(x2 +
2y − z). Let (Xi,Yi,Zi), i = 1, . . . , n be an i.i.d. sample from the joint normal distri-
bution. Then

I = 2𝜋
√

2𝜋E[g(X,Y ,Z)] ≈
2𝜋

√
2𝜋

n

n∑
i=1

g(Xi,Yi,Zi).

R: MONTE CARLO INTEGRATION

> n <- 1000000
> simlist <- numeric(n)
> for (i in 1:n) {

vect <- rnorm(3)
x <- vect[1]
y <- vect[2]
z <- vect[3]
simlist[i] <- sin(x ̂ 2+2*y-z) }

> 2*pi*sqrt(2*pi)*mean(simlist)
[1] 0.4701659

A symbolic mathematical software system took 3 minutes to solve the integral
giving the exact answer

I = 2𝜋3∕2e−5∕2

√
1√
5
− 1

5
= 0.454522 . . . ◼

Is Monte Carlo integration a practical method for solving integrals? For a sin-
gle integral, probably not, as there are many deterministic numerical integration
methods that give excellent approximations to desired levels of accuracy.
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However in high dimensions, with large multiple integrals, numerical techniques
break down and are not able to give accurate results. It is not uncommon in statis-
tics, biology, physics, and many fields to encounter intractable integrals involving
hundreds, even thousands, of variables. For such problems, randomized methods
are the only way to go. Monte Carlo integration, often using sophisticated meth-
ods involving random processes called Markov chains, is the only practical way
in which such integrals can be solved. According to the prominent mathematician
and probabilist Diaconis [2008], the use of simulation for such problems has “rev-
olutionized applied mathematics.” We introduce this revolutionary methodology,
called Markov chain Monte Carlo, in Section 11.3.

10.5 CENTRAL LIMIT THEOREM

Everyone believes in the law of errors, the experimenters because they think it is
a mathematical theorem, the mathematicians because they think it is an experimen-
tal fact.

—Gabriel Lipman in conversation with Henri Poincaré

The next theorem rivals the law of large numbers in importance. It gives insight
into the behavior of sums of random variables, it is fundamental to much of statis-
tical inference, and it quantifies the size of the error in using Monte Carlo methods
to approximate integrals, expectations, and probabilities.

CENTRAL LIMIT THEOREM (CLT)

Let X1,X2, . . . be an i.i.d. sequence of random variables with finite mean 𝜇 and
variance 𝜎2. For n = 1, 2, . . . , let Sn = X1 + · · · + Xn. Then the distribution of
the standardized random variable (Sn∕n − 𝜇)∕(𝜎∕

√
n) converges to a standard

normal distribution in the following sense. For all t,

P

(
Sn∕n − 𝜇

𝜎∕
√

n
≤ t

)
→ P(Z ≤ t), as n → ∞,

where Z ∼ Norm(0, 1).

We first illustrate the CLT with a simulation experiment. Let X1,X2, . . . , denote
i.i.d. Bernoulli trials with p = 1∕2 (e.g., fair coin flips). The mean and variance of
the Xi’s are, respectively, 𝜇 = 1∕2 and 𝜎2 = 1∕4. Consider the sequence

Sn∕n − 𝜇

𝜎∕
√

n
=

Sn∕n − 1∕2

1∕(2
√

n)
= 2

√
n

(
Sn

n
− 1

2

)
, n = 1, 2, . . . . (10.3)
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Observe that by the law of large numbers, (Sn∕n − 1∕2) → 0, as n → ∞, because
Sn∕n → 1∕2. Thus, on the right-hand side of Equation 10.3, we take a sequence that
converges to 0 and multiply it by 2

√
n, a sequence that diverges to infinity. This gives

the indeterminate form ∞ ⋅ 0, and a priori we do not know whether the resulting
sequence will converge to 0, tend to infinity, or do something “in between” like
converge to a constant. Furthermore, the terms of the sequence are random variables.

In the simulation code given next, the function cltsequence(n) simulates
terms of this sequence. Choose a large value of n, enter values repeatedly at your
keyboard, and it becomes apparent that the sequence does not converge to 0, nor
diverge to infinity, but does “something else.” When we repeat many times, graph
the distribution of outcomes with a histogram, and superimpose a normal density
curve on top of the graph, we obtain an excellent fit to a standard normal distribution,
as seen in Figure 10.6.

R: SIMULATION EXPERIMENT

> cltsequence <- function(n)
(mean(rbinom(n,1,1/2))-1/2)*(2*sqrt(n))

> cltsequence(1000)
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FIGURE 10.6: Histogram of (Sn∕n − 𝜇)∕(𝜎∕
√

n) from an underlying sequence of n = 1000
Bernoulli trials. The density curve is the standard normal.
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[1] 0.8221922
> cltsequence(1000)
[1] 1.70763
> cltsequence(1000)
[1] 0.8221922
> cltsequence(1000)
[1] 0.1264911
> simlist <- replicate(10000, cltsequence(1000))
> hist(simlist, prob = T)
> curve(dnorm(x),-4, 4, add = T)

The astute reader may notice that because a sum of Bernoulli trials has a bino-
mial distribution, what we have illustrated is just the normal approximation of the
binomial distribution, discussed in Section 7.1.2.

True enough. However, the power of the CLT is that it applies to any population
distribution with finite mean and variance. In Figure 10.7, observe the results from

Exp(13) population

D
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ty

Uniform(1, 5) population
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Poisson(7) population
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X = 1, 2, 3  with prob (0.1, 0.2, 0.7) 
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FIGURE 10.7: The simulated distribution of (Sn∕n − 𝜇)∕(𝜎∕
√

n) for four population dis-
tributions (n = 1000).
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simulation experiments with four different population distributions: (i) exponential
with 𝜆 = 13; (ii) uniform on (1, 5); (iii) Poisson with 𝜆 = 7; and (iv) a discrete distri-
bution that takes values 1, 2, and 3, with respective probabilities 0.1, 0.2, and 0.7. In
every case, the distribution of the standardized random variable (Sn∕n − 𝜇)∕(𝜎∕

√
n)

tends to a standard normal distribution as n tends to infinity.

Remarks:

1. If the distribution of the Xi’s is normal, then by results for sums of independent
normal random variables, the distributions of Sn and Sn∕n are exactly normal.
The specialness of the CLT is that it applies to any distribution of the Xi’s with
finite mean and variance.

2. There are several equivalent ways to formulate the CLT. For large n, the sum
Sn = X1 + · · · + Xn is approximately normal with mean n𝜇 and variance n𝜎2.
Also, the average Sn∕n is approximately normal with mean 𝜇 and variance
𝜎2∕n.

EQUIVALENT EXPRESSIONS FOR THE CENTRAL LIMIT THEOREM

If the sequence of random variables X1,X2, . . . satisfies the assumptions of the
CLT, then for large n,

X1 + · · · + Xn ≈ Norm(n𝜇, n𝜎2)

and

Xn =
X1 + · · · + Xn

n
≈ Norm(𝜇, 𝜎2∕n).

3. The type of convergence described in the CLT is called convergence in distri-
bution. We say that random variables X1,X2, . . . converge in distribution to
X, if for all t, P(Xn ≤ t) → P(X ≤ t), as n → ∞.

□■ Example 10.13 Customers at a popular restaurant are waiting to be served. Wait-
ing times are independent and exponentially distributed with mean 1∕𝜆 = 30 min-
utes. If 16 customers are waiting what is the probability that their average wait is
less than 25 minutes?

The average waiting time is S16∕16. As waiting time is exponentially distributed,
the mean and standard deviation of individual waiting time is 𝜇 = 𝜎 = 30. By the
CLT,

P(S16∕16 < 25) = P

(
S16∕16 − 𝜇

𝜎∕
√

n
<

25 − 30
7.5

)
≈ P(Z < −0.667) = 0.252.
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TABLE 10.1. Grade distribution for AP exams

1 2 3 4 5

0.214 0.211 0.236 0.195 0.144

For this example, we can compare the central limit approximation with
the exact probability. The distribution of S16, the sum of independent expo-
nentials, is a gamma distribution with parameters 16 and 1∕30. This gives
P(S16∕16 < 25) = P(S16 < 400). In R,

> pgamma(400,16,1/30)
[1] 0.2666045
> pnorm(-0.6667)
[1] 0.2524819 ◼

□■ Example 10.14 More than three million high school students took an AP exam in
2011. The grade distribution for the exams is given in Table 10.1.

In one high school, a sample of 30 AP exam scores was taken. What is the prob-
ability that the average score is above 3?

Assume scores are independent. The desired probability is P(S30∕30 > 3). The
expectation of exam score is

1(0.214) + 2(0.211) + 3(0.236) + 4(0.195) + 5(0.144) = 2.844.

The mean of the squared scores is

1(0.214)2 + 2(0.211)2 + 3(0.236)2 + 4(0.195)2 + 5(0.144)2 = 9.902,

giving the standard deviation of exam score to be
√

9.902 − (2.844)2 = 1.347. By
the CLT,

P(S30∕30 > 3) = P

(
S30∕30 − 𝜇

𝜎∕
√

n
>

3 − 2.844

1.347∕
√

30

)
≈ P(Z > 0.634) = 0.263. ◼

□■ Example 10.15 Random walks. Random walks are fundamental models in
physics, ecology, and numerous other fields. They have been popularized in finance
with applications to the stock market. A particle starts at the origin on the integer
number line. At each step, the particle moves left or right with probability 1/2. Find
the expectation and standard deviation of the distance of the walk from the origin
after n steps.
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FIGURE 10.8: Four random walk paths of 10,000 steps. The horizontal axis represents the
number of steps n. The vertical axis is position.

A random walk process is constructed as follows. Let X1,X2, . . . be an inde-
pendent sequence of random variables taking values ±1 with probability 1/2 each.
The Xi’s represent the individual steps of the random walk. For n = 1, 2, . . . , let
Sn = X1 + · · · + Xn be the position of the walk after n steps. The random walk pro-
cess is the sequence (S1, S2, S3, . . . ). Four “paths” for such a process, each taken for
10,000 steps, are shown in Figure 10.8.

The Xi’s have mean 0 and variance 1. Thus, E[Sn] = 0 and V[Sn] = n. By the
CLT, for large n the distribution of Sn is approximately normal with mean 0 and
variance n.

After n steps, the random walk’s distance from the origin is |Sn|. Using the nor-
mal approximation, the expected distance from the origin is

E[|Sn|] ≈ ∫

∞

−∞
|t| 1√

2𝜋n
e−t2∕2n dt = 2√

2𝜋n ∫

∞

0
te−t2∕2n dt

= 2n√
2𝜋n

=
√

2
𝜋

√
n ≈ (0.80)

√
n.

For the standard deviation of distance, E[|Sn|2] = E[S2
n] = n. Thus,

V[|Sn|] = E[|S2
n|] − E[|Sn|]2 ≈ n − 2n

𝜋
= n

(
𝜋 − 2
𝜋

)
,

giving

SD[|Sn|] ≈ √
𝜋 − 2
𝜋

√
n ≈ (0.60)

√
n.

For instance, after 10,000 steps, a random walk is about (0.80)
√

10,000 = 80
steps from the origin give or take about (0.60)

√
10,000 = 60 steps. ◼
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R: RANDOM WALK DISTANCE FROM ORIGIN

In RandomWalk.R, we simulate the expectation and standard deviation of a
random walk’s distance from the origin. Also included is the code for generating
the random walk graphs in Figure 10.8.

> reps <- 5000
> simlist <- numeric(reps)
> for (i in 1:reps) {

rw <- sample(c(-1, 1), 10000, replace = T)
simlist[i] <- abs(tail(cumsum(rw), 1)) }

> mean(simlist)
[1] 79.1296
> sd(simlist)
[1] 59.46567

# random walk path
> steps <- 10000
> rw <- sample(c(-1, 1), steps, replace = T)
> plot(c(1, 1), type = "n", xlim = c(0, steps),
ylim = c(-200, 200), xlab = "", ylab = "Position")

> lines(cumsum(rw), type = "l")

The CLT requires that n be “large” for the normal approximation to hold. But
how large? In statistics, empirical evidence based on the behavior of many variables
in actual datasets suggests that n ≈ 30–40 is usually “good enough” for the CLT to
take effect. Heavily skewed distributions require larger n. However, if the population
distribution is fairly symmetric with no extreme values, even relatively small values
of n may work reasonably well.

□■ Example 10.16 With just six dice and the CLT one can obtain a surprisingly effec-
tive method for simulating normal random variables.

Let S6 = X1 + · · · + X6 be the sum of six dice throws. Then E[S6] = 6(3.5) = 21.
And V[S6] = 6V[X1] = 6(35∕12) = 35∕2, with SD[S6] =

√
35∕2 ≈ 4.1833.

Roll six dice and take (S6 − 21)∕4.1833 as a simulation of one standard normal
random variable. Here are some results.

R: SUM OF SIX DICE ARE CLOSE TO NORMAL

> (sum(sample(1:6, 6, rep = T))-21)/4.1833
[1] 0.2390457
> (sum(sample(1:6, 6, rep = T))-21)/4.1833
[1] 0.4780915
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> (sum(sample(1:6, 6, rep = T))-21)/4.1833
[1] 1.434274
> (sum(sample(1:6, 6, rep = T))-21)/4.1833
[1] -0.4780915
> (sum(sample(1:6, 6, rep = T))-21)/4.1833
[1] 0.9561829

To explore the distribution of the standardized sum, we simulate 10,000 repli-
cations. The normal distribution satisfies the “68-95-99.7 rule.” Counting the
number of observations within 1, 2, and 3 standard deviations, respectively, gives
fairly close agreement with the normal distribution to within about 0.02.

> reps <- 10000
> simlist <- replicate(reps,

(sum(sample(1:6, 6, rep = T))-21)/4.1833)
> sum(-1 <= simlist & simlist <= 1)/reps
[1] 0.7195
> sum(-2 <= simlist & simlist <= 2)/reps
[1] 0.9625
> sum(-3 <= simlist & simlist <= 3)/reps
[1] 0.9991

See the comparison in Figure 10.9 between the distribution of the standard-
ized sum of six dice throws and the standard normal density curve.

◼
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FIGURE 10.9: The normalized sum of just six dice throws comes close to the normal dis-
tribution.



�

� �

�

436 LIMITS

10.5.1 Central Limit Theorem and Monte Carlo

In broad strokes, the law of large numbers asserts that Sn∕n ≈ 𝜇, when n is large.
The CLT states that for large n, (Sn∕n − 𝜇)∕(𝜎∕

√
n) ≈ Z, where Z is a standard

normal random variable. Equivalently,

Sn

n
≈ 𝜇 + 𝜎√

n
Z.

Thus, the CLT can be seen as giving the second-order term in the approximation of
𝜇 by Sn∕n. This suggests that the error |Sn∕n − 𝜇| in the approximation decreases
on the order of 1∕

√
n, as n → ∞.

What this means is that increasing the number of trials in a simulation by a fac-
tor of n = 100 will roughly decrease the error by a factor of 1∕

√
n = 1∕10. In other

words, every 100-fold increase in the number of Monte Carlo trials improves accu-
racy in the simulation by about one significant digit.

To illustrate, we use Monte Carlo to approximate the mean 𝜇 of a uniform (0, 1)
distribution, taking samples of size n from the distribution and using the average to
approximate 𝜇 = 1∕2.

See Table 10.2 to observe the accuracy of Monte Carlo approximation for
n = 101

, 103
, 105, and 107. For each value of n, the simulation is repeated 12

times. With just 10 trials, the results are not uniformly accurate for even one
digit. With 1000 trials, the results are uniformly accurate in the first digit. That
is, each approximation is equal to 0.5 when rounded to one digit. With 100,000
trials, the results are precise to two digits. And with 10 million trials, all of the
approximations round to 0.500 to three digits.

TABLE 10.2. Monte Carlo approximation of the mean of a uniform (0, 1) distribution.
Compare the precision for n = 101

, 103
, 105

, 107
. Each simulation is repeated 12 times

Number of trials

Outcome 10 1000 100,000 10,000,000

1 0.7999731 0.4887204 0.5000470 0.4999549
2 0.6176654 0.4922006 0.5004918 0.5000157
3 0.5858701 0.5034127 0.4999026 0.4999761
4 0.5304252 0.4914003 0.5003041 0.5000184
5 0.5602126 0.5070693 0.4997541 0.4999820
6 0.4448233 0.5097890 0.4992946 0.4998743
7 0.3839213 0.4936749 0.5024522 0.5001255
8 0.5434252 0.5010844 0.4997956 0.5000897
9 0.3328748 0.5147627 0.4988693 0.4999183

10 0.5452109 0.4917534 0.5016036 0.5001748
11 0.4943713 0.5178478 0.4999336 0.5001578
12 0.5573252 0.5001346 0.5025030 0.4998666
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10.6 A PROOF OF THE CENTRAL LIMIT THEOREM

Recall that the moment-generating function for a random variable X is mX(t) =
E[etX]. Previously, we used moment-generating functions to find moments,
identify distributions, and examine relationships between random variables.
Moment-generating functions play a significant role in establishing limit theorems
for random variables because of the following result, which we state without proof.

CONTINUITY THEOREM

Let X1,X2, . . . be a sequence of random variables with corresponding mgfs
mX1

(t),mX2
(t), . . . Further suppose that for all t,

mXn
(t) → mX(t), as n → ∞,

where mX(t) is the mgf of a random variable X. Then

P(Xn ≤ x) → P(X ≤ x), as n → ∞,

at each x where P(X ≤ x) is continuous.

Thus, convergence of the mgfs corresponds to convergence in distribution for
random variables.

Here we prove the CLT using moment generating functions. We show that the
cumulative distribution function of (Sn − n𝜇)∕(𝜎

√
n) converges to the cdf of the

standard normal distribution.

Proof. Let X1,X2, . . . be an i.i.d. sequence of random variables with finite
mean 𝜇 and variance 𝜎2. First suppose that 𝜇 = 0 and 𝜎2 = 1. Then Sn∕n =
(X1 + · · · + Xn)∕n has mean 0 and variance 1∕n. We need to show that the mgf of
(Sn∕n)∕(1∕

√
n) = Sn∕

√
n converges to the mgf of Z, where Z ∼ Norm(0, 1).

Let m be the common mgf of the Xi’s. By the properties of the mgfs,

mSn∕
√

n(t) =

[
m

(
t√
n

)]n

.

The mgf of the standard normal distribution is mZ(t) = et2∕2. We need to show that
for all t, [

m

(
t√
n

)]n

→ et2∕2
, as n → ∞.
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Equivalently, we take logarithms and show that

ln

(
m

(
t√
n

)n)
→

t2

2
, as n → ∞.

Consider the limit, as n → ∞, of ln [m(t∕
√

n)]n = n ln m(t∕
√

n). Assuming con-
tinuity of the mgf,

lim
n→∞

ln

(
m

(
t√
n

))
= ln

(
m

(
lim

n→∞
t√
n

))
= ln m(0) = ln 1 = 0.

Thus, lim
n→∞

n ln m(t∕
√

n) is an indeterminate form of type ∞ ⋅ 0. Apply l’Hôpital’s

rule two times, but first make a change of variables letting 𝜖 = t∕
√

n, so n = t2∕𝜖2,

giving

lim
n→∞

n ln m(t∕
√

n) = t2 lim
𝜖→0

ln m(𝜖)
𝜖2

= t2 lim
𝜖→0

m′(𝜖)
m(𝜖)2𝜖

= lim
𝜖→0

t2 m′′(𝜖)
m′(𝜖)2𝜖 + 2m(𝜖)

= t2 m′′(0)
2m(0)

= t2

2
.

This proves the theorem for the case when 𝜇 = 0 and 𝜎2 = 1.
For the general case, let X∗

i = (Xi − 𝜇)∕𝜎. Then Xi = 𝜎X∗
i + 𝜇 and

Sn =
n∑

i=1

Xi =
n∑

i=1

(𝜎X∗
i + 𝜇) = 𝜎S∗n + n𝜇,

where S∗n = X∗
1 + · · · + X∗

n . This gives

Sn∕n − 𝜇

𝜎∕
√

n
=

S∗n√
n
.

Observe that S∗n is the sum of i.i.d. random variables with mean 0 and variance 1.
Thus, the mgf of S∗n∕

√
n converges to the standard normal mgf, and the result is

shown. ◻

There are proofs for the CLT that do not use mgfs, but they are beyond the scope of
this text. There are other CLT proofs that use mgfs that rely more on Taylor series
results.
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10.7 SUMMARY

This chapter introduces the important limit theorems of probability and two inequal-
ities for bounding general probabilities. For i.i.d. random variables X1,X2, . . . , with
finite mean 𝜇, the law of large numbers says that the sequence of averages Sn∕n =
(X1 + · · · + Xn)∕n converges to 𝜇, as n tends to infinity. There are two versions of
the limit result, the weak law and the strong law, based on different ways in which
a sequence of random variables can converge to a limit. The proof of the WLLN
uses Markov’s and Chebyshev’s inequalities, which bound probabilities of the form
P(X ≥ x). The SLLN asserts that Sn∕n converges to 𝜇 “almost surely,” or with prob-
ability 1.

The method of moments is introduced to show how estimation of parameters
in distributions may be done. The use of Monte Carlo simulation to approximate
integrals and sums is shown. Both approaches are applications of the SLLN.

The CLT is discussed and proved in this chapter. The theorem says that for
large n, the standardized averages (Sn∕n − 𝜇)∕(𝜎∕

√
n) have an approximate stan-

dard normal distribution. The result is remarkable in that it applies to all population
distributions with finite mean and variance.

The last section of this chapter uses moment-generating functions to prove
the CLT.

For the results given next, let X1,X2, . . . be an i.i.d. sequence of random variables
with finite mean 𝜇 and variance 𝜎2. Let Sn = X1 + · · · + Xn.

• Weak law of large numbers: For all 𝜖 > 0,

P(|Sn∕n − 𝜇| < 𝜖) → 1, as n → ∞.

• Markov’s inequality: For nonnegative random variable X with finite expec-
tation, P(X ≥ 𝜖) ≤ E[X]∕𝜖.

• Chebyshev’s inequality: If the mean 𝜇 and variance 𝜎2 of X are finite, then
P(|X − 𝜇| ≥ 𝜖) ≤ 𝜎2∕𝜖2.

• Strong law of large numbers: P( lim
n→∞

Sn∕n = 𝜇) = 1.

• Method of moments: A technique for estimating the unknown parameters
of a probability distribution. For sufficiently many k, equate sample moments
with theoretical moments E[Xk] and solve for unknown parameters.

• Sample moments: Given i.i.d. random variables X1, . . . ,Xn, the kth sample
moment is (1∕n)

∑n
i=1 Xk

i .

• Monte Carlo integration: An integral such as I = ∫
1

0 g(x) dx can be writ-
ten as the expectation of a random variable E[g(X)], where X ∼ Unif(0, 1). If
X1,X2, . . . are i.i.d. random variables uniformly distributed on (0, 1), then

g(X1) + · · · + g(Xn)
n

≈ E[g(X)] = I.
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• Central limit theorem: For all t,

P

(
Sn∕n − 𝜇

𝜎∕
√

n
≤ t

)
→ P(Z ≤ t), as n → ∞,

where Z ∼ Norm(0, 1).
• Continuity theorem: Let X1,X2, . . . be a sequence of random variables. If

mXn
(t) → mX(t), as n → ∞, where mX(t) is the mgf of X, then P(Xn ≤ x) →

P(X ≤ x), as n → ∞. This result for moment-generating functions is used to
prove the CLT.

EXERCISES

Law of Large Numbers

10.1 Describe in your own words the law of large numbers.

10.2 Your roommate missed probability class again. Explain to him/her the dif-
ference between the weak and strong laws of large numbers.

10.3 Let S be the sum of 100 fair dice rolls. Use (i) Markov’s inequality and (ii)
Chebyshev’s inequality to bound P(S ≥ 380).

10.4 Find the best value of c so that P(X ≥ 5) ≤ c using Markov’s and Cheby-
shev’s inequalities, filling in the subsequent table. Compare with the exact
probabilities.

Distribution Markov Chebyshev Exact probability

Pois(2)

Exp(1/2)

Norm(2, 4)

Geom(1/2)

10.5 Let X be a positive random variable with 𝜇 = 50 and 𝜎2 = 25.
(a) What can you say about P(X ≥ 60) using Markov’s inequality?
(b) What can you say about P(X ≥ 60) using Chebyshev’s inequality?

10.6 Prove Markov’s inequality for the discrete case.

10.7 Let X be a positive random variable. Show that for all c,

P(log X ≥ c) ≤ 𝜇e−c
.
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10.8 The expected sum of two fair dice is 7; the variance is 35/6. Let X be the sum
after rolling n pairs of dice. Use Chebyshev’s inequality to find z such that

P(|X − 7n| < z) ≥ 0.95.

In 10,000 rolls of two dice there is at least a 95% chance that the sum will
be between what two numbers?

Applications: Method of Moments and Monte Carlo Integration

10.9 Following are data from an i.i.d. sample taken from a Geometric distribution
with unknown parameter p.

1 3 2 3 1 2 2 1 4 2.

Find the method of moments estimate for p. Explain the method of moments
logic as part of your solution.

10.10 Following are data from an i.i.d. sample taken from a Poisson distribution
with unknown parameter 𝜆.

2 3 0 7 2 2 3 5 2 2 2 0.

Find the method of moments estimate for 𝜆.

10.11 Let X1, . . . ,X25 be an i.i.d. sample from a binomial distribution with param-
eters n and p. Suppose n and p are unknown. Write down the method of
moments equations that would need to be solved to estimate n and p.

10.12 Let X1, . . . ,Xn be an i.i.d. sample from a normal distribution with mean 𝜇 and
variance 𝜎2. Find the general method of moments estimators for 𝜇 and 𝜎2.

10.13 Describe how to use Monte Carlo techniques to approximate the following
integrals and sums. State clearly what the distribution and necessary function
g(X) are.

(a)

I =
∫

1

0
sin(x)e−x2

dx.

(b)

I =
∫

∞

0
sin(x)e−x2

dx.

(c)

I =
∫

∞

−∞
log(x2)e−x2

dx.
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(d)

S =
∞∑

k=1

sin k

2k
.

(e)

S =
∞∑

k=0

cos cos k
k!

.

10.14 Make up your own “hard” integral to solve using Monte Carlo approxima-
tion. Do the same with a “hard” sum.

Central Limit Theorem

10.15 The local farm packs its tomatoes in crates. Individual tomatoes have mean
weight of 10 ounces and standard deviation 3 ounces. Find the probability
that a crate of 50 tomatoes weighs between 480 and 510 ounces.

10.16 The waiting time on the cashier’s line at the school cafeteria is exponentially
distributed with mean 2 minutes. Use the central limit theorem to find
the approximate probability that the average waiting time is more than
2.5 minutes for a group of 20 people. Use R and compare with the exact
probability.

10.17 Recall the game of roulette and the casino’s fortunes when a player places a
“red” bet (see Example 4.29). For one $1 red bet, let G be the casino’s gain.
Then P(G = 1) = 20∕38 and P(G = −1) = 18∕38. Suppose in 1 month, one
million red bets are placed. Let T be the casino’s total gain. Find P(50,000 <

T < 55,000).

10.18 A baseball player has a batting average of 0.328. Let X be the number of hits
the player gets during 20 times at bat. Use the central limit theorem to find
the approximate probability P(X ≤ k) for k = 1, 3, 6. Compare with the exact
probability for each k.

10.19 Let X1, . . . ,X30 be i.i.d. random variables with density

f (x) = 3x2
, if 0 < x < 1.

Use the central limit theorem to approximate

P(22 < X1 + · · · + X30 < 23).
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10.20 Let X1, . . . ,Xn be an i.i.d. sample from a population with unknown mean 𝜇

and standard deviation 𝜎. We take the sample mean X = (X1 + · · · + Xn)∕n
as an estimate for 𝜇.

(a) According to Chebyshev’s inequality, how large should the sample size n
be so that with probability 0.99 the error |X − 𝜇| is less than two standard
deviations?

(b) According to the central limit theorem, how large should n be so
that with probability 0.99 the error |X − 𝜇| is less than two standard
deviations?

10.21 Let X1, . . . ,X10 be independent Poisson random variables with 𝜆 = 1. Con-
sider P(

∑10
i=1 Xi ≥ 14).

(a) What does Markov’s inequality say about this probability?

(b) What does Chebyshev’s inequality say?

(c) What does the central limit theorem say?

(d) What does the central limit theorem say with the continuity correction?

(e) Find the exact probability.

10.22 Consider a random walk as described in Example 10.15. After one mil-
lion steps, find the probability that the walk is within 500 steps of the
origin.

10.23 Let X ∼ Gamma(a, 𝜆), where a is a large integer. Without doing any calcu-
lations, explain why X ≈ Norm(a∕𝜆, a∕𝜆2).

10.24 Show that

lim
n→∞∫

n

0

e−xxn−1

(n − 1)!
dx = 1

2
.

Hint: Consider an independent sum of n Exponential(1) random variables
and apply the central limit theorem.

10.25 A random variable Y is said to have a lognormal distribution if log Y has a
normal distribution. Equivalently, we can write Y = eX ,where X has a normal
distribution.

(a) If X1,X2, . . . is an independent sequence of uniform (0, 1) variables,
show that the product Y =

∏n
i=1 Xi has an approximate lognormal dis-

tribution. Show that the mean and variance of log Y are, respectively, −n
and n.

(b) If Y = eX , with X ∼ Norm(𝜇, 𝜎2), it can be shown that

E[Y] = e𝜇+𝜎
2∕2 and V[Y] = (e𝜎2−1)e2𝜇+𝜎2

.
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Let X1, . . . ,X100 be an independent sequence of uniform (0, 1) variables.
Estimate

P

(
3−100 ≤

100∏
i=1

Xi ≤ 2−100

)
.

(c) Verify the aforementioned results with a simulation experiment in R.

10.26 Consider a biased random walk that starts at the origin and that is twice as
likely to move to the right as it is to move to the left. After how many steps
will the probability be greater than 99% that the walk is to the right of the
origin?

10.27 Let X be a random variable, not necessarily positive.

(a) Using Markov’s inequality, show that for x > 0 and t > 0,

P(X ≥ x) ≤ E[etX]
etx

= e−txm(t), (10.4)

assuming that E[etX] exists, where m is the mgf of X.

(b) For the case when X has a standard normal distribution, give the upper
bound in Equation 10.4. Note that the bound holds for all t > 0.

(c) Find the value of t that minimizes your upper bound. If Z ∼ Norm(0, 1),
show that for z > 0,

P(Z ≥ z) ≤ e−z2∕2
. (10.5)

The upper bounds in Equations 10.4 and 10.5 are called Chernoff bounds.

10.28 Use the mgfs to show that the binomial distribution converges to the Poisson
distribution. The convergence is taken so that pn → 𝜆 > 0. (Hint: Write the
p in the binomial distribution as 𝜆∕n.)

Simulation and R

10.29 Code similar to the following was used to generate the graphs in Figures 10.3
and 10.4. Modify the code to illustrate the SLLN for an i.i.d. sequence with
the following distributions: (i) Pois(𝜆 = 5), (ii) Norm(−4, 4), (iii) Exp(𝜆 =
0.01). Be sure your solution is reproducible.

par(mfrow = c(2, 2))
n <- 1000
p <- 1/2
for (i in 1:4){

seq <- rbinom(n, 1, p) # Distribution
avgs <- cumsum(seq)/(1:n)
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plot(avgs, type = "l", xlab = "n",
ylab = "Average")
abline(h = p)}

10.30 See the code in Example 10.15 for generating a simple random walk. We
aim to simulate a biased random walk where the probability of moving left
and right is p and 1 − p, respectively. Graph your function obtaining pictures
like Figure 10.8. What do you notice about the behavior of the random walk
when p = 0.60, 0.55, 0.505?

10.31 (i) Write a function to simulate a random walk in the plane that moves up,
down, left, and right with equal probability. Use your function to estimate
the average distance from the origin after n = 1000 steps. (ii) Modify your
function to simulate a three-dimensional random walk that moves in one of
six directions with equal probability. Estimate the average distance from the
origin after n = 1000 steps.

Chapter Review

Chapter review exercises are available through the text website. The URL is
www.wiley.com/go/wagaman/probability2e.
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BEYOND RANDOM WALKS AND
MARKOV CHAINS

Not what we have but what we enjoy, constitutes our abundance.
—Epicurus

Learning Outcomes

1. Define key terms: random walk, transition matrix, stationary distribution.

2. Solve problems such as finding a stationary distribution.

3. Explain what MCMC is and describe the Metropolis–Hastings and Gibbs
sampler algorithms.

4. (C) Explore simple MCMC applications such as the decoding example.

In this chapter, we explore additional topics on random walks and Markov chains,
leading up to a discussion of Markov chain Monte Carlo methods.

11.1 RANDOM WALKS ON GRAPHS

A graph consists of a set of vertices and a set of edges. The graph in Figure 11.1
has four vertices and four edges. We say that two vertices are neighbors if there is
an edge joining them. Thus, vertex c has two neighbors b and d. And vertex a has
only one neighbor b.

Imagine the vertices as lily-pads on a pond, with a frog sitting on one lily-pad. At
each discrete unit of time, the frog hops to a neighboring lily-pad with probability
proportional to the number of its neighbors.

Probability: With Applications and R, Second Edition. Amy S. Wagaman and Robert P. Dobrow.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/wagaman/probability2e
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a b

c

d

FIGURE 11.1: Graph on four vertices.

For instance, if the frog is on lily-pad c, it jumps to b or d with probability 1/2
each. If the frog is on a, it always jumps to b. And if the frog is on b it jumps to a,
c, or d, with probability 1/3 each.

As the frog hops from lily-pad to lily-pad, the frog’s successive locations form
a random walk on the graph. For instance, if the frog starts at a, the random walk
sequence might look like a, b, a, b, c, b, d, c, d, b, a, b, . . .

Define a sequence of random variables X0,X1,X2, . . . , taking values in the vertex
set of the graph. Let X0 be the frog’s initial lily-pad (e.g., vertex). For each n =
1, 2, . . . , let Xn be the frog’s position after n hops. The sequence X0,X1,X2, . . .

forms a random walk on the graph.
(Note that we have quietly extended our definition of random variable to allow

the variables to take values in the vertex set, not just real numbers. Thus if the frog’s
random walk starts off as a, b, a, b, c, . . . , then X0 = a, X1 = b, X2 = a, etc.)

For vertices i and j, write i ∼ j if i and j are neighbors, that is, if there is an edge
joining them. The degree of vertex i, written deg(i), is the number of neighbors of i.
In the graph in Figure 11.1 (hereafter called the frog graph), deg(a) = 1, deg(b) = 3,
and deg(c) = deg(d) = 2.

A simple random walk moves from a vertex to its neighbor with probability pro-
portional to the degree of the vertex. That is, if the frog is on vertex i, then the
probability that it hops to vertex j is 1∕deg(i), if i ∼ j, and 0, otherwise. This is true
at any time n. That is, for vertices i and j,

P(Xn+1 = j|Xn = i) =
{

1∕deg(i), if i ∼ j
0, otherwise,

(11.1)

for n = 0, 1, 2 . . . This transition probability describes the basic mechanism of the
random walk process. The transition probability does not depend on n and thus for
all n,

P(Xn+1 = j|Xn = i) = P(X1 = j|X0 = i).

The transition probabilities can be represented as a matrix T whose ijth entry is the
probability of moving from vertex i to vertex j in one step. This matrix is called the
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transition matrix of the random walk. Write Tij for the ijth entry of T . For a random
walk on a graph with k vertices labeled {1, . . . , k}, T will be a k × k matrix with

Tij = P(X1 = j|X0 = i), for i, j = 1, . . . , k.

For the frog’s random walk, the transition matrix is

T =
a
b
c
d

a b c d⎛⎜⎜⎜⎝
0 1 0 0

1∕3 0 1∕3 1∕3
0 1∕2 0 1∕2
0 1∕2 1∕2 0

⎞⎟⎟⎟⎠ .
Observe that each row of a transition matrix sums to 1. If the random walk is at

vertex i, then row i gives the probability distribution for the next step of the walk.
That is, row i is the conditional distribution of the walk’s next position given that it
is at vertex i. For each i, the sum of the ith row is

k∑
j=1

Tij =
k∑

j=1

P(X1 = j|X0 = i)

=
k∑

j=1

P(X0 = i,X1 = j)
P(X0 = i)

=
P(X0 = i)
P(X0 = i)

= 1.

□■ Example 11.1 The cycle and complete graphs. Examples of the cycle graph
and complete graph are shown in Figure 11.2. A simple random walk on the cycle
graph moves left or right with probability 1/2. Each vertex has degree two. The
transition matrix is described using “clock arithmetic”:

Tij =
{

1∕2, if j = i ± 1
0, otherwise.

In the complete graph, every pair of vertices is joined by an edge. The complete
graph on k vertices has

(
k
2

)
edges. Each vertex has degree k − 1. The entries of the

transition matrix are

Tij =
{

1∕(k − 1), if i ≠ j
0, if i = j. ◼

□■ Example 11.2 Card shuffling by random transpositions. Random walks are
used to model methods of shuffling cards. Consider the following shuffle. Given a
deck of cards, pick two distinct positions in the deck at random. Switch the two cards
at those positions. This is known as the “random transpositions” shuffle. Successive
random transpositions form a random walk on a graph whose vertices are the set
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2

1
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5 4
3

1

2
3

4
5

(a) (b)

FIGURE 11.2: (a) Cycle graph on k = 9 vertices. (b) Complete graph on k = 5 vertices.

of orderings (permutations) of the deck of cards. For a deck of k cards, this gives
a graph with k! vertices. Because there are

(
k
2

)
ways to select two positions in the

deck, the degree of each vertex is
(

k
2

)
. Letting i and j denote orderings of the deck

of cards, the transition matrix is defined by

Tij =

{
1∕

(
k
2

)
, if i differs from j in exactly two locations

0, otherwise.

Observe that the matrix T is symmetric because if the walk can move from i to j
by switching two cards, it can move from j to i by switching those same two cards.
Here is the transition matrix for random transpositions on a three-card deck with
cards labeled 1, 2, and 3.

T =

123 132 213 231 312 321
123
132
213
231
312
321

⎛⎜⎜⎜⎜⎜⎜⎝

0 1∕3 1∕3 0 0 1∕3
1∕3 0 0 1∕3 1∕3 0
1∕3 0 0 1∕3 1∕3 0

0 1∕3 1∕3 0 0 1∕3
0 1∕3 1∕3 0 0 1∕3

1∕3 0 0 1∕3 1∕3 0

⎞⎟⎟⎟⎟⎟⎟⎠
. ◼

□■ Example 11.3 Hypercube. The k-hypercube graph has vertex set consisting of
all k-element sequences of zeros and ones. Two vertices (sequences) are connected
by an edge if they differ in exactly one coordinate. The graph has 2k vertices and(

k
2

)
edges. Each vertex has degree k (see Fig. 11.3).

A random walk on the hypercube can be described as follows. Given a k-element
0–1 sequence, pick one of the k coordinates uniformly at random. Then “flip the bit”
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(0,0) (1,0)

(a) (b)

(0,1) (1,1)

(0,0,0) (1,0,0)

(0,1,0) (1,1,0)

(0,0,1) (1,0,1)

(0,1,1) (1,1,1)

FIGURE 11.3: The k-hypercube graph for k = 2 (a) and k = 3 (b).

at that coordinate. That is, switch the number from 0 to 1, or from 1 to 0. Here is
the transition matrix for the 3-hypercube.

T =

000 100 010 110 001 101 011 111
000
100
010
110
001
101
110
111

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1∕3 1∕3 0 1∕3 0 0 0
1∕3 0 0 1∕3 0 1∕3 0 0
1∕3 0 0 1∕3 0 0 1∕3 0

0 1∕3 1∕3 0 0 0 0 1∕3
1∕3 0 0 0 0 1∕3 1∕3 0

0 1∕3 0 0 1∕3 0 0 1∕3
0 0 1∕3 0 1∕3 0 0 1∕3
0 0 0 1∕3 0 1∕3 1∕3 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. ◼

11.1.1 Long-Term Behavior

Of particular interest in the study of random walk is the long-term behavior of the
process. The limiting distribution describes this long-term behavior.

For notation in this chapter, we will write finite probability distributions as vec-
tors. Thus if𝜇 = (𝜇1, . . . , 𝜇k) is the distribution of a random variable X taking values
{1, . . . , k}, then P(X = i) = 𝜇i, for i = 1, . . . , k.

The initial distribution of a random walk is the distribution of the starting vertex
X0. A random walk is described by its initial distribution and transition matrix.

If a random walk has a limiting distribution, then as the walk evolves over time
the distribution of the walk’s position reaches an “equilibrium,” which is indepen-
dent of where the walk began. That is, the effect of the initial distribution “wears
off” as the random walk evolves.
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LIMITING DISTRIBUTION

Let X0,X1,X2, . . . be a random walk on a graph. A probability distribution 𝜋 =
(𝜋1, . . . , 𝜋k) is the limiting distribution of the random walk if for all vertices j,

P(Xn = j|X0 = i) → 𝜋j, as n → ∞,

for all initial vertices i.

A consequence of this definition is that P(Xn = j) → 𝜋j, as n → ∞, as

lim
n→∞

P(Xn = j) = lim
n→∞

k∑
i=1

P(Xn = j|X0 = i)P(X0 = i)

=
k∑

i=1

lim
n→∞

P(Xn = j|X0 = i)P(X0 = i)

=
k∑

i=1

𝜋jP(X0 = i) = 𝜋j.

To illustrate the limiting distribution, imagine a frog hopping on the cycle graph
on nine vertices as in Figure 11.2. Suppose the frog starts at vertex 0. After just a
few hops, the frog will tend to be relatively close to 0. However, after the frog has
been hopping around for a long time, intuitively the frog’s position will tend to be
uniformly distributed around the cycle, independent of the frog’s starting vertex.

Observe the behavior of random walk on the cycle graph on k = 9 vertices in
Table 11.1. We simulated the random walk for a fixed number of steps n, and then
repeated 100,000 times to simulate the distribution of Xn. The walk starts at vertex
0. After five steps, the walk is close to its starting position with high probability.
The probability is almost 60% that X5 ∈ {8, 0, 1}. The distribution of X5 is strongly
dependent on the initial vertex. After 10 steps, there is still bias toward vertex 0 but

TABLE 11.1. Simple random walk for the cycle graph on nine vertices after n steps.
Simulation of Xn for n = 5, 10, 50, 100.

Vertices
Steps versus
vertex 5 6 7 8 0 1 2 3 4

5 0.025 0.06 0.125 0.185 0.21 0.185 0.125 0.06 0.025
10 0.075 0.09 0.12 0.14 0.15 0.14 0.12 0.09 0.075
50 0.11 0.11 0.12 0.10 0.12 0.10 0.12 0.10 0.11

100 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
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not as much. Still the random walk is almost twice as likely to be close to vertex
0 than it is to be at the opposite side of the cycle near vertex 4 or 5. By 50 steps,
however, the dependency on the initial vertex has almost worn off, and the distri-
bution of X50 is close to uniform. By 100 steps, the distribution is uniform to two
decimal places. The table suggests that the limiting distribution of the random walk
is uniform on the set of vertices.

For the cycle graph, the limiting distribution is uniform. What about for the “frog
graph” in Figure 11.1? If the frog has been hopping from lily-pad to lily-pad on this
graph for a long time what is the probability that it is now on, say, vertex a?

Based on the structure of the graph, it is reasonable to think that after a long time,
the frog is least likely to be at vertex a and most likely to be at vertex b as there are
few edges into a and many edges into b.

The limiting distribution for random walk on this graph, and in general, has a
nice intuitive description. The long-term probability that the walk is at a particular
vertex is proportional to the degree of the vertex.

LIMITING DISTRIBUTION FOR A SIMPLE RANDOM WALK ON A
GRAPH

Let 𝜋 be the limiting distribution for a simple random walk on a graph. Then

𝜋j =
deg(j)∑k

i=1 deg(i)
=

deg(j)
2e

, for all vertices j, (11.2)

where e is the number of edges in the graph.

For the frog-hopping random walk, the limiting distribution is

𝜋 = (𝜋a, 𝜋b, 𝜋c, 𝜋d) = (1∕8, 3∕8, 2∕8, 2∕8) = (0.125, 0.375, 0.25, 0.25).

See the following simulation using Frog.R.

R: RANDOM WALK ON A GRAPH

The script file Frog.R simulates random walk on the frog graph for n = 200 steps
starting from a uniformly random vertex. The 200-step walk is repeated 10,000
times, keeping track of the last position X200 each time.

> n <- 200
> trials <- 10000
> simlist <- numeric(trials)
> for (i in 1:trials) {



�

� �

�

454 BEYOND RANDOM WALKS AND MARKOV CHAINS

k <- 0
pos <- sample(1:4, 1) # initial position
while (k < n) {
k <- k+1
if (pos==1) {pos <- 2; next}
if (pos==2) {pos <- sample(c(1, 3, 4), 1); next}
if (pos==3) {pos <- sample(c(2, 4), 1); next}
if (pos==4) pos <- sample(c(2, 3), 1); }
simlist[i] <- pos }

> table(simlist)/trials
simlist

1 2 3 4
0.1204 0.3805 0.2463 0.2528

Observe how closely the simulated distribution matches the exact limiting
distribution 𝜋 = (1∕8, 3∕8, 1∕4, 1∕4).

Remarks:

1. For any graph, the sum of the vertex degrees is equal to twice the number of
edges as every edge contributes two to the sum of the degrees, one for each
endpoint.

2. Not every graph has a limiting distribution. Whether or not a random walk has
a limiting distribution depends on the structure of the graph. There are two
necessary conditions:
(i) The graph must be connected. This means that for every pair of vertices

there is a sequence of edges that forms a path connecting the two vertices.

(ii) The graph must be aperiodic. To understand this condition, consider a
random walk on the square with vertices labeled (clockwise) 0, 1, 2, and
3. If the walk starts at vertex 0, then after an even number of steps it will
always be on either 0 or 2. And after an odd number of steps it will always
be on 1 or 3. Thus, the position of the walk depends on the starting state
and there is no limiting distribution. The square is an example of a bipar-
tite graph. In such a graph, one can color the vertices of the graph with
two colors black and white so that every edge has one endpoint that is
black and the other endpoint that is white. Random walks on a bipartite
graph give rise to periodic behavior and no limiting distribution exists.

Every graph that is connected and nonbipartite has a unique limiting distri-
bution. All the graphs that we discuss will meet this condition.

3. Observe from the limiting distribution formula in Equation 11.2 that if all
the vertex degrees of a graph are equal, then the limiting distribution is uni-
form. A graph with all degrees the same is called regular. The complete graph,
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hypercube graph, and random transpositions graph are all regular and thus the
simple random walks on these graphs have uniform limiting distributions. The
cycle graph is also regular but is bipartite if the number of vertices is even. The
cycle graph has a uniform limiting distribution when the number of vertices
is odd.

4. A classic problem in probability asks: How many shuffles does it take to mix
up a deck of cards? The problem can be studied by means of random walks
as in Example 11.2. If the uniform distribution is the limiting distribution of
a card-shuffling random walk, then the problem is equivalent to asking: How
many steps of a card-shuffling random walk are necessary to get close to the
limiting distribution, when the deck of cards is “mixed up?” Such questions
study the rate of convergence of random walk to the limiting distribution and
form an active area of modern research in probability.

11.2 RANDOM WALKS ON WEIGHTED GRAPHS AND MARKOV
CHAINS

Let us finish the article and the whole book with a good example of dependent trials,
which approximately can be regarded as a simple chain.

—Alexei Andreyevich Markov (Masharin et al. [2004])

Random walks on graphs are a special case of Markov chains. A Markov chain
is a sequence of random variables X0,X1,X2, . . . , with the property that for all n,
the conditional distribution of Xn+1 given the past history X0, . . . ,Xn is equal to the
conditional distribution of Xn+1 given Xn. This is sometimes stated as the distribution
of the future given the past only depends on the present. The set of values of the
Markov chain is called the state space.

A simple random walk on a graph is a Markov chain because the distribution of
the walk’s position at any fixed time only depends on the last vertex visited and not
on the previous locations of the walk. The state space is the vertex set of the graph,
leading to a discrete state space. Extensions exist to continuous state spaces.

As in the case of random walk on a graph, a Markov chain can be described by its
transition matrix T and an initial distribution. The concept of a limiting distribution
introduced in the last section extends naturally to general Markov chains.

Markov chains are remarkably useful models. They are used extensively in vir-
tually every applied field to model random processes that exhibit some dependency
structure between successive outcomes. A recent Google search of “Markov chain”
returned over 29 million hits.

□■ Example 11.4 Consider a Markov chain model for winter weather in the state of
North Dakota. Suppose on any day the weather can be in one of three states: clear,
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rain, and snow. A meteorologist suggests the following transition matrix:

T =

c r s
c
r
s

⎛⎜⎜⎝
1∕6 1∕3 1∕2
1∕8 1∕8 3∕4
1∕3 1∕6 1∕2

⎞⎟⎟⎠ .
The script file Markov.R contains the function markov(mat, start, n)

for simulating n steps of a Markov chain with a given transition matrix (mat) and
starting state (start). The function takes the transition matrix as an input, so that
must be entered into R. In the transition matrix entered below called weather, note
that the states are coded as 1 = clear, 2 = rain, and 3 = snow.

What is the long-term behavior of the Markov chain? That is, what is the
long-term weather according to this model? Suppose we start on a clear day. We
ran the Markov chain for n = 200 steps (representing days) and repeated 10,000
times with the following results. After that, we also observed the chain’s behavior
after 300 steps (days).

R: WEATHER MARKOV CHAIN

> weather <- matrix(c(1/6, 1/3, 1/2, 1/8, 1/8, 3/4,
1/3, 1/6, 1/2), nrow = 3, byrow = T)

> reps <- 10000
> simlist <- replicate(reps, markov(weather, 1, 200))
> table(simlist)/reps
simlist

1 2 3
0.2533 0.1977 0.5490
> simlist <- replicate(reps, markov(weather, 1, 300))
> table(simlist)/reps
simlist

1 2 3
0.2472 0.1967 0.5561

There is little difference in the distribution of X200 and X300. The simulated limit-
ing distribution suggests that the long-term weather forecast is approximately 25%
chance of clear skies, 20% chance of rain, and 55% chance of snow. ◼

General Markov chains can be studied in terms of random walks on graphs if we
extend our notions of graph. A weighted graph is a graph with a positive number,
or weight, assigned to each edge. A directed graph is a graph where edges have
direction associated with them. Thus for every pair of vertices i and j, one can have
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a b

c

d

2

1

2

4

FIGURE 11.4: Weighted graph.

an edge from i to j and an edge from j to i. An example of a weighted, but undirected,
graph is shown in Figure 11.4, referred to as the weighted frog graph.

□■ Example 11.5 PageRank. The PageRank algorithm used by the search engine
Google was presented in the book’s introduction. When you make an inquiry using
Google, it returns an ordered list of sites by assigning a rank to each page. The rank
it assigns is essentially the limiting distribution of a Markov chain.

This Markov chain can be described as a random walk on the web graph. In the
web graph, vertices represent web pages, edges represent hyperlinks. A directed
edge joins page i to page j if page i links to page j. Imagine a random walker that
visits web pages according to this model moving from a page with probability pro-
portional to the number of “out-links” from that page. The long-term probability
that the random walker is at page i is precisely the PageRank of page i.

Write i∼⃗j if there is a directed edge from i to j. Let link(i) be the number of
directed edges from i. Transition probabilities are defined as follows:

Tij =
{

P(X1 = j|X0 = i) = 1∕link(i), if i∼⃗j
0, otherwise.

There are over one billion websites on the Internet (the exact number fluctuates).
Computing the PageRank distribution amounts to finding the limiting distribution
for a matrix that has hundreds of millions of rows and columns. Using the tools
of probability and linear algebra, the computation is remarkably fast and efficient.
For a detailed treatment, see The $25,000,000,000 eigenvector by Bryan and Leise
[2006].

For a random walk on a weighted graph, transition probabilities are proportional
to the sum of the weights. If vertices i and j are neighbors, let 𝑤(i, j) denote the
weight of the edge joining i and j. Let𝑤(i) =

∑
i∼j𝑤(i, j) be the sum of the weights on

all the edges joining i to its neighbors. The transition probabilities, and the transition
matrix, for random walk on a weighted graph are defined as

Tij = P(X1 = j|X0 = i) =
{
𝑤(i, j)∕𝑤(i), if i ∼ j
0, otherwise.
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For the weighted frog graph, 𝑤(a) = 2, 𝑤(b) = 𝑤(c) = 5, and 𝑤(d) = 6. The
transition matrix is

T =

a b c d
a
b
c
d

⎛⎜⎜⎜⎝
0 1 0 0

2∕5 0 1∕5 2∕5
0 1∕5 0 4∕5
0 1∕3 0 2∕3

⎞⎟⎟⎟⎠ .
We will also allow a random walk to transition from a vertex back to itself in

one step. This is done by adding an edge called a “loop” at a vertex. If a vertex has
a loop, then it is a neighbor to itself. In the weighted frog graph, if we add a loop
of weight one at every vertex, then 𝑤(a) = 3, 𝑤(b) = 𝑤(c) = 6, and 𝑤(d) = 7. The
new transition matrix is

T =
a
b
c
d

a b c d⎛⎜⎜⎜⎝
1∕3 2∕3 0 0
1∕3 1∕6 1∕6 1∕3

0 1∕6 1∕6 2∕3
0 2∕7 4∕7 1∕7

⎞⎟⎟⎟⎠ .
Every discrete Markov chain can be described as a random walk on a directed,

weighted graph. Given a Markov chain with transition matrix Tij, form a graph
whose vertex set is the state space of the Markov chain. Then define weights
𝑤(i, j) = Tij for all i and j. This gives a directed, weighted graph. Similarly, given a
directed, weighted graph with weight function 𝑤(i, j) define transition probabilities
by Tij = 𝑤(i, j)∕𝑤(i) for all i and j to obtain the transition matrix for a Markov
chain. ◼

11.2.1 Stationary Distribution

Stationary distributions play an important role in the study of Markov chains with
intimate connections to limiting distributions.

STATIONARY DISTRIBUTION

Given a Markov chain with transition matrix T , a probability distribution 𝜇 =
(𝜇1, . . . , 𝜇k) is a stationary distribution of the Markov chain if for all states j,

𝜇j =
k∑

i=1

𝜇iTij. (11.3)

The reason for the name “stationary” is because a Markov chain that starts in
its stationary distribution stays in that distribution. Suppose 𝜇 is both a stationary



�

� �

�

RANDOM WALKS ON WEIGHTED GRAPHS AND MARKOV CHAINS 459

distribution and the initial distribution of a Markov chain. That is, P(X0 = j) = 𝜇j,
for all j. Consider the distribution of X1. By conditioning on X0,

P(X1 = j) =
k∑

i=1

P(X1 = j|X0 = i)P(X0 = i) =
k∑

i=1

Tij𝜇i = 𝜇j,

for all j. Thus, the distribution of X1 is also given by 𝜇. And if X1 ∼ 𝜇, by the
same argument X2 ∼ 𝜇, and so on. Hence, Xn ∼ 𝜇 for all n. Thus, the sequence
X0,X1,X2, . . . is identically distributed with common distribution 𝜇. We refer to the
stationary Markov chain when the process is started in its stationary distribution.

□■ Example 11.6 For the weather chain of Example 11.4, the distribution
𝜇 = (1∕4, 1∕5, 11∕20) is a stationary distribution. We verify that it is so by showing
that it satisfies the defining property. Checking for each j = 1, 2, 3 gives

3∑
i=1

𝜇iTi1 = (1∕4)(1∕6) + (1∕5)(1∕8) + (11∕20)(1∕3) = 1∕4 = 𝜇1,

3∑
i=1

𝜇iTi2 = (1∕4)(1∕3) + (1∕5)(1∕8) + (11∕20)(1∕6) = 1∕5 = 𝜇2,

3∑
i=1

𝜇iTi3 = (1∕4)(1∕2) + (1∕5)(3∕4) + (11∕20)(1∕2) = 11∕20 = 𝜇3. ◼

There is an intimate connection between the stationary distribution of a Markov
chain and the limiting distribution. In fact, for a large class of Markov chains they
are equal. We show that every limiting distribution is also a stationary distribution.

Suppose the limiting distribution of a Markov chain is 𝜋. Then for all states j,

k∑
i=1

Tij𝜋i =
k∑

i=1

P(Xn+1 = j|Xn = i)
[
lim

n→∞
P(Xn = i)

]

= lim
n→∞

k∑
i=1

P(Xn+1 = j|Xn = i)P(Xn = i)

= lim
n→∞

k∑
i=1

P(Xn+1 = j,Xn = i)

= lim
n→∞

P(Xn+1 = j) = 𝜋j.

Thus, 𝜋 is a stationary distribution.
A limiting distribution of a Markov chain is always a stationary distribution. The

converse, however, is not necessarily true. Some Markov chains can have many
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stationary distributions. And some Markov chains with stationary distributions do
not have limiting distributions. However, a random walk on a weighted graph that is
connected and nonbipartite admits a unique positive stationary distribution, which
is also the limiting distribution. This result is a fundamental theorem of Markov
chains, which we restate without proof.

STATIONARY, LIMITING DISTRIBUTION FOR RANDOM WALK ON
WEIGHTED GRAPHS

Suppose a weighted graph G is connected and nonbipartite. Then a random walk
on the graph has a unique, positive stationary distribution 𝜋, which is also the
limiting distribution.

The following result is extremely useful for finding stationary distributions.

DETAILED BALANCE CONDITION

Given a Markov chain with transition matrix T , a probability distribution 𝜇 =
(𝜇1, . . . , 𝜇k) is said to satisfy the detailed balance condition if

𝜇iTij = 𝜇jTji, for all i and j. (11.4)

If a probability distribution satisfies the detailed balance condition, then it is a
stationary distribution of the Markov chain.

Proof: Suppose 𝜇 satisfies the detailed balance condition. Then for all j,

k∑
i=1

𝜇iTij =
k∑

i=1

𝜇jTji = 𝜇j

k∑
i=1

Tji = 𝜇j.

Thus, 𝜇 is a stationary distribution. The first equality is because of the detailed
balance condition. The last equality is because the jth row of the transition matrix
sums to 1. ◻

We apply this result to find the stationary distribution for random walk on a
weighted graph. We search for a candidate 𝜋 that satisfies the detailed balance con-
dition. Let T be the transition matrix. Then for all i and j, 𝜋iTij = 𝜋jTji and thus

𝜋i
𝑤(i, j)
𝑤(i)

= 𝜋j
𝑤(j, i)
𝑤(j)

.
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As𝑤(i, j) = 𝑤(j, i) for all i and j, we have that 𝜋i∕𝑤(i) = 𝜋j∕𝑤(j) for all vertices. Call
this constant c. Hence 𝜋i = c𝑤(i) for all i. Summing over i gives 1 = c

∑k
i=1 𝑤(i).

And thus c = 1∕
∑k

i=1 𝑤(i). We find that

𝜋j =
𝑤(j)∑k

i=1 𝑤(i)

is the stationary distribution. It is also the limiting distribution.
Observe that the simple random walk on a graph can be considered a random

walk on a weighted graph where all the weights are equal to 1. In that case, 𝑤(j) =
deg(j) and 𝜋j = deg(j)∕

∑k
i=1 deg(i).

For the random walk on the graph in Figure 11.4, the stationary distribution is

𝜋 = (𝜋a, 𝜋b, 𝜋c, 𝜋d) = (2∕18, 5∕18, 5∕18, 6∕18).

□■ Example 11.7 Two-state Markov chain and Alexander Pushkin. The general
two-state Markov chain on states a and b has transition matrix

T =
a b

a
b

(
1 − p p

q 1 − q

)
,

where 0 ≤ p, q,≤ 1. If p and q are neither 0 nor 1, the Markov chain can be cast as
a random walk on a weighted graph with loops as shown in Figure 11.5. This gives
𝑤(a) = q and 𝑤(b) = p.

The stationary distribution probabilities are

𝜋a = 𝑤(a)
𝑤(a) +𝑤(b)

=
q

p + q
and 𝜋b = 𝑤(b)

𝑤(a) +𝑤(b)
=

p

p + q
.

Andrei Andreyevich Markov introduced Markov chains 100 years ago. He
first applied a two-state chain to analyze the successive vowels and consonants

a b

p(1– q)q(1–p)

pq

FIGURE 11.5: Weighted graph for the general two-state Markov chain.
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in Alexander Puskin’s poem Eugéne Onégin. In 20,000 letters of the poems,
Markov found that there are 8638 vowels and 11,362 consonants with 1104
vowel–vowel pairs, 7534 vowel–consonant and consonant–vowel pairs, and 3828
consonant–consonant pairs. In modern notation, the transition matrix is

T =

𝑣 c
𝑣

c

(
1104∕8638 7534∕8638

7534∕11,362 3828∕8638

)
=

𝑣 c
𝑣

c

(
0.128 0.872
0.663 0.337

)
,

with stationary distribution

𝜋 = (𝜋𝑣, 𝜋c) =
( 0.663

0.872 + 0.663
,

0.872
0.872 + 0.663

)
= (0.432, 0.568),

which gives the proportion of vowels and consonants, respectively, in the poem. ◼

A Markov chain whose stationary distribution 𝜋 satisfies the detailed balance
condition is said to be time-reversible. The descriptive language is used because a
time-reversible stationary chain “looks the same” going forward in time as it does
going backward.

Suppose a stationary Markov chain is time-reversible with stationary distribution
𝜋. For all states i and j,

P(X0 = i,X1 = j) = P(X1 = j|X0 = i)P(X0 = i)

= Tij𝜋i = 𝜋jTji

= P(X1 = i,X0 = j).

More generally, it can be shown that for all n,

P(X0 = i0,X1 = i1, . . . ,Xn = in) = P(Xn = i0,Xn−1 = i1, . . . ,X0 = in),

for all i0, i1, . . . , in.

11.3 FROM MARKOV CHAIN TO MARKOV CHAIN MONTE CARLO

The impact of Gibbs sampling and MCMC was to change our entire method of
thinking and attacking problems, representing a paradigm shift. Now the collection of
real problems that we could solve grew almost without bound. Markov chain Monte
Carlo changed our emphasis from “closed form” solutions to algorithms, expanded
our impact to solving “real” applied problems and to improving numerical algorithms
using statistical ideas, and led us into a world where “exact” now means “simulated.”
This has truly been a quantum leap in the evolution of the field of statistics, and the
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evidence is that there are no signs of slowing down . . . . The size of the data sets, and
of the models, for example, in genomics or climatology, is something that could not
have been conceived 60 years ago, when Ulam and von Neumann invented the Monte
Carlo method.

—Robert and Casella [2011], pg. 110, 111

We are given a large graph in which the number of vertices is unknown. However,
the graph can be described locally in the sense that from any vertex i we can easily
find the neighbors of i. Thus, we are able to run a simple random walk on the graph.
Let V be the number of vertices in the graph. The goal is to sample from the uniform
distribution on the vertex set. That is, from the distribution P(i) = 1∕V , for all i. But,
as we said, V is unknown.

At first sight, it seems incredible that such a problem can be solved. Yet we will
show—using Markov chains—that it can.

An example of the type of graph we have in mind is the web graph introduced
in the context of the PageRank algorithm in Example 11.5. The number of vertices
in the graph, the total number of web pages on the Internet, is extremely hard to
compute and, for all practical purposes, unknown. Yet from any vertex in the graph,
from any web page, the number of neighbors is just the number of hyperlinks on
that page. We would like to simulate an observation from the uniform distribution
on the set of all web pages.

Why might such a simulation be useful? Suppose we would like to know the aver-
age number of hyperlinks on a web page on the Internet. Call this 𝜇. One approach
to finding 𝜇 is to look at every web page on the Internet, count the number of hyper-
links, and take the average. My computer science colleagues tell me that even with
a lot of processors it would take between a week and several months to crawl the
Internet and collect these data from every web page.

On the other hand, suppose we are able to simulate i.i.d. observations X1, . . . ,Xn
from the uniform distribution on the web graph, where Xi represents a uniformly ran-
dom web page (e.g., vertex). Given a web page i, let h(i) be the number of hyperlinks
on i. Then, h(Xk) is the number of hyperlinks on a uniformly random web page. A
Monte Carlo estimate of 𝜇 is

𝜇 ≈
h(X1) + · · · + h(Xn)

n
, for large n.

But in order to make this estimate, we need i.i.d. observations from the uniform
distribution.

Markov chain Monte Carlo is a powerful method for simulating observations
from an unknown probability distribution. The method constructs a Markov chain
whose limiting distribution is the unknown distribution of interest.

Let 𝜋 be the “target” probability distribution of interest. The basic problem is
to simulate from 𝜋, that is, to generate a random variable X whose distribution
is 𝜋. Markov chain Monte Carlo constructs a Markov chain sequence X0,X1,X2, . . .
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whose limiting distribution is 𝜋. Having constructed such a sequence, we can then
take X = Xn, for n sufficiently large, as an approximate sample from 𝜋.

The MCMC algorithm for constructing a Markov chain with a given limit-
ing distribution is called the Metropolis–Hastings algorithm. It is named after
Nicholas Metropolis, a physicist, and W. Keith Hastings, a statistician. Metropolis
co-authored a 1953 paper that first proposed the algorithm. Hastings later extended
the work in 1970.

Metropolis–Hastings algorithm. For simplicity assume that 𝜋 is finite, taking
values {1, . . . , k}. Let T be the transition matrix of any Markov chain on {1, . . . , k}.
We assume that we know how to sample from this chain. In particular, if the chain
is at state i, we can simulate the next step of the chain according to the ith row of T .
The T matrix is called the proposal matrix.

We construct a new Markov chain X0,X1,X2, . . . by describing its transition
mechanism. Suppose after m steps, Xm = i. The next state Xm+1 is determined by a
two-step procedure.

1. Propose: Choose a proposal state according to the ith row of T . That is, state
j is chosen with probability Tij = P(Xm+1 = j|Xm = i).

2. Accept: Decide whether or not to accept the proposal state. Suppose the pro-
posal state is j. Compute the acceptance function

a(i, j) =
𝜋jTji

𝜋iTij
.

Let U be a random variable uniformly distributed on (0, 1). Then the next state
of the chain is

Xm+1 =
{

j, if U ≤ a(i, j)
i, if U > a(i, j).

MCMC: METROPOLIS–HASTINGS ALGORITHM

Let X0 be an arbitrary initial state. The sequence of random variables
X0,X1,X2, . . . constructed by the aforementioned algorithm is a time-reversible
Markov chain whose limiting distribution is 𝜋.

Before proving this theorem consider the following toy example. Suppose 𝜋 =
(0.1, 0.2, 0.3, 0.4) is the desired target distribution. Let T be the transition matrix for
simple random walk on the square, labeled 1, 2, 3, 4. From any vertex, the random
walk moves left or right with probability 1/2 each.

The algorithm proceeds as follows. Let X0 be any vertex. Start a simple ran-
dom walk on the square. If the current state is Xm = i ∈ {1, 2, 3, 4}, choose the
proposal j = i ± 1 (in clock arithmetic) with probability 1/2 each (e.g., if the walk
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is at state 1, then choose 4 or 2 with probability 1/2 each). Compute the acceptance
function

a(i, j) =
𝜋jTji

𝜋iTij
=

𝜋j

𝜋i
, if i ∼ j,

because Tij = Tji = 1∕2, for i ∼ j. Let U ∼ Unif(0, 1). Then, the next step of the
walk is set to be j, if U ≤ 𝜋j∕𝜋i, and i, otherwise.

Briefly, consider how the acceptance function works in the context of the toy
example. If i = 1, then for j = 2, the acceptance function is a(1, 2) = 0.2∕0.1 = 2.
Clearly, the value of U will always be less than 2, so j = 2 will always be accepted.
With i = 1 and j = 4, a similar effect occurs. When might we not accept a new
proposal? Consider i = 2 and j = 1. Then the acceptance function is a(2, 1) =
0.1∕0.2 = 0.5. So, we would only accept j = 1 moving from i = 2 about 50% of the
time. Note this will help us accumulate fewer 1’s than 2’s, as desired. We still need
more 3’s than 2’s though, so note for i = 2 and j = 3, the acceptance function is
a(2, 3) = 0.3∕0.2 = 1.5, so we would always move from 2 to 3 when 3 is proposed.

The following is a simple implementation to demonstrate the algorithm (see also
MCMCtoy.R).

R: MCMC—A TOY EXAMPLE

The target distribution is 𝜋 = (0.1, 0.2, 0.3, 0.4), with state space {1, 2, 3, 4}. The
function mcmc(n) simulates Xn from a Markov chain constructed according
to the Metropolis–Hastings algorithm. After 100 steps, X100 is output, and this
process is repeated 10,000 times. The simulated distribution of X100 serves as an
approximation of 𝜋.

> pi <- c(0.1, 0.2, 0.3, 0.4)
> mcmc <- function(n) {

current <- 1
for (i in 1:n) {

proposal <- (current + sample(c(-1, 1), 1)) %% 4
if(proposal == 0) proposal <- 4
accept <- pi[proposal] / pi[current]
if(runif(1) < accept) current <- proposal}

current }
> replicate(20,mcmc(100))
[1] 3 2 4 4 4 3 4 3 3 4 2 2 2 2 2 3 4 1 2 1

> trials <- 10000
> simlist <- replicate(trials,mcmc(100))
> table(simlist)/trials
simlist

1 2 3 4
0.0977 0.2008 0.3089 0.3926
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Proof of Metropolis–Hastings algorithm. Let X0,X1, . . . be the sequence con-
structed by the Metropolis–Hastings algorithm with transition matrix P. By con-
struction, for each m, Xm only depends on the previous state Xm−1 and not on the
full past history of the sequence, and thus the sequence is in fact a Markov chain.
Let P be the transition matrix. To prove that the limiting distribution is 𝜋, we show
that the detailed balance condition is satisfied.

For i ≠ j, consider P(X1 = j|X0 = i), the ijth entry of P. If X0 = i, in order to
transition to j, (i) state j must be a proposal state and (ii) j must be accepted. The
first event (i) occurs with probability Tij. And (ii) occurs if U ≤ a(i, j), where U ∼
Unif(0, 1). Observe that

P(U ≤ a(i, j)) =

{
a(i, j), if 𝜋jTji ≤ 𝜋iTij

1, if 𝜋jTji > 𝜋iTij.

Thus, the transition matrix P is given by

Pij = P(X1 = j|X0 = i) =

{
Tija(i, j), if 𝜋jTji ≤ 𝜋iTij

Tij, if 𝜋jTji > 𝜋iTij,

for i ≠ j. The diagonal entries Pii are found so that the rows sum to 1. That is,
Pii = 1 −

∑
j≠iPij.

To show that 𝜋 satisfies the detailed balance condition that 𝜋iTij = 𝜋jTji, let i ≠ j
and suppose 𝜋jTji∕𝜋iTij ≤ 1. Then necessarily, the reciprocal 𝜋iTij∕𝜋jTji > 1 and

𝜋iPij = 𝜋iTija(i, j) = 𝜋iTij

𝜋jTji

𝜋iTij
= 𝜋jTji = 𝜋jPji.

The result holds similarly for the case 𝜋jTji∕𝜋iTij > 1.
We have shown that X0,X1, . . . is a time-reversible Markov chain with limiting

distribution 𝜋. ◻

Remarks:

1. The algorithm requires the computation of ratios of the form 𝜋i∕𝜋j. Often,
the distribution 𝜋 is specified up to a proportionality constant, which may
be unknown. As only ratios are required in the algorithm, the proportionality
constant is not needed.

2. In the original version of the algorithm, the matrix T was taken to be symmet-
ric, with Tij = Tji. In that case, the acceptance function simplifies to a(i, j) =
𝜋j∕𝜋i.

3. There are several accounts of the rich history of Markov chain Monte Carlo.
We suggest the papers by Richey [2010] and Robert and Casella [2011].



�

� �

�

FROM MARKOV CHAIN TO MARKOV CHAIN MONTE CARLO 467

□■ Example 11.8 We revisit the general problem introduced at the beginning of this
section. Let G be a graph where the number of vertices V is both very large and
unknown. However, given any vertex i, we are able to compute the degree of i and
perform a simple random walk on the graph. Our goal is to sample from the uniform
distribution on the set of vertices. To implement MCMC, let T be the transition
matrix for simple random walk on the graph. Using T as the proposal matrix, the
acceptance function is

a(i, j) =
𝜋jTji

𝜋iTij
=

(1∕V)(1∕deg(j))
(1∕V)(1∕deg(i))

=
deg(i)
deg(j)

, for i ∼ j.

Thus, an MCMC algorithm to simulate from the uniform distribution is based on
modifying a simple random walk on G: From vertex i, propose vertex j according
to such a random walk. Then compute a(i, j) = deg(i)∕deg(j). Let U ∼ Unif(0, 1). If
U ≤ a(i, j), then accept j as the next step in the chain. Otherwise, stay at i.

To implement the algorithm on the web graph in order to generate a uniformly
random web page, the basic transition mechanism is as follows: from web page i
choose a hyperlink uniformly at random to reach a proposal page j. The acceptance
function is then

a(i, j) =
Number of hyperlinks on page i

Number of hyperlinks on page j
.

Let U ∼ Unif(0, 1). The Markov chain moves to j if U < a(i, j), or stays at i for
the next step of the sequence. Run the chain a “long time” and output Xn as an
approximate sample from the uniform distribution. ◼

The reader will no doubt wonder after the last example: What is a “long time”?
This is perhaps the biggest open question in the study of Markov chain Monte
Carlo. In practice there are numerous empirical methods for estimating the number
of steps required in order to implement MCMC effectively. There are theoretical
results for Markov chains on graphs that exhibit a lot of symmetry, such as the
cycle or complete graphs. But these types of highly structured chains are typically
not encountered in real-life applications.

□■ Example 11.9 Cryptography

ahicainqcaqx ic zqcqwbl bwq zwqbj xjustlicz tlhamx ic jyq kbr ho jybj albxx ho
jyicmqwx kyh ybgq tqqc qnuabjqn jh mchk chjyicz ho jyq jyqhwr ho dwhtbtilijiqx
jybj jyqhwr jh kyiay jyq shxj zlhwihux htpqajx ho yusbc wqxqbway bwq icnqtjqn
ohw jyq shxj zlhwihux ho illuxjwbjihcx

—qnzbw bllqc dhq jyq suwnqwx ic jyq wuq shwzuq

This example is based on Diaconis [2008], who gives a compelling demonstra-
tion of the power and breadth of MCMC with an application to cryptography.
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The coded message above was formed by a simple substitution cipher—each
letter standing for one letter in the alphabet. The hidden message can be thought of
as a coding function from the letters of the coded message to the regular alphabet.
For example, given an encrypted message xoaaoaaoggo, the function that maps x
to m, o to i, a to s, and g to p decodes the message to mississippi.

If one keeps tracks of all 26 letters and spaces, then there are 27! ≈ 1028 possible
coding functions. The goal is to find the one that decodes the message.

A colleague, Jack Goldfeather, assisted in downloading the complete works of
Jane Austen (about four million characters) from Project Gutenberg [2013] and
recorded the number of transitions of consecutive text symbols. For simplicity,
he ignored case and only kept track of spaces and the letters a to z. The counts
are kept in a 27 × 27 matrix M of transitions indexed by (a, b, . . . , z, [space]).
For example, there are 6669 places in Austen’s work where b follows a and thus
M12 = 6669.

The encoded message has 320 characters, denoted (c1, . . . , c320). For each coding
function g associate a score function

score(g) =
319∏
i=1

Mg(c1),g(ci+1).

The score is a product over all successive pairs of letters in the decrypted text
(g(ci), g(ci+1)) of the number of occurrences of that pair in the reference Austen
text. The score is higher when successive pair frequencies in the decrypted mes-
sage match those of the reference text. Coding functions with high scores are good
candidates for decryption. The goal is to find the coding function of maximum
score.

A probability distribution proportional to the scores is obtained by letting

𝜋g =
score(g)∑
hscore(h)

. (11.5)

From a Monte Carlo perspective, we want to sample from 𝜋, with the idea that
a sample is most likely to return a value of maximum probability. Of course, the
denominator in Equation 11.5 is intractable, being the sum of 27! terms. But the
beauty of Metropolis–Hastings is that the denominator is not needed as the algo-
rithm relies on ratios of the form 𝜋f∕𝜋g.

The MCMC implementation runs a random walk on the set of coding functions.
Given a coding function g, the transition to a proposal function g∗ is made by picking
two letters at random and switching the values that g assigns to these two symbols.
This method of “random transpositions” gives a symmetric proposal matrix T , sim-
plifying the acceptance function

a(g, g∗) =
𝜋g∗Tg∗,g

𝜋gTg,g∗
=

𝜋g∗

𝜋g
=

score(g∗)
score(g)

.
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The algorithm is as follows:

1. Start with any g. For convenience we use the identity function.

2. Pick two letters uniformly at random and switch the values that g assigns to
these two symbols. Call this new proposal function g∗.

3. Compute the acceptance function a(g, g∗) = score(g∗)∕score(g).
4. Let U ∼ Unif(0, 1). If U < a, accept g∗. Otherwise, stay with g.

We ran this algorithm on the coded message. See the script file Decode.R. The
results are shown next. Before iteration 2700, the message was decoded.

DECODING THE MESSAGE

[0] ahicainqcaqx ic zqcqwbl bwq zwqbj xjustlicz tlhamx ic jyq kbr ho jybj
albxx ho jyicmqwx kyh ybgq tqqc qnuabjqn jh mchk chjyicz ho jyq jyqhwr
ho dwhtbtilijiqx jybj jyqhwr jh kyiay jyq shxj zlhwihux htpqajx ho yusbc
wqxqbway bwq icnqtjqn ohw jyq shxj zlhwihux ho illuxjwbjihcx qnzbw bllqc
dhq jyq suwnqwx ic jyq wuq shwzuq

[100] goiegimsegsn ie asesrbl brs arsbh nhuktliea tlogdn ie hys pbc of hybh glbnn
of hyiedsrn pyo ybvs tsse smugbhsm ho deop eohyiea of hys hysorc of wrotbtil-
ihisn hybh hysorc ho pyigy hys konh alorioun otxsghn of yukbe rsnsbrgy brs
iemsthsm for hys konh alorioun of illunhrbhioen smabr bllse wos hys kurmsrn
ie hys rus koraus

[500] gosegsviegin se lieirap ari lriat ntucmpsel mpogyn se thi wad of that gpann
of thseyirn who haxi miie ivugativ to yeow eothsel of thi thiord of bromamspstsin
that thiord to whsgh thi cont lporsoun omkigtn of hucae riniargh ari sevimtiv for
thi cont lporsoun of sppuntratsoen ivlar appie boi thi curvirn se thi rui corlui

[1000] goingidenges in meneral are mreat stucplinm plogys in the wak of that
glass of thinyers who have peen edugated to ynow nothinm of the theork of
bropapilities that theork to whigh the cost mlorious opzegts of hucan researgh
are indepted for the cost mlorious of illustrations edmar allen boe the curders in
the rue cormue

[1500] goingidenges in meneral are mreat stucplinm plogks in the way of that
glass of thinkers who have peen edugated to know nothinm of the theory of
bropapilities that theory to whigh the cost mlorious opxegts of hucan researgh
are indepted for the cost mlorious of illustrations edmar allen boe the curders in
the rue cormue

[2000] coincidences in beneral are breat stumplinb plocks in the way of that class
of thinkers who have peen educated to know nothinb of the theory of gropa-
pilities that theory to which the most blorious opjects of human research are
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indepted for the most blorious of illustrations edbar allen goe the murders in the
rue morbue

[2500] coincidences in general are great stumpling plocks in the way of that class
of thinkers who have peen educated to know nothing of the theory of bropa-
pilities that theory to which the most glorious opjects of human research are
indepted for the most glorious of illustrations edgar allen boe the murders in the
rue morgue

[2700] coincidences in general are great stumbling blocks in the way of that
class of thinkers who have been educated to know nothing of the theory of prob-
abilities that theory to which the most glorious objects of human research are
indebted for the most glorious of illustrations edgar allen poe the murders in the
rue morgue

◼

Gibbs sampler. The original MCMC algorithm was developed in 1953 moti-
vated by problems in physics. In 1984, a landmark paper by Geman and Geman
[1984] showed how the algorithm could be adapted for the high-dimensional
problems that arise in Bayesian statistics. The name “Gibbs sampling” was coined
in that paper because of connections with Gibbs fields and the work of physicist
Josiah Gibbs.

In order to understand Gibbs sampling, we need to broaden our notion of a
Markov chain and transition matrix to allow for infinite and continuous state
spaces. In particular, the transition matrix T in the Metropolis–Hastings algorithm
is replaced by a transition function T(i, j) that, for fixed i, is a conditional density
function, as opposed to a conditional pmf in the discrete case.

In the Gibbs sampler, the target distribution is a joint distribution

𝜋(x) = 𝜋(x1, . . . , xk).

A Markov chain is constructed whose limiting distribution is 𝜋 and that takes values
in a k-dimensional space. The algorithm generates elements of the form(

X(0)
1 , . . . ,X(0)

k

)
,

(
X(1)

1 , . . . ,X(1)
k

)
,

(
X(2)

1 , . . . ,X(2)
k

)
, . . .

eventually generating (X(n)
1 , . . . ,X(n)

k ) for large n as a sample from 𝜋.
Chain elements are simulated by sampling from conditional distributions. We

illustrate with a simple example: simulating from a bivariate standard normal dis-
tribution with correlation 𝜌. Recall that if (X,Y) has a bivariate standard normal
distribution, then the conditional distribution of X given Y = y is normal with mean
𝜌y and variance 1 − 𝜌2. Similarly, the conditional distribution of Y given X = x is
normal with mean 𝜌x and variance 1 − 𝜌2.
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At each step of the Gibbs sampler, each of the two coordinates of the joint dis-
tribution are updated by sampling from the conditional distribution of one given the
other back and forth as described in the following implementation:

1. Initiate (X0,Y0) = (0, 0).
2. At step m, having already simulated (Xm−1,Ym−1),

(a) take Xm as a sample from the conditional distribution of Xm given Ym−1.

That is, if Ym−1 = y, then simulate Xm from a normal distribution with
mean 𝜌y and variance 1 − 𝜌2, Then,

(b) take Ym as a sample from the conditional distribution of Ym given Xm.
That is, having just simulated Xm = x, now simulate Ym from a normal
distribution with mean 𝜌x and variance 1 − 𝜌2.

3. For large n, output (Xn,Yn) as a sample from the desired bivariate distribution.

R: SIMULATION OF BIVARIATE STANDARD NORMAL
DISTRIBUTION

This code simulates 1000 observations of a bivariate standard normal distribution
with 𝜌 = −0.5 using the Gibbs sampler. We take n = 100 iterations and out-
put (X100,Y100). See Figure 11.6 for a graph of example output, and the script
Gibbs.R for code.

> gibbsnormal <- function(n, rho) {
x <- 0
y <- 0

sd <- sqrt(1-rho ̂ 2)
for (i in 1:n) {

x <- rnorm(1, rho*y, sd)
y <- rnorm(1, rho*x, sd) }

return(c(x, y))}
> simlist <- replicate(1000, gibbsnormal(100, -0.5)
> plot(t(simlist))

Why does this work? The Gibbs sampler is actually a special case of the
Metropolis–Hastings algorithm, where transitions are based on conditional distri-
butions. Consider one step of the Gibbs sampler. Suppose i = (x, y) is the current
state and we are proposing an update for the first coordinate from x to x∗. Let
j = (x∗, y).

The proposal x∗ is obtained from the conditional distribution of X given Y = y.
Let fX|Y (x|y) denote the conditional density of X given Y = y. Let fY (y) denote the
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FIGURE 11.6: Gibbs sampler simulation of bivariate standard normal with 𝜌 = −0.5.

marginal density of Y . The acceptance function is thus

a(i, j) =
𝜋jTji

𝜋iTij
=

𝜋(x∗, y)fX|Y (x|y)
𝜋(x, y)fX∗|Y (x∗|y) = 𝜋(x∗, y)𝜋(x, y)fY (y)

𝜋(x, y)𝜋(x∗, y)fY (y)
= 1.

Because the acceptance function is equal to one, we always accept a transition.
Similarly, when the second coordinate is updated from (x∗, y). Thus, Gibbs sampling
is a special case of the Metropolis–Hastings algorithm in which we always accept
proposals.

More generally, suppose we want to sample from a multivariate probability dis-
tribution

𝜋(x) = 𝜋(x1, . . . , xk) = P(X1 = x1, . . . ,Xk = xk).

We assume that for each i, we can sample from the conditional distribution

P(Xi = xi|Xj = xj, j ≠ i).

That is, we can simulate from the conditional distribution of each coordinate of
(X1, . . . ,Xk) given the other k − 1 coordinates. As shown earlier, the acceptance
function is always equal to 1, and the algorithm proceeds by iteratively choos-
ing coordinates to update, simulating from the conditional distribution given the
remaining coordinates.

□■Example 11.10 The following three-dimensional example is based on Casella and
George [1992]. Consider the mixed joint density

𝜋(x, p, n) ∝
(n

x

)
px(1 − p)n−xe−4 4n

n!
, (11.6)
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for x = 0, 1, . . . , n, 0 < p < 1, n = 0, 1, . . . . The p variable is continuous; vari-
ables x and n are discrete. The distribution arises from the following application.
Conditional on N = n and P = p, let X represent the number of successful hatchings
from n insect eggs, where each egg has success probability p. Both N and P are
random and vary across insects. We seek the expectation and standard deviation of
X, the number of successful hatchings among all insects.

There is no simple closed form expression for the marginal distribution of X.
Gibbs sampling is used to simulate from the joint density of (X,P,N) and then
extract the marginal information.

The key to using the Gibbs sampler is our ability to sample easily from the con-
ditional distributions of each coordinate variable given the other coordinate values.
For fixed p and n in Equation 11.6, the conditional distribution of X given P = p and
N = n is binomial with parameters n and p. (To see this, observe that anything in
the expression that does not involve x can be treated as a constant and thus absorbed
in the constant of proportionality.) Similarly, the conditional distribution of P given
X = x and N = n is a beta distribution with parameters x + 1 and n − x + 1. And the
conditional pmf of N given X = x and P = p, up to proportionality, is

P(N = n|P = p,X = x) ∝ 1
(n − x)!

(1 − p)n−x4n

∝ e−4(1−p) (4(1 − p))n−x

(n − x)!
,

for n = x, x + 1, . . . This is a “shifted” Poisson distribution. It is the distribution of
Y + x, where Y ∼ Pois(4(1 − p)).

As we can simulate from the three conditional distributions, the Gibbs sampler
proceeds by cycling through each of the three coordinates of the joint distribution
and updating each coordinate with the conditional distribution of that coordinate
given the other two coordinate values.

R: GIBBS SIMULATION OF TRIVARIATE DISTRIBUTION

The Gibbs sampler is run for 500 iterations and outputs (X500,P500,N500) as an
approximate sample from the joint distribution. We then repeat 10,000 times
storing the output in the 3 × 500 matrix simmat. The first row simmat[1,]
is taken as a sample from the marginal distribution of X. See the histogram of
the distribution in Figure 11.7. Code is provided in the script Gibbs2.R.

> gibbsthree <- function(trials) {
x <- 1
p <- 1/2
n <- 2

> for (i in 1:trials) {
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FIGURE 11.7: Distribution of the marginal distribution of X from 10,000 runs of the Gibbs
sampler. Each sampler is run for 500 iterations.

x <- rbinom(1, n, p)
p <- rbeta(1, x+1, n-x+1)
n <- x + rpois(1, 4*(1-p)) }
return(c(x, p, n)) }

> simmat <- replicate(10000, gibbsthree(500))
> marginal <- simmat[1,]
> mean(marginal)
[1] 1.995
> sd(marginal)
[1] 1.826392
> hist(marginal)

◼

In these examples, we have barely scratched the surface of the many uses of
MCMC methods. We encourage the reader to continue their studies and investigate
further on their own.

11.4 SUMMARY

The final chapter of the book is devoted to random walks on graphs and Markov
chains, culminating in the final treatment of Markov chain Monte Carlo (MCMC).
The simple random walk and the random walk on weighted graphs are introduced.
The treatment gives a gentle introduction to Markov chains, which does not require
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knowledge of linear algebra. Several examples of the power and scope of MCMC
are presented. Both the Metropolis–Hastings algorithm and the Gibbs sampler are
introduced.

• Graph: A set of vertices together with a set of edges.

• Neighbors and degrees: For vertices i and j, we say i is a neighbor of j if
there is an edge between them. The degree of a vertex is the number of its
neighbors.

• Simple random walk on a graph: The random walk moves from a given
vertex by choosing one of its neighbors uniformly at random.

• Transition matrix: For a graph on k vertices, this is a k × k matrix whose ijth
entry P(X1 = j|X0 = i) is the probability of moving to vertex j given that the
walk is on vertex i.

• Initial distribution: The distribution of X0, the initial vertex of the random
walk.

• Limiting distribution: A probability distribution 𝜋 on the vertex set with the
property that for all initial vertices i, P(Xn = j|X0 = i) → 𝜋j, as n → ∞.

• Limiting distribution for a simple random walk on a graph: Under suitable
conditions on the graph, 𝜋j = deg(j)∕

∑k
i=1 deg(i).

• Weighted graph: A graph with a positive number assigned to each edge.

• Random walk on weighted graph: The random walk moves from a given
vertex i by choosing a neighbor j with probability 𝑤(i, j)∕𝑤(i), where 𝑤(i, j)
is the weight of the edge joining i and j, and 𝑤(i) is the sum of the weights on
the edges that join i to all of its neighbors.

• Markov chain: A sequence of X0,X1, . . . with the property that for all n, the
conditional distribution of Xn+1 (the “future”) given X0, . . . ,Xn (the “past”)
only depends on Xn (the “present”).

• Stationary distribution: A probability distribution 𝜇 = (𝜇1, . . . , 𝜇k) on the
states of a Markov chain that satisfies 𝜇j =

∑k
i=1 𝜇iTij for all j.

• Detailed balance condition: A probability distribution 𝜇 satisfies this con-
dition if 𝜇iTij = 𝜇jTji for all i and j. If a probability distribution satisfies this
condition, it is a stationary distribution of the Markov chain.

• Markov chain Monte Carlo: A technique for simulating from a given prob-
ability distribution by running a Markov chain whose limiting distribution is
the distribution of interest.

• Metropolis–Hastings algorithm: Given a probability distribution 𝜋, this
algorithm constructs a Markov chain whose limiting distribution is 𝜋.

• Gibbs sampler: An MCMC method for simulating from a multivariate joint
distribution 𝜋 = (𝜋1, . . . , 𝜋k). The algorithm is based on the ability to sample
from the conditional distribution of each variable given the other variables.
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EXERCISES

Random Walk on Graphs and Markov Chains

11.1 The number of umbrellas in a college student’s room at the start of each day
is described by a Markov chain with transition matrix

U =

0 1 2
0
1
2

⎛⎜⎜⎝
0.6 0.4 0

0.24 0.52 0.24
0 0.24 0.76

⎞⎟⎟⎠ .
(a) What is the probability there will be no umbrellas available in the stu-

dent’s room at the start of the day after tomorrow if there is only one
available today?

(b) Find the stationary distribution.

11.2 Suppose you decide to construct a music composition according to a Markov
chain with three states—the notes, of A, C sharp, and E flat. Suppose you
choose the transition matrix

T =

A Csharp Eflat
A
Csharp
Eflat

⎛⎜⎜⎝
0.1 0.6 0.3
0.25 0.05 0.7
0.7 0.3 0

⎞⎟⎟⎠ .
(a) What is the probability A is the note that is played two notes from now

assuming you just played E flat?

(b) If you are equally likely to start with any note, what is the probability
A is the third note played? (i.e., you play an initial note, one more note,
and then A).

(c) In the long-run (assuming a stationary distribution exists) what fraction
of notes will be C sharps?

11.3 The star graph on k vertices contains one center vertex and k − 1 other ver-
tices called leaves. Between each leaf and the center vertex there is one edge.
Thus the graph has k − 1 edges. Find the stationary distribution of the random
walk on the star graph.

11.4 The lollipop graph on 2k − 1 vertices is defined as follows: a complete graph
on k vertices is joined with a path on k vertices by identifying one of the
endpoints of the path with one of the vertices of the complete graph (see
Fig. 11.8). Find the limiting distribution for a simple random walk on the
lollipop graph.
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FIGURE 11.8: Lollipop graph on nine vertices.

a

b

c

d e

f

g

1

2

1

3

3
4

2

1

FIGURE 11.9: Weighted graph.

11.5 Find the stationary distribution for a random walk on the weighted graph in
Figure 11.9.

11.6 The rows of a Markov chain transition matrix sum to one. A matrix is called
doubly stochastic if its columns also sum to one. If a Markov chain has a
doubly stochastic transition matrix, show that its stationary distribution is
uniform.

11.7 Show that if a transition matrix for a Markov chain is symmetric, that is, if
Tij = Tji for all i and j, then the Markov chain is time-reversible.

11.8 A lone king on a chessboard conducts a random walk by moving to a neigh-
boring square with probability proportional to the number of neighbors. The
walk defines a simple random walk on a graph consisting of 64 vertices. Find
the value of the stationary distribution at a corner square of the chessboard.

11.9 The weather Markov chain of Example 11.4 has stationary distribution
is 𝜋 = (1∕4, 1∕5, 11∕20). Determine whether or not the Markov chain is
time-reversible.

11.10 Suppose a time-reversible Markov chain has transition matrix P and station-
ary distribution 𝜋. Show that the Markov chain can be regarded as a random
walk on a weighted graph with edge weights 𝑤(i, j) = 𝜋iTij for all states i
and j.
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11.11 A Markov chain has transition matrix

T =

a b c d
a
b
c
d

⎛⎜⎜⎜⎝
0 1∕4 1∕4 1∕2

1∕4 0 0 3∕4
1∕2 0 0 1∕2
1∕3 1∕2 1∕6 0

⎞⎟⎟⎟⎠ .

(a) Show that the stationary distribution is 𝜋 = (1∕4, 1∕4, 1∕8, 3∕8).
(b) The Markov chain can be regarded as a random walk on a weighted

graph. Determine the graph and the weights.

11.12 Suppose a Markov chain with unique positive stationary distribution 𝜋 starts
at state i. The expected number of steps until the chain revisits i is called
the expected return time of state i. We state without proof that the expected
return time of state i is equal to 1∕𝜋i. Find the expected return time of the
center vertex in the lollipop graph of Figure 11.8.

11.13 See Exercise 11.12. A lone knight performs a random walk on a chess-
board. From any square, the knight looks at the squares that it can legally
move to in chess, and picks one uniformly at random to move to. If the
knight starts this random walk at one of the corner squares of the chess-
board, find the expected number of steps until the knight returns to its starting
square.

Markov Chain Monte Carlo

11.14 See the MCMC toy example. Find the transition matrix for the Markov
chain constructed by the Metropolis–Hastings algorithm. Show that 𝜋 =
(0.1, 0.2, 0.3, 0.4) is the stationary distribution and that the detailed-balance
condition is satisfied.

11.15 Use the Metropolis–Hastings algorithm to simulate a Poisson random vari-
able with parameter 𝜆. Let T be the (infinite) matrix that describes a sim-
ple random walk on the integers. From an integer i, the walks moves to
i − 1 or i + 1 with probability 1/2 each. Show how to simulate a Poisson
random variable. Then implement your algorithm and give evidence that it
works.

11.16 Modify the simulation code for a bivariate standard normal distribution to
simulate a bivariate normal distribution with parameters 𝜇X = 20, 𝜎2

X = 100,
𝜇Y = −14, 𝜎2

Y = 4, and 𝜌 = −0.8 using the Gibbs sampler.
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11.17 Research project: Implement the MCMC cryptography algorithm as
described in Example 11.9. Study ways to adjust parameters in order to
improve the algorithm for more efficient decoding.

Chapter Review

Chapter review exercises are available through the text website. The URL is
www.wiley.com/go/wagaman/probability2e.
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PROBABILITY DISTRIBUTIONS IN R

There are four commands for working with probability distributions in R. The
commands take the root name of the probability distribution (see Table A.1)
and prefix the root with d, p, q, or r. These give continuous density or discrete
probability mass function (d), cumulative distribution function (p), quantile (q),
and random variable simulation (r).

TABLE A.1. Probability distributions in R.

Distribution Root Distribution Root

Beta beta Log-normal lnorm
Binomial binom Multinomial multinom
Cauchy cauchy Negative binomial nbinom
Chi-squared chisq Normal norm
Exponential exp Poisson pois
F f Student’s t t
Gamma gamma Uniform unif
Geometric geom Weibull weibull
Hypergeometric hyper

Probability: With Applications and R, Second Edition. Amy S. Wagaman and Robert P. Dobrow.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/wagaman/probability2e

481



�

� �

�

APPENDIX B

SUMMARY OF PROBABILITY
DISTRIBUTIONS

Discrete Distributions

Distribution Pmf, Expectation, and Variance

Uniform(1, . . . , n) P(X = k) = 1
n
, k = 1, . . . , n

E[X] = n + 1
2

V[X] = n2 − 1
12

Binomial P(X = k) =
(n

k

)
pk(1 − p)n−k

, k = 0, 1, . . . , n

E[X] = np V[X] = np(1 − p)

Poisson P(X = k) = e−𝜆𝜆k

k!
, k = 0, 1, 2, . . .

E[X] = 𝜆 V[X] = 𝜆

Geometric P(X = k) = (1 − p)k−1p, k = 1, 2, . . .

E[X] = 1
p

V[X] =
1 − p

p2

P(X > t) = (1 − p)t

Probability: With Applications and R, Second Edition. Amy S. Wagaman and Robert P. Dobrow.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/wagaman/probability2e
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Discrete Distributions

Distribution Pmf, Expectation, and Variance

Negative binomial P(X = k) =
(k − 1

r − 1

)
pr(1 − p)k−r

,

k = r, r + 1, . . . , r = 1, 2, . . .

E[X] = r
p

V[X] =
r(1 − p)

p2

Hypergeometric P(X = k) =

(
r
k

)(
N − r
n − k

)
(

N
n

) , k = 0, 1, . . . , n

E[X] = nr
N

V[X] = n(N − n)r(N − r)
N2(N − 1)

Continuous Distributions

Distribution Density, cdf, Expectation, and Variance

Uniform(a, b) f (x) = 1
b − a

, a < x < b

F(x) = x − a
b − a

, a < x < b

E[X] = a + b
2

V[X] = (b − a)2

12

Exponential f (x) = 𝜆e−𝜆x
, x > 0

F(x) = 1 − e−𝜆x, x > 0

E[X] = 1
𝜆

V[X] = 1
𝜆2

Normal f (x) = 1

𝜎

√
2𝜋

exp

[
−(x − 𝜇)2

2𝜎2

]
,−∞ < x < ∞

E[X] = 𝜇 V[X] = 𝜎2
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Continuous Distributions

Distribution Density, cdf, Expectation, and Variance

Gamma f (x) = 𝜆a(x)a−1e−𝜆x

Γ(a)
, x > 0

where

Γ(a) =
∫

∞

0
ta−1e−t dt

E[X] = a
𝜆

V[X] = a
𝜆2

Beta f (x) = Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽)

x𝛼−1(1 − x)𝛽−1
, 0 < x < 1

E[X] = 𝛼

𝛼 + 𝛽
V[X] = 𝛼𝛽

(𝛼 + 𝛽 + 1)(𝛼 + 𝛽)2
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MATHEMATICAL REMINDERS

Exponents

ea+b = eaeb

[ea]b = eab

Logarithms

log ab = log a + log b

log ar = r log a

log x = y if and only if x = ey

Calculus

Limits
lim
x→∞

(
1 + a

x

)x
= ea

Derivatives
f ′(x) = lim

h→0

f (x + h) − f (x)
h

Probability: With Applications and R, Second Edition. Amy S. Wagaman and Robert P. Dobrow.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/wagaman/probability2e
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Definite Integral

∫

b

a
f (x) dx = lim

n→∞
b − a

n

n∑
i=1

f (xi), a = x1 < x2 < · · · < xn = b

Chain Rule
d
dx

f (g(x)) = f ′(g(x))g′(x)

Fundamental Theorem of Calculus

d
dx ∫

x

a
f (t) dt = f (x)

Taylor Series Expansion for f(x) about x = a

f (x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2
(x − a)2 +

f (3)(a)

3!
(x − a)3 + · · ·

Integration by Parts for Definite Integrals

∫

b

a
u d𝑣 = u𝑣|||ba − ∫

b

a
𝑣 du

Series
∞∑

k=0

xk

k!
= ex

, for all x

∞∑
k=0

xk = 1
1 − x

, for |x| < 1

n∑
k=0

xk = 1 − xn+1

1 − x
, for x ≠ 1

n∑
k=1

k = n(n + 1)
2

n∑
k=1

k2 = n(n + 1)(2n + 1)
6
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WORKING WITH JOINT
DISTRIBUTIONS

This appendix is designed to give you practice working with joint distributions,
particularly aspects of working with double integrals or partial derivatives that you
might not be familiar with. We highly recommend sketching domains for the fol-
lowing examples to help you understand the setup of the integrals.

□■ Example D.1 Suppose X and Y are random variables with joint pdf given by
f (x, y) = x + y, when 0 < x < 1 and 0 < y < 1, and 0, otherwise. We want to find
two probabilities: (i) P(X < 1∕2,Y < 1∕3) and (ii) P(X < Y).

The domain here is a unit square. That makes many problems very easy to setup.
Rectangles are similarly easy. Sketch the domain and shade in the region corre-
sponding to the probability. For this example, in (i), this produces a rectangle. Recall
that the density curve would be above that domain, and so our idea of a probability
being the “area under the curve” is now “volume.” The double integral serves to
give us this volume.

(i) We want to find P(X < 1∕2,Y < 1∕3). In your sketch, draw a horizontal line in
the desired region, creating a “slice” in the domain of the desired probability.
Note that on your horizontal slice, the bounds for X are 0 and 1/2 for the entire
region of interest. If we integrated along this slice, we could get the probability

Probability: With Applications and R, Second Edition. Amy S. Wagaman and Robert P. Dobrow.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/wagaman/probability2e
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of X being between 0 and 1/2 at some fixed value of Y . But what we want to
look at is any value of Y < 1∕3. So, we imagine moving the slice up and down.
Again, note that the bounds on X do not change, and Y goes from 0 to 1/3 on
this region. “Slicing” in the horizontal direction sets up double integrals where
x is the variable for the inner integral, and y for the outer. Vertical slices reverse
this. In this first example though, there are no constraints on the relationship
between X and Y so either setup is comparable. Combining what we learned
about X and Y’s behavior in our desired region, we find that

P(X < 1∕2,Y < 1∕3) =
∫

1∕3

0 ∫

1∕2

0
(x + y) dx dy

=
∫

1∕3

0

(
x2

2
+ xy

)|||||
1∕2

0

dy =
∫

1∕3

0

(1
8
+

y

2

)
dy

=
y

8
+

y2

4

|||||
1∕3

0

= 5
72

.

When evaluating the integrals, solve the inner integral first, treating the outer
integral’s variable as a constant. Thus, in our example, we find the desired prob-
ability to be 5/72.

(ii) We want to find P(X < Y). If we sketch this region within our unit square, we
find that it corresponds to the triangle above the line y = x. The fact that the area
is not a rectangle (or square) means that we must be more careful when setting
up our double integral to evaluate the desired probability. We could set up the
integrals with y in the inner integral (vertical slices) or x in the inner integral
(horizontal slices). We start with the vertical slices, and suggest you sketch both
as you follow along.

Making a vertical slice within our triangular region shows us how y varies at
a fixed x value. In this example, each vertical slice goes from the line y = x to
y = 1. Thus, y varies from x to 1 along each slice. To accrue the desired volume,
we move the vertical slice across all values of x allowed in the region, which
we see is from 0 to 1. Thus, we would evaluate the desired probability as

P(X < Y) =
∫

1

0 ∫

1

x
(x + y) dy dx.

We could also approach the problem with horizontal slices. Each horizontal
slice shows us that x varies from 0 to y for a fixed y value. Then, to accrue the
volume, we would need slices at each value of y from 0 to 1. This gives an
equivalent approach to finding the probability which gives

P(X < Y) =
∫

1

0 ∫

y

0
(x + y) dx dy
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=
∫

1

0

(
x2

2
+ xy

)|||||
y

0

dy

=
∫

1

0

3
2

y2 dy = 1
2

y3||||
1

0
= 1

2
.

Note that the constraint imposed by having x < y shows up in the bounds of
the inner integral either way we slice. The outer integral bounds will always be
numeric (not include either variable).

Triangles are a common shape to encounter in these sorts of problems, and often,
either way of “slicing” the region of interest results in a single integral. However,
with some triangles and with more complicated shapes, slicing may result in several
needed double integrals. At times, slicing one way may result in a single double
integral, whereas the other way may result in several double integrals. Thus, it is
useful to learn to sketch the region of interest to see if one approach is “easier” than
the other in terms of number of integrals needed. In the next examples, we examine
more complicated regions. Sketches are strongly encouraged. ◼

□■ Example D.2 Suppose X and Y have joint pdf f (x, y) = 8xy, for 0 ≤ x ≤ y ≤ 1,
and 0, otherwise. In this setting, we want to find (i) the marginal distribution of X,
(ii) P(X < 1∕2), and (iii) P(X + Y < 1).

Before doing any computations, sketching the domain shows us that the pdf
itself takes positive value in the triangle above the line y = x in the unit square.
We encountered this region in the last example when computing a probability, but
this time, this is the shape of the domain itself.

(i) For the marginal of X, the idea is to integrate out the other variable, Y . The catch
is that the bounds for Y depend on X. Thus, this must be taken into account
when finding the marginal of X. Making a vertical slice, because we want to
integrate out y, we see that for a fixed x, y ranges from x to 1. This helps us set
up our integral and we find the marginal as

fX(x) = ∫

1

x
8xy dy = 4xy2|1x = 4x(1 − x2), 0 < x < 1,

and 0, otherwise.

(ii) We want to find P(X < 1∕2) from the joint distribution, for the purposes of
illustration, not from the marginal we just found. To begin, we sketch the
domain, and add this region. Note that you should start with a triangle for
the domain, and the constraint that x < 1∕2 takes off a triangle. There are mul-
tiple approaches at this point. You could use the complement rule and find
P(X < 1∕2) as 1 − P(X > 1∕2) since P(X > 1∕2) looks relatively easy to com-
pute (the region of interest is a triangle). However, we want to demonstrate how
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differences in slicing may give different numbers of integrals to work with, so
we’ll actually integrate over the trapezoid.

First, consider vertical slices of the trapezoid. For a fixed x, we can see that
y varies over the desired region from x to 1, and x itself goes from 0 to 1/2. This
results in a single double integral to find the desired probability. We obtain

P(X < 1∕2) =
∫

1∕2

0 ∫

1

x
8xy dy dx.

Next, consider what would happen with horizontal slices. In your sketch,
you should see two cases develop. When 0 < y < 1∕2, the x value is dependent
on y, and ranges from 0 to y. However, when y ≥ 1∕2, then x just ranges from
0 to 1/2. This means that two double integrals would be required to find the
probability. Thus, we would obtain the probability with the following setup:

P(X < 1∕2) =
∫

1∕2

0 ∫

y

0
8xy dx dy +

∫

1

1∕2 ∫

1∕2

0
8xy dx dy.

In both setups, the desired probability is 7/16. We leave the computations to
the reader. However, the first setup is arguably easier because there is only one
double integral to work with. (Using the marginal we previously found would
also have been easier!)

(iii) Finally, we consider finding P(X + Y < 1). First, your domain sketch might
look a little messy because of our previous work on this problem. Make a new
domain sketch. (A good idea to not get confused!)

When working with probabilities involving a function of both variables,
it can be useful to re-express it to focus on one variable, say X in this case.
That means we want to find P(X < 1 − Y). In the previous part, we looked at
X < 1∕2, so this is similar, except that rather than adding a vertical constraint at
x = 1∕2 to consider, here, we add a line x = 1 − y to our sketch. (Equivalently,
this is y = 1 − x, if that helps you for plotting.)

Once you add this constraint, we see that it splits the domain into two trian-
gles. Be sure you know which triangle corresponds to your desired probability.
If you test points, it is quickly clear that we want the triangle whose base is the
y-axis. The triangles are equal in size, so if the pdf was uniform, we’d know
the probability was 1/2. However, that is not the case. So, we need to integrate
over the region with our pdf of 8xy. We can proceed with either horizontal or
vertical slices to help set up the double integral(s) required. Take a moment,
consider your sketch, and determine which way you want to slice.

Slicing vertically results in only one double integral, whereas horizontal
slices will require two double integrals. If we had been considering P(X +
Y > 1), this would have been reversed with the other triangle. We present both
approaches. Again, both approaches are valid and work, but one may be easier
to compute than the other. For slicing vertically, we see that when x is fixed,
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the values of y vary between the two linear constraints x and 1 − x. The values
of x in the triangle range from 0 to 1/2. Thus, we can solve for the desired
probability as

P(X + Y < 1) =
∫

1∕2

0 ∫

1−x

x
8xy dy dx

=
∫

1∕2

0
4xy2|||1−x

x
dx =

∫

1∕2

0
4x(1 − 2x) dx

= 2x2 − 8
3

x3||||
1∕2

0
= 1

2
− 1

3
= 1

6
.

To examine the setup via the horizontal slices, note that the bounds on x
change depending on whether y is less than or greater than 1/2. The original
boundary constraint matters when y is less than 1/2, and the new constraint
x = 1 − y matters when y is greater than 1/2. Thus, the setup for the two double
integrals to solve the same probability slicing horizontally yields

P(X + Y < 1) =
∫

1∕2

0 ∫

y

0
8xy dx dy +

∫

1

1∕2 ∫

1−y

0
8xy dx dy ,

which evaluates to 1/16 + 5/48 = 1/6 as expected. ◼

We explore one final example to consider some additional shapes for regions of
interest, though the pdf is uniform over the domain, and thus, we also encourage the
reader to consider this example thinking geometrically.

□■ Example D.3 Suppose X and Y have joint pdf f (x, y) = 1∕8, for 0 ≤ y ≤ 4, y ≤

x ≤ y + 2, and 0, otherwise. In this setting, we want to find (i) P(Y < 2) and (ii)
P(X + Y ≤ 4).

We strongly encourage you to sketch the domain before any computations. Here,
the domain is a parallelogram. The region could also have been described originally
as the parallelogram defined by the points (0, 0), (2, 0), (6, 4), and (4, 4).

(i) For considering P(Y < 2), from your sketch, it should seem that this probability
should be 1/2. (Uniform pdfs are nice for geometric arguments!) Indeed, this is
the case. Still, we want to practice setting up the appropriate double integral(s).
Think carefully about which way you would want to slice here.

In this example, the horizontal slices would result in a single double integral
while vertical slices require two double integrals. Try the setup yourself, and
then examine the solutions below.

For horizontal slices, you should see that x varies between y and y + 2, so the
double integral is

P(Y < 2) =
∫

2

0 ∫

y+2

y
1∕8 dx dy.
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When slicing vertically, the bounds on y change as x goes past 2. Thus, we get
two double integrals as follows

P(Y < 2) =
∫

2

0 ∫

x

0
1∕8 dy dx +

∫

4

2 ∫

2

x−2
1∕8 dy dx.

(ii) For the final probability, P(X + Y ≤ 4), we encourage you to resketch the
domain, and then add the constraint imposed by the probability, the line
y = 4 − x. Then determine whether you are interested in the region of the
domain above or below the line. You can always try points (such as the origin)
quickly to check. The shape we are interested in is a trapezoid.

In this instance, slicing either direction will lead to needing two double inte-
grals to find the desired probability. For problems like this, we advocate for
writing down equations of the constraints as notes so you can work with them.
For example, the line y = 4 − x came from our desire to find the probability that
x + y ≤ 4. We could also have written the line, less conventionally, as x = 4 − y.
This is a useful re-expression if we are looking for bounds on x rather than y.

Try the setup of the double integrals yourself, and then examine the solutions
below.

When slicing horizontally, we encounter a parallelogram and a triangle as
the shapes we need to integrate over. In the parallelogram, the bounds on x are
those of the domain. In the triangle, one side comes from the domain and the
other from the constraint added by the probability of interest. The change in
shapes happens when y = 1. Thus, we would obtain

P(X + Y ≤ 4) =
∫

1

0 ∫

y+2

y
1∕8 dx dy +

∫

2

1 ∫

4−y

y
1∕8 dx dy = 3

8
.

When slicing vertically, we are integrating over two triangles. The bounds on y
change when x = 2. The set of double integrals needed for this approach is

P(X + Y ≤ 4) =
∫

2

0 ∫

x

0
1∕8 dy dx +

∫

3

2 ∫

4−x

x−2
1∕8 dy dx = 3

8
.

◼

If double integrals were new to you, the concept of partial derivatives may also
be new. Partial derivatives are used when moving from a joint cdf to a joint pdf. In
our final example of the appendix, we demonstrate how to find a joint pdf from a
joint cdf, as well as show how the joint cdf was obtained in the first place.

□■ Example D.4 Suppose the joint cdf of X and Y is F(x, y) = x2y∕2 + xy2∕2 for
0 < x < 1, 0 < y < 1. Find (i) the joint pdf of X and Y , and then (ii) validate the cdf
from your pdf.

(i) Recall that when working with a single continuous random variable, the deriva-
tive of the cdf is the pdf. It is a similar idea when working with jointly distributed
continuous random variables, except that you must take the derivative of the
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cdf in turn for each variable, holding the other variables constant as you do so.
These are partial derivatives. As long as you are clear about which variable is
being held constant, and which you are currently working with, this is not too
difficult. For notation, you will see this written in our context as

f (x, y) = 𝜕

𝜕x
𝜕

𝜕y
F(x, y) = 𝜕

𝜕y
𝜕

𝜕x
F(x, y).

In other words, it does not matter in which order you take the derivatives
(and sometimes, one way is easier than another). Applying this to our example,
we find

f (x, y) = 𝜕

𝜕x
𝜕

𝜕y

(
x2y

2
+

xy2

2

)
.

We will take the partial derivative with respect to y first, and then with respect
to x. For example, when working with x2y∕2, we treat this as a constant times
y, and thus the partial derivative is the constant, even though it contains an x
term. Applying this idea yields

f (x, y) = 𝜕

𝜕x

(
x2

2
+ xy

)
= x + y,

on the range provided of 0 < x < 1, 0 < y < 1, and 0, otherwise. This is the
same pdf we encountered in our first example in this section.

(ii) Now we want to validate the cdf. In other words, how do we get the cdf from
the pdf? The cdf F(x, y) = P(X ≤ x,Y ≤ y), so we just need to evaluate that
probability. We use dummy variables for the integration since we will have x
and y in our bounds.

In this example, there are not other constraints on x and y to consider, but
you should be careful about this. For example, if x < y, you need to be care-
ful about setting up the area you are integrating over. As before, sketches help
tremendously! In this example, we are simply integrating over a rectangle out
of the domain of the unit square. In more complicated settings, you might need
to set up cases and define the cdf for particular regions.

Using dummy variables in our setting, we find that

F(x, y) =
∫

x

0 ∫

y

0
(s + t) dt ds

=
∫

x

0
st + t2

2

||||
y

0
ds =

∫

x

0
ys +

y2

2
ds

=
y

2
s2 +

y2

2
s
|||||
x

0

=
x2y

2
+

xy2

2
,

as desired. ◼
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SOLUTIONS FOR CHAPTER 1

1.3 (i) Choosing a topping; (ii) set of possible toppings. Let n, p, r, denote pineap-
ple, peppers, and pepperoni, respectively. Then

Ω = {∅, n, p, r, np, nr, pr, npr}.

(iii) A = {np, nr, pr}.

1.5 (i) Harvesting tomatoes; (ii) set of all possibilities for bad and good tomatoes
among the 100; (iii) {At most five tomatoes are bad}.

1.7 (a) {R = 0}; (b) {R = 1,B = 2}; (c) {R + B = 4}; (d) {R = 2B}; (e) {R ≥ 2}.

1.9 P(𝜔4) = 1∕41.

1.11 (b) and (c) are valid.

1.13 Show ∑
𝜔

P(𝜔) = 1.

Probability: With Applications and R, Second Edition. Amy S. Wagaman and Robert P. Dobrow.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/wagaman/probability2e
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1.15 p = 0 or 1.

1.17 1∕16.

1.19 (a) 1∕64; (b) 0.598; (c) 0.093.

1.21 1∕(n ⋅ n − 1 · · · n − k + 1).

1.23 (a) P(4432) = 0.2155. P(4333) = 0.1054. (b) P(5332) = 0.1552;P(5431) =
0.1293;P(5422) = 0.1058.

1.25 9.10947 × 10−6
.

1.27 (b) Hint: Use the ballot problem.

1.29 Suppose we want to pick an k element subset from S = {1, . . . , n}. One way
to choose the set is to pick k numbers from S. This can be done in

(
n
k

)
ways.

Another way to choose the set is to pick the n − k numbers from S that will
not be in the set. This can be done in

(
n

n−k

)
ways.

1.31 (a) 0.4; (b) 0.5; (c) 0.3.

1.33 (a) 0.90; (b) 0.

1.35 0.80.

1.37 (a) 0.2; (b) 0.3; (c) 0.6; (d) 0.9.

1.39 (i) P(HHHT,HHTH) = 2∕16; (ii) 3∕8. (iii) P(HHHH,HHTT).

1.41 (a)

Ω = {pp, pn, pd, pq, np, nn, nd, nq, dp, dn, dd, dq, qp, qn, qd, qq}.

The events are: {X = 1} = {pp}, {X = 5} = {pn, np, nn} {X = 10} =
{pd, nd, dd, dn, dp}, {X = 25} = {pq, nq, dq, qq, qd, qnqp}. (c) 3/8.

1.43 (a)
∞∑

k=0

2

3k+1
= 2

3

∞∑
k=0

1

3k
= 2

3
1

1 − 1∕3
= 1.

(b) 1/27.

1.45 (a) A ∪ B ∪ C; (b) BAcCc; (c) AcBcCc ∪ ABcCc ∪ BAcCc ∪ CAcBc; (d) ABC;
(e) AcBcCc.

1.47 1/2.

1.49 0.40.
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SOLUTIONS FOR CHAPTER 2

2.3 (a) 0.411; (b) 0.164; (c) 0.547; (d) 0.770.

2.5 (2p1 − p2)∕p1.

2.7 (a) 0.457; (b) 0.347; (c) 0.758.

2.9 (a) 0; (b) 1; (c) P(A)∕P(B); (d) 1.

2.11 (a) False. For instance, consider tossing two coins. Let A be the event that
both coins are heads. Let B be the event that the first toss is heads. Then
P(A|B) + P(A|Bc) = 1∕2 + 0 = 1∕2 ≠ 1. (b) True.

P(A|B) = P(AB)
P(B)

= P(B) − P(AcB)
P(B)

= 1 − P(Ac|B).
2.13 0.00198.

2.15 (a) p1 = P(AB|A) = P(AB)∕P(A); (b) p2 = P(AB|A ∪ B) = P(AB)∕P(A ∪ B),
since AB implies A ∪ B; (c) Since A ⊆ A ∪ B, P(A) ≤ P(A ∪ B) and thus
p1 ≥ p2.

2.17

P(A ∪ B|C) = P((A ∪ B)C)
P(C)

= P(AC ∪ BC)
P(C)

= P(AC) + P(BC) − P(ABC)
P(C)

= P(A|C) + P(B|C) − P(AB|C).

2.19 Apply the birthday problem. Approximate probability is 0.63.

2.21 (ii)

P(G) = P(G|1)P(1) + P(G|2)P(2) = 3
5

(1
2

)
+ 2

6

(1
2

)
= 7

15
.

2.23
P(A|Bc) = P(A) − P(AB)

1 − P(B)
.

2.27 Solve 0.20 = 0.35(0.30) + x(0.70) for x.

2.29 (a) 0.32; (b) 76/77 = 98.7% reliable.
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2.31 0.10.

2.33 If A and B are independent,

P(AcBc) = P((A ∪ B)c) = 1 − P(A ∪ B)

= 1 − [P(A) + P(B) − P(AB)] = P(Ac) − P(B) + P(A)P(B)

= P(Ac) − P(B)[1 − P(A)] = P(Ac) − P(Ac)P(B) = P(Ac)P(Bc).

2.35 0.25.

2.37 0.04914.

2.39 9.

2.43 The simulation follows:

d1 <- function() {
sample(c(3,5,7),1,replace=T) }
d2 <- function() {
sample(c(2,4,9),1,replace=T) }
d3 <- function() {
sample(c(1,6,8),1,replace=T) }
simlist1 <- replicate(10000,d1() > d2())
mean(simlist1)
[1] 0.5638
simlist2 <- replicate(10000,d1() > d2())
mean(simlist2)
[1] 0.562
simlist3 <- replicate(10000,d1() > d2())
mean(simlist3)
[1] 0.5585

SOLUTIONS FOR CHAPTER 3

3.3 Let X be the number of toppings. The probability of interest is P(X = 2).

3.5 Let X be the number of bad tomatoes among the 100. The probability of
interest is P(X ≤ 5).

3.7 (i) Ac = {X = 1}
⋃
{X ≥ 5}; (ii) Bc = {1 ≤ X ≤ 3}; (iii) AB = {X = 4}; and

(iv) A
⋃

B = {X ≥ 2}.

3.9
P(X = 0) = 0.729;P(X = 1) = 0.243;P(X = 2) = 0.027;P(X = 3) = 0.001.
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3.11 2 3 4 5 6 7 8

0.01 0.04 0.10 0.20 0.25 0.24 0.16

3.13 3 4 5 6 7 8 9

1/27 3/27 6/27 7/27 6/27 3/27 1/27

3.15 (a) 0.126; (b) 0.048; (c) 0.22; (d) 0.999568.

3.17 (a) Yes. n = 7, p = 0.25; (b) No fixed number of trials; (c) Sampling without
replacement. No independence or fixed probability; (d) No fixed probability;
(e) Yes, assuming independence for pages.

3.19 (a) 0.2778; (b) 0.03845; (c) 0.365; (d) 0.058.

3.21 0.0384. It is very unlikely (less than a 4% chance) that the drug is ineffective.

3.23 𝜆 = 4 and P(X = 3) = 0.1954.

3.25 𝜆 = − ln 0.10 and the probability of hatching at least two eggs is 0.6697.

3.27 0.1018.

3.29 (1 − e−2𝜆)∕2.

3.31 (a) P(1 ≤ X ≤ 3) = 0.7228997; (b) P(1 ≤ X ≤ 3) ≈ 0.7228572.

3.33 Let X have a Poisson distribution with 𝜆 = 1. The series gives the probability
that X is even.

3.39 An example simulation follows:

lambda <- 2
sim <- rpois(100000,lambda)
sum( sim%%2 ==1)/100000
(1-exp(-2*2))/2

SOLUTIONS FOR CHAPTER 4

4.1 1.722.

4.3 (a) P(W = 0) = 3∕6; P(W = 10) = 2∕6; P(W = 24) = 1∕6: (b) E[W] =
7.33.

4.5 $11.
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4.9 E[X!] = e−𝜆∕(1 − 𝜆), if 0 < 𝜆 < 1.

4.11 (a) P(T = t,E = z) = e−64t2z∕(t!z!); (b) e−6; (c) 0.54; (d) 0.95.

4.13 (a) c = 6∕(n(n + 1)(n + 2)); (b) 0.30.

4.15 (a) 1/24. (b) (e + 1)(e + 2)(e + 3)∕24.

4.17 (a) X is uniform on {1, . . . , n}; (b) 1∕2.

4.19 (a) P(X = 1) = 3∕8; P(X = 2) = 5∕8 and P(Y = 1) = 1∕4; P(Y = 2) = 3∕4;
(b) No; (c) 1/2; (d) 7/8.

4.21 Let Ik = 1 if the kth ball in the sample is red. E[R] = nr∕(r + g).

4.23 7.54.

4.25 2.61.

4.27 V[X] = 1.25n.

4.29 (a) 61; (b) 75.

4.31 a(1 − a) + b(1 − b) + 2(c − ab).

4.33 (a) E[S] = n(2p − 1); (b) V[S] = 4np(1 − p).

4.35 (a) c = 1∕15; (b) P(X = 0) = 6∕15 = 1 − P(X = 1); P(Y = 1) = 3∕15;
P(Y = 2) = 5∕15; P(Y = 3) = 7∕15. (c) Cov(X,Y) = −2∕75.

4.37 If X = 12, then necessarily two 6′s were rolled and thus Y = 0. Thus X and
Y are not independent. Show E[XY] = E[D2

1 − D2
2] = 0 = E[X]E[Y] to show

X and Y are uncorrelated.

4.39 (a) 101; (b) 1410; (c) 3; (d) 1266.

4.41 0.234; 0.1875; 0.03125.

4.45
Cov(X,Y) = Cov(X, aX + b) = a Cov(X,X) = aV[X].

4.49 P(A|B).
4.51 (a) False. (b) True. (c) False.

4.53

P(X + Y = k) =

{
(k − 1)∕n2, for k = 2, . . . , n + 1

(2n − k + 1)∕n2, for k = n + 2, . . . , 2n.
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SOLUTIONS FOR CHAPTER 5

5.1 694.167.

5.3 V[X] = (p − 1)∕p2.

5.5 (a) 0.078; (b) 0.556; (c) 6.667.

5.7 Send out 11 applications.

5.9 Evaluate
∑n

k=1(k − 1)n∕(n − (k − 1))2.

5.11 E[2X] = 2p∕(1 − 2(1 − p)), for 1∕2 < p < 1.

5.13

E[Xk] =

{
q − p, if k is odd

q + p, if k is even.

5.17 (a) Bernoulli(0.8).

5.19

mX(t)mY (t) = (1 − p + pet)m(1 − p + pet)n(1 − p + pet)m+n = mX+Y (t).

5.21 (a) 0.082; (b) 0.254; (c) P(Y = k) = P(X = k + r) =
(

k+r−1
r−1

)
pr(1 − p)k, for

k = 0, 1, . . .

5.23 P(X + Y = k) = (k − 1)p2(1 − p)k−2, k = 2, 3, . . .

5.25 0.183.

5.27 P(Aidan wins) = 0.1445. Aidan gets $14.45 and Bethany gets $85.55.

5.29 X ∼ Geom(p2).

5.31 (a) Hypergeometric. (b) P(X = k) =
(

4
k

)(
4

4−k

)/(
8
4

)
.

5.33 (a) 0.00395; (b) 0.0179.

5.37 (a) E[G] = 200, V[G] = 160. (b) E[G + U] = 300, V[G + U] = 160 + 90 −
40 = 210.

5.39 (a) 0.074 (b) 0.155.

5.41 Apply the multinomial theorem to expand (1 + 1 + 1 + 1)4.
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5.47 Let C, D, H, S, be the number of clubs, diamonds, hearts, and spades, respec-
tively, in the drawn cards. Then (C,D,H, S) has a multinomial distribution
with parameters (8, 1∕4, 1∕4, 1∕4, 1∕4). Desired probability is 0.038.

5.49 0.54381.

SOLUTIONS FOR CHAPTER 6

6.1 (a) c = 2; (b) 1/4; (c) 2/3.

6.3 (a) 0; (b) F(11) − F(3); (c) 1; (d) (1 − F(12))∕(1 − F(6)).

6.5 (a) c = 1∕(e2 − e−2) = 0.13786. (b) P(X < −1) = 0.032; (c) E[X] = 1.0746.

6.7 (b) 0.0988; (c) (𝜋 − 2)∕2.

6.9 (a) 1/4; (b)
∫
∞
−∞ x

(1+x2) dx does not exist.

6.11 E[Xk] = (bk+1−ak+1)
((k+1)(b−a)) .

6.13 0 ≤ a ≤ 1 and b = 1 − a.

6.15

E[aX + b] =
∫

∞

−∞
(ax + b)f (x) dx = a

∫

∞

−∞
xf (x) dx + b

∫

∞

−∞
f (x) dx

= aE[X] + b.

6.17 Not true. P(X > s + t|X > t) = P(X > s), not P(X > s + t).

6.19 V[X] = 1
𝜆2 .

6.21 0.988.

6.23 0.95.

6.25 (a) 1/16; (b) 8/15; (c) 4/9.

6.27 (a) 5/12; (b) 1/3; (c) 1/48.

6.29 (a) P(X ≤ x,Y ≤ y) = (1 − e−x)(1 − e−2y), x > 0, y > 0; (b) P(X ≤ x) = 1 −
e−x, x > 0; (c) 1/3.

6.33 X ∼ Exp(6) and Y ∼ Unif(1, 4).

6.35 3/10.

6.37 fX(x) = (2∕𝜋)
√

1 − x2,−1 < x < 1; Not independent.
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SOLUTIONS FOR CHAPTER 7

7.1 (a) About 0.025; (b) 68%; (c) 0.16.

7.3 (a) 87.1; (b) 0.0003; (c) 0.0067.

7.5 G: 0.943; H: 0.868; I: 0.691.

7.7 (a) E[T] = 1500; SD[T] = 315.18; (b) 80th percentile is 1765; 90th
percentile is 1904; (c) 0.171.

7.9 x = 𝜇 ± 𝜎.

7.11 (a) 0.68; (b) 0.997.

7.17 Gamma(3/2, 1/2).

7.23 V[X] = a∕𝜆2.

7.25 (a) E[N15] = V[N15] = 30; (b) 0.542; (c) 0.476; (d) 0.152; (e) 9:03 and 30
seconds.

7.27 (a) 0.140; (b) 0.026; (c) 0.205.

7.29 e−𝜆(s−t)(𝜆(s − t))k−n∕(k − n)!

7.31 𝜆s.

7.35 (a) 1320; (b) 𝜇 = 1∕3 and 𝜎2 = 2∕117; (c) 0.1133.

7.37 (a) 1/13440; (b) 3/8; (c) 1/105.

7.39 (a) 12; (b) 3/5.

7.41 (a) E[X] = am∕(a − 1) for a > 1; (b) m2a∕((a − 1)2(a − 2)) for a > 2.

7.43 The probabilities for k = 3, 4, 5, 6 are, respectively, 0.008, 0.0047, 0.003,
0.0021.

7.45 a = 1.0044.

SOLUTIONS FOR CHAPTER 8

8.1 Y ∼ Exp(𝜆∕c).

8.3 (a) 3y2∕16,−2 ≤ y ≤ 2; (b) 3∕2(𝑤 − 4)2, 3 ≤ 𝑤 ≤ 5.

8.5 e − 1.

8.7 For all real x,

P(1∕X ≤ t) = P(X ≥ 1∕t) = 1 − P(X < 1∕t).
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Density of 1∕X is thus

f (t) = fX(1∕t)∕t2 = fX(t).

8.9 For ma + n < y < mb + n,

P(Y ≤ y) = P(mX + n ≤ y) = P(X ≤ (y − n)∕m) =
(y − n)∕m − a

b − a

=
y − (ma + n)

mb − ma
,

which is the cdf of a uniform distribution on (ma + n,mb + n).

8.11 Y ∼ Geom(1 − e−𝜆).

8.15 F(X) ∼ Unif(0, 1).

8.17 fZ2 (t) = e−t∕2∕
√

2𝜋t, t > 0.

8.19
f (x) =

( 1
t − s

) Γ(a + b)
Γ(a)Γ(b)

(x − s
t − s

)a−1( t − x
t − s

)b−1
, s < x < t.

8.21 1 − X ∼ Beta(b, a).

8.23 F(x) = P(X∕Y ≤ x) = x∕(x + 1), x > 0. P(X∕Y < 1) = 1∕2.

8.27 f (x) = 𝜆3x2e−𝜆x∕2, x > 0.

8.29 1
3
.

8.31 (a) Exp(2/5); (b) E[M] = 2.5;V[M] = 25∕4.

8.33 (a) fM(m) = 2m∕𝜃2; (b) E[M] = 2∕3(𝜃); (c) 9.

8.35 (a) 0.1314; (b) 𝜇 = 0.9406 and 𝜎2 = 0.00055; (c) 99/101.

8.37 (a)
√

2
3

; (b) 7
12

.

8.39 2
√

3
3𝜋

≈ 0.37.

8.43 (a) e−4𝜆𝜋 ; (b) f (x) = 2𝜋𝜆xe−𝜆𝜋x2
, x > 0.

8.45
fV ,W (𝑣,𝑤) = 𝑤

(1 + 𝑣)2
𝜆

2e−𝜆𝑤, for 𝑣 > 0, 𝑤 > 0.

8.47
fV ,W (𝑣,𝑤) = 4𝑤

𝑣
, for 0 < 𝑤 < 𝑣 < 1.

fW (𝑤) = −4𝑤 log𝑤, for 0 < 𝑤 < 1.
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8.51

f (𝜃, 𝜙, r) = r2 sin𝜙

(2𝜋)3∕2
e−r2∕2

, 0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝜙 ≤ 𝜋, r > 0.

fR(r) =
√

2
𝜋

r2e−r2∕2
, r > 0.

SOLUTIONS FOR CHAPTER 9

9.1 (a)
fX(x) = 12x(1 − x)2, 0 < x < 1.

fY (y) = 6y2 − 4y3
, 0 < y < 1.

(b)

fY|X(y|x) = 1
1 − x

, x < y < 1.

The conditional distribution is uniform on (x, 1). (c) 0.3125.

9.3 (c) 1/3.

9.5
fX+Y|X(t|x) = 𝜆e−𝜆(t−x)

, t > x.

Let Z ∼ Exp(𝜆). Then the desired conditional distribution is the same as the
distribution of Z + x.

9.11 (a)
fX|Y=y(x|y) = (y + 1)e−x(y+1)

, x > 0,

which is an exponential density with parameter y + 1.
(b) E[X|Y = y] = 1∕(y + 1) and E[X|Y] = 1∕(Y + 1).
(c) (1)

E[X] = E[E[X|Y]] = E[1∕(Y + 1)] =
∫

e−1

0

1
(y + 1)2

dy = e − 1
e

.

(2)

E[X] =
∫

∞

0
x

e−x − e−ex

x
dx = e − 1

e
.

9.13 (a) 3y2∕64, 0 < y < 4; (b) (2∕5)(x + 2y)∕y2; (c) 16/15.
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9.15
E[X|Y = 0] = 9∕12 and E[X|Y = 1] = 8∕12.

9.17 (a) As per hint,

P(M ≤ m,N > n) = 2P(X ≤ m,Y > n) = 2m(1 − n).

P(M ≤ m,N ≤ n) = P(M ≤ m) − P(M ≤ m,N > n)

= 2m − m2 − 2m(1 − n).

Thus f (m, n) = 2, for 0 < m < n < 1. (b) fN|M(n|m) = 1∕(1 − m),m < n <

1. The conditional distribution is uniform on (m, 1).

9.19 (a) 5/2; (b) S∕2; (c)

E[M|X1 = x] =

⎧⎪⎪⎨⎪⎪⎩

5∕2, if x = 1

11∕4, if x = 2

13∕4, if x = 3

4, if x = 4.

(d) 5X1∕2.

9.21 4.5.

9.23 The probability should be 0.597.

9.25 There are two cases based on the value of X. P(Y < 4) = 8∕9.

9.27

(a)

fXY (t) = ∫

∞

0

1
y

fX(t∕y)fY (y) dy, t > 0.

(c) For real t,

fX−Y (t) = ∫

∞

0
fX(t + y)fY (y) dy.

9.29 (a) E[X] = p𝜆. (b) V[X] = p𝜆.

9.31 𝜇 = $250, 𝜎 = $25.98.

9.33 E[D] = 3∕2; V[D] = 9∕4.

9.35 (a) (X1 + (n − 1)𝜇)∕n; (b) (n − 1)𝜎2∕n2.
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9.39 (b) 𝛼∕𝛽; (c) 𝜎2 + 𝛼∕𝛽2.

9.41 Show E[(X + Y)(X − Y)] = E[X + Y]E[X − Y].

9.43 0.092.

9.45 (a) Bivariate standard normal distribution with 𝜌 = 1∕2. (b) Normal with
(conditional) mean y∕2 and variance 3/4. (c) 0.193.

SOLUTIONS FOR CHAPTER 10

10.3 (i) P(S ≥ 380) ≤ 0.921; (ii) P(S ≥ 380) ≤ 0.324.

10.5 (a) P(X ≥ 60) ≤ 0.833; (b) P(X ≥ 60) ≤ 0.25.

10.7 P(log X ≥ c) = P(X ≥ ec) ≤ 𝜇∕ec.

10.9 p̂ = 10∕21.

10.11

np = (X1 + · · · + Xn)∕n and np(1 − p) + (np)2 = (X2
1 + · · · + X2

n)∕n.

10.13 .(a) Let U1, . . . ,Un be i.i.d. uniform (0, 1) variables. Let f (x) = sin(x)e−x2
.

Then I ≈ (f (U1) + · · · + f (Un))∕n.

(c) Let X1, . . . ,Xn be i.i.d. normal variables with mean zero and variance
1/2. Let f (x) = log(x2)

√
𝜋. Then I ≈ (f (X1) + · · · + f (Xn))∕n.

(e) Let X1, . . . ,Xn be i.i.d. Poisson variables with mean one. Let
f (x) = e cos cos x. Then S ≈ (f (X1) + · · · + f (Xn))∕n.

10.15 0.508.

10.17 0.9869.

10.19 0.363.

10.21 Let p = P(
∑10

i=1 Xi ≥ 14). (a) p ≤ 0.714. (b) p ≤ 0.625. (c) p ≈ 0.103. (d) p ≈
0.134. (e) p = 0.1355.

10.23 Consider a sum of a independent exponential random variables with 𝜇 =
𝜎 = 𝜆.

10.25 .(a) log Y =
∑n

i=1 log Xi, a sum of i.i.d. random variables. By clt, log Y is
approximately normal.

𝜇 = E[log X1] = ∫

1

0
log x dx = −1,
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510 SOLUTIONS TO EXERCISES

E[(log X1)2] = ∫

1

0
(log x) dx = 2

and 𝜎2 = 1. The result follows.

(b) 0.837.

SOLUTIONS FOR CHAPTER 11

11.1 (a) 0.2688; (b) [0.2308, 0.3846, 0.3846].

11.3 P(center) = 1∕2 and P(leaf) = 1∕(2(k − 1)).

11.5 P(a) = 3∕34; P(b) = 5∕34; P(c) = 8∕34; P(d) = 8∕34; P(e) = 7∕34;
P(f ) = 2∕34; P(g) = 1∕34.

11.7 If the transition matrix is symmetric, it is doubly stochastic, and thus the
stationary distribution is uniform. Then 𝜋iTij = Tij∕k = Tji∕k = 𝜋jTji.

11.9 Not time-reversible.

11.13 Expected return time for the knight is 168 steps.



�

� �

�

REFERENCES

A. Arampatzis and J. Kamps. A study of query length. In Proceedings of the 31st Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’08, pp. 811–812. ACM, 2008.

BBC News. Card trick defies the odds. http://news.bbc.co.uk/2/hi/uk_news/50977.stm.
Accessed on May 14, 2003.

F. Benford. The law of anomalous numbers. Proceedings of the American Philosophical
Society, 78:551–572, 1938.

A. Berger and T. P. Hill. An Introduction to Benford’s Law. Princeton, New Jersey: Princeton
University Press, 2015.

G. Blom, L. Holst, and D. Sandell. Problems and Snapshots from the World of Probability.
New York: Springer-Verlag, 1991.

M. C. Borja and J. Haigh. The birthday problem. Significance, 4(3):124–127, 2007.

K. Bryan and T. Leise. The $25,000,000,000 eigenvector. The linear algebra behind Google.
SIAM Review, 48(3):569–581, 2006.

L. Carroll. The Mathematical Recreations of Lewis Carroll: Pillow Problems and a Tangled
Tale. New York: Dover Publications, 1958.

G. Casella and E. I. George. Explaining the Gibbs sampler. American Statistician,
46(3):167–174, 1992.

A. Cerioli, L. Barabesi, A. Cerasa, M. Menegatti, and D. Perrotta. Newcomb-Benford law
and the detection of frauds in international trade. Proceedings of the National Academy
of Sciences of the United States of America, 116(1):106–115, 2019.

Probability: With Applications and R, Second Edition. Amy S. Wagaman and Robert P. Dobrow.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/wagaman/probability2e

511



�

� �

�

512 REFERENCES

E. Chia and M. F. Hutchinson. The beta distribution as a probability model for daily cloud
duration. Agricultural and Forest Meteorology, 56(3–4):195–208, 1991.

College Board. 2011 College-Bound Seniors. Total Group Profile Report, 2011.

B. Dawkins. Siobhan’s problem: the coupon collector revisited. American Statistician,
45:76–82, 1991.

K. Devlin. The Unfinished Game: Pascal, Fermat, and the Seventeenth-Century Letter that
Made the World Modern. New York: Basic Books, 2008.

P. Diaconis. Dynamical bias in coin tossing. SIAM Review, 49(2):211–235, 2007.

P. Diaconis. The Markov chain Monte Carlo revolution. Bulletin of the American Mathemat-
ical Society, 46(2):179–205, 2008.

P. Diaconis and F. Mosteller. Methods for studying coincidences. Journal of the American
Statistical Association, 84(408):853–861, 1989.

W. Dorsch, T. Newland, D. Jassone, S. Jymous, and D. Walker. A statistical approach
to modeling the temporal patterns in ocean storms. Journal of Coastal Research,
24(6):1430–1438, 2008.

C. Durtschi, W. Hillison, and C. Pacini. The effective use of Benford’s law to assist in detect-
ing fraud in accounting data. Journal of Forensic Accounting, 5(1):17–34, 2004.

S. F. Ebey and J. J. Beauchamp. Larval fish, power plants, and Buffon’s needle problem.
American Mathematical Monthly, 84(7):534–541, 1977.

R. Eckhardt. Stan Ulam, John von Neumann, and the Monte Carlo method. Los Alamos
Science, 15:131–137, 1987.

A. Ehrenberg. The pattern of consumer purchases. Applied Statistics, 8(1):26–41, 1959.

W. Feller. An Introduction to Probability Theory and Its Applications. New York: Wiley,
1968.

T. S. Ferguson. Who solved the secretary problem? Statistical Science, 4(3):282–296, 1989.

M. Finkelstein, H. G. Tucker, and J. A. Veeh. Confidence intervals for the number of unseen
types. Statistics and Probability Letters, 37:423–430, 1998.

Sir R. A. Fisher. The Design of Experiments. Edinburg, TX: Oliver and Boyd, 1935.

D. Freedman, R. Pisani, and R. Purves. Statistics. New York W.W. Norton and Company,
2007.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
6:721–741, 1984.

A. K. Gupta and S. Nadarajah, editors. Handbook of Beta Distribution and Its Applications.
New York: Marcel Dekker, 2004.

R. Harris. Reliability applications of a bivariate exponential distribution. Operations
Research, 16(1):18–27, 1968.

D. Hoffman. Negative binomial control limits for count data with extra-Poisson variation.
Pharmaceutical Statistics, 2:127–132, 2003.

A. B. Hollowed, T. Amar, S. Barbeau, N. Bond, J. N. Ianelli, P. Spencer, and T. Wilderbuer.
Integrating ecosystem aspects and climate change forecasting into stock assessments.
Alaska Fisheries Science Center Quarterly Report Feature Article, 2011.

M. Huber and A. Glen. Modeling rare baseball events—are they memory less. Journal of
Statistics Education, 15(1), 2007.



�

� �

�

REFERENCES 513

D. Huff. How to Take a Chance. New York: W.W. Norton and Company, 1964.

S. Krantz. Mathematical Apocrypha Redux: More Stories and Anecdotes of Mathematics and
Mathematical. Washington, DC: Mathematical Association of America, 2005.

K. Z. Leder, S. E. Spagniole, and S. M. Wild. Probabilistically optimized airline overbooking
strategies, or “Anyone willing to take a later flight?!”. Journal of Undergraduate Mathe-
matics and Its Applications, 23(3):317–338, 2002.

R. E. Leiter and M. A. Hamdan. Some bivariate probability models applicable to traffic acci-
dents and fatalities. International Statistical Review, 41(1):87–100, 1973.

D. Mackenzie. Compressed sensing makes every pixel count. What’s Happening in the Math-
ematical Sciences, 7:114–127, 2009. http://www.ams.org/samplings/math-history/hap7-
pixel.pdf.

E. B. Mallon and N. R. Franks. Ants estimate area using Buffon’s needle. Proceedings of the
Royal Society B: Biological Sciences, 267(1445):765–770, 2000.

J. S. Marshall and W. M. Palmer. The distribution of raindrops with size. Journal of
Meteorology, 5:165–166, 1948.

G. P. Masharin, A. N. Langville, and V. A. Naumov. The life and work of A. A. Markov.
Linear Algebra and Its Applications, 386:3–26, 2004.

N. Mather, S. M. Traves, and S. Y. W. Ho. A practical introduction to sequentially Markovian
coalescent methods for estimating demographic history from genomic data. Ecology and
Evolution 10(1):579–589, 2020.

S. J. Miller. Benford’s Law. Princeton, New Jersey: Princeton University Press, 2015.

W. Miller, Stephan C. Schuster, Andreanna J. Welch, et al. Polar and brown bear genomes
reveal ancient admixture and demographic footprints of past climate change. Pro-
ceedings of the National Academy of Sciences of the United States of America,
109(36):E2382–E2390, 2012.

D. B. Murray and S. W. Teare. Probability of a tossed coin landing on edge. Physical
Review E (Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics),
48(4):2547–2552, 1993.

M. W. Nachman and S. L. Crowell. Estimate of the mutation rate per nucleotide in humans.
Genetics, 156:297–304, 2000.

M. Newman. Power laws, Pareto distributions, and Zipf’s law. Contemporary Physics,
46(5):323–351, 2005.

M. Newman. Networks. Oxford, England: Oxford University Press, 2018.

M. J. Nigrini. Benford’s Law: Applications for Forensic Accounting, and Fraud Detection.
Hoboken, NJ: Wiley, 2012.

T. Parsons and E. L. Geist. Tsunami probability in the Caribbean region. Pure and Applied
Geophysics, 165(11–12):2089–2116, 2008.

A. Piovesan, M. C. Pelleri, F. Antonaros, P. Strippoli, M. Caracausi, and L. Vitale. On the
length, weight and GC content of the human genome. BMC Research Notes 12(1):106,
2019.

Project Gutenberg. http://www.gutenberg.org. Accessed on May 13, 2013.

J. F. Ramaley. Buffon’s noodle problem. American Mathematical Monthly, 76(8):916–918,
1969.



�

� �

�

514 REFERENCES

M. Richey. Evolution of Markov chain Monte Carlo methods. American Mathematical
Monthly, 117(5):383–413, 2010.

C. Robert and G. Casella. Short history of Markov chain Monte Carlo: subjective recollec-
tions from incomplete data. Statistical Science, 26(1):102–115, 2011.

K. A. Ross. Benford’s law, a growth industry. American Mathematical Monthly,
118:571–583, 2011.

S. Ross. A First Course in Probability. Upper Saddle River, NJ: Prentice Hall, 2012.

Z. Schechner, J. J. Kaufman, and R. S. Siffert. A Poisson process model for hip fracture risk.
Medical and Biological Engineering and Computing, 48(8):799–810, 2010.

H. Stern. Shooting darts. Chance, 10(3):16–19, 1997.

S. M. Stigler. Isaac Newton as a probabilist. Statistical Science, 21(3):400–403, 2006.

L. Tákacs. The problem of coincidences. Archive for History of Exact Sciences,
21(3):229–244, 1980.

K. Troyer, T. Gilroy, and B. Koeneman. A nine STR locus match between two apparent
unrelated individuals using AmpFISTR Profiler Plus™and COfiler™. Proceedings of the
Promega 12th International Symposium on Human Identification, 2001.

B. S. Van Der Laan and A. S. Louter. A statistical model for the costs of passenger car traffic
accidents. Journal of the Royal Statistical Society, Series D, 35(2):163–174, 1986.

M. vos Savant. Game show problem. http://marilynvossavant.com/game-show-problem/.
Accessed on May 13, 2013.

T. Watkins. Raindrop size. http://www.sjsu.edu/faculty/watkins/raindrop.htm. Accessed on
October 1, 2020.

M. Williams. Can we measure homelessness? A critical evaluation of ‘capture-recapture’.
Methodological Innovations, 5(2):49–59, 2010.

M. Zwahlen, B. E. Neuenschwander, A. Jeannin, F. Dubois-Arber, and D. Vlahov. HIV test-
ing and retesting for men and women in Switzerland. European Journal of Epidemiology,
16(2):123–133, 2000.



�

� �

�

INDEX

IA indicator variable, 145
Γ(a) gamma function, 289
Ω × Ω′ product space, 80
Ω sample space, 1
∩ intersection, 7
∪ union, 7
𝜔 outcome, 2
m(t) moment generating function, 194(

n

k

)
binomial coefficient, 17

68-95-99.7 rule, 278
80-20 rule, 305, 307

simulation, 328

accept-reject method, 258
addition rule

general case, 10
mutually exclusive events, 7
three events, 26

Advanced Placement exam, 432
average of i.i.d. random variables, 287

ballot problem, 24
Banach’s matchbox problem, 221
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bathtub curve, 245
Bayes formula, 67

continuous, 362
general form, 67

Bayesian statistics, 70
Benford’s law, xx, 213
Benford, Frank, 213
Bernoulli distribution, 99
Bernoulli sequence, 100
Bernoulli, Daniel, 149
Bernoulli, James, 408
Bertrand’s box paradox, 71
Bertrand, Joseph Louis François, 24, 71
beta distribution, 302

expectation and variance, 303
extended, 305
simulation, 334

beta-binomial model, 366
binomial coefficient, 17
binomial distribution, 101

expectation, 146
variance, 156

binomial theorem, 22
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birthday problem, 56
approximation, 58
balls and boxes, 58

bivariate normal distribution, 387
properties, 391
simulation, 393, 471

blackjack, 54
simulation, 56

blood type, 76
Bortkiewiecz, Ladislaus, 111
bridge, 20

perfect hand, 21
Buffon’s needle, 341

applications and generalizations, 343
Buffon, Georges-Louis Leclerc, Comte

de, 341

Caesar, Julius, 125
capture-recapture, 206
card shuffling, 455
Carroll, Lewis, 87
Cauchy distribution, 324, 349
central limit theorem, 428

law of large numbers, 436
proof, 437
simulation, 429

Chebyshev’s inequality, 412
Chernoff bounds, 444
coin tossing, 74
coincidences, 60
color blindness, 60, 69
combination, 17
compressed sensing, xxi
conditional density function, 358
conditional distribution, 165, 358
conditional expectation, 168

properties, 375
conditional expectation of Y given X, 372
conditional expectation of Y given X = x,

369
conditional probability, 47

probability function, 50
sample space, 50
simulation, 48

conditional probability mass function, 165
conditional variance

properties, 382
conditional variance of Y given X, 382

conditioning, 61
computing probabilities, 378

consistent estimator, 414
continuity correction, 280
convergence

almost sure, 417
in distribution, 431
in probability, 414

convolution, 335
correlation, 160

properties, 160, 172
counting the homeless, 206
coupon collector’s problem, 189
covariance, 158

continuous, 262
properties, 171

craps, 79
simulation, 80

cryptography, 467
cumulative distribution function, 233

discrete, 236
properties, 237
relation to density function, 234

Current Population Survey, 97

darts, 325
dependent events, 73
Diaconis, Persi, 60, 74, 428, 467
diagnostic tests, 68
divisibility problem, 28

simulation, 33
DNA applications, xxi, 12, 59, 106, 112,

114, 210
doubly stochastic matrix, 477

elevator problem, 179
Epicurus, 447
equally likely outcomes, 11
event, 2, 7
expectation

continuous, 237
discrete, 127
function of jointly distributed random

variables, 255
function of random variable, 131, 239
function of two random variables, 139
linear function, 133
linearity, 144
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product of independent random
variables, 141

properties, 154
exponential distribution, 242

memorylessness, 243
extreme value distribution, 352

Feller, William, xxiii, 115, 300
Fermat, Pierre de, 201
finding the largest number, 64

simulation, 65
Fisher, Sir Ronald, 222
function of random variable

density of linear function, 322
function of random variables, 130

Galton, Sir Francis, 273, 391
Gambler’s dispute 1654, 89
gamma distribution, 288

expectation and variance, 292, 294
gamma function, 289
Gardner, Martin, 64
Gauss, Carl Friedrich, 273
general multiplication rule, 52
genetics, 210
geometric distribution, 185

expectation, 187
memorylessness, 187
tail probability, 187

geometric probability, 338
sum of independent uniforms, 340

Gibbs sampler, 470
Goethe, Johann Wolfgang, xix
graph, 447

bipartite, 454
connected, 454
degree, 448
lollipop, 476
neighbors, 447
regular, 454
star, 476

Hardy-Weinberg principle, 210
Hastings, W. Keith, 464
hemocytometer slides, 122
hierarchical model, 361
horse kick data, 111
how to ask sensitive question, 62

Huff, Darrel, 409
hypergeometric distribution, 202

expectation and variance, 204
hypothetical 10000, 69

i.i.d. sequences, 100
inclusion-exclusion, 26
independence

continuous random variables, 256
definition, 73
density function, 256
for a collection of events, 75
mutual, 75
pairwise, 75
random variable

function, 140
random variables, 97, 139
uncorrelated, 161

indicator random variable
expectation, 146
variance, 153

interarrival times, 290, 294
interquartile range, 283
inverse transform method, 326

joint cumulative distribution function, 248
joint density function, 247
joint distribution

continuous, 247
discrete, 134

joint probability mass function, 134

Kerrich, John, 285, 408
Knuth shuffle, 65
Kolmogorov, Andrey Nikolaevich, xxii
kurtosis, 314

lady tasting tea, 222
Laplace distribution, 267
Laplace law of succession, 366
law of averages, 409
law of error, 273
law of large numbers, 408

strong, 415
weak, 409, 413

law of total expectation, 372
law of total probability, 61
law of total variance, 383
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law of truly large numbers, 60
law of unconscious statistician, 131
Lee, Bruce, 357
Lipman, Gabriel, 428
lognormal distribution, 443
London bomb hits, 115

simulation, 115
Lorenz function, 308
lottery, 19

marginal distribution, 136
continuous, 254

marketing, 296
Markov chain, 455

detailed balance condition, 460
directed graph, 456
limiting distribution, 459
stationary distribution, 458
time-reversible, 462
two state example, 461
weather example, 455
weighted graph, 456

Markov chain Monte Carlo, 462
Markov’s inequality, 411
Markov, Andrei Andreyevich, 461
matching problem, 147, 164

simulation, 148
maximum likelihood, 203
maximum of random variables, 330
memorylessness, 187, 243
meteorology applications, 245, 293, 314,

362
method of moments, 421

negative binomial, 422
Metropolis, Nicholas, 464
Metropolis–Hastings algorithm

proof, 466
Metropolis-Hastings algorithm, 464
minimum of random variables, 330

independent exponentials, 332
Moivre, Abraham de, 279
moment generating function, 193

continuity theorem, 437
exponential, 290
gamma, 290
Geometric, 194

NegativeBinomial, 199
Poisson, 195
proof of central limit theorem, 437
properties, 195
standard normal, 276
sums of independent random variables,

196
moment-generating function

Normal, 276
moments, 193
Monte Carlo integration, 424
Monte Carlo simulation, 29

implementation, 30
Monte Hall problem, 72
Montmort, Pierre Rémond de, 147
multinomial coefficient, 209
multinomial distribution, 207

covariance, 212
marginal, 212

multinomial theorem, 209
multiplication principle, 12
mutually exclusive events, 7

independence, 73

NBD model for marketing, 296
negative binomial distribution, 196

expectation and variance, 198
relation to binomial, 200

Newton-Pepys problem, 119
nontransitive dice, 85
normal approximation of binomial, 278
normal distribution, 273

linear function, 277
standard normal, 276

occupancy models, 120
odds, 43
order statistics, 333

PageRank algorithm, xix, 457
Pareto distribution, 305

simulation, 328
Pareto, Vilfredo, 305
Pascal’s triangle, 23
Pascal, Blaise, 201
Pasteur, Louis, 45
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Pearson, Karl, 273
percentile, 282
permutation, 13

fixed point, 147
random, 65

pillow problems, 87
Poincaré, Henri, 428
Poisson approximation of binomial, 113,

115
Poisson distribution, 108

expectation, 129
relation to binomial, 109
variance, 154

Poisson process, 294
independent increments, 298
properties, 297
simulation, 299
spatial, 353
stationary increments, 298

poker, 19
power laws, 305
probability

discrete, 4
properties, 7

probability density function, 229
probability distribution, 5
probability distributions

Benford’s law, 213
Bernoulli, 99
beta, 302
binomial, 101
bivariate normal, 387
exponential, 242
gamma, 288
geometric, 185
hypergeometric, 202
lognormal, 443
multinomial, 207
negative binomial, 196
normal, 273
Pareto, 305
Poisson, 108
uniform continuous, 239
Zipf’s law, 317

probability function
discrete, 4

probability mass function, 125, 232
probability model, 5
problem of coincidences, 147, 164
problem of points, 201
problem-solving strategies

conditioning, 62
hypothetical 10000, 69
tree diagrams, 53

problem-solving strategies
complements, 26
density of function of random variable,

321
inclusion-exclusion, 26
indicators for counts, 146
method of transformations, 329
multiple integrals, 250
thinking geometrically about

independent uniforms, 338
product spaces, 80
proportionality constant, 232
Pushkin, Alexander, 461

quantile, 282
Quetelet, Adolphe, 273

R
probability distributions, 481

random experiment, 1
random graphs, 107
random sample, 100
random sum of random variables, 378

expectation, 378
random variable, 93

discrete, 94
function, 130

random walk, 432
biased, 444

random walk on graphs, 447
complete graph, 449
cycle, 449
hypercube, 450
limiting distribution, 451
random transpositions, 449
simple random walk, 448
simulation, 453
weighted graphs, 455
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reliability application, 252
roulette, 128, 157

simulation, 158

sample mean, 151
sample space, 1
sample variance, 151
sampling

size-biased, 301
with replacement, 15, 76
without replacement, 15, 76

sampling without replacement, 202
SAT exam, 312
scale invariance, 306
secretary problem, 64

simulation, 65
sensitivity, 68
set, 7

countably infinite, 4
uncountable, 4

Shaw, George Bernard, 72
sign test, 121
simple multiplication rule, 74
simulation, 29
skewness, 313
specificity, 68
St. Petersburg paradox, 149
standard deviation, 149

properties, 154
Stirling’s approximation, 14
sum of independent random variables, 142

continuous, 335
exponential, 290
normal, 285
Poisson, 143

uniform, 337
uniform discrete, 144

transformations of two random variables,
344

transition probability matrix, 449
tree diagrams, 53

Ulam, Stanislaw, 29
uncorrelated random variables, 161

independence, 161
uniform continuous distribution

expectation and variance, 240
linear function density, 322

uniform distribution continuous, 239
uniform distribution discrete, 95

expectation, 129
variance, 152

uniform distribution in two dimensions,
249

variance, 149
continuous, 237
properties, 153
sum of random variables, 155, 162, 163

Venn diagram, 7
vos Savant, Marilyn, 72, 90

waiting time paradox, 300
simulation, 301

Weibull distribution, 326
Weierstrass approximation theorem, 418
world series, 198

Zipf’s law, 317


