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Preface

Linear algebra has in recent years become an essential part of the mathematical background required by

mathematicians and mathematics teachers, engineers, computer scientists, physicists, economists, and

statisticians, among others. This requirement reflects the importance and wide applications of the subject

matter.

This book is designed for use as a textbook for a formal course in linear algebra or as a supplement to all
current standard texts. It aims to present an introduction to linear algebra which will be found helpful to all

readers regardless of their fields of specification. More material has been included than can be covered in most

first courses. This has been done to make the book more flexible, to provide a useful book of reference, and to

stimulate further interest in the subject.

Each chapter begins with clear statements of pertinent definitions, principles, and theorems together with

illustrative and other descriptive material. This is followed by graded sets of solved and supplementary

problems. The solved problems serve to illustrate and amplify the theory, and to provide the repetition of basic

principles so vital to effective learning. Numerous proofs, especially those of all essential theorems, are
included among the solved problems. The supplementary problems serve as a complete review of the material

of each chapter.

The first three chapters treat vectors in Euclidean space, matrix algebra, and systems of linear equations.

These chapters provide the motivation and basic computational tools for the abstract investigations of vector

spaces and linear mappings which follow. After chapters on inner product spaces and orthogonality and on

determinants, there is a detailed discussion of eigenvalues and eigenvectors giving conditions for representing

a linear operator by a diagonal matrix. This naturally leads to the study of various canonical forms,

specifically, the triangular, Jordan, and rational canonical forms. Later chapters cover linear functions and
the dual space V*, and bilinear, quadratic, and Hermitian forms. The last chapter treats linear operators on

inner product spaces.

The main changes in the fourth edition have been in the appendices. First of all, we have expanded

Appendix A on the tensor and exterior products of vector spaces where we have now included proofs on the

existence and uniqueness of such products. We also added appendices covering algebraic structures, including

modules, and polynomials over a field. Appendix D, ‘‘Odds and Ends,’’ includes the Moore–Penrose

generalized inverse which appears in various applications, such as statistics. There are also many additional

solved and supplementary problems.
Finally, we wish to thank the staff of the McGraw-Hill Schaum’s Outline Series, especially Charles Wall,

for their unfailing cooperation.

SEYMOUR LIPSCHUTZ

MARC LARS LIPSON
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CHAPTER 1

Vectors in Rn and Cn,
Spatial Vectors

1.1 Introduction

There are two ways to motivate the notion of a vector: one is by means of lists of numbers and subscripts,
and the other is by means of certain objects in physics. We discuss these two ways below.

Here we assume the reader is familiar with the elementary properties of the field of real numbers,
denoted by R. On the other hand, we will review properties of the field of complex numbers, denoted by
C. In the context of vectors, the elements of our number fields are called scalars.

Although we will restrict ourselves in this chapter to vectors whose elements come from R and then
from C, many of our operations also apply to vectors whose entries come from some arbitrary field K .

Lists of Numbers

Suppose the weights (in pounds) of eight students are listed as follows:

156; 125; 145; 134; 178; 145; 162; 193

One can denote all the values in the list using only one symbol, say w, but with different subscripts; that is,

w1; w2; w3; w4; w5; w6; w7; w8

Observe that each subscript denotes the position of the value in the list. For example,

w1 ¼ 156; the first number; w2 ¼ 125; the second number; . . .

Such a list of values,

w ¼ ðw1;w2;w3; . . . ;w8Þ
is called a linear array or vector.

Vectors in Physics

Many physical quantities, such as temperature and speed, possess only ‘‘magnitude.’’ These quantities
can be represented by real numbers and are called scalars. On the other hand, there are also quantities,
such as force and velocity, that possess both ‘‘magnitude’’ and ‘‘direction.’’ These quantities, which can
be represented by arrows having appropriate lengths and directions and emanating from some given
reference point O, are called vectors.

Now we assume the reader is familiar with the space R3 where all the points in space are represented
by ordered triples of real numbers. Suppose the origin of the axes in R3 is chosen as the reference point O
for the vectors discussed above. Then every vector is uniquely determined by the coordinates of its
endpoint, and vice versa.

There are two important operations, vector addition and scalar multiplication, associated with vectors
in physics. The definition of these operations and the relationship between these operations and the
endpoints of the vectors are as follows.

1
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(i) Vector Addition: The resultant uþ v of two vectors u and v is obtained by the parallelogram law;
that is, uþ v is the diagonal of the parallelogram formed by u and v. Furthermore, if ða; b; cÞ and
ða0; b0; c0Þ are the endpoints of the vectors u and v, then ðaþ a0; bþ b0; cþ c0Þ is the endpoint of the
vector uþ v. These properties are pictured in Fig. 1-1(a).

(ii) Scalar Multiplication: The product ku of a vector u by a real number k is obtained by multiplying
the magnitude of u by k and retaining the same direction if k > 0 or the opposite direction if k < 0.
Also, if ða; b; cÞ is the endpoint of the vector u, then ðka; kb; kcÞ is the endpoint of the vector ku.
These properties are pictured in Fig. 1-1(b).

Mathematically, we identify the vector u with its ða; b; cÞ and write u ¼ ða; b; cÞ. Moreover, we call
the ordered triple ða; b; cÞ of real numbers a point or vector depending upon its interpretation. We
generalize this notion and call an n-tuple ða1; a2; . . . ; anÞ of real numbers a vector. However, special
notation may be used for the vectors in R3 called spatial vectors (Section 1.6).

1.2 Vectors in Rn

The set of all n-tuples of real numbers, denoted by Rn, is called n-space. A particular n-tuple in Rn, say

u ¼ ða1; a2; . . . ; anÞ
is called a point or vector. The numbers ai are called the coordinates, components, entries, or elements
of u. Moreover, when discussing the space Rn, we use the term scalar for the elements of R.

Two vectors, u and v, are equal, written u ¼ v, if they have the same number of components and if the
corresponding components are equal. Although the vectors ð1; 2; 3Þ and ð2; 3; 1Þ contain the same three
numbers, these vectors are not equal because corresponding entries are not equal.

The vector ð0; 0; . . . ; 0Þ whose entries are all 0 is called the zero vector and is usually denoted by 0.

EXAMPLE 1.1

(a) The following are vectors:

ð2;
5Þ; ð7; 9Þ; ð0; 0; 0Þ; ð3; 4; 5Þ

The first two vectors belong to R2, whereas the last two belong to R3. The third is the zero vector in R3.

(b) Find x; y; z such that ðx
 y; xþ y; z
 1Þ ¼ ð4; 2; 3Þ.
By definition of equality of vectors, corresponding entries must be equal. Thus,

x
 y ¼ 4; xþ y ¼ 2; z
 1 ¼ 3

Solving the above system of equations yields x ¼ 3, y ¼ 
1, z ¼ 4.

Figure 1-1
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( ) Scalar Multiplicationb
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v
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u v+

( , , )a b c
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( ) Vector Additiona
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Column Vectors

Sometimes a vector in n-space Rn is written vertically rather than horizontally. Such a vector is called a
column vector, and, in this context, the horizontally written vectors in Example 1.1 are called row
vectors. For example, the following are column vectors with 2; 2; 3, and 3 components, respectively:

1
2

� �
;

3

4

� �
;

1
5

6

24 35; 1:5
2
3


15

264
375

We also note that any operation defined for row vectors is defined analogously for column vectors.

1.3 Vector Addition and Scalar Multiplication

Consider two vectors u and v in Rn, say

u ¼ ða1; a2; . . . ; anÞ and v ¼ ðb1; b2; . . . ; bnÞ
Their sum, written uþ v, is the vector obtained by adding corresponding components from u and v. That is,

uþ v ¼ ða1 þ b1; a2 þ b2; . . . ; an þ bnÞ
The product, of the vector u by a real number k, written ku, is the vector obtained by multiplying each
component of u by k. That is,

ku ¼ kða1; a2; . . . ; anÞ ¼ ðka1; ka2; . . . ; kanÞ
Observe that uþ v and ku are also vectors in Rn. The sum of vectors with different numbers of
components is not defined.

Negatives and subtraction are defined in Rn as follows:


u ¼ ð
1Þu and u
 v ¼ uþ ð
vÞ
The vector 
u is called the negative of u, and u
 v is called the difference of u and v.

Now suppose we are given vectors u1; u2; . . . ; um in Rn and scalars k1; k2; . . . ; km in R. We can
multiply the vectors by the corresponding scalars and then add the resultant scalar products to form the
vector

v ¼ k1u1 þ k2u2 þ k3u3 þ � � � þ kmum

Such a vector v is called a linear combination of the vectors u1; u2; . . . ; um.

EXAMPLE 1.2

(a) Let u ¼ ð2; 4;
5Þ and v ¼ ð1;
6; 9Þ. Then

uþ v ¼ ð2þ 1; 4þ ð
6Þ; 
5þ 9Þ ¼ ð3;
2; 4Þ
7u ¼ ð7ð2Þ; 7ð4Þ; 7ð
5ÞÞ ¼ ð14; 28;
35Þ

v ¼ ð
1Þð1;
6; 9Þ ¼ ð
1; 6;
9Þ

3u
 5v ¼ ð6; 12;
15Þ þ ð
5; 30;
45Þ ¼ ð1; 42;
60Þ

(b) The zero vector 0 ¼ ð0; 0; . . . ; 0Þ in Rn is similar to the scalar 0 in that, for any vector u ¼ ða1; a2; . . . ; anÞ.
uþ 0 ¼ ða1 þ 0; a2 þ 0; . . . ; an þ 0Þ ¼ ða1; a2; . . . ; anÞ ¼ u

(c) Let u ¼
2
3

4

24 35 and v ¼
3

1

2

24 35. Then 2u
 3v ¼
4
6

8

24 35þ 
9
3
6

24 35 ¼ 
5
9

2

24 35.
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Basic properties of vectors under the operations of vector addition and scalar multiplication are
described in the following theorem.

THEOREM 1.1: For any vectors u; v;w in Rn and any scalars k; k0 in R,

(i) ðuþ vÞ þ w ¼ uþ ðv þ wÞ, (v) kðuþ vÞ ¼ kuþ kv,

(ii) uþ 0 ¼ u; (vi) ðk þ k0Þu ¼ kuþ k0u,

(iii) uþ ð
uÞ ¼ 0; (vii) (kk’)u=k(k’u);

(iv) uþ v ¼ v þ u, (viii) 1u ¼ u.

We postpone the proof of Theorem 1.1 until Chapter 2, where it appears in the context of matrices
(Problem 2.3).

Suppose u and v are vectors in Rn for which u ¼ kv for some nonzero scalar k in R. Then u is called a
multiple of v. Also, u is said to be in the same or opposite direction as v according to whether k > 0 or
k < 0.

1.4 Dot (Inner) Product

Consider arbitrary vectors u and v in Rn; say,

u ¼ ða1; a2; . . . ; anÞ and v ¼ ðb1; b2; . . . ; bnÞ
The dot product or inner product of u and v is denoted and defined by

u � v ¼ a1b1 þ a2b2 þ � � � þ anbn

That is, u � v is obtained by multiplying corresponding components and adding the resulting products.
The vectors u and v are said to be orthogonal (or perpendicular) if their dot product is zero—that is, if
u � v ¼ 0.

EXAMPLE 1.3

(a) Let u ¼ ð1;
2; 3Þ, v ¼ ð4; 5;
1Þ, w ¼ ð2; 7; 4Þ. Then,

u � v ¼ 1ð4Þ 
 2ð5Þ þ 3ð
1Þ ¼ 4
 10
 3 ¼ 
9

u � w ¼ 2
 14þ 12 ¼ 0; v � w ¼ 8þ 35
 4 ¼ 39

Thus, u and w are orthogonal.

(b) Let u ¼
2
3

4

24 35 and v ¼
3

1

2

24 35. Then u � v ¼ 6
 3þ 8 ¼ 11.

(c) Suppose u ¼ ð1; 2; 3; 4Þ and v ¼ ð6; k;
8; 2Þ. Find k so that u and v are orthogonal.

First obtain u � v ¼ 6þ 2k 
 24þ 8 ¼ 
10þ 2k. Then set u � v ¼ 0 and solve for k:


10þ 2k ¼ 0 or 2k ¼ 10 or k ¼ 5

Basic properties of the dot product in Rn (proved in Problem 1.13) follow.

THEOREM 1.2: For any vectors u; v;w in Rn and any scalar k in R:

(i) ðuþ vÞ � w ¼ u � wþ v � w; (iii) u � v ¼ v � u,

(ii) ðkuÞ � v ¼ kðu � vÞ, (iv) u � u � 0; and u � u ¼ 0 iff u ¼ 0.

Note that (ii) says that we can ‘‘take k out’’ from the first position in an inner product. By (iii) and (ii),

u � ðkvÞ ¼ ðkvÞ � u ¼ kðv � uÞ ¼ kðu � vÞ

4 CHAPTER 1 Vectors in Rn and Cn, Spatial Vectors



That is, we can also ‘‘take k out’’ from the second position in an inner product.
The space Rn with the above operations of vector addition, scalar multiplication, and dot product is

usually called Euclidean n-space.

Norm (Length) of a Vector

The norm or length of a vector u in Rn, denoted by kuk, is defined to be the nonnegative square root of
u � u. In particular, if u ¼ ða1; a2; . . . ; anÞ, then

kuk ¼ ffiffiffiffiffiffiffiffiffi
u � up ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ a2
2 þ � � � þ a2

n

q
That is, kuk is the square root of the sum of the squares of the components of u. Thus, kuk � 0, and
kuk ¼ 0 if and only if u ¼ 0.

A vector u is called a unit vector if kuk ¼ 1 or, equivalently, if u � u ¼ 1. For any nonzero vector v in
Rn, the vector

v̂ ¼ 1

kvk v ¼
v

kvk
is the unique unit vector in the same direction as v. The process of finding v̂ from v is called normalizing v.

EXAMPLE 1.4

(a) Suppose u ¼ ð1;
2;
4; 5; 3Þ. To find kuk, we can first find kuk2 ¼ u � u by squaring each component of u and
adding, as follows:

kuk2 ¼ 12 þ ð
2Þ2 þ ð
4Þ2 þ 52 þ 32 ¼ 1þ 4þ 16þ 25þ 9 ¼ 55

Then kuk ¼ ffiffiffiffiffi
55
p

.

(b) Let v ¼ ð1;
3; 4; 2Þ and w ¼ ð12 ;
 1
6 ;

5
6 ;

1
6Þ. Then

kvk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9þ 16þ 4
p ¼

ffiffiffiffiffi
30
p

and kwk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

36
þ 1

36
þ 25

36
þ 1

36

r
¼

ffiffiffiffiffi
36

36

r
¼

ffiffiffi
1
p
¼ 1

Thus w is a unit vector, but v is not a unit vector. However, we can normalize v as follows:

v̂ ¼ v

kvk ¼
1ffiffiffiffiffi
30
p ;


3ffiffiffiffiffi
30
p ;

4ffiffiffiffiffi
30
p ;

2ffiffiffiffiffi
30
p

� �
This is the unique unit vector in the same direction as v.

The following formula (proved in Problem 1.14) is known as the Schwarz inequality or Cauchy–
Schwarz inequality. It is used in many branches of mathematics.

THEOREM 1.3 (Schwarz): For any vectors u; v in Rn, ju � vj � kukkvk.

Using the above inequality, we also prove (Problem 1.15) the following result known as the ‘‘triangle
inequality’’ or Minkowski’s inequality.

THEOREM 1.4 (Minkowski): For any vectors u; v in Rn, kuþ vk � kuk þ kvk.

Distance, Angles, Projections

The distance between vectors u ¼ ða1; a2; . . . ; anÞ and v ¼ ðb1; b2; . . . ; bnÞ in Rn is denoted and defined
by

dðu; vÞ ¼ ku
 vk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 
 b1Þ2 þ ða2 
 b2Þ2 þ � � � þ ðan 
 bnÞ2

q
One can show that this definition agrees with the usual notion of distance in the Euclidean plane R2 or
space R3.
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The angle y between nonzero vectors u; v in Rn is defined by

cos y ¼ u � v
kukkvk

This definition is well defined, because, by the Schwarz inequality (Theorem 1.3),


1 � u � v
kukkvk � 1

Note that if u � v ¼ 0, then y ¼ 90� (or y ¼ p=2). This then agrees with our previous definition of
orthogonality.

The projection of a vector u onto a nonzero vector v is the vector denoted and defined by

projðu; vÞ ¼ u � v
kvk2

v ¼ u � v
v � v v

We show below that this agrees with the usual notion of vector projection in physics.

EXAMPLE 1.5

(a) Suppose u ¼ ð1;
2; 3Þ and v ¼ ð2; 4; 5Þ. Then

dðu; vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1
 2Þ2 þ ð
2
 4Þ2 þ ð3
 5Þ2

q
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 36þ 4
p ¼

ffiffiffiffiffi
41
p

To find cos y, where y is the angle between u and v, we first find

u � v ¼ 2
 8þ 15 ¼ 9; kuk2 ¼ 1þ 4þ 9 ¼ 14; kvk2 ¼ 4þ 16þ 25 ¼ 45

Then

cos y ¼ u � v
kukkvk ¼

9ffiffiffiffiffi
14
p ffiffiffiffiffi

45
p

Also,

projðu; vÞ ¼ u � v
kvk2

v ¼ 9

45
ð2; 4; 5Þ ¼ 1

5
ð2; 4; 5Þ ¼ 2

5
;
4

5
; 1

� �
(b) Consider the vectors u and v in Fig. 1-2(a) (with respective endpoints A and B). The (perpendicular) projection

of u onto v is the vector u* with magnitude

ku*k ¼ kuk cos y ¼ kuk u � v
kukvk ¼

u � v
kvk

To obtain u*, we multiply its magnitude by the unit vector in the direction of v, obtaining

u* ¼ ku*k v

kvk ¼
u � v
kvk

v

kvk ¼
u � v
kvk2

v

This is the same as the above definition of projðu; vÞ.

Figure 1-2
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1.5 Located Vectors, Hyperplanes, Lines, Curves in Rn

This section distinguishes between an n-tuple PðaiÞ 
 Pða1; a2; . . . ; anÞ viewed as a point in Rn and an
n-tuple u ¼ ½c1; c2; . . . ; cn� viewed as a vector (arrow) from the origin O to the point Cðc1; c2; . . . ; cnÞ.

Located Vectors

Any pair of points AðaiÞ and BðbiÞ in Rn defines the located vector or directed line segment from A to B,

written AB
�!

. We identify AB
�!

with the vector

u ¼ B
 A ¼ ½b1 
 a1; b2 
 a2; . . . ; bn 
 an�
because AB

�!
and u have the same magnitude and direction. This is pictured in Fig. 1-2(b) for the

points Aða1; a2; a3Þ and Bðb1; b2; b3Þ in R3 and the vector u ¼ B
 A which has the endpoint
Pðb1 
 a1, b2 
 a2, b3 
 a3Þ.

Hyperplanes

A hyperplane H in Rn is the set of points ðx1; x2; . . . ; xnÞ that satisfy a linear equation

a1x1 þ a2x2 þ � � � þ anxn ¼ b

where the vector u ¼ ½a1; a2; . . . ; an� of coefficients is not zero. Thus a hyperplane H in R2 is a line, and a
hyperplane H in R3 is a plane. We show below, as pictured in Fig. 1-3(a) for R3, that u is orthogonal to
any directed line segment PQ

�!
, where Pð piÞ and QðqiÞ are points in H : [For this reason, we say that u is

normal to H and that H is normal to u:]

Because Pð piÞ and QðqiÞ belong to H ; they satisfy the above hyperplane equation—that is,

a1 p1 þ a2 p2 þ � � � þ an pn ¼ b and a1q1 þ a2q2 þ � � � þ anqn ¼ b

v ¼ PQ
�! ¼ Q
 P ¼ ½q1 
 p1; q2 
 p2; . . . ; qn 
 pn�Let

Then

u � v ¼ a1ðq1 
 p1Þ þ a2ðq2 
 p2Þ þ � � � þ anðqn 
 pnÞ
¼ ða1q1 þ a2q2 þ � � � þ anqnÞ 
 ða1 p1 þ a2 p2 þ � � � þ an pnÞ ¼ b
 b ¼ 0

Thus v ¼ PQ
�!

is orthogonal to u; as claimed.

Figure 1-3

CHAPTER 1 Vectors in Rn and Cn, Spatial Vectors 7



Lines in Rn

The line L in Rn passing through the point Pðb1; b2; . . . ; bnÞ and in the direction of a nonzero vector
u ¼ ½a1; a2; . . . ; an� consists of the points X ðx1; x2; . . . ; xnÞ that satisfy

X ¼ Pþ tu or

x1 ¼ a1t þ b1

x2 ¼ a2t þ b2

::::::::::::::::::::
xn ¼ ant þ bn

or LðtÞ ¼ ðait þ biÞ

8>><>>:
where the parameter t takes on all real values. Such a line L in R3 is pictured in Fig. 1-3(b).

EXAMPLE 1.6

(a) Let H be the plane in R3 corresponding to the linear equation 2x
 5yþ 7z ¼ 4. Observe that Pð1; 1; 1Þ and
Qð5; 4; 2Þ are solutions of the equation. Thus P and Q and the directed line segment

v ¼ PQ
�! ¼ Q
 P ¼ ½5
 1; 4
 1; 2
 1� ¼ ½4; 3; 1�

lie on the plane H . The vector u ¼ ½2;
5; 7� is normal to H , and, as expected,

u � v ¼ ½2;
5; 7� � ½4; 3; 1� ¼ 8
 15þ 7 ¼ 0

That is, u is orthogonal to v.

(b) Find an equation of the hyperplane H in R4 that passes through the point Pð1; 3;
4; 2Þ and is normal to the
vector u ¼ ½4;
2; 5; 6�.

The coefficients of the unknowns of an equation of H are the components of the normal vector u; hence, the
equation of H must be of the form

4x1 
 2x2 þ 5x3 þ 6x4 ¼ k

Substituting P into this equation, we obtain

4ð1Þ 
 2ð3Þ þ 5ð
4Þ þ 6ð2Þ ¼ k or 4
 6
 20þ 12 ¼ k or k ¼ 
10

Thus, 4x1 
 2x2 þ 5x3 þ 6x4 ¼ 
10 is the equation of H .

(c) Find the parametric representation of the line L in R4 passing through the point Pð1; 2; 3;
4Þ and in the
direction of u ¼ ½5; 6;
7; 8�. Also, find the point Q on L when t ¼ 1.

Substitution in the above equation for L yields the following parametric representation:

x1 ¼ 5t þ 1; x2 ¼ 6t þ 2; x3 ¼ 
7t þ 3; x4 ¼ 8t 
 4

or, equivalently,

LðtÞ ¼ ð5t þ 1; 6t þ 2;
7t þ 3; 8t 
 4Þ

Note that t ¼ 0 yields the point P on L. Substitution of t ¼ 1 yields the point Qð6; 8;
4; 4Þ on L.

Curves in Rn

Let D be an interval (finite or infinite) on the real line R. A continuous function F:D! Rn is a curve in
Rn. Thus, to each point t 2 D there is assigned the following point in Rn:

FðtÞ ¼ ½F1ðtÞ;F2ðtÞ; . . . ;FnðtÞ�
Moreover, the derivative (if it exists) of FðtÞ yields the vector

VðtÞ ¼ dFðtÞ
dt
¼ dF1ðtÞ

dt
;
dF2ðtÞ

dt
; . . . ;

dFnðtÞ
dt

� �
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which is tangent to the curve. Normalizing VðtÞ yields

TðtÞ ¼ VðtÞ
kVðtÞk

Thus, TðtÞ is the unit tangent vector to the curve. (Unit vectors with geometrical significance are often
presented in bold type.)

EXAMPLE 1.7 Consider the curve FðtÞ ¼ ½sin t; cos t; t� in R3. Taking the derivative of FðtÞ [or each component of
FðtÞ] yields

VðtÞ ¼ ½cos t;
 sin t; 1�
which is a vector tangent to the curve. We normalize VðtÞ. First we obtain

kV ðtÞk2 ¼ cos2 t þ sin2 t þ 1 ¼ 1þ 1 ¼ 2

Then the unit tangent vection TðtÞ to the curve follows:

TðtÞ ¼ V ðtÞ
kV ðtÞk ¼

cos tffiffiffi
2
p ;


 sin tffiffiffi
2
p ;

1ffiffiffi
2
p

� �

1.6 Vectors in R3 (Spatial Vectors), ijk Notation

Vectors in R3, called spatial vectors, appear in many applications, especially in physics. In fact, a special
notation is frequently used for such vectors as follows:

i ¼ ½1; 0; 0� denotes the unit vector in the x direction:

j ¼ ½0; 1; 0� denotes the unit vector in the y direction:

k ¼ ½0; 0; 1� denotes the unit vector in the z direction:

Then any vector u ¼ ½a; b; c� in R3 can be expressed uniquely in the form

u ¼ ½a; b; c� ¼ aiþ bjþ ck

Because the vectors i; j; k are unit vectors and are mutually orthogonal, we obtain the following dot
products:

i � i ¼ 1; j � j ¼ 1; k � k ¼ 1 and i � j ¼ 0; i � k ¼ 0; j � k ¼ 0

Furthermore, the vector operations discussed above may be expressed in the ijk notation as follows.
Suppose

u ¼ a1iþ a2jþ a3k and v ¼ b1iþ b2jþ b3k

Then

uþ v ¼ ða1 þ b1Þiþ ða2 þ b2Þjþ ða3 þ b3Þk and cu ¼ ca1iþ ca2jþ ca3k

where c is a scalar. Also,

u � v ¼ a1b1 þ a2b2 þ a3b3 and kuk ¼ ffiffiffiffiffiffiffiffiffi
u � up ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ a2
2 þ a2

3

q
EXAMPLE 1.8 Suppose u ¼ 3iþ 5j
 2k and v ¼ 4i
 8jþ 7k.

(a) To find uþ v, add corresponding components, obtaining uþ v ¼ 7i
 3jþ 5k

(b) To find 3u
 2v, first multiply by the scalars and then add:

3u
 2v ¼ ð9iþ 15j
 6kÞ þ ð
8iþ 16j
 14kÞ ¼ iþ 31j
 20k
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(c) To find u � v, multiply corresponding components and then add:

u � v ¼ 12
 40
 14 ¼ 
42

(d) To find kuk, take the square root of the sum of the squares of the components:

kuk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 25þ 4
p ¼

ffiffiffiffiffi
38
p

Cross Product

There is a special operation for vectors u and v in R3 that is not defined in Rn for n 6¼ 3. This operation is
called the cross product and is denoted by u� v. One way to easily remember the formula for u� v is to
use the determinant (of order two) and its negative, which are denoted and defined as follows:

a b
c d

���� ���� ¼ ad 
 bc and 
 a b
c d

���� ���� ¼ bc
 ad

Here a and d are called the diagonal elements and b and c are the nondiagonal elements. Thus, the
determinant is the product ad of the diagonal elements minus the product bc of the nondiagonal elements,
but vice versa for the negative of the determinant.

Now suppose u ¼ a1iþ a2jþ a3k and v ¼ b1iþ b2jþ b3k. Then

u� v ¼ ða2b3 
 a3b2Þiþ ða3b1 
 a1b3Þjþ ða1b2 
 a2b1Þk

¼ a1 a2 a3

b1 b2 b3

���� ����i
 a1 a2 a3

b1 b2 b3

���� ����jþ a1 a2 a3

b1 b2 b3

���� ����k
That is, the three components of u� v are obtained from the array

a1 a2 a3

b1 b2 b3

� �
(which contain the components of u above the component of v) as follows:

(1) Cover the first column and take the determinant.
(2) Cover the second column and take the negative of the determinant.
(3) Cover the third column and take the determinant.

Note that u� v is a vector; hence, u� v is also called the vector product or outer product of u
and v.

EXAMPLE 1.9 Find u� v where: (a) u ¼ 4iþ 3jþ 6k, v ¼ 2iþ 5j
 3k, (b) u ¼ ½2;
1; 5�, v ¼ ½3; 7; 6�.

(a) Use
4 3 6
2 5 
3

� �
to get u� v ¼ ð
9
 30Þiþ ð12þ 12Þjþ ð20
 6Þk ¼ 
39iþ 24jþ 14k

(b) Use
2 
1 5
3 7 6

� �
to get u� v ¼ ½
6
 35; 15
 12; 14þ 3� ¼ ½
41; 3; 17�

Remark: The cross products of the vectors i; j;k are as follows:

i� j ¼ k; j� k ¼ i; k � i ¼ j

j� i ¼ 
k; k � j ¼ 
i; i� k ¼ 
j
Thus, if we view the triple ði; j; kÞ as a cyclic permutation, where i follows k and hence k precedes i, then
the product of two of them in the given direction is the third one, but the product of two of them in the
opposite direction is the negative of the third one.

Two important properties of the cross product are contained in the following theorem.
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THEOREM 1.5: Let u; v;w be vectors in R3.

(a) The vector u� v is orthogonal to both u and v.

(b) The absolute value of the ‘‘triple product’’

u � v � w

represents the volume of the parallelepiped formed by the vectors u; v, w.
[See Fig. 1-4(a).]

We note that the vectors u; v, u� v form a right-handed system, and that the following formula
gives the magnitude of u� v:

ku� vk ¼ kukkvk sin y

where y is the angle between u and v.

1.7 Complex Numbers

The set of complex numbers is denoted by C. Formally, a complex number is an ordered pair ða; bÞ of
real numbers where equality, addition, and multiplication are defined as follows:

ða; bÞ ¼ ðc; dÞ if and only if a ¼ c and b ¼ d

ða; bÞ þ ðc; dÞ ¼ ðaþ c; bþ dÞ
ða; bÞ � ðc; dÞ ¼ ðac
 bd; ad þ bcÞ

We identify the real number a with the complex number ða; 0Þ; that is,

a$ ða; 0Þ
This is possible because the operations of addition and multiplication of real numbers are preserved under
the correspondence; that is,

ða; 0Þ þ ðb; 0Þ ¼ ðaþ b; 0Þ and ða; 0Þ � ðb; 0Þ ¼ ðab; 0Þ
Thus we view R as a subset of C, and replace ða; 0Þ by a whenever convenient and possible.

We note that the set C of complex numbers with the above operations of addition and multiplication is
a field of numbers, like the set R of real numbers and the set Q of rational numbers.

Figure 1-4

CHAPTER 1 Vectors in Rn and Cn, Spatial Vectors 11



The complex number ð0; 1Þ is denoted by i. It has the important property that

i2 ¼ ii ¼ ð0; 1Þð0; 1Þ ¼ ð
1; 0Þ ¼ 
1 or i ¼
ffiffiffiffiffiffiffi

1
p

Accordingly, any complex number z ¼ ða; bÞ can be written in the form

z ¼ ða; bÞ ¼ ða; 0Þ þ ð0; bÞ ¼ ða; 0Þ þ ðb; 0Þ � ð0; 1Þ ¼ aþ bi

The above notation z ¼ aþ bi, where a 
 Re z and b 
 Im z are called, respectively, the real and
imaginary parts of z, is more convenient than ða; bÞ. In fact, the sum and product of complex numbers
z ¼ aþ bi and w ¼ cþ di can be derived by simply using the commutative and distributive laws and
i2 ¼ 
1:

zþ w ¼ ðaþ biÞ þ ðcþ diÞ ¼ aþ cþ biþ di ¼ ðaþ bÞ þ ðcþ dÞi
zw ¼ ðaþ biÞðcþ diÞ ¼ acþ bciþ adiþ bdi2 ¼ ðac
 bdÞ þ ðbcþ adÞi

We also define the negative of z and subtraction in C by


z ¼ 
1z and w
 z ¼ wþ ð
zÞ

Warning: The letter i representing
ffiffiffiffiffiffiffi
1
p

has no relationship whatsoever to the vector i ¼ ½1; 0; 0� in
Section 1.6.

Complex Conjugate, Absolute Value

Consider a complex number z ¼ aþ bi. The conjugate of z is denoted and defined by

�z ¼ aþ bi ¼ a
 bi

Then z�z ¼ ðaþ biÞða
 biÞ ¼ a2 
 b2i2 ¼ a2 þ b2. Note that z is real if and only if �z ¼ z.
The absolute value of z, denoted by jzj, is defined to be the nonnegative square root of z�z. Namely,

jzj ¼ ffiffiffiffi
z�z
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
Note that jzj is equal to the norm of the vector ða; bÞ in R2.

Suppose z 6¼ 0. Then the inverse z
1 of z and division in C of w by z are given, respectively, by

z
1 ¼ �z

z�z
¼ a

a2 þ b2

 b

a2 þ b2
i and

w

z

 w�z

z�z
¼ wz
1

EXAMPLE 1.10 Suppose z ¼ 2þ 3i and w ¼ 5
 2i. Then

zþ w ¼ ð2þ 3iÞ þ ð5
 2iÞ ¼ 2þ 5þ 3i
 2i ¼ 7þ i

zw ¼ ð2þ 3iÞð5
 2iÞ ¼ 10þ 15i
 4i
 6i2 ¼ 16þ 11i

�z ¼ 2þ 3i ¼ 2
 3i and �w ¼ 5
 2i ¼ 5þ 2i

w

z
¼ 5
 2i

2þ 3i
¼ ð5
 2iÞð2
 3iÞ
ð2þ 3iÞð2
 3iÞ ¼

4
 19i

13
¼ 4

13

 19

13
i

jzj ¼ ffiffiffiffiffiffiffiffiffiffiffi
4þ 9
p ¼

ffiffiffiffiffi
13
p

and jwj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ 4
p ¼

ffiffiffiffiffi
29
p

Complex Plane

Recall that the real numbers R can be represented by points on a line. Analogously, the complex numbers
C can be represented by points in the plane. Specifically, we let the point ða; bÞ in the plane represent the
complex number aþ bi as shown in Fig. 1-4(b). In such a case, jzj is the distance from the origin O to the
point z. The plane with this representation is called the complex plane, just like the line representing R is
called the real line.
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1.8 Vectors in Cn

The set of all n-tuples of complex numbers, denoted by Cn, is called complex n-space. Just as in the real
case, the elements of Cn are called points or vectors, the elements of C are called scalars, and vector
addition in Cn and scalar multiplication on Cn are given by

½z1; z2; . . . ; zn� þ ½w1;w2; . . . ;wn� ¼ ½z1 þ w1; z2 þ w2; . . . ; zn þ wn�
z½z1; z2; . . . ; zn� ¼ ½zz1; zz2; . . . ; zzn�

where the zi, wi, and z belong to C.

EXAMPLE 1.11 Consider vectors u ¼ ½2þ 3i; 4
 i; 3� and v ¼ ½3
 2i; 5i; 4
 6i� in C3. Then

uþ v ¼ ½2þ 3i; 4
 i; 3� þ ½3
 2i; 5i; 4
 6i� ¼ ½5þ i; 4þ 4i; 7
 6i�
ð5
 2iÞu ¼ ½ð5
 2iÞð2þ 3iÞ; ð5
 2iÞð4
 iÞ; ð5
 2iÞð3Þ� ¼ ½16þ 11i; 18
 13i; 15
 6i�

Dot (Inner) Product in Cn

Consider vectors u ¼ ½z1; z2; . . . ; zn� and v ¼ ½w1;w2; . . . ;wn� in Cn. The dot or inner product of u and v is
denoted and defined by

u � v ¼ z1 �w1 þ z2 �w2 þ � � � þ zn �wn

This definition reduces to the real case because �wi ¼ wi when wi is real. The norm of u is defined by

kuk ¼ ffiffiffiffiffiffiffiffiffi
u � up ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z1�z1 þ z2�z2 þ � � � þ zn�zn

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jz1j2 þ jz2j2 þ � � � þ jvnj2

q
We emphasize that u � u and so kuk are real and positive when u 6¼ 0 and 0 when u ¼ 0.

EXAMPLE 1.12 Consider vectors u ¼ ½2þ 3i; 4
 i; 3þ 5i� and v ¼ ½3
 4i; 5i; 4
 2i� in C3. Then

u � v ¼ ð2þ 3iÞð3
 4iÞ þ ð4
 iÞð5iÞ þ ð3þ 5iÞð4
 2iÞ
¼ ð2þ 3iÞð3þ 4iÞ þ ð4
 iÞð
5iÞ þ ð3þ 5iÞð4þ 2iÞ
¼ ð
6þ 13iÞ þ ð
5
 20iÞ þ ð2þ 26iÞ ¼ 
9þ 19i

u � u ¼ j2þ 3ij2 þ j4
 ij2 þ j3þ 5ij2 ¼ 4þ 9þ 16þ 1þ 9þ 25 ¼ 64

kuk ¼
ffiffiffiffiffi
64
p

¼ 8

The space Cn with the above operations of vector addition, scalar multiplication, and dot product, is
called complex Euclidean n-space. Theorem 1.2 for Rn also holds for Cn if we replace u � v ¼ v � u by

u � v ¼ u � v
On the other hand, the Schwarz inequality (Theorem 1.3) and Minkowski’s inequality (Theorem 1.4) are
true for Cn with no changes.

SOLVED PROBLEMS

Vectors in Rn

1.1. Determine which of the following vectors are equal:

u1 ¼ ð1; 2; 3Þ; u2 ¼ ð2; 3; 1Þ; u3 ¼ ð1; 3; 2Þ; u4 ¼ ð2; 3; 1Þ

Vectors are equal only when corresponding entries are equal; hence, only u2 ¼ u4.
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1.2. Let u ¼ ð2;
7; 1Þ, v ¼ ð
3; 0; 4Þ, w ¼ ð0; 5;
8Þ. Find:

(a) 3u
 4v,

(b) 2uþ 3v 
 5w.

First perform the scalar multiplication and then the vector addition.

(a) 3u
 4v ¼ 3ð2;
7; 1Þ 
 4ð
3; 0; 4Þ ¼ ð6;
21; 3Þ þ ð12; 0;
16Þ ¼ ð18;
21;
13Þ
(b) 2uþ 3v 
 5w ¼ ð4;
14; 2Þ þ ð
9; 0; 12Þ þ ð0;
25; 40Þ ¼ ð
5;
39; 54Þ

1.3. Let u ¼
5
3

4

24 35; v ¼ 
1
5
2

24 35;w ¼
3

1

2

24 35. Find:

(a) 5u
 2v,

(b) 
2uþ 4v 
 3w.

First perform the scalar multiplication and then the vector addition:

(a) 5u
 2v ¼ 5
5
3

4

24 35
 2

1

5
2

24 35 ¼ 25
15

20

24 35þ 2

10

4

24 35 ¼ 27
5


24

24 35
(b) 
2uþ 4v 
 3w ¼


10

6

8

24 35þ 
4
20

8

24 35þ 
9
3
6

24 35 ¼ 
23
17
22

24 35

1.4. Find x and y, where: (a) ðx; 3Þ ¼ ð2; xþ yÞ, (b) ð4; yÞ ¼ xð2; 3Þ.
(a) Because the vectors are equal, set the corresponding entries equal to each other, yielding

x ¼ 2; 3 ¼ xþ y

Solve the linear equations, obtaining x ¼ 2; y ¼ 1:

(b) First multiply by the scalar x to obtain ð4; yÞ ¼ ð2x; 3xÞ. Then set corresponding entries equal to each
other to obtain

4 ¼ 2x; y ¼ 3x

Solve the equations to yield x ¼ 2, y ¼ 6.

1.5. Write the vector v ¼ ð1;
2; 5Þ as a linear combination of the vectors u1 ¼ ð1; 1; 1Þ, u2 ¼ ð1; 2; 3Þ,
u3 ¼ ð2;
1; 1Þ.
We want to express v in the form v ¼ xu1 þ yu2 þ zu3 with x; y; z as yet unknown. First we have

1

2

5

24 35 ¼ x
1
1
1

24 35þ y
1
2
3

24 35þ z
2

1

1

24 35 ¼ xþ yþ 2z
xþ 2y
 z
xþ 3yþ z

24 35
(It is more convenient to write vectors as columns than as rows when forming linear combinations.) Set
corresponding entries equal to each other to obtain

xþ yþ 2z ¼ 1
xþ 2y
 z ¼ 
2
xþ 3yþ z ¼ 5

or
xþ yþ 2z ¼ 1

y
 3z ¼ 
3
2y
 z ¼ 4

or
xþ yþ 2z ¼ 1

y
 3z ¼ 
3
5z ¼ 10

This unique solution of the triangular system is x ¼ 
6, y ¼ 3, z ¼ 2. Thus, v ¼ 
6u1 þ 3u2 þ 2u3.
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1.6. Write v ¼ ð2;
5; 3Þ as a linear combination of

u1 ¼ ð1;
3; 2Þ; u2 ¼ ð2;
4;
1Þ; u3 ¼ ð1;
5; 7Þ:

Find the equivalent system of linear equations and then solve. First,

2

5

3

24 35 ¼ x
1

3

2

24 35þ y
2

4

1

24 35þ z
1

5

7

24 35 ¼ xþ 2yþ z

3x
 4y
 5z

2x
 yþ 7z

24 35
Set the corresponding entries equal to each other to obtain

xþ 2yþ z ¼ 2

3x
 4y
 5z ¼ 
5

2x
 yþ 7z ¼ 3
or

xþ 2yþ z ¼ 2
2y
 2z ¼ 1

 5yþ 5z ¼ 
1

or
xþ 2yþ z ¼ 2

2y
 2z ¼ 1
0 ¼ 3

The third equation, 0xþ 0yþ 0z ¼ 3, indicates that the system has no solution. Thus, v cannot be written as
a linear combination of the vectors u1, u2, u3.

Dot (Inner) Product, Orthogonality, Norm in Rn

1.7. Find u � v where:

(a) u ¼ ð2;
5; 6Þ and v ¼ ð8; 2;
3Þ,
(b) u ¼ ð4; 2;
3; 5;
1Þ and v ¼ ð2; 6;
1;
4; 8Þ.
Multiply the corresponding components and add:

(a) u � v ¼ 2ð8Þ 
 5ð2Þ þ 6ð
3Þ ¼ 16
 10
 18 ¼ 
12

(b) u � v ¼ 8þ 12þ 3
 20
 8 ¼ 
5

1.8. Let u ¼ ð5; 4; 1Þ, v ¼ ð3;
4; 1Þ, w ¼ ð1;
2; 3Þ. Which pair of vectors, if any, are perpendicular
(orthogonal)?

Find the dot product of each pair of vectors:

u � v ¼ 15
 16þ 1 ¼ 0; v � w ¼ 3þ 8þ 3 ¼ 14; u � w ¼ 5
 8þ 3 ¼ 0

Thus, u and v are orthogonal, u and w are orthogonal, but v and w are not.

1.9. Find k so that u and v are orthogonal, where:

(a) u ¼ ð1; k;
3Þ and v ¼ ð2;
5; 4Þ,
(b) u ¼ ð2; 3k;
4; 1; 5Þ and v ¼ ð6;
1; 3; 7; 2kÞ.
Compute u � v, set u � v equal to 0, and then solve for k:

(a) u � v ¼ 1ð2Þ þ kð
5Þ 
 3ð4Þ ¼ 
5k 
 10. Then 
5k 
 10 ¼ 0, or k ¼ 
2.

(b) u � v ¼ 12
 3k 
 12þ 7þ 10k ¼ 7k þ 7. Then 7k þ 7 ¼ 0, or k ¼ 
1.

1.10. Find kuk, where: (a) u ¼ ð3;
12;
4Þ, (b) u ¼ ð2;
3; 8;
7Þ.
First find kuk2 ¼ u � u by squaring the entries and adding. Then kuk ¼

ffiffiffiffiffiffiffiffiffiffi
kuk2

q
.

(a) kuk2 ¼ ð3Þ2 þ ð
12Þ2 þ ð
4Þ2 ¼ 9þ 144þ 16 ¼ 169. Then kuk ¼ ffiffiffiffiffiffiffiffi
169
p ¼ 13.

(b) kuk2 ¼ 4þ 9þ 64þ 49 ¼ 126. Then kuk ¼ ffiffiffiffiffiffiffiffi
126
p

.
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1.11. Recall that normalizing a nonzero vector v means finding the unique unit vector v̂ in the same
direction as v, where

v̂ ¼ 1

kvk v

Normalize: (a) u ¼ ð3;
4Þ, (b) v ¼ ð4;
2;
3; 8Þ, (c) w ¼ ð12, 2
3, 
 1

4).

(a) First find kuk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 16
p ¼ ffiffiffiffiffi

25
p ¼ 5. Then divide each entry of u by 5, obtaining û ¼ ð35, 
 4

5).

(b) Here kvk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ 4þ 9þ 64
p ¼ ffiffiffiffiffi

93
p

. Then

v̂ ¼ 4ffiffiffiffiffi
93
p ;


2ffiffiffiffiffi
93
p ;


3ffiffiffiffiffi
93
p ;

8ffiffiffiffiffi
93
p

� �
(c) Note that w and any positive multiple of w will have the same normalized form. Hence, first multiply w

by 12 to ‘‘clear fractions’’—that is, first find w0 ¼ 12w ¼ ð6; 8;
3Þ. Then

kw0k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36þ 64þ 9
p ¼

ffiffiffiffiffiffiffiffi
109
p

and ŵ ¼ bw0 ¼ 6ffiffiffiffiffiffiffiffi
109
p ;

8ffiffiffiffiffiffiffiffi
109
p ;


3ffiffiffiffiffiffiffiffi
109
p

� �

1.12. Let u ¼ ð1;
3; 4Þ and v ¼ ð3; 4; 7Þ. Find:

(a) cos y, where y is the angle between u and v;

(b) projðu; vÞ, the projection of u onto v;

(c) dðu; vÞ, the distance between u and v.

First find u � v ¼ 3
 12þ 28 ¼ 19, kuk2 ¼ 1þ 9þ 16 ¼ 26, kvk2 ¼ 9þ 16þ 49 ¼ 74. Then

(a) cos y ¼ u � v
kukkvk ¼

19ffiffiffiffiffi
26
p ffiffiffiffiffi

74
p ,

(b) projðu; vÞ ¼ u � v
kvk2

v ¼ 19

74
ð3; 4; 7Þ ¼ 57

74
;
76

74
;
133

74

� �
¼ 57

74
;
38

37
;
133

74

� �
;

(c) dðu; vÞ ¼ ku
 vk ¼ kð
2;
7
 3Þk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 49þ 9
p ¼ ffiffiffiffiffi

62
p

:

1.13. Prove Theorem 1.2: For any u; v;w in Rn and k in R:

(i) ðuþ vÞ � w ¼ u � wþ v � w, (ii) ðkuÞ � v ¼ kðu � vÞ, (iii) u � v ¼ v � u,
(iv) u � u � 0, and u � u ¼ 0 iff u ¼ 0.

Let u ¼ ðu1; u2; . . . ; unÞ, v ¼ ðv1; v2; . . . ; vnÞ, w ¼ ðw1;w2; . . . ;wnÞ.
(i) Because uþ v ¼ ðu1 þ v1; u2 þ v2; . . . ; un þ vnÞ,

ðuþ vÞ � w ¼ ðu1 þ v1Þw1 þ ðu2 þ v2Þw2 þ � � � þ ðun þ vnÞwn

¼ u1w1 þ v1w1 þ u2w2 þ � � � þ unwn þ vnwn

¼ ðu1w1 þ u2w2 þ � � � þ unwnÞ þ ðv1w1 þ v2w2 þ � � � þ vnwnÞ
¼ u � wþ v � w

(ii) Because ku ¼ ðku1; ku2; . . . ; kunÞ,
ðkuÞ � v ¼ ku1v1 þ ku2v2 þ � � � þ kunvn ¼ kðu1v1 þ u2v2 þ � � � þ unvnÞ ¼ kðu � vÞ

(iii) u � v ¼ u1v1 þ u2v2 þ � � � þ unvn ¼ v1u1 þ v2u2 þ � � � þ vnun ¼ v � u
(iv) Because u2

i is nonnegative for each i, and because the sum of nonnegative real numbers is nonnegative,

u � u ¼ u2
1 þ u2

2 þ � � � þ u2
n � 0

Furthermore, u � u ¼ 0 iff ui ¼ 0 for each i, that is, iff u ¼ 0.
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1.14. Prove Theorem 1.3 (Schwarz): ju � vj � kukkvk.
For any real number t, and using Theorem 1.2, we have

0 � ðtuþ vÞ � ðtuþ vÞ ¼ t2ðu � uÞ þ 2tðu � vÞ þ ðv � vÞ ¼ kuk2
t2 þ 2ðu � vÞt þ kvk2

Let a ¼ kuk2, b ¼ 2ðu � vÞ, c ¼ kvk2. Then, for every value of t, at2 þ bt þ c � 0. This means that the
quadratic polynomial cannot have two real roots. This implies that the discriminant D ¼ b2 
 4ac � 0 or,
equivalently, b2 � 4ac. Thus,

4ðu � vÞ2 � 4kuk2kvk2

Dividing by 4 gives us our result.

1.15. Prove Theorem 1.4 (Minkowski): kuþ vk � kuk þ kvk.
By the Schwarz inequality and other properties of the dot product,

kuþ vk2 ¼ ðuþ vÞ � ðuþ vÞ ¼ ðu � uÞ þ 2ðu � vÞ þ ðv � vÞ � kuk2 þ 2kukkvk þ kvk2 ¼ ðkuk þ kvkÞ2

Taking the square root of both sides yields the desired inequality.

Points, Lines, Hyperplanes in Rn

Here we distinguish between an n-tuple Pða1; a2; . . . ; anÞ viewed as a point in Rn and an n-tuple
u ¼ ½c1; c2; . . . ; cn� viewed as a vector (arrow) from the origin O to the point Cðc1; c2; . . . ; cnÞ.

1.16. Find the vector u identified with the directed line segment PQ
�!

for the points:

(a) Pð1;
2; 4Þ and Qð6; 1;
5Þ in R3, (b) Pð2; 3;
6; 5Þ and Qð7; 1; 4;
8Þ in R4.

(a) u ¼ PQ
�! ¼ Q
 P ¼ ½6
 1; 1
 ð
2Þ; 
5
 4� ¼ ½5; 3;
9�

(b) u ¼ PQ
�! ¼ Q
 P ¼ ½7
 2; 1
 3; 4þ 6; 
8
 5� ¼ ½5;
2; 10;
13�

1.17. Find an equation of the hyperplane H in R4 that passes through Pð3;
4; 1;
2Þ and is normal to
u ¼ ½2; 5;
6;
3�.
The coefficients of the unknowns of an equation of H are the components of the normal vector u. Thus, an
equation of H is of the form 2x1 þ 5x2 
 6x3 
 3x4 ¼ k. Substitute P into this equation to obtain k ¼ 
26.
Thus, an equation of H is 2x1 þ 5x2 
 6x3 
 3x4 ¼ 
26.

1.18. Find an equation of the plane H in R3 that contains Pð1;
3;
4Þ and is parallel to the plane H 0
determined by the equation 3x
 6yþ 5z ¼ 2.

The planes H and H 0 are parallel if and only if their normal directions are parallel or antiparallel (opposite
direction). Hence, an equation of H is of the form 3x
 6yþ 5z ¼ k. Substitute P into this equation to obtain
k ¼ 1. Then an equation of H is 3x
 6yþ 5z ¼ 1.

1.19. Find a parametric representation of the line L in R4 passing through Pð4;
2; 3; 1Þ in the direction
of u ¼ ½2; 5;
7; 8�.
Here L consists of the points X ðxiÞ that satisfy

X ¼ Pþ tu or xi ¼ ait þ bi or LðtÞ ¼ ðait þ biÞ
where the parameter t takes on all real values. Thus we obtain

x1 ¼ 4þ 2t; x2 ¼ 
2þ 2t; x3 ¼ 3
 7t; x4 ¼ 1þ 8t or LðtÞ ¼ ð4þ 2t; 
2þ 2t; 3
 7t; 1þ 8tÞ
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1.20. Let C be the curve FðtÞ ¼ ðt2; 3t 
 2; t3; t2 þ 5Þ in R4, where 0 � t � 4.

(a) Find the point P on C corresponding to t ¼ 2.

(b) Find the initial point Q and terminal point Q 0 of C.

(c) Find the unit tangent vector T to the curve C when t ¼ 2.

(a) Substitute t ¼ 2 into FðtÞ to get P ¼ f ð2Þ ¼ ð4; 4; 8; 9Þ.
(b) The parameter t ranges from t ¼ 0 to t ¼ 4. Hence, Q ¼ f ð0Þ ¼ ð0;
2; 0; 5Þ and

Q 0 ¼ Fð4Þ ¼ ð16; 10; 64; 21Þ.
(c) Take the derivative of FðtÞ—that is, of each component of FðtÞ—to obtain a vector V that is tangent to

the curve:

V ðtÞ ¼ dFðtÞ
dt
¼ ½2t; 3; 3t2; 2t�

Now find V when t ¼ 2; that is, substitute t ¼ 2 in the equation for VðtÞ to obtain
V ¼ Vð2Þ ¼ ½4; 3; 12; 4�. Then normalize V to obtain the desired unit tangent vector T. We have

kVk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ 9þ 144þ 16
p ¼

ffiffiffiffiffiffiffiffi
185
p

and T ¼ 4ffiffiffiffiffiffiffiffi
185
p ;

3ffiffiffiffiffiffiffiffi
185
p ;

12ffiffiffiffiffiffiffiffi
185
p ;

4ffiffiffiffiffiffiffiffi
185
p

� �

Spatial Vectors (Vectors in R3), ijk Notation, Cross Product

1.21. Let u ¼ 2i
 3jþ 4k, v ¼ 3iþ j
 2k, w ¼ iþ 5jþ 3k. Find:

(a) uþ v, (b) 2u
 3v þ 4w, (c) u � v and u � w, (d) kuk and kvk.
Treat the coefficients of i, j, k just like the components of a vector in R3.

(a) Add corresponding coefficients to get uþ v ¼ 5i
 2j
 2k.

(b) First perform the scalar multiplication and then the vector addition:

2u
 3v þ 4w ¼ ð4i
 6jþ 8kÞ þ ð
9i 3jþ 6kÞ þ ð4iþ 20jþ 12kÞ
¼ 
iþ jþ 26k

(c) Multiply corresponding coefficients and then add:

u � v ¼ 6
 3
 8 ¼ 
5 and u � w ¼ 2
 15þ 12 ¼ 
1

(d) The norm is the square root of the sum of the squares of the coefficients:

kuk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 9þ 16
p ¼

ffiffiffiffiffi
29
p

and kvk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 1þ 4
p ¼

ffiffiffiffiffi
14
p

1.22. Find the (parametric) equation of the line L:

(a) through the points Pð1; 3; 2Þ and Qð2; 5;
6Þ;
(b) containing the point Pð1;
2; 4Þ and perpendicular to the plane H given by the equation

3xþ 5yþ 7z ¼ 15:

(a) First find v ¼ PQ
�! ¼ Q
 P ¼ ½1; 2;
8� ¼ iþ 2j
 8k. Then

LðtÞ ¼ ðt þ 1; 2t þ 3; 
8t þ 2Þ ¼ ðt þ 1Þiþ ð2t þ 3Þjþ ð
8t þ 2Þk
(b) Because L is perpendicular to H , the line L is in the same direction as the normal vector

N ¼ 3iþ 5jþ 7k to H . Thus,

LðtÞ ¼ ð3t þ 1; 5t 
 2; 7t þ 4Þ ¼ ð3t þ 1Þiþ ð5t 
 2Þjþ ð7t þ 4Þk

1.23. Let S be the surface xy2 þ 2yz ¼ 16 in R3.

(a) Find the normal vector Nðx; y; zÞ to the surface S.

(b) Find the tangent plane H to S at the point Pð1; 2; 3Þ.
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(a) The formula for the normal vector to a surface Fðx; y; zÞ ¼ 0 is

Nðx; y; zÞ ¼ Fxiþ Fyjþ Fzk

where Fx, Fy, Fz are the partial derivatives. Using Fðx; y; zÞ ¼ xy2 þ 2yz
 16, we obtain

Fx ¼ y2; Fy ¼ 2xyþ 2z; Fz ¼ 2y

Thus, Nðx; y; zÞ ¼ y2iþ ð2xyþ 2zÞjþ 2yk.

(b) The normal to the surface S at the point P is

NðPÞ ¼ Nð1; 2; 3Þ ¼ 4iþ 10jþ 4k

Hence, N ¼ 2iþ 5jþ 2k is also normal to S at P. Thus an equation of H has the form 2xþ 5yþ 2z ¼ c.
Substitute P in this equation to obtain c ¼ 18. Thus the tangent plane H to S at P is 2xþ 5yþ 2z ¼ 18.

1.24. Evaluate the following determinants and negative of determinants of order two:

(a) (i)
3 4
5 9

���� ����, (ii)
2 
1
4 3

���� ����, (iii)
4 
5
3 
2

���� ����
(b) (i) 
 3 6

4 2

���� ����, (ii) 
 7 
5
3 2

���� ����, (iii) 
 4 
1
8 
3

���� ����
Use

a b
c d

���� ���� ¼ ad 
 bc and 
 a b
c d

���� ���� ¼ bc
 ad. Thus,

(a) (i) 27
 20 ¼ 7, (ii) 6þ 4 ¼ 10, (iii) 
8þ 15 ¼ 7:

(b) (i) 24
 6 ¼ 18, (ii) 
15
 14 ¼ 
29, (iii) 
8þ 12 ¼ 4:

1.25. Let u ¼ 2i
 3jþ 4k, v ¼ 3iþ j
 2k, w ¼ iþ 5jþ 3k.
Find: (a) u� v, (b) u� w

(a) Use
2 
3 4
3 1 
2

� �
to get u� v ¼ ð6
 4Þiþ ð12þ 4Þjþ ð2þ 9Þk ¼ 2iþ 16jþ 11k:

(b) Use
2 
3 4
1 5 3

� �
to get u� w ¼ ð
9
 20Þiþ ð4
 6Þjþ ð10þ 3Þk ¼ 
29i
 2jþ 13k:

1.26. Find u� v, where: (a) u ¼ ð1; 2; 3Þ, v ¼ ð4; 5; 6Þ; (b) u ¼ ð
4; 7; 3Þ, v ¼ ð6;
5; 2Þ.

(a) Use
1 2 3
4 5 6

� �
to get u� v ¼ ½12
 15; 12
 6; 5
 8� ¼ ½
3; 6;
3�:

(b) Use

4 7 3

6 
5 2

� �
to get u� v ¼ ½14þ 15; 18þ 8; 20
 42� ¼ ½29; 26;
22�:

1.27. Find a unit vector u orthogonal to v ¼ ½1; 3; 4� and w ¼ ½2;
6;
5�.
First find v � w, which is orthogonal to v and w.

The array
1 3 4
2 
6 
5

� �
gives v � w ¼ ½
15þ 24; 8þ 5; 
6
 61� ¼ ½9; 13;
12�:

Normalize v � w to get u ¼ ½9= ffiffiffiffiffiffiffiffi
394
p

, 13=
ffiffiffiffiffiffiffiffi
394
p

, 
12=
ffiffiffiffiffiffiffiffi
394
p �:

1.28. Let u ¼ ða1; a2; a3Þ and v ¼ ðb1; b2; b3Þ so u� v ¼ ða2b3 
 a3b2; a3b1 
 a1b3; a1b2 
 a2b1Þ.
Prove:

(a) u� v is orthogonal to u and v [Theorem 1.5(a)].

(b) ku� vk2 ¼ ðu � uÞðv � vÞ 
 ðu � vÞ2 (Lagrange’s identity).
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1.35. Prove: For any complex numbers z, w 2 C, (i) zþ w ¼ �zþ �w, (ii) zw ¼ �z�w, (iii) �z ¼ z.

Suppose z ¼ aþ bi and w ¼ cþ di where a; b; c; d 2 R.

(i) zþ w ¼ ðaþ biÞ þ ðcþ diÞ ¼ ðaþ cÞ þ ðbþ dÞi
¼ ðaþ cÞ 
 ðbþ dÞi ¼ aþ c
 bi
 di
¼ ða
 biÞ þ ðc
 diÞ ¼ �zþ �w

(ii) zw ¼ ðaþ biÞðcþ diÞ ¼ ðac
 bdÞ þ ðad þ bcÞi
¼ ðac
 bdÞ 
 ðad þ bcÞi ¼ ða
 biÞðc
 diÞ ¼ �z�w

(iii) �z ¼ aþ bi ¼ a
 bi ¼ a
 ð
bÞi ¼ aþ bi ¼ z

1.36. Prove: For any complex numbers z;w 2 C, jzwj ¼ jzjjwj.
By (ii) of Problem 1.35,

jzwj2 ¼ ðzwÞðzwÞ ¼ ðzwÞð�z�wÞ ¼ ðz�zÞðw�wÞ ¼ jzj2jwj2
The square root of both sides gives us the desired result.

1.37. Prove: For any complex numbers z;w 2 C, jzþ wj � jzj þ jwj.
Suppose z ¼ aþ bi and w ¼ cþ di where a; b; c; d 2 R. Consider the vectors u ¼ ða; bÞ and v ¼ ðc; dÞ in
R2. Note that

jzj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
¼ kuk; jwj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ d2

p
¼ kvk

and

jzþ wj ¼ jðaþ cÞ þ ðbþ dÞij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ cÞ2 þ ðbþ dÞ2

q
¼ kðaþ c; bþ dÞk ¼ kuþ vk

By Minkowski’s inequality (Problem 1.15), kuþ vk � kuk þ kvk, and so

jzþ wj ¼ kuþ vk � kuk þ kvk ¼ jzj þ jwj

1.38. Find the dot products u � v and v � u where: (a) u ¼ ð1
 2i; 3þ iÞ, v ¼ ð4þ 2i; 5
 6iÞ;
(b) u ¼ ð3
 2i; 4i; 1þ 6iÞ, v ¼ ð5þ i; 2
 3i; 7þ 2iÞ.
Recall that conjugates of the second vector appear in the dot product

ðz1; . . . ; znÞ � ðw1; . . . ;wnÞ ¼ z1 �w1 þ � � � þ zn �wn

(a) u � v ¼ ð1
 2iÞð4þ 2iÞ þ ð3þ iÞð5
 6iÞ
¼ ð1
 2iÞð4
 2iÞ þ ð3þ iÞð5þ 6iÞ ¼ 
10iþ 9þ 23i ¼ 9þ 13i

v � u ¼ ð4þ 2iÞð1
 2iÞ þ ð5
 6iÞð3þ iÞ
¼ ð4þ 2iÞð1þ 2iÞ þ ð5
 6iÞð3
 iÞ ¼ 10iþ 9
 23i ¼ 9
 13i

(b) u � v ¼ ð3
 2iÞð5þ iÞ þ ð4iÞð2
 3iÞ þ ð1þ 6iÞð7þ 2iÞ
¼ ð3
 2iÞð5
 iÞ þ ð4iÞð2þ 3iÞ þ ð1þ 6iÞð7
 2iÞ ¼ 20þ 35i

v � u ¼ ð5þ iÞð3
 2iÞ þ ð2
 3iÞð4iÞ þ ð7þ 2iÞð1þ 6iÞ
¼ ð5þ iÞð3þ 2iÞ þ ð2
 3iÞð
4iÞ þ ð7þ 2iÞð1
 6iÞ ¼ 20
 35i

In both cases, v � u ¼ u � v. This holds true in general, as seen in Problem 1.40.

1.39. Let u ¼ ð7
 2i; 2þ 5iÞ and v ¼ ð1þ i; 
3
 6iÞ. Find:
(a) uþ v, (b) 2iu, (c) ð3
 iÞv, (d) u � v, (e) kuk and kvk.
(a) uþ v ¼ ð7
 2iþ 1þ i; 2þ 5i
 3
 6iÞ ¼ ð8
 i; 
1
 iÞ
(b) 2iu ¼ ð14i
 4i2; 4iþ 10i2Þ ¼ ð4þ 14i; 
10þ 4iÞ
(c) ð3
 iÞv ¼ ð3þ 3i
 i
 i2; 
9
 18iþ 3iþ 6i2Þ ¼ ð4þ 2i; 
15
 15iÞ
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(d) u � v ¼ ð7
 2iÞð1þ iÞ þ ð2þ 5iÞð
3
 6iÞ
¼ ð7
 2iÞð1
 iÞ þ ð2þ 5iÞð
3þ 6iÞ ¼ 5
 9i
 36
 3i ¼ 
31
 12i

(e) kuk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72 þ ð
2Þ2 þ 22 þ 52

q
¼ ffiffiffiffiffi

82
p

and kvk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ 12 þ ð
3Þ2 þ ð
6Þ2

q
¼ ffiffiffiffiffi

47
p

1.40. Prove: For any vectors u; v 2 Cn and any scalar z 2 C, (i) u � v ¼ v � u, (ii) ðzuÞ � v ¼ zðu � vÞ,
(iii) u � ðzvÞ ¼ �zðu � vÞ.
Suppose u ¼ ðz1; z2; . . . ; znÞ and v ¼ ðw1;w2; . . . ;wnÞ.
(i) Using the properties of the conjugate,

v � u ¼ w1�z1 þ w2�z2 þ � � � þ wn�zn ¼ w1�z1 þ w2�z2 þ � � � þ wn�zn

¼ �w1z1 þ �w2z2 þ � � � þ �wnzn ¼ z1 �w1 þ z2 �w2 þ � � � þ zn �wn ¼ u � v

(ii) Because zu ¼ ðzz1; zz2; . . . ; zznÞ,

ðzuÞ � v ¼ zz1 �w1 þ zz2 �w2 þ � � � þ zzn �wn ¼ zðz1 �w1 þ z2 �w2 þ � � � þ zn �wnÞ ¼ zðu � vÞ

(Compare with Theorem 1.2 on vectors in Rn.)

(iii) Using (i) and (ii),

u � ðzvÞ ¼ ðzvÞ � u ¼ zðv � uÞ ¼ �zðv � uÞ ¼ �zðu � vÞ

SUPPLEMENTARY PROBLEMS

Vectors in Rn

1.41. Let u ¼ ð1;
2; 4Þ, v ¼ ð3; 5; 1Þ, w ¼ ð2; 1;
3Þ. Find:

(a) 3u
 2v; (b) 5uþ 3v 
 4w; (c) u � v, u � w, v � w; (d) kuk, kvk, kwk;
(e) cos y, where y is the angle between u and v; (f ) dðu; vÞ; (g) projðu; vÞ.

1.42. Repeat Problem 1.41 for vectors u ¼
1
3

4

24 35, v ¼
2
1
5

24 35, w ¼
3

2

6

24 35.

1.43. Let u ¼ ð2;
5; 4; 6;
3Þ and v ¼ ð5;
2; 1;
7;
4Þ. Find:

(a) 4u
 3v; (b) 5uþ 2v; (c) u � v; (d) kuk and kvk; (e) projðu; vÞ; ( f ) dðu; vÞ.

1.44. Normalize each vector:

(a) u ¼ ð5;
7Þ; (b) v ¼ ð1; 2;
2; 4Þ; (c) w ¼ 1

2
;
 1

3
;
3

4

� �
.

1.45. Let u ¼ ð1; 2;
2Þ, v ¼ ð3;
12; 4Þ, and k ¼ 
3.

(a) Find kuk, kvk, kuþ vk, kkuk:
(b) Verify that kkuk ¼ jkjkuk and kuþ vk � kuk þ kvk.

1.46. Find x and y where:

(a) ðx; yþ 1Þ ¼ ðy
 2; 6Þ; (b) xð2; yÞ ¼ yð1;
2Þ.

1.47. Find x; y; z where ðx; yþ 1; yþ zÞ ¼ ð2xþ y; 4; 3zÞ.
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1.48. Write v ¼ ð2; 5Þ as a linear combination of u1 and u2, where:

(a) u1 ¼ ð1; 2Þ and u2 ¼ ð3; 5Þ;
(b) u1 ¼ ð3;
4Þ and u2 ¼ ð2;
3Þ.

1.49. Write v ¼
9

3
16

24 35 as a linear combination of u1 ¼
1
2
3

24 35, u2 ¼
2
5

1

24 35, u3 ¼
4

2

3

24 35.

1.50. Find k so that u and v are orthogonal, where:

(a) u ¼ ð3; k;
2Þ, v ¼ ð6;
4;
3Þ;
(b) u ¼ ð5; k;
4; 2Þ, v ¼ ð1;
3; 2; 2kÞ;
(c) u ¼ ð1; 7; k þ 2; 
2Þ, v ¼ ð3; k;
3; kÞ.

Located Vectors, Hyperplanes, Lines in Rn

1.51. Find the vector v identified with the directed line segment PQ
!

for the points:

(a) Pð2; 3;
7Þ and Qð1;
6;
5Þ in R3;

(b) Pð1;
8;
4; 6Þ and Qð3;
5; 2;
4Þ in R4.

1.52. Find an equation of the hyperplane H in R4 that:

(a) contains Pð1; 2;
3; 2Þ and is normal to u ¼ ½2; 3;
5; 6�;
(b) contains Pð3;
1; 2; 5Þ and is parallel to 2x1 
 3x2 þ 5x3 
 7x4 ¼ 4.

1.53. Find a parametric representation of the line in R4 that:

(a) passes through the points Pð1; 2; 1; 2Þ and Qð3;
5; 7;
9Þ;
(b) passes through Pð1; 1; 3; 3Þ and is perpendicular to the hyperplane 2x1 þ 4x2 þ 6x3 
 8x4 ¼ 5.

Spatial Vectors (Vectors in R3), ijk Notation

1.54. Given u ¼ 3i
 4jþ 2k, v ¼ 2iþ 5j
 3k, w ¼ 4iþ 7jþ 2k. Find:

(a) 2u
 3v; (b) 3uþ 4v 
 2w; (c) u � v, u � w, v � w; (d) kuk, kvk, kwk.

1.55. Find the equation of the plane H :

(a) with normal N ¼ 3i
 4jþ 5k and containing the point Pð1; 2;
3Þ;
(b) parallel to 4xþ 3y
 2z ¼ 11 and containing the point Qð2;
1; 3Þ.

1.56. Find the (parametric) equation of the line L:

(a) through the point Pð2; 5;
3Þ and in the direction of v ¼ 4i
 5jþ 7k;

(b) perpendicular to the plane 2x
 3yþ 7z ¼ 4 and containing Pð1;
5; 7Þ.

1.57. Consider the following curve C in R3 where 0 � t � 5:

FðtÞ ¼ t3i
 t2jþ ð2t 
 3Þk
(a) Find the point P on C corresponding to t ¼ 2.

(b) Find the initial point Q and the terminal point Q 0.
(c) Find the unit tangent vector T to the curve C when t ¼ 2.

1.58. Consider a moving body B whose position at time t is given by RðtÞ ¼ t2iþ t3jþ 2tk. [Then
V ðtÞ ¼ dRðtÞ=dt and AðtÞ ¼ dVðtÞ=dt denote, respectively, the velocity and acceleration of B.] When
t ¼ 1, find for the body B:

(a) position; (b) velocity v; (c) speed s; (d) acceleration a.
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1.59. Find a normal vector N and the tangent plane H to each surface at the given point:

(a) surface x2yþ 3yz ¼ 20 and point Pð1; 3; 2Þ;
(b) surface x2 þ 3y2 
 5z2 ¼ 160 and point Pð3;
2; 1Þ:

Cross Product

1.60. Evaluate the following determinants and negative of determinants of order two:

(a)
2 5
3 6

���� ����; 3 
6
1 
4

���� ����; 
4 
2
7 
3

���� ����
(b) 
 6 4

7 5

���� ����; 
 1 
3
2 4

���� ����; 
 8 
3

6 
2

���� ����
1.61. Given u ¼ 3i
 4jþ 2k, v ¼ 2iþ 5j
 3k, w ¼ 4iþ 7jþ 2k, find:

(a) u� v, (b) u� w, (c) v � w.

1.62. Given u ¼ ½2; 1; 3�, v ¼ ½4;
1; 2�, w ¼ ½1; 1; 5�, find:

(a) u� v, (b) u� w, (c) v � w.

1.63. Find the volume V of the parallelopiped formed by the vectors u; v;w appearing in:

(a) Problem 1.61 (b) Problem 1.62.

1.64. Find a unit vector u orthogonal to:

(a) v ¼ ½1; 2; 3� and w ¼ ½1;
1; 2�;
(b) v ¼ 3i
 jþ 2k and w ¼ 4i
 2j
 k.

1.65. Prove the following properties of the cross product:

(a) u� v ¼ 
ðv � uÞ (d) u� ðv þ wÞ ¼ ðu� vÞ þ ðu� wÞ
(b) u� u ¼ 0 for any vector u (e) ðv þ wÞ � u ¼ ðv � uÞ þ ðw� uÞ
(c) ðkuÞ � v ¼ kðu� vÞ ¼ u� ðkvÞ ( f ) ðu� vÞ � w ¼ ðu � wÞv 
 ðv � wÞu

Complex Numbers

1.66. Simplify:

(a) ð4
 7iÞð9þ 2iÞ; (b) ð3
 5iÞ2; (c)
1

4
 7i
; (d)

9þ 2i

3
 5i
; (e) ð1
 iÞ3.

1.67. Simplify: (a)
1

2i
; (b)

2þ 3i

7
 3i
; (c) i15; i25; i34; (d)

1

3
 i

� �2

.

1.68. Let z ¼ 2
 5i and w ¼ 7þ 3i. Find:

(a) v þ w; (b) zw; (c) z=w; (d) �z; �w; (e) jzj, jwj.

1.69. Show that for complex numbers z and w:

(a) Re z ¼ 1
2 ðzþ �zÞ, (b) Im z ¼ 1

2 ðz
 �z), (c) zw ¼ 0 implies z ¼ 0 or w ¼ 0.

Vectors in Cn

1.70. Let u ¼ ð1þ 7i; 2
 6iÞ and v ¼ ð5
 2i; 3
 4iÞ. Find:

(a) uþ v (b) ð3þ iÞu (c) 2iuþ ð4þ 7iÞv (d) u � v (e) kuk and kvk.
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1.71. Prove: For any vectors u; v;w in Cn:

(a) ðuþ vÞ � w ¼ u � wþ v � w, (b) w � ðuþ vÞ ¼ w � uþ w � v.

1.72. Prove that the norm in Cn satisfies the following laws:

½N1� For any vector u, kuk � 0; and kuk ¼ 0 if and only if u ¼ 0.

½N2� For any vector u and complex number z, kzuk ¼ jzjkuk.
½N3� For any vectors u and v, kuþ vk � kuk þ kvk.

ANSWERS TO SUPPLEMENTARY PROBLEMS

1.41. (a) ð
3;
16; 10Þ; (b) (6,1,35); (c) 
3;
12; 8; (d)
ffiffiffiffiffi
21
p

,
ffiffiffiffiffi
35
p

,
ffiffiffiffiffi
14
p

;

(e) 
3=
ffiffiffiffiffi
21
p ffiffiffiffiffi

35
p

; ( f )
ffiffiffiffiffi
62
p

; (g) 
 3
35 ð3; 5; 1Þ ¼ ð
 9

35, 
 15
35, 
 3

35)

1.42. (Column vectors) (a) ð
1; 7;
22Þ; (b) ð
1; 26;
29Þ; (c) 
15;
27; 34;

(d)
ffiffiffiffiffi
26
p

,
ffiffiffiffiffi
30
p

; (e) 
15=ð ffiffiffiffiffi26
p ffiffiffiffiffi

30
p Þ; ( f )

ffiffiffiffiffi
86
p

; (g) 
 15
30 v ¼ ð
1;
 1

2 ;
 5
2Þ

1.43. (a) ð
7;
14; 13; 45; 0Þ; (b) ð20;
29; 22; 16;
23Þ; (c) 
6; (d)
ffiffiffiffiffi
90
p

;
ffiffiffiffiffi
95
p

;

(e) 
 6
95 v; ( f )

ffiffiffiffiffiffiffiffi
197
p

1.44. (a) ð5= ffiffiffiffiffi
74
p

; 
 =
ffiffiffiffiffi
74
p Þ; (b) ð15 ; 2

5 ; 
 2
5 ;

4
5Þ; (c) ð6= ffiffiffiffiffiffiffiffi

133
p

; 
4=
ffiffiffiffiffiffiffiffi
133
p

; 9=
ffiffiffiffiffiffiffiffi
133
p Þ

1.45. (a) 3; 13;
ffiffiffiffiffiffiffiffi
120
p

; 9

1.46. (a) x ¼ 3; y ¼ 5; (b) x ¼ 0; y ¼ 0, and x ¼ 
2; y ¼ 
4

1.47. x ¼ 
3; y ¼ 3; z ¼ 3
2

1.48. (a) v ¼ 5u1 
 u2; (b) v ¼ 16u1 
 23u2

1.49. v ¼ 3u1 
 u2 þ 2u3

1.50. (a) 6; (b) 3; (c) 3
2

1.51. (a) v ¼ ½
1;
9; 2�; (b) [2; 3; 6;
10]

1.52. (a) 2x1 þ 3x2 
 5x3 þ 6x4 ¼ 35; (b) 2x1 
 3x2 þ 5x3 
 7x4 ¼ 
16

1.53. (a) ½2t þ 1; 
7t þ 2; 6t þ 1; 
11t þ 2�; (b) ½2t þ 1; 4t þ 1; 6t þ 3; 
8t þ 3�

1.54. (a) 
23jþ 13k; (b) 9i
 6j
 10k; (c) 
20;
12; 37; (d)
ffiffiffiffiffi
29
p

;
ffiffiffiffiffi
38
p

;
ffiffiffiffiffi
69
p

1.55. (a) 3x
 4yþ 5z ¼ 
20; (b) 4xþ 3y
 2z ¼ 
1

1.56. (a) ½4t þ 2; 
5t þ 5; 7t 
 3�; (b) ½2t þ 1; 
3t 
 5; 7t þ 7�

1.57. (a) P ¼ Fð2Þ ¼ 8i
 4jþ k; (b) Q ¼ Fð0Þ ¼ 
3k, Q0 ¼ Fð5Þ ¼ 125i
 25jþ 7k;

(c) T ¼ ð6i
 2jþ kÞ= ffiffiffiffiffi
41
p

1.58. (a) iþ jþ 2k; (b) 2iþ 3jþ 2k; (c)
ffiffiffiffiffi
17
p

; (d) 2iþ 6j

1.59. (a) N ¼ 6iþ 7jþ 9k, 6xþ 7yþ 9z ¼ 45; (b) N ¼ 6i
 12j
 10k, 3x
 6y
 5z ¼ 16
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1.60. (a) 
3;
6; 26; (b) 
2;
10; 34

1.61. (a) 2iþ 13jþ 23k; (b) 
22iþ 2jþ 37k; (c) 31i
 16j
 6k

1.62. (a) ½5; 8;
6�; (b) ½2;
7; 1�; (c) ½
7;
18; 5�

1.63. (a) 145; (b) 17

1.64. (a) ð7; 1;
3Þ= ffiffiffiffiffi
59
p

; (b) ð5iþ 11j
 2kÞ= ffiffiffiffiffiffiffiffi
150
p

1.66. (a) 50
 55i; (b) 
16
 30i; (c) 1
65 ð4þ 7iÞ; (d) 1

2 ð1þ 3iÞ; (e) 
2
 2i

1.67. (a) 
 1
2 i; (b) 1

58 ð5þ 27iÞ; (c) 
i; i;
1; (d) 1
50 ð4þ 3iÞ

1.68. (a) 9
 2i; (b) 29
 29i; (c) 1 ð
1
 41iÞ; (d) 2þ 5i, 7
 3i; (e)
ffiffiffiffiffi
29
p

,
ffiffiffiffiffi
58
p

1.69. (c) Hint: If zw ¼ 0, then jzwj ¼ jzjjwj ¼ j0j ¼ 0

1.70. (a) ð6þ 5i, 5
 10iÞ; (b) ð
4þ 22i, 12
 16iÞ; (c) ð i, iÞ;
(d) 21þ 27i; (e)

ffiffiffiffiffi
90
p

,
ffiffiffiffiffi
54
p
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Algebra of Matrices

2.1 Introduction

This chapter investigates matrices and algebraic operations defined on them. These matrices may be
viewed as rectangular arrays of elements where each entry depends on two subscripts (as compared with
vectors, where each entry depended on only one subscript). Systems of linear equations and their
solutions (Chapter 3) may be efficiently investigated using the language of matrices. Furthermore, certain
abstract objects introduced in later chapters, such as ‘‘change of basis,’’ ‘‘linear transformations,’’ and
‘‘quadratic forms,’’ can be represented by these matrices (rectangular arrays). On the other hand, the
abstract treatment of linear algebra presented later on will give us new insight into the structure of these
matrices.

The entries in our matrices will come from some arbitrary, but fixed, field K. The elements of K are
called numbers or scalars. Nothing essential is lost if the reader assumes that K is the real field R.

2.2 Matrices

A matrix A over a field K or, simply, a matrix A (when K is implicit) is a rectangular array of scalars
usually presented in the following form:

A ¼
a11 a12 . . . a1n

a21 a22 . . . a2n

� � � � � � � � � � � �
am1 am2 . . . amn

2664
3775

The rows of such a matrix A are the m horizontal lists of scalars:

ða11; a12; . . . ; a1nÞ; ða21; a22; . . . ; a2nÞ; . . . ; ðam1; am2; . . . ; amnÞ
and the columns of A are the n vertical lists of scalars:

a11

a21

. . .
am1

2664
3775;

a12

a22

. . .
am2

2664
3775; . . . ;

a1n

a2n

. . .
amn

2664
3775

Note that the element aij, called the ij-entry or ij-element, appears in row i and column j. We frequently
denote such a matrix by simply writing A ¼ ½aij�.

A matrix with m rows and n columns is called an m by n matrix, written m� n. The pair of numbers m
and n is called the size of the matrix. Two matrices A and B are equal, written A ¼ B, if they have the
same size and if corresponding elements are equal. Thus, the equality of two m� n matrices is equivalent
to a system of mn equalities, one for each corresponding pair of elements.

A matrix with only one row is called a row matrix or row vector, and a matrix with only one column is
called a column matrix or column vector. A matrix whose entries are all zero is called a zero matrix and
will usually be denoted by 0.
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Matrices whose entries are all real numbers are called real matrices and are said to be matrices over R.
Analogously, matrices whose entries are all complex numbers are called complex matrices and are said to
be matrices over C. This text will be mainly concerned with such real and complex matrices.

EXAMPLE 2.1

(a) The rectangular array A ¼ 1 
4 5
0 3 
2

� �
is a 2� 3 matrix. Its rows are ð1;
4; 5Þ and ð0; 3;
2Þ,

and its columns are

1
0

� �
;


4
3

� �
;

5

2

� �

(b) The 2� 4 zero matrix is the matrix 0 ¼ 0 0 0 0
0 0 0 0

� �
.

(c) Find x; y; z; t such that

xþ y 2zþ t
x
 y z
 t

� �
¼ 3 7

1 5

� �

By definition of equality of matrices, the four corresponding entries must be equal. Thus,

xþ y ¼ 3; x
 y ¼ 1; 2zþ t ¼ 7; z
 t ¼ 5

Solving the above system of equations yields x ¼ 2, y ¼ 1, z ¼ 4, t ¼ 
1.

2.3 Matrix Addition and Scalar Multiplication

Let A ¼ ½aij� and B ¼ ½bij� be two matrices with the same size, say m� n matrices. The sum of A and B,
written Aþ B, is the matrix obtained by adding corresponding elements from A and B. That is,

Aþ B ¼
a11 þ b11 a12 þ b12 . . . a1n þ b1n

a21 þ b21 a22 þ b22 . . . a2n þ b2n

� � � � � � � � � � � �
am1 þ bm1 am2 þ bm2 . . . amn þ bmn

2664
3775

The product of the matrix A by a scalar k, written k � A or simply kA, is the matrix obtained by
multiplying each element of A by k. That is,

kA ¼
ka11 ka12 . . . ka1n

ka21 ka22 . . . ka2n

� � � � � � � � � � � �
kam1 kam2 . . . kamn

2664
3775

Observe that Aþ B and kA are also m� n matrices. We also define


A ¼ ð
1ÞA and A
 B ¼ Aþ ð
BÞ

The matrix 
A is called the negative of the matrix A, and the matrix A
 B is called the difference of A
and B. The sum of matrices with different sizes is not defined.
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EXAMPLE 2.2 Let A ¼ 1 
2 3
0 4 5

� �
and B ¼ 4 6 8

1 
3 
7

� �
. Then

Aþ B ¼
1þ 4 
2þ 6 3þ 8

0þ 1 4þ ð
3Þ 5þ ð
7Þ

" #
¼

5 4 11

1 1 
2

" #

3A ¼
3ð1Þ 3ð
2Þ 3ð3Þ
3ð0Þ 3ð4Þ 3ð5Þ

" #
¼

3 
6 9

0 12 15

" #

2A
 3B ¼
2 
4 6

0 8 10

" #
þ

12 
18 
24


3 9 21

" #
¼

10 
22 
18


3 17 31

" #
The matrix 2A
 3B is called a linear combination of A and B.

Basic properties of matrices under the operations of matrix addition and scalar multiplication follow.

THEOREM 2.1: Consider any matrices A;B;C (with the same size) and any scalars k and k0. Then

(i) ðAþ BÞ þ C ¼ Aþ ðBþ CÞ, (v) kðAþ BÞ ¼ kAþ kB,

(ii) Aþ 0 ¼ 0þ A ¼ A, (vi) ðk þ k0ÞA ¼ kAþ k0A,

(iii) Aþ ð
AÞ ¼ ð
AÞ þ A ¼ 0; (vii) ðkk0ÞA ¼ kðk0AÞ,
(iv) Aþ B ¼ Bþ A, (viii) 1 � A ¼ A.

Note first that the 0 in (ii) and (iii) refers to the zero matrix. Also, by (i) and (iv), any sum of matrices

A1 þ A2 þ � � � þ An

requires no parentheses, and the sum does not depend on the order of the matrices. Furthermore, using
(vi) and (viii), we also have

Aþ A ¼ 2A; Aþ Aþ A ¼ 3A; . . .

and so on.
The proof of Theorem 2.1 reduces to showing that the ij-entries on both sides of each matrix equation

are equal. (See Problem 2.3.)
Observe the similarity between Theorem 2.1 for matrices and Theorem 1.1 for vectors. In fact, the

above operations for matrices may be viewed as generalizations of the corresponding operations for
vectors.

2.4 Summation Symbol

Before we define matrix multiplication, it will be instructive to first introduce the summation symbol S
(the Greek capital letter sigma).

Suppose f ðkÞ is an algebraic expression involving the letter k. Then the expressionPn
k¼1

f ðkÞ or equivalently
Pn

k¼1 f ðkÞ

has the following meaning. First we set k ¼ 1 in f ðkÞ, obtaining

f ð1Þ
Then we set k ¼ 2 in f ðkÞ, obtaining f ð2Þ, and add this to f ð1Þ, obtaining

f ð1Þ þ f ð2Þ
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Then we set k ¼ 3 in f ðkÞ, obtaining f ð3Þ, and add this to the previous sum, obtaining

f ð1Þ þ f ð2Þ þ f ð3Þ
We continue this process until we obtain the sum

f ð1Þ þ f ð2Þ þ � � � þ f ðnÞ
Observe that at each step we increase the value of k by 1 until we reach n. The letter k is called the index,
and 1 and n are called, respectively, the lower and upper limits. Other letters frequently used as indices
are i and j.

We also generalize our definition by allowing the sum to range from any integer n1 to any integer n2.
That is, we definePn2

k¼n1

f ðkÞ ¼ f ðn1Þ þ f ðn1 þ 1Þ þ f ðn1 þ 2Þ þ � � � þ f ðn2Þ

EXAMPLE 2.3

(a)
P5
k¼1

xk ¼ x1 þ x2 þ x3 þ x4 þ x5 and
Pn
i¼1

aibi ¼ a1b1 þ a2b2 þ � � � þ anbn

(b)
P5
j¼2

j2 ¼ 22 þ 32 þ 42 þ 52 ¼ 54 and
Pn
i¼0

aix
i ¼ a0 þ a1xþ a2x2 þ � � � þ anxn

(c)
Pp
k¼1

aikbkj ¼ ai1b1j þ ai2b2j þ ai3b3j þ � � � þ aipbpj

2.5 Matrix Multiplication

The product of matrices A and B, written AB, is somewhat complicated. For this reason, we first begin
with a special case.

The product AB of a row matrix A ¼ ½ai� and a column matrix B ¼ ½bi� with the same number of
elements is defined to be the scalar (or 1� 1 matrix) obtained by multiplying corresponding entries and
adding; that is,

AB ¼ ½a1; a2; . . . ; an�
b1

b2

. . .
bn

2664
3775 ¼ a1b1 þ a2b2 þ � � � þ anbn ¼

Pn
k¼1

akbk

We emphasize that AB is a scalar (or a 1� 1 matrix). The product AB is not defined when A and B have
different numbers of elements.

EXAMPLE 2.4

(a) ½7;
4; 5�
3
2

1

24 35 ¼ 7ð3Þ þ ð
4Þð2Þ þ 5ð
1Þ ¼ 21
 8
 5 ¼ 8

(b) ½6;
1; 8; 3�
4

9

2

5

2664
3775 ¼ 24þ 9
 16þ 15 ¼ 32

We are now ready to define matrix multiplication in general.
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DEFINITION: Suppose A ¼ ½aik � and B ¼ ½bkj� are matrices such that the number of columns of A is
equal to the number of rows of B; say, A is an m� p matrix and B is a p� n matrix.
Then the product AB is the m� n matrix whose ij-entry is obtained by multiplying the
ith row of A by the jth column of B. That is,

a11 . . . a1p

: . . . :
ai1 . . . aip
: . . . :

am1 . . . amp

266664
377775

b11 . . . b1j . . . b1n

: . . . : . . . :
: . . . : . . . :
: . . . : . . . :
bp1 . . . bpj . . . bpn

266664
377775 ¼

c11 . . . c1n

: . . . :
: cij :
: . . . :

cm1 . . . cmn

266664
377775

where cij ¼ ai1b1j þ ai2b2j þ � � � þ aipbpj ¼
Pp
k¼1

aikbkj

The product AB is not defined if A is an m� p matrix and B is a q� n matrix, where p 6¼ q.

EXAMPLE 2.5

(a) Find AB where A ¼ 1 3
2 
1

� �
and B ¼ 2 0 
4

5 
2 6

� �
.

Because A is 2� 2 and B is 2� 3, the product AB is defined and AB is a 2� 3 matrix. To obtain
the first row of the product matrix AB, multiply the first row [1, 3] of A by each column of B,

2
5

� �
;

0

2

� �
;


4
6

� �
respectively. That is,

AB ¼ 2þ 15 0
 6 
4þ 18
� �

¼ 17 
6 14
� �

To obtain the second row of AB, multiply the second row ½2;
1� of A by each column of B. Thus,

AB ¼ 17 
6 14
4
 5 0þ 2 
8
 6

� �
¼ 17 
6 14

1 2 
14

� �

(b) Suppose A ¼ 1 2
3 4

� �
and B ¼ 5 6

0 
2

� �
. Then

AB ¼ 5þ 0 6
 4
15þ 0 18
 8

� �
¼ 5 2

15 10

� �
and BA ¼ 5þ 18 10þ 24

0
 6 0
 8

� �
¼ 23 34

6 
8

� �
The above example shows that matrix multiplication is not commutative—that is, in general,

AB 6¼BA. However, matrix multiplication does satisfy the following properties.

THEOREM 2.2: Let A;B;C be matrices. Then, whenever the products and sums are defined,

(i) ðABÞC ¼ AðBCÞ (associative law),

(ii) AðBþ CÞ ¼ ABþ AC (left distributive law),

(iii) ðBþ CÞA ¼ BAþ CA (right distributive law),

(iv) kðABÞ ¼ ðkAÞB ¼ AðkBÞ, where k is a scalar.

We note that 0A ¼ 0 and B0 ¼ 0, where 0 is the zero matrix.
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2.6 Transpose of a Matrix

The transpose of a matrix A, written AT , is the matrix obtained by writing the columns of A, in order, as
rows. For example,

1 2 3
4 5 6

� �T

¼
1 4
2 5
3 6

24 35 and ½1;
3;
5�T ¼
1

3

5

24 35
In other words, if A ¼ ½aij� is an m� n matrix, then AT ¼ ½bij� is the n� m matrix where bij ¼ aji.

Observe that the tranpose of a row vector is a column vector. Similarly, the transpose of a column
vector is a row vector.

The next theorem lists basic properties of the transpose operation.

THEOREM 2.3: Let A and B be matrices and let k be a scalar. Then, whenever the sum and product are
defined,

(i) ðAþ BÞT ¼ AT þ BT , (iii) ðkAÞT ¼ kAT ,

(ii) ðAT ÞT ¼ A; (iv) ðABÞT ¼ BT AT .

We emphasize that, by (iv), the transpose of a product is the product of the transposes, but in the
reverse order.

2.7 Square Matrices

A square matrix is a matrix with the same number of rows as columns. An n� n square matrix is said to
be of order n and is sometimes called an n-square matrix.

Recall that not every two matrices can be added or multiplied. However, if we only consider square
matrices of some given order n, then this inconvenience disappears. Specifically, the operations of
addition, multiplication, scalar multiplication, and transpose can be performed on any n� n matrices, and
the result is again an n� n matrix.

EXAMPLE 2.6 The following are square matrices of order 3:

A ¼
1 2 3

4 
4 
4

5 6 7

24 35 and B ¼
2 
5 1
0 3 
2
1 2 
4

24 35
The following are also matrices of order 3:

Aþ B ¼
3 
3 4


4 
1 
6

6 8 3

264
375; 2A ¼

2 4 6


8 
8 
8

10 12 14

264
375; AT ¼

1 
4 5

2 
4 6

3 
4 7

264
375

AB ¼
5 7 
15


12 0 20

17 7 
35

264
375; BA ¼

27 30 33


22 
24 
26


27 
30 
33

264
375

Diagonal and Trace

Let A ¼ ½aij� be an n-square matrix. The diagonal or main diagonal of A consists of the elements with the
same subscripts—that is,

a11; a22; a33; . . . ; ann
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The trace of A, written trðAÞ, is the sum of the diagonal elements. Namely,

trðAÞ ¼ a11 þ a22 þ a33 þ � � � þ ann

The following theorem applies.

THEOREM 2.4: Suppose A ¼ ½aij� and B ¼ ½bij� are n-square matrices and k is a scalar. Then

(i) trðAþ BÞ ¼ trðAÞ þ trðBÞ, (iii) trðAT Þ ¼ trðAÞ,
(ii) trðkAÞ ¼ k trðAÞ, (iv) trðABÞ ¼ trðBAÞ.

EXAMPLE 2.7 Let A and B be the matrices A and B in Example 2.6. Then

diagonal of A ¼ f1;
4; 7g and trðAÞ ¼ 1
 4þ 7 ¼ 4

diagonal of B ¼ f2; 3;
4g and trðBÞ ¼ 2þ 3
 4 ¼ 1

Moreover,

trðAþ BÞ ¼ 3
 1þ 3 ¼ 5; trð2AÞ ¼ 2
 8þ 14 ¼ 8; trðAT Þ ¼ 1
 4þ 7 ¼ 4

trðABÞ ¼ 5þ 0
 35 ¼ 
30; trðBAÞ ¼ 27
 24
 33 ¼ 
30

As expected from Theorem 2.4,

trðAþ BÞ ¼ trðAÞ þ trðBÞ; trðAT Þ ¼ trðAÞ; trð2AÞ ¼ 2 trðAÞ
Furthermore, although AB 6¼ BA, the traces are equal.

Identity Matrix, Scalar Matrices

The n-square identity or unit matrix, denoted by In, or simply I , is the n-square matrix with 1’s on the
diagonal and 0’s elsewhere. The identity matrix I is similar to the scalar 1 in that, for any n-square matrix
A,

AI ¼ IA ¼ A

More generally, if B is an m� n matrix, then BIn ¼ ImB ¼ B.
For any scalar k, the matrix kI that contains k’s on the diagonal and 0’s elsewhere is called the scalar

matrix corresponding to the scalar k. Observe that

ðkIÞA ¼ kðIAÞ ¼ kA

That is, multiplying a matrix A by the scalar matrix kI is equivalent to multiplying A by the scalar k.

EXAMPLE 2.8 The following are the identity matrices of orders 3 and 4 and the corresponding scalar
matrices for k ¼ 5:

1 0 0
0 1 0
0 0 1

24 35; 1
1

1
1

2664
3775; 5 0 0

0 5 0
0 0 5

24 35; 5
5

5
5

2664
3775

Remark 1: It is common practice to omit blocks or patterns of 0’s when there is no ambiguity, as
in the above second and fourth matrices.

Remark 2: The Kronecker delta function dij is defined by

dij ¼ 0 if i 6¼ j
1 if i ¼ j

	
Thus, the identity matrix may be defined by I ¼ ½dij�.
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2.8 Powers of Matrices, Polynomials in Matrices

Let A be an n-square matrix over a field K. Powers of A are defined as follows:

A2 ¼ AA; A3 ¼ A2A; . . . ; Anþ1 ¼ AnA; . . . ; and A0 ¼ I

Polynomials in the matrix A are also defined. Specifically, for any polynomial

f ðxÞ ¼ a0 þ a1xþ a2x2 þ � � � þ anxn

where the ai are scalars in K, f ðAÞ is defined to be the following matrix:

f ðAÞ ¼ a0I þ a1Aþ a2A2 þ � � � þ anAn

[Note that f ðAÞ is obtained from f ðxÞ by substituting the matrix A for the variable x and substituting the
scalar matrix a0I for the scalar a0.] If f ðAÞ is the zero matrix, then A is called a zero or root of f ðxÞ.
EXAMPLE 2.9 Suppose A ¼ 1 2

3 
4

� �
. Then

A2 ¼ 1 2
3 
4

� �
1 2
3 
4

� �
¼ 7 
6

9 22

� �
and A3 ¼ A2A ¼ 7 
6


9 22

� �
1 2
3 
4

� �
¼ 
11 38

57 
106

� �
Suppose f ðxÞ ¼ 2x2 
 3xþ 5 and gðxÞ ¼ x2 þ 3x
 10. Then

f ðAÞ ¼ 2
7 
6


9 22

� �

 3

1 2

3 
4

� �
þ 5

1 0

0 1

� �
¼ 16 
18


27 61

� �

gðAÞ ¼ 7 
6


9 22

� �
þ 3

1 2

3 
4

� �

 10

1 0

0 1

� �
¼ 0 0

0 0

� �
Thus, A is a zero of the polynomial gðxÞ.

2.9 Invertible (Nonsingular) Matrices

A square matrix A is said to be invertible or nonsingular if there exists a matrix B such that

AB ¼ BA ¼ I

where I is the identity matrix. Such a matrix B is unique. That is, if AB1 ¼ B1A ¼ I and AB2 ¼ B2A ¼ I ,
then

B1 ¼ B1I ¼ B1ðAB2Þ ¼ ðB1AÞB2 ¼ IB2 ¼ B2

We call such a matrix B the inverse of A and denote it by A
1. Observe that the above relation is
symmetric; that is, if B is the inverse of A, then A is the inverse of B.

EXAMPLE 2.10 Suppose that A ¼ 2 5
1 3

� �
and B ¼ 3 
5


1 2

� �
. Then

AB ¼ 6
 5 
10þ 10
3
 3 
5þ 6

� �
¼ 1 0

0 1

� �
and BA ¼ 6
 5 15
 15


2þ 2 
5þ 6

� �
¼ 1 0

0 1

� �

Thus, A and B are inverses.

It is known (Theorem 3.18) that AB ¼ I if and only if BA ¼ I . Thus, it is necessary to test only one
product to determine whether or not two given matrices are inverses. (See Problem 2.17.)

Now suppose A and B are invertible. Then AB is invertible and ðABÞ
1 ¼ B
1A
1. More generally, if
A1;A2; . . . ;Ak are invertible, then their product is invertible and

ðA1A2 . . .AkÞ
1 ¼ A
1
k . . .A
1

2 A
1
1

the product of the inverses in the reverse order.
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Inverse of a 2�2 Matrix

Let A be an arbitrary 2� 2 matrix, say A ¼ a b
c d

� �
. We want to derive a formula for A
1, the inverse

of A. Specifically, we seek 22 ¼ 4 scalars, say x1, y1, x2, y2, such that

a b
c d

� �
x1 x2

y1 y2

� �
¼ 1 0

0 1

� �
or

ax1 þ by1 ax2 þ by2

cx1 þ dy1 cx2 þ dy2

� �
¼ 1 0

0 1

� �
Setting the four entries equal to the corresponding entries in the identity matrix yields four equations,
which can be partitioned into two 2� 2 systems as follows:

ax1 þ by1 ¼ 1; ax2 þ by2 ¼ 0

cx1 þ dy1 ¼ 0; cx2 þ dy2 ¼ 1

Suppose we let jAj ¼ ad 
 bc (called the determinant of A). Assuming jAj 6¼ 0, we can solve uniquely for
the above unknowns x1, y1, x2, y2, obtaining

x1 ¼
d

jAj ; y1 ¼

c

jAj ; x2 ¼

b

jAj ; y2 ¼
a

jAj
Accordingly,

A
1 ¼ a b
c d

� �
1

¼ d=jAj 
b=jAj

c=jAj a=jAj
� �

¼ 1

jAj
d 
b

c a

� �
In other words, when jAj 6¼ 0, the inverse of a 2� 2 matrix A may be obtained from A as follows:

(1) Interchange the two elements on the diagonal.

(2) Take the negatives of the other two elements.

(3) Multiply the resulting matrix by 1=jAj or, equivalently, divide each element by jAj.
In case jAj ¼ 0, the matrix A is not invertible.

EXAMPLE 2.11 Find the inverse of A ¼ 2 3
4 5

� �
and B ¼ 1 3

2 6

� �
.

First evaluate jAj ¼ 2ð5Þ 
 3ð4Þ ¼ 10
 12 ¼ 
2. Because jAj 6¼ 0, the matrix A is invertible and

A
1 ¼ 1


2

5 
3

4 2

� �
¼ 
 5

2
3
2

2 
1

� �
Now evaluate jBj ¼ 1ð6Þ 
 3ð2Þ ¼ 6
 6 ¼ 0. Because jBj ¼ 0, the matrix B has no inverse.

Remark: The above property that a matrix is invertible if and only if A has a nonzero determinant
is true for square matrices of any order. (See Chapter 8.)

Inverse of an n� n Matrix

Suppose A is an arbitrary n-square matrix. Finding its inverse A
1 reduces, as above, to finding the
solution of a collection of n� n systems of linear equations. The solution of such systems and an efficient
way of solving such a collection of systems is treated in Chapter 3.

2.10 Special Types of Square Matrices

This section describes a number of special kinds of square matrices.

Diagonal and Triangular Matrices

A square matrix D ¼ ½dij� is diagonal if its nondiagonal entries are all zero. Such a matrix is sometimes
denoted by

D ¼ diagðd11; d22; . . . ; dnnÞ
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where some or all the dii may be zero. For example,

3 0 0
0 
7 0
0 0 2

24 35; 4 0
0 
5

� �
;

6
0

9

8

2664
3775

are diagonal matrices, which may be represented, respectively, by

diagð3;
7; 2Þ; diagð4;
5Þ; diagð6; 0;
9; 8Þ
(Observe that patterns of 0’s in the third matrix have been omitted.)

A square matrix A ¼ ½aij� is upper triangular or simply triangular if all entries below the (main)
diagonal are equal to 0—that is, if aij ¼ 0 for i > j. Generic upper triangular matrices of orders 2, 3, 4 are
as follows:

a11 a12

0 a22

� �
;

b11 b12 b13

b22 b23

b33

24 35; c11 c12 c13 c14

c22 c23 c24

c33 c34

c44

2664
3775

(As with diagonal matrices, it is common practice to omit patterns of 0’s.)
The following theorem applies.

THEOREM 2.5: Suppose A ¼ ½aij� and B ¼ ½bij� are n� n (upper) triangular matrices. Then

(i) Aþ B, kA, AB are triangular with respective diagonals:

ða11 þ b11; . . . ; ann þ bnnÞ; ðka11; . . . ; kannÞ; ða11b11; . . . ; annbnnÞ

(ii) For any polynomial f ðxÞ, the matrix f ðAÞ is triangular with diagonal

ð f ða11Þ; f ða22Þ; . . . ; f ðannÞÞ

(iii) A is invertible if and only if each diagonal element aii 6¼ 0, and when A
1 exists
it is also triangular.

A lower triangular matrix is a square matrix whose entries above the diagonal are all zero. We note
that Theorem 2.5 is true if we replace ‘‘triangular’’ by either ‘‘lower triangular’’ or ‘‘diagonal.’’

Remark: A nonempty collection A of matrices is called an algebra (of matrices) if A is closed
under the operations of matrix addition, scalar multiplication, and matrix multiplication. Clearly, the
square matrices with a given order form an algebra of matrices, but so do the scalar, diagonal, triangular,
and lower triangular matrices.

Special Real Square Matrices: Symmetric, Orthogonal, Normal
[Optional until Chapter 12]

Suppose now A is a square matrix with real entries—that is, a real square matrix. The relationship
between A and its transpose AT yields important kinds of matrices.

(a) Symmetric Matrices

A matrix A is symmetric if AT ¼ A. Equivalently, A ¼ ½aij� is symmetric if symmetric elements (mirror
elements with respect to the diagonal) are equal—that is, if each aij ¼ aji.

A matrix A is skew-symmetric if AT ¼ 
A or, equivalently, if each aij ¼ 
aji. Clearly, the diagonal
elements of such a matrix must be zero, because aii ¼ 
aii implies aii ¼ 0.

(Note that a matrix A must be square if AT ¼ A or AT ¼ 
A.)
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EXAMPLE 2.12 Let A ¼
2 
3 5

3 6 7

5 7 
8

24 35;B ¼ 0 3 
4

3 0 5

4 
5 0

24 35;C ¼ 1 0 0
0 0 1

� �
:

(a) By inspection, the symmetric elements in A are equal, or AT ¼ A. Thus, A is symmetric.

(b) The diagonal elements of B are 0 and symmetric elements are negatives of each other, or BT ¼ 
B.
Thus, B is skew-symmetric.

(c) Because C is not square, C is neither symmetric nor skew-symmetric.

(b) Orthogonal Matrices

A real matrix A is orthogonal if AT ¼ A
1—that is, if AAT ¼ AT A ¼ I . Thus, A must necessarily be
square and invertible.

EXAMPLE 2.13 Let A ¼
1
9

8
9 
 4

9
4
9 
 4

9 
 7
9

8
9

1
9

4
9

264
375. Multiplying A by AT yields I ; that is, AAT ¼ I . This means

AT A ¼ I , as well. Thus, AT ¼ A
1; that is, A is orthogonal.

Now suppose A is a real orthogonal 3� 3 matrix with rows

u1 ¼ ða1; a2; a3Þ; u2 ¼ ðb1; b2; b3Þ; u3 ¼ ðc1; c2; c3Þ
Because A is orthogonal, we must have AAT ¼ I . Namely,

AAT ¼
a1 a2 a3

b1 b2 b3

c1 c2 c3

24 35 a1 b1 c1

a2 b2 c2

a3 b3 c3

24 35 ¼ 1 0 0
0 1 0
0 0 1

24 35 ¼ I

Multiplying A by AT and setting each entry equal to the corresponding entry in I yields the following nine
equations:

a2
1 þ a2

2 þ a2
3 ¼ 1; a1b1 þ a2b2 þ a3b3 ¼ 0; a1c1 þ a2c2 þ a3c3 ¼ 0

b1a1 þ b2a2 þ b3a3 ¼ 0; b2
1 þ b2

2 þ b2
3 ¼ 1; b1c1 þ b2c2 þ b3c3 ¼ 0

c1a1 þ c2a2 þ c3a3 ¼ 0; c1b1 þ c2b2 þ c3b3 ¼ 0; c2
1 þ c2

2 þ c2
3 ¼ 1

Accordingly, u1 � u1 ¼ 1, u2 � u2 ¼ 1, u3 � u3 ¼ 1, and ui � uj ¼ 0 for i 6¼ j. Thus, the rows u1, u2, u3 are
unit vectors and are orthogonal to each other.

Generally speaking, vectors u1, u2; . . . ; um in Rn are said to form an orthonormal set of vectors if the
vectors are unit vectors and are orthogonal to each other; that is,

ui � uj ¼ 0 if i 6¼ j
1 if i ¼ j

	
In other words, ui � uj ¼ dij where dij is the Kronecker delta function:

We have shown that the condition AAT ¼ I implies that the rows of A form an orthonormal set of
vectors. The condition AT A ¼ I similarly implies that the columns of A also form an orthonormal set
of vectors. Furthermore, because each step is reversible, the converse is true.

The above results for 3� 3 matrices are true in general. That is, the following theorem holds.

THEOREM 2.6: Let A be a real matrix. Then the following are equivalent:
(a) A is orthogonal.
(b) The rows of A form an orthonormal set.
(c) The columns of A form an orthonormal set.

For n ¼ 2, we have the following result (proved in Problem 2.28).
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THEOREM 2.7: Let A be a real 2� 2 orthogonal matrix. Then, for some real number y,

A ¼ cos y sin y

 sin y cos y

� �
or A ¼ cos y sin y

sin y 
 cos y

� �

(c) Normal Matrices

A real matrix A is normal if it commutes with its transpose AT —that is, if AAT ¼ AT A. If A is symmetric,
orthogonal, or skew-symmetric, then A is normal. There are also other normal matrices.

EXAMPLE 2.14 Let A ¼ 6 
3
3 6

� �
. Then

AAT ¼ 6 
3
3 6

� �
6 3

3 6

� �
¼ 45 0

0 45

� �
and AT A ¼ 6 3


3 6

� �
6 
3
3 6

� �
¼ 45 0

0 45

� �
Because AAT ¼ AT A, the matrix A is normal.

2.11 Complex Matrices

Let A be a complex matrix—that is, a matrix with complex entries. Recall (Section 1.7) that if z ¼ aþ bi
is a complex number, then �z ¼ a
 bi is its conjugate. The conjugate of a complex matrix A, written �A, is
the matrix obtained from A by taking the conjugate of each entry in A. That is, if A ¼ ½aij�, then �A ¼ ½bij�,
where bij ¼ �aij. (We denote this fact by writing �A ¼ ½�aij�.)

The two operations of transpose and conjugation commute for any complex matrix A, and the special
notation AH is used for the conjugate transpose of A. That is,

AH ¼ ð �AÞT ¼ ðAT Þ
Note that if A is real, then AH ¼ AT . [Some texts use A* instead of AH :]

EXAMPLE 2.15 Let A ¼ 2þ 8i 5
 3i 4
 7i
6i 1
 4i 3þ 2i

� �
. Then AH ¼

2
 8i 
6i
5þ 3i 1þ 4i
4þ 7i 3
 2i

24 35.

Special Complex Matrices: Hermitian, Unitary, Normal [Optional until Chapter 12]

Consider a complex matrix A. The relationship between A and its conjugate transpose AH yields
important kinds of complex matrices (which are analogous to the kinds of real matrices described above).

A complex matrix A is said to be Hermitian or skew-Hermitian according as to whether

AH ¼ A or AH ¼ 
A:

Clearly, A ¼ ½aij� is Hermitian if and only if symmetric elements are conjugate—that is, if each
aij ¼ �aji—in which case each diagonal element aii must be real. Similarly, if A is skew-symmetric,
then each diagonal element aii ¼ 0. (Note that A must be square if AH ¼ A or AH ¼ 
A.)

A complex matrix A is unitary if AH A
1 ¼ A
1AH ¼ I—that is, if

AH ¼ A
1:

Thus, A must necessarily be square and invertible. We note that a complex matrix A is unitary if and only
if its rows (columns) form an orthonormal set relative to the dot product of complex vectors.

A complex matrix A is said to be normal if it commutes with AH —that is, if

AAH ¼ AH A
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(Thus, A must be a square matrix.) This definition reduces to that for real matrices when A is real.

EXAMPLE 2.16 Consider the following complex matrices:

A ¼
3 1
 2i 4þ 7i

1þ 2i 
4 
2i
4
 7i 2i 5

24 35 B ¼ 1

2

1 
i 
1þ i
i 1 1þ i

1þ i 
1þ i 0

24 35 C ¼ 2þ 3i 1
i 1þ 2i

� �

(a) By inspection, the diagonal elements of A are real, and the symmetric elements 1
 2i and 1þ 2i are
conjugate, 4þ 7i and 4
 7i are conjugate, and 
2i and 2i are conjugate. Thus, A is Hermitian.

(b) Multiplying B by BH yields I ; that is, BBH ¼ I . This implies BH B ¼ I , as well. Thus, BH ¼ B
1,
which means B is unitary.

(c) To show C is normal, we evaluate CCH and CH C:

CCH ¼ 2þ 3i 1
i 1þ 2i

� �
2
 3i 
i

1 1
 2i

� �
¼ 14 4
 4i

4þ 4i 6

� �
and similarly CH C ¼ 14 4
 4i

4þ 4i 6

� �
. Because CCH ¼ CH C, the complex matrix C is normal.

We note that when a matrix A is real, Hermitian is the same as symmetric, and unitary is the same as
orthogonal.

2.12 Block Matrices

Using a system of horizontal and vertical (dashed) lines, we can partition a matrix A into submatrices
called blocks (or cells) of A. Clearly a given matrix may be divided into blocks in different ways. For
example,

1 
2 0 1 3
2 3 5 7 
2
3 1 4 5 9
4 6 
3 1 8

2664
3775;

1 
2 0 1 3
2 3 5 7 
2
3 1 4 5 9
4 6 
3 1 8

2664
3775;

1 
2 0 1 3
2 3 5 7 
2
3 1 4 5 9
4 6 
3 1 8

2664
3775

The convenience of the partition of matrices, say A and B, into blocks is that the result of operations on A
and B can be obtained by carrying out the computation with the blocks, just as if they were the actual
elements of the matrices. This is illustrated below, where the notation A ¼ ½Aij� will be used for a block
matrix A with blocks Aij.

Suppose that A ¼ ½Aij� and B ¼ ½Bij� are block matrices with the same numbers of row and column
blocks, and suppose that corresponding blocks have the same size. Then adding the corresponding blocks
of A and B also adds the corresponding elements of A and B, and multiplying each block of A by a scalar
k multiplies each element of A by k. Thus,

Aþ B ¼

A11 þ B11 A12 þ B12 . . . A1n þ B1n

A21 þ B21 A22 þ B22 . . . A2n þ B2n

. . . . . . . . . . . .

Am1 þ Bm1 Am2 þ Bm2 . . . Amn þ Bmn

26664
37775

and

kA ¼
kA11 kA12 . . . kA1n

kA21 kA22 . . . kA2n

. . . . . . . . . . . .
kAm1 kAm2 . . . kAmn

2664
3775
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The case of matrix multiplication is less obvious, but still true. That is, suppose that U ¼ ½Uik � and
V ¼ ½Vkj� are block matrices such that the number of columns of each block Uik is equal to the number of
rows of each block Vkj. (Thus, each product UikVkj is defined.) Then

UV ¼
W11 W12 . . . W1n

W21 W22 . . . W2n

. . . . . . . . . . . .
Wm1 Wm2 . . . Wmn

2664
3775; where Wij ¼ Ui1V1j þ Ui2V2j þ � � � þ UipVpj

The proof of the above formula for UV is straightforward but detailed and lengthy. It is left as an exercise
(Problem 2.85).

Square Block Matrices

Let M be a block matrix. Then M is called a square block matrix if

(i) M is a square matrix.
(ii) The blocks form a square matrix.

(iii) The diagonal blocks are also square matrices.

The latter two conditions will occur if and only if there are the same number of horizontal and vertical
lines and they are placed symmetrically.

Consider the following two block matrices:

A ¼

1 2 3 4 5
1 1 1 1 1
9 8 7 6 5
4 4 4 4 4
3 5 3 5 3

266664
377775 and B ¼

1 2 3 4 5
1 1 1 1 1
9 8 7 6 5
4 4 4 4 4
3 5 3 5 3

266664
377775

The block matrix A is not a square block matrix, because the second and third diagonal blocks are not
square. On the other hand, the block matrix B is a square block matrix.

Block Diagonal Matrices

Let M ¼ ½Aij� be a square block matrix such that the nondiagonal blocks are all zero matrices; that is,
Aij ¼ 0 when i 6¼ j. Then M is called a block diagonal matrix. We sometimes denote such a block
diagonal matrix by writing

M ¼ diagðA11;A22; . . . ;ArrÞ or M ¼ A11 � A22 � � � � � Arr

The importance of block diagonal matrices is that the algebra of the block matrix is frequently reduced to
the algebra of the individual blocks. Specifically, suppose f ðxÞ is a polynomial and M is the above block
diagonal matrix. Then f ðMÞ is a block diagonal matrix, and

f ðMÞ ¼ diagð f ðA11Þ; f ðA22Þ; . . . ; f ðArrÞÞ
Also, M is invertible if and only if each Aii is invertible, and, in such a case, M
1 is a block diagonal
matrix, and

M
1 ¼ diagðA
1
11 ;A
1

22 ; . . . ;A
1
rr Þ

Analogously, a square block matrix is called a block upper triangular matrix if the blocks below the
diagonal are zero matrices and a block lower triangular matrix if the blocks above the diagonal are zero
matrices.
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EXAMPLE 2.17 Determine which of the following square block matrices are upper diagonal, lower
diagonal, or diagonal:

A ¼
1 2 0
3 4 5
0 0 6

24 35; B ¼
1 0 0 0
2 3 4 0
5 0 6 0
0 7 8 9

2664
3775; C ¼

1 0 0
0 2 3
0 4 5

24 35; D ¼
1 2 0
3 4 5
0 6 7

24 35
(a) A is upper triangular because the block below the diagonal is a zero block.

(b) B is lower triangular because all blocks above the diagonal are zero blocks.

(c) C is diagonal because the blocks above and below the diagonal are zero blocks.

(d) D is neither upper triangular nor lower triangular. Also, no other partitioning of D will make it into
either a block upper triangular matrix or a block lower triangular matrix.

SOLVED PROBLEMS

Matrix Addition and Scalar Multiplication

2.1 Given A ¼ 1 
2 3
4 5 
6

� �
and B ¼ 3 0 2


7 1 8

� �
, find:

(a) Aþ B, (b) 2A
 3B.

(a) Add the corresponding elements:

Aþ B ¼ 1þ 3 
2þ 0 3þ 2

4
 7 5þ 1 
6þ 8

� �
¼ 4 
2 5


3 6 2

� �
(b) First perform the scalar multiplication and then a matrix addition:

2A
 3B ¼ 2 
4 6

8 10 
12
� �

þ 
9 0 
6
21 
3 
24

� �
¼ 
7 
4 0

29 7 
36
� �

(Note that we multiply B by 
3 and then add, rather than multiplying B by 3 and subtracting. This usually
prevents errors.)

2.2. Find x; y; z; t where 3
x y
z t

� �
¼ x 6

1 2t

� �
þ 4 xþ y

zþ t 3

� �
:

Write each side as a single equation:

3x 3y

3z 3t

� �
¼ xþ 4 xþ yþ 6

zþ t
 1 2tþ 3

� �
Set corresponding entries equal to each other to obtain the following system of four equations:

3x ¼ xþ 4; 3y ¼ xþ yþ 6; 3z ¼ zþ t 
 1; 3t ¼ 2t þ 3

or 2x ¼ 4; 2y ¼ 6þ x; 2z ¼ t 
 1; t ¼ 3

The solution is x ¼ 2, y ¼ 4, z ¼ 1, t ¼ 3.

2.3. Prove Theorem 2.1 (i) and (v): (i) ðAþ BÞ þ C ¼ Aþ ðBþ CÞ, (v) kðAþ BÞ ¼ kAþ kB.
Suppose A ¼ ½aij�, B ¼ ½bij�, C ¼ ½cij�. The proof reduces to showing that corresponding ij-entries
in each side of each matrix equation are equal. [We prove only (i) and (v), because the other parts
of Theorem 2.1 are proved similarly.]
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(i) The ij-entry of Aþ B is aij þ bij; hence, the ij-entry of ðAþ BÞ þ C is ðaij þ bijÞ þ cij. On the other hand,
the ij-entry of Bþ C is bij þ cij; hence, the ij-entry of Aþ ðBþ CÞ is aij þ ðbij þ cijÞ. However, for
scalars in K,

ðaij þ bijÞ þ cij ¼ aij þ ðbij þ cijÞ
Thus, ðAþ BÞ þ C and Aþ ðBþ CÞ have identical ij-entries. Therefore, ðAþ BÞ þ C ¼ Aþ ðBþ CÞ.

(v) The ij-entry of Aþ B is aij þ bij; hence, kðaij þ bijÞ is the ij-entry of kðAþ BÞ. On the other hand, the ij-
entries of kA and kB are kaij and kbij, respectively. Thus, kaij þ kbij is the ij-entry of kAþ kB. However,
for scalars in K,

kðaij þ bijÞ ¼ kaij þ kbij

Thus, kðAþ BÞ and kAþ kB have identical ij-entries. Therefore, kðAþ BÞ ¼ kAþ kB.

Matrix Multiplication

2.4. Calculate: (a) ½8;
4; 5�
3
2

1

24 35, (b) ½6;
1; 7; 5�
4

9

3

2

2664
3775, (c) ½3; 8;
2; 4�

5

1

6

24 35
(a) Multiply the corresponding entries and add:

½8;
4; 5�
3
2

1

24 35 ¼ 8ð3Þ þ ð
4Þð2Þ þ 5ð
1Þ ¼ 24
 8
 5 ¼ 11

(b) Multiply the corresponding entries and add:

½6;
1; 7; 5�
4


9


3

2

26664
37775 ¼ 24þ 9
 21þ 10 ¼ 22

(c) The product is not defined when the row matrix and the column matrix have different numbers of elements.

2.5. Let ðr � sÞ denote an r � s matrix. Find the sizes of those matrix products that are defined:

(a) ð2� 3Þð3� 4Þ; (c) ð1� 2Þð3� 1Þ; (e) ð4� 4Þð3� 3Þ
(b) ð4� 1Þð1� 2Þ, (d) ð5� 2Þð2� 3Þ, (f) ð2� 2Þð2� 4Þ

In each case, the product is defined if the inner numbers are equal, and then the product will have the size of
the outer numbers in the given order.

(a) 2� 4, (c) not defined, (e) not defined

(b) 4� 2, (d) 5� 3, (f) 2� 4

2.6. Let A ¼ 1 3
2 
1

� �
and B ¼ 2 0 
4

3 
2 6

� �
. Find: (a) AB, (b) BA.

(a) Because A is a 2� 2 matrix and B a 2� 3 matrix, the product AB is defined and is a 2� 3 matrix. To

obtain the entries in the first row of AB, multiply the first row ½1; 3� of A by the columns

2
3

� �
;

0

2

� �
;

4

6

� �
of B, respectively, as follows:

AB ¼ 1 3
2 
1

� �
2 0 
4
3 
2 6

� �
¼ 2þ 9 0
 6 
4þ 18
� �

¼ 11 
6 14
� �
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To obtain the entries in the second row of AB, multiply the second row ½2;
1� of A by the columns of B:

AB ¼ 1 3

2 
1

� �
2 0 
4

3 
2 6

� �
¼ 11 
6 14

4
 3 0þ 2 
8
 6

� �
Thus,

AB ¼ 11 
6 14

1 2 
14

� �
:

(b) The size of B is 2� 3 and that of A is 2� 2. The inner numbers 3 and 2 are not equal; hence, the product
BA is not defined.

2.7. Find AB, where A ¼ 2 3 
1
4 
2 5

� �
and B ¼

2 
1 0 6
1 3 
5 1
4 1 
2 2

24 35.

Because A is a 2� 3 matrix and B a 3� 4 matrix, the product AB is defined and is a 2� 4 matrix. Multiply
the rows of A by the columns of B to obtain

AB ¼ 4þ 3
 4 
2þ 9
 1 0
 15þ 2 12þ 3
 2
8
 2þ 20 
4
 6þ 5 0þ 10
 10 24
 2þ 10

� �
¼ 3 6 
13 13

26 
5 0 32

� �
:

2.8. Find: (a)
1 6

3 5

� �
2

7

� �
, (b)

2

7

� �
1 6

3 5

� �
, (c) ½2;
7� 1 6


3 5

� �
.

(a) The first factor is 2� 2 and the second is 2� 1, so the product is defined as a 2� 1 matrix:

1 6

3 5

� �
2

7

� �
¼ 2
 42

6
 35

� �
¼ 
40

41

� �
(b) The product is not defined, because the first factor is 2� 1 and the second factor is 2� 2.

(c) The first factor is 1� 2 and the second factor is 2� 2, so the product is defined as a 1� 2 (row) matrix:

½2;
7� 1 6

3 5

� �
¼ ½2þ 21; 12
 35� ¼ ½23;
23�

2.9. Clearly, 0A ¼ 0 and A0 ¼ 0, where the 0’s are zero matrices (with possibly different sizes). Find
matrices A and B with no zero entries such that AB ¼ 0.

Let A ¼ 1 2
2 4

� �
and B ¼ 6 2


3 
1

� �
. Then AB ¼ 0 0

0 0

� �
.

2.10. Prove Theorem 2.2(i): ðABÞC ¼ AðBCÞ.
Let A ¼ ½aij�, B ¼ ½bjk �, C ¼ ½ckl�, and let AB ¼ S ¼ ½sik �, BC ¼ T ¼ ½tjl�. Then

sik ¼
Pm
j¼1

aijbjk and tjl ¼
Pn
k¼1

bjkckl

Multiplying S ¼ AB by C, the il-entry of ðABÞC is

si1c1l þ si2c2l þ � � � þ sincnl ¼
Pn
k¼1

sikckl ¼
Pn
k¼1

Pm
j¼1

ðaijbjkÞckl

On the other hand, multiplying A by T ¼ BC, the il-entry of AðBCÞ is

ai1t1l þ ai2t2l þ � � � þ aimtml ¼
Pm
j¼1

aijtjl ¼
Pm
j¼1

Pn
k¼1

aijðbjkcklÞ

The above sums are equal; that is, corresponding elements in ðABÞC and AðBCÞ are equal. Thus,
ðABÞC ¼ AðBCÞ.
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2.11. Prove Theorem 2.2(ii): AðBþ CÞ ¼ ABþ AC.

Let A ¼ ½aij�, B ¼ ½bjk �, C ¼ ½cjk �, and let D ¼ Bþ C ¼ ½djk �, E ¼ AB ¼ ½eik �, F ¼ AC ¼ ½ fik �. Then

djk ¼ bjk þ cjk ; eik ¼
Pm
j¼1

aijbjk ; fik ¼
Pm
j¼1

aijcjk

Thus, the ik-entry of the matrix ABþ AC is

eik þ fik ¼
Pm
j¼1

aijbjk þ
Pm
j¼1

aijcjk ¼
Pm
j¼1

aijðbjk þ cjkÞ

On the other hand, the ik-entry of the matrix AD ¼ AðBþ CÞ is

ai1d1k þ ai2d2k þ � � � þ aimdmk ¼
Pm
j¼1

aijdjk ¼
Pm
j¼1

aijðbjk þ cjkÞ

Thus, AðBþ CÞ ¼ ABþ AC, because the corresponding elements are equal.

Transpose

2.12. Find the transpose of each matrix:

A ¼ 1 
2 3
7 8 
9

� �
; B ¼

1 2 3
2 4 5
3 5 6

24 35; C ¼ ½1;
3; 5;
7�; D ¼
2

4

6

24 35
Rewrite the rows of each matrix as columns to obtain the transpose of the matrix:

AT ¼
1 7

2 8

3 
9

24 35; BT ¼
1 2 3
2 4 5
3 5 6

24 35; CT ¼
1

3

5

7

2664
3775; DT ¼ ½2;
4; 6�

(Note that BT ¼ B; such a matrix is said to be symmetric. Note also that the transpose of the row vector C is a
column vector, and the transpose of the column vector D is a row vector.)

2.13. Prove Theorem 2.3(iv): ðABÞT ¼ BT AT .

Let A ¼ ½aik � and B ¼ ½bkj�. Then the ij-entry of AB is

ai1b1j þ ai2b2j þ � � � þ aimbmj

This is the ji-entry (reverse order) of ðABÞT . Now column j of B becomes row j of BT , and row i of A becomes
column i of AT . Thus, the ij-entry of BT AT is

½b1j; b2j; . . . ; bmj�½ai1; ai2; . . . ; aim�T ¼ b1jai1 þ b2jai2 þ � � � þ bmjaim

Thus, ðABÞT ¼ BT AT on because the corresponding entries are equal.

Square Matrices

2.14. Find the diagonal and trace of each matrix:

(a) A ¼
1 3 6
2 
5 8
4 
2 9

24 35, (b) B ¼
2 4 8
3 
7 9

5 0 2

24 35, (c) C ¼ 1 2 
3
4 
5 6

� �
.

(a) The diagonal of A consists of the elements from the upper left corner of A to the lower right corner of A or,
in other words, the elements a11, a22, a33. Thus, the diagonal of A consists of the numbers 1;
5, and 9. The
trace of A is the sum of the diagonal elements. Thus,

trðAÞ ¼ 1
 5þ 9 ¼ 5

(b) The diagonal of B consists of the numbers 2;
7, and 2. Hence,

trðBÞ ¼ 2
 7þ 2 ¼ 
3

(c) The diagonal and trace are only defined for square matrices.
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2.15. Let A ¼ 1 2
4 
3

� �
, and let f ðxÞ ¼ 2x3 
 4xþ 5 and gðxÞ ¼ x2 þ 2xþ 11. Find

(a) A2, (b) A3, (c) f ðAÞ, (d) gðAÞ.

(a) A2 ¼ AA ¼ 1 2
4 
3

� �
1 2
4 
3

� �
¼ 1þ 8 2
 6

4
 12 8þ 9

� �
¼ 9 
4

8 17

� �
(b) A3 ¼ AA2 ¼ 1 2

4 
3

� �
9 
4

8 17

� �
¼ 9
 16 
4þ 34

36þ 24 
16
 51

� �
¼ 
7 30

60 
67

� �
(c) First substitute A for x and 5I for the constant in f ðxÞ, obtaining

f ðAÞ ¼ 2A3 
 4Aþ 5I ¼ 2

7 30
60 
67

� �

 4

1 2
4 
3

� �
þ 5

1 0
0 1

� �
Now perform the scalar multiplication and then the matrix addition:

f ðAÞ ¼ 
14 60
120 
134

� �
þ 
4 
8

16 12

� �
þ 5 0

0 5

� �
¼ 
13 52

104 
117

� �
(d) Substitute A for x and 11I for the constant in gðxÞ, and then calculate as follows:

gðAÞ ¼ A2 þ 2A
 11I ¼ 9 
4


8 17

� �
þ 2

1 2

4 
3

� �

 11

1 0

0 1

� �
¼ 9 
4


8 17

� �
þ 2 4

8 
6

� �
þ 
11 0

0 
11

� �
¼ 0 0

0 0

� �
Because gðAÞ is the zero matrix, A is a root of the polynomial gðxÞ.

2.16. Let A ¼ 1 3
4 
3

� �
. (a) Find a nonzero column vector u ¼ x

y

� �
such that Au ¼ 3u.

(b) Describe all such vectors.

(a) First set up the matrix equation Au ¼ 3u, and then write each side as a single matrix (column vector) as
follows:

1 3
4 
3

� �
x
y

� �
¼ 3

x
y

� �
; and then

xþ 3y
4x
 3y

� �
¼ 3x

3y

� �
Set the corresponding elements equal to each other to obtain a system of equations:

xþ 3y ¼ 3x
4x
 3y ¼ 3y

or
2x
 3y ¼ 0
4x
 6y ¼ 0

or 2x
 3y ¼ 0

The system reduces to one nondegenerate linear equation in two unknowns, and so has an infinite number
of solutions. To obtain a nonzero solution, let, say, y ¼ 2; then x ¼ 3. Thus, u ¼ ð3; 2ÞT is a desired
nonzero vector.

(b) To find the general solution, set y ¼ a, where a is a parameter. Substitute y ¼ a into 2x
 3y ¼ 0 to obtain
x ¼ 3

2 a. Thus, u ¼ ð32 a; aÞT represents all such solutions.

Invertible Matrices, Inverses

2.17. Show that A ¼
1 0 2
2 
1 3
4 1 8

24 35 and B ¼

11 2 2

4 0 1

6 
1 
1

24 35 are inverses.

Compute the product AB, obtaining

AB ¼

11þ 0þ 12 2þ 0
 2 2þ 0
 2

22þ 4þ 18 4þ 0
 3 4
 1
 3

44
 4þ 48 8þ 0
 8 8þ 1
 8

24 35 ¼ 1 0 0
0 1 0
0 0 1

24 35 ¼ I

Because AB ¼ I , we can conclude (Theorem 3.18) that BA ¼ I . Accordingly, A and B are inverses.
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2.18. Find the inverse, if possible, of each matrix:

(a) A ¼ 5 3
4 2

� �
; (b) B ¼ 2 
3

1 3

� �
; (c)


2 6
3 
9

� �
:

Use the formula for the inverse of a 2� 2 matrix appearing in Section 2.9.

(a) First find jAj ¼ 5ð2Þ 
 3ð4Þ ¼ 10
 12 ¼ 
2. Next interchange the diagonal elements, take the negatives
of the nondiagonal elements, and multiply by 1=jAj:

A
1 ¼ 
 1

2

2 
3

4 5

� �
¼ 
1 3

2

2 
 5
2

" #
(b) First find jBj ¼ 2ð3Þ 
 ð
3Þð1Þ ¼ 6þ 3 ¼ 9. Next interchange the diagonal elements, take the negatives

of the nondiagonal elements, and multiply by 1=jBj:

B
1 ¼ 1

9

3 3

1 2

� �
¼

1
3

1
3


 1
9

2
9

" #

(c) First find jCj ¼ 
2ð
9Þ 
 6ð3Þ ¼ 18
 18 ¼ 0. Because jCj ¼ 0;C has no inverse.

2.19. Let A ¼
1 1 1

0 1 2

1 2 4

2664
3775. Find A
1 ¼

x1 x2 x3

y1 y2 y3

z1 z2 z3

24 35.

Multiplying A by A
1 and setting the nine entries equal to the nine entries of the identity matrix I yields the
following three systems of three equations in three of the unknowns:

x1 þ y1 þ z1 ¼ 1 x2 þ y2 þ z2 ¼ 0 x3 þ y3 þ z3 ¼ 0

y1 þ 2z1 ¼ 0 y2 þ 2z2 ¼ 1 y3 þ 2z3 ¼ 0

x1 þ 2y1 þ 4z1 ¼ 0 x2 þ 2y2 þ 4z2 ¼ 0 x3 þ 2y3 þ 4z3 ¼ 1

[Note that A is the coefficient matrix for all three systems.]
Solving the three systems for the nine unknowns yields

x1 ¼ 0; y1 ¼ 2; z1 ¼ 
1; x2 ¼ 
2; y2 ¼ 3; z2 ¼ 
1; x3 ¼ 1; y3 ¼ 
2; z3 ¼ 1

Thus; A
1 ¼
0 
2 1

2 3 
2


1 
1 1

264
375

(Remark: Chapter 3 gives an efficient way to solve the three systems.)

2.20. Let A and B be invertible matrices (with the same size). Show that AB is also invertible and
ðABÞ
1 ¼ B
1A
1. [Thus, by induction, ðA1A2 . . .AmÞ
1 ¼ A
1

m . . .A
1
2 A
1

1 .]

Using the associativity of matrix multiplication, we get

ðABÞðB
1A
1Þ ¼ AðBB
1ÞA
1 ¼ AIA
1 ¼ AA
1 ¼ I

ðB
1A
1ÞðABÞ ¼ B
1ðA
1AÞB ¼ A
1IB ¼ B
1B ¼ I

Thus, ðABÞ
1 ¼ B
1A
1.
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Diagonal and Triangular Matrices

2.21. Write out the diagonal matrices A ¼ diagð4;
3; 7Þ, B ¼ diagð2;
6Þ, C ¼ diagð3;
8; 0; 5Þ.

Put the given scalars on the diagonal and 0’s elsewhere:

A ¼
4 0 0

0 
3 0

0 0 7

24 35; B ¼ 2 0

0 
6
� �

; C ¼
3


8
0

5

2664
3775

2.22. Let A ¼ diagð2; 3; 5Þ and B ¼ diagð7; 0;
4Þ. Find

(a) AB, A2, B2; (b) f ðAÞ, where f ðxÞ ¼ x2 þ 3x
 2; (c) A
1 and B
1.

(a) The product matrix AB is a diagonal matrix obtained by multiplying corresponding diagonal entries; hence,

AB ¼ diagð2ð7Þ; 3ð0Þ; 5ð
4ÞÞ ¼ diagð14; 0;
20Þ
Thus, the squares A2 and B2 are obtained by squaring each diagonal entry; hence,

A2 ¼ diagð22; 32; 52Þ ¼ diagð4; 9; 25Þ and B2 ¼ diagð49; 0; 16Þ
(b) f ðAÞ is a diagonal matrix obtained by evaluating f ðxÞ at each diagonal entry. We have

f ð2Þ ¼ 4þ 6
 2 ¼ 8; f ð3Þ ¼ 9þ 9
 2 ¼ 16; f ð5Þ ¼ 25þ 15
 2 ¼ 38

Thus, f ðAÞ ¼ diagð8; 16; 38Þ.
(c) The inverse of a diagonal matrix is a diagonal matrix obtained by taking the inverse (reciprocal)

of each diagonal entry. Thus, A
1 ¼ diagð12 ; 1
3 ;

1
5Þ, but B has no inverse because there is a 0 on the

diagonal.

2.23. Find a 2� 2 matrix A such that A2 is diagonal but not A.

Let A ¼ 1 2
3 
1

� �
. Then A2 ¼ 7 0

0 7

� �
, which is diagonal.

2.24. Find an upper triangular matrix A such that A3 ¼ 8 
57
0 27

� �
.

Set A ¼ x y
0 z

� �
. Then x3 ¼ 8, so x ¼ 2; and z3 ¼ 27, so z ¼ 3. Next calculate A3 using x ¼ 2 and y ¼ 3:

A2 ¼ 2 y
0 3

� �
2 y
0 3

� �
¼ 4 5y

0 9

� �
and A3 ¼ 2 y

0 3

� �
4 5y
0 9

� �
¼ 8 19y

0 27

� �

Thus, 19y ¼ 
57, or y ¼ 
3. Accordingly, A ¼ 2 
3
0 3

� �
.

2.25. Let A ¼ ½aij� and B ¼ ½bij� be upper triangular matrices. Prove that AB is upper triangular with
diagonal a11b11, a22b22; . . . ; annbnn.

Let AB ¼ ½cij�. Then cij ¼
Pn

k¼1 aikbkj and cii ¼
Pn

k¼1 aikbki. Suppose i > j. Then, for any k, either i > k or
k > j, so that either aik ¼ 0 or bkj ¼ 0. Thus, cij ¼ 0, and AB is upper triangular. Suppose i ¼ j. Then, for
k < i, we have aik ¼ 0; and, for k > i, we have bki ¼ 0. Hence, cii ¼ aiibii, as claimed. [This proves one part of
Theorem 2.5(i); the statements for Aþ B and kA are left as exercises.]
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Special Real Matrices: Symmetric and Orthogonal

2.26. Determine whether or not each of the following matrices is symmetric—that is, AT ¼ A—or
skew-symmetric—that is, AT ¼ 
A:

(a) A ¼
5 
7 1

7 8 2

1 2 
4

24 35; (b) B ¼
0 4 
3

4 0 5

3 
5 0

24 35; (c) C ¼ 0 0 0
0 0 0

� �

(a) By inspection, the symmetric elements (mirror images in the diagonal) are 
7 and 
7, 1 and 1, 2 and 2.
Thus, A is symmetric, because symmetric elements are equal.

(b) By inspection, the diagonal elements are all 0, and the symmetric elements, 4 and 
4, 
3 and 3, and 5 and

5, are negatives of each other. Hence, B is skew-symmetric.

(c) Because C is not square, C is neither symmetric nor skew-symmetric.

2.27. Suppose B ¼ 4 xþ 2
2x
 3 xþ 1

� �
is symmetric. Find x and B.

Set the symmetric elements xþ 2 and 2x
 3 equal to each other, obtaining 2x
 3 ¼ xþ 2 or x ¼ 5.

Hence, B ¼ 4 7
7 6

� �
.

2.28. Let A be an arbitrary 2� 2 (real) orthogonal matrix.

(a) Prove: If ða; bÞ is the first row of A, then a2 þ b2 ¼ 1 and

A ¼ a b

b a

� �
or A ¼ a b

b 
a

� �
:

(b) Prove Theorem 2.7: For some real number y,

A ¼ cos y sin y

 sin y cos y

� �
or A ¼ cos y sin y

sin y 
 cos y

� �
(a) Suppose ðx; yÞ is the second row of A. Because the rows of A form an orthonormal set, we get

a2 þ b2 ¼ 1; x2 þ y2 ¼ 1; axþ by ¼ 0

Similarly, the columns form an orthogonal set, so

a2 þ x2 ¼ 1; b2 þ y2 ¼ 1; abþ xy ¼ 0

Therefore, x2 ¼ 1
 a2 ¼ b2, whence x ¼ �b:
Case (i): x ¼ b. Then bðaþ yÞ ¼ 0, so y ¼ 
a.
Case (ii): x ¼ 
b. Then bðy
 aÞ ¼ 0, so y ¼ a.

This means, as claimed,

A ¼ a b

b a

� �
or A ¼ a b

b 
a

� �
(b) Because a2 þ b2 ¼ 1, we have 
1 � a � 1. Let a ¼ cos y. Then b2 ¼ 1
 cos2 y, so b ¼ sin y. This proves

the theorem.

2.29. Find a 2� 2 orthogonal matrix A whose first row is a (positive) multiple of ð3; 4Þ.
Normalize ð3; 4Þ to get ð35 ; 4

5Þ. Then, by Problem 2.28,

A ¼
3
5

4
5


 4
5

3
5

" #
or A ¼

3
5

4
5

4
5 
 3

5

" #
:

2.30. Find a 3� 3 orthogonal matrix P whose first two rows are multiples of u1 ¼ ð1; 1; 1Þ and
u2 ¼ ð0;
1; 1Þ, respectively. (Note that, as required, u1 and u2 are orthogonal.)

48 CHAPTER 2 Algebra of Matrices



First find a nonzero vector u3 orthogonal to u1 and u2; say (cross product) u3 ¼ u1 � u2 ¼ ð2;
1;
1Þ. Let A be
the matrix whose rows are u1; u2; u3; and let P be the matrix obtained from A by normalizing the rows of A. Thus,

A ¼
1 1 1

0 
1 1

2 
1 
1

264
375 and P ¼

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

0 
1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

2=
ffiffiffi
6
p 
1=

ffiffiffi
6
p 
1=

ffiffiffi
6
p

26664
37775

Complex Matrices: Hermitian and Unitary Matrices

2.31. Find AH where (a) A ¼ 3
 5i 2þ 4i
6þ 7i 1þ 8i

� �
, (b) A ¼

2
 3i 5þ 8i

4 3
 7i

6
 i 5i

24 35
Recall that AH ¼ �AT , the conjugate tranpose of A. Thus,

(a) AH ¼ 3þ 5i 6
 7i
2
 4i 1
 8i

� �
, (b) AH ¼ 2þ 3i 
4 
6þ i

5
 8i 3þ 7i 
5i

� �

2.32. Show that A ¼
1
3
 2

3 i 2
3 i


 2
3 i 
 1

3
 2
3 i

" #
is unitary.

The rows of A form an orthonormal set:

1

3

 2

3
i;

2

3
i

� �
� 1

3

 2

3
i;

2

3
i

� �
¼ 1

9
þ 4

9

� �
þ 4

9
¼ 1

1

3

 2

3
i;

2

3
i

� �
� 
 2

3
i;
 1

3

 2

3
i

� �
¼ 2

9
iþ 4

9

� �
þ 
 2

9
i
 4

9

� �
¼ 0


 2

3
i;
 1

3

 2

3
i

� �
� 
 2

3
i;
 1

3

 2

3
i

� �
¼ 4

9
þ 1

9
þ 4

9

� �
¼ 1

Thus, A is unitary.

2.33. Prove the complex analogue of Theorem 2.6: Let A be a complex matrix. Then the following are
equivalent: (i) A is unitary. (ii) The rows of A form an orthonormal set. (iii) The columns of A
form an orthonormal set.

(The proof is almost identical to the proof on page 37 for the case when A is a 3� 3 real matrix.)
First recall that the vectors u1; u2; . . . ; un in Cn form an orthonormal set if they are unit vectors and are

orthogonal to each other, where the dot product in Cn is defined by

ða1; a2; . . . ; anÞ � ðb1; b2; . . . ; bnÞ ¼ a1
�b1 þ a2

�b2 þ � � � þ an
�bn

Suppose A is unitary, and R1;R2; . . . ;Rn are its rows. Then �RT
1 ; �R

T
2 ; . . . ; �R

T
n are the columns of AH . Let

AAH ¼ ½cij�. By matrix multiplication, cij ¼ Ri
�RT

j ¼ Ri � Rj. Because A is unitary, we have AAH ¼ I . Multi-
plying A by AH and setting each entry cij equal to the corresponding entry in I yields the following n2

equations:

R1 � R1 ¼ 1; R2 � R2 ¼ 1; . . . ; Rn � Rn ¼ 1; and Ri � Rj ¼ 0; for i 6¼ j

Thus, the rows of A are unit vectors and are orthogonal to each other; hence, they form an orthonormal set of
vectors. The condition AT A ¼ I similarly shows that the columns of A also form an orthonormal set of vectors.
Furthermore, because each step is reversible, the converse is true. This proves the theorem.

Block Matrices

2.34. Consider the following block matrices (which are partitions of the same matrix):

(a)
1 
2 0 1 3
2 3 5 7 
2
3 1 4 5 9

24 35, (b)
1 
2 0 1 3
2 3 5 7 
2
3 1 4 5 9

24 35
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Find the size of each block matrix and also the size of each block.

(a) The block matrix has two rows of matrices and three columns of matrices; hence, its size is 2� 3. The
block sizes are 2� 2, 2� 2, and 2� 1 for the first row; and 1� 2, 1� 2, and 1� 1 for the second row.

(b) The size of the block matrix is 3� 2; and the block sizes are 1� 3 and 1� 2 for each of the three rows.

2.35. Compute AB using block multiplication, where

A ¼
1 2 1
3 4 0
0 0 2

24 35 and B ¼
1 2 3 1
4 5 6 1
0 0 0 1

24 35
Here A ¼ E F

01�2 G

� �
and B ¼ R S

01�3 T

� �
, where E;F;G;R; S;T are the given blocks, and 01�2 and 01�3

are zero matrices of the indicated sites. Hence,

AB ¼ ER ES þ FT
01�3 GT

� �
¼

½ 0 0 0�

9 12 15
19 26 33

� �
2

3
7

� �
þ 1

0

� �264
375 ¼ 9 12 15 4

19 26 33 7
0 0 0 2

24 35

2.36. Let M ¼ diagðA;B;CÞ, where A ¼ 1 2
3 4

� �
, B ¼ ½5�, C ¼ 1 3

5 7

� �
. Find M2.

Because M is block diagonal, square each block:

A2 ¼ 7 10
15 22

� �
; B2 ¼ ½25�; C2 ¼ 16 24

40 64

� �
;

so

M2 ¼

7 10
15 22

25
16 24
40 64

266664
377775

Miscellaneous Problem

2.37. Let f ðxÞ and gðxÞ be polynomials and let A be a square matrix. Prove

(a) ð f þ gÞðAÞ ¼ f ðAÞ þ gðAÞ,
(b) ð f � gÞðAÞ ¼ f ðAÞgðAÞ,
(c) f ðAÞgðAÞ ¼ gðAÞ f ðAÞ.
Suppose f ðxÞ ¼Pr

i¼1 aix
i and gðxÞ ¼Ps

j¼1 bjx
j.

(a) We can assume r ¼ s ¼ n by adding powers of x with 0 as their coefficients. Then

f ðxÞ þ gðxÞ ¼Pn
i¼1

ðai þ biÞxi

Hence, ð f þ gÞðAÞ ¼Pn
i¼1

ðai þ biÞAi ¼Pn
i¼1

ai A
i þPn

i¼1

biA
i ¼ f ðAÞ þ gðAÞ

(b) We have f ðxÞgðxÞ ¼P
i;j

aibjx
iþj. Then

f ðAÞgðAÞ ¼
 P

i
aiA

i

! P
j

bjA
j

 !
¼P

i;j
aibjA

iþj ¼ ð fgÞðAÞ

(c) Using f ðxÞgðxÞ ¼ gðxÞf ðxÞ, we have

f ðAÞgðAÞ ¼ ð fgÞðAÞ ¼ ðg f ÞðAÞ ¼ gðAÞ f ðAÞ
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SUPPLEMENTARY PROBLEMS

Algebra of Matrices

Problems 2.38–2.41 refer to the following matrices:

A ¼ 1 2
3 
4

� �
; B ¼ 5 0


6 7

� �
; C ¼ 1 
3 4

2 6 
5

� �
; D ¼ 3 7 
1

4 
8 9

� �

2.38. Find (a) 5A
 2B, (b) 2Aþ 3B, (c) 2C 
 3D.

2.39. Find (a) AB and ðABÞC, (b) BC and AðBCÞ. [Note that ðABÞC ¼ AðBCÞ.]

2.40. Find (a) A2 and A3, (b) AD and BD, (c) CD.

2.41. Find (a) AT , (b) BT , (c) ðABÞT , (d) AT BT . [Note that AT BT 6¼ ðABÞT .]
Problems 2.42 and 2.43 refer to the following matrices:

A ¼ 1 
1 2
0 3 4

� �
; B ¼ 4 0 
3


1 
2 3

� �
; C ¼

2 
3 0 1
5 
1 
4 2

1 0 0 3

24 35; D ¼
2

1

3

24 35:
2.42. Find (a) 3A
 4B, (b) AC, (c) BC, (d) AD, (e) BD, ( f ) CD.

2.43. Find (a) AT , (b) AT B, (c) AT C.

2.44. Let A ¼ 1 2
3 6

� �
. Find a 2� 3 matrix B with distinct nonzero entries such that AB ¼ 0.

2.45 Let e1 ¼ ½1; 0; 0�, e2 ¼ ½0; 1; 0�, e3 ¼ ½0; 0; 1�, and A ¼
a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

24 35. Find e1A, e2A, e3A.

2.46. Let ei ¼ ½0; . . . ; 0; 1; 0; . . . ; 0�, where 1 is the ith entry. Show

(a) eiA ¼ Ai, ith row of A. (c) If eiA ¼ eiB, for each i, then A ¼ B.

(b) BeT
j ¼ Bj, jth column of B. (d) If AeT

j ¼ BeT
j , for each j, then A ¼ B.

2.47. Prove Theorem 2.2(iii) and (iv): (iii) ðBþ CÞA ¼ BAþ CA, (iv) kðABÞ ¼ ðkAÞB ¼ AðkBÞ.

2.48. Prove Theorem 2.3: (i) ðAþ BÞT ¼ AT þ BT , (ii) ðAT ÞT ¼ A, (iii) ðkAÞT ¼ kAT .

2.49. Show (a) If A has a zero row, then AB has a zero row. (b) If B has a zero column, then AB has a
zero column.

Square Matrices, Inverses

2.50. Find the diagonal and trace of each of the following matrices:

(a) A ¼
2 
5 8
3 
6 
7
4 0 
1

24 35, (b) B ¼
1 3 
4
6 1 7
2 
5 
1

24 35, (c) C ¼ 4 3 
6
2 
5 0

� �

Problems 2.51–2.53 refer to A ¼ 2 
5
3 1

� �
, B ¼ 4 
2

1 
6

� �
, C ¼ 6 
4

3 
2

� �
.

2.51. Find (a) A2 and A3, (b) f ðAÞ and gðAÞ, where

f ðxÞ ¼ x3 
 2x2 
 5; gðxÞ ¼ x2 
 3xþ 17:
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2.52. Find (a) B2 and B3, (b) f ðBÞ and gðBÞ, where

f ðxÞ ¼ x2 þ 2x
 22; gðxÞ ¼ x2 
 3x
 6:

2.53. Find a nonzero column vector u such that Cu ¼ 4u.

2.54. Find the inverse of each of the following matrices (if it exists):

A ¼ 7 4
5 3

� �
; B ¼ 2 3

4 5

� �
; C ¼ 4 
6


2 3

� �
; D ¼ 5 
2

6 
3

� �

2.55. Find the inverses of A ¼
1 1 2
1 2 5
1 3 7

24 35 and B ¼
1 
1 1
0 1 
1
1 3 
2

24 35. [Hint: See Problem 2.19.]

2.56. Suppose A is invertible. Show that if AB ¼ AC, then B ¼ C. Give an example of a nonzero matrix
A such that AB ¼ AC but B 6¼ C.

2.57. Find 2� 2 invertible matrices A and B such that Aþ B 6¼ 0 and Aþ B is not invertible.

2.58. Show (a) A is invertible if and only if AT is invertible. (b) The operations of inversion and
transpose commute; that is, ðAT Þ
1 ¼ ðA
1ÞT . (c) If A has a zero row or zero column, then A is
not invertible.

Diagonal and triangular matrices

2.59. Let A ¼ diagð1; 2;
3Þ and B ¼ diagð2;
5; 0Þ. Find

(a) AB, A2, B2; (b) f ðAÞ, where f ðxÞ ¼ x2 þ 4x
 3; (c) A
1 and B
1.

2.60. Let A ¼ 1 2
0 1

� �
and B ¼

1 1 0
0 1 1
0 0 1

24 35. (a) Find An. (b) Find Bn.

2.61. Find all real triangular matrices A such that A2 ¼ B, where (a) B ¼ 4 21
0 25

� �
, (b) B ¼ 1 4

0 
9

� �
.

2.62. Let A ¼ 5 2
0 k

� �
. Find all numbers k for which A is a root of the polynomial:

(a) f ðxÞ ¼ x2 
 7xþ 10, (b) gðxÞ ¼ x2 
 25, (c) hðxÞ ¼ x2 
 4.

2.63. Let B ¼ 1 0
26 27

� �
: Find a matrix A such that A3 ¼ B.

2.64. Let B ¼
1 8 5
0 9 5
0 0 4

24 35. Find a triangular matrix A with positive diagonal entries such that A2 ¼ B.

2.65. Using only the elements 0 and 1, find the number of 3� 3 matrices that are (a) diagonal,
(b) upper triangular, (c) nonsingular and upper triangular. Generalize to n� n matrices.

2.66. Let Dk ¼ kI , the scalar matrix belonging to the scalar k. Show

(a) DkA ¼ kA, (b) BDk ¼ kB, (c) Dk þ Dk0 ¼ Dkþk0 , (d) DkDk0 ¼ Dkk 0

2.67. Suppose AB ¼ C, where A and C are upper triangular.

(a) Find 2� 2 nonzero matrices A;B;C, where B is not upper triangular.

(b) Suppose A is also invertible. Show that B must also be upper triangular.

52 CHAPTER 2 Algebra of Matrices



Special Types of Real Matrices

2.68. Find x; y; z such that A is symmetric, where

(a) A ¼
2 x 3
4 5 y
z 1 7

24 35, (b) A ¼
7 
6 2x
y z 
2
x 
2 5

24 35.

2.69. Suppose A is a square matrix. Show (a) Aþ AT is symmetric, (b) A
 AT is skew-symmetric,

(c) A ¼ Bþ C, where B is symmetric and C is skew-symmetric.

2.70. Write A ¼ 4 5
1 3

� �
as the sum of a symmetric matrix B and a skew-symmetric matrix C.

2.71. Suppose A and B are symmetric. Show that the following are also symmetric:

(a) Aþ B; (b) kA, for any scalar k; (c) A2;

(d) An, for n > 0; (e) f ðAÞ, for any polynomial f ðxÞ.

2.72. Find a 2� 2 orthogonal matrix P whose first row is a multiple of

(a) ð3;
4Þ, (b) ð1; 2Þ.

2.73. Find a 3� 3 orthogonal matrix P whose first two rows are multiples of

(a) ð1; 2; 3Þ and ð0;
2; 3Þ, (b) ð1; 3; 1Þ and ð1; 0;
1Þ.

2.74. Suppose A and B are orthogonal matrices. Show that AT , A
1, AB are also orthogonal.

2.75. Which of the following matrices are normal? A ¼ 3 
4
4 3

� �
, B ¼ 1 
2

2 3

� �
, C ¼

1 1 1
0 1 1
0 0 1

24 35.

Complex Matrices

2.76. Find real numbers x; y; z such that A is Hermitian, where A ¼
3 xþ 2i yi

3
 2i 0 1þ zi
yi 1
 xi 
1

24 35:
2.77. Suppose A is a complex matrix. Show that AAH and AH A are Hermitian.

2.78. Let A be a square matrix. Show that (a) Aþ AH is Hermitian, (b) A
 AH is skew-Hermitian,
(c) A ¼ Bþ C, where B is Hermitian and C is skew-Hermitian.

2.79. Determine which of the following matrices are unitary:

A ¼ i=2 
 ffiffiffi
3
p

=2ffiffiffi
3
p

=2 
i=2

� �
; B ¼ 1

2

1þ i 1
 i
1
 i 1þ i

� �
; C ¼ 1

2

1 
i 
1þ i
i 1 1þ i

1þ i 
1þ i 0

24 35
2.80. Suppose A and B are unitary. Show that AH , A
1, AB are unitary.

2.81. Determine which of the following matrices are normal: A ¼ 3þ 4i 1
i 2þ 3i

� �
and

B ¼ 1 0
1
 i i

� �
.
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Block Matrices

2.82. Let U ¼
1 2 0 0 0
3 4 0 0 0
0 0 5 1 2
0 0 3 4 1

2664
3775 and V ¼

3 
2 0 0
2 4 0 0
0 0 1 2
0 0 2 
3
0 0 
4 1

266664
377775.

(a) Find UV using block multiplication. (b) Are U and V block diagonal matrices?

(c) Is UV block diagonal?

2.83. Partition each of the following matrices so that it becomes a square block matrix with as many
diagonal blocks as possible:

A ¼
1 0 0
0 0 2
0 0 3

24 35; B ¼

1 2 0 0 0
3 0 0 0 0
0 0 4 0 0
0 0 5 0 0
0 0 0 0 6

266664
377775; C ¼

0 1 0
0 0 0
2 0 0

24 35

2.84. Find M2 and M3 for (a) M ¼
2 0 0 0
0 1 4 0
0 2 1 0
0 0 0 3

2664
3775, (b) M ¼

1 1 0 0
2 3 0 0
0 0 1 2
0 0 4 5

2664
3775.

2.85. For each matrix M in Problem 2.84, find f ðMÞ where f ðxÞ ¼ x2 þ 4x
 5.

2.86. Suppose U ¼ ½Uik � and V ¼ ½Vkj� are block matrices for which UV is defined and the number of
columns of each block Uik is equal to the number of rows of each block Vkj. Show that UV ¼ ½Wij�,
where Wij ¼

P
k UikVkj.

2.87. Suppose M and N are block diagonal matrices where corresponding blocks have the same size,
say M ¼ diagðAiÞ and N ¼ diagðBiÞ. Show

(i) M þ N ¼ diagðAi þ BiÞ, (iii) MN ¼ diagðAiBiÞ,
(ii) kM ¼ diagðkAiÞ, (iv) f ðMÞ ¼ diagð f ðAiÞÞ for any polynomial f ðxÞ.

ANSWERS TO SUPPLEMENTARY PROBLEMS

Notation: A ¼ ½R1; R2; . . .� denotes a matrix A with rows R1;R2; . . . .

2.38. (a) ½
5; 10; 27;
34�, (b) ½17; 4; 
12; 13�, (c) ½
7;
27; 11; 
8; 36;
37�

2.39. (a) ½
7; 14; 39;
28�, ½21; 105;
98; 
17;
285; 296�
(b) ½5;
15; 20; 8; 60;
59�, ½21; 105;
98; 
17;
285; 296�

2.40. (a) ½7;
6; 
9; 22�, ½
11; 38; 57;
106�;
(b) ½11;
9; 17; 
7; 53;
39�, ½15; 35;
5; 10;
98; 69�; (c) not defined

2.41. (a) ½1; 3; 2;
4�, (b) ½5;
6; 0; 7�, (c) ½
7; 39; 14;
28�; (d) ½5; 15; 10;
40�

2.42. (a) ½
13;
3; 18; 4; 17; 0�, (b) ½
5;
2; 4; 5; 11;
3;
12; 18�,
(c) ½11;
12; 0;
5; 
15; 5; 8; 4�, (d) ½9; 9�, (e) ½
1; 9�, (f ) not defined
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2.43. (a) ½1; 0; 
1; 3; 2; 4�, (b) ½4; 0;
3; 
7;
6; 12; 4;
8; 6], (c) not defined

2.44. ½2; 4; 6; 
1;
2;
3�

2.45. ½a1; a2; a3; a4�, ½b1; b2; b3; b4�, ½c1; c2; c3; c4�

2.50. (a) 2;
6;
1; trðAÞ ¼ 
5, (b) 1; 1;
1; trðBÞ ¼ 1, (c) not defined

2.51. (a) ½
11;
15; 9;
14�, ½
67; 40; 
24;
59�, (b) ½
50; 70; 
42;
36�, gðAÞ ¼ 0

2.52. (a) ½14; 4; 
2; 34�, ½60;
52; 26;
200�, (b) f ðBÞ ¼ 0, ½
4; 10; 
5; 46�

2.53. u ¼ ½2a; a�T

2.54. ½3;
4; 
5; 7�, ½
 5
2 ;

3
2; 2;
1�, not defined, ½1;
 2

3; 2;
 5
3�

2.55. ½1; 1;
1; 2;
5; 3; 
1; 2;
1�, ½1; 1; 0; 
1;
3; 1; 
1;
4; 1�

2.56. A ¼ ½1; 2; 1; 2�, B ¼ ½0; 0; 1; 1�, C ¼ ½2; 2; 0; 0�

2.57. A ¼ ½1; 2; 0; 3�; B ¼ ½4; 3; 3; 0�

2.58. (c) Hint: Use Problem 2.48

2.59. (a) AB ¼ diagð2;
10; 0Þ, A2 ¼ diagð1; 4; 9Þ, B2 ¼ diagð4; 25; 0Þ;
(b) f ðAÞ ¼ diagð2; 9;
6Þ; (c) A
1 ¼ diagð1; 1

2 ;
 1
3Þ, 
1 does not exist

2.60. (a) ½1; 2n; 0; 1�, (b) ½1; n; 1
2 nðn
 1Þ; 0; 1; n; 0; 0; 1�

2.61. (a) ½2; 3; 0; 5�, ½
2;
3; 0;
5�, ½2;
7; 0;
5�, ½
2; 7; 0; 5�, (b) none

2.62. (a) k ¼ 2, (b) k ¼ 
5, (c) none

2.63. ½1; 0; 2; 3�

2.64. ½1; 2; 1; 0; 3; 1; 0; 0; 2�

2.65. All entries below the diagonal must be 0 to be upper triangular, and all diagonal entries must be 1
to be nonsingular.

(a) 8 ð2nÞ, (b) 26 ð2nðnþ1Þ=2Þ, (c) 23 ð2nðn
1Þ=2Þ

2.67. (a) A ¼ ½1; 1; 0; 0�, B ¼ ½1; 2; 3; 4�, C ¼ ½4; 6; 0; 0�

2.68. (a) x ¼ 4, y ¼ 1, z ¼ 3; (b) x ¼ 0, y ¼ 
6, z any real number

2.69. (c) Hint: Let B ¼ 1
2 ðAþ AT Þ and C ¼ 1

2 ðA
 AT Þ:

2.70. B ¼ ½4; 3; 3; 3�, C ¼ ½0; 2; 
2; 0�

2.72. (a) ½35, 
 4
5;

4
5,

3
5], (b) ½1= ffiffiffi

5
p

, 2=
ffiffiffi
5
p

; 2=
ffiffiffi
5
p

, 
1=
ffiffiffi
5
p �

2.73. (a) ½1= ffiffiffiffiffi
14
p

, 2=
ffiffiffiffiffi
14
p

, 3=
ffiffiffiffiffi
14
p

; 0;
2=
ffiffiffiffiffi
13
p

, 3=
ffiffiffiffiffi
13
p

; 12=
ffiffiffiffiffiffiffiffi
157
p

, 
3=
ffiffiffiffiffiffiffiffi
157
p

, 
2=
ffiffiffiffiffiffiffiffi
157
p �

(b) ½1= ffiffiffiffiffi
11
p

, 3=
ffiffiffiffiffi
11
p

, 1=
ffiffiffiffiffi
11
p

; 1=
ffiffiffi
2
p

, 0;
1=
ffiffiffi
2
p

; 3=
ffiffiffiffiffi
22
p

, 
2=
ffiffiffiffiffi
22
p

, 3=
ffiffiffiffiffi
22
p �

2.75. A;C
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2.76. x ¼ 3, y ¼ 0, z ¼ 3

2.78. (c) Hint: Let B ¼ 1
2 ðAþ AHÞ and C ¼ 1

2 ðA
 AHÞ.

2.79. A;B;C

2.81. A

2.82. (a) UV ¼ diagð½7; 6; 17; 10�; ½
1; 9; 7;
5�); (b) no; (c) yes

2.83. A: line between first and second rows (columns);

B: line between second and third rows (columns) and between fourth and fifth rows (columns);

C: C itself—no further partitioning of C is possible.

2.84. (a) M2 ¼ diagð½4�, ½9; 8; 4; 9�, ½9�Þ,
M3 ¼ diagð½8�; ½25; 44; 22; 25�, ½27�Þ

(b) M2 ¼ diagð½3; 4; 8; 11�, ½9; 12; 24; 33�Þ
M3 ¼ diagð½11; 15; 30; 41�, ½57; 78; 156; 213�Þ

2.85. (a) diagð½7�, ½8; 24; 12; 8�, ½16�Þ, (b) diagð½2; 8; 16; 181], ½8; 20; 40; 48�Þ
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Systems of Linear
Equations

3.1 Introduction

Systems of linear equations play an important and motivating role in the subject of linear algebra. In fact,
many problems in linear algebra reduce to finding the solution of a system of linear equations. Thus, the
techniques introduced in this chapter will be applicable to abstract ideas introduced later. On the other
hand, some of the abstract results will give us new insights into the structure and properties of systems of
linear equations.

All our systems of linear equations involve scalars as both coefficients and constants, and such scalars
may come from any number field K. There is almost no loss in generality if the reader assumes that all
our scalars are real numbers—that is, that they come from the real field R.

3.2 Basic Definitions, Solutions

This section gives basic definitions connected with the solutions of systems of linear equations. The
actual algorithms for finding such solutions will be treated later.

Linear Equation and Solutions

A linear equation in unknowns x1; x2; . . . ; xn is an equation that can be put in the standard form

a1x1 þ a2x2 þ � � � þ anxn ¼ b ð3:1Þ
where a1; a2; . . . ; an, and b are constants. The constant ak is called the coefficient of xk , and b is called the
constant term of the equation.

A solution of the linear equation (3.1) is a list of values for the unknowns or, equivalently, a vector u in
Kn, say

x1 ¼ k1; x2 ¼ k2; . . . ; xn ¼ kn or u ¼ ðk1; k2; . . . ; knÞ
such that the following statement (obtained by substituting ki for xi in the equation) is true:

a1k1 þ a2k2 þ � � � þ ankn ¼ b

In such a case we say that u satisfies the equation.

Remark: Equation (3.1) implicitly assumes there is an ordering of the unknowns. In order to avoid
subscripts, we will usually use x; y for two unknowns; x; y; z for three unknowns; and x; y; z; t for four
unknowns; they will be ordered as shown.
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EXAMPLE 3.1 Consider the following linear equation in three unknowns x; y; z:

xþ 2y
 3z ¼ 6

We note that x ¼ 5; y ¼ 2; z ¼ 1, or, equivalently, the vector u ¼ ð5; 2; 1Þ is a solution of the equation. That is,

5þ 2ð2Þ 
 3ð1Þ ¼ 6 or 5þ 4
 3 ¼ 6 or 6 ¼ 6

On the other hand, w ¼ ð1; 2; 3Þ is not a solution, because on substitution, we do not get a true statement:

1þ 2ð2Þ 
 3ð3Þ ¼ 6 or 1þ 4
 9 ¼ 6 or 
 4 ¼ 6

System of Linear Equations

A system of linear equations is a list of linear equations with the same unknowns. In particular, a system
of m linear equations L1; L2; . . . ;Lm in n unknowns x1; x2; . . . ; xn can be put in the standard form

a11x1 þ a12x2 þ � � � þ a1nxn ¼ b1

a21x1 þ a22x2 þ � � � þ a2nxn ¼ b2 ð3:2Þ
:::::::::::::::::::::::::::::::::::::::::::::::::::

am1x1 þ am2x2 þ � � � þ amnxn ¼ bm

where the aij and bi are constants. The number aij is the coefficient of the unknown xj in the equation Li,
and the number bi is the constant of the equation Li.

The system (3.2) is called an m� n (read: m by n) system. It is called a square system if m ¼ n—that
is, if the number m of equations is equal to the number n of unknowns.

The system (3.2) is said to be homogeneous if all the constant terms are zero—that is, if b1 ¼ 0,
b2 ¼ 0; . . . ; bm ¼ 0. Otherwise the system is said to be nonhomogeneous.

A solution (or a particular solution) of the system (3.2) is a list of values for the unknowns or,
equivalently, a vector u in Kn, which is a solution of each of the equations in the system. The set of all
solutions of the system is called the solution set or the general solution of the system.

EXAMPLE 3.2 Consider the following system of linear equations:

x1 þ x2 þ 4x3 þ 3x4 ¼ 5

2x1 þ 3x2 þ x3 
 2x4 ¼ 1

x1 þ 2x2 
 5x3 þ 4x4 ¼ 3

It is a 3� 4 system because it has three equations in four unknowns. Determine whether (a) u ¼ ð
8; 6; 1; 1Þ and
(b) v ¼ ð
10; 5; 1; 2Þ are solutions of the system.

(a) Substitute the values of u in each equation, obtaining


8þ 6þ 4ð1Þ þ 3ð1Þ ¼ 5 or 
8þ 6þ 4þ 3 ¼ 5 or 5 ¼ 5
2ð
8Þ þ 3ð6Þ þ 1
 2ð1Þ ¼ 1 or 
16þ 18þ 1
 2 ¼ 1 or 1 ¼ 1

8þ 2ð6Þ 
 5ð1Þ þ 4ð1Þ ¼ 3 or 
8þ 12
 5þ 4 ¼ 3 or 3 ¼ 3

Yes, u is a solution of the system because it is a solution of each equation.

(b) Substitute the values of v into each successive equation, obtaining


10þ 5þ 4ð1Þ þ 3ð2Þ ¼ 5 or 
10þ 5þ 4þ 6 ¼ 5 or 5 ¼ 5
2ð
10Þ þ 3ð5Þ þ 1
 2ð2Þ ¼ 1 or 
20þ 15þ 1
 4 ¼ 1 or 
8 ¼ 1

No, v is not a solution of the system, because it is not a solution of the second equation. (We do not need to
substitute v into the third equation.)
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The system (3.2) of linear equations is said to be consistent if it has one or more solutions, and it is
said to be inconsistent if it has no solution. If the field K of scalars is infinite, such as when K is the real
field R or the complex field C, then we have the following important result.

THEOREM 3.1: Suppose the field K is infinite. Then any system l of linear equations has
(i) a unique solution, (ii) no solution, or (iii) an infinite number of solutions.

This situation is pictured in Fig. 3-1. The three cases have a geometrical description when the system
l consists of two equations in two unknowns (Section 3.4).

Augmented and Coefficient Matrices of a System

Consider again the general system (3.2) of m equations in n unknowns. Such a system has associated with
it the following two matrices:

M ¼
a11 a12 . . . a1n b1

a21 a22 . . . a2n b2

:::::::::::::::::::::::::::::::::::::::
am1 am2 . . . amn bn

2664
3775 and A ¼

a11 a12 . . . a1n

a21 a22 . . . a2n

:::::::::::::::::::::::::::::::
am1 am2 . . . amn

2664
3775

The first matrix M is called the augmented matrix of the system, and the second matrix A is called the
coefficient matrix.

The coefficient matrix A is simply the matrix of coefficients, which is the augmented matrix M without
the last column of constants. Some texts write M ¼ ½A;B� to emphasize the two parts of M , where B
denotes the column vector of constants. The augmented matrix M and the coefficient matrix A of the
system in Example 3.2 are as follows:

M ¼
1 1 4 3 5
2 3 1 
2 1
1 2 
5 4 3

24 35 and A ¼
1 1 4 3
2 3 1 
2
1 2 
5 4

24 35
As expected, A consists of all the columns of M except the last, which is the column of constants.

Clearly, a system of linear equations is completely determined by its augmented matrix M , and vice
versa. Specifically, each row of M corresponds to an equation of the system, and each column of M
corresponds to the coefficients of an unknown, except for the last column, which corresponds to the
constants of the system.

Degenerate Linear Equations

A linear equation is said to be degenerate if all the coefficients are zero—that is, if it has the form

0x1 þ 0x2 þ � � � þ 0xn ¼ b ð3:3Þ

Figure 3-1
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The solution of such an equation depends only on the value of the constant b. Specifically,

(i) If b 6¼ 0, then the equation has no solution.

(ii) If b ¼ 0, then every vector u ¼ ðk1; k2; . . . ; knÞ in Kn is a solution.

The following theorem applies.

THEOREM 3.2: Let l be a system of linear equations that contains a degenerate equation L, say with
constant b.

(i) If b 6¼ 0, then the system l has no solution.

(ii) If b ¼ 0, then L may be deleted from the system without changing the solution
set of the system.

Part (i) comes from the fact that the degenerate equation has no solution, so the system has no solution.
Part (ii) comes from the fact that every element in Kn is a solution of the degenerate equation.

Leading Unknown in a Nondegenerate Linear Equation

Now let L be a nondegenerate linear equation. This means one or more of the coefficients of L are not
zero. By the leading unknown of L, we mean the first unknown in L with a nonzero coefficient. For
example, x3 and y are the leading unknowns, respectively, in the equations

0x1 þ 0x2 þ 5x3 þ 6x4 þ 0x5 þ 8x6 ¼ 7 and 0xþ 2y
 4z ¼ 5

We frequently omit terms with zero coefficients, so the above equations would be written as

5x3 þ 6x4 þ 8x6 ¼ 7 and 2y
 4z ¼ 5

In such a case, the leading unknown appears first.

3.3 Equivalent Systems, Elementary Operations

Consider the system (3.2) of m linear equations in n unknowns. Let L be the linear equation obtained by
multiplying the m equations by constants c1; c2; . . . ; cm, respectively, and then adding the resulting
equations. Specifically, let L be the following linear equation:

ðc1a11 þ � � � þ cmam1Þx1 þ � � � þ ðc1a1n þ � � � þ cmamnÞxn ¼ c1b1 þ � � � þ cmbm

Then L is called a linear combination of the equations in the system. One can easily show (Problem 3.43)
that any solution of the system (3.2) is also a solution of the linear combination L.

EXAMPLE 3.3 Let L1, L2, L3 denote, respectively, the three equations in Example 3.2. Let L be the
equation obtained by multiplying L1, L2, L3 by 3;
2; 4, respectively, and then adding. Namely,

3L1: 3x1 þ 3x2 þ 12x3 þ 9x4 ¼ 15

2L2: 
4x1 
 6x2 
 2x3 þ 4x4 ¼ 
2

4L1: 4x1 þ 8x2 
 20x3 þ 16x4 ¼ 12

ðSumÞ L: 3x1 þ 5x2 
 10x3 þ 29x4 ¼ 25
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Then L is a linear combination of L1, L2, L3. As expected, the solution u ¼ ð
8; 6; 1; 1Þ of the system is also a
solution of L. That is, substituting u in L, we obtain a true statement:

3ð
8Þ þ 5ð6Þ 
 10ð1Þ þ 29ð1Þ ¼ 25 or 
24þ 30
 10þ 29 ¼ 25 or 9 ¼ 9

The following theorem holds.

THEOREM 3.3: Two systems of linear equations have the same solutions if and only if each equation in
each system is a linear combination of the equations in the other system.

Two systems of linear equations are said to be equivalent if they have the same solutions. The next
subsection shows one way to obtain equivalent systems of linear equations.

Elementary Operations

The following operations on a system of linear equations L1; L2; . . . ;Lm are called elementary operations.

½E1� Interchange two of the equations. We indicate that the equations Li and Lj are interchanged by
writing:

‘‘Interchange Li and Lj’’ or ‘‘Li  ! Lj’’

½E2� Replace an equation by a nonzero multiple of itself. We indicate that equation Li is replaced by kLi

(where k 6¼ 0) by writing

‘‘Replace Li by kLi’’ or ‘‘kLi ! Li’’

½E3� Replace an equation by the sum of a multiple of another equation and itself. We indicate that
equation Lj is replaced by the sum of kLi and Lj by writing

‘‘Replace Lj by kLi þ Lj’’ or ‘‘kLi þ Lj ! Lj’’

The arrow ! in ½E2� and ½E3� may be read as ‘‘replaces.’’

The main property of the above elementary operations is contained in the following theorem (proved
in Problem 3.45).

THEOREM 3.4: Suppose a system of m of linear equations is obtained from a system l of linear
equations by a finite sequence of elementary operations. Then m and l have the same
solutions.

Remark: Sometimes (say to avoid fractions when all the given scalars are integers) we may apply
½E2� and ½E3� in one step; that is, we may apply the following operation:

½E� Replace equation Lj by the sum of kLi and k 0Lj (where k0 6¼ 0), written

‘‘Replace Lj by kLi þ k 0Lj’’ or ‘‘kLi þ k 0Lj ! Lj’’

We emphasize that in operations ½E3� and [E], only equation Lj is changed.

Gaussian elimination, our main method for finding the solution of a given system of linear
equations, consists of using the above operations to transform a given system into an equivalent
system whose solution can be easily obtained.

The details of Gaussian elimination are discussed in subsequent sections.

3.4 Small Square Systems of Linear Equations

This section considers the special case of one equation in one unknown, and two equations in two
unknowns. These simple systems are treated separately because their solution sets can be described
geometrically, and their properties motivate the general case.
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Linear Equation in One Unknown

The following simple basic result is proved in Problem 3.5.

THEOREM 3.5: Consider the linear equation ax ¼ b.

(i) If a 6¼ 0, then x ¼ b=a is a unique solution of ax ¼ b.

(ii) If a ¼ 0, but b 6¼ 0, then ax ¼ b has no solution.

(iii) If a ¼ 0 and b ¼ 0, then every scalar k is a solution of ax ¼ b.

EXAMPLE 3.4 Solve (a) 4x
 1 ¼ xþ 6, (b) 2x
 5
 x ¼ xþ 3, (c) 4þ x
 3 ¼ 2xþ 1
 x.

(a) Rewrite the equation in standard form obtaining 3x ¼ 7. Then x ¼ 7
3 is the unique solution [Theorem 3.5(i)].

(b) Rewrite the equation in standard form, obtaining 0x ¼ 8. The equation has no solution [Theorem 3.5(ii)].

(c) Rewrite the equation in standard form, obtaining 0x ¼ 0. Then every scalar k is a solution [Theorem 3.5(iii)].

System of Two Linear Equations in Two Unknowns (2�2 System)

Consider a system of two nondegenerate linear equations in two unknowns x and y, which can be put in
the standard form

A1xþ B1y ¼ C1

A2xþ B2y ¼ C2

ð3:4Þ

Because the equations are nondegenerate, A1 and B1 are not both zero, and A2 and B2 are not both zero.
The general solution of the system (3.4) belongs to one of three types as indicated in Fig. 3-1. If R is

the field of scalars, then the graph of each equation is a line in the plane R2 and the three types may be
described geometrically as pictured in Fig. 3-2. Specifically,

(1) The system has exactly one solution.
Here the two lines intersect in one point [Fig. 3-2(a)]. This occurs when the lines have distinct
slopes or, equivalently, when the coefficients of x and y are not proportional:

A1

A2

6¼ B1

B2

or; equivalently; A1B2 
 A2B1 6¼ 0

For example, in Fig. 3-2(a), 1=3 6¼ 
1=2.

y

L1

x

L2

0–3 3

–3

3

L x y
L x y

1

2

: – = –1
: 3 + 2 = 12

6

y

( )b

L1

x

L2

0 3

–3

3

L x y
L x y

1

2

: + 3 = 3
: 2 + 6 = –8

6

–3

y
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L L1 2and

x0 3

–3

3

L x y
L x y

1
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6

–3

Figure 3-2
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(2) The system has no solution.
Here the two lines are parallel [Fig. 3-2(b)]. This occurs when the lines have the same slopes but
different y intercepts, or when

A1

A2

¼ B1

B2

6¼ C1

C2

For example, in Fig. 3-2(b), 1=2 ¼ 3=6 6¼ 
3=8.

(3) The system has an infinite number of solutions.
Here the two lines coincide [Fig. 3-2(c)]. This occurs when the lines have the same slopes and same
y intercepts, or when the coefficients and constants are proportional,

A1

A2

¼ B1

B2

¼ C1

C2

For example, in Fig. 3-2(c), 1=2 ¼ 2=4 ¼ 4=8.

Remark: The following expression and its value is called a determinant of order two:

A1 B1

A2 B2

���� ���� ¼ A1B2 
 A2B1

Determinants will be studied in Chapter 8. Thus, the system (3.4) has a unique solution if and only if the
determinant of its coefficients is not zero. (We show later that this statement is true for any square system
of linear equations.)

Elimination Algorithm

The solution to system (3.4) can be obtained by the process of elimination, whereby we reduce the system
to a single equation in only one unknown. Assuming the system has a unique solution, this elimination
algorithm has two parts.

ALGORITHM 3.1: The input consists of two nondegenerate linear equations L1 and L2 in two
unknowns with a unique solution.

Part A. (Forward Elimination) Multiply each equation by a constant so that the resulting coefficients of
one unknown are negatives of each other, and then add the two equations to obtain a new
equation L that has only one unknown.

Part B. (Back-Substitution) Solve for the unknown in the new equation L (which contains only one
unknown), substitute this value of the unknown into one of the original equations, and then
solve to obtain the value of the other unknown.

Part A of Algorithm 3.1 can be applied to any system even if the system does not have a unique
solution. In such a case, the new equation L will be degenerate and Part B will not apply.

EXAMPLE 3.5 (Unique Case). Solve the system

L1: 2x
 3y ¼ 
8

L2: 3xþ 4y ¼ 5

The unknown x is eliminated from the equations by forming the new equation L ¼ 
3L1 þ 2L2. That is, we
multiply L1 by 
3 and L2 by 2 and add the resulting equations as follows:


3L1: 
6xþ 9y ¼ 24
2L2: 6xþ 8y ¼ 10

Addition : 17y ¼ 34
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We now solve the new equation for y, obtaining y ¼ 2. We substitute y ¼ 2 into one of the original equations, say
L1, and solve for the other unknown x, obtaining

2x
 3ð2Þ ¼ 
8 or 2x
 6 ¼ 8 or 2x ¼ 
2 or x ¼ 
1

Thus, x ¼ 
1, y ¼ 2, or the pair u ¼ ð
1; 2Þ is the unique solution of the system. The unique solution is expected,
because 2=3 6¼ 
3=4. [Geometrically, the lines corresponding to the equations intersect at the point ð
1; 2Þ.]

EXAMPLE 3.6 (Nonunique Cases)

(a) Solve the system

L1: x
 3y ¼ 4

L2: 
2xþ 6y ¼ 5

We eliminated x from the equations by multiplying L1 by 2 and adding it to L2—that is, by forming the new
equation L ¼ 2L1 þ L2. This yields the degenerate equation

0xþ 0y ¼ 13

which has a nonzero constant b ¼ 13. Thus, this equation and the system have no solution. This is expected,
because 1=ð
2Þ ¼ 
3=6 6¼ 4=5. (Geometrically, the lines corresponding to the equations are parallel.)

(b) Solve the system

L1: x
 3y ¼ 4

L2: 
2xþ 6y ¼ 
8

We eliminated x from the equations by multiplying L1 by 2 and adding it to L2—that is, by forming the new
equation L ¼ 2L1 þ L2. This yields the degenerate equation

0xþ 0y ¼ 0

where the constant term is also zero. Thus, the system has an infinite number of solutions, which correspond to
the solutions of either equation. This is expected, because 1=ð
2Þ ¼ 
3=6 ¼ 4=ð
8Þ. (Geometrically, the lines
corresponding to the equations coincide.)

To find the general solution, let y ¼ a, and substitute into L1 to obtain

x
 3a ¼ 4 or x ¼ 3aþ 4

Thus, the general solution of the system is

x ¼ 3aþ 4; y ¼ a or u ¼ ð3aþ 4; aÞ
where a (called a parameter) is any scalar.

3.5 Systems in Triangular and Echelon Forms

The main method for solving systems of linear equations, Gaussian elimination, is treated in Section 3.6.
Here we consider two simple types of systems of linear equations: systems in triangular form and the
more general systems in echelon form.

Triangular Form

Consider the following system of linear equations, which is in triangular form:

2x1 
 3x2 þ 5x3 
 2x4 ¼ 9
5x2 
 x3 þ 3x4 ¼ 1

7x3 
 x4 ¼ 3
2x4 ¼ 8
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That is, the first unknown x1 is the leading unknown in the first equation, the second unknown x2 is the
leading unknown in the second equation, and so on. Thus, in particular, the system is square and each
leading unknown is directly to the right of the leading unknown in the preceding equation.

Such a triangular system always has a unique solution, which may be obtained by back-substitution.
That is,

(1) First solve the last equation for the last unknown to get x4 ¼ 4.

(2) Then substitute this value x4 ¼ 4 in the next-to-last equation, and solve for the next-to-last unknown
x3 as follows:

7x3 
 4 ¼ 3 or 7x3 ¼ 7 or x3 ¼ 1

(3) Now substitute x3 ¼ 1 and x4 ¼ 4 in the second equation, and solve for the second unknown x2 as
follows:
5x2 
 1þ 12 ¼ 1 or 5x2 þ 11 ¼ 1 or 5x2 ¼ 
10 or x2 ¼ 
2

(4) Finally, substitute x2 ¼ 
2, x3 ¼ 1, x4 ¼ 4 in the first equation, and solve for the first unknown x1 as
follows:
2x1 þ 6þ 5
 8 ¼ 9 or 2x1 þ 3 ¼ 9 or 2x1 ¼ 6 or x1 ¼ 3

Thus, x1 ¼ 3 , x2 ¼ 
2, x3 ¼ 1, x4 ¼ 4, or, equivalently, the vector u ¼ ð3;
2; 1; 4Þ is the unique
solution of the system.

Remark: There is an alternative form for back-substitution (which will be used when solving a
system using the matrix format). Namely, after first finding the value of the last unknown, we substitute
this value for the last unknown in all the preceding equations before solving for the next-to-last
unknown. This yields a triangular system with one less equation and one less unknown. For example, in
the above triangular system, we substitute x4 ¼ 4 in all the preceding equations to obtain the triangular
system

2x1 
 3x2 þ 5x3 ¼ 17
5x2 
 x3 ¼ 
1

7x3 ¼ 7

We then repeat the process using the new last equation. And so on.

Echelon Form, Pivot and Free Variables

The following system of linear equations is said to be in echelon form:

2x1 þ 6x2 
 x3 þ 4x4 
 2x5 ¼ 15
x3 þ 2x4 þ 2x5 ¼ 5

3x4 
 9x5 ¼ 6

That is, no equation is degenerate and the leading unknown in each equation other than the first is to the
right of the leading unknown in the preceding equation. The leading unknowns in the system, x1, x3, x4,
are called pivot variables, and the other unknowns, x2 and x5, are called free variables.

Generally speaking, an echelon system or a system in echelon form has the following form:

a11x1 þ a12x2 þ a13x3 þ a14x4 þ � � � þ a1nxn ¼ b1

a2j2
xj2
þ a2;j2þ1xj2þ1 þ � � � þ a2nxn ¼ b2

::::::::::::::::::::::::::::::::::::::::::::::
arjr

xjr
þ � � � þ arnxn ¼ br

ð3:5Þ

where 1 < j2 < � � � < jr and a11, a2j2
; . . . ; arjr

are not zero. The pivot variables are x1, xj2
; . . . ; xjr

. Note
that r � n.

The solution set of any echelon system is described in the following theorem (proved in Problem 3.10).
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THEOREM 3.6: Consider a system of linear equations in echelon form, say with r equations in n
unknowns. There are two cases:

(i) r ¼ n. That is, there are as many equations as unknowns (triangular form). Then
the system has a unique solution.

(ii) r < n. That is, there are more unknowns than equations. Then we can arbitrarily
assign values to the n
 r free variables and solve uniquely for the r pivot
variables, obtaining a solution of the system.

Suppose an echelon system contains more unknowns than equations. Assuming the field K is infinite,
the system has an infinite number of solutions, because each of the n
 r free variables may be assigned
any scalar.

The general solution of a system with free variables may be described in either of two equivalent ways,
which we illustrate using the above echelon system where there are r ¼ 3 equations and n ¼ 5 unknowns.
One description is called the ‘‘Parametric Form’’ of the solution, and the other description is called the
‘‘Free-Variable Form.’’

Parametric Form

Assign arbitrary values, called parameters, to the free variables x2 and x5, say x2 ¼ a and x5 ¼ b, and
then use back-substitution to obtain values for the pivot variables x1, x3, x5 in terms of the parameters a
and b. Specifically,

(1) Substitute x5 ¼ b in the last equation, and solve for x4:

3x4 
 9b ¼ 6 or 3x4 ¼ 6þ 9b or x4 ¼ 2þ 3b

(2) Substitute x4 ¼ 2þ 3b and x5 ¼ b into the second equation, and solve for x3:

x3 þ 2ð2þ 3bÞ þ 2b ¼ 5 or x3 þ 4þ 8b ¼ 5 or x3 ¼ 1
 8b

(3) Substitute x2 ¼ a, x3 ¼ 1
 8b, x4 ¼ 2þ 3b, x5 ¼ b into the first equation, and solve for x1:

2x1 þ 6a
 ð1
 8bÞ þ 4ð2þ 3bÞ 
 2b ¼ 15 or x1 ¼ 4
 3a
 9b

Accordingly, the general solution in parametric form is

x1 ¼ 4
 3a
 9b; x2 ¼ a; x3 ¼ 1
 8b; x4 ¼ 2þ 3b; x5 ¼ b

or, equivalently, v ¼ ð4
 3a
 9b; a; 1
 8b; 2þ 3b; bÞ where a and b are arbitrary numbers.

Free-Variable Form

Use back-substitution to solve for the pivot variables x1, x3, x4 directly in terms of the free variables x2

and x5. That is, the last equation gives x4 ¼ 2þ 3x5. Substitution in the second equation yields
x3 ¼ 1
 8x5, and then substitution in the first equation yields x1 ¼ 4
 3x2 
 9x5. Accordingly,

x1 ¼ 4
 3x2 
 9x5; x2 ¼ free variable; x3 ¼ 1
 8x5; x4 ¼ 2þ 3x5; x5 ¼ free variable

or, equivalently,

v ¼ ð4
 3x2 
 9x5; x2; 1
 8x5; 2þ 3x5; x5Þ
is the free-variable form for the general solution of the system.

We emphasize that there is no difference between the above two forms of the general solution, and the
use of one or the other to represent the general solution is simply a matter of taste.

Remark: A particular solution of the above system can be found by assigning any values to the free
variables and then solving for the pivot variables by back-substitution. For example, setting x2 ¼ 1 and
x5 ¼ 1, we obtain

x4 ¼ 2þ 3 ¼ 5; x3 ¼ 1
 8 ¼ 
7; x1 ¼ 4
 3
 9 ¼ 
8

Thus, u ¼ ð
8; 1; 7; 5; 1Þ is the particular solution corresponding to x2 ¼ 1 and x5 ¼ 1.
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3.6 Gaussian Elimination

The main method for solving the general system (3.2) of linear equations is called Gaussian elimination.
It essentially consists of two parts:

Part A. (Forward Elimination) Step-by-step reduction of the system yielding either a degenerate
equation with no solution (which indicates the system has no solution) or an equivalent simpler
system in triangular or echelon form.

Part B. (Backward Elimination) Step-by-step back-substitution to find the solution of the simpler
system.

Part B has already been investigated in Section 3.4. Accordingly, we need only give the algorithm for
Part A, which is as follows.

ALGORITHM 3.2 for (Part A): Input: The m� n system (3.2) of linear equations.

ELIMINATION STEP: Find the first unknown in the system with a nonzero coefficient (which now
must be x1).

(a) Arrange so that a11 6¼ 0. That is, if necessary, interchange equations so that the first unknown x1

appears with a nonzero coefficient in the first equation.

(b) Use a11 as a pivot to eliminate x1 from all equations except the first equation. That is, for i > 1:

(1) Set m ¼ 
ai1=a11; (2) Replace Li by mL1 þ Li

The system now has the following form:

a11x1 þ a12x2 þ a13x3 þ � � � þ a1nxn ¼ b1

a2j2
xj2
þ � � � þ a2nxn ¼ b2

:::::::::::::::::::::::::::::::::::::::
amj2

xj2
þ � � � þ amnxn ¼ bn

where x1 does not appear in any equation except the first, a11 6¼ 0, and xj2
denotes the first

unknown with a nonzero coefficient in any equation other than the first.

(c) Examine each new equation L.

(1) If L has the form 0x1 þ 0x2 þ � � � þ 0xn ¼ b with b 6¼ 0, then

STOP

The system is inconsistent and has no solution.

(2) If L has the form 0x1 þ 0x2 þ � � � þ 0xn ¼ 0 or if L is a multiple of another equation, then delete
L from the system.

RECURSION STEP: Repeat the Elimination Step with each new ‘‘smaller’’ subsystem formed by all
the equations excluding the first equation.

OUTPUT: Finally, the system is reduced to triangular or echelon form, or a degenerate equation with
no solution is obtained indicating an inconsistent system.

The next remarks refer to the Elimination Step in Algorithm 3.2.

(1) The following number m in (b) is called the multiplier:

m ¼ 
 ai1

a11

¼ 
 coefficient to be deleted

pivot

(2) One could alternatively apply the following operation in (b):

Replace Li by 
 ai1L1 þ a11Li

This would avoid fractions if all the scalars were originally integers.
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Gaussian Elimination Example

Here we illustrate in detail Gaussian elimination using the following system of linear equations:

L1: x
 3y
 2z ¼ 6
L2: 2x
 4y
 3z ¼ 8
L3: 
3xþ 6yþ 8z ¼ 
5

Part A. We use the coefficient 1 of x in the first equation L1 as the pivot in order to eliminate x from
the second equation L2 and from the third equation L3. This is accomplished as follows:

(1) Multiply L1 by the multiplier m ¼ 
2 and add it to L2; that is, ‘‘Replace L2 by 
2L1 þ L2.’’

(2) Multiply L1 by the multiplier m ¼ 3 and add it to L3; that is, ‘‘Replace L3 by 3L1 þ L3.’’

These steps yield

ð
2ÞL1: 
2xþ 6yþ 4z ¼ 
12
L2: 2x
 4y
 3z ¼ 8

New L2: 2yþ z ¼ 
4

3L1: 3x
 9y
 6z ¼ 18
L3: 
3xþ 6yþ 8z ¼ 
5

New L3: 
3yþ 2z ¼ 13

Thus, the original system is replaced by the following system:

L1: x
 3y
 2z ¼ 6
L2: 2y þ z ¼ 
4
L3: 
3yþ 2z ¼ 13

(Note that the equations L2 and L3 form a subsystem with one less equation and one less unknown than
the original system.)

Next we use the coefficient 2 of y in the (new) second equation L2 as the pivot in order to eliminate y
from the (new) third equation L3. This is accomplished as follows:

(3) Multiply L2 by the multiplier m ¼ 3
2 and add it to L3; that is, ‘‘Replace L3 by 3

2 L2 þ L3:’’
(Alternately, ‘‘Replace L3 by 3L2 þ 2L3,’’ which will avoid fractions.)

This step yields

3
2 L2: 3yþ 3

2 z ¼ 
6
L3: 
3yþ 2z ¼ 13

New L3:
7
2 z ¼ 7

or

3L2: 6yþ 3z ¼ 
12
2L3: 
6yþ 4z ¼ 26

New L3: 7z ¼ 14

Thus, our system is replaced by the following system:

L1: x
 3y
 2z ¼ 6
L2: 2yþ z ¼ 
4
L3: 7z ¼ 14 ðor 7

2 z ¼ 7Þ
The system is now in triangular form, so Part A is completed.

Part B. The values for the unknowns are obtained in reverse order, z; y; x, by back-substitution.
Specifically,

(1) Solve for z in L3 to get z ¼ 2.

(2) Substitute z ¼ 2 in L2, and solve for y to get y ¼ 
3.

(3) Substitute y ¼ 
3 and z ¼ 2 in L1, and solve for x to get x ¼ 1.

Thus, the solution of the triangular system and hence the original system is as follows:

x ¼ 1; y ¼ 
3; z ¼ 2 or; equivalently; u ¼ ð1;
3; 2Þ:
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Condensed Format

The Gaussian elimination algorithm involves rewriting systems of linear equations. Sometimes we can
avoid excessive recopying of some of the equations by adopting a ‘‘condensed format.’’ This format for
the solution of the above system follows:

Number Equation Operation
ð1Þ x
 3y
 2z ¼ 6
ð2Þ 2x
 4y
 3z ¼ 8
ð3Þ 
3xþ 6yþ 8z ¼ 
5
ð20Þ 2yþ z ¼ 
4 Replace L2 by 
2L1 þ L2

ð30Þ 
 3yþ 2z ¼ 13 Replace L3 by 3L1 þ L3

ð300Þ 7z ¼ 14 Replace L3 by 3L2 þ 2L3

That is, first we write down the number of each of the original equations. As we apply the Gaussian
elimination algorithm to the system, we only write down the new equations, and we label each new equation
using the same number as the original corresponding equation, but with an added prime. (After each new
equation, we will indicate, for instructional purposes, the elementary operation that yielded the new equation.)

The system in triangular form consists of equations (1), ð20Þ, and ð300Þ, the numbers with the largest
number of primes. Applying back-substitution to these equations again yields x ¼ 1, y ¼ 
3, z ¼ 2.

Remark: If two equations need to be interchanged, say to obtain a nonzero coefficient as a pivot,
then this is easily accomplished in the format by simply renumbering the two equations rather than
changing their positions.

EXAMPLE 3.7 Solve the following system: xþ 2y
 3z ¼ 1

2xþ 5y
 8z ¼ 4

3xþ 8y
 13z ¼ 7

We solve the system by Gaussian elimination.

Part A. (Forward Elimination) We use the coefficient 1 of x in the first equation L1 as the pivot in order to
eliminate x from the second equation L2 and from the third equation L3. This is accomplished as follows:

(1) Multiply L1 by the multiplier m ¼ 
2 and add it to L2; that is, ‘‘Replace L2 by 
2L1 þ L2.’’

(2) Multiply L1 by the multiplier m ¼ 
3 and add it to L3; that is, ‘‘Replace L3 by 
3L1 þ L3.’’

The two steps yield

xþ 2y
 3z ¼ 1
y
 2z ¼ 2

2y
 4z ¼ 4
or

xþ 2y
 3z ¼ 1
y
 2z ¼ 2

(The third equation is deleted, because it is a multiple of the second equation.) The system is now in echelon form
with free variable z.

Part B. (Backward Elimination) To obtain the general solution, let the free variable z ¼ a, and solve for x and y
by back-substitution. Substitute z ¼ a in the second equation to obtain y ¼ 2þ 2a. Then substitute z ¼ a and
y ¼ 2þ 2a into the first equation to obtain

xþ 2ð2þ 2aÞ 
 3a ¼ 1 or xþ 4þ 4a
 3a ¼ 1 or x ¼ 
3
 a

Thus, the following is the general solution where a is a parameter:

x ¼ 
3
 a; y ¼ 2þ 2a; z ¼ a or u ¼ ð
3
 a; 2þ 2a; aÞ
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EXAMPLE 3.8 Solve the following system:

x1 þ 3x2 
 2x3 þ 5x4 ¼ 4

2x1 þ 8x2 
 x3 þ 9x4 ¼ 9

3x1 þ 5x2 
 12x3 þ 17x4 ¼ 7

We use Gaussian elimination.

Part A. (Forward Elimination) We use the coefficient 1 of x1 in the first equation L1 as the pivot in order to
eliminate x1 from the second equation L2 and from the third equation L3. This is accomplished by the following
operations:

(1) ‘‘Replace L2 by 
2L1 þ L2’’ and (2) ‘‘Replace L3 by 
3L1 þ L3’’

These yield:

x1 þ 3x2 
 2x3 þ 5x4 ¼ 4

2x2 þ 3x3 
 x4 ¼ 1


 4x2 
 6x3 þ 2x4 ¼ 
5

We now use the coefficient 2 of x2 in the second equation L2 as the pivot and the multiplier m ¼ 2 in order to
eliminate x2 from the third equation L3. This is accomplished by the operation ‘‘Replace L3 by 2L2 þ L3,’’ which
then yields the degenerate equation

0x1 þ 0x2 þ 0x3 þ 0x4 ¼ 
3

This equation and, hence, the original system have no solution:

DO NOT CONTINUE

Remark 1: As in the above examples, Part A of Gaussian elimination tells us whether or not the
system has a solution—that is, whether or not the system is consistent. Accordingly, Part B need never be
applied when a system has no solution.

Remark 2: If a system of linear equations has more than four unknowns and four equations, then it
may be more convenient to use the matrix format for solving the system. This matrix format is discussed
later.

3.7 Echelon Matrices, Row Canonical Form, Row Equivalence

One way to solve a system of linear equations is by working with its augmented matrix M rather than the
system itself. This section introduces the necessary matrix concepts for such a discussion. These
concepts, such as echelon matrices and elementary row operations, are also of independent interest.

Echelon Matrices

A matrix A is called an echelon matrix, or is said to be in echelon form, if the following two conditions
hold (where a leading nonzero element of a row of A is the first nonzero element in the row):

(1) All zero rows, if any, are at the bottom of the matrix.

(2) Each leading nonzero entry in a row is to the right of the leading nonzero entry in the preceding row.

That is, A ¼ ½aij� is an echelon matrix if there exist nonzero entries

a1j1
; a2j2

; . . . ; arjr
; where j1 < j2 < � � � < jr
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with the property that

aij ¼ 0 for
ðiÞ i � r; j < ji
ðiiÞ i > r

	
The entries a1j1

, a2j2
; . . . ; arjr

, which are the leading nonzero elements in their respective rows, are called
the pivots of the echelon matrix.

EXAMPLE 3.9 The following is an echelon matrix whose pivots have been circled:

A ¼

0 2 3 4 5 9 0 7
0 0 0 3 4 1 2 5
0 0 0 0 0 5 7 2
0 0 0 0 0 0 8 6
0 0 0 0 0 0 0 0

266664
377775

Observe that the pivots are in columns C2;C4;C6;C7, and each is to the right of the one above. Using the above
notation, the pivots are

a1j1
¼ 2; a2j2

¼ 3; a3j3
¼ 5; a4j4

¼ 8

where j1 ¼ 2, j2 ¼ 4, j3 ¼ 6, j4 ¼ 7. Here r ¼ 4.

Row Canonical Form

A matrix A is said to be in row canonical form (or row-reduced echelon form) if it is an echelon matrix—
that is, if it satisfies the above properties (1) and (2), and if it satisfies the following additional two
properties:

(3) Each pivot (leading nonzero entry) is equal to 1.

(4) Each pivot is the only nonzero entry in its column.

The major difference between an echelon matrix and a matrix in row canonical form is that in an
echelon matrix there must be zeros below the pivots [Properties (1) and (2)], but in a matrix in row
canonical form, each pivot must also equal 1 [Property (3)] and there must also be zeros above the pivots
[Property (4)].

The zero matrix 0 of any size and the identity matrix I of any size are important special examples of
matrices in row canonical form.

EXAMPLE 3.10

The following are echelon matrices whose pivots have been circled:

2 3 2 0 4 5 
6
0 0 0 1 
3 2 0
0 0 0 0 0 6 2
0 0 0 0 0 0 0

2664
3775; 1 2 3

0 0 1
0 0 0

24 35; 0 1 3 0 0 4
0 0 0 1 0 
3
0 0 0 0 1 2

24 35

The third matrix is also an example of a matrix in row canonical form. The second matrix is not in row canonical
form, because it does not satisfy property (4); that is, there is a nonzero entry above the second pivot in the third
column. The first matrix is not in row canonical form, because it satisfies neither property (3) nor property (4); that
is, some pivots are not equal to 1 and there are nonzero entries above the pivots.
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Elementary Row Operations

Suppose A is a matrix with rows R1;R2; . . . ;Rm. The following operations on A are called elementary row
operations.

½E1� (Row Interchange): Interchange rows Ri and Rj. This may be written as

‘‘Interchange Ri and Rj’’ or ‘‘Ri  ! Rj’’

½E2� (Row Scaling): Replace row Ri by a nonzero multiple kRi of itself. This may be written as

‘‘Replace Ri by kRi ðk 6¼ 0Þ’’ or ‘‘kRi ! Ri’’

½E3� (Row Addition): Replace row Rj by the sum of a multiple kRi of a row Ri and itself. This may be
written as

‘‘Replace Rj by kRi þ Rj’’ or ‘‘kRi þ Rj ! Rj’’

The arrow ! in E2 and E3 may be read as ‘‘replaces.’’

Sometimes (say to avoid fractions when all the given scalars are integers) we may apply ½E2� and ½E3�
in one step; that is, we may apply the following operation:

½E� Replace Rj by the sum of a multiple kRi of a row Ri and a nonzero multiple k0Rj of itself. This may
be written as

‘‘Replace Rj by kRi þ k 0Rj ðk 0 6¼ 0Þ’’ or ‘‘kRi þ k 0Rj ! Rj’’

We emphasize that in operations ½E3� and ½E � only row Rj is changed.

Row Equivalence, Rank of a Matrix

A matrix A is said to be row equivalent to a matrix B, written

A � B

if B can be obtained from A by a sequence of elementary row operations. In the case that B is also an
echelon matrix, B is called an echelon form of A.

The following are two basic results on row equivalence.

THEOREM 3.7: Suppose A ¼ ½aij� and B ¼ ½bij� are row equivalent echelon matrices with respective
pivot entries

a1j1
; a2j2

; . . . arjr
and b1k1

; b2k2
; . . . bsks

Then A and B have the same number of nonzero rows—that is, r ¼ s—and the pivot
entries are in the same positions—that is, j1 ¼ k1, j2 ¼ k2; . . . ; jr ¼ kr.

THEOREM 3.8: Every matrix A is row equivalent to a unique matrix in row canonical form.

The proofs of the above theorems will be postponed to Chapter 4. The unique matrix in Theorem 3.8
is called the row canonical form of A.

Using the above theorems, we can now give our first definition of the rank of a matrix.

DEFINITION: The rank of a matrix A, written rankðAÞ, is equal to the number of pivots in an echelon
form of A.

The rank is a very important property of a matrix and, depending on the context in which the
matrix is used, it will be defined in many different ways. Of course, all the definitions lead to the
same number.

The next section gives the matrix format of Gaussian elimination, which finds an echelon form of any
matrix A (and hence the rank of A), and also finds the row canonical form of A.
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One can show that row equivalence is an equivalence relation. That is,

(1) A � A for any matrix A.

(2) If A � B, then B � A.

(3) If A � B and B � C, then A � C.

Property (2) comes from the fact that each elementary row operation has an inverse operation of the same
type. Namely,

(i) ‘‘Interchange Ri and Rj’’ is its own inverse.

(ii) ‘‘Replace Ri by kRi’’ and ‘‘Replace Ri by ð1=kÞRi’’ are inverses.

(iii) ‘‘Replace Rj by kRi þ Rj’’ and ‘‘Replace Rj by 
kRi þ Rj’’ are inverses.

There is a similar result for operation [E] (Problem 3.73).

3.8 Gaussian Elimination, Matrix Formulation

This section gives two matrix algorithms that accomplish the following:

(1) Algorithm 3.3 transforms any matrix A into an echelon form.

(2) Algorithm 3.4 transforms the echelon matrix into its row canonical form.

These algorithms, which use the elementary row operations, are simply restatements of Gaussian
elimination as applied to matrices rather than to linear equations. (The term ‘‘row reduce’’ or simply
‘‘reduce’’ will mean to transform a matrix by the elementary row operations.)

ALGORITHM 3.3 (Forward Elimination): The input is any matrix A. (The algorithm puts 0’s below
each pivot, working from the ‘‘top-down.’’) The output is
an echelon form of A.

Step 1. Find the first column with a nonzero entry. Let j1 denote this column.

(a) Arrange so that a1j1
6¼ 0. That is, if necessary, interchange rows so that a nonzero entry

appears in the first row in column j1.

(b) Use a1j1
as a pivot to obtain 0’s below a1j1

.

Specifically, for i > 1:

ð1Þ Set m ¼ 
aij1=a1j1
; ð2Þ Replace Ri by mR1 þ Ri

[That is, apply the operation 
ðaij1
=a1j1
ÞR1 þ Ri ! Ri:]

Step 2. Repeat Step 1 with the submatrix formed by all the rows excluding the first row. Here we let j2
denote the first column in the subsystem with a nonzero entry. Hence, at the end of Step 2, we
have a2j2

6¼ 0.

Steps 3 to r. Continue the above process until a submatrix has only zero rows.

We emphasize that at the end of the algorithm, the pivots will be

a1j1
; a2j2

; . . . ; arjr

where r denotes the number of nonzero rows in the final echelon matrix.

Remark 1: The following number m in Step 1(b) is called the multiplier:

m ¼ 
 aij1

a1j1

¼ 
 entry to be deleted

pivot
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Remark 2: One could replace the operation in Step 1(b) by the following which would avoid
fractions if all the scalars were originally integers.

Replace Ri by 
aij1
R1 þ a1j1

Ri:

ALGORITHM 3.4 (Backward Elimination): The input is a matrix A ¼ ½aij� in echelon form with pivot
entries

a1j1
; a2j2

; . . . ; arjr

The output is the row canonical form of A.

Step 1. (a) (Use row scaling so the last pivot equals 1.) Multiply the last nonzero row Rr by 1=arjr
.

(b) (Use arjr
¼ 1 to obtain 0’s above the pivot.) For i ¼ r 
 1; r 
 2; . . . ; 2; 1:

ð1Þ Set m ¼ 
aijr ; ð2Þ Replace Ri by mRr þ Ri

(That is, apply the operations 
aijr
Rr þ Ri ! Ri.)

Steps 2 to r
1. Repeat Step 1 for rows Rr
1, Rr
2; . . . ;R2.

Step r. (Use row scaling so the first pivot equals 1.) Multiply R1 by 1=a1j1
.

There is an alternative form of Algorithm 3.4, which we describe here in words. The formal
description of this algorithm is left to the reader as a supplementary problem.

ALTERNATIVE ALGORITHM 3.4 Puts 0’s above the pivots row by row from the bottom up (rather
than column by column from right to left).

The alternative algorithm, when applied to an augmented matrix M of a system of linear equations, is
essentially the same as solving for the pivot unknowns one after the other from the bottom up.

Remark: We emphasize that Gaussian elimination is a two-stage process. Specifically,

Stage A (Algorithm 3.3). Puts 0’s below each pivot, working from the top row R1 down.

Stage B (Algorithm 3.4). Puts 0’s above each pivot, working from the bottom row Rr up.

There is another algorithm, called Gauss–Jordan, that also row reduces a matrix to its row canonical
form. The difference is that Gauss–Jordan puts 0’s both below and above each pivot as it works its way
from the top row R1 down. Although Gauss–Jordan may be easier to state and understand, it is much less
efficient than the two-stage Gaussian elimination algorithm.

EXAMPLE 3.11 Consider the matrix A ¼
1 2 
3 1 2
2 4 
4 6 10
3 6 
6 9 13

24 35.

(a) Use Algorithm 3.3 to reduce A to an echelon form.

(b) Use Algorithm 3.4 to further reduce A to its row canonical form.

(a) First use a11 ¼ 1 as a pivot to obtain 0’s below a11; that is, apply the operations ‘‘Replace R2 by 
2R1 þ R2’’
and ‘‘Replace R3 by 
3R1 þ R3.’’ Then use a23 ¼ 2 as a pivot to obtain 0 below a23; that is, apply the operation
‘‘Replace R3 by 
 3

2 R2 þ R3.’’ This yields

A �
1 2 
3 1 2
0 0 2 4 6
0 0 3 6 7

24 35 � 1 2 
3 1 2
0 0 2 4 6
0 0 0 0 
2

24 35
The matrix is now in echelon form.
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(b) Multiply R3 by 
 1
2 so the pivot entry a35 ¼ 1, and then use a35 ¼ 1 as a pivot to obtain 0’s above it by the

operations ‘‘Replace R2 by 
6R3 þ R2’’ and then ‘‘Replace R1 by 
2R3 þ R1.’’ This yields

A �
1 2 
3 1 2
0 0 2 4 6
0 0 0 0 1

24 35 � 1 2 
3 1 0
0 0 2 4 0
0 0 0 0 1

24 35:
Multiply R2 by 1

2 so the pivot entry a23 ¼ 1, and then use a23 ¼ 1 as a pivot to obtain 0’s above it by the
operation ‘‘Replace R1 by 3R2 þ R1.’’ This yields

A �
1 2 
3 1 0
0 0 1 2 0
0 0 0 0 1

24 35 � 1 2 0 7 0
0 0 1 2 0
0 0 0 0 1

24 35:
The last matrix is the row canonical form of A.

Application to Systems of Linear Equations

One way to solve a system of linear equations is by working with its augmented matrix M rather than the
equations themselves. Specifically, we reduce M to echelon form (which tells us whether the system has a
solution), and then further reduce M to its row canonical form (which essentially gives the solution of the
original system of linear equations). The justification for this process comes from the following facts:

(1) Any elementary row operation on the augmented matrix M of the system is equivalent to applying
the corresponding operation on the system itself.

(2) The system has a solution if and only if the echelon form of the augmented matrix M does not have a
row of the form ð0; 0; . . . ; 0; bÞ with b 6¼ 0.

(3) In the row canonical form of the augmented matrix M (excluding zero rows), the coefficient of each
basic variable is a pivot entry equal to 1, and it is the only nonzero entry in its respective column;
hence, the free-variable form of the solution of the system of linear equations is obtained by simply
transferring the free variables to the other side.

This process is illustrated below.

EXAMPLE 3.12 Solve each of the following systems:

(a)

x1 þ x2 
 2x3 þ 4x4 ¼ 5
2x1 þ 2x2 
 3x3 þ x4 ¼ 3
3x1 þ 3x2 
 4x3 
 2x4 ¼ 1

(b)

x1 þ x2 
 2x3 þ 3x4 ¼ 4
2x1 þ 3x2 þ 3x3 
 x4 ¼ 3
5x1 þ 7x2 þ 4x3 þ x4 ¼ 5

(c)

xþ 2yþ z ¼ 3
2xþ 5y
 z ¼ 
4
3x
 2y
 z ¼ 5

(a) Reduce its augmented matrix M to echelon form and then to row canonical form as follows:

M ¼
1 1 
2 4 5
2 2 
3 1 3
3 3 
4 
2 1

24 35 � 1 1 
2 4 5
0 0 1 
7 
7
0 0 2 
14 
14

24 35 � 1 1 0 
10 
9
0 0 1 
7 
7
0 0 0 0 0

24 35
Rewrite the row canonical form in terms of a system of linear equations to obtain the free variable form of the
solution. That is,

x1 þ x2 
 10x4 ¼ 
9
x3 
 7x4 ¼ 
7

or
x1 ¼ 
9
 x2 þ 10x4

x3 ¼ 
7þ 7x4

(The zero row is omitted in the solution.) Observe that x1 and x3 are the pivot variables, and x2 and x4 are the
free variables.
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(b) First reduce its augmented matrix M to echelon form as follows:

M ¼
1 1 
2 3 4
2 3 3 
1 3
5 7 4 1 5

24 35 � 1 1 
2 3 4
0 1 7 
7 
5
0 2 14 
14 
15

24 35 � 1 1 
2 3 4
0 1 7 
7 
5
0 0 0 0 
5

24 35
There is no need to continue to find the row canonical form of M , because the echelon form already tells us that
the system has no solution. Specifically, the third row of the echelon matrix corresponds to the degenerate
equation

0x1 þ 0x2 þ 0x3 þ 0x4 ¼ 
5

which has no solution. Thus, the system has no solution.

(c) Reduce its augmented matrix M to echelon form and then to row canonical form as follows:

M ¼
1 2 1 3

2 5 
1 
4

3 
2 
1 5

264
375 � 1 2 1 3

0 1 
3 
10

0 
8 
4 
4

264
375 � 1 2 1 3

0 1 
3 
10

0 0 
28 
84

264
375

�
1 2 1 3

0 1 
3 
10

0 0 1 3

264
375 � 1 2 0 0

0 1 0 
1

0 0 1 3

264
375 � 1 0 0 2

0 1 0 
1

0 0 1 3

264
375

Thus, the system has the unique solution x ¼ 2, y ¼ 
1, z ¼ 3, or, equivalently, the vector u ¼ ð2;
1; 3Þ. We
note that the echelon form of M already indicated that the solution was unique, because it corresponded to a
triangular system.

Application to Existence and Uniqueness Theorems

This subsection gives theoretical conditions for the existence and uniqueness of a solution of a system of
linear equations using the notion of the rank of a matrix.

THEOREM 3.9: Consider a system of linear equations in n unknowns with augmented matrix
M ¼ ½A;B�. Then,

(a) The system has a solution if and only if rankðAÞ ¼ rankðMÞ.
(b) The solution is unique if and only if rankðAÞ ¼ rankðMÞ ¼ n.

Proof of (a). The system has a solution if and only if an echelon form of M ¼ ½A;B� does not have a
row of the form

ð0; 0; . . . ; 0; bÞ; with b 6¼ 0

If an echelon form of M does have such a row, then b is a pivot of M but not of A, and hence,
rankðMÞ > rankðAÞ. Otherwise, the echelon forms of A and M have the same pivots, and hence,
rankðAÞ ¼ rankðMÞ. This proves (a).

Proof of (b). The system has a unique solution if and only if an echelon form has no free variable. This
means there is a pivot for each unknown. Accordingly, n ¼ rankðAÞ ¼ rankðMÞ. This proves (b).

The above proof uses the fact (Problem 3.74) that an echelon form of the augmented matrix
M ¼ ½A;B� also automatically yields an echelon form of A.
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3.9 Matrix Equation of a System of Linear Equations

The general system (3.2) of m linear equations in n unknowns is equivalent to the matrix equation

a11 a12 . . . a1n

a21 a22 . . . a2n

:::::::::::::::::::::::::::::::
am1 am2 . . . amn

2664
3775

x1

x2

x3

. . .
xn

266664
377775 ¼

b1

b2

. . .
bm

2664
3775 or AX ¼ B

where A ¼ ½aij� is the coefficient matrix, X ¼ ½xj� is the column vector of unknowns, and B ¼ ½bi� is the
column vector of constants. (Some texts write Ax ¼ b rather than AX ¼ B, in order to emphasize that x
and b are simply column vectors.)

The statement that the system of linear equations and the matrix equation are equivalent means that
any vector solution of the system is a solution of the matrix equation, and vice versa.

EXAMPLE 3.13 The following system of linear equations and matrix equation are equivalent:

x1 þ 2x2 
 4x3 þ 7x4 ¼ 4
3x1 
 5x2 þ 6x3 
 8x4 ¼ 8
4x1 
 3x2 
 2x3 þ 6x4 ¼ 11

and
1 2 
4 7
3 
5 6 
8
4 
3 
2 6

24 35 x1

x2

x3

x4

2664
3775 ¼ 4

8
11

24 35
We note that x1 ¼ 3, x2 ¼ 1, x3 ¼ 2, x4 ¼ 1, or, in other words, the vector u ¼ ½3; 1; 2; 1� is a solution of
the system. Thus, the (column) vector u is also a solution of the matrix equation.

The matrix form AX ¼ B of a system of linear equations is notationally very convenient when
discussing and proving properties of systems of linear equations. This is illustrated with our first theorem
(described in Fig. 3-1), which we restate for easy reference.

THEOREM 3.1 : Suppose the field K is infinite. Then the system AX ¼ B has: (a) a unique solution, (b)
no solution, or (c) an infinite number of solutions.

Proof. It suffices to show that if AX ¼ B has more than one solution, then it has infinitely many.
Suppose u and v are distinct solutions of AX ¼ B; that is, Au ¼ B and Av ¼ B. Then, for any k 2 K,

A½uþ kðu
 vÞ� ¼ Auþ kðAu
 AvÞ ¼ Bþ kðB
 BÞ ¼ B

Thus, for each k 2 K, the vector uþ kðu
 vÞ is a solution of AX ¼ B. Because all such solutions are
distinct (Problem 3.47), AX ¼ B has an infinite number of solutions.

Observe that the above theorem is true when K is the real field R (or the complex field C). Section 3.3
shows that the theorem has a geometrical description when the system consists of two equations in two
unknowns, where each equation represents a line in R2. The theorem also has a geometrical description
when the system consists of three nondegenerate equations in three unknowns, where the three equations
correspond to planes H1, H2, H3 in R3. That is,

(a) Unique solution: Here the three planes intersect in exactly one point.

(b) No solution: Here the planes may intersect pairwise but with no common point of intersection, or two
of the planes may be parallel.

(c) Infinite number of solutions: Here the three planes may intersect in a line (one free variable), or they
may coincide (two free variables).

These three cases are pictured in Fig. 3-3.

Matrix Equation of a Square System of Linear Equations

A system AX ¼ B of linear equations is square if and only if the matrix A of coefficients is square. In such
a case, we have the following important result.
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THEOREM 3.10: A square system AX ¼ B of linear equations has a unique solution if and only if the
matrix A is invertible. In such a case, A
1B is the unique solution of the system.

We only prove here that if A is invertible, then A
1B is a unique solution. If A is invertible, then

AðA
1BÞ ¼ ðAA
1ÞB ¼ IB ¼ B

and hence, A
1B is a solution. Now suppose v is any solution, so Av ¼ B. Then

v ¼ Iv ¼ ðA
1AÞv ¼ A
1ðAvÞ ¼ A
1B

Thus, the solution A
1B is unique.

EXAMPLE 3.14 Consider the following system of linear equations, whose coefficient matrix A and
inverse A
1 are also given:

xþ 2yþ 3z ¼ 1
xþ 3yþ 6z ¼ 3

2xþ 6yþ 13z ¼ 5
; A ¼

1 2 3
1 3 6
2 6 13

24 35; A
1 ¼
3 
8 3

1 7 
3

0 
2 1

24 35
By Theorem 3.10, the unique solution of the system is

A
1B ¼
3 
8 3

1 7 
3

0 
2 1

24 35 1
3
5

24 35 ¼ 
6
5

1

24 35
That is, x ¼ 
6, y ¼ 5, z ¼ 
1.

Remark: We emphasize that Theorem 3.10 does not usually help us to find the solution of a square
system. That is, finding the inverse of a coefficient matrix A is not usually any easier than solving the
system directly. Thus, unless we are given the inverse of a coefficient matrix A, as in Example 3.14,
we usually solve a square system by Gaussian elimination (or some iterative method whose discussion
lies beyond the scope of this text).

( ) Unique solutiona

H2

H3

H1

H1

H2

H3

( ) Infinite number of solutionsc

H3

H H1 2and

(i) (ii) (iii)

H H H1 2 3, , and

(i)

( ) No solutionsb

H3

H2

H1

(ii) (iii) (i )v

H1

H2

H3

H2

H3

H1

H3

Figure 3-3

78 CHAPTER 3 Systems of Linear Equations



3.10 Systems of Linear Equations and Linear Combinations of Vectors

The general system (3.2) of linear equations may be rewritten as the following vector equation:

x1

a11

a21

. . .
am1

2664
3775þ x2

a12

a22

. . .
am2

2664
3775þ � � � þ xn

a1n

a2n

. . .
amn

2664
3775 ¼

b1

b2

. . .
bm

2664
3775

Recall that a vector v in Kn is said to be a linear combination of vectors u1; u2; . . . ; um in Kn if there exist
scalars a1; a2; . . . ; am in K such that

v ¼ a1u1 þ a2u2 þ � � � þ amum

Accordingly, the general system (3.2) of linear equations and the above equivalent vector equation have a
solution if and only if the column vector of constants is a linear combination of the columns of the
coefficient matrix. We state this observation formally.

THEOREM 3.11: A system AX ¼ B of linear equations has a solution if and only if B is a linear
combination of the columns of the coefficient matrix A.

Thus, the answer to the problem of expressing a given vector v in Kn as a linear combination of vectors
u1; u2; . . . ; um in Kn reduces to solving a system of linear equations.

Linear Combination Example

Suppose we want to write the vector v ¼ ð1;
2; 5Þ as a linear combination of the vectors

u1 ¼ ð1; 1; 1Þ; u2 ¼ ð1; 2; 3Þ; u3 ¼ ð2;
1; 1Þ
First we write v ¼ xu1 þ yu2 þ zu3 with unknowns x; y; z, and then we find the equivalent system of linear
equations which we solve. Specifically, we first write

1

2

5

24 35 ¼ x
1
1
1

24 35þ y
1
2
3

24 35þ z
2

1

1

24 35 ð*Þ

Then

1

2

5

24 35 ¼ x
x
x

24 35þ y
2y
3y

24 35þ 2z

z

z

24 35 ¼ xþ yþ 2z
xþ 2y
 z
xþ 3yþ z

24 35
Setting corresponding entries equal to each other yields the following equivalent system:

xþ yþ 2z ¼ 1

xþ 2y
 z ¼ 
2

xþ 3yþ z ¼ 5

ð**Þ

For notational convenience, we have written the vectors in Rn as columns, because it is then easier to find
the equivalent system of linear equations. In fact, one can easily go from the vector equation (*) directly
to the system (**).

Now we solve the equivalent system of linear equations by reducing the system to echelon form. This
yields

xþ yþ 2z ¼ 1
y
 3z ¼ 
3

2y
 z ¼ 4
and then

xþ yþ 2z ¼ 1
y
 3z ¼ 
3

5z ¼ 10

Back-substitution yields the solution x ¼ 
6, y ¼ 3, z ¼ 2. Thus, v ¼ 
6u1 þ 3u2 þ 2u3.
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EXAMPLE 3.15

(a) Write the vector v ¼ ð4; 9; 19Þ as a linear combination of

u1 ¼ ð1;
2; 3Þ; u2 ¼ ð3;
7; 10Þ; u3 ¼ ð2; 1; 9Þ:
Find the equivalent system of linear equations by writing v ¼ xu1 þ yu2 þ zu3, and reduce the system to an

echelon form. We have

xþ 3yþ 2z ¼ 4

2x
 7yþ z ¼ 9

3xþ 10yþ 9z ¼ 19
or

xþ 3yþ 2z ¼ 4

yþ 5z ¼ 17
yþ 3z ¼ 7

or
xþ 3yþ 2z ¼ 4

yþ 5z ¼ 17

8z ¼ 24

Back-substitution yields the solution x ¼ 4, y ¼ 
2, z ¼ 3. Thus, v is a linear combination of u1; u2; u3.
Specifically, v ¼ 4u1 
 2u2 þ 3u3.

(b) Write the vector v ¼ ð2; 3;
5Þ as a linear combination of

u1 ¼ ð1; 2;
3Þ; u2 ¼ ð2; 3;
4Þ; u3 ¼ ð1; 3;
5Þ
Find the equivalent system of linear equations by writing v ¼ xu1 þ yu2 þ zu3, and reduce the system to an

echelon form. We have

xþ 2yþ z ¼ 2
2xþ 3yþ 3z ¼ 3

3x
 4y
 5z ¼ 
5

or
xþ 2yþ z ¼ 2

yþ z ¼ 
1
2y
 2z ¼ 1

or
xþ 2yþ z ¼ 2

 5yþ 5z ¼ 
1

0 ¼ 3

The system has no solution. Thus, it is impossible to write v as a linear combination of u1; u2; u3.

Linear Combinations of Orthogonal Vectors, Fourier Coefficients

Recall first (Section 1.4) that the dot (inner) product u � v of vectors u ¼ ða1; . . . ; anÞ and v ¼ ðb1; . . . ; bnÞ
in Rn is defined by

u � v ¼ a1b1 þ a2b2 þ � � � þ anbn

Furthermore, vectors u and v are said to be orthogonal if their dot product u � v ¼ 0.
Suppose that u1; u2; . . . ; un in Rn are n nonzero pairwise orthogonal vectors. This means

ðiÞ ui � uj ¼ 0 for i 6¼ j and ðiiÞ ui � ui 6¼ 0 for each i

Then, for any vector v in Rn, there is an easy way to write v as a linear combination of u1; u2; . . . ; un,
which is illustrated in the next example.

EXAMPLE 3.16 Consider the following three vectors in R3:

u1 ¼ ð1; 1; 1Þ; u2 ¼ ð1;
3; 2Þ; u3 ¼ ð5;
1;
4Þ
These vectors are pairwise orthogonal; that is,

u1 � u2 ¼ 1
 3þ 2 ¼ 0; u1 � u3 ¼ 5
 1
 4 ¼ 0; u2 � u3 ¼ 5þ 3
 8 ¼ 0

Suppose we want to write v ¼ ð4; 14;
9Þ as a linear combination of u1; u2; u3.

Method 1. Find the equivalent system of linear equations as in Example 3.14 and then solve,
obtaining v ¼ 3u1 
 4u2 þ u3.

Method 2. (This method uses the fact that the vectors u1; u2; u3 are mutually orthogonal, and
hence, the arithmetic is much simpler.) Set v as a linear combination of u1; u2; u3 using unknown scalars
x; y; z as follows:

ð4; 14;
9Þ ¼ xð1; 1; 1Þ þ yð1;
3; 2Þ þ zð5;
1;
4Þ ð*Þ
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Take the dot product of (*) with respect to u1 to get

ð4; 14;
9Þ � ð1; 1; 1Þ ¼ xð1; 1; 1Þ � ð1; 1; 1Þ or 9 ¼ 3x or x ¼ 3

(The last two terms drop out, because u1 is orthogonal to u2 and to u3.) Next take the dot product of (*) with respect
to u2 to obtain

ð4; 14;
9Þ � ð1;
3; 2Þ ¼ yð1;
3; 2Þ � ð1;
3; 2Þ or 
 56 ¼ 14y or y ¼ 
4

Finally, take the dot product of (*) with respect to u3 to get

ð4; 14;
9Þ � ð5;
1;
4Þ ¼ zð5;
1;
4Þ � ð5;
1;
4Þ or 42 ¼ 42z or z ¼ 1

Thus, v ¼ 3u1 
 4u2 þ u3.

The procedure in Method 2 in Example 3.16 is valid in general. Namely,

THEOREM 3.12: Suppose u1; u2; . . . ; un are nonzero mutually orthogonal vectors in Rn. Then, for any
vector v in Rn,

v ¼ v � u1

u1 � u1

u1 þ
v � u2

u2 � u2

u2 þ � � � þ
v � un

un � un

un

We emphasize that there must be n such orthogonal vectors ui in Rn for the formula to be used. Note
also that each ui � ui 6¼ 0, because each ui is a nonzero vector.

Remark: The following scalar ki (appearing in Theorem 3.12) is called the Fourier coefficient of v
with respect to ui:

ki ¼
v � ui

ui � ui

¼ v � ui

kuik2

It is analogous to a coefficient in the celebrated Fourier series of a function.

3.11 Homogeneous Systems of Linear Equations

A system of linear equations is said to be homogeneous if all the constant terms are zero. Thus, a
homogeneous system has the form AX ¼ 0. Clearly, such a system always has the zero vector
0 ¼ ð0; 0; . . . ; 0Þ as a solution, called the zero or trivial solution. Accordingly, we are usually interested
in whether or not the system has a nonzero solution.

Because a homogeneous system AX ¼ 0 has at least the zero solution, it can always be put in an
echelon form, say

a11x1 þ a12x2 þ a13x3 þ a14x4 þ � � � þ a1nxn ¼ 0
a2j2

xj2 þ a2;j2þ1xj2þ1 þ � � � þ a2nxn ¼ 0
::::::::::::::::::::::::::::::::::::::::::::

arjr xjr þ � � � þ arnxn ¼ 0

Here r denotes the number of equations in echelon form and n denotes the number of unknowns. Thus,
the echelon system has n
 r free variables.

The question of nonzero solutions reduces to the following two cases:

(i) r ¼ n. The system has only the zero solution.

(ii) r < n. The system has a nonzero solution.

Accordingly, if we begin with fewer equations than unknowns, then, in echelon form, r < n, and the
system has a nonzero solution. This proves the following important result.

THEOREM 3.13: A homogeneous system AX ¼ 0 with more unknowns than equations has a nonzero
solution.
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EXAMPLE 3.17 Determine whether or not each of the following homogeneous systems has a nonzero
solution:

(a)

xþ y
 z ¼ 0
2x
 3yþ z ¼ 0

x
 4yþ 2z ¼ 0
(b)

xþ y
 z ¼ 0
2xþ 4y
 z ¼ 0
3xþ 2yþ 2z ¼ 0

(c)

x1 þ 2x2 
 3x3 þ 4x4 ¼ 0
2x1 
 3x2 þ 5x3 
 7x4 ¼ 0
5x1 þ 6x2 
 9x3 þ 8x4 ¼ 0

(a) Reduce the system to echelon form as follows:

xþ y
 z ¼ 0

5yþ 3z ¼ 0

5yþ 3z ¼ 0

and then
xþ y
 z ¼ 0

5yþ 3z ¼ 0

The system has a nonzero solution, because there are only two equations in the three unknowns in echelon form.
Here z is a free variable. Let us, say, set z ¼ 5. Then, by back-substitution, y ¼ 3 and x ¼ 2. Thus, the vector
u ¼ ð2; 3; 5Þ is a particular nonzero solution.

(b) Reduce the system to echelon form as follows:

xþ y
 z ¼ 0
2yþ z ¼ 0

yþ 5z ¼ 0

and then
xþ y
 z ¼ 0

2yþ z ¼ 0
11z ¼ 0

In echelon form, there are three equations in three unknowns. Thus, the system has only the zero solution.

(c) The system must have a nonzero solution (Theorem 3.13), because there are four unknowns but only three
equations. (Here we do not need to reduce the system to echelon form.)

Basis for the General Solution of a Homogeneous System

Let W denote the general solution of a homogeneous system AX ¼ 0. A list of nonzero solution vectors
u1; u2; . . . ; us of the system is said to be a basis for W if each solution vector w 2 W can be expressed
uniquely as a linear combination of the vectors u1; u2; . . . ; us; that is, there exist unique scalars
a1; a2; . . . ; as such that

w ¼ a1u1 þ a2u2 þ � � � þ asus

The number s of such basis vectors is equal to the number of free variables. This number s is called the
dimension of W , written as dim W ¼ s. When W ¼ f0g—that is, the system has only the zero solution—
we define dim W ¼ 0.

The following theorem, proved in Chapter 5, page 171, tells us how to find such a basis.

THEOREM 3.14: Let W be the general solution of a homogeneous system AX ¼ 0, and suppose that
the echelon form of the homogeneous system has s free variables. Let u1; u2; . . . ; us

be the solutions obtained by setting one of the free variables equal to 1 (or any
nonzero constant) and the remaining free variables equal to 0. Then dim W ¼ s, and
the vectors u1; u2; . . . ; us form a basis of W .

We emphasize that the general solution W may have many bases, and that Theorem 3.12 only gives us
one such basis.

EXAMPLE 3.18 Find the dimension and a basis for the general solution W of the homogeneous system

x1 þ 2x2 
 3x3 þ 2x4 
 4x5 ¼ 0

2x1 þ 4x2 
 5x3 þ x4 
 6x5 ¼ 0

5x1 þ 10x2 
 13x3 þ 4x4 
 16x5 ¼ 0
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First reduce the system to echelon form. Apply the following operations:

‘‘Replace L2 by 
2L1 þ L2’’ and ‘‘Replace L3 by 
 5L1 þ L3’’ and then ‘‘Replace L3 by 
2L2 þ L3’’

These operations yield

x1 þ 2x2 
 3x3 þ 2x4 
 4x5 ¼ 0
x3 
 3x4 þ 2x5 ¼ 0

2x3 
 6x4 þ 4x5 ¼ 0
and

x1 þ 2x2 
 3x3 þ 2x4 
 4x5 ¼ 0
x3 
 3x4 þ 2x5 ¼ 0

The system in echelon form has three free variables, x2; x4; x5; hence, dim W ¼ 3. Three solution vectors that form a
basis for W are obtained as follows:

(1) Set x2 ¼ 1, x4 ¼ 0, x5 ¼ 0. Back-substitution yields the solution u1 ¼ ð
2; 1; 0; 0; 0Þ.
(2) Set x2 ¼ 0, x4 ¼ 1, x5 ¼ 0. Back-substitution yields the solution u2 ¼ ð7; 0; 3; 1; 0Þ.
(3) Set x2 ¼ 0, x4 ¼ 0, x5 ¼ 1. Back-substitution yields the solution u3 ¼ ð
2; 0;
2; 0; 1Þ.

The vectors u1 ¼ ð
2; 1; 0; 0; 0Þ, u2 ¼ ð7; 0; 3; 1; 0Þ, u3 ¼ ð
2; 0;
2; 0; 1Þ form a basis for W .

Remark: Any solution of the system in Example 3.18 can be written in the form

au1 þ bu2 þ cu3 ¼ að
2; 1; 0; 0; 0Þ þ bð7; 0; 3; 1; 0Þ þ cð
2; 0;
2; 0; 1Þ
¼ ð
2aþ 7b
 2c; a; 3b
 2c; b; cÞ

or

x1 ¼ 
2aþ 7b
 2c; x2 ¼ a; x3 ¼ 3b
 2c; x4 ¼ b; x5 ¼ c

where a; b; c are arbitrary constants. Observe that this representation is nothing more than the parametric
form of the general solution under the choice of parameters x2 ¼ a, x4 ¼ b, x5 ¼ c.

Nonhomogeneous and Associated Homogeneous Systems

Let AX ¼ B be a nonhomogeneous system of linear equations. Then AX ¼ 0 is called the associated
homogeneous system. For example,

xþ 2y
 4z ¼ 7
3x
 5yþ 6z ¼ 8

and
xþ 2y
 4z ¼ 0

3x
 5yþ 6z ¼ 0

show a nonhomogeneous system and its associated homogeneous system.
The relationship between the solution U of a nonhomogeneous system AX ¼ B and the solution W of

its associated homogeneous system AX ¼ 0 is contained in the following theorem.

THEOREM 3.15: Let v0 be a particular solution of AX ¼ B and let W be the general solution of
AX ¼ 0. Then the following is the general solution of AX ¼ B:

U ¼ v0 þW ¼ fv0 þ w : w 2 Wg

That is, U ¼ v0 þW is obtained by adding v0 to each element in W . We note that this theorem has a
geometrical interpretation in R3. Specifically, suppose W is a line through the origin O. Then, as pictured
in Fig. 3-4, U ¼ v0 þW is the line parallel to W obtained by adding v0 to each element of W . Similarly,
whenever W is a plane through the origin O, then U ¼ v0 þW is a plane parallel to W .
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3.12 Elementary Matrices

Let e denote an elementary row operation and let eðAÞ denote the results of applying the operation e to a
matrix A. Now let E be the matrix obtained by applying e to the identity matrix I ; that is,

E ¼ eðIÞ
Then E is called the elementary matrix corresponding to the elementary row operation e. Note that E is
always a square matrix.

EXAMPLE 3.19 Consider the following three elementary row operations:

ð1Þ Interchange R2 and R3: ð2Þ Replace R2 by 
6R2: ð3Þ Replace R3 by 
 4R1 þ R3:

The 3� 3 elementary matrices corresponding to the above elementary row operations are as follows:

E1 ¼
1 0 0
0 0 1
0 1 0

24 35; E2 ¼
1 0 0
0 
6 0
0 0 1

24 35; E3 ¼
1 0 0
0 1 0

4 0 1

24 35
The following theorem, proved in Problem 3.34, holds.

THEOREM 3.16: Let e be an elementary row operation and let E be the corresponding m� m
elementary matrix. Then

eðAÞ ¼ EA

where A is any m� n matrix.

In other words, the result of applying an elementary row operation e to a matrix A can be obtained by
premultiplying A by the corresponding elementary matrix E.

Now suppose e0 is the inverse of an elementary row operation e, and let E0 and E be the corresponding
matrices. We note (Problem 3.33) that E is invertible and E0 is its inverse. This means, in particular, that
any product

P ¼ Ek . . .E2E1

of elementary matrices is invertible.

Figure 3-4
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Applications of Elementary Matrices

Using Theorem 3.16, we are able to prove (Problem 3.35) the following important properties of matrices.

THEOREM 3.17: Let A be a square matrix. Then the following are equivalent:

(a) A is invertible (nonsingular).

(b) A is row equivalent to the identity matrix I .

(c) A is a product of elementary matrices.

Recall that square matrices A and B are inverses if AB ¼ BA ¼ I . The next theorem (proved in
Problem 3.36) demonstrates that we need only show that one of the products is true, say AB ¼ I , to prove
that matrices are inverses.

THEOREM 3.18: Suppose AB ¼ I . Then BA ¼ I , and hence, B ¼ A
1.

Row equivalence can also be defined in terms of matrix multiplication. Specifically, we will prove
(Problem 3.37) the following.

THEOREM 3.19: B is row equivalent to A if and only if there exists a nonsingular matrix P such that
B ¼ PA.

Application to Finding the Inverse of an n� n Matrix

The following algorithm finds the inverse of a matrix.

ALGORITHM 3.5: The input is a square matrix A. The output is the inverse of A or that the inverse
does not exist.

Step 1. Form the n� 2n (block) matrix M ¼ ½A; I �, where A is the left half of M and the identity matrix
I is the right half of M .

Step 2. Row reduce M to echelon form. If the process generates a zero row in the A half of M , then

STOP

A has no inverse. (Otherwise A is in triangular form.)

Step 3. Further row reduce M to its row canonical form

M � ½I ;B�
where the identity matrix I has replaced A in the left half of M .

Step 4. Set A
1 ¼ B, the matrix that is now in the right half of M .

The justification for the above algorithm is as follows. Suppose A is invertible and, say, the sequence
of elementary row operations e1; e2; . . . ; eq applied to M ¼ ½A; I � reduces the left half of M , which is A, to
the identity matrix I . Let Ei be the elementary matrix corresponding to the operation ei. Then, by
applying Theorem 3.16. we get

Eq . . .E2E1A ¼ I or ðEq . . .E2E1IÞA ¼ I ; so A
1 ¼ Eq . . .E2E1I

That is, A
1 can be obtained by applying the elementary row operations e1; e2; . . . ; eq to the identity
matrix I , which appears in the right half of M . Thus, B ¼ A
1, as claimed.

EXAMPLE 3.20

Find the inverse of the matrix A ¼
1 0 2
2 
1 3
4 1 8

24 35.
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First form the (block) matrix M ¼ ½A; I � and row reduce M to an echelon form:

M ¼
1 0 2 1 0 0
2 
1 3 0 1 0
4 1 8 0 0 1

24 35 � 1 0 2 1 0 0
0 
1 
1 
2 1 0
0 1 0 
4 0 1

24 35 � 1 0 2 1 0 0
0 
1 
1 
2 1 0
0 0 
1 
6 1 1

24 35
In echelon form, the left half of M is in triangular form; hence, A has an inverse. Next we further row reduce M to its
row canonical form:

M �
1 0 0 
11 2 2
0 
1 0 4 0 
1
0 0 1 6 
1 
1

24 35 � 1 0 0 
11 2 2
0 1 0 
4 0 1
0 0 1 6 
1 
1

24 35
The identity matrix is now in the left half of the final matrix; hence, the right half is A
1. In other words,

A
1 ¼

11 2 2

4 0 1

6 
1 
1

24 35
Elementary Column Operations

Now let A be a matrix with columns C1;C2; . . . ;Cn. The following operations on A, analogous to the
elementary row operations, are called elementary column operations:
½F1� (Column Interchange): Interchange columns Ci and Cj.
½F2� (Column Scaling): Replace Ci by kCi (where k 6¼ 0).
½F3� (Column Addition): Replace Cj by kCi þ Cj.

We may indicate each of the column operations by writing, respectively,

ð1Þ Ci $ Cj; ð2Þ kCi ! Ci; ð3Þ ðkCi þ CjÞ ! Cj

Moreover, each column operation has an inverse operation of the same type, just like the corresponding
row operation.

Now let f denote an elementary column operation, and let F be the matrix obtained by applying f to
the identity matrix I ; that is,

F ¼ f ðIÞ

Then F is called the elementary matrix corresponding to the elementary column operation f . Note that F
is always a square matrix.

EXAMPLE 3.21
Consider the following elementary column operations:

ð1Þ Interchange C1 and C3; ð2Þ Replace C3 by 
2C3; ð3Þ Replace C3 by 
3C2 þ C3

The corresponding three 3� 3 elementary matrices are as follows:

F1 ¼
0 0 1
0 1 0
1 0 0

24 35; F2 ¼
1 0 0
0 1 0
0 0 
2

24 35; F3 ¼
1 0 0
0 1 
3
0 0 1

24 35
The following theorem is analogous to Theorem 3.16 for the elementary row operations.

THEOREM 3.20: For any matrix A; f ðAÞ ¼ AF.

That is, the result of applying an elementary column operation f on a matrix A can be obtained by
postmultiplying A by the corresponding elementary matrix F.
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Matrix Equivalence

A matrix B is equivalent to a matrix A if B can be obtained from A by a sequence of row and column
operations. Alternatively, B is equivalent to A, if there exist nonsingular matrices P and Q such that
B ¼ PAQ. Just like row equivalence, equivalence of matrices is an equivalence relation.

The main result of this subsection (proved in Problem 3.38) is as follows.

THEOREM 3.21: Every m� n matrix A is equivalent to a unique block matrix of the form

Ir 0
0 0

� �
where Ir is the r-square identity matrix.

The following definition applies.

DEFINITION: The nonnegative integer r in Theorem 3.    is called the rank of A, written rankðAÞ.
Note that this definition agrees with the previous definition of the rank of a matrix.

3.13 LU DECOMPOSITION

Suppose A is a nonsingular matrix that can be brought into (upper) triangular form U using only row-
addition operations; that is, suppose A can be triangularized by the following algorithm, which we write
using computer notation.

ALGORITHM 3.6: The input is a matrix A and the output is a triangular matrix U .

Step 1. Repeat for i ¼ 1; 2; . . . ; n
 1:

Step 2. Repeat for j ¼ iþ 1, iþ 2; . . . ; n

(a) Set mij :¼ 
aij=aii.
(b) Set Rj :¼ mijRi þ Rj

[End of Step 2 inner loop.]

[End of Step 1 outer loop.]

The numbers mij are called multipliers. Sometimes we keep track of these multipliers by means of the
following lower triangular matrix L:

L ¼

1 0 0 . . . 0 0

m21 1 0 . . . 0 0

m31 
m32 1 . . . 0 0


mn1 
mn2 
mn3 . . . 
mn;n
1 1

266664
377775

That is, L has 1’s on the diagonal, 0’s above the diagonal, and the negative of the multiplier mij as its
ij-entry below the diagonal.

The above matrix L and the triangular matrix U obtained in Algorithm 3.6 give us the classical LU
factorization of such a matrix A. Namely,

THEOREM 3.22: Let A be a nonsingular matrix that can be brought into triangular form U using only
row-addition operations. Then A ¼ LU , where L is the above lower triangular matrix
with 1’s on the diagonal, and U is an upper triangular matrix with no 0’s on the
diagonal.

.........................................................
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EXAMPLE 3.22 Suppose A ¼
1 2 
3

3 
4 13

2 1 
5

24 35. We note that A may be reduced to triangular form by the operations

‘‘Replace R2 by 3R1 þ R2’’; ‘‘Replace R3 by 
 2R1 þ R3’’; and then ‘‘Replace R3 by 3
2 R2 þ R3’’

That is,

A �
1 2 
3
0 2 4
0 
3 1

24 35 � 1 2 
3
0 2 4
0 0 7

24 35

This gives us the classical factorization A ¼ LU , where

L ¼
1 0 0


3 1 0

2 
 3
2 1

264
375 and U ¼

1 2 
3

0 2 4

0 0 7

264
375

We emphasize:

(1) The entries 
3; 2;
 3
2 in L are the negatives of the multipliers in the above elementary row operations.

(2) U is the triangular form of A.

Application to Systems of Linear Equations

Consider a computer algorithm M . Let CðnÞ denote the running time of the algorithm as a function of the
size n of the input data. [The function CðnÞ is sometimes called the time complexity or simply the
complexity of the algorithm M .] Frequently, CðnÞ simply counts the number of multiplications and
divisions executed by M , but does not count the number of additions and subtractions because they take
much less time to execute.

Now consider a square system of linear equations AX ¼ B, where

A ¼ ½aij�; X ¼ ½x1; . . . ; xn�T ; B ¼ ½b1; . . . ; bn�T

and suppose A has an LU factorization. Then the system can be brought into triangular form (in order to
apply back-substitution) by applying Algorithm 3.6 to the augmented matrix M ¼ ½A;B� of the system.
The time complexity of Algorithm 3.6 and back-substitution are, respectively,

CðnÞ � 1
2 n3 and CðnÞ � 1

2 n2

where n is the number of equations.
On the other hand, suppose we already have the factorization A ¼ LU . Then, to triangularize the

system, we need only apply the row operations in the algorithm (retained by the matrix L) to the column
vector B. In this case, the time complexity is

CðnÞ � 1
2 n

2

Of course, to obtain the factorization A ¼ LU requires the original algorithm where CðnÞ � 1
2 n3. Thus,

nothing may be gained by first finding the LU factorization when a single system is involved. However,
there are situations, illustrated below, where the LU factorization is useful.

Suppose, for a given matrix A, we need to solve the system

AX ¼ B
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repeatedly for a sequence of different constant vectors, say B1;B2; . . . ;Bk . Also, suppose some of the Bi

depend upon the solution of the system obtained while using preceding vectors Bj. In such a case, it is
more efficient to first find the LU factorization of A, and then to use this factorization to solve the system
for each new B.

EXAMPLE 3.23 Consider the following system of linear equations:

xþ 2yþ z ¼ k1

2xþ 3yþ 3z ¼ k2


3xþ 10yþ 2z ¼ k3

or AX ¼ B; where A ¼
1 2 1
2 3 3

3 10 2

24 35 and B ¼
k1

k2

k3

24 35
Suppose we want to solve the system three times where B is equal, say, to B1;B2;B3. Furthermore, suppose
B1 ¼ ½1; 1; 1�T , and suppose

Bjþ1 ¼ Bj þ Xj ðfor j ¼ 1; 2Þ

where Xj is the solution of AX ¼ Bj. Here it is more efficient to first obtain the LU factorization of A and then use the
LU factorization to solve the system for each of the B’s. (This is done in Problem 3.42.)

SOLVED PROBLEMS

Linear Equations, Solutions, 2�2 Systems

3.1. Determine whether each of the following equations is linear:

(a) 5xþ 7y
 8yz ¼ 16, (b) xþ pyþ ez ¼ log 5, (c) 3xþ ky
 8z ¼ 16

(a) No, because the product yz of two unknowns is of second degree.

(b) Yes, because p; e, and log 5 are constants.

(c) As it stands, there are four unknowns: x; y; z; k. Because of the term ky it is not a linear equation. However,
assuming k is a constant, the equation is linear in the unknowns x; y; z.

3.2. Determine whether the following vectors are solutions of x1 þ 2x2 
 4x3 þ 3x4 ¼ 15:
(a) u ¼ ð3; 2; 1; 4Þ and (b) v ¼ ð1; 2; 4; 5Þ:
(a) Substitute to obtain 3þ 2ð2Þ 
 4ð1Þ þ 3ð4Þ ¼ 15, or 15 ¼ 15; yes, it is a solution.

(b) Substitute to obtain 1þ 2ð2Þ 
 4ð4Þ þ 3ð5Þ ¼ 15, or 4 ¼ 15; no, it is not a solution.

3.3. Solve (a) ex ¼ p, (b) 3x
 4
 x ¼ 2xþ 3, (c) 7þ 2x
 4 ¼ 3xþ 3
 x

(a) Because e 6¼ 0, multiply by 1=e to obtain x ¼ p=e.

(b) Rewrite in standard form, obtaining 0x ¼ 7. The equation has no solution.

(c) Rewrite in standard form, obtaining 0x ¼ 0. Every scalar k is a solution.

3.4. Prove Theorem 3.4: Consider the equation ax ¼ b.

(i) If a 6¼ 0, then x ¼ b=a is a unique solution of ax ¼ b.

(ii) If a ¼ 0 but b 6¼ 0, then ax ¼ b has no solution.

(iii) If a ¼ 0 and b ¼ 0, then every scalar k is a solution of ax ¼ b.

Suppose a 6¼ 0. Then the scalar b=a exists. Substituting b=a in ax ¼ b yields aðb=aÞ ¼ b, or b ¼ b;
hence, b=a is a solution. On the other hand, suppose x0 is a solution to ax ¼ b, so that ax0 ¼ b. Multiplying
both sides by 1=a yields x0 ¼ b=a. Hence, b=a is the unique solution of ax ¼ b. Thus, (i) is proved.

On the other hand, suppose a ¼ 0. Then, for any scalar k, we have ak ¼ 0k ¼ 0. If b 6¼ 0, then ak 6¼ b.
Accordingly, k is not a solution of ax ¼ b, and so (ii) is proved. If b ¼ 0, then ak ¼ b. That is, any scalar k is
a solution of ax ¼ b, and so (iii) is proved.
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3.5. Solve each of the following systems:

(a)
2x
 5y ¼ 11
3xþ 4y ¼ 5

(b)
2x
 3y ¼ 8

6xþ 9y ¼ 6

(c)
2x
 3y ¼ 8

4xþ 6y ¼ 
16

(a) Eliminate x from the equations by forming the new equation L ¼ 
3L1 þ 2L2. This yields the equation

23y ¼ 
23; and so y ¼ 
1

Substitute y ¼ 
1 in one of the original equations, say L1, to get

2x
 5ð
1Þ ¼ 11 or 2xþ 5 ¼ 11 or 2x ¼ 6 or x ¼ 3

Thus, x ¼ 3, y ¼ 
1 or the pair u ¼ ð3;
1Þ is the unique solution of the system.

(b) Eliminate x from the equations by forming the new equation L ¼ 3L1 þ L2. This yields the equation

0xþ 0y ¼ 30

This is a degenerate equation with a nonzero constant; hence, this equation and the system have no
solution. (Geometrically, the lines corresponding to the equations are parallel.)

(c) Eliminate x from the equations by forming the new equation L ¼ 2L1 þ L2. This yields the equation

0xþ 0y ¼ 0

This is a degenerate equation where the constant term is also zero. Thus, the system has an infinite
number of solutions, which correspond to the solution of either equation. (Geometrically, the lines
corresponding to the equations coincide.)

To find the general solution, set y ¼ a and substitute in L1 to obtain

2x
 3a ¼ 8 or 2x ¼ 3aþ 8 or x ¼ 3
2 aþ 4

Thus, the general solution is

x ¼ 3
2 aþ 4; y ¼ a or u ¼ 3

2 aþ 4; a

 �

where a is any scalar.

3.6. Consider the system

xþ ay ¼ 4

axþ 9y ¼ b

(a) For which values of a does the system have a unique solution?

(b) Find those pairs of values (a; b) for which the system has more than one solution.

(a) Eliminate x from the equations by forming the new equation L ¼ 
aL1 þ L2. This yields the equation

ð9
 a2Þy ¼ b
 4a ð1Þ
The system has a unique solution if and only if the coefficient of y in (1) is not zero—that is, if
9
 a2 6¼ 0 or if a 6¼ �3.

(b) The system has more than one solution if both sides of (1) are zero. The left-hand side is zero when
a ¼ �3. When a ¼ 3, the right-hand side is zero when b
 12 ¼ 0 or b ¼ 12. When a ¼ 
3, the right-
hand side is zero when bþ 12
 0 or b ¼ 
12. Thus, (3; 12) and ð
3;
12Þ are the pairs for which the
system has more than one solution.

Systems in Triangular and Echelon Form

3.7. Determine the pivot and free variables in each of the following systems:

2x1 
 3x2 
 6x3 
 5x4 þ 2x5 ¼ 7
x3 þ 3x4 
 7x5 ¼ 6

x4 
 2x5 ¼ 1
(a)

2x
 6yþ 7z ¼ 1
4yþ 3z ¼ 8

2z ¼ 4
(b)

xþ 2y
 3z ¼ 2
2xþ 3yþ z ¼ 4
3xþ 4yþ 5z ¼ 8

(c)

(a) In echelon form, the leading unknowns are the pivot variables, and the others are the free variables. Here
x1, x3, x4 are the pivot variables, and x2 and x5 are the free variables.
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(b) The leading unknowns are x; y; z, so they are the pivot variables. There are no free variables (as in any
triangular system).

(c) The notion of pivot and free variables applies only to a system in echelon form.

3.8. Solve the triangular system in Problem 3.7(b).
Because it is a triangular system, solve by back-substitution.

(i) The last equation gives z ¼ 2.

(ii) Substitute z ¼ 2 in the second equation to get 4yþ 6 ¼ 8 or y ¼ 1
2.

(iii) Substitute z ¼ 2 and y ¼ 1
2 in the first equation to get

2x
 6
1

2

� �
þ 7ð2Þ ¼ 1 or 2xþ 11 ¼ 1 or x ¼ 
5

Thus, x ¼ 
5, y ¼ 1
2, z ¼ 2 or u ¼ ð
5; 1

2 ; 2Þ is the unique solution to the system.

3.9. Solve the echelon system in Problem 3.7(a).
Assign parameters to the free variables, say x2 ¼ a and x5 ¼ b, and solve for the pivot variables by back-
substitution.

(i) Substitute x5 ¼ b in the last equation to get x4 
 2b ¼ 1 or x4 ¼ 2bþ 1.

(ii) Substitute x5 ¼ b and x4 ¼ 2bþ 1 in the second equation to get

x3 þ 3ð2bþ 1Þ 
 7b ¼ 6 or x3 
 bþ 3 ¼ 6 or x3 ¼ bþ 3

(iii) Substitute x5 ¼ b, x4 ¼ 2bþ 1, x3 ¼ bþ 3, x2 ¼ a in the first equation to get

2x1 
 3a
 6ðbþ 3Þ 
 5ð2bþ 1Þ þ 2b ¼ 7 or 2x1 
 3a
 14b
 23 ¼ 7

or x1 ¼ 3
2 aþ 7bþ 15

Thus,

x1 ¼
3

2
aþ 7bþ 15; x2 ¼ a; x3 ¼ bþ 3; x4 ¼ 2bþ 1; x5 ¼ b

or u ¼ 3

2
aþ 7bþ 15; a; bþ 3; 2bþ 1; b

� �
is the parametric form of the general solution.

Alternatively, solving for the pivot variable x1; x3; x4 in terms of the free variables x2 and x5 yields the
following free-variable form of the general solution:

x1 ¼
3

2
x2 þ 7x5 þ 15; x3 ¼ x5 þ 3; x4 ¼ 2x5 þ 1

3.10. Prove Theorem 3.6. Consider the system (3.4) of linear equations in echelon form with r equations
and n unknowns.

(i) If r ¼ n, then the system has a unique solution.

(ii) If r < n, then we can arbitrarily assign values to the n
 r free variable and solve uniquely for
the r pivot variables, obtaining a solution of the system.

(i) Suppose r ¼ n. Then we have a square system AX ¼ B where the matrix A of coefficients is (upper)
triangular with nonzero diagonal elements. Thus, A is invertible. By Theorem 3.10, the system has a
unique solution.

(ii) Assigning values to the n
 r free variables yields a triangular system in the pivot variables, which, by
(i), has a unique solution.
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Gaussian Elimination

3.11. Solve each of the following systems:

xþ 2y
 4z ¼ 
4
2xþ 5y
 9z ¼ 
10
3x
 2yþ 3z ¼ 11

(a)

xþ 2y
 3z ¼ 
1

3xþ y
 2z ¼ 
7

5xþ 3y
 4z ¼ 2
(b)

xþ 2y
 3z ¼ 1
2xþ 5y
 8z ¼ 4
3xþ 8y
 13z ¼ 7

(c)

Reduce each system to triangular or echelon form using Gaussian elimination:

(a) Apply ‘‘Replace L2 by 
2L1 þ L2’’ and ‘‘Replace L3 by 
3L1 þ L3’’ to eliminate x from the second and
third equations, and then apply ‘‘Replace L3 by 8L2 þ L3’’ to eliminate y from the third equation. These
operations yield

xþ 2y
 4z ¼ 
4
y
 z ¼ 
2


8yþ 15z ¼ 23
and then

xþ 2y
 4z ¼ 
4
y
 z ¼ 
2

7z ¼ 7

The system is in triangular form. Solve by back-substitution to obtain the unique solution
u ¼ ð2;
1; 1Þ.

(b) Eliminate x from the second and third equations by the operations ‘‘Replace L2 by 3L1 þ L2’’ and
‘‘Replace L3 by 
5L1 þ L3.’’ This gives the equivalent system

xþ 2y
 3z ¼ 
1
7y
 11z ¼ 
10

7yþ 11z ¼ 7

The operation ‘‘Replace L3 by L2 þ L3’’ yields the following degenerate equation with a nonzero
constant:

0xþ 0yþ 0z ¼ 
3

This equation and hence the system have no solution.

(c) Eliminate x from the second and third equations by the operations ‘‘Replace L2 by 
2L1 þ L2’’ and
‘‘Replace L3 by 
3L1 þ L3.’’ This yields the new system

xþ 2y
 3z ¼ 1
y
 2z ¼ 2

2y
 4z ¼ 4
or

xþ 2y
 3z ¼ 1
y
 2z ¼ 2

(The third equation is deleted, because it is a multiple of the second equation.) The system is in echelon
form with pivot variables x and y and free variable z.

To find the parametric form of the general solution, set z ¼ a and solve for x and y by back-
substitution. Substitute z ¼ a in the second equation to get y ¼ 2þ 2a. Then substitute z ¼ a and
y ¼ 2þ 2a in the first equation to get

xþ 2ð2þ 2aÞ 
 3a ¼ 1 or xþ 4þ a ¼ 1 or x ¼ 
3
 a

Thus, the general solution is

x ¼ 
3
 a; y ¼ 2þ 2a; z ¼ a or u ¼ ð
3
 a; 2þ 2a; aÞ
where a is a parameter.

3.12. Solve each of the following systems:

x1 
 3x2 þ 2x3 
 x4 þ 2x5 ¼ 2
3x1 
 9x2 þ 7x3 
 x4 þ 3x5 ¼ 7
2x1 
 6x2 þ 7x3 þ 4x4 
 5x5 ¼ 7

(a)

x1 þ 2x2 
 3x3 þ 4x4 ¼ 2
2x1 þ 5x2 
 2x3 þ x4 ¼ 1
5x1 þ 12x2 
 7x3 þ 6x4 ¼ 3

(b)

Reduce each system to echelon form using Gaussian elimination:
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(a) Apply ‘‘Replace L2 by 
3L1 þ L2’’ and ‘‘Replace L3 by 
2L1 þ L3’’ to eliminate x from the second and
third equations. This yields

x1 
 3x2 þ 2x3 
 x4 þ 2x5 ¼ 2
x3 þ 2x4 
 3x5 ¼ 1

3x3 þ 6x4 
 9x5 ¼ 3
or

x1 
 3x2 þ 2x3 
 x4 þ 2x5 ¼ 2
x3 þ 2x4 
 3x5 ¼ 1

(We delete L3, because it is a multiple of L2.) The system is in echelon form with pivot variables x1 and
x3 and free variables x2; x4; x5.

To find the parametric form of the general solution, set x2 ¼ a, x4 ¼ b, x5 ¼ c, where a; b; c are
parameters. Back-substitution yields x3 ¼ 1
 2bþ 3c and x1 ¼ 3aþ 5b
 8c. The general solution is

x1 ¼ 3aþ 5b
 8c; x2 ¼ a; x3 ¼ 1
 2bþ 3c; x4 ¼ b; x5 ¼ c

or, equivalently, u ¼ ð3aþ 5b
 8c; a; 1
 2bþ 3c; b; cÞ.
(b) Eliminate x1 from the second and third equations by the operations ‘‘Replace L2 by 
2L1 þ L2’’ and

‘‘Replace L3 by 
5L1 þ L3.’’ This yields the system

x1 þ 2x2 
 3x3 þ 4x4 ¼ 2
x2 þ 4x3 
 7x4 ¼ 
3

2x2 þ 8x3 
 14x4 ¼ 
7

The operation ‘‘Replace L3 by 
2L2 þ L3’’ yields the degenerate equation 0 ¼ 
1. Thus, the system
has no solution (even though the system has more unknowns than equations).

3.13. Solve using the condensed format:

2yþ 3z ¼ 3
xþ yþ z ¼ 4

4xþ 8y
 3z ¼ 35

The condensed format follows:

Number Equation Operation
ð2Þ ð 1=Þ 2yþ 3z ¼ 3 L1 $ L2

ð1Þ ð 2=Þ xþ yþ z ¼ 4 L1 $ L2

ð3Þ 4xþ 8y
 3z ¼ 35
ð30Þ 4y
 7z ¼ 19 Replace L3 by 
 4L1 þ L3

ð300Þ 
 13z ¼ 13 Replace L3 by 
 2L2 þ L3

Here (1), (2), and (300) form a triangular system. (We emphasize that the interchange of L1 and L2 is
accomplished by simply renumbering L1 and L2 as above.)

Using back-substitution with the triangular system yields z ¼ 
1 from L3, y ¼ 3 from L2, and x ¼ 2
from L1. Thus, the unique solution of the system is x ¼ 2, y ¼ 3, z ¼ 
1 or the triple u ¼ ð2; 3;
1Þ.

3.14. Consider the system

xþ 2yþ z ¼ 3
ayþ 5z ¼ 10

2xþ 7yþ az ¼ b

(a) Find those values of a for which the system has a unique solution.

(b) Find those pairs of values ða; bÞ for which the system has more than one solution.

Reduce the system to echelon form. That is, eliminate x from the third equation by the operation
‘‘Replace L3 by 
2L1 þ L3’’ and then eliminate y from the third equation by the operation
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‘‘Replace L3 by 
3L2 þ aL3.’’ This yields

xþ 2y þ z ¼ 3
ay þ 5z ¼ 10

3yþ ða
 2Þz ¼ b
 6
and then

xþ 2yþ z ¼ 3
ayþ 5z ¼ 10

ða2 
 2a
 15Þz ¼ ab
 6a
 30

Examine the last equation ða2 
 2a
 15Þz ¼ ab
 6a
 30.

(a) The system has a unique solution if and only if the coefficient of z is not zero; that is, if

a2 
 2a
 15 ¼ ða
 5Þðaþ 3Þ 6¼ 0 or a 6¼ 5 and a 6¼ 
3:

(b) The system has more than one solution if both sides are zero. The left-hand side is zero when a ¼ 5 or
a ¼ 
3. When a ¼ 5, the right-hand side is zero when 5b
 60 ¼ 0, or b ¼ 12. When a ¼ 
3, the right-
hand side is zero when 
3b
 12 ¼ 0, or b ¼ 
4. Thus, ð5; 12Þ and ð
3;
4Þ are the pairs for which the
system has more than one solution.

Echelon Matrices, Row Equivalence, Row Canonical Form

3.15. Row reduce each of the following matrices to echelon form:

(a) A ¼
1 2 
3 0
2 4 
2 2
3 6 
4 3

24 35; (b) B ¼

4 1 
6

1 2 
5
6 3 
4

24 35
(a) Use a11 ¼ 1 as a pivot to obtain 0’s below a11; that is, apply the row operations ‘‘Replace R2 by

2R1 þ R2’’ and ‘‘Replace R3 by 
3R1 þ R3:’’ Then use a23 ¼ 4 as a pivot to obtain a 0 below a23; that
is, apply the row operation ‘‘Replace R3 by 
5R2 þ 4R3.’’ These operations yield

A �
1 2 
3 0
0 0 4 2
0 0 5 3

24 35 � 1 2 
3 0
0 0 4 2
0 0 0 2

24 35
The matrix is now in echelon form.

(b) Hand calculations are usually simpler if the pivot element equals 1. Therefore, first interchange R1 and R2.
Next apply the operations ‘‘Replace R2 by 4R1 þ R2’’ and ‘‘Replace R3 by 
6R1 þ R3’’; and then apply
the operation ‘‘Replace R3 by R2 þ R3.’’ These operations yield

B �
1 2 
5

4 1 
6

6 3 
4

24 35 � 1 2 
5
0 9 
26
0 
9 26

24 35 � 1 2 
5
0 9 
26
0 0 0

24 35
The matrix is now in echelon form.

3.16. Describe the pivoting row-reduction algorithm. Also describe the advantages, if any, of using this
pivoting algorithm.

The row-reduction algorithm becomes a pivoting algorithm if the entry in column j of greatest absolute
value is chosen as the pivot a1j1

and if one uses the row operation

ð
aij1
=a1j1
ÞR1 þ Ri ! Ri

The main advantage of the pivoting algorithm is that the above row operation involves division by the
(current) pivot a1j1

, and, on the computer, roundoff errors may be substantially reduced when one divides by
a number as large in absolute value as possible.

3.17. Let A ¼
2 
2 2 1

3 6 0 
1

1 
7 10 2

24 35. Reduce A to echelon form using the pivoting algorithm.
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First interchange R1 and R2 so that 
3 can be used as the pivot, and then apply the operations ‘‘Replace R2

by 2
3 R1 þ R2’’ and ‘‘Replace R3 by 1

3 R1 þ R3.’’ These operations yield

A �

3 6 0 
1

2 
2 2 1

1 
7 10 2

24 35 � 
3 6 0 
1

0 2 2 1
3

0 
5 10 5
3

264
375

Now interchange R2 and R3 so that 
5 can be used as the pivot, and then apply the operation ‘‘Replace R3 by
2
5 R2 þ R3.’’ We obtain

A �

3 6 0 
1

0 
5 10 5
3

0 2 2 1
3

24 35 � 
3 6 0 
1
0 
5 10 5

3
0 0 6 1

24 35
The matrix has been brought to echelon form using partial pivoting.

3.18. Reduce each of the following matrices to row canonical form:

(a) A ¼
2 2 
1 6 4
4 4 1 10 13
8 8 
1 26 23

24 35; (b) B ¼
5 
9 6
0 2 3
0 0 7

24 35
(a) First reduce A to echelon form by applying the operations ‘‘Replace R2 by 
2R1 þ R2’’ and ‘‘Replace R3

by 
4R1 þ R3,’’ and then applying the operation ‘‘Replace R3 by 
R2 þ R3.’’ These operations yield

A �
2 2 
1 6 4
0 0 3 
2 5
0 0 3 2 7

24 35 � 2 2 
1 6 4
0 0 3 
2 5
0 0 0 4 2

24 35
Now use back-substitution on the echelon matrix to obtain the row canonical form of A. Specifically,
first multiply R3 by 1

4 to obtain the pivot a34 ¼ 1, and then apply the operations ‘‘Replace R2 by
2R3 þ R2’’ and ‘‘Replace R1 by 
6R3 þ R1.’’ These operations yield

A �
2 2 
1 6 4
0 0 3 
2 5
0 0 0 1 1

2

24 35 � 2 2 
1 0 1
0 0 3 0 6
0 0 0 1 1

2

24 35
Now multiply R2 by 1

3 , making the pivot a23 ¼ 1, and then apply ‘‘Replace R1 by R2 þ R1,’’ yielding

A �
2 2 
1 0 1
0 0 1 0 2
0 0 0 1 1

2

24 35 � 2 2 0 0 3
0 0 1 0 2
0 0 0 1 1

2

24 35
Finally, multiply R1 by 1

2 , so the pivot a11 ¼ 1. Thus, we obtain the following row canonical form of A:

A �
1 1 0 0 3

2
0 0 1 0 2
0 0 0 1 1

2

24 35
(b) Because B is in echelon form, use back-substitution to obtain

B �
5 
9 6

0 2 3

0 0 1

264
375 � 5 
9 0

0 2 0

0 0 1

264
375 � 5 
9 0

0 1 0

0 0 1

264
375 � 5 0 0

0 1 0

0 0 1

264
375 � 1 0 0

0 1 0

0 0 1

264
375

The last matrix, which is the identity matrix I , is the row canonical form of B. (This is expected, because
B is invertible, and so its row canonical form must be I .)

3.19. Describe the Gauss–Jordan elimination algorithm, which also row reduces an arbitrary matrix A to
its row canonical form.
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The Gauss–Jordan algorithm is similar in some ways to the Gaussian elimination algorithm, except that
here each pivot is used to place 0’s both below and above the pivot, not just below the pivot, before working
with the next pivot. Also, one variation of the algorithm first normalizes each row—that is, obtains a unit
pivot—before it is used to produce 0’s in the other rows, rather than normalizing the rows at the end of the
algorithm.

3.20. Let A ¼
1 
2 3 1 2
1 1 4 
1 3
2 5 9 
2 8

24 35. Use Gauss–Jordan to find the row canonical form of A.

Use a11 ¼ 1 as a pivot to obtain 0’s below a11 by applying the operations ‘‘Replace R2 by 
R1 þ R2’’
and ‘‘Replace R3 by 
2R1 þ R3.’’ This yields

A �
1 
2 3 1 2
0 3 1 
2 1
0 9 3 
4 4

24 35
Multiply R2 by 1

3 to make the pivot a22 ¼ 1, and then produce 0’s below and above a22 by applying the
operations ‘‘Replace R3 by 
9R2 þ R3’’ and ‘‘Replace R1 by 2R2 þ R1.’’ These operations yield

A �
1 
2 3 1 2

0 1 1
3 
 2

3
1
3

0 9 3 
4 4

2664
3775 �

1 0 11
3 
 1

3
8
3

0 1 1
3 
 2

3
1
3

0 0 0 2 1

2664
3775

Finally, multiply R3 by 1
2 to make the pivot a34 ¼ 1, and then produce 0’s above a34 by applying the

operations ‘‘Replace R2 by 2
3 R3 þ R2’’ and ‘‘Replace R1 by 1

3 R3 þ R1.’’ These operations yield

A �
1 0 11

3 
 1
3

8
3

0 1 1
3 
 2

3
1
3

0 0 0 1 1
2

2664
3775 �

1 0 11
3 0 17

6

0 1 1
3 0 2

3

0 0 0 1 1
2

2664
3775

which is the row canonical form of A.

Systems of Linear Equations in Matrix Form

3.21. Find the augmented matrix M and the coefficient matrix A of the following system:

xþ 2y
 3z ¼ 4
3y
 4zþ 7x ¼ 5
6zþ 8x
 9y ¼ 1

First align the unknowns in the system, and then use the aligned system to obtain M and A. We have

xþ 2y
 3z ¼ 4
7xþ 3y
 4z ¼ 5
8x
 9yþ 6z ¼ 1

; then M ¼
1 2 
3 4
7 3 
4 5
8 
9 6 1

24 35 and A ¼
1 2 
3
7 3 
4
8 
9 6

24 35
3.22. Solve each of the following systems using its augmented matrix M :

xþ 2y
 z ¼ 3
xþ 3yþ z ¼ 5

3xþ 8yþ 4z ¼ 17
(a)

x
 2yþ 4z ¼ 2
2x
 3yþ 5z ¼ 3
3x
 4yþ 6z ¼ 7

(b)

xþ yþ 3z ¼ 1
2xþ 3y
 z ¼ 3
5xþ 7yþ z ¼ 7

(c)

(a) Reduce the augmented matrix M to echelon form as follows:

M ¼
1 2 
1 3
1 3 1 5
3 8 4 17

24 35 � 1 2 
1 3
0 1 2 2
0 2 7 8

24 35 � 1 2 
1 3
0 1 2 2
0 0 3 4

24 35
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Now write down the corresponding triangular system

xþ 2y
 z ¼ 3
yþ 2z ¼ 2

3z ¼ 4

and solve by back-substitution to obtain the unique solution

x ¼ 17
3 ; y ¼ 
 2

3 ; z ¼ 4
3 or u ¼ ð17

3 ;
 2
3 ;

4
3Þ

Alternately, reduce the echelon form of M to row canonical form, obtaining

M �
1 2 
1 3

0 1 2 2

0 0 1 4
3

2664
3775 �

1 2 0 13
3

0 1 0 
 2
3

0 0 1 4
3

2664
3775 �

1 0 0 17
3

0 1 0 
 2
3

0 0 1 4
3

2664
3775

This also corresponds to the above solution.

(b) First reduce the augmented matrix M to echelon form as follows:

M ¼
1 
2 4 2
2 
3 5 3
3 
4 6 7

24 35 � 1 
2 4 2
0 1 
3 
1
0 2 
6 1

24 35 � 1 
2 4 2
0 1 
3 
1
0 0 0 3

24 35
The third row corresponds to the degenerate equation 0xþ 0yþ 0z ¼ 3, which has no solution. Thus,
‘‘DO NOT CONTINUE.’’ The original system also has no solution. (Note that the echelon form
indicates whether or not the system has a solution.)

(c) Reduce the augmented matrix M to echelon form and then to row canonical form:

M ¼
1 1 3 1
2 3 
1 3
5 7 1 7

24 35 � 1 1 3 1
0 1 
7 1
0 2 
14 2

24 35 � 1 0 10 0
0 1 
7 1

� �
(The third row of the second matrix is deleted, because it is a multiple of the second row and will result
in a zero row.) Write down the system corresponding to the row canonical form of M and then transfer
the free variables to the other side to obtain the free-variable form of the solution:

xþ 10z ¼ 0
y
 7z ¼ 1

and
x ¼ 
10z
y ¼ 1þ 7z

Here z is the only free variable. The parametric solution, using z ¼ a, is as follows:

x ¼ 
10a; y ¼ 1þ 7a; z ¼ a or u ¼ ð
10a; 1þ 7a; aÞ

3.23. Solve the following system using its augmented matrix M :

x1 þ 2x2 
 3x3 
 2x4 þ 4x5 ¼ 1
2x1 þ 5x2 
 8x3 
 x4 þ 6x5 ¼ 4

x1 þ 4x2 
 7x3 þ 5x4 þ 2x5 ¼ 8

Reduce the augmented matrix M to echelon form and then to row canonical form:

M ¼
1 2 
3 
2 4 1

2 5 
8 
1 6 4

1 4 
7 5 2 8

264
375 � 1 2 
3 
2 4 1

0 1 
2 3 
2 2

0 2 
4 7 
2 7

264
375 � 1 2 
3 
2 4 1

0 1 
2 3 
2 2

0 0 0 1 2 3

264
375

�
1 2 
3 0 8 7

0 1 
2 0 
8 
7

0 0 0 1 2 3

264
375 � 1 0 1 0 24 21

0 1 
2 0 
8 
7

0 0 0 1 2 3

264
375

Write down the system corresponding to the row canonical form of M and then transfer the free variables to
the other side to obtain the free-variable form of the solution:

x1 þ x3 þ 24x5 ¼ 21
x2 
 2x3 
 8x5 ¼ 
7

x4 þ 2x5 ¼ 3
and

x1 ¼ 21
 x3 
 24x5

x2 ¼ 
7þ 2x3 þ 8x5

x4 ¼ 3
 2x5
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Here x1; x2; x4 are the pivot variables and x3 and x5 are the free variables. Recall that the parametric form of
the solution can be obtained from the free-variable form of the solution by simply setting the free variables
equal to parameters, say x3 ¼ a, x5 ¼ b. This process yields

x1 ¼ 21
 a
 24b; x2 ¼ 
7þ 2aþ 8b; x3 ¼ a; x4 ¼ 3
 2b; x5 ¼ b

or u ¼ ð21
 a
 24b; 
7þ 2aþ 8b; a; 3
 2b; bÞ
which is another form of the solution.

Linear Combinations, Homogeneous Systems

3.24. Write v as a linear combination of u1; u2; u3, where

(a) v ¼ ð3; 10; 7Þ and u1 ¼ ð1; 3;
2Þ; u2 ¼ ð1; 4; 2Þ; u3 ¼ ð2; 8; 1Þ;
(b) v ¼ ð2; 7; 10Þ and u1 ¼ ð1; 2; 3Þ, u2 ¼ ð1; 3; 5Þ, u3 ¼ ð1; 5; 9Þ;
(c) v ¼ ð1; 5; 4Þ and u1 ¼ ð1; 3;
2Þ, u2 ¼ ð2; 7;
1Þ, u3 ¼ ð1; 6; 7Þ.
Find the equivalent system of linear equations by writing v ¼ xu1 þ yu2 þ zu3. Alternatively, use the
augmented matrix M of the equivalent system, where M ¼ ½u1; u2; u3; v�. (Here u1; u2; u3; v are the columns
of M .)

(a) The vector equation v ¼ xu1 þ yu2 þ zu3 for the given vectors is as follows:

3
10
7

24 35 ¼ x

1
3

2

24 35þ y

1
4
2

24 35þ z

2
8
1

24 35 ¼ xþ yþ 2z
3xþ 4yþ 8z

2xþ 2yþ z

24 35
Form the equivalent system of linear equations by setting corresponding entries equal to each other, and
then reduce the system to echelon form:

xþ yþ 2z ¼ 3
3xþ 4yþ 8z ¼ 10

2xþ 2yþ z ¼ 7

or
xþ yþ 2z ¼ 3

yþ 2z ¼ 1
4yþ 5z ¼ 13

or
xþ yþ 2z ¼ 3

yþ 2z ¼ 1

3z ¼ 9

The system is in triangular form. Back-substitution yields the unique solution x ¼ 2, y ¼ 7, z ¼ 
3.
Thus, v ¼ 2u1 þ 7u2 
 3u3.

Alternatively, form the augmented matrix M ¼ [u1; u2; u3; v] of the equivalent system, and reduce
M to echelon form:

M ¼
1 1 2 3
3 4 8 10

2 2 1 7

24 35 � 1 1 2 3
0 1 2 1
0 4 5 13

24 35 � 1 1 2 3
0 1 2 1
0 0 
3 9

24 35
The last matrix corresponds to a triangular system that has a unique solution. Back-substitution yields
the solution x ¼ 2, y ¼ 7, z ¼ 
3. Thus, v ¼ 2u1 þ 7u2 
 3u3.

(b) Form the augmented matrix M ¼ ½u1; u2; u3; v� of the equivalent system, and reduce M to the echelon
form:

M ¼
1 1 1 2
2 3 5 7
3 5 9 10

24 35 � 1 1 1 2
0 1 3 3
0 2 6 4

24 35 � 1 1 1 2
0 1 3 3
0 0 0 
2

24 35
The third row corresponds to the degenerate equation 0xþ 0yþ 0z ¼ 
2, which has no solution. Thus,
the system also has no solution, and v cannot be written as a linear combination of u1; u2; u3.

(c) Form the augmented matrix M ¼ ½u1; u2; u3; v� of the equivalent system, and reduce M to echelon form:

M ¼
1 2 1 1
3 7 6 5

2 
1 7 4

24 35 � 1 2 1 1
0 1 3 2
0 3 9 6

24 35 � 1 2 1 1
0 1 3 2
0 0 0 0

24 35
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The last matrix corresponds to the following system with free variable z:

xþ 2yþ z ¼ 1
yþ 3z ¼ 2

Thus, v can be written as a linear combination of u1; u2; u3 in many ways. For example, let the free
variable z ¼ 1, and, by back-substitution, we get y ¼ 
2 and x ¼ 2. Thus, v ¼ 2u1 
 2u2 þ u3.

3.25. Let u1 ¼ ð1; 2; 4Þ, u2 ¼ ð2;
3; 1Þ, u3 ¼ ð2; 1;
1Þ in R3. Show that u1; u2; u3 are orthogonal, and
write v as a linear combination of u1; u2; u3, where (a) v ¼ ð7; 16; 6Þ, (b) v ¼ ð3; 5; 2Þ.

Take the dot product of pairs of vectors to get

u1 � u2 ¼ 2
 6þ 4 ¼ 0; u1 � u3 ¼ 2þ 2
 4 ¼ 0; u2 � u3 ¼ 4
 3
 1 ¼ 0

Thus, the three vectors in R3 are orthogonal, and hence Fourier coefficients can be used. That is,
v ¼ xu1 þ yu2 þ zu3, where

x ¼ v � u1

u1 � u1

; y ¼ v � u2

u2 � u2

; z ¼ v � u3

u3 � u3

(a) We have

x ¼ 7þ 32þ 24

1þ 4þ 16
¼ 63

21
¼ 3; y ¼ 14
 48þ 6

4þ 9þ 1
¼ 
28

14
¼ 
2; z ¼ 14þ 16
 6

4þ 1þ 1
¼ 24

6
¼ 4

Thus, v ¼ 3u1 
 2u2 þ 4u3.

(b) We have

x ¼ 3þ 10þ 8

1þ 4þ 16
¼ 21

21
¼ 1; y ¼ 6
 15þ 2

4þ 9þ 1
¼ 
7

14
¼ 
 1

2
; z ¼ 6þ 5
 2

4þ 1þ 1
¼ 9

6
¼ 3

2

Thus, v ¼ u1 
 1
2 u2 þ 3

2 u3.

3.26. Find the dimension and a basis for the general solution W of each of the following homogeneous
systems:

2x1 þ 4x2 
 5x3 þ 3x4 ¼ 0
3x1 þ 6x2 
 7x3 þ 4x4 ¼ 0
5x1 þ 10x2 
 11x3 þ 6x4 ¼ 0

(a)

x
 2y
 3z ¼ 0
2xþ yþ 3z ¼ 0
3x
 4y
 2z ¼ 0

(b)
(a) Reduce the system to echelon form using the operations ‘‘Replace L2 by 
3L1 þ 2L2,’’ ‘‘Replace L3 by

5L1 þ 2L3,’’ and then ‘‘Replace L3 by 
2L2 þ L3.’’ These operations yield

2x1 þ 4x2 
 5x3 þ 3x4 ¼ 0
x3 
 x4 ¼ 0

3x3 
 3x4 ¼ 0
and

2x1 þ 4x2 
 5x3 þ 3x4 ¼ 0
x3 
 x4 ¼ 0

The system in echelon form has two free variables, x2 and x4, so dim W ¼ 2. A basis ½u1; u2� for W may
be obtained as follows:
(1) Set x2 ¼ 1, x4 ¼ 0. Back-substitution yields x3 ¼ 0, and then x1 ¼ 
2. Thus, u1 ¼ ð
2; 1; 0; 0Þ.
(2) Set x2 ¼ 0, x4 ¼ 1. Back-substitution yields x3 ¼ 1, and then x1 ¼ 1. Thus, u2 ¼ ð1; 0; 1; 1Þ.

(b) Reduce the system to echelon form, obtaining

x
 2y
 3z ¼ 0
5yþ 9z ¼ 0
2yþ 7z ¼ 0

and
x
 2y
 3z ¼ 0

5yþ 9z ¼ 0
17z ¼ 0

There are no free variables (the system is in triangular form). Hence, dim W ¼ 0, and W has no basis.
Specifically, W consists only of the zero solution; that is, W ¼ f0g.

3.27. Find the dimension and a basis for the general solution W of the following homogeneous system
using matrix notation:

x1 þ 2x2 þ 3x3 
 2x4 þ 4x5 ¼ 0
2x1 þ 4x2 þ 8x3 þ x4 þ 9x5 ¼ 0
3x1 þ 6x2 þ 13x3 þ 4x4 þ 14x5 ¼ 0

Show how the basis gives the parametric form of the general solution of the system.
When a system is homogeneous, we represent the system by its coefficient matrix A rather than by its
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augmented matrix M , because the last column of the augmented matrix M is a zero column, and it will
remain a zero column during any row-reduction process.

Reduce the coefficient matrix A to echelon form, obtaining

A ¼
1 2 3 
2 4
2 4 8 1 9
3 6 13 4 14

24 35 � 1 2 3 
2 4
0 0 2 5 1
0 0 4 10 2

24 35 � 1 2 3 
2 4
0 0 2 5 1

� �
(The third row of the second matrix is deleted, because it is a multiple of the second row and will result in a
zero row.) We can now proceed in one of two ways.

(a) Write down the corresponding homogeneous system in echelon form:

x1 þ 2x2 þ 3x3 
 2x4 þ 4x5 ¼ 0
2x3 þ 5x4 þ x5 ¼ 0

The system in echelon form has three free variables, x2; x4; x5, so dim W ¼ 3. A basis ½u1; u2; u3� for W
may be obtained as follows:

(1) Set x2 ¼ 1, x4 ¼ 0, x5 ¼ 0. Back-substitution yields x3 ¼ 0, and then x1 ¼ 
2. Thus,
u1 ¼ ð
2; 1; 0; 0; 0Þ.

(2) Set x2 ¼ 0, x4 ¼ 1, x5 ¼ 0. Back-substitution yields x3 ¼ 
 5
2, and then x1 ¼ 19

2 . Thus,
u2 ¼ ð19

2 ; 0;
 5
2 ; 1; 0Þ.

(3) Set x2 ¼ 0, x4 ¼ 0, x5 ¼ 1. Back-substitution yields x3 ¼ 
 1
2, and then x1 ¼ 
 5

2. Thus,
u3 ¼ ð
 5

2, 0, 
 1
2 ; 0; 1Þ.

[One could avoid fractions in the basis by choosing x4 ¼ 2 in (2) and x5 ¼ 2 in (3), which yields
multiples of u2 and u3.] The parametric form of the general solution is obtained from the following
linear combination of the basis vectors using parameters a; b; c:

au1 þ bu2 þ cu3 ¼ ð
2aþ 19
2 b
 5

2 c; a; 
 5
2 b
 1

2 c; b; cÞ
(b) Reduce the echelon form of A to row canonical form:

A � 1 2 3 
2 4

0 0 1 5
2

1
2

" #
� 1 2 3 
 19

2
5
2

0 0 1 5
2

1
2

" #
Write down the corresponding free-variable solution:

x1 ¼ 
2x2 þ
19

2
x4 


5

2
x5

x3 ¼ 

5

2
x4 


1

2
x5

Using these equations for the pivot variables x1 and x3, repeat the above process to obtain a basis ½u1; u2; u3�
for W . That is, set x2 ¼ 1, x4 ¼ 0, x5 ¼ 0 to get u1; set x2 ¼ 0, x4 ¼ 1, x5 ¼ 0 to get u2; and set x2 ¼ 0,
x4 ¼ 0, x5 ¼ 1 to get u3.

3.28. Prove Theorem 3.15. Let v0 be a particular solution of AX ¼ B, and let W be the general solution
of AX ¼ 0. Then U ¼ v0 þW ¼ fv0 þ w : w 2 Wg is the general solution of AX ¼ B.
Let w be a solution of AX ¼ 0. Then

Aðv0 þ wÞ ¼ Av0 þ Aw ¼ Bþ 0 ¼ B

Thus, the sum v0 þ w is a solution of AX ¼ B. On the other hand, suppose v is also a solution of AX ¼ B.
Then

Aðv 
 v0Þ ¼ Av 
 Av0 ¼ B
 B ¼ 0

Therefore, v 
 v0 belongs to W . Because v ¼ v0 þ ðv 
 v0Þ, we find that any solution of AX ¼ B can be
obtained by adding a solution of AX ¼ 0 to a solution of AX ¼ B. Thus, the theorem is proved.
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Elementary Matrices, Applications

3.29. Let e1; e2; e3 denote, respectively, the elementary row operations

‘‘Interchange rows R1 and R2; ’’ ‘‘Replace R3 by 7R3; ’’ ‘‘Replace R2 by 
3R1 þ R2’’

Find the corresponding three-square elementary matrices E1;E2;E3. Apply each operation to the 3� 3 identity
matrix I3 to obtain

E1 ¼
0 1 0
1 0 0
0 0 1

24 35; E2 ¼
1 0 0
0 1 0
0 0 7

24 35; E3 ¼
1 0 0

3 1 0

0 0 1

24 35
3.30. Consider the elementary row operations in Problem 3.29.

(a) Describe the inverse operations e
1
1 , e
1

2 , e
1
3 .

(b) Find the corresponding three-square elementary matrices E01, E02, E03.

(c) What is the relationship between the matrices E01, E02, E03 and the matrices E1, E2, E3?

(a) The inverses of e1, e2, e3 are, respectively,

‘‘Interchange rows R1 and R2; ’’ ‘‘Replace R3 by 1
7 R3; ’’ ‘‘Replace R2 by 3R1 þ R2:’’

(b) Apply each inverse operation to the 3� 3 identity matrix I3 to obtain

E01 ¼
0 1 0
1 0 0
0 0 1

24 35; E02 ¼
1 0 0
0 1 0
0 0 1

7

24 35; E03 ¼
1 0 0
3 1 0
0 0 1

24 35
(c) The matrices E01, E02, E03 are, respectively, the inverses of the matrices E1, E2, E3.

3.31. Write each of the following matrices as a product of elementary matrices:

(a) A ¼ 1 
3

2 4

� �
; (b) B ¼

1 2 3
0 1 4
0 0 1

24 35; (c) C ¼
1 1 2
2 3 8

3 
1 2

24 35
The following three steps write a matrix M as a product of elementary matrices:

Step 1. Row reduce M to the identity matrix I , keeping track of the elementary row operations.

Step 2. Write down the inverse row operations.

Step 3. Write M as the product of the elementary matrices corresponding to the inverse operations. This
gives the desired result.

If a zero row appears in Step 1, then M is not row equivalent to the identity matrix I , and M cannot be
written as a product of elementary matrices.

(a) (1) We have

A ¼ 1 
3

2 4

� �
� 1 
3

0 
2

� �
� 1 
3

0 1

� �
� 1 0

0 1

� �
¼ I

where the row operations are, respectively,

‘‘Replace R2 by 2R1 þ R2; ’’ ‘‘Replace R2 by 
 1
2 R2; ’’ ‘‘Replace R1 by 3R2 þ R1’’

(2) Inverse operations:

‘‘Replace R2 by 
2R1 þ R2;’’ ‘‘Replace R2 by 
2R2;’’ ‘‘Replace R1 by 
3R2 þ R1’’

(3) A ¼ 1 0

2 1

� �
1 0
0 
2

� �
1 
3
0 1

� �
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(b) (1) We have

B ¼
1 2 3
0 1 4
0 0 1

24 35 � 1 2 0
0 1 0
0 0 1

24 35 � 1 0 0
0 1 0
0 0 1

24 35 ¼ I

where the row operations are, respectively,

‘‘Replace R2 by 
 4R3 þ R2; ’’ ‘‘Replace R1 by 
 3R3 þ R1; ’’ ‘‘Replace R1 by 
2R2 þ R1’’

(2) Inverse operations:

‘‘Replace R2 by 4R3 þ R2; ’’ ‘‘Replace R1 by 3R3 þ R1; ’’ ‘‘Replace R1 by 2R2 þ R1’’

(3) B ¼
1 0 0
0 1 4
0 0 1

24 35 1 0 3
0 1 0
0 0 1

24 35 1 2 0
0 1 0
0 0 1

24 35
(c) (1) First row reduce C to echelon form. We have

C ¼
1 1 2
2 3 8

3 
1 2

24 35 � 1 1 2
0 1 4
0 2 8

24 35 � 1 1 2
0 1 4
0 0 0

24 35
In echelon form, C has a zero row. ‘‘STOP.’’ The matrix C cannot be row reduced to the identity
matrix I , and C cannot be written as a product of elementary matrices. (We note, in particular, that
C has no inverse.)

3.32. Find the inverse of (a) A ¼
1 2 
4

1 
1 5

2 7 
3

24 35; (b) B ¼
1 3 
4
1 5 
1
3 13 
6

24 35.

(a) Form the matrix M ¼ [A; I] and row reduce M to echelon form:

M ¼
1 2 
4 1 0 0


1 
1 5 0 1 0

2 7 
3 0 0 1

264
375 � 1 2 
4 1 0 0

0 1 1 1 1 0

0 3 5 
2 0 1

264
375

�
1 2 
4 1 0 0

0 1 1 1 1 0

0 0 2 
5 
3 1

264
375

In echelon form, the left half of M is in triangular form; hence, A has an inverse. Further reduce M to
row canonical form:

M �
1 2 0 
9 
6 2

0 1 0 7
2

5
2 
 1

2

0 0 1 
 5
2 
 3

2
1
2

2664
3775 �

1 0 0 
16 
11 3

0 1 0 7
2

5
2 
 1

2

0 0 1 
 5
2 
 3

2
1
2

2664
3775

The final matrix has the form ½I ;A
1�; that is, A
1 is the right half of the last matrix. Thus,

A
1 ¼

16 
11 3

7
2

5
2 
 1

2


 5
2 
 3

2
1
2

2664
3775

(b) Form the matrix M ¼ ½B; I � and row reduce M to echelon form:

M ¼
1 3 
4 1 0 0
1 5 
1 0 1 0
3 13 
6 0 0 1

24 35 � 1 3 
4 1 0 0
0 2 3 
1 1 0
0 4 6 
3 0 1

24 35 � 1 3 
4 1 0 0
0 2 3 
1 1 0
0 0 0 
1 
2 1

24 35
In echelon form, M has a zero row in its left half; that is, B is not row reducible to triangular form.
Accordingly, B has no inverse.
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3.33. Show that every elementary matrix E is invertible, and its inverse is an elementary matrix.

Let E be the elementary matrix corresponding to the elementary operation e; that is, eðIÞ ¼ E. Let e0 be
the inverse operation of e and let E0 be the corresponding elementary matrix; that is, e0ðIÞ ¼ E0. Then

I ¼ e0ðeðIÞÞ ¼ e0ðEÞ ¼ E0E and I ¼ eðe0ðIÞÞ ¼ eðE0Þ ¼ EE0

Therefore, E0 is the inverse of E.

3.34. Prove Theorem 3.16: Let e be an elementary row operation and let E be the corresponding
m-square elementary matrix; that is, E ¼ eðIÞ. Then eðAÞ ¼ EA, where A is any m� n matrix.

Let Ri be the row i of A; we denote this by writing A ¼ ½R1; . . . ;Rm�. If B is a matrix for which AB is
defined then AB ¼ ½R1B; . . . ;RmB�. We also let

ei ¼ ð0; . . . ; 0; 1̂; 0; . . . ; 0Þ; ^¼ i

Here ^¼ i means 1 is the ith entry. One can show (Problem 2.45) that eiA ¼ Ri. We also note that
I ¼ ½e1; e2; . . . ; em� is the identity matrix.

(i) Let e be the elementary row operation ‘‘Interchange rows Ri and Rj.’’ Then, for ^¼ i and ^̂ ¼ j,

E ¼ eðIÞ ¼ ½e1; . . . ; bej; . . . ;
bbei; . . . ; em�

and

eðAÞ ¼ ½R1; . . . ; bRj; . . . ;
bbRi; . . . ;Rm�

Thus,

EA ¼ ½e1A; . . . ; cejA; . . . ;
cceiA; . . . ; emA� ¼ ½R1; . . . ; bRj; . . . ;

bbRi; . . . ;Rm� ¼ eðAÞ
(ii) Let e be the elementary row operation ‘‘Replace Ri by kRi ðk 6¼ 0Þ.’’ Then, for^¼ i,

E ¼ eðIÞ ¼ ½e1; . . . ; bkei; . . . ; em�
and

eðAÞ ¼ ½R1; . . . ; ckRi; . . . ;Rm�
Thus,

EA ¼ ½e1A; . . . ; dkeiA; . . . ; emA� ¼ ½R1; . . . ; ckRi; . . . ;Rm� ¼ eðAÞ
(iii) Let e be the elementary row operation ‘‘Replace Ri by kRj þ Ri.’’ Then, for^¼ i,

E ¼ eðIÞ ¼ ½e1; . . . ; dkej þ ei; . . . ; em�
and

eðAÞ ¼ ½R1; . . . ; dkRj þ Ri; . . . ; Rm�
Using ðkej þ eiÞA ¼ kðejAÞ þ eiA ¼ kRj þ Ri, we have

EA ¼ ½e1A; . . . ; ðkej þ eiÞA; . . . ; emA�
¼ ½R1; . . . ; dkRj þ Ri; . . . ; Rm� ¼ eðAÞ

3.35. Prove Theorem 3.17: Let A be a square matrix. Then the following are equivalent:

(a) A is invertible (nonsingular).

(b) A is row equivalent to the identity matrix I .

(c) A is a product of elementary matrices.

Suppose A is invertible and suppose A is row equivalent to matrix B in row canonical form. Then there
exist elementary matrices E1;E2; . . . ;Es such that Es . . .E2E1A ¼ B. Because A is invertible and each
elementary matrix is invertible, B is also invertible. But if B 6¼ I , then B has a zero row; whence B is not
invertible. Thus, B ¼ I , and (a) implies (b).
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If (b) holds, then there exist elementary matrices E1;E2; . . . ;Es such that Es . . .E2E1A ¼ I . Hence,
A ¼ ðEs . . .E2E1Þ
1 ¼ E
1

1 E
1
2 . . . E
1

s . But the E
1
i are also elementary matrices. Thus (b) implies (c).

If (c) holds, then A ¼ E1E2 . . .Es. The Ei are invertible matrices; hence, their product A is also
invertible. Thus, (c) implies (a). Accordingly, the theorem is proved.

3.36. Prove Theorem 3.18: If AB ¼ I , then BA ¼ I , and hence B ¼ A
1.

Suppose A is not invertible. Then A is not row equivalent to the identity matrix I , and so A is row
equivalent to a matrix with a zero row. In other words, there exist elementary matrices E1; . . . ;Es such
that Es . . .E2E1A has a zero row. Hence, Es . . .E2E1AB ¼ Es . . .E2E1, an invertible matrix, also has a
zero row. But invertible matrices cannot have zero rows; hence A is invertible, with inverse A
1. Then
also,

B ¼ IB ¼ ðA
1AÞB ¼ A
1ðABÞ ¼ A
1I ¼ A
1

3.37. Prove Theorem 3.19: B is row equivalent to A (written B � AÞ if and only if there exists a
nonsingular matrix P such that B ¼ PA.

If B � A, then B ¼ esð. . . ðe2ðe1ðAÞÞÞ . . .Þ ¼ Es . . .E2E1A ¼ PA where P ¼ Es . . .E2E1 is nonsingular.
Conversely, suppose B ¼ PA, where P is nonsingular. By Theorem 3.17, P is a product of elementary
matrices, and so B can be obtained from A by a sequence of elementary row operations; that is, B � A. Thus,
the theorem is proved.

3.38. Prove Theorem 3.21: Every m� n matrix A is equivalent to a unique block matrix of the form
Ir 0
0 0

� �
, where Ir is the r � r identity matrix.

The proof is constructive, in the form of an algorithm.

Step 1. Row reduce A to row canonical form, with leading nonzero entries a1j1
, a2j2

; . . . ; arjr
.

Step 2. Interchange C1 and C1j1
, interchange C2 and C2j2

; . . . , and interchange Cr and Cjr. This gives a

matrix in the form
Ir B
0 0

� �
, with leading nonzero entries a11; a22; . . . ; arr.

Step 3. Use column operations, with the aii as pivots, to replace each entry in B with a zero; that is, for
i ¼ 1; 2; . . . ; r and j ¼ r þ 1, r þ 2; . . . ; n, apply the operation 
bijCi þ Cj ! Cj.

The final matrix has the desired form
Ir 0
0 0

� �
.

Lu Factorization

3.39. Find the LU factorization of (a) A ¼
1 
3 5
2 
4 7

1 
2 1

24 35; (b) B ¼
1 4 
3
2 8 1

5 
9 7

24 35:
(a) Reduce A to triangular form by the following operations:

‘‘Replace R2 by 
 2R1 þ R2; ’’ ‘‘Replace R3 by R1 þ R3; ’’ and then

‘‘Replace R3 by 5
2 R2 þ R3’’

These operations yield the following, where the triangular form is U :

A �
1 
3 5
0 2 
3
0 
5 6

24 35 � 1 
3 5
0 2 
3
0 0 
 3

2

24 35 ¼ U and L ¼
1 0 0
2 1 0

1 
 5

2 1

24 35
The entries 2;
1;
 5

2 in L are the negatives of the multipliers 
2; 1; 5
2 in the above row operations. (As

a check, multiply L and U to verify A ¼ LU .)
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(b) Reduce B to triangular form by first applying the operations ‘‘Replace R2 by 
2R1 þ R2’’ and ‘‘Replace
R3 by 5R1 þ R3.’’ These operations yield

B �
1 4 
3
0 0 7
0 11 
8

24 35:
Observe that the second diagonal entry is 0. Thus, B cannot be brought into triangular form without row
interchange operations. Accordingly, B is not LU -factorable. (There does exist a PLU factorization of
such a matrix B, where P is a permutation matrix, but such a factorization lies beyond the scope of this
text.)

3.40. Find the LDU factorization of the matrix A in Problem 3.39.

The A ¼ LDU factorization refers to the situation where L is a lower triangular matrix with 1’s on the
diagonal (as in the LU factorization of A), D is a diagonal matrix, and U is an upper triangular matrix with 1’s
on the diagonal. Thus, simply factor out the diagonal entries in the matrix U in the above LU factorization of A
to obtain D and L. That is,

L ¼
1 0 0
2 1 0

1 
 5

2 1

24 35; D ¼
1 0 0
0 2 0
0 0 
 3

2

24 35; U ¼
1 
3 5
0 1 
3
0 0 1

24 35

3.41. Find the LU factorization of the matrix A ¼
1 2 1
2 3 3

3 
10 2

24 35.

Reduce A to triangular form by the following operations:

ð1Þ ‘‘Replace R2 by 
2R1 þ R2; ’’ ð2Þ ‘‘Replace R3 by 3R1 þ R3; ’’ ð3Þ ‘‘Replace R3 by 
4R2 þ R3’’

These operations yield the following, where the triangular form is U :

A �
1 2 1
0 
1 1
0 
4 5

24 35 � 1 2 1
0 
1 1
0 0 1

24 35 ¼ U and L ¼
1 0 0
2 1 0

3 4 1

24 35
The entries 2;
3; 4 in L are the negatives of the multipliers 
2; 3;
4 in the above row operations. (As a
check, multiply L and U to verify A ¼ LU .)

3.42. Let A be the matrix in Problem 3.41. Find X1;X2;X3, where Xi is the solution of AX ¼ Bi for
(a) B1 ¼ ð1; 1; 1Þ, (b) B2 ¼ B1 þ X1, (c) B3 ¼ B2 þ X2.

(a) Find L
1B1 by applying the row operations (1), (2), and then (3) in Problem 3.41 to B1:

B1 ¼
1
1
1

24 35




!ð1Þ and ð2Þ 1

1

4

24 35




!ð3Þ 1

1

8

24 35
Solve UX ¼ B for B ¼ ð1;
1; 8Þ by back-substitution to obtain X1 ¼ ð
25; 9; 8Þ.

(b) First find B2 ¼ B1 þ X1 ¼ ð1; 1; 1Þ þ ð
25; 9; 8Þ ¼ ð
24; 10; 9Þ. Then as above

B2 ¼ ½
24; 10; 9�T 




!ð1Þ and ð2Þ ½
24; 58;
63�T 




!ð3Þ ½
24; 58;
295�T

Solve UX ¼ B for B ¼ ð
24; 58;
295Þ by back-substitution to obtain X2 ¼ ð943;
353;
295Þ.
(c) First find B3 ¼ B2 þ X2 ¼ ð
24; 10; 9Þ þ ð943;
353;
295Þ ¼ ð919;
343;
286Þ. Then, as above

B3 ¼ ½943;
353;
295�T 




!ð1Þ and ð2Þ ½919;
2181; 2671�T 




!ð3Þ ½919;
2181; 11 395�T

Solve UX ¼ B for B ¼ ð919;
2181; 11 395Þ by back-substitution to obtain

X3 ¼ ð
37 628; 13 576; 11 395Þ.
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Miscellaneous Problems

3.43. Let L be a linear combination of the m equations in n unknowns in the system (3.2). Say L is the
equation

ðc1a11 þ � � � þ cmam1Þx1 þ � � � þ ðc1a1n þ � � � þ cmamnÞxn ¼ c1b1 þ � � � þ cmbm ð1Þ
Show that any solution of the system (3.2) is also a solution of L.

Let u ¼ ðk1; . . . ; knÞ be a solution of (3.2). Then

ai1k1 þ ai2k2 þ � � � þ ainkn ¼ bi ði ¼ 1; 2; . . . ;mÞ ð2Þ
Substituting u in the left-hand side of (1) and using (2), we get

ðc1a11 þ � � � þ cmam1Þk1 þ � � � þ ðc1a1n þ � � � þ cmamnÞkn

¼ c1ða11k1 þ � � � þ a1nknÞ þ � � � þ cmðam1k1 þ � � � þ amnknÞ
¼ c1b1 þ � � � þ cmbm

This is the right-hand side of (1); hence, u is a solution of (1).

3.44. Suppose a system m of linear equations is obtained from a system l by applying an elementary
operation (page 64). Show that m and l have the same solutions.

Each equation L in m is a linear combination of equations in l. Hence, by Problem 3.43, any solution
of l will also be a solution of m. On the other hand, each elementary operation has an inverse elementary
operation, so l can be obtained from m by an elementary operation. This means that any solution of m is a
solution of l. Thus, l and m have the same solutions.

3.45. Prove Theorem 3.4: Suppose a system m of linear equations is obtained from a system l by a
sequence of elementary operations. Then m and l have the same solutions.

Each step of the sequence does not change the solution set (Problem 3.44). Thus, the original system l
and the final system m (and any system in between) have the same solutions.

3.46. A system l of linear equations is said to be consistent if no linear combination of its equations is
a degenerate equation L with a nonzero constant. Show that l is consistent if and only if l is
reducible to echelon form.

Suppose l is reducible to echelon form. Then l has a solution, which must also be a solution of every
linear combination of its equations. Thus, L, which has no solution, cannot be a linear combination of the
equations in l. Thus, l is consistent.

On the other hand, suppose l is not reducible to echelon form. Then, in the reduction process, it must
yield a degenerate equation L with a nonzero constant, which is a linear combination of the equations in l.
Therefore, l is not consistent; that is, l is inconsistent.

3.47. Suppose u and v are distinct vectors. Show that, for distinct scalars k, the vectors uþ kðu
 vÞ are
distinct.

Suppose uþ k1ðu
 vÞ ¼ uþ k2ðu
 vÞ: We need only show that k1 ¼ k2. We have

k1ðu
 vÞ ¼ k2ðu
 vÞ; and so ðk1 
 k2Þðu
 vÞ ¼ 0

Because u and v are distinct, u
 v 6¼ 0. Hence, k1 
 k2 ¼ 0, and so k1 ¼ k2.

3.48. Suppose AB is defined. Prove

(a) Suppose A has a zero row. Then AB has a zero row.

(b) Suppose B has a zero column. Then AB has a zero column.
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(a) Let Ri be the zero row of A, and C1; . . . ;Cn the columns of B. Then the ith row of AB is

ðRiC1;RiC2; . . . ;RiCnÞ ¼ ð0; 0; 0; . . . ; 0Þ
(b) BT has a zero row, and so BT AT ¼ ðABÞT has a zero row. Hence, AB has a zero column.

SUPPLEMENTARY PROBLEMS

Linear Equations, 2 � 2 Systems

3.49. Determine whether each of the following systems is linear:

(a) 3x
 4yþ 2yz ¼ 8, (b) exþ 3y ¼ p, (c) 2x
 3yþ kz ¼ 4

3.50. Solve (a) px ¼ 2, (b) 3xþ 2 ¼ 5xþ 7
 2x, (c) 6xþ 2
 4x ¼ 5þ 2x
 3

3.51. Solve each of the following systems:

(a) 2xþ 3y ¼ 1
5xþ 7y ¼ 3

(b) 4x
 2y ¼ 5

6xþ 3y ¼ 1

(c) 2x
 4 ¼ 3y
5y
 x ¼ 5

(d) 2x
 4y ¼ 10
3x
 6y ¼ 15

3.52. Consider each of the following systems in unknowns x and y:

(a) x
 ay ¼ 1
ax
 4y ¼ b

(b) axþ 3y ¼ 2
12xþ ay ¼ b

(c) xþ ay ¼ 3
2xþ 5y ¼ b

For which values of a does each system have a unique solution, and for which pairs of values ða; bÞ does
each system have more than one solution?

General Systems of Linear Equations

3.53. Solve

(a) xþ yþ 2z ¼ 4
2xþ 3yþ 6z ¼ 10
3xþ 6yþ 10z ¼ 17

(b) x
 2yþ 3z ¼ 2
2x
 3yþ 8z ¼ 7
3x
 4yþ 13z ¼ 8

(c) xþ 2yþ 3z ¼ 3
2xþ 3yþ 8z ¼ 4
5xþ 8yþ 19z ¼ 11

3.54. Solve

(a) x
 2y ¼ 5
2xþ 3y ¼ 3
3xþ 2y ¼ 7

(b) xþ 2y
 3zþ 2t ¼ 2
2xþ 5y
 8zþ 6t ¼ 5
3xþ 4y
 5zþ 2t ¼ 4

(c) xþ 2yþ 4z
 5t ¼ 3
3x
 yþ 5zþ 2t ¼ 4
5x
 4yþ 6zþ 9t ¼ 2

3.55. Solve

(a) 2x
 y
 4z ¼ 2
4x
 2y
 6z ¼ 5
6x
 3y
 8z ¼ 8

(b) xþ 2y
 zþ 3t ¼ 3
2xþ 4yþ 4zþ 3t ¼ 9
3xþ 6y
 zþ 8t ¼ 10

3.56. Consider each of the following systems in unknowns x; y; z:

(a) x
 2y ¼ 1
x
 yþ az ¼ 2

ayþ 9z ¼ b

(b) xþ 2yþ 2z ¼ 1
xþ ayþ 3z ¼ 3
xþ 11yþ az ¼ b

(c) xþ yþ az ¼ 1
xþ ayþ z ¼ 4

axþ yþ z ¼ b

For which values of a does the system have a unique solution, and for which pairs of values ða; bÞ does the
system have more than one solution? The value of b does not have any effect on whether the system has a
unique solution. Why?
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Linear Combinations, Homogeneous Systems

3.57. Write v as a linear combination of u1; u2; u3, where

(a) v ¼ ð4;
9; 2Þ, u1 ¼ ð1; 2;
1Þ, u2 ¼ ð1; 4; 2Þ, u3 ¼ ð1;
3; 2Þ;
(b) v ¼ ð1; 3; 2Þ, u1 ¼ ð1; 2; 1Þ, u2 ¼ ð2; 6; 5Þ, u3 ¼ ð1; 7; 8Þ;
(c) v ¼ ð1; 4; 6Þ, u1 ¼ ð1; 1; 2Þ, u2 ¼ ð2; 3; 5Þ, u3 ¼ ð3; 5; 8Þ.

3.58. Let u1 ¼ ð1; 1; 2Þ, u2 ¼ ð1; 3;
2Þ, u3 ¼ ð4;
2;
1Þ in R3. Show that u1; u2; u3 are orthogonal, and write v
as a linear combination of u1; u2; u3, where (a) v ¼ ð5;
5; 9Þ, (b) v ¼ ð1;
3; 3Þ, (c) v ¼ ð1; 1; 1Þ.
(Hint: Use Fourier coefficients.)

3.59. Find the dimension and a basis of the general solution W of each of the following homogeneous systems:

(a) x
 yþ 2z ¼ 0
2xþ yþ z ¼ 0
5xþ yþ 4z ¼ 0

(b) xþ 2y
 3z ¼ 0
2xþ 5yþ 2z ¼ 0
3x
 y
 4z ¼ 0

(c) xþ 2yþ 3zþ t ¼ 0
2xþ 4yþ 7zþ 4t ¼ 0
3xþ 6yþ 10zþ 5t ¼ 0

3.60. Find the dimension and a basis of the general solution W of each of the following systems:

(a) x1 þ 3x2 þ 2x3 
 x4 
 x5 ¼ 0
2x1 þ 6x2 þ 5x3 þ x4 
 x5 ¼ 0
5x1 þ 15x2 þ 12x3 þ x4 
 3x5 ¼ 0

(b) 2x1 
 4x2 þ 3x3 
 x4 þ 2x5 ¼ 0
3x1 
 6x2 þ 5x3 
 2x4 þ 4x5 ¼ 0
5x1 
 10x2 þ 7x3 
 3x4 þ 18x5 ¼ 0

Echelon Matrices, Row Canonical Form

3.61. Reduce each of the following matrices to echelon form and then to row canonical form:

(a)
1 1 2
2 4 9
1 5 12

24 35; (b)
1 2 
1 2 1
2 4 1 
2 5
3 6 3 
7 7

24 35; (c)
2 4 2 
2 5 1
3 6 2 2 0 4
4 8 2 6 
5 7

24 35
3.62. Reduce each of the following matrices to echelon form and then to row canonical form:

(a)

1 2 1 2 1 2
2 4 3 5 5 7
3 6 4 9 10 11
1 2 4 3 6 9

2664
3775; (b)

0 1 2 3
0 3 8 12
0 0 4 6
0 2 7 10

2664
3775; (c)

1 3 1 3
2 8 5 10
1 7 7 11
3 11 7 15

2664
3775

3.63. Using only 0’s and 1’s, list all possible 2� 2 matrices in row canonical form.

3.64. Using only 0’s and 1’s, find the number n of possible 3� 3 matrices in row canonical form.

Elementary Matrices, Applications

3.65. Let e1; e2; e3 denote, respectively, the following elementary row operations:

‘‘Interchange R2 and R3; ’’ ‘‘Replace R2 by 3R2; ’’ ‘‘Replace R1 by 2R3 þ R1’’

(a) Find the corresponding elementary matrices E1;E2;E3.

(b) Find the inverse operations e
1
1 , e
1

2 , e
1
3 ; their corresponding elementary matrices E01, E02, E03; and the

relationship between them and E1;E2;E3.

(c) Describe the corresponding elementary column operations f1; f2; f3.

(d) Find elementary matrices F1;F2;F3 corresponding to f1; f2; f3, and the relationship between them and
E1;E2;E3.
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3.66. Express each of the following matrices as a product of elementary matrices:

A ¼ 1 2
3 4

� �
; B ¼ 3 
6


2 4

� �
; C ¼ 2 6


3 
7

� �
; D ¼

1 2 0
0 1 3
3 8 7

24 35
3.67. Find the inverse of each of the following matrices (if it exists):

A ¼
1 
2 
1
2 
3 1
3 
4 4

24 35; B ¼
1 2 3
2 6 1
3 10 
1

24 35; C ¼
1 3 
2
2 8 
3
1 7 1

24 35; D ¼
2 1 
1
5 2 
3
0 2 1

24 35
3.68. Find the inverse of each of the following n� n matrices:

(a) A has 1’s on the diagonal and superdiagonal (entries directly above the diagonal) and 0’s elsewhere.

(b) B has 1’s on and above the diagonal, and 0’s below the diagonal.

Lu Factorization

3.69. Find the LU factorization of each of the following matrices:

(a)
1 
1 
1
3 
4 
2
2 
3 
2

24 35, (b)
1 3 
1
2 5 1
3 4 2

24 35, (c)
2 3 6
4 7 9
3 5 4

24 35, (d)
1 2 3
2 4 7
3 7 10

24 35
3.70. Let A be the matrix in Problem 3.69(a). Find X1;X2;X3;X4, where

(a) X1 is the solution of AX ¼ B1, where B1 ¼ ð1; 1; 1ÞT .

(b) For k > 1, Xk is the solution of AX ¼ Bk , where Bk ¼ Bk
1 þ Xk
1.

3.71. Let B be the matrix in Problem 3.69(b). Find the LDU factorization of B.

Miscellaneous Problems

3.72. Consider the following systems in unknowns x and y:

ðaÞ axþ by ¼ 1
cxþ dy ¼ 0

ðbÞ axþ by ¼ 0
cxþ dy ¼ 1

Suppose D ¼ ad 
 bc 6¼ 0. Show that each system has the unique solution:

(a) x ¼ d=D, y ¼ 
c=D, (b) x ¼ 
b=D, y ¼ a=D.

3.73. Find the inverse of the row operation ‘‘Replace Ri by kRj þ k0Ri ðk0 6¼ 0Þ.’’

3.74. Prove that deleting the last column of an echelon form (respectively, the row canonical form) of an
augmented matrix M ¼ ½A;B� yields an echelon form (respectively, the row canonical form) of A.

3.75. Let e be an elementary row operation and E its elementary matrix, and let f be the corresponding elementary
column operation and F its elementary matrix. Prove

(a) f ðAÞ ¼ ðeðAT ÞÞT , (b) F ¼ ET , (c) f ðAÞ ¼ AF.

3.76. Matrix A is equivalent to matrix B, written A � B, if there exist nonsingular matrices P and Q such that
B ¼ PAQ. Prove that � is an equivalence relation; that is,

(a) A � A, (b) If A � B, then B � A, (c) If A � B and B � C, then A � C.
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ANSWERS TO SUPPLEMENTARY PROBLEMS

Notation: A ¼ ½R1; R2; . . .� denotes the matrix A with rows R1;R2; . . . . The elements in each row are separated

by commas (which may be omitted with single digits), the rows are separated by semicolons, and 0 denotes a zero

row. For example,

A ¼ ½1; 2; 3; 4; 5;
6; 7;
8; 0� ¼
1 2 3 4
5 
6 7 
8
0 0 0 0

24 35
3.49. (a) no, (b) yes, (c) linear in x; y; z, not linear in x; y; z; k

3.50. (a) x ¼ 2=p, (b) no solution, (c) every scalar k is a solution

3.51. (a) ð2;
1Þ, (b) no solution, (c) ð5; 2Þ, (d) ð5þ 2a; aÞ

3.52. (a) a 6¼ �2; ð2; 2Þ; ð
2;
2Þ, (b) a 6¼ �6; ð6; 4Þ; ð
6;
4Þ, (c) a 6¼ 5
2 ; ð52 ; 6Þ

3.53. (a) ð2; 1; 1
2Þ, (b) no solution, (c) u ¼ ð
7a
 1; 2aþ 2; aÞ.

3.54. (a) ð3;
1Þ, (b) u ¼ ð
aþ 2b; 1þ 2a
 2b; a; bÞ, (c) no solution

3.55. (a) u ¼ ð12 aþ 2; a; 1
2Þ, (b) u ¼ ð12 ð7
 5b
 4aÞ; a; 1

2 ð1þ bÞ; bÞ

3.56. (a) a 6¼ �3; ð3; 3Þ; ð
3;
3Þ, (b) a 6¼ 5 and a 6¼ 
1; ð5; 7Þ; ð
1;
5Þ,
(c) a 6¼ 1 and a 6¼ 
2; ð
2; 5Þ

3.57. (a) 2;
1; 3, (b) 6;
3; 1, (c) not possible

3.58. (a) 3;
2; 1, (b) 2
3 ;
1; 1

3, (c) 2
3 ;

1
7 ;

1
21

3.59. (a) dim W ¼ 1; u1 ¼ ð
1; 1; 1Þ, (b) dim W ¼ 0, no basis,
(c) dim W ¼ 2; u1 ¼ ð
2; 1; 0; 0Þ; u2 ¼ ð5; 0;
2; 1Þ

3.60. (a) dim W ¼ 3; u1 ¼ ð
3; 1; 0; 0; 0Þ, u2 ¼ ð7; 0;
3; 1; 0Þ, u3 ¼ ð3; 0;
1; 0; 1Þ,
(b) dim W ¼ 2, u1 ¼ ð2; 1; 0; 0; 0Þ, u2 ¼ ð5; 0;
5;
3; 1Þ

3.61. (a) ½1; 0;
 1
2 ; 0; 1; 5

2 ; 0�, (b) ½1; 2; 0; 0; 2; 0; 0; 1; 0; 5; 0; 0; 0; 1; 2�,
(c) ½1; 2; 0; 4;
5; 3; 0; 0; 1;
5; 15

2 ;
 5
2 ; 0�

3.62. (a) ½1; 2; 0; 0;
4;
2; 0; 0; 1; 0; 1; 2; 0; 0; 0; 1; 2; 1; 0�,
(b) ½0; 1; 0; 0; 0; 0; 1; 0; 0; 0; 0; 1; 0�, (c) ½1; 0; 0; 4; 0; 1; 0;
1; 0; 0; 1; 2; 0�

3.63. 5: ½1; 0; 0; 1�, ½1; 1; 0; 0�, ½1; 0; 0; 0�, ½0; 1; 0; 0�; 0

3.64. 16

3.65. (a) ½1; 0; 0; 0; 0; 1; 0; 1; 0�, ½1; 0; 0; 0; 3; 0; 0; 0; 1�, ½1; 0; 2; 0; 1; 0; 0; 0; 1�,
(b) R2 $ R3;

1
3 R2 ! R2; 
2R3 þ R1 ! R1; each E0i ¼ E
1

i ,
(c) C2 $ C3; 3C2 ! C2; 2C3 þ C1 ! C1, (d) each Fi ¼ ET

i .

3.66. A ¼ ½1; 0; 3; 1�½1; 0; 0;
2�½1; 2; 0; 1�, B is not invertible,
C ¼ ½1; 0; 
 3

2 ; 1�½1; 0; 0; 2�½1; 6; 0; 1�½2; 0; 0; 1�,
D ¼ ½100; 010; 301�½100; 010; 021�½100; 013; 001�½120; 010; 001�

3.67. A
1 ¼ ½
8; 12;
5; 
5; 7;
3; 1;
2; 1�, B has no inverse,
C
1 ¼ ½29

2 ;
 17
2 ; 7

2 ; 
 5
2 ;

3
2 ;
 1

2 ; 3;
2; 1�; D
1 ¼ ½8;
3;
1; 
5; 2; 1; 10;
4;
1�
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3.68. A
1 ¼ ½1;
1; 1;
1; . . . ; 0; 1;
1; 1;
1; . . . ; 0; 0; 1;
1; 1;
1; 1; . . . ; . . . ; . . . ; 0; . . . 0; 1�
B
1 has 1’s on diagonal, 
1’s on superdiagonal, and 0’s elsewhere.

3.69. (a) ½100; 310; 211�½1;
1;
1; 0;
1; 1; 0; 0;
1�,
(b) ½100; 210; 351�½1; 3;
1; 0;
1; 3; 0; 0;
10�,
(c) ½100; 210; 3

2 ;
1
2 ; 1�½2; 3; 6; 0; 1;
3; 0; 0;
 7

2�,
(d) There is no LU decomposition.

3.70. X1 ¼ ½1; 1;
1�T ; B2 ¼ ½2; 2; 0�T , X2 ¼ ½6; 4; 0�T , B3 ¼ ½8; 6; 0�T , X3 ¼ ½22; 16;
2�T ,

B4 ¼ ½30; 22;
2�T , X4 ¼ ½86; 62;
6�T

3.71. B ¼ ½100; 210; 351� diagð1;
1;
10Þ ½1; 3;
1; 0; 1; 3; 0; 0; 1�

3.73. Replace Ri by 
kRj þ ð1=k0ÞRi.

3.75. (c) f ðAÞ ¼ ðeðAT ÞÞT ¼ ðEAT ÞT ¼ ðAT ÞT ET ¼ AF

3.76. (a) A ¼ IAI : (b) If A ¼ PBQ, then B ¼ P
1AQ
1.
(c) If A ¼ PBQ and B ¼ P0CQ0, then A ¼ ðPP0ÞCðQ 0QÞ.
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Vector Spaces

4.1 Introduction

This chapter introduces the underlying structure of linear algebra, that of a finite-dimensional vector
space. The definition of a vector space V, whose elements are called vectors, involves an arbitrary field K ,
whose elements are called scalars. The following notation will be used (unless otherwise stated or
implied):

V the given vector space

u; v;w vectors in V

K the given number field

a; b; c; or k scalars in K

Almost nothing essential is lost if the reader assumes that K is the real field R or the complex field C.
The reader might suspect that the real line R has ‘‘dimension’’ one, the cartesian plane R2 has

‘‘dimension’’ two, and the space R3 has ‘‘dimension’’ three. This chapter formalizes the notion of
‘‘dimension,’’ and this definition will agree with the reader’s intuition.

Throughout this text, we will use the following set notation:

a 2 A Element a belongs to set A

a; b 2 A Elements a and b belong to A

8x 2 A For every x in A

9x 2 A There exists an x in A

A � B A is a subset of B

A \ B Intersection of A and B

A [ B Union of A and B

; Empty set

4.2 Vector Spaces

The following defines the notion of a vector space V where K is the field of scalars.

DEFINITION: Let V be a nonempty set with two operations:

(i) Vector Addition: This assigns to any u; v 2 V a sum uþ v in V.

(ii) Scalar Multiplication: This assigns to any u 2 V, k 2 K a product ku 2 V.

Then V is called a vector space (over the field K) if the following axioms hold for any
vectors u; v;w 2 V :
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[A1] ðuþ vÞ þ w ¼ uþ ðv þ wÞ
[A2] There is a vector in V, denoted by 0 and called the zero vector, such that, for any

u 2 V ;
uþ 0 ¼ 0þ u ¼ u

[A3] For each u 2 V ; there is a vector in V, denoted by 
u, and called the negative of u,
such that

uþ ð
uÞ ¼ ð
uÞ þ u ¼ 0.
[A4] uþ v ¼ v þ u.
[M1] kðuþ vÞ ¼ kuþ kv, for any scalar k 2 K:
[M2] ðaþ bÞu ¼ auþ bu; for any scalars a; b 2 K.
[M3] ðabÞu ¼ aðbuÞ; for any scalars a; b 2 K.
[M4] 1u ¼ u, for the unit scalar 1 2 K.

The above axioms naturally split into two sets (as indicated by the labeling of the axioms). The first
four are concerned only with the additive structure of V and can be summarized by saying V is a
commutative group under addition. This means

(a) Any sum v1 þ v2 þ � � � þ vm of vectors requires no parentheses and does not depend on the order of
the summands.

(b) The zero vector 0 is unique, and the negative 
u of a vector u is unique.

(c) (Cancellation Law) If uþ w ¼ v þ w, then u ¼ v.

Also, subtraction in V is defined by u
 v ¼ uþ ð
vÞ, where 
v is the unique negative of v.
On the other hand, the remaining four axioms are concerned with the ‘‘action’’ of the field K of scalars

on the vector space V. Using these additional axioms, we prove (Problem 4.2) the following simple
properties of a vector space.

THEOREM 4.1: Let V be a vector space over a field K.

(i) For any scalar k 2 K and 0 2 V ; k0 ¼ 0.

(ii) For 0 2 K and any vector u 2 V ; 0u ¼ 0.

(iii) If ku ¼ 0, where k 2 K and u 2 V, then k ¼ 0 or u ¼ 0.

(iv) For any k 2 K and any u 2 V ; ð
kÞu ¼ kð
uÞ ¼ 
ku.

4.3 Examples of Vector Spaces

This section lists important examples of vector spaces that will be used throughout the text.

Space Kn

Let K be an arbitrary field. The notation Kn is frequently used to denote the set of all n-tuples of elements
in K. Here Kn is a vector space over K using the following operations:

(i) Vector Addition: ða1; a2; . . . ; anÞ þ ðb1; b2; . . . ; bnÞ ¼ ða1 þ b1; a2 þ b2; . . . ; an þ bnÞ
(ii) Scalar Multiplication: kða1; a2; . . . ; anÞ ¼ ðka1; ka2; . . . ; kanÞ
The zero vector in Kn is the n-tuple of zeros,

0 ¼ ð0; 0; . . . ; 0Þ
and the negative of a vector is defined by


ða1; a2; . . . ; anÞ ¼ ð
a1;
a2; . . . ;
anÞ
Observe that these are the same as the operations defined for Rn in Chapter 1. The proof that Kn is a
vector space is identical to the proof of Theorem 1.1, which we now regard as stating that Rn with the
operations defined there is a vector space over R.
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Polynomial Space PðtÞ
Let PðtÞ denote the set of all polynomials of the form

pðtÞ ¼ a0 þ a1t þ a2t2 þ � � � þ ast
s ðs ¼ 1; 2; . . .Þ

where the coefficients ai belong to a field K. Then PðtÞ is a vector space over K using the following operations:

(i) Vector Addition: Here pðtÞ þ qðtÞ in PðtÞ is the usual operation of addition of polynomials.

(ii) Scalar Multiplication: Here kpðtÞ in PðtÞ is the usual operation of the product of a scalar k and a
polynomial pðtÞ.

The zero polynomial 0 is the zero vector in PðtÞ.
Polynomial Space PnðtÞ
Let PnðtÞ denote the set of all polynomials pðtÞ over a field K, where the degree of pðtÞ is less than or
equal to n; that is,

pðtÞ ¼ a0 þ a1t þ a2t2 þ � � � þ ast
s

where s � n. Then PnðtÞ is a vector space over K with respect to the usual operations of addition of
polynomials and of multiplication of a polynomial by a constant (just like the vector space PðtÞ above).
We include the zero polynomial 0 as an element of PnðtÞ, even though its degree is undefined.

Matrix Space Mm;n

The notation Mm;n, or simply M; will be used to denote the set of all m� n matrices with entries in a field
K . Then Mm;n is a vector space over K with respect to the usual operations of matrix addition and scalar
multiplication of matrices, as indicated by Theorem 2.1.

Function Space FðXÞ
Let X be a nonempty set and let K be an arbitrary field. Let FðX Þ denote the set of all functions of X into
K . [Note that FðX Þ is nonempty, because X is nonempty.] Then FðX Þ is a vector space over K with
respect to the following operations:

(i) Vector Addition: The sum of two functions f and g in FðX Þ is the function f þ g in FðX Þ defined by

ð f þ gÞðxÞ ¼ f ðxÞ þ gðxÞ 8x 2 X

(ii) Scalar Multiplication: The product of a scalar k 2 K and a function f in FðX Þ is the function kf in
FðX Þ defined by

ðkf ÞðxÞ ¼ kf ðxÞ 8x 2 X

The zero vector in FðX Þ is the zero function 0, which maps every x 2 X into the zero element 0 2 K;

0ðxÞ ¼ 0 8x 2 X

Also, for any function f in FðX Þ, negative of f is the function 
f in FðX Þ defined by

ð
f ÞðxÞ ¼ 
f ðxÞ 8x 2 X

Fields and Subfields

Suppose a field E is an extension of a field K; that is, suppose E is a field that contains K as a subfield.
Then E may be viewed as a vector space over K using the following operations:

(i) Vector Addition: Here uþ v in E is the usual addition in E.

(ii) Scalar Multiplication: Here ku in E, where k 2 K and u 2 E, is the usual product of k and u as
elements of E.

That is, the eight axioms of a vector space are satisfied by E and its subfield K with respect to the above
two operations.

114 CHAPTER 4 Vector Spaces



4.4 Linear Combinations, Spanning Sets

Let V be a vector space over a field K. A vector v in V is a linear combination of vectors u1; u2; . . . ; um in
V if there exist scalars a1; a2; . . . ; am in K such that

v ¼ a1u1 þ a2u2 þ � � � þ amum

Alternatively, v is a linear combination of u1; u2; . . . ; um if there is a solution to the vector equation

v ¼ x1u1 þ x2u2 þ � � � þ xmum

where x1; x2; . . . ; xm are unknown scalars.

EXAMPLE 4.1 (Linear Combinations in Rn) Suppose we want to express v ¼ ð3; 7;
4Þ in R3 as a linear
combination of the vectors

u1 ¼ ð1; 2; 3Þ; u2 ¼ ð2; 3; 7Þ; u3 ¼ ð3; 5; 6Þ
We seek scalars x, y, z such that v ¼ xu1 þ yu2 þ zu3; that is,

3
7

4

24 35 ¼ x
1
2
3

24 35þ y
2
3
7

24 35þ z
3
5
6

24 35 or
xþ 2yþ 3z ¼ 3

2xþ 3yþ 5z ¼ 7
3xþ 7yþ 6z ¼ 
4

(For notational convenience, we have written the vectors in R3 as columns, because it is then easier to find the
equivalent system of linear equations.) Reducing the system to echelon form yields

xþ 2yþ 3z ¼ 3

y
 z ¼ 1

y
 3z ¼ 
13
and then

xþ 2yþ 3z ¼ 3

y
 z ¼ 1

 4z ¼ 
12

Back-substitution yields the solution x ¼ 2, y ¼ 
4, z ¼ 3. Thus, v ¼ 2u1 
 4u2 þ 3u3.

Remark: Generally speaking, the question of expressing a given vector v in Kn as a linear
combination of vectors u1; u2; . . . ; um in Kn is equivalent to solving a system AX ¼ B of linear equations,
where v is the column B of constants, and the u’s are the columns of the coefficient matrix A. Such a
system may have a unique solution (as above), many solutions, or no solution. The last case—no
solution—means that v cannot be written as a linear combination of the u’s.

EXAMPLE 4.2 (Linear combinations in PðtÞ) Suppose we want to express the polynomial v ¼ 3t2 þ 5t 
 5 as a
linear combination of the polynomials

p1 ¼ t2 þ 2t þ 1; p2 ¼ 2t2 þ 5t þ 4; p3 ¼ t2 þ 3t þ 6

We seek scalars x, y, z such that v ¼ xp1 þ yp2 þ zp3; that is,

3t2 þ 5t 
 5 ¼ xðt2 þ 2t þ 1Þ þ yð2t2 þ 5t þ 4Þ þ zðt2 þ 3t þ 6Þ ð*Þ
There are two ways to proceed from here.

(1) Expand the right-hand side of (*) obtaining:

3t2 þ 5t 
 5 ¼ xt2 þ 2xt þ xþ 2yt2 þ 5yt þ 4yþ zt2 þ 3zt þ 6z

¼ ðxþ 2yþ zÞt2 þ ð2xþ 5yþ 3zÞt þ ðxþ 4yþ 6zÞ
Set coefficients of the same powers of t equal to each other, and reduce the system to echelon form:

xþ 2yþ z ¼ 3

2xþ 5yþ 3z ¼ 5

xþ 4yþ 6z ¼ 
5

or

xþ 2yþ z ¼ 3

yþ z ¼ 
1

2yþ 5z ¼ 
8

or

xþ 2yþ z ¼ 3

yþ z ¼ 
1

3z ¼ 
6
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The system is in triangular form and has a solution. Back-substitution yields the solution x ¼ 3, y ¼ 1, z ¼ 
2.
Thus,

v ¼ 3p1 þ p2 
 2p3

(2) The equation (*) is actually an identity in the variable t; that is, the equation holds for any value
of t. We can obtain three equations in the unknowns x, y, z by setting t equal to any three values.
For example,

Set t ¼ 0 in ð1Þ to obtain: xþ 4yþ 6z ¼ 
5

Set t ¼ 1 in ð1Þ to obtain: 4xþ 11yþ 10z ¼ 3

Set t ¼ 
1 in ð1Þ to obtain: yþ 4z ¼ 
7

Reducing this system to echelon form and solving by back-substitution again yields the solution x ¼ 3, y ¼ 1,
z ¼ 
2. Thus (again), v ¼ 3p1 þ p2 
 2p3.

Spanning Sets

Let V be a vector space over K. Vectors u1; u2; . . . ; um in V are said to span V or to form a spanning set of
V if every v in V is a linear combination of the vectors u1; u2; . . . ; um—that is, if there exist scalars
a1; a2; . . . ; am in K such that

v ¼ a1u1 þ a2u2 þ � � � þ amum

The following remarks follow directly from the definition.

Remark 1: Suppose u1; u2; . . . ; um span V. Then, for any vector w, the set w; u1; u2; . . . ; um also
spans V.

Remark 2: Suppose u1; u2; . . . ; um span V and suppose uk is a linear combination of some of the
other u’s. Then the u’s without uk also span V.

Remark 3: Suppose u1; u2; . . . ; um span V and suppose one of the u’s is the zero vector. Then the
u’s without the zero vector also span V.

EXAMPLE 4.3 Consider the vector space V ¼ R3.

(a) We claim that the following vectors form a spanning set of R3:

e1 ¼ ð1; 0; 0Þ; e2 ¼ ð0; 1; 0Þ; e3 ¼ ð0; 0; 1Þ
Specifically, if v ¼ ða; b; cÞ is any vector in R3, then

v ¼ ae1 þ be2 þ ce3

For example, v ¼ ð5;
6; 2 5e1 
 6e2 þ 2e3.

(b) We claim that the following vectors also form a spanning set of R3:

w1 ¼ ð1; 1; 1Þ; w2 ¼ ð1; 1; 0Þ; w3 ¼ ð1; 0; 0Þ
Specifically, if v ¼ ða; b; cÞ is any vector in R3, then (Problem 4.62)

v ¼ ða; b; cÞ ¼ cw1 þ ðb
 cÞw2 þ ða
 bÞw3

For example, v ¼ ð5;
6; 2Þ ¼ 2w1 
 8w2 þ 11w3.

(c) One can show (Problem 3.24) that v ¼ ð2; 7; 8Þ cannot be written as a linear combination of the vectors

u1 ¼ ð1; 2; 3Þ; u2 ¼ ð1; 3; 5Þ; u3 ¼ ð1; 5; 9Þ
Accordingly, u1, u2, u3 do not span R3.
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EXAMPLE 4.4 Consider the vector space V ¼ PnðtÞ consisting of all polynomials of degree �n.

(a) Clearly every polynomial in PnðtÞ can be expressed as a linear combination of the nþ 1 polynomials

1; t; t2; t3; . . . ; tn

Thus, these powers of t (where 1 ¼ t0) form a spanning set for PnðtÞ.
(b) One can also show that, for any scalar c, the following nþ 1 powers of t 
 c,

1; t 
 c; ðt 
 cÞ2; ðt 
 cÞ3; . . . ; ðt 
 cÞn
(where ðt 
 cÞ0 ¼ 1), also form a spanning set for PnðtÞ.

EXAMPLE 4.5 Consider the vector space M ¼M2;2 consisting of all 2� 2 matrices, and consider the following
four matrices in M:

E11 ¼ 1 0
0 0

� �
; E12 ¼ 0 1

0 0

� �
; E21 ¼ 0 0

1 0

� �
; E22 ¼ 0 0

0 1

� �
Then clearly any matrix A in M can be written as a linear combination of the four matrices. For example,

A ¼ 5 
 6
7 8

� �
¼ 5E11 
 6E12 þ 7E21 þ 8E22

Accordingly, the four matrices E11, E12, E21, E22 span M.

4.5 Subspaces

This section introduces the important notion of a subspace.

DEFINITION: Let V be a vector space over a field K and let W be a subset of V. Then W is a subspace
of V if W is itself a vector space over K with respect to the operations of vector
addition and scalar multiplication on V.

The way in which one shows that any set W is a vector space is to show that W satisfies the eight
axioms of a vector space. However, if W is a subset of a vector space V, then some of the axioms
automatically hold in W, because they already hold in V. Simple criteria for identifying subspaces follow.

THEOREM 4.2: Suppose W is a subset of a vector space V. Then W is a subspace of V if the following
two conditions hold:

(a) The zero vector 0 belongs to W.

(b) For every u; v 2 W; k 2 K: (i) The sum uþ v 2 W. (ii) The multiple ku 2 W.

Property (i) in (b) states that W is closed under vector addition, and property (ii) in (b) states that W is
closed under scalar multiplication. Both properties may be combined into the following equivalent single
statement:

(b0) For every u; v 2 W ; a; b 2 K, the linear combination auþ bv 2 W.

Now let V be any vector space. Then V automatically contains two subspaces: the set {0} consisting of
the zero vector alone and the whole space V itself. These are sometimes called the trivial subspaces of V.
Examples of nontrivial subspaces follow.

EXAMPLE 4.6 Consider the vector space V ¼ R3.

(a) Let U consist of all vectors in R3 whose entries are equal; that is,

U ¼ fða; b; cÞ : a ¼ b ¼ cg

For example, (1, 1, 1), (73,73,73), (7, 7, 7), (72,72,72) are vectors in U . Geometrically, U is the line
through the origin O and the point (1, 1, 1) as shown in Fig. 4-1(a). Clearly 0 ¼ ð0; 0; 0Þ belongs to U , because
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all entries in 0 are equal. Further, suppose u and v are arbitrary vectors in U , say, u ¼ ða; a; aÞ and v ¼ ðb; b; bÞ.
Then, for any scalar k 2 R, the following are also vectors in U :

uþ v ¼ ðaþ b; aþ b; aþ bÞ and ku ¼ ðka; ka; kaÞ

Thus, U is a subspace of R3.

(b) Let W be any plane in R3 passing through the origin, as pictured in Fig. 4-1(b). Then 0 ¼ ð0; 0; 0Þ belongs to W,
because we assumed W passes through, the origin O. Further, suppose u and v are vectors in W. Then u and v
may be viewed as arrows in the plane W emanating from the origin O, as in Fig. 4-1(b). The sum uþ v and any
multiple ku of u also lie in the plane W. Thus, W is a subspace of R3.

EXAMPLE 4.7

(a) Let V ¼Mn;n, the vector space of n� n matrices. Let W1 be the subset of all (upper) triangular matrices and let
W2 be the subset of all symmetric matrices. Then W1 is a subspace of V, because W1 contains the zero matrix 0
and W1 is closed under matrix addition and scalar multiplication; that is, the sum and scalar multiple of such
triangular matrices are also triangular. Similarly, W2 is a subspace of V.

(b) Let V ¼ PðtÞ, the vector space PðtÞ of polynomials. Then the space PnðtÞ of polynomials of degree at most n
may be viewed as a subspace of PðtÞ. Let QðtÞ be the collection of polynomials with only even powers of t. For
example, the following are polynomials in QðtÞ:

p1 ¼ 3þ 4t2 
 5t6 and p2 ¼ 6
 7t4 þ 9t6 þ 3t12

(We assume that any constant k ¼ kt0 is an even power of t.) Then QðtÞ is a subspace of PðtÞ.
(c) Let V be the vector space of real-valued functions. Then the collection W1 of continuous functions and the

collection W2 of differentiable functions are subspaces of V.

Intersection of Subspaces

Let U and W be subspaces of a vector space V. We show that the intersection U \W is also a subspace of
V. Clearly, 0 2 U and 0 2 W, because U and W are subspaces; whence 0 2 U \W. Now suppose u and v
belong to the intersection U \W. Then u; v 2 U and u; v 2 W. Further, because U and W are subspaces,
for any scalars a; b 2 K,

auþ bv 2 U and auþ bv 2 W

Thus, auþ bv 2 U \W. Therefore, U \W is a subspace of V.
The above result generalizes as follows.

THEOREM 4.3: The intersection of any number of subspaces of a vector space V is a subspace of V.

Figure 4-1

z

y
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u u + v

v
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Solution Space of a Homogeneous System

Consider a system AX ¼ B of linear equations in n unknowns. Then every solution u may be viewed as a
vector in Kn. Thus, the solution set of such a system is a subset of Kn. Now suppose the system is
homogeneous; that is, suppose the system has the form AX ¼ 0. Let W be its solution set. Because
A0 ¼ 0, the zero vector 0 2 W. Moreover, suppose u and v belong to W. Then u and v are solutions of
AX ¼ 0, or, in other words, Au ¼ 0 and Av ¼ 0. Therefore, for any scalars a and b, we have

Aðauþ bvÞ ¼ aAuþ bAv ¼ a0þ b0 ¼ 0þ 0 ¼ 0

Thus, auþ bv belongs to W, because it is a solution of AX ¼ 0. Accordingly, W is a subspace of Kn.
We state the above result formally.

THEOREM 4.4: The solution set W of a homogeneous system AX ¼ 0 in n unknowns is a subspace
of Kn.

We emphasize that the solution set of a nonhomogeneous system AX ¼ B is not a subspace of Kn. In
fact, the zero vector 0 does not belong to its solution set.

4.6 Linear Spans, Row Space of a Matrix

Suppose u1; u2; . . . ; um are any vectors in a vector space V. Recall (Section 4.4) that any vector of the
form a1u1 þ a2u2 þ � � � þ amum, where the ai are scalars, is called a linear combination of u1; u2; . . . ; um.
The collection of all such linear combinations, denoted by

spanðu1; u2; . . . ; umÞ or spanðuiÞ
is called the linear span of u1; u2; . . . ; um.

Clearly the zero vector 0 belongs to spanðuiÞ, because

0 ¼ 0u1 þ 0u2 þ � � � þ 0um

Furthermore, suppose v and v0 belong to spanðuiÞ, say,

v ¼ a1u1 þ a2u2 þ � � � þ amum and v0 ¼ b1u1 þ b2u2 þ � � � þ bmum

Then,

v þ v0 ¼ ða1 þ b1Þu1 þ ða2 þ b2Þu2 þ � � � þ ðam þ bmÞum

and, for any scalar k 2 K,

kv ¼ ka1u1 þ ka2u2 þ � � � þ kamum

Thus, v þ v0 and kv also belong to spanðuiÞ. Accordingly, spanðuiÞ is a subspace of V.
More generally, for any subset S of V, spanðSÞ consists of all linear combinations of vectors in S or,

when S ¼ f, span(S)¼f0g. Thus, in particular, S is a spanning set (Section 4.4) of spanðSÞ.
The following theorem, which was partially proved above, holds.

THEOREM 4.5: Let S be a subset of a vector space V.

(i) Then spanðSÞ is a subspace of V that contains S.

(ii) If W is a subspace of V containing S, then spanðSÞ � W.

Condition (ii) in theorem 4.5 may be interpreted as saying that spanðSÞ is the ‘‘smallest’’ subspace of
V containing S.

EXAMPLE 4.8 Consider the vector space V ¼ R3.

(a) Let u be any nonzero vector in R3. Then spanðuÞ consists of all scalar multiples of u. Geometrically, spanðuÞ is
the line through the origin O and the endpoint of u, as shown in Fig. 4-2(a).
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(b) Let u and v be vectors in R3 that are not multiples of each other. Then spanðu; vÞ is the plane through the origin
O and the endpoints of u and v as shown in Fig. 4-2(b).

(c) Consider the vectors e1 ¼ ð1; 0; 0Þ, e2 ¼ ð0; 1; 0Þ, e3 ¼ ð0; 0; 1Þ in R3. Recall [Example 4.1(a)] that every vector
in R3 is a linear combination of e1, e2, e3. That is, e1, e2, e3 form a spanning set of R3. Accordingly,
spanðe1; e2; e3Þ ¼ R3.

Row Space of a Matrix

Let A ¼ ½aij� be an arbitrary m� n matrix over a field K. The rows of A,

R1 ¼ ða11; a12; . . . ; a1nÞ; R2 ¼ ða21; a22; . . . ; a2nÞ; . . . ; Rm ¼ ðam1; am2; . . . ; amnÞ
may be viewed as vectors in Kn; hence, they span a subspace of Kn called the row space of A and denoted
by rowsp(A). That is,

rowspðAÞ ¼ spanðR1;R2; . . . ;RmÞ
Analagously, the columns of A may be viewed as vectors in Km called the column space of A and denoted
by colsp(A). Observe that colspðAÞ ¼ rowspðAT Þ.

Recall that matrices A and B are row equivalent, written A � B, if B can be obtained from A by a
sequence of elementary row operations. Now suppose M is the matrix obtained by applying one of the
following elementary row operations on a matrix A:

ð1Þ Interchange Ri and Rj; ð2Þ Replace Ri by kRi; ð3Þ Replace Rj by kRi þ Rj

Then each row of M is a row of A or a linear combination of rows of A. Hence, the row space of M is
contained in the row space of A. On the other hand, we can apply the inverse elementary row operation on
M to obtain A; hence, the row space of A is contained in the row space of M . Accordingly, A and M have
the same row space. This will be true each time we apply an elementary row operation. Thus, we have
proved the following theorem.

THEOREM 4.6: Row equivalent matrices have the same row space.

We are now able to prove (Problems 4.45–4.47) basic results on row equivalence (which first
appeared as Theorems 3.7 and 3.8 in Chapter 3).

THEOREM 4.7: Suppose A ¼ ½aij� and B ¼ ½bij� are row equivalent echelon matrices with respective
pivot entries

a1j1
; a2j2

; . . . ; arjr and b1k1
; b2k2

; . . . ; bsks

Then A and B have the same number of nonzero rows—that is, r ¼ s—and their
pivot entries are in the same positions—that is, j1 ¼ k1; j2 ¼ k2; . . . ; jr ¼ kr.

THEOREM 4.8: Suppose A and B are row canonical matrices. Then A and B have the same row space
if and only if they have the same nonzero rows.

0

( )a

u

Figure 4-2

0

( )b

u

v
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COROLLARY 4.9: Every matrix A is row equivalent to a unique matrix in row canonical form.

We apply the above results in the next example.

EXAMPLE 4.9 Consider the following two sets of vectors in R4:

u1 ¼ ð1; 2;
1; 3Þ; u2 ¼ ð2; 4; 1;
2Þ; u3 ¼ ð3; 6; 3;
7Þ
w1 ¼ ð1; 2;
4; 11Þ; w2 ¼ ð2; 4;
5; 14Þ

Let U ¼ spanðuiÞ and W ¼ spanðwiÞ. There are two ways to show that U ¼ W.

(a) Show that each ui is a linear combination of w1 and w2, and show that each wi is a linear combination of u1, u2,
u3. Observe that we have to show that six systems of linear equations are consistent.

(b) Form the matrix A whose rows are u1, u2, u3 and row reduce A to row canonical form, and form the matrix B
whose rows are w1 and w2 and row reduce B to row canonical form:

A ¼
1 2 
1 3

2 4 1 
2

3 6 3 
7

264
375 � 1 2 
1 3

0 0 3 
8

0 0 6 
16

264
375 � 1 2 0 1

3

0 0 1 
 8
3

0 0 0 0

264
375

B ¼ 1 2 
4 11

2 4 
5 14

� �
� 1 2 
4 11

0 0 3 
8

� �
� 1 2 0 1

3

0 0 1 
 8
3

" #

Because the nonzero rows of the matrices in row canonical form are identical, the row spaces of A and B are
equal. Therefore, U ¼ W.

Clearly, the method in (b) is more efficient than the method in (a).

4.7 Linear Dependence and Independence

Let V be a vector space over a field K . The following defines the notion of linear dependence and
independence of vectors over K. (One usually suppresses mentioning K when the field is understood.)
This concept plays an essential role in the theory of linear algebra and in mathematics in general.

DEFINITION: We say that the vectors v1; v2; . . . ; vm in V are linearly dependent if there exist scalars
a1; a2; . . . ; am in K, not all of them 0, such that

a1v1 þ a2v2 þ � � � þ amvm ¼ 0

Otherwise, we say that the vectors are linearly independent.

The above definition may be restated as follows. Consider the vector equation

x1v1 þ x2v2 þ � � � þ xmvm ¼ 0 ð*Þ
where the x’s are unknown scalars. This equation always has the zero solution x1 ¼ 0;
x2 ¼ 0; . . . ; xm ¼ 0. Suppose this is the only solution; that is, suppose we can show:

x1v1 þ x2v2 þ � � � þ xmvm ¼ 0 implies x1 ¼ 0; x2 ¼ 0; . . . ; xm ¼ 0

Then the vectors v1; v2; . . . ; vm are linearly independent, On the other hand, suppose the equation (*) has
a nonzero solution; then the vectors are linearly dependent.

A set S ¼ fv1; v2; . . . ; vmg of vectors in V is linearly dependent or independent according to whether
the vectors v1; v2; . . . ; vm are linearly dependent or independent.

An infinite set S of vectors is linearly dependent or independent according to whether there do or do
not exist vectors v1; v2; . . . ; vk in S that are linearly dependent.

Warning: The set S ¼ fv1; v2; . . . ; vmg above represents a list or, in other words, a finite sequence
of vectors where the vectors are ordered and repetition is permitted.
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The following remarks follow directly from the above definition.

Remark 1: Suppose 0 is one of the vectors v1; v2; . . . ; vm, say v1 ¼ 0. Then the vectors must be
linearly dependent, because we have the following linear combination where the coefficient of v1 6¼ 0:

1v1 þ 0v2 þ � � � þ 0vm ¼ 1 � 0þ 0þ � � � þ 0 ¼ 0

Remark 2: Suppose v is a nonzero vector. Then v, by itself, is linearly independent, because

kv ¼ 0; v 6¼ 0 implies k ¼ 0

Remark 3: Suppose two of the vectors v1; v2; . . . ; vm are equal or one is a scalar multiple of the
other, say v1 ¼ kv2. Then the vectors must be linearly dependent, because we have the following linear
combination where the coefficient of v1 6¼ 0:

v1 
 kv2 þ 0v3 þ � � � þ 0vm ¼ 0

Remark 4: Two vectors v1 and v2 are linearly dependent if and only if one of them is a multiple of
the other.

Remark 5: If the set fv1; . . . ; vmg is linearly independent, then any rearrangement of the vectors
fvi1

; vi2
; . . . ; vim

g is also linearly independent.

Remark 6: If a set S of vectors is linearly independent, then any subset of S is linearly
independent. Alternatively, if S contains a linearly dependent subset, then S is linearly dependent.

EXAMPLE 4.10

(a) Let u ¼ ð1; 1; 0Þ, v ¼ ð1; 3; 2Þ, w ¼ ð4; 9; 5Þ. Then u, v, w are linearly dependent, because

3uþ 5v 
 2w ¼ 3ð1; 1; 0Þ þ 5ð1; 3; 2Þ 
 2ð4; 9; 5Þ ¼ ð0; 0; 0Þ ¼ 0

(b) We show that the vectors u ¼ ð1; 2; 3Þ, v ¼ ð2; 5; 7Þ, w ¼ ð1; 3; 5Þ are linearly independent. We form the vector
equation xuþ yv þ zw ¼ 0, where x, y, z are unknown scalars. This yields

x

1
2
3

24 35þ y

2
5
7

24 35þ z

1
3
5

24 35 ¼ 0
0
0

24 35 or
xþ 2yþ z ¼ 0

2xþ 5yþ 3z ¼ 0
3xþ 7yþ 5z ¼ 0

or
xþ 2yþ z ¼ 0

yþ z ¼ 0
2z ¼ 0

Back-substitution yields x ¼ 0, y ¼ 0, z ¼ 0. We have shown that

xuþ yv þ zw ¼ 0 implies x ¼ 0; y ¼ 0; z ¼ 0

Accordingly, u, v, w are linearly independent.

(c) Let V be the vector space of functions from R into R. We show that the functions f ðtÞ ¼ sin t, gðtÞ ¼ et,
hðtÞ ¼ t2 are linearly independent. We form the vector (function) equation xf þ yg þ zh ¼ 0, where x, y, z are
unknown scalars. This function equation means that, for every value of t,

x sin t þ yet þ zt2 ¼ 0

Thus, in this equation, we choose appropriate values of t to easily get x ¼ 0, y ¼ 0, z ¼ 0. For example,

ðiÞ Substitute t ¼ 0
ðiiÞ Substitute t ¼ p
ðiiiÞ Substitute t ¼ p=2

to obtain xð0Þ þ yð1Þ þ zð0Þ ¼ 0
to obtain xð0Þ þ 0ðepÞ þ zðp2Þ ¼ 0
to obtain xð1Þ þ 0ðep=2Þ þ 0ðp2=4Þ ¼ 0

or
or
or

y ¼ 0
z ¼ 0
x ¼ 0

We have shown

xf þ yg þ zf ¼ 0 implies x ¼ 0; y ¼ 0; z ¼ 0

Accordingly, u, v, w are linearly independent.
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Linear Dependence in R3

Linear dependence in the vector space V ¼ R3 can be described geometrically as follows:

(a) Any two vectors u and v in R3 are linearly dependent if and only if they lie on the same line through
the origin O, as shown in Fig. 4-3(a).

(b) Any three vectors u, v, w in R3 are linearly dependent if and only if they lie on the same plane
through the origin O, as shown in Fig. 4-3(b).

Later, we will be able to show that any four or more vectors in R3 are automatically linearly dependent.

Linear Dependence and Linear Combinations

The notions of linear dependence and linear combinations are closely related. Specifically, for more than
one vector, we show that the vectors v1; v2; . . . ; vm are linearly dependent if and only if one of them is a
linear combination of the others.

Suppose, say, vi is a linear combination of the others,

vi ¼ a1v1 þ � � � þ ai
1vi
1 þ aiþ1viþ1 þ � � � þ amvm

Then by adding 
vi to both sides, we obtain

a1v1 þ � � � þ ai
1vi
1 
 vi þ aiþ1viþ1 þ � � � þ amvm ¼ 0

where the coefficient of vi is not 0. Hence, the vectors are linearly dependent. Conversely, suppose the
vectors are linearly dependent, say,

b1v1 þ � � � þ bjvj þ � � � þ bmvm ¼ 0; where bj 6¼ 0

Then we can solve for vj obtaining

vj ¼ b
1
j b1v1 
 � � � 
 b
1

j bj
1vj
1 
 b
1
j bjþ1vjþ1 
 � � � 
 b
1

j bmvm

and so vj is a linear combination of the other vectors.
We now state a slightly stronger statement than the one above. This result has many important

consequences.

LEMMA 4.10: Suppose two or more nonzero vectors v1; v2; . . . ; vm are linearly dependent. Then one
of the vectors is a linear combination of the preceding vectors; that is, there exists
k > 1 such that

vk ¼ c1v1 þ c2v2 þ � � � þ ck
1vk
1

Figure 4-3

CHAPTER 4 Vector Spaces 123



Linear Dependence and Echelon Matrices

Consider the following echelon matrix A, whose pivots have been circled:

A ¼

0 �2 3 4 5 6 7
0 0 �4 3 2 3 4
0 0 0 0 �7 8 9
0 0 0 0 0 �6 7
0 0 0 0 0 0 0

266664
377775

Observe that the rows R2, R3, R4 have 0’s in the second column below the nonzero pivot in R1, and hence
any linear combination of R2, R3, R4 must have 0 as its second entry. Thus, R1 cannot be a linear
combination of the rows below it. Similarly, the rows R3 and R4 have 0’s in the third column below the
nonzero pivot in R2, and hence R2 cannot be a linear combination of the rows below it. Finally, R3 cannot
be a multiple of R4, because R4 has a 0 in the fifth column below the nonzero pivot in R3. Viewing the
nonzero rows from the bottom up, R4, R3, R2, R1, no row is a linear combination of the preceding rows.
Thus, the rows are linearly independent by Lemma 4.10.

The argument used with the above echelon matrix A can be used for the nonzero rows of any echelon
matrix. Thus, we have the following very useful result.

THEOREM 4.11: The nonzero rows of a matrix in echelon form are linearly independent.

4.8 Basis and Dimension

First we state two equivalent ways to define a basis of a vector space V. (The equivalence is proved in
Problem 4.28.)

DEFINITION A: A set S ¼ fu1; u2; . . . ; ung of vectors is a basis of V if it has the following two
properties: (1) S is linearly independent. (2) S spans V.

DEFINITION B: A set S ¼ fu1; u2; . . . ; ung of vectors is a basis of V if every v 2 V can be written
uniquely as a linear combination of the basis vectors.

The following is a fundamental result in linear algebra.

THEOREM 4.12: Let V be a vector space such that one basis has m elements and another basis has n
elements. Then m ¼ n.

A vector space V is said to be of finite dimension n or n-dimensional, written

dim V ¼ n

if V has a basis with n elements. Theorem 4.12 tells us that all bases of V have the same number of
elements, so this definition is well defined.

The vector space {0} is defined to have dimension 0.
Suppose a vector space V does not have a finite basis. Then V is said to be of infinite dimension or to

be infinite-dimensional.
The above fundamental Theorem 4.12 is a consequence of the following ‘‘replacement lemma’’

(proved in Problem 4.35).

LEMMA 4.13: Suppose fv1; v2; . . . ; vng spans V, and suppose fw1;w2; . . . ;wmg is linearly indepen-
dent. Then m � n, and V is spanned by a set of the form

fw1;w2; . . . ;wm; vi1
; vi2

; . . . ; vin
m
g

Thus, in particular, nþ 1 or more vectors in V are linearly dependent.

Observe in the above lemma that we have replaced m of the vectors in the spanning set of V by the m
independent vectors and still retained a spanning set.
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Examples of Bases

This subsection presents important examples of bases of some of the main vector spaces appearing in this
text.

(a) Vector space Kn: Consider the following n vectors in Kn:

e1 ¼ ð1; 0; 0; 0; . . . ; 0; 0Þ; e2 ¼ ð0; 1; 0; 0; . . . ; 0; 0Þ; . . . ; en ¼ ð0; 0; 0; 0; . . . ; 0; 1Þ
These vectors are linearly independent. (For example, they form a matrix in echelon form.)
Furthermore, any vector u ¼ ða1; a2; . . . ; anÞ in Kn can be written as a linear combination of the
above vectors. Specifically,

v ¼ a1e1 þ a2e2 þ � � � þ anen

Accordingly, the vectors form a basis of Kn called the usual or standard basis of Kn. Thus (as one
might expect), Kn has dimension n. In particular, any other basis of Kn has n elements.

(b) Vector space M ¼Mr;s of all r � s matrices: The following six matrices form a basis of the
vector space M2;3 of all 2� 3 matrices over K:

1 0 0
0 0 0

� �
;

0 1 0
0 0 0

� �
;

0 0 1
0 0 0

� �
;

0 0 0
1 0 0

� �
;

0 0 0
0 1 0

� �
;

0 0 0
0 0 1

� �
More generally, in the vector space M ¼ Mr;s of all r � s matrices, let Eij be the matrix with ij-entry 1
and 0’s elsewhere. Then all such matrices form a basis of Mr;s called the usual or standard basis of
Mr;s. Accordingly, dimMr;s ¼ rs.

(c) Vector space PnðtÞ of all polynomials of degree � n: The set S ¼ f1; t; t2; t3; . . . ; tng of nþ 1
polynomials is a basis of PnðtÞ. Specifically, any polynomial f ðtÞ of degree �n can be expessed as a
linear combination of these powers of t, and one can show that these polynomials are linearly
independent. Therefore, dimPnðtÞ ¼ nþ 1.

(d) Vector space PðtÞ of all polynomials: Consider any finite set S ¼ ff1ðtÞ; f2ðtÞ; . . . ; fmðtÞg of
polynomials in PðtÞ, and let m denote the largest of the degrees of the polynomials. Then any
polynomial gðtÞ of degree exceeding m cannot be expressed as a linear combination of the elements of
S. Thus, S cannot be a basis of PðtÞ. This means that the dimension of PðtÞ is infinite. We note that the
infinite set S0 ¼ f1; t; t2; t3; . . .g, consisting of all the powers of t, spans PðtÞ and is linearly
independent. Accordingly, S0 is an infinite basis of PðtÞ.

Theorems on Bases

The following three theorems (proved in Problems 4.37, 4.38, and 4.39) will be used frequently.

THEOREM 4.14: Let V be a vector space of finite dimension n. Then:

(i) Any nþ 1 or more vectors in V are linearly dependent.

(ii) Any linearly independent set S ¼ fu1; u2; . . . ; ung with n elements is a basis
of V.

(iii) Any spanning set T ¼ fv1; v2; . . . ; vng of V with n elements is a basis of V.

THEOREM 4.15: Suppose S spans a vector space V. Then:

(i) Any maximum number of linearly independent vectors in S form a basis of V.

(ii) Suppose one deletes from S every vector that is a linear combination of
preceding vectors in S. Then the remaining vectors form a basis of V.
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THEOREM 4.16: Let V be a vector space of finite dimension and let S ¼ fu1; u2; . . . ; urg be a set of
linearly independent vectors in V. Then S is part of a basis of V; that is, S may be
extended to a basis of V.

EXAMPLE 4.11

(a) The following four vectors in R4 form a matrix in echelon form:

ð1; 1; 1; 1Þ; ð0; 1; 1; 1Þ; ð0; 0; 1; 1Þ; ð0; 0; 0; 1Þ
Thus, the vectors are linearly independent, and, because dimR4 ¼ 4, the four vectors form a basis of R4.

(b) The following nþ 1 polynomials in PnðtÞ are of increasing degree:

1; t 
 1; ðt 
 1Þ2; . . . ; ðt 
 1Þn

Therefore, no polynomial is a linear combination of preceding polynomials; hence, the polynomials are linear
independent. Furthermore, they form a basis of PnðtÞ, because dimPnðtÞ ¼ nþ 1.

(c) Consider any four vectors in R3, say

ð257;
132; 58Þ; ð43; 0;
17Þ; ð521;
317; 94Þ; ð328;
512;
731Þ
By Theorem 4.14(i), the four vectors must be linearly dependent, because they come from the three-dimensional
vector space R3.

Dimension and Subspaces

The following theorem (proved in Problem 4.40) gives the basic relationship between the dimension of a
vector space and the dimension of a subspace.

THEOREM 4.17: Let W be a subspace of an n-dimensional vector space V. Then dim W � n. In
particular, if dim W ¼ n, then W ¼ V.

EXAMPLE 4.12 Let W be a subspace of the real space R3. Note that dimR3 ¼ 3. Theorem 4.17 tells us that the
dimension of W can only be 0, 1, 2, or 3. The following cases apply:

(a) If dim W ¼ 0, then W ¼ f0g, a point.

(b) If dim W ¼ 1, then W is a line through the origin 0.

(c) If dim W ¼ 2, then W is a plane through the origin 0.

(d) If dim W ¼ 3, then W is the entire space R3.

4.9 Application to Matrices, Rank of a Matrix

Let A be any m� n matrix over a field K. Recall that the rows of A may be viewed as vectors in Kn and
that the row space of A, written rowsp(A), is the subspace of Kn spanned by the rows of A. The following
definition applies.

DEFINITION: The rank of a matrix A, written rank(A), is equal to the maximum number of linearly
independent rows of A or, equivalently, the dimension of the row space of A.

Recall, on the other hand, that the columns of an m� n matrix A may be viewed as vectors in Km and
that the column space of A, written colsp(A), is the subspace of Km spanned by the columns of A.
Although m may not be equal to n—that is, the rows and columns of A may belong to different vector
spaces—we have the following fundamental result.

THEOREM 4.18: The maximum number of linearly independent rows of any matrix A is equal to the
maximum number of linearly independent columns of A. Thus, the dimension of the
row space of A is equal to the dimension of the column space of A.

Accordingly, one could restate the above definition of the rank of A using columns instead of rows.

126 CHAPTER 4 Vector Spaces



Basis-Finding Problems

This subsection shows how an echelon form of any matrix A gives us the solution to certain problems
about A itself. Specifically, let A and B be the following matrices, where the echelon matrix B (whose
pivots are circled) is an echelon form of A:

A ¼

1 2 1 3 1 2
2 5 5 6 4 5
3 7 6 11 6 9
1 5 10 8 9 9
2 6 8 11 9 12

266664
377775 and B ¼

�1 2 1 3 1 2
0 �1 3 1 2 1
0 0 0 �1 1 2
0 0 0 0 0 0
0 0 0 0 0 0

266664
377775

We solve the following four problems about the matrix A, where C1;C2; . . . ;C6 denote its columns:

(a) Find a basis of the row space of A.

(b) Find each column Ck of A that is a linear combination of preceding columns of A.

(c) Find a basis of the column space of A.

(d) Find the rank of A.

(a) We are given that A and B are row equivalent, so they have the same row space. Moreover, B is in
echelon form, so its nonzero rows are linearly independent and hence form a basis of the row space
of B. Thus, they also form a basis of the row space of A. That is,

basis of rowspðAÞ: ð1; 2; 1; 3; 1; 2Þ; ð0; 1; 3; 1; 2; 1Þ; ð0; 0; 0; 1; 1; 2Þ

(b) Let Mk ¼ ½C1;C2; . . . ;Ck �, the submatrix of A consisting of the first k columns of A. Then Mk
1 and
Mk are, respectively, the coefficient matrix and augmented matrix of the vector equation

x1C1 þ x2C2 þ � � � þ xk
1Ck
1 ¼ Ck

Theorem 3.9 tells us that the system has a solution, or, equivalently, Ck is a linear combination of
the preceding columns of A if and only if rankðMkÞ ¼ rankðMk
1Þ, where rankðMkÞ means the
number of pivots in an echelon form of Mk . Now the first k column of the echelon matrix B is also
an echelon form of Mk . Accordingly,

rankðM2Þ ¼ rankðM3Þ ¼ 2 and rankðM4Þ ¼ rankðM5Þ ¼ rankðM6Þ ¼ 3

Thus, C3, C5, C6 are each a linear combination of the preceding columns of A.

(c) The fact that the remaining columns C1, C2, C4 are not linear combinations of their respective
preceding columns also tells us that they are linearly independent. Thus, they form a basis of the
column space of A. That is,

basis of colspðAÞ: ½1; 2; 3; 1; 2�T ; ½2; 5; 7; 5; 6�T ; ½3; 6; 11; 8; 11�T

Observe that C1, C2, C4 may also be characterized as those columns of A that contain the pivots in
any echelon form of A.

(d) Here we see that three possible definitions of the rank of A yield the same value.

(i) There are three pivots in B, which is an echelon form of A.

(ii) The three pivots in B correspond to the nonzero rows of B, which form a basis of the row
space of A.

(iii) The three pivots in B correspond to the columns of A, which form a basis of the column space
of A.

Thus, rankðAÞ ¼ 3.
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Application to Finding a Basis for W ¼ spanðu1; u2; . . . ; urÞ
Frequently, we are given a list S ¼ fu1; u2; . . . ; urg of vectors in Kn and we want to find a basis for the
subspace W of Kn spanned by the given vectors—that is, a basis of

W ¼ spanðSÞ ¼ spanðu1; u2; . . . ; urÞ
The following two algorithms, which are essentially described in the above subsection, find such a basis
(and hence the dimension) of W.

Algorithm 4.1 (Row space algorithm)

Step 1. Form the matrix M whose rows are the given vectors.

Step 2. Row reduce M to echelon form.

Step 3. Output the nonzero rows of the echelon matrix.

Sometimes we want to find a basis that only comes from the original given vectors. The next algorithm
accomplishes this task.

Algorithm 4.2 (Casting-out algorithm)

Step 1. Form the matrix M whose columns are the given vectors.

Step 2. Row reduce M to echelon form.

Step 3. For each column Ck in the echelon matrix without a pivot, delete (cast out) the vector uk from
the list S of given vectors.

Step 4. Output the remaining vectors in S (which correspond to columns with pivots).

We emphasize that in the first algorithm we form a matrix whose rows are the given vectors, whereas
in the second algorithm we form a matrix whose columns are the given vectors.

EXAMPLE 4.13 Let W be the subspace of R5 spanned by the following vectors:

u1 ¼ ð1; 2; 1; 3; 2Þ; u2 ¼ ð1; 3; 3; 5; 3Þ; u3 ¼ ð3; 8; 7; 13; 8Þ
u4 ¼ ð1; 4; 6; 9; 7Þ; u5 ¼ ð5; 13; 13; 25; 19Þ

Find a basis of W consisting of the original given vectors, and find dim W.
Form the matrix M whose columns are the given vectors, and reduce M to echelon form:

M ¼

1 1 3 1 5
2 3 8 4 13
1 3 7 6 13
3 5 13 9 25
2 3 8 7 19

266664
377775 �

1 1 3 1 5
0 1 2 2 3
0 0 0 1 2
0 0 0 0 0
0 0 0 0 0

266664
377775

The pivots in the echelon matrix appear in columns C1, C2, C4. Accordingly, we ‘‘cast out’’ the vectors u3 and u5

from the original five vectors. The remaining vectors u1, u2, u4, which correspond to the columns in the echelon
matrix with pivots, form a basis of W. Thus, in particular, dim W ¼ 3.

Remark: The justification of the casting-out algorithm is essentially described above, but we repeat
it again here for emphasis. The fact that column C3 in the echelon matrix in Example 4.13 does not have a
pivot means that the vector equation

xu1 þ yu2 ¼ u3

has a solution, and hence u3 is a linear combination of u1 and u2. Similarly, the fact that C5 does not have
a pivot means that u5 is a linear combination of the preceding vectors. We have deleted each vector in the
original spanning set that is a linear combination of preceding vectors. Thus, the remaining vectors are
linearly independent and form a basis of W.
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Application to Homogeneous Systems of Linear Equations

Consider again a homogeneous system AX ¼ 0 of linear equations over K with n unknowns. By
Theorem 4.4, the solution set W of such a system is a subspace of Kn, and hence W has a dimension.
The following theorem, whose proof is postponed until Chapter 5, holds.

THEOREM 4.19: The dimension of the solution space W of a homogeneous system AX ¼ 0 is n
 r,
where n is the number of unknowns and r is the rank of the coefficient matrix A.

In the case where the system AX ¼ 0 is in echelon form, it has precisely n
 r free variables, say
xi1
; xi2

; . . . ; xin
r
. Let vj be the solution obtained by setting xij

¼ 1 (or any nonzero constant) and the
remaining free variables equal to 0. We show (Problem 4.50) that the solutions v1; v2; . . . ; vn
r are
linearly independent; hence, they form a basis of the solution space W.

We have already used the above process to find a basis of the solution space W of a homogeneous
system AX ¼ 0 in Section 3.11. Problem 4.48 gives three other examples.

4.10 Sums and Direct Sums

Let U and W be subsets of a vector space V. The sum of U and W, written U þW, consists of all sums
uþ w where u 2 U and w 2 W. That is,

U þW ¼ fv : v ¼ uþ w; where u 2 U and w 2 Wg
Now suppose U and W are subspaces of V. Then one can easily show (Problem 4.53) that U þW is a

subspace of V. Recall that U \W is also a subspace of V. The following theorem (proved in Problem
4.58) relates the dimensions of these subspaces.

THEOREM 4.20: Suppose U and W are finite-dimensional subspaces of a vector space V. Then
U þW has finite dimension and

dimðU þW Þ ¼ dimU þ dimW 
 dimðU \W Þ
EXAMPLE 4.14 Let V ¼M2;2, the vector space of 2� 2 matrices. Let U consist of those matrices whose second
row is zero, and let W consist of those matrices whose second column is zero. Then

U ¼ a b
0 0

� �	 �
; W ¼ a 0

c 0

� �	 �
and U þW ¼ a b

c 0

� �	 �
; U \W ¼ a 0

0 0

� �	 �
That is, U þW consists of those matrices whose lower right entry is 0, and U \W consists of those matrices
whose second row and second column are zero. Note that dim U ¼ 2, dim W ¼ 2, dimðU \WÞ ¼ 1. Also,
dimðU þWÞ ¼ 3, which is expected from Theorem 4.20. That is,

dimðU þWÞ ¼ dim U þ dim V 
 dimðU \WÞ ¼ 2þ 2
 1 ¼ 3

Direct Sums

The vector space V is said to be the direct sum of its subspaces U and W, denoted by

V ¼ U �W

if every v 2 V can be written in one and only one way as v ¼ uþ w where u 2 U and w 2 W.
The following theorem (proved in Problem 4.59) characterizes such a decomposition.

THEOREM 4.21: The vector space V is the direct sum of its subspaces U and W if and only if:
(i) V ¼ U þW, (ii) U \W ¼ f0g.
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EXAMPLE 4.15 Consider the vector space V ¼ R3:

(a) Let U be the xy-plane and let W be the yz-plane; that is,

U ¼ fða; b; 0Þ : a; b 2 Rg and W ¼ fð0; b; cÞ : b; c 2 Rg
Then R3 ¼ U þW, because every vector in R3 is the sum of a vector in U and a vector in W. However, R3 is not
the direct sum of U and W, because such sums are not unique. For example,

ð3; 5; 7Þ ¼ ð3; 1; 0Þ þ ð0; 4; 7Þ and also ð3; 5; 7Þ ¼ ð3;
4; 0Þ þ ð0; 9; 7Þ

(b) Let U be the xy-plane and let W be the z-axis; that is,

U ¼ fða; b; 0Þ : a; b 2 Rg and W ¼ fð0; 0; cÞ : c 2 Rg
Now any vector ða; b; cÞ 2 R3 can be written as the sum of a vector in U and a vector in V in one and only one
way:

ða; b; cÞ ¼ ða; b; 0Þ þ ð0; 0; cÞ
Accordingly, R3 is the direct sum of U and W ; that is, R3 ¼ U �W.

General Direct Sums

The notion of a direct sum is extended to more than one factor in the obvious way. That is, V is the direct
sum of subspaces W1;W2; . . . ;Wr, written

V ¼ W1 �W2 � � � � �Wr

if every vector v 2 V can be written in one and only one way as

v ¼ w1 þ w2 þ � � � þ wr

where w1 2 W1;w2 2 W2; . . . ;wr 2 Wr.

The following theorems hold.

THEOREM 4.22: Suppose V ¼ W1 �W2 � � � � �Wr. Also, for each k, suppose Sk is a linearly
independent subset of Wk . Then

(a) The union S ¼ Sk Sk is linearly independent in V.

(b) If each Sk is a basis of Wk , then
S

k Sk is a basis of V.

(c) dim V ¼ dim W1 þ dim W2 þ � � � þ dim Wr.

THEOREM 4.23: Suppose V ¼ W1 þW2 þ � � � þWr and dim V ¼Pk dim Wk . Then

V ¼ W1 �W2 � � � � �Wr:

4.11 Coordinates

Let V be an n-dimensional vector space over K with basis S ¼ fu1; u2; . . . ; ung. Then any vector v 2 V
can be expressed uniquely as a linear combination of the basis vectors in S, say

v ¼ a1u1 þ a2u2 þ � � � þ anun

These n scalars a1; a2; . . . ; an are called the coordinates of v relative to the basis S, and they form a vector
[a1; a2; . . . ; an] in Kn called the coordinate vector of v relative to S. We denote this vector by ½v�S , or
simply ½v�; when S is understood. Thus,

½v�S ¼ ½a1; a2; . . . ; an�
For notational convenience, brackets ½. . .�, rather than parentheses ð. . .Þ, are used to denote the coordinate
vector.

130 CHAPTER 4 Vector Spaces



Remark: The above n scalars a1; a2; . . . ; an also form the coordinate column vector
½a1; a2; . . . ; an�T of v relative to S. The choice of the column vector rather than the row vector to
represent v depends on the context in which it is used. The use of such column vectors will become clear
later in Chapter 6.

EXAMPLE 4.16 Consider the vector space P2ðtÞ of polynomials of degree �2. The polynomials

p1 ¼ t þ 1; p2 ¼ t 
 1; p3 ¼ ðt 
 1Þ2 ¼ t2 
 2t þ 1

form a basis S of P2ðtÞ. The coordinate vector [v] of v ¼ 2t2 
 5t þ 9 relative to S is obtained as follows.
Set v ¼ xp1 þ yp2 þ zp3 using unknown scalars x, y, z, and simplify:

2t2 
 5t þ 9 ¼ xðt þ 1Þ þ yðt 
 1Þ þ zðt2 
 2t þ 1Þ
¼ xt þ xþ yt 
 yþ zt2 
 2zt þ z

¼ zt2 þ ðxþ y
 2zÞt þ ðx
 yþ zÞ
Then set the coefficients of the same powers of t equal to each other to obtain the system

z ¼ 2; xþ y
 2z ¼ 
5; x
 yþ z ¼ 9

The solution of the system is x ¼ 3, y ¼ 
4, z ¼ 2. Thus,

v ¼ 3p1 
 4p2 þ 2p3; and hence; ½v� ¼ ½3;
4; 2�

EXAMPLE 4.17 Consider real space R3. The following vectors form a basis S of R3:

u1 ¼ ð1;
1; 0Þ; u2 ¼ ð1; 1; 0Þ; u3 ¼ ð0; 1; 1Þ
The coordinates of v ¼ ð5; 3; 4Þ relative to the basis S are obtained as follows.

Set v ¼ xv1 þ yv2 þ zv3; that is, set v as a linear combination of the basis vectors using unknown scalars x, y, z.
This yields

5
3
4

24 35 ¼ x

1

1

0

24 35þ y

1
1
0

24 35þ z

0
1
1

24 35
The equivalent system of linear equations is as follows:

xþ y ¼ 5; 
xþ yþ z ¼ 3; z ¼ 4

The solution of the system is x ¼ 3, y ¼ 2, z ¼ 4. Thus,

v ¼ 3u1 þ 2u2 þ 4u3; and so ½v�s ¼ ½3; 2; 4�

Remark 1: There is a geometrical interpretation of the coordinates of a vector v relative to a basis
S for the real space Rn, which we illustrate using the basis S of R3 in Example 4.17. First consider the
space R3 with the usual x, y, z axes. Then the basis vectors determine a new coordinate system of R3, say
with x0, y0, z0 axes, as shown in Fig. 4-4. That is,

(1) The x0-axis is in the direction of u1 with unit length ku1k.
(2) The y0-axis is in the direction of u2 with unit length ku2k.
(3) The z0-axis is in the direction of u3 with unit length ku3k.

Then each vector v ¼ ða; b; cÞ or, equivalently, the point Pða; b; cÞ in R3 will have new coordinates with
respect to the new x0, y0, z0 axes. These new coordinates are precisely ½v�S , the coordinates of v with
respect to the basis S. Thus, as shown in Example 4.17, the coordinates of the point Pð5; 3; 4Þ with the
new axes form the vector [3, 2, 4].

Remark 2: Consider the usual basis E ¼ fe1; e2; . . . ; eng of Kn defined by

e1 ¼ ð1; 0; 0; . . . ; 0; 0Þ; e2 ¼ ð0; 1; 0; . . . ; 0; 0Þ; . . . ; en ¼ ð0; 0; 0; . . . ; 0; 1Þ
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Let v ¼ ða1; a2; . . . ; anÞ be any vector in Kn. Then one can easily show that

v ¼ a1e1 þ a2e2 þ � � � þ anen; and so ½v�E ¼ ½a1; a2; . . . ; an�
That is, the coordinate vector ½v�E of any vector v relative to the usual basis E of Kn is identical to the
original vector v.

Isomorphism of V and Kn

Let V be a vector space of dimension n over K, and suppose S ¼ fu1; u2; . . . ; ung is a basis of V. Then
each vector v 2 V corresponds to a unique n-tuple ½v�S in Kn. On the other hand, each n-tuple
[c1; c2; . . . ; cn] in Kn corresponds to a unique vector c1u1 þ c2u2 þ � � � þ cnun in V. Thus, the basis S
induces a one-to-one correspondence between V and Kn. Furthermore, suppose

v ¼ a1u1 þ a2u2 þ � � � þ anun and w ¼ b1u1 þ b2u2 þ � � � þ bnun

Then

v þ w ¼ ða1 þ b1Þu1 þ ða2 þ b2Þu2 þ � � � þ ðan þ bnÞun

kv ¼ ðka1Þu1 þ ðka2Þu2 þ � � � þ ðkanÞun

where k is a scalar. Accordingly,

½v þ w�S ¼ ½a1 þ b1; . . . ; an þ bn� ¼ ½a1; . . . ; an� þ ½b1; . . . ; bn� ¼ ½v�S þ ½w�S
½kv�S ¼ ½ka1; ka2; . . . ; kan� ¼ k½a1; a2; . . . ; an� ¼ k½v�S

Thus, the above one-to-one correspondence between V and Kn preserves the vector space operations of
vector addition and scalar multiplication. We then say that V and Kn are isomorphic, written

V ffi Kn

We state this result formally.

Figure 4-4
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THEOREM 4.24: Let V be an n-dimensional vector space over a field K. Then V and Kn are
isomorphic.

The next example gives a practical application of the above result.

EXAMPLE 4.18 Suppose we want to determine whether or not the following matrices in V ¼M2;3 are linearly
dependent:

A ¼ 1 2 
3
4 0 1

� �
; B ¼ 1 3 
4

6 5 4

� �
; C ¼ 3 8 
11

16 10 9

� �
The coordinate vectors of the matrices in the usual basis of M2;3 are as follows:

½A� ¼ ½1; 2;
3; 4; 0; 1�; ½B� ¼ ½1; 3;
4; 6; 5; 4�; ½C� ¼ ½3; 8;
11; 16; 10; 9�
Form the matrix M whose rows are the above coordinate vectors and reduce M to an echelon form:

M ¼
1 2 
3 4 0 1
1 3 
4 6 5 4
3 8 
11 16 10 9

24 35 � 1 2 
3 4 0 1
0 1 
1 2 5 3
0 2 
2 4 10 6

24 35 � 1 2 
3 4 0 1
0 1 
1 2 5 3
0 0 0 0 0 0

24 35
Because the echelon matrix has only two nonzero rows, the coordinate vectors [A], [B], [C] span a subspace of
dimension 2 and so are linearly dependent. Accordingly, the original matrices A, B, C are linearly dependent.

SOLVED PROBLEMS

Vector Spaces, Linear Combinations

4.1. Suppose u and v belong to a vector space V. Simplify each of the following expressions:

(a) E1 ¼ 3ð2u
 4vÞ þ 5uþ 7v, (c) E3 ¼ 2uv þ 3ð2uþ 4vÞ
(b) E2 ¼ 3u
 6ð3u
 5vÞ þ 7u, (d) E4 ¼ 5u
 3

v
þ 5u

Multiply out and collect terms:

(a) E1 ¼ 6u
 12v þ 5uþ 7v ¼ 11u
 5v

(b) E2 ¼ 3u
 18uþ 30v þ 7u ¼ 
8uþ 30v

(c) E3 is not defined because the product uv of vectors is not defined.

(d) E4 is not defined because division by a vector is not defined.

4.2. Prove Theorem 4.1: Let V be a vector space over a field K.
(i) k0 ¼ 0. (ii) 0u ¼ 0. (iii) If ku ¼ 0, then k ¼ 0 or u ¼ 0. (iv) ð
kÞu ¼ kð
uÞ ¼ 
ku.

(i) By Axiom [A2] with u ¼ 0, we have 0þ 0 ¼ 0. Hence, by Axiom [M1], we have

k0 ¼ kð0þ 0Þ ¼ k0þ k0

Adding 
k0 to both sides gives the desired result.

(ii) For scalars, 0þ 0 ¼ 0. Hence, by Axiom [M2], we have

0u ¼ ð0þ 0Þu ¼ 0uþ 0u

Adding 
0u to both sides gives the desired result.

(iii) Suppose ku ¼ 0 and k 6¼ 0. Then there exists a scalar k
1 such that k
1k ¼ 1. Thus,

u ¼ 1u ¼ ðk
1kÞu ¼ k
1ðkuÞ ¼ k
10 ¼ 0

(iv) Using uþ ð
uÞ ¼ 0 and k þ ð
kÞ ¼ 0 yields

0 ¼ k0 ¼ k½uþ ð
uÞ� ¼ kuþ kð
uÞ and 0 ¼ 0u ¼ ½k þ ð
kÞ�u ¼ kuþ ð
kÞu
Adding 
ku to both sides of the first equation gives 
ku ¼ kð
uÞ; and adding 
ku to both sides of the
second equation gives 
ku ¼ ð
kÞu. Thus, ð
kÞu ¼ kð
uÞ ¼ 
ku.
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4.3. Show that (a) kðu
 vÞ ¼ ku
 kv, (b) uþ u ¼ 2u.

(a) Using the definition of subtraction, that u
 v ¼ uþ ð
vÞ, and Theorem 4.1(iv), that kð
vÞ ¼ 
kv, we
have

kðu
 vÞ ¼ k½uþ ð
vÞ� ¼ kuþ kð
vÞ ¼ kuþ ð
kvÞ ¼ ku
 kv

(b) Using Axiom [M4] and then Axiom [M2], we have

uþ u ¼ 1uþ 1u ¼ ð1þ 1Þu ¼ 2u

4.4. Express v ¼ ð1;
2; 5Þ in R3 as a linear combination of the vectors

u1 ¼ ð1; 1; 1Þ; u2 ¼ ð1; 2; 3Þ; u3 ¼ ð2;
1; 1Þ
We seek scalars x, y, z, as yet unknown, such that v ¼ xu1 þ yu2 þ zu3. Thus, we require

1

2

5

24 35 ¼ x
1
1
1

24 35þ y
1
2
3

24 35þ z
2

1

1

24 35 or
xþ yþ 2z ¼ 1
xþ 2y
 z ¼ 
2
xþ 3yþ z ¼ 5

(For notational convenience, we write the vectors in R3 as columns, because it is then easier to find the
equivalent system of linear equations.) Reducing the system to echelon form yields the triangular system

xþ yþ 2z ¼ 1; y
 3z ¼ 
3; 5z ¼ 10

The system is consistent and has a solution. Solving by back-substitution yields the solution x ¼ 
6, y ¼ 3,
z ¼ 2. Thus, v ¼ 
6u1 þ 3u2 þ 2u3.

Alternatively, write down the augmented matrix M of the equivalent system of linear equations, where
u1, u2, u3 are the first three columns of M and v is the last column, and then reduce M to echelon form:

M ¼
1 1 2 1
1 2 
1 
2
1 3 1 5

24 35 � 1 1 2 1
0 1 
3 
3
0 2 
1 4

24 35 � 1 1 2 1
0 1 
3 
3
0 0 5 10

24 35
The last matrix corresponds to a triangular system, which has a solution. Solving the triangular system by
back-substitution yields the solution x ¼ 
6, y ¼ 3, z ¼ 2. Thus, v ¼ 
6u1 þ 3u2 þ 2u3.

4.5. Express v ¼ ð2;
5; 3Þ in R3 as a linear combination of the vectors

u1 ¼ ð1;
3; 2Þ; u2 ¼ ð2;
4;
1Þ; u3 ¼ ð1;
5; 7Þ
We seek scalars x, y, z, as yet unknown, such that v ¼ xu1 þ yu2 þ zu3. Thus, we require

2

5

3

24 35 ¼ x
1

3

2

24 35þ y
2

4

1

24 35þ z
1

5

7

24 35 or
xþ 2yþ z ¼ 2


3x
 4y
 5z ¼ 
5
2x
 yþ 7z ¼ 3

Reducing the system to echelon form yields the system

xþ 2yþ z ¼ 2; 2y
 2z ¼ 1; 0 ¼ 3

The system is inconsistent and so has no solution. Thus, v cannot be written as a linear combination of
u1, u2, u3.

4.6. Express the polynomial v ¼ t2 þ 4t 
 3 in PðtÞ as a linear combination of the polynomials

p1 ¼ t2 
 2t þ 5; p2 ¼ 2t2 
 3t; p3 ¼ t þ 1

Set v as a linear combination of p1, p2, p3 using unknowns x, y, z to obtain

t2 þ 4t 
 3 ¼ xðt2 
 2t þ 5Þ þ yð2t2 
 3tÞ þ zðt þ 1Þ ð*Þ
We can proceed in two ways.
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Method 1. Expand the right side of (*) and express it in terms of powers of t as follows:

t2 þ 4t 
 3 ¼ xt2 
 2xt þ 5xþ 2yt2 
 3yt þ zt þ z

¼ ðxþ 2yÞt2 þ ð
2x
 3yþ zÞt þ ð5xþ 3zÞ

Set coefficients of the same powers of t equal to each other, and reduce the system to echelon form. This
yields

xþ 2y ¼ 1

2x
 3yþ z ¼ 4

5xþ 3z ¼ 
3
or

xþ 2y ¼ 1
yþ z ¼ 6


10yþ 3z ¼ 
8
or

xþ 2y ¼ 1
yþ z ¼ 6

13z ¼ 52

The system is consistent and has a solution. Solving by back-substitution yields the solution x ¼ 
3, y ¼ 2,
z ¼ 4. Thus, v ¼ 
3p1 þ 2p2 þ 4p2.

Method 2. The equation (*) is an identity in t; that is, the equation holds for any value of t. Thus, we can
set t equal to any numbers to obtain equations in the unknowns.

(a) Set t ¼ 0 in (*) to obtain the equation 
3 ¼ 5xþ z.

(b) Set t ¼ 1 in (*) to obtain the equation 2 ¼ 4x
 yþ 2z.

(c) Set t ¼ 
1 in (*) to obtain the equation 
6 ¼ 8xþ 5y.

Solve the system of the three equations to again obtain the solution x ¼ 
3, y ¼ 2, z ¼ 4. Thus,
v ¼ 
3p1 þ 2p2 þ 4p3.

4.7. Express M as a linear combination of the matrices A, B, C, where

M ¼ 4 7
7 9

� �
; and A ¼ 1 1

1 1

� �
; B ¼ 1 2

3 4

� �
; C ¼ 1 1

4 5

� �
Set M as a linear combination of A, B, C using unknown scalars x, y, z; that is, set M ¼ xAþ yBþ zC.

This yields

4 7
7 9

� �
¼ x

1 1
1 1

� �
þ y

1 2
3 4

� �
þ z

1 1
4 5

� �
¼ xþ yþ z xþ 2yþ z

xþ 3yþ 4z xþ 4yþ 5z

� �
Form the equivalent system of equations by setting corresponding entries equal to each other:

xþ yþ z ¼ 4; xþ 2yþ z ¼ 7; xþ 3yþ 4z ¼ 7; xþ 4yþ 5z ¼ 9

Reducing the system to echelon form yields

xþ yþ z ¼ 4; y ¼ 3; 3z ¼ 
3; 4z ¼ 
4

The last equation drops out. Solving the system by back-substitution yields z ¼ 
1, y ¼ 3, x ¼ 2. Thus,
M ¼ 2Aþ 3B
 C.

Subspaces

4.8. Prove Theorem 4.2: W is a subspace of V if the following two conditions hold:

(a) 0 2 W. (b) If u; v 2 W, then uþ v, ku 2 W.

By (a), W is nonempty, and, by (b), the operations of vector addition and scalar multiplication are well
defined for W. Axioms [A1], [A4], [M1], [M2], [M3], [M4] hold in W because the vectors in W belong to V.
Thus, we need only show that [A2] and [A3] also hold in W. Now [A2] holds because the zero vector in V
belongs to W by (a). Finally, if v 2 W, then ð
1Þv ¼ 
v 2 W, and v þ ð
vÞ ¼ 0. Thus [A3] holds.

4.9. Let V ¼ R3. Show that W is not a subspace of V, where

(a) W ¼ fða; b; cÞ : a � 0g, (b) W ¼ fða; b; cÞ : a2 þ b2 þ c2 � 1g.
In each case, show that Theorem 4.2 does not hold.
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(a) W consists of those vectors whose first entry is nonnegative. Thus, v ¼ ð1; 2; 3Þ belongs to W. Let
k ¼ 
3. Then kv ¼ ð
3;
6;
9Þ does not belong to W, because 
3 is negative. Thus, W is not a
subspace of V.

(b) W consists of vectors whose length does not exceed 1. Hence, u ¼ ð1; 0; 0Þ and v ¼ ð0; 1; 0Þ belong to
W, but uþ v ¼ ð1; 1; 0Þ does not belong to W, because 12 þ 12 þ 02 ¼ 2 > 1. Thus, W is not a
subspace of V.

4.10. Let V ¼ PðtÞ, the vector space of real polynomials. Determine whether or not W is a subspace of
V, where

(a) W consists of all polynomials with integral coefficients.

(b) W consists of all polynomials with degree �6 and the zero polynomial.

(c) W consists of all polynomials with only even powers of t.

(a) No, because scalar multiples of polynomials in W do not always belong to W. For example,

f ðtÞ ¼ 3þ 6t þ 7t2 2 W but 1
2 f ðtÞ ¼ 3

2þ 3t þ 7
2 t2 62 W

(b and c) Yes. In each case, W contains the zero polynomial, and sums and scalar multiples of polynomials
in W belong to W.

4.11. Let V be the vector space of functions f : R ! R. Show that W is a subspace of V, where

(a) W ¼ f f ðxÞ : f ð1Þ ¼ 0g, all functions whose value at 1 is 0.

(b) W ¼ f f ðxÞ : f ð3Þ ¼ f ð1Þg, all functions assigning the same value to 3 and 1.

(c) W ¼ f f ðtÞ : f ð
xÞ ¼ 
f ðxÞg, all odd functions.

Let 0̂ denote the zero function, so 0̂ðxÞ ¼ 0 for every value of x.

(a) 0̂ 2 W, because 0̂ð1Þ ¼ 0. Suppose f ; g 2 W. Then f ð1Þ ¼ 0 and gð1Þ ¼ 0. Also, for scalars a and b, we
have

ðaf þ bgÞð1Þ ¼ af ð1Þ þ bgð1Þ ¼ a0þ b0 ¼ 0

Thus, af þ bg 2 W, and hence W is a subspace.

(b) 0̂ 2 W, because 0̂ð3Þ ¼ 0 ¼ 0̂ð1Þ. Suppose f; g 2 W. Then f ð3Þ ¼ f ð1Þ and gð3Þ ¼ gð1Þ. Thus, for any
scalars a and b, we have

ðaf þ bgÞð3Þ ¼ af ð3Þ þ bgð3Þ ¼ af ð1Þ þ bgð1Þ ¼ ðaf þ bgÞð1Þ
Thus, af þ bg 2 W, and hence W is a subspace.

(c) 0̂ 2 W, because 0̂ð
xÞ ¼ 0 ¼ 
0 ¼ 
0̂ðxÞ. Suppose f; g 2 W. Then f ð
xÞ ¼ 
f ðxÞ and gð
xÞ ¼ 
gðxÞ.
Also, for scalars a and b,

ðaf þ bgÞð
xÞ ¼ af ð
xÞ þ bgð
xÞ ¼ 
af ðxÞ 
 bgðxÞ ¼ 
ðaf þ bgÞðxÞ
Thus, abþ gf 2 W, and hence W is a subspace of V.

4.12. Prove Theorem 4.3: The intersection of any number of subspaces of V is a subspace of V.

Let fWi : i 2 Ig be a collection of subspaces of V and let W ¼ \ðWi : i 2 IÞ. Because each Wi is a
subspace of V, we have 0 2 Wi, for every i 2 I . Hence, 0 2 W. Suppose u; v 2 W. Then u; v 2 Wi, for every
i 2 I . Because each Wi is a subspace, auþ bv 2 Wi , for every i 2 I . Hence, auþ bv 2 W. Thus, W is a
subspace of V.

Linear Spans

4.13. Show that the vectors u1 ¼ ð1; 1; 1Þ, u2 ¼ ð1; 2; 3Þ, u3 ¼ ð1; 5; 8Þ span R3.

We need to show that an arbitrary vector v ¼ ða; b; cÞ in R3 is a linear combination of u1, u2, u3. Set
v ¼ xu1 þ yu2 þ zu3; that is, set

ða; b; cÞ ¼ xð1; 1; 1Þ þ yð1; 2; 3Þ þ zð1; 5; 8Þ ¼ ðxþ yþ z; xþ 2yþ 5z; xþ 3yþ 8zÞ
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Form the equivalent system and reduce it to echelon form:

xþ yþ z ¼ a
xþ 2yþ 5z ¼ b
xþ 3yþ 8z ¼ c

or
xþ yþ z ¼ a

yþ 4z ¼ b
 a
2yþ 7c ¼ c
 a

or
xþ yþ z ¼ a

yþ 4z ¼ b
 a

z ¼ c
 2bþ a

The above system is in echelon form and is consistent; in fact,

x ¼ 
aþ 5b
 3c; y ¼ 3a
 7bþ 4c; z ¼ aþ 2b
 c

is a solution. Thus, u1, u2, u3 span R3.

4.14. Find conditions on a, b, c so that v ¼ ða; b; cÞ in R3 belongs to W ¼ spanðu1; u2; u3Þ; where

u1 ¼ ð1; 2; 0Þ; u2 ¼ ð
1; 1; 2Þ; u3 ¼ ð3; 0;
4Þ
Set v as a linear combination of u1, u2, u3 using unknowns x, y, z; that is, set v ¼ xu1 þ yu2 þ zu3: This

yields

ða; b; cÞ ¼ xð1; 2; 0Þ þ yð
1; 1; 2Þ þ zð3; 0;
4Þ ¼ ðx
 yþ 3z; 2xþ y; 2y
 4zÞ
Form the equivalent system of linear equations and reduce it to echelon form:

x
 yþ 3z ¼ a
2xþ y ¼ b

2y
 4z ¼ c
or

x
 yþ 3z ¼ a
3y
 6z ¼ b
 2a
2y
 4z ¼ c

or
x
 yþ 3z ¼ a

3y
 6z ¼ b
 2a
0 ¼ 4a
 2bþ 3c

The vector v ¼ ða; b; cÞ belongs to W if and only if the system is consistent, and it is consistent if and only if
4a
 2bþ 3c ¼ 0. Note, in particular, that u1, u2, u3 do not span the whole space R3.

4.15. Show that the vector space V ¼ PðtÞ of real polynomials cannot be spanned by a finite number of
polynomials.

Any finite set S of polynomials contains a polynomial of maximum degree, say m. Then the linear span
span(S) of S cannot contain a polynomial of degree greater than m. Thus, spanðSÞ 6¼ V, for any finite set S.

4.16. Prove Theorem 4.5: Let S be a subset of V. (i) Then span(S) is a subspace of V containing S.
(ii) If W is a subspace of V containing S, then spanðSÞ � W.

(i) Suppose S is empty. By definition, spanðSÞ ¼ f0g. Hence spanðSÞ ¼ f0g is a subspace of V and
S � spanðSÞ. Suppose S is not empty and v 2 S. Then v ¼ 1v 2 spanðSÞ; hence, S � spanðSÞ. Also
0 ¼ 0v 2 spanðSÞ. Now suppose u;w 2 spanðSÞ, say

u ¼ a1u1 þ � � � þ arur ¼
P
i

aiui and w ¼ b1w1 þ � � � þ bsws ¼
P
j

bjwj

where ui, wj 2 S and ai; bj 2 K. Then

uþ v ¼P
i

aiui þ
P
j

bjwj and ku ¼ k
P
i

aiui

� �
¼P

i

kaiui

belong to span(S) because each is a linear combination of vectors in S. Thus, span(S) is a subspace of V.

(ii) Suppose u1; u2; . . . ; ur 2 S. Then all the ui belong to W. Thus, all multiples a1u1; a2u2; . . . ; arur 2 W,
and so the sum a1u1 þ a2u2 þ � � � þ arur 2 W. That is, W contains all linear combinations of elements
in S, or, in other words, spanðSÞ � W, as claimed.

Linear Dependence

4.17. Determine whether or not u and v are linearly dependent, where

(a) u ¼ ð1; 2Þ, v ¼ ð3;
5Þ, (c) u ¼ ð1; 2;
3Þ, v ¼ ð4; 5;
6Þ
(b) u ¼ ð1;
3Þ, v ¼ ð
2; 6Þ, (d) u ¼ ð2; 4;
8Þ, v ¼ ð3; 6;
12Þ

Two vectors u and v are linearly dependent if and only if one is a multiple of the other.

(a) No. (b) Yes; for v ¼ 
2u. (c) No. (d) Yes, for v ¼ 3
2 u.
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4.18. Determine whether or not u and v are linearly dependent, where

(a) u ¼ 2t2 þ 4t 
 3, v ¼ 4t2 þ 8t 
 6, (b) u ¼ 2t2 
 3t þ 4, v ¼ 4t2 
 3t þ 2,

(c) u ¼ 1 3 
4
5 0 
1

� �
; v ¼ 
4 
12 16


20 0 4

� �
, (d) u ¼ 1 1 1

2 2 2

� �
; v ¼ 2 2 2

3 3 3

� �
Two vectors u and v are linearly dependent if and only if one is a multiple of the other.

(a) Yes; for v ¼ 2u. (b) No. (c) Yes, for v ¼ 
4u. (d) No.

4.19. Determine whether or not the vectors u ¼ ð1; 1; 2Þ, v ¼ ð2; 3; 1Þ, w ¼ ð4; 5; 5Þ in R3 are linearly
dependent.

Method 1. Set a linear combination of u, v, w equal to the zero vector using unknowns x, y, z to obtain
the equivalent homogeneous system of linear equations and then reduce the system to echelon form.
This yields

x
1
1
1

24 35þ y
2
3
1

24 35þ z
4
5
5

24 35 ¼ 0
0
0

24 35 or
xþ 2yþ 4z ¼ 0
xþ 3yþ 5z ¼ 0

2xþ yþ 5z ¼ 0
or

xþ 2yþ 4z ¼ 0
yþ z ¼ 0

The echelon system has only two nonzero equations in three unknowns; hence, it has a free variable and a
nonzero solution. Thus, u, v, w are linearly dependent.

Method 2. Form the matrix A whose columns are u, v, w and reduce to echelon form:

A ¼
1 2 4
1 3 5
2 1 5

24 35 � 1 2 4
0 1 1
0 
3 
3

24 35 � 1 2 4
0 1 1
0 0 0

24 35
The third column does not have a pivot; hence, the third vector w is a linear combination of the first two

vectors u and v. Thus, the vectors are linearly dependent. (Observe that the matrix A is also the coefficient
matrix in Method 1. In other words, this method is essentially the same as the first method.)

Method 3. Form the matrix B whose rows are u, v, w, and reduce to echelon form:

B ¼
1 1 2
2 3 1
4 5 5

24 35 � 0 1 2
0 1 
3
0 1 
3

24 35 � 1 1 2
0 1 
3
0 0 0

24 35
Because the echelon matrix has only two nonzero rows, the three vectors are linearly dependent. (The three
given vectors span a space of dimension 2.)

4.20. Determine whether or not each of the following lists of vectors in R3 is linearly dependent:

(a) u1 ¼ ð1; 2; 5Þ, u2 ¼ ð1; 3; 1Þ, u3 ¼ ð2; 5; 7Þ, u4 ¼ ð3; 1; 4Þ,
(b) u ¼ ð1; 2; 5Þ, v ¼ ð2; 5; 1Þ, w ¼ ð1; 5; 2Þ,
(c) u ¼ ð1; 2; 3Þ, v ¼ ð0; 0; 0Þ, w ¼ ð1; 5; 6Þ.
(a) Yes, because any four vectors in R3 are linearly dependent.

(b) Use Method 2 above; that is, form the matrix A whose columns are the given vectors, and reduce the
matrix to echelon form:

A ¼
1 2 1
2 5 5
5 1 2

24 35 � 1 2 1
0 1 3
0 
9 
3

24 35 � 1 2 1
0 1 3
0 0 24

24 35
Every column has a pivot entry; hence, no vector is a linear combination of the previous vectors. Thus,
the vectors are linearly independent.

(c) Because 0 ¼ ð0; 0; 0Þ is one of the vectors, the vectors are linearly dependent.
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4.21. Show that the functions f ðtÞ ¼ sin t, gðtÞ cos t, hðtÞ ¼ t from R into R are linearly independent.

Set a linear combination of the functions equal to the zero function 0 using unknown scalars x, y, z; that
is, set xf þ yg þ zh ¼ 0. Then show x ¼ 0, y ¼ 0, z ¼ 0. We emphasize that xf þ yg þ zh ¼ 0 means that,
for every value of t, we have xf ðtÞ þ ygðtÞ þ zhðtÞ ¼ 0.

Thus, in the equation x sin t þ y cos t þ zt ¼ 0:

ðiÞ Set t ¼ 0
ðiiÞ Set t ¼ p=2
ðiiiÞ Set t ¼ p

to obtain
to obtain
to obtain

xð0Þ þ yð1Þ þ zð0Þ ¼ 0
xð1Þ þ yð0Þ þ zp=2 ¼ 0

xð0Þ þ yð
1Þ þ zðpÞ ¼ 0

or
or
or

y ¼ 0:
xþ pz=2 ¼ 0:

yþ pz ¼ 0:

The three equations have only the zero solution; that is, x ¼ 0, y ¼ 0, z ¼ 0. Thus, f , g, h are linearly
independent.

4.22. Suppose the vectors u, v, w are linearly independent. Show that the vectors uþ v, u
 v,
u
 2v þ w are also linearly independent.

Suppose xðuþ vÞ þ yðu
 vÞ þ zðu
 2v þ wÞ ¼ 0. Then

xuþ xv þ yu
 yv þ zu
 2zv þ zw ¼ 0

or

ðxþ yþ zÞuþ ðx
 y
 2zÞv þ zw ¼ 0

Because u, v, w are linearly independent, the coefficients in the above equation are each 0; hence,

xþ yþ z ¼ 0; x
 y
 2z ¼ 0; z ¼ 0

The only solution to the above homogeneous system is x ¼ 0, y ¼ 0, z ¼ 0. Thus, uþ v, u
 v, u
 2v þ w
are linearly independent.

4.23. Show that the vectors u ¼ ð1þ i; 2iÞ and w ¼ ð1; 1þ iÞ in C2 are linearly dependent over the
complex field C but linearly independent over the real field R.

Recall that two vectors are linearly dependent (over a field K) if and only if one of them is a multiple of
the other (by an element in K). Because

ð1þ iÞw ¼ ð1þ iÞð1; 1þ iÞ ¼ ð1þ i; 2iÞ ¼ u

u and w are linearly dependent over C. On the other hand, u and w are linearly independent over R, as no real
multiple of w can equal u. Specifically, when k is real, the first component of kw ¼ ðk; k þ kiÞ must be real,
and it can never equal the first component 1þ i of u, which is complex.

Basis and Dimension

4.24. Determine whether or not each of the following form a basis of R3:

(a) (1, 1, 1), (1, 0, 1); (c) (1, 1, 1), (1, 2, 3), ð2;
1; 1Þ;
(b) (1, 2, 3), (1, 3, 5), (1, 0, 1), (2, 3, 0); (d) (1, 1, 2), (1, 2, 5), (5, 3, 4).

(a and b) No, because a basis of R3 must contain exactly three elements because dimR3 ¼ 3.

(c) The three vectors form a basis if and only if they are linearly independent. Thus, form the matrix whose
rows are the given vectors, and row reduce the matrix to echelon form:

1 1 1
1 2 3
2 
1 1

24 35 � 1 1 1
0 1 2
0 
3 
1

24 35 � 1 1 1
0 1 2
0 0 5

24 35
The echelon matrix has no zero rows; hence, the three vectors are linearly independent, and so they do
form a basis of R3.
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(d) Form the matrix whose rows are the given vectors, and row reduce the matrix to echelon form:

1 1 2
1 2 5
5 3 4

24 35 � 1 1 2
0 1 3
0 
2 
6

24 35 � 1 1 2
0 1 3
0 0 0

24 35
The echelon matrix has a zero row; hence, the three vectors are linearly dependent, and so they do not
form a basis of R3.

4.25. Determine whether (1, 1, 1, 1), (1, 2, 3, 2), (2, 5, 6, 4), (2, 6, 8, 5) form a basis of R4. If not, find
the dimension of the subspace they span.

Form the matrix whose rows are the given vectors, and row reduce to echelon form:

B ¼
1 1 1 1
1 2 3 2
2 5 6 4
2 6 8 5

2664
3775 �

1 1 1 1
0 1 2 1
0 3 4 2
0 4 6 3

2664
3775 �

1 1 1 1
0 1 2 1
0 0 
2 
1
0 0 
2 
1

2664
3775 �

1 1 1 1
0 1 2 1
0 0 2 1
0 0 0 0

2664
3775

The echelon matrix has a zero row. Hence, the four vectors are linearly dependent and do not form a basis of
R4. Because the echelon matrix has three nonzero rows, the four vectors span a subspace of dimension 3.

4.26. Extend fu1 ¼ ð1; 1; 1; 1Þ; u2 ¼ ð2; 2; 3; 4Þg to a basis of R4.

First form the matrix with rows u1 and u2, and reduce to echelon form:

1 1 1 1
2 2 3 4

� �
� 1 1 1 1

0 0 1 2

� �
Then w1 ¼ ð1; 1; 1; 1Þ and w2 ¼ ð0; 0; 1; 2Þ span the same set of vectors as spanned by u1 and u2. Let
u3 ¼ ð0; 1; 0; 0Þ and u4 ¼ ð0; 0; 0; 1Þ. Then w1, u3, w2, u4 form a matrix in echelon form. Thus, they are
linearly independent, and they form a basis of R4. Hence, u1, u2, u3, u4 also form a basis of R4.

4.27. Consider the complex field C, which contains the real field R, which contains the rational field Q.
(Thus, C is a vector space over R, and R is a vector space over Q.)

(a) Show that f1; ig is a basis of C over R; hence, C is a vector space of dimension 2 over R.

(b) Show that R is a vector space of infinite dimension over Q.

(a) For any v 2 C, we have v ¼ aþ bi ¼ að1Þ þ bðiÞ, where a; b 2 R. Hence, f1; ig spans C over R.
Furthermore, if xð1Þ þ yðiÞ ¼ 0 or xþ yi ¼ 0, where x, y 2 R, then x ¼ 0 and y ¼ 0. Hence, f1; ig is
linearly independent over R. Thus, f1; ig is a basis for C over R.

(b) It can be shown that p is a transcendental number; that is, p is not a root of any polynomial over Q.
Thus, for any n, the nþ 1 real numbers 1; p; p2; . . . ; pn are linearly independent over Q. R cannot be of
dimension n over Q. Accordingly, R is of infinite dimension over Q.

4.28. Suppose S ¼ fu1; u2; . . . ; ung is a subset of V. Show that the following Definitions A and B of a
basis of V are equivalent:

(A) S is linearly independent and spans V.

(B) Every v 2 V is a unique linear combination of vectors in S.

Suppose (A) holds. Because S spans V, the vector v is a linear combination of the ui, say

¼ a 1u 1 þ a2u2 þ � � � þ anun and ¼ b 1u 1 þ b2u2 þ � � � þ bnun

Subtracting, we get

0 ¼ v 
 v ¼ ða1 
 b1Þu1 þ ða2 
 b2Þu2 þ � � � þ ðan 
 bnÞun
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But the ui are linearly independent. Hence, the coefficients in the above relation are each 0:

a1 
 b1 ¼ 0; a2 
 b2 ¼ 0; . . . ; an 
 bn ¼ 0

Therefore, a1 ¼ b1; a2 ¼ b2; . . . ; an ¼ bn. Hence, the representation of v as a linear combination of the ui is
unique. Thus, (A) implies (B).

Suppose (B) holds. Then S spans V. Suppose

0 ¼ c1u1 þ c2u2 þ � � � þ cnun

However, we do have

0 ¼ 0u1 þ 0u2 þ � � � þ 0un

By hypothesis, the representation of 0 as a linear combination of the ui is unique. Hence, each ci ¼ 0 and the
ui are linearly independent. Thus, (B) implies (A).

Dimension and Subspaces

4.29. Find a basis and dimension of the subspace W of R3 where
(a) W ¼ fða; b; cÞ : aþ bþ c ¼ 0g, (b) W ¼ fða; b; cÞ : ða ¼ b ¼ cÞg
(a) Note that W 6¼ R3, because, for example, ð1; 2; 3Þ 62 W. Thus, dim W < 3. Note that u1 ¼ ð1; 0;
1Þ

and u2 ¼ ð0; 1;
1Þ are two independent vectors in W. Thus, dim W ¼ 2, and so u1 and u2 form a basis
of W.

(b) The vector u ¼ ð1; 1; 1Þ 2 W. Any vector w 2 W has the form w ¼ ðk; k; kÞ. Hence, w ¼ ku. Thus, u
spans W and dim W ¼ 1.

4.30. Let W be the subspace of R4 spanned by the vectors

u1 ¼ ð1;
2; 5;
3Þ; u2 ¼ ð2; 3; 1;
4Þ; u3 ¼ ð3; 8;
3;
5Þ
(a) Find a basis and dimension of W. (b) Extend the basis of W to a basis of R4.

(a) Apply Algorithm 4.1, the row space algorithm. Form the matrix whose rows are the given vectors, and
reduce it to echelon form:

A ¼
1 
2 5 
3
2 3 1 
4
3 8 
3 
5

24 35 � 1 
2 5 
3
0 7 
9 2
0 14 
18 4

24 35 � 1 
2 5 
3
0 7 
9 2
0 0 0 0

24 35
The nonzero rows ð1;
2; 5;
3Þ and ð0; 7;
9; 2Þ of the echelon matrix form a basis of the row space
of A and hence of W. Thus, in particular, dim W ¼ 2.

(b) We seek four linearly independent vectors, which include the above two vectors. The four vectors
ð1;
2; 5;
3Þ, ð0; 7;
9; 2Þ, (0, 0, 1, 0), and (0, 0, 0, 1) are linearly independent (because they form an
echelon matrix), and so they form a basis of R4, which is an extension of the basis of W.

4.31. Let W be the subspace of R5 spanned by u1 ¼ ð1; 2;
1; 3; 4Þ, u2 ¼ ð2; 4;
2; 6; 8Þ,
u3 ¼ ð1; 3; 2; 2; 6Þ, u4 ¼ ð1; 4; 5; 1; 8Þ, u5 ¼ ð2; 7; 3; 3; 9Þ. Find a subset of the vectors that
form a basis of W.

Here we use Algorithm 4.2, the casting-out algorithm. Form the matrix M whose columns (not rows)
are the given vectors, and reduce it to echelon form:

M ¼

1 2 1 1 2
2 4 3 4 7

1 
2 2 5 3

3 6 2 1 3
4 8 6 8 9

266664
377775 �

1 2 1 1 2
0 0 1 2 3
0 0 3 6 5
0 0 
1 
2 
3
0 0 2 4 1

266664
377775 �

1 2 1 1 2
0 0 1 2 3
0 0 0 0 
4
0 0 0 0 0
0 0 0 0 0

266664
377775

The pivot positions are in columns C1, C3, C5. Hence, the corresponding vectors u1, u3, u5 form a basis of W,
and dim W ¼ 3.
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4.32. Let V be the vector space of 2� 2 matrices over K . Let W be the subspace of symmetric matrices.
Show that dim W ¼ 3, by finding a basis of W.

Recall that a matrix A ¼ ½aij� is symmetric if AT ¼ A, or, equivalently, each aij ¼ aji. Thus, A ¼ a b
b d

� �
denotes an arbitrary 2� 2 symmetric matrix. Setting (i) a ¼ 1, b ¼ 0, d ¼ 0; (ii) a ¼ 0, b ¼ 1, d ¼ 0;
(iii) a ¼ 0, b ¼ 0, d ¼ 1, we obtain the respective matrices:

E1 ¼ 1 0
0 0

� �
; E2 ¼ 0 1

1 0

� �
; E3 ¼ 0 0

0 1

� �
We claim that S ¼ fE1;E2;E3g is a basis of W ; that is, (a) S spans W and (b) S is linearly independent.

(a) The above matrix A ¼ a b
b d

� �
¼ aE1 þ bE2 þ dE3. Thus, S spans W.

(b) Suppose xE1 þ yE2 þ zE3 ¼ 0, where x, y, z are unknown scalars. That is, suppose

x
1 0
0 0

� �
þ y

0 1
1 0

� �
þ z

0 0
0 1

� �
¼ 0 0

0 0

� �
or

x y
y z

� �
¼ 0 0

0 0

� �
Setting corresponding entries equal to each other yields x ¼ 0, y ¼ 0, z ¼ 0. Thus, S is linearly independent.
Therefore, S is a basis of W, as claimed.

Theorems on Linear Dependence, Basis, and Dimension

4.33. Prove Lemma 4.10: Suppose two or more nonzero vectors v1; v2; . . . ; vm are linearly dependent.
Then one of them is a linear combination of the preceding vectors.

Because the vi are linearly dependent, there exist scalars a1; . . . ; am, not all 0, such that
a1v1 þ � � � þ amvm ¼ 0. Let k be the largest integer such that ak 6¼ 0. Then

a1v1 þ � � � þ akvk þ 0vkþ1 þ � � � þ 0vm ¼ 0 or a1v1 þ � � � þ akvk ¼ 0

Suppose k ¼ 1; then a1v1 ¼ 0, a1 6¼ 0, and so v1 ¼ 0. But the vi are nonzero vectors. Hence, k > 1 and

vk ¼ 
a
1
k a1v1 
 � � � 
 a
1

k ak
1vk
1

That is, vk is a linear combination of the preceding vectors.

4.34. Suppose S ¼ fv1; v2; . . . ; vmg spans a vector space V.

(a) If w 2 V, then fw; v1; . . . ; vmg is linearly dependent and spans V.

(b) If vi is a linear combination of v1; . . . ; vi
1, then S without vi spans V.

(a) The vector w is a linear combination of the vi, because fvig spans V. Accordingly, fw; v1; . . . ; vmg is
linearly dependent. Clearly, w with the vi span V, as the vi by themselves span V; that is, fw; v1; . . . ; vmg
spans V.

(b) Suppose vi ¼ k1v1 þ � � � þ ki
1vi
1. Let u 2 V. Because fvig spans V, u is a linear combination of the
vj’s, say u ¼ a1v1 þ � � � þ amvm: Substituting for vi, we obtain

u ¼ a1v1 þ � � � þ ai
1vi
1 þ aiðk1v1 þ � � � þ ki
1vi
1Þ þ aiþ1viþ1 þ � � � þ amvm

¼ ða1 þ aik1Þv1 þ � � � þ ðai
1 þ aiki
1Þvi
1 þ aiþ1viþ1 þ � � � þ amvm

Thus, fv1; . . . ; vi
1; viþ1; . . . ; vmg spans V. In other words, we can delete vi from the spanning set and still
retain a spanning set.

4.35. Prove Lemma 4.13: Suppose fv1; v2; . . . ; vng spans V, and suppose fw1;w2; . . . ;wmg is linearly
independent. Then m � n, and V is spanned by a set of the form

fw1;w2; . . . ;wm; vi1
; vi2

; . . . ; vin
m
g

Thus, any nþ 1 or more vectors in V are linearly dependent.
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It suffices to prove the lemma in the case that the vi are all not 0. (Prove!) Because fvig spans V, we
have by Problem 4.34 that

fw1; v1; . . . ; vng ð1Þ
is linearly dependent and also spans V. By Lemma 4.10, one of the vectors in (1) is a linear combination of
the preceding vectors. This vector cannot be w1, so it must be one of the v’s, say vj: Thus by Problem 4.34,
we can delete vj from the spanning set (1) and obtain the spanning set

fw1; v1; . . . ; vj
1; vjþ1; . . . ; vng ð2Þ
Now we repeat the argument with the vector w2. That is, because (2) spans V, the set

fw1;w2; v1; . . . ; vj
1; vjþ1; . . . ; vng ð3Þ
is linearly dependent and also spans V. Again by Lemma 4.10, one of the vectors in (3) is a linear
combination of the preceding vectors. We emphasize that this vector cannot be w1 or w2, because
fw1; . . . ;wmg is independent; hence, it must be one of the v’s, say vk . Thus, by Problem 4.34, we can
delete vk from the spanning set (3) and obtain the spanning set

fw1;w2; v1; . . . ; vj
1; vjþ1; . . . ; vk
1; vkþ1; . . . ; vng
We repeat the argument with w3, and so forth. At each step, we are able to add one of the w’s and delete

one of the v’s in the spanning set. If m � n, then we finally obtain a spanning set of the required form:

fw1; . . . ;wm; vi1
; . . . ; vin
m

g
Finally, we show that m > n is not possible. Otherwise, after n of the above steps, we obtain the

spanning set fw1; . . . ;wng. This implies that wnþ1 is a linear combination of w1; . . . ;wn, which contradicts
the hypothesis that fwig is linearly independent.

4.36. Prove Theorem 4.12: Every basis of a vector space V has the same number of elements.

Suppose fu1; u2; . . . ; ung is a basis of V, and suppose fv1; v2; . . .g is another basis of V. Because fuig
spans V, the basis fv1; v2; . . .g must contain n or less vectors, or else it is linearly dependent by
Problem 4.35—Lemma 4.13. On the other hand, if the basis fv1; v2; . . .g contains less than n elements,
then fu1; u2; . . . ; ung is linearly dependent by Problem 4.35. Thus, the basis fv1; v2; . . .g contains exactly n
vectors, and so the theorem is true.

4.37. Prove Theorem 4.14: Let V be a vector space of finite dimension n. Then

(i) Any nþ 1 or more vectors must be linearly dependent.

(ii) Any linearly independent set S ¼ fu1; u2; . . . ung with n elements is a basis of V.

(iii) Any spanning set T ¼ fv1; v2; . . . ; vng of V with n elements is a basis of V.

Suppose B ¼ fw1;w2; . . . ;wng is a basis of V.

(i) Because B spans V, any nþ 1 or more vectors are linearly dependent by Lemma 4.13.

(ii) By Lemma 4.13, elements from B can be adjoined to S to form a spanning set of V with n elements.
Because S already has n elements, S itself is a spanning set of V. Thus, S is a basis of V.

(iii) Suppose T is linearly dependent. Then some vi is a linear combination of the preceding vectors. By
Problem 4.34, V is spanned by the vectors in T without vi and there are n
 1 of them. By Lemma
4.13, the independent set B cannot have more than n
 1 elements. This contradicts the fact that B has
n elements. Thus, T is linearly independent, and hence T is a basis of V.

4.38. Prove Theorem 4.15: Suppose S spans a vector space V. Then

(i) Any maximum number of linearly independent vectors in S form a basis of V.

(ii) Suppose one deletes from S every vector that is a linear combination of preceding vectors in
S. Then the remaining vectors form a basis of V.

(i) Suppose fv1; . . . ; vmg is a maximum linearly independent subset of S, and suppose w 2 S. Accord-
ingly, fv1; . . . ; vm;wg is linearly dependent. No vk can be a linear combination of preceding vectors.
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Hence, w is a linear combination of the vi. Thus, w 2 spanðviÞ, and hence S � spanðviÞ. This leads to

V ¼ spanðSÞ � spanðviÞ � V

Thus, fvig spans V, and, as it is linearly independent, it is a basis of V.

(ii) The remaining vectors form a maximum linearly independent subset of S; hence, by (i), it is a basis
of V.

4.39. Prove Theorem 4.16: Let V be a vector space of finite dimension and let S ¼ fu1; u2; . . . ; urg be a
set of linearly independent vectors in V. Then S is part of a basis of V ; that is, S may be extended
to a basis of V.

Suppose B ¼ fw1;w2; . . . ;wng is a basis of V. Then B spans V, and hence V is spanned by

S [ B ¼ fu1; u2; . . . ; ur; w1;w2; . . . ;wng
By Theorem 4.15, we can delete from S [ B each vector that is a linear combination of preceding vectors to
obtain a basis B0 for V. Because S is linearly independent, no uk is a linear combination of preceding vectors.
Thus, B0 contains every vector in S, and S is part of the basis B0 for V.

4.40. Prove Theorem 4.17: Let W be a subspace of an n-dimensional vector space V. Then dim W� n.
In particular, if dim W¼ n, then W¼ V.

Because V is of dimension n, any nþ 1 or more vectors are linearly dependent. Furthermore, because a
basis of W consists of linearly independent vectors, it cannot contain more than n elements. Accordingly,
dim W� n.

In particular, if fw1; . . . ;wng is a basis of W, then, because it is an independent set with n elements, it is
also a basis of V. Thus, W ¼ V when dim W ¼ n.

Rank of a Matrix, Row and Column Spaces

4.41. Find the rank and basis of the row space of each of the following matrices:

(a) A ¼
1 2 0 
1
2 6 
3 
3
3 10 
6 
5

24 35, (b) B ¼
1 3 1 
2 
3
1 4 3 
1 
4
2 3 
4 
7 
3
3 8 1 
7 
8

2664
3775.

(a) Row reduce A to echelon form:

A �
1 2 0 
1
0 2 
3 
1
0 4 
6 
2

24 35 � 1 2 0 
1
0 2 
3 
1
0 0 0 0

24 35
The two nonzero rows ð1; 2; 0;
1Þ and ð0; 2;
3;
1Þ of the echelon form of A form a basis for
rowsp(A). In particular, rankðAÞ ¼ 2.

(b) Row reduce B to echelon form:

B �
1 3 1 
2 
3
0 1 2 1 
1
0 
3 
6 
3 3
0 
1 
2 
1 1

2664
3775 �

1 3 1 
2 
3
0 1 2 1 
1
0 0 0 0 0
0 0 0 0 0

2664
3775

The two nonzero rows ð1; 3; 1;
2;
3Þ and ð0; 1; 2; 1;
1Þ of the echelon form of B form a basis for
rowsp(B). In particular, rankðBÞ ¼ 2.

4.42. Show that U ¼ W, where U and W are the following subspaces of R3:

U ¼ spanðu1; u2; u3Þ ¼ spanð1; 1;
1Þ; ð2; 3;
1Þ; ð3; 1;
5Þg
W ¼ spanðw1;w2;w3Þ ¼ spanð1;
1;
3Þ; ð3;
2;
8Þ; ð2; 1;
3Þg
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Form the matrix A whose rows are the ui, and row reduce A to row canonical form:

A ¼
1 1 
1
2 3 
1
3 1 
5

24 35 � 1 1 
1
0 1 1
0 
2 
2

24 35 � 1 0 
2
0 1 1
0 0 0

24 35
Next form the matrix B whose rows are the wj, and row reduce B to row canonical form:

B ¼
1 
1 
3
3 
2 
8
2 1 
3

24 35 � 1 
1 
3
0 1 1
0 3 3

24 35 � 1 0 
2
0 1 1
0 0 0

24 35
Because A and B have the same row canonical form, the row spaces of A and B are equal, and so U ¼ W.

4.43. Let A ¼
1 2 1 2 3 1
2 4 3 7 7 4
1 2 2 5 5 6
3 6 6 15 14 15

2664
3775.

(a) Find rankðMkÞ, for k ¼ 1; 2; . . . ; 6, where Mk is the submatrix of A consisting of the first k
columns C1;C2; . . . ;Ck of A.

(b) Which columns Ckþ1 are linear combinations of preceding columns C1; . . . ;Ck?

(c) Find columns of A that form a basis for the column space of A.

(d) Express column C4 as a linear combination of the columns in part (c).

(a) Row reduce A to echelon form:

A �
1 2 1 2 3 1
0 0 1 3 1 2
0 0 1 3 2 5
0 0 3 9 5 12

2664
3775 �

1 2 1 2 3 1
0 0 1 3 1 2
0 0 0 0 1 3
0 0 0 0 0 0

2664
3775

Observe that this simultaneously reduces all the matrices Mk to echelon form; for example, the first four
columns of the echelon form of A are an echelon form of M4. We know that rankðMkÞ is equal to the
number of pivots or, equivalently, the number of nonzero rows in an echelon form of Mk . Thus,

rankðM1Þ ¼ rankðM2Þ ¼ 1; rankðM3Þ ¼ rankðM4Þ ¼ 2

rankðM5Þ ¼ rankðM6Þ ¼ 3

(b) The vector equation x1C1 þ x2C2 þ � � � þ xkCk ¼ Ckþ1 yields the system with coefficient matrix Mk

and augmented Mkþ1. Thus, Ckþ1 is a linear combination of C1; . . . ;Ck if and only if
rankðMkÞ ¼ rankðMkþ1Þ or, equivalently, if Ckþ1 does not contain a pivot. Thus, each of C2, C4, C6

is a linear combination of preceding columns.

(c) In the echelon form of A, the pivots are in the first, third, and fifth columns. Thus, columns C1, C3, C5

of A form a basis for the columns space of A. Alternatively, deleting columns C2, C4, C6 from the
spanning set of columns (they are linear combinations of other columns), we obtain, again, C1, C3, C5.

(d) The echelon matrix tells us that C4 is a linear combination of columns C1 and C3. The augmented
matrix M of the vector equation C4 ¼ xC1 þ yC2 consists of the columns C1, C3, C4 of A which, when
reduced to echelon form, yields the matrix (omitting zero rows)

1 1 2
0 1 3

� �
or

xþ y ¼ 2
y ¼ 3

or x ¼ 
1; y ¼ 3

Thus, C4 ¼ 
C1 þ 3C3 ¼ 
C1 þ 3C3 þ 0C5.

4.44. Suppose u ¼ ða1; a2; . . . ; anÞ is a linear combination of the rows R1;R2; . . . ;Rm of a matrix
B ¼ ½bij�, say u ¼ k1R1 þ k2R2 þ � � � þ kmRm: Prove that

ai ¼ k1b1i þ k2b2i þ � � � þ kmbmi; i ¼ 1; 2; . . . ; n

where b1i; b2i; . . . ; bmi are the entries in the ith column of B.
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We are given that u ¼ k1R1 þ k2R2 þ � � � þ kmRm. Hence,

ða1; a2; . . . ; anÞ ¼ k1ðb11; . . . ; b1nÞ þ � � � þ kmðbm1; . . . ; bmnÞ
¼ ðk1b11 þ � � � þ kmbm1; . . . ; k1b1n þ � � � þ kmbmnÞ

Setting corresponding components equal to each other, we obtain the desired result.

4.45. Prove Theorem 4.7: Suppose A ¼ ½aij� and B ¼ ½bij� are row equivalent echelon matrices with
respective pivot entries

a1j1
; a2j2

; . . . ; arjr
and b1k1

; b2k2
; . . . ; bsks

(pictured in Fig. 4-5). Then A and B have the same number of nonzero rows—that is, r ¼ s—and
their pivot entries are in the same positions; that is, j1 ¼ k1; j2 ¼ k2; . . . ; jr ¼ kr.

Clearly A ¼ 0 if and only if B ¼ 0, and so we need only prove the theorem when r � 1 and s � 1. We
first show that j1 ¼ k1. Suppose j1 < k1. Then the j1th column of B is zero. Because the first row R* of A is in
the row space of B, we have R* ¼ c1R1 þ c1R2 þ � � � þ cmRm, where the Ri are the rows of B. Because the
j1th column of B is zero, we have

a1j1
¼ c10þ c20þ � � � þ cm0 ¼ 0

But this contradicts the fact that the pivot entry a1j1
6¼ 0. Hence, j1 � k1 and, similarly, k1 � j1. Thus j1 ¼ k1.

Now let A0 be the submatrix of A obtained by deleting the first row of A, and let B0 be the submatrix of B
obtained by deleting the first row of B. We prove that A0 and B0 have the same row space. The theorem will
then follow by induction, because A0 and B0 are also echelon matrices.

Let R ¼ ða1; a2; . . . ; anÞ be any row of A0 and let R1; . . . ;Rm be the rows of B. Because R is in the row
space of B, there exist scalars d1; . . . ; dm such that R ¼ d1R1 þ d2R2 þ � � � þ dmRm. Because A is in echelon
form and R is not the first row of A, the j1th entry of R is zero: ai ¼ 0 for i ¼ j1 ¼ k1. Furthermore, because B is
in echelon form, all the entries in the k1th column of B are 0 except the first: b1k1

6¼ 0, but
b2k1
¼ 0; . . . ; bmk1

¼ 0. Thus,

0 ¼ ak1
¼ d1b1k1

þ d20þ � � � þ dm0 ¼ d1b1k1

Now b1k1
6¼ 0 and so d1 ¼ 0. Thus, R is a linear combination of R2; . . . ;Rm and so is in the row space of B0.

Because R was any row of A0, the row space of A0 is contained in the row space of B0. Similarly, the row
space of B0 is contained in the row space of A0. Thus, A0 and B0 have the same row space, and so the theorem
is proved.

4.46. Prove Theorem 4.8: Suppose A and B are row canonical matrices. Then A and B have the same
row space if and only if they have the same nonzero rows.

Obviously, if A and B have the same nonzero rows, then they have the same row space. Thus we only
have to prove the converse.

Suppose A and B have the same row space, and suppose R 6¼ 0 is the ith row of A. Then there exist
scalars c1; . . . ; cs such that

R ¼ c1R1 þ c2R2 þ � � � þ csRs ð1Þ
where the Ri are the nonzero rows of B. The theorem is proved if we show that R ¼ Ri; that is, that ci ¼ 1 but
ck ¼ 0 for k 6¼ i.

A ¼
a1j1

� � � � � �
a2j2

� � � �
::::::::::::::::::::::::::::::::::::::

arjr
� �

2664
3775; B ¼

b1k1
� � � � � �
b2k2

� � � �
::::::::::::::::::::::::::::::::::::::

bsks
� �

2664
3775

Figure 4-5
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Let aij, be the pivot entry in R—that is, the first nonzero entry of R. By (1) and Problem 4.44,

aiji
¼ c1b1ji

þ c2b2ji
þ � � � þ csbsji

ð2Þ
But, by Problem 4.45, biji

is a pivot entry of B, and, as B is row reduced, it is the only nonzero entry in the jth
column of B. Thus, from (2), we obtain aiji

¼ cibiji
. However, aiji

¼ 1 and biji
¼ 1, because A and B are row

reduced; hence, ci ¼ 1.
Now suppose k 6¼ i, and bkjk

is the pivot entry in Rk . By (1) and Problem 4.44,

aijk
¼ c1b1jk

þ c2b2jk
þ � � � þ csbsjk

ð3Þ
Because B is row reduced, bkjk

is the only nonzero entry in the jth column of B. Hence, by (3), aijk
¼ ckbkjk

.
Furthermore, by Problem 4.45, akjk

is a pivot entry of A, and because A is row reduced, aijk
¼ 0. Thus,

ckbkjk
¼ 0, and as bkjk

¼ 1, ck ¼ 0. Accordingly R ¼ Ri; and the theorem is proved.

4.47. Prove Corollary 4.9: Every matrix A is row equivalent to a unique matrix in row canonical
form.

Suppose A is row equivalent to matrices A1 and A2, where A1 and A2 are in row canonical form. Then
rowspðAÞ ¼ rowspðA1Þ and rowspðAÞ ¼ rowspðA2Þ. Hence, rowspðA1Þ ¼ rowspðA2Þ. Because A1 and A2 are
in row canonical form, A1 ¼ A2 by Theorem 4.8. Thus, the corollary is proved.

4.48. Suppose RB and AB are defined, where R is a row vector and A and B are matrices. Prove

(a) RB is a linear combination of the rows of B.

(b) The row space of AB is contained in the row space of B.

(c) The column space of AB is contained in the column space of A.

(d) If C is a column vector and AC is defined, then AC is a linear combination of the columns
of A:

(e) rankðABÞ � rankðBÞ and rankðABÞ � rankðAÞ.

(a) Suppose R ¼ ða1; a2; . . . ; amÞ and B ¼ ½bij�. Let B1; . . . ;Bm denote the rows of B and B1; . . . ;Bn its
columns. Then

RB ¼ ðRB1;RB2; . . . ;RBnÞ
¼ ða1b11 þ a2b21 þ � � � þ ambm1; . . . ; a1b1n þ a2b2n þ � � � þ ambmnÞ
¼ a1ðb11; b12; . . . ; b1nÞ þ a2ðb21; b22; . . . ; b2nÞ þ � � � þ amðbm1; bm2; . . . ; bmnÞ
¼ a1B1 þ a2B2 þ � � � þ amBm

Thus, RB is a linear combination of the rows of B, as claimed.

(b) The rows of AB are RiB, where Ri is the ith row of A. Thus, by part (a), each row of AB is in the row
space of B. Thus, rowspðABÞ � rowspðBÞ, as claimed.

(c) Using part (b), we have colspðABÞ ¼ rowspðABÞT ¼ rowspðBT AT Þ � rowspðAT Þ ¼ colspðAÞ:
(d) Follows from ðcÞ where C replaces B:

(e) The row space of AB is contained in the row space of B; hence, rankðABÞ � rankðBÞ. Furthermore, the
column space of AB is contained in the column space of A; hence, rankðABÞ � rankðAÞ.

4.49. Let A be an n-square matrix. Show that A is invertible if and only if rankðAÞ ¼ n.

Note that the rows of the n-square identity matrix In are linearly independent, because In is in echelon
form; hence, rankðInÞ ¼ n. Now if A is invertible, then A is row equivalent to In; hence, rankðAÞ ¼ n. But if
A is not invertible, then A is row equivalent to a matrix with a zero row; hence, rankðAÞ < n; that is, A is
invertible if and only if rankðAÞ ¼ n.
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Applications to Linear Equations

4.50. Find the dimension and a basis of the solution space W of each homogeneous system:

xþ 2yþ 2z
 sþ 3t ¼ 0
xþ 2yþ 3zþ sþ t ¼ 0

3xþ 6yþ 8zþ sþ 5t ¼ 0
(a)

xþ 2yþ z
 2t ¼ 0
2xþ 4yþ 4z
 3t ¼ 0
3xþ 6yþ 7z
 4t ¼ 0

(b)

xþ yþ 2z ¼ 0
2xþ 3yþ 3z ¼ 0

xþ 3yþ 5z ¼ 0
(c)

(a) Reduce the system to echelon form:

xþ 2yþ 2z
 sþ 3t ¼ 0
zþ 2s
 2t ¼ 0

2zþ 4s
 4t ¼ 0
or

xþ 2yþ 2z
 sþ 3t ¼ 0
zþ 2s
 2t ¼ 0

The system in echelon form has two (nonzero) equations in five unknowns. Hence, the system has
5
 2 ¼ 3 free variables, which are y, s, t. Thus, dim W ¼ 3. We obtain a basis for W:

ð1Þ Set y ¼ 1; s ¼ 0; t ¼ 0 to obtain the solution v1 ¼ ð
2; 1; 0; 0; 0Þ:
ð2Þ Set y ¼ 0; s ¼ 1; t ¼ 0 to obtain the solution v2 ¼ ð5; 0;
2; 1; 0Þ:
ð3Þ Set y ¼ 0; s ¼ 0; t ¼ 1 to obtain the solution v3 ¼ ð
7; 0; 2; 0; 1Þ:

The set fv1; v2; v3g is a basis of the solution space W.

(b) (Here we use the matrix format of our homogeneous system.) Reduce the coefficient matrix A to
echelon form:

A ¼
1 2 1 
2
2 4 4 
3
3 6 7 
4

24 35 � 1 2 1 
2
0 0 2 1
0 0 4 2

24 35 � 1 2 1 
2
0 0 2 1
0 0 0 0

24 35
This corresponds to the system

xþ 2yþ 2z
 2t ¼ 0

2zþ t ¼ 0

The free variables are y and t, and dim W ¼ 2.

(i) Set y ¼ 1, z ¼ 0 to obtain the solution u1 ¼ ð
2; 1; 0; 0Þ.
(ii) Set y ¼ 0, z ¼ 2 to obtain the solution u2 ¼ ð6; 0;
1; 2Þ.

Then fu1; u2g is a basis of W.

(c) Reduce the coefficient matrix A to echelon form:

A ¼
1 1 2
2 3 3
1 3 5

24 35 � 1 1 2
0 1 
 1
0 2 3

24 35 � 1 1 2
0 1 
 1
0 0 5

24 35
This corresponds to a triangular system with no free variables. Thus, 0 is the only solution; that is,
W ¼ f0g. Hence, dim W ¼ 0.

4.51. Find a homogeneous system whose solution set W is spanned by

fu1; u2; u3g ¼ fð1;
2; 0; 3Þ; ð1;
1;
1; 4Þ; ð1; 0;
2; 5Þg
Let v ¼ ðx; y; z; tÞ. Then v 2 W if and only if v is a linear combination of the vectors u1, u2, u3 that span

W. Thus, form the matrix M whose first columns are u1, u2, u3 and whose last column is v, and then row
reduce M to echelon form. This yields

M ¼
1 1 1 x

2 
1 0 y

0 
1 
2 z
3 4 5 t

2664
3775 �

1 1 1 x
0 1 2 2xþ y
0 
1 
2 z
0 1 2 
3xþ t

2664
3775 �

1 1 1 x
0 1 2 2xþ y
0 0 0 2xþ yþ z
0 0 0 
5x
 yþ t

2664
3775
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Then v is a linear combination of u1, u2, u3 if rankðMÞ ¼ rankðAÞ, where A is the submatrix without column
v. Thus, set the last two entries in the fourth column on the right equal to zero to obtain the required
homogeneous system:

2xþ yþ z ¼ 0

5xþ y 
 t ¼ 0

4.52. Let xi1
; xi2

; . . . ; xik
be the free variables of a homogeneous system of linear equations with n

unknowns. Let vj be the solution for which xij
¼ 1, and all other free variables equal 0. Show that

the solutions v1; v2; . . . ; vk are linearly independent.

Let A be the matrix whose rows are the vi. We interchange column 1 and column i1, then column 2 and
column i2; . . . ; then column k and column ik , and we obtain the k � n matrix

B ¼ ½I ;C� ¼
1 0 0 . . . 0 0 c1;kþ1 . . . c1n

0 1 0 . . . 0 0 c2;kþ1 . . . c2n

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
0 0 0 . . . 0 1 ck;kþ1 . . . ckn

2664
3775

The above matrix B is in echelon form, and so its rows are independent; hence, rankðBÞ ¼ k. Because A and
B are column equivalent, they have the same rank—rankðAÞ ¼ k. But A has k rows; hence, these rows (i.e.,
the vi) are linearly independent, as claimed.

Sums, Direct Sums, Intersections

4.53. Let U and W be subspaces of a vector space V. Show that

(a) U þ V is a subspace of V.

(b) U and W are contained in U þW.

(c) U þW is the smallest subspace containing U and W; that is, U þW ¼ spanðU ;WÞ.
(d) W þW ¼ W.

(a) Because U and W are subspaces, 0 2 U and 0 2 W. Hence, 0 ¼ 0þ 0 belongs to U þW. Now suppose
v; v0 2 U þW. Then v ¼ uþ w and v0 ¼ u0 þ v0, where u; u0 2 U and w;w0 2 W. Then

av þ bv0 ¼ ðauþ bu0Þ þ ðawþ bw0Þ 2 U þW

Thus, U þW is a subspace of V.

(b) Let u 2 U . Because W is a subspace, 0 2 W. Hence, u ¼ uþ 0 belongs to U þW. Thus, U � U þW.
Similarly, W � U þW.

(c) Because U þW is a subspace of V containing U and W, it must also contain the linear span of U and
W. That is, spanðU ;WÞ � U þW.

On the other hand, if v 2 U þW, then v ¼ uþ w ¼ 1uþ 1w, where u 2 U and w 2 W. Thus, v is
a linear combination of elements in U [W, and so v 2 spanðU ;WÞ. Hence, U þW � spanðU ;WÞ.

The two inclusion relations give the desired result.

(d) Because W is a subspace of V, we have that W is closed under vector addition; hence, W þW � W. By
part (a), W � W þW. Hence, W þW ¼ W.

4.54. Consider the following subspaces of R5:

U ¼ spanðu1; u2; u3Þ ¼ spanfð1; 3;
2; 2; 3Þ; ð1; 4;
3; 4; 2Þ; ð2; 3;
1;
2; 9Þg
W ¼ spanðw1;w2;w3Þ ¼ spanfð1; 3; 0; 2; 1Þ; ð1; 5;
6; 6; 3Þ; ð2; 5; 3; 2; 1Þg

Find a basis and the dimension of (a) U þW, (b) U \W.
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(a) U þW is the space spanned by all six vectors. Hence, form the matrix whose rows are the given six
vectors, and then row reduce to echelon form:

1 3 
2 2 3
1 4 
3 4 2
2 3 
1 
2 9
1 3 0 2 1
1 5 
6 6 3
2 5 3 2 1

26666664

37777775 �
1 3 
2 2 3
0 1 
1 2 
1
0 
3 3 
6 3
0 0 2 0 
2
0 2 
4 4 0
0 
1 7 
2 
5

26666664

37777775 �
1 3 
2 2 3
0 1 
1 2 
1
0 0 1 0 
1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

26666664

37777775
The following three nonzero rows of the echelon matrix form a basis of U \W :

ð1; 3;
2; 2; 2; 3Þ; ð0; 1;
1; 2;
1Þ; ð0; 0; 1; 0;
1Þ
Thus, dimðU þWÞ ¼ 3.

(b) Let v ¼ ðx; y; z; s; tÞ denote an arbitrary element in R5. First find, say as in Problem 4.49, homogeneous
systems whose solution sets are U and W, respectively.

Let M be the matrix whose columns are the ui and v, and reduce M to echelon form:

M ¼

1 1 2 x
3 4 3 y

2 
3 
1 z

2 4 
2 s
3 2 9 t

266664
377775 �

1 1 2 x
0 1 
3 
3xþ y
0 0 0 
xþ yþ z
0 0 0 4x
 2yþ s
0 0 0 
6xþ yþ t

266664
377775

Set the last three entries in the last column equal to zero to obtain the following homogeneous system whose
solution set is U :


xþ yþ z ¼ 0; 4x
 2yþ s ¼ 0; 
6xþ yþ t ¼ 0

Now let M 0 be the matrix whose columns are the wi and v, and reduce M 0 to echelon form:

M 0 ¼

1 1 2 x
3 5 5 y
0 
6 3 z
2 6 2 s
1 3 1 t

266664
377775 �

1 1 2 x
0 2 
1 
3xþ y
0 0 0 
9xþ 3yþ z
0 0 0 4x
 2yþ s
0 0 0 2x
 yþ t

266664
377775

Again set the last three entries in the last column equal to zero to obtain the following homogeneous system
whose solution set is W :


9þ 3þ z ¼ 0; 4x
 2yþ s ¼ 0; 2x
 yþ t ¼ 0

Combine both of the above systems to obtain a homogeneous system, whose solution space is U \W, and
reduce the system to echelon form, yielding


xþ yþ z ¼ 0
2yþ 4zþ s ¼ 0

8zþ 5sþ 2t ¼ 0
s
 2t ¼ 0

There is one free variable, which is t; hence, dimðU \WÞ ¼ 1. Setting t ¼ 2, we obtain the solution
u ¼ ð1; 4;
3; 4; 2Þ, which forms our required basis of U \W.

4.55. Suppose U and W are distinct four-dimensional subspaces of a vector space V, where dim V ¼ 6.
Find the possible dimensions of U \W.

Because U and W are distinct, U þW properly contains U and W ; consequently, dimðU þWÞ > 4.
But dimðU þWÞ cannot be greater than 6, as dim V ¼ 6. Hence, we have two possibilities: (a)
dimðU þWÞ ¼ 5 or (b) dimðU þWÞ ¼ 6. By Theorem 4.20,

dimðU \WÞ ¼ dim U þ dim W 
 dimðU þWÞ ¼ 8
 dimðU þWÞ
Thus (a) dimðU \WÞ ¼ 3 or (b) dimðU \WÞ ¼ 2.
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4.56. Let U and W be the following subspaces of R3:

U ¼ fða; b; cÞ : a ¼ b ¼ cg and W ¼ fð0; b; cÞg
(Note that W is the yz-plane.) Show that R3 ¼ U �W.

First we show that U \W ¼ f0g. Suppose v ¼ ða; b; cÞ 2 U \W. Then a ¼ b ¼ c and a ¼ 0. Hence,
a ¼ 0, b ¼ 0, c ¼ 0. Thus, v ¼ 0 ¼ ð0; 0; 0Þ.

Next we show that R3 ¼ U þW. For, if v ¼ ða; b; cÞ 2 R3, then

v ¼ ða; a; aÞ þ ð0; b
 a; c
 aÞ where ða; a; aÞ 2 U and ð0; b
 a; c
 aÞ 2 W

Both conditions U \W ¼ f0g and U þW ¼ R3 imply that R3 ¼ U �W.

4.57. Suppose that U and W are subspaces of a vector space V and that S ¼ fuig spans U and S0 ¼ fwjg
spans W. Show that S [ S0 spans U þW. (Accordingly, by induction, if Si spans Wi, for
i ¼ 1; 2; . . . ; n, then S1 [ . . . [ Sn spans W1 þ � � � þWn.)

Let v 2 U þW. Then v ¼ uþ w, where u 2 U and w 2 W. Because S spans U , u is a linear
combination of ui, and as S0 spans W, w is a linear combination of wj; say

u ¼ a1ui1
þ a2ui2

þ � � � þ aruir
and v ¼ b1wj1

þ b2wj2
þ � � � þ bswjs

where ai; bj 2 K. Then

v ¼ uþ w ¼ a1ui1
þ a2ui2

þ � � � þ aruir
þ b1wj1

þ b2wj2
þ � � � þ bswjs

Accordingly, S [ S0 ¼ fui;wjg spans U þW.

4.58. Prove Theorem 4.20: Suppose U and V are finite-dimensional subspaces of a vector space V. Then
U þW has finite dimension and

dimðU þW Þ ¼ dimU þ dimW 
 dimðU \W Þ
Observe that U \W is a subspace of both U and W. Suppose dim U ¼ m, dim W ¼ n,

dimðU \WÞ ¼ r. Suppose fv1; . . . ; vrg is a basis of U \W. By Theorem 4.16, we can extend fvig to a
basis of U and to a basis of W ; say

fv1; . . . ; vr; u1; . . . ; um
rg and fv1; . . . ; vr;w1; . . . ;wn
rg
are bases of U and W, respectively. Let

B ¼ fv1; . . . ; vr; u1; . . . ; um
r;w1; . . . ;wn
rg
Note that B has exactly mþ n
 r elements. Thus, the theorem is proved if we can show that B is a basis

of U þW. Because fvi; ujg spans U and fvi;wkg spans W, the union B ¼ fvi; uj;wkg spans U þW. Thus, it
suffices to show that B is independent.

Suppose

a1v1 þ � � � þ arvr þ b1u1 þ � � � þ bm
rum
r þ c1w1 þ � � � þ cn
rwn
r ¼ 0 ð1Þ
where ai, bj, ck are scalars. Let

v ¼ a1v1 þ � � � þ arvr þ b1u1 þ � � � þ bm
rum
r ð2Þ
By (1), we also have

v ¼ 
c1w1 
 � � � 
 cn
rwn
r ð3Þ
Because fvi; ujg � U , v 2 U by (2); and as fwkg � W, v 2 W by (3). Accordingly, v 2 U \W. Now fvig is
a basis of U \W, and so there exist scalars d1; . . . ; dr for which v ¼ d1v1 þ � � � þ drvr. Thus, by (3), we have

d1v1 þ � � � þ drvr þ c1w1 þ � � � þ cn
rwn
r ¼ 0

But fvi;wkg is a basis of W, and so is independent. Hence, the above equation forces c1 ¼ 0; . . . ; cn
r ¼ 0.
Substituting this into (1), we obtain

a1v1 þ � � � þ arvr þ b1u1 þ � � � þ bm
rum
r ¼ 0

But fvi; ujg is a basis of U , and so is independent. Hence, the above equation forces a1 ¼
0; . . . ; ar ¼ 0; b1 ¼ 0; . . . ; bm
r ¼ 0.

Because (1) implies that the ai, bj, ck are all 0, B ¼ fvi; uj;wkg is independent, and the theorem is
proved.
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4.59. Prove Theorem 4.21: V ¼ U �W if and only if (i) V ¼ U þW, (ii) U \W ¼ f0g.
Suppose V ¼ U �W. Then any v 2 V can be uniquely written in the form v ¼ uþ w, where u 2 U and

w 2 W. Thus, in particular, V ¼ U þW. Now suppose v 2 U \W. Then

ð1Þ v ¼ v þ 0; where v 2 U ; 0 2 W ; ð2Þ v ¼ 0þ v; where 0 2 U ; v 2 W :

Thus, v ¼ 0þ 0 ¼ 0 and U \W ¼ f0g.
On the other hand, suppose V ¼ U þW and U \W ¼ f0g. Let v 2 V. Because V ¼ U þW, there exist

u 2 U and w 2 W such that v ¼ uþ w. We need to show that such a sum is unique. Suppose also that
v ¼ u0 þ w0, where u0 2 U and w0 2 W. Then

uþ w ¼ u0 þ w0; and so u
 u0 ¼ w0 
 w

But u
 u0 2 U and w0 
 w 2 W ; hence, by U \W ¼ f0g,
u
 u0 ¼ 0; w0 
 w ¼ 0; and so u ¼ u0; w ¼ w0

Thus, such a sum for v 2 V is unique, and V ¼ U �W.

4.60. Prove Theorem 4.22 (for two factors): Suppose V ¼ U �W. Also, suppose S ¼ fu1; . . . ; umg and
S0 ¼ fw1; . . . ;wng are linearly independent subsets of U and W, respectively. Then

(a) The union S [ S0 is linearly independent in V.

(b) If S and S0 are bases of U and W, respectively, then S [ S0 is a basis of V.

(c) dim V ¼ dim U þ dim W.

(a) Suppose a1u1 þ � � � þ amum þ b1w1 þ � � � þ bnwn ¼ 0, where ai, bj are scalars. Then

ða1u1 þ � � � þ amumÞ þ ðb1w1 þ � � � þ bnwnÞ ¼ 0 ¼ 0þ 0

where 0; a1u1 þ � � � þ amum 2 U and 0; b1w1 þ � � � þ bnwn 2 W. Because such a sum for 0 is unique,
this leads to

a1u1 þ � � � þ amum ¼ 0 and b1w1 þ � � � þ bnwn ¼ 0

Because S1 is linearly independent, each ai ¼ 0, and because S2 is linearly independent, each bj ¼ 0.
Thus, S ¼ S1 [ S2 is linearly independent.

(b) By part (a), S ¼ S1 [ S2 is linearly independent, and, by Problem 4.55, S ¼ S1 [ S2 spans V ¼ U þW.
Thus, S ¼ S1 [ S2 is a basis of V.

(c) This follows directly from part (b).

Coordinates

4.61. Relative to the basis S ¼ fu1; u2g ¼ fð1; 1Þ; ð2; 3Þg of R2, find the coordinate vector of v, where
(a) v ¼ ð4;
3Þ, (b) v ¼ ða; bÞ.

In each case, set

v ¼ xu1 þ yu2 ¼ xð1; 1Þ þ yð2; 3Þ ¼ ðxþ 2y; xþ 3yÞ
and then solve for x and y.

(a) We have

ð4;
3Þ ¼ ðxþ 2y; xþ 3yÞ or
xþ 2y ¼ 4
xþ 3y ¼ 
3

The solution is x ¼ 18, y ¼ 
7. Hence, ½v� ¼ ½18;
7�.
(b) We have

ða; bÞ ¼ ðxþ 2y; xþ 3yÞ or
xþ 2y ¼ a
xþ 3y ¼ b

The solution is x ¼ 3a
 2b, y ¼ 
aþ b. Hence, ½v� ¼ ½3a
 2b; aþ b�.
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4.62. Find the coordinate vector of v ¼ ða; b; cÞ in R3 relative to

(a) the usual basis E ¼ fð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þg,
(b) the basis S ¼ fu1; u2; u3g ¼ fð1; 1; 1Þ; ð1; 1; 0Þ; ð1; 0; 0Þg.
(a) Relative to the usual basis E, the coordinates of ½v�E are the same as v. That is, ½v�E ¼ ½a; b; c�.
(b) Set v as a linear combination of u1, u2, u3 using unknown scalars x, y, z. This yields

a
b
c

24 35 ¼ x
1
1
1

24 35þ y
1
1
0

24 35þ z
1
0
0

24 35 or
xþ yþ z ¼ a
xþ y ¼ b
x ¼ c

Solving the system yields x ¼ c, y ¼ b
 c, z ¼ a
 b. Thus, ½v�S ¼ ½c; b
 c; a
 b�.

4.63. Consider the vector space P3ðtÞ of polynomials of degree �3.

(a) Show that S ¼ fðt 
 1Þ3; ðt 
 1Þ2; t 
 1; 1g is a basis of P3ðtÞ.
(b) Find the coordinate vector ½v� of v ¼ 3t3 
 4t2 þ 2t 
 5 relative to S.

(a) The degree of ðt 
 1Þk is k; writing the polynomials of S in reverse order, we see that no polynomial is
a linear combination of preceding polynomials. Thus, the polynomials are linearly independent, and,
because dimP3ðtÞ ¼ 4, they form a basis of P3ðtÞ.

(b) Set v as a linear combination of the basis vectors using unknown scalars x, y, z, s. We have

v ¼ 3t3 þ 4t2 þ 2t 
 5 ¼ xðt 
 1Þ3 þ yðt 
 1Þ2 þ zðt 
 1Þ þ sð1Þ
¼ xðt3 
 3t2 þ 3t 
 1Þ þ yðt2 
 2t þ 1Þ þ zðt 
 1Þ þ sð1Þ
¼ xt3 
 3xt2 þ 3xt 
 xþ yt2 
 2yt þ yþ zt 
 zþ s

¼ xt3 þ ð
3xþ yÞt2 þ ð3x
 2yþ zÞt þ ð
xþ y
 zþ sÞ
Then set coefficients of the same powers of t equal to each other to obtain

x ¼ 3; 
3xþ y ¼ 4; 3x
 2yþ z ¼ 2; 
xþ y
 zþ s ¼ 
5

Solving the system yields x ¼ 3, y ¼ 13, z ¼ 19, s ¼ 4. Thus, ½v� ¼ ½3; 13; 19; 4�.

4.64. Find the coordinate vector of A ¼ 2 3
4 
7

� �
in the real vector space M ¼M2;2 relative to

(a) the basis S ¼ 1 1
1 1

� �
;

1 
1
1 0

� �
;

1 
1
0 0

� �
;

1 0
0 0

� �	 �
,

(b) the usual basis E ¼ 1 0
0 0

� �
;

0 1
0 0

� �
;

0 0
1 0

� �
;

0 0
0 1

� �	 �
(a) Set A as a linear combination of the basis vectors using unknown scalars x, y, z, t as follows:

A ¼ 2 3
4 
 7

� �
¼ x

1 1
1 1

� �
þ y

1 
 1
1 0

� �
þ z

1 
 1
0 0

� �
þ t

1 0
0 0

� �
¼ xþ zþ 
 y
 z

xþ y

�
Set corresponding entries equal to each other to obtain the system

¼ 2; x
 y
 z ¼ 3; xþ y ¼ 4; x ¼ 
7

Solving the system yields x ¼ 
7, y ¼ 11, z ¼ 
21, t ¼ ½A�S ¼ ½
7; 11;
21; �. (Note that
the coordinate vector of A is a vector in R4, because dimM ¼ 4.)

(b) Expressing A as a linear combination of the basis matrices yields

2 3
4 
7

� �
¼ x

1 0
0 0

� �
þ y

0 1
0 0

� �
þ z

0 0
1 0

� �
þ t

0 0
0 1

� �
¼ x y

z t

� �
Thus, x ¼ 2, y ¼ 3, z ¼ 4, t ¼ 
7. Hence, ½A� ¼ ½2; 3; 4;
7�, whose components are the elements of A
written row by row.
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Remark: This result is true in general; that is, if A is any m� n matrix in M ¼Mm;n, then the
coordinates of A relative to the usual basis of M are the elements of A written row by row.

4.65. In the space M ¼M2;3, determine whether or not the following matrices are linearly dependent:

A ¼ 1 2 3
4 0 5

� �
; B ¼ 2 4 7

10 1 13

� �
; C ¼ 1 2 5

8 2 11

� �
If the matrices are linearly dependent, find the dimension and a basis of the subspace W of M
spanned by the matrices.

The coordinate vectors of the above matrices relative to the usual basis of M are as follows:

½A� ¼ ½1; 2; 3; 4; 0; 5�; ½B� ¼ ½2; 4; 7; 10; 1; 13�; ½C� ¼ ½1; 2; 5; 8; 2; 11�
Form the matrix M whose rows are the above coordinate vectors, and reduce M to echelon form:

M ¼
1 2 3 4 0 5
2 4 7 10 1 13
1 2 5 8 2 11

24 35 � 1 2 3 4 0 5
0 0 1 2 1 3
0 0 0 0 0 0

24 35
Because the echelon matrix has only two nonzero rows, the coordinate vectors ½A�, ½B�, ½C� span a space of
dimension two, and so they are linearly dependent. Thus, A, B, C are linearly dependent. Furthermore,
dim W ¼ 2, and the matrices

w1 ¼ 1 2 3
4 0 5

� �
and w2 ¼ 0 0 1

2 1 3

� �
corresponding to the nonzero rows of the echelon matrix form a basis of W.

Miscellaneous Problems

4.66. Consider a finite sequence of vectors S ¼ fv1; v2; . . . ; vng. Let T be the sequence of vectors
obtained from S by one of the following ‘‘elementary operations’’: (i) interchange two vectors,
(ii) multiply a vector by a nonzero scalar, (iii) add a multiple of one vector to another. Show that S
and T span the same space W. Also show that T is independent if and only if S is independent.

Observe that, for each operation, the vectors in T are linear combinations of vectors in S. On the other
hand, each operation has an inverse of the same type (Prove!); hence, the vectors in S are linear combinations
of vectors in T . Thus S and T span the same space W. Also, T is independent if and only if dim W ¼ n, and this
is true if and only if S is also independent.

4.67. Let A ¼ ½aij� and B ¼ ½bij� be row equivalent m� n matrices over a field K, and let v1; . . . ; vn be
any vectors in a vector space V over K. Let

u1 ¼ a11v1 þ a12v2 þ � � � þ a1nvn

u2 ¼ a21v1 þ a22v2 þ � � � þ a2nvn

um ¼ am1v1 þ am2v2 þ � � � þ amnvn

w1 ¼ b11v1 þ b12v2 þ � � � þ b1nvn

w2 ¼ b21v1 þ b22v2 þ � � � þ b2nvn

::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::
wm ¼ bm1v1 þ bm2v2 þ � � � þ bmnvn

Show that fuig and fwig span the same space.

Applying an ‘‘elementary operation’’ of Problem 4.66 to fuig is equivalent to applying an elementary
row operation to the matrix A. Because A and B are row equivalent, B can be obtained from A by a sequence
of elementary row operations; hence, fwig can be obtained from fuig by the corresponding sequence of
operations. Accordingly, fuig and fwig span the same space.

4.68. Let v1; . . . ; vn belong to a vector space V over K, and let P ¼ ½aij� be an n-square matrix over K. Let

w1 ¼ a11v1 þ a12v2 þ � � � þ a1nvn; . . . ; wn ¼ an1v1 þ an2v2 þ � � � þ annvn

(a) Suppose P is invertible. Show that fwig and fvig span the same space; hence, fwig is
independent if and only if fvig is independent.

(b) Suppose P is not invertible. Show that fwig is dependent.

(c) Suppose fwig is independent. Show that P is invertible.
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(a) Because P is invertible, it is row equivalent to the identity matrix I . Hence, by Problem 4.67, fwig and
fvig span the same space. Thus, one is independent if and only if the other is.

(b) Because P is not invertible, it is row equivalent to a matrix with a zero row. This means that fwig spans
a space that has a spanning set of less than n elements. Thus, fwig is dependent.

(c) This is the contrapositive of the statement of (b), and so it follows from (b).

4.69. Find a homogeneous system whose solution space is spanned by

v1 ¼ ð1; 2; 1; 2; 1Þ; v2 ¼ ð1; 3; 2; 5; 3Þ; v3 ¼ ð1; 3; 3; 6; 7Þ
First we seek the orthogonal complement to the v’s, that is, the set of vectors w = (a, b, c, d, e) orthogonal

to v1, v2, v3. Accordingly, we seek the solution to the system

aþ 2bþ cþ 2d þ e ¼ 0 aþ 2bþ cþ 2d þ e ¼ 0

aþ 3bþ 2cþ 5d þ 3e ¼ 0 or bþ cþ 3d þ 2e ¼ 0

aþ 3bþ 3cþ 6d þ 7e ¼ 0 cþ d þ 4e ¼ 0

Here d and e are free variables. Setting (d, e) equal to (1, 0) and then (0, 1) yields the following two solutions
of the system:

w1 ¼ ð3;
2;
1; 1; 0Þ and w2 ¼ ð5; 2;
4; 0; 1Þ
Thus the homogeneous system follows:

3x
 2y
 zþ s ¼ 0 and 5xþ 2y
 4zþ t ¼ 0

(Clearly the solution is not unique.)

4.70. Let K be a subfield of a field L, and let L be a subfield of a field E. (Thus, K � L � E, and K is a
subfield of E.) Suppose E is of dimension n over L, and L is of dimension m over K . Show that E is
of dimension mn over K.

Suppose fv1; . . . ; vng is a basis of E over L and fa1; . . . ; amg is a basis of L over K. We claim that
faivj : i ¼ 1; . . . ;m; j ¼ 1; . . . ; ng is a basis of E over K . Note that faivjg contains mn elements.

Let w be any arbitrary element in E. Because fv1; . . . ; vng spans E over L, w is a linear combination of
the vi with coefficients in L:

w ¼ b1v1 þ b2v2 þ � � � þ bnvn; bi 2 L ð1Þ
Because fa1; . . . ; amg spans L over K, each bi 2 L is a linear combination of the aj with coefficients in K:

b1 ¼ k11a1 þ k12a2 þ � � � þ k1mam

b2 ¼ k21a1 þ k22a2 þ � � � þ k2mam

::::::::::::::::::::::::::::::::::::::::::::::::::
bn ¼ kn1a1 þ kn2a2 þ � � � þ kmnam

where kij 2 K. Substituting in (1), we obtain

w ¼ ðk11a1 þ � � � þ k1mamÞv1 þ ðk21a1 þ � � � þ k2mamÞv2 þ � � � þ ðkn1a1 þ � � � þ knmamÞvn

¼ k11a1v1 þ � � � þ k1mamv1 þ k21a1v2 þ � � � þ k2mamv2 þ � � � þ kn1a1vn þ � � � þ knmamvn

¼P
i;j

kjiðaivjÞ

where kji 2 K. Thus, w is a linear combination of the aivj with coefficients in K; hence, faivjg spans E over K.
The proof is complete if we show that faivjg is linearly independent over K. Suppose, for scalars

xji 2 K; we have
P

i;j xjiðaivjÞ ¼ 0; that is,

ðx11a1v1 þ x12a2v1 þ � � � þ x1mamv1Þ þ � � � þ ðxn1a1vn þ xn2a2vn þ � � � þ xnmamvmÞ ¼ 0

or

ðx11a1 þ x12a2 þ � � � þ x1mamÞv1 þ � � � þ ðxn1a1 þ xn2a2 þ � � � þ xnmamÞvn ¼ 0

Because fv1; . . . ; vng is linearly independent over L and the above coefficients of the vi belong to L, each
coefficient must be 0:

x11a1 þ x12a2 þ � � � þ x1mam ¼ 0; . . . ; xn1a1 þ xn2a2 þ � � � þ xnmam ¼ 0
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But fa1; . . . ; amg is linearly independent over K; hence, because the xji 2 K,

x11 ¼ 0; x12 ¼ 0; . . . ; x1m ¼ 0; . . . ; xn1 ¼ 0; xn2 ¼ 0; . . . ; xnm ¼ 0

Accordingly, faivjg is linearly independent over K, and the theorem is proved.

SUPPLEMENTARY PROBLEMS

Vector Spaces

4.71. Suppose u and v belong to a vector space V. Simplify each of the following expressions:

(a) E1 ¼ 4ð5u
 6vÞ þ 2ð3uþ vÞ, (c) E3 ¼ 6ð3uþ 2vÞ þ 5u
 7v,

(b) E2 ¼ 5ð2u
 3vÞ þ 4ð7v þ 8Þ, (d) E4 ¼ 3ð5uþ 2=vÞ:

4.72. Let V be the set of ordered pairs (a; b) of real numbers with addition in V and scalar multiplication on V
defined by

ða; bÞ þ ðc; dÞ ¼ ðaþ c; bþ dÞ and kða; bÞ ¼ ðka; 0Þ
Show that V satisfies all the axioms of a vector space except [M4]—that is, except 1u ¼ u. Hence, [M4] is
not a consequence of the other axioms.

4.73. Show that Axiom [A4] of a vector space V (that uþ v ¼ v þ u) can be derived from the other axioms for V.

4.74. Let V be the set of ordered pairs (a; b) of real numbers. Show that V is not a vector space over R with
addition and scalar multiplication defined by

(i) ða; bÞ þ ðc; dÞ ¼ ðaþ d; bþ cÞ and kða; bÞ ¼ ðka; kbÞ,
(ii) ða; bÞ þ ðc; dÞ ¼ ðaþ c; bþ dÞ and kða; bÞ ¼ ða; bÞ,

(iii) ða; bÞ þ ðc; dÞ ¼ ð0; 0Þ and kða; bÞ ¼ ðka; kbÞ,
(iv) ða; bÞ þ ðc; dÞ ¼ ðac; bdÞ and kða; bÞ ¼ ðka; kbÞ.

4.75. Let V be the set of infinite sequences (a1; a2; . . .) in a field K. Show that V is a vector space over K with
addition and scalar multiplication defined by

ða1; a2; . . .Þ þ ðb1; b2; . . .Þ ¼ ða1 þ b1; a2 þ b2; . . .Þ and kða1; a2; . . .Þ ¼ ðka1; ka2; . . .Þ

4.76. Let U and W be vector spaces over a field K . Let V be the set of ordered pairs (u;w) where u 2 U and
w 2 W. Show that V is a vector space over K with addition in V and scalar multiplication on V defined by

ðu;wÞ þ ðu0;w0Þ ¼ ðuþ u0; wþ w0Þ and kðu;wÞ ¼ ðku; kwÞ
(This space V is called the external direct product of U and W.)

Subspaces

4.77. Determine whether or not W is a subspace of R3 where W consists of all vectors (a; b; c) in R3 such that
(a) a ¼ 3b, (b) a � b � c, (c) ab ¼ 0, (d) aþ bþ c ¼ 0, (e) b ¼ a2, ( f ) a ¼ 2b ¼ 3c.

4.78. Let V be the vector space of n-square matrices over a field K. Show that W is a subspace of V if W consists
of all matrices A ¼ ½aij� that are

(a) symmetric (AT ¼ A or aij ¼ aji), (b) (upper) triangular, (c) diagonal, (d) scalar.

4.79. Let AX ¼ B be a nonhomogeneous system of linear equations in n unknowns; that is, B 6¼ 0. Show that the
solution set is not a subspace of Kn.

4.80. Suppose U and W are subspaces of V for which U [W is a subspace. Show that U � W or W � U .

4.81. Let V be the vector space of all functions from the real field R into R. Show that W is a subspace of V
where W consists of all: (a) bounded functions, (b) even functions. [Recall that f :R! R is bounded if
9M 2 R such that 8x 2 R, we have j f ðxÞj � M ; and f ðxÞ is even if f ð
xÞ ¼ f ðxÞ; 8x 2 R.]
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4.82. Let V be the vector space (Problem 4.75) of infinite sequences (a1; a2; . . .) in a field K. Show that W is a
subspace of V if W consists of all sequences with (a) 0 as the first element, (b) only a finite number of
nonzero elements.

Linear Combinations, Linear Spans

4.83. Consider the vectors u ¼ ð1; 2; 3Þ and v ¼ ð2; 3; 1Þ in R3.

(a) Write w ¼ ð1; 3; 8Þ as a linear combination of u and v.

(b) Write w ¼ ð2; 4; 5Þ as a linear combination of u and v.

(c) Find k so that w ¼ ð1; k; 4Þ is a linear combination of u and v.

(d) Find conditions on a, b, c so that w ¼ ða; b; cÞ is a linear combination of u and v.

4.84. Write the polynomial f ðtÞ ¼ at2 þ bt þ c as a linear combination of the polynomials p1 ¼ ðt 
 1Þ2,
p2 ¼ t 
 1, p3 ¼ 1. [Thus, p1, p2, p3 span the space P2ðtÞ of polynomials of degree � 2.]

4.85. Find one vector in R3 that spans the intersection of U and W where U is the xy-plane—that is,
U ¼ fða; b; 0Þg—and W is the space spanned by the vectors (1, 1, 1) and (1, 2, 3).

4.86. Prove that span(S) is the intersection of all subspaces of V containing S.

4.87. Show that spanðSÞ ¼ spanðS [ f0gÞ. That is, by joining or deleting the zero vector from a set, we do not
change the space spanned by the set.

4.88. Show that (a) If S � T , then spanðSÞ � spanðTÞ. (b) span½spanðSÞ� ¼ spanðSÞ.

Linear Dependence and Linear Independence

4.89. Determine whether the following vectors in R4 are linearly dependent or independent:

(a) ð1; 2;
3; 1Þ, ð3; 7; 1;
2Þ, ð1; 3; 7;
4Þ; (b) ð1; 3; 1;
2Þ, ð2; 5;
1; 3Þ, ð1; 3; 7;
2Þ.

4.90. Determine whether the following polynomials u, v, w in PðtÞ are linearly dependent or independent:

(a) u ¼ t3 
 4t2 þ 3t þ 3, v ¼ t3 þ 2t2 þ 4t 
 1, w ¼ 2t3 
 t2 
 3t þ 5;

(b) u ¼ t3 
 5t2 
 2t þ 3, v ¼ t3 
 4t2 
 3t þ 4, w ¼ 2t3 
 17t2 
 7t þ 9.

4.91. Show that the following functions f , g, h are linearly independent:

(a) f ðtÞ ¼ et, gðtÞ ¼ sin t, hðtÞ ¼ t2; (b) f ðtÞ ¼ et, gðtÞ ¼ e2t, hðtÞ ¼ t.

4.92. Show that u ¼ ða; bÞ and v ¼ ðc; dÞ in K2 are linearly dependent if and only if ad 
 bc ¼ 0.

4.93. Suppose u, v, w are linearly independent vectors. Prove that S is linearly independent where

(a) S ¼ fuþ v 
 2w; u
 v 
 w; uþ wg; (b) S ¼ fuþ v 
 3w; uþ 3v 
 w; v þ wg.

4.94. Suppose fu1; . . . ; ur;w1; . . . ;wsg is a linearly independent subset of V. Show that

spanðuiÞ \ spanðwjÞ ¼ f0g

4.95. Suppose v1; v2; . . . ; vn are linearly independent. Prove that S is linearly independent where

(a) S ¼ fa1v1; a2v2; . . . ; anvng and each ai 6¼ 0.

(b) S ¼ fv1; . . . ; vk
1;w; vkþ1; . . . ; vng and w ¼Pi bivi and bk 6¼ 0.

4.96. Suppose ða11; . . . ; a1nÞ; ða21; . . . ; a2nÞ; . . . ; ðam1; . . . ; amnÞ are linearly independent vectors in Kn, and
suppose v1; v2; . . . ; vn are linearly independent vectors in a vector space V over K . Show that the following
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vectors are also linearly independent:

w1 ¼ a11v1 þ � � � þ a1nvn; w2 ¼ a21v1 þ � � � þ a2nvn; . . . ; wm ¼ am1v1 þ � � � þ amnvn

Basis and Dimension

4.97. Find a subset of u1, u2, u3, u4 that gives a basis for W ¼ spanðuiÞ of R5, where

(a) u1 ¼ ð1; 1; 1; 2; 3Þ, u2 ¼ ð1; 2;
1;
2; 1Þ, u3 ¼ ð3; 5;
1;
2; 5Þ, u4 ¼ ð1; 2; 1;
1; 4Þ
(b) u1 ¼ ð1;
2; 1; 3;
1Þ, u2 ¼ ð
2; 4;
2;
6; 2Þ, u3 ¼ ð1;
3; 1; 2; 1Þ, u4 ¼ ð3;
7; 3; 8;
1Þ
(c) u1 ¼ ð1; 0; 1; 0; 1Þ, u2 ¼ ð1; 1; 2; 1; 0Þ, u3 ¼ ð2; 1; 3; 1; 1Þ, u4 ¼ ð1; 2; 1; 1; 1Þ
(d) u1 ¼ ð1; 0; 1; 1; 1Þ, u2 ¼ ð2; 1; 2; 0; 1Þ, u3 ¼ ð1; 1; 2; 3; 4Þ, u4 ¼ ð4; 2; 5; 4; 6Þ

4.98. Consider the subspaces U ¼ fða; b; c; dÞ : b
 2cþ d ¼ 0g and W ¼ fða; b; c; dÞ : a ¼ d; b ¼ 2cg of R4.
Find a basis and the dimension of (a) U , (b) W, (c) U \W.

4.99. Find a basis and the dimension of the solution space W of each of the following homogeneous systems:

ðaÞ xþ 2y
 2zþ 2s
 t ¼ 0
xþ 2y
 zþ 3s
 2t ¼ 0

2xþ 4y
 7zþ sþ t ¼ 0

ðbÞ xþ 2y
 zþ 3s
 4t ¼ 0
2xþ 4y
 2z
 sþ 5t ¼ 0
2xþ 4y
 2zþ 4s
 2t ¼ 0

4.100. Find a homogeneous system whose solution space is spanned by the following sets of three vectors:

(a) ð1;
2; 0; 3;
1Þ, ð2;
3; 2; 5;
3Þ, ð1;
2; 1; 2;
2Þ;
(b) (1, 1, 2, 1, 1), (1, 2, 1, 4, 3), (3, 5, 4, 9, 7).

4.101. Determine whether each of the following is a basis of the vector space PnðtÞ:
(a) f1; 1þ t; 1þ t þ t2; 1þ t þ t2 þ t3; . . . ; 1þ t þ t2 þ � � � þ tn
1 þ tng;
(b) f1þ t; t þ t2; t2 þ t3; . . . ; tn
2 þ tn
1; tn
1 þ tng:

4.102. Find a basis and the dimension of the subspace W of PðtÞ spanned by

(a) u ¼ t3 þ 2t2 
 2t þ 1, v ¼ t3 þ 3t2 
 3t þ 4, w ¼ 2t3 þ 7t2 
 7t þ 11,

(b) u ¼ t3 þ t2 
 3t þ 2, v ¼ 2t3 þ t2 þ t 
 4, w ¼ 4t3 þ 3t2 
 5t þ 2.

4.103. Find a basis and the dimension of the subspace W of V ¼M2;2 spanned by

A ¼ 1 
5

4 2

� �
; B ¼ 1 1


1 5

� �
; C ¼ 2 
4


5 7

� �
; D ¼ 1 
7


5 1

� �

Rank of a Matrix, Row and Column Spaces

4.104. Find the rank of each of the following matrices:

(a)

1 3 
2 5 4
1 4 1 3 5
1 4 2 4 3
2 7 
3 6 13

2664
3775, (b)

1 2 
3 
2
1 3 
2 0
3 8 
7 
2
2 1 
9 
10

2664
3775, (c)

1 1 2
4 5 5
5 8 1

1 
2 2

2664
3775

4.105. For k ¼ 1; 2; . . . ; 5, find the number nk of linearly independent subsets consisting of k columns for each of
the following matrices:

(a) A ¼
1 1 0 2 3
1 2 0 2 5
1 3 0 2 7

24 35, (b) B ¼
1 2 1 0 2
1 2 3 0 4
1 1 5 0 6

24 35
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4.106. Let (a) A ¼
1 2 1 3 1 6
2 4 3 8 3 15
1 2 2 5 3 11
4 8 6 16 7 32

2664
3775, (b) B ¼

1 2 2 1 2 1
2 4 5 4 5 5
1 2 3 4 4 6
3 6 7 7 9 10

2664
3775

For each matrix (where C1; . . . ;C6 denote its columns):

(i) Find its row canonical form M .

(ii) Find the columns that are linear combinations of preceding columns.

(iii) Find columns (excluding C6) that form a basis for the column space.

(iv) Express C6 as a linear combination of the basis vectors obtained in (iii).

4.107. Determine which of the following matrices have the same row space:

A ¼ 1 
2 
1
3 
4 5

� �
; B ¼ 1 
1 2

2 3 
1

� �
; C ¼

1 
1 3
2 
1 10
3 
5 1

24 35
4.108. Determine which of the following subspaces of R3 are identical:

U1 ¼ span½ð1; 1;
1Þ; ð2; 3;
1Þ; ð3; 1;
5Þ�; U2 ¼ span½ð1;
1;
3Þ; ð3;
2;
8Þ; ð2; 1;
3Þ�
U3 ¼ span½ð1; 1; 1Þ; ð1;
1; 3Þ; ð3;
1; 7Þ�

4.109. Determine which of the following subspaces of R4 are identical:

U1 ¼ span½ð1; 2; 1; 4Þ; ð2; 4; 1; 5Þ; ð3; 6; 2; 9Þ�; U2 ¼ span½ð1; 2; 1; 2Þ; ð2; 4; 1; 3Þ�;
U3 ¼ span½ð1; 2; 3; 10Þ; ð2; 4; 3; 11Þ�

4.110. Find a basis for (i) the row space and (ii) the column space of each matrix M:

(a) M ¼
0 0 3 1 4
1 3 1 2 1
3 9 4 5 2
4 12 8 8 7

2664
3775, (b) M ¼

1 2 1 0 1
1 2 2 1 3
3 6 5 2 7
2 4 1 
1 0

2664
3775.

4.111. Show that if any row is deleted from a matrix in echelon (respectively, row canonical) form, then the
resulting matrix is still in echelon (respectively, row canonical) form.

4.112. Let A and B be arbitrary m� n matrices. Show that rankðAþ BÞ � rankðAÞ þ rankðBÞ.

4.113. Let r ¼ rankðAþ BÞ. Find 2� 2 matrices A and B such that

(a) r < rankðAÞ, rank(B); (b) r ¼ rankðAÞ ¼ rankðBÞ; (c) r > rankðAÞ, rank(B).

Sums, Direct Sums, Intersections

4.114. Suppose U and W are two-dimensional subspaces of K3. Show that U \W 6¼ f0g.

4.115. Suppose U and W are subspaces of V such that dim U ¼ 4, dim W ¼ 5, and dim V ¼ 7. Find the possible
dimensions of U \W.

4.116. Let U and W be subspaces of R3 for which dim U ¼ 1, dim W ¼ 2, and U 6� W. Show that R3 ¼ U �W.

4.117. Consider the following subspaces of R5:

U ¼ span½ð1;
1;
1;
2; 0Þ; ð1;
2;
2; 0;
3Þ; ð1;
1;
2;
2; 1Þ�
W ¼ span½ð1;
2;
3; 0;
2Þ; ð1;
1;
3; 2;
4Þ; ð1;
1;
2; 2;
5Þ�
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(a) Find two homogeneous systems whose solution spaces are U and W, respectively.

(b) Find a basis and the dimension of U \W.

4.118. Let U1, U2, U3 be the following subspaces of R3:

U1 ¼ fða; b; cÞ : a ¼ cg; U2 ¼ fða; b; cÞ : aþ bþ c ¼ 0g; U3 ¼ fð0; 0; cÞg
Show that (a) R3 ¼ U1 þ U2, (b) R3 ¼ U2 þ U3, (c) R3 ¼ U1 þ U3. When is the sum direct?

4.119. Suppose U , W1, W2 are subspaces of a vector space V. Show that

ðU \W1Þ þ ðU \W2Þ � U \ ðW1 þW2Þ
Find subspaces of R2 for which equality does not hold.

4.120. Suppose W1;W2; . . . ;Wr are subspaces of a vector space V. Show that

(a) spanðW1;W2; . . . ;WrÞ ¼ W1 þW2 þ � � � þWr.

(b) If Si spans Wi for i ¼ 1; . . . ; r, then S1 [ S2 [ � � � [ Sr spans W1 þW2 þ � � � þWr.

4.121. Suppose V ¼ U �W. Show that dim V ¼ dim U þ dim W.

4.122. Let S and T be arbitrary nonempty subsets (not necessarily subspaces) of a vector space V and let k be a
scalar. The sum S þ T and the scalar product kS are defined by

S þ T ¼ ðuþ v : u 2 S; v 2 Tg; kS ¼ fku : u 2 Sg
[We also write wþ S for fwg þ S.] Let

S ¼ fð1; 2Þ; ð2; 3Þg; T ¼ fð1; 4Þ; ð1; 5Þ; ð2; 5Þg; w ¼ ð1; 1Þ; k ¼ 3

Find: (a) S þ T , (b) wþ S, (c) kS, (d) kT , (e) kS þ kT , (f ) kðS þ TÞ.

4.123. Show that the above operations of S þ T and kS satisfy

(a) Commutative law: S þ T ¼ T þ S.

(b) Associative law: ðS1 þ S2Þ þ S3 ¼ S1 þ ðS2 þ S3Þ.
(c) Distributive law: kðS þ TÞ ¼ kS þ kT .

(d) S þ f0g ¼ f0g þ S ¼ S and S þ V ¼ V þ S ¼ V.

4.124. Let V be the vector space of n-square matrices. Let U be the subspace of upper triangular matrices, and let
W be the subspace of lower triangular matrices. Find (a) U \W, (b) U þW.

4.125. Let V be the external direct sum of vector spaces U and W over a field K. (See Problem 4.76.) Let

Û ¼ fðu; 0Þ : u 2 Ug and Ŵ ¼ fð0;wÞ : w 2 Wg
Show that (a) Û and Ŵ are subspaces of V, (b) V ¼ Û � Ŵ.

4.126. Suppose V ¼ U þW. Let V̂ be the external direct sum of U and W. Show that V is isomorphic to V̂ under
the correspondence v ¼ uþ w$ ðu;wÞ.

4.127. Use induction to prove (a) Theorem 4.22, (b) Theorem 4.23.

Coordinates

4.128. The vectors u1 ¼ ð1;
2Þ and u2 ¼ ð4;
7Þ form a basis S of R2. Find the coordinate vector ½v� of v relative
to S where (a) v ¼ ð5; 3Þ, (b) v ¼ ða; bÞ.

4.129. The vectors u1 ¼ ð1; 2; 0Þ, u2 ¼ ð1; 3; 2Þ, u3 ¼ ð0; 1; 3Þ form a basis S of R3. Find the coordinate vector ½v�
of v relative to S where (a) v ¼ ð2; 7;
4Þ, (b) v ¼ ða; b; cÞ.
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4.130. S ¼ ft3 þ t2; t2 þ t; t þ 1; 1g is a basis of P3ðtÞ. Find the coordinate vector ½v� of v relative to S
where (a) v ¼ 2t3 þ t2 
 4t þ 2, (b) v ¼ at3 þ bt2 þ ct þ d.

4.131. Let V ¼M2;2. Find the coordinate vector [A] of A relative to S where

S ¼ 1 1
1 1

� �
;

1 
1
1 0

� �
;

1 1
0 0

� �
;

1 0
0 0

� �	 �
and ðaÞ A ¼ 3 
5

6 7

� �
; ðbÞ A ¼ a b

c d

� �

4.132. Find the dimension and a basis of the subspace W of P3ðtÞ spanned by

u ¼ t3 þ 2t2 
 3t þ 4; v ¼ 2t3 þ 5t2 
 4t þ 7; w ¼ t3 þ 4t2 þ t þ 2

4.133. Find the dimension and a basis of the subspace W of M ¼M2;3 spanned by

A ¼ 1 2 1
3 1 2

� �
; B ¼ 2 4 3

7 5 6

� �
; C ¼ 1 2 3

5 7 6

� �

Miscellaneous Problems

4.134. Answer true or false. If false, prove it with a counterexample.

(a) If u1, u2, u3 span V, then dim V ¼ 3.

(b) If A is a 4� 8 matrix, then any six columns are linearly dependent.

(c) If u1, u2, u3 are linearly independent, then u1, u2, u3, w are linearly dependent.

(d) If u1, u2, u3, u4 are linearly independent, then dim V � 4.

(e) If u1, u2, u3 span V, then w, u1, u2, u3 span V.

(f ) If u1, u2, u3, u4 are linearly independent, then u1, u2, u3 are linearly independent.

4.135. Answer true or false. If false, prove it with a counterexample.

(a) If any column is deleted from a matrix in echelon form, then the resulting matrix is still in echelon
form.

(b) If any column is deleted from a matrix in row canonical form, then the resulting matrix is still in row
canonical form.

(c) If any column without a pivot is deleted from a matrix in row canonical form, then the resulting matrix
is in row canonical form.

4.136. Determine the dimension of the vector space W of the following n-square matrices:

(a) symmetric matrices, (b) antisymmetric matrices,

(c) scalar matrices, (d) diagonal matrices.

4.137. Let t1; t2; . . . ; tn be symbols, and let K be any field. Let V be the following set of expressions where ai 2 K:

a1t1 þ a2t2 þ � � � þ antn

Define addition in V and scalar multiplication on V by

ða1t1 þ � � � þ antnÞ þ ðb1t1 þ � � � þ bntnÞ ¼ ða1 þ b1Þt1 þ � � � þ ðanbnmÞtn

kða1t1 þ a2t2 þ � � � þ antnÞ ¼ ka1t1 þ ka2t2 þ � � � þ kantn

Show that V is a vector space over K with the above operations. Also, show that ft1; . . . ; tng is a basis of V,

where

tj ¼ 0t1 þ � � � þ 0tj
1 þ 1tj þ 0tjþ1 þ � � � þ 0tn

4.138. Suppose that A1; A2; ... are linearly independent sets of vectors and that A1 � A2 � ::: :

Show that the union A ¼ A1 [ A2 [ ::: is also linearly independent.
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ANSWERS TO SUPPLEMENTARY PROBLEMS

[Some answers, such as bases, need not be unique.]

4.71. (a) E1 ¼ 26u
 22v; (b) The sum 7v þ 8 is not defined, so E2 is not defined;
(c) E3 ¼ 23uþ 5v; (d) Division by v is not defined, so E4 is not defined.

4.77. (a) Yes; (b) No; e.g., ð1; 2; 3Þ 2 W but 
2ð1; 2; 3Þ 62 W;
(c) No; e.g., ð1; 0; 0Þ; ð0; 1; 0Þ 2 W, but not their sum; (d) Yes;
(e) No; e.g., ð1; 1; 1Þ 2 W, but 2ð1; 1; 1Þ 62 W; (f ) Yes

4.79. The zero vector 0 is not a solution.

4.83. (a) w ¼ 3u1 
 u2, (b) Impossible, (c) k ¼ 11
5 , (d) 7a
 5bþ c ¼ 0

4.84. Using f ¼ xp1 þ yp2 þ zp3, we get x ¼ a, y ¼ 2aþ b, z ¼ aþ bþ c

4.85. v ¼ ð2; 1; 0Þ

4.89. (a) Dependent, (b) Independent

4.90. (a) Independent, (b) Dependent

4.97. (a) u1, u2, u4; (b) u1, u2, u3; (c) u1, u2, u4; (d) u1, u2, u3

4.98. (a) dim U ¼ 3, (b) dim W ¼ 2, (c) dimðU \WÞ ¼ 1

4.99. (a) Basis: fð2;
1; 0; 0; 0Þ; ð4; 0; 1;
1; 0Þ; ð3; 0; 1; 0; 1Þg; dim W ¼ 3;
(b) Basis: fð2;
1; 0; 0; 0Þ; ð1; 0; 1; 0; 0Þg; dim W ¼ 2

4.100. (a) 5xþ y
 z
 s ¼ 0; xþ y
 z
 t ¼ 0;
(b) 3x
 y
 z ¼ 0; 2x
 3yþ s ¼ 0; x
 2yþ t ¼ 0

4.101. (a) Yes, (b) No, because dimPnðtÞ ¼ nþ 1, but the set contains only n elements.

4.102. (a) dim W ¼ 2, (b) dim W ¼ 3

4.103. dim W ¼ 2

4.104. (a) 3, (b) 2, (c) 3

4.105. (a) n1 ¼ 4; n2 ¼ 5; n3 ¼ n4 ¼ n5 ¼ 0; (b) n1 ¼ 4; n2 ¼ 6; n3 ¼ 3; n4 ¼ n5 ¼ 0

4.106. (a) (i) M ¼ ½1; 2; 0; 1; 0; 3; 0; 0; 1; 2; 0; 1; 0; 0; 0; 0; 1; 2; 0�;
(ii) C2, C4, C6; (iii) C1, C3, C5; (iv) C6 ¼ 3C1 þ C3 þ 2C5.

(b) (i) M ¼ ½1; 2; 0; 0; 3; 1; 0; 0; 1; 0;
1;
1; 0; 0; 0; 1; 1; 2; 0�;
(ii) C2, C5, C6; (iii) C1, C3, C4; (iv) C6 ¼ C1 
 C3 þ 2C4

4.107. A and C are row equivalent to
1 0 7
0 1 4

� �
, but not B

4.108. U1 and U2 are row equivalent to
1 0 
2
0 1 1

� �
, but not U3

4.109. U1 and U3 are row equivalent to
1 2 0 1
0 0 1 3

� �
; but not U2

4.110. (a) (i) ð1; 3; 1; 2; 1Þ, ð0; 0; 1;
1;
1Þ, ð0; 0; 0; 4; 7Þ; (ii) C1, C3, C4;
(b) (i) ð1; 2; 1; 0; 1Þ, ð0; 0; 1; 1; 2Þ; (ii) C1, C3
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4.113. (a) A ¼ 1 1
0 0

� �
; B ¼ 
1 
1

0 0

� �
; (b) A ¼ 1 0

0 0

� �
; B ¼ 0 2

0 0

� �
;

(c) A ¼ 1 0
0 0

� �
; B ¼ 0 0

0 1

� �
4.115. dimðU \WÞ ¼ 2, 3, or 4

4.117. (a) (i)
3xþ 4y
 z
 t ¼ 0

4xþ 2yþ s ¼ 0
(ii)

4xþ 2y
 s ¼ 0
9xþ 2yþ zþ t ¼ 0

;

(b) Basis: fð1;
2;
5; 0; 0Þ; ð0; 0; 1; 0;
1Þg; dimðU \WÞ ¼ 2

4.118. The sum is direct in (b) and (c).

4.119. In R2, let U , V, W be, respectively, the line y ¼ x, the x-axis, the y-axis.

4.122. (a) fð2; 6Þ; ð2; 7Þ; ð3; 7Þ; ð3; 8Þ; ð4; 8Þg; (b) fð2; 3Þ; ð3; 4Þg;
(c) fð3; 6Þ; ð6; 9Þg; (d) fð3; 12Þ; ð3; 15Þ; ð6; 15Þg;
(e and f) fð6; 18Þ; ð6; 21Þ; ð9; 21Þ; ð9; 24Þ; ð12; 24Þg

4.124. (a) Diagonal matrices, (b) V

4.128. (a) [
47; 13], (b) [
7a
 4b; 2aþ b]

4.129. (a) [
11; 13;
10], (b) [c
 3bþ 7a; 
cþ 3b
 6a; c
 2bþ 4a]

4.130. (a) [2;
1;
2; 2], (b) [a; b
 c; c
 bþ a; d 
 cþ b
 a]

4.131. (a) [7;
1;
13; 10], (b) [d; c
 d; bþ c
 2d; a
 b
 2cþ 2d]

4.132. dim W ¼ 2; basis: ft3 þ 2t2 
 3t þ 4; t2 þ 2t 
 1g

4.133. dim W ¼ 2; basis: f½1; 2; 1; 3; 1; 2�; ½0; 0; 1; 1; 3; 2�g

4.134. (a) False; (1, 1), (1, 2), (2, 1) span R2; (b) True;
(c) False; (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), w ¼ ð0; 0; 0; 1Þ;
(d) True; (e) True; (f ) True

4.135. (a) True; (b) False; e.g. delete C2 from
1 0 3
0 1 2

� �
; (c) True

4.136. (a) 1
2 nðnþ 1Þ, (b) 1

2 nðn
 1Þ, (c) n, (d) 1
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Linear Mappings

5.1 Introduction

The main subject matter of linear algebra is the study of linear mappings and their representation by
means of matrices. This chapter introduces us to these linear maps and Chapter 6 shows how they can be
represented by matrices. First, however, we begin with a study of mappings in general.

5.2 Mappings, Functions

Let A and B be arbitrary nonempty sets. Suppose to each element in a 2 A there is assigned a unique
element of B; called the image of a. The collection f of such assignments is called a mapping (or map)
from A into B, and it is denoted by

f : A! B

The set A is called the domain of the mapping, and B is called the target set. We write f ðaÞ, read ‘‘f of a;’’
for the unique element of B that f assigns to a 2 A.

One may also view a mapping f : A! B as a computer that, for each input value a 2 A, produces a
unique output f ðaÞ 2 B.

Remark: The term function is used synonymously with the word mapping, although some texts
reserve the word ‘‘function’’ for a real-valued or complex-valued mapping.

Consider a mapping f : A! B. If A0 is any subset of A, then f ðA0Þ denotes the set of images of
elements of A0; and if B0 is any subset of B, then f 
1ðB0Þ denotes the set of elements of A; each of whose
image lies in B. That is,

f ðA0Þ ¼ f f ðaÞ : a 2 A0g and f 
1ðB0Þ ¼ fa 2 A : f ðaÞ 2 B0g
We call f ðA0) the image of A0 and f 
1ðB0Þ the inverse image or preimage of B0. In particular, the set of all
images (i.e., f ðAÞ) is called the image or range of f.

To each mapping f : A! B there corresponds the subset of A� B given by fða; f ðaÞÞ : a 2 Ag. We
call this set the graph of f . Two mappings f : A! B and g : A! B are defined to be equal, written
f ¼ g, if f ðaÞ ¼ gðaÞ for every a 2 A—that is, if they have the same graph. Thus, we do not distinguish
between a function and its graph. The negation of f ¼ g is written f 6¼ g and is the statement:

There exists an a 2 A for which f ðaÞ 6¼ gðaÞ:
Sometimes the ‘‘barred’’ arrow 7! is used to denote the image of an arbitrary element x 2 A under a

mapping f : A! B by writing

x 7! f ðxÞ
This is illustrated in the following example.
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EXAMPLE 5.1

(a) Let f : R! R be the function that assigns to each real number x its square x2. We can denote this function by
writing

f ðxÞ ¼ x2 or x 7! x2

Here the image of 
3 is 9, so we may write f ð
3Þ ¼ 9. However, f 
1ð9Þ ¼ f3;
3g. Also,
f ðRÞ ¼ ½0;1Þ ¼ fx : x � 0g is the image of f.

(b) Let A ¼ fa; b; c; dg and B ¼ fx; y; z; tg. Then the following defines a mapping f : A! B:

f ðaÞ ¼ y; f ðbÞ ¼ x; f ðcÞ ¼ z; f ðdÞ ¼ y or f ¼ fða; yÞ; ðb; xÞ; ðc; zÞ; ðd; yÞg
The first defines the mapping explicitly, and the second defines the mapping by its graph. Here,

f ðfa; b; dgÞ ¼ f f ðaÞ; f ðbÞ; f ðdÞg ¼ fy; x; yg ¼ fx; yg
Furthermore, f ðAÞ ¼ fx; y; zg is the image of f.

EXAMPLE 5.2 Let V be the vector space of polynomials over R, and let pðtÞ ¼ 3t2 
 5t þ 2.

(a) The derivative defines a mapping D : V ! V where, for any polynomials f ðtÞ, we have Dð f Þ ¼ df =dt. Thus,

DðpÞ ¼ Dð3t2 
 5t þ 2Þ ¼ 6t 
 5

(b) The integral, say from 0 to 1, defines a mapping J : V ! R. That is, for any polynomial f ðtÞ,

Jð f Þ ¼
ð1

0

f ðtÞ dt; and so JðpÞ ¼
ð1

0

ð3t2 
 5t þ 2Þ ¼ 1
2

Observe that the mapping in (b) is from the vector space V into the scalar field R, whereas the mapping in (a) is from
the vector space V into itself.

Matrix Mappings

Let A be any m� n matrix over K. Then A determines a mapping FA : Kn ! Km by

FAðuÞ ¼ Au

where the vectors in Kn and Km are written as columns. For example, suppose

A ¼ 1 
4 5
2 3 
6

� �
and u ¼

1
3

5

24 35
then

FAðuÞ ¼ Au ¼ 1 
4 5
2 3 
6

� � 1
3

5

24 35 ¼ 
36
41

� �

Remark: For notational convenience, we will frequently denote the mapping FA by the letter A, the
same symbol as used for the matrix.

Composition of Mappings

Consider two mappings f : A! B and g : B! C, illustrated below:

A
!f B 
!g C

The composition of f and g, denoted by g � f , is the mapping g � f : A! C defined by

ðg � f ÞðaÞ 
 gð f ðaÞÞ
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That is, first we apply f to a 2 A, and then we apply g to f ðaÞ 2 B to get gð f ðaÞÞ 2 C. Viewing f and g
as ‘‘computers,’’ the composition means we first input a 2 A to get the output f ðaÞ 2 B using f , and then
we input f ðaÞ to get the output gð f ðaÞÞ 2 C using g.

Our first theorem tells us that the composition of mappings satisfies the associative law.

THEOREM 5.1: Let f : A! B, g : B! C, h : C ! D. Then

h � ðg � f Þ ¼ ðh � gÞ � f

We prove this theorem here. Let a 2 A. Then

ðh � ðg � f ÞÞðaÞ ¼ hððg � f ÞðaÞÞ ¼ hðgð f ðaÞÞÞ
ððh � gÞ � f ÞðaÞ ¼ ðh � gÞð f ðaÞÞ ¼ hðgð f ðaÞÞÞ

Thus, ðh � ðg � f ÞÞðaÞ ¼ ððh � gÞ � f ÞðaÞ for every a 2 A, and so h � ðg � f Þ ¼ ðh � gÞ � f.

One-to-One and Onto Mappings

We formally introduce some special types of mappings.

DEFINITION: A mapping f : A! B is said to be one-to-one (or 1-1 or injective) if different elements
of A have distinct images; that is,

If f ðaÞ ¼ f ða0Þ; then a ¼ a0:

DEFINITION: A mapping f : A! B is said to be onto (or f maps A onto B or surjective) if every b 2 B
is the image of at least one a 2 A.

DEFINITION: A mapping f : A! B is said to be a one-to-one correspondence between A and B (or
bijective) if f is both one-to-one and onto.

EXAMPLE 5.3 Let f : R ! R, g : R ! R, h : R! R be defined by

f ðxÞ ¼ 2x; gðxÞ ¼ x3 
 x; hðxÞ ¼ x2

The graphs of these functions are shown in Fig. 5-1. The function f is one-to-one. Geometrically, this means
that each horizontal line does not contain more than one point of f. The function g is onto. Geometrically,
this means that each horizontal line contains at least one point of g. The function h is neither one-to-one nor
onto. For example, both 2 and 
2 have the same image 4, and 
16 has no preimage.

Identity and Inverse Mappings

Let A be any nonempty set. The mapping f : A! A defined by f ðaÞ ¼ a—that is, the function that
assigns to each element in A itself—is called identity mapping. It is usually denoted by 1A or 1 or I . Thus,
for any a 2 A, we have 1AðaÞ ¼ a.

Figure 5-1
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Now let f : A! B. We call g : B! A the inverse of f, written f 
1, if

f � g ¼ 1B and g � f ¼ 1A

We emphasize that f has an inverse if and only if f is a one-to-one correspondence between A and B; that
is, f is one-to-one and onto (Problem 5.7). Also, if b 2 B, then f 
1ðbÞ ¼ a, where a is the unique element
of A for which f ðaÞ ¼ b

5.3 Linear Mappings (Linear Transformations)

We begin with a definition.

DEFINITION: Let V and U be vector spaces over the same field K. A mapping F : V ! U is called a
linear mapping or linear transformation if it satisfies the following two conditions:

(1) For any vectors v;w 2 V , Fðv þ wÞ ¼ FðvÞ þ FðwÞ.
(2) For any scalar k and vector v 2 V, FðkvÞ ¼ kFðvÞ.

Namely, F : V ! U is linear if it ‘‘preserves’’ the two basic operations of a vector space, that of
vector addition and that of scalar multiplication.

Substituting k ¼ 0 into condition (2), we obtain Fð0Þ ¼ 0. Thus, every linear mapping takes the zero
vector into the zero vector.

Now for any scalars a; b 2 K and any vector v;w 2 V , we obtain

Fðav þ bwÞ ¼ FðavÞ þ FðbwÞ ¼ aFðvÞ þ bFðwÞ
More generally, for any scalars ai 2 K and any vectors vi 2 V , we obtain the following basic property of
linear mappings:

Fða1v1 þ a2v2 þ � � � þ amvmÞ ¼ a1Fðv1Þ þ a2Fðv2Þ þ � � � þ amFðvmÞ

Remark 1: A linear mapping F : V ! U is completely characterized by the condition

Fðav þ bwÞ ¼ aFðvÞ þ bFðwÞ ð*Þ
and so this condition is sometimes used as its defintion.

Remark 2: The term linear transformation rather than linear mapping is frequently used for linear
mappings of the form F : Rn ! Rm.

EXAMPLE 5.4

(a) Let F : R3 ! R3 be the ‘‘projection’’ mapping into the xy-plane; that is, F is the mapping defined by
Fðx; y; zÞ ¼ ðx; y; 0Þ. We show that F is linear. Let v ¼ ða; b; cÞ and w ¼ ða0; b0; c0Þ. Then

Fðv þ wÞ ¼ Fðaþ a0; bþ b0; cþ c0Þ ¼ ðaþ a0; bþ b0; 0Þ
¼ ða; b; 0Þ þ ða0; b0; 0Þ ¼ FðvÞ þ FðwÞ

and, for any scalar k,

FðkvÞ ¼ Fðka; kb; kcÞ ¼ ðka; kb; 0Þ ¼ kða; b; 0Þ ¼ kFðvÞ
Thus, F is linear.

(b) Let G : R2 ! R2 be the ‘‘translation’’ mapping defined by Gðx; yÞ ¼ ðxþ 1; yþ 2Þ. [That is, G adds the vector
(1, 2) to any vector v ¼ ðx; yÞ in R2.] Note that

Gð0Þ ¼ Gð0; 0Þ ¼ ð1; 2Þ 6¼ 0

Thus, the zero vector is not mapped into the zero vector. Hence, G is not linear.
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EXAMPLE 5.5 (Derivative and Integral Mappings) Consider the vector space V ¼ PðtÞ of polynomials over the
real field R. Let uðtÞ and vðtÞ be any polynomials in V and let k be any scalar.

(a) Let D : V ! V be the derivative mapping. One proves in calculus that

dðuþ vÞ
dt

¼ du

dt
þ dv

dt
and

dðkuÞ
dt
¼ k

du

dt

That is, Dðuþ vÞ ¼ DðuÞ þ DðvÞ and DðkuÞ ¼ kDðuÞ. Thus, the derivative mapping is linear.

(b) Let J : V ! R be an integral mapping, say

Jð f ðtÞÞ ¼
ð1

0

f ðtÞ dt

One also proves in calculus that,ð1

0

½uðtÞ þ vðtÞ�dt ¼
ð1

0

uðtÞ dt þ
ð1

0

vðtÞ dt

andð1

0

kuðtÞ dt ¼ k

ð1

0

uðtÞ dt

That is, Jðuþ vÞ ¼ JðuÞ þ JðvÞ and JðkuÞ ¼ kJðuÞ. Thus, the integral mapping is linear.

EXAMPLE 5.6 (Zero and Identity Mappings)

(a) Let F : V ! U be the mapping that assigns the zero vector 0 2 U to every vector v 2 V . Then, for any vectors
v;w 2 V and any scalar k 2 K, we have

Fðv þ wÞ ¼ 0 ¼ 0þ 0 ¼ FðvÞ þ FðwÞ and FðkvÞ ¼ 0 ¼ k0 ¼ kFðvÞ
Thus, F is linear. We call F the zero mapping, and we usually denote it by 0.

(b) Consider the identity mapping I : V ! V , which maps each v 2 V into itself. Then, for any vectors v;w 2 V
and any scalars a; b 2 K, we have

Iðav þ bwÞ ¼ av þ bw ¼ aIðvÞ þ bIðwÞ
Thus, I is linear.

Our next theorem (proved in Problem 5.13) gives us an abundance of examples of linear mappings. In
particular, it tells us that a linear mapping is completely determined by its values on the elements of a basis.

THEOREM 5.2: Let V and U be vector spaces over a field K. Let fv1; v2; . . . ; vng be a basis of V and
let u1; u2; . . . ; un be any vectors in U . Then there exists a unique linear mapping
F : V ! U such that Fðv1Þ ¼ u1;Fðv2Þ ¼ u2; . . . ;FðvnÞ ¼ un.

We emphasize that the vectors u1; u2; . . . ; un in Theorem 5.2 are completely arbitrary; they may be
linearly dependent or they may even be equal to each other.

Matrices as Linear Mappings

Let A be any real m� n matrix. Recall that A determines a mapping FA : Kn ! Km by FAðuÞ ¼ Au
(where the vectors in Kn and Km are written as columns). We show FA is linear. By matrix multiplication,

FAðv þ wÞ ¼ Aðv þ wÞ ¼ Av þ Aw ¼ FAðvÞ þ FAðwÞ
FAðkvÞ ¼ AðkvÞ ¼ kðAvÞ ¼ kFAðvÞ

In other words, using A to represent the mapping, we have

Aðv þ wÞ ¼ Av þ Aw and AðkvÞ ¼ kðAvÞ
Thus, the matrix mapping A is linear.

168 CHAPTER 5 Linear Mappings



Vector Space Isomorphism

The notion of two vector spaces being isomorphic was defined in Chapter 4 when we investigated the
coordinates of a vector relative to a basis. We now redefine this concept.

DEFINITION: Two vector spaces V and U over K are isomorphic, written V ffi U , if there exists a
bijective (one-to-one and onto) linear mapping F : V ! U . The mapping F is then
called an isomorphism between V and U .

Consider any vector space V of dimension n and let S be any basis of V. Then the mapping

v 7! ½v�S
which maps each vector v 2 V into its coordinate vector ½v�S , is an isomorphism between V and Kn.

5.4 Kernel and Image of a Linear Mapping

We begin by defining two concepts.

DEFINITION: Let F : V ! U be a linear mapping. The kernel of F, written Ker F, is the set of
elements in V that map into the zero vector 0 in U ; that is,

Ker F ¼ fv 2 V : FðvÞ ¼ 0g
The image (or range) of F, written Im F, is the set of image points in U ; that is,

Im F ¼ fu 2 U : there exists v 2 V for which FðvÞ ¼ ug
The following theorem is easily proved (Problem 5.22).

THEOREM 5.3: Let F : V ! U be a linear mapping. Then the kernel of F is a subspace of V and the
image of F is a subspace of U .

Now suppose that v1; v2; . . . ; vm span a vector space V and that F : V ! U is linear. We show that
Fðv1Þ;Fðv2Þ; . . . ;FðvmÞ span Im F. Let u 2 Im F. Then there exists v 2 V such that FðvÞ ¼ u. Because
the vi’s span V and v 2 V, there exist scalars a1; a2; . . . ; am for which

v ¼ a1v1 þ a2v2 þ � � � þ amvm

Therefore,

u ¼ FðvÞ ¼ Fða1v1 þ a2v2 þ � � � þ amvmÞ ¼ a1Fðv1Þ þ a2Fðv2Þ þ � � � þ amFðvmÞ
Thus, the vectors Fðv1Þ;Fðv2Þ; . . . ;FðvmÞ span Im F.

We formally state the above result.

PROPOSITION 5.4: Suppose v1; v2; . . . ; vm span a vector space V, and suppose F : V ! U is linear.
Then Fðv1Þ;Fðv2Þ; . . . ;FðvmÞ span Im F.

EXAMPLE 5.7

(a) Let F : R3 ! R3 be the projection of a vector v into the xy-plane [as pictured in Fig. 5-2(a)]; that is,

Fðx; y; zÞ ¼ ðx; y; 0Þ
Clearly the image of F is the entire xy-plane—that is, points of the form (x; y; 0). Moreover, the kernel of F is
the z-axis—that is, points of the form (0; 0; c). That is,

Im F ¼ fða; b; cÞ : c ¼ 0g ¼ xy-plane and Ker F ¼ fða; b; cÞ : a ¼ 0; b ¼ 0g ¼ z-axis

(b) Let G : R3 ! R3 be the linear mapping that rotates a vector v about the z-axis through an angle y [as pictured in
Fig. 5-2(b)]; that is,

Gðx; y; zÞ ¼ ðx cos y
 y sin y; x sin yþ y cos y; zÞ
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Observe that the distance of a vector v from the origin O does not change under the rotation, and so only the zero
vector 0 is mapped into the zero vector 0. Thus, Ker G ¼ f0g. On the other hand, every vector u in R3 is the image
of a vector v in R3 that can be obtained by rotating u back by an angle of y. Thus, Im G ¼ R3, the entire space.

EXAMPLE 5.8 Consider the vector space V ¼ PðtÞ of polynomials over the real field R, and let H : V ! V be the
third-derivative operator; that is, H ½ f ðtÞ� ¼ d3f =dt3. [Sometimes the notation D3 is used for H , where D is the
derivative operator.] We claim that

Ker H ¼ fpolynomials of degree � 2g ¼ P2ðtÞ and Im H ¼ V

The first comes from the fact that Hðat2 þ bt þ cÞ ¼ 0 but HðtnÞ 6¼ 0 for n � 3. The second comes from that fact
that every polynomial gðtÞ in V is the third derivative of some polynomial f ðtÞ (which can be obtained by taking the
antiderivative of gðtÞ three times).

Kernel and Image of Matrix Mappings

Consider, say, a 3� 4 matrix A and the usual basis fe1; e2; e3; e4g of K4 (written as columns):

A ¼
a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

24 35; e1 ¼
1
0
0
0

2664
3775; e2 ¼

0
1
0
0

2664
3775; e3 ¼

0
0
1
0

2664
3775; e4 ¼

0
0
0
1

2664
3775

Recall that A may be viewed as a linear mapping A : K4 ! K3, where the vectors in K4 and K3 are
viewed as column vectors. Now the usual basis vectors span K4, so their images Ae1, Ae2, Ae3, Ae4 span
the image of A. But the vectors Ae1, Ae2, Ae3, Ae4 are precisely the columns of A:

Ae1 ¼ ½a1; b1; c1�T ; Ae2 ¼ ½a2; b2; c2�T ; Ae3 ¼ ½a3; b3; c3�T ; Ae4 ¼ ½a4; b4; c4�T

Thus, the image of A is precisely the column space of A.

On the other hand, the kernel of A consists of all vectors v for which Av ¼ 0. This means that the
kernel of A is the solution space of the homogeneous system AX ¼ 0, called the null space of A.

We state the above results formally.

PROPOSITION 5.5: Let A be any m� n matrix over a field K viewed as a linear map A : Kn ! Km. Then

Ker A ¼ nullspðAÞ and Im A ¼ colspðAÞ
Here colsp(A) denotes the column space of A, and nullsp(A) denotes the null space of A.
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Rank and Nullity of a Linear Mapping

Let F : V ! U be a linear mapping. The rank of F is defined to be the dimension of its image, and the
nullity of F is defined to be the dimension of its kernel; namely,

rankðFÞ ¼ dimðIm FÞ and nullityðFÞ ¼ dimðKer FÞ
The following important theorem (proved in Problem 5.23) holds.

THEOREM 5.6 Let V be of finite dimension, and let F : V ! U be linear. Then

dim V ¼ dimðKer FÞ þ dimðIm FÞ ¼ nullityðFÞ þ rankðFÞ
Recall that the rank of a matrix A was also defined to be the dimension of its column space and row

space. If we now view A as a linear mapping, then both definitions correspond, because the image of A is
precisely its column space.

EXAMPLE 5.9 Let F : R4 ! R3 be the linear mapping defined by

Fðx; y; z; tÞ ¼ ðx
 yþ zþ t; 2x
 2yþ 3zþ 4t; 3x
 3yþ 4zþ 5tÞ

(a) Find a basis and the dimension of the image of F.
First find the image of the usual basis vectors of R4,

Fð1; 0; 0; 0Þ ¼ ð1; 2; 3Þ; Fð0; 0; 1; 0Þ ¼ ð1; 3; 4Þ
Fð0; 1; 0; 0Þ ¼ ð
1;
2;
3Þ; Fð0; 0; 0; 1Þ ¼ ð1; 4; 5Þ

By Proposition 5.4, the image vectors span Im F. Hence, form the matrix M whose rows are these image vectors
and row reduce to echelon form:

M ¼
1 2 3

1 
2 
3

1 3 4
1 4 5

2664
3775 �

1 2 3
0 0 0
0 1 1
0 2 2

2664
3775 �

1 2 3
0 1 1
0 0 0
0 0 0

2664
3775

Thus, (1, 2, 3) and (0, 1, 1) form a basis of Im F. Hence, dimðIm FÞ ¼ 2 and rankðFÞ ¼ 2.

(b) Find a basis and the dimension of the kernel of the map F.
Set FðvÞ ¼ 0, where v ¼ ðx; y; z; tÞ,

Fðx; y; z; tÞ ¼ ðx
 yþ zþ t; 2x
 2yþ 3zþ 4t; 3x
 3yþ 4zþ 5tÞ ¼ ð0; 0; 0Þ
Set corresponding components equal to each other to form the following homogeneous system whose solution
space is Ker F:

x
 yþ zþ t ¼ 0
2x
 2yþ 3zþ 4t ¼ 0
3x
 3yþ 4zþ 5t ¼ 0

or
x
 yþ zþ t ¼ 0

zþ 2t ¼ 0
zþ 2t ¼ 0

or
x
 yþ zþ t ¼ 0

zþ 2t ¼ 0

The free variables are y and t. Hence, dimðKer FÞ ¼ 2 or nullityðFÞ ¼ 2.

(i) Set y ¼ 1, t ¼ 0 to obtain the solution (
1; 1; 0; 0Þ,
(ii) Set y ¼ 0, t ¼ 1 to obtain the solution (1; 0;
2; 1Þ.

Thus, (
1; 1; 0; 0) and (1; 0;
2; 1) form a basis for Ker F.

As expected from Theorem 5.6, dimðIm FÞ þ dimðKer FÞ ¼ 4 ¼ dimR4.

Application to Systems of Linear Equations

Let AX ¼ B denote the matrix form of a system of m linear equations in n unknowns. Now the matrix A
may be viewed as a linear mapping

A : Kn ! Km
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Thus, the solution of the equation AX ¼ B may be viewed as the preimage of the vector B 2 Km under the
linear mapping A. Furthermore, the solution of the associated homogeneous system

AX ¼ 0

may be viewed as the kernel of the linear mapping A. Applying Theorem 5.6 to this homogeneous system
yields

dimðKer AÞ ¼ dim Kn 
 dimðIm AÞ ¼ n
 rank A

But n is exactly the number of unknowns in the homogeneous system AX ¼ 0. Thus, we have proved the
following theorem of Chapter 4.

THEOREM 4.19: The dimension of the solution space W of a homogenous system AX ¼ 0 of linear
equations is s ¼ n
 r, where n is the number of unknowns and r is the rank of the
coefficient matrix A.

Observe that r is also the number of pivot variables in an echelon form of AX ¼ 0, so s ¼ n
 r is also
the number of free variables. Furthermore, the s solution vectors of AX ¼ 0 described in Theorem 3.14
are linearly independent (Problem 4.52). Accordingly, because dim W ¼ s, they form a basis for the
solution space W. Thus, we have also proved Theorem 3.14.

5.5 Singular and Nonsingular Linear Mappings, Isomorphisms

Let F : V ! U be a linear mapping. Recall that Fð0Þ ¼ 0. F is said to be singular if the image of some
nonzero vector v is 0—that is, if there exists v 6¼ 0 such that FðvÞ ¼ 0. Thus, F : V ! U is nonsingular if
the zero vector 0 is the only vector whose image under F is 0 or, in other words, if Ker F ¼ f0g.
EXAMPLE 5.10 Consider the projection map F : R3 ! R3 and the rotation map G : R3 ! R3 appearing in
Fig. 5-2. (See Example 5.7.) Because the kernel of F is the z-axis, F is singular. On the other hand, the kernel of G
consists only of the zero vector 0. Thus, G is nonsingular.

Nonsingular linear mappings may also be characterized as those mappings that carry independent sets
into independent sets. Specifically, we prove (Problem 5.28) the following theorem.

THEOREM 5.7: Let F : V ! U be a nonsingular linear mapping. Then the image of any linearly
independent set is linearly independent.

Isomorphisms

Suppose a linear mapping F : V ! U is one-to-one. Then only 0 2 V can map into 0 2 U , and so F is
nonsingular. The converse is also true. For suppose F is nonsingular and FðvÞ ¼ FðwÞ, then
Fðv 
 wÞ ¼ FðvÞ 
 FðwÞ ¼ 0, and hence, v 
 w ¼ 0 or v ¼ w. Thus, FðvÞ ¼ FðwÞ implies v ¼ w—
that is, F is one-to-one. We have proved the following proposition.

PROPOSITION 5.8: A linear mapping F : V ! U is one-to-one if and only if F is nonsingular.

Recall that a mapping F : V ! U is called an isomorphism if F is linear and if F is bijective (i.e., if F
is one-to-one and onto). Also, recall that a vector space V is said to be isomorphic to a vector space U ,
written V ffi U , if there is an isomorphism F : V ! U .

The following theorem (proved in Problem 5.29) applies.

THEOREM 5.9: Suppose V has finite dimension and dim V ¼ dim U. Suppose F : V ! U is linear.
Then F is an isomorphism if and only if F is nonsingular.
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5.6 Operations with Linear Mappings

We are able to combine linear mappings in various ways to obtain new linear mappings. These operations
are very important and will be used throughout the text.

Let F : V ! U and G : V ! U be linear mappings over a field K . The sum F þ G and the scalar
product kF, where k 2 K , are defined to be the following mappings from V into U :

ðF þ GÞðvÞ 
 FðvÞ þ GðvÞ and ðkFÞðvÞ 
 kFðvÞ
We now show that if F and G are linear, then F þ G and kF are also linear. Specifically, for any vectors
v;w 2 V and any scalars a; b 2 K,

ðF þ GÞðav þ bwÞ ¼ Fðav þ bwÞ þ Gðav þ bwÞ
¼ aFðvÞ þ bFðwÞ þ aGðvÞ þ bGðwÞ
¼ a½FðvÞ þ GðvÞ� þ b½FðwÞ þ GðwÞ�
¼ aðF þ GÞðvÞ þ bðF þ GÞðwÞ

and ðkFÞðav þ bwÞ ¼ kFðav þ bwÞ ¼ k½aFðvÞ þ bFðwÞ�
¼ akFðvÞ þ bkFðwÞ ¼ aðkFÞðvÞ þ bðkFÞðwÞ

Thus, F þ G and kF are linear.
The following theorem holds.

THEOREM 5.10: Let V and U be vector spaces over a field K . Then the collection of all linear
mappings from V into U with the above operations of addition and scalar multi-
plication forms a vector space over K.

The vector space of linear mappings in Theorem 5.10 is usually denoted by

HomðV;UÞ
Here Hom comes from the word ‘‘homomorphism.’’ We emphasize that the proof of Theorem 5.10
reduces to showing that HomðV;UÞ does satisfy the eight axioms of a vector space. The zero element of
HomðV;UÞ is the zero mapping from V into U , denoted by 0 and defined by

0ðvÞ ¼ 0

for every vector v 2 V .
Suppose V and U are of finite dimension. Then we have the following theorem.

THEOREM 5.11: Suppose dim V ¼ m and dim U ¼ n. Then dim½HomðV ;UÞ� ¼ mn.

Composition of Linear Mappings

Now suppose V, U, and W are vector spaces over the same field K, and suppose F : V ! U and
G : U ! W are linear mappings. We picture these mappings as follows:

V 
!F U 
!G W

Recall that the composition function G �F is the mapping from V into W defined by
ðG �FÞðvÞ ¼ GðFðvÞÞ. We show that G �F is linear whenever F and G are linear. Specifically, for
any vectors v;w 2 V and any scalars a; b 2 K, we have

ðG �FÞðav þ bwÞ ¼ GðFðav þ bwÞÞ ¼ GðaFðvÞ þ bFðwÞÞ
¼ aGðFðvÞÞ þ bGðFðwÞÞ ¼ aðG �FÞðvÞ þ bðG �FÞðwÞ

Thus, G �F is linear.
The composition of linear mappings and the operations of addition and scalar multiplication are

related as follows.

CHAPTER 5 Linear Mappings 173



THEOREM 5.12: Let V, U, W be vector spaces over K. Suppose the following mappings are linear:

F : V ! U ; F 0 : V ! U and G : U ! W ; G0 : U ! W

Then, for any scalar k 2 K:

(i) G � ðF þ F 0Þ ¼ G �F þ G �F 0.
(ii) ðG þ G0Þ �F ¼ G �F þ G0 �F.

(iii) kðG �FÞ ¼ ðkGÞ �F ¼ G � ðkFÞ.

5.7 Algebra AðVÞ of Linear Operators
Let V be a vector space over a field K. This section considers the special case of linear mappings from the
vector space V into itself—that is, linear mappings of the form F : V ! V. They are also called linear
operators or linear transformations on V. We will write AðVÞ, instead of HomðV;V Þ, for the space of all
such mappings.

Now AðVÞ is a vector space over K (Theorem 5.8), and, if dim V ¼ n, then dim AðV Þ ¼ n2. Moreover,
for any mappings F;G 2 AðVÞ, the composition G �F exists and also belongs to AðVÞ. Thus, we have a
‘‘multiplication’’ defined in AðV Þ. [We sometimes write FG instead of G �F in the space AðVÞ.]

Remark: An algebra A over a field K is a vector space over K in which an operation of
multiplication is defined satisfying, for every F;G;H 2 A and every k 2 K:

(i) FðG þ HÞ ¼ FG þ FH ,

(ii) ðG þ HÞF ¼ GF þ HF,

(iii) kðGFÞ ¼ ðkGÞF ¼ GðkFÞ.
The algebra is said to be associative if, in addition, ðFGÞH ¼ FðGHÞ.

The above definition of an algebra and previous theorems give us the following result.

THEOREM 5.13: Let V be a vector space over K. Then AðVÞ is an associative algebra over K with
respect to composition of mappings. If dim V ¼ n, then dim AðV Þ ¼ n2.

This is why AðVÞ is called the algebra of linear operators on V .

Polynomials and Linear Operators

Observe that the identity mapping I : V ! V belongs to AðV Þ. Also, for any linear operator F in AðV Þ,
we have FI ¼ IF ¼ F. We can also form ‘‘powers’’ of F. Namely, we define

F0 ¼ I ; F2 ¼ F �F; F3 ¼ F2 �F ¼ F �F �F; F4 ¼ F3 �F; . . .

Furthermore, for any polynomial pðtÞ over K, say,

pðtÞ ¼ a0 þ a1t þ a2t2 þ � � � þ ast
2

we can form the linear operator pðFÞ defined by

pðFÞ ¼ a0I þ a1F þ a2F2 þ � � � þ asF
s

(For any scalar k, the operator kI is sometimes denoted simply by k.) In particular, we say F is a zero of
the polynomial pðtÞ if pðFÞ ¼ 0.

EXAMPLE 5.11 Let F : K3 ! K3 be defined by Fðx; y; zÞ ¼ ð0; x; yÞ. For any ða; b; cÞ 2 K3,

ðF þ IÞða; b; cÞ ¼ ð0; a; bÞ þ ða; b; cÞ ¼ ða; aþ b; bþ cÞ
F3ða; b; cÞ ¼ F2ð0; a; bÞ ¼ Fð0; 0; aÞ ¼ ð0; 0; 0Þ

Thus, F3 ¼ 0, the zero mapping in AðVÞ. This means F is a zero of the polynomial pðtÞ ¼ t3.
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Square Matrices as Linear Operators

Let M ¼Mn;n be the vector space of all square n� n matrices over K. Then any matrix A in M defines a
linear mapping FA : Kn ! Kn by FAðuÞ ¼ Au (where the vectors in Kn are written as columns). Because the
mapping is from Kn into itself, the square matrix A is a linear operator, not simply a linear mapping.

Suppose A and B are matrices in M . Then the matrix product AB is defined. Furthermore, for any
(column) vector u in Kn,

FABðuÞ ¼ ðABÞu ¼ AðBuÞ ¼ AðFBðUÞÞ ¼ FAðFBðuÞÞ ¼ ðFA �FBÞðuÞ
In other words, the matrix product AB corresponds to the composition of A and B as linear mappings.
Similarly, the matrix sum Aþ B corresponds to the sum of A and B as linear mappings, and the scalar
product kA corresponds to the scalar product of A as a linear mapping.

Invertible Operators in AðVÞ
Let F : V ! V be a linear operator. F is said to be invertible if it has an inverse—that is, if there exists
F
1 in AðV Þ such that FF
1 ¼ F
1F ¼ I . On the other hand, F is invertible as a mapping if F is both
one-to-one and onto. In such a case, F
1 is also linear and F
1 is the inverse of F as a linear operator
(proved in Problem 5.15).

Suppose F is invertible. Then only 0 2 V can map into itself, and so F is nonsingular. The converse is
not true, as seen by the following example.

EXAMPLE 5.12 Let V ¼ PðtÞ, the vector space of polynomials over K. Let F be the mapping on V that increases
by 1 the exponent of t in each term of a polynomial; that is,

Fða0 þ a1t þ a2t2 þ � � � þ ast
sÞ ¼ a0t þ a1t2 þ a2t3 þ � � � þ ast

sþ1

Then F is a linear mapping and F is nonsingular. However, F is not onto, and so F is not invertible.

The vector space V ¼ PðtÞ in the above example has infinite dimension. The situation changes
significantly when V has finite dimension. Namely, the following theorem applies.

THEOREM 5.14: Let F be a linear operator on a finite-dimensional vector space V . Then the following
four conditions are equivalent.

(i) F is nonsingular: Ker F ¼ f0g. (iii) F is an onto mapping.

(ii) F is one-to-one. (iv) F is invertible.

The proof of the above theorem mainly follows from Theorem 5.6, which tells us that

dim V ¼ dimðKer FÞ þ dimðIm FÞ
By Proposition 5.8, (i) and (ii) are equivalent. Note that (iv) is equivalent to (ii) and (iii). Thus, to prove
the theorem, we need only show that (i) and (iii) are equivalent. This we do below.

(a) Suppose (i) holds. Then dimðKer FÞ ¼ 0, and so the above equation tells us that dim V ¼ dimðIm FÞ.
This means V ¼ Im F or, in other words, F is an onto mapping. Thus, (i) implies (iii).

(b) Suppose (iii) holds. Then V ¼ Im F, and so dim V ¼ dimðIm FÞ. Therefore, the above equation
tells us that dimðKer FÞ ¼ 0, and so F is nonsingular. Therefore, (iii) implies (i).

Accordingly, all four conditions are equivalent.

Remark: Suppose A is a square n� n matrix over K . Then A may be viewed as a linear operator on
Kn. Because Kn has finite dimension, Theorem 5.14 holds for the square matrix A. This is why the terms
‘‘nonsingular’’ and ‘‘invertible’’ are used interchangeably when applied to square matrices.

EXAMPLE 5.13 Let F be the linear operator on R2 defined by Fðx; yÞ ¼ ð2xþ y; 3xþ 2yÞ.
(a) To show that F is invertible, we need only show that F is nonsingular. Set Fðx; yÞ ¼ ð0; 0Þ to obtain the

homogeneous system

2xþ y ¼ 0 and 3xþ 2y ¼ 0
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Solve for x and y to get x ¼ 0, y ¼ 0. Hence, F is nonsingular and so invertible.

(b) To find a formula for F
1, we set Fðx; yÞ ¼ ðs; tÞ and so F
1ðs; tÞ ¼ ðx; yÞ. We have

ð2xþ y; 3xþ 2yÞ ¼ ðs; tÞ or
2xþ y ¼ s

3xþ 2y ¼ t

Solve for x and y in terms of s and t to obtain x ¼ 2s
 t, y ¼ 
3sþ 2t. Thus,

F
1ðs; tÞ ¼ ð2s
 t; 
3sþ 2tÞ or F
1ðx; yÞ ¼ ð2x
 y; 
3xþ 2yÞ
where we rewrite the formula for F
1 using x and y instead of s and t.

SOLVED PROBLEMS

Mappings

5.1. State whether each diagram in Fig. 5-3 defines a mapping from A ¼ fa; b; cg into B ¼ fx; y; zg.
(a) No. There is nothing assigned to the element b 2 A.

(b) No. Two elements, x and z, are assigned to c 2 A.

(c) Yes.

5.2. Let f : A! B and g : B! C be defined by Fig. 5-4.

(a) Find the composition mapping ðg � f Þ : A! C.

(b) Find the images of the mappings f , g, g � f .

(a) Use the definition of the composition mapping to compute

ðg � f Þ ðaÞ ¼ gð f ðaÞÞ ¼ gðyÞ ¼ t; ðg � f Þ ðbÞ ¼ gð f ðbÞÞ ¼ gðxÞ ¼ s

ðg � f Þ ðcÞ ¼ gð f ðcÞÞ ¼ gðyÞ ¼ t

Observe that we arrive at the same answer if we ‘‘follow the arrows’’ in Fig. 5-4:

a! y! t; b! x! s; c! y! t

(b) By Fig. 5-4, the image values under the mapping f are x and y, and the image values under g are r, s, t.

Figure 5-3

Figure 5-4
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Hence,

Im f ¼ fx; yg and Im g ¼ fr; s; tg
Also, by part (a), the image values under the composition mapping g � f are t and s; accordingly,
Im g � f ¼ fs; tg. Note that the images of g and g � f are different.

5.3. Consider the mapping F : R3 ! R2 defined by Fðx; y; zÞ ¼ ðyz; x2Þ. Find
(a) Fð2; 3; 4Þ; (b) Fð5;
2; 7Þ; (c) F
1ð0; 0Þ, that is, all v 2 R3 such that FðvÞ ¼ 0.

(a) Substitute in the formula for F to get Fð2; 3; 4Þ ¼ ð3 � 4; 22Þ ¼ ð12; 4Þ.
(b) Fð5;
2; 7Þ ¼ ð
2 � 7; 52Þ ¼ ð
14; 25Þ.
(c) Set FðvÞ ¼ 0, where v ¼ ðx; y; zÞ, and then solve for x, y, z:

Fðx; y; zÞ ¼ ðyz; x2Þ ¼ ð0; 0Þ or yz ¼ 0; x2 ¼ 0

Thus, x ¼ 0 and either y ¼ 0 or z ¼ 0. In other words, x ¼ 0, y ¼ 0 or x ¼ 0; z ¼ 0—that is, the z-axis
and the y-axis.

5.4. Consider the mapping F : R2 ! R2 defined by Fðx; yÞ ¼ ð3y; 2xÞ. Let S be the unit circle in R2,
that is, the solution set of x2 þ y2 ¼ 1. (a) Describe FðSÞ. (b) Find F
1ðSÞ.
(a) Let (a; b) be an element of FðSÞ. Then there exists ðx; yÞ 2 S such that Fðx; yÞ ¼ ða; bÞ. Hence,

ð3y; 2xÞ ¼ ða; bÞ or 3y ¼ a; 2x ¼ b or y ¼ a

3
; x ¼ b

2

Because ðx; yÞ 2 S—that is, x2 þ y2 ¼ 1—we have

b

2

� �2

þ a

3


 �2

¼ 1 or
a2

9
þ b2

4
¼ 1

Thus, FðSÞ is an ellipse.

(b) Let Fðx; yÞ ¼ ða; bÞ, where ða; bÞ 2 S. Then ð3y; 2xÞ ¼ ða; bÞ or 3y ¼ a, 2x ¼ b. Because ða; bÞ 2 S, we
have a2 þ b2 ¼ 1. Thus, ð3yÞ2 þ ð2xÞ2 ¼ 1. Accordingly, F
1ðSÞ is the ellipse 4x2 þ 9y2 ¼ 1.

5.5. Let the mappings f : A! B, g : B! C, h : C ! D be defined by Fig. 5-5. Determine whether or
not each function is (a) one-to-one; (b) onto; (c) invertible (i.e., has an inverse).

(a) The mapping f : A! B is one-to-one, as each element of A has a different image. The mapping
g : B! C is not one-to one, because x and z both have the same image 4. The mapping h : C ! D is
one-to-one.

(b) The mapping f : A! B is not onto, because z 2 B is not the image of any element of A. The mapping
g : B! C is onto, as each element of C is the image of some element of B. The mapping h : C ! D is
also onto.

(c) A mapping has an inverse if and only if it is one-to-one and onto. Hence, only h has an inverse.

z

y

x

w

B gf C h

5

6

41 a

D

b

c

2

3

A

Figure 5-5
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5.6. Suppose f : A! B and g : B! C. Hence, ðg � f Þ : A! C exists. Prove

(a) If f and g are one-to-one, then g � f is one-to-one.

(b) If f and g are onto mappings, then g � f is an onto mapping.

(c) If g � f is one-to-one, then f is one-to-one.

(d) If g � f is an onto mapping, then g is an onto mapping.

(a) Suppose ðg � f ÞðxÞ ¼ ðg � f ÞðyÞ. Then gð f ðxÞÞ ¼ gð f ðyÞÞ. Because g is one-to-one, f ðxÞ ¼ f ðyÞ.
Because f is one-to-one, x ¼ y. We have proven that ðg � f ÞðxÞ ¼ ðg � f ÞðyÞ implies x ¼ y; hence g � f
is one-to-one.

(b) Suppose c 2 C. Because g is onto, there exists b 2 B for which gðbÞ ¼ c. Because f is onto, there exists
a 2 A for which f ðaÞ ¼ b. Thus, ðg � f ÞðaÞ ¼ gð f ðaÞÞ ¼ gðbÞ ¼ c. Hence, g � f is onto.

(c) Suppose f is not one-to-one. Then there exist distinct elements x; y 2 A for which f ðxÞ ¼ f ðyÞ. Thus,
ðg � f ÞðxÞ ¼ gð f ðxÞÞ ¼ gð f ðyÞÞ ¼ ðg � f ÞðyÞ. Hence, g � f is not one-to-one. Therefore, if g � f is one-to-
one, then f must be one-to-one.

(d) If a 2 A, then ðg � f ÞðaÞ ¼ gð f ðaÞÞ 2 gðBÞ. Hence, ðg � f ÞðAÞ � gðBÞ. Suppose g is not onto. Then gðBÞ
is properly contained in C and so ðg � f ÞðAÞ is properly contained in C; thus, g � f is not onto.
Accordingly, if g � f is onto, then g must be onto.

5.7. Prove that f : A! B has an inverse if and only if f is one-to-one and onto.

Suppose f has an inverse—that is, there exists a function f 
1 : B! A for which f 
1 � f ¼ 1A and
f � f 
1 ¼ 1B. Because 1A is one-to-one, f is one-to-one by Problem 5.6(c), and because 1B is onto, f is onto
by Problem 5.6(d); that is, f is both one-to-one and onto.

Now suppose f is both one-to-one and onto. Then each b 2 B is the image of a unique element in A, say
b*. Thus, if f ðaÞ ¼ b, then a ¼ b*; hence, f ðb*Þ ¼ b. Now let g denote the mapping from B to A defined by
b 7! b*. We have

(i) ðg � f ÞðaÞ ¼ gð f ðaÞÞ ¼ gðbÞ ¼ b* ¼ a for every a 2 A; hence, g � f ¼ 1A.

(ii) ð f � gÞðbÞ ¼ f ðgðbÞÞ ¼ f ðb*Þ ¼ b for every b 2 B; hence, f � g ¼ 1B.

Accordingly, f has an inverse. Its inverse is the mapping g.

5.8. Let f : R! R be defined by f ðxÞ ¼ 2x
 3. Now f is one-to-one and onto; hence, f has an inverse
mapping f 
1. Find a formula for f 
1.

Let y be the image of x under the mapping f ; that is, y ¼ f ðxÞ ¼ 2x
 3. Hence, x will be the image of y
under the inverse mapping f 
1. Thus, solve for x in terms of y in the above equation to obtain x ¼ 1

2 ðyþ 3Þ.
Then the formula defining the inverse function is f 
1ðyÞ ¼ 1

2 ðyþ 3Þ, or, using x instead of y, f 
1ðxÞ ¼ 1
2 ðxþ 3Þ.

Linear Mappings

5.9. Suppose the mapping F : R2 ! R2 is defined by Fðx; yÞ ¼ ðxþ y; xÞ. Show that F is linear.

We need to show that Fðv þ wÞ ¼ FðvÞ þ FðwÞ and FðkvÞ ¼ kFðvÞ, where u and v are any elements of
R2 and k is any scalar. Let v ¼ ða; bÞ and w ¼ ða0; b0Þ. Then

v þ w ¼ ðaþ a0; bþ b0Þ and kv ¼ ðka; kbÞ
We have FðvÞ ¼ ðaþ b; aÞ and FðwÞ ¼ ða0 þ b0; a0Þ. Thus,

Fðv þ wÞ ¼ Fðaþ a0; bþ b0Þ ¼ ðaþ a0 þ bþ b0; aþ a0Þ
¼ ðaþ b; aÞ þ ða0 þ b0; a0Þ ¼ FðvÞ þ FðwÞ

and

FðkvÞ ¼ Fðka; kbÞ ¼ ðkaþ kb; kaÞ ¼ kðaþ b; aÞ ¼ kFðvÞ
Because v, w, k were arbitrary, F is linear.
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5.10. Suppose F : R3 ! R2 is defined by Fðx; y; zÞ ¼ ðxþ yþ z; 2x
 3yþ 4zÞ. Show that F is linear.

We argue via matrices. Writing vectors as columns, the mapping F may be written in the form
FðvÞ ¼ Av, where v ¼ ½x; y; z�T and

A ¼ 1 1 1
2 
3 4

� �
Then, using properties of matrices, we have

Fðv þ wÞ ¼ Aðv þ wÞ ¼ Av þ Aw ¼ FðvÞ þ FðwÞ

FðkvÞ ¼ AðkvÞ ¼ kðAvÞ ¼ kFðvÞand

Thus, F is linear.

5.11. Show that the following mappings are not linear:

(a) F : R2 ! R2 defined by Fðx; yÞ ¼ ðxy; xÞ
(b) F : R2 ! R3 defined by Fðx; yÞ ¼ ðxþ 3; 2y; xþ yÞ
(c) F : R3 ! R2 defined by Fðx; y; zÞ ¼ ðjxj; yþ zÞ
(a) Let v ¼ ð1; 2Þ and w ¼ ð3; 4Þ; then v þ w ¼ ð4; 6Þ. Also,

FðvÞ ¼ ð1ð2Þ; 1Þ ¼ ð2; 1Þ and FðwÞ ¼ ð3ð4Þ; 3Þ ¼ ð12; 3Þ
Hence,

Fðv þ wÞ ¼ ð4ð6Þ; 4Þ ¼ ð24; 6Þ 6¼ FðvÞ þ FðwÞ
(b) Because Fð0; 0Þ ¼ ð3; 0; 0Þ 6¼ ð0; 0; 0Þ, F cannot be linear.

(c) Let v ¼ ð1; 2; 3Þ and k ¼ 
3. Then kv ¼ ð
3;
6;
9Þ. We have

FðvÞ ¼ ð1; 5Þ and kFðvÞ ¼ 
3ð1; 5Þ ¼ ð
3;
15Þ:
Thus,

FðkvÞ ¼ Fð
3;
6;
9Þ ¼ ð3;
15Þ 6¼ kFðvÞ
Accordingly, F is not linear.

5.12. Let V be the vector space of n-square real matrices. Let M be an arbitrary but fixed matrix in V .
Let F : V ! V be defined by FðAÞ ¼ AM þMA, where A is any matrix in V . Show that F is
linear.

For any matrices A and B in V and any scalar k, we have

FðAþ BÞ ¼ ðAþ BÞM þMðAþ BÞ ¼ AM þ BM þMAþMB

¼ ðAM þMAÞ ¼ ðBM þMBÞ ¼ FðAÞ þ FðBÞ

and

FðkAÞ ¼ ðkAÞM þMðkAÞ ¼ kðAMÞ þ kðMAÞ ¼ kðAM þMAÞ ¼ kFðAÞ
Thus, F is linear.

5.13. Prove Theorem 5.2: Let V and U be vector spaces over a field K . Let fv1; v2; . . . ; vng be a basis of
V and let u1; u2; . . . ; un be any vectors in U . Then there exists a unique linear mapping F : V ! U
such that Fðv1Þ ¼ u1;Fðv2Þ ¼ u2; . . . ;FðvnÞ ¼ un.

There are three steps to the proof of the theorem: (1) Define the mapping F : V ! U such that
FðviÞ ¼ ui; i ¼ 1; . . . ; n. (2) Show that F is linear. (3) Show that F is unique.

Step 1. Let v 2 V . Because fv1; . . . ; vng is a basis of V, there exist unique scalars a1; . . . ; an 2 K for
which v ¼ a1v1 þ a2v2 þ � � � þ anvn. We define F : V ! U by

FðvÞ ¼ a1u1 þ a2u2 þ � � � þ anun
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(Because the ai are unique, the mapping F is well defined.) Now, for i ¼ 1; . . . ; n,

vi ¼ 0v1 þ � � � þ 1vi þ � � � þ 0vn

Hence,

FðviÞ ¼ 0u1 þ � � � þ 1ui þ � � � þ 0un ¼ ui

Thus, the first step of the proof is complete.

Step 2. Suppose v ¼ a1v1 þ a2v2 þ � � � þ anvn and w ¼ b1v1 þ b2v2 þ � � � þ bnvn. Then

v þ w ¼ ða1 þ b1Þv1 þ ða2 þ b2Þv2 þ � � � þ ðan þ bnÞvn
and, for any k 2 K, kv ¼ ka1v1 þ ka2v2 þ � � � þ kanvn. By definition of the mapping F,

FðvÞ ¼ a1u1 þ a2u2 þ � � � þ anvn and FðwÞ ¼ b1u1 þ b2u2 þ � � � þ bnun

Hence,

Fðv þ wÞ ¼ ða1 þ b1Þu1 þ ða2 þ b2Þu2 þ � � � þ ðan þ bnÞun
¼ ða1u1 þ a2u2 þ � � � þ anunÞ þ ðb1u1 þ b2u2 þ � � � þ bnunÞ
¼ FðvÞ þ FðwÞ

and

FðkvÞ ¼ kða1u1 þ a2u2 þ � � � þ anunÞ ¼ kFðvÞ
Thus, F is linear.

Step 3. Suppose G : V ! U is linear and Gðv Þ ¼ ui; i ¼ 1; . . . ; n. Let

v ¼ a1v1 þ a2v2 þ � � � þ anvn

Then

GðvÞ ¼ Gða1v1 þ a2v2 þ � � � þ anvnÞ ¼ a1Gðv1Þ þ a2Gðv2Þ þ � � � þ anGðvnÞ
¼ a1u1 þ a2u2 þ � � � þ anun ¼ FðvÞ

Because GðvÞ ¼ FðvÞ for every v 2 V ;G ¼ F. Thus, F is unique and the theorem is proved.

5.14. Let F : R2 ! R2 be the linear mapping for which Fð1; 2Þ ¼ ð2; 3Þ and Fð0; 1Þ ¼ ð1; 4Þ. [Note that
fð1; 2Þ; ð0; 1Þg is a basis of R2, so such a linear map F exists and is unique by Theorem 5.2.] Find
a formula for F; that is, find Fða; bÞ.

Write ða; bÞ as a linear combination of (1, 2) and (0, 1) using unknowns x and y,

ða; bÞ ¼ xð1; 2Þ þ yð0; 1Þ ¼ ðx; 2xþ yÞ; so a ¼ x; b ¼ 2xþ y

Solve for x and y in terms of a and b to get x ¼ a, y ¼ 
2aþ b. Then

Fða; bÞ ¼ xFð1; 2Þ þ yFð0; 1Þ ¼ að2; 3Þ þ ð
2aþ bÞð1; 4Þ ¼ ðb; 
5aþ 4bÞ

5.15. Suppose a linear mapping F : V ! U is one-to-one and onto. Show that the inverse mapping
F
1 : U ! V is also linear.

Suppose u; u0 2 U . Because F is one-to-one and onto, there exist unique vectors v; v0 2 V for which
FðvÞ ¼ u and Fðv0Þ ¼ u0. Because F is linear, we also have

Fðv þ v0Þ ¼ FðvÞ þ Fðv0Þ ¼ uþ u0 and FðkvÞ ¼ kFðvÞ ¼ ku

By definition of the inverse mapping,

F
1ðuÞ ¼ v; F
1ðu0Þ ¼ v0; F
1ðuþ u0Þ ¼ v þ v0; F
1ðkuÞ ¼ kv:

Then

F
1ðuþ u0Þ ¼ v þ v0 ¼ F
1ðuÞ þ F
1ðu0Þ and F
1ðkuÞ ¼ kv ¼ kF
1ðuÞ
Thus, F
1 is linear.
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Kernel and Image of Linear Mappings

5.16. Let F : R4 ! R3 be the linear mapping defined by

Fðx; y; z; tÞ ¼ ðx
 yþ zþ t; xþ 2z
 t; xþ yþ 3z
 3tÞ
Find a basis and the dimension of (a) the image of F; (b) the kernel of F.

(a) Find the images of the usual basis of R4:

Fð1; 0; 0; 0Þ ¼ ð1; 1; 1Þ; Fð0; 0; 1; 0Þ ¼ ð1; 2; 3Þ
Fð0; 1; 0; 0Þ ¼ ð
1; 0; 1Þ; Fð0; 0; 0; 1Þ ¼ ð1;
1;
3Þ

By Proposition 5.4, the image vectors span Im F. Hence, form the matrix whose rows are these image
vectors, and row reduce to echelon form:

1 1 1


1 0 1

1 2 3

1 
1 
3

26664
37775 �

1 1 1

0 1 2

0 1 2

0 
2 
4

26664
37775 �

1 1 1

0 1 2

0 0 0

0 0 0

26664
37775

Thus, (1, 1, 1) and (0, 1, 2) form a basis for Im F; hence, dimðIm FÞ ¼ 2.

(b) Set FðvÞ ¼ 0, where v ¼ ðx; y; z; tÞ; that is, set

Fðx; y; z; tÞ ¼ ðx
 yþ zþ t; xþ 2z
 t; xþ yþ 3z
 3tÞ ¼ ð0; 0; 0Þ
Set corresponding entries equal to each other to form the following homogeneous system whose solution
space is Ker F:

x
 yþ zþ t ¼ 0

x þ 2z
 t ¼ 0

xþ yþ 3z
 3t ¼ 0

or

x
 yþ zþ t ¼ 0

yþ z
 2t ¼ 0

2yþ 2z
 4t ¼ 0

or
x
 yþ zþ t ¼ 0

yþ z
 2t ¼ 0

The free variables are z and t. Hence, dimðKer FÞ ¼ 2.

(i) Set z ¼ 
1, t ¼ 0 to obtain the solution (2; 1;
1; 0).

(ii) Set z ¼ 0, t ¼ 1 to obtain the solution (1, 2, 0, 1).

Thus, (2; 1;
1; 0) and (1, 2, 0, 1) form a basis of Ker F.
[As expected, dimðIm FÞ þ dimðKer FÞ ¼ 2þ 2 ¼ 4 ¼ dimR4, the domain of F.]

5.17. Let G : R3 ! R3 be the linear mapping defined by

Gðx; y; zÞ ¼ ðxþ 2y
 z; yþ z; xþ y
 2zÞ
Find a basis and the dimension of (a) the image of G, (b) the kernel of G.

(a) Find the images of the usual basis of R3:

Gð1; 0; 0Þ ¼ ð1; 0; 1Þ; Gð0; 1; 0Þ ¼ ð2; 1; 1Þ; Gð0; 0; 1Þ ¼ ð
1; 1;
2Þ
By Proposition 5.4, the image vectors span Im G. Hence, form the matrix M whose rows are these image
vectors, and row reduce to echelon form:

M ¼
1 0 1

2 1 1


1 1 
2

24 35 � 1 0 1

0 1 
1

0 1 
1

24 35 � 1 0 1

0 1 
1

0 0 0

24 35
Thus, (1, 0, 1) and (0; 1;
1) form a basis for Im G; hence, dimðIm GÞ ¼ 2.

(b) Set GðvÞ ¼ 0, where v ¼ ðx; y; zÞ; that is,

Gðx; y; zÞ ¼ ðxþ 2y
 z; yþ z; xþ y
 2zÞ ¼ ð0; 0; 0Þ
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Set corresponding entries equal to each other to form the following homogeneous system whose solution
space is Ker G:

xþ 2y
 z ¼ 0
yþ z ¼ 0

xþ y
 2z ¼ 0
or

xþ 2y
 z ¼ 0
yþ z ¼ 0

y
 z ¼ 0

or
xþ 2y
 z ¼ 0

yþ z ¼ 0

The only free variable is z; hence, dimðKer GÞ ¼ 1. Set z ¼ 1; then y ¼ 
1 and x ¼ 3. Thus, (3;
1; 1)
forms a basis of Ker G. [As expected, dimðIm GÞ þ dimðKer GÞ ¼ 2þ 1 ¼ 3 ¼ dimR3, the domain
of G.]

5.18. Consider the matrix mapping A : R4 ! R3, where A ¼
1 2 3 1
1 3 5 
2
3 8 13 
3

24 35. Find a basis and the

dimension of (a) the image of A, (b) the kernel of A.

(a) The column space of A is equal to Im A. Now reduce AT to echelon form:

AT ¼
1 1 3
2 3 8
3 5 13
1 
2 
3

2664
3775 �

1 1 3
0 1 2
0 2 4
0 
3 
6

2664
3775 �

1 1 3
0 1 2
0 0 0
0 0 0

2664
3775

Thus, fð1; 1; 3Þ; ð0; 1; 2Þg is a basis of Im A, and dimðIm AÞ ¼ 2.

(b) Here Ker A is the solution space of the homogeneous system AX ¼ 0, where X ¼ fx; y; z; tÞT . Thus,
reduce the matrix A of coefficients to echelon form:

1 2 3 1
0 1 2 
3
0 2 4 
6

24 35 � 1 2 3 1
0 1 2 
3
0 0 0 0

24 35 or
xþ 2yþ 3zþ t ¼ 0

yþ 2z
 3t ¼ 0

The free variables are z and t. Thus, dimðKer AÞ ¼ 2.

(i) Set z ¼ 1, t ¼ 0 to get the solution (1;
2; 1; 0).

(ii) Set z ¼ 0, t ¼ 1 to get the solution (
7; 3; 0; 1).

Thus, (1;
2; 1; 0) and (
7; 3; 0; 1) form a basis for Ker A.

5.19. Find a linear map F : R3 ! R4 whose image is spanned by (1; 2; 0;
4) and (2; 0;
1;
3).

Form a 4� 3 matrix whose columns consist only of the given vectors, say

A ¼
1 2 2
2 0 0
0 
1 
1

4 
3 
3

2664
3775

Recall that A determines a linear map A : R3 ! R4 whose image is spanned by the columns of A. Thus, A
satisfies the required condition.

5.20. Suppose f : V ! U is linear with kernel W, and that f ðvÞ ¼ u. Show that the ‘‘coset’’
v þW ¼ fv þ w : w 2 Wg is the preimage of u; that is, f 
1ðuÞ ¼ v þW.

We must prove that (i) f 
1ðuÞ � v þW and (ii) v þW � f 
1ðuÞ.
We first prove (i). Suppose v0 2 f 
1ðuÞ. Then f ðv0Þ ¼ u, and so

f ðv0 
 vÞ ¼ f ðv0Þ 
 f ðvÞ ¼ u
 u ¼ 0

that is, v0 
 v 2 W . Thus, v0 ¼ v þ ðv0 
 vÞ 2 v þW , and hence f 
1ðuÞ � v þW .
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Now we prove (ii). Suppose v0 2 v þW . Then v0 ¼ v þ w, where w 2 W . Because W is the kernel of f ;
we have f ðwÞ ¼ 0. Accordingly,

f ðv0Þ ¼ f ðv þ wÞ þ f ðvÞ þ f ðwÞ ¼ f ðvÞ þ 0 ¼ f ðvÞ ¼ u

Thus, v0 2 f 
1ðuÞ, and so v þW � f 
1ðuÞ.
Both inclusions imply f 
1ðuÞ ¼ v þW.

5.21. Suppose F : V ! U and G : U ! W are linear. Prove

(a) rankðG �FÞ � rankðGÞ, (b) rankðG �FÞ � rankðFÞ.
(a) Because FðVÞ � U , we also have GðFðV ÞÞ � GðUÞ, and so dim½GðFðVÞÞ� � dim½GðUÞ�. Then

rankðG �FÞ ¼ dim½ðG �FÞðVÞ� ¼ dim½GðFðVÞÞ� � dim½GðUÞ� ¼ rankðGÞ.
(b) We have dim½GðFðVÞÞ� � dim½FðVÞ�. Hence,

rankðG �FÞ ¼ dim½ðG �FÞðVÞ� ¼ dim½GðFðVÞÞ� � dim½FðV Þ� ¼ rankðFÞ

5.22. Prove Theorem 5.3: Let F : V ! U be linear. Then,

(a) Im F is a subspace of U, (b) Ker F is a subspace of V.

(a) Because Fð0Þ ¼ 0; we have 0 2 Im F. Now suppose u; u0 2 Im F and a; b 2 K. Because u and u0

belong to the image of F, there exist vectors v; v0 2 V such that FðvÞ ¼ u and Fðv0Þ ¼ u0. Then

Fðav þ bv0Þ ¼ aFðvÞ þ bFðv0Þ ¼ auþ bu0 2 Im F

Thus, the image of F is a subspace of U .

(b) Because Fð0Þ ¼ 0; we have 0 2 Ker F. Now suppose v;w 2 Ker F and a; b 2 K. Because v and w
belong to the kernel of F, FðvÞ ¼ 0 and FðwÞ ¼ 0. Thus,

Fðav þ bwÞ ¼ aFðvÞ þ bFðwÞ ¼ a0þ b0 ¼ 0þ 0 ¼ 0; and so av þ bw 2 Ker F

Thus, the kernel of F is a subspace of V.

5.23. Prove Theorem 5.6: Suppose V has finite dimension and F : V ! U is linear. Then

dim V ¼ dimðKer FÞ þ dimðIm FÞ ¼ nullityðFÞ þ rankðFÞ

Suppose dimðKer FÞ ¼ r and fw1; . . . ;wrg is a basis of Ker F, and suppose dimðIm FÞ ¼ s and
fu1; . . . ; usg is a basis of Im F. (By Proposition 5.4, Im F has finite dimension.) Because every
uj 2 Im F, there exist vectors v1; . . . ; vs in V such that Fðv1Þ ¼ u1; . . . ;FðvsÞ ¼ us. We claim that the set

B ¼ fw1; . . . ;wr; v1; . . . ; vsg
is a basis of V; that is, (i) B spans V, and (ii) B is linearly independent. Once we prove (i) and (ii), then
dim V ¼ r þ s ¼ dimðKer FÞ þ dimðIm FÞ.
(i) B spans V . Let v 2 V . Then FðvÞ 2 Im F. Because the uj span Im F, there exist scalars a1; . . . ; as such

that FðvÞ ¼ a1u1 þ � � � þ asus. Set v̂ ¼ a1v1 þ � � � þ asvs 
 v. Then

Fðv̂Þ ¼ Fða1v1 þ � � � þ asvs 
 vÞ ¼ a1Fðv1Þ þ � � � þ asFðvsÞ 
 FðvÞ
¼ a1u1 þ � � � þ asus 
 FðvÞ ¼ 0

Thus, v̂ 2 Ker F. Because the wi span Ker F, there exist scalars b1; . . . ; br, such that

v̂ ¼ b1w1 þ � � � þ brwr ¼ a1v1 þ � � � þ asvs 
 v

Accordingly,

v ¼ a1v1 þ � � � þ asvs 
 b1w1 
 � � � 
 brwr

Thus, B spans V.
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(ii) B is linearly independent. Suppose

x1w1 þ � � � þ xrwr þ y1v1 þ � � � þ ysvs ¼ 0 ð1Þ
where xi; yj 2 K. Then

0 ¼ Fð0Þ ¼ Fðx1w1 þ � � � þ xrwr þ y1v1 þ � � � þ ysvsÞ
¼ x1Fðw1Þ þ � � � þ xrFðwrÞ þ y1Fðv1Þ þ � � � þ ysFðvsÞ ð2Þ

But FðwiÞ ¼ 0, since wi 2 Ker F, and FðvjÞ ¼ uj. Substituting into (2), we will obtain
y1u1 þ � � � þ ysus ¼ 0. Since the uj are linearly independent, each yj ¼ 0. Substitution into (1) gives
x1w1 þ � � � þ xrwr ¼ 0. Since the wi are linearly independent, each xi ¼ 0. Thus B is linearly
independent.

Singular and Nonsingular Linear Maps, Isomorphisms

5.24. Determine whether or not each of the following linear maps is nonsingular. If not, find a nonzero
vector v whose image is 0.

(a) F : R2 ! R2 defined by Fðx; yÞ ¼ ðx
 y; x
 2yÞ.
(b) G : R2 ! R2 defined by Gðx; yÞ ¼ ð2x
 4y; 3x
 6yÞ.
(a) Find Ker F by setting FðvÞ ¼ 0, where v ¼ ðx; yÞ,

ðx
 y; x
 2yÞ ¼ ð0; 0Þ or
x
 y ¼ 0
x
 2y ¼ 0

or
x
 y ¼ 0

y ¼ 0

The only solution is x ¼ 0, y ¼ 0. Hence, F is nonsingular.

(b) Set Gðx; yÞ ¼ ð0; 0Þ to find Ker G:

ð2x
 4y; 3x
 6yÞ ¼ ð0; 0Þ or
2x
 4y ¼ 0
3x
 6y ¼ 0

or x
 2y ¼ 0

The system has nonzero solutions, because y is a free variable. Hence, G is singular. Let y ¼ 1 to obtain
the solution v ¼ ð2; 1Þ, which is a nonzero vector, such that GðvÞ ¼ 0.

5.25. The linear map F : R2 ! R2 defined by Fðx; yÞ ¼ ðx
 y; x
 2yÞ is nonsingular by the previous
Problem 5.24. Find a formula for F
1.

Set Fðx; yÞ ¼ ða; bÞ, so that F
1ða; bÞ ¼ ðx; yÞ. We have

ðx
 y; x
 2yÞ ¼ ða; bÞ or
x
 y ¼ a
x
 2y ¼ b

or
x
 y ¼ a

y ¼ a
 b

Solve for x and y in terms of a and b to get x ¼ 2a
 b, y ¼ a
 b. Thus,

F
1ða; bÞ ¼ ð2a
 b; a
 bÞ or F
1ðx; yÞ ¼ ð2x
 y; x
 yÞ
(The second equation is obtained by replacing a and b by x and y, respectively.)

5.26. Let G : R2 ! R3 be defined by Gðx; yÞ ¼ ðxþ y; x
 2y; 3xþ yÞ.
(a) Show that G is nonsingular. (b) Find a formula for G
1.

(a) Set Gðx; yÞ ¼ ð0; 0; 0Þ to find Ker G. We have

ðxþ y; x
 2y; 3xþ yÞ ¼ ð0; 0; 0Þ or xþ y ¼ 0; x
 2y ¼ 0; 3xþ y ¼ 0

The only solution is x ¼ 0, y ¼ 0; hence, G is nonsingular.

(b) Although G is nonsingular, it is not invertible, because R2 and R3 have different dimensions. (Thus,
Theorem 5.9 does not apply.) Accordingly, G
1 does not exist.
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5.27. Suppose that F : V ! U is linear and that V is of finite dimension. Show that V and the image of
F have the same dimension if and only if F is nonsingular. Determine all nonsingular linear
mappings T : R4 ! R3.

By Theorem 5.6, dim V ¼ dimðIm FÞ þ dimðKer FÞ. Hence, V and Im F have the same dimension if
and only if dimðKer FÞ ¼ 0 or Ker F ¼ f0g (i.e., if and only if F is nonsingular).

Because dimR3 is less than dimR4, we have that dimðIm TÞ is less than the dimension of the domain
R4 of T . Accordingly no linear mapping T : R4 ! R3 can be nonsingular.

5.28. Prove Theorem 5.7: Let F : V ! U be a nonsingular linear mapping. Then the image of any
linearly independent set is linearly independent.

Suppose v1; v2; . . . ; vn are linearly independent vectors in V. We claim that Fðv1Þ;Fðv2Þ; . . . ;FðvnÞ are
also linearly independent. Suppose a1Fðv1Þ þ a2Fðv2Þ þ � � � þ anFðvnÞ ¼ 0, where ai 2 K. Because F is
linear, Fða1v1 þ a2v2 þ � � � þ anvnÞ ¼ 0. Hence,

a1v1 þ a2v2 þ � � � þ anvn 2 Ker F

But F is nonsingular—that is, Ker F ¼ f0g. Hence, a1v1 þ a2v2 þ � � � þ anvn ¼ 0. Because the vi are
linearly independent, all the ai are 0. Accordingly, the FðviÞ are linearly independent. Thus, the theorem is
proved.

5.29. Prove Theorem 5.9: Suppose V has finite dimension and dim V ¼ dim U. Suppose F : V ! U is
linear. Then F is an isomorphism if and only if F is nonsingular.

If F is an isomorphism, then only 0 maps to 0; hence, F is nonsingular. Conversely, suppose F is
nonsingular. Then dimðKer FÞ ¼ 0. By Theorem 5.6, dim V ¼ dimðKer FÞ þ dimðIm FÞ. Thus,

dim U ¼ dim V ¼ dimðIm FÞ
Because U has finite dimension, Im F ¼ U . This means F maps V onto U. Thus, F is one-to-one and onto;
that is, F is an isomorphism.

Operations with Linear Maps

5.30. Define F : R3 ! R2 and G : R3 ! R2 by Fðx; y; zÞ ¼ ð2x; yþ zÞ and Gðx; y; zÞ ¼ ðx
 z; yÞ.
Find formulas defining the maps: (a) F þ G, (b) 3F, (c) 2F 
 5G.

(a) ðF þ GÞðx; y; zÞ ¼ Fðx; y; zÞ þ Gðx; y; zÞ ¼ ð2x; yþ zÞ þ ðx
 z; yÞ ¼ ð3x
 z; 2yþ zÞ
(b) ð3FÞðx; y; zÞ ¼ 3Fðx; y; zÞ ¼ 3ð2x; yþ zÞ ¼ ð6x; 3yþ 3zÞ
(c) ð2F 
 5GÞðx; y; zÞ ¼ 2Fðx; y; zÞ 
 5Gðx; y; zÞ ¼ 2ð2x; yþ zÞ 
 5ðx
 z; yÞ

¼ ð4x; 2yþ 2zÞ þ ð
5xþ 5z; 
5yÞ ¼ ð
xþ 5z; 
3yþ 2zÞ

5.31. Let F : R3 ! R2 and G : R2 ! R2 be defined by Fðx; y; zÞ ¼ ð2x; yþ zÞ and Gðx; yÞ ¼ ðy; xÞ.
Derive formulas defining the mappings: (a) G �F, (b) F �G.

(a) ðG �FÞðx; y; zÞ ¼ GðFðx; y; zÞÞ ¼ Gð2x; yþ zÞ ¼ ðyþ z; 2xÞ
(b) The mapping F �G is not defined, because the image of G is not contained in the domain of F.

5.32. Prove: (a) The zero mapping 0, defined by 0ðvÞ ¼ 0 2 U for every v 2 V , is the zero element of
HomðV ;UÞ. (b) The negative of F 2 HomðV ;UÞ is the mapping ð
1ÞF, that is, 
F ¼ ð
1ÞF.

Let F 2 HomðV ;UÞ. Then, for every v 2 V :

ðF þ 0ÞðvÞ ¼ FðvÞ þ 0ðvÞ ¼ FðvÞ þ 0 ¼ FðvÞðaÞ
Because ðF þ 0ÞðvÞ ¼ FðvÞ for every v 2 V , we have F þ 0 ¼ F. Similarly, 0þ F ¼ F:

ðF þ ð
1ÞFÞðvÞ ¼ FðvÞ þ ð
1ÞFðvÞ ¼ FðvÞ 
 FðvÞ ¼ 0 ¼ 0ðvÞðbÞ
Thus, F þ ð
1ÞF ¼ 0: Similarly ð
1ÞF þ F ¼ 0: Hence, 
F ¼ ð
1ÞF:
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5.33. Suppose F1;F2; . . . ;Fn are linear maps from V into U . Show that, for any scalars a1; a2; . . . ; an,
and for any v 2 V ,

ða1F1 þ a2F2 þ � � � þ anFnÞðvÞ ¼ a1F1ðvÞ þ a2F2ðvÞ þ � � � þ anFnðvÞ

The mapping a1F1 is defined by ða1F1ÞðvÞ ¼ a1FðvÞ. Hence, the theorem holds for n ¼ 1. Accordingly,
by induction,

ða1F1 þ a2F2 þ � � � þ anFnÞðvÞ ¼ ða1F1ÞðvÞ þ ða2F2 þ � � � þ anFnÞðvÞ
¼ a1F1ðvÞ þ a2F2ðvÞ þ � � � þ anFnðvÞ

5.34. Consider linear mappings F : R3 ! R2, G : R3 ! R2, H : R3 ! R2 defined by

Fðx; y; zÞ ¼ ðxþ yþ z; xþ yÞ; Gðx; y; zÞ ¼ ð2xþ z; xþ yÞ; Hðx; y; zÞ ¼ ð2y; xÞ
Show that F, G, H are linearly independent [as elements of HomðR3;R2Þ].

Suppose, for scalars a; b; c 2 K,

aF þ bG þ cH ¼ 0 ð1Þ
(Here 0 is the zero mapping.) For e1 ¼ ð1; 0; 0Þ 2 R3, we have 0ðe1Þ ¼ ð0; 0Þ and

ðaF þ bG þ cHÞðe1Þ ¼ aFð1; 0; 0Þ þ bGð1; 0; 0Þ þ cHð1; 0; 0Þ
¼ að1; 1Þ þ bð2; 1Þ þ cð0; 1Þ ¼ ðaþ 2b; aþ bþ cÞ

Thus by (1), ðaþ 2b; aþ bþ cÞ ¼ ð0; 0Þ and so

aþ 2b ¼ 0 and aþ bþ c ¼ 0 ð2Þ
Similarly for e2 ¼ ð0; 1; 0Þ 2 R3, we have 0ðe2Þ ¼ ð0; 0Þ and

ðaF þ bG þ cHÞðe2Þ ¼ aFð0; 1; 0Þ þ bGð0; 1; 0Þ þ cHð0; 1; 0Þ
¼ að1; 1Þ þ bð0; 1Þ þ cð2; 0Þ ¼ ðaþ 2c; aþ bÞ

Thus,
aþ 2c ¼ 0 and aþ b ¼ 0 ð3Þ

Using (2) and (3), we obtain

a ¼ 0; b ¼ 0; c ¼ 0 ð4Þ
Because (1) implies (4), the mappings F, G, H are linearly independent.

5.35. Let k be a nonzero scalar. Show that a linear map T is singular if and only if kT is singular. Hence,
T is singular if and only if 
T is singular.

Suppose T is singular. Then TðvÞ ¼ 0 for some vector v 6¼ 0. Hence,

ðkTÞðvÞ ¼ kTðvÞ ¼ k0 ¼ 0

and so kT is singular.
Now suppose kT is singular. Then ðkTÞðwÞ ¼ 0 for some vector w 6¼ 0. Hence,

TðkwÞ ¼ kTðwÞ ¼ ðkTÞðwÞ ¼ 0

But k 6¼ 0 and w 6¼ 0 implies kw 6¼ 0. Thus, T is also singular.

5.36. Find the dimension d of:

(a) HomðR3;R4Þ, (b) HomðR5;R3Þ, (c) HomðP3ðtÞ;R2Þ, (d) HomðM2;3;R
4Þ.

Use dim½HomðV;UÞ� ¼ mn, where dim V ¼ m and dim U ¼ n.

(a) d ¼ 3ð4Þ ¼ 12. (c) Because dimP3ðtÞ ¼ 4, d ¼ 4ð2Þ ¼ 8.

(b) d ¼ 5ð3Þ ¼ 15. (d) Because dimM2;3 ¼ 6, d ¼ 6ð4Þ ¼ 24.
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5.37. Prove Theorem 5.11. Suppose dim V ¼ m and dim U ¼ n. Then dim½HomðV ;UÞ� ¼ mn.

Suppose fv1; . . . ; vmg is a basis of V and fu1; . . . ; ung is a basis of U. By Theorem 5.2, a linear mapping
in HomðV;UÞ is uniquely determined by arbitrarily assigning elements of U to the basis elements vi of V. We
define

Fij 2 HomðV;UÞ; i ¼ 1; . . . ;m; j ¼ 1; . . . ; n

to be the linear mapping for which FijðviÞ ¼ uj, and FijðvkÞ ¼ 0 for k 6¼ i. That is, Fij maps vi into uj and the
other v’s into 0. Observe that fFijg contains exactly mn elements; hence, the theorem is proved if we show
that it is a basis of HomðV;UÞ.

Proof that fFijg generates HomðV;UÞ. Consider an arbitrary function F 2 HomðV;UÞ. Suppose
Fðv1Þ ¼ w1;Fðv2Þ ¼ w2; . . . ;FðvmÞ ¼ wm. Because wk 2 U , it is a linear combination of the u’s; say,

wk ¼ ak1u1 þ ak2u2 þ � � � þ aknun; k ¼ 1; . . . ;m; aij 2 K ð1Þ

Consider the linear mapping G ¼Pm
i¼1

Pn
j¼1 aijFij. Because G is a linear combination of the Fij, the proof

that fFijg generates HomðV;UÞ is complete if we show that F ¼ G.
We now compute GðvkÞ; k ¼ 1; . . . ;m. Because FijðvkÞ ¼ 0 for k 6¼ i and FkiðvkÞ ¼ ui;

GðvkÞ ¼
Pm
i¼1

Pn
j¼1

aijFijðvkÞ ¼
Pn
j¼1

akjFkjðvkÞ ¼
Pn
j¼1

akjuj

¼ ak1u1 þ ak2u2 þ � � � þ aknun

Thus, by (1), GðvkÞ ¼ wk for each k. But FðvkÞ ¼ wk for each k. Accordingly, by Theorem 5.2, F ¼ G;
hence, fFijg generates HomðV;UÞ.

Proof that fFijg is linearly independent. Suppose, for scalars cij 2 K,Pm
i¼1

Pn
j¼1

cijFij ¼ 0

For vk ; k ¼ 1; . . . ;m,

0 ¼ 0ðvkÞ ¼
Pm
i¼1

Pn
j¼1

cijFijðvkÞ ¼
Pn
j¼1

ckjFkjðvkÞ ¼
Pn
j¼1

ckjuj

¼ ck1u1 þ ck2u2 þ � � � þ cknun

But the ui are linearly independent; hence, for k ¼ 1; . . . ;m, we have ck1 ¼ 0; ck2 ¼ 0; . . . ; ckn ¼ 0. In other
words, all the cij ¼ 0, and so fFijg is linearly independent.

5.38. Prove Theorem 5.12: (i) G � ðF þ F 0Þ ¼ G �F þ G �F 0. (ii) ðG þ G0Þ �F ¼ G �F þ G0 �F.
(iii) kðG �FÞ ¼ ðkGÞ �F ¼ G � ðkFÞ.

(i) For every v 2 V ,

ðG � ðF þ F 0ÞÞðvÞ ¼ GððF þ F 0ÞðvÞÞ ¼ GðFðvÞ þ F 0ðvÞÞ
¼ GðFðvÞÞ þ GðF 0ðvÞÞ ¼ ðG �FÞðvÞ þ ðG �F 0ÞðvÞ ¼ ðG �F þ G �F 0ÞðvÞ

Thus, G � ðF þ F 0Þ ¼ G �F þ G �F 0.

(ii) For every v 2 V,

ððGþ G0Þ �FÞðvÞ ¼ ðGþ G0ÞðFðvÞÞ ¼ GðFðvÞÞ þ G0ðFðvÞÞ
¼ ðG �FÞðvÞ þ ðG0 �FÞðvÞ ¼ ðG �F þ G0 �FÞðvÞ

Thus, ðG þ G0Þ �F ¼ G �F þ G0 �F.
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(iii) For every v 2 V,

ðkðG �FÞÞðvÞ ¼ kðG �FÞðvÞ ¼ kðGðFðvÞÞÞ ¼ ðkGÞðFðvÞÞ ¼ ðkG �FÞðvÞ
and

ðkðG �FÞÞðvÞ ¼ kðG �FÞðvÞ ¼ kðGðFðvÞÞÞ ¼ GðkFðvÞÞ ¼ GððkFÞðvÞÞ ¼ ðG � kFÞðvÞ

Accordingly, kðG �FÞ ¼ ðkGÞ �F ¼ G � ðkFÞ. (We emphasize that two mappings are shown to be equal
by showing that each of them assigns the same image to each point in the domain.)

Algebra of Linear Maps

5.39. Let F and G be the linear operators on R2 defined by Fðx; yÞ ¼ ðy; xÞ and Gðx; yÞ ¼ ð0; xÞ. Find
formulas defining the following operators:
(a) F þ G, (b) 2F 
 3G, (c) FG, (d) GF, (e) F2, (f ) G2.

(a) ðF þ GÞðx; yÞ ¼ Fðx; yÞ þ Gðx; yÞ ¼ ðy; xÞ þ ð0; xÞ ¼ ðy; 2xÞ.
(b) ð2F 
 3GÞðx; yÞ ¼ 2Fðx; yÞ 
 3Gðx; yÞ ¼ 2ðy; xÞ 
 3ð0; xÞ ¼ ð2y;
xÞ.
(c) ðFGÞðx; yÞ ¼ FðGðx; yÞÞ ¼ Fð0; xÞ ¼ ðx; 0Þ.
(d) ðGFÞðx; yÞ ¼ GðFðx; yÞÞ ¼ Gðy; xÞ ¼ ð0; yÞ.
(e) F2ðx; yÞ ¼ FðFðx; yÞÞ ¼ Fðy; xÞ ¼ ðx; yÞ. (Note that F2 ¼ I , the identity mapping.)

(f ) G2ðx; yÞ ¼ GðGðx; yÞÞ ¼ Gð0; xÞ ¼ ð0; 0Þ. (Note that G2 ¼ 0, the zero mapping.)

5.40. Consider the linear operator T on R3 defined by Tðx; y; zÞ ¼ ð2x; 4x
 y; 2xþ 3y
 zÞ.
(a) Show that T is invertible. Find formulas for (b) T
1, (c) T2, (d ) T
2.

(a) Let W ¼ Ker T . We need only show that T is nonsingular (i.e., that W ¼ f0g). Set Tðx; y; zÞ ¼ ð0; 0; 0Þ,
which yields

Tðx; y; zÞ ¼ ð2x; 4x
 y; 2xþ 3y
 zÞ ¼ ð0; 0; 0Þ

Thus, W is the solution space of the homogeneous system

2x ¼ 0; 4x
 y ¼ 0; 2xþ 3y
 z ¼ 0

which has only the trivial solution (0, 0, 0). Thus, W ¼ f0g. Hence, T is nonsingular, and so T is
invertible.

(b) Set Tðx; y; zÞ ¼ ðr; s; tÞ [and so T
1ðr; s; tÞ ¼ ðx; y; zÞ]. We have

ð2x; 4x
 y; 2xþ 3y
 zÞ ¼ ðr; s; tÞ or 2x ¼ r; 4x
 y ¼ s; 2xþ 3y
 z ¼ t

Solve for x, y, z in terms of r, s, t to get x ¼ 1
2 r, y ¼ 2r 
 s, z ¼ 7r 
 3s
 t. Thus,

T
1ðr; s; tÞ ¼ ð12 r; 2r 
 s; 7r 
 3s
 tÞ or T
1ðx; y; zÞ ¼ ð12 x; 2x
 y; 7x
 3y
 zÞ

(c) Apply T twice to get

T2ðx; y; zÞ ¼ Tð2x; 4x
 y; 2xþ 3y
 zÞ
¼ ½4x; 4ð2xÞ 
 ð4x
 yÞ; 2ð2xÞ þ 3ð4x
 yÞ 
 ð2xþ 3y
 zÞ�
¼ ð4x; 4xþ y; 14x
 6yþ zÞ

(d) Apply T
1 twice to get

T
 ðx; y; zÞ ¼ T
 ð12 x; 2x
 y; 7x
 3y
 zÞ
¼ ½14 x; 2ð12 xÞ 
 ð2x
 yÞ; 7ð12 xÞ 
 3ð2x
 yÞ 
 ð7x
 3y
 zÞ�
¼ ð14 x; 
xþ y; 
 19

2 xþ 6yþ zÞ
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5.41. Let V be of finite dimension and let T be a linear operator on V for which TR ¼ I , for some
operator R on V. (We call R a right inverse of T .)

(a) Show that T is invertible. (b) Show that R ¼ T
1.

(c) Give an example showing that the above need not hold if V is of infinite dimension.

(a) Let dim V ¼ n. By Theorem 5.14, T is invertible if and only if T is onto; hence, T is invertible if and
only if rankðTÞ ¼ n. We have n ¼ rankðIÞ ¼ rankðTRÞ � rankðTÞ � n. Hence, rankðTÞ ¼ n and T is
invertible.

(b) TT
1 ¼ T
1T ¼ I . Then R ¼ IR ¼ ðT
1TÞR ¼ T
1ðTRÞ ¼ T
1I ¼ T
1.

(c) Let V be the space of polynomials in t over K; say, pðtÞ ¼ a0 þ a1t þ a2t2 þ � � � þ ast
s. Let T and R be

the operators on V defined by

Tð pðtÞÞ ¼ 0þ a1 þ a2t þ � � � þ ast
s
1 and Rð pðtÞÞ ¼ a0t þ a1t2 þ � � � þ ast

sþ1

We have

ðTRÞð pðtÞÞ ¼ TðRð pðtÞÞÞ ¼ Tða0t þ a1t2 þ � � � þ ast
sþ1Þ ¼ a0 þ a1t þ � � � þ ast

s ¼ pðtÞ
and so TR ¼ I , the identity mapping. On the other hand, if k 2 K and k 6¼ 0, then

ðRTÞðkÞ ¼ RðTðkÞÞ ¼ Rð0Þ ¼ 0 6¼ k

Accordingly, RT 6¼ I .

5.42. Let F and G be linear operators on R2 defined by Fðx; yÞ ¼ ð0; xÞ and Gðx; yÞ ¼ ðx; 0Þ. Show that
(a) GF ¼ 0, the zero mapping, but FG 6¼ 0. (b) G2 ¼ G.

(a) ðGFÞðx; yÞ ¼ GðFðx; yÞÞ ¼ Gð0; xÞ ¼ ð0; 0Þ. Because GF assigns 0 ¼ ð0; 0Þ to every vector (x; y) in R2,
it is the zero mapping; that is, GF ¼ 0.

On the other hand, ðFGÞðx; yÞ ¼ FðGðx; yÞÞ ¼ Fðx; 0Þ ¼ ð0; xÞ. For example, ðFGÞð2; 3Þ ¼ ð0; 2Þ.
Thus, FG 6¼ 0, as it does not assign 0 ¼ ð0; 0Þ to every vector in R2.

(b) For any vector (x; y) in R2, we have G2ðx; yÞ ¼ GðGðx; yÞÞ ¼ Gðx; 0Þ ¼ ðx; 0Þ ¼ Gðx; yÞ. Hence, G2 ¼ G.

5.43. Find the dimension of (a) AðR4Þ, (b) AðP2ðtÞÞ, (c) AðM2;3).

Use dim½AðVÞ� ¼ n2 where dim V ¼ n. Hence, (a) dim½AðR4Þ� ¼ 42 ¼ 16, (b) dim½AðP2ðtÞÞ� ¼ 32 ¼ 9,
(c) dim½AðM2;3Þ� ¼ 62 ¼ 36.

5.44. Let E be a linear operator on V for which E2 ¼ E. (Such an operator is called a projection.) Let U
be the image of E, and let W be the kernel. Prove

(a) If u 2 U, then EðuÞ ¼ u (i.e., E is the identity mapping on U ).

(b) If E 6¼ I , then E is singular—that is, EðvÞ ¼ 0 for some v 6¼ 0.

(c) V ¼ U �W.

(a) If u 2 U, the image of E, then EðvÞ ¼ u for some v 2 V. Hence, using E2 ¼ E, we have

u ¼ EðvÞ ¼ E2ðvÞ ¼ EðEðvÞÞ ¼ EðuÞ
(b) If E 6¼ I , then for some v 2 V, EðvÞ ¼ u, where v 6¼ u. By (i), EðuÞ ¼ u. Thus,

Eðv 
 uÞ ¼ EðvÞ 
 EðuÞ ¼ u
 u ¼ 0; where v 
 u 6¼ 0

(c) We first show that V ¼ U þW. Let v 2 V. Set u ¼ EðvÞ and w ¼ v
 EðvÞ. Then

v ¼ EðvÞ þ v 
 EðvÞ ¼ uþ w

By deflnition, u ¼ EðvÞ 2 U, the image of E. We now show that w 2 W, the kernel of E,

EðwÞ ¼ Eðv 
 EðvÞÞ ¼ EðvÞ 
 E2ðvÞ ¼ EðvÞ 
 EðvÞ ¼ 0

and thus w 2 W. Hence, V ¼ U þW.
We next show that U \W ¼ f0g. Let v 2 U \W. Because v 2 U, EðvÞ ¼ v by part (a). Because

v 2 W, EðvÞ ¼ 0. Thus, v ¼ EðvÞ ¼ 0 and so U \W ¼ f0g.
The above two properties imply that V ¼ U �W.
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SUPPLEMENTARY PROBLEMS

Mappings

5.45. Determine the number of different mappings from ðaÞ f1; 2g into f1; 2; 3g; ðbÞ f1; 2; . . . ; rg into f1; 2; . . . ; sg:
5.46. Let f : R! R and g : R! R be defined by f ðxÞ ¼ x2 þ 3xþ 1 and gðxÞ ¼ 2x
 3. Find formulas defining

the composition mappings: (a) f � g; (b) g � f ; (c) g � g; (d) f � f.

5.47. For each mappings f : R ! R find a formula for its inverse: (a) f ðxÞ ¼ 3x
 7, (b) f ðxÞ ¼ x3 þ 2.

5.48. For any mapping f : A! B, show that 1B � f ¼ f ¼ f � 1A.

Linear Mappings

5.49. Show that the following mappings are linear:

(a) F : R3 ! R2 defined by Fðx; y; zÞ ¼ ðxþ 2y
 3z; 4x
 5yþ 6zÞ.
(b) F : R2 ! R2 defined by Fðx; yÞ ¼ ðaxþ by; cxþ dyÞ, where a, b, c, d belong to R.

5.50. Show that the following mappings are not linear:

(a) F : R2 ! R2 defined by Fðx; yÞ ¼ ðx2; y2Þ.
(b) F : R3 ! R2 defined by Fðx; y; zÞ ¼ ðxþ 1; yþ zÞ.
(c) F : R2 ! R2 defined by Fðx; yÞ ¼ ðxy; yÞ.
(d) F : R3 ! R2 defined by Fðx; y; zÞ ¼ ðjxj; yþ zÞ.

5.51. Find Fða; bÞ, where the linear map F : R2 ! R2 is defined by Fð1; 2Þ ¼ ð3;
1Þ and Fð0; 1Þ ¼ ð2; 1Þ.
5.52. Find a 2� 2 matrix A that maps

(a) ð1; 3ÞT and ð1; 4ÞT into ð
2; 5ÞT and ð3;
1ÞT , respectively.

(b) ð2;
4ÞT and ð
1; 2ÞT into ð1; 1ÞT and ð1; 3ÞT , respectively.

5.53. Find a 2� 2 singular matrix B that maps ð1; 1ÞT into ð1; 3ÞT .

5.54. Let V be the vector space of real n-square matrices, and let M be a fixed nonzero matrix in V. Show that the
first two of the following mappings T : V ! V are linear, but the third is not:
(a) TðAÞ ¼ MA, (b) TðAÞ ¼ AM þMA, (c) TðAÞ ¼ M þ A.

5.55. Give an example of a nonlinear map F : R2 ! R2 such that F
1ð0Þ ¼ f0g but F is not one-to-one.

5.56. Let F : R2 ! R2 be defined by Fðx; yÞ ¼ ð3xþ 5y; 2xþ 3yÞ, and let S be the unit circle in R2. (S consists
of all points satisfying x2 þ y2 ¼ 1.) Find (a) the image FðSÞ, (b) the preimage F
1ðSÞ.

5.57. Consider the linear map G : R3 ! R3 defined by Gðx; y; zÞ ¼ ðxþ yþ z; y
 2z; y
 3zÞ and the unit
sphere S2 in R3, which consists of the points satisfying x2 þ y2 þ z2 ¼ 1. Find (a) GðS2Þ, (b) G
1ðS2Þ.

5.58. Let H be the plane xþ 2y
 3z ¼ 4 in R3 and let G be the linear map in Problem 5.57. Find
(a) GðHÞ, (b) G
1ðHÞ.

5.59. Let W be a subspace of V. The inclusion map, denoted by i : W ,! V, is defined by iðwÞ ¼ w for every
w 2 W . Show that the inclusion map is linear.

5.60. Suppose F : V ! U is linear. Show that Fð
vÞ ¼ 
FðvÞ.

Kernel and Image of Linear Mappings

5.61. For each linear map F find a basis and the dimension of the kernel and the image of F:

(a) F : R3 ! R3 defined by Fðx; y; zÞ ¼ ðxþ 2y
 3z; 2xþ 5y
 4z; xþ 4yþ zÞ,
(b) F : R4 ! R3 defined by Fðx; y; z; tÞ ¼ ðxþ 2yþ 3zþ 2t; 2xþ 4yþ 7zþ 5t; xþ 2yþ 6zþ 5tÞ.
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5.62. For each linear map G, find a basis and the dimension of the kernel and the image of G:

(a) G : R3 ! R2 defined by Gðx; y; zÞ ¼ ðxþ yþ z; 2xþ 2yþ 2zÞ,
(b) G : R3 ! R2 defined by Gðx; y; zÞ ¼ ðxþ y; yþ zÞ,
(c) G : R5 ! R3 defined by

Gðx; y; z; s; tÞ ¼ ðxþ 2yþ 2zþ sþ t; xþ 2yþ 3zþ 2s
 t; 3xþ 6yþ 8zþ 5s
 tÞ:
5.63. Each of the following matrices determines a linear map from R4 into R3:

(a) A ¼
1 2 0 1
2 
1 2 
1
1 
3 2 
2

24 35, (b) B ¼
1 0 2 
1
2 3 
1 1

2 0 
5 3

24 35.

Find a basis as well as the dimension of the kernel and the image of each linear map.

5.64. Find a linear mapping F : R3 ! R3 whose image is spanned by (1, 2, 3) and (4, 5, 6).

5.65. Find a linear mapping G : R4 ! R3 whose kernel is spanned by (1, 2, 3, 4) and (0, 1, 1, 1).

5.66. Let V ¼ P10ðtÞ, the vector space of polynomials of degree �10. Consider the linear map D4 : V ! V, where
D4 denotes the fourth derivative d4ð f Þ=dt4. Find a basis and the dimension of
(a) the image of D4; (b) the kernel of D4.

5.67. Suppose F : V ! U is linear. Show that (a) the image of any subspace of V is a subspace of U ;
(b) the preimage of any subspace of U is a subspace of V.

5.68. Show that if F : V ! U is onto, then dim U � dim V. Determine all linear maps F : R3 ! R4 that are onto.

5.69. Consider the zero mapping 0 : V ! U defined by 0ðvÞ ¼ 0; 8 v 2 V . Find the kernel and the image of 0.

Operations with linear Mappings

5.70. Let F : R3 ! R2 and G : R3 ! R2 be defined by Fðx; y; zÞ ¼ ðy; xþ zÞ and Gðx; y; zÞ ¼ ð2z; x
 yÞ. Find
formulas defining the mappings F þ G and 3F 
 2G.

5.71. Let H : R2 ! R2 be defined by Hðx; yÞ ¼ ðy; 2xÞ. Using the maps F and G in Problem 5.70, find formulas
defining the mappings: (a) H �F and H �G, (b) F �H and G �H , (c) H � ðF þ GÞ and H �F þ H �G.

5.72. Show that the following mappings F, G, H are linearly independent:

(a) F;G;H 2 HomðR2;R2Þ defined by Fðx; yÞ ¼ ðx; 2yÞ, Gðx; yÞ ¼ ðy; xþ yÞ, Hðx; yÞ ¼ ð0; xÞ,
(b) F;G;H 2 HomðR3;RÞ defined by Fðx; y; zÞ ¼ xþ yþ z, Gðx; y; zÞ ¼ yþ z, Hðx; y; zÞ ¼ x
 z.

5.73. For F;G 2 HomðV;UÞ, show that rankðF þ GÞ � rankðFÞ þ rankðGÞ. (Here V has finite dimension.)

5.74. Let F : V ! U and G : U ! V be linear. Show that if F and G are nonsingular, then G �F is nonsingular.
Give an example where G �F is nonsingular but G is not. [Hint: Let dim V < dim U :�

5.75. Find the dimension d of (a) HomðR2;R8Þ, (b) HomðP4ðtÞ;R3Þ, (c) HomðM2;4;P2ðtÞÞ.

5.76. Determine whether or not each of the following linear maps is nonsingular. If not, find a nonzero vector v
whose image is 0; otherwise find a formula for the inverse map:

(a) F : R3 ! R3 defined by Fðx; y; zÞ ¼ ðxþ yþ z; 2xþ 3yþ 5z; xþ 3yþ 7zÞ,
(b) G : R3 ! P2ðtÞ defined by Gðx; y; zÞ ¼ ðxþ yÞt2 þ ðxþ 2yþ 2zÞt þ yþ z,

(c) H : R2 ! P2ðtÞ defined by Hðx; yÞ ¼ ðxþ 2yÞt2 þ ðx
 yÞt þ xþ y.

5.77. When can dim ½HomðV;UÞ� ¼ dim V?
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Algebra of Linear Operators

5.78. Let F and G be the linear operators on R2 defined by Fðx; yÞ ¼ ðxþ y; 0Þ and Gðx; yÞ ¼ ð
y; xÞ. Find
formulas defining the linear operators: (a) F þ G, (b) 5F 
 3G, (c) FG, (d) GF, (e) F2, ( f ) G2.

5.79. Show that each linear operator T on R2 is nonsingular and find a formula for T
1 , where
(a) Tðx; yÞ ¼ ðxþ 2y; 2xþ 3yÞ, (b) Tðx; yÞ ¼ ð2x
 3y; 3x
 4yÞ.

5.80. Show that each of the following linear operators T on R3 is nonsingular and find a formula for T
1, where
(a) Tðx; y; zÞ ¼ ðx
 3y
 2z; y
 4z; zÞ; (b) Tðx; y; zÞ ¼ ðxþ z; x
 y; yÞ.

5.81. Find the dimension of AðVÞ, where (a) V ¼ R7, (b) V ¼ P5ðtÞ, (c) V ¼M3;4.

5.82. Which of the following integers can be the dimension of an algebra AðVÞ of linear maps:
5, 9, 12, 25, 28, 36, 45, 64, 88, 100?

5.83. Let T be the linear operator on R2 defined by Tðx; yÞ ¼ ðxþ 2y; 3xþ 4yÞ. Find a formula for f ðTÞ, where
(a) f ðtÞ ¼ t2 þ 2t 
 3, (b) f ðtÞ ¼ t2 
 5t 
 2.

Miscellaneous Problems

5.84. Suppose F : V ! U is linear and k is a nonzero scalar. Prove that the maps F and kF have the same kernel
and the same image.

5.85. Suppose F and G are linear operators on V and that F is nonsingular. Assume that V has finite dimension.
Show that rankðFGÞ ¼ rankðGFÞ ¼ rankðGÞ.

5.86. Suppose V has finite dimension. Suppose T is a linear operator on V such that rankðT2Þ ¼ rankðTÞ. Show
that Ker T \ Im T ¼ f0g.

5.87. Suppose V ¼ U �W . Let E1 and E2 be the linear operators on V defined by E1ðvÞ ¼ u, E2ðvÞ ¼ w, where
v ¼ uþ w, u 2 U , w 2 W. Show that (a) E2

1 ¼ E1 and E2
2 ¼ E2 (i.e., that E1 and E2 are projections);

(b) E1 þ E2 ¼ I , the identity mapping; (c) E1E2 ¼ 0 and E2E1 ¼ 0.

5.88. Let E1 and E2 be linear operators on V satisfying parts (a), (b), (c) of Problem 5.88. Prove

V ¼ Im E1 � Im E2

5.89. Let v and w be elements of a real vector space V. The line segment L from v to v þ w is defined to be the set
of vectors v þ tw for 0 � t � 1. (See Fig. 5.6.)

(a) Show that the line segment L between vectors v and u consists of the points:
(i) ð1
 tÞv þ tu for 0 � t � 1, (ii) t1v þ t2u for t1 þ t2 ¼ 1, t1 � 0, t2 � 0.

(b) Let F : V ! U be linear. Show that the image FðLÞ of a line segment L in V is a line segment in U .

Figure 5-6
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5.90. Let F : V ! U be linear and let W be a subspace of V . The restriction of F to W is the map FjW : W ! U
defined by FjWðvÞ ¼ FðvÞ for every v in W . Prove the following:
(a) FjW is linear; (b) KerðFjWÞ ¼ ðKer FÞ \W ; (c) ImðFjWÞ ¼ FðWÞ.

5.91. A subset X of a vector space V is said to be convex if the line segment L between any two points (vectors)
P;Q 2 X is contained in X . (a) Show that the intersection of convex sets is convex; (b) suppose F : V ! U
is linear and X is convex. Show that FðX Þ is convex.

ANSWERS TO SUPPLEMENTARY PROBLEMS

5.45. ðaÞ 32 ¼ 9; ðbÞ sr

5.46. (a) ð f � gÞðxÞ ¼ 4x2 þ 1, (b) ðg � f ÞðxÞ ¼ 2x2 þ 6x
 1, (c) ðg � gÞðxÞ ¼ 4x
 9,

(d) ð f � f ÞðxÞ ¼ x4 þ 6x3 þ 14x2 þ 15xþ 5

5.47. (a) f 
1ðxÞ ¼ 1
3 ðxþ 7Þ, (b) f 
1ðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi

x
 23
p

5.49. Fðx; y; zÞ ¼ Aðx; y; zÞT , where (a) A ¼ 1 2 
3
4 
5 6

� �
, (b) A ¼ a b

c d

� �
5.50. (a) u ¼ ð2; 2Þ, k ¼ 3; then FðkuÞ ¼ ð36; 36Þ but kFðuÞ ¼ ð12; 12Þ; (b) Fð0Þ 6¼ 0;

(c) u ¼ ð1; 2Þ, v ¼ ð3; 4Þ; then Fðuþ vÞ ¼ ð24; 6Þ but FðuÞ þ FðvÞ ¼ ð14; 6Þ;
(d) u ¼ ð1; 2; 3Þ, k ¼ 
2; then FðkuÞ ¼ ð2;
10Þ but kFðuÞ ¼ ð
2;
10Þ.

5.51. Fða; bÞ ¼ ð
aþ 2b; 
3aþ bÞ

5.52. (a) A ¼ 
17 5
23 
6

� �
; (b) None. (2;
4) and (
1; 2) are linearly dependent but not (1, 1) and (1, 3).

5.53. B ¼ 1 0
3 0

� �
[Hint: Send ð0; 1ÞT into ð0; 0ÞT .]

5.55. Fðx; yÞ ¼ ðx2; y2Þ

5.56. (a) 13x2 
 42xyþ 34y2 ¼ 1, (b) 13x2 þ 42xyþ 34y2 ¼ 1

5.57. (a) x2 
 8xyþ 26y2 þ 6xz
 38yzþ 14z2 ¼ 1, (b) x2 þ 2xyþ 3y2 þ 2xz
 8yzþ 14z2 ¼ 1

5.58. (a) x
 yþ 2z ¼ 4, (b) xþ 6z ¼ 4

5.61. (a) dimðKer FÞ ¼ 1, fð7;
2; 1Þg; dimðIm FÞ ¼ 2, fð1; 2; 1Þ; ð0; 1; 2Þg;
(b) dimðKer FÞ ¼ 2, fð
2; 1; 0; 0Þ; ð1; 0;
1; 1Þg; dimðIm FÞ ¼ 2, fð1; 2; 1Þ; ð0; 1; 3Þg

5.62. (a) dimðKer GÞ ¼ 2, fð1; 0;
1Þ; ð1;
1; 0Þg; dimðIm GÞ ¼ 1, fð1; 2Þg;
(b) dimðKer GÞ ¼ 1, fð1;
1; 1Þg; Im G ¼ R2, fð1; 0Þ; ð0; 1Þg;
(c) dimðKer GÞ ¼ 3, fð
2; 1; 0; 0; 0Þ; ð1; 0;
1; 1; 0Þ; ð
5; 0; 2; 0; 1Þg; dimðIm GÞ ¼ 2,

fð1; 1; 3Þ; ð0; 1; 2Þg

5.63. (a) dimðKer AÞ ¼ 2, fð4;
2;
5; 0Þ; ð1;
3; 0; 5Þg; dimðIm AÞ ¼ 2, fð1; 2; 1Þ; ð0; 1; 1Þg;
(b) dimðKer BÞ ¼ 1, fð
1; 2

3 ; 1; 1Þg; Im B ¼ R3

5.64. Fðx; y; zÞ ¼ ðxþ 4y; 2xþ 5y; 3xþ 6yÞ
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5.65. Fðx; y; z; tÞ ¼ ðxþ y
 z; 2xþ y
 t; 0Þ

5.66. (a) f1; t; t2; . . . ; t6g, (b) f1; t; t2; t3g

5.68. None, because dim R4 > dimR3:

5.69. Ker 0 ¼ V , Im 0 ¼ f0g

5.70. ðF þ GÞðx; y; zÞ ¼ ðyþ 2z; 2x
 yþ zÞ, ð3F 
 2GÞðx; y; zÞ ¼ ð3y
 4z; xþ 2yþ 3zÞ

5.71. (a) ðH �FÞðx; y; zÞ ¼ ðxþ z; 2yÞ, ðH �GÞðx; y; zÞ ¼ ðx
 y; 4zÞ; (b) not defined;

(c) ðH � ðF þ GÞÞðx; y; zÞ ¼ ðH �F þ H �GÞðx; y; zÞ ¼ ð2x
 yþ z; 2yþ 4zÞ

5.74. Fðx; yÞ ¼ ðx; y; yÞ;Gðx; y; zÞ ¼ ðx; yÞ

5.75. (a) 16, (b) 15, (c) 24

5.76. (a) v ¼ ð2;
3; 1Þ; (b) G
1ðat2 þ bt þ cÞ ¼ ðb
 2c; a
 bþ 2c; 
aþ b
 cÞ;
(c) H is nonsingular, but not invertible, because dimP2ðtÞ > dimR2.

5.77. dim U ¼ 1; that is, U ¼ K.

5.78. (a) ðF þ GÞðx; yÞ ¼ ðx; xÞ; (b) ð5F 
 3GÞðx; yÞ ¼ ð5xþ 8y; 
3xÞ; (c) ðFGÞðx; yÞ ¼ ðx
 y; 0Þ;
(d) ðGFÞðx; yÞ ¼ ð0; xþ yÞ; (e) F2ðx; yÞ ¼ ðxþ y; 0Þ (note that F2 ¼ F); ( f ) G2ðx; yÞ ¼ ð
x; 
yÞ.
[Note that G2 þ I ¼ 0; hence, G is a zero of f ðtÞ ¼ t2 þ 1.]

5.79. (a) T
1ðx; yÞ ¼ ð
3xþ 2y; 2x
 yÞ, (b) T
1ðx; yÞ ¼ ð
4xþ 3y; 
3xþ 2yÞ

5.80. (a) T
1ðx; y; zÞ ¼ ðxþ 3yþ 14z; y
 4z; zÞ, (b) T
1ðx; y; zÞ ¼ ðyþ z; y; x
 y
 zÞ

5.81. (a) 49, (b) 36, (c) 144

5.82. Squares: 9, 25, 36, 64, 100

5.83. (a) Tðx; yÞ ¼ ð6xþ 14y; 21xþ 27yÞ; (b) Tðx; yÞ ¼ ð0; 0Þ—that is, f ðTÞ ¼ 0
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Linear Mappings
and Matrices

6.1 Introduction

Consider a basis S ¼ fu1; u2; . . . ; ung of a vector space V over a field K . For any vector v 2 V , suppose

v ¼ a1u1 þ a2u2 þ � � � þ anun

Then the coordinate vector of v relative to the basis S, which we assume to be a column vector (unless
otherwise stated or implied), is denoted and defined by

½v�S ¼ ½a1; a2; . . . ; an�T

Recall (Section 4.11) that the mapping v 7!½v�S , determined by the basis S, is an isomorphism between V
and Kn.

This chapter shows that there is also an isomorphism, determined by the basis S, between the algebra
AðVÞ of linear operators on V and the algebra M of n-square matrices over K. Thus, every linear mapping
F:V ! V will correspond to an n-square matrix ½F�S determined by the basis S. We will also show how
our matrix representation changes when we choose another basis.

6.2 Matrix Representation of a Linear Operator

Let T be a linear operator (transformation) from a vector space V into itself, and suppose
S ¼ fu1; u2; . . . ; ung is a basis of V . Now Tðu1Þ, Tðu2Þ; . . . ;TðunÞ are vectors in V , and so each is a
linear combination of the vectors in the basis S; say,

Tðu1Þ ¼ a11u1 þ a12u2 þ � � � þ a1nun

Tðu2Þ ¼ a21u1 þ a22u2 þ � � � þ a2nun

::::::::::::::::::::::::::::::::::::::::::::::::::::::
TðunÞ ¼ an1u1 þ an2u2 þ � � � þ annun

The following definition applies.

DEFINITION: The transpose of the above matrix of coefficients, denoted by mSðTÞ or ½T �S , is called
the matrix representation of T relative to the basis S, or simply the matrix of T in the
basis S. (The subscript S may be omitted if the basis S is understood.)

Using the coordinate (column) vector notation, the matrix representation of T may be written in the
form

mSðTÞ ¼ ½T �S ¼ ½Tðu1Þ�S ; ½Tðu2Þ�S ; . . . ; ½Tðu1Þ�S
� �

That is, the columns of mðTÞ are the coordinate vectors of Tðu1Þ, Tðu2Þ; . . . ; TðunÞ, respectively.
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EXAMPLE 6.1 Let F:R2 ! R2 be the linear operator defined by Fðx; yÞ ¼ ð2xþ 3y; 4x
 5yÞ.
(a) Find the matrix representation of F relative to the basis S ¼ fu1; u2g ¼ fð1; 2Þ; ð2; 5Þg.

(1) First find Fðu1Þ, and then write it as a linear combination of the basis vectors u1 and u2. (For notational
convenience, we use column vectors.) We have

Fðu1Þ ¼ F
1
2

� �� �
¼ 8

6

� �
¼ x

1
2

� �
þ y

2
5

� �
and

xþ 2y ¼ 8
2xþ 5y ¼ 
6

Solve the system to obtain x ¼ 52, y ¼ 
22. Hence, Fðu1Þ ¼ 52u1 
 22u2.

(2) Next find Fðu2Þ, and then write it as a linear combination of u1 and u2:

Fðu2Þ ¼ F
2
5

� �� �
¼ 19

17

� �
¼ x

1
2

� �
þ y

2
5

� �
and

xþ 2y ¼ 19
2xþ 5y ¼ 
17

Solve the system to get x ¼ 129, y ¼ 
55. Thus, Fðu2Þ ¼ 129u1 
 55u2.

Now write the coordinates of Fðu1Þ and Fðu2Þ as columns to obtain the matrix

½F�S ¼
52 129

22 
55

� �
(b) Find the matrix representation of F relative to the (usual) basis E ¼ fe1; e2g ¼ fð1; 0Þ; ð0; 1Þg.

Find Fðe1Þ and write it as a linear combination of the usual basis vectors e1 and e2, and then find Fðe2Þ and
write it as a linear combination of e1 and e2. We have

Fðe1Þ ¼ Fð1; 0Þ ¼ ð2; 2Þ ¼ 2e1 þ 4e2

Fðe2Þ ¼ Fð0; 1Þ ¼ ð3;
5Þ ¼ 3e1 
 5e2
and so ½F�E ¼

2 3
4 
5

� �
Note that the coordinates of Fðe1Þ and Fðe2Þ form the columns, not the rows, of ½F�E. Also, note that the
arithmetic is much simpler using the usual basis of R2.

EXAMPLE 6.2 Let V be the vector space of functions with basis S ¼ fsin t; cos t; e3tg, and let D:V ! V
be the differential operator defined by Dð f ðtÞÞ ¼ dð f ðtÞÞ=dt. We compute the matrix representing D in
the basis S:

Dðsin tÞ ¼ cos t ¼ 0ðsin tÞ þ 1ðcos tÞ þ 0ðe3tÞ
Dðcos tÞ ¼ 
 sin t ¼ 
1ðsin tÞ þ 0ðcos tÞ þ 0ðe3tÞ
Dðe3tÞ ¼ 3e3t ¼ 0ðsin tÞ þ 0ðcos tÞ þ 3ðe3tÞ

and so ½D� ¼
0 
1 0

1 0 0

0 0 3

264
375

Note that the coordinates of Dðsin tÞ, Dðcos tÞ, Dðe3tÞ form the columns, not the rows, of ½D�.

Matrix Mappings and Their Matrix Representation

Consider the following matrix A, which may be viewed as a linear operator on R2, and basis S of R2:

A ¼ 3 
2
4 
5

� �
and S ¼ fu1; u2g ¼ 1

2

� �
;

2
5

� �	 �
(We write vectors as columns, because our map is a matrix.) We find the matrix representation of A
relative to the basis S.
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(1) First we write Aðu1Þ as a linear combination of u1 and u2. We have

Aðu1Þ ¼ 3 
2
4 
5

� �
1
2

� �
¼ 
1

6

� �
¼ x

1
2

� �
þ y

2
5

� �
and so

xþ 2y ¼ 
1
2xþ 5y ¼ 
6

Solving the system yields x ¼ 7, y ¼ 
4. Thus, Aðu1Þ ¼ 7u1 
 4u2.

(2) Next we write Aðu2Þ as a linear combination of u1 and u2. We have

Aðu2Þ ¼ 3 
2
4 
5

� �
2
5

� �
¼ 
4


� �

¼ x
1
2

� �
þ y

2
5

� �
and so

xþ 2y ¼ 
4
2xþ 5y ¼ 


Solving the system yields x ¼ y ¼ Aðu2Þ ¼ 1 u2 Writing the coordinates
Aðu1Þ and Aðu2Þ as columns gives us the following matrix representation of A:

½A�S ¼
7

4

� �
Remark: Suppose we want to find the matrix representation of A relative to the usual basis

E ¼ fe1; e2g ¼ f½1; 0�T ; ½0; 1�Tg of R2: We have

Aðe1Þ ¼ 3 
2
4 
5

� �
1
0

� �
¼ 3

4

� �
¼ 3e1 þ 4e2

Aðe2Þ ¼ 3 
2
4 
5

� �
0
1

� �
¼ 
2

5

� �
¼ 
2e1 
 5e2

and so ½A�E ¼
3 
2
4 
5

� �

Note that ½A�E is the original matrix A. This result is true in general:

The matrix representation of any n� n square matrix A over a field K relative to the
usual basis E of Kn is the matrix A itself ; that is;

½A�E ¼ A

Algorithm for Finding Matrix Representations

Next follows an algorithm for finding matrix representations. The first Step 0 is optional. It may be useful
to use it in Step 1(b), which is repeated for each basis vector.

ALGORITHM 6.1: The input is a linear operator T on a vector space V and a basis
S ¼ fu1; u2; . . . ; ung of V . The output is the matrix representation ½T �S .

Step 0. Find a formula for the coordinates of an arbitrary vector v relative to the basis S.

Step 1. Repeat for each basis vector uk in S:

(a) Find TðukÞ.
(b) Write TðukÞ as a linear combination of the basis vectors u1; u2; . . . ; un.

Step 2. Form the matrix ½T �S whose columns are the coordinate vectors in Step 1(b).

EXAMPLE 6.3 Let F:R2 ! R2 be defined by Fðx; yÞ ¼ ð2xþ 3y; 4x
 5yÞ. Find the matrix representa-
tion ½F�S of F relative to the basis S ¼ fu1; u2g ¼ fð1;
2Þ; ð2;
5Þg.
(Step 0) First find the coordinates of ða; bÞ 2 R2 relative to the basis S. We have

a
b

� �
¼ x

1

2

� �
þ y

2

5

� �
or

xþ 2y ¼ a

2x
 5y ¼ b

or
xþ 2y ¼ a

y ¼ 2aþ b
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Solving for x and y in terms of a and b yields x ¼ 5aþ 2b, y ¼ 
2a
 b. Thus,

ða; bÞ ¼ ð5aþ 2bÞu1 þ ð
2a
 bÞu2

(Step 1) Now we find Fðu1Þ and write it as a linear combination of u1 and u2 using the above formula for ða; bÞ,
and then we repeat the process for Fðu2Þ. We have

Fðu1Þ ¼ Fð1;
2Þ ¼ ð
4; 14Þ ¼ 8u1 
 6u2

Fðu2Þ ¼ Fð2;
5Þ ¼ ð
11; 33Þ ¼ 11u1 
 11u2

(Step 2) Finally, we write the coordinates of Fðu1Þ and Fðu2Þ as columns to obtain the required matrix:

½F�S ¼
8 11

6 
11

� �

Properties of Matrix Representations

This subsection gives the main properties of the matrix representations of linear operators T on a vector
space V . We emphasize that we are always given a particular basis S of V .

Our first theorem, proved in Problem 6.9, tells us that the ‘‘action’’ of a linear operator T on a vector v
is preserved by its matrix representation.

THEOREM 6.1: Let T :V ! V be a linear operator, and let S be a (finite) basis of V . Then, for any
vector v in V , ½T �S ½v�S ¼ ½TðvÞ�S .

EXAMPLE 6.4 Consider the linear operator F on R2 and the basis S of Example 6.3; that is,

Fðx; yÞ ¼ ð2xþ 3y; 4x
 5yÞ and S ¼ fu1; u2g ¼ fð1;
2Þ; ð2;
5Þg

Let

v ¼ ð5;
7Þ; and so FðvÞ ¼ ð
11; 55Þ

Using the formula from Example 6.3, we get

½v� ¼ ½11;
3�T and ½FðvÞ� ¼ ½55;
33�T

We verify Theorem 6.1 for this vector v (where ½F� is obtained from Example 6.3):

½F�½v� ¼ 8 11

6 
11

� �
11

3

� �
¼ 55

33

� �
¼ ½FðvÞ�

Given a basis S of a vector space V , we have associated a matrix ½T � to each linear operator T in the
algebra AðV Þ of linear operators on V . Theorem 6.1 tells us that the ‘‘action’’ of an individual linear
operator T is preserved by this representation. The next two theorems (proved in Problems 6.10 and 6.11)
tell us that the three basic operations in AðVÞ with these operators—namely (i) addition, (ii) scalar
multiplication, and (iii) composition—are also preserved.

THEOREM 6.2: Let V be an n-dimensional vector space over K, let S be a basis of V , and let M be
the algebra of n� n matrices over K. Then the mapping

m:AðVÞ !M defined by mðTÞ ¼ ½T �S
is a vector space isomorphism. That is, for any F;G 2 AðVÞ and any k 2 K,

(i) mðF þ GÞ ¼ mðFÞ þ mðGÞ or ½F þ G� ¼ ½F� þ ½G�
(ii) mðkFÞ ¼ kmðFÞ or ½kF� ¼ k½F�
(iii) m is bijective (one-to-one and onto).
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THEOREM 6.3: For any linear operators F;G 2 AðVÞ,
mðG � FÞ ¼ mðGÞmðFÞ or ½G � F� ¼ ½G�½F�

(Here G � F denotes the composition of the maps G and F.)

6.3 Change of Basis

Let V be an n-dimensional vector space over a field K. We have shown that once we have selected a basis
S of V , every vector v 2 V can be represented by means of an n-tuple ½v�S in Kn, and every linear operator
T in AðVÞ can be represented by an n� n matrix over K. We ask the following natural question:

How do our representations change if we select another basis?

In order to answer this question, we first need a definition.

DEFINITION: Let S ¼ fu1; u2; . . . ; ung be a basis of a vector space V; and let S0 ¼ fv1; v2; . . . ; vng
be another basis. (For reference, we will call S the ‘‘old’’ basis and S0 the ‘‘new’’
basis.) Because S is a basis, each vector in the ‘‘new’’ basis S0 can be written uniquely
as a linear combination of the vectors in S; say,

v1 ¼ a11u1 þ a12u2 þ � � � þ a1nun
v2 ¼ a21u1 þ a22u2 þ � � � þ a2nun
:::::::::::::::::::::::::::::::::::::::::::::::::
vn ¼ an1u1 þ an2u2 þ � � � þ annun

Let P be the transpose of the above matrix of coefficients; that is, let P ¼ ½pij�, where
pij ¼ aji. Then P is called the change-of-basis matrix (or transition matrix) from the
‘‘old’’ basis S to the ‘‘new’’ basis S0.

The following remarks are in order.

Remark 1: The above change-of-basis matrix P may also be viewed as the matrix whose columns
are, respectively, the coordinate column vectors of the ‘‘new’’ basis vectors vi relative to the ‘‘old’’ basis
S; namely,

P ¼ ½v1�S ; ½v2�S ; . . . ; ½vn�S
� �

Remark 2: Analogously, there is a change-of-basis matrix Q from the ‘‘new’’ basis S0 to the
‘‘old’’ basis S. Similarly, Q may be viewed as the matrix whose columns are, respectively, the coordinate
column vectors of the ‘‘old’’ basis vectors ui relative to the ‘‘new’’ basis S0; namely,

Q ¼ ½u1�S0 ; ½u2�S0 ; . . . ; ½un�S0
� �

Remark 3: Because the vectors v1; v2; . . . ; vn in the new basis S0 are linearly independent, the
matrix P is invertible (Problem 6.18). Similarly, Q is invertible. In fact, we have the following
proposition (proved in Problem 6.18).

PROPOSITION 6.4: Let P and Q be the above change-of-basis matrices. Then Q ¼ P
1.

Now suppose S ¼ fu1; u2; . . . ; ung is a basis of a vector space V , and suppose P ¼ ½pij� is any
nonsingular matrix. Then the n vectors

vi ¼ p1iui þ p2iu2 þ � � � þ pniun; i ¼ 1; 2; . . . ; n

corresponding to the columns of P, are linearly independent [Problem 6.21(a)]. Thus, they form another
basis S0 of V . Moreover, P will be the change-of-basis matrix from S to the new basis S0.
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EXAMPLE 6.5 Consider the following two bases of R2:

S ¼ fu1; u2g ¼ fð1; 2Þ; ð3; 5Þg and S0 ¼ fv1; v2g ¼ fð1;
1Þ; ð1;
2Þg

(a) Find the change-of-basis matrix P from S to the ‘‘new’’ basis S0.
Write each of the new basis vectors of S0 as a linear combination of the original basis vectors u1 and u2 of

S. We have

1


� �

¼ x
1
2

� �
þ y

3
5

� �
or

xþ 3y ¼ 1
2xþ 5y ¼ 
 yielding x ¼ 
8; y ¼ 3

1

2

� �
¼ x

1
2

� �
þ y

3
5

� �
or

xþ 3y ¼ 1
2xþ 5y ¼ 
2

yielding x ¼ 
11; y ¼ 4

Thus,

v1 ¼ 
8u1 þ 3u2

v2 ¼ 
11u1 þ 4u2

and hence; P ¼ 
8 
11

3 4

� �
:

Note that the coordinates of v1 and v2 are the columns, not rows, of the change-of-basis matrix P.

(b) Find the change-of-basis matrix Q from the ‘‘new’’ basis S0 back to the ‘‘old’’ basis S.
Here we write each of the ‘‘old’’ basis vectors u1 and u2 of S0 as a linear combination of the ‘‘new’’ basis

vectors v1 and v2 of S0. This yields

u1 ¼ 4v1 
 3v2

u2 ¼ 11v1 
 8v2
and hence; Q ¼ 4 11


3 
8

� �
As expected from Proposition 6.4, Q ¼ P
1. (In fact, we could have obtained Q by simply finding P
1.)

EXAMPLE 6.6 Consider the following two bases of R3:

E ¼ fe1; e2; e3g ¼ fð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þg
and S ¼ fu1; u2; u3g ¼ fð1; 0; 1Þ; ð2; 1; 2Þ; ð1; 2; 2Þg

(a) Find the change-of-basis matrix P from the basis E to the basis S.
Because E is the usual basis, we can immediately write each basis element of S as a linear combination of

the basis elements of E. Specifically,

u1 ¼ ð1; 0; 1Þ ¼ e1 þ e3

u2 ¼ ð2; 1; 2Þ ¼ 2e1 þ e2 þ 2e3

u3 ¼ ð1; 2; 2Þ ¼ e1 þ 2e2 þ 2e3

and hence; P ¼
1 2 1

0 1 2

1 2 2

264
375

Again, the coordinates of u1; u2; u3 appear as the columns in P. Observe that P is simply the matrix whose
columns are the basis vectors of S. This is true only because the original basis was the usual basis E.

(b) Find the change-of-basis matrix Q from the basis S to the basis E.
The definition of the change-of-basis matrix Q tells us to write each of the (usual) basis vectors in E as a

linear combination of the basis elements of S. This yields

e1 ¼ ð1; 0; 0Þ ¼ 
2u1 þ 2u2 
 u3

e2 ¼ ð0; 1; 0Þ ¼ 
2u1 þ u2

e3 ¼ ð0; 0; 1Þ ¼ 3u1 
 2u2 þ u3

and hence; Q ¼

2 
2 3

2 1 
2


1 0 1

264
375

We emphasize that to find Q, we need to solve three 3� 3 systems of linear equations—one 3� 3 system for
each of e1; e2; e3.
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Alternatively, we can find Q ¼ P
1 by forming the matrix M ¼ ½P; I � and row reducing M to row
canonical form:

M ¼
1 2 1 1 0 0

0 1 2 0 1 0

1 2 2 0 0 1

264
375 � 1 0 0 
2 
2 3

0 1 0 2 1 
2

0 0 1 
1 0 1

264
375 ¼ ½I ;P
1�

thus; Q ¼ P
1 ¼

2 
2 3

2 1 
2


1 0 1

264
375

(Here we have used the fact that Q is the inverse of P.)

The result in Example 6.6(a) is true in general. We state this result formally, because it occurs often.

PROPOSITION 6.5: The change-of-basis matrix from the usual basis E of Kn to any basis S of Kn is
the matrix P whose columns are, respectively, the basis vectors of S.

Applications of Change-of-Basis Matrix

First we show how a change of basis affects the coordinates of a vector in a vector space V . The
following theorem is proved in Problem 6.22.

THEOREM 6.6: Let P be the change-of-basis matrix from a basis S to a basis S0 in a vector space V .
Then, for any vector v 2 V , we have

P½v�S0 ¼ ½v�S and hence; P
1½v�S ¼ ½v�S0

Namely, if we multiply the coordinates of v in the original basis S by P
1, we get the coordinates of v
in the new basis S0.

Remark 1: Although P is called the change-of-basis matrix from the old basis S to the new basis
S0, we emphasize that P
1 transforms the coordinates of v in the original basis S into the coordinates of v
in the new basis S0.

Remark 2: Because of the above theorem, many texts call Q ¼ P
1, not P, the transition matrix
from the old basis S to the new basis S0. Some texts also refer to Q as the change-of-coordinates matrix.

We now give the proof of the above theorem for the special case that dim V ¼ 3. Suppose P is the
change-of-basis matrix from the basis S ¼ fu1; u2; u3g to the basis S0 ¼ fv1; v2; v3g; say,

v1 ¼ a1u1 þ a2u2 þ a3a3

v2 ¼ b1u1 þ b2u2 þ b3u3

v3 ¼ c1u1 þ c2u2 þ c3u3

and hence; P ¼
a1 b1 c1

a2 b2 c2

a3 b3 c3

24 35
Now suppose v 2 V and, say, v ¼ k1v1 þ k2v2 þ k3v3. Then, substituting for v1; v2; v3 from above, we
obtain

v ¼ k1ða1u1 þ a2u2 þ a3u3Þ þ k2ðb1u1 þ b2u2 þ b3u3Þ þ k3ðc1u1 þ c2u2 þ c3u3Þ
¼ ða1k1 þ b1k2 þ c1k3Þu1 þ ða2k1 þ b2k2 þ c2k3Þu2 þ ða3k1 þ b3k2 þ c3k3Þu3
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Thus,

½v�S0 ¼
k1

k2

k3

24 35 and ½v�S ¼
a1k1 þ b1k2 þ c1k3

a2k1 þ b2k2 þ c2k3

a3k1 þ b3k2 þ c3k3

24 35
Accordingly,

P½v�S0 ¼
a1 b1 c1

a2 b2 c2

a3 b3 c3

24 35 k1

k2

k3

24 35 ¼ a1k1 þ b1k2 þ c1k3

a2k1 þ b2k2 þ c2k3

a3k1 þ b3k2 þ c3k3

24 35 ¼ ½v�S
Finally, multiplying the equation ½v�S ¼ P½v�S , by P
1, we get

P
1½v�S ¼ P
1P½v�S0 ¼ I ½v�S0 ¼ ½v�S0

The next theorem (proved in Problem 6.26) shows how a change of basis affects the matrix
representation of a linear operator.

THEOREM 6.7: Let P be the change-of-basis matrix from a basis S to a basis S0 in a vector space V .
Then, for any linear operator T on V ,

½T �S0 ¼ P
1½T �SP

That is, if A and B are the matrix representations of T relative, respectively, to S and
S0, then

B ¼ P
1AP

EXAMPLE 6.7 Consider the following two bases of R3:

E ¼ fe1; e2; e3g ¼ fð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þg
and S ¼ fu1; u2; u3g ¼ fð1; 0; 1Þ; ð2; 1; 2Þ; ð1; 2; 2Þg

The change-of-basis matrix P from E to S and its inverse P
1 were obtained in Example 6.6.

(a) Write v ¼ ð1; 3; 5Þ as a linear combination of u1; u2; u3, or, equivalently, find ½v�S .
One way to do this is to directly solve the vector equation v ¼ xu1 þ yu2 þ zu3; that is,

1
3
5

24 35 ¼ x
1
0
1

24 35þ y
2
1
2

24 35þ z
1
2
2

24 35 or
xþ 2yþ z ¼ 1

yþ 2z ¼ 3
xþ 2yþ 2z ¼ 5

The solution is x ¼ 7, y ¼ 
5, z ¼ 4, so v ¼ 7u1 
 5u2 þ 4u3.
On the other hand, we know that ½v�E ¼ ½1; 3; 5�T , because E is the usual basis, and we already know P
1.

Therefore, by Theorem 6.6,

½v�S ¼ P
1½v�E ¼

2 
2 3

2 1 
2

1 0 1

24 35 1
3
5

24 35 ¼ 7

5

4

24 35
Thus, again, v ¼ 7u1 
 5u2 þ 4u3.

(b) Let A ¼
1 3 
2
2 
4 1
3 
1 2

24 35, which may be viewed as a linear operator on R3. Find the matrix B that represents A

relative to the basis S.
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The definition of the matrix representation of A relative to the basis S tells us to write each of Aðu1Þ, Aðu2Þ,
Aðu3Þ as a linear combination of the basis vectors u1; u2; u3 of S. This yields

Aðu1Þ ¼ ð
1; 3; 5Þ ¼ 11u1 
 u2 þ 6u3

Aðu2Þ ¼ ð1; 2; 9Þ ¼ 21u1 
 14u2 þ 8u3

Aðu3Þ ¼ ð3;
4; 5Þ ¼ 17u1 
 8e2 þ 2u3

and hence; B ¼
11 21 17


 
14 
8

6 8 2

264
375

We emphasize that to find B, we need to solve three 3� 3 systems of linear equations—one 3� 3 system for
each of Aðu1Þ, Aðu2Þ, Aðu3Þ.

On the other hand, because we know P and P
1, we can use Theorem 6.7. That is,

B ¼ P
1AP ¼

2 
2 3

2 1 
2

1 0 1

24 35 1 3 
2
2 
4 1
3 
1 2

24 35 1 2 1
0 1 2
1 2 2

24 35 ¼ 11 21 17

 
14 
8

6 8 2

24 35
This, as expected, gives the same result.

6.4 Similarity

Suppose A and B are square matrices for which there exists an invertible matrix P such that B ¼ P
1AP;
then B is said to be similar to A, or B is said to be obtained from A by a similarity transformation. We
show (Problem 6.29) that similarity of matrices is an equivalence relation.

By Theorem 6.7 and the above remark, we have the following basic result.

THEOREM 6.8: Two matrices represent the same linear operator if and only if the matrices are
similar.

That is, all the matrix representations of a linear operator T form an equivalence class of similar
matrices.

A linear operator T is said to be diagonalizable if there exists a basis S of V such that T is represented
by a diagonal matrix; the basis S is then said to diagonalize T. The preceding theorem gives us the
following result.

THEOREM 6.9: Let A be the matrix representation of a linear operator T . Then T is diagonalizable
if and only if there exists an invertible matrix P such that P
1AP is a diagonal
matrix.

That is, T is diagonalizable if and only if its matrix representation can be diagonalized by a similarity
transformation.

We emphasize that not every operator is diagonalizable. However, we will show (Chapter 10) that
every linear operator can be represented by certain ‘‘standard’’ matrices called its normal or canonical
forms. Such a discussion will require some theory of fields, polynomials, and determinants.

Functions and Similar Matrices

Suppose f is a function on square matrices that assigns the same value to similar matrices; that is,
f ðAÞ ¼ f ðBÞ whenever A is similar to B. Then f induces a function, also denoted by f , on linear operators
T in the following natural way. We define

f ðTÞ ¼ f ð½T �SÞ

where S is any basis. By Theorem 6.8, the function is well defined.
The determinant (Chapter 8) is perhaps the most important example of such a function. The trace

(Section 2.7) is another important example of such a function.
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EXAMPLE 6.8 Consider the following linear operator F and bases E and S of R2:

Fðx; yÞ ¼ ð2xþ 3y; 4x
 5yÞ; E ¼ fð1; 0Þ; ð0; 1Þg; S ¼ fð1; 2Þ; ð2; 5Þg

By Example 6.1, the matrix representations of F relative to the bases E and S are, respectively,

A ¼ 2 3
4 
5

� �
and B ¼ 52 129


22 
55

� �
Using matrix A, we have

(i) Determinant of F ¼ detðAÞ ¼ 
10
 12 ¼ 
22; (ii) Trace of F ¼ trðAÞ ¼ 2
 5 ¼ 
3:

On the other hand, using matrix B, we have

(i) Determinant of F ¼ detðBÞ ¼ 
2860þ 2838 ¼ 
22; (ii) Trace of F ¼ trðBÞ ¼ 52
 55 ¼ 
3.

As expected, both matrices yield the same result.

6.5 Matrices and General Linear Mappings

Last, we consider the general case of linear mappings from one vector space into another. Suppose V and
U are vector spaces over the same field K and, say, dim V ¼ m and dim U ¼ n. Furthermore, suppose

S ¼ fv1; v2; . . . ; vmg and S0 ¼ fu1; u2; . . . ; ung

are arbitrary but fixed bases, respectively, of V and U .
Suppose F:V ! U is a linear mapping. Then the vectors Fðv1Þ, Fðv2Þ; . . . ; FðvmÞ belong to U ,

and so each is a linear combination of the basis vectors in S0; say,

Fðv1Þ ¼ a11u1 þ a12u2 þ � � � þ a1nun

Fðv2Þ ¼ a21u1 þ a22u2 þ � � � þ a2nun

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
FðvmÞ ¼ am1u1 þ am2u2 þ � � � þ amnun

DEFINITION: The transpose of the above matrix of coefficients, denoted by mS;S0 ðFÞ or ½F�S;S0 , is
called the matrix representation of F relative to the bases S and S0. [We will use the
simple notation mðFÞ and ½F� when the bases are understood.]

The following theorem is analogous to Theorem 6.1 for linear operators (Problem 6.67).

THEOREM 6.10: For any vector v 2 V , ½F�S;S0 ½v�S ¼ ½FðvÞ�S0 .

That is, multiplying the coordinates of v in the basis S of V by ½F�, we obtain the coordinates of FðvÞ
in the basis S0 of U .

Recall that for any vector spaces V and U , the collection of all linear mappings from V into U is a
vector space and is denoted by HomðV ;UÞ. The following theorem is analogous to Theorem 6.2 for linear
operators, where now we let M ¼ Mm;n denote the vector space of all m� n matrices (Problem 6.67).

THEOREM 6.11: The mapping m:HomðV ;UÞ !M defined by mðFÞ ¼ ½F� is a vector space
isomorphism. That is, for any F;G 2 HomðV ;UÞ and any scalar k,

(i) mðF þ GÞ ¼ mðFÞ þ mðGÞ or ½F þ G� ¼ ½F� þ ½G�
(ii) mðkFÞ ¼ kmðFÞ or ½kF� ¼ k½F�

(iii) m is bijective (one-to-one and onto).
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Our next theorem is analogous to Theorem 6.3 for linear operators (Problem 6.67).

THEOREM 6.12: Let S; S0; S00 be bases of vector spaces V ;U ;W , respectively. Let F:V ! U and
G � U ! W be linear mappings. Then

½G � F�S;S00 ¼ ½G�S0;S00 ½F�S;S0
That is, relative to the appropriate bases, the matrix representation of the composition of two

mappings is the matrix product of the matrix representations of the individual mappings.
Next we show how the matrix representation of a linear mapping F:V ! U is affected when new

bases are selected (Problem 6.67).

THEOREM 6.13: Let P be the change-of-basis matrix from a basis e to a basis e0 in V , and let Q be
the change-of-basis matrix from a basis f to a basis f 0 in U . Then, for any linear
map F:V ! U ,

½F�e0; f 0 ¼ Q
1½F�e; f P

In other words, if A is the matrix representation of a linear mapping F relative to the bases e and f ,
and B is the matrix representation of F relative to the bases e0 and f 0, then

B ¼ Q
1AP

Our last theorem, proved in Problem 6.36, shows that any linear mapping from one vector space V
into another vector space U can be represented by a very simple matrix. We note that this theorem is
analogous to Theorem 3.18 for m� n matrices.

THEOREM 6.14: Let F:V ! U be linear and, say, rankðFÞ ¼ r. Then there exist bases of V and U
such that the matrix representation of F has the form

A ¼ Ir 0
0 0

� �
where Ir is the r-square identity matrix.

The above matrix A is called the normal or canonical form of the linear map F.

SOLVED PROBLEMS

Matrix Representation of Linear Operators

6.1. Consider the linear mapping F:R2 ! R2 defined by Fðx; yÞ ¼ ð3xþ 4y; 2x
 5yÞ and the
following bases of R2:

E ¼ fe1; e2g ¼ fð1; 0Þ; ð0; 1Þg and S ¼ fu1; u2g ¼ fð1; 2Þ; ð2; 3Þg

(a) Find the matrix A representing F relative to the basis E.

(b) Find the matrix B representing F relative to the basis S.

(a) Because E is the usual basis, the rows of A are simply the coefficients in the components of Fðx; yÞ; that
is, using ða; bÞ ¼ ae1 þ be2, we have

Fðe1Þ ¼ Fð1; 0Þ ¼ ð3; 2Þ ¼ 3e1 þ 2e2

Fðe2Þ ¼ Fð0; 1Þ ¼ ð4;
5Þ ¼ 4e1 
 5e2
and so A ¼ 3 4

2 
5

� �
Note that the coefficients of the basis vectors are written as columns in the matrix representation.
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(b) First find Fðu1Þ and write it as a linear combination of the basis vectors u1 and u2. We have

Fðu1Þ ¼ Fð1; 2Þ ¼ ð11;
8Þ ¼ xð1; 2Þ þ yð2; 3Þ; and so
xþ 2y ¼ 11

2xþ 3y ¼ 
8

Solve the system to obtain x ¼ 
49, y ¼ 30. Therefore,

Fðu1Þ ¼ 
49u1 þ 30u2

Next find Fðu2Þ and write it as a linear combination of the basis vectors u1 and u2. We have

Fðu2Þ ¼ Fð2; 3Þ ¼ ð18;
11Þ ¼ xð1; 2Þ þ yð2; 3Þ; and so
xþ 2y ¼ 18

2xþ 3y ¼ 
11

Solve for x and y to obtain x ¼ 
76, y ¼ 47. Hence,

Fðu2Þ ¼ 
76u1 þ 47u2

Write the coefficients of u1 and u2 as columns to obtain B ¼ 
49 
76
30 47

� �
(b0) Alternatively, one can first find the coordinates of an arbitrary vector ða; bÞ in R2 relative to the basis S.

We have

ða; bÞ ¼ xð1; 2Þ þ yð2; 3Þ ¼ ðxþ 2y; 2xþ 3yÞ; and so
xþ 2y ¼ a

2xþ 3y ¼ b

Solve for x and y in terms of a and b to get x ¼ 
3aþ 2b, y ¼ 2a
 b. Thus,

ða; bÞ ¼ ð
3aþ 2bÞu1 þ ð2a
 bÞu2

Then use the formula for ða; bÞ to find the coordinates of Fðu1Þ and Fðu2Þ relative to S:

Fðu1Þ ¼ Fð1; 2Þ ¼ ð11;
8Þ ¼ 
49u1 þ 30u2

Fðu2Þ ¼ Fð2; 3Þ ¼ ð18;
11Þ ¼ 
76u1 þ 47u2
and so B ¼ 
49 
76

30 47

� �
6.2. Consider the following linear operator G on R2 and basis S:

Gðx; yÞ ¼ ð2x
 7y; 4xþ 3yÞ and S ¼ fu1; u2g ¼ fð1; 3Þ; ð2; 5Þg
(a) Find the matrix representation ½G�S of G relative to S.

(b) Verify ½G�S ½v�S ¼ ½GðvÞ�S for the vector v ¼ ð4;
3Þ in R2.

First find the coordinates of an arbitrary vector v ¼ ða; bÞ in R2 relative to the basis S. We
have

a

b

� �
¼ x

1
3

� �
þ y

2
5

� �
; and so

xþ 2y ¼ a

3xþ 5y ¼ b

Solve for x and y in terms of a and b to get x ¼ 
5aþ 2b, y ¼ 3a
 b. Thus,

ða; bÞ ¼ ð
5aþ 2bÞu1 þ ð3a
 bÞu2; and so ½v� ¼ ½
5aþ 2b; 3a
 b�T

(a) Using the formula for ða; bÞ and Gðx; yÞ ¼ ð2x
 7y; 4xþ 3yÞ, we have

Gðu1Þ ¼ Gð1; 3Þ ¼ ð
19; 13Þ ¼ 121u1 
 70u2

Gðu2Þ ¼ Gð2; 5Þ ¼ ð
31; 23Þ ¼ 201u1 
 116u2
and so ½G�S ¼

121 201

70 
116

� �
(We emphasize that the coefficients of u1 and u2 are written as columns, not rows, in the matrix representation.)

(b) Use the formula ða; bÞ ¼ ð
5aþ 2bÞu1 þ ð3a
 bÞu2 to get

v ¼ ð4;
3Þ ¼ 
26u1 þ 15u2

GðvÞ ¼ Gð4;
3Þ ¼ ð20; 7Þ ¼ 
131u1 þ 80u2

Then ½v�S ¼ ½
26; 15�T and ½GðvÞ�S ¼ ½
131; 80�T
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Accordingly,

½G�S ½v�S ¼
121 201

70 
116

� � 
26
15

� �
¼ 
131

80

� �
¼ ½GðvÞ�S

(This is expected from Theorem 6.1.)

6.3. Consider the following 2� 2 matrix A and basis S of R2:

A ¼ 2 4
5 6

� �
and S ¼ fu1; u2g ¼ 1


2

� �
;

3

7

� �	 �
The matrix A defines a linear operator on R2. Find the matrix B that represents the mapping A
relative to the basis S.

First find the coordinates of an arbitrary vector ða; bÞT with respect to the basis S. We have

a
b

� �
¼ x

1

2

� �
þ y

3

7

� �
or

xþ 3y ¼ a

2x
 7y ¼ b

Solve for x and y in terms of a and b to obtain x ¼ 7aþ 3b, y ¼ 
2a
 b. Thus,

ða; bÞT ¼ ð7aþ 3bÞu1 þ ð
2a
 bÞu2

Then use the formula for ða; bÞT to find the coordinates of Au1 and Au2 relative to the basis S:

Au1 ¼
2 4

5 6

� �
1


2

� �
¼ 
6


7

� �
¼ 
63u1 þ 19u2

Au2 ¼
2 4

5 6

� �
3


7

� �
¼ 
22


27

� �
¼ 
235u1 þ 71u2

Writing the coordinates as columns yields

B ¼ 
63 
235
19 71

� �
6.4. Find the matrix representation of each of the following linear operators F on R3 relative to the

usual basis E ¼ fe1; e2; e3g of R3; that is, find ½F� ¼ ½F�E:

(a) F defined by Fðx; y; zÞ ¼ ðxþ 2y
 3z; 4x
 5y
 6z; 7xþ 8yþ 9z).

(b) F defined by the 3� 3 matrix A ¼
1 1 1
2 3 4
5 5 5

24 35.

(c) F defined by Fðe1Þ ¼ ð1; 3; 5Þ;Fðe2Þ ¼ ð2; 4; 6Þ, Fðe3Þ ¼ ð7; 7; 7Þ. (Theorem 5.2 states that a
linear map is completely defined by its action on the vectors in a basis.)

(a) Because E is the usual basis, simply write the coefficients of the components of Fðx; y; zÞ as rows:

½F� ¼
1 2 
3
4 
5 
6
7 8 9

24 35
(b) Because E is the usual basis, ½F� ¼ A, the matrix A itself.

(c) Here
Fðe1Þ ¼ ð1; 3; 5Þ ¼ e1 þ 3e2 þ 5e3

Fðe2Þ ¼ ð2; 4; 6Þ ¼ 2e1 þ 4e2 þ 6e3

Fðe3Þ ¼ ð7; 7; 7Þ ¼ 7e1 þ 7e2 þ 7e3

and so ½F� ¼
1 2 7
3 4 7
5 6 7

24 35
That is, the columns of ½F� are the images of the usual basis vectors.

6.5. Let G be the linear operator on R3 defined by Gðx; y; zÞ ¼ ð2yþ z; x
 4y; 3xÞ.
(a) Find the matrix representation of G relative to the basis

S ¼ fw1;w2;w3g ¼ fð1; 1; 1Þ; ð1; 1; 0Þ; ð1; 0; 0Þg

(b) Verify that ½G�½v� ¼ ½GðvÞ� for any vector v in R3.
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First find the coordinates of an arbitrary vector ða; b; cÞ 2 R3 with respect to the basis S. Write ða; b; cÞ as
a linear combination of w1;w2;w3 using unknown scalars x; y, and z:

ða; b; cÞ ¼ xð1; 1; 1Þ þ yð1; 1; 0Þ þ zð1; 0; 0Þ ¼ ðxþ yþ z; xþ y; xÞ
Set corresponding components equal to each other to obtain the system of equations

xþ yþ z ¼ a; xþ y ¼ b; x ¼ c

Solve the system for x; y, z in terms of a; b, c to find x ¼ c, y ¼ b
 c, z ¼ a
 b. Thus,

ða; b; cÞ ¼ cw1 þ ðb
 cÞw2 þ ða
 bÞw3, or equivalently, ½ða; b; cÞ� ¼ ½c; b
 c; a
 b�T

(a) Because Gðx; y; zÞ ¼ ð2yþ z; x
 4y; 3xÞ,

Gðw1Þ ¼ Gð1; 1; 1Þ ¼ ð3;
3; 3Þ ¼ 3w1 
 6x2 þ 6x3

Gðw2Þ ¼ Gð1; 1; 0Þ ¼ ð2;
3; 3Þ ¼ 3w1 
 6w2 þ 5w3

Gðw3Þ ¼ Gð1; 0; 0Þ ¼ ð0; 1; 3Þ ¼ 3w1 
 2w2 
 w3

Write the coordinates Gðw1Þ, Gðw2Þ, Gðw3Þ as columns to get

½G� ¼
3 3 3

6 
6 
2

6 5 
1

24 35
(b) Write GðvÞ as a linear combination of w1;w2;w3, where v ¼ ða; b; cÞ is an arbitrary vector in R3,

GðvÞ ¼ Gða; b; cÞ ¼ ð2bþ c; a
 4b; 3aÞ ¼ 3aw1 þ ð
2a
 4bÞw2 þ ð
aþ 6bþ cÞw3

or equivalently,

½GðvÞ� ¼ ½3a; 
2a
 4b; 
aþ 6bþ c�T
Accordingly,

½G�½v� ¼
3 3 3

6 
6 
2

6 5 
1

24 35 c
b
 c
a
 b

24 35 ¼ 3a

2a
 4b

aþ 6bþ c

24 35 ¼ ½GðvÞ�
6.6. Consider the following 3� 3 matrix A and basis S of R3:

A ¼
1 
2 1
3 
1 0
1 4 
2

24 35 and S ¼ fu1; u2; u3g ¼
1
1
1

24 35; 0
1
1

24 35; 1
2
3

24 358<:
9=;

The matrix A defines a linear operator on R3. Find the matrix B that represents the mapping A
relative to the basis S. (Recall that A represents itself relative to the usual basis of R3.)

First find the coordinates of an arbitrary vector ða; b; cÞ in R3 with respect to the basis S. We have

a
b
c

24 35 ¼ x
1
1
1

24 35þ y
0
1
1

24 35þ z
1
2
3

24 35 or
xþ z ¼ a
xþ yþ 2z ¼ b
xþ yþ 3z ¼ c

Solve for x; y; z in terms of a; b; c to get

x ¼ aþ b
 c; y ¼ 
aþ 2b
 c; z ¼ c
 b

thus; ða; b; cÞT ¼ ðaþ b
 cÞu1 þ ð
aþ 2b
 cÞu2 þ ðc
 bÞu3
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Then use the formula for ða; b; cÞT to find the coordinates of Au1, Au2, Au3 relative to the basis S:

Aðu1Þ ¼ Að1; 1; 1ÞT ¼ ð0; 2; 3ÞT ¼ 
u1 þ u2 þ u3

Aðu2Þ ¼ Að1; 1; 0ÞT ¼ ð
1;
1; 2ÞT ¼ 
4u1 
 3u2 þ 3u3

Aðu3Þ ¼ Að1; 2; 3ÞT ¼ ð0; 1; 3ÞT ¼ 
2u1 
 u2 þ 2u3

so B ¼

1 
4 
2

1 
3 
1
1 3 2

24 35

6.7. For each of the following linear transformations (operators) L on R2, find the matrix A that
represents L (relative to the usual basis of R2):

(a) L is defined by Lð1; 0Þ ¼ ð2; 4Þ and Lð0; 1Þ ¼ ð5; 8Þ.
(b) L is the rotation in R2 counterclockwise by 90�.
(c) L is the reflection in R2 about the line y ¼ 
x.

(a) Because fð1; 0Þ; ð0; 1Þg is the usual basis of R2, write their images under L as columns to get

A ¼ 2 5
4 8

� �
(b) Under the rotation L, we have Lð1; 0Þ ¼ ð0; 1Þ and Lð0; 1Þ ¼ ð
1; 0Þ. Thus,

A ¼ 0 
1
1 0

� �
(c) Under the reflection L, we have Lð1; 0Þ ¼ ð0;
1Þ and Lð0; 1Þ ¼ ð
1; 0Þ. Thus,

A ¼ 0 
1

1 0

� �

6.8. The set S ¼ fe3t, te3t, t2e3tg is a basis of a vector space V of functions f :R! R. Let D be the
differential operator on V ; that is, Dð f Þ ¼ df =dt. Find the matrix representation of D relative to
the basis S.

Find the image of each basis function:

Dðe3tÞ ¼ 3e3t

Dðte3tÞ ¼ e3t þ 3te3t

Dðt2e3tÞ ¼ 2te3t þ 3t2e3t

¼ 3ðe3tÞ þ 0ðte3tÞ þ 0ðt2e3tÞ
¼ 1ðe3tÞ þ 3ðte3tÞ þ 0ðt2e3tÞ
¼ 0ðe3tÞ þ 2ðte3tÞ þ 3ðt2e3tÞ

and thus; ½D� ¼
3 1 0
0 3 2
0 0 3

24 35

6.9. Prove Theorem 6.1: Let T :V ! V be a linear operator, and let S be a (finite) basis of V . Then, for
any vector v in V , ½T �S ½v�S ¼ ½TðvÞ�S .

Suppose S ¼ fu1; u2; . . . ; ung, and suppose, for i ¼ 1; . . . ; n,

TðuiÞ ¼ ai1u1 þ ai2u2 þ � � � þ ainun ¼
Pn
j¼1

aijuj

Then ½T �S is the n-square matrix whose jth row is

ða1j; a2j; . . . ; anjÞ ð1Þ
Now suppose

v ¼ k1u1 þ k2u2 þ � � � þ knun ¼
Pn
i¼1

kiui

Writing a column vector as the transpose of a row vector, we have

½v�S ¼ ½k1; k2; . . . ; kn�T ð2Þ
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Furthermore, using the linearity of T ,

TðvÞ ¼ T
Pn
i¼1

kiui

� �
¼Pn

i¼1

kiTðuiÞ ¼
Pn
i¼1

ki

�Pn
j¼1

aijuj

�
¼Pn

j¼1

Pn
i¼1

aijki

� �
uj ¼

Pn
j¼1

ða1jk1 þ a2jk2 þ � � � þ anjknÞuj

Thus, ½TðvÞ�S is the column vector whose jth entry is

a1jk1 þ a2jk2 þ � � � þ anjkn ð3Þ

On the other hand, the jth entry of ½T �S ½v�S is obtained by multiplying the jth row of ½T �S by ½v�S—that is
(1) by (2). But the product of (1) and (2) is (3). Hence, ½T �S ½v�S and ½TðvÞ�S have the same entries. Thus,
½T �S ½v�S ¼ ½TðvÞ�S .

6.10. Prove Theorem 6.2: Let S ¼ fu1; u2; . . . ; ung be a basis for V over K, and let M be the algebra of
n-square matrices over K. Then the mapping m:AðV Þ !M defined by mðTÞ ¼ ½T �S is a vector
space isomorphism. That is, for any F;G 2 AðVÞ and any k 2 K, we have

(i) ½F þ G� ¼ ½F� þ ½G�, (ii) ½kF� ¼ k½F�, (iii) m is one-to-one and onto.

(i) Suppose, for i ¼ 1; . . . ; n,

FðuiÞ ¼
Pn
j¼1

aijuj and GðuiÞ ¼
Pn
j¼1

bijuj

Consider the matrices A ¼ ½aij� and B ¼ ½bij�. Then ½F� ¼ AT and ½G� ¼ BT . We have, for i ¼ 1; . . . ; n,

ðF þ GÞðuiÞ ¼ FðuiÞ þ GðuiÞ ¼
Pn
j¼1

ðaij þ bijÞuj

Because Aþ B is the matrix ðaij þ bijÞ, we have

½F þ G� ¼ ðAþ BÞT ¼ AT þ BT ¼ ½F� þ ½G�
(ii) Also, for i ¼ 1; . . . ; n;

ðkFÞðuiÞ ¼ kFðuiÞ ¼ k
Pn
j¼1

aijuj ¼
Pn
j¼1

ðkaijÞuj

Because kA is the matrix ðkaijÞ, we have

½kF� ¼ ðkAÞT ¼ kAT ¼ k½F�
(iii) Finally, m is one-to-one, because a linear mapping is completely determined by its values on a basis.

Also, m is onto, because matrix A ¼ ½aij� in M is the image of the linear operator,

FðuiÞ ¼
Pn
j¼1

aijuj; i ¼ 1; . . . ; n

Thus, the theorem is proved.

6.11. Prove Theorem 6.3: For any linear operators G;F 2 AðVÞ, ½G � F� ¼ ½G�½F�.
Using the notation in Problem 6.10, we have

ðG � FÞðuiÞ ¼ GðFðuiÞÞ ¼ G

�Pn
j¼1

aijuj

�
¼Pn

j¼1

aijGðujÞ

¼Pn
j¼1

aij

Pn
k¼1

bjkuk

� �
¼ Pn

k¼1

�Pn
j¼1

aijbjk

�
uk

Recall that AB is the matrix AB ¼ ½cik �, where cik ¼
Pn

j¼1 aijbjk . Accordingly,

½G � F� ¼ ðABÞT ¼ BT AT ¼ ½G�½F�
The theorem is proved.
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6.12. Let A be the matrix representation of a linear operator T . Prove that, for any polynomial f ðtÞ, we
have that f ðAÞ is the matrix representation of f ðTÞ. [Thus, f ðTÞ ¼ 0 if and only if f ðAÞ ¼ 0.]

Let f be the mapping that sends an operator T into its matrix representation A. We need to prove that
fð f ðTÞÞ ¼ f ðAÞ. Suppose f ðtÞ ¼ antn þ � � � þ a1t þ a0. The proof is by induction on n, the degree of f ðtÞ.

Suppose n ¼ 0. Recall that fðI 0Þ ¼ I , where I 0 is the identity mapping and I is the identity matrix. Thus,

fð f ðTÞÞ ¼ fða0I 0Þ ¼ a0fðI 0Þ ¼ a0I ¼ f ðAÞ
and so the theorem holds for n ¼ 0.

Now assume the theorem holds for polynomials of degree less than n. Then, because f is an algebra
isomorphism,

fð f ðTÞÞ ¼ fðanT n þ an
1Tn
1 þ � � � þ a1T þ a0I 0Þ
¼ anfðTÞfðT n
1Þ þ fðan
1Tn
1 þ � � � þ a1T þ a0I 0Þ
¼ anAAn
1 þ ðan
1An
1 þ � � � þ a1Aþ a0IÞ ¼ f ðAÞ

and the theorem is proved.

Change of Basis

The coordinate vector ½v�S in this section will always denote a column vector; that is,

½v�S ¼ ½a1; a2; . . . ; an�T

6.13. Consider the following bases of R2:

E ¼ fe1; e2g ¼ fð1; 0Þ; ð0; 1Þg and S ¼ fu1; u2g ¼ fð1; 3Þ; ð1; 4Þg

(a) Find the change-of-basis matrix P from the usual basis E to S.

(b) Find the change-of-basis matrix Q from S back to E.

(c) Find the coordinate vector ½v� of v ¼ ð5;
3Þ relative to S.

(a) Because E is the usual basis, simply write the basis vectors in S as columns: P ¼ 1 1
3 4

� �
(b) Method 1. Use the definition of the change-of-basis matrix. That is, express each vector in E as a

linear combination of the vectors in S. We do this by first finding the coordinates of an arbitrary vector
v ¼ ða; bÞ relative to S. We have

ða; bÞ ¼ xð1; 3Þ þ yð1; 4Þ ¼ ðxþ y; 3xþ 4yÞ or
xþ y ¼ a

3xþ 4y ¼ b

Solve for x and y to obtain x ¼ 4a
 b, y ¼ 
3aþ b. Thus,

v ¼ ð4a
 bÞu1 þ ð
3aþ bÞu2 and ½v�S ¼ ½ða; bÞ�S ¼ ½4a
 b; 
3aþ b�T

Using the above formula for ½v�S and writing the coordinates of the ei as columns yields

e1 ¼ ð1; 0Þ ¼ 4u1 
 3u2

e2 ¼ ð0; 1Þ ¼ 
u1 þ u2
and Q ¼ 4 
1


3 1

� �
Method 2. Because Q ¼ P
1; find P
1, say by using the formula for the inverse of a 2� 2 matrix.
Thus,

P
1 ¼ 4 
1

3 1

� �
(c) Method 1. Write v as a linear combination of the vectors in S, say by using the above formula for

v ¼ ða; bÞ. We have v ¼ ð5;
3Þ ¼ 23u1 
 18u2; and so ½v�S ¼ ½23;
18�T .

Method 2. Use, from Theorem 6.6, the fact that ½v�S ¼ P
1½v�E and the fact that ½v�E ¼ ½5;
3�T :

½v�S ¼ P
1½v�E ¼
4 
1

3 1

� �
5

3

� �
¼ 23

18

� �
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6.14. The vectors u1 ¼ ð1; 2; 0Þ, u2 ¼ ð1; 3; 2Þ, u3 ¼ ð0; 1; 3Þ form a basis S of R3. Find

(a) The change-of-basis matrix P from the usual basis E ¼ fe1; e2; e3g to S.

(b) The change-of-basis matrix Q from S back to E.

(a) Because E is the usual basis, simply write the basis vectors of S as columns: P ¼
1 1 0
2 3 1
0 2 3

24 35
(b) Method 1. Express each basis vector of E as a linear combination of the basis vectors of S by first

finding the coordinates of an arbitrary vector v ¼ ða; b; cÞ relative to the basis S. We have

a
b
c

24 35 ¼ x
1
2
0

24 35þ y
1
3
2

24 35þ z
0
1
3

24 35 or
xþ y ¼ a

2xþ 3yþ z ¼ b
2yþ 3z ¼ c

Solve for x; y; z to get x ¼ 7a
 3bþ c, y ¼ 
6aþ 3b
 c, z ¼ 4a
 2bþ c. Thus,

v ¼ ða; b; cÞ ¼ ð7a
 3bþ cÞu1 þ ð
6aþ 3b
 cÞu2 þ ð4a
 2bþ cÞu3

or ½v�S ¼ ½ða; b; cÞ�S ¼ ½7a
 3bþ c; 
6aþ 3b
 c; 4a
 2bþ c�T

Using the above formula for ½v�S and then writing the coordinates of the ei as columns yields

e1 ¼ ð1; 0; 0Þ ¼ 7u1 
 6u2 þ 4u3

e2 ¼ ð0; 1; 0Þ ¼ 
3u1 þ 3u2 
 2u3

e3 ¼ ð0; 0; 1Þ ¼ u1 
 u2 þ u3

and Q ¼
7 
3 1

6 3 
1

4 
2 1

24 35
Method 2. Find P
1 by row reducing M ¼ ½P; I � to the form ½I ;P
1�:

M ¼
1 1 0 1 0 0

2 3 1 0 1 0

0 2 3 0 0 1

264
375 � 1 1 0 1 0 0

0 1 1 
2 1 0

0 2 3 0 0 1

264
375

�
1 1 0 1 0 0

0 1 1 
2 1 0

0 0 1 4 
2 1

264
375 � 1 0 0 7 
3 1

0 1 0 
6 3 
1

0 0 1 4 
2 1

264
375 ¼ ½I ;P
1�

Thus, Q ¼ P
1 ¼
7 
3 1

6 3 
1

4 
2 1

24 35.

6.15. Suppose the x-axis and y-axis in the plane R2 are rotated counterclockwise 45� so that the new
x 0-axis and y 0-axis are along the line y ¼ x and the line y ¼ 
x, respectively.

(a) Find the change-of-basis matrix P.

(b) Find the coordinates of the point Að5; 6Þ under the given rotation.
(a) The unit vectors in the direction of the new x 0- and y 0-axes are

u1 ¼ ð12
ffiffiffi
2
p

; 1
2

ffiffiffi
2
p
Þ and u2 ¼ ð
 1

2

ffiffiffi
2
p

; 1
2

ffiffiffi
2
p
Þ

(The unit vectors in the direction of the original x and y axes are the usual basis of R2.) Thus, write the
coordinates of u1 and u2 as columns to obtain

P ¼
1
2

ffiffiffi
2
p 
 1

2

ffiffiffi
2
p

1
2

ffiffiffi
2
p

1
2

ffiffiffi
2
p

" #

(b) Multiply the coordinates of the point by P
1:

1
2

ffiffiffi
2
p

1
2

ffiffiffi
2
p


 1
2

ffiffiffi
2
p

1
2

ffiffiffi
2
p

" #
5

6

� �
¼

11
2

ffiffiffi
2
p

1
2

ffiffiffi
2
p

" #

(Because P is orthogonal, P
1 is simply the transpose of P.)
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6.16. The vectors u1 ¼ ð1; 1; 0Þ, u2 ¼ ð0; 1; 1Þ, u3 ¼ ð1; 2; 2Þ form a basis S of R3. Find the coordinates
of an arbitrary vector v ¼ ða; b; cÞ relative to the basis S.

Method 1. Express v as a linear combination of u1; u2; u3 using unknowns x; y; z. We have

ða; b; cÞ ¼ xð1; 1; 0Þ þ yð0; 1; 1Þ þ zð1; 2; 2Þ ¼ ðxþ z; xþ yþ 2z; yþ 2zÞ
this yields the system

xþ z ¼ a
xþ yþ 2z ¼ b

yþ 2z ¼ c
or

xþ z ¼ a
yþ z ¼ 
aþ b
yþ 2z ¼ c

or
xþ z ¼ a

yþ z ¼ 
aþ b
z ¼ a
 bþ c

Solving by back-substitution yields x ¼ b
 c, y ¼ 
2aþ 2b
 c, z ¼ a
 bþ c. Thus,

½v�S ¼ ½b
 c; 
2aþ 2b
 c; a
 bþ c�T

Method 2. Find P
1 by row reducing M ¼ ½P; I � to the form ½I ;P
1�, where P is the change-of-basis
matrix from the usual basis E to S or, in other words, the matrix whose columns are the basis vectors of S.

We have

M ¼
1 0 1 1 0 0

1 1 2 0 1 0

0 1 2 0 0 1

264
375 � 1 0 1 1 0 0

0 1 1 
1 1 0

0 1 2 0 0 1

264
375

�
1 0 1 1 0 0

0 1 1 
1 1 0

0 0 1 1 
1 1

264
375 � 1 0 0 0 1 
1

0 1 0 
2 2 
1

0 0 1 1 
1 1

264
375 ¼ ½I ;P
1�

Thus; P
1 ¼
0 1 
1


2 2 
1

1 
1 1

264
375 and ½v�S ¼ P
1½v�E ¼

0 1 
1


2 2 
1

1 
1 1

264
375 a

b

c

264
375 ¼ b
 c


2aþ 2b
 c

a
 bþ c

264
375

6.17. Consider the following bases of R2:

S ¼ fu1; u2g ¼ fð1;
2Þ; ð3;
4Þg and S0 ¼ fv1; v2g ¼ fð1; 3Þ; ð3; 8Þg

(a) Find the coordinates of v ¼ ða; bÞ relative to the basis S.

(b) Find the change-of-basis matrix P from S to S0.
(c) Find the coordinates of v ¼ ða; bÞ relative to the basis S0.
(d) Find the change-of-basis matrix Q from S0 back to S.

(e) Verify Q ¼ P
1.

(f ) Show that, for any vector v ¼ ða; bÞ in R2, P
1½v�S ¼ ½v�S0 . (See Theorem 6.6.)

(a) Let v ¼ xu1 þ yu2 for unknowns x and y; that is,

a
b

� �
¼ x

1

2

� �
þ y

3

4

� �
or

xþ 3y ¼ a

2x
 4y ¼ b

or
xþ 3y ¼ a

2y ¼ 2aþ b

Solve for x and y in terms of a and b to get x ¼ 
2a
 3
2 b and y ¼ aþ 1

2 b. Thus,

ða; bÞ ¼ ð
2a
 3
2Þu1 þ ðaþ 1

2 bÞu2 or ½ða; bÞ�S ¼ ½
2a
 3
2 b; aþ 1

2 b�T

(b) Use part (a) to write each of the basis vectors v1 and v2 of S0 as a linear combination of the basis vectors
u1 and u2 of S; that is,

v1 ¼ ð1; 3Þ ¼ ð
2
 9
2Þu1 þ ð1þ 3

2Þu2 ¼ 
 13
2 u1 þ 5

2 u2

v2 ¼ ð3; 8Þ ¼ ð
6
 12Þu1 þ ð3þ 4Þu2 ¼ 
18u1 þ 7u2
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Then P is the matrix whose columns are the coordinates of v1 and v2 relative to the basis S; that is,

P ¼ 
 13
2 
18
5
2 7

" #

(c) Let v ¼ xv1 þ yv2 for unknown scalars x and y:

a
b

� �
¼ x

1
3

� �
þ y

3
8

� �
or

xþ 3y ¼ a
3xþ 8y ¼ b

or
xþ 3y ¼ a

y ¼ b
 3a

Solve for x and y to get x ¼ 
8aþ 3b and y ¼ 3a
 b. Thus,

ða; bÞ ¼ ð
8aþ 3bÞv1 þ ð3a
 bÞv2 or ½ða; bÞ�S0 ¼ ½
8aþ 3b; 3a
 b�T

(d) Use part (c) to express each of the basis vectors u1 and u2 of S as a linear combination of the basis
vectors v1 and v2 of S0:

u1 ¼ ð1;
2Þ ¼ ð
8
 6Þv1 þ ð3þ 2Þv2 ¼ 
14v1 þ 5v2

u2 ¼ ð3;
4Þ ¼ ð
24
 12Þv1 þ ð9þ 4Þv2 ¼ 
36v1 þ 13v2

Write the coordinates of u1 and u2 relative to S0 as columns to obtain Q ¼ 
14 
36
5 13

� �
.

(e) QP ¼ 
14 
36
5 13

� � 
 13
2 
18
5
2 7

" #
¼ 1 0

0 1

� �
¼ I

(f ) Use parts (a), (c), and (d) to obtain

P
1½v�S ¼ Q½v�S ¼

14 
36

5 13

� � 
2a
 3
2 b

aþ 1
2 b

" #
¼ 
8aþ 3b

3a
 b

� �
¼ ½v�S0

6.18. Suppose P is the change-of-basis matrix from a basis fuig to a basis fwig, and suppose Q is the
change-of-basis matrix from the basis fwig back to fuig. Prove that P is invertible and that
Q ¼ P
1.

Suppose, for i ¼ 1; 2; . . . ; n, that

wi ¼ ai1u1 þ ai2u2 þ . . .þ ainun ¼
Pn
j¼1

aijuj ð1Þ

and, for j ¼ 1; 2; . . . ; n,

uj ¼ bj1w1 þ bj2w2 þ � � � þ bjnwn ¼
Pn
k¼1

bjkwk ð2Þ

Let A ¼ ½aij� and B ¼ ½bjk �. Then P ¼ AT and Q ¼ BT . Substituting (2) into (1) yields

wi ¼
Pn
j¼1

aij

�Pn
k¼1

bjkwk

�
¼ Pn

k¼1

�Pn
j¼1

aijbjk

�
wk

Because fwig is a basis,
P

aijbjk ¼ dik , where dik is the Kronecker delta; that is, dik ¼ 1 if i ¼ k but dik ¼ 0
if i 6¼ k. Suppose AB ¼ ½cik �. Then cik ¼ dik . Accordingly, AB ¼ I , and so

QP ¼ BT AT ¼ ðABÞT ¼ IT ¼ I

Thus, Q ¼ P
1.

6.19. Consider a finite sequence of vectors S ¼ fu1; u2; . . . ; ung. Let S0 be the sequence of vectors
obtained from S by one of the following ‘‘elementary operations’’:

(1) Interchange two vectors.

(2) Multiply a vector by a nonzero scalar.

(3) Add a multiple of one vector to another vector.

Show that S and S0 span the same subspace W . Also, show that S0 is linearly independent if and
only if S is linearly independent.
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Observe that, for each operation, the vectors S0 are linear combinations of vectors in S. Also, because
each operation has an inverse of the same type, each vector in S is a linear combination of vectors in S0.
Thus, S and S0 span the same subspace W . Moreover, S0 is linearly independent if and only if dim W ¼ n,
and this is true if and only if S is linearly independent.

6.20. Let A ¼ ½aij� and B ¼ ½bij� be row equivalent m� n matrices over a field K, and let v1; v2; . . . ; vn

be any vectors in a vector space V over K. For i ¼ 1; 2; . . . ;m, let ui and wi be defined by

ui ¼ ai1v1 þ ai2v2 þ � � � þ ainvn and wi ¼ bi1v1 þ bi2v2 þ � � � þ binvn

Show that fuig and fwig span the same subspace of V .
Applying an ‘‘elementary operation’’ of Problem 6.19 to fuig is equivalent to applying an elementary

row operation to the matrix A. Because A and B are row equivalent, B can be obtained from A by a sequence
of elementary row operations. Hence, fwig can be obtained from fuig by the corresponding sequence of
operations. Accordingly, fuig and fwig span the same space.

6.21. Suppose u1; u2; . . . ; un belong to a vector space V over a field K , and suppose P ¼ ½aij� is an
n-square matrix over K. For i ¼ 1; 2; . . . ; n, let vi ¼ ai1u1 þ ai2u2 þ � � � þ ainun.

(a) Suppose P is invertible. Show that fuig and fvig span the same subspace of V . Hence, fuig is
linearly independent if and only if fvig is linearly independent.

(b) Suppose P is singular (not invertible). Show that fvig is linearly dependent.

(c) Suppose fvig is linearly independent. Show that P is invertible.

(a) Because P is invertible, it is row equivalent to the identity matrix I . Hence, by Problem 6.19, fvig and
fuig span the same subspace of V . Thus, one is linearly independent if and only if the other is linearly
independent.

(b) Because P is not invertible, it is row equivalent to a matrix with a zero row. This means fvig spans a
subspace that has a spanning set with less than n elements. Thus, fv ig is linearly dependent.

(c) This is the contrapositive of the statement of part (b), and so it follows from part (b).

6.22. Prove Theorem 6.6: Let P be the change-of-basis matrix from a basis S to a basis S0 in a vector
space V . Then, for any vector v 2 V , we have P½v�S0 ¼ ½v�S , and hence, P
1½v�S ¼ ½v�S0 .

Suppose S ¼ fu1; . . . ; ung and S0 ¼ fw1; . . . ;wng, and suppose, for i ¼ 1; . . . ; n,

wi ¼ ai1u1 þ ai2u2 þ � � � þ ainun ¼
Pn
j¼1

aijuj

Then P is the n-square matrix whose jth row is

ða1j; a2j; . . . ; anjÞ ð1Þ
Also suppose v ¼ k1w1 þ k2w2 þ � � � þ knwn ¼

Pn
i¼1 kiwi. Then

½v�S0 ¼ ½k1; k2; . . . ; kn�T ð2Þ
Substituting for wi in the equation for v, we obtain

v ¼Pn
i¼1

kiwi ¼
Pn
i¼1

ki

�Pn
j¼1

aijuj

�
¼Pn

j¼1

�Pn
i¼1

aijki

�
uj

¼Pn
j¼1

ða1jk1 þ a2jk2 þ � � � þ anjknÞuj

Accordingly, ½v�S is the column vector whose jth entry is

a1jk1 þ a2jk2 þ � � � þ anjkn ð3Þ
On the other hand, the jth entry of P½v�S0 is obtained by multiplying the jth row of P by ½v�S0—that is, (1) by
(2). However, the product of (1) and (2) is (3). Hence, P½v�S0 and ½v�S have the same entries. Thus,
P½v�S0 ¼ ½v�S , as claimed.

Furthermore, multiplying the above by P
1 gives P
1½v�S ¼ P
1P½v�S0 ¼ ½v�S0 .
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Linear Operators and Change of Basis

6.23. Consider the linear transformation F on R2 defined by Fðx; yÞ ¼ ð5x
 y; 2xþ yÞ and the
following bases of R2:

E ¼ fe1; e2g ¼ fð1; 0Þ; ð0; 1Þg and S ¼ fu1; u2g ¼ fð1; 4Þ; ð2; 7Þg
(a) Find the change-of-basis matrix P from E to S and the change-of-basis matrix Q from S back

to E.

(b) Find the matrix A that represents F in the basis E.

(c) Find the matrix B that represents F in the basis S.

(a) Because E is the usual basis, simply write the vectors in S as columns to obtain the change-of-basis
matrix P. Recall, also, that Q ¼ P
1. Thus,

P ¼ 1 2
4 7

� �
and Q ¼ P
1 ¼ 
7 2

4 
1

� �
(b) Write the coefficients of x and y in Fðx; yÞ ¼ ð5x
 y; 2xþ yÞ as rows to get

A ¼ 5 
1
2 1

� �
(c) Method 1. Find the coordinates of Fðu1Þ and Fðu2Þ relative to the basis S. This may be done by first

finding the coordinates of an arbitrary vector ða; bÞ in R2 relative to the basis S. We have

ða; bÞ ¼ xð1; 4Þ þ yð2; 7Þ ¼ ðxþ 2y; 4xþ 7yÞ; and so
xþ 2y ¼ a

4xþ 7y ¼ b

Solve for x and y in terms of a and b to get x ¼ 
7aþ 2b, y ¼ 4a
 b. Then

ða; bÞ ¼ ð
7aþ 2bÞu1 þ ð4a
 bÞu2

Now use the formula for ða; bÞ to obtain

Fðu1Þ ¼ Fð1; 4Þ ¼ ð1; 6Þ ¼ 5u1 
 2u2

Fðu2Þ ¼ Fð2; 7Þ ¼ ð3; 11Þ ¼ u1 þ u2
and so B ¼ 5 1


2 1

� �
Method 2. By Theorem 6.7, B ¼ P
1AP. Thus,

B ¼ P
1AP ¼ 
7 2
4 
1

� �
5 
1
2 1

� �
1 2
4 7

� �
¼ 5 1

2 1

� �

6.24. Let A ¼ 2 3
4 
1

� �
. Find the matrix B that represents the linear operator A relative to the basis

S ¼ fu1; u2g ¼ f½1; 3�T ; ½2; 5�Tg. [Recall A defines a linear operator A:R2 ! R2 relative to the
usual basis E of R2].

Method 1. Find the coordinates of Aðu1Þ and Aðu2Þ relative to the basis S by first finding the coordinates
of an arbitrary vector ½a; b�T in R2 relative to the basis S. By Problem 6.2,

½a; b�T ¼ ð
5aþ 2bÞu1 þ ð3a
 bÞu2

Using the formula for ½a; b�T , we obtain

Aðu1Þ ¼
2 3

4 
1

� �
1

3

� �
¼ 11

1

� �
¼ 
53u1 þ 32u2

and Aðu2Þ ¼
2 3

4 
1

� �
2

5

� �
¼ 19

3

� �
¼ 
89u1 þ 54u2

Thus; B ¼ 
53 
89

32 54

� �
Method 2. Use B ¼ P
1AP, where P is the change-of-basis matrix from the usual basis E to S. Thus,
simply write the vectors in S (as columns) to obtain the change-of-basis matrix P and then use the formula
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for P
1. This gives

P ¼ 1 2

3 5

� �
and P
1 ¼ 
5 2

3 
1

� �
Then B ¼ P
1AP ¼ 1 2

3 5

� �
2 3

4 
1

� � 
5 2

3 
1

� �
¼ 
53 
89

32 54

� �

6.25. Let A ¼
1 3 1
2 5 
4
1 
2 2

24 35: Find the matrix B that represents the linear operator A relative to the

basis

S ¼ fu1; u2; u3g ¼ f½1; 1; 0�T ; ½0; 1; 1�T ; ½1; 2; 2�Tg
[Recall A that defines a linear operator A:R3 ! R3 relative to the usual basis E of R3.]

Method 1. Find the coordinates of Aðu1Þ, Aðu2Þ, Aðu3Þ relative to the basis S by first finding the
coordinates of an arbitrary vector v ¼ ða; b; cÞ in R3 relative to the basis S. By Problem 6.16,

½v�S ¼ ðb
 cÞu1 þ ð
2aþ 2b
 cÞu2 þ ða
 bþ cÞu3

Using this formula for ½a; b; c�T , we obtain

Aðu1Þ ¼ ½4; 7;
1�T ¼ 8u1 þ 7u2 
 u3; Aðu2Þ ¼ ½4; 1; 0�T ¼ u1 
 6u2 þ 3u3

Aðu3Þ ¼ ½9; 4; 1�T ¼ 3u1 
 11u2 þ 6u3

Writing the coefficients of u1; u2; u3 as columns yields

B ¼
8 1 3
7 
6 
11



24 35
Method 2. Use B ¼ P
1AP, where P is the change-of-basis matrix from the usual basis E to S. The matrix
P (whose columns are simply the vectors in S) and P
1 appear in Problem 6.16. Thus,

B ¼ P
1AP ¼
0 1 
1

2 2 
1

1 
1 1

24 35 1 3 1
2 5 
4
1 
2 2

24 35 1 0 1
1 1 2
0 1 2

24 35 ¼ 8 1 3
7 
6 
11

 3 6

24 35
6.26. Prove Theorem 6.7: Let P be the change-of-basis matrix from a basis S to a basis S0 in a vector

space V . Then, for any linear operator T on V , ½T �S0 ¼ P
1½T �SP.
Let v be a vector in V . Then, by Theorem 6.6, P½v�S0 ¼ ½v�S . Therefore,

P
1½T �SP½v�S0 ¼ P
1½T �S ½v�S ¼ P
1½TðvÞ�S ¼ ½TðvÞ�S0
But ½T �S0 ½v�S0 ¼ ½TðvÞ�S0 . Hence,

P
1½T �SP½v�S0 ¼ ½T �S0 ½v�S0
Because the mapping v 7! ½v�S0 is onto Kn, we have P
1½T �SPX ¼ ½T �S0X for every X 2 Kn. Thus,
P
1½T �SP ¼ ½T �S0 , as claimed.

Similarity of Matrices

6.27. Let A ¼ 4 
2
3 6

� �
and P ¼ 1 2

3 4

� �
.

(a) Find B ¼ P
1AP. (b) Verify trðBÞ ¼ trðAÞ: (c) Verify detðBÞ ¼ detðAÞ:
(a) First find P
1 using the formula for the inverse of a 2� 2 matrix. We have

P
1 ¼ 
2 1
3
2 
 1

2

" #
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Then

B ¼ P
1AP ¼ 
2 1
3
2 
 1

2

� �
4 
2
3 6

� �
1 2
3 4

� �
¼ 25 30

 27

2 
15

� �
(b) trðAÞ ¼ 4þ 6 ¼ 10 and trðBÞ ¼ 25
 15 ¼ 10. Hence, trðBÞ ¼ trðAÞ.
(c) detðAÞ ¼ 24þ 6 ¼ 30 and detðBÞ ¼ 
375þ 405 ¼ 30. Hence, detðBÞ ¼ detðAÞ.

6.28. Find the trace of each of the linear transformations F on R3 in Problem 6.4.
Find the trace (sum of the diagonal elements) of any matrix representation of F such as the matrix

representation ½F� ¼ ½F�E of F relative to the usual basis E given in Problem 6.4.

(a) trðFÞ ¼ trð½F�Þ ¼ 1
 5þ 9 ¼ 5.

(b) trðFÞ ¼ trð½F�Þ ¼ 1þ 3þ 5 ¼ 9.

(c) trðFÞ ¼ trð½F�Þ ¼ 1þ 4þ 7 ¼ 12.

6.29. Write A � B if A is similar to B—that is, if there exists an invertible matrix P such that
A ¼ P
1BP. Prove that � is an equivalence relation (on square matrices); that is,

(a) A � A, for every A. (b) If A � B, then B � A.
(c) If A � B and B � C, then A � C.

(a) The identity matrix I is invertible, and I
1 ¼ I . Because A ¼ I
1AI , we have A � A.

(b) Because A � B, there exists an invertible matrix P such that A ¼ P
1BP. Hence,
B ¼ PAP
1 ¼ ðP
1Þ
1

AP and P
1 is also invertible. Thus, B � A.

(c) Because A � B, there exists an invertible matrix P such that A ¼ P
1BP, and as B � C, there exists an
invertible matrix Q such that B ¼ Q
1CQ. Thus,

A ¼ P
1BP ¼ P
1ðQ
1CQÞP ¼ ðP
1Q
1ÞCðQPÞ ¼ ðQPÞ
1
CðQPÞ

and QP is also invertible. Thus, A � C.

6.30. Suppose B is similar to A, say B ¼ P
1AP. Prove

(a) Bn ¼ P
1AnP, and so Bn is similar to An.

(b) f ðBÞ ¼ P
1f ðAÞP, for any polynomial f ðxÞ, and so f ðBÞ is similar to f ðAÞ:
(c) B is a root of a polynomial gðxÞ if and only if A is a root of gðxÞ.

(a) The proof is by induction on n. The result holds for n ¼ 1 by hypothesis. Suppose n > 1 and the result
holds for n
 1. Then

Bn ¼ BBn
1 ¼ ðP
1APÞðP
1An
1PÞ ¼ P
1AnP

(b) Suppose f ðxÞ ¼ anxn þ � � � þ a1xþ a0. Using the left and right distributive laws and part (a), we have

P
1f ðAÞP ¼ P
1ðanAn þ � � � þ a1Aþ a0IÞP
¼ P
1ðanAnÞPþ � � � þ P
1ða1AÞPþ P
1ða0IÞP
¼ anðP
1AnPÞ þ � � � þ a1ðP
1APÞ þ a0ðP
1IPÞ
¼ anBn þ � � � þ a1Bþ a0I ¼ f ðBÞ

(c) By part (b), gðBÞ ¼ 0 if and only if P
1gðAÞP ¼ 0 if and only if gðAÞ ¼ P0P
1 ¼ 0.

Matrix Representations of General Linear Mappings

6.31. Let F:R3 ! R2 be the linear map defined by Fðx; y; zÞ ¼ ð3xþ 2y
 4z; x
 5yþ 3zÞ.
(a) Find the matrix of F in the following bases of R3 and R2:

S ¼ fw1;w2;w3g ¼ fð1; 1; 1Þ; ð1; 1; 0Þ; ð1; 0; 0Þg and S0 ¼ fu1; u2g ¼ fð1; 3Þ; ð2; 5Þg
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(b) Verify Theorem 6.10: The action of F is preserved by its matrix representation; that is, for any
v in R3, we have ½F�S;S0 ½v�S ¼ ½FðvÞ�S0 .

(a) From Problem 6.2, ða; bÞ ¼ ð
5aþ 2bÞu1 þ ð3a
 bÞu2. Thus,

Fðw1Þ ¼ Fð1; 1; 1Þ ¼ ð1;
1Þ ¼ 
7u1 þ 4u2

Fðw2Þ ¼ Fð1; 1; 0Þ ¼ ð5;
4Þ ¼ 
33u1 þ 19u2

Fðw3Þ ¼ Fð1; 0; 0Þ ¼ ð3; 1Þ ¼ 
13u1 þ 8u2

Write the coordinates of Fðw1Þ, Fðw2Þ;Fðw3Þ as columns to get

½F�S;S0 ¼

7 
33 13

4 19 8

� �
(b) If v ¼ ðx; y; zÞ, then, by Problem 6.5, v ¼ zw1 þ ðy
 zÞw2 þ ðx
 yÞw3. Also,

FðvÞ ¼ ð3xþ 2y
 4z; x
 5yþ 3zÞ ¼ ð
13x
 20yþ 26zÞu1 þ ð8xþ 11y
 15zÞu2

Hence; ½v�S ¼ ðz; y
 z; x
 yÞT and ½FðvÞ�S0 ¼

13x
 20yþ 26z

8xþ 11y
 15z

� �
Thus, ½F�S;S0 ½v�S ¼


7 
33 
13
4 19 8

� � z
y
 x
x
 y

24 35 ¼ 
13x
 20yþ 26z
8xþ 11y
 15z

� �
¼ ½FðvÞ�S0

6.32. Let F:Rn ! Rm be the linear mapping defined as follows:

Fðx1; x2; . . . ; xnÞ ¼ ða11x1 þ � � � þ a1nxn, a21x1 þ � � � þ a2nxn; . . . ; am1x1 þ � � � þ amnxnÞ
(a) Show that the rows of the matrix ½F� representing F relative to the usual bases of Rn and Rm

are the coefficients of the xi in the components of Fðx1; . . . ; xnÞ.
(b) Find the matrix representation of each of the following linear mappings relative to the usual

basis of Rn:

(i) F:R2 ! R3 defined by Fðx; yÞ ¼ ð3x
 y; 2xþ 4y; 5x
 6yÞ.
(ii) F:R4 ! R2 defined by Fðx; y; s; tÞ ¼ ð3x
 4yþ 2s
 5t; 5xþ 7y
 s
 2tÞ.

(iii) F:R3 ! R4 defined by Fðx; y; zÞ ¼ ð2xþ 3y
 8z; xþ yþ z; 4x
 5z; 6yÞ.

(a) We have

Fð1; 0; . . . ; 0Þ ¼ ða11; a21; . . . ; am1Þ
Fð0; 1; . . . ; 0Þ ¼ ða12; a22; . . . ; am2Þ
:::::::::::::::::::::::::::::::::::::::::::::::::::::
Fð0; 0; . . . ; 1Þ ¼ ða1n; a2n; . . . ; amnÞ

and thus; ½F� ¼
a11 a12 . . . a1n

a21 a22 . . . a2n

:::::::::::::::::::::::::::::::::
am1 am2 . . . amn

2664
3775

(b) By part (a), we need only look at the coefficients of the unknown x; y; . . . in Fðx; y; . . .Þ. Thus,

ðiÞ ½F� ¼
3 
1
2 4
5 
6

24 35; ðiiÞ ½F� ¼ 3 
4 2 
5
5 7 
1 
2

� �
; ðiiiÞ ½F� ¼

2 3 
8
1 1 1
4 0 
5
0 6 0

2664
3775

6.33. Let A ¼ 2 5 
3
1 
4 7

� �
. Recall that A determines a mapping F:R3 ! R2 defined by FðvÞ ¼ Av,

where vectors are written as columns. Find the matrix ½F� that represents the mapping relative to
the following bases of R3 and R2:

(a) The usual bases of R3 and of R2.

(b) S ¼ fw1;w2;w3g ¼ fð1; 1; 1Þ; ð1; 1; 0Þ; ð1; 0; 0Þg and S0 ¼ fu1; u2g ¼ fð1; 3Þ; ð2; 5Þg.
(a) Relative to the usual bases, ½F� is the matrix A.
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(b) From Problem .2, ða; bÞ ¼ ð
5aþ 2bÞu1 þ ð3a
 bÞu2. Thus,

Fðw1Þ ¼
2 5 
3

1 
4 7

� � 1

1

1

264
375 ¼ 4

4

� �
¼ 
12u1 þ 8u2

Fðw2Þ ¼
2 5 
3

1 
4 7

� � 1

1

0

264
375 ¼ 7


3

� �
¼ 
41u1 þ 24u2

Fðw3Þ ¼
2 5 
3

1 
4 7

� � 1

0

0

264
375 ¼ 2

1

� �
¼ 
8u1 þ 5u2

Writing the coefficients of Fðw1Þ, Fðw2Þ, Fðw3Þ as columns yields ½F� ¼ 
12 
41 
8
8 24 5

� �
.

6.34. Consider the linear transformation T on R2 defined by Tðx; yÞ ¼ ð2x
 3y; xþ 4yÞ and the
following bases of R2:

E ¼ fe1; e2g ¼ fð1; 0Þ; ð0; 1Þg and S ¼ fu1; u2g ¼ fð1; 3Þ; ð2; 5Þg

(a) Find the matrix A representing T relative to the bases E and S.

(b) Find the matrix B representing T relative to the bases S and E.

(We can view T as a linear mapping from one space into another, each having its own basis.)

(a) From Problem 6.2, ða; bÞ ¼ ð
5aþ 2bÞu1 þ ð3a
 bÞu2. Hence,

Tðe1Þ ¼ Tð1; 0Þ ¼ ð2; 1Þ ¼ 
8u1 þ 5u2

Tðe2Þ ¼ Tð0; 1Þ ¼ ð
3; 4Þ ¼ 23u1 
 13u2
and so A ¼ 
8 23

5 
13

� �
(b) We have

Tðu1Þ ¼ Tð1; 3Þ ¼ ð
7; 13Þ ¼ 
7e1 þ 13e2

Tðu2Þ ¼ Tð2; 5Þ ¼ ð
11; 22Þ ¼ 
11e1 þ 22e2
and so B ¼ 
7 
11

13 22

� �
6.35. How are the matrices A and B in Problem 6.34 related?

By Theorem 6.12, the matrices A and B are equivalent to each other; that is, there exist nonsingular
matrices P and Q such that B ¼ Q
1AP, where P is the change-of-basis matrix from S to E, and Q is the
change-of-basis matrix from E to S. Thus,

P ¼ 1 2

3 5

� �
; Q ¼ 
5 2

3 
1

� �
; Q
1 ¼ 1 2

3 5

� �
and Q
1AP ¼ 1 2

3 5

� � 
8 
23

5 
13

� �
1 2

3 5

� �
¼ 
7 
11

13 22

� �
¼ B

6.36. Prove Theorem 6.14: Let F:V ! U be linear and, say, rankðFÞ ¼ r. Then there exist bases V and
of U such that the matrix representation of F has the following form, where Ir is the r-square
identity matrix:

A ¼ Ir 0
0 0

� �
Suppose dim V ¼ m and dim U ¼ n. Let W be the kernel of F and U 0 the image of F. We are given that

rank ðFÞ ¼ r. Hence, the dimension of the kernel of F is m
 r. Let fw1; . . . ;wm
rg be a basis of the kernel
of F and extend this to a basis of V :

fv1; . . . ; vr;w1; . . . ;wm
rg
Set u1 ¼ Fðv1Þ; u2 ¼ Fðv2Þ; . . . ; ur ¼ FðvrÞ
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Then fu1; . . . ; urg is a basis of U 0, the image of F. Extend this to a basis of U , say

fu1; . . . ; ur; urþ1; . . . ; ung
Observe that

Fðv1Þ ¼ u1 ¼ 1u1 þ 0u2 þ � � � þ 0ur þ 0urþ1 þ � � � þ 0un

Fðv2Þ ¼ u2 ¼ 0u1 þ 1u2 þ � � � þ 0ur þ 0urþ1 þ � � � þ 0un

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

FðvrÞ ¼ ur ¼ 0u1 þ 0u2 þ � � � þ 1ur þ 0urþ1 þ � � � þ 0un

Fðw1Þ ¼ 0 ¼ 0u1 þ 0u2 þ � � � þ 0ur þ 0urþ1 þ � � � þ 0un

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Fðwm
rÞ ¼ 0 ¼ 0u1 þ 0u2 þ � � � þ 0ur þ 0urþ1 þ � � � þ 0un

Thus, the matrix of F in the above bases has the required form.

SUPPLEMENTARY PROBLEMS

Matrices and Linear Operators

6.37. Let F:R2 ! R2 be defined by Fðx; yÞ ¼ ð4xþ 5y; 2x
 yÞ.
(a) Find the matrix A representing F in the usual basis E.

(b) Find the matrix B representing F in the basis S ¼ fu1; u2g ¼ fð1; 4Þ; ð2; 9Þg.
(c) Find P such that B ¼ P
1AP.

(d) For v ¼ ða; bÞ, find ½v�S and ½FðvÞ�S . Verify that ½F�S ½v�S ¼ ½FðvÞ�S .

6.38. Let A:R2 ! R2 be defined by the matrix A ¼ 5 
1
2 4

� �
.

(a) Find the matrix B representing A relative to the basis S ¼ fu1; u2g ¼ fð1; 3Þ; ð2; 8Þg. (Recall that A
represents the mapping A relative to the usual basis E.)

(b) For v ¼ ða; bÞ, find ½v�S and ½AðvÞ�S .

6.39. For each linear transformation L on R2, find the matrix A representing L (relative to the usual basis of R2):

(a) L is the rotation in R2 counterclockwise by 45�.
(b) L is the reflection in R2 about the line y ¼ x.

(c) L is defined by Lð1; 0Þ ¼ ð3; 5Þ and Lð0; 1Þ ¼ ð7;
2Þ.
(d) L is defined by Lð1; 1Þ ¼ ð3; 7Þ and Lð1; 2Þ ¼ ð5;
4Þ.

6.40. Find the matrix representing each linear transformation T on R3 relative to the usual basis of R3:

(a) Tðx; y; zÞ ¼ ðx; y; 0Þ. (b) Tðx; y; zÞ ¼ ðz; yþ z; xþ yþ zÞ.
(c) Tðx; y; zÞ ¼ ð2x
 7y
 4z; 3xþ yþ 4z; 6x
 8yþ zÞ.

6.41. Repeat Problem 6.40 using the basis S ¼ fu1; u2; u3g ¼ fð1; 1; 0Þ; ð1; 2; 3Þ; ð1; 3; 5Þg.
6.42. Let L be the linear transformation on R3 defined by

Lð1; 0; 0Þ ¼ ð1; 1; 1Þ; Lð0; 1; 0Þ ¼ ð1; 3; 5Þ; Lð0; 0; 1Þ ¼ ð2; 2; 2Þ
(a) Find the matrix A representing L relative to the usual basis of R3.

(b) Find the matrix B representing L relative to the basis S in Problem 6.41.

6.43. Let D denote the differential operator; that is, Dð f ðtÞÞ ¼ df =dt. Each of the following sets is a basis of a
vector space V of functions. Find the matrix representing D in each basis:

(a) fet; e2t; te2tg. (b) f1; t; sin 3t; cos 3tg. (c) fe5t; te5t; t2e5tg.
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6.44. Let D denote the differential operator on the vector space V of functions with basis S ¼ fsin y, cos yg.
(a) Find the matrix A ¼ ½D�S . (b) Use A to show that D is a zero of f ðtÞ ¼ t2 þ 1.

6.45. Let V be the vector space of 2� 2 matrices. Consider the following matrix M and usual basis E of V :

M ¼ a b
c d

� �
and E ¼ 1 0

0 0

� �
;

0 1
0 0

� �
;

0 0
1 0

� �
;

0 0
0 1

� �	 �
Find the matrix representing each of the following linear operators T on V relative to E:

(a) TðAÞ ¼ MA. (b) TðAÞ ¼ AM . (c) TðAÞ ¼ MA
 AM .

6.46. Let 1V and 0V denote the identity and zero operators, respectively, on a vector space V . Show that, for any
basis S of V , (a) ½1V �S ¼ I , the identity matrix. (b) ½0V �S ¼ 0, the zero matrix.

Change of Basis

6.47. Find the change-of-basis matrix P from the usual basis E of R2 to a basis S, the change-of-basis matrix Q
from S back to E, and the coordinates of v ¼ ða; bÞ relative to S, for the following bases S:

(a) S ¼ fð1; 2Þ; ð3; 5Þg. (c) S ¼ fð2; 5Þ; ð3; 7Þg.
(b) S ¼ fð1;
3Þ; ð3;
8Þg. (d) S ¼ fð2; 3Þ; ð4; 5Þg.

6.48. Consider the bases S ¼ fð1; 2Þ; ð2; 3Þg and S0 ¼ fð1; 3Þ; ð1; 4Þg of R2. Find the change-of-basis matrix:

(a) P from S to S0. (b) Q from S0 back to S.

6.49. Suppose that the x-axis and y-axis in the plane R2 are rotated counterclockwise 30� to yield new x 0-axis and
y 0-axis for the plane. Find

(a) The unit vectors in the direction of the new x 0-axis and y 0-axis.

(b) The change-of-basis matrix P for the new coordinate system.

(c) The new coordinates of the points Að1; 3Þ, Bð2;
5Þ, Cða; bÞ.

6.50. Find the change-of-basis matrix P from the usual basis E of R3 to a basis S, the change-of-basis matrix Q
from S back to E, and the coordinates of v ¼ ða; b; cÞ relative to S, where S consists of the vectors:

(a) u1 ¼ ð1; 1; 0Þ; u2 ¼ ð0; 1; 2Þ; u3 ¼ ð0; 1; 1Þ.
(b) u1 ¼ ð1; 0; 1Þ; u2 ¼ ð1; 1; 2Þ; u3 ¼ ð1; 2; 4Þ.
(c) u1 ¼ ð1; 2; 1Þ; u2 ¼ ð1; 3; 4Þ; u3 ¼ ð2; 5; 6Þ.

6.51. Suppose S1; S2; S3 are bases of V . Let P and Q be the change-of-basis matrices, respectively, from S1 to S2

and from S2 to S3. Prove that PQ is the change-of-basis matrix from S1 to S3.

Linear Operators and Change of Basis

6.52. Consider the linear operator F on R2 defined by Fðx; yÞ ¼ ð5xþ y; 3x
 2yÞ and the following bases of R2:

S ¼ fð1; 2Þ; ð2; 3Þg and S0 ¼ fð1; 3Þ; ð1; 4Þg
(a) Find the matrix A representing F relative to the basis S.

(b) Find the matrix B representing F relative to the basis S0.
(c) Find the change-of-basis matrix P from S to S0.
(d) How are A and B related?

6.53. Let A:R2 ! R2 be defined by the matrix A ¼ 1 
1
3 2

� �
. Find the matrix B that represents the linear

operator A relative to each of the following bases: (a) S ¼ fð1; 3ÞT ; ð2; 5ÞTg. (b) S ¼ fð1; 3ÞT ; ð2; 4ÞTg.
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6.54. Let F:R2 ! R2 be defined by Fðx; yÞ ¼ ðx
 3y; 2x
 4yÞ. Find the matrix A that represents F relative to
each of the following bases: (a) S ¼ fð2; 5Þ; ð3; 7Þg. (b) S ¼ fð2; 3Þ; ð4; 5Þg.

6.55. Let A:R3 ! R3 be defined by the matrix A ¼
1 3 1
2 7 4
1 4 3

24 35. Find the matrix B that represents the linear

operator A relative to the basis S ¼ fð1; 1; 1ÞT ; ð0; 1; 1ÞT ; ð1; 2; 3ÞTg.

Similarity of Matrices

6.56. Let A ¼ 1 1
2 
3

� �
and P ¼ 1 
2

3 
5

� �
.

(a) Find B ¼ P
1AP. (b) Verify that trðBÞ ¼ trðAÞ: (c) Verify that detðBÞ ¼ detðAÞ.

6.57. Find the trace and determinant of each of the following linear maps on R2:

(a) Fðx; yÞ ¼ ð2x
 3y; 5xþ 4yÞ. (b) Gðx; yÞ ¼ ðaxþ by; cxþ dyÞ.

6.58. Find the trace and determinant of each of the following linear maps on R3:

(a) Fðx; y; zÞ ¼ ðxþ 3y; 3x
 2z; x
 4y
 3zÞ.
(b) Gðx; y; zÞ ¼ ðyþ 3z; 2x
 4z; 5xþ 7yÞ.

6.59. Suppose S ¼ fu1; u2g is a basis of V , and T :V ! V is defined by Tðu1Þ ¼ 3u1 
 2u2 and Tðu2Þ ¼ u1 þ 4u2.
Suppose S0 ¼ fw1;w2g is a basis of V for which w1 ¼ u1 þ u2 and w2 ¼ 2u1 þ 3u2.

(a) Find the matrices A and B representing T relative to the bases S and S0, respectively.

(b) Find the matrix P such that B ¼ P
1AP.

6.60. Let A be a 2� 2 matrix such that only A is similar to itself. Show that A is a scalar matrix, that is, that

A ¼ a 0
0 a

� �
.

6.61. Show that all matrices similar to an invertible matrix are invertible. More generally, show that similar
matrices have the same rank.

Matrix Representation of General Linear Mappings

6.62. Find the matrix representation of each of the following linear maps relative to the usual basis for Rn:

(a) F:R3 ! R2 defined by Fðx; y; zÞ ¼ ð2x
 4yþ 9z; 5xþ 3y
 2zÞ.
(b) F:R2 ! R4 defined by Fðx; yÞ ¼ ð3xþ 4y; 5x
 2y; xþ 7y; 4xÞ:
(c) F:R4 ! R defined by Fðx1; x2; x3; x4Þ ¼ 2x1 þ x2 
 7x3 
 x4.

6.63. Let G:R3 ! R2 be defined by Gðx; y; zÞ ¼ ð2xþ 3y
 z; 4x
 yþ 2zÞ.
(a) Find the matrix A representing G relative to the bases

S ¼ fð1; 1; 0Þ; ð1; 2; 3Þ; ð1; 3; 5Þg and S0 ¼ fð1; 2Þ; ð2; 3Þg

(b) For any v ¼ ða; b; cÞ in R3, find ½v�S and ½GðvÞ�S0 . (c) Verify that A½v�S ¼ ½GðvÞ�S0 .

6.64. Let H :R2 ! R2 be defined by Hðx; yÞ ¼ ð2xþ 7y; x
 3yÞ and consider the following bases of R2:

S ¼ fð1; 1Þ; ð1; 2Þg and S0 ¼ fð1; 4Þ; ð1; 5Þg

(a) Find the matrix A representing H relative to the bases S and S0.
(b) Find the matrix B representing H relative to the bases S0 and S.
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6.65. Let F:R3 ! R2 be defined by Fðx; y; zÞ ¼ ð2xþ y
 z; 3x
 2yþ 4zÞ.
(a) Find the matrix A representing F relative to the bases

S ¼ fð1; 1; 1Þ; ð1; 1; 0Þ; ð1; 0; 0Þg and S0 ¼ ð1; 3Þ; ð1; 4Þg

(b) Verify that, for any v ¼ ða; b; cÞ in R3, A½v�S ¼ ½FðvÞ�S0 .

6.66. Let S and S0 be bases of V , and let 1V be the identity mapping on V . Show that the matrix A representing
1V relative to the bases S and S0 is the inverse of the change-of-basis matrix P from S to S0; that is,
A ¼ P
1.

6.67. Prove (a) Theorem 6.10, (b) Theorem 6.11, (c) Theorem 6.12, (d) Theorem 6.13. [Hint: See the proofs
of the analogous Theorems 6.1 (Problem 6.9), 6.2 (Problem 6.10), 6.3 (Problem 6.11), and 6.7
(Problem 6.26).]

Miscellaneous Problems

6.68. Suppose F:V ! V is linear. A subspace W of V is said to be invariant under F if FðWÞ � W . Suppose W is

invariant under F and dim W ¼ r. Show that F has a block triangular matrix representation M ¼ A B
0 C

� �
where A is an r � r submatrix.

6.69. Suppose V ¼ U þW , and suppose U and V are each invariant under a linear operator F:V ! V . Also,

suppose dim U ¼ r and dim W ¼ S. Show that F has a block diagonal matrix representation M ¼ A 0
0 B

� �
where A and B are r � r and s� s submatrices.

6.70. Two linear operators F and G on V are said to be similar if there exists an invertible linear operator T on V
such that G ¼ T
1 � F � T . Prove

(a) F and G are similar if and only if, for any basis S of V , ½F�S and ½G�S are similar matrices.

(b) If F is diagonalizable (similar to a diagonal matrix), then any similar matrix G is also diagonalizable.

ANSWERS TO SUPPLEMENTARY PROBLEMS

Notation: M ¼ ½R1; R2; . . .� represents a matrix M with rows R1;R2; . . . :

6.37. (a) A ¼ ½4; 5; 2;
1�; (b) B ¼ ½220; 487; 
98;
217�; (c) P ¼ ½1; 2; 4; 9�;
(d) ½v�S ¼ ½9a
 2b; 
4aþ b�T and ½FðvÞ�S ¼ ½32aþ 47b; 
14a
 21b�T

6.38. (a) B ¼ ½
6;
28; 4; 15�;
(b) ½v�S ¼ ½4a
 b;
 3

2 aþ 1
2 b�T and ½AðvÞ�S ¼ ½18a
 8b; 1

2 ð
13aþ 7bÞ�

6.39. (a) ½ ffiffiffi2p ;
 ffiffiffi
2
p

;
ffiffiffi
2
p

;
ffiffiffi
2
p �; (b) ½0; 1; 1; 0�; (c) ½3; 7; 5;
2�;

(d) ½1; 2; 18;
11�

6.40. (a) ½1; 0; 0; 0; 1; 0; 0; 0; 0�; (b) ½0; 0; 1; 0; 1; 1; 1; 1; 1�;
(c) ½2;
7;
4; 3; 1; 4; 6;
8; 1�

6.41. (a) ½1; 3; 5; 0;
5;
10; 0; 3; 6�; (b) ½0; 1; 2; 
1; 2; 3; 1; 0; 0�;
(c) ½15; 65; 104; 
49;
219;
351; 29; 130; 208�

6.42. (a) ½1; 1; 2; 1; 3; 2; 1; 5; 2�; (b) ½0; 2; 14; 22; 0;
5;
8�

6.43. (a) ½1; 0; 0; 0; 2; 1; 0; 0; 2�; (b) ½0; 1; 0; 0; 0; 0; 0; 0;
3; 0; 0; 3; 0�;
(c) ½5; 1; 0; 0; 5; 2; 0; 0; 5�
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6.44. (a) A ¼ ½0;
1; 1; 0�; (b) A2 þ I ¼ 0

6.45. (a) ½a; 0; b; 0; 0; a; 0; b; c; 0; d; 0; 0; c; 0; d�;
(b) ½a; c; 0; 0; b; d; 0; 0; 0; 0; a; c; 0; 0; b; d�;
(c) ½0;
c; b; 0; 
b; a
 d; 0; b; c; 0; d 
 a;
c; 0; c;
b; 0�

6.47. (a) ½1; 3; 2; 5�; ½
5; 3; 2;
1�; ½v� ¼ ½
5aþ 3b; 2a
 b�T ;
(b) ½1; 3; 
3;
8�; ½
8;
3; 3; 1�; ½v� ¼ ½
8a
 3b; 3aþ b�T ;
(c) ½2; 3; 5; 7�; ½
7; 3; 5;
2�; ½v� ¼ ½
7aþ 3b; 5a
 2b�T ;
(d) ½2; 4; 3; 5�; ½
 5

2 ; 2;
3
2 ;
1�; ½v� ¼ ½
 5

2 aþ 2b; 3
2 a
 b�T

6.48. (a) P ¼ ½3; 5; 
1;
2�; (b) Q ¼ ½2; 5; 
1;
3�

6.49. Here K ¼ ffiffiffi
3
p

:

(a) 1
2 ðK; 1Þ; 1

2 ð
1;KÞ;
ðbÞ P ¼ 1

2 ½K;
1; 1;K�;
ðcÞ 1

2 ½K þ 3; 3K 
 1�T ; 1
2 ½2K 
 5;
5K 
 2�T ; 1

2 ½aK þ b; bK 
 a�T

6.50. P is the matrix whose columns are u1; u2; u3;Q ¼ P
1; ½v� ¼ Q½a; b; c�T :
(a) Q ¼ ½1; 0; 0; 1;
1; 1; 
2; 2;
1�; ½v� ¼ ½a; a
 bþ c; 
2aþ 2b
 c�T ;
(b) Q ¼ ½0;
2; 1; 2; 3;
2; 
1;
1; 1�; ½v� ¼ ½
2bþ c; 2aþ 3b
 2c; 
a
 bþ c�T ;
(c) Q ¼ ½
2; 2;
1; 
7; 4;
1; 5;
3; 1�; ½v� ¼ ½
2aþ 2b
 c; 
7aþ 4b
 c; 5a
 3bþ c�T

6.52. (a) ½
23;
39; 15; 26�; (b) ½35; 41; 
27;
32�; (c) ½3; 5; 
1;
2�; (d) B ¼ P
1AP

6.53. (a) ½28; 47; 
15;
25�; (b) ½13; 18; 
 15
2 ;
10�

6.54. (a) ½43; 60; 
33;
46�; (b) 1
2 ½3; 7; 
5;
9�

6.55. ½10; 8; 20; 13; 11; 28; 
5;
4;
10�

6.56. (a) ½
34; 57; 
19; 32�; (b) trðBÞ ¼ trðAÞ ¼ 
2; (c) detðBÞ ¼ detðAÞ ¼ 
5

6.57. (a) trðFÞ ¼ 6; detðFÞ ¼ 23; (b) trðGÞ ¼ aþ d; detðGÞ ¼ ad 
 bc

6.58. (a) trðFÞ ¼ 
2; detðFÞ ¼ 13; (b) trðGÞ ¼ 0; detðGÞ ¼ 22

6.59. (a) A ¼ ½3; 1; 
2; 4�; B ¼ ½8; 11; 
2;
1�; (b) P ¼ ½1; 2; 1; 3�

6.62. (a) ½2;
4; 9; 5; 3;
2�; (b) ½3; 5; 1; 4; 4;
2; 7; 0�; (c) ½2; 1;
7;
1�

6.63. (a) ½
9; 1; 4; 7; 2; 1�; (b) ½v�S ¼ ½
aþ 2b
 c; 5a
 5bþ 2c; 
3aþ 3b
 c�T , and
½GðvÞ�S0 ¼ ½2a
 11bþ 7c; 7b
 4c�T

6.64. (a) A ¼ ½47; 85; 
38;
69�; (b) B ¼ ½71; 88; 
41;
51�

6.65. A ¼ ½3; 11; 5; 
1;
8;
3�
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Inner Product Spaces,
Orthogonality

7.1 Introduction

The definition of a vector space V involves an arbitrary field K. Here we first restrict K to be the real field
R, in which case V is called a real vector space; in the last sections of this chapter, we extend our results
to the case where K is the complex field C, in which case V is called a complex vector space. Also, we
adopt the previous notation that

u; v;w are vectors in V

a; b; c; k are scalars in K

Furthermore, the vector spaces V in this chapter have finite dimension unless otherwise stated or implied.
Recall that the concepts of ‘‘length’’ and ‘‘orthogonality’’ did not appear in the investigation of

arbitrary vector spaces V (although they did appear in Section 1.4 on the spaces Rn and Cn). Here we
place an additional structure on a vector space V to obtain an inner product space, and in this context
these concepts are defined.

7.2 Inner Product Spaces

We begin with a definition.

DEFINITION: Let V be a real vector space. Suppose to each pair of vectors u; v 2 V there is assigned
a real number, denoted by hu; vi. This function is called a (real) inner product on V if it
satisfies the following axioms:

½I1� (Linear Property): hau1 þ bu2; vi ¼ ahu1; vi þ bhu2; vi.
½I2� (Symmetric Property): hu; vi ¼ hv; ui.
½I3� (Positive Definite Property): hu; ui � 0.; and hu; ui ¼ 0 if and only if u ¼ 0.

The vector space V with an inner product is called a (real) inner product space.

Axiom ½I1� states that an inner product function is linear in the first position. Using ½I1� and the
symmetry axiom ½I2�, we obtain

hu; cv1 þ dv2i ¼ hcv1 þ dv2; ui ¼ chv1; ui þ dhv2; ui ¼ chu; v1i þ dhu; v2i
That is, the inner product function is also linear in its second position. Combining these two properties
and using induction yields the following general formula:�P

i
aiui;

P
j

bjvj

�
¼P

i

P
j

aibjhui; vji
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That is, an inner product of linear combinations of vectors is equal to a linear combination of the inner
products of the vectors.

EXAMPLE 7.1 Let V be a real inner product space. Then, by linearity,

h3u1 
 4u2; 2v1 
 5v2 þ 6v3i ¼ 6hu1; v1i 
 15hu1; v2i þ 18hu1; v3i

 8hu2; v1i þ 20hu2; v2i 
 24hu2; v3i

h2u
 5v; 4uþ 6vi ¼ 8hu; ui þ 12hu; vi 
 20hv; ui 
 30hv; vi
¼ 8hu; ui 
 8hv; ui 
 30hv; vi

Observe that in the last equation we have used the symmetry property that hu; vi ¼ hv; ui.

Remark: Axiom ½I1� by itself implies h0; 0i ¼ h0v; 0i ¼ 0hv; 0i ¼ 0: Thus, ½I1�, ½I2�, ½I3� are
equivalent to ½I1�, ½I2�, and the following axiom:

½I03� If u 6¼ 0; then hu; ui is positive:

That is, a function satisfying ½I1�, ½I2�, ½I03� is an inner product.

Norm of a Vector

By the third axiom ½I3� of an inner product, hu; ui is nonnegative for any vector u. Thus, its positive square
root exists. We use the notation

kuk ¼
ffiffiffiffiffiffiffiffiffiffiffi
hu; ui

p
This nonnegative number is called the norm or length of u. The relation kuk2 ¼ hu; ui will be used
frequently.

Remark: If kuk ¼ 1 or, equivalently, if hu; ui ¼ 1, then u is called a unit vector and it is said to be
normalized. Every nonzero vector v in V can be multiplied by the reciprocal of its length to obtain the
unit vector

v̂ ¼ 1

kvk v

which is a positive multiple of v. This process is called normalizing v.

7.3 Examples of Inner Product Spaces

This section lists the main examples of inner product spaces used in this text.

Euclidean n-Space Rn

Consider the vector space Rn. The dot product or scalar product in Rn is defined by

u � v ¼ a1b1 þ a2b2 þ � � � þ anbn

where u ¼ ðaiÞ and v ¼ ðbiÞ. This function defines an inner product on Rn. The norm kuk of the vector
u ¼ ðaiÞ in this space is as follows:

kuk ¼ ffiffiffiffiffiffiffiffiffi
u � up ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ a2
2 þ � � � þ a2

n

q
On the other hand, by the Pythagorean theorem, the distance from the origin O in R3 to a point
Pða; b; cÞ is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ c2
p

. This is precisely the same as the above-defined norm of the
vector v ¼ ða; b; cÞ in R3. Because the Pythagorean theorem is a consequence of the axioms of
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Euclidean geometry, the vector space Rn with the above inner product and norm is called Euclidean
n-space. Although there are many ways to define an inner product on Rn, we shall assume this
inner product unless otherwise stated or implied. It is called the usual (or standard ) inner product
on Rn.

Remark: Frequently the vectors in Rn will be represented by column vectors—that is, by n� 1
column matrices. In such a case, the formula

hu; vi ¼ uTv

defines the usual inner product on Rn.

EXAMPLE 7.2 Let u ¼ ð1; 3;
4; 2Þ, v ¼ ð4;
2; 2; 1Þ, w ¼ ð5;
1;
2; 6Þ in R4.

(a) Show h3u
 2v;wi ¼ 3hu;wi 
 2hv;wi:
By definition,

hu;wi ¼ 5
 3þ 8þ 12 ¼ 22 and hv;wi ¼ 20þ 2
 4þ 6 ¼ 24

Note that 3u
 2v ¼ ð
5; 13;
16; 4Þ. Thus,

h3u
 2v; wi ¼ 
25
 13þ 32þ 24 ¼ 18

As expected, 3hu;wi 
 2hv;wi ¼ 3ð22Þ 
 2ð24Þ ¼ 18 ¼ h3u
 2v; wi.
(b) Normalize u and v:

By definition,

kuk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9þ 16þ 4
p ¼

ffiffiffiffiffi
30
p

and kvk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ 4þ 4þ 1
p ¼ 5

We normalize u and v to obtain the following unit vectors in the directions of u and v, respectively:

û ¼ 1

kuk u ¼ 1ffiffiffiffiffi
30
p ;

3ffiffiffiffiffi
30
p ;


4ffiffiffiffiffi
30
p ;

2ffiffiffiffiffi
30
p

� �
and v̂ ¼ 1

kvk v ¼
4

5
;

2

5
;
2

5
;
1

5

� �

Function Space C½a; b� and Polynomial Space PðtÞ
The notation C½a; b� is used to denote the vector space of all continuous functions on the closed interval
½a; b�—that is, where a � t � b. The following defines an inner product on C½a; b�, where f ðtÞ and gðtÞ
are functions in C½a; b�:

h f ; gi ¼
ðb

a

f ðtÞgðtÞ dt

It is called the usual inner product on C½a; b�.
The vector space PðtÞ of all polynomials is a subspace of C½a; b� for any interval ½a; b�, and hence, the

above is also an inner product on PðtÞ.

EXAMPLE 7.3

Consider f ðtÞ ¼ 3t 
 5 and gðtÞ ¼ t2 in the polynomial space PðtÞ with inner product

h f ; gi ¼
ð1

0

f ðtÞgðtÞ dt:

(a) Find h f ; gi.
We have f ðtÞgðtÞ ¼ 3t3 
 5t2. Hence,

h f ; gi ¼
ð1

0

ð3t3 
 5t2Þ dt ¼ 3
4 t4 
 5

3 t3

����1
0

¼ 3
4
 5

3 ¼ 
 11
12
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(b) Find k f k and kgk.
We have ½ f ðtÞ�2 ¼ f ðtÞ f ðtÞ ¼ 9t2 
 30t þ 25 and ½gðtÞ�2 ¼ t4. Then

k f k2 ¼ h f ; f i ¼
ð1

0

ð9t2 
 30t þ 25Þ dt ¼ 3t3 
 15t2 þ 25t

����1
0

¼ 13

kgk2 ¼ hg; gi ¼
ð1

0

t4 dt ¼ 1
5 t5

����1
0

¼ 1
5

Therefore, k f k ¼ ffiffiffiffiffi
13
p

and kgk ¼
ffiffi
1
5

q
¼ 1

5

ffiffiffi
5
p

.

Matrix Space M ¼ Mm;n

Let M ¼ Mm;n, the vector space of all real m� n matrices. An inner product is defined on M by

hA;Bi ¼ trðBT AÞ
where, as usual, trð Þ is the trace—the sum of the diagonal elements. If A ¼ ½aij� and B ¼ ½bij�, then

hA;Bi ¼ trðBT AÞ ¼Pm
i¼1

Pn
j¼1

aijbij and kAk2 ¼ hA;Ai ¼Pm
i¼1

Pn
j¼1

a2
ij

That is, hA;Bi is the sum of the products of the corresponding entries in A and B and, in particular, hA;Ai
is the sum of the squares of the entries of A.

Hilbert Space

Let V be the vector space of all infinite sequences of real numbers ða1; a2; a3; . . .Þ satisfyingP1
i¼1

a2
i ¼ a2

1 þ a2
2 þ � � � <1

that is, the sum converges. Addition and scalar multiplication are defined in V componentwise; that is, if

u ¼ ða1; a2; . . .Þ and v ¼ ðb1; b2; . . .Þ
then uþ v ¼ ða1 þ b1; a2 þ b2; . . .Þ and ku ¼ ðka1; ka2; . . .Þ
An inner product is defined in v by

hu; vi ¼ a1b1 þ a2b2 þ � � �
The above sum converges absolutely for any pair of points in V. Hence, the inner product is well defined.
This inner product space is called l2-space or Hilbert space.

7.4 Cauchy–Schwarz Inequality, Applications

The following formula (proved in Problem 7.8) is called the Cauchy–Schwarz inequality or Schwarz
inequality. It is used in many branches of mathematics.

THEOREM 7.1: (Cauchy–Schwarz) For any vectors u and v in an inner product space V,

hu; vi2 � hu; uihv; vi or jhu; vij � kukkvk
Next we examine this inequality in specific cases.

EXAMPLE 7.4

(a) Consider any real numbers a1; . . . ; an, b1; . . . ; bn. Then, by the Cauchy–Schwarz inequality,

ða1b1 þ a2b2 þ � � � þ anbnÞ2 � ða2
1 þ � � � þ a2

nÞðb2
1 þ � � � þ b2

nÞ
That is, ðu � vÞ2 � kuk2kvk2

, where u ¼ ðaiÞ and v ¼ ðbiÞ.
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(b) Let f and g be continuous functions on the unit interval ½0; 1�. Then, by the Cauchy–Schwarz inequality,ð1

0

f ðtÞgðtÞ dt

� �2

�
ð1

0

f 2ðtÞ dt

ð1

0

g2ðtÞ dt

That is, ðh f ; giÞ2 � k f k2kvk2
. Here V is the inner product space C½0; 1�.

The next theorem (proved in Problem 7.9) gives the basic properties of a norm. The proof of the third
property requires the Cauchy–Schwarz inequality.

THEOREM 7.2: Let V be an inner product space. Then the norm in V satisfies the following
properties:

½N1� kvk � 0; and kvk ¼ 0 if and only if v ¼ 0.

½N2� kkvk ¼ jkjkvk.
½N3� kuþ vk � kuk þ kvk.

The property ½N3� is called the triangle inequality, because if we view uþ v as the side of the triangle
formed with sides u and v (as shown in Fig. 7-1), then ½N3� states that the length of one side of a triangle
cannot be greater than the sum of the lengths of the other two sides.

Angle Between Vectors

For any nonzero vectors u and v in an inner product space V, the angle between u and v is defined to be
the angle y such that 0 � y � p and

cos y ¼ hu; vikukkvk
By the Cauchy–Schwartz inequality, 
1 � cos y � 1, and so the angle exists and is unique.

EXAMPLE 7.5

(a) Consider vectors u ¼ ð2; 3; 5Þ and v ¼ ð1;
4; 3Þ in R3. Then

hu; vi ¼ 2
 12þ 15 ¼ 5; kuk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 9þ 25
p ¼

ffiffiffiffiffi
38
p

; kvk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16þ 9
p ¼

ffiffiffiffiffi
26
p

Then the angle y between u and v is given by

cos y ¼ 5ffiffiffiffiffi
38
p ffiffiffiffiffi

26
p

Note that y is an acute angle, because cos y is positive.

(b) Let f ðtÞ ¼ 3t 
 5 and gðtÞ ¼ t2 in the polynomial space PðtÞ with inner product h f ; gi ¼ Ð 1

0
f ðtÞgðtÞ dt. By

Example 7.3,

h f ; gi ¼ 
 11
12 ; k f k ¼ ffiffiffiffiffi

13
p

; kgk ¼ 1
5

ffiffiffi
5
p

Then the ‘‘angle’’ y between f and g is given by

cos y ¼ 
 11
12

ð ffiffiffiffiffi13
p Þ 1

5

ffiffiffi
5
p
 � ¼ 
 55

12
ffiffiffiffiffi
13
p ffiffiffi

5
p

Note that y is an obtuse angle, because cos y is negative.

Figure 7-1
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7.5 Orthogonality

Let V be an inner product space. The vectors u; v 2 V are said to be orthogonal and u is said to be
orthogonal to v if

hu; vi ¼ 0

The relation is clearly symmetric—if u is orthogonal to v, then hv; ui ¼ 0, and so v is orthogonal to u. We
note that 0 2 V is orthogonal to every v 2 V, because

h0; vi ¼ h0v; vi ¼ 0hv; vi ¼ 0

Conversely, if u is orthogonal to every v 2 V, then hu; ui ¼ 0 and hence u ¼ 0 by ½I3�: Observe that u and
v are orthogonal if and only if cos y ¼ 0, where y is the angle between u and v. Also, this is true if and
only if u and v are ‘‘perpendicular’’—that is, y ¼ p=2 (or y ¼ 90�).

EXAMPLE 7.6

(a) Consider the vectors u ¼ ð1; 1; 1Þ, v ¼ ð1; 2;
3Þ, w ¼ ð1;
4; 3Þ in R3. Then

hu; vi ¼ 1þ 2
 3 ¼ 0; hu;wi ¼ 1
 4þ 3 ¼ 0; hv;wi ¼ 1
 8
 9 ¼ 
16

Thus, u is orthogonal to v and w, but v and w are not orthogonal.

(b) Consider the functions sin t and cos t in the vector space C½
p; p� of continuous functions on the closed interval
½
p; p�. Then

hsin t; cos ti ¼
ðp

p

sin t cos t dt ¼ 1
2 sin2 tjp
p ¼ 0
 0 ¼ 0

Thus, sin t and cos t are orthogonal functions in the vector space C½
p; p�.
Remark: A vector w ¼ ðx1; x2; . . . ; xnÞ is orthogonal to u ¼ ða1; a2; . . . ; anÞ in Rn if

hu;wi ¼ a1x1 þ a2x2 þ � � � þ anxn ¼ 0

That is, w is orthogonal to u if w satisfies a homogeneous equation whose coefficients are the elements
of u.

EXAMPLE 7.7 Find a nonzero vector w that is orthogonal to u1 ¼ ð1; 2; 1Þ and u2 ¼ ð2; 5; 4Þ in R3.

Let w ¼ ðx; y; zÞ. Then we want hu1;wi ¼ 0 and hu2;wi ¼ 0. This yields the homogeneous system

xþ 2yþ z ¼ 0
2xþ 5yþ 4z ¼ 0

or
xþ 2yþ z ¼ 0

yþ 2z ¼ 0

Here z is the only free variable in the echelon system. Set z ¼ 1 to obtain y ¼ 
2 and x ¼ 3. Thus, w ¼ ð3;
2; 1Þ is
a desired nonzero vector orthogonal to u1 and u2.

Any multiple of w will also be orthogonal to u1 and u2. Normalizing w, we obtain the following unit vector
orthogonal to u1 and u2:

ŵ ¼ w

kwk ¼
3ffiffiffiffiffi
14
p ;
 2ffiffiffiffiffi

14
p ;

1ffiffiffiffiffi
14
p

� �

Orthogonal Complements

Let S be a subset of an inner product space V. The orthogonal complement of S, denoted by S? (read ‘‘S
perp’’) consists of those vectors in V that are orthogonal to every vector u 2 S; that is,

S? ¼ fv 2 V : hv; ui ¼ 0 for every u 2 Sg
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In particular, for a given vector u in V, we have

u? ¼ fv 2 V : hv; ui ¼ 0g
that is, u? consists of all vectors in V that are orthogonal to the given vector u.

We show that S? is a subspace of V. Clearly 0 2 S?, because 0 is orthogonal to every vector in V. Now
suppose v, w 2 S?. Then, for any scalars a and b and any vector u 2 S, we have

hav þ bw; ui ¼ ahv; ui þ bhw; ui ¼ a � 0þ b � 0 ¼ 0

Thus, av þ bw 2 S?, and therefore S? is a subspace of V.
We state this result formally.

PROPOSITION 7.3: Let S be a subset of a vector space V. Then S? is a subspace of V.

Remark 1: Suppose u is a nonzero vector in R3. Then there is a geometrical description of u?.
Specifically, u? is the plane in R3 through the origin O and perpendicular to the vector u. This is shown
in Fig. 7-2.

Remark 2: Let W be the solution space of an m� n homogeneous system AX ¼ 0, where A ¼ ½aij�
and X ¼ ½xi�. Recall that W may be viewed as the kernel of the linear mapping A:Rn ! Rm. Now we can
give another interpretation of W using the notion of orthogonality. Specifically, each solution vector
w ¼ ðx1; x2; . . . ; xnÞ is orthogonal to each row of A; hence, W is the orthogonal complement of the row
space of A.

EXAMPLE 7.8 Find a basis for the subspace u? of R3, where u ¼ ð1; 3;
4Þ.
Note that u? consists of all vectors w ¼ ðx; y; zÞ such that hu;wi ¼ 0, or xþ 3y
 4z ¼ 0. The free variables

are y and z.

(1) Set y ¼ 1, z ¼ 0 to obtain the solution w1 ¼ ð
3; 1; 0Þ.
(2) Set y ¼ 0, z ¼ 1 to obtain the solution w ¼ ð4; 0; 1Þ.

The vectors w1 and w2 form a basis for the solution space of the equation, and hence a basis for u?.

Suppose W is a subspace of V. Then both W and W? are subspaces of V. The next theorem, whose
proof (Problem 7.28) requires results of later sections, is a basic result in linear algebra.

THEOREM 7.4: Let W be a subspace of V. Then V is the direct sum of W and W?; that is,
V ¼ W �W?.

Figure 7-2
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7.6 Orthogonal Sets and Bases

Consider a set S ¼ fu1; u2; . . . ; urg of nonzero vectors in an inner product space V. S is called orthogonal
if each pair of vectors in S are orthogonal, and S is called orthonormal if S is orthogonal and each vector
in S has unit length. That is,

(i) Orthogonal: hui; uji ¼ 0 for i 6¼ j

(ii) Orthonormal: hui; uji ¼ 0 for i 6¼ j
1 for i ¼ j

	
Normalizing an orthogonal set S refers to the process of multiplying each vector in S by the reciprocal of
its length in order to transform S into an orthonormal set of vectors.

The following theorems apply.

THEOREM 7.5: Suppose S is an orthogonal set of nonzero vectors. Then S is linearly independent.

THEOREM 7.6: (Pythagoras) Suppose fu1; u2; . . . ; urg is an orthogonal set of vectors. Then

ku1 þ u2 þ � � � þ urk2 ¼ ku1k2 þ ku2k2 þ � � � þ kurk2

These theorems are proved in Problems 7.15 and 7.16, respectively. Here we prove the Pythagorean
theorem in the special and familiar case for two vectors. Specifically, suppose hu; vi ¼ 0. Then

kuþ vk2 ¼ huþ v; uþ vi ¼ hu; ui þ 2hu; vi þ hv; vi ¼ hu; ui þ hv; vi ¼ kuk2 þ kvk2

which gives our result.

EXAMPLE 7.9

(a) Let E ¼ fe1; e2; e3g ¼ fð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þg be the usual basis of Euclidean space R3. It is clear that

he1; e2i ¼ he1; e3i ¼ he2; e3i ¼ 0 and he1; e1i ¼ he2; e2i ¼ he3; e3i ¼ 1

Namely, E is an orthonormal basis of R3. More generally, the usual basis of Rn is orthonormal for every n.

(b) Let V ¼ C½
p; p� be the vector space of continuous functions on the interval 
p � t � p with inner product
defined by h f ; gi ¼ Ð p
p f ðtÞgðtÞ dt. Then the following is a classical example of an orthogonal set in V :

f1; cos t; cos 2t; cos 3t; . . . ; sin t; sin 2t; sin 3t; . . .g
This orthogonal set plays a fundamental role in the theory of Fourier series.

Orthogonal Basis and Linear Combinations, Fourier Coefficients

Let S consist of the following three vectors in R3:

u1 ¼ ð1; 2; 1Þ; u2 ¼ ð2; 1;
4Þ; u3 ¼ ð3;
2; 1Þ
The reader can verify that the vectors are orthogonal; hence, they are linearly independent. Thus, S is an
orthogonal basis of R3.

Suppose we want to write v ¼ ð7; 1; 9Þ as a linear combination of u1; u2; u3. First we set v as a linear
combination of u1; u2; u3 using unknowns x1; x2; x3 as follows:

v ¼ x1u1 þ x2u2 þ x3u3 or ð7; 1; 9Þ ¼ x1ð1; 2; 1Þ þ x2ð2; 1;
4Þ þ x3ð3;
2; 1Þ ð*Þ
We can proceed in two ways.

METHOD 1: Expand ð*Þ (as in Chapter 3) to obtain the system

x1 þ 2x2 þ 3x3 ¼ 7; 2x1 þ x2 
 2x3 ¼ 1; x1 
 4x2 þ x ¼
Solve the system by Gaussian elimination to obtain x1 ¼ 3, x2 ¼ 
1, x3 ¼ 2. Thus,
v ¼ 3u1 
 u2 þ 2u3.
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METHOD 2: (This method uses the fact that the basis vectors are orthogonal, and the arithmetic is
much simpler.) If we take the inner product of each side of ð*Þ with respect to ui, we get

hv; uii ¼ hx1u2 þ x2u2 þ x3u3; uii or hv; uii ¼ xihui; uii or xi ¼
hv; uii
hui; uii

Here two terms drop out, because u1; u2; u3 are orthogonal. Accordingly,

x1 ¼
hv; u1i
hu1; u1i

¼ 7þ 2þ 9

1þ 4þ 1
¼ 18

6
¼ 3; x2 ¼

hv; u2i
hu2; u2i

¼ 14þ 1
 36

4þ 1þ 16
¼ 
21

21
¼ 
1

x3 ¼
hv; u3i
hu3; u3i

¼ 21
 2þ 9

9þ 4þ 1
¼ 28

14
¼ 2

Thus, again, we get v ¼ 3u1 
 u2 þ 2u3.

The procedure in Method 2 is true in general. Namely, we have the following theorem (proved in
Problem 7.17).

THEOREM 7.7: Let fu1; u2; . . . ; ung be an orthogonal basis of V. Then, for any v 2 V,

v ¼ hv; u1i
hu1; u1i

u1 þ
hv; u2i
hu2; u2i

u2 þ � � � þ
hv; uni
hun; uni

un

Remark: The scalar ki 

hv; uii
hui; uii

is called the Fourier coefficient of v with respect to ui, because it

is analogous to a coefficient in the Fourier series of a function. This scalar also has a geometric
interpretation, which is discussed below.

Projections

Let V be an inner product space. Suppose w is a given nonzero vector in V, and suppose v is another
vector. We seek the ‘‘projection of v along w,’’ which, as indicated in Fig. 7-3(a), will be the multiple cw
of w such that v0 ¼ v 
 cw is orthogonal to w. This means

hv 
 cw; wi ¼ 0 or hv;wi 
 chw;wi ¼ 0 or c ¼ hv;wi
hw;wi

Accordingly, the projection of v along w is denoted and defined by

projðv;wÞ ¼ cw ¼ hv;wihw;wiw

Such a scalar c is unique, and it is called the Fourier coefficient of v with respect to w or the component of
v along w.

The above notion is generalized as follows (see Problem 7.25).

Figure 7-3
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Remark 3: Suppose u1; u2; . . . ; ur are linearly independent, and so they form a basis for
U ¼ spanðuiÞ. Applying the Gram–Schmidt orthogonalization process to the u’s yields an orthogonal
basis for U .

The following theorems (proved in Problems 7.26 and 7.27) use the above algorithm and remarks.

THEOREM 7.9: Let fv1; v2; . . . ; vng be any basis of an inner product space V. Then there exists an
orthonormal basis fu1; u2; . . . ; ung of V such that the change-of-basis matrix from
fvig to fuig is triangular; that is, for k ¼ 1; . . . ; n,

uk ¼ ak1v1 þ ak2v2 þ � � � þ akkvk

THEOREM 7.10: Suppose S ¼ fw1;w2; . . . ;wrg is an orthogonal basis for a subspace W of a vector
space V. Then one may extend S to an orthogonal basis for V; that is, one may find
vectors wrþ1; . . . ;wn such that fw1;w2; . . . ;wng is an orthogonal basis for V.

EXAMPLE 7.10 Apply the Gram–Schmidt orthogonalization process to find an orthogonal basis and
then an orthonormal basis for the subspace U of R4 spanned by

v1 ¼ ð1; 1; 1; 1Þ; v2 ¼ ð1; 2; 4; 5Þ; v3 ¼ ð1;
3;
4;
2Þ
(1) First set w1 ¼ v1 ¼ ð1; 1; 1; 1Þ.
(2) Compute

v2 

hv2;w1i
hw1;w1i

w1 ¼ v2 

12

4
w1 ¼ ð
2;
1; 1; 2Þ

Set w2 ¼ ð
2;
1; 1; 2Þ.
(3) Compute

v3 

hv3;w1i
hw1;w1i

w1 

hv3;w2i
hw2;w2i

w2 ¼ v3 

ð
8Þ

4
w1 


ð
7Þ
10

w2 ¼ 8
5 ;
 17

10 ;
 13
10 ;

7
5


 �
Clear fractions to obtain w3 ¼ ð
6;
17;
13; 14Þ.
Thus, w1;w2;w3 form an orthogonal basis for U . Normalize these vectors to obtain an orthonormal basis

fu1; u2; u3g of U . We have kw1k2 ¼ 4, kw2k2 ¼ 10, kw3k2 ¼ 910, so

u1 ¼
1

2
ð1; 1; 1; 1Þ; u2 ¼

1ffiffiffiffiffi
10
p ð
2;
1; 1; 2Þ; u3 ¼

1ffiffiffiffiffiffiffiffi
910
p ð16;
17;
13; 14Þ

EXAMPLE 7.11 Let V be the vector space of polynomials f ðtÞ with inner product
h f ; gi ¼ Ð 1


1
f ðtÞgðtÞ dt. Apply the Gram–Schmidt orthogonalization process to f1; t; t2; t3g to find an

orthogonal basis f f0; f1; f2; f3g with integer coefficients for P3ðtÞ.
Here we use the fact that, for r þ s ¼ n,

htr; tsi ¼
ð1


1

tn dt ¼ tnþ1

nþ 1

����1

1

¼ 2=ðnþ 1Þ when n is even
0 when n is odd

	
(1) First set f0 ¼ 1.

(2) Compute t
ht; 1i
h1; 1i ð1Þ ¼ t 
 0 ¼ t. Set f1 ¼ t.

(3) Compute

t2 
 ht
2; 1i
h1; 1i ð1Þ 


ht2; ti
ht; ti ðtÞ ¼ t2 


2
3

2
ð1Þ þ0 ðtÞ ¼ t2 
 1

3

Multiply by 3 to obtain f2 ¼ 3t2 ¼ 1.
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(4) Compute

t3 
 ht
3; 1i
h1; 1i ð1Þ 


ht3; ti
ht; ti ðtÞ 


ht3; 3t2 
 1i
h3t2 
 1; 3t2 
 1i ð3t2 
 1Þ

¼ t3 
 0ð1Þ 

2
5
2
3

ðtÞ 
 0ð3t2 
 1Þ ¼ t3 
 3
5 t

Multiply by 5 to obtain f3 ¼ 5t3 
 3t.

Thus, f1; t; 3t2 
 1; 5t3 
 3tg is the required orthogonal basis.

Remark: Normalizing the polynomials in Example 7.11 so that pð1Þ ¼ 1 yields the polynomials

1; t; 1
2 ð3t2 
 1Þ; 1

2 ð5t3 
 3tÞ
These are the first four Legendre polynomials, which appear in the study of differential equations.

7.8 Orthogonal and Positive Definite Matrices

This section discusses two types of matrices that are closely related to real inner product spaces V. Here
vectors in Rn will be represented by column vectors. Thus, hu; vi ¼ uTv denotes the inner product in
Euclidean space Rn.

Orthogonal Matrices

A real matrix P is orthogonal if P is nonsingular and P
1 ¼ PT , or, in other words, if PPT ¼ PT P ¼ I .
First we recall (Theorem 2.6) an important characterization of such matrices.

THEOREM 7.11: Let P be a real matrix. Then the following are equivalent: (a) P is orthogonal; (b)
the rows of P form an orthonormal set; (c) the columns of P form an orthonormal
set.

(This theorem is true only using the usual inner product on Rn. It is not true if Rn is given any other
inner product.)

EXAMPLE 7.12

(a) Let P ¼
1=

ffiffiffi
3
p

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

0 1=
ffiffiffi
2
p 
1=

ffiffiffi
2
p

2=
ffiffiffi
6
p 
1=

ffiffiffi
6
p 
1=

ffiffiffi
6
p

24 35: The rows of P are orthogonal to each other and are unit vectors. Thus

P is an orthogonal matrix.

(b) Let P be a 2� 2 orthogonal matrix. Then, for some real number y, we have

P ¼ cos y sin y

 sin y cos y

� �
or P ¼ cos y sin y

sin y 
 cos y

� �
The following two theorems (proved in Problems 7.37 and 7.38) show important relationships

between orthogonal matrices and orthonormal bases of a real inner product space V.

THEOREM 7.12: Suppose E ¼ feig and E0 ¼ fe0ig are orthonormal bases of V. Let P be the change-
of-basis matrix from the basis E to the basis E0. Then P is orthogonal.

THEOREM 7.13: Let fe1; . . . ; eng be an orthonormal basis of an inner product space V. Let P ¼ ½aij�
be an orthogonal matrix. Then the following n vectors form an orthonormal basis
for V :

e0i ¼ a1ie1 þ a2ie2 þ � � � þ anien; i ¼ 1; 2; . . . ; n
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Positive Definite Matrices

Let A be a real symmetric matrix; that is, AT ¼ A. Then A is said to be positive definite if, for every
nonzero vector u in Rn,

hu;Aui ¼ uT Au > 0

Algorithms to decide whether or not a matrix A is positive definite will be given in Chapter 1 . However,
for 2� 2 matrices, we have simple criteria that we state formally in the following theorem (proved in
Problem 7.43).

THEOREM 7.14: A 2� 2 real symmetric matrix A ¼ a b
c d

� �
¼ a b

b d

� �
is positive definite

if and only if the diagonal entries a and d are positive and the determinant
jAj ¼ ad 
 bc ¼ ad 
 b2 is positive.

EXAMPLE 7.13 Consider the following symmetric matrices:

A ¼ 1 3
3 4

� �
; B ¼ 1 
2


2 
3

� �
; C ¼ 1 
2


2 5

� �
A is not positive definite, because jAj ¼ 4
 9 ¼ 
5 is negative. B is not positive definite, because the diagonal
entry 
3 is negative. However, C is positive definite, because the diagonal entries 1 and 5 are positive, and the
determinant jCj ¼ 5
 4 ¼ 1 is also positive.

The following theorem (proved in Problem 7.44) holds.

THEOREM 7.15: Let A be a real positive definite matrix. Then the function hu; vi ¼ uT Av is an inner
product on Rn.

Matrix Representation of an Inner Product (Optional)

Theorem 7.15 says that every positive definite matrix A determines an inner product on Rn. This
subsection may be viewed as giving the converse of this result.

Let V be a real inner product space with basis S ¼ fu1; u2; . . . ; ung. The matrix

A ¼ ½aij�; where aij ¼ hui; uji
is called the matrix representation of the inner product on V relative to the basis S.

Observe that A is symmetric, because the inner product is symmetric; that is, hui; uji ¼ huj; uii. Also, A
depends on both the inner product on V and the basis S for V. Moreover, if S is an orthogonal basis, then
A is diagonal, and if S is an orthonormal basis, then A is the identity matrix.

EXAMPLE 7.14 The vectors u1 ¼ ð1; 1; 0Þ, u2 ¼ ð1; 2; 3Þ, u3 ¼ ð1; 3; 5Þ form a basis S for Euclidean
space R3. Find the matrix A that represents the inner product in R3 relative to this basis S.

First compute each hui; uji to obtain

hu1; u1i ¼ 1þ 1þ 0 ¼ 2;
hu2; u2i ¼ 1þ 4þ 9 ¼ 14;

hu1; u2i ¼ 1þ 2þ 0 ¼ 3;
hu2; u3i ¼ 1þ 6þ 15 ¼ 22;

hu1; u3i ¼ 1þ 3þ 0 ¼ 4
hu3; u3i ¼ 1þ 9þ 25 ¼ 35

Then A ¼
2 3 4
3 14 22
4 22 35

24 35. As expected, A is symmetric.

The following theorems (proved in Problems 7.45 and 7.46, respectively) hold.

THEOREM 7.16: Let A be the matrix representation of an inner product relative to basis S for V.
Then, for any vectors u; v 2 V, we have

hu; vi ¼ ½u�T A½v�
where ½u� and ½v� denote the (column) coordinate vectors relative to the basis S.
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THEOREM 7.17: Let A be the matrix representation of any inner product on V. Then A is a positive
definite matrix.

7.9 Complex Inner Product Spaces

This section considers vector spaces over the complex field C. First we recall some properties of the
complex numbers (Section 1.7), especially the relations between a complex number z ¼ aþ bi; where
a; b 2 R; and its complex conjugate �z ¼ a
 bi:

z�z ¼ a2 þ b2; jzj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
; z1 þ z2 ¼ z1 þ z2 z1z2 ¼ z1z2; z��¼ z

Also, z is real if and only if �z ¼ z.

The following definition applies.

DEFINITION: Let V be a vector space over C. Suppose to each pair of vectors, u; v 2 V there is
assigned a complex number, denoted by hu; vi. This function is called a (complex) inner
product on V if it satisfies the following axioms:

½I1*� (Linear Property) hau1 þ bu2; vi ¼ ahu1; vi þ bhu2; vi
½I2*� (Conjugate Symmetric Property) hu; vi ¼ hv; ui
½I3*� (Positive Definite Property) hu; ui � 0; and hu; ui ¼ 0 if and only if u ¼ 0.

The vector space V over C with an inner product is called a (complex) inner product space.
Observe that a complex inner product differs from the real case only in the second axiom ½I 2*�:
Axiom ½I1*� (Linear Property) is equivalent to the two conditions:

ðaÞ hu1 þ u2; vi ¼ hu1; vi þ hu2; vi; ðbÞ hku; vi ¼ khu; vi
On the other hand, applying ½I1*� and ½I2*�, we obtain

hu; kvi ¼ hkv; ui ¼ khv; ui ¼ �khv; ui ¼ �khu; vi
That is, we must take the conjugate of a complex number when it is taken out of the second position of a
complex inner product. In fact (Problem 7.47), the inner product is conjugate linear in the second
position; that is,

hu; av1 þ bv2i ¼ �ahu; v1i þ �bhu; v2i
Combining linear in the first position and conjugate linear in the second position, we obtain, by induction,P

i
aiui;

P
j

bjvj

* +
¼P

i;j
aibjhui; vji

The following remarks are in order.

Remark 1: Axiom ½I1*� by itself implies that h0; 0i ¼ h0v; 0i ¼ 0hv; 0i ¼ 0. Accordingly, ½I1*�, ½I2*�,
and ½I3*� are equivalent to ½I1*�, ½I2*�, and the following axiom:

½I3*
0� If u 6¼ 0; then hu; ui > 0:

That is, a function satisfying ½I1�, ½I2*�, and ½I3*
0� is a (complex) inner product on V.

Remark 2: By ½I2*�; hu; ui ¼ hu; ui. Thus, hu; ui must be real. By ½I3*�; hu; ui must be nonnegative,
and hence, its positive real square root exists. As with real inner product spaces, we define kuk ¼ ffiffiffiffiffiffiffiffiffiffiffihu; uip
to be the norm or length of u.

Remark 3: In addition to the norm, we define the notions of orthogonality, orthogonal comple-
ment, and orthogonal and orthonormal sets as before. In fact, the definitions of distance and Fourier
coefficient and projections are the same as in the real case.
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EXAMPLE 7.15 (Complex Euclidean Space Cn). Let V ¼ Cn, and let u ¼ ðziÞ and v ¼ ðwiÞ be vectors in
Cn. Then

hu; vi ¼P
k

zkwk ¼ z1w1 þ z2w2 þ � � � þ znwn

is an inner product on V, called the usual or standard inner product on Cn. V with this inner product is called
Complex Euclidean Space. We assume this inner product on Cn unless otherwise stated or implied. Assuming u and
v are column vectors, the above inner product may be defined by

hu; vi ¼ uT �v

where, as with matrices, �v means the conjugate of each element of v. If u and v are real, we have wi ¼ wi. In this
case, the inner product reduced to the analogous one on Rn.

EXAMPLE 7.16

(a) Let V be the vector space of complex continuous functions on the (real) interval a � t � b. Then the following
is the usual inner product on V :

h f ; gi ¼
ðb

a

f ðtÞgðtÞ dt

(b) Let U be the vector space of m� n matrices over C. Suppose A ¼ ðzijÞ and B ¼ ðwijÞ are elements of U . Then
the following is the usual inner product on U :

hA;Bi ¼ trðBH AÞ ¼Pm
i¼1

Pn
j¼1

�wijzij

As usual, BH ¼ �BT ; that is, BH is the conjugate transpose of B.

The following is a list of theorems for complex inner product spaces that are analogous to those for
the real case. Here a Hermitian matrix A (i.e., one where AH ¼ �AT ¼ AÞ plays the same role that a
symmetric matrix A (i.e., one where AT ¼ A) plays in the real case. (Theorem 7.18 is proved in
Problem 7.50.)

THEOREM 7.18: (Cauchy–Schwarz) Let V be a complex inner product space. Then

jhu; vij � kukkvk

THEOREM 7.19: Let W be a subspace of a complex inner product space V. Then V ¼ W �W?.

THEOREM 7.20: Suppose fu1; u2; . . . ; ung is a basis for a complex inner product space V. Then, for
any v 2 V,

v ¼ hv; u1i
hu1; u1i

u1 þ
hv; u2i
hu2; u2i

u2 þ � � � þ
hv; uni
hun; uni

un

THEOREM 7.21: Suppose fu1; u2; . . . ; ung is a basis for a complex inner product space V. Let
A ¼ ½aij� be the complex matrix defined by aij ¼ hui; uji. Then, for any u; v 2 V,

hu; vi ¼ ½u�TA½v�
where ½u� and ½v� are the coordinate column vectors in the given basis fuig.
(Remark: This matrix A is said to represent the inner product on V.)

THEOREM 7.22: Let A be a Hermitian matrix (i.e., AH ¼ �AT ¼ AÞ such that X T A �X is real and
positive for every nonzero vector X 2 Cn. Then hu; vi ¼ uT A�v is an inner product
on Cn.

THEOREM 7.23: Let A be the matrix that represents an inner product on V. Then A is Hermitian, and
X T AX is real and positive for any nonzero vector in Cn.
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7.10 Normed Vector Spaces (Optional)

We begin with a definition.

DEFINITION: Let V be a real or complex vector space. Suppose to each v 2 V there is assigned a real
number, denoted by kvk. This function k � k is called a norm on V if it satisfies the
following axioms:

½N1� kvk � 0; and kvk ¼ 0 if and only if v ¼ 0.

½N2� kkvk ¼ jkjkvk.
½N3� kuþ vk � kuk þ kvk.

A vector space V with a norm is called a normed vector space.
Suppose V is a normed vector space. The distance between two vectors u and v in V is denoted and

defined by

dðu; vÞ ¼ ku
 vk
The following theorem (proved in Problem 7.56) is the main reason why dðu; vÞ is called the distance
between u and v.

THEOREM 7.24: Let V be a normed vector space. Then the function dðu; vÞ ¼ ku
 vk satisfies the
following three axioms of a metric space:

½M1� dðu; vÞ � 0; and dðu; vÞ ¼ 0 if and only if u ¼ v.

½M2� dðu; vÞ ¼ dðv; uÞ.
½M3� dðu; vÞ � dðu;wÞ þ dðw; vÞ.

Normed Vector Spaces and Inner Product Spaces

Suppose V is an inner product space. Recall that the norm of a vector v in V is defined by

kvk ¼
ffiffiffiffiffiffiffiffiffiffiffi
hv; vi

p
One can prove (Theorem 7.2) that this norm satisfies ½N1�, ½N2�, and ½N3�. Thus, every inner product space
V is a normed vector space. On the other hand, there may be norms on a vector space V that do not come
from an inner product on V, as shown below.

Norms on Rn and Cn

The following define three important norms on Rn and Cn:

kða1; . . . ; anÞk1 ¼ maxðjaijÞ
kða1; . . . ; anÞk1 ¼ ja1j þ ja2j þ � � � þ janj
kða1; . . . ; anÞk2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ja1j2 þ ja2j2 þ � � � þ janj2

q
(Note that subscripts are used to distinguish between the three norms.) The norms k � k1, k � k1, and k � k2
are called the infinity-norm, one-norm, and two-norm, respectively. Observe that k � k2 is the norm on Rn

(respectively, Cn) induced by the usual inner product on Rn (respectively, Cn). We will let d1, d1, d2

denote the corresponding distance functions.

EXAMPLE 7.17 Consider vectors u ¼ ð1;
5; 3Þ and v ¼ ð4; 2;
3Þ in R3.

(a) The infinity norm chooses the maximum of the absolute values of the components. Hence,

kuk1 ¼ 5 and kvk1 ¼ 4
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(b) The one-norm adds the absolute values of the components. Thus,

kuk1 ¼ 1þ 5þ 3 ¼ 9 and kvk1 ¼ 4þ 2þ 3 ¼ 9

(c) The two-norm is equal to the square root of the sum of the squares of the components (i.e., the norm induced by
the usual inner product on R3). Thus,

kuk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 25þ 9
p ¼

ffiffiffiffiffi
35
p

and kvk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ 4þ 9
p ¼

ffiffiffiffiffi
29
p

(d) Because u
 v ¼ ð1
 4; 
5
 2; 3þ 3Þ ¼ ð
3;
7; 6Þ, we have

d1ðu; vÞ ¼ 7; d1ðu; vÞ ¼ 3þ 7þ 6 ¼ 16; d2ðu; vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 49þ 36
p ¼

ffiffiffiffiffi
94
p

EXAMPLE 7.18 Consider the Cartesian plane R2 shown in Fig. 7-4.

(a) Let D1 be the set of points u ¼ ðx; yÞ in R2 such that kuk2 ¼ 1. Then D1 consists of the points ðx; yÞ such that
kuk2

2 ¼ x2 þ y2 ¼ 1. Thus, D1 is the unit circle, as shown in Fig. 7-4.

(b) Let D2 be the set of points u ¼ ðx; yÞ in R2 such that kuk1 ¼ 1. Then D1 consists of the points ðx; yÞ such that
kuk1 ¼ jxj þ jyj ¼ 1. Thus, D2 is the diamond inside the unit circle, as shown in Fig. 7-4.

(c) Let D3 be the set of points u ¼ ðx; yÞ in R2 such that kuk1 ¼ 1. Then D3 consists of the points ðx; yÞ such that
kuk1 ¼ maxðjxj, jyjÞ ¼ 1. Thus, D3 is the square circumscribing the unit circle, as shown in Fig. 7-4.

Norms on C½a; b�
Consider the vector space V ¼ C½a; b� of real continuous functions on the interval a � t � b. Recall that
the following defines an inner product on V :

h f ; gi ¼
ðb

a

f ðtÞgðtÞ dt

Accordingly, the above inner product defines the following norm on V ¼ C½a; b� (which is analogous to
the k � k2 norm on Rn):

k f k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðb

a

½ f ðtÞ�2 dt

s

Figure 7-4
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The following define the other norms on V ¼ C½a; b�:
k f k1 ¼

ðb

a

j f ðtÞj dt and k f k1 ¼ maxðj f ðtÞjÞ
There are geometrical descriptions of these two norms and their corresponding distance functions, which
are described below.

The first norm is pictured in Fig. 7-5. Here

k f k1 ¼ area between the function j f j and the t-axis

d1ð f ; gÞ ¼ area between the functions f and g

This norm is analogous to the norm k � k1 on Rn.

The second norm is pictured in Fig. 7-6. Here

k f k1 ¼ maximum distance between f and the t-axis

d1ð f ; gÞ ¼ maximum distance between f and g

This norm is analogous to the norms k � k1 on Rn.

SOLVED PROBLEMS

Inner Products

7.1. Expand:

(a) h5u1 þ 8u2; 6v1 
 7v2i,
(b) h3uþ 5v; 4u
 6vi,
(c) k2u
 3vk2

Use linearity in both positions and, when possible, symmetry, hu; vi ¼ hv; ui.

a b t

f t( )

( ) is shadeda || f ||1

Figure 7-5

a b t

f t( )

( ) ( , ) is shadedb d f g1

g t( )

Figure 7-6
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(a) Take the inner product of each term on the left with each term on the right:

h5u1 þ 8u2; 6v1 
 7v2i ¼ h5u1; 6v1i þ h5u1;
7v2i þ h8u2; 6v1i þ h8u2;
7v2i
¼ 30hu1; v1i 
 35hu1; v2i þ 48hu2; v1i 
 56hu2; v2i

[Remark: Observe the similarity between the above expansion and the expansion (5a–8b)(6c–7d ) in
ordinary algebra.]

(b) h3uþ 5v; 4u
 6vi ¼ 12hu; ui 
 18hu; vi þ 20hv; ui 
 30hv; vi
¼ 12hu; ui þ 2hu; vi 
 30hv; vi

(c) k2u
 3vk2 ¼ h2u
 3v; 2u
 3vi ¼ 4hu; ui 
 6hu; vi 
 6hv; ui þ 9hv; vi
¼ 4kuk2 
 12ðu; vÞ þ 9kvk2

7.2. Consider vectors u ¼ ð1; 2; 4Þ; v ¼ ð2;
3; 5Þ; w ¼ ð4; 2;
3Þ in R3. Find

(a) u � v, (b) u � w; (c) v � w, (d) ðuþ vÞ � w, (e) kuk, (f ) kvk.
(a) Multiply corresponding components and add to get u � v ¼ 2
 6þ 20 ¼ 16:

(b) u � w ¼ 4þ 4
 12 ¼ 
4.

(c) v � w ¼ 8
 6
 15 ¼ 
13.

(d) First find uþ v ¼ ð3;
1; 9Þ. Then ðuþ vÞ � w ¼ 12
 2
 27 ¼ 
17. Alternatively, using ½I1�,
ðuþ vÞ � w ¼ u � wþ v � w ¼ 
4
 13 ¼ 
17.

(e) First find kuk2
by squaring the components of u and adding:

kuk2 ¼ 12 þ 22 þ 42 ¼ 1þ 4þ 16 ¼ 21; and so kuk ¼
ffiffiffiffiffi
21
p

(f ) kvk2 ¼ 4þ 9þ 25 ¼ 38, and so kvk ¼ ffiffiffiffiffi
38
p

.

7.3. Verify that the following defines an inner product in R2:

hu; vi ¼ x1y1 
 x1y2 
 x2y1 þ 3x2y2; where u ¼ ðx1; x2Þ; v ¼ ðy1; y2Þ
We argue via matrices. We can write hu; vi in matrix notation as follows:

hu; vi ¼ uT Av ¼ ½x1; x2� 1 
1

1 3

� �
y1

y2

� �
Because A is real and symmetric, we need only show that A is positive definite. The diagonal elements 1 and
3 are positive, and the determinant kAk ¼ 3
 1 ¼ 2 is positive. Thus, by Theorem 7.14, A is positive
definite. Accordingly, by Theorem 7.15, hu; vi is an inner product.

7.4. Consider the vectors u ¼ ð1; 5Þ and v ¼ ð3; 4Þ in R2. Find

(a) hu; vi with respect to the usual inner product in R2.

(b) hu; vi with respect to the inner product in R2 in Problem 7.3.

(c) kvk using the usual inner product in R2.

(d) kvk using the inner product in R2 in Problem 7.3.

(a) hu; vi ¼ 3þ 20 ¼ 23.

(b) hu; vi ¼ 1 � 3
 1 � 4
 5 � 3þ 3 � 5 � 4 ¼ 3
 4
 15þ 60 ¼ 44.

(c) kvk2 ¼ hv; vi ¼ hð3; 4Þ; ð3; 4Þi ¼ 9þ 16 ¼ 25; hence, jvk ¼ 5.

(d) kvk2 ¼ hv; vi ¼ hð3; 4Þ; ð3; 4Þi ¼ 9
 12
 12þ 48 ¼ 33; hence, kvk ¼ ffiffiffiffiffi
33
p

.

7.5. Consider the following polynomials in PðtÞ with the inner product h f ; gi ¼ Ð 1

0 f ðtÞgðtÞ dt:

f ðtÞ ¼ t þ 2; gðtÞ ¼ 3t 
 2; hðtÞ ¼ t2 
 2t 
 3

(a) Find h f ; gi and h f ; hi.
(b) Find k f k and kgk.
(c) Normalize f and g.
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(a) Integrate as follows:

h f ; gi ¼
ð1

0

ðt þ 2Þð3t 
 2Þ dt ¼
ð1

0

ð3t2 þ 4t 
 4Þ dt ¼
�

t3 þ 2t2 
 4t

�����1
0

¼ 
1

h f ; hi ¼
ð1

0

ðt þ 2Þðt2 
 2t 
 3Þ dt ¼ t4

4

 7t2

2

 6t

� �����1
0

¼ 
 37

4

(b) h f ; f i ¼ Ð 1

0 ðt þ 2Þðt þ 2Þ dt ¼ 19
3 ; hence, k f k ¼

ffiffiffiffi
19
3

q
¼ 1

3

ffiffiffiffiffi
57
p

hg; gi ¼
ð1

0

ð3t 
 2Þð3t 
 2Þ ¼ 1; hence; kgk ¼
ffiffiffi
1
p
¼ 1

(c) Because k f k ¼ 1
3

ffiffiffiffiffi
57
p

and g is already a unit vector, we have

f̂ ¼ 1

k f k f ¼ 3ffiffiffiffiffi
57
p ðt þ 2Þ and ĝ ¼ g ¼ 3t 
 2

7.6. Find cos y where y is the angle between:

(a) u ¼ ð1; 3;
5; 4Þ and v ¼ ð2;
3; 4; 1Þ in R4,

(b) A ¼ 9 8 7
6 5 4

� �
and B ¼ 1 2 3

4 5 6

� �
, where hA;Bi ¼ trðBT AÞ:

Use cos y ¼ hu; vikukkvk
(a) Compute:

hu; vi ¼ 2
 9
 20þ 4 ¼ 
23; kuk2 ¼ 1þ 9þ 25þ 16 ¼ 51; kvk2 ¼ 4þ 9þ 16þ 1 ¼ 30

Thus; cos y ¼ 
23ffiffiffiffiffi
51
p ffiffiffiffiffi

30
p ¼ 
23

3
ffiffiffiffiffiffiffiffi
170
p

(b) Use hA;Bi ¼ trðBT AÞ ¼Pm
i¼1

Pn
j¼1 aijbij, the sum of the products of corresponding entries.

hA;Bi ¼ 9þ 16þ 21þ 24þ 25þ 24 ¼ 119

Use kAk2 ¼ hA;Ai ¼Pm
i¼1

Pn
j¼1 a2

ij ; the sum of the squares of all the elements of A.

kAk2 ¼ hA;Ai ¼ 92 þ 82 þ 72 þ 62 þ 52 þ 42 ¼ 271;

kBk2 ¼ hB;Bi ¼ 12 þ 22 þ 32 þ 42 þ 52 þ 62 ¼ 91;

and so

and so

kAk ¼ ffiffiffiffiffiffiffiffi
271
p

kBk ¼ ffiffiffiffiffi
91
p

Thus; cos y ¼ 119ffiffiffiffiffiffiffiffi
271
p ffiffiffiffiffi

91
p

7.7. Verify each of the following:

(a) Parallelogram Law (Fig. 7-7): kuþ vk2 þ ku
 vk2 ¼ 2kuk2 þ 2kvk2
.

(b) Polar form for hu; vi (which shows the inner product can be obtained from the norm function):

hu; vi ¼ 1
4 ðkuþ vk2 
 ku
 vk2Þ:

Expand as follows to obtain

kuþ vk2 ¼ huþ v; uþ vi ¼ kuk2 þ 2hu; vi þ kvk2 ð1Þ
ku
 vk2 ¼ hu
 v; u
 vi ¼ kuk2 
 2hu; vi þ kvk2 ð2Þ

Add (1) and (2) to get the Parallelogram Law (a). Subtract (2) from (1) to obtain

kuþ vk2 
 ku
 vk2 ¼ 4hu; vi
Divide by 4 to obtain the (real) polar form (b).
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7.8. Prove Theorem 7.1 (Cauchy–Schwarz): For u and v in a real inner product space V ;

hu; ui2 � hu; uihv; vi or jhu; vij � kukkvk:
For any real number t,

htuþ v; tuþ vi ¼ t2hu; ui þ 2thu; vi þ hv; vi ¼ t2kuk2 þ 2thu; vi þ kvk2

Let a ¼ kuk2
, b ¼ 2hu; vÞ, c ¼ kvk2

. Because ktuþ vk2 � 0, we have

at2 þ bt þ c � 0

for every value of t. This means that the quadratic polynomial cannot have two real roots, which implies that
b2 
 4ac � 0 or b2 � 4ac. Thus,

4hu; vi2 � 4kuk2kvk2

Dividing by 4 gives our result.

7.9. Prove Theorem 7.2: The norm in an inner product space V satisfies

(a) ½N1� kvk � 0; and kvk ¼ 0 if and only if v ¼ 0.

(b) ½N2� kkvk ¼ jkjkvk.
(c) ½N3� kuþ vk � kuk þ kvk.

(a) If v 6¼ 0, then hv; vi > 0, and hence, kvk ¼ ffiffiffiffiffiffiffiffiffiffiffihv; vip
> 0. If v ¼ 0, then h0; 0i ¼ 0. Consequently,

k0k ¼ ffiffiffi
0
p ¼ 0. Thus, ½N1� is true.

(b) We have kkvk2 ¼ hkv; kvi ¼ k2hv; vi ¼ k2kvk2
. Taking the square root of both sides gives ½N2�.

(c) Using the Cauchy–Schwarz inequality, we obtain

kuþ vk2 ¼ huþ v; uþ vi ¼ hu; ui þ hu; vi þ hu; vi þ hv; vi
� kuk2 þ 2kukkvk þ kvk2 ¼ ðkuk þ kvkÞ2

Taking the square root of both sides yields ½N3�.

Orthogonality, Orthonormal Complements, Orthogonal Sets

7.10. Find k so that u ¼ ð1; 2; k; 3Þ and v ¼ ð3; k; 7;
5Þ in R4 are orthogonal.
First find

hu; vi ¼ ð1; 2; k; 3Þ � ð3; k; 7;
5Þ ¼ 3þ 2k þ 7k 
 15 ¼ 9k 
 12

Then set hu; vi ¼ 9k 
 12 ¼ 0 to obtain k ¼ 4
3.

7.11. Let W be the subspace of R5 spanned by u ¼ ð1; 2; 3;
1; 2Þ and v ¼ ð2; 4; 7; 2;
1Þ. Find a
basis of the orthogonal complement W? of W.

We seek all vectors w ¼ ðx; y; z; s; tÞ such that

hw; ui ¼ xþ 2yþ 3z
 sþ 2t ¼ 0

hw; vi ¼ 2xþ 4yþ 7zþ 2s
 t ¼ 0

Eliminating x from the second equation, we find the equivalent system

xþ 2yþ 3z
 sþ 2t ¼ 0
zþ 4s
 5t ¼ 0

Figure 7-7
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The free variables are y; s, and t. Therefore,

(1) Set y ¼ 
1, s ¼ 0, t ¼ 0 to obtain the solution w1 ¼ ð2;
1; 0; 0; 0Þ.
(2) Set y ¼ 0, s ¼ 1, t ¼ 0 to find the solution w2 ¼ ð13; 0;
4; 1; 0Þ.
(3) Set y ¼ 0, s ¼ 0, t ¼ 1 to obtain the solution w3 ¼ ð
17; 0; 5; 0; 1Þ.

The set fw1;w2;w3g is a basis of W?.

7.12. Let w ¼ ð1; 2; 3; 1Þ be a vector in R4. Find an orthogonal basis for w?.
Find a nonzero solution of xþ 2yþ 3zþ t ¼ 0, say v1 ¼ ð0; 0; 1;
3Þ. Now find a nonzero solution of

the system

xþ 2yþ 3zþ t ¼ 0; z
 3t ¼ 0

say v2 ¼ ð0;
5; 3; 1Þ. Last, find a nonzero solution of the system

xþ 2yþ 3zþ t ¼ 0; 
5yþ 3zþ t ¼ 0; z
 3t ¼ 0

say v3 ¼ ð
14; 2; 3; 1Þ. Thus, v1, v2, v3 form an orthogonal basis for w?.

7.13. Let S consist of the following vectors in R4:

u1 ¼ ð1; 1; 0;
1Þ; u2 ¼ ð1; 2; 1; 3Þ; u3 ¼ ð1; 1;
9; 2Þ; u4 ¼ ð16;
13; 1; 3Þ
(a) Show that S is orthogonal and a basis of R4.

(b) Find the coordinates of an arbitrary vector v ¼ ða; b; c; dÞ in R4 relative to the basis S.

(a) Compute

u1 � u2 ¼ 1þ 2þ 0
 3 ¼ 0;
u2 � u3 ¼ 1þ 2
 9þ 6 ¼ 0;

u1 � u3 ¼ 1þ 1þ 0
 2 ¼ 0;
u2 � u4 ¼ 16
 26þ 1þ 9 ¼ 0;

u1 � u4 ¼ 16
 13þ 0
 3 ¼ 0
u3 � u4 ¼ 16
 13
 9þ 6 ¼ 0

Thus, S is orthogonal, and S is linearly independent. Accordingly, S is a basis for R4 because any four
linearly independent vectors form a basis of R4.

(b) Because S is orthogonal, we need only find the Fourier coefficients of v with respect to the basis vectors,
as in Theorem 7.7. Thus,

k1 ¼
hv; u1i
hu1; u1i

¼ aþ b
 d

3
;

k2 ¼
hv; u2i
hu2; u2i

¼ aþ 2bþ cþ 3d

15
;

k3 ¼
hv; u3i
hu3; u3i

¼ aþ b
 9cþ 2d

87

k4 ¼
hv; u4i
hu4; u4i

¼ 16a
 13bþ cþ 3d

435

are the coordinates of v with respect to the basis S.

7.14. Suppose S, S1, S2 are the subsets of V. Prove the following (where       means (   )  ):

(a) S � S??.

(b) If S1 � S2, then S?2 � S?1 .

(c) S? ¼ span ðSÞ?.

(a) Let w 2 S. Then hw; vi ¼ 0 for every v 2 S?; hence, w 2 S??. Accordingly, S � S??.

(b) Let w 2 S?2 . Then hw; vi ¼ 0 for every v 2 S2. Because S1 � S2, hw; vi ¼ 0 for every v ¼ S1. Thus,
w 2 S?1 , and hence, S?2 � S?1 .

(c) Because S � spanðSÞ, part (b) gives us spanðSÞ? � S?. Suppose u 2 S? and v 2 spanðSÞ. Then there
exist w1;w2; . . . ;wk in S such that v ¼ a1w1 þ a2w2 þ � � � þ akwk . Then, using u 2 S?, we have

hu; vi ¼ hu; a1w1 þ a2w2 þ � � � þ akwki ¼ a1hu;w1i þ a2hu;w2i þ � � � þ akhu;wki
¼ a1ð0Þ þ a2ð0Þ þ � � � þ akð0Þ ¼ 0

Thus, u 2 spanðSÞ?. Accordingly, S? � spanðSÞ?. Both inclusions give S? ¼ spanðSÞ?.

7.15. Prove Theorem 7.5: Suppose S is an orthogonal set of nonzero vectors. Then S is linearly
independent.
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Suppose S ¼ fu1; u2; . . . ; urg and suppose

a1u1 þ a2u2 þ � � � þ arur ¼ 0 ð1Þ
Taking the inner product of (1) with u1, we get

0 ¼ h0; u1i ¼ ha1u1 þ a2u2 þ � � � þ arur; u1i
¼ a1hu1; u1i þ a2hu2; u1i þ � � � þ arhur; u1i
¼ a1hu1; u1i þ a2 � 0þ � � � þ ar � 0 ¼ a1hu1; u1i

Because u1 6¼ 0, we have hu1; u1i 6¼ 0. Thus, a1 ¼ 0. Similarly, for i ¼ 2; . . . ; r, taking the inner product of
(1) with ui,

0 ¼ h0; uii ¼ ha1u1 þ � � � þ arur; uii
¼ a1hu1; uii þ � � � þ aihui; uii þ � � � þ arhur; uii ¼ aihui; uii

But hui; uii 6¼ 0, and hence, every ai ¼ 0. Thus, S is linearly independent.

7.16. Prove Theorem 7.6 (Pythagoras): Suppose fu1; u2; . . . ; urg is an orthogonal set of vectors. Then

ku1 þ u2 þ � � � þ urk2 ¼ ku1k2 þ ku2k2 þ � � � þ kurk2

Expanding the inner product, we have

ku1 þ u2 þ � � � þ urk2 ¼ hu1 þ u2 þ � � � þ ur; u1 þ u2 þ � � � þ uri
¼ hu1; u1i þ hu2; u2i þ � � � þ hur; uri þ

P
i 6¼j

hui; uji

The theorem follows from the fact that hui; uii ¼ kuik2
and hui; uji ¼ 0 for i 6¼ j.

7.17. Prove Theorem 7.7: Let fu1; u2; . . . ; ung be an orthogonal basis of V. Then for any v 2 V,

v ¼ hv; u1i
hu1; u1i

u1 þ
hv; u2i
hu2; u2i

u2 þ � � � þ
hv; uni
hun; uni

un

Suppose v ¼ k1u1 þ k2u2 þ � � � þ knun. Taking the inner product of both sides with u1 yields

hv; u1i ¼ hk1u2 þ k2u2 þ � � � þ knun; u1i
¼ k1hu1; u1i þ k2hu2; u1i þ � � � þ knhun; u1i
¼ k1hu1; u1i þ k2 � 0þ � � � þ kn � 0 ¼ k1hu1; u1i

Thus, k1 ¼
hv; u1i
hu1; u1i

. Similarly, for i ¼ 2; . . . ; n,

hv; uii ¼ hk1ui þ k2u2 þ � � � þ knun; uii
¼ k1hu1; uii þ k2hu2; uii þ � � � þ knhun; uii
¼ k1 � 0þ � � � þ kihui; uii þ � � � þ kn � 0 ¼ kihui; uii

Thus, ki ¼
hv; uii
hu ; uii

. Substituting for ki in the equation v ¼ k1u1 þ � � � þ knun, we obtain the desired result.

7.18. Suppose E ¼ fe1; e2; . . . ; eng is an orthonormal basis of V. Prove

(a) For any u 2 V, we have u ¼ hu; e1ie1 þ hu; e2ie2 þ � � � þ hu; enien.

(b) ha1e1 þ � � � þ anen; b1e1 þ � � � þ bneni ¼ a1b1 þ a2b2 þ � � � þ anbn.

(c) For any u; v 2 V, we have hu; vi ¼ hu; e1ihv; e1i þ � � � þ hu; enihv; eni.
(a) Suppose u ¼ k1e1 þ k2e2 þ � � � þ knen. Taking the inner product of u with e1,

hu; e1i ¼ hk1e1 þ k2e2 þ � � � þ knen; e1i
¼ k1he1; e1i þ k2he2; e1i þ � � � þ knhen; e1i
¼ k1ð1Þ þ k2ð0Þ þ � � � þ knð0Þ ¼ k1
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Similarly, for i ¼ 2; . . . ; n,

hu; eii ¼ hk1e1 þ � � � þ kiei þ � � � þ knen; eii
¼ k1he1; eii þ � � � þ kihei; eii þ � � � þ knhen; eii
¼ k1ð0Þ þ � � � þ kið1Þ þ � � � þ knð0Þ ¼ ki

Substituting hu; eii for ki in the equation u ¼ k1e1 þ � � � þ knen, we obtain the desired result.

(b) We have Pn
i¼1

aiei;
Pn
j¼1

bjej

* +
¼ Pn

i;j¼1

aibjhei; eji ¼
Pn
i¼1

aibihei; eii þ
P
i 6¼j

aibjhei; eji

But hei; eji ¼ 0 for i 6¼ j, and hei; eji ¼ 1 for i ¼ j. Hence, as required,

Pn
i¼1

aiei;
Pn
j¼1

bjej

* +
¼Pn

i¼1

aibi ¼ a1b1 þ a2b2 þ � � � þ anbn

(c) By part (a), we have

u ¼ hu; e1ie1 þ � � � þ hu; enien and v ¼ hv; e1ie1 þ � � � þ hv; enien

Thus, by part (b),

hu; vi ¼ hu; e1ihv; e1i þ hu; e2ihv; e2i þ � � � þ hu; enihv; eni

Projections, Gram–Schmidt Algorithm, Applications

7.19. Suppose w 6¼ 0. Let v be any vector in V. Show that

c ¼ hv;wihw;wi ¼
hv;wi
kwk2

is the unique scalar such that v0 ¼ v 
 cw is orthogonal to w.
In order for v0 to be orthogonal to w we must have

hv 
 cw; wi ¼ 0 or hv;wi 
 chw;wi ¼ 0 or hv;wi ¼ chw;wi
Thus, c

hv;wi
hw;wi. Conversely, suppose c ¼ hv;wihw;wi. Then

hv 
 cw; wi ¼ hv;wi 
 chw;wi ¼ hv;wi 
 hv;wihw;wi hw;wi ¼ 0

7.20. Find the Fourier coefficient c and the projection of v ¼ ð1;
2; 3;
4Þ along w ¼ ð1; 2; 1; 2Þ in R4.

Compute hv;wi ¼ 1
 4þ 3
 8 ¼ 
8 and kwk2 ¼ 1þ 4þ 1þ 4 ¼ 10. Then

c ¼ 
 8
10 ¼ 
 4

5 and projðv;wÞ ¼ cw ¼ ð
 4
5 ;
 8

5 ;
 4
5 ;
 8

5Þ
7.21. Consider the subspace U of R4 spanned by the vectors:

v1 ¼ ð1; 1; 1; 1Þ; v2 ¼ ð1; 1; 2; 4Þ; v3 ¼ ð1; 2;
4;
3Þ
Find (a) an orthogonal basis of U ; (b) an orthonormal basis of U .

(a) Use the Gram–Schmidt algorithm. Begin by setting w1 ¼ u ¼ ð1; 1; 1; 1Þ. Next find

v2 

hv2;w1i
hw1;w1i

w1 ¼ ð1; 1; 2; 4Þ 

8

4
ð1; 1; 1; 1Þ ¼ ð
1;
1; 0; 2Þ

Set w2 ¼ ð
1;
1; 0; 2Þ. Then find

v3 

hv3;w1i
hw1;w1i

w1 

hv3;w2i
hw2;w2i

w2 ¼ ð1; 2;
4;
3Þ 
 ð
4Þ
4
ð1; 1; 1; 1Þ 
 ð
9Þ

6
ð
1;
1; 0; 2Þ

¼ ð12 ; 3
2 ;
3; 1Þ

Clear fractions to obtain w3 ¼ ð1; 3;
6; 2Þ. Then w1;w2;w3 form an orthogonal basis of U.
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(b) Normalize the orthogonal basis consisting of w1;w2;w3. Because kw1k2 ¼ 4, kw2k2 ¼ 6, and
kw3k2 ¼ 50, the following vectors form an orthonormal basis of U :

u1 ¼
1

2
ð1; 1; 1; 1Þ; u2 ¼

1ffiffiffi
6
p ð
1;
1; 0; 2Þ; u3 ¼

1

5
ffiffiffi
2
p ð1; 3;
6; 2Þ

7.22. Consider the vector space PðtÞ with inner product h f ; gi ¼ Ð 1

0
f ðtÞgðtÞ dt. Apply the Gram–

Schmidt algorithm to the set f1; t; t2g to obtain an orthogonal set f f0; f1; f2g with integer
coefficients.

First set f0 ¼ 1. Then find

t 
 ht; 1ih1; 1i � 1 ¼ t 

1
2

1
� 1 ¼ t 
 1

2

Clear fractions to obtain f1 ¼ 2t 
 1. Then find

t2 
 ht
2; 1i
h1; 1i ð1Þ 


ht2; 2t 
 1i
h2t 
 1; 2t 
 1i ð2t 
 1Þ ¼ t2 


1
3

1
ð1Þ 


1
6
1
3

ð2t 
 1Þ ¼ t2 
 t þ 1

6

Clear fractions to obtain f2 ¼ 6t2 
 6t þ 1. Thus, f1; 2t 
 1; 6t2 
 6t þ 1g is the required orthogonal set.

7.23. Suppose v ¼ ð1; 3; 5; 7Þ. Find the projection of v onto W or, in other words, find w 2 W that
minimizes kv 
 wk, where W is the subspace of R4 spanned by

(a) u1 ¼ ð1; 1; 1; 1Þ and u2 ¼ ð1;
3; 4;
2Þ,
(b) v1 ¼ ð1; 1; 1; 1Þ and v2 ¼ ð1; 2; 3; 2Þ.

(a) Because u1 and u2 are orthogonal, we need only compute the Fourier coefficients:

c1 ¼
hv; u1i
hu1; u1i

¼ 1þ 3þ 5þ 7

1þ 1þ 1þ 1
¼ 16

4
¼ 4

c2 ¼
hv; u2i
hu2; u2i

¼ 1
 9þ 20
 14

1þ 9þ 16þ 4
¼ 
2

30
¼ 
 1

15

Then w ¼ projðv;WÞ ¼ c1u1 þ c2u2 ¼ 4ð1; 1; 1; 1Þ 
 1
15 ð1;
3; 4;
2Þ ¼ ð59

15 ;
63
5 ; 56

15 ;
62
15Þ:

(b) Because v1 and v2 are not orthogonal, first apply the Gram–Schmidt algorithm to find an orthogonal
basis for W . Set w1 ¼ v1 ¼ ð1; 1; 1; 1Þ. Then find

v2 

hv2;w1i
hw1;w1i

w1 ¼ ð1; 2; 3; 2Þ 

8

4
ð1; 1; 1; 1Þ ¼ ð
1; 0; 1; 0Þ

Set w2 ¼ ð
1; 0; 1; 0Þ. Now compute

c1 ¼
hv;w1i
hw1;w1i

¼ 1þ 3þ 5þ 7

1þ 1þ 1þ 1
¼ 16

4
¼ 4

c2 ¼
hv;w2i
hw2;w2i


 
1þ 0þ 5þ 0

1þ 0þ 1þ 0
¼ 4

2
¼

Then w ¼ projðv;WÞ ¼ c1w1 þ c2w2 ¼ 4ð1; 1; 1; 1Þ ð
1; 0; 1; 0Þ ¼ ð ; 4; ; 4Þ.

7.24. Suppose w1 and w2 are nonzero orthogonal vectors. Let v be any vector in V. Find c1 and c2 so that
v0 is orthogonal to w1 and w2, where v0 ¼ v 
 c1w1 
 c2w2.

If v0 is orthogonal to w1, then

0 ¼ hv 
 c1w1 
 c2w2; w1i ¼ hv;w1i 
 c1hw1;w1i 
 c2hw2;w1i
¼ hv;w1i 
 c1hw1;w1i 
 c20 ¼ hv;w1i 
 c1hw1;w1i

Thus, c1 ¼ hv;w1i=hw1;w1i. (That is, c1 is the component of v along w1.) Similarly, if v0 is orthogonal to w2,
then

0 ¼ hv 
 c1w1 
 c2w2; w2i ¼ hv;w2i 
 c2hw2;w2i
Thus, c2 ¼ hv;w2i=hw2;w2i. (That is, c2 is the component of v along w2.)
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7.25. Prove Theorem 7.8: Suppose w1;w2; . . . ;wr form an orthogonal set of nonzero vectors in V. Let
v 2 V. Define

v0 ¼ v 
 ðc1w1 þ c2w2 þ � � � þ crwrÞ; where ci ¼
hv;wii
hwi;wii

Then v0 is orthogonal to w1;w2; . . . ;wr.
For i ¼ 1; 2; . . . ; r and using hwi;wji ¼ 0 for i 6¼ j, we have

hv 
 c1w1 
 c2 
 � � � 
 crwr; wii ¼ hv;wii 
 c1hw1;wii 
 � � � 
 cihwi;wii 
 � � � 
 crhwr;wii
¼ hv;wii 
 c1 � 0
 � � � 
 cihwi;wii 
 � � � 
 cr � 0

¼ hv;wii 
 cihwi;wii ¼ hv;wii 

hv;wii
hwi;wii

hwi;wii ¼ 0

The theorem is proved.

7.26. Prove Theorem 7.9: Let fv1; v2; . . . ; vng be any basis of an inner product space V. Then there
exists an orthonormal basis fu1; u2; . . . ; ung of V such that the change-of-basis matrix from fvig to
fuig is triangular; that is, for k ¼ 1; 2; . . . ; n,

uk ¼ ak1v1 þ ak2v2 þ � � � þ akkvk

The proof uses the Gram–Schmidt algorithm and Remarks 1 and 3 of Section 7.7. That is, apply the
algorithm to fvig to obtain an orthogonal basis fwi; . . . ;wng, and then normalize fwig to obtain an
orthonormal basis fuig of V. The specific algorithm guarantees that each wk is a linear combination of
v1; . . . ; vk , and hence, each uk is a linear combination of v1; . . . ; vk .

7.27. Prove Theorem 7.10: Suppose S ¼ fw1;w2; . . . ;wrg, is an orthogonal basis for a subspace W of V.
Then one may extend S to an orthogonal basis for V; that is, one may find vectors wrþ1; . . . ;w
such that fw1;w2; . . . ;wng is an orthogonal basis for V.

Extend S to a basis S0 ¼ fw1; . . . ;wr; vrþ1; . . . ; vng for V. Applying the Gram–Schmidt algorithm to S0,
we first obtain w1;w2; . . . ;wr because S is orthogonal, and then we obtain vectors wrþ1; . . . ;wn, where
fw1;w2; . . . ;wng is an orthogonal basis for V. Thus, the theorem is proved.

7.28. Prove Theorem 7.4: Let W be a subspace of V. Then V ¼ W �W?.

By Theorem 7.9, there exists an orthogonal basis fu1; . . . ; urg of W , and by Theorem 7.10 we can
extend it to an orthogonal basis fu1; u2; . . . ; ung of V. Hence, urþ1; . . . ; un 2 W?. If v 2 V, then

v ¼ a1u1 þ � � � þ anun; where a1u1 þ � � � þ arur 2 W and arþ1urþ1 þ � � � þ anun 2 W?

Accordingly, V ¼ W þW?.
On the other hand, if w 2 W \W?, then hw;wi ¼ 0. This yields w ¼ 0. Hence, W \W? ¼ f0g.
The two conditions V ¼ W þW? and W \W? ¼ f0g give the desired result V ¼ W �W?.

Remark: Note that we have proved the theorem for the case that V has finite dimension. We
remark that the theorem also holds for spaces of arbitrary dimension.

7.29. Suppose W is a subspace of a finite-dimensional space V. Prove that W ¼ W??.

By Theorem 7.4, V ¼ W �W?, and also V ¼ W? �W??. Hence,

dim W ¼ dim V 
 dim W? and dim W?? ¼ dim V 
 dim W?

This yields dim W ¼ dim W??. But W � W?? (see Problem 7.14). Hence, W ¼ W??, as required.

7.30. Prove the following: Suppose w1;w2; . . . ;wr form an orthogonal set of nonzero vectors in V. Let v be
any vector in V and let ci be the component of v along wi. Then, for any scalars a1; . . . ; ar, we have

v 
Pr
k¼1

ckwk

���� ���� � v 
 Pr
k¼1

akwk

���� ����
That is,

P
ciwi is the closest approximation to v as a linear combination of w1; . . . ;wr.
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By Theorem 7.8, v 
P ckwk is orthogonal to every wi and hence orthogonal to any linear combination
of w1;w2; . . . ;wr. Therefore, using the Pythagorean theorem and summing from k ¼ 1 to r,

v 
P akwkk k2 ¼ v 
P ckwk þ
P ðck 
 akÞwkk k2¼ v 
P ckwkk k2þ Pðck 
 akÞwkk k2

� v 
P ckwkk k2

The square root of both sides gives our theorem.

7.31. Suppose fe1; e2; . . . ; erg is an orthonormal set of vectors in V. Let v be any vector in V and let ci

be the Fourier coefficient of v with respect to i. Prove Bessel’s inequality:Pr
k¼1

c2
k � kvk2

Note that ci ¼ hv; eii, because keik ¼ 1. Then, using hei; eji ¼ 0 for i 6¼ j and summing from k ¼ 1 to r,
we get

0 � v 
P ckek ; v 
P ck ekh ¼ hv; vi 
 2 v;
P

ckeki þ
P

c2
k ¼ hv; vi 


P
2ckhv; eki þ

P
c2

k

�
¼ hv; vi 
P 2c2

k þ
P

c2
k ¼ hv; vi 


P
c2

k

This gives us our inequality.

Orthogonal Matrices

7.32. Find an orthogonal matrix P whose first row is u1 ¼ ð13 ; 2
3 ;

2
3Þ.

First find a nonzero vector w2 ¼ ðx; y; zÞ that is orthogonal to u1—that is, for which

0 ¼ hu1;w2i ¼
x

3
þ 2y

3
þ 2z

3
¼ 0 or xþ 2yþ 2z ¼ 0

One such solution is w2 ¼ ð0; 1;
1Þ. Normalize w2 to obtain the second row of P:

u2 ¼ ð0; 1=
ffiffiffi
2
p

;
1=
ffiffiffi
2
p
Þ

Next find a nonzero vector w3 ¼ ðx; y; zÞ that is orthogonal to both u1 and u2—that is, for which

0 ¼ hu1;w3i ¼
x

3
þ 2y

3
þ 2z

3
¼ 0 or xþ 2yþ 2z ¼ 0

0 ¼ hu2;w3i ¼
yffiffiffi
2
p 
 ffiffiffi

2
p ¼ 0 or y
 z ¼ 0

Set z ¼ 
1 and find the solution w3 ¼ ð4;
1;
1Þ. Normalize w3 and obtain the third row of P; that is,

u3 ¼ ð4=
ffiffiffiffiffi
18
p

;
1=
ffiffiffiffiffi
18
p

;
1=
ffiffiffiffiffi
18
p
Þ:

P ¼
1
3

2
3

2
3

0 1=
ffiffiffi
2
p 
1=

ffiffiffi
2
p

4=3
ffiffiffi
2
p 
1=3

ffiffiffi
2
p 
1=3

ffiffiffi
2
p

24 35Thus;

We emphasize that the above matrix P is not unique.

7.33. Let A ¼
1 1 
1
1 3 4
7 
5 2

24 35. Determine whether or not: (a) the rows of A are orthogonal;

(b) A is an orthogonal matrix; (c) the columns of A are orthogonal.

(a) Yes, because ð1; 1;
1Þ � ð1; 3; 4Þ ¼ 1þ 3
 4 ¼ 0, ð1; 1
 1Þ � ð7;
5; 2Þ ¼ 7
 5
 2 ¼ 0, and
ð1; 3; 4Þ � ð7;
5; 2Þ ¼ 7
 15þ 8 ¼ 0.

(b) No, because the rows of A are not unit vectors, for example, ð1; 1;
1Þ2 ¼ 1þ 1þ 1 ¼ 3.

(c) No; for example, ð1; 1; 7Þ � ð1; 3;
5Þ ¼ 1þ 3
 35 ¼ 
31 6¼ 0.

7.34. Let B be the matrix obtained by normalizing each row of A in Problem 7.33.

(a) Find B.

(b) Is B an orthogonal matrix?

(c) Are the columns of B orthogonal?
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(a) We have

kð1; 1;
1Þk2 ¼ 1þ 1þ 1 ¼ 3; kð1; 3; 4Þk2 ¼ 1þ 9þ 16 ¼ 26

kð7;
5; 2Þk2 ¼ 49þ 25þ 4 ¼ 78

Thus; B ¼
1=

ffiffiffi
3
p

1=
ffiffiffi
3
p 
1=

ffiffiffi
3
p

1=
ffiffiffiffiffi
26
p

3=
ffiffiffiffiffi
26
p

4=
ffiffiffiffiffi
26
p

7=
ffiffiffiffiffi
78
p 
5=

ffiffiffiffiffi
78
p

2=
ffiffiffiffiffi
78
p

264
375

(b) Yes, because the rows of B are still orthogonal and are now unit vectors.

(c) Yes, because the rows of B form an orthonormal set of vectors. Then, by Theorem 7.11, the columns of
B must automatically form an orthonormal set.

7.35. Prove each of the following:

(a) P is orthogonal if and only if PT is orthogonal.

(b) If P is orthogonal, then P
1 is orthogonal.

(c) If P and Q are orthogonal, then PQ is orthogonal.

(a) We have ðPT ÞT ¼ P. Thus, P is orthogonal if and only if PPT ¼ I if and only if PTT PT ¼ I if and only if
PT is orthogonal.

(b) We have PT ¼ P
1, because P is orthogonal. Thus, by part (a), P
1 is orthogonal.

(c) We have PT ¼ P
1 and QT ¼ Q
1. Thus, ðPQÞðPQÞT ¼ PQQT PT ¼ PQQ
1P
1 ¼ I . Therefore,
ðPQÞT ¼ ðPQÞ
1

, and so PQ is orthogonal.

7.36. Suppose P is an orthogonal matrix. Show that

(a) hPu;Pvi ¼ hu; vi for any u; v 2 V ;

(b) kPuk ¼ kuk for every u 2 V.

Use PT P ¼ I and hu; vi ¼ uTv.

(a) hPu;Pvi ¼ ðPuÞT ðPvÞ ¼ uT PT Pv ¼ uTv ¼ hu; vi.
(b) We have

kPuk2 ¼ hPu;Pui ¼ uT PT Pu ¼ uT u ¼ hu; ui ¼ kuk2

Taking the square root of both sides gives our result.

7.37. Prove Theorem 7.12: Suppose E ¼ feig and E0 ¼ fe0ig are orthonormal bases of V. Let P be the
change-of-basis matrix from E to E0. Then P is orthogonal.

Suppose

e0i ¼ bi1e1 þ bi2e2 þ � � � þ binen; i ¼ 1; . . . ; n ð1Þ

Using Problem 7.18(b) and the fact that E0 is orthonormal, we get

dij ¼ he0i; e0ji ¼ bi1bj1 þ bi2bj2 þ � � � þ binbjn ð2Þ
Let B ¼ ½bij� be the matrix of the coefficients in (1). (Then P ¼ BT .) Suppose BBT ¼ ½cij�. Then

cij ¼ bi1bj1 þ bi2bj2 þ � � � þ binbjn ð3Þ
By (2) and (3), we have cij ¼ dij. Thus, BBT ¼ I . Accordingly, B is orthogonal, and hence, P ¼ BT is
orthogonal.

7.38. Prove Theorem 7.13: Let fe1; . . . ; eng be an orthonormal basis of an inner product space V . Let
P ¼ ½aij� be an orthogonal matrix. Then the following n vectors form an orthonormal basis for V :

e0i ¼ a1ie1 þ a2ie2 þ � � � þ anien; i ¼ 1; 2; . . . ; n
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Because feig is orthonormal, we get, by Problem 7.18(b),

he0i; e0ji ¼ a1ia1j þ a2ia2j þ � � � þ anianj ¼ hCi;Cji
where Ci denotes the ith column of the orthogonal matrix P ¼ ½aij�: Because P is orthogonal, its columns
form an orthonormal set. This implies he0i; e0ji ¼ hCi;Cji ¼ dij: Thus, fe0ig is an orthonormal basis.

Inner Products And Positive Definite Matrices

7.39. Which of the following symmetric matrices are positive definite?

(a) A ¼ 3 4
4 5

� �
, (b) B ¼ 8 
3


3 2

� �
, (c) C ¼ 2 1

1 
3

� �
, (d) D ¼ 3 5

5 9

� �
Use Theorem 7.14 that a 2� 2 real symmetric matrix is positive definite if and only if its diagonal

entries are positive and if its determinant is positive.

(a) No, because jAj ¼ 15
 16 ¼ 
1 is negative.

(b) Yes.

(c) No, because the diagonal entry 
3 is negative.

(d) Yes.

7.40. Find the values of k that make each of the following matrices positive definite:

(a) A ¼ 2 
4

4 k

� �
, (b) B ¼ 4 k

k 9

� �
, (c) C ¼ k 5

5 
2

� �
(a) First, k must be positive. Also, jAj ¼ 2k 
 16 must be positive; that is, 2k 
 16 > 0. Hence, k > 8.

(b) We need jBj ¼ 36
 k2 positive; that is, 36
 k2 > 0. Hence, k2 < 36 or 
6 < k < 6.

(c) C can never be positive definite, because C has a negative diagonal entry 
2.

7.41. Find the matrix A that represents the usual inner product on R2 relative to each of the following
bases of R2: ðaÞ fv1 ¼ ð1; 3Þ; v2 ¼ ð2; 5Þg; ðbÞ fw1 ¼ ð1; 2Þ; w2 ¼ ð4;
2Þg:

(a) Compute hv1; v1i ¼ 1þ 9 ¼ 10, hv1; v2i ¼ 2þ 15 ¼ 17, hv2; v2i ¼ 4þ 25 ¼ 29. Thus,

A¼ 10 17
17 29

� �.

(b) Compute hw1;w1i ¼ 1þ 4 ¼ 5, hw1;w2i ¼ 4
 4 ¼ 0, hw2;w2i ¼ 16þ 4 ¼ 20. Thus, A¼ 5 0
0 20

� �
.

(Because the basis vectors are orthogonal, the matrix A is diagonal.)

7.42. Consider the vector space P2ðtÞ with inner product h f ; gi ¼ Ð 1


1 f ðtÞgðtÞ dt.

(a) Find h f ; gi, where f ðtÞ ¼ t þ 2 and gðtÞ ¼ t2 
 3t þ 4.

(b) Find the matrix A of the inner product with respect to the basis f1; t; t2g of V.

(c) Verify Theorem 7.16 by showing that h f ; gi ¼ ½ f �T A½g� with respect to the basis f1; t; t2g.

(a) h f ; gi ¼
ð1


1

ðt þ 2Þðt2 
 3t þ 4Þ dt ¼
ð1


1

ðt3 
 t2 
 2t þ 8Þ dt ¼ t4

4

 t3

3

 t2 þ 8t

� �����1

1

¼ 46

3

(b) Here we use the fact that if r þ s ¼ n,

htr; tri ¼
ð1


1

tn dt ¼ tnþ1

nþ 1

����1

1

¼ 2=ðnþ 1Þ if n is even;
0 if n is odd:

	
Then h1; 1i ¼ 2, h1; ti ¼ 0, h1; t2i ¼ 2

3, ht; ti ¼ 2
3, ht; t2i ¼ 0, ht2; t2i ¼ 2

5. Thus,

A ¼
2 0 2

3
0 2

3 0
2
3 0 2

5

24 35
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(c) We have ½ f �T ¼ ð2; 1; 0Þ and ½g�T ¼ ð4;
3; 1Þ relative to the given basis. Then

½ f �T A½g� ¼ ð2; 1; 0Þ
2 0 2

3
0 2

3 0
2
3 0 2

5

24 35 4

3

1

24 35 ¼ ð4; 2
3 ;

4
3Þ

4

3

1

24 35 ¼ 46
3 ¼ h f ; gi

7.43. Prove Theorem 7.14: A ¼ a b
b d

� �
is positive definite if and only if a and d are positive and

jAj ¼ ad 
 b2 is positive.

Let u ¼ ½x; y�T . Then

f ðuÞ ¼ uT Au ¼ ½x; y� a b
b d

� �
x
y

� �
¼ ax2 þ 2bxyþ dy2

Suppose f ðuÞ > 0 for every u 6¼ 0. Then f ð1; 0Þ ¼ a > 0 and f ð0; 1Þ ¼ d > 0. Also, we have
f ðb;
aÞ ¼ aðad 
 b2Þ > 0. Because a > 0, we get ad 
 b2 > 0.

Conversely, suppose a > 0, 0, ad 
 b2 > 0. Completing the square gives us

f ðuÞ ¼ a x2 þ 2b

a
xyþ b2

a2

y2

� �
þ dy2 
 b2

a
y2 ¼ a xþ by

a

� �2

þ ad 
 b2

a
y2

Accordingly, f ðuÞ > 0 for every u 6¼ 0.

7.44. Prove Theorem 7.15: Let A be a real positive definite matrix. Then the function hu; vi ¼ uT Av is
an inner product on Rn.

For any vectors u1; u2, and v,

hu1 þ u2; vi ¼ ðu1 þ u2ÞT Av ¼ ðuT
1 þ uT

2 ÞAv ¼ uT
1 Av þ uT

2 Av ¼ hu1; vi þ hu2; vi
and, for any scalar k and vectors u; v,

hku; vi ¼ ðkuÞT Av ¼ kuT Av ¼ khu; vi
Thus ½I1� is satisfied.

Because uT Av is a scalar, ðuT AvÞT ¼ uT Av. Also, AT ¼ A because A is symmetric. Therefore,

hu; vi ¼ uT Av ¼ ðuT AvÞT ¼ vT AT uTT ¼ vT Au ¼ hv; ui
Thus, ½I2� is satisfied.

Last, because A is positive definite, X T AX > 0 for any nonzero X 2 Rn. Thus, for any nonzero vector
v; hv; vi ¼ vT Av > 0. Also, h0; 0i ¼ 0T A0 ¼ 0. Thus, ½I3� is satisfied. Accordingly, the function hu; vi ¼ Av
is an inner product.

7.45. Prove Theorem 7.16: Let A be the matrix representation of an inner product relative to a basis S of
V. Then, for any vectors u; v 2 V, we have

hu; vi ¼ ½u�T A½v�
Suppose S ¼ fw1;w2; . . . ;wng and A ¼ ½kij�. Hence, kij ¼ hwi;wji. Suppose

u ¼ a1w1 þ a2w2 þ � � � þ anwn and v ¼ b1w1 þ b2w2 þ � � � þ bnwn

Then hu; vi ¼Pn
i¼1

Pn
j¼1

aibjhwi;wji ð1Þ

On the other hand,

½u�T A½v� ¼ ða1; a2; . . . ; anÞ

k11 k12 . . . k1n

k21 k22 . . . k2n

::::::::::::::::::::::::::::::

kn1 kn2 . . . knn

26664
37775

b1

b2

..

.

bn

266664
377775

¼ Pn
i¼1

aiki1;
Pn
i¼1

aiki2; . . . ;
Pn
i¼1

aikin

� � b1

b2

..

.

bn

266664
377775 ¼P

n

j¼1

Pn
i¼1

aibjkij ð2Þ

Equations ð1Þ and (2) give us our result.
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7.46. Prove Theorem 7.17: Let A be the matrix representation of any inner product on V. Then A is a
positive definite matrix.

Because hwi;wji ¼ hwj;wii for any basis vectors wi and wj, the matrix A is symmetric. Let X be any
nonzero vector in Rn. Then ½u� ¼ X for some nonzero vector u 2 V. Theorem 7.16 tells us that
X T AX ¼ ½u�T A½u� ¼ hu; ui > 0. Thus, A is positive definite.

Complex Inner Product Spaces

7.47. Let V be a complex inner product space. Verify the relation

hu; av1 þ bv2i ¼ �ahu; v1i þ �bhu; v2i
Using ½I2*�, ½I1*�, and then ½I2*�, we find

hu; av1 þ bv2i ¼ hav1 þ bv2; ui ¼ ahv1; ui þ bhv2; ui ¼ �ahv1; ui þ �bhv2; ui ¼ �ahu; v1i þ �bhu; v2i

7.48. Suppose hu; vi ¼ 3þ 2i in a complex inner product space V. Find

(a) hð2
 4iÞu; vi; (b) hu; ð4þ 3iÞvi; (c) hð3
 6iÞu; ð5
 2iÞvi:
(a) hð2
 4iÞu; vi ¼ ð2
 4iÞhu; vi ¼ ð2
 4iÞð3þ 2iÞ ¼ 14
 8i

(b) hu; ð4þ 3iÞvi ¼ ð4þ 3iÞhu; vi ¼ ð4
 3iÞð3þ 2iÞ ¼ 18
 i

(c) hð3
 6iÞu; ð5
 2iÞvi ¼ ð3
 6iÞð5
 2iÞhu; vi ¼ ð3
 6iÞð5þ 2iÞð3þ 2iÞ ¼ 129
 18i

7.49. Find the Fourier coefficient (component) c and the projection cw of v ¼ ð3þ 4i; 2
 3iÞ along
w ¼ ð5þ i; 2iÞ in C2.

Recall that c ¼ hv;wi=hw;wi. Compute

hv;wi ¼ ð3þ 4iÞð5þ iÞ þ ð2
 3iÞð2iÞ ¼ ð3þ 4iÞð5
 iÞ þ ð2
 3iÞð
2iÞ
¼ 19þ 17i
 6
 4i ¼ 13þ 13i

hw;wi ¼ 25þ 1þ 4 ¼ 30

Thus, c ¼ ð13þ 13iÞ=30 ¼ 13
30þ 13

30 i: Accordingly, projðv;wÞ ¼ cw ¼ ð26
15þ 39

15 i; 
 13
15þ 1

15 iÞ

7.50. Prove Theorem 7.18 (Cauchy–Schwarz): Let V be a complex inner product space. Then
jhu; vij � kukkvk.

If v ¼ 0, the inequality reduces to 0 � 0 and hence is valid. Now suppose v 6¼ 0. Using z�z ¼ jzj2 (for
any complex number z) and hv; ui ¼ hu; vi, we expand ku
 hu; vitvk2 � 0, where t is any real value:

0 � ku
 hu; vitvk2 ¼ hu
 hu; vitv; u
 hu; vitvi
¼ hu; ui 
 hu; vithu; vi 
 hu; vÞthv; ui þ hu; vihu; vit2hv; vi
¼ kuk2 
 2tjhu; vij2 þ jhu; vij2t2kvk2

Set t ¼ 1=kvk2 to find 0 � kuk2 
 jhu; vij
2

kvk2
, from which jhu; vij2 � k k2kvk2. Taking the square

root of both sides, we obtain the required inequality.

7.51. Find an orthogonal basis for u? in C3 where u ¼ ð1; i; 1þ iÞ.
Here u? consists of all vectors s ¼ ðx; y; zÞ such that

hw; ui ¼ x
 iyþ ð1
 iÞz ¼ 0

Find one solution, say w1 ¼ ð0; 1
 i; iÞ. Then find a solution of the system

x
 iyþ ð1
 iÞz ¼ 0; ð1þ iÞy
 iz ¼ 0

Here z is a free variable. Set z ¼ 1 to obtain y ¼ i=ð1þ iÞ ¼ ð1þ iÞ=2 and x ¼ ð3i
 3Þ2. Multiplying by 2
yields the solution w2 ¼ ð3i
 3, 1þ i, 2). The vectors w1 and w2 form an orthogonal basis for u?.
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7.52. Find an orthonormal basis of the subspace W of C3 spanned by

v1 ¼ ð1; i; 0Þ and v2 ¼ ð1; 2; 1
 iÞ:
Apply the Gram–Schmidt algorithm. Set w1 ¼ v1 ¼ ð1; i; 0Þ. Compute

v2 

hv2;w1i
hw1;w1i

w1 ¼ ð1; 2; 1
 iÞ 
 1
 2i

2
ð1; i; 0Þ ¼ ð12þ i; 1
 1

2 i; 1
 iÞ

Multiply by 2 to clear fractions, obtaining w2 ¼ ð1þ 2i; 2
 i; 2
 2iÞ. Next find kw1k ¼
ffiffiffi
2
p

and then
kw2k ¼

ffiffiffiffiffi
18
p

. Normalizing fw1;w2g, we obtain the following orthonormal basis of W :

u1 ¼
1ffiffiffi
2
p ;

iffiffiffi
2
p ; 0

� �
; u2 ¼

1þ 2iffiffiffiffiffi
18
p ;

2
 iffiffiffiffiffi
18
p ;

2
 2iffiffiffiffiffi
18
p

� �	 �

7.53. Find the matrix P that represents the usual inner product on C3 relative to the basis f1; i; 1
 ig.
Compute the following six inner products:

h1; 1i ¼ 1;
hi; ii ¼ i�i ¼ 1;

h1; ii ¼�i ¼ 
i;
hi; 1
 ii ¼ ið1
 iÞ ¼ 
1þ i;

h1; 1
 ii ¼ 1
 i ¼ 1þ i

h1
 i; 1
 ii ¼ 2

Then, using ðu; vÞ ¼ hv; ui, we obtain

P ¼
1 
i 1þ i

i 1 
1þ i

1
 i 
1
 i 2

24 35
(As expected, P is Hermitian; that is, PH ¼ P.)

Normed Vector Spaces

7.54. Consider vectors u ¼ ð1; 3;
6; 4Þ and v ¼ ð3;
5; 1;
2Þ in R4. Find

(a) kuk1 and kv 1, (b) kuk1 and kvk1, (c) kuk2 and kvk2,

(d) d1ðu; vÞ; d1ðu; vÞ, d2ðu; vÞ.

(a) The infinity norm chooses the maximum of the absolute values of the components. Hence,

kuk1 ¼ 6 and kvk1 ¼ 5

(b) The one-norm adds the absolute values of the components. Thus,

kuk1 ¼ 1þ 3þ 6þ 4 ¼ 14 and kvk1 ¼ 3þ 5þ 1þ 2 ¼ 11

(c) The two-norm is equal to the square root of the sum of the squares of the components (i.e., the norm
induced by the usual inner product on R3). Thus,

kuk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9þ 36þ 16
p ¼

ffiffiffiffiffi
62
p

and kvk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 25þ 1þ 4
p ¼

ffiffiffiffiffi
39
p

(d) First find u
 v ¼ ð
2; 8;
7; 6Þ. Then

d1ðu; vÞ ¼ ku
 vk1 ¼ 8

d1ðu; vÞ ¼ ku
 vk1 ¼ 2þ 8þ 7þ 6 ¼ 23

d2ðu; vÞ ¼ ku
 vk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 64þ 49þ 36
p ¼

ffiffiffiffiffiffiffiffi
153
p

7.55. Consider the function f ðtÞ ¼ t2 
 4t in C½0; 3�.
(a) Find k f k1, (b) Plot f ðtÞ in the plane R2, (c) Find k f k1, (d) Find k f k2.

(a) We seek k f k1 ¼ maxðj f ðtÞjÞ. Because f ðtÞ is differentiable on ½0; 3�, j f ðtÞj has a maximum at a
critical point of f ðtÞ (i.e., when the derivative f 0ðtÞ ¼ 0), or at an endpoint of ½0; 3�. Because
f 0ðtÞ ¼ 2t 
 4, we set 2t 
 4 ¼ 0 and obtain t ¼ 2 as a critical point. Compute

f ð2Þ ¼ 4
 8 ¼ 
4; f ð0Þ ¼ 0
 0 ¼ 0; f ð3Þ ¼ 9
 12 ¼ 
3

Thus, k f k1 ¼ j f ð2Þj ¼ j 
 4j ¼ 4.
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(b) Compute f ðtÞ for various values of t in ½0; 3�, for example,

t 0 1 2 3

f ðtÞ 0 
3 
4 
3

Plot the points in R2 and then draw a continuous curve through the points, as shown in Fig. 7-8.

(c) We seek k f k1 ¼
Ð 3

0 j f ðtÞj dt. As indicated in Fig. 7-3, f ðtÞ is negative in ½0; 3�; hence,

j f ðtÞj ¼ 
ðt2 
 4tÞ ¼ 4t 
 t2

k f k1 ¼
ð3

0

ð4t 
 t2Þ dt ¼ 2t2 
 t3

3

� �����3
0

¼ 18
 9 ¼ 9Thus;

(d) k f k2
2 ¼

ð3

0

f ðtÞ2 dt ¼
ð3

0

ðt4 
 8t3 þ 16t2Þ dt ¼ t5

5

 2t4 þ 16t3

3

� �����3
0

¼ 153

5
.

Thus, k f k2 ¼
ffiffiffiffiffiffiffiffi
153

5

r
.

7.56. Prove Theorem 7.24: Let V be a normed vector space. Then the function dðu; vÞ ¼ ku
 vk
satisfies the following three axioms of a metric space:

½M1� dðu; vÞ � 0; and dðu; vÞ ¼ 0 iff u ¼ v.

½M2� dðu; vÞ ¼ dðv; uÞ.
½M3� dðu; vÞ � dðu;wÞ þ dðw; vÞ.

If u 6¼ v, then u
 v 6¼ 0, and hence, dðu; vÞ ¼ ku
 vk > 0. Also, dðu; uÞ ¼ ku
 uk ¼ k0k ¼ 0. Thus,
½M1� is satisfied. We also have

dðu; vÞ ¼ ku
 vk ¼ k 
 1ðv 
 uÞk ¼ j 
 1jkv 
 uk ¼ kv 
 uk ¼ dðv; uÞ
and dðu; vÞ ¼ ku
 vk ¼ kðu
 wÞ þ ðw
 vÞk � ku
 wk þ kw
 vk ¼ dðu;wÞ þ dðw; vÞ
Thus, ½M2� and ½M3� are satisfied.

SUPPLEMENTARY PROBLEMS

Inner Products

7.57. Verify that the following is an inner product on R2, where u ¼ ðx1; x2Þ and v ¼ ðy1; y2Þ:
f ðu; vÞ ¼ x1y1 
 2x1 y2 
 2x2 y1 þ 5x2 y2

7.58. Find the values of k so that the following is an inner product on R2, where u ¼ ðx1; x2Þ and v ¼ ðy1; y2Þ:
f ðu; vÞ ¼ x1y1 
 3x1 y2 
 3x2 y1 þ kx2 y2

Figure 7-8
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7.59. Consider the vectors u ¼ ð1;
3Þ and v ¼ ð2; 5Þ in R2. Find

(a) hu; vi with respect to the usual inner product in R2.

(b) hu; vi with respect to the inner product in R2 in Problem 7.57.

(c) kvk using the usual inner product in R2.

(d) kvk using the inner product in R2 in Problem 7.57.

7.60. Show that each of the following is not an inner product on R3, where u ¼ ðx1; x2; x3Þ and v ¼ ðy1; y2; y3Þ:
(a) hu; vi ¼ x1y1 þ x2y2; (b) hu; vi ¼ x1y2x3 þ y1x2y3.

7.61. Let V be the vector space of m� n matrices over R. Show that hA;Bi ¼ trðBT AÞ defines an inner product
in V.

7.62. Suppose jhu; vij ¼ kukkvk. (That is, the Cauchy–Schwarz inequality reduces to an equality.) Show that u
and v are linearly dependent.

7.63. Suppose f ðu; vÞ and gðu; vÞ are inner products on a vector space V over R. Prove

(a) The sum f þ g is an inner product on V, where ð f þ gÞðu; vÞ ¼ f ðu; vÞ þ gðu; vÞ.
(b) The scalar product kf , for k > 0, is an inner product on V, where ðkf Þðu; vÞ ¼ kf ðu; vÞ.

Orthogonality, Orthogonal Complements, Orthogonal Sets

7.64. Let V be the vector space of polynomials over R of degree �2 with inner product defined by
h f ; gi ¼ Ð 1

0 f ðtÞgðtÞ dt. Find a basis of the subspace W orthogonal to hðtÞ ¼ 2t þ 1.

7.65. Find a basis of the subspace W of R4 orthogonal to u1 ¼ ð1;
2; 3; 4Þ and u2 ¼ ð3;
5; 7; 8Þ.

7.66. Find a basis for the subspace W of R5 orthogonal to the vectors u1 ¼ ð1; 1; 3; 4; 1Þ and u2 ¼ ð1; 2; 1; 2; 1Þ.

7.67. Let w ¼ ð1;
2;
1; 3Þ be a vector in R4. Find

(a) an orthogonal basis for w?; (b) an orthonormal basis for w?.

7.68. Let W be the subspace of R4 orthogonal to u1 ¼ ð1; 1; 2; 2Þ and u2 ¼ ð0; 1; 2;
1Þ. Find

(a) an orthogonal basis for W ; (b) an orthonormal basis for W . (Compare with Problem 7.65.)

7.69. Let S consist of the following vectors in R4:

u1 ¼ ð1; 1; 1; 1Þ; u2 ¼ ð1; 1;
1;
1Þ; u3 ¼ ð1;
1; 1;
1Þ; u4 ¼ ð1;
1;
1; 1Þ
(a) Show that S is orthogonal and a basis of R4.

(b) Write v ¼ ð1; 3;
5; 6Þ as a linear combination of u1; u2; u3; u4.

(c) Find the coordinates of an arbitrary vector v ¼ ða; b; c; dÞ in R4 relative to the basis S.

(d) Normalize S to obtain an orthonormal basis of R4.

7.70. Let M ¼M2;2 with inner product hA;Bi ¼ trðBT AÞ. Show that the following is an orthonormal basis for M:

1 0
0 0

� �
;

0 1
0 0

� �
;

0 0
1 0

� �
;

0 0
0 1

� �	 �

7.71. Let M ¼M2;2 with inner product hA;Bi ¼ trðBT AÞ. Find an orthogonal basis for the orthogonal complement
of (a) diagonal matrices, (b) symmetric matrices.
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7.72. Suppose fu1; u2; . . . ; urg is an orthogonal set of vectors. Show that fk1u1; k2u2; . . . ; krurg is an orthogonal set
for any scalars k1; k2; . . . ; kr.

7.73. Let U and W be subspaces of a finite-dimensional inner product space V. Show that

(a) ðU þWÞ? ¼ U? \W?; (b) ðU \WÞ? ¼ U? þW?.

Projections, Gram–Schmidt Algorithm, Applications

7.74. Find the Fourier coefficient c and projection cw of v along w, where

(a) v ¼ ð2; 3;
5Þ and w ¼ ð1;
5; 2Þ in R3:

(b) v ¼ ð1; 3; 1; 2Þ and w ¼ ð1;
2; 7; 4Þ in R4:

(c) v ¼ t2 and w ¼ t þ 3 in PðtÞ; with inner product h f ; gi ¼ Ð 1

0
f ðtÞgðtÞ dt

(d) v ¼ 1 2
3 4

� �
and w ¼ 1 1

5 5

� �
in M ¼M2;2; with inner product hA;Bi ¼ trðBT AÞ:

7.75. Let U be the subspace of R4 spanned by

v1 ¼ ð1; 1; 1; 1Þ; v2 ¼ ð1;
1; 2; 2Þ; v3 ¼ ð1; 2;
3;
4Þ
(a) Apply the Gram–Schmidt algorithm to find an orthogonal and an orthonormal basis for U .

(b) Find the projection of v ¼ ð1; 2;
3; 4Þ onto U .

7.76. Suppose v ¼ ð1; 2; 3; 4; 6Þ. Find the projection of v onto W, or, in other words, find w 2 W that minimizes
kv 
 wk, where W is the subspace of R5 spanned by

(a) u1 ¼ ð1; 2; 1; 2; 1Þ and u2 ¼ ð1;
1; 2;
1; 1Þ, (b) v1 ¼ ð1; 2; 1; 2; 1Þ and v2 ¼ ð1; 0; 1; 5;
1Þ.

7.77. Consider the subspace W ¼ P2ðtÞ of PðtÞ with inner product h f ; gi ¼ Ð 1

0 f ðtÞgðtÞ dt. Find the projection of
f ðtÞ ¼ t3 onto W . (Hint: Use the orthogonal polynomials 1; 2t 
 1, 6t2 
 6t þ 1 obtained in Problem 7.22.)

7.78. Consider PðtÞ with inner product h f ; gi ¼ Ð 1


1 f ðtÞgðtÞ dt and the subspace W ¼ P3ðtÞ:
(a) Find an orthogonal basis for W by applying the Gram–Schmidt algorithm to f1; t; t2; t3g.
(b) Find the projection of f ðtÞ ¼ t5 onto W .

Orthogonal Matrices

7.79. Find the number and exhibit all 2� 2 orthogonal matrices of the form
1
3 x
y z

� �
.

7.80. Find a 3� 3 orthogonal matrix P whose first two rows are multiples of u ¼ ð1; 1; 1Þ and v ¼ ð1;
 ; Þ,
respectively.

7.81. Find a symmetric orthogonal matrix P whose first row is ð13 ; 2
3 ;

2
3Þ. (Compare with Problem 7.32.)

7.82. Real matrices A and B are said to be orthogonally equivalent if there exists an orthogonal matrix P such that
B ¼ PT AP. Show that this relation is an equivalence relation.

Positive Definite Matrices and Inner Products

7.83. Find the matrix A that represents the usual inner product on R2 relative to each of the following bases:

(a) fv1 ¼ ð1; 4Þ; v2 ¼ ð2;
3Þg, (b) fw1 ¼ ð1;
3Þ; w2 ¼ ð6; 2Þg.

7.84. Consider the following inner product on R2:

f ðu; vÞ ¼ x1y1 
 2x1y2 
 2x2y1 þ 5x2y2; where u ¼ ðx1; x2Þ v ¼ ðy1; y2Þ
Find the matrix B that represents this inner product on R2 relative to each basis in Problem 7.83.
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7.85. Find the matrix C that represents the usual basis on R3 relative to the basis S of R3 consisting of the vectors
u1 ¼ ð1; 1; 1Þ, u2 ¼ ð1; 2; 1Þ, u3 ¼ ð1;
1; 3Þ.

7.86. Let V ¼ P2ðtÞ with inner product h f ; gi ¼ Ð 1
0
f ðtÞgðtÞ dt.

(a) Find h f ; gi, where f ðtÞ ¼ t þ 2 and gðtÞ ¼ t2 
 3t þ 4.

(b) Find the matrix A of the inner product with respect to the basis f1; t; t2g of V.
(c) Verify Theorem 7.16 that h f ; gi ¼ ½ f �TA½g� with respect to the basis f1; t; t2g.

7.87. Determine which of the following matrices are positive definite:

(a)
1 3

3 5

� �
, (b)

3 4

4 7

� �
, (c)

4 2

2 1

� �
, (d)

6 
7

7 9

� �
.

7.88. Suppose A and B are positive definite matrices. Show that:
(a) Aþ B is positive definite and (b) kA is positive definite for k > 0.

7.89. Suppose B is a real nonsingular matrix. Show that: (a) BTB is symmetric and (b) BTB is positive definite.

Complex Inner Product Spaces

7.90. Verify that

ha1u1 þ a2u2 b1v1 þ b2v2i ¼ a1
�b1hu1; v1i þ a1

�b2hu1; v2i þ a2
�b1hu2; v1i þ a2

�b2hu2; v2i
More generally, prove that hPm

i¼1 aiui;
Pn

j¼1 bjvji ¼
P

i;j ai
�bjhui; vii.

7.91. Consider u ¼ ð1þ i; 3; 4
 iÞ and v ¼ ð3
 4i; 1þ i; 2iÞ in C3. Find

(a) hu; vi, (b) hv; ui, (c) kuk, (d) kvk, (e) dðu; vÞ.

7.92. Find the Fourier coefficient c and the projection cw of

(a) u ¼ ð3þ i; 5
 2iÞ along w ¼ ð5þ i; 1þ iÞ in C2,

(b) u ¼ ð1
 i; 3i; 1þ iÞ along w ¼ ð1; 2
 i; 3þ 2iÞ in C3.

7.93. Let u ¼ ðz1; z2Þ and v ¼ ðw1;w2Þ belong to C2. Verify that the following is an inner product of C2:

f ðu; vÞ ¼ z1�w1 þ ð1þ iÞz1�w2 þ ð1
 iÞz2�w1 þ 3z2�w2

7.94. Find an orthogonal basis and an orthonormal basis for the subspace W of C3 spanned by u1 ¼ ð1; i; 1Þ and
u2 ¼ ð1þ i; 0; 2Þ.

7.95. Let u ¼ ðz1; z2Þ and v ¼ ðw1;w2Þ belong to C2. For what values of a; b; c; d 2 C is the following an inner
product on C2?

f ðu; vÞ ¼ az1�w1 þ bz1�w2 þ cz2�w1 þ dz2�w2

7.96. Prove the following form for an inner product in a complex space V :

hu; vi ¼ 1
4
kuþ vk2 
 1

4
ku
 vk2 þ i

4
kuþ ivk2 
 i

4
ku
 ivk2

[Compare with Problem 7.7(b).]

7.97. Let V be a real inner product space. Show that

(i) kuk ¼ kvk if and only if huþ v; u
 vi ¼ 0;

(ii) kuþ vk2 ¼ kuk2 þ kvk2 if and only if hu; vi ¼ 0.

Show by counterexamples that the above statements are not true for, say, C2.

7.98. Find the matrix P that represents the usual inner product on C3 relative to the basis f1; 1þ i; 1
 2ig.
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7.99. A complex matrix A is unitary if it is invertible and A
1 ¼ AH . Alternatively, A is unitary if its rows
(columns) form an orthonormal set of vectors (relative to the usual inner product of Cn). Find a unitary
matrix whose first row is: (a) a multiple of ð1; 1
 iÞ; (b) a multiple of ð12 ; 1

2 i; 1
2
 1

2 iÞ.

Normed Vector Spaces

7.100. Consider vectors u ¼ ð1;
3; 4; 1;
2Þ and v ¼ ð3; 1;
2;
3; 1Þ in R5. Find

(a) kuk1 and kvk1 , (b) kuk1 and kvk1, (c) kuk2 and kvk2, (d) d1ðu; vÞ; d1ðu; vÞ, d2ðu; vÞ

7.101. Repeat Problem 7.100 for u ¼ ð1þ i; 2
 4iÞ and v ¼ ð1
 i; 2þ 3iÞ in C2.

7.102. Consider the functions f ðtÞ ¼ 5t 
 t2 and gðtÞ ¼ 3t 
 t2 in C½0; 4�. Find

(a) d1ð f ; gÞ, (b) d1ð f ; gÞ, (c) d2ð f ; gÞ

7.103. Prove (a) k � k1 is a norm on Rn. (b) k � k1 is a norm on Rn.

7.104. Prove (a) k � k1 is a norm on C½a; b�. (b) k � k1 is a norm on C½a; b�.

ANSWERS TO SUPPLEMENTARY PROBLEMS

Notation: M ¼ ½R1; R2; . . .� denotes a matrix M with rows R1;R2; : . . . Also, basis need not be unique.

7.58. k > 9

7.59. (a) 
13, (b) 
71, (c)
ffiffiffiffiffi
29
p

, (d)
ffiffiffiffiffi
89
p

7.60. Let u ¼ ð0; 0; 1Þ; then hu; ui ¼ 0 in both cases

7.64. f7t2 
 5t; 12t2 
 5g

7.65. fð1; 2; 1; 0Þ; ð4; 4; 0; 1Þg

7.66. ð
1; 0; 0; 0; 1Þ; ð
6; 2; 0; 1; 0Þ; ð
5; 2; 1; 0; 0Þ

7.67. (a) u1 ¼ ð0; 0; 3; 1Þ; u2 ¼ ð0; 5;
1; 3Þ; u3 ¼ ð
14;
2;
1; 3Þ;
(b) u1=

ffiffiffiffiffi
10
p

; u2=
ffiffiffiffiffi
35
p

; u3=
ffiffiffiffiffiffiffiffi
210
p

7.68. (a) ð0; 2;
1; 0Þ; ð
15; 1; 2; 5Þ, (b) ð0; 2;
1; 0Þ= ffiffiffi
5
p

; ð
15; 1; 2; 5Þ= ffiffiffiffiffiffiffiffi
255
p

7.69. (b) v ¼ 1
4 ð5u1 þ 3u2 
 13u3 þ 9u4Þ,

(c) ½v� ¼ 1
4 ½aþ bþ cþ d; aþ b
 c
 d; a
 bþ c
 d; a
 b
 cþ d�

7.71. (a) ½0; 1; 0; 0�; ½0; 0; 1; 0�, (b) ½0;
1; 1; 0�

7.74. (a) c ¼ 
 23
30, (b) c ¼ 1

7, (c) c ¼ 15
148, (d) c ¼ 19

26

7.75. (a) w1 ¼ ð1; 1; 1; 1Þ;w2 ¼ ð0;
2; 1; 1Þ;w3 ¼ ð12;
4;
1;
7Þ,
(b) projðv;UÞ ¼ 1

5 ð
1; 12; 3; 6Þ

7.76. (a) projðv;WÞ ¼ 1
8 ð23; 25; 30; 25; 23Þ, (b) First find an orthogonal basis for W ;

say, w1 ¼ ð1; 2; 1; 2; 1Þ and w2 ¼ ð0; 2; 0;
3; 2Þ. Then projðv;WÞ ¼ 1
17 ð34; 76; 34; 56; 42Þ

7.77. projð f ;WÞ ¼ 3
2 t2 
 3

5 t þ 1
20
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7.78. (a) f1; t; 3t2 
 1; 5t3 
 3tg, projð f ;WÞ ¼ 10
9 t3 
 5

21 t

7.79. Four: ½a; b; b;
a�, ½a; b; 
b;
a�, ½a;
b; b; a�, ½a;
b; 
b;
a�, where a ¼ 1
3 and b ¼ 1

3

ffiffiffi
8
p

7.80. P ¼ ½1=a; 1=a; 1=a; 1=b;
 =b; =b; 5=c;
 =c;
 =c�, where a ¼ ffiffiffi
3
p

; b ¼ ffiffiffiffiffi
14
p

; c ¼ ffiffiffiffiffip

7.81. 1
3 ½1; 2; 2; 2;
2; 1; 2; 1;
2�

7.83. (a) ½17;
10; 
10; 13�, (b) ½10; 0; 0; 40�

7.84. (a) ½65;
68; 
68; 73�, (b) ½58; 8; 8; 8�

7.85. ½3; 4; 3; 4; 6; 2; 3; 2; 11�

7.86. (a) 83
12, (b) ½1; a; b; a; b; c; b; c; d�, where a ¼ 1

2, b ¼ 1
3, c ¼ 1

4, d ¼ 1
5

7.87. (a) No, (b) Yes, (c) No, (d) Yes

7.91. (a) 
4i, (b) 4i, (c)
ffiffiffiffiffi
28
p

, (d)
ffiffiffiffiffi
31
p

, (e)
ffiffiffiffiffi
59
p

7.92. (a) c ¼ 1
28 ð19
 5iÞ, (b) c ¼ 1

19 ð3þ 6iÞ

7.94. fv1 ¼ ð1; i; 1Þ=
ffiffiffi
3
p

; v2 ¼ ð2i; 1
 3i; 3
 iÞ= ffiffiffiffiffi
24
p g

7.95. a and d real and positive, c ¼ �b and ad 
 bc positive.

7.97. u ¼ ð1; 2Þ; v ¼ ði; 2iÞ

7.98. P ¼ ½1; 1
 i; 1þ 2i; 1þ i; 2; 
1þ 3i; 1
 2i; 
1
 3i; 5�

7.99. (a) ð1= ffiffiffi
3
p Þ½1; 1
 i; 1þ i; 
1�,

(b) ½a; ai; a
 ai; bi; b; 0; a; ai; 
a
 ai�, where a ¼ 1
2 and b ¼ 1=

ffiffiffi
2
p

.

7.100. (a) 4 and 3, (b) 11 and 10, (c)
ffiffiffiffiffi
31
p

and
ffiffiffiffiffi
24
p

, (d) 6; 19; 9

7.101. (a)
ffiffiffiffiffi
20
p

and
ffiffiffiffiffi
13
p

, (b)
ffiffiffi
2
p þ ffiffiffiffiffi

20
p

and
ffiffiffi
2
p þ ffiffiffiffiffi

13
p

, (c)
ffiffiffiffiffi
22
p

and
ffiffiffiffiffi
15
p

, (d) 7; 9;
ffiffiffiffiffi
53
p

7.102. (a) 8, (b) 16, (c) 16=
ffiffiffi
3
p
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Determinants

8.1 Introduction

Each n-square matrix A ¼ ½aij� is assigned a special scalar called the determinant of A, denoted by detðAÞ
or jAj or

a11 a12 . . . a1n

a21 a22 . . . a2n

:::::::::::::::::::::::::::::
an1 an2 . . . ann

��������
��������

We emphasize that an n� n array of scalars enclosed by straight lines, called a determinant of order n, is
not a matrix but denotes the determinant of the enclosed array of scalars (i.e., the enclosed matrix).

The determinant function was first discovered during the investigation of systems of linear equations.
We shall see that the determinant is an indispensable tool in investigating and obtaining properties of
square matrices.

The definition of the determinant and most of its properties also apply in the case where the entries of a
matrix come from a commutative ring.

We begin with a special case of determinants of orders 1, 2, and 3. Then we define a determinant of
arbitrary order. This general definition is preceded by a discussion of permutations, which is necessary for
our general definition of the determinant.

8.2 Determinants of Orders 1 and 2

Determinants of orders 1 and 2 are defined as follows:

ja11j ¼ a11 and
a11 a12

a21 a22

���� ���� ¼ a11a22 
 a12a21

Thus, the determinant of a 1� 1 matrix A ¼ ½a11� is the scalar a11; that is, detðAÞ ¼ ja11j ¼ a11. The
determinant of order two may easily be remembered by using the following diagram:

a11 a12

a21 a22

���� ����
That, is, the determinant is equal to the product of the elements along the plus-labeled arrow minus the
product of the elements along the minus-labeled arrow. (There is an analogous diagram for determinants
of order 3, but not for higher-order determinants.)

EXAMPLE 8.1

(a) Because the determinant of order 1 is the scalar itself, we have:

detð27Þ ¼ 27; detð
7Þ ¼ 
7; detðt 
 3Þ ¼ t 
 3

(b)
5 3
4 6

���� ���� ¼ 5ð6Þ 
 3ð4Þ ¼ 30
 12 ¼ 18;
3 2

5 7

���� ���� ¼ 21þ 10 ¼ 31

���������!

���������!

þ 
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Application to Linear Equations

Consider two linear equations in two unknowns, say

a1 þ b1y ¼ c1

a2xþ b2y ¼ c2

Let D ¼ a1b2 
 a2b1, the determinant of the matrix of coefficients. Then the system has a unique solution
if and only if D 6¼ 0. In such a case, the unique solution may be expressed completely in terms of
determinants as follows:

x ¼ Nx

D
¼ b2c1 
 b1c2

a1b2 
 a2b1

¼
c1 b1

c2 b2

���� ����
a1 b1

a2 b2

���� ���� ; y ¼ Ny

D
¼ a1c2 
 a2c1

a1b2 
 a2b1

¼
a1 c1

a2 c2

���� ����
a1 b1

a2 b2

���� ����
Here D appears in the denominator of both quotients. The numerators Nx and Ny of the quotients for x and
y, respectively, can be obtained by substituting the column of constant terms in place of the column of
coefficients of the given unknown in the matrix of coefficients. On the other hand, if D ¼ 0, then the
system may have no solution or more than one solution.

EXAMPLE 8.2 Solve by determinants the system
4x
 3y ¼ 15
2xþ 5y ¼ 1

	
First find the determinant D of the matrix of coefficients:

D ¼ 4 
3
2 5

���� ���� ¼ 4ð5Þ 
 ð
3Þð2Þ ¼ 20þ 6 ¼ 26

Because D 6¼ 0, the system has a unique solution. To obtain the numerators Nx and Ny, simply replace, in the matrix
of coefficients, the coefficients of x and y, respectively, by the constant terms, and then take their determinants:

Nx ¼ 15 
3
1 5

���� ���� ¼ 75þ 3 ¼ 78 Ny ¼ 4 15
2 1

���� ���� ¼ 4
 30 ¼ 
26

Then the unique solution of the system is

x ¼ Nx

D
¼ 78

26
¼ 3; y ¼ Ny

D
¼ 
26

26
¼ 
1

8.3 Determinants of Order 3

Consider an arbitrary 3� 3 matrix A ¼ ½aij�. The determinant of A is defined as follows:

detðAÞ ¼
a11 a12 a13

a21 a22 a23

a31 a32 a33

������
������ ¼ a11a22a33 þ a12a23a31 þ a13a21a32 
 a13a22a31 
 a12a21a33 
 a11a23a32

Observe that there are six products, each product consisting of three elements of the original matrix.
Three of the products are plus-labeled (keep their sign) and three of the products are minus-labeled
(change their sign).

The diagrams in Fig. 8-1 may help us to remember the above six products in detðAÞ. That is, the
determinant is equal to the sum of the products of the elements along the three plus-labeled arrows in
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Fig. 8-1 plus the sum of the negatives of the products of the elements along the three minus-labeled
arrows. We emphasize that there are no such diagrammatic devices with which to remember determinants
of higher order.

EXAMPLE 8.3 Let A ¼
2 1 1
0 5 
2
1 
3 4

24 35 and B ¼
3 2 1

4 5 
1

2 
3 4

24 35. Find detðAÞ and detðBÞ.

Use the diagrams in Fig. 8-1:

detðAÞ ¼ 2ð5Þð4Þ þ 1ð
2Þð1Þ þ 1ð
3Þð0Þ 
 1ð5Þð1Þ 
 ð
3Þð
2Þð2Þ 
 4ð1Þð0Þ
¼ 40
 2þ 0
 5
 12
 0 ¼ 21

detðBÞ ¼ 60
 4þ 12
 10
 9þ 32 ¼ 81

Alternative Form for a Determinant of Order 3

The determinant of the 3� 3 matrix A ¼ ½aij� may be rewritten as follows:

detðAÞ ¼ a11ða22a23 
 a23a32Þ 
 a12ða21a33 
 a23a31Þ þ a13ða21a32 
 a22a31Þ

¼ a11

a22 a23

a32 a33

�����
�����
 a12

a21 a23

a31 a33

�����
�����þ a13

a21 a22

a31 a32

�����
�����

which is a linear combination of three determinants of order 2 whose coefficients (with alternating signs)
form the first row of the given matrix. This linear combination may be indicated in the form

a11

a11 a12 a13

a21 a22 a23

a31 a32 a33

�������
�������
 a12

a11 a12 a13

a21 a22 a23

a31 a32 a33

�������
�������þ a13

a11 a12 a13

a21 a22 a23

a31 a32 a33

�������
�������

Note that each 2� 2 matrix can be obtained by deleting, in the original matrix, the row and column
containing its coefficient.

EXAMPLE 8.4

1 2 3

4 
2 3

0 5 
1

��������
�������� ¼ 1

1 2 3

4 
2 3

0 5 
1

��������
��������
 2

1 2 3

4 
2 3

0 5 
1

��������
��������þ 3

1 2 3

4 
2 3

0 5 
1

��������
��������

¼ 1

2 3

5 
1

�����
�����
 2

4 3

0 
1

�����
�����þ 3

4 
2

0 5

�����
�����

¼ 1ð2
 15Þ 
 2ð
4þ 0Þ þ 3ð20þ 0Þ ¼ 
13þ 8þ 60 ¼ 55

Figure 8-1
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8.4 Permutations

A permutation s of the set f1; 2; . . . ; ng is a one-to-one mapping of the set onto itself or, equivalently, a
rearrangement of the numbers 1; 2; . . . ; n. Such a permutation s is denoted by

s ¼ 1 2 . . . n
j1 j2 . . . jn

� �
or s ¼ j1j2 � � � jn; where ji ¼ sðiÞ

The set of all such permutations is denoted by Sn, and the number of such permutations is n!. If s 2 Sn;
then the inverse mapping s
1 2 Sn; and if s; t 2 Sn, then the composition mapping s � t 2 Sn. Also, the
identity mapping e ¼ s � s
1 2 Sn. (In fact, e ¼ 123 . . . n.)

EXAMPLE 8.5

(a) There are 2! ¼ 2 � 1 ¼ 2 permutations in S2; they are 12 and 21.

(b) There are 3! ¼ 3 � 2 � 1 ¼ 6 permutations in S3; they are 123, 132, 213, 231, 312, 321.

Sign (Parity) of a Permutation

Consider an arbitrary permutation s in Sn, say s ¼ j1j2 � � � jn: We say s is an even or odd permutation
according to whether there is an even or odd number of inversions in s. By an inversion in s we mean a
pair of integers ði; kÞ such that i > k, but i precedes k in s. We then define the sign or parity of s, written
sgn s, by

sgn s ¼ 1 if s is even

1 if s is odd

	
EXAMPLE 8.6

(a) Find the sign of s ¼ 35142 in S5.
For each element k, we count the number of elements i such that i > k and i precedes k in s. There are

2 numbers ð3 and 5Þ greater than and preceding 1;
3 numbers ð3; 5; and 4Þ greater than and preceding 2;
1 number ð5Þ greater than and preceding 4:

(There are no numbers greater than and preceding either 3 or 5.) Because there are, in all, six inversions, s is
even and sgn s ¼ 1.

(b) The identity permutation e ¼ 123 . . . n is even because there are no inversions in e.

(c) In S2, the permutation 12 is even and 21 is odd. In S3, the permutations 123, 231, 312 are even and the
permutations 132, 213, 321 are odd.

(d) Let t be the permutation that interchanges two numbers i and j and leaves the other numbers fixed. That is,

tðiÞ ¼ j; tðjÞ ¼ i; tðkÞ ¼ k; where k 6¼ i; j

We call t a transposition. If i < j, then there are 2ð j
 iÞ 
 1 inversions in t, and hence, the transposition t
is odd.

Remark: One can show that, for any n, half of the permutations in Sn are even and half of them are
odd. For example, 3 of the 6 permutations in S3 are even, and 3 are odd.

8.5. Determinants of Arbitrary Order

Let A ¼ ½aij� be a square matrix of order n over a field K.
Consider a product of n elements of A such that one and only one element comes from each row and

one and only one element comes from each column. Such a product can be written in the form

a1j1
a2j2
� � � anjn
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that is, where the factors come from successive rows, and so the first subscripts are in the natural order
1; 2; . . . ; n. Now because the factors come from different columns, the sequence of second subscripts
forms a permutation s ¼ j1 j2 � � � jn in Sn. Conversely, each permutation in Sn determines a product of the
above form. Thus, the matrix A contains n! such products.

DEFINITION: The determinant of A ¼ ½aij�, denoted by detðAÞ or jAj, is the sum of all the above n!
products, where each such product is multiplied by sgn s. That is,

jAj ¼P
s
ðsgn sÞa1j1

a2j2
� � � anjn

or jAj ¼ P
s2Sn
ðsgn sÞa1sð1Þa2sð2Þ � � � ansðnÞ

The determinant of the n-square matrix A is said to be of order n.

The next example shows that the above definition agrees with the previous definition of determinants
of orders 1, 2, and 3.

EXAMPLE 8.7

(a) Let A ¼ ½a11� be a 1� 1 matrix. Because S1 has only one permutation, which is even, detðAÞ ¼ a11, the number
itself.

(b) Let A ¼ ½aij� be a 2� 2 matrix. In S2, the permutation 12 is even and the permutation 21 is odd. Hence,

detðAÞ ¼ a11 a12

a21 a22

���� ���� ¼ a11a22 
 a12a21

(c) Let A ¼ ½aij� be a 3� 3 matrix. In S3, the permutations 123, 231, 312 are even, and the permutations 321, 213,
132 are odd. Hence,

detðAÞ ¼
a11 a12 a13

a21 a22 a23

a31 a32 a33

������
������ ¼ a11a22a33 þ a12a23a31 þ a13a21a32 
 a13a22a31 
 a12a21a33 
 a11a23a32

Remark: As n increases, the number of terms in the determinant becomes astronomical.
Accordingly, we use indirect methods to evaluate determinants rather than the definition of the
determinant. In fact, we prove a number of properties about determinants that will permit us to shorten
the computation considerably. In particular, we show that a determinant of order n is equal to a linear
combination of determinants of order n
 1, as in the case n ¼ 3 above.

8.6 Properties of Determinants

We now list basic properties of the determinant.

THEOREM 8.1: The determinant of a matrix A and its transpose AT are equal; that is, jAj ¼ jAT j.
By this theorem (proved in Problem 8.22), any theorem about the determinant of a matrix A that

concerns the rows of A will have an analogous theorem concerning the columns of A.
The next theorem (proved in Problem 8.24) gives certain cases for which the determinant can be

obtained immediately.

THEOREM 8.2: Let A be a square matrix.

(i) If A has a row (column) of zeros, then jAj ¼ 0.

(ii) If A has two identical rows (columns), then jAj ¼ 0.
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(iii) If A is triangular (i.e., A has zeros above or below the diagonal), then
jAj ¼ product of diagonal elements. Thus, in particular, jI j ¼ 1, where I is the
identity matrix.

The next theorem (proved in Problems 8.23 and 8.25) shows how the determinant of a matrix is
affected by the elementary row and column operations.

THEOREM 8.3: Suppose B is obtained from A by an elementary row (column) operation.

(i) If two rows (columns) of A were interchanged, then jBj ¼ 
jAj.
(ii) If a row (column) of A were multiplied by a scalar k, then jBj ¼ kjAj.

(iii) If a multiple of a row (column) of A were added to another row (column) of A,
then jBj ¼ jAj.

Major Properties of Determinants

We now state two of the most important and useful theorems on determinants.

THEOREM 8.4: The determinant of a product of two matrices A and B is the product of their
determinants; that is,

detðABÞ ¼ detðAÞ detðBÞ
The above theorem says that the determinant is a multiplicative function.

THEOREM 8.5: Let A be a square matrix. Then the following are equivalent:

(i) A is invertible; that is, A has an inverse A
1.

(ii) AX ¼ 0 has only the zero solution.

(iii) The determinant of A is not zero; that is, detðAÞ 6¼ 0.

Remark: Depending on the author and the text, a nonsingular matrix A is defined to be an
invertible matrix A, or a matrix A for which jAj 6¼ 0, or a matrix A for which AX ¼ 0 has only the zero
solution. The above theorem shows that all such definitions are equivalent.

We will prove Theorems 8.4 and 8.5 (in Problems 8.29 and 8.28, respectively) using the theory of
elementary matrices and the following lemma (proved in Problem 8.26), which is a special case of
Theorem 8.4.

LEMMA 8.6: Let E be an elementary matrix. Then, for any matrix A; jEAj ¼ jEjjAj.

Recall that matrices A and B are similar if there exists a nonsingular matrix P such that B ¼ P
1AP.
Using the multiplicative property of the determinant (Theorem 8.4), one can easily prove (Problem 8.31)
the following theorem.

THEOREM 8.7: Suppose A and B are similar matrices. Then jAj ¼ jBj.

8.7 Minors and Cofactors

Consider an n-square matrix A ¼ ½aij�. Let Mij denote the ðn
 1Þ-square submatrix of A obtained by
deleting its ith row and jth column. The determinant jMijj is called the minor of the element aij of A, and
we define the cofactor of aij, denoted by Aij; to be the ‘‘signed’’ minor:

Aij ¼ ð
1ÞiþjjMijj
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Note that the ‘‘signs’’ ð
1Þiþj
accompanying the minors form a chessboard pattern with þ’s on the main

diagonal:

þ 
 þ 
 . . .

 þ 
 þ . . .
þ 
 þ 
 . . .
:::::::::::::::::::::::::::::::

2664
3775

We emphasize that Mij denotes a matrix, whereas Aij denotes a scalar.

Remark: The sign ð
1Þiþj
of the cofactor Aij is frequently obtained using the checkerboard pattern.

Specifically, beginning with þ and alternating signs:

þ;
;þ;
; . . . ;
count from the main diagonal to the appropriate square.

EXAMPLE 8.8 Let A ¼
1 2 3
4 5 6
7 8 9

24 35. Find the following minors and cofactors: (a) jM23j and A23,
(b) jM31j and A31.

(a) jM23j ¼
1 2 3
4 5 6
7 8 9

������
������ ¼ 1 2

7 8

���� ���� ¼ 8
 14 ¼ 
6, and so A23 ¼ ð
1Þ2þ3jM23j ¼ 
ð
6Þ ¼ 6

(b) jM31j ¼
1 2 3
4 5 6
7 8 9

������
������ ¼ 2 3

5 6

���� ���� ¼ 12
 15 ¼ 
3, and so A31 ¼ ð
1Þ1þ3jM31j ¼ þð
3Þ ¼ 
3

Laplace Expansion

The following theorem (proved in Problem 8.32) holds.

THEOREM 8.8: (Laplace) The determinant of a square matrix A ¼ ½aij� is equal to the sum of the
products obtained by multiplying the elements of any row (column) by their
respective cofactors:

jAj ¼ ai1Ai1 þ ai2Ai2 þ � � � þ ainAin ¼
Pn
j¼1

aijAij

jAj ¼ a1jA1j þ a2jA2j þ � � � þ anjAnj ¼
Pn
i¼1

aijAij

The above formulas for jAj are called the Laplace expansions of the determinant of A by the ith row
and the jth column. Together with the elementary row (column) operations, they offer a method of
simplifying the computation of jAj, as described below.

8.8 Evaluation of Determinants

The following algorithm reduces the evaluation of a determinant of order n to the evaluation of a
determinant of order n
 1.

ALGORITHM 8.1: (Reduction of the order of a determinant) The input is a nonzero n-square matrix
A ¼ ½aij� with n > 1.

Step 1. Choose an element aij ¼ 1 or, if lacking, aij 6¼ 0.

Step 2. Using aij as a pivot, apply elementary row (column) operations to put 0’s in all the other
positions in the column (row) containing aij.

Step 3. Expand the determinant by the column (row) containing aij.
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The following remarks are in order.

Remark 1: Algorithm 8.1 is usually used for determinants of order 4 or more. With determinants
of order less than 4, one uses the specific formulas for the determinant.

Remark 2: Gaussian elimination or, equivalently, repeated use of Algorithm 8.1 together with row
interchanges can be used to transform a matrix A into an upper triangular matrix whose determinant is the
product of its diagonal entries. However, one must keep track of the number of row interchanges, because
each row interchange changes the sign of the determinant.

EXAMPLE 8.9 Use Algorithm 8.1 to find the determinant of A ¼
5 4 2 1
2 3 1 
2

5 
7 
3 9

1 
2 
1 4

2664
3775.

Use a23 ¼ 1 as a pivot to put 0’s in the other positions of the third column; that is, apply the row operations
‘‘Replace R1 by 
2R2 þ R1,’’ ‘‘Replace R3 by 3R2 þ R3,’’ and ‘‘Replace R4 by R2 þ R4.’’ By Theorem 8.3(iii), the
value of the determinant does not change under these operations. Thus,

jAj ¼
5 4 2 1
2 3 1 
2

5 
7 
3 9

1 
2 
1 4

��������
�������� ¼

1 
2 0 5
2 3 1 
2
1 2 0 3
3 1 0 2

��������
��������

Now expand by the third column. Specifically, neglect all terms that contain 0 and use the fact that the sign of the
minor M23 is ð
1Þ2þ3 ¼ 
1. Thus,

jAj ¼ 

1 2 0 5
2 3 1 
2
1 2 0 3
3 1 0 2

��������
�������� ¼ 


1 
2 5
1 2 3
3 1 2

������
������ ¼ 
ð4
 18þ 5
 30
 3þ 4Þ ¼ 
ð
38Þ ¼ 38

8.9 Classical Adjoint

Let A ¼ ½aij� be an n� n matrix over a field K and let Aij denote the cofactor of aij. The classical adjoint
of A, denoted by adj A, is the transpose of the matrix of cofactors of A. Namely,

adj A ¼ ½Aij�T

We say ‘‘classical adjoint’’ instead of simply ‘‘adjoint’’ because the term ‘‘adjoint’’ is currently used for
an entirely different concept.

EXAMPLE 8.10 Let A ¼
2 3 
4
0 
4 2
1 
1 5

24 35. The cofactors of the nine elements of A follow:

A11 ¼ þ 
4 2

1 5

���� ���� ¼ 
18;

A21 ¼ 
 3 
4

1 5

���� ���� ¼ 
11;

A31 ¼ þ 3 
4

4 2

���� ���� ¼ 
10;

A12 ¼ 
 0 2
1 5

���� ���� ¼ 2;

A22 ¼ þ 2 
4
1 5

���� ���� ¼ 14;

A32 ¼ 
 2 
4
0 2

���� ���� ¼ 
4;

A13 ¼ þ 0 
4
1 
1

���� ���� ¼ 4

A23 ¼ 
 2 3
1 
1

���� ���� ¼ 5

A33 ¼ þ 2 3
0 
4

���� ���� ¼ 
8
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The transpose of the above matrix of cofactors yields the classical adjoint of A; that is,

adj A ¼

18 
11 
10

2 14 
4
4 5 
8

24 35

The following theorem (proved in Problem 8.34) holds.

THEOREM 8.9: Let A be any square matrix. Then

Aðadj AÞ ¼ ðadj AÞA ¼ jAjI

where I is the identity matrix. Thus, if jAj 6¼ 0,

A
1 ¼ 1

jAj ðadj AÞ

EXAMPLE 8.11 Let A be the matrix in Example 8.10. We have

detðAÞ ¼ 
40þ 6þ 0
 16þ 4þ 0 ¼ 
46

Thus, A does have an inverse, and, by Theorem 8.9,

A
1 ¼ 1

jAj ðadj AÞ ¼ 
 1

46


18 
11 
10

2 14 
4

4 5 
8

264
375 ¼

9
23

11
46

5
23


 1
23 
 7

23
2
23


 2
23 
 5

46
4
23

264
375

8.10 Applications to Linear Equations, Cramer’s Rule

Consider a system AX ¼ B of n linear equations in n unknowns. Here A ¼ ½aij� is the (square) matrix of
coefficients and B ¼ ½bi� is the column vector of constants. Let Ai be the matrix obtained from A by
replacing the ith column of A by the column vector B. Furthermore, let

D ¼ detðAÞ; N1 ¼ detðA1Þ; N2 ¼ detðA2Þ; . . . ; Nn ¼ detðAnÞ

The fundamental relationship between determinants and the solution of the system AX ¼ B follows.

THEOREM 8.10: The (square) system AX ¼ B has a solution if and only if D 6¼ 0. In this case, the
unique solution is given by

x1 ¼
N1

D
; x2 ¼

N2

D
; . . . ; xn ¼

Nn

D

The above theorem (proved in Problem 8.10) is known as Cramer’s rule for solving systems of linear
equations. We emphasize that the theorem only refers to a system with the same number of equations as
unknowns, and that it only gives the solution when D 6¼ 0. In fact, if D ¼ 0, the theorem does not tell us
whether or not the system has a solution. However, in the case of a homogeneous system, we have the
following useful result (to be proved in Problem 8.54).

THEOREM 8.11: A square homogeneous system AX ¼ 0 has a nonzero solution if and only if
D ¼ jAj ¼ 0.
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EXAMPLE 8.12 Solve the system using determinants
xþ yþ z ¼ 5
x
 2y
 3z ¼ 
1

2xþ y
 z ¼ 3

8<:
First compute the determinant D of the matrix of coefficients:

D ¼
1 1 1
1 
2 
3
2 1 
1

������
������ ¼ 2
 6þ 1þ 4þ 3þ 1 ¼ 5

Because D 6¼ 0, the system has a unique solution. To compute Nx, Ny, Nz, we replace, respectively, the coefficients
of x; y; z in the matrix of coefficients by the constant terms. This yields

Nx ¼
5 1 1

1 
2 
3

3 1 
1

������
������ ¼ 20; Ny ¼

1 5 1
1 
1 
3
2 3 
1

������
������ ¼ 
10; Nz ¼

1 1 5
1 
2 
1
2 1 3

������
������ ¼ 15

Thus, the unique solution of the system is x ¼ Nx=D ¼ 4, y ¼ Ny=D ¼ 
2, z ¼ Nz=D ¼ 3; that is, the
vector u ¼ ð4;
2; 3Þ.

8.11 Submatrices, Minors, Principal Minors

Let A ¼ ½aij� be a square matrix of order n. Consider any r rows and r columns of A. That is, consider any
set I ¼ ði1; i2; . . . ; irÞ of r row indices and any set J ¼ ðj1; j2; . . . ; jrÞ of r column indices. Then I and J
define an r � r submatrix of A, denoted by AðI ; JÞ, obtained by deleting the rows and columns of A whose
subscripts do not belong to I or J , respectively. That is,

AðI ; J Þ ¼ ½ast : s 2 I ; t 2 J �

The determinant jAðI ; JÞj is called a minor of A of order r and

ð
1Þi1þi2þ���þirþj1þj2þ���þjr jAðI ; J Þj

is the corresponding signed minor. (Note that a minor of order n
 1 is a minor in the sense of Section
8.7, and the corresponding signed minor is a cofactor.) Furthermore, if I 0 and J 0 denote, respectively, the
remaining row and column indices, then

jAðI 0; J 0Þj

denotes the complementary minor, and its sign (Problem 8.74) is the same sign as the minor.

EXAMPLE 8.13 Let A ¼ ½aij� be a 5-square matrix, and let I ¼ f1; 2; 4g and J ¼ f2; 3; 5g. Then
I 0 ¼ f3; 5g and J 0 ¼ f1; 4g, and the corresponding minor jM j and complementary minor jM 0j are as
follows:

jM j ¼ jAðI ; JÞj ¼
a12 a13 a15

a22 a23 a25

a42 a43 a45

������
������ and jM 0j ¼ jAðI 0; J 0Þj ¼ a31 a34

a51 a54

���� ����
Because 1þ 2þ 4þ 2þ 3þ 5 ¼ 17 is odd, 
jM j is the signed minor, and 
jM 0j is the signed complementary
minor.

Principal Minors

A minor is principal if the row and column indices are the same, or equivalently, if the diagonal elements
of the minor come from the diagonal of the matrix. We note that the sign of a principal minor is always
þ1, because the sum of the row and identical column subscripts must always be even.
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EXAMPLE 8.14 Let A ¼
1 2 
1
3 5 4

3 1 
2

24 35. Find the sums C1, C2, and C3 of the principal minors of A of

orders 1, 2, and 3, respectively.

(a) There are three principal minors of order 1. These are

j1j ¼ 1; j5j ¼ 5; j 
 2j ¼ 
2; and so C1 ¼ 1þ 5
 2 ¼ 4

Note that C1 is simply the trace of A. Namely, C1 ¼ trðAÞ:
(b) There are three ways to choose two of the three diagonal elements, and each choice gives a minor of order 2.

These are

1 2
3 5

���� ���� ¼ 
1;
1 
1

3 
2

���� ���� ¼ 1;
5 4
1 
2

���� ���� ¼ 
14

(Note that these minors of order 2 are the cofactors A33, A22, and A11 of A, respectively.) Thus,

C2 ¼ 
1þ 1
 14 ¼ 
14

(c) There is only one way to choose three of the three diagonal elements. Thus, the only minor of order 3 is the
determinant of A itself. Thus,

C3 ¼ jAj ¼ 
10
 24
 3
 15
 4þ 12 ¼ 
44

8.12 Block Matrices and Determinants

The following theorem (proved in Problem 8.36) is the main result of this section.

THEOREM 8.12: Suppose M is an upper (lower) triangular block matrix with the diagonal blocks
A1;A2; . . . ;An. Then

detðMÞ ¼ detðA1Þ detðA2Þ . . . detðAnÞ

EXAMPLE 8.15 Find jM j where M ¼

2 3 4 7 8

1 5 3 2 1

0 0 2 1 5
0 0 3 
1 4
0 0 5 2 6

266664
377775

Note that M is an upper triangular block matrix. Evaluate the determinant of each diagonal block:

2 3

1 5

���� ���� ¼ 10þ 3 ¼ 13;
2 1 5
3 
1 4
5 2 6

������
������ ¼ 
12þ 20þ 30þ 25
 16
 18 ¼ 29

Then jM j ¼ 13ð29Þ ¼ 377.

Remark: Suppose M ¼ A B
C D

� �
, where A;B;C;D are square matrices. Then it is not generally

true that jM j ¼ jAjjDj 
 jBjjCj. (See Problem 8.68.)

8.13 Determinants and Volume

Determinants are related to the notions of area and volume as follows. Let u1; u2; . . . ; un be vectors in Rn.
Let S be the (solid) parallelopiped determined by the vectors; that is,

S ¼ fa1u1 þ a2u2 þ � � � þ anun : 0 � ai � 1 for i ¼ 1; . . . ; ng
(When n ¼ 2; S is a parallelogram.) Let VðSÞ denote the volume of S (or area of S when n ¼ 2Þ. Then

VðSÞ ¼ absolute value of det ðAÞ
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where A is the matrix with rows u1; u2; . . . ; un. In general, VðSÞ ¼ 0 if and only if the vectors u1; . . . ; un

do not form a coordinate system for Rn (i.e., if and only if the vectors are linearly dependent).

EXAMPLE 8.16 Let u1 ¼ ð1; 1; 0Þ, u2 ¼ ð1; 1; 1Þ, u3 ¼ ð0; 2; 3Þ. Find the volume V ðSÞ of the parallelo-
piped S in R3 (Fig. 8-2) determined by the three vectors.

Evaluate the determinant of the matrix whose rows are u1; u2; u3:

1 1 0
1 1 1
0 2 3

������
������ ¼ 3þ 0þ 0
 0
 2
 3 ¼ 
2

Hence, V ðSÞ ¼ j 
 2j ¼ 2.

8.14 Determinant of a Linear Operator

Let F be a linear operator on a vector space V with finite dimension. Let A be the matrix representation of
F relative to some basis S of V. Then we define the determinant of F, written detðFÞ, by

detðFÞ ¼ jAj
If B were another matrix representation of F relative to another basis S0 of V, then A and B are similar
matrices (Theorem 6.7) and jBj ¼ jAj (Theorem 8.7). In other words, the above definition detðFÞ is
independent of the particular basis S of V. (We say that the definition is well defined.)

The next theorem (to be proved in Problem 8.62) follows from analogous theorems on matrices.

THEOREM 8.13: Let F and G be linear operators on a vector space V. Then

(i) detðF � GÞ ¼ detðFÞ detðGÞ.
(ii) F is invertible if and only if detðFÞ 6¼ 0.

EXAMPLE 8.17 Let F be the following linear operator on R3 and let A be the matrix that represents F
relative to the usual basis of R3:

Fðx; y; zÞ ¼ ð2x
 4yþ z; x
 2yþ 3z; 5xþ y
 zÞ and A ¼
2 
4 1
1 
2 3
5 1 
1

24 35
Then

detðFÞ ¼ jAj ¼ 4
 60þ 1þ 10
 6
 4 ¼ 
55

z

y

x

0

u3

u2

u1

Figure 8-2
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8.15 Multilinearity and Determinants

Let V be a vector space over a field K. Let a ¼ V n; that is, a consists of all the n-tuples

A ¼ ðA1;A2; . . . ;AnÞ
where the Ai are vectors in V. The following definitions apply.

DEFINITION: A function D:a! K is said to be multilinear if it is linear in each component:

(i) If Ai ¼ Bþ C, then

DðAÞ ¼ Dð. . . ; Bþ C; . . .Þ ¼ Dð. . . ;B; . . . ; Þ þ Dð. . . ;C; . . .Þ
(ii) If Ai ¼ kB, where k 2 K, then

DðAÞ ¼ Dð. . . ; kB; . . .Þ ¼ kDð. . . ;B; . . .Þ
We also say n-linear for multilinear if there are n components.

DEFINITION: A function D:a! K is said to be alternating if DðAÞ ¼ 0 whenever A has two
identical elements:

DðA1;A2; . . . ;AnÞ ¼ 0 whenever Ai ¼ Aj; i 6¼ j

Now let M denote the set of all n-square matrices A over a field K . We may view A as an n-tuple
consisting of its row vectors A1;A2; . . . ;An; that is, we may view A in the form A ¼ ðA1;A2; . . . ;AnÞ.

The following theorem (proved in Problem 8.37) characterizes the determinant function.

THEOREM 8.14: There exists a unique function D:M ! K such that

(i) D is multilinear, (ii) D is alternating, (iii) DðIÞ ¼ 1.

This function D is the determinant function; that is, DðAÞ ¼ jAj; for any matrix
A 2 M .

SOLVED PROBLEMS

Computation of Determinants

8.1. Evaluate the determinant of each of the following matrices:

(a) A ¼ 6 5
2 3

� �
, (b) B ¼ 2 
3

4 7

� �
; (c) C ¼ 4 
5


1 
2

� �
; (d) D ¼ t 
 5 6

3 t þ 2

� �
Use the formula

a b
c d

���� ���� ¼ ad 
 bc:

(a) jAj ¼ 6ð3Þ 
 5ð2Þ ¼ 18
 10 ¼ 8

(b) jBj ¼ 14þ 12 ¼ 26

(c) jCj ¼ 
8
 5 ¼ 
13

(d) jDj ¼ ðt 
 5Þðt þ 2Þ 
 18 ¼ t2 
 3t 
 10
 18 ¼ t2 
 10t 
 28

8.2. Evaluate the determinant of each of the following matrices:

(a) A ¼
2 3 4
5 4 3
1 2 1

24 35, (b) B ¼
1 
2 3
2 4 
1
1 5 
2

24 35, (c) C ¼
1 3 
5
3 
1 2
1 
2 1

24 35
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Use the diagram in Fig. 8-1 to obtain the six products:

(a) jAj ¼ 2ð4Þð1Þ þ 3ð3Þð1Þ þ 4ð2Þð5Þ 
 1ð4Þð4Þ 
 2ð3Þð2Þ 
 1ð3Þð5Þ ¼ 8þ 9þ 40
 16
 12 
15 ¼ 14

(b) jBj ¼ 
8þ 2þ 30
 12þ 5
 8 ¼ 9

(c) jCj ¼ 
1þ 6þ 30
 5þ 4
 9 ¼ 25

8.3. Compute the determinant of each of the following matrices:

(a) A ¼
2 3 4
5 6 7
8 9 1

24 35, (b) B ¼
4 
6 8 9
0 
2 7 
3
0 0 5 6
0 0 0 3

2664
3775, (c) C ¼

1
2 
1 
 1

3
3
4

1
2 
1

1 
4 1

264
375:

(a) One can simplify the entries by first subtracting twice the first row from the second row—that is, by
applying the row operation ‘‘Replace R2 by 
21 þ R2.’’ Then

jAj ¼
2 3 4
5 6 7
8 9 1

������
������ ¼

2 3 4
1 0 
1
8 9 1

������
������ ¼ 0
 24þ 36
 0þ 18
 3 ¼ 27

(b) B is triangular, so jBj ¼ product of the diagonal entries ¼ 
120.

(c) The arithmetic is simpler if fractions are first eliminated. Hence, multiply the first row R1 by 6 and the
second row R2 by 4. Then

j24Cj ¼
3 
6 
2
3 2 
4
1 
4 1

������
������ ¼ 6þ 24þ 24þ 4
 48þ 18 ¼ 28; so jCj ¼ 28

24
¼ 7

6

8.4. Compute the determinant of each of the following matrices:

(a) A ¼
2 5 
3 
2

2 
3 2 
5

1 3 
2 2

1 
6 4 3

2664
3775, (b) B ¼

6 2 1 0 5
2 1 1 
2 1
1 1 2 
2 3
3 0 2 3 
1

1 
1 
3 4 2

266664
377775

(a) Use a31 ¼ 1 as a pivot to put 0’s in the first column, by applying the row operations ‘‘Replace R1 by

2R3 þ R1,’’ ‘‘Replace R2 by 2R3 þ R2,’’ and ‘‘Replace R4 by R3 þ R4.’’ Then

jAj ¼

2 5 
3 
2


2 
3 2 
5

1 3 
2 2


1 
6 4 3

���������

��������� ¼
0 
1 1 
6

0 3 
2 
1

1 3 
2 2

0 
3 2 5

���������

��������� ¼

1 1 
6

3 
2 
1


3 2 5

�������
�������

¼ 10þ 3
 36þ 36
 2
 15 ¼ 
4

(b) First reduce jBj to a determinant of order 4, and then to a determinant of order 3, for which we can use
Fig. 8-1. First use c22 ¼ 1 as a pivot to put 0’s in the second column, by applying the row operations
‘‘Replace R1 by 
2R2 þ R1,’’ ‘‘Replace R3 by 
R2 þ R3,’’ and ‘‘Replace R5 by R2 þ R5.’’ Then

jBj ¼

2 0 
1 4 3

2 1 1 
2 1


1 0 1 0 2

3 0 2 3 
1

1 0 
2 2 3

������������

������������
¼

2 
1 4 3


1 1 0 2

3 2 3 
1

1 
2 2 3

���������

��������� ¼
1 1 4 5

0 1 0 0

5 2 3 
5


1 
2 2 7

���������

���������
¼

1 4 5

5 3 
5


1 2 7

�������
������� ¼ 21þ 20þ 50þ 15þ 10
 140 ¼ 
34
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Cofactors, Classical Adjoints, Minors, Principal Minors

8.5. Let A ¼
2 1 
3 4
5 
4 7 
2
4 0 6 
3
3 
2 5 2

2664
3775:

(a) Find A23, the cofactor (signed minor) of 7 in A.

(b) Find the minor and the signed minor of the submatrix M ¼ Að2; 4; 2; 3Þ.
(c) Find the principal minor determined by the first and third diagonal entries—that is, by

M ¼ Að1; 3; 1; 3Þ.
(a) Take the determinant of the submatrix of A obtained by deleting row 2 and column 3 (those which

contain the 7), and multiply the determinant by ð
1Þ2þ3
:

A23 ¼ 

2 1 4

4 0 
3

3 
2 2

�������
������� ¼ 
ð
61Þ ¼ 61

The exponent 2þ 3 comes from the subscripts of A23—that is, from the fact that 7 appears in row 2 and
column 3.

(b) The row subscripts are 2 and 4 and the column subscripts are 2 and 3. Hence, the minor is the
determinant

jM j ¼ a22 a23

a42 a43

���� ���� ¼ 
4 7

2 5

���� ���� ¼ 
20þ 14 ¼ 
6

and the signed minor is ð
1Þ2þ4þ2þ3jM j ¼ 
jM j ¼ 
ð
6Þ ¼ 6.

(c) The principal minor is the determinant

jM j ¼ a11 a13

a31 a33

���� ���� ¼ 2 
3
4 6

���� ���� ¼ 12þ 12 ¼ 24

Note that now the diagonal entries of the submatrix are diagonal entries of the original matrix. Also, the
sign of the principal minor is positive.

8.6. Let B ¼
1 1 1
2 3 4
5 8 9

24 35. Find: (a) jBj, (b) adj B, (c) B
1 using adj B.

(a) jBj ¼ 27þ 20þ 16
 15
 32
 18 ¼ 
2

(b) Take the transpose of the matrix of cofactors:

adj B ¼

3 4

8 9

���� ���� 
 2 4

5 9

���� ���� 2 3

5 8

���� ����

 1 1

8 9

���� ���� 1 1

5 9

���� ���� 
 1 1

5 8

���� ����
1 1

3 4

���� ���� 
 1 1

2 4

���� ���� 1 1

2 3

���� ����

2666666664

3777777775

T

¼

5 2 1


1 4 
3

1 
2 1

264
375

T

¼

5 
1 1

2 4 
2

1 
3 1

264
375

(c) Because jBj 6¼ 0, B
1 ¼ 1

jBj ðadj BÞ ¼ 1


2


5 
1 1
2 4 
2
1 
3 1

24 35 ¼
5
2

1
2 
 1

2


1 
2 1


 1
2

3
2 
 1

2

264
375

8.7. Let A ¼
1 2 3
4 5 6
0 7 8

24 35, and let Sk denote the sum of its principal minors of order k. Find Sk for

(a) k ¼ 1, (b) k ¼ 2, (c) k ¼ 3.
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(a) The principal minors of order 1 are the diagonal elements. Thus, S1 is the trace of A; that is,

S1 ¼ trðAÞ ¼ 1þ 5þ 8 ¼ 14

(b) The principal minors of order 2 are the cofactors of the diagonal elements. Thus,

S2 ¼ A11 þ A22 þ A33 ¼
5 6

7 8

���� ����þ 1 3

0 8

���� ����þ 1 2

4 5

���� ���� ¼ 
2þ 8
 3 ¼ 3

(c) There is only one principal minor of order 3, the determinant of A. Then

S3 ¼ jAj ¼ 40þ 0þ 84
 0
 42
 64 ¼ 18

8.8. Let A ¼
1 3 0 
1

4 2 5 1

1 0 3 
2
3 
2 1 4

2664
3775. Find the number Nk and sum Sk of principal minors of order:

(a) k ¼ 1, (b) k ¼ 2, (c) k ¼ 3, (d) k ¼ 4.

Each (nonempty) subset of the diagonal (or equivalently, each nonempty subset of f1; 2; 3; 4gÞ
determines a principal minor of A, and Nk ¼ n

k

� �
¼ n!

k!ðn
 kÞ! of them are of order k.

Thus; N1 ¼ 4
1

� �
¼ 4; N2 ¼ 4

2

� �
¼ 6; N3 ¼ 4

3

� �
¼ 4; N4 ¼ 4

4

� �
¼ 1

(a) S1 ¼ j1j þ j2j þ j3j þ j4j ¼ 1þ 2þ 3þ 4 ¼ 10

(b) S2 ¼
1 3


4 2

���� ����þ 1 0

1 3

���� ����þ 1 
1

3 4

���� ����þ 2 5

0 3

���� ����þ 2 1


2 4

���� ����þ 3 
2

1 4

���� ����
¼ 14þ 3þ 7þ 6þ 10þ 14 ¼ 54

(c) S3 ¼
1 3 0


4 2 5

1 0 3

�������
�������þ

1 3 
1


4 2 1

3 
2 4

�������
�������þ

1 0 
1

1 3 
2

3 1 4

�������
�������þ

2 5 1

0 3 
2


2 1 4

�������
�������

¼ 57þ 65þ 22þ 54 ¼ 198

(d) S4 ¼ detðAÞ ¼ 378

Determinants and Systems of Linear Equations

8.9. Use determinants to solve the system
3yþ 2x ¼ zþ 1
3xþ 2z ¼ 8
 5y
3z
 1 ¼ x
 2y

:

8<:
First arrange the equation in standard form, then compute the determinant D of the matrix of

coefficients:

2xþ 3y
 z ¼ 1
3xþ 5yþ 2z ¼ 8
x
 2y
 3z ¼ 
1

and D ¼
2 3 
1
3 5 2
1 
2 
3

������
������ ¼ 
30þ 6þ 6þ 5þ 8þ 27 ¼ 22

Because D 6¼ 0, the system has a unique solution. To compute Nx;Ny;Nz, we replace, respectively, the
coefficients of x; y; z in the matrix of coefficients by the constant terms. Then

Nx ¼
1 3 
1
8 5 2

1 
2 
1

������
������ ¼ 66; Ny ¼

2 1 
1
3 8 2
1 
1 
3

������
������ ¼ 
22; Nz ¼

2 3 1
3 5 8
1 
2 
1

������
������ ¼ 44
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Thus,

x ¼ Nx

D
¼ 66

22
¼ 3; y ¼ Ny

D
¼ 
22

22
¼ 
1; z ¼ Nz

D
¼ 44

22
¼ 2

8.10. Consider the system
kxþ yþ z ¼ 1
xþ kyþ z ¼ 1
xþ yþ kz ¼ 1

8<:
Use determinants to find those values of k for which the system has

(a) a unique solution, (b) more than one solution, (c) no solution.

(a) The system has a unique solution when D 6¼ 0, where D is the determinant of the matrix of coefficients.
Compute

D ¼
k 1 1
1 k 1
1 1 k

������
������ ¼ k3 þ 1þ 1
 k 
 k 
 k ¼ k3 
 3k þ 2 ¼ ðk 
 1Þ2ðk þ 2Þ

Thus, the system has a unique solution when

ðk 
 1Þ2ðk þ 2Þ 6¼ 0; when k 6¼ 1 and k 6¼ 2

(b and c) Gaussian elimination shows that the system has more than one solution when k ¼ 1, and the
system has no solution when k ¼ 
2.

Miscellaneous Problems

8.11. Find the volume V ðSÞ of the parallelepiped S in R3 determined by the vectors:

(a) u1 ¼ ð1; 1; 1Þ; u2 ¼ ð1; 3;
4Þ; u3 ¼ ð1; 2;
5Þ.
(b) u1 ¼ ð1; 2; 4Þ; u2 ¼ ð2; 1;
3Þ; u3 ¼ ð5; 7; 9Þ.

VðSÞ is the absolute value of the determinant of the matrix M whose rows are the given vectors. Thus,

(a) jM j ¼
1 1 1
1 3 
4
1 2 
5

������
������ ¼ 
15
 4þ 2
 3þ 8þ 5 ¼ 
7. Hence, VðSÞ ¼ j 
 7j ¼ 7.

(b) jM j ¼
1 2 4
2 1 
3
5 7 9

������
������ ¼ 9
 30þ 56
 20þ 21
 36 ¼ 0. Thus, V ðSÞ ¼ 0, or, in other words, u1; u2; u3

lie in a plane and are linearly dependent.

8.12. Find detðMÞ where M ¼

3 4 0 0 0
2 5 0 0 0
0 9 2 0 0
0 5 0 6 7
0 0 4 3 4

266664
377775 ¼

3 4 0 0 0
2 5 0 0 0
0 9 2 0 0
0 5 0 6 7
0 0 4 3 4

266664
377775

M is a (lower) triangular block matrix; hence, evaluate the determinant of each diagonal block:

3 4
2 5

���� ���� ¼ 15
 8 ¼ 7; j2j ¼ 2;
6 7
3 4

���� ���� ¼ 24
 21 ¼ 3

Thus, jM j ¼ 7ð2Þð3Þ ¼ 42.

8.13. Find the determinant of F:R3 ! R3 defined by

Fðx; y; zÞ ¼ ðxþ 3y
 4z; 2yþ 7z; xþ 5y
 3zÞ
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The determinant of a linear operator F is equal to the determinant of any matrix that represents F. Thus
first find the matrix A representing F in the usual basis (whose rows, respectively, consist of the coefficients
of x; y; z). Then

A ¼
1 3 
4
0 2 7
1 5 
3

24 35; and so detðFÞ ¼ jAj ¼ 
6þ 21þ 0þ 8
 35
 0 ¼ 
8

8.14. Write out g ¼ gðx1; x2; x3; x4Þ explicitly where

gðx1; x2; . . . ; xnÞ ¼
Q
i<j
ðxi 
 xjÞ:

The symbol
Q

is used for a product of terms in the same way that the symbol
P

is used for a sum of
terms. That is,

Q
i<j ðxi 
 xjÞ means the product of all terms ðxi 
 xjÞ for which i < j. Hence,

g ¼ gðx1; . . . ; x4Þ ¼ ðx1 
 x2Þðx1 
 x3Þðx1 
 x4Þðx2 
 x3Þðx2 
 x4Þðx3 
 x4Þ
8.15. Let D be a 2-linear, alternating function. Show that DðA;BÞ ¼ 
DðB;AÞ.

Because D is alternating, DðA;AÞ ¼ 0, DðB;BÞ ¼ 0. Hence,

DðAþ B;Aþ BÞ ¼ DðA;AÞ þ DðA;BÞ þ DðB;AÞ þ DðB;BÞ ¼ DðA;BÞ þ DðB;AÞ

However, DðAþ B; Aþ BÞ ¼ 0. Hence, DðA;BÞ ¼ 
DðB;AÞ, as required.

Permutations

8.16. Determine the parity (sign) of the permutation s ¼ 364152.

Count the number of inversions. That is, for each element k, count the number of elements i in s such
that i > k and i precedes k in s. Namely,

k ¼ 1: 3 numbers ð3; 6; 4Þ
k ¼ 2: 4 numbers ð3; 6; 4; 5Þ
k ¼ 3: 0 numbers

k ¼ 4: 1 number ð6Þ
k ¼ 5: 1 number ð6Þ
k ¼ 6: 0 numbers

Because 3þ 4þ 0þ 1þ 1þ 0 ¼ 9 is odd, s is an odd permutation, and sgn s ¼ 
1.

8.17. Let s ¼ 24513 and t ¼ 41352 be permutations in S5. Find (a) t � s, (b) s
1.

Recall that s ¼ 24513 and t ¼ 41352 are short ways of writing

s ¼ 1 2 3 4 5

2 4 5 1 3

� �
or sð1Þ ¼ 2; sð2Þ ¼ 4; sð3Þ ¼ 5; sð4Þ ¼ 1; sð5Þ ¼ 3

t ¼ 1 2 3 4 5

4 1 3 5 2�c

� �
or tð1Þ ¼ 4; tð2Þ ¼ 1; tð3Þ ¼ 3; tð4Þ ¼ 5; tð5Þ ¼ 2

(a) The effects of s and then t on 1; 2; 3; 4; 5 are as follows:

1! 2! 1; 2! 4! 5; 3! 5! 2; 4! 1! 4; 5! 3! 3

[That is, for example, ðt � sÞð1Þ ¼ tðsð1ÞÞ ¼ tð2Þ ¼ 1:� Thus, t � s ¼ 15243.

(b) By definition, s
1ð jÞ ¼ k if and only if sðkÞ ¼ j. Hence,

s
1 ¼ 2 4 5 1 3
1 2 3 4 5

� �
¼ 1 2 3 4 5

4 1 5 2 3

� �
or s
1 ¼ 41523

8.18. Let s ¼ j1 j2 . . . jn be any permutation in Sn. Show that, for each inversion ði; kÞ where i > k but i
precedes k in s, there is a pair ði*; j*Þ such that

i* < k* and sði*Þ > sð j*Þ ð1Þ
and vice versa. Thus, s is even or odd according to whether there is an even or an odd number of
pairs satisfying (1).
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Choose i* and k* so that sði*Þ ¼ i and sðk*Þ ¼ k. Then i > k if and only if sði*Þ > sðk*Þ, and i
precedes k in s if and only if i* < k*.

8.19. Consider the polynomials g ¼ gðx1; . . . ; xnÞ and sðgÞ, defined by

g ¼ gðx1; . . . ; xnÞ ¼
Q
i<j

ðxi 
 xjÞ and sðgÞ ¼Q
i<j

ðxsðiÞ 
 xsðjÞÞ

(See Problem 8.14.) Show that sðgÞ ¼ g when s is an even permutation, and sðgÞ ¼ 
g when s is
an odd permutation. That is, sðgÞ ¼ ðsgn sÞg.

Because s is one-to-one and onto,

sðgÞ ¼Q
i<j

ðxsðiÞ 
 xsð jÞÞ ¼
Q

i<j or i>j

ðxi 
 xjÞ

Thus, sðgÞ or sðgÞ ¼ 
g according to whether there is an even or an odd number of terms of the form
xi 
 xj, where i > j. Note that for each pair ði; jÞ for which

i < j and sðiÞ > sð jÞ
there is a term ðxsðiÞ 
 xsð jÞÞ in sðgÞ for which sðiÞ > sð jÞ. Because s is even if and only if there is an even
number of pairs satisfying (1), we have sðgÞ ¼ g if and only if s is even. Hence, sðgÞ ¼ 
g if and only if s
is odd.

8.20. Let s; t 2 Sn. Show that sgnðt � sÞ ¼ ðsgn tÞðsgn sÞ. Thus, the product of two even or two odd
permutations is even, and the product of an odd and an even permutation is odd.

Using Problem 8.19, we have

sgnðt � sÞ g ¼ ðt � sÞðgÞ ¼ tðsðgÞÞ ¼ tððsgn sÞgÞ ¼ ðsgn tÞðsgn sÞg
Accordingly, sgn ðt � sÞ ¼ ðsgn tÞðsgn sÞ.

8.21. Consider the permutation s ¼ j1 j2 � � � jn. Show that sgn s
1 ¼ sgn s and, for scalars aij,
show that

aj11aj22 � � � ajnn ¼ a1k1
a2k2
� � � ankn

where s
1 ¼ k1k2 � � � kn.

We have s
1 � s ¼ e, the identity permutation. Because e is even, s
1 and s are both even or both odd.
Hence sgn s
1 ¼ sgn s.

Because s ¼ j1j2 � � � jn is a permutation, aj11aj22 � � � ajnn ¼ a1k1
a2k2
� � � ankn

. Then k1; k2; . . . ; kn have the
property that

sðk1Þ ¼ 1; sðk2Þ ¼ 2; . . . ; sðknÞ ¼ n

Let t ¼ k1k2 � � � kn. Then, for i ¼ 1; . . . ; n,

ðs � tÞðiÞ ¼ sðtðiÞÞ ¼ sðkiÞ ¼ i

Thus, s � t ¼ e, the identity permutation. Hence, t ¼ s
1.

Proofs of Theorems

8.22. Prove Theorem 8.1: jAT j ¼ jAj.
If A ¼ ½aij�, then AT ¼ ½bij�, with bij ¼ aji. Hence,

jAT j ¼ P
s2Sn
ðsgn sÞb1sð1Þb2sð2Þ � � � bnsðnÞ ¼

P
s2Sn
ðsgn sÞasð1Þ;1asð2Þ;2 � � � asðnÞ;n

Let t ¼ s
1. By Problem 8.21 sgn t ¼ sgn s, and asð1Þ;1asð2Þ;2 � � � asðnÞ;n ¼ a1tð1Þa2tð2Þ � � � antðnÞ. Hence,

jAT j ¼ P
s2Sn
ðsgn tÞa1tð1Þa2tð2Þ � � � antðnÞ
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However, as s runs through all the elements of Sn; t ¼ s
1 also runs through all the elements of Sn. Thus,
jAT j ¼ jAj.

8.23. Prove Theorem 8.3(i): If two rows (columns) of A are interchanged, then jBj ¼ 
jAj.
We prove the theorem for the case that two columns are interchanged. Let t be the transposition that

interchanges the two numbers corresponding to the two columns of A that are interchanged. If A ¼ ½aij� and
B ¼ ½bij�, then bij ¼ aitðjÞ. Hence, for any permutation s,

b1sð1Þb2sð2Þ � � � bnsðnÞ ¼ a1ðt � sÞð1Þa2ðt � sÞð2Þ � � � anðt � sÞðnÞ
Thus,

jBj ¼ P
s2Sn
ðsgn sÞb1sð1Þb2sð2Þ � � � bnsðnÞ ¼

P
s2Sn
ðsgn sÞa1ðt � sÞð1Þa2ðt � sÞð2Þ � � � anðt � sÞðnÞ

Because the transposition t is an odd permutation, sgnðt � sÞ ¼ ðsgn tÞðsgn sÞ ¼ 
sgn s. Accordingly,
sgn s ¼ 
sgn ðt � sÞ; and so

jBj ¼ 
 P
s2Sn

½sgnðt � sÞ�a1ðt � sÞð1Þa2ðt � sÞð2Þ � � � anðt � sÞðnÞ

But as s runs through all the elements of Sn; t � s also runs through all the elements of Sn: Hence, jBj ¼ 
jAj.

8.24. Prove Theorem 8.2.

(i) If A has a row (column) of zeros, then jAj ¼ 0.

(ii) If A has two identical rows (columns), then jAj ¼ 0.

(iii) If A is triangular, then jAj ¼ product of diagonal elements. Thus, jI j ¼ 1.

(i) Each term in jAj contains a factor from every row, and so from the row of zeros. Thus, each term of jAj
is zero, and so jAj ¼ 0.

(ii) Suppose 1þ 1 6¼ 0 in K. If we interchange the two identical rows of A, we still obtain the matrix A.
Hence, by Problem 8.23, jAj ¼ 
jAj, and so jAj ¼ 0.

Now suppose 1þ 1 ¼ 0 in K. Then sgn s ¼ 1 for every s 2 Sn: Because A has two identical
rows, we can arrange the terms of A into pairs of equal terms. Because each pair is 0, the determinant
of A is zero.

(iii) Suppose A ¼ ½aij� is lower triangular; that is, the entries above the diagonal are all zero: aij ¼ 0
whenever i < j. Consider a term t of the determinant of A:

t ¼ ðsgn sÞa1i1
a2i2
� � � anin

; where s ¼ i1i2 � � � in

Suppose i1 6¼ 1. Then 1 < i1 and so a1i1
¼ 0; hence, t ¼ 0: That is, each term for which i1 6¼ 1 is

zero.
Now suppose i1 ¼ 1 but i2 6¼ 2. Then 2 < i2, and so a2i2

¼ 0; hence, t ¼ 0. Thus, each term
for which i1 6¼ 1 or i2 6¼ 2 is zero.

Similarly, we obtain that each term for which i1 6¼ 1 or i2 6¼ 2 or . . . or in 6¼ n is zero.
Accordingly, jAj ¼ a11a22 � � � ann ¼ product of diagonal elements.

8.25. Prove Theorem 8.3: B is obtained from A by an elementary operation.

(i) If two rows (columns) of A were interchanged, then jBj ¼ 
jAj.
(ii) If a row (column) of A were multiplied by a scalar k, then jBj ¼ kjAj.
(iii) If a multiple of a row (column) of A were added to another row (column) of A; then jBj ¼ jAj.
(i) This result was proved in Problem 8.23.

(ii) If the jth row of A is multiplied by k, then every term in jAj is multiplied by k, and so jBj ¼ kjAj. That is,

jBj ¼P
s
ðsgn sÞa1i1

a2i2
� � � ðkajij

Þ � � � anin
¼ k

P
s
ðsgn sÞa1i1

a2i2
� � � anin

¼ kjAj
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(iii) Suppose c times the kth row is added to the jth row of A. Using the symbol ^ to denote the jth position
in a determinant term, we have

jBj ¼P
s
ðsgn sÞa1i1

a2i2
� � � ðcakik

þ ajij
Þ . . . anin

¼ c
P
s
ðsgn sÞa1i1

a2i2
� � � cakik

� � � anin
þP

s
ðsgn sÞa1i1

a2i2
� � � ajij

� � � anin

The first sum is the determinant of a matrix whose kth and jth rows are identical. Accordingly, by
Theorem 8.2(ii), the sum is zero. The second sum is the determinant of A. Thus, jBj ¼ c � 0þ jAj ¼ jAj.

8.26. Prove Lemma 8.6: Let E be an elementary matrix. Then jEAj ¼ jEjjAj.
Consider the elementary row operations: (i) Multiply a row by a constant k 6¼ 0,

(ii) Interchange two rows, (iii) Add a multiple of one row to another.

Let E1;E2;E3 be the corresponding elementary matrices That is, E1;E2;E3 are obtained by applying the
above operations to the identity matrix I . By Problem 8.25,

jE1j ¼ kjI j ¼ k; jE2j ¼ 
jI j ¼ 
1; jE3j ¼ jI j ¼ 1

Recall (Theorem 3.11) that EiA is identical to the matrix obtained by applying the corresponding operation
to A. Thus, by Theorem 8.3, we obtain the following which proves our lemma:

jE1Aj ¼ kjAj ¼ jE1jjAj; jE2Aj ¼ 
jAj ¼ jE2jjAj; jE3Aj ¼ jAj ¼ 1jAj ¼ jE3jjAj

8.27. Suppose B is row equivalent to a square matrix A. Prove that jBj ¼ 0 if and only if jAj ¼ 0.

By Theorem 8.3, the effect of an elementary row operation is to change the sign of the determinant or to
multiply the determinant by a nonzero scalar. Hence, jBj ¼ 0 if and only if jAj ¼ 0.

8.28. Prove Theorem 8.5: Let A be an n-square matrix. Then the following are equivalent:

(i) A is invertible, (ii) AX ¼ 0 has only the zero solution, (iii) detðAÞ 6¼ 0.

The proof is by the Gaussian algorithm. If A is invertible, it is row equivalent to I . But jI j 6¼ 0. Hence,
by Problem 8.27, jAj 6¼ 0. If A is not invertible, it is row equivalent to a matrix with a zero row. Hence,
detðAÞ ¼ 0. Thus, (i) and (iii) are equivalent.

If AX ¼ 0 has only the solution X ¼ 0, then A is row equivalent to I and A is invertible. Conversely, if
A is invertible with inverse A
1, then

X ¼ IX ¼ ðA
1AÞX ¼ A
1ðAX Þ ¼ A
10 ¼ 0

is the only solution of AX ¼ 0. Thus, (i) and (ii) are equivalent.

8.29. Prove Theorem 8.4: jABj ¼ jAjjBj.
If A is singular, then AB is also singular, and so jABj ¼ 0 ¼ jAjjBj. On the other hand, if A is

nonsingular, then A ¼ En � � �E2E1, a product of elementary matrices. Then, Lemma 8.6 and induction yields

jABj ¼ jEn � � �E2E1Bj ¼ jEnj � � � jE2jjE1jjBj ¼ jAjjBj

8.30. Suppose P is invertible. Prove that jP
1j ¼ jPj
1
.

P
1P ¼ I : Hence; 1 ¼ jI j ¼ jP
1Pj ¼ jP
1jjPj; and so jP
1j ¼ jPj
1
:

8.31. Prove Theorem 8.7: Suppose A and B are similar matrices. Then jAj ¼ jBj.
Because A and B are similar, there exists an invertible matrix P such that B ¼ P
1AP. Therefore, using

Problem 8.30, we get jBj ¼ jP
1APj ¼ jP
1jjAjjPj ¼ jAjjP
1jjP ¼ jAj.
We remark that although the matrices P
1 and A may not commute, their determinants jP
1j and jAj do

commute, because they are scalars in the field K.

8.32. Prove Theorem 8.8 (Laplace): Let A ¼ ½aij�, and let Aij denote the cofactor of aij. Then, for any i or j

jAj ¼ ai1Ai1 þ � � � þ ainAin and jAj ¼ a1jA1j þ � � � þ anjAnj

d
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Because jAj ¼ jAT j, we need only prove one of the expansions, say, the first one in terms of rows of A.
Each term in jAj contains one and only one entry of the ith row ðai1; ai2; . . . ; ainÞ of A. Hence, we can write
jAj in the form

jAj ¼ ai1A*i1 þ ai2A*i2 þ � � � þ ainA*in

(Note that A*ij is a sum of terms involving no entry of the ith row of A.) Thus, the theorem is proved if we can
show that

A*ij ¼ Aij ¼ ð
1ÞiþjjMijj

where Mij is the matrix obtained by deleting the row and column containing the entry aij: (Historically, the
expression A*ij was defined as the cofactor of aij, and so the theorem reduces to showing that the two
definitions of the cofactor are equivalent.)

First we consider the case that i ¼ n, j ¼ n. Then the sum of terms in jAj containing ann is

annA*nn ¼ ann
P
s
ðsgn sÞa1sð1Þa2sð2Þ � � � an
1;sðn
1Þ

where we sum over all permutations s 2 Sn for which sðnÞ ¼ n. However, this is equivalent (Prove!) to
summing over all permutations of f1; . . . ; n
 1g. Thus, A*nn ¼ jMnnj ¼ ð
1ÞnþnjMnnj.

Now we consider any i and j. We interchange the ith row with each succeeding row until it is last, and
we interchange the jth column with each succeeding column until it is last. Note that the determinant jMijj is
not affected, because the relative positions of the other rows and columns are not affected by these
interchanges. However, the ‘‘sign’’ of jAj and of A*ij is changed n
 1 and then n
 j times. Accordingly,

A*ij ¼ ð
1Þn
iþn
jjMijj ¼ ð
1ÞiþjjMijj

8.33. Let A ¼ ½aij� and let B be the matrix obtained from A by replacing the ith row of A by the row
vector ðbi1; . . . ; binÞ. Show that

jBj ¼ bi1Ai1 þ bi2Ai2 þ � � � þ binAin

Furthermore, show that, for j 6¼ i,

aj1Ai1 þ aj2Ai2 þ � � � þ ajnAin ¼ 0 and a1jA1i þ a2jA2i þ � � � þ anjAni ¼ 0

Let B ¼ ½bij�. By Theorem 8.8,

jBj ¼ bi1Bi1 þ bi2Bi2 þ � � � þ binBin

Because Bij does not depend on the ith row of B; we get Bij ¼ Aij for j ¼ 1; . . . ; n. Hence,

jBj ¼ bi1Ai1 þ bi2Ai2 þ � � � þ binAin

Now let A0 be obtained from A by replacing the ith row of A by the jth row of A. Because A0 has two
identical rows, jA0j ¼ 0. Thus, by the above result,

jA0j ¼ aj1Ai1 þ aj2Ai2 þ � � � þ ajnAin ¼ 0

Using jAT j ¼ jAj, we also obtain that a1jA1i þ a2jA2i þ � � � þ anjAni ¼ 0.

8.34. Prove Theorem 8.9: Aðadj AÞ ¼ ðadj AÞA ¼ jAjI .

Let A ¼ ½aij� and let Aðadj AÞ ¼ ½bij�. The ith row of A is

ðai1; ai2; . . . ; ainÞ ð1Þ
Because adj A is the transpose of the matrix of cofactors, the jth column of adj A is the tranpose of the
cofactors of the jth row of A:

ðAj;Aj2; . . . ;AjnÞT ð2Þ
Now bij; the ij entry in Aðadj AÞ, is obtained by multiplying expressions (1) and (2):

bij ¼ ai1Aj1 þ ai2Aj2 þ � � � þ ainAjn
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By Theorem 8.8 and Problem 8.33,

bij ¼ jAj if i ¼ j
0 if i 6¼ j

	
Accordingly, Aðadj AÞ is the diagonal matrix with each diagonal element jAj. In other words,
Aðadj AÞ ¼ jAjI . Similarly, ðadj AÞA ¼ jAjI .

8.35. Prove Theorem 8.10 (Cramer’s rule): The (square) system AX ¼ B has a unique solution if and
only if D 6¼ 0. In this case, xi ¼ Ni=D for each i.

By previous results, AX ¼ B has a unique solution if and only if A is invertible, and A is invertible if and
only if D ¼ jAj 6¼ 0.

Now suppose D 6¼ 0. By Theorem 8.9, A
1 ¼ ð1=DÞðadj AÞ. Multiplying AX ¼ B by A
1, we obtain

X ¼ A
1AX ¼ ð1=DÞðadj AÞB ð1Þ
Note that the ith row of ð1=DÞðadj AÞ is ð1=DÞðA1i;A2i; . . . ;AniÞ. If B ¼ ðb1; b2; . . . ; bnÞT , then, by (1),

xi ¼ ð1=DÞðb1A1i þ b2A2i þ � � � þ bnAniÞ
However, as in Problem 8.33, b1A1i þ b2A2i þ � � � þ bnAni ¼ Ni, the determinant of the matrix obtained by
replacing the ith column of A by the column vector B. Thus, xi ¼ ð1=DÞNi, as required.

8.36. Prove Theorem 8.12: Suppose M is an upper (lower) triangular block matrix with diagonal blocks
A1;A2; . . . ;An. Then

detðMÞ ¼ detðA1Þ detðA2Þ � � � detðAnÞ
We need only prove the theorem for n ¼ 2—that is, when M is a square matrix of the form

M ¼ A C
0 B

� �
. The proof of the general theorem follows easily by induction.

Suppose A ¼ ½aij� is r-square, B ¼ ½bij� is s-square, and M ¼ ½mij� is n-square, where n ¼ r þ s. By
definition,

detðMÞ ¼ P
s2Sn
ðsgn sÞm1sð1Þm2sð2Þ � � �mnsðnÞ

If i > r and j � r, then mij ¼ 0. Thus, we need only consider those permutations s such that

sfr þ 1; r þ 2; . . . ; r þ sg ¼ fr þ 1; r þ 2; . . . ; r þ sg and sf1; 2; . . . ; rg ¼ f1; 2; . . . ; rg
Let s1ðkÞ ¼ sðkÞ for k � r, and let s2ðkÞ ¼ sðr þ kÞ 
 r for k � s. Then

ðsgn sÞm1sð1Þm2sð2Þ � � �mnsðnÞ ¼ ðsgn s1Þa1s1ð1Þa2s1ð2Þ � � � ars1ðrÞðsgn s2Þb1s2ð1Þb2s2ð2Þ � � � bss2ðsÞ

which implies detðMÞ ¼ detðAÞ detðBÞ.

8.37. Prove Theorem 8.14: There exists a unique function D : M! K such that

(i) D is multilinear, (ii) D is alternating, (iii) DðIÞ ¼ 1.
This function D is the determinant function; that is, DðAÞ ¼ jAj.

Let D be the determinant function, DðAÞ ¼ jAj. We must show that D satisfies (i), (ii), and (iii), and that
D is the only function satisfying (i), (ii), and (iii).

By Theorem 8.2, D satisfies (ii) and (iii). Hence, we show that it is multilinear. Suppose the ith row of
A ¼ ½aij� has the form ðbi1 þ ci1; bi2 þ ci2; . . . ; bin þ cinÞ. Then

DðAÞ ¼ DðA1; . . . ; Bi þ Ci; . . . ; AnÞ
¼P

Sn

ðsgn sÞa1sð1Þ � � � ai
1;sði
1ÞðbisðiÞ þ cisðiÞÞ � � � ansðnÞ

¼P
Sn

ðsgn sÞa1sð1Þ � � � bisðiÞ � � � ansðnÞ þ
P
Sn

ðsgn sÞa1sð1Þ � � � cisðiÞ � � � ansðnÞ

¼ DðA1; . . . ;Bi; . . . ;AnÞ þ DðA1; . . . ;Ci; . . . ;AnÞ
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Also, by Theorem 8.3(ii),

DðA1; . . . ; kAi; . . . ;AnÞ ¼ kDðA1; . . . ;Ai; . . . ;AnÞ

Thus, D is multilinear—D satisfies (i).
We next must prove the uniqueness of D. Suppose D satisfies (i), (ii), and (iii). If fe1; . . . ; eng is the

usual basis of Kn, then, by (iii), Dðe1; e2; . . . ; enÞ ¼ DðIÞ ¼ 1. Using (ii), we also have that

Dðei1
; ei2

; . . . ; ein
Þ ¼ sgn s; where s ¼ i1i2 � � � in ð1Þ

Now suppose A ¼ ½aij�. Observe that the kth row Ak of A is

Ak ¼ ðak1; ak2; . . . ; aknÞ ¼ ak1e1 þ ak2e2 þ � � � þ aknen

Thus,

DðAÞ ¼ Dða11e1 þ � � � þ a1nen; a21e1 þ � � � þ a2nen; . . . ; an1e1 þ � � � þ annenÞ

Using the multilinearity of D, we can write DðAÞ as a sum of terms of the form

DðAÞ ¼PDða1i1
ei1
; a2i2

ei2
; . . . ; anin

ein
Þ

¼Pða1i1
a2i2
� � � anin

ÞDðei1
; ei2

; . . . ; ein
Þ ð2Þ

where the sum is summed over all sequences i1i2 . . . in, where ik 2 f1; . . . ; ng. If two of the indices are equal,
say ij ¼ ik but j 6¼ k, then, by (ii),

Dðei1
; ei2

; . . . ; ein
Þ ¼ 0

Accordingly, the sum in (2) need only be summed over all permutations s ¼ i1i2 � � � in. Using (1), we finally
have that

DðAÞ ¼P
s
ða1i1

a2i2
� � � anin

ÞDðei1
; ei2

; . . . ; ein
Þ

¼P
s
ðsgn sÞa1i1

a2i2
� � � anin

; where s ¼ i1i2 � � � in

Hence, D is the determinant function, and so the theorem is proved.

SUPPLEMENTARY PROBLEMS

Computation of Determinants

8.38. Evaluate:

(a)
2 6
4 1

���� ����, (b)
5 1
3 
2

���� ����, (c)

2 8

5 
3

���� ����, (d)
4 9
1 
3

���� ����, (e)
aþ b a

b aþ b

���� ����
8.39. Find all t such that (a)

t 
 4 3
2 t 
 9

���� ���� ¼ 0, (b)
t 
 1 4

3 t 
 2

���� ���� ¼ 0

8.40. Compute the determinant of each of the following matrices:

(a)
2 1 1
0 5 
2
1 
3 4

24 35, (b)
3 
2 
4
2 5 
1
0 6 1

24 35, (c)

2 
1 4

6 
3 
2
4 1 2

24 35, (d)
7 6 5
1 2 1
3 
2 1

24 35
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8.41. Find the determinant of each of the following matrices:

(a)

1 2 2 3
1 0 
2 0
3 
1 1 
2
4 
3 0 2

2664
3775, (b)

2 1 3 2
3 0 1 
2
1 
1 4 3
2 2 
1 1

2664
3775

8.42. Evaluate:

(a)

2 
1 3 
4
2 1 
2 1
3 3 
5 4
5 2 
1 4

��������
��������, (b)

2 
1 4 
3

1 1 0 2

3 2 3 
1
1 
2 2 
3

��������
��������, (c)

1 
2 3 
1
1 1 
2 0
2 0 4 
5
1 4 4 
6

��������
��������

8.43. Evaluate each of the following determinants:

(a)

1 2 
1 3 1
2 
1 1 
2 3
3 1 0 2 
1
5 1 2 
3 4

2 3 
1 1 
2

����������

����������
, (b)

1 3 5 7 9
2 4 2 4 2
0 0 1 2 3
0 0 5 6 2
0 0 2 3 1

����������

����������
, (c)

1 2 3 4 5
5 4 3 2 1
0 0 6 5 1
0 0 0 7 4
0 0 0 2 3

����������

����������
Cofactors, Classical Adjoints, Inverses

8.44. Find detðAÞ, adj A, and A
1, where

(a) A ¼
1 1 0
1 1 1
0 2 1

24 35, (b) A ¼
1 2 2
3 1 0
1 1 1

24 35
8.45. Find the classical adjoint of each matrix in Problem 8.41.

8.46. Let A ¼ a b
c d

� �
. (a) Find adj A, (b) Show that adjðadj AÞ ¼ A, (c) When does A ¼ adj A?

8.47. Show that if A is diagonal (triangular) then adj A is diagonal (triangular).

8.48. Suppose A ¼ ½aij� is triangular. Show that

(a) A is invertible if and only if each diagonal element aii 6¼ 0.

(b) The diagonal elements of A
1 (if it exists) are a
1
ii , the reciprocals of the diagonal elements of A.

Minors, Principal Minors

8.49. Let A ¼
1 2 3 2
1 0 
2 3
3 
1 2 5
4 
3 0 
1

2664
3775 and B ¼

1 3 
1 5
2 
3 1 4
0 
5 2 1
3 0 5 
2

2664
3775. Find the minor and the signed minor

corresponding to the following submatrices:

(a) Að1; 4; 3; 4Þ, (b) Bð1; 4; 3; 4Þ, (c) Að2; 3; 2; 4Þ, (d) Bð2; 3; 2; 4Þ.

8.50. For k ¼ 1; 2; 3, find the sum Sk of all principal minors of order k for

(a) A ¼
1 3 2
2 
4 3
5 
2 1

24 35, (b) B ¼
1 5 
4
2 6 1
3 
2 0

24 35, (c) C ¼
1 
4 3
2 1 5
4 
7 11

24 35
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8.51. For k ¼ 1; 2; 3; 4, find the sum Sk of all principal minors of order k for

(a) A ¼
1 2 3 
1
1 
2 0 5
0 1 
2 2
4 0 
1 
3

2664
3775, (b) B ¼

1 2 1 2
0 1 2 3
1 3 0 4
2 7 4 5

2664
3775

Determinants and Linear Equations

8.52. Solve the following systems by determinants:

(a)
3xþ 5y ¼ 8
4x
 2y ¼ 1

	
, (b)

2x
 3y ¼ 
1
4xþ 7y ¼ 
1

	
, (c)

ax
 2by ¼ c
3ax
 5by ¼ 2c

ðab 6¼ 0Þ
	

8.53. Solve the following systems by determinants:

(a)
2x
 5yþ 2z ¼ 2

xþ 2y
 4z ¼ 5
3x
 4y
 6z ¼ 1

8<: , (b)
2zþ 3 ¼ yþ 3x
x
 3z ¼ 2yþ 1
3yþ z ¼ 2
 2x

8<:
8.54. Prove Theorem 8.11: The system AX ¼ 0 has a nonzero solution if and only if D ¼ jAj ¼ 0.

Permutations

8.55. Find the parity of the permutations s ¼ 32154, t ¼ 13524, p ¼ 42531 in S5.

8.56. For the permutations in Problem 8.55, find

(a) t � s, (b) p � s, (c) s
1, (d) t
1.

8.57. Let t 2 Sn: Show that t � s runs through Sn as s runs through Sn; that is, Sn ¼ ft � s : s 2 Sng:

8.58. Let s 2 Sn have the property that sðnÞ ¼ n. Let s* 2 Sn
1 be defined by s*ðxÞ ¼ sðxÞ.
(a) Show that sgn s* ¼ sgn s,

(b) Show that as s runs through Sn, where sðnÞ ¼ n, s* runs through Sn
1; that is,

Sn
1 ¼ fs* : s 2 Sn; sðnÞ ¼ ng:

8.59. Consider a permutation s ¼ j1 j2 . . . jn. Let feig be the usual basis of Kn, and let A be the matrix whose ith
row is eji

[i.e., A ¼ ðej1
, ej2

; . . . ; ejn
Þ]. Show that jAj ¼ sgn s.

Determinant of Linear Operators

8.60. Find the determinant of each of the following linear transformations:

(a) T :R2 ! R2 defined by Tðx; yÞ ¼ ð2x
 9y; 3x
 5yÞ,
(b) T :R3 ! R3 defined by Tðx; y; zÞ ¼ ð3x
 2z; 5yþ 7z; xþ yþ zÞ,
(c) T :R3 ! R2 defined by Tðx; y; zÞ ¼ ð2xþ 7y
 4z; 4x
 6yþ 2zÞ.

8.61. Let D:V ! V be the differential operator; that is, Dð f ðtÞÞ ¼ df =dt. Find detðDÞ if V is the vector space of
functions with the following bases: (a) f1; t; . . . ; t5g, (b) fet; e2t; e3tg, (c) fsin t; cos tg.

8.62. Prove Theorem 8.13: Let F and G be linear operators on a vector space V. Then

(i) detðF � GÞ ¼ detðFÞ detðGÞ, (ii) F is invertible if and only if detðFÞ 6¼ 0.

8.63. Prove (a) detð1V Þ ¼ 1, where 1V is the identity operator, (b) detðT
1Þ ¼ detðTÞ
1
when T is invertible.
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Miscellaneous Problems

8.64. Find the volume VðSÞ of the parallelopiped S in R3 determined by the following vectors:

(a) u1 ¼ ð1; 2;
3Þ, u2 ¼ ð3; 4;
1Þ, u3 ¼ ð2;
1; 5Þ,
(b) u1 ¼ ð1; 1; 3Þ, u2 ¼ ð1;
2;
4Þ, u3 ¼ ð4; 1; 5Þ.

8.65. Find the volume VðSÞ of the parallelepiped S in R4 determined by the following vectors:

u1 ¼ ð1;
2; 5;
1Þ; u2 ¼ ð2; 1;
2; 1Þ; u3 ¼ ð3; 0; 1
 2Þ; u4 ¼ ð1;
1; 4;
1Þ

8.66. Let V be the space of 2� 2 matrices M ¼ a b
c d

� �
over R. Determine whether D:V ! R is 2-linear (with

respect to the rows), where

ðaÞ DðMÞ ¼ aþ d;
ðbÞ DðMÞ ¼ ad;

ðcÞ DðMÞ ¼ ac
 bd;
ðdÞ DðMÞ ¼ ab
 cd;

ðeÞ DðMÞ ¼ 0
ðfÞ DðMÞ ¼ 1

8.67. Let A be an n-square matrix. Prove jkAj ¼ knjAj.

8.68. Let A;B;C;D be commuting n-square matrices. Consider the 2n-square block matrix M ¼ A B
C D

� �
. Prove

that jM j ¼ jAjjDj 
 jBjjCj. Show that the result may not be true if the matrices do not commute.

8.69. Suppose A is orthogonal; that is, AT A ¼ I . Show that detðAÞ ¼ �1.

8.70. Let V be the space of m-square matrices viewed as m-tuples of row vectors. Suppose D:V ! K is m-linear
and alternating. Show that

(a) Dð. . . ;A; . . . ;B; . . .Þ ¼ 
Dð. . . ;B; . . . ;A; . . .Þ; sign changed when two rows are interchanged.

(b) If A1;A2; . . . ;Am are linearly dependent, then DðA1;A2; . . . ;AmÞ ¼ 0.

8.71. Let V be the space of m-square matrices (as above), and suppose D:V ! K. Show that the following weaker
statement is equivalent to D being alternating:

DðA1;A2; . . . ;AnÞ ¼ 0 whenever Ai ¼ Aiþ1 for some i

Let V be the space of n-square matrices over K. Suppose B 2 V is invertible and so detðBÞ 6¼ 0. Define
D:V ! K by DðAÞ ¼ detðABÞ=detðBÞ, where A 2 V. Hence,

DðA1;A2; . . . ;AnÞ ¼ detðA1B;A2B; . . . ;AnBÞ=detðBÞ

where Ai is the ith row of A, and so AiB is the ith row of AB. Show that D is multilinear and alternating, and
that DðIÞ ¼ 1. (This method is used by some texts to prove that jABj ¼ jAjjBj.)

8.72. Show that g ¼ gðx1; . . . ; xnÞ ¼ ð
1ÞnVn
1ðxÞ where g ¼ gðxiÞ is the difference product in Problem 8.19,
x ¼ xn, and Vn
1 is the Vandermonde determinant defined by

Vn
1ðxÞ 


1 1 . . . 1 1

x1 x2 . . . xn
1 x

x2
1 x2

2 . . . x2
n
1 x2

::::::::::::::::::::::::::::::::::::::::::::

xn
1
1 xn
1

2 . . . xn
1
n
1 xn
1

266666664

������������
8.73. Let A be any matrix. Show that the signs of a minor A½I ; J � and its complementary minor A½I 0; J 0� are

equal.
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8.74. Let A be an n-square matrix. The determinantal rank of A is the order of the largest square submatrix of A
(obtained by deleting rows and columns of A) whose determinant is not zero. Show that the determinantal
rank of A is equal to its rank—the maximum number of linearly independent rows (or columns).

ANSWERS TO SUPPLEMENTARY PROBLEMS

Notation: M ¼ ½R1; R2; . . .� denotes a matrix with rows R1;R2; : . . .

8.38. (a) 
22, (b) 
13, (c) 46, (d) 
21, (e) a2 þ abþ b2

8.39. (a) 3; 10; (b) 5;
2

8.40. (a) 21, (b) 
11, (c) 100, (d) 0

8.41. (a) 
131, (b) 
55

8.42. (a) 33, (b) 0, (c) 45

8.43. (a) 
32, (b) 
14, (c) 
468

8.44. (a) jAj ¼ 
2; adj A ¼ ½
1;
1; 1; 
1; 1;
1; 2;
2; 0�,
(b) jAj ¼ 
1; adj A ¼ ½1; 0;
2; 
3;
1; 6; 2; 1;
5�. Also, A
1 ¼ ðadj AÞ=jAj

8.45. (a) ½
16;
29;
26;
2; 
30;
38;
16; 29; 
8; 51;
13;
1; 
13; 1; 28;
18�,
(b) ½21;
14;
17;
19; 
44; 11; 33; 11; 
29; 1; 13; 21; 17; 7;
19;
18�

8.46. (a) adj A ¼ ½d;
b; 
c; a�, (c) A ¼ kI

8.49. (a) 
3;
3, (b) 
23;
23, (c) 3;
3, (d) 17;
17

8.50. (a) 
2;
17; 73, (b) 7; 10; 105, (c) 13; 54; 0

8.51. (a) 
6; 13; 62;
219; (b) 7;
37; 30; 20

8.52. (a) x ¼ 21
26 ; y ¼ 29

26; (b) x ¼ 
 5
13 ; y ¼ 1

13; (c) x ¼ 
 c
a ; y ¼ 
 c

b

8.53. (a) x ¼ 5; y ¼ 2; z ¼ 1, (b) Because D ¼ 0, the system cannot be solved by determinants.

8.55. (a) sgn s ¼ 1; sgn t ¼ 
1; sgn p ¼ 
1

8.56. (a) t � s ¼ 53142, (b) p � s ¼ 52413, (c) s
1 ¼ 32154, (d) t
1 ¼ 14253

8.60. (a) detðTÞ ¼ 17, (b) detðTÞ ¼ 4, (c) not defined

8.61. (a) 0, (b) 6, (c) 1

8.64. (a) 18, (b) 0

8.65. 17

8.66. (a) no, (b) yes, (c) yes, (d) no, (e) yes, (f ) no
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CHAPTER 9

Diagonalization:
Eigenvalues and Eigenvectors

9.1 Introduction

The ideas in this chapter can be discussed from two points of view.

Matrix Point of View

Suppose an n-square matrix A is given. The matrix A is said to be diagonalizable if there exists a
nonsingular matrix P such that

B ¼ P
1AP

is diagonal. This chapter discusses the diagonalization of a matrix A. In particular, an algorithm is given
to find the matrix P when it exists.

Linear Operator Point of View

Suppose a linear operator T :V ! V is given. The linear operator T is said to be diagonalizable if there
exists a basis S of V such that the matrix representation of T relative to the basis S is a diagonal matrix D.
This chapter discusses conditions under which the linear operator T is diagonalizable.

Equivalence of the Two Points of View

The above two concepts are essentially the same. Specifically, a square matrix A may be viewed as a
linear operator F defined by

FðX Þ ¼ AX

where X is a column vector, and B ¼ P
1AP represents F relative to a new coordinate system (basis)
S whose elements are the columns of P. On the other hand, any linear operator T can be represented by a
matrix A relative to one basis and, when a second basis is chosen, T is represented by the matrix

B ¼ P
1AP

where P is the change-of-basis matrix.
Most theorems will be stated in two ways: one in terms of matrices A and again in terms of linear

mappings T .

Role of Underlying Field K

The underlying number field K did not play any special role in our previous discussions on vector spaces
and linear mappings. However, the diagonalization of a matrix A or a linear operator T will depend on the
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roots of a polynomial DðtÞ over K, and these roots do depend on K. For example, suppose DðtÞ ¼ t2 þ 1.
Then DðtÞ has no roots if K ¼ R, the real field; but DðtÞ has roots �i if K ¼ C, the complex field.
Furthermore, finding the roots of a polynomial with degree greater than two is a subject unto itself
(frequently discussed in numerical analysis courses). Accordingly, our examples will usually lead to
those polynomials DðtÞ whose roots can be easily determined.

9.2 Polynomials of Matrices

Consider a polynomial f ðtÞ ¼ antn þ � � � þ a1t þ a0 over a field K . Recall (Section 2.8) that if A is any
square matrix, then we define

f ðAÞ ¼ anAn þ � � � þ a1Aþ a0I

where I is the identity matrix. In particular, we say that A is a root of f ðtÞ if f ðAÞ ¼ 0, the zero matrix.

EXAMPLE 9.1 Let A ¼ 1 2
3 4

� �
. Then A2 ¼ 7 10

15 22

� �
. Let

f ðtÞ ¼ 2t2 
 3t þ 5 and gðtÞ ¼ t2 
 5t 
 2

Then

f ðAÞ ¼ 2A2 
 3Aþ 5I ¼ 14 20
30 44

� �
þ 
3 
6

9 
12

� �
þ 5 0

0 5

� �
¼ 16 14

21 37

� �
and

gðAÞ ¼ A2 
 5A
 2I ¼ 7 10
15 22

� �
þ 
5 
10

15 
20

� �
þ 
2 0

0 
2

� �
¼ 0 0

0 0

� �
Thus, A is a zero of gðtÞ.

The following theorem (proved in Problem 9.7) applies.

THEOREM 9.1: Let f and g be polynomials. For any square matrix A and scalar k,

(i) ð f þ gÞðAÞ ¼ f ðAÞ þ gðAÞ (iii) ðkf ÞðAÞ ¼ kf ðAÞ
(ii) ð fgÞðAÞ ¼ f ðAÞgðAÞ (iv) f ðAÞgðAÞ ¼ gðAÞ f ðAÞ:

Observe that (iv) tells us that any two polynomials in A commute.

Matrices and Linear Operators

Now suppose that T :V ! V is a linear operator on a vector space V . Powers of T are defined by the
composition operation:

T2 ¼ T � T ; T3 ¼ T2 � T ; . . .

Also, for any polynomial f ðtÞ ¼ antn þ � � � þ a1t þ a0, we define f ðTÞ in the same way as we did for
matrices:

f ðTÞ ¼ anTn þ � � � þ a1T þ a0I

where I is now the identity mapping. We also say that T is a zero or root of f ðtÞ if f ðTÞ ¼ 0; the zero
mapping. We note that the relations in Theorem 9.1 hold for linear operators as they do for matrices.

Remark: Suppose A is a matrix representation of a linear operator T . Then f ðAÞ is the matrix
representation of f ðTÞ, and, in particular, f ðTÞ ¼ 0 if and only if f ðAÞ ¼ 0.
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9.3 Characteristic Polynomial, Cayley–Hamilton Theorem

Let A ¼ ½aij� be an n-square matrix. The matrix M ¼ A
 tIn, where In is the n-square identity matrix and
t is an indeterminate, may be obtained by subtracting t down the diagonal of A. The negative of M is the
matrix tIn 
 A, and its determinant

DðtÞ ¼ detðtIn 
 AÞ ¼ ð
1Þn detðA
 tInÞ
which is a polynomial in t of degree n and is called the characteristic polynomial of A.

We state an important theorem in linear algebra (proved in Problem 9.8).

THEOREM 9.2: (Cayley–Hamilton) Every matrix A is a root of its characteristic polynomial.

Remark: Suppose A ¼ ½aij� is a triangular matrix. Then tI 
 A is a triangular matrix with diagonal
entries t 
 aii; hence,

DðtÞ ¼ detðtI 
 AÞ ¼ ðt 
 a11Þðt 
 a22Þ � � � ðt 
 annÞ
Observe that the roots of DðtÞ are the diagonal elements of A.

EXAMPLE 9.2 Let A ¼ 1 3
4 5

� �
. Its characteristic polynomial is

DðtÞ ¼ jtI 
 Aj ¼ t 
 1 
3

4 t 
 5

���� ¼ ðt 
 1Þðt 
 5Þ 
 12 ¼ t2 
 6t 
 7

����
As expected from the Cayley–Hamilton theorem, A is a root of DðtÞ; that is,

DðAÞ ¼ A2 
 6A
 7I ¼ 13 18
24 37

� �
þ 
6 
18

24 
30

� �
þ 
7 0

0 
7

� �
¼ 0 0

0 0

� �
Now suppose A and B are similar matrices, say B ¼ P
1AP, where P is invertible. We show that A

and B have the same characteristic polynomial. Using tI ¼ P
1tIP, we have

DBðtÞ ¼ detðtI 
 BÞ ¼ detðtI 
 P
1APÞ ¼ detðP
1tIP
 P
1APÞ
¼ det½P
1ðtI 
 AÞP� ¼ detðP
1Þ detðtI 
 AÞ detðPÞ

Using the fact that determinants are scalars and commute and that detðP
1Þ detðPÞ ¼ 1, we finally obtain

DBðtÞ ¼ detðtI 
 AÞ ¼ DAðtÞ
Thus, we have proved the following theorem.

THEOREM 9.3: Similar matrices have the same characteristic polynomial.

Characteristic Polynomials of Degrees 2 and 3

There are simple formulas for the characteristic polynomials of matrices of orders 2 and 3.

(a) Suppose A ¼ a11 a12

a21 a22

� �
. Then

DðtÞ ¼ t2 
 ða11 þ a22Þt þ detðAÞ ¼ t2 
 trðAÞ t þ detðAÞ
Here trðAÞ denotes the trace of A—that is, the sum of the diagonal elements of A.

(b) Suppose A ¼
a11 a12 a13

a21 a22 a23

a31 a32 a33

24 35. Then

DðtÞ ¼ t3 
 trðAÞ t2 þ ðA11 þ A22 þ A33Þt 
 detðAÞ
(Here A11, A22, A33 denote, respectively, the cofactors of a11, a22, a33.)
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EXAMPLE 9.3 Find the characteristic polynomial of each of the following matrices:

(a) A ¼ 5 3
2 10

� �
, (b) B ¼ 7 
1

6 2

� �
, (c) C ¼ 5 
2

4 
4

� �
.

(a) We have trðAÞ ¼ 5þ 10 ¼ 15 and jAj ¼ 50
 6 ¼ 44; hence, DðtÞ þ t2 
 15t þ 44.

(b) We have trðBÞ ¼ 7þ 2 ¼ 9 and jBj ¼ 14þ 6 ¼ 20; hence, DðtÞ ¼ t2 
 9t þ 20.

(c) We have trðCÞ ¼ 5
 4 ¼ 1 and jCj ¼ 
20þ 8 ¼ 
12; hence, DðtÞ ¼ t2 
 t 
 12.

EXAMPLE 9.4 Find the characteristic polynomial of A ¼
1 1 2
0 3 2
1 3 9

24 35.

We have trðAÞ ¼ 1þ 3þ 9 ¼ 13. The cofactors of the diagonal elements are as follows:

A11 ¼ 3 2
3 9

���� ���� ¼ 21; A22 ¼ 1 2
1 9

���� ���� ¼ 7; A33 ¼ 1 1
0 3

���� ���� ¼ 3

Thus, A11 þ A22 þ A33 ¼ 31. Also, jAj ¼ 27þ 2þ 0
 6
 6
 0 ¼ 17. Accordingly,

DðtÞ ¼ t3 
 13t2 þ 31t 
 17

Remark: The coefficients of the characteristic polynomial DðtÞ of the 3-square matrix A are, with
alternating signs, as follows:

S1 ¼ trðAÞ; S2 ¼ A11 þ A22 þ A33; S3 ¼ detðAÞ

We note that each Sk is the sum of all principal minors of A of order k.

The next theorem, whose proof lies beyond the scope of this text, tells us that this result is true in
general.

THEOREM 9.4: Let A be an n-square matrix. Then its characteristic polynomial is

DðtÞ ¼ tn 
 S1tn
1 þ S2tn
2 þ � � � þ ð
1ÞnSn

where Sk is the sum of the principal minors of order k.

Characteristic Polynomial of a Linear Operator

Now suppose T :V ! V is a linear operator on a vector space V of finite dimension. We define the
characteristic polynomial DðtÞ of T to be the characteristic polynomial of any matrix representation of T .
Recall that if A and B are matrix representations of T , then B ¼ P
1AP, where P is a change-of-basis
matrix. Thus, A and B are similar, and by Theorem 9.3, A and B have the same characteristic polynomial.
Accordingly, the characteristic polynomial of T is independent of the particular basis in which the matrix
representation of T is computed.

Because f ðTÞ ¼ 0 if and only if f ðAÞ ¼ 0, where f ðtÞ is any polynomial and A is any matrix
representation of T , we have the following analogous theorem for linear operators.

THEOREM 9.20: (Cayley–Hamilton) A linear operator T is a zero of its characteristic polynomial.
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9.4 Diagonalization, Eigenvalues and Eigenvectors

Let A be any n-square matrix. Then A can be represented by (or is similar to) a diagonal matrix
D ¼ diagðk1; k2; . . . ; knÞ if and only if there exists a basis S consisting of (column) vectors u1; u2; . . . ; un

such that

Au1 ¼ k1u1

Au2 ¼ k2u2

::::::::::::::::::::::::::::::::::::
Aun ¼ knun

In such a case, A is said to be diagonizable. Furthermore, D ¼ P
1AP, where P is the nonsingular matrix
whose columns are, respectively, the basis vectors u1; u2; . . . ; un.

The above observation leads us to the following definition.

DEFINITION: Let A be any square matrix. A scalar l is called an eigenvalue of A if there exists a
nonzero (column) vector v such that

Av ¼ lv

Any vector satisfying this relation is called an eigenvector of A belonging to the
eigenvalue l.

We note that each scalar multiple kv of an eigenvector v belonging to l is also such an eigenvector,
because

AðkvÞ ¼ kðAvÞ ¼ kðlvÞ ¼ lðkvÞ
The set El of all such eigenvectors is a subspace of V (Problem 9.19), called the eigenspace of l. (If
dim El ¼ 1, then El is called an eigenline and l is called a scaling factor.)

The terms characteristic value and characteristic vector (or proper value and proper vector) are
sometimes used instead of eigenvalue and eigenvector.

The above observation and definitions give us the following theorem.

THEOREM 9.5: An n-square matrix A is similar to a diagonal matrix D if and only if A has n linearly
independent eigenvectors. In this case, the diagonal elements of D are the corresponding
eigenvalues and D ¼ P
1AP, where P is the matrix whose columns are the eigenvectors.

Suppose a matrix A can be diagonalized as above, say P
1AP ¼ D, where D is diagonal. Then A has
the extremely useful diagonal factorization:

A ¼ PDP
1

Using this factorization, the algebra of A reduces to the algebra of the diagonal matrix D, which can be
easily calculated. Specifically, suppose D ¼ diagðk1; k2; . . . ; knÞ. Then

Am ¼ ðPDP
1Þm ¼ PDmP
1 ¼ P diagðkm
1 ; . . . ; km

n ÞP
1

More generally, for any polynomial f ðtÞ,
f ðAÞ ¼ f ðPDP
1Þ ¼ Pf ðDÞP
1 ¼ P diagð f ðk1Þ; f ðk2Þ; . . . ; f ðknÞÞP
1

Furthermore, if the diagonal entries of D are nonnegative, let

B ¼ P diagð
ffiffiffiffiffi
k1

p
;
ffiffiffiffiffi
k2

p
; . . . ;

ffiffiffiffiffi
kn

p
Þ P
1

Then B is a nonnegative square root of A; that is, B2 ¼ A and the eigenvalues of B are nonnegative.
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EXAMPLE 9.5 Let A ¼ 3 1
2 2

� �
and let v1 ¼ 1


2

� �
and v2 ¼ 1

1

� �
. Then

Av1 ¼ 3 1
2 2

� �
1

2

� �
¼ 1

2

� �
¼ v1 and Av2 ¼ 3 1

2 2

� �
1
1

� �
¼ 4

4

� �
¼ 4v2

Thus, v1 and v2 are eigenvectors of A belonging, respectively, to the eigenvalues l1 ¼ 1 and l2 ¼ 4. Observe that v1

and v2 are linearly independent and hence form a basis of R2. Accordingly, A is diagonalizable. Furthermore, let P
be the matrix whose columns are the eigenvectors v1 and v2. That is, let

P ¼
"

1 1

2 1

#
; and so P
1 ¼

1
3 
 1

3
2
3

1
3

" #

Then A is similar to the diagonal matrix

D ¼ P
1AP ¼
1
3 
 1

3
2
3

1
3

" #"
3 1

2 2

#"
1 1


2 1

#
¼
"

1 0

0 4

#

As expected, the diagonal elements 1 and 4 in D are the eigenvalues corresponding, respectively, to the eigenvectors
v1 and v2, which are the columns of P. In particular, A has the factorization

A ¼ PDP
1 ¼
"

1 1


2 1

#"
1 0

0 4

#
1
3 
 1

3

2
3

1
3

" #

Accordingly,

A4 ¼
"

1 1


2 1

#"
1 0

0 256

#
1
3 
 1

3

2
3

1
3

" #
¼
"

171 85

170 86

#

Moreover, suppose f ðtÞ ¼ t3 
 5t2 þ 3t þ 6; hence, f ð1Þ ¼ 5 and f ð4Þ ¼ 2. Then

f ðAÞ ¼ Pf ðDÞP
1 ¼ 1 1


2 1

� �
5 0

0 2

� � 1
3 
 1

3

2
3

1
3

" #
¼ 3 
1


2 4

� �
Last, we obtain a ‘‘positive square root’’ of A. Specifically, using

ffiffiffi
1
p ¼ 1 and

ffiffiffi
4
p ¼ 2, we obtain the matrix

B ¼ P
ffiffiffiffi
D
p

P
1 ¼ 1 1


2 1

� �
1 0

0 2

� � 1
3 
 1

3

2
3

1
3

" #
¼

5
3

1
3

2
3

4
3

" #
where B2 ¼ A and where B has positive eigenvalues 1 and 2.

Remark: Throughout this chapter, we use the following fact:

If P ¼ a b

c d

� �
; then P
1 ¼ d=jPj 
b=jPj


c=jPj a=jPj

� �
:

That is, P
1 is obtained by interchanging the diagonal elements a and d of P, taking the negatives of the
nondiagonal elements b and c, and dividing each element by the determinant jPj.

Properties of Eigenvalues and Eigenvectors

Example 9.5 indicates the advantages of a diagonal representation (factorization) of a square matrix. In
the following theorem (proved in Problem 9.20), we list properties that help us to find such a
representation.
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THEOREM 9.6: Let A be a square matrix. Then the following are equivalent.

(i) A scalar l is an eigenvalue of A.

(ii) The matrix M ¼ A
 lI is singular.

(iii) The scalar l is a root of the characteristic polynomial DðtÞ of A.

The eigenspace El of an eigenvalue l is the solution space of the homogeneous system MX ¼ 0,
where M ¼ A
 lI ; that is, M is obtained by subtracting l down the diagonal of A.

Some matrices have no eigenvalues and hence no eigenvectors. However, using Theorem 9.6 and the
Fundamental Theorem of Algebra (every polynomial over the complex field C has a root), we obtain the
following result.

THEOREM 9.7: Let A be a square matrix over the complex field C. Then A has at least one eigenvalue.

The following theorems will be used subsequently. (The theorem equivalent to Theorem 9.8 for linear
operators is proved in Problem 9.21, and Theorem 9.9 is proved in Problem 9.22.)

THEOREM 9.8: Suppose v1; v2; . . . ; vn are nonzero eigenvectors of a matrix A belonging to distinct
eigenvalues l1; l2; . . . ; ln. Then v1; v2; . . . ; vn are linearly independent.

THEOREM 9.9: Suppose the characteristic polynomial DðtÞ of an n-square matrix A is a product of n
distinct factors, say, DðtÞ ¼ ðt 
 a1Þðt 
 a2Þ � � � ðt 
 anÞ. Then A is similar to the
diagonal matrix D ¼ diagða1; a2; . . . ; anÞ.

If l is an eigenvalue of a matrix A, then the algebraic multiplicity of l is defined to be the multiplicity
of l as a root of the characteristic polynomial of A, and the geometric multiplicity of l is defined to be the
dimension of its eigenspace, dim El. The following theorem (whose equivalent for linear operators is
proved in Problem 9.23) holds.

THEOREM 9.10: The geometric multiplicity of an eigenvalue l of a matrix A does not exceed its
algebraic multiplicity.

Diagonalization of Linear Operators

Consider a linear operator T :V ! V . Then T is said to be diagonalizable if it can be represented by a
diagonal matrix D. Thus, T is diagonalizable if and only if there exists a basis S ¼ fu1; u2; . . . ; ung of V
for which

Tðu1Þ ¼ k1u1

Tðu2Þ ¼ k2u2

:::::::::::::::::::::::::::::::::::::::
TðunÞ ¼ knun

In such a case, T is represented by the diagonal matrix

D ¼ diagðk1; k2; . . . ; knÞ
relative to the basis S.

The above observation leads us to the following definitions and theorems, which are analogous to the
definitions and theorems for matrices discussed above.

DEFINITION: Let T be a linear operator. A scalar l is called an eigenvalue of T if there exists a
nonzero vector v such that TðvÞ ¼ lv.
Every vector satisfying this relation is called an eigenvector of T belonging to the
eigenvalue l.
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The set El of all eigenvectors belonging to an eigenvalue l is a subspace of V , called the
eigenspace of l. (Alternatively, l is an eigenvalue of T if lI 
 T is singular, and, in this case, El is the
kernel of lI 
 T .) The algebraic and geometric multiplicities of an eigenvalue l of a linear operator T are
defined in the same way as those of an eigenvalue of a matrix A.

The following theorems apply to a linear operator T on a vector space V of finite dimension.

THEOREM 9.50: T can be represented by a diagonal matrix D if and only if there exists a basis S of V
consisting of eigenvectors of T . In this case, the diagonal elements of D are the
corresponding eigenvalues.

THEOREM 9.60: Let T be a linear operator. Then the following are equivalent:

(i) A scalar l is an eigenvalue of T .

(ii) The linear operator lI 
 T is singular.

(iii) The scalar l is a root of the characteristic polynomial DðtÞ of T .

THEOREM 9.70: Suppose V is a complex vector space. Then T has at least one eigenvalue.

THEOREM 9.80: Suppose v1; v2; . . . ; vn are nonzero eigenvectors of a linear operator T belonging to
distinct eigenvalues l1; l2; . . . ; ln. Then v1; v2; . . . ; vn are linearly independent.

THEOREM 9.90: Suppose the characteristic polynomial DðtÞ of T is a product of n distinct factors, say,
DðtÞ ¼ ðt 
 a1Þðt 
 a2Þ � � � ðt 
 anÞ. Then T can be represented by the diagonal
matrix D ¼ diagða1; a2; . . . ; anÞ.

THEOREM 9.100: The geometric multiplicity of an eigenvalue l of T does not exceed its algebraic
multiplicity.

Remark: The following theorem reduces the investigation of the diagonalization of a linear
operator T to the diagonalization of a matrix A.

THEOREM 9.11: Suppose A is a matrix representation of T . Then T is diagonalizable if and only if A
is diagonalizable.

9.5 Computing Eigenvalues and Eigenvectors, Diagonalizing Matrices

This section gives an algorithm for computing eigenvalues and eigenvectors for a given square matrix A
and for determining whether or not a nonsingular matrix P exists such that P
1AP is diagonal.

ALGORITHM 9.1: (Diagonalization Algorithm) The input is an n-square matrix A.

Step 1. Find the characteristic polynomial DðtÞ of A.

Step 2. Find the roots of DðtÞ to obtain the eigenvalues of A.

Step 3. Repeat (a) and (b) for each eigenvalue l of A.

(a) Form the matrix M ¼ A
 lI by subtracting l down the diagonal of A.

(b) Find a basis for the solution space of the homogeneous system MX ¼ 0. (These basis
vectors are linearly independent eigenvectors of A belonging to l.)
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Step 4. Consider the collection S ¼ fv1; v2; . . . ; vmg of all eigenvectors obtained in Step 3.

(a) If m 6¼ n, then A is not diagonalizable.

(b) If m ¼ n, then A is diagonalizable. Specifically, let P be the matrix whose columns are the
eigenvectors v1; v2; . . . ; vn. Then

D ¼ P
1AP ¼ diagðl1; l2; . . . ; lnÞ
where li is the eigenvalue corresponding to the eigenvector vi.

EXAMPLE 9.6 The diagonalization algorithm is applied to A ¼ 4 2
3 
1

� �
,

(1) The characteristic polynomial D(t) of A is computed:

trðAÞ ¼ 4
 1 ¼ 3; jAj ¼ 
4
 6 ¼ 
10; so DðtÞ ¼ t2 
 3t 
 10 ¼ ðt 
 5Þðt þ 2Þ
(2) Set D(t)¼ t27 3t7 10¼ (t7 5)(tþ 2)¼ 0. The roots l1¼ 5 and l2¼ 2 are the eigenvalues of A.

(3) (i) We find an eigenvector v1 of A belonging to the eigenvalue l1¼ 5. Subtract l1¼ 5 down the diagonal
of A to obtain the matrix

M ¼ 
1 2
3 
6

� �
and the homogeneous system


xþ 2y ¼ 0

3x
 6y ¼ 0
or 
 xþ 2y ¼ 0

The system has only one independent solution, for example, v1¼ (2, 1).
(ii) We find an eigenvector v2 of A belonging to the eigenvalue l2¼ 72. Subtract 72 (or add 2)

down the diagonal of A to obtain the matrix

M ¼ 6 2
3 1

� �
and the homogeneous system

6xþ 2y ¼ 0

3xþ y ¼ 0
or 3xþ y ¼ 0

The system has only one independent solution, for example, v2 ¼ (71, 3).

(4) Let P be the matrix whose columns are the eigenvectors v1 and v2. Then P ¼ 2 
1
1 3

� �
. Thus

D ¼ P71AP is the diagonal matrix whose diagonal entries are the corresponding eigenvalues:

D ¼ P
1AP ¼ 3/7 1/7


1/7 2/7

� �
4 2

3 
1

� �
2 
1

1 3

� �
¼ 5 0

0 
2

� �

Remark: Find a 26 2 matrix A with eigenvalues l1¼ 2 and l2¼ 3 and corresponding eigenvectors

v1¼ (1, 3) and v2¼ (1, 4). We know that P71AP¼D where P¼ 1 1
3 4

� �
and D ¼ 2 0

0 3

� �
.

[Here P71¼ 4 
1

3 1

� �
.] Thus A ¼ PDP71¼ 1 1

3 4

� �
2 0
0 3

� �
4 
1

3 1

� �
¼ 
1 1

12 6

� �
.

EXAMPLE 9.7 Consider the matrix B ¼ 5 
1
1 3

� �
. We have

trðBÞ ¼ 5þ 3 ¼ 8; jBj ¼ 15þ 1 ¼ 16; so DðtÞ ¼ t2 
 8t þ 16 ¼ ðt 
 4Þ2

Accordingly, l ¼ 4 is the only eigenvalue of B.
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Subtract l ¼ 4 down the diagonal of B to obtain the matrix

M ¼ 1 
1
1 
1

� �
and the homogeneous system

x
 y ¼ 0
x
 y ¼ 0

or x
 y ¼ 0

The system has only one independent solution; for example, x ¼ 1; y ¼ 1. Thus, v ¼ ð1; 1Þ and its multiples are the
only eigenvectors of B. Accordingly, B is not diagonalizable, because there does not exist a basis consisting of
eigenvectors of B.

EXAMPLE 9.8 Consider the matrix A ¼ 3 
5
2 
3

� �
. Here trðAÞ ¼ 3
 3 ¼ 0 and jAj ¼ 
9þ 10 ¼ 1. Thus,

DðtÞ ¼ t2 þ 1 is the characteristic polynomial of A. We consider two cases:

(a) A is a matrix over the real field R. Then DðtÞ has no (real) roots. Thus, A has no eigenvalues and no
eigenvectors, and so A is not diagonalizable.

(b) A is a matrix over the complex field C. Then DðtÞ ¼ ðt 
 iÞðt þ iÞ has two roots, i and 
i. Thus, A has two
distinct eigenvalues i and 
i, and hence, A has two independent eigenvectors. Accordingly there exists a
nonsingular matrix P over the complex field C for which

P
1AP ¼ i 0
0 
i

� �
Therefore, A is diagonalizable (over C).

9.6 Diagonalizing Real Symmetric Matrices and Quadratic Forms

There are many real matrices A that are not diagonalizable. In fact, some real matrices may not have any
(real) eigenvalues. However, if A is a real symmetric matrix, then these problems do not exist. Namely,
we have the following theorems.

THEOREM 9.12: Let A be a real symmetric matrix. Then each root l of its characteristic polynomial is
real.

THEOREM 9.13: Let A be a real symmetric matrix. Suppose u and v are eigenvectors of A belonging
to distinct eigenvalues l1 and l2. Then u and v are orthogonal, that; is, hu; vi ¼ 0.

The above two theorems give us the following fundamental result.

THEOREM 9.14: Let A be a real symmetric matrix. Then there exists an orthogonal matrix P such that
D ¼ P
1AP is diagonal.

The orthogonal matrix P is obtained by normalizing a basis of orthogonal eigenvectors of A as
illustrated below. In such a case, we say that A is ‘‘orthogonally diagonalizable.’’

EXAMPLE 9.9 Let A ¼ 2 
2

2 5

� �
, a real symmetric matrix. Find an orthogonal matrix P such that P
1AP is

diagonal.
First we find the characteristic polynomial DðtÞ of A. We have

trðAÞ ¼ 2þ 5 ¼ 7; jAj ¼ 10
 4 ¼ 6; so DðtÞ ¼ t2 
 7t þ 6 ¼ ðt 
 6Þðt 
 1Þ
Accordingly, l1 ¼ 6 and l2 ¼ 1 are the eigenvalues of A.

(a) Subtracting l1 ¼ 6 down the diagonal of A yields the matrix

M ¼ 
4 
2

2 
1

� �
and the homogeneous system


4x
 2y ¼ 0

2x
 y ¼ 0

or 2xþ y ¼ 0

A nonzero solution is u1 ¼ ð1;
2Þ.
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(b) Subtracting l2 ¼ 1 down the diagonal of A yields the matrix

M ¼ 1 
2

2 4

� �
and the homogeneous system x
 2y ¼ 0

(The second equation drops out, because it is a multiple of the first equation.) A nonzero solution is
u2 ¼ ð2; 1Þ.

As expected from Theorem 9.13, u1 and u2 are orthogonal. Normalizing u1 and u2 yields the orthonormal vectors

û1 ¼ ð1=
ffiffiffi
5
p

;
2=
ffiffiffi
5
p
Þ and û2 ¼ ð2=

ffiffiffi
5
p

; 1=
ffiffiffi
5
p
Þ

Finally, let P be the matrix whose columns are û1 and û2, respectively. Then

P ¼ 1=
ffiffiffi
5
p

2=
ffiffiffi
5
p


2=
ffiffiffi
5
p

1=
ffiffiffi
5
p

� �
and P
1AP ¼ 6 0

0 1

� �
As expected, the diagonal entries of P
1AP are the eigenvalues corresponding to the columns of P.

The procedure in the above Example 9.9 is formalized in the following algorithm, which finds an
orthogonal matrix P such that P
1AP is diagonal.

ALGORITHM 9.2: (Orthogonal Diagonalization Algorithm) The input is a real symmetric matrix A.

Step 1. Find the characteristic polynomial DðtÞ of A.

Step 2. Find the eigenvalues of A, which are the roots of DðtÞ.

Step 3. For each eigenvalue l of A in Step 2, find an orthogonal basis of its eigenspace.

Step 4. Normalize all eigenvectors in Step 3, which then forms an orthonormal basis of Rn.

Step 5. Let P be the matrix whose columns are the normalized eigenvectors in Step 4.

Application to Quadratic Forms

Let q be a real polynomial in variables x1; x2; . . . ; xn such that every term in q has degree two; that is,

qðx1; x2; . . . ; xnÞ ¼
P

i
cix

2
i þ

P
i<j

dijxixj; where ci; dij 2 R

Then q is called a quadratic form. If there are no cross-product terms xixj (i.e., all dij ¼ 0), then q is said
to be diagonal.

The above quadratic form q determines a real symmetric matrix A ¼ ½aij�, where aii ¼ ci and
aij ¼ aji ¼ 1

2 dij. Namely, q can be written in the matrix form

qðX Þ ¼ X T AX

where X ¼ ½x1; x2; . . . ; xn�T is the column vector of the variables. Furthermore, suppose X ¼ PY is a
linear substitution of the variables. Then substitution in the quadratic form yields

qðY Þ ¼ ðPY ÞT AðPY Þ ¼ Y T ðPT APÞY
Thus, PT AP is the matrix representation of q in the new variables.

We seek an orthogonal matrix P such that the orthogonal substitution X ¼ PY yields a diagonal
quadratic form for which PT AP is diagonal. Because P is orthogonal, PT ¼ P
1, and hence,
PT AP ¼ P
1AP. The above theory yields such an orthogonal matrix P.
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EXAMPLE 9.10 Consider the quadratic form

qðx; yÞ ¼ 2x2 
 4xyþ 5y2 ¼ X T AX ; where A ¼ 2 
2

2 5

� �
and X ¼ x

y

� �
By Example 9.9,

P
1AP ¼ 6 0
0 1

� �
¼ PT AP; where P ¼ 1=

ffiffiffi
5
p

2=
ffiffiffi
5
p


2=
ffiffiffi
5
p

1=
ffiffiffi
5
p

" #
Let Y ¼ ½s; t�T : Then matrix P corresponds to the following linear orthogonal substitution x ¼ PY of the variables x
and y in terms of the variables s and t:

x ¼ 1ffiffiffi
5
p sþ 2ffiffiffi

5
p t; y ¼ 
 2ffiffiffi

5
p sþ 1ffiffiffi

5
p t

This substitution in qðx; yÞ yields the diagonal quadratic form qðs; tÞ ¼ 6s2 þ t2.

9.7 Minimal Polynomial

Let A be any square matrix. Let JðAÞ denote the collection of all polynomials f ðtÞ for which A is a root—
that is, for which f ðAÞ ¼ 0. The set JðAÞ is not empty, because the Cayley–Hamilton Theorem 9.1 tells us
that the characteristic polynomial DAðtÞ of A belongs to JðAÞ. Let mðtÞ denote the monic polynomial of
lowest degree in JðAÞ. (Such a polynomial mðtÞ exists and is unique.) We call mðtÞ the minimal
polynomial of the matrix A.

Remark: A polynomial f ðtÞ 6¼ 0 is monic if its leading coefficient equals one.

The following theorem (proved in Problem 9.33) holds.

THEOREM 9.15: The minimal polynomial mðtÞ of a matrix (linear operator) A divides every
polynomial that has A as a zero. In particular, mðtÞ divides the characteristic
polynomial DðtÞ of A.

There is an even stronger relationship between mðtÞ and DðtÞ.

THEOREM 9.16: The characteristic polynomial DðtÞ and the minimal polynomial mðtÞ of a matrix A
have the same irreducible factors.

This theorem (proved in Problem 9.35) does not say that mðtÞ ¼ DðtÞ, only that any irreducible factor
of one must divide the other. In particular, because a linear factor is irreducible, mðtÞ and DðtÞ have the
same linear factors. Hence, they have the same roots. Thus, we have the following theorem.

THEOREM 9.17: A scalar l is an eigenvalue of the matrix A if and only if l is a root of the minimal
polynomial of A.

EXAMPLE 9.11 Find the minimal polynomial mðtÞ of A ¼
2 2 
5
3 7 
15
1 2 
4

24 35.

First find the characteristic polynomial DðtÞ of A. We have

trðAÞ ¼ 5; A11 þ A22 þ A33 ¼ 2
 3þ 8 ¼ 7; and jAj ¼ 3

Hence,

DðtÞ ¼ t3 
 5t2 þ 7t 
 3 ¼ ðt 
 1Þ2ðt 
 3Þ
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The minimal polynomial mðtÞ must divide DðtÞ. Also, each irreducible factor of DðtÞ (i.e., t 
 1 and t 
 3) must
also be a factor of mðtÞ. Thus, mðtÞ is exactly one of the following:

f ðtÞ ¼ ðt 
 3Þðt 
 1Þ or gðtÞ ¼ ðt 
 3Þðt 
 1Þ2

We know, by the Cayley–Hamilton theorem, that gðAÞ ¼ DðAÞ ¼ 0. Hence, we need only test f ðtÞ. We have

f ðAÞ ¼ ðA
 IÞðA
 3IÞ ¼
1 2 
5
3 6 
15
1 2 
5

24 35 
1 2 
5
3 4 
15
1 2 
7

24 35 ¼ 0 0 0
0 0 0
0 0 0

24 35
Thus, f ðtÞ ¼ mðtÞ ¼ ðt 
 1Þðt 
 3Þ ¼ t2 
 4t þ 3 is the minimal polynomial of A.

EXAMPLE 9.12

(a) Consider the following two r-square matrices, where a 6¼ 0:

Jðl; rÞ ¼

l 1 0 . . . 0 0
0 l 1 . . . 0 0
:::::::::::::::::::::::::::::::::

0 0 0 . . . l 1
0 0 0 . . . 0 l

266664
377775 and A ¼

l a 0 . . . 0 0
0 l a . . . 0 0
:::::::::::::::::::::::::::::::::

0 0 0 . . . l a
0 0 0 . . . 0 l

266664
377775

The first matrix, called a Jordan Block, has l’s on the diagonal, 1’s on the superdiagonal (consisting of the
entries above the diagonal entries), and 0’s elsewhere. The second matrix A has l’s on the diagonal, a’s on the
superdiagonal, and 0’s elsewhere. [Thus, A is a generalization of Jðl; rÞ.] One can show that

f ðtÞ ¼ ðt 
 lÞr

is both the characteristic and minimal polynomial of both Jðl; rÞ and A.

(b) Consider an arbitrary monic polynomial:

f ðtÞ ¼ tn þ an
1tn
1 þ � � � þ a1t þ a0

Let Cð f Þ be the n-square matrix with 1’s on the subdiagonal (consisting of the entries below the diagonal
entries), the negatives of the coefficients in the last column, and 0’s elsewhere as follows:

Cð f Þ ¼

0 0 . . . 0 
a0

1 0 . . . 0 
a1

0 1 . . . 0 
a2

::::::::::::::::::::::::::::::::::
0 0 . . . 1 
an
1

266664
377775

Then Cð f Þ is called the companion matrix of the polynomial f ðtÞ. Moreover, the minimal polynomial mðtÞ and
the characteristic polynomial DðtÞ of the companion matrix Cð f Þ are both equal to the original polynomial f ðtÞ.

Minimal Polynomial of a Linear Operator

The minimal polynomial mðtÞ of a linear operator T is defined to be the monic polynomial of lowest
degree for which T is a root. However, for any polynomial f ðtÞ, we have

f ðTÞ ¼ 0 if and only if f ðAÞ ¼ 0

where A is any matrix representation of T . Accordingly, T and A have the same minimal polynomials.
Thus, the above theorems on the minimal polynomial of a matrix also hold for the minimal polynomial of
a linear operator. That is, we have the following theorems.

THEOREM 9.150: The minimal polynomial mðtÞ of a linear operator T divides every polynomial that
has T as a root. In particular, mðtÞ divides the characteristic polynomial DðtÞ of T .
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THEOREM 9.160: The characteristic and minimal polynomials of a linear operator T have the same
irreducible factors.

THEOREM 9.170: A scalar l is an eigenvalue of a linear operator T if and only if l is a root of the
minimal polynomial mðtÞ of T .

9.8 Characteristic and Minimal Polynomials of Block Matrices

This section discusses the relationship of the characteristic polynomial and the minimal polynomial to
certain (square) block matrices.

Characteristic Polynomial and Block Triangular Matrices

Suppose M is a block triangular matrix, say M ¼ A1 B
0 A2

� �
, where A1 and A2 are square matrices. Then

tI 
M is also a block triangular matrix, with diagonal blocks tI 
 A1 and tI 
 A2. Thus,

jtI 
M j ¼ tI 
 A1 
B
0 tI 
 A2

���� ���� ¼ jtI 
 A1jjtI 
 A2j

That is, the characteristic polynomial of M is the product of the characteristic polynomials of the diagonal
blocks A1 and A2.

By induction, we obtain the following useful result.

THEOREM 9.18: Suppose M is a block triangular matrix with diagonal blocks A1;A2; . . . ;Ar. Then the
characteristic polynomial of M is the product of the characteristic polynomials of the
diagonal blocks Ai; that is,

DMðtÞ ¼ DA1
ðtÞDA2

ðtÞ . . .DAr
ðtÞ

EXAMPLE 9.13 Consider the matrix M ¼
9 
1 5 7
8 3 2 
4
0 0 3 6
0 0 
1 8

2664
3775.

Then M is a block triangular matrix with diagonal blocks A ¼ 9 
1
8 3

� �
and B ¼ 3 6


1 8

� �
. Here

trðAÞ ¼ 9þ 3 ¼ 12;
trðBÞ ¼ 3þ 8 ¼ 11;

detðAÞ ¼ 27þ 8 ¼ 35;
detðBÞ ¼ 24þ 6 ¼ 30;

and so
and so

DAðtÞ ¼ t2 
 12t þ 35 ¼ ðt 
 5Þðt 
 7Þ
DBðtÞ ¼ t2 
 11t þ 30 ¼ ðt 
 5Þðt 
 6Þ

Accordingly, the characteristic polynomial of M is the product

DMðtÞ ¼ DAðtÞDBðtÞ ¼ ðt 
 5Þ2ðt 
 6Þðt 
 7Þ

Minimal Polynomial and Block Diagonal Matrices

The following theorem (proved in Problem 9.36) holds.

THEOREM 9.19: Suppose M is a block diagonal matrix with diagonal blocks A1;A2; . . . ;Ar. Then the
minimal polynomial of M is equal to the least common multiple (LCM) of the
minimal polynomials of the diagonal blocks Ai.

Remark: We emphasize that this theorem applies to block diagonal matrices, whereas the
analogous Theorem 9.18 on characteristic polynomials applies to block triangular matrices.
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EXAMPLE 9.14 Find the characteristic polynomal DðtÞ and the minimal polynomial mðtÞ of the block diagonal
matrix:

M ¼

2 5 0 0 0
0 2 0 0 0
0 0 4 2 0
0 0 3 5 0
0 0 0 0 7

266664
377775 ¼ diagðA1;A2;A3Þ;where A1 ¼ 2 5

0 2

� �
;A2 ¼ 4 2

3 5

� �
;A3 ¼ ½7�

Then DðtÞ is the product of the characterization polynomials D1ðtÞ, D2ðtÞ, D3ðtÞ of A1; A2; A3, respectively.
One can show that

D1ðtÞ ¼ ðt 
 2Þ2; D2ðtÞ ¼ ðt 
 2Þðt 
 7Þ; D3ðtÞ ¼ t 
 7

Thus, DðtÞ ¼ ðt 
 2Þ3ðt 
 7Þ2. [As expected, deg DðtÞ ¼ 5:�
The minimal polynomials m1ðtÞ, m2ðtÞ, m3ðtÞ of the diagonal blocks A1;A2;A3, respectively, are equal to the

characteristic polynomials; that is,

m1ðtÞ ¼ ðt 
 2Þ2; m2ðtÞ ¼ ðt 
 2Þðt 
 7Þ; m3ðtÞ ¼ t 
 7

But mðtÞ is equal to the least common multiple of m1ðtÞ;m2ðtÞ;m3ðtÞ. Thus, mðtÞ ¼ ðt 
 2Þ2ðt 
 7Þ.

SOLVED PROBLEMS

Polynomials of Matrices, Characteristic Polynomials

9.1. Let A ¼ 1 
2
4 5

� �
. Find f ðAÞ, where

ðaÞ f ðtÞ ¼ t2 
 3t þ 7; ðbÞ f ðtÞ ¼ t2 
 6t þ 13

First find A2 ¼ 1 
2
4 5

� �
1 
2
4 5

� �
¼ 
7 
12

24 17

� �
. Then

(a) f ðAÞ ¼ A2 
 3Aþ 7I ¼ 
7 
12
24 17

� �
þ 
3 6

12 
15

� �
þ 7 0

0 7

� �
¼ 
3 
6

12 9

� �
(b) f ðAÞ ¼ A2 
 6Aþ 13I ¼ 
7 
12

24 17

� �
þ 
6 12

24 
30

� �
þ 13 0

0 13

� �
¼ 0 0

0 0

� �
[Thus, A is a root of f ðtÞ.]

9.2. Find the characteristic polynomial DðtÞ of each of the following matrices:

(a) A ¼ 2 5
4 1

� �
, (b) B ¼ 7 
3

5 
2

� �
, (c) C ¼ 3 
2

9 
3

� �
Use the formula ðtÞ ¼ t2 
 trðMÞ t þ jM j for a 2� 2 matrix M :

(a) trðAÞ ¼ 2þ 1 ¼ 3, jAj ¼ 2
 20 ¼ 
18, so DðtÞ ¼ t2 
 3t 
 18

(b) trðBÞ ¼ 7
 2 ¼ 5, jBj ¼ 
14þ 15 ¼ 1, so DðtÞ ¼ t2 
 5t þ 1

(c) trðCÞ ¼ 3
 3 ¼ 0, jCj ¼ 
9þ 18 ¼ 9, so DðtÞ ¼ t2 þ 9

9.3. Find the characteristic polynomial DðtÞ of each of the following matrices:

(a) A ¼
1 2 3
3 0 4
6 4 5

24 35, (b) B ¼
1 6 
2

3 2 0

0 3 
4

24 35
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Use the formula DðtÞ ¼ t3 
 trðAÞt2 þ ðA11 þ A22 þ A33Þt 
 jAj, where Aii is the cofactor of aii in the
3� 3 matrix A ¼ ½aij�.
(a) trðAÞ ¼ 1þ 0þ 5 ¼ 6,

A11 ¼ 0 4
4 5

���� ���� ¼ 
16; A22 ¼ 1 3
6 5

���� ���� ¼ 
13; A33 ¼ 1 2
3 0

���� ���� ¼ 
6

A11 þ A22 þ A33 ¼ 
35, and jAj ¼ 48þ 36
 16
 30 ¼ 38

Thus; DðtÞ ¼ t3 
 6t2 
 35t 
 38

(b) trðBÞ ¼ 1þ 2
 4 ¼ 
1

B11 ¼ 2 0
3 
4

���� ���� ¼ 
8; B22 ¼ 1 
2
0 
4

���� ���� ¼ 
4; B33 ¼ 1 6

3 2

���� ���� ¼ 20

B11 þ B22 þ B33 ¼ 8, and jBj ¼ 
8þ 18
 72 ¼ 
62

Thus; DðtÞ ¼ t3 þ t2 
 8t þ 62

9.4. Find the characteristic polynomial DðtÞ of each of the following matrices:

(a) A ¼
2 5 1 1
1 4 2 2
0 0 6 
5
0 0 2 3

2664
3775, (b) B ¼

1 1 2 2
0 3 3 4
0 0 5 5
0 0 0 6

2664
3775

(a) A is block triangular with diagonal blocks

A1 ¼
2 5

1 4

� �
and A2 ¼

6 
5

2 3

� �
Thus; DðtÞ ¼ DA1

ðtÞDA2
ðtÞ ¼ ðt2 
 6t þ 3Þðt2 
 9t þ 28Þ

(b) Because B is triangular, DðtÞ ¼ ðt 
 1Þðt 
 3Þðt 
 5Þðt 
 6Þ.
9.5. Find the characteristic polynomial DðtÞ of each of the following linear operators:

(a) F:R2 ! R2 defined by Fðx; yÞ ¼ ð3xþ 5y; 2x
 7yÞ.
(b) D:V ! V defined by Dð f Þ ¼ df =dt, where V is the space of functions with basis

S ¼ fsin t; cos tg.
The characteristic polynomial DðtÞ of a linear operator is equal to the characteristic polynomial of any

matrix A that represents the linear operator.

(a) Find the matrix A that represents T relative to the usual basis of R2. We have

A ¼ 3 5
2 
7

� �
; so DðtÞ ¼ t2 
 trðAÞ t þ jAj ¼ t2 þ 4t 
 31

(b) Find the matrix A representing the differential operator D relative to the basis S. We have

Dðsin tÞ ¼ cos t ¼ 0ðsin tÞ þ 1ðcos tÞ
Dðcos tÞ ¼ 
 sin t ¼ 
1ðsin tÞ þ 0ðcos tÞ and so A ¼ 0 
1

1 0

� �
DðtÞ ¼ t2 
 trðAÞ t þ jAj ¼ t2 þ 1Therefore;

9.6. Show that a matrix A and its transpose AT have the same characteristic polynomial.

By the transpose operation, ðtI 
 AÞT ¼ tIT 
 AT ¼ tI 
 AT . Because a matrix and its transpose have
the same determinant,

DAðtÞ ¼ jtI 
 Aj ¼ jðtI 
 AÞT j ¼ jtI 
 AT j ¼ DAT ðtÞ
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9.7. Prove Theorem 9.1: Let f and g be polynomials. For any square matrix A and scalar k,

(i) ð f þ gÞðAÞ ¼ f ðAÞ þ gðAÞ, (iii) ðkf ÞðAÞ ¼ kf ðAÞ,
(ii) ð fgÞðAÞ ¼ f ðAÞgðAÞ, (iv) f ðAÞgðAÞ ¼ gðAÞf ðAÞ.

Suppose f ¼ antn þ � � � þ a1t þ a0 and g ¼ bmtm þ � � � þ b1t þ b0. Then, by definition,

f ðAÞ ¼ anAn þ � � � þ a1Aþ a0I and gðAÞ ¼ bmAm þ � � � þ b1Aþ b0I

(i) Suppose m � n and let bi ¼ 0 if i > m. Then

f þ g ¼ ðan þ bnÞtn þ � � � þ ða1 þ b1Þt þ ða0 þ b0Þ
Hence,

ð f þ gÞðAÞ ¼ ðan þ bnÞAn þ � � � þ ða1 þ b1ÞAþ ða0 þ b0ÞI
¼ anA

n þ bnA
n þ � � � þ a1Aþ b1Aþ a0I þ b0I ¼ f ðAÞ þ gðAÞ

(ii) By definition, fg ¼ cnþmtnþm þ � � � þ c1t þ c0 ¼
Pnþm

k¼0

cktk , where

ck ¼ a0bk þ a1bk
1 þ � � � þ akb0 ¼
Pk
i¼0

aibk
i

Hence, ð fgÞðAÞ ¼ Pnþm

k¼0

ckAk and

f ðAÞgðAÞ ¼ Pn
i¼0

aiA
i

� ��Pm
j¼0

bjA
j

�
¼Pn

i¼0

Pm
j¼0

aibjA
iþj ¼ Pnþm

k¼0

ckAk ¼ ð fgÞðAÞ

(iii) By definition, kf ¼ kantn þ � � � þ ka1t þ ka0, and so

ðkf ÞðAÞ ¼ kanAn þ � � � þ ka1Aþ ka0I ¼ kðanAn þ � � � þ a1Aþ a0IÞ ¼ kf ðAÞ

(iv) By (ii), gðAÞf ðAÞ ¼ ðg f ÞðAÞ ¼ ð fgÞðAÞ ¼ f ðAÞgðAÞ.

9.8. Prove the Cayley–Hamilton Theorem 9.2: Every matrix A is a root of its characterstic polynomial
DðtÞ.

Let A be an arbitrary n-square matrix and let DðtÞ be its characteristic polynomial, say,

DðtÞ ¼ jtI 
 Aj ¼ tn þ an
1tn
1 þ � � � þ a1t þ a0

Now let BðtÞ denote the classical adjoint of the matrix tI 
 A. The elements of BðtÞ are cofactors of the
matrix tI 
 A and hence are polynomials in t of degree not exceeding n
 1. Thus,

BðtÞ ¼ Bn
1tn
1 þ � � � þ B1t þ B0

where the Bi are n-square matrices over K which are independent of t. By the fundamental property of the
classical adjoint (Theorem 8.9), ðtI 
 AÞBðtÞ ¼ jtI 
 AjI , or

ðtI 
 AÞðBn
1tn
1 þ � � � þ B1t þ B0Þ ¼ ðtn þ an
1tn
1 þ � � � þ a1t þ a0ÞI
Removing the parentheses and equating corresponding powers of t yields

Bn
1 ¼ I ; Bn
2 
 ABn
1 ¼ an
1I ; . . . ; B0 
 AB1 ¼ a1I ; 
AB0 ¼ a0I

Multiplying the above equations by An; An
1; . . . ; A; I , respectively, yields

AnBn
1 ¼ AnI ; An
1Bn
2 
 AnBn
1 ¼ an
1An
1; . . . ; AB0 
 A2B1 ¼ a1A; 
AB0 ¼ a0I

Adding the above matrix equations yields 0 on the left-hand side and DðAÞ on the right-hand side; that is,

0 ¼ An þ an
1An
1 þ � � � þ a1Aþ a0I

Therefore, DðAÞ ¼ 0, which is the Cayley–Hamilton theorem.
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Eigenvalues and Eigenvectors of 2�2 Matrices

9.9. Let A ¼ 3 
4
2 
6

� �
.

(a) Find all eigenvalues and corresponding eigenvectors.

(b) Find matrices P and D such that P is nonsingular and D ¼ P
1AP is diagonal.

(a) First find the characteristic polynomial DðtÞ of A:

DðtÞ ¼ t2 
 trðAÞ t þ jAj ¼ t2 þ 3t 
 10 ¼ ðt 
 2Þðt þ 5Þ
The roots l ¼ 2 and l ¼ 
5 of DðtÞ are the eigenvalues of A. We find corresponding eigenvectors.

(i) Subtract l ¼ 2 down the diagonal of A to obtain the matrix M ¼ A
 2I , where the corresponding
homogeneous system MX ¼ 0 yields the eigenvectors corresponding to l ¼ 2. We have

M ¼ 1 
4
2 
8

� �
; corresponding to

x
 4y ¼ 0
2x
 8y ¼ 0

or x
 4y ¼ 0

The system has only one free variable, and v1 ¼ ð4; 1Þ is a nonzero solution. Thus, v1 ¼ ð4; 1Þ is
an eigenvector belonging to (and spanning the eigenspace of) l ¼ 2.

(ii) Subtract l ¼ 
5 (or, equivalently, add 5) down the diagonal of A to obtain

M ¼ 8 
4
2 
1

� �
; corresponding to

8x
 4y ¼ 0
2x
 y ¼ 0

or 2x
 y ¼ 0

The system has only one free variable, and v2 ¼ ð1; 2Þ is a nonzero solution. Thus, v2 ¼ ð1; 2Þ is
an eigenvector belonging to l ¼ 5.

(b) Let P be the matrix whose columns are v1 and v2. Then

P ¼ 4 1
1 2

� �
and D ¼ P
1AP ¼ 2 0

0 
5

� �
Note that D is the diagonal matrix whose diagonal entries are the eigenvalues of A corresponding to the
eigenvectors appearing in P.

Remark: Here P is the change-of-basis matrix from the usual basis of R2 to the basis
S ¼ fv1; v2g, and D is the matrix that represents (the matrix function) A relative to the new basis S.

9.10. Let A ¼ 2 2
1 3

� �
.

(a) Find all eigenvalues and corresponding eigenvectors.

(b) Find a nonsingular matrix P such that D ¼ P
1AP is diagonal, and P
1.

(c) Find A6 and f ðAÞ, where t4 
 3t3 
 6t2 þ 7t þ 3.

(d) Find a ‘‘real cube root’’ of B—that is, a matrix B such that B3 ¼ A and B has real eigenvalues.

(a) First find the characteristic polynomial DðtÞ of A:

DðtÞ ¼ t2 
 trðAÞ t þ jAj ¼ t2 
 5t þ 4 ¼ ðt 
 1Þðt 
 4Þ
The roots l ¼ 1 and l ¼ 4 of DðtÞ are the eigenvalues of A. We find corresponding eigenvectors.

(i) Subtract l ¼ 1 down the diagonal of A to obtain the matrix M ¼ A
 lI , where the corresponding
homogeneous system MX ¼ 0 yields the eigenvectors belonging to l ¼ 1. We have

M ¼ 1 2
1 2

� �
; corresponding to

xþ 2y ¼ 0
xþ 2y ¼ 0

or xþ 2y ¼ 0
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The system has only one independent solution; for example, x ¼ 2, y ¼ 
1. Thus, v1 ¼ ð2;
1Þ is
an eigenvector belonging to (and spanning the eigenspace of) l ¼ 1.

(ii) Subtract l ¼ 4 down the diagonal of A to obtain

M ¼ 
2 2
1 
1

� �
; corresponding to


2xþ 2y ¼ 0
x
 y ¼ 0

or x
 y ¼ 0

The system has only one independent solution; for example, x ¼ 1, y ¼ 1. Thus, v2 ¼ ð1; 1Þ is an
eigenvector belonging to l ¼ 4.

(b) Let P be the matrix whose columns are v1 and v2. Then

P ¼ 2 1

1 1

� �
and D ¼ P
1AP ¼ 1 0

0 4

� �
; where P
1 ¼

1
3 
 1

3

1
3

2
3

" #

(c) Using the diagonal factorization A ¼ PDP
1, and 16 ¼ 1 and 46 ¼ 4096, we get

A6 ¼ PD6P
1 ¼ 2 1


1 1

" #
1 0

0 4096

" #
1
3 
 1

3

1
3

2
3

" #
¼ 1366 2230

1365 2731

" #

Also, f ð1Þ ¼ 2 and f ð4Þ ¼ 
1. Hence,

f ðAÞ ¼ Pf ðDÞP
1 ¼ 2 1


1 1

" #
2 0

0 
1

" #
1
3 
 1

3

1
3

2
3

" #
¼ 1 2


1 0

" #

(d) Here
1 0
0

ffiffiffi
43
p

� �
is the real cube root of D. Hence the real cube root of A is

B ¼ P
ffiffiffiffi
D

3
p

P
1 ¼ 2 1


1 1

" #
1 0

0
ffiffiffi
43
p

" #
1
3 
 1

3

1
3

2
3

" #
¼ 1

3

2þ ffiffiffi
43
p 
2þ 2

ffiffiffi
43
p


1þ ffiffiffi
43
p

1þ 2
ffiffiffi
43
p

" #

9.11. Each of the following real matrices defines a linear transformation on R2:

(a) A ¼ 5 6
3 
2

� �
, (b) B ¼ 1 
1

2 
1

� �
, (c) C ¼ 5 
1

1 3

� �
Find, for each matrix, all eigenvalues and a maximum set S of linearly independent eigenvectors.
Which of these linear operators are diagonalizable—that is, which can be represented by a
diagonal matrix?

(a) First find DðtÞ ¼ t2 
 3t 
 28 ¼ ðt 
 7Þðt þ 4Þ. The roots l ¼ 7 and l ¼ 
4 are the eigenvalues of A.
We find corresponding eigenvectors.

(i) Subtract l ¼ 7 down the diagonal of A to obtain

M ¼ 
2 6
3 
9

� �
; corresponding to


2xþ 6y ¼ 0
3x
 9y ¼ 0

or x
 3y ¼ 0

Here v1 ¼ ð3; 1Þ is a nonzero solution.

(ii) Subtract l ¼ 
4 (or add 4) down the diagonal of A to obtain

M ¼ 9 6
3 2

� �
; corresponding to

9xþ 6y ¼ 0
3xþ 2y ¼ 0

or 3xþ 2y ¼ 0

Here v2 ¼ ð2;
3Þ is a nonzero solution.

Then S ¼ fv1; v2g ¼ fð3; 1Þ; ð2;
3Þg is a maximal set of linearly independent eigenvectors. Because S is
a basis of R2, A is diagonalizable. Using the basis S, A is represented by the diagonal matrix D ¼ diagð7;
4Þ.

(b) First find the characteristic polynomial DðtÞ ¼ t2 þ 1. There are no real roots. Thus B, a real matrix
representing a linear transformation on R2, has no eigenvalues and no eigenvectors. Hence, in particular,
B is not diagonalizable.
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(c) First find DðtÞ ¼ t2 
 8t þ 16 ¼ ðt 
 4Þ2. Thus, l ¼ 4 is the only eigenvalue of C. Subtract l ¼ 4 down
the diagonal of C to obtain

M ¼ 1 
1
1 
1

� �
; corresponding to x
 y ¼ 0

The homogeneous system has only one independent solution; for example, x ¼ 1, y ¼ 1. Thus,
v ¼ ð1; 1Þ is an eigenvector of C. Furthermore, as there are no other eigenvalues, the singleton set
S ¼ fvg ¼ fð1; 1Þg is a maximal set of linearly independent eigenvectors of C. Furthermore, because S
is not a basis of R2, C is not diagonalizable.

9.12. Suppose the matrix B in Problem 9.11 represents a linear operator on complex space C2. Show
that, in this case, B is diagonalizable by finding a basis S of C2 consisting of eigenvectors of B.

The characteristic polynomial of B is still DðtÞ ¼ t2 þ 1. As a polynomial over C, DðtÞ does factor;
specifically, DðtÞ ¼ ðt 
 iÞðt þ iÞ. Thus, l ¼ i and l ¼ 
i are the eigenvalues of B.

(i) Subtract l ¼ i down the diagonal of B to obtain the homogeneous system

ð1
 iÞx
 y ¼ 0
2xþ ð
1
 iÞy ¼ 0

or ð1
 iÞx
 y ¼ 0

The system has only one independent solution; for example, x ¼ 1, y ¼ 1
 i. Thus, v1 ¼ ð1; 1
 iÞ is
an eigenvector that spans the eigenspace of l ¼ i.

(ii) Subtract l ¼ 
i (or add i) down the diagonal of B to obtain the homogeneous system

ð1þ iÞx
 y ¼ 0
2xþ ð
1þ iÞy ¼ 0

or ð1þ iÞx
 y ¼ 0

The system has only one independent solution; for example, x ¼ 1, y ¼ 1þ i. Thus, v2 ¼ ð1; 1þ iÞ is
an eigenvector that spans the eigenspace of l ¼ 
i.

As a complex matrix, B is diagonalizable. Specifically, S ¼ fv1; v2g ¼ fð1; 1
 iÞ; ð1; 1þ iÞg is a basis of
C2 consisting of eigenvectors of B. Using this basis S, B is represented by the diagonal matrix
D ¼ diagði;
iÞ.

9.13. Let L be the linear transformation on R2 that reflects each point P across the line y ¼ kx, where
k > 0. (See Fig. 9-1.)

(a) Show that v1 ¼ ðk; 1Þ and v2 ¼ ð1;
kÞ are eigenvectors of L.

(b) Show that L is diagonalizable, and find a diagonal representation D.

(a) The vector v1 ¼ ðk; 1Þ lies on the line y ¼ kx, and hence is left fixed by L; that is, Lðv1Þ ¼ v1. Thus, v1

is an eigenvector of L belonging to the eigenvalue l1 ¼ 1.
The vector v2 ¼ ð1;
kÞ is perpendicular to the line y ¼ kx, and hence, L reflects v2 into its

negative; that is, Lðv2Þ ¼ 
v2. Thus, v2 is an eigenvector of L belonging to the eigenvalue l2 ¼ 
1.

y

x0

L P( )

P

L( )v2

v2y k= x

Figure 9-1
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(b) Here S ¼ fv1; v2g is a basis of R2 consisting of eigenvectors of L. Thus, L is diagonalizable, with the

diagonal representation D ¼ 1 0
0 
1

� �
(relative to the basis S).

Eigenvalues and Eigenvectors

9.14. Let A ¼
4 1 
1
2 5 
2
1 1 2

24 35: (a) Find all eigenvalues of A.

(b) Find a maximum set S of linearly independent eigenvectors of A.

(c) Is A diagonalizable? If yes, find P such that D ¼ P
1AP is diagonal.

(a) First find the characteristic polynomial DðtÞ of A. We have

trðAÞ ¼ 4þ 5þ 2 ¼ 11 and jAj ¼ 40
 2
 2þ 5þ 8
 4 ¼ 45

Also, find each cofactor Aii of aii in A:

A11 ¼ 5 
2
1 2

���� ���� ¼ 12; A22 ¼ 4 
1
1 2

���� ���� ¼ 9; A33 ¼ 4 1
2 5

���� ���� ¼ 18

Hence; DðtÞ ¼ t3 
 trðAÞ t2 þ ðA11 þ A22 þ A33Þt 
 jAj ¼ t3 
 11t2 þ 39t 
 45

Assuming Dt has a rational root, it must be among �1, �3, �5, �9, �15, �45. Testing, by
synthetic division, we get

3 1
 11þ 39
 45

3
 24þ 45

1
 8þ 15þ 0

Thus, t ¼ 3 is a root of DðtÞ. Also, t 
 3 is a factor and t2 
 8t þ 15 is a factor. Hence,

DðtÞ ¼ ðt 
 3Þðt2 
 8t þ 15Þ ¼ ðt 
 3Þðt 
 5Þðt 
 3Þ ¼ ðt 
 3Þ2ðt 
 5Þ
Accordingly, l ¼ 3 and l ¼ 5 are eigenvalues of A.

(b) Find linearly independent eigenvectors for each eigenvalue of A.

(i) Subtract l ¼ 3 down the diagonal of A to obtain the matrix

M ¼
1 1 
1
2 2 
2
1 1 
1

24 35; corresponding to xþ y
 z ¼ 0

Here u ¼ ð1;
1; 0Þ and v ¼ ð1; 0; 1Þ are linearly independent solutions.

(ii) Subtract l ¼ 5 down the diagonal of A to obtain the matrix

M ¼

1 1 
1

2 0 
2
1 1 
3

24 35; corresponding to

xþ y
 z ¼ 0
2x
 2z ¼ 0
xþ y
 3z ¼ 0

or
x 
 z ¼ 0

y
 2z ¼ 0

Only z is a free variable. Here w ¼ ð1; 2; 1Þ is a solution.

Thus, S ¼ fu; v;wg ¼ fð1;
1; 0Þ; ð1; 0; 1Þ; ð1; 2; 1Þg is a maximal set of linearly independent
eigenvectors of A.

Remark: The vectors u and v were chosen so that they were independent solutions of the system
xþ y
 z ¼ 0. On the other hand, w is automatically independent of u and v because w belongs to a
different eigenvalue of A. Thus, the three vectors are linearly independent.
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(c) A is diagonalizable, because it has three linearly independent eigenvectors. Let P be the matrix with
columns u; v;w. Then

P ¼
1 1 1

1 0 2

0 1 1

24 35 and D ¼ P
1AP ¼
3

3
5

24 35

9.15. Repeat Problem 9.14 for the matrix B ¼
3 
1 1
7 
5 1
6 
6 2

24 35.

(a) First find the characteristic polynomial DðtÞ of B. We have

trðBÞ ¼ 0; jBj ¼ 
16; B11 ¼ 
4; B22 ¼ 0; B33 ¼ 
8; so
P

i
Bii ¼ 
12

Therefore, DðtÞ ¼ t3 
 12t þ 16 ¼ ðt 
 2Þ2ðt þ 4Þ. Thus, l1 ¼ 2 and l2 ¼ 
4 are the eigen-
values of B.

(b) Find a basis for the eigenspace of each eigenvalue of B.

(i) Subtract l1 ¼ 2 down the diagonal of B to obtain

M ¼
1 
1 1
7 
7 1
6 
6 0

24 35; corresponding to
x
 yþ z ¼ 0

7x
 7yþ z ¼ 0
6x
 6y ¼ 0

or
x
 yþ z ¼ 0

z ¼ 0

The system has only one independent solution; for example, x ¼ 1, y ¼ 1, z ¼ 0. Thus,
u ¼ ð1; 1; 0Þ forms a basis for the eigenspace of l1 ¼ 2.

(ii) Subtract l2 ¼ 
4 (or add 4) down the diagonal of B to obtain

M ¼
7 
1 1
7 
1 1
6 
6 6

24 35; corresponding to
7x
 yþ z ¼ 0
7x
 yþ z ¼ 0
6x
 6yþ 6z ¼ 0

or
x
 yþ z ¼ 0

6y
 6z ¼ 0

The system has only one independent solution; for example, x ¼ 0, y ¼ 1, z ¼ 1. Thus,
v ¼ ð0; 1; 1Þ forms a basis for the eigenspace of l2 ¼ 
4.

Thus S ¼ fu; vg is a maximal set of linearly independent eigenvectors of B.

(c) Because B has at most two linearly independent eigenvectors, B is not similar to a diagonal matrix; that
is, B is not diagonalizable.

9.16. Find the algebraic and geometric multiplicities of the eigenvalue l1 ¼ 2 of the matrix B in
Problem 9.15.

The algebraic multiplicity of l1 ¼ 2 is 2, because t 
 2 appears with exponent 2 in DðtÞ. However, the
geometric multiplicity of l1 ¼ 2 is 1, because dim El1

¼ 1 (where El1
is the eigenspace of l1).

9.17. Let T :R3 ! R3 be defined by Tðx; y; zÞ ¼ ð2xþ y
 2z; 2xþ 3y
 4z; xþ y
 zÞ. Find all
eigenvalues of T , and find a basis of each eigenspace. Is T diagonalizable? If so, find the basis S of
R3 that diagonalizes T ; and find its diagonal representation D.

First find the matrix A that represents T relative to the usual basis of R3 by writing down the coefficients
of x; y; z as rows, and then find the characteristic polynomial of A (and T ). We have

A ¼ ½T � ¼
2 1 
2
2 3 
4
1 1 
1

24 35 and

trðAÞ ¼ 4; jAj ¼ 2
A11 ¼ 1; A22 ¼ 0; A33 ¼ 4P

i

Aii ¼ 5

Therefore, DðtÞ ¼ t3 
 4t2 þ 5t 
 2 ¼ ðt 
 1Þ2ðt 
 2Þ, and so l ¼ 1 and l ¼ 2 are the eigenvalues of A (and
T ). We next find linearly independent eigenvectors for each eigenvalue of A.
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(i) Subtract l ¼ 1 down the diagonal of A to obtain the matrix

M ¼
1 1 
2
2 2 
4
1 1 
2

24 35; corresponding to xþ y
 2z ¼ 0

Here y and z are free variables, and so there are two linearly independent eigenvectors belonging
to l ¼ 1. For example, u ¼ ð1;
1; 0Þ and v ¼ ð2; 0; 1Þ are two such eigenvectors.

(ii) Subtract l ¼ 2 down the diagonal of A to obtain

M ¼
0 1 
2
2 1 
4
1 1 
3

24 35; corresponding to
y
 2z ¼ 0

2xþ y
 4z ¼ 0
xþ y
 3z ¼ 0

or
xþ y
 3z ¼ 0

y
 2z ¼ 0

Only z is a free variable. Here w ¼ ð1; 2; 1Þ is a solution.

Thus, T is diagonalizable, because it has three independent eigenvectors. Specifically, choosing

S ¼ fu; v;wg ¼ fð1;
1; 0Þ; ð2; 0; 1Þ; ð1; 2; 1Þg
as a basis, T is represented by the diagonal matrix D ¼ diagð1; 1; 2Þ.

9.18. Prove the following for a linear operator (matrix) T :

(a) The scalar 0 is an eigenvalue of T if and only if T is singular.

(b) If l is an eigenvalue of T , where T is invertible, then l
1 is an eigenvalue of T
1.

(a) We have that 0 is an eigenvalue of T if and only if there is a vector v 6¼ 0 such that TðvÞ ¼ 0v—that is, if
and only if T is singular.

(b) Because T is invertible, it is nonsingular; hence, by (a), l 6¼ 0. By definition of an eigenvalue, there
exists v 6¼ 0 such that TðvÞ ¼ lv. Applying T
1 to both sides, we obtain

v ¼ T
1ðlvÞ ¼ lT
1ðvÞ; and so T
1ðvÞ ¼ l
1v

Therefore, l
1 is an eigenvalue of T
1.

9.19. Let l be an eigenvalue of a linear operator T :V ! V , and let El consists of all the eigenvectors
belonging to l (called the eigenspace of l). Prove that El is a subspace of V . That is, prove

(a) If u 2 El, then ku 2 El for any scalar k. (b) If u; v;2 El, then uþ v 2 El.

(a) Because u 2 El, we have TðuÞ ¼ lu. Then TðkuÞ ¼ kTðuÞ ¼ kðluÞ ¼ lðkuÞ; and so ku 2 El:
(We view the zero vector 0 2 V as an ‘‘eigenvector’’ of l in order for El to be a subspace of V .)

(b) As u; v 2 El, we have TðuÞ ¼ lu and TðvÞ ¼ lv. Then
Tðuþ vÞ ¼ TðuÞ þ TðvÞ ¼ luþ lv ¼ lðuþ vÞ; and so uþ v 2 El

9.20. Prove Theorem 9.6: The following are equivalent: (i) The scalar l is an eigenvalue of A.

(ii) The matrix lI 
 A is singular.

(iii) The scalar l is a root of the characteristic polynomial DðtÞ of A.

The scalar l is an eigenvalue of A if and only if there exists a nonzero vector v such that

Av ¼ lv or ðlIÞv 
 Av ¼ 0 or ðlI 
 AÞv ¼ 0

or lI 
 A is singular. In such a case, l is a root of DðtÞ ¼ jtI 
 Aj. Also, v is in the eigenspace El of l if and
only if the above relations hold. Hence, v is a solution of ðlI 
 AÞX ¼ 0.

9.21. Prove Theorem 9.80: Suppose v1; v2; . . . ; vn are nonzero eigenvectors of T belonging to distinct
eigenvalues l1; l2; . . . ; ln. Then v1; v2; . . . ; vn are linearly independent.
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Suppose the theorem is not true. Let v1; v2; . . . ; vs be a minimal set of vectors for which the theorem is
not true. We have s > 1, because v1 6¼ 0. Also, by the minimality condition, v2; . . . ; vs are linearly
independent. Thus, v1 is a linear combination of v2; . . . ; vs, say,

v1 ¼ a2v2 þ a3v3 þ � � � þ asvs ð1Þ
(where some ak 6¼ 0Þ. Applying T to (1) and using the linearity of T yields

Tðv1Þ ¼ Tða2v2 þ a3v3 þ � � � þ asvsÞ ¼ a2Tðv2Þ þ a3Tðv3Þ þ � � � þ asTðvsÞ ð2Þ
Because vj is an eigenvector of T belonging to lj, we have TðvjÞ ¼ ljvj. Substituting in (2) yields

l1v1 ¼ a2l2v2 þ a3l3v3 þ � � � þ aslsvs ð3Þ
Multiplying (1) by l1 yields

l1v1 ¼ a2l1v2 þ a3l1v3 þ � � � þ asl1vs ð4Þ
Setting the right-hand sides of (3) and (4) equal to each other, or subtracting (3) from (4) yields

a2ðl1 
 l2Þv2 þ a3ðl1 
 l3Þv3 þ � � � þ asðl1 
 lsÞvs ¼ 0 ð5Þ
Because v2; v3; . . . ; vs are linearly independent, the coefficients in (5) must all be zero. That is,

a2ðl1 
 l2Þ ¼ 0; a3ðl1 
 l3Þ ¼ 0; . . . ; asðl1 
 lsÞ ¼ 0

However, the li are distinct. Hence l1 
 lj 6¼ 0 for j > 1. Hence, a2 ¼ 0, a3 ¼ 0; . . . ; as ¼ 0. This
contradicts the fact that some ak 6¼ 0. The theorem is proved.

9.22. Prove Theorem 9.9. Suppose DðtÞ ¼ ðt 
 a1Þðt 
 a2Þ . . . ðt 
 anÞ is the characteristic polynomial
of an n-square matrix A, and suppose the n roots ai are distinct. Then A is similar to the diagonal
matrix D ¼ diagða1; a2; . . . ; anÞ.

Let v1; v2; . . . ; vn be (nonzero) eigenvectors corresponding to the eigenvalues ai. Then the n eigenvectors
vi are linearly independent (Theorem 9.8), and hence form a basis of Kn. Accordingly, A is diagonalizable
(i.e., A is similar to a diagonal matrix D), and the diagonal elements of D are the eigenvalues ai.

9.23. Prove Theorem 9.100: The geometric multiplicity of an eigenvalue l of T does not exceed its
algebraic multiplicity.

Suppose the geometric multiplicity of l is r. Then its eigenspace El contains r linearly independent
eigenvectors v1; . . . ; vr. Extend the set fvig to a basis of V , say, fvi; . . . ; vr;w1; . . . ;wsg. We have

Tðv1Þ ¼ lv1; Tðv2Þ ¼ lv2; . . . ; TðvrÞ ¼ lvr;

Tðw1Þ ¼ a11v1 þ � � � þ a1rvr þ b11w1 þ � � � þ b1sws

Tðw2Þ ¼ a21v1 þ � � � þ a2rvr þ b21w1 þ � � � þ b2sws

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

TðwsÞ ¼ as1v1 þ � � � þ asrvr þ bs1w1 þ � � � þ bssws

Then M ¼ lIr A
0 B

� �
is the matrix of T in the above basis, where A ¼ ½aij�T and B ¼ ½bij�T :

Because M is block diagonal, the characteristic polynomial ðt 
 lÞr of the block lIr must divide the
characteristic polynomial of M and hence of T . Thus, the algebraic multiplicity of l for T is at least r, as
required.

Diagonalizing Real Symmetric Matrices and Quadratic Forms

9.24. Let A ¼ 7 3
3 
1

� �
. Find an orthogonal matrix P such that D ¼ P
1AP is diagonal.
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First find the characteristic polynomial DðtÞ of A. We have

DðtÞ ¼ t2 
 trðAÞ t þ jAj ¼ t2 
 6t 
 16 ¼ ðt 
 8Þðt þ 2Þ
Thus, the eigenvalues of A are l ¼ 8 and l ¼ 
2. We next find corresponding eigenvectors.

Subtract l ¼ 8 down the diagonal of A to obtain the matrix

M ¼ 
1 3
3 
9

� �
; corresponding to


xþ 3y ¼ 0
3x
 9y ¼ 0

or x
 3y ¼ 0

A nonzero solution is u1 ¼ ð3; 1Þ.
Subtract l ¼ 
2 (or add 2) down the diagonal of A to obtain the matrix

M ¼ 9 3
3 1

� �
; corresponding to

9xþ 3y ¼ 0
3xþ y ¼ 0

or 3xþ y ¼ 0

A nonzero solution is u2 ¼ ð1;
3Þ.
As expected, because A is symmetric, the eigenvectors u1 and u2 are orthogonal. Normalize u1 and u2 to

obtain, respectively, the unit vectors

û1 ¼ ð3=
ffiffiffiffiffi
10
p

; 1=
ffiffiffiffiffi
10
p
Þ and û2 ¼ ð1=

ffiffiffiffiffi
10
p

;
3=
ffiffiffiffiffi
10
p
Þ:

Finally, let P be the matrix whose columns are the unit vectors û1 and û2, respectively. Then

P ¼ 3=
ffiffiffiffiffi
10
p

1=
ffiffiffiffiffi
10
p

1=
ffiffiffiffiffi
10
p 
3=

ffiffiffiffiffi
10
p

" #
and D ¼ P
1AP ¼ 8 0

0 
2

� �
As expected, the diagonal entries in D are the eigenvalues of A.

9.25. Let B ¼
11 
8 4

8 
1 
2

4 
2 
4

24 35. (a) Find all eigenvalues of B.

(b) Find a maximal set S of nonzero orthogonal eigenvectors of B.

(c) Find an orthogonal matrix P such that D ¼ P
1BP is diagonal.

(a) First find the characteristic polynomial of B. We have

trðBÞ ¼ 6; jBj ¼ 400; B11 ¼ 0; B22 ¼ 
60; B33 ¼ 
75; so
P

i
Bii ¼ 
135

Hence, DðtÞ ¼ t3 
 6t2 
 135t 
 400. If DðtÞ has an integer root it must divide 400. Testing t ¼ 
5, by
synthetic division, yields


5 1
 6
 135
 400


 5þ 55þ 400

1
 11
 80þ 0

Thus, t þ 5 is a factor of DðtÞ, and t2 
 11t 
 80 is a factor. Thus,

DðtÞ ¼ ðt þ 5Þðt2 
 11t 
 80Þ ¼ ðt þ 5Þ2ðt 
 16Þ
The eigenvalues of B are l ¼ 
5 (multiplicity 2), and l ¼ 16 (multiplicity 1).

(b) Find an orthogonal basis for each eigenspace. Subtract l ¼ 
5 (or, add 5) down the diagonal of B to
obtain the homogeneous system

16x
 8yþ 4z ¼ 0; 
8xþ 4y
 2z ¼ 0; 4x
 2yþ z ¼ 0

That is, 4x
 2yþ z ¼ 0. The system has two independent solutions. One solution is v1 ¼ ð0; 1; 2Þ. We
seek a second solution v2 ¼ ða; b; cÞ, which is orthogonal to v1, such that

4a
 2bþ c ¼ 0; and also b
 2c ¼ 0
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One such solution is v2 ¼ ð
5;
8; 4Þ.
Subtract l ¼ 16 down the diagonal of B to obtain the homogeneous system


5x
 8yþ 4z ¼ 0; 
8x
 17y
 2z ¼ 0; 4x
 2y
 20z ¼ 0

This system yields a nonzero solution v3 ¼ ð4;
2; 1Þ. (As expected from Theorem 9.13, the
eigenvector v3 is orthogonal to v1 and v2.)

Then v1; v2; v3 form a maximal set of nonzero orthogonal eigenvectors of B.

(c) Normalize v1; v2; v3 to obtain the orthonormal basis:

v̂1 ¼ v1=
ffiffiffi
5
p

; v̂2 ¼ v2=
ffiffiffiffiffiffiffiffi
105
p

; v̂3 ¼ v3=
ffiffiffiffiffi
21
p

Then P is the matrix whose columns are v̂1; v̂2; v̂3. Thus,

P ¼
0 
5=

ffiffiffiffiffiffiffiffi
105
p

4=
ffiffiffiffiffi
21
p

1=
ffiffiffi
5
p 
8=

ffiffiffiffiffiffiffiffi
105
p 
2=

ffiffiffiffiffi
21
p

2=
ffiffiffi
5
p

4=
ffiffiffiffiffiffiffiffi
105
p

1=
ffiffiffiffiffi
21
p

264
375 and D ¼ P
1BP ¼


5


5

16

264
375

9.26. Let qðx; yÞ ¼ x2 þ 6xy
 7y2. Find an orthogonal substitution that diagonalizes q.

Find the symmetric matrix A that represents q and its characteristic polynomial DðtÞ. We have

A ¼ 1 3
3 
7

� �
and DðtÞ ¼ t2 þ 6t 
 16 ¼ ðt 
 2Þðt þ 8Þ

The eigenvalues of A are l ¼ 2 and l ¼ 
8. Thus, using s and t as new variables, a diagonal form of q is

qðs; tÞ ¼ 2s2 
 8t2

The corresponding orthogonal substitution is obtained by finding an orthogonal set of eigenvectors of A.

(i) Subtract l ¼ 2 down the diagonal of A to obtain the matrix

M ¼ 
1 3
3 
9

� �
; corresponding to


xþ 3y ¼ 0
3x
 9y ¼ 0

or 
 xþ 3y ¼ 0

A nonzero solution is u1 ¼ ð3; 1Þ.
(ii) Subtract l ¼ 
8 (or add 8) down the diagonal of A to obtain the matrix

M ¼ 9 3
3 1

� �
; corresponding to

9xþ 3y ¼ 0
3xþ y ¼ 0

or 3xþ y ¼ 0

A nonzero solution is u2 ¼ ð
1; 3Þ.
As expected, because A is symmetric, the eigenvectors u1 and u2 are orthogonal.

Now normalize u1 and u2 to obtain, respectively, the unit vectors

û1 ¼ ð3=
ffiffiffiffiffi
10
p

; 1=
ffiffiffiffiffi
10
p
Þ and û2 ¼ ð
1=

ffiffiffiffiffi
10
p

; 3=
ffiffiffiffiffi
10
p
Þ:

Finally, let P be the matrix whose columns are the unit vectors û1 and û2, respectively, and then
½x; y�T ¼ P½s; t�T is the required orthogonal change of coordinates. That is,

P ¼ 3=
ffiffiffiffiffi
10
p 
1=

ffiffiffiffiffi
10
p

1=
ffiffiffiffiffi
10
p

3=
ffiffiffiffiffi
10
p

�����
#

and x ¼ 3s
 tffiffiffiffiffi
10
p ; y ¼ sþ 3tffiffiffiffiffi

10
p

One can also express s and t in terms of x and y by using P
1 ¼ PT . That is,

s ¼ 3xþ yffiffiffiffiffi
10
p ; t ¼ 
xþ 3tffiffiffiffiffi

10
p
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Minimal Polynomial

9.27. Let A ¼
4 
2 2
6 
3 4
3 
2 3

24 35 and B ¼
3 
2 2
4 
4 6
2 
3 5

24 35. The characteristic polynomial of both matrices is

DðtÞ ¼ ðt 
 2Þðt 
 1Þ2. Find the minimal polynomial mðtÞ of each matrix.

The minimal polynomial mðtÞ must divide DðtÞ. Also, each factor of DðtÞ (i.e., t 
 2 and t 
 1) must
also be a factor of mðtÞ. Thus, mðtÞ must be exactly one of the following:

f ðtÞ ¼ ðt 
 2Þðt 
 1Þ or gðtÞ ¼ ðt 
 2Þðt 
 1Þ2

(a) By the Cayley–Hamilton theorem, gðAÞ ¼ DðAÞ ¼ 0, so we need only test f ðtÞ. We have

f ðAÞ ¼ ðA
 2IÞðA
 IÞ ¼
2 
2 2
6 
5 4
3 
2 1

24 35 3 
2 2
6 
4 4
3 
2 2

24 35 ¼ 0 0 0
0 0 0
0 0 0

24 35
Thus, mðtÞ ¼ f ðtÞ ¼ ðt 
 2Þðt 
 1Þ ¼ t2 
 3t þ 2 is the minimal polynomial of A.

(b) Again gðBÞ ¼ DðBÞ ¼ 0, so we need only test f ðtÞ. We get

f ðBÞ ¼ ðB
 2IÞðB
 IÞ ¼
1 
2 2
4 
6 6
2 
3 3

24 35 2 
2 2
4 
5 6
2 
3 4

24 35 ¼ 
2 2 
2

4 4 
4

2 2 
2

24 35 6¼ 0

Thus, mðtÞ 6¼ f ðtÞ. Accordingly, mðtÞ ¼ gðtÞ ¼ ðt 
 2Þðt 
 1Þ2 is the minimal polynomial of B. [We
emphasize that we do not need to compute gðBÞ; we know gðBÞ ¼ 0 from the Cayley–Hamilton theorem.]

9.28. Find the minimal polynomial mðtÞ of each of the following matrices:

(a) A ¼ 5 1
3 7

� �
, (b) B ¼

1 2 3
0 2 3
0 0 3

24 35, (c) C ¼ 4 
1
1 2

� �
(a) The characteristic polynomial of A is DðtÞ ¼ t2 
 12t þ 32 ¼ ðt 
 4Þðt 
 8Þ. Because DðtÞ has distinct

factors, the minimal polynomial mðtÞ ¼ DðtÞ ¼ t2 
 12t þ 32.

(b) Because B is triangular, its eigenvalues are the diagonal elements 1; 2; 3; and so its characteristic
polynomial is DðtÞ ¼ ðt 
 1Þðt 
 2Þðt 
 3Þ. Because DðtÞ has distinct factors, mðtÞ ¼ DðtÞ.

(c) The characteristic polynomial of C is DðtÞ ¼ t2 
 6t þ 9 ¼ ðt 
 3Þ2. Hence the minimal polynomial of C
is f ðtÞ ¼ t 
 3 or gðtÞ ¼ ðt 
 3Þ2. However, f ðCÞ 6¼ 0; that is, C 
 3I 6¼ 0. Hence,

mðtÞ ¼ gðtÞ ¼ DðtÞ ¼ ðt 
 3Þ2:

9.29. Suppose S ¼ fu1; u2; . . . ; ung is a basis of V , and suppose F and G are linear operators on V such
that ½F� has 0’s on and below the diagonal, and ½G� has a 6¼ 0 on the superdiagonal and 0’s
elsewhere. That is,

½F� ¼

0 a21 a31 . . . an1

0 0 a32 . . . an2

::::::::::::::::::::::::::::::::::::::::
0 0 0 . . . an;n
1

0 0 0 . . . 0

266664
377775; ½G� ¼

0 a 0 . . . 0
0 0 a . . . 0
:::::::::::::::::::::::::::
0 0 0 . . . a
0 0 0 . . . 0

266664
377775

Show that (a) Fn ¼ 0, (b) Gn
1 6¼ 0, but Gn ¼ 0. (These conditions also hold for ½F� and ½G�.)
(a) We have Fðu1Þ ¼ 0 and, for r > 1, FðurÞ is a linear combination of vectors preceding ur in S. That is,

FðurÞ ¼ ar1u1 þ ar2u2 þ � � � þ ar;r
1ur
1
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Hence, F2ðurÞ ¼ FðFðurÞÞ is a linear combination of vectors preceding ur
1, and so on. Hence,
FrðurÞ ¼ 0 for each r. Thus, for each r, FnðurÞ ¼ Fn
rð0Þ ¼ 0, and so Fn ¼ 0, as claimed.

(b) We have Gðu1Þ ¼ 0 and, for each k > 1, GðukÞ ¼ auk
1. Hence, GrðukÞ ¼ aruk
r for r < k. Because a 6¼ 0,
an
1 6¼ 0. Therefore, Gn
1ðunÞ ¼ an
1u1 6¼ 0, and so Gn
1 6¼ 0. On the other hand, by (a), Gn ¼ 0.

9.30. Let B be the matrix in Example 9.12(a) that has 1’s on the diagonal, a’s on the superdiagonal,
where a 6¼ 0, and 0’s elsewhere. Show that f ðtÞ ¼ ðt 
 lÞn is both the characteristic polynomial
DðtÞ and the minimum polynomial mðtÞ of A.

Because A is triangular with l’s on the diagonal, DðtÞ ¼ f ðtÞ ¼ ðt 
 lÞn is its characteristic polynomial.
Thus, mðtÞ is a power of t 
 l. By Problem 9.29, ðA
 lIÞr
1 6¼ 0. Hence, mðtÞ ¼ DðtÞ ¼ ðt 
 lÞn.

9.31. Find the characteristic polynomial DðtÞ and minimal polynomial mðtÞ of each matrix:

(a) M ¼

4 1 0 0 0
0 4 1 0 0
0 0 4 0 0
0 0 0 4 1
0 0 0 0 4

266664
377775, (b) M 0 ¼

2 7 0 0
0 2 0 0
0 0 1 1
0 0 
2 4

2664
3775

(a) M is block diagonal with diagonal blocks

A ¼
4 1 0
0 4 1
0 0 4

24 35 and B ¼ 4 1
0 4

� �

The characteristic and minimal polynomial of A is f ðtÞ ¼ ðt 
 4Þ3 and the characteristic and minimal
polynomial of B is gðtÞ ¼ ðt 
 4Þ2. Then

DðtÞ ¼ f ðtÞgðtÞ ¼ ðt 
 4Þ5 but mðtÞ ¼ LCM½ f ðtÞ; gðtÞ� ¼ ðt 
 4Þ3

(where LCM means least common multiple). We emphasize that the exponent in mðtÞ is the size of the
largest block.

(b) Here M 0 is block diagonal with diagonal blocks A0 ¼ 2 7
0 2

� �
and B0 ¼ 1 1


2 4

� �
The char-

acteristic and minimal polynomial of A0 is f ðtÞ ¼ ðt 
 2Þ2. The characteristic polynomial of B0 is
gðtÞ ¼ t2 
 5t þ 6 ¼ ðt 
 2Þðt 
 3Þ, which has distinct factors. Hence, gðtÞ is also the minimal polynomial
of B. Accordingly,

DðtÞ ¼ f ðtÞgðtÞ ¼ ðt 
 2Þ3ðt 
 3Þ but mðtÞ ¼ LCM½ f ðtÞ; gðtÞ� ¼ ðt 
 2Þ2ðt 
 3Þ

9.32. Find a matrix A whose minimal polynomial is f ðtÞ ¼ t3 
 8t2 þ 5t þ 7.

Simply let A ¼
0 0 
7
1 0 
5
0 1 8

24 35, the companion matrix of f ðtÞ [defined in Example 9.12(b)].

9.33. Prove Theorem 9.15: The minimal polynomial mðtÞ of a matrix (linear operator) A divides every
polynomial that has A as a zero. In particular (by the Cayley–Hamilton theorem), mðtÞ divides the
characteristic polynomial DðtÞ of A.

Suppose f ðtÞ is a polynomial for which f ðAÞ ¼ 0. By the division algorithm, there exist polynomials
qðtÞ and rðtÞ for which f ðtÞ ¼ mðtÞqðtÞ þ rðtÞ and rðtÞ ¼ 0 or deg rðtÞ < deg mðtÞ. Substituting t ¼ A in this
equation, and using that f ðAÞ ¼ 0 and mðAÞ ¼ 0, we obtain rðAÞ ¼ 0. If rðtÞ 6¼ 0, then rðtÞ is a polynomial
of degree less than mðtÞ that has A as a zero. This contradicts the definition of the minimal polynomial. Thus,
rðtÞ ¼ 0, and so f ðtÞ ¼ mðtÞqðtÞ; that is, mðtÞ divides f ðtÞ.
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9.34. Let mðtÞ be the minimal polynomial of an n-square matrix A. Prove that the characteristic
polynomial DðtÞ of A divides ½mðtÞ�n.

Suppose mðtÞ ¼ tr þ c1tr
1 þ � � � þ cr
1t þ cr. Define matrices Bj as follows:

B0 ¼ I

B1 ¼ Aþ c1I

B2 ¼ A2 þ c1Aþ c2I

Br
1 ¼ Ar
1 þ c1A
r
2 þ � � � þ cr
1I

so
so
so

so

I ¼ B0

c1I ¼ B1 
 A ¼ B1 
 AB0

c2I ¼ B2 
 AðAþ c1IÞ ¼ B2 
 AB1

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
cr
1I ¼ Br
1 
 ABr
2

Then


ABr
1 ¼ crI 
 ðAr þ c1A
r
1 þ � � � þ cr
1Aþ crIÞ ¼ crI 
 mðAÞ ¼ crI

Set BðtÞ ¼ tr
1B0 þ tr
2B1 þ � � � þ tBr
2 þ Br
1

Then

ðtI 
 AÞBðtÞ ¼ ðtrB0 þ tr
1B1 þ � � � þ tBr
1Þ 
 ðtr
1AB0 þ tr
2AB1 þ � � � þ ABr
1Þ
¼ trB0 þ tr
1ðB1 
 AB0Þ þ tr
2ðB2 
 AB1Þ þ � � � þ tðBr
1 
 ABr
2Þ 
 ABr
1

¼ trI þ c1t
r
1I þ c2t

r
2I þ � � � þ cr
1tI þ crI ¼ mðtÞI
Taking the determinant of both sides gives jtI 
 AjjBðtÞj ¼ jmðtÞI j ¼ ½mðtÞ�n. Because jBðtÞj is a poly-
nomial, jtI 
 Aj divides ½mðtÞ�n; that is, the characteristic polynomial of A divides ½mðtÞ�n.

9.35. Prove Theorem 9.16: The characteristic polynomial DðtÞ and the minimal polynomial mðtÞ of A
have the same irreducible factors.

Suppose f ðtÞ is an irreducible polynomial. If f ðtÞ divides mðtÞ, then f ðtÞ also divides DðtÞ [because mðtÞ
divides DðtÞ�. On the other hand, if f ðtÞ divides DðtÞ, then by Problem 9.34, f ðtÞ also divides ½mðtÞ�n. But f ðtÞ
is irreducible; hence, f ðtÞ also divides mðtÞ. Thus, mðtÞ and DðtÞ have the same irreducible factors.

9.36. Prove Theorem 9.19: The minimal polynomial mðtÞ of a block diagonal matrix M with diagonal
blocks Ai is equal to the least common multiple (LCM) of the minimal polynomials of the
diagonal blocks Ai.

We prove the theorem for the case r ¼ 2. The general theorem follows easily by induction. Suppose

M ¼ A 0
0 B

� �
, where A and B are square matrices. We need to show that the minimal polynomial mðtÞ of M

is the LCM of the minimal polynomials gðtÞ and hðtÞ of A and B, respectively.

Because mðtÞ is the minimal polynomial of M ;mðMÞ ¼ mðAÞ 0
0 mðBÞ

� �
¼ 0, and mðAÞ ¼ 0 and

mðBÞ ¼ 0. Because gðtÞ is the minimal polynomial of A, gðtÞ divides mðtÞ. Similarly, hðtÞ divides mðtÞ. Thus
mðtÞ is a multiple of gðtÞ and hðtÞ.

Now let f ðtÞ be another multiple of gðtÞ and hðtÞ. Then f ðMÞ ¼ f ðAÞ 0
0 f ðBÞ

� �
¼ 0 0

0 0

� �
¼ 0. But

mðtÞ is the minimal polynomial of M ; hence, mðtÞ divides f ðtÞ. Thus, mðtÞ is the LCM of gðtÞ and hðtÞ.

9.37. Suppose mðtÞ ¼ tr þ ar
1tr
1 þ � � � þ a1t þ a0 is the minimal polynomial of an n-square matrix A.
Prove the following:

(a) A is nonsingular if and only if the constant term a0 6¼ 0.

(b) If A is nonsingular, then A
1 is a polynomial in A of degree r 
 1 < n.

(a) The following are equivalent: (i) A is nonsingular, (ii) 0 is not a root of mðtÞ, (iii) a0 6¼ 0. Thus, the
statement is true.
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(b) Because A is nonsingular, a0 6¼ 0 by (a). We have

mðAÞ ¼ Ar þ ar
1A
r
1 þ � � � þ a1Aþ a0I ¼ 0

Thus; 
 1

a0

ðAr
1 þ ar
1A
r
2 þ � � � þ a1IÞA ¼ I

Accordingly; A
1 ¼ 
 1

a0

ðAr
1 þ ar
1A
r
2 þ � � � þ a1IÞ

SUPPLEMENTARY PROBLEMS

Polynomials of Matrices

9.38. Let A ¼ 2 
3
5 1

� �
and B ¼ 1 2

0 3

� �
. Find f ðAÞ, gðAÞ, f ðBÞ, gðBÞ, where f ðtÞ ¼ 2t2 
 5t þ 6 and

gðtÞ ¼ t3 
 2t2 þ t þ 3.

9.39. Let A ¼ 1 2
0 1

� �
. Find A2, A3, An, where n > 3, and A
1.

9.40. Let B ¼
8 12 0
0 8 12
0 0 8

24 35. Find a real matrix A such that B ¼ A3.

9.41. For each matrix, find a polynomial having the following matrix as a root:

(a) A ¼ 2 5
1 
3

� �
, (b) B ¼ 2 
3

7 
4

� �
, (c) C ¼

1 1 2
1 2 3
2 1 4

24 35
9.42. Let A be any square matrix and let f ðtÞ be any polynomial. Prove (a) ðP
1APÞn ¼ P
1AnP.

(b) f ðP
1APÞ ¼ P
1f ðAÞP. (c) f ðAT Þ ¼ ½ f ðAÞ�T . (d) If A is symmetric, then f ðAÞ is symmetric.

9.43. Let M ¼ diag½A1; . . . ;Ar� be a block diagonal matrix, and let f ðtÞ be any polynomial. Show that f ðMÞ is
block diagonal and f ðMÞ ¼ diag½ f ðA1Þ; . . . ; f ðArÞ�:

9.44. Let M be a block triangular matrix with diagonal blocks A1; . . . ;Ar, and let f ðtÞ be any polynomial. Show
that f ðMÞ is also a block triangular matrix, with diagonal blocks f ðA1Þ; . . . ; f ðArÞ.

Eigenvalues and Eigenvectors

9.45. For each of the following matrices, find all eigenvalues and corresponding linearly independent eigen-
vectors:

(a) A ¼ 2 
3
2 
5

� �
, (b) B ¼ 2 4


1 6

� �
, (c) C ¼ 1 
4

3 
7

� �
When possible, find the nonsingular matrix P that diagonalizes the matrix.

9.46. Let A ¼ 2 
1

2 3

� �
.

(a) Find eigenvalues and corresponding eigenvectors.

(b) Find a nonsingular matrix P such that D ¼ P
1AP is diagonal.

(c) Find A8 and f ðAÞ where f ðtÞ ¼ t4 
 5t3 þ 7t2 
 2t þ 5.

(d) Find a matrix B such that B2 ¼ A.
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9.47. Repeat Problem 9.46 for A ¼ 5 6

2 
2

� �
.

9.48. For each of the following matrices, find all eigenvalues and a maximum set S of linearly independent
eigenvectors:

(a) A ¼
1 
3 3
3 
5 3
6 
6 4

24 35, (b) B ¼
3 
1 1
7 
5 1
6 
6 2

24 35, (c) C ¼
1 2 2
1 2 
1

1 1 4

24 35
Which matrices can be diagonalized, and why?

9.49. Find: (a) 26 2 matrix A with eigenvalues l1¼ 1 and l2¼ 72 and corresponding eigenvectors v1¼ (1, 2)

and v2 ¼ (3, 7).

(b) 36 3 matrix A with eigenvalues l1¼ 1, l2¼ 2, l2¼ 3 and corresponding eigenvectors v1¼ (1, 0, 1),

v2 ¼ (1, 1, 2), v3 ¼ (1, 2, 4). [Hint: See Problem 2.19.]

9.50. Let A ¼ a b
c d

� �
be a real matrix. Find necessary and sufficient conditions on a; b; c; d so that A is

diagonalizable—that is, so that A has two (real) linearly independent eigenvectors.

9.51. Show that matrices A and AT have the same eigenvalues. Give an example of a 2� 2 matrix A where A and
AT have different eigenvectors.

9.52. Suppose v is an eigenvector of linear operators F and G. Show that v is also an eigenvector of the linear
operator kF þ k0G, where k and k0 are scalars.

9.53. Suppose v is an eigenvector of a linear operator T belonging to the eigenvalue l. Prove

(a) For n > 0; v is an eigenvector of Tn belonging to ln.

(b) f ðlÞ is an eigenvalue of f ðTÞ for any polynomial f ðtÞ.

9.54. Suppose l 6¼ 0 is an eigenvalue of the composition F � G of linear operators F and G. Show that l is also an
eigenvalue of the composition G � F. [Hint: Show that GðvÞ is an eigenvector of G � F.]

9.55. Let E:V ! V be a projection mapping; that is, E2 ¼ E. Show that E is diagonalizable and, in fact, can be

represented by the diagonal matrix M ¼ Ir 0
0 0

� �
, where r is the rank of E.

Diagonalizing Real Symmetric Matrices and Quadratic Forms

9.56. For each of the following symmetric matrices A, find an orthogonal matrix P and a diagonal matrix D such
that D ¼ P
1AP:

(a) A ¼ 5 4
4 
1

� �
, (b) A ¼ 4 
1


1 4

� �
, (c) A ¼ 7 3

3 
1

� �
9.57. For each of the following symmetric matrices B, find its eigenvalues, a maximal orthogonal set S of

eigenvectors, and an orthogonal matrix P such that D ¼ P
1BP is diagonal:

(a) B ¼
0 1 1
1 0 1
1 1 0

24 35, (b) B ¼
2 2 4
2 5 8
4 8 17

24 35
9.58. Using variables s and t, find an orthogonal substitution that diagonalizes each of the following quadratic forms:

(a) qðx; yÞ ¼ 4x2 þ 8xy
 11y2, (b) qðx; yÞ ¼ 2x2 
 6xyþ 10y2

9.59. For each of the following quadratic forms qðx; y; zÞ, find an orthogonal substitution expressing x; y; z in terms
of variables r; s; t, and find qðr; s; tÞ:
(a) qðx; y; zÞ ¼ 5x2 þ 3y2 þ 12xz; (b) qðx; y; zÞ ¼ 3x2 
 4xyþ 6y2 þ 2xz
 4yzþ 3z2
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9.60. Find a real 2� 2 symmetric matrix A with eigenvalues:

(a) l ¼ 1 and l ¼ 4 and eigenvector u ¼ ð1; 1Þ belonging to l ¼ 1;

(b) l ¼ 2 and l ¼ 3 and eigenvector u ¼ ð1; 2Þ belonging to l ¼ 2.

In each case, find a matrix B for which B2 ¼ A.

Characteristic and Minimal Polynomials

9.61. Find the characteristic and minimal polynomials of each of the following matrices:

(a) A ¼
3 1 
1
2 4 
2

1 
1 3

24 35, (b) B ¼
3 2 
1
3 8 
3
3 6 
1

24 35
9.62. Find the characteristic and minimal polynomials of each of the following matrices:

(a) A ¼

2 5 0 0 0
0 2 0 0 0
0 0 4 2 0
0 0 3 5 0
0 0 0 0 7

266664
377775, (b) B ¼

4 
1 0 0 0
1 2 0 0 0
0 0 3 1 0
0 0 0 3 1
0 0 0 0 3

266664
377775, (c) C ¼

3 2 0 0 0
1 4 0 0 0
0 0 3 1 0
0 0 1 3 0
0 0 0 0 4

266664
377775

9.63. Let A ¼
1 1 0
0 2 0
0 0 1

24 35 and B ¼
2 0 0
0 2 2
0 0 1

24 35. Show that A and B have different characteristic polynomials

(and so are not similar) but have the same minimal polynomial. Thus, nonsimilar matrices may have the
same minimal polynomial.

9.64. Let A be an n-square matrix for which Ak ¼ 0 for some k > n. Show that An ¼ 0.

9.65. Show that a matrix A and its transpose AT have the same minimal polynomial.

9.66. Suppose f ðtÞ is an irreducible monic polynomial for which f ðAÞ ¼ 0 for a matrix A. Show that f ðtÞ is the
minimal polynomial of A.

9.67. Show that A is a scalar matrix kI if and only if the minimal polynomial of A is mðtÞ ¼ t 
 k.

9.68. Find a matrix A whose minimal polynomial is (a) t3 
 5t2 þ 6t þ 8, (b) t4 
 5t3 
 2t þ 7t þ 4.

9.69. Let f ðtÞ and gðtÞ be monic polynomials (leading coefficient one) of minimal degree for which A is a root.
Show f ðtÞ ¼ gðtÞ: [Thus, the minimal polynomial of A is unique.]

ANSWERS TO SUPPLEMENTARY PROBLEMS

Notation: M ¼ ½R1; R2; . . .� denotes a matrix M with rows R1;R2; . . . :

9.38. f ðAÞ ¼ ½
26;
3; 5;
27�, gðAÞ ¼ ½
40; 39; 
65;
27�,
f ðBÞ ¼ ½3; 6; 0; 9�, gðBÞ ¼ ½3; 12; 0; 15�

9.39. A2 ¼ ½1; 4; 0; 1�, A3 ¼ ½1; 6; 0; 1�, An ¼ ½1; 2n; 0; 1�, A
1 ¼ ½1;
2; 0; 1�

9.40. Let A ¼ ½2; a; b; 0; 2; c; 0; 0; 2�. Set B ¼ A3 and then a ¼ 1, b ¼ 
 1
2, c ¼ 1
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9.41. Find DðtÞ: (a) t2 þ t 
 11, (b) t2 þ 2t þ 13, (c) t3 
 7t2 þ 6t 
 1

9.45. (a) l ¼ 1; u ¼ ð3; 1Þ; l ¼ 
4; v ¼ ð1; 2Þ, (b) l ¼ 4; u ¼ ð2; 1Þ,
(c) l ¼ 
1; u ¼ ð2; 1Þ; l ¼ 
5; v ¼ ð2; 3Þ. Only A and C can be diagonalized; use P ¼ ½u; v�.

9.46. (a) l ¼ 1; u ¼ ð1; 1Þ; l ¼ 4; v ¼ ð1;
2Þ,
(b) P ¼ ½u; v�,
(c) f ðAÞ ¼ ½3; 1; 2; 1�; A8 ¼ ½21 846;
21 845; 
43 690; 43 691�,
(d) B ¼ 4

3 ;
 1
3 ; 
 2

3 ;
5
3

� �
9.47. (a) l ¼ 1; u ¼ ð3;
2Þ; l ¼ 2; v ¼ ð2;
1Þ, (b) P ¼ ½u; v�,

(c) f ðAÞ ¼ ½2;
6; 2; 9�; A8 ¼ ½1021; 1530; 
510;
764�,
(d) B ¼ ½
3þ 4

ffiffiffi
2
p

; 
6þ 6
ffiffiffi
2
p

; 2
 2
ffiffiffi
2
p

; 4
 3
ffiffiffi
2
p �

9.48. (a) l ¼ 
2; u ¼ ð1; 1; 0Þ; v ¼ ð1; 0;
1Þ; l ¼ 4;w ¼ ð1; 1; 2Þ,
(b) l ¼ 2; u ¼ ð1; 1; 0Þ; l ¼ 
4; v ¼ ð0; 1; 1Þ,
(c) l ¼ 3; u ¼ ð1; 1; 0Þ; v ¼ ð1; 0; 1Þ; l ¼ 1;w ¼ ð2;
1; 1Þ. Only A and C can be diagonalized; use

P ¼ ½u; v;w�:

9.49. (a) ½19;
9; 42;
20�, (b) ½1; 1; 0;
2; 0; 2;
4;
2; 5�

9.50. We need ½
trðAÞ�2 
 4½detðAÞ� � 0 or ða
 dÞ2 þ 4bc � 0.

9.51. A ¼ ½1; 1; 0; 1�

9.56. (a) P ¼ ½2;
1; 1; 2�= ffiffiffi
5
p

, D ¼ ½7; 0; 0; 3�,
(b) P ¼ ½1; 1; 1;
1�= ffiffiffi

2
p

, D ¼ ½3; 0; 0; 5�,
(c) P ¼ ½3;
1; 1; 3�= ffiffiffiffiffi

10
p

, D ¼ ½8; 0; 0; 2�

9.57. (a) l ¼ 
1; u ¼ ð1;
1; 0Þ; v ¼ ð1; 1;
2Þ; l ¼ 2; w ¼ ð1; 1; 1Þ,
(b) l ¼ 1; u ¼ ð2; 1;
1Þ; v ¼ ð2;
3; 1Þ; l ¼ 22; w ¼ ð1; 2; 4Þ;

Normalize u; v;w, obtaining û; v̂; ŵ, and set P ¼ ½û; v̂; ŵ�. (Remark: u and v are not unique.)

9.58. (a) x ¼ ð4sþ tÞ= ffiffiffiffiffi
17
p

; y ¼ ð
sþ 4tÞ= ffiffiffiffiffi
17
p

; qðs; tÞ ¼ 5s2 
 12t2,
(b) x ¼ ð3s
 tÞ= ffiffiffiffiffi

10
p

; y ¼ ðsþ 3tÞ= ffiffiffiffiffi
10
p

; qðs; tÞ ¼ s2 þ 11t2

9.59. (a) x ¼ ð3sþ 2tÞ= ffiffiffiffiffi
13
p

; y ¼ r; z ¼ ð2s
 3tÞ= ffiffiffiffiffi
13
p

; qðr; s; tÞ ¼ 3r2 þ 9s2 
 4t2,
(b) x ¼ 5Ksþ Lt; y ¼ Jr þ 2Ks
 2Lt; z ¼ 2Jr 
 Ks
 Lt, where J ¼ 1=

ffiffiffi
5
p

, K ¼ 1=
ffiffiffiffiffi
30
p

,
L ¼ 1=

ffiffiffi
6
p

; qðr; s; tÞ ¼ 2r2 þ 2s2 þ 8t2

9.60. (a) A ¼ 1
2 ½5;
3; 
3; 5�; B ¼ 1

2 ½3;
1; 
1; 3�,
(b) A ¼ 1

5 ½14;
2; 
2; 11�, B ¼ 1
5 ½

ffiffiffi
2
p þ 4

ffiffiffi
3
p

; 2
ffiffiffi
2
p 
 2

ffiffiffi
3
p

; 2
ffiffiffi
2
p 
 2

ffiffiffi
3
p

; 4
ffiffiffi
2
p þ ffiffiffi

3
p �

9.61. (a) DðtÞ ¼ mðtÞ ¼ ðt 
 2Þ2ðt 
 6Þ, (b) DðtÞ ¼ ðt 
 2Þ2ðt 
 6Þ; mðtÞ ¼ ðt 
 2Þðt 
 6Þ

9.62. (a) DðtÞ ¼ ðt 
 2Þ3ðt 
 7Þ2; mðtÞ ¼ ðt 
 2Þ2ðt 
 7Þ,
(b) DðtÞ ¼ ðt 
 3Þ5; mðtÞ ¼ ðt 
 3Þ3,
(c) DðtÞ ¼ ðt 
 2Þ2ðt 
 4Þ2ðt 
 5Þ; mðtÞ ¼ ðt 
 2Þðt 
 4Þðt 
 5Þ

9.68. Let A be the companion matrix [Example 9.12(b)] with last column: (a) ½
8;
6; 5�T , (b) ½
4;
7; 2; 5�T

9.69. Hint: A is a root of hðtÞ ¼ f ðtÞ 
 gðtÞ, where hðtÞ 
 0 or the degree of hðtÞ is less than the degree of f ðtÞ:
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Canonical Forms

10.1 Introduction

Let T be a linear operator on a vector space of finite dimension. As seen in Chapter 6, T may not have a
diagonal matrix representation. However, it is still possible to ‘‘simplify’’ the matrix representation of T
in a number of ways. This is the main topic of this chapter. In particular, we obtain the primary
decomposition theorem, and the triangular, Jordan, and rational canonical forms.

We comment that the triangular and Jordan canonical forms exist for T if and only if the characteristic
polynomial DðtÞ of T has all its roots in the base field K. This is always true if K is the complex field C
but may not be true if K is the real field R.

We also introduce the idea of a quotient space. This is a very powerful tool, and it will be used in the
proof of the existence of the triangular and rational canonical forms.

10.2 Triangular Form

Let T be a linear operator on an n-dimensional vector space V. Suppose T can be represented by the
triangular matrix

A ¼
a11 a12 . . . a1n

a22 . . . a2n

. . . . . .
ann

2664
3775

Then the characteristic polynomial DðtÞ of T is a product of linear factors; that is,

DðtÞ ¼ detðtI 
 AÞ ¼ ðt 
 a11Þðt 
 a22Þ � � � ðt 
 annÞ
The converse is also true and is an important theorem (proved in Problem 10.28).

THEOREM 10.1: Let T :V ! V be a linear operator whose characteristic polynomial factors into
linear polynomials. Then there exists a basis of V in which T is represented by a
triangular matrix.

THEOREM 10.1: (Alternative Form) Let A be a square matrix whose characteristic polynomial
factors into linear polynomials. Then A is similar to a triangular matrix—that is,
there exists an invertible matrix P such that P
1AP is triangular.

We say that an operator T can be brought into triangular form if it can be represented by a triangular
matrix. Note that in this case, the eigenvalues of T are precisely those entries appearing on the main
diagonal. We give an application of this remark.
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EXAMPLE 10.1 Let A be a square matrix over the complex field C. Suppose l is an eigenvalue of A2. Show thatffiffiffi
l
p

or 
 ffiffiffi
l
p

is an eigenvalue of A.
By Theorem 10.1, A and A2 are similar, respectively, to triangular matrices of the form

B ¼
m1 * . . . *

m2 . . . *
. . . . . .

mn

2664
3775 and B2 ¼

m2
1 * . . . *

m2
2 . . . *

. . . . . .
m2

n

2664
3775

Because similar matrices have the same eigenvalues, l ¼ m2
i for some i. Hence, mi ¼

ffiffiffi
l
p

or mi ¼ 

ffiffiffi
l
p

is an
eigenvalue of A.

10.3 Invariance

Let T :V ! V be linear. A subspace W of V is said to be invariant under T or T-invariant if T maps W
into itself—that is, if v 2 W implies TðvÞ 2 W. In this case, T restricted to W defines a linear operator on
W; that is, T induces a linear operator T̂ :W ! W defined by T̂ðwÞ ¼ TðwÞ for every w 2 W.

EXAMPLE 10.2

(a) Let T :R3 ! R3 be the following linear operator, which rotates each vector v about the z-axis by an angle y
(shown in Fig. 10-1):

Tðx; y; zÞ ¼ ðx cos y
 y sin y; x sin yþ y cos y; zÞ

Observe that each vector w ¼ ða; b; 0Þ in the xy-plane W remains in W under the mapping T ; hence, W is
T -invariant. Observe also that the z-axis U is invariant under T. Furthermore, the restriction of T to W rotates
each vector about the origin O, and the restriction of T to U is the identity mapping of U.

(b) Nonzero eigenvectors of a linear operator T :V ! V may be characterized as generators of T -invariant
one-dimensional subspaces. Suppose TðvÞ ¼ lv, v 6¼ 0. Then W ¼ fkv; k 2 Kg, the one-dimensional
subspace generated by v, is invariant under T because

TðkvÞ ¼ kTðvÞ ¼ kðlvÞ ¼ klv 2 W

Conversely, suppose dim U ¼ 1 and u 6¼ 0 spans U, and U is invariant under T. Then TðuÞ 2 U and so TðuÞ is a
multiple of u—that is, TðuÞ ¼ mu. Hence, u is an eigenvector of T.

The next theorem (proved in Problem 10.3) gives us an important class of invariant subspaces.

THEOREM 10.2: Let T :V ! V be any linear operator, and let f ðtÞ be any polynomial. Then the
kernel of f ðTÞ is invariant under T.

The notion of invariance is related to matrix representations (Problem 10.5) as follows.

THEOREM 10.3: Suppose W is an invariant subspace of T :V ! V. Then T has a block matrix repre-

sentation
A B
0 C

� �
, where A is a matrix representation of the restriction T̂ of T to W.

0

W

y

z

x

U

T( )v

T w( )

θ

θ

v

w

Figure 10-1
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10.4 Invariant Direct-Sum Decompositions

A vector space V is termed the direct sum of subspaces W1; . . . ;Wr, written

V ¼ W1 �W2 � . . .�Wr

if every vector v 2 V can be written uniquely in the form

v ¼ w1 þ w2 þ . . .þ wr; with wi 2 Wi

The following theorem (proved in Problem 10.7) holds.

THEOREM 10.4: Suppose W1;W2; . . . ;Wr are subspaces of V, and suppose

B1 ¼ fw11;w12; . . . ;w1n1
g; . . . ; Br ¼ fwr1;wr2; . . . ;wrnr

g
are bases of W1;W2; . . . ;Wr, respectively. Then V is the direct sum of the Wi if and
only if the union B ¼ B1 [ . . . [ Br is a basis of V.

Now suppose T :V ! V is linear and V is the direct sum of (nonzero) T -invariant subspaces
W1;W2; . . . ;Wr; that is,

V ¼ W1 � . . .�Wr and TðWiÞ � Wi; i ¼ 1; . . . ; r

Let Ti denote the restriction of T to Wi. Then T is said to be decomposable into the operators Ti or T is
said to be the direct sum of the Ti; written T ¼ T1 � . . .� Tr: Also, the subspaces W1; . . . ;Wr are said to
reduce T or to form a T-invariant direct-sum decomposition of V.

Consider the special case where two subspaces U and W reduce an operator T :V ! V ; say dim U ¼ 2
and dim W ¼ 3, and suppose fu1; u2g and fw1;w2;w3g are bases of U and W, respectively. If T1 and T2

denote the restrictions of T to U and W, respectively, then

T1ðu1Þ ¼ a11u1 þ a12u2

T1ðu2Þ ¼ a21u1 þ a22u2

T2ðw1Þ ¼ b11w1 þ b12w2 þ b13w3

T2ðw2Þ ¼ b21w1 þ b22w2 þ b23w3

T2ðw3Þ ¼ b31w1 þ b32w2 þ b33w3

Accordingly, the following matrices A;B;M are the matrix representations of T1, T2, T, respectively,

A ¼ a11 a21

a12 a22

� �
; B ¼

b11 b21 b31

b12 b22 b32

b13 b23 b33

24 35; M ¼ A 0
0 B

� �

The block diagonal matrix M results from the fact that fu1; u2;w1;w2;w3g is a basis of V (Theorem 10.4),
and that TðuiÞ ¼ T1ðuiÞ and TðwjÞ ¼ T2ðwjÞ.

A generalization of the above argument gives us the following theorem.

THEOREM 10.5: Suppose T :V ! V is linear and suppose V is the direct sum of T -invariant
subspaces, say, W1; . . . ;Wr. If Ai is a matrix representation of the restriction of
T to Wi, then T can be represented by the block diagonal matrix:

M ¼ diagðA1;A2; . . . ;ArÞ

10.5 Primary Decomposition

The following theorem shows that any operator T :V ! V is decomposable into operators whose
minimum polynomials are powers of irreducible polynomials. This is the first step in obtaining a
canonical form for T.
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THEOREM 10.6: (Primary Decomposition Theorem) Let T :V ! V be a linear operator with
minimal polynomial

mðtÞ ¼ f1ðtÞn1 f2ðtÞn2 � � � frðtÞnr

where the fiðtÞ are distinct monic irreducible polynomials. Then V is the direct sum
of T -invariant subspaces W1; . . . ;Wr, where Wi is the kernel of fiðTÞni . Moreover,
fiðtÞni is the minimal polynomial of the restriction of T to Wi.

The above polynomials fiðtÞni are relatively prime. Therefore, the above fundamental theorem
follows (Problem 10.11) from the next two theorems (proved in Problems 10.9 and 10.10, respectively).

THEOREM 10.7: Suppose T :V ! V is linear, and suppose f ðtÞ ¼ gðtÞhðtÞ are polynomials such that
f ðTÞ ¼ 0 and gðtÞ and hðtÞ are relatively prime. Then V is the direct sum of the
T -invariant subspace U and W, where U ¼ Ker gðTÞ and W ¼ Ker hðTÞ.

THEOREM 10.8: In Theorem 10.7, if f ðtÞ is the minimal polynomial of T [and gðtÞ and hðtÞ are
monic], then gðtÞ and hðtÞ are the minimal polynomials of the restrictions of T to U
and W, respectively.

We will also use the primary decomposition theorem to prove the following useful characterization of
diagonalizable operators (see Problem 10.12 for the proof).

THEOREM 10.9: A linear operator T :V ! V is diagonalizable if and only if its minimal polynomial
mðtÞ is a product of distinct linear polynomials.

THEOREM 10.9: (Alternative Form) A matrix A is similar to a diagonal matrix if and only if its
minimal polynomial is a product of distinct linear polynomials.

EXAMPLE 10.3 Suppose A 6¼ I is a square matrix for which A3 ¼ I . Determine whether or not A is similar to a
diagonal matrix if A is a matrix over: (i) the real field R, (ii) the complex field C.

Because A3 ¼ I , A is a zero of the polynomial f ðtÞ ¼ t3 
 1 ¼ ðt 
 1Þðt2 þ t þ 1Þ: The minimal polynomial mðtÞ
of A cannot be t 
 1, because A 6¼ I . Hence,

mðtÞ ¼ t2 þ t þ 1 or mðtÞ ¼ t3 
 1

Because neither polynomial is a product of linear polynomials over R, A is not diagonalizable over R. On the
other hand, each of the polynomials is a product of distinct linear polynomials over C. Hence, A is diagonalizable
over C.

10.6 Nilpotent Operators

A linear operator T :V ! V is termed nilpotent if Tn ¼ 0 for some positive integer n; we call k the index
of nilpotency of T if Tk ¼ 0 but Tk
1 6¼ 0: Analogously, a square matrix A is termed nilpotent if An ¼ 0
for some positive integer n, and of index k if Ak ¼ 0 but Ak
1 6¼ 0. Clearly the minimum polynomial of a
nilpotent operator (matrix) of index k is mðtÞ ¼ tk ; hence, 0 is its only eigenvalue.

EXAMPLE 10.4 The following two r-square matrices will be used throughout the chapter:

N ¼ NðrÞ ¼

0 1 0 . . . 0 0
0 0 1 . . . 0 0
::::::::::::::::::::::::::::::::

0 0 0 . . . 0 1
0 0 0 . . . 0 0

266664
377775 and JðlÞ ¼

l 1 0 . . . 0 0
0 l 1 . . . 0 0
::::::::::::::::::::::::::::::::

0 0 0 . . . l 1
0 0 0 . . . 0 l

266664
377775
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The first matrix N , called a Jordan nilpotent block, consists of 1’s above the diagonal (called the super-
diagonal), and 0’s elsewhere. It is a nilpotent matrix of index r. (The matrix N of order 1 is just the 1� 1 zero
matrix [0].)

The second matrix JðlÞ, called a Jordan block belonging to the eigenvalue l, consists of l’s on the diagonal, 1’s
on the superdiagonal, and 0’s elsewhere. Observe that

JðlÞ ¼ lI þ N

In fact, we will prove that any linear operator T can be decomposed into operators, each of which is the sum of a
scalar operator and a nilpotent operator.

The following (proved in Problem 10.16) is a fundamental result on nilpotent operators.

THEOREM 10.10: Let T :V ! V be a nilpotent operator of index k. Then T has a block diagonal
matrix representation in which each diagonal entry is a Jordan nilpotent block N .
There is at least one N of order k, and all other N are of orders �k. The number of
N of each possible order is uniquely determined by T. The total number of N of all
orders is equal to the nullity of T.

The proof of Theorem 10.10 shows that the number of N of order i is equal to 2mi 
 miþ1 
 mi
1,
where mi is the nullity of Ti.

10.7 Jordan Canonical Form

An operator T can be put into Jordan canonical form if its characteristic and minimal polynomials factor
into linear polynomials. This is always true if K is the complex field C. In any case, we can always extend
the base field K to a field in which the characteristic and minimal polynomials do factor into linear
factors; thus, in a broad sense, every operator has a Jordan canonical form. Analogously, every matrix is
similar to a matrix in Jordan canonical form.

The following theorem (proved in Problem 10.18) describes the Jordan canonical form J of a linear
operator T.

THEOREM 10.11: Let T :V ! V be a linear operator whose characteristic and minimal polynomials
are, respectively,

DðtÞ ¼ ðt 
 l1Þn1 � � � ðt 
 lrÞnr and mðtÞ ¼ ðt 
 l1Þm1 � � � ðt 
 lrÞmr

where the li are distinct scalars. Then T has a block diagonal matrix representa-
tion J in which each diagonal entry is a Jordan block Jij ¼ JðliÞ. For each lij, the
corresponding Jij have the following properties:

(i) There is at least one Jij of order mi; all other Jij are of order �mi.

(ii) The sum of the orders of the Jij is ni.

(iii) The number of Jij equals the geometric multiplicity of li.

(iv) The number of Jij of each possible order is uniquely determined by T.

EXAMPLE 10.5 Suppose the characteristic and minimal polynomials of an operator T are, respec-
tively,

DðtÞ ¼ ðt 
 2Þ4ðt 
 5Þ3 and mðtÞ ¼ ðt 
 2Þ2ðt 
 5Þ3
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Then the Jordan canonical form of T is one of the following block diagonal matrices:

diag
2 1
0 2

� �
;

2 1
0 2

� �
;

5 1 0
0 5 1
0 0 5

24 350@ 1A or diag
2 1
0 2

� �
; ½2�; ½2�;

5 1 0
0 5 1
0 0 5

24 350@ 1A
The first matrix occurs if T has two independent eigenvectors belonging to the eigenvalue 2; and the second matrix
occurs if T has three independent eigenvectors belonging to the eigenvalue 2.

10.8 Cyclic Subspaces

Let T be a linear operator on a vector space V of finite dimension over K . Suppose v 2 V and v 6¼ 0. The
set of all vectors of the form f ðTÞðvÞ, where f ðtÞ ranges over all polynomials over K, is a T -invariant
subspace of V called the T-cyclic subspace of V generated by v; we denote it by Zðv; TÞ and denote the
restriction of T to Zðv;TÞ by Tv: By Problem 10.56, we could equivalently define Zðv; TÞ as the
intersection of all T -invariant subspaces of V containing v.

Now consider the sequence

v; TðvÞ; T2ðvÞ; T3ðvÞ; . . .

of powers of T acting on v. Let k be the least integer such that TkðvÞ is a linear combination of those
vectors that precede it in the sequence, say,

TkðvÞ ¼ 
ak
1Tk
1ðvÞ 
 � � � 
 a1TðvÞ 
 a0v

mvðtÞ ¼ tk þ ak
1tk
1 þ � � � þ a1t þ a0

Then

is the unique monic polynomial of lowest degree for which mvðTÞðvÞ ¼ 0. We call mvðtÞ the
T-annihilator of v and Zðv; TÞ.

The following theorem (proved in Problem 10.29) holds.

THEOREM 10.12: Let Zðv;TÞ, Tv , mvðtÞ be defined as above. Then

(i) The set fv; TðvÞ; . . . ; Tk
1ðvÞg is a basis of Zðv; TÞ; hence, dim Zðv; TÞ ¼ k.

(ii) The minimal polynomial of Tv is mvðtÞ.
(iii) The matrix representation of Tv in the above basis is just the companion

matrix CðmvÞ of mvðtÞ; that is,

CðmvÞ ¼

0 0 0 . . . 0 
a0

1 0 0 . . . 0 
a1

0 1 0 . . . 0 
a2

::::::::::::::::::::::::::::::::::::::::
0 0 0 . . . 0 
ak
2

0 0 0 . . . 1 
ak
1

26666664

37777775

10.9 Rational Canonical Form

In this section, we present the rational canonical form for a linear operator T :V ! V. We emphasize that
this form exists even when the minimal polynomial cannot be factored into linear polynomials. (Recall
that this is not the case for the Jordan canonical form.)
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LEMMA 10.13: Let T :V ! V be a linear operator whose minimal polynomial is f ðtÞn, where f ðtÞ is a
monic irreducible polynomial. Then V is the direct sum

V ¼ Zðv1;TÞ � � � � � Zðvr; TÞ
of T -cyclic subspaces Zðvi; TÞ with corresponding T -annihilators

f ðtÞn1 ; f ðtÞn2 ; . . . ; f ðtÞnr ; n ¼ n1 � n2 � . . . � nr

Any other decomposition of V into T -cyclic subspaces has the same number of
components and the same set of T -annihilators.

We emphasize that the above lemma (proved in Problem 10.31) does not say that the vectors vi or
other T -cyclic subspaces Zðvi;TÞ are uniquely determined by T , but it does say that the set of
T -annihilators is uniquely determined by T. Thus, T has a unique block diagonal matrix representation:

M ¼ diagðC1;C2; . . . ;CrÞ
where the Ci are companion matrices. In fact, the Ci are the companion matrices of the polynomials f ðtÞni .

Using the Primary Decomposition Theorem and Lemma 10.13, we obtain the following result.

THEOREM 10.14: Let T :V ! V be a linear operator with minimal polynomial

mðtÞ ¼ f1ðtÞm1 f2ðtÞm2 � � � fsðtÞms

where the fiðtÞ are distinct monic irreducible polynomials. Then T has a unique
block diagonal matrix representation:

M ¼ diagðC11;C12; . . . ;C1r1
; . . . ;Cs1;Cs2; . . . ;Csrs

Þ
where the Cij are companion matrices. In particular, the Cij are the companion
matrices of the polynomials fiðtÞnij , where

m1 ¼ n11 � n12 � � � � � n1r1
; . . . ; ms ¼ ns1 � ns2 � � � � � nsrs

The above matrix representation of T is called its rational canonical form. The polynomials fiðtÞnij

are called the elementary divisors of T.

EXAMPLE 10.6 Let V be a vector space of dimension 8 over the rational field Q, and let T be a linear operator on
V whose minimal polynomial is

mðtÞ ¼ f1ðtÞf2ðtÞ2 ¼ ðt4 
 4t3 þ 6t2 
 4t 
 7Þðt 
 3Þ2

Thus, because dim V ¼ 8; the characteristic polynomial DðtÞ ¼ f1ðtÞ f2ðtÞ4: Also, the rational canonical form M of T
must have one block the companion matrix of f1ðtÞ and one block the companion matrix of f2ðtÞ2. There are two
possibilities:

(a) diag½Cðt4 
 4t3 þ 6t2 
 4t 
 7Þ, Cððt 
 3Þ2Þ, Cððt 
 3Þ2Þ�
(b) diag½Cðt4 
 4t3 þ 6t2 
 4t 
 7Þ, Cððt 
 3Þ2Þ, Cðt 
 3Þ;Cðt 
 3Þ�
That is,

(a) diag

0 0 0 7
1 0 0 4
0 1 0 
6
0 0 1 4

2664
3775; 0 
9

1 6

� �
;

0 
9
1 6

� �0BB@
1CCA; (b) diag

0 0 0 7
1 0 0 4
0 1 0 
6
0 0 1 4

2664
3775; 0 
9

1 6

� �
; ½3�; ½3�

0BB@
1CCA

10.10 Quotient Spaces

Let V be a vector space over a field K and let W be a subspace of V. If v is any vector in V, we write
v þW for the set of sums v þ w with w 2 W ; that is,

v þW ¼ fv þ w : w 2 Wg
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These sets are called the cosets of W in V. We show (Problem 10.22) that these cosets partition V into
mutually disjoint subsets.

EXAMPLE 10.7 Let W be the subspace of R2 defined by

W ¼ fða; bÞ : a ¼ bg;
that is, W is the line given by the equation x
 y ¼ 0. We can view
v þW as a translation of the line obtained by adding the vector v
to each point in W. As shown in Fig. 10-2, the coset v þW is also
a line, and it is parallel to W. Thus, the cosets of W in R2 are
precisely all the lines parallel to W.

In the following theorem, we use the cosets of a subspace
W of a vector space V to define a new vector space; it is
called the quotient space of V by W and is denoted by V=W.

THEOREM 10.15: Let W be a subspace of a vector space over a field K. Then the cosets of W in V
form a vector space over K with the following operations of addition and scalar
multiplication:

ðiÞ ðuþ wÞ þ ðv þWÞ ¼ ðuþ vÞ þW ; ðiiÞ kðuþWÞ ¼ kuþW ; where k 2 K

We note that, in the proof of Theorem 10.15 (Problem 10.24), it is first necessary to show that the
operations are well defined; that is, whenever uþW ¼ u0 þW and v þW ¼ v0 þW, then

ðiÞ ðuþ vÞ þW ¼ ðu0 þ v0Þ þW and ðiiÞ kuþW ¼ ku0 þW for any k 2 K

In the case of an invariant subspace, we have the following useful result (proved in Problem 10.27).

THEOREM 10.16: Suppose W is a subspace invariant under a linear operator T :V ! V. Then T
induces a linear operator �T on V=W defined by �Tðv þWÞ ¼ TðvÞ þW. Moreover,
if T is a zero of any polynomial, then so is �T . Thus, the minimal polynomial of �T
divides the minimal polynomial of T.

SOLVED PROBLEMS

Invariant Subspaces

10.1. Suppose T :V ! V is linear. Show that each of the following is invariant under T :

(a) f0g, (b) V, (c) kernel of T, (d) image of T.

(a) We have Tð0Þ ¼ 0 2 f0g; hence, f0g is invariant under T.

(b) For every v 2 V , TðvÞ 2 V; hence, V is invariant under T.

(c) Let u 2 Ker T . Then TðuÞ ¼ 0 2 Ker T because the kernel of T is a subspace of V. Thus, Ker T is
invariant under T.

(d) Because TðvÞ 2 Im T for every v 2 V, it is certainly true when v 2 Im T . Hence, the image of T is
invariant under T.

10.2. Suppose fWig is a collection of T -invariant subspaces of a vector space V. Show that the
intersection W ¼ Ti Wi is also T -invariant.

Suppose v 2 W ; then v 2 Wi for every i. Because Wi is T -invariant, TðvÞ 2 Wi for every i. Thus,
TðvÞ 2 W and so W is T -invariant.

Figure 10-2
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10.3. Prove Theorem 10.2: Let T :V ! V be linear. For any polynomial f ðtÞ, the kernel of f ðTÞ is
invariant under T.

Suppose v 2 Ker f ðTÞ—that is, f ðTÞðvÞ ¼ 0. We need to show that TðvÞ also belongs to the kernel of
f ðTÞ—that is, f ðTÞðTðvÞÞ ¼ ð f ðTÞ � TÞðvÞ ¼ 0. Because f ðtÞt ¼ tf ðtÞ, we have f ðTÞ � T ¼ T � f ðTÞ.
Thus, as required,

ð f ðTÞ � TÞðvÞ ¼ ðT � f ðTÞÞðvÞ ¼ Tð f ðTÞðvÞÞ ¼ Tð0Þ ¼ 0

10.4. Find all invariant subspaces of A ¼ 2 
5
1 
2

� �
viewed as an operator on R2.

By Problem 10.1, R2 and f0g are invariant under A. Now if A has any other invariant subspace, it must
be one-dimensional. However, the characteristic polynomial of A is

DðtÞ ¼ t2 
 trðAÞ t þ jAj ¼ t2 þ 1

Hence, A has no eigenvalues (in R) and so A has no eigenvectors. But the one-dimensional invariant
subspaces correspond to the eigenvectors; thus, R2 and f0g are the only subspaces invariant under A.

10.5. Prove Theorem 10.3: Suppose W is T -invariant. Then T has a triangular block representation
A B
0 C

� �
, where A is the matrix representation of the restriction T̂ of T to W.

We choose a basis fw1; . . . ;wrg of W and extend it to a basis fw1; . . . ;wr; v1; . . . ; vsg of V. We have

T̂ðw1Þ ¼ Tðw1Þ ¼ a11w1 þ � � � þ a1rwr

T̂ðw2Þ ¼ Tðw2Þ ¼ a21w1 þ � � � þ a2rwr

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

T̂ðwrÞ ¼ TðwrÞ ¼ ar1w1 þ � � � þ arrwr

Tðv1Þ ¼ b11w1 þ � � � þ b1rwr þ c11v1 þ � � � þ c1svs

Tðv2Þ ¼ b21w1 þ � � � þ b2rwr þ c21v1 þ � � � þ c2svs

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

TðvsÞ ¼ bs1w1 þ � � � þ bsrwr þ cs1v1 þ � � � þ cssvs

But the matrix of T in this basis is the transpose of the matrix of coefficients in the above system of

equations (Section 6.2). Therefore, it has the form
A B
0 C

� �
, where A is the transpose of the matrix of

coefficients for the obvious subsystem. By the same argument, A is the matrix of T̂ relative to the basis fwig
of W.

10.6. Let T̂ denote the restriction of an operator T to an invariant subspace W. Prove

(a) For any polynomial f ðtÞ, f ðT̂ÞðwÞ ¼ f ðTÞðwÞ.
(b) The minimal polynomial of T̂ divides the minimal polynomial of T.

(a) If f ðtÞ ¼ 0 or if f ðtÞ is a constant (i.e., of degree 1), then the result clearly holds.
Assume deg f ¼ n > 1 and that the result holds for polynomials of degree less than n. Suppose that

f ðtÞ ¼ antn þ an
1tn
1 þ � � � þ a1t þ a0

f ðT̂ÞðwÞ ¼ ðanT̂n þ an
1T̂ n
1 þ � � � þ a0IÞðwÞ
¼ ðanT̂n
1ÞðT̂ðwÞÞ þ ðan
1T̂ n
1 þ � � � þ a0IÞðwÞ
¼ ðanTn
1ÞðTðwÞÞ þ ðan
1T n
1 þ � � � þ a0IÞðwÞ ¼ f ðTÞðwÞ

Then

(b) Let mðtÞ denote the minimal polynomial of T. Then by (a), mðT̂ÞðwÞ ¼ mðTÞðwÞ ¼ 0ðwÞ ¼ 0 for
every w 2 W ; that is, T̂ is a zero of the polynomial mðtÞ. Hence, the minimal polynomial of T̂ divides
mðtÞ.
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Invariant Direct-Sum Decompositions

10.7. Prove Theorem 10.4: Suppose W1;W2; . . . ;Wr are subspaces of V with respective bases

B1 ¼ fw11;w12; . . . ;w1n1
g; . . . ; Br ¼ fwr1;wr2; . . . ;wrnr

g
Then V is the direct sum of the Wi if and only if the union B ¼ Si Bi is a basis of V.

Suppose B is a basis of V. Then, for any v 2 V,

v ¼ a11w11 þ � � � þ a1n1
w1n1

þ � � � þ ar1wr1 þ � � � þ arnr
wrnr
¼ w1 þ w2 þ � � � þ wr

where wi ¼ ai1wi1 þ � � � þ aini
wini
2 Wi. We next show that such a sum is unique. Suppose

v ¼ w01 þ w02 þ � � � þ w0r; where w0i 2 Wi

Because fwi1; . . . ;wini
g is a basis of Wi, w0i ¼ bi1wi1 þ � � � þ bini

wini
, and so

v ¼ b11w11 þ � � � þ b1n1
w1n1

þ � � � þ br1wr1 þ � � � þ brnr
wrnr

Because B is a basis of V ; aij ¼ bij, for each i and each j. Hence, wi ¼ w0i, and so the sum for v is unique.
Accordingly, V is the direct sum of the Wi.

Conversely, suppose V is the direct sum of the Wi. Then for any v 2 V, v ¼ w1 þ � � � þ wr, where
wi 2 Wi. Because fwiji

g is a basis of Wi, each wi is a linear combination of the wiji
, and so v is a linear

combination of the elements of B. Thus, B spans V. We now show that B is linearly independent. Suppose

a11w11 þ � � � þ a1n1
w1n1

þ � � � þ ar1wr1 þ � � � þ arnr
wrnr
¼ 0

Note that ai1wi1 þ � � � þ aini
wini
2 Wi. We also have that 0 ¼ 0þ 0 � � � 0 2 Wi. Because such a sum for 0 is

unique,

ai1wi1 þ � � � þ aini
wini
¼ 0 for i ¼ 1; . . . ; r

The independence of the bases fwiji
g implies that all the a’s are 0. Thus, B is linearly independent and is a

basis of V.

10.8. Suppose T :V ! V is linear and suppose T ¼ T1 � T2 with respect to a T -invariant direct-sum
decomposition V ¼ U �W. Show that

(a) mðtÞ is the least common multiple of m1ðtÞ and m2ðtÞ, where mðtÞ, m1ðtÞ, m2ðtÞ are the
minimum polynomials of T ; T1;T2, respectively.

(b) DðtÞ ¼ D1ðtÞD2ðtÞ, where DðtÞ;D1ðtÞ, D2ðtÞ are the characteristic polynomials of T ; T1; T2,
respectively.

(a) By Problem 10.6, each of m1ðtÞ and m2ðtÞ divides mðtÞ. Now suppose f ðtÞ is a multiple of both m1ðtÞ
and m2ðtÞ, then f ðT1ÞðUÞ ¼ 0 and f ðT2ÞðWÞ ¼ 0. Let v 2 V , then v ¼ uþ w with u 2 U and w 2 W.

Now

f ðTÞv ¼ f ðTÞuþ f ðTÞw ¼ f ðT1Þuþ f ðT2Þw ¼ 0þ 0 ¼ 0

That is, T is a zero of f ðtÞ. Hence, mðtÞ divides f ðtÞ, and so mðtÞ is the least common multiple of m1ðtÞ
and m2ðtÞ.

(b) By Theorem 10.5, T has a matrix representation M ¼ A 0
0 B

� �
, where A and B are matrix representations

of T1 and T2, respectively. Then, as required,

DðtÞ ¼ jtI 
M j ¼ tI 
 A 0
0 tI 
 B

���� ���� ¼ jtI 
 AjjtI 
 Bj ¼ D1ðtÞD2ðtÞ

10.9. Prove Theorem 10.7: Suppose T :V ! V is linear, and suppose f ðtÞ ¼ gðtÞhðtÞ are polynomials
such that f ðTÞ ¼ 0 and gðtÞ and hðtÞ are relatively prime. Then V is the direct sum of the
T -invariant subspaces U and W where U ¼ Ker gðTÞ and W ¼ Ker hðTÞ.
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Note first that U and W are T -invariant by Theorem 10.2. Now, because gðtÞ and hðtÞ are relatively
prime, there exist polynomials rðtÞ and sðtÞ such that

rðtÞgðtÞ þ sðtÞhðtÞ ¼ 1

Hence; for the operator T ; rðTÞgðTÞ þ sðTÞhðTÞ ¼ I ð*Þ
Let v 2 V ; then; by ð*Þ; v ¼ rðTÞgðTÞv þ sðTÞhðTÞv
But the first term in this sum belongs to W ¼ Ker hðTÞ, because

hðTÞrðTÞgðTÞv ¼ rðTÞgðTÞhðTÞv ¼ rðTÞf ðTÞv ¼ rðTÞ0v ¼ 0

Similarly, the second term belongs to U. Hence, V is the sum of U and W.
To prove that V ¼ U �W, we must show that a sum v ¼ uþ w with u 2 U , w 2 W, is uniquely

determined by v. Applying the operator rðTÞgðTÞ to v ¼ uþ w and using gðTÞu ¼ 0, we obtain

rðTÞgðTÞv ¼ rðTÞgðTÞuþ rðTÞgðTÞw ¼ rðTÞgðTÞw
Also, applying ð*Þ to w alone and using hðTÞw ¼ 0, we obtain

w ¼ rðTÞgðTÞwþ sðTÞhðTÞw ¼ rðTÞgðTÞw
Both of the above formulas give us w ¼ rðTÞgðTÞv, and so w is uniquely determined by v. Similarly u is
uniquely determined by v. Hence, V ¼ U �W, as required.

10.10. Prove Theorem 10.8: In Theorem 10.7 (Problem 10.9), if f ðtÞ is the minimal polynomial of T
(and gðtÞ and hðtÞ are monic), then gðtÞ is the minimal polynomial of the restriction T1 of T to U
and hðtÞ is the minimal polynomial of the restriction T2 of T to W.

Let m1ðtÞ and m2ðtÞ be the minimal polynomials of T1 and T2, respectively. Note that gðT1Þ ¼ 0 and
hðT2Þ ¼ 0 because U ¼ Ker gðTÞ and W ¼ Ker hðTÞ. Thus,

m1ðtÞ divides gðtÞ and m2ðtÞ divides hðtÞ ð1Þ
By Problem 10.9, f ðtÞ is the least common multiple of m1ðtÞ and m2ðtÞ. But m1ðtÞ and m2ðtÞ are relatively
prime because gðtÞ and hðtÞ are relatively prime. Accordingly, f ðtÞ ¼ m1ðtÞm2ðtÞ. We also have that
f ðtÞ ¼ gðtÞhðtÞ. These two equations together with (1) and the fact that all the polynomials are monic imply
that gðtÞ ¼ m1ðtÞ and hðtÞ ¼ m2ðtÞ, as required.

10.11. Prove the Primary Decomposition Theorem 10.6: Let T :V ! V be a linear operator with
minimal polynomial

mðtÞ ¼ f1ðtÞn1 f2ðtÞn2 . . . frðtÞnr

where the fiðtÞ are distinct monic irreducible polynomials. Then V is the direct sum of T -
invariant subspaces W1; . . . ;Wr where Wi is the kernel of fiðTÞni . Moreover, fiðtÞni is the minimal
polynomial of the restriction of T to Wi.

The proof is by induction on r. The case r ¼ 1 is trivial. Suppose that the theorem has been proved for
r 
 1. By Theorem 10.7, we can write V as the direct sum of T -invariant subspaces W1 and V1, where W1 is
the kernel of f1ðTÞn1 and where V1 is the kernel of f2ðTÞn2 � � � frðTÞnr . By Theorem 10.8, the minimal
polynomials of the restrictions of T to W1 and V1 are f1ðtÞn1 and f2ðtÞn2 � � � frðtÞnr , respectively.

Denote the restriction of T to V1 by T̂1. By the inductive hypothesis, V1 is the direct sum of subspaces
W2; . . . ;Wr such that Wi is the kernel of fiðT1Þni and such that fiðtÞni is the minimal polynomial for the
restriction of T̂1 to Wi. But the kernel of fiðTÞni , for i ¼ 2; . . . ; r is necessarily contained in V1, because
fiðtÞni divides f2ðtÞn2 � � � frðtÞnr . Thus, the kernel of fiðTÞni is the same as the kernel of fiðT1Þni , which is Wi.
Also, the restriction of T to Wi is the same as the restriction of T̂1 to Wi (for i ¼ 2; . . . ; r); hence, fiðtÞni is
also the minimal polynomial for the restriction of T to Wi. Thus, V ¼ W1 �W2 � � � � �Wr is the desired
decomposition of T.

10.12. Prove Theorem 10.9: A linear operator T :V ! V has a diagonal matrix representation if and only
if its minimal polynomal mðtÞ is a product of distinct linear polynomials.
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Suppose mðtÞ is a product of distinct linear polynomials, say,

mðtÞ ¼ ðt 
 l1Þðt 
 l2Þ � � � ðt 
 lrÞ
where the li are distinct scalars. By the Primary Decomposition Theorem, V is the direct sum of subspaces
W1; . . . ;Wr, where Wi ¼ KerðT 
 liIÞ. Thus, if v 2 Wi, then ðT 
 liIÞðvÞ ¼ 0 or TðvÞ ¼ liv. In other
words, every vector in Wi is an eigenvector belonging to the eigenvalue li. By Theorem 10.4, the union of
bases for W1; . . . ;Wr is a basis of V. This basis consists of eigenvectors, and so T is diagonalizable.

Conversely, suppose T is diagonalizable (i.e., V has a basis consisting of eigenvectors of T ). Let
l1; . . . ; ls be the distinct eigenvalues of T. Then the operator

f ðTÞ ¼ ðT 
 l1IÞðT 
 l2IÞ � � � ðT 
 lsIÞ
maps each basis vector into 0. Thus, f ðTÞ ¼ 0, and hence, the minimal polynomial mðtÞ of T divides the
polynomial

f ðtÞ ¼ ðt 
 l1Þðt 
 l2Þ � � � ðt 
 lsIÞ
Accordingly, mðtÞ is a product of distinct linear polynomials.

Nilpotent Operators, Jordan Canonical Form

10.13. Let T :V be linear. Suppose, for v 2 V, TkðvÞ ¼ 0 but Tk
1ðvÞ 6¼ 0. Prove

(a) The set S ¼ fv; TðvÞ; . . . ;Tk
1ðvÞg is linearly independent.

(b) The subspace W generated by S is T -invariant.

(c) The restriction T̂ of T to W is nilpotent of index k.

(d) Relative to the basis fTk
1ðvÞ; . . . ;TðvÞ; vg of W, the matrix of T is the k-square Jordan
nilpotent block Nk of index k (see Example 10.5).

(a) Suppose

av þ a1TðvÞ þ a2T2ðvÞ þ � � � þ ak
1Tk
1ðvÞ ¼ 0 ð*Þ
Applying T k
1 to ð*Þ and using TkðvÞ ¼ 0, we obtain aTk
1ðvÞ ¼ 0; because T k
1ðvÞ 6¼ 0, a ¼ 0.
Now applying Tk
2 to ð*Þ and using TkðvÞ ¼ 0 and a ¼ 0, we fiind a1Tk
1ðvÞ ¼ 0; hence, a1 ¼ 0.
Next applying Tk
3 to ð*Þ and using T kðvÞ ¼ 0 and a ¼ a1 ¼ 0, we obtain a2Tk
1ðvÞ ¼ 0; hence,
a2 ¼ 0. Continuing this process, we find that all the a’s are 0; hence, S is independent.

(b) Let v 2 W. Then

v ¼ bv þ b1TðvÞ þ b2T 2ðvÞ þ � � � þ bk
1T k
1ðvÞ
Using TkðvÞ ¼ 0, we have

TðvÞ ¼ bTðvÞ þ b1T2ðvÞ þ � � � þ bk
2Tk
1ðvÞ 2 W

Thus, W is T -invariant.

(c) By hypothesis, TkðvÞ ¼ 0. Hence, for i ¼ 0; . . . ; k 
 1,

T̂ kðTiðvÞÞ ¼ TkþiðvÞ ¼ 0

That is, applying T̂ k to each generator of W, we obtain 0; hence, T̂ k ¼ 0 and so T̂ is nilpotent of index
at most k. On the other hand, T̂ k
1ðvÞ ¼ Tk
1ðvÞ 6¼ 0; hence, T is nilpotent of index exactly k.

(d) For the basis fTk
1ðvÞ, Tk
2ðvÞ; . . . ; TðvÞ; vg of W,

T̂ðTk
1ðvÞÞ ¼ TkðvÞ ¼ 0
T̂ðTk
2ðvÞÞ ¼ Tk
1ðvÞ
T̂ðTk
3ðvÞÞ ¼ Tk
2ðvÞ
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

T̂ðTðvÞÞ ¼ T2ðvÞ
T̂ðvÞ ¼ TðvÞ

Hence, as required, the matrix of T in this basis is the k-square Jordan nilpotent block Nk .
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10.14. Let T :V ! V be linear. Let U ¼ Ker Ti and W ¼ Ker Tiþ1. Show that

(a) U � W, (b) TðWÞ � U .

(a) Suppose u 2 U ¼ Ker Ti. Then T iðuÞ ¼ 0 and so T iþ1ðuÞ ¼ TðTiðuÞÞ ¼ Tð0Þ ¼ 0. Thus,

u 2 Ker T iþ1 ¼ W. But this is true for every u 2 U ; hence, U � W.

(b) Similarly, if w 2 W ¼ Ker Tiþ1, then Tiþ1ðwÞ ¼ 0: Thus, T iþ1ðwÞ ¼ TiðTðwÞÞ ¼ Tið0Þ ¼ 0 and so
TðWÞ � U .

10.15. Let T :V be linear. Let X ¼ Ker Ti
2, Y ¼ Ker Ti
1, Z ¼ Ker Ti. Therefore (Problem 10.14),
X � Y � Z. Suppose

fu1; . . . ; urg; fu1; . . . ; ur; v1; . . . ; vsg; fu1; . . . ; ur; v1; . . . ; vs;w1; . . . ;wtg
are bases of X ;Y ; Z, respectively. Show that

S ¼ fu1; . . . ; ur; Tðw1Þ; . . . ; TðwtÞg
is contained in Y and is linearly independent.

By Problem 10.14, TðZÞ � Y , and hence S � Y . Now suppose S is linearly dependent. Then there
exists a relation

a1u1 þ � � � þ arur þ b1Tðw1Þ þ � � � þ btTðwtÞ ¼ 0

where at least one coefficient is not zero. Furthermore, because fuig is independent, at least one of the bk

must be nonzero. Transposing, we find

b1Tðw1Þ þ � � � þ btTðwtÞ ¼ 
a1u1 
 � � � 
 arur 2 X ¼ Ker Ti
2

Hence; Ti
2ðb1Tðw1Þ þ � � � þ btTðwtÞÞ ¼ 0

Thus; Ti
1ðb1w1 þ � � � þ btwtÞ ¼ 0; and so b1w1 þ � � � þ btwt 2 Y ¼ Ker Ti
1

Because fui; vjg generates Y, we obtain a relation among the ui, vj, wk where one of the coefficients (i.e.,
one of the bk) is not zero. This contradicts the fact that fui; vj;wkg is independent. Hence, S must also be
independent.

10.16. Prove Theorem 10.10: Let T :V ! V be a nilpotent operator of index k. Then T has a unique
block diagonal matrix representation consisting of Jordan nilpotent blocks N. There is at least
one N of order k, and all other N are of orders �k. The total number of N of all orders is equal to
the nullity of T.

Suppose dim V ¼ n. Let W1 ¼ Ker T, W2 ¼ Ker T 2; . . . ;Wk ¼ Ker Tk . Let us set mi ¼ dim Wi, for
i ¼ 1; . . . ; k. Because T is of index k, Wk ¼ V and Wk
1 6¼ V and so mk
1 < mk ¼ n. By Problem 10.14,

W1 � W2 � � � � � Wk ¼ V

Thus, by induction, we can choose a basis fu1; . . . ; ung of V such that fu1; . . . ; umi
g is a basis of Wi.

We now choose a new basis for V with respect to which T has the desired form. It will be convenient
to label the members of this new basis by pairs of indices. We begin by setting

vð1; kÞ ¼ umk
1þ1; vð2; kÞ ¼ umk
1þ2; . . . ; vðmk 
 mk
1; kÞ ¼ umk

and setting

vð1; k 
 1Þ ¼ Tvð1; kÞ; vð2; k 
 1Þ ¼ Tvð2; kÞ; . . . ; vðmk 
 mk
1; k 
 1Þ ¼ Tvðmk 
 mk
1; kÞ
By the preceding problem,

S1 ¼ fu1 . . . ; umk
2
; vð1; k 
 1Þ; . . . ; vðmk 
 mk
1; k 
 1Þg

is a linearly independent subset of Wk
1. We extend S1 to a basis of Wk
1 by adjoining new elements (if
necessary), which we denote by

vðmk 
 mk
1 þ 1; k 
 1Þ; vðmk 
 mk
1 þ 2; k 
 1Þ; . . . ; vðmk
1 
 mk
2; k 
 1Þ
Next we set

vð1; k 
 2Þ ¼ Tvð1; k 
 1Þ; vð2; k 
 2Þ ¼ Tvð2; k 
 1Þ; . . . ;

vðmk
1 
 mk
2; k 
 2Þ ¼ Tvðmk
1 
 mk
2; k 
 1Þ
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Again by the preceding problem,

S2 ¼ fu1; . . . ; umk
s ; vð1; k 
 2Þ; . . . ; vðmk
1 
 mk
2; k 
 2Þg

is a linearly independent subset of Wk
2, which we can extend to a basis of Wk
2 by adjoining elements

vðmk
1 
 mk
2 þ 1; k 
 2Þ; vðmk
1 
 mk
2 þ 2; k 
 2Þ; . . . ; vðmk
2 
 mk
3; k 
 2Þ

Continuing in this manner, we get a new basis for V, which for convenient reference we arrange as follows:

vð1; kÞ . . . ; vðmk 
 mk
1; kÞ
vð1; k 
 1Þ; . . . ; vðmk 
 mk
1; k 
 1Þ . . . ; vðmk
1 
 mk
2; k 
 1Þ

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
vð1; 2Þ; . . . ; vðmk 
 mk
1; 2Þ; . . . ; vðmk
1 
 mk
2; 2Þ; . . . ; vðm2 
 m1; 2Þ
vð1; 1Þ; . . . ; vðmk 
 mk
1; 1Þ; . . . ; vðmk
1 
 mk
2; 1Þ; . . . ; vðm2 
 m1; 1Þ; . . . ; vðm1; 1Þ

The bottom row forms a basis of W1, the bottom two rows form a basis of W2, and so forth. But what is
important for us is that T maps each vector into the vector immediately below it in the table or into 0 if the
vector is in the bottom row. That is,

Tvði; jÞ ¼ vði; j
 1Þ for j > 1
0 for j ¼ 1

	
Now it is clear [see Problem 10.13(d)] that T will have the desired form if the vði; jÞ are ordered
lexicographically: beginning with vð1; 1Þ and moving up the first column to vð1; kÞ, then jumping to vð2; 1Þ
and moving up the second column as far as possible.

Moreover, there will be exactly mk 
 mk
1 diagonal entries of order k: Also, there will be

ðmk
1 
 mk
2Þ 
 ðmk 
 mk
1Þ ¼ 2mk
1 
 mk 
 mk
2 diagonal entries of order k 
 1
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
2m2 
 m1 
 m3 diagonal entries of order 2
2m1 
 m2 diagonal entries of order 1

as can be read off directly from the table. In particular, because the numbers m1; . . . ;mk are uniquely
determined by T, the number of diagonal entries of each order is uniquely determined by T. Finally, the
identity

m1 ¼ ðmk 
 mk
1Þ þ ð2mk
1 
 mk 
 mk
2Þ þ � � � þ ð2m2 
 m1 
 m3Þ þ ð2m1 
 m2Þ
shows that the nullity m1 of T is the total number of diagonal entries of T.

10.17. Let A ¼

0 1 1 0 1
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

266664
377775 and B ¼

0 1 1 0 0
0 0 1 1 1
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

266664
377775. The reader can verify that A and B

are both nilpotent of index 3; that is, A3 ¼ 0 but A2 6¼ 0, and B3 ¼ 0 but B2 6¼ 0. Find the
nilpotent matrices MA and MB in canonical form that are similar to A and B, respectively.

Because A and B are nilpotent of index 3, MA and MB must each contain a Jordan nilpotent block of
order 3, and none greater then 3. Note that rankðAÞ ¼ 2 and rankðBÞ ¼ 3, so nullityðAÞ ¼ 5
 2 ¼ 3 and
nullityðBÞ ¼ 5
 3 ¼ 2. Thus, MA must contain three diagonal blocks, which must be one of order 3 and
two of order 1; and MB must contain two diagonal blocks, which must be one of order 3 and one of order 2.
Namely,

MA ¼

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

266664
377775 and MB ¼

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

266664
377775
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10.18. Prove Theorem 10.11 on the Jordan canonical form for an operator T.

By the primary decomposition theorem, T is decomposable into operators T1; . . . ; Tr; that is,
T ¼ T1 � � � � � Tr, where ðt 
 liÞmi is the minimal polynomial of Ti. Thus, in particular,

ðT1 
 l1IÞm1 ¼ 0; . . . ; ðTr 
 lrIÞmr ¼ 0

Set Ni ¼ Ti 
 liI . Then, for i ¼ 1; . . . ; r,

Ti ¼ Ni þ liI ; where Nmi

i ¼ 0

That is, Ti is the sum of the scalar operator liI and a nilpotent operator Ni, which is of index mi because
ðt 
 liÞmi is the minimal polynomial of Ti.

Now, by Theorem 10.10 on nilpotent operators, we can choose a basis so that Ni is in canonical form.
In this basis, Ti ¼ Ni þ liI is represented by a block diagonal matrix Mi whose diagonal entries are the
matrices Jij. The direct sum J of the matrices Mi is in Jordan canonical form and, by Theorem 10.5, is a
matrix representation of T.

Last, we must show that the blocks Jij satisfy the required properties. Property (i) follows from the fact
that Ni is of index mi. Property (ii) is true because T and J have the same characteristic polynomial. Property
(iii) is true because the nullity of Ni ¼ Ti 
 liI is equal to the geometric multiplicity of the eigenvalue li.
Property (iv) follows from the fact that the Ti and hence the Ni are uniquely determined by T.

10.19. Determine all possible Jordan canonical forms J for a linear operator T :V ! V whose
characteristic polynomial DðtÞ ¼ ðt 
 2Þ5 and whose minimal polynomial mðtÞ ¼ ðt 
 2Þ2.

J must be a 5� 5 matrix, because DðtÞ has degree 5, and all diagonal elements must be 2, because 2 is
the only eigenvalue. Moreover, because the exponent of t 
 2 in mðtÞ is 2, J must have one Jordan block of
order 2, and the others must be of order 2 or 1. Thus, there are only two possibilities:

J ¼ diag
2 1

2

� �
;

2 1
2

� �
; ½2�

� �
or J ¼ diag

2 1
2

� �
; ½2�; ½2�; ½2�

� �

10.20. Determine all possible Jordan canonical forms for a linear operator T :V ! V whose character-
istic polynomial DðtÞ ¼ ðt 
 2Þ3ðt 
 5Þ2. In each case, find the minimal polynomial mðtÞ.

Because t 
 2 has exponent 3 in DðtÞ, 2 must appear three times on the diagonal. Similarly, 5 must
appear twice. Thus, there are six possibilities:

(a) diag
2 1

2 1
2

24 35; 5 1
5

� �0@ 1A, (b) diag
2 1

2 1
2

24 35; ½5�; ½5�
0@ 1A,

(c) diag
2 1

2

� �
; ½2�; 5 1

5

� �� �
, (d) diag

2 1
2

� �
; ½2�; ½5�; ½5�

� �
,

(e) diag ½2�; ½2�; ½2�; 5 1
5

� �� �
, (f ) diagð½2�; ½2�; ½2�; ½5�; ½5�Þ

The exponent in the minimal polynomial mðtÞ is equal to the size of the largest block. Thus,

(a) mðtÞ ¼ ðt 
 2Þ3ðt 
 5Þ2, (b) mðtÞ ¼ ðt 
 2Þ3ðt 
 5Þ, (c) mðtÞ ¼ ðt 
 2Þ2ðt 
 5Þ2,

(d) mðtÞ ¼ ðt 
 2Þ2ðt 
 5Þ, (e) mðtÞ ¼ ðt 
 2Þðt 
 5Þ2, (f ) mðtÞ ¼ ðt 
 2Þðt 
 5Þ

Quotient Space and Triangular Form

10.21. Let W be a subspace of a vector space V. Show that the following are equivalent:

(i) u 2 v þW, (ii) u
 v 2 W, (iii) v 2 uþW.

Suppose u 2 v þW. Then there exists w0 2 W such that u ¼ v þ w0. Hence, u
 v ¼ w0 2 W.
Conversely, suppose u
 v 2 W. Then u
 v ¼ w0 where w0 2 W. Hence, u ¼ v þ w0 2 v þW. Thus,
(i) and (ii) are equivalent.

We also have u
 v 2 W iff 
 ðu
 vÞ ¼ v 
 u 2 W iffv 2 uþW. Thus, (ii) and (iii) are also
equivalent.

CHAPTER 10 Canonical Forms 339



10.22. Prove the following: The cosets of W in V partition V into mutually disjoint sets. That is,

(a) Any two cosets uþW and v þW are either identical or disjoint.

(b) Each v 2 V belongs to a coset; in fact, v 2 v þW.

Furthermore, uþW ¼ v þW if and only if u
 v 2 W, and so ðv þ wÞ þW ¼ v þW for any
w 2 W.

Let v 2 V. Because 0 2 W, we have v ¼ v þ 0 2 v þW, which proves (b).
Now suppose the cosets uþW and v þW are not disjoint; say, the vector x belongs to both uþW

and v þW. Then u
 x 2 W and x
 v 2 W. The proof of (a) is complete if we show that uþW ¼ v þW.
Let uþ w0 be any element in the coset uþW. Because u
 x, x
 v, w0 belongs to W,

ðuþ w0Þ 
 v ¼ ðu
 xÞ þ ðx
 vÞ þ w0 2 W

Thus, uþ w0 2 v þW, and hence the cost uþW is contained in the coset v þW. Similarly, v þW is
contained in uþW, and so uþW ¼ v þW.

The last statement follows from the fact that uþW ¼ v þW if and only if u 2 v þW, and, by
Problem 10.21, this is equivalent to u
 v 2 W.

10.23. Let W be the solution space of the homogeneous equation 2xþ 3yþ 4z ¼ 0. Describe the cosets
of W in R3.

W is a plane through the origin O ¼ ð0; 0; 0Þ, and the cosets of W are the planes parallel to W.
Equivalently, the cosets of W are the solution sets of the family of equations

2xþ 3yþ 4z ¼ k; k 2 R

In fact, the coset v þW, where v ¼ ða; b; cÞ, is the solution set of the linear equation

2xþ 3yþ 4z ¼ 2aþ 3bþ 4c or 2ðx
 aÞ þ 3ðy
 bÞ þ 4ðz
 cÞ ¼ 0

10.24. Suppose W is a subspace of a vector space V. Show that the operations in Theorem 10.15 are well
defined; namely, show that if uþW ¼ u0 þW and v þW ¼ v0 þW, then

ðaÞ ðuþ vÞ þW ¼ ðu0 þ v0Þ þW and ðbÞ kuþW ¼ ku0 þW for any k 2 K

(a) Because uþW ¼ u0 þW and v þW ¼ v0 þW, both u
 u0 and v 
 v0 belong to W. But then

ðuþ vÞ 
 ðu0 þ v0Þ ¼ ðu
 u0Þ þ ðv 
 v0Þ 2 W. Hence, ðuþ vÞ þW ¼ ðu0 þ v0Þ þW.

(b) Also, because u
 u0 2 W implies kðu
 u0Þ 2 W, then ku
 ku0 ¼ kðu
 u0Þ 2 W ; accordingly,
kuþW ¼ ku0 þW.

10.25. Let V be a vector space and W a subspace of V. Show that the natural map Z:V ! V=W, defined
by ZðvÞ ¼ v þW, is linear.

For any u; v 2 V and any k 2 K, we have

nðuþ vÞ ¼ uþ v þW ¼ uþW þ v þW ¼ ZðuÞ þ ZðvÞ
and ZðkvÞ ¼ kv þW ¼ kðv þWÞ ¼ kZðvÞ
Accordingly, Z is linear.

10.26. Let W be a subspace of a vector space V. Suppose fw1; . . . ;wrg is a basis of W and the set of
cosets f�v1; . . . ; �vsg, where �vj ¼ vj þW, is a basis of the quotient space. Show that the set of
vectors B ¼ fv1; . . . ; vs, w1; . . . ;wrg is a basis of V. Thus, dim V ¼ dim W þ dimðV=WÞ.

Suppose u 2 V. Because f�vjg is a basis of V=W,

�u ¼ uþW ¼ a1�v1 þ a2�v2 þ � � � þ as�vs

Hence, u ¼ a1v1 þ � � � þ asvs þ w, where w 2 W. Since fwig is a basis of W,

u ¼ a1v1 þ � � � þ asvs þ b1w1 þ � � � þ brwr
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Accordingly, B spans V.
We now show that B is linearly independent. Suppose

c1v1 þ � � � þ csvs þ d1w1 þ � � � þ drwr ¼ 0 ð1Þ
Then c1�v1 þ � � � þ cs�vs ¼ �0 ¼ W

Because f�vjg is independent, the c’s are all 0. Substituting into (1), we find d1w1 þ � � � þ drwr ¼ 0.
Because fwig is independent, the d’s are all 0. Thus, B is linearly independent and therefore a basis of V.

10.27. Prove Theorem 10.16: Suppose W is a subspace invariant under a linear operator T :V ! V. Then
T induces a linear operator �T on V=W defined by �Tðv þWÞ ¼ TðvÞ þW. Moreover, if T is a
zero of any polynomial, then so is �T . Thus, the minimal polynomial of �T divides the minimal
polynomial of T.

We first show that �T is well defined; that is, if uþW ¼ v þW, then �TðuþWÞ ¼ �Tðv þWÞ. If
uþW ¼ v þW, then u
 v 2 W, and, as W is T -invariant, Tðu
 vÞ ¼ TðuÞ 
 TðvÞ 2 W. Accordingly,

�TðuþWÞ ¼ TðuÞ þW ¼ TðvÞ þW ¼ �Tðv þWÞ
as required.

We next show that �T is linear. We have

�TððuþWÞ þ ðv þWÞÞ ¼ �Tðuþ v þWÞ ¼ Tðuþ vÞ þW ¼ TðuÞ þ TðvÞ þW

¼ TðuÞ þW þ TðvÞ þW ¼ �TðuþWÞ þ �Tðv þWÞ

Furthermore,

�TðkðuþWÞÞ ¼ �TðkuþWÞ ¼ TðkuÞ þW ¼ kTðuÞ þW ¼ kðTðuÞ þWÞ ¼ kT̂ðuþWÞ
Thus, �T is linear.

Now, for any coset uþW in V=W,

T2ðuþWÞ ¼ T 2ðuÞ þW ¼ TðTðuÞÞ þW ¼ �TðTðuÞ þWÞ ¼ �Tð �TðuþWÞÞ ¼ �T2ðuþWÞ
Hence, T 2 ¼ �T2. Similarly, T n ¼ �Tn for any n. Thus, for any polynomial

f ðtÞ ¼ antn þ � � � þ a0 ¼
P

ait
i

f ðTÞðuþWÞ ¼ f ðTÞðuÞ þW ¼P aiT
iðuÞ þW ¼P aiðTiðuÞ þWÞ

¼P aiT
iðuþWÞ ¼P ai

�TiðuþWÞ ¼ ðP ai
�T iÞðuþWÞ ¼ f ð �TÞðuþWÞ

and so f ðTÞ ¼ f ð �TÞ. Accordingly, if T is a root of f ðtÞ then f ðTÞ ¼ �0 ¼ W ¼ f ð �TÞ; that is, �T is also a root
of f ðtÞ. The theorem is proved.

10.28. Prove Theorem 10.1: Let T :V ! V be a linear operator whose characteristic polynomial factors
into linear polynomials. Then V has a basis in which T is represented by a triangular matrix.

The proof is by induction on the dimension of V. If dim V ¼ 1, then every matrix representation of T
is a 1� 1 matrix, which is triangular.

Now suppose dim V ¼ n > 1 and that the theorem holds for spaces of dimension less than n. Because
the characteristic polynomial of T factors into linear polynomials, T has at least one eigenvalue and so at
least one nonzero eigenvector v, say TðvÞ ¼ a11v. Let W be the one-dimensional subspace spanned by v.
Set �V ¼ V=W. Then (Problem 10.26) dim �V ¼ dim V 
 dim W ¼ n
 1. Note also that W is invariant
under T. By Theorem 10.16, T induces a linear operator �T on �V whose minimal polynomial divides the
minimal polynomial of T. Because the characteristic polynomial of T is a product of linear polynomials,
so is its minimal polynomial, and hence, so are the minimal and characteristic polynomials of �T . Thus, �V
and �T satisfy the hypothesis of the theorem. Hence, by induction, there exists a basis f�v2; . . . ; �vng of �V
such that

�Tð�v2Þ ¼ a22�v2
�Tð�v3Þ ¼ a32�v2 þ a33�v3

:::::::::::::::::::::::::::::::::::::::::
�Tð�vnÞ ¼ an2�vn þ an3�v3 þ � � � þ ann�vn
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Now let v2; . . . ; vn be elements of V that belong to the cosets v2; . . . ; vn, respectively. Then fv; v2; . . . ; vng
is a basis of V (Problem 10.26). Because �Tðv2Þ ¼ a22�v2, we have

�Tð�v2Þ 
 a22�v22 ¼ 0; and so Tðv2Þ 
 a22v2 2 W

But W is spanned by v; hence, Tðv2Þ 
 a22v2 is a multiple of v, say,

Tðv2Þ 
 a22v2 ¼ a21v; and so Tðv2Þ ¼ a21v þ a22v2

Similarly, for i ¼ 3; . . . ; n

TðviÞ 
 ai2v2 
 ai3v3 
 � � � 
 aiivi 2 W ; and so TðviÞ ¼ ai1v þ ai2v2 þ � � � þ aiivi

Thus,

TðvÞ ¼ a11v

Tðv2Þ ¼ a21v þ a22v2

::::::::::::::::::::::::::::::::::::::::

TðvnÞ ¼ an1v þ an2v2 þ � � � þ annvn

and hence the matrix of T in this basis is triangular.

Cyclic Subspaces, Rational Canonical Form

10.29. Prove Theorem 10.12: Let Zðv; TÞ be a T -cyclic subspace, Tv the restriction of T to Zðv; TÞ, and
mvðtÞ ¼ tk þ ak
1tk
1 þ � � � þ a0 the T -annihilator of v. Then,

(i) The set fv; TðvÞ; . . . ;Tk
1ðvÞg is a basis of Zðv; TÞ; hence, dim Zðv;TÞ ¼ k.

(ii) The minimal polynomial of Tv is mvðtÞ.
(iii) The matrix of Tv in the above basis is the companion matrix C ¼ CðmvÞ of mvðtÞ [which

has 1’s below the diagonal, the negative of the coefficients a0; a1; . . . ; ak
1 of mvðtÞ in the
last column, and 0’s elsewhere].

(i) By definition of mvðtÞ, TkðvÞ is the first vector in the sequence v, TðvÞ, T2ðvÞ; . . . that, is a linear
combination of those vectors that precede it in the sequence; hence, the set B ¼ fv; TðvÞ; . . . ; Tk
1ðvÞg is
linearly independent. We now only have to show that Zðv; TÞ ¼ LðBÞ, the linear span of B. By the above,
T kðvÞ 2 LðBÞ. We prove by induction that TnðvÞ 2 LðBÞ for every n. Suppose n > k and
T n
1ðvÞ 2 LðBÞ—that is, Tn
1ðvÞ is a linear combination of v; . . . ; Tk
1ðvÞ. Then
T nðvÞ ¼ TðTn
1ðvÞÞ is a linear combination of TðvÞ; . . . ; T kðvÞ. But TkðvÞ 2 LðBÞ; hence,
T nðvÞ 2 LðBÞ for every n. Consequently, f ðTÞðvÞ 2 LðBÞ for any polynomial f ðtÞ. Thus,
Zðv; TÞ ¼ LðBÞ, and so B is a basis, as claimed.

(ii) Suppose mðtÞ ¼ ts þ bs
1ts
1 þ � � � þ b0 is the minimal polynomial of Tv . Then, because v 2 Zðv; TÞ,
0 ¼ mðTvÞðvÞ ¼ mðTÞðvÞ ¼ TsðvÞ þ bs
1Ts
1ðvÞ þ � � � þ b0v

Thus, TsðvÞ is a linear combination of v, TðvÞ; . . . ; T s
1ðvÞ, and therefore k � s. However,
mvðTÞ ¼ 0 and so mvðTvÞ ¼ 0: Then mðtÞ divides mvðtÞ; and so s � k: Accordingly, k ¼ s and
hence mvðtÞ ¼ mðtÞ.

(iii)
TvðvÞ ¼ TðvÞ
TvðTðvÞÞ ¼ T2ðvÞ

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
TvðTk
2ðvÞÞ ¼ Tk
1ðvÞ
TvðTk
1ðvÞÞ ¼ TkðvÞ ¼ 
a0v 
 a1TðvÞ 
 a2T

2ðvÞ 
 � � � 
 ak
1T
k
1ðvÞ

By definition, the matrix of Tv in this basis is the tranpose of the matrix of coefficients of the above
system of equations; hence, it is C, as required.

10.30. Let T :V ! V be linear. Let W be a T -invariant subspace of V and �T the induced operator on
V=W. Prove

(a) The T-annihilator of v 2 V divides the minimal polynomial of T.

(b) The �T -annihilator of �v 2 V=W divides the minimal polynomial of T.
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(a) The T -annihilator of v 2 V is the minimal polynomial of the restriction of T to Zðv; TÞ; therefore, by

Problem 10.6, it divides the minimal polynomial of T.

(b) The �T -annihilator of �v 2 V=W divides the minimal polynomial of �T , which divides the minimal
polynomial of T by Theorem 10.16.

Remark: In the case where the minimum polynomial of T is f ðtÞn, where f ðtÞ is a monic irreducible
polynomial, then the T -annihilator of v 2 V and the �T -annihilator of �v 2 V=W are of the form f ðtÞm, where
m � n.

10.31. Prove Lemma 10.13: Let T :V ! V be a linear operator whose minimal polynomial is f ðtÞn,
where f ðtÞ is a monic irreducible polynomial. Then V is the direct sum of T -cyclic subspaces
Zi ¼ Zðvi; TÞ, i ¼ 1; . . . ; r, with corresponding T -annihilators

f ðtÞn1 ; f ðtÞn2 ; . . . ; f ðtÞnr ; n ¼ n1 � n2 � � � � � nr

Any other decomposition of V into the direct sum of T -cyclic subspaces has the same number of
components and the same set of T -annihilators.

The proof is by induction on the dimension of V. If dim V ¼ 1, then V is T -cyclic and the lemma
holds. Now suppose dim V > 1 and that the lemma holds for those vector spaces of dimension less than
that of V.

Because the minimal polynomial of T is f ðtÞn, there exists v1 2 V such that f ðTÞn
1ðv1Þ 6¼ 0; hence,
the T -annihilator of v1 is f ðtÞn. Let Z1 ¼ Zðv1; TÞ and recall that Z1 is T -invariant. Let �V ¼ V=Z1 and let �T
be the linear operator on �V induced by T. By Theorem 10.16, the minimal polynomial of �T divides f ðtÞn;
hence, the hypothesis holds for �V and �T . Consequently, by induction, �V is the direct sum of �T -cyclic
subspaces; say,

�V ¼ Zð�v2; �TÞ � � � � � Zð�vr; �T Þ
where the corresponding �T -annihilators are f ðtÞn2 ; . . . ; f ðtÞnr , n � n2 � � � � � nr.

We claim that there is a vector v2 in the coset �v2 whose T -annihilator is f ðtÞn2 , the �T -annihilator of �v2.
Let w be any vector in �v2. Then f ðTÞn2ðwÞ 2 Z1. Hence, there exists a polynomial gðtÞ for which

f ðTÞn2ðwÞ ¼ gðTÞðv1Þ ð1Þ
Because f ðtÞn is the minimal polynomial of T, we have, by (1),

0 ¼ f ðTÞnðwÞ ¼ f ðTÞn
n2gðTÞðv1Þ

But f ðtÞn is the T -annihilator of v1; hence, f ðtÞn divides f ðtÞn
n2 gðtÞ, and so gðtÞ ¼ f ðtÞn2 hðtÞ for some
polynomial hðtÞ. We set

v2 ¼ w
 hðTÞðv1Þ
Because w
 v2 ¼ hðTÞðv1Þ 2 Z1, v2 also belongs to the coset �v2. Thus, the T -annihilator of v2 is a
multiple of the �T -annihilator of �v2. On the other hand, by (1),

f ðTÞn2ðv2Þ ¼ f ðTÞnsðw
 hðTÞðv1ÞÞ ¼ f ðTÞn2ðwÞ 
 gðTÞðv1Þ ¼ 0

Consequently, the T -annihilator of v2 is f ðtÞn2 , as claimed.
Similarly, there exist vectors v3; . . . ; vr 2 V such that vi 2 vi and that the T -annihilator of vi is f ðtÞni ,

the �T -annihilator of vi. We set

Z2 ¼ Zðv2; TÞ; . . . ; Zr ¼ Zðvr; TÞ
Let d denote the degree of f ðtÞ, so that f ðtÞni has degree dni. Then, because f ðtÞni is both the T -annihilator
of vi and the �T -annihilator of vi, we know that

fvi; TðviÞ; . . . ; Tdni
1ðviÞg and f�vi: �TðviÞ; . . . ; �Tdni
1ðviÞg
are bases for Zðvi; TÞ and Zðvi; �TÞ, respectively, for i ¼ 2; . . . ; r. But �V ¼ Zðv2; �TÞ � � � � � Zðvr; �TÞ;
hence,

f�v2; . . . ;�T
dn2
1ð�v2Þ; . . . ; �vr; . . . ;�Tdnr
1ð�vrÞg
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is a basis for �V. Therefore, by Problem 10.26 and the relation �Tið�vÞ ¼ TiðvÞ (see Problem 10.27),

fv1; . . . ; T
dn1
1ðv1Þ; v2; . . . ; T

en2
1ðv2Þ; . . . ; vr; . . . ; Tdnr
1ðvrÞg
is a basis for V. Thus, by Theorem 10.4, V ¼ Zðv1; TÞ � � � � � Zðvr; TÞ, as required.

It remains to show that the exponents n1; . . . ; nr are uniquely determined by T. Because
d ¼ degree of f ðtÞ;

dim V ¼ dðn1 þ � � � þ nrÞ and dim Zi ¼ dni; i ¼ 1; . . . ; r

Also, if s is any positive integer, then (Problem 10.59) f ðTÞsðZiÞ is a cyclic subspace generated by
f ðTÞsðviÞ, and it has dimension dðni 
 sÞ if ni > s and dimension 0 if ni � s.

Now any vector v 2 V can be written uniquely in the form v ¼ w1 þ � � � þ wr, where wi 2 Zi.
Hence, any vector in f ðTÞsðVÞ can be written uniquely in the form

f ðTÞsðvÞ ¼ f ðTÞsðw1Þ þ � � � þ f ðTÞsðwrÞ
where f ðTÞsðwiÞ 2 f ðTÞsðZiÞ. Let t be the integer, dependent on s, for which

n1 > s; . . . ; nt > s; ntþ1 � s

Then f ðTÞsðV Þ ¼ f ðTÞsðZ1Þ � � � � � f ðTÞsðZtÞ
and so dim½ f ðTÞsðVÞ� ¼ d½ðn1 
 sÞ þ � � � þ ðnt 
 sÞ� ð2Þ
The numbers on the left of (2) are uniquely determined by T. Set s ¼ n
 1, and (2) determines the number
of ni equal to n. Next set s ¼ n
 2, and (2) determines the number of ni (if any) equal to n
 1. We repeat
the process until we set s ¼ 0 and determine the number of ni equal to 1. Thus, the ni are uniquely
determined by T and V, and the lemma is proved.

10.32. Let V be a seven-dimensional vector space over R, and let T :V ! V be a linear operator with
minimal polynomial mðtÞ ¼ ðt2 
 2t þ 5Þðt 
 3Þ3. Find all possible rational canonical forms M
of T.

Because dim V ¼ 7; there are only two possible characteristic polynomials, D1ðtÞ ¼ ðt2 
 2t þ 5Þ2
ðt 
 3Þ3 or D1ðtÞ ¼ ðt2 
 2t þ 5Þðt 
 3Þ5: Moreover, the sum of the orders of the companion matrices
must add up to 7. Also, one companion matrix must be Cðt2 
 2t þ 5Þ and one must be Cððt 
 3Þ3Þ ¼
Cðt3 
 9t2 þ 27t 
 27Þ. Thus, M must be one of the following block diagonal matrices:

(a) diag
0 
5
1 2

� �
;

0 
5
1 2

� �
;

0 0 27
1 0 
27
0 1 9

24 350@ 1A;

(b) diag
0 
5
1 2

� �
;

0 0 27
1 0 
27
0 1 9

24 35; 0 
9
1 6

� �0@ 1A;

(c) diag
0 
5
1 2

� �
;

0 0 27
1 0 
27
0 1 9

24 35; ½3�; ½3�
0@ 1A

Projections

10.33. Suppose V ¼ W1 � � � � �Wr. The projection of V into its subspace Wk is the mapping E:V ! V
defined by EðvÞ ¼ wk , where v ¼ w1 þ � � � þ wr;wi 2 Wi. Show that (a) E is linear, (b) E2 ¼ E.

(a) Because the sum v ¼ w1 þ � � � þ wr, wi 2 W is uniquely determined by v, the mapping E is well

defined. Suppose, for u 2 V, u ¼ w01 þ � � � þ w0r, w0i 2 Wi. Then

v þ u ¼ ðw1 þ w01Þ þ � � � þ ðwr þ w0rÞ and kv ¼ kw1 þ � � � þ kwr; kwi;wi þ w0i 2 Wi

are the unique sums corresponding to v þ u and kv. Hence,

Eðv þ uÞ ¼ wk þ w0k ¼ EðvÞ þ EðuÞ and EðkvÞ ¼ kwk þ kEðvÞ
and therefore E is linear.
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(b) We have that

wk ¼ 0þ � � � þ 0þ wk þ 0þ � � � þ 0

is the unique sum corresponding to wk 2 Wk ; hence, EðwkÞ ¼ wk . Then, for any v 2 V,

E2ðvÞ ¼ EðEðvÞÞ ¼ EðwkÞ ¼ wk ¼ EðvÞ
Thus, E2 ¼ E, as required.

10.34. Suppose E:V ! V is linear and E2 ¼ E. Show that (a) EðuÞ ¼ u for any u 2 Im E (i.e., the
restriction of E to its image is the identity mapping); (b) V is the direct sum of the image and
kernel of E:V ¼ Im E � Ker E; (c) E is the projection of V into Im E, its image. Thus, by the
preceding problem, a linear mapping T :V ! V is a projection if and only if T2 ¼ T ; this
characterization of a projection is frequently used as its definition.

(a) If u 2 Im E, then there exists v 2 V for which EðvÞ ¼ u; hence, as required,

EðuÞ ¼ EðEðvÞÞ ¼ E2ðvÞ ¼ EðvÞ ¼ u

(b) Let v 2 V. We can write v in the form v ¼ EðvÞ þ v 
 EðvÞ. Now EðvÞ 2 Im E and, because

Eðv 
 EðvÞÞ ¼ EðvÞ 
 E2ðvÞ ¼ EðvÞ 
 EðvÞ ¼ 0

v 
 EðvÞ 2 Ker E. Accordingly, V ¼ Im E þ Ker E.
Now suppose w 2 Im E \ Ker E. By (i), EðwÞ ¼ w because w 2 Im E. On the other hand,

EðwÞ ¼ 0 because w 2 Ker E. Thus, w ¼ 0, and so Im E \ Ker E ¼ f0g. These two conditions
imply that V is the direct sum of the image and kernel of E.

(c) Let v 2 V and suppose v ¼ uþ w, where u 2 Im E and w 2 Ker E. Note that EðuÞ ¼ u by (i), and
EðwÞ ¼ 0 because w 2 Ker E. Hence,

EðvÞ ¼ Eðuþ wÞ ¼ EðuÞ þ EðwÞ ¼ uþ 0 ¼ u

That is, E is the projection of V into its image.

10.35. Suppose V ¼ U �W and suppose T :V ! V is linear. Show that U and W are both T -invariant if
and only if TE ¼ ET , where E is the projection of V into U.

Observe that EðvÞ 2 U for every v 2 V, and that (i) EðvÞ ¼ v iff v 2 U , (ii) EðvÞ ¼ 0 iff v 2 W.
Suppose ET ¼ TE. Let u 2 U . Because EðuÞ ¼ u,

TðuÞ ¼ TðEðuÞÞ ¼ ðTEÞðuÞ ¼ ðETÞðuÞ ¼ EðTðuÞÞ 2 U

Hence, U is T -invariant. Now let w 2 W. Because EðwÞ ¼ 0,

EðTðwÞÞ ¼ ðETÞðwÞ ¼ ðTEÞðwÞ ¼ TðEðwÞÞ ¼ Tð0Þ ¼ 0; and so TðwÞ 2 W

Hence, W is also T -invariant.
Conversely, suppose U and W are both T -invariant. Let v 2 V and suppose v ¼ uþ w, where u 2 T

and w 2 W. Then TðuÞ 2 U and TðwÞ 2 W ; hence, EðTðuÞÞ ¼ TðuÞ and EðTðwÞÞ ¼ 0. Thus,

ðETÞðvÞ ¼ ðETÞðuþ wÞ ¼ ðETÞðuÞ þ ðETÞðwÞ ¼ EðTðuÞÞ þ EðTðwÞÞ ¼ TðuÞ
and ðTEÞðvÞ ¼ ðTEÞðuþ wÞ ¼ TðEðuþ wÞÞ ¼ TðuÞ

That is, ðETÞðvÞ ¼ ðTEÞðvÞ for every v 2 V ; therefore, ET ¼ TE, as required.

SUPPLEMENTARY PROBLEMS

Invariant Subspaces

10.36. Suppose W is invariant under T :V ! V. Show that W is invariant under f ðTÞ for any polynomial f ðtÞ.

10.37. Show that every subspace of V is invariant under I and 0, the identity and zero operators.
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10.38. Let W be invariant under T1:V ! V and T2:V ! V. Prove W is also invariant under T1 þ T2 and T1T2.

10.39. Let T :V ! V be linear. Prove that any eigenspace, El is T -invariant.

10.40. Let V be a vector space of odd dimension (greater than 1) over the real field R. Show that any linear
operator on V has an invariant subspace other than V or f0g.

10.41. Determine the invariant subspace of A ¼ 2 
4
5 
2

� �
viewed as a linear operator on (a) R2, (b) C2.

10.42. Suppose dim V ¼ n. Show that T :V ! V has a triangular matrix representation if and only if there exist
T -invariant subspaces W1 � W2 � � � � � Wn ¼ V for which dim Wk ¼ k, k ¼ 1; . . . ; n.

Invariant Direct Sums

10.43. The subspaces W1; . . . ;Wr are said to be independent if w1 þ � � � þ wr ¼ 0, wi 2 Wi, implies that each
wi ¼ 0. Show that spanðWiÞ ¼ W1 � � � � �Wr if and only if the Wi are independent. [Here spanðWiÞ
denotes the linear span of the Wi.]

10.44. Show that V ¼ W1 � � � � �Wr if and only if (i) V ¼ spanðWiÞ and (ii) for k ¼ 1; 2; . . . ; r,
Wk \ spanðW1; . . . ;Wk
1;Wkþ1; . . . ;WrÞ ¼ f0g.

10.45. Show that spanðWiÞ ¼ W1 � � � � �Wr if and only if dim ½spanðWiÞ� ¼ dim W1 þ � � � þ dim Wr.

10.46. Suppose the characteristic polynomial of T :V ! V is DðtÞ ¼ f1ðtÞn1 f2ðtÞn2 � � � frðtÞnr , where the fiðtÞ are
distinct monic irreducible polynomials. Let V ¼ W1 � � � � �Wr be the primary decomposition of V into T -
invariant subspaces. Show that fiðtÞni is the characteristic polynomial of the restriction of T to Wi.

Nilpotent Operators

10.47. Suppose T1 and T2 are nilpotent operators that commute (i.e., T1T2 ¼ T2T1). Show that T1 þ T2 and T1T2

are also nilpotent.

10.48. Suppose A is a supertriangular matrix (i.e., all entries on and below the main diagonal are 0). Show that A is
nilpotent.

10.49. Let V be the vector space of polynomials of degree �n. Show that the derivative operator on V is nilpotent
of index nþ 1.

10.50. Show that any Jordan nilpotent block matrix N is similar to its transpose NT (the matrix with 1’s below the
diagonal and 0’s elsewhere).

10.51. Show that two nilpotent matrices of order 3 are similar if and only if they have the same index of
nilpotency. Show by example that the statement is not true for nilpotent matrices of order 4.

Jordan Canonical Form

10.52. Find all possible Jordan canonical forms for those matrices whose characteristic polynomial DðtÞ and
minimal polynomial mðtÞ are as follows:

(a) DðtÞ ¼ ðt 
 2Þ4ðt 
 3Þ2; mðtÞ ¼ ðt 
 2Þ2ðt 
 3Þ2,

(b) DðtÞ ¼ ðt 
 7Þ5; mðtÞ ¼ ðt 
 7Þ2, (c) DðtÞ ¼ ðt 
 2Þ7; mðtÞ ¼ ðt 
 2Þ3

10.53. Show that every complex matrix is similar to its transpose. (Hint: Use its Jordan canonical form.)

10.54. Show that all n� n complex matrices A for which An ¼ I but Ak 6¼ I for k < n are similar.

10.55. Suppose A is a complex matrix with only real eigenvalues. Show that A is similar to a matrix with only real
entries.
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Cyclic Subspaces

10.56. Suppose T :V ! V is linear. Prove that Zðv; TÞ is the intersection of all T -invariant subspaces containing v.

10.57. Let f ðtÞ and gðtÞ be the T -annihilators of u and v, respectively. Show that if f ðtÞ and gðtÞ are relatively
prime, then f ðtÞgðtÞ is the T -annihilator of uþ v.

10.58. Prove that Zðu; TÞ ¼ Zðv; TÞ if and only if gðTÞðuÞ ¼ v where gðtÞ is relatively prime to the T -annihilator of
u.

10.59. Let W ¼ Zðv; TÞ, and suppose the T -annihilator of v is f ðtÞn, where f ðtÞ is a monic irreducible polynomial
of degree d. Show that f ðTÞsðWÞ is a cyclic subspace generated by f ðTÞsðvÞ and that it has dimension
dðn
 sÞ if n > s and dimension 0 if n � s.

Rational Canonical Form

10.60. Find all possible rational forms for a 6� 6 matrix over R with minimal polynomial:

(a) mðtÞ ¼ ðt2 
 2t þ 3Þðt þ 1Þ2, (b) mðtÞ ¼ ðt 
 2Þ3.

10.61. Let A be a 4� 4 matrix with minimal polynomial mðtÞ ¼ ðt2 þ 1Þðt2 
 3Þ. Find the rational canonical form
for A if A is a matrix over (a) the rational field Q, (b) the real field R, (c) the complex field C.

10.62. Find the rational canonical form for the four-square Jordan block with l’s on the diagonal.

10.63. Prove that the characteristic polynomial of an operator T :V ! V is a product of its elementary divisors.

10.64. Prove that two 3� 3 matrices with the same minimal and characteristic polynomials are similar.

10.65. Let Cð f ðtÞÞ denote the companion matrix to an arbitrary polynomial f ðtÞ. Show that f ðtÞ is the
characteristic polynomial of Cð f ðtÞÞ.

Projections

10.66. Suppose V ¼ W1 � � � � �Wr. Let Ei denote the projection of V into Wi. Prove (i) EiEj ¼ 0, i 6¼ j;
(ii) I ¼ E1 þ � � � þ Er.

10.67. Let E1; . . . ;Er be linear operators on V such that

(i) E2
i ¼ Ei (i.e., the Ei are projections); (ii) EiEj ¼ 0, i 6¼ j; (iii) I ¼ E1 þ � � � þ Er

Prove that V ¼ Im E1 � � � � � Im Er.

10.68. Suppose E:V ! V is a projection (i.e., E2 ¼ E). Prove that E has a matrix representation of the form

Ir 0
0 0

� �
, where r is the rank of E and Ir is the r-square identity matrix.

10.69. Prove that any two projections of the same rank are similar. (Hint: Use the result of Problem 10.68.)

10.70. Suppose E:V ! V is a projection. Prove

(i) I 
 E is a projection and V ¼ Im E � Im ðI 
 EÞ, (ii) I þ E is invertible (if 1þ 1 6¼ 0).

Quotient Spaces

10.71. Let W be a subspace of V. Suppose the set of cosets fv1 þW ; v2 þW ; . . . ; vn þWg in V=W is linearly
independent. Show that the set of vectors fv1; v2; . . . ; vng in V is also linearly independent.

10.72. Let W be a substance of V. Suppose the set of vectors fu1; u2; . . . ; ung in V is linearly independent, and that
LðuiÞ \W ¼ f0g. Show that the set of cosets fu1 þW ; . . . ; un þWg in V=W is also linearly
independent.
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10.73. Suppose V ¼ U �W and that fu1; . . . ; ung is a basis of U. Show that fu1 þW ; . . . ; un þWg is a basis
of the quotient spaces V=W. (Observe that no condition is placed on the dimensionality of V or W.)

10.74. Let W be the solution space of the linear equation

a1x1 þ a2x2 þ � � � þ anxn ¼ 0; ai 2 K

and let v ¼ ðb1; b2; . . . ; bnÞ 2 Kn. Prove that the coset v þW of W in Kn is the solution set of the linear
equation

a1x1 þ a2x2 þ � � � þ anxn ¼ b; where b ¼ a1b1 þ � � � þ anbn

10.75. Let V be the vector space of polynomials over R and let W be the subspace of polynomials divisible by t4

(i.e., of the form a0t4 þ a1t5 þ � � � þ an
4tn). Show that the quotient space V=W has dimension 4.

10.76. Let U and W be subspaces of V such that W � U � V. Note that any coset uþW of W in U may also be
viewed as a coset of W in V, because u 2 U implies u 2 V ; hence, U=W is a subset of V=W. Prove that
(i) U=W is a subspace of V=W, (ii) dimðV=WÞ 
 dimðU=WÞ ¼ dimðV=UÞ.

10.77. Let U and W be subspaces of V. Show that the cosets of U \W in V can be obtained by intersecting each of
the cosets of U in V by each of the cosets of W in V :

V=ðU \WÞ ¼ fðv þ UÞ \ ðv0 þWÞ : v; v0 2 Vg

10.78. Let T :V ! V 0 be linear with kernel W and image U. Show that the quotient
space V=W is isomorphic to U under the mapping y :V=W ! U defined by
yðv þWÞ ¼ TðvÞ. Furthermore, show that T ¼ i � y � Z, where Z :V ! V=W
is the natural mapping of V into V=W (i.e., ZðvÞ ¼ v þW), and i :U ,!V 0 is
the inclusion mapping (i.e., iðuÞ ¼ u). (See diagram.)

ANSWERS TO SUPPLEMENTARY PROBLEMS

10.41. (a) R2 and f0g, (b) C2; f0g;W1 ¼ spanð2; 1
 2iÞ;W2 ¼ spanð2; 1þ 2iÞ

10.52. (a) diag
2 1

2

� �
;

2 1
2

� �
;

3 1
3

� �� �
; diag

2 1
2

� �
; ½2�: ½2�; 3 1

3

� �� �
;

(b) diag
7 1

7

� �
;

7 1
7

� �
; ½7�

� �
; diag

7 1
7

� �
; ½7�; ½7�; ½7�

� �
;

(c) Let Mk denote a Jordan block with l ¼ 2 and order k. Then diagðM3;M3;M1Þ, diagðM3;M2;M2Þ,
diagðM3;M2;M1;M1Þ, diagðM3;M1;M1;M1;M1Þ

10.60. Let A ¼ 0 
3
1 2

� �
; B ¼ 0 
1

1 
2

� �
; C ¼

0 0 8
1 0 
12
0 1 6

24 35; D ¼ 0 
4
1 4

� �
.

(a) diagðA;A;BÞ; diagðA;B;BÞ; diagðA;B;
1;
1Þ; (b) diagðC;CÞ; diagðC;D; 2Þ; diagðC; 2; 2; 2Þ

10.61. Let A ¼ 0 
1
1 0

� �
; B ¼ 0 3

1 0

� �
.

(a) diagðA;BÞ, (b) diagðA; ffiffiffi
3
p

;
 ffiffiffi
3
p Þ, (c) diagði;
i;

ffiffiffi
3
p

;
 ffiffiffi
3
p Þ

10.62. Companion matrix with the last column ½
l4; 4l3;
6l2; 4l�T
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CHAPTER 11

Linear Functionals
and the Dual Space

11.1 Introduction

In this chapter, we study linear mappings from a vector space V into its field K of scalars. (Unless
otherwise stated or implied, we view K as a vector space over itself.) Naturally all the theorems and
results for arbitrary mappings on V hold for this special case. However, we treat these mappings
separately because of their fundamental importance and because the special relationship of V to K gives
rise to new notions and results that do not apply in the general case.

11.2 Linear Functionals and the Dual Space

Let V be a vector space over a field K. A mapping f:V ! K is termed a linear functional (or linear form)
if, for every u; v 2 V and every a; b;2 K,

fðauþ bvÞ ¼ afðuÞ þ bfðvÞ
In other words, a linear functional on V is a linear mapping from V into K.

EXAMPLE 11.1

(a) Let pi :K
n ! K be the ith projection mapping; that is, piða1; a2; . . . anÞ ¼ ai. Then pi is linear and so it is a linear

functional on Kn.

(b) Let V be the vector space of polynomials in t over R. Let J:V ! R be the integral operator defined by
JðpðtÞÞ ¼ Ð 1

0
pðtÞ dt. Recall that J is linear; and hence, it is a linear functional on V.

(c) Let V be the vector space of n-square matrices over K. Let T :V ! K be the trace mapping

TðAÞ ¼ a11 þ a22 þ � � � þ ann; where A ¼ ½aij�
That is, T assigns to a matrix A the sum of its diagonal elements. This map is linear (Problem 11.24), and so it is
a linear functional on V.

By Theorem 5.10, the set of linear functionals on a vector space V over a field K is also a vector
space over K, with addition and scalar multiplication defined by

ðfþ sÞðvÞ ¼ fðvÞ þ sðvÞ and ðkfÞðvÞ ¼ kfðvÞ
where f and s are linear functionals on V and k 2 K. This space is called the dual space of V and is
denoted by V*.

EXAMPLE 11.2 Let V ¼ Kn, the vector space of n-tuples, which we write as column vectors. Then the dual space V* can
be identified with the space of row vectors. In particular, any linear functional f ¼ ða1; . . . ; anÞ in V* has the representation

fðx1; x2; . . . ; xnÞ ¼ ½a1; a2; . . . ; an�½x2; x2; . . . ; xn�T ¼ a1x1 þ a2x2 þ � � � þ anxn

Historically, the formal expression on the right was termed a linear form.
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11.3 Dual Basis

Suppose V is a vector space of dimension n over K. By Theorem 5.11, the dimension of the dual space V*
is also n (because K is of dimension 1 over itself). In fact, each basis of V determines a basis of V* as
follows (see Problem 11.3 for the proof).

THEOREM 11.1: Suppose fv1; . . . ; vng is a basis of V over K. Let f1; . . . ;fn 2 V* be the linear
functionals as defined by

fiðvjÞ ¼ dij ¼ 1 if i ¼ j
0 if i 6¼ j

	
Then ff1; . . . ;fng is a basis of V*:

The above basis ffig is termed the basis dual to fvig or the dual basis. The above formula, which
uses the Kronecker delta dij, is a short way of writing

f1ðv1Þ ¼ 1; f1ðv2Þ ¼ 0; f1ðv3Þ ¼ 0; . . . ; f1ðvnÞ ¼ 0
f2ðv1Þ ¼ 0; f2ðv2Þ ¼ 1; f2ðv3Þ ¼ 0; . . . ; f2ðvnÞ ¼ 0
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
fnðv1Þ ¼ 0; fnðv2Þ ¼ 0; . . . ;fnðvn
1Þ ¼ 0; fnðvnÞ ¼ 1

By Theorem 5.2, these linear mappings fi are unique and well defined.

EXAMPLE 11.3 Consider the basis fv1 ¼ ð2; 1Þ; v2 ¼ ð3; 1Þg of R2. Find the dual basis ff1;f2g.
We seek linear functionals f1ðx; yÞ ¼ axþ by and f2ðx; yÞ ¼ cxþ dy such that

f1ðv1Þ ¼ 1; f1ðv2Þ ¼ 0; f2ðv2Þ ¼ 0; f2ðv2Þ ¼ 1

These four conditions lead to the following two systems of linear equations:

f1ðv1Þ ¼ f1ð2; 1Þ ¼ 2aþ b ¼ 1
f1ðv2Þ ¼ f1ð3; 1Þ ¼ 3aþ b ¼ 0

�
and

f2ðv1Þ ¼ f2ð2; 1Þ ¼ 2cþ d ¼ 0
f2ðv2Þ ¼ f2ð3; 1Þ ¼ 3cþ d ¼ 1

�
The solutions yield a ¼ 
1, b ¼ 3 and c ¼ 1, d ¼ 
2. Hence, f1ðx; yÞ ¼ 
xþ 3y and f2ðx; yÞ ¼ x
 2y form the
dual basis.

The next two theorems (proved in Problems 11.4 and 11.5, respectively) give relationships between
bases and their duals.

THEOREM 11.2: Let fv1; . . . ; vng be a basis of V and let ff1; . . . ;fng be the dual basis in V*. Then

(i) For any vector u 2 V, u ¼ f1ðuÞv1 þ f2ðuÞv2 þ � � � þ fnðuÞvn.

(ii) For any linear functional s 2 V*, s ¼ sðv1Þf1 þ sðv2Þf2 þ � � � þ sðvnÞfn.

THEOREM 11.3: Let fv1; . . . ; vng and fw1; . . . ;wng be bases of V and let ff1; . . . ;fng and
fs1; . . . ;sng be the bases of V* dual to fvig and fwig, respectively. Suppose P is
the change-of-basis matrix from fvig to fwig. Then ðP
1ÞT is the change-of-basis
matrix from ffig to fsig.

11.4 Second Dual Space

We repeat: Every vector space V has a dual space V*, which consists of all the linear functionals on V.
Thus, V* has a dual space V**, called the second dual of V, which consists of all the linear functionals
on V*.

We now show that each v 2 V determines a specific element v̂ 2 V**. First, for any f 2 V*, we define

v̂ðfÞ ¼ fðvÞ
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It remains to be shown that this map v̂ :V*! K is linear. For any scalars a; b 2 K and any linear
functionals f; s 2 V*, we have

v̂ðafþ bsÞ ¼ ðafþ bsÞðvÞ ¼ afðvÞ þ bsðvÞ ¼ av̂ðfÞ þ bv̂ðsÞ
That is, v̂ is linear and so v̂ 2 V**. The following theorem (proved in Problem 12.7) holds.

THEOREM 11.4: If V has finite dimensions, then the mapping v 7! v̂ is an isomorphism of V
onto V**.

The above mapping v 7! v̂ is called the natural mapping of V into V**. We emphasize that this
mapping is never onto V** if V is not finite-dimensional. However, it is always linear, and moreover, it is
always one-to-one.

Now suppose V does have finite dimension. By Theorem 11.4, the natural mapping determines an
isomorphism between V and V**. Unless otherwise stated, we will identify V with V** by this
mapping. Accordingly, we will view V as the space of linear functionals on V* and write V ¼ V**. We
remark that if ffig is the basis of V* dual to a basis fvig of V, then fvig is the basis of V** ¼ V that is
dual to ffig.

11.5 Annihilators

Let W be a subset (not necessarily a subspace) of a vector space V. A linear functional f 2 V* is called
an annihilator of W if fðwÞ ¼ 0 for every w 2 W—that is, if fðWÞ ¼ f0g. We show that the set of all
such mappings, denoted by W 0 and called the annihilator of W, is a subspace of V*. Clearly, 0 2 W 0:
Now suppose f;s 2 W 0. Then, for any scalars a; b;2 K and for any w 2 W,

ðafþ bsÞðwÞ ¼ afðwÞ þ bsðwÞ ¼ a0þ b0 ¼ 0

Thus, afþ bs 2 W 0, and so W 0 is a subspace of V*.
In the case that W is a subspace of V, we have the following relationship between W and its annihilator

W 0 (see Problem 11.11 for the proof).

THEOREM 11.5: Suppose V has finite dimension and W is a subspace of V. Then

ðiÞ dim W þ dim W 0 ¼ dim V and ðiiÞ W 00 ¼ W

Here W 00 ¼ fv 2 V :fðvÞ ¼ 0 for every f 2 W 0g or, equivalently, W 00 ¼ ðW 0Þ0, where W 00 is viewed
as a subspace of V under the identification of V and V**.

11.6 Transpose of a Linear Mapping

Let T :V ! U be an arbitrary linear mapping from a vector space V into a vector space U . Now for any
linear functional f 2 U*, the composition f � T is a linear mapping from V into K:

That is, f � T 2 V*. Thus, the correspondence

f 7! f � T

is a mapping from U* into V*; we denote it by Tt and call it the transpose of T . In other words,
Tt :U*! V* is defined by

TtðfÞ ¼ f � T

Thus, ðTtðfÞÞðvÞ ¼ fðTðvÞÞ for every v 2 V.

CHAPTER 11 Linear Functionals and the Dual Space 351



THEOREM 11.6: The transpose mapping Tt defined above is linear.

Proof. For any scalars a; b 2 K and any linear functionals f;s 2 U*,

Ttðafþ bsÞ ¼ ðafþ bsÞ � T ¼ aðf � TÞ þ bðs � TÞ ¼ aTtðfÞ þ bTtðsÞ
That is, Tt is linear, as claimed.

We emphasize that if T is a linear mapping from V into U , then Tt is a linear mapping from U* into
V*. The same ‘‘transpose’’ for the mapping Tt no doubt derives from the following theorem (proved in
Problem 11.16).

THEOREM 11.7: Let T :V ! U be linear, and let A be the matrix representation of T relative to bases
fvig of V and fuig of U . Then the transpose matrix AT is the matrix representation of
Tt :U*! V* relative to the bases dual to fuig and fvig.

SOLVED PROBLEMS

Dual Spaces and Dual Bases

11.1. Find the basis ff1;f2;f3g that is dual to the following basis of R3:

fv1 ¼ ð1;
1; 3Þ; v2 ¼ ð0; 1;
1Þ; v3 ¼ ð0; 3;
2Þg

The linear functionals may be expressed in the form

f1ðx; y; zÞ ¼ a1xþ a2yþ a3z; f2ðx; y; zÞ ¼ b1xþ b2yþ b3z; f3ðx; y; zÞ ¼ c1xþ c2yþ c3z

By definition of the dual basis, fiðvjÞ ¼ 0 for i 6¼ j, but fiðvjÞ ¼ 1 for i ¼ j.
We find f1 by setting f1ðv1Þ ¼ 1; f1ðv2Þ ¼ 0; f1ðv3Þ ¼ 0: This yields

f1ð1;
1; 3Þ ¼ a1 
 a2 þ 3a3 ¼ 1; f1ð0; 1;
1Þ ¼ a2 
 a3 ¼ 0; f1ð0; 3;
2Þ ¼ 3a2 
 2a3 ¼ 0

Solving the system of equations yields a1 ¼ 1, a2 ¼ 0, a3 ¼ 0. Thus, f1ðx; y; zÞ ¼ x.
We find f2 by setting f2ðv1Þ ¼ 0, f2ðv2Þ ¼ 1, f2ðv3Þ ¼ 0. This yields

f2ð1;
1; 3Þ ¼ b1 
 b2 þ 3b3 ¼ 0; f2ð0; 1;
1Þ ¼ b2 
 b3 ¼ 1; f2ð0; 3;
2Þ ¼ 3b2 
 2b3 ¼ 0

Solving the system of equations yields b1 ¼ 7, b2 ¼ 
2, a3 ¼ 
3. Thus, f2ðx; y; zÞ ¼ 7x
 2y
 3z.
We find f3 by setting f3ðv1Þ ¼ 0, f3ðv2Þ ¼ 0, f3ðv3Þ ¼ 1. This yields

f3ð1;
1; 3Þ ¼ c1 
 c2 þ 3c3 ¼ 0; f3ð0; 1;
1Þ ¼ c2 
 c3 ¼ 0; f3ð0; 3;
2Þ ¼ 3c2 
 2c3 ¼ 1

Solving the system of equations yields c1 ¼ 
2, c2 ¼ 1, c3 ¼ 1. Thus, f3ðx; y; zÞ ¼ 
2xþ yþ z.

11.2. Let V ¼ faþ bt : a; b 2 Rg, the vector space of real polynomials of degree �1. Find the basis
fv1; v2g of V that is dual to the basis ff1;f2g of V* defined by

f1ð f ðtÞÞ ¼
ð1

0

f ðtÞ dt and f2ð f ðtÞÞ ¼
ð2

0

f ðtÞ dt

Let v1 ¼ aþ bt and v2 ¼ cþ dt. By definition of the dual basis,

f1ðv1Þ ¼ 1; f1ðv2Þ ¼ 0 and f2ðv1Þ ¼ 0; fiðvjÞ ¼ 1

Thus,

f1ðv1Þ ¼
Ð 1

0 ðaþ btÞ dt ¼ aþ 1
2 b ¼ 1

f2ðv1Þ ¼
Ð 2

0 ðaþ btÞ dt ¼ 2aþ 2b ¼ 0

)
and

f1ðv2Þ ¼
Ð 1

0 ðcþ dtÞ dt ¼ cþ 1
2 d ¼ 0

f2ðv2Þ ¼
Ð 2

0 ðcþ dtÞ dt ¼ 2cþ 2d ¼ 1

)

Solving each system yields a ¼ 2, b ¼ 
2 and c ¼ 
 1
2, d ¼ 1. Thus, fv1 ¼ 2
 2t; v2 ¼ 
 1

2þ tg is
the basis of V that is dual to ff1;f2g.
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11.3. Prove Theorem 11.1: Suppose fv1; . . . ; vng is a basis of V over K. Let f1; . . . ;fn 2 V* be
defined by fiðvjÞ ¼ 0 for i 6¼ j, but fiðvjÞ ¼ 1 for i ¼ j. Then ff1; . . . ;fng is a basis of V*.

We first show that ff1; . . . ;fng spans V*. Let f be an arbitrary element of V*, and suppose

fðv1Þ ¼ k1; fðv2Þ ¼ k2; . . . ; fðvnÞ ¼ kn

Set s ¼ k1f1 þ � � � þ knfn. Then

sðv1Þ ¼ ðk1f1 þ � � � þ knfnÞðv1Þ ¼ k1f1ðv1Þ þ k2f2ðv1Þ þ � � � þ knfnðv1Þ
¼ k1 � 1þ k2 � 0þ � � � þ kn � 0 ¼ k1

Similarly, for i ¼ 2; . . . ; n,

sðviÞ ¼ ðk1f1 þ � � � þ knfnÞðviÞ ¼ k1f1ðviÞ þ � � � þ kifiðviÞ þ � � � þ knfnðviÞ ¼ ki
Thus, fðviÞ ¼ sðviÞ for i ¼ 1; . . . ; n. Because f and s agree on the basis vectors,
f ¼ s ¼ k1f1 þ � � � þ knfn. Accordingly, ff1; . . . ;fng spans V*.

It remains to be shown that ff1; . . . ;fng is linearly independent. Suppose

a1f1 þ a2f2 þ � � � þ anfn ¼ 0

Applying both sides to v1, we obtain

0 ¼ 0ðv1Þ ¼ ða1f1 þ � � � þ anfnÞðv1Þ ¼ a1f1ðv1Þ þ a2f2ðv1Þ þ � � � þ anfnðv1Þ
¼ a1 � 1þ a2 � 0þ � � � þ an � 0 ¼ a1

Similarly, for i ¼ 2; . . . ; n,

0 ¼ 0ðviÞ ¼ ða1f1 þ � � � þ anfnÞðviÞ ¼ a1f1ðviÞ þ � � � þ aifiðviÞ þ � � � þ anfnðviÞ ¼ ai

That is, a1 ¼ 0; . . . ; an ¼ 0. Hence, ff1; . . . ;fng is linearly independent, and so it is a basis of V*.

11.4. Prove Theorem 11.2: Let fv1; . . . ; vng be a basis of V and let ff1; . . . ;fng be the dual basis in
V*. For any u 2 V and any s 2 V*, (i) u ¼Pi fiðuÞvi. (ii) s ¼Pi fðviÞfi.

Suppose

u ¼ a1v1 þ a2v2 þ � � � þ anvn ð1Þ
Then

f1ðuÞ ¼ a1f1ðv1Þ þ a2f1ðv2Þ þ � � � þ anf1ðvnÞ ¼ a1 � 1þ a2 � 0þ � � � þ an � 0 ¼ a1

Similarly, for i ¼ 2; . . . ; n,

fiðuÞ ¼ a1fiðv1Þ þ � � � þ aifiðviÞ þ � � � þ anfiðvnÞ ¼ ai

That is, f1ðuÞ ¼ a1, f2ðuÞ ¼ a2; . . . ;fnðuÞ ¼ an. Substituting these results into (1), we obtain (i).
Next we prove ðiiÞ. Applying the linear functional s to both sides of (i),

sðuÞ ¼ f1ðuÞsðv1Þ þ f2ðuÞsðv2Þ þ � � � þ fnðuÞsðvnÞ
¼ sðv1Þf1ðuÞ þ sðv2Þf2ðuÞ þ � � � þ sðvnÞfnðuÞ
¼ ðsðv1Þf1 þ sðv2Þf2 þ � � � þ sðvnÞfnÞðuÞ

Because the above holds for every u 2 V, s ¼ sðv1Þf2 þ sðv2Þf2 þ � � � þ sðvnÞfn, as claimed.

11.5. Prove Theorem 11.3. Let fvig and fwig be bases of V and let ffig and fsig be the respective
dual bases in V*. Let P be the change-of-basis matrix from fvig to fwig: Then ðP
1ÞT is the
change-of-basis matrix from ffig to fsig.

Suppose, for i ¼ 1; . . . ; n,

wi ¼ ai1v1 þ ai2v2 þ � � � þ ainvn and si ¼ bi1f1 þ bi2f2 þ � � � þ ainvn

Then P ¼ ½aij� and Q ¼ ½bij�. We seek to prove that Q ¼ ðP
1ÞT .
Let Ri denote the ith row of Q and let Cj denote the jth column of PT . Then

Ri ¼ ðbi1; bi2; . . . ; binÞ and Cj ¼ ðaj1; aj2; . . . ; ajnÞT
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By definition of the dual basis,

siðwjÞ ¼ ðbi1f1 þ bi2f2 þ � � � þ binfnÞðaj1v1 þ aj2v2 þ � � � þ ajnvnÞ
¼ bi1aj1 þ bi2aj2 þ � � � þ binajn ¼ RiCj ¼ dij

where dij is the Kronecker delta. Thus,

QPT ¼ ½RiCj� ¼ ½dij� ¼ I

Therefore, Q ¼ ðPT Þ
1 ¼ ðP
1ÞT , as claimed.

11.6. Suppose v 2 V, v 6¼ 0, and dim V ¼ n. Show that there exists f 2 V* such that fðvÞ 6¼ 0.

We extend fvg to a basis fv; v2; . . . ; vng of V. By Theorem 5.2, there exists a unique linear mapping
f:V ! K such that fðvÞ ¼ 1 and fðviÞ ¼ 0, i ¼ 2; . . . ; n. Hence, f has the desired property.

11.7. Prove Theorem 11.4: Suppose dim V ¼ n. Then the natural mapping v 7! v̂ is an isomorphism of
V onto V**.

We first prove that the map v 7! v̂ is linear—that is, for any vectors v;w 2 V and any scalars a; b 2 K,
av þ bw ¼ av̂ þ bŵ. For any linear functional f 2 V*,

av þ bwðfÞ ¼ fðav þ bwÞ ¼ afðvÞ þ bfðwÞ ¼ av̂ðfÞ þ bŵðfÞ ¼ ðav̂ þ bŵÞðfÞ
Because av þ bwðfÞ ¼ ðav̂ þ bŵÞðfÞ for every f 2 V*, we have av þ bw ¼ av̂ þ bŵ. Thus, the map
v 7! v̂ is linear.

Now suppose v 2 V, v 6¼ 0. Then, by Problem 11.6, there exists f 2 V* for which fðvÞ 6¼ 0. Hence,
v̂ðfÞ ¼ fðvÞ 6¼ 0, and thus v̂ 6¼ 0. Because v 6¼ 0 implies v̂ 6¼ 0, the map v 7! v̂ is nonsingular and hence
an isomorphism (Theorem 5.64).

Now dim V ¼ dim V* ¼ dim V**, because V has finite dimension. Accordingly, the mapping v 7! v̂
is an isomorphism of V onto V**.

Annihilators

11.8. Show that if f 2 V* annihilates a subset S of V, then f annihilates the linear span LðSÞ of S.
Hence, S0 ¼ ½spanðSÞ�0.

Suppose v 2 spanðSÞ. Then there exists w1; . . . ;wr 2 S for which v ¼ a1w1 þ a2w2 þ � � � þ arwr.

fðvÞ ¼ a1fðw1Þ þ a2fðw2Þ þ � � � þ arfðwrÞ ¼ a10þ a20þ � � � þ ar0 ¼ 0

Because v was an arbitrary element of spanðSÞ;f annihilates spanðSÞ, as claimed.

11.9. Find a basis of the annihilator W 0 of the subspace W of R4 spanned by

v1 ¼ ð1; 2;
3; 4Þ and v2 ¼ ð0; 1; 4;
1Þ
By Problem 11.8, it suffices to find a basis of the set of linear functionals f such that fðv1Þ ¼ 0 and

fðv2Þ ¼ 0, where fðx1; x2; x3; x4Þ ¼ ax1 þ bx2 þ cx3 þ dx4. Thus,

fð1; 2;
3; 4Þ ¼ aþ 2b
 3cþ 4d ¼ 0 and fð0; 1; 4;
1Þ ¼ bþ 4c
 d ¼ 0

The system of two equations in the unknowns a; b; c; d is in echelon form with free variables c and d.

(1) Set c ¼ 1, d ¼ 0 to obtain the solution a ¼ 11, b ¼ 
4, c ¼ 1, d ¼ 0.

(2) Set c ¼ 0, d ¼ 1 to obtain the solution a ¼ 6, b ¼ 
1, c ¼ 0, d ¼ 1.

The linear functions f1ðxiÞ ¼ 11x1 
 4x2 þ x3 and f2ðxiÞ ¼ 6x1 
 x2 þ x4 form a basis of W 0.

11.10. Show that (a) For any subset S of V ; S � S00. (b) If S1 � S2, then S0
2 � S0

1 .

(a) Let v 2 S. Then for every linear functional f 2 S0, v̂ðfÞ ¼ fðvÞ ¼ 0. Hence, v̂ 2 ðS0Þ0. Therefore,
under the identification of V and V**, v 2 S00. Accordingly, S � S00.

(b) Let f 2 S0
2 . Then fðvÞ ¼ 0 for every v 2 S2. But S1 � S2; hence, f annihilates every element of S1

(i.e., f 2 S0
1 ). Therefore, S0

2 � S0
1 .

d dd d
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11.11. Prove Theorem 11.5: Suppose V has finite dimension and W is a subspace of V. Then

(i) dim W þ dim W 0 ¼ dim V, (ii) W 00 ¼ W.

(i) Suppose dim V ¼ n and dim W ¼ r � n. We want to show that dim W 0 ¼ n
 r. We choose a basis
fw1; . . . ;wrg of W and extend it to a basis of V, say fw1; . . . ;wr; v1; . . . ; vn
rg. Consider the dual
basis

ff1; . . . ;fr; s1; . . . ; sn
rg
By definition of the dual basis, each of the above s’s annihilates each wi; hence, s1; . . . ; sn
r 2 W 0.
We claim that fsig is a basis of W 0. Now fsjg is part of a basis of V*, and so it is linearly
independent.

We next show that ffjg spans W 0. Let s 2 W 0. By Theorem 11.2,

s ¼ sðw1Þf1 þ � � � þ sðwrÞfr þ sðv1Þs1 þ � � � þ sðvn
rÞsn
r

¼ 0f1 þ � � � þ 0fr þ sðv1Þs1 þ � � � þ sðvn
rÞsn
r

¼ sðv1Þs1 þ � � � þ sðvn
rÞsn
r

Consequently, fs1; . . . ; sn
rg spans W 0 and so it is a basis of W 0. Accordingly, as required

dim W 0 ¼ n
 r ¼ dim V 
 dim W :

(ii) Suppose dim V ¼ n and dim W ¼ r. Then dim V* ¼ n and, by (i), dim W 0 ¼ n
 r. Thus, by (i),
dim W 00 ¼ n
 ðn
 rÞ ¼ r; therefore, dim W ¼ dim W 00. By Problem 11.10, W � W 00. Accord-
ingly, W ¼ W 00.

11.12. Let U and W be subspaces of V. Prove that ðU þWÞ0 ¼ U 0 \W 0.

Let f 2 ðU þWÞ0. Then f annihilates U þW; and so, in particular, f annihilates U and W: That is,
f 2 U0 and f 2 W 0; hence, f 2 U0 \W 0: Thus, ðU þWÞ0 � U0 \W 0:

On the other hand, suppose s 2 U0 \W 0: Then s annihilates U and also W. If v 2 U þW, then
v ¼ uþ w, where u 2 U and w 2 W. Hence, sðvÞ ¼ sðuÞ þ sðwÞ ¼ 0þ 0 ¼ 0. Thus, s annihilates U þW;
that is, s 2 ðU þWÞ0. Accordingly, U0 þW 0 � ðU þWÞ0.

The two inclusion relations together give us the desired equality.

Remark: Observe that no dimension argument is employed in the proof; hence, the result holds for
spaces of finite or infinite dimension.

Transpose of a Linear Mapping

11.13. Let f be the linear functional on R2 defined by fðx; yÞ ¼ x
 2y. For each of the following linear
operators T on R2, find ðTtðfÞÞðx; yÞ:
(a) Tðx; yÞ ¼ ðx; 0Þ, (b) Tðx; yÞ ¼ ðy; xþ yÞ, (c) Tðx; yÞ ¼ ð2x
 3y; 5xþ 2yÞ

By definition, TtðfÞ ¼ f � T ; that is, ðTtðfÞÞðvÞ ¼ fðTðvÞÞ for every v. Hence,

(a) ðTtðfÞÞðx; yÞ ¼ fðTðx; yÞÞ ¼ fðx; 0Þ ¼ x

(b) ðTtðfÞÞðx; yÞ ¼ fðTðx; yÞÞ ¼ fðy; xþ yÞ ¼ y
 2ðxþ yÞ ¼ 
2x
 y

(c) ðTtðfÞÞðx; yÞ ¼ fðTðx; yÞÞ ¼ fð2x
 3y; 5xþ 2yÞ ¼ ð2x
 3yÞ 
 2ð5xþ 2yÞ ¼ 
8x
 7y

11.14. Let T :V ! U be linear and let Tt :U*! V* be its transpose. Show that the kernel of Tt is the
annihilator of the image of T—that is, Ker Tt ¼ ðIm TÞ0.

Suppose f 2 Ker Tt; that is, TtðfÞ ¼ f � T ¼ 0. If u 2 Im T , then u ¼ TðvÞ for some v 2 V ; hence,

fðuÞ ¼ fðTðvÞÞ ¼ ðf � TÞðvÞ ¼ 0ðvÞ ¼ 0

We have that fðuÞ ¼ 0 for every u 2 Im T ; hence, f 2 ðIm TÞ0. Thus, Ker T t � ðIm TÞ0.
On the other hand, suppose s 2 ðIm TÞ0; that is, sðIm TÞ ¼ f0g . Then, for every v 2 V,

ðTtðsÞÞðvÞ ¼ ðs � TÞðvÞ ¼ sðTðvÞÞ ¼ 0 ¼ 0ðvÞ
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We have ðTtðsÞÞðvÞ ¼ 0ðvÞ for every v 2 V ; hence, TtðsÞ ¼ 0. Thus, s 2 Ker Tt, and so
ðIm TÞ0 � Ker Tt.

The two inclusion relations together give us the required equality.

11.15. Suppose V and U have finite dimension and T :V ! U is linear. Prove rankðTÞ ¼ rankðTtÞ.
Suppose dim V ¼ n and dim U ¼ m, and suppose rankðTÞ ¼ r. By Theorem 11.5,

dimðIm TÞ0 ¼ dim u
 dimðIm TÞ ¼ m
 rankðTÞ ¼ m
 r

By Problem 11.14, Ker T t ¼ ðIm TÞ0. Hence, nullity ðTtÞ ¼ m
 r. It then follows that, as claimed,

rankðTtÞ ¼ dim U*
 nullityðTtÞ ¼ m
 ðm
 rÞ ¼ r ¼ rankðTÞ

11.16. Prove Theorem 11.7: Let T :V ! U be linear and let A be the matrix representation of T in the
bases fvjg of V and fuig of U . Then the transpose matrix AT is the matrix representation of
Tt :U*! V* in the bases dual to fuig and fvjg.

Suppose, for j ¼ 1; . . . ;m,

TðvjÞ ¼ aj1u1 þ aj2u2 þ � � � þ ajnun ð1Þ
We want to prove that, for i ¼ 1; . . . ; n,

T tðsiÞ ¼ a1if1 þ a2if2 þ � � � þ amifm ð2Þ
where fsig and ffjg are the bases dual to fuig and fvjg, respectively.

Let v 2 V and suppose v ¼ k1v1 þ k2v2 þ � � � þ kmvm. Then, by (1),

TðvÞ ¼ k1Tðv1Þ þ k2Tðv2Þ þ � � � þ kmTðvmÞ
¼ k1ða11u1 þ � � � þ a1nunÞ þ k2ða21u1 þ � � � þ a2nunÞ þ � � � þ kmðam1u1 þ � � � þ amnunÞ
¼ ðk1a11 þ k2a21 þ � � � þ kmam1Þu1 þ � � � þ ðk1a1n þ k2a2n þ � � � þ kmamnÞun

¼Pn
i¼1

ðk1a1i þ k2a2i þ � � � þ kmamiÞui

Hence, for j ¼ 1; . . . ; n.

ðTtðsjÞðvÞÞ ¼ sjðTðvÞÞ ¼ sj

Pn
i¼1

ðk1a1i þ k2a2i þ � � � þ kmamiÞui

� �
¼ k1a1j þ k2a2j þ � � � þ kmamj ð3Þ

On the other hand, for j ¼ 1; . . . ; n,

ða1jf1 þ a2jf2 þ � � � þ amjfmÞðvÞ ¼ ða1jf1 þ a2jf2 þ � � � þ amjfmÞðk1v1 þ k2v2 þ � � � þ kmvmÞ
¼ k1a1j þ k2a2j þ � � � þ kmamj ð4Þ

Because v 2 V was arbitrary, (3) and (4) imply that

TtðsjÞ ¼ a1jf1 þ a2jf2 þ � � � þ amjfm; j ¼ 1; . . . ; n

which is (2). Thus, the theorem is proved.

SUPPLEMENTARY PROBLEMS

Dual Spaces and Dual Bases

11.17. Find (a) fþ s, (b) 3f, (c) 2f
 5s, where f:R3 ! R and s:R3 ! R are defined by

fðx; y; zÞ ¼ 2x
 3yþ z and sðx; y; zÞ ¼ 4x
 2yþ 3z

11.18. Find the dual basis of each of the following bases of R3: (a) fð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þg,
(b) fð1;
2; 3Þ; ð1;
1; 1Þ; ð2;
4; 7Þg.
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11.19. Let V be the vector space of polynomials over R of degree �2. Let f1;f2;f3 be the linear functionals on
V defined by

f1ð f ðtÞÞ ¼
ð1

0

f ðtÞ dt; f2ð f ðtÞÞ ¼ f 0ð1Þ; f3ð f ðtÞÞ ¼ f ð0Þ

Here f ðtÞ ¼ aþ bt þ ct2 2 V and f 0ðtÞ denotes the derivative of f ðtÞ. Find the basis f f1ðtÞ; f2ðtÞ; f3ðtÞg of
V that is dual to ff1;f2;f3g.

11.20. Suppose u; v 2 V and that fðuÞ ¼ 0 implies fðvÞ ¼ 0 for all f 2 V*. Show that v ¼ ku for some scalar k.

11.21. Suppose f; s 2 V* and that fðvÞ ¼ 0 implies sðvÞ ¼ 0 for all v 2 V. Show that s ¼ kf for some scalar k.

11.22. Let V be the vector space of polynomials over K. For a 2 K, define fa :V ! K by fað f ðtÞÞ ¼ f ðaÞ. Show
that (a) fa is linear; (b) if a 6¼ b, then fa 6¼ fb.

11.23. Let V be the vector space of polynomials of degree �2. Let a; b; c 2 K be distinct scalars. Let fa;fb;fc

be the linear functionals defined by fað f ðtÞÞ ¼ f ðaÞ, fbð f ðtÞÞ ¼ f ðbÞ, fcð f ðtÞÞ ¼ f ðcÞ. Show that
ffa;fb;fcg is linearly independent, and find the basis f f1ðtÞ; f2ðtÞ; f3ðtÞg of V that is its dual.

11.24. Let V be the vector space of square matrices of order n. Let T :V ! K be the trace mapping; that is,
TðAÞ ¼ a11 þ a22 þ � � � þ ann, where A ¼ ðaijÞ. Show that T is linear.

11.25. Let W be a subspace of V. For any linear functional f on W, show that there is a linear functional s on V
such that sðwÞ ¼ fðwÞ for any w 2 W ; that is, f is the restriction of s to W.

11.26. Let fe1; . . . ; eng be the usual basis of Kn. Show that the dual basis is fp1; . . . ; png where pi is the ith
projection mapping; that is, piða1; . . . ; anÞ ¼ ai.

11.27. Let V be a vector space over R. Let f1;f2 2 V* and suppose s:V ! R; defined by sðvÞ ¼ f1ðvÞf2ðvÞ;
also belongs to V*. Show that either f1 ¼ 0 or f2 ¼ 0.

Annihilators

11.28. Let W be the subspace of R4 spanned by ð1; 2;
3; 4Þ, ð1; 3;
2; 6Þ, ð1; 4;
1; 8Þ. Find a basis of the
annihilator of W.

11.29. Let W be the subspace of R3 spanned by ð1; 1; 0Þ and ð0; 1; 1Þ. Find a basis of the annihilator of W.

11.30. Show that, for any subset S of V ; spanðSÞ ¼ S00, where spanðSÞ is the linear span of S.

11.31. Let U and W be subspaces of a vector space V of finite dimension. Prove that ðU \WÞ0 ¼ U0 þW 0.

11.32. Suppose V ¼ U �W. Prove that V � ¼ U0 �W 0.

Transpose of a Linear Mapping

11.33. Let f be the linear functional on R2 defined by fðx; yÞ ¼ 3x
 2y. For each of the following linear
mappings T :R3 ! R2, find ðT tðfÞÞðx; y; zÞ:
(a) Tðx; y; zÞ ¼ ðxþ y; yþ zÞ, (b) Tðx; y; zÞ ¼ ðxþ yþ z; 2x
 yÞ

11.34. Suppose T1 :U ! V and T2 :V ! W are linear. Prove that ðT2 � T1Þt ¼ T t
1
� Tt

2.

11.35. Suppose T :V ! U is linear and V has finite dimension. Prove that Im Tt ¼ ðKer TÞ0.
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11.36. Suppose T :V ! U is linear and u 2 U . Prove that u 2 Im T or there exists f 2 V* such that TtðfÞ ¼ 0
and fðuÞ ¼ 1.

11.37. Let V be of finite dimension. Show that the mapping T 7! Tt is an isomorphism from HomðV ;V Þ onto
HomðV*;V*Þ. (Here T is any linear operator on V.)

Miscellaneous Problems

11.38. Let V be a vector space over R. The line segment uv joining points u; v 2 V is defined by
uv ¼ ftuþ ð1
 tÞv :0 � t � 1g. A subset S of V is convex if u; v 2 S implies uv � S. Let f 2 V*. Define

Wþ ¼ fv 2 V : fðvÞ > 0g; W ¼ fv 2 V : fðvÞ ¼ 0g; W
 ¼ fv 2 V : fðvÞ < 0g
Prove that Wþ;W, and W
 are convex.

11.39. Let V be a vector space of finite dimension. A hyperplane H of V may be defined as the kernel of a nonzero
linear functional f on V. Show that every subspace of V is the intersection of a finite number of
hyperplanes.

ANSWERS TO SUPPLEMENTARY PROBLEMS

11.17. (a) 6x
 5yþ 4z, (b) 6x
 9yþ 3z, (c) 
16xþ 4y
 13z

11.18. (a) f1 ¼ x; f2 ¼ y; f3 ¼ z; (b) f1 ¼ 
3x
 5y
 2z; f2 ¼ 2xþ y; f3 ¼ xþ 2yþ z

11.19. f1ðtÞ ¼ 3t 
 3
2 t2; f2ðtÞ ¼ 
 1

2 t þ 3
4 t2; f3ðtÞ ¼ 1
 3t þ 3

2 t2

11.22. (b) Let f ðtÞ ¼ t. Then fað f ðtÞÞ ¼ a 6¼ b ¼ fbð f ðtÞÞ; and therefore, fa 6¼ fb

11.23. f1ðtÞ ¼
t2 
 ðbþ cÞt þ bc

ða
 bÞða
 cÞ ; f2ðtÞ ¼
t2 
 ðaþ cÞt þ ac

ðb
 aÞðb
 cÞ ; f3ðtÞ ¼
t2 
 ðaþ bÞt þ ab

ðc
 aÞðc
 bÞ
	 �

11.28. ff1ðx; y; z; tÞ ¼ 5x
 yþ z; f2ðx; y; z; tÞ ¼ 2y
 tg

11.29. ffðx; y; zÞ ¼ x
 yþ zg

11.33. (a) ðT tðfÞÞðx; y; zÞ ¼ 3xþ y
 2z, (b) ðTtðfÞÞðx; y; zÞ ¼ 
xþ 5yþ 3z
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Bilinear, Quadratic,
and Hermitian Forms

12.1 Introduction

This chapter generalizes the notions of linear mappings and linear functionals. Specifically, we introduce
the notion of a bilinear form. These bilinear maps also give rise to quadratic and Hermitian forms.
Although quadratic forms were discussed previously, this chapter is treated independently of the previous
results.

Although the field K is arbitrary, we will later specialize to the cases K ¼ R and K ¼ C. Furthermore,
we may sometimes need to divide by 2. In such cases, we must assume that 1þ 1 6¼ 0, which is true when
K ¼ R or K ¼ C.

12.2 Bilinear Forms

Let V be a vector space of finite dimension over a field K. A bilinear form on V is a mapping
f :V � V ! K such that, for all a; b 2 K and all ui; vi 2 V:

(i) f ðau1 þ bu2; vÞ ¼ af ðu1; vÞ þ bf ðu2; vÞ,
(ii) f ðu; av1 þ bv2Þ ¼ af ðu; v1Þ þ bf ðu; v2Þ
We express condition (i) by saying f is linear in the first variable, and condition (ii) by saying f is linear
in the second variable.

EXAMPLE 12.1

(a) Let f be the dot product on Rn; that is, for u ¼ ðaiÞ and v ¼ ðbiÞ,
f ðu; vÞ ¼ u � v ¼ a1b1 þ a2b2 þ � � � þ anbn

Then f is a bilinear form on Rn. (In fact, any inner product on a real vector space V is a bilinear form
on V.)

(b) Let f and s be arbitrarily linear functionals on V. Let f :V � V ! K be defined by f ðu; vÞ ¼ fðuÞsðvÞ. Then f is
a bilinear form, because f and s are each linear.

(c) Let A ¼ ½aij� be any n� n matrix over a field K. Then A may be identified with the following bilinear form F on
Kn, where X ¼ ½xi� and Y ¼ ½yi� are column vectors of variables:

f ðX ;Y Þ ¼ X T AY ¼P
i;j

aijxiyi ¼ a11x1y1 þ a12x1y2 þ � � � þ annxnyn

The above formal expression in the variables xi; yi is termed the bilinear polynomial corresponding to the matrix
A. Equation (12.1) shows that, in a certain sense, every bilinear form is of this type.
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Space of Bilinear Forms

Let BðVÞ denote the set of all bilinear forms on V. A vector space structure is placed on BðV Þ, where for
any f ; g 2 BðV Þ and any k 2 K, we define f þ g and kf as follows:

ð f þ gÞðu; vÞ ¼ f ðu; vÞ þ gðu; vÞ and ðkf Þðu; vÞ ¼ kf ðu; vÞ
The following theorem (proved in Problem 12.4) applies.

THEOREM 12.1: Let V be a vector space of dimension n over K. Let ff1; . . . ;fng be any basis of the
dual space V*. Then f fij : i; j ¼ 1; . . . ; ng is a basis of BðVÞ, where fij is defined by
fijðu; vÞ ¼ fiðuÞfjðvÞ. Thus, in particular, dim BðVÞ ¼ n2.

12.3 Bilinear Forms and Matrices

Let f be a bilinear form on V and let S ¼ fu1; . . . ; ung be a basis of V. Suppose u; v 2 V and

u ¼ a1u1 þ � � � þ anun and v ¼ b1u1 þ � � � þ bnun

Then

f ðu; vÞ ¼ f ða1u1 þ � � � þ anun; b1u1 þ � � � þ bnunÞ ¼
P
i;j

aibjf ðui; ujÞ

Thus, f is completely determined by the n2 values f ðui; ujÞ.
The matrix A ¼ ½aij� where aij ¼ f ðui; ujÞ is called the matrix representation of f relative to the basis S

or, simply, the ‘‘matrix of f in S.’’ It ‘‘represents’’ f in the sense that, for all u; v 2 V,

f ðu; vÞ ¼P
i;j

aibj f ðui; ujÞ ¼ ½u�TS A½v�S ð12:1Þ

[As usual, ½u�S denotes the coordinate (column) vector of u in the basis S.]

Change of Basis, Congruent Matrices

We now ask, how does a matrix representing a bilinear form transform when a new basis is selected? The
answer is given in the following theorem (proved in Problem 12.5).

THEOREM 12.2: Let P be a change-of-basis matrix from one basis S to another basis S0. If A is the
matrix representing a bilinear form f in the original basis S, then B ¼ PT AP is the
matrix representing f in the new basis S0.

The above theorem motivates the following definition.

DEFINITION: A matrix B is congruent to a matrix A, written B ’ A, if there exists a nonsingular
matrix P such that B ¼ PTAP.

Thus, by Theorem 12.2, matrices representing the same bilinear form are congruent. We remark that
congruent matrices have the same rank, because P and PT are nonsingular; hence, the following definition
is well defined.

DEFINITION: The rank of a bilinear form f on V, written rankð f Þ, is the rank of any matrix
representation of f . We say f is degenerate or nondegenerate according to whether
rankð f Þ < dim V or rankð f Þ ¼ dim V.

12.4 Alternating Bilinear Forms

Let f be a bilinear form on V. Then f is called

(i) alternating if f ðv; vÞ ¼ 0 for every v 2 V ;

(ii) skew-symmetric if f ðu; vÞ ¼ 
f ðv; uÞ for every u; v 2 V.
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Now suppose (i) is true. Then (ii) is true, because, for any u; v;2 V,

0 ¼ f ðuþ v; uþ vÞ ¼ f ðu; uÞ þ f ðu; vÞ þ f ðv; uÞ þ f ðv; vÞ ¼ f ðu; vÞ þ f ðv; uÞ
On the other hand, suppose (ii) is true and also 1þ 1 6¼ 0. Then (i) is true, because, for every v 2 V, we
have f ðv; vÞ ¼ 
f ðv; vÞ. In other words, alternating and skew-symmetric are equivalent when 1þ 1 6¼ 0.

The main structure theorem of alternating bilinear forms (proved in Problem 12.23) is as follows.

THEOREM 12.3: Let f be an alternating bilinear form on V. Then there exists a basis of V in which f
is represented by a block diagonal matrix M of the form

M ¼ diag
0 1

1 0

� �
;

0 1

1 0

� �
; . . . ;

0 1

1 0

� �
; ½0�; ½0�; . . . ½0�

� �
Moreover, the number of nonzero blocks is uniquely determined by f [because it is
equal to 1

2 rankð f Þ�.

In particular, the above theorem shows that any alternating bilinear form must have even rank.

12.5 Symmetric Bilinear Forms, Quadratic Forms

This section investigates the important notions of symmetric bilinear forms and quadratic forms and their
representation by means of symmetric matrices. The only restriction on the field K is that 1þ 1 6¼ 0. In
Section 12.6, we will restrict K to be the real field R, which yields important special results.

Symmetric Bilinear Forms

Let f be a bilinear form on V. Then f is said to be symmetric if, for every u; v 2 V,

f ðu; vÞ ¼ f ðv; uÞ
One can easily show that f is symmetric if and only if any matrix representation A of f is a symmetric
matrix.

The main result for symmetric bilinear forms (proved in Problem 12.10) is as follows. (We emphasize
that we are assuming that 1þ 1 6¼ 0.)

THEOREM 12.4: Let f be a symmetric bilinear form on V. Then V has a basis fv1; . . . ; vng in which f
is represented by a diagonal matrix—that is, where f ðvi; vjÞ ¼ 0 for i 6¼ j.

THEOREM 12.4: (Alternative Form) Let A be a symmetric matrix over K. Then A is congruent to a
diagonal matrix; that is, there exists a nonsingular matrix P such that PTAP is
diagonal.

Diagonalization Algorithm

Recall that a nonsingular matrix P is a product of elementary matrices. Accordingly, one way of
obtaining the diagonal form D ¼ PTAP is by a sequence of elementary row operations and the same
sequence of elementary column operations. This same sequence of elementary row operations on the
identity matrix I will yield PT . This algorithm is formalized below.

ALGORITHM 12.1: (Congruence Diagonalization of a Symmetric Matrix) The input is a symmetric
matrix A ¼ ½aij� of order n.

Step 1. Form the n� 2n (block) matrix M ¼ ½A1; I �, where A1 ¼ A is the left half of M and the identity
matrix I is the right half of M .

Step 2. Examine the entry a11. There are three cases.
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Case I: a11 6¼ 0. (Use a11 as a pivot to put 0’s below a11 in M and to the right of a11 in A1:Þ
For i ¼ 2; . . . ; n:

(a) Apply the row operation ‘‘Replace Ri by 
ai1R1 þ a11Ri.’’

(b) Apply the corresponding column operation ‘‘Replace Ci by 
ai1C1 þ a11Ci.’’

These operations reduce the matrix M to the form

M � a11 0 * *
0 A1 * *

� �
ð*Þ

Case II: a11 ¼ 0 but akk 6¼ 0, for some k > 1.

(a) Apply the row operation ‘‘Interchange R1 and Rk .’’

(b) Apply the corresponding column operation ‘‘Interchange C1 and Ck .’’

(These operations bring akk into the first diagonal position, which reduces the matrix
to Case I.)

Case III: All diagonal entries aii ¼ 0 but some aij 6¼ 0.

(a) Apply the row operation ‘‘Replace Ri by Rj þ Ri.’’

(b) Apply the corresponding column operation ‘‘Replace Ci by Cj þ Ci.’’

(These operations bring 2aij into the ith diagonal position, which reduces the matrix
to Case II.)

Thus, M is finally reduced to the form ð*Þ, where A2 is a symmetric matrix of order less than
A.

Step 3. Repeat Step 2 with each new matrix Ak (by neglecting the first row and column of the
preceding matrix) until A is diagonalized. Then M is transformed into the form M 0 ¼ ½D;Q�,
where D is diagonal.

Step 4. Set P ¼ QT . Then D ¼ PTAP.

Remark 1: We emphasize that in Step 2, the row operations will change both sides of M , but the
column operations will only change the left half of M.

Remark 2: The condition 1þ 1 6¼ 0 is used in Case III, where we assume that 2aij 6¼ 0 when
aij 6¼ 0.

The justification for the above algorithm appears in Problem 12.9.

EXAMPLE 12.2 Let A ¼
1 2 
3
2 5 
4

3 
4 8

24 35. Apply Algorithm 9.1 to find a nonsingular matrix P such

that D ¼ PTAP is diagonal.

First form the block matrix M ¼ ½A; I �; that is, let

M ¼ ½A; I � ¼
1 2 
3 1 0 0
2 5 
4 0 1 0

3 
4 8 0 0 1

24 35
Apply the row operations ‘‘Replace R2 by 
2R1 þ R2’’ and ‘‘Replace R3 by 3R1 þ R3’’ to M , and then apply the
corresponding column operations ‘‘Replace C2 by 
2C1 þ C2’’ and ‘‘Replace C3 by 3C1 þ C3’’ to obtain

1 2 
3 1 0 0
0 1 2 
2 1 0
0 2 
1 3 0 1

24 35 and then
1 0 0 1 0 0
0 1 2 
2 1 0
0 2 
1 3 0 1

24 35
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Next apply the row operation ‘‘Replace R3 by 
2R2 þ R3’’ and then the corresponding column operation ‘‘Replace
C3 by 
2C2 þ C3’’ to obtain

1 0 0 1 0 0
0 1 2 
2 1 0
0 0 
5 7 
2 1

24 35 and then
1 0 0 1 0 0
0 1 0 
2 1 0
0 0 
5 7 
2 1

24 35
Now A has been diagonalized. Set

P ¼
1 
2 7
0 1 
2
0 0 1

24 35 and then D ¼ P
1AP ¼
1 0 0
0 1 0
0 0 
5

24 35
We emphasize that P is the transpose of the right half of the final matrix.

Quadratic Forms

We begin with a definition.

DEFINITION A: A mapping q:V ! K is a quadratic form if qðvÞ ¼ f ðv; vÞ for some symmetric
bilinear form f on V.

If 1þ 1 6¼ 0 in K, then the bilinear form f can be obtained from the quadratic form q by the following
polar form of f :

f ðu; vÞ ¼ 1
2 ½qðuþ vÞ 
 qðuÞ 
 qðvÞ�

Now suppose f is represented by a symmetric matrix A ¼ ½aij�, and 1þ 1 6¼ 0. Letting X ¼ ½xi�
denote a column vector of variables, q can be represented in the form

qðX Þ ¼ f ðX ;X Þ ¼ X T AX ¼P
i;j

aijxixj ¼
P

i
aiix

2
i þ 2

P
i<j

aijxixj

The above formal expression in the variables xi is also called a quadratic form. Namely, we have the
following second definition.

DEFINITION B: A quadratic form q in variables x1; x2; . . . ; xn is a polynomial such that every term
has degree two; that is,

qðx1; x2; . . . ; xnÞ ¼
P
i

cix
2
i þ

P
i<j

dijxixj

Using 1þ 1 6¼ 0, the quadratic form q in Definition B determines a symmetric matrix A ¼ ½aij� where
aii ¼ ci and aij ¼ aji ¼ 1

2 dij. Thus, Definitions A and B are essentially the same.
If the matrix representation A of q is diagonal, then q has the diagonal representation

qðX Þ ¼ X T AX ¼ a11x2
1 þ a22x2

2 þ � � � þ annx2
n

That is, the quadratic polynomial representing q will contain no ‘‘cross product’’ terms. Moreover, by
Theorem 12.4, every quadratic form has such a representation (when 1þ 1 6¼ 0Þ.

12.6 Real Symmetric Bilinear Forms, Law of Inertia

This section treats symmetric bilinear forms and quadratic forms on vector spaces V over the real field R.
The special nature of R permits an independent theory. The main result (proved in Problem 12.14) is as
follows.

THEOREM 12.5: Let f be a symmetric form on V over R. Then there exists a basis of V in which f is
represented by a diagonal matrix. Every other diagonal matrix representation of f has
the same number p of positive entries and the same number n of negative entries.
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The above result is sometimes called the Law of Inertia or Sylvester’s Theorem. The rank and
signature of the symmetric bilinear form f are denoted and defined by

rankð f Þ ¼ pþ n and sigð f Þ ¼ p
 n

These are uniquely defined by Theorem 12.5.
A real symmetric bilinear form f is said to be

(i) positive definite if qðvÞ ¼ f ðv; vÞ > 0 for every v 6¼ 0,

(ii) nonnegative semidefinite if qðvÞ ¼ f ðv; vÞ � 0 for every v.

EXAMPLE 12.3 Let f be the dot product on Rn. Recall that f is a symmetric bilinear form on Rn. We note
that f is also positive definite. That is, for any u ¼ ðaiÞ 6¼ 0 in Rn,

f ðu; uÞ ¼ a2
1 þ a2

2 þ � � � þ a2
n > 0

Section 12.5 and Chapter 13 tell us how to diagonalize a real quadratic form q or, equivalently, a real
symmetric matrix A by means of an orthogonal transition matrix P. If P is merely nonsingular, then q can
be represented in diagonal form with only 1’s and 
1’s as nonzero coefficients. Namely, we have the
following corollary.

COROLLARY 12.6: Any real quadratic form q has a unique representation in the form

qðx1; x2; . . . ; xnÞ ¼ x2
1 þ � � � þ x2

p 
 x2
pþ1 
 � � � 
 x2

r

where r ¼ pþ n is the rank of the form.

COROLLARY 12.6: (Alternative Form) Any real symmetric matrix A is congruent to the unique
diagonal matrix

D ¼ diagðIp;
In; 0Þ
where r ¼ pþ n is the rank of A.

12.7 Hermitian Forms

Let V be a vector space of finite dimension over the complex field C. A Hermitian form on V is a
mapping f :V � V ! C such that, for all a; b 2 C and all ui; v 2 V,

(i) f ðau1 þ bu2; vÞ ¼ af ðu1; vÞ þ bf ðu2; vÞ,
(ii) f ðu; vÞ ¼ f ðv; uÞ.
(As usual, �k denotes the complex conjugate of k 2 C.)

Using (i) and (ii), we get

f ðu; av1 þ bv2Þ ¼ f ðav1 þ bv2; uÞ ¼ af ðv1; uÞ þ bf ðv2; uÞ
¼ âf ðv1; uÞ þ bf ðv2; uÞ ¼ �af ðu; v1Þ þ �bf ðu; v2Þ

That is,

ðiiiÞ f ðu; av1 þ bv2Þ ¼ �af ðu; v1Þ þ �bf ðu; v2Þ:
As before, we express condition (i) by saying f is linear in the first variable. On the other hand, we
express condition (iii) by saying f is ‘‘conjugate linear’’ in the second variable. Moreover, condition (ii)
tells us that f ðv; vÞ ¼ f ðv; vÞ, and hence, f ðv; vÞ is real for every v 2 V.

The results of Sections 12.5 and 12.6 for symmetric forms have their analogues for Hermitian forms.
Thus, the mapping q:V ! C, defined by qðvÞ ¼ f ðv; vÞ, is called the Hermitian quadratic form or
complex quadratic form associated with the Hermitian form f . We can obtain f from q by the polar form

f ðu; vÞ ¼ 1
4 ½qðuþ vÞ 
 qðu
 vÞ� þ 1

4 ½qðuþ ivÞ 
 qðu
 ivÞ�
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Now suppose S ¼ fu1; . . . ; ung is a basis of V. The matrix H ¼ ½hij� where hij ¼ f ðui; ujÞ is called the

matrix representation of f in the basis S. By (ii), f ðui; ujÞ ¼ f ðuj; uiÞ; hence, H is Hermitian and, in
particular, the diagonal entries of H are real. Thus, any diagonal representation of f contains only real
entries.

The next theorem (to be proved in Problem 12.47) is the complex analog of Theorem 12.5 on real
symmetric bilinear forms.

THEOREM 12.7: Let f be a Hermitian form on V over C. Then there exists a basis of V in which f is
represented by a diagonal matrix. Every other diagonal matrix representation of f
has the same number p of positive entries and the same number n of negative
entries.

Again the rank and signature of the Hermitian form f are denoted and defined by

rankð f Þ ¼ pþ n and sigð f Þ ¼ p
 n

These are uniquely defined by Theorem 12.7.
Analogously, a Hermitian form f is said to be

(i) positive definite if qðvÞ ¼ f ðv; vÞ > 0 for every v 6¼ 0,

(ii) nonnegative semidefinite if qðvÞ ¼ f ðv; vÞ � 0 for every v.

EXAMPLE 12.4 Let f be the dot product on Cn; that is, for any u ¼ ðziÞ and v ¼ ðwiÞ in Cn,

f ðu; vÞ ¼ u � v ¼ z1 �w1 þ z2 �w2 þ � � � þ zn �wn

Then f is a Hermitian form on Cn. Moreover, f is also positive definite, because, for any u ¼ ðziÞ 6¼ 0 in Cn,

f ðu; uÞ ¼ z1�z1 þ z2�z2 þ � � � þ zn�zn ¼ jz1j2 þ jz2j2 þ � � � þ jznj2 > 0

SOLVED PROBLEMS

Bilinear Forms

12.1. Let u ¼ ðx1; x2; x3Þ and v ¼ ðy1; y2; y3Þ. Express f in matrix notation, where

f ðu; vÞ ¼ 3x1y1 
 2x1y3 þ 5x2y1 þ 7x2y2 
 8x2y3 þ 4x3y2 
 6x3y3

Let A ¼ ½aij�, where aij is the coefficient of xiyj. Then

f ðu; vÞ ¼ X T AY ¼ ½x1; x2; x3�
3 0 
2
5 7 
8
0 4 
6

24 35 y1

y2

y3

24 35

12.2. Let A be an n� n matrix over K. Show that the mapping f defined by f ðX ; Y Þ ¼ X TAY is a
bilinear form on Kn.

For any a; b 2 K and any Xi; Yi 2 Kn,

f ðaX1 þ bX2; Y Þ ¼ ðaX1 þ bX2ÞT AY ¼ ðaX T
1 þ bX T

2 ÞAY

¼ aX T
1 AY þ bX T

2 AY ¼ af ðX1; Y Þ þ bf ðX2; Y Þ
Hence, f is linear in the first variable. Also,

f ðX ; aY1 þ bY2Þ ¼ X T AðaY1 þ bY2Þ ¼ aX T AY1 þ bX T AY2 ¼ af ðX ; Y1Þ þ bf ðX ; Y2Þ
Hence, f is linear in the second variable, and so f is a bilinear form on Kn.
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12.3. Let f be the bilinear form on R2 defined by

f ½ðx1; x2Þ; ðy1; y2Þ� ¼ 2x1y1 
 3x1y2 þ 4x2y2

(a) Find the matrix A of f in the basis fu1 ¼ ð1; 0Þ; u2 ¼ ð1; 1Þg.
(b) Find the matrix B of f in the basis fv1 ¼ ð2; 1Þ; v2 ¼ ð1;
1Þg.
(c) Find the change-of-basis matrix P from the basis fuig to the basis fvig, and verify that

B ¼ PTAP.

(a) Set A ¼ ½aij�, where aij ¼ f ðui; ujÞ. This yields

a11 ¼ f ½ð1; 0Þ; ð1; 0Þ� ¼ 2
 0
 0 ¼ 2; a21 ¼ f ½ð1; 1Þ; ð1; 0Þ� ¼ 2
 0þ 0 ¼ 2
a12 ¼ f ½ð1; 0Þ; ð1; 1Þ� ¼ 2
 3
 0 ¼ 
1; a22 ¼ f ½ð1; 1Þ; ð1; 1Þ� ¼ 2
 3þ 4 ¼ 3

Thus, A ¼ 2 
1
2 3

� �
is the matrix of f in the basis fu1; u2g.

(b) Set B ¼ ½bij�, where bij ¼ f ðvi; vjÞ. This yields

b11 ¼ f ½ð2; 1Þ; ð2; 1Þ� ¼ 8
 6þ 4 ¼ 6; b21 ¼ f ½ð1;
1Þ; ð2; 1Þ� ¼ 4
 3
 4 ¼ 
3
b12 ¼ f ½ð2; 1Þ; ð1;
1Þ� ¼ 4þ 6
 4 ¼ 6; b22 ¼ f ½ð1;
1Þ; ð1;
1Þ� ¼ 2þ 3þ 4 ¼ 9

Thus, B ¼ 6 6

3 9

� �
is the matrix of f in the basis fv1; v2g.

(c) Writing v1 and v2 in terms of the ui yields v1 ¼ u1 þ u2 and v2 ¼ 2u1 
 u2. Then

P ¼ 1 2
1 
1

� �
; PT ¼ 1 1

2 
1

� �

PTAP ¼ 1 1
2 
1

� �
2 
1
2 3

� �
1 2
1 
1

� �
¼ 6 6

3 9

� �
¼ Band

12.4. Prove Theorem 12.1: Let V be an n-dimensional vector space over K. Let ff1; . . . ;fng be any
basis of the dual space V*. Then f fij : i; j ¼ 1; . . . ; ng is a basis of BðV Þ, where fij is defined by
fijðu; vÞ ¼ fiðuÞfjðvÞ. Thus, dim BðVÞ ¼ n2.

Let fu1; . . . ; ung be the basis of V dual to ffig. We first show that f fijg spans BðVÞ. Let f 2 BðV Þ and
suppose f ðui; ujÞ ¼ aij: We claim that f ¼Pi;j aij fij. It suffices to show that

f ðus; utÞ ¼
P

aij fij


 �ðus; utÞ for s; t ¼ 1; . . . ; n

We have P
aij fij


 �ðus; utÞ ¼
P

aij fijðus; utÞ ¼
P

aijfiðusÞfjðutÞ ¼
P

aijdisdjt ¼ ast ¼ f ðus; utÞ

as required. Hence, ffijg spans BðVÞ. Next, suppose
P

aijfij ¼ 0. Then for s; t ¼ 1; . . . ; n,

0 ¼ 0ðus; utÞ ¼ ð
P

aij fijÞðus; utÞ ¼ ars

The last step follows as above. Thus, f fijg is independent, and hence is a basis of BðVÞ.

12.5. Prove Theorem 12.2. Let P be the change-of-basis matrix from a basis S to a basis S0. Let A be
the matrix representing a bilinear form in the basis S. Then B ¼ PTAP is the matrix representing
f in the basis S0.

Let u; v 2 V. Because P is the change-of-basis matrix from S to S0, we have P½u�S0 ¼ ½u�S and also
P½v�S0 ¼ ½v�S ; hence, ½u�TS ¼ ½u�TS0PT . Thus,

f ðu; vÞ ¼ ½u�TS A½v�S ¼ ½u�TS0PT AP½v�S0
Because u and v are arbitrary elements of V, PTAP is the matrix of f in the basis S0.
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Symmetric Bilinear Forms, Quadratic Forms

12.6. Find the symmetric matrix that corresponds to each of the following quadratic forms:

(a) qðx; y; zÞ ¼ 3x2 þ 4xy
 y2 þ 8xz
 6yzþ z2,

(b) q0ðx; y; zÞ ¼ 3x2 þ xz
 2yz, (c) q00ðx; y; zÞ ¼ 2x2 
 5y2 
 7z2

The symmetric matrix A ¼ ½aij� that represents qðx1; . . . ; xnÞ has the diagonal entry aii equal to the
coefficient of the square term x2

i and the nondiagonal entries aij and aji each equal to half of the coefficient
of the cross-product term xixj. Thus,

(a) A ¼
3 2 4
2 
1 
3
4 
3 1

24 35, (b) A0 ¼
3 0 1

2
0 0 
1
1
2 
1 0

24 35, (c) A00 ¼
2 0 0
0 
5 0
0 0 
7

24 35
The third matrix A00 is diagonal, because the quadratic form q00 is diagonal; that is, q00 has no cross-product
terms.

12.7. Find the quadratic form qðX Þ that corresponds to each of the following symmetric matrices:

(a) A ¼ 5 
3

3 8

� �
; (b) B ¼

4 
5 7

5 
6 8

7 8 
9

24 35, (c) C ¼
2 4 
1 5
4 
7 
6 8

1 
6 3 9

5 8 9 1

2664
3775

The quadratic form qðX Þ that corresponds to a symmetric matrix M is defined by qðX Þ ¼ X TMX ,
where X ¼ ½xi� is the column vector of unknowns.

(a) Compute as follows:

qðx; yÞ ¼ X T AX ¼ ½x; y� 5 
3


3 8

� �
x

y

� �
¼ ½5x
 3y; 
3xþ 8y� x

y

� �
¼ 5x2 
 3xy
 3xyþ 8y2 ¼ 5x2 
 6xyþ 8y2

As expected, the coefficient 5 of the square term x2 and the coefficient 8 of the square term y2 are
the diagonal elements of A, and the coefficient 
6 of the cross-product term xy is the sum of
the nondiagonal elements 
3 and 
3 of A (or twice the nondiagonal element 
3, because A is
symmetric).

(b) Because B is a three-square matrix, there are three unknowns, say x; y; z or x1; x2; x3. Then

qðx; y; zÞ ¼ 4x2 
 10xy
 6y2 þ 14xzþ 16yz
 9z2

qðx1; x2; x3Þ ¼ 4x2
1 
 10x1x2 
 6x2

2 þ 14x1x3 þ 16x2x3 
 9x2
3or

Here we use the fact that the coefficients of the square terms x2
1; x

2
2; x

2
3 (or x2; y2; z2) are the respective

diagonal elements 4;
6;
9 of B, and the coefficient of the cross-product term xixj is the sum of the
nondiagonal elements bij and bji (or twice bij, because bij ¼ bji).

(c) Because C is a four-square matrix, there are four unknowns. Hence,

qðx1; x2; x3; x4Þ ¼ 2x2
1 
 7x2

2 þ 3x2
3 þ x2

4 þ 8x1x2 
 2x1x3

þ 10x1x4 
 12x2x3 þ 16x2x4 þ 18x3x4

12.8. Let A ¼
1 
3 2

3 7 
5

2 
5 8

24 35. Apply Algorithm 12.1 to find a nonsingular matrix P such that

D ¼ PTAP is diagonal, and find sigðAÞ, the signature of A.
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First form the block matrix M ¼ ½A; I �:

M ¼ ½A; I � ¼
1 
3 2 1 0 0

3 7 
5 0 1 0

2 
5 8 0 0 1

24 35
Using a11 ¼ 1 as a pivot, apply the row operations ‘‘Replace R2 by 3R1 þ R2’’ and ‘‘Replace R3 by

2R1 þ R3’’ to M and then apply the corresponding column operations ‘‘Replace C2 by 3C1 þ C2’’ and
‘‘Replace C3 by 
2C1 þ C3’’ to A to obtain

1 
3 2 1 0 0
0 
2 1 3 1 0
0 1 4 
2 0 1

24 35 and then
1 0 0 1 0 0
0 
2 1 3 1 0
0 1 4 
2 0 1

24 35:
Next apply the row operation ‘‘Replace R3 by R2 þ 2R3’’ and then the corresponding column operation
‘‘Replace C3 by C2 þ 2C3’’ to obtain

1 0 0 1 0 0
0 
2 1 3 1 0
0 0 9 
1 1 2

24 35 and then
1 0 0 1 0 0
0 
2 0 3 1 0
0 0 18 
1 1 2

24 35
Now A has been diagonalized and the transpose of P is in the right half of M . Thus, set

P ¼
1 3 
1
0 1 1
0 0 2

24 35 and then D ¼ PTAP ¼
1 0 0
0 
2 0
0 0 18

24 35
Note D has p ¼ 2 positive and n ¼ 1 negative diagonal elements. Thus, the signature of A is
sigðAÞ ¼ p
 n ¼ 2
 1 ¼ 1.

12.9. Justify Algorithm 12.1, which diagonalizes (under congruence) a symmetric matrix A.

Consider the block matrix M ¼ ½A; I �. The algorithm applies a sequence of elementary row operations
and the corresponding column operations to the left side of M , which is the matrix A. This is equivalent to
premultiplying A by a sequence of elementary matrices, say, E1;E2; . . . ;Er, and postmultiplying A by the
transposes of the Ei. Thus, when the algorithm ends, the diagonal matrix D on the left side of M is equal to

D ¼ Er � � �E2E1AET
1 ET

2 � � �ET
r ¼ QAQT ; where Q ¼ Er � � �E2E1

On the other hand, the algorithm only applies the elementary row operations to the identity matrix I on the
right side of M . Thus, when the algorithm ends, the matrix on the right side of M is equal to

Er � � �E2E1I ¼ Er � � �E2E1 ¼ Q

Setting P ¼ QT , we get D ¼ PTAP, which is a diagonalization of A under congruence.

12.10. Prove Theorem 12.4: Let f be a symmetric bilinear form on V over K (where 1þ 1 6¼ 0). Then
V has a basis in which f is represented by a diagonal matrix.

Algorithm 12.1 shows that every symmetric matrix over K is congruent to a diagonal matrix. This is
equivalent to the statement that f has a diagonal representation.

12.11. Let q be the quadratic form associated with the symmetric bilinear form f . Verify the polar
identity f ðu; vÞ ¼ 1

2 ½qðuþ vÞ 
 qðuÞ 
 qðvÞ�. (Assume that 1þ 1 6¼ 0.)

We have

qðuþ vÞ 
 qðuÞ 
 qðvÞ ¼ f ðuþ v; uþ vÞ 
 f ðu; uÞ 
 f ðv; vÞ
¼ f ðu; uÞ þ f ðu; vÞ þ f ðv; uÞ þ f ðv; vÞ 
 f ðu; uÞ 
 f ðv; vÞ ¼ 2f ðu; vÞ

If 1þ 1 6¼ 0, we can divide by 2 to obtain the required identity.
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12.12. Consider the quadratic form qðx; yÞ ¼ 3x2 þ 2xy
 y2 and the linear substitution

x ¼ s
 3t; y ¼ 2sþ t

(a) Rewrite qðx; yÞ in matrix notation, and find the matrix A representing qðx; yÞ.
(b) Rewrite the linear substitution using matrix notation, and find the matrix P corresponding to

the substitution.

(c) Find qðs; tÞ using direct substitution.

(d) Find qðs; tÞ using matrix notation.

(a) Here qðx; yÞ ¼ ½x; y� 3 1
1 
1

� �
x
y

� �
. Thus, A ¼ 3 1

1 
1

� �
; and qðX Þ ¼ X TAX , where X ¼ ½x; y�T .

(b) Here
x
y

� �
¼ 1 
3

2 1

� �
s
t

� �
. Thus, P ¼ 1 
3

2 1

� �
; and X ¼ x

y

� �
; Y ¼ s

t

� �
and X ¼ PY .

(c) Substitute for x and y in q to obtain

qðs; tÞ ¼ 3ðs
 3tÞ2 þ 2ðs
 3tÞð2sþ tÞ 
 ð2sþ tÞ2
¼ 3ðs2 
 6st þ 9t2Þ þ 2ð2s2 
 5st 
 3t2Þ 
 ð4s2 þ 4st þ t2Þ ¼ 3s2 
 32st þ 20t2

(d) Here qðX Þ ¼ X TAX and X ¼ PY . Thus, X T ¼ Y T PT . Therefore,

qðs; tÞ ¼ qðY Þ ¼ YTPTAPY ¼ ½s; t� 1 2


3 1

� �
3 1

1 
1

� �
1 
3

2 1

� �
s

t

� �
¼ ½s; t� 3 
16


16 20

� �
s

t

� �
¼ 3s2 
 32st þ 20t2

[As expected, the results in parts (c) and (d) are equal.]

12.13. Consider any diagonal matrix A ¼ diagða1; . . . ; anÞ over K. Show that for any nonzero scalars
k1; . . . ; kn 2 K;A is congruent to a diagonal matrix D with diagonal entries a1k2

1 ; . . . ; ank2
n .

Furthermore, show that

(a) If K ¼ C, then we can choose D so that its diagonal entries are only 1’s and 0’s.

(b) If K ¼ R, then we can choose D so that its diagonal entries are only 1’s, 
1’s, and 0’s.

Let P ¼ diagðk1; . . . ; knÞ. Then, as required,

D ¼ PTAP ¼ diagðkiÞ diagðaiÞ diagðkiÞ ¼ diagða1k
2
1 ; . . . ; ank

2
n Þ

(a) Let P ¼ diagðbiÞ, where bi ¼ 1=
ffiffiffiffi
ai
p

if ai 6¼ 0
1 if ai ¼ 0

	
Then PTAP has the required form.

(b) Let P ¼ diagðbiÞ, where bi ¼ 1=
ffiffiffiffiffiffiffijaij

p
if ai 6¼ 0

1 if ai ¼ 0

	
Then PTAP has the required form.

Remark: We emphasize that (b) is no longer true if ‘‘congruence’’ is replaced by
‘‘Hermitian congruence.’’

12.14. Prove Theorem 12.5: Let f be a symmetric bilinear form on V over R. Then there exists a basis
of V in which f is represented by a diagonal matrix. Every other diagonal matrix representation
of f has the same number p of positive entries and the same number n of negative entries.

By Theorem 12.4, there is a basis fu1; . . . ; ung of V in which f is represented by a diagonal matrix
with, say, p positive and n negative entries. Now suppose fw1; . . . ;wng is another basis of V, in which f is
represented by a diagonal matrix with p0 positive and n0 negative entries. We can assume without loss of
generality that the positive entries in each matrix appear first. Because rankð f Þ ¼ pþ n ¼ p0 þ n0, it
suffices to prove that p ¼ p0.
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Let U be the linear span of u1; . . . ; up and let W be the linear span of wp0þ1; . . . ;wn. Then f ðv; vÞ > 0
for every nonzero v 2 U , and f ðv; vÞ � 0 for every nonzero v 2 W. Hence, U \W ¼ f0g. Note that
dim U ¼ p and dim W ¼ n
 p0. Thus,

dimðU þW Þ ¼ dim U þ dimW 
 dimðU \W Þ ¼ pþ ðn
 p0Þ 
 0 ¼ p
 p0 þ n

But dimðU þWÞ � dim V ¼ n; hence, p
 p0 þ n � n or p � p0. Similarly, p0 � p and therefore p ¼ p0,
as required.

Remark: The above theorem and proof depend only on the concept of positivity. Thus, the
theorem is true for any subfield K of the real field R such as the rational field Q.

Positive Definite Real Quadratic Forms

12.15. Prove that the following definitions of a positive definite quadratic form q are equivalent:

(a) The diagonal entries are all positive in any diagonal representation of q.

(b) qðY Þ > 0, for any nonzero vector Y in Rn.

Suppose qðY Þ ¼ a1y2
1 þ a2y2

2 þ � � � þ any2
n. If all the coefficients are positive, then clearly qðY Þ > 0

whenever Y 6¼ 0. Thus, (a) implies (b). Conversely, suppose (a) is not true; that is, suppose some diagonal
entry ak � 0. Let ek ¼ ð0; . . . ; 1; . . . 0Þ be the vector whose entries are all 0 except 1 in the kth position.
Then qðekÞ ¼ ak is not positive, and so (b) is not true. That is, (b) implies (a). Accordingly, (a) and (b) are
equivalent.

12.16. Determine whether each of the following quadratic forms q is positive definite:

(a) qðx; y; zÞ ¼ x2 þ 2y2 
 4xz
 4yzþ 7z2

(b) qðx; y; zÞ ¼ x2 þ y2 þ 2xzþ 4yzþ 3z2

Diagonalize (under congruence) the symmetric matrix A corresponding to q.

(a) Apply the operations ‘‘Replace R3 by 2R1 þ R3’’ and ‘‘Replace C3 by 2C1 þ C3,’’ and then ‘‘Replace
R3 by R2 þ R3’’ and ‘‘Replace C3 by C2 þ C3.’’ These yield

A ¼
1 0 
2
0 2 
2

2 
2 7

24 35 ’ 1 0 0
0 2 
2
0 
2 3

24 35 ’ 1 0 0
0 2 0
0 0 1

24 35
The diagonal representation of q only contains positive entries, 1; 2; 1, on the diagonal. Thus, q is
positive definite.

(b) We have

A ¼
1 0 1
0 1 2
1 2 3

24 35 ’ 1 0 0
0 1 2
0 2 2

24 35 ’ 1 0 0
0 1 0
0 0 
2

24 35
There is a negative entry 
2 on the diagonal representation of q. Thus, q is not positive definite.

12.17. Show that qðx; yÞ ¼ ax2 þ bxyþ cy2 is positive definite if and only if a > 0 and the discriminant
D ¼ b2 
 4ac < 0.

Suppose v ¼ ðx; yÞ 6¼ 0. Then either x 6¼ 0 or y 6¼ 0; say, y 6¼ 0. Let t ¼ x=y. Then

qðvÞ ¼ y2½aðx=yÞ2 þ bðx=yÞ þ c� ¼ y2ðat2 þ bt þ cÞ

However, the following are equivalent:

(i) s ¼ at2 þ bt þ c is positive for every value of t.

(ii) s ¼ at2 þ bt þ c lies above the t-axis.

(iii) a > 0 and D ¼ b2 
 4ac < 0.
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Thus, q is positive definite if and only if a > 0 and D < 0. [Remark: D < 0 is the same as detðAÞ > 0,
where A is the symmetric matrix corresponding to q.]

12.18. Determine whether or not each of the following quadratic forms q is positive definite:

(a) qðx; yÞ ¼ x2 
 4xyþ 7y2, (b) qðx; yÞ ¼ x2 þ 8xyþ 5y2, (c) qðx; yÞ ¼ 3x2 þ 2xyþ y2

Compute the discriminant D ¼ b2 
 4ac, and then use Problem 12.17.

(a) D ¼ 16
 28 ¼ 
12. Because a ¼ 1 > 0 and D < 0; q is positive definite.

(b) D ¼ 64
 20 ¼ 44. Because D > 0; q is not positive definite.

(c) D ¼ 4
 12 ¼ 
8. Because a ¼ 3 > 0 and D < 0; q is positive definite.

Hermitian Forms

12.19. Determine whether the following matrices are Hermitian:

(a)
2 2þ 3i 4
 5i

2
 3i 5 6þ 2i
4þ 5i 6
 2i 
7

24 35, (b)
3 2
 i 4þ i

2
 i 6 i
4þ i i 7

24 35, (c)
4 
3 5

3 2 1

5 1 
6

24 35
A complex matrix A ¼ ½aij� is Hermitian if A* ¼ A—that is, if aij ¼ �aji:

(a) Yes, because it is equal to its conjugate transpose.

(b) No, even though it is symmetric.

(c) Yes. In fact, a real matrix is Hermitian if and only if it is symmetric.

12.20. Let A be a Hermitian matrix. Show that f is a Hermitian form on Cn where f is defined by
f ðX ; Y Þ ¼ X TA �Y .

For all a; b 2 C and all X1;X2; Y 2 Cn,

f ðaX1 þ bX2; Y Þ ¼ ðaX1 þ bX2ÞT A �Y ¼ ðaX T
1 þ bX T

2 ÞA �Y

¼ aX T
1 A �Y þ bX T

2 A �Y ¼ af ðX1; Y Þ þ bf ðX2; Y Þ

Hence, f is linear in the first variable. Also,

f ðX ; Y Þ ¼ X TA �Y ¼ ðX TA �Y ÞT ¼ �Y T AT X ¼ Y T A* �X ¼ Y T A �X ¼ f ðY ;X Þ
Hence, f is a Hermitian form on Cn.

Remark: We use the fact that X T A �Y is a scalar and so it is equal to its transpose.

12.21. Let f be a Hermitian form on V. Let H be the matrix of f in a basis S ¼ fuig of V. Prove the
following:

(a) f ðu; vÞ ¼ ½u�TS H ½v�S for all u; v 2 V.

(b) If P is the change-of-basis matrix from S to a new basis S0 of V, then B ¼ PT H �P (or
B ¼ Q*HQ, where Q ¼ �PÞ is the matrix of f in the new basis S0.

Note that (b) is the complex analog of Theorem 12.2.

(a) Let u; v 2 V and suppose u ¼ a1u1 þ � � � þ anun and v ¼ b1u1 þ � � � þ bnun. Then, as required,

f ðu; vÞ ¼ f ða1u1 þ � � � þ anun; b1u1 þ � � � þ bnunÞ
¼P

i;j
ai
�bjf ðui; vjÞ ¼ ½a1; . . . ; an�H ½�b1; . . . ; �bn�T ¼ ½u�TS H ½v�S
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(b) Because P is the change-of-basis matrix from S to S0, we have P½u�S0 ¼ ½u�S and P½v�S0 ¼ ½v�S ; hence,
½u�TS ¼ ½u�TS0 PT and ½v�S ¼ �P½v�S0 : Thus, by (a),

f ðu; vÞ ¼ ½u�TS H ½v�S ¼ ½u�TS0 PT H �P½v�S0
But u and v are arbitrary elements of V; hence, PT H �P is the matrix of f in the basis S0:

12.22. Let H ¼
1 1þ i 2i

1
 i 4 2
 3i

2i 2þ 3i 7

24 35, a Hermitian matrix.

Find a nonsingular matrix P such that D ¼ PTH �P is diagonal. Also, find the signature of H .

Use the modified Algorithm 12.1 that applies the same row operations but the corresponding conjugate
column operations. Thus, first form the block matrix M ¼ ½H ; I �:

M ¼
1 1þ i 2i 1 0 0

1
 i 4 2
 3i 0 1 0

2i 2þ 3i 7 0 0 1

24 35
Apply the row operations ‘‘Replace R2 by ð
1þ iÞR1 þ R2’’ and ‘‘Replace R3 by 2iR1 þ R3’’ and then the
corresponding conjugate column operations ‘‘Replace C2 by ð
1
 iÞC1 þ C2’’ and ‘‘Replace C3 by

2iC1 þ C3’’ to obtain

1 1þ i 2i 1 0 0
0 2 
5i 
1þ i 1 0
0 5i 3 2i 0 1

24 35 and then
1 0 0 1 0 0
0 2 
5i 
1þ i 1 0
0 5i 3 2i 0 1

24 35
Next apply the row operation ‘‘Replace R3 by 
5iR2 þ 2R3’’ and the corresponding conjugate column
operation ‘‘Replace C3 by 5iC2 þ 2C3’’ to obtain

1 0 0 1 0 0
0 2 
5i 
1þ i 1 0
0 0 
19 5þ 9i 
5i 2

24 35 and then
1 0 0 1 0 0
0 2 0 
1þ i 1 0
0 0 
38 5þ 9i 
5i 2

24 35
Now H has been diagonalized, and the transpose of the right half of M is P. Thus, set

P ¼
1 
1þ i 5þ 9i
0 1 
5i
0 0 2

24 35; and then D ¼ PT H �P ¼
1 0 0
0 2 0
0 0 
38

24 35:
Note D has p ¼ 2 positive elements and n ¼ 1 negative elements. Thus, the signature of H is
sigðHÞ ¼ 2
 1 ¼ 1.

Miscellaneous Problems

12.23. Prove Theorem 12.3: Let f be an alternating form on V. Then there exists a basis of V in which f

is represented by a block diagonal matrix M with blocks of the form
0 1

1 0

� �
or 0. The number

of nonzero blocks is uniquely determined by f [because it is equal to 1
2 rankð f Þ�.

If f ¼ 0, then the theorem is obviously true. Also, if dim V ¼ 1, then f ðk1u; k2uÞ ¼ k1k2f ðu; uÞ ¼ 0
and so f ¼ 0. Accordingly, we can assume that dim V > 1 and f 6¼ 0.

Because f 6¼ 0, there exist (nonzero) u1; u2 2 V such that f ðu1; u2Þ 6¼ 0. In fact, multiplying u1 by
an appropriate factor, we can assume that f ðu1; u2Þ ¼ 1 and so f ðu2; u1Þ ¼ 
1. Now u1 and u2 are
linearly independent; because if, say, u2 ¼ ku1, then f ðu1; u2Þ ¼ f ðu1; ku1Þ ¼ kf ðu1; u1Þ ¼ 0. Let
U ¼ spanðu1; u2Þ; then,
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(i) The matrix representation of the restriction of f to U in the basis fu1; u2g is
0 1

1 0

� �
,

(ii) If u 2 U , say u ¼ au1 þ bu2, then

f ðu; u1Þ ¼ f ðau1 þ bu2; u1Þ ¼ 
b and f ðu; u2Þ ¼ f ðau1 þ bu2; u2Þ ¼ a

Let W consists of those vectors w 2 V such that f ðw; u1Þ ¼ 0 and f ðw; u2Þ ¼ 0: Equivalently,

W ¼ fw 2 V : f ðw; uÞ ¼ 0 for every u 2 Ug
We claim that V ¼ U �W. It is clear that U \W ¼ f0g, and so it remains to show that V ¼ U þW. Let
v 2 V. Set

u ¼ f ðv; u2Þu1 
 f ðv; u1Þu2 and w ¼ v 
 u ð1Þ
Because u is a linear combination of u1 and u2; u 2 U.

We show next that w 2 W. By (1) and (ii), f ðu; u1Þ ¼ f ðv; u1Þ; hence,

f ðw; u1Þ ¼ f ðv 
 u; u1Þ ¼ f ðv; u1Þ 
 f ðu; u1Þ ¼ 0

Similarly, f ðu; u2Þ ¼ f ðv; u2Þ and so

f ðw; u2Þ þ f ðv 
 u; u2Þ ¼ f ðv; u2Þ 
 f ðu; u2Þ ¼ 0

Then w 2 W and so, by (1), v ¼ uþ w, where u 2 W. This shows that V ¼ U þW ; therefore, V ¼ U �W.
Now the restriction of f to W is an alternating bilinear form on W. By induction, there exists a basis

u3; . . . ; un of W in which the matrix representing f restricted to W has the desired form. Accordingly,
u1; u2; u3; . . . ; un is a basis of V in which the matrix representing f has the desired form.

SUPPLEMENTARY PROBLEMS

Bilinear Forms

12.24. Let u ¼ ðx1; x2Þ and v ¼ ðy1; y2Þ. Determine which of the following are bilinear forms on R2:

(a) f ðu; vÞ ¼ 2x1y2 
 3x2y1, (c) f ðu; vÞ ¼ 3x2y2, (e) f ðu; vÞ ¼ 1,

(b) f ðu; vÞ ¼ x1 þ y2, (d) f ðu; vÞ ¼ x1x2 þ y1y2, (f ) f ðu; vÞ ¼ 0

12.25. Let f be the bilinear form on R2 defined by

f ½ðx1; x2Þ; ðy1; y2Þ� ¼ 3x1y1 
 2x1y2 þ 4x2y1 
 x2y2

(a) Find the matrix A of f in the basis fu1 ¼ ð1; 1Þ; u2 ¼ ð1; 2Þg.
(b) Find the matrix B of f in the basis fv1 ¼ ð1;
1Þ; v2 ¼ ð3; 1Þg.
(c) Find the change-of-basis matrix P from fuig to fvig, and verify that B ¼ PTAP.

12.26. Let V be the vector space of two-square matrices over R . Let M ¼ 1 2
3 5

� �
, and let f ðA;BÞ ¼ trðAT MBÞ,

where A;B 2 V and ‘‘tr’’ denotes trace. (a) Show that f is a bilinear form on V. (b) Find the matrix of f in

the basis

1 0
0 0

� �
;

0 1
0 0

� �
;

0 0
1 0

� �
;

0 0
0 1

� �	 �
12.27. Let BðV Þ be the set of bilinear forms on V over K. Prove the following:

(a) If f ; g 2 BðV Þ, then f þ g, kg 2 BðV Þ for any k 2 K.

(b) If f and s are linear functions on V, then f ðu; vÞ ¼ fðuÞsðvÞ belongs to BðV Þ.

12.28. Let ½ f � denote the matrix representation of a bilinear form f on V relative to a basis fuig. Show that the
mapping f 7! ½ f � is an isomorphism of BðVÞ onto the vector space V of n-square matrices.
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12.29. Let f be a bilinear form on V. For any subset S of V, let

S? ¼ fv 2 V : f ðu; vÞ ¼ 0 for every u 2 Sg and S> ¼ fv 2 V : f ðv; uÞ ¼ 0 for every u 2 Sg

Show that: (a) S> and S> are subspaces of V ; (b) S1 � S2 implies S?2 � S?1 and S>2 � S>1 ;
(c) f0g? ¼ f0g> ¼ V.

12.30. Suppose f is a bilinear form on V. Prove that: rankð f Þ ¼ dim V 
 dim V? ¼ dim V 
 dim V>, and hence,
dim V? ¼ dim V>.

12.31. Let f be a bilinear form on V. For each u 2 V, let û:V ! K and ~u :V ! K be defined by ûðxÞ ¼ f ðx; uÞ and
~uðxÞ ¼ f ðu; xÞ. Prove the following:

(a) û and ~u are each linear; i.e., û; ~u 2 V*,

(b) u 7! û and u 7! ~u are each linear mappings from V into V*,

(c) rankð f Þ ¼ rankðu 7! ûÞ ¼ rankðu 7! ~uÞ.

12.32. Show that congruence of matrices (denoted by ’) is an equivalence relation; that is,
(i) A ’ A; (ii) If A ’ B, then B ’ A; (iii) If A ’ B and B ’ C, then A ’ C.

Symmetric Bilinear Forms, Quadratic Forms

12.33. Find the symmetric matrix A belonging to each of the following quadratic forms:

(a) qðx; y; zÞ 
 2x2 
 8xyþ y2 
 16xzþ 14yzþ 5z2, (c) qðx; y; zÞ ¼ xyþ y2 þ 4xzþ z2

(b) qðx; y; zÞ ¼ x2 
 xzþ y2, (d) qðx; y; zÞ ¼ xyþ yz

12.34. For each of the following symmetric matrices A, find a nonsingular matrix P such that D ¼ PTAP is
diagonal:

(a) A ¼
1 0 2
0 3 6
2 6 7

24 35, (b) A ¼
1 
2 1

2 5 3

1 3 
2

24 35, (c) A ¼
1 
1 0 2

1 2 1 0

0 1 1 2
2 0 2 
1

2664
3775

12.35. Let qðx; yÞ ¼ 2x2 
 6xy
 3y2 and x ¼ sþ 2t, y ¼ 3s
 t.

(a) Rewrite qðx; yÞ in matrix notation, and find the matrix A representing the quadratic form.

(b) Rewrite the linear substitution using matrix notation, and find the matrix P corresponding to the
substitution.

(c) Find qðs; tÞ using (i) direct substitution, (ii) matrix notation.

12.36. For each of the following quadratic forms qðx; y; zÞ, find a nonsingular linear substitution expressing the
variables x; y; z in terms of variables r; s; t such that qðr; s; tÞ is diagonal:

(a) qðx; y; zÞ ¼ x2 þ 6xyþ 8y2 
 4xzþ 2yz
 9z2,

(b) qðx; y; zÞ ¼ 2x2 
 3y2 þ 8xzþ 12yzþ 25z2,

(c) qðx; y; zÞ ¼ x2 þ 2xyþ 3y2 þ 4xzþ 8yzþ 6z2.

In each case, find the rank and signature.

12.37. Give an example of a quadratic form qðx; yÞ such that qðuÞ ¼ 0 and qðvÞ ¼ 0 but qðuþ vÞ 6¼ 0.

12.38. Let SðVÞ denote all symmetric bilinear forms on V. Show that

(a) SðV Þ is a subspace of BðV Þ; (b) If dim V ¼ n, then dim SðVÞ ¼ 1
2 nðnþ 1Þ.

12.39. Consider a real quadratic polynomial qðx1; . . . ; xnÞ ¼
Pn

i;j¼1 aijxixj; where aij ¼ aji.
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(a) If a11 6¼ 0, show that the substitution

x1 ¼ y1 

1

a11

ða12y2 þ � � � þ a1nynÞ; x2 ¼ y2; . . . ; xn ¼ yn

yields the equation qðx1; . . . ; xnÞ ¼ a11 y2
1 þ q0ðy2; . . . ; ynÞ, where q0 is also a quadratic polynomial.

(b) If a11 ¼ 0 but, say, a12 6¼ 0, show that the substitution

x1 ¼ y1 þ y2; x2 ¼ y1 
 y2; x3 ¼ y3; . . . ; xn ¼ yn

yields the equation qðx1; . . . ; xnÞ ¼
P

bij yi yj, where b11 6¼ 0, which reduces this case to case (a).

Remark: This method of diagonalizing q is known as completing the square.

Positive Definite Quadratic Forms

12.40. Determine whether or not each of the following quadratic forms is positive definite:

(a) qðx; yÞ ¼ 4x2 þ 5xyþ 7y2, (c) qðx; y; zÞ ¼ x2 þ 4xyþ 5y2 þ 6xzþ 2yzþ 4z2

(b) qðx; yÞ ¼ 2x2 
 3xy
 y2; (d) qðx; y; zÞ ¼ x2 þ 2xyþ 2y2 þ 4xzþ 6yzþ 7z2

12.41. Find those values of k such that the given quadratic form is positive definite:

(a) qðx; yÞ ¼ 2x2 
 5xyþ ky2, (b) qðx; yÞ ¼ 3x2 
 kxyþ 12y2

(c) qðx; y; zÞ ¼ x2 þ 2xyþ 2y2 þ 2xzþ 6yzþ kz2

12.42. Suppose A is a real symmetric positive definite matrix. Show that A ¼ PTP for some nonsingular matrix P.

Hermitian Forms

12.43. Modify Algorithm 12.1 so that, for a given Hermitian matrix H, it finds a nonsingular matrix P for which
D ¼ PTA �P is diagonal.

12.44. For each Hermitian matrix H, find a nonsingular matrix P such that D ¼ PTH �P is diagonal:

(a) H ¼ 1 i

i 2

� �
, (b) H ¼ 1 2þ 3i

2
 3i 
1

� �
, (c) H ¼

1 i 2þ i

i 2 1
 i

2
 i 1þ i 2

24 35
Find the rank and signature in each case.

12.45. Let A be a complex nonsingular matrix. Show that H ¼ A*A is Hermitian and positive definite.

12.46. We say that B is Hermitian congruent to A if there exists a nonsingular matrix P such that B ¼ PTA �P or,
equivalently, if there exists a nonsingular matrix Q such that B ¼ Q*AQ. Show that Hermitian congruence
is an equivalence relation. (Note: If P ¼ �Q, then PTA �P ¼ Q*AQ.)

12.47. Prove Theorem 12.7: Let f be a Hermitian form on V. Then there is a basis S of V in which f is represented
by a diagonal matrix, and every such diagonal representation has the same number p of positive entries and
the same number n of negative entries.

Miscellaneous Problems

12.48. Let e denote an elementary row operation, and let f * denote the corresponding conjugate column operation
(where each scalar k in e is replaced by �k in f *). Show that the elementary matrix corresponding to f * is
the conjugate transpose of the elementary matrix corresponding to e.

12.49. Let V and W be vector spaces over K. A mapping f :V �W ! K is called a bilinear form on V and W if

(i) f ðav1 þ bv2; wÞ ¼ af ðv1;wÞ þ bf ðv2;wÞ,
(ii) f ðv; aw1 þ bw2Þ ¼ af ðv;w1Þ þ bf ðv;w2Þ

for every a; b 2 K; vi 2 V ;wj 2 W. Prove the following:
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(a) The set BðV ;WÞ of bilinear forms on V and W is a subspace of the vector space of functions from
V �W into K.

(b) If ff1; . . . ;fmg is a basis of V* and fs1; . . . ; sng is a basis of W*, then
f fij : i ¼ 1; . . . ;m; j ¼ 1; . . . ; ng is a basis of BðV ;WÞ, where fij is defined by fijðv;wÞ ¼ fiðvÞsjðwÞ.
Thus, dim BðV ;WÞ ¼ dim V dim W.

[Note that if V ¼ W, then we obtain the space BðVÞ investigated in this chapter.]

12.50. Let V be a vector space over K. A mapping f :V � V � . . .� V
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{m times

! K is called a multilinear (or m-linear)
form on V if f is linear in each variable; that is, for i ¼ 1; . . . ;m,

f ð. . . ; auþ bv; . . .Þ ¼ af ð. . . ; û; . . .Þ þ bf ð. . . ; v̂; . . .Þ
where c. . . denotes the ith element, and other elements are held fixed. An m-linear form f is said to be
alternating if f ðv1; . . . vmÞ ¼ 0 whenever vi ¼ vj for i 6¼ j. Prove the following:

(a) The set BmðVÞ of m-linear forms on V is a subspace of the vector space of functions from
V � V � � � � � V into K.

(b) The set AmðV Þ of alternating m-linear forms on V is a subspace of BmðV Þ.

Remark 1: If m ¼ 2, then we obtain the space BðVÞ investigated in this chapter.

Remark 2: If V ¼ Km, then the determinant function is an alternating m-linear form on V.

ANSWERS TO SUPPLEMENTARY PROBLEMS

Notation: M ¼ ½R1; R2; . . .� denotes a matrix M with rows R1;R2; . . ..

12.24. (a) yes, (b) no, (c) yes, (d) no, (e) no, (f ) yes

12.25. (a) A ¼ ½4; 1; 7; 3�, (b) B ¼ ½0;
4; 20; 32�, (c) P ¼ ½3; 5; 
2;
2�

12.26. (b) ½1; 0; 2; 0; 0; 1; 0; 2; 3; 0; 5; 0; 0; 3; 0; 5�

12.33. (a) ½2;
4;
8; 
4; 1; 7; 
8; 7; 5�, (b) ½1; 0;
 1
2 ; 0; 1; 0; 
 1

2 ; 0; 0�,
(c) ½0; 1

2 ; 2;
1
2 ; 1; 0; 2; 0; 1�, (d) ½0; 1

2 ; 0;
1
2 ; 0; 1;

1
2 ; 0;

1
2 ; 0; 1

2 ; 0�

12.34. (a) P ¼ ½1; 0;
2; 0; 1;
2; 0; 0; 1�; D ¼ diagð1; 3;
9Þ;
(b) P ¼ ½1; 2;
11; 0; 1;
5; 0; 0; 1�; D ¼ diagð1; 1;
28Þ;
(c) P ¼ ½1; 1;
1;
4; 0; 1;
1;
2; 0; 0; 1; 0; 0; 0; 0; 1�; D ¼ diagð1; 1; 0;
9Þ

12.35. A ¼ ½2;
3; 
3;
3�, P ¼ ½1; 2; 3;
1�, qðs; tÞ ¼ 
43s2 
 4st þ 17t2

12.36. (a) x ¼ r 
 3s
 19t, y ¼ sþ 7t, z ¼ t; qðr; s; tÞ ¼ r2 
 s2 þ 36t2;
(b) x ¼ r 
 2t; y ¼ sþ 2t; z ¼ t; qðr; s; tÞ ¼ 2r2 
 3s2 þ 29t2;
(c) x ¼ r 
 s
 t; y ¼ s
 t; z ¼ t; qðr; s; tÞ ¼ r2 
 2s2

12.37. qðx; yÞ ¼ x2 
 y2, u ¼ ð1; 1Þ, v ¼ ð1;
1Þ

12.40. (a) yes, (b) no, (c) no, (d) yes

12.41. (a) k > 25
8 , (b) 
12 < k < 12, (c) k > 5

12.44. (a) P ¼ ½1; i; 0; 1�, D ¼ I ; s ¼ 2; (b) P ¼ ½1;
2þ 3i; 0; 1�, D ¼ diagð1;
14Þ, s ¼ 0;
(c) P ¼ ½1; i;
3þ i; 0; 1; i; 0; 0; 1�, D ¼ diagð1; 1;
4Þ; s ¼ 1

d
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Linear Operators on Inner
Product Spaces

13.1 Introduction

This chapter investigates the space AðVÞ of linear operators T on an inner product space V. (See
Chapter 7.) Thus, the base field K is either the real numbers R or the complex numbers C. In fact, different
terminologies will be used for the real case and the complex case. We also use the fact that the inner
products on real Euclidean space Rn and complex Euclidean space Cn may be defined, respectively, by

hu; vi ¼ uTv and hu; vi ¼ uT �v

where u and v are column vectors.
The reader should review the material in Chapter 7 and be very familiar with the notions of norm

(length), orthogonality, and orthonormal bases. We also note that Chapter 7 mainly dealt with real inner
product spaces, whereas here we assume that V is a complex inner product space unless otherwise stated
or implied.

Lastly, we note that in Chapter 2, we used AH to denote the conjugate transpose of a complex matrix A;
that is, AH ¼ AT . This notation is not standard. Many texts, expecially advanced texts, use A* to denote
such a matrix; we will use that notation in this chapter. That is, now A* ¼ AT .

13.2 Adjoint Operators

We begin with the following basic definition.

DEFINITION: A linear operator T on an inner product space V is said to have an adjoint operator T*
on V if hTðuÞ; vi ¼ hu;T*ðvÞi for every u; v 2 V.

The following example shows that the adjoint operator has a simple description within the context of
matrix mappings.

EXAMPLE 13.1

(a) Let A be a real n-square matrix viewed as a linear operator on Rn. Then, for every u; v 2 Rn;

hAu; vi ¼ ðAuÞTv ¼ uT ATv ¼ hu;ATvi
Thus, the transpose AT of A is the adjoint of A.

(b) Let B be a complex n-square matrix viewed as a linear operator on Cn. Then for every u; v;2 Cn,

hBu; vi ¼ ðBuÞT �v ¼ uT BT �v ¼ uT B*�v ¼ hu;B*vi
Thus, the conjugate transpose B* of B is the adjoint of B.
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Remark: B* may mean either the adjoint of B as a linear operator or the conjugate transpose of B
as a matrix. By Example 13.1(b), the ambiguity makes no difference, because they denote the same
object.

The following theorem (proved in Problem 13.4) is the main result in this section.

THEOREM 13.1: Let T be a linear operator on a finite-dimensional inner product space V over K .
Then

(i) There exists a unique linear operator T* on V such that hTðuÞ; vi¼ hu;T*ðvÞi
for every u; v 2 V. (That is, T has an adjoint T*.)

(ii) If A is the matrix representation T with respect to any orthonormal basis
S ¼ fuig of V, then the matrix representation of T* in the basis S is the
conjugate transpose A* of A (or the transpose AT of A when K is real).

We emphasize that no such simple relationship exists between the matrices representing T and T* if
the basis is not orthonormal. Thus, we see one useful property of orthonormal bases. We also emphasize
that this theorem is not valid if V has infinite dimension (Problem 13.31).

The following theorem (proved in Problem 13.5) summarizes some of the properties of the adjoint.

THEOREM 13.2: Let T ; T1; T2 be linear operators on V and let k 2 K. Then

(i) ðT1 þ T2Þ* ¼ T1*þ T2*, (iii) ðT1T2Þ* ¼ T2*T1*,

(ii) ðkTÞ* ¼ �kT*, (iv) ðT*Þ* ¼ T.

Observe the similarity between the above theorem and Theorem 2.3 on properties of the transpose
operation on matrices.

Linear Functionals and Inner Product Spaces

Recall (Chapter 11) that a linear functional f on a vector space V is a linear mapping f:V ! K . This
subsection contains an important result (Theorem 13.3) that is used in the proof of the above basic
Theorem 13.1.

Let V be an inner product space. Each u 2 V determines a mapping û:V ! K defined by

ûðvÞ ¼ hv; ui
Now, for any a; b 2 K and any v1; v2 2 V,

ûðav1 þ bv2Þ ¼ hav1 þ bv2; ui ¼ ahv1; ui þ bhv2; ui ¼ aûðv1Þ þ bûðv2Þ
That is, û is a linear functional on V. The converse is also true for spaces of finite dimension and it is
contained in the following important theorem (proved in Problem 13.3).

THEOREM 13.3: Let f be a linear functional on a finite-dimensional inner product space V. Then
there exists a unique vector u 2 V such that fðvÞ ¼ hv; ui for every v 2 V.

We remark that the above theorem is not valid for spaces of infinite dimension (Problem 13.24).

13.3 Analogy Between AðVÞ and C, Special Linear Operators

Let AðVÞ denote the algebra of all linear operators on a finite-dimensional inner product space V. The
adjoint mapping T 7! T* on AðV Þ is quite analogous to the conjugation mapping z 7! �z on the complex
field C. To illustrate this analogy we identify in Table 13-1 certain classes of operators T 2 AðVÞ whose
behavior under the adjoint map imitates the behavior under conjugation of familiar classes of complex
numbers.

The analogy between these operators T and complex numbers z is reflected in the next theorem.
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THEOREM 13.4: Let l be an eigenvalue of a linear operator T on V.

(i) If T* ¼ T
1 (i.e., T is orthogonal or unitary), then jlj ¼ 1.

(ii) If T* ¼ T (i.e., T is self-adjoint), then l is real.

(iii) If T* ¼ 
T (i.e., T is skew-adjoint), then l is pure imaginary.

(iv) If T ¼ S*S with S nonsingular (i.e., T is positive definite), then l is real and
positive.

Proof. In each case let v be a nonzero eigenvector of T belonging to l; that is, TðvÞ ¼ lv with
v 6¼ 0. Hence, hv; vi is positive.

Proof of (i). We show that l�lhv; vi ¼ hv; vi:
l�lhv; vi ¼ hlv; lvi ¼ hTðvÞ; TðvÞi ¼ hv;T*TðvÞi ¼ hv; IðvÞi ¼ hv; vi

But hv; vi 6¼ 0; hence, l�l ¼ 1 and so jlj ¼ 1.

Proof of (ii). We show that lhv; vi ¼ �lhv; vi:
lhv; vi ¼ hlv; vi ¼ hTðvÞ; vi ¼ hv;T*ðvÞi ¼ hv; TðvÞi ¼ hv; lvi ¼ �lhv; vi

But hv; vi 6¼ 0; hence, l ¼ �l and so l is real.

Proof of (iii). We show that lhv; vi ¼ 
�lhv; vi:
lhv; vi ¼ hlv; vi ¼ hTðvÞ; vi ¼ hv; T*ðvÞi ¼ hv;
TðvÞi ¼ hv;
lvi ¼ 
�lhv; vi

But hv; vi 6¼ 0; hence, l ¼ 
�l or �l ¼ 
l, and so l is pure imaginary.

Proof of (iv). Note first that SðvÞ 6¼ 0 because S is nonsingular; hence, hSðvÞ, SðvÞi is positive. We
show that lhv; vi ¼ hSðvÞ; SðvÞi:

lhv; vi ¼ hlv; vi ¼ hTðvÞ; vi ¼ hS*SðvÞ; vi ¼ hSðvÞ; SðvÞi
But hv; vi and hSðvÞ; SðvÞi are positive; hence, l is positive.

Table 13-1

Class of complex
numbers

Behavior under
conjugation Class of operators in AðV Þ

Behavior under the
adjoint map

Unit circle ðjzj ¼ 1Þ �z ¼ 1=z Orthogonal operators (real case) T* ¼ T
1

Unitary operators (complex case)

Self-adjoint operators
Also called:

Real axis �z ¼ z symmetric (real case) T* ¼ T
Hermitian (complex case)

Skew-adjoint operators
Also called:

Imaginary axis �z ¼ 
z skew-symmetric (real case) T* ¼ 
T
skew-Hermitian (complex case)

Positive real axis z ¼ �ww;w 6¼ 0 Positive definite operators T ¼ S*S
ð0;1Þ with S nonsingular
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Remark: Each of the above operators T commutes with its adjoint; that is, TT* ¼ T*T. Such
operators are called normal operators.

13.4 Self-Adjoint Operators

Let T be a self-adjoint operator on an inner product space V ; that is, suppose

T* ¼ T

(If T is defined by a matrix A, then A is symmetric or Hermitian according as A is real or complex.) By
Theorem 13.4, the eigenvalues of T are real. The following is another important property of T.

THEOREM 13.5: Let T be a self-adjoint operator on V. Suppose u and v are eigenvectors of T
belonging to distinct eigenvalues. Then u and v are orthogonal; that is, hu; vi ¼ 0.

Proof. Suppose TðuÞ ¼ l1u and TðvÞ ¼ l2v, where l1 6¼ l2. We show that l1hu; vi ¼ l2hu; vi:
l1hu; vi ¼ hl1u; vi ¼ hTðuÞ; vi ¼ hu;T*ðvÞi ¼ hu; TðvÞi

¼ hu; l2vi ¼ �l2hu; vi ¼ l2hu; vi
(The fourth equality uses the fact that T* ¼ T, and the last equality uses the fact that the eigenvalue l2 is
real.) Because l1 6¼ l2, we get hu; vi ¼ 0. Thus, the theorem is proved.

13.5 Orthogonal and Unitary Operators

Let U be a linear operator on a finite-dimensional inner product space V. Suppose

U* ¼ U
1 or equivalently UU* ¼ U*U ¼ I

Recall that U is said to be orthogonal or unitary according as the underlying field is real or complex. The
next theorem (proved in Problem 13.10) gives alternative characterizations of these operators.

THEOREM 13.6: The following conditions on an operator U are equivalent:

(i) U* ¼ U
1; that is, UU* ¼ U*U ¼ I . [U is unitary (orthogonal).]

(ii) U preserves inner products; that is, for every v;w 2 V,
hUðvÞ, UðwÞi ¼ hv;wi.

(iii) U preserves lengths; that is, for every v 2 V, kUðvÞk ¼ kvk.
EXAMPLE 13.2

(a) Let T :R3 ! R3 be the linear operator that rotates each vector v about the z-axis by a fixed angle y as shown in
Fig. 10-1 (Section 10.3). That is, T is defined by

Tðx; y; zÞ ¼ ðx cos y
 y sin y; x sin yþ y cos y; zÞ
We note that lengths (distances from the origin) are preserved under T. Thus, T is an orthogonal operator.

(b) Let V be l2-space (Hilbert space), defined in Section 7.3. Let T :V ! V be the linear operator defined by

Tða1; a2; a3; . . .Þ ¼ ð0; a1; a2; a3; . . .Þ
Clearly, T preserves inner products and lengths. However, T is not surjective, because, for example, ð1; 0; 0; . . .Þ
does not belong to the image of T ; hence, T is not invertible. Thus, we see that Theorem 13.6 is not valid for
spaces of infinite dimension.

An isomorphism from one inner product space into another is a bijective mapping that preserves the
three basic operations of an inner product space: vector addition, scalar multiplication, and inner
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products. Thus, the above mappings (orthogonal and unitary) may also be characterized as the
isomorphisms of V into itself. Note that such a mapping U also preserves distances, because

kUðvÞ 
 UðwÞk ¼ kUðv 
 wÞk ¼ kv 
 wk
Hence, U is called an isometry.

13.6 Orthogonal and Unitary Matrices

Let U be a linear operator on an inner product space V. By Theorem 13.1, we obtain the following results.

THEOREM 13.7A: A complex matrix A represents a unitary operator U (relative to an orthonormal
basis) if and only if A* ¼ A
1.

THEOREM 13.7B: A real matrix A represents an orthogonal operator U (relative to an orthonormal
basis) if and only if AT ¼ A
1.

The above theorems motivate the following definitions (which appeared in Sections 2.10 and 2.11).

DEFINITION: A complex matrix A for which A* ¼ A
1 is called a unitary matrix.

DEFINITION: A real matrix A for which AT ¼ A
1 is called an orthogonal matrix.

We repeat Theorem 2.6, which characterizes the above matrices.

THEOREM 13.8: The following conditions on a matrix A are equivalent:

(i) A is unitary (orthogonal).

(ii) The rows of A form an orthonormal set.

(iii) The columns of A form an orthonormal set.

13.7 Change of Orthonormal Basis

Orthonormal bases play a special role in the theory of inner product spaces V. Thus, we are naturally
interested in the properties of the change-of-basis matrix from one such basis to another. The following
theorem (proved in Problem 13.12) holds.

THEOREM 13.9: Let fu1; . . . ; ung be an orthonormal basis of an inner product space V. Then the
change-of-basis matrix from fuig into another orthonormal basis is unitary
(orthogonal). Conversely, if P ¼ ½aij� is a unitary (orthogonal) matrix, then the
following is an orthonormal basis:

fu0i ¼ a1iu1 þ a2iu2 þ � � � þ aniun : i ¼ 1; . . . ; ng
Recall that matrices A and B representing the same linear operator T are similar; that is, B ¼ P
1AP,

where P is the (nonsingular) change-of-basis matrix. On the other hand, if V is an inner product space, we
are usually interested in the case when P is unitary (or orthogonal) as suggested by Theorem 13.9. (Recall
that P is unitary if the conjugate tranpose P* ¼ P
1, and P is orthogonal if the transpose PT ¼ P
1.) This
leads to the following definition.

DEFINITION: Complex matrices A and B are unitarily equivalent if there exists a unitary matrix P
for which B ¼ P*AP. Analogously, real matrices A and B are orthogonally equivalent
if there exists an orthogonal matrix P for which B ¼ PTAP.

Note that orthogonally equivalent matrices are necessarily congruent.
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13.8 Positive Definite and Positive Operators

Let P be a linear operator on an inner product space V. Then

(i) P is said to be positive definite if P ¼ S*S for some nonsingular operators S:

(ii) P is said to be positive (or nonnegative or semidefinite) if P ¼ S*S for some operator S:

The following theorems give alternative characterizations of these operators.

THEOREM 13.10A: The following conditions on an operator P are equivalent:

(i) P ¼ T2 for some nonsingular self-adjoint operator T.

(ii) P is positive definite.

(iii) P is self-adjoint and hPðuÞ; ui > 0 for every u 6¼ 0 in V.

The corresponding theorem for positive operators (proved in Problem 13.21) follows.

THEOREM 13.10B: The following conditions on an operator P are equivalent:

(i) P ¼ T2 for some self-adjoint operator T.

(ii) P is positive; that is, P ¼ S�S:
(iii) P is self-adjoint and hPðuÞ; ui � 0 for every u 2 V.

13.9 Diagonalization and Canonical Forms in Inner Product Spaces

Let T be a linear operator on a finite-dimensional inner product space V over K. Representing T by a
diagonal matrix depends upon the eigenvectors and eigenvalues of T, and hence, upon the roots of
the characteristic polynomial DðtÞ of T. Now DðtÞ always factors into linear polynomials over the
complex field C but may not have any linear polynomials over the real field R. Thus, the situation
for real inner product spaces (sometimes called Euclidean spaces) is inherently different than the
situation for complex inner product spaces (sometimes called unitary spaces). Thus, we treat them
separately.

Real Inner Product Spaces, Symmetric and Orthogonal Operators

The following theorem (proved in Problem 13.14) holds.

THEOREM 13.11: Let T be a symmetric (self-adjoint) operator on a real finite-dimensional product
space V. Then there exists an orthonormal basis of V consisting of eigenvectors of
T ; that is, T can be represented by a diagonal matrix relative to an orthonormal
basis.

We give the corresponding statement for matrices.

THEOREM 13.11: (Alternative Form) Let A be a real symmetric matrix. Then there exists an
orthogonal matrix P such that B ¼ P
1AP ¼ PTAP is diagonal.

We can choose the columns of the above matrix P to be normalized orthogonal eigenvectors of A; then
the diagonal entries of B are the corresponding eigenvalues.

On the other hand, an orthogonal operator T need not be symmetric, and so it may not be represented
by a diagonal matrix relative to an orthonormal matrix. However, such a matrix T does have a simple
canonical representation, as described in the following theorem (proved in Problem 13.16).
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THEOREM 13.12: Let T be an orthogonal operator on a real inner product space V. Then there exists
an orthonormal basis of V in which T is represented by a block diagonal matrix M
of the form

M ¼ diag Is; 
It;
cos y1 
 sin y1

sin y1 cos y1

� �
; . . . ;

cos yr 
 sin yr

sin yr cos yr

� �� �
The reader may recognize that each of the 2� 2 diagonal blocks represents a rotation in the

corresponding two-dimensional subspace, and each diagonal entry 
1 represents a reflection in the
corresponding one-dimensional subspace.

Complex Inner Product Spaces, Normal and Triangular Operators

A linear operator T is said to be normal if it commutes with its adjoint—that is, if TT* ¼ T*T. We note
that normal operators include both self-adjoint and unitary operators.

Analogously, a complex matrix A is said to be normal if it commutes with its conjugate transpose—
that is, if AA* ¼ A*A.

EXAMPLE 13.3 Let A ¼ 1 1
i 3þ 2i

� �
. Then A* ¼ 1 
i

1 3
 2i

� �
.

Also AA* ¼ 2 3
 3i
3þ 3i 14

� �
¼ A*A. Thus, A is normal.

The following theorem (proved in Problem 13.19) holds.

THEOREM 13.13: Let T be a normal operator on a complex finite-dimensional inner product space V.
Then there exists an orthonormal basis of V consisting of eigenvectors of T ; that
is, T can be represented by a diagonal matrix relative to an orthonormal basis.

We give the corresponding statement for matrices.

THEOREM 13.13: (Alternative Form) Let A be a normal matrix. Then there exists a unitary matrix
P such that B ¼ P
1AP ¼ P*AP is diagonal.

The following theorem (proved in Problem 13.20) shows that even nonnormal operators on unitary
spaces have a relatively simple form.

THEOREM 13.14: Let T be an arbitrary operator on a complex finite-dimensional inner product space
V. Then T can be represented by a triangular matrix relative to an orthonormal
basis of V.

THEOREM 13.14: (Alternative Form) Let A be an arbitrary complex matrix. Then there exists a
unitary matrix P such that B ¼ P
1AP ¼ P*AP is triangular.

13.10 Spectral Theorem

The Spectral Theorem is a reformulation of the diagonalization Theorems 13.11 and 13.13.

THEOREM 13.15: (Spectral Theorem) Let T be a normal (symmetric) operator on a complex (real)
finite-dimensional inner product space V. Then there exists linear operators
E1; . . . ;Er on V and scalars l1; . . . ; lr such that

(i) T ¼ l1E1 þ l2E2 þ � � � þ lrEr, (iii) E2
1 ¼ E1;E2

2 ¼ E2; . . . ;E2
r ¼ Er,

(ii) E1 þ E2 þ � � � þ Er ¼ I , (iv) EiEj ¼ 0 for i 6¼ j.
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The above linear operators E1; . . . ;Er are projections in the sense that E2
i ¼ Ei. Moreover, they are

said to be orthogonal projections because they have the additional property that EiEj ¼ 0 for i 6¼ j.
The following example shows the relationship between a diagonal matrix representation and the

corresponding orthogonal projections.

EXAMPLE 13.4 Consider the following diagonal matrices A;E1;E2;E3:

A ¼
2

3
3

5

2664
3775; E1 ¼

1
0

0
0

2664
3775; E2 ¼

0
1

1
0

2664
3775; E3 ¼

0
0

0
1

2664
3775

The reader can verify that

(i) A ¼ 2E1 þ 3E2 þ 5E3, (ii) E1 þ E2 þ E3 ¼ I , (iii) E2
i ¼ Ei, (iv) EiEj ¼ 0 for i 6¼ j.

SOLVED PROBLEMS

Adjoints

13.1. Find the adjoint of F :R3 ! R3 defined by

Fðx; y; zÞ ¼ ð3xþ 4y
 5z; 2x
 6yþ 7z; 5x
 9yþ zÞ
First find the matrix A that represents F in the usual basis of R3—that is, the matrix A whose rows are

the coefficients of x; y; z—and then form the transpose AT of A. This yields

A ¼
3 4 
5
2 
6 7
5 
9 1

24 35 and then AT ¼
3 2 5
4 
6 
9

5 7 1

24 35
The adjoint F* is represented by the transpose of A; hence,

F*ðx; y; zÞ ¼ ð3xþ 2yþ 5z; 4x
 6y
 9z; 
5xþ 7yþ zÞ

13.2. Find the adjoint of G:C3 ! C3 defined by

Gðx; y; zÞ ¼ ½2xþ ð1
 iÞy; ð3þ 2iÞx
 4iz; 2ixþ ð4
 3iÞy
 3z�
First find the matrix B that represents G in the usual basis of C3, and then form the conjugate transpose

B* of B. This yields

B ¼
2 1
 i 0

3þ 2i 0 
4i
2i 4
 3i 
3

24 35 and then B* ¼
2 3
 2i 
2i

1þ i 0 4þ 3i
0 4i 
3

24 35
Then G*ðx; y; zÞ ¼ ½2xþ ð3
 2iÞy
 2iz; ð1þ iÞxþ ð4þ 3iÞz; 4iy
 3z�:

13.3. Prove Theorem 13.3: Let f be a linear functional on an n-dimensional inner product space V.
Then there exists a unique vector u 2 V such that fðvÞ ¼ hv; ui for every v 2 V.

Let fw1; . . . ;wng be an orthonormal basis of V. Set

u ¼ fðw1Þw1 þ fðw2Þw2 þ � � � þ fðwnÞwn

Let û be the linear functional on V defined by ûðvÞ ¼ hv; ui for every v 2 V. Then, for i ¼ 1; . . . ; n,

ûðwiÞ ¼ hwi; ui ¼ hwi; fðw1Þw1 þ � � � þ fðwnÞwni ¼ fðwiÞ
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Because û and f agree on each basis vector, û ¼ f.
Now suppose u0 is another vector in V for which fðvÞ ¼ hv; u0i for every v 2 V. Then hv; ui ¼ hv; u0i

or hv; u
 u0i ¼ 0. In particular, this is true for v ¼ u
 u0, and so hu
 u0; u
 u0i ¼ 0. This yields
u
 u0 ¼ 0 and u ¼ u0. Thus, such a vector u is unique, as claimed.

13.4. Prove Theorem 13.1: Let T be a linear operator on an n-dimensional inner product space V . Then

(a) There exists a unique linear operator T* on V such that

hTðuÞ; vi ¼ hu; T*ðvÞi for all u; v 2 V :

(b) Let A be the matrix that represents T relative to an orthonormal basis S ¼ fuig. Then the

conjugate transpose A* of A represents T* in the basis S.

(a) We first define the mapping T*. Let v be an arbitrary but fixed element of V. The map u 7! hTðuÞ; vi
is a linear functional on V. Hence, by Theorem 13.3, there exists a unique element v0 2 V such
that hTðuÞ; vi ¼ hu; v0i for every u 2 V. We define T* : V ! V by T*ðvÞ ¼ v0. Then
hTðuÞ; vi ¼ hu; T*ðvÞi for every u; v 2 V.

We next show that T* is linear. For any u; vi 2 V, and any a; b 2 K ,

hu; T*ðav1 þ bv2Þi ¼ hTðuÞ; av1 þ bv2i ¼ �ahTðuÞ; v1i þ �bhTðuÞ; v2i
¼ �ahu; T*ðv1Þi þ �bhu; T*ðv2Þi ¼ hu; aT*ðv1Þ þ bT*ðv2Þi

But this is true for every u 2 V ; hence, T*ðav1 þ bv2Þ ¼ aT*ðv1Þ þ bT*ðv2Þ. Thus, T* is linear.

(b) The matrices A ¼ ½aij� and B ¼ ½bij� that represent T and T*, respectively, relative to the orthonormal
basis S are given by aij ¼ hTðujÞ; uii and bij ¼ hT*ðujÞ; uii (Problem 13.67). Hence,

bij ¼ hT*ðujÞ; uii ¼ hui; T*ðujÞi ¼ hTðuiÞ; uji ¼ aji

Thus, B ¼ A*, as claimed.

13.5. Prove Theorem 13.2:

(i) ðT1 þ T2Þ* ¼ T 1*þ T 2*, (iii) ðT1T2Þ* ¼ T 2*T 1*,

(ii) ðkTÞ* ¼ �kT*, (iv) ðT*Þ* ¼ T.

(i) For any u; v 2 V,

hðT1 þ T2ÞðuÞ; vi ¼ hT1ðuÞ þ T2ðuÞ; vi ¼ hT1ðuÞ; vi þ hT2ðuÞ; vi
¼ hu; T 1*ðvÞi þ hu; T 2*ðvÞi ¼ hu; T 1*ðvÞ þ T 2*ðvÞi
¼ hu; ðT 1*þ T 2*ÞðvÞi

The uniqueness of the adjoint implies ðT1 þ T2Þ* ¼ T 1*þ T 2*.

(ii) For any u; v 2 V,

hðkTÞðuÞ; vi ¼ hkTðuÞ; vi ¼ khTðuÞ; vi ¼ khu; T*ðvÞi ¼ hu; �kT*ðvÞi ¼ hu; ð�kT*ÞðvÞi
The uniqueness of the adjoint implies ðkTÞ* ¼ �kT*.

(iii) For any u; v 2 V,

hðT1T2ÞðuÞ; vi ¼ hT1ðT2ðuÞÞ; vi ¼ hT2ðuÞ; T 1*ðvÞi
¼ hu; T 2*ðT 1*ðvÞÞi ¼ hu; ðT 2*T 1*ÞðvÞi

The uniqueness of the adjoint implies ðT1T2Þ* ¼ T 2*T 1*.

(iv) For any u; v 2 V,

hT*ðuÞ; vi ¼ hv; T*ðuÞi ¼ hTðvÞ; ui ¼ hu; TðvÞi
The uniqueness of the adjoint implies ðT*Þ* ¼ T.
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13.6. Show that ðaÞ I* ¼ I , and ðbÞ 0* ¼ 0.

(a) For every u; v 2 V, hIðuÞ; vi ¼ hu; vi ¼ hu; IðvÞi; hence, I* ¼ I .

(b) For every u; v 2 V, h0ðuÞ; vi ¼ h0; vi ¼ 0 ¼ hu; 0i ¼ hu; 0ðvÞi; hence, 0* ¼ 0.

13.7. Suppose T is invertible. Show that ðT
1Þ* ¼ ðT*Þ
1
.

I ¼ I* ¼ ðTT
1Þ* ¼ ðT
1Þ*T*; hence; ðT
1Þ* ¼ ðT*Þ
1:

13.8. Let T be a linear operator on V, and let W be a T -invariant subspace of V. Show that W? is
invariant under T*.

Let u 2 W?. If w 2 W, then TðwÞ 2 W and so hw; T*ðuÞi ¼ hTðwÞ; ui ¼ 0. Thus, T*ðuÞ 2 W?

because it is orthogonal to every w 2 W. Hence, W? is invariant under T*.

13.9. Let T be a linear operator on V. Show that each of the following conditions implies T ¼ 0:

(i) hTðuÞ; vi ¼ 0 for every u; v 2 V .

(ii) V is a complex space, and hTðuÞ; ui ¼ 0 for every u 2 V .

(iii) T is self-adjoint and hTðuÞ; ui ¼ 0 for every u 2 V.

Give an example of an operator T on a real space V for which hTðuÞ; ui ¼ 0 for every u 2 V but T 6¼ 0.
[Thus, (ii) need not hold for a real space V.]

(i) Set v ¼ TðuÞ. Then hTðuÞ; TðuÞi ¼ 0, and hence, TðuÞ ¼ 0, for every u 2 V. Accordingly, T ¼ 0.

(ii) By hypothesis, hTðv þ wÞ; v þ wi ¼ 0 for any v;w 2 V. Expanding and setting hTðvÞ; vi ¼ 0 and
hTðwÞ;wi ¼ 0, we find

hTðvÞ;wi þ hTðwÞ; vi ¼ 0 ð1Þ
Note w is arbitrary in (1). Substituting iw for w, and using hTðvÞ; iwi ¼ �ihTðvÞ;wi ¼ 
ihTðvÞ;wi and
hTðiwÞ; vi ¼ hiTðwÞ; vi ¼ ihTðwÞ; vi, we find


ihTðvÞ;wi þ ihTðwÞ; vi ¼ 0

Dividing through by i and adding to (1), we obtain hTðwÞ; vi ¼ 0 for any v;w;2 V. By (i), T ¼ 0.

(iii) By (ii), the result holds for the complex case; hence we need only consider the real case. Expanding
hTðv þ wÞ; v þ wi ¼ 0, we again obtain (1). Because T is self-adjoint and as it is a real space, we
have hTðwÞ; vi ¼ hw; TðvÞi ¼ hTðvÞ;wi. Substituting this into (1), we obtain hTðvÞ;wi ¼ 0 for any
v;w 2 V. By (i), T ¼ 0.

For an example, consider the linear operator T on R2 defined by Tðx; yÞ ¼ ðy;
xÞ. Then
hTðuÞ; ui ¼ 0 for every u 2 V, but T 6¼ 0.

Orthogonal and Unitary Operators and Matrices

13.10. Prove Theorem 13.6: The following conditions on an operator U are equivalent:

(i) U* ¼ U
1; that is, U is unitary. (ii) hUðvÞ;UðwÞi ¼ hu;wi. (iii) kUðvÞk ¼ kvk.
Suppose (i) holds. Then, for every v;w;2 V,

hUðvÞ;UðwÞi ¼ hv;U*UðwÞi ¼ hv; IðwÞi ¼ hv;wi
Thus, (i) implies (ii). Now if (ii) holds, then

kUðvÞk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hUðvÞ;UðvÞi

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
hv; vi

p
¼ kvk

Hence, (ii) implies (iii). It remains to show that (iii) implies (i).
Suppose (iii) holds. Then for every v 2 V,

hU*UðvÞi ¼ hUðvÞ;UðvÞi ¼ hv; vi ¼ hIðvÞ; vi
Hence, hðU*U 
 IÞðvÞ; vi ¼ 0 for every v 2 V. But U*U 
 I is self-adjoint (Prove!); then, by Problem
13.9, we have U*U 
 I ¼ 0 and so U*U ¼ I . Thus, U* ¼ U
1, as claimed.
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13.11. Let U be a unitary (orthogonal) operator on V, and let W be a subspace invariant under U . Show
that W? is also invariant under U .

Because U is nonsingular, UðWÞ ¼ W ; that is, for any w 2 W, there exists w0 2 W such that
Uðw0Þ ¼ w. Now let v 2 W?. Then, for any w 2 W,

hUðvÞ;wi ¼ hUðvÞ;Uðw0Þi ¼ hv;w0i ¼ 0

Thus, UðvÞ belongs to W?. Therefore, W? is invariant under U .

13.12. Prove Theorem 13.9: The change-of-basis matrix from an orthonormal basis fu1; . . . ; ung into
another orthonormal basis is unitary (orthogonal). Conversely, if P ¼ ½aij� is a unitary (ortho-
gonal) matrix, then the vectors ui0 ¼

P
j ajiuj form an orthonormal basis.

Suppose fvig is another orthonormal basis and suppose

vi ¼ bi1u1 þ bi2u2 þ � � � þ binun; i ¼ 1; . . . ; n ð1Þ
Because fvig is orthonormal,

dij ¼ hvi; vji ¼ bi1bj1 þ bi2bj2 þ � � � þ binbjn ð2Þ

Let B ¼ ½bij� be the matrix of coefficients in (1). (Then BT is the change-of-basis matrix from fuig to
fvig.) Then BB* ¼ ½cij�, where cij ¼ bi1bj1 þ bi2bj2 þ � � � þ binbjn. By (2), cij ¼ dij, and therefore BB* ¼ I .
Accordingly, B, and hence, BT, is unitary.

It remains to prove that fu0ig is orthonormal. By Problem 13.67,

hu0i; u0ji ¼ a1ia1j þ a2ia2j þ � � � þ anianj ¼ hCi;Cji

where Ci denotes the ith column of the unitary (orthogonal) matrix P ¼ ½aij�: Because P is unitary
(orthogonal), its columns are orthonormal; hence, hu0i; u0ji ¼ hCi;Cji ¼ dij. Thus, fu0ig is an orthonormal basis.

Symmetric Operators and Canonical Forms in Euclidean Spaces

13.13. Let T be a symmetric operator. Show that (a) The characteristic polynomial DðtÞ of T is a
product of linear polynomials (over R); (b) T has a nonzero eigenvector.

(a) Let A be a matrix representing T relative to an orthonormal basis of V ; then A ¼ AT. Let DðtÞ be the
characteristic polynomial of A. Viewing A as a complex self-adjoint operator, A has only real
eigenvalues by Theorem 13.4. Thus,

DðtÞ ¼ ðt 
 l1Þðt 
 l2Þ � � � ðt 
 lnÞ
where the li are all real. In other words, DðtÞ is a product of linear polynomials over R.

(b) By (a), T has at least one (real) eigenvalue. Hence, T has a nonzero eigenvector.

13.14. Prove Theorem 13.11: Let T be a symmetric operator on a real n-dimensional inner product
space V. Then there exists an orthonormal basis of V consisting of eigenvectors of T. (Hence, T
can be represented by a diagonal matrix relative to an orthonormal basis.)

The proof is by induction on the dimension of V. If dim V ¼ 1, the theorem trivially holds. Now
suppose dim V ¼ n > 1. By Problem 13.13, there exists a nonzero eigenvector v1 of T. Let W be the space
spanned by v1, and let u1 be a unit vector in W, e.g., let u1 ¼ v1=kv1k.

Because v1 is an eigenvector of T, the subspace W of V is invariant under T. By Problem 13.8, W? is
invariant under T* ¼ T. Thus, the restriction T̂ of T to W? is a symmetric operator. By Theorem 7.4,
V ¼ W �W?. Hence, dim W? ¼ n
 1, because dim W ¼ 1. By induction, there exists an orthonormal
basis fu2; . . . ; ung of W? consisting of eigenvectors of T̂ and hence of T. But hu1; uii ¼ 0 for i ¼ 2; . . . ; n
because ui 2 W?. Accordingly fu1; u2; . . . ; ung is an orthonormal set and consists of eigenvectors of T.
Thus, the theorem is proved.
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13.15. Let qðx; yÞ ¼ 3x2 
 6xyþ 11y2. Find an orthonormal change of coordinates (linear substitution)
that diagonalizes the quadratic form q.

Find the symmetric matrix A representing q and its characteristic polynomial DðtÞ. We have

A ¼ 3 
3

3 11

� �
and DðtÞ ¼ t2 
 trðAÞ t þ jAj ¼ t2 
 14t þ 24 ¼ ðt 
 2Þðt 
 12Þ

The eigenvalues are l ¼ 2 and l ¼ 12. Hence, a diagonal form of q is

qðs; tÞ ¼ 2s2 þ 12t2

(where we use s and t as new variables). The corresponding orthogonal change of coordinates is obtained
by finding an orthogonal set of eigenvectors of A.

Subtract l ¼ 2 down the diagonal of A to obtain the matrix

M ¼ 1 
3

3 9

� �
corresponding to

x
 3y ¼ 0

3xþ 9y ¼ 0

or x
 3y ¼ 0

A nonzero solution is u1 ¼ ð3; 1Þ. Next subtract l ¼ 12 down the diagonal of A to obtain the matrix

M ¼ 
9 
3

3 
1

� �
corresponding to


9x
 3y ¼ 0

3x
 y ¼ 0

or 
 3x
 y ¼ 0

A nonzero solution is u2 ¼ ð
1; 3Þ. Normalize u1 and u2 to obtain the orthonormal basis

û1 ¼ ð3=
ffiffiffiffiffi
10
p

; 1=
ffiffiffiffiffi
10
p
Þ; û2 ¼ ð
1=

ffiffiffiffiffi
10
p

; 3=
ffiffiffiffiffi
10
p
Þ

Now let P be the matrix whose columns are û1 and û2. Then

P ¼ 3=
ffiffiffiffiffi
10
p 
1=

ffiffiffiffiffi
10
p

1=
ffiffiffiffiffi
10
p

3=
ffiffiffiffiffi
10
p

" #
and D ¼ P
1AP ¼ PTAP ¼ 2 0

0 12

� �
Thus, the required orthogonal change of coordinates is

x
y

� �
¼ P

s
t

� �
or x ¼ 3s
 tffiffiffiffiffi

10
p ; y ¼ sþ 3tffiffiffiffiffi

10
p

One can also express s and t in terms of x and y by using P
1 ¼ PT ; that is,

s ¼ 3xþ yffiffiffiffiffi
10
p ; t ¼ 
xþ 3yffiffiffiffiffi

10
p

13.16. Prove Theorem 13.12: Let T be an orthogonal operator on a real inner product space V. Then
there exists an orthonormal basis of V in which T is represented by a block diagonal matrix M of
the form

M ¼ diag 1; . . . ; 1;
1; . . . ;
1;
cos y1 
sin y1

sin y1 cos y1

� �
; . . . ;

cos yr 
sin yr

sin yr cos yr

� �� �
Let S ¼ T þ T
1 ¼ T þ T*. Then S* ¼ ðT þ T*Þ* ¼ T*þ T ¼ S. Thus, S is a symmetric operator

on V. By Theorem 13.11, there exists an orthonormal basis of V consisting of eigenvectors of S. If
l1; . . . ; lm denote the distinct eigenvalues of S, then V can be decomposed into the direct sum
V ¼ V1 � V2 � � � � � Vm where the Vi consists of the eigenvectors of S belonging to li. We claim that
each Vi is invariant under T. For suppose v 2 V ; then SðvÞ ¼ liv and

SðTðvÞÞ ¼ ðT þ T
1ÞTðvÞ ¼ TðT þ T
1ÞðvÞ ¼ TSðvÞ ¼ TðlivÞ ¼ liTðvÞ
That is, TðvÞ 2 Vi. Hence, Vi is invariant under T. Because the Vi are orthogonal to each other, we can
restrict our investigation to the way that T acts on each individual Vi.

On a given Vi; we have ðT þ T
1Þv ¼ SðvÞ ¼ liv. Multiplying by T, we get

ðT 2 
 liT þ IÞðvÞ ¼ 0 ð1Þ
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We consider the cases li ¼ �2 and li 6¼ �2 separately. If li ¼ �2, then ðT � IÞ2ðvÞ ¼ 0, which leads to
ðT � IÞðvÞ ¼ 0 or TðvÞ ¼ �v. Thus, T restricted to this Vi is either I or 
I .

If li 6¼ �2, then T has no eigenvectors in Vi, because, by Theorem 13.4, the only eigenvalues of T are
1 or 
1. Accordingly, for v 6¼ 0, the vectors v and TðvÞ are linearly independent. Let W be the subspace
spanned by v and TðvÞ. Then W is invariant under T, because using (1) we get

TðTðvÞÞ ¼ T2ðvÞ ¼ liTðvÞ 
 v 2 W

By Theorem 7.4, Vi ¼ W �W?. Furthermore, by Problem 13.8, W? is also invariant under T. Thus, we
can decompose Vi into the direct sum of two-dimensional subspaces Wj where the Wj are orthogonal to
each other and each Wj is invariant under T. Thus, we can restrict our investigation to the way in which T
acts on each individual Wj.

Because T2 
 liT þ I ¼ 0, the characteristic polynomial DðtÞ of T acting on Wj is
DðtÞ ¼ t2 
 lit þ 1. Thus, the determinant of T is 1, the constant term in DðtÞ. By Theorem 2.7, the
matrix A representing T acting on Wj relative to any orthogonal basis of Wj must be of the form

cos y 
 sin y
sin y cos y

� �
The union of the bases of the Wj gives an orthonormal basis of Vi, and the union of the bases of the Vi gives
an orthonormal basis of V in which the matrix representing T is of the desired form.

Normal Operators and Canonical Forms in Unitary Spaces

13.17. Determine which of the following matrices is normal:

(a) A ¼ 1 i
0 1

� �
, (b) B ¼ 1 i

1 2þ i

� �
(a) AA* ¼ 1 i

0 1

� �
1 0

i 1

� �
¼ 2 i

i 1

� �
, A*A ¼ 1 0


i 1

� �
1 i
0 1

� �
¼ 1 i

i 2

� �
Because AA* 6¼ A*A, the matrix A is not normal.

(b) BB*
1 i
1 2þ i

� �
1 1

i 2
 i

� �
¼ 2 2þ 2i

2
 2i 6

� �
¼ 1 1

i 2
 i

� �
1 i
1 2þ i

� �
¼ B*B

Because BB* ¼ B*B, the matrix B is normal.

13.18. Let T be a normal operator. Prove the following:

(a) TðvÞ ¼ 0 if and only if T*ðvÞ ¼ 0. (b) T 
 lI is normal.

(c) If TðvÞ ¼ lv, then T*ðvÞ ¼ �lv; hence, any eigenvector of T is also an eigenvector of T*.

(d) If TðvÞ ¼ l1v and TðwÞ ¼ l2w where l1 6¼ l2, then hv;wi ¼ 0; that is, eigenvectors of T
belonging to distinct eigenvalues are orthogonal.

(a) We show that hTðvÞ; TðvÞi ¼ hT*ðvÞ; T*ðvÞi:
hTðvÞ; TðvÞi ¼ hv; T*TðvÞi ¼ hv; TT*ðvÞi ¼ hT*ðvÞ; T*ðvÞi

Hence, by ½I3� in the definition of the inner product in Section 7.2, TðvÞ ¼ 0 if and only if T*ðvÞ ¼ 0.

(b) We show that T 
 lI commutes with its adjoint:

ðT 
 lIÞðT 
 lIÞ* ¼ ðT 
 lIÞðT*
 �lIÞ ¼ TT*
 lT*
 �lT þ l�lI

¼ T*T 
 �lT 
 lT*þ �llI ¼ ðT*
 �lIÞðT 
 lIÞ
¼ ðT 
 lIÞ*ðT 
 lIÞ

Thus, T 
 lI is normal.
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(c) If TðvÞ ¼ lv, then ðT 
 lIÞðvÞ ¼ 0. Now T 
 lI is normal by (b); therefore, by (a),
ðT 
 lIÞ*ðvÞ ¼ 0. That is, ðT*
 lIÞðvÞ ¼ 0; hence, T*ðvÞ ¼ �lv.

(d) We show that l1hv;wi ¼ l2hv;wi:
l1hv;wi ¼ hl1v;wi ¼ hTðvÞ;wi ¼ hv; T*ðwÞi ¼ hv; �l2wi ¼ l2hv;wi

But l1 6¼ l2; hence, hv;wi ¼ 0.

13.19. Prove Theorem 13.13: Let T be a normal operator on a complex finite-dimensional inner product
space V. Then there exists an orthonormal basis of V consisting of eigenvectors of T. (Thus, T
can be represented by a diagonal matrix relative to an orthonormal basis.)

The proof is by induction on the dimension of V. If dim V ¼ 1, then the theorem trivially holds. Now
suppose dim V ¼ n > 1. Because V is a complex vector space, T has at least one eigenvalue and hence a
nonzero eigenvector v. Let W be the subspace of V spanned by v, and let u1 be a unit vector in W.

Because v is an eigenvector of T, the subspace W is invariant under T. However, v is also an
eigenvector of T* by Problem 13.18; hence, W is also invariant under T*. By Problem 13.8, W? is
invariant under T** ¼ T. The remainder of the proof is identical with the latter part of the proof of
Theorem 13.11 (Problem 13.14).

13.20. Prove Theorem 13.14: Let T be any operator on a complex finite-dimensional inner product
space V. Then T can be represented by a triangular matrix relative to an orthonormal basis of V.

The proof is by induction on the dimension of V. If dim V ¼ 1, then the theorem trivially holds. Now
suppose dim V ¼ n > 1. Because V is a complex vector space, T has at least one eigenvalue and hence at
least one nonzero eigenvector v. Let W be the subspace of V spanned by v, and let u1 be a unit vector in W.
Then u1 is an eigenvector of T and, say, Tðu1Þ ¼ a11u1.

By Theorem 7.4, V ¼ W �W?. Let E denote the orthogonal projection V into W?. Clearly W? is
invariant under the operator ET. By induction, there exists an orthonormal basis fu2; . . . ; ung of W? such
that, for i ¼ 2; . . . ; n,

ETðuiÞ ¼ ai2u2 þi3 u3 þ � � � þ aiiui

(Note that fu1; u2; . . . ; ung is an orthonormal basis of V.) But E is the orthogonal projection of V onto W?;
hence, we must have

TðuiÞ ¼ ai1u1 þ ai2u2 þ � � � þ aiiui

for i ¼ 2; . . . ; n. This with Tðu1Þ ¼ a11u1 gives us the desired result.

Miscellaneous Problems

13.21. Prove Theorem 13.10B: The following are equivalent:

(i) P ¼ T2 for some self-adjoint operator T.

(ii) P ¼ S*S for some operator S; that is, P is positive.

(iii) P is self-adjoint and hPðuÞ; ui � 0 for every u 2 V.

Suppose (i) holds; that is, P ¼ T2 where T ¼ T*. Then P ¼ TT ¼ T*T, and so (i) implies (ii). Now
suppose (ii) holds. Then P* ¼ ðS*SÞ* ¼ S*S** ¼ S*S ¼ P, and so P is self-adjoint. Furthermore,

hPðuÞ; ui ¼ hS*SðuÞ; ui ¼ hSðuÞ; SðuÞi � 0

Thus, (ii) implies (iii), and so it remains to prove that (iii) implies (i).
Now suppose (iii) holds. Because P is self-adjoint, there exists an orthonormal basis fu1; . . . ; ung of V

consisting of eigenvectors of P; say, PðuiÞ ¼ liui. By Theorem 13.4, the li are real. Using (iii), we show
that the li are nonnegative. We have, for each i,

0 � hPðuiÞ; uii ¼ hliui; uii ¼ lihui; uii
Thus, hui; uii � 0 forces li � 0; as claimed. Accordingly,

ffiffiffiffi
li

p
is a real number. Let T be the linear

operator defined by

TðuiÞ ¼
ffiffiffiffi
li

p
ui for i ¼ 1; . . . ; n
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Because T is represented by a real diagonal matrix relative to the orthonormal basis fuig, T is self-adjoint.
Moreover, for each i,

T2ðuiÞ ¼ Tð
ffiffiffiffi
li

p
uiÞ ¼

ffiffiffiffi
li

p
TðiiÞ ¼

ffiffiffiffi
li

p ffiffiffiffi
li

p
ui ¼ liui ¼ PðuiÞ

Because T2 and P agree on a basis of V ;P ¼ T2. Thus, the theorem is proved.

Remark: The above operator T is the unique positive operator such that P ¼ T 2; it is called the
positive square root of P.

13.22. Show that any operator T is the sum of a self-adjoint operator and a skew-adjoint operator.

Set S ¼ 1
2 ðT þ T*Þ and U ¼ 1

2 ðT 
 T*Þ: Then T ¼ S þ U;where

S* ¼ ½12 ðT þ T*Þ�* ¼ 1
2 ðT*þ T**Þ ¼ 1

2 ðT*þ TÞ ¼ S

U* ¼ ½12 ðT 
 T*Þ�* ¼ 1
2 ðT*
 TÞ ¼ 
 1

2 ðT 
 T*Þ ¼ 
U
and

that is, S is self-adjoint and U is skew-adjoint.

13.23. Prove: Let T be an arbitrary linear operator on a finite-dimensional inner product space V. Then
T is a product of a unitary (orthogonal) operator U and a unique positive operator P; that is,
T ¼ UP. Furthermore, if T is invertible, then U is also uniquely determined.

By Theorem 13.10, T*T is a positive operator; hence, there exists a (unique) positive operator P such
that P2 ¼ T*T (Problem 13.43). Observe that

kPðvÞk2 ¼ hPðvÞ;PðvÞi ¼ hP2ðvÞ; vi ¼ hT*TðvÞ; vi ¼ hTðvÞ; TðvÞi ¼ kTðvÞk2 ð1Þ
We now consider separately the cases when T is invertible and noninvertible.

If T is invertible, then we set Û ¼ PT
1. We show that Û is unitary:

Û* ¼ ðPT
1Þ* ¼ T
1�P* ¼ ðT*Þ
1
P and Û� Û ¼ ðT*Þ
1

PPT
1 ¼ ðT*Þ
1
T*TT
1 ¼ I

Thus, Û is unitary. We next set U ¼ Û
1. Then U is also unitary, and T ¼ UP as required.
To prove uniqueness, we assume T ¼ U0P0, where U0 is unitary and P0 is positive. Then

T*T ¼ P0*U0*U0P0 ¼ P0IP0 ¼ P2
0

But the positive square root of T*T is unique (Problem 13.43); hence, P0 ¼ P. (Note that the invertibility
of T is not used to prove the uniqueness of P.) Now if T is invertible, then P is also invertible by (1).
Multiplying U0P ¼ UP on the right by P
1 yields U0 ¼ U . Thus, U is also unique when T is invertible.

Now suppose T is not invertible. Let W be the image of P; that is, W ¼ Im P. We define U1 :W ! V by

U1ðwÞ ¼ TðvÞ; where PðvÞ ¼ w ð2Þ
We must show that U1 is well defined; that is, that PðvÞ ¼ Pðv0Þ implies TðvÞ ¼ Tðv0Þ. This follows from
the fact that Pðv 
 v0Þ ¼ 0 is equivalent to kPðv 
 v0Þk ¼ 0, which forces kTðv 
 v0Þk ¼ 0 by (1). Thus,
U1 is well defined. We next define U2 :W ! V. Note that, by (1), P and T have the same kernels. Hence, the
images of P and T have the same dimension; that is, dimðIm PÞ ¼ dim W ¼ dimðIm TÞ. Consequently,
W? and ðIm TÞ? also have the same dimension. We let U2 be any isomorphism between W? and ðIm TÞ?.

We next set U ¼ U1 � U2. [Here U is defined as follows: If v 2 V and v ¼ wþ w0, where w 2 W,
w0 2 W?, then UðvÞ ¼ U1ðwÞ þ U2ðw0Þ.] Now U is linear (Problem 13.69), and, if v 2 V and PðvÞ ¼ w,
then, by (2),

TðvÞ ¼ U1ðwÞ ¼ UðwÞ ¼ UPðvÞ
Thus, T ¼ UP, as required.

It remains to show that U is unitary. Now every vector x 2 V can be written in the form x ¼ PðvÞ þ w0,
where w0 2 W?. Then UðxÞ ¼ UPðvÞ þ U2ðw0Þ ¼ TðvÞ þ U2ðw0Þ, where hTðvÞ;U2ðw0Þi ¼ 0 by definition
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of U2. Also, hTðvÞ; TðvÞi ¼ hPðvÞ;PðvÞi by (1). Thus,

hUðxÞ;UðxÞi ¼ hTðvÞ þ U2ðw0Þ; TðvÞ þ U2ðw0Þi ¼ hTðvÞ; TðvÞi þ hU2ðw0Þ;U2ðw0Þi
¼ hPðvÞ;PðvÞi þ hw0;w0i ¼ hPðvÞ þ w0; PðvÞ þ w0Þ ¼ hx; xi

[We also used the fact that hPðvÞ;w0i ¼ 0:� Thus, U is unitary, and the theorem is proved.

13.24. Let V be the vector space of polynomials over R with inner product defined by

h f ; gi ¼
ð1

0

f ðtÞgðtÞ dt

Give an example of a linear functional f on V for which Theorem 13.3 does not hold—that is,
for which there is no polynomial hðtÞ such that fð f Þ ¼ h f ; hi for every f 2 V.

Let f:V ! R be defined by fð f Þ ¼ f ð0Þ; that is, f evaluates f ðtÞ at 0, and hence maps f ðtÞ into its
constant term. Suppose a polynomial hðtÞ exists for which

fðf Þ ¼ f ð0Þ ¼
ð1

0

f ðtÞhðtÞ dt ð1Þ

for every polynomial f ðtÞ. Observe that f maps the polynomial tf ðtÞ into 0; hence, by (1),ð1

0

tf ðtÞhðtÞ dt ¼ 0 ð2Þ

for every polynomial f ðtÞ. In particular (2) must hold for f ðtÞ ¼ thðtÞ; that is,ð1

0

t2h2ðtÞ dt ¼ 0

This integral forces hðtÞ to be the zero polynomial; hence, fð f Þ ¼ h f ; hi ¼ h f ; 0i ¼ 0 for every
polynomial f ðtÞ. This contradicts the fact that f is not the zero functional; hence, the polynomial hðtÞ
does not exist.

SUPPLEMENTARY PROBLEMS

Adjoint Operators

13.25. Find the adjoint of:

(a) A ¼ 5
 2i 3þ 7i
4
 6i 8þ 3i

� �
; (b) B ¼ 3 5i

i 
2i

� �
; (c) C ¼ 1 1

2 3

� �
13.26. Let T :R3 ! R3 be defined by Tðx; y; zÞ ¼ ðxþ 2y; 3x
 4z; yÞ: Find T*ðx; y; zÞ:

13.27. Let T :C3 ! C3 be defined by Tðx; y; zÞ ¼ ½ixþ ð2þ 3iÞy; 3xþ ð3
 iÞz; ð2
 5iÞyþ iz�:
Find T*ðx; y; zÞ:

13.28. For each linear function f on V; find u 2 V such that fðvÞ ¼ hv; ui for every v 2 V:

(a) f :R3 ! R defined by fðx; y; zÞ ¼ xþ 2y
 3z:

(b) f :C3 ! C defined by fðx; y; zÞ ¼ ixþ ð2þ 3iÞyþ ð1
 2iÞz:

13.29. Suppose V has finite dimension. Prove that the image of T* is the orthogonal complement of the kernel of
T ; that is, Im T* ¼ ðKer TÞ?: Hence, rankðTÞ ¼ rankðT*Þ:

13.30. Show that T*T ¼ 0 implies T ¼ 0:
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13.31. Let V be the vector space of polynomials over R with inner product defined by h f ; gi ¼ Ð 1

0
f ðtÞgðtÞ dt: Let

D be the derivative operator on V; that is, Dð f Þ ¼ df =dt: Show that there is no operator D* on V such that
hDð f Þ; gi ¼ h f ;D*ðgÞi for every f ; g 2 V: That is, D has no adjoint.

Unitary and Orthogonal Operators and Matrices

13.32. Find a unitary (orthogonal) matrix whose first row is

(a) ð2= ffiffiffiffiffi
13
p

; 3=
ffiffiffiffiffi
13
p Þ, (b) a multiple of ð1; 1
 iÞ, (c) a multiple of ð1;
i; 1
 iÞ:

13.33. Prove that the products and inverses of orthogonal matrices are orthogonal. (Thus, the orthogonal matrices
form a group under multiplication, called the orthogonal group.)

13.34. Prove that the products and inverses of unitary matrices are unitary. (Thus, the unitary matrices form a
group under multiplication, called the unitary group.)

13.35. Show that if an orthogonal (unitary) matrix is triangular, then it is diagonal.

13.36. Recall that the complex matrices A and B are unitarily equivalent if there exists a unitary matrix P such that
B ¼ P*AP. Show that this relation is an equivalence relation.

13.37. Recall that the real matrices A and B are orthogonally equivalent if there exists an orthogonal matrix P such
that B ¼ PTAP. Show that this relation is an equivalence relation.

13.38. Let W be a subspace of V. For any v 2 V, let v ¼ wþ w0, where w 2 W, w0 2 W?. (Such a sum is unique
because V ¼ W �W?.) Let T :V ! V be defined by TðvÞ ¼ w
 w0. Show that T is self-adjoint unitary
operator on V.

13.39. Let V be an inner product space, and suppose U :V ! V (not assumed linear) is surjective (onto) and
preserves inner products; that is, hUðvÞ;UðwÞi ¼ hu;wi for every v;w 2 V. Prove that U is linear and
hence unitary.

Positive and Positive Definite Operators

13.40. Show that the sum of two positive (positive definite) operators is positive (positive definite).

13.41. Let T be a linear operator on V and let f :V � V ! K be defined by f ðu; vÞ ¼ hTðuÞ; vi. Show that f is an
inner product on V if and only if T is positive definite.

13.42. Suppose E is an orthogonal projection onto some subspace W of V. Prove that kI þ E is positive (positive
definite) if k � 0 ðk > 0Þ.

13.43. Consider the operator T defined by TðuiÞ ¼
ffiffiffiffi
li

p
ui; i ¼ 1; . . . ; n, in the proof of Theorem 13.10A. Show

that T is positive and that it is the only positive operator for which T2 ¼ P.

13.44. Suppose P is both positive and unitary. Prove that P ¼ I .

13.45. Determine which of the following matrices are positive (positive definite):

ðiÞ 1 1

1 1

� �
; ðiiÞ 0 i


i 0

� �
; ðiiiÞ 0 1


1 0

� �
; ðivÞ 1 1

0 1

� �
; ðvÞ 2 1

1 2

� �
; ðviÞ 1 2

2 1

� �

13.46. Prove that a 2� 2 complex matrix A ¼ a b
c d

� �
is positive if and only if (i) A ¼ A*, and (ii) a; d and

jAj ¼ ad 
 bc are nonnegative real numbers.
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13.47. Prove that a diagonal matrix A is positive (positive definite) if and only if every diagonal entry is a
nonnegative (positive) real number.

Self-adjoint and Symmetric Matrices

13.48. For any operator T, show that T þ T* is self-adjoint and T 
 T* is skew-adjoint.

13.49. Suppose T is self-adjoint. Show that T2ðvÞ ¼ 0 implies TðvÞ ¼ 0. Using this to prove that TnðvÞ ¼ 0 also
implies that TðvÞ ¼ 0 for n > 0.

13.50. Let V be a complex inner product space. Suppose hTðvÞ; vi is real for every v 2 V. Show that T is self-
adjoint.

13.51. Suppose T1 and T2 are self-adjoint. Show that T1T2 is self-adjoint if and only if T1 and T1 commute; that is,
T1T2 ¼ T2T1.

13.52. For each of the following symmetric matrices A, find an orthogonal matrix P and a diagonal matrix D such
that PTAP is diagonal:

(a) A ¼ 1 2
2 
2

� �
; (b) A ¼ 5 4

4 
1

� �
, (c) A ¼ 7 3

3 
1

� �
13.53. Find an orthogonal change of coordinates X ¼ PX 0 that diagonalizes each of the following quadratic forms

and find the corresponding diagonal quadratic form qðx0Þ:
(a) qðx; yÞ ¼ 2x2 
 6xyþ 10y2, (b) qðx; yÞ ¼ x2 þ 8xy
 5y2

(c) qðx; y; zÞ ¼ 2x2 
 4xyþ 5y2 þ 2xz
 4yzþ 2z2

Normal Operators and Matrices

13.54. Let A ¼ 2 i
i 2

� �
. Verify that A is normal. Find a unitary matrix P such that P*AP is diagonal. Find P*AP.

13.55. Show that a triangular matrix is normal if and only if it is diagonal.

13.56. Prove that if T is normal on V, then kTðvÞk ¼ kT*ðvÞk for every v 2 V. Prove that the converse holds in
complex inner product spaces.

13.57. Show that self-adjoint, skew-adjoint, and unitary (orthogonal) operators are normal.

13.58. Suppose T is normal. Prove that

(a) T is self-adjoint if and only if its eigenvalues are real.

(b) T is unitary if and only if its eigenvalues have absolute value 1.

(c) T is positive if and only if its eigenvalues are nonnegative real numbers.

13.59. Show that if T is normal, then T and T* have the same kernel and the same image.

13.60. Suppose T1 and T2 are normal and commute. Show that T1 þ T2 and T1T2 are also normal.

13.61. Suppose T1 is normal and commutes with T2. Show that T1 also commutes with T 2*.

13.62. Prove the following: Let T1 and T2 be normal operators on a complex finite-dimensional vector space V.
Then there exists an orthonormal basis of V consisting of eigenvectors of both T1 and T2. (That is, T1 and
T2 can be simultaneously diagonalized.)

Isomorphism Problems for Inner Product Spaces

13.63. Let S ¼ fu1; . . . ; ung be an orthonormal basis of an inner product space V over K . Show that the mapping
v 7! ½v�s is an (inner product space) isomorphism between V and Kn. (Here ½v�S denotes the coordinate
vector of v in the basis S.)
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13.64. Show that inner product spaces V and W over K are isomorphic if and only if V and W have the same
dimension.

13.65. Suppose fu1; . . . ; ung and fu01; . . . ; u0ng are orthonormal bases of V and W, respectively. Let T :V ! W be
the linear map defined by TðuiÞ ¼ u0i for each i. Show that T is an isomorphism.

13.66. Let V be an inner product space. Recall that each u 2 V determines a linear functional û in the dual space
V* by the definition ûðvÞ ¼ hv; ui for every v 2 V. (See the text immediately preceding Theorem 13.3.)
Show that the map u 7! û is linear and nonsingular, and hence an isomorphism from V onto V*.

Miscellaneous Problems

13.67. Suppose fu1; . . . ; ung is an orthonormal basis of V: Prove

(a) ha1u1 þ a2u2 þ � � � þ anun; b1u1 þ b2u2 þ � � � þ bnuni ¼ a1
�b1 þ a2

�b2 þ . . . �an
�bn

(b) Let A ¼ ½aij� be the matrix representing T :V ! V in the basis fuig: Then aij ¼ hTðuiÞ; uji:

13.68. Show that there exists an orthonormal basis fu1; . . . ; ung of V consisting of eigenvectors of T if and only if
there exist orthogonal projections E1; . . . ;Er and scalars l1; . . . ; lr such that

(i) T ¼ l1E1 þ � � � þ lrEr, (ii) E1 þ � � � þ Er ¼ I , (iii) EiEj ¼ 0 for i 6¼ j

13.69. Suppose V ¼ U �W and suppose T1 :U ! V and T2 :W ! V are linear. Show that T ¼ T1 � T2 is also
linear. Here T is defined as follows: If v 2 V and v ¼ uþ w where u 2 U , w 2 W, then

TðvÞ ¼ T1ðuÞ þ T2ðwÞ

ANSWERS TO SUPPLEMENTARY PROBLEMS

Notation: ½R1; R2; . . . ; Rn� denotes a matrix with rows R1;R2; . . . ;Rn.

13.25. (a) ½5þ 2i; 4þ 6i; 3
 7i; 8
 3i�, (b) ½3;
i; 
5i; 2i�, (c) ½1; 2; 1; 3�

13.26. T*ðx; y; zÞ ¼ ðxþ 3y; 2xþ z; 
4yÞ

13.27. T*ðx; y; zÞ ¼ ½
ixþ 3y; ð2
 3iÞxþ ð2þ 5iÞz; ð3þ iÞy
 iz�

13.28. (a) u ¼ ð1; 2;
3Þ, (b) u ¼ ð
i; 2
 3i; 1þ 2iÞ

13.32. (a) ð1= ffiffiffiffiffi
13
p Þ½2; 3; 3;
2�, (b) ð1= ffiffiffi

3
p Þ½1; 1
 i; 1þ i; 
1�,

(c) 1
2 ½1; 
i; 1
 i;

ffiffiffi
2
p

i; 
 ffiffiffi
2
p

; 0; 1; 
i; 
1þ i�

13.45. Only (i) and (v) are positive. Only (v) is positive definite.

13.52. (a and b) P ¼ ð1= ffiffiffi
5
p Þ½2;
1; 1; 2�, (c) P ¼ ð1= ffiffiffiffiffi

10
p Þ½3;
1; 1; 3�

(a) D ¼ ½2; 0; 0;
3�; (b) D ¼ ½7; 0; 0;
3�; (c) D ¼ ½8; 0; 0;
2�

13.53. (a) x ¼ ð3x0 
 y0Þ= ffiffiffiffiffi
10
p

; y ¼ ðx0 þ 3y0Þ= ffiffiffiffiffi
10
p

; (b) x ¼ ð2x0 
 y0Þ= ffiffiffi
5
p

; y ¼ ðx0 þ 2y0Þ= ffiffiffi
5
p

;
(c) x ¼ x0=

ffiffiffi
3
p þ y0=

ffiffiffi
2
p þ z0=

ffiffiffi
6
p

; y ¼ x0=
ffiffiffi
3
p 
 2z0=

ffiffiffi
6
p

; z ¼ x0=
ffiffiffi
3
p 
 y0=

ffiffiffi
2
p þ z0=

ffiffiffi
6
p

;
(a) qðx0Þ ¼ diagð1; 11Þ; (b) qðx0Þ ¼ diagð3;
7Þ; (c) qðx0Þ ¼ diagð1; 17Þ

13.54. (a) P ¼ ð1= ffiffiffi
2
p Þ½1;
1; 1; 1�; P*AP ¼ diagð2þ i; 2
 iÞ
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Multilinear Products

A.1 Introduction

The material in this appendix is much more abstract than that which has previously appeared. Accordingly,
many of the proofs will be omitted. Also, we motivate the material with the following observation.

Let S be a basis of a vector space V. Theorem 5.2 may be restated as follows.

THEOREM 5.2: Let g :S ! V be the inclusion map of the basis S into V. Then, for any vector space
U and any mapping f :S ! U ; there exists a unique linear mapping f � :V ! U such
that f ¼ f � � g:

Another way to state the fact that f ¼ f � � g is that the diagram in Fig. A-1(a) commutes.

A.2 Bilinear Mapping and Tensor Products

Let U, V, W be vector spaces over a field K. Consider a map

f : V �W ! U

Then f is said to be bilinear if, for each v 2 V ; the map fv :W ! U defined by fv wð Þ ¼ f v;wð Þ is linear;
and, for each w 2 W ; the map fw :V ! U defined by fw vð Þ ¼ f v;wð Þ is linear.

That is, f is linear in each of its two variables. Note that f is similar to a bilinear form except that the
values of the map f are in a vector space U rather than the field K.

DEFINITION A.1: Let V and W be vector spaces over the same field K. The tensor product of V and
W is a vector space T over K together with a bilinear map g : V �W ! T ;
denoted by g v; wð Þ ¼ v � w; with the following property: (*) For any vector
space U over K and any bilinear map f :V �W ! U there exists a unique linear
map f � :T ! U such that f � � g ¼ f :

The tensor product (T, g) [or simply T when g is understood] of V and W is denoted by V �W ; and the
element v � w is called the tensor of v and w.

Another way to state condition (*) is that the diagram in Fig. A-1(b) commutes. The fact that such
a unique linear map f* exists is called the ‘‘Universal Mapping Principle’’ (UMP). As illustrated in
Fig. A-1(b), condition (*) also says that any bilinear map f :V �W ! U ‘‘factors through’’ the tensor
product T ¼ V �W : The uniqueness in (*) implies that the image of g spans T; that is, span v � wf gð Þ ¼ T :
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THEOREM A.1: (Uniqueness of Tensor Products) Let (T, g) and T 0; g0ð Þ be tensor products of V
and W. Then there exists a unique isomorphism h :T ! T 0 such that hg ¼ g0:

Proof. Because T is a tensor product, and g0 :V �W ! T 0 is bilinear, there exists a unique linear map
h :T ! T 0 such that hg ¼ g0: Similarly, because T 0 is a tensor product, and g :V �W ! T 0 is bilinear,
there exists a unique linear map h0 :T 0 ! T such that h0g0 ¼ g: Using hg ¼ g0, we get h0hg ¼ g: Also,
because T is a tensor product, and g :V �W ! T is bilinear, there exists a unique linear map h� :T ! T
such that h�g ¼ g: But 1Tg ¼ g: Thus, h0h ¼ h� ¼ 1T. Similarly, hh0 ¼ 1T0 : Therefore, h is an
isomorphism from T to T 0:

THEOREM A.2: (Existence of Tensor Product) The tensor product T ¼ V �W of vector spaces V
and W over K exists. Let v1; . . . ; vmf g be a basis of V and let w1; . . . ; wnf g be a
basis of W. Then the mn vectors

vi � wi i ¼ 1; . . . ; m; j ¼ 1; . . . ; nð Þ
form a basis of T. Thus, dim T ¼ mn ¼ dim Vð Þ dim Wð Þ:

Outline of Proof. Suppose v1; . . . ; vm

� �
is a basis of V, and suppose w1; . . . ; wnf g is a basis of W.

Consider the mn symbols tijji ¼ i; . . . ; m; j ¼ 1; . . . ; n
� �

. Let T be the vector space generated by the tij.
That is, T consists of all linear combinations of the tij with coefficients in K. [See Problem 4.137.]

Let v 2 V and w 2 W . Say

v ¼ a1v1 þ a2v2 þ � � � þ amvm and w ¼ b1w1 þ b2w2 þ � � � þ bmwm

Let g :V �W ! T be defined by

g v; wð Þ ¼
X

i

X
j

aibjtij

Then g is bilinear. [Proof left to reader.]
Now let f :V �W ! U be bilinear. Because the tij form a basis of T, Theorem 5.2 (stated above) tells

us that there exists a unique linear map f � :T ! U such that f � tij


 � ¼ f vi; wj


 �
. Then, for v ¼P

i
aivi and

w ¼P
j

bjwj, we have

f ðv; wÞ ¼ f
X

i

aivi;
X

j

bjwj

 !
¼
X

i

X
j

aibj f vi; wj


 � ¼X
i

X
j

aibj tij ¼ f � g v; wð Þð Þ:

Therefore, f ¼ f �g where f * is the required map in Definition A.1. Thus, T is a tensor product.
Let fv01; . . . ; v0mg be any basis of V and fw01; . . . ; w0mg be any basis of W.

Let v 2 V and w 2 W and say

v ¼ a01v
0
1 þ � � � þ a0mv

0
m and w ¼ b01w01 þ � � � þ b0mw0m

Then

v � w ¼ g v; wð Þ ¼
X

i

X
j

a0ib
0
i g v0i; w0ið Þ ¼

X
i

X
j

a0ib
0
j v0i � w0j

 �

Thus, the elements v0i � w0j span T. There are mn such elements. They cannot be linearly dependent
because tij

� �
is a basis of T, and hence, dim T ¼ mn. Thus, the v0i � w0j form a basis of T.

Next we give two concrete examples of tensor products.

EXAMPLE A.1 Let V be the vector space of polynomials Pr
1 xð Þ and let W be the vector space of polynomials
Ps
1 yð Þ. Thus, the following from bases of V and W, respectively,

1; x; x2; . . . ; xr
1 and 1; y; y2; . . . ; y s
1

In particular, dim V ¼ r and dim W ¼ s: Let T be the vector space of polynomials in variables x and y
with basis

xiy j
� �

where i ¼ 0; 1; . . . ; r 
 1; j ¼ 0; 1; . . . ; s
 1
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Then T is the tensor product V �W under the mapping

xi � y j ¼ xiyi

For example, suppose v ¼ 2
 5xþ 3x3 and w ¼ 7yþ 4y2. Then

v � w ¼ 14yþ 8y2 
 35xy
 20xy2 þ 21x3yþ 12x3y2

Note, dim T ¼ rs ¼ dim Vð Þ dim Wð Þ:
EXAMPLE A.2

Let V be the vector space of m� n matrices over a field K and let W be the vector space of p� q matrices
over K. Suppose A ¼ ½a11� belongs to V, and B belongs to W. Let T be the vector space of mp� nq
matrices over K. Then T is the tensor product of V and W where A� B is the block matrix

A� B ¼ aijB
� � ¼

a11B a12B � � � a1nB

a21B a22B � � � a2nB

am1B am2B � � � amnB

2664
3775

For example, suppose A ¼ 1 2
3 4

� �
and B ¼ 1 2 3

4 5 6

� �
: Then

A� B ¼

1 2 3 2 4 6

4 5 6 8 10 12

3 6 9 4 8 12

12 15 18 16 20 24

26664
37775

Isomorphisms of Tensor Products

First we note that tensoring is associative in a cannonical way. Namely,

THEOREM A.3: Let U, V, W be vector spaces over a field K. Then there exists a unique isomorphism

U � Vð Þ �W ! U � V �Wð Þ
such that, for every u 2 U ; v 2 V ; w 2 W ;

u� vð Þ � w 7! u� v � wð Þ
Accordingly, we may omit parenthesis when tensoring any number of factors. Specifically, given

vectors spaces V1; V2; . . . ; Vm over a field K, we may unambiguously form their tensor product

V1 � V2 � . . .� Vm

and, for vectors vj in Vj, we may unambiguously form the tensor product

v1 � v2 � . . .� vm

Moreover, given a vector space V over K, we may unambiguously define the following tensor
product:

�rV ¼ V � V � . . .� V r factorsð Þ
Also, there is a canonical isomorphism

�rVð Þ � �sVð Þ ! �rþsV

Furthermore, viewing K as a vector space over itself, we have the canonical isomorphism

K� V ! V

where we define a� v ¼ av:

� � � � � � � � � � � � � � � � � � � � � � � �
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A.3 Alternating Multilinear Maps

Let f :V r ! U where V and U are vector spaces over K. [Recall V r ¼ V � V � . . .� V , r factors.]

(1) The mapping f is said to be multilinear or r-linear if f v1; . . . ; vrð Þ is linear as a function of each vj

when the other vi’s are held fixed. That is,

f ð. . . ; vj þ v0j; . . .Þ ¼ f ð. . . ; vj; . . .Þ þ f ð. . . ; v0j; . . .Þ
f ð. . . ; kvj; . . .Þ ¼ kf ð. . . ; vj; . . .Þ

where only the jth position changes.

(2) The mapping f is said to be alternating if

f v1; . . . ; vrð Þ ¼ 0 whenever vi ¼ vj with i 6¼ j

One can easily show (Prove!) that if f is an alternating multilinear mapping on Vr, then

f . . . ; vi; . . . ; vj; . . .

 � ¼ 
f . . . ; vj; . . . ; vi; . . .


 �
That is, if two of the vectors are interchanged, then the associated value changes sign.

EXAMPLE A.3 (Determinants)
The determinant function D :M ! K on the space M of n� n matrices may be viewed as an n-variable function

D Að Þ ¼ D R1; R2; . . . ; Rnð Þ
defined on the rows R1; R2; . . . ; Rn of A. Recall (Chapter 8) that, in this context, D is both n-linear and alternating.

We now need some additional notation. Let K ¼ k1; k2; . . . ; kr½ � denote an r-list (r-tuple) of elements
from In ¼ 1; 2; . . . ; nð Þ. We will then use the following notation where the vk’s denote vectors and the
aik’s denote scalars:

vK ¼ ðvk1
; vk2

; . . . ; vkr
Þ and aK ¼ a1k1

a2k2
. . . arkr

Note vK is a list of r vectors, and aK is a product of r scalars.
Now suppose the elements in K ¼ k1; k2; . . . ; kr½ � are distinct. Then K is a permutation sK of an r-list

J ¼ i1; i2; . . . ; ir½ � in standard form, that is, where i1 < i2 < . . . < ir. The number of such standard-form
r-lists J from In is the binomial coefficient:

n
r

� �
¼ n!

r! n
 rð Þ!
[Recall sign sKð Þ ¼ 
1ð ÞmK where mK is the number of interchanges that transforms K into J.]

Now suppose A ¼ aij

� �
is an r � n matrix. For a given ordered r-list J, we define

DJ Að Þ ¼
a1i1

a1i2
. . . a1ir

a2i1
a2i2

. . . a2ir

ari1
ari2

. . . arir

��������
��������

That is, DJ (A) is the determinant of the r � r submatrix of A whose column subscripts belong to J.
Our main theorem below uses the following ‘‘shuffling’’ lemma.

LEMMA A.4 Let V and U be vector spaces over K, and let f :V r ! U be an alternating r-linear
mapping. Let v1; v2; . . . ; vn be vectors in V and let A ¼ aij

� �
be an r � n matrix over K

where r � n. For i ¼ 1; 2; . . . ; r, let

ui ¼ ai1vi þ ai2v2 þ � � � þ ainvn

. . . . . . . . . . . . . . . . . . . . . .
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Then

f u1; . . . ; urð Þ ¼
X

f

DJ Að Þf ðvi1
; vi2

; . . . ; vir
Þ

where the sum is over all standard-form r-lists J ¼ i1; i2; . . . ; irf g.

The proof is technical but straightforward. The linearity of f gives us the sum

f u1; . . . ; urð Þ ¼
X

K

aKf vKð Þ

where the sum is over all r-lists K from 1; . . . ; nf g. The alternating property of f tells us that f vKð Þ ¼ 0
when K does not contain distinct integers. The proof now mainly uses the fact that as we interchange the
vj’s to transform

f vKð Þ ¼ f ðvk1
; vk2

; . . . ; vkr
Þ to f vj


 � ¼ f ðvi1
; vi2

; . . . ; vir
Þ

so that i1 < � � � < ir, the associated sign of aK , will change in the same way as the sign of the
corresponding permutation sK changes when it is transformed to the identity permutation using
transpositions.

We illustrate the lemma below for r ¼ 2 and n ¼ 3.

EXAMPLE A.4 Suppose f :V 2 ! U is an alternating multilinear function. Let v1; v2; v3 2 V and let u; w 2 V .
Suppose

u ¼ a1v1 þ a2v2 þ a3v3 and w ¼ b1v1 þ b2v2 þ b3v3

Consider

f u;wð Þ ¼ f a1v1 þ a2v2 þ a3v3; b1v1 þ b2v2 þ b3v3ð Þ
Using multilinearity, we get nine terms:

f u;wð Þ ¼ a1b1 f v1; vrð Þ þ a1b2 f v1; v2ð Þ þ a1b3 f v1; v3ð Þ
þ a2b1 f v2; v1ð Þ þ a2b2 f v2; v2ð Þ þ a2b3 f v2; v3ð Þ
þ a3b1 f v3; v1ð Þ þ a3b2 f v3; v2ð Þ þ a3b3 f v3; v3ð Þ

(Note that J ¼ 1; 2½ �; J 0 ¼ 1; 3½ � and J 00 ¼ 2; 3½ � are the three standard-form 2-lists of I ¼ 1; 2; 3½ �.) The
alternating property of f tells us that each f vi; við Þ ¼ 0; hence, three of the above nine terms are equal to
0. The alternating property also tells us that f vi; vf


 � ¼ 
f vf ; vr


 �
. Thus, three of the terms can be

transformed so their subscripts form a standard-form 2-list by a single interchange. Finally we obtain

f u;wð Þ ¼ a1b2 
 a2b1ð Þ f v1; v2ð Þ þ a1b3 
 a3b1ð Þ f v1; v3ð Þ þ a2b3 
 a3b2ð Þ f v2; v3ð Þ

¼ a1 a2

b1 b2

���� ���� f v1; v2ð Þ þ a1 a3

b1 b3

���� ���� f v1; v3ð Þ þ a2 a3

b2 b3

���� ���� f v2; v3ð Þ

which is the content of Lemma A.4.

A.4 Exterior Products

The following definition applies.

DEFINITION A.2: Let V be an n-dimensionmal vector space over a field K, and let r be an integer such
that 1 � r � n. The r-fold exterior product (or simply exterior product when r is
understood) is a vector space E over K together with an alternating r-linear mapping
g :V r ! E, denoted by g v1; . . . ; vrð Þ ¼ v1 ^ . . . ^ vr, with the following property:
(*) For any vector space U over K and any alternating r-linear map f :V r ! U

there exists a unique linear map f � :E! U such that f � � g ¼ f .
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The r-fold tensor product (E, g) (or simply E when g is understood) of V is denoted by ^r V , and the
element v1 ^ � � � ^ vr is called the exterior product or wedge product of the vi’s.

Another way to state condition (*) is that the diagram in Fig. A-1(c) commutes. Again, the fact that
such a unique linear map f * exists is called the ‘‘Universal Mapping Principle (UMP)’’. As illustrated in
Fig. A-1(c), condition (*) also says that any alternating r-linear map f :V r ! U ‘‘factors through’’ the
exterior product E ¼ ^r V . Again, the uniqueness in (*) implies that the image of g spans E; that is,
span v1 ^ � � � ^ vrð Þ ¼ E.

THEOREM A.5: (Uniqueness of Exterior Products) Let (E, g) and E0; g0ð Þ be r-fold exterior products
of V. Then there exists a unique isomorphism h :E! E0 such that hg ¼ g0.

The proof is the same as the proof of Theorem A.1, which uses the UMP.

THEOREM A.6: (Existence of Exterior Products) Let V be an n-dimensional vector space over K.
Then the exterior product E ¼ ^r V exists. If r > n, then E ¼ 0f g. If r � n, then

dim E ¼ n
r

� �
. Moreover, if v1; . . . ; vn½ � is a basis of V, then the vectors

vi1
^ vi2

^ � � � ^ vir
;

where 1 � i1 < i2 < � � � < ir � n, form a basis of E.
We give a concrete example of an exterior product.

EXAMPLE A.5 (Cross Product)
Consider V ¼ R3 with the usual basis (i, j, k). Let E ¼ ^2

V . Note dim V ¼ 3: Thus, dim E ¼ 3 with basis
i^ j; i^ k; j ^ k: We identify E with R3 under the correspondence

i ¼ j^k; j ¼ k^ i ¼ 
i^k; k ¼ i^ j
Let u and w be arbitrary vectors in V ¼ R3, say

u ¼ a1; a2; a3ð Þ ¼ a1iþ a2jþ a3k and w ¼ b1; b2; b3ð Þ ¼ b1iþ b2jþ b3k

Then, as in Example A.3,

u ^ w ¼ a1b2 
 a2b1ð Þði^ jÞ þ a1b3 
 a3b1ð Þði^ kÞ þ a2b3 
 a3b2ð Þðj^ kÞ
Using the above identification, we get

u^w ¼ a2b3 
 a3b2ð Þi
 a1b3 
 a3b1ð Þjþ a1b2 
 a2b1ð Þk

¼ a2 a3

b2 b3

���� ����i
 a1 a3

b1 b3

���� ����jþ a1 a2

b1 b2

���� ����k
The reader may recognize that the above exterior product is precisely the well-known cross product
in R3.

Our last theorem tells us that we are actually able to ‘‘multiply’’ exterior products, which allows us to
form an ‘‘exterior algebra’’ that is illustrated below.

THEOREM A.7: Let V be a vector space over K. Let r and s be positive integers. Then there is a
unique bilinear mapping

^r
V �^s

V !^rþs
V

such that, for any vectors ui; wj in V,

u1 ^ � � � ^ urð Þ � w1 ^ � � � ^wsð Þ 7! u1 ^ � � � ^ ur ^w1 ^ � � � ^ws
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EXAMPLE A.6
We form an exterior algebra A over a field K using noncommuting variables x, y, z. Because it is an exterior algebra,
our variables satisfy:

x^ x ¼ 0; y^ y ¼ 0; z^ z ¼ 0; and y^ x ¼ 
x^ y; z^ x ¼ 
x^ z; z^ y ¼ 
y^ z

Every element of A is a linear combination of the eight elements

1; x; y; z; x^ y; x^ z; y^ z; x^ y^ z

We multiply two ‘‘polynomials’’ in A using the usual distributive law, but now we also use the above conditions. For
example,

3þ 4y
 5x^ yþ 6x^ z½ � ^ 5x
 2y½ � ¼ 15x
 6y
 20x^ yþ 12x^ y^ z

Observe we use the fact that

4y½ � ^ 5x½ � ¼ 20y^ x ¼ 
20x^ y and 6x^ z½ � ^ 
2y½ � ¼ 
12x^ z^ y ¼ 12x^ y^ z
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Algebraic Structures

B.1 Introduction

We define here algebraic structures that occur in almost all branches of mathematics. In particular, we
will define a field that appears in the definition of a vector space. We begin with the definition of a group,
which is a relatively simple algebraic structure with only one operation and is used as a building block for
many other algebraic systems.

B.2 Groups

Let G be a nonempty set with a binary operation; that is, to each pair of elements a; b 2 G there is
assigned an element ab 2 G. Then G is called a group if the following axioms hold:

G1½ � For any a; b; c 2 G, we have abð Þc ¼ a bcð Þ (the associative law).

G2½ � There exists an element e 2 G, called the identity element, such that ae ¼ ea ¼ a for every
a 2 G.

G3½ � For each a 2 G there exists an element a
1 2 G, called the inverse of a, such that
aa
1 ¼ a
1a ¼ e.

A group G is said to be abelian (or: commutative) if the commutative law holds—that is, if ab ¼ ba for
every a; b 2 G.

When the binary operation is denoted by juxtaposition as above, the group G is said to be written
multiplicatively. Sometimes, when G is abelian, the binary operation is denoted by + and G is said to be
written additively. In such a case, the identity element is denoted by 0 and is called the zero element; the
inverse is denoted by 
a and it is called the negative of a.

If A and B are subsets of a group G, then we write

AB ¼ abja 2 A; b 2 Bf g or Aþ B ¼ aþ bja 2 A; b 2 Bf g
We also write a for {a}.

A subset H of a group G is called a subgroup of G if H forms a group under the operation of G. If H is
a subgroup of G and a 2 G, then the set Ha is called a right coset of H and the set aH is called a left coset
of H.

DEFINITION: A subgroup H of G is called a normal subgroup if a
1Ha � H for every a 2 G.
Equivalently, H is normal if aH ¼ Ha for every a 2 G—that is, if the right and left
cosets of H coincide.

Note that every subgroup of an abelian group is normal.

THEOREM B.1: Let H be a normal subgroup of G. Then the cosets of H in G form a group under
coset multiplication. This group is called the quotient group and is denoted by G/H.
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EXAMPLE B.1 The set Z of integers forms an abelian group under addition. (We remark that the even integers
form a subgroup of Z but the odd integers do not.) Let H denote the set of multiples of 5; that is,
H ¼ f. . . ;
10; 
5; 0; 5; 10; . . .g. Then H is a subgroup (necessarily normal) of Z. The cosets of H in Z follow:

�0 ¼ 0þ H ¼ H ¼ . . . ;
10; 
5; 0; 5; 10; . . .f g
�1 ¼ 1þ H ¼ f. . . ;
9; 
4; 1; 6; 11; . . .g
�2 ¼ 2þ H ¼ . . . ; 
8; 
3; 2; 7; 12; . . .f g
�3 ¼ 3þ H ¼ . . . ; 
7; 
2; 3; 8; 13; . . .f g
�4 ¼ 4þ H ¼ . . . ; 
6; 
1; 4; 9; 14; . . .f g

For any other integer n 2 Z, �n ¼ nþ H coincides with one of the above cosets. Thus, by the above theorem,
Z=H ¼ �0; �1; �2; �3; �4f g forms a group under coset addition; its addition table follows:

þ �0 �1 �2 �3 �4

�0 �0 �1 �2 �3 �4
�1 �1 �2 �3 �4 �0
�2 �2 �3 �4 �0 �1
�3 �3 �4 �0 �1 �2
�4 �4 �0 �1 �2 �3

This quotient group Z/H is referred to as the integers modulo 5 and is frequently denoted by Z5. Analogeusly, for
any positive integer n, there exists the quotient group Zn called the integers modulo n.

EXAMPLE B.2 The permutations of n symbols (see page 267) form a group under composition of mappings; it is
called the symmetric group of degree n and is denoted by Sn. We investigate S3 here; its elements are

E ¼ 1 2 3
1 2 3

� �
s2 ¼ 1 2 3

3 2 1

� �
f1 ¼ 1 2 3

2 3 1

� �
s1 ¼ 1 2 3

1 3 2

� �
s3 ¼ 1 2 3

2 1 3

� �
f2 ¼ 1 2 3

3 1 2

� �
Here

1 2 3
i j k

� �
is the permutation that maps 1 7! i; 2 7! j; 3 7! k. The multiplication table of S3 is

E s1 s2 s3 f1 f2

E E s1 s2 s3 f1 f2

s1 s1 E f1 f2 s2 s3

s2 s2 f2 E f1 f3 s1

s3 s3 f1 f2 E s1 s2

f1 f1 s3 s1 s2 f2 E
f2 f2 s2 s3 s1 E f1

(The element in the ath row and bth column is ab.) The set H ¼ E; s1f g is a subgroup of S3; its right and left
cosets are

Right Cosets Left Cosets

H ¼ E; s1f g H ¼ E; s1f g
Hf1
¼ f1; s2f g f2H ¼ f1; s3f g

Hf2
¼ f2; s3f g f2H ¼ f2; s2f g

Observe that the right cosets and the left cosets are distinct; hence, H is not a normal subgroup of S3.

A mapping f from a group G into a group G0 is called a homomorphism if f abð Þ ¼ f að Þf bð Þ. For every
a; b 2 G. (If f is also bijective, i.e., one-to-one and onto, then f is called an isomorphism and G and G0 are
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said to be isomorphic.) If f : G! G0 is a homomorphism, then the kernel of f is the set of elements of G
that map into the identity element e0 2 G0:

kernel of f ¼ a 2 G j f að Þ ¼ e0f g
(As usual, f(G) is called the image of the mapping f : G ! G0.) The following theorem applies.

THEOREM B.2: Let f: G! G be a homomorphism with kernel K. Then K is a normal subgroup of G,
and the quotient group G/K is isomorphic to the image of f.

EXAMPLE B.3 Let G be the group of real numbers under addition, and let G0 be the group of positive real numbers
under multiplication. The mapping f : G ! G0 defined by f að Þ ¼ 2a is a homomorphism because

f aþ bð Þ ¼ 2aþb ¼ 2a2b ¼ f að Þf bð Þ
In particular, f is bijective, hence, G and G0 are isomorphic.

EXAMPLE B.4 Let G be the group of nonzero complex numbers under multiplication, and let G0 be the group of
nonzero real numbers under multiplication. The mapping f : G! G0 defined by f zð Þ ¼ jzj is a homomorphism
because

f z1z2ð Þ ¼ jz1z2j ¼ jz1jjz2j ¼ f z1ð Þ f z2ð Þ
The kernel K of f consists of those complex numbers z on the unit circle—that is, for which jzj ¼ 1. Thus, G=K is
isomorphic to the image of f—that is, to the group of positive real numbers under multiplication.

B.3 Rings, Integral Domains, and Fields

Let R be a nonempty set with two binary operations, an operation of addition (denoted by +) and an
operation of multiplication (denoted by juxtaposition). Then R is called a ring if the following axioms are
satisfied:

R1½ � For any a; b; c 2 R, we have aþ bð Þ þ c ¼ aþ bþ cð Þ.
R2½ � There exists an element 0 2 R; called the zero element, such that aþ 0 ¼ 0þ a ¼ a for every

a 2 R:

R3½ � For each a 2 R there exists an element 
a 2 R, called the negative of a, such that
aþ 
að Þ ¼ 
að Þ þ a ¼ 0.

R4½ � For any a; b 2 R; we have aþ b ¼ bþ a:

R5½ � For any a; b; c 2 R; we have abð Þc ¼ a bcð Þ:
R6½ � For any a; b; c 2 R; we have

(i) a bþ cð Þ ¼ abþ ac; and (ii) bþ cð Þa ¼ baþ ca:

Observe that the axioms R1½ � through R4½ � may be summarized by saying that R is an abelian group
under addition.

Subtraction is defined in R by a
 b 
 aþ 
bð Þ.
It can be shown (see Problem B.25) that a � 0 ¼ 0 � a ¼ 0 for every a 2 R:
R is called a commutative ring if ab ¼ ba for every a; b 2 R: We also say that R is a ring with a unit

element if there exists a nonzero element 1 2 R such that a � 1 ¼ 1 � a ¼ a for every a 2 R:
A nonempty subset S of R is called a subring of R if S forms a ring under the operations of R. We note

that S is a subring of R if and only if a; b 2 S implies a
 b 2 S and ab 2 S.
A nonempty subset I of R is called a left ideal in R if (i) a
 b 2 I whenever a; b 2 I ; and (ii) ra 2 I

whenever r 2 R; a 2 I : Note that a left ideal I in R is also a subring of R. Similarly, we can define a right
ideal and a two-sided ideal. Clearly all ideals in commutative rings are two sided. The term ideal shall
mean two-sided ideal uniess otherwise specified.
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THEOREM B.3: Let I be a (two-sided) ideal in a ring R. Then the cosets aþ I j a 2 Rf g form a ring
under coset addition and coset multiplication. This ring is denoted by R=I and is
called the quotient ring.

Now let R be a commutative ring with a unit element. For any a 2 R, the set að Þ ¼ ra j r 2 Rf g is an
ideal; it is called the principal ideal generated by a. If every ideal in R is a principal ideal, then R is called
a principal ideal ring.

DEFINITION: A commutative ring R with a unit element is called an integral domain if R has no
zero divisors—that is, if ab ¼ 0 implies a ¼ 0 or b ¼ 0.

DEFINITION: A commutative ring R with a unit element is called a field if every nonzero a 2 R has a
multiplicative inverse; that is, there exists an element a
1 2 R such that aa
1 ¼ a
1a ¼ 1:

A field is necessarily an integral domain; for if ab ¼ 0 and a 6¼ 0; then

b ¼ 1 � b ¼ a
1ab ¼ a
1 � 0 ¼ 0

We remark that a field may also be viewed as a commutative ring in which the nonzero elements form a
group under multiplication.

EXAMPLE B.5 The set Z of integers with the usual operations of addition and multiplication is the classical
example of an integral domain with a unit element. Every ideal I in Z is a principal ideal; that is, I ¼ nð Þ for
some integer n. The quotient ring Zn ¼ Z= nð Þ is called the ring of integers module n. If n is prime, then Zn is a field.
On the other hand, if n is not prime then Zn has zero divisors. For example, in the ring Z6; �2�3 ¼ �0 and
�2 6¼ �0 and �3 6¼ �0:

EXAMPLE B.6 The rational numbers Q and the real numbers R each form a field with respect to the usual
operations of addition and multiplication.

EXAMPLE B.7 Let C denote the set of ordered pairs of real numbers with addition and multiplication defined by

a; bð Þ þ c; dð Þ ¼ aþ c; bþ dð Þ
a; bð Þ � c; dð Þ ¼ ac
 bd; ad þ bcð Þ

Then C satisfies all the required properties of a field. In fact, C is just the field of complex numbers (see page 4).

EXAMPLE B.8 The set M of all 2 6 2 matrices with real entries forms a noncommutative ring with zero divisors
under the operations of matrix addition and matrix multiplication.

EXAMPLE B.9 Let R be any ring. Then the set R x½ � of all polynomials over R forms a ring with respect to the usual
operations of addition and multiplication of polynomials. Moreover, if R is an integral domain then R x½ � is also an
integral domain.

Now let D be an integral domain. We say that b divides a in D if a ¼ bc for some c 2 D. An element
u 2 D is called a unit if u divides 1—that is, if u has a multiplicative inverse. An element b 2 D is called
an associate of a 2 D if b ¼ ua for some unit u 2 D. A nonunit p 2 D is said to be irreducible if p ¼ ab
implies a or b is a unit.

An integral domain D is called a unique factorization domain if every nonunit a 2 D can be written
uniquely (up to associates and order) as a product of irreducible elements.

EXAMPLE B.10 The ring Z of integers is the classical example of a unique factorization domain. The units of Z
are 1 and 
1. The only associates of n 2 Z are n and 
n. The irreducible elements of Z are the prime numbers.

EXAMPLE B.11 The set D ¼ aþ b
ffiffiffiffiffi
13
p j a; b integers

� �
is an integral domain. The units of D are �1;

18� 5
ffiffiffiffiffi
13
p

and 
 18� 5
ffiffiffiffiffi
13
p

. The elements 2; 3
 ffiffiffiffiffi
13
p

and 
3
 ffiffiffiffiffi
13
p

are irreducible in D. Observe that
4 ¼ 2 � 2 ¼ 3
 ffiffiffiffiffi

13
p
 � 
3
 ffiffiffiffiffi

13
p
 �

: Thus, D is not a unique factorization domain. (See Problem B.40.)
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B.4 Modules

Let M be an additive abelian group and let R be a ring with a unit element. Then M is said to be a (left) R-
module if there exists a mapping R�M ! M that satisfies the following axioms:

M1½ � r m1 þ m2ð Þ ¼ rm1 þ rm2

M2½ � r þ sð Þm ¼ rmþ sm

M3½ � rsð Þm ¼ r smð Þ
M4½ � 1 � m ¼ m

for any r; s 2 R and any mi 2 M .
We emphasize that an R-module is a generalization of a vector space where we allow the scalars to

come from a ring rather than a field.

EXAMPLE B.12 Let G be any additive abelian group. We make G into a module over the ring Z of integers by
defining

ng ¼ g þ g þ � � � þ g;
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{n times

0g ¼ 0; 
nð Þg ¼ 
ng

where n is any positive integer.

EXAMPLE B.13 Let R be a ring and let I be an ideal in R. Then I may be viewed as a module over R.

EXAMPLE B.14 Let V be a vector space over a field K and let T :V ! V be a linear mapping. We make V into a
module over the ring K x½ � of polynomials over K by defining f xð Þv ¼ f Tð Þ vð Þ: The reader should check that a scalar
multiplication has been defined.

Let M be a module over R. An additive subgroup N of M is called a submodule of M if u 2 N and
k 2 R imply ku 2 N : (Note that N is then a module over R.)

Let M and M 0 be R-modules. A mapping T :M ! M 0 is called a homomorphism (or: R-homomorphism
or R-linear) if

(i) T uþ vð Þ ¼ T uð Þ þ T vð Þ and (ii) T kuð Þ ¼ kT uð Þ
for every u; v 2 M and every k 2 R.

PROBLEMS

Groups

B.1. Determine whether each of the following systems forms a group G:

(i) G ¼ set of integers; operation subtraction;

(ii) G ¼ f1; 
1g, operation multiplication;

(iii) G ¼ set of nonzero rational numbers, operation division;

(iv) G ¼ set of nonsingular n� n matrices, operation matrix multiplication;

(v) G ¼ faþ bi : a; b 2 Zg, operation addition.

B.2. Show that in a group G:

(i) the identity element of G is unique;

(ii) each a 2 G has a unique inverse a
1 2 G;

(iii) a
1ð Þ
1¼ a; and abð Þ
1¼ b
1a
1;

(iv) ab ¼ ac implies b ¼ c, and ba ¼ ca implies b ¼ c.

Appendix B Algebraic Structures 407



B.3. In a group G, the powers of a 2 G are defined by

a0 ¼ e; an ¼ aan
1; a
n ¼ anð Þ
1
; where n 2 N

Show that the following formulas hold for any integers r; s; t 2 Z: (i) aras ¼ arþs; (ii) arð Þs¼ ars;
(iii) arþsð Þt¼ arsþst.

B.4. Show that if G is an abelian group, then abð Þn¼ anbn for any a; b 2 G and any integer n 2 Z:

B.5. Suppose G is a group such that abð Þ2¼ a2b2 for every a; b 2 G. Show that G is abelian.

B.6. Suppose H is a subset of a group G. Show that H is a subgroup of G if and only if (i) H is
nonempty, and (ii) a; b 2 H implies ab
1 2 H :

B.7. Prove that the intersection of any number of subgroups of G is also a subgroup of G.

B.8. Show that the set of all powers of a 2 G is a subgroup of G; it is called the cyclic group generated
by a.

B.9. A group G is said to be cyclic if G is generated by some a 2 G; that is, G ¼ an : n 2 Zð Þ. Show
that every subgroup of a cyclic group is cyclic.

B.10. Suppose G is a cyclic subgroup. Show that G is isomorphic to the set Z of integers under addition
or to the set Zn (of the integers module n) under addition.

B.11. Let H be a subgroup of G. Show that the right (left) cosets of H partition G into mutually disjoint
subsets.

B.12. The order of a group G, denoted by jGj; is the number of elements of G. Prove Lagrange’s
theorem: If H is a subgroup of a finite group G, then jH j divides jGj.

B.13. Suppose jGj ¼ p where p is prime. Show that G is cyclic.

B.14. Suppose H and N are subgroups of G with N normal. Show that (i) HN is a subgroup of G and
(ii) H \ N is a normal subgroup of G.

B.15. Let H be a subgroup of G with only two right (left) cosets. Show that H is a normal subgroup of G.

B.16. Prove Theorem B.1: Let H be a normal subgroup of G. Then the cosets of H in G form a group
G=H under coset multiplication.

B.17. Suppose G is an abelian group. Show that any factor group G=H is also abelian.

B.18. Let f : G ! G0 be a group homomorphism. Show that

(i) f eð Þ ¼ e0 where e and e0 are the identity elements of G and G0, respectively;

(ii) f a
1ð Þ ¼ f að Þ
1
for any a 2 G.

B.19. Prove Theorem B.2: Let f : G! G0 be a group homomorphism with kernel K. Then K is a normal
subgroup of G, and the quotient group G=K is isomorphic to the image of f.

B.20. Let G be the multiplicative group of complex numbers z such that jzj ¼ 1; and let R be the additive
group of real numbers. Prove that G is isomorphic to R=Z:
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B.21. For a fixed g 2 G, let ĝ : G ! G be defined by ĝ að Þ ¼ g
1ag: Show that G is an isomorphism of
G onto G.

B.22. Let G be the multiplicative group of n� n nonsingular matrices over R. Show that the mapping
A 7! jAj is a homomorphism of G into the multiplicative group of nonzero real numbers.

B.23. Let G be an abelian group. For a fixed n 2 Z; show that the map a 7! an is a homomorphism of G
into G.

B.24. Suppose H and N are subgroups of G with N normal. Prove that H \ N is normal in H and
H= H \ Nð Þ is isomorphic to HN=N .

Rings

B.25. Show that in a ring R:

(i) a � 0 ¼ 0 � a ¼ 0; (ii) a 
bð Þ ¼ 
að Þb ¼ 
ab, (iii) 
að Þ 
bð Þ ¼ ab:

B.26. Show that in a ring R with a unit element: (i) 
1ð Þa ¼ 
a; (ii) 
1ð Þ 
1ð Þ ¼ 1.

B.27. Let R be a ring. Suppose a2 ¼ a for every a 2 R: Prove that R is a commutative ring. (Such a ring
is called a Boolean ring.)

B.28. Let R be a ring with a unit element. We make R into another ring R̂ by defining a� b ¼ aþ bþ 1
and a � b ¼ abþ aþ b. (i) Verify that R̂ is a ring. (ii) Determine the 0-element and 1-element of R̂.

B.29. Let G be any (additive) abelian group. Define a multiplication in G by a � b ¼ 0. Show that this
makes G into a ring.

B.30. Prove Theorem B.3: Let I be a (two-sided) ideal in a ring R. Then the cosets aþ I j a 2 Rð Þ form a
ring under coset addition and coset multiplication.

B.31. Let I1 and I2 be ideals in R. Prove that I1 þ I2 and I1 \ I2 are also ideals in R.

B.32. Let R and R0 be rings. A mapping f : R! R0 is called a homomorphism (or: ring homomorphism) if

(i) f aþ bð Þ ¼ f að Þ þ f bð Þ and (ii) f abð Þ ¼ f að Þ f bð Þ,
for every a; b 2 R. Prove that if f : R! R0 is a homomorphism, then the set K ¼ r 2 R j f rð Þ ¼ 0f g is an
ideal in R. (The set K is called the kernel of f.)

Integral Domains and Fields

B.33. Prove that in an integral domain D, if ab ¼ ac; a 6¼ 0; then b ¼ c.

B.34. Prove that F ¼ aþ b
ffiffiffi
2
p j a; b rational

� �
is a field.

B.35. Prove that D ¼ aþ b
ffiffiffi
2
p j a; b integers

� �
is an integral domain but not a field.

B.36. Prove that a finite integral domain D is a field.

B.37. Show that the only ideals in a field K are 0f g and K.

B.38. A complex number aþ bi where a, b are integers is called a Gaussian integer. Show that the set G
of Gaussian integers is an integral domain. Also show that the units in G are �1 and �i.
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B.39. Let D be an integral domain and let I be an ideal in D. Prove that the factor ring D=I is an integral
domain if and only if I is a prime ideal. (An ideal I is prime if ab 2 I implies a 2 I or b 2 I :)

B.40. Consider the integral domain D ¼ aþ b
ffiffiffiffiffi
13
p j a; b integers

� �
(see Example B.11). If

a ¼ aþ b
ffiffiffiffiffi
13
p

, we define N að Þ ¼ a2 
 13b2. Prove: (i) N abð Þ ¼ N að ÞN bð Þ; (ii) a is a unit if
and only if N að Þ ¼ �1; (iii) the units of D are �1; 18� 5

ffiffiffiffiffi
13
p

and 
 18� 5
ffiffiffiffiffi
13
p

; (iv) the
numbers 2; 3 
 ffiffiffiffiffi

13
p

and 
 3
 ffiffiffiffiffi
13
p

are irreducible.

Modules

B.41. Let M be an R-module and let A and B be submodules of M. Show that Aþ B and A \ B are also
submodules of M.

B.42. Let M be an R-module with submodule N. Show that the cosets uþ N : u 2 Mf g form an
R-module under coset addition and scalar multiplication defined by r uþ Nð Þ ¼ ruþ N . (This
module is denoted by M=N and is called the quotient module.)

B.43. Let M and M 0 be R-modules and let f : M ! M 0 be an R-homomorphism. Show that the set
K ¼ u 2 M : f uð Þ ¼ 0f g is a submodule of f. (The set K is called the kernel of f.)

B.44. Let M be an R-module and let E Mð Þ denote the set of all R-homomorphism of M into itself. Define
the appropriate operations of addition and multiplication in E Mð Þ so that E Mð Þ becomes a ring.
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Polynomials over a Field

C.1 Introduction

We will investigate polynomials over a field K and show that they have many properties that are
analogous to properties of the integers. These results play an important role in obtaining canonical forms
for a linear operator T on a vector space V over K.

C.2 Ring of Polynomials

Let K be a field. Formally, a polynomial of f over K is an infinite sequence of elements from K in which
all except a finite number of them are 0:

f ¼ . . . ; 0; an; . . . ; a1; a0ð Þ
(We write the sequence so that it extends to the left instead of to the right.) The entry ak is called the kth
coefficient of f. If n is the largest integer for which an 6¼ 0, then we say that the degree of f is n, written

deg f ¼ n

We also call an the leading coefficient of f, and if an ¼ 1 we call f a monic polynomial. On the other hand,
if every coefficient of f is 0 then f is called the zero polynomial, written f ¼ 0. The degree of the zero
polynomial is not defined.

Now if g is another polynomial over K, say

g ¼ . . . ; 0; bm; . . . ; b1; b0ð Þ
then the sum f þ g is the polynomial obtained by adding corresponding coefficients. That is, if m � n, then

f þ g ¼ . . . ; 0; an; . . . ; am þ bm; . . . ; a1 þ b1; a0 þ b0ð Þ
Furthermore, the product fg is the polynomial

fg ¼ . . . ; 0; anbm; . . . ; a1b0 þ a0b1; a0b0ð Þ
that is, the kth coefficient ck of fg is

ck ¼
Xk

t¼0

a1bk
1 ¼ a0bk þ a1bk
1 þ � � � þ akb0

The following theorem applies.

THEOREM C.1: The set P of polynomials over a field K under the above operations of addition and
multiplication forms a commutative ring with a unit element and with no zero
divisors—an integral domain. If f and g are nonzero polynomials in P, then
deg fgð Þ ¼ deg fð Þ deg gð Þ.
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Notation

We identify the scalar a0 2 K with the polynomial

a0 ¼ . . . ; 0; a0ð Þ
We also choose a symbol, say t, to denote the polynomial

t ¼ . . . ; 0; 1; 0ð Þ
We call the symbol t an indeterminant. Multiplying t with itself, we obtain

t2 ¼ . . . ; 0; 1; 0; 0ð Þ; t3 ¼ . . . ; 0; 1; 0; 0; 0ð Þ; . . .

Thus, the above polynomial f can be written uniquely in the usual form

f ¼ antn þ � � � þ ast þ a0

When the symbol t is selected as the indeterminant, the ring of polynomials over K is denoted by

K t½ �
and a polynomial f is frequently denoted by f tð Þ.

We also view the field K as a subset of K t½ � under the above identification. This is possible because the
operations of addition and multiplication of elements of K are preserved under this identification:

ð. . . ; 0; a0Þ þ ð. . . ; 0; b0Þ ¼ ð. . . ; 0; a0 þ b0Þ
ð. . . ; 0; a0Þ � ð. . . ; 0; b0Þ ¼ ð. . . ; 0; a0b0Þ

We remark that the nonzero elements of K are the units of the ring K t½ �.
We also remark that every nonzero polynomial is an associate of a unique monic polynomial. Hence, if

d and d0 are monic polynomials for which d divides d0 and d0 divides d, then d ¼ d0. (A polynomial g
divides a polynomial f if there is a polynomial h such that f ¼ hg:)

C.3 Divisibility

The following theorem formalizes the process known as ‘‘long division.’’

THEOREM C.2 (Division Algorithm): Let f and g be polynomials over a field K with g 6¼ 0. Then
there exist polynomials q and r such that

f ¼ qg þ r

where either r ¼ 0 or deg r < deg g.

Proof: If f ¼ 0 or if deg f < deg g, then we have the required representation

f ¼ 0g þ f

Now suppose deg f � deg g, say

f ¼ antn þ � � � þ a1t þ a0 and g ¼ bmtm þ � � � þ b1t þ b0

where an; bm 6¼ 0 and n � m. We form the polynomial

f1 ¼ f 
 an

bm

tn
mg ð1Þ

Then deg f1 < deg f . By induction, there exist polynomials q1 and r such that

f1 ¼ q1g þ r
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where either r ¼ 0 or deg r < deg g. Substituting this into (1) and solving for f,

f ¼ q1 þ
an

bm

tn
m

� �
g þ r

which is the desired representation.

THEOREM C.3: The ring K t½ � of polynomials over a field K is a principal ideal ring. If I is an ideal in
K t½ �, then there exists a unique monic polynomial d that generates I, such that d
divides every polynomial f 2 I .

Proof. Let d be a polynomial of lowest degree in I. Because we can multiply d by a nonzero scalar and
still remain in I, we can assume without loss in generality that d is a monic polynomial. Now suppose
f 2 I . By Theorem C.2 there exist polynomials q and r such that

f ¼ qd þ r where either r ¼ 0 or deg r < deg d

Now f ; d 2 I implies qd 2 I ; and hence, r ¼ f 
 qd 2 I . But d is a polynomial of lowest degree in I.
Accordingly, r ¼ 0 and f ¼ qd; that is, d divides f. It remains to show that d is unique. If d0 is another
monic polynomial that generates I, then d divides d0 and d0 divides d. This implies that d ¼ d0, because d
and d0 are monic. Thus, the theorem is proved.

THEOREM C.4: Let f and g be nonzero polynomials in K t½ �. Then there exists a unique monic
polynomial d such that
(i) d divides f and g; and (ii) d0 divides f and g, then d0 divides d.

DEFINITION: The above polynomial d is called the greatest common divisor of f and g. If d ¼ 1,
then f and g are said to be relatively prime.

Proof of Theorem C.4. The set I ¼ mf þ ng jm; n 2 K t½ �f g is an ideal. Let d be the monic polynomial
that generates I. Note f ; g 2 I ; hence, d divides f and g. Now suppose d0 divides f and g. Let J be the ideal
generated by d0. Then f ; g 2 J , and hence, I � J . Accordingly, d 2 J and so d0 divides d as claimed. It
remains to show that d is unique. If d1 is another (monic) greatest common divisor of f and g, then d
divides d1 and d1 divides d. This implies that d ¼ d1 because d and d1 are monic. Thus, the theorem is
proved.

COROLLARY C.5: Let d be the greatest common divisor of the polynomials f and g. Then there exist
polynomials m and n such that d ¼ mf þ ng. In particular, if f and g are relatively
prime, then there exist polynomials m and n such that mf þ ng ¼ 1.

The corollary follows directly from the fact that d generates the ideal

I ¼ mf þ ng jm; n 2 K t½ �f g

C.4 Factorization

A polynomial p 2 K t½ � of positive degree is said to be irreducible if p ¼ fg implies f or g is a scalar.

LEMMA C.6: Suppose p 2 K t½ � is irreducible. If p divides the product fg of polynomials f ; g 2 K t½ �,
then p divides f or p divides g. More generally, if p divides the product of n
polynomials f1 f2 . . . fn, then p divides one of them.

Proof. Suppose p divides fg but not f. Because p is irreducible, the polynomials f and p must then be
relatively prime. Thus, there exist polynomials m; n 2 K t½ � such that mf þ np ¼ 1. Multiplying this
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equation by g, we obtain mfg þ npg ¼ g. But p divides fg and so mfg, and p divides npg; hence, p divides
the sum g ¼ mfg þ npg.

Now suppose p divides f1 f2 � � � fn: If p divides f1, then we are through. If not, then by the above result p
divides the product f2 � � � fn: By induction on n, p divides one of the polynomials f2; . . . fn: Thus, the
lemma is proved.

THEOREM C.7: (Unique Factorization Theorem) Let f be a nonzero polynomial in K t½ �: Then f can
be written uniquely (except for order) as a product

f ¼ kp1p2 � � � pn

where k 2 K and the pi are monic irreducible polynomials in K t½ �:
Proof: We prove the existence of such a product first. If f is irreducible or if f 2 K , then such a product
clearly exists. On the other hand, suppose f ¼ gh where f and g are nonscalars. Then g and h have degrees
less than that of f. By induction, we can assume

g ¼ k1g1g2 � � � gr and h ¼ k2h1h2 � � � hs

where k1; k2 2 K and the gi and hj are monic irreducible polynomials. Accordingly,

f ¼ k1k2ð Þg1g2 � � � grk1h2 � � � hs

is our desired representation.
We next prove uniqueness (except for order) of such a product for f. Suppose

f ¼ kp1p2 � � � pn ¼ k0q1q2 � � � qm

where k; k0 2 K and the p1; . . . ; pn; q1; . . . ; qm are monic irreducible polynomials. Now p1 divides
k0q1 � � � qm: Because p1 is irreducible, it must divide one of the qi by the above lemma. Say p1 divides q1.
Because p1 and q1 are both irreducible and monic, p1 ¼ q1. Accordingly,

kp2 � � � pn ¼ k0q2 � � � qm

By induction, we have that n ¼ m and p2 ¼ q2; . . . ; pn ¼ qm for some rearrangement of the qi. We also
have that k ¼ k0. Thus, the theorem is proved.

If the field K is the complex field C, then we have the following result that is known as the
fundamental theorem of algebra; its proof lies beyond the scope of this text.

THEOREM C.8: (Fundamental Theorem of Algebra) Let f tð Þ be a nonzero polynomial over the
complex field C. Then f tð Þ can be written uniquely (except for order) as a product

f tð Þ ¼ k t 
 r2ð Þ t 
 r2ð Þ � � � t 
 rnð Þ
where k; ri 2 C—as a product of linear polynomials.

In the case of the real field R we have the following result.

THEOREM C.9: Let f tð Þ be a nonzero polynomial over the real field R. Then f tð Þ can be written
uniquely (except for order) as a product

f tð Þ ¼ kp1 tð Þp2 tð Þ � � � pm tð Þ
where k 2 R and the pi tð Þ are monic irreducible polynomials of degree one or two.
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Odds and Ends

D.1 Introduction

This appendix discusses various topics, such as equivalence relations, determinants and block matrices,
and the generalized MP (Moore–Penrose) inverse.

D.2 Relations and Equivalence Relations

A binary relation or simply relation R from a set A to a set B assigns to each ordered pair a; bð Þ 2 A� B
exactly one of the following statements:

(i) ‘‘a is related to b,’’ written a R b, (ii) ‘‘a is not related to b’’ written a R=b.
A relation from a set A to the same set A is called a relation on A.

Observe that any relation R from A to B uniquely defines a subset R̂ of A� B as follows:

R̂ ¼ a; bð Þja R bf g
Conversely, any subset R̂ of A� B defines a relation from A to B as follows:

a R b if and only if a; bð Þ 2 R

In view of the above correspondence between relations from A to B and subsets of A� B, we redefine a
relation from A to B as follows:

DEFINITION D.1: A relation R from A to B is a subset of A� B.

Equivalence Relations

Consider a nonempty set S. A relation R on S is called an equivalence relation if R is reflexive,
symmetric, and transitive; that is, if R satisfied the following three axioms:

[E1] (Reflexivity) Every a 2 A is related to itself. That is, for every a 2 A, a R a.

[E2] (Symmetry) If a is related to b, then b is related to a. That is, if a R b, then b R a.

[E3] (Transitivity) If a is related to b and b is related to c, then a is related to c. That is,

if a R b and b R c, then a R c:

The general idea behind an equivalence relation is that it is a classification of objects that are in some way
‘‘alike.’’ Clearly, the relation of equality is an equivalence relation. For this reason, one frequently uses ~
or 
 to denote an equivalence relation.

EXAMPLE D.1
(a) In Euclidean geometry, similarity of triangles is an equivalence relation. Specifically, suppose a; b; g are

triangles. Then (i) a is similar to itself. (ii). If a is similar to b, then b is similar to a. (iii) If a is similar to b and b
is similar to g, then a is similar to g.
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(b) The relation � of set inclusion is not an equivalence relation. It is reflexive and transitive, but it is not symmetric
because A � B does not imply B � A.

Equivalence Relations and Partitions

Let S be a nonempty set. Recall first that a partition P of S is a subdivision of S into nonempty,
nonoverlapping subsets; that is, a collection P ¼ fAjg of nonempty subsets of S such that (i) Each a 2 S
belong to one of the Aj, (ii) The sets fAjg are mutually disjoint.

The subsets in a partition P are called cells. Thus, each a 2 S belongs to exactly one of the cells. Also,
any element b 2 Aj is called a representative of the cell Aj, and a subset B of S is called a system of
representatives if B contains exactly one element in each of the cells in fAjg.

Now suppose R is an equivalence relation on the nonempty set S. For each a 2 S, the equivalence class
of a, denoted by [a], is the set of elements of S to which a is related:

a½ � ¼ x j a Rxf g:
The collection of equivalence classes, denoted by S=R, is called the quotient of S by R:

S=R ¼ a½ � j a 2 Sf g
The fundamental property of an equivalence relation and its quotient set is contained in the following
theorem:

THEOREM D.1: Let R be an equivalence relation on a nonempty set S. Then the quotient set S=R is a
partition of S.

EXAMPLE D.2 Let 
 be the relation on the set Z of integers defined by

x 
 y mod 5ð Þ
which reads ‘‘x is congruent to y modulus 5’’ and which means that the difference x
 y is divisible by 5.
Then 
 is an equivalence relation on Z.

Then there are exactly five equivalence classes in the quotient set Z= 
 as follows:

A0 ¼ . . . ; 
10; 
5; 0; 5; 10; . . .f g
A1 ¼ . . . ; 
9; 
4; 1; 6; 11; . . .f g
A2 ¼ . . . ; 
8; 
3; 2; 7; 12; . . .f g
A3 ¼ . . . ; 
7; 
2; 3; 8; 13; . . .f g
A4 ¼ . . . ; 
6; 
1; 4; 9; 14; . . .f g

Note that any integer x, which can be expressed uniquely in the form x ¼ 5qþ r where 0 � r < 5, is a
member of the equivalence class Ar where r is the remainder. As expected, the equivalence classes are
disjoint and their union is Z:

Z ¼ A0 [ A1 [ A2 [ A3 [ A4

This quotient set Z= 
, called the integers modulo 5, is denoted

Z=5Z or simplyZ5:

Usually one chooses 0; 1; 2; 3; 4f g or 
2; 
1; 0; 1; 2f g as a system of representatives of the equiva-
lence classes.

Analagously, for any positive integer m, there exists the congruence relation 
 defined by

x 
 y mod mð Þ
and the quotient set Z= 
, denoted by Z=mZ or simply Zm, is called the integers modulo m.
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D.3 Determinants and Block Matrices

Recall first:

THEOREM 8.12: Suppose M is an upper (lower) triangular block matrix with diagonal blocks

Aj; A2; . . . ; An: Then det Mð Þ ¼ det Aj


 �
det A2ð Þ . . . det Anð Þ:

Accordingly, if M ¼ A B
0 D

� �
where A is r � r and D is s� s. Then det Mð Þ ¼ det Að Þ det Dð Þ:

THEOREM D.2: Consider the block matrix M ¼ A B
C D

� �
where A is nonsingular, A is r � r and D

is s� s: Then det Mð Þ ¼ det Að Þ det D
 CA
1Bð Þ

Proof: Follows from the fact that M ¼ I 0
CA
1 I

� �
A B
0 D
 CA
1B

� �
and the above result.

D.4 Full Rank Factorization

A matrix B is said to have full row rank r if B has r rows that are linearly independent, and a matrix C is
said to have full column rank r if C has r columns that are linearly independent.

DEFINITION D.2: Let A be a m� n matrix of rank r. Then A is said to have the full rank factorization

A ¼ BC

where B has full-column rank r and C has full-row rank r.

THEOREM D.3: Every matrix A with rank r > 0 has a full rank factorization.

There are many full rank factorizations of a matrix A. Fig. D-1 gives an algorithm to find one such
factorization.

EXAMPLE D.3 Let A ¼
1 1 
1 2
2 2 
1 3

1 
1 2 
3

24 35where M ¼
1 1 0 1
0 0 1 
1
0 0 0 0

24 35 is the row cannonical form of A.
We set

B ¼
1 
1
2 
1

1 2

24 35 and C ¼ 1 1 0 1
0 0 1 
1

� �
Then A ¼ BC is a full rank factorization of A.

Algorithm D-1: The input is a matrix A of rank r > 0. The output is a full rank factorization of A.
Step 1. Find the row cannonical form M of A.
Step 2. Let B be the matrix whose columns are the columns of A corresponding to the columns of M

with pivots.
Step 3. Let C be the matrix whose rows are the nonzero rows of M.
Then A ¼ BC is a full rank factorization of A.

Figure D-1
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D.5 Generalized (Moore–Penrose) Inverse

Here we assume that the field of scalars is the complex field C where the matrix AH is the conjugate
transpose of a matrix A. [If A is a real matrix, then AH ¼ AT.]

DEFINITION D.3: Let A be an m� n matrix over C. A matrix, denoted by Aþ, is called the
pseudoinverse or Morre–Penrose inverse or MP-inverse of A if Aþ satisfies the
following four equations:

[MP1] AXA ¼ A; [MP3] AXð ÞH¼ AX ;

[MP2] XAX ¼ X ; [MP4] XAð ÞH¼ XA;

Clearly, Aþ is an n� m matrix. Also, Aþ ¼ A
1 if A is nonsingular.

LEMMA D.4: Aþ is unique (when it exists).

Proof. Suppose X and Y satisfy the four MP equations. Then

AY ¼ AYð ÞH¼ AXAYð ÞH¼ AYð ÞH AXð ÞH¼ AYAX ¼ AYAð ÞX ¼ AX

The first and fourth equations use [MP3], and the second and last equations use [MP1]. Similarly,
YA ¼ XA (which uses [MP4] and [MP1]). Then,

Y ¼ YAY ¼ YAð ÞY ¼ XAð ÞY ¼ X AYð Þ ¼ X AXð Þ ¼ X

where the first equation uses [MP2].

LEMMA D.5: Aþ exists for any matrix A.

Fig. D-2 gives an algorithm that finds an MP-inverse for any matrix A.

Combining the above two lemmas we obtain:

THEOREM D.6: Every matrix A over C has a unique Moore–Penrose matrix Aþ.

There are special cases when A has full-row rank or full-column rank.

THEOREM D.7: Let A be a matrix over C.
(a) If A has full column rank (columns are linearly independent), then

Aþ ¼ AHAð Þ
1
AH:

(b) If A has full row rank (rows are linearly independent), then Aþ ¼ AH AAHð Þ
1
:

THEOREM D.8: Let A be a matrix over C. Suppose A ¼ BC is a full rank factorization of A. Then

Aþ ¼ CþBþ ¼ CH CCH

 �
1

BHB

 �
1

BH

Moreover, AAþ ¼ BBþ and AþA ¼ CþC:

Algorithm D-2. Input is an m� n matrix A over C of rank r. Output is Aþ.

Step 1. Interchange rows and columns of A so that PAQ ¼ A11 A12

A21 A22

� �
where A11 is a nonsingular

r � r block. [Here P and Q are the products of elementary matrices corresponding to the
interchanges of the rows and columns.]

Step 2. Set B ¼ A11

A21

� �
and C ¼ Ir; A
1

11 A12

� �
where Ir is the r � r identity matrix.

Step 3. Set Aþ ¼ Q CH CCHð Þ
1
BHBð Þ
1

B11
h i

P:

Figure D-2
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EXAMPLE D.4 Consider the full rank factorization A ¼ BC in Example D.1; that is,

A ¼
1 1 
1 2

2 2 
1 3


1 
1 2 
3

24 35 ¼ 1 
1
2 
1

1 2

24 35 1 1 0 1

0 0 1 
1
� �

¼ BC

Then

CCH

 �
1¼ 1

5

2 1

1 3

� �
; C CCH

 �
1¼ 1

5

2 1

2 1

1 3
1 
2

2664
3775; BHB

 �
1¼ 1

11

6 5

5 6

� �
; B BHB

 �
1¼ 1

11

1 7 4


1 4 7

� �

Accordingly, the following is the Moore–Penrose inverse of A:

Aþ ¼ 1

55

1 18 15

1 18 15


2 19 25

3 
1 
10

2664
3775

D.6 Least-Square Solution

Consider a system AX ¼ B of linear equations. A least-square solution of AX ¼ B is the vector of
smallest Euclidean norm that minimizes AX 
 Bk k2: That vector is

X ¼ AþB

[In case A is invertible, so Aþ ¼ A
1, then X ¼ A
1B, which is the unique solution of the system.]

EXAMPLE D.5 Consider the following system AX ¼ B of linear equations:

xþ y
 zþ 2t ¼ 1

2xþ 2y
 zþ 3t ¼ 3


x
 yþ 2z
 3t ¼ 2

Then, using Example D.4,

A ¼
1 1 
1 2

2 2 
1 3


1 
1 2 
3

24 35; B ¼
1

3

2

24 35; Aþ ¼ 1

55

1 18 15

1 18 15


2 19 25

3 
1 
10

2664
3775

Accordingly,

X ¼ AþB ¼ 1=55ð Þ 85; 85; 105; 
20½ �T¼ 17=11; 17=11; 21=11; 
4=11½ �T

is the vector of smallest Euclidean norm which minimizes AX 
 Bk k2:

D.7 Properties of AAT and ATA

Let A be any m6 n matrix. Then ATA and AAT are both symmetric since

(ATA)T¼ATATT¼ATA and (AAT)T¼ATTAT¼AAT

One can also show that ATA and AAT have the same nonzero eigenvalues.
Recall [Theorem 9.14] that a symmetric matrix M is orthogonally diagonalizable, that is, there exists

an orthogonal matrix P and diagonal matrix D¼ [di] such that

P7 1MP¼D

where the columns of P are the eigenvectors of M and the di are the eigenvalues of M.
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In particular, the symmetric matrix M is called:

(i) positive definite if, for every nonzero u, <u, Mu>¼ uTMu>0

(ii) positive semidefinite if, for every nonzero u, <u, Mu>¼ uTMu � 0]

In such a case, the diagonal elements in P7 1MP¼D are: (i) positive, (ii) nonnegative.

ATA is positive definite if A has full column rank since Au 6¼ 0 when u 6¼ 0; so

<u, ATAu>¼ uTATAu¼<Au, Au> > 0

Similarly, AAT is positive definite if A has full row rank. since ATu 6¼ 0 when u 6¼ 0; so

<u, AATu>¼ uT AATu¼ uTATTAT¼<ATu, ATu> > 0

On the other hand, ATA and AAT are always both positive semidefinite.

D.8 Singular Value Decomposition

Let A be any m6 n matrix of rank r. Then there exists a factorization of A of the form

A¼U S VT

where U is an m-square orthogonal matrix, V is an n-square orthogonal matrix, and S¼ [sij] is an m6 n
generalized diagonal matrix, that is, sij¼ 0 for i 6¼ j. Such a factorization is called a singular value
decomposition (SVD) of A, and the diagonal entries si¼sii of S, usually listed in descending order, are
called the singular values of A.

THEOREM D.9: Every matrix A with rank r>0 has a singular value decomposition.

We indicate how the entries U, V and S in the SVD of A are obtained.
Recall AAT is symmetric and positive definite (or positive semidefinite). Accordingly, AAT is

orthogonally diagonalizable, that is, AAT¼ P7 1DP¼ PTDP where the columns of the orthogonal matrix
P are eigenvectors of AAT, and the entries of D are the eigenvalues of AAT and they are nonnegative.

Assuming A¼U S VT, we have

A AT¼U S VT (U S VT)T¼U S VT V S UT¼U S2 UT

Thus the columns of U in the SVD of A are the normalized eigenvectors of AAT and the entries si in
S are the square roots of the eigenvalues of AAT.

Similarly, assuming A¼U S VT, we have

ATA¼ (U S VT)T U S VT¼V SUT U S VT¼VS2VT

Thus the columns of V and the rows of VT are the normalized eigenvectors of ATA and the entries si in
S are the square roots of the eigenvalues of AAT (which are the same as the eigenvalues of ATA).

EXAMPLE D.6. We find the singular value decomposition (SVD) of A ¼ 4 4


3 3

� �
: Note

AAT ¼ 4 4


3 3

� �
4 
3
4 3

� �
¼ 32 0

0 18

� �
The eigenvalues are 32 and 18 with corresponding eigenvectors [1, 0]T and [0,1]T. Thus

U ¼ 1 0

0 1

� �
and S ¼

ffiffiffiffiffi
32
p

0

0
ffiffiffiffiffi
18
p

� �
¼

ffiffiffi
2
p 4 0

0 3

� �
Also

ATA ¼ 4 
3
4 3

� �
4 4


3 3

� �
¼ 25 7

7 25

� �
Hence D(t)¼ t27 50tþ 576¼ (t7 32)(t7 18). Thus, again, the eigenvalues are 32 and 18.
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The normalized corresponding eigenvectors are 1=
ffiffiffi
2
p

; 1=
ffiffiffi
2
p� �T

and 
1= ffiffiffi
2
p

; 1=
ffiffiffi
2
p� �T

: Thus

VT ¼ 1=
ffiffiffi
2
p

1=
ffiffiffi
2
p


1= ffiffiffi
2
p

1=
ffiffiffi
2
p

� �
¼ 1ffiffiffi

2
p 1 1


1 1

� �
As expected,

U S VT ¼ 1 0

0 1

� � ffiffiffi
2
p 4 0

0 3

� �
1ffiffiffi
2
p 1 1


1 1

� �
¼ 4 4


3 3

� �
¼ A
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A
Absolute value (complex), 12
Abelian group, 403
Adjoint, classical, 271
operator, 377, 384

Algebraic multiplicity, 298
Alternating mappings, 276, 360, 399
Angle between vectors, 6, 230
Annihilator, 330, 351, 354
Associate, 406
Associated homogeneous system, 83
Associative, 174, 403
Augmented matrix, 59

B
Back-substitution, 63, 65, 67
Basis, 82, 124, 139
change of, 199, 211
dual, 350, 352
orthogonal, 243
orthonormal, 243
second dual, 367
standard, 125
usual, 125

Basis-finding algorithm, 127
Bessel inequality, 252
Bijective mapping, 166
Bilinear form, 359, 396
alternating, 276
matrix representation of, 360
polar form of, 363
real symmetric, 363
symmetric, 361

Bilinear mapping, 359, 396
Block matrix, 39, 50
determinants, 417
Jordan, 344
square, 40

Bounded, 156

C
Cancellation law, 113
Canonical forms, 205, 325
Jordan, 329, 336
rational, 331
row, 74
triangular, 325

Casting-out algorithm, 128
Cauchy–Schwarz inequality, 5, 229, 240

Cayley–Hamilton theorem, 294, 308
Cells, 39, 415
Change of basis, 199, 211
Change-of-basis (transition) matrix, 199
Change-of-coordinate matrix, 221
Characteristic polynomial, 294, 305
value, 296

Classical adjoint, 271
Coefficient, 57, 58, 411
Fourier, 233, 244
matrix, 59

Cofactor, 269
Column, 27
matrix, 27
operations, 89
space, 120
vector, 3

Colsp(A), column space, 126
Commutative law, 403
group, 113

Commuting (diagram), 396
Companion matrix, 304
Complement, orthogonal, 242
Complementary minor, 273
Completing the square, 393
Complex:
conjugate, 13
inner product, 239
matrix, 38, 49
n-space, 13
numbers, 1, 11, 13
plane, 12

Complexity, 88
Components, 2
Composition of mappings, 165
Congruent matrices, 360
diagonalization, 61

Conjugate:
complex, 12
linearity, 239
matrix, 38
symmetric, 239

Consistent system, 59
Constant term, 57, 58
Convex set, 193
Coordinates, 2, 130
vector, 130

Coset, 182, 332, 403
Cramer’s rule, 272

422

INDEX



Cross product, 10
Curves, 8
Cyclic subspaces, 330, 342
group, 408

D
dij, Kronecker delta function, 33
Decomposable, 327
Decomposition:
direct-sum, 129
primary, 238

Degenerate, 360
bilinear form, 360
linear equations, 59

Dependence, linear, 133
Derivative, 168
Determinant, 63, 264, 267
computation of, 66, 270
linear operator, 275
order, 3, 266

Diagonal, 32
blocks, 40
matrix, 35, 47
quadratic form, 302

Diagonal (of a matrix), 10
Diagonalizable, 203, 292, 296
Diagonalization:
algorithm, 299
in inner product space, 382

Dimension of solution spaces, 82
Dimension of vector spaces, 82, 139
finite, 124
infinite, 124
subspaces, 126

Direct sum, 129, 327
decomposition, 327

Directed line segment, 7
Distance, 5, 241
Divides, 412
Division algorithm, 412
Domain, 164, 406
Dot product, 4
Dual:
basis, 350, 352
space, 349, 352

E
Echelon:
form, 65, 72
matrices, 70

Eigenline, 296
Eigenspace, 299
Eigenvalue, 296, 298, 312
Eigenvector, 296, 298, 312
Elementary divisors, 331
Elementary matrix, 84
Elementary operations, 61
column, 86
row, 72, 120

Elimination, Gaussian, 67
Empty set, ;, 112
Equal:
functions, 164
matrices, 27
vectors, 2

Equations (See Linear equations)
Equivalence:
classes, 416
matrix, 87
relation, 73, 415
row, 72

Equivalent systems, 61
Euclidean n-space, 5, 228
Exterior product, 401

F
Field of scalars, 11, 406
Finite dimension, 124
Form:
bilinear, 359
linear, 349
quadratic, 363

Forward elimination 63, 67, 73
Fourier coefficient, 81, 233
series, 233

Free variable, 65, 66
Full rank, 41
factorization, 417

Function, 154
space F(X ), 114

Functional, linear, 349
Fundamental Theorem of Algebra, 414

G
Gaussian elimination, 61, 67, 73
Gaussian integer, 409
Gauss–Jordan algorithm, 74
General solution, 58
Geometric multiplicity, 298
Gram–Schmidt orthogonalization, 235
Graph, 164
Greatest common divisor, 413
Group, 113, 403

H
Hermitian:
form, 364
matrix, 38, 49
quadratic form, 364

Hilbert space, 229
Homogeneous system, 58, 81
Homomorphism, 173, 404, 407
Hom(V, U ), 173
Hyperplane, 7, 358

I
i, imaginary, 12
Ideal, 405

Index 423



Identity:
mapping, 166, 168
matrix, 33

ijk notation, 9
Image, 164, 169, 170
Imaginary part, 12
Im F, image, 169
Im z, imaginary part, 12
Inclusion mapping, 190
Inconsistent systems, 59
Independence, linear, 133
Index, 30
Index of nilpotency, 328
Inertia, Law of, 364
Infinite dimension, 124
Infinity-norm, 241
Injective mapping, 166
Inner product, 4
complex, 239

Inner product spaces, 226
linear operators on, 377

Integral, 168
domain, 406

Invariance, 224
Invariant subspaces, 224, 326, 332
direct-sum, 327

Inverse image, 164
Inverse mapping, 164
Inverse matrix, 34, 46, 85
computing, 85

inversion, 267
Invertible:
matrices, 34, 46

Irreducible, 406
Isometry, 381
Isomorphic vector spaces, 169, 404

J
Jordan:
block, 304
canonical form, 329, 336

K
Ker F, kernel, 169
Kernel, 169, 170
Kronecker delta function dij, 33

L
l2-space, 229
Laplace expansion, 270
Law of inertia, 363
Leading:
coefficient, 60
nonzero element, 70
unknown, 60

Least square solution, 419
Legendre polynomial, 237
Length, 5, 227
Limits (summation), 30
Line, 8, 192

Linear:
combination, 3, 29, 60, 79, 115
dependence, 121
form, 349
functional, 349
independence, 121
span, 119

Linear equation, 57
Linear equations (system), 58
consistent, 59
echelon form, 65
triangular form, 64

Linear mapping (function), 164, 167
image, 164, 169
kernel, 169
nullity, 171
rank, 171

Linear operator:
adjoint, 377
characteristic polynomial, 304
determinant, 275
on inner product spaces, 377
invertible, 175
matrix representation, 195

Linear transformation (See linear mappings), 167
Located vectors, 7
LU decomposition, 87, 104

M
Mm,n, matrix vector space, 114
Mappings (maps), 164
bilinear, 359, 396
composition of, 165
linear, 167
matrix, 168

Matrices:
congruent, 360
equivalent, 87
similar, 203

Matrix, 27
augmented, 59
change-of-basis, 199
coefficient, 59
companion, 304
diagonal, 35
echelon, 65, 70
elementary, 84
equivalence, 87
Hermitian, 38, 49
identity, 33
invertible, 34
nonsingular, 34
normal, 38
orthogonal, 237
positive definite, 238
rank, 72, 87
space, Mm,n, 114
square root, 296
triangular, 36
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Matrix mapping, 165
Matrix multiplication, 30
Matrix representation, 195, 238, 360
adjoint operator, 377, 384
bilinear form, 359
change of basis, 199
linear mapping, 195

Metric space, 241
Minimal polynomial, 303, 305
Minkowski’s inequality, 5
Minor, 269, 273
principle, 273

Module, 407
Monic polynomial 303, 411
Moore–Penrose inverse, 418
Multilinearity, 276, 399
Multiplicity, 298
Multiplier, 67, 73, 87

N
n-linear, 276
n-space, 2
complex, 13
real, 2

Natural mapping, 351
New basis, 199
Nilpotent, 328, 336
Nonnegative semideflnite, 226
Nonsingular, 112
linear maps, 172
matrices, 34

Norm, 5, 227, 241
Normal, 7
matrix, 38
operator, 380, 383

Normalized, 227
Normalizing, 5, 227, 233
Normed vector space, 241
Nullity, 171
nullsp(A), 170
Null space, 170

O
Old basis, 199
One-norm, 241
One-to-one:
correspondence, 166
mapping, 166

Onto mapping (function), 166
Operators (See Linear operators)
Order, n:
determinant, 264
of a group, 408

Orthogonal, 4, 37, 80
basis, 231
complement, 231
matrix, 237
operator, 380
projection, 384
substitution, 302

Orthogonalization, Gram–Schmidt, 235
Orthogonally equivalent, 381
Orthonormal, 233
Outer product, 10

P
Parameter, 64
form, 65

Particular solution, 58
Partition, 416
Permutations, 8, 267
Perpendicular, 4
Pivot, 67, 71
row reduction, 94
variables, 65

Pivoting (row reduction), 94
Polar form, 363
Polynomial, 411
characteristic, 294, 305
minimum, 303
space, Pn(t), 114

Positive definite, 226
matrices, 238, 364
operators, 336, 382

Positive operators, 226
square root, 391

Primary decomposition theorem,
328

Prime ideal, 410
Principle ideal ring, 406
Principle minor, 273
Product:
exterior, 401
inner, 4
tensor, 396

Projections, 167, 234, 344, 384
orthogonal, 384

Proper value, 296
vector, 296

Pythagorean theorem, 233

Q
Q, rational numbers, 11
Quadratic form, 301, 315, 363
Quotient
group, 403
ring, 406
spaces, 332, 416

R
R, real numbers, 1, 12
Rn, real n-space, 2
Range, 164, 169
Rank, 72, 87, 126, 171, 364
Rational:
canonical form, 331
numbers, Q, 11

Real:
numbers, R, 1
part (complex number), 12
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Real symmetric bilinear form, 363
Reduce, 73
Relation, 415
Representatives, 416
Restriction mapping, 192
Right-handed system, 11
Right inverse, 189
Ring, 405
quotient, 406

Root, 293
Rotation, 169
Row, 27
canonical form, 72
equivalence, 72
operations, 72
rank, 72
reduce, 73
reduced echelon form, 73
space, 120

S
Sn, symmetric group, 267, 404
Scalar, 1, 12
matrix, 33
multiplication, 33
product, 27

Scaling factor, 296
Schwarz inequality, 5, 229, 240
(See Cauchy–Schwarz inequality)

Second dual space, 350
Self-adjoint operator, 380
Sign of permutation, 267
Signature, 364
Similar, 203, 224
Similarity transformation, 203
Singular, 172
Size (matrix), 27
Skew-adjoint operator, 380
Skew-Hermitian, 38
Skew-symmetric, 360
matrix, 36, 48

Solution, (linear equations), 57
zero, 121

Spatial vectors, 9
Span, 116
Spanning sets, 116
Spectral theorem, 383
Square:
matrix, 32, 44
system of linear equations, 58, 72

Square root of a matrix, 391
Standard:
basis, 125
form, 57, 399
inner product, 228

Subdiagonal, 304
Subgroup, 403
Subset, 112
Subspace, 117, 133
Sum of vector spaces, 129

Summation symbol, 29
Superdiagonal, 304
Surjective map, 166
Sylvester’s theorem, 364
Symmetric:
bilinear form, 361
matrices, 4, 36

Systems of linear equations, 58

T
Tangent vector, T(t), 9
Target set, 164
Tensor product, 396
Time complexity, 88
Top-down, 73
Trace, 33
Transformation (linear), 167
Transition matrix, 199
Transpose:
linear functional (dual space), 351
matrix, 32

Triangle inequality, 230
Triangular form, 64
Triangular matrix, 36, 47
block, 40

Triple product, 11
Two-norm, 241

U
Unique factorization domain, 406, 414
Unit vector, 5, 227
matrix, 33

Unitary, 38, 49, 380
Universal mapping principle (UMP), 396
Usual:
basis, 125
inner product, 228

V
Vandermonde determinant, 290
Variable, free, 65
Vector, 2
coordinates, 130
located, 7
product, 10
spatial, 9

Vector space, 112, 226
basis, 124
dimension, 124

Volume, 274

W
Wedge (exterior) product, 401

Z
Z, integers, 406
Zero:
mapping, 128, 168, 173
matrix, 27
polynomial, 411
solution, 121
vector, 2
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