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Preface

Introduction to Linear Algebra with Applications is an introductory text targeted to
second-year or advanced first-year undergraduate students. The organization of this
text is motivated by what our experience tells us are the essential concepts that students
should master in a one-semester undergraduate linear algebra course. The centerpiece
of our philosophy regarding the presentation of the material is that each topic should
be fully devel oped before the reader moves onto the next. In addition, there should be
a natural connection between topics. We take great care to meet both of these objec-
tives. This allows us to stay on task so that each topic can be covered with the depth
required before progression to the next logical one. As a result, the reader is prepared
for each new unit, and there is no need to repeat a concept in a subsequent chapter
when it is utilized.

Linear algebra is taken early in an undergraduate curriculum and yet offers the
opportunity to introduce the importance of abstraction, not only in mathematics, but in
many other areas where linear algebra is used. Our approach is to take advantage of this
opportunity by presenting abstract vector spaces as early as possible. Throughout the
text, we are mindful of the difficulties that students at this level have with abstraction
and introduce new concepts first through examples which gently illustrate the idea.
To motivate the definition of an abstract vector space, and the subtle concept of
linear independence, we use addition and scalar multiplication of vectors in Euclidean
space. We have strived to create a balance among computation, problem solving, and
abstraction. This approach equips students with the necessary skills and problem-
solving strategies in an abstract setting that allows for a greater understanding and
appreciation for the numerous applications of the subject.

Pedagogical Features

1. Linear systems, matrix algebra, and determinants. We have given a stream-
lined, but complete, discussion of solving linear systems, matrix algebra, determi-
nants, and their connection in Chap. 1. Computational techniques are introduced,
and a number of theorems are proved. In this way, students can hone their
problem-solving skills while beginning to develop a conceptual sense of the fun-
damental ideas of linear algebra. Determinants are no longer central in linear
algebra, and we believe that in a course at this level, only a few lectures should
be devoted to the topic. For this reason we have presented all the essentials on
determinants, including their connection to linear systems and matrix inverses,
in Chap. 1. This choice also enables us to use determinants as a theoretical tool
throughout the text whenever the need arises.
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. Vectors: Vectors are introduced in Chap. 1, providing students with a familiar

structure to work with as they start to explore the properties which are used later
to characterize abstract vector spaces.

. Linear independence: We have found that many students have difficulties with

linear combinations and the concept of linear independence. These ideas are fun-
damental to linear algebra and are essential to almost every topic after linear
systems. When students fail to grasp them, the full benefits of the course cannot
be realized. In Introduction to Linear Algebra with Applications we have devoted
Chap. 2 to a careful exposition of linear combinations and linear independence
in the context of Euclidean space. This serves several purposes. First, by placing
these concepts in a separate chapter their importance in linear algebra is high-
lighted. Second, an instructor using the text can give exclusive focus to these ideas
before applying them to other problems and situations. Third, many of the impor-
tant ramifications of linear combinations and linear independence are considered
in the familiar territory of Euclidean spaces.

. Euclidean spaces R": The Euclidean spaces and their algebraic properties are

introduced in Chap. 2 and are used as a model for the abstract vectors spaces of
Chap. 3. We have found that this approach works well for students with limited
exposure to abstraction at this level.

. Geometric representations. Whenever possible, we include figures with geomet-

ric representations and interpretations to illuminate the ideas being presented.

. New concepts: New concepts are almost always introduced first through concrete

examples. Formal definitions and theorems are then given to describe the situation
in general. Additional examples are also provided to further develop the new idea
and to explore it in greater depth.

. Trueffalse chapter tests: Each chapter ends with a true/false Chapter Test with

approximately 40 questions. These questions are designed to help the student
connect concepts and better understand the facts presented in the chapter.

. Rigor and intuition: The approach we have taken attempts to strike a balance

between presenting a rigorous development of linear algebra and building intu-
ition. For example, we have chosen to omit the proofs for theorems that are not
especially enlightening or that contain excessive computations. When a proof is
not present, we include a motivating discussion describing the importance and
use of the result and, if possible, the idea behind a proof.

. Abstract vector spaces: We have positioned abstract vector spaces as a central

topic within Introduction to Linear Algebra with Applications by placing their
introduction as early as possible in Chap. 3. We do this to ensure that abstract
vector spaces receive the appropriate emphasis. In a typical undergraduate math-
ematics curriculum, a course on linear algebra is the first time that students are
exposed to this level of abstraction. However, Euclidean spaces still play a central
role in our approach because of their familiarity and since they are so widely
used. At the end of this chapter, we include a section on differential equations
which underscores the need for the abstract theory of vector spaces.
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10. Section fact summaries. Each section ends with a summary of the important facts
and techniques established in the section. They are written, whenever possible,
using nontechnical language and mostly without notation. These summaries are
not meant to give a recapitulation of the details and formulas of the section;
rather they are designed to give an overview of the main ideas of the section.
Our intention is to help students to make connections between the concepts of
the section as they survey the topic from a greater vantage point.

Applications

Over the last few decades the applications of linear algebra have mushroomed, increas-
ing not only in their numbers, but also in the diversity of fields to which they apply.
Much of this growth is fueled by the power of modern computers and the availability
of computer algebra systems used to carry out computations for problems involving
large matrices. This impressive power has made linear algebra more relevant than
ever. Recently, a consortium of mathematics educators has placed its importance, rel-
ative to applications, second only to calculus. Increasingly, universities are offering
courses in linear algebra that are specifically geared toward its applications. Whether
the intended audience is engineering, economics, science, or mathematics students,
the abstract theory is essential to understanding how linear algebra is applied.

In this text our introduction to the applications of linear algebra begins in Sec. 1.8
where we show how linear systems can be used to solve problems related to chemistry,
engineering, economics, nutrition, and urban planning. However, many types of appli-
cations involve the more sophisticated concepts we develop in the text. These appli-
cations require the theoretical notions beyond the basic ideas of Chap. 1, and are
presented at the end of a chapter as soon as the required background material is com-
pleted. Naturally, we have had to limit the number of applications considered. It is our
hope that the topics we have chosen will interest the reader and lead to further inquiry.

Specifically, in Sec. 4.6, we discuss the role of linear algebra in computer graph-
ics. An introduction to the connection between differential equations and linear algebra
is given in Secs. 3.5 and 5.3. Markov chains and quadratic forms are examined in
Secs. 5.4 and 6.7, respectively. Section 6.5 focuses on the problem of finding approx-
imate solutions to inconsistent linear systems. One of the most familiar applications
here is the problem of finding the equation of a line that best fits a set of data points.
Finally, in Sec. 6.8 we consider the singular value decomposition of a matrix and its
application to data compression.

Technology

Computations are an integral part of any introductory course in mathematics and
certainly in linear algebra. To gain mastery of the techniques, we encourage the student
to solve as many problems as possible by hand. That said, we also encourage the
student to make appropriate use of the available technologies designed to facilitate,
or to completely carry out, some of the more tedious computations. For example, it
is quite reasonable to use a computer algebra system, such as MAPLE or MATLAB,
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to row-reduce a large matrix. Our approach in Introduction to Linear Algebra with
Applications is to assume that some form of technology will be used, but leave the
choice to the individual instructor and student. We do not think that it is necessary to
include discussions or exercises that use particular software. Note that this text can be
used with or without technology. The degree to which it is used is left to the discretion
of the instructor. From our own experience, we have found that Scientific Notebook, ™
which offers a front end for IATEX along with menu access to the computer algebra
system MuPad, allows the student to gain experience using technology to carry out
computations while learning to write clear mathematics. Another option is to use IATEX
for writing mathematics and a computer algebra system to perform computations.
Another aspect of technology in linear algebra has to do with the accuracy and
efficiency of computations. Some applications, such as those related to Internet search
engines, involve very large matrices which require extensive processing. Moreover, the
accuracy of the results can be affected by computer roundoff error. For example, using
the characteristic equation to find the eigenvalues of a large matrix is not feasible.
Overcoming problems of this kind is extremely important. The field of study known as
numerical linear algebra is an area of vibrant research for both software engineers and
applied mathematicians who are concerned with developing practical solutions. In our
text, the fundamental concepts of linear algebra are introduced using simple examples.
However, students should be made aware of the computational difficulties that arise
when extending these ideas beyond the small matrices used in the illustrations.

Other Features

1. Chapter openers: The opening remarks for each chapter describe an application
that is directly related to the material in the chapter. These provide additional
motivation and emphasize the relevance of the material that is about to be covered.

2. Writing style: The writing style is clear, engaging, and easy to follow. Impor-
tant new concepts are first introduced with examples to help develop the reader’s
intuition. We limit the use of jargon and provide explanations that are as reader-
friendly as possible. Every explanation is crafted with the student in mind. Intro-
duction to Linear Algebra with Applications is specifically designed to be a
readable text from which a student can learn the fundamental concepts in linear
algebra.

3. Exercise sets: Exercise sets are organized with routine exercises at the beginning
and the more difficult problems toward the end. There is a mix of computational
and theoretical exercises with some requiring proof. The early portion of each
exercise set tests the student’s ability to apply the basic concepts. These exercises
are primarily computational, and their solutions follow from the worked examples
in the section. The latter portion of each exercise set extends the concepts and
techniques by asking the student to construct complete arguments.

4. Review exercise sets. The review exercise sets are organized as sample exams
with 10 exercises. These exercises tend to have multiple parts, which connect
the various techniques and concepts presented in the text. At least one problem
in each of these sets presents a new idea in the context of the material of the
chapter.
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5. Length: The length of the text reflects the fact that it is specifically designed for
a one-semester course in linear algebra at the undergraduate level.

6. Appendix: The appendix contains background material on the algebra of sets,
functions, techniques of proof, and mathematical induction. With this feature, the
instructor is able to cover, as needed, topics that are typically included in a Bridge
Course to higher mathematics.

Course Outline

The topics we have chosen for Introduction to Linear Algebra with Applications
closely follow those commonly covered in a first introductory course. The order in
which we present these topics reflects our approach and preferences for emphasis.
Nevertheless, we have written the text to be flexible, allowing for some permutations
of the order of topics without any loss of consistency. In Chap. 1 we present all the
basic material on linear systems, matrix algebra, determinants, elementary matrices,
and the LU decomposition. Chap. 2 is entirely devoted to a careful exposition of lin-
ear combinations and linear independence in R". We have found that many students
have difficulty with these essential concepts. The addition of this chapter gives us
the opportunity to develop all the important ideas in a familiar setting. As mentioned
earlier, to emphasize the importance of abstract vector spaces, we have positioned
their introduction as early as possible in Chap. 3. Also, in Chap. 3 is a discussion
of subspaces, bases, and coordinates. Linear transformations between vector spaces
are the subject of Chap. 4. We give descriptions of the null space and range of a
linear transformation at the beginning of the chapter, and later we show that every
finite dimensional vector space, of dimension n, isisomorphic to R". Also, in Chap. 4
we introduce the four fundamental subspaces of a matrix and discuss the action of an
m x n matrix on a vector in R". Chap. 5 is concerned with eigenvalues and eigenvec-
tors. An abundance of examples are given to illustrate the techniques of computing
eigenvalues and finding the corresponding eigenvectors. We discuss the algebraic and
geometric multiplicities of eigenvalues and give criteria for when a square matrix is
diagonalizable. In Chap. 6, using R" as a model, we show how a geometry can be
defined on a vector space by means of an inner product. We also give a description
of the Gram-Schmidt process used to find an orthonormal basis for an inner product
space and present material on orthogonal complements. At the end of this chapter we
discuss the singular value decomposition of an m x n matrix. The Appendix contains
a brief summary of some topics found in a Bridge Course to higher mathematics.
Here we include material on the algebra of sets, functions, techniques of proof, and
mathematical induction. Application sections are placed at the end of chapters as soon
as the requisite background material has been covered.

Supplements

1. Instructor solutions manual: This manual contains detailed solutions to all
exercises.

2. Student solutions manual: This manual contains detailed solutions to odd-
numbered exercises.
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3. Text website www.mhhe.com/defranza: This website accompanies the text and
is available for both students and their instructors. Students will be able to access
self-assessment quizzes and extra examples for each section and end of chapter
cumulative quizzes. In addition to these assets, instructors will be able to access
additional quizzes, sample exams, the end of chapter true/false tests, and the
Instructor’s Solutions Manual.
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To The Student

You are probably taking this course early in your undergraduate studies after two or
three semesters of calculus, and most likely in your second year. Like calculus, linear
algebra is a subject with elegant theory and many diverse applications. However,
in this course you will be exposed to abstraction at a much higher level. To help
with this transition, some colleges and universities offer a Bridge Course to Higher
Mathematics. If you have not already taken such a course, this may likely be the
first mathematics course where you will be expected to read and understand proofs of
theorems, provide proofs of results as part of the exercise sets, and apply the concepts
presented. All this is in the context of a specific body of knowledge. If you approach
this task with an open mind and a willingness to read the text, some parts perhaps
more than once, it will be an exciting and rewarding experience. Whether you are
taking this course as part of a mathematics major or because linear algebra is applied
in your specific area of study, a clear understanding of the theory is essential for
applying the concepts of linear algebra to mathematics or other fields of science. The
solved examples and exercises in the text are designed to prepare you for the types
of problems you can expect to see in this course and other more advanced courses in
mathematics. The organization of the material is based on our philosophy that each
topic should be fully devel oped before readers move onto the next. The image of a tree
on the front cover of the text is a metaphor for this learning strategy. It is particularly
applicable to the study of mathematics. The trunk of the tree represents the material
that forms the basis for everything that comes afterward. In our text, this material is
contained in Chaps. 1 through 4. All other branches of the tree, representing more
advanced topics and applications, extend from the foundational material of the trunk or
from the ancillary material of the intervening branches. We have specifically designed
our text so that you can read it and learn the concepts of linear algebra in a sequential
and thorough manner. If you remain committed to learning this beautiful subject, the
rewards will be significant in other courses you may take, and in your professional
career. Good luck!

Jim DeFranza
jdefranza@stlawu.edu

Dan Gagliardi
gagliardid@canton.edu
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I n the process of photosynthesis solar energy
is converted into forms that are used by living
organisms. The chemical reaction that occurs in
the leaves of plants converts carbon dioxide and
water to carbohydrates with the release of oxygen.
The chemical equation of the reaction takes the
form

aCO;, + bH,O — Oy 4+ dCgH 1,06

where a, b, c, and d are some positive whole
numbers. The law of conservation of mass states
that the total mass of all substances present before
and after a chemical reaction remains the same.
That is, atoms are neither created nor destroyed Photograph by Jan Smith/RF

in a chemical reaction, so chemical equations must be balanced. To balance the pho-
tosynthesis reaction equation, the same number of carbon atoms must appear on both
sides of the equation, so

a = 6d
The same number of oxygen atoms must appear on both sides, so

2a +b = 2c+ 6d
and the same number of hydrogen atoms must appear on both sides, so
2b =12d



Chapter 1  Systems of Linear Equations and Matrices

1.1

This gives us the system of three linear equations in four variables

a — 6d=0
20+ b—2c— 6d=0
2b —12d =0

Any positive integers a, b, ¢, and d that satisfy all three equations are a solution to
this system which balances the chemical equation. For example, a =6, b = 6, ¢ = 6,
and d = 1 balances the equation.

Many diverse applications are modeled by systems of equations. Systems of
equations are also important in mathematics and in particular in linear algebra. In
this chapter we develop systematic methods for solving systems of linear equations.

Systems of Linear Equations

As the introductory example illustrates, many naturally occurring processes are
modeled using more than one equation and can require many equations in many vari-
ables. For another example, models of the economy contain thousands of equations
and thousands of variables. To develop this idea, consider the set of equations

2x — y=2
xX+2y=6
which is a system of two equations in the common variables x and y. A solution to

this system consists of values for x and y that simultaneously satisfy each equation.
In this example we proceed by solving the first equation for y, so that

y=2x -2
To find the solution, substitute y = 2x — 2 into the second equation to obtain
x+22x—2)=6 and solving for x gives x=2

Substituting x = 2 back into the first equation yields 2(2) — y = 2, so that y = 2.
Therefore the unique solution to the system is x =2, y = 2. Since both of these
equations represent straight lines, a solution exists provided that the lines intersect.
These lines intersect at the unique point (2, 2), as shown in Fig. 1(a). A system of
equations is consistent if there is at least one solution to the system. If there are no
solutions, the system is inconsistent. In the case of systems of two linear equations
with two variables, there are three possibilities:

1. The two lines have different slopes and hence intersect at a unique point, as shown
in Fig. 1(a).

2. The two lines are identical (one equation is a nonzero multiple of the other), so
there are infinitely many solutions, as shown in Fig. 1(b).
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1.1 Systems of Linear Equations 3

Figure 1

3. The two lines are parallel (have the same slope) and do not intersect, so the
system is inconsistent, as shown in Fig. 1(c).

When we are dealing with many variables, the standard method of representing
linear equations is to affix subscripts to coefficients and variables. A linear equation
in the n variables x1, x, ..., x, is an equation of the form

aix1 +axxo + - -+ apx, =b

To represent a system of m linear equations in n variables, two subscripts are used for
each coefficient. The first subscript indicates the equation number while the second
specifies the term of the equation.

System of Linear Equations A system of m linear equationsin n variables,
or a linear system, is a collection of equations of the form

ayxy + appxy + -+ -+ ayx, = by
a1 xy + axpxy + -+ axyx, = by
az1xy + agxxy + -+ -+ az,x, = b3

Am1X1 + ApaXxg + - -+ Apup Xy = by,

This is also referred to as an m x n linear system.

For example, the collection of equations

—2x1+3x2+x3 — xpg=-2
X1 +x3 —dxs= 1
3x1— x2 — x4= 3

is a linear system of three equations in four variables, or a 3 x 4 linear system.

A solution to a linear system with n variables is an ordered sequence
(s1, 82, ..., 8,) such that each equation is satisfied for x; = s1, x2 = 52, ..., X, = 5.
The general solution or solution set is the set of all possible solutions.
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DEFINITION 2

The Elimination Method

The elimination method, also called Gaussian elimination, is an algorithm used to
solve linear systems. To describe this algorithm, we first introduce the triangular form
of a linear system.

An m x n linear system is in triangular form provided that the coefficients
a;; = 0 whenever i > j. In this case we refer to the linear system as a triangular
system. Two examples of triangular systems are

X1 —2x2+ xz3=-1 X1+Xx2— x3— x4=2
xp —3xz3= 5 and Xp— xz3—2x4=1
x3= 2 2x3— x4=3

When a linear system is in triangular form, then the solution set can be obtained
using a technique called back substitution. To illustrate this technique, consider the
linear system given by

X1 —2x2+ xz3=-1
X2 — 3)C3 = 5
X3 = 2

From the last equation we see that x3 = 2. Substituting this into the second equation,
we obtain x; — 3(2) = 5, so x, = 11. Finally, using these values in the first equation,
we have x; — 2(11) +2 = —1, so x; = 19. The solution is also written as (19, 11, 2).

Equivalent Linear Systems Two linear systems are equivalent if they have
the same solutions

For example, the system

x1—2x2+ xz3=-1
2x1 — 3)C2 — X3 = 3
X1 —2xp+2x3= 1

has the unique solution x; = 19, x, = 11, and x3 = 2, so the linear systems

X1 —2x2+ xz3=-1 x1—2x2+ xz3=-1
xp—3x3= 5 and 2x7 —3xp— x3= 3
x3= 2 x1—2x2+2x3= 1

are equivalent.

The next theorem gives three operations that transform a linear system into an
equivalent system, and together they can be used to convert any linear system to an
equivalent system in triangular form.



THEOREM 1

1.1 Systems of Linear Equations

Let
aixy + apxy +-- -+ aypx, = by

ax X1 + axxy + -+ az,x, = by
az1x1 + azxy + - -+ az,x, = b3

A1 X1+ Qp2X2 + - - -+ QGup Xy = bm
be a linear system. Performing any one of the following operations on the linear
system produces an equivalent linear system.
1. Interchanging any two equations.
2. Multiplying any equation by a nonzero constant.
3. Adding a multiple of one equation to another.
Proof Interchanging any two equations does not change the solution of the linear

system and therefore yields an equivalent system. If equation i is multiplied by a
constant ¢ # 0, then equation i of the new system is

caj1x1 + cajpxo + - -+ + cajpx, = cb;

Let (s1, 52, ..., s,) be a solution to the original system. Since
aj151 + ajpsp + - - -+ ajps, = b, then caj1s1 + cajpsy + -+ - + capps, = cb;
Hence (s1,s2,...,s,) is a solution of the new linear system. Consequently, the

systems are equivalent.

For part (3) of the theorem, consider the new system obtained by adding ¢ times
equation i to equation j of the original system. Thus, equation j of the new system
becomes

(cajr +aji)xy + (cajp + aj2)x2 + - - - + (cayy +aju)x, = cb; +b;
or equivalently,

c(airxy + aizx2 + -+ + ainxy) + (@jix1 + ajoxz + - - + ajpxn) = cb; + b;

Now let (s1, s2, ..., s,) be a solution for the original system. Then
aj151 + ais2 + -+ - + aipSy = b; and aj1s1+ajso+ -+ ajus, =b;j
Therefore,

c(@i1s1 + @jas2 + -+ + @insn) + (aj151 +ajos2 + -+ ajusy) = cb; + b

so that (s1, s2,...,s,) is a solution of the modified system and the systems are
equivalent.
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Solution

Solution

Use the elimination method to solve the linear system.

x+y=1
—x+y=1

Adding the first equation to the second gives the equivalent system

x+ y=1
{ 2y =2
From the second equation, we have y = 1. Using back substitution gives x = 0.
The graphs of both systems are shown in Fig. 2. Notice that the solution is the same
in both, but that adding the first equation to the second rotates the line —x +y =1
about the point of intersection.

AY
x+y=1s8r  —XFty=1
-+ 7’
7
- 7’
7
0// y:_']_
7
R R
-5 // 1 5 X
// T
7/
, 1
—51
(b)

Figure 2

Converting a linear system to triangular form often requires many steps. Moreover,
the operations used to convert one linear system to another are not unique and may
not be apparent on inspection. To articulate this process, the notation, for example,

(=2)-E1+ E3 — E3

will mean add —2 times equation 1 to equation 3, and replace equation 3 with the
result. The notation E; <> E; will be used to indicate that equation i and equation j
are interchanged.

Solve the linear system.
x+y+ z= 4
—x—y+ z=-2
2x —y+2z= 2

To convert the system to an equivalent triangular system, we first eliminate the
variable x in the second and third equations to obtain
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x+y+ z= 4 Ei+ Ey— Ey x+y+z= 4
XY 2=72 R +Es>E = 2
2x —y+2z= 2 177 —3y =6

Interchanging the second and third equations gives the triangular linear system

x+ y+ z= 4 x+ y+ z= 4
2 = 2 E, < E3 — — 3y =-—6
—3y —_6 27 = 2

Using back substitution, we have z =1, y =2, and x =4 — y — z = 1. There-
fore, the system is consistent with the unique solution (1, 2, 1).

Recall from solid geometry that the graph of an equation of the form
ax + by + cz = d is a plane in three-dimensional space. Hence, the unique solution
to the linear system of Example 2 is the point of intersection of three planes, as shown
in Fig. 3(a). For another perspective on this, shown in Fig. 3(b) are the lines of the
pairwise intersections of the three planes. These lines intersect at a point that is the

solution to the 3 x 3 linear system.
h

1,2,1)

~J
7

(® (b)
Figure 3

Similar to the 2 x 2 case, the geometry of Euclidean space helps us better understand
the possibilities for the general solution of a linear system of three equations in three
variables. In particular, the linear system can have a unique solution if the three planes
all intersect at a point, as illustrated by Example 2. Alternatively, a 3 x 3 system can
have infinitely many solutions if

1. The three planes are all the same.
2. The three planes intersect in a line (like the pages of a book).
3. Two of the planes are the same with a third plane intersecting them in a line.
For example, the linear system given by
—y+z=0
y =0
z=0
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Solution

represents three planes whose intersection is the x axis. That is, z = 0 is the xy plane,
y =0 is the xz plane, and y = z is the plane that cuts through the x axis at a 45°
angle.

Finally, there are two cases in which a 3 x 3 linear system has no solutions. First,
the linear system has no solutions if at least one of the planes is parallel to, but not
the same as, the others. Certainly, when all three planes are parallel, the system has
no solutions, as illustrated by the linear system

Also, a 3 x 3 linear system has no solutions, if the lines of the pairwise intersections
of the planes are parallel, but not the same, as shown in Fig. 4.

From the previous discussion we see that a 3 x 3 linear system, like a 2 x 2 linear
system, has no solutions, has a unique solution, or has infinitely many solutions. We
will see in Sec. 1.4 that this is the case for linear systems of any size.

In Example 3 we consider a linear system with four variables. Of course the
geometric reasoning above cannot be applied to the new situation directly, but provides
the motivation for understanding the many possibilities for the solutions to linear
systems with several variables.

Solve the linear system.

dx1 — 8xy — 3x3 +2x4 =13
3x1 —4xp— x3—3x4= 5
2x1 —4xp —2x3+2x4= 6

Since every term of the third equation can be divided evenly by 2, we multiply the
third equation by % After we do so, the coefficient of x; is 1. We then interchange
the first and third equations, obtaining

4x1 — 8xp) — 3x3+2x4 =13
3X1—4)C2— X3—3X4= 5
2x1 —4xy —2x3+2x4= 6

dx1 — 8xp — 3x3 + 2x4 =13
3x1—4x2— )C3—3)C4= 5
X1 —2xp— x3+ xz= 3

%E3—> E3 —

x1—2x;— x3+ x4= 3
3)C1—4)C2— )C3—3X4= 5
4x1 — 8xp — 3x3 +2x4 =13

Ei < E3 —>

Next using the operations —3E1 + E» — E» and —4E1 + E3 — E3, We obtain
the linear system
X1 —2x2— x3+ xg= 3
2xp + 2x3 — 6x4 = —4
X3 — ZX4 =
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which is an equivalent system in triangular form. Using back substitution, the gen-
eral solution is
x3=2x4+1 X =x4 — 3 X1 =3x4 — 2

with x4 free to assume any real number. It is common in this case to replace x,
with the parameter ¢. The general solution can now be written as

S={Br—2,t—3,2t+1,1) |t € R}

and is called a one-parameter family of solutions. The reader can check that
x1=3t—2,x=1t—3,x3=2t+1, and x4 = ¢ is a solution for any ¢ by substi-
tuting these values in the original equations. A particular solution can be obtained
by letting # be a specific value. For example, if # = 0, then a particular solution is
(-2,-3,1,0).

9

In Example 3, the variable x4 can assume any real number, giving infinitely many
solutions for the linear system. In this case we call x4 a free variable. When a linear
system has infinitely many solutions, there can be more than one free variable. In this
case, the solution set is an r-parameter family of solutions where r is equal to the

number of free variables.

Solve the linear system.
X1 — xZ—Z)C3—2)C4—2)C5= 3
3x1 — 2x9 — 2x3 — 2x4 — 2x5=—1
—3x1+2x24+ x34+ x4— x5=-1

After performing the operations E3 + E, — Ej3 followed by E, — 3E; — E», we
have the equivalent system

xl—x2—2x3—2x4—2)C5= 3
X2 + 4x3 + 4xg + dxs = — 10
— X3 — )C4—3)C5=— 2

The variables x4 and x5 are both free variables, so to write the solution, let x4 = s
and x5 = r. From the third equation, we have

x3=2—x4—3x5=2—5 — 3t
Substitution into the second equation gives

x2=—10—4x3—4X4—4x5
=—-10—4Q2 —5s—3t) —4s — 4¢
=—18+ 8¢t
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Finally, substitution into the first equation gives

x1 =3+ x2 + 2x3 + 2x4 + 2x5
=34+ (—18+8)+2(2—5—3t)+ 25 + 2t
=—-11+44¢
The two-parameter solution set is therefore given by

S={(—11+4r,-18+8t,2 —s — 3¢t,5,1) | 5, € R}

Particular solutions for s =¢=0 and s =0, =1 are (—11,-18,2,0,0) and
(=7,-10,—1,0, 1), respectively.

m Solve the linear system.

X1— X2+ 2x3=5
2x1+ x2 =y
x1+8x;— x3=3
—X1 —5X2 . 12x3=4

Solution To convert the linear system to an equivalent triangular system, we will eliminate
the first terms in equations 2 through 4, and then the second terms in equations
3 and 4, and then finally the third term in the fourth equation. This is accomplished
by using the following operations.

2)61:r x2+ 2x3ig — 2E 4 Ey— Ey x1—3sz_r ixsi_g
48— o3 —htEB-oB o 9 3rg— 2
ME E1+ E4— E4 .
—x1—5x2—12x3=4 —6x2—10x3= 9
X1 — X2+ 2x3= 5
-3E, + E3; — E3 . 3x; — 4dxz= -8
2E;, + E; — E4 g = 22
—18X3= —7
X1— Xp+2x3= 5
3xp —4x3= -8
2E3+ E4 — E4 — L
0 =-37

The last equation of the final system is an impossibility, so the original linear system
is inconsistent and has no solution.

In the previous examples the algorithm for converting a linear system to triangular
form is based on using a leading variable in an equation to eliminate the same variable
in each equation below it. This process can always be used to convert any linear system
to triangular form.
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Figure 5

1.1 Systems of Linear Equations

Find the equation of the parabola that passes through the points (—1, 1), (2, —2),
and (3, 1). Find the vertex of the parabola.

The general form of a parabola is given by y = ax? + bx + ¢. Conditions on a, b,
and ¢ are imposed by substituting the given points into this equation. This gives

l=a(-1)2+b(-1)+c= a— b+c
—2=a)? +b(2) +c=da+2b+c
1=aB)? +bB) +c=9%+3b+c
From these conditions we obtain the linear system
a— b+c= 1
da+2b+c=-2
9a+3b+c= 1

First, with a as the leading variable, we use row operations to eliminate a from
equations 2 and 3. In particular, we have
a— b+c= 1 a— b+ c= 1
ba+2b+c=—2 Nt | - 6b—3c=—6
9a+3b+c= 1 T I 12b —8c=—8

Next, with b as the leading variable we, eliminate » from equation 3, so that

a— b+ c= 1 a— b+ c= 1
6b —3c=—6 —2E; + E3 — E3 — 6b —3c=—6
12 — 8c=-8 —2c= 4

Now, using back substitution on the last system gives c = —2,b = —2, and a = 1.
Thus, the parabola we seek is

y=x2-2x-2
Completing the square gives the parabola in standard form
y=@x-17°>-3

with vertex (1, —3), as shown in Fig. 5.

Fact Summary

1. A m x n linear system has a unique solution, infinitely many solutions, or
no solutions.

2. Interchanging any two equations in a linear system does not alter the set of
solutions.

3. Multiplying any equation in a linear system by a nonzero constant does not
alter the set of solutions.

11
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4. Replacing an equation in a linear system with the sum of the equation and a
scalar multiple of another equation does not alter the set of solutions.

5. Every linear system can be reduced to an equivalent triangular linear
system.

Exercise Set 1.1 B

1. Consider the linear system Perform the operations —E1 + E2 — E» and
—2E1 + E3 — Ej3, and write the new equivalent
Xp— Xp—2x3= 3 system. Solve the linear system.

—x1+2x2+3x3= 1 In Exercises 518, solve the linear system using
2x1 — 2xp — 2x3 = =2 the elimination method.

Perform the operations E; + E, — E» and

—2E1 + E3 — E3, and write the new equivalent 5 { 2x +3y=-2

system. Solve the linear system. B =0

2. Consider the linear system

2)61—2)(2—)63:—3
X1 —3x2 +x3=-2
X1 — 2x2 = 2

Perform the operations E; <> Eg,

—2E1+ Ey) —» E», —E1 + E3 — E3, Ey <> E3,

and —4E, + E3 — E3, and write the new

equivalent system. Solve the linear system. 8.

3. Consider the linear system

X1 +3x3=2 9. {
x1+x2 +4x4=3
2x1 +x3+8x4=3
X1+ x2 4+ x3+6x4 =2 3x—5y= 1
10. { 4B 1
Perform the operations —E1 + E» — Eo, 3Y 8
—2E1+ E3 — E3, —E1+ E4 — E4, —E> +
E4s — E4, and —E3 + E4 — Eg4, and write the
new equivalent system. Solve the linear system. 11. ¢ — x—3y+ z=-3
X—=2y+ z=-2
4. Consider the linear system

x+3y+ z= 2
—2x+2y—4z=-1
— y+3z= 1

X1 + x3 =-2
X1+ x2 + 4x3 =-1 12.
2x1 +2x3+x4=-1



13.
3x+2y+3z——2

—x+ y+4z=-1
14. ¢ 3x— y+2z= 2
2x —2y—8z= 2

x1+4xz+3JC3—0

15 x1 — dxp + 3x3 =

3
3
—2x1 + x2 =2

16. 3x1 —xp+2x3=1

2)(2 —2X3 — )C4——3

17 2x1 + x2+ x3—2x4=-3

2x1 + 2xp — x3 =1
18. { — X2 +3x4=2

In Exercises 19-22, solve for x, y, and z in terms of
a, b, and c.

10. {_2x+ y=a

—3x+2y=>b
2x+3y=a
20. { x+ y=b>
3x+ y+3z=a
21 ¢ —x — z=">b
—Xx + 2y =c

—3x+2y+ z=a
22. x— y— z=b
x— y—2z=c

In Exercises 23-28, give restrictions on a, b, and ¢
such that the linear system is consistent.

x—2y=a

23. {—2x+4y=2
—x+3y=a

2x —6y=3
xX—2y=a
25{ —x+2y=>b
{ 6x —3y=a

26. —2x+ y=b

1.1 Systems of Linear Equations

x—2y+4z=a
27. { 2x+ y— z=0»b
3x— y+3z=c¢

xX— y+2z=a
28. { 2x+4y—3z=0>
4x+2y+ z=c

In Exercises 29—-32, determine the value of a that

makes the system inconsistent.

x4+ y=-2
29. {2x+ay= 3
2x— y=4
30. {ax+3y=2

x— y=2
st {3x—3y:a

2x— y=a
32. {6x—3y=a

In Exercises 33-36, find an equation in the form

13

y = ax? + bx + ¢ for the parabola that passes through

the three points. Find the vertex of the parabola.

33. (0,0.25), (1, —1.75), (-1, 4.25)
34. (0,2), (-3, -1), (0.5,0.75)

35. (0.5, —3.25), (1, 2), (2.3, 2.91)
36. (0, —2875), (1, —5675), (3, 5525)
37. Find the point where the three lines

—x+y=1 —6x+5y =3, and 12x + 5y = 39

intersect. Sketch the lines.

38. Find the point where the four lines
2x+y=0x+y=-1,3x+y=1,and
4x 4+ y = 2 intersect. Sketch the lines.

39. Give an example of a 2 x 2 linear system that

a. Has a unique solution
b. Has infinitely many solutions
c. Is inconsistent

40. Verify that if ad — bc # 0, then the system of

equations
ax +by=x;
{ cx +dy=x2
has a unique solution.
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41. Consider the system

43. Determine the values of k such that the linear
system

X1 —Xx2+3x3— xu=1 9x+ky= 9
X2 — X3+ 2x4=2 kx+ y=-3
a. Describe the solution set where the variables x3 has
and x4 are free. a. No solutions
b. Describe the solution set where the variables x; b. Infinitely many solutions

and x4 are free.

42. Consider the system

c. A unique solution

44, Determine the values of k such that the linear

system
Xp—x2+x3— x4+ xs= 1 kx+ y+ z=0
X2 — x4— xs=-1 x+ky+ z=0
x3—2x4+3x5= 2 x+ y+kz=0
has

a. Describe the solution set where the variables x4

and x5 are free.

a. A unique solution

b. Describe the solution set where the variables x3 b. A one-parameter family of solutions

and x5 are free.

1.2

DEFINITION 1

c. A two-parameter family of solutions

Matrices and Elementary Row Operations

In Sec. 1.1 we saw that converting a linear system to an equivalent triangular system
provides an algorithm for solving the linear system. The algorithm can be streamlined
by introducing matrices to represent linear systems.

Matrix An m x n matrix is an array of numbers with m rows and n columns.

For example, the array of numbers

2 3 -1 4
31 0 -2
-2 4 1 3

is a 3 x 4 matrix.

When solving a linear system by the elimination method, only the coefficients of
the variables and the constants on the right-hand side are needed to find the solution.
The variables are placeholders. Utilizing the structure of a matrix, we can record the
coefficients and the constants by using the columns as placeholders for the variables.
For example, the coefficients and constants of the linear system

—4x1 4 2x7 —3x= 11
2x1 — Xxp—4x3+2x4=— 3
3)62 — X4 = 0

—2x1 + xz2= 4
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can be recorded in matrix form as

-4 2 0 3|11
2 -1 -4 2|-3
0O 3 0 -1, O

-2 0 0 1 4

This matrix is called the augmented matrix of the linear system. Notice that for an
m x n linear system the augmented matrix is m x (n + 1). The augmented matrix
with the last column deleted

-4 2 0 -3
2 -1 -4 2
0 3 0 -1

-2 0 0 1

is called the coefficient matrix. Notice that we always use a 0 to record any missing
terms.

The method of elimination on a linear system is equivalent to performing similar
operations on the rows of the corresponding augmented matrix. The relationship is
illustrated below:

Linear system Corresponding augmented matrix

x+y—z= 1 1 1 -1 1
2x—y+ z=-1 2 -1 1|-1
—x—y+3z= 2 -1 -1 3] 2

Using the operations —2E1 + E; — E; | Using the operations —2R; + R, — R;
and E1 + E3 — E3, we obtain the equiv- | and R + R3 — R3, we obtain the equiv-

alent triangular system alent augmented matrix
x4+ y—z= 1 1 1 -1 1
—3y+3z=-3 0 -3 3]-3
2:= 3 0 0 2 3

The notation used to describe the operations on an augmented matrix is similar
to the notation we introduced for equations. In the example above,

—2R1+ Ry — Ry

means replace row 2 with —2 times row 1 plus row 2. Analogous to the triangular
form of a linear system, a matrix is in triangular form provided that the first nonzero
entry for each row of the matrix is to the right of the first nonzero entry in the row
above it.

The next theorem is a restatement of Theorem 1 of Sec. 1.1, in terms of operations
on the rows of an augmented matrix.
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THEOREM 2 Any one of the following operations performed on the augmented matrix, corre-
sponding to a linear system, produces an augmented matrix corresponding to an
equivalent linear system.

1. Interchanging any two rows.
2. Multiplying any row by a nonzero constant.
3. Adding a multiple of one row to another.

Solving Linear Systems with Augmented Matrices

The operations in Theorem 2 are called row operations. An m x n matrix A is called
row equivalent to an m x n matrix B if B can be obtained from A by a sequence of
row operations.

The following steps summarize a process for solving a linear system.

Write the augmented matrix of the linear system.

Use row operations to reduce the augmented matrix to triangular form.

Interpret the final matrix as a linear system (which is equivalent to the original).
Use back substitution to write the solution.

A wDdpE

Example 1 illustrates how we can carry out steps 3 and 4.

m Given the augmented matrix, find the solution of the corresponding linear system.

1 0 0]1 1 0 0 0|5 1 2 1 -1|1
a|0 1 02 b.|0 1 -1 01 c|]0 3 -1 0]1
0 0 13 00 0 13 00 0 00

Solution  a. Reading directly from the augmented matrix, we have x3 = 3, x, = 2, and
x1 = 1. So the system is consistent and has a unique solution.

b. In this case the solution to the linear system is x4 =3, x, =1+ x3,
and x; =5. So the variable x3 is free, and the general solution is
S={05,1+113)|te R}L

c. The augmented matrix is equivalent to the linear system

X1+ 2x+x3—x4=1
3x2 — X3 =1
Using back substitution, we have

1 i B
xz=§(1+x3) and x1=1—2x2—x3+x4=§—§x3+x4
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So the variables x3 and x4 are free, and the two-parameter solution set is given by

s=L(2_> 18 o\ srer
1 \37 2

Write the augmented matrix and solve the linear system.

x— 6y—4z=-5
2x —10y — 9z =—4
— x4+ 6y+52z= 3

To solve this system, we write the augmented matrix

1 6 —4|-5
2  -10 -9|-4
-1 6 5| 3

where we have shaded the entries to eliminate. Using the procedure described above,
the augmented matrix is reduced to triangular form as follows:
1 -6 —4]-5 1 -6 —4|-5
2 10 —9| -4 —221122322 o 2 -1 &
-1 6 5| 3 I . 0 0 1|-2

The equivalent triangular linear system is
x—6y—4z=-5

2y— z= 6
z2=—2

which has the solution x = -1,y =2, and z = —2.

Echelon Form of a Matrix
In Example 2, the final augmented matrix

1 —6 —4|-5
0 2 -1| 6
0 0 1]-2

is in row echelon form. The general structure of a matrix in row echelon form is
shown in Fig. 1. The height of each step is one row, and the first nonzero term in a
row, denoted in Fig. 1 by *, is to the right of the first nonzero term in the previous
row. All the terms below the stairs are 0.
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Figure 1

Although, the height of each step in Fig. 1 is one row, a step may extend over
several columns. The leading nonzero term in each row is called a pivot element. The
matrix is in reduced row echelon form if, in addition, each pivot is a 1 and all other
entries in this column are 0. For example, the reduced row echelon form of the matrix

1 -6 -4 -5
0 2 -1 6
0 0 1 -2

is given by
1 00 -1
010 2
0 01 -2

Transforming a matrix in row echelon form to reduced row echelon form in effect
incorporates back substitution as row operations on the matrix. If we read from
the last matrix above, the solution to the corresponding linear system is, as before,
x=-1,y=2,and z = -2.

Here are three additional matrices that are in reduced row echelon form

1oo 1] [10001 ri 0 4
010 2 00 1 0 0 01 -1 2
0 0 1 4 000 1 0 0 0 0 0
and two that are not in reduced row echelon form
1 3 2 1 1 -2 10
01 -5 6 0 0 2 1
01 4 1 0 0 0 3

In general, for any m x n matrix in reduced row echelon form, the pivot entries
correspond to dependent variables, and the nonpivot entries correspond to independent
or free variables. We summarize the previous discussion on row echelon form in the
next definition.
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DEFINITION 2 Echelon Form An m x n matrix is in row echelon form if

1. Every row with all 0 entries is below every row with nonzero entries.

2. If rows 1,2,...,k are the rows with nonzero entries and if the leading
nonzero entry (pivot) in row i occurs in column ¢;, for 1,2,...,k, then
c1<cp<:--+ <.

The matrix is in reduced row echelon form if, in addition,

3. The first nonzero entry of each row is a 1.

4. Each column that contains a pivot has all other entries 0.

The process of transforming a matrix to reduced row echelon form is called
Gauss-Jordan elimination.

m Solve the linear system by transforming the augmented matrix to reduced row

echelon form.
xX1— xp2—2x3+ x4= 0

2x1 — xp —3x3+2x4=-—6
—x1+2xp+ x3+3x4= 2
X1+ x— x3+2x= 1
Solution The augmented matrix of the linear system is

1 -1 -2 1 0
20 1 =SEN28 =0
-1 2 1 3 2
1 1 -1 2 1

To transform the matrix into reduced row echelon form, we first use the leading 1
in row 1 as a pivot to eliminate the terms in column 1 of rows 2, 3, and 4. To do
this, we use the three row operations

—2R1+ Ry > Ry

Ri+ R3 — R3
—R1+ R4 — Ry
in succession, transforming the matrix
1 -1 -2 1| 0 1 -1 -2 1, 0
2 -1 -3 2| -6 o 0 1 1 0|-6
-1 2 1 3| 2 0 1 -1 4| 2
1 1 -1 2 1 0 2 1 1| 1

For the second step we use the leftmost 1 in row 2 as the pivot and eliminate
the term in column 2 above the pivot, and the two terms below the pivot. The
required row operations are

Ry + Ri > Ry
—Ro + R3 —> R3
—2R> + Ry — Ry
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reducing the matrix

1 -1 -2 1| O 1 0 -1 1|-6
0 1 1 0|-6 o 01 1 0| -6
0 1 -1 4 2 00 -2 4| 8
0o 2 11 1 0 0 -1 1| 13

Notice that each entry in row 3 is evenly divisible by 2. Therefore, a leading 1 in
row 3 is obtained using the operation —%Rg — R3, which results in the matrix

10 -1 1|-6
01 1 0|6
00 1 —-2|-4
00 -1 1] 13

Now, by using the leading 1 in row 3 as a pivot, the operations

R34+ Ry — Rq

—R3+ R, — R

R34+ Ry — Ry

row-reduce the matrix

1 0 -1 1] -6 1 0 0 —-1]|-10
01 1 O0]-6 o 010 2| =2
0 0 1 —-2| -4 0 01 —2| -4
0 0 -1 1| 13 0 00 -1 9

Using the operation —Rs — R4, we change the signs of the entries in row 4 to
obtain the matrix

1 0 0 —-1|-10

010 2| -2

001 -2| -4

000 1| -9

Finally, using the leading 1 in row 4 as the pivot, we eliminate the terms above it
in column 4. Specifically, the operations
R4+ R1 — Ry
—2R4+ R, — Ry
2R4 + R3 — R3

applied to the last matrix give

1 0 0 0]-19
0 1 00 16
0 01 0f-22
0 0 0 1| -9

which is in reduced row echelon form.
The solution can now be read directly from the reduced matrix, giving us

x1 =-—19 x2 =16 X3 = —22 and x4 = —9.
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m Solve the linear system.

Solution

Solution

3x1— X0+ x3+2x4=-2
X1+2x2— x3+ xa= 1
— x1—3x2 +2x3 —4x4=—6

The linear system in matrix form is
3 -1 1 2|-=2
1 2 -1 1| 1
-1 -3 2 —-4|-6

which can be reduced to
1 2 -1 1 1
© i =i 3 5

00 1 -2|-10

Notice that the system has infinitely many solutions, since from the last row we
see that the variable x4 is a free variable. We can reduce the matrix further, but the
solution can easily be found from the echelon form by back substitution, giving us

20
x3 = —10+ ?)M

20 11
xXp=54+x3—3x4 =5+ (—10+?x4) —3x4=-5+ ?x4

X1=1—2xz+X3—X4=1—§JC4

Letting x4 be the arbitrary parameter ¢, we see the general solution is

5¢ 11« 201
= == = —, -1 — R
S {( 3 5+3, O+3,t>te }

21

Example 5 gives an illustration of a reduced matrix for an inconsistent linear

system.

Solve the linear system.

x+ y+ z=4
3x— y— z=2
x+3y+3z=8

To solve this system, we reduce the augmented matrix to triangular form. The
following steps describe the process.

1 1 14 L 1 P 4
3 —1) S 0 -4 —4|-10
1 3 3|8 e E 0o 2 2 4
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Figure 2

Solution

1 1 1 4

Ry<R3 — | 0O 2 2 4
0 -4 —4|-10

1 1 1 47
IRR>R — |0 1 1 2
0 —4 —4|-10 |

11 1] 47

4R+ R3—> Ry — | 0 1 1| 2
00 0|-2|

The third row of the last matrix corresponds to the equation 0 = —2. As this
system has no solution, the system is inconsistent. This can also be seen from the
fact that the three planes do not have a common intersection, as shown in Fig.2.

In Example 5, each entry in the last row of the reduced coefficient matrix is 0,
but the constant term is nonzero and the linear system is inconsistent. The reduced
augmented matrix for a consistent linear system can have a row of zeros. However, in
this case the term in the last column of this row must also be zero. Example 6 gives
an illustration.

Determine when the augmented matrix represents a consistent linear system.

1 0 2|a
2 1 5|5
1 -1 1]|¢

The operation —2R1 + R, — R» followed by —R; + R3 — R3 and finally followed
by R, + R3 — Rj3 reduces the augmented matrix to

1 0 2 a
01 1 b—2a
0 0 O|b+c—23a

Hence, the corresponding linear system is consistent provided that b + ¢ — 3a = 0.
That is, the system is consistent for all a, b, and ¢ such that the point (a, b, ¢) lies
on the plane » + ¢ — 3a = 0. Notice also that when the system is consistent, the
third row will contain all zeros and the variable x3 is a free variable.

Shown in the following list is an outline that summarizes the process for trans-
forming a matrix to its equivalent reduced row echelon form.

1. If necessary, interchange rows so that the leading nonzero entry of row 1 is the
leftmost nonzero entry of the matrix. Then divide each entry of row 1 by the
leading entry.
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2. Eliminate all other nonzero terms in this leading column.
3. Repeat the first two steps, starting with row 2. Note that the leading entry may

not be in column 2.

4. Continue in this way, making sure that the leading entry of each row is a 1 with

zeros elsewhere in that column.

5. The leading 1 in any row should be to the right of a leading 1 in the row above it.
6. All rows of zeros are placed at the bottom of the matrix.

We have implicitly assumed in our discussion that every matrix is row equivalent
to exactly one matrix in reduced row echelon form. It is an important fact that we

will state here as a theorem without proof.

THEOREM 3  The reduced row echelon form of every matrix is unique.

Fact Summary

1. Altering an augmented matrix by interchanging two rows, or multiplying a
row by a nonzero constant, or replacing a row with the sum of the same
row and a scalar multiple of another row does not alter the set of solutions

of the corresponding linear system.

2. If an augmented matrix is row-reduced to triangular form, the coefficient
matrix has a row of zeros, and the corresponding augmented term is not

zero, then the linear system has no solutions.

3. Every matrix has a unique reduced row echelon form.

4. If the augmented matrix of an n x n linear system is row-reduced to
triangular form and the coefficient matrix has no rows of zeros, then the

linear system has a unique solution.

5. If the augmented matrix of an n x n linear system is row-reduced to
triangular form, the coefficient matrix has rows of zeros, and each
corresponding augmented term is 0, then the linear system has infinitely

many solutions.

Exercise Set 1.2

In Exercises 1-8, write the linear system 2x —2y=1
as an augmented matrix. Do not solve the 2 3x =1
system.
2x —z=4
l{_Zx;Sy:_g 3¢ x+4y+z=2
T Y= 4x+ y—z=1
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—3x+ y+ z=2
—4z=0
—4x+2y—-3z=1

2x1 —X3=4

g

> { x1+dxg + x5 =2
{
|

X1+ xp—4dxz= 1

6. x1 —4xp +2x3=—2

4
4
2x1 +4xy +2x3+ 2x4 = —2
dxy —2xp) —3x3 —2x4= 2

x1+3x2+3x3 —3x4=—-4

—4x1+2xp —2x3 —4x4= 4

3x1 —3x3+4x4=-3
8
dxy — 3x3+ 2x4=-3

In Exercises 9—-20, write the solution of the linear
system corresponding to the reduced augmented

matrix.
[1 0 0] -1
910 1 0| 1
|00 1| O
(1.0 0] 2
0. |0 1 0] 0
2
0 0 1|-2
1 0 2]-3
1. |0 1 —1] 2
|00 0| O
[1 0 —3|4
12./0 1 3|3
|00 o0f0
(1 -2 0] -3
3. |0 0 1| 2
|0 0 0| O
(1 5 5] -1
4. |0 0 0| O
0 00| O

10 0]0

15. 10 1 00

|0 0 01 |
(1.0 0[0 ]
6. |0 0 10

|0 0 01 |
(1 0 -2 53
Ylo 1 1 2‘2}
(1 3 -3 0|1
18'_00 01‘4}
(1.0 0 =3] 1]
9. /0 1 0 -1 7
(00 1 2|-1 |
(10 2 0]-1]
2. [0 1 -3 0] 1
(00 0 1] & |

In Exercises 21-28, determine whether the matrices

are in reduced row echelon form.

(1.0 2
21. 013]

(1.2 0
22.001]

[y
N
w

=
N
o

24,

o
o
N

25.

o
o
[y

-2

=
o
&
o

26.

o
[EEN
[EEN
(S

-1
27.

o
= O O
O - O
o o~

N

-1
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In Exercises 29-36, find the reduced row echelon

O O -

o R R

or o
TS IS

form of the matrix.

2 3
29.__21]

3 2
30._33]

T3 3 1]
3. | 3 -1 0
1 12
0 2 1
2 |1 -3 -3
1 2 -3
(41 4
33'_34—3]
4 2 -1
¥l 2 3 o
f 2 2 -1
35 | 0 3 3
1 4 2
4 3 4
6 | -4 2 1
1 31

In Exercises 37—-48, write the linear system as an

augmented matrix. Convert the augmented matrix to
reduced row echelon form, and find the solution of the

linear system.

x+ y=1
37. {4x+3y:2

—3x+ y=1
38'{ 4x +2y=0

3x — 3y

30. dx — y—3z

—2x — 2y

Wik O WIN

—2
—4

—4

40.

41.

42.

45,

46.

47.

48.
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g
|
|
|
|
|
|
|

—4z=1
4x 4+3y—2z=0
+2z=2
x+2y+ z=1

2x+3y+2z=0
x+ y+ z=2

3x —2z=-3
—2x+ z=-2
— 7= 2

3x1 + 2xp +3x3=—-3
X1+ 2x — xz3=-2

—X1 +3x3+x4 =
3x3+ x4 =
2)(3 — X4 = -2

2x1 + 3x9 —
2)(1 2x2

2
2

—3x1 — x2+3x3+3x4=-3
X1— X2+ X3+ xg4=
—3x14+3xp) — x3+2x4 =

3x1 —3x2 +x3+3x4=-3

X1+ xp—x3—2x4= 3

4X1

2x2

+ x4= 0

—3x14+2x) —x3 —2x4 =2

X1 — X2

—3x4=3

Adx1 —3xo+x3— x4=1

3
1

25

49. The augmented matrix of a linear system has the

form
1 2 -1
2 3 =2
-1 -1 1

solutions?

a. Determine the values of a, b, and ¢ for which
the linear system is consistent.

b. Determine the values of a, b, and ¢ for which
the linear system is inconsistent.

¢. When it is consistent, does the linear system
have a unique solution or infinitely many
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d. Give a specific consistent linear system and 51. The augmented matrix of a linear system has the
find one particular solution. form
-2 3 1 a
11 -1 b
50. The augmented matrix of a linear system has the 05 -1 ¢
form a. Determine the values of a, b, and ¢ for which
the linear system is consistent.
ax y 1 . .
2% (a-1y 1 b. Determine the values of a, b, and ¢ for which
the linear system is inconsistent.
a. Determine the values of a for which the linear c. When it is consistent, does the linear system
system is consistent. have a unique solution or infinitely many
b. When it is consistent, does the linear system solutions?
have a unique solution or infinitely many d. Give a specific consistent linear system and
solutions? find one particular solution.
c. Give a specific consistent linear system and 52. Give examples to describe all 2 x 2 reduced row
find one particular solution. echelon matrices.

1.3

Matrix Algebra

Mathematics deals with abstractions that are based on natural concepts in concrete
settings. For example, we accept the use of numbers and all the algebraic properties
that go with them. Numbers can be added and multiplied, and they have properties
such as the distributive and associative properties. In some ways matrices can be
treated as numbers. For example, we can define addition and multiplication so that
algebra can be performed with matrices. This extends the application of matrices
beyond just a means for representing a linear system.

Let A be an m x n matrix. Then each entry of A can be uniquely specified by
using the row and column indices of its location, as shown in Fig. 1.

Column j
\
L N (!
Row i — [ ¢ A ) =A
aml -+ dmj - dmn
Figure 1
For example, if
-2 1 4
A= 5 7 11

2 3 22
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then
al] = -2 aip = 1 a3 = 4
az; = 5 any = 7 ar3 = 11
a3 = 2 azy = 3 as3z = 22

A vector is an n x 1 matrix. The entries of a vector are called its components.
For a given matrix A, it is convenient to refer to its row vectors and its column
vectors. For example, let

1 2 -1
A=13 0 1
4 -1 2
Then the column vectors of A are
1 2 -1
3 0 and 1
4 -1 2

while the row vectors of A, written vertically, are

1 3 4
2 0 and -1
-1 1 2

Two m x n matrices A and B are equal if they have the same number of rows
and columns and their corresponding entries are equal. Thus, A = B if and only if
ajj = b;j, forl <i <mand1 < j <n.Addition and scalar multiplication of matrices
are also defined componentwise.

Addition and Scalar Multiplication If A and B are two m x n matrices,
then the sum of the matrices A + B is the m x n matrix with the ij term given by
ajj + b;j. The scalar product of the matrix A with the real number ¢, denoted by
cA, is the m x n matrix with the ij term given by ca;;.

Perform the operations on the matrices

2 0 1 -2 3 -1
A= 4 3 -1 and B = 3 5 6
-3 6 5 4 2 1
a.A+B b. 2A — 3B
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Solution

THEOREM 4

a. We add the two matrices by adding their corresponding entries, so that

2 0 1 s o
A+B= 4 3 -1 |+ 3 5 6
| -3 6 5 4 2 1
[ 24+(-2) 043 1+ (-1
= 443 3+5 -—-1+6
| —3+4 642 5+1
[0 3 0
=|7 8 5
|1 8 6

b. To evaluate this expression, we first multiply each entry of the matrix A by 2
and each entry of the matrix B by —3. Then we add the resulting matrices.
This gives

2 0 1 -2 3 -1
2A+(-3B)=2| 4 3 -1 |+(-3| 3 5 6
36 5 4 2 1|
[ 4 0 2 6 -9 3]
=| 8 6 -2 |+| -9 -15 -18
| -6 12 10 12 -6 -3 |
[ 10 -9 5
=| -1 -9 -20
| 18 6 7

In Example 1(a) reversing the order of the addition of the matrices gives the
same result. That is, A+ B = B+ A. This is so because addition of real numbers
is commutative. This result holds in general, giving us that matrix addition is also a
commutative operation. Some other familiar properties that hold for real numbers also
hold for matrices and scalars. These properties are given in Theorem 4.

Properties of Matrix Addition and Scalar Multiplication Let A, B, and

C be m x n matrices and ¢ and d be real numbers.

A+B=B+A

A+(B+C)=(A+B)+C

c(A+B)=cA+cB

(c+d)A=cA+dA

c(dA) = (cd)A

The m x n matrix with all zero entries, denoted by O, is such that A +0 =

0+A=A.

7. For any matrix A, the matrix — A, whose components are the negative of each
component of A, is such that A + (-A) = (—-A) + A =0.

© o~ wbdPE
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Proof In each case it is sufficient to show that the column vectors of the two
matrices agree. We will prove property 2 and leave the others as exercises.

(2) Since the matrices A, B, and C have the same size, the sums (A + B) + C
and A + (B + C) are defined and also have the same size. Let A;, B;, and C;
denote the ith column vector of A, B, and C, respectively. Then

ai by 1
(Ai+Bi)+C; = + +
Qi by Cmi
[ ay + by c1 (ay; + by) + cy;
= : + = :
L dmi + bmi Cmi (@mi ~+ bmi) + Cmi

Since the components are real numbers, where the associative property of addition
holds, we have

(a1 + by) + cy
(A; +B)+C; :

L @mi + bmi) + Cmi |
[ a1 + (b1 + c1)

= : =A+B;+C)
L ami + (Dyi + i) |

As this holds for every column vector, the matrices (A + B) + C and A + (B + C)
are equal, and we have (A+ B)+C = A+ (B+ C).

Matrix Multiplication

29

We have defined matrix addition and a scalar multiplication, and we observed that
these operations satisfy many of the analogous properties for real numbers. We have
not yet considered the product of two matrices. Matrix multiplication is more difficult

to define and is developed from the dot product of two vectors.

Dot Product of Vectors Given two vectors

ux V1

u v2
u= and V=

Uy Uy

the dot product is defined by

n
U - V=uivy +ugvy+---+uyv, = E U;v;
i=1
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Observe that the dot product of two vectors is a scalar. For example,

2 -5
-3 . 1| =@ (=5 + (=3)1) + (-1)(4) = —-17
-1 4

Now to motivate the concept and need for matrix multiplication we first introduce
the operation of multiplying a vector by a matrix. As an illustration let

(3 4] o [3]

The product of B and v, denoted by Bv, is a vector, in this case with two components.
The first component of Bv is the dot product of the first row vector of B with v,
while the second component is the dot product of the second row vector of B with v,

so that
-2
1

; } to the vector

| L L[] _[ @O+ DE
“l2 13T comtae)

Using this operation, the matrix B transforms the vector v = {

Bv = _i fFA= { _é 1 ] is another matrix, then the product of A and Bv
is given by

sn=| 5 3] [ Y=

The question then arises, is there a single matrix which can be used to transform

the original vector [ . ] to [ 4 ]? To answer this question, let

3 1
Vz[x} A:[an ay and B— b1 by
y az ap by1 b2
The product of B and v is
b11x + b1oy
Bv =
{ bax + by

Now, the product of A and Bv is
[ ain aw bi1x + bioy
A(BvV) =
(BY) | an ax ] { ba1x + b2y }

_ [ a11(b11x + b12y) + a12(ba1x + baay)
| a21(buax + b12y) + az(baix + b2y)

[ (a11b11 + a12b21)x + (a11b12 + a12b2)y ]
| (az1b11 + azbr1)x + (azib1z + azbaz)y

_ [ anbn +anby  anbi + azby x
| azbin +axnba  axnbiz + axnbx y
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Thus, we see that A(BV) is the product of the matrix

aiibyy +abr  anbir + apb
az1b11 +axnby  axnbiz + axbz

and the vector )yc . We refer to this matrix as the product of A and B, denoted by

AB, so that
A(BV) = (AB)v
See Fig. 2.

Figure 2

Notice that the product matrix AB is obtained by computing the dot product of
each row vector of the matrix A, on the left, with each column vector of the matrix
B, on the right. Using the matrices A and B given above, we have

-1 2 1 -1

AB:{ 0 1“—2 1]
_ { DD +@(=2) LD +@D) ] _ [ -5 3 }
OO+ D=2 O+ D) -2 1

This matrix transforms the vector [ é ] to [ ‘11' ] in one step. That is,

am=[ 3 2][3]-[1]

which was our original aim. The notion of matrices as transformations is taken up
again in Chap. 4 where we consider more general transformations of vectors.
For another illustration of the matrix product let

-4 6 2 1 0 3

The entries across the first row of the product matrix AB are obtained from the dot
product of the first row vector of A with the first, second, and third column vectors of

1 3 0 3 -2 5
A= 2 1 -3 and B = =i 4 -2
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B, respectively. The terms in the second row of A B are the dot products of the second
row vector of A with the first, second, and third column vectors of B, respectively.
Finally, the terms in the third row of AB are the dot products of the third row vector
of A again with the first, second, and third column vectors of B, respectively. Thus,
the product matrix AB is

[ (D)E)+B)(-1)+(0)(1) —-2+1240 5—-6+0

AB = 6-1—-3 —4+440 10-2-9

i -12—-6+2 8+24+0 —-20-12+6
0 10 -1
— 2 0 -1
| -16 32 26

In the previous example, the product AB exists since the matrices A and B have
the same number of rows and the same number of columns. This condition can be
relaxed somewhat. In general, the product of two matrices A and B exists if the
number of columns of A is equal to the number of rows of B.

DEFINITION 3 Matrix Multiplication Let A be an m x n matrix and B an n x p matrix; then
the product AB is an m x p matrix. The ij term of AB is the dot product of the
ith row vector of A with the jth column vector of B, so that

n
(AB)ij = airbyj + aizbzj + - - - + ainbyj = Zaikbkj
k=1

It is important to recognize that not all properties of real numbers carry over to
properties of matrices. Because matrix multiplication is only defined when the number
of columns of the matrix on the left equals the number of rows of the matrix on the
right, it is possible for AB to exist with BA being undefined. For example,

3 -2 5]
AB:[;i_g] 14 -2
1 0 3 |
is defined, but
3 =2 5 .
BA=| -1 4 -2 [; i _g
1 0 3 —

is not. As a result, we cannot interchange the order when multiplying two matrices
unless we know beforehand that the matrices commute. We say two matrices A and
B commute when AB = BA.

Example 2 illustrates that even when AB and B A are both defined, they might
not be equal.
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m Verify that the matrices
10 0 1
AZ[—lZ] and B:[ll]
do not satisfy the commutative property for multiplication.

Solution The products are

and

so that AB # BA.

In Example 3 we describe all matrices that commute with a particular matrix.

m Find all 2 x 2 matrices that commute with the matrix
SR

S

Solution We start by letting B denote an arbitrary 2 x 2 matrix
T 5

Bzcd

Then the product of matrix A on the left with matrix B on the right is given by
10 a b a b
AB:[l 1][(’ d]z{a+c b+d}

On the other hand,
1 0| |a+b b
1 1| | c+d d

a=a-+b at+c=c+d and b+d=d
so that b =0 and a = d. Let S be the set of all 2 x 2 matrices defined by

s={[2 0] meen)

Then each matrix in S commutes with the matrix A.

BA:{Q
©

U

Setting AB = BA, we obtain
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m Perform the operations on the matrices

Solution

5 |
= i 32 21
A:[zzl 32{25—31 ol C={16—24
15
a AB+0) b. AB+ AC

We first notice that the matrix A is 3 x 2 and both B and C are 2 x 4, so AB and
AC are defined. Also since the matrices B and C have the same number of rows
and columns, the matrix B + C is defined, so the expressions in parts (a) and (b)
are defined.

a. We first add the matrices B and C inside the parentheses and then multiply
on the left by the matrix A. This gives us

A(B+C)
B _‘;’; ([—11—1 3]+[32—2 1])
| 15 2 5 =31 16 -2 4
L [2 3 -3 4}
1 s|l3 11 55

3Q)+1(3) —33)+1(11) —3(=3)+1(-5) —3(4) +1(5
= | 22+23) 23)+211) 2(=3)+2(=5)  2(4) +2(5)
~12) +5@3) —1(3)+5(11) —1(—3)+5(=5) —1(4)+5(5)

-3 2 4 -7
=| 10 28 -16 18
| 13 52 -22 21

b. In this case we compute AB and AC separately and then add the two resulting

matrices. We have
-1 1 -1 3
25 -3 1

1
2
5
-3 1
+ 22[?2:3
-1 5

5 2 0 -8 -8 0 4 1
=| 2 12 -8 8|+ 8 16 -8 10

AB 4+ AC = {

11 24 -14 2 2 28 -8 19

[ -3 2 4 —7
=| 10 28 —-16 18
13 52 —22 21
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Notice that in Example 4 the matrix equation
A(B+C)=AB+ AC

holds. This and other familiar properties involving multiplication and addition of real
numbers hold for matrices. They are listed in Theorem 5.

Properties of Matrix Multiplication Let A, B, and C be matrices with sizes
so that the given expressions are all defined, and let ¢ be a real number.

1. A(BC)=(AB)C

2. ¢c(AB) = (cA)B = A(cB)
3. ABB+C)=AB+ AC
4 (B+C)A=BA+CA

We have already seen that unlike with real numbers, matrix multiplication does
not commute. There are other properties of the real numbers that do not hold for
matrices. Recall that if x and y are real numbers such that xy = 0, then either x =0
or y = 0. This property does not hold for matrices. For example, let

11 -1 -1
:{11} and B:{ 1 1]

Then

Transpose of a Matrix

The transpose of a matrix is obtained by interchanging the rows and columns of a
matrix.

Transpose If A is an m x n matrix, the transpose of A, denoted by A’, is the
n x m matrix with ij term
(ADij = aji
wherel<i<pandl1l<j<m.
For example, the transpose of the matrix

1 2 -3 1 0 -1
A= 01 4 is Al = 2 1 2
-1 2 1 -3 4 1

Notice that the row vectors of A become the column vectors of A’. Theorem 6
gives some properties of the transpose.
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THEOREM 6

DEFINITION 5

Solution

Suppose A and B are m x n matrices, C is an n x p matrix, and c is a scalar.

1. (A+B)!=A"+B'

2. (AC)' = C'A!

3. (A)' = A

4, (cA)Y =cA’

Proof (2) We start by showing that the products involved are all defined. Since
AC ism x p, then (AC)' is px m. As C"is p x n and A’ is n x m, then C' A’
is also p x m. So the sizes of the products agree. Now to show that the products
are equal, we apply the definitions of multiplication and transpose to obtain

(CTA")i; = (CHi(A" )y

k=1
n n
= cuaj =Y _ajci = (AC)j;
k=1 k=1
= ((AC)");j

The proofs of parts 1, 3, and 4 are left as exercises.
Symmetric Matrix An n x n matrix is symmetric provided that A’ = A.

Find all 2 x 2 matrices that are symmetric.

Let 5
a
ol ]
Then A is symmetric if and only if
|la b | _|a c|
o=[2 8]-[ 5]
which holds if and only if b = ¢. So a 2 x 2 matrix is symmetric if and only if the

matrix has the form
a b
b d

Fact Summary

Let A, B, and C be matrices.
1. The definitions of matrix addition and scalar multiplication satisfy many of
the properties enjoyed by real numbers. This allows algebra to be carried

out with matrices.



1.3 Matrix Algebra 37

2. When AB is defined, the ij entry of the product matrix is the dot product
of the ith row vector of A with the jth column vector of B.

3. Matrix multiplication does not in general commute. Even when AB and
BA are both defined, it is possible for AB # BA.

4. The distributive properties hold. That is, A(B + C) = AB + AC and
(B+ C)A = BA+ CA.

5. (A+ B)

A"+ B',(AB)' = B'A", (A")' = A, (cA)' = cA’

6. The matrix A = { ‘Cl Z } is symmetric if and only if b = c.

Exercise Set 1.3

In Exercises 1—-4, use the matrices

2 -3 -1 3
i3] ]
1 1
c=|s 2]
1. Find A+ B and B + A.
2. Find 34 — 2B.
3. Find(A+B)+Cand A+ (B+C).

4. Find 3(A + B) — 5C.
In Exercises 5 and 6, use the matrices

(-3 -3 3
A=| 1 02
| 0 -2 3
-1 3 3
B=| -2 5 2
| 12 4
-5 3 9
c=|-3 10 6
2 21

5. Find (A — B) + C and 2A + B.
6. Show that A +2B — C =0.

In Exercises 7 and 8, use the matrices

31 2 0
Az[—z 4} 32{1 2

7. Find AB and BA.

8. Show that 3(AB) = A(3B).
In Exercises 9 and 10, use the matrices

2 -3 -3
AZ[—3 ~2 o}

3 -1
B=|2 -2
3 0

9. Find AB.
10. Find BA.
11. Let
-1 11
A= 3 -3 3
-1 2 1
and _
-2 3 -3
B = 0 -1 2
| 3 -2 -1 |
Find AB.
12. Let _ -
-2 -2 -1
A= -3 2 1
| 1 -1 -1 ]
and _ -
1 -1 -2
B=| -2 =2 3
| -3 1 -3 ]

Find AB.
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In Exercises 13-16, use the matrices
IR )
e[ 1]
13. Find A(B + O).
14. Find (A + B)C.

15. Find 2A(B — 3C).

16. Find (A + 2B)(3C).
In Exercises 17—-24, use the matrices

2 0 -1
A={1 0 —2}

3 1 1
B:{—s -3 —2}

el
Whenever possible, perform the operations. If a
computation cannot be made, explain why.
17. 2A" — B!
18. B' —2A
19. AB!
20. BA!
21. (A" + B")C
22. C(A' + B")
23. (A'C)B
24. (A'B")C
25. Let

- 1 3]

Show that AB = AC and yet B # C.

26. Let 0 2
A:[OS}

27.

28.

29.

30.

31.

32.

33.

35.

36.

Find a 2 x 2 matrix B that is not the zero matrix,
such that AB is the zero matrix.

Find all 2 x 2 matrices of the form

[5 7]

such that Lo

A% = AA = [ 0 1 }
Let A = [ i i } Find all matrices of the form
M= { Z ] such that AM = MA.

Find matrices A and B such that AB = 0 but
BA #0.

Show there are no 2 x 2 matrices A and B such

that 0
1
an-sa=| 5 0]

Determine all values of a and b such that
1 2 3 b| | -5 6
a 0 -4 1| | 12 16

If A and B are 2 x 2 matrices, show that the sum
of the terms on the diagonal of AB — BA is 0.

Let
1 0 0
A=|0 -1 0
0 01

Find the matrix A0,

. If A and B are n x n matrices, when does

(A+ B)(A— B) = A2 — B??

If the matrices A and B commute, show that
A%2B = BAZ.

Suppose A, B, and C are n x n matrices and B
and C both commute with A.

a. Show that BC and A commute.

b. Give specific matrices to show that BC and
C B do not have to be equal.



37.

38.

39.
40.

41.

Suppose that A is an n x n matrix. Show that if
for each vector x in R", Ax =0, then A is the
zero matrix.
For each positive integer n, let
1—n
N

Show that A, A, = A, 1m-

—n
l+n

Find all 2 x 2 matrices that satisfy AA" = 0.

Suppose that A and B are symmetric matrices.
Show that if AB = BA, then AB is symmetric.

If Ais an m x n matrix, show that AA" and A’A
are both defined and are both symmetric.

1.4

42.

43.

1.4 The Inverse of a Square Matrix 39

An n x n matrix A is called idempotent provided
that A> = AA = A. Suppose that A and B are

n x n idempotent matrices. Show that if

AB = BA, then the matrix AB is idempotent.

An n x n matrix A is skew-symmetric provided
A" = —A. Show that if a matrix is
skew-symmetric, then the diagonal entries are 0.

. The trace of an n x n matrix A is the sum of the

diagonal terms, denoted tr(A).

a. If A and B are n x n matrices, show that
tr(A + B) = tr(A) +tr(B).

b. If Aisan n x n matrix and c is a scalar, show
that tr(cA) = ctr(A).

The Inverse of a Square Matrix

In the real number system, the number 1 is the multiplicative identity. That is, for any

real number a,

a-l1=1-a=a

We also know that for every number x with x # 0, there exists the number % also

written x~1, such that

=1

1
X - —
X

We seek a similar relationship for square matrices. For an n x n matrix A, we can

check that the n x n matrix

is the multiplicative identity. That is,

1 00 0
010 0
0 01 0
0 0O 1

if Aisany n x n matrix, then

Al =TA=A

This special matrix is called the identity matrix. For example, the 2 x 2, 3 x 3, and
4 x 4 identity matrices are, respectively,

1 00
010
0 01

and

OO O
[eNel Nl
O OO
= O O o
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DEFINITION 1 Inverse of a Square Matrix Let A be an n x n matrix. If there exists an n x n
matrix B such that
AB=1=BA

then the matrix B is a (multiplicative) inverse of the matrix A.

m Find an inverse of the matrix

X1 X2
X3 X4

11 X1 Xx2 | | x1+ x3 xo+ xg | 10
1 2 X3 Xa | | x14+2x3 xp+2xs | | 0 1

This matrix equation is equivalent to the linear system

Solution In order for a 2 x 2 matrix B = [

} to be an inverse of A, matrix B must
satisfy

X1+ x3 =il
X2 + x4=0
X1 +2x3 =0
X2 +2x4=1
The augmented matrix and the reduced row echelon form are given by
1 01 01 1 0 0 O 2
0 1 0 1|0 N 0 1 0 0]-—-1
1 0 2 010 0 01 0]-1
01 0 2|1 0 0 0 1 1
Thus, the solution is x; =2, xo = —1,x3 = —1, x4 = 1, and an inverse matrix is
2 -1
5= 2 1]

The reader should verify that AB = BA = 1.

Theorem 7 establishes the uniqueness, when it exists, of the multiplicative inverse.

THEOREM 7 The inverse of a matrix, if it exists, is unique.

Proof Assume that the square matrix A has an inverse and that B and C are
both inverse matrices of A. Thatis, AB = BA =1 and AC = CA = I. We show
that B = C. Indeed,

B =Bl =B(AC)=(BA)C=(I)C=C
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We refer to the unique inverse as the inverse of A and denote it by A~1. When

the inverse of a matrix A exists, we call A invertible. Otherwise, the matrix A is
called noninvertible.

The inverse of the matrix A = f_ Z } exists if and only if ad — bc # 0. In this
case the inverse is the matrix

Al 1 d —-b
" ad—bc | —c¢ a

Proof First, assume that ad — bc # 0, and let

(2 2]
X3 X4
We need to find x1, x2, x3, and x4 such that
10
AB = [ 0 1 }
Taking the product of the two matrices yields

axy+bxz axy+bxg | |1 0
cx1+dx3 cxo+dxs | | 0 1

which results in the linear system

axi + bxs =1
axy + bxs =0
cx1 + dx3 =0
cxo +dxs=1
The augmented matrix of this linear system is given by
a 0 b 01
0 a 0 b|O
c 0 d 0]0
0 ¢c 0 d|1
which reduces to
100 0| 4
010 00—
0 01 0|75
0 0 01 e

Since ad — be # 0, the inverse of

—

he matrix A is
d b
Al = ad—bc ad—bc | _ 1 d —b
_adibc ﬁ ad — be —C a

To prove the reverse claim, we use the contrapositive. That is, if ad — bc = 0,
then the inverse does not exist. An outline of the proof is given in Exercise 41.
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To illustrate the use of the formula, let

[

L1 3 1]
A ‘6—(—1>{—1 2}_[—7

For an example which underscores the necessity of the condition that ad — bc # 0,
we consider the matrix

then

= ~lw
~NIN N

11
a=[11]
Observe that in this case ad — bc =1 — 1 = 0. Now, the matrix A is invertible if
there is a B = 2 *2 | such that

IR

This matrix equation yields the inconsistent system

X1  +x3 =1
X2 +x4=0
X1 +x3 =0
X2 +x1=1

Hence, A is not invertible.
To find the inverse of larger square matrices, we extend the method of aug-
mented matrices. Let A be an n x n matrix. Let B be another n x n matrix, and let

B, B,, ..., B, denote the n column vectors of B. Since ABq, ABo, ..., AB, are the
column vectors of AB, in order for B to be the inverse of A, we must have

1 0 0

0 1 0

ABy = | . ABy = | | AB, =

0 0 1
That is, the matrix equations

1 0 0

0 1 0

AX = AX = AX =
0 0 1

must all have unique solutions. But all n linear systems can be solved simultaneously
by row-reducing the n x 2n augmented matrix

a1 di2 ... 4

1 0 ... 0
any ano N ¢ ) 0 1

ay1 dy2 ... dp, |0 0 ... 1



Solution

Solution

1.4 The Inverse of a Square Matrix 43

On the left is the matrix A, and on the right is the matrix 7. Then A will have an
inverse if and only if it is row equivalent to the identity matrix. In this case, each
of the linear systems can be solved. If the matrix A does not have an inverse, then
the row-reduced matrix on the left will have a row of zeros, indicating at least one of
the linear systems does not have a solution.

Example 2 illustrates the procedure.

Find the inverse of the matrix

1 1 -2
A= | -1 2 0
0 -1 1

To find the inverse of this matrix, place the identity on the right to form the 3 x 6

matrix
1 1 2|1 0 O

-1 2 0/0 1 0
0 -1 1/0 0 1
Now use row operations to reduce the matrix on the left to the identity, while
applying the same operations to the matrix on the right. The final result is

1 0 0|2 1 4

01 01 1 2

0 0 11 1 3
so the inverse matrix is

A7l =

N L
e

4
2
3

The reader should check that AA~Y = A=1A = 1.

Use the method of Example 2 to determine whether the matrix

1 -1 2
A=]3 -3 1
38 -3

is invertible.

Following the procedure described above, we start with the matrix

1 -1 2|1 00
3 -3 1/0 10
3 -3 1|0 0 1
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After the two row operations —3R1 + R» — R, followed by —3R; + R3 — Rj3,
this matrix is reduced to

1 -1 2 1 00
0 0 5/-3 10
0 0 -5|-3 0 1

Next perform the row operation —R, + R3 — R3 to obtain

1 -1 2 1 0 0
0 0 -5|-3 10
0 0 O 0 -1 1
The 3 x 3 matrix of coefficients on the left cannot be reduced to the identity matrix,
and therefore, the original matrix does not have an inverse. Also notice that a
solution does exist to
1
Ax= 1| 0
0
while solutions to

AX and AX

I
or o
I
oo

do not exist.

The matrix A of Example 3 has two equal rows and cannot be row-reduced to the
identity matrix. This is true for any n x n matrix with two equal rows and provides
an alternative method for concluding that such a matrix is not invertible.

Theorem 9 gives a formula for the inverse of the product of invertible
matrices.

Let A and B be n x n invertible matrices. Then AB is invertible and
(ABy t=p1a?!
Proof Using the properties of matrix multiplication, we have
(ABYB'A™H) = ABB ™ HA 1 =AIA =441 =1

and
(B'AHYAB) =B YA 'A)B=B1IB=BB1=1

Since, when it exists, the inverse matrix is unique, we have shown that the inverse
of AB is the matrix B—tA~1.
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m Suppose that B is an invertible matrix and A is any matrix with AB = BA. Show

Solution

Exercise Set 1.4

that A and B~ commute.

Since AB = BA, we can multiply both sides on the right by B~ to obtain
(AB)B~t = (BA)B™!

By the associative property of matrix multiplication this last equation can be writ-
ten as

A(BB™Y) = BAB™!
and since BB~! = I, we have
A=BAB™!
Next we multiply on the left by B~ to obtain

B'A=B"'BAB' so B l'A=4aB!
as required.

Fact Summary

Let A and B denote matrices.

1. The inverse of a matrix, when it exists, is unique.

a b _ 1 d —b
2. IfA=[c d}andad—bc;éo,thenA1=ad_bc[_c a}
3. A matrix A is invertible if and only if it is row equivalent to the identity

matrix.

4. If A and B are invertible n x n matrices, then AB is invertible and
(AB)"1 =B 1AL

In Exercises 1-16, a matrix A is given. Find A~* or -2 4
indicate that it does not exist. When A~1 exists, check ’ [ 2 —4 }
your answer by showing that AA™! = 1. 11
1 [ 1 -2 ] 4 [ 2 2 }
13 -1
01 -1
5 { -3 1 ] 5131 1
' 1 2 1 2 -1
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0 2 1 -2 -3 3 0
-1 0 O 2 0 -2 0
2 1 1 16. 2 0 -1 -1
-2 0 1 1
3 -3 1
0 0 1 17. Let , ) L
-2 2 -1 — _
=15 ] e
1 3 0 Verify that AB + A can be factored as A(B + I)
1 2 3 and AB + B can be factored as (A + I)B.
0 -1 3
18. If A is an n x n matrix, write A2 +2A + [ in
33 0 -3 factored form.
0 1 2 0 19. Let
00 -1 -1 A { 12 ]
0 0 0 -2 -2 1
0 1 2 -3 b. Show that A~1 = %(2] — A).
0 0 2 -2 c. Show in general that for any square matrix A
000 2 satisfying A — 2A 4+ 57 = 0, the inverse is
A7t =1@2I - A).
; 2 8 8 20. Determine those values of % for which the matrix
3 -2 -3 0 120
0 1 3 3 3 20
- 1 2 1
1 0 0 0 is not invertible.
-2 1 00
1 -1 -2 0 21. Determine those values of A for which the matrix
2 -2 0 2 | 1 %0
2 _1 4 -5 ] ; i’ 1
0 -1 3 -1
0 00 2 is not invertible.
0 00 -1 ] 22. Determine those values of A for which the matrix
3 0 0 0] 2 % 1
—6 1 00 3 21
2 500 1 2 1
L =342 is not invertible.
-11 0 -1 23. Let
-1 1 -1 0 1 2~ 0
-1 0 0 0 A=1|1 1 1
-2 1 -1 1 0 0 1



a. Determine those values of \ for which A is
invertible.

b. For those values found in part (a) find the
inverse of A.

24. Determine those values of A for which the matrix

r -1 0
-1 x -1
0 -1

is invertible.

25. Find 2 x 2 matrices A and B that are not
invertible but A + B is invertible.

26. Find 2 x 2 matrices A and B that are invertible
but A 4+ B is not invertible.

27. If A and B are n x n matrices and A is invertible,
show that

(A+B)A™Y(A— B)=(A— B)A"Y (A + B)

28. If B= PAP~1, express B2, B, ..., B¥ where k
is any positive integer, in terms of A, P, and
P71

29. Let A and B be n x n matrices.

a. Show that if A is invertible and AB = 0, then
B =0.

b. If A is not invertible, show there isan n x n
matrix B that is not the zero matrix and such
that AB = 0.

30. Show that if A is symmetric and invertible, then
A1 is symmetric.

In Exercises 31-34, the matrices A and B are
invertible symmetric matrices and AB = BA.

31. Show that AB is symmetric.

32. Show that A~1B is symmetric.
33. Show that AB~! is symmetric.
34. Show that A~1B~! is symmetric.

35. A matrix A is orthogonal provided that
A" = A~L. Show that the product of two
orthogonal matrices is orthogonal.

1.4 The Inverse of a Square Matrix 47

36. Show the matrix

A cos6 —sind
~ | sin®  cos6

is orthogonal. (See Exercise 35.)

37. a. If A, B, and C are n x n invertible matrices,
show that

(ABC)t=ctptat

b. Use mathematical induction to show that for all
positive integers k, if A1, Ay, ..., Ay aren xn
invertible matrices, then

(A1Az-- At = At A - AT

38. An n x n matrix A is diagonal provided that
a;j = 0 whenever i # j. Show that if a,, # 0 for
all n, then A is invertible and the inverse is

L 0 o0 0
ail
L 0 0
a2
0 0 L 0
an—1,n—1
0 0 0 A

39. Let A be an n x n invertible matrix. Show that if
A is in upper (lower) triangular form, then A=1 is
also in upper (lower) triangular form.

40. Suppose B is row equivalent to the n x n
invertible matrix A. Show that B is invertible.

41. Show that if ad — bc =0, then A = [ Z 2 ] is

not invertible.
a. Expand the matrix equation

IR

b. Show the 2 x 2 linear system in the variables
x1 and x3 that is generated in part (a) yields
d = 0. Similarly, show the system in the
variables x, and x4 yields b = 0.

c. Use the results of part (b) to conclude that
ad —bc =0.
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1.5

Matrix Equations

In this section we show how matrix multiplication can be used to write a linear
system in terms of matrices and vectors. We can then write a linear system as a single
equation, using a matrix and two vectors, which generalizes the linear equation ax = b
for real numbers. As we will see, in some cases the linear system can then be solved
using algebraic operations similar to the operations used to solve equations involving
real numbers.

To illustrate the process, consider the linear system

x— 6y—4z=-5
2x —10y —9z=—-4
—x+ 6y+5z= 3

The matrix of coefficients is given by

1 -6 —4
A= 2 —-10 -9
-1 6 5
Now let x and b be the vectors
X -5
X=1y and b=| —4
z 3

Then the original linear system can be rewritten as
AX=Db

We refer to this equation as the matrix form of the linear system and x as the vector
form of the solution.

In certain cases we can find the solution of a linear system in matrix form directly
by matrix multiplication. In particular, if A is invertible, we can multiply both sides
of the previous equation on the left by A=1, so that

A7 Ax) = A"1b
Since matrix multiplication is associative, we have

(A7'A)x=A""b

therefore,
x=A"'b
For the example above, the inverse of the matrix
1 -6 -4 2 3 7
A= —i —12 —g is At = _%1 % %
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Therefore, the solution to the linear system in vector form is given by

2 3 7 -5 -1
x=A"b=| -3 1 1 —4 | =] 2
10 1 3 -2

That is,
x=-1 y = 2 and 7=-2

We have just seen that if the matrix A has an inverse, then the equation Ax = b
has a unique solution. This fact is recorded in Theorem 10.

THEOREM 10 If the n x n matrix A is invertible, then for every vector b, with n components,
the linear system Ax = b has the unique solution x = A~th.

m Write the linear system in matrix form and solve.

2x+ y=1
—4x +3y=2

Solution The matrix form of the linear system is given by
2 1 x| |1
-4 3 y| |2
Notice that since 2(3) — (1)(—4) = 10 # 0, the coefficient matrix is invertible. By
Theorem 8, of Sec. 1.4, the inverse is

1 [3 -1
0|4 2

Now, by Theorem 10, the solution to the linear system is
1
113 -1 1 1|1 10

X=|4 2||2|TW0|8 |~

and y

Sle

so that

=

Il
&l-
Ble

DEFINITION 1 Homogeneous Linear System A homogeneous linear system is a system of
the form Ax = 0.

The vector x = 0 is always a solution to the homogeneous system Ax = 0O, and
is called the trivial solution.
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Solution

Solution

Let
1 2 1 X1
A=|1 3 0 and X= | x2
1 1 2 X3
Find all vectors x such that Ax = 0.

First observe that x = 0 is one solution. To find the general solution, we row-reduce
the augmented matrix

1 2 1|0 1 2 1|0
1 3 0|0 to 01 -1/0
11 2|0 0 0 00

From the reduced matrix we see that x3 is free with x, = x3, and x; = —2x, — x3 =
—3x3. The solution set in vector form is given by
—3t
SE t telR
t

Notice that the trivial solution is also included in S as a particular solution with
t=0.

Observe that in Example 2, the coefficient matrix is not row equivalent to 7, and
hence A is not invertible.

If a homogeneous linear system Ax = 0 is such that A is invertible, then by
Theorem 10, the only solution is x = 0. In Sec. 1.6 we will show that the converse
is also true.

Show that if x and y are distinct solutions to the homogeneous system Ax = O,
then x + ¢y is a solution for every real number c.

Using the algebraic properties of matrices, we have that

A(X+cy) = AX) + A(cy)
= AX + cAy
=0+c0
=0

Hence, X + ¢y is a solution to the homogeneous system.

The result of Example 3 shows that if the homogeneous equation Ax = 0 has
two distinct solutions, then it has infinitely many solutions. That is, the homogeneous
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equation Ax = O either has one solution (the trivial solution) or has infinitely many
solutions. The same result holds for the nonhomogeneous equation AX = b, with
b # 0. To see this, let u and v be distinct solutions to Ax = b and ¢ a real number.

Then

ANV +c(U—V)) = Av+ A(c(u—V))

= AV + cAU — cAvV
=b+cb—-cb=Db

These observations are summarized in Theorem 11.

THEOREM 11

If A is an m x n matrix, then the linear system Ax = b has no solutions, one

solution, or infinitely many solutions.

Fact Summary

Let A be an m x n matrix.

1. If A is invertible, then for every n x 1 vector b the matrix equation Ax = b
has a unique solution given by x = A~!b.

2. If A is invertible, then the only solution to the homogeneous equation
Ax = 0 is the trivial solution x = 0.

3. If u and v are solutions to Ax = 0, then the vector u + c¢v is another
solution for every scalar c.

4. The linear system AX = b has a unique solution, infinitely many solutions,

or no solution.

Exercise Set 1.5

In Exercises 1-6, find a matrix A and vectors x and b
such that the linear system can be written as Ax = b.

1 2x+3y=-1
Tl —x+2y= 4

> —4x — y=3
"l —2x —5y=2

2x —3y+ z=-1
3 —x— y+2z=-1
3x—2y—2z= 3

Jy—2z= 2
4. ¢ —x +47=-3
—x —3z= 4

Ax1 +3x9 —2x3 — x4 =—1
5. —3x1 —3x2 + x3 = 4
2x1 —3xp+4x3 —4xy= 3

3xp+ x3—2x4=-4
6. 4)C2 - 2x3 - 4)C4 = 0
X1+ 3x2 — 2x3 = 3
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In Exercises 7—12, given the matrix A and vectors x

and b, write the equation AXx = b as a linear system. 14. _4 3 _4
_ -1
2 _g X 3 AT = [ 2 2 0 ]
7.A=-2 1:|X—|:y:|b—|:2:| 1 2 4
_ 2
-2 4 by -1
o =2 4 ]x=] 2 ]0=] ] {]
[0 -2 0
9.4=|2 -1 -1 15.
3 -1 2 -3 -2 0 3
. 3 Al -1 2 -2 3
x=|y |b= 1 0o 1 2 -3
-1 0 3 1
Z -1
4 5 5 2
10.A=| 4 -1 1 b= | 3
4 35 g
X -3
X=1y|b=] 2 16
z 1 3 0 -2 =2
2 0 1 -1
|2 5 -5 3 Al =
11.A_{31_2 _4} -3 -1 -1 1
2 -1 -2 -3
X1
X — X2 b _ 2 1
X3 0 b _ —4
X4 - 1
0 -2 4 -2 .
12 A=|2 01 1 In Exercises 17—22, solve the linear system by finding
1 01 =2 the inverse of the coefficient matrix.
X1 4
| x _ x+4y= 2
= b_[_i} 17'{3x+2y=—3
X4
. . o 2x —4y=4
In Exercises 13—-16, use the information given to solve —2x+3y=3
the linear system Ax = b.
- z=-1
13. =
2 0 -1 3x+ y—3z= 1
Al=4 1 4 x—3y+2z= 1
1 2 4
1 —2x—-2y— z= 0
b= | —4 20. —Xx—y =-1
1 - y+2z= 2



— x1—xp—2x3+ xg=-1

21 2x1+x0+2x3— x4= 1
’ —2x1—x2—2x3—2)C4= 0
—2)C1—XZ— X3 — Xg4= 0

—Xx1 — 2x2 + x4=-3

22 —x1+ Xp—2x34+ xg4=-2
' —X1+2x2 —2x3+ x4= 3
— 2xp +2x3 —2x4=-—1

23. Let 1 L
A=12 3

Use the inverse matrix to solve the linear system
Ax = b for the given vector b.

e[

24. Let
-1 0 -1
A=| -3 1 -3
1 -3 2

Use the inverse matrix to solve the linear system
Ax = b for the given vector b.

o
a. b= 1
L 1_
17
b.b=| -1
L O_
25. Let
-1 -4
A= 3 12
2 8

Find a nontrivial solution to Ax = 0.

26. Let

1 -2 4
A=|2 -4 8
3 -6 12

Find a nontrivial solution to AXx = 0.

27.

28.

29.

30.

31.

32.
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Find a nonzero 3 x 3 matrix A such that the
vector
1
-1
1

is a solution to Ax = 0.

Find a nonzero 3 x 3 matrix A such that the
vector
-1
2
1

is a solution to Ax = 0.

Suppose that A is an n x n matrix and u and v
are vectors in R". Show that if Au= Av and
u # v, then A is not invertible.

Suppose that u is a solution to Ax = b and that v
is a solution to Ax = 0. Show that u + v is a
solution to AX = b.

Consider the linear system

2x+ y= 1
—x+ y=-2
x+2y=-1

a. Write the linear system in matrix form AXx = b
and find the solution.

b. Find a 2 x 3 matrix C such that CA = I. (The
matrix C is called a left inverse.)

¢. Show that the solution to the linear system is
given by x = Cb.

Consider the linear system

2x+ y= 3
—x— y=-2
3x+2y= 5

a. Write the linear system in matrix form AXx =b
and find the solution.

b. Find a 2 x 3 matrix C such that CA = I.

¢. Show that the solution to the linear system is
given by x = Ch.
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1.6

DEFINITION 1

Solution

DEFINITION 2

Determinants

In Sec. 1.4 we saw that the number ad — bc, associated with the 2 x 2 matrix
a b
a-[ed]
has special significance. This number is called the determinant of A and provides
useful information about the matrix. In particular, using this terminology, the matrix
A is invertible if and only if the determinant is not equal to 0. In this section the
definition of the determinant is extended to larger square matrices. The information
provided by the determinant has theoretical value and is used in some applications.
In practice, however, the computational difficulty in evaluating the determinant of a

very large matrix is significant. For this reason the information desired is generally
found by using other more efficient methods.

Determinantofa2 x 2 Matrix The determinant of the matrix A = { i 2 } ,

denoted by |A| or det(A), is given by
b
d

a
Al = det(4) = |

):ad—bc

Using this terminology a 2 x 2 matrix is invertible if and only if its determinant
is nonzero.

Find the determinant of the matrix.

SREE
alAl=| 5 2 |=0@-12=8
b. 1A= §‘=<3)(2>—<5><4)=—14
clAl=| 3 o|=®O-©03)=0

Using the determinant of a 2 x 2 matrix, we now extend this definition to 3 x 3
matrices.

Determinant of a 3 x 3 Matrix The determinant of the matrix
ailp diz ais
A= | axn ax» ax
azy as ass
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Solution
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Figure 1
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azz 43
azz  az3

az1r a4z
azy  das2

|A] = an + a3

The computation of the 3 x 3 determinant takes the form

* ok * * k% * ko k
[Al =ai1| * ax ax |—ap| axn * axp3 |+ap| %21 d2 *
*  azp ds3 as;y * ass azr 4z ox

where the first 2 x 2 determinant is obtained by deleting the first row and first column,
the second by deleting the first row and second column, and the third by deleting the
first row and third column.

Find the determinant of the matrix

2 1 -1
A=1]3 1 4
51 —38 3

By Definition 2, the determinant is given by

14 3 4 3 1
3 3 ‘1‘5 3}““(‘1)‘5 —3‘
=@)[B-(-12)] - (DO —20) + (-1)(-9-5)
—30+11+14

— 55

det(A) = |A] = 2

In Example 2, we found the determinant of a 3 x 3 matrix by using an expansion
along the first row. With an adjustment of signs the determinant can be computed by
using an expansion along any row. The pattern for the signs is shown in Fig. 1. The
expansion along the second row is given by

1 -1 2 -1
-3 3 5 3
=-33-3)+ (6+5)—4(—6—5) =55

2
det(A) = |A| = —3‘ 5 _3

NOEIREE]

The 2 x 2 determinants in this last equation are found from the original matrix by
deleting the second row and first column, the second row and second column, and
the second row and the third column, respectively. Expansion along the third row is
found in a similar way. In this case

1 -1 2 -1 2 1

1 4 ‘_(_3)’ 3 4 ‘+3’ 31 ’
=5@4+1)+38+3)+3(2—-3)=55

det(A) = |A| =5
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DEFINITION 3

DEFINITION 4

THEOREM 12

DEFINITION 5

The determinant can also be computed using expansions along any column in a
similar manner. The method used to compute the determinant of a 3 x 3 matrix can
be extended to any square matrix.

Minors and Cofactors of a Matrix If A is a square matrix, then the minor
M;;, associated with the entry a;;, is the determinant of the (n — 1) x (n — 1)
matrix obtained by deleting row i and column j from the matrix A. The cofactor
of ajj is C,‘j = (—1)l+jM,J

For the matrix of Example 2, several minors are

1 4 3 4 3 1
-3 3 5 3 5 -3

Using the notation of Definition 3, the determinant of A is given by the cofactor
expansion

My = M = and Mz =

det(A) = a11C11 + a12C12 + a13C13
=2(=1)%(15) + 1(=1)3(=11) — 1(-1)*(—14)
=30+11+14=55

Determinant of a Square Matrix If A is an n x n matrix, then

n
det(A) = a11C11 + a12C12 + - - - + a1,C1,, = Zalkclk
k=1

Similar to the situation for 3 x 3 matrices, the determinant of any square matrix
can be found by expanding along any row or column.

Let A be an n x n matrix. Then the determinant of A equals the cofactor expansion
along any row or any column of the matrix. That is, for every i =1,...,n and
j=1,...,n,

det(A) = ai1Cia + ai2Ciz + -+ + ainCin = ZaikCik
k=1
and

n
det(A) = a1;C1j +a;jCoj + -+ - +a,;Cpyj = Zaijkj
k=1

For certain square matrices the computation of the determinant is simplified. One
such class of matrices is the square triangular matrices.

Triangular Matrices An m x n matrix is upper triangular if a;; = 0, for all
i > j, and is lower triangular if ¢;; =0, for all i < j. A square matrix is a
diagonal matrix if a;; = 0, for all i # j.
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Some examples of upper triangular matrices are

11 2 -1 0 1101
{ 0 2 } 0 0 3 and 0 001
0 0 2 0 011
and some examples of lower triangular matrices are
1000
10 (2) (1) 8 and 0 00O
11 10 2 1310
01 21

If Ais an n x n triangular matrix, then the determinant of A is the product of the
terms on the diagonal. That is,

det(A) = ag1 - az - - apy
Proof We present the proof for an upper triangular matrix. The proof for a
lower triangular matrix is identical. The proof is by induction on n. If n = 2, then
det(A) = ajraz; — 0 and hence is the product of the diagonal terms.
Assume that the result holds for an n x n triangular matrix. We need to show
that the same is true for an (n + 1) x (n + 1) triangular matrix A. To this end let

(a1 a2 aiz -+ an adianpr |
0 ax apm -+ axy axpq1
0 0 as -+ as aspq
A= )
0 0 0 ccc Apn Ap.n+1
L 0 0 0 t 0 An+1,n+1 |

Using the cofactor expansion along row n 4+ 1, we have

ayl aiz aiz - di

0 ax a3 -+ ax

det(A) = (_l)(”+l)+(”+l)an+l,n+l 0 0 asz --- az
0 0 0 - au

Since the determinant on the right is n x n and upper triangular, by the inductive
hypothesis

det(A) = (=% (apt1,04+1)(@11022 - - - @)

= a1az2 - - - Applp+1,n+1

Properties of Determinants

Determinants for large matrices can be time-consuming to compute, so any properties
of determinants that reduce the number of computations are useful. Theorem 14 shows
how row operations affect the determinant.
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THEOREM 14

Let A be a square matrix.
1. If two rows of A are interchanged to produce a matrix B, then det(B) =
—det(A).
2. If a multiple of one row of A is added to another row to produce a matrix B,
then det(B) = det(A).
3. If a row of A is multiplied by a real number a to produce a matrix B, then

det(B) = adet(A).
Proof (1) The proof is by induction on n. For the case n = 2 let

a b
s=[e 2]
Then det(A) = ad — bc. If the two rows of A are interchanged to give the matrix
c d
2=[o 3]

then det(B) = bc — ad = — det(A).

Assume that the result holds for n x n matricesand A isan (n + 1) x (n + 1)
matrix. Let B be the matrix obtained by interchanging rows i and j of A. Expanding
the determinant of A along row i and of B along row j, we have

det(A) = a;1Ci1 + ai2Ciz + - - - + @i, Ciyy

and

det(B) = ajiDj1+ajpDjp+---+aj,Dj,

=anDj1+ai2Dj2+ -+ -+ ainDjy,

where C;; and D;; are the cofactors of A and B, respectively. To obtain the result
there are two cases. If the signs of the cofactors C;; and D;; are the same, then
they differ by one row interchanged. If the signs of the cofactors C;; and D;; are
opposite, then they differ by two rows interchanged. In either case, by the inductive
hypothesis, we have det(B) = — det(A)

The proofs of parts 2 and 3 are left as exercises.

We note that in Theorem 14 the same results hold for the similar column oper-
ations. To highlight the usefulness of this theorem, recall that by Theorem 13, the
determinant of a triangular matrix is the product of the diagonal entries. So an alter-
native approach to finding the determinant of a matrix A is to row-reduce A to
triangular form and apply Theorem 14 to record the effect on the determinant. This

method is illustrated in Example 3.

m Find the determinant of the matrix



Solution

THEOREM 15

Since column 1 has two zeros, an expansion along this column will involve the
fewest computations. Also by Theorem 14, if row 2 is added to row 4, then the

determinant is unchanged and

01 3 -1

2 4 -6 1

CA=19 3 g 2

0 0 -5 -2

Expansion along the first column gives

1 3 -1

det(A)=-2{3 9 2

0 -5 -2

We next perform the operation —3R; + R, —> Ry, leaving the determinant again

unchanged, so that

1 3 -1
det(A)=-2{0 0 5
0 -5 -2

Now, interchanging the second and third rows gives
1 3 -1
det(A) = (—=2)(=1)| 0 —5 -2
0O 0 5

This last matrix is triangular, thus by Theorem 13,

det(4) = (=2)(=D[(D(=5)(3)]
=-50

1.6 Determinants

Theorem 15 lists additional useful properties of the determinant.

Let A and B be n x n matrices and o a real number.
1. The determinant computation is multiplicative. That is,
det(AB) = det(A) det(B)

. det(aA) = o det(A)
. det(A") = det(A)

o O~ WN

det(A) = 0.

. If A has a row (or column) of all zeros, then det(A) = 0.
. If A has two equal rows (or columns), then det(A) = 0.
. If A has a row (or column) that is a multiple of another row (or column), then

59
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1 2 1 -1 .
m Let A = { 3 _o } and B = [ 1 2 } . \Verify Theorem 15, part 1.

Solution

THEOREM 16

COROLLARY 1

THEOREM 17

In this case the product is

3 7
AB:[l —11}

so that det(AB) = —33 — 7 = —40. We also have det(A) det(B) = (—8)(5) = —40.

Properties of the determinant given in Theorem 15 can be used to establish the
connection between the determinant and the invertibility of a square matrix.

A square matrix A is invertible if and only if det(A) # 0.
Proof If the matrix A is invertible, then by Theorem 15,
1 =det(/) = det(AA™Y) = det(A) det(A™Y)

Since the product of two real numbers is zero if and only if at least one of them
is zero, we have det(A) # 0 [also det(A™1) # Q].

To establish the converse, we will prove the contrapositive statement. Assume
that A is not invertible. By the remarks at the end of Sec. 1.4, the matrix A is
row equivalent to a matrix R with a row of zeros. Hence, by Theorem 14, there is
some real number k # 0 such that det(A) = k det(R), and therefore by Theorem 15,
part 4,

det(A) = kdet(R) = k(0) =0

Let A be an invertible matrix. Then
1
det(A)

det(A™%) =

Proof If A is invertible, then as in the proof of Theorem 16, det(A) # O,
det(A~1) #£ 0, and

det(A)det(A™H) =1
Therefore,

det(A™1) =

det(A)

The final theorem of this section summarizes the connections between inverses,
determinants, and linear systems.

Let A be a square matrix. Then the following statements are equivalent.
1. The matrix A is invertible.
2. The linear system Ax = b has a unique solution for every vector b.



The graph of the equation

(x—h?  (y—k)?

a? + b2
is an ellipse with center
(h, k), horizontal axis of
length 2a, and vertical
axis of length 2b.

1

Solution

1.6 Determinants

3. The homogeneous linear system Ax = 0 has only the trivial solution.
4. The matrix A is row equivalent to the identity matrix.
5. The determinant of the matrix A is nonzero.

Determinants can be used to find the equation of a conic section passing through

specified points. In the 17th century, Johannes Kepler’s observations of the orbits of
planets about the sun led to the conjecture that these orbits are elliptical. It was Isaac

Newton who, later in the same century, proved Kepler’s conjecture. The graph of an
equation of the form

Ax?>+ Bxy+Cy?+ Dx +Ey+ F =0

is a conic section. Essentially, the graphs of conic sections are circles, ellipses, hyper-
bolas, or parabolas.

An astronomer who wants to determine the approximate orbit of an object travel-
ing about the sun sets up a coordinate system in the plane of the orbit with the
sun at the origin. Five observations of the location of the object are then made
and are approximated to be (0,0.31), (1, 1), (1.5,1.21), (2,1.31), and (2.5, 1).
Use these measurements to find the equation of the ellipse that approximates the
orbit.

We need to find the equation of an ellipse in the form
Ax* 4+ Bxy+Cy*+ Dx+Ey+ F=0

Each data point must satisfy this equation; for example, since the point (2, 1.31) is
on the graph of the conic section,

A(2)? + B(2)(1.31) + C(1.31)> + D(2) + E(1.31) + F =0

SO
4A +2.62B +1.7161C +2D +131E+ F =0

Substituting the five points in the general equation, we obtain the 5 x 6 linear
system (with coefficients rounded to two decimal places)

0.1C + 03l1E+F=0

A+ B + C+ D+ 15 4 17 =0
4A+262B+1.72C+ 2D+131E+F=0
2.25A+1.82B+1.46C +15D+121E+ F =0
6.25A + 2.5B + C+25D+ g4k 17 =0

Since the equation Ax? 4+ Bxy 4 Cy?+ Dx + Ey + F =0 describing the
ellipse passing through the five given points has infinitely many solutions, by
Theorem 17, we have
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x%  xy e o y 1
0 0 0.1 0 031 1
1 1 1 ST P
Ty 4 262 172 2 131 1|
225 182 146 15 121 1
6.25 2.5 1 25 1 1

Expanding the determinant gives us the equation
—0.014868x2 + 0.0348xy — 0.039y? + 0.017238x — 0.003y + 0.00483 = 0
The graph of the orbit is shown in Fig. 2.

Xy

Figure 2
Cramer’s Rule

Determinants can also be used to solve linear systems. To illustrate the technique
consider the 2 x 2 linear system

ax+by=u
cx+dy=v

with ad — bc # 0. By Theorem 17, the linear system has a unique solution.
To eliminate the variable y, we multiply the first equation by 4 and the second
equation by b, and then we subtract the two equations. This gives

adx + bdy — (bex + bdy) = du — bv
Simplifying, we have

du — bv
(ad — bc)x = du — bv so that X =
ad — bc
Using a similar procedure, we can solve for y.
_ av —cu
= ad — bc
Using determinants, we can write the solution as
u b a u
v d c v
x= and y=1— 1
a b a b
c d c d

Notice that the solutions for x and y are similar. The denominator for each is the
determinant of the coefficient matrix. The determinant in the numerator for x is formed
by replacing the first column of the coefficient matrix with the column of constants
on the right-hand side of the linear system. The determinant in the numerator for y is
formed by replacing the second column of the coefficient matrix with the column of
constants. This method of solving a linear system is called Cramer’srule.
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m Use Cramer’s rule to solve the linear system.

2x+3y=2
—5x+4+7y=3
Solution The determinant of the coefficient matrix is given by
2 3
5 7= 14 — (—=15) = 29
and since the determinant is not zero, the system has a unique solution. The solution
is given by
2 3 2 2

|3 7] 14-9 5 and | -5 3| 6-(-100 16
YT T2 T 29 T 29 YT T20 T 20 T 29

THEOREM 18 Cramer’sRule Let A be ann x n invertible matrix, and let b be a column vector
with n components. Let A; be the matrix obtained by replacing the ith column of A

X1
. X2 . . . .
with b. If x = . is the unique solution to the linear system Ax = b, then
Xp
det(A;
3 = oA i=1.2...n
det(A)

Proof Let /; be the matrix obtained by replacing the ith column of the identity
matrix with x. Then the linear system is equivalent to the matrix equation

Al; = A; SO det(AI,-) = det(Ai)
By Theorem 15, part 1, we have
det(A) det(Z;) = det(A;) = det(A;)
Since A is invertible, det(A) # 0 and hence
det(A;)
det(A)
Expanding along the ith row to find the determinant of I; gives
det(li) = X; det(I) = X;
where I is the (n — 1) x (n — 1) identity. Therefore,
det(A;)
Xi = ———
det(A)

det(;) =
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If a unique solution exists, then Cramer’s rule can be used to solve larger square
linear systems. Example 7 illustrates the technique for a 3 x 3 system.

m Solve the linear system.

2x+3y— z= 2
3x—2y+ z=-1
—5x —4y+4+2z= 3

Solution The determinant of the coefficient matrix is given by

2 3 -1
3 -2 1|=-11
-5 -4 2
By Cramer’s rule the solution to the system is
2 3 -1
1 5
x=——| -1 -2 1|=——
1 3 _4 o 11
1| 2 ESLNEEE
y=—-—— 3 -1 1 | =—
11| 5 3 > 11
2 3 2
1 7
z=——| 3 -2 -1 |= L
11| 5 _4 3 11

The reader should verify this solution by substitution into the original system.

Fact Summary

Let A and B be n x n matrices.

1. det[ a b ] = ad — be.
c d
2. The determinant of A can be computed by expanding along any row or

column provided that the signs are adjusted using the pattern
+ +

+ +

S+
A+

3. The matrix A is invertible if and only if det(A) # 0.
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If A is a triangular matrix, then the determinant of A is the product of the
diagonal terms.

If two rows of A are interchanged, the determinant of the resulting matrix
is the negative of the determinant of A.

If a multiple of one row of A is added to another row, the determinant is
not altered.

If one row of A is multiplied by a scalar ¢, the determinant of the resulting
matrix is c times the determinant of A.

det(AB) = det(A) det(B), det(cA) = " det(A), det(A’) = det(A)
If A has a row or column of zeros, then det(A) = 0.

If one row or column of A is a multiple of another row or column, then
det(A) = 0.

11. If A is invertible, then det(A~1) = FtA)'
Exercise Set 1.6 B
In Exercises 1-4, evaluate the determinant of the 1 0 0
matrix by inspection. 7. 13 6 0
(2 —40 10 0 8 -1
1. 0 3 12 B 7 2 1
0 0 4 8. |7 2 1
T1 2 3 | 3 6 6
21456 ] 9. Answer the questions using the matrix
1 2 3
- 2 0 1
1 0 0 O A= 3 -1 4
3 3 -1 00 -4 1 -2
14 220
1 1 6 5 a. Find the determinant of the matrix by using an
_ expansion along row 1.
4 ; _; i b. Find the determinant of the matrix by using an
' 1 _2 1 expansion along row 2.
- ) o c. Find the determinant of the matrix by using an
In Exercises 5-8, use determinants to decide if the expansion along column 2.
matrix is invertible. d. Interchange rows 1 and 3 of the matrix, and
5 2 1 find the determinant of the transformed matrix.
Tl =2 2 e. Multiply row 1 of the matrix found in part (d)
by —2, and find the determinant of the new
6. { 13 ] matrix. Use the value to find the determinant of
5 2 the original matrix.
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f. Replace row 3 of the matrix found in part (e)
with the sum of row 3 and —2 times row 1 and
find the determinant of the new matrix in two
ways. First, use an expansion along row 3 of
the new matrix. Second, use the value for the
determinant of A that has already been
calculated.

g. Does the matrix A have an inverse? Do not try
to compute the inverse.

10. Answer the questions using the matrix

111 2
3 2 0 -1
A= 9 10 1
3 33 3

a. Find the determinant of the matrix by using an
expansion along row 4.

b. Find the determinant of the matrix by using an
expansion along row 3.

c. Find the determinant of the matrix by using an
expansion along column 2.

d. In (a), (b), and (c), which computation do you
prefer, and why?

e. Does the matrix A have an inverse? Do not try
to compute the inverse.

In Exercises 11-26, find the determinant of the
matrix. Specify whether the matrix has an inverse
without trying to compute the inverse.

n [ 58]
2|5
13. __11 _H
w1 2]
15. _‘1 _ﬂ
6 [11]

5 -5 -4
17. -1 -3 5
| -3 1 3 |
[ 3 -3 5]
18. 2 4 -3
| -3 -1 -5 |
[ —3 4 5
19. 1 1 4
| -1 -3 4
[ —2 —2 —4
20. 1 1 3
| —4 0 4
(1 -4 1
21. 1 -2 4
| 0 2 3
(1 2 4
22. 14 0 0
|1 2 4
2 —2 —2 -2
-2 2 3 0
23. -2 =2 2 0
1 -1 -3 -1 ]|
1 -1 0 0]
-3 -3 -1 -1
20 1 21 23 2
-1 =2 2 1|
[ —1 1 1 00
0 0 -1 0 0
25. 0 0 1 -1 0
0 1 1 0 1
1 -1 1 1 0
1 0 -1 0 -1
-1 -1 0 0 -1
26. 1 0 0 0 -1
0 1 1 1 0
| -1 1 1 -1 0
In Exercises 27-30, let
a b c
A=|d e f
g h i

and assume det(A) = 10.



27.
28.

29.
30.

31

32.

33.

Find det(3A).
Find det(2A~1).
Find det [(24)71].

Find
a g d
det| b h e
c i f
Find x, assuming

X2 x 2
det| 2 1 1] =0
0 0 -5

Find the determinant of the matrix
1 111

k=)
PR OR R
=l
e N N
e

Suppose a; # bi. Describe the set of all points
(x, y) that satisfy the equation

1 1 1
det| x a1 b
y ax b

=0

. Use the three systems to answer the questions.

x4+ y=3 x4+ y=3

(l){2x+2y=1 (2){2x+2y=6
x+ y=3
(3){2x—2y=1

a. Form the coefficient matrices A, B, and C,
respectively, for the three systems.

b. Find det(A), det(B), and det(C). How are they
related?

c. Which of the coefficient matrices have
inverses?

d. Find all solutions to system (1).
e. Find all solutions to system (2).
f. Find all solutions to system (3).

35.

36.

37.
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Answer the questions about the linear system.
x— y—2z= 3
—x+2y+3z= 1
2x — 2y —2z7=-2
a. Form the coefficient matrix A for the linear
system.
b. Find det(A).
c. Does the system have a unique solution?
Explain.
d. Find all solutions to the system.
Answer the questions about the linear system.
x+3y—-2z=-1
2x +5y+ z= 2
2x + 6y —4z=-2
a. Form the coefficient matrix A for the linear
system.
b. Find det(A).
c. Does the system have a unique solution?
Explain.
d. Find all solutions to the system.
Answer the questions about the linear system.
—Xx —z=-1
2x +2z= 1
x—3y—-3z= 1
a. Form the coefficient matrix A for the linear
system.
b. Find det(A).
c. Does the system have a unique solution?
Explain.
d. Find all solutions for the system.

In Exercises 38—-43, use the fact that the graph of the
general equation

Ax®> + Bxy+Cy*+ Dx +Ey+F =0

is essentially a parabola, circle, ellipse, or hyperbola.

38.

a. Find the equation of the parabola in the form
Ax’+ Dx+Ey+F=0

that passes through the points (0, 3),
(1,1), and (4, —2).
b. Sketch the graph of the parabola.
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39.

41.

42.

. Sketch the graph of the parabola.

. Find the equation of the circle in the form

. Sketch the graph of the circle.
. Find the equation of the hyperbola in the form 48

. Sketch the graph of the hyperbola.

. Find the equation of the ellipse in the form

Chapter 1  Systems of Linear Equations and Matrices

. Find the equation of the parabola in the form In Exercises 44—51, use Cramer’s rule to solve the

linear system.
Cy’ +Dx+Ey+F=0 Y

that passes through the points (-2, —2), (3, 2), 44, {
and (4, —3).

2x +3y=4
2x +2y=4

45,

AX?>+y>) +Dx+Ey+F =0 46.

that passes through the points (-3, —3), (-1, 2),
and (3, 0). 47, —9x —4y= 3

—7x +5y=-10

—10x — 7y=-12

) ) 12x+11ly= 5
Ax*4+Cy "+ Dx+Ey+ F=0

(1, —=2), and (2, 3).

—2x+ y—4z=-8
—4y+ z= 3

4x — z7=-8

50.

Ax> +Cy>+ Dx+Ey+F =0 2x +3y+2z=-2
—x—3y—8z=-2

—3x+2y—T7z= 2

that passes through the points (-3, 2), (-1, 3), 5L

that passes through the points (0, —4), (0, 4), 49. { 8y +4y=3
(1, -1), and (4, 2). {

. Sketch the graph of the ellipse. 52. An n x n matrix is skew-symmetric provided
_ ) o A" = —A. Show that if A is skew-symmetric and
. Find the equation of the ellipse in the form n is an odd positive integer, then A is not
Ax*+ Bxy+Cy>+ Dx+Ey+F=0 invertible.
that passes through the points (—1, 0), (0, 1), 53. If Aisa 3 x 3 matrix, show that det(A) = det(A").
(1,0),(2,2),and (3, 1). 54. If Ais an n x n upper triangular matrix, show
. Sketch the graph of the ellipse. that det(A) = det(A’).

1.7 » Elementary Matrices and LU Factorization

In Sec. 1.2 we saw how the linear system Ax = b can be solved by using Gaussian
elimination on the corresponding augmented matrix. Recall that the idea there was
to use row operations to transform the coefficient matrix to row echelon form. The
upper triangular form of the resulting matrix made it easy to find the solution by using
back substitution. (See Example 1 of Sec. 1.2.) In a similar manner, if an augmented
matrix is reduced to lower triangular form, then forward substitution can be used to
find the solution of the corresponding linear system. For example, starting from the
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first equation of the linear system

X1 = 3
—Xx1+ X2 =-1
2x1—xp+x3= 5

we obtain the solution x; = 3, x, = 2, and x3 = 1. Thus, from a computational per-
spective, to find the solution of a linear system, it is desirable that the corresponding
matrix be either upper or lower triangular.

In this section we show how, in certain cases, an m x n matrix A can be written
as A = LU, where L is a lower triangular matrix and U is an upper triangular matrix.
We call this an LU factorization of A. For example, an LU factorization of the

matrix -3 2 is given b
3 4| lSOVeNDY

EREEIREItH

with L = 1 9 and U = 0 i . We also show in this section that when such

a factorization of A exists, a process that involves both forward and back substitution
can be used to find the solution to the linear system Ax = b.

Elementary Matrices

As a first step we describe an alternative method for carrying out row operations using
elementary matrices.

Elementary Matrix An elementary matrix is any matrix that can be obtained
from the identity matrix by performing a single elementary row operation.

As an illustration, the elementary matrix E; is formed by interchanging the first
and third rows of the 3 x 3 identity matrix 7, that is,

00 1
Ei=]0 1 0
1.0 0

Corresponding to the three row operations given in Theorem 2 of Sec. 1.2, there
are three types of elementary matrices. For example, as we have just seen, E; is
derived from I by means of the row operation R; <> R3 which interchanges the first
and third rows. Also, the row operation kR; + R, —> R, applied to [ vyields the
elementary matrix

1 00
E,=|k 1 0
0 0 1
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THEOREM 19

Solution

Next, if ¢ # 0, the row operation cR, —> R performed on I produces the matrix

1 00
E3=|0 ¢ O
0 0 1

Using any row operation, we can construct larger elementary matrices from larger
identity matrices in a similar manner.

We now show how elementary matrices can be used to perform row operations.
To illustrate the process, let A be the 3 x 3 matrix given by

1 2 3
A=|4 5 6
7 89
Multiplying A by the matrix E1, defined above, we obtain
7 89
EiA=|4 5 6
1 2 3

Observe that E1 A is the result of interchanging the first and third rows of A. Theorem 19
gives the situation in general.

Let A be an m x n matrix and E the elementary matrix obtained from the m x m
identity matrix 7 by a single row operation R. Denote by R(A) the result of
performing the row operation on A. Then R(A) = EA.

By repeated application of Theorem 19, a sequence of row operations can be
performed on a matrix A by successively multiplying A by the corresponding ele-
mentary matrices. Specifically, let E; be the elementary matrix corresponding to the
row operation R; with 1 <i < k. Then

Ri - Ra2(Ri(A)) = Ex--- E2E1A

Let A be the matrix

1 2 -1
A= 3 5 0
-1 1 1

Use elementary matrices to perform the row operations Ry: Ry — 3Ry —> Ry,
Ry2: R3+ Ry —> R3, and R3: Rz + 3Ry —> Rs.

The elementary matrices corresponding to these row operations are given by

1 00 1 0 0 1 00
Ei=| -3 10 Eo=|0 1 0 Es=|0 1 0
0 0 1 1 0 1 0 3 1
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respectively, so that

1 2 -1
E3E,;E1A=| 0 -1 3
0 0 9

The reader should check that the matrix on the right-hand side is equal to the result
of performing the row operations above on A in the order given.

The Inverse of an Elementary Matrix
An important property of elementary matrices is that they are invertible.

Let E be an n x n elementary matrix. Then E is invertible. Moreover, its inverse
is also an elementary matrix.

Proof Let E be an elementary matrix. To show that E is invertible, we compute
its determinant and apply Theorem 17 of Sec. 1.6. There are three cases depending
on the form of E. First, if E is derived from I by an interchange of two rows,
then det(E) = —det(I) = —1. Second, if E is the result of multiplying one row
of I by a nonzero scalar ¢, then det(E) = cdet(I) = ¢ # 0. Third, if E is formed
by adding a multiple of one row of I to another row, then det(E) = det(/) = 1.
In either case, det(E) # 0 and hence E is invertible. To show that E~! is an
elementary matrix, we use the algorithm of Sec. 1.4 to compute the inverse. In this
case starting with the n x 2n augmented matrix

[E 1]

we reduce the elementary matrix on the left (to 7) by applying the reverse operation
used to form E, obtaining

[11E7
That E~1 is also an elementary matrix follows from the fact that the reverse of
each row operation is also a row operation.

As an illustration of the above theorem, let R be the row operation 2R, + Ry —>
R1, which says to add 2 times row 2 to row 1. The corresponding elementary matrix
is given by

1 20
E=(0 10
0 01
Since det(E) = 1, then E is invertible with

1 -2 0
El=]10 10
0 0 1
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THEOREM 21

THEOREM 22

Observe that E~1 corresponds to the row operation R,: —2R» + Ry —> R which
says to subtract 2 times row 2 from row 1, reversing the original row operation R.

Recall from Sec. 1.2 that an m x n matrix A is row equivalent to an m x n matrix
B if B can be obtained from A by a finite sequence of row operations. Theorem 21
gives a restatement of this fact in terms of elementary matrices.

Let A and B be m x n matrices. The matrix A is row equivalent to B if and only if
there are elementary matrices E1, Ea, ..., Ex suchthat B = E E;_1--- E2E1A.

In light of Theorem 21, if A is row equivalent to B, then B is row equivalent to
A. Indeed, if A is row equivalent to B, then

B=EEr1 - EsE1A

for some elementary matrices E1, Eo, ..., Ex. Successively multiplying both sides of
this equation by E; %, E; %, ..., and E;*, we obtain

A=E - ECNES!'B

Since each of the matrices E;*, E, %, ..., E;* is an elementary matrix, B is row
equivalent to A.

Theorem 22 uses elementary matrices to provide a characterization of invertible
matrices.

An n x n matrix A is invertible if and only if it can be written as the product of
elementary matrices.

Proof First assume that there are elementary matrices Ei, E», ..., E; such that
A=E1Ey - Ex1E

We claim that the matrix B = E;*--- E; E;" is the inverse of A. To show this,
we multiply both sides of A = E1E,--- E,_1E; by B to obtain

BA = (E;* - E;'E;DA = (Bt E;YETY(ErEp - By 1 E) =1

establishing the claim. On the other hand, suppose that A is invertible. In Sec. 1.4,
we showed that A is row equivalent to the identity matrix. So by Theorem 21,
there are elementary matrices E1, E», ..., E such that I = ExEy_1--- E2EqA.
Consequently, A = E;*--- E; 1. Since E;Y, ..., E;* and I are all elementary
matrices, A is the product of elementary matrices as desired.

LU Factorization

There are many reasons why it is desirable to obtain an LU factorization of a matrix.
For example, suppose that A isan m x n matrix and b;, with 1 < i < k, is a collection
of vectors in R", which represent outputs for the linear systems Ax = b;. Finding input
vectors x; requires that we solve k linear systems. However, since the matrix A is the
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same for each linear system, the process is greatly simplified if A is replaced with its
LU factorization. The details for solving a linear system using an LU factorization
are presented later in this section. If A is an n x n matrix with an LU factorization

given by A = LU, then L and U are also n x n. See Fig. 1. Then by Theorem 13 of
Sec. 1.6, the determinant of A is given by

det(A) = (Ell T El’lﬂ)(“ll e Mnn)

where ¢;; and u;; are the diagonal entries of L and U, respectively. If this determinant
is not zero, then by Theorem 9 of Sec. 1.4 the inverse of the matrix A is given by

At=@u)yt=utL?
To describe the process of obtaining an LU factorization of an m x n matrix A,
suppose that A can be reduced to an upper triangular matrix by a sequence of row

operations which correspond to lower triangular elementary matrices. That is, there
exist lower triangular elementary matrices L1, Lo, ..., L; such that

LkLk—l ce L]_A =U
Since each of the matrices L; with 1 <i < k is invertible, we have
A=L7Lt Lty

By Theorem 20, L1, L%, ..., and L;* are elementary matrices. They are also lower
triangular. Now let L = L7*L,*--- L;*. Observe that L is lower triangular as it is
the product of lower triangular matrices. The desired factorization is thus given by
A=1LU.

Find an LU factorization of the matrix

3 o =3
A= 6 15 -5
-1 -2 6

Observe that A can be row-reduced to an upper triangular matrix by means of
the row operations R : %Rl — R, R;: —6R1+ Ry, — Ry, and R3: Ri -+
R3 —> R3. The corresponding elementary matrices are therefore given by

300 100 100
Ei=]10 10 E,=| -6 1 0 Es=|(0 1 0
0 0 1 0 0 1 1 0 1
respectively, so that
(100 100 3 00 3 6 -3
E3E;EiA=|0 1 0 -6 1 0 0 10 6 15 -5
|1 01 0 0 1 0 0 1 -1 -2 6
1 2 -1
= | © 3 1| =U
|0 0 5
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An LU factorization of A is then given by A = (El‘lEz‘lEgl) U, so that
3 6 -3 3 00 1 2 -1
6 15 -5 | = 6 1 0 0 3 1
-1 2 6 -1 0 1 0 0 5

From the remarks preceding Example 2, we see that to use the above procedure
with success, there are limitations on the matrix A. Specifically, A must be reducible to
upper triangular form without any row interchanges. This will ensure that the elemen-
tary matrices used in the elimination process will all be lower triangular. Theorem 23
summarizes these results.

THEOREM 23 Let A be an m x n matrix that can be reduced to the upper triangular matrix U
without row interchanges by means of the m x m lower triangular matrices L1,
Lo, ... L. If L=L7*L;" - L7, then A has the LU factorization A = LU.

A simple example of a matrix that cannot be reduced to upper triangular form

without interchanges is given by P = { 2 (1) } This matrix does not have an LU

factorization. (See Exercise 29.)

As stated in Theorem 23, it is not necessary for A to be square, as shown in
Example 3.

m Find an LU factorization of the matrix

1 -3 -2 O
A=|1 -2 1 =0
2 -4 3 2

1 -3 -2 0
Solution Observe that A can be reduced to the upper triangular matrixU=|0 1 3 -1

0 0 1 4
by means of the elementary matrices

100 100 1 00
E, = | =N E,=| 010 Es=|0 10
00 1 2 0 1 i =2
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Solving a Linear System Using LU Factorization

We now turn our attention to the process of solving a linear system by using an

LU factorization. To illustrate the procedure, consider the linear system Ax = b with
3

b= [ 11 ] and A the matrix of Example 2. By using the LU factorization of A

9
found in Example 2,

3 6 -3 X1 3
AX = 6 15 -5 x | =] 1
-1 =2 6 X3 9

can be written equivalently as
300 1 2 -1 x1 3
LUX = 6 1 0 0 3 1 x | = 11
-1 01 0 0 5 X3 9
1

To solve this equation efficiently, we define the vector y = [ 2 } by the equation

3
1 2 -1 X1 hUI1
0 3 1 X2 = y2
0 0 5 X3 3

Making this substitution in the linear system L(UX) = b gives

300 1 3
6 1 0 y2=11
-1 0 1 V3 9

Ux =y, so that



76

Chapter 1  Systems of Linear Equations and Matrices

Using forward substitution, we solve the system Ly =b for y, obtaining y; =1,
y2 =5, and y3 = 10. Next we solve the linear system Ux =y. That is,

1 2 -1 X1 1
0 3 1 X2 | = 5
0 0 5 X3 10

Using back substitution, we obtain x3 =2, x, =1, and x; = 1.
The following steps summarize the procedure for solving the linear system
AX = b when A admits an LU factorization.

1. Use Theorem 23 to write the linear system Ax = b as L(Ux) = b.
2. Define the vector y by means of the equation Ux =Y.
3. Use forward substitution to solve the system Ly = b for y.

4. Use back substitution to solve the system Ux =y for x. Note that x is the solution
to the original linear system.

PLU Factorization

We have seen that a matrix A has an LU factorization provided that it can be row-
reduced without interchanging rows. We conclude this section by noting that when
row interchanges are required to reduce A, a factorization is still possible. In this
case the matrix A can be factored as A = PLU, where P is a permutation matrix,
that is, a matrix that results from interchanging rows of the identity matrix. As an
illustration, let

0 2 -2
A=|1 4 3
|1 2 0 |
The matrix A can be reduced to
(1 2 0]
U=|0 2 3
| 0 0 -5 ]

by means of the row operations Ri: R; <> Rz, Rz: —R;1+ Ry — R, and
R3: —R; + R3 —> R3. The corresponding elementary matrices are given by

00 1 100 1 00
Ei=]0 1 0 E,=| -1 10 and E3=|0 10
100 00 1 0 -1 1



Exercise Set 1.7

In Exercises 1-4:

1.7 Elementary Matrices and LU Factorization 7

Observe that the elementary matrix E; is a permutation matrix while E; and E3 are
lower triangular. Hence,

A=Ert (B ES) U
001][1007][1 2 o0
—lo1of|l110|]02 3
100/[011]]00 -5
= PLU

Fact Summary

1. A row operation on a matrix A can be performed by multiplying A by an
elementary matrix.

2. An elementary matrix is invertible, and the inverse is an elementary matrix.

3. An n x n matrix A is invertible if and only if it is the product of
elementary matrices.

4. An m x n matrix A has an LU factorization if it can be reduced to an
upper triangular matrix with no row interchanges.

5. If A= LU, then L is invertible.
6. An LU factorization of A provides an efficient method for solving Ax = b.

b. Write A as the product of elementary matrices.

a. Find the 3 x 3 elementary matrix E that performs 5 A— 1 3
the row operation. ' | -2 4
b. Compute EA, where -
6. A— -2 5
2 1 | 25
A= 1 2 ) )
1 -4 1 2 -1
12 7.A=|2 5 3
.2R1+ Ry, — Ry 1 2 0 |
2. R1 < R _ -
' ? -1 11
3. -3Ry+ R3 — R3 8. A= 310
-2 11
4, —R1+ R3 — R3 - -
In Exercises 5-10: [0 11
a. Find the elementary matrices required to 9. A= (1) i g
reduce A to the identity. L
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000 1
0010
10.4=19 1 0 0
100 0

In Exercises 11-16, find the LU factorization of the
matrix A.

1 -2
A= g 7}
(3 9
L2 1
1 2 1
13.A=| 2 5 5
3 -6 -2
11 1
4. A=| -1 0 —4
22 3
B 1
1 1 -3
15. A= 1 % 1
-1 -1 4
1 -2 1 3
2 5 -3 -7
A=) 1 2 2 3
| 3 -6 3 10

In Exercises 17-22, solve the linear system by using
LU factorization.

2x+y——1
4x —y=

19.
2x+8y—5z= 1

x—=2y+ z=-1
20. 2x —3y+6z= 8

—2x+4y— z= 4

x—2y+3z+ w= 5
x— y+5z+3w= 6
2x —4y+7z+3w= 14
—x+ y—57—2w=-8

21.

xX+2y+2z— w= 5

yt+ z— w=-2

22. —x—2y— z4+4w= 1
2x+2y+2z+2w= 1

In Exercises 23 and 24, find the PLU factorization of
the matrix A.

[0 1 -1
B A=|2 -1 0
1 -3 2

[0 0 1
24. A=12 1 1
|10 -3

In Exercises 25-28, find the inverse of the matrix A
by using an LU factorization.

[ 1 4
25. A= 3 11 }

1 7
26. A = 2 20 }

[2 1 -1
21. A=| 2 2 =2

12 2 1

[ -3 2 1
28. A= 3 -1 1

| -3 10

. . 0 1

29. Show directly that the matrix A = 10 does

not have an LU factorization.

30. Let A, B, and C be m x n matrices. Show that if
A is row equivalent to B and B is row equivalent
to C, then A is row equivalent to C.

31. Show that if A and B are n x n invertible
matrices, then A and B are row equivalent.

32. Suppose that A is an n x n matrix with an LU

factorization, A = LU.

a. What can be said about the diagonal entries
of L?

b. Express det(A) in terms of the entries of L
and U.

c. Show that A can be row-reduced to U using
only replacement operations.
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Applications of Systems of Linear Equations

In the opening to this chapter we introduced linear systems by describing their con-
nection to the process of photosynthesis. In this section we enlarge the scope of the
applications we consider and show how linear systems are used to model a wide
variety of problems.

Balancing Chemical Equations

Recall from the introduction to this chapter that a chemical equation is balanced if
there are the same number of atoms, of each element, on both sides of the equation.
Finding the number of molecules needed to balance a chemical equation involves
solving a linear system.

Propane is a common gas used for cooking and home heating. Each molecule of
propane is comprised of 3 atoms of carbon and 8 atoms of hydrogen, written as
C3Hg. When propane burns, it combines with oxygen gas, O,, to form carbon
dioxide, CO,, and water, H,O. Balance the chemical equation

C3Hg + O, —> CO; + H,0
that describes this process.
We need to find whole numbers x;, x, x3, and x4, so that the equation
x1C3Hg + x202 —> x3CO; + x4H,0

is balanced. Equating the number of carbon, hydrogen, and oxygen atoms on both
sides of this equation yields the linear system

3)61 — X3 =0
8x1 — 2)C4 =0

2xz—2)C3— X4=0
Solving this system, we obtain the solution set

1 5 3
SZ{(ZI’ZI’ZM) teR}

Since whole numbers are required to balance the chemical equation, particular solu-
tions are obtained by letting r =0,4,8,.... For example, if # =8, then
x1 = 2,xp = 10, x3 = 6, and x4 = 8. The corresponding balanced equation is given by

2C3Hg 4+ 100, — 6CO; 4+ 8H,0

Network Flow

To study the flow of traffic through city streets, urban planners use mathematical
models called directed graphs or digraphs. In these models, edges and points are
used to represent streets and intersections, respectively. Arrows are used to indicate
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the direction of traffic. To balance a traffic network, we assume that the outflow of
each intersection is equal to the inflow, and that the total flow into the network is
equal to the total flow out.

m Partial traffic flow information, given by average hourly volume, is known about

a network of five streets, as shown in Fig. 1. Complete the flow pattern for the
network.

100

300 500
300
200 400

400

600

500

Figure 1

Solution To complete the traffic model, we need to find values for the eight unknown flows,
as shown in Fig. 2.

X1 100
4 Y
X6
300 < < <500
4 X2 Y 300
X7
200 » B » 400
4 X3 Y X4
X8 400
< < <600
A Y X5
50
Figure 2

Our assumptions about the intersections give us the set of linear equations

X2 + Xg = 300 + x;
100 +500 = xg + 300
200 +x3 =x2 + x7

300 +x7 =400+ x4
400 +500 = x3 + xg
x4 +600 =400+ x5
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Moreover, balancing the total flow into the network with the total flow out gives

us the additional equation
500 + 600 + 500 + 200 + 100 = 400 + x5 + xg + 300 + x3
The final linear system is

—X1 + X2 + X6 = 300
X6 = 300

289 = ) + x7 = 200

— X4 —+ x7 = 100

X3 + xg= 900

— X4 + X5 = 200

X1 X5 + xg = 1200

The solution is given by

x1=1100 —s — ¢ x2=1100 — s — ¢ x3 =900 — ¢ x4 = —100 + s

x5 =100+ s xg = 300 X7==¢ xg =1

Notice that x; and xg are free variables. However, to obtain particular solutions,
we must choose numbers for s and ¢ that produce positive values for each x; in the
system (otherwise we will have traffic going in the wrong direction!) For example,

s =400 and r = 300 give a viable solution.

Nutrition

81

Designing a healthy diet involves selecting foods from different groups that, when

combined in the proper amounts, satisfy certain nutritional requirements.

Table 1 gives the amount, in milligrams (mg), of vitamin A, vitamin C, and calcium

contained in 1 gram (g) of four different foods. For example, food 1 has 10 mg of

vitamin A, 50 mg of vitamin C, and 60 mg of calcium per gram of food. Suppose
that a dietician wants to prepare a meal that provides 200 mg of vitamin A, 250
mg of vitamin C, and 300 mg of calcium. How much of each food should be used?

Table 1
Food 1 | Food 2 | Food 3 | Food 4
Vitamin A 10 30 20 10
Vitamin C 50 30 25 10
Calcium 60 20 40 25
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Solution

Let x1, x2, x3, and x4 denote the amounts of foods 1 through 4, respectively. The
amounts for each of the foods needed to satisfy the dietician’s requirement can be
found by solving the linear system

10x7 + 30x, + 20x3 + 10x4 = 200
50x7 + 30x2 + 25x3 + 10x4 = 250
60x; + 20x, + 40x3 + 25x4 = 300

Rounded to two decimal places, the solution to the linear system is given by

x1 = 0.63+ 0.11¢ xp = 3.13 + 0.24«¢
x3=5—0.92¢ X4 =1

Observe that each of these values must be nonnegative. Hence, particular solutions
can be found by choosing nonnegative values of ¢ such that

0<5-0.92

Isolating ¢ gives

5
t<——~54
— 0.92

Economic Input-Output Models

Constructing models of the economy is another application of linear systems. In a real
economy there are tens of thousands of goods and services. By focusing on specific
sectors of the economy the Leontief input-output model gives a method for describing
a simplified, but useful model of a real economy. For example, consider an economy
for which the outputs are services, raw materials, and manufactured goods. Table 2
provides the inputs needed per unit of output.

Table 2
Services | Raw materials | Manufacturing
Services 0.04 0.05 0.02
Raw materials 0.03 0.04 0.04
Manufactured goods 0.02 0.3 0.2

Here to provide $1.00 worth of service, the service sector requires $0.04 worth of
services, $0.05 worth of raw materials, and $0.02 worth of manufactured goods. The
data in Table 2 are recorded in the matrix

0.04 0.05 0.02
A= 0.03 0.04 0.04
0.02 03 0.2
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This matrix is called the input-output matrix. The demand vector D gives the total
demand on the three sectors, in billions of dollars, and the production vector x, also
in billions of dollars, contains the production level information for each sector. Each
component of Ax represents the level of production that is used by the corresponding
sector and is called the internal demand.

As an example, suppose that the production vector is

200
x= | 100
150
Then the the internal demand is given by
0.04 0.05 0.02 200 16
Ax= | 0.03 0.04 0.04 100 | = | 16
0.02 03 0.2 150 64

This result means that the service sector requires $16 billion of services, raw materi-
als, and manufactured goods. It also means that the external demand cannot exceed
$184 billion of services, $84 billion of raw materials, and $86 billion in manufactured
goods.

Alternatively, suppose that the external demand D is given. We wish to find a
level of production for each sector such that the internal and external demands are
met. Thus, to balance the economy, x must satisfy

X—Ax=D
that is,
(I —A)x=D
When I — A is invertible, then
x=(I-A)D

Suppose that the external demand for services, raw materials, and manufactured
goods in the economy described in Table 2 is given by

300
D= | 500
600

Find the levels of production that balance the economy.

From the discussion above we have that the production vector x must satisfy
(I—-Ax=D
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that is,
0.96 —0.05 -0.02 X1 300
—0.03 0.96 —-0.04 xp | = | 500
—0.02 —-0.3 0.8 X3 600

Since the matrix on the left is invertible, the production vector x can be found by
multiplying both sides by the inverse. Thus,

X1 [ 1.04 0.06 0.03 300
x | = | 0.03 1.06 0.05 500
X3 | 0.04 04 127 600

[ 360

~ | 569

| 974

So the service sector must produce approximately $360 billion worth of ser-
vices, the raw material sector must produce approximately $569 billion worth of raw
materials, and the manufacturing sector must produce approximately $974 billion

worth of manufactured goods.

Exercise Set 1.8

In Exercises 1-4, use the smallest possible positive
integers to balance the chemical equation.
1. When subjected to heat, aluminium reacts with
copper oxide to produce copper metal and
aluminium oxide according to the equation

A|3 + CuO — A|203 +Cu

Balance the chemical equation.

2. When sodium thiosulfate solution is mixed with
brown iodine solution, the mixture becomes
colorless as the iodine is converted to colorless
sodium iodide according to the equation

I, + NayS,03 — Nal + NayS;40¢
Balance the chemical equation.

3. Cold remedies such as Alka-Seltzer use the
reaction of sodium bicarbonate with citric acid in

solution to produce a fizz (carbon dioxide gas).
The reaction produces sodium citrate, water, and
carbon dioxide according to the equation

NaHCO3 + CgHgO7 —>
Na3CgH507 + H,O + CO,

Balance the chemical equation. For every 100 mg
of sodium bicarbonate, how much citric acid
should be used? What mass of carbon dioxide will
be produced?

. Balance the chemical equation

MnS + As,Cr19O35 + H,SO4 —
HMnO,4 + AsH3 + CrS3z012 + H,0

. Find the traffic flow pattern for the network in the

figure. Flow rates are in cars per hour. Give one
specific solution.



30

A Y

800 «

<500

A

A
7

<300

A Y

700

6. Find the traffic flow pattern for the network in the

figure. Flow rates are in cars per hour. Give one
specific solution.

100
A Y
400 < < <500
4 300 Y
500 » > > 300
A Y
400
< < <200
A A\

7. Find the traffic flow pattern for the network in the

figure. Flow rates are in cars per half-hour. What
is the current status of the road labeled x5?

150
X1 X4
X5
100 < > <50
X2 X3

100
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8. Find the traffic flow pattern for the network in the

figure. Flow rates are in cars per half-hour. What
is the smallest possible value for xg?

150 100

200
300

100 200

9. The table lists the number of milligrams of

vitamin A, vitamin B, vitamin C, and niacin
contained in 1 g of four different foods. A
dietician wants to prepare a meal that provides
250 mg of vitamin A, 300 mg of vitamin B, 400
mg of vitamin C, and 70 mg of niacin. Determine
how many grams of each food must be included,
and describe any limitations on the quantities of
each food that can be used.

Group 1 | Group 2 | Group 3 | Group 4
Vitamin A 20 30 40 10
Vitamin B 40 20 35 20
Vitamin C 50 40 10 30
Niacin 5 5 10 5

10. The table lists the amounts of sodium, potassium,

carbohydrates, and fiber in a single serving of
three food groups. Also listed are the daily
recommended amounts based on a 2000-calorie
diet. Is it possible to prepare a diet using the three
food groups alone that meets the recommended
amounts?
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Group 1 | Group2 | Group 3 | Requirement
Sodium (mg) 200 400 300 2400
Potassium (mg) 300 500 400 3500
Carbohydrates (g) 40 50 20 300
Fiber (g) 5 3 2 25
11. An economy is divided into three sectors as

described in the table. Each entry represents the
number of units required by the sector to produce
1 unit of output.

Services | Raw materials | Manufacturing
Services 0.02 0.04 0.05
Raw materials 0.03 0.02 0.04
Manufacturing 0.03 0.3 0.1
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. Write the input-output matrix A for the

economy.

. If the levels of production, in billions, of the

three sectors of the economy are 300, 150, and
200, respectively, find the internal demand
vector for the economy. What is the total
external demand that can be met by the three
sectors?

. Find the inverse of the matrix 7 — A.

. If the external demands on the three sectors

are 350, 400, and 600, respectively, determine
the levels of production that balance the
economy.

12. Economies are, in general, very complicated with many sectors. The input-output
matrix A is based on grouping the different industries and services into 10 separate
sectors. If the external demands to the sectors are given in the vector D, determine
the levels of production that balance the economy.

0.041
0.023
0.018
.034
0.022
0.044
0.018
0.026
0.01
0.048

0.03

0.03

13.

0.032
0.037

0.005
0.019
0.005
0.001
0.004
0.011

0.018
0.046
0.039
0.034
0.021
0.02

0.049
0.03

0.039
0.019

0.041
0.011
0.05

0.039
0.009
0.006
0.011
0.015
0.025
0.045

0.009
0.004
0.038
0.023
0.007
0.013
0.043
0.044
0.005
0.044

0.002
0.024
0.011
0.007
0.035
0.005
0.003
0.021
0.029
0.033

0.039
0.041
0.049
0.009
0.044
0.032
0.024
0.01

0.024
0.014

care in billions of dollars.

Year | Dollars (billions)
1965 30
1970 80
1975 120
1980 250
1985 400
1990 690

0.048
0.006
0.001
0.023
0.023
0.016
0.047
0.004
0.023
0.03

0.04

0.004
0.028
0.05

0.019
0.047
0.027
0.011
0.021
0.042

0.021
0.007
0.047
0.006
0.019
0.02

0.042
0.044
0.042
0.05

The table contains estimates for national health

14.

Make a scatter plot of the data.

Use the 1970, 1980, and 1990 data to write a
system of equations that can be used to find a
parabola that approximates the data.

Solve the system found in part (b).
Plot the parabola along with the data points.

e. Use the model found in part (c) to predict an

estimate for national health care spending in
2010.

The number of cellular phone subscribers
worldwide from 1985 to 2002 is given in the



table. Use the data from 1985, 1990, and 2000 to
fit a parabola to the data points. Use the quadratic
function to predict the number of cellular phone
subscribers expected in 2010.

Year Cellular Phone
Subscriber s(millions)

1985 1

1990 11

2000 741

2001 955

2002 1155

In Exercises 15-18, use the power of a matrix to solve
the problems. That is, for a matrix A, the nth power is

AT=A-A-A---A
—_—

n times

15. Demographers are interested in the movement of

populations or groups of populations from one
region to another. Suppose each year it is
estimated that 90 percent of the people of a city
remain in the city, 10 percent move to the suburbs,
92 percent of the suburban population remain in
the suburbs, and 8 percent move to the city.

a. Write a 2 x 2 transition matrix that describes
the percentage of the populations that move
from city to city (remain in the city), city to
suburbs, suburbs to suburbs (remain in the
suburbs), and suburbs to city.

b. If in the year 2002 the population of a city was
1,500,000 and of the suburbs was 600,000,
write a matrix product that gives a 2 x 1 vector
containing the populations in the city and in
the suburbs in the year 2003. Multiply the
matrices to find the populations.

c. If in the year 2002 the population of a city was
1,500,000 and of the suburbs was 600,000,
write a matrix product that gives a 2 x 1 vector
containing the populations in the city and in
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16.

17.

18.

the suburbs in the year 2004. Multiply the
matrices to find the populations.

d. Give a matrix product in terms of powers of
the matrix found in part (a) for the size of the
city and suburban populations in any year after
2002.

To study the spread of a disease, a medical
researcher infects 200 laboratory mice of a
population of 1000. The researcher estimates that
it is likely that 80 percent of the infected mice
will recover in a week and 20 percent of healthy
mice will contract the disease in the same week.

a. Write a 2 x 2 matrix that describes the
percentage of the population that transition
from healthy to healthy, healthy to infected,
infected to infected, and infected to healthy.

b. Determine the number of healthy and infected
mice after the first week.

c. Determine the number of healthy and infected
mice after the second week.

d. Determine the number of healthy and infected
mice after six weeks.

In a population of 50,000 there are 20,000
nonsmokers, 20,000 smokers of one pack or less a
day, and 10,000 smokers of more than one pack a
day. During any month it is likely that only 10
percent of the nonsmokers will become smokers
of one pack or less a day and the rest will remain
nonsmokers, 20 percent of the smokers of a pack
or less will quit smoking, 30 percent will increase
their smoking to more than one pack a day, 30
percent of the heavy smokers will remain smokers
but decrease their smoking to one pack or less,
and 10 percent will go cold turkey and quit. After
one month what part of the population is in each
category? After two months how many are in
each category? After one year how many are in
each category?

An entrepreneur has just formed a new company
to compete with the established giant in the
market. She hired an advertising firm to develop a
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campaign to introduce her product to the market.
The advertising blitz seems to be working, and in
any given month 2 percent of the consumers
switch from the time-honored product to the new
improved version, but at the same time 5 percent
of those using the new product decide to switch
back to the old established brand. How long will
it take for the new company to acquire 20 percent
of the consumers?

In Exercises 19 and 20, the figure shows an electrical
network. In an electrical network, current is measured
in amperes, resistance in ohms, and the product of
current and resistance in volts. Batteries are
represented using two parallel line segments of
unequal length, and it is understood the current flows
out of the terminal denoted by the longer line segment.
Resistance is denoted using a sawtooth. To analyze an
electrical network requires Kirchhoff’s laws, which
state all current flowing into a junction, denoted using
a black dot, must flow out and the sum of the products
of current 7 and resistance R around a closed path (a
loop) is equal to the total voltage in the path.

19. a. Apply Kirchhoff’s first law to either junction to
write an equation involving I3, I, and I.
b. Apply Kirchhoff’s second law to the two loops
to write two linear equations.
c¢. Solve the system of equations from parts
(@) and (b) to find the currents I, I, and I3.

20. a. Apply Kirchhoff’s first law to the four
junctions to write four equations involving
currents.

b. Apply Kirchhoff’s second law to the three
loops to write three linear equations.

c. Solve the system of equations from parts
(a) and (b) to find the currents I, Ir, I3, 14, Is,
and Is.

Ry =6 18V
Is é Rs =2 Loop C Is

s
I §R5:3

In Exercises 21 and 22, use the fact that if a plate has
reached a thermal equilibrium, then the temperature at
a grid point, not on the boundary of the plate, is the
average of the temperatures of the four closest grid
points. The temperatures are equal at each point on a
boundary, as shown in the figure. Estimate the
temperature at each interior grid point.

21. kY

20 25

20

22. 30

20 25

20



1. Consider the linear system

D 2 o T

f.

X+ y+2z+ w= 3
—X + z+2w= 1
2x + 2y + w=-2
x4+ y+2z+3w= 5

. Define the coefficient matrix A for the linear

system.
Find det(A).

. Is the linear system consistent? Explain.

Find all solutions to Ax = 0.

. Is the matrix A invertible? If yes, then find the

inverse.
Solve the linear system.

2. The augmented matrix of a linear system has the
form

N R PP
QU a &

1 -1 2
-1 31
3 =55
2 -2 4

. Can you decide by inspection whether the

determinant of the coefficient matrix is 0?
Explain.

Can you decide by inspection whether the
linear system has a unique solution for every
choice of a, b, ¢, and d? Explain.

. Determine the values of a, b, ¢, and d for

which the linear system is consistent.

Determine the values of a, b, ¢, and d for
which the linear system is inconsistent.

. Does the linear system have a unique solution

or infinitely many solutions?

. Mfa=2,b=1¢c= -1, and d = 4, describe

the solution set for the linear system.
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Review Exercises for Chapter 1

3. Find all idempotent matrices of the form

5 ¢

4, Let S denote the set of all 2 x 2 matrices. Find all

. a
matrices |:
C

Z } that will commute with every

matrix in S.

5. Let A and B be 2 x 2 matrices.

a.

Show that the sum of the terms on the main
diagonal of AB — BA is 0.

. If M is a2 x 2 matrix and the sum of the main

diagonal entries is 0, show there is a constant ¢
such that
M? =cl

If A, B, and C are 2 x 2 matrices, then use
parts (a) and (b) to show that

(AB — BA)>C = C(AB — BA)?

6. Find the traffic flow pattern for the network in the
figure. Flow rates are in cars per hour. Give one
specific solution.

100
4 Y
300 < < <500
4 Y 300
200> »> » 400
A Y
400
<t < <600
A Y
50
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7. a. Explain why the matrix

11111
01 1 1 1
A=|10 0 1 1 1
0 00 11
0 00 01
is invertible.

b. Determine the maximum number of 1’s that
can be added to A such that the resulting
matrix is invertible.

8. Show that if A is invertible, then A’ is invertible

and (A1 =@

9.

10.

A matrix A is skew-symmetric provided A’ = —A.
a. Let A be an n x n matrix and define

B=A+A' and C=A-A'

Show that B is symmetric and C is
skew-symmetric.

b. Show that every n x n matrix can be written as

the sum of a symmetric and a skew-symmetric
matrix.

Suppose u and v are solutions to the linear system
Ax = b. Show that if scalars a and f satisfy

o+ p =1, then au + Bv is also a solution to the
linear system Ax = b.

Chapter 1: Chapter Test

In Exercises 1-45, determine whether the statement is

true or false.

1. A 2 x 2 linear system has one solution, no
solutions, or infinitely many solutions.

2. A 3 x 3 linear system has no solutions, one
solution, two solutions, three solutions, or
infinitely many solutions.

3. If A and B are n x n matrices with no zero
entries, then AB £ 0.

4. Homogeneous linear systems always have at least

one solution.

5. If A is an n x n matrix, then Ax =0 has a

nontrivial solution if and only if the matrix A has

an inverse.

6. If A and B are n x n matrices and AXx = Bx for

every n x 1 matrix x, then A = B.

7. If A, B, and C are invertible n x n matrices, then

(ABC)l = A-1p~1Cc1.

8. If A is an invertible n x n matrix, then the linear

system AX = b has a unique solution.

9. If A and B are n x n invertible matrices and
AB = BA, then A commutes with B~ 1.

10. If A and B commute, then A2B = BAZ.

11

12.

13.

14.

15.

16.

17.

18.

The matrix
1 -2 31 0
0 -1 4 3 2
0 0 3 5 -2
0 0 0O 4
0 0 0O 6

does not have an inverse.

Interchanging two rows of a matrix changes the
sign of its determinant.

Multiplying a row of a matrix by a nonzero
constant results in the determinant being
multiplied by the same nonzero constant.

If two rows of a matrix are equal, then the
determinant of the matrix is 0.

Performing the operation aR; + R; — R; on a
matrix multiplies the determinant by the
constant a.

1 2
4 6

If A and B are invertible matrices, then A + B is
an invertible matrix.

IfA:{ },then A2 —T7A =2I.

If A and B are invertible matrices, then AB is an
invertible matrix.
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19. If Aisan n x n matrix and A does not have an 32. The solution to the system is given by the matrix
inverse, then the linear system Ax =b is equation
inconsistent. 1 1
x| | 3 5 3
20. The linear system =1 1 1
Y i 2
1 2 3 X 1
6 5 4 y | =12 In Exercises 33-36, use the linear system
0 00 z 3 x1+2xp —3xz3= 1

is inconsistent. 2x1+5x, —8x3= 4

—2x1 —4 6x3 =—2
21. The inverse of the matrix 1 X2 + bxg

o _1 11 33. The determinant of the coefficient matrix is
{3 1] 1S [_3 2} 5 -8 2 -8 2 5
-4 6 -2 6 -2 -4
22. The matrix . - .
[ 2 -1 } 34. The determinant of the coefficient matrix is 0.
4 -2 . . .
. 35. A solution to the linear system is
does not have an inverse.
. - X1=—4,X2=0, and x3 = —1.
23. If the n x n matrix A is idempotent and
invertible, then A = 1. 36. The linear system has infinitely many solutions,
24. If A and B commute, then A’ and B! commute. and the general solution is given by x3 is free,
25. If A is an n x n matrix and det(A4) = 3, then X2 =2+ 2x3, and xy = -3 — x.
det(A’A) = 9. In Exercises 37-41, use the matrix
In Exercises 26—32, use the linear system 1 -2 1 3
x— y=1 2 1 2 1
26. The coefficient matrix is 37. After the operation Ry <— Ry is performed, the
2 2 matrix becomes
A= { 1 -1 } 1 01 -1
- . . -1 -2 1 3
27. The coefficient matrix A has determinant 5 1 2 1
det(A) =0
28. The linear system has a unique solution. 38. After the operation —2R; + R3 —> R3 is
29. The only solution to the linear system is performed on the matrix found in Exercise 37, the
x=—7/4and y = —5/4. matrix becomes
30. The inverse of the coefficient matrix A is 1 0 1 -1
i % % -1 -2 1 3
AT= 7 0 -2 0 -3
z 2
31. The linear system is equivalent to the matrix 39. The matrix A is row equivalent to
equation 1 0 1 -1

HRIBEH EHE



92 Chapter 1  Systems of Linear Equations and Matrices

40. The reduced row echelon form of A is

1 00
0 10
0 01

41. If A is viewed as the augmented matrix of a
linear system, then the solution to the linear
systemis x = —5,y =3, and z = 4.

-5
3
4

In Exercises 42—-45, use the matrices

A=

|

-2

-1

WN owr

42. The matrix products AB and B A are both defined.

43. The matrix expression —2B A + 3B simplifies to a
2 x 3 matrix.

44. The matrix expression —2B A + 3B equals
-3 -5 3
-5 7 16

45. The matrix A2 is

7 4 -3
4 7 -4
-8 4 17
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In the broadest sense a signal is any time-
varying quantity. The motion of a particle
through space, for example, can be thought of
as a signal. A seismic disturbance is detected
as signals from within the earth. Sound caused
by the vibration of a string is a signal, radio
waves are signals, and a digital picture with col-
ors represented numerically also can be consid-
ered a signal. A video signal is a sequence of
images. Signals represented using real numbers
are called continuous while others that use inte-
gers are called discrete. A compact disc contains
discrete signals representing sound. Some signals
are periodic; that is, the waveform or shape of the
signal repeats at regular intervals. The period of
a wave is the time it takes for one cycle of the
wave, and the frequency is the number of cycles
that occur per unit of time. If the period of a wave
is 2T, then the frequency is F = % Every periodic motion is the mixture of
sine and cosine waves with frequencies proportional to a common frequency, called
the fundamental frequency. A signal with period 27 is a mixture of the func-
tions

X . TX 2nx . 2mx 3nx . 3mx
1, coS —,SIn —,Cc0S ——,SIn ——, CO0S ——,SIN ——, ...
T T T T T T

and for any n, the signal can be approximated by the fundamental set
X 21x 2mx nmx nTX

X . . .
1,c08 —,sin—,c0S——,sin——,...,C08 ——,Sin ——
T T T T T T

93
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2.1

The approximation obtained from the sum of the elements of the fundamental set with
appropriate coefficients, or weights, has the form

a a + a
0 1 T 1 T 2 T

+ by sin 2x + ...+ a, C0S nnx + b, sin nnx
—_ P a —_— —_—
2207 " T nUTT

This sum is called a linear combination of the elements of the fundamental set. A
square wave on the interval [—m, ] along with the approximations
4 . 4 . 4 4 . 4 4
—sinx, —sinx + —sin3x, — sinx + — sin3x + — sinbx
T T 3 T 3 51t
and
4 4 4 4
—sinx + —sin3x + — sinbx + —sin7x
T 3n 57 Vs
are shown in Fig. 1. As more terms are added, the approximations become better.

AY AY

1 1
Square wave

b 4
XV

Figure 1

In Chap. 1 we defined a vector, with n entries, as an n x 1 matrix. Vectors are
used not only in mathematics, but in virtually every branch of science. In this chapter
we study sets of vectors and analyze their additive properties. The concepts presented
here, in the context of vectors, are fundamental to the study of linear algebra. In
Chap. 3, we extend these concepts to abstract vector spaces, including spaces of
functions as described in the opening example.

Vectors in R"
Euclidean 2-space, denoted by R?, is the set of all vectors with two entries, that is,

([

X1, xp are real numbers}
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X
Figure 2
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Figure 3

DEFINITION 2
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Similarly Euclidean 3-space, denoted by R®, is the set of all vectors with three entries,
that is,
X1
RE = xo || x1,x2, x5 are real numbers
X3
In general, Euclidean n-space consists of vectors with » entries.

VectorsinR” Euclidean n-space, denoted by R", or simply n-space, is defined by

X1
., X .
R" = . x;eR, fori=1,2,...,n

Xn

The entries of a vector are called the components of the vector.

Geometrically, in R? and R® a vector is a directed line segment from the origin to
the point whose coordinates are equal to the components of the vector. For example,
the vector in R? given by

1
- 2]

is the directed line segment from the origin (0, 0) to the point (1, 2), as shown in
Fig. 2. The point (0, 0) is the initial point, and the point (1, 2) is the terminal
point. The length of a vector is the length of the line segment from the initial point

to the terminal point. For example, the length of v = [ ; } is V12422 =./5. A

vector is unchanged if it is relocated elsewhere in the plane, provided that the length
and direction remain unchanged. For example, the directed line segments between
(0,0) and (1, 2) and between (2,2) and (3, 4) are both representations of the same
vector v = ; . See Fig. 3. When the initial point of a vector is the origin, we say
that the vector is in standard position.

Since vectors are matrices, two vectors are equal provided that their corresponding
components are equal. The operations of addition and scalar multiplication are defined
componentwise as they are for matrices.

Addition and Scalar Multiplication of Vectors Let u and v be vectors in
R" and ¢ a scalar.

1. The sum of u and v is

uy V1 uy +v1

u V2 up + v2
u—+v= . =+ . = .

Un Up Uy + Uy
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Solution

2. The scalar product of ¢ and u is

cu=c

cuy,

These algebraic definitions of vector addition and scalar multiplication agree with
the standard geometric definitions. Two vectors u and v are added according to the
parallelogramrule, as shown in Fig. 4(a). The vector cu is a scaling of the vector u.
In Fig. 4(b) are examples of scaling a vector with 0 < ¢ < 1 and ¢ > 1. In addition,
if ¢ < 0, then the vector cu is reflected through the origin, as shown in Fig. 4(b). The
difference u — v = u + (—V) is the vector shown in Fig. 4(c). As shown in Fig. 4(c),
it is common to draw the difference vector u — v from the terminal point of v to the

terminal point of u.

Let
1

u= | -2
3
Find (2u 4+ v) — 3w.

V=

w b~

Using the componentwise definitions of addition and scalar multiplication, we have

Qu+v) —3w= |2

AY

@

1 -1 4
-2 |+| 4 -3 2
3 3 6 |
2 -1 —12 ]
- —4 |+ 4 +| -6
6 3 ~18 |
[ 1 —12 11
=|0|+| -6|=| -6
|9 ~18 -9
A Y A Y
2u
u \v2 U\V
o ol
/| .-
—2u
(b) (©

Figure 4
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Vectors in R”", being matrices with n rows and 1 column, enjoy all the algebraic
properties of matrices that we saw in Chap. 1.

Show that vector addition is commutative.

If u and v are vectors in R”, then

up V1 up +v1

uz V2 uz + v
u+v= . + . — R

un vn un + vn

Since addition for real numbers is commutative,

up +v1 v1 + U
us + vy V2 + Uy

u+v= ) = . =V-+u
un+vn vn+un

The zero vector in R” is the vector with each component equal to 0, that is,

0
Hence, for any vector v in R", we have v + 0 = v. Recall that for any real number a

there is a unique number —a such that a + (—a) = 0. This enables us to define the
additive inverse of any vector v as the vector

so that v+ (—v) = 0.

Theorem 1 summarizes the essential algebraic properties of vectors in R". These
properties serve as a model for the structure we will require for the abstract vec-
tor spaces of Chap. 3. The first of these properties was proved in Example 2. The
remaining justifications are left as exercises.

Let u, v, and w be vectors in R", and let ¢ and d be scalars. The following algebraic
properties hold.

1. Commutative property: Uu+v=v+u
2. Associative property: U+VvV)+w=u+(V+Ww)
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3. Additive identity: The vector O satisfies 0+ u=u+ 0= u.

4. Additive inverse: For every vector u, the vector —u satisfies
U+ (—u)=—u+u=0.

5 c(U+V)=cu+cv

6. (c+d)u=cu+du

7. ¢(du) = (cd)u

8 (Hu=u

By the associative property, the vector sum u; + u; + - - - + U, can be computed
unambiguously, without the need for parentheses. This will be important in Sec. 2.2.

—examie > [
2 4

o[ 2] vo[3] e[ 4]

Verify that the associative property holds for these three vectors. Also verify that
for any scalars ¢ and d, c(du) = (cd)u.

Solution To verify the associative property, we have

wroswm([ 2]4[2])
-12)+[=]-

u+(v+w) = [ B

and

Hence, (U+V) +W = U+ (V+ W).
For the second verification, we have

o] 4]) e[ ][ ]| ] o

The properties given in Theorem 1 can be used to establish other useful properties
of vectors in R". For example, if u € R" and ¢ is a scalar, then
ux 0
Uy 0
Qu=0/| . =|.|=0 and c0=0

U, 0
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We also have the property that (—1)u = —u. That is, the scalar product of —1 with
u is the additive inverse of u. In the case of real numbers, the statement xy = 0 is
equivalent to x = 0 or y = 0. A similar property holds for scalar multiplication. That
is, if cu = O, then either ¢ = 0 or u = 0. To see this, let

Ccuy 0

cus 0

iy 0
so that cu; =0,cu, =0, ..., cu, =0. If ¢ =0, then the conclusion holds. Other-
wise, uy =up =---=u, =0, that is, u = 0.

Fact Summary

1. The definitions of vector addition and scalar multiplication in R” agree with
the definitions for matrices in general and satisfy all the algebraic properties
of matrices.

2. The zero vector, whose components are all 0, is the additive identity for
vectors in R". The additive inverse of a vector v, denoted by —v, is
obtained by negating each component of v.

3. For vectors in R? and R® vector addition agrees with the standard
parallelogram law. Multiplying such a vector by a positive scalar changes
the length of the vector but not the direction. If the scalar is negative, the
vector is reflected through the origin.

In Exercises 1-6, use the vectors 5. Find —=3(u+v) —w.
[ 1] -2 6. Find 2u — 3(v — 2w).
u=| -2 V= 4 )
3 0 In Exercises 7—10, use the vectors
2 1 3
W= 1 U— -2 v 2
| -1 o 3 T -1
0 1

1. Findu+vand v+ u.

7. Find —2(u + 3v) + 3u.

2. Find (u+v) +wand u+ (v+w).

3. Find u — 2v + 3w.

4. Find —u + 1v — 2w.

8. Find 3u — 2v.

9. If x1 and x; are real scalars, verify that
(x1 + x2)U = x7U + xoU.
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10. If xp is a real scalar, verify that
x1(U+V) = x1U + x1V.

In Exercises 11-14, let

1 0
e = 0 e = 1
| 0] 0
0]
es=1|0
_1_

Write the given vector in terms of the vectors ey, e,
and es.

2
11.v=| 4
| 1
e
12. v= 3
. 2_
F 0
13. v= 3
__2_
F 1
14. v = 0
1
L 2

In Exercises 15 and 16, find w such that
—u+3v—2w =0.

(1 -2
15.u=| 4 V= 2
2 0

-2 2
16. u = 0 v=| -3
1 4

In Exercises 17—-24, write the vector equation as an
equivalent linear system and then solve the system.
Explain what the solution to the linear system implies
about the vector equation.

wa| 3]ve] 3]-]2]

[ 2 -1 0
MHMENH
1 -1 3
19. 1 2}—}—02[_2}:[1]
[ —1 2 -1
I ENE]
—4 0 -5 -3
21. 4 |+ 3 [ +c3 1 |=] -3
3 -1 -5 | 4 |
0 1 1 [ —1 ]
22.c1| =1 | 4+c2| 1| +c3 1 = 0
1 0 -1 | -1 |
-1 -1 1 [ —1 ]
23. 1 0 [+ 1 | +e3| -1 |= 0
1 1 -1 | 2 |
-1 0 2 6
24. 2 |4+ 2 | +e3| 1l | =17
4 4 2 3

In Exercises 25-28, find all vectors a } so that the

b
vector equation can be solved.

ol 4] o[ 1] 1]
ol 1] oo ][]
ool 4]a] 2]-[1]
SHEHRR

In Exercises 29-32, find all vectors
a
v=| b
C

so that the vector equation c1vi + caVo + ¢3v3 = V can
be solved.



29.

30.

31.

Vi =

V3 =

V1 =

V3 =

V1 =

V3

OFRkFR RPRPE OFRPN FRPOBR

|

V2

2.2

2.2 Linear Combinations 101

0 -1 1
1 32. vy = 0 Vy = -2
1 | 2] 8
1
V3 = -1
L 3 .

0 In Exercises 33-39, verify the indicated vector
1 ] property of Theorem 1 for vectors in R".
0 33. Property 2.

34. Property 3.
35. Property 4.
36. Property 5.
37. Property 6.

-

38. Property 7.
39. Property 8.

40. Prove that the zero vector in R” is unique.

Linear Combinations

In three-dimensional Euclidean space R® the coordinate vectors that define the three
axes are the vectors

0 0
eg=1|0 e=|1 and ea=|0
0 0 1

Every vector in R3 can then be obtained from these three coordinate vectors, for
example, the vector

2 1 0 0
v=|3|=2|0|+3|1|+3|0
3 0 0 1

Geometrically, the vector v is obtained by adding scalar multiples of the coordi-
nate vectors, as shown in Fig. 1. The vectors e, &, and e; are not unique in this
respect. For example, the vector v can also be written as a combination of the

vectors
1 0 -1
vi= |1 vy = 1|1 and V3 = 1
1 1 1
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~ \
SSoN -
X 20 +3e Y y
Figure 1
that is,
2
3Vi —Vy 4+ V3 = 3
3

A vector written as a combination of other vectors using addition and scalar mul-
tiplication is called a linear combination. Combining vectors in this manner plays a
central role in describing Euclidean spaces and, as we will see in Chap. 3, in describing
abstract vector spaces.

DEFINITION 1 Linear Combination Let § = {v1, Vs, ..., V] be a set of vectors in R”, and
let c1, ¢z, ..., ¢k be scalars. An expression of the form

k
c1V1 + Vo + -+ - + Vg = Z ciVi
i=1

is called a linear combination of the vectors of S. Any vector v that can be written
in this form is also called a linear combination of the vectors of S.

In Example 1 we show how linear systems are used to decide if a vector is a
linear combination of a set of vectors.

m Determine whether the vector q

V= 1

is a linear combination of the vectors
1 —2 —
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Solution The vector v is a linear combination of the vectors vy, Vo, and vz if there are scalars
c1, ¢z, and c3, such that

-1
V= 1 | =c1Vi+ oV + c3v3
10
1 —2 —6
=c1| O =+ ¢ 3 + c3 7
1 -2 5
€1 = 2C2 = 663
= 3cy + T3
c1 — 2¢p + 5¢3

Equating components gives the linear system

€1, —2C2 —66‘3:—1
3co+T7c3= 1
c1—2cp+5c3= 10

To solve this linear system, we reduce the augmented matrix

1 -2 —-6|-1 10 0| 1
0o 3 7| 1 to 0 1 0]-2
1 -2 5|10 0 0 1] 1
From the last matrix, we see that the linear system is consistent with the unique
solution
c1=1 ) =—2 and c3=1
Using these scalars, we can write v as the linear combination
-1 1 -2 —6
V= 1| =10 ]|+(-2 3 [+1 7
10 1 -2 5

The case for which a vector is not a linear combination of a set of vectors is
illustrated in Example 2.

m Determine whether the vector .

V= 11
-7
is a linear combination of the vectors

0
vi=| =2 Vo= | 5 and v3=1| 0
5
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Solution

The vector v is a linear combination of the vectors vq, vo, and vz if there are scalars
c1, ¢z, and c3, such that

-5 1 0 2
11 | =c1| =2 | +c2| 5| +c3| O
-7 2 5 8
The augmented matrix corresponding to this equation is given by
1 0 2|-5
-2 5 0 11
2 5 8| -7
Reducing the augmented matrix
1 0 2|-5 1 0 2|-5
-2 5 0| 11 to 0 5 4] 1
2 5 8|7 0 0 0] 2

shows that the linear system is inconsistent. Therefore, the vector v cannot be
written as a linear combination of the three vectors vy, vo, and vas.

To see this geometrically, first observe that the vector v is a linear combination
of v; and v,. That is,

4
V3 = 2V; + ng

Therefore, any linear combination of the three vectors vy, v, and vs, is just a linear
combination of vy and v,. Specifically,

4
c1V1 + Ve +c3V3 = €1V + 2V + 3 <2v1 + gvz)
4
=(c1+2c3)V1+ |2+ 563 ) V2

The set of all vectors that are linear combinations of vy and v» is a plane in R3,
which does not contain the vector v, as shown in Fig. 2.

Figure 2
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In R" the coordinate vectors are the n vectors given by

1 0 0

0 1 0
e = € = : e, =

0 0 1

These vectors can also be defined by the equations

() = 1 ifi=k
Wi=V 0 ifi#k
where 1 <k <n.
An important property of the coordinate vectors is that every vector in R” can be

written as a linear combination of the coordinate vectors. Indeed, for any vector v in
R", let the scalars be the components of the vector, so that

V1 1 0 0
V2 0 1 0
V= . =1 . + v2 : +---t v, .
U, 0 0 1

=v1€ + €& + - + V€,
Linear combinations of more abstract objects can also be formed, as illustrated
in Example 3 using 2 x 2 matrices. This type of construction is used extensively in
Chap. 3 when we consider abstract vector spaces.

Show that the matrix
A 11
“ |10
is a linear combination of the matrices

1 0 0 1 1 1
M1=[O 1:| M2=|:11] and M3=|:11]

Similar to the situation with vectors, we must find scalars cz, co, and ¢z such that

c1M1 + coMy + c3M3 = A

10 01 1 1] [11
clog 1|71 1|(T®[1 1|1 0

After performing the scalar multiplication and addition, we obtain

c1+c3 co+c3 | 11
co4+c3 c1+ep4+cez | |10

that is,
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Equating corresponding entries gives the linear system
c1 + cz =1
co+c3 =1
c1t+ct+ez =0

This system is consistent with solution ¢; = —1, ¢, = —1, and ¢z = 2. Thus, the
matrix A is a linear combination of the matrices My, M5, and Ms.

m Consider the homogeneous equation Ax = 0. Show that if X1, Xo, ..., X,, are solu-

tions of the equation, then every linear combination ciX1 + coXp + - - - + ¢, X, IS
also a solution of the equation.
Solution Since x3, Xp, ..., X, are solutions of the matrix equation, we have

Ax1 =0 AXo =0 AX, =0

Then using the algebraic properties of matrices, we have

A(c1Xy + c2Xo + - - + X)) = A(crXy) + A(caXz) + - - - + A(cuXy)
= c1(AX1) + c2(AX2) + - - - + ¢, (AXy)

c10+c0+---+¢,0

=0

The result of Example 4 is an extension of the one given in Example 3 of
Sec. 1.5.

Vector Form of a Linear System
We have already seen that a linear system with m equations and n variables
anxy + apxy + -+ ax, = by

a1 xy + apxy + -+ axpx, = by

A1 X1 + QX2 + - -+ AupXy = by,

can be written in matrix form as Ax = b, where A is the m x n coefficient matrix, x
is the vector in R" of variables, and b is the vector in R™ of constants. If we use the
column vectors of the coefficient matrix A, then the matrix equation can be written
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in the equivalent form

ayy ay ain by

an a az, by
X1 : + X2 . + -4 x, . = .

am1 am?2 Amn bm

This last equation is called the vector form of a linear system. This equation can also
be written as

x1A1+ A+ +x,A,=b
where A; denotes the ith column vector of the matrix A. Observe that this equation is
consistent whenever the vector b can be written as a linear combination of the column
vectors of A.

The linear system Ax = b is consistent if and only if the vector b can be expressed
as a linear combination of the column vectors of A.

Matrix Multiplication

Before concluding this section, we comment on how linear combinations can be used
to describe the product of two matrices. Let A be an m x n matrix and B an n x p
matrix. If B; is the ith column vector of B, then the ith column vector of the product
AB is given by

aip a4z ... dip by,

az a4z ... daz by;
AB; = .

am1 Am2 ... Qmn by

anby + aby 4+ aiby;
apnby + axnby + -+ az,by;

am1b1i + ap2boi + - -+ Appby;

[ ai1by; aoby; A1nbyi
a1 by; axby; A2nbyi

= . —+ . + .- .
L amlbli am2b2i amnbni

= b1iA1+ byiAy + - - - + by A,

Sincefori =1, 2, ..., p the product AB; is the ith column vector of AB, each column
vector of AB is a linear combination of the column vectors of A.
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Fact Summary

1. Every vector in R” is a linear combination of the coordinate vectors
€,e,...,6,.

2. If xq, X, ..., X are all solutions to the homogeneous equation Ax = O,
then so is every linear combination of these vectors.

3. The linear system Ax = b can be written in the equivalent vector form as
x1A1 + x2A5 + -+ - + x,A,, = b. The left side is a linear combination of the
column vectors of A.

4. The linear system Ax = b is consistent if and only if b is a linear
combination of the column vectors of A.

Exercise Set 2.2 B

In Exercises 1-6, determine whether the vector v is a -3 )
linear combination of the vectors v, and v,. 5 v= | 10 Vi = 3
10 4
—4 1
1.v=[11] vlz{l} 1
Vo = 4
w=[ 73] 2
2= 3
-2 3
13 -1 6. v= 6 V] = 4
2v=[ 3] w=[ 7] : 1
3 2
Vo = |: 0 ] Vo= | 7
3
sv=|1] =[] | - |
1 4 In Exercises 7—12, determine whether the vector v is a
linear combination of the vectors v, vo, and vs.
V2 = [ _2 ] 2 2
7.v=| 8 vi=| =2
2 0
S HECEE

3 -2
1 Vy = 0 V3 = 0
e[ 4] 0]



10.

11.

12.

V2

~Nwwoe

HI
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In Exercises 13-16, find all the ways that v can be
written as a linear combination of the given vectors.

av-[3] o]

3
0
0
1 0 0
H SE I
-3 1
-3 [ 2] 2
2 Vo = -1 V3 = -3
1 2 -1
—1 2
10] va=| -1
3 -2 |

2 lG.v:{

-2
In Exercises 17-20, determine if the matrix M is a
linear combination of the matrices M1, M,, and Ms.
-2 4 ]

g~ wnN

17.M={ 40

109



19.

20.

21.

22.

23.

24,
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we[ 1]
weld e 3 1]
we[4 2]

we| 2]

e 2 3 me[3 2]
we[2 4]

n=[5 ]
=g 2 ]we={o o)
wo=[0 1]

LetA:{_; i]andx:[_i]Writethe

product Ax as a linear combination of the column
vectors of A.

1 2 -1 -1
Let A = 2 3 4 and x = | —1
| -3 2 1 3

Write the product Ax as a linear combination of
the column vectors of A.

[ -1 -2 3 2 .
Let A = 3 4}and3:[2 5}.Wnte

each column vector of AB as a linear
combination of the column vectors of A.

2 0 -1
Let A = 1 -1 4 and
—4 3 1
3 2 1
B=| -2 1 0 |. Write each column

2 -1 1

vector of AB as a linear combination of the
column vectors of A.

In Exercises 25 and 26, write the polynomial p(x), if
possible, as a linear combination of the polynomials

and  x?2

1+x
25. p(x) =2x>—3x—1
26. p(x) = —x2+3x+3

In Exercises 27 and 28, write the polynomial p(x), if
possible, as a linear combination of the polynomials

1~|—x,—x,x2+1 and 23 —x +1
27. p(x) =x°—2x+1
28. p(x) =x°

29. Describe all vectors in R? that can be written as a
linear combination of the vectors

1 3 1
2 7 and 3
-1 -2 0

30. Describe all 2 x 2 matrices that can be written as
a linear combination of the matrices
0 0
0 1

10 0 1
00 10
31 If v=v; +V, + V3 + V4 and

V4 = V1 — 2V + 3v3, write v as a linear
combination of vy, v, and vs.

and

32. Ifv=v; +Vvo +Vv3+Vvyand vo = 2vq — 4dvs,
write v as a linear combination of vy, v3, and va.

33. Suppose that the vector v is a linear combination
of the vectors vq, v, ..., V,, and
c1V1 + Vo + -+ - + ¢V, = 0, with ¢; # 0. Show
that v is a linear combination of vo, ..., v,.

34. Suppose that the vector v is a linear combination
of the vectors vi, Vo, ..., V,, and Wy, Wo, ..., W,,,
are another m vectors. Show that v is a linear
combination of vi, vy, ..., V,, W1, Wo, ..., W,,.

35. Let S; be the set of all linear combinations of the
vectors v, Vo, ..., Vi in R?, and S, be the set of
all linear combinations of the vectors vq, vo, ...,



36.

37.

Vi, ¢V, Where ¢ is a nonzero scalar. Show that
S =8,.

Let S; be the set of all linear combinations of the
vectors v, Va, ..., Vi in R?, and S, be the set of
all linear combinations of the vectors vy, vo, ...,

Vi, V1 + Vo. Show that S§; = 5.

Suppose that AX = b is a 3 x 3 linear system that
is consistent. If there is a scalar ¢ such that

A3z = cA1, then show that the linear system has
infinitely many solutions.

2.3

38.

39.
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Suppose that AX = b is a 3 x 3 linear system that
is consistent. If A3 = A1 + A, then show that the
linear system has infinitely many solutions.

The equation
2y//_3y/+y=O

is an example of a differential equation. Show that
y=f(x)=e¢"and y =gx) = 3% are solutions
to the equation. Then show that any linear
combination of f(x) and g(x) is another solution
to the differential equation.

Linear Independence

In Sec. 2.2 we saw that given a set S of vectors in R”, it is not always possible

c
I
NI
<

that

Figure 1

XXV

sets of vectors in R".

Figure 2

DEFINITION 1
{vi,va, ..
the equation

to express every vector in R” as a linear combination of vectors from S. At the

v other extreme, there are infinitely many different subsets S such that the collection
of all linear combinations of vectors from S is R". For example, the collection of all
linear combinations of the set of coordinate vectors S = {ey, ...

is the collection of linear combinations of 7' = {ey, ...

x and T both generate R". To characterize those minimal sets S that generate R", we
require the concept of linear independence. As mativation let two vectors u and v in

R? lie on the same line, as shown in Fig. 1. Thus, there is a nonzero scalar ¢ such

,e,} is R", but so
, €, €1+ &}. In this way S

Ly This condition can also be written as

u—cv=_0

In this case we say that the vectors u and v are linearly dependent. Evidently we
have that two vectors u and v are linearly dependent provided that the zero vector is
a nontrivial (not both scalars 0) linear combination of the vectors. On the other hand,
the vectors shown in Fig. 2 are not linearly dependent. This concept is generalized to

Linearly Indpendent and Linearly Dependent The set of vectors S =
.,V } in R" is linearly independent provided that the only solution to

ciVi+cVo+ -+ eV, =0

is the trivial solution ¢y = ¢y = --- = ¢, = 0. If the above linear combination has
a nontrivial solution, then the set S is called linearly dependent.
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Solution

Solution

For example, the set of coordinate vectors

S={en....e}
in R” is linearly independent.
Determine whether the vectors
1 0
Vi, = 2 V) = 1 and
el 2=l
2 2

are linearly independent or linearly dependent.

We seek solutions to the vector equation

1 0 1
0 " 1 " 1
UL 1 [ 752
2 2 3
From this we obtain the linear system
c1+ c3=0
o+ c3=0

a1+ o+ 3=0
2c¢1 +2cp +3c3=0

V3 =

Wk R

o O O o

Subtracting the first equation from the third equation gives c; = 0. Then, from
equation 2, we have c3 = 0 and from equation 1 we have ¢; = 0. Hence, the only
solution to the linear system is the trivial solution ¢; = ¢, = ¢3 = 0. Therefore, the

vectors are linearly independent.

Determine whether the vectors

1 -1
vi=| 0 Vo = 1 V3 =
2 2

are linearly independent.

As in Example 1, we need to solve
1 -1 -2

caal 0| +ce 1| +c3 3| +es| 1 =

2 2 1

—2 2
3 Vg4 = 1
1 1

2

o O o
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This leads to the homogeneous linear system
c1— cp—2c3+2c4=0
c2+3c3+ ¢c4=0
2c1+2c0+ c3+ c4=0
with solution set given by

S ={(—2t,2t,—t,t) | t € R}

Since the linear system has infinitely many solutions, the set of vectors
{V1, Va2, V3, V4} is linearly dependent.

In Example 2, we verified that the set of vectors {v1, vz, v3, v4} is linearly depen-
dent. Observe further that the vector v4 is a linear combination of vi, vy, and vs,
that is,

Vg4 = 2V1 — 2Vo + V3
In Theorem 3 we establish that any finite collection of vectors in R", where the
number of vectors exceeds n, is linearly dependent.

Let S = {vq,Vo,...,V,} be a set of n nonzero vectors in R™. If n > m, then the
set S is linearly dependent.

Proof Let A be the m x n matrix with column vectors the vectors of S so that
A =V; for i=12,....n

In this way we have
ciV1+cVo+---+¢,Vv,, =0
in matrix form, is the homogeneous linear system

c1
c2
Ac=0 where c= .

Cn

As A is not square with n > m, there is at least one free variable. Thus, the solution
is not unique and S = {v1, ..., V,} is linearly dependent.

Notice that from Theorem 3, any set of three or more vectors in R?, four or
more vectors in R2, five or more vectors in R*, and so on, is linearly dependent. This
theorem does not address the case for which n < m. In this case, a set of n vectors
in R™ may be either linearly independent or linearly dependent.

The notions of linear independence and dependence can be generalized to include
other objects, as illustrated in Example 3.
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m Determine whether the matrices

Solution

THEOREM 4

10 -1 2 5 —6
M1=|:3 2:| M2=|: 3 2:| and M3=[_3 _2:|
are linearly independent.

Solving the equation

10 -1 2 5 —6 00
a5 2 )va| 5 5 ea] 5 2] =[ot]

is equivalent to solving
c1— ¢+ 5c3 2cp—6c3 | | 0 O
3¢c1+3cp—3c3 2c1+2cp—2¢c3 | | 0 O
Equating corresponding entries gives the linear system
c1— ¢2+5c3=0
2C2 s 6C3 =0
3c1+3c2 —3c3=0
2c1+2cp —2¢3=0

The augmented matrix of the linear system is

=il 510 10 210
0 2 —610 . 0 1 -3|0
3 3 _3l0 which reduces to 0 0 olo
2 2 =210 0 0 0|0

Therefore, the solution set is
S ={(—2t,3t,1)|t € R}

Since the original equation has infinitely many solutions, the matrices are linearly
dependent.

Criteria to determine if a set of vectors is linearly independent or dependent are
extremely useful. The next several theorems give situations where such a determination
can be made.

If a set of vectors S = {v1, Vs, ..., V,} contains the zero vector, then S is linearly
dependent.

Proof Suppose that the vector v, = 0O, for some index k, with 1 < k < n. Setting
c1=cp=-=c-1=0,¢c,=1,and ¢jy1 = 42 =--- = ¢, = 0, we have

Ovy + -+ 0Vgg + 1V + OVyg + - +0v, =0

which shows that the set of vectors is linearly dependent.
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Solution

2.3 Linear Independence

A set of nonzero vectors is linearly dependent if and only if at least one of the
vectors is a linear combination of other vectors in the set.

Proof LetS = {vi,Vy,...,V,} beasetof nonzero vectors that is linearly depen-
dent. Then there are scalars c1, ¢z, ..., ¢,, not all 0, with

Vi + Vo + -+ ¢V, =0
Suppose that ¢; # 0 for some index k. Then solving the previous equation for the
vector vi, we have

Vk Z_EVl_"’_Evk—l_ %Vk-i—l_"'_ﬁvn
Ck Ck Ck Ck
Conversely, let v, be such that

Vi =c1V1+ Vo + - - - + Cp—1Vik—1 + Cr41Vit1 + - - - + CuViy

Then

Vi + Vo + - V-1 — Vi + CrqaVipr + -+ ¢V, =0
Since the coefficient of v, is —1, the linear system has a nontrivial solution. Hence,
the set S is linearly dependent.

As an illustration, let S be the set of vectors

1 -1 [ 2
S = 3 |, 2 1,] 6
1 1 | 2
Notice that the third vector is twice the first vector, that is,
2 1]
6 | =23
2 1]

Thus, by Theorem 5, the set S is linearly dependent.

Verify that the vectors

o=[3] (8] we[i]

are linearly dependent. Then show that not every vector can be written as a linear
combination of the others.

By Theorem 3, any three vectors in R? are linearly dependent. Now, observe that
v1 and vz are linear combinations of the other two vectors, that is,

vy =0vy — V3 and vz =0vy) — Vv

115
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Figure 3

THEOREM 6

However, v, cannot be written as a linear combination of v; and vi3. To see this,
notice that the equation
avy + bvz = Vp

is equivalent to the inconsistent linear system

As shown in Fig. 3, any linear combination of the vectors v; and v is a vector that
is along the x axis. Therefore, v, is not a linear combination of v; and vs.

1. If a set of vectors S is linearly independent, then any subset of S is also a
linearly independent set of vectors.

2. If aset of vectors T is linearly dependent and S is a set of vectors that contains
T, then S is also a linearly dependent set of vectors.

Proof (1) Let 7 be a subset of S. Reorder and relabel the vectors of S, if
necessary, so that 7 = {vy, ..., v} and S = {v1, ..., Vg, Vk41, - . -, Vi }. CoNsider
the equation

Vit Vo + -+ Vv =0
Next let ¢xy1 = ¢xy2 = --- = ¢, = 0, and consider the linear combination

Vi + Vo 4 -+ Vg + OV + -+ - + 0V, =0

Since S is linearly independent, ¢; = ¢, =--- = ¢, = 0 and hence T is linearly
independent.

(2) Let T = {v1, ..., v} and suppose that 7" C S. Label the vectors of S that are
notin 7 as Vyy1, ..., Vy. Since T is linearly dependent, there are scalars c1, .. ., ¢,

not all 0, such that
Vi eV + -+ Ve =0
Then c1, ¢, ..., ¢k, Cry1 = Cra2 = -+- = ¢, = 0 is a collection of m scalars, not
all 0, with
ciVi+ Vo + -+ Ve + OVgpp + -+ - +0v,, =0
Consequently, S is linearly dependent.

Given a set of vectors § = {vi, ..., V,} and an arbitrary vector not in S, we have
seen that it may or may not be possible to write v as a linear combination of S. We

have also seen that sometimes v can be written as a linear combination of the vectors

of S in infinitely many ways. That this cannot happen for a linearly independent set
is the content of Theorem 7.
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LetS = {v1, Vo, ..., V,} be alinearly independent set. Suppose that there are scalars

c1, Co2, ..., c, Such that .
V= Z CrVik
k=1

Then the scalars are unique.

Proof To prove the result, let v be written as

n n
V= Z Vg andas  v= Z dyVi
k=1 k=1

Then

n n
O=v—-v= chvk —devk
k=1 k=1
= Z(Ck — d)Vy
k=1

Since the set of vectors S is linearly independent, the only solution to this last
equation is the trivial one. That is,

c1—d1=0,¢c0—d>=0,...,¢,—d, =0, or cr=di,co=do,...,c, =d,

Linear Systems

At the end of Sec. 2.2, in Theorem 2, we made the observation that a linear sys-
tem Ax = b is consistent if and only if the vector b is a linear combination of the
column vectors of the matrix A. Theorem 8 gives criteria for when the solution is
unique.

Let AX = b be a consistent m x n linear system. The solution is unique if and only
if the column vectors of A are linearly independent.

Proof First we prove that the condition is necessary. Suppose that the column

vectors Ag, Ay, ..., A, are linearly independent, and let
Cc1 dl
c d
c= ? and d= ?

Cn dy,
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Solution

be solutions to the linear system. In vector form, we have
A1+ A+ +c,A,=b and diA1+doAy+ -+ d,A,=Db

By Theorem 7, ¢c1 = dy,co = d>, ..., c, = d,. Hence, c =d and the solution to
the linear system is unique.

To prove the sufficiency, we will prove the contrapositive statement. Let v be a
solution to the linear system Ax = b, and assume that the column vectors of A are
linearly dependent. Then there are scalars c1, ¢z, ..., ¢,, not all 0, such that

A1+ cAr+ -+ CnAn =0

1

C
that is, if c= :2 , then Ac = 0. Since matrix multiplication satisfies the dis-

Cn
tributive property,

AV+C =Av+Ac=b+0=bhb

Therefore, the vector v + ¢ is another solution to the linear system, and the solution
is not unique. This completes the proof of the contrapositive statement. Therefore,

we have shown that if the solution is unique, then the column vectors of A are
linearly independent.

Theorem 8 provides another way of establishing Theorem 11 of Sec. 1.5 that a

linear system has no solutions, one solution, or infinitely many solutions.

Linear Independence and Determinants

In Chap. 1, we established that a square matrix A is invertible if and only if det(A) # 0.
(See Theorem 16 of Sec. 1.6.) This is equivalent to the statement that the linear
system Ax = b has a unique solution for every b if and only if det(A) ## 0. This
gives an alternative method for showing that a set of vectors is linearly independent.
Specifically, if A is a square matrix, then by Theorem 8, the column vectors of A are

linearly independent if and only if det(A) £ 0.

Let
1 1 1
S = 0,21 1| 4
3 4 5

Determine whether the set S is linearly independent.

Let A be the matrix whose column vectors are the vectors of S; that is,

111
A=|0 2 4
3 4 5
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The determinant of A can be found by expanding along the first column, so that

2 4 11 11
det(A)=1‘4 5‘—0 7 5‘+3‘2 A
=-6-0+32) =0

Therefore, by the previous remarks S is linearly dependent.

The final theorem summarizes the connections that have thus far been established
concerning solutions to a linear system, linear independence, invertibility of matrices,
and determinants.

Let A be a square matrix. Then the following statements are equivalent.

1. The matrix A is invertible.

The linear system Ax = b has a unique solution for every vector b.
The homogeneous linear system Ax = 0 has only the trivial solution.
The matrix A is row equivalent to the identity matrix.

The determinant of the matrix A is nonzero.

The column vectors of A are linearly independent.

o oA~ WD

Fact Summary

Let S be a set of m vectors in R".

1. If m > n, then S is linearly dependent.
2. If the zero vector is in S, then S is linearly dependent.

3. If uand v are in S and there is a scalar ¢ such that u = cv, then S is
linearly dependent.

4. If any vector in S is a linear combination of other vectors in S, then S is
linearly dependent.

5. If S is linearly independent and 7 is a subset of S, then T is linearly

independent.

6. If T is linearly dependent and 7 is a subset of S, then S is linearly
dependent.

7. If S ={vq,...,v,} is linearly independent and v = c1vi + - - - + ¢ Vi,
then the set of scalars ci, ..., ¢, is uniquely determined.

8. The linear system Ax = b has a unique solution if and only if the column
vectors of A are linearly independent.

9. If A is a square matrix, then the column vectors of A are linearly
independent if and only if det(A) # 0.
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Exercise Set 2.3

In Exercises 1-10, determine whether the given
vectors are linearly independent.

[ —1 ] [ 2
1. vy = 1 Vo = _3]
[ 2] [1
2.v1=__4_v2=_2}
1] [ -2
3.V1=__4_V2=_ 8]
1 0
tun[2]ne[ 2
[ 1
V3 = _1]
r T o
5 v; = 2 | v = 2
- 1_ - 3_
rog o
6. vi = 2 |vo= -1
__6_ L 3_
4 "5
7. v = 4 Vo = 3
__1_ - 3_
R
V3 = -5
L 5_
[ 3] -1
8. vy = -3 | v = 2
| -1 | -2
r T
V3 = 3
- 1_

9. V1 = Vo =

|
l_\
[N W SN

V3 =

10. vi = \2)

V3 =

In Exercises 11-14, determine whether the matrices
are linearly independent.

won-[3 3]0 1]
=] 3 S

12.M1=:_1 i]Mg:[é H
wa=[ 2 2]

13.M1=-_; _ﬂMz_{g _;]
=TI

14. M1=-_8 _HMF{_i :H
o= 2 S]m=[ 2 2]



In Exercises 15-18, explain, without solving a linear

system, why the set of vectors is linearly dependent.

g 1
15. v = 4:|V2=|:_%:|
16. vi = _i]vzz{:;}
[ 1
V3 = 3:|
[ 1 0
17 vi=| -6 v, =] 0
2 0
[ 4
V3 = 7
| 1
[ 1] 1
18. v = 0 Vo = -2
| —2 | 1
5]
V3 = -2
__1_

In Exercises 19 and 20, explain, without solving a

linear system, why the column vectors of the matrix A

are linearly dependent.

[-1 25
9.2 A=| 3 -6 3
2 -4 3
2 1 3
b.A=| 10 1
110

4 -1 2 6
20.aA=| 5 -2 0 2
2 4 -3 -2

1 2 3
2 31
b-A=1_1 10
3 5 2

21.

23.

24.

2.3 Linear Independence 121

Determine the values of a such that the vectors

1 -1 2
2 0 a
1 1 4

are linearly independent.

. Determine the values of a such that the matrices

il lio] e

are linearly independent.

Let
1 1 1
vV, = 1 Vo = 2 V3 = 1
1 3 2

a. Show that the vectors are linearly independent.

b. Find the unique scalars c1, ¢z, c3 such that the
vector

can be written as

V = c1V1 + V2 + c3V3

Let
10 11
e TR ]
01
-1 1]
a. Show that the matrices are linearly

independent.

b. Find the unique scalars c1, ¢z, c3 such that the

matrix
3 5
=133

can be written as

M = ciM1 + coMs + c3M3



122 Chapter 2 Linear Combinations and Linear Independence

c. Show that the matrix

ve[2 ]

cannot be written as a linear combination of
My, M>, and Ms.
In Exercises 25 and 26, for the given matrix A
determine if the linear system Ax = b has a unique
solution.

120
25 A=| -1 0 3
212
(3 2 4
26. A=|1 -1 4
0 2 —4

In Exercises 27—-30, determine whether the set of
polynomials is linearly independent or linearly
dependent. A set of polynomials

S = {p1(x), p2(x), ..., p.(x)} is linearly independent
provided

c1p1(x) + cap2(x) + -+ ¢y pa(x) =0
for all x implies that

ci=c=--=¢,=0

27. p1(x) =1 po(x) = —2 + 4x?
p3(x) = 2x pa(x) = —12x + 8x3

28. p1(x) =1p2(x) =x
p3(x) =5+ 2x — x?

29. p1(x) = 2 pp(x) = x pa(x) = x?
pa(x) =3x -1
30. p1(x) = x3% —2x2 4+ 1 py(x) = 5x
p3(x) = x% — 4 pa(x) = x3 + 2x
In Exercises 31-34, show that the set of functions is
linearly independent on the interval [0, 1]. A set of

functions § = {f1(x), fa(x), ..., fu(x)} is linearly
independent on the interval [a, b] provided

c1fi(x) +cafolx) + -+ cpfulx) =0
for all x € [a, b] implies that

a=c=---=¢, =0

31
32.

33.
34.

35.

36.

37.

38.

39.

40.

fi(x) =cosmix fo(x) =sinmx

fix) =e¢" fox) =e™"
f3(x) = ¥

fi(x) = x fo(x) = x% fa(x) =
fix) =x folx) =e*

f3(x) =sinmx

Verify that two vectors u and v in R" are linearly
dependent if and only if one is a scalar multiple
of the other.

Suppose that S = {v1, Vo, v3} is linearly
independent and

W1 = V1 + V2 + V3 Wy = Vo + V3

and

W3 = V3
Show that T = {wz, wy, w3} is linearly
independent.

Suppose that S = {v1, Vo, v3} is linearly
independent and

W1 =V1+ V2 W2 =V —V3

and

W3 =V + V3
Show that 7 = {wq, wy, ws} is linearly
independent.

Suppose that S = {v1, Vo, v3} is linearly
independent and

W1 = Vo Wy = V1 + V3

and

W3 =Vi +Vz + V3
Determine whether the set 7 = {w1, Wp, W3} is
linearly independent or linearly dependent.

Suppose that the set S = {v1, v»} is linearly
independent. Show that if v3 cannot be written as
a linear combination of v; and v,, then

{v1, v, vz} is linearly independent.

Let S = {vq, Vo, V3}, Where vz = vy + Vo.
a. Write vy as a linear combination of the vectors
in S in three different ways.



b. Find all scalars ¢y, ¢2, and ¢z such that
V1 = c1V1 + ¢2V2 + ¢3V3.

41. Show that if the column vectors of an m x n
matrix A1, ..., A, are linearly independent,
then

{xeR"| Ax =0} = {0}

Review Exercises for Chapter 2
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42. Let vy, ...,V be linearly independent vectors in

R", and suppose A is an invertible n x n matrix.
Define vectors w; = Av;, fori =1, ..., k. Show
that the vectors wq, ..., wy are linearly
independent. Show, using a 2 x 2 matrix, that the
requirement of invertibility is necessary.

1. If ad — bc # 0, show that the vectors

Rt

are linearly independent. Suppose that
ad — bc = 0. What can you say about the two
vectors?

2. Suppose that S = {v1, vo, v3} is a linearly
independent set of vectors in R”. Show that
T = {v1, Vo2, V1 + Vo + Vv3} is also linearly

independent.
3. Determine for which nonzero values of a the
vectors
a® 0 1
0 a and 0
1 2 1
are linearly independent.
4. Let
2s —t
S = i s, teR

N

a. Find two vectors in R? so that all vectors in S
can be written as a linear combination of the

two vectors.
b. Are the vectors found in part (a) linearly
independent?
5. Let
1 1
Vi = 0 and Vo = 1
2 1

a. Is § = {vq, o} linearly independent?

a
b. Find a vector | b | that cannot be written
C

as a linear combination of v, and vs.

c. Describe all vectors in R3 that can be written
as a linear combination of v, and vs.

d. Let
1
V3 = 0
0
Is T = {v1, Vo, v3} linearly independent or
linearly dependent?

e. Describe all vectors in R3 that can be written
as a linear combination of vy, v,, and vs.

. Let
[ 1 2
Vi = -1 Vo = 1
|1 1
[0 -2
V3= | 2 and V4 = 2
|1 1

a. Show that S = {vi, Vo, v3, v4} is linearly
dependent.

b. Show that T = {v1, Vo, v} is linearly
independent.

c. Show that v4 can be written as a linear
combination of vy, vy, and vs.
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d. How does the set of all linear combinations of
vectors in S compare with the set of all linear
combinations of vectors in 7'?

Consider the linear system

X+ y+2z+ w= 3
—X + z4+2w= 1
2x + 2y + w=-2
x+ y+2z4+3w= 5

a. Write the linear system in the matrix form
AX = b.

b. Find the determinant of the coefficient
matrix A.

c. Are the column vectors of A linearly
independent?

d. Without solving the linear system, determine
whether it has a unique solution.

e. Solve the linear system.

10
-1 1
ws=[1 5]
a. Show that the set {M1, M,, M3} is linearly
independent.

. Let

M, = M,

Il
| —
N -

e
| I

b. Find the unique scalars c1, ¢z, and c¢3 such that

1 -1
2 1

c. Can the matrix

} = 1M1+ coMp + c3M3

o)

be written as a linear combination of My, M5,
and M3?

9.

10.

d. Describe all matrices [ a b
c d

written as a linear combination of My, M5,
and Ms.

} that can be

Let
1 3 2
A=1]2 -1 3
1 1 -1

a. Write the linear system Ax = b in vector
form.

b. Compute det(A). What can you conclude as to
whether the linear system is consistent or
inconsistent?

c. Are the column vectors of A linearly
independent?

d. Without solving the linear system, does the
system have a unique solution? Give two
reasons.

Two vectors in R" are perpendicular provided

their dot product is 0. Suppose S = {v1, V2, ...,

v,,} is a set of nonzero vectors which are pairwise

perpendicular. Follow the steps to show S is

linearly independent.

a. Show that for any vector v the dot product
satisfies v-v > 0.

b. Show that for any vector v # 0 the dot product
satisfies v-v > 0.

¢. Show that for all vectors u, v, and w the dot
product satisfies

u-(V+w)=u-v+u-w
d. Consider the equation
ciVi+ GV + -+ 6V, =0

Use the dot product of v;, foreach 1 <i <n,
with the expression on the left of the previous
equation to show that ¢; = 0, for each
1<i<n.
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Chapter 2: Chapter Test

In Exercises 1-33, determine whether the statement is

true or false.

1. Every vector in R® can be written as a linear
combination of

1 0 0
0 1 0
0 0 1

2. Every 2 x 2 matrix can be written as a linear
combination of

10 0 1 00
0 0 0 0 10
3. Every 2 x 2 matrix can be written as a linear
combination of
01
00

o 1]

In Exercises 4-8, use the vectors

= O

o O
[ I

1 2
vi=1| 0 vo= | 1
1 0
4
V3 = 3
-1

4. The set S = {v1, Vo, v3} is linearly independent.

5. There are scalars ¢; and ¢, so that
V3 = c1V1 + c2Va.

6. The vector v, can be written as a linear
combination of v, and vs.

7. The vector v, can be written as a linear
combination of v, and vs.

8.

10.

If vq, Vo, and v3 are the column vectors of a 3 x 3
matrix A, then the linear system Ax = b has a
unique solution for all vectors b in R®.

The polynomial p(x) = 3 + x can be written as a

linear combination of ¢1(x) = 1 + x and

g@px)y=1—x — x2.

The set
1 1
S = -11,] 0|,
3 1
2 0
-2 |, 1
6 0

is linearly independent.

In Exercises 11-14, use the matrices

11.

12.

13.

14.

0
1

o o

1 -1
=[5 5]

00 2 —
M3:[o 1} M“:{l

The set S = {My, My, M3, My} is linearly
independent.

The set T = {M1, M, M3} is linearly
independent.

|

|
|

w -

The set of all linear combinations of matrices in S
is equal to the set of all linear combinations of
matrices in 7.

Every matrix that can be written as a linear
combination of the matrices in 7' has the

form
X —X
5
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The vectors

S 1 0
0 s 1
0 1 S

are linearly independent if and only if s =0 or
s =1

In Exercises 16—19, use the vectors

16.
17.

18.

19.

20.

21.

22.

-[1] we[ 2]

The set S = {v1, v2} is linearly independent.

Every vector in R? can be written as a linear
combination of v, and v».

If the column vectors of a matrix A are v; and v,
then det(A) = 0.

If b is in R? and c1v1 + covo = b, then
c1
c2

where A is the 2 x 2 matrix with column vectors

vy and vs.

] =A"1b

The column vectors of the matrix

cos® sinh
—sin® cosHO

are linearly independent.

If v; and v, are linearly independent vectors
in R" and v3 cannot be written as a scalar
multiple of vy, then vy, vo, and v3 are linearly
independent.

If §={vi,Vvs,...,V,]} is a set of nonzero vectors
in R that are linearly dependent, then every

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

vector in S can be written as a linear combination
of the others.

If vi and v, are in R3, then the matrix with
column vectors vy, Vo, and v; + v, has a nonzero
determinant.

If vi and v, are linearly independent, v1, Vo, and
v1 + vy are also linearly independent.

If the set S contains the zero vector, then S is
linearly dependent.

The column vectors of an n x n invertible matrix
can be linearly dependent.

If A is an n x n matrix with linearly independent
column vectors, then the row vectors of A are
also linearly independent.

If the row vectors of a nonsquare matrix are
linearly independent, then the column vectors are
also linearly independent.

If va, Vo, v3, and v, are in R* and {v1, V2, v3} is
linearly dependent, then {vi, v, v3, v4} is linearly
dependent.

If Vi, Vo, V3, and v, are in R* and {v1, Vo, va} is
linearly independent, then {vi, V2, Vs, v4} is
linearly independent.

If vq, v2, v3, and v, are in R* and {v1, Vo, V3, v4}
is linearly independent, then {v1, v, v3} is linearly
independent.

If V1, V2, V3, and V4 are in R* and {v1, Vo, V3, Vg}
is linearly dependent, then {vi, vo, v3} is linearly
dependent.

If S ={vi,Vs,...,Vs}) is asubset of R*, then S is
linearly dependent.
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hen a digital signal is sent through space

(sometimes across millions of miles),
errors in the signal are bound to occur. In
response to the need for reliable information,
mathematicians and scientists from a variety
of disciplines have developed ways to improve
the quality of these transmissions. One obvious
method is to send messages repeatedly to increase
the likelihood of receiving them correctly. This,
however, is time-consuming and limits the num-
ber of messages that can be sent. An innovative
methodology developed by Richard Hamming in
1947 involves embedding in the transmission a
means for error detection and self-correction. One
of Hamming’s coding schemes, known as Ham-
ming’s (7,4) code, uses binary vectors (vectors
consisting of 1s and 0s) with seven components.

Some of these vectors are identified as codewords © Brand X Pictures/PunchStock/RF

depending on the configuration of the 1s and Os within it. To decide if the binary

vector

127
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is a codeword, a test using matrix multiplication is performed. The matrix given by

1110100
cC=|0111010
1011001

is called the check matrix. To carry out the test, we compute the product of C and b,
using modulo 2 arithmetic, where an even result corresponds to a 0 and an odd result
corresponds to a 1. This product produces a binary vector with three components
called the syndrome vector given by

Cb=s

A binary vector b is a codeword if the syndrome vector s= 0. Put another way, b
is a codeword if it is a solution to the homogeneous equation Cb = 0 (mod 2). For
example, the vector

1
1
0
u= 0
0
1
._1_
is a codeword since
T
1
1110100 0 2 0
Cu=|01 11010 Ol=]2]|=]|0] (mod?2)
1011001 0 2 0
1
_1_
whereas the vector
Eh
1
1 3 1
v=1|0 is not since Cv=|2|=1| 0| (mod?2)
0 2 0
0
_0_

With this ingenious strategy the recipient of a legitimate codeword can safely assume
that the vector is free from errors. On the other hand, if the vector received is not
a codeword, an algorithm involving the syndrome vector can be applied to restore
it to the original. In the previous example the fifth digit of v was altered during the
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transmission. The intended vector is given by

<
*
Il
CORrRORREE

Hamming’s (7,4) code is classified as a linear code since the sum of any two code-
words is also a codeword. To see this, observe that if u and v are codewords, then
the sum u + v is also a codeword since

CU+Vv)=Cu+Cv=0+0=0 (mod 2)

It also has the property that every codeword can be written as a linear combination
of a few key codewords.

In this chapter we will see how the set of all linear combinations of a set of vectors
forms a vector space. The set of codewords in the chapter opener is an example.

Definition of a Vector Space

In Chap. 2 we defined a natural addition and scalar multiplication on vectors in
R" as generalizations of the same operations on real numbers. With respect to these
operations, we saw in Theorem 1 of Sec. 2.1 that sets of vectors satisfy many of
the familiar algebraic properties enjoyed by numbers. In this section we use these
properties as axioms to generalize the concept of a vector still further. In particular,
we consider as vectors any class of objects with definitions for addition and scalar
multiplication that satisfy the properties of this theorem. In this way our new concept
of a vector will include vectors in R" but many new kinds as well.

Vector Space A set V is called a vector space over the real numbers provided
that there are two operations—addition, denoted by @, and scalar multiplication,
denoted by ©—that satisfy all the following axioms. The axioms must hold for
all vectors u, v, and w in V and all scalars ¢ and d in R.

1. Thesumu®visin V. Closed under addition
2. uepv=vdu Addition is commutative
3. UBV)OW=UD(VOW) Addition is associative
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Solution

Solution

4. There exists a vector 0 € V such that for Additive identity
every vectorue V,0u=ud0=u.

5. For every vector u € V, there exists a vec- Additive inverse
tor, denoted by —u, such that u @ (—u) =
—ueu=0.
6. The scalar product c©Q u isin V. Closed under scalar
multiplication

7.cOoUBV)=>COUB(COV)
c+d)OU=(cOUud[dou
9. cOMOU =(cd)OU

o

101Gu=u

In this section (and elsewhere when necessary) we use the special symbols &
and © of the previous definition to distinguish vector addition and scalar multi-
plication from ordinary addition and multiplication of real numbers. We also will
point out that for general vector spaces the set of scalars can be chosen from any
field. In this text, unless otherwise stated, we chose scalars from the set of real
numbers.

Euclidean Vector Spaces The set V = R"” with the standard operations of
addition and scalar multiplication is a vector space.

Axioms 2 through 5 and 7 through 10 are shown to hold in Theorem 1 of Sec. 2.1.
The fact that R” is closed under addition and scalar multiplication is a direct con-
sequence of how these operations are defined. The Euclidean vector spaces R"
are the prototypical vector spaces on which the general theory of vector spaces is
built.

Vector Spaces of Matrices Show that the set V = M,,,, of all m x n matrices
is a vector space over the scalar field R, with @ and © defined componentwise.

Since addition of matrices is componentwise, the sum of two m x n matrices is
another m x n matrix as is a scalar times an m x n matrix. Thus, the closure
axioms (axioms 1 and 6) are satisfied. We also have that 1 ©® A = A. The other
seven axioms are given in Theorem 4 of Sec. 1.3.
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When we are working with more abstract sets of objects, the operations of addition
and scalar multiplication can be defined in nonstandard ways. The result is not always
a vector space. This is illustrated in the next several examples.

Let V = R. Define addition and scalar multiplication by
adb=2a+2b and k©a=ka

Show that addition is commutative but not associative.

Since the usual addition of real numbers (on the right-hand side) is commutative,

a®db=2a+2b

=2b + 2a

=boa
Thus, the operation & is commutative.

To determine whether addition is associative, we evaluate and compare the
expressions
(@adb)ydc and ad(bado)

In this case, we have

@adb)dc=(2a+2b) D c and ad(bdc)=ad (2b+ 2c)
= 2(2a + 2b) + 2¢ = 2a + 2(2b + 2¢)
=4a +4b + 2¢ =2a+4b+ 4c

We see that the two final expressions are not equal for all choices of «, b, and
c. Therefore, the associative property is not upheld, and V is not a vector space.

Let V = R. Define addition and scalar multiplication by
adb=d"® and koa=ka
Show that V is not a vector space.

In this case
adb=ad" and boa=p"

Since a® # b“ for all choices of a and b, the commutative property of addition is
not upheld, and V is not a vector space.

In Example 5 we show that familiar sets with nonstandard definitions for addition
and scalar multiplication can be vector spaces.
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TR LotV =(@.b) |a.beR). Letv=(u1,v) and W = (wy, wp). Define

Solution

(v1, v2) @ (w1, wp) = (v1 + w1 + 1, v +wy + 1) and
cO W, 1) =(cvi+c—1co+c—1)

Verify that V is a vector space.

First observe that since the result of addition or scalar multiplication is an ordered
pair, V is closed under addition and scalar multiplication. Since addition of real
numbers is commutative and associative, axioms 2 and 3 hold for the & defined
here. Now an element w € V is the additive identity provided that for all v e V

vow=v or (v1+ws+1v+wr+1)=(v1,v2)
Equating components gives

vt+w+l=u and v +wr+1l=nu S0
w1 =-1 and wy =-1

This establishes the existence of an additive identity. Specifically, 0 = (-1, —1),
S0 axiom 4 holds.
To show that each element v in V has an additive inverse, we must find a
vector w such that
vow=0=(-1,-1)
Since v w = (v1 + w1 + 1, va + wy + 1), this last equation requires that

v+w+l=-1 and vy +w,+1=-1 so that
w1 =—v; —2 and wy =—vy—2
Thus, for any element v = (v1, v2) in V, we have —v = (—v; — 2, —vy — 2). The
remaining axioms all follow from the similar properties of the real numbers.

A polynomial of degree n is an expression of the form
p(x) =ag+ aix + apx® + ot ay1x" + ax”

where ao, ..., a, are real numbers and a, # 0. The degree of the zero polynomial is
undefined since it can be written as p(x) = Ox” for any positive integer n. Polynomials
comprise one of the most basic sets of functions and have many applications in
mathematics.

Vector Space of Polynomials Let n be a fixed positive integer. Denote by P,
the set of all polynomials of degree n or less. Define addition by adding like terms.
That is, if

p(x) =ag + aix + apx? + -+ ap_1x" "+ apx”
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and
q(x) = by + b1x + b2x2 AL 000l bn—lx”_l ¥ byx"
then

p(x) @ q(x) = (ao + bo) + (a1 + by)x + (ag + b2)x* + -+ + (an + by)x"
If ¢ is a scalar, then scalar multiplication is defined by
¢ ® p(x) = cag + carx + cax® + -+ cay_1x""* + cap,x"

Verify that V = P, U {0} is a real vector space, where O is the zero polynomial.

Since the sum of two polynomials of degree n or less is another polynomial of
degree n or less, with the same holding for scalar multiplication, the set V is closed
under addition and scalar multiplication. The zero vector is just the zero polynomial,
and the additive inverse of p(x) is given by

—p(x) = —ap — a;x — apx? — o —ap_1x" 1t — a,x”

The remaining axioms are consequences of the properties of real numbers. For
example,

p(x) ® q(x) = (ap + bo) + (a1 + b1)x + (az + ba)x* + - - + (@, + by)x"
= (bo + ag) + (b1 + a1)x + (b2 + ap)x® + - - + (by + ay)x"
=q(x) ® p(x)

In the sequel we will use P, to denote the vector space of polynomials of degree
n or less along with the zero polynomial.

The condition degreen or less cannot be replaced with all polynomials of degree
equal to n. The latter set is not closed under addition. For example, the polynomials
x2—2x+1 and —x? + 3x + 4 are both polynomials of degree 2, but the sum is
x + 5, which has degree equal to 1.

Vector Space of Real-Valued Functions Let V be the set of real-valued
functions defined on a common domain given by the interval [a, b]. For all f and
g in V and ¢ € R, define addition and scalar multiplication, respectively, by

(f®gx) = f(x)+gkx)  and (cO Hx) =cfx)
for each x in [a, b]. Show that V is a real vector space.
Since the pointwise sum of two functions with domain [a, b] is another function

with domain [a, b], the set V is closed under addition. Similarly, the set V is closed
under scalar multiplication.
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EXAMPLE 8

To show that addition in V is commutative, let f and g be functions in V.
Then

(fex)=f(x)+gkx)=gx)+ f(x) =(g® f)x)
Addition is also associative since for any functions f, g, and 4 in V, we have

(fO@EOM)(x) = f(x)+ (8@ h)(x)
= f(x) +gx) + h(x)
=(f®gx)+h(x)
=({(fegdhk)

The zero element of V, denoted by O, is the function that is 0 for all real
numbers in [a, b]. We have that O is the additive identity on V since

(f @0 (x) = f(x) +0(x) = f(x)

Next we let ¢ and d be real numbers and let f be an element of V. The
distributive property of real numbers gives us

c+d)O f(x)=(+d)fx)=cf(x)+df(x)
=0 fNHX)DUEO f)x)

SO(c+d)O f=(Of)®(dO f), establishing property 8.
The other properties follow in a similar manner.

The set of complex numbers, denoted by C, is defined by
C={a+bi|abeR}

where i satisfies
i2=—1  orequivalently i=+—1
The set of complex numbers is an algebraic extension of the real numbers, which
it contains as a subset. For every complex number z = a + bi, the real number «a is
called the real part of z and the real number b the imaginary part of z.
With the appropriate definitions of addition and scalar multiplication, the set of
complex numbers C is a vector space.

Vector Space of Complex Numbers Let z=a + bi and w = ¢ + di be ele-
ments of C and a a real number. Define vector addition on C by

Zz&W=(a+bi)+ (c+di)=(a+c)+ b+d)i
and scalar multiplication by
a®zZ=a® (a+ bi) =aa+ (ab)i

Verify that C is a vector space.
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Solution For each element z = a + bi in C, associate the vector in R? whose components
are the real and imaginary parts of z. That is, let

Z=a+ bi <— [Z}

Observe that addition and scalar multiplication in C correspond to those same
operations in R?. In this way C and R? have the same algebraic structure. Since
R? is a vector space, so is C.

In Example 8, we showed that C is a vector space over the real numbers. It is
also possible to show that C is a vector space over the complex scalars. We leave the
details to the reader.

Example 9 is from analytic geometry.

m Leta, b, and ¢ be fixed real numbers. Let V be the set of points in three-dimensional

Euclidean space that lie on the plane P given by
ax+by+cz=0

Define addition and scalar multiplication on V coordinatewise. \Verify that V is a
vector space.

Solution To show that V is closed under addition, let u = (u1, up, u3) and v = (v1, vo, v3)
be points in V. The vectors u and v are in V provided that

aui + buy +cuz3 =0 and avi +bvy +cv3 =0

Now by definition
Ud V= (u1+ vy, up + va, uz + v3)
We know that u @ v is in V since

a(uy + vy) + b(uy + v2) + c(uz + v3) = auy + avy + buy + bvy + cuz + cvs
= (auy + buy + cuz) + (avy + bvy + cv3)
=0

Similarly, V is closed under scalar multiplication since for any scalar o, we have

a® U= (au, s, Aus)
and
a(auy) + b(aur) + c(aus) = a(auy + buy + cuz) = a(0) =0

In this case the zero vector is (0, 0, 0), which is also on the plane P. Since
the addition and scalar multiplication defined on V are the analogous operations
defined on the vector space R, the remaining axioms are satisfied for elements of
V as well.
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We conclude this section by showing that some familiar algebraic properties of
R" extend to abstract vector spaces.

THEOREM 1 In a vector space V, additive inverses are unique.

Proof Let u be an element of V. Suppose that v and w are elements of V and
both are additive inverses of u. We show that v = w. Since

upv=_0 and uew=20
axioms 4, 3, and 2 give
V=vh0=vaUupw) =Vaou dw=0pw=w

establishing the result.

THEOREM 2 Let V be a vector space, u a vector in V, and ¢ a real number.

1L.0ou=0

2.¢c00=0

3 (-1))Ou=-u

4. If c©Ou =0, then eitherc =00ru=0.

Proof (1) By axiom 8, we have
Oou=0+0)ou=0oweOou

Adding the inverse —(0 ® u) to both sides of the preceding equation gives the
result.
(2) By axiom 4, we know that 0 ¢ 0 = 0. Combining this with axiom 7 gives

cO0=c0 00 =(Cc00® (00

Again adding the inverse —(c ® 0) to both sides of the last equation gives the
result.
(3) By axioms 10 and 8 and part 1 of this theorem,

ud (—hHou=>1ouwa[(-1)ou

=1-Dou
=00u
=0

Thus, (—1) © u is an additive inverse of u. Since —u is by definition the addi-
tive inverse of u and by Theorem 1 additive inverses are unique, we have
(D ou=-—u.
(4) Let cOu=0. If ¢ =0, then the conclusion holds. Suppose that ¢ = 0. Then
multiply both sides of

cOQu=0
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1
by — and apply part 2 of this theorem to obtain
C

1
—O(ou=0 so that 16ou=0
C

and hence u = 0.

Fact Summary

1. To determine whether a set V with addition and scalar multiplication

defined on V is a vector space requires verification of the 10 vector space
axioms.

. The Euclidean space R" and the set of matrices M,,«,, with the standard

componentwise operations, are vector spaces. The set of polynomials of
degree n or less with termwise operations is a vector space.

. In all vector spaces, additive inverses are unique. Also

Ocou=0 cO0=0 and (1) ou=—u

In addition if ¢ © u = 0, then either the scalar ¢ is the number 0 or the
vector u is the zero vector.

In Exercises 1-4, let V = R3. Show that V with the x1 x2 2x1 + 2x7
given operations for @ and © is not a vector space. |y | @]y |=| 2y1+2y
X1 M x, ] M X1 — X 21 | 22 | | 221+ 2z
Lin |8 y1— )2 -4
21 22 71— 22 1 cx1
C T ) cO| N | = m;n
- _ 21 cz1
X1 cX1 B - B
cO | ¥y iy1 x1 [ x| " X1 + X0
Ll L 4 |l |@| 2 |=|ntr
_ _ _ 21 | 22 | | 21+22
X1 X2 x1+x2—1
2 yi | D[ » y+y—1 [ x1 ] [ ¢+ x1
71 | 22 | | nt+z2—1 cO|l n | = y1
| 21 | |«
[ x1 ] [ enm : . )
coln - 5. Write out all 10 vector space axioms to show R
2 21 with the standard componentwise operations is a

vector space.
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6. Write out all 10 vector space axioms to show that
M>,» with the standard componentwise operations
is a vector space.

7. Let V = R? and define addition as the standard
componentwise addition and define scalar
multiplication by

o[y ]=[]
y y
Show that V is not a vector space.

8. Let
a

V= b
1

a. With the standard componentwise operations
show that V is not a vector space.

b. If addition and scalar multiplication are defined
componentwise only on the first two
components and the third is always 1, show
that V is a vector space.

9. Let V = R? and define
a c| | a+2c
lelal=[0ik]

o3 ]=15]

Determine whether V is a vector space.

~{[ 4]0

and let addition and scalar multiplication be the
standard operations on vectors. Determine
whether V is a vector space.

te IRE}

_ t+1
v={] '3}
and let addition and scalar multiplication be the

standard operations on vectors. Determine
whether V is a vector space.

a,belR

10. Let

11. Let

12. Let

a,b,ce[R{}

and let addition and scalar multiplication be the
standard componentwise operations. Determine
whether V is a vector space.

13. Let
V:{[a b] a,b,celR}
c 1

a. If addition and scalar multiplication are the
standard componentwise operations, show that
V is not a vector space.

b. Define
a b d e| | a+d b+e
c 1% s 1T ety 1

and b ka kb
a a
kG[c 1}:[kc 1]
Show that V is a vector space.

In Exercises 14-19, let V be the set of 2 x 2 matrices
with the standard (componentwise) definitions for
vector addition and scalar multiplication. Determine
whether V' is a vector space. If V is not a vector space,
show that at least one of the 10 axioms does not hold.

14. Let V be the set of all skew-symmetric matrices,
that is, the set of all matrices such that A’ = —A.

15. Let V be the set of all upper triangular matrices.

16. Let V be the set of all real symmetric matrices,
that is, the set of all matrices such that A" = A.

17. Let V be the set of all invertible matrices.
18. Let V be the set of all idempotent matrices.

19. Let B be a fixed matrix, and let V be the set of
all matrices A such that AB = 0.

20. Let
V:{[a b:|
c —a

and define addition and scalar multiplication as
the standard componentwise operations.
Determine whether V is a vector space.

a,b,ceR}

21. Let V denote the set of 2 x 2 invertible matrices.
Define

A®B=AB cOA=CcA



a. Determine the additive identity and additive
inverse.

b. Show that V is not a vector space.

22. Let
t
e RE I

n 5]
{1+t1}®{1+t2 ]

_ n+n
Tl 14+

o t _ ct
¢ 14+t | | 1+ct

a. Find the additive identity and inverse.
b. Show that V is a vector space.
c. Verify that 0© v =0 for all v.

Define

23. Let
1+ ¢
V= 2— ¢t telR
3+ 2t
Define
1+ n 1+ n
2— 1 | ®| 2— 1
3+ 21 3+ 25
[14+ (141
=|2- (1+t)
| 3+ (211 + 212)
1+ ¢ [ 14 et
cO| 2—1t | =|2— ct
342 | 3+2ct

a. Find the additive identity and inverse.
b. Show that V is a vector space.
c. Verify 0© v =0 for all v.

24, Let
1 2
u=1|0 v=| -1
1 1

and

S={au+bv|a,beR}
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Show that S with the standard componentwise
operations is a vector space.
25. Let v be a vector in R", and let
S = {v}
Define & and © by
VOV=V cOV=V

Show that S is a vector space.

26. Let
X
S = y
z

3x—2y+z=0

Show that S with the standard componentwise
operations is a vector space.

27. Let S be the set of all vectors

X

y
z

in R® such that x + y — z = 0 and
2x — 3y + 2z = 0. Show that S with the standard
componentwise operations is a vector space.

28. Let

and define

@

coS 1 CoS 1y
sinf sint,

| cos(ty + 1)
T | sin(t + 1)

o cost | | cosct

¢ sint | | sinct

a. Determine the additive identity and additive
inverse.

b. Show that V is a vector space.

c. Show that if & and © are the standard
componentwise operations, then V is not a
vector space.
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29. Let V be the set of all real-valued functions Determine whether V is a vector space.
defined on R with the standard operations that
satisfy f(0) = 1. Determine whether V is a
vector space. V={fx+1|teR}

30. Let V be the set of all real-valued functions Define
defined on R.

31. Let f(x) = x® defined on R and let

fax+1)® fx+n)=fx+u+1)

Define f & g by
_ cO S+ =flx+en)
(fORHE =)+ a. Determine the additive identity and additive
and define ¢ © f by inverses.
€O ) = fx+0) b. Show that V is a vector space.

3.2 p Subspaces

Many interesting examples of vector spaces are subsets of a given vector space V that
are vector spaces in their own right. For example, the xy plane in R® given by

X
y x,yeR
0

is a subset of R3. It is also a vector space with the same standard componentwise
operations defined on R3. Another example of a subspace of a vector space is given
in Example 9 of Sec. 3.1. The determination as to whether a subset of a vector space
is itself a vector space is simplified since many of the required properties are inherited
from the parent space.

DEFINITION 1 Subspace A subspace W of a vector space V is a nonempty subset that is itself
a vector space with respect to the inherited operations of vector addition and scalar
multiplication on V.

The first requirement for a subset W C V to be a subspace is that W be closed
under the operations of V. For example, let V be the vector space R? with the
standard definitions of addition and scalar multiplication. Let W € R? be the subset

defined by
a

Observe that the sum of any two vectors in W is another vector in W, since

slelo]=1s"]
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W s not a subspace of V
Figure 1
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In this way we say that W is closed under addition. The subset W is also closed under
scalar multiplication since for any real number c,

a ca
o[5]=1%]
which is again in W.

On the other hand, the subset

-]

is not closed under addition, since

HEMH S

which is not in W. See Fig. 1. The subset W is also not closed under scalar multipli-
cation since
a ca
ol §]-1¢]

which is not in W for all values of ¢ # 1.

Now let us suppose that a nonempty subset W is closed under both of the oper-
ations on V. To determine whether W is a subspace, we must show that each of the
remaining vector space axioms hold. Fortunately, our task is simplified as most of
these properties are inherited from the vector space V. For example, to show that the
commutative property holds in W, let u and v be vectors in W. Since u and v are
also in V, then

udv=vou
Similarly, any three vectors in W satisfy the associative property, as this property is
also inherited from V. To show that W contains the zero vector, let w be any vector
in W. Since W is closed under scalar multiplication, 0 © w € W. Now, by Theorem 2
of Sec. 3.1, we have 0 ©w = 0. Thus, 0 € W. Similarly, for any w € W,

How=-w

is also in W. All the other vector space properties, axioms 7 through 10, are inherited
from V. This shows that W is a subspace of V. Conversely, if W is a subspace of
V, then it is necessarily closed under addition and scalar multiplication. This proves
Theorem 3.

Let W be a nonempty subset of the vector space V. Then W is a subspace of V if
and only if W is closed under addition and scalar multiplication.

By Theorem 3, the first of the examples above with

v={[5]|o<n}
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Solution

is a subspace of R? while the second subset

o~{[]] oo

For any vector space V the subset W = {0}, consisting of only the zero vector,
is a subspace of V, called the trivial subspace. We also have that any vector space
V, being a subset of itself, is a subspace.

W:{[ail} “GR}

be a subset of the vector space V = R? with the standard definitions of addition

Let

and scalar multiplication. Determine whether W is a subspace of V.

In light of Theorem 3, we check to see if W is closed under addition and scalar
multiplication. Let

u= " and V= v
Tl u+1 O

be vectors in W. Adding the vectors gives
u v
wou=[ 4y o[ 2]

_ u-+v
Tl ud+v+2

This last vector is not in the required form since
ut+tv+2#u+v+1

and hence we see that u @ v is not in W. Thus, W is not a subspace of V.

It is sometimes easy to show that a subset W of a vector space is not a subspace.
In particular, if 0 ¢ W or the additive inverse of a vector is not in W, then W is not a
subspace. In Example 1, W is not a subspace since it does not contain the zero vector.

The trace of a square matrix is the sum of the entries on the diagonal. Let M>,,
be the vector space of 2 x 2 matrices with the standard operations for addition and
scalar multiplication, and let W be the subset of all 2 x 2 matrices with trace 0,

that is,
a b
w={[% a]

Show that W is a subspace of M.

a+d:0}
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Let

and Wy = [ (2 7 }

| a1 b1
Wl_[cl d1:| c2 dg

be matrices in W, so that a; +d; = 0 and a, + d» = 0. The sum of the two matri-
ces is
| a1 b ay; by | aata
W1 ® Wz = { c1 di ] @ |: c2 dy :| - |: @il =F €2
Since the trace of wy @ wa is
(a1 + az) + (d1 + dp) = (a1 +dy) + (a2 +dz) =0

then W is closed under addition. Also, for any scalar c,

C®W1=C®|:al by ] =|:C£11

b1+ by
dy +dp

Cdl

The trace of this matrix is cay + cdy = c(a; +di) = 0. Thus, W is also closed
under scalar multiplication. Therefore, W is a subspace of M.

Cbl
Cc1 dl CE

Let W be the subset of V = M,,,,, consisting of all symmetric matrices. Let the
operations of addition and scalar multiplication on V be the standard operations.
Show that W is a subspace of V.

Recall from Sec. 1.3 that a matrix A is symmetric provided that A’ = A. Let A
and B be matrices in W and ¢ be a real number. By Theorem 6 of Sec. 1.3,

(A®B))=A"®@B =A®B ad (cOA) =cOA ' =c0OA

Thus, W is closed under addition and scalar multiplication, and consequently, by
Theorem 3, W is a subspace.

Let V = M, ., with the standard operations and W be the subset of V' consisting
of all idempotent matrices. Determine whether W is a subspace.

Recall that a matrix A is idempotent provided that A> = A (See Exercise 42 of
Sec. 1.3.) Let A be an element of W, so that A2 = A. Then

(c®A?=(A?’=cPA’=CPA=c*0A

so that

CZZC

(cOA?=cOA ifandonly if
Since this is not true for all values of ¢, then W is not closed under scalar multi-
plication and is not a subspace.
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THEOREM 4

Solution

The two closure criteria for a subspace can be combined into one as stated in

Theorem 4.

A nonempty subset W of a vector space V is a subspace of V if and only if for
each pair of vectors u and v in W and each scalar ¢, the vector u @ (c © v) isin W.

Proof Let W be a nonempty subset of V, and suppose that u & (¢ ©® v) belongs
to W for all vectors u and v in W and all scalars ¢. By Theorem 3 it suffices to
show that W is closed under addition and scalar multiplication. Suppose that u and
varein W;thenu® (1ov) =u®visin W, so that W is closed under addition.
Next, since W is nonempty, let u be any vector in W. Then 0 =u & [(—1) O u],
so that the zero vector is in W. Now, if ¢ is any scalar, then c Ou =06 (c © u)
and hence is in W. Therefore, W is also closed under scalar multiplication.

Conversely, if W is a subspace with u and v in W, and ¢ a scalar, then since W
is closed under addition and scalar multiplication, we know that u@® (c © V) is
in W.

Let W be the subset of R® defined by

3t
W = 0
—2t

Use Theorem 4 to show that W is a subspace.

relR

Let u and v be vectors in W and ¢ be a real number. Then there are real numbers
p and ¢ such that

[ 3p 3q
ud (cOV) = 0 [ &d|cO 0
| —2p —2q
3(p +cq)
= 0
| —2(p +cq)

As this vector is in W, by Theorem 4, W is a subspace.
Alternatively, the set W can be written as

3
W=<1t 0
-2

relR

which is a line through the origin in R3.
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We now consider what happens when subspaces are combined. In particular,
let W1 and W, be subspaces of a vector space V. Then the intersection Wi N W is
also a subspace of V. To show this, let u and v be elements of W; N W, and let ¢
be a scalar. Since Wy and W, are both subspaces, then by Theorem 4, u® (c © V) is
in W1 and is in W», and hence is in the intersection. Applying Theorem 4 again, we
have that W1 N W, is a subspace.

The extension to an arbitrary number of subspaces is stated in Theorem 5.

The intersection of any collection of subspaces of a vector space is a subspace of
the vector space.

Example 6 shows that the union of two subspaces need not be a subspace.

Let Wy and W, be the subspaces of R? with the standard operations given by

le{[x} xe[R} and W2={[°} yeR}
0 y
Show that W; U W5, is not a subspace.
The subspaces W; and W5 consist of all vectors that lie on the x axis and the y axis,
respectively. Their union is the collection of all vectors that lie on either axis and
is given by
X
WU Wy =
wwe={[ ]

This set is not closed under addition since

[o]ol]= 1]

which is not in Wy U W5, as shown in Fig. 2.

x:Oory:O}

—
= o
[E—

Figure 2
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DEFINITION 2

DEFINITION 3

PROPOSITION 1

Span of a Set of Vectors

Subspaces of a vector space can be constructed by collecting all linear combinations of
a set of vectors from the space. These subspaces are used to analyze certain properties
of the vector space. A linear combination is defined in abstract vector spaces exactly
as it is defined in R" in Chap. 2.

Linear Combination Let S = {vi,Vo,...,V;} be a set of vectors in a vector
space V, and let ¢, co, ..., ¢, be scalars. A linear combination of the vectors of
S is an expression of the form

(c1OV)B(20V2) BB (cr O Vy)

When the operations of vector addition and scalar multiplication are clear, we
will drop the use of the symbols & and ©. For example, the linear combination given
in Definition 2 will be written as

k
c1V1 + Vo + - - - + Vi = Z ciVi
i=1

Unless otherwise stated, the operations on the vector spaces R", M,,«,, P,, and
their subspaces are the standard operations. Care is still needed when interpreting
expressions defining linear combinations to distinguish between vector space opera-
tions and addition and multiplication of real numbers.

Span of a Set of Vectors Let V be a vector space and let S = {vq,...,V,} be
a (finite) set of vectors in V. The span of S, denoted by span(S), is the set

span(S) = {civi+ Vo + -+ cuVy | c1,¢2, ..., cp € R}

If §={vi,Vva,...,V,} is a set of vectors in a vector space V, then span(S) is a
subspace.

Proof Let u and w be vectors in span(S) and ¢ a scalar. Then there are scalars
c1,...,c, and dy, ..., d, such that

U+ cW = (c1Vy + -+ cpVy) +c(divy + - - - + dyVy)
= (c1 +cdi))V1 + -+ + (cu + cdy)Vy

Therefore, u + cw is in span(S), and hence the span is a subspace.
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m Let S be the subset of the vector space R® defined by

Solution

2 1 1
S = -1 1, 3 [, 1
0 -2 4
Show that
—4
V= 4
—6
is in span(S).

To determine if v is in the span of S, we consider the equation

2 1 1 —4
c1| =1 |+e 3| +ec3| 1| = 4
0 -2 4 —6

Solving this linear system, we obtain

g =-—2 =1 and c3=—1

147

This shows that v is a linear combination of the vectors in S and is thus in span(S).

The span of a single nonzero vector in R” is a line through the origin, and the span
of two linearly independent vectors is a plane through the origin as shown in Fig. 3.

AY
span{v}

3v

XV

—2V
—3.5v

Figure 3

Since every line through the origin in R? and R®, and every plane through the

origin in R3, can be written as the span of vectors, these sets are subspaces.
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s={[5 912 4] ¢])

0 0 10 0 1
Show that the span of S is the subspace of M»., of all symmetric matrices.

Solution Recall that a 2 x 2 matrix is symmetric provided that it has the form

5]

Since any matrix in span(S) has the form

[o o]eel? o]+l 3] =[5 <]

span(S) is the collection of all 2 x 2 symmetric matrices.

o (e

Solution Let _

be an arbitrary element of R®. The vector v is in span(S) provided that there are
scalars c1, ¢, and ¢z such that
a
=|b
C

1 1 1
aa|l 1| +ec]| 0] 4+e3| 1
1 2 0

This linear system in matrix form is given by
a
b
@

111
1 01
1 20

After row-reducing, we obtain

1 0 0| -2a+2b+c
0 1 0 a— b
0 0 1 2a — b—c
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bz

|
.

X
7x—y+9z=0
Figure 4
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From this final augmented matrix the original system is consistent, having solution
c1=-2a+2b+c¢,cp =a—b, and c3 = 2a — b — ¢, for all choices of a, b, and
c. Thus, every vector in R® can be written as a linear combination of the three
given vectors. Hence, the span of the three vectors is all of R®.

Show that
—1 4 -6
span 2 |, 1|, 3 #+ R®
1 -3 5

We approach this problem in the same manner as in Example 9. In this case,
however, the resulting linear system is not always consistent. We can see this by
reducing the augmented matrix

-1 4 -6la -1 4 -6 a
2 1 3|b to 09 —9| b+2a
1 -3 5]|c¢ 00 O|c+fa—gb

This last augmented matrix shows that the original system is consistent only if
7a — b 4+ 9c = 0. This is the equation of a plane in 3-space, and hence the span is
not all of R3. See Fig. 4.

Notice that the solution to the equation 7a — b + 9¢ = 0 can be written in
parametric form by letting b = s, c =1¢, and a = %s — %t, so that

| 4 —6 : -3
span 2 |, 1|, 3 =<s| 1|+ 0 s, t €R
1 -3 5 (0] 1

In this way, we see that the span is the subspace of all linear combinations of
two linearly independent vectors, highlighting the geometric interpretation of the
solution as a plane.

With Examples 9 and 10 we have completed the groundwork for the notion of a
basis, which is central to linear algebra and is the subject of Sec. 3.3. Specifically, in
Example 9, we saw that the set of vectors

1 1 1
S ={vy, Vo, V3a} = 10101 |1
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spans R3. These vectors are also linearly independent. To see this, observe that the
matrix

111
A=1|1 0 1
1 20

whose column vectors are the vectors of S, is row equivalent to the 3 x 3 identity
matrix, as seen in the solution to Example 9. [Another way of showing that S is
linearly independent is to observe that det(A) = 1 # 0.] Consequently, by Theorem 7
of Sec. 2.3, we have that every vector in R® can be written in only one way as a
linear combination of the vectors of S.

On the other hand, the span of the set of vectors

1 4 -6
S ={vi, V5, V5} = 2 |, 1|, 3
1 -3 5

of Example 10 is a plane passing through the origin. Hence, not every vector in R®
can be written as a linear combination of the vectors in S’. As we expect, these vectors
are linearly dependent since

-1 4 -6
det 2 1 3 =0
1 -3 5

In particular, v5 = 2v; — V5. The vectors v; and v, are linearly independent vectors
which span the plane shown in Fig. 4, but not R3.

To pursue these notions a bit further, there are many sets of vectors which span
R3. For example, the set

1 0 0 1
B ={e, &, &,v}= Ol |11 {0} |2
0 0 1 3

spans R3, but by Theorem 3 of Sec. 2.3 must necessarily be linearly dependent. The
ideal case, in terms of minimizing the number of vectors, is illustrated in Example 9
where the three linearly independent vectors of S span R°. In Sec. 3.3 we will see
that S is a basis for R3, and that every basis for R® consists of exactly three linearly
independent vectors.

Show that the set of matrices

=113 33 o}

does not span M. Describe span(S).
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The equation i
-1 0 n 11
A2 1|71 0

is equivalent to the linear system

—Cc1+c =a
Cc2 =

2c1+cp =c¢

Cc1 =d

From these equations we see that
ca=d and c=0>b

which gives
a=b—d and c=b+2d
Therefore,

span(S):{[berd Z] ' b,deR}

Show that the set of polynomials

SE {x2+2x+1,x2+2,x}
spans the vector space P;.
An arbitrary vector in P, can be written in the form ax? + bx + c. To determine
whether the span(S) = P,, we consider the equation
(x> +2x+1) + cz()c2 +2) 4+ c3x = ax® +bx +c¢
which simplifies to
(c1 + c2)x? + (2¢1 + c3)x + (c1 + 2¢3) = ax® + bx + ¢

Since two polynomials are equal if and only if the coefficients of like terms are
equal, equating coefficients in the previous equation gives, in matrix form, the linear
system

1 1 0a
2 0 1|»b
1 2 0]c¢
This matrix reduces to
1 0 O 2a —c¢
0 1 0 —a—+c
0 0 1|—-4a+b+2c
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Hence, the linear system has the unique solution ¢; = 2a — ¢, ¢c; = —a + ¢, and
¢3 = —4a + b + 2¢, for all a, b, and c¢. Therefore, span(S) = Px.

The Null Space and Column Space of a Matrix

Two special subspaces associated with every matrix A are the null space and column
space of the matrix.

DEFINITION 4 Null Space and Column Space Let A be an m x n matrix.

1. The null space of A, denoted by N(A), is the set of all vectors in R" such
that Ax = 0.

2. The column spaceof A, denoted by col(A), is the set of all linear combinations
of the column vectors of A.

Observe that N(A) is a subset of R" and col(A) is a subset of R™. Moreover,
by Proposition 1, col(A) is a subspace of R™. Using this terminology, we give a
restatement of Theorem 2 of Sec. 2.2.

THEOREM 6 Let A be an m x n matrix. The linear system AXx = b is consistent if and only if
b is in the column space of A.

1

-1 -2 3
A=| -1 2 3 and 9= 1
2 =2 =2 —2

a. Determine whether b is in col(A).
b. Find N(A).

Solution 5 By Theorem 6, the vector b is in col(A) if and only if there is a vector x such
that Ax = b. The corresponding augmented matrix is given by

1 -1 -2 3 1 00 3
-1 2 3 1 which reduces to 01 0 8
2 2 2|2 0 0 1|-4
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Hence, the linear system Ax = b is consistent, and vector b is in col(A).
Specifically,

3 1 -1 —2
1| =3| -1 |+8 2 | -4 3
-2 2 —2 —2

b. To find the null space of A, we solve the homogeneous equation Ax = 0.
The corresponding augmented matrix for this linear system is the same as in
part (a), except for the right column that consists of three zeros. Consequently,
the only solution is the trivial solution and hence N(A) = {0}.

In Theorem 7 we show that the null space of a matrix also is a subspace.

Let A be an m x n matrix. Then the null space of A is a subspace of R".

Proof The null space of A is nonempty since O is in N(A). That is, AO= 0.
Now let u and v be vectors in N(A) and ¢ a scalar. Then

AU+ cV) = Au+ A(cv)
= AU+ cA(V)
=0+c0=0

Hence, u + ¢v is in N(A), and therefore by Theorem 4, N(A) is a subspace.

Fact Summary

Let V be a vector space and W a nonempty subset of V.

1. To verify that W is a subspace of V, show that u@® ¢ ©® v is in W for any u
and v in W and any scalar c.

2. The span of a set of vectors from V is a subspace.

3. The span of a single nonzero vector in R? or R? is a line that passes
through the origin. The span of two linearly independent vectors in R® is a
plane that passes through the origin. These sets are subspaces.

4. The intersection of subspaces is a subspace. The union of two subspaces
may not be a subspace.

5. If A isan m x n matrix, the null space of A is a subspace of R" and the
column space of A is a subspace of R™.

6. The linear system Ax = b is consistent if and only if b is in the column
space of A.
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Exercise Set 3.2

In Exercises 1-6, determine whether the subset S of
R? is a subspace. If S is not a subspace, find vectors u
and v in S such that u + v is not in S; or a vector u
and a scalar ¢ such that cu is not in S.

[0
1. S= ceR
{_y_ Y }
2.5=3 %1 |xy>0
{_y_ y‘}
.

3. 5= xy <0
{_y_ g }
4.S={ x x2~|—y2§1}
LY ]

X
5.S={2x_1 xG[R}

o s={[ ]| xen)

In Exercises 7—10, determine whether the subset S of
R® is a subspace.

X1
7. S = X2
X3

X1 +x3=-2

X1
8 S= X2
X3

X1X2X3 = 0

s — 2t
s,t eR
t+s

x1
10. S = 2
x3

x1,x3 >0

In Exercises 11-18, determine whether the subset S of
M3 is a subspace.

11. Let S be the set of all symmetric matrices.
12. Let S be the set of all idempotent matrices.

13. Let S be the set of all invertible matrices.

14. Let S be the set of all skew-symmetric matrices.
15. Let S be the set of all upper triangular matrices.
16. Let S be the set of all diagonal matrices.
17. Let S be the set of all matrices with az; = 0.
18. Let S be the set of all matrices with

a1 +ax =0.
In Exercises 19-24, determine whether the subset S of
Ps is a subspace.

19. Let S be the set of all polynomials with degree
equal to 3.

20. Let S be the set of all polynomials with even
degree.

21. Let S be the set of all polynomials such that
p0) =0.

22. Let S be the set of all polynomials of the form
px) = ax?.

23. Let S be the set of all polynomials of the form
px) = ax?+1.

24. Let S be the set of all polynomials of degree less
than or equal to 4.

In Exercises 25 and 26, determine if the vector v is in
the span of

1 -1 -1

S = 11,1 -1/, 2

0 1 0
F 1
25.v=| -1
. 1_
o
26. V= 7
__3_

In Exercises 27 and 28, determine if the matrix M is
in the span of

s={[6 218 1= 3])
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i {1

28'M:{2 —3} a1 Let
In Exercises 29 and 30, determine if the polynomial [17] [ =1 1
p(x) is in the span of S = 2 |, 3 2
I 2 1L -1 | -1
S ={1+x,x%—2 3x) .

0 -3

29. p(x) = 2x% —6x — 11 6 1.1 4

p(x) 1 c

30. 3x2—x —4 ) T N
a. Find span(S).

In Exercises 31-36, give an explicit description of the b. Is S linearly independent?
span of S. ' '

{41 )
(1L i)

{ { 2 1 -1 ] } Is span(T) = R3? Is T linearly independent?
33. ,
0 0 1 d. Let

Lo}
swos={[1o)[ 2 21 ] {[”” ”
35 8= {x. (x + 1% 22 +3x + 1) R

Is span(H) = R3? Is H linearly independent?
36. S = {x2—4,2—x,x2+x+2}

. L 42. Let
In Exercises 37-40, a subset S of R® is given.
a. Find span(s). S:{[(Z) _g}{i é][_i é}}
b. Is S linearly independent?
T 3 a. Find span(9).
37. S = 1, 0 b. Is S linearly independent?
)2}

A SRR
3701 1] o1l
>

Is span(T) = My,»? Is T linearly
independent?

NWW NP~
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Let
S={1,x—3,x*+2x,2x* +3x +5}

a. Find span(s).
b. Is S linearly independent?

c. Show that 2x2 + 3x + 5 is a linear combination
of the other three polynomials in S.

d. Let 7 = {1,x —3,x2+2x,x3}. Is T linearly
independent? Is span(7T) = P3?

. Let

2s —t
s
t
—s

S = s, t €R
a. Show that S is a subspace of R*.
b. Find two vectors that span S.

c. Are the two vectors found in part (b) linearly
independent?

47.

48.

49,

50.

c. Are the three matrices that generate S linearly
independent?

Let A be a 2 x 3 matrix and let

5= {xew [me=[ 1))

Is S a subspace? Explain.
Let A be an m x n matrix and let
S={xeR"| Ax=0}
Is S a subspace? Explain.
Let A be a fixed n x n matrix and let
S={B € M, | AB= BA)}
Is S a subspace? Explain.

Suppose S and T are subspaces of a vector
space V. Define

S+T={u+v|ueS,veT}
Show that S + T is a subspace of V.

d. Is S =R*?
51. Let § = span({uy, Uy, ...U,}) and
45, Let T = span({vi, Vo, ...V, }) be subspaces of a
—s vector space V. Show that
S = s — bt s,t €R
3t + 25 S+ T =span({uy, ... Uy, V1, ...V,})
a. Show that S is a subspace of RS. (See Exercise 50.)
b. Find a set of vectors that span S. 52. Let
C. Are the two vectors found in part (b) linearly §= { { X =X ] X, y.z€ [Ri}
independent? y Z
d. Is § =R%? and
a b
o r={[ o ]| wbcen)

s=emilo 3] |1 o)1 1))

a. Describe the subspace S.
b. Is S = My,,?

a. Show that S and T are subspaces.
b. Describe all matrices in S + T.
(See Exercises 50 and 51.)

3.3 » Basis and Dimension

In Sec. 2.3 we introduced the notion of linear independence and its connection to
the minimal sets that can be used to generate or span R”. In this section we explore
this connection further and see how to determine whether a spanning set is minimal.
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This leads to the concept of a basis for an abstract vector space. As a first step, we
generalize the concept of linear independence to abstract vector spaces introduced in
Sec. 3.1.

Linear Independence and Linear Dependence The set of vectors S =
{vi,Va,...,V,} in a vector space V is called linearly independent provided that
the only solution to the equation

Vi + Vo + -+ ¢V, =0

is the trivial solution ¢1 = ¢, = -+ - = ¢, = 0. If the equation has a nontrivial solu-
tion, then the set S is called linearly dependent.

Let
1 0 -3
V], = 0 Vo = 2 V3 = 4
-1 2 7
and let W = span{vy, vy, v3}.
a. Show that v3 is a linear combination of v; and vs.
b. Show that span{vy, vo} = W.
¢. Show that vy and v, are linearly independent.
a. To solve the vector equation
1 0 -3
Cc1 0| 4+co| 2 = 4
-1 2 7
we row-reduce the corresponding augmented matrix for the linear system to
obtain
1 0|-3 1 0| -3
0 2| 4| — |0 1 2
-1 2| 7 0 0] O

The solution to the vector equation above is ¢; = —3 and ¢, = 2, therefore
V3 = —3Vy + 2V»

Notice that the vector v3 lies in the plane spanned by v; and v;, as shown
in Fig. 1.
b. From part (a) an element of W = {c1V1 + c2V2 + c3V3 | c1, ¢z, c3 € R} can be
written in the form
€1V1 + V2 + c3V3 = c1V1 + 2V + ¢c3(—3Vy + 2Vp)
= (c1 — 3c3)V1 + (c2 + 2c3)V2
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and therefore, every vector in W is a linear combination of v; and v,. As a
result, the vector vz is not needed to generate W, so that span{vy, vo} = W.

c. Since neither vector is a scalar multiple of the other, the vectors v; and v, are
linearly independent.

In Example 1, we were able to reduce the number of linearly dependent vec-
tors that span W to a linearly independent set of vectors which also spans W. We
accomplished this by eliminating the vector v3 from the set, which, as we saw in the
solution, is a linear combination of the vectors v, and v, and hence does not affect
the span. Theorem 8 gives a general description of the process.

THEOREM 8 Let vq,...,V, be vectors in a vector space V, and let W = span{vy, ..., Vv,}. If
v, is a linear combination of vy, ..., Vv,_1, then

W = span{vy, ..., V,_1}

Proof |If visin span{vs,...,Vv,_1}, then there are scalars ¢, ¢z, ..., c,—1 such
thatv=civi + - -+ cy—1Vy—1. Thenv=civy +--- +¢,-1V,—1 + Ov,,, so that v
is also in span{vy, ..., Vv,}. Therefore,
span{vy, ..., V,_1} € span{vy, ..., V,}
Conversely, if v is in span{vy, ..., Vv,}, then there are scalars c, ..., ¢, such
that v = cqv1 + - - - + ¢, V,. Also, since v,, is a linear combination of vy, ..., Vv, _1,
there are scalars d1, ..., d,—1 such that v, = dyvi + --- + d,_1V,—1. Then

V=ciV1+ -+ Cp—1Vp—1 + cVy
=c1Vi 4 4 Va1 + ¢ (diVe + - - F dp—1Va—1)
= (c1+ cpd)V1 + -+ -+ (cp—1 + cndy—1)Vp-1
so that vespan{vy,...,v,_1} and span{vi,...,v,} C span{vy,...,V,_1}.
Therefore,
W = span{vy,...,V,} = span{vy, ..., V,_1}

m Compare the column spaces of the matrices

10 -1 1 10 -1 1 2
20 1 7 20 17 -1
A=1q1q1 o 7| @d B=pg g o2y
34 15 34 15 -2
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By using the methods presented in Chap. 2 it can be shown that the the column
vectors of the matrix A are linearly independent. Since the column vectors of B
consist of a set of five vectors in R*, by Theorem 3 of Sec. 2.3, the vectors are
linearly dependent. In addition, the first four column vectors of B are the same as
the linearly independent column vectors of A, hence by Theorem 5 of Sec. 2.3 the
fifth column vector of B must be a linear combination of the other four vectors.
Finally by Theorem 8, we know that col(A) = col(B).

As a consequence of Theorem 8, a set of vectors {vi,...,V,} such that V =
span{vs, ..., V,} is minimal, in the sense of the number of spanning vectors, when
they are linearly independent. We also saw in Chap. 2 that when a vector in R" can
be written as a linear combination of vectors from a linearly independent set, then the
representation is unique. The same result holds for abstract vector spaces.

If B={v1,V2,...,V,}isa linearly independent set of vectors in a vector space V,
then every vector in span(B) can be written uniquely as a linearly combination of
vectors from B.

Motivated by these ideas, we now define what we mean by a basis of a vector
space.

Basis for a Vector Space A subset B of a vector space V is a basis for V
provided that

1. B is a linearly independent set of vectors in V
2. span(B) =V

As an example, the set of coordinate vectors

S={e....e&}

spans R" and is linearly independent, so that S is a basis for R". This particular basis
is called the standard basis for R”. In Example 3 we give a basis for R®, which is
not the standard basis.

Show that the set

1 1 0
B = 1 (1] 1
0 1 -1

is a basis for R3.
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Solution

First, to show that S spans R®, we must show that the equation

1 1 0 a
c1| 1| +c2| 1| +e 1| =|25
0 1 -1 c

has a solution for every choice of a, b, and ¢ in R. To solve this linear system, we
reduce the corresponding augmented matrix

11 0|a 1 0 0| 2a—b—c
il il 1|»b to AB=10 1 0| —-a+b+c
0 1 —-1jc 0 0 1 —a+b
Therefore,c1 =2a — b —c¢,cp = —a + b + ¢, and c3 = —a + b. For example, sup-
1
pose that v= | 2 |[; then
3
c1=2(1)-2-3=-3
cp=-1+2+3=4
c3=-1+2=1
so that
1 1 0 1
=31 |+4(1]|+ 1| =|2
0 1 -1 3

Since the linear system is consistent for all choices of a, b, and ¢, we know that
span(B) = R®.

To show that B is linearly independent, we compute the determinant of the
matrix whose column vectors are the vectors of B, that is,

11 0
11 1|=1
01 -1

Since this determinant is nonzero, by Theorem 9 of Sec. 2.3 the set B is linearly
independent. Therefore, B is a basis for R®. Alternatively, to show that B is linearly
independent, notice from the reduced matrix above that

11 0
A=1|1 1 1
01 -1

is row equivalent to 7. Again by Theorem 9 of Sec. 2.3, B is linearly independent.

As we have already illustrated in the examples above, bases for a vector space are
not unique. For example, consider the standard basis B = {ey, &, €3} for R3. Another
basis for R? is given by B’ = {2ey, &, 3}, where we have simply multiplied the first
vector by 2.
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Theorem 10 generalizes this idea, showing that an infinite family of bases can be
derived from a given basis for a vector space by scalar multiplication.

Let B ={vi,...,V,} be a basis for a vector space V and ¢ a nonzero scalar. Then
B. = {cv1, Va2, ..., V,} is a basis.

Proof If v is an element of the vector space V, then since B is a basis there are
scalars c1, ..., ¢, such that v = c1vy + covo + - - - + ¢, V,,. But since ¢ # 0, we can
also write

C1
V= *(CVJ_) + Vo + -+ Vy
C

so that v is a linear combination of the vectors in B.. Thus, span(B.) = V. To
show that B, is linearly independent, consider the equation

ci(evy) +eovo+ -+ ¢V, =0
By vector space axiom 9 we can write this as
(Cj_C)(Vl) + Vo4 -+ = 0

Now, since B is linearly independent, the only solution to the previous equation is
the trivial solution

cic=0 c;=0 ¢, =0

Since ¢ # 0, then ¢; = 0. Therefore, B. is linearly independent and hence is a
basis.

Let W be the subspace of M., of matrices with trace equal to 0, and let
g_ 1 0 0 1 00
a 0O 1[0 0|10
Show that S is a basis for W.

In Example 2 of Sec. 3.2 we showed that W is a subspace of M,.,. To show that
span(S) = W, first recall that a matrix

a b
1=[% 4]
has trace 0 if and only if a +d = 0, so that A has the form
. { a b ]
c —da

Since for every such matrix

[ ]=elo 2]+elo o]+

o o
—
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then span(S) = W. We also know that S is linearly independent since the linear

system
a5 2]ea[3 3] a2 8]-[2 2]
0 -1 0 0 1 0 0 0
is equivalent to
c1 c2| (00
{C"g —C1:|_|:0 0:|

which has only the trivial solution ¢; = ¢ = ¢3 = 0. Thus, S is a basis for W.

Similar to the situation for R”, there is a natural set of matrices in M,,,, that
comprise a standard basis. Let &; be the matrix with a one in the ij position, and 0s

elsewhere. Theset S = {g; | 1 <i <m,1 < j < n} is the standard basisfor M,, .
For example, the standard basis for My, is

§_ 10 0 1 0 0 0 0
- ooplOO||1TO0OF}|O01
Determine whether

s={[3 118108 2))

is a basis for Mo.

Let ,
a
a=| g

be an arbitrary matrix in My.,. To see if A is in the span of S, we consider the

equation
13 ~1 2 [0 1] Ja b
“l2 172 1 0]T%| 0 —4|T|c 4

The augmented matrix corresponding to this equation is given by

1 -1 0|a
3 2 1|»b
2 1 0] c
1 0 —-4|d
After row-reducing, we obtain
1 -1 0 a
0 5 1 —3a+b

0 0 —3| —a—3b+5c
0 0 O la+4b—Tc+d

Observe that the above linear system is consistent only if a +4b — 7c +d = 0.
Hence, B does not span M., and therefore is not a basis.



Solution

3.3 Basis and Dimension 163

Notice that in Example 5 the set B is linearly independent, but the three matrices
do not span the set of all 2 x 2 matrices. We will see that the minimal number of
matrices required to span M, is four.

Another vector space we have already considered is 7,, the vector space of
polynomials of degree less than or equal to n. The standard basis for P, is the set

B:{l,x,xz,...,x”}

Indeed, if p(x) = ag + arx + asx? + - - - 4+ a,x" is any polynomial in P,, then it is a
linear combination of the vectors in B, so span(B) = P,. To show that B is linearly
independent, suppose that

cotcx+ex’+ - +epx=0

for all real numbers x. We can write this equation as
co+c1x +cox’+ -+ cpx =0+ 0x + 0x2 4 -+ + 0x"

Since two polynomials are identical if and only if the coefficients of like terms are
equal, thenc; =cp =c3=---=¢, =0.
Another basis for P, is given in Example 6.

Show that B = {x + 1, x — 1, x?} is a basis for P;.

Let ax? + bx + ¢ be an arbitrary polynomial in 7. To verify that B spans P,, we

must show that scalars c1, ¢, and ¢z can be found such that
ci(x+1)+co(x—1)+ 03x2 =ax®+bx+c

for every choice of a, b, and c. Collecting like terms on the left-hand side gives
cs)c2 + (c14+c2)x + (c1 — ) = ax?> +bx +c

Equating coefficients on both sides, we obtain ¢ = a,c1 +c; =band ¢c; — ¢z = c.
This linear system has the unique solution

c1=%(b+c) czz%(b—c) c3=a
Therefore, span(B) = P,. To show linear independence, we consider the equation
ci(x+1)+co(x—1)+ c3x® = 0+ Ox + 0x?

Observe that the solution above holds for all choices of a, b, and ¢, so that ¢; =
¢z = c3 = 0. Therefore, the set B is also linearly independent and hence is a basis.

Another way of showing that the set B of Example 6 is a basis for P, is to show
that the polynomials of the standard basis can be written as linear combinations of
the polynomials in B. Specifically, we have

1=+ -3r-1)  x=3a+D+3x-1

and x? is already in B.
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Dimension

We have already seen in Theorem 3 of Sec. 2.3 that any set of m vectors from R”,
with m > n, must necessarily be linearly dependent. Hence, any basis of R" contains
at most n vectors. It can also be shown that any linearly independent set of m vectors,
with m < n, does not span R”". For example, as we have already seen, two linearly
independent vectors in R® span a plane. Hence, any basis of R” must contain exactly
vectors. The number #, an invariant of R”, is called the dimension of R”". Theorem 11
shows that this holds for abstract vector spaces.

If a vector space V has a basis with n vectors, then every basis has n vectors.

Proof Let B ={vi,Vy,...,V,} be a basis for V, and let 7 = {uy, Uy, ..., Uy}
be a subset of V with m > n. We claim that 7 is linearly dependent. To establish
this result, observe that since B is a basis, then every vector in T can be written
as a linear combination of the vectors from B. That is,

Up = h11Vi + A2Vo + -+ - + A1, Vy
Uz = A21V1 + A2V2 + -+ - + Aoy Vy

Un = )\mlvl + )\-mZVZ +--+ )\mnvn
Now consider the equation
cqui +cUup +---+cpU, =0

Using the equations above, we can write this last equation in terms of the basis
vectors. After collecting like terms, we obtain

(c1ha1 + cohoy + -+ - + cphm)Va
+ (c1h2 +c2hp2 + - -+ hm2)V2

+ (Cl)\ln + cohoy + -+ Cm)\-mn)vn =0
Since B is a basis, it is linearly independent, hence

cih1t+cehor+ ot ek =0
cih2+ okt F ez =0

Clxln + CZ)\-Zn +--+ Cm)\-mn =0

This last linear system is not square with n equations in the m variables ¢y, ..., ¢,.
Since m > n, by Theorem 3 of Sec. 2.3 the linear system has a nontrivial solution,
and hence T is linearly dependent.
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Now, suppose that 7 = {ui, Uy, ..., Uy} is another basis for the vector space V.
By the result we just established it must be the case that m < n. But by the same
reasoning, the number of vectors in the basis B also cannot exceed the number of
vectors in T, so n < m. Consequently n = m as desired.

We can now give a definition for the dimension of an abstract vector space.

Dimension of a Vector Space The dimension of the vector space V, denoted
by dim(V), is the number of vectors in any basis of V.

For example, since the standard bases for R", My.2, M,,%,, and P, are

(e, e, ....8]
{e11, €12, &1, €2}
e |l<i<m,i<j<n}

(1, x,x%, ..., x"}

respectively, we have
dim(R*) =n dim(My,0) =4 dim(M,,x,) = mn dim(P,)=n+1

We call a vector space V finite dimensional if there exists a basis for V with
a finite number of vectors. If such a basis does not exist, then V is called infinite
dimensional. The trivial vector space V = {0} is considered finite dimensional, with
dim(V) = 0, even though it does not have a basis. In this text our focus is on finite
dimensional vector spaces, although infinite dimensional vector spaces arise naturally
in many areas of science and mathematics.

To determine whether a set of n vectors from a vector space of dimension n is
or is not a basis, it is sufficient to verify either that the set spans the vector space or
that the set is linearly independent.

Suppose that V is a vector space with dim(V) = n.

1 If S ={vi,Va,...,v,} is linearly independent, then span(S) =V and S is a

basis.
2. If S ={vi,Vvo,...,Vv,} and span(S) =V, then S is linearly independent and
S is a basis.

Proof (1) Suppose that S is linearly independent, and let v be any vector in V. If
visin S, then v is in span(S). Now suppose that v is not in S. As in the proof of
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Theorem 11, the set {v, v1, vo, ..., V,} is linearly dependent. Thus, there are scalars
C1,...,Cn,y Cuy1, NOt all zero, such that

ciVi Vo + -+ ¢V + v =10

Observe that ¢, 11 # 0, since if it were, then S would be linearly dependent, vio-
lating the hypothesis that it is linearly independent. Solving for v gives
c1 €2 Cn
V=— Vi — Vo — oo —
Cn+l Cnt1 Cn+1
As v was chosen arbitrarily, every vector in V is in span(S) and therefore V =
span(S).

(2) (Proof by contradiction) Assume that S is linearly dependent. Then by
Theorem 5 of Sec. 2.3 one of the vectors in S can be written as a linear combina-
tion of the other vectors. We can eliminate this vector from S without changing the
span. We continue this process until we arrive at a linearly independent spanning
set with less than n elements. This contradicts the fact that the dimension of
V is n.

Vn

Determine whether

is a basis for R3.

Since dim(R®) = 3, the set B is a basis if it is linearly independent. Let

1 10
A=[10 1 0
1 01

be the matrix whose column vectors are the vectors of B. The determinant of this
matrix is 1, so that by Theorem 9 of Sec. 2.3 the set B is linearly independent and
hence, by Theorem 12, is a basis. We can also show that B is a basis by showing
that B spans R3.

Finding a Basis

In Sec. 3.2, we saw that the span of a nonempty set of vectors S = {vy,...,V,,} is
a subspace. We then ask whether S is a basis for this subspace (or a vector space).
From Theorem 12, this is equivalent to determining whether S is linearly independent.
When the vectors vy, ..., Vv, are in R", as in Example 7, form the matrix A with ith
column vector equal to v;. By Theorem 2 of Sec. 1.2, if B is the row echelon matrix
obtained from reducing A, then Ax = 0 if and only if Bx = 0. Now if the column
vectors of A are linearly dependent, then there are scalars ¢y, ..., ¢,, not all 0, such
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that c1vy + -+ - + ¢ Vi = 0. To express this in matrix form, let

€1
€2
C= .

Cm

Then Ac = 0 = Bc. Hence, the column vectors of A and B are both linearly dependent
or linearly independent. Observe that the column vectors of B associated with the
pivots are linearly independent since none of the vectors can be a linear combination
of the column vectors that come before. Therefore, by the previous remarks, the
corresponding column vectors of A are also linearly independent. By Theorem 12,
these same column vectors form a basis for col(A). When choosing vectors for a basis
of col(A), we must select the column vectors in A corresponding to the pivot column
vectors of B, and not the pivot column vectors of B. For example, the row-reduced
echelon form of the matrix

1 0 1 1 0 1
A=|0 0 O is the matrix B=|011
01 1 0 0O

However, the column spaces of A and B are different. In this case col(A) is the xz
plane and col(B) is the xy plane with

1 0
col(A) = span{vy, v} = span 0f,]0
0 1
and
1 0
col(B) = span{wy, wp} = span 0 |1
0 0
respectively. See Fig. 2.
/ “Z
,
/
Vo,
xz plane /| / / span{vy, vo}
W > Wp
I y y d " y_>
| Wi/ |
i '
) ‘ xy plane ¥ X span{wsi, Wy}

Figure 2
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The details of these observations are made clearer by considering a specific
example. Let

[E
=
N
N
w

S = {V1, V2, V3, V4, V5} = 14,10

o
-
N
RN
w =

We begin by considering the equation

1 1 2 2 3 0
al 1l |+ 0|4+ 1| +eca| 1| 4+ce| 1 = 0
0 1 2 1 3 0

To solve this system, we reduce the corresponding augmented matrix to reduced
echelon form. That is,

112 2 3|0 1
1 01 1 1|0 reduces to 0
01 2 1 3|0 0 01 0 1(0

In the general solution, the variables c1, ¢», and ¢z are the dependent variables cor-
responding to the leading ones in the reduced matrix, while ¢4 and cs are free. Thus,
the solution is given by

S={(-s,—s—1t,—t,s,1) | s,t € R}

Now to find a basis for span(S), we substitute these values into the original vector
equation to obtain

1 1 2 2 3 0
—s | 1| +(s=0 |0 |+ | 1| +s| 1|+ 1|=|0
0 1 2 1 3 0

We claim that each of the vectors corresponding to a free variable is a linear com-
bination of the others. To establish the claim in this case, let s =1 and ¢+ = 0. The
above vector equation now becomes

1 1 2 0
-1 -]10|+|1{=|0
0 1 1 0

that is,
—Vi—Vy+Vvs=0
Thus, vq4 is a linear combination of v; and v,. Also, to see that vs is a linear combi-
nation of vy, v,, and v, we let s =0 and r = 1.
In light of Theorem 8 we eliminate v4 and vs from S to obtain S’ = {vy, vy, v3}.
Observe that S’ is linearly independent since each of these vectors corresponds to a
column with a leading 1. Thus, the equation

1 1 2 0
1| 1|+ 0| 4+e3| 1 |=|0
0 1 2 0

has only the trivial solution.
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We summarize the procedure for finding a basis for the span of a set of vectors.

Given a set S = {v1, Vo, Vs, ..., V,} to find a basis for span(S):
1. Form a matrix A whose column vectors are vy, Vo, ..., V,.
2. Reduce A to row echelon form.
3. The vectors from S that correspond to the columns of the reduced matrix with
the leading 1s are a basis for span(S).

In Example 8 we use the process described above to show how to obtain a basis
from a spanning set.

Let
1 0 1 1 -1
S = o, 12,1211 2], 1
1 1 2 1 -2

Find a basis for the span of S.

Start by constructing the matrix whose column vectors are the vectors in S. We
reduce the matrix

1 01 1 -1 1 010 -2
0112 1 to 0 1 1 0R =1
112 1 -2 0001 1

Observe that the leading 1s in the reduced matrix are in columns 1, 2, and 4.
Therefore, a basis B for span(sS) is given by {vi, v, v4}, that is,

1 0 1
B = Of,| 1] ]2
1 1 1

A set of vectors in a vector space that is not a basis can be expanded to a basis
by using Theorem 13.

Suppose that S = {v1, vy, ..., V,} is a linearly independent subset of a vector space
V. If visavector in V thatis not in span(S),then T = {v, vi, V2, ..., Vv, } is linearly
independent.

Proof To show that 7 is linearly independent, we consider the equation
ciVi+ Vo + -4V + v =0

If ¢, .1 # 0, then we can solve for the vector v in terms of the vectors of S, contrary
to the hypothesis that v is not in the span of S. Thus, ¢,.1 = 0 and the starting
equation is equivalent to

ciV1+ Vo + - -+ ¢V = 0
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COROLLARY 1

Since S is linearly independent, then
c1=0 =0 ¢, =0

Hence, T is linearly independent.

An alternative method for expanding a set of vectors in R” to a basis is to add the
coordinate vectors to the set and then trim the resulting set to a basis. This technique
is illustrated in Example 9.

Find a basis for R* that contains the vectors

1 -1
Vi = ? and Vo = _i
0 0

Notice that the set {vi, v»} is linearly independent. However, it cannot span R*
since dim(R*) = 4. To find a basis, form the set § = {v1, Vo, €1, &, €3, &}. Since
span{er, &, €3, &4} = R*, we know that span(S) = R*. Now proceed as in
Example 8 by reducing the matrix

[1 =1 1 0 0 0
0 1 01 0O
1 -1 0 0 1 O

| 0 0 00 0 1]

to reduced row echelon form

(1 0 0 1 1 0]
01 0 1 0 0
0 01 0 -1 0

|0 000 0 1 |

Observe that the pivot columns are 1, 2, 3, and 6. A basis is therefore given by the
set of vectors {vi, Vo, €1, &4}.

The following useful corollary results from repeated application of Theorem 13.

Let S = {v1, V2, ..., V,} bealinearly independent set of vectors in an n-dimensional
vector space V with » < n. Then S can be expanded to a basis for V. That is, there
are vectors {V,41,Vyy2,...,V,} SO that {vi,Vva,...,V,,V,41,...,V,} IS a basis
for V.
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Fact Summary

Let V be a vector space with dim(V) = n.

1

ok wbd

10.
11.
12.

Exercise Set 3.3

There are finite sets of vectors that span V. The set of vectors can be
linearly independent or linearly dependent. A basis is a linearly independent
set of vectors that spans V.

Every nontrivial vector space has infinitely many bases.

Every basis of V has n elements.

The standard basis for R" is the n coordinate vectors e;, &, ..., €,.
The standard basis for M., consists of the four matrices

10 0 1 00 0 0
0 0 0 0 10 0 1
The standard basis for P, is {1, x, x2, ..., x"}.
If v,, is a linear combination of vy, vy, ..., Vv,_1, then
Span{V]_, V27 AR ] Vn—l} = q)an{vlv V21 IR ] Vn—ly Vn}
dim(R") = n, dim(M,,«,,) = mn,dim(P,) =n + 1
If a set B of n vectors of V is linearly independent, then B is a basis for V.
If the span of a set B of n vectors is V, then B is a basis for V.

Every linearly independent subset of V can be expanded to a basis for V.

If S is a set of vectors in R", a basis can always be found for span(S) from
the vectors of S.

In Exercises 1-6, explain why the set S is not a basis 5 8S={x,x%, x>+ 2x,x° —x+1} V="P;

for the vector space V.

10 01
2 0 G'SZHO 1Ho 0}’
1S8= 1| -1],Vv=R® 0 0 » 3
3 1 B =
2 obli 2 ]prem
2. S:{{z}{l}[ }V:RZ In Exercises 7-12, show that S is basis for the vector
1 0 - space V.

e

_ - 2
4. S =1{2,x,x3+2x2 -1}V = Ps 8'5_{{ H—l]}V_R
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Vv =R3
11 2771
10. S = -1l =111
o[ -3 ]2

V =R3

V=M.

12. S:{x2+l,x+2,—x2+x} V="

In Exercises 13—-18, determine whether S is a basis
for the vector space V.

[ 171717
13. § = 2,0, |1 ]|Vv=R®
1] [1] [1]
[ 27 [57[3]
14 5= -2 | |1 |1]|pv=R®
1] 2] [1]
[ 1] [27[27 -1
1 1 4 2
BeS=qlal|sl|2]] o
1] [1][5] 3
V=R
-1 [ 2 1 2]
1 1 3 1
16. 5= ol 1| 1[]1
1] 2 -1 2 |
V=R

17.S={1,2x2+x+2,—x2+x}V=P2
10 11
ase33][3 3}
-2 1 0 0
1 1010 2

V=M,

In Exercises 19-24, find a basis for the subspace S of
the vector space V. Specify the dimension of S.

s+ 2t
19. S={ —s+ ¢t |s,teRYV =[RS

t

_ a a+d
oo {[20,7"1)

21. Let S be the subspace of V = M,,, consisting of
all 2 x 2 symmetric matrices.

a,dGR}VZMZXZ

22. Let S be the subspace of V = M,,, consisting of
all 2 x 2 skew-symmetric matrices.

23. S={px) | pO)=0} V="

24. S={px) | p(0)=0,p(1) =0} V="P3

In Exercises 25-30, find a basis for the span(S) as a
subspace of R3.

— 2 - - -
25 S = 2 ) )
-1 }

[ -2

——

[E
I

L 1
r 1

o - G ON P DN
L 1
——

I |
1
|11
N W w |

(N
|

N
~N
[95]
| |
———— — —/
1 1 T 1
|
o wnN
L 1
r 1
NN O
w o NEF, R~ NDNODN

I
o wmN
1
L S SR =)
1
1
I
NN
| —— |

(B

In Exercises 31-36, find a basis for the vector space
V that contains the given vectors.

T



32.

33.

35.

36.

37.

38.

39.

gl

2
-1

1T -1
1 -1
11 3

40.
Vv =R3
vV =R* 41.
1 42.
, :i V=R
3

101
L V=R 43,
] [1

Find a basis for the subspace of M, consisting
of all diagonal matrices.

Show that if § = {vy, vy, ..

., V,} is a basis for the

vector space V and c is a nonzero scalar, then
S" = {cvi, evo, ..., eV,

is also a basis for V.

Show that if § = {v1, Vs, ...,V,} is a basis for R"
and A is an n x n invertible matrix, then

S = {AV1, Avo, ..

34

., Av,} is also a basis.
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Find a basis for the subspace
S = {x € R* | Ax = 0} of R* where

33 1 3
A= -1 0 -1 -1
2 0 2 1

Suppose that V is a vector space with
dim(V) = n. Show that if H is a subspace of V
and dim(H) =n, then H = V.

Let S and T be the subspaces of P3 defined by
S={px) | p0) =0}
and

T ={q(x)1q(1) =0}
Find dim(S), dim(T), and dim(S N T).

Let

2s +1t+3r
W= 3s —t+2r s, t,r €R

s+1t+2r
Find dim(W).
Let S and T be the subspaces of R* defined by

S
S = ! telR
= 0 s,
_0_
and _
0
T — j s,teR
0

Find dim(S), dim(7), and dim(S N T).

Coordinates and Change of Basis

From our earliest experiences with Euclidean space we have used rectangular coordi-
nates, (or xy coordinates), to specify the location of a point in the plane. Equivalently,
these coordinates describe a vector in standard position which terminates at the point.
Equipped with our knowledge of linear combinations, we now understand these xy
coordinates to be the scalar multiples required to express the vector as a linear com-

bination of the standard basis vectors e; and &,. For example, the vector v = [ g ]

with xy coordinates (2, 3), can be written as

v =2¢e + 3
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as shown in Fig. 1(a). This point (or vector) can also be specified relative to another
pair of linearly independent vectors, describing an x’y’ coordinate system. For

example, since
2] 5|1 -1
R

the x’y’ coordinates of v are given by (3, 3). See Fig. 1(b).

Nl

AY AY
f Ui + 1
| 3 Y
| e
1 | +
| e
| /s
—+ I L
| /]
| e
} } } »} > | . , . .
X T T T T X
() (b)
Figure 1

In this section we generalize this concept to abstract vector spaces. Let V be

a vector space with basis B = {v1, Vo, ..., V,}. From Theorem 7 of Sec. 2.3, every

vector v in V can be written uniquely as a linear combination of the vectors of B.
That is, there are unique scalars c1, ¢, . . ., ¢, such that
V=c1Vi+cVo+ - -4+ ¢,V

It is tempting to associate the list of scalars {c1, ¢, ..., ¢,} with the coordinates of
the vector v. However, changing the order of the basis vectors in B will change the
order of the scalars. For example, the sets

)
w={[5 s )]

are both bases for R2. Then the list of scalars associated with the vector { ; } is

and

{1, 2} relative to B but is {2, 1} relative to B’. To remove this ambiguity, we introduce
the notion of an ordered basis.

Ordered Basis An ordered basis of a vector space V is a fixed sequence of
linearly independent vectors that span V.
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DEFINITION 2 Coordinates Let B = {v1, Vo, ..., V,} be an ordered basis for the vector space
V. Let v be a vector in V, and let ¢y, ca, ..., ¢, be the unique scalars such that

V=ciVi+coVo+- -4+ c,V,

Then ¢y, ¢o, ..., ¢, are called the coordinates of v relative to B. In this case we
write
c1
€2
[Vlz =
Cn

and refer to the vector [v]g as the coordinate vector of v relative to B.

In R" the coordinates of a vector relative to the standard basis B = {e, &, ..., €&,}
are simply the components of the vector. Similarly, the coordinates of a poly-
nomial p(x) = ag + a1x + asx?> + - - + a,x" in P, relative to the standard basis
{1, x,x2, ..., x"} are the coefficients of the polynomial.

m Let V = R? and B be the ordered basis
1 =1l
s={[1}[ 1]}
Find the coordinates of the vector v = [ é ] relative to B.

Solution The coordinates ¢; and ¢, are found by writing v as a linear combination of the
two vectors in B. That is, we solve the equation

ali]val 5]=]5]

In this case ¢1 = 3 and ¢, = 2. We therefore have that the coordinate vector of

V= [ é ] relative to B is
[Vlz = { g ]

m Let V =P, and B be the ordered basis

B={lx-1(x-17?}
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Find the coordinates of p(x) = 2x? — 2x + 1 relative to B.

Solution We must find ¢y, ¢z, and c3 such that
i) +x—1) +csx—1)2=2x>—2x+1
Expanding the left-hand side and collecting like terms give
C3x2 + (cp —2c3)x + (c1 — 2 +¢3) = 2x2 —2x +1
Equating the coefficients of like terms gives the linear system
ci1—cr+ 3= 1
) —2c3=—-2
3= 2
The unique solution to this system is ¢; = 1, ¢; = 2, and ¢3 = 2, so that

1
Vlg=| 2
2

m Let W be the subspace of all symmetric matrices in the vector space Mj.o. Let
B 10 0 1 0 0
i O o1 o0p|0 1
Show that B is a basis for W and find the coordinates of

(32

relative to B.

Solution In Example 8 of Sec. 3.2, we showed that B spans W. The matrices in B are also
linearly independent and hence are a basis for W. Observe that v can be written as

10 0 1 00 2 3
2o o]*3] 1 o +s[o 2]=[5 <]
Then relative to the ordered basis B, the coordinate vector of v is

2
Vlzg=| 3
5
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Change of Basis

Many problems in applied mathematics are made easier by changing from one basis of
a vector space to another. To simplify our explanation of the process, we will consider
a vector space V with dim(V) = 2 and show how to change from coordinates relative
to one basis for V to another basis for V.

Let V be a vector space of dimension 2 and let

B ={vi,v2} and B’ ={V},V5}

be ordered bases for V. Now let v be a vector in V, and suppose that the coordinates
of v relative to B are given by

V]s = [ il ] thatis V= xiVi + xoVa
2

To determine the coordinates of v relative to B’, we first write v, and v, in terms of
the vectors v and v,. Since B’ is a basis, there are scalars ay, az, by, and b, such
that

V1 = a1Vj + axV,
Vy = b]_VS_ + sz/z
Then v can be written as

V= xl(alv’l + azv/z) + xz(blv’l + sz/z)
Collecting the coefficients of v| and v, gives
V = (x1a1 + x2b1)Vi + (x1a2 + x2b2)V,

so that the coordinates of v relative to the basis B’ are given by

x1a1 + x2b1
Viipr =
Vs { X102 + x2b7 }

Now by rewriting the vector on the right-hand side as a matrix product, we have

we- [ 2][2])-[3 2]

a by X2 az by

Notice that the column vectors of the matrix are the coordinate vectors [vi]p and
[V2]p. The matrix
ay b
o

is called the transition matrix from B to B’ and is denoted by [/]12’, so that

Vg = [115 [V1s
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Solution

THEOREM 14

Let V = R? with bases

{1} 3]} = w={ 23]

a. Find the transition matrix from B to B’.
b. Let [v]z = { _g } and find [v]p'.

a. By denoting the vectors in B by v; and v, and those in B’ by v; and v5, the
column vectors of the transition matrix are [v1]g and [v2]z/. These coordinate
vectors are found from the equations

al ]+ 3 | = 1] ete RS RS Ry S

Solving these equations gives ¢; =2 and ¢, = 3, and d; = 0 and d, = —1, so
that

o= | 5] e wade=| D)

Therefore, the transition matrix is

g =[5 3]

Vg = [115 [V1s

me=[2 2][2]-[ 2]

Observe that the same vector, relative to the different bases, is obtained from
the coordinates [v]z and [v]p/. That is,

][ 4] 2] ow 2]

The procedure to find the transition matrix between two bases of a vector space
of dimension 2 can be generalized to R" and other vector spaces of finite dimension.
The result is stated in Theorem 14.

b. Since

then

Let V be a vector space of dimension n with ordered bases

/

B ={vi,Vs,...,V,;} and B ={V|,V,,...,V}

> 'n

Then the transition matrix from B to B’ is given by

o] L L
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Moreover, a change of coordinates is carried out by

Vg = [115 V1

In Example 5 we use the result of Theorem 14 to change from one basis of P,
to another.

Let V = P, with bases
B={l,x,x’} and B ={Lx+1x>+x+1}

a. Find the transition matrix [I]g/.
b. Let p(x) = 3 — x + 2x? and find [p(x)]s.

a. To find the first column vector of the transition matrix, we must find scalars
ai, az, and az such that

ar(l) +ax(x+1)+ ag(x2 +x+1) =1

By inspection we see that the solutionisa; = 1, a; = 0, and ag = 0. Therefore,

1
[lp=|0
0

The second and third column vectors of the transition matrix can be found by
solving the equations

bi(l) +bo(x + 1)+ b3(x>+x+1) =x
and

)+ +1) +ex®+x+1) =x°

respectively. The solutions are given by by = —1,b, =1, and b3 =0, and
c1=0,c; =—1, and ¢3 = 1. Hence, the transition matrix is

1 -1 o0
712 = [ o T
0 0 1

b. The basis B is the standard basis for 7,, so the coordinate vector of
p(x) =3 — x + 2x? relative to B is given by
3

[Py = | —1
2
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Hence,
1 -1 0 3 4
[p)lp=|0 1 -1||-1|=|-3
0 0 1 2 2

Notice that 3 — x + 2x2 = 4(1) — 3(x + 1) + 2(x2 + x + 1).

given by
v-wa-{[ 1} 1]}
4

a. Find the transition matrix from B to B’.

b. Find [V]p .

c. Write the vector v as a linear combination of e; and e, and also as a linear
combination of v; and v5.

d. Show the results of part (c) graphically.

m Let B = {e}, &} be the standard ordered basis for R2, B’ be the ordered basis
and let v = { < }

Solution  a. The transition matrix from B to B’ is computed by solving the equations

o A]eali]=[s] = a5 ]ali]= (5]

That is, we must solve the linear systems

{—C1+C2 = il and {—dl—l—dz =0

c1+c; =0 di+d, =1
The unique solutions are given by ¢; = —3,co = 3 and dy = 3, d, = 3. The
transition matrix is then given by
_1 1
B __ 2 2
2 2
b. Since B is the standard basis, the coordinates of v relative to B are [v]z =
j } . By Theorem 14, the coordinates of v relative to B’ are given by
1 1 1
=z = 3| _| 2
[V]B/_l ;1“4}_[7]
2 2 2
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¢. Using the coordinates of v relative to the two bases, we have

1 0 [ B
3{0]+4{ 1 } _v_§v1+§v2
d. The picture given in Fig. 2 shows the location of the terminal point (3, 4) of
the vector v relative to the e;e; axes and the vjVv, axes.

Figure 2

Inverse of a Transition Matrix

A fact that will be useful in Chap. 4 is that the transition matrix [I]g’ between bases
B and B’ of a finite dimensional vector space is invertible. Moreover, the transition
matrix from B’ to B is the inverse of [I]g'. To see this, suppose that V is a vector
space of dimension n with ordered bases

B ={vi,Va,...,V,} and B ={V|,V,,...,V,}

To show that [I]ﬁ' is invertible, let x € R" be such that
[IEx=0

Observe that the left-hand side of this equation in vector form is xi[vi]g +--- +
xn[V.]p . Since B is a basis, then the vectors v; for 1 < i < n are linearly independent.
Hence, so are the vectors [vi]p/, - - -, [V.]p . Therefore, x; = xp = --- = x, = 0. Since
the only solution to the homogeneous equation [I]g/x = 0 is the trivial solution, then
by Theorem 17 of Sec. 1.6, the matrix [I]g/ is invertible. Moreover, by Theorem 14,
since /

Mg =15Vl we know that  ([115) " *[V]z = [V]s

and therefore /
(115 = {115
The previous observations are summarized in Theorem 15.
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THEOREM 15 Let V be a vector space of dimension n with ordered bases

B ={Vi,Va,...,V, and B ={V),V,, ...,V
1 V2

> 'n

Then the transition matrix [I]g’ from B to B’ is invertible and

(1% = (1)

Fact Summary

Let V be a vector space with dim(V) = n.

1. In R", the coordinates of a vector with respect to the standard basis are the

components of the vector.

2. Given any two ordered bases for V, a transition matrix can be used to
change the coordinates of a vector relative to one basis to the coordinates

relative to the other basis.

3. If B and B’ are two ordered bases for V, the transition matrix from B to B’
is the matrix [7]5" whose column vectors are the coordinates of the basis

vectors of B relative to the basis B’. Also

Vg = [115 V1

4. If B and B’ are two ordered bases for V, the transition matrix from B to B’
is invertible and the inverse matrix is the transition matrix from B’ to B.

That is, ([115)~! = [11%,

Exercise Set 3.4 B

In Exercises 1-8, find the coordinates of the vector v 2
relative to the ordered basis B. v= | —1

o=t ]

N
oy ]
I
—
—
|
AN
[
—
|
(IS
[ I
N—— <
< Il
I —
O o
| 1
= N
[
N
oo}
I
NI = O —
P NN ©
N O
= O O



5 B={lLx—-1x*v=px) =—-2x>+2x+3

6. B:{x2+2x+2,2x+3,—x2+x+1}
V=px)=—3x>+6x+8

co={[3 312 8]

v 2 =2
11 3
In Exercises 9-12, find the coordinates of the vector v
relative to the two ordered bases B; and Bs.

{132
{__,

wo 1]
|

11. By = (x> —x + 1, x>+ x +1,2x%)
By ={2x?+1, —x?+x+2,x+3}

V=px)=x>+x+3
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(33

In Exercises 13-18, find the transition matrix between
the ordered bases B; and By; then given [v],, find

T
e[ 18 o 2]
wn={[2][2])
SAHIENE
=oo{[1H[:])
{4
et L)
SHHIHIE)
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17.

18.

19.

20.

Chapter 3 Vector Spaces

2
[V]Bl = 1
L 1 -
By = {1,x,x?} By = {x?,1,x},
F 9]
[Vlg, = | 3
L 5 -

Blz{x2—1,2x2+x+l,—x+l}
By ={(x — 12 x+2,(x +1)%

1
Vg, = [ 1 ]
2

Let B = {v1, Vo, v3} be the ordered basis of R3
consisting of

[ —1 ] 1
V1 = 1 Vo = 0
| 1] 1
-1
V3 = 1
| 0

Find the coordinates of the vector
a
v=| b
C
relative to the ordered basis B.

Let B = {v1, V2, V3, V4} be the basis of R*
consisting of

[ 1 0
v |0 v | L
1= 11 2= 1
0 -1
[0 -1
-1 0
V3 = _1 V4 = 0
0 -1

21.

22.

Find the coordinates of the vector

o S

d
relative to the ordered basis B.

(1270 0]
B = Of,|1}|, |0
0] 0] [ 1]

be the standard ordered basis for R3 and let

o] [1][0]
By = 1(,101,|0
| 0 0] [ 1]

be a second ordered basis.

Let

a. Find the transition matrix from the ordered
basis By to the ordered basis Bs.

b. Find the coordinates of the vector
1
v=| 2
3
relative to the ordered basis B;.

Let

and

be two ordered bases for R2.
. B
a. Find [1]5

b. Find []3}

-1
c. Show that ([1]§§) =&



23.

24,

Let

-

be the standard ordered basis for R? and let

- {[5
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a second ordered basis B by

M2}

]2 = { cos® —sin@ }
B

sinf cos 0

o

If [V]s = { ’y“ } then find [v]5.

} b. Draw the rectangle in the plane with vertices

be a second ordered basis.

a. Find [1]%

L] ]3]

b. Find the coordinates of

Bk

c. Let 6 = 7. Draw the rectangle in the plane
] [ 4 ] [ 4 ] with vertices the coordinates of the vectors,
4

2 given in part (b), relative to the ordered
relative to the ordered basis B. basis B.
c. Draw the rectangle in the plane with vertices 25. Suppose that By = {uy, Uy, U3} and
(1.2),(1.4). (4. 1), and (4, 4). By = {V1, Vo, v3} are ordered bases for a vector
d. Draw the polygon in the plane with vertices space V such that uy = —vi +2vp, U =
given by the coordinates found in part (b). —V1+2v2 — V3, and Uz = —Vz + V3.

Fix a real number 6 and

a. Find the transition matrix [/]32
define the transition

matrix from the standard ordered basis S on R? to b. Find [2u; — 3uz + uz]s,

3.5

Application: Differential Equations

Differential equations arise naturally in virtually every branch of science and tech-
nology. They are used extensively by scientists and engineers to solve problems
concerning growth, motion, vibrations, forces, or any problem involving the rates
of change of variable quantities. Not surprisingly, mathematicians have devoted a
great deal of effort to developing methods for solving differential equations. As it
turns out, linear algebra is highly useful to these efforts. However, linear algebra also
makes it possible to attain a deeper understanding of the theoretical foundations of
these equations and their solutions. In this section and in Sec. 5.3 we give a brief
introduction to the connection between linear algebra and differential equations.

As a first step, let y be a function of a single variable x. An equation that
involves x, v, y', y”, ..., y™, where n is a fixed positive integer, is called an ordinary
differential equation of order n. We will henceforth drop the qualifier ordinary since
none of the equations we investigate will involve partial derivatives. Also, for obvious
reasons we will narrow the scope of our discussion and consider only equations of a
certain type.
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The Exponential Model

One of the simplest kinds of differential equations is the first-order equation given by
y' =ky

where k is a real number. This equation is used to model quantities that exhibit

exponential growth or decay and is based on the assumption that the rate of change

of the quantity present at any time ¢ is directly proportional to the quantity present at

time 7. A solution to a differential equation is a function y = f(¢) that satisfies the

equation, that is, results in an identity when substituted for y in the original equation.
To solve this equation, we write it as

Z—k
y
and integrate both sides of the equation with respect to the independent variable to

obtain ,
Iny:/y—dtz/kdtzkt+A
y

y = elny — ekt+A — eAekt — Cekt

Solving for y gives

where C is an arbitrary constant.

As an illustration, consider the differential equation y’ = 3y. Then any function of
the form y(r) = Ce® is a solution. Since the parameter C in the solution is arbitrary,
the solution produces a family of functions all of which satisfy the differential equation.
For this reason y(r) = Ce* is called the general solution to y’ = 3y.

In certain cases a physical constraint imposes a condition on the solution that
allows for the identification of a particular solution. If, for example, in the previous
problem it is required that y = 2 when r = 0, then 2 = C¢®©, so that C = 2. This is
called an initial condition. A differential equation together with an initial condition
is called an initial-value problem. The solution to the previous initial-value problem
is given by

y(t) = 2%

From a linear algebra perspective we can think of the general solution to the
differential equation y’ = ky as the span, over R, of the vector ¢ which describes a
one-dimensional subspace of the vector space of differentiable functions on the real
line.

Second-Order Differential Equations with Constant
Coefficients

We now extend the differential equation of the previous subsection to second-order
and consider equations of the form

Y'+ay' +by=0

Motivated by the solution to the exponential model, we check to see if there are any
solutions of the form y = ¢'*, for some real number r. After computing the first and
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second derivatives y' = re"™ and y” = r2¢’*, we see that y = ¢’ is a solution of the
second-order equation if and only if

r2e™ +are’™ + be™ =0
that is,
¢ (rP4ar+b)=0
Since ¢ > 0 for every choice of r and x, we know ¢'* is a solution of y” + ay’ +
by = 0 if and only if
rP4ar+b=0
This equation is called the auxiliary equation. As this equation is quadratic there
are three possibilities for the roots r; and r,. This in turn yields three possible vari-
ations for the solution of the differential equation. The auxiliary equation can have
two distinct real roots, one real root, or two distinct complex roots. These cases are
considered in order.

Case 1 The roots 1 and r, are real and distinct.
In this case there are two solutions, given by

yi(x) = 1* and y2(x) = €%*

Find two distinct solutions to the differential equation y” — 3y’ + 2y = 0.

Let y = ¢'*. Since the auxiliary equation r2 —3r +2 = (r — 1)(r —2) =0 has
the distinct real roots r; = 1 and r, = 2, two distinct solutions for the differential
equation are

yi(x) =¢e* and yo(x) = e

Case 2 There is one repeated root r. Although the auxiliary equation has only one
root, there are still two distinct solutions, given by

yi(x) = e and y2(x) = xe'™*

Find two distinct solutions to the differential equation y” — 2y’ + y = 0.

Let y = ¢™. Since the auxiliary equation > —2r +1= (r —1)> =0 has the
repeated root r = 1, two distinct solutions of the differential equation are

yi(x) =e* and yo(x) = xe*
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Solution

THEOREM 16

THEOREM 17

Case 3 The auxiliary equation has distinct complex (conjugate) roots given by
r1 = o+ Bi and r, = a — Bi. In this case the solutions are

y1(x) = e** cosPx and y2(x) = €** sinfBx

Find two distinct solutions to the differential equation y” — 2y’ + 5y = 0.

Let y = ¢, so the auxiliary equation corresponding to y” — 2y’ + 5y = 0 is given
by r? — 2r + 5 = 0. Applying the quadratic formula gives the complex roots r; =
1+ 2i and r, = 1 — 2i. The two solutions to the differential equation are then given
by

y1(x) = e* c0os 2x and v2(x) = e* sin2x

In what follows we require Theorem 16 on existence and uniqueness for second-
order linear differential equations. A proof can be found in any text on ordinary
differential equations.

Let p(x), g(x), and f(x) be continuous functions on the interval 7. If xq is in I,
then the initial-value problem

Y+ px)Y +q)y=f(x)  yo)=y ¥ (x) =y
has a unique solution on 1.

Fundamental Sets of Solutions

With solutions in hand for each one of these cases, we now consider the question
as to whether there are other solutions to equations of this type, and if so, how they
can be described. The simple (but elegant) answer, to which the remainder of this
section is devoted, is found by using linear algebra. We will see that in each case
the functions y;(x) and y,(x) form a basis for the vector space of solutions to the
equation y” + ay’ + by = 0. Accordingly, every solution y(x) to this equation can be
written as a linear combination y(x) = c1y1(x) + c2y2(x).

Toward this end, for a positive integer n > 0, let V = C™ (1) be the vector space
of all functions that are n times differentiable on the real interval 7. If n = 0, then
C© (1) denotes the set of all continuous functions on 7. We first show that the solution
set to the differential equation y” + ay’ + by = 0 is a subspace of V = C@(I).

Superposition Principle Suppose that yi(x) and y,(x) are functions in
CA(I). If yi(x) and y,(x) are solutions to the differential equation y” + ay’ +
by = 0 and c is any scalar, then y;(x) + cy2(x) is also a solution.
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Proof Since yi(x) and y,(x) are both solutions, then
Vi (x) +ay;(x) +byi(x) =0 and  yy(x) 4+ ayy(x) + by2(x) =0

Now to show that y(x) = y1(x) 4+ cy2(x) is a solution to the differential equation,
observe that

Y (@) =y1(x) +eyp(x)  and  y'(x) = y{(x) + cyy (x)

Substituting the values for y, y’, and y” in the differential equation and rearranging
the terms gives

V1 (x) + eyy (x) 4 aly; (x) + cyy ()] + bLy1(x) 4 cy2(x)]
= y{ (x) + cy5 (x) + ay;(x) + acyy(x) 4+ by1(x) + beya(x)
= [y{(x) + ay;(x) + by1 ()] + c[y5 (x) + ay;(x) + by2(x)]
=040=0

Let S be the set of solutions to the differential equation y” + ay’ + by = 0. By
the superposition principle above and by Theorem 4 of Sec. 3.2, we know that S is a
subspace of C@(1).

To analyze the algebraic structure of S, we recall from Exercise 31 of Sec. 2.3
that a set of functions U = { fi(x), f2(x), ..., fu(x)} is linearly independent on an
interval I if and only if

c1fi(x) +c2fo(x) + -+ cafu(x) =0

for all x € I implies that ¢; = ¢, =--- = ¢, = 0. Theorem 18 provides a useful test
to decide whether two functions are linearly independent on an interval.

Wronskian Let f(x) and g(x) be differentiable functions on an interval I.
Define the function W[f, g] on I by

fx) g
fx) g'x)
If W[f, g](xo) is nonzero for some xq in I, then f(x) and g(x) are linearly inde-
pendent on 1.

WIS glx) = = f(0)g' () = f'()gx)

Proof Consider the equation

c1f(x) +cgx) =0
Taking derivatives of both sides, we obtain

c1f'(x) +c28'(x) =0

Taken together, these equations form a linear system of two equations in the two
variables ¢; and c,. Observe that the determinant of the corresponding coefficient
matrix is W [ f, g] (x). Hence, if W[f, g](x) is nonzero for some xq € /, then by
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THEOREM 19

THEOREM 20

Theorem 17 of Sec. 1.6 we know that ¢; = ¢, = 0. Accordingly, f(x) and g(x)
are linearly independent.

The function W[, g] of Theorem 18 is called the Wronskian of f and g. The
Wronskian, and the result of Theorem 18, can be extended to any finite set of functions
that have continuous derivatives up to order n.

If y; and y, are solutions to the differential equation y” + ay’ + by = 0, then
Abel’s formula for the Wronskian gives the next result.

Let y1(x) and y,(x) be solutions to the differential equation y” 4+ ay’ + by = 0.
The functions y; and y, are linearly independent if and only if W[y, y2](x) # 0
for all x in I.

At this point we are now ready to show that any two linearly independent solutions
to the differential equation y” 4+ ay’ + by = 0 span the subspace of solutions.

Fundamental Set of Solutions  Suppose that y;(x) and y,(x) are two linearly
independent solutions, on the interval I, to the differential equation

y' +ay +by=0
Then every solution can be written as a linear combination of y;(x) and yz(x).
Proof Let y(x) be a particular solution to the initial-value problem
y'4+ay +by=0 with  yxo)=yo and  y'(x0) =y
for some xq in 7. We claim that there exist real numbers c¢; and ¢, such that
y(x) = c1y1(x) + cay2(x)
Differentiating both sides of this equation gives
Y'(x) = c1y1(x) 4 c2yy(x)

Now substituting xo into both of these equations and using the initial conditions
above, we obtain the linear system of two equations in the two variables ¢; and ¢;
given by

c1y1(xo) + c2y2(x0) = Yo

c1y;(x0) + c2y5(x0) =y
Observe that the determinant of the coefficient matrix is the Wronskian
W{y1, y2](x0). Since y1(x) and y,(x) are linearly independent, then by Theorem 19,
the determinant of the coefficient matrix is nonzero. Consequently, by Theorem 17
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of Sec. 1.6, there exist unique numbers ¢; and ¢, that provide a solution for the
linear system. Define the function g by

g(x) = c1y1(x) + c2y2(x)

Then g(x) is also a solution to the original initial-value problem. By the uniqueness
part of Theorem 16,

y(x) = g(x) = c1y1(x) + c2y2(x)
as claimed.

The linearly independent solutions yi(x) and y,(x) of Theorem 20 are called
a fundamental set of solutions. In light of this theorem, the fundamental set
{y1(x), y2(x)} is a basis for the subspace S of solutions to y” + ay’ + by = 0. As
there are two of them, dim(S) = 2.

We now return to the specific cases for the solutions to y” + ay’ + by = 0. Recall
that for case 1 we obtained the two solutions

yi(x) = e* and y2(x) = e"?*

with 1 # rp. To show that these functions form a fundamental set, we compute the
Wronskian, so that

erlx ei’zx

W[yla )’2]()6) = rleE ppe2X

=r (erlx erz.)C) - (erlx erzx)

(r1+r2)x (r1+r2)x

= rpe

= 12X (ry — r1)

—re

Since the exponential function is always greater than 0 and r; and r; are distinct, the
Wronskian is nonzero for all x, and therefore the functions are linearly independent.
Hence, {1, ¢"2*} is a fundamental set, and every solution y(x) to a problem of this
type has the form
y(x) = c1e™ + cpe’?*
for scalars ¢; and c».
For case 2, the Wronskian is given by

W[erx’ xerx:l — lex

Since % is never zero, {¢’*, xe’*} is a fundamental set of solutions for problems of
this type.
Finally, for case 3 the Wronskian is given by

W[e™ cosBx, e sinpx] = pe’™™

so that {e®* cospx, e™* sinBx} is a fundamental set as long as f is not zero. If B =0,
then the differential equation becomes y” + ay’ = 0 which reduces to case 1.

There are many physical applications of second-order differential equations with
constant coefficients. Two important areas are in mechanical and electrical oscillations.
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A fundamental problem in mechanics is the motion of an object on a vibrating spring.
The motion of the object is described by the solution of an initial-value problem of
the form

my"+cy' +ky=f(x) y0=A YO0 =8B
where m is the mass of the object attached to the spring, ¢ is the damping coefficient,

k is the stiffness of the spring, and f(x) represents some external force. If there are
no external forces acting on the system, then f(x) = 0.

m Let the mass of an object attached to a spring be m = 1, and the spring constant

k = 4. Solve the three initial-value problems describing the position of the object
attached to the spring with no external forces; initial conditions y(0) = 2, y'(0) = 0;
and damping coefficients ¢ equaling 2, 4, and 5.
Solution The differential equation describing the position of the object is given by
Y'+ey +4y=0
When ¢ = 2, the auxiliary equation for y” + 2y’ +4y =0 is
r24+2r+4=0

Since the roots are the complex values r1 = —1 4 +/3i and r» = —1 — /3i, the
general solution for the differential equation is

yx)=e* {cl cos(+v/3x) + ¢z 5in(«/§x)}

From the initial conditions, we have
3
y(x) =2 [COS(\@)C) + % sm(ﬁx)}

When ¢ = 4, the auxiliary equation for y” + 4y’ +4y =0 is
P 4dr+4=0r+2°=0

Since there is one repeated real root, the general solution for the differential

equation is
y(x) = cre™ ¥ + cpxe

From the initial conditions,
y(x) = 2¢" % (2x + 1)
When ¢ = 5, the auxiliary equation for y” + 5y’ +4y =0 is
r245r4+4=(@+1)Fr+4=0
Since there are two distinct real roots, the general solution for the differential
equation is

y(x) =cie * + coe™
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From the initial conditions,
y() = 5@de™ —e™)

The graphs of the solutions are shown in Fig. 1.

Exercise Set 3.5
In Exercises 1-4, find the general solution to the
differential equation.

a. Find two distinct solutions to the homogeneous dif-
ferential equation.

b. Show that the two solutions from part (a) are lin-
early independent.

c. Write the general solution.
1 y"—5y'+6y=0
2. y"+3y'+2y=0
3. y'+4y +4y=0
4.y —4y' +5y =0

In Exercises 5 and 6, find the solution to the
initial-value problem.

5 y'=2y+y=0y0)=1y(0) =3
6.y =3y +2y=0y1)=0yD =1
7. Consider the the nonhomogeneous differential
equation given by
v =4y +3y =gkx) where
gx) = 32 +x 42

Figure 1

a. Find the general solution to the associated
homogeneous differential equation for which
g(x) = 0. This is called the complementary
solution and is denoted by y.(x).

b. Assume there exists a particular solution
denoted y,(x) to the nonhomogeneous
equation of the form

Yp(x) = ax®>+bx +c¢

Substitute y,(x) into the differential equation
to find conditions on the coefficients a, b,
and c.

c. Verify that y(x) = y.(x) + y,(x) is a solution
to the differential equation.

8. Consider the nonhomogeneous differential
equation given by

y'+4y +3y=g(x)  where
g(x) = 3sin2x
a. Find the general solution to the associated

homogeneous differential equation for which
g(x) =0.
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b. Assume there exists a particular solution to the
nonhomogeneous equation of the form

yp(x) = ACos2x + Bsin2x

Substitute y,(x) into the differential equation
to find conditions on the coefficients A and B.

c. Verify that y.(x) + y,(x) is a solution to the
differential equation.

9. Let w be the weight of an object attached to a
spring, g the constant acceleration due to gravity
of 32 ft/s?, k the spring constant, and d the
distance in feet that the spring is stretched by the

weight. Then the mass of the object is m = % and
k = %. Suppose that a 2-lb weight stretches a
spring by 6-in. Find the equation of the motion of
the weight if the object is pulled down by 3-in
and then released. Notice that this system is
undamped; that is, the damping coefficient is 0.

10. Suppose an 8-1b object is attached to a spring
with a spring constant of 4 Ib/ft and that the
damping force on the system is twice the velocity.
Find the equation of the motion if the object is
pulled down 1-ft and given an upward velocity
of 2 ft/s.

Review Exercises for Chapter 3

1. Determine for which values of k the vectors

1 0 0 2
-2 1 0 3
0 -1 1 4
2 3 4 k

form a basis for R4,

2. For which values of a, b, ¢, d, e, and f are the
vectors

a b d

0 c e

0 0 f

a basis for R3?

3. Let
a—>b a
S_{[b—i—c a—c}

a. Show that S is a subspace of My,o».
b. Is{_g g} in §?
c. Find a basis B for S.
d. Give a 2 x 2 matrix that is not in S.
4. letS={px)=a+bx+cx’|a+b+c=0}
a. Show that S is a subspace of ;.

a,b,celR}

b. Find a basis for S. Specify the dimension of S.

5. Suppose that S = {vy, V2, v3} is a basis for a
vector space V.

a. Determine whether the set T = {v1, v; +
Vo, V1 + Vo + Vv3} is a basis for V.

b. Determine whether the set
W = {—Vvo+v3,3vi +2vo + V3, Vi —
Vo + 2v3} is a basis for V.

6. Let S = {vq, vy, v3}, where

1 2
vy = -3 Vp = -1
1 1
| l_ 1
S
V3 = -7
3
L 3_

a. Explain why the set S is not a basis for R*.

b. Show that v3 is a linear combination of v; and
Vo.
¢. Find the dimension of the span of the set S.

d. Find a basis B for R* that contains the vectors
vy and v,.
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e. Show that a. Give a basis for V and find its dimension. Let
1 1 1 1 S be the set of all matrices of the form
T 2 0 0 2 a b
- -1 P{17 1) 1 c a
1 0 -1 -1 and let T be the set of all matrices of the form
is a basis for R?. { Xy ]
f. Find the transition matrix from the ordered y z
basis B to the ordered basis 7. b. Show that § and 7' are subspaces of the vector
g. Use the matrix found in part (f) to find the space V.
transition matrix from the ordered basis 7' to c. Give bases for S and 7 and specify their
the ordered basis B. dimensions.
h. If d. Give a description of the matrices in SN T.
1 Find a basis for S N 7 and give its dimension.
Ms=| > 9. Let
- Uy V1
5 u=[u2} and v={vz}

find the coordinates of v relative to the ordered such that

basis 7. u-v=20 and \/u%—i-u%:l:\/vf—i-v%

i If ) a. Show that B = {u, v} is a basis for R2.
] 13 b. Find the coordinates of the vector w = { ; }
VvV =
r =5 relative to the ordered basis B.
-1 .
find the coordinates of v relative to the ordered 10. Let ¢ be a fixed scalar and lat
basis B. pix)=1 p2(x) =x+c
7. Suppose span{vs,...,Vv,} =V and p3(x) = (x +¢)?
C1V1 + Vo + -+ + ¢V, = 0 a. Show that B = {p1(x), p2(x), p3(x)} is a basis
. for Po.
with ¢; # 0. Show that span{va, ..., Va} = V. b. Find the coordinates of f(x) = ag +
8. Let V = Mj,». aix + apx? relative to the ordered basis B.
Chapter 3: Chapter Test
In Exercises 1-35, determine whether the statement is 2. The set
true or false. 1 2 0
1. If V =R and addition and scalar multiplication S = 3 |, 114
are defined as 1 -1 3
xXPy=x+2y cOx=x+c is a basis for R3.

then V is a vector space. 3. Aline in R® is a subspace of dimension 1.
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4. The set

=1 1}

is a basis for My».

N w
= O
| IS
| —
N =
o o
| IS
—

5. The set

1 0 -2
21,1 1], 0
3 2 1

is a basis for R® if and only if

1 0 -2

det|{ 2 1 0| #0
3 2 1

6. The set
s= {3 ]Jr=o}
is a subspace of R2.
7. The set
S ={A € My, | det(A) = 0}
is a subspace of Mj.
8. The set
(2,14 x,2-3x% x> —x+1}
is a basis for Ps.
9. The set
{x3 —2x% + 1, x% - 4, 2+ 2x, 5x}
is a basis for Ps.

10. The dimension of the subspace

S s
SEHIBH)

then span(S) = span(T).

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

The set

S = a aclR
0

is a subspace of R® of dimension 1.

If S ={vq,vo,v3}and T = {vq, Vo, V3, V1 + Vo},
then span(S) = span(T).

If S ={v1,Vv2,v3}, T = {v1,Vz, V3, V1 + V2}, and
S is a basis, then T is not a basis.

If {v1, Vo, v3} is a basis for a vector space V and
Wi = Vi +2Vp + V3, Wp = V1 + Va2 + V3,

W3 = Vi — Vo — V3, then W = {wy, Wy, wz} is
also a basis for V.

If V is a vector space of dimension » and S is a
set of vectors that span V, then the number of
vectors in S is less than or equal to n.

If V is a vector space of dimension n, then any
set of n — 1 vectors is linearly dependent.

If S and T are subspaces of a vector space V,
then S U T is a subspace of V.

If $={vi,...,v,} isa linearly independent set
of vectors in R", then S is a basis.
If Aisa 3 x 3 matrix and for every vector

a
b= b
¢

the linear system Ax = b has a

solution, then the column vectors of A span R3.

If an n x n matrix is invertible, then the column
vectors form a basis for R”.

If a vector space has bases S and 7 and the
number of elements of S is n, then the number of
elements of T is also n.

In a vector space V, if
span{vi, Vo, ..., V,} =V
and wy, W, ..., W, are any elements of V, then

span{vi, Vo, ..., V,, Wi, Wa, ..., W,,} = V.



24. If V is a vector space of dimension n and H is a
subspace of dimension n, then H = V.

25. If By and B, are bases for the vector space V,
then the transition matrix from B; to B; is the
inverse of the transition matrix from
B> t0 Bj.

In Exercises 26—29, use the bases of [R?

=il 1))
w2

and

26. The coordinates of é , relative to Bq, are
L LY ]
1l

27. The coordinates of é relative to B, are

1]
4 1|
28. The transition matrix from By to By is
1] -1 3
By -
[I]Bl - 2 |: 1 =1 :|
29. The transition matrix from B, to By is

=1 3]

In Exercises 30—35, use the bases of P,

By = {1,x,x% x%)

3.5 Application: Differential Equations

and

By = {x,x%,1,x%)

I
N

30. [x3 +2x2 — x]p,

31 [x%+2x% — x]p, =

32 [.X3 + 2.X2 — _)C]B2 =

33, [x3 +2x2 — x]5,

34, [(L+x)2=3(x%+x —1) +x3]p,

35. The transition matrix from B; to B; is

o

113} =

O OO
O OB o
= O O

1
0
0
0

197






Linear Transformations

CHAPTER OUTLINE 4.1 Linear Transformations 200
4.2 The Null Space and Range 214
4.3 Isomorphisms 226
4.4 Matrix Representation of a Linear Transformation 235
4.5 Similarity 249
4.6 Application: Computer Graphics 255

critical component in the design of an airplane is
the airflow over the wing. Four forces that act on
an aircraft, and need to be considered in its design,
are lift, the force of gravity, thrust, and drag. Lift and

drag are aerodynamic forces that are generated by the Yaw
movement of the aircraft through the air. During take- O
off, thrust from the engines must overcome drag. Lift, z

created by the rush of air over the wing, must over- \
come the force of gravity before the airplane can fly. \/> _//’/
Mathematical models developed by aeronautical engi- S

neers simulate the behavior of an aircraft in flight. These o

models involve linear systems with millions of 5

equations and variables. As we saw in Chap. 1, lin- G/
ear algebra provides systematic methods for solv- Roll Pitch
ing these equations. Another use of linear algebra
in the design process of an airplane is in modeling the movement of the aircraft
through space. To check the feasibility of their designs, aeronautical engineers use
computer graphics to visualize simulations of the aircraft in flight. Three control
parameters which affect the position of an aircraft are pitch, roll, and yaw. The pitch
measures the fore and aft tilt of an airplane, relative to the earth, while the roll mea-
sures the tilt from side to side. Together these give the attitude of the aircraft. Using
the figure above, the pitch is a rotation about the y axis, while a roll is a rotation
about the x axis. The yaw measures the rotation about the z axis, and when combined
with the pitch, gives the heading. During a simulation, the attitude and heading of
the aircraft can be changed by applying a transformation to its coordinates relative
to a predefined center of equilibrium. As we shall see in this chapter, such a trans-
formation can be represented by matrix multiplication. Specifically, if the angles of

199
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4.1

rotation for pitch, roll, and yaw are given by 0, ¢, and 1, respectively, then the matrix
representations for these transformations are given by

cos® 0 —sind 1 0 0 cosy siny 0
0 1 0 0 cose —sing and —siny cosy O
sin6 0 cos® 0 sing coso 0 0 1

This type of transformation is a linear map between vector spaces, in this case from
R3 to R3. The generation and manipulation of computer graphics are one of many
applications that require the linear transformations which are introduced in this chapter.

Due to their wide applicability linear transformations on vector spaces are of
general interest and are the subject of this chapter. As functions between vector spaces,
they are special since they preserve the additive structure of linear combinations. That
is, the image of a linear combination under a linear transformation is also a linear
combination in the range. In this chapter we investigate the connection between linear
transformations and matrices, showing that every linear transformation between finite
dimensional vector spaces can be written as a matrix multiplication.

Linear Transformations

In mathematics every line of inquiry ultimately leads to a description of some set and
functions on that set. One may metaphorically refer to elements of the set as nouns
and functions that operate on elements as verbs. In linear algebra the sets are vector
spaces, which we discussed in Chap. 3, and linear transformations on vector spaces
are the functions.

If V and W are vector spaces, then a mapping 7 from V to W is a function that
assigns to each vector v in V a unique vector w in W. In this case we say that T
maps V into W, and we write 7: V. — W. For each v in V the vector w = 7'(v) in
W is the image of v under T.

m Define a mapping T: R> — R? by

()-8
y X =Yy
a. Find the image of the coordinate vectors e; and e under the mapping 7.

b. Give a description of all vectors in R? that are mapped to the zero vector.
c. Show that the mapping 7' satisfies

TWUW+V)=T(U)+T() (preserves vector space addition)

and
T (cv) = cT (V) (preserves scalar multiplication)

for all vectors u and v in V and all scalars ¢ in R.
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Solution  a. Since g = { é } and & = [ 2

- [153]- (1] e e[ ]

b. To answer this question, we solve

()-15 =18

This leads to the linear system
x+y =0
x—y =0

] , we have

201

where the unique solution is x = y = 0. Thus, the only vector that is mapped

0
byTto[O

c. To show that the mapping T preserves vector space addition, let

u=[u1} and v={v1]
u v2

} is the zero vector [ 8 ]

Then

T (w4 vr) — (w2 + v2)
L]t
= +

Ui — Uy V1 — V2
_ uy v1
-r([a )+ (%))

=T +T(V)

T(cu)y=T <[ - D
Cuyn
_ | curtcuz | Ui+ us
_ CUl — CuUp - uiy — up

=cT(u)

| o)+ w2+ vp) }

We also have

A mapping T between vector spaces V and W that satisfies the two properties,

as in Example 1,

TU+vVv)=T(U)+T(V) and T (cu) = cT(u)
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is called a linear transformation from V into W. Notice that the operations of addition
and scalar multiplication on the left-hand side of each equation refer to operations in
the vector space V, and on the right-hand side refer to operations in the vector space W.

Definition 1 combines the two requirements for the linearity of 7 into one
statement.

DEFINITION 1 Linear Transformation Let V and W be vector spaces. The mapping 7: V — W
is called a linear transformation if and only if

T(cu+Vv)=cTU)+ T(Vv)

for every choice of u and v in V and scalars ¢ in R. In the case for which V = W,
then T is called a linear operator.

The mapping T defined in Example 1 is a linear operator on R?. In Example 2
we show how matrices can be used to define linear transformations.

m Let A be an m x n matrix. Define a mapping 7: R* — R™ by

T(X) = AX

a. Show that 7 is a linear transformation.
b. Let A be the 2 x 3 matrix
. [ N7 il ]

-1 3 2
Find the images of

1 7
1 and -1
1 5

under the mapping 7: R® — R? with T'(x) = Ax.

Solution  a. By Theorem 5 of Sec. 1.3, for all vectors u and v in R” and all scalars ¢ in R,
A(CU+ V) = cAu + AV
Therefore,
T(cu+vVv) =cT )+ T(V)

b. Since T is defined by matrix multiplication, we have
([3])-14 3 ]
1 -1 3 2 1 4



4.1 Linear Transformations 203

and
T _1 _{ 1 2 —1} _1 _{0]
5 1 3 2 5 0

Later in this chapter, in Sec. 4.4, we show that every linear transformation between
finite dimensional vector spaces can be represented by a matrix. In Examples 1 and 2, we
have discussed some of the algebraic properties of linear transformations. In Example 3
we consider the action of a linear transformation from a geometric perspective.

m Define a linear transformation 7: R® — R? by

Solution

x X
r([2])-15]
- y
a. Discuss the action of 7' on a vector in R3, and give a geometric interpretation
of the equation

1 0 1 0
T 01+]1 =¥ 0 a0 I 1
1 1 1 1

b. Find the image of the set

1
S1=<1t]| 2 telR
1
¢. Find the image of the set
.
Sy = y [|x,yeR
L 3 -
d. Describe the set -
X
S3 = 0 x,z€eR
(- Z -

and find its image.

a. The linear transformation T gives the projection, or shadow, of a vector in
3-space to its image in the xy plane. Let

1 0 1
vi=| 0 vo=| 1 and V3=Vi+Vo=| 1
1 1 2
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The images of these vectors are shown in Fig. 1. We see from the figure that

T(v3) = { 1 } is equal to the vector sum T'(v1) + T (v2) = { é } + { 2 }

as desired.

Xy

<v

Figure 1

1
b. The set S; is a line in 3-space with direction vector | 2 |. By the definition

1
T(Sl)z{t{;} te[R{}

which is a line in R? through the origin with slope 2.

of T we have

c. The set S, is a plane in 3-space 3 units above and parallel to the xy plane. In

this case,
T(Sz)z{{’y“] x,yeR}

Thus, the image of S, is the entire xy plane, which from the description of T
d. The set S3 is the xz plane. Here we have

o[ e

which is just the x axis. Again, this is the expected result, given our description
of T.

as a projection is the result we expect.

In Example 4 we use the derivative of a function to define a linear transformation
between vector spaces of polynomials.
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m Define a mapping 7: P3 — P, by
T(p(x)) = p'(x)
where p’(x) is the derivative of p(x).

a. Show that 7 is a linear transformation.
b. Find the image of the polynomial p(x) = 3x% + 2x? — x + 2.
c. Describe the polynomials in P5 that are mapped to the zero vector of P;.

Solution First observe that if p(x) is in P3, then it has the form

px) = ax®+bx® +cex+d
so that
T(p(x)) = p'(x) = 3ax? + 2bx + ¢

Since p’(x) is in P,, then T is a map from P; into Ps.

a. To show that 7 is linear, let p(x) and ¢(x) be polynomials of degree 3 or less,
and let k be a scalar. Recall from calculus that the derivative of a sum is the
sum of the derivatives, and that the derivative of a scalar times a function is
the scalar times the derivative of the function. Consequently,

d
T(kp(x) +q(x)) = E(kp(x) +q(x))
d

d
= E(kP(X)) + E(f](x))

= kp'(x) + ¢’ (x)
=kT(p(x)) + T(q(x))
Therefore, the mapping T is a linear transformation.
b. The image of the polynomial p(x) = 3x% +2x? —x + 2 is

d
T(p(x)) = a(SxS +2%—x+2)=9x% +4x -1

c. The only functions in P53 with derivative equal to zero are the constant poly-
nomials p(x) = ¢, where ¢ is a real number.

PROPOSITION 1 Let V and W be vector spaces, and let T: V. — W be a linear transformation. Then
T =0.

Proof Since 7(0) = T(0+0) and T is a linear transformation, we know that
TO)=TO+0)=T(0)+ T(0). Subtracting 7(0) from both sides of the last
equation gives 7'(0) = 0.
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Solution

Solution

Solution

Define a mapping T: R> — R? by

r([5])=(5])

Determine whether T is a linear transformation.

ro-r([§])-[5]-[1]

by the contrapositive of Proposition 1, we know that 7' is not a linear transfor-
mation.

Since

Define a mapping T: M., —> My« by
T(A) = A’

Show that the mapping is a linear transformation.

By Theorem 6 of Sec. 1.3, we have
T(A+B)=(A+B) =A"+B =T(A)+T(B)
Also by this same theorem,
T(cA) = (cA) =cA' =cT(A)

Thus, T is a linear transformation.

Coordinates Let V be a vector space with dim(V)=n, and B =

{vi,Va,...,V,} an ordered basis for V. Let T: V — R" be the map that sends a
vector v in V to its coordinate vector in R”" relative to B. That is,
T(v) = [vlg

It was shown in Sec. 3.4 that this map is well defined, that is, the coordinate vector
of v relative to B is unique. Show that the map 7 is also a linear transformation.

Let u and v be vectors in V and let k be a scalar. Since B is a basis, there are
unique sets of scalars ¢y, ..., ¢, and dy, ..., d, such that

U=ciV1+---+c,V, and V=dVi+- --+d,V,
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Applying T to the vector ku + v gives
T (ku+vV) =T ((kc1 +di)vi+ -+ + (kcy + dn)Vn)

ke + dq Gl dy

kco + do c2 dy
: : =k| . |+ 3

ke, +d, Cn d,

=kT )+ T(v)

Therefore, we have shown that the mapping T is a linear transformation.

As mentioned earlier, when T: V — W is a linear transformation, then the
structure of V is preserved when it is mapped into W. Specifically, the image of a
linear combination of vectors, under a linear map, is equal to a linear combination
of the image vectors with the same coefficients. To see this, let V and W be vector
spaces and 7: V — W be a linear transformation. Then by repeated application of
Definition 1, we have

T(ciVi+ Vo + -+ V) = T(cva) + - - -+ T (cyVy)
=c1T(V1) +c2T (Vo) + -+ cn T (Vn)

The fact that a linear transformation 7' between vector spaces V and W preserves
linear combinations is useful in evaluating 7 when its action on the vectors of a basis
for V is known. This is illustrated in Example 8.

Let 7: R® — [R? be a linear transformation, and let B be the standard basis for [R3.
If

1 =7 0
T(el)=[1] T(ez)=[ 2] and T(ee,)=[1]
find T (v), where

To find the image of the vector v, we first write the vector as a linear combination
of the basis vectors. In this case

V=e + 36 + 263
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Applying T to this linear combination and using the linearity properties of 7, we

have
T(v) =T (e + 3e; + 2€3)

=T(e1) + 3T (&) + 2T (&3)

1 -1 0
=[3]ws[ 2 )21
N[
=l 9

m Let 7: R® — RS be a linear operator and B a basis for R® given by

S(HH

1
N————
Il
—
[
w N -
S |
~
—
—
NP
| |
~_
Il
—
AN DN

Solution Since B is a basis for R3, there are (unique) scalars c1, ¢z, and c3 such that

[-E[E

Solving this equation, we obtain ¢; = —1, ¢ = 1, and ¢3 = 2. Hence,

r([3])-r (L) 3]+ L3)

By the linearity of 7, we have

(])-eor (D) (3]) = (LE)
RERH
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Operations with Linear Transformations

Linear transformations can be combined by using a natural addition and scalar mul-
tiplication to produce new linear transformations. For example, let S, T: R?> — R? be
defined by

(GD-l] e r()-[30)

S+THV) =SV +T(v)  and (€S)(V) = c(S(Vv)

To illustrate this definition, let v = [ _i ]; then

(S+T)(V) = SW) + T (V) = [ 2oy } + [ g 5((—_1? } - [ 3 }

For scalar multiplication let ¢ = 3. Then

5 15
(3T)(v) = 3T (V) :3{ . } = { I }

In Theorem 1 we show that these operations on linear transformations produce
linear transformations.

Let V and W be vector spaces and let S, 7: V. — W be linear transformations. The
function S + T defined by

S+T)V)=SWV)+T(v)

is a linear transformation from V into W. If ¢ is any scalar, the function ¢S

defined by
(€S (V) =cSV)

is a linear transformation from V into W.

Proof Letu,ve V and let d be any scalar. Then

(S 4+ T)(du + V) = S[du +V) + T(du + V)

= Sdu) + SV) + T(du) 4+ T (V)
=dS(W) + S\V)+dT ) +T()
=d( S +TW)+SWV) +T(V)
=dS+ 1))+ (S+T)V)
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THEOREM 2

\__/
SoT (V)

Figure 2

so that S + 7 is a linear transformation. Also

(cS)([du+V) =c(S(du+v))
c(S(du) + S(v))
=c(dS(u) + S(v)

= (cd)S(U) +cS(V)
=d(cS) ) + (c5)(V)

so that ¢S is a linear transformation.

Using the sum of two linear transformations and the scalar product defined above,
the set of all linear transformations between two given vector spaces is itself a vector
space, denoted by £(U, V). Verification of this is left to Exercise 45 at the end of this
section.

As we saw in Example 2, every m x n matrix A defines a linear map from R” to
R™. Also, if B is an n x p matrix, then B defines a linear map from R? to R". The
product matrix AB, which is an m x p matrix, then defines a linear transformation
from R” to R™. As we shall see (in Sec. 4.4), this map corresponds to the composition
of the maps defined by A and B. The desire for this correspondence is what motivated
the definition of matrix multiplication given in Sec. 1.3.

Let U, V, and W be vector spaces. If T: V — U and S: U — W are linear trans-
formations, then the composition map So7: V — W, defined by

(SeT)(v) = S(T(V))
is a linear transformation. (See Fig. 2.)

Proof To show that So7 is a linear transformation, let v, and v, be vectors in
V and ¢ a scalar. Applying ST to cvi + v, we obtain

(S°T)(cv1 + V2) = S(T (cv1 + V2))
= S(cT(v1) + T (v2))
= S(cT(v1)) + S(T(v2))
= cS(T (V1)) + S(T(v2))
= c(8°T) (V1) + (S°T)(v2)

This shows that So7 is a linear transformation.

In the case of all linear operators on a vector space V, denoted by £(V, V), the
operations of addition and scalar multiplication make £(V, V) a vector space. If, in
addition, we define a product on £(V, V) by

ST (V) = (§°T) (V)

then the product satisfies the necessary properties making £(V, V) a linear algebra.
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Fact Summary

Let V, W, and Z be vector spaces and S and 7 functions from V into W.

Exercise Set 4.1

In Exercises 1-6, determine whether the function
T: R? — R? is a linear transformation.

(|

2.

T

~ ~

~

~

N Y N

AR . .

)

N N N~ N~

1

The function 7 is a linear transformation provided that for all u, v in V and
all scalars ¢, T(cu + V) = c¢T (u) + T(v).

. If A is an m x n matrix and T is defined by 7 (x) = Ax, then T is a linear

transformation from R”" into R™.

. If T is a linear transformation, then the zero vector in V is mapped to the

zero vector in W, that is, 7(0) = 0.

. If B =1{v1,Vs,...,V,} is an ordered basis for V and W = R", then the

coordinate mapping 7' (v) = [v]p is a linear transformation.

If {vq,Vvy,...,V,} is a set of vectors in V and T is a linear transformation,
then

T(ciV1+ Vo + - -+ cuVy) = 1T (V1) + 2T (Vo) + - - - + ¢, T (V)

for all scalars cq, ..., c,.

If S and T are linear transformations and c is a scalar, then S + 7" and c¢T
are linear transformations.

If T: V.— W is a linear transformation and L : W — Z is a linear
transformation, then Lo7T: V — Z is a linear transformation.

In Exercises 7—16, determine whether the function is a
linear transformation between vector spaces.

7. T'R—> R, T(x) = x2
8 T'R—- R, T(x) =—-2x

9 T [R2—>|R,T<[);})=x2+y2

10. T: R3 — R?,
)C X
1))
B y
11. T: R3 - RS,
X xX+y—z
T y = 2xy
z x+z+1
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12.

13.

14.

15.
16.
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T: R3 — RS,
X COoS x
T y = siny
z sinx +sinz
T: P3 — Ps,
T(p(x)) =2p"(x) —3p'(x) + p(x)
T: P, = Py,

T(p(x)) = p(x) +x
T: Mayp — R, T(A) = det(A)

T: Mayo — Moo, T(A) = A+ A

In Exercises 17-20, a function 7: V — W between

vector spaces and two vectors u and v in V are given.

17.

18.

19.

20.

a. Find T'(u) and T (v).
b. IsT(u+vVv)=T(@U) + T(V)?
c. Is T a linear transformation?

Define T: R? — R? by
f([5])-17]
y y
s | 2 [ 2
- 3 T =2
Define T: P, — P, by

T(p(x)) = p"(x) —2p'(x) + p(x)

Let

Let
u=x%-3x+1 v=—x-1

Define T: P3 — R? by

3 2 _ —a—b+1
T (ax® + bx —i—cx—{-d)_[ ctd }
Let
U= —-x+2x2—x+1 v=x?-1

Define T: R® — R? by

(2])-1

i [
T

r([3])-[7]
oo [ 3])

22. If T: R® — R3 is a linear operator and

[ 1] [ 1
T 0 =| -1
| 0| | 0
[0 ] [ 2

T 1 =10
| 0 | | 1
[0 ] 1
T 0 = -1
1] |1

(3 BN

(]

23. If T: P, — P, is a linear operator and
T =1+x Tx) =2+x°
T(x%) = x — 3x?
then find 7(—=3 + x — x?).

24. If T: My.p — My is a linear operator and

re=|o |
Teen) = | & _H
ren=|g |
T(en) = | 9 8]




25.

26.

27.

28.

then find
2 1
r([5:))

Suppose that 7: R? — R? is a linear operator

IRF N

()=

Is it possible to determine T 3 D’) If so, find
it; and if not, explain why.

Define a linear operator 7: R® — R3 by
T (u) = Au, where

a. Find T(e)), T(&), and T(&3).
b. Find T (3e; — 4e, + 6€3).

Suppose that 7: P, — P, is a linear operator such
that

TxH=2x—-1 T(=3x)=x*-1
T(—x?+3x)=2x>—2x +1
a. Is it possible to determine 7' (2x%2 — 3x + 2)? If
so, find it; and if not, explain why.

b. Is it possible to determine 7'(3x2 — 4x)? If so,
find it; and if not, explain why.

Suppose that 7: R® — RS is a linear operator
such that
o S
T =
L O - L 3 -
1 S
T - | -2
L 0 - L 1 -

[E

o
N

[y

29.

30.

31

32.

33.

4.1 Linear Transformations 213

2
T -5
| 0
b. Is it possible to determine T'(v) for all vectors

v in R3? Explain.

Define a linear operator 7: R? — R? by

f()-15]
y -y
a. Find a matrix A such that 7 (v) = Av.
b. Find T(e)) and T ().

Define a linear transformation 7: R?> — R® by
x —2y
f(CD-{
y 2y

a. Find a matrix A such that 7 (v) = Av.
b. Find T (&) and T ().

Define T: R® — R? by

([3])-15

Find all vectors that are mapped to 0.
Define T: R® — R? by

(1))

Find all vectors that are mapped to O.

Define T: R® — R® by
xX— y+2z
2x+3y— z

(])-[

a. Find all vectors in R® that are mapped to the
zero vector.

xX+2y+z
—x+5y+z
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35.

36.

37.

38.
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7 39. Define : C9[0,1] — R by
b. Letw= | —6 |. Determine whether there is 1
-9 () =/ f ) dx
0

a vector v in R® such that 7(v) = w.
Define T: P, — P, by
T(p(x)) = p'(x) — p(0)

a. Find all vectors that are mapped to O.

b. Find two polynomials p(x) and ¢(x) such that
T(p(x)) =T(q(x)) =6x —3.

c. Is T a linear operator?

Suppose T1: V — R and 75: V — R are linear
transformations. Define T: V — R? by

40.

41.

for each function f in C@[0, 1].
a. Show that 7 is a linear operator.
b. Find T(2x? — x + 3).

Suppose that T: V — W is a linear transformation
and 7(u) = w. If T(v) =0, then find T(u + v).

Suppose that 7: R* — R™ is a linear
transformation and {v, w} is a linearly
independent subset of R”". If {T'(v), T(w)} is
linearly dependent, show that 7'(u) = 0 has a
nontrivial solution.

T 42. Suppose that 7: V — V is a linear operator and
T(V) = { T1(V) ] {vi,...,Vv,} is linearly dependent. Show that
2(V) {T(V1), ..., T(v,)} is linearly dependent.

Show that 7 is a linear transformation.

Define T: M, », — R by T(A) =tr(A). Show
that T is a linear transformation.

Suppose that B is a fixed n x n matrix. Define
T My xn — M,y by T(A) = AB — BA. Show
that T is a linear operator.

Define T: R — R by T'(x) = mx + b. Determine
when 7 is a linear operator.

4.2

43.

45,

Let S = {v1, Vo, v3} be a linearly independent
subset of R®. Find a linear operator T: R® — R3,
such that {7 (v1), T (V2), T(v3)} is linearly
dependent.

Suppose that 71: V — V and T»: V — V are
linear operators and {vi, ..., V,} is a basis for V.
If T1(v;) = To(v;), foreach i =1, 2, ..., n, show
that T1(v) = T»>(v) for all vin V.

Verify that £(U, V) is a vector space.

The Null Space and Range

In Sec. 3.2, we defined the null space of an m x n matrix to be the subspace of R" of
all vectors x with Ax = 0. We also defined the column space of A as the subspace of
R™ of all linear combinations of the column vectors of A. In this section we extend
these ideas to linear transformations.

DEFINITION 1

Null Space and Range Let V and W be vector spaces. For a linear transfor-

mation T: V. — W the null space of T, denoted by N(T), is defined by

N(T)={veV|T() =0}
The range of T, denoted by R(T), is defined by
R(T) ={T () |veV}
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The null space of a linear transformation is then the set of all vectors in V that are
mapped to the zero vector, with the range being the set of all images of the mapping,
as shown in Fig. 1.

T T
V_— U V_— U
“
0 R(1))
Figure 1

In Theorem 3 we see that the null space and the range of a linear transformation
are both subspaces.

THEOREM 3 Let V and W be vector spaces and 7: V. — W a linear transformation.

1. The null space of T is a subspace of V.
2. The range of T is a subspace of W.

Proof (1) Letv; and v, be in N(T), so that T(vi) =0and T(vo) =0. Ifcisa
scalar, then using the linearity of T, we have

T(evi+V2)=cT(V1)+T(V2) =c0+0=0

Thus, ¢vi + Vv, is in N(T), and by Theorem 4 of Sec. 3.2, N(T) is a subspace
of V.

(2) Let wy and wy be in R(T). Then there are vectors v; and v, in V such that
T (v1) = wsy and T (v2) = w,. Then for any scalar c,

T(cvy+V2) = cT (V1) + T (Vo) = cW1 + W,

so that cwy + wy is in R(T) and hence R(T) is a subspace of W.

m Define the linear transformation 7: R* — R3 by

a
b a+b
T = b—c
o a+d
d

a. Find a basis for the null space of 7" and its dimension.
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b. Give a description of the range of 7.
c¢. Find a basis for the range of 7" and its dimension.

Solution  a. The null space of T is found by setting each component of the image vector
equal to 0. This yields the linear system

a-+b =0
b—c =0
a +d =0

This linear system has infinitely many solutions, given by

=1

S = telR
t
t
Hence, _
-1
1
N(T) = span 1
| 1
A basis for N(T) consists of the one vector
1]
1
1
1

Consequently, dim(N(T)) = 1.
b. Observe that any vector in the range can be written as

JHRHE

for some real numbers a, b, ¢, and d. Therefore,

HHIBIH)

c. Since the range is a subspace of R, it has dimension less than or equal to 3.
Consequently, the four vectors found to span the range in part (b) are linearly
dependent and do not form a basis. To find a basis for R(T), we use the
trimming procedure given in Sec. 3.3 and reduce the matrix

11 00 1 00 1
01 -1 0 to 010 -1

1 0 01 0 01 -1

= O O
|

= O O

R(T) = span {
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Since the reduced matrix has pivots in the first three columns, a basis for the

range of T is
1 1 0
B = Of, |1 (| -1
1 0 0

Therefore, dim(R(T)) = 3. Observe that B also spans R?, so that R(T) = R.

m Define the linear transformation 7: P4, —> Ps, by

Solution

THEOREM 4

T(p(x)) = p'(x)
Find the null space and range of T.

Recall that the derivative of a constant polynomial is 0. Since these are the only
polynomials for which the derivative is 0, we know that N (T) is the set of constant
polynomials in P4. We claim that the range of 7 is all of P;. To see this, let
g(x) = ax® 4+ bx? 4+ cx +d be an arbitrary element of P3. A polynomial p(x)
whose derivative is g (x) is found by using the antiderivative. That is, to find p(x),
we integrate ¢ (x) to obtain

b
p(x):/q(x)dx=/(ax3+bx2+cx+d)dx= %x4+§x3+%x2+dx+e

which is an element of P4, with p’(x) = ¢(x). This shows that for every polynomial
q(x) in P3 there is a polynomial p(x) in P4 such that 7 (p(x)) = ¢(x), giving that
the range of T is all of Ps.

In Sec. 4.1, we saw that the image of an arbitrary vector v € V can be computed if
the image T (v;) is known for each vector v; in a basis for V. This leads to Theorem 4.

Let V and W be finite dimensional vector spaces and B = {vi, Vv, ..., V,} a basis
for V. If T: V. — W is a linear transformation, then

R(T) = span{T (v1), T (V2), ..., T (Va)}

Proof To show that the two sets are equal, we will show that each is a subset of

the other. First, if w is in R(T), then there is a vector v in V such that 7'(v) = w.

Now, since B is a basis for V, there are scalars c1, ..., ¢, with
V=ciVi+cVo+ -+ ¢,V

so that
T(V) = T(Cle_ +coVo -+ Cnvn)
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Solution

From the linearity of T, we have
W=TN) =c1T(V1) +c2T (Vo) + -+ cnT(Vy)

As w is a linear combination of 7 (v1), T(V2), ..., T(V,), then w € span{T (v1),
T(V2),...,T(v,)}. Since this is true for all w in R(T), then

R(T) C span{T (v1), T(V2), ..., T(Vn)}

On the other hand, suppose that w € span{T (v1), T (V2), ..., T(v,)}. Then
there are scalars c1, ..., ¢, with

W=c1T (V1) +c2T (Vo) + -+ c, T (V)
=T(c1V1+caVo + -+ -+ cpVy)

Therefore, w is the image under T of ¢1vy + ¢oVo + - - - + ¢, V,,, Which is an element
of V. Therefore, span{T (v1), T (V2), ..., T(v,)} C R(T).

Let 7: R® — RS2 be a linear operator and B = {v1, V», v3} a basis for R®. Suppose

that
1 1 2
Tv)=|1 T (Vo) = 0 T(v3) = 1
0 -1 -1
1
a. ls | 2 | in R(T?
1
b. Find a basis for R(T).
¢. Find the null space N(T).
1
a. From Theorem 4, the vector w= | 2 | isin R(T) if there are scalars cy, c»,
1
and c¢3 such that
1
c1T (V1) + 2T (Vo) + 3T (V3) = | 2
1
that is,
1 1 2 1
c1| 1 |+e 0| +c 1| =12
0 -1 -1 1

The set of solutions to this linear system is given by S = {(2 —¢, —1 —¢,1) |

t € R}. In particular, if t = 0, then a solution is ¢; = 2, ¢; = —1, and ¢3 = 0.
Thus, w € R(T).
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b. To find a basis for R(T), we row-reduce the matrix

1 1 2 1 0 1
1 0 1 to obtain 01 1
0 -1 -1 0 0 O
Since the leading 1s are in columns 1 and 2, a basis for R(T) is given by
1 1
R(T) = span 1, 0
0 -1

Observe that since the range is spanned by two linearly independent vectors,
R(T) is a plane in R3, as shown in Fig. 2.

c. Since B is a basis for R3, the null space is the set of all vectors c1vi + coVo +
c3V3 such that

0
1T (V1) +c2T (Vo) +c3T(v3) = | O
0
By using the reduced matrix
1 01
0 1 1
0 0O

from part (b), the null space consists of all vectors such that ¢; = —c3, ¢z =
—cs3, and c3 is any real number. That is,

N(T) = span {—Vv; — V2 + Vz}
which is a line in R See Fig. 2.

4

Figure 2

Notice that in Example 3 we have
dim(R3) = dim(R(T)) + dim(N(T))

In Theorem 5 we establish this fundamental result for all linear transformations
between finite dimensional vector spaces.
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THEOREM 5

Let V and W be finite dimensional vector spaces. If T: V — W is a linear
transformation, then

dim(V) = dim(R(T)) + dim(N(T))

Proof Suppose that dim(V) = n. To establish the result, we consider three cases.

First, suppose that dim(N(T)) = dim(V) = n. In this case, the image of every
vector in V is the zero vector (in W), so that R(T) = {0}. Since the dimension of
the vector space containing only the zero element is 0, the result holds.

Now suppose 1 < r =dim(N(T)) < n. Let {v1, V2, ..., V,} be a basis for N(T).
By Corollary 1 of Sec. 3.3, there are n —r vectors {V, 1,V,i2,...,V,}, such
that {v1,V2,...,V,,V,11,...,V,} is a basis for V. We claim that S = {T'(v,11),
T(V;42), ..., T(v,)} is a basis for R(T). By Theorem 4, we have

R(T) = span{T (v1), T (V2), ..., T(V;), T(Vr41), . ... T(Va)}

Since T(vy) =T (Vo) = --- = T(v,) = 0, each vector in R(T) is a linear combina-
tion of T(v,41), ..., T(v,) and hence R(T) = span(S). To show that S is linearly
independent, we consider the equation

1T (Vig1) + 2T (Veg2) + -+ T (V) = 0

We need to show that ¢, 11 = ¢,.20 = --- = ¢, = 0. Since T is linear, the previous
equation can be written as

T(Cr+lvr+1 +crpoVrg2 + 0+ CpVp) = 0

From this last equation, we have ¢, 1V, 11 + ¢rq2Vyq2 + -+ -+ ¢V, is in N(T).
However, since {vi, Vs, ..., V,} is a basis for N(T), there are scalars c1, ¢, ..., ¢,
such that

Cr+1Vrt1 + Crp2Veg2 + - -+ CVp = Cc1V1 + Vo + - - - + ¢V,

that is,

—C1V1 — Vo — - = ¢V + CraVrpl + G2V + -+ 6V, =0
Now, since {v1, V2, ...,V,,V,11,...,V,} is a basis for V and hence linearly inde-
pendent, the coefficients of the last equation must all be 0, thatis, ¢; = ¢, = --- =
¢ =c¢ry1 = -+ = ¢, = 0. In particular, ¢,11 =c¢,42 =--- = ¢, = 0. Hence, the
n —r vectors T(V,11), ..., T(v,) are a basis for R(T). Consequently,

n=dmV)=m—r)+r =dim(R(T)) +dim(N(T))
Finally, suppose that N(T) = {0}, so that dim(N(T)) =0. If {vq,...,Vv,}isa
basis for V, then by Theorem 4 we have
R(T) = span{T'(v1), ..., T (Vy)}

A similar argument to the one above shows that {T'(v1), ..., T(v,)} is linearly
independent. Thus, dim(R(T)) = n = dim(V), and the result also holds in this
case.
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m Define a linear transformation 7: P, —> P, by

Solution

T(p(x)) = p”(x)
Find the dimension of the range of T, and give a description of the range.
Let B = {1, x, x2, x%, x*} be the standard basis for 7. Since p(x) isin N(T) if and
only if its degree is 0 or 1, the null space is the subspace of P, consisting of polyno-

mials with degree 1 or less. Hence, {1, x} is a basis for N(T), and dim(N (7)) = 2.
Since dim(P4) = 5, by Theorem 5 we have

2+dim(R(T)) =5 SO dim(R(T)) =3
Then as in the proof of Theorem 5, we have
{T(x?, T3, T(x"} = {2, 6x,12x%}
is a basis for R(T). Observe that R(T) is just the subspace P, of Pj.

Matrices
In Sec. 3.2 we defined the column space of a matrix A, denoted by col(A), as the
span of its column vectors. We also defined the null space of the m x n matrix A as
the set of all vectors x in R” such that Ax = 0. We further examine these notions here
in the context of linear transformations. In particular, let A be an m x n matrix and
let T: R" — R™ be the linear transformation defined by
T(v) = Av

This last equation can be written in vector form as

T (V) = viA1 4+ 1Ay + - -+ v,A,

where A; are the column vectors of A, and v; are the components of v for 1 <i < n.
In this way we see that the range of 7, which is a subspace of R™, is equal to the
column space of A, that is,

R(T) = col(A)

The dimension of the column space of A is called the column rank of A. We also have
N(T) ={veR"| Av =0} = N(A)

The dimension of N(A) is called the nullity of A. Applying Theorem 5, we have
column rank(A) + nullity(A) = n

Another subspace of R" associated with the matrix A is the row space of A,
denoted by row(A), and is the span of the row vectors of A. Since the transpose
operation maps the row vectors of A to the column vectors of A, the row space of
A is the same as the column space of A’, that is,

row(A) = col(A")
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THEOREM 6

THEOREM 7

By using the algorithm for finding a basis, given in Sec. 3.3, a basis for col(A) can
be found by row reduction. In particular, the columns with the leading 1s in the row-
reduced form of A correspond to the column vectors of A needed for a basis of col(A).
Hence, the column rank of A is equal to the number of leading 1s in the row-reduced
form of A. On the other hand, row-reducing A eliminates row vectors that are linear
combinations of the others, so that the nonzero row vectors of the reduced form of A
form a basis for row(A). Hence, the row rank is equal to the number of leading 1s
in the reduced form of A. We have now established Theorem 6.

The row rank and the column rank of a matrix A are equal.

We can now define the rank of a matrix A as dim(row(A)) or dim(col(A)).
Again by Theorem 5, we have

rank(A) + nullity(A) =n

Linear Systems

When the nullity of a matrix A is known, the above formula can sometimes be used to
determine whether the linear system Ax = b is consistent. For example, suppose that
a linear system consists of 20 equations each with 22 variables. Further suppose that a
basis for the null space of the 20 x 22 coefficient matrix consists of two vectors. That
is, every solution to the homogeneous linear system Ax = 0 is a linear combination
of two linearly independent vectors in R?2. Then nullity(A) = 2, so that

dim(col(A)) = rank(A) = 22 — nullity(A) = 20

But the only subspace of R% with dimension 20 is R? itself. Hence, col(A) = R%,
and consequently every vector b in R is a linear combination of the columns of A.
That is, the linear system Ax = b is consistent for every vector b in R?°. In general,
if A is an m x n matrix, nullity(A) = r, and dim(col) = n — r = m, then the linear
system Ax = b is consistent for every vector b in R™.

We now add several more items to the list of equivalences given in Theorem 9
of Sec. 2.3, connecting solutions of the linear system Ax = b and properties of the
coefficient matrix A.

Let A be an n x n matrix. Then the following statements are equivalent.

1. The matrix A is invertible.

2. The linear system Ax = b has a unique solution for every vector b.
3. The homogeneous linear system Ax = 0 has only the trivial solution.
4. The matrix A is row equivalent to the identity matrix.



© © N oG

10.
11
12.
13.
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The determinant of the matrix A is nonzero.

The column vectors of A are linearly independent.

The column vectors of A span R”.

The column vectors of A are a basis for R".

rank(A) =n

R(A) =col(A) =R"

N(A) = {0}

row(A) = R”

The number of pivot columns of the reduced row echelon form of A is n.

Fact Summary

Let V and W be vector spaces and T a linear transformation from V into W.

Exercise Set 4.2

1.

The null space N (T) is a subspace of V, and the the range R(T) is a
subspace of W.

If B={v1,...,V,} is a basis for V, then

R(T) = span{T (v1), ..., T(v,)}

If V and W are finite dimensional vector spaces, then
dim(V) = dim(R(T)) + dim(N (T))
If Ais an m x n matrix, then
rank(A) + nullity(A) =n

If A isan m x n matrix, then the rank of A is the number of leading 1s in
the row-reduced form of A.

If A is an n x n invertible matrix, in addition to Theorem 9 of Sec. 2.3, we
know that rank(A) = n, R(A) = col(A) = R", N(A) = {0}, and the
number of leading 1s in the row echelon form of A is n.

In Exercises 14, define a linear operator T: R*> — R?  Determine whether the vector v is in N (7).

()18 ve=[o]
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In Exercises 5-8, define a linear operator
T: P3 — P3 by
T(p(x)) = xp”(x)

Determine whether the polynomial p(x) is in N(T).

5 p(x)=x*-3x+1
6. p(x) =5x+2

7. p(x) =1 —x?

8 pkx)=3

In Exercises 9-12, define a linear operator
T: R® — RS by

x X+ 2z
T y =| 2x+y+3z
z x—y+3z

Determine whether the vector v is in R(T).

1
9. v=| 3
_O_
e
10, v=| 3
_4_
e
11. v= 1
__2_
e
12. v=| -5
__1_

In Exercises 13—16, define a linear transformation
T: Mayy — M3y by

b a+ ¢ b+ d
T{a d]: —a+2c —b+2d
¢ 2a 2b

Determine whether the matrix A is in R(T).

C L g
13.A=| -5 -2
L 2 0_
1 2]
4. A=| 3 -3
2 2|

(10
15, A= 2 1
4 0

4 1
6. A=| -1 5
6 -2

In Exercises 17—-24, find a basis for the null space of

the linear transformation 7.

17. T: R? - R?,
()=
y y
18. T: R? — R?,
()-8
y X =y
19. T: R® — RS,
X x+2z
Ty =| 2x+y+3z
z xX—y+3z
20. T: R3 — RS,
X —2x+2y+2¢
T y = 3x+5y+1z
z 2y +z
21. T: R® - RS,
X x—2y— 2
T y =| —x+2y+ 2
z 2x —4y — 2z
22. T: R* - RS,
* X+y—z+4+w
T i =| 2x4+y+dz4w
» 3x +y+9z




23.

24,

In Exercises 25-30, find a basis for the range of the

TP, — R,
T(p(x)) = p(0)

T: Py — P,
T(p(x)) =p"(x)

linear transformation 7.

25.

26.

27.

28.

29.

30.

31.

T: R3 — RS,
11 2
Twy=|0 1 -1 |v
2 0 1
T: R® — RS,
1 -2 -3 15
Tv)=| 3 -1 1 0 4 |v
1 1 3 1 2
T: R3 — RS,
X X
r y =1
z 0
T: R3 — RS,
X x— y+3z
T y = x+ y+ z
z —x+3y—5z
T: P3 — Ps,

T(p(x)) = p"(x)+ p'(x) + p(0)

T: Py — Pa,
T(axz—i—bx +c) = (a+b)x2+cx+(a+b)
Let 7: R® — R® be a linear operator and

B = {Vv1, V2, V3} a basis for R3. Suppose

-2 0
T (V1) = 1 T(Vp) = 1
1 -1

32.

33.

35.
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a. Determine whether

[

is in the range of T.
b. Find a basis for R(T).
c. Find dim(N(T)).

Let 7: R® — R® be a linear operator and
B = {v1, V2, v3} a basis for R3. Suppose

~1
T(v1) = [ 2 } T(v2) = {
1
~1
T(vz) = | -1
2

a. Determine whether

W[

is in the range of T.
b. Find a basis for R(T).
c. Find dim(N(T)).

Let 7: P, — P, be defined by

NN

| I
o o1 O
| I

T(ax?+bx+c)=ax’+ (a—2b)x +b

a. Determine whether p(x) = 2x? — 4x + 6 is in
the range of T.

b. Find a basis for R(T).
Let T: P, — P, be defined by
T(ax®+bx+c)=cx’+bx —b

a. Determine whether p(x) = x> — x — 2 is in the
range of T.

b. Find a basis for R(T).

Find a linear transformation 7: R3® — R? such
that R(T) = R2.

. Find a linear operator 7: R? — R? such that

R(T) = N(T).
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37. Define a linear operator T: P, — P, by Find a basis for the null space of T.
T(p(x) = p'(x) 42. Define T: Myxpn — My, by T(A) = A’. Show
a. Describe the range of T. that R(T) = Mixn.
b. F?nd d?m(R(T)). 43. Define T: M, x, — M, , by T(A) = A + A".
¢. Find dim(N(T)). a. Find R(T).
38. Define a linear operator T: P, — P, by b. Find N(T).
k
T(p(x)) = d—(p(x)) 44. Define T: Myyp — Myyn by T(A) = A — A",
dx a. Find R(T)
where 1 < k < n. Show dim(N(T)) = k. n '
b. Find N(T).
39. Suppose 7: R* — RS is a linear transformation.
a. If dim(N(T)) = 2, then find dim(R(T)). 45. Let A be a fixed n x n matrix, and define
b. If dim(R(T)) = 3, then find dim(N (T)). T: Myxn — M;xn by T(B) = AB. When does
R(T) = Mnxn-
40. Show that if 7: V — V is a linear operator such
that R(T) = N(T), then dim(V) is even. 46. Let A be a fixed n x n diagonal matrix, and
41 Let define T: R* — R" by T(v) = Av.
4= 1 0 a. Show dim(R(T)) is the number of nonzero
10 -1 entries on the diagonal of A.
Define T: M., — Mo, by b. Find dim(N(T)). How is it related to the
T(B) = AB — BA diagonal terms of the matrix A?

4.3 » Isomorphisms

Many of the vector spaces that we have discussed are, from an algebraic perspective,
the same. In this section we show how an isomorphism, which is a special kind of
linear transformation, can be used to establish a correspondence between two vector
spaces. Essential to this discussion are the concepts of one-to-one and onto mappings.
For a more detailed description see App. A, Sec. A.2.

DEFINITION 1 One-to-One and Onto Let V and W be vector spaces and 7: V — W a
mapping.
1. The mapping T is called one-to-one (or injective) if u # v implies that 7' (u) #
T (v). That is, distinct elements of V must have distinct images in W.
2. The mapping T is called onto (or surjective) if T(V) = W. That is, the range
of T is W.

A mapping is called bijective if it is both injective and surjective.

When we are trying to show that a mapping is one-to-one, a useful equiva-
lent formulation comes from the contrapositive statement. That is, 7 is one-to-one if
T (u) = T(v) implies that u = v. To show that a mapping is onto, we must show that
if w is an arbitrary element of W, then there is some element v € V with T'(v) = w.
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m Let T R?> — R? be the mapping defined by 7' (v) = Av, with

1 1
. [ E ]
Show that T is one-to-one and onto.

Solution First, to show that 7 is one-to-one, let
u=[”1] and v:[vl]
Uy v2
_ 11 uyp | | u1+tuz
ro=[ 3 o[ ]=] "]
. 11 vi | | vitu
ro=| o] [m]=["07)
Now if T(u) = T'(v), then
up+uz | | vit+u
bt 2 i —U1

Equating the second components gives u1 = v1, and using this when equating the
first components gives u; = v,. Thus, u = v, establishing that the mapping is one-
to-one.

Next, to show that 7" is onto, let w = {

Then

and

a

b ] be an arbitrary vector in R?. We

must show that there is a vector v = [ Zl } in R? such that
2
1

=] 1o ]|n]= 3]

Applying the inverse of A to both sides of this equation, we have
vi | |0 -1 a . vp | —b
el ] e [ []
Thus, T is onto. For example, let w = ; then using the above formula for the

142

1 1] -2 1
ro=| o[ 3]-[2]
An alternative argument is to observe that the column vectors of A are linearly

independent and hence are a basis for R?. Therefore, the range of T being the
column space of A is all of R2.

1
2
. -2 -2 . -
preimage, we have v = = 3 | As verification, observe that
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THEOREM 8

Solution

Theorem 8 gives a useful way to determine whether a linear transforation
one-to-one.

S

The linear transformation 7: V. — W is one-to-one if and only if the null space
of T consists of only the zero vector of V.

Proof First suppose that T is one-to-one. We claim that N(7') = {0}. To show
this, let v be any vector in the null space of T, so that 7 (v) = 0. We also have,
by Proposition 1 of Sec. 4.1, T(0) = 0. Since T is one-to-one, then v = 0, so only
the zero vector is mapped to the zero vector.

Now suppose that N(T) = {0} and

T(U) = T (V)

Subtracting T (v) from both sides of the last equation and using the linearity of 7,
we obtain

Tw-Twv)=0 so that Tu—-v)=0
Thus, u — v € N(T). Since the null space consists of only the zero vector, u — v =
0, that is, u =v.

Define a linear operator 7: R> — R? by

([3])=1552]

Use Theorem 8 to show that 7" is one-to-one.

The vector [ ch } is in the null space of 7 if and only if

2x —3y=0

5x+2y =0
This linear system has the unique solution x = y = 0. Thus, N(T') = {0} and hence
by Theorem 8, T is one-to-one.

The mapping of Example 2 can alternatively be defined by using the matrix
2 -3
=[5 7]

so that 7(x) = Ax. Since det(A) # 0, then A is invertible. This allows us to show
that the map is also onto. Indeed, if b is any vector in R?, then x = A~1b is the vector
in the domain that is the preimage of b, so that 7' is onto.

In Theorem 4 of Sec. 4.2, we showed that if 7: V — W is a linear transfor-
mation between vector spaces, and B = {vi,...,V,} is a basis for V, then R(T) =

span{T (v1), ..., T(v,)}. If, in addition, the transformation is one-to-one, then the
spanning vectors are also a basis for the range, as given in Theorem 9.
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Suppose that 7: V — W is a linear transformation and B = {v1, ..., V,} is a basis
for V. If T is one-to-one, then {T'(v1), ..., T(v,)} is a basis for R(T).

Proof By Theorem 4 of Sec. 4.2, we know that the span{T (v1), ..., T(v,)} =
R(T), so it suffices to show that {T'(v1), ..., T(v,)} is linearly independent. To do
so, we consider the equation

caT (V1) +c2T(Vv)+---+¢,T(v,) =0
which is equivalent to
T(ciVi+cVa + -+ ¢,Vy) =0
Since T is one-to-one, the null space consists of only the zero vector of V, so that
ciVit+ceVo+ -+, V, =0
Finally, since B is a basis for V, it is linearly independent; hence
co=cp=---=¢,=0

Therefore, {T'(v1), ..., T(v,)} is linearly independent.

We note that in Theorem 9 if T is also onto, then {T'(v1), ..., T(v,)} is a basis
for w.
We are now ready to define an isomorphism on vector spaces.

Isomorphism Let V and W be vector spaces. A linear transformation 7: V —
W that is both one-to-one and onto is called an isomor phism. In this case the vector
spaces V and W are said to be isomor phic.

Proposition 2 builds on the remarks following Example 2 and gives a useful
characterization of linear transformations defined by a matrix that are isomorphisms.

Let A be ann x n matrix and T: R" — R" be the mapping defined by 7' (x) = AX.
Then T is an isomorphism if and only if A is invertible.

Proof Let A be invertible and b be any vector in R*. Then x = A~'b is the
preimage of b. Thus, the mapping 7 is onto. To show that 7' is one-to-one, observe
that by Theorem 10 of Sec. 1.5 the equation Ax = 0 has only the solution x =
A~10=0. Thus, by Theorem 8, the mapping T is one-to-one and hence is an
isomorphism from R” onto R”".

Conversely, suppose that 7 is an isomorphism. Then T: R* — R”" is onto,
with the column space of A being R". Hence, by Theorem 7 of Sec. 4.2 the matrix
A is invertible.
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THEOREM 10

DEFINITION 3

Theorem 10 is of fundamental importance to the study of finite dimensional vector
spaces and is the main result of the section.

If V is a vector space with dim(V) = n, then V and R" are isomorphic.

Proof Let B ={vy,...,V,} be an ordered basis for V. Let T: V — R" be the
coordinate transformation defined by 7' (v) = [v], first introduced in Example 7 of
Sec. 4.1. We claim that 7 is an isomorphism. First, to show that T is one-to-one,

suppose that 7' (v) = 0. Since B is a basis, there are unique scalars c1, ..., ¢, such
that
V=cVi+- - +c,Vy
Thus,
C1 0
c2 0
T(v)= [V]B = : = :
o 0
sothatcy = ¢, =---=c¢, =0andv = 0. Therefore, N(T) = {0}, and by Theorem
8, T is one-to-one.
Now, to show that 7" is onto, let
k1
k2
W= :
ky,

be a vector in R". Define vin V by v =kivy + - - - + k,Vv,,. Observe that T (v) = w
and hence T is onto. Therefore, the linear transformation 7 is an isomorphism, and
V and R" are isomorphic vector spaces.

So far in our experience we have seen that dim(7;) = 3 and dim(Szx2) = 3,
where S, is the vector space of 2 x 2 symmetric matrices. Consequently, by Theorem
10, the vector spaces P, and S, are both isomorphic to R, where the isomorphism
is the coordinate map between the standard bases. Next we show that in fact all vector
spaces of dimension n are isomorphic to one another. To do so, we first require the
notion of the inverse of a linear transformation.

Inverse of a Linear Transformation Let V and W be vector spaces and
T: V — W a one-to-one linear transformation. The mapping 7~ R(T) — V,
defined by

T'w)y=v ifandonlyif TV =w
is called the inverse of 7. If T is onto, then 7! is defined on all of W.
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Solution
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By Theorem 4 of Sec. A.2, if T is one-to-one, then the inverse map is well
defined. Indeed, let u and v be vectors in V such that 7-1(w) = u and 7-1(w) = v.
Applying T gives T(T~(w)) = T'(u) and 7(T~1(w)) = T(v), so that T(u) = T(v).
Since T is one-to-one, we have u = v.

The inverse map of a one-to-one linear transformation is also a linear transfor-
mation, as we now show.

Let V and W be vector spaces and 7 V —> W a one-to-one linear transformation.
Then the mapping T—% R(T) — V is also a linear transformation.

Proof Let w; and w, be vectors in R(T), and let ¢ be a scalar. Also let v, and
v, be vectors in V with 7-1(wy) = v4 and T-1(wy) = v». Since T is linear,

T(cvy+V2) = cT (V1) + T (V2)
= cWjp + W>

Hence,

T71(0W1 + Wp) = cV1 + Vo
=T wy) + T (wyp)

Consequently, 71 is a linear transformation.

Proposition 4 shows that the inverse transformation of an isomorphism defined
by matrix multiplication can be written using the inverse of the matrix. The proof is
left as an exercise.

Let A be an n x n invertible matrix and 7: R" — R” the linear transformation
defined by 7 (x) = Ax. Then T~1(x) = A~1x.

Let 7: R? — R? be the mapping of Example 1 with 7'(v) = Av, where
SEn
Verify that the inverse map 71 R? — R? is given by 7-1(w) = A~1w, where
re[s )
Letv = [ Z; } be a vector in R2. Then

W=TW) = [ v1+v2]

—U1
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THEOREM 11

Applying A~! to w, we obtain

HRIESABES

If V and W are vector spaces of dimension n, then V and W are isomorphic.

Proof By Theorem 10, there are isomorphisms 7;: V. — R" and T»: W — R",
as shown in Fig. 1. Let ¢ = TzfloTl: V — W. To show that ¢ is linear, we first
note that T{l is linear by Proposition 3. Next by Theorem 2 of Sec. 4.1, the
composition T{loTl is linear. Finally, by Theorem 4 of Sec. A.2, the mapping ¢
is one-to-one and onto and is therefore a vector space isomorphism.

i

1

w

b=T, TV — W

Figure 1

m Find an explicit isomorphism from 7, onto the vector space of 2 x 2 symmetric

Solution

matrices So.o.

To use the method given in the proof of Theorem 11, first let

neunt w={(3 0[S 313 3]

be ordered bases for P, and S,.», respectively. Let 73 and 7> be the respective
coordinate maps from P, and S>> into R3. Then

C Cc
Ti(ax’+bx+c)= | b and Tg([g IZD= b

S
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Observe that T2‘1: R3 — S,.» maps the vector

©
b to the symmetric matrix [ Z lg ]
a

Thus, the desired isomorphism is given by (T{loTl): Po —> Sryo With

(T{loTl)(ax2 +bx +c) = [ Z ? ]

For example,

2
(T2 —x+2) =T, (M2 —x+2) =T, 1 -1 = [ 1 il ]

Fact Summary

Let V and W be vector spaces and T a linear transformation from V into W.
1. The mapping 7 is one-to-one if and only if the null space of T consists of
only the zero vector.

2. If {vy,...,Vv,} is a basis for V and T is one-to-one, then
S ={T(y),...,T(v,)} is a basis for the range of 7. If T is also onto, then
S is a basis for W.

Every vector space of dimension » is isomorphic to the Euclidean space R”.
If T is one-to-one, then T~ is also a linear transformation.
If V and W are both of dimension n, then they are isomorphic.

Let A be an n x n matrix and 7'(x) = Ax. Then the mapping T is an
isomorphism if and only if A is invertible.

. If A is an invertible matrix and T'(x) = Ax, then 7-2(x) = A~1x.

o 0~ W

~

In Exercises 1—6, determine whether the linear 3. TR — RS,
transformation is one-to-one. X X+y—z
T y = y
1. T R?2 - R?, z -z
X 4x —y Y
T =
y X 4. T: R® — R3,
- R2 2 2 2 2
2. TR - R?, o . 2y -2y -2,
(G)-[Ek () -[45F
Y 27X T2y z —3x -3y -3z
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5 T P, — Py,
T(p(x)) = p'(x) — p(x)

6. T: P, — Ps,
T(p(x)) = xp(x)

In Exercises 7—10, determine whether the linear
transformation is onto.

7. T: R?2 - R?,
X | 3x—y
(1)1
8. T: R? - R?
(D155 ]
y1) L x—3y
9. T R® - R®
X xX—y+2z
T y = y—2z
z 2z
10. T: R3 — R3,

X 2x+3y— z
T y =| —x+ y+3z
z x+4y+2z

In Exercises 11-14, T: R? — R? is a linear operator.

Determine whether the set {T(e1), T (&)} is a basis
for R?.

11. T: R? - R?,
f()-17"]
12. T: R? - R?
(V)-1+]
13. T: R? —» R?

14. T: R? > R?,

r([3])-

In Exercises 15-18, T: R® — R3 is a linear operator.
Determine whether the set {T(e1), T (&), T(e3)} is a
basis for RS.

0¥ + 5y
5¥+ 5y

15. T: R® — RS,
([ ]) {_x_y+2Z]
16. T: R® — R®,
2x+3y— z
2x +6y+3z
4x 4+ 9y + 2z
17. T: R® — R,
[ x ] _4x—2y+z
T y 2x +z
| 2 | _2x—y+2z
18. T: R® — R®,
[ x ] [ x—y+2z
T y =| —x+2y—z
L 2 ] | —y+53z

In Exercises 19 and 20, T: P, — P, is a linear
operator. Determine whether the set
(T (1), T(x), T(x%)} is a basis for P,.

19. T@ax’+bx+c)=(@+b+o)x’+@+bx+a
20. T(p(x)) = xp'(x)

In Exercises 21-24, let T: V — V be the linear
operator defined by 7'(v) =

a. Show that 7 is an isomorphism.
b. Find A~L.

c. Show directly that 7-*(w) = A
wevV.

ar([1])=] 2 5]V

1w for all



[ x ] [ —2 0 17 x ]
23. T y = 1 -1 -1 y
| 2 | | 0 1 0| z|]
[ x ] 2 -1 177 x ]
24. T y =] -1 1 -1 y
| 2 | | 0 1 0] z|]

In Exercises 25—28, determine whether the matrix
mapping 7: V — V is an isomorphism.

= r([3)-[ 2 5[]
S HEERIA

X -1 -1 X
27. T y = 0 2 y
| 2 | 1 -3 z
[ x ] 1 3 0 X
28. T y = -1 -2 -3 y
| 2 | | 0 -1 3 z

29. Show that T: M, — M,, defined by
T(A) = A’

is an isomorphism.

4.4
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30.

31

32.
33.

35.

36.

37.

Show that T: P3 — P; defined by
T(p(x)) = p"(x)+ p"(x) + p'(x) + p(x)
is an isomorphism.

Let A be an n x n invertible matrix. Show that
T: M, x, — M,, defined by

T(B)= ABA™!
is an isomorphism.
Find an isomorphism from M., onto R*.
Find an isomorphism from R* onto Ps.
Find an isomorphism from M., onto Ps.

Let
X

V= y
Z
Find an isomorphism from V onto R

Let
V:{[a b]a,b,ceR}
c —a

Find an isomorphism from P, onto V.

x+2y—z=0

Suppose T: R® — R2 is an isomorphism. Show
that 7 takes lines through the origin to lines
through the origin and planes through the origin
to planes through the origin.

Matrix Representation of a Linear Transformation

Matrices have played an important role in our study of linear algebra. In this section
we establish the connection between matrices and linear transformations. To illustrate
the idea, recall from Sec. 4.1 that given any m x n matrix A, we can define a linear

transformation 7: R" — R™ by

T(v) = Av

In Example 8 of Sec. 4.1, we showed how a linear transformation 7: R® — R? is
completely determined by the images of the coordinate vectors e, &, and e3 of R3.

The key was to recognize that a vector v= | vy

V =116 + 126 + v3€3

so that

v1
can be written as
v3

T(v) =v1T(e1) + v2T(€) + v3T (€3)
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In that example, T was defined so that

T(e1>=“},T(ez>={‘é] T<e3>=[(1’]

Now let A be the 2 x 3 matrix whose column vectors are T(e1), T (&), and T (&3).
Then
1 -1 0
T (V) = { L 21 }V—AV
That is, the linear transformation 7 is given by a matrix product. In general, if
T: R" — R™ is a linear transformation, then it is possible to write

T(v) = Av

where A is the m x n matrix whose jth column vector is T'(e;) for j =1,2,...,n.
The matrix A is called the matrix representation of 7 relative to the standard
bases of R” and R™.

In this section we show that every linear transformation between finite dimensional
vector spaces can be written as a matrix multiplication. Specifically, let V and W be
finite dimensional vector spaces with fixed ordered bases B and B’, respectively. If
T: V. — W is a linear transformation, then there exists a matrix A such that

[TW]s = Alvls

In the case for which V = R", W = R"™, and B and B’ are, respectively, the standard
bases, the last equation is equivalent to

T(v) = Av
as above. We now present the details.
Let V and W be vector spaces with ordered bases B = {vi,Vy,...,Vv,} and B’ =
{wg, Wa, ..., W,}, respectively, and let 7: V. — W be a linear transformation. Now

let v be any vector in V and let
1
Vlp = ¢
Cn
be the coordinate vector of v relative to the basis B. Thus,
V=c1V1+ Vo2 + -+ -+ ¢4 Vp

Applying T to both sides of this last equation gives

T(v) =T(c1V1+caVo + -+ -+ cpVy)
=c1T(V1) +c2T (Vo) + -4+ ¢, T (V)

Note that for each i =1, 2, ..., n the vector T(v;) is in W. Thus, there are unique
scalars a;; with 1 <i <m and 1 < j < n such that
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T(V1) = ayW1 4+ aztWo + - - - + @1 Wiy
T (V2) = a1oW1 4 apWo + - - - + @p2Wiy,

T(Vn) = a1,W1 + azaW2 + - - - + dpmuWin
Thus, the coordinate vectors relative to the ordered basis B’ are given by

aii

azi
[Tvolp = | . fori=1,2,...,n

Ami
Recall from Example 7 of Sec. 4.1 that the coordinate map defines a linear transfor-

mation. Thus, the coordinate vector of T (v) relative to B’ can be written in vector
form as

ail a2 ain
a21 a an
[TW]p =c1 : +c2 : + 4y,
Am1 am?2 Amn
or in matrix form as
apl  ai ... Qi 1
azy az ... dayy e
[TW]p = :
aml am2 ... Qun Cn

The matrix on the right-hand side of the last equation is denoted by [T]g/, with

715 = || T T(v) | | TV
B’ B’ B’
We call [T]g’ the matrix of T relativeto B and B’. In the case for which 7: V. — V

is a linear operator and B is a fixed ordered basis for V, the matrix representation for
the mapping T is denoted by [T]5.
The preceding discussion is summarized in Theorem 12.

Let V and W be finite dimensional vector spaces with ordered bases B = {vi,
Vo,...V,}and B" = {wq, Wy, ...w,,}, respectively, and let 7: V. — W be a linear
transformation. Then the matrix [T]g’ is the matrix representation for T' relative to
the bases B and B’. Moreover, the coordinates of 7' (v) relative to B’ are given by

[TW]p = [T15 V]s
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Solution

Figure 1

Suppose that in Theorem 12 the vector spaces V and W are the same, B and B’
are two different ordered bases for V, and 7: V — V is the identity operator, that
is, T(v) = v for all viin V. Then [T]5  is the change of bases matrix [1]%, given in
Sec. 3.4.

Define the linear operator 7: R® — RS by

(1)1

a. Find the matrix of T relative to the standard basis for R3.
b. Use the result of part (a) to find

{H)

a. Let B = {e, &, 3} be the standard basis for R3. Since

1 0 0
0 ] [T(e)]s = [ -1 ] [T(e3)]s = [ 0 ]
0 0 1

1 00
[Tls=|0 -1 0
0 01

b. Since B is the standard basis for R®, the coordinates of any vector are given
by its components. In this case, with

1 1
v= |1 then V=1 1
2 2

Thus, by Theorem 12,

1 00 1 1
TW=[TW]zp=|0 -1 0 i = —
0 01 2 2

Notice that the action of T is a reflection through the xz plane, as shown in
Fig. 1.

[T(e)]s =

then

The following steps summarize the process for finding the matrix representation
of a linear transformation 7: V — W relative to the ordered bases B and B’.



4.4 Matrix Representation of a Linear Transformation 239

1. For the given basis B = {v1, Vo, ..., V,}, find T(v1), T(V2), ..., T(V,).

2. Find the coordinates of T(v1), T(V2),...,T(v,) relative to the basis B’ =
{wg,Wa, ..., w,} of W. That is, find [T (v)]s, [T (V)]s ..., [T (V)]s .

3. Define the m x n matrix [T]g’ with ith column vector equal to [T (v;)]s.

4, Compute [V]p.

5. Compute the coordinates of 7' (v) relative to B’ by

C1

[TW]s = [T Vs = | 7

Cm

6. Then T (V) = c1W1 + coWo + - -+ + ¢, Wy,

m Let 7: R? — R3 be the linear transformation defined by
X2
TV =T ([ L D = | x1+x
X2

X1 — X2
1 1 1
-1 {8
0 0 1

be ordered bases for R? and R3, respectively.

and let

a. Find the matrix [T]% .

b. Letv= [ :g } Find T (v) directly and then use the matrix found in part (a).
Solution  a. We first apply T to the basis vectors of B, which gives

f([3])-] 2] = o(3D-]%

Next we find the coordinates of each of these vectors relative to the basis B’.
That is, we find scalars such that

B HEE

and
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The solution to the first linear system is

ap = -1 ap =4 a3 =—1
and the solution to the second system is

by = -3 by =2 b3 =2

, -1 -3
[T]5 = || 42
b. Using the definition of T directly, we have

(B EEIRE]

Now, to use the matrix found in part (a), we need to find the coordinates of
v relative to B. Observe that the solution to the equation

1 3 -3 . 3 4
ai 2 + az 1 1= 22 IS al=—§ a2=—§

—2

=

We can now evaluate 7, using matrix multiplication, so that

-1 -3 3 3
[T(v)]B/zl 4 2][ 212[41
5 —1

Thus,

Thus, the coordinate vector of { ] relative to B is

&~ olw

= (N B
Hence,
1 1 1 —7
TM)=3|0|—-4|1 -1 ]|=] -5
0 0 1 =i

which agrees with the direct computation.

m Define a linear transformation 7: P, —> P3 by

T(f(x) =x"f"(x) = 2f'(x) + xf (x)
Find the matrix representation of 7' relative to the standard bases for P, and Ps.
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Since the standard basis for P is B = {1, x, x?}, we first compute
T =x Tx)=x*-2 T3 =x%2)—22x) +x(x?) = x° + 2x? — 4x
Since the standard basis for P; is B’ = {1, x, x?, x®}, the coordinates relative to
B’ are

and  [T(xH)]p =

[T = [T(M)]p =

[ecNeN e
OoOrFrr ON

Hence, the matrix of the transformation is given by

0 —2 0
/ 1 0 —4
[T]B a 0 1 2
0 0 1

As an example, let f(x) = x2 — 3x + 1. Since f'(x) = 2x —3and f"(x) = 2,
we have

T(f(x) =x%@2) —2(2x —3) + x(x> = 3x + 1)

=x3—x>-3x+6

Using the matrix representation of 7 to find the same image, we observe that

1
[f()]s = [ -3 ]
1

The coordinates of the image of f(x) under the mapping 7 relative to B’ are then

given by
0 -2 0 1 6
[7(F D] = [T15 [f ()]s = é 2 _‘21 [—3]= :f
1
0 0 1 1

The image T (f(x)) is the linear combination of the monomials in B’ with coeffi-
cients the components of [T'(f(x))]s/, that is,

T(f(x)=61) —3x) —x*>+x°=x—x>—-3x+6

This agrees with the direct calculation.

In Sec. 4.1 we discussed the addition, scalar multiplication, and composition of
linear maps. The matrix representations for these combinations are given in a natural
way, as described by Theorems 13 and 14. The proofs are omitted.
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Let V and W be finite dimensional vector spaces with ordered bases B and B/,
respectively. If S and T are linear transformations from V to W, then

L [S+T15 =[S15 +[115
2. [kT1E =k[T18  for any scalar k

As before in the special case for which S and T are linear operators on a finite
dimensional vector space V, and B is a fixed ordered basis for V, the notation becomes
[S+Tls =[S]ls +[T1s and [kT]p = k[T]5.

Let S and T be linear operators on R? with

s(BD=12] = (5]

If B is the standard basis for R?, find [S + T']z and [3S]3.

3x

The matrix representations for the linear operators S and T are, respectively,

1 2
[S1s = S(e) S(e) =[0 _1}
LI d 5 1L B
and . - -
-1 1
[Tl = || T(e) T(e2) =[ 3 o}
L L 4B L B
Then by Theorem 13,
1 2 -1 1 0 3
LHT]B:[O 1}+{ 30]2[3 —1]
o 1 2 3 6
es=a] 5 2]=[3 8]

As we mentioned in Sec. 4.1, the matrix of the composition is the product of the
matrices of the individual maps, as given in Theorem 14.

Let U, V, and W be finite dimensional vector spaces with ordered bases B, B’, and
B”, respectively. If T: U — V and S: V — W are linear transformations, then

[SoT15" = [S15/[T1%
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Again, if S and T are linear operators on a finite dimensional vector space V,
and B is a fixed ordered basis for V, then

[SeT]p = [S1s[T]s

Repeated application of Theorem 14 gives the following result.

COROLLARY 1 Let V be a finite dimensional vector space with ordered basis B. If T is a linear
operator on V, then
[7"1s = (T]p)"

m Let D: P3; — P3 be the linear operator defined by

D(p(x)) = p'(x)
a. Find the matrix of D relative to the standard basis B = {1, x, x2, x3}. Use the
matrix to find the derivative of p(x) = 1 — x + 2x°.

b. Find the matrix needed to compute the second derivative of a polynomial in
Ps. Use this matrix to find the second derivative of p(x) = 1 — x + 2x5.

Solution a. By Theorem 12, we have

[D]s = [D(l)] [D(X)] [D(xz)] [D(x3)]]
L B B B B
[0 1 0 0
{00 20
~ |0 0 0 3
|00 00
Since the coordinate vector of p(x) = 1 — x + 2x3, relative to B, is given by
1
-1
[p()]s = 0
2
then
01 00 1 -1
0 0 20 -1 0
0 00O 2 0



244 Chapter 4 Linear Transformations

Therefore, as expected, D(p(x)) = —1 + 6x2.
b. By Corollary 1, the matrix we need is given by

00 2 0

A ,_ |0 o006

(D =Pl = | o o o o

0 0 0O

If p(x) =1 — x + 2x8, then

0 020 1 0
: |looo 6 || 1| |12
0 0 0O 2 0

so that p”(x) = 12x.

The final result of this section describes how to find the matrix representation of
the inverse map of an invertible linear operator.

COROLLARY 2 Let 7 be an invertible linear operator on a finite dimensional vector space V and
B an ordered basis for V. Then

[T =(T]p) "
Proof Since 71T is the identity map, by Theorem 14, we have
[11p = [TT]p = [T 15[T1s
Since [1]3 is the identity matrix, [T1]5 = ([T]s) " .

Fact Summary
Let V and W be vector spaces, B = {vi,...,V,} and B’ = {wq, ..., w,,} ordered
bases of V and W, respectively, and T a linear transformation from V into W.
1. The matrix of T relative to B and B’ is given by
(715 = [T lp [T - [TV)]]

2. If v is a vector in V, the coordinates of 7'(v) relative to the basis B’ can be
computed by

[T(W)]p = [T15 Vs
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3. To find T (v) multiply each basis vector in B’ by the corresponding
component of [T (V)]p. That is, if [T(V)]p = [b] b5 ... b),], then

T (V) = bywW1 + bowy + - - - + b, Wy,

4. If S is another linear transformation from V into W, then the matrix
representation of S + 7 relative to B and B’ is the sum of the matrix
representations for S and 7. That is, [S + 715 = [S]15 + [T]%.

5. If c is a scalar, then to find the matrix representation of ¢7 relative to B and
B’, multiply the matrix representation for T by c. That is, [cT]8 = c[T]5 .

6. If S is a linear transformation from W into Z and B” is an ordered basis

"

for Z, then [SoT1%" = [S15/[T15 .

7. [T"]p = ([T]p)"

8. If T is invertible, then [T ]z = ([T]5) L.

Exercise Set 4.4

In Exercises 1-4, T: R" — R" is a linear operator.
a. Find the matrix representation for 7' relative to the
standard basis for R”.
b. Find T(v), using a direct computation and using
the matrix representation.

1. T R? - R?,

3. T R® - RS,
X —x+y+2z
T y = 3y+z
Z i X—z
1
v=| =2
|3

4. T: R® — RS,
X [ x_
T y = y
Z | —2 |
e
v=| -5
- 1_

In Exercises 5-12, T: V — V is a linear operator with
B and B’ ordered bases for V.

a. Find the matrix representation for 7 relative to
the ordered bases B and B’.

b. Find T(v), using a direct computation and
using the matrix representation.

5. T: R? - R?,

(D=1
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9. T: Py — Ps,
T(ax? 4+ bx +¢) = ax’>+bx + ¢
B={1,1—x,(1-—x)?%
B ={1,x, x?

6. T: R® — RS,
v=x?-3x+43
X 2x —z
¢ = T(p(x)) = p'(x) + p(x)
-1 1 1 2 2
B={1—x— 1,1
B= 0 , 2 , 2 { X x’ ) +x}
1 0 1 B ={-1+4x,—1+x+x%x)
:1 0 0 v=1-—x
L 1 o0
1 H_[O —1}
V={—1] and let 7 be the linear operator on all 2 x 2
1 matrices with trace 0, defined by

7. T: R? - R?, T(A)=AH — HA
1 0 0 1 00
-1 ={lo 1o ol [ a])
(5)-12] R
B'=B
={=] 1]} [z
3 g 13 =2
w2 2]}
- B 12. T: Myyo — Moo,
-1
V={_3 T(A)=2A"+ A
8 T R® — R® ) B and B’ the standard basis on My,
o ’ 713
T y =| 2y —x
z y+z | 13. Let T: R? — R? be the linear operator defined by
[ -1 -1 0]
{HE ()-8
AR Y =
"0 1 1 Let B be the standard ordered basis for R? and B’
B’:{ 0] [ 0] {_1 } the ordered basis for R? defined by
1 -1 0 | , 1 4
- w={lz][4])
V={ 1} a. Find [T]5.
3 b. Find [T]s.
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15.

c. Find [T]%.

d. Find [T]5,.

e. Let C be the ordered basis obtained by
switching the order of the vectors in B. Find
[71¢"

f. Let C’ be the ordered basis obtained by
switching the order of the vectors in B’. Find

[71E..

Let 7: B2 — R3 be the linear transformation

defined by
xX=Yy
(3D .5
Y x+2y

Let B and B’ be ordered bases for R? and B” the
ordered basis for R® defined by

r={l1 s )

, 1 0
7={[o}[1]}
1 0 1
B = 1,1 ]1
0 1 2
a. Find [T]5".
b. Find [T]5).

c. Let C be the ordered basis obtained by
switching the order of the vectors in B. Find
[71¢".

d. Let C’ be the ordered basis obtained by
switching the order of the vectors in B’. Find
[71%).

e. Let C” be the ordered basis obtained by
switching the order of the first and third
vectors in B”. Find [T1S .

Let T: P; — P, be the linear transformation
defined by
b,
T(a+ bx) =ax + Ex

Let B and B’ be the standard ordered bases for
P1 and P, respectively.

a. Find [T]%.
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16.

17.
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b. Let C be the ordered basis obtained by
switching the order of the vectors in B. Find
[71¢"

c. Let C’ be the ordered basis obtained by
switching the first and second vectors in B’.
Find [T]< .

d. Define S: P, — P, by

S(a + bx + cx?) = b + 2cx

Find [S]5..
e. Verify that [S]2,[7]% = 1, but that
[T15 181 # 1.
f. Interpret the statement
[SI31715 =1
in terms of the functions 7" and S.

Define a linear operator T: My,o — Moy by

r([en])=]2% o2t

Let B be the standard ordered basis for M»,, and
B’ the ordered basis

;L 10 0 1

v={ls 1]]2 5]

R )
-1 10| 1 1

a. Find [T]5.

b. Find [T]5,.

c. Find [T]p.

d. Find [1]% and [1]%,.

e. Verify that

(718 =T[5
(715 =115 [T

Define a linear operator 7: R?> — R? by

([3)=15]

Find the matrix for T relative to the standard

basis for R?. Describe geometrically the action of
T on a vector in R?,
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18. Define a linear operator 7: R? — R? by

X cos6 —sin6 X
T = -
y sin® cos6 y
Describe geometrically the action of 7" on a

vector in R2.

19. Let ¢ be a fixed scalar and define 7: R* — R" by

X1 X1
X2 X2
T . =c .
Xn Xn

Find the matrix for T relative to the standard
basis for R”".

20. Define T2 Myyo — Moy by
T(A)=A— A’

Find the matrix for T relative to the standard
basis for M.

21. Define T: Myyo — R by
T(A) =tr(A)

Find the matrix [T]2’, where B is the standard
basis for M5, and B’ = {1}.

In Exercises 2225, let S, T: R? — R? be defined by

(G155
([3])=1.5 ]

a. Find the matrix representation for the given
linear operator relative to the standard basis.
-2
3
and using the matrix found In part (a).

22. =38
23. 2T + S
24. ToS
25. SoT

and

b. Compute the image of v = directly

In Exercises 2629, let S, T: R® — R® be defined by

([3])-1 2
(1))

a. Find the matrix representation for the given
linear operator relative to the standard basis.

b. Compute the image of

1

directly and using the matrix found in part (a).
26. 2T
27. —3T + 2§
28. T-S
29. SoT
30. Let B be the basis for R? defined by

=il 5]

If - R? — R? is the linear operator defined by

T by _ 9x — by
y | 15x — 11y
find the matrix for T*, for k > 1, relative to the

basis B.
31. Define T: Py — P4 by

T(p(x)) = p"”(x)

Find the matrix for 7T relative to the standard
basis for P4. Use the matrix to find the third
derivative of p(x) = —2x* — 2x% + x% — 2x — 3.

32. Let T: P, — P, be defined by
T (p(x)) = p(x) 4+ xp'(x)

Find the matrix [T]z where B is the standard
basis for P,.

and



33. Let S: P, — Pz and D: P3; — P, be defined by

S(p(x)) = xp(x)

and
D(p(x)) = p'(x)
Find the matrices [S]5" and [D],, where
B =1{1,x,x% and B’ = {1, x, x2, x3}. Observe
that the operator T in Exercise 32 satisfies
T = DoS. Verify Theorem 14 by showing that

[T1s = [D15[S15.

. a. Define a basis for R? by

35.

36.
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reflects a vector v through the line
perpendicular to vi.

Let A be a fixed 2 x 2 matrix and define
T: Myx2 — Mayo by

T(B) = AB — BA

Find the matrix for T relative to the standard
basis for M.

Let B = {v1, Vy, Vv3} and B’ = {v,, v1, v3} be
ordered bases for the vector space V. If
T: V — V is defined by T (v) = v, then find

[T]g/. Describe the relationship between [v]z and

B H 1 } { 0 H [V]z and the relationship between the identity
17701 matrix 7 and [T15 .

Find [T]z where T: R?> — R? is the linear ar.

operator that reflects a vector v through the

Let V be a vector space and B = {vi,Vy, ..., V,}
be an ordered basis for V. Define vg = 0 and

line perpendicular to [ 1 T:V -V by

b. Let B = {vi, v} be a basis for R?. Find [T]3
where T: R?2 — R? is the linear operator that

T(V;))=V;+Vi1 fori=1,...,n

Find [T15.

4.5 p Similarity

We have just seen in Sec. 4.4 that if 7: V — V is a linear operator on the vector
space V, and B is an ordered basis for V, then T has a matrix representation relative
to B. The specific matrix for T depends on the particular basis; consequently, the
matrix associated with a linear operator is not unique. However, the action of the
operator T on V is always the same regardless of the particular matrix representation,
as illustrated in Example 1.

Let 7: R? — R? be the linear operator defined by

T X _ X+ y
y T | —2x+4y
Also let By = {e1, &)} be the standard basis for R? and let B, = { [

]}

be a second basis for R?. Verify that the action on the vector v = ] by the

(S5 N N [ S—

O r—

~

ri.

operator T is the same regardless of the matrix representation used fi
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Solution

THEOREM 15

The matrix representations for 7 relative to B; and B, are
11 2 0
T =| 3 3| @ [Ma=|5 3

respectively. Next, observe that

Ma=|53] ¢ M=) ]

Applying the matrix representations of the operator T relative to By and By, we
obtain

rwls = aa = | 5 3|15 ]=5 ]
and

ol = Mebe = | 5 5 || 1] =]
To see that the result is the same, observe that

ro=s[3]es[2]=[2] wm rw=afd]sa[3]=[]

Theorem 15 gives the relationship between the matrices for a linear operator
relative to two distinct bases.

Let V be a finite dimensional vector space, B; and B, two ordered bases for V,
and T: V — V a linear operator. Let P = [I]gg be the transition matrix from B;
to By. Then

[T]Bz = Pil[T]Blp

Proof Let v be any vector in V. By Theorem 12 of Sec. 4.4, we have
[Tz, = [T15,[V]s,

Alternatively, we can compute [T (v)]p, as follows: First, since P is the transition
matrix from B, to By,

[V]Bl = P[V]Bz
Thus, the coordinates of 7'(v) relative to B; are given by
[T(V)]B]_ = [T]Bl [V]Bl = [T]Blp[V]Bz

Now, to find the coordinates of 7'(v) relative to B,, we multiply on the left by
P~1, which is the transition matrix from B; to By, to obtain

[T (W]s, = P~ [T]5, PV]s,

Since both representations for [T (v)]s, hold for all vectors v in V, then [T]s, =
P~1[T]p, P. See Fig. 1.
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[V1s, » [T(V)]5,
+ [T]Bl
P Pt
[T]Bz M
[V]s, > [T(V)]s,
Figure 1

m Let 7, By, and B, be the linear operator and bases of Example 1. Then

[T1s, = [ _; Ll,{ }

Use Theorem 15 to verify that
0

7= 5 5|

Solution Since B; is the standard basis for R2, by Theorem 14 of Sec. 3.4 the transition
matrix from B, to B; is

P = [1]22 =

and hence

Then

rnr=] 2 ][ 23] [ 4]-[2 3]~

m Let 7: R?> — R? be the linear operator given by
X | —x+2y
d(BE [

and let
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Solution

DEFINITION 1

be ordered bases for R2. Find the matrix of 7 relative to By, and then use Theorem 15
to find the matrix of T relative to B,.

Since

we have

m-[[], [31,)-1% 3

The transition matrix from B, to By is

p=m%=lﬂi}&{ghj={—i_;}

Therefore, by Theorem 15

(71 = PHTIP = | 5 1 ]
2
3

In general, if the square matrices A and B are matrix representations for the same
linear operator, then the matrices are called similar. Using Theorem 15, we can define
similarity for square matrices without reference to a linear operator.

Similar Matrices Let A and B be n x n matrices. We say that A is similar to
B if there is an invertible matrix P such that B = P~1AP.

The notion of similarity establishes a relation between matrices. This relation is
symmetric; that is, if the matrix A is similar to the matrix B, then B is similar to A.
To see this, let A be similar to B; that is, there is an invertible matrix P such that

B=PAP
Now let 9 = P~1, so that B can be written as

B=0AQ7!

Hence, A = Q1B Q, establishing that B is similar to A. For this reason we say that
A and B are similar if either A is similar to B or B is similar to A. In addition,
the relation is reflexive since any matrix is similar to itself with P being the identity
matrix. This relation is also transitive; that is, if A is similar to B and B is similar
to C, then A is similar to C. See Exercise 17. Any relation satisfying these three
properties is called an equivalence relation.
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Fact Summary

Let V be a finite dimensional vector space, B; and B, ordered bases of V, and T
a linear operator on V.

1. The matrix representations [T]p, and [T]p, are similar. That is, there is an
invertible matrix P such that [T], = P~1[T]s, P. In addition, the matrix
P is the transition matrix from B to Bj.

2. A matrix is similar to itself. If A is similar to B, then B is similar to A. If
A is similar to B and B is similar to C, then A is similar to C.

Exercise Set 4.5 E—_—

In Exercises 1 and 2, [T]p, is the matrix representation of T relative to the bases B;

representation of a linear operator relative to the basis and B,.

By, and [T]p, is the matrix representation of the same o Xty

operator relative to the basis B,. Show that the action 3. T ({ D = { Xty

of the operator on the vector v is the same whether

using [7]g, or [T]s,. B1 = {ey,

B
%

|
1)
|

tia=] 3 §lme] 3] —{@
n={[s ][]} L=
Bz—%{i’{é]} cr(3])-17]

T we{[ 2}2)

e (4]

@
2

and B, are given.
a. Find [T]p, and [T]3,.
b. \erify that the action on v of the linear
operator T is the same when using the matrix

P NP - OoOR



254 Chapter 4 Linear Transformations

(H) xitiz] n={[ a}[1]}

e{l 2
By = (&1, &, &)

In Exercises 11-14, find the matrix representation of
-1
By = 1
0

0 1 the linear operator T relative to B;. Then use
,1 0 0
1 1 _
wr(]3])-[5
2 y 3y ]

Theorem 15 to find [T]3,.
-1
B1 ={e1, &}

-1 )
2 1
w={[3}z])
In Exercises 7-10, [T]p, and [T]p, are, respectively, )
the matrix representations of a linear operator relative X x— y
er([3])-[352]

to the bases B; and By. Find the transition matrix
P = [1]2;, and use Theorem 15 to show directly that
the matrices are similar. B ={e, &)

ST
[
NIw NI
[E—'
=
N
Il
—N
| —
g1 w
| IS
| —
N -
—_
——

T = | 5 H[T]&:l

iliﬁez;H wr([])=]2]

-1

|
e
—_
—

1 2
1 1 ] } 15. Let T: P, —> P, be the linear operator defined
1 -1 ] } by T (p(x)) = p’(x). Find the matrix
0 2 representation [7], relative to the basis

B1 = {1, x, x?} and the matrix representation
1 ] [T, relative to B, = {1, 2x, x? — 2}. Find the

10. [T1s, = [ transition matrix P = [I]g;, and use Theorem 15
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to show directly that the matrices [T]p, and [T]3, 18. Show that if A and B are similar matrices, then

are similar. det(A) = det(B).

. Let T: P, —> P, be the linear operator defined 19. Show that if A and B are similar matrices, then
by T(p(x)) = xp’(x) + p”(x). Find the matrix tr(A) = tr (B).
representation [T], relative to the basis
B1 = {1, x, x?} and the matrix representation 20. Show that if A and B are similar matrices, then
[T, relative to B, = {1, x, 1 + x2}. Find the A" and B’ are similar matrices.

transition matrix P = [1]2;, and use Theorem 15
to show directly that the matrices [T]p, and [T]3,
are similar.

21. Show that if A and B are similar matrices, then
A" and B" are similar matrices for each positive

integer n.
. Show that if A and B are similar matrices and B
and C are similar matrices, then A and C are 22. Show that if A and B are similar matrices and A
similar matrices. is any scalar, then det(A — \I) = det(B — \1).

4.6 » Application: Computer Graphics

The rapid development of increasingly more powerful computers has led to the explo-
sive growth of digital media. Computer-generated visual content is ubiquitous, found
in almost every arena from advertising and entertainment to science and medicine.
The branch of computer science known as computer graphics is devoted to the study
of the generation and manipulation of digital images. Computer graphics are based
on displaying two- or three-dimensional objects in two-dimensional space. Images
displayed on a computer screen are stored in memory using data items called pixels,
which is short for picture elements. A single picture can be comprised of millions
of pixels, which collectively determine the image. Each pixel contains informa-
tion on how to color the corresponding point on a computer screen, as shown in
Fig. 1. If an image contains curves or lines, the pixels which describe the object
may be connected by a mathematical formula. The saddle shown in Fig. 1 is an
example.

Figure 1
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Figure 2

Figure 3

Graphics Operations in R?2

To manipulate images, computer programmers use linear transformations. Most of the
examples we consider in this section use linear operators on R?. One of the proper-
ties of linear transformations that is especially useful to our work here is that linear
transformations map lines to lines, and hence polygons to polygons. (See Exercise 10
of the Review Exercises for Chapter 4.) Therefore, to visualize the result of a linear
transformation on a polygon, we only need to transform the vertices. Connecting the
images of the vertices then gives the transformed polygon.

Scaling and Shearing

A transformation on an object that results in a horizontal contraction or dilation
(stretching) is called a horizontal scaling. For example, let T be the triangle shown
in Fig. 2 with vertices (1,1), (2,1), and (3, 3). Suppose that we wish to perform
a horizontal scaling of T by a factor of 3. The transformed triangle 7’ is obtained
by multiplying the x coordinate of each vertex by 3. Joining the new vertices with
straight lines produces the result shown in Fig. 3.

The linear operator S: R> —> R? that accomplishes this is given by

(13)-1%]

To find a matrix representation of S, let B = {e1, &} be the standard basis for R?.
Then by Theorem 12 of Sec. 4.4, we have

[S1s =[[S(en] [S(e]]= { g ? }

Let v; and v}, for i = 1, 2, and 3, be, respectively, the vertices (in vector form) of T
and T". Since the coordinates of the vertices of T are given relative to B, the vertices
of T’ can be found by matrix multiplication. Specifically,

S FHIBRHIESERIHEH
NH

These results are consistent with the transformed triangle 77, as shown in Fig. 3.
In general, a horizontal scaling by a factor k is given by the linear transformation

T )l

<

and

<
o~
I
L —|
o w
- O
—_
—
w Nw
Nl
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The matrix representation of Sy, relative to the standard basis for R?, is given by

sil= 5 3|

Similarly, a vertical scaling is given by the linear operator

s(D)-14]

The matrix representation of S, relative to the standard basis for R?, is given by

5= g o |

If both components are multiplied by the same number k, then the result is called a
uniform scaling. In all the above cases, if k£ > 1, then the transformation is called a
dilation, or stretching; and if 0 < k < 1, then the operator is a contraction.

Let T denote the triangle with vertices given by the vectors

o-[2] we[2] we[i]

as shown in Fig. 4.

a. Stretch the triangle horizontally by a factor of 2.
b. Contract the triangle vertically by a factor of 3.

c. Stretch the triangle horizontally by a factor of 2, and contract the triangle
vertically by a factor of 3.

a. To stretch the triangle horizontally by a factor of 2, we apply the matrix

2 0
0 1
to each vertex to obtain

=[3] w=[1] w=[5]

Connecting the new vertices by straight-line segments gives the triangle 7"’
shown in Fig. 5(a).

b. To contract the triangle vertically by a factor of 3, we apply the matrix

3]
| |

to each vertex to obtain

/!

Wik O

| sl

o
—_

Wik N
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1t
<

TIII

:

Figure 6

xv

The contracted triangle 7" is shown in Fig. 5(b).

AY AY
5+ 5+
4 -ll 4
A I
1 1 1 1 1 | 1 1 1 1 1 » 1 1 1 1 1 -AI 1 1 1 »
_E_I) T T T T I T T T T é )V( _5I T T T T 1 T T T T I5 ;(
-51 -51
(@) (b)
Figure 5

c. This operator is the composition of the linear operators of parts (a) and (b).
By Theorem 14 of Sec. 4.4, the matrix of the operator, relative to the standard
basis for R?, is given by the product

o ¢ [o 2)=1s 3]

Applying this matrix to the vertices of the original triangle gives

e-[§] a-[f] a-[3

as shown in Fig. 6.

Another type of transformation, called shearing, produces the visual effect of
slanting. The linear operator S: R? — R? used to produce a horizontal shear has the

()=

where k is a real number. Relative to the standard basis B, the matrix representation

of S is given by
1 &

As an illustration, let 7 be the triangle of Fig. 7(a) with vertices v; = [ 8 }

V2 = { (2) } and vz = { 1 } and let k = 2. After applying the matrix

[S]B=H ﬂ
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to each of the vertices of T, we obtain v; = 8 }v’z = [ (2) ] and vi = [ i ]
The resulting triangle 7’ is shown in Fig. 7(b).

AY AY
54 51
. -l- i _ll
N+ _,_,_,_,_,_4_,_,_,
-5 1 5 X -5 1 5 X
-5 -5
@ (b)
Figure 7

A vertical shear is defined similarly by

(3=

In this case the matrix for S, relative to the standard basis B, is given by

[S]B=[i 2}

m Perform a vertical shear, with £ = 2, on the triangle of Fig. 2.

Solution The matrix of this operator, relative to the standard basis for R?, is given by

1 0
2 1
Applying this matrix to the vertices

NHIESEESH
<[3] a-[3] w-[i]

Figure 8 The images of the original triangle and the sheared triangle are shown in Fig. 8.

W Nw

we obtain

oY N w
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Reflection

The reflection of a geometric object through a line produces the mirror image of the
object across the line. The linear operator that reflects a vector through the x axis is

w((2)-[ 2]

A reflection through the y axis is given by

«((3)-1]

and a reflection through the line y = x is given by

o ([ )-[:]

The matrix representations, relative to the standard basis B, for each of these are given

by
[RX]B = |: é _2 :| [Ry]B = |: _é 2 :| [Ry=x]B = |: g_) é :|

m Perform the following reflections on the triangle 7' of Fig. 4.

Solution

a. Reflection through the x axis.
b. Reflection through the y axis.
c. Reflection through the line y = x.

a. The vertices of the triangle in Fig. 4 are given by

«= 1] el

Applying the matrix [R,]5 to the vertices of the original triangle, we obtain

i-[ 3] us[EI RS

The image of the triangle is shown in Fig. 9(a).
b. Applying the matrix [R,]p to the vertices of the original triangle, we obtain

a=|7] w=|F] w=| 7]

The image of the triangle with this reflection is shown in Fig. 9(b).
c. Finally, applying the matrix [R._,]p to the vertices of the original triangle,

we obtain
/ 1 / 1
Vl = 0 V2 = 2

The image of the triangle is shown in Fig. 9(c).
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A Y LY
B 5ot
+——t——t—t—t—t—t>> T+ttt
-5 | 5 X -5 il 5 X
=5 =5

(b)
Figure 9

@

Reversing Graphics Operations

The operations of scaling, shearing, and reflection are all reversible, and hence the matrix
representations for each of these operators are invertible. By Corollary 2 of Sec. 4.4, to
reverse one of these operations, we apply the inverse matrix to the transformed image.

Let S be the linear operator that performs a reflection through the line y = x,
followed by a horizontal stretching by a factor of 2.

a. Find the matrix representation of S, relative to the standard basis B.
b. Find the matrix representation of the reverse operator, again relative to B.

a. Using the matrices given above for these operations, and by Theorem 14 of
Sec. 4.4, the matrix of the transformation, relative to the standard basis for R?,
is given by the product

2 0 0 1 0 2
[S]Bz[o 1“1 0}:[1 o}
b. By Corollary 2 of Sec. 4.4, the matrix which reverses the operation of part (a)
is given by

57 = sl =5 | _§ o |=|

NiE O
o -
_ 1

As we noted in Example 4(a), if a graphics operation S is given by a sequence
of linear operators Si, S, ..., S,, then

S = S,08, 1008y
The matrix representation, relative to the basis B, is then given by the matrix product
[S1z = [SulB[Su-1l5 - - - [S1]B

The reverse process is given by
[S15" = [Sul5" IS0 - [Sul 5
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Thus, applying the matrices [S1]15%, [S215, ..., [S.]5" in succession reverses the pro-
cess one transformation at a time.

Translation

A trandation of a point in the plane moves the point vertically, horizontally, or both.
For example, to translate the point (1, 3) three units to the right and two units up, add
3 to the x coordinate and 2 to the y coordinate to obtain the point (4, 5).

Now let v = [ z; } be any vector in R? and b = { Z; ] some fixed vector. An

operation S: R? — R? of the form

S(v)=v+b= [ “1“’1]

v + b

is called a translation by the vector b. This transformation is a linear operator if
and only if b = 0. Consequently, when b £ 0, then S cannot be accomplished by
means of a 2 x 2 matrix. However, by using homogeneous coordinates, translation of
a vector in R? can be represented by a 3 x 3 matrix. The homogeneous coor dinates
of a vector in R? are obtained by adding a third component whose value is 1. Thus,

the homogeneous coordinates for the vector v = [ )yc ] are given by

X
w= |y
1
Now, to translate w by the vector b = { Zl } we let
2
1 0 b
A=10 1 b
0 0 1
so that .
1 0 b X X+ by
AW = 0 1 b y = y+ by
00 1 ]|1 1
To return to R?, we select the first two components of Aw so that
_ [ x + by
S(v) = Vb }
as desired.

As an illustration of this, let b = [ L } Using homogeneous coordinates, the

-2
3 x 3 matrix to perform the translation is
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Figure 10
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Now let v = [ ‘;’ ] Then

10 1 3 4
01 -2 2 |1 =10
0 0 1 1 1

g is the translation of v by the vector b.

In the previous illustration the translation can be accomplished with less work
by simply adding the vector b to v. The benefits of using a matrix representation are
realized when we combine translation with other types of transformations. To do this,
we note that all the previous linear operators can be represented by 3 x 3 matrices.
For example, the 3 x 3 matrix for reflecting a point (in homogeneous coordinates)

through the x axis is

The vector S(v) =

oo
|
or o
oo

Find the image of the triangle 7" of Fig. 4 under a translation by the vector
b= _g , followed by a horizontal scaling by a factor of 1.5, followed by
a reflection through the x axis.

The matrix for the composition of these operations is given by the product

1 00 15 0 0 1 0 -5 15 0 -75
0 -1 0 0 10 01 3 (=0 -1 -3
0 01 0 01 0 0 1 0 0o 1
The vertices of the original triangle in homogeneous coordinates are given by
0 2 1
vi=| 1 vo= | 1 v3= | 3
1 1 1

After applying the above matrix to each of these vectors, we obtain

—-75 —45 —6
vi=| — Vo= | —4 vz=| —6
1 1 1

The resulting triangle, along with the intermediate steps, are shown in Fig. 10.

Find a 3 x 3 matrix that will transform the triangle shown in Fig. 11(a) to the
triangle shown in Fig. 11(b).
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©o
4
|
T

(a) Triangle T (b) Triangle T

Figure 11

Solution Triangle 7" is obtained from triangle T through a horizontal scaling by a factor of
3, followed by a vertical scaling by a factor of 2, without changing the left vertex
(1, 1). The scalings alone will move the point (1, 1) to (3, 2). One way to correct this
is to first translate the triangle so that the left vertex is located at the origin, perform
the scaling, and then translate back. The matrix to perform all these operations is
the product of the matrices for each transformation. The matrix is given by

10 1 100 300 1 0 -1 3 0 -2
, 01 1 020 010 01 —-1|=]0 2 -1
0 01 0 01 0 01 00 1 00 1
Notice that B
101 10 -1
01 1|=]01 -1
* 0 0 1 00 1

that is, the matrix representation for translation by [ i } is the inverse of the matrix
Rotation by 45°

representation for translation by { :1 ]

Rotation

Another common graphics operation is a rotation through an angle 6. See Fig. 12. To
describe how a point is rotated, let (x, y) be the coordinates of a point in R? and 6 a
real number. From trigonometry, the new coordinates (x’, y") of a point (x, y) rotated

Figure 12 by 6 rad about the origin are given by

x' = xcosH — ysind
y = xsin0+ ycosH

If 6 > 0, then v is revolved about the origin in a counterclockwise direction. If 6 < 0,
the direction is clockwise. These equations define a linear operator S5: R? — R?
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Figure 13
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S x | xcosB —ysin6
O\ y|) ™| xsino+ ycos6
The matrix of Sy relative to the standard basis B = {ey, &} for R? is given by

cos® —sind
[Se]s = { sin®  cosh ]

When using homogeneous coordinates, we apply the matrix

given by

cos® —sinf O
sin6 cos6 O
0 0 1

Find the image of the triangle of Fig. 4 under a translation by the vector b =

[ _1 ] followed by a rotation of 30°, or w/6 rad, in the counterclockwise

direction.
The matrix for the combined operations is given by
cosT —sin? 0 10 1 L 10 1
sinf cosg O 01 -1|=|1 B 9 01 -1
2 2
0 0 1 00 1 0 0 1 00 1
[ V3 _1 3,1
2 T2 27t2
=| 1 B 1_3
2 2 2 2
| 0 0 1
The vertices of the triangle in homogeneous coordinates are given by
0 2 1
vi=| 1 vo=| 1 and v3=| 3
1 1 1
After applying the above matrix to each of these vectors, we obtain
. 3 Vi-1
vi=| 1 vp=| 3 and  vi=| J/3+1
1 1 1

The resulting triangle is shown in Fig. 13.

Projection

Rendering a picture of a three-dimensional object on a flat computer screen requires
projecting points in 3-space to points in 2-space. We discuss only one of many methods
to project points in R® to points in R? that preserve the natural appearance of an object.
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/.

Figure 14

XN

Parallel projection simulates the shadow that is cast onto a flat surface by a far away
light source, such as the sun. Shown in Fig. 14 are rays intersecting an object in
3-space and the projection into 2-space. The orientation of the axes in Fig. 14 is such
that the xy plane represents the computer screen.

To show how to find the xy coordinates of a projected point, let the vector

Xd

represent the direction of the rays. If (xo, yo, zo) is a point in R®, then the parametric
equations of the line going through the point and in the direction of v, are given by

x(t) =xo0+txg

y@) =yo+tya

z2(t) =z0+1tzg
for all + € R. The coordinates of the projection of (xg, yo, zo) onto the xy plane are
found by letting z(¢) = 0. Solving for 7, we obtain

20

f=—"

Zd
Now, substituting this value of ¢ into the first two equations above, we find the
coordinates of the projected point, which are given by

20 20
Xp =X0— —Xq4 Yp=Y0— —Vd and 2, =0
Zd 2d

The components of v, can also be used to find the angles that the rays make with the

z axis and the xz plane. In particular, we have
2 2
\/Xat Ya
tany = Yd and tang = +——

X4 2d

where s is the angle v, makes with the xz plane and ¢ is the angle made with the
z axis. On the other hand, if the angles \{r and ¢ are given, then these equations can
be used to find the components of the projection vector v,.

SOV RN  Let v = 30° and ¢ = 26.6°.

a. Find the direction vector v, and project the cube, shown in Fig. 15, into R?.
The vertices of the cube are located at the points (0,0, 1), (1,0, 1), (1, 0, 0),
(0,0,0),(0,1,1), (1,1, 1), (1,1,0), and (0, 1, 0).
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b.

a.
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Ay

4 4

Figure 15

Find a 3 x 3 matrix that will rotate the (projected) vertices of the cube by 30°

and another that will translate the cube by the vector 1

We can arbitrarily set z; = —1. Then
tan{ = tan30° ~ 0.577 = Y4 and (tan $)* = (tan 26.6°)% ~ (0.5)? = x3 + y3
X4

so that

ya=0577x;, and  xj+yi=1

Solving the last two equations gives x; ~ 0.433 and y,; ~ 0.25, so that the

direction vector is
0.433

Vg = 0.25
-1
Using the formulas for a projected point given above, we can project each
vertex of the cube into R?. Connecting the images by line segments gives the
picture shown in Fig. 16. The projected points are given in Table 1.
Table 1
Vertex | Projected Point
(0,0,1) | (0.433, 0.25)
(1,0,1) | (1.433, 0.25)
(1,000 | (1,0)
(0,0,0) | (0, 0)
(0,1,1) | (0.433, 1.25)
(1,1,1) | (1.433, 1.25)
1,10 | (1,0
0,1,0) | (0,2)
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b. Using homogeneous coordinates, we find the matrices to rotate the cube coun-
terclockwise by 30° and translate the cube by the vector { i } are given by

cos(g) —sin(g) 0 1 0 2
sin(Z)  cos(%) 0 and 011
0 0 1 0 0 1

respectively. Depictions of the results when the original cube is rotated and
then the result is translated are shown in Figs. 17 and 18.

Ay y ky

&

4
4
XV

Figure 16 Figure 17 Figure 18

Exercise Set 4.6

1. Find the matrix representation relative to the C.
standard basis for the linear transformation
T: R? — R? that transforms the triangle with
vertices at the points (0, 0), (1, 1), and (2, 0) to
the triangle shown in the figure.

a.
2. Find the matrix representation relative to the
standard basis for the linear transformation
T: R? — R? that transforms the square with
vertices at the points (0, 0), (1, 0), (1, 1), and
o (0, 1) to the polygon shown in the figure.




3. Let T- R2 — R? be the transformation that

performs a horizontal stretching by a factor of 3,
followed by a vertical contraction by a factor of 2,
followed by a reflection through the x axis.

a. Find the matrix of T relative to the standard
basis.

b. Apply the transformation to the triangle with
vertices (1, 0), (3,0), and (2, 2), and give a
sketch of the result.

c. Find the matrix relative to the standard basis
that reverses T.

. Let T: R? — R? be the transformation that
performs a reflection through the y axis, followed
by a horizontal shear by a factor of 3.

a. Find the matrix of T relative to the standard
basis.

b. Apply the transformation to the rectangle with
vertices (1, 0), (2, 0), (2, 3), and (1, 3), and
give a sketch of the result.

c. Find the matrix relative to the standard basis
that reverses T.

. Let T: R?2 — R? be the transformation that

performs a rotation by 45° followed by a

reflection through the origin.

a. Find the matrix of T relative to the standard
basis.
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b. Apply the transformation to the square with
vertices (0, 0), (1,0), (1, 1), and (0, 1), and
give a sketch of the result.

c. Find the matrix relative to the standard basis
that reverses T.

. Let 7: R2 — R? be the transformation that

performs a reflection through the line y = x,

followed by a rotation of 90°.

a. Find the matrix of T relative to the standard
basis.

b. Apply the transformation to the triangle with
vertices (0, 0), (2, 0), and (1, 3), and give a
sketch of the result.

c¢. Find the matrix relative to the standard basis
that reverses 7.

d. Describe this transformation in another way.
Verify your answer.

. Let T: R? — R? be the (nonlinear)

transformation that performs a translation by the

1

a. Using homogeneous coordinates, find the 3 x 3
matrix that performs the translation and
rotation.

b. Apply the transformation to the parallelogram
with vertices (0, 0), (2,0), (3, 1), and (1, 1),
and give a sketch of the result.

c¢. Find the matrix that reverses 7.

vector { ! } followed by a rotation of 30°.

. Let T: R? — R? be the (nonlinear)

transformation that performs a translation by the

2

the y axis.

a. Using homogeneous coordinates, find the 3 x 3
matrix that performs the translation and
reflection.

b. Apply the transformation to the trapezoid with
vertices (0, 0), (3,0), (2,1), and (1, 1), and
give a sketch of the result.

c. Find the matrix that reverses T.

vector —4 ] followed by a reflection through

9. Let
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be a basis for R?, and let A be the triangle in the

xy coordinate system with vertices (0, 0), (2, 2),

and (0, 2).

a. Find the coordinates of the vertices of A
relative to B.

b. Let T be the transformation that performs a
reflection through the line y = x. Find [T]5,
where S is the standard basis for R?.

c. Apply the matrix found in part (b) to the
coordinates found in part (a). Sketch the
result.

d. Show the same result is obtained by applying

{ 2 é } to the original coordinates.

Let

be a basis for R?, and let A be the parallelogram
in the xy coordinate system with vertices
0,0), (1,1),(1,0), and (2, 1).

a.

Find the coordinates of the vertices of A
relative to B.

. Find the matrix representation relative to B of

the transformation 7 that performs a reflection
through the horizontal axis.

. Apply the matrix found in part (b) to the

coordinates found in part (a). Write the
resulting vectors relative to the standard basis,
and sketch the result.

. Find the matrix representation relative to the

standard basis for the transformation that
performs the same operation on the
parallelogram. Apply this matrix to the original
coordinates, and verify the result agrees with

part (c).

Review Exercises for Chapter 4

1

Let 7: R2 —> R* be a linear transformation.
a. Verify that

=i

is a basis for R2.

b. If
(1
1 2
T[l =15 and
| 2
[ 3
3 2
T[—l_z 4
| -2
determine

3]

Q - 0O & o

(Hint: Find the coordinates of [ )yc } relative
to S.)

. Describe all vectors in N(T).

. Is the linear map T one-to-one? Explain.

. Find a basis for R(T).

. Is T onto? Give two reasons.

. Find a basis for R* that contains the vectors

and

=
=l

.UsethebasisB:H;}[_1”ofR2

and the basis found in part (g) for R?, call it C,
and find a matrix representation for 7' with
respect to the bases B and C.



i. Apply the matrix A found in part (h) to an
arbitrary vector

2. Define linear transformations S, T: P; — P, and
H: Py — Py by

S(p(x)) = p'(0)
T(p(x)) = (x+Dp(x)
H(p(x)) = p'(x) + p(0)

a. Compute HoT and So(HeT).

b. Find the matrix for S, 7, and H relative to the
standard bases for P; and Pj.

c. Show that T is one-to-one.
d. Find R(T).

3. Let S, T: R?> — R? be transformations so §
reflects every vector through the x axis and T
reflects every vector through the y axis.

a. Give definitions for S and 7. Show the
mappings are linear transformations.

b. Find the matrix for S and for T relative to the
standard basis for R2.

c. Find the matrix for the linear transformations
T-S and SoT. Describe geometrically the
action of ToS and SeoT.

4. a. Let T: Myy» — My, be defined by

T(A):{_i i]A

Is T a linear transformation? Is 7' one-to-one?
Is T an isomorphism?

b. Let T: M2 — My.» be defined by

T(A):“ S}A

Is T a linear transformation? Is 7' one-to-one?
Show R(T) is isomorphic to R?.

5. Let vy and v, be linearly independent vectors in

R? and 7: R? — R? a linear operator such that
T(V1) =Vy and T(V2) =V

Let B = {v1, Vo} and B’ = {v,, v1}.

4.6 Application: Computer Graphics 271

a. Find [T1];5.
b. Find [T]5.

. Let T: R? — R? be the linear operator that

projects a vector across the line span { { _1 ] }

and S: R? — R? the linear operator that reflects a
vector across the line span { [ (1) ]} Let B

denote the standard basis for R2.
a. Find [T]p and [S]5.

oo 1) [ 1)

c¢. Find the matrix representation for the linear
operator H: R? — R? that reflects a vector

across the subspace span { { _1 ] } and

across the subspace span { { (1) ] }

([ )

e. Find N(T) and N(S).
f. Find all vectors v such that 7(v) = v and all
vectors v such that S(v) = v.

. Let T: R® — R® be the linear operator that

reflects a vector across the plane

1 0
span 01,1
0 1

The projection of a vector u onto a vector v is the
vector T u_vv

proj, u = Vv
and the reflection of v across the plane with
normal vector n is

vV —2proj, v

Let B denote the standard basis for R3.
a. Find [T];p.
-1
b. Find T 2
1
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c. Find N(T). 10. Let 72 R? — R? be a linear operator.

d. Find R(T). a. Show that the line segment between two
e. Find the matrix relative to B for T",n > 2. vectors u and v in R? can be described by

8. Define a transformation T: P, — R by tu+ (1 —1)v for 0<tr<1

b. Show that the image of a line segment under

1
T(px)) = / p(x)dx
0 the map T is another line segment.

Show that 7 is a linear transformation.
Compute T (—x2 — 3x + 2).
Describe N(T). Is T one-to-one?

. A set in R? is called convex if for every pair

of vectors in the set, the line segment between
the vectors is in the set. See the figure.

Find a basis for N(T).
Show that 7 is onto.

Let B be the standard basis for P, and
B’ = {1}, a basis for R. Find [T]5".

-~ ® 20 T Qo

g. Compute 7 (—x? — 3x + 2), using the matrix

found in part (f). Convex set Not a convex set

h. Define linear operators 7: CV[0, 1] —

c®[0,1] and S: cD[0, 1] — c P[0, 1] by Suppose T: R? — R? is an isomorphism and §
d is a convex set in R2. Show that 7'(S) is a
T(f)= Ef(x) convex set.

d. Define T: R? — R? by

and
o [ x ] 2x
S(f)y=F, where F(x) =/ f@)dt T( > = { }
0 LY | y
Find T (xe*) and S(xe*). Describe ST and Show that 7 is an isomorphism. Let
ToS. ,
. S = X 2 2_q
9. Let 7: V — V be a linear operator such that = y Xt 4yt =

T? — T + 1 =0, where I denotes the identity

mapping. Show that 7 exists and is equal to Describe the image of the set S under the
I-—T. transformation 7.

Chapter 4: Chapter Test

In Exercises 1-40, determine whether the statement is 2. The transformation 7: R — R defined by
true or false. T (x) = 2x — 1 is a linear transformation.

3. If b =0, then the transformation 7: R — R
defined by 7 (x) = mx + b is a linear

transformation.
y xX+y+2 4. If Ais an m x n matrix, then T defined by
T (V) = Av
is a linear transformation from R” into R™.

1. The transformation 7: R? — R? defined by

is a linear transformation.



10.

11

12.

13.

14.

Let A be a fixed matrix in M,,,. Define a
transformation T: M, «, — M, by

T(B) = (B + A)? — (B + 2A)(B — 34)

If A2 =0, then T is a linear transformation.

Letu= (1) and v = (1) ] If 7" R2 — R? is
a linear operator and
and

TUu+v)=v TRu—v)=u+vVv

then
T() = [

W= wIn
—_

If T: R? — R? is defined by

r([v])=[3

then T is an isomorphism.

HIN

If T: V. — W is a linear transformation and
{vi,...,V,} is a linearly independent set in V,
then {T (v1), ..., T(v,)} is a linearly independent
subset of W.

The vector spaces Pg and M3,3 are isomorphic.

If a linear map T: P4, —> P3 is defined by
T(p(x)) = p'(x), then T is a one-to-one map.

If Ais an n x n invertible matrix, then as a
mapping from R” into R” the null space of A
consists of only the zero vector.

The linear operator 7: R?> — R? defined by

<{ -1

If T: R2 — R? is the transformation that reflects
each vector through the origin, then the matrix for
T relative to the standard basis for R? is

-1 0
0 -1
A linear transformation preserves the operations
of vector addition and scalar multiplication.

15.

16.

17.

18.

19.

20.

21

22.

23.
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Every linear transformation between finite
dimensional vector spaces can be defined using a
matrix product.

A transformation 7: V — W is a linear
transformation if and only if

T(c1V1 + Vo) = 1T (V1) + 2T (Vo)

for all vectors v; and v, in V and scalars ¢;
and cs.

If f: R — R is a linear operator and
¢: R? — R? is defined by
dlx,y) = (x,y — f(x))
then the mapping ¢ is an isomorphism.
Let U, V, and W be finite dimensional vector

spaces. If U is isomorphic to V and V is
isomorphic to W, then U is isomorphic to W.

If T: V — V is a linear operator and u € N(7T),
then

T(cu+vVv)=T(V)
for all v e V and scalars c.

If P: R® — R3 is the projection defined by

X X
P y =1y
Z 0

then P2 = p.

If 7. V — W is a linear transformation between
vector spaces such that 7 assigns each element of
a basis for V to the same element of W, then T is
the identity mapping.

If - R* - R® and dim(N(T)) = 2, then
dim(R(T)) = 3.

If - R* — R® and dim(R(T)) = 2, then
dim(N(T)) = 2.

If 72 R® — R? is defined by

X 2x —y+z
T y = by
z y—Xx
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25.

26.

27.

28.

29.

30.

31.

32.

Chapter 4 Linear Transformations

then the matrix for 71 relative to the standard
basis for RS is

0 10
0 0 1
-1 -2 1
If T R?> — R? is defined by
T X | 2x+3y
yl) [ —x+y

B = {e1, &}, and B’ = {&, e}, then
/ -1 1
[T]B = { 2 3 ]
There exists a linear transformation 7' between
vector spaces such that 7(0) £ 0.

The linear transformation 7: R — R3 defined by

(1)) 12

projects each vector in R® onto the xy plane.

o\l

The linear operator 7: R> — R? defined by

by 0 1 X
(V)15 6]
reflects each vector in R? across the line y = x.

Let 7' V — W be a linear transformation and

B ={v1,...,V,} abasis for V. If T is onto, then
{T(v1),...,T(v,)} is a basis for W.

The vector space P, is isomorphic to the subspace
of R®

a,b,ceR

o O S Q

o

If T: V. — V is the identity transformation, then
the matrix for T relative to any pair of bases B
and B’ for V is the identity matrix.

If 7: R® — R® is defined by

()1

then dim(N(T)) = 1.

33.

35.

36.

37.

38.

39.

40.

If T: P, — P, is defined by
T(ax?+bx +¢) = 2ax + b
then a basis for N(T) is {—3}.
If T: Myyo — My is defined by
T(A) = A’>— A
then N(T) = {O}.
If T: P3 — P3 is defined by
T(p(x)) = p"(x) — xp'(x)
then T is onto.
If T: P3 — P3 is defined by
T(p(x)) = p"(x) —xp'(x)
then ¢ (x) = x? is in R(T).

The linear operator 7: R® — R3 defined by
X 3 X
T y =11 y
z 3 z

is an isomorphism.
If Aisanm x n matrix and 7: R" — R™ is
defined by

-3 0
2 1
-1 1

T(v) = Av

then the range of T is the set of all linear
combinations of the column vectors of A.

If A is an m x n matrix with m > n and
T: R" — R™ is defined by

T(v) = Av
then T cannot be one-to-one.

If Aisan m x n matrix with m > n and
T: R" — R™ is defined by

T(v) = Av
then T cannot be onto.
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Markov chain is a mathematical model used

to describe a random process that, at any
given time r =1,2,3,..., is in one of a finite
number of states. Between the times r and ¢ + 1
the process moves from state j to state i with
a probability p;;. Markov processes are also
memoryless; that is, the next state of the sys-
tem depends only on the current state. As an
example, consider a city C with surrounding res-
idential areas N, S, E, and W. Residents can
move between any two locations or stay in their

O
current location, with fixed probabilities. In this
case a state is the location of a resident at any
® (@ given time. The state diagram shown in Fig. 1
describes the situation with the probabilities of
\ / moving from one location to another shown in the
(& Ep

corresponding transition matrix A = (p;;). For
example, entry pa; = 0.2 is the probability that U-S- Geological Survery/DAL

Figure 1 a resident in region E moves to region S. Since a resident is assumed to be living
in one of the five regions, the probability of being in one of these regions is 1, and
hence each column sum of A is equal to 1. A square matrix with each entry between
0 and 1 and column sums all equal to 1 is called a stochastic matrix. The initial
distribution of the population is called the initial probability vector. Assume that the

} initial population distribution is given by the vector

0.3
0.2
v=| 01
0.2
0.2

a
=

N

]
=

00000
DR W
oo0ooo
PR RN
o000
(A N YIS
00000
PDwh N
ooooo
(G Y SN ESIN

=muz0

275
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Chapter 5 Eigenvalues and Eigenvectors

5.1

DEFINITION 1

Then the population distribution after one time step is Av, after two time steps is
A(Av) = A?v, and so on. For example, after 10 time steps, the population distribution
(rounded to two decimal places) is

0.21
0.20
A% = | 0.16
0.20
0.23

Notice that the sum of the entries of the population distribution vector is equal to 1.
Starting with some initial distribution vector, the long-term behavior of the Markov
chain, that is, A”v as n tends to infinity, gives the limiting population distribution
in the five regions into the future. When A"v approaches a distribution vector s
as n tends toward infinity, we say that s is the steady-state vector. If a transition
matrix for a Markov chain is a stochastic matrix with positive terms, then for any
initial probability vector v, there is a unique steady-state vector s. Moreover, if s is
the steady-state vector, then As=s. Finding the steady-state vector is equivalent to
solving the matrix equation
AX = AX

with A = 1. In general, if there is a scalar » and a nonzero vector v such that Av = v,
then 'n is called an eigenvalue for the matrix A and v is an eigenvector corresponding
to the eigenvalue . In our Markov chain example, the steady-state vector corresponds
to the eigenvalue \ = 1 for the transition matrix A.

In the last decade the growth in the power of modern computers has, quite mirac-
ulously, made it possible to compute the eigenvalues of a matrix with rows and
columns in the billions. Google’s page rank algorithm is essentially a Markov chain
with transition matrix consisting of numerical weights for each site on the World Wide
Web used as a measure of its relative importance within the set. The algorithm was
developed by Larry Page and Sergey Brin, the founders of Google.

For any n x n matrix A, there exists at least one number-vector pair X, v such that
Av = \v (although N may be a complex number). That is, the product of A and v is
a scaling of the vector v. Many applications require finding such number-vector pairs.

Eigenvalues and Eigenvectors

One of the most important problems in linear algebra is the eigenvalue problem. It
can be stated thus: If A is an n x n matrix, does there exist a nonzero vector v such
that Av is a scalar multiple of v?

Eigenvalue and Eigenvector Let A be an n x n matrix. A number  is called
an eigenvalue of A provided that there exists a nonzero vector v in R” such that

AV = \V
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Every nonzero vector satisfying this equation is called an eigenvector of A corre-
sponding to the eigenvalue .

The zero vector is a trivial solution to the eigenvalue equation for any number A
and is not considered as an eigenvector.
As an illustration, let

Observe that

o 1 ][a]=[5]

is an eigenvector of A corresponding to the eigenvalue A3 = 1. We

o Al ]-[R]=n]4]

SOVy = [ _1 } is another eigenvector of A corresponding to the eigenvalue », = —1.

1

SO vV = 0

also have

In Example 1 we show how to find eigenvalues and eigenvectors for a 2 x 2
matrix.

A:[lo]

a. Find the eigenvalues of A.
b. Find the eigenvectors corresponding to each of the eigenvalues found in
part (a).

Solution a. The number \ is an eigenvalue of A if there is a nonzero vector v = [ ;C }
such that

0 1 x| X e . y | | M
[1 0}{y]_)‘[y] which is equivalent to [x}_[)\y}

This matrix equation is equivalent to the homogeneous linear system
- + y = 0
x — xy =0
By Theorem 17 of Sec. 1.6, the linear system has a nontrivial solution if and
only if

—\ 1
1 —

-
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Consequently, » is an eigenvalue of A if and only if
»¥—-1=0 sothat r=1 and rpy=-1

b. For Ay =1, a vector v; = { ;C } is an eigenvector if
0 1 x| | x
1 0 y | |y
This yields the linear system

{ = with solution set S = { [ g }
x—y=0 t

teR}

Thus, any vector of the form v; = [ ; } for ¢t # 0, is an eigenvector corre-
sponding to the eigenvalue A1 = 1. In a similar way, we find that any vector
of the form v, = [ _; } for ¢t £ 0, is an eigenvector of A corresponding to

the eigenvalue %\, = —1. Specific eigenvectors of A can be found by choosing
any value for ¢ so that neither vy nor v, is the zero vector. For example, letting
t =1, we know that
1
u=|1]

is an eigenvector corresponding to »; = 1 and

[ 4]

is an eigenvector corresponding to x, = —1.

Geometric Interpretation of Eigenvalues and Eigenvectors

A nonzero vector v is an eigenvector of a matrix A only when Av is a scaling of
1
2

the eigenvalues of A are Ay =2 and X, =3 with corresponding eigenvectors

the vector v. For example, let A = [ _i } Using the techniques just introduced,

vi = { 1 } and v, = { _; ] respectively. Observe that

TS TR

R e E R



Figure 2

THEOREM 1

5.1 Eigenvalues and Eigenvectors 279

In Fig. 2, we provide sketches of the vectors vi, v,, Avy, and Av; to underscore that
the action of A on each of its eigenvectors is a scaling. Observe that this is not the

case for an arbitrary vector. For example, if v = [ ! } then

1
1 -1 1 0
wele ][] (6]

Eigenspaces

Notice that in Example 1, for each of the eigenvalues there are infinitely many eigen-
vectors. This is the case in general. To show this, let v be an eigenvector of the matrix
A corresponding to the eigenvalue \. If ¢ is any nonzero real number, then

A(cV) = cAV) = c(A\V) = A(ceV)

so ¢V is another eigenvector associated with the eigenvalue \. Notice that all eigen-
vectors corresponding to an eigenvalue are parallel but can have opposite directions.

Building on the procedure used in Example 1, we now describe a general method
for finding eigenvalues and eigenvectors. If A is an n x n matrix, then

AV =V
for some number X if and only if
AV—2av =0 that is (A=A v=Av—2rAIv=0
Again by Theorem 17, of Sec. 1.6, this equation has a nontrivial solution if and only
! det(A — 1) =0
We summarize this result in Theorem 1.

The number X is an eigenvalue of the matrix A if and only if
det(A — 1) =0

The equation det(A — n1) = 0 is called the characteristic equation of the matrix
A, and the expression det(A — A1) is called the characteristic polynomial of A. If
A is an n x n matrix and '\ is an eigenvalue of A, then the set

Vi ={veR"| Av =2\v}

is called the eigenspace of A corresponding to A. Notice that V; is the union of the
set of eigenvectors corresponding to » and the zero vector.

We have already shown that V; is closed under scalar multiplication. Therefore,
to show that V, is a subspace of R”, we need to show that it is also closed under
addition. To see this, let u and v be vectors in V4 ; that is, Au = \u and Av = \v for
a particular eigenvalue . Then

AU+V) =AU+ AV=ANU+ AV =AU+ V)



280 Chapter 5 Eigenvalues and Eigenvectors

Alternatively, the set
V,={VeR"|Av=av} ={veR" | (A—r)v=0}=N(A —nI)

Since V, is the null space of the matrix A — %1, by Theorem 3 of Sec. 4.2 it is a
subspace of R”".

m Find the eigenvalues and corresponding eigenvectors of

20 12
A:{l _5]

Give a description of the eigenspace corresponding to each eigenvalue.

Solution By Theorem 1 to find the eigenvalues, we solve the characteristic equation
2—N 12
1 —5—2\
=@2-NM(=5-1 - D(-12)
=N +3\+2
=2+1HA+2)=0
Thus, the eigenvalues are Ay = —1 and », = —2. To find the eigenvectors, we need

to find all nonzero vectors in the null spaces of A — A11 and A — xp/. First, for
ai="=1%

2 -12 10 3 -12
aonmarr=]? 2143 0] 3 ]

The null space of A + [ is found by row-reducing the augmented matrix
3 =120 to 1 410
0 0 0|0

1 -4
The solution set for this linear system is given by S = { { 4; }

det(A — \1) =

te [R{}. Choosing

t = 1, we obtain the eigenvector v = { ‘11 } Hence, the eigenspace corresponding

tong =-—11s
4
w={o]1]

4 -12
A—)\.zl—[l _3:|

¢ is any real number}

For o = -2,

In a similar way we find that the vector v, = i is an eigenvector corresponding

to Ap = —2. The corresponding eigenspace is
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N

The eigenspaces Vy, and V;, are lines in the direction of the eigenvectors [ i' }

¢t is any real number}

and { i } respectively. The images of the eigenspaces, after multiplication by

A, are the same lines, since the direction vectors A [ i' } and A [ £

1 ] are scalar

. 4 3
multiples of { 1 } and { 1

] , respectively.

In Example 3 we illustrate how the eigenspace associated with a single eigenvalue
can have dimension greater than 1.

Find the eigenvalues of

=l
ocor o
onN oo

and find a basis for each of the corresponding eigenspaces.

The characteristic equation of A is

1-2\ 0 0 0
0 1-—x 5 =10
1 0 2—\ 0
1 0 0 33—\

Thus, the eigenvalues are

det(A — \I) = =—1D200-2)x—=3)=0

M=1 o =2 and A3 =3

Since the exponent of the factor » — 1 is 2, we say that the eigenvalue »; = 1 has
algebraic multiplicity 2. To find the eigenspace for x; = 1, we reduce the matrix

000 0 100 2
005 —10 00 1 -2
A-MI=14 51 © 000 0
100 2 000 0
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Hence, the eigenspace corresponding to Ay = 1 is

0 —2
1 0
Vi=<s 0 +t 5 s, teR
0 1
Observe that the two vectors

0 —2

1 0

0 and 2

0 1

are linearly independent and hence form a basis for V;,. Since dim(V;,) = 2, we
say that A1 has geometric multiplicity equal to 2. Alternatively, we can write

0 -2
Vi, = span (1) , g
0 1
Similarly, the eigenspaces corresponding to A, = 2 and X3 = 3 are, respectively,
0 0
Vi, = span ? and Vi, = span _0
0 1

In Example 3 the algebraic and geometric multiplicities of each eigenvalue are
equal. This is not the case in general. For example, if

i)

then the characteristic equation is (. — 1)2 = 0. Thus, » = 1 has algebraic multiplicity

2. However,
t

so A = 1 has geometric multiplicity 1.

Although eigenvectors are always nonzero, an eigenvalue can be zero. Also, as
mentioned at the beginning of this section, eigenvalues can be complex numbers.
These cases are illustrated in Example 4.

m Find the eigenvalues of



Solution

PROPOSITION 1

DEFINITION 2
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The characteristic equation is

-~ 0 0
det(A—2)=| 0 —x —-1|==23-2A=-20%2+1)=0
0 1 -

Thus, the eigenvalues are Ay = 0, A, =i, and A3 = —i. The corresponding eigen-
vectors are

1 0 0
0 1 and 1
0 —1 I

A fact that will be useful in the next section has to do with the eigenvalues of a
square triangular matrix. For example, let

2 4
A= [ 2 ]
Since det(A — 2I) = 0 if and only if (2 — %\)(—3 — \) = 0, we see that the eigenval-

ues of A are precisely the diagonal entries of A. In general, we have the following
result.

The eigenvalues of an n x n triangular matrix are the numbers on the diagonal.

Proof Let A be an n x n triangular matrix. By Theorem 13 of Sec. 1.6, the
characteristic polynomial is given by

det(A —\I) = (a11 — M (az —N) - (@pn — 1)
Hence, det(A — A1) =0 if and only if N1 = a11, Ao = apo, ..., Ny = anp.

Eigenvalues and Eigenvectors of Linear Operators
The definitions of eigenvalues and eigenvectors can be extended to linear operators.

Eigenvalue and Eigenvector of a Linear Operator Let V be a vector space
and 7:V — V be a linear operator. A number A is an eigenvalue of T provided
that there is a nonzero vector v in V such that 7'(v) = Av. Every nonzero vector that
satisfies this equation is an eigenvector of T corresponding to the eigenvalue .

As an illustration define T: P, — P, by
T(ax?+bx+c)=(—a+b+c)x’>+ (=b—2c)x —2b—c¢
Observe that
T(—x?+x+1)=3x>—3x—-3=-3(—x’+x+1)
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so p(x) = —x>+x+1 is an eigenvector of T corresponding to the eigenvalue
A= -3.
Example 5 is from ordinary differential equations.

m Interpret the solutions to the equation
f'(x) = kf(x)

as an eigenvalue problem of a linear operator.

Solution Let D denote the collection of all real-valued functions of one variable that have
derivatives of all orders. Examples of such functions are polynomials, the trigono-
metric functions sin(x) and cos(x), and the natural exponential function ¢* on R.
Define a linear operator 7: D — D by

T(f(x) = f'(x)

Then \ is an eigenvalue of T if there is a function f(x), not identically zero, such
that T(f(x)) = N f(x). That is, f(x) satisfies the differential equation

() =nf(x)
Nonzero solutions to this differential equation are eigenvectors of the operator T,
called eigenfunctions, corresponding to the eigenvalue . The general solution to
this equation is given by
f(x) = ke™
where k is an arbitrary constant. This class of functions is a model for exponential
growth and decay with extensive applications.

Fact Summary

Let A be an n x n matrix.

1. The number '\ is an eigenvalue of A if and only if det(A — 1) = 0.
2. The expression det(A — A1) is a polynomial of degree n.

3. If X is an eigenvalue of A and c is a nonzero scalar, then ¢ is another
eigenvalue of A.

4. If % is an eigenvalue of A, then the eigenspace
Vi, ={veR"| Av = 2\v}

is a subspace of R”".



Exercise Set 5.1

In Exercises 1-6, a matrix A and an eigenvector v are
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5. The eigenspace corresponding to A is the null space of the matrix A — A 1.
6. The eigenvalues of a square triangular matrix are the diagonal entries.

given. Find the corresponding eigenvalue directly by

solving Av = \v.

3 0

-1
24|}
[ -3
33A=1| -1
| -3
1 0

4, A=13 2
1 30

_4

3

V= 1
4

10

0 1

5 A= 11
0 1

-1

v— 0
I
1

1

-1

6. A= 1
0

0

v— 1
] -1
0

| -]

O O O

-1

-1

O O

10.

11

12.

13.

14.

15.

In Exercises 7-16, a matrix A is given.

a. Find the characteristic equation for A.
b. Find the eigenvalues of A.

c. Find the eigenvectors corresponding to each
eigenvalue.

d. Verify the result of part (c) by showing that

2 2
.A=3_3]
2 1
a=| 2]
(1 -2
A:_o 1}
0 2
A=_1_3]
10 1
A=] 01 0
02 1
0 2 0]
A=lo0 -1 1
(0 0 1|
(201 27
A=lo0 2 -1
(01 0]
(1011
A=]0 10
00 1
210 0 0
02 00
A=1 00 -2 0
00 0 4
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16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.
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3 2 3 -1
0 1 2 1
A=10 0 2 0
0 00 -1
Show that if 22 + bX + ¢ is the characteristic

polynomial of the 2 x 2 matrix A, then

b = —tr(A) and ¢ = det(A).

Let A be an invertible matrix. Show that if x is
an eigenvalue of A, then 1/ is an eigenvalue of
AL

Let A be an n x n matrix. Show that A is not
invertible if and only if » = 0 is an eigenvalue
of A.

Let V be a vector space with dim(V) = n and
T: V — V alinear operator. If A is an
eigenvalue of 7 with geometric multiplicity n,
then show that every nonzero vector of V is an
eigenvector.

Let A be an idempotent matrix. Show that if X is
an eigenvalue of A, then A =0 or » = 1.

Show that A and A’ have the same eigenvalues.
Give an example to show A and A’ can have
different eigenvectors.

Show that if there is a positive integer n such that
A" =0, then N = 0 is the only eigenvalue of A.

1 0
0 -1

T: Myyo — M>yo by
T(B) = AB — BA

Let A = { ] Define an operator

0 1 is an eigenvector
0 0 g
corresponding to the eigenvalue » = 2.

a. Show that ¢ =

b. Show that f = { (1) 8 ] is an eigenvector

corresponding to the eigenvalue » = —2.

Let A and B be n x n matrices with A invertible.
Show that AB and B A have the same eigenvalues.

Show that no such matrices A and B exist such
that
AB— BA =1

27.

28.

29.

30.

31

32.

33.

Show that the eigenvalues of a square triangular
matrix are the diagonal entries of the matrix.

Let % be an eigenvalue of A. Use mathematical
induction to show that for all » in the set of all
natural numbers N, if A is an eigenvalue of A,
then %" is an eigenvalue of A”. What can be said
about corresponding eigenvectors?

Let C = B~1AB. Show that if v is an eigenvector
of C corresponding to the eigenvalue i, then Bv
is an eigenvector of A corresponding to A.

Let A be an n x n matrix and suppose Vi, ..., Vp,
are eigenvectors of A. If S = span{vy, ..., V,},
show that if v € S, then Av € S.

Let 7: R? — R? be the linear operator that
reflects a vector through the x axis. Find the
eigenvalues and corresponding eigenvectors for T.

Define a linear operator 7: R? — R? by

r[ 3=

Show that the only eigenvalues of T are h = +1.
Find the corresponding eigenvectors.

Define a linear operator 7: R? — R? by

X cosf —sin® x
T = .
y sin® cos o y
That is, the action of 7' is a counterclockwise

rotation of a vector by a nonnegative angle 6.
Argue that if 6 # 0, =, then T has no real
eigenvalues; if 6 = 0, then % = 1 is an eigenvalue;
and if 6 = =, then x = —1 is an eigenvalue.

Let D denote the function space of all real-valued
functions that have two derivatives, and define a
linear operator T on D by

T(f)=f"-2f =-3f
a. Show that for each k, the function f(x) = e&*

is an eigenfunction for the operator T.

b. Find the corresponding eigenvalues for each
eigenfunction f(x) = e*.
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¢. Find two nonzero functions f such that a. Find the matrix representation for 7 relative to

f(x) = 2f'(x) = 3f(x) =0

the basis B.
b. Find the matrix representation for T relative to

35. Define a linear operator 7: P, — P, by the basis B’.

T(ax? 4 bx +¢) = (a — b)x?> + cx c. Show that the eigenvalues for the matrices

found in parts (a) and (b) are the same.

Define two ordered bases for P, by
B={x—1x+1,x%and B = {x +1,1, x%).

5.2

Diagonalization

Many applications of linear algebra involve factoring a matrix and writing it as the
product of other matrices with special properties. For example, in Sec. 1.7, we saw
how the LU factorization of a matrix can be used to develop efficient algorithms for
solving a linear system with multiple input vectors. In this section, we determine if a
matrix A has a factorization of the form

A=PDP!

where P is an invertible matrix and D is a diagonal matrix. The ideas presented here
build on the concept of similarity of matrices, which we discussed in Sec. 4.5. Recall
that if A and B are n x n matrices, then A is similar to B if there exists an invertible
matrix P such that

B=PlAapP
If B is a diagonal matrix, then the matrix A is called diagonalizable. Observe that if
D is a diagonal matrix, then A is diagonalizable if either

D=P'AP or A=PDP!

for some invertible matrix P. One of the immediate benefits of diagonalizing a matrix
A is realized when computing powers of A. This is often necessary when one is solving
systems of differential equations. To see this, suppose that A is diagonalizable with

A=PDP!

Then
A’ =(DpPYHYPDP Y =PDP P DP = pPD?’P!

Continuing in this way (see Exercise 27), we see that
A = pprp~t

for any positive whole number k. Since D is a diagonal matrix, the entries of D* are
simply the diagonal entries of D raised to the k power.

As we shall soon see, diagonalization of a matrix A depends on the number of
linearly independent eigenvectors, and fails when A is deficient in this way. We note
that a connection does not exist between a matrix being diagonalizable and the matrix
having an inverse. A square matrix has an inverse if and only if the matrix has only
nonzero eigenvalues (see Exercise 19 of Sec. 5.1).
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Solution

THEOREM 2

12 0
A=|2 1 0
| 0 0 -3 |
Show that A is diagonalizable with
[ 1 1 0]
P=| -1 10
| 0 0 1]
The inverse matrix is given by
1 1
e
0 0 1
so that
-1 0 O
ptap=| 03 0
0 0 -3

Therefore, the matrix A is diagonalizable.

The diagonal entries of the matrix P~1AP, in Example 1, are the eigenvalues of
the matrix A, and the column vectors of P are the corresponding eigenvectors. For
example, the product of A and the first column vector of P is given by

1 1 2 0 1 1
Al -1 |=|121 0 -1 |=-1] -1
0 0 0 -3 0 0

Similarly, the second and third diagonal entries of P~1A P are the eigenvalues of A
with corresponding eigenvectors the second and third column vectors of P, respec-
tively. With Theorem 2 this idea is extended to n x n matrices.

An n x n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors. Moreover, if D = P~1AP, with D a diagonal matrix, then the diag-
onal entries of D are the eigenvalues of A and the column vectors of P are the
corresponding eigenvectors.

Proof First suppose that A has n linearly independent eigenvectors
V1, Vo, ..., V,, corresponding to the eigenvalues A1, Ao, ..., \,. Note that the
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eigenvalues may not all be distinct. Let

P11 P12 Pin

P21 P22 P2n
Vi, = Vo = : V, = .

Pn1 Pn2 Pnn

and define the n x n matrix P so that the ith column vector is v;. Since the column
vectors of P are linearly independent, by Theorem 9 of Sec. 2.3 the matrix P is
invertible. Next, since the ith column vector of the product AP is

AP; = Av; =\ V;

we have

[ hapu Mp2 ... Mapw

hip21 Nep22 ... ApPa
AP = . . .

')\lpnl )\2pn2 ce )\npnn

[ p1 p12 ... pum » 0 ... 0
P21 P2 ... Do 0 » ... 0

L Pnl Pn2 --- Pnn 0 0 cee g

=PD

where D is a diagonal matrix with diagonal entries the eigenvalues of A. So
AP = PD and multiplying both sides on the left by P~ gives
PlAP=D

The matrix A is similar to a diagonal matrix and is therefore diagonalizable.
Conversely, suppose that A is diagonalizable, that is, a diagonal matrix D and
an invertible matrix P exist such that

D=PtAP
As above, denote the column vectors of the matrix P by vi, Vo, ...,V, and the
diagonal entries of D by \1, Ao, ..., \,. Since AP = PD, foreachi =1,...,n,
we have

AV; =NV,
Hence, v1, Vo, ..., V, are eigenvectors of A. Since P is invertible, then by Theorem
9 of Sec. 2.3 the vectors vi, Vo, ..., Vv, are linearly independent.

m Use Theorem 2 to diagonalize the matrix
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Solution Since A is a triangular matrix, by Proposition 1 of Sec. 5.1, the eigenvalues of the
matrix A are the diagonal entries

M=1 d=-2 and r3=2

The corresponding eigenvectors, which are linearly independent, are given, respec-

tively, by
1 0 0
vi=| 2 vo=| 1 and vz=| 0
1 1 1

Therefore, by Theorem 2, D = P~1A P, where

1 0 0 1 00
D=|0 -2 0 and P=(12 10
0 0 2 1 11
To verify that D = P~*AP, we can avoid finding P~ by showing that
PD = AP
In this case,
1 00 1 0 0 1 0 0]
PD=|2 1 0 0 -2 0|=|2 =20
11 1]l0o 02| [1 -2 2]
1 0 0] 1 00
=6 —2 0 2 1 0
7 -4 2|11 1
= AP
0 1 1 -1 1 0
A=|(1 0 1 and B = 0 -1 1
1 10 0 0 2

Show that A is diagonalizable but that B is not diagonalizable.

Solution To find the eigenvalues of A, we solve the characteristic equation

—X 1 1
det(A — \I) = det 1 -\ 1
1 1 —x

=-(A+12-2)=0

Thus, the eigenvalues of A are Ny = —1, with algebraic multiplicity 2, and x, = 2,
with algebraic multiplicity 1. To find the eigenvectors, we find the null space of
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A —\I for each eigenvalue. For A3 = —1 we reduce the matrix

111 1 11
111 to 0 0O
1 11 0 0O
Hence,
-1 -1
N(A+ 1) =span 1], 0
0 1
In a similar manner we find
1
N(A —2I) = span 1
1
-1 -1 1
Since the three vectors 1|, 0 [, and | 1 | are linearly independent,
0 1 1

by Theorem 2 the matrix A is diagonalizable.
Using the same approach, we find that B has the same characteristic polynomial
and hence the same eigenvalues. However, in this case

1 1
N(B + 1) =span 0 and N(B — 2I) = span 3
0 9

Since B does not have three linearly independent eigenvectors, by Theorem 2, B
is not diagonalizable.

The matrix P that diagonalizes an n x n matrix A is not unique. For example, if
the columns of P are permuted, then the resulting matrix also diagonalizes A. As an
illustration, the matrix A of Example 3 is diagonalized by

-1 -1 1 -1 0 0
P = 1 01 with PlAp = 0 -1 0
0 1 1 0 0 2

However, if Q is the matrix obtained from interchanging columns 2 and 3 of P, then
Q also diagonalizes A, with

-1 0 0
07'AQ = 02 0
00 -1

Notice, in this case, that the second and third diagonal entries are also interchanged.
Theorem 3 gives sufficient conditions for a matrix to be diagonalizable.
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THEOREM 3

Let A be an n x n matrix, and let A1, \o, ..., %, be distinct eigenvalues with
corresponding eigenvectors vy, Vo, ..., V,. Then the set {v1, vo, ..., Vv,} is linearly
independent.

Proof The proof is by contradiction. Assume that A1, A2, ..., %\, are distinct
eigenvalues of A with corresponding eigenvectors vi, Vo, ..., Vv, and assume that

the set of eigenvectors is linearly dependent. Then by Theorem 5 of Sec. 2.3,
at least one of the vectors can be written as a linear combination of the others.
Moreover, the eigenvectors can be reordered so that vi, vo, ..., V,,, with m < n,
are linearly independent, but vy, vo, ..., v,,41 are linearly dependent with v, 11 a
nontrivial linear combination of the first m vectors. Therefore, there are scalars
c1,...,cm, Notall 0, such that

Vil = C1V1 + -+ -+ + Vi

This is the statement that will result in a contradiction. We multiply the last equation
by A to obtain

AVyy1 = Al + -+ cmVim)
=c1A\V1) + -+ cnAVy)

Further, since v; is an eigenvector corresponding to the eigenvalue \;, then Av; =
Vi, and after substitution in the previous equation, we have

Mt 1Vimgl = C1MVL + - 4 CuhnVin
Now multiplying both sides of v, 411 = c1V1 + -+ - + ¢ Vin DY N1, We also have
Mnt1Vimt1 = C1hpaV1 + - - + Cnhn1Vim
By equating the last two expressions for \,,;1V,,+1 We obtain
ciMVL+ - F emhmVim = Cihp+1V1 + - + Con M1V
or equivalently,

Cl()\-l - )\-m+1)vl +-tcm ()\m - >\n1+1)vm =0

Since the vectors vi, Vs, ..., Vv, are linearly independent, the only solution to the
previous equation is the trivial solution, that is,
c1(M — hpy1) =0 c2(h2 — Mug1) =0 . Cm(hm — Nug1) =0
Since all the eigenvalues are distinct, we have
M—=Im1 70 Ay — A1 #0 Mm — hmg1 0

and consequently
c1=0 c;=0 cn=0

This contradicts the assumption that the nonzero vector v,,,1 is a nontrivial linear
combination of vq, vy, ..., V.
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COROLLARY 1 If A isan n x n matrix with »n distinct eigenvalues, then A is diagonalizable.

m Show that every 2 x 2 real symmetric matrix is diagonalizable.

Solution Recall that the matrix A is symmetric if and only if A = A’. Every 2 x 2 symmetric
matrix has the form

a b
=[5 ]
See Example 5 of Sec. 1.3. The eigenvalues are found by solving the characteristic
equation
_ @ = )\. b a2 N . 2
det(A — \I) = b d_)\‘_)\ (@a+d)N+ad —b"=0

By the quadratic formula, the eigenvalues are

x_a+d:t (a — d)? + 4b?

Since the discriminant (« — d)? + 4b% > 0, the characteristic equation has either one
or two real roots. If (a — d)? + 4b% = 0, then (a — d)? = 0 and b2 = 0, which holds
if and only if a=d and b=0. Hence, the matrix A is diagonal. If
(a —d)? 4+ 4b?> > 0, then A has two distinct eigenvalues; so by Corollary 1, the
matrix A is diagonalizable.

By Theorem 2, if A is diagonalizable, then A is similar to a diagonal matrix
whose eigenvalues are the same as the eigenvalues of A. In Theorem 4 we show that
the same can be said about any two similar matrices.

THEOREM 4 Let A and B be similar n x n matrices. Then A and B have the same eigenvalues.

Proof Since A and B are similar matrices, there is an invertible matrix P such
that B = P~1AP. Now
det(B — W) = det(P~1AP — A1)
=det(P"Y(AP — P(\D)))
=det(P"Y(AP — NI P))
=det(P"Y(A — N P)
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Solution

COROLLARY 2

Applying Theorem 15 and Corollary 1 of Sec. 1.6, we have

det(B — \1) = det(P~Y) det(A — WI) det(P)
= det(P 1) det(P) det(A — N 1)
= det(A — N 1)

Since the characteristic polynomials of A and B are the same, their eigenvalues
are equal.

Let

0 3 1 2
Verify that the matrices A and B = P~1A P have the same eigenvalues.

=[13] m e[ty

The characteristic equation for A is
det(A—A)=(1L—-N)B -1 =0
so the eigenvalues of A are A3 =1 and », = 3. Since
s=riar=| 3715 311 20 1)
the characteristic equation for B is
det(B—rl)=(1—-NB—-N=0

and hence, the eigenvalues of B are also Ay = 1 and A\, = 3.

In Sec. 4.5, we saw that a linear operator on a finite dimensional vector space
can have different matrix representations depending on the basis used to construct the
matrix. However, in every case the action of the linear operator on a vector remains
the same. These matrix representations also have the same eigenvalues.

Let V be a finite dimensional vector space, T: V. — V a linear operator, and B;
and B ordered bases for V. Then [T]p, and [T]p, have the same eigenvalues.

Proof Let P be the transition matrix from B; to B;. Then by Theorem 15 of
Sec. 4.5, P is invertible and [T], = P1[T]s, P. Therefore, by Theorem 4, [T]5,
and [T]p, have the same eigenvalues.
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Recall that in Example 3, the characteristic polynomial for A and B is
—(n+1)?>(n —2). For the matrix A the eigenspaces corresponding to Ay = —1
and Ay = 2 are

-1 -1 1
Vi, = span 1|, 0 and Vi, = span 1
0 1 1
whereas the eigenspaces for B are
1 1
Vi, = span 0 and Vi, = span 3
0 9

Notice that for the matrix A, we have dim(V;,) =2 and dim(V;,) = 1, which,
respectively, are equal to the corresponding algebraic multiplicities in the charac-
teristic polynomial. This is not the case for the matrix B, since dim(V;,) =1 and
the corresponding algebraic multiplicity is 2. Moreover, for A, we have dim(Vy,) +
dlm(V)\Z) =3=n.

The general result describing this situation is given, without proof, in Theorem 5.

Let A be an n x n matrix, and suppose that the characteristic polynomial is
c(x —h)%(x —np)% - (x — )%, The matrix A is diagonalizable if and only if
di = dim(V,,), foreachi =1,...,n, and

di+dy+---+dy = dim(VM) + dim(sz) + -+ dim(ka) =n

To summarize Theorem 5, an n x n matrix A is diagonalizable if and only if the
algebraic multiplicity for each eigenvalue is equal to the dimension of the correspond-
ing eigenspace, which is the corresponding geometric multiplicity, and the common
sum of these multiplicities is n.

Diagonalizable Linear Operators

In Theorem 12 of Sec. 4.4, we established that every linear operator on a finite
dimensional vector space has a matrix representation. The particular matrix for the
operator depends on the ordered basis used. From Corollary 2, we know that all
matrix representations for a given linear operator are similar. This allows us to make
the following definition.

Diagonalizable Linear Operator Let V be a finite dimensional vector space
and T: V — V a linear operator. The operator T is called diagonalizable if there
is a basis B for V such that the matrix for T relative to B is a diagonal matrix.
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Now suppose that V is a vector space of dimension n, T: V — V a linear
operator, and B = {v1, Vo, ..., V,} a basis for V consisting of n eigenvectors. Then

[T]z = T(v1) T(va) | -+ | T(Vy)
B B B

Since for each i = 1, ..., n the vector v; is an eigenvector, then T'(v;) = \;Vv;, where
\; is the corresponding eigenvalue. Since for each i, the basis vector v; can be written
uniquely as a linear combination of vy, ..., v,, we have

Vi=0vi+---4+0vi1 +V; +0vip 1 +---+0v,

Then the coordinate vector of T'(v;) relative to B is

0

O -

[T(vi)]s =

z

0
Therefore, [T] is a diagonal matrix. Alternatively, we can say that 7 is diagonalizable
if there is a basis for V consisting of eigenvectors of 7. As an illustration, define the

linear operator T: R> — R? by

(D)-15]

SHEEESH

are eigenvectors of T with corresponding eigenvalues h; = 2 and h, = 1, respectively.
Let B = {v1, V»}, so that

Observe that

(71 = [T la (70i) = | 5 ] |

is a diagonal matrix.

In practice it is not always so easy to determine the eigenvalues and eigenvectors
of T. However, if B is any basis for V such that [T]p is diagonalizable with diagonal-
izing matrix P, then T is diagonalizable. That is, if B’ is the basis consisting of the
column vectors of P, then [T]g = P~[T]z P is a diagonal matrix. This procedure
is illustrated in Example 6.
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m Define the linear operator 7: R® — RS by

X1 3x1 — X2 + 2x3
T X2 = 2x1 + 2x3
X3 x1 + 3x2

Show that T is diagonalizable.

Solution Let B = {e1, &, e3} be the standard basis for R3. Then the matrix for 7' relative to

B is
3 -1 2
[Tlg=| 2 0 2
1 3 0
Observe that the eigenvalues of [T]p are A1 = —2, A» = 4, and A3 = 1 with cor-
responding eigenvectors, respectively,
1 1 -5
Vi, = 1 Vo = 1 and V3 = 4
-2 1 7
Now let B’ = {v1, Vo, v3} and
1 1 -5
P = 11 4
-2 1 7
Then
1—14—3 3 -1 2 1 1 -5 -2 0 O
[T]B/z§ 5 1 3 2 0 2 11 4(=| 0 40
-1 1 0 1 30 -2 1 7 0 0 1

Fact Summary

Let A be an n x n matrix.

1. If A is diagonalizable, then A = PD P! or equivalently D = P~1AP. The
matrix D is a diagonal matrix with diagonal entries the eigenvalues of A.
The matrix P is invertible whose column vectors are the corresponding
eigenvectors.

2. If A is diagonalizable, then the diagonalizing matrix P is not unique. If the
columns of P are permuted, then the diagonal entries of D are permuted in
the same way.

3. The matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors.

4. If A has n distinct eigenvalues, then A is diagonalizable.
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5. Every 2 x 2 real symmetric matrix is diagonalizable and has real

eigenvalues.

6. Similar matrices have the same eigenvalues.

7. If A is diagonalizable, then the algebraic multiplicity for each eigenvalue is
equal to the dimension of the corresponding eigenspace (the geometric
multiplicity). The common sum of these multiplicities is 7.

8. Let T: V — V be a linear operator on a finite dimensional vector
space V. If V has an ordered basis B consisting of eigenvectors of 7, then

[T1p is a diagonal matrix.

9. Let 7: V. — V be a linear operator and B; and B; ordered bases for V.
Then [T]p, and [T]p, have the same eigenvalues.

Exercise Set 5.2

In Exercises 1-4, show that A is diagonalizable, using
the matrix P.

1 0] -2 0
La=| _3_p:[ 11]
-1 1
2.A=__3 5 |
1
P:_—s 1
1 00
3A=|2 -2 0
0 20
[0 0o 3
P=]0 -1 1
1 12
-1 2 2]
4. A=| 0 20
2 -1 2
(1 -2 -2 ]
P=|0 —4 0
2 1 1

In Exercises 5-18, find the eigenvalues, and if
necessary the corresponding eigenvectors, of A and
determine whether A is diagonalizable.

S

10.

11

12.

[ -1

-2
-2

oON DN

-1
-1
-1

w N O




14. A=

15. A=

16. A=

17. A=

18. A=

In Exercises 19-26, diagonalize the matrix A.

[ 2 0
-1 -1

19. A=

20. A=

21. A=

22. A=

23. A=

24. A=

25. A=

[
e
N O
|

=)

(I
e =
o oo

PORr OO0OO
PR PR PRPOO OFR O

OrORr PORO OFrRO
|

P OOO PPk OO
OO FrO FrPOEKFrOo

-2 1
1 2
0 0

-2
1 -2 1

[E

o
[ERN

o o
oN
=N

|
[« RSN

POO OFr o
R OO OO

OFrRrPORFr OO0OFF
O OB O
OFrr O
= = OO

26.

27.

28.

29.

30.

31

32.

33.

35.
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PO
k=)
=
=

Suppose A is diagonalizable with D = P~1AP.
Show that for any positive integer k,

A* = pptpt

2 1
SR
Factor A in the form A = PDP~!, where D is a
diagonal matrix. Then find AS. See Exercise 27.

3 -1 -2
A=1| 2 0 -2
2 -1 -1
Factor A in the form A = PDP~1, where D is a

diagonal matrix. Then find A, for any positive
integer k. See Exercise 27.

Let

Let

Suppose A is an n x n matrix that is diagonalized
by P. Find a matrix that diagonalizes A’.

Suppose A is an n x n matrix that is diago-
nalizable. Show that if B is a matrix similar to A,
then B is diagonalizable.

Show that if A is invertible and diagonalizable,
then A~1 is diagonalizable. Find a 2 x 2 matrix
that is not a diagonal matrix, is not invertible, but
is diagonalizable.

Suppose A is an n x n matrix and x is an
eigenvalue of multiplicity n. Show that A is
diagonalizable if and only if A =\ 1.

An n x n matrix A is called nilpotent if there is a
positive integer k such that A* = 0. Show that a
nonzero nilpotent matrix is not diagonalizable.

Define a linear operator T: P, — P, by
T(p(x)) = p'(x)

a. Find the matrix A for T relative to the
standard basis {1, x, x2}.
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b. Find the matrix B for T relative to the basis Show that T is not diagonalizable.
{x,x — 1, x2).

i 38. Define a linear operator 7: R® — R3 by
c. Show the eigenvalues of A and B are the same.

. . . : 4dxqy + 2xp + 4x
d. Explain why T is not diagonalizable. *1 1 2 3
P y 9 71| x = | 4x; 4 2xp + 4x3
36. Define a vector space V = span{sinx, cosx} and X3 4dxs

a linear operator T: V. — V by T(f(x)) = f'(x). Show that T is diagonalizable.
Show that T is diagonalizable.
39. Let T be a linear operator on a finite dimensional

- - . 3 3
37. Define a linear operator 7: R* — R*® by vector space, A the matrix for T relative to a

X1 2x1 + 2x2 + 2x3 basis By, and B the matrix for T relative to a
T X2 = | —x1+2x+x3 basis B>. Show that A is diagonalizable if and
X3 X1 — X2 only if B is diagonalizable.

5.3 » Application: Systems of Linear Differential
Equations

In Sec. 3.5 we considered only a single differential equation where the solution
involved a single function. However, in many modeling applications, an equation
that involves the derivatives of only one function is not sufficient. It is more likely
that the rate of change of a variable quantity will be linked to other functions outside
itself. This is the fundamental idea behind the notion of a dynamical system. One of
the most familiar examples of this is the predator-prey model. For example, suppose
we wish to create a model to predict the number of foxes and rabbits in some habitat.
The growth rate of the foxes is dependent on not only the number of foxes but also the
number of rabbits in their territory. Likewise, the growth rate of the rabbit population
in part is dependent on their current number, but is obviously mitigated by the number
of foxes in their midst. The mathematical model required to describe this relationship
is a system of differential equations of the form

yi(@®) = f(t, y1,y2)
o) =gt y1, y2)

In this section we consider systems of linear differential equations. Problems such as
predator-prey problems involve systems of nonlinear differential equations.

Uncoupled Systems
At the beginning of Sec. 3.5 we saw that the differential equation given by
Y =ay

has the solution y(r) = Ce*, where C = y(0). An extension of this to two dimensions
is the system of differential equations

y1 =ay
v, =by
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where a and b are constants and y; and y; are functions of a common variable 7. This
system is called uncoupled since y; and y, depend only on y; and y,, respectively.
The general solution of the system is found by solving each equation separately and
is given by

i) =Cre” and  ya(1) = Coe”

where C; = y1(0) and C, = y2(0).
The previous system of two differential equations can also be written in matrix
form. To do this, define

/ yi a 0 :| |: 1 :|
= A= and =
y [ Y5 ] { 0 b =1 v
Then the uncoupled system above is equivalent to the matrix equation
y' = Ay

The matrix form of the solution is given by

at

v =| 5 ot |y0

where y(0) = { ﬁgg; }

As an illustration, consider the system of differential equations

o o=-n

Y = 2y
In matrix form the system is written as

, .. | -1 0
y =Ay= { o 2 Y

The solution to the system is

et 0

y= |: 0 eZt :| y(O)
that is,
i) =y and () = y2(0)e”

The Phase Plane

In the case of a single differential equation, it is possible to sketch particular solutions
in the plane to see explicitly how y(¢) depends on the independent variable . However,
for a system of two differential equations, the solutions are vectors which depend on
a common parameter ¢, which is usually time. A particular solution can be viewed as
a parameterized curve or trajectory in the plane, called the phase plane. Shown in
Fig. 1 are trajectories for several particular solutions of the system

i =—n
y; = 2y2
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\
)

Figure 1

The vectors shown in Fig. 1 comprise the direction field for the system and
describe the motion along a trajectory for increasing ¢. This sketch is called the phase
portrait for the system. Phase portraits are usually drawn without the direction field.
We have done so here to give a more complete picture of the system and its solutions.

Diagonalization

In the previous example, the matrix A is diagonal, as this is the case for any uncoupled
system of differential equations. We now consider more general systems of the form

y = Ay

for which A is not a diagonal matrix, but is diagonalizable with real distinct eigen-
values. To solve problems of this type, our strategy is to reduce the system y’ = Ay
to one that is uncoupled.

To develop this idea, let A be a 2 x 2 diagonalizable matrix with distinct real
eigenvalues. Consider the system of differential equations given by

y = Ay

Since A is diagonalizable, then by Theorem 2 of Sec. 5.2 there is a diagonal matrix
D and an invertible matrix P such that

D=PAP
The diagonal matrix D is given by
RS
Pl
where A1 and X\, are the eigenvalues of A. The column vectors of P are the corre-
sponding eigenvectors. To uncouple the system y’ = Ay, let

w=Ply
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Differentiating both sides of the last equation gives
W= (Ply) = Pl
= P Ay
= PTH(PDP Yy = (PT'P)(DP )y
=DPly
= Dw

Since D is a diagonal matrix, the original linear system y’ = Ay is transformed into
the uncoupled linear system

W = P'APwW = Dw
The general solution of this new system is given by

eM! 0

W(t) = O e}\zt

w(0)

Now, to find the solution to the original system, we again use the substitution w =
P~y to obtain

C e 0
1 e -1
Py@) = 0 e | P~7y(0)
Hence, the solution to the original system is

eM! 0

y(r>=P{ 0 e ]P‘ly(O)

m Find the general solution to the system of differential equations
B o=-n
o = 3y1+2y
Sketch several trajectories in the phase plane.
Solution The differential equation is given in matrix form by
 _ .ue_| -1 0
y =Ay= { 3 2 |Y

After solving the characteristic equation det(A — A1) = 0, we know that the eigen-
values of A are Ay = —1 and », = 2 with corresponding eigenvectors

o[ 3] mout]

Hence, the matrix P which diagonalizes A (see Theorem 2 of Sec. 5.2) is

B 10 . 1|10
P_[_l 1} with P _[11]
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The related uncoupled system is then given by

w =P lAPw
|10 -1 0 10 w
111 3 2 -1 1
| -10 -
i 0 2

whose general solution is
eft
W(I)Z[ 0 ezt]W(O)

Hence, the solution to the original system is given by

10 - 0 10
y<t>={_1 1][60 ez,Hl 1]y(m

e’ 0
= [ —e g2 o ]y(O)

The general solution can also be written in the form
M=y and  y) = -y + [31(0) + y2(0)] ¥
The phase portrait is shown in Fig. 2. The signs of the eigenvalues and the

direction of the corresponding eigenvectors help to provide qualitative information
about the trajectories in the phase portrait. In particular, notice in Fig. 2 that along

the line spanned by the eigenvector v; = _i the flow is directed toward the
origin. This is so because the sign of A3 = —1 is negative. On the other hand, flow
along the line spanned by v, = 1 | 15 away from the origin, since in this case

A2 = 2 is positive.
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In Example 2 we describe the solution for a system when the eigenvalues have

the same sign.

Find the general solution to the system of differential equations

y1 =y+3y
y, = 2y2

The system of differential equations is given in matrix form by
s [ S
y =Ay= [ o 2 |Y
The eigenvalues of A are Ay = 1 and X\, = 2 with corresponding eigenvectors

a-[3] mo we[l]

The matrix that diagonalizes A is then

1 3 . 1
P_[O 1] with P _{

o -

|
= W
[

The uncoupled system is given by

=[5 ][o 2][o 1]

with general solution
t

=[G 4 |wo

Hence, the solution to the original system is given by

1 4 1 -
=15 3|9 &6 3o

t _3t+32t
=[eo o }y(O)

The general solution can also be written in the form

y1(t) = [y1(0) — 3y2(0)] €' + 3y2(0)e?  and  y(1) = yp(0)e?
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The phase portrait is shown in Fig. 3. For this example, since A and A, are both
positive, the flow is oriented outward along the lines spanned by v; and vs.
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Figure 3

The process described for solving a system of two equations can be extended to
higher dimensions provided that the matrix A of the system is diagonalizable.

m Find the general solution to the system of differential equations

Yy =-n
Yo = 2y1+ 2
y3 = 4y1+y2+2y3

Solution The system of differential equations in matrix form is
-1 0 0
y = Ay = 2 1 0|y
4 1 2

Since A is triangular, the eigenvalues of A are the diagonal entries hy = —1, A, =1,
and A3 = 2 with corresponding eigenvectors

-1 0 0
vi=| 1 vo=| 1 and  vz=|0
1 -1 2

respectively. Since A is a 3 x 3 matrix with three distinct eigenvalues, by Corollary
1 of Sec. 5.2, A is diagonalizable. Now, by Theorem 2 of Sec. 5.2, the diagonalizing
matrix is given by

-1 00 -1 0 0
P = 1 10 with p1l= 1 1 0
1 -1 2 13 3
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The related uncoupled system then becomes

[ -1 0 0 -1 0 0 -1
w = 1 10 2 10 1
1 1
L4 = - 4 1 2 1 -
[ -1 0 0
= 0 1 0 {w
| 0 0 2
with general solution
e’ 0 O
w(t) = 0 ¢ 0 |w()
0 0 &
Hence, the solution to the original system is given by
[-1 0 0 e’ 0 0 -1
y(t) = 1 10 0 & O 1
1 -1 2 0 0 &* 1
[ e’ 0 0
= —e '+ e el 0 |y
—ett — el F 2€2t —e' + eZt eZt

The general solution can also be written in the form

S e}

N = O

N O O

N, O O

y1(t) = y1(0)e™” y2(t) = —y1(0)e™" + [y1(0) + y2(0)]e

ya(t) = —y1(0)e ™" — [y1(0) + y2(0)]e’ + [2y1(0) + y2(0) + y3(0)]e*.

y(0)

and
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Example 4 gives an illustration of how a linear system of differential equations
can be used to model the concentration of salt in two interconnected tanks.

Suppose that two brine storage tanks are connected with two pipes used to exchange
solutions between them. The first pipe allows water from tank 1 to enter tank 2 at
a rate of 5 gal/min. The second pipe reverses the process allowing water to flow
from tank 2 to tank 1, also at a rate of 5 gal/min. Initially, the first tank contains
a well-mixed solution of 8 Ib of salt in 50 gal of water, while the second tank

contains 100 gal of pure water.

a. Find the linear system of differential equations to describe the amount of salt

in each tank at time .

b. Solve the system of equations by reducing it to an uncoupled system.
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Solution

C.

a.

Determine the amount of salt in each tank as ¢ increases to infinity and explain
the result.

Let y1(z) and y,(r) be the amount of salt (in pounds) in each tank after  min.
Thus, y;(z) and y,(¢) are, respectively, the rates of change for the amount of
salt in tank 1 and tank 2. To develop a system of equations, note that for each
tank

Rate of change of salt = rate in — rate out

Since the volume of brine in each tank remains constant, for tank 1, the rate in
is 125 y2(1) while the rate out is 2y1(¢). For tank 2, the rate in is 2y1(t) while
the rate out is 1%0yg(t). The system of differential equations is then given by

{yi(t)=%y2(l)— = y1(t) Wi {yi(t)=—%0yl<r>+%yz(t>

V()= g5 y1(t) — 13 y2(t) V)= & yi(t) — 55 v2(0)

Since the initial amounts of salt in tank 1 and tank 2 are 8 and 0 Ib, respectively,
the initial conditions on the system are y;(0) = 8 and y»(0) = 0.

. The system of equations in matrix form is given by

-1 1 8
y/zl 110 Zf]y with y(0)=[0}
0 ~ 20
The eigenvalues of the matrix are n; = —23—0 and \, = 0 with corresponding

eigenvectors [ _i } and { ; } Thus, the matrix that uncouples the system

2
- —1 1 2 71_ _§
2= [ 1 2 } with IZ— [ % ]

The uncoupled system is then given by

Wl Wl

2 1 1 1
W,_[—s 3][‘10 on—l 1}W
= . 11 i 2
3 3 10 20
3
~3 0
— 20

The solution to the uncoupled system is

_ e_%’ 0
w(t) = 0 1 w(0)
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Hence, the solution to the original system is given by

[ -1 1][e® o
o= 2] 1)
L[ 2e7 %' +1 —e ' +1
2R 42 e W' 42

y(0)

2
3
1
3

1
3
1
3

O

3

3

8| 203" 41
e~ R 42

c. The solution to the system in equation form is given by

yit) = g (Ze’Z%’ + 1) and  yo(r) = g <_2e*z%’ + 2)

To find the amount of salt in each tank as ¢ goes to infinity, we compute the
limits

. 8 _3, 8 8

and
. 8 _3 8 16
fim 2 (278 +2) =30+ =7

These values make sense intuitively as we expect that the 8 Ib of salt should
eventually be thoroughly mixed, and divided proportionally between the two
tanks in a ratio of 1:2.

In Exercises 1-6, find the general solution to the

system of differential equations.

1.

{

Vi
!
Y2

-+ »
—2y;

=—y1+2»

1

y1—3y2
=3y1+ »

yi—y2
—y1+

y1 = —4y1—3y2—3y3
5.0 Y2 = 2y1+3y2+2y3
y3 = 4y1+2y:+ 3y
y1 =-3y1— 4y, — 4y3
6. ¢ y2 = Ty1+1ly, +13y;
y3 = —5y1 — 8y, —10y3

In Exercises 7 and 8, solve the initial-value problem.

7 yi =—-y1  y0=1 0 =-1
Y, =21+
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y1 = 5y1 — 12y, + 20y3

y, =4y1— 9y + 16y3

V3 =2y1— 4y2+ Tys
y1(0) =2 »20)=-1  y3;(0)=0
Suppose that two brine storage tanks are

connected with two pipes used to exchange
solutions between them. The first pipe allows
water from tank 1 to enter tank 2 at a rate of
1 gal/min. The second pipe reverses the process,
allowing water to flow from tank 2 to tank 1, also
at a rate of 1 gal/min. Initially, the first tank
contains a well-mixed solution of 12 Ib of salt in
60 gal of water, while the second tank contains
120 gal of pure water.
a. Find the linear system of differential equations
to describe the amount of salt in each tank at
time 7.

b. Solve the system of equations by reducing it to

an uncoupled system.

c. Determine the amount of salt in each tank as ¢
increases to infinity and explain the result.

On a cold winter night when the outside
temperature is O degrees Fahrenheit (0°F) at
9:00 p.m. the furnace in a two-story home fails.

Suppose the rates of heat flow between the
upstairs, downstairs, and outside are as shown in
the figure. Further suppose the temperature of the
first floor is 70°F and that of the second floor is
60°F when the furnace fails.

<
0.2 0O 0 o1
0.2 0.1

» 4

05
-«
1 2
»

05

a. Use the balance law

Net rate of change = rate in — rate out

to set up an initial-value problem to model the
heat flow.

b. Solve the initial-value problem found in

part (a).

c. Compute how long it takes for each floor to
reach 32°F.

In probability theory a Markov process refers to a type of mathematical model used
to analyze a sequence of random events. A critical factor when computing the proba-
bilities of a succession of events is whether the events are dependent on one another.
For example, each toss of a fair coin is an independent event as the coin has no mem-
ory of a previous toss. A Markov process is useful in describing the tendencies of
conditionally dependent random events, where the likelihood of each event depends

As an illustration, we consider a simple weather model based on the two obser-

1. If today is sunny, then there is a 70 percent chance that tomorrow will be sunny.
2. If today is cloudy, then there is a 50 percent chance that tomorrow will be cloudy.

The conditional probabilities for the weather tomorrow, given the weather for

5.4 » Application: Markov Chains
on what happened previously.
vations that
Table 1
Sunny | Cloudy
Sunny 0.7 0.5
Cloudy | 0.3 0.5 today, are given in Table 1.

The column headings in Table 1 describe today’s weather, and the row headings
the weather for tomorrow. For example, the probability that a sunny day today is
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followed by another sunny day tomorrow is 0.7, and the probability that a sunny day
today is followed by a cloudy day tomorrow is 0.3. Notice that the column sums are
both 1, since, for example, it is certain that a sunny day today is followed by either
a sunny day or a cloudy day tomorrow.

In a Markov process, these observations are applied iteratively, giving us the
ability to entertain questions such as, If today is sunny, what is the probability that it
will be sunny one week from today?

State Vectors and Transition Matrices
To develop the Markov process required to make predictions about the weather using

U1

the observations above, we start with a vector v = [ . } whose components are the
2

probabilities for the current weather conditions. In particular, let v1 be the probability
that today is sunny and v, the probability that today is cloudy. Each day the com-
ponents of v change in accordance with the probabilities, listed in Table 1, giving us
the current state of the weather. In a Markov process, the vector v is called a state
vector, and a sequence of state vectors a Markov chain. Using Table 1, the state

!

v
vector v/ = { U} } for the weather tomorrow has components
2

vy = 0.7v1 + 0.5v7 and vy = 0.3v1 + 0.5v7

That is, the probability v; of a sunny day tomorrow is 0.7 times the probability of a
sunny day today plus 0.5 times the probability of a cloudy day today. Likewise, the
probability v, of a cloudy day tomorrow is 0.3 times the probability of a sunny day
today plus 0.5 times the probability of a cloudy day today. For example, if today is
sunny, then v; = 1 and v, = 0 so that

v; =0.7(1) + 0.5(0) = 0.7 and vy, = 0.3(1) + 0.5(0) = 0.3
which is in agreement with the observations above. Observe that if we let 7' be the

matrix 07 05
r= [ 03 05 ]

then the relationship above between v and v’ can be written using matrix multiplica-

tion as
vi | [ 07 05 V1
v, || 03 05 V2

In a Markov chain, the matrix used to move from one state to the next is called
the transition matrix. If n is the number of possible states, then the transition matrix
T is an n x n matrix where the ij entry is the probability of moving from state j
to state i. In the above example 11, = 0.5 gives the probability that a cloudy day
is followed by one that is sunny. A vector with positive entries whose sum is 1 is
called a probability vector. A matrix whose column vectors are probability vectors
is called a stochastic matrix. The transition matrix 7 given above is an example of
a stochastic matrix.
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Returning to the weather example, to predict the weather 2 days forward, we
apply the transition matrix 7' to the vector v’ so that

vy | | 07 05 V]
vy | ] 03 05 A

[07 0571*[w ] _[o064 060w,
=103 05| | v || 036 040 | v

Thus, for example, if today is sunny, the state vector for the weather 2 days from now

is given by

v/ | [o064 060 [1] [o064

vy | [ 036 0.40 0] | 036
In general, after n days the state vector for the weather is given by

mo [07 051" wn
TV_[O.3 0.5] |:v2]

To answer the question posed earlier about the weather one week after a sunny day,
we compute

07 057°[17] [0625 0625][1] [0625
03 05 0| | 0375 0.375 0| | 0375
That is, if today is sunny, then the probability that it will be sunny one week after

today is 0.625, and the probability it will be cloudy is 0.375.

Diagonalizing the Transition Matrix

As we have just seen, determining future states in a Markov process involves comput-
ing powers of the transition matrix. To facilitate the computations, we use the methods
of Sec. 5.2 to diagonalize the transition matrix. To illustrate, we again consider the

transition matrix
7 5
10 10
3 5
10 10

of the weather example above. Observe that 7' has distinct eigenvalues given by

)\]_ = l and )\,2 =

S

with corresponding eigenvectors

2 -1
— 3 —
vl_[ll and V2—|: 1}
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For reasons that will soon be clear, we scale vy (by the reciprocal of the sum of its
components) so that it becomes a probability vector. Observe that this new vector

[}

is also an eigenvector since it is in the eigenspace V;,. Since the 2 x 2 transition
matrix has two distinct eigenvalues, by Corollary 1 of Sec. 5.2, T is diagonalizable
and, by Theorem 2 of Sec. 5.2, can be written as

lw ool

BRI

By Exercise 27 of Sec. 5.2, the powers of T are given by

lw  oolul
©OlW =
©lUT =
[ E—

" 0
T”:PD"P—lzP{ " ]P‘l
0 (%)

As mentioned above, this gives us an easier way to compute the state vector for
large values of n. Another benefit from this representation is that the matrix D"

approaches
10
00

as n gets large. This suggests that the eigenvector corresponding to A = 1 is useful in
determining the limiting proportion of sunny days to cloudy days far into the future.

Steady-State Vector

Given an initial state vector v, of interest is the long-run behavior of this vector in a
Markov chain, that is, the tendency of the vector T7"v for large n. If for any initial
state vector v there is some vector s such that 7"v approaches s, then s is called a
steady-state vector for the Markov process.

In our weather model we saw that the transition matrix 7' has an eigenvalue » =1
and a corresponding probability eigenvector given by

a-[4]-[02]

olw oolo
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THEOREM 6

Solution

We claim that this vector is a steady-state vector for the weather model. As verification,

0.6

w0, [ 06249999954 2, [ 06250000002
ru= [ 0.3750000046 } and - Tu= [ 0.3750000002 }

which suggests that 7"u approaches V;. That this is in fact the case is stated in
Theorem 6. Before doing so, we note that a regular transition matrix 7 is a transition
matrix such that for some n, all the entries of 7" are positive.

let u be an initial probability vector, say, u = [ ] We then compute

If a Markov chain has a regular stochastic transition matrix 7, then there is a
unique probability vector s with 7s = s. Moreover, s is the steady-state vector for
any initial probability vector.

A group insurance plan allows three different options for participants, plan A, B,
or C. Suppose that the percentages of the total number of participants enrolled in
each plan are 25 percent, 30 percent, and 45 percent, respectively. Also, from past
experience assume that participants change plans as shown in the table.

A B Cc
A | 075 025 0.2
B| 015 045 04
c|01 03 04

a. Find the percent of participants enrolled in each plan after 5 years.
b. Find the steady-state vector for the system.

Let T be the matrix given by
0.75 0.25 0.2
T=| 015 045 0.4
0.1 03 04

a. The number of participants enrolled in each plan after 5 years is approximated
by the vector

0.49776 0.46048 0.45608 0.25 0.47
TS = | 0.28464 0.30432 0.30664 0.30 | = | 0.30
0.21760 0.23520 0.23728 0.45 0.22

so approximately 47 percent will be enrolled in plan A, 30 percent in plan B,
and 22 percent in plan C.

b. The steady-state vector for the system is the probability eigenvector corre-
sponding to the eigenvalue \ = 1, that is,

0.48
s=| 0.30
0.22
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1. Each year it is estimated that 15 percent of the

population in a city moves to the surrounding
suburbs and 8 percent of people living in the
suburbs move to the city. Currently, the total
population of the city and surrounding suburbs is
2 million people with 1.4 million living in the
city.
a. Write the transition matrix for the Markov
chain describing the migration pattern.

b. Compute the expected population after 10
years.
c. Find the steady-state probability vector.

. After opening a new mass transit system, the
transit authority studied the user patterns to try to
determine the number of people who switched
from using an automobile to the system. They
estimated that each year 30 percent of those who
tried the mass transit system decided to go back
to driving and 20 percent switched from driving
to using mass transit. Suppose that the population
remains constant and that initially 35 percent of
the commuters use mass transit.

a. Write the transition matrix for the Markov
chain describing the system.

b. Compute the expected number of commuters
who will be using the mass transit system in 2
years. In 5 years.

c¢. Find the steady-state probability vector.

. A plant blooms with red, pink, or white flowers.
When a variety with red flowers is cross-bred
with another variety, the probabilities of the new
plant having red, pink, or white flowers are given
in the table.

R|P|[W

R |105]|04|01

P |04(04]02

W 010207

Suppose initially there are only plants with pink
flowers which are bred with other varieties with
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the same likelihood. Find the probabilities of each
variety occurring after three generations. After 10
generations.

. A fleet of taxis picks up and delivers commuters

between two nearby cities A and B and the
surrounding suburbs S. The probability of a driver
picking up a passenger in location X and
delivering the passenger to location Y is given in
the table. The taxi company is interested in
knowing on average where the taxis are.

A | B |S
A106]|03|04

010403

$103(03(03

a. If a taxi is in city A, what is the probability it
will be in location § after three fares?

b. Suppose 30 percent of the taxis are in city A,
35 percent are in city B, and 35 percent are in
the suburbs. Calculate the probability of a taxi
being in location A, B, or S after five fares.

c. Find the steady-state probability vector.

. An endemic disease that has reached epidemic

proportions takes the lives of one-quarter of those
who are ill each month while one-half of those
who are healthy become ill. Determine whether
the epidemic will be eradicated. If so, estimate
how long it will take.

. A regional study of smokers revealed that from

one year to the next 55 percent of smokers quit
while 20 percent of nonsmokers either became
new smokers or started smoking again. If 70
percent of the population are smokers, what
fraction will be smoking in 5 years? In 10 years?
In the long run?

. A frog is confined to sitting on one of four lily

pads. The pads are arranged in a square. Label the
corners of the square A, B, C, and D clockwise.
Each time the frog jumps, the probability of
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jumping to an adjacent pad is 1/4, the probability
of jumping to the diagonal pad is 1/6, and the
probability of landing on the same pad is 1/3.

a. Write the transition matrix for the Markov
process.

b. Find the probability state vector after the frog
has made n jumps starting at pad A.

c. Find the steady-state vector.

. Let the transition matrix for a Markov process be
01
=[5 o]

a. Find the eigenvalues of T.

b. Find 7" for n > 1. Use T" to explain why the
Markov process does have a steady-state
vector.

C. Suppose T is the transition matrix describing
the population distribution at any time for a

9.

10.

constant population where residents can move
between two locations. Describe the interaction
in the population.

Show that for all p and ¢ suchthat0 < p <1
and 0 < ¢ < 1, the transition matrix

1-p ¢ ]
T =
[ p l-g
has steady-state probability vector

a4

r

r+q
Suppose the transition matrix 7 for a Markov
process is a 2 x 2 stochastic matrix that is also
symmetric.
a. Find the eigenvalues for the matrix 7.
b. Find the steady-state probability vector for the

Markov process.

Review Exercises for Chapter 5

1. Let

a b
=150
for some real numbers a and b.
a. Show that i is an eigenvector of A.

b. Find the eigenvalues of A.

c¢. Find the eigenvectors corresponding to each
eigenvalue found in part (b).

d. Diagonalize the matrix A, using the
eigenvectors found in part (b). That is, find the
matrix P such that P~1AP is a diagonal
matrix. Specify the diagonal matrix.

. Let
00 2
A=1|0 2 0
0 0 -1

a. Find the eigenvalues of A.
b. From your result in part (a) can you conclude
whether A is diagonalizable? Explain.

c¢. Find the eigenvectors corresponding to each
eigenvalue.

d. Are the eigenvectors found in part (c) linearly
independent? Explain.
e. From your result in part (c) can you conclude
whether A is diagonalizable? Explain.
. If your answer to part (e) is yes, find a matrix
P that diagonalizes A. Specify the diagonal
matrix D such that D = P"1AP.

—

. Repeat Exercise 2 with

1
1
0
10

A=

o - O

0
0
0
0

O R -

. Let T be a linear operator on a finite dimensional

vector space with a matrix representation

1 00
A= 6 3 2
-3 -1 0

a. Find the characteristic polynomial for A.
b. Find the eigenvalues of A.
c¢. Find the dimension of each eigenspace of A.



d. Using part (c), explain why the operator T is
diagonalizable.

e. Find a matrix P and diagonal matrix D such
that D = P~1AP.

f. Find two other matrices P; and P, and
corresponding diagonal matrices D; and D-
such that Dy = P{ APy and D, = P, AP,

. Let

010

0 01

—k 3 0

a. Show the characteristic equation of A is
A —3n+k=0.

b. Sketch the graph of y(») = 23 — 3\ + & for
k<—-2,k=0,and k > 2.

c. Determine the values of k& for which the matrix
A has three distinct real eigenvalues.

A=

. Suppose that B = P~1AP and v is an eigenvector
of B corresponding to the eigenvalue . Show
that Pv is an eigenvector of A corresponding to
the eigenvalue .

. Suppose that A is an n x n matrix such that every
row of A has the same sum .

a. Show that \ is an eigenvalue of A.

b. Does the same result hold if the sum of every
column of A is equal to \?

. Let V be a vector space and 7: V — V a linear

operator. A subspace W of V is invariant under

T if for each vector w in W, the vector T'(w) is

in W.

a. Explain why V and {0} are invariant subspaces
of every linear operator on the vector space.

b. Show that if there is a one-dimensional
subspace of V that is invariant under 7, then T
has a nonzero eigenvector.

c. Let T be a linear operator on R? with matrix
representation relative to the standard basis

given by
0 -1
A= { o ]

10.
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Show that the only invariant subspaces of T
are R? and {0}.

a. Two linear operators S and 7 on a vector
space V are said to commute if S(7T(v)) =
T (S(v)) for every vector vin V. If S and T are
commuting linear operators on V and A is an
eigenvalue of 7, show that V;, is invariant
under S, that is, S(Vy,) € Vi,.

b. Let S and T be commuting linear operators on
an n-dimensional vector space V. Suppose that
T has n distinct eigenvalues. Show that S and
T have a common eigenvector.

c. A pair of linear operators 7 and S on a vector
space V is called simultaneously diagonalizable
if there is an ordered basis B for V such that
[T]g and [S]p are both diagonal. Show that if
S and T are simultaneously diagonalizable
linear operators on an n-dimensional vector
space V, then S and 7 commute.

d. Show directly that the matrices

3 01
A=|10 2 0
1 0 3
and
1 0 -2
B = 0 1 0
-2 0 1

are simultaneously diagonalizable.

The Taylor series expansion (about x = 0) for the
natural exponential function is

x_1 1, 153 _oolk
e = +x+5x +§x +-~-_§ax

If A is an n x n matrix, we can define the matrix
exponential as

1 1
A _ T A2 A3 .
e —I+A+2!A +3!A+

. 1, 1., 1
= lim (T +A+ A2+ A% 4.4 =A™
m—00 21 31 ml
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a. Let D be the diagonal matrix b. Suppose A is diagonalizable and D = P~*AP.
M 0 0 ... 0 Show that e4 = PeP P71,
0 » 0 ... 0 c. Use parts (a) and (b) to compute ¢4 for the
D=, . . . : matrix
o -[2 7]
and find e?.
Chapter 5: Chapter Test
In Exercises 1-40, determine whether the statement is 6. The eigenvectors of
true or false.
A -4 0
1. The matrix o 3 -5
p— [ 11 ]
01 are[g]and{é}
diagonalizes the matrix
] 1 7. The matrix
N 3 -2
A= 0 -2 A={2 _1}
has an eigenvalue Ay =1 and V;, has
2. The matrix i i dimensiog 1 ! M
-1 1 '
4= 0 2| 8. If
is similar to the matrix A —% §
[ — IR 1
D= é _2 2 2
then AA" = 1.
3. The matrix 9. If Aisa 2 x 2 matrix with det(A) < 0, then A
1 0 0 has two real eigenvalues.
A= 0 10 10. If A is a 2 x 2 matrix that has two distinct
-1 -1 1 eigenvalues %1 and Xy, then tr(A) = A1 + \2.
is diagonalizable. 11 If A = { a b } then the eigenvalues of A are
. b a
4. The eigenvalues of
1 0 M=a-+band hp =b —a.
A=|
{ -4 -3 ] 12. For all integers k the matrix A = { i ]{ ] has
are vy = =3 and \p = —1. only one eigenvalue.
5. The characteristic polynomial of 13. If A is a 2 x 2 invertible matrix, then A and A~!
1 -1 1 have the same eigenvalues.
A= 0 0 -1 14. If A is similar to B, then tr(A) = tr(B).
2 -2 -1
. 1 1. .. .
is 33 4 202 4% — 4 15. The matrix A = [ 0 1 ] is diagonalizable.
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a b

IfA:[C d]and

at+c=b+d=>x

then n is an eigenvalue of A.

In Exercises 17-19, let

and

17.
18.
19.

20.

21.

22,

23.

24,

25.

26.

10 0
A=|02 o0
_OO__
[ =1 0 0]
B=| 010
| 00 2]

The matrices A and B have the same eigenvalues.
The matrices A and B are similar.
If
010
P=|0 01
1 00
then B = P~1AP.

If a 2 x 2 matrix has eigenvectors [ _i ] and

{ _; } then it has the form

20— oa—8

B—2a 2—a
The only matrix similar to the identity matrix is
the identity matrix.

If . = 0 is an eigenvalue of A, then the matrix A
is not invertible.

If A is diagonalizable, then A is similar to a
unique diagonal matrix.

If an n x n matrix A has only m distinct
eigenvalues with m < n, then A is not
diagonalizable.

If an n x n matrix A has n distinct eigenvalues,
then A is diagonalizable.

If an n x n matrix A has a set of eigenvectors that
is a basis for R”, then A is diagonalizable.

27.

28.

29.

30.
31

32.

33.

35.

36.

37.

38.

39.

40.
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If an n x n matrix A is diagonalizable, then A has
n linearly independent eigenvectors.

If A and B are n x n matrices, then AB and BA
have the same eigenvalues.

If D is a diagonal matrix and A = PDP~1, then
A is diagonalizable.

If A is invertible, then A is diagonalizable.

If A and B are n x n invertible matrices, then
AB~! and B~1A have the same eigenvalues.

A 3 x 3 matrix of the form

a 1 0
0 a 1
0 0 b

always has fewer than three distinct eigenvalues.

If A and B are n x n diagonalizable matrices with
the same diagonalizing matrix, then AB = BA.

If )\ is an eigenvalue of the n x n matrix A, then
the set of all eigenvectors corresponding to x is a
subspace of R”".

If each column sum of an n x n matrix A is a
constant ¢, then ¢ is an eigenvalue of A.

If A and B are similar, then they have the same
characteristic equation.

If '\ is an eigenvalue of A, then A2 is an
eigenvalue of A2

If Ais a2 x 2 matrix with characteristic
polynomial A? 4+ X — 6, then the eigenvalues of
AZare vy =4 and ap, = 0.

Define a linear operator 7: P; — Pi, by
T(a + bx) = a + (a + b)x. Then the matrix
representation for A relative to the standard

basis is
10
A:[l 1}

and so T is not diagonalizable.

If V=gspan{e*,e*}and T: V — V is defined
by T(f(x)) = f'(x), then T is diagonalizable.
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ccording to a growing number of scientists,
Aa contributing factor in the rise in global
temperatures is the emission of greenhouse gases
such as carbon dioxide. The primary source of
carbon dioxide in the atmosphere is from the
burning of fossil fuels. Table 1* gives the global
carbon emissions, in billions of tons, from burn-
ing fossil fuels during the period from 1950
through 2000. A scatterplot of the data, shown
in Fig. 1, exhibits an increasing trend which can
be approximated with a straight line, also shown
in Fig. 1, which best fits the data even though

Table 1
Global Carbon Emissions 1950—2000
1950 1.63 1980 5.32
1955 2.04 1985 5.43
1960 2.58 1990 6.14
1965 3.14 1995 6.40
1970 4.08 2000 6.64
1975 4.62

*Worldwatch Institute, Vital Signs 2006—2007. The trends that are shaping our future, W. W. Norton and
Company, New York London, 2006.
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there is no one line that passes through all the points. To find this line, let (x;, y;), for
i =1,2,...,11, denote the data points where x; is the year, starting with x; = 1950,
and y; is the amount of greenhouse gas being released into the atmosphere. The linear
equation y = mx + b will best fit these data if we can find values for m and b such
that the sum of the sgquare errors

1
S i — (nxi + b)) = [1.63 — (1950m — b)]? + - - - + [6.64 — (2000m — b)]?
i=1

is minimized. One method for finding the numbers m and b uses results from multi-

variable calculus. An alternative approach, using linear algebra, is derived from the

ideas developed in this chapter. To use this approach, we attempt to look for numbers

m and b such that the linear system

m(1950) +b =163
m(1955) +b =2.04

m(2000) +b =6.64
is satisfied. In matrix form, this system is given by Ax = b, where

1950 1 [ 1.63
1955 1 2.04
1960 1 2.58
1965 1 3.14
1970 1 4.08
A= | 1975 1 x:{’Z} and b= | 4.62
1980 1 5.32
1985 1 5.43
1990 1 6.14
1995 1 6.40
| 2000 1 | | 6.64 |

Now, since there is no one line going through each of the data points, an exact solution
to the previous linear system does not exist! However, as we will see, the best-fit line
comes from finding a vector x so that Ax is as close as possible to b. In this case,
the equation of the best-fit line, shown in Fig. 1, is given by

y = 0.107x — 207.462

In the last several chapters we have focused our attention on algebraic properties
of abstract vector spaces derived from our knowledge of Euclidean space. For example,
the observations made in Sec. 2.1 regarding the behavior of vectors in R" provided
us with a model for the axiomatic development of general vector spaces given in
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Sec. 3.1. In this chapter we follow a similar approach as we describe the additional
structures required to generalize the geometric notions of length, distance, and angle
from R? and R® to abstract vector spaces. These geometric ideas are developed from
a generalization of the dot product of two vectors in R", called the inner product,
which we define in Sec. 6.2. We begin with a description of the properties of the dot
product on R" and its relation to the geometry in Euclidean space.

The Dot Product on R"

In Definition 2 of Sec. 1.3, we defined the dot product of two vectors

ug U1

u v2
u= and V=

Uy Un

in R" as
U-vV=uivy +uvy+---4+u,v,

To forge a connection between the dot product and the geometry of Euclidean space,
recall that in R® the distance from a point (x1, x2, x3) to the origin is given by

d=\/x}+x3 +x2

Now let

be a vector in R® in standard position. Using the distance formula, the length (or
norm) of v, which we denote by || v ||, is defined as the distance from the terminal
point of v to the origin and is given by

[Vl :\/vf+v§+v§

Observe that the quantity under the square root symbol can be written as the dot
product of v with itself. So the length of v can be written equivalently as

Ivi=+vv-v

Generalizing this idea to R”, we have the following definition.

Length of a Vector in R” The length (or norm) of a vector

U1
v2
V =

Un
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in R", denoted by || v ||, is defined as

IVl = /o2 + 03 4 o+ 02

=JVv-v
£ Y 1
As an illustration, let v = 2 |.Then
u-—v
-1
u v
IVIl=VWv=v12+22+(-1)? = V6
In Sec. 2.1, it was shown that the difference u — v, of two vectors u and v in
standard position, is a vector from the terminal point of v to the terminal point of u,
as shown in Fig. 2. This provides the rationale for the following definition.
Figure 2

DEFINITION 2 Distance Between Vectors in R" Let

ug U1
u V2

u= . and V=
Uy Uy

be vectors in R". The distance between u and v is defined by

fu=vi=vUu-=v)-u-=v)

Since the orientation of a vector does not affect its length, the distance from u to
v is equal to the distance from v to u, so that

fu—vi=lv—ul

m Show that if v is a vector in R" and c is a real number, then

fevil=1c|llVI
Solution Let
v1
v2
Vi= )

Un
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Then

levil = V(ew) - (ev) = V/(cv)? + (cv)? + - - - + (cva)?
= \/czv%—kczv%—}—n-—i—czv,%: 23 4+ v2 4 +v2)

=4d¢@44§+.~+v3=|c|nvn

The result of Example 1 provides verification of the remarks following Definition
2 of Sec. 2.1 on the effect of multiplying a vector v by a real number c. Indeed,
as a consequence of Example 1, if |c| > 1, then c¢v is a stretching or dilation of
v; and is a shrinking or contraction of v if |¢| < 1. If, in addition, ¢ < 0, then the
direction of cv is reversed. As an illustration, let v be a vector in R" with || v | = 10.
Then 2v has length 20. The vector —3v has length 30 and points in the opposite
direction of v.
If the length of a vector in R”" is 1, then v is called a unit vector.

Let v be a nonzero vector in R". Then
1

v
vl

UV —_—
is a unit vector in the direction of v.

Proof Using Definition 1 and the result of Example 1, we have
1 vl

—’ vl =7+—"7=

vl vl

Since 1/ ||v]| > 0, then the vector u, has the same direction as v.

o
—v
vl

Let
1

V= 2
—2
Find the unit vector uy in the direction of v.

Observe that || v || = /12 + 22 4 (—2)2 = 3. Then by Proposition 1, we have
1 1

W=-v==| 2
|
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THEOREM 1

Theorem 1 gives useful properties of the dot product. The proofs are straightfor-
ward and are left to the reader.

Let u, v, and w be vectors in R"” and ¢ a scalar.

1. u-u=>0

2. u-u=0ifandonlyifu=0

3. u-v=v-u

4. u-(v+w)=u-v+u-wand (U+V) - W=U-W+V-W
5 (cu):v=rc(u-v)

m Let u and v be vectors in R"”. Use Theorem 1 to expand (u + V) - (U + V).

Solution

THEOREM 2

By repeated use of part 4, we have
U+V)-U+V)=U+V)-U+ U+V)-V
=u-u+Vv-u4+u-v+v-v
Now, by part 3, v-u =u-v, so that
uU+Vv)-(U+V)=U-U+2U-V+V-V

or equivalently,
U+V)-Uu+Vv)=[ul®+ 2u-v +|v|?

The next result, know as the Cauchy-Schwartzineguality, is fundamental in devel-
oping a geometry on R". In particular, this inequality makes it possible to define the
angle between vectors.

Cauchy-Schwartz Inequality If u and v are in vectors in R", then

lu-vi < [lulf{fvl

Proof If u=0, then u-v=0. We also know, in this case, that |u]|||V] =
O|lv|l = 0 so that equality holds. Now suppose that u # 0 and & is a real number.
Consider the dot product of the vector ku + v with itself. By Theorem 1, part 1,
we have

(ku+v)-(ku+v)=>0
Now, by Theorem 1, part 4, the left-hand side can be expanded to obtain

kK>(u-u) 4+ 2ku-v) +v-v=>0

Observe that the expression on the left-hand side is quadratic in the variable
with real coefficients. Letting a =u-u, b=u-v, and ¢ = Vv-v, we rewrite this
inequality as

ak? + 2bk +c¢ >0



[lu—vil

vl

re

lhull

Figure 3

XV
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This inequality imposes conditions on the coefficients a, b, and c¢. Specifically,
the equation ak® + 2bk + ¢ = 0 must have at most one real zero. Thus, by the
quadratic formula, the discriminant (2b)? — 4ac < 0, or equivalently,

U-v)® < (U-u)(V-V)
After taking the square root of both sides, we obtain
lu-ul < [IvIvl

as desired.

The Angle between Two Vectors

With the Cauchy-Schwartz inequality in hand, we are now in a position to define the
angle between two vectors. To motivate this idea, let u and v be nonzero vectors in
R? with u — v the vector connecting the terminal point of v to the terminal point of
u, as shown in Fig. 3. As these three vectors form a triangle in R?, we apply the law
of cosines to obtain

2 2 2
fu—=vi®=1lull®+IvI®=2lulllv]cosé

Using Theorem 1, we rewrite this equation as

Uu-u—22u-v+v-v=u-u+v-v—2Jul|lv] cosd
After simplifying and solving for cos 6, we obtain
o u-v
ulflfvi
Our aim now is to extend this result and use it as the definition of the cosine
of the angle between vectors in n-dimensional Euclidean space. To do so, we need
|cosO| < 1 for every angle 9, that is,
u-v
< <
Tull vl

for all vectors u and v in R”. But this fact follows immediately from the Cauchy-
Schwartz inequality. Indeed, dividing both sides of

lu-vi < [luff{fv

by lfulll|v]l, we obtain

[u-v|
fuflfivi —
so that
u-v

< — <
Tull vl
This permits us to make the following definition.
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DEFINITION 3  Angle Between Vectors in R" If u and v are vectors in R", then the cosine
of the angle 6 between the vectors is defined by

u-v
COSH = ———
Tuff vl
m Find the angle between the two vectors
2 -1
u=| -2 and V= 2
3 2

Solution The lengths of the vectors are

lul=vV2Z+ (22 +#=v1T and [vl=V(D2+22+2=3
and the dot product of the vectors is
u-v=2(-1)+(-22+3(2 =0
By Definition 3, the cosine of the angle between u and v is given by
u-v
" lullivi

Hence, 6 = /2 and the vectors are perpendicular. Such vectors are also called
orthogonal.

DEFINITION 4  Orthogonal Vectors The vectors u and v are called orthogonal if the angle
between them is m/2.

As a direct consequence of Definition 3, we see that if u and v are nonzero vectors
in R" with u-v =0, then cos6 = 0, so that 6 = 1t/2. On the other hand, if u and v
are orthogonal, then cos6 = 0, so that
u-v.
lull v
The zero vector is orthogonal to every vector in R" since 0-v = 0, for every vector v.
These results are given in Proposition 2.

0 therefore u-v=20
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PROPOSITION 2  Two nonzero vectors u and v in R”" are orthogonal if and only if u-v =0. The
zero vector is orthogonal to every vector in R”.

One consequence of Proposition 2 is that if u and v are orthogonal, then

lu+viZ=u+v)-U+v)=[lul?+2u-v+]|v]|?
= lulZ+1v]|?

This is a generalization of the Pythagorean theorem to R”".
Theorem 3 gives several useful properties of the norm in R”.

THEOREM 3 Properties of the Norm in R" Let v be a vector in R” and ¢ a scalar.

L vil=0
2. |lvll=0ifand only if v=20
3. levil = lelllv]

4. (Triangle inequality) Ju+ v < Jull+ V]

Proof Parts 1 and 2 follow immediately from Definition 1 and Theorem 1. Part 3
is established in Example 1. To establish part 4, we have

lu+v)?>=@Uu+Vv)-U+Vv)
=(U-U)+2(U-v) + (V-V)
=[lul®+2u-v)+ [ v|?
< ul®+2u-vi+[v|?

Ly Now, by the Cauchy-Schwartz inequality, |[u-v| < |[u]l |l V]|, so that
,,JWiY%V” lu+vIZ<lul>+20ullivii+ v
" = (lul +1IvI)?
v lully R After taking square roots of both sides of this equation, we obtain
x lu+vil < lull+ v
Figure 4 Geometrically, part 4 of Theorem 3 confirms our intuition that the shortest distance

between two points is a straight line, as seen in Fig. 4.
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PROPOSITION 3

Let u and v be vectors in R". Then [[u+ V]| = [u| + | Vv] if and only if the
vectors have the same direction.

Proof First suppose that the vectors have the same direction. Then the angle
between the vectors is 0, so that cos6 =1 and u-v = ||u] || v|. Therefore,

Ju+VI?=@U+v)-u+v)
=[lul®+2u-v)+ v
=lulP+2fulllvi+IvI?
=(lull +lvIH?
Taking square roots of both sides of the previous equation gives [[u+ V| =
full -+ vi.
Conversely, suppose that J[u+ V| = |ull + || v|. After squaring both sides,
we obtain
fu+vIZ=ul®+20ulllivi+Iv]?
However, we also have
[u+v[Z=@U+V)-U4+V)=[ull>+2u-v+|v]|?
Equating both expressions for || u + v || gives
Tul®+20ull v+ vz = lull® 4+ 2u-v+ v
Simplifying the last equation, we obtain u-v = |u|| || v | and hence
u-v.
[Tuff vl
Therefore, cos® = 1, so that 6 = 0 and the vectors have the same direction.

Fact Summary

All vectors are in R".

1. The length of a vector and the distance between two vectors are natural
extensions of the same geometric notions in R? and R3.

2. The dot product of a vector with itself gives the square of its length and is
0 only when the vector is the zero vector. The dot product of two vectors is
commutative and distributes through vector addition.

3. By using the Cauchy-Schwartz inequality [u-v| < ||u| || V], the angle
between vectors is defined by
u-v

lulllivll

4. Two vectors are orthogonal if and only if the dot product of the vectors is 0.

cosO =
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5. The norm of a vector is nonnegative, is 0 only when the vector is the zero

vector, and satisfies

leull =l llull

and fTu+vil<lull+ vl

Equality holds in the last inequality only when the vectors are in the same

direction.

6. If u and v are orthogonal vectors, then the Pythagorean theorem

holds.
Exercise Set 6.1
In Exercises 1-4, let
[0 1
u= 1|1 v=| -1
| 3 2
1
W= 1
| -3
Compute the quantity.
1. u-v
o UV
V-V
3. u-(V+2w)
g LW
W -Ww

Find |Ju].
Find the distance between u and v.

Find a unit vector in the direction of u.

© N o O

Find the cosine of the angle between the two
vectors. Are the vectors orthogonal? Explain.

9. Find a vector in the direction of v with length 10.

2 2 2
Tu+viI®=1lull®+lvl

10.

Find a vector w that is orthogonal to both u and v.

In Exercises 11-16, let

11.

12.
13.

14.

15.

16.

18.

-3 -1
u=| -2 v=| -1
3 -3
Find JJu].
Find the distance between u and v.

Find a unit vector in the direction of u.

Find the cosine of the angle between the two
vectors. Are the vectors orthogonal? Explain.

Find a vector in the opposite direction of v with
length 3.

Find a vector w that is orthogonal to both u and v.

c

Find a scalar ¢, so that { 3

2

} is orthogonal to

-1
Find a scalar ¢, so that ¢ | is orthogonal to
2
0
2
-1



332

Chapter 6 Inner Product Spaces

In Exercises 19-22, let

19.
20.

21.

22.

1 6
Vi = 2 Vo= | =2
| -1 ] | 2
[ 1] [ —1/V/3
V3 = -2 Vg = 1/«/§
L 1] L 1/V3
.
Vg = -1
1

Determine which of the vectors are orthogonal.

Determine which of the vectors are in the same
direction.

Determine which of the vectors are in the
opposite direction.

Determine which of the vectors are unit vectors.

In Exercises 23-28, find the projection of u onto v
given by

u-v
W= —V
V-V

The vector w is called the orthogonal projection of u
onto v. Sketch the three vectors u, v, and w.

23.

24,

25.

26.

27.

u=

c
[l
. r
OOk RPN Wk
<
I

28.

29.

30.

31.

32.

33.

35.

36.

37.

2 0
u= 3 jv=| 2
-1 3

Let S = {uy, up, ..., u,} and suppose v-u; =0

foreachi =1, ..., n. Show that v is orthogonal
to every vector in span(S).

Let v be a fixed vector in R" and define
S ={u|u-v=0}. Show that S is a subspace of
R,

Let S = {v1,Vy,...,V,} be a set of nonzero
vectors which are pairwise orthogonal. That is, if
i # j, thenv; -v; = 0. Show that S is linearly
independent.

Let A be an n x n invertible matrix. Show that if
i # j, then row vector i of A and column vector
j of A=! are orthogonal.

Show that for all vectors u and v in R”,

fu+vZ+]u—v|?
=2[ul>+2]v]|?

a. Find a vector that is orthogonal to every vector
in the plane P: x +2y —z=0.

b. Find a matrix A such that the null space N(A)
is the plane x + 2y —z = 0.

Suppose that the column vectors of an n x n
matrix A are pairwise orthogonal. Find A’ A.

Let A be an n x n matrix and u and v vectors in
R"™. Show that

u-(Av) = (A'u) -v

Let A be an n x n matrix. Show that A is
symmetric if and only if
(Au)-v=u-(Av)

for all u and v in R". Hint: See Exercise 36.
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Inner Product Spaces

In Sec. 6.1 we introduced the concepts of the length of a vector and the angle between
vectors in Euclidean space. Both of these notions are defined in terms of the dot
product and provide a geometry on R”". Notice that the dot product on R" defines a
function from R" x R" into R. That is, the dot product operates on two vectors in
R", producing a real number. To extend these ideas to an abstract vector space V,
we require a function from V x V into R that generalizes the properties of the dot
product given in Theorem 1 of Sec. 6.1.

Inner Product Let V be a vector space over R. An inner product on V is
a function that associates with each pair of vectors u and v in V a real number,
denoted by (u, v), that satisfies the following axioms:

1. (u,u) > 0and (u,u) =0 if and only if u = O (positive definite)

2. (u,Vv) = (v, u) (symmetry)

3. (U4 Vv, W) = (U, w) + (v, w)

4. {cu,V) =c{u,v)
The last two properties make the inner product linear in the first variable. Using
the symmetry axiom, it can also be shown that the inner product is linear in the
second variable, that is,

3. (U, v+w) = (U, V) + (u, w)

4. (u,cv) =c(u,v)
With these additional properties, the inner product is said to be bilinear.

A vector space V with an inner product is called an inner product space.

By Theorem 1 of Sec. 6.1, the dot product is an inner product on Euclidean
n-space. Thus, R" with the dot product is an inner product space.

Let v= [ é ] Find all vectors u in R? such that (u,v) =0, where the inner

product is the dot product.

Ifu:{)yc],then
(u,v) =u-v=x+43y
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Figure 1

Solution

so that (u,v) =0 if and only if y = —%x. Therefore, the set of all vectors such

that (u,v) = 0 is given by S = span { { } ] } The vector v and the set S are
3

shown in Fig. 1. Notice that each vector in S is perpendicular to v.

For another example, consider the vector space of polynomials 7,. To define an

inner product on Ps, let p(x) = ag + aix + axx? and g(x) = bg + b1x + box?. Now
let (-, -): P2 x P, — R be the function defined by

(P, q) = aoby + aiby + axb

Notice that this function is similar to the dot product on R3. The proof that P, is
an inner product space follows along the same lines as the proof of Theorem 1 of
Sec. 6.1.

Another way to define an inner product on P, is to use the definite integral.
Specifically, let p(x) and g(x) be polynomials in P,, and let (-, -) be the function
defined by

1
(P, q) =/0 p(x)g(x)dx

This function is also an inner product on P,. The justification, in this case, is based
on the fundamental properties of the Riemann integral which can be found in any text
on real analysis.

Let V = P, with inner product defined by

1
) = /0 p(D)a )

a. Let p(x) =1—x%and g(x) =1 — x + 2x2 Find (p, g).
b. Let p(x) = 1 — x2. Verify that (p, p) > 0.

a. Using the definition given for the inner product, we have
1
(p.q)= / (1—x)HA —x+2x?dx
0
1
=/ (A — x + 2% F x> =2
0

1 1 1 2
= (x = Exz G §x3 aF Zx4 = gx5>
41

~ 60

1

0
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b. The inner product of p with itself is given by
1
op) = [ A= -x?ds
0
1
= / (1 = 22 F e R
0

2 5 AT
= (x = §x3+ gxs)

8
1—5>0

0

Example 3 gives an illustration of an inner product on R" that is not the dot
product.

7%) v2
be vectors in V. Let k be a fixed positive real number, and define the function
(+, ) R2xR2 > R by

Let V = R? and
uz[ul] and v=[vl]

(U, V) = uqv1 + kuov
Show that V is an inner product space.
First we show that (-, -) is nonnegative. From the definition above, we have
(u,u) = u? + ku
Since k > 0, then u2 + ku3 > 0 for every vector u. In addition,
u?+kus=0 ifandonlyif u;=u,=0
or equivalently if u = 0. The property of symmetry also holds since

(U, V) = ugvy + kupvy = viug + kvoup = (v, U)
Next, let w = { Zl ] be another vector in R2. Then
2

(U+V, W) = (ug + v)wy + k(uz + v2)ws
= (urw1 + kupwz) + (viwy + kvowy)
= (U, W) + (v, w)
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THEOREM 4

Finally, if ¢ is a scalar, then
(cu, V) = (cur)vy + k(cuz)va = c(uivr + kupvz) = c (U, V)

Therefore, R? with this definition for (-, -) is an inner product space.

Notice that in Example 3 the requirement that £ > 0 is necessary. For example,
ifk=—-1landu= [ ; ] then the inner product of u with itself is given by (u, u) =

(1)2 + (—1)(2)?2 = —3, which violates the first axiom of Definition 1.
Again using R" as our model, we now define the length (or norm) of a vector v
in an inner product space V as

VI =+{v,v)
The distance between two vectors u and v in V is then defined by
[u=vil=+v{Uu-v,u-v)

The norm in an inner product space satisfies the same properties as the norm in
R". The results are summarized in Theorem 4.

Properties of the Norm in an Inner Product Space Let u and v be vectors
in an inner product space V and ¢ a scalar.

~Avi=0
. Jlvll=0ifand only if v=0
Alevil=lel v

[{(u,v)| < |lull|lv|l (Cauchy-Schwartz inequality)
JJu+ v < |lull+|v] (Triangle inequality)

OO N wWN PR

Let V = R? with inner product defined by

(U, V) = ugv1 + 3upvy

[ 3] e[i]

a. Verify that the Cauchy-Schwartz inequality is upheld.
b. Verify that the Triangle Inequality is upheld.

Let
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Solution  a. Using the given definition for the inner product, we have
Ku, V) =12)(1) +3(=2)4)| = | — 22| = 22
The norms of u and v are given, respectively, by
lull = v/{u, u) = /(22 +3(-22 = V16 = 4

and

IVl =Vv.v) = V@02 +3@)2 =49 =7

Since
22 = |(u,v)| < [lullflv] =28

the Cauchy-Schwartz inequality is satisfied for the vectors u and v.
b. To verify the triangle inequality, observe that

uive | 21402123
| -2 4172
lu+vi=+v(3)2+3122=+v21

Val=Ju+vl<full+lvi=4+7=11
the triangle inequality holds for u and v.

so that

Since

Orthogonal Sets

Taking the same approach as in Sec. 6.1, we define the cosine of the angle between
the vectors u and v in an inner product space V by

(u, v)
lul vl
As before, the vectors u and v in V are orthogonal provided that (u, v) = 0.

m Let V = P, with inner product defined by

1
(p.q) = /1p(x)q(x) dx

cos6 =

a. Show that the vectors in
S={1x 3Bx2-1}

are mutually orthogonal.
b. Find the length of each vector in S.
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Solution

DEFINITION 2

PROPOSITION 4

a. The inner product of each pair of vectors in S is

! 1
(1, x) =/_lxdx= %xz\_l=o

1.2 [t 13 B
<1,§(3X —1)>—/_l§(3x —1Ddx = E(x —x) _1_0

19" S 1 /3
= — 1)) = = - _ (24 _Z
<x, 2(3x )> /—1 2(3x x)dx > (4x 2x 9

Since each pair of distinct vectors is orthogonal, the vectors in S are mutually
orthogonal.

b. For the lengths of the vectors in S, we have

1
11 = VAL T) = / dx = /2
|

1
||x||=\/<x,x>=m=@

13@x? - Dl = /(232 - 1), §@x2 - D) = /1 [1,3x2 — )2dx = /2

1

1
=0

Orthogonal Set A set of vectors {vi, Vs, ...,V,} in an inner product space is
called orthogonal if the vectors are mutually orthogonal; that is, if i # j, then
(vi,v;) = 0. If in addition, ||v; || = 1, for all i = 1,...n, then the set of vectors

is called orthonormal.

Observe that the vectors of Example 5 form an orthogonal set. They do not, how-
ever, form an orthonormal set. Proposition 4 shows that the zero vector is orthogonal
to every vector in an inner product space.

Let V be an inner product space. Then (v, 0) = 0 for every vector v in V.
Proof Letv be a vectorin V. Then
(v,0) = (v, 0+ 0) = (v, 0) + (v, 0)

After subtracting (v, 0) from both sides of the previous equation, we have (v, 0) =0
as desired.

A useful property of orthogonal sets of nonzero vectors is that they are linearly
independent. For example, the set of coordinate vectors {e, &, e3} in R® is orthogonal
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and linearly independent. Theorem 5 relates the notions of orthogonality and linear
independence in an inner product space.

If § ={vi,Vo,...,V,} is an orthogonal set of nonzero vectors in an inner product
space V, then S is linearly independent.

Proof Since the set S is an orthogonal set of nonzero vectors,
(vi,v;)=0 fori#; and vi,vi)=Vvi|I?£0  foralli
Now suppose that
ciV1+cVo + -+ + ¢V, =0

The vectors are linearly independent if and only if the only solution to the previous
equation is the trivial solution ¢c; = ¢ = --- = ¢, = 0. Now let v; be an element
of S. Take the inner product on both sides of the previous equation with v; so that

<Vj, (cpVi+covo + -+ + Ccj—1Vj-1 + cjVj + Cj+1Vj+1 + -+ C,,Vn)> = <Vj, 0>

By the linearity of the inner product and the fact that S is orthogonal, this equation
reduces to

¢j(vj.v;j) = (v, 0)
Now, by Proposition 4 and the fact that || v; || # 0, we have
Cj||VjH2=0 so that Cj=0

Since this holds foreach j = 1,...,n,thenc; = ¢, = --- = ¢, = 0 and therefore
S is linearly independent.

If V is an inner product space of dimension n, then any orthogonal set of n nonzero
vectors is a basis for V.

The proof of this corollary is a direct result of Theorem 12 of Sec. 3.3. Theorem
6 provides us with an easy way to find the coordinates of a vector relative to
an orthonormal basis. This property underscores the usefulness and desirability of
orthonormal bases.

If B={vy,Vy,...,V,}is an ordered orthonormal basis for an inner product space
V and v = c1v1 + Vo + - -+ + ¢, V,, then the coordinates of v relative to B are
given by ¢; = (v;,v) foreachi =1,2,..., n.

Proof Letv; be a vector in B. Taking the inner product on both sides of

V=ciVi1+cV2+ -+ +¢i—aVi—1 + Vi + Cip1Vig1r + - + iV
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with v; on the right gives
(V, Vi) = ((cavi + coVo + -+ -+ ¢i—aVica + 6V + civaVigr + -+ + V), Vi)
=c1(V1, Vi) + - 6 Vi, Vi) + o0+ (Vs Vi)
Since B is an orthonormal set, this reduces to
(V, Vi) = ¢i (Vi, Vi) = ¢i

As this argument can be carried out for any vector in B, then ¢; = (v, v;) for all
i=12,...,n.

In Theorem 6, if the ordered basis B is orthogonal and v is any vector in V, then
the coordinates relative to B are given by

ci = v, vi) foreachi =1,....n
(Vi, Vi)
so that
(v, vq) (v, V2) (V, V)
= 1 Vot oo+ ———V,
(V1, V1) (V2, V2) (Vs Vi)

Fact Summary

All vectors are in an inner product space.

1. An inner product on a vector space is a function that assigns to each pair of
vectors a real number and generalizes the properties of the dot product on

R,
2. The norm of a vector is defined analogously to the definition in R” by
VI = A{v, V).

3. An orthogonal set of vectors is linearly independent. Thus, any set of n
orthogonal vectors is a basis for an inner product space of dimension n.

4. When an arbitrary vector is written in terms of the vectors in an orthogonal
basis, the coefficients are given explicitly by an expression in terms of the
inner product. If {vq,...,V,} is the orthogonal basis and v is an arbitrary
vector, then

(Va V1> <V7 VZ) V2 <V7 Vi’l)
= l ...
(V1, V1) (V2, Vo) (Vs Vi)
If case B is an orthonormal basis, then

n

V=A(V,V1) V1 + -+ +(V,V,) V,



Exercise Set 6.2

In Exercises 1-10, determine whether V is an inner
product space.

1V =R?
(U, V) = uqv1 — 2uvp — 2upvy + vy
2. V=R?

(U, V) = —urv1 + 2u1vy
3. V=R?
(u,v) = uivf + u%v%
4,V =RS
(U, V) = u1v1 + 2upvy + 3uzvs
5 V=R"
(u,v) =u-v
6. V=M,
(A, B) = tr(B'A)
7.V = Myn
m n
(A, B) = ZZaijbij
i=1 j=1
8. V=7,
n
(p.q) =) pigi
i=0

9. v=cOr-11j

(f.8) =[5 F)gx)e ™ dx
10. V = CO[-1,1]

(f.8) =[5 F)go)x dx
In Exercises 11-14, let V = C©[a, b] with inner
product

b
(f,8) = / fx)gx)dx

Verify that the set of vectors is orthogonal.

11. {1,cosx,sinx};a=—n,b=m7

12. {1,x,36x* =30 };a=-1b=1

13 {l.2x—1,—x*+x—¢}:ia=0b=1

14. {1, cosx,sinx,cos2x,sin2x};a=—7w,b=m

In Exercises 15-18, let V = C@[a, b] with inner
product

15.
16.
17.
18.
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b
(f. &) =/ fx)g(x)dx

a. Find the distance between the vectors f and g.

b. Find the cosine of the angle between the
vectors f and g.

fx)=3x—-2,gx)=x’+1a=0,b=1
f(x) =cosx, g(x) =sinx;a=-n,b=mn
f)=x,gx)=¢3a=0,b=1
f)=¢€" gx)y=era=-1,b=1

In Exercises 19 and 20, let V = P, with inner product

19.
20.

2
(p.a)=>_ pidi
i=0
a. Find the distance between the vectors p and g.

b. Find the cosine of the angle between the
vectors p and g.

px) =x2+x—-2,q(x)=—x?>+x+2
p(x) =x—3,q(x) =2x —6

In Exercises 21-24, let V. = M,,,., with inner product

21.

22.

23.

(A, B) =tr(B'A)
a. Find the distance between the vectors A and B.

b. Find the cosine of the angle between the
vectors A and B.

[ 3)e-13 2]

3 1 0 2
a=[2 e=]? 2]
1 0 —2]

A=] -3 1 1
| -3 -3 2|
[ 3 -1 -1
B=|-3 2 3
-1 2 1]
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24,

25.

26.

27.

28.

29.
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[2 1 27
A=|13 1 0
| 3 2 1]
[0 0 1]
B=1|3 3 2
|1 0 2|
Describe the set of all vectors in R? that are

orthogonal to g }

Describe the set of all vectors in R? that are
1

L _b .

Describe the set of all vectors in R3 that are

orthogonal to

2
orthogonal to | —3
i 1
Describe the set of all vectors in R? that are
M1
orthogonal to | 1
0

For f and g in C(©[0, 1] define the inner product
by
1
o) = [ g ds

Find <x2,x3>.
Find <e",e’x>.
Find |1 and || x |.
Find the angle between f(x) =1 and
g(x) =x.
e. Find the distance between f(x) =1 and

g(x) = x.

Qo0

6.3

In Theorem 6 of Sec. 6.2 we saw that if B = {v1, vy, ...,

30. Let A be a fixed 2 x 2 matrix, and define a

31

32.

33.

Orthonormal Bases

function on R? x R? by
(u,v) = u'Av

a. Verify that if A = I, then the function defines
an inner product.

b. Show that it A= | _5 7|, then the
function defines an inner product.
c. Show that if A = g S , then the function

does not define an inner product.

Define an inner product on C©[—a, a] by

a

fx)gx)dx

—da

(f.g)=

Show that if f is an even function and g is an
odd function, then f and g are orthogonal.

Define an inner product on C©[—x, x] by

(f.8) = Zf(X)g(x)dx
Show
{1, cos x, sin x, cos 2x, sin 2x, .. .}
is an orthogonal set. (See Exercise 31.)

In an inner product space, show that if the set
{ug, Uy} is orthogonal, then for scalars ¢; and c¢;
the set {c1U1, coUy} is also orthogonal.

Show that if (u, v) and ({(u, v)) are two different
inner products on V, then their sum

(U, v))) = (U, v) + ((u, v))

defines another inner product.

v,,} is an ordered orthonormal

basis of an inner product space V, then the coordinates of any vector v in V are
given by an explicit formula using the inner product on the space. In particular, these
coordinates relative to B are given by ¢; = (v, v;) fori =1, 2, ...n. For this reason,
an orthonormal basis for an inner product space is desirable. As we have already seen,
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proj, u
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the set of coordinate vectors S = {e1, &, ..., &,} is an orthonormal basis for R". In
this section we develop a method for constructing an orthonormal basis for any finite
dimensional inner product space.

Orthogonal Projections

Of course, most of the bases we encounter are not orthonormal, or even orthogonal.
We can, however, in a finite dimensional inner product space, transform any basis to an
orthonormal basis. The method, called the Gram-Schmidt process, involves projections
of vectors onto other vectors.

To motivate this topic, let u and v be vectors in R?, as shown in Fig. 1(a).

L N
v w %
(@) (b)
Figure 1

Our aim is to find a vector w that results from an orthogonal projection of u onto v,
as shown in Fig. 1(b). To do this, recall from trigonometry that

w
ezH so that fw]| =ulcos6

Moreover, using the expression for cos 6, established at the beginning of Sec. 6.1, we
have

u-v. u-v
Tulttvie vl
This quantity is called the scalar projection of u onto v. Now, to find w, we take
the product of the scalar projection with a unit vector in the direction of v, so that

(u . v) v u-v
W= | —" ] —=—=V
Ivit/ vk vl
Moreover, since ||V ||> = v - v, the vector w can be written in the form

u-v

w= (V)

V-V
This vector is called the orthogonal projection of u onto v and is denoted by proj, u,
so that

wi=llullcosb=|ul

roj, u = (U-V) %
proj, u = Vv
Another useful vector, shown in Fig. 2, is the vector

u — proj, u
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from u to proj, u. From the manner in which proj, u is defined, the vector u — proj, u
is orthogonal to proj, u, as shown in Fig. 2. To verify algebraically that proj, u and
u — proj, u are orthogonal, we show that the dot product of these two vectors is zero.
That is,

(proj, u) - (u — proj, u)

u-v u-v

(v) - (=)

YR Vv
u-v

u-v
:—(v - —V v)

VeV Vv

u- .
=y V-u—u-v)y=—(@U-v—u-v) =0

u In Fig. 1, the angle 6 shown is an acute angle. If 6 is an obtuse angle, then proj, u
E\e ,  gives the orthogonal projection of u onto the negative of v, as shown in Fig. 3. If
w v 6 =90 then proj,u = 0.

Figure 3

|

1 1
3 ] and V= [ 1 ]
a. Find proj, u.

b. Find u — proj, u, and verify that proj, u is orthogonal to u — proj,, u.
Solution  a From the formula given above, we have
. u-v OO+ \[ 1] 1
= _— =] _— =] 2 =
oo, =S ((1>(1> + <1><1>> 1] [ 1 ] [
b. Using the result of part (a), we have

L o 27 [ -1
~Prok = e R [

i u = proj, u To show that proj, u is orthogonal to u — proj, u, we compute the dot product.
Ik e Here we have

projy u : . 2 -1
1% proj, u- (u — proj, u) = [ 2 ] y [ 1 ] =@QEH+@M =0

XY

See Fig. 4.

Figure 4 Definition 1 provides an extension of this idea to general inner product spaces.
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Orthogonal Projection Let u and v be vectors in an inner product space. The
orthogonal projection of u onto v, denoted by proj, u, is defined by

(u, V)V

(v, V)

The vector u — proj, u is orthogonal to proj, u.

proj, u =

Define an inner product on P3 by

1
(p.q) = /O p(x)g(x)dx

Let p(x) = x and g(x) = x°.
a. Find proj, p.
b. Find p — proj, p and verify that proj, p and p — proj, p are orthogonal.

a. In this case

i 1 1 1
<p,q>=/ Pdr=>  and <q,q>=/ e —
0 4 0 5

Now the projection of p onto ¢ is given by

- (Pa‘” 5 2
roj, p = =-x
PP =™ 3
b. From part (a), we have
. S 5
p—prOJqp:x—Zx

To show that the vectors p and p — proj, p are orthogonal, we show that the
inner product is zero. Here we have

1 1

5, 5, 5, 25, 5, 5 5

z _—— dx = 3= de= [ =x4= =
/0 4X <x 4)6 ) X \/0 (4x 16)6 X 16)C 16)C

We now turn our attention to the construction of an orthonormal basis for an
inner product space. The key to this construction is the projection of one vector onto
another. As a preliminary step, let V = R? and let B = {vy, V,} be a basis, as shown
in Fig. 5. Now, define the vectors wy and w, by

1
=0

0

Wi =V and Wy = Vp — projvlvz
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Recall from Example 1 that w, defined in this way is orthogonal to wy as shown in
Fig. 6. We normalize these vectors by dividing each by its length, so that

B/_{ W1 W2 }
w7 [l wa |l

is an orthonormal basis for R2.

A A

Vo V2
V i \ Vi =W
1 sz \ ! !

» /7 »
projy, V2
B = {v1, Vo} is a basis for R? Wz = V2 — projy, Vz
Figure 5 Figure 6

To construct an orthonormal basis for R”, we first need to extend this idea to
general inner product spaces.

THEOREM 7 Every finite dimensional inner product space has an orthogonal basis.

Proof The proof is by induction on the dimension n of the inner product space.
First if n = 1, then any basis {vi} is orthogonal. Now assume that every inner
product space of dimension n has an orthogonal basis. Let V be an inner product
space with dim(V) = n + 1, and suppose that {v1, V2, ..., V,,, V,41} IS a basis. Let
W = span{vy, V2, ..., V,}. Observe that dim(W) = n. By the inductive hypothe-
sis, W has an orthogonal basis B. Let B = {wy, Wo, ..., w,}. Notice that B’ =
{wg,Wa, ..., W,, V,.1} is another basis for V. By Theorem 5 of Sec. 6.2, it suf-
fices to find a nonzero vector w that is orthogonal to each vector in B. (Here is
where we extend the idea presented just prior to the theorem.) Let

W=Vyq41— projwl Vil — projwzvn+l - = projw,lvn+1
<Vi’l+la Wl) <Vn+1, W2> <Vn+1, Wn)
=Vpt1 — 1— 2— T o Wy
(wq, wy) (wa, Wp) (W, Wy)

Observe that w # O since if w = 0, then B” will be linearly dependent and therefore
not a basis for V. To complete the proof, we must show that w is orthogonal to
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each vector in B. To see this, let w; be a vector in B. Then

(w, w;) = <Vn+1 - projwlvn+l - projwzvn+l . projwnvn+l: Wi>
(Vig1, W1) (Vig1, Wo)
= (V1 Wi) — ol W, W) — — 2w, W)
(W1, Wq) (Wa, Wp)
Vi1, W; Vi1, W,
—_— . — M(Wi’wﬂ_ _M<anwi>
<Wi’ Wi) (anwn)
Now, as each vector in B = {wq, W», ..., W,} is mutually orthogonal, the previous
equation reduces to
(VYH-ls Wi)
W, W) = (Vpy1,W;)) —0-0— -+ — ———(w;,w;) =0— ... =0
( 1> < n+1 l) (Wi,Wi> < i 1>

= <Vn+17 Wi) - <Vn+17 Wi) =0

Therefore B’ = {w1, Wy, ..., W,, w} is an orthogonal set of n 4+ 1 vectors in V.
That B’ is a basis for V is due to Corollary 1 of Sec. 6.2.

From Theorem 7, we also know that every finite dimensional vector space has

an orthonormal basis. That is, if B = {w1, Wy, ..., w,} is an orthogonal basis, then
dividing each vector by its length gives the orthonormal basis
B — { Wi W W, }
Twe 7wz 7777wy |l

Gram-Schmidt Process

Theorem 7 guarantees the existence of an orthogonal basis in a finite dimensional inner
product space. The proof of Theorem 7 also provides a procedure for constructing
an orthogonal basis from any basis of the vector space. The algorithm, called the
Gram-Schmidt process, is summarized here.

1. Let B ={v1,Vs,...,V,} be any basis for the inner product space V.
2. Use B to define a set of n vectors as follows:

W1 = Vi1
Wy = Vp — proj,,. Vo =V Wz, W)
2 =V2 — 2=Vo— ————
e (w1, wy)
W3 = V3 — projy,, V3 — projy,,Vs
(v3, wy) (V3, Wp)
=V3— ——W — —————
(w1, wi) (wz, Wa)
Wy = Vg — Pr0jy, Vs — PrOjy, Vs — - -+ — Projy, ,Vy
(Vi W1) (Vi W2) Ve, W)

= Vpn — 5 — N - n—

1
(wy, wy) (W, Wp) (Wy—1, Wy —1)
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3. The set B’ = {wy, Wy, ..., w,} is an orthogonal basis for V.
4. Dividing each of the vectors in B’ by its length gives an orthonormal basis for

the vector space V
B — { w1 W W, }
Twa 17 Twa |77 [Tw, |l

A Geometric Interpretation of the Gram-Schmidt Process

The orthogonal projection proj,u of the vector u onto the vector v, in R”, is the
projection of u onto the one-dimensional subspace W = span{v}. See Figs. 2 and 3. As
seen above, to construct an orthogonal basis from the basis B = {v1, V2, v3}, the first
step in the Gram-Schmidt process is to let w; = v, and then perform an orthogonal
projection of v, onto span{vi}. As a result, w; is orthogonal to w, = vy — projwlvz.
Our aim in the next step is to find a vector ws that is orthogonal to the two-dimensional
subspace span{wy, w,}. This is accomplished by projecting v separately onto the one-
dimensional subspaces span{w;} and span{w,}, as shown in Fig. 7. The orthogonal
projections are

(v, wy)
(W, wy)
Hence, the orthogonal projection of vz onto span{wy, w-} is the sum of the projections

(V3, W)

PO, Vs = (Wa, Wap)

and Projy, Vs =

Projy, Va + proj,, Vs
also shown in Fig. 7. Finally, the required vector is

W3 = V3 — (projy, V3 4 proj,,Vs) = V3 — proj,, V3 — proj,,,va

which is orthogonal to both w; and wy, as shown in Fig. 7.

In general, when dim(W) =n > 1, then the Gram-Schmidt process describes
projecting the vector v,,; onto n one-dimensional subspaces span{w;},
span{ws}, ..., span{w,}. Then the vector w, ; that is orthogonal to each of the
vectors wi, Wo, ..., W, is obtained by subtracting each projection from the vector v,,.

Projy,Vs

proj,, Vs

spanfwi, Wy}

Projy, Vs Wi \

Figure 7
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m Let B be the basis for R® given by

Solution

1 -1 -1
B ={v1,Vy,V3} = 1, 1, 0
1 0 1

Apply the Gram-Schmidt process to B to find an orthonormal basis for R2.

In this case the inner product on R® is the dot product. Notice that vy -V, = 0,
so that the vectors v and v, are already orthogonal. Applying the Gram-Schmidt

process results in wy = v; and wy = v,. Following the steps outlined above, we
have

1
W1 =V = 1
1
-1
Vo - W 0
Wy = Vo — Wy =V — W =V, = 1
W1 - W1 0

Next note that v, and v3 are also orthogonal, so that in this case only one projection
is required. That is,

V3 - W1 V3 - W2
W3 = V3 — W1 — W2
Wi - Wy W3 - W»

il -1 -1
=| 0|-Owi—3| 1|=|-1
1 0 1
Then L
1 -1 2
B' = {wy, Wp, W3} = 1, 1| -3
1 0 1
is an orthogonal basis for R3. See Fig. 8. An orthonormal basis is then given by
1 -1 -1
" _ { W1 W2 Ws } - 1 1 1 1 1 1
wa [ [ wa || | wa |l V3 1 V2 0 V6 2

V3 — Projy,Vs

W2

Figure 8
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Example 4 illustrates the use of the Gram-Schmidt process on a space of poly-
nomials.

m Define an inner product on P3 by
1
(p.q) =/ px)q(x)dx
=i

Use the standard basis B = {v1, V2, V3, V4} = {1, x, x2, x3} to construct an orthog-
onal basis for Ps.

Solution First note that B is not orthogonal, since

3 ! 4 2
<x,x>:/xdx=—
1 5

We can simplify some of the work by noting that since the interval [—1, 1] is a
symmetric interval,

1
When p is an odd function, then / p(x)dx =0
—il

1 1
When p is an even function, then / px)dx = 2/ p(x)dx
-1 0
Now, since f(x) = x, g(x) = x3, and h(x) = x> are all odd functions,

1 1
(vl,vz)z/ xdx =0 <V2,V3>=/ x3dx =0

-1 -1

1 1
<v4,v1>=/ x3dx =0 (v4,V3)=/ x°dx =0

—il -1
Since vy and v, are orthogonal, proceeding with the Gram-Schmidt process, we
have

W1 =V and Wy = V>

Next, to find w3, the required computation is

B (V3, Wy) (V3, W)
W3 = V3 — W1 —
(W, Wy) (Wa, Wz)
B vz, va) (Vs Vo)
T vvi) (Vo V)
B (V3, V1) (V2, V3)
= V3 — Vi —
(V1, V1) (V2, V2)

But we have already noted above that 0 = (v, v3) and since

(
1 1 2 1
(V3,V1)=/ X dx—Z/ X dx_g and (vl,vl)z/ dx =2
- 0 —1

1
then

" 1
= J7 — =
’ 3
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To find wy, we first note that since (v4, v1) = 0, w; = vy, and wy = Vv», then
(V4, W1) (Va4, Wp) (V4, W3)

Wyq = Vg — Wi — Wy —
(Wi, Wy) (W2, Wa) (W3, W3)

(V4, V2) (V4, W3)
(V2, V2) (W, Wz)

Next, observe that p(x) = x> — $x% is an odd function. Hence,

Consequently,

Vo, Va) 2
An orthogonal basis for P; is therefore given by

B = {l,x,x2 —1 3 %x}
By normalizing each of these vectors, we obtain the orthonormal basis

p= {2 M gy S -3

Let U be the subspace of R* with basis

-1 -1 1

1 0 0

B = {ug, up, ug} = 1| 111 o
0 0 1

where the inner product is the dot product. Find an orthonormal basis for U.
Following the Gram-Schmidt process, we let w; = u;. Next we have

1
| il _g 1
Wo = U DRI 0| 2 I :_1 2
2T T wewy ¢ 1 3| 1 L -1
0 0 0

0

To facilitate the computations, we replace w, with

351
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To justify this substitution, note that wj -wy, = 0; that is, multiplying w, by a
scalar does not change the fact that it is orthogonal to wi. To find w3, we use the
computation

usz - Wqp usz - Wo
W3 = U3 — Wi — W2
Wi - W1 W7 - Wo
1 —1 1 1
_lo| [ } 1 } 2 | } 0
— |10 3 1 6| -1 211
1 0 0 2
As before we replace ws with )
1
0
W3 = 1
| 2
An orthogonal basis for U is then given by
-1 [ 1 1
- 1 2 0
B 10| =1 ("] 1
0 | 0 2
Normalizing each of the vectors of B’ produces the orthonormal basis
[ —1 1 1
o)L 1 L] o210
S| 11| -1 |1
| 0 0 2

Fact Summary
1. Every finite dimensional inner product space has an orthonormal basis.

2. The Gram-Schmidt process is an algorithm to construct an orthonormal
basis from any basis of the vector space.

Exercise Set 6.3 _

In Exercises 1-8, use the standard inner product on -1 -1
R” 1. u= V=
. 2 1
a. Find proj, u.
b. Find the vector u — proj,u and verify this 2. U= [ 3 } V= { 1 }
vector is orthogonal to v. —2 —2



In Exercises 9-12, use the inner product on P,

defined by
1

(p.q) = /0 p(x)g(x)dx

a. Find proj, p.
b. Find the vector p — proj, p and verify that this
vector is orthogonal to g.

9. p)=x>—x+1,qgx)=3x—-1
10. px) =x?>—x+1,gx)=2x -1
11. px) =2x>+1,q(x) =x> -1

12. px) = —4x+1,q(x) =x

In Exercises 13—16, use the standard inner product on
R". Use the basis B and the Gram-Schmidt process to
find an orthonormal basis for R”.

o=l ][ 4])
wn={[ 2] 3]}

{8} (3]
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s Hi88!

In Exercises 17 and 18, use the inner product on P,
defined by

1
(p,q) = /O p(x)g(x)dx

Use the given basis B and the Gram-Schmidt process
to find an orthonormal basis for Ps.

17. B={x —1,x + 2, x%)

18. B={x?—x,x,2x+ 1}

In Exercises 19-22, use the standard inner product on
R" to find an orthonormal basis for the subspace

span(W).

1 g

9. w={|1], ] -1
_1_ __1_
D

20.w={1]1], ] -1
_1_ L 1_

-1 -1 1
-2 3 -2

21. W = ol -1 1 0
1] [ -1 ] [ 1]

17 =127 0]

-2 3 -1

2. W= ol 1 0
0] | -1 -1 ]

In Exercises 23 and 24, use the inner product on P3
defined by

1
(p.q) = /0 p(x)q(x)dx

to find an orthonormal basis for the subspace
span(W).
23. W = {x,2x + 1}

24. W ={1,x+2,x3 -1}
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25.

26.

27.

28.

29.

30.

31

32.

33.

Chapter 6 Inner Product Spaces

In R* with the standard inner product find an
orthonormal basis for

1 0 2 -1
span 0 1 -3 2
117 -1 5|17 -3
1 1 -1 1

In R® with the standard inner product find an
orthonormal basis for

2 3 3 1
span o, 11,] -1 {,(1
1 1 2 0

Let {u, Uy, ..., u,} be an orthonormal basis for

R"™. Show that
IVIZ=Iveug®+ o 4 veu,)?
for every vector v in R".
Let A be an n x n matrix. Show that the
following conditions are equivalent.
a A l=4A
b. The row vectors of A form an orthonormal
basis for R”".

c. The column vectors of A form an orthonormal
basis for R".

Show that an n x n matrix A has orthonormal
column vectors if and only if A’A = 1.

Let A be an m x n matrix, x a vector in R”, and
y a vector in R". Show that x- (Ay) = A’x-y.

Show that if A is an m x n matrix with
orthonormal column vectors, then || AX|| = || X ||.

Show that if A is an m x n matrix with
orthonormal column vectors and x and y are in
R", then (AX) - (Ay) = X-V.

Show that if A is an m x n matrix with
orthonormal column vectors and x and y are in
R", then (AX) - (Ay) =0 if and only if x-y = 0.

. In R* with the standard inner product show that

1

the set of all vectors orthogonal to both | 1

1

35.

2

and _i is a subspace. Find a basis for the
2

subspace.

Let S = {uy, ..., Uu,} be a set of vectors in R".

Show that the set of all vectors orthogonal to
every u; is a subspace of R".

In Exercises 36—41, a (real) n x n matrix A is called
positive semidefinite if A is symmetric and u’Au > 0
for every nonzero vector u in R”. If the inequality is
strict, then A is positive definite.

36.

37.

38.

39.

40.
41.

42.

Let A be a positive definite matrix. Show that the
function (u, v) = u’ Av defines an inner product
on R". (Note that when A = I this function
corresponds to the dot product.)

Let A = :i é } Show that A is positive
definite.
Show that if A is positive definite, then the

diagonal entries are positive.

Let A be an m x n matrix. Show that A’A is
positive semidefinite.

Show that a positive definite matrix is invertible.

Show that the eigenvalues of a positive definite
matrix are positive.

T oae[F] e[

a. Are the vectors v; = { :i ] and

orthogonal?
-2 -1
2 -4
b. Find det(A’A).
c. Show that the area of the rectangle spanned by

:i _i ] is /det(A7A).

d. Show that the area of the rectangle is | det(A)|.

e. If vi and v, are any two orthogonal vectors in
R?, show that the area of the rectangle spanned

2
—4
Let A = [

Vo =

V) = and v, = [
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by the vectors is | det(A)|, where A is the
matrix with row vectors v; and v;.

. Let v¢ and v, be two vectors in R? that span a .y
parallelogram, as shown in the figure. Show
that the area of the parallelogram is | det(A)|, P
where A is the matrix with row vectors v, Ve SN
and vs. p U1

. If vq, vo, and vs are mutually orthogonal

vectors in R3, show that the volume of the box
spanned by the three vectors is |det(A)|, where
A is the matrix with row vectors vy, v, and vs.

XV
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Orthogonal Complements

Throughout this chapter we have seen the importance of orthogonal vectors and bases
in inner product spaces. Recall that two vectors u and v in an inner product space V
are orthogonal if and only if
(u,v) =0

A collection of vectors forms an orthogonal basis if the vectors are a basis and are
pairwise orthogonal. In this section we extend the notion of orthogonality to subspaces
of inner product spaces. As a first step, let v be a vector in an inner product space V
and W a subspace of V. We say that v is orthogonal to W if and only if

(v,w) =0 for each vector we W

As an illustration, let W be the yz plane in the Euclidean space R®. Observe that W
is closed under addition and scalar multiplication, so that by Theorem 3 of Sec. 3.2 it
is a subspace. Using the dot product as the inner product on R2, the coordinate vector

1
ee=1|0
0
is orthogonal to W since
1 0
01|-| y | =0
0 b4

for every y, z € R. Note that any scalar multiple of e; is also orthogonal to W.
Example 1 gives an illustration of how to find vectors orthogonal to a subspace.

Let V = R3, with the dot product as the inner product, and let W be the subspace

defined by
1

W = span -2
3
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Solution
5
z
0
-5
%
- y 0 5
Figure 1

Describe all vectors in R that are orthogonal to W.

Let

Thus, any vector in W has the form cw, for some real number ¢. Consequently, a
vector

in R® is orthogonal to W if and only if v-w = 0. This last equation is equivalent
to the equation

x—2y+3z=0
whose solution set is given by
S={@2s—3t,5,1)| s,t €R}

Therefore, the set of vectors orthogonal to W is given by

2s — 3t 2 -3
S = s s,teRP=<s| 1| +¢ 0 ||s,teR
0 1

Letting s = ¢ = 1 gives the particular vector

-1
V= 1
1
which is orthogonal to W since
—1 1
VW = 11| 2|=EDO+ODE+ME) =0
1 3

If the vectors in S are placed in standard position, then the solution set describes
a plane in R®, as shown in Fig. 1. This is in support of our intuition as the set of
vectors orthogonal to a single vector in R® should all lie in a plane perpendicular
to that vector, which is called the normal vector.

The set of vectors found in Example 1, orthogonal to the subspace W, is called
the orthogonal complement of W. The following definition generalizes this idea to
inner product spaces.
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Solution

THEOREM 8
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Orthogonal Complement Let W be a subspace of an inner product space V.
The orthogonal complement of W, denoted by W+, is the set of all vectors in V
that are orthogonal to W. That is,

Wt={veV|(v,w) =0foralwe W)}

Let V = P3 and define an inner product on V by
1
(nq%=A p(x)g(x)dx
Find W+ if W is the subspace of constant polynomials.

Let f(x) = a + bx + cx? + dx® be an arbitrary polynomial in Pz and p(x) = k be
an arbitrary constant polynomial. Then £ is in W= if and only if

: b d
%phi/km+Mwwﬁ+dﬁMx=ka+,+f+, -0
0 2 3 4
Since this equation must hold for all k£ € R,

wt = {a+bx+cx2+dx3

b g
a = = o
2 3 4

Notice in Examples 1 and 2 that the zero vector is an element of the orthogonal
complement W+ It can also be shown for these examples that W+ is closed under
vector space addition and scalar multiplication. This leads to Theorem 8.

Let W be a subspace of an inner product space V.

1. The orthogonal complement W+ is a subspace of V.
2. The only vector in W and W+ is the zero vector; that is, W N W+ = {0}.

Proof (1) Let u and v be vectors in W+, and w a vector in W, so that
(u,w) =0 and (v,w) =0
Now for any scalar ¢, we have
(U+cv,w) = (U, w) + {cv, w)
= (U, W) + c (v, w)
=040=0

Thus, u + cv is in W+, and therefore by Theorem 4 of Sec. 3.2, W+ is a subspace
of V.
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(2) Let w be any vector in W N W+ Then
(w,w) =0

and hence w = 0 (see Definition 1 of Sec. 6.2). Thus, W N W+ = {0}.

To determine whether a vector v is in the orthogonal complement of a subspace,
it suffices to show that v is orthogonal to each one of the vectors in a basis for the
subspace.

PROPOSITION 5 Let W be a subspace of an inner product space V and B = {wy, ..., W,,} a basis
for W. The vector v is in W+ if and only if v is orthogonal to each vector in B.

Proof First suppose that v is orthogonal to each vector in B. Let w be a vector
in W. Then there are scalars c, ..., ¢, such that

W=c1W1 + -+ + Wy

To show that v is in W+, take the inner product of both sides of the previous
equation with v, so that

(V, W) = c1(V, W1) + 2 (V,W2) + -+ + ¢ (V, W,,)

Since (v,w;) =0forall j =1,2,...,m, we have (v, w) = 0 and hence v e W=.
On the other hand, if v e W+, then v is orthogonal to each vector in W. In
particular, v is orthogonal to w;, forall j =1,2,...,m.

m Let V = R* with the dot product as the inner product, and let

1 0
0 1
W = spani | I
-1 1
a. Find a basis for W.
b. Find a basis for W-.
c. Find an orthonormal basis for R*.
d. Let
1
Vo = v
0
0

Show that v can be written as the sum of a vector from W and a vector
from W+.
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Solution a. Let

1 0
Wy = _2 and Wy = _1
-1 1

Notice that w; and w, are orthogonal and hence by Theorem 5 of Sec. 6.2 are
linearly independent. Thus, {w1, w,} is a basis for W.

b. Now by Proposition 5, the vector

S N =2 =

is in W+ if and only if v-w; =0 and v-w, = 0. This requirement leads to
the linear system
X —z—w=0
y—z+w=0

The two-parameter solution set for this linear system is
g a0
S = S s, teR
\)
t

The solution to this system, in vector form, provides a description of the
orthogonal complement of W and is given by

1 1

W+ = span s

1| 0

0 1

Let

1 1
Vi = 1 and Vo = —
1 0
0 1

Since vy and v, are orthogonal, by Theorem 5 of Sec. 6.2 they are linearly
independent and hence a basis for W+.

c. Let B be the set of vectors B = {wi, Wy, V1, Vo}. Since B is an orthogonal
set of four vectors in R*, then by Corollary 1 of Sec. 6.2, B is a basis for
R*. Dividing each of these vectors by its length, we obtain the (ordered)
orthonormal basis for R* given by
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DEFINITION 2

1 0 1 1
0 1 1 -1

7 _ ) a 1 1 1
B e {b].! b2’b3’b4} N \/é _1 ’ \/5 _1 ’ \/é l ’ ﬁ 0
-1 1 0 1

d. By Theorem 6 of Sec. 6.2 the coordinates of vy relative to B’ are given by
c; =Vg-b;, forl <i <4.So

1 1 1

1 = —F#—= Cy = Cg = —= Cp = ——=

V3 V3 V3
Now, observe that the first two vectors of B’ are an orthonormal basis for W
while the second two vectors are an orthonormal basis for W-. Let w be the
vector in W given by

1
1 0
W = c1b; + coby = § _1
-1
and u be the vector in W+ given by
2
110
U = c3bz + csby = 3|1
1
Then
1 2 1
WA U= o Il [ (L (B
B 31|~ (o™
-1 1 0

The vector w in Example 3 is called the orthogonal projection of v onto the
subspace W, and the vector u is called the component of v orthogonal to W. The
situation, in general, is the content of Definition 2 and Theorem 9.

Direct Sum Let Wy and W, be subspaces of a vector space V. If each vec-
tor in V can be written uniquely as the sum of a vector from W, and a vector
from W,, then V is called the direct sum of W; and W. In this case we write,
V=W & W,.
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Let Wi and W, be subspaces of a vector space V with V = W; @& W,. Then
Wy N W, = {0}

Proof Letve WiN W,. Then
v=w;+0 and v=0+w,

with wi € Wy and w, € W,. Hence, by the uniqueness of direct sum representa-
tions, we have w; = w;, = 0.

Projection Theorem If W is a finite dimensional subspace of an inner product
space V, then
V=wews"

Proof The proof of this theorem has two parts. First we must show that for any
vector v e V there exist vectors w € W and u € W+ such that w+u = v. Then
we must show that this representation is unique.

For the first part, let B = {wy,...,w,} be a basis for W. By Theorem 7 of
Sec. 6.3, we can take B to be an orthonormal basis for W. Now, let v be a vector
in V, and let the vectors w and u be defined by

W = (V, W) W1 + (V, W) Wp + -+ + (V, W,) W, and Uu=v-—Ww

Since w is a linear combination of the vectors in B, then w € W. To show that u is
in W+, we show that (u, w;) = 0 foreachi = 1,2, ..., n and invoke Proposition 5.
To this end, let w; be a vector in B. Then

(U, w;) = (v —w,w;)
= <V7 Wi) - <W’ Wi)

n

= (V,W;) — Z (v, w;) (w;,w;)
=1
Since B is an orthonormal basis, !

(w;,w;) =1 and (wj,w;) =0 fori # j

Hence,

(U, wi) = (v, w;) — (v, w;) (w;, w;) =0
Since this holds for each i =1, ..., n, then by Proposition 5 the vector u e W+
as claimed.

For the second part of the proof, let
v=w+u and v=w +u
with w and w’ in W and u and u’ in W, Subtracting the previous equations gives

WwW—-w)+@u—-u)=0
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THEOREM 10

or equivalently,
wW-—w=u-—u

Now, from this last equation we know that the vector u — u’” is in W, as it is a linear
combination of the vectors w and w’, which are in W. However, u — U’ is also in
W+ since it is the difference of two vectors in W+. Therefore, by Theorem 8, part 2,
u—u =0 and hence u=u'". This being the case, we now have w —w = 0, so
that w' = w. Thus, we have shown that for every v in V, there are unique vectors
w in W and u in W+ such that v=w+u and hence V. =W @ W+.

Motivated by the terminology of Example 3, we call the vector w, of Theorem 9,
the orthogonal projection of v onto W, which we denote by proj,,v, and call u the
component of v orthogonal to W.

Matrices

In Definition 4 of Sec. 3.2 we defined the null space of an m x n matrix A, denoted
by N(A), as the set of all vectors x in R" such that Ax = 0. The column space of
A, denoted by col(A), is the subspace of R™ spanned by the column vectors of A.
In a similar way, the left null space of A, denoted by N(A?"), is the set of vectors
y in R™ such that A’y = 0. Finally, the row space of A, which we discussed in
Sec. 4.2, denoted by row(A), is the subspace of R" spanned by the row vectors of
A. Since the rows of A are the columns of A’, then row(A) = col(A"). These four
subspaces
N(A) N(A") col(A) and col(A")

are referred to as the four fundamental subspaces associated with the matrix A.
Theorem 10 gives relationships among them.

Let A be an m x n matrix.

1. N(A) = col(A")*+
2. N(A") = col(A)*

Proof (1) Letvy,...,V, denote the row vectors of A. So that
V1 - X
AX = VZ.. X
vm.- X

First let x be a vector in N(A) so that Ax =0. Thenv; -x=0fori =1,2,...,m.
Thus, x € row(A)* = col(A")*+ and N(A) C col(A")L. On the other hand, let x
be a vector in col(A")+ =row(A)*. Then x-v; =0, for i =1,...,m, so that
Ax = 0. Therefore, col(A)+ € N(A). Hence, N(A) = col(A)" .

For part 2, substitute A’ for A in part 1.
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Linear Systems

Let A be an m x n matrix. In light of Theorem 10, we are now in a position to
provide an analysis of the linear system Ax = b in terms of the geometric structure
of Euclidean space and the fundamental subspaces of A. As a first step, we describe
the action of A on a vector x in R". Since row(A) = col(A"), by Theorem 10, N(A)
is the orthogonal complement of row(A). Thus, by Theorem 9, a vector x in R" can
be uniquely written as
X = Xrow + Xnull

where X IS in the row space of A and Xny is in the null space of A. Now, multiplying
x by A, we have

AX = A(Xrow + Xnuil) = AXrow + AXnull
Since AXpu1 = 0, the mapping 7: R" — R™ defined by T (x) = AX maps the row
space of A to the column space of A. Observe that no vector in R" is mapped to a
nonzero vector in N(A"), which by Theorem 10 is the orthogonal complement of the
column space of A. See Fig. 2.

Xrow.\\ A col(A)
- \ -
dimr S = dimr
row(A) > ,7
/
. Xnull ' .
dimn—r [+ | A NAY T dimm—r
N(A)
R R™
Figure 2

We now consider, again from a geometric point of view, the consistency of the
linear system Ax = b for an m x n matrix A and a given vector b in R”. We have
already observed in Sec. 3.2 that Ax = b is consistent if and only if b is in the column
space of A. By Theorem 10, this system is consistent if and only if b is perpendicular
to the left null space of A, or equivalently, if and only if b is orthogonal to every
vector in R™, which is orthogonal to the column vectors of A. This sounds a bit
awkward. However, in cases where a basis for the null space of A’ consists of only
a few vectors, we can perform an easy check to see if Ax = b is consistent. As an
illustration, let

1 0 0 2
A= 0 1 1 and b= 1
-1 -1 -1 -3
Since
1 0 -1 1
Al=]10 1 -1 then N(A") = span 1
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1
Now as b is orthogonal to | 1 |, by Proposition 5, b is orthogonal to N(A") and
1

hence in col(A). Therefore, the linear system Ax = b is consistent.

Fact Summary

Let W be a subspace of an inner product space V.

1. The orthogonal complement of the span of a single nonzero vector v in
3-space is the plane with normal vector v.

2. The orthogonal complement of W is a subspace of V.

3. The only vector common to both W and its orthogonal complement is the
zero vector.

4. If W is finite dimensional, then the vector space is the direct sum of W and
its orthogonal complement. That is, V. = W @ W+.

5. If B is a basis for W, then v is in W+ if and only if v is orthogonal to each
vector in B.

6. If A is an m x n matrix, then N(A) = col(A")+ and N(A?) = col(A)*.

Exercise Set 6.4 ——

In Exercises 1-8, find the orthogonal complement of [ 3 0
W in R" with the standard inner product. 1 2
7. W = span 1111
1.W=span{[ 2}} | -1 2
2.W=span{[1]} 1 1 0
0 8. W — span 1 0 1
- 2 . - $ O £ 1 9 1
3. W =gpan { 1 ] |1 1 1
- -1 In Exercises 9-12, find a basis for the orthogonal
1 complement of W in R" with the standard inner
4. W = span 0 product.
2 -
- I - 2 -1
2 1
9. = 1 1
5. W = span 1].]12 " span{ 1][ O]}
| -1 ] [ 0] -
r-37 [0 1 -2
6. W = span 11,11 10. W = span -1 1, 2
-1 1 |1 -2




3 1
11. W = span _1 , 411
L 2 O_
! 2 0
12. W = span i , _(1) , g
1 1] |1

In Exercises 13 and 14, find a basis for the orthogonal
complement of W in P, with the inner product

1
(p.q) = /0 px)g(x)dx
13. W = span{x — 1, x?}
14. W = span{1, x?}

15. Let W be the subspace of R*, with the standard
inner product, consisting of all vectors w such that
w1 + wo + w3 + wa = 0. Find a basis for W+.

In Exercises 16—-21, W is a subspace of R" with the
standard inner product. If v is in R" and {w, ..., w,,}
is an orthogonal basis for W, then the orthogonal
projection of v onto W is given by

m

- <Vs Wi)
projyv=">" oy
i=1 L i

Find the orthogonal projection of v onto W. If
necessary, first find an orthogonal basis for W.

= { 3][1]
3
oo}
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[ 1 1 3
|1 0 -1
0]
v— 0
1
0_
[ 3 —6
0 0
21. W = span 1 | 5
| 2 4
1
v— 2
- 1
-1

In Exercises 22-25, W is a subspace of R" with the
standard inner product.

a. Find W+,

b. Find the orthogonal projection of v onto W.
(See Exercises 16-21.)

c. Compute u = v — projy, V.

d. Show u is in W+ so v is a sum of a vector in
W and one in W+,

e. Make a sketch of W, W+, v, proj,,v, and u.



366

23.

24,

25.

26.

27.

28.
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|
SHIE

Show that if V is an inner product space, then
v+ ={0} and {O}* = V.

Show that if Wy, and W5 are finite dimensional
subspaces of an inner product space and
W1 C Wa, then Wit C Wit

Let V = CO[—1, 1] with the inner product

1
(f.g) = / P00 ds

and W ={feV]f(—x)=f)}
a. Show that W is a subspace of V.
b. Show W+ ={f € V | f(—=x) = —f(x)}.

6.5

29.

30.

31.

c. Verify that W n W+ = {0}.

d. Let g(x) = 3[f(x) + f(—x)] and
h(x) = 3[f(x) = f(=x)]. Verify
g(—x) = g(x) and h(—x) = —h(x), SO every
f can be written as the sum of a function in W
and a function in W+.

Let V = M»,, with the inner product
(A, B) =tr(B'A)

Let W ={A € V | A is symmetric}.
a. Show that

W+ ={A eV |A is skew symmetric}

b. Show that every A in V can be written as the
sum of matrices from W and W+.

In R? with the standard inner product, the
transformation that sends a vector to the
orthogonal projection onto a subspace W is a

linear transformation. Let W = span i }

a. Find the matrix representation P relative to the
standard basis for the orthogonal projection of
R? onto W.

b. Letv = { i } Find projy,v and verify the
result is the same by applying the matrix P
found in part (a).

c. Show P?2 = P.

If W is a finite dimensional subspace of an inner
product space, show that (W4)+ = w.

Application: Least Squares Approximation

There are many applications in mathematics and science where an exact solution to
a problem cannot be found, but an approximate solution exists that is sufficient to
satisfy the demands of the application. Consider the problem of finding the equation
of a line going through the points (1, 2), (2, 1), and (3, 3). Observe from Fig. 1 that
this problem has no solution as the three points are noncollinear.

This leads to the problem of finding the line that is the best fit for these three
points based on some criteria for measuring goodness of fit. There are different ways
of solving this new problem. One way, which uses calculus, is based on the idea
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Figure 1

of finding the line that minimizes the sum of the square distances between itself and
each of the points. Another quite elegant method uses the concepts of linear algebra to
produce the same result. To illustrate the technique, we consider the original problem
of finding an equation of the form y = mx + b that is satisfied by the points (1, 2),
(2,1), and (3, 3). Substitution of these points into the equation y = mx + b yields the
linear system

m+b =2
2m+b =1
3m+b =3

As noted above, this system is inconsistent. As a first step toward finding an
optimal approximate solution, we let

11 2
A=12 1 X = { } and b=|1
31 3
and we write the linear system as Ax = b. From this perspective, we see that the

linear system is inconsistent as b is not in col(A). Thus, the best we can do is to look
for a vector W in col(A) that is as close as possible to b, as shown in Fig. 2.

m
b

b/ W—b
l’ \
L \ »
\\ l\\\\ln
\\W‘
\
N col (A)

Figure 2
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We will soon see that the optimal choice is to let W be the orthogonal projection of b
onto col(A). In this case, to find W we let

1 1
W = col(A) = span 21,11
3 1

By Theorem 9 of Sec. 6.4, the vector b can be written uniquely as
b=w+y

where y is in Wt. By Theorem 10 of Sec. 6.4, we have Wt = N(A"). By row
reducing A’, the orthogonal complement of W is

1
W+ = span -2
1

As this space is one-dimensional, the computations are simplified by finding y first,
which in the terminology of Sec. 6.4 is the component of b orthogonal to W. To find
y, we use Definition 1 of Sec. 6.3 and compute the orthogonal projection of b onto

1
WL, Letv=| —2 |, so that
1
y— b- Vv 1 ;
Vv 2 1
Hence,
2 1 3
_ 1 1
W = b — y = 1 —_ = —2 = — 4
3| 2| 1| ?]s
Finally, to find values for m and b, we solve the linear system Ax = w, that is, the
system
11 3
1
2 1 [ ’Z ] =514
y 31 5
54 By Theorem 6 of Sec. 3.2, this last linear system is consistent since the vector on the

T . right-hand side is in col(A). Solving the linear system, we obtain m = % and b =1,
)/Ky/= %x +1 giving us the slope and the y intercept, respectively, for the best-fit line y = %x + 1.
e I The vector

HEH

Figure 3 is the least squares solution to the system Ax = b since it produces a line whose total
squared distances from the given points are minimal, as shown in Fig. 3. Finding the
line that best fits a set of data points is called linear regression.
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W2
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Figure 4
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Least Squares Solutions

We now consider the general problem of finding a least squares solution to the m x n
linear system Ax = b. An exact solution exists if b is in col(A); moreover, the solution
is unique if the columns of A are linearly independent. In the case where b is not in
col(A), we look for a vector x in R" that makes the error term ||b — Ax|| as small
as possible. Using the standard inner product on R™ to define the length of a vector,
we have

Ib— Ax|?> = (b — AX) - (b — AX)
= [b1 — (AX)1]? + [b2 — (AX)21> + -+ + [b — (AX)]?

This equation gives the rationale for the term least squares solution.

To find the least squares solution X to the linear system Ax = b, we let W =
col(A). As W is a finite dimensional subspace of R™, by Theorem 9 of Sec. 6.4, the
vector b can be written uniquely as

b=w;+wp

where wy is the orthogonal projection of b onto W and w, is the component of b
orthogonal to W, as shown in Fig. 4.

We now show that the orthogonal projection minimizes the error term || b — AXx ||,
for all x in col(A). First, we have

b — A = [[wy +w, — AX |2
= (W2 4+ (W1 — AX), Wz + (W1 — AX))
= (W2, W) + 2 (Wp, Wg — AX) 4+ (W1 — AX, W1 — AX)

Since w; and Ax are in W and w» is in W+, the middle term vanishes, giving

b — AX[? = (Wp, Wp) + (W1 — AX, Wy — AX)
= w2 |12+l wy — AX |2

The quantity on the right-hand side is minimized if x is any solution to
AX = Wq

Since wy is in col(A), this linear system is consistent. We call any vector X in R" such
that Ax = ws a least squares solution of Ax = b. Moreover, the solution is unique
if the columns of A are linearly independent.

Occasionally, as was the case for the example at the beginning of this section,
it is possible to find wy directly. The least squares solution can then be found by
solving Ax = wj. In most cases, however, the vector w; is hard to obtain. Solving
the normal equation

ATAX = A'b
circumvents this difficulty.
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THEOREM 11

Let A be an m x n matrix and b a vector in R™. A vector X in R” is a solution to
the normal equation

A'Ax = A'b
if and only if it is a least squares solution to Ax = b.

Proof From the discussion just before the theorem, we know that a least squares
solution X to Ax = b exists. By Theorem 9 of Sec. 6.4, there are unique vectors
W in W = col(A) and w, in W+ such that b = wy + ws.

First assume that X is a least squares solution. Since w, is orthogonal to
the columns of A, then A’w, = 0. Moreover, since X is a least squares solution,
AX = wy. Therefore,

A'AX = A'w; = A'(b —wp) = A'b

so that X is a solution to the normal equation.
Conversely, we now show that if X is a solution to A’ Ax = A’b, then it is also
a least squares solution to Ax = b. Suppose that A’ AX = A’b, or equivalently,

Alb— AR) =0

Consequently, the vector b — AX is orthogonal to each row of A’ and hence to
each column of A. Since the columns of A span W, the vector b — AX is in W+,
Hence, b can be written as

b= AX+ (b — AX)
where AXisin W = col(A) and b — AX is in W. Again, by Theorem 9 of Sec. 6.4,
this decomposition of the vector b is unique and hence AX = w;. Therefore, X is
a least squares solution.

-2 3 1

Solution

A= 1 -2 and b= =1
1 -1 2
a. Find the least squares solution to Ax = b.

b. Find the orthogonal projection of b onto W = col(A) and the decomposition
b = wj 4+ w,, where wy is in W and w, is in WL,

a. Since the linear system Ax = b is inconsistent, the least squares solution is
the best approximation we can find. By Theorem 11, the least squares solution
can be found by solving the normal equation

A'Ax = A'b
In this case the normal equation becomes

—21l_i_§x_—211_1
3 -2 -1 1 —q SR A
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which simplifies to

s wl3]-15]

The matrix on the left-hand side is invertible, so that

HEEHIE

The least squares solution is then given by

<[3]-[3]

b. To find the orthogonal projection w; of b onto col(A), we use the fact that

Wi = AX. So
-2 3 13 1 1
wi=| 1 -2 l 3 ] =3 | -5
1 -1 3 4
We now find w, from the equation w, = b — wy, so that
1 1 1
1 2
Wy =b—w; = -1 = = -5 = = 1
2| 8| a| 2|1
The decomposition of b is then given by
1 1
1 2
b=w; +w, = § -5 [ + § 1
4 1

Note that w; is orthogonal to each of the columns of A.

Linear Regression
Example 2 illustrates the use of least squares approximation to find trends in data sets.

The data in Table 1, which are also shown in the scatter plot in Fig. 5, give the
average temperature, in degree celsius (°C), of the earth’s surface from 1975 through
2002.* Find the equation of the line that best fits these data points.

*Worldwatch Institute, Vital Signs 2006—2007. The trends that are shaping our future, W. W. Norton and
Company, New York London, 2006.
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Solution

Table 1
Average Global Temperatures 1975-2002
1975 | 13.94 | 1985 | 14.03 | 1994 | 14.25

1976 | 13.86 | 1986 | 14.12 | 1995 | 14.37

1977 | 14.11 | 1987 | 14.27 | 1996 | 14.23

1978 | 14.02 | 1988 | 14.29 | 1997 | 14.40 . °°
1979 | 14.09 | 1989 | 14.19 | 1998 | 14.56
1980 | 14.16 | 1990 | 14.37 | 1999 | 14.32
1981 | 14.22 | 1991 | 14.32 | 2000 | 14.31
1982 | 14.04 | 1992 | 14.14 | 2001 | 14.46
1983 | 14.25 | 1993 | 14.14 | 2002 | 14.52
1984 | 14.07

Temperature

A\ 4

Year
Figure 5

Denote the data points by (x;, y;), fori =1, 2, ..., 28, where x; is the year starting
with x; = 1975 and y; is the average global temperature for that year. A line with
equation y = mx + b will pass through all the data points if the linear system
m(1975) +b =13.94
m(1976) +b = 13.86

m(2002) + b = 14.52
has a solution. In matrix form, this linear system becomes
1975 1 13.94
1976 1 { - ] 13.86

. b .

2002 1 14.52
Since the linear system is inconsistent, to obtain the best fit of the data we seek

values for m and b such that x = { 'Z ] is a least squares solution. The normal
equation for this system is given by

1975 1 13.94
{ ] [1975 ... 2002

1975 ... 2002 _
1 ool

1

S 3

2002 1 14.52
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which simplifies to

| 791,553.23

110,717,530 55,678 m
b | 398.05

55,678 28

The least squares solution is

m | 0.0168609742
b | | —19.31197592

The line that best fits the data is then given by y = 0.0168609742x — 19.31197592,
as shown in Fig. 6.

Temperature

Year

Figure 6

The procedure used in Example 2 can be extended to fit data with a polynomial
of any degree n > 1. For example, if n = 2, to find the best-fit parabola of the form
y = ax? + bx + ¢ for a set of data points requires finding the least squares solution
to an n x 3 linear system. See Exercise 6.

Fourier Polynomials
A trigonometric polynomial of degree n is an expression in cosines and sines of
the form

ao + ai cosx + by Sinx + ap cos2x + by sin2x + --- + a, cosnx + b, sinnx

where the coefficients ag, a1, b1, az, b, . .., a,, b, are real numbers. Let PC[—m, 7]
denote the vector space of piecewise continuous functions on the interval [—m, 7].
The vector space PC[—m, nt] is an inner product space with inner product defined by

(f.8) = fx)gx)dx

Suppose now that given a piecewise continuous function f defined on [—mx, =], which
may or may not be a trigonometric polynomial, we wish to find the trigonometric
polynomial of degree n that best approximates the function.
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To solve this problem using linear algebra, let W be the subspace of PC[—m, 7]
of trigonometric polynomials. Let fo(x) = 1/+/27, and for k > 1, let

1 1 .
fr(x) = — c0Skx and gr(x) = —=sinkx

JT JT
Define the set B by

B:{vaflvf27"'9fnvglsg29-~-sgn}

{f fcos;c,fcos‘Zx ..,fcos‘nx,fsmx,fstx ..,fsmnx}

It can be verified that relative to the inner product above, B is an orthonormal basis
for W. Now let f be a function in PC[—m=, =t]. Since W is finite dimensional, f has
the unique decomposition

f=rfw+ fwe
with fw in W and fy,. in W+, Since B is already an orthonormal basis for W, then
fw can be found by using the formula for the orthogonal projection given in the proof
of Theorem 9 in Sec. 6.4. In this case we have

Jw={(f, fo) fo+{f f) fat - +(f, fu) fn+(fr80) 81+ -+ + ([, 8n) &n
We now claim that fyw, defined in this way, is the best approximation for f in W.
That is,

Nf=sfwll<If—-wl forallwe W
To establish the claim, observe that

I f =wi? = || fiw + fwr —w]’

= || fwe + (fw —w) HZ

= (fwe + (w —W), fwr + (fw —wW))

= (fwes fwe) +2(fwe. fw —W) + (fw =W, fw —w
The middle term of the last equation is zero since fy,1 and fy — w are orthogonal.
So

L =wi? = fwr ||+ 1l fw —wi?

Observe that the right-hand side is minimized if w = fy, that is, if we choose w to

be the orthogonal projection of f onto W. The function fy is called the Fourier
polynomial of degree n for f.

Let i Q
= — <
ﬂm={ 1 DEpia

O<x<m
Find the Fourier polynomial for f of degree n = 5.
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Solution The graph of y = f(x) is shown in Fig. 7. Since f(x) is an odd function and
fx(x) is an even function for k > 0, the product f(x) fx(x) is also an odd function.
Hence, the integral on any symmetric interval about the origin is 0, and we have

(fi fiy=0  fork>0

Now for k£ > 1, we have

T

(fs k) = f)gr(x)dx

y —T
i 1
— Sinkxdx+—/ sinkx dx
1 ﬁ -7 ﬁ 0
1
- ' . = ——[2—2coskm]
i - > kT
-1 B 0 if k is even
_ % if k is odd

Therefore, the Fourier polynomial of degree 5 that best approximates the function

Figure 7
f on the interval [—mt, =] is

4 4 4
p(x) = —sinx + —sin3x + — sin5x
T 3 5m

In Fig. 8 we see the function and its Fourier approximations for n = 1, 3, and 5.

AN M 0 S
0 W

p1(x) = %Sinx p3(x) = %Sinx + % sin 3x p3(x) = %Sinx + 3% sin3x + Sin sin5x

XY

Figure 8

Exercise Set 6.5 B

a. Find the least squares solution to Ax = b.

1. Let
1 3 4 b. Find the orthogonal projection of b onto
A=11 3 and b= |1 W = col(A) and the decomposition of the
2 3 5 vector b = wy + wy, where wy is in W and w,

is in W+,
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2. Let
2 2 —2
A=1|1 2 and b= 0
11 1

a. Find the least squares solution to Ax = b.
b. Find the orthogonal projection of b onto
W = col(A) and the decomposition of the
vector b = w; + wy, where wy is in W and w;,
is in W,
3. The table gives world hydroelectricity use in
thousands of terawatthours.

1965 927 1990 2185
1970 1187 1995 2513
1975 1449 2000 2713
1980 1710 2004 2803
1985 2004

a. Sketch a scatter plot of the data.

b. Find the linear function that is the best fit to
the data.

4. The table gives world infant mortality rates in
deaths per 1000 live births.

1955 157 1985 78
1960 141 1990 70
1965 119 1995 66
1970 104 2000 62
1975 93 2005 57
1980 87

a. Sketch a scatter plot of the data.

b. Find the linear function that is the best fit to
the data.

5. The table gives world population in billions.

1950 2.56
1960 3.04
1970 3.71
1980 4.46
1990 5.28
2000 6.08

a. Sketch a scatter plot of the data.

b. Find the linear function that is the best fit to
the data.

6. The table gives the worldwide cumulative HIV
infections in millions.

1980 0.1 1995 29.8
1982 0.7 1997 40.9
1985 2.4 2000 57.9
1987 45 2002 67.9
1990 10 2005 82.7
1992 16.1

a. Sketch a scatter plot of the data.

b. Find a curve of the form y = ax? + bx + ¢
that best fits the data.

7. Let f(x) = x on the interval —t < x < 7.
a. Find the Fourier polynomials for f of degrees
n=2,34, and 5.
b. Sketch y = f(x) along with the polynomials
found in part (a).
8. Let

X if0<x<m
f<x):{x+n if —t<x<0
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a. Find the Fourier polynomials for f of degrees 10. Let A be an m x n matrix with rank(A) = n, and

n=2,3,4, and 5.

suppose A = QR is a QR factorization of A.

b. Sketch y = f(x) along with the polynomials (See Exercise 9, Review Exercises for Chapter 6.)

found in part (a).

9. Let f(x) = x? on the interval —t < x < m.

Show that the best least squares solution to the
linear system Ax = b can be found by back
substitution on the upper triangular system

a. Find the Fourier polynomials for f of degrees Rx = Q'b.

n=2,3,4, and 5.

b. Sketch y = f(x) along with the polynomials

found in part (a).

6.6

Diagonalization of Symmetric Matrices

In Sec. 5.2 a methodology was given for diagonalizing a square matrix. A charac-
terization was also provided to determine which n x n matrices were diagonalizable.
Recall, specifically, from Theorem 2 of Sec. 5.2 that an n x n matrix is diagonaliz-
able if and only if it has n linearly independent eigenvectors. As we have seen, the
application of this theorem requires finding all eigenvectors of a matrix. In certain
cases, however, we can tell by inspection if a matrix is diagonalizable. An example of
such a case was given in Example 4 of Sec. 5.2, where it was shown that any 2 x 2
real symmetric matrix is diagonalizable with real eigenvalues. That this is the case in
general is the subject of this section.

In the remarks preceding Example 8 of Sec. 3.1, we defined the set of com-
plex numbers C. The proof of our main result requires that the reader be familiar
with some of the terminology and notation from complex variables. In particular, if
z = a + bi is a complex number, then the conjugate of z, denoted by z, is given by
Z=a—bi.

Two complex numbers are equal if and only if their real and imaginary parts are
equal. From this we know that a complex number z =7 if and only if z is a real
number. To see this, first suppose that z =7%. Then bi = —bi or 2bi = 0 and hence
b = 0. We therefore have z = a + 0i and z is a real number. Conversely, if z is a real
number, then z =a+0i =aandZ=a — 0i = a so that z =7Z.

We can also define this bar notation for vectors and matrices. So if v is a vector
with complex components and M is a matrix with complex entries, then

1 air a2 ... ai
B Uy _ a1 dp ... axp
V= . and M=

Un ap1 a12 ... Gun

We are now ready to state our main result.
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THEOREM 12

The eigenvalues of an n x n real symmetric matrix A are all real numbers.

Proof Let Vv be an eigenvector of A corresponding to the eigenvalue . To show
that % is a real number, we will show that % = \. We first consider the matrix
product (V' Av)’, which by Theorem 6 of Sec. 1.3 can be written as

V'AV) = V' AV

Since A is symmetric, A’ = A. Also since A has real entries, then A = A.
Therefore,

VIA'V = VI AV = VAV = V' AV
Now as v is an eigenvector of A corresponding to the eigenvalue ., then Av = \v,
so that o

VAV = VAV = VAV = W'Y
Alternatively, the original expression can be evaluated by

V'AV)! = (VW) = VAV = W'V
Equating these results gives
WV =V'V that is OL.=2MVVv=0

Since v is an eigenvector of A, and therefore nonzero, so is v/V. By an extension

to the complex numbers of Theorem 2 (part 4) of Sec. 3.1, we have . — » =0;
hence )\ =\, establishing that \ is a real number.

One consequence of Theorem 12 is that the eigenvectors of a real symmetric
matrix have real components. To see this, let A be a symmetric matrix with real
entries and v an eigenvector corresponding to the real eigenvalue » = a. Observe that
v is a vector in the null space of the real n x n matrix A —al. By Theorem 7 of
Sec. 3.2, N(A —al) is a subspace of R"”. Thus, v being a vector in R", has real
components as claimed.

Let A be the symmetric matrix defined by

2 0 2
A=|0 0 -2
2 -2 1

Verify that the eigenvalues and corresponding eigenvectors of A are real.
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The characteristic equation of A is
det(A —n1) =23+ 3%+61-8=0
After factoring the characteristic polynomial we obtain
=DM +2)(x—4) =0

Thus, the eigenvalues of A are h; =1, A\, = —2, and A3 = 4.
To find eigenvectors corresponding to A = 1, we find the null space of A — I.
To do this, we see that

1 0 2 1 0 2
A-I=]0 -1 -2 reduces to 0 1 2
2 -2 0 0 0O
-2
Thus, an eigenvector corresponding to Ay =1 is vy = | —2 |. In a similar way
1
we have that eigenvectors corresponding to A, = —2 and A3 = 4 are, respectively,
1 -2
Vo= | —2 | and v3 = 1
-2 -2

Orthogonal Diagonalization

In Sec. 6.1 we showed that two vectors u and v in R” are orthogonal if and only if their
dot product u-v = 0. An equivalent formulation of this condition can be developed
by using matrix multiplication. To do this, observe that if u and v are vectors in R",
then v'u is a matrix with a single entry equal to u-v. Hence, we know that u and v
are orthogonal if and only if viu = 0.

Theorem 13 shows that eigenvectors which correspond to distinct eigenvalues of
a real symmetric matrix are orthogonal.

Let A be a real symmetric matrix and v, and v, be eigenvectors corresponding,
respectively, to the distinct eigenvalues A1 and X,. Then vy and v, are orthogonal.

Proof \WWe have already shown that v; and v, are vectors in R". To show that
they are orthogonal, we show that vjv, = 0. Now, since A, is an eigenvalue of A,
then Avy = h\oVo, SO that

VIAVZ = VihaV2 = haV)Va
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Also since A" = A,
ViAV, = Vi AV, = (Avy)' v = MViV2
Equating the two expressions for v Av,, we obtain
(M —N2)Viv2 =0

Since 1 # ko then N1 — hp £ 0. Hence, by Theorem 2, part 4, of Sec. 3.1, we
have viv, = 0, which, by the remarks preceding this theorem, gives that vy is
orthogonal to v,.

m Let A be the real symmetric matrix given by

1 00
A=|0 0 1
010
Show that the eigenvectors corresponding to distinct eigenvalues of A are

orthogonal.
Solution The characteristic equation of A is
det(A — M) = - — 1?0 +1) =0

so the eigenvalues are h; = 1 and A, = —1. Then the eigenspaces (see Sec. 5.1)

are given by
1 0 0
Vi, = span 0,1 and Vi, = span —1
0 1 1
1 0
Since every vector in Vy, is a linear combinationof u= | 0 | andv= | 1 |,
0 1
0
andw = | —1 | isorthogonal to both u and v, then by Proposition 5 of Sec. 6.4,
1

w is orthogonal to every eigenvector in V;,. Hence, every eigenvector in V;, is
orthogonal to every eigenvector in V; .

In Example 2, we showed that every vector in the eigenspace V;, is orthogonal
to every vector in the eigenspace V;,. Notice, moreover, that the vectors within V;;
are orthogonal to one another. In this case, the matrix has a special factorization. We
normalize the spanning vectors of the eigenspaces to obtain

0
1 1 01
0 V2 and 7
1
’ vz v
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Using these vectors, we construct the matrix

1 0 0
o L _1L1
P = V2 NG
o L L
NG 2
which is then used to diagonalize A. That is,
1 0 0
11 100 100 10 0
PlAP = N 00 1 0 % ~% =01 o
_1 1 010 R 0 0 -1
0 -7 & % =z

Observe in this case that the diagonalizing matrix P has the special property that
PP' =1, sothat P~ = P’. This leads to Definition 1.

Orthogonal Matrix A square matrix P is called an orthogonal matrix if it is
invertible and P~ = P?,

One important property of orthogonal matrices is that the column (and row)
vectors of an n x n orthogonal matrix are an orthonormal basis for R". That is, the
vectors of this basis are all mutually orthogonal and have unit length.

As we mentioned at the beginning of this section, one particularly nice fact about
symmetric matrices is that they are diagonalizable. So by Theorem 2 of Sec. 5.2 a
real symmetric matrix has n linearly independent eigenvectors. For the matrix A of
Example 2, the eigenvectors are all mutually orthogonal. Producing an orthogonal
matrix P to diagonalize A required only that we normalize the eigenvectors. In many
cases there is more to do. Specifically, by Theorem 2, eigenvectors corresponding
to distinct eigenvalues are orthogonal. However, if the geometric multiplicity of an
eigenvalue '\ is greater than 1, then the vectors within V; (while linearly indepen-
dent), might not be mutually orthogonal. In this case we can use the Gram-Schmidt
process, given in Sec. 6.3, to find an orthonormal basis from the linearly independent
eigenvectors. The previous discussion is summarized in Theorem 14.

Let A be an n x n real symmetric matrix. Then there is an orthogonal matrix P
and a diagonal matrix D such that P~'AP = P'’AP = D. The eigenvalues are the
diagonal entries of D.

The following steps can be used to diagonalize an n x n real symmetric
matrix A.
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0 1
1 1

Solution

1. Find the eigenvalues and corresponding eigenvectors of A.

2. Since A is diagonalizable, there are n linearly independent eigenvectors. If nec-
essary, use the Gram-Schmidt process to find an orthonormal set of eigenvectors.

3. Form the orthogonal matrix P with column vectors determined in Step 2.
4. The matrix P"YAP = P'AP = D is a diagonal matrix.

1
0
1 10
Find an orthogonal matrix P such that P~*AP is a diagonal matrix.

A=

The characteristic equation for A is given by
det(A —r)= 23+ +2=-0-2)0+1%=0

Thus, the eigenvalues are A1 = —1 and A, = 2. The corresponding eigenspaces are

-1 -1 1
Vi, = span 1|, 0 and Vi, = Span 1
0 1 1
Let B be the set of vectors
1 -1 -1
B ={vi,Vvy,Vv3} = 1], 1], 0
1 0 1

Since B is a linearly independent set of three vectors, by Theorem 2 of Sec. 5.2,
A is diagonalizable. To find an orthogonal matrix P which diagonalizes A, we use
the Gram-Schmidt process on B. This was done in Example 3 of Sec. 6.3, yielding
the orthonormal basis

o) 2| o (LR
V31| V2| o | VB 2

Now let P be the matrix given by

T
o ol i
INENE
iy ol =i

Observe that P is an orthogonal matrix with P~1 = P’. Morevover,
2 0 0
P'AP=]0 -1 0
0 0 -1
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Fact Summary

Let A be an n x n real symmetric matrix.

1. The eigenvalues of A are all real numbers.

2. The eigenvectors corresponding to distinct eigenvalues of A are orthogonal.
3. The matrix A is diagonalizable.
4

. There is an orthogonal matrix P such that D = P~*AP = P'AP, where D
is a diagonal matrix with diagonal entries the eigenvalues of A.

Exercise Set 6.6 B

In Exercises 1-4, verify that the eigenvalues of the In Exercises 9-12, find the eigenspaces of the n x n
symmetric matrix are all real numbers. symmetric matrix, and verify that the sum of the
1 2 dimensions of the eigenspaces is n.

1. A= _ _
[ 2 1 } 1 0 2
9.A=|0 -1 0
-1 3
2. A= [ 3 1 ] | 2 0 1]
M1 20 (1 0 17
3A=1|2 -1 2 100 A= 0 -1 O
0 21 |1 0 1]
) (2 1 1 1
4. A= 1 -1 2 11 -2 1 1
2 2 1 A= 1 1 -1 0
. . . 1 1 0 -1
In Exercises 5-8, verify that the eigenvectors of the -
symmetric matrix corresponding to distinct 1 0 0 0
eigenvalues are orthogonal. _
12.4=12 2 00
5 4= |1 2 0 0 -1 0
T2 =2 |0 0 01
-3 2 In Exercises 13-16, determine whether the matrix is
6. A= [ 2 _3 } orthogonal.
1 2 0 I @ % ]
7.A=|2 -1 =2 13. A=
3
0 2 1 -3 2
1 0 -2 (1 _5
8A=| 0 -1 0 14. A= ° 1
2 0 1 | 0 -2
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[ V2 V2
7 70
15, A= | _v2 2
2 2
.| O 0 1
o2 2 1
3 3 3
_ 2 2 1
1
| 3 0 1

In Exercises 17-22, for the given matrix A find an
orthogonal matrix P and a diagonal matrix D such
that D = P~1AP.

(3 4
17.A=_4 3}

(5 2
18.A=_2 5}

[ -1 3

(1 2
20.A=_2 _2]

1 -1 1
2. A= -1 -1 1

1 11

1 0 -1
22. A= 0o -1 o0

| -1 0 1
23. Show that if A and B are orthogonal

24.

25.

26.

matrices, then AB and BA are orthogonal
matrices.

Show that if A is an orthogonal matrix, then
det(A) = +1.

Show that if A is an orthogonal matrix, then A’ is
an orthogonal matrix.

Show that if A is an orthogonal matrix, then A~1
is an orthogonal matrix.

27.

28.

29.

30.

31.

a. Show that the matrix

cos 6
A= { sinf

is orthogonal.

—sin®
cos6

b. Suppose that A is a 2 x 2 orthogonal matrix.
Show that there is a real number 6 such that

A | cos® —sin®
~ | sin6  cos6
or _
A cos 0 sin®
~ | sin6 —cosH

(Hint: Consider the equation A’A = I.)

c. Suppose that A is an orthogonal 2 x 2 matrix
and 7: R? — R? is a linear operator defined
by T(v) = Av. Show that if det(A) = 1, then
T is a rotation and if det(A) = —1, then T" is a
reflection about the x axis followed by a
rotation.

Matrices A are B are orthogonally similar if there
is an orthogonal matrix P such that B = P'AP.
Suppose that A and B are orthogonally similar.

a. Show that A is symmetric if and only if B is
symmetric.

b. Show that A is orthogonal if and only if B is
orthogonal.

Suppose that A is an n x n matrix such that there
exists a diagonal matrix D and an orthogonal
matrix P such that D = P'AP. (Matrix A is
called orthogonally diagonalizable.) Show that A
is symmetric.

Suppose A is invertible and orthogonally
diagonalizable. Show that A= is orthogonally
diagonalizable. (See Exercise 29.)

Let A be an n x n skew-symmetric matrix.

a. If visin R", expand v'v in terms of the
components of the vector.

b. Show that the only possible real eigenvalue of
A is » = 0. [Hint: Consider the quantity
Vvi(Ww).]
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Application: Quadratic Forms

When working with complicated algebraic expressions, mathematicians will often
attempt to simplify problems by applying transformations designed to make these
expressions easier to interpret, or at least better suited to the task at hand. In this
section we show how certain transformations of the coordinate axes in R? can be
used to simplify equations that describe conic sections, that is, equations in x and
y whose graphs are parabolas, hyperbolas, circles, and ellipses. As an illustration,
consider the equation
x?—4x+y*—6y—-3=0

To simplify this equation, we complete the square on x? — 4x and y? — 6y to obtain

(X2 —4x+4)+ (2 —6y+9) =3+4+9

that is,
(x =22+ (y—2372=16

Ay

AZ-\ il $
HEN

10

XV

T R N N

—-10

Figure 1

This last equation describes a circle of radius 4 centered at the point (2, 3). The graph
is shown in Fig. 1. To further simplify this equation, we can translate the coordinate
axes by means of the equations

xX'=x-2 and y=y-3
The equation of the circle then becomes
() + () =16

This is the equation of the circle in standard position in the x’y’ plane with center at
the origin.

Rotation of Axes
The most general quadratic equation in two variables has the form

ax’ +bxy+cy’ +dx+ey+ f =0
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where a, b, c,d, e, and f are real numbers such that at least one of a, b, or ¢ is
not zero. The graph of a quadratic equation in x and y is a conic section (including
possible degenerate cases), the particular one being dependent on the values of the
coefficients. When b £ 0, the conic section is rotated from standard position. The
expression

ax® + bxy + cy2
is called the associated quadratic form. For example, the quadratic equation

2x2 +5xy -7y +2x —4y+1=0
has an associated quadratic form given by
2x2 + Bxy — 7y?

The quadratic equation

ax?> +bxy +cy’ +dx+ey+ f =0
is also given in matrix form by setting

s Tt

Then the quadratic equation above is equivalent to

(oY NI

X'AX+b'x+ f=0
The quadratic form (in matrix form) is then given by
X' AX

As an illustration, the quadratic equation 2x2 + 5xy + y? 4+ 3x — y + 1 = 0 in matrix

form is given by
5
2 ] {x]+[3 —1][x}+1=0
1 y y

|: :|
y

Observe that the matrix A, for any quadratic equation in two variables, is symmetric;
that is, A’ = A. This fact enables us to develop a transformation that we can use
to simplify the equation. Specifically, the map we desire will rotate the coordinate
axes by the precise angle needed to situate the conic section in standard position with
respect to a new coordinate system.

To produce such a mapping, first recall from Theorem 14 of Sec. 6.6 that if A is a
real symmetric matrix, then there exists an orthogonal matrix P and a diagonal matrix
D suchthat A= PDP~! = PDP'. Next, we need to examine which orthogonal 2 x 2
matrices are rotations.

[x y][

NI N

2
[xy][§

2

= Nlo
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Now by Exercise 27(b) of Sec. 6.6, a real orthogonal 2 x 2 matrix has the form

B cosb —sind or B — cos6 sin®
~ | sin®  cos6 ~ | sin6 —cos6

Next, recall from Sec. 4.6 that B is the matrix representation, relative to the standard
basis for R?, of a linear operator which rotates a vector in the plane by 6 rad. The
matrix B’ is not a rotation (relative to any basis). To see this, let O = {vy, vo} be a
basis for R? and 6 = 0. Then
1 0
A
7=[o 4|

Relative to the basis Q, this matrix produces a reflection through the line spanned by
v1. For example, if Q is the standard basis for R?, then B’ is a reflection through the
x axis. These results are summarized in Theorem 15.

Let B be a real orthogonal 2 x 2 matrix. The change of coordinates given by

MM

is a rotation if and only if det(B) = 1.

We are now in a position to analyze quadratic equations in two variables. Start
with C a conic section with equation

X'AX+b'xX+ f=0
Let P be the orthogonal matrix that diagonalizes A, so that

Mmoo 0
0 N

with %1 and A, being the eigenvalues of A. As P is orthogonal, by the above remarks
on the form of P, its determinant is either +1 or —1. If det(P) = —1, then interchange
the column vectors of P, along with the diagonal entries of D. Since

{ sin® cose}_ cos (3 —6) sin(3 —0)
—cosf sind —sin(3 —0) cos(3—06)

a rearrangement of the column vectors of P is a rotation. To obtain the equation for C
in the x’y’ coordinate system, substitute x = Px’ into X’ AX + b’X + f = 0 to obtain

(PX) A (PX) +b'PX + f =0
By Theorem 6 of Sec. 1.3, if the product of A and B is defined, then (AB)" = B’ A’,
and since matrix multiplication is associative, we have
XY P'APX +b'PX 4+ f=0 that is, XYDX +b'PX + f=0

I
Letb'P = [ Oel, } The last equation can now be written as

A= PDP' where D = {

MO+ r() +dx +ey + f=0



388 Chapter 6 Inner Product Spaces

This equation gives the conic section C in standard position in the x’y’ coordinate
system. The type of conic section depends on the eigenvalues. Specifically, C is

1. An ellipse if A1 and X\, have the same sign

2. A hyperbola if A1 and X, have opposite signs

3. A parabola if either X1 or X, is zero

m Let C be the conic section whose equation is x2 — xy + y> —8 = 0.

a. Transform the equation to x’y’ coordinates so that C is in standard position
with no x’y’ term.

b. Find the angle of rotation between the standard coordinate axes and the x’y’
coordinate system.

Solution  a. The matrix form of this equation is given by
_1
X'Ax—8=0  with A:{ } 2]
-3 1

The eigenvalues of A are h; = % and xp = % with corresponding (unit) eigen-

vectors
171 q 1 -1
V]_ == ﬁ l an VZ = ﬁ 1
Then the orthogonal matrix

iLofi =i

"=z [ 11 }
diagonalizes A. Moreover, since det(P) = 1, then by Theorem 15, the coordi-
nate transformation is a rotation. Making the substitution x = Px’ in the matrix
equation above gives

(X)' PTAPX —8=0
that is,

X)YDx —8=0 where D= {

(@RS
Niw O
—_

This last equation can now be written as
1 /
5 0 X
A, 2 _9_
WAl ][y ]-e-0
so that the standard form for the equation of the ellipse in the x’y” coordinate
system is
"% 3(y)?

6 T Tt
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This is the equation of an ellipse with x’ as the major axis and y’ as the minor
axis, as shown in Fig. 2.

el
@)’ +3(y)° =16
Figure 2

b. To find the angle between the original axes and the x’y’ coordinate system,
observe that the eigenvector vy points in the direction of the x’ axis. Now
using Definition 3 of Sec. 6.1, the cosine of the angle between e; and v; is
given by

€ -V1

cosezizi so that e:ﬁ
ledll vill /2 4

An alternative way to find the angle between the axes is to note that the matrix
P, which is the transition matrix from x’y’ coordinates to xy coordinates, can
be written as

1 1 .
P:l{? {z]:[c;;;g ] wine=7
V22

Example 2 involves a rotation and a translation.

Describe the conic section C whose equation is
2x2—4xy—y2—4x—8y+14=0

The equation for C has the form x’Ax + b’x + f = 0 given by
2 =2 X X
[xy]{_2 —1}{)}]—{_[_4_8][)1}—’_14:0

2 =2 ] are \; = —2 and \, = 3, with corresponding

The eigenvalues of A = 5 _1

(unit) eigenvectors

o-5[2] w0 w-[]
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Since the eigenvalues have opposite sign, the conic section C is a hyperbola. To
describe the hyperbola, we first diagonalize A. Using the unit eigenvectors, the
orthogonal matrix that diagonalizes A is

111 -2 . -2 0
— with = P'AP
52 3] o)

Making the substitution x = PX’ in the equation X’ Ax + b'x + f = 0 gives

[x’y’]{_g g][f}:}+[—4—8]l ‘|[§:]+14=0

After simplification of this equation we obtain
—2(x")? —4/Bx' +3(y)> +14 =0

P =

GGl
Sl sl

that is,
—2[(x")? + 24/5(x)]+3(y)? +14 =0
After completing the square on x’, we obtain

—2[(x")? 4+ 24/5(x") + 5] + 3(y")> = =14 — 10

that is,
(x/ + \/5)2 (y/)Z
12 8
This last equation describes a hyperbola with x’ as the major axis. An additional
transformation translating the x” axis allows us to simplify the result even further.
If we let

=1

x// - x/ + \/g and y// = y/
then the equation now becomes
(x//)z (y//)z B
12 8

The graph is shown in Fig. 3.

Figure 3
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Quadric Surfaces
The graph of a quadratic equation in three variables of the form

ax? + bxy + cxz +dy* +eyz+ fz? +gx +hy+iz+j=0

is an ellipsoid, a hyperboloid, a paraboloid, or a cone. As in the two-dimensional case,
the terms gx, hy, and iz produce translations from standard form, while the mixed
terms xy, xz, and yz produce rotations. The quadratic form

ax® + bxy + cxz +dy? + eyz + fz°

can be written in matrix form as

b .
a 3 3 X
XAx=[xyz]| 5 d % y
s s o)L

As before, a rotation developed from the eigenvectors of A can be used to transform
the quadric surface to one in standard form

M2+ 0 + 3@+ =0

where X1, h2, and r3 are the eigenvalues of A. We omit the details.

Write the quadratic equation
5x% 4+ 4y? — 572 + 8xz = 36

in standard form by eliminating the xz term.

Let
50 4
A=|0 4 0
4 0 -5
Then the quadratic equation can be written as
5 0 4 X

[xyz]| O 4 O y | =36
4 0 -5 Z

The eigenvalues of the matrix A are
M=+VAL A= —VAl r3=4
Hence, the quadric surface, in standard position, has the equation
VAL()? = VAL() + 4()? =36

The graph of the surface, which is a hyperboloid of one sheet, is shown in Fig. 4.
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Exercise Set 6.7

In Exercises 1-6, let C denote the conic section given

by the equation. Transform the equation to x’y’
coordinates so that C is in standard position with no

x/y/

1

N o o~ w DN

term.

27x% —18xy +3y> 4+ x +3y =0

2x2 —8xy+8y?+2x +y=0

12x? +8xy +12y? —8=0

11x? — 6xy +19y? +2x + 4y — 12 =0
—x% —6xy—y>+8=0

xy=1

Let C denote the conic section in standard

position given by the equation 4x? + 16y? = 16.

a. Write the quadratic equation in matrix form.
b. Find the quadratic equation that describes the

10.

a. Write the quadratic equation in matrix form.

b. Find the quadratic equation that describes the
conic C rotated by —30°.

Let C denote the conic section in standard
position given by the equation 16x2 + 4y? = 16.
a. Find the quadratic equation for the conic
section obtained by rotating C by 60°.
b. Find the quadratic equation that describes the
conic found in part (a) after a translation
3 units to the right and 2 units upward.

Let C denote the conic section in standard

position given by the equation x2 — y = 0.

a. Find the quadratic equation for the conic
section obtained by rotating C by 30°.

conic C rotated by 45°. b

Let C denote the conic section in standard
position given by the equation x? — y? = 1.

6.8

. Find the quadratic equation that describes the
conic found in part (a) after a translation 2
units to the right and 1 unit downward.

Application: Singular Value Decomposition

In earlier sections we have examined various ways to write a given matrix as a product
of other matrices with special properties. For example, with the LU factorization of
Sec. 1.7, we saw that an m x n matrix A could be written as A = LU with L being an
invertible lower triangular matrix and U an upper triangular matrix. Also in Sec. 1.7,
we showed that if A is invertible, then it could be written as the product of elementary
matrices. In Sec. 5.2 it was shown that an n x n matrix A with n linearly independent
eigenvectors can be written as

A=PDP!
where D is a diagonal matrix of eigenvalues of A. As a special case, if A is symmetric,
then A has the factorization

A=0DOQ'
where Q is an orthogonal matrix.

In this section we consider a generalization of this last result for m x n matrices.

Specifically, we introduce the singular value decomposition, abbreviated as SVD,
which enables us to write any m x n matrix as

A=UxV’

where U is an m x m orthogonal matrix, V is an n x n orthogonal matrix, and X is
an m x n matrix with numbers, called singular values, on its diagonal.
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Singular Values of an m x n Matrix

To define the singular values of an m x n matrix A, we consider the matrix A’A.
Observe that since A is an m x n matrix, A’ is an n x m matrix, so the product A’ A
is a square n x n matrix. This new matrix is symmetric since (A’A)' = A"A" = A’ A.
Hence, by Theorem 14 of Sec. 6.6, there is an orthogonal matrix P such that

P'(A'A)P =D

where D is a diagonal matrix of the eigenvalues of A’A given by

M 0 ... 0
0 »» --- 0
D = . . .
0 - ey,

Since by Exercise 39 of Sec. 6.3 the matrix A’A is positive semidefinite, we also
have, by Exercise 41 of Sec. 6.3, that \; > 0 for 1 < i < n. This permits us to make
the following definition.

Singular Values Let A be an m x n matrix. The singular values of A, denoted
by o; for 1 <i < n, are the positive square roots of the eigenvalues X1, ..., \, oOf
A'A. That is,

o=+ for 1<i<n

It is customary to write the singular values of A in decreasing order
012022 " 20,

As mentioned in Sec. 5.2, this can be accomplished by permuting the columns of the
diagonalizing matrix P.

Let A be the matrix given by

=
Il
— O
o K

Find the singular values of A.

The singular values of A are found by first computing the eigenvalues of the square

matrix w
1 0 1 2 1
AIA:[ } 01 :[ ]
110 1 0 1 2
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The characteristic equation, in this case, is given by
det(A’A —2)=(r—=3)(L—1) =0

The eigenvalues of A’A are then A3 = 3 and A, = 1, so that the singular values
are o1 = /3 and o = 1.

We have already seen that orthogonal bases are desirable and the Gram-Schmidt
process can be used to construct an orthogonal basis from any basis. If A is an
m x n matrix and vi,...,v, are the eigenvectors of A’A, then we will see that
{Avi, ..., Av,} is an orthogonal basis for col(A). We begin with the connection
between the singular values of A and the vectors Avy, ..., Av,.

THEOREM 16 Let A be an m x n matrix and let B = {v1, Vo, ..., V,} be an orthonormal basis
of R" consisting of eigenvectors of A’A, with corresponding eigenvectors g,
N2, ..., h,. Then

1. ||Av;||=o0; foreachi =1,2,...,n.
2. Av; is orthogonal to Av; for i # j.

Proof For the first statement recall from Sec. 6.6 that the length of a vector v in
Euclidean space can be given by the matrix product || v || = +/V!v. Therefore,

| AV; 1> = (AV)' (AV;) = V(AT A, =Vvinv, = 0 [V | =

The last equality is due to the fact that v; is a unit vector. Part 1 is established
by noting that o; = /%; = || Av; ||. For part 2 of the theorem, we know that (as in
Sec. 6.6) the dot product of two vectors u and v in Euclidean space can be given
by the matrix product u-v = u’v. Thus, since B is an orthonormal basis of R", if
i # j, then

(AV;) - (AV)) = (AV))' (AV)) = Vi(A"A)V; = Vik;v; = h;Viv; =0

In Theorem 16, the set of vectors {Avy, Ava, ..., Av,} is shown to be orthogonal.
In Theorem 17 we establish that the eigenvectors of A’ A, after multiplication by A,
are an orthogonal basis for col(A).

THEOREM 17 Let A beanm x n matrixand B = {vy, Vo, ..., V,} an orthonormal basis of R" con-
sisting of eigenvectors of A’ A. Suppose that the corresponding eigenvalues satisfy
M>hg> - >N > Ng1= - h, =0, that is, A’A has r nonzero eigenval-
ues. Then B’ = {Avy, Avy, ..., Av,} is an orthogonal basis for the column space
of A and rank(A) =r.
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Proof First observe that since o; = 4/%; are all nonzero for 1 <i < r; then by
Theorem 16, part 1, we have Avi, Avy, ..., Av, are all nonzero vectors in col(A).
By part 2 of Theorem 16, we have B’ = {Avy, Av,, ..., Av,} is an orthogonal set
of vectors in R™. Hence, by Theorem 5 of Sec. 6.2, B’ is linearly independent. Now
to show that these vectors span the column space of A, let w be a vector in col(A).
Thus, there exists a vector v in R” such that Av = w. Since B = {v1, Vy, ..., V,}
is a basis for R", there are scalars c1, ¢, ..., ¢, such that

V=cV1+coVo+ -+ +cpVy
Multiplying both sides of the last equation by A, we obtain
AV = c1AV] + c2AVo + - -+ + ¢, AV,
Now, using the fact that Av, 1 = Av, o = --- = Av, =0, then
AV = c1AV1 + cAVo + - -+ + ¢, AV,

so that w=Av is in span{Avy, Av,, ..., Av,}. Consequently, B =
{Av1, Avy, ..., Av,} is an orthogonal basis for the column space of A, and
the rank of A is equal to the number of its nonzero singular values.

Let A be the matrix given by

A=

= O

1
1
0

he linear transformation 7: R? — R3

—

Find the image of the unit circle under
defined by 7(v) = Av.
From Example 1, the eigenvalues of A’ A are h; = 3 and A, = 1, with eigenvectors

v | UV2 ~1/v2
T luv? 1/v2
respectively. The singular values of A are then o; = /3 and o, = 1. Let C(r) be

the unit circle given by cos(z)vy + sin(z)v, for 0 <t < 2w. The image of C(¢)
under T is given by

and Vo = {

T (C(t)) = cos (r)Avy + Sin (1) AV,
By Theorem 17, B’ = {%Avl, ész} is a basis for the range of 7. Hence, the
coordinates of T(C(r)) relative to B’ are x' =o1c0sf =+/3cos¢ and
y' = oysint = sint. Observe that

7\ 2 N2
x n2 (&) "2 2 -9
= -+ =7 4 =cos?t +sint =1
(Z5) +07 =5+

which is an ellipse with the length of the semimajor axis equal to o1 and length of
the semiminor axis equal to oy, as shown in Fig. 1.
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Figure 1

For certain matrices, some of the singular values may be zero. As an illustration,

1 2
3 6
The reduced row echelon form for A is the matrix é (2) , Which has only one
pivot column. Hence, the rank of A is equal to 1. The eigenvalues of A’ A are \; = 50
and », = 0 with corresponding unit eigenvectors

w[ae] e[

The singular values of A are given by o1 = 5+/2 and o, = 0. Now, multiplying v;
and v, by A gives

consider the matrix A = { } For this matrix, we have col(A) = span [ L ]

3

e[

3v5

Observe that Av; spans the one dimensional column space of A. In this case, the
linear transformation 7': R?> — R? defined by 7'(x) = Ax maps the unit circle to the

line segment
V5
{t{&/g —-1<r<1

Singular Value Decomposition (SVD)

We now turn our attention to the problem of finding a singular value decomposition
of an m x n matrix A.

and Avy = {8]

as shown in Fig. 2.

SVD Let A be an m x n matrix of rank r, with r nonzero singular values
01,02, ...,0,. Then there exists an m x n matrix X, an m x m orthogonal matrix
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A Y Ay

<V
x

N
NI

Figure 2
U, and an n x n orthogonal matrix V such that
A=UxV'

Proof Since A'A is an n x n symmetric matrix, by Theorem 14 of Sec. 6.6 there
is an orthonormal basis {vs, ..., v,} of R", consisting of eigenvectors of A’ A. Now
by Theorem 17, {Avy, ..., Av,} is an orthogonal basis for col(A). Let {us, ..., u,}
be the orthonormal basis for col(A), given by

1 1 .
u; = AV; = —Av; for i=1,...,r
I Av; || oj
Next, extend {uy, ..., u,} to the orthonormal basis {uq, ..., u,} of R™. We can
now define the orthogonal matrices V and U, using the vectors {vi,...,Vv,} and
{uy, ..., u,}, respectively, as column vectors, so that
V=[vi v2 - Vv, ] and U=[u u - U]
Moreover, since Av; =o;u;, fori =1, ..., r, then
AV=| Avy --- Av, 0O ... Of|=]o0uyy -+ ou 0O -.- O

Now let X be the m x n matrix given by

op 0 ... 0]0 ... O
0O oo ... 00 ... O
E: 0 Oy O O
0 010 0
0 00 0
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Solution

Then
UX¥=]| Uy U - U, |2
=| oy - ou 0O - O
— AV

Since V is orthogonal, then V! = V1, and hence, A =UXV".

Find a singular value decomposition of the matrix

-1 1
A= -1 1
2 -2

A procedure for finding an SVD of A is included in the proof of Theorem 18. We
present the solution as a sequence of steps.

Step 1. Find the eigenvalues and corresponding orthonormal eigenvectors of A’A
and define the matrix V.

The eigenvalues of the matrix

-6 6

in decreasing order are given by A3 = 12 and \, = 0. The corresponding orthonor-
mal eigenvectors are

_ [ -y~2 _[wv2
Vl—[ 1/\/5] and Vz—{l/ﬁ
Since the column vectors of V are given by the orthonormal eigenvectors of A”A,
the matrix V is given by

el 5 ]

- -1/42 1/42
Lowv2 yv2
Step 2. Find the singular values of A and define the matrix 3.
The singular values of A are the square roots of the eigenvalues of A’A, so that

012«/)\122«/5 and 02 =+ A =0
Since ¥ has the same dimensions as A, then X is 3 x 2. In this case,

23 0
Y= 0 0
0 0
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Step 3. Define the matrix U.
The matrix A has one nonzero singular value, so by Theorem 17 the rank of A is 1.
Therefore, the first column of U is

A 1/v/6
U = —Avy = 1/\/6
01 —2/\/6
Next we extend the set {u;} to an orthonormal basis for R® by adding to it the
vectors
2/4/5 ~1//2
Uy, = 0 and us = 1/«/5
1/4/5 0
so that

1/v6 2/ —1/4/2
uU=| 1//6 0 1//2
—2/3/6 1/4/5 0

The singular value decomposition of A is then given by

1/v/6  2/5 =142 23 0
A=UZV' =| 1//6 0 1//2 0 0 _Zﬁ zg
| —2/v/6 1//5 0 0 0
[ -1 1
O
| 2 -2

In Example 3, the process of finding a singular value decomposition of A was
complicated by the task of extending the set {us, ..., u,} to an orthogonal basis for
R™. Alternatively, we can use A’A to find V and AA’ to find U. To see this, note
that if A=UZV' is an SVD of A, then A’ = VX'U'. After multiplying A on the
left by its transpose, we obtain

A'A=VIU'UZV' =V D V!

where D is an n x n diagonal matrix with diagonal entries the eigenvalues of A’A.
Hence, V is an orthogonal matrix that diagonalizes A’ A. On the other hand,

AA"' =UZV'VI'U" = UD,U'

where D, is an m x m diagonal matrix with diagonal entries the eigenvalues of AA’
and U is an orthogonal matrix that diagonalizes AA’. Note that the matrices A’A and
AA" have the same eigenvalues. (See Exercise 22 of Sec. 5.1.) Therefore, the nonzero
diagonal entries of D1 and D, are the same. The matrices U and V found using this
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procedure are not unique. We also note that changing the signs of the column vectors
in U and V also produces orthogonal matrices that diagonalize AA’ and A’A. As a
result, finding an SVD of A may require changing the signs of certain columns of U
or V.

In Example 4 we use this idea to find an SVD for a matrix.

Find a singular value decomposition of the matrix

1 1
Sy
First observe that
o | 1T 3 1 1] _ | 10 -8
AA_[l 3]s 3| | -8 10
By inspection we see that v, = % { _i } is a unit eigenvector of A’A with

AL
V2|1
A" A with corresponding eigenvalue A, = 2. Hence,

corresponding eigenvalue h; = 18, and v, = is a unit eigenvector of

1 1 1
=7l 1)
The singular values of A are o1 = 3+/2 and o, = +/2 so that
s_[32 0
B 0 V2

To find U, we compute
1 111 3 2 0

t__ —
AA_{?; —3_[1 —3}—{0 18]

Observe that a unit eigenvector corresponding to Ay = 18 is u; = [ 2 ] and a unit

eigenvector corresponding to Ay = 2 is Uy = { é ] Thus,
0 1]
o-[1 5]
A singular value decomposition of A is then given by
0 1][3/2 o0 7 7 1 1
V2 V2
e 3 AT | e T
10 0 V2 v 3 -3
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The Four Fundamental Subspaces

In this subsection we show how the matrices U and V, which give the singular value
decomposition of A, provide orthonormal bases for the four fundamental subspaces
of A, introduced in Sec. 6.4. To develop this idea, let A be an m x n matrix of rank
r<nand B ={vy,...,Vv,} be an orthonormal basis of eigenvectors of A’A with
corresponding eigenvalues kg > Ay > <+« >N, > Apyp = -+ - = A, = 0. First, from
the proof of Theorem 17 if o4, - - -, o, are the nonzero singular values of A, then

, { 1 1 }
C'=4¢—Avy,...,—AV,  ={ug,..., U}
01 Oy

is a basis for col(A). Next, the remaining columns of U are defined by extending
C’ to an orthonormal basis C = {us, ..., U, U141, ..., U,} for R™. We claim that
C” ={U,;41, ..., Uy} isan orthonormal basis for N (A"). To see this, observe that each
vector of C’ is orthogonal to each vector of C”. Hence, by Proposition 5 of Sec. 6.4
and the fact that dim(R”) = m, we have span{u,,1, ..., U,} = col(A)*. By Theorem
10, part 2, of Sec. 6.4, span{u, 1, ..., U,} = N(A"), sothat C" = {u,;1,..., Uy} isa
basis for N(A") as claimed. We now turn our attention to the matrix V. From the proof
of Theorem 16, we have Av, 1 = --- = Av, = 0. Consequently, span{v, 1, ..., V,}
is contained in N(A). Now by Theorem 5 of Sec. 4.2,

dim(N(A)) + dim(col(A)) =n

so that dim(N(A)) =n —r. Since B” = {V,,1,...,V,} is an orthogonal, and hence
linearly independent, set of n —r vectors in N(A), by Theorem 12, part (1), of
Sec. 3.3, B” is a basis for N(A). Finally, since B = {v1,...,V,} is an orthonormal
basis for R", each vector of B” is orthogonal to every vector in B’ = {v1,...,V,}.
Hence,

span{vi, ..., V,} = N(A)* = col(A") = row(A)

so that B’ is a basis for row(A).
To illustrate the ideas of this discussion, consider the matrix A of Example 3 and
its SVD. By the above discussion, we have

1
row(A) = span { [ _i ]} col(A) = span 1
-2
1 2 -1
N(A):span{[ 1}} N(A") = span 01, 1
1 0

The four fundamental subspaces are shown in Fig. 3.

Data Compression

An important application that involves the singular value decomposition is data com-
pression. As a preliminary step, suppose that a matrix A of rank » (with » nonzero
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singular values) has the SVD A = UZ V. That is,
A=UxV'=|ouy - ou 0 --- 0|V

= 01U1V] + o2UV5 + -+ +0,U, V.

1 1 1 1 1 1
=o01| —AVy |Vi4+o2 | —AV2 | Vo + -+ + 0, | —AV, |V,
01 0?2 Oy

= (AV1)V] + (AV2)V5 + -+ + (AV,)V.

Observe that each of the terms Av;V! is a matrix of rank 1. Consequently, the sum
of the first k terms of the last equation is a matrix of rank k& < r, which gives an
approximation to the matrix A. This factorization of a matrix has application in many
areas.

As an illustration of the utility of such an approximation, suppose that A is the
356 x 500 matrix, where each entry is a numeric value for a pixel, of the gray scale
image of the surface of Mars shown in Fig. 4. A simple algorithm using the method
above for approximating the image stored in the matrix A is given by the following:

1. Find the eigenvectors of the n x n symmetric matrix A’A.

2. Compute Av;, fori =1,...,k, with k <r =rank(A).

3. The matrix (Av1)V] + (Av2)V5 + - -+ + (AVg)V; is an approximation of the orig-
inal image.

To transmit the kth approximation of the image and reproduce it back on earth
requires the eigenvectors vy, ..., v, of A’A and the vectors Avy, ..., Avy.

The images in Fig. 5 are produced using matrices of ranks 1, 4, 10, 40, 80, and
100, respectively.

Figure 5

The storage requirements for each of the images are given in Table 1.
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Table 1
Image Storage Requirement | Percent of Original | Rank
Original 356 x 500 = 178,000 100%
Approximation 1 2 x 500 = 1,000 0.6 1
Approximation 2 8 x 500 = 4,000 1 4
Approximation 3 20 x 500 = 10,000 1 10
Approximation 4 80 x 500 = 40,000 22 40
Approximation 5 | 160 x 500 = 80, 000 45 80
Approximation 6 | 200 x 500 = 100, 000 56 100

Exercise Set 6.8 E—_—

In Exercises 1-4, find the singular values for the -2 1 -1
matrix. 8. A= 01 1
1 A= -2 =2 In Exercises 9 and 10, the condition number of a
' 1 1 matrix A is the ratio o1/0,, of the largest to the

smallest singular value. The condition number
o A— [ -1 =2 } provides a measure of the sensitivity of the linear
-2 system Ax = b to perturbations to A or b. A linear
system is ill-conditioned when the condition number

1 0 2 is too large and called singular when the condition
3. A= 2 -1 -1 number is infinite (the matrix is not invertible).
-2 1 1
B 11
F 1 1 0 9 LetA= { 1 1000000001 }
4. A= 0 01 a. Solve the linear system
-1 10

) AX =
In Exercises 5-8, find a singular value decomposition [

2
2
for the matrix.

b. Solve the linear system

5 3 2
>A=13 5 } Ax= [ 2.000000001 ]

c. Find the condition number for A.

w o1

1
] 10. Letb = 3

o
b
Il
NN
I

P o

—4
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-2 -1 0
A=| -2 -1 =2
0 -2 1

Solve the linear system Ax = b.

a. Let

Let V be the inner product space R® with the
standard inner product and let

)

a. Verify that B is a basis for R3.
b. Use B to find an orthonormal basis for R3.

1 1
C. Let W = span 0|.]0 and
1 0

-2

V= [ 1 ] . Find projy, v. (Hint: First use
-1

the Gram-Schmidt process to find an

orthogonal basis for W; then refer to Exercise

16 of Sec. 6.4.)

Let
-1 -3
2 0
W = q)an 2 E) 0 £
-2 0
3 0
-2 0
-1 |1"| -1
1 1
be a subspace of R* with the standard inner
product.
a. Find a basis for W.
b. Find W+.

c. Find an orthonormal basis for W.

b. Let
—2.00001 —-1.001 O
B=| —201 -0.87 -2
0 -2 1

Solve the linear system Bx = b.
c. Find the condition number for A.

Review Exercises for Chapter 6

d. Find an orthonormal basis for W+,
e. Verify that dim(R*) = dim(W) 4+ dim(W1).
-2
0
3
-1

f. Find the orthogonal projection of v =

onto W.

. Let a, b, and ¢ be real numbers and

[l

where R? is given the standard inner product.
a

a. Show that | b | isin W+.
C

b. Describe W+.

X1

x2 | . Find projy. v.

X3

d. Find || projy,. v ||.

ax+by+cz=0}

C. Letv=

. Define on P, an inner product by

1
(p.q) = /1 p(x)q(x)dx

Let p(x) = x and g(x) = x®> — x + 1.
. Find (p, q).

. Find the distance between p and g.

. Are p and ¢ orthogonal? Explain.

. Find the cosine of the angle between p and q.
. Find proj, p.

. Let W = span{p}. Find W+.

-~ ® 2 0 T o



5. Let V be the inner product space C@[—m, n]
with inner product defined by

T

(f.8)=[ [f()gkx)dx

Let W = span{1, cos x, sinx}.
a. Verify that the set {1, cosx, sinx} is
orthogonal.
b. Find an orthonormal basis for W.
c. Find projy, x2.
d. Find || projy, x2 ||.
6. Let B = {v1,...,V,} be an orthonormal basis for

an inner product space V, and let v be a vector
in V.

c1
a. Find the coordinate of v relative to B.
Cn
b. Show that ¢;v; = projviv for each
i=12,...,n.
C. Let
1 1 1
B={1 |1/ L] -1] % 1
V2 0 V2 0 NG 5

be an orthonormal basis for R3, with the
standard inner product, and let

1 1

7
— | L _ 1 i i

V= 7 ) 7| Find the coordinate
V3

c1
c2 .

of v relative to B.
Cn

7. Show that if B is an orthonormal basis for R",

with the standard inner product, and
1

[Vlg = , then
Cn
IVii= /G +G+ -+

Give a similar formula for || v || if B is an
orthogonal basis, not necessarily orthonormal.

8.

10.
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Let {vq,...,V,} be an orthonormal subset of R”",
with the standard inner product, and let v be any
vector in R". Show that

m
2 2
IVIE =D (vev)

i=1
(Hint: Expand || v — 37, (v, vi) v, ||)

(OR factorization) Let A be an m x n matrix
with linearly independent column vectors. In this
exercise we will describe a process to write

A = QR, where Q is an m x n matrix whose
column vectors form an orthonormal basis for
col(A) and R is an n x n upper triangular matrix
that is invertible. Let

0 —
-1

0
-1

A
N RN

a. Let B = {v1, vy, v3} be the set of column
vectors of the matrix A. Verify that B is
linearly independent and hence forms a basis
for col(A).

b. Use the Gram-Schmidt process on B to find an
orthogonal basis By = {w1, Wy, ws}.

c. Use Bj to find an orthonormal basis
By = {01, 02, g3}

d. Define the matrix Q = [g1 g2 g3]. Define the
upper triangle matrix R fori = 1,2, 3 by

0 if
"= V;-Q; if
J - q; 1

e. Verify that A = OR.

Let B = {v1, Vs, ..., V,} be an orthogonal basis
for an inner product space V and c1, ¢, ..., ¢,
arbitrary nonzero scalars. Show that

Bl = {Clvla C2V27 LR ] Cnvn}

is an orthogonal basis for V. How can the scalars
be chosen so that B; is an orthonormal basis?
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Chapter 6: Chapter Test

In Exercises 1-40, determine whether the statement is

true or false.

1. If u is orthogonal to both v; and vy, then u is
orthogonal span{vy, v,}.

2. If W is a subspace of an inner product space V
and v € V, then v — proj,,v e Wt

3. If W is a subspace of an inner product space V,
then W N W+ contains a nonzero vector.

4. Not every orthogonal set in an inner product
space is linearly independent.

In Exercises 5-10, let

be vectors in R* with inner product the standard dot
product.

5. [[vil =30

6. The distance between the vectors vi and v, is

24/14.

— L v i
7. The vector u = 75 V1 IS a unit vector.

8. The vectors v, and v, are orthogonal.

9. The cosine of the angle between the vectors
vi and v, is —1£+/10.
—8/15
—4/15
—16/15
—12/15
In Exercises 11-16, let

10. proj,Vvz =

1 -1
Vi = 0
1 1

V3 = 4

be

vectors in R® with inner product the standard dot

product.

11
12.

13.

14.
15.
16.

In
P

1

~

18.

19.

20.
21.
22.
23.

24,

25.

26.

The set {v1, Vo, v3} is orthogonal.

The set {v1, Vo, v3} is a basis for R3.

1
If W=gpan{vy,vo}andu=| 1
1

, then

Projy U = v + 1v,.
If W = span{vy, Vo, v3}, then W+ = {0}.
If W = span{vy, v}, then W+ = {0}.

W = span{vi, Vo, v3}, then projy, v = v for any
vector v e RS.

Exercises 17-23, use the inner product defined on
defined by

1
(p,q) = /1 p(x)q(x)dx

=l = 7

The polynomials p(x) = x and ¢(x) = x> — 1 are
orthogonal.

The polynomials p(x) =1 and g(x) = x? — 1 are
orthogonal.

The set {1, x, x2 — 3} is orthogonal.
The vector p(x) =  is a unit vector.
If W = span{1, x}, then dim(W+) = 1.

If W = span{1, x?}, then a basis for W+
is {1, x}.

An n x n symmetric matrix has » distinct real
eigenvalues.

If u and v are vectors in R?, then
(U, v) = 3uivy — upv; defines an inner product.

For any inner product

(2u, 2v + 2w) = 2 (U, V) + 2 (U, w)



27.

28.

29.

30.

31.

32.

33.

If W = span{1, x?} is a subspace of P, with
inner product

1
(p.q) = /0 p(x)g(x)dx

then a basis for W= is {x}.

If {ug,...,u,} is a basis for a subspace W of an
inner product space V and {vi, ..., V,,} is a basis
for W+, then {us, ..., U, V1, ..., V,} is a basis
for V.

If A is an n x n matrix whose column vectors
form an orthogonal set in R" with the standard
inner product, then col(A) = R".

In R? with the standard inner product, the
orthogonal complement of y = 2x is y = %x.

In R® with the standard inner product, the
orthogonal complement of —3x + 3z =0 is
-3
span 0
3

Every finite dimensional inner product space has
an orthonormal basis.

If
1 0
W = gpan 2 1, 1
1 -1

then a basis for W+ is also a basis for the null

space of
0

1
A= 2 1
1 -1

34.

35.

36.

37.

38.

39.

40.
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If
1 -1
W = span 01, 1
1 0
then dim(w') = 2.
If
0 1
W = span 11,10
1 1
then
-1
W+ = span -1
1
In R® with the standard inner product there exists

a subspace W such that dim(W) = dim(W+).

If A is an n x n matrix whose column vectors are
orthonormal, then AA’v is the orthogonal
projection of v onto col(A).

If u and v are orthogonal, w; is a unit vector in
the direction of u, and w, is a unit vector in the
opposite direction of v, then wy and w, are
orthogonal.

If u and v are vectors in R" and the vector
projection of u onto v is equal to the vector
projection of v onto u, then u and v are linearly
independent.

If A is an m x n matrix, then AA” and A’ A have
the same rank.
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Praiminaries

Algebra of Sets

The notion of a set is a fundamental concept in mathematics allowing for the grouping
and analysis of objects with common attributes. For example, we can consider the
collection of all even numbers, or the collection of all polynomials of degree 3. A set
is any well-defined collection of objects. By this we mean that a clear process exists
for deciding whether an object is contained in the set. The colors of the rainbow—red,
yellow, green, blue, and purple—can be grouped in the set

C = {red, yellow, green, blue, purple}

The objects contained in a set are called members, or elements, of the set. To indicate
that x is an element of a set S, we write x € S. Since green is one of the colors of the
rainbow, we have that green € C. The color orange, however, is not one of the colors
of the rainbow and therefore is not an element of C. In this case we write orange ¢ C.

There are several ways to write a set. If the number of elements is finite and
small, then all the elements can be listed, as we did with the set C, separated by
commas and enclosed in braces. Another example is

S = {_37 _27 O’ 15 47 7}

If a pattern exists among its elements, a set can be described by specifying only a
few of them. For example,
S=1{2,4,6,...,36}

is the set of all even numbers between 2 and 36, inclusive. The set of all even whole
numbers can be written
T =1{2,4,6,...})

Special sets of numbers are often given special symbols. Several common ones
are described here. The set of natural numbers, denoted by N, is the set

N=1{1,23,...}
The set of integers, denoted by Z, is given by
Z=1{..,-3,-2,-1,0,1,2,3,...}

409
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We use the symbol @ to denote the set of rational numbers, which can be described as

@={§ p,qGZ,qaéO}

Finally, the set of real numbers, denoted by R, consists of all rational and irrational
numbers. Examples of irrational numbers are +/2 and .
In many cases, the set we wish to consider is taken from a larger one. For example,

S={xeR|-1<x<4}

is the set of all real numbers greater than or equal to —1 and less than 4. In general,
the notation
{x € L | restriction on x}

translates to “the set of all x in L such that x satisfies the restriction.” In some cases
L is omitted if a universal set is implied or understood.

Sets can be compared using the notion of containment. Denote two sets by A and
B. The set A is contained in B if each element of A is also in B. When this happens,
we say that A is a subset of B and write A C B. For example, let

A={1,2) B={1,2,3} and C=1{23,4)

Since every element of A is also in B, we have A C B. However, A is not a subset
of C since 1 € A but 1 ¢ C. In this case we write A ¢ C. For the sets of natural
numbers, integers, rational numbers, and real numbers, we have

NCZCQCR

The set with no elements is called the empty set, or null set, and is denoted by ¢.
One special property of the empty set ¢ is that it is a subset of every set.

Two sets A and B are equal if they have the same elements. Alternatively, A and
B are equal if A € B and B C A. In this case we write A = B.

Operations on Sets

Elements can be extracted from several sets and placed in one set by using the oper-
ations of intersection and union. The intersection of two sets A and B, denoted by
A N B, is the set of all elements that are in both A and B, that is,

ANB={x|xeAandx € B}

The union of two sets A and B, denoted by A U B, is the set of all elements that are
in A or B, that is,
AUB={x|xeAorxe B}

As an illustration, let A = {1,3,5} and B = {1, 2,4}. Then
ANB={1} and AUB=1{1,2,3,4,5}

A graphical device, called a Venn diagram, is helpful for visualizing set operations.
The Venn diagrams for the intersection and union of two sets are shown in Fig. 1.
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A B A B
ANB AUB
Figure 1

m Define two intervals of real numbers by A =[—3,2) and B =[-7,1). Find AN B

Solution

and A U B.

Since the intervals overlap with —7 < —3 < 1 < 2, the intersection is the interval
ANB=[-31)

and the union is the interval
AUB=[-7,2)

Notice that x ¢ AN B ifand only if x ¢ Aor x ¢ B, and x ¢ AU B if and only
ifx ¢ Aand x ¢ B.

The complement of the set A relative to the set B, denoted by B\ A, consists of all
elements of B that are not elements of A. In set notation this complement is given by

B\A={x e B|x¢A}
For example, let A and B be the intervals given by A =[1, 2] and B = [0, 5]. Then
B\A =1[0,1) U (2,5]

If A is taken from a known universal set, then the complement of A is denoted
by A¢. To illustrate, let A = [1, 2] as before. Then the complement of A relative to
the set of real numbers is

R\A = A° = (=00, 1) U (2, 00)

Another operation on sets is the Cartesian product. Specifically, the Cartesian
product of two sets A and B, denoted by A x B, is the set of all ordered pairs whose
first component comes from A and whose second component comes from B. So

Ax B={(x,y)|xeAand y € B}
For example, if A ={1,2} and B = {10, 20}, then
A x B ={(1,10), (1, 20), (2, 10), (2, 20)}

This last set is a subset of the Euclidean plane, which can be written as the Cartesian
product of R with itself, so that

RZ=RxR={(x,y)|x,yeR}
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5:" Solution

1 [-3.2) x (=2,1]

I
)
S N

51

Figure 2

Solution

Let A =[-3,2) and B = (—2, 1]. Describe the set A x B.

Since A x B consists of all ordered pairs whose first component comes from A and
second from B, we have

—3<x<2 and —-2<y<l1

The points that satisfy these two conditions lie in the rectangular region shown in
Fig. 2.

Example 3 shows that operations on sets can be combined to produce results
similar to the arithmetic properties of real numbers.

Verify that if A, B, and C are sets, then AN (BUC) =(ANB)UANC).

The Venn diagrams in Fig. 3 show that although the two sets are computed in
different ways, the result is the same. The quantities inside the parentheses are
carried out first. Of course, the picture alone does not constitute a proof. To establish
the fact, we must show that the set on the left-hand side of the equation above is
a subset of the set on the right, and vice versa.

A A
& | |,
ANBUC) (ANB)UANC)
Figure 3

Indeed, if x e AN (BUC), then x € A and x € BU C. This is equivalent to
the statement x € A and (x € B or x € C), which in turn is also equivalent to

(x e Aand x € B) (xeAand x € C)
Hence, x € (AN B)U (AN C), and we have shown that
AN(BUC)C(ANB)U(ANC)
On the other hand, let x € (AN B) U (A N C), which can also be written as
x € (ANB) xe(ANC)

or

or

This gives

xeA and xeB or xeA and xeC

In either case, x € A and, in addition, x € B or x € C, so that
xe€AN(BUC)
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Therefore,
(ANB)UANC)C AN(BUC)

Since each set is a subset of the other, we have
ANBUC)=(ANB)UANC)

Theorem 1 includes the result given in Example 3 along with other properties of
set operations. The verifications of the remaining properties are left as exercises.

Let A, B, and C be sets contained in a universal set U.

1. ANA=A AUA=A

(A=A

ANA =¢, AUA°=U

ANB=BNA AUB=BUA
(ANB)NC=ANBNC),(AUB)UC=AU(BUCQC)
AN(BUC)=(ANB)U(ANC)
AUBNC)=(AUB)N(AUC)

SR

DeMorgan’s Laws Let A, B, and C be sets. Then
1. A\(BUC) = (A\B) N (A\C)
2. A\(BNC) = (A\B) U (A\C)

Proof (1) We need to verify that the set on the left-hand side of the equation is a
subset of the set on the right, and vice versa. We begin by letting x € A\(B U C).
This means that x € A and x ¢ B U C. This is equivalent to the statement

x €A and (x¢ Band x ¢ C)
which is then equivalent to
xeA and x¢B and xeA and x¢C
This last pair of statements gives
x € (A\B)N(A\C) sothat  A\(BUC) C (A\B)N(A\C)

To show containment in the other direction, we let x € (A\B) N (A\C). Rewriting
this in equivalent forms, we have

xe(A\B) and x e (A\O)
xe€eA and x ¢ B and xeA and x¢C
xeA and x¢B and x¢C

xeA and x ¢ (BUCQC)
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Therefore,
(A\B) N (A\C) C A\(BUC(C)

(2) The proof is similar to the one given in part 1 and is left as an exercise.

Exercise Set A.1

In Exercises 1-6, let the universal set be Z and let 17. C x B
A={-4,-2,0,1,2,3,5,7,9} 18. (A x B)\[C x (BN ()]
B = {_37 _27 _17 2’ 47 6’ 87 9’ 10} 19. A X (B ﬂ C)

Compute the set.

1. ANnB
2. AUB A={1,2,3,57,911}
3 AxB B ={2,5, 10, 14, 20}
C ={1,5,7,14, 30, 37}
4. (AU B)* )
Verify that the statement holds.
5. A\B
2. ( ANB)NC=ANBNC)
5. B\ 22. (AUB)UC=AUBUC
In Exercises 7—14, use the sets (AUBUC=4UBUO
23. AN(BUC)=(ANB)U(ANC)
A= (-11,3] B =0, 8] C=[-9 00)
24. AU(BNC)=(AUB)N(AUCQC)
Compute the set.
25. A\(BUC) = (A\B) N (A\C)
7. ANB
26. A\(BNC) = (A\B) U (A\C)
8. (AU B)* _
In Exercises 27—-34, show that the statement holds for
9. A\B all sets A, B, and C.
10. C\A 27. (A = A
11. A\C 28. The set A U A€ is the universal set.
12. (AUB)XNC 29. ANB=BNA
13. (AU B)\C 30 AUB=BUA
14. B\(ANC) 3. ANB)NC=ANMBNC)
In Exercises 15-20, use the sets 32. AUB)UC=AUBUOQO)
A=(-=2,3] B=[14 cC=][02] 33. AUBNC)=(AUB)N(AUCQ)
to sketch the specified set in the plane. 34. A\(BNC) = (A\B) U (A\C)
15. A x B 35. If A and B are sets, show that

16. Bx C

20. (Ax B)N(A xC)
In Exercises 21-26, let

A\B = AN B°
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36. If A and B are sets, show that 39. If A, B, and C are sets, show that
(AUB)NA“=B\A Ax (BNC)=(Ax B)N(AxC)
37. If Aand B are sets, show that 40. The symmetric difference operation A on two sets
(AU B)\(AN B) = (A\B) U (B\A) A and B is defined by
AAB = (A\B) U (B\A)
38. If A and B are sets, show that Show that
(AN B) = A\(A\B) AAB = (AUB)\(AN B)
A.2 » Functions

DEFINITION 1

The sets we described in Sec. A.1 along with functions are two of the fundamental
objects of modern mathematics. Sets act as nouns defining objects and functions as
verbs describing actions to be performed on the elements of a set. Functions connect
each element of one set to a unique element of another set. The functions that are
studied in calculus are defined on sets of real numbers. Other branches of mathematics
require functions that are defined on other types of sets. The following definition is
general enough for a wide variety of abstract settings.

Function A function f from a set X to a set Y is a rule of correspondence
that associates with each element of X exactly one element of Y.

Before continuing with a description of functions, we note that there are other
ways of associating the elements of two sets. A relation is a rule of correspondence
that does not (necessarily) assign a unique element of Y for each element of X.
A function, then, is a relation that is well defined with a clear procedure that associates
a unique element of Y with each element of X. A common metaphor for a function
is a machine that produces a unique output for each input.

A function f is also called a mapping from X to Y and is written f: X — Y.
If x € X is associated with y € Y via the function f, then we call y the image of x
under f and write y = f(x). The set X is called the domain of f and is denoted by
dom(f). The range of f, denoted by range(f), is the set of all images of f. That is,

range(f) = {f (x) | x € dom(f)}
If A is a subset of the domain, then the image of A is defined by
fA) ={fx)|x €A}

Using this notation, we have range(f) = f(X).

There are many ways of describing functions. The pictures shown in Fig. 1, give
us one way while providing an illustration of the key idea distinguishing relations
from functions.
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Figure 2

s Y

1+

il T[\/ZT[ X

Figure 3

A function Not a function

Figure 1

The relation f, shown in Fig. 1, is a function since it is well defined with each
element of the set X corresponding to a unique element of the set Y. Notice that more
than one element in the domain of the function f can be associated with the same
element in the range. In this case x3 and x4 both map to y3. However, the relation
g, also shown in Fig. 1, is not a function since x3 corresponds to both y; and ya.
Notice in this example that f(X) is not equal to Y, since y4 is not in the range of
f- In general, for the mapping f: X — Y, the set X is always the domain, but
range(f) C V.

The graph of a function f: X — Y is a subset of the Cartesian product X x Y
and is defined by

graph(f) = {(x, y) | x e X'and y = f(x) € range(/)}
For a function f: R — R the graph is a subset of R?, the Cartesian plane.
A familiar function is f: R — R defined by the rule

f)=x>—4x+3=(x—-27°>-1

Since the rule describing the function is defined for all real numbers, we have
dom(f) = R. For the range, since the vertex of the parabola is (2, —1), then
range(f) = [—1, oco0). These sets are also evident from the graph of the function,
as shown in Fig. 2. Also the image of x = 0 is f(0) = 3. Notice that in this example
it is also the case that f(4) = 3, so {0, 4} is the set of all real numbers with image
equal to 3. The set {0, 4} is called the inverse image of the set {3}. This motivates the
next concept.

If f: X'— Y is a function and B C Y, then the inverse image of B, denoted
by f~Y(B), is the set of all elements of the domain that are mapped to B. That is,

FHB) ={x e X| f(x) € B}

The set f~1(B) is also called the set of preimages of the set B. As another illustration
let f: [0, 2n] — [—1, 1] be defined by f(x) = sinx. The graph is shown in Fig. 3.
We see from the graph that

fﬁl([ov l]) = [O’ j-':] and fﬁl([_lv O]) = [T':v 27[]
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T EN et /: R — R be the function defined by f(x) = x? — 4x + 3. Define the sets

Solution

Qoo o

A=[0,3] B=[14 C=[-13 D=I0,3]

Compare the sets f(AN B) and f(A) N f(B).
Compare the sets f(AU B) and f(A) U f(B).
Compare the sets f~2(C N D) and f~1(C) N f~1(D).
Compare the sets f~%(C U D) and f~1(C)U f~1(D).
Since AN B =1, 3], we see from Fig. 2 that f(AN B) =[—1,0]. Again
using the graph of f, we have f(A)= f([0,3])=[-1,3] and f(B) =
(1,4 =[-1, 3], so that f(A) N f(B) =[—1, 3]. Hence, we have shown
that
fANB) C f(A)N f(B) with f(ANB)# f(A)N f(B)
Since AU B = [0, 4], we have f(AU B) =[-1,3]. Also f(A) =[-1,3] =
f(B), so that f(A)U f(B) =[—1, 3]. Therefore,
f(AUB) = f(A)U f(B)
Since C N D = [0, 3], we have
fHenD)=xeR| f(x)e[0,3]}
={xeR|0= f(x) <3}
=xeR|0<(x—-2%-1<3)
We see from Fig. 2
fl(cnD)=[0,1]U[3, 4]
On the other hand,
f7HC)=10,4]
The inverse image of the set D is
74Dy =1[0,1]U[3,4]

Finally,
Fon o) = nD)

. Since C U D = [-1, 3], we have from the results in part (c)

i cub)=rtoyu D)

Theorem 3 summarizes several results about images of sets and inverse images

of sets including the observations made in Example 1.



418

Appendix A Preliminaries

THEOREM 3

Let f: X — Y be a function, and suppose A and B are subsets of X and C and
D are subsets of Y. Then

1 f(ANB) C f(A)N f(B)

2. f(AUB) = f(A)U f(B)

3. f/HcnD)=rt)n D)
4. f~{(cub)= 1)U D)
5. AC f(f(A)

6. f(fHCHCC

Proof (1)Lety e f(AN B). Then thereissomex € AN B suchthaty = f(x).
This means that y € f(A) and y € f(B), and hence y € f(A) N f(B). Therefore,
F(ANB) < f(A)N f(B).

(3) To show that the sets are equal, we show that each set is a subset of the other.
Let x € f~1(C N D), so that f(x) € C N D, which is equivalent to the statement
f(x) € C and f(x) € D. Therefore, x € f~1(C) and x € f~1(D), and we have
f/ienbyc rie)yn D).

Now let x € f~1(C) N f~X(D), which is equivalent to the statement x e
F7H(C) and x € f~Y(D). Then f(x) € C and f(x) € D, so that f(x) € CN D.
Therefore, x € f~%(C N D) and hence f~%(C)N f~1(D) € f~Y(C N D).

(5) If xeA, then f(x)e f(A), and hence x e f~1(f(A)). This gives
A C N (A).

The proofs of parts 2, 4, and 6 are left as exercises.

Example 1(a) provides a counterexample to show that the result in Theorem 3,
part 1, cannot be replaced with equality.

Inverse Functions

An inversefunction of a function f, when it exists, is a function that reverses the action
of f. Observe that if g is an inverse function of f and f(a) = b, then g(b) = a. For
example, if f(x) =3x —1and g(x) = (x +1)/3, then f(2) =5 and g(5) = 2. One
of the most important function-inverse pairs in mathematics and science is f(x) = ¢*
and g(x) = Inx.

For a function to have an inverse function, the inverse image for each ele-
ment of the range of the function must be well defined. This is often not the case.
For example, the function f: R — R defined by f(x) = x? cannot be reversed as a
function since the inverse image of the set {4} is the set {—2, 2}. Notice that the inverse
image of a set in the range of a function is always defined, but the function may not
have an inverse function. A function that has an inverse is called invertible. Later
in this section we show that if a function is invertible, then it has a unique inverse.
This will justify the use of the definite article and the symbol £~ when referring to
the inverse of the function f. Functions that have inverses are characterized by the
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property called one-to-one. The function described in Fig. 1 is not one-to-one, since
both x3 and x4 are sent to the same element of Y. This cannot occur for a one-to-one
function.

One-to-One Function Let f: X — Y be a function. Then f is called one-
to-one, or injective, if for all x; and x, with xq1 # x2, then f(x1) # f(x2).

Alternatively, f is one-to-one if whenever f(x1) = f(x2), then x; = x,. For a
function f: R — R, this condition is met if every horizontal line intersects the graph
of f in at most one point. When this happens, f passes the horizontal line test and
is thus invertible. This test is similar to the vertical line test used to determine if
f is a function. The inverse of f is denoted by £~ with f~1: range(f) — X.
Theorem 4 gives a characterization of functions that are invertible. We omit the
proof.

Let X and Y be nonempty sets and f: X — Y be a function. The function f has
an inverse function if and only if f is one-to-one.

As an illustration, let f: R — R be defined by y = f(x) = 3x 4+ 1. Since the
graph, which is a straight line, satisfies the horizontal line test, the function is one-
to-one and hence has an inverse function. To find the inverse in this case is an easy
matter. We can solve for x in terms of y to obtain

y—1
X = —
3
The inverse function is then written using the same independent variable, so that
1 x—1
X) =
f(x) 3

It is also possible to show that a function has an inverse even when it is difficult to
find the inverse.

Show the function f: R — R defined by f(x) = x® + x is invertible.

By Theorem 4, to show that f is invertible, we show that f is one-to-one. Suppose
that x; # xp with x; < x. We wish to show that f(x1) # f(x2). Since the cubing
function is strictly increasing for all x, we have

X1 < X2 and X3 < i3
Therefore,

fa)=x34+x <x3+x=f(x2) sothat  f(x1) # f(x2)
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The graph of an invertible function can be used to describe the graph of the
inverse function. To see how, suppose that (a, b) is a point on the graph of y = f(x).
Then b = f(a) and a = f~1(b). Consequently, the point (b, a) is on the graph of
y = f~1(x). Since the point (b, a) is the reflection of (a, b) through the line y = x,
the graphs of f and £~ are also reflections through y = x. The graph of the function
and its inverse in Example 2 are shown in Fig. 4.

-_yf(x) =x3+x

Figure 4

When f: X — Y is a function such that the set of images is all of Y, that is,
F(X) =Y, we call the function onto.

Onto Function The function f: X — Y is called onto, or surjective, if
range(f) =Y.

For example, the function of Example 2 is onto since the range of f is all of R.
See Fig. 4. A function is called bijective if it is both one-to-one and onto.

Notice that the function f: R — R with f(x) = x? is not onto since range (f) =
[0, 00). Of course, every function is a mapping onto its range. So the function
f: R — [0, co) defined by f(x)=x? is onto. This new version of the original
function is not one-to-one, but by restricting the domain to [0, co), we can define a
version that is one-to-one and onto. That is, the function f: [0, co) —> [0, oco) defined
by f(x) = x? is a bijection. The function defined in Example 2 is also bijective. Notice
also that a function has an inverse if and only if it is bijective.

Composition of Functions

Functions can be combined in a variety of ways to create new functions. For example,
if f: X3 — Y;and g: Xo —> Y, are real-valued functions of a real variable, then
the standard arithmetic operations on functions are defined by

(f+9x) = fx)+gkx)
(f—9x) = fx)—gk)
(fe)(x) = f(x)g(x)

f _ S
(g) =0
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The domains of these functions are given by dom(f +g) =dom(f —g) =
dom(fg) = X3 NX; and dom(f/g) = (X1 N X2)\{x | g(x) = 0}. Another method of
combining functions is through the composition of two functions. In the compo-
sition of two functions f and g, the output of one function is used as the input
to the other. For example, if f(x) = /x and g(x) = x?> —x — 2, then f(g(3)) =
f(4) = 2 is the composition of f with g evaluated at the number 3 and is denoted
by (f°8)(3).

Composition Let A, B, and C be nonempty setsand f: B — Candg: A — B
be functions. The composition fog: A — C is defined by

(fo8)(x) = f(g(x))
The domain of the composition is dom(fog) = {x € dom(g) | g(x) € dom(f)}.

A function and its inverse undo each other relative to composition. For example,
let f(x) =2x — 1. Since f is one-to-one, it is invertible with f=1(x) = (x + 1)/2.
Notice that

1 2x — 141
Flp = e = L AR

and

(Fof ™M) = £(f ) =2 (#) Clextl-1=2x

Suppose that f: X — Y is a bijection. Then

1 (flof)(x) =x forall x e X
2. (fof Hx)y=xforallx eY

As mentioned earlier, when an inverse function exists, it is unique. To see this,
let £: X — Y be an invertible function and f~* an inverse function. Suppose that
g: Y — X is another inverse function for f. Let Ix be the identity function on X
and Iy the identity function on Y. That is, Ix(x) = x for all x € X'and Iy(y) = y for
all y e Y. If yisin, then

g(y) = goly(y) = go(fof~H(y)

=g(f(fL) = (gof)ef L)
= Ix(f o) = )

Since this holds for all y in Y, then g = f~1. Consequently, when it exists, the inverse
function is unique. This justifies the use of the symbol £~ for the inverse of £, when
it exists.
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THEOREM 7

THEOREM 8

Let f: X — Y be a bijection. Then

1. /%Y — Xis also a bijection,
2.(fHt=rf

Let A, B, and C be nonempty setsand f: B — C and g: A — B be functions.

If f and g are injections, then fog is an injection.
If f and g are surjections, then fog is a surjection.
If f and g are bijections, then fog is a bijection.
If fog is an injection, then g is an injection.

If fog is a surjection, then f is a surjection.

a bk~ w DN PE

Proof (1) Suppose that x; and x, are in A and (fog)(x1) = (fog)(x2). Then by
the definition of composition, we have

f(g(x1)) = f(g(x2))

Since f is an injection, g(x1) = g(x2). But since g is also an injection, we have
x1 = x. Therefore, fog is an injection.

(5) Let ¢ € C. Since fog: A —> C is a surjection, there is some a € A such that
(feg)(a) =c. That is, f(g(a)) = c. But g(a) € B, so there is an element of B
with image under f equal to c¢. Since ¢ was chosen arbitrarily, we know that f is
a surjection.

The proofs of parts 2, 3, and 4 are left as exercises.

Let A, B, and C be nonempty setsand f: B — C and g: A —> B be functions. If
f and g are bijections, then the function fog has an inverse function and ( fog)~ =
g leof

Proof By Theorem 7, the composition fog: A — C is a bijection; hence by
Theorem 4, the inverse function (fog)~': C —> A exists. Moreover, the function
g tof~1 also maps C to A. For each ¢ € C we will show that (fog)™(c) =
(g Y f 1) (c). Let ¢ € C. Since f is onto, there is b € B such that f(b) = ¢, S0
that » = f~1(c). Next, since g is onto, there is an a € A such that g(a) = b, which
is equivalent to a = g~1(b). Taking compositions gives (fog)(a) = f(g(a)) = c,
and hence (fog)~1(c) = a. We also have g~(f~1(c)) = (gt f 1) (c) = a. Since
this holds for all ¢ € C, the functions (fog)~! and g~1of~tare identical, that is,
(fog) t=gtof .
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In Exercises 1-10, let
X=1{1,2,3,4,5,6}
Y ={-2,-1,3,5,9,11, 14}
and define f: X — Y by the set of ordered pairs
{1,-2),(2,3),3,9), 4,-2), (5,11), (6, -1)}
Explain why f is a function.
Is f a one-to-one function? Explain.
Is f an onto function? Specify range(f).
Let A = {1,2,4)}. Find f(A).
Find f~1({—2}).
Find f~1(f({1}).
Does f have an inverse function? Explain.

© N o 0~ WD PRE

Is it possible to define a function with domain X
that is onto Y? Explain.

9. Define a function g: X — Y that is one-to-one.

10. Is it possible to define a function g: Y — X that
is onto? Explain.

In Exercises 11-14, use the function f: R — R
defined by

fx) =x?
11. Let A = (—3,5) and B = [0, 7). Verify that
f(AUB) = f(AU f(B)
12. Let C =[1,00) and D = [3,5]. Verify that
fHCUD) = fHOU fHD)

13. Let A =[-2,0] and B = [0, 2]. Verify that

f(ANB) C f(A)N f(B)
and the sets are not equal.

14. Define a function g by the rule g(x) = x?, but
with the domain restricted to the interval [0, co).
If A=10,5) and B = [2,7), verify that

8(ANB) =g(A)Ng(B)
What property does g have that f does not?

15.

16.

17.

18.

19.

20.

21.
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Define a function f: R — R by f(x) = ax + b,
where a and b are real numbers with a # 0. Find
the inverse function of f.

Define a function f: R — R by f(x) = x° + 2x.
Show that the inverse function of f exists.

Given a function f, define for each positive
integer n

)y = (fefe--of)x)

where the composition is taken n — 1 times. If ¢
is a fixed real number and f(x) = —x + ¢, find
f"(c) for all n.

Define a function f/: R — R by

2x if0<ux
f(x):{Z—Zx if 2 <x

Sketch the graphs of y = f(x) and y = (fof)(x).
Define a function f: R — R by
f(x) — erfl

a. Show that f is one-to-one.
b. Is f onto? Justify your answer.

c. Define a function g with the same rule and
domain as f but that is onto.

d. Find the inverse function for the g defined in
part (c).
Define a function f: R — R by
fo=e
Show the function is not one-to-one.
Define a function f: N — N by
f(n) =2n

a. Show that f is one-to-one.
b. Is f onto? Explain.

c. If E denotes the set of even positive integers
and O the odd positive integers, find f~1(E)
and f71(0).
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22. Define a function f: Z — Z by c. Let A be the set of all points that lie on the

23.

24,

f(n)={’,jf§

Let E denote the set of even integers and O the

set of odd integers. Find

Define a function f: Z x Z — 7 by

f((m, n))

if 1 is even line y =x+ 1. Find f(A).

if n is odd In Exercises 25-27, f: X — Y is a function, A and B
are subsets of X, and C and D are subsets of Y. Prove
the statements.

25. f(AUB) = f(A)U f(B)
26. f~{(cuD)=ftC)u D)
27. f(f~{cycc

f(E) and f(0).

=2m+n

a Let A={(p,q) | pand g are odd}. Find In Exercises 28-30, f: B — C and g: A — B are

f(A).

functions. Prove the statements.

b. Let B ={(p, q) | ¢ is odd}. Find f(B).

c. Find f~1({0}).

28. If f and g are surjections, then fog is a
surjection.

d. Let E denote the set of even integers. Find

FYE). 29. If f and g are bijections, then fog is a bijection.
e Leth denote the set of odd integers. Find 30. If fog is an injection, then g is an injection.
f7(@0).

f. Show that f is not one-to-one.

g. Show that f is onto.

Define a function f: R?

3L If f: X — Y is a function and A and B are
subsets of X, show that

— R2 by F(A\f(B) S f(A\B)

S, ) = (2x, 2x + 3y) 32. If f: X — Y is a function and C and D are

subsets of Y, show that

a. Show that f is one-to-one. . . .
b. Is f onto? Justify your answer. JT(C\D) = fT(O\f (D)

A3

Techniques of Proof

Mathematics is built on facts. A few of these, called axioms, are accepted as self-
evident and do not require justification. Every other statement of fact requires proof.
A proof is the process of establishing the validity of a statement. Results in math-
ematics that require proof are called theorems and are made up of two parts. The
first part, called the hypothesis, is a set of assumptions. The second part, called the
conclusion, is the statement that requires proof. It is customary to use the letter P to
denote the hypotheses (or hypothesis if there is only one) and the letter Q to denote
the conclusion. A theorem is symbolized by

P= 0

which we read as “if P, then Q” or “P implies Q” or “P is sufficient for Q.” The
conver se of a theorem is symbolized by

QO = P
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read as “Q implies P” or “P is necessary for Q.” For example, let P be the statement
Mary lives in lowa and Q the statement that Mary lives in the United States. Then
certainly P — (Q is a theorem since every resident of lowa is a resident of the
United States. But 9 — P is not a theorem since, for example, if Mary is a
resident of California, then she is a resident of the United States but not a resident of
lowa. So the statement Q — P is not always true given that Q is true. In terms
of sets, if A is the set of residents of lowa and B is the set of residents of the United
States, then the statement P is Mary is in A and Q is Mary is in B. Then Mary is in A
implies Mary is in B. It is also clear that if Mary is in B\ A, then Mary is in B does
not imply that Mary is in A.

A statement that is equivalent to the theorem P — Q is the contrapositive
statement ~Q — ~P, thatis, not Q implies not P. In the example above, if Mary is
not a resident of the United States, then Mary is not a resident of lowa. An equivalent
formulation of the statement, in the terminology of sets, is that if Mary ¢ B, then it
implies Mary ¢ A.

There are other statements in mathematics that require proof. Lemmas are pre-
liminary results used to prove theorems, propositions are results not as important as
theorems, and corollaries are special cases of a theorem. A statement that is not yet
proven is called a conjecture. One of the most famous conjectures is the celebrated
Riemann hypothesis. A single counterexample is enough to refute a false conjec-
ture. For example, the statement All lions have green eyes is rendered invalid by the
discovery of a single blue-eyed lion.

In this section we briefly introduce three main types of proof. A fourth type,
called mathematical induction, is discussed in Sec. A.4.

Direct Argument

In a direct argument, a sequence of logical steps links the hypotheses P to the
conclusion Q. Example 1 provides an illustration of this technique.

Prove that if p and ¢ are odd integers, then p + ¢ is an even integer.
To prove this statement with a direct argument, we assume that p and ¢ are odd
integers. Then there are integers m and n such that
p=2m+1 and qg=2n+1
Adding p and ¢ gives

ptrtqg=2m+1+2n+1
=2(m+n)+2
=2m+n+1)

Since p + ¢ is a multiple of 2, it is an even integer.
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Solution

Solution

Contrapositive Argument

The contrapositive statement of the statement P — Q is the statement
~Q = ~P. The notation ~Q denotes the negation of the statement Q. A state-
ment and the contrapositive statement are equivalent, so that if one holds, then the
other also holds. In a contrapositive argument the hypothesis is ~Q, and we proceed
with a direct argument to show that ~P holds.

If p? is an even integer, then p is an even integer.

In a direct argument we assume that p? is even, so that we can write p? = 2k for

some integer k. Then
p =2k =2k

which does not allow us to conclude that p is even.

To use a contrapositive argument, we assume that p is not an even integer.
That is, we assume that p is an odd integer. Then there is an integer k such that
p = 2k + 1. Squaring both sides of equation p = 2k + 1 gives

p? = (2k + 1)?
=4k% 4+ 4k + 1
= 2(2k* +2k) + 1

and hence p? is an odd integer. Therefore, the original statement holds.

Contradiction Argument

In a contradiction argument to show that a statement holds, we assume the contrary
and use this assumption to arrive at some contradiction. For example, to prove that
the set of natural numbers N isinfinite, we would assume the set of natural numbers is
finite and argue that this leads to a contradiction. A contrapositive argument is a form
of contradiction where to prove P — (Q, we assume that P holds and ~Q holds
and arrive at the conclusion that ~ P holds. Since both P and ~ P cannot be true, we
have a contradiction. In certain cases the contradiction may be hard to recognize.

Prove that +/2 is an irrational number.

To use a contradiction argument, we assume that +/2 is not irrational. That is, we
assume that there are integers p and ¢ such that

v2="
q
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where p and g have no common factors. We will arrive at a contradiction by
showing that if v/2 = p/q, then p and ¢ do have a common factor. Squaring both
sides of the last equation gives

2

2=%  sothat p?=2g°

Hence, p? is even. Since p? is an even integer, then by Example 2 so is p. Thus,
there is an integer & such that p = 2k. Substituting 2k for p in the equation 2¢2 = p?
gives

2g° = p? = 2k)> = 4k*  sothat ¢ = 2k?
Hence, ¢ is also an even integer. Since p and ¢ are both even, they have a common

factor of 2, which contradicts the assumption that p and ¢ are chosen to have no
common factors.

Quantifiers

Often statements in mathematics are quantified using the universal quantifier for
all, denoted by the symbol Vv, or by the existential quantifier there exists, denoted
by the symbol 3. If P(x) is a statement that depends on the parameter x, then the
symbols

Vx, P(x)

are read for all x, P(x). To prove that the statement is true, we have to verify that the
statement P(x) holds for every choice of x. To prove that the statement is false, we
need to find only one x such that P(x) is false, that is, we need to find a counterex-
ample. To prove that a statement of the form

dx, P(x)

holds requires finding at least one x such that P(x) holds. The statement is false if
the statement

~(3x, P(x))

holds. When we negate a statement involving quantifiers, ~3 becomes V and ~V
becomes 3. So the statement

~(3x, P(x)) is equivalent to Vx, ~P(x)
and the statement

~(V¥x, P(x)) is equivalent to dx, ~P(x)
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Exercise Set A.3

1

Prove that in an isosceles right triangle, the
hypotenuse is +/2 times the length of one of the
equal sides.

Prove that if ABC is an isosceles right triangle
with C the vertex of the right angle and sides
opposite the vertices a, b, and ¢, respectively, then
the area of the triangle is ¢?/4.

Prove that in an equilateral triangle the area of the
triangle is +/3/4 times the square of the length of
a side.

Prove that if s and ¢ are rational numbers with
t # 0, then s/t is a rational number.

Prove that if a, b, and ¢ are integers such that a
divides b and b divides ¢, then a divides c.

Prove that if m and n are even integers, then
m 4+ n IS an even integer.

Prove that if n is an odd integer, then »n? is an odd
integer.

8. Prove that if n is in N, then n%2 + n + 3 is odd.

9. Prove that if a and b are consecutive integers,

10.

11

12.

13.

14.

15.

16.

then (a + b)? is an odd integer.

Prove that if m and »n are odd integers, then mn is
an odd integer.

Show that the statement if m and n are two
consecutive integers, then 4 divides m? + n? is
false.

Let f(x) = (x — 1)? and g(x) = x + 1. Prove
that if x isintheset S={x e R|0 <x < 3},
then f(x) < g(x).

Prove that if » is an integer and »? is odd, then n
is odd.

Prove that if » is an integer and »° is even, then n
is even.

Prove that if p and ¢ are positive real numbers
such that ,/pg # (p +¢q)/2, then p # q.

Prove that if ¢ is an odd integer, then the equation
n? +n — ¢ = 0 has no integer solution for .

17.

18.

19.
20.

21.

22.

23.

Prove that if x is a nonnegative real number such
that x < ¢, for every real number € > 0, then x = 0.

Prove that if x is a rational number and x + y is
an irrational number, then y is an irrational
number.

Prove that /2 is irrational.
Prove that if n in N, then
n n
>
n+1 n+2

Suppose that x and y are real numbers with
x < 2y. Prove that if 7xy < 3x? + 2y?, then
3x < y.

Define a function f: X — Y and sets A and B in
X that is a counterexample to show the statement

If f(A) C f(B), then A C B
is false.

Define a function f: X — Y and sets C and D in
Y that is a counterexample to show the statement

If /7)< f~Y(D), then C Cc D

is false.

In Exercises 24-30, f: X — Y is a function, A and B
are subsets of X, and C and D are subsets of Y. Prove
the statements.

24.
25.
26.

27

28.

29

If A C B, then f(A) C f(B).
If C € D, then f~1(C) € f~Y(D).
If f is an injection, then for all A and B

FANB) = f(A)N f(B)
If f is an injection, then for all A and B
J(A\B) = f(A\f(B)
If f is an injection, then for all A
FHf@A) = A
If f is a surjection, then for all C
e =c
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Mathematical Induction

Throughout mathematics there are statements that depend on natural numbers and
where the aim is to determine whether the statement is true or false for all natural
numbers. Some simple examples are the following three statements, the third being a
well-known puzzle, called the Tower of Hanoi puzzle.

1. For every natural number n, the sum of the first » natural numbers is given by

nn+1
2

2. The expression 6n + 1 is a prime number for every natural number n.

3. Given three pegs, labeled 1, 2, and 3, and a stack of n disks of decreasing
diameters on peg-1, the disks can be moved to peg-3 in 2" — 1 moves. This is
under the restriction that a disk can be placed on top of another disk only when
it has smaller diameter.

1+243+- - +n=

When we are considering a statement involving natural numbers to provide
insight, a useful first step is to substitute specific numbers for n and determine whether
the statement is true. If the statement is false, often a counterexample is found quickly,
allowing us to reject the statement. For example, in the second statement above, for
n=1,2, and 3 the expression 6n + 1 has values 7, 13, and 19, respectively, all of
which are prime numbers. However, if n =4, then 6(4) + 1 = 25, which is not a
prime number, and the statement is not true for all natural numbers ».

In the case of the first statement, the data in Table 1 provide more convincing
evidence that the formula may indeed hold for all natural numbers. Of course, to
establish the fact for all n requires a proof, which we postpone until Example 1.

For the Tower of Hanoi puzzle, when n = 1, the number of steps required is 1,
and when n = 2, it is also easy to see a solution requiring 3 steps. A solution for
n = 3 is given by the moves

D3 — P3,D2 — P2, D3 — P2,D1 — P3,D3 — P1,
D2 — P3,D1 — P3

Table 1

1424+3+---4n n(@+1)

1 0 -1

142=3 @6 —3
1+2+3=6 @ —g
1+2+3+4=10 @6 — 10
1+2+34445=15 6 — 15
1+2+3+4+5+6=21 | @021
14+24+3+4+5+6+7=28 | Q& _2g
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THEOREM 9

where D1, D2, and D3 represent the three disks of decreasing diameters and P1, P2,
and P3 represent the three pegs. So for n = 3, we have a solution with 7 =23 — 1
moves. Again, the evidence is leading toward the result being true, but we have not
given a satisfactory proof. Let’s push this example a bit further. How can we use the
result for three disks to argue that this result holds for four disks? The same sequence
of steps we gave for the solution of the three-disk problem can be used to move the
stack from P1 to either P2 or P3. Now, suppose that there are four disks on P1.
Since the bottom disk is the largest, P1 can be used as before to move the top three
disks. So as a first step, move the top three disks to P2, which requires 28 —1 =7
moves. Next, move the remaining (largest) disk on P1 to P3, which requires 1 move.
Now, using the same procedure as before, move the three-disk stack on P2 over to
P3, requiring another 22 — 1 = 7 moves. The total number of moves is now

22— +1=2*—2+4+1=2*-1=15

This approach contains the essentials of mathematical induction. We start with an
initial case, called the base case, that we can argue holds. The next step, called the
inductive hypothesis, provides a mechanism for advancing from one natural number
to the next. In the Tower of Hanoi example, the base case is the case for n = 1, and
one disk on P1 requires only 1 =2' — 1 move to transfer the disk to P3 or P2.
The inductive hypothesis is to assume that the result holds when there are n disks on
P1. We are required to argue the result holds for n + 1 disks on P1. We did this for
n=3.

Theorem 9 provides a formal statement of the principle of mathematical induction.
The proof of this statement, which we omit, is based on the axiomatic foundations of
the natural numbers. Specifically, the proof uses the well-ordering principle, which
states that every nonempty subset of N has a smallest element.

The Principle of Mathematical Induction
Let P be a statement that depends on the natural number n. Suppose that

1. Pistrue forn =1 and
2. When P is true for a natural number #, then P is true for the successor n + 1

Then the statement P is true for every natural number n.

The principle of mathematical induction is also referred to as mathematical induc-
tion, or simply induction.

An analogy to describe the process of mathematical induction is an infinite row
of dominoes that are toppled one domino at a time, starting with the first domino. If
the dominoes are set up so that whenever a domino falls its successor will fall (the
inductive hypothesis), then the entire row of dominoes will fall once the first domino
is toppled (base case).
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The principle of mathematical induction is used to prove a statement holds for
all natural numbers, or for all natural numbers beyond a fixed natural number. This
is illustrated in the following examples.

m Prove that for every natural number n,

n 1
Zk=1+2+3+'-'+n=n(’127+)

k=1

Solution To establish the base case when n = 1, notice that
(D
- 2

The inductive hypothesis is to assume that the statement is true for some fixed
natural number n. That is, we assume

1

nn—+1)
2
Next, add n + 1 to both sides of the last equation to obtain

1+2+3+ - +n=

14243+ +n+@m@+D=Q1A+2+3+ -+n)+@n+D
and we apply the inductive hypothesis to conclude

14243+ +n++D=1A+2+3+---+n)+n+1
_n(n+1)
B 7
_ (m+ D +2)
2

The last equality agrees with the stated formula for the successor of n, that is, for
n + 1. Therefore, by induction the statement holds for all natural numbers.

+@m+1)

m Prove that for every natural number n, the number 3" — 1 is divisible by 2.

Solution In Table 2 we have verified that for n =1, 2, 3,4, and 5 the number 3" — 1 is
divisible by 2.

In particular, if n =1, then 3" —1 =2, which is divisible by 2. Next, we

assume that the statement 3" — 1 is divisible by 2 holds. To complete the proof,

we must verify that the number 3"*1 — 1 is also divisible by 2. Since 3" —1 is
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divisible by 2, then there is a natural number ¢ such that

Table 2
n 3N -1 3'—-1=2q which gives 3'=2¢+1
1 2 Next, we rewrite the expression 3”1 — 1 to include 3" in order to use the inductive
) A hypothesis. This gives
3l _1=33")-1
3 26 =3(2g+1) -1
4 80 =6q +2
5 242 =23g +1)

Therefore, the expression 3"+ — 1 is also divisible by 2.

Recall that factorial notation is used to express the product of consecutive natural
numbers. Several examples are

=1
20=1.2=2
31=1-2-3=6

MN=1.2.3.4=24

20! = 2,432,902, 008, 176, 640, 000
For a natural number n, the definition of n factorial is the positive integer
n=nn-1)n-2)---3-2-1
We also define 0! = 1.

m Verify that for every natural number 7,

nl > 2n-1

Solution For n = 1 the statement is true, since n! = 1! = 1 and 2*~1 = 20 = 1. Now assume
that the statement n! > 271 holds. Next, we consider

(n+1!'=m+1n!

which we need to show is greater than or equal to 2". Applying the inductive
hypothesis to n! gives the inequality

n+D!>@m+1201
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Since for every natural number n > 1 it is also the case that n + 1 > 2, we have
m+D!>m+12t>2. 201 =2n

Consequently, the statement n! > 2"~ is true for every natural number n.

For any natural number n, find the sum of the odd natural numbers from 1 to
2n — 1.

The first five cases are given in Table 3.

Table 3
ni|2n-1| 1+3+-..--+(2n-1)
1
1+3=14
1+3+5=9

1+34+547=16
1+3+54+7+9=25

a|l b |lw (NN
O | N | |WwW ]|k~

The data in Table 3 suggest that for each n > 1,

143+5+7+ -+ (2n—1) =n?

Starting with the case for n = 1, we see that the left-hand side is 1 and the
expression on the right is 1° = 1. Hence, the statement holds when n = 1. Next,
we assume that 1 + 3+ 5+ - -- + (2n — 1) = n?. For the next case when the index
is n + 1, we consider the sum

143454 +Cn—D+20+1)—1] =14+345+---+ -1+ @n+1)

Using the inductive hypothesis, we get
143454+ +@n—D+Rnr+1D) —-1]=n’>+@n+1)

n2
=n?4+2n+1
=(n+1)7°

Therefore, by induction the statement holds for all natural numbers.
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m Let Py, P, ..., P, be n points in a coordinate plane with no three points collinear

Solution

(in a line). Verify that the number of line segments joining all pairs of points is

i’lz—l’l

2

In Fig. 1 is a picture for the case with five points. The number of line segments
connecting pairs of points is 10 = (5% — 5)/2.

P

Py

Figure 1

If one additional point is added to the graph in Fig. 1, the result is the graph
shown in Fig. 2. Moreover, adding the one additional point requires adding five
additional line segments, one to connect the new point to each of the five original
points. In general, an additional » line segments are required to move from a graph
with »n points to one with n + 1 points.

P Ps

Py

Figure 2

These observations lead to the following proof by induction.

If there is only one point, then the graph contains no line segments. Also since
(12 —1)/2 = 0, the statement holds for n = 1. Next, assume the number of line
segments needed to join » points in a coordinate plane is (n? — n)/2. If there is one
additional point, that is, n + 1 points, then n additional line segments are required.
Hence, by the inductive hypothesis, the total number of line segments required for
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n + 1 points is
n?—n n?—n+2n
S 0
n+2n+1-—1—n
B 2
_+D* -+
2

Therefore, by induction the statement holds for all natural numbers.

Binomial Coefficients and the Binomial Theorem

In Fig. 3 are the first eight rows of Pascal’s triangle. Notice that each element can
be obtained from the sum of the two elements to the immediate left and right in the
row above.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
Figure 3

In Fig. 4 are the expansions for (a + b)" forn =0, 1,2,3, ..., 7. The coefficients
of the expansions are exactly the numbers in Pascal’s triangle.

(a+0b)° 1

(a +Db)! a+b

(a + b)? a? + 2ab + b?

(a +b)® a® + 3a’b + 3ab? + b®

(a +b)* a* + 4a%b + 6a2b? + 4ab® + b*

(a +b)° a® +5a*b + 10a%b? + 10a?b® + 5ab* + b°

(a +b)8 a® + 6a°b + 154*b? + 20a°b® + 154%b* + 6ab® + b°

(a+b)" a’ 4 7a% + 21a°b? + 35a*b® + 35a°b* + 21a?b® + Tab® + b’

Figure 4

The numbers in Pascal’s triangle or the coefficients of an expansion of the form
(a + b)" are called the binomial coefficients. Notice that the number 20, in Fig. 3, is
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located in row 6 (starting with a row 0) and column 3 (starting with a column 0). In
addition, using factorials, we have the formula

6! 1.2.3-4-5-6

316 -3)!  (1-2-3)(1-2-3)
4.5.6

.2.3

0

SIS

Binomial Coefficient Forn > 0and 0 < r < n, the binomial coefficient ( ’: )

is defined by
n n!
< r > Crl(n—r)!

We observed above that entries in Pascal’s triangle can be obtained from the sum
of the two elements to the immediate left and right in the row above. The next identity
is the equivalent statement about binomial coefficients.

If kK and r are natural numbers such that 0 < r < k, then

r r—1 r
Proof First observe that

rl=r(r—1)! and k—r)l=(k—-r)k—-—r—1)!

Expanding the binomial coefficients using factorials gives

<k—1>+<k—1>_ (k — 1)! N (k — 1)!
r—1 r =Dk -1 =G -=D]'  rlk—1-r)

1 1
=(k-1! [(r — Dk —r)! + rlk —r —1)!]

B (k — 1) 11
T =Dk —r—1)! (k—r+r>

B (k — 1)! r+(k—r)
=Dk —r —1)! [ r(k —r) ]
(k — 1)! k
T —Dlk—r—1)! [r(k—r)}

k!
Tk =)l

()
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Binomial Theorem If ¢ and b are any numbers and » is a nonnegative integer,
then

n o__ n n n n—1 n n—232
(a+b)_(0>a+(l>a b—l—(z)a b
++(n)anrbr++( n )abnl—i-(n)bn
r n—1 n

Proof The proof is by induction on the exponent n. If n =1, then (a + b)" =

a + b, and
(g)gl—l-(’ll)bl:(é)a—i-(i)b=a+b

Therefore, the statement holds for the case n = 1. Next assume that the statement

(a+b)”=(g)a"+('1’)a"‘lb+~-~+(”ﬁ1 )ab”_l—i-(Z)b”

holds. For the next case, we consider (a + b)"™! = (a + b)(a + b)" and apply the
inductive hypothesis. This gives

(a+b)"" = (a+b)a+b)"

=<a+b>[(g)an+(';>an1b+...+(nﬁ1 >abn1+(g)bn]
—a[( e (3 ) e (L0 Jarta ()]

Now, combine the terms with the same exponents on a and b to obtain

o (3o [(3) (1)) ()
el (o ()
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Finally by repeated use of Proposition 1, we have

wrori= (731

)a”“—l—(n_;l )a”b—i—(ngl )a”lb2

n+1 n n+1 n+1
e (7 Y (272 )s

Therefore, by induction the statement holds for all natural numbers.

Exercise Set A.4

In Exercises 1-10, use mathematical induction to
show that the summation formula holds for all natural
numbers.

1 124224 32 ... 4 p2 = nlotDCn+D)
2. 13+23+33+'”+”3=M
1+447+-+@n—2) =280
3+11+19+ -+ @Bn—5 =4n’>—n
24548+ +(3n—1) = "Gt
3+7+11+4- -+ @n -1 =n@n+1)
3+6+9+...+3nzw

© N o o > W

1.242.3+43-4
_ n(n+)(n+2)
4 n(n + 1) = "OEOED
9. S k=2l
10. Sk kl=(n+ D! —1

11. Find a formula for all natural numbers n for the
sum

24+446+8+---+2n

Verify your answer, using mathematical induction.

12. Find a formula for all natural numbers n for the

sum R
> 4k —3)
k=1

13.

14.

15.

16.

17.

18.

Show that for all natural numbers n > 5, the
inequality 2" > n? holds. First show the inequality
holds for n = 5, and then proceed to the second
step when using mathematical induction.

Show that for all natural numbers n > 3, the
inequality n? > 2n + 1 holds. First show that the
inequality holds for n = 3, and then proceed to the
second step when using mathematical induction.

Show that for all natural numbers n the
expression n? + n is divisible by 2.

Show that for all natural numbers » the
expression x — y" is divisible by x — y. Note
that x2 — y? is divisible by x — y since
2=y = (x4 ) —y).

Use mathematical induction to show that for a
real number r and all natural numbers n,

r"—1
r—1
Let f,, denote the nth Fibonacci number.

T+r+r24+r34. 4t =

a. Determine the sum of the first n Fibonacci
numbers for n = 2, 3, 4, and 5. That is,
determine f1+ fo, fi+ fo+ fa, i+ fo +
fa+ fa,and fi+ fo+ fa+ fat+ fs.

b. Find a formula for the sum of the first n
Fibonacci numbers.

¢. Show that the formula found in part (b) holds
for all natural numbers.
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19. Let A, By, By, ... be sets. Prove that for every 21. Verify that if 0 < r < n, then
natural number n,
AN(BLUB,U---UB,) <”>=< n )
r n—r

—(ANB)U---U(ANB,)

22. Verify that
20. Show that for every natural number n, a 2" x 2"

grid of squares with one square removed can be n " n4+1
covered with copies of the shape ( o1 > + < > = ( >

23. Show that

L " "\
as shown in the figure. ‘ k)

I _"{ 24. Show that

| Z(—Dk( i ) =0
k=0

1




Answers to Odd-Numbered Exercises

Chapter 1
Section 1.1

1 X1 =3,X =8,x3=—4

3. X1 =2—3X4,X2 =1—X4,X3 = —1—2X4, X4 € R

5 x=0y=-3

7.x=1y=0

9.5 ={(24 1) teR}

11. x=0,y=1,2=0

13. 8 = {(-1-5t,6t+ 3,t)|t e R}

15. 8 = {(-t+ 5 —-3.t)[teR}

17. S ={(3—3t,—s — §t +3,5,t)|s,t e R}

19. x =—-2a+b,y=-3a+2b

21. x =2a+6b—-cy=a+3b,z=-2a—-7b+c
23. Consistent if a = —1

25. Consistent if b = —a

27. Consistent for all a,b, and ¢ such thatc —a —b =0
29. Inconsistent if a =2

31. Inconsistent for a # 6

33y = (x — )" —2; vertex: (3,-2)

35. y = — (x — 2)® + 3; vertex: (2,3)

37. a. (2,3)

b.
39. a { x + oy =2
x — vy =0
b { X + y =1
2X 4+ 2y = 2

41.

c X + y 2
13X + 3y = -6

a S={B-2s—-t,2+s—2t,5,t)|s,t e R}
b. S ={(7—-2s —5t,s,—2+s+2t,t) | s,t e R}

43. a. k=3
b. k=-3
c. k#+3
Section 1.2
[ 2 -3 5
Ll ‘ -3 }
2 0 —-1]4
3. 1 4 1]2
|4 1 -1]1
2 0 14
>l1 4 1 ‘ 2 }
[ 2 4 2 2| -2
7. | 4 -2 -3 =2 2
| 1 3 3 -3| -4
9.x=-1y=3%2=0
11. x=-3-2z2,y=2+12z,z€R
13. x=-3+2y,z=2,yeR
15. Inconsistent
17. x =342z —5w,y=2+z —-2w,z e Rw e R
19. x=143w,y=74+w,z=-1-2w,w e R
21. In reduced row echelon form
23. Not in reduced row echelon form
25. In reduced row echelon form
27. Not in reduced row echelon form
(1 0
29. 0 1 }
1 0 0
31 01 0
10 0 1
1 0 -1
33 0 1 0 }




|

37. X
3. x=1y=0z="1
41. Inconsistent

43. Xy = —3 — 2X3, %2 = —3 + 3X3,X3 € R

45. 3 =1—3xs% =1—ixa,xs =1— x4, x4 €R

47. Xy =1+ %X3+%X4,X2 =2+§X3+%X4,X3 e R,

49. a.
b.c—a+b#0
c. Infinitely many solutions.
da=1b=0c=1x=-2y=2z=1

51.aa+2b—-c=0

b.a+2b—-c#0

c. Infinitely many solutions

d a=0b=0c=0x=¢y=1z=1

Section 1.3

10
1.A+B=[2 6}=B+A
(2 1
3. (A+B)+C = 7 4}=A+(B+C)
[ -7 -3 9
5 (A—B)+C = 0 5 6
1 -2 10
[ -7 3 9
2A+B=| -3 10 6
2 2 11
(7 -2 6 2
TAB= g _8},BA_{7 _7}
[ -9 4
9 AB=1 _13 7}
(5 -6 4
11. AB=| 3 6 -—18
|5 -7 6
1 3
13. A(B+C):{12 0}
10 -18
15. 2A(B —3C) = { o 0 }
7 5
17. 2A' =Bt = | -1 3
-3 -2

21.

23.

25.

27.

29.

31.

33.

35.

37.

39.
41.

43.

.AB‘:{
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-5 1

-1 7
(A‘+Bt)C=[ 6 8]

.

4 12
0 20 15
(A'C)B = 0 0 0
-18 -22 -15
5 -1
AB =AC = { 5 1 }
1 0 1 b -1 b
Ahastheform{0 1},{0 _1},{ 0 1},

4
10 0

A=10 1 O
0

0 1

A has all 0 entries. Then let x = and so on, to

0
show that each column of A has all 0 entries.
The only matrix is the 2 x 2 zero matrix.
Since (AAY! = (AY)!A! = AAY, the matrix AA! is
symmetric. Similarly, (A'A)t = AY(AH) = A'A,
If A = —A, then the diagonal entries satisfy aj; = —a;;
and hence ajj = 0 for each i.

Section 1.4

1

3.

5.

17 -1 2
-1 _ =+
SRy

The matrix is not invertible.

3 1 -2
Al=| -4 -1 3

-5 -1 3
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7. The matrix is not invertible. 29. a. If Ais invertible and AB = 0, then
1 1 _p 1 A"1(AB) = A10, so that B = 0.
3 2 . . . o
1 0 1 2 -1 b. If A is not invertible, then Ax = 0 has infinitely
9. AT = 0 0 -1 % many solutions. Let Xy, ..., X, be solutions of
0 o o0 -1 Ax = 0 and B be the matrix with nth column vector
2 Xn. Then AB = 0.
2 g 8 8 31. (AB)! = B'A! = BA = AB
1L AT=%| 33. If AB = BA, then B~AB = A, so B~*A = AB L. Now
R (ABY)t = (BY)A' = (BY) A" =B~'A = ABL,
o - 35. If At = A~ and B' = B~%, then
13. The matrix is not invertible. (AB)! = B'A = B~1A~1 — (AB) L.
0 0 -1 0 37.a  (ABC)(C'B!A!)=(AB)cC}(B!AY
1 -1 -2 1
-1 _ _ —1p-1
15. A= = 1 -2 1 1 =ABB A
0 -1 -1 1 =AAT =
s 8 b. Case 1, k = 2: (AjA)) L = ASIAT!
17. AB + A = { 10 —10 } =AB +1) Case 2: Suppose that
2 9 (A1A2-~~Ak)71 =Ak_1Ak_E1"'Azl
AB +B = 6 3 =(A+1)B Then
3 4 (AP - AA1) = ([AA2 - AJA )
19. a. Since A2 =| and -1 1
-4 -3 = A [AA - A
2 _ =ALAIAL AT
—2A={ 2 4}thenA2—2A+5I=0. L KTk T T
4 =2 39. If A is invertible, then the augmented matrix [A|l] can
L 1[1 -2 1 be row-reduced to [I |A~1]. If A is upper triangular, then
b. A=t = sl 1|7 §(2| -A) only terms on or above the main diagonal can be
5 ) affected by the reduction process, and hence the inverse
c. If A*—2A+5lI =0, then A° — 2A = —5I, so that is upper triangular. Similarly, the inverse for an
AL —A)] = 2A- A2 = —L(A2-2A) = invertible lower triangle matrix is also lower
_%(_5” —1. triangular.
21. If % = —2, then the matrix is not invertible. 41 { axy +bxz  axp + bxs } _ { 10 }
23. a. If & # 1, then the matrix is invertible. Cx +dxg  Cxo + dxg 01
1 R b. From part (a), we have the two linear systems
—1 —1 —1
b. R 1 ax; + bxg =1 axy + bxs =0
)\_6 x_%) )\_]i { Xy + dxg3 = 0 and { X + dxg = 1
; o)
25. The matrices (ad —bc)xs=d  and  (ad — bc)xs = —b
Az{l 0} and BZ{O 0} If ad —bc =0, then b = d = 0.
00 0 1 c. From part (b), both b = 0 and d = 0. Notice that if
. . 1 017. . . in addition either a = 0 or ¢ = 0, then the matrix is
are not invertible, but A+ B = { 0 1 ] is invertible. not invertible. Also from part(b), we have that
1 _ 1 1 ax; =1l,ax; =0,cx; =0,and cx; = 1. Ifaand ¢
21. (A+B)AT(A—B) = (AA +_l13A )(A—B) are not zero, then these equations are inconsistent
= (I +BAT)(A-B) and the matrix is not invertible.
-1
=A-B +1B —BA™TB Section 1.5
=A-BA B _
L. 1 1 1. A= 23 X = X ,and b = 1
Similarly, (A —B)A~*(A+B) =A—BA™B. -1 2 y 4



11.

13.

15.

17.

19.

21.

23.

25.

2 -3 1 X
A= -1 -1 2 |,x=1]vy |,and
| 3 -2 =2 z
-1
b=| -1
| 3
4 3 -2 -3 "
A=| -3 =3 1 0|, x= X2 , and
2 -3 4 —4 3
L X4
-1
b= 4
. 3
2x — 5y = 3
X+ y = 2
A = 3
X -y - 7 = 1
X -y + 2z = -1
21 + 5% — bBxz3 + 3xg = 2
33X + X — 2X3 — 4x4 = 0
S
X = 4
__3_
g
" — -3
| -8
- 7_
x—i —16
10 9
[ —11
X = 4
1

17 -7
b. x= 3 { 8 }
The general solution is

=[] oo

with a particular nontrivial solution of x = —4 and
y =1.
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1 2 1

27. A= 1 2 1
1 2 1

29. From the fact that Au = Av, we have A(u —v) = 0. If
A is invertible, then u — v =0, that is, u = v, which
contradicts the statement that u # v.

taxe| t]

1
11 -1 0
bC:éL 20]
1
11 -1 0 1
CCbzé[l 2 OH_ZIZ{—J
-1
Section 1.6

1. The determinant is the product of the terms on the
diagonal and equals 24.

3. The determinant is the product of the terms on the
diagonal and equals —10.

5. Since the determinant is 2, the matrix is invertible.

7. Since the determinant is —6, the matrix is invertible.

9. a—c. det(A) = -5

—4 1 -2
d. det 3 -1 4 =5
2 0 1

e. Let B denote the matrix in part (d) and B’ denote
the new matrix. Then det(B") = —2 det(B) =
—10. Then det(A) = £ det(B").

f. Let B” denote the new matrix. The row operation
does not change the determinant, so
det(B”) = det(B’) = —10.
g. Since det(A) # 0, the matrix A does have an
inverse.
11. Determinant: 13; invertible
13. Determinant: —16; invertible
15. Determinant: O; not invertible
17. Determinant: 30; invertible
19. Determinant: —90; invertible
21. Determinant: O; not invertible
23. Determinant: —32; invertible
25. Determinant: 0; not invertible
27. det(3A) = 33 det(A) = 270
1 1 1
det2A) — 23det(A) _ 80

29. det((2A)1) =
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31.

33.

35.

37.

39.

41.

Answers to Odd-Numbered Exercises

Since the determinant of the matrix is —5x2 + 10x =

—b5x(x — 2), the determinant is 0 if and only if x = 0 or

X =2.

_ -

bjaz—aby
Y= b= X +

bi—ag

1 -1 -2
aA=| -1 2 3
2 =2 =2
b. det(A) =2
c. Since the coefficient matrix is invertible, the linear
system has a unique solution.

-

-1 0 -1
a. A= 2 0 2
1 -3 -3

b. det(A) = 0

c. Since the determinant of the coefficient matrix is 0,
A is not invertible. Therefore, the linear system has

either no solutions or infinitely many solutions.
d. No solutions

a. 2

y°  ox oy
4 -2 -2
4 3 2
9 4 -3
= —29y? 4+ 20x — 25y + 106 =0

R e e

e e

X
0 0
0 16 O 4
1 1
4 2

=136x2 — 16y? — 328X + 256 = 0

w
[N

43.

45,

47.

49.

51.
53.

a. X2 Xy y2 Xy 1
1 0 0 -1 0 1
0 0 1 0 1 1
1 0 0 1 0 1
4 4 4 2 21
9 3 1 311
= —12 4 12x% — 36xy + 42y? — 30y = 0
b. y
7 -5 5 7
‘ 6 3| 9 |2 6] 16
=75 5] 57775 5] 5
2 -3 2 -3
3 -4 -9 3
y -10 5 25 -7 =10
T -9 —4 Y= T 9 4
-7 5 -7 5
_m
73
4 -3 -1 4
3 4 25 -8 3 29
X=r— = ——, —_ —
-1 -3 28 -1 -3 28
-8 4 -8 4
160 10 42
X="13Y = 1032 = 103
Expansion of the determinant of A across row one

equals the expansion down column one of A, so
det(A) = det(A").
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Section 1.7 b. A=E 'E; b Egt
100 )
LaE=|2 10 11 A= LU = _é 2“3 —ﬂ
0 0 1 ]
1 2 1 1. 0 071 2 1
b.EA= |5 5 4 13. A=LU = 2 10 0 1 3
1 1 -4 | 3 0 1]][0 01
1 0 0 1 o071 ; -3
0 -3 1 -1 -3 1][o0o 0 3
{ 1 2 1] 17. e LU factorization:
b. EA = 3 1 2
1 0 2 1
-8 -2 -10 L:{_Z 1} uz[ 01}

5. a | = EsEE A
1 =371 0H1 0

—2X1+X2]
X2
“lo 1]]0 &

y:Ux:{

N
=
| I
>
°

-1
Solve Ly = y1=-1,y,=3
b. A=E;'E;E;? g { ° } s v

1 011 o© 1 3 e Solve Ux=y:x; =2,% =3
| -2 1]|0 10

19. e LU factorization:
7. a. | = EsE4E3E2EA

1 0 O 1 4 -3
[100} [100} L=[—110] uz[01 2]
Ei1=] -2 1 0 E, = 0 1 0 2 0 1 0 0 1
0 0 1 -1 0 1
1 -2 0 1 0 11 X1 + 4%z — 3X3
Es=| 0 1 0 Ez=| 0 1 O e y=Ux= X2 + 2X3
0 0 1 0 0 1 X3
10 0 0
E5:[O 1 —5] OSoIveLy=[—3]:y1=0,y2=—3,y3=1
00 1 1

e Solve Ux=y:x3 =23, x,=-5x3=1

21. e LU factorization:

010 1 -2 0]

Et=|1 0 0 E,=|0 1 0 1 00 0
0 01 0 0 1| L_| 1 100
- - 2 010
1 00 100 1 10 1

Es=|0 1 0 Es=|0 1 1
_0—11 001_ 1 -2 3 1
(1 0 1 10 0] u= |0 1 22

Es=|0 1 0 Es=| 0 1 O 0 0 11
0 0 1 00 -1 | 0 001
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23.

25.

27.

29.

31

Answers to Odd-Numbered Exercises

X1 — 2X2 + 3X3 + X4
X2 + 2X3 + 2Xa

*y=Ux= X3+ X4
X4
5
e Solve Ly = 14
-8

yi=5Y2=1y3=4y,=-2
e Solve Ux=y:x; = —=25,Xp = —7,X3 = 6,X4 = —2

A=PLU
010 10 0 1 -3 2
=|1 00 2 5 0 0 1 -£
000 01 -3 0 0 1
1 0][1 4

rewe[ e 1]

1
0
-1 -
- 3
1 0 O 2 1 -1
A=LU=|1 1 0 01 -1
1 1 1 0 0 3
A_1=U_1L_1
M1 1
i —2 0 1 00
=|0 13 -1 10
1 0 -1 1
L0 0 3
_ 1 _
1 -1 0
2 1
=1 -1 3 3
1 1
L 0 —35 3|
Suppose
a 0 d e] [0 1
b ¢ o f] |10

This gives the system of equations ad = 0,ae =1,

bd = 1,be + cf = 0. The first two equations are
satisfied only when a # 0 and d = 0. But this is
incompatible with the third equation.

If A is invertible, there are elementary matrices
Ej,...,Ex such that | = Ey ---EjA. Similarly, there are
elementary matrices Dy, ..., D, such that

| =D;---DiB. Then A=E_'...E;/'D,---D;1B, s0 A
is row equivalent to B.

Section 1.8

1. X1 =2,X2 =9,

X3=3,X4=9

3. Letxs =3. Then x; = X5 = 3,X = X5 = 1,X3 =
%X5 =1,X4 =X%X5 = 3.

5. Let X1, X2, ..

800

Xa

X1 300

X2

X3 X6

X5

X
700 7

., X7 be defined as in the figure.

500

300

Then X1 = 1000 — X4 — X7, X2 = 800 — Xg, X3 =

1000 — X4 + Xg — X7, X5 = 300 + Xg — X7

Since the network consists of one-way streets, the

individual flows are nonnegative. As a sample solution

let x4 = 200, xg = 300, x7 = 100; then x; = 700,

X2 = 500, x3 = 1000, x5 = 500.
7. X1 = 150 — X4,%X2 =50 — X4 — X5,X3 = 50 + X4 + Xs.

As a sample solution let x4 = x5 = 20; then

X1 = 130,%, = 10,x3 = 90

9. X1 =14,X =3.2,x3=1.6,X4 =6.2

0.02 0.04 0.05

11. a. A= | 0.03 0.02 0.04
0.03 03 0.1
b. The internal demand vector is
300 22
Al 150 | = | 20
200 74

. The total external demand

for the three sectors is 300 — 22 = 278,150 — 20 =
130, and 200 — 74 = 126, respectively.

c. I —A 1~ [

d. X

(1 —A)"D

[ 1.02 0.06 0.06
0.03 1.04 0.05
| 0.05 035 1.13

454.9
| 8323

[ 418.2 ]

0.03 1.04 0.05

1.02 0.06 0.06
0.05 035 1.13

|

350
400

600
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13. a. 1400 after 2 months by
1200 20,000 24,900
0o A? | 20,000 | = | 13,400
800 . 10,000 11,700
600
400 . and after 1 year by
Sl I 20,000 30,530
0t A2 | 20,000 | ~ | 11,120
28 83 83§ 10,000 8,350
3,880,900a + 1970b 4+ ¢ = 80 19.a lh4+l=1
b. 3,920,400a + 1980b + c¢ = 250
3,960,100a + 1990b + ¢ = 690 41, + 3l = 8
b. 3l + 53 = 10
c.a=2,b=—18 ¢c—5232400 ? T
d b — I + I3 = 0
+ 1400 o C. 41, + 3lp = 8
100 3, + 5l3 = 10
1000
800 . Solution: Iy ~ 0.72,1, ~ 1.7, 13 ~ 0.98
jzz 21. Denote the average temperatures of the four points by
200 a,b,c, and d clockwise, starting with the upper left
o point. The resulting linear system is
§9 5 38§ 88§ da— b — d=50
e. The model gives an estimate, in billions of dollars, —a+4b—c =55
for health care costs in 2010 at a - b . 4__ 43 = ig
27 , 10,631 - - -
E(ZOIO) ) (2010) + 5,232,400 = 2380 The solution is a ~ 24.4,b ~ 25.6,c ~ 23.1,d ~ 21.9.
a A 0.9 0.08
ST T 101 092 Review Exercises Chapter 1
b A 1,500,000 | | 1,398,000 1 1 2 1
’ 600,000 | — 702,000 1.0 1 2
LaA=| 5 5 5 1
c A2 1,500,000 | | 1,314,360
' 600,000 | ~ | 785,640 1123
n { 1,500, 000 } b. det(A) = —8
d. A . . . o
600, 000 c. Since the determinant of the coefficient matrix is not
. The transition matrix is 0, the matrix is invertible and the linear system is
09 02 01 consistent and has a unique solution.
A=1| 01 05 03 d. The only solution is the trivial solution.
0 03 06 e. From part (b), since the determinant is not zero, the

so the numbers of people in each category after inverse exists.
1 month are given by

20,000 23,000
A| 20,000 | = | 15,000

10,000 12,000

-3 -8 —2 7
1 5 8 6 -9
,1_7

A_s 5 0 —2 -1

—4 0 0 4
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3 11 23. T 24. T
f.x=A"1 o I R 2. T 2. T
-2 4 7
5 4 27. F 28. T
3a=0c=0b=0a=0c=1becR: 2. F 0. T
a=1c=0beR;a=1b=0c=1 3L T 32. T
5. a If 33. F 4. T
A_{al bl] B_{az bz} 35. F 36. T
- d "l d
a @ L2 @ 3. T 3. F
then the sum of the diagonal entries is 39 T 0 T
(alaz + blcz) — (alaz + b2C1) 41. T 42. F
+ (b2€y + d1dp) — (b1C2 + d1d2) =0 43T 44. F
45. T
b. 2
a b a b ac+bc 0
{c —a}[c —a}_{ 0 a?+hbc Chapter 2
= (@ +ho)l Section 2.1
—1 7
_ _ 2 _
c. Let M = AB — BA. By part (a), M< =kl for some 1 utve 2 | —vau
k. Then 3
(AB — BA)’C = M?2C T 11
= (kI)C =C(kl) 3 u—2v43w=| -7
=CM? = C(AB — BA)? | O
7. a. Since det(A) = 1, then A is invertible. 1
b. Six 1s can be added, making 21 the maximum 5 =3u+4+v)—w=| -7
number of entries that can be 1 and the matrix is -8
invertible. 17
9. a Bl=(A+A) = A + (A) = Al + A =B; Y
Cl=A-A) =A - (A)Y =Al A= —C 7. 9
b. A=J(A+A)+ F(A-AY) -6
Chapter Test: Chapter 1 1
-2
1. T 2. F [} (X1 + X2)u = (X1 + X2) 3
3. F 4. T 0
5 F 6. T
X1 + X2
7. F 8 T | 2 —2x
9 T 10. T - 3X1 + 3Xo
1. T 2. T | 0
3. T 4. T X X
15. F 16. T —2X1 —2Xp
=13 | T 3
17. F 8. T él 02
19. F 2. T
21. F 2. T = X1U + XaV



11
13.

15.

17.

19.

21.

23.

25.

27.
29.

v=2e +4e +6;

v=23e -2
7
2
W= 1
-1
g + 3¢, = -2
—-2c; — 2¢p = -1
Solution: ¢ = £, ¢ = —2
) . o 1
The vector _q1 |sa combination of 5 and
3
_2 :
cC — ¢ = 3
20, — 26, = 1

Solution: The linear system is inconsistent.

The vector { i

o[ )] 2]

} cannot be written as a combination

—4cq — beg= -3
4c;, + 3¢ + C3 = -3
3¢, — c, — bc3 = 4
Solution: ¢1 = £ ,co = — 28 ¢35 = 3¢
-3
The vector | —3 | is a combination of the three
4
vectors.
—-Cc — € 4+ ¢33 = -1
C; — C = 0
Cc + C — C3 = 2
Solution: The linear system is inconsistent
-1
The vector 0 | cannot be written as a
2

combination of the other vectors.

All 2 x 2 vectors. Moreover, ¢ = fa — b,
Co=3a+ib

All vectors of the form { _: } such that a € R.

All 3 x 3 vectors. Moreover, ¢; = $a — 2b + Zc,

Co=—3a+3b+3cc3=3%a+ib—3c
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a
31. All vectors of the form b such that
2a —3b
a,b eR.
Section 2.2
1 1 2| -4 N 1 0]2]. o
1 31 0 13|
2 3|1 1 3]0
3.{4_6‘1]—>{0 0 1,no
5. Yes
-2 1] -37 1 02
3 4] 10 — 0 1|1
4 21| 10 10 0|0
7. Yes
2 3 =227 1 0 0| -4
-2 0 08— |0 1 0| 2
0 -3 —-1|2 | 10 0 1| -4
9. No
1 -1 0] -1 1 0 010
2 -1 1 1| — 0 1 110
-1 3 2 5 0 0 0|1
11. Yes
2 1 -1 3 1 00 3
-3 6 -1 -17 N 0 1 0]-1
4 -1 2 17 0 0 1 2
1 2 3 7 0 0 O 0
13. Infinitely many ways
C1=1+%C3,C2=1+%C3,C3€R
15. Infinitely many ways
Cp =3+6C4,Cr =—2—0C4,C3 =2+ 2C4,c4 € R
17. Yes
1 -2 -1 =2 1 0 0} -1
2 3 3 4 N 0 1 0]-1
1 1 2 4 0 0 1 3
-1 4 1 0 0 0O 0
19. No
2 3 3 2 1 0 00
2 -1 -1 1 N 01 00
-1 2 2| -1 0 0 1|0
3 =2 2 2 0 0 0|1
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1 3]

21.Ax=2{_2}—{1_
23. (AB)1=3{ _H+2— _i ]
(AB)Z:Z{ _H+5_ _i]

25. Not possible.
27. x3 = 2x + 1= (1 +X) + 2(—x) + 0(x? + 1)+
F@x3 —x+1)
a

29. All vectors [ b ] such that 3a —b +¢ = 0.
c

31l v=2vis —Vy +4v3
33. Since ¢y #0,vy = _g_ivz ——— g_zvn_
35. Letv e S;. Since ¢ #0, thenv=cyvi +--- + %“(cvk),

soveS, IfvesS,, thenv=cyvs + -+ (CCk)Vk, SO
v € S;. Therefore, S; = S,.

37. If Az = cAy, then det(A) = 0. Since the linear system
is assumed to be consistent, it must have infinitely
many solutions.

Section 2.3
. -1 2 .
1. Since 1 3= 1, the vectors are linearly
independent.
3. Since 2 _5 ‘ =0, the vectors are linearly
dependent.

-1 2 —
5. Since 2 2| —
1 3

linearly independent.

o O
o o

] , the vectors are

-4 -5 3
7. Since 4 3 =5 | =0, the vectors are linearly
-1 3 5
dependent.
3 1 3 3 1 3
) -1 0 -1 030
9. Since 1 9 o | — 0 0 1 , the
2 1 1 0 0 O

vectors are linearly independent.

11. Since
3 0 1 3 0 1
31 -1 0 1 -2
2 0 1| |0 o0 -3
1 0 -2 0 0 0
the matrices are linearly independent.
13. Since
1 0 -1 1
-2 -1 1 1
-2 2 -2 -1
-2 2 2 =2
1 0 -1 1
N 0o -1 -1 3
0 0 -6 7
o o o %
the matrices are linearly independent.
15. vp = —%Vl

17. Any set of vectors containing the zero vector is linearly
dependent.

19. a. Ay = —2A;
b. Az =A1+A;

21. a#6
1 1 1
23. a. Since| 1 2 1 | =1, the vectors are linearly
1 3 2
independent.
b.c;=0co=-1,¢c3=3
1 2 0
25. Since | —1 0 3 | =13, the matrix is invertible so
2 1 2

Ax = b has a unique solution for every vector b.

27. Linear independent

29. Linearly dependent

3L Ifx =0, then ¢, =0, and if x = %, then ¢, = 0.

33. Let x =0, then c3 = 0. Now letting x =1 and x = —1,
Ci=C =c¢3=0.

35. If u and v are linearly dependent, then there are scalars
a and b, not both 0, such that au +bv = 0. If a # 0,
then u = —(b/a)v. On the other hand, if there is a
scalar ¢ such that u = cv, then u —cv =0.

37. Setting a linear combination of wy, wy, w3 to O, we have
0 = c1W1 + CoWp + C3W3
= C1V1 + (C1 + C2 + C3)V2 + (—C2 4 C3)V3

if and only if c; =0,¢; + ¢, +¢3 =0, and
—Cp+c3=0ifand only ifc; =c; =c3 =0.
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39. Consider cqVvq + CaVy + c3vz = 0, which is true if and b. det(A) = -8
only if cavs = —C1v1 — Cava. If €3 7 0, then v3 would . Yes, since the determinant of A is nonzero.
be a linear combination of v, and v, contradicting the d. Since the determinant of the coefficient matrix is

hypothesis that it is not the case. Therefore, ¢3 = 0. nonzero, the matrix A is invertible, so the linear
Now since v; and v, are linearly independent system has a unique solution.

cp =¢C, =0.

(9]

: . . . ex=8y=-Y7=tw=1
41. Since A1, Az, ..., A, are linearly independent, if
9. a. 1 3 2 by
AX=X1A1 4+ XnAn =0 X1 2 + X2 -1 + X3 3 = b,
then xy =Xy =--- =%, =0. 1 1 -1 b3
Review Exercises Chapter 2 b. Since det(A) = 19, the linear system has a unique
b solution equal to x = A~1h.
1. Since d1= ad — bc # 0, the column vectors c. Yes

d. Yes, since the determinant of A is nonzero, A1

are linearly independent. If ad — bc = 0, then the " 5 ! ]
exists and the linear system has a unique solution.

column vectors are linearly dependent.

a2 o0 1 Chapter Test: Chapter 2
3. The determinant | 0 a 0 |=a%®—a#0ifand 1. T 2. F
1 21 3T 4. T
only if a # %1, and a # 0. So the vectors are linearly 5 F 6. F
independent if and only if a # +1, and a # 0. 7 F 8 T
5. a. Since the vectors are not scalar multiples of each ' '
other, S is linearly independent. 9 F 10. F
b. Since 1.7 2.7
1 1]a 1 1 a 13. F 4. T
0 1|b|—> |01 b 15. F 16. T
2 1jc 0 0| -2a+b+c 17. T 18 E
the linear system is inconsistent for —2a + b+ 19. T 20. T
c#0.Ifa=1b=1,c =3, then the system is 21 F 2 F
o . _ 23. F 24. F
inconsistent and v = é is not a linear 5 T % F
combination of the vectors. 27 T 28. F
a 29. T 30. F
c. All vectors | b | suchthat —2a+b +c =0 3T P F
o Le BT
d. Linearly independent
e. All vectors in R3 Chapter 3
11 2 1 X Section 3.1
10 1 2 y 1. Since
7. a. Let A= 5 2 0 1 X = . , and B BN [ X =% ]
11 2 3 w Yi | D] Y2 [ =] Y1—Y2
71 43 71 — 1o
3 L _ L _ L i
b= 1 and [ x2 ] [ xq ] [ X2 —xq |
-2 Y2 | D | Y1 [ =] Y2— V1
5 _Zz_ _Zl_ _Zz—Zl_
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11.

13.

15.
17.

19.

21.

23.
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do not agree for all pairs of vectors, the operation & is
not commutative, so V is not a vector space.

. The operation & is not associative, so V is not a vector

space.

. Since

SUEIME
j J+oo[)]
[

_ | 2x+c+d
= 2y

N

does not equal

co |

for all vectors { § } then V is not a vector space.

. Since the operation @ is not commutative, V is not a

vector space.

The zero vector is given by 0 = { 8 } Since this

vector is not in V, then V is not a vector space.

a. Since V is not closed under vector addition, V is not
a vector space.

b. Each of the 10 vector space axioms are satisfied
with vector addition and scalar multiplication
defined in this way.

Yes, V is a vector space.

No, V is not a vector space. Let A=1 and B = —1.
Then A + B is not invertible and hence not in V.

Yes, V is a vector space.

a. The additive identity is 0 = é 2 } and the
additive inverse of A is A1,
b. Ifc =0, thencAisnotinV.
M1
a. The additive identity isO= | 2 |. Let
| 3
l+a
u= 2 —a |. Then the additive inverse is
3+ 2a
l1-a
—u= 2+a |.
3-2a

25.
27.
29.

31

b. Each of the 10 vector space axioms is satisfied.

1+t 140t 1
co0o| 2-t |=| 2-0t |=]2
3+ 2t 3+ 2(0)t 3

Each of the 10 vector space axioms is satisfied.

Each of the 10 vector space axioms is satisfied.

Since (f +9)(0)=f(0)+9g0)=1+1=2,thenV is

not closed under addition and hence is not a vector

space.

a. The zero vector is given by f (x 4+ 0) = x® and
—fx+t)y=~Ff(x —t).

b. Each of the 10 vector space axioms is satisfied.

Section 3.2
1. The set S is a subspace of R2.
3. The set S is not a subspace of R2. If u = 7? ] and
-1 1
V= { 3 ]thenu—kv: { 5 ] ¢S.
5. The set S is not a subspace of R2. If u = { _2 ] and
c =0, then cv = [ 8 ] ¢S.
7. Since
X1 Y1 X1 +Cy1
X2 | +C| Y2 | = | X2+CYy2
X3 Y3 X3 +Cy3

11.
13.
15.
17.
19.

21.

and (x1 + cy1) + (X3 +cy3) = —=2(c + 1) = 2 if and
only if c = —2, s0 S is not a subspace of R,

. Since

s—2t X —2y
S +c X
t+s y+X
(s +cx) —2(t +cy)
= S +CX
(t+cy)+ (s +cx)

isiin S, then S is a subspace.
Yes, S is a subspace.

No, S is not a subspace.
Yes, S is a subspace.

Yes, S is a subspace.

No, S is not a subspace since x® — x® = 0, which is not
a polynomial of degree 3.

Yes, S is a subspace.



23.
25.

27.

29.

31.

33.

35.

37.

39.

41.

45,
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No, S is not a subspace. -1 0
Since then S = span 11],|] -5 .
1 -1 -1] 1 1 -1 -1] 1 2 3
1 -1 2l -1 | =10 1 0 1 Therefore, S is a subspace.
0 1 0 1 0 0 3| -2 c. Yes, the vectors are linearly independent.
the vector v is in the span. d. s #R®
Since 47. SinceA(x+cy):{;}+c[;}:{;}ifand
i 2 _1 _i (1) (1) _; _g only if ¢ = 0, then S is not a subspace.
0 2 -4 6 - 0 0 0 0 49, Let B1,B, € S. Since
B 00 00 A(B1 + CB2) = AB1 + CAB,
the vector v is in the span. — BiA + c(BoA)
Since = (B; + CBy)A

C1(1+X) + Co(x* — 2) + Ca(3x) = 2¢* — 6x — 11 then By +¢cBy € S and S is a subspace.

implies c; = —7,c, = 2,¢c3 = % the polynomial is in
the span. Section 3.3

1. The set S has only two vectors, while dim(R3) = 3.

atc=0 3. Since the third vector can be written as the sum of the
- first two, the set S is not linearly independent.

5. Since the third polynomial is a linear combination of

o T o

s a b bR the first two, the set S is not linearly independent.
span(s) = { { ath  2-b } abe } 7. The set S is a linearly independent set of two vectors
in R?.
_ 2 —
span(s) = {ax +bx + C| a-ct= 0} 9. The set S is a linearly independent set of three vectors
a in RS,
a. span(S) = b abeR 11. The set S is a linearly independent set of four vectors
b—% in May». Since dim (M2y2) = 4, then S is a basis.
13. The set S is a linearly independent set of three vectors
b. Yes, S is linearly independent. in R® and so is a basis.
a. span(s) = R* 15. The set S is linearly dependent and is therefore not a
b. Yes, S is linearly independent. basis for R*.
a span(S) = R3 17. The set S is_ a Iinea_rly independent set of three vectors
b. No, S is linearly dependent. in P2 s0 s a basis. 1 )
c. span(T) = R3; T is linearly dependent. 19. A basis for S is B — 11 and
d. span(H) = R3; H is linearly independent. 0 1
a span(s) = P; dim(s) =2.
b. No, S is linearly dependent. 21. A basis for S is
C. 2x2 43X +5=2(1) — (x — 3) +2(x? + 2x) B :{{ 10 } { 0 1 } { 0 0 ”
d. T is linearly independent; span(T) = Ps O 0|1 0]]0 1
a—b Since and dim(S) = 3.

N

0 3. A basis for S is B = {x,x?} and dim(S) = 2.
=5 5. The set S is already a basis for R® since it is a linearly
3 independent set of three vectors in R3.

N

)
s — b5t =5
2s 4 3t

-1
1|+t
2
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27. A basis for the span of S is given by 1 1
2 0 -1 11 [v]g, = 2 |ivle,=| 1
B = -3 |2 || -1 . Observe that -1 0
0 2 0 _
B -|
span(S) = R3.

29. A basis for the span of S is given by Vs, = [I]BZ Vs, = { -1 }
2 = By 1 5

2 0 4
B = -3 |,] 2 |,| 0| ». Observe that 3 21
B 2
0 2 4 15 [g=| -1 -5 0
1
span(s) = RS, 0 -5 0
31. A basis for R® containing S is -1
B.
2101111 e, = 15 Mey = | 1
B = -1 (] 0¢{1| O -
3 2 0 0 0 17
L 17. Ig=| 1 0 0
33. A basis for R* containing S is 01 0|
1 3 1 0 "5
_Jl oo Ve, = (1162 [V]s, = | 2
B = 2 l1llol]1 e
4 2 0 0 B
a —a—b+c
35. A basis for R® containing S is 19. | b = a+b
¢ Jg a+2b—c

-1

o -
1
——

01
2L a Il =] 1 0
00

37.B={gi|1<i=<n}

1 2
43. dim(W) = 2 b. [v]BZ=[|]§§[2 1]
3 3
Section 3.4
ection i ) . 11
1 Vs = _1} 23.a.[|]s:[0 2}
P 11 [3 1
3. ve=| -1 b.{z}s_{ﬂ'} |:4:|B
L 3] 4 6 4
-] L
5. [v]ls = 2
B =y C.
-1
7. [Vls = _g
| [ ]
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d. 7. Since vy can be written as
—C —C —C
Vl:(_z)vz+(_3>vs+‘”+(_n>vn
C1 C1 C1
then

V = span{vy,Vs,...,Vn}

9. a. The set B = {u, v} is a basis for R? since it is
linearly independent. To see this, consider

au+bv=0
-1 -1 0 . o
25 a [l]gi _ 2 2 _1 Now take the dot product of both sides with first u,
0 -1 1 then v, to show thata = b = 0.
) L b. If [W]s = [ g } then
b. [2u1 — 2uz + us]s, = [1 152 { -3 } - { -3 ]
1 4 X V1
y V2 XV2 — yVi
Section 3.5 o= U vy = UpVy — Vilo
1 a y; =e¥ y, =e¥ ‘ U Vo
2x 3x
b. W [ys, y,](x) = 2ee2X ;ei"x — 65 = 0 for all x. and ’ W x
C. y(X) = C1e?* + Cre¥ B= l:le 3/1 = u)lll\j: - 3?32
3. a vy =eXy, =xe ‘ Uy Vs ‘
e—2x Xe—2x
b. Wy1,y2](x) = -2 -2 _ oya—2 Chapter Test: Chapter 3
e~ > 0 for all x. LF 2 T
c. y(x) = Cie=% 4 Coxe =% 3. F 4. F
5. y(x) = * + 2xe* 5 T 6. F
7. a Yo(X) = C1e¥ 4 CoeX 7. F 8 F
b.a=1b=3c=4 9 T 10. T
9. y(x) = } cos (8x) 1.7 12. 7T
Review Exercises Chapter 3 BT 4.7
1. Kk % 69 5. T 16. F
3. a. Since S is closed under vector addition and scalar 17. F 18. F
multiplication, S is a subspace of My». 19. T 2. T
b. Yes, leta=3,b=-2,c=0. 21 T 2 T
C.Bz{{l 1H—1 oHo 0]} 23 T 24. T
0 17 1 0|1 -1 5. T 2. F
d. The matrix { 0 1 } isnotinS. 27 T 28T
2 1 29. T 30. F
5. a ThesetT isa basis.since itisa I.inearly independent 3L T 2 E
set of three vectors in the three-dimensional vector
space V. 3T 4. F
b. The set W is not a basis for V since it is not linearly 3B, T

independent.



456

Answers to Odd-Numbered Exercises

Chapter 4

Section 4.1

1

3
5
7

11.
13.
15.

17.

19.

21.

23.

25.
27.

29.

31.

33

. T is linear.
. T is not linear.
. T is linear.

. Since T(x +y) # T(x) + T(y) for all real numbers x
and y, T is not linear.

. Since T(cu) # cT (u), T is not linear.
Since T(0) # 0, T is not linear.
T is linear.

Since T(cA) = ¢2T (A) # cT (A) for all scalars ¢, T is
not linear.

a T(u) = { g :|;T(V)= { :; }
b. Yes
c. Yes

atw=[glitw=] 0]

b. No. T(u+V) = [ :i };T(u)+T(V)= [ _(1’ }

c. No, by part (b).

([s])-1=]

T(=3+Xx —x2) = —1—4x + 4x?

3 22
T(17])-[ 5]
a. No. The polynomial 2x? — 3x + 2 cannot be written

as a linear combination of x2, —3x, and —x?2 + 3x.
4 13
b. Yes. T(3x? —4x) = x>+ 6x — &
-1 0
0 -1
-1 0
b. T@) = | g [maTE@=|
that these are the column vectors of A.

(2])-

a. The zero vector is the only vector in R® such that

an-|

] . Observe

0
[0},forallze[R€

o

_|
Y
1
|

NN -

35.

37.

39.

41.

43.

T(ev+w) = [ cT1(v) + Ta(w) }

CT2(V) + To(w)
T1(v
=C{ kry } +{
=CcT(vV)+T(w)
T(KA+C) = (kA+C)B —B(kA + C)
= kAB — kBA +CB — BC
=kT(A)1+T(C)

a T(cf+9g) =/ [cf (x) + g(x)] dx
0

1 1
:/0 cf (x) dx+/o g(x) dx

1 1
:c/o f(x) dx+/0 g(x) dx

=cT(f)+T(9)

b. T(2x? —x +3) =%

Since neither v nor w is the zero vector, if either

T(v) =0 or T(w) = 0, then the conclusion holds. Now
assume that T (v) and T (w) are linearly dependent and
not zero; then there exist scalars ag and bg, not both 0,
such that agT (V) + boT (w) = 0. Since v and w are
linearly independent, then agv + bow # 0 and since T
is linear, then T (apv + bow) = 0.

Let T(v) = O for all v in R3,

Ti(w) }
Ta(w)

Section 4.2

1.

3.

5.
7.

-1
. Since T 2
1

1.
3.

=R

Since T(v) = { 8 } visin N(T).

10
Since T (p(x)) = 2x, p(x) is not in N (T).
Since T (p(x)) = —2x, p(x) is not in N(T).

]) =V, visinR(T).

The vector v is not in R(T).

The matrix A is in R(T) witha =1,b =0,c = -2,
d=-1

Since T(v) = { } v is not in N (T).

15. The matrix A is not in R(T).

19.

Als

I
il
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23.

25.

27.

29.

31

33.

35.

37.

39.

.

[

43.

45.

{x,x

——

r 1

T

o - O [
L ]
———

{1,x,x2}
—6
a. No, 5 | isnotin R(T).
| 0
b.

L)

c. Since dim(N (T)) + dim(R(T)) = dim(R®) = 3 and
dim(R(T)) = 2, then dim(N (T)) = 1.

a. The polynomial 2x? — 4x + 6 is not in R(T).

b. {-2x +1,x% +x} = {T(X), T(x?)}

([2)-61

a. The range R(T) is the subspace of P, consisting of
all polynomials of degree n — 1 or less.

b. dim(R(T))=n
c. dim(N(T))=1
a. dim(R(T)) =2
b. dim(N(T)) =1

oollo 1)

a. The range of T is the set of symmetric matrices.

b. The null space of T is the set of skew-symmetric
matrices.

If the matrix A is invertible, then R(T) = Mp«p.

Section 4.3

1

© N o w

T is one-to-one.
T is one-to-one.
T is one-to-one.
T is onto R2.
T is onto RS.

11.
13.
15.
17.
19.

21

23.

25.

27.
29.

31.
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Is a basis
Is a basis
Is a basis
Is a basis
Is a basis

a. Since det(A) = det ({ _; _g D =-3#0,

then T is an isomorphism.
-3 0
2 1

(1)
g [
|

K

b. A‘lz—%{

a. Since
-2 0 1
det(A) = det 1 -1 -1
0 1 0
=-1+#0
then T is an isomorphism.
-1 -1 -1
b. A7l = 0 0 1
-1 -2 =2
X
c. AT y
z
-1 -1 -1 —2X+12
= 0 0 1 X—y—12
-1 -2 =2 y
X
=1Y
z
T is an isomorphism.

T is an isomorphism.

Since T(cA+B) = (cA+B)' = cA' + B' =cT(A)
+T(B), T is linear. Since T (A) = 0 implies that A = 0,
T is one-to-one. If B is a matrix in My, and A = BY,
then T(A) = T(BY) = (B")! =B, so T is onto. Hence,
T is an isomorphism.

Since T(kB +C) = A(kB + C)A~1 = kABA1+
ACA~! =KkT(B) + T(C), T is linear. Since T(B) =
ABA~! = 0 implies that B = O, T is one-to-one. If C is
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33.

35.

37.

Answers to Odd-Numbered Exercises

a matrix in Mpxn and B = A~1CA, then
T(B) =T(AICA) = A(A*CA)A~L =C, so T is onto.
Hence, T is an isomorphism.

a

T =ax®+bx?+cx +d

X
V = y X,y €R
X 42y

define T: V — R? by
X X
")) ]
X + 2y y

Let v be a nonzero vector in R3. Then a line L through
the origin can be given by

o oo

L={tv|teR)

Now, let T: R® — RS be an isomorphism. Since T is
linear, T(tv) = tT(v). Also, by Theorem 8, T(v) is
nonzero. Hence, the set

L'={T(V)|teR}

is also a line in R® through the origin. The proof for a
plane is similar with the plane being given by

P ={su+tv|s,teR}

for two linearly independent vectors u and v in R,

Section 4.4
5 -1
1 a [T]B:{—l 1:|
2 9 |.
or[1]-12])

11.

ca [T = { 0

T[:H:

0

b. T(x? —3x +3) =x? — 3x + 3;

=TB/[_1
EIE
_2
:[ ;
8
3
2 3 8
HE1E
1 1
1 2
0 1

[T(x?=3x +3)] = [TIE X2~ 3x +3]p

T(x?—3x +
IfA= [ a
c

0

a [Tls = 0

0

Su

3) =3 —3x +x2

72 } then T(A) =
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2 11\ _.[1 o 0 1 21 [T¥ =[1001]
(15 2))-els 2 ]-2[0 5] .
23 a [2T +S]g =2[T]s +[S]s =
[ 0 0 } -1 7
+6
10
b [ =4
B { 0 -2 } ' { 23 }
6 0 > 1
1 2 25. a. [S o T]B = [S]B[T]B = 1 4
13. a [T]g = { }
1 -1
- [ ]
17 1 22 "] 10
b. [Tlgr = sl 1 }
- 3 3 1
;1[5 -2 27.a [-3T+2Sg=| 2 -6 —6
B" _ —
¢lMe=35]1 s 3 -3 -1
1 5 2 3
B _
d [T =3 | -1 5 b. [ —26 ]
_ -9
1] =2 5
B" _ —
e[T]c—g_ 5 1| 4 —4 —4
HlerT ol -1 o1
(0 0] o | s
15a [TE=|1 0 ' s
o &
L 2 J
_ - 0 0 06 O
0 0
/ 0 0 0 0 24
B _
b-Tle = | 0 1 3L.[Tl=|[0 00 0 0
Lz 0 0000 O
ro 17 0 000 O
c. [Tle = (1) 0 12 7
5 0
L 2 . —48
010 [T(PX)]s = 0
B _
d. [S]k = |: 00 2 ] 0
0
R 10 y
e Bl =| 4 4 T(p(x)) = p”'(x) = —12 — 48x
0 0 0 0 0 07
T B’ g B/ — 0 1 0 B 1 0 O
[TI8'[S1E [001] WK =], 1 o
) . oo i 0 01
f. The function S o T is the identity map; that is, N
(S o T)(ax +b) =ax + b so S reverses the action ) 01 00
of T. [DEE=(0 0 2 0
0 0 0 3
1 0
17. 7 = | |
0 -1 100
The transformation T reflects a vector across the x-axis. [D]E’[S]E’ =10 2 0 |=[T]s
19. [T]g =cl 0 0 3
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35 IfA= 2 ] then the matrix representation for
Tis
0 —C b 0
-b a-d 0 b
[Tls = c 0 d-—a -c
0 c —b 0
ra1 1 0 0 0 017
01 1 0 0 0
0 0 1 1 0 0
37. [Tls = :
0 000 O 10
0 000 O 11
L0 0 0 0 O 0 1 |
Section 4.5

(Mol = |
Metie=| 5 5] 5= "
To show the results are the same, observe that
—7“]+(79)[ _H:{—g }
el =| ] 1 |iMe=|5 0
11 3
= [£ 3] 2]-1]
2
_5

1
1
m%m%:[gg}[ ]:[é}
2

To show the results are the same, observe that

e[ =[5

100
5.a.[T]Bl=[o 0 o]
00 1

1 -1 0

[T]Bzz[o 0 o]

0 11

O O -
o o
= O O

b.
[Tls,[Vle, = !

1 -1 0 3 1
[T]BZ[V]BZ = |: 0 0 0 ] [ 2 ] = [ 0
0 11 —4 -2

To show that the results are the same, observe that

1 -1
110 |+0 1
1 0

3 -1

1P=m%={_1 1

0 1
+(=2|0|=] o
1 -1
[Tle, =P *[Tls,P

_171 1)1
201 3|3

9 _ 17
o 2 2
_[2 _3
2 2

1
3 1

B

9P=m@=[i ]
5_1
[Tle, =P '[T]s,P

Wi Wi
[y
—_ 1

|

11.P:[|]§;:{3 2]

-1

W O NIk Nw

I
—

B =] 5

Petl=] 5 |

[T]Bz = Pil[T]Blp
_ 1 1 1 -1 -1 -1
= { 2 -1 } { 2 1 } { 2 1

-[2 3]

|



010
15 [Tlg,=| 0 0 2

000

020
[Tls,=| 0 0 1

000
If

10 -2
P=[lt=|0 2 0
0 0

then [T]32 = Pfl[T]BIP.

17. Since A and B are similar, there is an invertible matrix
P such that B = P~1AP. Also since B and C are
similar, there is an invertible matrix Q such that
C = Q!BQ. Therefore, C = Q1P~1APQ =
(PQ)~YA(PQ) so that A and C are also similar.

19. For any square matrices A and B the trace function
satisfies the property tr(AB) = tr(BA). Now, since A
and B are similar matrices, there exists an invertible
matrix P such that B = P~1AP. Hence,

tr(B) = tr(P "AP) = tr(APP 1) = tr(A)

21. Since A and B are similar matrices, there exists an
invertible matrix P such that B = P~1AP. Hence,

B" = (P 'AP)" = P~!A"P

Thus, A" and B" are similar.

Section 4.6
[ 1 0
1. a _ 0 _1 }
-1 0
o | 7o 1 }
c 1 0
10 3
0
b. y

10

~10 T 10

B34

—10

Answers to Odd-Numbered Exercises

_[ V22 V22
5.a.[T]s—|:_\/§/2 _\/5/2:|

b. y

o[ V272 V22
e 5= | Ve TV |

V32 =172 3/2-1)2
7. a 172 /32 /3/2+1)2
0 0 1
b.

[ V32 12 -1
c. | —-1/2 /3/2 —1]
0 0 1
o o
9. a _0"B=_0_
a1 (2]
_2__B__0_
071 (1
_2__B__1_
b.[T]SZH _1
1 1 0] _[o
11 —1|lo| o
1 1 2] [2
1 -1 0] |2

|

461
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ifc+b—

|

-1 2
5 —4
c
h. [Tlg = 7 _5
-2 4
F 1 2
X 5 —4 X
- kLI Ml
|: C 7 =5 y B
L _2 4 -
-1 27 . .
_ 5 —4 3X+3Y :|
3 Lien
The original triangle is reflected across the line ) -
y =X. X—=y
i S | x+3y
|1 0] 0] |0} 2x —2y
(o 1027 _[2] X
1 0 21712 r
) S This implies that A X } | Xty
0 1 ol _ |2 LY X —y
|1 0] 2] |0]
3 s| X |2 x . —X
Review Exercises Chapter 4 - a y | | —y y
1. a. The vectors are not scalar multiples, so S is a basis.
b. (Sl =| ¢ o [Me=| ¢ °
X BPEZlo a1 B~ 01
X X+Yy
b. T = -1 0
R e [Tesk=| o _§|=157
2y
The linear operators S o T and T o S reflect a vector
c. N(T) = {0} through the origin.
d. Since N(T) = {0}, T is one-to-one. 0 1
5. a [T]s = |: :|
1 0 1 0
1 1
/ 1 0
el 1] - o.M = | 5 7 |
2 2
f. No, T is not onto since dim(R(T)) = 2 and L oo
. No, T is no onos"]ce _|m( (T)=2an 7Za[fls=|0 0 1
a 0 1 0
dim(R*) = 4. Also 2 is in R(T) if and only _1 _1
d b. 2 =T 2
ST 1 1

_ RO
O R -
oo oR
o or o

g ol



1 0 01"
e [Te=|0 0 1
01 0

9. Since T?2
(To(l =THV) =

=T(v)
Chapter Test: Chapter 4
1. F 2.
3T 4.
5 T 6.
7. F 8.
9 T 10.
11. T 12.
13. T 14.
5. T 16.
17. T 18.
19. T 20.
21. F 22.
23. T 24,
5. T 26.
27. F 28.
29. F 30.
31 F 32.
3. T 34.
3. F 36.
37. T 38.
39. F 40.
Chapter 5
Section 5.1
1. x=3
3.x=0
5 x=1
7.a 22 +5L=0
b. \1=0,%=-5
cvie|flv,=| 2
V1= V2= 3

4 44T T A 4T AT A4 A4 4477 TT AT

|

~T+1=0T-T?=1.Then
T =T)W) =T(v—-T(V)
—T?(W)=1(V) =V

9.

11.

13.

15.

d.

O+

=
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1
0
0
0
1
2

1)?(n—1)=0
-1, =1

N

-1 1
0 0
0 -1

. V1 =

:

1
0

N

-1 0 1

0 1 0

0 2 -1
. =2)(r—1)%=0
=2, 0=1

|

M=-1 =2 =

. V1 =

Vg =

P OOO OO0OOoORr

y V2 =

O o o

1
2
2
1
0
0
1
2
2

O+ DO =2+ 20 —4) =0
2, =4

, V3 =

.
)]

NNE OO

-

oOpRFr OO

NN -

463
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17.

19.

21.

23.

25.

27.

29.

Answers to Odd-Numbered Exercises

O OO
oo N OoO
|
N
~ O OO
O OO
O OO

Il
|
-
ocor

o

The other cases are similar.

a b
LetAz{C d

(@ —n)(d — \) — bc = 0, which simplifies to

22 —(a+d)n + (ad — bc) = 0. Observe that the
coefficient of \ is —(a + d), which is equal to —tr(A).
Also, the constant term ad — bc is equal to det(A).

Suppose A is not invertible. Then the homogeneous
equation Ax = 0 has a nontrivial solution xo. Observe
that Xp is an eigenvector of A corresponding to the
eigenvalue » = 0 since Axg = 0 = 0xg. On the other
hand, suppose that \ = 0 is an eigenvalue of A. Then
there exists a nonzero vector xq such that Axp = 0, so A
is not invertible.

]. The characteristic equation is

Let A be such that A2 = A, and let . be an eigenvalue
of A with corresponding eigenvector v so that Av = \v.
Then A%v = %Av, so Av = »2v. The two equations

Av=2v and Av=1>%

imply that %2v = wv, so that (A2 — \)v = 0. Since
v # 0, then A(A — 1) = 0, so that either . =0 or A = 1.

Let A be such that A" = 0 for some n, and let . be an
eigenvalue of A with corresponding eigenvector v, so
that Av = wv. Then A%v = xAv = »2v. Continuing in
this way, we see that A"v = A\"v. Since A" = 0, then
A"v = 0. Since v # 0, then \" =0, so that » = 0.

If A is invertible, then
det(AB — xl) = det(A~1(AB — A1)A)
= det(BA — \I)
Since
det(A—nl)=(—an)(r —az)---(» —am)
the eigenvalues are the diagonal entries.

Let X be an eigenvalue of C with corresponding
eigenvector v. Let C = B~1AB. Since Cv = v, then
B~1ABvV = \v. Then A(Bv) = A(BV). Therefore, Bv is
an eigenvector of A corresponding to ‘A.

31

33.

35.

LetT{X]z
y

and » = —1 with corresponding eigenvectors { é }

{ _); } The eigenvalues are ». = 1

and { 2 } respectively.
If 6 #£ 0 or 6 ## =, then T can only be described as a
rotation. Hence, T { § } cannot be expressed by scalar

multiplication as this only performs a contraction or a
dilation. When 6 = 0, then T is the identity map

3]
y
eigenvector with corresponding eigenvalue equal to 1.
-1 0 X

0 -1 y |

In this case every vector in R? is an eigenvector with
eigenvalue equal to —1.

{ ; } In this case every vector in R? is an

Also, if 6 =7, then T { § } =

1 1 B
-2 2 0
al[fk=|-3 % 0
-1 -1 1]
1 1 0]
b.[Tlar=| -1 -1 0
-1 01

c. The characteristic polynomial for the matrices in
parts (a) and (b) is given by p(x) = x® — x2. Hence,
the eigenvalues are the same.

Section 5.2
1 0
—1 _

1. P7IAP = { 0 3 }
0 0 0

3.P1AP=]0 -2 0
0 0 1

5. Eigenvalues: —2, —1; A is diagonalizable since there

11.

are two distinct eigenvalues.

. Eigenvalues: —1 with multiplicity 2; eigenvectors:

[ (l) } ; A is not diagonalizable.

. Eigenvalues: 1,0; A is diagonalizable since there are

two distinct eigenvalues.

Eigenvalues: 3, 4, 0; A is diagonalizable since there are
three distinct eigenvalues.



13.

15.

17.

10.

21.

23.

25.

27.

Eigenvalues: —1 and 2 with multiplicity 2;

1 -1
eigenvectors: | -5 |, | -1
2 1

diagonalizable since there are only two linearly
independent eigenvectors.

Eigenvalues: 1 and 0 with multiplicity 2; eigenvectors:

HIBI

there are three linearly independent eigenvectors.
Eigenvalues: —1,2,0 with multiplicity 2;

]; A is not

]; A is diagonalizable since

0 0 0 -1
eigenvectors: -1 L -1 1.

112 0 10

0 3 1 0

A is diagonalizable since there are four linearly
independent eigenvectors.

[ -3 0. .10 _[2 O
p_[ 11“ AP_{O_l}
0 20
P=|1 1 1
1 3 2
-1 0 0
P-I1AP = 01 0
000
2 00
P=|1 1 0
0 0 1
-1 0 07
P-IAP = 010
0 0 1|
-1 0 -1 17
01 00
P= 00 1 1
10 0 0]
1 00 0
0100
-1 _
PZAP =110 0 0 0
00 0 2
By induction. If k = 1, then Ak = A=PDP 1 =

PDKP 1. Suppose the result holds for a natural number
k. Then

29.

w

33.

35.

37.

1.
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Ak+l — (PDP —1)k+1

= (PDP1)*(PDP?)

= (PD*P~1)(PDP 1)

= (PD*)(P~'P)(DP?)

— PDk+lP71

SIEHH

3 -1 -2
Ak =pPDkp1=|2 0 -2
2 -1 -1
Since A is diagonalizable, there is an invertible P and

diagonal D such that A = PDP 1. Since B is similar to
A, there is an invertible Q such that B = Q 1AQ. Then

D =P 'QBQ'P =(Q'P)'B(Q'P)

A
|

= N O
o N -

If A is diagonalizable with an eigenvalue of multiplicity
n, then A=P(xI)P~1 = (AI)PP~1 = AI. On the other
hand, if A =I, then A is a diagonal matrix.

010
a.[T]Blzlo 0 2}

000

1 1 2
b. [Tle,=| -1 -1 o]

0 00

c. The only eigenvalue of A and B is » = 0, of
multiplicity 3.
d. The only eigenvector corresponding to x = 0 is

0
If B is the standard basis for R3, then

2 2 2
Me=| -1 21
1 -1 0

The eigenvalues are x; = 1, multiplicity 2, and », = 2

-1
{ 1 ] so T is not diagonalizable.

0
with corresponding eigenvectors [ -1 ] and
1

1
[ -1 ] respectively. Since there are only two
1

linearly independent eigenvectors, T is not
diagonalizable.
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39. Since A and B are matrix representations for the same
linear operator, they are similar. Let A= Q'BQ. The
matrix A is diagonalizable if and only if D = P~1AP
for some invertible matrix P and diagonal matrix D.
Then

D =P Q'BQ)P = (QP)'B(QP)
so B is diagonalizable. The proof of the converse is

identical.

Section 5.3
1. y1(t) = [y2(0) + y2(0)le ™ — y2(0)e

ya(t) = y2(0)e
3 () = 3 1110) - y2 (O
51000+ y2(0)e
20) = HT-10) + v (O
£ 5110+ y2(0)e

5. y1(t) = [2y1(0) + y2(0) + y3(0)]e "
+ [-y12(0) — y2(0) — y3(0)]e?
y2(t) = [—2y1(0) — y2(0) — 2y3(0)]e’
+ 2[y1(0) + y2(0) + ys(0)]e*
ya(t) = [—2y1(0) — y2(0) — y3(0)Je "
+ [2y1(0) + y2(0) + 2y3(0)]e"
7. yi(t) =e L ya(t) = —e
9. a yit) = —gY1 + 12Y2
V3(t) = go¥1 — 135Y2
y1(0) = 12, y»(0) =0
b. yi(t) = 4 + 8¢~ T0!, y,(t) = 8 — 8e~ 70
G iMoo ya(t) = 4, lim . o y(t) = 8

The 12 Ib of salt will be evenly distributed in a ratio

of 1:2 between the two tanks.
Section 5.4

1aT= { 0.85 0.08 }

0.15 0.92
0.7 0.37
10 ~
b- T {O.S]N{O.GS]

c 0.35
" | 0.65

05 04 01
3.T=| 04 04 02

0.1 02 07

0 0.36
T3] 1|~ 035
0 0.29
0 0.33
T 1 |~ 033
0 0.33

05 0 0
5 T=] 05 075 0

0 025 1

The steady-state probability vector is

= O O

], and

e

hence the disease will not be eradicate

0.33 025 0.17 0.25
0.25 033 0.25 0.17

7aT=1|017 025 033 025
025 017 025 033 |
1 0.5(0.16)" + 0.25
0 0.25
b-T1 o | = | —05(0.16) +0.25
0 0.25
0.25
. | 028
| 0.25
0.25

9. Eigenvalues of T: N1 = —q +p + 1, x2 = 1, with

corresponding eigenvectors { _i } and { qip }

The steady-state probability vector is

1 {q/p}z |
I+amp | 1 e

Review Exercises Chapter 5

SIHIEEES

=w+m{1}
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1 -1 a+b 0 Chapter Test: Chapter 5
P= ,D =
11 0 a-b 1 F 2. F
Mm=0k2=1 3 F 4. T
b. No conclusion can be drawn from part (a) about the 5 T 6. T
diagonalizability of A. 7T 8 T
[ 0] -1 9 T 10. T
. )\1:02 Vi = 8 Vo = 2 11. F 12. F
1 0 13. F 4. T
- 15. F 16. T
2 17. T 18. T
r=lve=| o 19. T 20. F
| 0 | 21 T 2. T
. The eigenvectors {vi, Vo, v3} are linearly 23 F 24. F
mqlepende.nt. . N o 25 T % T
. A is not diagonalizable as it is a 4 x 4 matrix with
only three linearly independent eigenvectors. 2r. T 28T
Y 1 0 2. T 30. F
cdetA—nl)=| 0 —-n 1 3L T 2.7
—k 3 - 33. T 34 F
=23 _3n+k=0 35 T 36 T
37. T 38 T
k=4 . T Q. T
k=3
k=25
k=0 Chapter 6
K= _25 Section 6.1
k=-3 1.5
k=-4 3. —11
—2<k<?2 5. v/26
1 1
1 7.
1 755
. Letv= : . Then 98{2}
i vl
11. V22
© 1 V22 )
N 1 1 -3
Av = =X 13 —— | -2
. : «/ﬁ 3
A 1 -
3 1
so n is an eigenvalue of A corresponding to the 15. 1
eigenvector v. NATI

. Yes, since A and A' have the same eigenvalues. 17.

3
|
o
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19. viLvy; vilva; viLvs; volvs; valvy; valvs

21. Since v3 = —v1, the vectors v; and v3 are in opposite

directions.
2
23. w= { 0 ]

33
25.w_§[1]
5

27.W=% 2
1

29. Let u be a vector in span{ug, Uz, - - -, u,}. Then there
exist scalars cq, ¢y, - - -, Cy such that

U = CaUy + CoU2 + - - -+ CplUn

31.

33.

35.

37.

Then
V-U = V-(CUg + CoUy + - - - + CyUp)
= C1V-Uyp + CoV-Uy + - - - 4+ CyV-Up
=c1(0) +c2(0) +---+c¢cy(0) =0
Consider the equation
C1V1i+CoVo +---4+Chvp =0
Since
Vi+(C1V1 +CoVa + -+ 4 CpVn) = V1 -0

S0

C1V1-V1 + CVi-V2 + -+ -+ CqVi-Vp =0
Since S is an orthogonal set of vectors, this equation
reduces to

2
Ciflval|* =0

and since ||v1|| # 0, then ¢, = 0. In a similar way we

have c; =c3 = --- =c¢, = 0. Hence, S is linearly

independent.
Since [|u]|? = u-u,

lu+VI12+ |lu = VvI[* = (u+V)-(u+v)
+ U —=Vv)-(u—-v)
= Uu-u+ 2u-V + V-v
+ U-U — 2U-V + V-V
= 2||u[|® + 2||v|?

If the column vectors of A form an orthogonal set, then

the row vectors of Al are orthogonal to the column
vectors of A. Consequently,

(A'A); =0 ifi#]

On the other hand, if i = j, then (A'A); = ||Ai]|2.
Thus,

A2 0 - 0
AIA= 0 ||A2||2 0
: 0 0
0 0 AR

Suppose that (Au)-v = u-(Av) for all u and v in R". By
Exercise 36,

u-(Av) = (Alu)-v
and by hypothesis

u-(Av) = (Au)-v



for all u and v in R". Thus,
(Atu)-v = (Au)-v

foralluand vinR". Letu =g and v =g, so
(AYij = Ajj. Hence A' = A, so A is symmetric.
For the converse, suppose that A = A'. Then by
Exercise 36,

u-(Av) = (Atu)-v = (Au)-v

Section 6.2

1.

~

13.

15.

17.

19.

21.

23.

Since (u,u) = 0 when u; = 3u, or Uy = Uy, V is not an
inner product space.

. Since (u+ v,w) and (u, Vv) + (v, w) are not equal for all

u,v, and w, V is not an inner product space.

. Yes, V is an inner product space.
. Yes, V is an inner product space.
. Yes, V is an inner product space.
11.

" TU "TU
/ sinx dx _/ cos x dx
—T —T

T
/ cosxsinxdx =0
—T

Jy@x —1)dx =0

Jo(—x24x—1)dx=0
Jo (=23 +3x2 — &x + 1) dx =0
a || —3+3x—x2 =,/

10
5
b. cosO = — 165 V105

/1 13
a. ||X—ex ||: zez—f

b. cosh = —23_
2e2-2
a || 2x2—4 |=245

2
b. cosf = —3

/ 2 -5
a ||A-B |= tr{_s 17}:\/E

_ 3
b. cose_wE

a [[A-B|=

26

b. cos6 = T30

25.

27.

29.

31.

33.

1
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(HEE
(MR

a (x?,x3) = f01x5dx =3

b. (e*,e™*) :foldx =1
Cllll=y/fydx=1
Ix 1=/ fo x2dx = 5

3
2J3

e [ 1-x =

d. cosf =

If f is an even function and g is an odd function, then
fg is an odd function. Then

a
f(x)g(x)dx =0
—a
so f and g are orthogonal.

(C1Ug, CoU2) = C1 (U1, C2U2)
= C1C2 (U1, U2)
=0

Section 6.3

Njw NIw
|

a. proj, u= {

NI NI

|

vA(u — proj,u) = { - ] {
|
|

v-(u — proj, u) = { ; ] [

b. u—proj,u= {

NI N
| I
Il
o

a. proj,u = [

b. u—proj,u=

gl glw

gl ol

ol ol
I
I
o

a. proj, u =

Wb Wb ws
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b. u—proj,u=

Wis Wl Wik

1

v-(u — proj, u) = [ -1
-1

P!
|
WA wlo Wik
Il
o

1
b. u—projju=| -1

0 1
v-(u—proj,uy=1{ 0 |- =1 | =0
1 0

9. a projgp = 4x 12
b. p—proj;p =x2— §x +

(a,p — proj, p)

:/Ol(Sx—l)(xz——

11 a. proj, p = —5x2 + %
b. p —projyp = Px? -

(9,p — projg p>

[ a(te- Y
(Gl 2l
REIHEIHEIE])
{

{

13.

Sl

N

17. {/3x — 1), 3x — 1, 6v/5(x2 —x+1)}

HEIE)

10.

Sl
SI-

21.

23.

25.

27.

29.

3L

33.

35.

37.

-1 -2 1
1 -2 1 1 1 0
V6 o Ve| -1 6| —2
1 0 1
{ﬁx, —3x + 2}
1 0
1 0 1 1
V3|13 -1
1 1
Let
V =CiU; + CoUp + - -+ 4+ ChUp
Then
IviZ=v-v
= P (U1-Ur) + C5(U2:Uz) + - - + CF(Un-Un)
=cl+ci+-+0ck
= Veur > + - + |Veup 2
Since
n P .
0 ifi #]j ;
Zakiakj = { . = (AA),
] 1 ifi =j u
then A'A = 1.
Since ||AX|| = ~/Ax-Ax and

Ax-Ax = x'+(ALAX) = x-x

then [|AX||? = x-x = [|x||? s0 [|AX]| = [[X|I.
By Exercise 32, Ax-Ay = x-y. Then Ax-Ay = 0 if and
only if x.;y =0
Let
={v| viui=0foralli =1,2,..., m}

If ¢ is a real number and x and y are vectors in W, then

(X +cy)-ui = x-uj +cy-u;y =0+¢(0) =0
foralli=1,2,...,n

w1 4]

= 3x% + 2xy + 3y?
= (x+y)?=0
XA'AX = (AX)'AX = (AX)-(AX)
=[|AX||* = 0
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41. Since Ax = %X, then xtAx = %||x]||2. Since A is positive 21. An orthogonal basis is
definite and x is not the zero vector, then x!Ax > 0, so 3 _5
A >0 5 0 21
. - -1 || -3
Section 6.4 2 6

1. Wt =span

23. a. Wizspan{{ ;}
3
1

1 —
b. jwV=-—
L i projy v 10 [

| — ——

(63}
=
'_
Il
4
QD
=}
—— —— ——
1
|
(IR ERINY
)

-4 -
_§ % C.U=V—projyVv= {3}
7. Wt = span 2 || 1 o Y109
1 0
173 -3
1 il . =
| o] d.m{g} { 1] 0
- 1A
3
e
1
9 —3
L 1_
r 17 _1
2 2
_3 1
11. 2 |, 2
1 0
L 0 | 1

13. {32x% — 2x +1}
_ 25. Notice that the vectors v1 and v, are not orthogonal.

1 Using the Gram-Schmidt process orthogonal vectors
15. 1 with the same span are
1 1 0
) 1 3
17. An orthogonal basis is _1 3
2 0 2
B = 0| -1 a. Wt = span -1
0 0 1
o . 5
projyv=| 2 b. projyv==| 5
L0 1

2

4
1
19. projyv=1| 0 c.u=v—proij=§{—2]
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2
d. Since u is a scalar multiple of { -1 ] then u is
1
inw-,
e w projy v

\

WJ_

27. Let w € W4, so (w, u) = 0 for all u € W,. Since
W71 € Wa, then (w,u) = 0 for all u € W;. Hence
w e Wi, so Wit € Wit

29. a. Let A= d e and B = a b . Then
f g b ¢

wo=e(ls 15 5 ])

1 ad +bf ae +bg
- bd +cf be+cg

So A e W ifand only if ad + bf +be +cg =0
for all real numbers a, b, and c. This implies

A= [ _2 8 ] That is, A is skew-symmetric.

Section 6.5

5
% 5
1 aXx { 0 }
5
2
b. wy=A%=| 5
5
3
2
W2=b—W1= —%
0

by _ 653089, _ 317689173
Y = 13148 3287

b. y =0.07162857143x — 137.2780952

7. a

p2(x) = 2sinx — sin 2x
2
p3(x) = 2sinx —sin2x + 3 sin 3x
2
pa(x) = 2sinx —sin2x + 3 sin 3x
! sin4x
2
. . 2
ps(X) = 2sinx — sin2x + 3 sin 3x
! sin4x + 2 sin 5x
2 5
b.

1

pa(X) = §n2 —4cosx + cos 2x
1, 4

p3(x) = §n —4cosX + CosS2X — 9 €os 3x
1 4

Pa(x) = §n2 —4C0SX + €082 — o COs 3K

+ ! C0S 4x
4



Answers to Odd-Numbered Exercises 473

0
1 4 V_3 = span -2
p5(x)=§n2—4cosx+c052x——cos3x 3= 1
1
! COS 4x 4 €0s 5x a -
T3 % -1 0
V_3 = span ; , _(1J
b. | 0 ] 1
dim (V3) 4+ dim (V_3) + dim (V_1)
=1+1+2=4
13. Yes.
V32 12 V32 —127 [1 0
-1/2 J3/2 172 V32 |~ 1
Section 6.6 15. Yes
1 =3%=-1 - Yes
3 m=1%=-3%r=3 V2/2 V272 0 V2/2 =J?2/2 0
9 —V2/2 2/2 0 V272 V272 0
5. n1 = —3 with eigenvector v; = { 5 }; A2 = 2 with 0 0 1 0 0 1
. 2
eigenvector v, = { 1 } Observe that vi-v, = 0. 1 0 O
=({0 1 0
1 0 0 1
7. n = 1 with eigenvector vi = | 0 |; A2 = —3 with
1 [ -yv2 yv2 ], [ -1 0
i vP=1 1z wﬁ}D_{ 0 7]
eigenvector v, = 2 |; n3 = 3 with eigenvector [ _1/V2 142 4 0
1 19. P = D=
| V2 N2 0 2
—1 -
-1/v/3 1/v/2 -1/V6
=| -1 [.0b that vq-vp = Vvi-v3 =
V3 |: . ] serve that vi-Va V1-V3 21 P = 1/\/§ 0 —2/\/6
I VAVE R VNG R V2
V2:V3 = 0. -
1 1 0 0
9. V3 = span 0 D=|0 2 0
1 |0 0 -2

23. Since AA! = BB! =1, then

(AB)(AB)' = AB(B'A!)

~={3][3)

dim(V3) +dim(V_1) =142=3
3
11. V3 = span

N

= A(BBHA! = AIA!
=AA = |

Similarly, (BA)(BA)! = 1.

25. Since AA! =1, Al is the inverse of A so A'A =1 and

hence Al is also orthogonal.
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27. a. Since cos? 6 +sin’6 = 1, then
cosf —sind cosf sinb | [ 1 O
sind  coso —sin® cos® |~ | 0 1
29. If D = P'AP, then
= (P'AP)' = P'A'P
Since D is a diagonal matrix, then D' = D, so
D = P'AP and hence P'AP = P'A'P. Then
P(P'AP)P! = P(P'A'P)P!, s0 A = Al.
3L a Viv=vZ+4 .. +v2
b. The transpose of both sides of the equation Av = \v
gives VIA = av!. Since A is skew-symmetric,
vi(—A) = 2t Now, right multiplication of both
sides by v gives Vt{(—Av) = Avlv, so Vi(—\v) =
AVtv. Then 2avtv = 0 50 20 (v2 + - - - +v2) = 0 and
this gives A = 0.
Section 6.7
. 30(y')? +V/10x’ =0
2P+ () =1

2w
5 KX _U) 1

w

0 X
7. a [x y]{0 16}{y]—16=0
b. 10x? — 12xy +10y? — 16 =0
9. a 7x2464/3xy +13y? - 16 =0
b. 7(x — 3)? + 6+/3(x — 3)(y — 2) 4+ 13(y — 2)>—
16 =0
Section 6.8
1. 61 =+/10,06, =0
3.01=2\/§,02=«/§,03=0
41 1 L
vz V2 vz 2
VAN vz T2
0 4L
7.a=|01 V2 0 1 \/EO \/EO
110 0 1 0 P
V2 2

9. a.X1=2,X2=0b.X1=1,X2=1
C. 01/02 ~ 6,324,555

Review Exercises Chapter 6

1 1 2 1 0 0
l.a |0 0 1 010
[100] [001]
L s st
b. 0
V2/2 V2/2
C. projyVv = 0
3]

X
3 a lf [ y ] € W, then

i
o[

. Wsp{M}

a
That is, W is the line in the direction of { b ]
c

0
1
0

—
N < X

o T o

]:ax+by+cz:0

and which is perpendicular (the normal vector) to
the plane ax + by +cz = 0.

a

: _ axq+bxp4cxz
C. ProjwLV= "33 7 b
c

d. roj V= Jaxq +bxo+cx3|
” p JWl ” m
Note: This gives the distance from the point (x1, X2, X3)
to the plane.
5. a (1,cosx) = [ cosx dx =0
(1,sinx) = [T sinxdx =0

(cosx,sinx) :f” cosxsinxdx =0

, == COS X, —= SinX
b { i 05, g sinx

C. projy x? = §n? — 4cosx

d. || projyx? |= $+/2n° + 144x



7. Using the properties of an inner product and the fact

that the vectors are orthonormal,

VI =+Vvev

= \/C§ (Vi,Va) + -+ + €& (Vn, Vn)

=4/c2 4 +c2

If the basis is orthogonal, then

IV ll= /€2 V1, va) + -+ G2 (Vi Vi)

1 0 -1
1 -1 2
a5 1|
1 -1 2
1
. :
1
1 —2
b. By = 1 1
2
_1 _1
2
-1 1
2 2
1 _1
cm={| ]|
3 2
1 _1
L 2 2
101 2
2 2 2
1 1
1 1 0
| 2 2
d Q= 11 2
2 2 2
1 1
z "2 0
2 1 2
R=|0 1 -2
0 0 V2
e A=QR

Chapter Test: Chapter 6
1. T
3. F
5 F

O OO

o Mo NS

O OF

O o o
OoOrFrr OO

7.

9.
11.
13.
15.
17.
19.
21
23.
25.
27.
29.
31
33.
35.
37.
39.

Appendix A

Answers to Odd-Numbered Exercises

M4 4T 4 A 47" mm7 A7 A o 7 o

Section A.1

1. ANB = {-2,2,9)
3.AxB={(@,b)| acAbeB}

11.
13.

15.

There are 9 x 9 = 81 ordered pairs in A x B.

(AUB)\C = (—11,-9)

. A\B ={—-4,0,1,3,5,7}

. ANB =0,3]
. A\B = (—11,0)
A\C = (-11,-9)

10.
12.
14.
16.
18.
20.
22.
24.
26.
28.
30.
32.

36.
38.
40.

4 4 1M T A4 m A4 T ™ A4 A A A o 4 T

475
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17. y
Nl
e
5]
19. y
ol
H
e
5]

21. (A\NB)NC = {5} =AN(B NC)
23. AN(BUC) ={1,2,5,7} = (ANB)U(ANC)
25. A\(BUC) = {3,9,11} = (A\B) N (A\C)

Section A.2

1. Since for each first coordinate there is a unique second
coordinate, f is a function.

3. Since there is no x such that f (x) = 14, the function is
not onto. The range of f is the set {—2,—1,3,9,11}.

5 f1({-2}) = (1,4}
. Since f is not one-to-one, f does not have an inverse.
9. {(1,-2),(2,-1),(3,3),(4,5),(5,9), (6,11)}
11. f(AUB) =f((=3,7)) = [0,49)
f(A)Uf(B) =[0,25]U[0,49] = [0,49]
13. f(ANB) =f({0}) = {0}
f(A)Nf(B)=1[0,4]N][0,4] = [0,4]
Therefore, f(ANB) c f(A) N f(B), but
f(ANB) # f(A)Nf(B).
15. f1(x) = X2
17. If n is odd, then f™(x) = —x +c. If n is even, then
f™M(x) = x.

~

19. a. To show that f is one-to-one, we have

elefl — e2)(27l

S 2 —1=2x—1
S X1 = X2

b. Since the exponential function is always positive,
f is not onto R.

21.

23.

c. Define g : R — (0, 00) by g(x) = e?~1,

d. g7i(x) = 3(1+ Inx).

a. To show that f is one-to-one, we have 2n; = 2n; if
and only if ny = ny.

. Since every image is an even number, the range of f
is a proper subset of N.

ATHE)=N; F7H0) = ¢

fA)={2k+1]| kez}

.fB)Y={2k+1| kez}

(0] = {(m,n) | n=-2m}

. f7YE) = {(m,n) | n is even)

. f71(0) = {(m,n) | n is odd}

. Since f((1,—-2)) = 0 =f((0, 0)), then f is not
one-to-one.

g.IfzeZ letm=0andn =z, sothat f(m,n) =z.

o

- O 2 0 T 9 0

Section A.3
1. If the side is x, then h? = x2 4+ x2 = 2x2, s0
h = V/2x.
3. If the side is x, then the height is h = ?x, so the area
isA= %x*/;x = ‘/Tgxz.
5. If a divides b, there is some k such that ak = b; and if

11.

13.

15.

17.

19.

21.

b divides c, there is some ¢ such that b¢ = c. Then
¢ =he¢ = (ak)¢ = (k&)a, so a divides c.

. If n is odd, there is some k such that n = 2k + 1. Then

n? = (2k 4+ 1)? = 2(2k? + k) + 1, so n? is odd.

.Ifb=a+1 then (a+b)?=(a+1)?=

2(2a? + 2a) +1, so (a + b)? is odd.
Letm =2 and n = 3. Then m? 4+ n? = 13, which is
not divisible by 4.

Contrapositive: Suppose n is even, so there is some k
such that n = 2k. Then n? = 4k?, so n? is even.

Contrapositive: Suppose p = . Then

VP =1/p2=p=(p+0)/2

Contrapositive: Suppose x > 0. If e =x/2 > 0, then

X > €.

Contradiction: Suppose ¥2= p/q such that p and q
have no common factors. Then 2% = p3, so p? is even
and hence p is even. This gives that g is also even,
which contradicts the assumption that p and q have no
common factors.

If 7xy < 3x2 4 2y?, then 3x? — 7xy + 2y? =

(3x —y)(x — 2y) > 0. There are two cases: either both
factors are greater than or equal to 0, or both are less



23.

25.

27.

29.

than or equal to 0. The first case is not possible since
the assumption is that x < 2y. Therefore, 3x <.

Define f:R — R by f(x) = x2. Let C =[—4,4],
D =[0,4]. Then f 1(C) = [-2,2] = f ~}(D) but
C ¢D.

If x € f~1(C), then f(x) € C. Since C c D, then
f(x) € D. Hence, x € f~1(D).

If y € f(A\B), there is some x such that y = f (x) with
xeAandx ¢ B.Soy e f(A)\ f(B), and

f(A\B) c f(A)\ f(B). Now suppose y € f(A)\ f(B). So
there is some x € A such that y = f(x). Since f is
one-to-one, this is the only preimage for y, so x € A\B.
Therefore, f (A)\ f(B) c f(A\B).

By Theorem 3 of Sec. A.2, f(f1(C))c C. Lety e C.
Since f is onto, there is some x such thaty = f(x). So
x € f~1(C), and hence y = f(x) e f(f ~1(C)).
Therefore, C c f(f ~1(C)).

Section A.4

1

Base case: n = 1:1% = 1@®

Inductive hypothesis: Assume the summation formula
holds for the natural number n.

Consider

PP4+22 43+ 4?4 (n+1)°

_ n(n +1)(2n + 1) (1)

6
1
_ “g (2n% +7n + 6)
n+1
= T(2n+3)(n+2)

_ (n+1)(n +2)(2n +3)
B 6

13-1)

. Basecase:n=1:1= ="~

2
Inductive hypothesis: Assume the summation formula

holds for the natural number n.
Consider

14+4+74+---+@Bn—=2)+[3(n+1)-2]
_n@8n-1)
- 2
3n%2 450 +2
- 2
_ (h+1)@Bn+2)
2

+@3n+1)
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14

5 Basecase:n=1:2= =%

11.

Inductive hypothesis: Assume the summation formula
holds for the natural number n.
Consider

24548+ +@Bn—-1+[3(n+1)-1]
= %(Snz—i-?n +4)

~ (n+1)Bn+4)

a 2

(M +D)EBM+1)+1)
N 2

.Basecase:n:lzgz@

Inductive hypothesis: Assume the summation formula
holds for the natural number n.
Consider

3+6+9+---+3n+3(n+1)
1
:5(3n2+9n+6)

= g(n2+3n +2)

_3(n+1)(n+2)
SN E—

. Basecase:n=1:21=22_2

Inductive hypothesis: Assume the summation formula
holds for the natural number n.
Consider

n+1

n
sz — sz +2n+1
k=1 k=1

— 2n+1 —24+ 2n+1

=2n+2 -2

From the data in the table

n|{2+4+---+2n
1 2=1(2)
2 6=2(3)
3 12 = 3(4)
4 40 = 4(5)
5 30 = 5(6)

we make the conjecture that

24+446+---+@2n)=n(n+1)
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13.

15.

17.

Answers to Odd-Numbered Exercises

Base case: n =1:2=1(2)

Inductive hypothesis: Assume the summation formula
holds for the natural number n.

Consider

24446+ ---+2n+2(n+1)
=n(n+1)+2(n+1)
=Mn+1)n+2)

Base case: N =5:32 =25 > 25 =52

Inductive hypothesis: Assume 2" > n? holds for the
natural number n.

Consider 2"+1 = 2(2") > 2n2. But since 2n%—
(nM+1%=n2-2n—-1=(n-1)%-2>0, forall

n > 5, we have 2"*1 > (n + 1)2,

Base case: n = 1: 12+ 1 = 2, which is divisible by 2.
Inductive hypothesis: Assume n? + n is divisible by 2.
Consider (n 4+ 1)? + (n + 1) = n? 4 n + 2n + 2. By the
inductive hypothesis, n? + n is divisible by 2, so since
both terms on the right are divisible by 2, then

(n + 1) 4+ (n + 1) is divisible by 2. Alternatively,
observe that n? +n = n(n + 1), which is the product of
consecutive integers and is therefore even.

Base case:n =1:1= =}

Inductive hypothesis: Assume the formula holds for the
natural number n.

Consider

T4r4ri4 oty

m—1
= "
r—1 +
M —1+r"(r—1)
r—1
rn+1_1

r—1

19.

21.

23.

Base case: n =2 :AN(B1UB) = (ANB1)U(ANB,),
by Theorem 1 of Sec. A.1

Inductive hypothesis: Assume the formula holds for the
natural number n.

Consider

ANB1UByU---UB, UBp41)
=AN[BLUByU---UB;)UBp41]
=[ANB1UBU---UBn)]U(ANBn1)

— (ANBy)UANB,)U---U(ANBy) U (AN Basa)

(5) - =

n!

(n—=n!n—-(m-=r)!

“(:2)

By the binomial theorem,

2“=(1+1)”=§n:<£)

k=0




| ndex

A

Abel’s formula, 190
Addition
linear transformations and, 209-210
matrix, 27-29
of real numbers, 28
of vectors, 95-99, 129
Additive identity, 98
Additive inverse, 97, 98, 136
Aerodynamic forces, 199
Algebra, matrix, 26—37. See also
Matrix algebra
Angles, between vectors,
327-330
Arguments
contradiction, 426-427
contrapositive, 426
direct, 425
Associated quadratic form, 386
Associative property, 97, 98
Augmented matrix
for consistent linear systems, 22
explanation of, 15, 16
facts about, 23
as solution to linear systems, 16—17
Axioms, 424

Back substitution, 4

Balance law, 310

Balancing chemical equations, 79

Basis
change of, 177-181
explanation of, 149
facts about, 171
method for finding, 166-170
ordered, 174-176
orthogonal, 339-340
orthonormal, 342-352
standard, 159, 162, 163
for vector space, 159-164

Best-fit line, 322

Bijective functions, 420, 422
Bijective mapping, 226
Bilinear inner product, 333
Binary vectors, 127-128
Binomial coefficients, 435-436
Binomial theorem, 437-438
Brin, Sergey, 276

C

Cartesian product, of two sets, 411
Cauchy-Schwartz inequality, 326—327,
336, 337
Characteristic equation, 279
Characteristic polynomials, 279
Check matrix, 128
Chemical equation balancing
application, 1, 79
Circle, equation of, 385
Codewords, 127-129
Coefficient matrix, 15
Cofactors, of matrices, 56
Column rank, 221, 222
Column space, 152
Column vectors, 27
Commutative operation, 28
Commutative property, 97, 129
Commute, matrices that, 32, 33
Complement, of sets, 411
Complementary solution, 193
Complex numbers
conjugate of, 377
equality and, 377
imaginary part, 144
real part, 144
set of, 134
Components, of vectors, 27, 95
Composition, of functions,
420-422
Computer graphics applications
explanation of, 255
projection, 265-268

479
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Index

Computer graphics applications (continued)

reflection, 260, 261
reversing graphics operations, 261-262
rotation, 264-265
scaling and shearing, 256-259
translation, 262—-264
types of, 199
Conclusions, 424
Condition number, 403
Conic sections
eigenvalues and, 388—390
explanation of, 61, 386
simplifying equations that
describe, 385
Conservation of mass law, 1
Contained sets, 410
Continuous signals, 93
Contraction, 257
Contradiction argument, 426-427
Contrapositive argument, 426
Contrapositive statement, 425, 426
Converse, of theorems, 424—-425
Convex, set on R? as, 272
Corollaries, 425
Cosine, of angle between vectors,
328, 337
Counter example, 425
Cramer’s rule, 62-64

D
Damping coefficient, 192
Data compression, 401-403
Data sets, least squares approximation
to find trends in, 371-373
Demand vectors, 83
DeMorgan’s laws, 413-414
Determinants
facts about, 64—-65
to find equation of conic sections, 61
linear independence and, 118-119
method to find, 55-56
properties of, 57-62
to solve linear systems, 62—64
of square matrices, 56
of 3 x 3 matrix, 54-55
of triangular matrices, 56—57
of 2 x 2 matrix, 54, 55
Diagonalization
conditions for matrix, 291-292
eigenvalues and, 293

eigenvectors and, 282
examples of, 289-291, 293
explanation of, 287-289, 377
facts about, 297-298
linear operators and, 295-297
orthogonal, 379-382
similar matrices and, 293-294
of symmetric matrices, 377-383
symmetric matrices and, 293
systems of linear differential equations
and, 302-309
of transition matrices, 312-313
Diagonal matrix, 56. See also
Diagonalization
Differential equations
applications for, 185, 191-193
explanation of, 185
first-order, 186
fundamental sets of solutions
and, 188-193
general solution of, 186
second-order with constant coefficients,
186-188, 191-193
Digraphs, 79-80
Dilation, 257
Dimension
of column space, 221
explanation of, 164-165
of vector space, 165-166
Direct argument, 425
Directed graphs, 79-80
Direction field, of systems of differential
equations, 302
Direct sum, 360—361
Discrete signals, 93
Distance formula, 323
Domain, 415
Dot product

on Euclidean n-space (R"), 323-331, 333

inner product that is not, 335

properties of, 326

of vectors, 29-32, 323
Dynamical systems, 300

Echelon form

definition of, 19

of matrices, 17-21
Economic input-output models, 82-84
Eigenfunctions, 284



Eigenspaces
algebraic multiplicity of, 281
corresponding to eigenvalues,
280-281
dimension of, 281-282
explanation of, 279-280
geometric multiplicity of, 282
Eigenvalues
as complex numbers, 282-283
diagonalization and, 287-298
explanation of, 276
facts about, 284-285
geometric interpretation of, 278—-279
of linear operators, 283-284
Markov chains and
method to find, 310-314
of square triangular matrices, 283
systems of linear differential equations
and, 302-309
transition matrix and, 312, 313
of triangular matrices, 283
for 2x2 matrices, 277-278
Eigenvectors
definition of, 276-277
diagonalization and, 287-298
explanation of, 276
facts about, 284-285
geometric interpretation of,
278-279
of linear operators, 283-284
Markov chains and
method to find, 310-314
orthogonal, 379-380
probability, 313
of real symmetric matrices, 378
systems of linear differential equations
and, 300-309
transition matrix and, 312, 313
for 2x2 matrices, 277-278
Elementary matrix
definition of, 69
explanation of, 69-71
inverse of, 71-72
Elements, of sets, 409
Empty sets, 410
Equal matrix, 27
Equations, matrix, 48—51
Equivalent linear systems, 4, 5
Equivalent triangular systems, 6-7,
10, 14

Index

Euclidean n-space (R")
definition of, 95
dot product on, 323-331, 333
properties of norm in, 329
vectors in, 94-99, 108, 119,
323-331
Euclidean space
dot product and, 323-331
geometry of, 7
Euclidean vector spaces, 130
Existential quantifiers, 427
Exponential model, 186

F

Factorials, 432
Finite dimensional vector spaces
explanation of, 165
isomorphisms and, 230
linear operators and, 243-244
linear transformations between,
236, 237
Forward substitution, 68—69
Fourier polynomials, 373-375
Free variables, 9
Frequency, of wave, 93
Functions
composition of, 420-422
explanation of, 415-418
inverse, 418-421
one-to-one, 419
onto, 420
relations vs., 415, 416
vector space of real-valued,
133-134
Fundamental frequency,
93-94
Fundamental sets of solutions
superposition principle and, 188—189
theorem of, 190-191
Wronskian and, 189-191

G

Gaussian elimination

explanation of, 4

to solve linear systems, 6-11,

14, 15, 68

Gauss-Jordan elimination, 19
General solution, 3
Goodness of fit, measurement of, 366
Google, 276
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Index

Gram-Schmidt process
examples of, 349-352
explanation of, 344, 347-348, 394
geometric interpretation of,

348-349

Graphics operations in R?
reflection, 260, 261
reversing, 261-262
rotation, 264—-265
scaling and shearing, 256-259
translation, 262—-264

Graphs
of conic sections, 61
of functions, 416

H

Hamming, Richard, 127
Hamming’s code, 127, 129
Homogeneous coordinates, 262—264
Homogeneous linear systems,
49-51, 113
Horizontal line test, 419
Horizontal scaling, 256, 257
Horizontal shear, 258
Hypothesis
explanation of, 424
inductive, 430

Identity matrix, 39
Images
explanation of, 415, 418
inverse, 416, 418
Imaginary part, complex
numbers, 134
Inconsistent linear systems
explanation of, 2, 10
reduced matrix for, 21-22
Independence, linear. See Linear
independence

Inequality, Cauchy-Schwartz, 326-327

Infinite dimensional vector space, 165
Initial point, vector, 95
Initial probability vectors, 275
Initial-value problems,

186, 192-193

Injective mapping. See One-to-one mapping

Injective functions, 419
Inner product
examples of, 334-336

explanation of, 333
that is not dot product, 335
Inner product spaces

diagonalization of symmetric matrices

and, 377-383

explanation of, 333-334

facts about, 340

least squares approximation and,
366-375

orthogonal complements and, 355-364

orthogonal sets and, 338—-340
orthonormal bases and, 342-352
properties of norm in, 336-337
quadratic forms and, 385-391
singular value decomposition and,
392-403
subspaces of, 355
Input-output matrix, 83
Integers, set of, 409
Internal demand, 83
Intersection, of sets, 410, 411
Inverse functions
explanation of, 418-420
unique nature of, 421
Inverse images, 416, 418
Inverse of elementary matrix, 71-72
Inverse of square matrix
definition of, 40
explanation of, 40-45
facts about, 45
Inverse transformations, 230-231
Invertible functions, 418-420
Invertible matrix
elementary matrices and, 72
explanation of, 41, 54
inverse of product of, 44-45
square, 60-61
Isomorphisms
definition of, 229
explanation of, 226
inverse and, 230-231
linear transformations as,
229-231
one-to-one and onto mappings
and, 226-230
vector space, 232-233

Kepler, Johannes, 61
Kirchhoff’s laws, 88



L
Law of conservation of mass, 1
Leading variables, 10
Least squares approximation
background of, 366—368
to find trends in data sets, 371-373
Fourier polynomials and, 373-375
linear regression and, 371-373
Least squares solutions, 369-371
Lemmas, 425
Length, of vectors, 95
Leontief input-output model, 82
Linear codes, 129
Linear combinations
definition of, 102, 146
of elements of fundamental
set, 94
matrix multiplication and, 107
of vectors, 102-106, 146
Linear dependence
definition of, 111, 157
explanation of, 111, 157
of vectors, 112, 158
Linear equations, in n variables, 3
Linear independence
definition of, 111, 157
determinants and, 118-119
explanation of, 111-112
of vectors, 112-117, 158
Linear operators
diagonalizable, 295-297
eigenvalues and eigenvectors of, 283—-284
explanation of, 202, 237
similarity and, 249-252
Linear regression, 368, 371-373
Linear systems
augmented matrices to solve, 16-17, 22
consistent, 2, 117
converted to equivalent triangular
systems, 6-7, 10, 14
Cramer’s rule to solve, 62-64
definition of, 3
discussion of, 3—4
elimination method to solve, 4-11,
14, 15
equivalent, 4, 5
explanation of, 2-3
facts about, 11-12
with four variables, 2, 8—9
homogeneous, 49-51, 113

Index 483

ill-conditioned, 403
inconsistent, 2, 10, 21-22
linear independence and, 117-118
LU factorization to solve, 75-76
matrix form of, 48
nullity of matrices and, 222-223
in terms of geometric structure of
Euclidean space, 363—-364
3x,3,7-8
triangular form of, 4, 6, 10
with two variables, 2—3
vector form of, 106—-107
vector form of solution to,
48-50
Linear systems applications
balancing chemical equations, 79
economic input-output models, 82—-84
network flow, 79-81
nutrition, 81-82
Linear transformations
computer graphics and, 199,
255-268
definition of, 202, 235
explanation of, 200—202, 235-236
from geometric perspective,
203-204
inverse of, 230
as isomorphisms, 229-231
isomorphisms as, 226—233
matrices and, 202—-203, 221-222,
235-245
null space and range and, 214-223
operations with, 209-210
similarity and, 249-253
Lower triangular matrix
examples of, 57
explanation of, 56, 73
LU factorization
facts about, 77
of matrices, 69, 72-75, 392
solving linear systems using, 75-76

M
Mapping
bijective, 226
explanation of, 200-201, 415
linear transformations and, 201-202,
205-207, 241-242
one-to-one, 226—-230
onto, 226, 227
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Markov chains
applications of, 310-314
explanation of, 275-276
Markov process, 310
Mathematical induction
base case, 430
binomial coefficients and binomial
theorem and, 435-438
examples of, 431-435
inductive hypothesis, 430
introduction to, 429-430
principle of, 430-431
Matrices
addition of, 27-29
augmented, 15-17, 22, 23
check, 128
coefficient, 15
condition number of, 403
definition of, 14
determinants of, 54—-65
diagonal, 56
discussion of, 14-15
echelon form of, 17-21
elementary, 69-72
finding singular value decomposition
of, 398-402
identity, 39
input-output, 83
inverse of product of invertible, 44—-45
inverse of square, 39-45
linear independence of, 114
linear transformations and, 202—203,
221-222, 235-245
LU factorization of, 69, 72-75
minors and cofactors of, 56
nullity of, 221-223
null space of, 152-153
orthogonal, 381-382
permutation, 76-77
positive definite, 354
positive semidefinite, 354
rank of, 222
scalar multiplication, 27
singular values of, 393—-396
stochastic, 275, 311, 314
subspaces and, 362
symmetric, 36
that commute, 32, 33
transition, 177-182, 275, 276,
311-313

transpose of, 35-36
triangular, 15, 56-57, 283
vector spaces of, 130
Matrix addition, 27-29
Matrix algebra
addition and scalar multiplication,
27-29
explanation of, 26-27
facts about, 36-37
matrix multiplication, 29-35
symmetric matrix, 36
transpose of matrix, 35-36
Matrix equations, 48—51
Matrix form, of linear systems, 48
Matrix multiplication
definition of, 32
explanation of, 29-35, 210
linear combinations and, 107
linear transformations between finite
dimensional vector spaces and,
236-237
properties of, 35
to write linear systems in terms of
matrices and vectors, 48-51
Members, of sets, 409
Minors, of matrices, 56
Multiplication. See Matrix multiplication;
Scalar multiplication,
Multiplicative identity, 39
Multivariate calculus, 322

Natural numbers. See also Mathematical
induction,
set of, 409
statements involving,
429-434
Network flow application,
79-81
Newton, Isaac, 61
Nilpotent, 299
Noninvertible matrix, 41
Normal equation, least squares solution
to, 369-370
Nullity, of matrices, 221-223
Null sets, 410
Null space,
of linear transformations, 214-221
of matrices, 152-153, 221
Nutrition application, 81-82



o

One-parameter family, of
solutions, 9
One-to-one functions, 419
One-to-one mapping, 226—-230
Onto functions, 420
Onto mapping, 226, 227
Ordered basis, 174-176
Ordinary differential equation, 185
Orthogonal basis
construction of, 347-348
of finite dimensional inner product space,
346-347
singular values and, 394
vectors that form, 355
Orthogonal complement
definition of, 357
examples of, 358—-360
explanation of, 355—-358
facts about, 364
inner product spaces and, 356
linear systems and, 363—-364
matrices and, 362
projection theorem and, 361-362
subspaces and, 358
Orthogonal diagonalization, 379-382
Orthogonal matrix, 381-382
Orthogonal projection
explanation of, 343-345, 360, 362
Gram-Schmidt process and,
347, 348
Orthogonal sets
explanation of, 338
properties of, 338—-340
Orthogonal vectors
explanation of, 328—329, 337
in inner product spaces, 338 (See also
Inner product spaces)
subspaces of inner product spaces and,
355-360
Orthonormal basis
Gram-Schmidt process and,
347-352
for inner product space, 345—-347
ordered, 339-340, 342
orthogonal matrices and, 381
orthogonal projections and,
343-345
Orthonormal vectors, 338

Index 485

P
Page, Larry, 276
Page range algorithm (Google),
276
Parabolas, general form of, 11
Parallelogram rule, 96
Parallel projection, 266
Parametric equations, 266
Pascal’s triangle, 435
Past plane, 301-302
Period, of wave, 93
Periodic motion, 93
Periodic signals, 93
Permutation matrix, 76-77
Phase portrait, 302—-304, 306
Photosynthesis application, 1-2
Pitch, 199
Pivot, 18, 19
Pixels, 255
PLU factorization, 76-77
Polynomials
characteristic, 279
of degree n, 132
derivative of constant, 217
Fourier, 373-375
trigonometric, 373-374
use of Gram-Schmidt process on space
of, 350-351
vector space of, 132-133,
163, 334
zero, 132
Positive definite matrix, 354
Positive semidefinite matrix, 354
Predator-prey model, 300
Preimages, 416
Principle of mathematical induction.
See Mathematical induction,
Probability vectors, 311
Production vectors, 83
Product matrix, 30-31
Projection
example of, 266—268
explanation of, 265
orthogonal, 343
parallel, 266
Projection theorem, 361-362
Proofs
contradiction argument, 426-427
contrapositive argument, 426
direct argument, 425
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Index

Proofs (continued)
explanation of, 424—425
quantifiers, 427

Propositions, 425

Q

Quadratic equations
in three variables, 391
in two variables, 385—-388
Quadratic forms
applications for, 385
associated, 386
rotation of axes and,
385-390
Quadratic surfaces, 391
Quantifiers, 427

Range
explanation of, 415
of linear transformations,
214-221
Rank of a matrix, 222
Rational numbers, set of, 410
Real numbers
addition of, 28
set of, 410
signals representing, 93
Real part, complex numbers, 134
Real-valued fuctions, 133-134
Reduced matrix, for inconsistent linear
systems, 21-22
Reduced row echelon form
explanation of, 18, 19, 23
transforming matrices to equivalent,
22-23
Reflection, 260, 261
Relations
explanation of, 415
functions vs., 415, 416
Riemann integral, 334
Roll, 199
Rotation, 264—-265
Rotation of axes, 385-390
Row echelon form
explanation of, 17, 19
reduced, 18-21
Row equivalent, 16
elementary matrices and, 72
Row operations, 16, 58

Row rank, of matrices, 222
Row vectors, 27

S
Scalar multiplication
explanation of, 27-29
linear transformations and, 209-210
of vectors, 95-99, 129, 161
Scalar product
of matrices, 27
of vectors, 96
Scalar projection, 343
Scaling, 96, 256—-258
Scatterplots, 321
Second-order differential equations, with
constant coefficients, 186188,
191-193
Sets,
empty, 410
explanation of, 409-410
null, 410
operations on, 410-414
orthogonal, 338—340
solution, 3
Shearing, 258-259
Signals, 93
Similar matrix
background of, 249-251
explanation of, 252, 253
Singular value decomposition (SVD)
data compression and,
401-403
explanation of, 392
four fundamental subspaces and, 401
method for, 398—-400
theorem of, 396—-398
Singular values, 392
definition of, 393
of m x n matrix, 393-396
Solutions, to linear systems with
n variables, 3
Solution set, 3
Span, of set of vectors, 146—152
Square matrix
determinant of, 56
inverse of, 39-45
invertibility of, 60
trace of, 142-143
Standard basis
explanation of, 162, 163



matrix representation relative to, 235-237

polynomials of, 163
Standard position, of vectors, 95

State vectors, Markov chains and, 311-312

Steady-state vectors
explanation of, 276
Markov chain and, 313-314
Stochastic matrix, 275, 311, 314
Subsets, 410, 412
Subspaces
closure criteria for, 144
definition of, 140
examples of, 142-143
explanation of, 140-142
facts about, 153
four fundamental, 401
of inner product spaces, 355-360,
362
null space and column space of matrix
and, 152-153
span of set of vectors and, 146-152
trivial, 142
of vector spaces, 140, 145, 146
Substitution
back, 4
forward, 68—-69
Superposition principle, 188—-189
Surjective functions, 420
Surjective mapping. See Onto mapping,
Symmetric matrix
diagonalization of,
377-383
explanation of, 36
Syndrome vectors , 128
Systems of linear differential equations
diagonalization and, 302—309
explanation of, 300
to model concentration of salt in
interconnected tanks,
307-309
phase plane and, 301-302
uncoupled, 300-301
Systems of linear equations. See
Linear systems

T
Terminal point, vector, 95
Theorems
converse of, 424-425
explanation of, 424

Index 487

Tower of Hanoi puzzle,
429-430
Trace, of square matrices,
142-143
Trajectories, 301-302
Transformation, 199-200. See also Linear
transformations
Transition matrix
diagonalizing the, 312-313
example of, 275, 276
explanation of, 177-180
inverse of, 181-182
Markov chains and,
311-312
Translation, 262-264
Transpose, of matrices, 35-36
Triangular form
of linear systems, 4, 6-7, 10
matrices in, 15
Triangular matrix
determinant of, 57, 58
eigenvalues of, 283
explanation of, 56-57
Trigonometric polynomials, 373-374
Trivial solution, to homogeneous systems,
49, 50
Trivial subspaces, 142

V)

Uncoupled systems, 300—-301

Uniform scaling, 257

Union, of sets, 410

Unit vectors, 325

Universal quantifiers, 427

Universal set, 410

Upper triangular matrix
examples of, 57
explanation of, 56, 68, 74

\"/

Vector addition, 95-99, 129
Vector form
of linear systems, 106—107
of solution to linear systems, 48—50
\ectors
addition and scalar multiplication of,
95-99
algebraic properties of, 97-98
angle between, 327-330
applications for, 94



Vectors (continued)

binary, 127-128

components of, 27, 95

demand, 83

distance between, 324, 336

dot product of, 29-32, 323

equal, 95

in Euclidean n-space (R"), 94-99, 108,
119, 323-331

explanation of, 27, 94

length of, 95, 323-325, 336

linear combinations of, 102-106, 146

linear independence of, 112-117

orthogonal, 328-329, 337

orthonormal, 338

probability, 311

production, 83

span of set of, 146—-152

standard position of, 95

state, 311-312

steady-state, 276, 313-314

syndrome, 128

unit, 325

zero, 97

Vector space isomorphism, 229, 232-233
\ector spaces,

abstract, 136-137

basis for, 159-164, 166—-170, 174-182
of complex numbers, 134-135
definition of, 129-130

dimension of, 165-166

Euclidean, 130
examples of, 130-135
expanding set of vectors in, 169-170
facts about, 137
finite dimensional, 165, 230, 236, 237
infinite dimensional, 165
isomorphic, 229, 232-233
linear transformations and, 204-208,
211, 220
of matrices, 130
or real-valued functions, 133-134
of polynomials, 132—-133, 163, 334
subspaces of, 140, 145, 146
Venn diagrams
example of, 411, 412
explanation of, 410-411
Vertical line test, 419
Vertical scaling, 257
Vertical shear, 259

w

Waveform, of signal, 93
Waves, period of, 93
Wronskian, 189-191
Y

Yaw, 199

z

Zero polynomials, 132
Zero vectors, 97
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