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Preface to the Second Edition

First, I wish to thank my students, colleagues, and readers for indicating
where they thought additional examples would be beneficial and for suggesting
more topics to include in the text. Those suggestions have led to the inclusion
of several new examples and topics in the second edition. Additional examples
were included in the text to help students better understand concepts which
are being introduced to them for the first time. For instance, an example
was included in the text of a proof of the triangle inequality by cases which
requires four cases.

In order to help students know exactly where proofs to lemmas and proofs
to theorems end and where examples end, I have placed at the end of proofs
and examples the black square symbol H.

Certainly, the most noticeable change between the second edition and the
first edition, is the inclusion of more than 125 new exercises in sections titled
More Challenging Exercises. These sections appear in the review exercises
at the end of each of the first seven chapters. Students who like to be chal-
lenged should benefit greatly from these exercises. For instance, in the More
Challenging Exercises at the end of Chapter 1 new topics such as the binary
operators nand, nor, and the Sheffer stroke are introduced and explored. In
Chapter 2 in the section More Challenging Exercises the Fano plane is exam-
ined and problems of the type “Statement. Theorem? Proof?” are introduced
for the first time. Problems of this kind also appear in Chapters 3 through
6. In these problems, a statement is given, and the student is to decide if the
statement is true or false. If the statement is true, it is a theorem, and the
student must then determine if the given proof is valid or invalid. If the proof
is valid, the student is done. If the proof is invalid, the student is asked to
produce a valid proof. If the statement is false, then, of course, the proof is
invalid.

I thank my editor, Robert Ross, for his able assistance, guidance, and en-
couragement throughout the revision process. I thank Ken Rosen for his very
insightful comments and suggestions. And finally, I thank the production staff
at Taylor & Francis/CRC Press for their efforts in developing this second edi-
tion.

Charles Roberts

Xi






Preface

This text is written for undergraduate mathematics majors and minors who
have previously taken only computationally oriented, problem solving math-
ematics courses. Usually these students are freshmen and sophomores. The
primary objectives of the text are to teach the reader (1) to reason logically,
(2) to read the proofs of others critically, and (3) to write valid mathematical
proofs. We intend to help students develop the skills necessary to write cor-
rect, clear, and concise proofs. Ultimately, we endeavor to prepare students
to succeed in more advanced mathematics courses such as abstract algebra,
analysis, and geometry where they are expected to write proofs and construct
counterexamples instead of performing computations and solving problems.
The aim of the text is to facilitate a smooth transition from courses designed
to develop computational skills and problem solving abilities to courses which
emphasize theorem proving.

Logic is presented in Chapter 1, because logic is the underlying language of
mathematics, because logic is the basis of all reasoned argument, and because
logic developed earliest historically. This text may well be the only place in
the undergraduate mathematics curriculum where a student is introduced to
the study of logic. Knowing logic should benefit students not only in future
mathematics courses but in other facets of their lives as well. Formal proofs
are included, because each step in a formal proof requires a justification.
And students need to understand that when they write an informal proof,
each statement should be justified unless the justification is apparent to the
reader.

In Chapter 2, deductive mathematical systems are defined and discussed.
Various proof techniques are presented, and each proof technique is illustrated
with several examples. Some theorems are proved using more than one proof
technique, so that the reader may compare and contrast the techniques. The
role of conjectures in mathematics is introduced, and proof and disproof of
conjectures are explored. Interesting conjectures which recently have been
proved true or disproved, and conjectures which still remain open are stated
and discussed. The integers and their properties are developed from the ax-
ioms and properties of the natural numbers; the rational numbers and their
properties are derived from the integers; and, finally, the method for develop-
ing the system of real numbers from the rational numbers is described.

Elementary topics in set theory are presented in Chapter 3. A thorough
understanding of basic set theory is necessary for success in advanced mathe-
matics courses. In addition, using set notation promotes precision and clarity

xiii
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when communicating mathematical ideas.

Relations and functions play a major role in many branches of mathematics
and the sciences. Therefore, in Chapters 4 and 5, relations and functions are
defined and their various properties are examined in detail.

In Chapter 6, proof by mathematical induction, in its various forms, is
introduced and several theorems are proved using induction.

The last three chapters, which are optional, introduce the reader to the
concept of cardinalities of sets (Chapter 7), and to the concepts and proofs in
real analysis (Chapter 8) and in group theory (Chapter 9).

The appendix discusses reading and writing proofs and includes some basic
guidelines to follow when writing proofs. We encourage students to read the
appendix more than once during the semester and to use it as a reference
when writing proofs.

Several different syllabi can be designed for this text depending upon the
previous preparation and mathematical maturity of the students and the
goals, objectives, and preferences of the instructor. Chapters 1 through 6
constitute the core of the course we teach during one semester. When time
permits, we present some additional topics from Chapters 7, 8, and 9.

Features of the Text. This text is written in a friendly, conversational
style, yet it maintains the proper level of mathematical rigor. Most sections
are of appropriate length for presentation in one lecture session. Several bio-
graphical sketches and historical comments have been included to enrich and
enliven the text. Generally, mathematics is presented as a continually evolving
discipline, and the material presented should fulfill the needs of students with
a wide range of backgrounds. Numerous technical terms which the student
will encounter in more advanced courses are defined and illustrated. Many
theorems from different disciplines in mathematics and of varying degrees of
complexity are stated and proved. Numerous examples illustrate in detail
how to write proofs and show how to solve problems. These examples serve
as models for students to emulate when solving exercises. Exercises of varying
difficulty appear at the end of each section.

Acknowledgments. This text evolved from lecture notes for a course
which I have taught at Indiana State University for a number of years. I would
like to thank my students and my colleagues for their support, encouragement,
and constructive criticisms. Also, I would like to thank my editor Robert Stern
and my project coordinator Stephanie Morkert of Taylor & Francis/CRC Press
for their assistance in bringing this text to fruition.

Charles Roberts
2010



Chapter 1

Logic

There are many definitions of logic; however, we will consider logic to be
the study of the methods and principles used to distinguish valid reasoning
from invalid reasoning. Logic is a part of mathematics; moreover, in a broad
sense, it is the language of mathematics.

In this chapter, we will study elementary symbolic logic. Logic is the basis of
all reasoned argument, and therefore logic is the basis for valid mathematical
proofs. The study of logic as a body of knowledge in Western Civilization
originated with Aristotle (384-322 B.C.), one of the greatest philosophers of
ancient Greece. He was a student of Plato for twenty years (from 367 to
347 B.C., when Plato died). Later, Aristotle tutored Alexander the Great,
and in 334 B.C. he founded his own school of philosophy in the Lyceum. After
his death, Aristotle’s writings on reasoning were collected together in a body
of work called the Organon. The contents of the Organon is the basis for the
subject of logic, although the word “logic” did not acquire its current meaning
until the second century A.D. The word “logic” is a derivative of the Greek
word logos, which translates into English as “word,” “speech,” or “reason.”

Aristotle was the first to develop rules for correct reasoning. However, he
expressed logic in ordinary language, and, consequently, it was subject to the
ambiguities of natural language. At an early age, the German philosopher,
mathematician, and logician Gottfried Wilhelm Leibniz (1646-1716) was not
satisfied with Aristotelian logic and began to develop his own ideas. He had
a lifelong goal of developing a universal language and a calculus of reasoning.
His idea was that the principles of reasoning could be reduced to a formal
symbolic system in which controversies (not just mathematical ones) could
be settled by calculations. Thus, Leibniz envisioned an algebra or calculus
of thought. He made some strides toward his goal, but his work was largely
forgotten.

The English mathematician and logician August De Morgan (1806-1871)
presented ideas for improving classical logic in the 1840s. The key ideas he
contributed in his text Formal Logic (1847) include the introduction of the
concept of a universe of discourse; names for contraries; disjunction, con-
junction, and negation of propositions; abbreviated notation for propositions;
compound names; and notation for syllogisms. De Morgan intended to im-
prove the syllogism and use it as the main device in reasoning. In order to
ensure there were names for the contraries of compound names, he stated the
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famous De Morgan Laws. By creating some of the most basic concepts of
modern logic, De Morgan contributed substantially to the change that was
taking place in logic in the mid-1800s. However, his notational system was
viewed as too complex, so he received little credit for the development of
modern logic.

The English mathematician George Boole (1815-1864) is generally credited
with founding the modern algebra of logic and hence symbolic logic. At the
age of sixteen, Boole was an assistant teacher. In 1835, he opened his own
school and began to study mathematics on his own. He never attended an
institution of higher learning. He taught himself all of the higher mathematics
he knew. In 1840, he began to publish papers on analysis in the Cambridge
Mathematical Journal. In 1847, Boole published the text The Mathematical
Analysis of Logic. Initially, Boole wanted to express all the statements of
classical logic as equations and then apply algebraic transformations to derive
the known valid arguments of logic. Near the end of writing the text, Boole
realized that his algebra of logic applied to any finite collection of premises
with any number of symbols. Boole’s logic was limited to what is presently
called the propositional calculus. It is the propositional calculus we will
study in this chapter.

1.1 Statements, Negation, and Compound Statements

In the English language, sentences are classified according to their usage.
A declarative sentence makes a statement. An imperative sentence
gives a command or makes a request. An interrogative sentence asks a
question. And an exclamatory sentence expresses strong feeling. Consider
the following sentences:

1. Indianapolis is the capital of Indiana.

2. Tell Tom I will be home later.

3. What time is it?

4. 1 wish you were here!
The first sentence is declarative, the second sentence is imperative, the third
sentence is interrogative, and the fourth sentence is exclamatory. However, the
same sentence can be written to be declarative, interrogative, or exclamatory.
For instance,

We won the game. [declarative]

We won the game? [interrogative]

We won the game! [exclamatory]

The declarative sentence “Indianapolis is the capital of Indiana” is “true”
while the sentence “Minneapolis is the capital of Indiana” is “false.”
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Symbolic logic applies only to special declarative sentences which are called
statements or propositions.

A statement or proposition is a declarative sentence that is either true
or false, but not both true and false.

The terms true and false are left undefined, but it is assumed that their
meaning is intuitively understood. Some declarative sentences might be true
or false depending on the context or circumstance. Such sentences are not
considered to be statements. For example, the sentences “She is hungry,”
“He is handsome,” and “Chicago is far away” depend upon one’s definition of
“hungry,” “handsome,” and “far away.” Consequently, such sentences are not
statements, because they do not have a “truth value”—that is, because it is
not possible to determine whether they are true or false. There are statements
for which we do not know the truth value. For example, we do not know the
truth value of Goldbach’s conjecture, which states:

“Every even integer greater than two can be written as the sum
of two prime numbers.”

Observe that 4 = 2+2, 6 =3+3,8=3+5,and 10 =3+7 =5+ 5.
To date, mathematicians have not been able to prove or disprove Goldbach’s
conjecture; however, it is a declarative sentence that is either true or false
and not both true and false. Thus, Goldbach’s conjecture is a statement or
proposition in symbolic logic. Christian Goldbach made his famous conjecture
in a letter written to Leonhard Euler on June 7, 1742. By October 2003,
T. Oliveira e Salva had shown Goldbach’s conjecture to be true for all even
natural numbers less than 6 x 1016,

In order to understand the statement of Goldbach’s conjecture completely,
you need to know the following definitions. The set of natural numbers is
the set N = {1,2,3,...}. The natural numbers are also called the counting
numbers and the positive integers. The basic theorems for the natural
numbers appear in Section 2.1 and may be used in proofs which involve natural
numbers. Let a and b be natural numbers. The number a divides b if there
exists a natural number ¢ such that ac = b. A prime number is a natural
number greater than one which is divisible only by itself and one.

Example 1.1.1 Determine which of the following sentences is a statement.

a. How old are you?
.z+3=5
¢

b

. 2390 i5 a large number.

d. Help!

. The author of this text was born in Washington, DC.

e
f. This sentence is false.
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Solution

a. The sentence is a question (an interrogative sentence), and therefore it
is not a statement.

b. The declarative sentence “xz + 3 = 5” is true for x = 2 and false for all
other values of x, so it is not a statement.

c. The declarative sentence “23%° is a large number” is not a statement,

because the definition of “a large number” is not well-defined.
d. The sentence “Help!” is exclamatory, and hence it is not a statement.

e. The declarative sentence “The author of this text was born in Washing-
ton, DC” is true or false, but not both true and false, so it is a statement,
even though few people would know whether the statement is true or false.

f. The declarative sentence “This sentence is false” is an interesting sen-
tence. If we assign the truth value “true” or the truth value “false” to this
sentence, we have a contradiction. Hence the sentence is not a statement.
Because the sentence “This sentence is false” is neither “true” nor “false,” it
is called a paradox. W

All statements can be divided into two types—simple and compound. A
simple statement (simple proposition) is a statement which does not con-
tain any other statement as a component part. Every compound statement
(compound proposition) is a statement that does contain another state-
ment as a component part. Every statement we have examined thus far is a
simple statement. Compound statements are formed from simple statements
using the logical connectives “and,” “or,” and “not.”

Let P denote a statement. The negation of P, denoted by — P, is the state-
ment “not P.” The negation of P is false when P is true, and the negation of
P is true when P is false. For example, the negation of the statement “Five
is a prime” is the statement “Five is not a prime.” And the negation of the
statement “Six is an odd number” is the statement “Six is not an odd
number.” In English, it is also possible to indicate the negation of a statement
by prefixing the statement with the phrase “it is not the case that,” “it is false
that,” or “it is not true that.” For instance, the statement “It is not true that
gold is heavier than lead” is true.

The conjunction of two statements P, Q, denoted by P A Q, is the state-
ment “P and Q.” The conjunction of P and Q is true if and only if both P and
Q are true. Let M be the statement “It is Monday” and let R be the statement
“It is raining.” The statement M A R is “It is Monday, and it is raining.” In
English, several other words such as “but,” “yet,” “also,” “still,” “although,”
“however,” “moreover,” “nonetheless,” and others, as well as the comma and
semicolon, can mean “and” in their conjunctive sense. For instance, the state-
ment “It is Monday; moreover, it is raining” should be translated to symbolic
logic as M A R.
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The disjunction of two statements P, Q, denoted by P V Q, is the state-
ment “P or QQ.” The disjunction of P and Q is true if P is true, if Q is true, or
if both P and Q are true. In English, the word “or” has two related but distin-
guishable meanings. The “or” appearing in the definition of disjunction is the
inclusive or. The inclusive or means “one or the other or both.” In legal
documents, the meaning of the inclusive “or” is often made more explicit by
using the phrase “and/or.” For example, the statement “This contract may
be signed by John and/or Mary” means the contract is legally binding when
signed by John, by Mary, or by both. On the other hand, the exclusive or
means “one or the other but not both.” For example, the statement “Ann will
marry Ben or Ann will marry Ted” means either Ann will marry Ben or Ann
will marry Ted but not both. In Latin there are two different words for the
word “or.” The word vel denotes the inclusive or, while the word aut denotes
the exclusive or.

In the following two examples, we show how to write English statements in
symbolic form and how to write symbolic statements in English.

Example 1.1.2 Write the following statements in symbolic form using —, A,
and V.

a. Madrid is the capital of Spain and Paris is the capital of France.

b. Rome is the capital of Italy or London is the capital of England.

c. Rome is the capital of Italy, but London is not the capital of England.
d. Madrid is not the capital of Spain or Paris is not the capital of France.
e. Paris is the capital of France, but London is not the capital of England

or Madrid is the capital of Spain.

Solution

Let M stand for the statement “Madrid is the capital of Spain.”
Let P stand for the statement “Paris is the capital of France.”
Let R stand for the statement “Rome is the capital of Italy.”

Let L stand for the statement “London is the capital of England.”

a. The statement may be written in symbolic form as M A P.

b. The statement written in symbolic form is R V L.

c. In symbolic form, the statement may be written as R A (= L).

d. The statement in symbolic form is (= M) V (= P).

e. In symbolic form, the statement is P A ( (- L) v M). R
Example 1.1.3 Let C be the statement “Today the sky is clear.”

Let R be the statement “It did rain.”

Let S be the statement “It did snow.”
Let Y be the statement “Yesterday it was cloudy.”
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Write the following symbolic statements in English.
a. 7Y b. RvS ¢ YAS d CA(=R)A(=S) e YA(CVR)

Solution

a. The symbolic statement may be written as “Yesterday it was not cloudy.”

b. The statement may be written as “It did rain or it did snow.”

c. The symbolic statement may be written as “Yesterday it was cloudy and
it did snow.”

d. The statement may be written as “Today the sky is clear and it did not
rain and it did not snow.”

e. The statement may be written as “Yesterday it was cloudy, and today
the sky is clear or it did rain.” W

EXERCISES 1.1

In Exercises 1-10, determine if the given sentence is a statement.

—

. The integer 6 is a prime.
. Divide 256 by 4.
. This is a difficult problem.
He lives in San Francisco, California.
Where are you going?
224+9=0
The number 7 is rational.
Three factorial is denoted by 3!
That was easy!
. George Washington never went to England.

© 0N ST e W

— =
= o

Exercises 11-15, write the negation of each sentence.

—_
—_

. The number v/2 is rational.
. Roses are not red.

.7<5h

. It is false that = is rational.

. Every even integer greater than two can be written as the sum of two
prime numbers.

— e
U= W N

[y
(=2}

. Let W represent the statement “We won the game” and let P represent
the statement “There was a party.”

a. Write the following statements symbolically.
1. It is false that we won the game.
2. We won the game, and there was a party.
3. We did not win the game, and there was no party.
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4. There was no party; however, we won the game.
5. We won the game, or there was no party.
b. Write the following symbolic statements in English.
1. =P 2. WvVvP 3. -P)VW
4. (- W)AP 5. (- W)A (- P)
17. Let T denote the statement “ABC is a triangle” and let I denote the
statement “ABC is isosceles.”
a. Write the following statements symbolically.
1. ABC is not isosceles.
2. ABC is a triangle, but ABC is not isosceles.
3. ABC is a triangle, and ABC is isosceles.
4. ABC is an isosceles triangle.
5. ABC is a triangle; however, ABC is not isosceles.
b. Write the following symbolic statements in English.

1. =T 2. TVI 3. (- T)A (=)
4. = (T AT) 5 (< T)V(=1)

18. Let T be the statement “I drink tea for breakfast,” let S be the statement
“I eat soup for lunch,” and let D be the statement “I eat dessert after
dinner.”

a. Write the following statements symbolically.

1. I drink tea for breakfast and I eat soup for lunch and I eat dessert
after dinner.

2. I drink tea for breakfast and I eat soup for lunch, or I eat dessert
after dinner.

3. I drink tea for breakfast, and I eat soup for lunch or I eat dessert
after dinner.

4. T drink tea for breakfast and I eat soup for lunch, or I drink tea for
breakfast and I eat dessert after dinner.

5. I do not drink tea for breakfast or I do not eat soup for lunch or I
do not eat dessert after dinner.

b. Write the following symbolic statements in English.
1. (-T)VS)AD 2. (-T)V(SAD) 3. (TVS)A(SVvD)
4. = (TASAD) 5 = ((=-TA=9SV(=-D))

1.2 Truth Tables and Logical Equivalences

Recall from Section 1.1 that a statement or proposition is a declarative
sentence that is either true or false, but not both true and false.
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The truth value of a statement is true (denoted by T) if the statement is
true and is false (denoted by F) if the statement is false.

A truth table is a table which shows the truth values of a statement for
all possible combinations of truth values of its simple statement components.

The German mathematician and philosopher Friedrich Ludwig Gottlob
Frege (1848-1925) is considered to be one of the founders of modern symbolic
logic. Frege believed that mathematics was reducible to logic. In 1879, he
published his first major work Begriffsschrift, eine der arithmetischen nachge-
bildete Formelsprache des reinen Denkens (Conceptual notation, a formal lan-
guage modeled on that of arithmetic, for pure thought). In this work, Frege
introduced a logical system with negation, implication, universal quantifiers,
and the idea of a truth table, although it was not presented in our current
notational form. Later, in 1893, Frege published Die Grundgesetze der Arith-
metik, 1. (The Basic Laws of Arithmetic, I.). Here, he introduced the terms
“True” and “False” and described the truth value of the statement “P implies
Q” for each of the four possible combinations of truth values of P, Q. That is,
he verbally described the truth table for P implies Q (which we will study in
the next section), but he did not display an actual truth table.

Let P represent a statement. P may have the truth value T or the truth
value F. By definition, the negation of P, — P, is false when P is true and true
when P is false. Consequently, the truth table for = P is as follows:

Negation
P - P
T F
F T

Since this truth table explains completely the result of negating the statement
P, it may be taken as the definition of = P, the negation of P. The negation
symbol “=” is a unary logical operator. The term “unary” means the
operator acts on a single statement.

Let S be a compound statement which contains only the one simple state-
ment P. In order to list all of the possible combinations of truth values for P,
the truth table for S must have exactly two rows. In this case, the standard
truth table form for the statement S is

P S
T
F

The first entry in the column labeled P must be T and the second entry in the
column must be F. The dots, - - -, indicate the possible presence of columns
of truth values with appropriate headings needed to “build up” the statement

S.
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Next, let P and Q represent two simple statements. In order to list all
of the possible combinations of truth values of P, Q, the truth table for any
compound statement S containing exactly the two simple statements P and
Q will have exactly four rows. In this case, the standard truth table form
for the statement S is

sl il e
O

To be in standard form, the truth value entries must be exactly as shown in
the first two columns.

Since the conjunction of P, Q, the statement P A Q, is true if and only if
both P and Q are true, the truth table for P A Q is as follows:

Conjunction

PAQ

sl NNl e
mH TR0
sl el

Since this truth table explains completely the result of conjuncting the state-
ment P with the statement Q, it may be taken as the definition of P A Q. The
conjunction symbol “A” is a binary logical operator. The term “binary”
means the operator acts on two statements.

The disjunction symbol “V” is also a binary logical operator and its defining
truth table is

Disjunction

PvQ

CECREREIE
RS RN
CRSRSRS

Example 1.2.1 Given that A and B are true statements and that C and
D are false statements, use the definitions of =, A , and V to determine the
truth value of each of the statements:

a. ("A)AB b. = (A AB) c. ("A)VB d. - (AVvO)
e. (AvC)A(BAHED))
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Solution
a. Since A is true, = A is false. Since the conjunction of a false state-
ment, = A, and a true statement, B, is a false statement, the statement
(= A) A B is false.
b. Since A is true and B is true, their conjunction A A B is true. Because
the negation of a true statement is a false statement,— (A A B) is false.
c. Since A is true, = A is false. Because the disjunction of a false state-
ment, = A, and a true statement, B, is a true statement, the statement
(= A) V B is true.
d. Since A is true and C is false, their disjunction A v C is true. Since
the negation of a true statement is a false statement, the statement
- (A Vv C) is false.
e. Since A is true and C is false, (A V C) is true. Since D is false, = D is

true. Since B is true and — D is true, their conjunction (B A( = D)) is
true. Because (A V C) is true and (B A(— D)) is true, their conjunction
(AV C)A (BA(—D))istrue. N

Now let us consider the following question: “How many different truth tables
are possible for statements which contain exactly one simple statement P?”
The truth table for the statement P is

P P
T T
F F

And the truth table for the statement — P is

(1)

P - P
T F
F T

The only other possible truth tables for a statement which contains exactly
one simple statement are

(2a)

and (2b)
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We know that the second column of truth values in (1) is the negation of the
first column, since these columns came from the truth table for the negation
of P. Taking the negation of the first column of truth values in (2a), we get
the second column of truth values in (2b). So, if we could write a statement
containing P which is true when P is true and also true when P is false, then
we would have a statement that was always true regardless of the truth value
of P. By negating that statement we could obtain a statement which is always
false regardless of the truth value of P. Let us construct a truth table for the
statement P V (= P). As shown in (3), we start with the truth table for - P
and add a new column on the right of the table labeled P v (= P) .

P | -P PV (- P)
(3) T F
F T

In the first row of the truth table (3), the statement P has truth value T and
the statement — P has the truth value F, so the disjunction P V (= P) has the
truth value T. In the second row of the truth table (3), the statement P has
truth value F and the statement — P has the truth value T, so the disjunc-
tion PV(=P) has the truth value T. Thus, the truth table for the statement
PV(= P) is as shown in (4).

P | -P PV (- P)
(4) T F T
F T T

Notice that regardless of the truth value of the statement P, the truth value
of the statement P V (= P) is true and the truth value of the statement
- (P Vv (= P)) is false.

A tautology is a statement that is true for every assignment of truth values
of its component statements. A contradiction is a statement that is false
for every assignment of truth values of its component statements. Thus, a
contradiction is the negation of a tautology. The statement P V (= P) is the
simplest example of a tautology, and its negation, — ( P V (= P)), is an example
of a contradiction, but it is not written in the simplest possible form. We will
show how to simplify this expression later in this section. Two statements are
truth value equivalent or logically equivalent if and only if they have
the same truth values for all assignments of truth values to their component
statements. It follows from the definition above that two statements which
appear in the same truth table are logically equivalent if and only if their
truth value columns are identical. Two statements which appear in different
truth tables are logically equivalent if and only if both tables are in standard
form, both tables are for statements with the same components, and their
truth value columns are identical.
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We need to develop an algebra for symbolic logic, so we can make calcu-
lations similar to the way in which we make algebraic calculations for real
numbers. One algebraic property of real numbers is that —(—z) = z. So
let us produce a truth value table for the statement — (= P). We start our
truth table with a row of column headings labeled P, = P, and — (= P). In
the column labeled P, we enter as the first entry T and as the second entry
F. (See 5a.) Then using the negation truth table, we compute the entries for
the second column labeled — P. Since negation changes the truth value T to
F and the truth value F to T, the first entry in the second column is F and
the second entry is T. (See 5b.) Applying negation to the second column, the
column labeled — P, we obtain T for the first entry in the third column and
F for the second entry. (See 5c.)

(5a) (5b)
P|] -P [ -(-P) P| -P | -(-P)
T T F
F F T

P | -P - (- P)
(5¢) T F T
F T F

Observe that the truth value entries in the first column of (5c) are identical
to the truth value entries in the third column. Hence, we have shown that
the statements P and — (—= P) are truth value equivalent. In order to denote
that P and — (= P) are truth value equivalent or logically equivalent, we write
P = = (= P), which is read “P is truth value equivalent to = (= P)” or “P is
logically equivalent to = (= P).” Thus, we have used a truth table to prove
the Double Negation Law: —(— P) = P.

Let t represent a statement which is a tautology, let f represent a statement
which is a contradiction, and let P represent any statement. We state the
following useful laws involving tautologies and contradictions. The following
eight laws can easily be proved by using truth tables.

Tautology Laws: “t=f PAt=P Pvt=t
Contradiction Laws: -f=t PAf=f Pvi=P
Idempotent Law for Conjunction: PAP=P
Idempotent Law for Disjunction: PvP=P
Commutative Law for Conjunction: PAQ=QAP
Commutative Law for Disjunction: PvQ=QvVP
Absorption Laws: PA(PVQ =P

PV(PAQ) =P
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Earlier, we proved that — (= P) was logically equivalent to P—that is,
we proved that — (= P)=P. We noted that this property was analogous to
the algebraic property —(—z) = z for real numbers. We would now like
to determine what statement is logically equivalent to the negation of the
conjunction of P and Q. Thus, we would like to be able to complete the
statement - (P A Q) = . A possible analogy from algebra for the real
numbers might be —(z +y) = (—x) 4+ (—y). That is, we might anticipate that
the statement = (P A Q) is logically equivalent to the statement (= P) A (= Q).
To determine if this is true or not, we construct two standard form truth
tables—one for = (P A Q) and one for (= P) A (= Q)—and then see if the
truth value column for = (P A Q) is identical to the truth value column for
(= P) A (= Q) or not.

The standard form truth table for = (P A Q), which appears in (6a), was
constructed by adjoining a new fourth column labeled = (P A Q) on the right
hand side of the conjunction truth table for P A Q and then negating the
truth values appearing in the third column—the column labeled P A Q.

The truth table for (= P) A (= Q), which appears in (6b), was constructed by
making column headings P, Q, = P, = Q, and (— P) A (= Q). The truth values
for the columns labeled P and Q were filled in as usual. Then the truth values
for the third column were calculated by negating the truth values appearing
in the first column. The truth values for the fourth column were calculated
by negating the truth values appearing in the second column. Finally, the
truth values for the fifth column were calculated from the conjunction of the
truth values appearing in the third and fourth columns.

P | Q PAQ - (PAQ)
(6a) T | T T F
T | F F T
F| T F T
F| F F T
P | Q - P -Q =P)A(=Q
(6b) T | T F F F
T | F F T F
F | T T F F
F| F T T T

Because the right most columns of the two tables in (6a) and (6b) are not
identical, = (P A Q) is not logically equivalent to (= P) A (= Q) as we had
anticipated it might be.

Assuming a statement which is logically equivalent to = (P A Q) ought to
include the statement (— P) and the statement (— Q), we decided to com-
pute the truth table for (= P) v (= Q). To produce this truth table, we
simply change the column heading appearing in the fifth column of (6b) from
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(=P) A (= Q) to (= P)V (- Q) and compute the truth values for the
new fifth column from the disjunction of the truth values appearing in the
third and fourth columns. The required truth table appears in (7). Ob-
serve that the column of truth values labeled = (P A Q) in (6a) is iden-
tical to the column of truth values labeled (= P) vV (= Q) in (7). Hence,
- (PAQ) =(P)V (- Q) —that is, = (P A Q) is logically equivalent to
(= P) vV (= Q). We have just proved the first of the two De Morgan laws
stated below.

P |1 Q | -P | -Q -P)Vv(=Q)
(7) T | T F F F

T F F T T

F T T F T

F F T T T
De Morgan Laws: - PAQ)=-P)V(-Q)

~PVvQ=0E-P)A(E=Q)
Example 1.2.2 Negate the statement “I will get up and I will go to school.”

Solution

It is correct to say: “It is not the case that I will get up and I will go to
school.” However, using the De Morgan = (P A Q) = (- P)V (= Q), we can
express the negation better as “I will not get up or I will not go to school.”
|

In order to prove logical equivalences algebraically, we need the following
Rule of Substitution:

Let P and Q be statements. Let C(P) be a compound statement containing
the statement P. And let C(Q) be the same compound statement in which
each occurrence of P is replaced by Q. If P and Q are logically equivalent,
then C(P) and C(Q) are logically equivalent. That is,

If P = Q, then C(P) = C(Q).

Example 1.2.3 Using stated laws and the rule of substitution, prove alge-
braically that P A Q = = ((= P) vV (= Q)).

Solution
1. PAQ=-(=(PAQ)) By the double negation law
2. 2(PAQ)=(—-P)V(-Q) By a De Morgan law
3. PAQ=-((-P)V(-Q)) By the rule of substitution

(Substituting 2 into 1) MW
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Example 1.2.3 proves that it is logically possible to eliminate the conjunc-
tion operator, A, because the operator can be expressed in terms of the nega-
tion operator, -, and the disjunction operator, V. Hence, all statements could
be written using — and V only. If we were to write the statement “I will get
up and I will go to school” using only “not” and “or” as indicated in 3, we
would have to write “It is not the case that I will not get up or I will not go to
school.” Clearly, you can see why we prefer to use all three logical operators
“not,” “and,” and “or.” A proof similar to the one presented in Example
1.2.3 can be constructed to show that PV Q = —((=P) A (—Q)). Consequently,
every statement could be written in terms of = and A only.

Example 1.2.4 Earlier, we showed that the statement = (P V (= P)) is a
contradiction. Simplify this contradiction using stated laws and the rule of
substitution.

Solution
1. =(PV (=P)) = (=P)A(—(=P)) By a De Morgan law
2. =(-P)=P By the double negation law

3. =(Pv(=P))=(-P)AP By the rule of substitution
(Substituting 2 into 1) MW

Since —(P Vv (=P)) is a contradiction, its logical equivalent (=P) A P is a
contradiction also. The contradiction (—P) A P is called the law of the
excluded middle. The fact that the statement (=P) A P is always false
simply means that “not P” and “P” cannot both be true simultaneously.

One algebraic property of the real numbers is the distributive law. The
distributive law for real numbers says “For all real numbers x,y, and z,
z-(y+2) = (x-y)+ (x-2).” Thus, “multiplication distributes over ad-
dition.” Analogously in logic, if disjunction is to distribute over conjunction,
we must be able to prove PV (QAR) = (PVQ)A(PVR). We have seen that
a truth table for a compound statement which contains exactly one simple
statement P has two rows and that a truth table for a compound statement
which contains exactly two simple statements P and Q has four rows. Thus,
a truth table for a compound statement which contains exactly three simple
statements P, Q, and R has eight rows, since P can assume two values (T or
F), Q can assume two values, R can assume two values, and 2x2x2 = 8. We
construct two truth tables in standard form—one for PV (Q AR) and one for
(PVQ)A(PVR). Hence, we construct one truth table with column headings
P,Q,R,QAR,and PV (QAR). And we construct a second truth table with
column headings P, Q, R, (P vV Q), (P V R), and (PV Q) A (P VR). In each
table, we fill in the columns for P, Q, and R as shown and then successively
calculate the columns of the table.
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Pl Q | R | QAR | PV(QAR)

T| T | T T T

T| T | F F T

T|F | T F T

T| F | F F T

F| T |T T T

F| T |F F F

F| F | T F F

F| F | F F F
PlqQ | R [ PvQ | PVR | PVvQAPVR)
T| T [T T T T
T| T | F T T T
T|F | T T T T
T| F | F T T T
F| T |T T T T
F| T | F T F F
F| F | T F T F
F| F | F F F F

Since the truth values appearing in the column P vV (Q A R) are identical to
the truth values appearing in the column (P vV Q) A (P V R), we have proven
the distributive law for disjunction: PV (Q AR) = (P v Q) A (P V R). The
distributive law for conjunction and the associative laws for disjunction and
conjunction stated below can easily be proved using truth tables.

Distributive Law for Disjunction: PV (QAR)=(PVQ)A(PVR)
Distributive Law for Conjunction: PA(QVR)=(PAQ)V (P AR)
Associative Law for Disjunction: (PVQ)VR=PV(QVR)
Associative Law for Conjunction: (PAQ)AR=PA(QAR)

EXERCISES 1.2

In Exercises 1-14 determine the truth value of the statement given
that A and B are true statements and C and D are false statements.
1. -A 2. =C
3. AvC 4. CvD
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5. AAB 6. BAC
7. (FA)AB 8. (=A)V (~B)

9. AV (CAD) 10. (AVC)AD)

11. AV (B A (~C)) 12. (AVB)A (-D)

13. (~(A A (=B))) A ((=C) v D) 14. ((~A)VB) A (CV (-D))

15. Given that P is a true statement, what can you say about the truth
value of the following statements?

a. PV (QAR) b. PAR c. ("P)A(QAR)

16. Given that P is a false statement, what can you say about the truth
value of the following statements?

a. PAR b. PV (=R) c. (#P)V(QAR)

In Exercises 17—21, use a truth table to prove the given logical
equivalences.

17. PAP=P idempotent law for conjunction

18. PvQ=QVP commutative law for disjunction
19. PA(PVQ)=P an absorption law

200 PA(QVR)=PAQ)V(PAR) distributive law for conjunction
2. (PAQAR=PA(QAR) associative law for conjunction

In Exercises 22—-27, construct a truth table for the given compound
statement and identify tautologies and contradictions.

22. (-P)VvQ 23. ~(PA(-Q))
24. PV (QV (-P)) 25. PA(2(QV(=Q)))
26. PV (=(QV(=Q))) 27. (PA(QV (-R))) V((=P) VR)

28. Find compound statements involving simple statements P, Q which have
the following truth tables. For example, a statement for (f) is = P.

P 1Q | (& | (B [ | d | (g | (@ (&)
T | T | T F T T T F F
T | F | T T F T T F T
F | T | T T T F T T F
F | F | T T T T F T T
P 1Q M | & |G |G | O | m | @0
T | T F T F F F T F
T | F T F F F T F F
F | T T F F T F F F
F | F F T T F F F F
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In Exercises 29—-34, use De Morgan’s laws to negate the given state-
ment.

29. I sweeten my tea with sugar, or I sweeten my tea with honey.
30. I sweeten my tea with sugar, but I do not sweeten my tea with honey.

31. I do not drink my coffee with sugar, and I do not drink my coffee with
cream.

32. I drink my coffee with sugar; however, I do not drink my coffee with
cream.

33. Although I do not go to the opera, I do go to the theater.
34. Alice did not go to France, or Alice did not go to Italy.

In Exercises 35—40, use the stated laws and the rule of substitution
to simplify the given expressions.

35. 2(PV(-Q)) 36. =(PA(-Q))VQ
37. PA((=P)V Q) 38. QV (P A (-Q))
39. (PAQ)V(PA(-Q)) 40. PAQ)V((=Q)A(PVR))

As noted earlier, in English, the word “or” has two related but
distinguishable meanings. The “inclusive or,” V, is the “or” used
most generally in mathematics and it means “one or the other or
both.” The “exclusive or” means “one or the other but not both.”
We will let 7 denote the “exclusive or,” which is defined by the

truth table Exclusive Disjunction

p Q PvQ
T | T F
T F T
F| T T
F F F

In Exercises 4144 identify the disjunction as inclusive or exclusive.

41. Ted will walk to Mary’s house or Ted will drive to Mary’s house.
42. T will eat dinner or I will go to a movie.
43. Dinner starts with soup or dinner starts with a salad.

44. Coffee is served after dinner with sugar or coffee is served after dinner
with cream.

45. Construct a standard form truth table for (P v Q) A (= (P A Q)).
Compare this truth table with the exclusive disjunction table. What do
you conclude?

46. i. Construct standard form truth tables for the following statements

which contain the exclusive or operator v7. The truth table for 7
appears above Exercise 41.

a. =P)vQ b. Py (=Q ¢ ~(PvQ d (-P)v(-Q
ii. Which of the expressions in i are logically equivalent and which are
equivalent to P 7 Q7
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1.3 Conditional and Biconditional Statements

Statements of the form “If P, then Q” occur often and are very impor-
tant in mathematics. The statement “If P, then Q” is called a conditional
statement, the statement P is called the hypothesis or antecedent of
the conditional statement, and the statement Q is called the conclusion or
consequent of the conditional statement. For example, in the conditional
statement “If n is a prime number greater than two, then n is odd,” the hy-
pothesis is “n is a prime number greater than two” and the conclusion is “n
is odd.” Of course, conditional statements occur in everyday life as well. For
instance, you might recall conditional statements such as “If you clean your
room, then you may go to a movie” or “If you mow the grass, I will pay you
twenty-five dollars.”

A conditional statement asserts that its hypothesis implies its conclusion.
The conditional statement itself does not assert that its hypothesis is true, but
only that if its hypothesis is true, then its conclusion is true. Furthermore, the
conditional statement does not assert that its conclusion is true, but only that
its conclusion is true if its hypothesis is true. Thus, when the hypothesis and
conclusion of a conditional statement are both true, we want the conditional
statement to be true. And when the hypothesis is true and the conclusion is
false, we want the conditional statement to be false. We denote the statement
“If P, then Q” symbolically by P = Q, which is read “P implies Q" or “If P,
then Q.” Just as with negation, conjunction, and disjunction, the conditional
statement is defined by its truth table. From the discussion above, the first
two rows of the standard truth table for P = Q should be as follows.

Conditional

P=Q

T
F

sl NN e
mH T |0

The essential meaning of the conditional statement appears in the partial
truth table above. Earlier, we indicated that in English the word “or” has
two meanings—the meaning of the “inclusive or” and the meaning of the
“exclusive or.” Since we have two missing truth values in the truth table
for the conditional statement, there are four possible ways to complete the
truth table. The question is: “For use in mathematical discussions, what
truth value assignments should we make in the last two rows of the truth
table?” Observe that when the hypothesis, P, is true, the truth value of the
conditional statement P = Q is identical to the truth value of the conclu-
sion, Q. Also observe that when P is true, the truth value of the statement
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(= P) v Q is identical to the truth value of Q. Hence, we define P = Q
to be logically equivalent to (= P) V Q. That is, we take P = Q to be an
abbreviation for (= P) V Q. Below, we have constructed the standard truth
table for (= P) V Q and we have attached at the right a column labeled
P = Q. Since we have defined the conditional statement P = Q to be logi-
cally equivalent to the statement (— P) V Q, the column of truth values for
P = Q is identical to the column of truth values for (= P) vV Q.

Conditional

-P | (-P)vQ | P

A=Y

)

T
F
T
T

sl NNl e
HHEA|O
HH /e

Let P stand for the statement “3 = 4,” which is false, and let Q stand for
the statement “/2 is rational,” which is false. It is easier to see that the
conditional statement P = Q, “If 3 = 4, then /2 is rational,” is true when
it is written in the logically equivalent form (= P) Vv Q, “Not 3 = 4 or /2
is rational.” In the form “Not 3 = 4 or v/2 is rational” it is clear that “Not
3 = 4” is true and therefore the disjunction “Not 3 = 4 or V2 is rational” is
true.

We have defined P = Q to be logically equivalent to (= P) V Q, and we can
see from the truth table for the conditional statement that it may be defined
as follows also.

Given two statements P and Q, the conditional statement P = Q (read
“P implies Q") is the statement “If P, then Q.” The conditional statement
P = Q is true unless P is true and Q is false, in which case it is false.

Later, in constructing some proofs and counterexamples, we will need the
negation of the conditional statement. Since the columns of truth values for
P = Q and (- P) V Q are identical, the columns of truth values for their
negations will be identical also. Hence,

1. - P=Q)=-((-P)vQ) A logical equivalence

2. 7((-P)vQ) = (=(—P)) A (—Q) By a De Morgan law

3. " (P=Q)=(—=(—-P)) A (-Q) By the rule of substitution
(Substituting 2 into 1)

4. ~(-P)=P By the double negation law

5. 2(P=Q)=PA(—Q) By the rule of substitution

(Substituting 4 into 3)

Thus, we have proven the following logical equivalence for the negation of the
conditional statement.



Logic 21

Negation of the Conditional Statement: —(P = Q) =P A (—Q)

There are many different ways to express the conditional statement,
P = Q, in words. The following is a nonexhaustive list.

Alternative Expressions for the Conditional Statement P = Q

If P, then Q Q,if P

P implies Q Q is implied by P
P only if Q Q provided P

P is sufficient for Q Q is necessary for P

Example 1.3.1 For each of the following conditional statements:

1. Identify the hypothesis and conclusion.

2. Determine the truth values of the hypothesis, the conclusion, and the
conditional statement.

3. Write the negation of the conditional statement.

o Q0 oW

LIf14+1=2,then1+2=3.

LIf14+1=2,then14+2=4.

. The number /2 is rational, if 2 4+ 2 = 5.

. The number /2 is irrational, if 2 4+ 2 = 5.

. The moon is made of green cheese is necessary for the Golden Gate

Bridge to be in California.
The moon is made of green cheese is sufficient for the Golden Gate Bridge
to be in California.

Solution

a.

b.

d.

The hypothesis is “1 + 1 = 2,” which is true, and the conclusion is
“14-2 = 3,” which is true. Since the hypothesis is true and the conclusion
is true, the conditional statement “If 1 +1 = 2, then 1+ 2 = 3” is
true. The negation of a conditional statement is the conjunction of the
hypothesis and the negation of the conclusion. Thus, the negation of “If
1+1=2,then1+2=3"is “1+1=2andnot 1 +2=23.

The hypothesis is “1 + 1 = 2,” which is true, and the conclusion is
“l1+2 =4,” which is false. Since the hypothesis is true and the conclu-
sion is false, the conditional statement “If 1 + 1 = 2, then 1+ 2 = 4”
is false. The negation of the conditional statement “If 1 + 1 = 2, then
1+2=4"is “1+1=2andnot 1 +2=4"

. The hypothesis is “2+2 = 5,” which is false, and the conclusion is “the

number /2 is rational,” which is false. Since the hypothesis is false, the
conditional statement “The number v/2 is rational, if 2+ 2 = 5” is true.
The negation of this conditional statement is “2+42 = 5 and the number
V2 is not rational.”

The hypothesis is “2+4 2 = 5,” which is false, and the conclusion is “the
number /2 is irrational,” which is true. Since the hypothesis is false,
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the conditional statement “The number v/2 is irrational, if 24+2 = 5" is
true. The negation of this conditional statement is “2 4+ 2 = 5 and the
number /2 is not irrational.”

e. The hypothesis is “The Golden Gate Bridge is in California,” which is
true, and the conclusion is “The moon is made of green cheese,” which
is false. Since the hypothesis is true and the conclusion is false, the
conditional statement “The moon is made of green cheese is necessary
for the Golden Gate Bridge to be in California” is false. The negation of
this conditional statement is “The Golden Gate Bridge is in California
and the moon is not made of green cheese.”

f. The hypothesis is “The moon is made of green cheese,” which is false,
and the conclusion is “The Golden Gate Bridge is in California,” which
is true. Since the hypothesis is false, the conditional statement “The
moon is made of green cheese is sufficient for the Golden Gate Bridge
to be in California” is true. The negation of this conditional statement
is “The moon is made of green cheese and the Golden Gate Bridge is
not in California.” B

Every conditional statement has associated with it three other statements:
the converse, the inverse, and the contrapositive.

The converse of P = Q is Q = P.

The inverse of P = Q is (- P) = (= Q).

The contrapositive of P = Qis (- Q) = (= P).
Example 1.3.2 Write the converse, the inverse, and the contrapositive of
the conditional statement “If we win the game, we will celebrate.”
Solution

The converse is “If we celebrate, we will win the game.”
The inverse is “If we do not win the game, we will not celebrate.”

The contrapositive is “If we do not celebrate, we will not win the game.”
]

We constructed the following truth table for the conditional statement,
P = Q; its converse, Q = P; its inverse, (= P) = (= Q); and its contrapos-
itive, (- Q) = (= P).

P1Q|P=Q |Q=P |-P |-Q|(-P)=(=Q) |-Q=(P)
T |T T T F | F T T
T |F F T F | T T F
F|T T F T | F F T
F |F T T T | T T T
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Examining the columns of truth values, we find that P = Q is logically equiv-
alent to (- Q) = (= P), since their columns of truth values are identical and
that Q = P is logically equivalent to (— P) = (= Q), since their columns
of truth values are identical. Comparing columns of truth values, we observe
that the converse of P = Q, Q = P, is not logically equivalent to the origi-
nal implication P = Q. Furthermore, we observe that the inverse of P = Q,
(= P) = (= Q), is not logically equivalent to the original implication P = Q.

Given two statements P and Q, the biconditional statement P < Q is
the statement “P if and only if Q.” The biconditional statement P < Q is
true when P and Q have the same truth values and false when P and Q have
different truth values.

In mathematics, the phrase “if and only if” is often abbreviated by “ift”
and sometimes “if and only if” is expressed in the alternate form “is necessary
and sufficient for.” The truth table for the biconditional statement appears
below.

Biconditional
P Q P<Q
T T T
T F F
F T F
F F T

Example 1.3.3 Construct the truth table for (P = Q) A (Q = P) and
adjoin the column of truth values for the biconditional statement P < Q
at the right. What can you conclude about (P = Q) A (Q = P) and
P& Q7

Solution

We make column headings P, Q,P = Q,Q =P, (P = Q) A (Q = P), and
(P & Q). We fill in the appropriate truth value columns for P and Q, and
then we determine and enter the remaining truth values by column from left
to right. Thus, we obtain the following standard truth table.

P | Q P=Q Q=P P=Q A (Q=P) P& Q
T | T T T T T
T F F T F F
F | T T F F F
F F T T T T

Since the truth value columns for (P = Q) A (Q = P) and P & Q are
identical, (P = Q) A (Q = P) is logically equivalent to P < Q—that is,
P=QQAN(Q=P)=P<Q. 1

In algebra, we have an established hierarchy for operations. For an algebraic
expression with no parentheses, the operation of exponentiation is performed
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first and from left to right; next, the operations of multiplication and division
are performed from left to right; and finally, the operations of addition and
subtraction are performed from left to right. Thus, it is understood that
x + y * z written without any additional parentheses means = + (y * z) and
not (z +y)* z. The hierarchy for connectives in symbolic logic for expressions
with no parentheses is negation — is performed first, next conjunction A and
disjunction V are performed, and last the conditional = and biconditional
< connectives are performed. Hence, by this convention = P = Q A R means
(= P) = (Q AR). However, without parentheses the meaning of the expression
P A Q V R is ambiguous. Does it mean (P A Q) VR or P A (Q V R)? So
in this case, a set of parentheses is necessary to indicate which expression is
intended.

EXERCISES 1.3

In Exercises 1-8, (1) identify the hypothesis and the conclusion;
(2) determine the truth value of the hypothesis, the conclusion,
and the conditional statement; and (3) write the negation of the
conditional statement.

1. If New York City is on the East Coast, then Los Angeles is on the West
Coast.

2. New York City is on the Fast Coast, provided Los Angeles is on the West
Coast.

3. The number 7 is rational, if the number V2 is irrational.

4. The number 7 is rational, only if the number /2 is irrational.
5. 23 > 32 is implied by 2 < 3.

6. 23 > 32 is necessary for 2 < 3.

7. 23 > 32 is sufficient for 2 < 3.

8. 2 < 3 implies 23 > 32.

In Exercises 9-16 write the converse, inverse, and contrapositive of
statements 1-8, respectively.

In Exercises 17-20 determine the truth value of the given bicondi-
tional statement.

17. The Leaning Tower of Pisa is in Germany if and only if the Eiffel Tower
is in Spain.
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18. The Leaning Tower of Pisa is in Italy if and only if the Eiffel Tower is in
France.
19. The number 3 is even if and only if the number 4 is even.
20. The number /2 is irrational iff the number 7 is rational.

21. Given that the truth value of the implication (P V Q) = (—R) is false
and that the truth value of P is false, what are the truth values of Q
and R?

In Exercises 22—33 construct truth tables for the given statement.
Identify tautologies and contradictions.

22. P= (PVQ) 23. P= (PAQ)
24. (PVQ)=P 25. (PAQ)=P
2. (PAQ)= (PVQ) 27. (PVQ)= (PAQ)
28. PAP=Q)=Q 2. (QA(P=>Q)) =P
30. (FQ)AP=Q))=(-P) 3. (PVvQ &P
32. P& (PA(PVQ) 33. P=Q)< (Q=P)

In Exercises 34—39 simplify each statement by replacing condi-
tional statements such as H = C by the logically equivalent state-
ment (- H) vV C and using stated laws and the rule of substitution.

34. (-P)=Q 35. P=(QVR)
36. —((=P) = (—Q)) 37. P=Q) =P
38. P=Q)=Q 39. P=Q)A(Q=P)

1.4 Logical Arguments

Proofs play a major role in mathematics, and deductive reasoning is the
foundation on which proofs rest. In mathematics, as in law, a logical argu-
ment is a claim that from certain premises (statements that are assumed to
be true) one can infer a certain conclusion (statement) is true. Logic is con-
cerned with the connections between statements and with what deductions
can be made, assuming that the premises are true. Let the symbol .". stand
for the word “therefore.” The symbolic form of a logical argument written in
horizontal form is

Py,..., P, ..C

and written in vertical form
Py
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where Py, ..., P, are premises and C is the conclusion. In logic, we study
the methods and principles used in distinguishing valid (“correct”) arguments
from invalid (“incorrect”) arguments. Notice that statements are said to be
true or false, while arguments are said to be valid or invalid. We make the
following definitions regarding arguments.

An argument Py, ..., P, .. C with premises Py, ..., P, and conclusion
C is valid if and only if Py AP A ... AP, = C is a tautology.

If an argument is not valid, it is called invalid.

Thus, an argument is valid if and only if, when the premises are all true, the
conclusion must be true. Stated another way, an argument is valid if and only
if it is not possible for the conclusion to be false unless at least one of the
premises is false. Validity concerns the relationship between the premises and
the conclusion, and not the truth values of the premises and conclusions.

Let us consider the argument

The sun is shining.

Therefore, the sun is shining or it is raining.

Let P denote the premise “The sun is shining.” And let Q denote the state-
ment “It is raining.” Then this argument can be written symbolically as

We construct the following standard truth table for P = (P V Q).

PVQ | P=(PVQ

CECRERSTEe
SRS RN )
CESRERS
S8

Observe that the statement P = (P V Q) is a tautology and, consequently,

is a valid argument. Thus, we have just proven the rule of disjunction.

Rule of Disjunction The argument P .. PV Q is a valid argument
known as the rule of disjunction.
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Now, let us consider the symbolic argument

We construct the following standard truth table for P = (P A Q).

P Q PAQ P={PAQ)
T T T T
T F F F
F T F T
F F F T

Observe that the statement P = (P A Q) is not a tautology and therefore

is an invalid argument. In order to show that an argument is invalid, it is not
necessary to construct an entire truth table. It is sufficient to show how to
choose the truth values of the component statements in such a way that the
premises are true and the conclusion is false. Thus, to show that the argument
P .. PAQ is invalid, we need to show only the first three columns of row two
of the preceding truth table. That is,

Pl Q | PAQ
T | F F

shows that the argument P .. P A Q is invalid.
The following three arguments are valid.

Rule of Conjunction The argument P, Q .. P A Q is a valid argument
known as the rule of conjunction.

Rule of Conjunctive Simplification The argument PAQ .. P is a valid
argument called the rule of conjunctive simplification.

Rule of Disjunctive Syllogism The argument P vV Q, =P .. Q is a valid
argument called the rule of disjunctive syllogism.
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Truth tables which verify that the rule of conjunction, the rule of conjunc-
tive simplification, and the rule of disjunctive syllogism are valid arguments
appear below.

Rule of Conjunction

P Q PAQ PAQ=PAQ)
T T T T
T F F T
F T F T
F F F T

Rule of Conjunctive Simplification

PAQ | PAQ =P

CECREREIET
SRS RO RS
el sl
S8

Rule of Disjunctive Syllogism

P|Q |-P |PVQ | PVQACEP) | PVQA(E-P)=Q
T| T F T F T
T | F F T F T
F|T T T T T
F|F T F F T

When an argument contains three or more different simple statements, it
becomes tedious to determine the validity of the argument by making a truth
table. A more convenient way to prove an argument is valid is to deduce its
conclusion from its premises by a sequence of elementary arguments which are
known to be valid. Hence, a formal proof of a given argument is a sequence
of statements such that each statement is either (1) a premise of the argument,
or (2) a statement which follows from preceding statements by an elementary
valid argument, or (3) a statement which is logically equivalent to a preceding
statement in the sequence, or (4) the last statement in the sequence—the
conclusion of the argument. The proper way to write a formal proof is to list
the premises and the sequence of statements deduced from them along with a
justification for each statement. The justification of each deduced statement
specifies the preceding statement or statements from which it was deduced
and the rule of inference which was used. Thus far, we have proved by the use
of truth tables that four elementary arguments are valid—namely, the rule
of disjunction, the rule of conjunction, the rule of conjunctive simplification,
and the rule of disjunctive syllogism.




Logic 29

Example 1.4.1 Give a formal proof that the argument P = Q, P ... Qis
a valid argument.

Solution
1. P=Q premise
2. P premise
3. (=-P)vQ 1, logical equivalence (definition of =)
4. —(=P) 2, logical equivalence (double negation law)
5. Q 3, 4, disjunctive syllogism W

The solution of Example 1.4.1 is a formal proof of the following rule which is
known as the rule of detachment.

Rule of Detachment The argument P = Q, P .. Q is a valid argument
known as the rule of detachment.

Example 1.4.2 Give a formal proof that the argument P = Q, -Q .. =P
is a valid argument.

Solution
1. P=Q premise
2. =Q premise
3. (-Q) = (=P) 1, logical equivalence (the contrapositive of P = Q)
4. —-P 2, 3, rule of detachment H

The solution of Example 1.4.2 is a formal proof of the rule of contrapositive
inference, which is stated below.

Rule of Contrapositive Inference The argument P = Q, —-Q .. —Pis
a valid argument, which is known as the rule of contrapositive inference.

The rule of detachment and the rule of contrapositive inference are both
valid arguments which contain exactly two simple statements, one of which
is the conditional statement P = Q. Two commonly used invalid arguments
which contain exactly two simple statements, one of which is the conditional
statement P = Q, are the Fallacy of the Converse and the Fallacy of the
Inverse.

The argument P = Q, Q .. P is an invalid argument called the fallacy
of the converse.

The argument P = Q, —P .". =Q is an invalid argument called the fallacy
of the inverse.

Recall that an argument is valid if and only if, when the premises are all
true, the conclusion must be true. Thus, in order to prove that the fallacy
of the converse is an invalid argument, all we need to do is determine truth
values for P and @ such that both premises P = Q and Q have the truth value
T and the conclusion P has the truth value F. Assigning P the truth value F
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and Q the truth value T achieves the required result. Likewise, to prove that
the fallacy of the inverse is an invalid argument, we need to determine truth
values for P and Q such that both premises P = Q and — P have the truth
value T and the conclusion — Q has the truth value F. Again, assigning P the
truth value F and Q the truth value T achieves the required result.

In the following two examples, we determine the validity of two arguments.

Example 1.4.3 Write the following argument in symbolic form. Determine
if the argument is valid or invalid and state the name of the argument form.

I took a nap, or I watched television.
I did not watch television.

Therefore, I took a nap.
Solution
Let N denote the statement “I took a nap.” And let T denote the statement
“I watched television.” Then the symbolic form of the argument is

NvT
- T

~ N
This argument has the form of the disjunctive syllogism and it is a valid

argument. W

Example 1.4.4 Write the following argument in symbolic form. Determine
if the argument is valid or invalid and state the name of the argument form.

If I went out to eat dinner, then I ate dessert.
I ate dessert.

Therefore, I went out to eat dinner.
Solution

Let D denote the statement “I went out to eat dinner.” And let P denote
the statement “I ate dessert.” Then the symbolic form of the given argument
is

D=P

This argument has the form of the fallacy of the converse and it is an invalid
argument. W
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The conditional statement has the following transitive property.

The Rule of Transitive Inference or Hypothetical Syllogism The
argument P = Q, Q=R .. P = R isa valid argument called the rule of
transitive inference or hypothetical syllogism.

The following truth table establishes the validity of the rule of transitive
inference. Let A denote the statement (P = Q) A (Q = R) and let B denote
the statement [(P = Q) A (Q = R)] = (P = R).

Rule of Transitive Inference

>
g

P=Q Q=R

=

—
—

CECECEC RS RS RN
SRR RN P
mHmAEmSE S| ©
HHHEaTE S
e
HHEmAamEE S
HEaRsmsma|l
HHRBARS8 S |®

In the following example we show in more detail how to analyze an argument
and how to construct a formal proof.

Example 1.4.5 Write the following argument in symbolic form and construct
a formal proof of its validity.

If T study, I make good grades.
If I do not study, I have fun.

Therefore, I make good grades or I have fun.
Solution

Let S denote the statement “I study.” Let G denote the statement “I
make good grades.” And let F denote the statement “I have fun.” Then the
symbolic form of the given argument is

S=G
(1) (~8)=F
. GVF

Both premises are conditional statements. One contains S as a hypothesis
and the other contains — S as a hypothesis. Because a conditional state-
ment and its contrapositive are logically equivalent, we could replace the first
or second premise by its contrapositive. Since the conclusion contains the
statement F and since the second premise contains the statement F as a con-
clusion, we decided to replace the first premise S = G by its contrapositive
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(= G) = (=S). From the true statements (= G) = (= S) and (= S) = F
we deduce by the rule of transitive inference (- G) = F. From the definition
of the conditional statement, (- G) = F is logically equivalent to the state-
ment (- (= G)) V F. Since (= (= G)) = G, we obtain the desired conclusion
G V F. Hence, we have developed the following formal proof that (1) is a valid
argument.

1. S=G premise

2. (=S)=F premise

3. (=G) = (—S) 1, logical equivalence (contrapositive of 1)
4. (-G)=F 2, 3, transitivity of inference

5. (=(-G))VF 4, logical equivalence (definition of =)

6. (-(-G)) =G logical equivalence (double negation law)
7. GVF 5,6, rule of substitution W

In addition to using symbolic logic to prove that an argument is valid,
symbolic logic may be used to deduce a valid consequence or consequences
from a collection of premises. When possible, one tries to use all of the given
premises to deduce a valid conclusion. When it is not possible to use all
the premises to deduce a valid conclusion, then one generally uses as large a
subcollection of premises as possible to deduce a valid conclusion.

Example 1.4.6 Deduce a valid conclusion for the following argument.

Ursula went to the conference by train or by airplane.

If Ursula went to the conference by train or drove her own car,
then she arrived late and she missed the opening ceremony.

Ursula did not arrive late.

Therefore,

Solution

Let T denote the statement “Ursula went to the conference by train.” Let
A denote the statement “Ursula went to the conference by airplane.” Let C
denote the statement “Ursula drove her own car.” Let L denote the statement
“Ursula arrived late.” And let M denote the statement “Ursula missed the
opening ceremony.” Then the symbolic form of the given argument is

TVA
(TV C) = (LAM)
- L
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The third premise — L is true by assumption. Hence, L is false and
L A M is false. Consequently, = (L A M) is true. From = (L A M) and
the second premise, (T V C) = (L A M), it follows using the rule of con-
trapositive inference that — (T V C). Then by a De Morgan law, we have
(= T) A (= C) and by the rule of conjunctive simplification, we get (— T).
From (= T) and the first premise, T V A, we conclude A using the rule of
disjunctive syllogism. Hence, “Ursula went to the conference by airplane” is
a valid conclusion, which we deduced using all of the given premises. W

Example 1.4.7 Deduce a valid conclusion for the following argument.

If Rob studies medicine, Rob prepares to earn a good living.
If Rob studies humanities, Rob prepares to live the good life.

If Rob prepares to earn a good living or Rob prepares to live a
good life, then Rob’s years at the university are well spent.

Rob’s years at the university are not well spent.

Therefore,

Solution

Let M denote the statement “Rob studies medicine.” Let E denote the
statement “Rob prepares to earn a good living.” Let H denote the statement
“Rob studies humanities.” Let L denote the statement “Rob prepares to live
a good life.” And let U denote the statement “Rob’s years at the university
are well spent.” Then the symbolic form of the given argument is

M=E
H=1L
(EVL)=1U
- U

Applying the rule of contrapositive inference to the third and fourth premises,
we infer = (E V L), which is logically equivalent to (= E) A (- L). Using the
rule of conjunctive simplification twice yields = E and — L. From the first
premise, M = E and — E, we conclude by the rule of contrapositive inference
that = M. Likewise, from — L and the second premise H = L we conclude
= H by the rule of contrapositive inference. Hence, two valid conclusions we
can deduce are = M (“Rob does not study medicine”) and = H (“Rob does
not study humanities”).
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It should be noted that we can deduce three valid conclusions from the first
two premises alone—namely, (M vV H) = (E VL), M A H) = (E A L), and
(M A H) = (E v L). However, in doing so, we have not made use of the
remaining two premises. M

EXERCISES 1.4

In Exercises 1-5, construct an appropriate truth table in standard
form to determine if the given argument is valid or invalid.

1. PAQ, P=-Q..PA(—-Q) 2. P, (-P)=Q .. -Q
3. PANQ, R=P..QVR 4. =P, Q= (PAR) .. -Q
5. P=Q, Q=R, -Q .".=R

In Exercises 6—10, prove each argument is invalid by choosing truth
values for the component statements in such a way that all the
premises are true and the conclusion is false.

6. Pv(-Q), -Q..P 7. (-P)=Q, P..-Q
8. P=Q, (-P)=Q, Q..P 9. P=Q, Q=R, R..Q
10. P=Q, R=S, QVR..PVS

In Exercises 11-18, write each argument in symbolic form by let-
ting M denote the statement “I go to a movie” and P denote the
statement “I eat popcorn.” Determine if the argument is valid or
invalid and state the name of the argument form.

11. I go to a movie.

Therefore, I go to a movie, or I eat popcorn.

12. T go to a movie, and I eat popcorn.

Therefore, I eat popcorn.

13. I go to a movie.
I eat popcorn.

Therefore, I go to a movie, and I eat popcorn.

14. If I go to a movie, then I eat popcorn.
I eat popcorn.

Therefore, I go to a movie.



15.

16.

17.

18.

Logic

If T go to a movie, I eat popcorn.
I go to a movie.

Therefore, I eat popcorn.

I go to a movie, or I eat popcorn.
I do not eat popcorn.

Therefore, I go to a movie.

If T go to a movie, I eat popcorn.
I do not eat popcorn.

Therefore, I do not go to a movie.

If T go to a movie, I eat popcorn.
I do not go to a movie.

Therefore, I do not eat popcorn.
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In Exercises 19—24, a formal proof of the validity of an argument is

given. State a justification for each step in the proof.

19.

20.

21.

AANB .. AVB

1. AAB premise
2. A 1

3. B 1

4. AVB 2,3
CVvV(DAE), -E .. C

1. Cv(DAE) premise
2. -E premise
3. (CVD)A(CVE) 1

4. CVE 3

5. C 2,4

F=G, G=H, FAT .. HAI

1. F=G premise
2. G=H premise
3. FAIL premise
4. F=H 1,2

5 F 3

6. H 4,5
7.1 3

8. HAI 6,7
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22. J=K, J=L .. J= (KAL)

1. J=K premise
2. J=1L premise
3. (")) VK 1
4. (=J)VL 2
5. [(=)) VK] A (=) V1] 3,4
6. (=J)V (KAL) 5
7. J= (KAL) 6
2. M= (N=0) .. N=M=0)

1. M= (N=0) premise
2. (+|M)vV(N=0) 1
3. N=0)=(-N)vO
4. (-M)V ((-N) Vv O) 2,3
5. ((=M) Vv (=N)) v O 4
6. ((=M)V (=N)) = ((-N) v (-M))
7. (=N)V (=M)) Vv O 5,6
8. (=N)V ((-M) Vv O) 7
9. ((M)vO)=M=0)

10. (-N)v(M = 0) 8,9

11. N= M= 0) 10

24. a. The following is a formal proof of a valid argument known as the
constructive dilemma:

P=Q, R=S, PVR .. QvVS
1. P=Q premise
2. R=S premise
3. PVR premise
4. =PV Q 1
5. (-PvQ)VS 4
6. "PV(QVS) 5
7. “RVS 2
8. (-RVvS)vQ 7
9. -RV(SVQ) 8
10. (SvQ)=(QVS)
11. =RV (QVS) 9,10
12. [PV (QVS)]A[-RV(QVS)] 6,11
13. [(-P)A (-R)] vV (QVS) 12
14. [(-=P) A (-R)]=-(P VR)
15. =(PVR)V(QVS) 13,14
16. (PVR)= (QVS) 15

17. QVS 3,16
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b. The following is a formal proof of a valid argument known as the
destructive dilemma: P=Q, R=S, - QvVv=-S .. =PV=R

(Hint: The constructive dilemma occurs as one justification.)

1. P=Q premise
2. R=S premise
3. =QV-S premise
4. -Q=-P 1
5. S =-R 2
6. -PV-R 3,4, 5
In Exercises 25—-33, construct a formal proof of the validity of each
argument.
25. A..B=A 26. -C..C=D
27. EANF..EVF 28. G==H..G=(HVI
29. J= (KAL) .. J=K 30 M=N..MAO=N
3. (PVQ)=R..P=R 32. S=(TvU), -T..S=TU
3. V=W, VVW_ . W

In Exercises 34—38, write each argument in symbolic form using the
letters indicated and construct a formal proof of the validity of each
argument.

34.

35.

36.

37.

38.

If Jerry uses an artificial lure (L), then if the fish are biting (B), then
Jerry catches the legal limit of fish (F). Jerry uses an artificial lure, but
Jerry does not catch the legal limit of fish. Therefore, the fish are not
biting.

If Alex attends class (A) or Bob attends class (B), then Charles does
not attend class (= C). Bob attends class or Charles attends class. If
Bob attends class or Alex does not attend class, then Don attends class
(D). Alex attends class. Therefore, Bob does not attend class or Don
attends class.

If Emery studies (S), Emery will graduate (G). If Emery graduates,
Emery will travel (T) or Emery will work for his uncle (U). Emery
studies, but Emery does not work for his uncle. Therefore, Emery will
travel.

I will take a vacation (V), provided I have time (T) and I have money
(M). I have time or I have aspirations (A). Therefore, if I do not have
aspirations, I have no money or I will take a vacation.

If Robin goes to the state park (P), Robin hikes (H) and Robin fishes
(F). Robin did not hike or Robin did not fish or Robin did camp (C).
Robin did not camp. Therefore, Robin did not go to the state park.
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In Exercises 39—43, write each argument in symbolic form using the
letters indicated and deduce a valid conclusion for the argument.

39. Elsa will attend (A), if she receives the e-mail (E), provided she is
interested (I). Although Elsa did not attend, she is interested. There-
fore,

40. If the supply of gold remains fixed (F) and the use of gold increases
(I), then the price of gold will rise (R). The price of gold does not rise.
Therefore, .

41. TIf Alice attends the meeting (A), Betty attends the meeting (B). If
Betty attends the meeting, Carol will not attend the meeting (= C). If
Carol attends the meeting, Donna does not attend the meeting (= D).
If Betty attends the meeting, Eve does not attend the meeting (— E).
If Donna does not attend the meeting, Fay attends the meeting (F).
Eve does not attend the meeting or Fay does not attend the meeting.
Therefore,

42. TIf Imogene goes to the picnic (P), then Imogene wears blue jeans (J).
If Imogene wears blue jeans, then Imogene does not attend both the
banquet (B) and the dance (D). Imogene attended the dance. If Imogene
did not attend the banquet, then she has her banquet ticket (T), but she
does not have her ticket. Therefore,

43. He will be interested (I) if and only if he is an acquaintance (A) or he is
curious (C). If he is in management (M) or he is a shareholder (S), he is
curious. He is a shareholder, but he is not an acquaintance. Therefore,

1.5 Open Statements and Quantifiers

Chapter 3 is devoted to the study of sets; however, at this point we need to
introduce some very basic concepts related to sets and some notation used in
conjunction with sets. The German mathematician Georg Cantor (1845-1918)
initiated the theory of sets in the 1870s and 1880s. According to Cantor,

“A set is any collection of definite, distinguishable objects of our
intuition or our intellect to be conceived as a whole.”

The objects of a set are called the elements or members of the set. Every
day we use words which convey the meaning of a set. For example, when
we say “The committee recommended a course in logic be required for grad-
uation,” we are considering the committee to be a set and the members of
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the committee are the members (elements) of the set. When we mention a
“flock” of geese, we are considering a particular set of geese as a single entity,
and any individual goose in that flock is a member of that set. Thus, the
essential point of Cantor’s concept of a set is that the collection of objects is
to be regarded as a single entity. The word “definite” in Cantor’s concept of
a set means given a set and an object, it is possible to determine whether the
object belongs to the set or not. And the word “distinguishable” means given
any two pair of objects qualified to appear as elements of a set, one must be
able to determine whether the objects are the same or different. As a result,
a set is completely determined by its members.

Generally, we will denote sets by capital letters and will use the conventional
notation “x € A” to denote that “x is an element of the set A” or “x is a
member of the set A.” Also, we will use the notation “x, y € A” to indicate
“r and y are elements of the set A.” The Italian mathematician Giuseppe
Peano (1858-1932) introduced the symbol € for “is an element of” in 1889.
The symbol comes from the first letter of the Greek word for “is.” In order to
indicate that “z is not an element of the set A”, we will write “x ¢ A.” For
example, let A denote the set of letters in the English alphabet. Then b € A;
e,f €A aeiouc A but b ¢ A

Sets are usually described by one of two notations—roster notation (also
called enumeration notation) or set-builder notation. In roster nota-
tion, the elements of the set are enclosed in braces, { }, and separated by
commas. The order in which the elements are listed within the braces is im-
material. For example, the set of one digit prime numbers may be written
using roster notation as {2,3,5,7}, or {5,7,2,3}, or {7,3,5,2}, etc. These are
just different representations of the same set. Of course, roster notation is ap-
propriate for finite sets. However, this notation can also be used to represent
infinite sets. For instance, we may represent the set of positive integers, P, by
P =1{1,2,3,...}. When representing sets in this manner the dots ... (called
ellipsis) indicate that the pattern used to obtain the elements listed previously
is to be followed to obtain the remaining elements of the set. This convention
may be used to represent finite sets which have a relatively large number of
elements as well. For example, F' = {2,4,6,...,100} is a representation of
the set of all positive even integers less than or equal to 100.

Throughout the text, we will let N denote the set of natural numbers,
which are also sometimes called the counting numbers or the positive
integers. Thus, N = {1,2,3,...}. The set of integers will be represented
by Z,so Z=1{...,-2,-1,0,1,2,...}. The symbol Z comes from the German
word for number, Zdhlen. The basic theorems for the natural numbers and
integers appear in Section 2.1 and may be used in proofs which involve natural
numbers or integers. We will use Q to denote the set of rational numbers.
Recall that a rational number is any number of the form p/q where p and ¢
are integers and g # 0. The set of real numbers will be denoted by R.
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Using set-builder notation, the set F' of all even integers less than or equal
to 100 would be written as

F = {z | x is an even integer less than or equal to 100}.

The vertical bar, | , in the definition above is read “such that.” Hence, the
set-builder definition of the set F' given above is read “F equals the set of all
x such that x is an even integer less than or equal to 100.” Another example
of a set specified using set-builder notation is

O = {z | x is an odd integer}

Observe that set-builder notation is very appropriate for representing both
infinite sets and finite sets with a relatively large number of elements.

The set with no elements is called the empty set or null set. The empty set
is symbolized by (). The symbol @ is the last letter of the Danish—Norwegian
alphabet. The empty set is not denoted by { }. The empty set is
not the set {0}. The set {0} is a set with one element, namely, 0. Hence,
0 € {0}. And the empty set is not the set {}. The set {0} is a set with
one element, namely, §. That is, § € {0}.

Many sentences in mathematics involve one or more variables, and therefore
are not statements. A variable is a symbol, say x, which represents an
unspecified object from a given set U. The set of values, U, that can be
assigned to the variable z is called the universe, universal set, or universe
of discourse.

An open statement in one variable is a sentence that involves one
variable and that becomes a statement (a declarative sentence that is true or
false) when values from the universal set are substituted for the variable. An
open statement in the variable z is denoted by P(z).

It should be noted that an open statement in one variable is not a statement,
because the sentence is not true or false until a specific value from the universal
set is substituted into the sentence, making it a statement—that is, making
it true or false. Thus, the truth value of an open statement remains “open”
until a specific value for the variable is substituted into the statement. Let
P(x) denote the open statement “The natural number z is a prime number.”
Observe that P(x) is neither true nor false; the statement P(5) is true, while
the statement P(4) is false.

The truth set of an open statement is the set of all values from the
universal set that make the open statement a true statement.

Let P(x) be an open statement with the specified nonempty universal set
U. Then in set-builder notation, the truth set of P(x) is the set

Tp = {z €U | P(z)}.

The following example illustrates that the truth set of an open statement
depends on the choice of the universal set. Let P(z) be the open statement
“p2 < 97 Then {x € N | 2?2 <9} = {1,2,3}, {x € Z | 2% < 9} =
{-3,-2,-1,0,1,2,3},and {z e R | 22 <9} ={r e R | -3 <z < 3}.
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Example 1.5.1 Find the following truth sets.

a. {xreN|22%—2=0} b. {r€Z|22*> -2 =0}
c. {reqQ]22%2—-2=0}
Solution

Factoring the equation 222 — x = 0 which appears in a, b, and ¢, we find
x(2z — 1) = 0. Recall from algebra that in the set of real numbers, if ab = 0,
then either a = 0 or b = 0. Since xz(2z — 1) = 0, it follows that = 0 or
2z — 1 = 0. Solving the last equation, we find x = 1/2. Thus, the two real
roots of the equation 22?2 — 2 = 0 are # = 0 and x = 1/2. Therefore, the
required truth sets are as follows:

a. {reN|222-2=0}=0
b. {r€Z|22? —2=0}={0}
c. {1€eQ222—-2=0}1={0,1} W

Often we want to indicate how many values of the variable x make the open
statement P(z) true. Specifically, we would like to know if P(z) is true for
every z in the universe U or if P(x) is true for at least one x € U. Thus, we
introduce two quantifiers.

The symbol V is called the universal quantifier and represents the phrase
“for all,” “for each,” or “for every.” The statement (Vx € U)(P(x)) is read
“for all z € U, P(z)” and is true precisely when the truth set

Tp={zxecU]| P(z)} =U.

The symbol T is called the existential quantifier and represents the phrase

“there exists,” “there is,” or “for some.” The statement (Jz € U)(P(z)) is

read “there exists an z € U such that P(z)” and is true precisely when the
truth set
Tp={zeU]|P(x)} #0.

Several comments are in order. First of all, to prove that the statement
(3z € U)(P(x)) is true, it is necessary to find only a single value of z € U
for which P(z) is true. On the other hand, to prove that the statement
(Vz € U)(P(z)) is true, it is necessary to prove that P(z) is true for all
x € U. Second, the conditional statement

(Vz € U)(P(x)) = (Fx € U)(P(x))
is true, since an open statement which is true for all values of x in a universe

U is true for some (any) value of x € U. On the contrary, the conditional
statement

Bz e U)(P(z)) = (Vx € U)(P(x))
is false, since an open statement can be true for some x in a universe and
false for other x in the universe. And finally, the truth value of a quantified

statement depends on the universe, as the following examples show. Let P(x)
denote the statement “z? > 0.” The quantified statement (Vz € N)(P(x))
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is true, while the quantified statement (Vz € Z)(P(z)) is false, because
P(0) is false. Now let Q(z) represent the statement “z < 0.” The quan-
tified statement (3x € N)(Q(z)) is false, while the quantified statement
(Fz € Z)(Q(x)) is true, because Q(0) is true.

Example 1.5.2 Translate the following English sentences into symbolic
statements containing one quantifier. Indicate the truth value of each state-
ment.

a. For every natural number z, 2z +1 > 0.
b. For every integer x, 2z +1 > 0.
c. There exists an integer x such that 2z +1 < 0.
d. There exists a natural number z such that 22 4+x 441 is a prime number.
e. For every natural number x, x2 + x + 41 is a prime number.
Solution

The corresponding symbolic statements are as follows.

a. (Vo € N)(2x 4+ 1 > 0). This statement is true, since for x € N, z > 0;
therefore, 2z > 0 and 2z +1 > 1 > 0.

b. (V& € Z)(2z +1 > 0). This statement is false, since —1 € Z and
2-)+1=-241=-1<0.

c. (3z € Z)(2x+1 < 0). This statement is true, since it is true for z = —1.
See the computation in part b. In fact, this statement is true for all
integers z < —1.

d. (3z € N)(a? + z + 41 is a prime number) This statement is true, since
forx =1, 12 4+ 1 + 41 = 43, which is a prime number.

e. (Vo € N)(a? + z + 41 is a prime number) This statement is false. Can
you find one specific natural number x such that 22 + z + 41 is not a
prime number? W

The symbolic statement (Vo € A)(P(x)), whichisread “Forallz € A, P(x)”
can also be stated as “For all z, if x € A, then P(z)” and symbolized by
(Vz)((x € A) = P(z)). Likewise, the symbolic statement (3x € A)(P(x)) can
be written as (3z)((z € A) = P(x)), which is read “There exists an x such
that if z € A, then P(z).” The following example illustrates these usages.

Example 1.5.3 In this example, let the universe of discourse be the set of
integers, Z. Translate the following symbolic statements which involve one
quantifier into English and indicate the truth value of each statement.

a. (vz)((z € N) = (z € Z)) b. (Vz)((z € Z) = (z € N))
c. (3z)((z €Z)A (z€N)) d. (3z)((z € Z) A (z ¢ N))
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(B2)((z e N) A (z ¢ Z))

e.
f. (Va)((z is a prime) = (x is not a composite))

Solution

a. (Vz)((x € N) = (x € Z)) translates into English as “For all z, if x is a
natural number, then x is an integer.” This translation can be shortened
to “Every natural number is an integer.” The symbolic statement and
the equivalent English translations are true.

b. (Vz)((x € Z) = (x € N)) translates as “For all z, if z is an integer, then
x is a natural number.” This translation can be shortened to “Every
integer is a natural number.” This statement is false, because x = —1
makes the statement x € Z true and the statement x € N false. Hence,
for x = —1, the conditional statement (z € Z) = (z € N) is false.

c. (Fz)((z € Z)A(xr € N)) means “There is a number z which is an integer
and a natural number.” This symbolic statement and its translation are
true, since 1 is both an integer and a natural number.

d. (3z)((z € Z) A (x ¢ N)) translates into English as “For some z, x is
an integer and z is not a natural number.” A condensed translation is
“Some integer is not a natural number.” This symbolic statement and
its translations are all true, since x = —1 is an integer which is not a
natural number.

e. (Ar)((r € N)) A (x ¢ Z)) translates as “For some z, z is a natural
number and z is not an integer.” A shortened translation is “Some
natural number is not an integer.” This symbolic statement and its
translations are all false.

f. (Vz)((x is a prime) = (z is not a composite)) translates as “For all z, if
x is a prime, then x is not a composite.” A shortened translation is “No
prime is a composite.” This symbolic statement and its translations are
all true. W

Traditional logic emphasized four basic types of statements involving a sin-
gle quantifier: the universal affirmative, the universal denial, the particular
affirmative, and the particular denial. Examples of these four types of state-
ments appear in Example 1.5.3. We now provide a general summary for these
types of statements. Let a universe for the variable x be specified and let
P(z) and Q(z) be appropriate statements. Then the symbolic statement and
English translation of the four statements of traditional logic are as follows.
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Statement Type Symbolic Statement English Sentence
1. Universal Affirmative  (Vz)(P(z) = Q(z)) All P(z) are Q(z).
2. Universal Denial (Vz)(P(z) = (-Q(z))) No P(z) are Q(z).
3. Particular Affirmative  (3z)(P(z) A Q(z)) Some P(z) are Q(z).
4. Particular Denial (Fz)(P(z) A (-Q(x)))  Some P(z) are not Q(z).

If the statement (3z € U)(P(x)) is true, then we know that there is at
least one z in the universe U such that P(x) is true. However, in mathemat-
ics, it is often the case that there exists exactly one z in the universe for
which P(z) is true. For example, for the set of integers there exists exactly
one additive identity—namely, the number 0. (That is, the number 0 is the
unique number in Z such that x +0 =04z = z for all € Z.) For the set of
natural numbers there exists exactly one multiplicative identity—namely, the
number 1. (The number 1 is the unique number in N such that -1 =1-z =z
for all x € N.)

To indicate that there exists a unique element in a universe with a spe-
cific property, we define the unique existential quantifier, 3!, as follows. The
symbol 3! is called the unique existential quantifier and represents the
phrase “there exists a unique,” or “there exists exactly one.” The statement
(Flz € U)(P(z)) isread “there exists a unique « € U such that P(z)” or “there
exists exactly one x € U such that P(z).” The statement (3lz € U)(P(z))
is true precisely when the truth set Tp = {z € U | P(z)} has exactly one
element.

It follows directly from the definitions of the quantifiers 3 and 3! that the
conditional statement (3'z € U)(P(z)) = (Jz € U)(P(x)) is true, while the
conditional statement (3x € U)(P(x)) = (3lz € U)(P(z)) is false.

Example 1.5.4 Find the truth value of the following statements which
contain the unique existential quantifier.

a. (lxz e N)(|lx +4|=1) b. (Jlz € N)(|Jz — 4| =5)
c. (FlzeN)(|lxz—4|=3)
Solution

Notice that an equation of the form |y| = a where a is positive appears in
a, b, and c¢. Recall from algebra that in the set of real numbers, if |y| = a
where a is positive, then either y = a or y = —a.

a. It follows from the discussion above, that if |z + 4| = 1, then either
r+4=1orxz+4=-1. Adding —4 to both of the last two equations,
we find if |z + 4| = 1, then either vt = —3 or z = —5. Since -3 ¢ N
and —5 ¢ N, the statement (3lz € N)(Jz + 4| = 1) is false, because the
truth set of {x € N | |x + 4| = 1} is the empty set, which contains no
element.
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b. If |z — 4| = 5, then either x — 4 =5 or z — 4 = —5. Adding 4 to both
of the last two equations, we find if | — 4| = 5, then either z = 9 or
x = —1. Since 9 € N and —1 ¢ N, the statement (3lz € N)(|z+4| = 1)
is true, because the truth set of {z € N | |z — 4] = 5} = {9}, which
contains exactly one element.

c. If |z —4| =3, then either xt —4 = 3 or z —4 = —3. Adding 4 to both of
the last two equations, we find if |x —4| = 3, then either x = 7 or x = 1.
Since 7 € N and 1 € N the statement (Ilz € N)(Jz + 4| = 1) is false,
because the truth set of {x € N | |x — 4| = 3} = {7, 1}, which contains
two elements.

Observe that if the universal set in a, b, and ¢ were changed from the set of
natural numbers, N, to the set of integers, Z, the set of rational numbers, Q,
or the set of real numbers, R, then all three statements a, b, and ¢ containing
the unique existential quantifier would be false, since each corresponding truth
set would contain exactly two elements. W

Example 1.5.4 illustrates that the statement (3!z € U)(P(z)) can be proven
to be false by showing that the truth set of {z € U|P(x)} is either the
empty set or a set with two or more elements. In order to prove that the
statement (3lz € U)(P(z)) is true, it is necessary to show that the truth set
of {x € U|P(z)} contains exactly one element.

In mathematics, it is very important to be able to negate quantified state-
ments such as definitions and theorems. However, before we can negate quan-
tified statements it is necessary to define equivalence for two quantified state-
ments.

Let P(z) and Q(z) be two quantified statements with nonempty universe
U. Two statements P(z) and Q(x) are equivalent in the universe U
if and only if P(z) and Q(z) have the same truth value for all z € U.
That is, P(z) and Q(z) are equivalent in the universe U if and only if
(Vz € U)(P(z) & Q(z)). The two quantified statements P(z) and Q(z) are
equivalent if and only if they are equivalent in every universe U.

Let A(z) denote the statement “z? = z” and let B(x) denote the statement
“r =1." The quantified statement (Vz)(A(x)) is equivalent to the quantified
statement (Vz)(B(x)) in the universe of natural numbers, N, since in N

{z]2® =2} ={1} ={z|z=1}.

However, the quantified statement (Va)(A(z)) is not equivalent to the quan-
tified statement (Vx)(B(z)) in the universe of integers, Z, since in Z

{z]2® =2} ={0,1} # {1} ={z |2 =1}.
Consequently, the quantified statements (Vz)(A(z)) and (Vx)(B(z)) are not
equivalent.
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Let P(x) and Q(z) be open sentences in 2 with nonempty universe U. Since
the conditional statement P = Q is logically equivalent to = P Vv Q for any
nonempty universe U

(Ve € U)((P(z) = Q(x)) < (=P(z) v Q(x))).

Hence, the quantified statements (Vz)((P(z) = Q(z)) and (Vz)(—=P(z)V Q(z))
are equivalent. Other important equivalent statements are

L (Vo) ((P(z) A Q(x)) and (Va)(Q(z) A P(z))

2. (Vo)((P(z) vV Q(x)) and (vz)(Q(z) V P(2))

3. (vz)((P(z) = Q(z)) and (Va)(=Q(z) = —P(z))

4. (Vo) (=(P(z) v Q(2))) and (Va)((=P(z)) A (-Q(x)))
5. (Vo)(=(P(2) A Q(x))) and (Vz)((=P(2)) V (-Q(2)))

Additional equivalent pairs of quantified statements may be obtained by re-
placing each occurrence of V in the above statements by 3.

Now we consider the negation of the quantified statement (Va)(P(x)). Let
a nonempty universe U be given. The negation of (Vx)(P(x)) is

(V) (P(x)) is true & (Vz)(P(z)) is false
S{xeU|Px)}£U
S{zeU|-P)}#0

& (3z)(-P(z))

Thus, =(Vz)(P(z)) is equivalent to (3x)(=P(x)). In a like manner, it can be
shown that —(3z)(P(z)) is equivalent to (Va)(—P(z)). Consequently, we have
the following theorem regarding the negation of quantified statements.

Theorem Let P(z) be an open statement in the variable z. Then =(Vz)(P(x))
is equivalent to (3x)(=P(z)) and —(3z)(P(x)) is equivalent to (Vz)(—=P(z)).

Henceforth, we will use the symbol = to denote the phrase “is equivalent
to.” Thus, the conclusion of the last theorem may be written as

=(Vz)(P(z)) = (F2)(=P(z)) and -(32)(P(z)) = (Vz)(=P(2)).
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Example 1.5.5 Negate the universal affirmative statement

(Vo) (P(z) = Q(x))
and translate the negation into English.

Solution

The negation of the universal affirmative statement is

~(Vz)(P(z) = Q(z)) = ~(vVa)((=P(z)) V Q(x))

Definition of Conditional Statement

= (F2)=((=P(x)) v Q(x))
Negation of Quantified Statement Theorem

= (Fz)(=(=P(x)) A (-Q(z))) De Morgan’s Law

= (Fz)(P(x) A (—Q(x))) Double Negation

The statement (3z)(P(z) A (—Q(x))) is the particular denial statement and
its English translation is “Some P(z) are not Q(x).” Thus, the negation
of the universal affirmative statement is the particular denial statement and
by double negation, the negation of the particular denial statement is the
universal affirmative statement. As one might anticipate, the negation of
the universal denial statement is the particular affirmative statement and
the negation of the particular affirmative statement is the universal denial
statement. W

Thus far, we have discussed only quantified statements in one variable.
Sentences in mathematics often contain quantified statements in two or more
variables. Moreover, the variables may not appear explicitly in the sentence,
and, initially, it may not be apparent exactly how many variables the sentence
actually contains. To make matters even more challenging, phrases such as
“for all,” “for each,” “for every,” “there exists,” “there is,” or “for some”
may not appear in the sentence either. Thus, it is often difficult to translate
English sentences regarding mathematics into symbolic statements. On the
other hand, it is usually fairly easy to translate quantified symbolic statements
from mathematics into English.

First, let us consider the sentence, “For every real number there is a natural
number greater than the real number.” This sentence contains the quantifiers
“for every” and “there is” and the key words “real number” and “natural
number.” Thus, we are reasonably certain there are two variables in this
sentence. Let us use r for the variable denoting a real number and n for
the variable denoting a natural number. Then the translation of the given
sentence into a symbolic statement in mathematics is

(Vr e R)(3n € N)(n > 7).



48 Introduction to Mathematical Proofs

The negation of the previous statement is

=((vr e R)(3n e N)(n > 7)) = (3r € R)(=((3n € N)(n > r)))
= (Ir e R)(Vn € N)(—=(n > 1))
=(Fr eR)(VneN)(n<r)

Translating the last quantified statement into English, we find that the nega-
tion of the sentence “For every real number there is a natural number greater
than the real number” is the sentence “There exists a real number such that
all natural numbers are less than or equal to the real number.” Clearly, the
negation of the original sentence is false, since it says that the natural num-
bers are bounded above by some real number. Consequently, the original
statement is true.

The following examples illustrate that the order of the quantifiers in a state-
ment is very important. Let us consider the following five symbolic statements
with the universe of discourse being the integers, Z.

1.

5.

- W N
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The first statement (Vz)(Vy)(x +y = 0) says “For all integers x and for all
integers y, x +y = 0. This statement is false, since x =2 € Z and y = 3 € Z,
but x +y =2+ 3 =5 # 0. The second statement has the same meaning as
the first. It says “For all integers y and for all integers x, z +y = 0,” and it
is false. Thus, we note that (Vz)(Vy)(z +y = 0) = (Vy)(Vz)(x +y = 0). The
third statement (Va)(Jy)(x +y = 0) says “For every integer x there exists
an integer y such that x +y = 0” or “Every integer has an additive inverse.”
Given an integer z, the integer y = —ux satisfies the equation = + y = 0.
Thus, the third statement is true. Notice that in the fourth statement the
order of the quantifiers is reversed from the order in which they appear in the
third statement. The fourth statement says “There exists an integer y such
that for all integers =, x + y = 0.” This statement is false, since for z = 2,
y must be —2 in order to satisfy x 4+ y = 0, while for z = 3, ¥ must be —3 in
order to satisfy  +y = 0 and, of course, —2 # —3. Since the third statement
is true and the fourth statement is false, we see that (Va)(Jy)(z +y = 0)
is not equivalent to (Jy)(Vz)(z +y = 0). The fifth statement says “There
exists an integer x and there exists an integer y such that x +y = 0.” We
can easily verify that this statement is true by choosing x = 2 and y = —2.
If we reverse the quantifiers appearing in the fifth statement, we obtain the
statement (Jy)(3x)(z + y = 0), which is equivalent to the fifth statement.
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The examples presented above illustrate the following facts, which we state
without proof. Let x and y be distinct variables and let P(x,y) be an open
statement in z and y. Then

(Vo) (Vy)P (x, y) = (Vy)(Vz)P (2, y)
(32)(FY)P (. y) = (3y)(Fz)P(x, y)
and (32)(Vy)P (z, y) = (Vy)(F2)P(z,y)

Example 1.5.6 Translate the sentence “Any nonzero real number has a
multiplicative inverse” into a quantified symbolic statement.

Solution

An initial translation is (Vr € R)((x # 0) = (x has a multiplicative in-
verse)). At first glance, it appears that the quantified statement contains only
one variable, namely, x. However, by definition, a real number y is a mul-
tiplicative inverse of a nonzero real number z if and only if zy = 1. Using
this definition, our translation into a quantified symbolic statement in two
variables becomes

(Ve e R)((z #0) = (By € R)(zy = 1))). W

EXERCISES 1.5

In Exercises 1-10, write the truth set of the given set. When pos-
sible, use roster notation.

1. {z € N | z is an even prime number} 2. {x € N | x is a multiple of 4}

3. {z € Z | x is a multiple of 4} 4. {z eN |z <5}

5.{re€Z|x<5} 6. {x e N| 3z >z}
7 {re€Z]|3x >z} 8. {xeN |3z <z}
9. {zeZ|3x <z} 10. {x e N | /Jz € N}

In Exercises 11-20, let the universal set, U, be the set of all tri-
angles. Let E(x) denote the open statement “x is an equilateral
triangle,” let I(x) denote “x is an isosceles triangle,” and let R(x)
denote “x is a right triangle.” Translate each English sentence into
a symbolic statement with one quantifier and indicate the truth
value of each statement.

11. All isosceles triangles are equilateral triangles.
12. All equilateral triangles are isosceles triangles.

13. All isosceles triangles are not right triangles.
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14. Some isosceles triangles are equilateral triangles.
15. Some isosceles triangles are not right triangles.
16. Some right triangles are equilateral triangles.
17. Some right triangles are isosceles triangles.

18. No equilateral triangle is a right triangle.

19. No right triangle is an isosceles triangle.

20. No equilateral triangle is not an isosceles triangle.
21. Write the negation of Exercises 11-20.

In Exercises 22—-31, translate the given symbolic statement into
English and indicate the truth value of the statement.

22. (Vo € R)(2z > 0) 23. (3z € N)(2z > 0)
24. (V& € N)((x is a prime) = (= is odd)) 25. (3z € N)(2z < 0)
26. (Vz € N)(((x is a prime) A (z # 2)) = (z is 0dd)) 27. (lz € Z)(22 = 0)
28. (3lz € N)((x is a prime) A (« is not odd)) 29. (A € Z)(22 = x)
30. (3'z € R)(e” = 1) 31. (3lz € R)(z = V7)

32. An equivalent form of the unique existential quantifier (3lz € U)(P(z))
is (*) 3z e U)(P(z) A ((Vy € U)(P(y) = (y = x)))). Write the negation of
(*) and observe that the unique existential quantifier (3lz € U)(P(z)) is false
when, for every x, either P(x) is false or for some y, P(y) is true for y # «.

In Exercises 33—36, write the given English sentence symbolically
and indicate the truth value of the statement.

33. All primes are odd.
34. Some primes are even.
35. There exists a unique even prime.

36. There is a unique smallest natural number.
37. Write the negation of Exercises 22-31 and 33-36.

In Exercises 38—52, translate each sentence into a quantified sym-
bolic statement and indicate the truth value of the statement.
38. There exist natural numbers m and n such that m is greater than n.

39. There exists a natural number m such that for all natural numbers n, m
is greater than n.
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40. For all natural numbers m there exists a natural number n such that
m is greater than n.

41. For all natural numbers m and n, m is greater than n.

42. For every integer = there exists an integer y such that y = 2.
43. For every integer x there exists an integer y such that x = 2y.
44. There exists an integer y such that y = 2x for every integer x.

45. There exists a unique rational number x such that x +y = 0 for all ration-
al numbers y.

46. There exists a unique rational number x such that xy = 1 for all rational
numbers y.

47. For all rational numbers = there exists a unique rational number y such
that x +y = 0.

48. For all nonzero rational numbers x there exists a unique rational number
y such that zy = 1.

49. For every positive real number z there exists a natural number n such
that + < z.

50. For all real numbers z, y, and z, (z +y) + z =2 + (y + 2).
51. For all real numbers z, y, and z, if z < y, then x + z < y + 2.

52. For all real numbers x there exists a unique real number y such that
xy = yz for all real numbers z.

1.6 Chapter Review

Definitions

A statement or proposition is a declarative sentence that is either true
or false, but not both true and false.

A simple statement (simple proposition) is a statement which does
not contain any other statement as a component part.

Every compound statement (compound proposition) is a statement
that does contain another statement as a component part.

Let P denote a statement. The negation of P, denoted by — P, is the
statement “not P.” The negation of P is false when P is true, and the negation
of P is true when P is false.

The conjunction of two statements P, Q, denoted by P A Q, is the state-
ment “P and Q.” The conjunction of P and Q is true if and only if both P
and Q are true.
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The disjunction of two statements P, Q, denoted by P V Q, is the state-
ment “P or Q.” The disjunction of P and Q is true if P is true, if Q is true,
or if both P and Q are true.

The truth value of a statement is true (denoted by T) if the statement is
true and false (denoted by F) if the statement is false.

A truth table is a table which shows the truth values of a statement for
all possible combinations of truth values of its simple statement components.

A tautology is a statement that is true for every assignment of truth values
of its component statements.

A contradiction is a statement that is false for every assignment of truth
values of its component statements. Thus, a contradiction is the negation of
a tautology.

Two statements are truth value equivalent or logically equivalent if
and only if they have the same truth values for all assignments of truth values
to their component statements.

The statement “If P, then Q” is called a conditional statement, the state-
ment P is called the hypothesis or antecedent of the conditional statement,
and the statement Q is called the conclusion or consequent of the condi-
tional statement.

Given two statements P and Q, the conditional statement P = Q (read
“P implies Q") is the statement “If P, then Q.” The conditional statement
P = Q is true unless P is true and Q is false, in which case it is false.

Alternative expressions for the conditional statement P = Q are

If P, then Q Q,if P

P implies Q Q is implied by P
P only if Q Q provided P

P is sufficient for Q Q is necessary for P

The converse of P = Q is Q = P.

The inverse of P = Q is (= P) = (= Q).

The contrapositive of P = Qis (- Q) = (= P).

Given two statements P and Q, the biconditional statement P < Q is
the statement “P if and only if Q.” The biconditional statement P < Q is

true when P and Q have the same truth values and false when P and Q have
different truth values.

An argument Py, ..., P, .. C with premises Py, ..., P, and conclusion
C is valid if and only if P; AP2 A... AP, = C is a tautology.

If an argument is not valid, it is called invalid.

Sets are usually described by one of two notations—roster notation (also

called enumeration notation) or set-builder notation. In roster notation,
the elements of the set are enclosed in braces, { }, and separated by commas.
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The set with no elements is called the empty set or null set.

A variable is a symbol, say x, which represents an unspecified object from
a given set U.

The set of values, U, that can be assigned to the variable = is called the
universe, universal set, or universe of discourse.

An open statement in one variable is a sentence that involves one
variable and that becomes a statement (a declarative sentence that is true or
false) when values from the universal set are substituted for the variable. An
open statement in the variable z is denoted by P(x).

The truth set of an open statement is the set of all values from the
universal set that make the open statement a true statement.

The symbol V is called the universal quantifier and represents the phrase
“for all,” “for each,” or “for every.” The statement (Vz € U)(P(z)) is read “for
all z € U, P(z)” and is true when the truth set Tp = {zx € U | P(z)} = U.

The symbol Fis called the existential quantifier and represents the phrase
“there exists,” “there is,” or “for some.” The statement (3x € U)(P(z)) is
read “there exists an z € U such that P(x)” and is true when the truth set
Tp={zeU|P(x)} #0.

The symbol 3! is called the unique existential quantifier and repre-
sents the phrase “there exists a unique” or “there exists exactly one.” The
statement (Ilz € U)(P(z)) is read “there exists a unique z € U such that
P(z)” or “there exists exactly one « € U such that P(z).” The statement
(F'z € U)(P(x)) is true precisely when the truth set Tp = {z € U | P(z)} has
exactly one element.

Two statements P(z) and Q(x) are equivalent in the universe U if P(x)
and Q(z) have the same truth value for all z € U. That is, P(z) and Q(x)
are equivalent in the universe U if (Vo € U)(P(z) & Q(z)).

The two quantified statements P(z) and Q(z) are equivalent if they are
equivalent in every universe U.

Useful Laws

Let t represent a statement which is a tautology, let f represent a statement
which is a contradiction, and let P represent any statement.

Double Negation Law: —(—-P)=P

Tautology Laws: “t=f PAt=P Pvt=t
Contradiction Laws: -f=t PAf=f Pvi=P
Idempotent Law for Conjunction: PAP=P
Idempotent Law for Disjunction: PvP=P
Commutative Law for Conjunction: PAQ=QAP

Commutative Law for Disjunction: PvQ=QVP
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Absorption Laws: PAPVQ) =P
Pv(PAQ) =P
De Morgan Laws: -(PAQ)=(=P)V (-Q)

Q
~(PvQ)=(=P)A(-Q
Law of the Excluded Middle: (—P)AP
Distributive Law for Disjunction: PV (QAR)=(PVQ)A(PVR)
Distributive Law for Conjunction: PA(QVR)=(PAQ)V (PAR)
Associative Law for Disjunction: (PVQ)VR =PV (QVR)
Associative Law for Conjunction: (PAQ)AR=PA(QAR)

Negation of the Conditional Statement —(P = Q) =P A (-Q)

)

Rules of Logic

Rule of Substitution Let P and Q be statements. Let C(P) be a
compound statement containing the statement P. And let C(Q) be the same
compound statement in which each occurrence of P is replaced by Q. If P
and Q are logically equivalent, then C(P) and C(Q) are logically equivalent.
That is, if P = Q, then C(P) = C(Q).

The argument P .. P VvV Q is a valid argument known as the rule of
disjunction.

The argument P, Q .. P A Q is a valid argument known as the rule of
conjunction.

The argument P A Q .. P is a valid argument called the rule of con-

junctive simplification.

The argument P V Q, = P .. Q is a valid argument called the rule of
disjunctive syllogism.

The argument P = Q , P .. Q is a valid argument known as the rule of
detachment.
The argument P = Q , - Q .. — P is a valid argument known as the

rule of contrapositive inference.

The argument P = Q, Q .. P is an invalid argument called the fallacy
of the converse.

The argument P = Q , = P .. = Q is an invalid argument called the
fallacy of the inverse.

The argument P = Q , Q = R .. P = R is a valid argument called the
rule of transitive inference or hypothetical syllogism.

Theorem Let P(x) be an open statement in the variable x. Then
—(Vz)(P(x)) is equivalent to (3z)(—=P(z)) and —(3z)(P(z)) is equivalent to
(V) (=P (2)).
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Statements of Traditional Logic

=W

Statement Type Symbolic Statement English Sentence
Universal Affirmative  (Vz)(P(z) = Q(z)) All P(z) are Q(z).
Universal Denial (Vz)(P(z) = (-Q(z))) No P(z) are Q(z).
Particular Affirmative  (3z)(P(z) A Q(x)) Some P(z) are Q(z).
Particular Denial (Fz)(P(x) A (-Q(x)))  Some P(z) are not Q(z).

Review Exercises

In Exercises 1-5, determine if the given sentence is a statement.

1.

2
3
4.
5
6

Multiply 8 by 7.

. What time is it?

. The number 47 is a composite number.

The number /11 is an irrational number.

. Alice is very intelligent.

. Let T denote the statement “I pass the test.” Let C be the statement

“I pass the course.” Let D stand for the statement “I make the dean’s
list.”

a. Write the following statements symbolically.

. I did not make the dean’s list.

. I passed the test, but I did not pass the course.

. Either I pass the test, or I do not pass the course.

. If T pass the test, then I pass the course.

. If T pass the test and I pass the course, then I make the dean’s list.

S Ot s W N =

. I make the dean’s list if and only if I pass the course.

b. Write the following statements in English.
1. CAD 2. (TAC)A(—=D) 3. C&T
4. (-C)=(=-D) 5 (T=C) A(C=D)

In Exercises 7-13, write the negation of the given statement.

7.
8.
9.
10.
11.
12.
13.

The number 7 is rational.

I did not go to the game.

It is cloudy, or the sun is shining.

I went home, but I did not read the newspaper.
If2+3=4,then5+6=7.

The number 7 is even if and only if the number e is odd.

If T finish my homework, I play tennis unless it rains.
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14.

15.

16.
17.

18.

19.

20.

21.
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Construct a truth table for the following statements. Identify tautologies
and contradictions.

a. P& (= P) b.P=(PVvVQ) c. P=(PAQ)
d. (P=QV(Q=P) e. P=[-P)=(QA (- Q)]
£ {[(PAQ)=R]|=P=R)}e (P=Q)

Rewrite each of the following statements in the conditional form P = Q.
That is, rewrite each statement in the form “If P, then Q.”

a. You may vote provided you are old enough.
b. The gasoline engine is running implies there is fuel in the tank.

c. You may run for the United States Senate only if you are at least
thirty-five years of age.

d. Rain is necessary for a garden.

@

. A triangle is equilateral is sufficient for the triangle to be isosceles.

las)

Today is Friday is implied by yesterday being Thursday.
Write the negation of the statements in Exercise 15.

Write the converse, inverse, and contrapositive of the statements in
Exercise 15.

Determine the truth value of the following biconditional statements.

a. The number /3 is negative if and only if the number —/3 is positive.
b. -1>0iff 0 < 1.

Which of the following arguments are valid?

a. P .. PAQ b.PvQ, =P .. Q

c. P=Q —-Q ...=-P dP=Q, Q .. P

e P=Q, R=Q .. P&R

Write the following argument in symbolic form using the letters indicated
and deduce a valid conclusion for the argument.

If Allen attends the meeting (A), then Barbar attends the meeting (B).
If Allen and Barbar attend the meeting, then Carly will be elected (C)
or Dave will be elected (D). If Carly or Dave is elected, Earl will resign
(E). If Allen’s attendance implies Earl will not resign, then Fae will be
the new chairperson (F). Therefore,

Complete the given logical equivalences.

a. o (PAQ)= b.PV(QAR)=

c. ("P)A(—Q) = d PAQ)V((PAR)=
e. " (P=Q) = f.PV(PAQ)=
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22. Write the truth set of each of the following sets.
a. {x e N | 2% + 3z =0} b. {z €Z | 2?+ 3z =0}
c. {ZreN|222+3z+1=0} d {z€Z|222+32+1=0}
e. {r€Q|222+3x+1=0}

In Exercises 23-27, let M(x) denote the open statement “x is a

mathematician” and let P(x) denote the open statement “x is a
philosopher.” Write each statement symbolically.

23. No mathematician is a philosopher.

24. Some philosophers are mathematicians.
25. All mathematicians are not philosophers.
26. No philosophers are not mathematicians.

27. Some mathematicians are philosophers.
28. Write the negation of Exercises 23-27 both symbolically and in English.

In Exercises 29-31, translate each sentence into a quantified state-
ment.

29. For any integer x there exists a unique integer y such that x +y = 0.

30. There exists a natural number x such that zy = 0 for all natural
numbers y.

31. There exists a unique real number x such that x +y = x for all real
numbers y.

32. Write the negation of Exercises 29-31.

More Challenging Exercises

33. Find a formula which is logically equivalent to P VvV Q that contains only
P; Q; negation, — ; and conjunction, A. Construct a truth table which
verifies that your formula is correct.

In the previous exercise, you were asked to write the binary operator V in
terms of the unary operator — and the binary operator A. In 1880, Charles
Peirce (1839-1914) proved that Boolean algebra can be defined using a single
binary operator called nor. The operator nor is symbolized by P | Q and
means “neither P nor Q.” However, Peirce’s results were not published until
1933, nineteen years after his death. In 1913, Henry Sheffer (1882-1964)
independently discovered and published results similar to the results of Peirce.
The binary operator | is called the Sheffer stroke. FExercises 34 through 39
are about nor, P | Q, and its dual operator nand, which is represented
symbolically by P | Q.

34. Construct a truth table for P | Q.
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35

36.

37.

38.

39.

40.

41.

42.

43.
44.

45.
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. Use only the binary operator | to write expressions which are logically
equivalent to a. = P b. PvQ c. PAQ

Write an expression which is logically equivalent to P | @ and uses only
the operators =, V, and A.

Construct a truth table for P | Q, the binary operator nand. That is,
construct a truth table for “P and Q are not both true.”

Use only the binary operator | to write expressions which are logically
equivalent to a. = P b. PvQ c. PAQ

Write an expression which is logically equivalent to P | Q and uses only
the operators —, V, and A.

Write an expression which is logically equivalent to P A Q and uses only
the connectives — and =.

Write an expression which is logically equivalent to P = Q and uses only
the connectives — and =.

Simplify the following expressions.

a. PV (QA-DP) b. = (PV(QA-R))AQ

Verify that (P A Q) V (= P A= Q) is logically equivalent to P < Q.
Which of the following statements imply that the implication

(*) If Alice and Bob go to dinner, then Alice and Bob go to a movie,
is true?

a. Alice goes to dinner.

o

. Alice does not go to dinner.

c. Bob goes to a movie.

d. Bob does not go to a movie.

e. Alice and Bob go to dinner.

f. Alice and Bob go to a movie.

In calculus, you studied real-valued functions of a real variable. Let ¢ be a
real number and let f be a real-valued function defined on an interval
which contains c. First, the statement “The function f is continuous at ¢”
was defined and shortly thereafter the statement “The function f is
differentiable at ¢” was defined. Then the following theorem was proved.
(t) A function f which is differentiable at ¢ is continuous at c.

Consider the six statements:

1. If f is continuous at ¢, then f is differentiable at c.

2. If f is not continuous at ¢, then f is not differentiable at c.

3. If f is not differentiable at ¢, then f is not continuous at c.

4. Function f is not continuous at ¢ or function f is differentiable at c.
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47.

48.

49.

50.
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5. Function f is not differentiable at ¢ or function f is continuous at c.
6. Function f is differentiable at ¢, but function f is not continuous at c.
a. Which statements above are logically equivalent to ()7

b. Which statement above is logically equivalent to the negation of ()7

Which of the following expressions are logically equivalent?
a. P=(Q=R) b. P=(QAR) c. P=Q AP=R)
d Q= (P=R) e. PAQ) =R

Write the following argument in symbolic form using the letters indicated
and deduce a valid conclusion for the argument.

If Washington joins our club (W), then our club’s social standing will
increase (S). If Hamilton joins our club (H), then the club’s financial
condition will improve (F). Washington or Hamilton will join our club. If
the club’s social standing increases, then Hamilton will join our club.
If the club’s financial condition improves, Jefferson will join our club (J).
Therefore,

Four students—Bob, Carol, Ted, and Alice—were discussing going to
the ball game Saturday night. Bob said he would go if Alice did. Carol
said she would go if Bob did. Ted said he would go if Carol did. Saturday
night two of these students went to the ball game. Which two?
Let the universe be the natural numbers, N. Consider the statements
a. (Im)(Fn)(m <n) b. Gm)(Vn)(m <n) c (Vm)(In)(m < n)
d. (Vm)(¥n)(m <n) e (In)(Vm)(m <n) £ (Vn)(3Fm)(m <n)

(i) Write each statement in English.

(ii) Specify which statements are true.

Continuity of a real-valued function f at ¢ defined on an interval contain-
ing c is defined as follows.

A function f is continuous at c provided for every e > 0 there
is a & > 0 such that if |z — ¢| < 4, then |f(z) — f(c)| < e.

a. Write the definition above symbolically.

b. Write a symbolic definition for f is not continuous at c.

c. Write the symbolic definition for f is not continuous at c, the answer
to part b, using more English and fewer symbols as in the given defini-
tion of f is continuous at c.






Chapter 2

Deductive Mathematical Systems
and Proofs

This chapter is devoted to the study of deductive mathematical systems
and elementary proof techniques. In Section 2.1, we define deductive mathe-
matical systems and discuss the Euclidean and non-Euclidean geometries, the
system of natural numbers, and the system of integers. In Section 2.2, basic
techniques for proving conditional statements such as direct proof, proof by
contraposition, proof by contradiction, and proof by cases are presented. We
also discuss proving biconditional statements, proving a statement by contra-
diction, and proving statements which contain quantifiers. Next, we present
some well-known mathematical conjectures and show how to prove and dis-
prove conjectures. And finally, we define and examine the system of rational
numbers and the system of real numbers.

2.1 Deductive Mathematical Systems

A deductive mathematical system (an axiomatic theory) consists of the
following six elements:

1. An underlying language—FEnglish, in our case.
. A deductive logic system—which we introduced in Chapter 1.
. A list of undefined terms.

. A list of formally defined technical terms, called definitions.

T = W N

. A list of statements which are assumed to be true, called postulates or
axioms.

6. A list of deduced statements, called theorems.

If, on one of the first days of class, we were to ask beginning geometry stu-
dents the definition of a “point,” we would receive several responses. Among
those responses we would most likely find: “A point is the intersection of
two lines.” If a little later in the class, we ask the same students to define
a “line,” we would probably receive one or both of these responses: “A line
is the shortest distance between two points.” “A line is determined by two

61
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points.” That is, beginning geometry students would want to define a “point”
in terms of “lines” and to define a “line” in terms of “points.” The students
would be guilty of providing circular definitions. However, they have no choice
but to do so, if they believe all terms should be defined. Suppose we have an
English dictionary which includes every word in the English language. And
suppose we start by looking up a single word. It will be defined in terms of
other English words, all of which are found in the dictionary. Included with
the definition of the word is a list of synonyms—words having the same or
almost the same meaning. Next, if we look up one of the synonyms, we will
find a new list of synonyms for the second word. If we continue the process in
this manner, then eventually, because there are only a finite number of words
in the dictionary, we will look up a word that we have looked up before—it
may not be the word with which we started the process, but it will be a word
we have looked up before. Consequently, because there are only a finite num-
ber of words, it is impossible to define every word and also avoid circularity
of definitions. Thus, by necessity, an abstract mathematical system requires
some undefined terms. In geometry, those undefined terms may be words such
as, “point,” “line,” “distance,” “on,” etc.

A definition is an agreement to use a symbol, a word, or a short phrase to
substitute for something else, usually for some expression that is too long to
write easily or conveniently. Hence, in mathematics, a definition is simply an
agreed upon shorthand. For example, we agreed earlier that a prime number
is a natural number greater than one which is divisible only by itself and one.
Of course, this definition requires us to know the definitions of a “natural
number,” of “greater than,” and of “divisible.” Usually, a definition is made
to introduce a new concept in terms the undefined terms and previously given
definitions. Consequently, by substitution every definition could be written
in terms of undefined terms only; however, such expressions would be lengthy
and tedious to read.

An axiom or postulate is a statement that is assumed to be true. The
axioms of a deductive mathematical system are the statements from which
all other statements of the system can be derived. The Greeks were the
first to develop the concept of a logical discourse based on a set of assumed
axioms. According to Aristotle, “every demonstrative science must start from
indemonstrative principles; otherwise, the steps of demonstration would be
endless.” A mathematical system is consistent if and only if contradictory
statements are not implied by the axioms of the system. A set of axioms is
inconsistent if it is possible to deduce from the axioms that some statement
is both true and false. An inconsistent mathematical system is worthless,
because the negation of any statement which can be deduced can be deduced
also. Hence, the one requirement that is made of a set of axioms is that it be
consistent. For aesthetical purposes, mathematicians attempt to keep both
the number of undefined terms and the number of axioms of a system to a
minimum.
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A theorem is a true statement that has been proved by a valid argument.
A proof is a logically valid deduction of a theorem from the premises of
the theorem, the axioms, or previously proven theorems. A formal proof
of a theorem is a finite sequence of statements Si,Ss, ..., Sk such that each
statement S is a premise of the theorem to be established, an axiom of the
system, follows from one or more of the preceding S’s by a logical rule of infer-
ence, or follows from one or more of the preceding S’s by a previously proven
theorem. Hence, a theorem or provable statement is the last statement
of some proof. Later in this chapter, we will present several techniques for
proving theorems.

Euclidean and Non-Euclidean Geometry Systems

Thales of Miletus (c. 640-546 B.C.) is considered to be the father of Greek
mathematics. Early in his life, he traveled to Egypt and learned the practical
geometry that the Egyptians knew. Thales is the first person to conceive of
the idea of geometry as a deductive science, with a succession of propositions,
each resting upon the axioms and postulates and upon the propositions which
had been proven previously. A noted pupil of Thales was Pythagoras (c. 572—
501 B.C.), who was born on the island of Samos, not far from Miletus. To
acquaint himself with all learning of the time, he traveled to Greece, Egypt,
Babylonia, and India. Pythagoras and his disciples proved many theorems in
geometry, the most famous of which bears his name. He devoted much atten-
tion to the study of areas, volumes, proportions, and regular solids. During
the next three centuries, hundreds of Greek mathematicians pursued Thales’
vision of geometry by verifying geometric relationships, proving theorems,
and discovering constructions. According to the French mathematician and
philosopher Henri Poincaré (1854-1912): “Science is built up with facts, as
a house is with stones. But a collection of facts is no more a science than
a heap of stones is a home.” Prior to the time of Thales and Pythagoras,
geometry consisted of a collection of disorganized facts. The Egyptians knew
geometrical truths thousands of years earlier and the Babylonians even earlier.
However, their knowledge consisted mainly of a collection of empirical results
for surveying and constructing. The Greeks introduced order into geometry
and converted it from a collection of isolated facts into an organized science.
The organization and systematization of geometry was begun by Thales and
Pythagoras, continued by their successors, and culminated with the publi-
cation in about 300 B.C. of the treatise, Elements, by Euclid of Alexandria
(c. 325 B.C. to c¢. 265 B.C.). Euclid’s book has been the basis for the study
of geometry ever since. It has even been said that next to the Bible, the
Elements may be the most translated, published, and studied book in the
Western world.

The FElements is based on twenty-three definitions, five postulates, and five
axioms. Euclid divided the statements he assumed to be true into two sets—
postulates and axioms. It is not clear why he did this, but perhaps he thought
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some statements were more general or more “self-evident” than others. Cur-
rently, we call statements that are assumed to be true axioms or postulates,
interchangeably. The postulates of Euclid were

1. A straight line may be drawn between any two points.

2. Any terminated straight line may be produced indefinitely.

3. About any point as center a circle with any radius may be described.
4. All right angles are equal.
5

. If two straight lines lying in a plane are met by another line, making
the sum of the internal angles on one side less than two right angles,
then those straight lines will meet, if sufficiently produced, on the side
on which the sum of the angles is less than two right angles.

The first three postulates are postulates regarding construction and the fourth
postulate says that space is homogeneous. The fifth postulate is called the
“parallel postulate.” In the Elements, Euclid proves twenty-eight propositions
(theorems) using only the first four postulates. He needed the parallel pos-
tulate to prove the twenty-ninth proposition. The collection of statements of
geometry that can be proven using only the first four postulates is known as
absolute geometry or neutral geometry. The fifth century commentator
Proclus (410-485) wrote of the parallel postulate: “This ought even to be
struck out of the Postulates altogether; for it is a theorem involving many
difficulties ... .” Although Proclus did not deny the truth of the fifth pos-
tulate, he denied that it was “self-evident.” He even presented a false proof
of his own that the fifth postulate could be deduced from the first four pos-
tulates. The history of mathematics is filled with attempts to prove that the
parallel postulate is not a postulate but a theorem. For centuries mathemati-
cians tried to show the fifth postulate was a theorem by either (1) deducing
it from the first four postulates or (2) deducing it from the first four postu-
lates and an additional “self-evident” postulate. Attempts of the first kind
failed, because it is not possible to deduce the fifth postulate from the first
four. However, this fact was not proven until the mid-nineteenth century. At-
tempts of the second kind failed because every proposed alternate postulate
which was strong enough to permit the deduction of the parallel postulate
was no more “self-evident” than the original fifth postulate.

In 1685, Giovanni Girolamo Saccheri (1667-1733) entered the Jesuit Order.
He was ordained a priest in 1694 and taught at Jesuit colleges throughout
Italy. From 1699 until his death, he held the chair of mathematics at Pavia.
In 1697, Saccheri replaced the parallel postulate with a contrary assump-
tion. He intended to derive a contradiction from Euclid’s first four postulates
and his assumed postulate, thereby deducing the fifth postulate. Instead, he
succeeded in proving many theorems. Consequently, Saccheri was the first
to postulate and develop a system of non-Euclidean geometry. However, he
did not realize this fact! He considered the results to be absurd, since they
violated ordinary geometrical intuition. In the first half of the nineteenth cen-
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tury, Gauss, Bolyai, Lobachevsky, and Riemann developed the non-Euclidean
geometries.

The System of Natural Numbers

Mathematicians produce new objects to study in a variety of ways. One
way to produce new objects is through the specification of a set of axioms—
which in essence provide “implicit definitions” of the objects. All other facts
about the new objects are derived through logical deduction. A second way to
produce new objects is to construct the objects from already existing objects.
During the nineteenth century, mathematicians carried out the “arithmeti-
zation of analysis.” In 1888, the German mathematician Richard Dedekind
(1831-1916) developed the set of natural numbers axiomatically. In 1889, the
Italian mathematician and logician Giuseppe Peano (1858-1932) presented an
alternate axiomatic development of the set of natural numbers. Other math-
ematicians showed how to construct the integers from the natural numbers,
the rational numbers from the integers, the real numbers from the rational
numbers, and the complex numbers from the real numbers.

Peano’s axiomatic system for the natural numbers has three undefined
terms: “1,” “number,” and “successor.” Peano’s five axioms are

P1. 1is a number.

P2. Every number n has a unique successor, n’, which is a number.

P3. If m and n are numbers and if m’ = n’, then m = n.

P4. 1 is not the successor of any number.

P5. Let P be a property. If

(i) P(1) is true

and

(ii) for every n € N, P(n) is true = P(n’) is true,

then for all n € N, P(n) is true.
Axioms P1 and P4 together say that 1 is the “first” or “initial” element in
the set of natural numbers. Axiom P2 says that 1 has exactly one successor.
What Peano intends by axiom P2 is that the successor of n will be obtained
from n by adding 1—that is, Peano intends for n’ = n + 1. So the unique
successor of 1 is 1 4+ 1 = 2, and the unique successor of 2 is 3, and so forth.
The elements of the set of natural numbers essentially form a chain. The first
link in the chain in the number 1, the second link in the chain is the number
2, and so on. The second axiom, P2, does not allow the chain to “branch”
or “divide” as more links are added, since only one unique link can be added
at an existing link. The third axiom, P3, prohibits the chain from “looping
back onto itself,” because P3 says that every natural number except 1 has a
unique “predecessor.” Axiom P5 is known as the principle of mathematical
induction. (See Chapter 6.) Mathematical induction permits one to establish
properties for an infinite number of cases without having to provide an infinite
number of proofs.
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Peano knew that there were an infinite number of sets in addition to the
set of natural numbers that satisfied the axioms P1 through P5. But he also
knew that all of these sets were “equivalent to” the set of natural numbers.
For example, if we define the successor of n to be n’ = n/2, then we obtain
the sequence of numbers 1, %, %, % ..., which satisfies axioms P1 through P5.

From axioms P1 through P5 the following well-known theorems (properties)
for natural numbers can be proved.

BASIC THEOREMS FOR THE NATURAL NUMBERS

Closure Properties for Addition and Multiplication
N1 VmneN m+neN
N2  Vm,neN, mneN

Commutative Properties for Addition and Multiplication
N3 VmneN m4+n=n+m
N4 Vm,n €N, mn=nm

Associative Properties for Addition and Multiplication
N5 Vmn,peN, m+(n+p)=(m+n)+p

N6  Vm,n,p € N, m(np) = (mn)p

Distributive Properties of Multiplication over Addition
N7  Vm,n,p€e N, m(n+p) =mn+ mp

N8 Vm,n,peN, (m+n)p=mp+np

Existence of a Multiplicative Identity Property

N9 (I1leN)(¥YmeN), Im=m

The System of Integers

One of the first things of a mathematical nature a young child learns to do
is count: “one, two, three, ....” That is, the child learns the names of the
elements of the set of natural numbers. Then a child learns to add single digit
natural numbers such as 2+ 3 by “counting on their fingers.” Some time later
a child learns how to subtract 3 from 5 by asking and answering the question:
“What number do I add to 3 to get 57”7 Hence, at an early age we learn that
subtraction is defined in terms of addition. The following is the definition of
subtraction for sets of numbers.

Let S be a set of numbers and let m and n be elements of S. The number
xr = m —n, read “m minus n” or “n subtracted from m,” is the number x
which makes the statement m = n + x true, if there is such a number zx.

Thus, © = 3—1 is the number which makes 3 = 1+ a true statement. (Recall
that you learned how to add first and then how to subtract. Furthermore,
you learned to “check” your subtraction result by addition.)

Theorem N1 for the natural numbers states that the natural numbers are
closed under addition. That is, if we add two natural numbers, we get another
natural number. Is the set of natural numbers closed under the operation of
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subtraction? The answer is no. Ask a child: “If you have two apples and you
give both of them away, how many apples do you have left?” The child will
most likely answer “none.” Consequently, if we want a set of numbers which
contains the elements of the set of natural numbers and which is closed under
the operation of subtraction, we must enlarge the set of natural numbers by
including a number which represents the concept of “none.” The number we
need to include is called “zero” and it is represented by the symbol “0.” Let
W =1{0,1,2,3,...}. W contains the elements of the set of natural numbers
and the element 0. We “invented” the number 0 to have the property that for
allm € W, m—m = 0, or stated in terms of addition, 0 has the property that
for all m € W, m = m + 0. Therefore, the number 0 is called the additive
identity for the set W, because when one adds 0 to any number m € W
the result is m.

If we replace the set N by the set W in Theorems N1 through N9 and name
the new Theorems W1 through W9, respectively, we can prove that the set
W satisfies Theorems W1 through W9 and the additional following theorem:

Existence of an Additive Identity Property
W10 (F30eW)(VYme W), m+0=m

Is the set W closed under the operation of subtraction? That is, for all
m,n € W, is the number z = (m —n) € W? The answer is no, because
the number (2 — 3) ¢ W since there is no number x € W which makes the
statement 2 = 3+ x true. The question we need to answer next is “What new
numbers do we need to combine with the elements of W in order to obtain a
new set which is closed under the operation of subtraction and, in addition,
satisfies Theorems W1 through W10 when the set W is replaced by the new
set? Let S be a set which contains the elements of W and all of the other
new numbers we need to “invent” so that S is closed under subtraction. That
is, we want S to have the property that if m,n € S, then (m —n) € S. Since
0 W,0eS. And for every m € N, m € S. Thus, for every m € N we
need a new number x € S such that 0 —m = z € S. Because subtraction is
defined in terms of addition, for every m € N we need a new number x € S
such that 0 = m + z is a true statement. We define that number x to be —m,
which is read “minus m” or “negative m.” Hence, for subtraction to be closed
in S, the set of numbers we need to include in S in addition to the numbers
in W is {...,=3,—2,—1}. Therefore, the “smallest set” which includes the
elements of the natural numbers and which is closed under subtraction is the
set of integers
Z={.,-3,-2,-1,0,1,2,3,...}.

Notice that the set of integers includes the set of natural numbers (which
is also called the positive integers), zero, and the set of negative integers
(the set {...,—3,—2, —1}). If we replace the set N by the set Z in Theorems
N1 through N9 and call the new theorems Z1 through 79, and if we replace
the set W by the set Z in Theorem W10 and call the new Theorem Z10, we can
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prove that the set of integers, Z, satisfies Theorems Z1 through Z10 and
satisfies the additional Theorem Z11 stated below.

BASIC THEOREMS FOR THE INTEGERS

Closure Properties for Addition and Multiplication
721 VYmn€eZ, m+ncZ
72 VYmne€Z, mneZl

Commutative Properties for Addition and Multiplication
Z3 Vmn€eZ, m4+n=n+m
Z4  Ym,n €Z, mn=nm

Associative Properties for Addition and Multiplication
Z5 Vmn,p€Z, m+(n+p) =(m+n)+p

726  Vm,n,p € Z, m(np) = (mn)p

Distributive Properties of Multiplication over Addition
727 Ym,n,p€Z, m(n+p)=mn+mp

728 VYm,n,p€Z, (m+n)p=mp+np

Existence of a Multiplicative Identity Property

729 (31eZ)(VYmeZ), Im=m

Existence of an Additive Identity Property
210 (30e€2)(VmeZ), m+0=m

Existence of an Additive Inverses Property
7211 (YmeZ)(3(—m) €Z), m+(—m) =0

In summary, the natural numbers are closed under the operations of ad-
dition and multiplication (Theorems N1 and N2) and satisfy Theorems N3
through N9. We enlarged the set of natural numbers by including the num-
bers 0,—1,—2,..., and obtained the set of integers. The integers satisfy the
extended Theorems Z1 through Z11. Thus, the integers are closed under the
operations of addition, multiplication, and subtraction. However, subtraction
is not commutative nor associative as are addition and multiplication.

Example 2.1.1 Provide a justification for each step in the following formal
proof. Each of the missing justifications should be one of the Theorems Z1
through Z11 or “substitution of s; into s;” where s; and s; are prior statements
in the proof.

Theorem 2.1 For every integer m, m0 = 0.
(Or written symbolically, Ym € Z, m0 = 0.)

Proof: ForallmeZ

1. mm =mm 1. The relation = is reflexive*.
2. m+0=m 2
3. m(m +0) =mm 3.
4. m(m +0) = mm + m0 4.
5. mm + m0 =mm 5
6. m0=0 6
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Solution

The justifications are as follows: 2. Theorem Z10. 3. Substitution of 2
into 1. 4. Theorem Z7. 5. Substitution of 4 into 3. 6. Theorem Z10.

Notice that since multiplication is commutative in the integers (Theorem Z4),
VmeZ, O0m=m0=0.

*QOur first justification is the fact that the relation = is reflexive—that is,
a = a. However, we do not study relations until Chapter 4. W

EXERCISES 2.1

1. Is the set {1,2,...,10} closed with respect to addition? multiplication?
subtraction? division?

2. Is the set of even integers {...,—4,—2,0,2,4,...} closed with respect
to addition? multiplication? subtraction? division?
3. Is the set of odd integers {...,—3,—1,1,3,...} closed with respect to

addition? multiplication? subtraction? division?
4. For the integers, give examples to show that

a. the commutative property of subtraction m — n = n — m is false.

b. the associative property of subtraction m — (n —p) = (m —n) —p is
false.

c. the commutative property of division m +n = n + m is false.

d. the associative property of division m +~ (n +~p) = (m +n) + p is
false.

5. For the set of natural numbers, does addition distribute over multipli-
cation? That is, does m + (n-p) = (m+n) - (m+p)? If not, give an
example which shows it does not.

6. Provide a justification for each step in the formal proof of the following
theorem. Each justification should be one of the Theorems Z1 through
711, Theorem 2.1, or “substitution of s; into s;” where s; and s; are
prior statements in the proof.

Theorem 2.2 For every integer m, —(—m) =m.
(Or written symbolically, Vm € Z, —(—m) = m.)

Proof: ForallmeZ

1. m+(—m)= 1.
2 m+ (—m) = ( m) +m 2.

(—m)+m 3.
4. —(=m)=m 4.
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7. Provide a justification for each step in the formal proof of the following
theorem. Each justification should be one of the Theorems Z1 through
711, Theorem 2.1, Theorem 2.2, or “substitution of s; into s;”
and s; are prior statements in the proof.

where s;

Theorem 2.3 For integers m and n, m(—n) = —(mn).
(Or written symbolically, Vm,n € Z, m(—n) = —(mn).)
Proof: For all m,n € Z

1. m0=0 1
2. n+(—n)=0 2
3. m(n+(—n))=0 3
4. m(n+ (—n)) = mn + m(—n) 4
5 mn—+m(—n) =0 5
6. m(—n) = —(mn) 6

8. Provide a justification for each step in the formal proof of the following
theorem. Each justification should be one of the Theorems Z1 through
711, Theorem 2.1, Theorem 2.2, Theorem 2.3, or “substitution of s; into

”

s;” where s; and s; are prior statements in the proof.

Theorem 2.4 For integers m and n, (—m)(—n) = mn.
(Or written symbolically, Vm,n € Z, m(—n) = —(mn).)
Proof: For allm,neZ

1. (—m)0 = 1.
2. n+(—n)=0 2.
3. (—m)(n+(—n))=0 3.
4 (—m)(n -+ (-n)) = (—m)n + (—m)(—n) L
5. (—m)n+ (—=m)(—n) =0 5.
6. (—m)(—n) =—(—m)n 6.
7. —(—m)=m 7.
8. (—m)(—n) =mn 8.

9. Provide a justification for each step in the formal proof of the following
theorem. Each justification should be one of the Theorems Z1 through
711, Theorem 2.1, Theorem 2.2, Theorem 2.3, Theorem 2.4, “substitu-
tion of s; into s;” where s; and s; are prior statements in the proof, or
the definition of subtraction for the integers. Recall that the definition
is as follows: Let m and n be integers, the integer m — n = =z is the
integer x which makes the statement m = n + x true.

Theorem 2.5 If m and n are integers, then m — n =m + (—n).

(Or written symbolically, Vm,n € Z, m — n=m + (—n).)
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Proof: For all m,n € Z

1. m+[(—n)+n]=[m+ (—n)]+n 1.
2. [m4+ (—n)]+n=n+[m+(—n)] 2.
3. m+[(—n)+n]=n+[m+ (—n)] 3.
4. (—n)+n=n+(-n) 4.
5. n+(—n)=0 5.
6. n+(—n)=(—n)+n 6.
7. (—n)+n=0 7.
8 m+0=n+[m+ (—n)] 8.
9. m+0=m 9.
10. m =n+[m+ (—n)] 10.
11. m—n=m+ (—n) 11.

Provide a justification for each step in the following formal proof of the
Cancellation Property of Addition.

Theorem 2.6 If k&, m, and n are integers and k + m = k + n, then
m = n.

Proof: Let k,m,necZ

1. k+4m=k+n 1. Premise
2. k+(—-k)=0 2.
3. k+(=k)=(-k)+k 3.
4. (=k)+k= 4.
5. (=k)+ (k+m)=(=k)+ (k+m) 5.
6. (=k)+(k+m)=(-k)+(k+n) 6.
7. (—k)+(k+m)=((-k)+k)+m 7.
8 (k)+k)+m=(-k)+(k+n) 8.
9. (=k)+(k+n)=((-k)+k) +n 9
10. ((=k)+k)+m=((-k)+k)+n 10
11. 0+m=0+n 11
12. m=n 12

Provide a justification for each step in the following formal proof.

Theorem 2.7 For all integers m, (—1) - m = —m.

Proof: Let meZ

1. m-1+(-1)=m-14m-(-1) 1.
2. 14 (-1)=0 2.
3. m-0=m-1+m-(-1) 3.
4. m-0=0 4.
5. m-14+m-(-1)=0 5.
6. 1-m=m 6.
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7. m-1=1-m 7
8. m-1=m 8
9. m4+m-(=1)=0 9.
10. m-(—1)=(=1)-m 10.
1. m—+(=1)-m=0 11.
12. m+(—m) =0 12.
13. m+(-1)-m=m+ (—m) 13.
14. (-1)-m=-m 14.

2.2 Mathematical Proofs

In mathematics, a proof is a logically valid deduction of a theorem from
the premises of the theorem, the axioms, or previously proven theorems. The
truth of any statement which appears in a proof must be traceable back to
the original axioms. In Section 2.2.1, we present the basic proof techniques
for proving conditional statements which include a direct proof, a proof by
contraposition, and a proof by contradiction. In Section 2.2.2, we discuss
proof by cases and we show how to prove a biconditional statement by proving
two conditional statements by any of the techniques cited above. Next, we
consider proof by contradiction for any general statement—which includes
statements that are not conditional statements. Then, we indicate how to
prove statements which contain quantifiers. In Section 2.2.3, we present some
well-known mathematical conjectures and illustrate how to prove and disprove
conjectures. Finally, we examine properties of the system of rational numbers
and the system of real numbers.

2.2.1 Techniques for Proving the Conditional Statement
P=Q

Most mathematical theorems are of the form “If P, then Q”—that is, in
the form of the conditional statement P = Q. Additional theorems which are
stated in the biconditional form “P if and only if Q” are proven by proving
both of the conditional statements P = Q and Q = P. At this point, we
present three basic types of proofs and simple examples of proofs which involve
the natural numbers and integers. First, we need the following definitions.

An integer n is even, if there exists an integer k such that n = 2k.
An integer n is odd, if there exists an integer k such that n = 2k + 1.

By definition, the set of even integers is

E={2k|keZ}y={ .., —4,-2024,.. 1}
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and the set of odd integers is
O={2k+1lkeZ}={...,-3,-1,1,3,...}.

From the definitions of the set of integers, even integers, and odd integers,
we see that every integer is either even or odd and no integer is both even and
odd. Also we note that the negation of the statement “n is an even integer”
is “n is not an even integer,” which is logically equivalent to “n is an odd

integer.” Likewise, the negation of “n is an odd integer” is “n is an even
integer.”

Direct Proof

In a direct proof of the conditional statement P = Q, we assume P and
then use axioms, definitions, rules of logical inference, previously proven the-
orems, and computations to infer Q. Hence, a direct proof has the following
form.

Direct Proof of P=-Q
Proof: Assume P. ... Therefore, Q. Hence, P = Q.

Example 2.2.1.1 Give a formal direct proof of the following theorem.
Theorem 2.8 If n is an even integer, then n? is an even integer.

Solution

Remarks: Our plan for this proof is to start by assuming the hypothesis—
namely, that n is an even integer. Then we use the definition of an even
integer to assert that we can write n = 2k for some integer k. Next, we
calculate n? and perform the necessary computations to show that n? = 2m
for some integer m. Hence, we prove n? is an even integer by definition. A
formal proof consists of a list of true statements and associated justifications.
Proofs of all kinds vary from writer to writer. Here is our formal direct proof
of Theorem 2.8.

Proof:
1. n is an even integer
. There exists a k € Z such that n = 2k

. Premise

. Definition of an even integer

. Definition of n?

. Substitution of 2 into 3

. Definition of multiplication

. Substitution of 5 into 4

. Theorem Z6 (Associative
Property of Multiplication)

.n? =2((k)(2k)) Substitution of 7 into 6
9.Since 2 € Z and k € Z, (2k) € Z 9. Theorem Z2 (Closure

Property of Multiplication)
10. Since k € Z and (2k) € Z, k(2k) € Z  10. Theorem Z2 (Closure
Property of Multiplication)

No o W
[N}
SMpTSM
Il
Py
N DN
S
S~—
=
[\}
>
SN~—

g
=
e}
=
¢}

.

m
N
N O U R W N

%
*®©



74 Introduction to Mathematical Proofs

11. Let m = k(2k) € Z 11. Notation
12. n? = 2m where m € Z 12. Substitution of 11 into 8
13. n? is an even integer 13. Definition of an even integer W

The advantage of a formal proof is that it makes you think about each step
in the proof and a justification for the step. The disadvantage of a formal
proof is that it is tedious and lengthy. An informal proof, on the other hand,
is written in paragraph form and some justifications are omitted intentionally.
The justifications which are omitted depend upon the reading audience. The
following example presents an informal proof of Theorem 2.8.

Example 2.2.1.2 Give an informal direct proof of the following theorem.
Theorem 2.8 If n is an even integer, then n? is an even integer.

Solution

Remark: In Example 2.2.1.1, we presented a formal proof of this theorem,
so our task is simply to rewrite that proof in paragraph form.

Proof: Let n be an even integer. By definition of even, there exists a k € Z
such that n = 2k. Squaring and using the associative property of multiplica-
tion, we find

n? = (2k)(2k) = 2(k(2k)) = 2m, where m = k(2k).

Since 2 and k are integers and since the integers are closed under multiplica-
tion, m = k(2k) is an integer. Consequently, since n? = 2m where m is an
integer, it follows from the definition of an even integer that n? is an even
integer. W

Proof by Contraposition

One of the more useful logical equivalences is the that the conditional
statement P = Q is logically equivalent to its contrapositive = Q = — P.
When you cannot easily provide a direct proof of the statement P = Q, it
is often a good idea to try to find a proof of the contrapositive statement
- Q = — P—ecither a direct proof or some other type of proof. Since a
statement and its contrapositive are logically equivalent, by proving the con-
trapositive you have proven the statement also. Consequently, a proof by
contraposition has the form

Contrapositive Proof of P=Q

Proof: Assume — Q. ... Therefore, = P. Hence, = Q = — P. And
consequently, P = Q.
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Example 2.2.1.3 Prove the following theorem by the method of contrapo-
sition.

Theorem 2.9 Let n be an integer. If n? is an even integer, then n is an
even integer.

Solution

Remarks: We will prove this theorem by proving its contrapositive—namely,
the statement “If n is not an even integer, then n? is not an even integer.”
More precisely, since the phrase “m is not an even integer” is logically equiv-
alent to “m is an odd integer,” we will provide a direct proof of the contra-
positive statement “If n is an odd integer, then n? is an odd integer.”

Proof: We will prove this theorem by contraposition. Let n be an odd integer.
By definition of odd, there exists a k € Z such that n = 2k 4 1. Squaring and
using the distributive properties, the associative property of multiplication,
and the multiplicative identity property, we find

n? = 2k +1)(2k + 1) = (2k + 1)(2k) + (2k + 1)(1)
= (2k)(2k) + 2k + 2k + 1 = 2(k(2k) + 2k) + 1 =2p + 1,

where p = k(2k) 4+ 2k. Since 2 and k are integers and since the integers are
closed under multiplication and addition, p is an integer. Consequently, since
n? = 2p + 1 where p is an integer, it follows from the definition of an odd
integer that n? is an odd integer. Hence, we have proven “If n is an odd
integer, then n? is an odd integer,” and therefore, by contraposition, we have
proven “If n? is an even integer, then n is an even integer.” W

Try to develop a direct proof of Theorem 2.9.

Given two integers, exactly one of the following statements is true and the
other two are false:

(1) Both integers are odd.

(2) Both integers are even.

(3) One integer is odd and the other integer is even.
Therefore, we can conclude that the negation of the statement “both integers
are odd” is the statement “both integers are even, or one integer is odd and the
other integer is even” and vice versa. Likewise, the negation of the statement
“both integers are even or both integers are odd” is the statement “one integer
is odd and the other integer is even.” We will use this fact in the next example.

Example 2.2.1.4 Prove the following theorem by the method of contrapo-
sition.

Theorem 2.10 Let m and n be integers. If m + n is an even integer, then
either m and n are both even integers or m and n are both odd integers.
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Solution

Proof: We will prove this theorem by contraposition. Assume it is not the
case that “m and n are both even integers or m and n are both odd integers.”
By our discussion above it follows that one integer is odd and the other is
even. We assume that m is odd and n is even. Thus, we assume there
exists an integer k such that m = 2k + 1 and there exists an integer ¢ such
that n = 2¢. Substituting, using the associative property of addition, the
commutative property of addition, and a distributive property, we find

m+4n=2k+1)+20=2k+ (1420 =2k + (20+1)
=2k+20)+1=2(k+0)+1=2p+1

where p = k + ¢. Since k and /¢ are integers and since the integers are closed
under addition, p is an integer. Consequently, since m+n = 2p+ 1 where p is
an integer, it follows from the definition of an odd integer that m+n is an odd
integer. Hence, we have proven “If one integer is odd and the other integer
is even, then m + n is an odd integer,” and therefore, by contraposition, we
have proven “If m -+ n is an even integer, then either m and n are both even
integers or m and n are both odd integers.” Wl

Remark: Instead of assuming m is odd and n is even, we could have assumed
that m is even and n is odd and obtained the same result.

Proof of P=Q by Contradiction

In a proof by contradiction, we prove that a statement is true by showing
that it cannot possibly be false. That is, we assume a statement is false and
then produce some contradiction. We conclude that the statement cannot be
false, and therefore, it must be true. Recall that the statement P = Q is
logically equivalent to the statement (= P) V Q. To prove by contradiction
that the statement P = Q is true, we assume P = (Q is false, which is
equivalent to assuming = (P = Q) is true. Since P = Q = (= P) v Q,
- (P=Q) =-((—-P)VvQ). ByaDeMorgan law and double negation, we
obtain

“(P=Q) =~(-P)vQ)=-(=P)A(=Q) =P A (-Q).

Consequently, a proof of P = Q by contradiction has the form

Proof of P=Q by Contradiction

Proof: Assume P A (= Q). ... Therefore, C, where C is a contradiction.
Hence, P = Q.

Most often the contradiction C which is reached has the form R A(= R)
where R is any statement. The advantage of a proof by contradiction is
that the statement R may be any statement whatsoever. However, when
actually developing the proof, the disadvantage is not knowing in advance
what statement R to select to produce the desired contradiction. The following
example illustrates proving a theorem by the technique of contradiction.
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Example 2.2.1.5 Prove the following theorem by the method of contradic-
tion.

Theorem 2.11 Let n be an integer. If n? is an odd integer, then n is an
odd integer.

Solution

Proof: Let P denote the statement “n? is an odd integer” and let Q de-
note the statement “n is an odd integer.” We will prove this theorem by
contradiction. Therefore, we assume P and — Q. The negation of the state-
ment Q is “n is an even integer.” Thus, there is an integer k such that
n = 2k. Squaring and using the associative property of multiplication, we
find n? = (2k)(2k) = 2(k(2k)) = 2p where p = k(2k). Since the integers
are closed under multiplication, p is an integer, and, consequently, n? is an
even integer. The statement “n? is an even integer” is the statement — P.
Thus, we assumed the statements P and = Q are true and we deduced that
the statement — P is true. Hence, we reached the contradiction P A (= P).
Consequently, we have proven Theorem 2.11 by contradiction. B

Remark: Observe in this case that the statement R in the contradiction
R A (= R) is the hypothesis P.

Although a direct proof, a proof by contraposition, and a proof by con-
tradiction are all acceptable forms of proof, most mathematicians, order of
preference for a proof is a direct proof, followed by a proof by contraposition,
followed by a proof by contradiction. In the following example, the same
statement is proven using each type of proof.

Example 2.2.1.6 Prove the following theorem by (a) a direct proof,
(b) a proof by contraposition, and (c) a proof by contradiction.
Theorem 2.12 If n is an odd integer, then 5n — 3 is an even integer.
Solution
(a) A Direct Proof

Let n be an odd integer. By definition of odd, there exists an integer k£ such
that n = 2k + 1. Substituting for n, we find

5n—3=5(2k+1)—-3=10k+5—-3=10k+2=2(bk+1)=2p

where p = 5k + 1. Since p = 5k + 1 is an integer, 5n — 3 is an even integer.
(b) A Proof by Contraposition
Assume 5n — 3 is not an even integer—that is, assume 5n — 3 is an odd
integer. Thus, there exists an integer k such that 5n — 3 = 2k + 1. Since
n=5m—-4n=5m—-3—-4n+3=(5n—3) —4n+3
=2k+1—-4n+3=2k—4n+4=2(k—2n+2)
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and since k — 2n + 2 is an integer, n is even. Hence, if 5n — 3 is not an even
integer, n is not an odd integer. By contraposition, if n is odd, then 5n — 3 is
even.

(¢) A Proof by Contradiction

Assume n is an odd integer and 5n — 3 is an odd integer. Because n is odd,
there exists an integer k such that n = 2k + 1. Substituting, we find
5n—3=5(2k+1)—-3=10k+5—-3 =10k +2 =2(5k+ 1).
Since 5k + 1 is an integer, 5n — 3 is an even integer, which contradicts our
assumption that 5n — 3 is an odd integer.

Remark: Observe in this case that the statement R in the contradiction
R A (= R) is the conclusion Q. H

EXERCISES 2.2.1

In Exercises 1-8, prove each theorem by a direct proof.
. If m is an even integer, then m + 1 is an odd integer.
. If m is an odd integer, then m + 1 is an even integer.

. If m is an odd integer, then m? + 1 is an even integer.

1

2

3

4. For any integer m, 2m — 1 is an odd integer.

5. If m and n are both even integers, then m + n is an even integer.
6. If m and n are both odd integers, then m + n is an even integer.
7

. If m is an even integer and n is an odd integer, then m + n is an odd
integer.
8. If m is an even integer and n is an odd integer, then mn is an even
integer.
In Exercises 9—14, prove each theorem by a proof by contraposition.
9. If m is an odd integer, then m + 1 is an even integer.
10. If m is an even integer, then m + 2 is an even integer.
11. If mn is an even integer, then either m or n is an even integer.
12. If mn is an odd integer, then m and n are both odd integers.
13. If m + n is an even integer, then either m and n are both odd integers
or m and n are both even integers.
14. If m 4+ n and mn are both even integers, then m and n are both even
integers.
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In Exercises 15—17, prove each theorem by a proof by contradiction.
15. If mn is an odd integer, then both m and n are odd integers.
16. If m is an even integer, then m + 1 is an odd integer.

17. Let m and n be integers. If m — n = m + (—n) is an odd integer, then
m 4+ n is an odd integer.

2.2.2 Additional Proof Techniques

In this section, we present a few more elementary techniques for proving
theorems. First, we discuss a proof by cases which can be used when the hy-
pothesis can be subdivided into a number of distinct cases and the conclusion
proven separately for each case. Next, we show how to prove a biconditional
statement. Then, we consider a proof by contradiction for any general state-
ment. Finally, we show how to prove statements which contain quantifiers.

Proof by Cases or Proof by Exhaustion

The following is a proof of the logical equivalence

(PvQ)=R)=(P=R)A(Q=R).

Proof:
(PvQ)=R)=-(PVQ) VR Definition of implication
=((-P)A (—Q)) VR A De Morgan law
= ((—'P) VR)A((—-Q)) VR) A distributive law
=P=R)A(Q=R) Definition of implication
(twice)

In a proof by cases, which is also called a proof by exhaustion, one
proves (P V Q) = R by proving P = R by any technique and proving
Q = R by any technique. Thus, a proof by cases or a proof by exhaustion
has the following basic form.

A Proof of (P vV Q) = R by Cases or Exhaustion

Proof: Prove P = R by any technique. Prove Q = R by any technique.
Therefore, (P vV Q) = R, since (PV Q)=R)=(P=R)A (Q=R).

For example, to prove a theorem regarding the set of integers, we might
subdivide the proof into two cases—one in which we prove the conclusion for
the set of even integers and another in which we prove the conclusion for the
set of odd integers. To prove a theorem for the set of real numbers, we might
divide the proof into two or three cases. In the two case proof, we could divide
the set of real numbers into the set of rational numbers and the set of irrational
numbers and then prove the desired conclusion for the set of rational numbers
and also prove the conclusion for the set of irrational numbers. In a three case
proof regarding the real numbers, we might divide the real numbers into three
sets: (1) the set of positive real numbers, (2) the set {0}, and (3) the set of



80 Introduction to Mathematical Proofs

negative real numbers, and then prove the conclusion for cases (1), (2), and
(3). In a proof by exhaustion, extreme care must be taken to be certain that
every possible case has been considered. Of course, a proof by exhaustion is
most appealing when the total number of possibilities is relatively small. In
general, if the hypotheses can be divided into n distinct and exhaustive cases
Py, Po, ..., Py, then to prove (P;V P2 V...V P,) = R one proves P; = R,
and Po = R, ..., and P, = R.

Example 2.2.2.1 Prove the following theorem by cases.

Theorem 2.13 If n is an integer, then n? + n is an even integer.
Proof: We prove this theorem by considering the following two cases.

Case 1. Assume n is an even integer. Hence, there exists an integer k such
that n = 2k. Computing, we find

n® +n = (2k)* + 2k = 4k* + 2k = 2(2k* + k) = 2p,

where p = 2k?+ k. Since 2 and k are integers and since the integers are closed
under multiplication and addition, p is an integer, and consequently n? +n is
an even integer.

Case 2. Assume n is an odd integer. Then there exists an integer m such
that n = 2m 4+ 1. Computing, we find

n>4n=0Cm+1)>+2m+1=4m*> +4m+1+2m+1
=4m? + 6m + 2 = 2(2m* + 3m + 1) = 2q,

where ¢ = 2m?4+3m+1. Since 1,2, 3, and m are integers and since the integers
are closed under multiplication and addition, ¢ is an integer, and consequently
n? +n is an even integer. M

The previous theorem was proved by dividing the proof into two cases. The
Four Color Problem (see Section 2.2.3 for more details) asks if every planar
map can be colored with four or fewer colors in such a way that no two
adjacent regions are the same color. This question was first posed in 1852. In
1976, Kenneth Appel and Wolfgang Haken proved the Four Color Theorem
by considering 1879 cases! The original proof required more than three and
one-half years and more than ten billion computer calculations. Later, the
number of cases required was reduced to 1476.

The next theorem we prove requires only four cases. It is called the triangle
inequality and has its origin in geometry, where it is stated as follows:

“The sum of the lengths of any two sides of a triangle is greater
than the length of the third side.”
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Recall that for a real number z the absolute value of x, denoted by |z|,
is defined as
z, ifzx>0
|| =
—z, ifx <0
We now state and prove the triangle inequality for the set of real numbers.
It is very useful in solving many applications and is especially useful in proving

theorems in real analysis.
Triangle Inequality Theorem For every two real numbers x and y,
|z +yl < ||+ Jyl.

Proof: We prove this theorem by considering four exhaustive cases.

Case 1. Suppose x > 0 and y > 0. Then |z| = = and |y| = y. Since
x>0and y > 0, x +y > 0 (a theorem which you might want to prove)
and consequently |z + y| =  +y. Hence, |x +y| =2 +y = |z| + |y|. Thus,
when z > 0 and y > 0, the triangular inequality reduces to the equality
|z +yl = [z +[y].

Case 2. Suppose z < 0 and y < 0. Then |z| = —z and |y| = —y. Since
< 0andy <0, x+y < 0 (another theorem which you might want to prove)
and so |z + y| = —(z + y). Hence,

lt+yl=—(x+y) =—2—y=—2+(~y) = |z|+ ]yl

That is, when z < 0 and y < 0 the triangular inequality again reduces to the
equality |z +y| = |z| + |y|.

Case 3. In this case, we assume > 0 and y < 0 or we assume z < (
and y > 0. Remark: However, we do not need to assume and prove both
cases, because they are equivalent since the triangle inequality is symmetric
with respect to the variables x and y. That is, if all occurrences of x are
replaced by y and all occurrences of y are replaced by z, then the expression
| +y| < |x| + |y| remains the same. Assuming z > 0 and y <0, |z| = z and
ly| = —y. However, the sum z +y can be nonnegative or negative, so we must
consider both subcases Case 3.1 and Case 3.2.

Case 3.1 Assume x > 0, y < 0, and z +y > 0. Then |z| = z, |y| = —v,
and |z +y| =2+ y. Since y < 0,0 < —y and y < —y. Adding x to the last
inequality, we get  + y < x —y. Hence,

lrtyl=z+y<z-y=a+(-y) =|z|+yl

Case 3.2 Assume © > 0, y < 0, and z +y < 0. Then |z| = z, |y| = —vy,
and [z +y| = —(x+y). Since x > 0, we have —z < 0 < z and —x —y < z —y.
Therefore,

lt+yl=—(z+y =—2z-y<z—-y=z+(-y) =|z[+]y|
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Proof of the Biconditional Statement P < Q

In Section 1.3, we showed that the biconditional statement P < Q is logi-
cally equivalent to (P = Q) A (Q = P). Hence, the proof of a biconditional
statement has the following form.

A Proof of the Biconditional Statement P < Q

Proof: Prove P = Q by any technique. Prove Q = P by any technique.
Therefore, P < Q, since P Q=P = Q) A (Q=P).

Example 2.2.2.2 Prove the following theorem.
Theorem 2.14 An integer n is even if and only if n? is an even integer.

Proof: In Example 2.2.1.2, we presented a direct proof of Theorem 2.8: If n
is an even integer, then n? is an even integer.

Remark: If we had not proven Theorem 2.8 previously, we would write its
proof here.

In Example 2.2.1.3, we gave a proof by contraposition of Theorem 2.9: If
n? is an even integer, then n is an even integer.

Remark: If we had not proven Theorem 2.9 earlier, we would present its
proof here.

Let P be the statement “n is an even integer” and let Q be the statement
“n? is an even integer.” Since we have proven both P = Q and Q = P, we
have proven the biconditional statement P < Q, which is Theorem 2.14. B

Example 2.2.2.3 Prove the following theorem.

Theorem 2.15 Let m and n be integers. The integer mn is even if and
only if m is even or n is even.

Proof: First, we prove if mn is even, then m is even or n is even. Suppose
mn is even. Then there exists an integer k such that (1) mn = 2k. If m is
even, we are done. So suppose, to the contrary, m is odd. Then (2) m = 2j+1
for some integer j. Substituting (2) into (1), we find (2j + 1)n = 2k, and so
(3) 2jn + n = 2k. Subtracting 2jn from both sides of equation (3), we get
(4) n =2k — 2jn = 2(k — jn). Since j, k, and n are integers and the integers
are closed under multiplication and subtraction, it follows from equation (4)
that n is an even integer. Thus, if mn is even, then m is even or n is even.

Next, we prove if m is even or n is even, then mn is even. Since by hy-
pothesis m or n is even, we may assume for definiteness that m is even.
Thus, there exists an integer k such that m = 2k. Calculating, we find
mn = (2k)n = 2(kn). Consequently, mn is even. Hence, if m is even or n is
even, mn is even. M

Remark: Since we have proven “If mn is even, then m is even or n is even”
and since we have also proven “If m is even or n is even, mn is even” we have
proven Theorem 2.15.
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Proof by Contradiction

In Section 2.2.1 we showed how to prove the statement P = Q by con-
tradiction. A proof by contradiction of the statement P (which may or
may not be a conditional statement) is based on the logical equivalence
P = ((= P) = C) where C is a contradiction. To prove this equivalence,
we recall the conditional statement (A = B) = ((= A) vV B), so ((- P) = C)
= (= (=P) Vv C)= (P V C) by double negation. Since C is a contradiction,
C is a false statement and therefore (PvV C) = P. Hence, P = ((—- P) = C)
where C is a contradiction, and the proof of the statement P by contradiction
has the form:

A Proof of the Statement P by Contradiction

Proof: Assume — P. ... Therefore, C a contradiction. Hence, P.

Often the contradiction C will be of the form R V (= R) where R is any
statement. A proof by contradiction of the statement P is also called an
indirect proof or a reductio ad absurdum proof.

Example 2.2.2.4 Prove the following statement by contradiction.

The integer 512 cannot be written as the sum of one odd integer and two
even integers.

Proof: Assume to the contrary that (1) 512 = z + y + z where z is an odd
integer and y and z are both even integers. Since z is odd, (2) x = 2k + 1 for
some integer k. And since y and z are both even, there exist integers £ and
m such that (3) y = 2¢ and (4) z = 2m. Substituting (2), (3), and (4) into
(1) and rearranging algebraically, we find

(5) 512=x+y+z=(2k+1)+20+2m=2(k+{+m)+ 1.

Since k + £ 4+ m is an integer, it follows from equation (5) that 512 is an odd
integer, which is a contradiction. Thus, by contradiction we have proved the
statement “The integer 512 cannot be written as the sum of one odd integer
and two even integers.” W

At this point, we need the following definitions. Let a and b be natural
numbers.

The number a divides b if and only if there exists a natural number ¢ such
that ac = b. If a divides b, then we also say a is a factor of b and b is
divisible by a.

A prime number (or simply a prime) is a natural number greater than
one which is divisible only by itself and one.

A composite number (or simply a composite) is a natural number
greater than one which is not a prime number.
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The natural number 1 has special status among the natural numbers; it
is not a prime number and it is not a composite number. All other natural
numbers are either prime or composite but not both. Observe that 1 divides
all natural numbers a, since 1la = a and that the only natural number which is
a factor of 1 is 1 itself. It follows from the definition of composite number that
the natural number n is composite if and only if there exist natural numbers
a and b such that n = ab where 1 <a <nand 1 <b < n.

We state the Fundamental Theorem of Arithmetic, which is also known
as the Unique Factorization Theorem without proof. We prove this theorem
later in Section 6.2.

Fundamental Theorem of Arithmetic Every natural number greater
than one is a prime or can be written uniquely as a product of primes except
for the order in which the prime factors are written.

Observe that 11 is a prime and the composite 12 =2-2-3 = 2-3-2. Thus,
the prime 2 is a factor of 12 exactly twice and the prime 3 is a factor of 12
exactly once and 12 can be written uniquely as 12 = 2-2- 3 except for the fact
that the order of the prime factors on the right-hand side of the last equation
may be changed.

About 350 B.C., Euclid proved “The number of prime numbers is infinite.”
He published this result in his treatise, the Elements. His proof is by con-
tradiction and goes as follows. Suppose on the contrary that the number of
prime numbers is finite and let the list of primes be p1,ps, ..., pr. Consider
(1) g =p1-p2-...-pr+ 1. Since p1,pa,...,pr are natural numbers, all of
which are greater than one, ¢ is a natural number greater than one. There-
fore, by the Fundamental Theorem of Arithmetic, either ¢ is a prime or ¢ can
be written uniquely as a product of prime numbers. In either case, ¢ has a
prime factor. Since p1, ps, ..., pr is the complete list of prime numbers, some
p; where 1 < j < k is a factor of ¢ and it is also a factor of the product
p1 P2 ... pr. We can rewrite equation (1) as (2) ¢ — (p1-p2- ... -pr) = 1.
Since for some j where 1 < j <k, p; is a factor of both ¢ and py -p2- ... p,
p; is a factor of the left-hand side of equation (2); consequently, the prime p;
is a factor of 1, which is a contradiction. Hence, the assumption that there
is only a finite number of prime numbers is false. Therefore, the number of
prime numbers is infinite.

As of October 2013, the largest known prime was the Mersenne prime
257,885,161 _ 1 Written in standard decimal form, this number is 17,425,170
digits long.

Proofs of Statements Containing Quantifiers

Although quantifiers may not be stated explicitly, most mathematical the-
orems are actually quantified statements. Furthermore, most of the time the
universe of discourse is not stated explicitly but is usually understood from
the context. In what follows, we will let U denote the universe of discourse.
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The quantified statement (Vx € U)(P(z)) is true if and only if the truth set of
the statement P(x) is the entire universe, U. Hence, to prove (Vz € U)(P(z)),
we let z be an arbitrary element of U and deduce that P(x) is true. Conse-
quently, a proof of the universal statement (Vz € U)(P(x)) has the following
form.

A Proof of the Universal Statement (Vx € U)(P(x))
Proof: Let z € U. ... P(x) is true. Hence, (Vz € U)(P(x)) is true.

The following example illustrates this method of proof.
Example 2.2.2.5 Prove “For all odd integers n, the integer n? is odd.”

Proof: Let n be an arbitrary odd integer. Since n is odd, there exists an
integer k such that n = 2k + 1. Squaring this equation and rearranging, we
find

n? =2k + 1) =4k* + 4k + 1 = 2(2k* + 2k) + 1.

Since 2 and k are integers and since the set of integers is closed under addition
and multiplication, 2k? + 2k is an integer and, by definition, n? is an odd
integer. W

Notice that the statement “For all odd integers n, the integer n? is odd”
is logically equivalent to the conditional statement “If n is an odd integer,
then n? is an odd integer.” Consequently, to prove (Vz € U)(P(z) = Q(z)),
we let x be an arbitrary element of the universal set U, we assume P(x)
is true, and we deduce that Q(x) is true. That is, we show for arbitrary
x € U, P(x) = Q(z) is a true statement.

The quantified statement (3z € U)(P(z)) is true provided the truth set
of P(z) is not the empty set. There are two ways we can prove the exis-
tence statement (3z € U)(P(x)). We can present a constructive proof
by exhibiting or explaining how to construct an element x in U having the
property P(x). Or, we can present a nonconstructive proof by making a
valid argument that some element x in U makes the statement P(z) true. In
a nonconstructive proof, we do not exhibit a specific element in the universal
set which makes the statement P(z) true.

For example, to prove the theorem “There exists an even prime” all we
need do is to note that the natural number 2 is even and it is divisible by
only 1 and itself only. Thus, by exhibiting the even, prime, natural number
2, we have given a constructive proof of the statement: “There exists an even
prime.”

Nonconstructive proofs often depend upon other theorems. For instance, to
prove the theorem “There is a real solution of the equation 23 —2z+5 = 0” we
make use of both the Fundamental Theorem of Algebra and the Conjugate
Root Theorem. The Fundamental Theorem of Algebra states “If p(x) is a
polynomial of degree n > 1 with complex coefficients, then there exist n
solutions of the equation p(x) = 0.” The Conjugate Root Theorem states “If
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p(x) is a polynomial of degree n > 2 with real coefficients, then if a+ bi where
b # 0 is a solution of the equation p(z) = 0, then a — bi is a solution also.”
Thus, the Conjugate Root Theorem states that complex roots of polynomials
with real coefficients of degree greater than or equal to two, occur in pairs
(complex conjugate pairs). We will assume the truth of these theorems. Their
proofs can be found in books on mathematical analysis. A nonconstructive
proof of the statement “There is a real solution of the equation 23 —2x+5 = 0"
proceeds as follows: Let p(z) = 2% — 2z + 5. Observe that the polynomial
p(z) is of degree 3 and has real coefficients. By the Fundamental Theorem
of Algebra the equation p(x) = 23 — 2x + 5 = 0 has exactly three solutions.
By the Conjugate Root Theorem p(x) = 0 has an even number of complex
roots—either 2 or 0. Hence, the equation p(z) = 0 must have 1 or 3 real roots.

Sometimes there is one and only one element & € U which makes a state-
ment P(z) true. That is, sometimes there is a unique element = € U such that
P(z) is true. A theorem which states that there is one and only one element in
a specific set which satisfies a certain statement is called a uniqueness the-
orem. A uniqueness theorem is most often proven by contradiction. Thus,
one assumes that there are two elements x and y in the universe U such that
P(z) and P(y) are true and x # y. Then by a valid argument one arrives at
the contradiction z = y—that is, x and y are the same element of U. In the
following example, we prove the uniqueness of the additive identity O of the
set of integers Z.

Example 2.2.2.6 The existence of an additive identity theorem for the set
of integers stated symbolically in Section 2.1 was

210 (30e€2)(VYmeZ), m+0=m
Prove that “The additive identity 0 for the set of integers Z is unique.”

Proof: Assume, on the contrary, there exist two distinct additive identities
0,0’ € Z which satisfy (1) m+0=m Ym € Z and (2) m+0 =m VYm € Z.
Since equation (1) is true for every m € Z, in (1) let m = 0’, then (1) becomes
(3) 0/ + 0 = 0’. Since equation (2) is true for every m € Z, in (2) let m = 0,
then (2) becomes (4) 0+0" = 0. By Z3, the commutative theorem of addition
for the integers, (5) 0' 40 =0+ 0’. Hence, from (3), (4), and (5)

0'=0+0=0+0=0. N

In the exercises you will be asked to prove that the additive inverse of
an integer is unique and the multiplicative identity for the set of integers is
unique. These proofs should be similar in form to the proof of Example 2.2.2.6.

Sometimes a uniqueness proof can be presented in such a way that it does
not appear to be a proof by contradiction. For example, one proof of the
uniqueness theorem, “The natural number 2 is the only even prime,” is as
follows. The natural number 2 is the only even prime, because all other even
natural numbers are divisible by 2 and therefore are not prime numbers.
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Earlier, we proved there is an infinite number of primes. Therefore, for
any natural number M, no matter how large, there is an infinite number of
primes larger than M. Nonetheless, in the next theorem, we show that we can
find arbitrarily long sequences of consecutive natural numbers where there are
no primes. Two natural numbers are consecutive if their difference is one.
Thus, 3 and 4 are consecutive natural numbers. Unknown consecutive natural
numbers may be written as x and x+1, or x—1 and x. Likewise, a sequence of
n consecutive natural numbers may be represented by z,x+1,...,z+(n—1).
We wish to prove that for every natural number n, there exists a sequence of
n consecutive natural numbers such that none of the numbers is a prime. The
first several sequences of consecutive composite (nonprime) natural numbers
with length two or more are < 8,9,10 >, < 14,15,16 >, < 20,21,22 >,
< 24,25,26,27,28 >, < 32,33,34,35,36 >, < 38,39,40 > ..... Thus, a
few sequences of two consecutive composite natural numbers are < 8,9 >,
< 9,10 >, < 14,15 >, < 15,16 >, < 20,21 > .... And a few sequences
of three consecutive composite numbers are < 8,9,10 >, < 14,15,16 >,
< 20,21,22 >, < 24,25,26 >, < 25,26,27 >, < 26,27,28 >,.... Notice
in the following sequences of two consecutive composite numbers the first
number is divisible by 2 and the second number is divisible by 3: < 8,9 >,
< 14,15 >, < 20,21 > .... Also notice in the following sequences of three
consecutive composite numbers the first number is divisible by 2, the second
number is divisible by 3, and the third number is divisible by 4: < 14, 15,16 >,

< 26,27,28 >, < 34,35,36 >, < 38,39,40 >,.... Consequently, for each
natural number n, we would like to find, if possible, a number x such that the
n consecutive natural numbers z, z+1,...,x 4 (n— 1) are all composite, and,

furthermore, x is divisible by 2, x 41 is divisible by 3, ..., z 4+ is divisible by
i+2,...,and 2+ (n—1) is divisible by n+1. Since 2,3, ..., (n+1) all divide
(n + 1)!, our first guess for z is & = (n + 1)! Clearly, 2 divides Z. Checking
241 = (n+1)!4+1, we find it is not divisible by 3. We make our second guess
for z by adding 2 to Z, so that = (n+1)!42 will be divisible by 2. Rewriting
z+l=[n+I)N+2]+1lasz+1=(n+1)+3=3{[2-4-5---(n+1)]+1},
we see that « + 1 is divisible by 3. And rewriting x +2 = [(n+ 1)! + 2]+ 2 as
x+2=(Mm+1)!+4=4{[2-3-5---(n+1)]+ 1}, we see that x + 2 is divisible
by 4. In general, for 0 <i <n — 1, we find

r+i=[n+1)+2]+i=mn+1+(2+1)
=24+ ){2 -01+)@B+4) - (n+1)]+1}.
So, x + i is divisible by 244 for 0 <i <mn — 1.
The previous paragraph indicates the trial-and-error process and the
“scratch work” which one must perform before writing the informal proof

which appears in the following example. Notice that very little of the original
scratch work appears in the proof itself.
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Example 2.2.2.7 Prove the following theorem regarding the existence of n
consecutive nonprimes.

Theorem 2.16 For every natural number n, there exists a sequence of n
consecutive natural numbers which contain no primes.

Proof: Let n be an arbitrary natural number and let z = (n + 1)! + 2.
Consider the n consecutive natural numbers x + ¢ where 0 < i < n — 1. The
number x + 7 is divisible by 2 + ¢, as the following computation shows. For
0<1<n—1,

c+i=[n+1)+2]+i=(2-3---(n+1))+ (2+1)
—@+){2(1+)B+i) - (n+1)]+1}. =

A corollary is a theorem which follows so obviously from the proof of
another theorem that no proof, or almost no proof, is necessary. Since for all
natural numbers n and for all natural numbers k, the n consecutive natural
numbers xg + i = k(n + 1)! + 2 where 0 <14 < n — 1 are divisible by 2 + i, we
obtain the following corollary to Theorem 2.16.

Corollary 2.16.1 For every natural number n, there exists an infinite num-
ber of sequences of n consecutive natural numbers which contain no primes.

It follows from this corollary that if one searches sequentially through the
natural numbers for prime numbers, one will often encounter arbitrarily long
sequences of consecutive natural numbers which contain no prime.

EXERCISES 2.2.2

In Exercises 1-5, prove each theorem by cases.
. If n is a natural number, then n(n + 1) is even.

. If n is a natural number, then n2 4+ 3n + 5 is odd.
. For every integer m, the integer m? + m is even.

. For every integer m, the integer m? + 5m + 7 is odd.

T W N =

. Let m be an odd integer, then m = 45 + 1 for some integer j or
m = 4k — 1 for some integer k.
In Exercises 6-10, prove the given biconditional statement.

6. The natural number n is even if and only if the natural number n + 1
is odd.

7. For every integer m, the integer m?3 is odd if and only if m is an odd
integer.
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. For every integer m, the integer 5m? is odd if and only if 3m? is an odd
integer.

. For every integer m, the integer 7m — 4 is odd if and only if 5m + 3 is
an even integer.

Let m and n be integers. The integer m?(n + 1) is even if and only if
m is even or n is odd.

In Exercises 11-14, prove each theorem by contradiction.

11.

12.

13.
14.

The natural number 111 cannot be written as the sum of three even
natural numbers.

The natural number 110 cannot be written as the sum of two even
natural numbers and an odd natural number.

There do not exist integers m and n such that 4m + 6n = 9.

There do not exist integers m and n such that 3m + 6n = 4.

In Exercises 15—-19, prove each of the given existence theorems.

15
16
17
18

19

. There exists a natural number n such that n? + 2n = 15.
. There exist integers m and n such that 3m + 5n = 1.
. There exist integers m and n such that 6m + 21n = 3.

. There exists an odd integer such that the sum of its digits is even and
the product of its digits is even.

. There exist two distinct integer solutions of the equation z3 = 2.

In Exercises 20—22, prove the given uniqueness theorem.

20

21.

22.

23.

. Recall the following existence of additive inverses theorem for the integers
which was stated in Section 2.2.

211 (YmeZ)(3(—m)€Z), m+(—m)=0
Prove that for every integer m, its additive inverse —m is unique.

The existence of a multiplicative identity theorem for the set of integers
stated in Section 2.2 was

29 (3leZ)(YmeZ), Im=m
Prove that the multiplicative identity for the set of integers is unique.

There exists a unique real number x such that for every real number y,
zy+x—4=4y.

(Hint: First, prove the existence of a real number z, and then prove
its uniqueness.)

Prove the following existence and uniqueness theorem.

For every real number x, there exists a unique real number y such that
2
Ty =1z — Y.
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In Exercises 24—-31, prove the given theorem by any technique.
24. Every even integer is the sum of two odd integers.
25. Every integer can be expressed as the sum of two unequal integers.
26. The sum of four consecutive integers is even.

27. For every two integers m and n, there exists an integer k such that
m+k=n.

28. For every integer m, the integer m? + m is even.
29. No odd integer can be written as the sum of three even integers.

30. For all odd integers m and n, the number 2 divides m? + 3n2.

2

31. For any integer m, when m~ is divided by 4, the remainder is either 0

or 1.

2.2.3 Conjectures, Proofs, and Disproofs

Recall that a theorem is a statement that has been proved true by a valid
argument, while, in mathematics, a conjecture is a statement that has been
proposed to be a true. If, and when, a conjecture is proved true, it becomes
a theorem. However, a conjecture may be disproved by producing a single
counterexample—an example which proves that the conjecture is a false
statement.

Since 22 —1 =4—1 = 3 is a prime, since 23 —1 = 8 —1 = 7 is a prime, since
25 -1 =32—1 = 31is a prime, and since 27 —1 = 128 — 1 = 127 is a prime, we
might make the conjecture that “For p a prime, 2P —1 is a prime.” To disprove
this statement, we must present a single counterexample. In this case, we note
that p = 11 is a prime and compute 2! — 1 = 2048 — 1 = 2047 = (23)(89),
which shows that 2! — 1 is a composite. Thus, we have disproved the stated
conjecture. However, by disproving the conjecture, we have also proven the
theorem “There is a prime p such that 2P — 1 is not a prime.”

We now present several well-known conjectures. Some have been proved to
be true and are now theorems, some have been disproved by counterexamples,
and still others remain “open” conjectures—conjectures for which the truth
value remains unknown.

Fermat’s Last Theorem In the USA, the word “arithmetic” refers to the
computational algorithms and procedures associated with natural numbers,
integers, and real numbers. Arithmetic is also commonly viewed as includ-
ing solving problems which involve ratios, proportions, decimal fractions, and
percents. To the ancient Greeks arithmetica was the study of the mathemati-
cal properties of natural numbers. In the USA, the arithmetica of the ancient
Greeks is known as number theory.

Pythagoras (c. 540 B.C.) was born on the island of Samos, a Greek island
in the Aegean Sea. One of his teachers was Thales. In order to acquaint
himself with the knowledge of his time, Pythagoras traveled widely in Greece,
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Egypt, Babylonia, and India early in his life. Later, he founded a secret or-
der at Crotona in southern Italy. Members of the Pythagorean Brotherhood
devoted themselves to the study of mathematics and philosophy. Pythagoras
associated magic and mysticism with the study of arithmetic and geometry.
Pythagoras also stated and gave one or more proofs of the Pythagorean The-
orem:

Let a, b, and ¢ be the lengths of the sides of a triangle with ¢ being

the length of the longest side. The triangle is a right triangle if

and only if a? + b2 = ¢2.
Although this theorem bears Pythagoras’s name, it was known centuries prior
to his time. The Chinese stated the theorem in their text, Arithmetic in Nine
Sections, which was written before 1000 B.C., and the Egyptians mention the
use of the principle by their surveyors in 2000 B.C. A triple of natural numbers
(a,b,c) is called a Pythagorean triple if a? + b> = ¢. The Pythagoreans
found a procedure for finding all such triples and there is an infinite num-
ber of them. A clay tablet dating from between 1900 B.C. and 1600 B.C.
indicates that the Babylonians had studied such triples much earlier. The
tablet contains fifteen Pythagorean triples. Based on the size of the numbers
in the triples, it is reasonable to assume the Babylonians had a procedure for
generating the triples. However, the procedure itself does not appear on the
tablet. In the Elements (c. 350 B.C.), Euclid provides a general procedure
for constructing all Pythagorean triples. The technique is as follows. If m
and n are natural numbers with m > n, and if a = m? — n2?, b = 2mn, and
c¢c = m? +n?, then a? +b?> = ¢2. When m = 2 and n = 1, we obtain the
familiar, and smallest Pythagorean triple, (3,4, 5).

Once a theorem has been proved, mathematicians often try to modify or
generalize the theorem in some manner. The “trick” is in knowing how to do
so. Fermat’s Last Theorem is one modification of the Pythagorean Theorem.
Pierre Fermat (1601-1665) was the son of a wealthy French leather merchant.
Fermat received his law degree from the university at Orléans and in 1631, he
became a lawyer and government official at Toulouse. He lived in Toulouse for
the rest of his life. Because he held public office, he was permitted to change
his name to Pierre de Fermat. Fermat’s vocation was the law, but his avid
avocation was mathematics. Fermat is best known as the father of Number
Theory and one of the founders of Analytic Geometry, Calculus, and Proba-
bility. However, he did not publish his results. Instead, he corresponded with
famous mathematicians throughout Europe including Etienne Pascal and his
son Blaise, René Descartes, Marin Mersenne, Gilles Persone de Roberval, and
John Wallis. After Fermat’s death in 1665, his friends became concerned
that his life’s work would be lost, since he never published. Therefore, they
convinced his son, Samuel, to undertake the task of collecting, organizing,
and publishing Pierre’s correspondence, mathematical notes, and comments
he had written in books. It is in this manner that Fermat’s Last Theorem came
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to be known and published. In a translation of the Greek mathematician
Diophantus’s Arithmetica, Samuel found a marginal note stating what has
come to be known as Fermat’s Last Theorem:

For n a natural number greater than 2, the equation a™ 4 0" = ¢”

has no natural number solutions a, b, c.

Also in the margin Fermat had written, “I have discovered a truly remarkable
proof which this margin is too small to contain.” This note was probably writ-
ten about 1630 when Fermat first studied Diophantus’s Arithmetica. At some
point, Fermat may have discovered his remarkable proof was wrong, since he
never sent the problem to any other mathematicians as a challenge problem.
Fermat did know how to prove the theorem for the cases n = 3 and n = 4,
and he did send those problems to others as a challenge. A very large number
of false proofs of Fermat’s Last Theorem have been published—between 1908
and 1912 alone, over 1000 such proofs appeared in print. In 1955, Yutaka
Taniyama (1927-1958) posed some questions regarding elliptic curves. Ad-
ditional investigations by André Weil (1906-1998) and G. Shimura resulted
in the Shimura—Taniyama—Weil Conjecture. In 1986, a connection between
this conjecture and Fermat’s Last Theorem was discovered. In June 1993,
the British mathematician Andrew Wiles (1953— ) “proved” the Shimura—
Taniyama—Weil Conjecture for a particular class of examples which included
Fermat’s Last Theorem as a corollary. During the reviewing process some
difficulties with Wiles’ proof emerged, but in October 1994, Wiles, with the
help of Richard Taylor, completed a simpler revised proof. Thus, after more
than 300 years, Fermat’s Last Theorem, which until 1994 should have been
called a conjecture, is indeed a theorem.

Euler’s Sum of Powers Conjecture In 1769, the renowned Swiss math-
ematician Léonard Euler (1707-1783) generalized Fermat’s Last Theorem by
conjecturing

“For every natural number n > 2, a sum of at least n, nth powers
of natural numbers is necessary for the sum to be the nth power
of a natural number.”

In other words, Euler conjectured:

“For n > 2 for there to be natural numbers aj,as, ..., am,, and b
which satisfy the equation ai + aj + --- + a;}, = b", the natural
number m must be greater than or equal to n.”

Approximately 200 years later in 1967, L. J. Lander and T. R. Parkin used a
systematic computer search to disprove this conjecture by finding the following
counterexample for n = 5: 27° + 845 + 110° + 133% = 144°. In 1988,
Noam Elkies constructed the following counterexample for n = 4: 2682440*+
15365639* 4 1879670* = 20615673*. To date, no counterexamples to Euler’s
Sum of Powers Conjecture for n > 5 have been discovered.
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Goldbach’s Conjecture In 1725, the Prussian mathematician and histo-
rian Christian Goldbach (1690-1764) became a professor of the newly opened
St. Petersburg Academy. In 1728, he went to Moscow to tutor Peter II (1715—
1730), Tsar of Russia (1727-1730). In a letter written to Euler on June 7,
1742, Goldbach proposed what is called the “weak” Goldbach conjecture:

“Every odd natural number greater than five can be written as a
sum of three primes.”

In his letter of reply, Euler stated the following “stronger” conjecture which
is now known as Goldbach’s Conjecture:

“Every even natural number greater than 2 is the sum of two
primes.”

Euler further stated in his letter “that every even number is the sum of two
primes, I consider an entirely certain theorem in spite of that I am not able
to demonstrate it.” The strong version of the conjecture implies the weak
version, since if n is an odd natural number greater than five, then n — 3 is
even and if the stronger version is assumed to be true, then n—3 = p+¢ where
p and g are primes. And consequently, the odd natural number n = p+q+3is
the sum of three primes. To date, no one has proved or disproved Goldbach’s
conjecture. However, by October 2003, T. Oliveira e Salva had shown the
conjecture to be true for all even natural numbers less than 6 x 10'6.

It is understood that the two primes mentioned in Goldbach’s conjecture
need not be distinct. Moreover, two primes (p,q) such that p + ¢ = 2k for
some natural number k greater than or equal to two are called Goldbach
pairs. The first few Goldbach pairs are (2,2) since 2 + 2 = 4, (3,3) since
3+3=6, (3,5) since 3+5 =28, (3,7) and (5,5) since 3+ 7 =5+ 5 = 10,
(5,7) since 5+ 7 = 12, and (3,11) and (7,7) since 3+ 11 = 7+ 7 = 14.
Most mathematicians believe Goldbach’s conjecture is true, since the number
of Goldbach pairs increases rapidly as the size of the even natural number, n,
increases. For example, for n = 10 the number of pairs is 2, for n = 10* the
number of pairs is 127, and for n = 108 the number of pairs is 291, 400.

Twin Prime Conjecture In 1849, the French mathematician Alphonse
de Polignac made the general conjecture:

“For every natural number k, there are infinitely many prime pairs
which are a distance 2k apart.”

In the special case k = 1, we obtain the Twin Prime Conjecture:

“There are an infinite number of primes p such that p + 2 is a
prime also.”

Thus, twin primes are pairs of primes of the form (p, p + 2). The first few
twin primes are (3,5), (5,7), (11, 13), (17,19), (29, 31) .. .. Except for the twin
prime pair (3,5), all other twin prime pairs are of the form (6n — 1,6n+ 1).
Although there is “overwhelming evidence” that the twin prime conjecture is
true, there is no valid proof yet.
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The Four Color Problem The four color problem asks if every planar
map can be colored with four or fewer colors in such a way that no two
adjacent regions are the same color. Two regions are adjacent if they share a
common border, not just a point. Figure 2.1 shows a map with four regions
which can be colored using just two colors, while Figure 2.2 shows a map with
four regions which cannot be colored with fewer than four colors.

Figure 2.1: A four region map which requires only two colors.

Figure 2.2: A four region map which requires four colors.

While coloring a map of the counties of England in 1852, Francis Guthrie
observed that four colors appeared to be sufficient to color any map, but he
was unable to prove it. Guthrie posed the problem to his former professor
August De Morgan. De Morgan posed the problem to other mathematicians
frequently, and in 1860 he published anonymously the first known discussion
of the problem. In the July 17, 1879, issue of Nature, the British lawyer
Alfred Kempe announced he had proved the four color problem. His proof
was published later in 1879 in the American Journal of Mathematics. Eleven
years later in 1890, Percy Heawood showed there was an error in Kempe'’s
proof by giving an example of a map for which Kempe’s proof technique did
not work. However, Heawood was able to use Kempe’s proof technique to
prove that every planar map can be colored with five or fewer colors. The
four color problem was finally proven by Kenneth Appel and Wolfgang Haken
in 1977. Their proof was by cases and reduced the totality of all possible maps
to 1936 configurations (which was later reduced to 1476 configurations). Since
coloring verification could not be performed by hand, each configuration had
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to be verified by computer. Thus, the four color problem was the first major
theorem proved in mathematics for which the use of a computer was absolutely
essential.

Example 2.2.3.1 Prove or disprove each of the following statements. That
is, for a statement which is true, provide a proof, and for a statement which
is false, provide a counterexample.

1.

For a, b, and ¢ natural numbers, if a divides b + ¢, then a divides b or a
divides c.

For a, b, and ¢ natural numbers, if a divides b and a divides ¢, then a
divides b+ c.

Solution

1.

Let P(a, b, ¢) be the statement “a divides b+¢,” let Q(a,b) be the state-
ment “a divides b,” and let R(a, ¢) be the statement “a divides ¢.” Writ-
ten symbolically, the given statement is P(a,b,c) = (Q(a,b) V R(q, ¢)).
It appears this statement may be false. To disprove the statement,
we must find natural numbers a, b, and ¢ such that P(a,b,c) and
=(Q(a, b) VR(a,c)) = (=Q(a,b) A —R(a, c)) are true. Thus, to disprove
P = (Q V R), we must find natural numbers a, b, and ¢ such that a
divides b + ¢, a does not divide b, and a does not divide c¢. Since the
sum of two odd numbers is even, and since 2 does not divide an odd
number, we select a = 2, b = 3, and ¢ = 5. This selection for a, b, and ¢
disproves the given statement, because a = 2 divides 8 =3+ 5=0+c,
a = 2 does not divide 3 = b, and a = 2 does not divide 5 = c.

Let statements P, Q, and R be as stated above. Written symbolically,
the given statement is (Q(a, b) AR(a,c)) = P(a,b,c). If Q(a,b) is true,
then by definition, there exists a natural number k such that ak = b.
And, if R(a, c) is true, then there exists a natural number ¢ such that
al = c. By substitution and the distributive property

b+c=ak+al=alk+Y{)

where k+/ is a natural number. Hence, a divides b+c—that is, P(a, b, ¢)
is true.

Remark: In this instance, we have presented only the “scratch work” from
which we can construct a well written informal proof. What appears above
is not an informal proof! You should write your own well written proof to
complete this exercise. l
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EXERCISES 2.2.3

Either prove or disprove each of the following statements. That is,
for a statement which is true, provide a proof, and for a statement
which is false, provide a counterexample.

1. For a, b, and ¢ natural numbers, if a is odd and a + b = ¢, then b is even
and c is odd.

2. For a and b natural numbers, if a divides b and b divides a, then a = b.
3. For a and b integers, if a divides b and b divides a, then a = b.

4. For a,b, and ¢ natural numbers, if a divides b and b divides ¢, then a
divides c.

5. For a,b, and ¢ natural numbers, if a divides be, then a divides b or a
divides c.

6. For a,b, and ¢ natural numbers, if a divides b or a divides ¢, then a

divides be.

7. For a, b, ¢, and d natural numbers, if a divides b — ¢ and a divides ¢ — d,
then a divides b — d.

8. The sum of three consecutive integers is odd.
9. The sum of three consecutive integers is even.

10. The sum of four consecutive integers is odd.

2.2.4 The System of Rational Numbers and the System of
Real Numbers

In 1937, while excavating in central Czechoslovakia, Karl Absolom discov-
ered a prehistoric wolf bone dating from about 30,000 B.C. Fifty-five notches,
grouped into sets of five, are cut into the bone. The first twenty-five notches
are separated from the second twenty-five by a double length notch. It is
reasonable to assume that the notches were made by some prehistoric man
who was counting something such as the number of animals he had killed or
the number of days since an important event. So at least 30,000 years ago,
man had the concept of a one-to-one correspondence between elements in two
different sets and the idea of a base for a system of numbers.

Spoken language existed long before written language. And the advent of
writing appears to coincide with the transition from hunter-gatherer societies
to agrarian societies. Most probably, writing was invented at different times
in many different places—Mesopotamia, Egypt, China, and Central America
to name a few.
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By 3000 B.C. the Egyptians had developed their hieroglyphic writing. Hi-
eroglyphs are pictures of objects which stand for a word, a concept, or a
sound. There are over 700 known Egyptian hieroglyphic symbols. As long as
hieroglyphics were only being carved into stone, there was no need for sym-
bols which could be written quickly. Later, the Egyptians made a paper-like
material from the papyrus reed—a plant which grows along the Nile river. By
peeling away the outer stem of the papyrus, cutting the soft pith inside into
strips, laying the strips side by side, pounding them with a mallet, and drying
them, the Egyptians were able to make a renewable, inexpensive material on
which to write. The tip of the papyrus reed was used as a pen to write on the
papyrus.

Most of our knowledge of Egyptian mathematics comes to us from writ-
ings on papyrus. At present, the best source we have for information about
Egyptian arithmetic is the Rhind papyrus. A. Henry Rhind was a Scottish
egyptologist who purchased the text in Luxor, Egypt, in 1858 and sold it to
the British Museum, where it is on display. The scroll is about 18 feet long and
1 foot wide. This papyrus is also known as the Ahmes papyrus in honor of the
scribe who wrote it. The Ahmes papyrus was written about 1650 B.C., but,
according to Ahmes, it was copied from an older document written between
2000 and 1800 B.C. The solution of eighty-one of the eighty-seven problems
on the Ahmes papyrus requires the use of fractions.

The Egyptians took a practical approach to mathematics. Their trade re-
quired that they could multiply, divide, and deal with fractions. However,
the Egyptian number system was not well suited for performing arithmetic
calculations. Therefore, by necessity, they devised methods for multiplication
and division which involved addition only.

In our system of fractions, any integer may appear in the numerator. How-
ever, in the Egyptian system of fractions, with the exception of the fractions %
and %, the only number which may appear in the numerator for computational
purposes is 1. A fraction of the form % where n is a natural number is called
an Egyptian fraction or a unit fraction. Egyptians were able to solve
problems which would require calculations with a fraction such as % by ex-
pressing the fraction as the sum of two or more Egyptian fractions. Thus, they
would decompose % into Egyptian fractions by writing % = é + % Strangely
enough, they would never repeat the same fraction in a decomposition—that
is, they would not write % = % + % Since any fraction can be written as
a finite sum of Egyptian fractions, the Egyptians were able to solve many
problems which required the use of fractions.

Prior to 2776 B.C. at the latest, the Egyptians had invented a calendar
in which a year was 365 days long. They needed a calendar to aid in the
prediction of the flooding of the Nile. Since the Nile flooded shortly after the
star Sirius, the brightest star in the sky, first appeared in the heavens after
the period when it was too close to the sun to be seen, the first day of the
new year in the Egyptian calendar coincided with the rising of Sirius out of
the sun, which occurs in our month of July. Eventually, the year was divided
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into 12 months of 30 days each with a 5 day period at the end of the year.
The Egyptian calendar is the basis for the Julian and Gregorian calendars.

Mesopotamia is a fertile plain located between the Tigris and Euphrates
rivers. Between 4500 and 4000 B.C. it was settled by the Ubaidians. About
3300 B.C. the Sumerians came to Mesopotamia. Initially, they used a sty-
lus to carve symbols on soft clay tablets which they had fashioned from the
clay in the region. Later, they developed an abstract form of writing on hand
sized clay tablets using cuneiform (wedge-shaped) symbols. The symbols were
wedge-shaped due to the instrument they used for writing. The clay tablets
were dried in the hot sun and thousands of them still exist to this day. The
counting system of the Sumerians was sexagesimal—that is, the base they used
for counting was base 60. It is not known why they chose this base; however,
60 is divisible by the ten numbers 2, 3, 4, 5, 6, 10, 12, 15, 20, and 30 while our
base 10 system has only two divisors—2 and 5. About 2000 B.C. the Baby-
lonians invaded Mesopotamia and defeated the Sumerians. By 1900 B.C. the
Babylonians had established their new capital at Babylon. Babylonian math-
ematics was somewhat more advanced than Egyptian mathematics. Egyptian
mathematics was of a more practical nature, while Babylonian mathematics
was, in some aspects, more abstract. Babylonian fractions were more general;
however, not all fractions were permitted. The Babylonians had no divi-
sion algorithm; instead they based their work with fractions on the identity
% =a x (4). That is, they calculated a divided by b by multiplying a by the
reciprocal of b, % Extensive Babylonian tables of reciprocals of numbers up
to several billion are still existent.

The Babylonian year was 360 days long, which gave rise to dividing the circle
into 360 degrees, which we still do today. Their zodiac had twelve equal sectors
of 30 degrees each. The Babylonian day was 12 hours long and each hour was
60 minutes in length. Hence, the Babylonian hour and minute were twice as
long as ours. For practical applications, the Babylonians approximated 7 by
3, but from tablets unearthed in 1936 it is evident they knew 3% was a better
approximation of 7.

The System of Rational Numbers Given a mathematical system S
which satisfies properties P but which does not satisfy a particular property
P*, mathematicians often try to construct a larger system S* which contains
S, which still satisfies properties P, and which also satisfies property P*.
Since the set of natural numbers, N, is closed under the operations of addition
and multiplication for every pair of natural numbers m and n, the equation
r = m + n always has a solution = in the set of natural numbers and the
equation y = mn always has a solution y in the set of natural numbers.
However, the set of natural numbers is not closed under the operation of
subtraction—that is, for m and n natural numbers the equation w = m — n
does not always have a solution w in the set of natural numbers. Earlier, we
enlarged the set of natural numbers to the set of integers, Z, by adding to
the set of natural numbers the number 0 and for every m € N the number
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(—m). In this manner, we obtained the set of integers which includes the
set of natural numbers and which is closed under the operations of addition,
multiplication, and subtraction.

The set of integers is not closed under the operation of division, since for
all integers m and n the equation mxz = n does not always have an integer
solution x. Clearly, the equation 3z = 4 does not have an integer solution.
We wish to enlarge the set of integers to obtain a new set of numbers in such
a way that if m and n are in the new set, then the solution x of the equation
mx = n is always in the new set and the new set is closed under addition,
multiplication, and subtraction as well.

The operation of division is defined in terms of multiplication. If m and
n are integers, then m divides n if there is a number x such that m - x = n.
Observe that division by the integer 0 is not defined, since for n # 0 there is
no integer x such that 0 -z = n, and since for n = 0 every integer x satisfies
0 -2 = 0. Thus, we define a rational number and the set of rational numbers
as follows.

If m and n are integers and if m # 0, then by a rational number we mean
the number x which satisfies the equation m - x = n. We write the rational

n
number z as —.
m

The set of rational numbers is the set

Q:{E\n,mEZandm;&O}.
m

3
The rational numbers —, 76 are all different representations for the

same rational number—the rational number x which satisfies the equation
2-x = 1. Thus, we encounter for the first time in the system of rational
numbers a system in which equality is not taken for granted. We give the
following definition of equality for two rational numbers.
n n
The rational numbers — and £ are equal, written — = E, if and only if
m q m q
n-qg=m:-p.

2 3
By this definition 1= 5 since 2-6 =4 -3 = 12. Observe that equality for
two rational numbers is a consequence of the properties for integers. Let n be

an integer. By associating the integer n with the rational number —, we see

that every integer can be represented as a rational number. That is, the set
of integers is contained in the set of rational numbers.

Our definition of equality for rational numbers allows us to derive the fol-
lowing cancellation law for rational numbers.
If m,n, and p are integers and m # 0 and p # 0, then
n-p _n

m-p m
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The cancellation law follows easily from the commutative and associative
properties of multiplication for integers and from the definition of equality
for rational numbers, since

(n-p)-m=m-(n-p)=m-(p-n)=(m-p) n.
In practice, we write

n
m-p m
n
A rational number — is in reduced form or simplest form if n and m have
m
no factors in common except for the number one.

We define multiplication and addition of rational numbers in terms of mul-
tiplication and addition of integers. In this section only, we will denote mul-
tiplication of rational numbers by ® and addition of rational numbers by @
to emphasize these operations are defined in terms of multiplication of inte-

gers denoted by - and addition of integers denoted by +. Thus, we define
multiplication and addition for rational numbers as follows.

m
1t 2 and 2 are rational numbers, then multiplication, ®, is defined by
n q

the equation

1t 7 and 2 are rational numbers, then addition, @, is defined by the
n q

equation

m o p_m-qgtn-p
n o q n-q
Using these definitions the following basic theorems for rational numbers
can be proven.

BASIC THEOREMS FOR THE RATIONAL NUMBERS

Closure Properties for Addition and Multiplication

Ql Vr,seQ,réseqQ
Q2 VrseQ,roOseQ

Commutative Properties for Addition and Multiplication
Q3 VVrseQ,rds=sPr
Q4 VrseQ,rOs=s0Or

Associative Properties for Addition and Multiplication
Q5 VrsteQ,rd(sdt)=0rds) Dt
Q6 Vrs,teQ,ro(sot)=(ros)ot

Distributive Properties of Multiplication over Addition
Q7 VrsteQ, ro(sdt)=(ros)e(rot)
Q8 VrsteQ, (r@s)0t=(rot) e (sot)
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Existence of a Multiplicative Identity Property

W (1eQMreq, jor=s

Existence of an Additive Identity Property
0 0
Q10 (EIGQ)(V’FGQ),T‘@I:T
Existence of an Additive Inverses Property

Qll (VMreQ 3(—rmeqQ), rd(-r)=0
Existence of a Multiplicative Inverses Property

Q12 (VMreQ)[(r#0=3r1teqQ), r@r’lz%]

Any set Q with operations @ and ® defined on it which satisfies properties
Q1 through Q12 is called a field. Thus, the set of rational numbers is our
first example of a field.

The closure property for addition, Q1, holds in the rational numbers, be-
cause of the definition of addition @ for the rational numbers; because the
closure property for addition in the integers, Z1, holds; and because the clo-
sure property for multiplication in the integers, Z2, holds. In general, for
I=1,2,...11, property QI holds for the rational numbers, because the cor-
responding property ZI holds for the integers and because of the definitions
of addition and multiplication for the rational numbers. Hence, the set of
rational numbers with addition and multiplication defined as above satisfies
all the properties which the integers satisfy—properties Z1 through Z11. The
rational numbers also satisfy the new property Q12. That is, every nonzero
rational number has a multiplicative inverse. Hence, the rational numbers are
closed under the operation of division with the exception of division by 0.

m
Let — be any rational number. By the definition of multiplication and the
n
cancellation law, for any nonzero integer p,

p_m _p-m _m

p nmn  p-n n
1
Thus, P 1 in reduced form is the multiplicative identity for the rational
p

1
numbers. Of course, 1 is the rational number representation of the multi-
plicative identity 1 of the integers. Also, by the definition of addition, since
n -0 = 0 for any integer n, by the existence of an additive identity property
for the integers, Z10, and by the cancellation law for rational numbers, we
have for any nonzero integer p,
m 0 m-p+n-0 m-p+0 m-p m

nop n-p n-p n-p n’

0 0
Hence, — = 1 in reduced form is the additive identity for the rational numbers.
p
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0
Clearly, 1 is the rational number representation of the additive identity 0 of

the integers. The rational number ) is the additive inverse of the rational

m .
number —, since
n

ﬂ@(*m) :m'nJrTL'(*m) :n'erTl‘(*m)
_n-(m4(=m) m+(-m) 0 _0
n-n n no 1

The commutative property of addition, Q3, the commutative property of mul-
tiplication, Q4, and the associative property of multiplication, Q6, follow eas-
ily from the definitions of & and ®, the commutative properties of addition
and multiplication for the integers, and the associative property of multiplica-
tion for the integers. In the following two examples, we prove the associative
property of addition for the rational numbers, Q5, and the existence of a
multiplicative inverse property for the rational numbers, Q12.

Example 2.2.4.1 Prove the Associative Property of Addition for the Ratio-
nal Numbers. That is,

“Prove for every r,s,t € Q, 1@ (sDt)=(rds)dt.”

Solution
m p

U .
Let r = —, s = =, and t = — where m,n, p, q,u, and v are integers and

n q v
n #0,p# 0, and v # 0. By the definition of addition for the rational numbers
and the distributive properties for integers,

m P u m p-vt+q-u
1 t) = — 2o 2)= — R S
(1) re(se)=_e( e )=o)
_m-(g-v)+n-(p-vtq-u
n-(q-v)
:m~q~v+n~p~v+n-q-u
n-q-v
and
(2) ros)ot=(Leljpgl19TV P T
n q v n-q v
(m-q+n-p)-vt+n-q-u
(n-q)-v
m-q-v+n-p-v+n-q-u
B n-q-v ’

Because the right-hand sides of equations (1) and (2) are identical, for all
st €Q, T’@(S@t):(r@s)@t. [ |



Deductive Mathematical Systems and Proofs 103

Example 2.2.4.2 Prove the existence of a Multiplicative Inverse Property
for the Set of Rational Numbers. That is,

“Prove for every nonzero rational number r there exists a rational number

1
r~!such that r @ r~—1 = I.”

Solution
Let r = — be any nonzero rational number. Since r is a rational number,

n # 0, and since r is nonzero, m # 0. Consider the product

m n m-n n-m 1

n m n-m n-m 1

: n 1 _ n. o
Since r @ — = —, r~! = — is a multiplicative inverse of . W
m 1 m
Remarks: Just as each rational number does not have a unique representa-
tion, the multiplicative inverse of a nonzero rational number does not have a
unique representation, because for any nonzero integer p,
-1 n _n-p
r=—=—
m  m-p

n-p. TSP m

is a multiplicative inverse of r = —.
m-p n
If we require a multiplicative inverse of a nonzero rational number to be
represented in reduced form, then the multiplicative inverse has a unique
representation.

That is, for any nonzero integer p,

From their study of geometry, the ancient Greeks realized there were num-
bers which were not rational numbers. Virtually nothing is known about
the date of the discovery of the existence of irrational numbers (numbers
which cannot be written as the ratio of two integers) or the identity of the in-
dividual who made the discovery. Nonetheless, sometime between the time of
Pythagoras (about 550 B.C.) and the time of Theodorus (about 400 B.C.) it
was determined that nonrational numbers existed. The proof of the following
theorem dates from between 550 B.C. and 400 B.C.

Theorem 2.17 There exist numbers which are not rational numbers.

Proof: Let ¢ be the hypotenuse of an isosceles right triangle with sides a =
b = 1. Since the triangle is a right triangle, by the Pythagorean theorem

(1) A=ad>+b?=12+12=2.

Suppose c is a rational number which is written in reduced form. Specifically,
assume ¢ = p/q where p and g # 0 are integers and p and ¢ have no common

factors. Squaring ¢ and substituting into (1), we see p and ¢ must satisfy the
equation

@ - (2)2_1”_2_2.
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Multiplying the last equation by ¢ # 0 yields (3) p? = 2¢*. Hence, p? is an
even integer, and it follows from Theorem 2.9 that p is an even integer. Thus,
p = 2r for some integer r. Substituting p = 2r into equation (3) and squaring,
we obtain

p? = (2r) = 4% = 2¢%.

Dividing the last equation by 2, we find 2r2 = ¢?. Therefore, ¢2 is an even

integer which implies by Theorem 2.9 that ¢ is an even integer. Thus, we have
shown p is an even integer and ¢ is an even integer. Hence, 2 is a common
factor of p and q. Consequently, by contradiction, the number ¢ which satisfies
the equation (1) ¢? = 2 is not a rational number. M

The irrational number which satisfies the equation ¢ = 2 is denoted by V2
or 22. About 400 B.C., Theodorus proved the numbers v/3, v/5, V6, V7, V8,
\/ﬁ, \/ﬁ, \/ﬁ, \/ﬁ, \/ﬁ, \/ﬁ, and +/17 are irrational numbers also.

An axiomatic development of the set of real numbers from the set of ra-
tional numbers did not occur until the latter part of the nineteenth century.
In 1869, the French mathematician Hugues Charles Robert Méray (1835—
1911) published the first rigorous development of the set of real numbers. He
considered sequences of rational numbers and defined convergence for such se-
quences. Some convergent sequences of rational numbers converged to rational
numbers, while others converged to “fictitious” numbers (irrational numbers).
Méray published his results in an obscure journal; consequently, his work went
unnoticed for several years. Two years after Méray’s publication, two similar
developments of the real numbers from sequences of rational numbers were
published in two different journals by two colleagues at the University of Halle
in Germany. In October 1871, Eduard Heinrich Heine (1821-1881) published
his article “The Elements of Function Theory” in the prestigious Journal of
Pure and Applied Mathematics. One month later, Georg Ferdinand Ludwig
Philipp Cantor (1845-1918) published his article “Extensions of Theorems
Regarding Trigonometric Series,” which included his development of the real
numbers, in the well-respected journal Annals of Mathematics.

Julius Wilhelm Richard Dedekind (1831-1916) was born in Braunschweig,
Germany, and lived there most of his life. He was the last doctoral student
of Gauss. To develop the set of real numbers, Dedekind began with the set of
rational numbers and their properties. Dedekind observed that each rational
number r divided the set of rational numbers into two nonempty sets—Aj,
the set of all rational numbers less than r, and As, the set of all rational
numbers greater than r. The rational number r could be in either A; or
Ay but not both. To indicate the relationship between the rational number
r and the division of the set of rational numbers into the sets A; and As,
Dedekind wrote r = cut(A;, A2). On October 24, 1858, Dedekind noted
that every point on a line divides the line into two sets and that every such
division into two sets is produced by a unique point. To extend the set of
rational numbers to the set of real numbers, and to extend the properties of
the rational numbers to the set of real numbers, Dedekind divided the set
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of rational numbers into two sets such that every element of A; is less than
every element of As and he wrote cut(4;, As) to represent this division. To
honor Dedekind, such cuts are now called Dedekind cuts. Some Dedekind
cuts are produced by rational numbers, while other cuts are produced by
numbers which are not rational. The latter cuts produced new numbers called
irrational numbers. For example, the cut in which the set A; consists of all
rational numbers z less than a where @ > 0 and a? = 2 and in which the set
Aj consists of all rational numbers = greater that a where a > 0 and a? = 2
defines the unique irrational number, /2. Later, in 1872, after Heine and
Cantor had published their developments of the real numbers from the rational
numbers, Dedekind published his results in an article titled “Continuity and
the Irrational Numbers.”

The numbers 7 and e are two other irrational numbers with which you may
be familiar already. The Welsh mathematician William Jones was the first
to use the symbol 7 to represent the ratio of the circumference of a circle
to its diameter in 1706. In 1737, Euler began using the symbol 7 for this
purpose and it soon became the standard notation. John Heinrich Lambert
(1728-1777) proved in 1761 that = is irrational. The symbol e represents the
value of the base of “natural logarithms.” Euler first used this symbolism in a
letter he wrote to Goldbach in 1731. Also, credit is given to Euler for showing
that e is irrational.

The set of real numbers consists of the set of rational numbers together
with the set of irrational numbers. The real numbers satisfy properties Q1
through Q12. So the real numbers is our second example of a field.

Earlier, we proved that /2 is irrational. Since v/2 = 2%, there are rational
numbers x and y such that z¥ is an irrational number—namely, the numbers

r=2and y = % Out of curiosity, we might want to know if there are

irrational numbers x and y such that ¥ is an rational number. The following
example answers this question in the affirmative.

Example 2.2.4.3 Prove there exist irrational numbers = and y such that z¥
is rational.

Solution
Consider v/2" . The real number /2"~ is either rational or irrational. If
\/5\/i is rational, then we obtain the desired result by taking z =y = /2. If,

on the other hand, \/5\/i is irrational, then we consider the number
V2
()

which is rational. Hence, if \/5\/i is irrational, we take x = \/5\/i and y = V2
and obtain the desired result—mnamely, z¥ is rational. B

Notice that the proof which appears in this example is a nonconstructive
proof.
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In Example 2.2.4.3, we showed that either \/5\/i is an irrational number
V2

raised to an irrational power which is rational or (\/5 is an irrational

number raised to an irrational power which is rational. But we do not know
from the example itself which of these two numbers satisfies the properties

that x and y are irrational numbers and z¥ is rational. It has been proved that
v v\ v?
V2" 7 is irrational. So, the number ( v/2 is an example of an irrational

number raised to an irrational number which is rational.

EXERCISES 2.2.4

1. Use the definition of equality to show the following pairs of rational
numbers are equal.
U2 ,, 615 . 6 u
87 12 147 35 157 35
2. Perform the indicated operations and express the results in reduced form.

7 4 9 11 15 7 15 7

—+— b. -——— c. — — — ==

12 15 4 3 4 8 4 8
3. Prove the commutative property of addition for the set of rational num-

bers. That is, prove Q3.

4. Prove the associative property of multiplication for the set of rational
numbers. That is, prove Q6.

5. Prove the left distributive property of multiplication over addition for
the set of rational numbers. That is, prove Q7.

6. Which of the following real numbers are rational? irrational?

V3 V4 3

a. — b. — c. —
2 2 4

,5\/7
d. v e. V12 f. 246

g 2-V3)-(-V3) hoo i.

H
+
&

Q
[N}
. &l

=%

jo (4 +3V3)(—4-3V3) k.

S
S
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7. Prove that there is no rational number p such that p? = 3. That is,
prove /3 is irrational.

8. Prove that v/6 is irrational.
9. Prove that v/3 + /5 is irrational.
10. Use set-builder notation to specify the sets A; and A which define the

Dedekind cuts for the real numbers a. % b. V3

11. Let x and y be real numbers. Prove if zy = 0, then x = 0 or y = 0.
(Hint: Consider proving the contrapositive by contradiction.)

12. Prove the Cancellation Property of Multiplication for Real Numbers:
If z,y, and z are real numbers, if x # 0, and if xy = xz, then y = 2.
In Exercises 13—20 prove or disprove the given statement.
13. If z is irrational and y is rational, then x + y is irrational.
14. If x + y is irrational, then both = and y are irrational.
15. If x + y is irrational, then either x or y is irrational.
16. If z is irrational and y is rational, then zy is irrational.
17. If z is irrational and y # 0 is rational, then zy is irrational.
18. If x and y are irrational, then x + y is irrational.

19. For every rational number x there exist irrational numbers y and z such
that x =y + 2.

20. If x is a positive irrational number, then /x is an irrational number.

2.3 Chapter Review

Definitions

A definition is an agreement to use a symbol, a word, or a short phrase
to substitute for something else, usually for some expression that is too long
to write easily or conveniently.

An axiom or postulate is a statement that is assumed to be true. The
axioms of a deductive mathematical system are the statements from which all
other statements of the system can be derived.

A theorem is a true statement that has been proven by a valid argument.

A proof is a logically valid deduction of a theorem from the premises of
the theorem, the axioms, or previously proven theorems.

A formal proof of a theorem is a finite sequence of statements S, Ss, . .., Sk
such that each statement S is a premise of the theorem to be established, an
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axiom of the system, follows from one or more of the preceeding S’s by a
logical rule of inference, or follows from one or more of the preceeding S’s by
a previously proven theorem.

A theorem which states that there is one and only one element in a specific
set which satisfies a certain statement is called a uniqueness theorem.

A corollary is a theorem which follows so obviously from the proof of
another theorem that no proof, or almost no proof, is necessary.

A conjecture is a statement that has been proposed to be a true. If, and
when, a conjecture is proved true, it becomes a theorem. A conjecture may be
disproved by producing a single counterexample—an example which proves
that the conjecture is a false statement.

A deductive mathematical system consists of the following elements:
1. An underlying language.

. A deductive logic system.

. A list of undefined terms.

. A list of formally defined technical terms, called definitions.

. A list of statements which are assumed to be true, called postulates
or axioms.

6. A list of deduced statements, called theorems.

T W N

A mathematical system is consistent if and only if contradictory state-
ments are not implied by the axioms of the system.

A set of axioms is inconsistent if it is possible to deduce from the axioms
that some statement is both true and false.

Subtraction Let S be a set of numbers and let m and n be elements of
S. The number £ = m — n, read “m minus n” or “n subtracted from m,” is
the number x which makes the statement m = n + x true, if there is such a
number z.

An integer n is even if there exists an integer k£ such that n = 2k.
An integer n is odd if there exists an integer k such that n = 2k + 1.

Let a and b be natural numbers. The number a divides b if and only if
there exists a natural number ¢ such that ac = b. If a divides b, then we also
say a is a factor of b and b is divisible by a.

A prime number (or simply a prime) is a natural number greater than
one which is divisible only by itself and one.

A composite number (or simply a composite) is a natural number
greater than one which is not a prime number.

A triple of natural numbers (a,b,c) is called a Pythagorean triple if
a® + b =2

Two primes (p, ¢) such that p + ¢ = 2k for some natural number k greater
than or equal to two are called Goldbach pairs.
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Twin primes are pairs of primes of the form (p, p + 2).

A fraction of the form % where n is a natural number is called an Egyptian
fraction or a unit fraction.

The set of rational numbers is the set
Q:{2 | n,m € Z and m # 0}.
m

n n
The rational numbers — and £ are equal, written — = E, if and only if
m q m q
n-qg=m:-p.

m
1t 2 and 2 are rational numbers, then multiplication, ®, is defined by
n q
the equation

m m -
2ol L

1t 7 and 2 are rational numbers, then addition, @, is defined by the
n q

equation
m __p m-q+n-p
—p-=— =
n = q n-q

Forms of Proofs

Direct Proof of P=-Q

Assume P. ... Therefore, Q. Hence, P = Q.

Contrapositive Proof of P=Q

Assume = Q. ... Therefore, = P. Hence, =~ Q = = P. And consequently,
P=Q.

Proof of P=Q by Contradiction

Assume P A (= Q). ... Therefore, C, where C is a contradiction. Hence,
P=Q.

A Proof of (P vV Q) = R by Cases or Exhaustion

Prove P = R by any technique. Prove Q = R by any technique. Therefore,
(PvQ)=R,since ((PVQ =R)=FP=R)A(Q=R).

A Proof of the Biconditional Statement P & Q

Prove P = Q by any technique. Prove Q = P by any technique. Therefore,
P& Q,sincePeQ=P=Q) A((Q=DP).

A Proof of the Statement P by Contradiction

Assume — P. ... Therefore, C where C is a contradiction. Hence, P.
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A Proof of the Universal Statement (Vx € U)(P(x))
Let z € U. ... P(x) is true. Hence, (Vz € U)(P(z)) is true.

A Proof of the Existence Statement (Ix € U)(P(x))
There are two ways we can prove the statement (3z € U)(P(z)).

We can present a constructive proof by exhibiting or explaining how to
construct an element = in U having the property P(z).

Or, we can present a nonconstructive proof by making a valid argument
that some element = in U makes the statement P(x) true.

Named Theorems and Conjectures Mentioned in This Chapter

Cancellation Property of Addition for Integers If k, m, and n are
integers and k 4+ m = k 4+ n, then m = n.

Cancellation Law for Rational Numbers If m,n, and p are integers
and m # 0 and p # 0, then
n-p

n
m-p m
The Fundamental Theorem of Arithmetic Every natural number

greater than one is a prime or can be written uniquely as a product of primes
except for the order in which the prime factors are written.

The Pythagorean Theorem Let a,b, and ¢ be the lengths of the sides
of a triangle with ¢ being the length of the longest side. The triangle is a right
triangle if and only if a® + b? = 2.

Fermat’s Last Theorem For n a natural number greater than 2, the
equation a™ + b = ¢” has no natural number solutions a, b, c.

Euler’s Sum of Powers Conjecture For every natural number n > 2,
a sum of at least n, nth powers of natural numbers is necessary for the sum
to be the nth power of a natural number.

Goldbach’s Conjecture Every even natural number greater than 2 is
the sum of two primes.

Twin Prime Conjecture There are an infinite number of primes p such
that p + 2 is a prime also.

The Four Color Problem The four color problem asks if every planar
map can be colored with four or fewer colors in such a way that no two
adjacent regions are the same color. Two regions are adjacent if they share a
common border, not just a point.
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Review Exercises

1. Provide a justification for each step in the formal proof of the following
statement.

For integers k, m, and n, k(m —n) = km — (kn).
Proof: For all k,m,n € Z
k(m—mn)=k(m —n)

1. =is reflexive
m—n=m+ (—n) 2
k(m —n) = k(m + (—n)) 3
k(m+ (—n)) = km+ k(—n) 4.
k(m —n) =km + k(—n) 5.
k(—n) = —(kn) 6
k(m —n) = km + (—(kn)) 7
km + (—=(kn)) = km — (kn) 8
k(m —n) =km — (kn) 9

© X NSO D=

2. Give a direct proof of the following theorems.
a. If m is an odd integer, then 7m + 5 is an even integer.
b. If m is an integer and 5m — 4 is an even integer, then m is even.

3. Prove each theorem by a proof by contraposition.
a. If m is an integer and m? is odd, then m is odd.
b. Let m and n be integers. If m — n is odd, then either m is even
and n is odd or m is odd and n is even.

4. Prove the following theorems by a proof by contradiction.
a. If m is an odd integer, then m + 3 is an even integer.

b. Let m and n be integers. If mn is even, then m or n is even.

5. Prove each theorem by cases.
a. If m is an integer, then m(m + 3) is an even integer.
b. For every integer m, the integer m? + m — 1 is odd.

6. Prove the following biconditional statements.
a. Prove that 3 divides 2n? + 1 if and only if 3 does not divide n.
b. Let p be a prime and let m and n be natural numbers. Prove that
the prime p divides mn if and only if p divides m or p divides n.

7. Prove the given existence theorems.
a. There exists a natural number n such that 2n > n2.
b. There exist natural numbers m and n such that 4m — 1 = Tn.
c. There exist three distinct integers k, m, and n such that £™ = m".
d. If x > 2 is a real number, then there exists a unique real number
y < 0 such that z 4+ 2y — 2y = 0.
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Prove or disprove the following statements.

a. Let k, m, and n be natural numbers. If k divides n and if m divides
n, then km divides n

b. The sum of five consecutative integers is divisible by five.

c. The difference of two irrational numbers is irrational.

d. The quotient of two irrational numbers is irrational.

Which of the following pairs of rational numbers are equal?
85 75 b —-273 399 4773 7353

1027 90 T 2097 —436 “ 9878° 15219

More Challenging Exercises

10.

11.

12.

Let = and y be real numbers. Prove each of the following results which
involve absolute values by cases.

a. —|z| <z < |z

b. |zy| = |z|[y]

c. |z —yl=ly—z
d :m fory #0
yl |yl

Let z, y, and 2z be real numbers. Prove each of the following inequalities
using the triangle inequality, |z + y| < |z| + |y|.

a. |z —[y| < |z -yl

b. |z = [yl| < |z —y]

¢ |lz—z <l —yl+]y—2|

The Fano Plane The Fano plane is named in honor of the Italian
mathematician Gino Fano (1871-1952). He is considered to be the “Fa-
ther of Finite Geometry.” In 1892, Fano constructed a finite 3-dimension-
al geometry consisting of 15 points, 35 lines, and 15 planes. Each of the
15 planes is a Fano plane, which he described by an axiomatic system.
The undefined terms in the axiomatic system are point, line, and on.
The five axioms of the system are

Axiom 1. There exists at least one line.

Axiom 2. There are exactly three points on every line.

Axiom 3. Not all points are on the same line.

Axiom 4. There is exactly one line on any two distinct points.

Axiom 5. There is at least one point on any two distinct lines.

Let us see what we can deduce from Fano’s Axioms. From Axioms 1,
2, and 3, we deduce that there are at least four points—three of which
we will name A, B, and C, and they lie on line ¢; and a fourth point D
which is not on line #;. To aid in our discussion, we draw the sketch
shown in Figure 2.3a. By Axiom 4, the point D and each point A, B,
and C on line ¢; must determine a distinct line. By Axiom 2, each of
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these three lines must contain exactly three points. However, none of
these points can be one of the four points A, B, C, or D, since this would
violate Axiom 4. Therefore, the Fano plane has at least seven points.
Hence, we have proven the following theorem about a Fano plane.

T1. The Fano plane has at least seven points. (See Figure 2.3b below.)

A B 2 C
a

Figure 2.3: A partial model of the Fano plane.

a. Use Axioms 1 through 5 (not the model in Figure 2.3) to prove the
following theorem.

T2. The Fano plane cannot contain more than seven points.

(Hint: Assume the plane contains eight points and reach a contradic-
tion with an axiom.)

Theorems T1 and T2 together tell us that the Fano plane has exactly
seven points.

b. Look at the model, Figure 2.3b. What is the least number of lines
that the Fano plane can have and satisfy Axioms 1 through 57

c. Complete the following table. That is, list the remaining lines and
the points on each.

Lines 51 Ez Eg 54
A A B C
Points B D D D
C E F G

d. Add the lines found in part ¢ to Figure 2.3b and complete the model
of the Fano plane.

e. Prove the following three theorems.
T3. The Fano plane has at least seven lines.
T4. The Fano plane cannot contain more than seven lines.

T5. In the Fano plane two distinct lines have exactly one point in
common.

Theorems T3 and T4 together tell us that the Fano plane has exactly
seven lines.
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13. Statement. Theorem? Proof? Problems of this type will appear
throughout this text. A statement will be given. First, you should decide
if the statement is true or false. If the statement is true, it is a theorem
and you should then determine if the given proof is valid or invalid. If
the proof is valid, you are done. If the proof is invalid, you should
produce a valid proof. If the statement is false, then, of course, the proof
must be invalid. However, we want to know what is wrong with the
proof, because this might allow us to modify the original false statement
and to create a new true statement (theorem). Then, perhaps, we can
modify the invalid proof to obtain a valid proof of the theorem.

a. Consider the statement: (1) For all z € R, V22 = x.

Proof? Let x be any real number. Then Va2 = \/z -z =+z-\/z ==
by the definition of square root.

Is statement (1) true or false? Substitute some real numbers into
the equation Va2 = z. For z = 3, 22 = 9, and v9 = 3 = z. So
the equation V22 = x is true for z = 3. Forz = —3, 2% = (—=3)(=3) =
9, and v/9 = 3 # —3. So when z = —3 statement (1) is false. That
is, statement (1) is false.

It appears that the equation V22 = x is true only when z > 0.
Hence, we should modify (1) by requiring « > 0. Thus, we obtain the
true statement (and theorem)

(2) For all real numbers z > 0, Va2 = z.

The proof? given above is invalid for statement (1), because when
x <0,z x # /x-\/x. However, the proof? given above is valid for
statement (2), because v/x - x = \/z - v/z when z > 0.

Notice for x = —3 that \/(—3) - (—3) = v/9 = 3 while /=3-/=3 =
(v/3)i - (v/3)i = 3i> = —=3 = —z. What can we prove about vz2 for
x < 07 Our theorem should look like:

(3) For all real numbers = < 0, Va2 =
What goes in the blank in (3)?
b. Prove the completed theorem (3).

c. Combining the results of theorems (2) and (3), we obtain the following
theorem.

(4) For all real numbers, Va2 =

In Exercises 14 through 16 a statement and a proof? are given.
For each exercise do the following.

a. Determine if the given statement is true or false.

b. If the statement is a theorem, determine if the proof? is valid. If not,
correct the proof or construct a new, valid proof.
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If the given statement is false, modify the statement to create a new
statement which is true and also give a valid proof of the new statement.
Statement. Theorem? Proof?

Statement: For all real numbers z, y, and z, if x < y, then 22 < 2.
Proof? Let z, y, and z be any real numbers and assume (1) z < y.
Multiplying (1) by x, we find (2) 22 < xy. And multiplying (1) by y, we
get (3) zy < y?. It follows from (2) and (3) that 22 < zy < y?.
Statement. Theorem? Proof?

Statement: Let x be a positive real number. The sum of x and its
reciprocal is greater than or equal to two.

Proof? Let = be any positive real number. The statement says:
1

1) z+-2>2.
x

Multiplying (1) by & > 0, we obtain 22+1 > 2z. Subtracting 2z, we find
2?2 —2x+1 = (z—1)% > 0. Since the square of any real number is greater
than or equal to zero, equation (1) is true.

Statement. Theorem? Proof?
Statement: Let m be an integer. Then m is even < m? is even.

Proof? (=) Suppose m is an even integer. Then m = 2k for some integer
k. Therefore, m? = (2k)? = 4k? = 2(2k?). Since 2k? is an integer, m? is
even. That is, if m is even, then m? is even.

(<) Suppose m is an odd integer. Then m = 2¢ + 1 for some integer £.
Hence, m? = (20 +1)? = 402 + 40+ 1 = 2(2¢%> 4+ 2¢) + 1. Since (20 + 2()
is an integer, m? is odd. Thus, if m is odd, then m? is odd. And the
contrapositive is if m? is even, then m is even.






Chapter 3

Set Theory

In mathematics, it is often the case that there is a long period in which ideas
are conceived and developed by several different individuals and then at a later
time a significant breakthrough is made by more than one individual. Such
was the case with the development of calculus and non-Euclidean geometry.
However, on the contrary, set theory is primarily the creation of one individual,
Georg Ferdinand Ludwig Philipp Cantor (1845-1918). Cantor was born in
St. Petersburg, Russia. His father, Georg Waldemar Cantor, was born in
Copenhagen, but moved to St. Petersburg as a young man. Cantor’s mother,
Maria Anna B6hm, was Russian. In 1856, when young Georg was eleven years
old, the family, consisting of Georg, a brother, a sister, and his parents, moved
to Wiesbaden, Germany, and later to Frankfurt due to the poor health of his
father. Georg’s father wanted him to become an engineer, so he could make
a good living. After receiving the proper technical training in high school
at Darmstadt from 1860 to 1862, Georg entered the Polytechnic of Zurich
in the fall of 1862. Later in 1862, Georg requested his father’s permission
to study mathematics instead of engineering and his father consented. After
his father’s death in June 1863, Georg transfered to the University of Berlin,
where he completed his doctorate in December 1867. In the spring of 1869,
Cantor joined the faculty at the University of Halle as a lecturer. In 1872,
he was promoted to assistant professor and in 1879 to professor. Cantor
spent the remainder of his life in Halle. Cantor’s early publications were
in the area of number theory. However, Heinrich Eduard Heine, a senior
colleague of Cantor at Halle, challenged Cantor to prove that a function can
be represented uniquely as a trigonometric series. Cantor succeeded in doing
so in 1870. In 1872, Cantor published a paper on trigonometric series in
which he defined the irrational numbers in terms of convergent sequences of
rational numbers. Then Cantor began his lifelong work on set theory and
the concept of transfinite numbers. In 1873, he proved the rational numbers
are countable—that is, that there is a one-to-one correspondence between the
rational numbers and the natural numbers. In 1874, Cantor showed that the
real numbers are not countable. After Cantor initiated research in the area of
set theory, others made significant contributions. Conjectures which Cantor
made opened fertile areas of research for others and the paradoxes which
arose later because of his work resulted in important study with respect to
the foundations of mathematics.

117
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3.1 Sets and Subsets

The concept of a set is fundamental to the study of mathematics. Using
set notation in mathematics promotes precision and clarity in communicating
mathematical ideas. The theory of sets also provides a means of simplifying
and unifying a large number of subdisciplines of mathematics.

In the late nineteenth century, Cantor defined the term “set.” This defini-
tion led to a paradox known as Russell’s paradox. Giving a formal definition
of a set ultimately leads to circularity of definition, since a set probably would
be defined as a “collection,” a collection would be defined as an “aggregate,”
and so forth until we eventually circle back to the word “collection” or “ag-
gregate.” The modern method of developing mathematical theories such as
the theory of sets is the axiomatic approach. In this approach to set theory,
the terms “set” and “is an element of” are undefined terms—just as “lines,”
“points,” and “intersects” are undefined terms in geometry. Intuitively, a
set consists of objects called elements or members. Furthermore, a set is
well-defined—that is, given a specific object, it is possible to determine if the
object belongs to a given set or not. We will use the notation “z € A” to
denote that “z is an element of the set A,” “z is a member of A,” or, sim-
ply, “x is in A.” To indicate “z is not an element of the set A,” we write
symbolically “z ¢ A.” Usually sets are described in roster notation, in
which the elements of the set are enclosed in curly braces, { }, and separated
by commas, or in set-builder notation, in which the set is specified in the
form {x| P(x)}, which is read “the set of all = such that P(z) is true.” For
example, “the set of all natural numbers less than 6” is specified in roster
notation as {1, 2, 3,4, 5} and in set-builder notation as {z |« € N and z < 6}.

There is one and only one set which has no elements. It is called the empty
set or null set. The empty set is denoted by the symbol (). The following is
a formal definition of the empty set.

The empty set is the set § = {z |z # «}.

Let P(z) denote the statement “xz # x.” Since for all possible objects z, the
statement P(z) is false, the set denoted by the symbol @) contains no elements.

Consider the sets X = {a,1,$} and Y = {1,2,a,b,$}. Notice that all of
the elements of X—namely, a, 1, and $—are all elements of Y. To indicate
that all elements of X are elements of Y, we say “X is a subset of Y” and
symbolically we write X C Y. We could also write Y O X which is read “Y
is a superset of X.” The symbolism Y O X has the same meaning as the
symbolism X C Y. The formal definition of a subset follows.

Let A and B be sets. A is a subset of B, written A C B, if and only if
every element of A is an element of B. Symbolically,

ACB <& (Vr)[(x € A) = (z € B)).
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To indicate “A is not a subset of B” we write A £ B or B 2 A. We now
prove that every set is a subset of itself.

Theorem 3.1 For any set A, A C A.

Proof: Let x € A. Since (z € A) = (x € A) is a true statement, we have
(Vx)[(z € A) = (x € A)] is true, and therefore, by the definition of subset,
ACA 1

Also, we can prove that the empty set is a subset of all sets.

Theorem 3.2 For any set A, () C A.

Proof: Let A be any set and let & be any object. We consider the conditional
statement (Vz)[(z € 0) = (z € A)]. Since for all objects x the hypothesis of
the conditional statement, x € 0, is false, the implication (z € ) = (z € A)
is true. Therefore, by the definition of subset, P C A. M

Subsets satisfy the following transitivity property.
Theorem 3.3 Let A, B, and C be sets. If AC B and B C C, then A C C.
Proof: Let x € A. By hypothesis A C B, so

(1) (x € A) = (z € B).
Also by hypothesis B C C, so

(2) (xeB)=(x€C).
From (1) and (2) by the rule of transitive inference,
(3) (Vz)[(x € A) = (z € O)].
Hence, ACC. N

Intuitively, we want two sets A and B to be equal, written “A = B,” if
and only if they are identical sets—that is, if and only if they have exactly
the same elements. Thus, we could define equality as follows:

A=B <& (Vz)[(x € A) & (r € B)).
However, since (Vz)[(x € A) & (z € B)] is logically equivalent to
(Vz)[[(x € A) = (x € B)] A [(z € B) = (z € A)]]
which is logically equivalent to

[(Vz)[(z € A) = (z € B)]] A [(Vz)[(x € B) = (x € A)]]
which is A C B and B C A, we define equality of sets as follows.

Let A and B be sets. Then A= B < [(AC B) A (B C A)].

This definition of equality permits us to prove two sets A and B are equal
(identical) by showing (i) A is a subset of B and (ii) B is a subset of A. As an
example, let A ={1,2,3} and B = {3,1,2,2,1}. First, consider the elements
of A. The element 1 € A and we see 1 € B also. The elements 2,3 € A and
they are members of the set B also. Since every element in the set A is in the
set B, A C B. Now consider the elements in the set B. The element 3 € B,
and we find 3 € A as well. The elements 1,2 € B and they are elements of A
too. Hence, B C A. Since AC Band BC A, A= B.
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Example 3.1.1 Prove A = B given that A = {n|n € Z and |n| < 2} and
B={z|r € R and 23 — z = 0}.

Solution

(i) Let n € A. Since n is an integer and |n| < 2, nis —1, 0, or 1. Substitut-
ing * = —1 into the expression 23 — x, we find (-=1)3 — (=1) = =1 +1 = 0,
so —1 € B. Substituting, z = 0 into 23 — x, we see (0)3 — (0) =0—-0=0, so
0 € B. And substituting z = 1 into z° — z, yields (1)> — (1) =1 -1 =0, so
1 € B. Hence, A C B.
(ii) Let « € B. Factoring yields

P -r=z@*—-1)=z@@-1)(r+1)=0.
Consequently, the elements of the set B are the integers 0, 1, and —1. Since
0l =0<2, 0€ A;since |[1I|]=1<2, 1€ A4; andsince | —1] =1 < 2,
—1 € A. Hence, B C A.
By (i) A C B and by (ii) B C A; therefore, A=B. N

The set A is a proper subset of the set B, written A C B, if and only if

A is a subset of B and A # B. Symbolically,
ACB&[(ACB)A(A#B).

Clearly, A is a proper subset of B provided every element of A is an element
of B and there exists at least one element of B which is not an element of
A. Since the natural numbers, N, are a proper subset of the integers, Z, are
a proper subset of the rational numbers, Q, are a proper subset of the real
numbers, R, we can write N C Z C Q C R.

In 1880, the British logician John Venn (1834-1923) published an article
titled “On the Diagrammatic and Mechanical Representation of Propositions
and Reasonings.” In this paper, Venn introduced his diagrams for illustrating
syllogistic logic. Venn did not conceive of the idea of representing logical
arguments by diagrams—Gottfried Leibniz, to name one person, had used
diagrams for this purpose approximately 200 years earlier. Nonetheless, Venn
was dissatisfied with the diagrams being used by his contemporary logicians
George Boole and Augustus De Morgan, so he devised his own diagrams,
which are now called Venn diagrams. A Venn diagram for A = B is shown
in Figure 3.1 and a Venn diagram for A C B is shown in Figure 3.2. If A C B,
it is necessary to consider both possibilities displayed in Figures 3.1 and 3.2.

Figure 3.1: Venn diagram for A = B.
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(4) s

Figure 3.2: Venn diagram for A C B.

Example 3.1.2 List all subsets of the following sets.

a. 0 b. {1} c. {a,b} d. {z,y,z}

Solution

a. The only subset of the empty set is the empty set itself—that is, () C 0.
b. The two subsets of the set {1} are ) and {1}.

c. The four subsets of the set {a,b} are 0, {a}, {0}, and {a, b}.

d. The eight subsets of the set {z,y, z} are the sets 0, {z}, {y}, {2}, {z, vy},

{z, 2z}, {y, 2}, and {z,y,z}. A

In Example 3.1.2, observe that the number of subsets of the set with no
elements—the empty set, ——is 2° = 1; the number of subsets of a set with
one element is 2! = 2; the number of subsets of a set with two elements is
22 = 4; and the number of subsets of a set with three elements is 23 = 8. Let

A ={a1,a9,...,a,} be a set with n > 1 elements. In creating a subset X
of A there are n decisions to be made—mnamely, whether a; € X or a; ¢ X
for ¢ = 1,2,...,n. Since there are n decisions to be made and two possible

choices for each decision, there is a total of 2™ possible subsets X of A.

The set of all subsets of a finite set A is denoted by P(A) and is called the
power set of A. The name power set comes from the fact that if the set A has
n elements, then its power set P(A) has 2" elements. From Example 3.1.2, it
is clear that P(0) = {0}, P({1}) = {0,{1}}, P({a,b}) = {0, {a}, {b}, {a,b}},
and P({z,y.2}) = {0, {z}, {v}, {z}, {, 9}, {2, 2}, {y, 2}, {x,y,2}}. Notice

that the power set is a set of sets.

EXERCISES 3.1

1. Which of the following sets of objects are well-defined?
a. The set of all former Presidents of the United States.
b. The set of all tall, former Presidents of the United States.
c. The set of the ten best songs.
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d. The set of all English names of the months of the year which begin
with the letter J.
e. The set of all natural numbers less than —1.

. Write the following sets using both roster notation and set-builder nota-

tion.

a. The set of all letters in the word Mississippi.

b. The set of odd natural numbers.

c. The set of all prime numbers greater than 12 and less than 50.

d. The set of all single digit integers.

e. The set of all real numbers which satisfy the equation 22 + 1 = 0.

. Let A= {1,2} and B = {1, 2, 3}. Which of the following statements are

true?
a. 1€ A b. 1C A c. {1}e€4 d. {1} cA4
e. feA f. PC A g. PcA h. ACB
i. AcB j. BDA k. BCA . A=B
m. A#B n. 0 o. N C0 p. 0cC
q. De{0,A} 1. 0c{0,A} s {0}e{0,A} t. {0}c{0, A}
. Pairs of sets A and B are given below. In each case, determine if A = B
or A# B.
a. A=1{1,23) B=1{1,2,2,3}
b. A ={z |z is an even prime} B={n|n€Zand |n| =2}
c. A={z|zisan even prime} B={n|neN and |n| =2}
d. A={n|n €N and n is odd} B ={n|n €N and n? is odd}
e. A={n|n €N and n isodd} B ={n|n € Z and n? is odd}
f. A={n|n€Zandn®<1} B ={n|ne€Zand n®?<n}

.Let C={z|z€Rand 2> —1=0}and D = {n|n € Z and |n| = 1}.

Prove C = D.

. Prove E=F for E={z|z € Rand 22 — 5z + 6 = 0} and

F={n|neN and 3 <n?<10}.

. Draw three different Venn diagrams with sets A and B for which A ¢ B.
. a. Draw a Venn diagram in which A C B and = ¢ B.

b. Prove if A C B and = ¢ B, then x ¢ A.
(Note: A Venn diagram does not constitute a proof. A Venn diagram is
a visual aid.)

. We showed if the set A has n elements, then the power set of A, P(A),

has 2™ elements. How many proper sets does the set A have? How many
nonempty subsets does the set A have? How many nonempty, proper
subsets does A have?

Write the power set of the given sets.

a. {Ann, Ben} b. {$,#,@Q} c {0, a, {a}} d. {0, {0}, 0, {0}}
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11. List the proper subsets of the following sets.
a. {a} b. {1, 2} c. 0 d. {0}

12. a. Proveif AC Band B C C, then A C C.
b. If A C B and B C C, what do you think you can prove regarding the
sets A and C?

13. Give examples of sets A, B, and C for which the following statements
are true.
a. ACB, B¢ZC, and ACC. b. ACB, BgC, and A¢ C.
c. ACB, BCC, and C C A. d A¢ B, BgC,and ACC.
e. Ae B, B¢C, and A¢C. f. Ae B, ACC, and B¢ C.

14. For each of the following statements determine if the statement is true
or false. If the statement is true, prove it. If the statement is false,
disprove it by giving a counterexample.

a. Ifa € Aand A € B, then a € B.

b. Ifa € Aand A ¢ B, then a ¢ B.

c. f AC Band B € C, then A € C.
d. If A¢ Band BC C, then A ¢ C.
e. fAZ Band B¢ C,then A¢Z C.
f. If A C B, then P(A4) C P(B).
g. It P(A) C P(B), then A C B.

3.2 Set Operations

Usually, at the beginning of a particular discussion a set called the universe
is specified. The universe is selected in such a way that it contains all elements
of all sets to be discussed. We will denote the universe by U. The universe
need not be the same set for all discussions. For instance, in one discussion
the universe might be the set of integers, in another discussion the universe
might be the set of all triangles, or the set of points in the plane, etc. There
are several elementary operations which may be performed on sets. In this
section, we will examine two binary operations (operations involving two sets)
and one unary operation (an operation involving a single set).

Let A and B be two subsets of the universe U. The set A union B is the
subset of U which contains all elements that belong either to A or to B or to
both A and B. The set A union B is denoted by A U B, which is read “A
union B.” Symbolically,

AUB={z|lzc AorzeB}={z|(r € A)V (r € B)}.

For example, if the universe is the set of natural numbers, A = {1,3,5, 7},
and B = {2,4,6}, then AUB = {1,2,3,4,5,6,7}. Notice that A C N, B C N,
and AUB C N = U. The British logician Charles Dodgson (1832-1898)
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improved upon Venn diagrams by employing a circumscribed rectangle to
represent the universal set. Dodgson was a distinguished mathematician and
wrote three mathematical texts; however, he is probably best known under his
pen name, Lewis Carroll. Under that name he published two popular books,
Alice’s Adventure in Wonderland and Through the Looking Glass. The shaded
areas shown in Figure 3.3 represent the set AU B for the three different Venn
diagrams.

U U U

©O | (@©:

Figure 3.3: Three Venn diagrams for AU B.

Let A and B be two subsets of the universe U. The set A intersect B
is the subset of U which contains all elements that belong to both A and B.
The set A intersect B is denoted by A N B, which is read “A intersect B.”
Symbolically,

ANB={z|zc€c Aandz € B} ={z|(z € A) A (z € B)}.

For example, if the universe is the set of integers, A = {—2,-1,0,1, 2},
and B = {—4,-2,0,2}, then AN B ={-2,0,2}. The shaded areas shown in
Figure 3.4 depict the set AN B for the three different Venn diagrams. When
ANB = (), the sets A and B are said to be disjoint. Notice in the center Venn
diagram of Figure 3.4 that AN B = (). This diagram is the typical diagram
for two disjoint sets.

U U U

O®| | (@

Figure 3.4: Three Venn diagrams for AN B.

It follows from the definition of union that x ¢ (A U B) is equivalent to
(1) -z e (AUB)] =—[(z € A)V(zx € b)] = [-(x € A)]A[-(z € B)]

by a De Morgan law. Since —(z € A) = ¢ A and since ~(z € B) =z ¢ B, it
follows from (1) that = ¢ (AU B) is logically equivalent to (x ¢ A) A (z ¢ B).
Likewise, x ¢ (AN B) is logically equivalent to (z ¢ A) V (x ¢ B).
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The complement of the set A, written A’, is the set of all elements in the
universe, U, which are not in the set A. Hence,
A={z|lzreUandx ¢ Ay ={z|(x e U)A(z ¢ A)}.
For example, if the universe U = {1,2,3,4,5} and A = {2,4}, then A’ =
{1,3,5}. A Venn diagram for a set A and its complement A’ is shown in
Figure 3.5.

U

Figure 3.5: A Venn diagram of A and its complement A’.

Example 3.2.1 Let U = {1,a,2,b,#,@}, A = {a,b,#}, B = {1,a,2, #},
and C = {2, #,@}. Find the following sets.

a. A’ b. (A”Y c. AUA d. AnA
e. AUB f.BUA g. (ANB)NC h.AN(BNCOC)
i.AU(BNC) j.(AUB)N(AUuC) k. (AuBY LANB

What do you notice about the answers for the pairs e and f, g and h, i and j,
and k and 17

Solution

a. By definition A’ is the set of elements in the universe U which are not in
the set A. Deleting the elements of the set A from the set U, we find

A'=1{1,2,@}.
b. By definition (A’)’ is the set of elements in U which are not in the set A’.

Deleting from U the elements of the set A’, which we found in part a, we
see

(A) = {a,b,#} = A.

In this example, we observe that the complement of the complement of the
set A is the set A.

c. From the definition of A and the computation of the set A’ performed in
part a, we obtain

AUA ={a,b,#,1,2,@Q} = U.
In this instance, we notice AU A" = U
d. From the definition of A and the result of part a,
ANA ={a,b,#}n{1,2,@} = 0.
Thus, A and A’ are disjoint.
e. AUB={a,b,#}U{l,a,2,#}={a,b,#,1,2}.
f. BUA={1,a,2,#}U{a,b,#} ={1,qa,2,#,b}.
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g. To calculate (ANB)NC, we calculate AN B first (because of the placement
of the parentheses) and then we calculate the intersection of the sets
ANBand C.

ANB={a,b,#}n{1,a,2,#} = {a, #}
and
(ANB)NC ={a, #} N{2, #,Q} = {#}.
h. To calculate A N (B N C), we calculate B N C first (because of the

placement of the parentheses) and then we calculate the intersection of the
sets A and BN C.

BNC ={1,a,2,#} N {2, #,Q} = {2, #}
and
ANBNC) ={a,b #}N{2,#} = {#}.
i. From part h, BN C = {2, #}, so
AU(BNC)={a,b,#}U{2,#} ={a,b,#,2}.
j. From part e, AUB = {a,b,#, 1,2} and from the definitions of sets A and
c,
AUC ={a,b,#}U{2,#,Q} = {a, b, #,2,Q}.
The intersection of the sets (AU B) and (AU C) is
(AUB)N(AUC) ={a,b,#,1,2}n{a,b,#,2,@Q} = {a,b, #,2}.
k. From part e, AU B = {a,b,#, 1,2}. Deleting the elements of AU B from
U, we find (AU B) = {@}.
l. From part a, A’ = {1,2,@} and calculating the complement of B, we find
B’ ={b,@}. So
A'nB ={1,2,a@}n{p,@} = {@}.
The answers for the pairs e and f, g and h, i and j, and k and 1 are equal.

That is, for this example, AUB = BUA, (ANB)NC =An(BNCQC),
Au(BNC)=(AUB)N(AUuC),and (AUB)Y =AnNnB. N

From Example 3.2.1, it appears the operator U may be a commutative
operator—that is, for all subsets A and B of a universe U, it may be true that
AU B = BU A. Hence, we formulate the following theorem and then prove
it.

Theorem 3.4 Let A and B be subsets of the universal set U. Then
AUB=DBUA.

Proof: Let z € U.

r€AUB & (x€ A)V (z € B) Definition of AU B
S (xeB)V(red Commutative law of disjunction
S reBUA Definition of BU A

Thus, (Vz € U)[(x € (AUB)) & (x € (BUA))|. Hence, AUB=BUA. i
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An equation, expression, or statement in set theory which is obtained by
interchanging U and N and interchanging the sets § and U is called the dual
of the equation, expression, or statement accordingly. Hence, the dual of the
statement AU B = B U A is the statement AN B = BN A. Likewise, the
dual of the statement AU} = A is the statement ANU = A. The principle
of duality for set theory says “If T is a theorem which is written in terms
of U, N, and ’, then the dual statement TP is also a theorem.” Since we have
proven AU B = B U A is a theorem of set theory, by the principle of duality,
AN B = BnNAis a theorem of set theory also. Using the principle of duality,
by proving one theorem, we have proven two theorems.

The algebra of sets consists of a collection A of subsets (), U, A, B, C, ...
of some universe U. (Notice that () and U must both be members of the
collection A.) On the collection A there is defined two relations, C and =;
two binary operations, U and N; and one unary operation . The collection A
also has the properties that if A and B are arbitrary sets of A, then AUB € A,
ANB e A, and A’ € A. For A an algebra of sets, the following statements
and their duals are theorems.

Idempotent Laws

1. AUA=A 1P, AnA=4

Identity Laws
2. AUp=A 2P ANnU=A
3. AUU=U 3P AND =0

Complement Laws

4. AUA =U 4P AN A =0
5 0'=U 50 U =10
6. (A) =4

Commutative Laws

7. AUB=BUA ™. AnB=BnA
Associative Laws

8. (AUB)UC=AU(BUC) 8P, (ANnB)NC=AN(BNC)
Distributive Laws

9. AU(BNC) = (AUB)N(AUC) 9P, AN(BUC) = (ANB)U(ANC)
De Morgan Laws

10. (AuB)Y=AnNnH 10P. (AnB)Y =A"UB
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The algebra of sets is another example of a mathematical system. Notice
the similarity between the theorems (laws) of the algebra of sets and the
theorems of mathematical logic when U is associated with Vv, N is associated
with A, and ’ is associated with =. We now prove a few of the theorems stated
above and leave the remainder to be proven as exercises.

Example 3.2.2 Prove the idempotent law: AU A = A.

Proof: Let A be a subset in the algebra of sets A with universe U and let
zeU.

r€AUA S (z€ A)V(xze A Definition of AU A
& (xe A Idempotent law of disjunction

Hence, AUA = A and by the principle of duality the dual statement ANA = A
is a theorem also. W

Example 3.2.3 Prove the identity law: AN @ = 0.

Proof: Let A be any subset in the algebra of sets A and let x € U, the
universal set.

reAND s (ze A)A(zel) Definition of AN @
S@xeANS x € () is a contradiction
& f Contradiction law of logic

This sequence of statements shows that the set AN has no elements. Hence,
AN =0 and by the principle of duality the dual statement AUU = U is a
theorem as well. W

Example 3.2.4 Prove the complement law: AU A’ = U.

Proof: Let A be a subset in the algebra of sets A and let € U, the universal
set.

re AUA

S xeA)V(ize ) Definition of AU A’
SxeA)VzeU)A(x ¢ A) Definition of complement
SzeAd)VE@elU)]A[(zeA)V(x¢ A A De Morgan law of logic
S(zeA)Vv(@eeU)]A[(xe AV (~(xre€A) Definition of ¢
S[(zeAd)V(zelU)|Nnt P Vv (=P) is a tautology
& (xe )V (zel) A tautology law
sSreAUU Definition of AUU

Thus, AU A" = AU U. Moreover, by the identity law 3, AUU = U, so
AUA = AUU = U. In addition, by the principle of duality the dual
statement A’ N A =0 is a theorem. MW



Set Theory 129

Example 3.2.5 Prove the distributive law: AU(BNC) = (AUB)N(AUC).
Proof: Let A, B, C CU and let z € U.

xe AU(BNCO)

S (xed)Vv(ze(BNO)) Definition of union

S (xeA)Vi(xeB)A(xel) Definition of intersection
S[(zeA)V(@eB)A[(xeA)V(reC)] A distributive law of logic
Slre(AUB)| Az e (AUuO)] Definition of union
sSre(AUB)N(AUQC) Definition of intersection

Hence, AU(BNC) = (AUB)N (AUC) and by duality AN (BUC) =
(AnB)U(ANC) 1A

Example 3.2.6 Prove the De Morgan law (AN B) = A" UB’.
Proof: Let A, BC U and let x € U.

z € (AN B)
S (xelU)A(xr ¢ (AN B)) Definition of complement
S (xeU)A[~(ze (AN B))] Definition of ¢
S (xeU)AN[-((z € A) A (z € B))] Definition of intersection
S (xelU)A[(-(x e Q) V(~(r € B)) A De Morgan law of logic
SxelU)N[(x¢ A)V (z ¢ B) Definition of ¢
SlzeUN(x¢ A)|V(xeU)A(x ¢ B)] A distributive law of logic
S (xeA)V(reB) Definition of A’ and B’
srxeAUB Definition of A’ U B’

Hence, (AN B) = A’ U B’ and by duality (AUB) =A'nB’. N

EXERCISES 3.2

1. Let the universe be the set U = {1,2,4,a,e,0}. Let A = {a,e, 0},
B = {1,4,0}, and C = {2,4}. Write the following sets using roster

notation.

a. A b. B’ c. AUB

d. AupB e. ANB . AnB

g. (AuBY h. (AnBY i. AnC

j. (AncCy k. (AnB)UC . An(BUC)
m. (ANCHYU(ANCQC) n. (AUC)N(ANC)
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Let U ={1,2,...,10}, E={x € U|z iseven}, O = {z € U |x is odd},
and P = {z € U | is a prime}.
a. Write E, O, and P using roster notation.
b. Write the following sets using roster notation.
(i) ENP (il) EUP (iii) E'NP (iv) ENP’
(v) ENnO (vi) EUO (vil) ONP  (viii) OUP
(ix) (ONP)UE (x) E'n0O’

. Let U be the set of all people, B be the set of all blonds, F' be the set of

all females, and T be the set of all people taller than five feet, six inches.
The following sets are defined in set-builder notation. Write these sets
in terms of B; F'; T; union, U; intersection, N; and complement, ’.

a. {x|x is not blond}

b. {z |z is a male}

c. {x |z is a blond female}

d. {z |z is a blond male}

e. {x |z is a female with dark hair}

f. {z |z is a dark haired male who is five feet, six inches tall or less}

g. {z|x is a blond female who is taller than five feet, six inches}

. Copy the following three Venn diagram configurations four times and

shade the indicated sets in parts a through d.
a. AANB b. AnB’ c. AUB d. A'nB

U U U

O®| | (©®:

In Exercises 5-8, let A, B, C' be subsets of the universe U.

0.
6.
7.
8.

Prove the identity law: ANU = A.

Prove the complement law: (' = U.

Prove the complement law: (A’) = A.

Prove the associative law: (AUB)UC = AU (BUC).

In Exercises 9—-15, let A and B be sets.

9.
10.

11.
12.
13.
14.

Prove AC AUB.

Prove AN B C A.
(Observe that from Exercises 9 and 10 we can deduce AN B C AU B.)

Prove AC B AUB = B.
Prove AC B ANB=A.
Prove AC B B' C A

Prove ANB =0« ACDB'.
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15. Prove AUB=ANB< A=B8B.

16. Let A, B, and C be sets. Give a counterexample to each of the following
statements.

a. fAUBC AUC, then BCC.
b.ANBCANC, then BCC.
17. Let A, B, and C be sets. Prove the following two theorems.
a. If BC C, then AUB C AUC for any set A.
b. If BC C,then AN B C AN C for any set A.

In Exercises 18-21, let A, B, C, and D be sets.

18. Prove (ANB)UC =AN(BUC) & C C A.

19. Proveif AC C and BC D, then AUB C CUD.

20. Proveif AC C and BC D, then ANBCCnND.

21. Proveif AUBCCUD, ANB=0,and C C A, then B C D.

3.3 Additional Set Operations

In this section, we discuss two more binary operations—the difference of
two sets and the Cartesian product of two sets.

Let A and B be two subsets of the universe U. The set difference of A
and B, written A — B and read “A minus B,” is the set of all elements in the
set A that are not in the set B. Symbolically,

A—B={z|z€eAand x ¢ B} ={z|(x € A) A (x ¢ B)}.

For example, if the universe is the set of natural numbers, A = {3,5,7, 8},
and B = {1,3,7,9}, then A — B = {5,8} and B — A = {1,9}. Observe that
in this example, A — B # B — A. Hence, the operator — is not commutative.
In addition, let C = {5,9}. Then (A — B) — C = {5,8} — {5,9} = {8}.
Furthermore, since B—C = {1,3,7}, A—(B-C) =1{3,5,7,8} —{1,3,7} =
{5, 8}. Thus, for this example, (A—B)—C # A—(B—C). Thus, the operator
— is not an associative operator.

It follows immediately from the definition of the complement of the set A,
A = {x|x € Uand z ¢ A}, and the definition of U minus 4, U — A =
{z|z € Uand z ¢ A}, that U — A = A’. Tt also follows easily from the
definition of the difference of sets that

a A-U=0 b.A-0=A c 0—-A=0 d A-—A=0 e A—BCA
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The shaded areas of Figure 3.6 represent the set difference A — B for three
Venn diagrams configurations.

U U U

OO\ | (©:

Figure 3.6: Three Venn diagrams for A — B.

Example 3.3.1 Let U = {3,5,m,e,i,u}, A ={3,m i}, B = {5, e}, and
C = {i, p}. Write the following sets using roster notation.

a. A—B b. ANB c. (A-B)-C d. A-(BUCQC)
e. A-C f. A—(ANC) g. (AnB)-C h. An(B-0C)
What do you notice about the answers for pairs a and b, ¢ and d, e and f

and g and h?
Solution
a. A—B={3,mi} — {5, e} ={3,i}.
b. Since B’ =U — B ={3,5,m,e,i,u} — {5, m e} = {3,i, u}
and ANB ={3,mi}N{3,i,u} ={3,i}.
Thus, from parts a and b it follows that for the given sets U, A, and B
that A— B=ANDB.
c. From part a A — B = {3,i},s0 (A — B) - C = {3,i} — {i,n} = {3}.
d. BUC ={5,metU{i,pu} =1{5,me,i,u}
So A—(BUC)={3,m,i}—{5,me i, pu}={3}.
Hence, from parts ¢ and d for the given sets A, B, and C, we have that
(A-—B)—-C=A—-(BUCQC).

e. A-C= {3,7T,Z}—{Z,,[L} = {3’71-}'

f. ANC ={3,mi}n{i,u} ={i},s0 A—(ANC)={3,n,i} —{i} = {3, 7}
Thus, from e and f for the given sets A and C, it follows that
A-C=A-(ANC).

. Since ANB = {3, m,i}n{5,m, e} = {7}, (ANB)-C = {n}—{i, u} = {n}.
h. Because B— C = {5, 7, e} — {i,u} = {5, 7, e},

AN(B-C)={3,mi}n{5,m e} ={r}.

Therefore, it follows from parts g and h that for the specified sets A,

B,and C, (ANB)—-C=An(B-C). 1

aQ

From Example 3.3.1, parts a and b, we conjecture that for A and B subsets
of some universe U, it is true that A— B = AN B’. This leads us to state and
prove the following theorem.
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Theorem 3.5 Let A and B be subsets of the universal set U. Then
A—-B=ANDB.
Proof: Let z € U.
reANB & (xe A)N(xeB) Definition of AN B’
< (xe A AN[(xeU)A(x ¢ B)] Definition of B’
)

S [(ze AN (xeU)]A(x ¢ B) Associative law of conjunction
Sze (ANU)|A(z ¢ B) Definition of ANU
S (xeA)AN(xéB) Substitution ANU = A
<creA-B Definition of A — B

Thus, (Vz € U)[(x € (ANDB')) © (r € (A— B))]. Hence, A— B=ANDB.

Theorem 3.5 shows how to write the set A — B in terms of set intersection
and set complementation. Thus, to prove theorems which involve the differ-
ence of two sets, we may write the difference of sets in terms of set intersection
and complementation and then use the algebra of sets to prove the desired
result. The proof of Theorem 3.6 illustrates this technique of proof.

Theorem 3.6 Let A and B be subsets of the universal set U. Then
A—B=A-(ANB).

Proof:

A—(ANnB)=AnNn(ANnB) By Theorem 3.5
=An(AUB) De Morgan law 107
=(AnAYU(ANDB) Distributive law 97
=0U(AnB) Complement law 47
=(ANnB)UD Commutative law 7
=ANB Identity law 2
=A-B By Theorem 3.5 W

As we noted earlier, the set {a,b} is equal to the set {b,a}, and it is im-
material which way we choose to write the set. However, the order in which
elements appear and events occur is sometimes very important. Therefore,
entities must be defined for which the order of occurrence of the elements is
significant.

By an ordered pair we mean an entity consisting of two elements in a
specific order. We denote the ordered pair with a as first element and b as
second element by (a,b).

In 1921, the Polish mathematician Kazimieri Kuratowski (1896-1980) gave
the following set theoretic definition of the ordered pair (a, b):

(aa b) - {{CL}, {av b}}
Using this definition, the following basic theorem regarding the equality of
ordered pairs can be proved. (See Exercise 21 of this section.)

Theorem 3.7 The ordered pair (a,b) = (c¢,d) if and ounly if a = ¢ and
b=d.
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By Theorem 3.7, the ordered pair (2,—3) # (2,4) because —3 # 4, the
ordered pair (1,5) # (—2,5) because 1 # —2, and the ordered pair (3,6) #
(6,3) because 3 # 6.

Generalizing the concept of an ordered pair, we define an ordered triple to
be an entity consisting of three elements in a specific order such as (a, b, ¢) in
which a is the first element, b is the second element, and c is the third element.
Two ordered triples (a,b,c) and (z,y, z) are equal if and only if @ = z and
b =y and ¢ = z. For a natural number n > 2, an ordered n-tuple is denoted
by (a1,as,...,a,) and (a1, a2, ...,a,) = (b1,be,...,b,) if and only if a; = b;
fori=1,2,...,n.

Let A and B be sets. The Cartesian product of A and B, written as
A x B, is the set of all ordered pairs (a,b) such that a € A and b € B. That
is,

AxB={(a,b)| a€ Aand b€ B}.

The symbolism A x B is read “the Cartesian product of A and B” or often
simply as “A cross B.” The Cartesian product is named in honor of the
French philosopher and mathematician René Descartes (1596-1650). In the
process of developing analytic geometry, the synthesis of algebra and geom-
etry, Descartes invented the Cartesian product and the Cartesian coordinate
system. If (a,b) € A x B, then it must be true that a« € A and b € B, whereas,
if (a,b) ¢ A x B, then either a ¢ A or b ¢ B.

As an example, let A ={1,a,#} and B = {$, Q}; then
AxB={(1,9),(1,Q),(a,8), (a,Q), (#.9), (#, Q)}

and

Bx A= {($a 1)3 ($a a)a ($a #)a (@a ]-)a (@a a)a (@a #)}
As this example illustrates, in general, A x B # B x A. That is, the Cartesian
product is not commutative.

Let A be a finite set with m elements and let B be a finite set with n
elements; then the Cartesian products Ax B and B x A both have mn elements
which are ordered pairs. To visualize the Cartesian product A x B we draw a
graph. First, we draw a horizontal line, choose m arbitrary points on the line,
and label the points with the elements in set A. Next, we draw a vertical line,
choose n arbitrary points on this line, and label these points with the elements
in set B. Through each point on the horizontal line chosen to represent an
element of A, we draw a vertical line, and through each point on the vertical
line chosen to represent an element of B, we draw a horizontal line. The
m vertical lines intersect the n horizontal lines in mn points. These points
represent the mn ordered pairs of the set A x B. A graph of A x B for
A={1l,a,#} and B = {8, @} is displayed in Figure 3.7.
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Figure 3.7: A graph of A x B.
Now let A = {a}, B = {b}, and C = {c}. Then
Ax (B x C)={a} x ({b} x{c}) = {a} x{(b,0)} = {(a, (b,c))}

and

(Ax B) x C = ({a} x {b}) x {c} = {(a,0)} x {¢} = {((a, ), ¢)}.

Consequently, in general, A x (B x C) # (A x B) x C. That is, the Cartesian
product is not associative. The Cartesian product of three nonempty sets A,
B, and C'is defined as

AxBxC={(a,bc)lac Aand b€ B and ce C}.

Thus, the Cartesian product of three nonempty sets A, B, and C' is a set of
ordered triples.

The following theorem states a relationship between the Cartesian product
and the empty set.

Theorem 3.8 A x B =( if and only if A =0 or B = (.

Proof: We will prove this theorem by proving its contrapositive: A # () and
B # () if and only if A x B # (.

First, we assume A # () and B # (). Thus, there exists an a € A and there
exists a b € B. Hence, (a,b) € A X B and, consequently, A x B # ().

Next, we assume A X B # (). Thus, there exists an (a,b) € A x B, which
implies there exists an a € A and there exists a b € B. Therefore, A # () and
B#(. 1
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The following example illustrates combining the Cartesian product opera-
tion with the operations of union and complementation.

Example 3.3.2 Let A= {1}, B ={2,3}, C ={1,2}, and D = {3}. Write
the following sets using roster notation.

a. Ax(BUCQC) b. (AxB)U(AxC) ¢ Ax(B-C)

d. AxB)—(Ax(C) e (AxB)U(CxD) f (AuC)x(BUD)
What do you observe about the answers for pairs a and b, ¢ and d, and e and
7
Solution

a. Ax(BUC) = {1}x({2,3}U{1,2}) = {1}x{2,3,1} = {(1,2),(1,3), (1, 1)}

b (Ax B)U(AxC)= ({1} x{2,3})u ({1} x{1,2})

{(1,2),(1,3)u{(1,1),(1,2)}
{(1,2),(1,3),(1,1)}
From parts a and b we see that A x (BUC) = (A x B) U (A x C) for
the given sets A, B, and C.
c. Ax(B-C)={1}x{3}={(1,3)}

d. (AxB)—(AxC)=({1} x{2,3}) — {1} x{1,2})
={(1,2),(1,3)} = {(1,1), (1,2)} = {(1,3)}
It follows from parts ¢ and d that A x (B—C) = (A x B) — (A x O)
for the given sets A, B, and C.

e.  AxB)U(CxD)=({1}x{2,3H)U({1,2} x{3})
= {(13 Z)a (1v 3)} U {(13 3)a (2v 3)}
= {(13 Z)a (1v 3)a (2v 3)}
f. (AUuC)x (BUD)=({1}u{1,2}) x ({2,3} U{3})
= {L 2} X {2a 3} = {(13 2)a (L 3)a (2a2)a (2v 3)}
From parts e and f it follows that for the specified sets A, B, C, and
D, (AxB)UAXxC)Cc(AuC)x(BuD). 1

From parts a and b of Example 3.3.2, we conjecture that for any sets A, B,
and C it is true that A x (BUC) = (A x B) U (A x C). Hence, we formally
state and prove the following theorem.

Theorem 3.9 For sets A, B, and C, Ax (BUC)=(Ax B)U(AxC(C).
Proof:

(a,d) € [Ax (BUC)]

(aec A)AN(de (BUCQ))
(ae A)AN[(de B)V (d
(ae A)AN(de B)]V|[(a

< ] Def. of Cartesian product

< e O)]] Definition of union

< € A) A (d e C)] Distributive law of conjunction
< [(a,d) € (Ax B)]V][(a,d) € (AxC)] Def. of Cartesian product

& (a,d) € [(Ax B)U (A x O)] Definition of union W

Theorem 3.9 states that the Cartesian product distributes over union.
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You are undoubtedly familiar with the geometric representation of the set
of real numbers by the “real number line.” The real number line is usually
drawn as a horizontal straight line. A point is selected to represent 0 and a
second, distinct point to the right of 0 is selected to represent 1. The choice
of the locations of 0 and 1 determine the scale on the number line. It follows
from the axioms of Euclidean geometry that to each point on the line there
corresponds one and only one real number and, conversely, to each real number
there corresponds one and only one point on the line. For z,y € R, if x < y,
then the point corresponding to x lies to the left of the point corresponding to
y. Positive real numbers correspond to points to the right of 0 and negative
real numbers correspond to points to the left of 0. If a,b,2 € R and a < b,
then x satisfies the inequality a < x < b if and only if z corresponds to a point
“between” the points corresponding to a and b. A graph of the real number
line is displayed in Figure 3.8.

Figure 3.8: The set of real numbers represented geometrically on a line.

We can define subsets of the real numbers which are intervals using inequal-
ities as follows: Let a,b € R and let a < b.
The open interval (a,b) is the subset of the real numbers
(a,0)={r e R |a <z <b}
The closed interval [a, b] is the subset of the real numbers
[a,b] ={z € R | a <z <b}.
The half-open (half-closed) intervals are
[a,) ={x e R|a<z<b}
and
(a,b)={x e R |a<z<b}.

Let a,b € R and let a < b. The infinite intervals are
[a,00)={z € R |a<x}
(a,00)={zeR|a<z}

(—o0,b]={z€R |z <b}
(—oo,b)={zeR |z <b}
(—00,00) = R.

A graph of some intervals is shown in Figure 3.9. The notation o means the
real number corresponding to the point is not in the interval; the notation e
means the real number corresponding to the point is in the interval.
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Interval Graph
o——o0
(a, b) } }
a b
———o
[a bl } }
a b
e—o©
La, b) } }
a b
o
(a, o) i
a
®
(-o0,b] }
b

Figure 3.9: Graphs of some intervals.

Example 3.3.3 Let A =[-5,2) and B = [1, 00). Graph each of the following
sets and write the set using both set notation and interval notation.

a. AUB b. ANB c. A d. B’
e. A—B f. B—A g. AxB h. Bx A
Solution

In set notation, A = [-5,2) ={x e R |-5 <z <2} and B =[1,00) =
{reR|1<z}.

a. We graph A and B on the same number line as shown in Figure 3.10.
Since A U B is the set of all elements in the set A or in the set B, the
graph of AU B is the set which appears at the bottom of Figure 3.10.
By the definition of union, AUB={z € R | (-5 <z <2)or (1 <x)}.
From this expression and from the graph of the set AU B in Figure 3.10,
we see that the set notation for AUBis AUB={zxeR|—-5 <z}

Hence, in interval notation AU B = [—5, 00).
| | | |
1 | —
-5 0o 1 2
A . 0
B -—
BUA L

Figure 3.10: A graph of A, B, and AU B.

b. In Figure 3.11 we graph the sets A and B. Since AN B is the set of
all elements in the set A and in the set B, AN B in Figure 3.11 is the
region where the sets A and B “overlap.” Hence, the graph of AN B is
the set which appears at the bottom of Figure 3.11. By the definition
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of intersection, ANB ={zx € R| (-5 <z < 2)and (1 < x)}. From
this definition and Figure 3.11, we find that the set notation for AN B
is ANB = {zx € R |1 < 2 < 2} and that the interval notation is
ANB=1,2).

! I I I
I I | I
-5 0o 1 2
[ O

A
B ~——
BNA e—o0

Figure 3.11: A graph of A, B, and AN B.

c. A graph of A and its complement A’ is shown in Figure 3.12. It is clear
from the graph that A’ = {z € R | (z < —5) or (2 < z)} in set notation
and A’ = (—o0, —5) U [2, 00) in the interval notation.

! ! !

I | |

0o 1 2
O

@ L1

A
A —o ——

Figure 3.12: A graph of A and A'.

d. A graph of B and its complement B’ is shown in Figure 3.13. From
the graph, it follows that in set notation B = {x € R | z < 1} and in
interval notation B’ = (—o0, 1).

-5 o 1 2
B r ——
B’ 0

Figure 3.13: A graph of B and B'.

e. First, we graph A and B. Then since A — B = A — (AN B), we remove
from the set A the “overlap” of A and B, the set AN B, to obtain the
graph of A — B shown in Figure 3.14. From the graph, it is obvious that
A-B={zeR| -5<z<1}=[-51).

! I I I
I I | I
-5 o 1 2
[ O

A
B -~
A-B o o

Figure 3.14: A graph of A, B, and A — B.

f. A graph of B — A is displayed in Figure 3.15. It was obtained by re-
moving from the set B the overlap of sets A and B. From this graph it
is clear that B—A={z € R |2 <z} =[2,00).

g. First, we draw the Cartesian plane R x R. Then, we graph the set
A along the horizontal axis and the set B along the vertical axis. The
graph of A x B is the “infinite strip” shaded in Figure 3.16. In the
graph the right boundary of A x B (a ray of the line = 2) appears as
a dashed line, because it does not belong to the set A x B. The point
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(2,1) appears in the graph as o, because (2,1) ¢ A x B, and the point
(—5,1) appears in the graph as e, because (—5,1) is in the set A x B.
In set notation, A x B ={(z,y) e RxR | (-5 <z < 2)and (1 <y)}

and in interval notation A x B = [-5,2) x [1, 00).
| | | |
| [ —

-5 0o 1 2
A . o
B
B-A

Figure 3.15: A graph of A, B, and B — A.

T

y
5__
4__
B

3__

T

(-5, 1) T 0 (2,1)
| | | X
5 ol 1 2
A °® 0

Figure 3.16: A graph of A, B, and A x B.

. The graph of B x A is the “infinite strip” shaded in Figure 3.17. In set

notation Bx A = {(z,y) e RxR | (1 <z)and (-5 <y < 2)} and in
interval notation B x A = [1,00) x [—5, 2).
y

o 21

(1,2)
o— —

(11 -5)
-6 +

Figure 3.17: A graph of A, B, and B x A.
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EXERCISES 3.3

In Exercises 1-7 let A, B, and C be subsets of the universe U. Prove
each of the given statements.

.(AnB)-C=An(B-0).

.A=(A-B)U(ANB).

. A— B and AN B are disjoint sets.

.If AC B, then A— B = (.

.IfANB=0,then A—B=Aand B— A= B.

.A—B=B—-Aifand onlyif A= B.

.(A-B)-C=(A-C)—(B-0).

. A typical Venn diagram for three sets A, B, and C' is shown below.
Observe that the three sets divide the universal set U into eight regions.

1

2
3
4
5
6
7
8

e.
f.

U

/N

\/
‘vA

. Copy the Venn diagram twice. On one diagram, shade the region

which corresponds to the set A — (B N C). On the other diagram,
shade the region which corresponds to the set (A — B) U (A — C).

. What do you conjecture about the relationship between the sets

A—(BNC)and (A— B)U(A— C)?

. Copy the Venn diagram twice. On one diagram, shade the region

which corresponds to the set A — (BUC), and on the other diagram,
shade the region which corresponds to the set (A — B) N (A — C).

. What do you conjecture about the relationship between the sets

A—(BUC)and (A—B)n(A-C)?
Prove that A — (BNC)=(A—-B)U (4 -C).
Prove that A— (BUC) =(A—-B)n (4 -C).

. The symmetric difference of two sets A and B is the set

AAB=(A-B)U(B- A

A Venn diagram representing the symmetric difference of A and B is

shown below.
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U

Prove the following properties of the symmetric difference.
a. AAB=BAA (The operator A is commutative.)
b. AAB)AC=ANAN(BAC) (The operator A is associative.)

c. Forallsets A, AAN)=A
(The empty set is the identity operator for A.)
d. AN(BAC)=(ANB)A(ANC)
(Intersection distributes over the symmetric difference.)

e. If the sets A and B are specified, then the equation A A X = B
has a solution X. (Hint: What does A A (A A B) =7)

10. For the given sets A and B list the ordered pairs of A x B and B x A.
a. A={-1,0,1}, B={—4,i}
b. A= B =1{2,4,6}
c. A={1,3}, B={(2,4),(6,8)}

11. Graph A x B for parts a, b, and ¢ of Exercise 10.

12. Given that the Cartesian product A x A has nine elements, (a,b) € Ax A,
and (b,c) € A x A, list the remaining seven elements of A x A.

13. Let A and B be nonempty sets. Prove A x B = B x A if and only if
A=B.

14. Prove if A, B, and C are sets and A C B, then Ax C C B x C.

15. Prove or disprove the following statements.
a. f Ax C =B xC, then A= B.
b. f AxC =B x Cand C # (), then A = B.

In Exercises 16—20, let A, B, C, and D be sets and prove the given
statements.

16. Ax(B-C)=(AxB)—(AxC)
(The Cartesian product distributes over complementation.)
17. Ax(BNC)=(AxB)n(AxC)
(The Cartesian product distributes over intersection.)
18. (Ax B)U(CxD)C(AUC)x (BUD)
19. AxB)N(CxD)=(ANnC)x (BND)
20. (AxB)N(Bx A)=(ANB) x (ANB)
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21. Use Kuratowski’s definition (a,b) = {{a}, {a,b}} to prove the following
theorem: (a,b) = (¢, d) if and only if a = ¢ and b = d.

2. Let A={z|1<z<5}, B={z|3<z<8}andC={z|5<z<8}.
Write the following sets using both set notation and interval notation.
a. AUB b. ANnB c. AuC d AnC e. A—-B
f. B—A g A-C h. AxB i. BxA j CxC

23. Let A= (—1,2), B=(—4,1], and C = [1,00). Write the following sets
using both interval notation and set notation.

a. AUB b. ANB c. BucC d. BNnC

e. A f. ' g. A—-B h. B-C
24. Graph the following Cartesian products.

a. (1,3] xR

b. R x {-2}

c. (—00,2) x [3,00)

d. {2} x {3}

((1,2) U (3,4)) x ([2,3) U (4, 5])
((1,2) x [2,3)) U((3,4) x (4,5])

=0

3.4 Generalized Set Union and Intersection

The set operations of union and intersection are binary operations. That
is, at present U and N are defined only for two sets. However, by using
parentheses, we have been able to calculate more complex expressions such as
(AUB)UC, (ANB)U(CN D), and so forth. Also, until now, we have denoted
individual sets by different capital letters. In this section we will extend the
definitions of union and intersection to arbitrary collections of sets.

Let Ay, As, and Az (instead of the usual A, B, and C) be subsets of the
universe U. The associative law for set union is (4;UA3)UAs = A;U(A2UA3).
Essentially, the associative law says we may omit the parentheses and simply
write A1 U Ay U Ag, since it is immaterial if we calculate A; U As first and
then calculate the union of the sets A1 U A> and As or if we calculate A; U A3
first and then calculate the union of the sets A; and As U As. The result of
either calculation is the same. Likewise, the set ((A; U Az) U A3) U A4 may
be written as A; U As U A3 U Ay and, in general, for n € N we may write
Ay UAsU---U A, without parentheses and without ambiguity. Note that for
neN, € A UAU---UA, if and only if x € A; for some i = 1,2,...n.
Thus, we define the union of a finite number of sets A;, Ao, ..., A, as follows.
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Let n € N and let Ay, As, ..., A, be subsets of the universe U; then the
finite union of the sets Ay, As,..., A, is

AjUA U UA, ={zeU|xe€ A forsomei=12....,n}
={zeU|(Fie{l,2,...,n})(xe )}

It is convenient to condense the notation for the finite union by writing
n
UJAai=4u40---uA4,
i=1

We extend the definition of the union of a finite number of sets to the

infinite number of sets Ay, As, ... in the following manner.
For each n € N, let Ay, As,... be subsets of the universe U; then the
infinite union of the sets A;, A, ... is

JAi=40A0- ={zeU|@ieN)(zeA)}
=1

Example 3.4.1 For i € N, let A; = [i,i+ 1). Determine the following sets

5 50 37 0o
1=1 1=1 1=10 1=1
Solution
5
a. | JAi = AlUA;UA3UALUA; = [1,2)U(2,3)U[3,4)U[4,5)U[5,6) = [1,6)

i=1

b. UA =[1,2)U[2,3)---U[50,51) = [1,51)

c. U A; = [10,11)U [11,12) ---U [37, 38) = [10, 38)
1=10

d. GAi:[l,Z)U[2,3)~~:[1,oo) n

In an analogous manner, we define the intersection of a finite number of
sets and the intersection of an infinite number of sets as follows.

Let n € N and let Ay, As, ..., A, be subsets of the universe U; then the
finite intersection of the sets Aj, As,..., A, is

(Ai=AinAN-NA,

=1
={zeU|xzeA foralli=1,2,...,n}
={zecU|Mie{l,2,....,n})(z € 4)}.
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For each n € N, let Ay, Ag,... be subsets of the universe U; then the
infinite intersection of the sets A, Ao, ... is

i=1

1
Example 3.4.2 For i € N, let A; = [0,-). Determine the following sets.
i

5 50 37 00
i=1 i=1 i=1

i=10
Solution
5
1 1 1 1 1
. A7.: al 3o [y I yx) = Y ¢
a Q 0,1)n[0,5)N[0,5) N[0, )N [0, 2) = [0, %)
50
1 1 1
b A;=1[0,1 ,=)N---NJ0, =) = [0, —
Q 0,1)n[0,5)N++-N[0, 25) = [0, =5)
37
1 1 1 1
. Al: , T , P =) = , ==
c QO 0, 75) N0, )N N[0, 52) =10, 5)
d. ﬂAi:[O,l)ﬂ[O,%)ﬂ~~:{O}, since for all x € (0, 1) there exists an
i=1

1
i€ Nsuch that —<z. R
7

A set of sets is often called a family of sets, or simply a family. We
will denote a family of sets by a script capital letter. For instance, the family
A = {{a},{a,b},{a,b,c},{a,b,c,d}} is a family with four sets and the family
B ={(—a,a) | a € (0,00)} is an infinite family of open intervals. The union
and intersection of a family of sets is defined as follows.

Let F be a family of sets which are all subsets of a universe U. The union
over F is

U A={zcU|(@FAcF)(xe A}
AeF

The intersection over F is

(NA={zcU| (VA F)(xe A}
AEeF
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Thus, for A = {{a},{a,b},{a,b,c},{a,b,c,d}}
UA:{a,b,c,d} and ﬂA:{a}

AcA AcA
and for B = {(—a,a) | a € (0,00)}

UUB=R and () B={0}
BeB BeB
Theorem 3.10 Let F be a family of sets and let B be any member of the
family F. Then
(JACB and BC |J A
AcF AcF
Proof: Let F be a family of sets and let B € F. Suppose x € (). A. Then
by the definition of intersection, z € A for every A € F. Since B € F, x € B.
Therefore, (). A C B.

Let F be a family of sets, let B € F, and let © € B. By the definition
of union, z € B implies © € J oz A, since B is a set in the family F.
Hence, every element of B is an element of the union (J 4. » A. Consequently,
BCUjerA W

It is tempting to conjecture that if F is a family of sets, then

NAac A
AeF AeF
The next example shows this statement is false when the family of sets F is

the empty set. However, the statement (), A C Uy r A is true whenever
the family of sets F is not the empty set.

Example 3.4.3 Let F be the empty family of subsets of the natural numbers,
N. Show that

a. (JA=N b [JA=0, and c. 1Azl A4
AeF A€eF A€eF A€eF
Solution

a. The statement (VA € F)(z € A) is equivalent to (VA)[(4 € F) =
(x € A)]. Since F is assumed to be the empty set, the hypothesis
of the last statement, A € F, is false. Consequently, the implication
(A€ F) = (z € A)] is true for all z € N. Hence, ()4 A =N.

b.  The statement (3A € F)(x € A) is logically equivalent to the statement
(3A)[(A € F) A (x € A)]. The negation of the last statement is

VA)[~(AeF)V(-(z e )= VA(AeF)= (x ¢ A).

Since F = (), A € F is false, and the implication (4 € F) = (z ¢ A)
is true. Thus, it follows from the definition of union for a family of sets
that for 7 =0, Uuer A =0.
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c. Let F be the empty family of subsets of N. Since by part a, [, .z A =
N; since by part b, (J . A =0; and since  C N, U,er A C Nuer A
That is, for F =0, yer AL UpserA. B

It is always possible to identify each set in a nonempty family of sets with
an identification tag called an index. The following definition and examples
should help clarify this concept.

Let F be a nonempty family of sets and let I be a nonempty set with the
property that for each i € I there corresponds a set A; € F. Then the family
of sets F = {A; | i € I} is called an indexed family of sets. The set [ is
called the indexing set and each i € I is called an index.

In Example 3.4.1, A; = [i,7+ 1) are the members of the family of sets F,
the natural numbers N is the indexing set I, and each natural number i is
an index. The family A = {{a}, {a, b}, {a,b,c},{a,b,c,d}} contains four sets
and may be indexed by the indexing set I = {1,2, 3,4} where 1 is associated
with the set {a}, 2 is associated with the set {a,b}, 3 is associated with the
set {a, b, ¢}, and 4 is associated with the set {a, b, ¢, d}. Of course, associating
1 with {a, b}, 2 with {a,b,c,d}, 3 with {a}, and 4 with {a,b, ¢} is another
indexing of the family A by the indexing set I. In addition, the family A
may be indexed by the set J = {a, b, ¢, d} where a is associated with the set
{a}, b is associated with the set {a,b}, c is associated with the set {a,b, c},
and d is associated with the set {a,b, ¢,d}. These observations illustrate that
the indexing set for a family of sets is not unique and neither is the indexing
itself. The family B = {(—a,a) | a € (0,00)} may be indexed by the set
I = (0,00) by associating with each a € (0,00) the interval (—a,a) in the
family B. Notice that B can be indexed by the set (0, c0) by associating with
each a € (0, 00) the interval (—a/2, a/2). Using this technique, we can clearly
index B in an infinite number of ways.

Every nonempty family of sets F may be indexed. Simply choose the in-
dexing set to be F itself and associate with each set A in the indexing set
the set A in the family of sets. When F is a nonempty family of sets indexed
by the set I, the following alternate definitions may be used for (J,.» A and
Nacr A, respectively.
UAdi={zeU|@iehea)
iel

and
(Ai={zeU|(VieI)(x € A}
iel

Many theorems regarding set operations for finitely many sets can be
generalized to theorems regarding set operations for arbitrary families.
For example, the distributive laws AU (BN C) = (AUB)N (AUC) and
AN(BUC) = (ANB)U(ANC) and the De Morgan laws (AUB) = A'N B’
and (AN B) = A’ U B’ may be generalized as stated in Theorems 3.11 and
3.12.
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Theorem 3.11 (Generalized Distributive Laws) Let U be the universe,
let A be any subset of the universe, and let F = {B; | ¢« € I} be an indexed
family of subsets of U. Then

a. Au(ﬂ B) = ﬂ(AUBi) (union distributes over intersection)
iel iel

b. AO(U B) = U(AﬂBi) (intersection distributes over union)
el el
Proof: a. There are two cases to consider: F = @) and F # §).
Case 1. If F =0, then ,.; B; =U and (),c;(AU B;) = U. Hence,
AU((B)=AUU =U=(|(AUB;).

iel i€l
Case 2. Suppose F # () and let z € U.
reAU (ﬂie] B;)

S (xeA)V(r ey Bi) Definition of union

& (recA)V[(Viel)(xeB;)  Definition of (,c; B;

< Viel)[(xe A)V(x e B;)] A theorem for quantifiers
& Miel)(ze AUB;) Definition of union

& x €, (AUB;) Definition of M, ;(AU B;)

b. The proof of part b is an exercise. W

Theorem 3.12 (Generalized De Morgan Laws) Let U be the universe
and let F = {A; | i € I'} be an indexed family of subsets of U. Then

a. ((JAa)y =4 and b (4 =4
icl icl icl icl
Proof: a. The proof of part a is an exercise.

b. There are two cases to consider: F = () and F # 0.

Case 1. If F =0, then (N, ; A] =U and {J,; A; = 0. Hence,
Jay=0=v=)4.
i€l iel
Case 2. Suppose F # () and let z € U.
v € (Ve Ai) & ~(z € N;er Ai) Definition of complement
< [(VieI)(x € A;)]  Definition of [, 4;
S Fel)(x ¢ A) A negation theorem for quantifiers
& (Fiel)(x e A) Definition of complement
S x e Jer 4] Definition of (J;.; A} B
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EXERCISES 3.4

1.

Let F be the family of sets F = {{3,4,6,8},{4,5,8,9},{7,8,11,12}}
and let U = {1,2,...,12}. Determine

a. Uaer A b Nacr A

Let the universe be N and let F be the family of sets of natural numbers
which contain 5. Find

a. Uuer 4 b. NyerA

Let F be the family F = {{2,3,4},{3,4,5,6},{3,4,5}} and let U =
{1,2,3,4,5,6,7}. Calculate the following sets.

a. User A b NyerA ¢ (UserA)
A Myer A e (Nacr AY £ Uger A
g B350 Uscrd b User({3.5)04)

i 2460U(Macr 4 J Macr({24.6)04)

Let U = {a,b, {a}, {b}, {a,b}} and let A; = {a}, Ay = {a,b}, A5 =

{a,b,{a,b}}, Ay = {a,b,{a}}, and A5 = {{a}, {b}}. Find |J;c; A; and
;e Ai for the following index sets.

a. I=1{3,4,5) b. I=1{1,2,4,5) c. 1=1{1,2,3,4,5}
Forn e N, let A, ={1,2,...,n}. Determine

a. Ule A1 b. Uigﬁ A1 C. ﬂle A1

d. ﬂgﬁ A e. U?:1(N - 4) . ﬂ?:1(N —A;)

Forn € N, let A,, = {nm |m € Z}. Thus, A3 ={...,—6,-3,0,3,6,...}.
Find

a. A3 Ay b. [ An c. AgU Ay d | 4.

neN neN

Let the universe be the set of real numbers. For each of the following
sets A, find (i) U, en An and (ii) (),cn An-

a. A, =[n,n+1] b. A, =(n,n+1) c. A,=(-n,n)

1 1
d Av=(-—1+) e Ay=(—.1) £ An=[0,1+)

n n
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10.
11.

12.

13.
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Let the index set I = [0, 00). For each r € I define

Sy ={(z,y) ERxR | [z|+ |y| =71}
and

T, ={(z,y) e RxR | 2|+ [y| > r}.
Determine

a. Usr b. ﬂsr c. UTT d. ﬂTT

rel rel rel rel
Prove Theorem 3.11.b. AN (U,c; Bi) = U, (AN B;).

Prove Theorem 3.12.a. (U,;c; 4i)" = ;1 Ai-

a. Expand (4; U A2) N (B; U B2 U Bs) into a union of intersections.
b. Expand (%, 4;) N (Uj=, B;) into a union of intersections.

c. Expand (U;c; Ai) N (U;je; Bj) where I and J are nonempty index
sets into a union of intersections.

a. Expand (4; N Az) U (By N Bz N Bs) into an intersection of unions.
b. Expand ((;%, 4;) U (-, B;) into an intersection of unions.

c. Expand ((;c; Ai) U (N;c; B;) where I and J are nonempty index
sets into an intersection of unions.

Let U be the universe, let A; where i € I be a nonempty indexed family
of subsets of U, and let B be any subset of U. Prove

i€l iel iel iel

3.5

Chapter Review

Definitions

A set consists of objects called elements or members.

Sets are described in roster notation, in which the elements of the set are
enclosed in curly braces, { }, and separated by commas, or in set-builder
notation, in which the set is specified in the form {z | P(x)}.

There is one and only one set which has no elements. It is called the empty
set or null set. The empty set is the set ) = {z |z # x}.

The set A is a subset of the set B, written A C B, if and only if every
element of A is an element of B. That is, A C B & (Vz)[(x € A) = (z € B)].
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Two sets A and B are equal if and only if [(A C B) A (B C A)].

The set A is a proper subset of the set B, written A C B, if and only if
A is a subset of B and A # B. That is, AC B < [(AC B) A (A # B)].

The set of all subsets of a finite set A is denoted by P(A) and is called the
power set of A.

Let A and B be two subsets of the universe U. The set A union B is the
subset of U which contains all elements that belong either to A or to B or to
both A and B. Thus,

AUB={z|lz€ Aorz e B} ={z|(xr € A)V (x € B)}.
The set A intersect B is the subset of U which contains all elements that
belong both A and B. That is,
ANB={z|zc€ Aandz € B} ={z|(z € A) A (z € B)}.

When AN B = (), the sets A and B are said to be disjoint.

The complement of the set A, written A’, is the set of all elements in the
universe, U, which are not in the set A. Hence, A’ = {z |z € U and x ¢ A} =
{zl(zeU)A(x g A}

An equation, expression, or statement in set theory which is obtained by

interchanging U and N and interchanging the sets ) and U is called the dual
of the equation, expression, or statement accordingly.

Let A and B be two subsets of the universe U. The set difference of A
and B, written A — B, is the set of all elements in the set A that are not in
the set B. Thatis, A—B={z|zrcAandz ¢ B} ={z|(x € A)A(z ¢ B)}.

An ordered pair with a as first element and b as second element is
denoted by (a, b).

The Cartesian product of two sets A and B, written as A x B, is the
set of all ordered pairs (a,b) such that a € A and b € B. That is, A x B =
{(a,b) | a € A and b € B}.

Let a,b € R and let a < b.
The open interval (a,b) is the subset of the real numbers
(a,b) ={z e R | a<z<b}.
The closed interval [a, ] is the subset of the real numbers
[a,b] ={z e R | a<x<b}.
The half-open (half-closed) intervals are
[a,b)={zreR|a<z<b}and (a,b]={r € R |a <z < b}
The infinite intervals are
[a,00)={zeR |a<x}
(a,00) ={zeR|a<z}
(—o0,b)={zeR |z <b}
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(—oo,b)={zeR|z<b}

(—00,00) = R.
Let n € N and let Ay, As, ..., A, be subsets of the universe U; then the
finite union of sets Ay, As, ..., A, is

AjUA U UA, ={zeU|xe€ A forsomei=12...,n}
={zeU|(Fie{l,2,...,n})(xe )}

For each n € N, let Aj, Ay, ... be subsets of the universe U; then the
infinite union of sets A;, Ao, ... is

i=1
Let n € N and let Aj, As, ..., A, be subsets of the universe U; then the
finite intersection of sets A;, Ay, ..., A, is

(A =41nAn---NA,
i=1
={xeU|zecAforalli=1,2...,n}
={zeU| (Vie{l,2,...,n})(xz € A;)}.
For each n € N, let Aj, Ay, ... be subsets of the universe U; then the
infinite intersection of sets Aj, As,...is

(Ai=AinAn---={zeU|(Vie N)(z e A)}
i=1
Let F be a family of sets which are all subsets of a universe U.
The union over F is

U A={zeU|(@AcF)(ze A}
AeF

The intersection over F is
(JA={ze€U| (VA€ F)(z € A)}.
AeF

Let F be a nonempty family of sets and let I be a nonempty set with the
property that for each i € I there corresponds a set A; € F. Then the family
of sets F = {A; | i € I} is called an indexed family of sets. The set [ is
called the indexing set and each i € I is called an index.

Useful Laws

The principle of duality for set theory says “If T is a theorem which is
written in terms of U, N, and /, then the dual statement 77 is also a theorem.”

The algebra of sets consists of a collection A of subsets §, U, A, B, C, ...
of some universe U. On the collection A there is defined two relations, C
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and =; two binary operations, U and N; and one unary operation ’. The
collection A also has the properties that if A and B are arbitrary sets of A,
then AUB e A, ANB € A, and A’ € A. For A an algebra of sets, the
following statements and their duals are theorems.

Idempotent Laws

1. AUA=A 1P, AnA=A
Identity Laws

2. AUpP=A 2P ANnU=A
3. AUuU=U 3P, AN =10
Complement Laws

4. AUA =U 4P ANA =0
5. 0 =U 5P U =1

6. (A)Y=A

Commutative Laws

7. AUB=BUA . AnB=BnA
Associative Laws

8. (AUB)UC=AU(BUC) 8P, (ANB)NC=AN(BNC)
Distributive Laws

9. AU(BNC) = (AUB)N(AUC) 9P, AN(BUC) = (ANB)U(ANC)
De Morgan Laws

10. (AuB)Y=AnNH 10P. (AnB)Y =A"UB

The algebra of sets is an example of a mathematical system.

Generalized Distributive Laws Let U be the universe, let A be any
subset of the universe, and let F = {B; | ¢ € I} be an indexed family of
subsets of U. Then

a. Au(ﬂ B) = ﬂ(AUBi) (union distributes over intersection)
iel iel

b. AO(U B) = U(AﬂBi) (intersection distributes over union)
iel iel

Generalized De Morgan Laws Let U be the universe and let F =
{4; | i € I'} be an indexed family of subsets of U. Then

a. (JAa)y =4 and b (4 =U4

i€l iel iel iel
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Review Exercises
1. Which of the following sets are well-defined?

a. The set of all honest people.

b. The set of natural numbers which are divisible by 5.

c. The set of English names for the days in the middle of the week.
d. The set of integer solutions of the equation 22 +9 = 0.

2. Write the following sets using roster notation.
a. A={neN| -3<n<2}
b.B={necZ| -3<n<2}

c. C={neZin®*<9}
d. D={zeR|z?+16 =0}

3. Let A ={a,b,c}, and B = {0, a,b,c,d}. Which of the following state-

ments are true?

a. a€ A b. aCA c. {a}eA d. {a} C A
e. PC A f. {0te A g. hcB h. {0} B
i. ACB i. ACB k. BC A . A=B

4. Let X ={1,a}.
a. Write the power set of X, P(X).
b. Write the proper subsets of X.
c. Write the nonempty, proper subsets of X.

5. Let U = {1,2,3,4,5,6,7}, A = {3,5}, B = {2,6}, and C = {1,3,6}.

Calculate

a. AUB b. ANnB c. AUA” d. BnB

e. (AuB)NnC f. (BnC)uC g B-C h. C-B

i. (AUBUC) j. AxC k. CxA 1. Ax(B-C)

6. Let A={zeR| —-2<ax<4}, B=[-1,5),and C ={z € R|z > 3}.
Write the following sets using both set notation and interval notation.

a. AUB b. AnC c. BucC d. BnC
e. A—B f. B—A g B h. (C - BY

7. Graph the following Cartesian products.

a. Rx[-1,2) b {3}xR c {-1}x{2} d. (=3,00)x (-0,2]

8. For each of the following statements, determine if the statement is true
or false. If the statement is true, prove it. If the statement is false, give

a counterexample.

a. f AC Band BC C, then A C C.
b. Ifa€ Aand A ¢Z B, then a ¢ B.
c. f AC B and ¢ ¢ B, then ¢ ¢ A.
d. If AZ Band BZ C, then A Z C.
e fACCand BCC,(AUB)CC.
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9. Let Ay = {a,b,c,d}, Ay = {b,d}, and Az = {a,c}. Find
a. U§:1 A b. ﬂ§:1 A
10. Let 4, = [2,2+ %) Find

a. U, A b. Ny A c. U, 4 d. N2, A
More Challenging Exercises

11. Let A, B, and C be sets. Prove that C C ANB < C C Aand C C B.
12. Let A and B be sets.

a. Prove P(AN B) = P(A) NP(B). (Hint: Use Exercise 11.)

b. Prove P(A)UP(B) C P(AUB).

c. Prove P(AUB) € P(A) UP(B).

d. Under what conditions on A and B is P(AU B) = P(A) UP(B)?

e. Prove that P(A — B) # P(A) — P(B) for any sets A and B.

13. Let A, B, C, and D be nonempty sets. Provide counterexamples to the
following statements.
a. A-(B-C)=(A-B)—(A-0)
b.A-(B-C)=(A-B)-C
c. P(A) —P(B)CP(A—-B)
d. (AxB)U(CxD)=(AUC)x (BUD)
e. AxA)—-(BxC)=(A-B)x(A-0)
f.Ax(BxC)=(AxB)xC
14. The symmetric difference of sets A and Bis AAB = (A—-B)U(B—A) =
(AU B) — (AN B). Prove that
a. (AAB =(AuC)A(B-C
b. (AAB =ANC)A(BNC
c. AAB)-C=(A-C)A(B-0).
15. Prove
a. ( ANB)xC=(AxC)N(Bx().
b. (AUB)xC=(AxC)U (B xC(C).
c. AxC)—(BxC)C(A-B)xC.

yuc ).
ync ).



156 Introduction to Mathematical Proofs

16. Consider the Venn diagram for two sets A and B shown below.

.l]
w

Set A is represented by the interior of the circle on the left and set B
is represented by the interior of the circle on the right. Notice that
the universal set is subdivided into 22 = 4 disjoint sets which we have
labeled w, x, y, and z. These sets can be represented using A, B, U, U,
N, and — as follows: w=U - (AUB),z=A—(ANB),y=ANB, and
z=B - (ANB).

A Venn diagram in which three sets A, B, and C' are represented as

intersecting circles is shown below. These sets subdivide U into 2% = 8
disjoint sets labeled s, t, u, v, w, x, y, and z.

A U
N
&

a. Write the sets s through z using A, B, C, U, U, N, and —.

A Venn diagram constructed with four sets A, B, C, and D should
subdivide the universal set into 2* = 16 disjoint sets. However, it has
been proved that this cannot be done with four overlapping circles.
Consider the four overlapping circles A, B, C, and D shown in the
diagram below.

b. How many disjoint subsets of U are there?
c. Write sets e through r using A, B, C, D, U, N, and —.
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d. Can you locate the set (AN D) — (B UC) in the diagram above?

e. Start with the Venn diagram above which has three overlapping
circles A, B, and C.

(i) Can you draw a fourth region D on the diagram which is not a
circle and which intersects sets A, B, and C to produce exactly
16 disjoint subsets whose union is U?

(ii) Label the 16 regions of the diagram and write an expression for
each region in terms of A, B, C, D, U, N, and —.

In Exercises 17 through 20 a statement and a proof? are given.
For each exercise do the following.

a.
b.
c.

17.

18.

19.

20.

Determine if the given statement is true or false.
If the statement is a theorem, determine if the proof? is valid.
If the given statement is false, provide a counterexample.

Statement. Theorem? Proof?

Statement: Let AC Band C C B. If z € A, then z € C.

Proof? Suppose z ¢ C. Since v € Aand A C B, x € B. Since ¢ & C
and C C B, x ¢ B. Because z € B and = ¢ B, we have a contradiction.
Therefore, x € C.

Statement. Theorem? Proof?

Statement: Let A, B, and C be nonempty sets. f A—B C C and A € C,
then AN B # 0.

Proof? Since A  C, there exists an x € A such that x ¢ C. Since z ¢ C
and A—BCC,z¢ A—B. Sincex € Aand x ¢ A — B, x € B. Hence,
x € AN B. That is, AN B # (.

Statement. Theorem? Proof?

Statement: Let A, B, C and D be sets. If Ax BC C x D, then A C C
and B C D.

Proof? Let a be any element of A and let b be any element of B. Then
(a,b) € Ax B. Since Ax BC C x D, (a,b) € C x D. Hence, a € C and
b€ D. Therefore, AC C and B C D.

Statement. Theorem? Proof?

Statement: Let A and B be nonempty sets and let C' and D be sets. If
AxXxBCCxD,then ACCand BCD.

Proof? The proof is the same as the one presented in Exercise 19.






Chapter 4

Relations

Relations and functions play a major role in many branches of mathematics
and sciences. Historically, the concept of a function was introduced prior to
the concept of a relation. However, a relation is more general entity than a
function. Therefore, in this chapter we will consider relations and in the next
chapter we will consider functions.

4.1 Relations

In everyday conversations, we often hear statements such as “Richard is
the husband of Sue,” “Kimberly is the sister of Jerry,” “Alaska is larger than
Arizona,” and so forth. Each of these sentences includes a predicate (“is the
husband of,” “is the sister of,” or “is larger than”) which expresses a “relation”
between two objects. The word “relation” implies an association between two
objects—people, states, numbers, concepts, etc.—based on some property
of the objects. In elementary mathematics, you previously encountered the
relations “is equal to,” “is less than,” “is congruent to,” “is parallel to,” and
many more. Let P(z,y) denote the open sentence in two variables: “z is
the husband of y.” If we specify that the variable x is an element of the
set of all living male people, M, and y is an element of the set of all living
female people, F', then given a particular ordered pair (m, f) € M x F we can
substitute x = m and y = f into the open sentence P(z,y) and obtain the
statement P(m, f). This statement will be true or false but not both. Let H
denote the predicate “is the husband of.” When P(m, f) is true, we will write
(m, f) € H, which is read “m is H-related to f.” In this instance, we would
say “m is the husband of f.” On the other hand, when P(m, f) is false, we
will write (m, f) ¢ H, which is read “m is not H-related to f.” In general, two
sets of ordered pairs are determined by each relation R—the set of ordered
pairs which satisfies the relation, R, and the set of ordered pairs which does
not satisfy the relation, R’'.

159
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We now state the mathematical definition of a relation formally. Let A and
B be sets.
A relation from A to B is any subset of A x B. In particular, when
B = A, arelation R from A to A is called a relation on A.
The domain of a relation R from A to B is the set
Dom(R) ={z € A | (3y € B)((z,y) € R)}.
The range of a relation R from A to B is the set
Rng(R) ={y € B | (Iz € A)((z,y) € R)}.
The domain of a relation R from A to B is the set of all first coordinates of
the ordered pairs in the set R and, by definition, the domain of R is a subset
of A—that is, Dom(R) C A. The range of a relation R from A to B is the set

of all second coordinates of the ordered pairs in the set R and, by definition,
Rng(R) C B.

Let R be any set of ordered pairs, let A be any set such that Dom(R) C A,
and let B be any set such that Rng(R) C B. Then by definition R is a
relation from A to B. Consequently, every set of ordered pairs is a
relation. For example, let R = {(1,a), (b,2),(1,2)}. Then Dom(R) = {1,b},
Rng(R) = {a,2}, and R is a relation from A = Dom(R) to B = Rng(R).

Example 4.1.1 Let A = {1,2,3}, and B = {2,3,4}. Let S be the relation
from A to B defined by

S ={(z,y) € Ax B | z is less than y}.
And let T be the relation from B to A defined by

T ={(z,y) € Bx A | x is less than y}.

a. Use the roster method to specify S, Dom(S), and Rng(5).
b. Use the roster method to specify T', Dom(T"), and Rng(T).

Solution

a. Since 1l € Aand1<2€ B, 1 <3¢ B,and 1 <4 € B, the ordered
pairs (1,2), (1,3), and (1,4) are elements of S. Likewise, since 2 € A but
24£2€B, (2,2) ¢ S. However, since 2 <3 € Band 2 <4 € B, (2,3) and
(2,4) are elements of S. Since3 € A, 3£2€ Band3£3€B, (3,2)¢5
and (3,3) ¢ S. But since 3 <4 € B, (3,4) € S. Hence,

S = {(1’ 2)’ (1’ 3)7 (174)7 (2, 3)7 (2, 4), (3a4)}~
Because the first coordinates of the ordered pairs of S are 1, 2, 3, Dom(S) =

{1,2,3} = A. Because the second coordinates of the ordered pairs of S are 2,
3,4, Rng(S) ={2,3,4} = B.

b. Since 2 € B and 2 < 3 € A but b < a is false for all other b € B and
ac A, T={(2,3)}, Dom(T) ={2} C B, and Rng(T)={3} C A. N

A graph of the relation S = {(z,y) € A x B | z < y} where A = {1,2,3}
and B = {2, 3,4} is displayed in Figure 4.1(a) and a graph of the complement
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of S, 8" ={(z,y) e AxB | ~(z <y)} ={(z,y) € AxB |z > y} is displayed
in Figure 4.1(b). Observe that A x B=SUJS".

y y
i+ e e e 4+
31— e e 33—
2+ e 2 °
1y 4 X T T T
T 1 T 1
1 2 3 1 2 3
(a) (b)
Figure 4.1: (a) Graph of S. (b) Graph of 5.

If we interchange the components of the ordered pairs in the relation S
of Example 4.1.1, we obtain the set {(2,1),(3,1),(4,1),(3,2),(4,2),(4,3)}.
This relation is designated by S~! and is called the inverse relation of S.
Observe that Dom(S™!) = {2,3,4} = Rng(S) and Rng(S~!) = {1,2,3} =
Dom(S). Now let U = Dom(S) U Rng(S) = {1, 2,3, 4}. Graphing the ordered
pairs in S using open dots, o, and graphing the ordered pairs in S~! using
closed dots, e, we obtain the graph shown in Figure 4.2.

y

4—4- O o) o)
3—+— O O )
2—+ O () )
1—+ e o o

] ] ] ] X

I I I I

1 2 3 4

Figure 4.2: A graph of the relations S and S~!.

Notice that corresponding to each point (a,b) € S there corresponds exactly
one point (b,a) € S~!. For example, (1,2) in S corresponds to (2,1) in S~1,
(2,3) in S corresponds to (3,2) in S7!, and so forth. If the “diagonal line
y = a” is considered to be a mirror, then corresponding to each point (a,b) € S
is the “mirror image” (b,a) € S~! and vice versa. Hence, the relation S—!
is the “mirror image” of the relation S with respect to the “line y = z” and,
likewise, S is the “mirror image” of S™!. Also observe from Figure 4.1(b) and
Figure 4.2 that S~ # S’—that is, the inverse of a relation is not equal to its
complement.

In set-builder notation, S = {(z,y
Figure 4.2, the inverse relation S=1 =

)€ AX B | x <y} and, as indicted by
{(z,y) € BxA |y < x}. The condition
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y < x used to define S~ is obtained from the condition z < y used to define
S by interchanging the variables z and y. Thus, if a relation is defined by
some condition on the variables x and y, then the condition which defines the
inverse relation is obtained from the original condition by interchanging the
variables x and y. In general, we define an inverse relation in the following
manner. If R is a relation from A to B, then the inverse relation from B
to A is the relation

R~ ={(z,y) € Bx A| (y,2) € R}.
An important family of relations is the family of identity relations—one

relation for each nonempty set A. This family is defined as follows. Let A be
a nonempty set. The identity relation on A is the set
Ip={(z,2) e Ax A|xze A}

From the definition of the identity relation, it is clear that Dom(I4) =
Rng(l4) = A. If C = {1,2,3,4}, then I = {(1,1),(2,2),(3,3),(4,4)}. A
graph of I¢ is shown in Figure 4.3. The points on I are points on the “line”
about which a relation S on C is reflected in order to obtain the inverse rela-
tion S~ on C. (Locate the points of the relation I in Figure 4.2 and notice
that the point (1, 3) is the reflection of (3,1) about the point (2,2) € Iz and
that the point (2,4) is the reflection of (4,2) about the point (3,3) € I¢.)

y
41 )
3+ [ )
2 o
1+ e
[T T TR T
I I I I
1 2 3 4

Figure 4.3: A graph of the relation Io

Let R be a relation from A to B and let S be a relation from C to D.
The relation R equals S, which is denoted by R = S, if and only if A = C,
B =D, and [(z,y) € R< (x,y) € 5]

The next two examples should help clarify this definition. The identity
relation on the natural numbers is

In={(z,2) e NxN |z =2z}
and the identity relation on the integers is

Iz ={(z,2) € ZXZ | x =z}
The identity relation In # Iz, because Dom(In) = N # Z = Dom(Iz).
(2,a)}. Then Dom(R) = {1,2} = Dom(S) and Rng(R) = {a,b} = Rng(95);
however, R # S because (1,a) € R but (1,a) ¢ S.
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Since relations are sets, we can perform the usual unary set operation of
complementation and the binary set operations of union, intersection, and set
difference on relations. Moreover, because relations are sets of ordered pairs,
we can perform additional binary operations such as composition. Let R be a
relation from A to B and let S be a relation from B to C. The composition
of S and R is the relation

SoR={(a,c)e Ax C|@be B)((a,b) € R) A((b,c) € S)]}.

Example 4.1.2 Let A = {a,b,¢,d}, B = {1,2,3,4,5}, C = {w,z,y, z},
R={(a,1),(a,2),(b,2),(c,3)},and S = {(1,2),(2,9), (4, w)}. Determine

a. SoR b. Dom(S o R) c. Rng(S o R)

Solution

Perhaps the best way to visualize the composition of S and R is through
the arrow diagram shown in Figure 4.4. First, we draw regions to represent
the sets A, B, and C and select points in the regions to represent the elements
of the sets. Since the ordered pair (a, 1) is in the relation R, we draw an arrow
from the point a in set A to the point 1 in the set B. Since (a,2) is in the
relation R, we draw an arrow from the point a to 2, and so forth. Once we
have completed drawing all of the arrows from A to B which represent the
relation R, we draw the arrows from points in the set B to points in the set C'
which represent the relation S. To determine the set of ordered pairs in the
composition S o R, we select, in turn, elements in set A and find all paths,
if any, which lead from that element to some element in C. The set of all
ordered pairs found in this manner constitutes the elements of S o R. For
instance, a € A and there is a path from a through 1 € B to = € C. Hence,
(a,z) € S o R. There is another path from a € A through 2 € Btoy € C.
Thus, (a,y) € So R. Using Figure 4.4 and proceeding in this fashion, we find

SoR={(a,z),(a,y), (b,y)}-
Hence, Dom(S o R) = {a,b} C A and Rng(So R) = {z,y} C C.

R N

1

a w
2

b e = x
3

c® >0 y
4

de { I
5
°

A B Cc

Figure 4.4: Arrow diagram for SoR. |
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Observe that for relations R and S as defined in Example 4.1.2 the com-
position R o S is not defined, since S is a relation from B to C and R is a
relation from A to B. Hence, the binary operation of composition, o, is not
commutative—that is, S o R # Ro S. Even if S and R are both relations on
the same set A and S o R and R o S are both defined, S o R may not equal
Ro S. For example, let A = {1,b}, R = {(1,b)}, and S = {(b,1)}. Then
SoR={(1,1)}, RoS={(bb)},and SoR# Ro S.

Theorem 4.1 Let R be a relation from A to B; then
a. IpoR=R and b. Rolgs =R

Proof: a. Assume (z,y) € R. Then y € B and (y,y) € Ig. By the definition
of composition, since (z,y) € R and (y,y) € Ip, it follows that (z,y) € IgoR.
Hence, R C Ig o R.

Now assume (z,y) € Ip o R. By definition of Iz o R there exists a b € B
such that (z,b) € R and (b,y) € Ig. Since (b,y) € Ip, b = y and since
(z,b) € R, (z,y) € R. Thus, Ig o R C R. Consequently, [ro R=R. N

b. Proving that Ro I4 = R is an exercise.

Theorem 4.1 states that a relation R from A to B has a “left” identity—
the identity relation Ig such that Ig o R = R—and a “right” identity—the
identity relation I4 such that Ro I, = R. But unless A = B, the relation R
does not have an identity I such that To R = Rol = R. When A = B, the
identity for the relation R on A is the relation I4.

In elementary algebra, for all real numbers = # 0, there exists a real number
called the multiplicative inverse of x and denoted by x~! with the property
that z - 2~! = 27! - 2 = 1, the multiplicative identity for the set of real
numbers. Example 4.1.3 provides an example of a relation R for which neither

the composition R o R~! nor the composition R~! o R is an identity relation.

Example 4.1.3 Let R = {(1,2),(1,3), (3,2)}. Calculate RoR™* and R~'oR.

Solution

(3,2) € R, (2,2) € RoR™!. Hence, Ro R™! = {(2,2),(2,3),(3,2),(3,3)},

The inverse relation is R™1 = {(2,1),(3,1), (2 3)}. Since (2,1) R !
and (1,2),(1,3) € R, (2,2),(2,3) € RoR™'. Since (3,1) € R~ and
(1,2), (1,3) € R, (3,2),(3,3) € Ro R™*. And since (2,3) € R~ and

3

which is not an identity relation because (2,3) € Ro R™1.
In a like manner, we find R~' o R = {(1,1),(1,3),(3,1),(3,3)}, which is
not an identity relation because (1,3) € R"'oR. H

In Example 4.1.4 we illustrate how to specify the composition of two rela-
tions when they are both written in set-builder notation.
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Example 4.1.4 Let T = {(x,y) € R x R | 2% +y? = 4} and let
V={(z,y) e R xR | 2%+ (y —2)? =9}. Find

a. Dom(T) b. Rng(T) c. Dom(V) d. Rng(V)
e. VoT f. Dom(VoT) g. Rng(VoT)
Solution

a.—d. The graph of the relation T is a circle with center at the origin and
radius 2. Hence, Dom(T") = [—2, 2] = Rung(T"). The graph of the relation V is
a circle with center at (0,2) and radius 3. Therefore, Dom(V) = [-3, 3] and
Rng(V) =[-1,5].

e. VoT
= {(z,y) € Dom(T) x Rng(V) | (3z € Rng(T))[((z,2) € T) A ((2,9) € V)]}
={(z.y) € [-2,2] x [-1,5] | Bz € [-2,2])[(a” + 2" =) A (2" + (y = 2)* = 9)]}
={(z.y) € [2,2] x [-1,5] |4 —a” + (y - 2)* = 9}
={(z.y) € [-2,2] x [-1,5] | (y — 2)* — 2" = 5}

f—g. The graph of (y — 2)? — 22 = 5 is a hyperbola with center at (0,2) and
transverse axis the y-axis. See Figure 4.5. Since by definition of composition,
Dom(V oT) C Dom(T) = [—2, 2] and since (y —2)? — 22 = 5 is defined for all
x € [-2,2], Dom(V o T) = [—2,2]. From Figure 4.5, we see that

Rng(VoT) =[-1,2—V5]U[2+ V5,5 C [~1,5] = Rng(V).

61y

\('275)\;’_/(2,5)/

0,2+ J/5)
24 (072)

-3 2 -1 1 2 3

‘ ‘ ‘ ‘ ‘ X
0,2-/5
/{{Z( e

Figure 4.5: Graph of (y—2)?—2?% = 5. [ ]

Let A ={1,2}, B ={a,b,c}, C={u,v,w}, R=1{(1,a),(2,0),(2,¢)},
and S = {(a,v), (b,w), (¢c,u)}. Then S o R = {(1,v), (2,w), (2,u)} and
(SoR)™t ={(v,1), (w,2), (u,2)}. Notice that Ro S and therefore (Ro S)~*
does not exist. We easily compute
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Rt ={(a,1),(b,2),(c,2)} and S~!={(v,a),(w,b),(u,c)}
and observe that S~! o R~! does not exist; however,
R1oS™t ={(v,1),(w,2),(u,2)} = (SoR)~%
This leads us to conjecture and prove Theorem 4.2.

Theorem 4.2 Let R be a relation from A to B and let S be a relation from
B to C. Then the relation from C to 4, (SoR)™! =R 10851
Proof: Let (¢,a) € C x A. Then
(c,a) € (SoR)™ & (a,c) e SoR
Definition of inverse relation
< (3be B)[((a,b) € R)A((b,yc) € S)]
Definition of composition
< (3 € B)[((b,a) € R7Y) A ((¢,b) € S7Y)]
Definition of inverse relation
< (Fb € B)((¢,b) € ST A ((b,a) € R7Y)]
Commutative law of conjunction
< (c,a) e R71o S
Definition of composition H

Theorem 4.2 states that the inverse of the composition of two relations,
(S o R)™!, is the composition of the inverse of the second relation with the
inverse of the first relation, R=! o S~1.

We proved earlier by example that the operation of composition on relations
is not commutative. That is, we showed that, in general, for relations R and
S, RoS # S o R. However, the operation of composition on relations is
associative, as we state and prove in the next theorem.

Theorem 4.3 Let R be a relation from A to B, let S be a relation from B
to C, and let T be a relation from C to D. Then T'o (So R) = (T o S) o R.

Proof: Let (a,d) € A x D. Then
(a,d) €T o(SoR)
& (e e O)[((a,¢) € (SoR)) A((c,d) € T))
Definition of composition
< (e e O)[(Tb € B)[((a,b) € R) A((b,c) € S)] A ((¢,d) € T)]
Definition of composition
& (e € C)(3b e B)[((a,b) € R) AN[((b,c) € S) A((e,d) € T]]
Associative law of conjunction
< (3be B)(3c € O)[((a,b) € R) A[((b,c) € S) A((e,d) € T]]
A property of quantifiers
< (3 e B)[((a,b) € R)A[(Fc € C)((b,c) € S) A ((¢c,d) € T)]]
A property of quantifiers
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< (3b e B)[((a,b) € R) A ((b,d) € (T 0 5))]
Definition of composition

< (a,d)e (ToS)oR
Definition of composition H

EXERCISES 4.1

1.

Let A ={1,2,3} and B = {a}.

a. How many elements are there in A x B? List them.

b. How many elements are there in the power set P(A x B)? List them.
¢. How many relations are there from A to B?

. Suppose A has m elements and B has n elements.

. How many elements are there in A x B?
How many elements are there in P(A x B)?
. How many relations are there from A to B?
How many elements are there in A x A?

. How many elements are there in P(A x A)?
. How many relations are there on A7

O 0 T

. Let A={2,3,4},let B ={2,6,12,17}, and let

R = {(z,y) € Ax B | z divides y}.
Write R using the roster method.

. Let A={1,2,3,4} and let

R={(z,y) € Ax A|y— 2z isan even natural number}.

Write R using the roster method.

. Let S be the relation S = {(c, 1), (b,3), (3, ¢), (2,b), (a, f), (b,6)}. Find

a. Dom (S) b. Rng (S) c. §71 d. (7H)~!

. Find the domain and range of the following relations on R.

=eliey

1={(z,y) eERxR |y=—222+3}
={(z,y) e RxR | y=+v1-—2a?}

(z,y) eER xR [ (z==3)V(ly <4)}
={(z,y) eRxR| (z=-3)A(ly| <4)}
={(z,y) ER xR |22 +3? <9}

Re ={(z,y) e Rx R | |z[+ |y| <9}

——

2
3
4
5

rh.@ P‘O .0”99

7. Graph the relations of Exercise 6.

8. For the following relations determine the inverse relation.

a. R= {(a’ 1)’ (Q’b)’ (3’4)’ (l‘,y)}
b. S={(z,y) €ZxZ|22+y*=1}
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10.

11.

12.

13.
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c. T={(z,y) e RxR| 322 — 42 =9}

d. V={(,y) e RxR|y<2z—5}

e. W={(z,y) eRxR | y(z +3) =z}

Let R ={(1,4),(2,3),(5,4), (3,2)},let S ={(5,1),(2,4),(3,3)}, and let
T =1{(1,2),(2,1)}. Determine

a. RoS b. SoT c. RoR d.ToT
e. Ro(SoT) f. (RoS)oT g. (RoS)™t h. R=1oS~1
Use set-builder notation to write S o R for the given relations R and S.
a. R={(z,y) e RxR |y=2z—1} and
S={(z,y) e R xR | 222 + 3y =5}
b. R={(z,y) e RxR|y=+x}and S ={(z,y) e RxR | y =sinz}
Let P be the set of all living people,
let B = {(z,y) € P x P |y is the brother of z},
let F'={(z,y) € P x P |y is the father of x},
let M = {(x,y) € P x P |y is the mother of z},
and let S = {(z,y) € P x P | y is the sister of z}.
Determine the following compositions.
a. FoF b. MoF c. FoM d. MoB
e. BoM f. FoS g. SoM h. MoS
Prove Theorem 4.1.b. That is, prove if R is a relation from A to B, then
Roly=R.
Let R and S be relations on a set A. Provide counterexamples to the
following statements.
a. Dom(R) C Dom(S o R) b. Rng(R) C Rng(S o R)

4.2 The Order Relations <, <, >, >

In addition to the operations of addition, 4+, and multiplication, -, the sets of
natural numbers, integers, rational numbers, and real numbers have an order
relation < (read “less than”) which satisfies certain axioms. These axioms
can be expressed in terms of the undefined concept of positiveness. A set
of numbers S is ordered if there exists a subset of positive numbers S,
which satisfy the axioms:

O1. (Trichotomy Law) For all z € S exactly one of the following three

statements is true: =0, x €S8, —x€5,.

O2. Forall z,y € Sp, z+y€S,.
O3. Forall z,y € Sy, -y € S,.
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We define negative, <, <, >, > as follows:

The number z is negative if and only if —z is positive.

The order relation < (read “is less than”) is defined by z < y < y — x is
positive.

The order relation > (read “is greater than”) is defined by x >y < z—y
is positive.

The order relation < (read “is less than or equal t0”) is defined by
r<y&szrz<yorz=y.

The order relation > (read “is greater than or equal to”) is defined by
rT>yYy&sSaTr>yorx =y.

Observe that © < y and y > z are equivalent statements as are z < y
and y > x. Likewise, the conjunction z < y and y < z can be abbre-
viated by the single statement z < y < z. Similarly, z > y > 2z &
z>yandy >z, andx >y > 2z < x >y and y > z. The natural numbers,
the integers, the rational numbers, and the real numbers with the usual op-
erations of addition, +, and multiplication, -, and the order relation, <, are
all ordered sets. The integers are an example of an integral domain and the
rational numbers and the real numbers are examples of ordered fields.

Using the axioms and definitions stated above, for w, x,y, z € R the follow-
ing theorems can be proved.

T1. 0 < x & =z is positive.
T2. The transitive law holds for <: If x < y and y < z, then z < z.

T3. The trichotomy law holds for <: If 2,y € R exactly one of the follow-
ing statements is true: z =y, <y, y<z.

Td. z<y=zc+z2<y—+=z
T5. z < 0 & x is negative.

T6. If x < 0and y < 0, then z+y < 0. (The sum of two negative numbers
is a negative number.)

T7. If x < 0 and y < 0, then = -y > 0. (The product of two negative
numbers is a positive number.)

T8. If x # 0, then 0 < 22.
T9. 1> 0.
1

1
T10. If 0 < <y, then 0 < — < —.
y

T11. If z < y and 0 < z, then xz < yz.

T12. If z < y and 2z < 0, then yz < zz.

T13. If z < y, then —y < —x.

T14. If z < y and z < w, then z + z < y + w.

T5. f0<z<yand 0 < z < w, then zz < yw and

SRS
NS

T16. If z <y and y < z, then z < z.
T17. If z <y and y < z, then x = y.
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T18. If z <y and 0 < z, then zz < yz.
T19. If z <y and z < 0, then yz < zz.

Let A be a nonempty set of real numbers. The number m € A is the least
element of A (smallest element of A or minimum of A) if and only if
for every x € A, m < z. The number M € A is the greatest element of A
(largest element of A or maximum of A) if and only if for every = € A,
M > z.

Some nonempty subsets of R have least elements; others do not. For ex-
ample, the set of natural numbers N has a least element which is 1. The set
of integers Z does not have a least element. The open interval (—2,3) does
not have a least element. Although for all x € (—2,3), -2 < z, —2 is not
a least element of (—2,3), because —2 ¢ (—2,3). On the other hand, —2 is
the least element of the interval [—2,3), because —2 < z for all x € [-2,3)
and —2 € [—2,3). The following theorem proves if a set of real numbers has
a least element, it is unique.

Theorem 4.4 The least element of a set A of real numbers is unique.

Proof: Suppose z and y are distinct least elements of A. Since z is a least
element of A and y € A, = < y. Also, since y is a least element of A and
x € A, y <zx. By Theorem T17, x = y, and the least element of A is unique.
|

The Archimedean Property of Euclidean geometry states that any length
no matter how large can be exceeded by repeatedly “marking off” a given
length no matter how small. The following is the algebraic formulation of the
Archimedean Property for the set of natural numbers.

Theorem 4.5 The Archimedean Property for the Natural Numbers
For all m,n € N there exists a k € N such that m < kn.

Proof: By T9, 0 < 1. Adding m and using T4, we find that
m=0+m<1l+m=m+1.

That is, (1) m < m + 1. Since 1 is the least element of N and since 0 < 1,
(2)0<1<m and (3) 1 <n. From (1) and (2), we have (4) 0 <m < m-+1.
Multiplying (3) by m+1 > 0 yields (5) 1- (m +1) <n-(m+1) by T18. It
follows from (4) and (5) that m < m+1 < (m 4+ 1) - n. That is, the value
k =m+ 1 € N makes the conclusion of the Archimedean Property true. W

A nonempty set A of real numbers is well-ordered if and only if every
nonempty subset of A has a least element. For example, the nonempty set
A = {-1,m, e} is well-ordered, because each of the nonempty subsets {—1},
{7}, {e}, {-1,7}, {—1,¢e}, {m, e}, and A all have a least element. It is fairly
evident from this example that any nonempty, finite subset of real numbers
is well-ordered. The open interval (—2,3) is not well-ordered, since it has
no least element. Although the interval [—2,3) has a least element, it is not
well-ordered since the subset (—2, 3) has no least element. The sets Z, Q, and
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R are not well-ordered, because none of these sets has a least element. Even
though it appears obvious that the set of natural numbers N is well-ordered,
a proof of this fact requires the use of the Axiom of Induction, which we will
not study until Chapter 6. Thus, for now, we state the well-ordering principle
without proof.

The Well-Ordering Principle: The set of natural numbers is well-
ordered by the relation <.

It follows easily from the well-ordering principle that the set of whole num-
bers W = N U {0} is well-ordered by <, since any nonempty set of W which
contains the element 0 has 0 as its least element and since any nonempty set
of W which does not contain 0 is a nonempty subset of N and therefore has
a least element by the well-ordering principle.

In elementary school, you learned how to use a process called “long division”
to divide one natural number b, called the dividend, by a natural number a,
called the divisor, to obtain two whole numbers ¢, called the quotient, and
r, called the remainder. The whole numbers ¢ and r are unique and satisfy
the equation b = aq + r where 0 < r < a. We now state and prove a theorem
called the division algorithm for natural numbers.

Theorem 4.6 The Division Algorithm for the Natural Numbers

For all a,b € N there exists unique g, € W such that b = aqg + r and
0<r<a.

Proof: Let a,b e N. Consider the set S = {b—ax |z € W and b—ax > 0}.
Sincex =0€ W and b € N, b—a-0=>b2> 0. Thus, by definition of 5,
b € S and S is a nonempty subset of the whole numbers. As a consequence
of the well-ordering principle, S has a smallest element r and by definition of
S, r>0. Since r € 5, there exists a ¢ € W such that » = b — aq. That is,
there exist whole numbers ¢ and r such that b = ag+r and r» > 0.

We now show that r < a by contradiction. Assume to the contrary a < r
and let d=r—a > 0. Since a € N, a >0 and d < r. Furthermore,

d=r—a=(b—-aq)—a=b—a(g+1)>0.

Consequently, d € S and d < r, which contradicts r being the smallest element
of S. Thus, we have 0 < r < a.

In order to show that the whole numbers ¢ and r which satisfy b = aq + r
and 0 < r < a are unique, assume there exists a second pair of whole numbers
q2 # q and ro # r such that b =agz +r2 and 0 <79 < a. Since b=aq+r =
aqa+ra, (1) alg—g2) = ro—r. By definition a divides ro —r, because a, ¢—qo,
and ro — 7 are integers. Since 0 <r <a, —a < —r < 0. Adding 0 <ry; <a
to this last inequality, we obtain —a < ro — r < a. Assume ry > 7 then
(2) 0 <ry—r < a. Remark: Instead of assuming ro > r, we could assume
r > 19 and reach the same conclusions throughout the remainder of the proof
by interchanging r and ro. Since a divides the nonnegative integer ro —r and
since from (2) 0-a < rg—r < 1-a, either there is an integer between 0 and 1 or
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ro9 = r. Because there is no integer between 0 and 1, (3) ro = r. Substituting
(3) into (1), we find a(g — g2) = 0, which implies @ = 0 or ¢ — g2 = 0. Since
a € N, a # 0 and therefore ¢ = qo. W

The concept of the greatest lower bound of a set is similar to, but not the
same as, the concept of the least element, and the concept of a least upper
bound of a set is similar to the concept of a greatest element. We define these
new concepts below.

Let A be a subset of the real numbers R. The number m € R is a lower
bound for A if m <z for all z € A.

The number m € R is the greatest lower bound for A (infimum of A)
(i) if m is a lower bound for A and (ii) if £ is a lower bound for A, then m > /.

The number u € R is an upper bound for A if u > «x for all x € A.

The number u € R is the least upper bound for A (supremum of A)
(i) if w is an upper bound for A and (ii) if ¢ is an upper bound for A, then
u<t.

The set A is bounded if it has a lower bound and an upper bound.

The set A; = {—3,—1, 3,7} has lower bounds of —20, —8, —5 and —3. A;
has a greatest lower bound of —3, and the least element of A; is —3. Aj has
upper bounds of 7, 11, 15, and 24. A; has a least upper bound of 7, and the
greatest element of Ay is 7. The set A; is bounded. The set As = (5, 11] has
lower bounds of —2, 0, and 5. The greatest lower bound of As is 5, but As
has no least element since 5 ¢ As. As has upper bounds of 13, 17, and 24.
The least upper bound of As is 11, and the greatest element of As is 11. As
is bounded. The set A3 = (—00,4) is not bounded below and therefore has
no least element. As is bounded above, has a least upper bound of 4, but has
no greatest element.

A field F' with addition + and multiplication - which is ordered by the
relation < is a complete ordered field if and only if every nonempty subset
of F' which has an upper bound has a least upper bound in F'.

Both the rational number system and the real number system are ordered
fields. The real number system is a complete ordered field, but the rational
number system is not a complete ordered field. This is one distinction between
the field of rational numbers and the field of real numbers. We will not prove
the ordered field of real numbers is complete; however, after we prove the
Archimedean Property of the real numbers we will prove the ordered field of
rational numbers is not complete.

Theorem 4.7 The Archimedean Property for the Real Numbers

Ifz,y € R, z >0, and y > 0, then there exists an n € N such that
nr > y.
Proof: If this theorem were false, the inequality nx < y would hold for all
n € N. That is, the set A = {nz | n € N, z € Rand z > 0} would be
bounded above by y. The set A is nonempty, since z € A. Since the field
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of real numbers is complete, there exists a u € R which is the least upper
bound for A. Thus, nx < u for all n € N. Hence, (n+ 1)z < u for all n € N.
Consequently, u—x is an upper bound for A. But u—x < u, which contradicts
u being the least upper bound for A. W

Corollary 4.7.1 If y € R, there exists an n € N such that n > y.

Proof: If y <0,let n=1. If y > 0, let x =1 in Theorem 4.7. N
1
Corollary 4.7.2 If p € R and p > 0, there exists an n € N such that — < p.
n

1
Proof: Let x =1 and y = — > 0. Then by Theorem 4.7 there exists an
p
1 ) 1
n € N such that n-1 > — or equivalently — <p. W
P n

Theorem 4.8 The ordered field of rational numbers, Q, is not complete.

Proof: Consider the set of rational numbers A = {z € Q | z < v/2}. The set
A is bounded above in Q by 2. Suppose u € Q is the least upper bound of A.

Case 1. If u < \/5, then v2 —u > 0 and by Corollary 4.7.2 there exists
1 1

an n € N such that — < v/2 — u. The number u 4+ — is rational, is less than
n n

1 1
V2, and is an element of A by definition. Since u + — € A and u < u + —,
n n

u is not an upper bound for A, which is a contradiction.

Case 2. If u > /2, then u — /2 > 0 and by Corollary 4.7.2 there exists

1
an m € N such that — < u — v/2. The number v — — is rational, is greater
m m

1
than v/2, and is an upper bound for A. But u — — < w, which contradicts u
m

being the least upper bound for A.

Since u < v/2 is false and u > /2 is false, we conclude from the trichotomy
law that u = v/2 ¢ Q. So A is a nonempty subset of the field of rational num-
bers which has a least upper bound which is not an element of Q. Therefore,
by definition, the ordered field of rational numbers is not complete. W

The following theorem states that for all real numbers x there is a unique
integer n such that x € [n,n+ 1).
Theorem 4.9 If x € R, there exists a unique n € Z such thatn < x <n-+1.
Proof: Case 1. If x is an integer, let n = 2 and the conclusion is true.

Case 2. If z is not an integer, by Corollary 4.7.1 there exists a natural
number k such that & > z. Also by Corollary 4.7.1 there exists a natu-
ral number ¢ such that ¢ > —x, which implies —¢ < z. That is, there

are two integers k and m = —/ such that m < x < k. Since x is not
an integer, x must lie between two consecutive integers in the finite set
S ={mm+1,m+2,...,k}. Suppose n; and ng are two distinct inte-

gers in S such that n1 <z <n;+1 and no <z < ny+ 1. Assume ny < na.
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Then ny < ne <z < ny+ 1. That is, there is an integer (namely, na) between
ny and ni + 1. Contradiction. W

An important property of both the set of rational numbers and the set of
irrational numbers is that they are both dense in the set of real numbers.
That is, between any two distinct real numbers there is a rational number
and an irrational number. As a matter of fact, between any two distinct
real numbers there are an infinite number of rational numbers and an infinite
number of irrational numbers. In the following theorem, we prove the set of
rational numbers is dense in the set of real numbers.

Theorem 4.10 If a,b € R and a < b, then there exists a rational number r
such that a < r < b.

Proof: Since a < b, b—a > 0 and by Corollary 4.7.2 there exists a natural
number n such that 1 < b— a. Solving for b, we find (1) a + 1 < b. By
Theorem 4.9 there exigts a unique integer m such that (2) m < an —|T—Ll <m+1.
Multiplying the left-hand inequality of (2) by % > 0 yields (3) % <a+ %
Solving the right-hand inequality of (2) for a yields (4) a < % Combining

1
(1), (3), and (4), we have a < mn < a4+ — < b. Observe that r = ™ isa
n n n

rational number such that a <7 <b. N

In the proof of Theorem 4.10 the rational number r; satisfies r; < b. So by
Theorem 4.10 there exists a second rational number 7o which satisfies a < r1 <
ro < b, and a third rational number r3 which satisfies a < r; < ry <rs <b,
etc. Thus, there are an infinite number of rational numbers between a and b.

We now show that between every two distinct rational numbers there is an
irrational number.

Theorem 4.11 Ifr,s € Q and r < s, then there exists an irrational number
t such that r <t < s.

Proof: Claim: The number t = 7+ (v/2—1)(s—7) is irrational and r < ¢ < s.
The number /2 — 1 is irrational, since it is the sum of the irrational number
v/2 and the rational number —1. The number s—r is rational, because s and r
are both rational. Since (v/2—1)(s—) is the product of an irrational number
and a rational number, it is irrational. Therefore, ¢, which is the sum of the
rational number 7 and the irrational number (v/2 — 1)(s — r), is irrational.

Since v2—-1>0and s —7>0by 03, (vV2—-1)(s—7r)>0andt—r =
V2 —1)(s —7) > 0. Hence, 7 < t. Multiplying and rearranging, we find
=7+ (V2-1)(s—7) = (2—=V2)r+ (V2 —1)s. Since r < s and 2 — /2 > 0,
2 —/2)r < (2 —/2)s. Consequently,

t=2-V2)r+(V2-1)s<(2-V2)s+(V2-1)s=s.

Therefore, r <t <s. N

(
t
(
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Finally, we show that between any two distinct real numbers there is an
irrational number.

Theorem 4.12 If a,b € R and a < b, then there exists an irrational number
t such that a <t < b.

Proof: By Theorem 4.10 there exists a rational number r such that
a < r < b. Also by Theorem 4.10 there exists a rational number s such
that a < r < s < b. By Theorem 4.11 there exists an irrational number ¢ such
that a <r <t<s<b N

EXERCISES 4.2

1. Prove Theorems T1 through T19 of this section.

2. For real numbers z, y, z, € prove the following theorems.
a. If z > 1, then 22 > 2.
b. If 0 < x < 1, then 22 < 1.
c. If zy > 0, then either (i) z > 0 and y > 0 or (ii) x < 0 and y < 0.
d. If x >0 and 2y > xz, then y > z.
e. f x <y+eforalle>0, then x <y.
3. For the following subsets of real numbers find, if they exist, the least

element, the greatest element, the greatest lower bound, and the least
upper bound.

a. {e,/2} b. (=3,5]

¢. [=7, 00) d. (—4,4)U {5}
e. [~4,0)U (0,3) £ {zeQ|? <50}
g.{Q”n“neN} h.{2n:1n€Z{O}}

i {(—1)n (”:1) nEN} j. {(1)n (”:1) neZ{O}}
k. Uf;ﬂu%,m%} L ﬂf:1(2—%,6+%>

4. a. Prove the following Division Algorithm for the set of integers. For all
a,b € 7Z with a # 0, there exist unique integers ¢ and r
such that b = aqg + r where 0 < r < |a].

b. For the following pairs of integers, find the quotient, ¢, and the remain-
der, 7, when the first integer b is divided by the second integer a.

(i) 6132, 53 (i) 53, 6132 (iii) 988, 76
(iv) —175, 16 (v) =342, —91



176 Introduction to Mathematical Proofs

5. Let S be a nonempty set of real numbers that is bounded below and let
m be the greatest lower bound. Prove for every ¢ > 0 there exists an
x € S such that x <m+e.

4.3 Reflexive, Symmetric, Transitive, and Equivalence
Relations

Often relations are classified based upon one or more properties they satisfy.
Usually, relations with the same classifications have additional like properties
as well. Three important properties used to classify relations are the proper-
ties of being reflexive, symmetric, or transitive.

Let R be a relation on a set A. R is a reflexive relation on A if and only
it (Vo € A)[(z,x) € R].

R is a symmetric relation on A if and only if
(Vo,y € A)[((z,y) € R) = ((y,x) € R)].
R is a transitive relation on A if and only if
(Y, y, 2 € A)(((z,y) € R) A ((y,2) € R)) = ((x, 2) € R)].

A relation R is an equivalence relation on A if and only if R is reflexive,
symmetric, and transitive on A.

For a nonempty set A, the reflexive property is the only property which re-
quires some ordered pair to be in the relation R. The symmetric and transitive
properties merely specify conditions which the ordered pairs in the relation
must satisfy to be symmetric or transitive. Since the identity relation on A is
Iy ={(z,z)| x € A}, arelation R is reflexive on A if and only if I4 C R.

Negating the above definitions, we find
A relation R on a set A is not reflexive < (Jx € A)((x,z) ¢ R).

A relation R on a set A is not symmetric <

(Fz,y € A)((z,y) € B) A ((y, x) ¢ R)].

A relation R on a set A is not transitive <

(Fz,y,2z € A)l((z,y) € R) A ((y,2) € R)A((z,2) ¢ R)].

Thus, to show a relation R is not reflexive, we must find a single x € A such
that (x,z) ¢ R. To show that R is not symmetric, we must find an  and y in
A such that (z,y) € R and (y,x) ¢ R. To show R is not transitive, we must
find some z, y, and 2z (not necessarily distinct) in A such that (z,y) € R,
(y,2) € R, and (x, 2) ¢ R.



Relations 177

Example 4.3.1 Counsider the relation S = {(1,1),(2,2),(3,3),(1,2),(2,3)}
on the set A ={1,2,3}.

Reflexive: S is reflexive on A, since I, = {(1,1),(2,2),(3,3)} C S.
Symmetric: S is not symmetric on A4, since 1,2 € A4, (1,2) € S, but (2,1) ¢ S.

Transitive: S isnot transitive on A, since 1,2,3 € A, (1,2) € Sand (2,3) € S,
but (1,3) ¢ S.

The relation S is reflexive, is not symmetric, and is not transitive on set A.
|

Example 4.3.2 Theset T = {(1,2), (2,1)}is arelation on the set B = {1, 2}.
Reflexive: T is not reflexive on B, since 1 € B but (1,1) ¢ T.

Symmetric: T' is symmetric on B, because (1,2) € T and (2,1) € T and
because there are no other ordered pairs in 7.

Transitive: T is not transitive on B, since 1,2 € B, (1,2) € T and (2,1) € T,
but (1,1) ¢ T.

The relation T is not reflexive, is symmetric, and is not transitive on set B.
|

Example 4.3.3 Let A ={1,2,3}and V = {(1,2),(1,3),(2,3)}.
Reflexive: V is not reflexive on A, since 1 € A but (1,1) ¢ V.

Symmetric: V' is not symmetric on A, since 1,2 € A and (1,2) € V, but
(2,1) ¢ V.

Transitive: V' is transitive on A, since (1,2) € V, (2,3) € V and (1,3) € V,
and there are no two other ordered pairs in V' of the form (a,b), (b, c).

The relation V is not reflexive, is not symmetric, but is transitive on set A.
|

Example 4.3.4 Let W be the relation W = {(1,1),(2,2)} on the set B =
{1,2}.

Reflexive: W is reflexive on B, since Ig = W.

Symmetric: W is symmetric since (1,1) € W implies (1,1) € W and
(2,2) € W implies (2,2) € W.

Transitive: The hypothesis of the implication [((z,y) € W)A((y, z) € W)] =

((x,z) € W) is false for the relation W. Hence, the implication is true, and
W is transitive vacuously.

Since the relation W is reflexive, symmetric, and transitive on set B, W is an
equivalence relation on set B. M

The empty relation (), which has no ordered pairs, is another example of an
equivalence relation. That is, the empty relation is reflexive, symmetric, and
transitive.
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Of course, relations do not need to be specified as a set of ordered pairs.
When a relation is specified in another manner, logical arguments must be
used in determining whether the relation is reflexive, symmetric, or transitive.

Example 4.3.5 Let L be the set of all lines in the Euclidean plane and let
X be the relation “is not perpendicular to.”

Reflexive: Let £ € L. The statement “¢ L ¢” is true, so the relation [ is
reflexive.

Symmetric: Let £,m € L. The statement “If £ Y m, then m [ ¢’ is true, so
X is symmetric.

Transitive: Let ¢, m,n € L. The statement “If £ £ m and m £ n, then £ / n”
is false, since ¢ could be perpendicular to n and the line m could be any line
other than ¢ or n which passes through the point of intersection of the lines ¢
and n. Thus, [ is not transitive.

Consequently, the relation [ is reflexive and symmetric, but not transitive on
set L. W

Example 4.3.6 Consider the relation “is a multiple of” on the set of natural
numbers.

Reflexive: For allm € N, n=1-n, so the statement “n is a multiple of n”
is true. Thus, “is a multiple of” is a reflexive relation on N.

Symmetric: Let m,n € N. The statement “If m is a multiple of n, then n
is a multiple of m” is false. A counterexample is m = 6 and n = 2, because
m = 3-n, but there is no natural number &k such that n = k-m—that is, there
is no natural number k such that 2 = k- 6. Hence, the relation “is a multiple
of” is not symmetric on N.

Transitive: Let m,n,p € N. “If m is a multiple of n and n is a multiple of
p, then m is a multiple of p” is a true statement. This is a theorem which we
proved earlier.

The relation “is a multiple of” is reflexive and transitive, but not symmetric
on N. H

Example 4.3.7 The set Y = {(2,2),(2,3),(3,2),(3,3)} is a relation on the
set C =1{1,2,3}.

Reflexive: Y is not reflexive on C, since 1 € C but (1,1) ¢ Y.

Symmetric: Y is symmetric on C, because (2,2) € Y and (2,2) € Y, because
(2,3) € Y and (3,2) € Y, and because (3,3) € Y and (3,3) € Y.

Transitive: Y is transitive on C, since for all combinations of ordered pairs
of the form (a,b) € Y and (b,c) € Y the ordered pair (a,c¢) € Y. There
are eight combinations to verify. For instance, (2,2) € Y, (2,2) € Y, and
(2,2) €Y. Also, (2,2) €Y, (2,3) €Y, and (2,3) € Y. Verify the remaining
six combinations.

The relation Y is not reflexive, but is symmetric and transitive on set C. W
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Example 4.3.8 Let P be the set of all living people and consider the relation
“is the mother of.”

Reflexive: For a € P, “a is the mother of a” is a false statement. Hence, the
relation “is the mother of” is not reflexive on set P.

Symmetric: Let a,b € P. The statement “If a is the mother of b, then b is the
mother of a” is false. Thus, the relation “is the mother of” is not symmetric
on set P.

Transitive: Let a,b,c € P. The statement “If a is the mother of b and b is the
mother of ¢, then a is the mother of ¢” is false, since a is the maternal grand-
mother of c¢. Consequently, the relation “is the mother of” is not transitive
on set P.

The relation “is the mother of” is not reflexive, is not symmetric, and is not
transitive on set P. W

We have defined three properties for relations—the reflexive property, the
symmetric property, and the transitive property. Given a relation, it is reflex-
ive or not, it is symmetric or not, and it is transitive or not. Consequently, a
relation may have any one of eight different combinations of these properties.
So far, we have presented eight relations—one which has each of the possible
combinations of properties. Displayed in Table 4.1 is each type of relation
and an example which corresponds to that type. In the table, the symbol T
indicates the relation has the specified property, while the symbol F indicates
it does not.

TABLE 4.1: Examples of eight combinations of properties of relations

Reflexive Symmetric Transitive Example

4.3.4
4.3.5
4.3.6
4.3.1
4.3.7
4.3.2
4.3.3
4.3.8

CICICIC R RS
CECEERERCRCRE RS
CESECRSRCRERCRE

Example 4.3.9 Let R be the relation defined on the set of integers, Z, by
(a,b) € R < |a| = |b|]. Prove R is an equivalence relation on Z.

Proof: Let a € Z. Since |a| = |al, (a,a) € R and R is reflexive on Z.

Suppose (a,b) € R. Then by definition of R, |a| = |b|. Since equality is a
reflexive relation, |b| = |a|. Hence, (b,a) € R and R is symmetric on Z.
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Suppose (a,b) € R and (b, c) € R. Then by definition |a| = |b| and |b] = |¢|.
Since equality is a transitive relation, |a| = |¢|, (a,c) € R, and R is transitive
on Z.

Since R is reflexive, symmetric, and transitive, R is an equivalence relation

onZ. N

In previous examples, the elements of the set A were usually numbers, lines,
or people. That is, the elements of A were singular entities. In the following
example, the elements of A are ordered pairs. In general, the elements of A
may be almost anything.

Example 4.3.10 Let A = Z x Z, the Cartesian product of the set of integers.
Define the relation P on Z x Z by ((a,b), (¢,d)) € P < ab = cd. Prove P is
an equivalence relation on A.

Proof: Forall a,b € Z, ab = ab. Consequently, for a,b € Z, ((a,b), (a,b)) € P
and P is reflexive.

Suppose ((a, b), (¢,d)) € P. Then by definition of P, ab = cd. Since equality
is a reflexive relation, cd = ab. Hence, ((c¢,d), (a,b)) € P and P is symmetric.

Suppose ((a,b), (¢,d)) € P and ((c,d), (e, f)) € P. Then by definition of
P, ab= cd and cd = ef. Since equality is a transitive relation, ab = ef, and
((a,b), (e, f)) € P. Consequently, P is transitive.

Since P is reflexive, symmetric, and transitive, P is an equivalence relation
onZxZ7Z. 1

We now prove that the inverse relation of an equivalence relation is also an
equivalence relation.

Theorem 4.13 If E is an equivalence relation on the set A, then E~! is an
equivalence relation on A.

Proof: Let a € A. Since E is an equivalence relation on A, (a,a) € E.
By definition of the inverse relation of E, (a,a) € E~! also. Hence, E~! is
reflexive on A.

Suppose (a,b) € E~1. Then (b,a) € E. Since E is an equivalence relation
on A, E is symmetric and (a,b) € E. Therefore, (b,a) € E~* and E~! is
symmetric on A.

Finally, suppose (a,b) € E~! and (b,c) € E~!. From the definition of
inverse relation it follows that (b,a) € E and (¢,b) € E. Since E is an
equivalence relation, E is transitive and (c,a) € E. Consequently, (a,c) € E~!
and E~! is transitive on A.

Since B! is reflexive, symmetric, and transitive, E~! is an equivalence
relation on A. W
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EXERCISES 4.3

1. Let A = {a,b}. For each relation defined below, determine whether the
relation is reflexive, symmetric, or transitive on A.

a. Ry ={(b,a)}

b. Ry = {(b,a), (a,b)}

c. R ={(b,a),(a,b),(a,a)}

d. Ry = {(b,a),(a,b), (a,a), (b,b)}

e. Rs ={(b,b), (a,a)}
2. Which relations in Exercise 1 are equivalence relations?
3. Let A=1{1,2,3,4,5}. Consider the following relations on A.

Ty ={(z,y) |z <y}
Ty ={(z,y) |z <y}
Ts={(z,y) |z =y}
Ty = {(z,y) | = is a factor of y}

Ts = {(x,y) | « is a prime factor of y}

For each relation T;, ¢ =1,2,...,5

a. Determine Dom(7;) and Rng(T3).

b. Graph T; on A x A.

c. Write T; as a set of ordered pairs.

d. Determine if T; is reflexive, symmetric, or transitive.

e. Determine which T; are equivalence relations on the set A.

4. Let A be the set of all living people. Consider the following relations
on A

{(z,y) | = lives on the same street as y}

{(z,y) |  lives next door to y}
= {(z,y) | = is a descendant of y}

a. Determine whether Uy, Us, and Us are reflexive, symmetric, or tran-
sitive on A.

b. Which relations are equivalence relations?

5. Let A=R — {0} and P = {(z,y) | zy > 0}. Prove P is an equivalence
relation on A.

6. Let A=R and Q = {(z,y) | zy > 0}. Is @ is an equivalence relation
on R? Justify your answer.

7. Prove R = {(z,y) | * + y is an even integer} is an equivalence relation
on Z

8. Is S = {(x,y) | x + vy is an odd integer} an equivalence relation on Z?
Justify your answer.
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©

10.

11.
12.

13.

14.

15.

16.

17.

18.
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. Prove T = {(z,y) | z—y = 3k for some k € Z} is an equivalence relation
on Z.

IsU = {(z,y) | x+y = 3k for some k € Z} an equivalence relation on Z?
Justify your answer.

Prove V = {(z,y) | 2% = y*} is an equivalence relation on N.

Prove W = {(z,y) | 22 + y* = r? for some r € R} is an equivalence
relation on R.

Let A=7Z x (Z —{0}) and X = {((a,b), (¢,d)) | ad = bc}. Prove X is
an equivalence relation on A.

Let A=R xR and Y = {((a,b),(¢,d)) | a—b=c—d}. Prove Y is an
equivalence relation on R x R.

Prove that if F is an equivalence relation on the set A, then E~! = E.
(Recall in Theorem 4.4 we proved that if E is an equivalence relation on
A, then E~! is an equivalence relation on A.)

Prove or disprove the statement: If R and S are equivalence relations

on a set A, then RU S is an equivalence relation on A.

Let R and S be relations on A. Prove the following theorems.

a. If R and S are reflexive on A, then RN S is reflexive on A.

b. If R and S are symmetric on A, then RN S is symmetric on A.

c. If R and S are transitive on A, then RN S is transitive on A.

d. If R and S are equivalence relations on A, then RN S is an equiva-
lence relation on A.

Prove or disprove the following statements.

a. If R is an equivalence relation on A, then R o R is an equivalence
relation on A.

b. If R and S are equivalence relations on A, then R o S is an equi-
valence relation on A.

4.4 Equivalence Relations, Equivalence Classes, and Par-

titions

It is easy to verify that the relation R = {(1,1),(1,2),(2,1),(2,2),(3,3),
(4,4),(4,5),(5,4), (4,6), (6,4), (5,5), (5,6), (6,5), (6,6)} is an equivalence re-
lation on the set A = {1,2,3,4,5,6}. Observe that the element 1 € A is
R-related to the elements 1 and 2, since (1,1) € R, (1,2) € R, and (2,1) € R.
Likewise, the element 2 is R-related to 1 and 2. The element 3 is R-related to
3, since (3,3) € R. Because (4,4), (4,5), (5,4), (4,6), (6,4) € R, the element

4 is

R-related to 4, 5, and 6. We also find 5 is R-related to 4, 5, and 6 and 6

is R-related to 4, 5, and 6. Thus, associated with each element = € A there
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is a set S, which consists of all elements of A that are R-related to z. The
following table summarizes our findings for the given relation R on the given
set A.

@ Se
1 {1,2}
2 {1,2}
3 {3}

4 {4,5,6)
5  {4,5,6}
6  {4,5,6)

Observe that S; = Sy, Sy = S5 = Sg and that A = S; U S3 U Sy. Assuming
A # 0, for any z € A the set S, of elements which are R-related to z is
nonempty, because R is reflexive on A and therefore (z,x) € R. That is, if
A # 0 and z € A, then x € S,. Also notice that the equivalence relation R
subdivides the set A into subsets of R-equivalent elements. We formalize our
findings with the following two definitions.

Let R be an equivalence relation on the nonempty set A. For x € A, the
equivalence class of © determined by the relation R is the set

[z]lr ={y € Al (z,y) € R}.
The set of all equivalence classes is called A modulo R (or A mod R) and
is denoted by
A/R=A{[z]r | x € A}.

The mathematical expression [z]gr = {y € A | (z,y) € R} which defines the
equivalence class of x modulo R is read “the equivalence class of z modulo
R is the set of all y in A such that (x,y) is in R.” Any element y € A
which appears with = in any ordered pair of R is in the set [x]g. When
it is obvious what relation R we are discussing, we will omit the subscript
R from the equivalence class notation—that is, we will abbreviate [z]r as
[x]. In the example above, the equivalence classes are [1] = [2] = {1, 2},
[3] = {3}, and [4] = [5] = [6] = {4, 5,6}; and the set of all equivalence classes
is A/R = {{1,2},{3},{4,5,6}}.

Let A be a nonempty set and let A be a collection of subsets of A. The
collection of sets A is a partition of A if and only if

(1) XeA=X#0
(2) XeAandY € A= either X =Y or XNY =10

(3) UXGAX =A

On a specified date at a particular university, the set of undergraduate
students is partitioned (1) by class standing (freshman, sophomore, junior,
senior), (2) by major, (3) by age, (4) by sex, (5) by residency, etc. The United
States is partitioned geographically in several different ways. It is partitioned
into states, into time zones, into zip code areas by the postal service, and into
area codes by the telephone companies.
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In the example we have been studying, the set A = {1,2,3,4,5,6} is parti-
tioned by the relation R into the collection of sets

A=A/R={{1,2},{3},{4,5,6}}.

In this section, we will study properties of equivalence relations on a set A,
properties of partitions of a set A, and the connection between equivalence
relations and partitions. First, we prove the following theorem regarding
equivalence classes.

Theorem 4.14 Let R be an equivalence relation on a nonempty set A and
let a,b € A. If b € [a]R, then [b]r = [a]g.

Proof: Assume b € [a]g. By the definition of an equivalence class (a,b) € R.
To show that [b]r = [a]r, we show [b]g C [a]r and [a]r C [b]r. Let = € [b]g.
By definition (b, z) € R. Since (a,b) € R and R is transitive on A, (a,z) € R
and, therefore, z € [a]g. Thus, [b]r C [a]r. Now let y € [a]g. By definition
(a,y) € R. Since (a,b) € R and R is symmetric on A, (b,a) € R. Because
(b,a) € R, (a,y) € R, and R is transitive, (b,y) € R. Consequently, y € [b]g.
Hence, [Q}R - [b}R Since [a}R - [b}R and [b}R - [a}R, [b}R = [a}R. |

We state the following theorems for equivalence classes and leave them for
you to prove as exercises.

Theorem 4.15 Let R be an equivalence relation on a nonempty set A and
let a,b € A. Then [a]g = [b]r < (a,b) € R.

Theorem 4.16 Let R be an equivalence relation on a nonempty set A and
let a,be A. If [a}R N [b}R #+ (¢, then [Q}R = [b}R

Theorem 4.17 Let R be an equivalence relation on a nonempty set A and
let a,be A. If [alg N [b]g =0 < (a,b) ¢ R.

Theorem 4.18 Let R be an equivalence relation on a nonempty set A and
let a,b,c,d€ A. If ¢ € [a]g, if d € [b]R, and if [a]r # [b]r, then (c,d) ¢ R.

The following theorem states that an equivalence relation R on a nonempty
set A produces a partition of A.

Theorem 4.19 Let R be an equivalence relation on a nonempty set A. Then
A/R is a partition of A.

Proof: To show that the collection of all equivalence classes
A/R={[z]r | x € A}
is a partition of A, we must show three things:
(1) [zlr€ A/R= [x]r #0
(2) [¢]r€ A/R and [y]r € A/R = either [t] = [y]x or [2]z N [y]r = 0
(3) UmGA[I}R =A
1)

(1) For each z € A, z € [z]|r by definition. Hence, each equivalence class
[x]r in A/R is nonempty.
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(2) For [z]r € A/R and [ylg € A/R either (i) [z]r N[yl # 0 or
(il) [z]r N [ylr = 0. In case (i) [z]r N [y]r # 0 & (2,y) € R by the con-
trapositive of Theorem 4.17. By Theorem 4.15, (z,y) € R < [z]r = [y]r-

Hence, [z]r N [ylr # 0 < [z]r = [y]r-

(3) Consider |J, ¢ 4[z]r. Since [z]g is a subset of A, J,calz]r € A. Let y
be any element of A. Since y € [y|r, ¥ € Uyeal®]r. Thus, A C U, calz]r
and therefore A = J, 4[%]r-

Consequently, the collection of equivalence classes A/R (A modulo R) is a
partition of the set A. W

Example 4.4.1 Let d be a positive integer and let =; be the relation

defined on the set of integers, Z, by
m =4 n < there exists a k € Z such that m —n = kd.
The expression m =4 n is read “m is congruent to n modulo d” or simply
“m is congruent to n mod d.” Sometimes this relation is written in the form
m = n(mod d) which is also read as stated above. An equivalent way to define
this relation is
m =4 n < m —n is divisible by d.

a. Prove congruence modulo d is an equivalence relation on Z.

b. Write the distinct equivalence classes of the equivalence relation m =4 n.

c. Write the partition Z/ =4.
Solution

a. Let d be a positive integer. Let m € Z. Since m —m = 0 = 0 - d, the
relation =4 is reflexive.

Let m,n € Z and suppose m =4 n. Then there exists a k € Z such that
m—n ==k -d. Hence, n — m = (—k) - d. Since —k € Z, n =4 m and the
relation =4 is symmetric.

Let m,n,p € Z and suppose m =4 n and n =4 p. Then there exist
integers k1 and ko such that m —n = k; -d and n — p = ko - d. Adding
these two equations, we find m —p = k1 -d+ ko -d = (k1 + k2) - d. Since
Z is closed under addition, m =4 p. That is, =4 is transitive.
Since the relation =, is reflexive, symmetric, and transitive on Z, =4 is
an equivalence relation on Z.

b. For d = 4, the distinct equivalence classes for the equivalence relation
=, are
[0]={...,-12,-8,-4,0,4,8,12,...}
n=4{..,-11,-7,-3,1,5,9,13,...}
2]={.. —10 6—2,2,6 10,14,.. .}
Bl={.. -1,3,7,11,15,.. .}

c. The partltlon of Z corresponding to the equivalence relation =4 is

Z/ =4 = {[0}, [1], [2], [3]}. ™
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The collection A = {{a, c}, {b,d}, {e}} is a partition of the set A = {a,b, ¢,
d, e} because (1) each set in A is nonempty, (2) if X, Y € A, then either
X =Yor XNY =0, and (3) Uyxesa X = A How do we obtain the
relation R on the set A which corresponds to the partition A? Consider the
set {a,c} € A. For {a, c} to be an equivalence class of R, a must be R-related
to a, a must be R-related to ¢, ¢ must be R-related to a, and ¢ must be R-
related to c. That is, it must be the case that (a,a) € R, (a,c) € R, (¢,a) € R,
and (¢,¢) € R. If we let A1 = {a,c}, we see we must have A; x A; C R.
Likewise, we must have {b,d} x {b,d} C R, and {e} x {e} C R. Hence,

R ={(a,a),(a,c),(c,a),(cc), (bb),(bd),(d,Db),(dd),(ee)}.

Consequently, for a partition A which is a finite collection of finite sets, we
have a relatively simple technique for constructing an equivalence relation R
corresponding to the partition A. For every set A € A we form the Cartesian
product A x A. The union of these sets of ordered pairs is the required
equivalence relation R.

Let A = R x R, the Cartesian plane, and for r € [0,00) define C, =
{(z,y) | 2% + y* = r?}. The collection C = {C,. | r € [0,00)} is a partition of
the plane. For r =0, Cy = {(0,0)}. That is, Cy contains only the origin of
the plane. For r > 0, C, is the circle with center at the origin and radius r.
The collection C is a partition of the plane, because

(1) no C, is empty (for any r € [0,00), (0,7) € C.),

(2) C,,Cs € C = either C,. = C; (which occurs when r = s) or C,.NCs =

(which occurs when r # s),

(3) Urepo,o0) Cr = R x R (for any (a,b) € R xR, (a,b) € C; where
r=+va?+b?).

In this instance, the partition C contains an infinite number of sets and each
set C.., except for C, contains an infinite number of elements. The equivalence
relation R on R x R corresponding to the partition C is defined as follows:
Let (x,y) and (u,v) be points in the plane. Define

((z,9), (u,v)) € R 2% +9* = u? + v°.
That is, (z,y) is R-equivalent to (u,v) if and only if (z,y) and (u, v) both lie
on the same circle whose center is at the origin.

By Theorem 4.19 an equivalence relation R on a set A yields a partition of
the set A. The next theorem, which is the converse of Theorem 4.19, states
that a partition of a set yields an equivalence relation on the set.

Theorem 4.20 Let P be a partition of a nonempty set A. For z,y € A
define the set R as follows:
(z,y) € R < there exists an S € P such that x € S and y € S.

Then R is an equivalence relation on A.
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Proof: Let a € A. Since A = Jgcp S, there exists an S € P such that a € S.
Consequently, (a,a) € R and R is reflexive.

Suppose (a,b) € R. By definition a,b € S for some S € P. Obviously,
b,a € S and therefore (b,a) € R. Thus, R is symmetric.

Assume (a,b) € R and (b, ¢) € R. By definition there exists an S € P such
that a,b € S and there exists a T' € P such that b,c € T. Since b € SNT,
S NT # (), which by (2) in the definition of a partition implies S = T'. Thus,
a,b,c € S and therefore (a,c) € R. That is, R is transitive. N

From Theorems 4.19 and 4.20 it follows that a partition of a nonempty set
A is equivalent to an equivalence relation on the set A. Consequently, in any
given situation we may select and use the concept which most readily suits
our needs.

EXERCISES 4.4

1. The relation
R = {(a,a), (a, ), (¢ ), (¢, ), (b,b), (b, ), (e, b), (e, €, (d, ), (f, )}
is an equivalence relation on the set A = {a,b,c,d, e, f}.

a. List the distinct equivalence classes.
b. Write the partition of A which corresponds to the equivalence relation
R.

2. Let W be the set of English words for the days of the week. That is, let
W = {Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday}.

For each of the equivalence relations defined below
(1) list the distinct equivalence classes and

—~

2) write the partition which corresponds to the equivalence relation.
. x,y € W are S-equivalent < x and y have the same first letter.
. x,y € W are T-equivalent < z and y have the same last letter.

0 o

x,y € W are U-equivalent < x and y have the same number of vow-
els.

d. x,y € W are V-equivalent < x and y have the same second vowel.

3. For m,n € Z let R be the equivalence relation defined on Z by
(m,n) € R< m+n is even.
a. What is the set [0]z?
b. What is the set [1]g?

c. Write the partition of Z which corresponds to the equivalence relation
R.
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11.
12.
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. Let S be the equivalence relation on R x R defined by (z,y) is S-related

to (u,v) if and only if z = w.

a. Write the equivalence class [(2, 3)]s using set notation. Geometrically,
what is [(2, 3)]s?

b. Write the partition of R x R corresponding to the relation S.

. Let T be the equivalence relation on R x R defined by (z, y) is T-related

to (u,v) if and only if y —x = v — w.

a. Write the equivalence class [(2, 3)]1 using set notation. Geometrically,
what is [(2, 3)]7?

b. Write the partition of R x R corresponding to the relation 7'

. Let U be the equivalence relation on (R — {0}) x R defined by (z,y) is

U-related to (u,v) if and only if zv = yu.

a. Write the equivalence class [(2, 3)]y using set notation. Geometrically,
what is [(2, 3)]u?

b. Write the partition of (R —{0}) x R corresponding to the relation U.

. For each of the following equivalence relations on Z

(1) write the distinct equivalence classes and
(2) write the corresponding partition of Z.
a. =1 b. =, c. =3 d. =j

. Determine which of the following statements is true and which is false.

a. 14 =7 (mod 3) b. —5 =4 (mod 3)
c. 15 = -7 (mod 11) d. =10 = —2 (mod 5)

. Let R be the equivalence relation on the set Z defined by

(m,n) € R< m? =n? (mod 4).

a. What is [0]g?

b. What is [1]r?

c. Write the partition of Z corresponding to R.

For each partition of the set A = {a,b, ¢, d, e} defined below, write the
corresponding equivalence relation on A.

a. P1={{a}, {0}, {c},{d},{e}}

b. Py = {{a,d, e}, {b,c}}

c¢. Ps={{a,e},{b,c},{d}}

d. Py ={{a,b,c, e}, {d}}

Prove P = {[n,n+ 1) | n € Z} is a partition of R.

For each r € R define P. = {(z,y) € (R —{0}) xR | y = rz?}
a. Sketch P_i, Py, and P;.

b. Geometrically describe the equivalence classes corresponding to this
partition of the plane.

c. Prove P = {P. | r € R} is a partition of (R —{0}) x R.
d. Define the equivalence relation S corresponding to the partition P.
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13. For each n € N define S, = {(z,y) e Rx R | n—1< /22 +y%2 <n}.
a. Prove P = {5, | n € N} is a partition of R x R.
b. What is the equivalence relation T' corresponding to P?

14. Let R and S be equivalence relations on A. Prove [x]pns = [z]r N [2]s.
15. Prove Theorem 4.15.
16. Prove Theorem 4.16.
17. Prove Theorem 4.17.
18. Prove Theorem 4.18.

4.5 Chapter Review

Definitions

Let A, B, C, and D be sets. A relation from A to B is any subset of
A x B. In particular, when B = A, a relation R from A to A is called a
relation on A.

The domain of a relation R from A to B is the set
Dom(R) ={z € A | (3y € B)((z,y) € R)}.
The range of a relation R from A to B is the set
Rng(R) ={y € B | (3z € A)((z,y) € R)}.
If R is a relation from A to B, then the inverse relation from B to A is

the relation
R ={(z,y) e Bx Al (y,x) € R}.

The identity relation on A is the set
In={(z,z) e Ax A |z e A}
Let R be a relation from A to B and let S be a relation from C to D.

The relation R equals S, which is denoted by R = S, if and only if A = C,
B =D, and [(z,y) € R< (z,y) € 5].
Let R be a relation from A to B and let S be a relation from B to C. The
composition of S and R is the relation
SoR={(a,c) e Ax C | (3e B)[((a,b) € R)A((b,c) € 9)]}.
A set of numbers S is ordered if there exists a subset of positive numbers
Sp which satisfy the axioms:

O1. (Trichotomy Law) For all z € S exactly one of the following three
statements is true: =0, x€8, —x€0,.

O2. For all z,y € Sp, z+y€S,.
O3. Forall z,y € Sp, -y € S,.

The number z is negative if and only if —z is positive.
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The order relation < (read “is less than”) is defined by z < y < y — z is
positive.

The order relation > (read “is greater than”) is defined by x >y < z—y
is positive.

The order relation < (read “is less than or equal t0”) is defined by
r<y&srz<yorz=uy.

The order relation > (read “is greater than or equal to”) is defined by
rT>yYy&S T >yorx=y.

Let A be a nonempty set of real numbers. The number m € A is the least
element of A (smallest element of A or minimum of A) if and only if
for every x € A, m < z. The number M € A is the greatest element of A
(largest element of A or maximum of A) if and only if for every = € A,
M > x.

A nonempty set A of real numbers is well-ordered if and only if every
nonempty subset of A has a least element.

Let A be a subset of the real numbers R. The number m € R is a lower
bound for A & m < x for all z € A.

The number m € R is the greatest lower bound for A (infimum of A)
(i) if m is a lower bound for A and (ii) if £ is a lower bound for A, then m > /.

The number u € R is an upper bound for A if u > « for all z € A.

The number u € R is the least upper bound for A (supremum of A)
(i) if w is an upper bound for A and (ii) if ¢ is an upper bound for A, then
u<t.

The set A is bounded if it has a lower bound and an upper bound.

A field F with addition + and multiplication - which is ordered by the
relation < is a complete ordered field if and only if every nonempty subset
of F' which has an upper bound has a least upper bound in F.

Let R be a relation on a set A.

R is a reflexive relation on A if and only if (Vx € A)[(z,z) € R].

R is a symmetric relation on A if and only if

(vz,y € A)[((z,y) € R) = ((y,z) € R)].
R is a transitive relation on A if and only if

(Va,y, 2 € A)[(((z,9) € R) A ((y,2) € R)) = ((x, 2) € R)].
A relation R is an equivalence relation on A if and only if R is reflexive,
symmetric, and transitive on A.

A relation R on a set A is not reflexive < (3x € A)((x,z) ¢ R).
A relation R on a set A is not symmetric <

(Fz,y € Al((z,y) € B) A((y,2) ¢ R)].
A relation R on a set A is not transitive <

Gz, y,2 € Al((z,y) € R) A ((y,2) € R) A ((z,2) € R)).
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Let R be an equivalence relation on the nonempty set A. For x € A, the
equivalence class of © determined by the relation R is the set

[z]Jr={y € A (z,y) € R}.

The set of all equivalence classes is called A modulo R (or A mod R) and

is denoted by
A/R={[a]r | = € A}.

Let A be a nonempty set and let A be a collection of subsets of A. The
collection of sets A is a partition of A if and only if

(1) XeAd=X#0
(2) XeAdandY € A= either X =Y or XNY =10
(3) UxeaX =4

Named Theorems and Corollaries Mentioned in This Chapter
Theorem 4.5 The Archimedean Property for the Natural Numbers
For all m,n € N there exists a k € N such that m < kn.

The Well-Ordering Principle: The set of natural numbers is well-ordered
by the relation <.

Theorem 4.6 The Division Algorithm for the Natural Numbers

For all a,b € N there exists unique g,7 € W such that b = ag + r and
0<r<a.

Theorem 4.7 The Archimedean Property for the Real Numbers

Ifz,y €e R, z >0, and y > 0, then there exists an n € N such that
nx > y.

Corollary 4.7.1 If y € R, there exists an n € N such that n > y.
1
Corollary 4.7.2 If p € R and p > 0, there exists an n € N such that — < p.
n

Review Exercises

1. Let R be the relation R = {(a,2), (b,1), (1, ¢), (z,d), (3,y)}. Determine
a. Dom(R) b. Rng(R) c. R71

2. Find the domain and range of the relation
S={(z,y) | (x-2)*+(y+3)* = 16}.

3. Write the inverse of the relation T' = {(z,y) | 3z + 2y = 4}.

4. Let U ={(2,3),(4,1),(5,5)}and V ={(3,1), (5,4),(2,3)}. Calculate
a. UoV b. VoU c. U"toV—! d. (VoU)™!

5. Let W ={(z,y) e RxR | y=cosz} and let
X={(x,y)y e RxR|y=Inz}.
a. Write W o X and X o W in set-builder notation.
b. Determine the domain and range of Wo X and X o W.
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14.
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16.
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. Find, if they exist, the least element, the greatest element, the great-

est lower bound, and the least upper bound of the following subsets of
real numbers.

a. {~1,m,e} b.[-4,6) c {reQ|z®>>2} d {3”’1

n+1

| n € N}

. Let S = {1,2,3}. For each of the following relations determine if the

relation is reflexive, symmetric, or transitive on S and if the relation is
an equivalence relation.

a. Ry ={(1,1),(2,2),(1,2)}

b. Ry ={(1,1),(1,2),(2,2),(2,1),(3,3)}
c. Ry =1{(1,1),(2,2),(3,3),(1,2),(2,3)}
d. Ri={(z,y) eRxR|y=1/z}

. Given that R = {(a,a), (b,b), (¢, ), (d,d), (a,d), (b,¢c), (c,b), (d,a)} is an

equivalence relation on the set S = {a, b, ¢, d}, find
a. [a b. [d] c. Write the partition of S that corresponds to R.

. Write the equivalence relation R on the set S = {1,2,3,4,5,6} that

corresponds to the partition P = {{1,3},{2,4,6},{5}}.

Write the partition Z/ =g.

Is —15 = 3 (mod 4)?

Let R be a relation on the set S. Prove R is symmetric if and only if
R=R"

Prove that if R is a symmetric and transitive relation on the set A and
if Dom(R) = A, then R is reflexive on A.

Give an example of a relation R from A to B and a relation S from B
to C such that Dom(S o R) # Dom(R).

Prove that R = {(z,y) | y = « + 5k for some k € Z} is an equivalence
relation on Z.

Prove that T'= {(x,y) € R x R | zy > 0} is not an equivalence relation
on R.

More Challenging Exercises

17.

18.

19.

20.

Let A and B be any sets. Prove that Ax B = Bx Aifand onlyif A =0
or B=0or A=B.

Let A, B, C, and D be any sets. Prove that if A C B and C' C D, then
AxCCBxD.

Let R and S be reflexive relations on set A. Prove that RoS is a reflexive
relation on A.

Let R and S be symmetric relations on set A. Prove that Ro S is a
symmetric relation on A if and only if Ro S =S o R.



21.

22.

23.
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Let R and S be transitive relations on set A. Prove that if SoR C Ro S,
then Ro S is a transitive relation on A.

Let R be a relation from A to B and let S and T be relations from B to
C. Prove or give a counterexample to each of the following statements.

a. If SCT, then SoRCToR.

b. (SNT)oRC (SoR)N(T o R).
c. SNT)oR=(SoR)N(ToR).
d. (SUT)oR=(SoR)U(ToR).

Suppose R is a relation from A to B and S and T are relations from B
to C. Prove that (SoR) — (ToR)C (S—T)oR.

In Exercises 24 through 27 a statement and a proof? are given.
For each exercise do the following.

a.
b.

C.

24.

25.

26.

27.

Determine if the given statement is true or false.
If the statement is a theorem, determine if the proof? is valid.
If the given statement is false, provide a counterexample.

Statement. Theorem? Proof?
Statement: If Ax B= A x C and A # (), then B =C.

Proof? This theorem is analogous to the cancellation law of multiplica-
tion for the real numbers, which states “If a, b, and ¢ are real numbers,
ifa#0,and ifa-b=a-c, then b =c¢.” Suppose A x B= A x C and
A # (. Dividing by A # 0, we find

AxB AxC

A A

Consequently, B = C.

Statement. Theorem? Proof?

Statement: If A x B= A x C and A # (), then B = C.

Proof? Suppose b € B and let a be any element in A. Then (a,b) € AXB.
Since A x B = A x C, the ordered pair (a,b) € A x C. Hence, b € C.
Therefore, B C C. In a like manner, we can show that C' C B.
Consequently, B = C.

Statement. Theorem? Proof?

Statement: Let R be an equivalence relation on A. And, let z,y, z € A.
If x €y/R and z ¢ /R, then z ¢ y/R.

Proof? We prove this theorem by contradiction. Suppose = € y/R,
z ¢ x/R, and z € y/R. Since x € y/R, yRx, and since R is symmetric,
xRy also. Since z € y/R, yRz, and since R is transitive, x Rz. That is,
z € x/R. This contradicts the hypothesis z & x/R.

Statement. Theorem? Proof?

Statement: Let R be an equivalence relation on A. And, let z,y, z € A.
Ifx €y/R and z ¢ z/R, then z ¢ y/R.
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Proof? Assume z € y/R; then yRz. And assume z € z/R; then xRz.
By transitivity, yRz and hence z € y/R. We have shown that if z € y/R

and z € z/R, then z € y/R. Consequently, if z € y/R and z & z/R,
then z & y/R.
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Functions

Historically, the concept of a function evolved over time. The word “func-
tion” (or more precisely, its Latin equivalent) was used in mathematics for
the first time in 1694 by Gottfried Leibniz. Initially, a function denoted any
quantity associated with a curve such as the coordinates of a point on the
curve, the slope of the curve, etc. By 1718 at the latest, Johann Bernoulli
(1667-1748) viewed a function as an expression which involves a variable and
some constants. Later, Euler thought of a function as an equation or for-
mula consisting of variables and constants. In 1734, Euler introduced the
now familiar notation f(z) to denote a function in one variable. The present
set theoretic definition of a function is due mainly to Gustav Peter Lejeune
Dirichlet (1805-1859).

5.1 Functions

One of the more basic concepts which appears in virtually every branch of
mathematics is the concept of a function. Functions are a very special kind of
relation—that is, functions are very special kinds of sets of ordered pairs. Let
A and B be nonempty sets. Recall that a relation R from A to B is any subset
of the Cartesian product A x B. Given an element a € A there may be no
ordered pair in R which has a as first coordinate, or there may be exactly one
ordered pair in R which has a as first coordinate, or there may be any number
(up to the number of elements in B) of ordered pairs in R which have a as first
coordinate. A function f from A to B is a relation from A to B such that every
a € A has a unique b € B such that the ordered pair (a,b) € f. That is, for
each element a € A there is a uniquely determined ordered pair (a,b) € f. We
state the following definitions of a function, domain of a function, codomain
of a function, and range of a function.

Let A and B be sets. A function f from A to B, denoted by f: A — B,
is a relation from A to B such that

(1) Dom(f) = A.
(2) If (a,b) € f and (a,c) € f, then b= c.

195
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The domain of a function f from A to B is the set

Dom(f) ={z e A |3y € B)((x,y) € f)}-
The codomain of the function f from A to B is the set B.
The range of a function f from A to B is the set

Rog(f) ={y € B| Bz € A)((z,y) € f)}.

From the definitions above, for a set of ordered pairs f to be a function
from A to B it is necessary that Dom(f) = A and Rng(f) C B. Furthermore,
any set B which contains the Rng(f) may serve as the codomain of f. To
prove a set of ordered pairs f is not a function from A to B, we must show
either (i) Dom(f) # A or (ii) there are two ordered pairs (a,b) and (a,c) in
f for which b # c.

Let us consider the following four relations from the set A = {a, b, c} to
B={1,2,3}.

Ry ={(a,1), (b, 1)}

Ry ={(a,1), (b, 1), (c,2)}

Ry ={(a,1),(a,2), (b,2), (c,3)}
Ry ={(a,1),(a,1),(b,2), (c,3)}

Ry is a relation from A to B, but R; is not a function from A to B, because
Dom(R1) = {a,b} # A.

R; is a relation from A to B and Dom(R2) = A. Only one ordered pair in
R has first coordinate a—the ordered pair (a, 1). Likewise, there is only one
ordered pair in Ry with first coordinate b and there is only one ordered pair
with first coordinate ¢. Thus, by properties (1) and (2) in the definition of a
function, Ry is a function from A to B. The range of the function R is the
set {1,2}, which is a subset of the codomain B.

R3isarelation from A to B, but Rj is not a function. Although Dom(R3) =
A, there exist two distinct ordered pairs in Rg with the same first coordinate
and different second coordinates—mnamely, the pairs (a,1) and (a,2). So R
is not a function.

Ry is a relation from A to B and Dom(R4) = A. There are exactly two
ordered pairs in R4 with the same first coordinate—mnamely, the coordinate a.
However, they are not distinct ordered pairs. They are identical pairs. Thus,
Ry is a function. In this case, the codomain of Ry is B = Rng(R4). That is,
for this function the codomain and range are the same set.

Arrow diagrams for the relations R;, Ry, Rs, and R4 are displayed in
Figures 5.1, 5.2, 5.3, and 5.4, respectively. Notice in Figure 5.1 there is no
arrow which has its tail at ¢ € A, so the relation R; is not a function from
A to B, because Dom(R;) # A. In Figure 5.2, for each element of A there is
an arrow which has its tail at that element, so Dom(Rz) = A. Since there is
only one arrow with its tail at each element in A, there are no two ordered
pairs in Ry with the same first coordinate and different second coordinate.
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That is, Ry is a function from A to B. We also see from Figure 5.2 that

Rng(R») = {1,2} C B.

R,

I

A B

FIGURE 5.1: An arrow diagram for R;.

FIGURE 5.2: An arrow diagram for Rs.

FIGURE 5.3: An arrow diagram for Rj.

R,

Q[

A B

FIGURE 5.4: An arrow diagram for Ry.
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In Figure 5.3, we observe that each element of A has at least one arrow
with its tail at that element. Thus, Dom(R3) = A. However, the element a
has two arrows with their tails at a. One of those arrows has its head at 1
and the other has its head at 2. Since 1 # 2, the relation R3 is not a function.
Looking at Figure 5.4, we see Dom(R4) = A, since for each element in A there
is at least one arrow with its tail at the element. In this case, there are two
arrows with their tails at a, but the heads of both of those arrows are at 1.
So Ry is a function from A to B.

Let f be a function which has ordered pairs (x,y). Since f is a function, it
assigns to each x in its domain a unique y in its range. Therefore, we denote
y by f(x), read “f of z,” and we write y = f(x). Hence, a function is a
relation (a set of ordered pairs) which assigns to each element x in its domain
the unique value f(x) in its range. For this reason, we can write the function
f: A — B symbolically as follows:

f=A, f(z)) |z e A}
It is important to understand the difference between the function f and its
value at z, f(z). The symbol f represents a set of ordered pairs, while f(x)
represents the value in the range of f assigned to the element z in the domain
of f. The following definitions should clarify this even more.

Let f be a function from A to B, f : A — B, and let (z,y) denote the
elements of f. The image of x under f is f(z). The image of x under f is
also called the value of f at x. The pre-image of y under f is z. Notice
that the image of x under f is a single element in the range of f, while the
pre-image of y under f is one or more elements in the domain of f. Consider,
for example, the function f = {(1,¢), (2,a), (3,a)}. The image of 1 under f is
f(1) = ¢, the image of 2 under f is f(2) = a, and the image of 3 under f is
f(3) = a. The pre-image of ¢ under f is 1, while the pre-images of a under f
are 2 and 3.

Let A be any subset of the universe U. The characteristic function of
the set A, denoted by x4, is the function x4 : U — [0, 1] defined by

(z) = 1, fxe A
XA =0, ifz ¢ A
The image of any element in the set A is 1 and the image of any element in
the complement of A, the set A’, is 0. The pre-image of 1 is the set A and

the pre-image of 0 is the set A’. The symbol y is the lower case Greek letter
“Chi.”
Two functions f and g are equal, written f = g, if and only if Dom(f) =
Dom(g) and for all z € Dom(f), f(z) = g(z).
Recall from Chapter 4 that the identity relation on any nonempty set A is
In={(z,z) e Ax A |z e A}

Since the unique element associated with each element x € A is z itself—that
is, since I4(z) = =z, the identity relation is a function from A to A. The
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identity function on the natural numbers is In = {(z,2) € N x N | x = z}
and the identity function on the integers is Iz = {(z,z) € Z X Z | z = z}.
The identity function In # Iz, because Dom(Ix) = N # Z = Dom(Iz).

Let f be a function with ordered pairs (x,y). The variable x is called the
independent variable and x may assume any value in the domain of f.
The variable x is also called the argument of f. The variable y is called the
dependent variable. The dependent variable y represents some value in the
range of f and “depends” on the value chosen for the independent variable.
A real-valued function is a function whose codomain is a subset of the
real numbers, R. When the domain of a real-valued function is also a subset
of the real numbers, the function is said to be “a real-valued function of a
real variable.” In calculus, many functions are real-valued functions of a real
variable.

Let A = {-1,0,1} and B = {0,1}. Define the real-valued function
f: A — Bby f(r) = |z| and define the real-valued function g : A — B
by g(z) = x2. The domain of both functions f and g is the set A and for any
x € A, f(z) = g(x), so f = g on the domain A. Next, let C be the interval
[-1,1] and D be the interval [0,1]. Define h : C — D to be the function
h(z) = |z| and define k : C — D to be the function k(z) = z2. The domain
of both functions h and k is the set C' and for 3 € 4, h(3) =1 # 1 =k(3),
so the function h # k on the domain C. Consequently, whether one function
equals another function or not depends on the domains of the functions.

When a function is a real-valued function of a real variable, we can graph
it on a Cartesian (rectangular) coordinate system. Let f: R — R be defined
by f(z) = x2. That is, let

f=A{(z,y) e RxR|y=2"} = {(z,2”) |z € R}.
A graph of the function f is displayed in Figure 5.5. Observe that Dom(f) =
R, Rng(f) = [0, o], the image of 2 is 4, and the pre-image of 4 is —2 and 2.
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(2,4)

FIGURE 5.5: A graph of the function f = {(z,y) € R xR | y = 2?}.
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Often a real-valued function of a real variable is defined by a formula and
no information regarding the domain, range, or codomain is specified. In this
case, the usual convention is to assume that the domain of the function is the
set of all real numbers x for which the defining expression f(x) is a real value.
For example, the function defined by

T+ 2
fla) =22
is defined for all real numbers x # 3, so the domain of this function is R — {3}
or (—00,3) U (3,00). To determine the range, we solve the expression

Y= z 2 for x and find z = 3y+2.
x—3 y—1

Since the last equation is undefined for y = 1, there is no pre-image of 1 and
the range of the function is R—{1} = (—o0, 1)U(1, 00). Likewise, the function
defined by g(z) = v/3z — 6 has domain [2, c0) and range [0, c0). The function
defined by h(z) = In(9 — 3z) has domain (—o0, 3) and range R. A graph of
the relation & = {(z,y) € R x R|y? = x} is shown in Figure 5.6. Observe
that Dom (k) = [0,00). Also notice that the vertical line z = 4 intersects
the graph of k at the points (4, —2) and (4, 2), since (—2)? = 4 and (2)? = 4.
Consequently, k is a relation but not a function.

4,y
3,
2]

FIGURE 5.6: A graph of the relation k = {(z,y) e R x R | y* = z}.

The following vertical line test is often useful in helping determine if a
relation on R is a function or not. However, the vertical line test does not
constitute a proof that a relation is or is not a function.

Vertical Line Test Let f be a relation on R.

If any vertical line intersects the graph of f in two or more points, then the
relation f is not a function.

If no vertical line intersects the graph of f in more than one point, then the
relation f is a function.
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The next theorem states that the composition of two functions is a function.

Theorem 5.1 Let f be a function from A to B and let g be a function from
B to C; then go f is a function from A to C.
Proof: Since f and g are functions, they are relations. By definition of
composition for relations, go f is a relation from A to C. From the definition
of a function, it follows that Dom(f) = A, Rng(f) € B, Dom(g) = B, and
Rng(g) € C. Assume = € A. Since Rng(f) C B, there exists a y € B such
that (z,y) € f. Since Dom(g) = B and since Rng(g) C C, there exists a z € C
such that (y,z) € g. Thus, by the definition of composition for relations, the
ordered pair (x,z) € go f. Therefore, Dom(go f) = A = Dom(f). Now
suppose (z,y), (z,2) € go f. Hence, there exists a u € B such that (z,u) € f
and (u,y) € g and there exists a v € B such that (z,v) € f and (v,2) € g.
Since f is a function, (z,u) € f, and (z,v) € f, it follows that u = v. Since
g is a function, (u,y) € g, and (v,2) = (u,z) € g, it follows that y = z.
Therefore, g o f is a function from A to C, because (1) Dom(go f) = A and
(2) (z,9), (z,2) €go fimpliesy =2. W

Let f: A— B and g : B — C be functions. Then go f is the function

gof=A{(a,c)e AxC|(3be B)(a,b) € f) A((b,c) € g)]}.

Let (a,c) € go f. Since f and g are functions, we may rewrite (a,b) € f as
b= f(a) and (b,c) € g as ¢ = g(b). Then by substitution, (a,c) € go f if
and only if ¢ = ¢g(f(a)). Thus, if f and g are functions, for all a € Dom(f),
(go f)(a) = g(f(a)). For instance, if f : R — R is defined by f(z) = 22 and
g : R — R is defined by g(z) = z + 1, then (g o f)(z) = g(f(x)) = g(z?) =
224+1forallz € Rand (fog)(z) = f(g(z)) = f(z+1) = (x+1)? = 22 +22+1
for all x € R. Observe that go f # f o g on the domain R. As a matter
of fact, in this example, (g o f)(z) = (f o g)(x) only for z = 0. Verify this.
Earlier, we had seen that the composition of two relations is not commutative.
This example shows that the composition of two functions in not commutative
either.

The following theorem states that the composition of functions is associa-
tive.

Theorem 5.2 Let f be a function from A to B, let ¢ be a function from B
to C, and let h be a function from C to D; then ho(go f) = (hog)o f.
Proof: In the proof of Theorem 5.1, we demonstrated that the domain of the
composition of two functions, g o f, is the domain of the function which is on
the right. Thus, Dom(go f) = Dom(f) and Dom(ho (go f)) = Dom(go f) =
Dom(f). Likewise, Dom((h o g) o f) = Dom(f). Hence, both ho (go f) and
(hog)o f have the same domain—namely, Dom(f). Theorem 5.1 states that
the composition of two functions is a function. Hence, by two applications
of Theorem 5.1, g o f is a function and so is h o (g o f). Likewise, ho g is a
function and so is (hog)o f. Thus far, we have shown ho(go f) and (hog)o f
are both functions with the same domain. To show ho(go f) = (hog)o f we
choose an arbitrary = € A and perform the following computation.
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(ho(go f))(x) =h((ge f)(x)) = hg(f(2))) = (hog)(f(2)) = (hog) o f)(x).

Thus, for all 2 € A, (ho (g0 f))(@) = ((h o g) o f)(z) and, consequently,
ho(go f)=(hog)o f. That is, composition of functions is associative. W

EXERCISES 5.1

1. Let f be the function which assigns to each English name for the months
of the year the number of days in the month in a nonleap year.

a. What is the domain of f?
b. What is the range of f7
c. What is (i) f(January)? (i) f(February)?  (iii) f(April)?
d. What is the pre-image of (i) 287  (ii) 307  (iii) 31?7  (iv) 367
2. Let g be the function which assigns to each state in the United States
the capital of that state.

a. How many elements are there in the domain of g? Describe the
domain of g in words; do not list the elements.

b. How many distinct elements are there in the range of g?
c. What is (i) g(Alaska)?  (ii) g(Louisiana)?  (iii) f(Vermont)?
d. What is the pre-image of
(i) Hartford? (ii) Jefferson City? (iii) Salem? (iv) Charleston?
e. What state x satisfies g(x) = Frankfort?
3. Let A =1{1,2,3,4} and B = R. Which of the following relations from A
to B are functions?
a. a=1{(1,1),(2,2)}
b. b={(1,1),(2,1),(3,1),(4,1)}
c. ¢={(1,1),(2,3),(3,4),(4,3)}
d. d=1{(1,8),(2,10),(3,10), (3,4), (4,3)}
4. Draw arrow diagrams for the relations in Exercise 3.

5. Which of the following relations are functions?

af{(x Y EZXZ| 22 +y? =9}

(v,y) € Z X Z | 2% = y*}

z,y) €EQxQ|3x+4=y}
Y)€QxQ|z=3y+4}

z,y) € Qx Q| 2* =y}

z,y) €Qx Q| z=y’}

€z,

™ e o TP

={
={(
d {(
e={(
f=A(
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11.

. Let f(z) = 9;__
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g. g={(z,y) e RxR |z =-cosy}
h. h={(z,y) e RxR |y =cosz}

. Prove that the following relations are not functions.

a. A={(z,y) e RxR |y >z}

b. B={(z,y) eRxR |y* —2? =9}
¢ C={(r,y) eRxR|[]+]yl =4}
d. D={(z,y) e R xR |z =siny}

. Let the universe be R and let A = {3} U (=2,1] U {v/2}. Graph the

following sets.

a. XA b. xar c. Xz

. Let f: R — R be defined by f(z) = 22 + 4x.

a. Calculate (i) f(=3) (i) f(-=2) (i) f(0) (iv) f(1)
b. Find the pre-image(s) of (i) 0 (i) =3  (iii) =4 (iv) =5
c. What is Rng(f)?

24 and g(z) =z + 2.

a. Does f =g for all z € R?

b. Does f =g for all z € (R — {2})?

Let f(z) = Va2, g(x) =z, and h(z) = |z|.
a. Does f =g forall z € [0,00)?

b. What is f(—3)? What is g(—3)?

c. Does f =g forall x € R?

d. Does f =h forall z € R?

Determine the domain and range of the following functions.
A(m,n) e NxN | n=9}
{(m,n) e N x N | n =m? — 5}
A(m,n) €ZXZ | n=2m+3}

}

o o

o

9—m

d. {(mn)€eZxZ|n=
m—3

e. {(r,s)eQxQ|3r—2s=4}
f.{(r,s) eQxQ|s=4-r?}
{(z,y) eRxR|y=¢€"+e "}

g.
h. {(z,y)) e RxR |y = Sin??x)}
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12.

13.

14.

15.
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Assuming each of the following equations defines a real-valued function
of a real variable, determine the domain and range of the function.

a. flz)=3c—4 b, f(z) = %

c. fx)=v2x+3 d. f(z)= \/i_x

e. f(x)=In(x+4)+1In(3—2) f. f(z)=vz+5—+/—(x+5)
g. f(z) =2-3sinbx h. f(z) = coix

Let X = {z,y,2} and Y = {1,2}.
a. How many different functions are there from X to Y?
b. How many different functions are there from Y to X7

c. If the number of elements in the nonempty set X is n(X) and the num-
ber of elements in the nonempty set Y is n(Y"), how many different
functions are there from X to Y7

For the given pairs of functions f and g, (i) write an expression for fog,
(ii) determine the domain and range of f og, (iii) write an expression for
go f, and (iv) determine the domain and range of go f.

o f=1{(1,2),23),3.1} g=1{(13),(21),3)
b. f(r) =3z+4, g(x)=5-2z

c. flw)=2-3z, gx)=2’>+x

d. f(z)=|z|, g(x)=cosx

e. f(z) =cosz, g(z)=tanz

=

f@) =222 =1, gla) = =

For a pair of functions f and g, f o g is well-defined if and only if
Rng(g) € Dom(f). For the following pairs of functions (i) determine if
f og is well-defined or not and (ii) if f o g is well-defined, give an explicit
expression for f o g.

a. f= {(1’3)’ (2’4)’ (3’ 1)}’ 9= {(1’ 2)’ (2’3)’ (3’ 2)}
b. f= {(1’ 2)’ (2’ 3)’ (3’ 2)}’ 9= {(1’ 3)’ (2’ 4)’ (3’ 1)}

c. f:Z — Z defined by f(m) =2m+3
g: N — Z defined by g(n) =n—10
d. f:N — N defined by f(m) =m+ 2
g:Z — Z defined by g(n) =n? —4
e. f:N — N defined by f(m) =m+2
g:Z — Z defined by g(n) =n? +4
f. f:N — R defined by f(m)=7—-m
g : N — Z defined by g(n) = n + n?
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g. f:N — Z defined by f(m) =m —m?
g: N — R defined by g(n) =7++/n
16. For f(z) = 23 + 1, g(x) = sinx, and h(x) = 2? — 4, what is
a. fo(goh)? b. (fog)oh?

17. Prove if f and g are functions, then f N g is a function.

5.2 Onto Functions, One-to-One Functions, and One-to-
One Correspondences

In this section we consider special classes of functions and general results
which hold for these classes. First, we define an onto function.

Let A and B be sets. A function f from A to B is onto (or surjective)
if and only if for every y € B there exists an « € A such that f(z) = y. We
denote that a function f from A to B is onto by writing f : A°™° B.

By definition, a function f : A — B is onto if and only if Rng(f) = B.
Also by definition, a function f is onto if and only if every element in the
codomain has an inverse image. Hence, whether or not a function is onto
depends upon the choice of the codomain, B. When Rng(f) = B, f is onto;
but, when Rng(f) C B, f is not onto. It is always possible to make a function
onto by selecting its codomain to be its range. However, it may be difficult
to actually specify the codomain explicitly. For example, it is not easy to
specify the range of the function f defined on the natural numbers, N, by
f(n) = (n!)?/". Tt is more convenient to just write f : N — R and not try to
specify the set Rng(f).

It follows from the definition that in order to prove a function f : A — B
is onto, we must show for arbitrary y € B how to select an x € A such that
f(z) = y. Tt also follows from the negation of the definition of onto that to
show a function f is not onto, we must show that there exists a y € b such
that for all x € A, f(x) # y. The following examples illustrate how to prove
a function is onto or not onto.

The function f : Z — Z defined by f(n) = 2n — 1 is not onto, since there
is no integer in the domain Z such that f(n) = 2n — 1 = 2. Notice that the

3
solution of the equation 2n—1 =2 isn = — ¢ Z. That is, 2 is in the codomain

Z, but there is no n in the domain Z such that f(n) = 2. Let O be the set
of odd integers and let g : Z — O defined by g(n) = 2n — 1. The function g
is onto. Let arbitrary m € O. Since m is odd, there exists a k € Z such that
m = 2k + 1. Solving 2n — 1 = m = 2k + 1 for n, we find n = k + 1. Since
k is an integer, n = k 4+ 1 is an integer. In fact, it is the integer such that
g(n) = m. Verify this.
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Example 5.2.1 Prove the function f: R — R defined by f(z) =2z — 3 is
onto.

Solution

Let y be in the codomain R. Remark: We must find an « in the domain
R such that f(z) = 22 — 3 = y. Solving for z, we find = = # Since
y,3,2 € R and the real numbers are closed under addition and nonzero divi-
. y+3 .
sion, x = 5 € R. Computing, we see

y+3 y+3
f@) = f(F5=)=3=2(5")-3=(w+3) -3=y

Hence, f isonto. W

Remark: Observe we have shown that given any y in the range R,

_y+3

x € R is the element in the domain which satisfies f(x) = y.

Example 5.2.2 Prove the function g : R — R defined by g(z) = 2% — 3
is not onto.

Solution

Since for all z € R, 2 > 0, it follows 2 —3 > —3. Let y = —4 € R, the
codomain of g. Since for all z € R, 22 —3 > —3, there is no z in the domain
R such that g(x) = —4. Therefore, g is not onto. MW

The following Horizontal Line Test, which is similar in nature to the Vertical
Line Test, can be used to indicate if a function is onto a particular set or not.
The test itself does not constitute a proof that the function is onto or not. It
only gives an indication that the function may be onto or may not be onto.

Horizontal Line Test Let f be a function from A to B where A and B
are subsets of R .

If for every b € B the horizontal line {(a,b) € f | a € A} intersects the
graph of f in one or more points, then the function f is onto.

If for some b € B there is a horizontal line {(a,b) € f | a € A} which does
not intersect the graph of f in any point, then the function f is not onto.

Figure 5.7 is a graph of the function f: R — R defined by f(z) = 2z — 3.
Since every horizontal line through Figure 5.7 intersects the graph of f exactly
once, the function f appears to be onto.

Figure 5.8 is a graph of the function g : R — R defined by g(z) = 22 — 3.

Since the horizontal line through the point (0,—4) of Figure 5.8 does not
intersect the graph of g, the function g can be proven not to be onto R. From
the graph in Figure 5.8, it appears that if the range of g were changed from R
to [—3, 00), then the newly defined function would be onto the new codomain.
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y
4 y=2x-3
2,
X
2 1 0 1 2 3 4 5
-2
4]
FIGURE 5.7: A graph of y = f(z) =22 — 3.
107y
8 y=x-
6,
4,
2,
X
4 3 2 .1 0 1.2 3 4
-2
y=-4
(0’-4)
-6

FIGURE 5.8: A graph of y = g(z) = 22 — 3.

The next theorem states that the composition of two functions which are
onto is a function which is onto.

Theorem 5.3 If f: A°™° B and g : B®™°C, then go f : A°™°C.

Proof: Let ¢ € C. Since g is onto, there exists a b € B such that g(b) = c.
Also since f is onto, there exists an a € A such that f(a) = b. By substitution,
g(f(a)) = (go f)(a) = c. Therefore, for every ¢ € C, there exists an a € A
such that (go f)(a) = ¢. Hence, the function go f is onto. W
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We state the following theorem and leave it for you to prove in the exercises.
Theorem 5.4 If f: A— B, g: B— C,and go f: A°™°C, then g is onto.

Example 5.2.3 Prove the statement “If f : A — B, g : B — C, and
go f:A°™MC, then f: A°™° B is false.

Solution

Recall that to prove the statement P = @ is false, we need to produce
an example in which P is true and @ is false. In this instance, we need to
exhibit three sets A, B, and C; a function f from A to B which is not onto;
and a function ¢ from B to C such that go f from A to C is onto. The best
counterexamples are those which are as simple as possible. So we will choose
A, B, and C to be small finite sets; f to be a subset of A x B which is not onto
B; and ¢ to be a subset of B x C' such that g o f is onto C. First, we select
A = {a}. Then so that f from A to B cannot be onto, we select B = {z,y}
and define f = {(a,z)}. So now we have a function f from set A to set B
which is not onto, because the element y € B has no pre-image. Since we want
go f to be onto C, we can have only one element in C. So we let C' = {c} and
define g = {(x, ¢), (y,¢)} so that go f = {(a, )} is onto. Our counterexample
is complete. We have three sets A = {a}, B = {x,y}, C = {c}; a function
f=A{(a,z)} from A to B which is not onto; and a function g = {(z, ¢), (y,¢)}
from B to C such that go f = {(a,c)} is onto. W

For a relation f from A to B to be a function it is necessary that every
element of A appear exactly once as a first coordinate in the ordered pairs of
f. For a function g from A to B to be onto, it is necessary that every element
of B appear at least once as a second coordinate in the ordered pairs of g. A
function A from A to B in which every element of B appears at most once as
a second coordinate in the ordered pairs of & is called a one-to-one function.
Thus, we have the following formal definition of a one-to-one function.

Let A and B be sets. A function f : A — B is one-to-one (or injective) if
and only if (z,y) € f and (z,y) € f implies x = z. We denote that a function
f from A to B is one-to-one by writing f : A =} B. Using functional notation
instead of ordered pair notation, a function f: A — B is one-to-one if and
only if f(z) = f(z) implies z = z. We can give a direct proof that f is one-to-
one by assuming f(z) = f(z) and showing « = z. Or, we can give an indirect
proof by assuming x # z and showing f(x) # f(2).

Example 5.2.4 Prove the function f : R — R defined by f(z) =2z — 3
is one-to-one.

Solution
Assume f(x) = f(z). That is, assume 2z — 3 = 2z — 3. Hence, 2z = 2z and
x = z, so the function f(x) = 2z — 3 is one-to-one. M
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Example 5.2.5 Prove the function g : R — R defined by g(z) = 22 — 3 is
not one-to-one.

Solution

Let us see what happens if we attempt to prove g is one-to-one. We assume
g(z) = g(z). That is, we assume z? — 3 = 22 — 3. Hence, (1) 2% = 22. Of
course, it is wrong to conclude from equation (1) that z = 2z and g is one-to-
one. Observe that one solution of equation (1) is = 3 and z = —3. Hence,
we have the following counterexample to g being one-to-one: Let x = 3 and
z=—3. Then g(x) = g(3) = (3)2 =3 =06 and g(2) = g(-3) = (-3)? —=3=6
but z # 2. N

The following Horizontal Line Test for One-to-Oneness can be used to
indicate if a function is one-to-one or not. The test itself does not constitute
a proof that the function is one-to-one or not. It only gives an indication that
the function may be one-to-one or may not be one-to-one.

Let f be a function from A to B where A and B are subsets of R.

If for every b € B the horizontal line {(a,b) € f | a € A} intersects the
graph of f in at most one point, then the function f is one-to-one.

If for some b € B there is a horizontal line {(a,b) € f | a € A} which
intersects the graph of f in two or more points, then the function f is not
one-to-one.

Figure 5.7 is a graph of the function f : R — R defined by f(z) = 22—3 and
Figure 5.8 is a graph of the function g : R — R defined by g(z) = 22 —3. Since
every horizontal line through Figure 5.7 intersects the graph of f exactly once,
the function f appears to be one-to-one. Since the horizontal line through the
point (0, 6) of Figure 5.8 intersects the graph of g in two points, the function
g can be proven not to be one-to-one, as we have done already.

The next theorem states that the composition of two functions which are
one-to-one is a function which is one-to-one. We leave this theorem for you
to prove in the exercises.

Theorem 5.5 If f: A Band g: B2 C, then go f: A C.

The following theorem says if the composition of two functions is one-to-one,
then the right function of the composition must also be one-to-one.

Theorem 5.6 If f: A— B, g: B— C,and go f: AXC, then fis
one-to-one.
Proof: Assume z,y € A and f(z) = f(z). Since f is a function from A to B,
Rng(f) € B. Since g is a function from B to C, g(f(z)) = ¢(f(z)). That
is, (go f)(x) = (go f)(z). By hypothesis, the function g o f is one-to-one, so
x = z, and therefore the function f is one-to-one. M

Some functions are neither onto nor one-to-one. For example, f : R — R
defined by f(x) = 22 is not onto R and not one-to-one. Some functions are
onto but not one-to-one. For instance, g : R — [0, c0) defined by g(z) = 22 is
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onto [0, c0) but not one-to-one. Some functions are one-to-one but not onto.
As an example, h : [0,00) — R defined by h(z) = \/z is one-to-one but not
onto R. And some functions are onto and one-to-one. An example is the
function &k : R — R defined by k(z) = = is onto R and is one-to-one.

Let A and B be sets. A function f : A — B which is onto its codomain
B and is one-to-one is called a one-to-one correspondence (or bijection).

We denote that a function f from A to B is a one-to-one correspondence by
writing f: A 1 B.

onto

The following theorem is a direct consequence of Theorems 5.3 and 5.5.
Theorem 5.7 If f: A X! Bandg: B X C, then go f: A C.

onto onto

Theorem 5.8 follows directly from Theorems 5.4 and 5.6.
Theorem 5.8 If f: A— B, g: B— C,and gof: A X C, then g : Bo°C
and f: AX B.

EXERCISES 5.2

1. Let A ={a,b, c}. Specify a codomain B and a function f : A — B such
that

a. f is neither onto B nor one-to-one.
b. f is onto B but not one-to-one.
c. f is not onto B but is one-to-one.
d. fis onto B and is one-to-one.
2. Let A be a finite set with m elements and let B be a finite set with n

elements. Then there are 2™" relations from A to B and n™ functions
from A to B.

a. How many functions are there from A onto B when (i) m < n,
(ii) m =mn, (iii) m > n?
b. How many one-to-one functions are there from A to B when (i) m < n,
(ii) m =mn, (iii) m > n?
c¢. How many one-to-one correspondences are there from A to B when
(i) m<mn, (i) m=mn, (ii) m>n?
3. Give examples of sets A, B, and C and functions f : A — B and
: B — (' such that
g is onto C but g o f is not onto C.
f is onto B but go f is not onto C'.
go fisonto C but f is not onto B.
g is one-to-one but g o f is not one-to-one.

o T e
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e. f is one-to-one but g o f is not one-to-one.
f. go fis one-to-one but g is not one-to-one.
4. Give an example of a function f : N — N such that
a. [ is neither onto nor one-to-one.
b. f is onto but not one-to-one.
c. f is not onto but is one-to-one.
d. f is onto and is one-to-one.

5. Let f: A — R be defined as given below. Determine a set A C R as
large as possible so that f is one-to-one.

a. f(x)=(x—2)2+4 b. f(z) =cosz
c. f(z)=tanzx d. f(z) =13z + 2|
6. Prove Theorem 5.4.
7. Prove Theorem 5.5.
Exercises 815 refer to the following functions.
: N — N defined by f(m) =m + 2
: N — N defined by f(m) =m3+m
: R — R defined by f(x) = e*
: R — (0,00) defined by f(x) = e”
: R — R defined by f(z) = |z|
: R — [—4, 00) defined by f(z) = || — 4
: (=00, —V/3) — R where f(z) = V22 -3
. [V/3,00) — [0, 00) where f(z) = Va2 —3
: R — R defined by f(z) =sinz
: R — [—1,1] defined by f(z) =sinz
: [-7/2,7/2] — R where f(z) =sinz
:[=m/2,7/2] — [-1,1] where f(z) =sinx
x
:R—{-3} = R — {1} where f(z) = 233
n. f:R xR — R where f((z,y)) =y

8. Which functions given above are onto the specified codomain? Prove
they are onto.

a.

FR -0 0 T

—-

—
e S

m.

9. Which functions given above are not onto the specified codomain? For
each function which is not onto, give a counterexample which shows it
is not onto.

10. Which functions given above are one-to-one? Prove they are one-to-one.

11. Which functions given above are not one-to-one? For each function which
is not one-to-one, give a counterexample which shows it is not one-to-one.

12. Which functions are onto but not one-to-one?

13. Which functions are not onto but are one-to-one?
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14. Which functions are one-to-one correspondences?

15. Which functions are neither onto nor one-to-one?

5.3 Inverse of a Function

Recall that a relation R from A to B is any set of ordered pairs in A x B
and that the inverse relation R~! from B to A is the relation defined by
R™' ={(b,a) | (a,b) € R}. Since every function f : A — B is a relation, f~!
is a relation from B to A. However, f~! may not be a function, as the following
two examples illustrate. First, consider the function F' : A — B where A =
{a}, B = {xz,y}, and F = {(a,x)}. The inverse relation F~! = {(z,a)} is a
relation from B to A; however, it is not a function since Dom (F~1) # B—
there is no ordered pair in FF~! with first element y. Consequently, for the
inverse of a function to be a function it is necessary that the codomain of the
function be the range of the function. That is, for the inverse of a function
to be a function it is necessary that the function be onto. Next, consider the
function G : C — D where C = {a,b}, D = {z}, and G = {(a, z), (b, z)}. The
inverse relation G~ = {(x,a), (z,b)} is a relation from D to C; however, it
is not a function since (x,a), (z,b) € G=! but a # b. That is, for the inverse
of a function to be a function it is necessary that the function be one-to-one.
From these two examples, it is clear that for the inverse relation f~! of a
function f to be a function it is necessary that f be onto and one-to-one. The
following theorem proves that these conditions are sufficient also.

Theorem 5.9 Let f: A — B be a function. Then the inverse relation f~!
from B to A is a function if and only if f is onto and one-to-one.

Proof: Assume f~! is a function from B to A. First, we show f is onto
B. Let b € B. Since f~! is assumed to be a function, there exists a unique
element a € A such that f~1(b) = a—that is, (b,a) € f~!. By definition of
the inverse relation, (a,b) € f. Hence, for every b € B there exists an a € A
such that f(a) = b and f is onto B. Next, we show f is one-to-one. Assume
(a1,b) € f and (ag,b) € f. This implies (b,a;) € f~! and (b,az) € f~1. Since
f~! is assumed to be a function, a; = ap and, therefore, f is one-to-one.
Hence, f~! is a function from B to A implies f is onto B and one-to-one.
Consequently, if f~! is a function, f is a one-to-one correspondence from A
onto B.

To prove the converse, we assume the function f : A — B is a one-to-one
correspondence. To show that f~! is a function from B to A, we must show
(1) Dom(f~') = B and (2) if (b,a1) € f~! and (b,az2) € f~!, then a1 = as.
To prove (1), we assume b € B. Since f is onto B, there exists an a € A
such that f(a) = b. Hence, (a,b) € f, which implies (b,a) € f~! for some
a € A—that is, b € Dom(f~1). To prove (2), we assume (b,a;) € f~! and
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(b,az) € f~1, which implies (a1,b) € f and (az,b) € f. Since f is one-to-one,
a; = ag. Since (1) and (2) are true, f~! is a function from B to A. W

Example 5.3.1 Find an expression for the inverse of the function f : R — R
defined by f(z) = 23 — 2.

Solution

First, we prove f is a one-to-one correspondence by showing f is onto and
one-to-one. Let y € R. Solving the equation y = 2% — 2 for z, we find
x = /y + 2. Calculation then yields

FRy+2)={y+2° -2=(y+2)-2=y.
Since for all y € R, = ¢y + 2 is such that f(z) =y, f is onto. Next, let
z,z € R and assume f(x) = f(2). Thus, 23 — 2 = 23 — 2. Adding 2, we get
23 = 23, which implies x = z. Hence, f is one-to-one. By Theorem 5.9, f~!
is the inverse function of f. Since f is a relation, f~' = {(y,z) | (x,y) € f}.
That is, f~!(y) = = if and only if y = f(z) = 2> — 2. We solved this last
equation for z above when we showed f is onto. The solution is x = /y + 2

so fly)=¥y+2. N

The next theorem says “If f is a one-to-one correspondence from A onto
B, then f~! is a one-to-one correspondence from B onto A.”
Theorem 5.10 If f: A} B, then f~!: B = A.

onto onto

Proof: To show f~! is one-to-one, we assume f~1(b1) = f~1(b2) = a. Hence,
(b1,a) € f~1 and (bz,a) € f~1. From the definition of an inverse relation,
(a,b1) € f and (a,b2) € f. Since f is a function, b; = b, and therefore f~*
is one-to-one. To show f~! is onto, we let a € A. Since f is a function from
A to B, there exists a b € B such that (a,b) € f, which implies (b,a) € f~!
for some b € B. Hence, f~! isonto A. W

The following theorem states that “If f is a one-to-one correspondence from
A to B and if g is a one-to-one correspondence from B to C, then the inverse
function of the composition g o f is the function (go f)=* = f~tog=1.”

Theorem 5.11 If f: A Band g: B 1} C, then the function (go f)~' =

Flogt, onto onto
Proof: By Theorem 5.7 since f and g are one-to-one correspondences, g o f
is a one-to-one correspondence from A to C'. By Theorem 5.10, (go f) ™! is a
one-to-one correspondence from C to A. And since f and g are relations, by
Theorem 4.2, (go f)"t=f"log . N

Suppose f : A — B is a one-to-one correspondence. By Theorem 5.9, f~!
is a function from B to A and by Theorem 5.10, f~! : B — A is a one-to-one
correspondence. By Theorem 5.7, if f : A — B is a one-to-one correspondence
and f~!: B — A is a one-to-one correspondence, then f~!o f is a one-to-one
correspondence from A to A and fo f~! is a one-to-one correspondence from
B to B. In fact, as the following theorem states, f~1of = I4 and fof~! =Ip
where 14 and Ip are the identity functions on the sets A and B, respectively.
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Theorem 5.12 If f is a one-to-one correspondence from A to B, then
(1) flof=1I4 and (2) fof!'=1Ip.
Proof: Remark: We prove (1) only. Since f is a one-to-one correspondence
from A to B, by Theorem 5.10, f~! is a one-to-one correspondence from B to
A. Therefore, by Theorem 5.7, f~! o f is a one-to-one correspondence from
Ato A. Let a € A and suppose f(a) =b. Then a = f~1(b). Computing, we
find
(f~h o f)la) = 71 (f(a) = f71(b) = a = Ia(a).

Hence, (f~! o f) = I4. Similarly, we can show fo f~' =1Ig. W

Given two functions f: A — B and g : B — A, we would like a test which
will tell us if they are inverse functions of one another or not. The last of the
following three theorems, Theorem 5.15, provides this test.
Theorem 5.13 If f: A —- B, g: B — A, and go f = I4, then f is
one-to-one.
Proof: Let z,z € A and assume that f(x) = f(z). Applying g to both sides
of this equation, we obtain g(f(z)) = g(f(z))—that is, (go f)(z) = (go f)(2).
Since go f =14, x = z and f is one-to-one. M
Theorem 5.14If f: A— B, g: B — A, and fog = Ip, then f is onto B.
Proof: Let b € B and let x = g(b) € A. Computing, we find f(z) = f(g(b)) =
(fog)(b) = Ig(b) =b. Hence, the function f is onto B, since for every b € B
there is an © = ¢g(b) € A such that f(z) =b. N
Theorem 5.151f f: A— B, g: B— A, fog=1Ip,and go f = I4, then
f and g are one-to-one correspondences and f~! = g.
Proof: It follows from Theorems 5.13 and 5.14 that f and g are one-to-one
correspondences. Remark: The result for g follows by interchanging f and
¢ and interchanging A and B in the statements of Theorems 5.13 and 5.14.
The following computation proves f~! = g.

fTl=flolp=f""o(fog) =(foflog=Iaog=yg. N

Example 5.3.2 Show that the inverse of the function f : R—{2} — R—{3}
defined by f(z) = 3332 is the function g : R — {3} — R — {2} defined by
z—

_ 2%y
9(y) = 3

Solution

By Theorem 5.15, the function g = f=1if (1) forallz € R — {2}, go f =
IR,{Q} and (2) for all Yy e R — {3}, f og= IR,{g}.

Let z € R — {2}; then

3z
(g0 N)x) = 9(f(x)) =g (I"”_IQ) :2 gj 22 = 3x_§(ﬁ_2> =X
T —2
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ThuS, go f = IR,{Q}.
Let y € R — {3}; then

3(2_y)
oo =) =1 (;25) =4 = s ~ 6=V

y—3

Thus, fog = Ir_y33. Consequently, g = f~1. Furthermore, it follows from
the computations above and Theorem 5.15 that f and g are both one-to-one
correspondences. W

Often a function is not a one-to-one correspondence from its domain to
its codomain and therefore the inverse of the function is a relation and not a
function. In many such cases, we would like to modify the function and obtain
a new function which is similar to the original function and whose inverse is
a function. We can always modify a function and make it onto by changing
its codomain to its range, although, as we noted earlier, it may be difficult to
actually specify the range explicitly. In order to modify a function and obtain
a new function which is one-to-one, it is often necessary to limit the domain
of the original function. The following definition provides the means for doing
this.

Let function be a f from A to B and let C' C A. The restriction of f to
C, denoted by f|¢, is

fle=A(z,y) | (z,y) € fand z € C}.

Clearly, the restriction of f to C is a function whose domain is the set C.
When g is a restriction of a function h, we may also say h is an extension
of g.

For example, let A = {a,b,c,d}, B =1{1,2,3,4}, and define the function f
from A to B by f = {(a,1),(b,1), (c,3),(d,4)}. The function f is not onto
B because Rng(f) = {1,3,4} # B. If welet g : A — C where C = {1, 3,4}
is defined by g = {(a, 1), (b, 1), (¢,3), (d,4)}, then g is onto C; however, g is
not one-to-one because (a, 1), (b,1) € g. Observe that the restriction of g to
D = {a7 c? d}?

9lp ={(a,1),(c,3), (d, 4)} = h,
is a one-to-one correspondence from D onto C and h=! = {(1, a), (3, ¢), (4,d)}.
Also observe that the restriction of g to E = {b, ¢, d},

g‘E = {(b’ 1)’ (C’ 3)’ (d’ 4)} =k,

is a one-to-one correspondence from E onto C' and k=1 = {(1,b), (3,¢), (4,d)}.
Thus, it is possible for a function which is not one-to-one to have more than
one restriction which is one-to-one.

Recall from calculus that a real-valued function of a real variable f that is
defined on an interval I is increasing on [ if and only if for all x1,25 € T
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if 1 < @q, then f(z1) < f(x2). Also the function f is decreasing on I if
and ouly if for all x1,29 € T if 1 < x2, then f(x1) > f(x2). We leave the
following fact as an exercise for you to prove: “If f is increasing or decreasing
on an interval I, then f is one-to-one on the domain I.” Consider the function
f defined by f(z) =|z+ 2|+ 3. For x > =2, |z + 2| = 2 + 2 and for x < -2,
lt+2|=—(r+2)=—-2—2. So

x+5, ifx>-2

f(x)x+2+3{x+1’ ifx < -2

Notice that f[[_2 ) is an increasing function from the domain [-2, c0) onto
the range [3,00), and therefore a one-to-one correspondence whose inverse
function is defined by (f|(—2,00)) "*(y) =y —5. Also notice that f|(_s, _2)is a
decreasing function from (—oo, —2] onto the range [3, c0) and therefore a one-
to-one correspondence whose inverse function is defined by (f|(—oo,—2)) " *(y) =
1—y.

None of the six trigonometric functions sin, cos, tan, csc, sec, or cot has an
inverse which is a function. A graph of y = sinz is displayed in Figure 5.9.

157y
14 y=sinx
0.5
\ .
-10\ -8 /-6 0o 2 \4 8 \o
1-0.5
1-1
1-1.5

FIGURE 5.9: A graph of the function y = sin x.

As you well know, for x € R, =1 < sinz < 1. So Rng(sinz) = [-1,1].
The sine function increases on the intervals [7% +2nm, 5 + 2n7r] forn € Z
and decreases on the intervals [% + 2nm, 377' + 2n7r] for n € Z. Consequently,
there are an infinite number of possible restrictions of the sine function which
will result in a function whose inverse is also a function. The Sine function,
Sin : [-%,%] — [~1,1] is defined by Sin(z) = sin(z). That is, Sin =

272
sin \[ 2] A graph of y = Sin(x) is displayed in Figure 5.10 and a graph of

—%3
its inverse function y = Sin~!(z) is displayed in Figure 5.11. A definition of
the inverse Sine function is

Sin~!(y) =« if and only if y=sinz and — = <2 < g

N



Functions

Furthermore,

for all = € [—g, g} , (Sin~'oSin)(x) = (Sin~*(Sin(z))) =z

and

for all y € [—1,1], (SinoSin~')(y) = (Sin(Sin~'(y))) = v.

157y
(m/2, 1)
1]
0.5
X
-2 -1 0 1 2
-0.5
-11
(-m/2, -1)
-1.5
FIGURE 5.10: A graph of the function y = Sin(x).
21y (1, 1/2)
11
X
1.5 -1 -0.5 0 05 1 15
-1
-1, -1/2
(-1, -n/2) o

FIGURE 5.11: A graph of the function y = Sin™*(z).
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EXERCISES 5.3

1.

. Let f(x) =

. Let f(x) =

Prove that f : R — R defined by f(z) = 3z — 2 is a one-to-one
correspondence and find f~1.

. Prove that f : R — R defined by f(z) = ax + b where a # 0 is a

one-to-one correspondence and find its inverse function.

. Prove that f: (—o0,0] — [1,00) defined by f(x) = 22+ 1 is a one-to-one

correspondence and find f~!.

. Let f:Z — N be defined by

F(m) = —2m, ifm<0
T 12m 41, ifm>0

Prove that f is a one-to-one correspondence and find f~!.

. Let f: R — R defined by f(xz) = —2z+ 3 and let g : R — R defined by

g(x) =4x — 5.
a. Write expressions for f~! and g~'.
b. Write expressions for go f, (go f)~!, and f~tog~%

c. Does (go f)™t=ftog™1?

1
and Dom(f) = [0, 1).
-z
a. Find Rng(f).
b. Show that f is a one-to-one correspondence from [0, 1) onto Rng(f).
c. Write an expression for f~! : Rng(f) — [0,1).
d. Verify f~V o f = Ijg1) and fo f~1 = Inne(p).
T and Dom(f) = (0,1).
-z
a. Find Rng(f).
b. Show that f is a one-to-one correspondence from (0, 1) onto Rng(f).
c. Write an expression for f~! : Rng(f) — (0,1).
d. Verify f~L o f = I 1) and fo f~1 = Inng ().

. Show that the following pairs of functions are inverses by showing go f =

Ipand fog=Igp.

a. A= (-00,0], B=1[0,00), f:A — Bisdefined by f(z) = 22, and
g: B — A is defined byg(y):—\/_
b. A=[0,00), B=[-2,00), f:A— Bis defined by f(zx) = /z — 2,

and g : B — A is defined by g(y) = 3 + 4y + 4.

c. A = R, B = (O, OO), f - A — B is defined by f(l‘) — 362m71’
and g : B — A is defined by g(y) = Eln <§> + 5



10.

11.

12.

13.

14.

15.

16.

17.
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. Give an example of two functions f : R — R and g : R — R which are

both one-to-one correspondences, but the functions f + g and fg are
both not one-to-one correspondences.

Give an example of two functions f : A — B and g : B — A such that
fog=1Ipbut f~!is not a function.

Let f be a one-to-one correspondence from A to B and let g be a one-
to-one correspondence from B to A. Prove: If go f =14 or fog= Ip,
then f~1 =g.

Let A =1{2,3,5,7,11}, B = {1,2,3,5,8,13}, and let f from A to B be
defined by f = {(2,2). (3.3), (5,8, (7.1), (11.8)}.

a. Find Rng(f) b. Is f onto B? c. What is f|(5,11)7

d. Find two sets C' with four elements such that f|c is one-to-one.

Let f : R — R be defined by f(z) =2 — 5z and let A = {-2,0,1,3}.
Find a. f‘A and b. Rng(f‘[,g_’g]).

Let ACR and let f: A — R be as defined below. Determine A in two
different ways so that f|4 is a one-to-one function. Choose the set A to
be as large as possible. For both choices of A determine Rng(f|4) and
write the expression for (f|4)~! : Rng(f|a) — A.

a. f(xr)=13x+4|-6 b. f(x) = —2%+4x -8

Determine the ranges of the following restricted trigonometric functions.
a. Rng(cos| [O,%]) b. Rng(cos \[%ﬂ])
c. Rng(tan\[o,%]) d. Rng(tan \[%%))

Prove that if f : R — R is an increasing function on the interval I, then
flr is one-to-one.

We saw that the Sine function is the restriction of the sine function to

the interval [—3, Z]—that is, Sin = sm\[i,r ,r]—and that Rng(Sin) =
)

[—1,1]. Associated with each trigonometric function sin, cos, tan, csc,
sec, cot there is a restricted trigonometric function Sin, Cos, Tan, Csc,
Sec, Cot whose inverse is a function. Complete the following table.

Function Domain Range Definition by Restriction

Sin [—
Cos
Tan
Csc

Sec
Cot

SIE]
SIE]
i

)

[—1,1] Sin = sin\[

_n 1}
252
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5.4 Images and Inverse Images of Sets

Earlier, we noted that if f : A — B is a function and y = f(x), then y is
the image of x under f and x is the pre-image of y under f. These concepts
extend naturally from elements to sets as follows.

Let f be a function from A to B, f : A — B. If X C A; then the image
of X or image of the set X, denoted by f(X), is
f(X)={yeB|y= f(z) for some z € X}.
If Y C B, then the inverse image of Y, denoted by f=(Y), is
YY) ={ze Al flz) eY}

By definition, the image of the set X under the function f, f(X), is the set
of all images of the elements of X. The set f(X) is a subset of Rng(f) C B.
The inverse image of the set Y under the function f, f=1(Y), is the set of all
pre-images of the elements of Y. The set f~(Y) C A. Figure 5.12 graphically
illustrates this situation.

FIGURE 5.12: Image of X under f, f(X), and the inverse image of Y’
under £~ f71(Y).
The next theorem follows easily from the definitions of image and inverse
image of sets.
Theorem 5.16 Let f: A— B, CCA, DCB,andx € A. Then

a. f(0)=0 b. f710)=0
c. f({z}) = {f(=)} d. zeC= f(z) € f(C)
e. z€ f~YD)= f(x)e D f. fz)eD=ze€ (D)

Example 5.4.1

Let A={1,2,3,4,5}, let B={a,b,c,d},and let f: A — B be defined by
f={1,0),(2,a), (3,b),(4,), (5,c)}. Find a. f(C) for C ={2,4}, b. f(A),
c. f7YD) for D= 1{b,c}, d. f~1({d}), and e. f~1(B).
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Solution

a. f(C) = {y e B|y = f(x)forsomez € C} = {f(z) | z € C} =
{f(2), f(4)} = {a, b}

b. f(A) = {f(@)[z € A} = {f(1), f(2),f3), f(4), F(B)} = {a,a,b,b,c} =
{a,b,c} = Rng(f)

c. fFAD)={zecA|f(x)eD}y={xzecA|f(x)=bor f(x) =c} ={3,4,5}

d. f71({d}) ={z € Al f(x) =d} =0

e. fYB)={xecA|f(x)e B} ={rec A|f(x)=aor f(x) =bor f(z) =
cor f(x) =d}=1{1,2,3,4,5} = A=Dom(f) N

Example 5.4.2 Let f: R — R be defined by y = f(z) = |z| — 1. Find
a. f((3,5]) and b. f71((2,4]).
Solution
a. A graph of y = f(z) = |z| — 1 is displayed in Figure 5.13. First, we
marked the interval (3, 5] on the z-axis. Since 3 ¢ (3, 5], we drew a dashed
vertical line from the point (3,0) to the graph of y = f(x). The vertical line
x = 3 intersected the graph at the point (3,2). We projected the point (3,2)
onto the y-axis by drawing the dashed horizontal line y = 2. Next, since
5 € (3, 5], we drew the solid vertical line from the point (5,0) to the graph of
y = f(x). The line z = 5 intersected the graph at the point (5,4). We then
projected the point (5,4) onto the y-axis by drawing the line y = 4. From
Figure 5.13, it appears that f((3,5]) = (2,4]. To prove this we must show
that (1) £((3,5]) C (2,4] and (2) (2,4] C £((3,5).

(1) Let y € f((3,5]). By definition, there exists an xz € (3,5] such that
f(x) =yor|z|-1=y. Forz € (3,5], || = x, so there exists an x € (3, 5] such

5_
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that x —1 = y. Since z € (3,5], 3 < <5 and therefore 3—1<x—-1<5-1
or 2 <y <4—thatis, y € (2,4].

(2) Let y € (2,4]. We must find an z € (3, 5] such that f(z) =y = |z| — 1.
Since for = € (3, 5], || =z, we must find an = € (3, 5] such that y = 2 — 1.
Solving for x, we see x = y + 1. Since y € (2,4], 2 < y < 4, and therefore
241 <y+1<4+lor3 <z <5 Thatis, ify € (2,4], thenz =y+1 € (3,5].

Since by (1) f((3,5]) C (2,4] and by (2) (2,4] C f((3,5]), it follows that
7(3,5) = (2.4
b. A second graph of y = f(x) = |x| — 1 is shown in Figure 5.14. We marked
the interval (2, 4] on the y-axis and drew horizontal lines through the points
(0,2) and (0,4) to the graph of y = f(x). These lines intersected the graph
at the points (—5,4), (—3,2), (3,2), and (5,4). Projecting these points onto
the z-axis, it appears from Figure 5.14 that f=1((2,4]) = [-5, —3) U (3, 5].

The proof that f=1((2,4]) = [-5, =3) U (3, 5] is as follows:

e f7H(2,4) & flx) e (2,4 e 2<|z|-1<4
S3<|z|<be3<e<5 or 3<—x<5H
e3<zr<50r —5<zx<-3<zec(3,5 orxe[-5-3)
&z e[-5,-3)U (3,5

5_
(-5.4) 4
> 34
('2!3)
x=-5
| 1
x=-3
1 A 1
| ) |
6 -5 -4 -3 -2 \
-1
o4

FIGURE 5.14: A graph of y = f(z) = |z| — 1 and f71((2,4]) =
[—5, —3) U (3,5].

This example proves that the following statement is false: (*) “If f : A — B,
if C C A, and if D C B, then f(C) = D = C = f~1(D).” That is, this
example is a counterexample to the statement (*). W

The next example examines the relationship between the images and inverse
images of unions and intersections of sets and the unions and intersections of
sets of images and inverse images.
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Example 5.4.3 Let A = {a,b,¢c,d,e}, B=1{1,2,3,4}, C ={a,b}, D=
{b,c}, E ={1,2}, F = {2,4}, and let f : A — B be defined by f =
{(a,2),(b,1),(c,2),(d,3), (e, 2)}.
a. Find f(CUD) and f(C)U
b. Find f(C N D) and f(C)N

f(D). How are they related?
I
c. Find f~Y(FUF) and f~1(E)
)

D). How are they related?

U f~1(F). How are they related?
d. Find f~Y(ENF) and f~Y(E)N f~1(F). How are they related?
Solution
a. CUD = {a,b}U{bc} = {a,b,c}. So f(CUD) = f({a,b,c}) =
{f(a), £(b), f(e)} = {2,1}.
f(@) = f({a,b}) = {f(a), f(b)} = {2,1} and
fF(D) = f({b,c}) = {f(b), ()} = {1,2}.
So f(C)U f(D) = {1, 2}. Thus, in this instance, f(CUD) = f(C)U f(D).

b. 1D = {a,b} 1 {b.c} = {b}. So F(C N D) = F({b}) = (f()} = {1}.
From part a, f(C)={2,1} and f(D) = {1,2}, so f(C) N f(D) = {1,2}.
In this example, f(C' N D) = {1} C {1,2} = f(C) N f(D).

c. BUF = {1,2U{2,4} = {1,2,4}. And f"Y(EUF) = f1({1,2,4}) =
{zeA| flz)y=1o0r f(x) =2, or f(z) =4} = {b,a,c,e}.
fFAUE) = ({12) ={z € A| f(z) =1 or f(z) =2} ={b,a,c e}
fFFAE) =f1{2,4) ={z € A| f(z) =2 or f(z) =4} ={a,c,e}.
So fFTHE)U fH(F) = {b,a,ce}.

In this case, fTH(EUF) = f~YE)U f~1(F).

d ENF = {1,2} n{2,4} = {2} and fYENF) = f71({2})
{xe A f(z) =2} ={a,ce}.

From part ¢, f~Y(E) = {b,a,c,e} and f~1(F) = {a,c,e},so f~H(ENF)
{a,c,e}.
For this example, f~Y(ENF) = f~YE)n f~YF). A

The following theorem, which applies to the previous example, indicates
how to calculate the image and inverse image of the unions and intersections
of sets.

Theorem 5.17 Let f: A— B, let C,D C A, and let £, F C B. Then

a. f(CUD) = f(C) U f(D) b. f(C'ND) C £(C) N f(D)

¢ [UEUR) = fUE)USNF) . fUENF) = fAE) N ()

Proof: Remark: We will prove parts b and d.

b. Let y € f(C N D). By definition, y = f(z) for some z € C N D. Thus,
y = f(z) for some x € C and x € D. Since z € C, f(z) € f(C) and since
x € D, f(x) € f(D). Consequently, y = f(x) € f(C)N f(D).
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d. For every z € A,
refYENF)& f(z) e ENF & f(z) € Eand f(z) € F
srze f(E)andxe f(F)exe f(E)NfF). A

The next theorem states the relationship between the inverse image of the
difference of two sets and the difference of their inverse images.

Theorem 5.18 Let f: A — B andlet E, F C B. Then
fTUE-F)=f1(E) - fH(F).
Proof: ze€ ffY(E-F)& f(r)e E—F & f(z) € Eand f(z) ¢ F
sSzefYE)and z ¢ fH(F)
srefYE)-fY(F). 1

EXERCISES 5.4

1. Let A = {v,w,z,y,2}, B=1{1,2,3,4,5}, and f : A — B be defined by
f=4{®,2),(w,5),(x,3),(y,3),(2,4)}. Find
a. f({v}) b. f({z.y}) o f{3}) 4 LD
e. fTHf{v,z,2}) £ f(FH({3,4,5}))

2. Let f: R — R be defined by f(z) =2 — 3z. Find

a. f({-2,-1,0,1}) b. f(N)
c. f(Z) d. f([1,4))
e. f([=2,0)U(1,2]) - (5, 10))
g fH(2,4)N[3,5]) - R
Lo f(f(-2.4)) A 1(09:1)))
3. Let f: N x N — N be defined by f((m, n)) = 3™5". Find
a. f(A x B) where A= {1,2,3} and B ={1,2}

b. f71({10,15,25,45,65,75})
4. Let f:R — R be defined by f(z) = —8z — 2%, Find

a. f([=5,0)) b. f([2,5])

c. f(R) d. f71((-20,0))
e. f1([-20,20)]) f. fFY(R)

g fH([=5,0]) ho f(f71((=20,0)))

5. Prove Theorem 5.16.
6. Prove parts a and ¢ of Theorem 5.17.
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In Exercises 723 let f : A — B, let C,D C A, and let E,F C B.
Prove the following theorems.

7.

8.

9.
10. f
11. f
12. f
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

23.

If C C D, then f(C) C f(D).
If ECF,then f71(E) C f1(F).
C C fHf(O)).
f(fH(E) CE.
f= 1( ) =[f(A)NE.
fenfH(E) = f(C)NE.
1 (B —E)=A-f"Y(E).
If f is onto, then f(f~1(E)) = E.
If f(f~Y(F))=F for all E C B, then f is onto.
If fis onto and f~Y(E) = f~Y(F), then E = F.
If f is one-to-one, then f~1(f(C)) = C.
If f71(f(C)) =C for all C C A, then f is one-to-one.
If f is one-to-one, then f(C N D) = f(C)N f(D).
If f is one-to-one, then f(C — D) = f(C) — f(D).
If f is one-to-one, then f(z) € f(C) if and ounly if x € C.
If f is a one-to-one correspondence, then f(C) = E if and only if C =
fHE).
If f is a one-to-one correspondence, then f(A — C) = B — f(C).

In Exercises 24-30 let f : A — B, let C,D C A, and let E,F C B.
Provide counterexamples to the following statements.

24.
25. f
26.
27. f
28. f
29.
30.

If £(C) C f(D), then C C D.

f(C = D)= f(C) - f(D).

If f~7Y(E)C f~ 1( ), then E C F.
Hf(0) =

fFUFH(E) =

If E # 0, then f~(E) # 0.
x € C if and only if f(z) € f(C).
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5.5 Chapter Review

Definitions

Let A and B be sets. A function f from A to B, denoted by f: A — B,
is a relation from A to B such that

(1) Dom(f) = A.

(2) If (a,b) € f and (a,c) € f, then b= c.

The domain of a function f from A to B is the set
Dom(f) ={z e A |3y € B)((x,y) € f)}-

The codomain of the function f from A to B is the set B.

The range of a function f from A to B is the set

Rng(f) ={y € B| Bz € A)((z,y) € f)}.

Let f be a function from A to B, f : A — B, and let (z,y) denote the
elements of f.

The image of z under f is f(x). The image of  under f is also called
the value of f at x.

The pre-image of y under f is x.

Two functions f and g are equal, written f = g, if and only if Dom(f) =
Dom(g) and for all z € Dom(f), f(z) = g(z).

Let A and B be sets. A function f from A to B is onto (or surjective) if
and only if (Vy € B) (3z € A) such that f(x) =y.

Let A and B be sets. A function f: A — B is one-to-one (or injective)
if and only if (z,y) € f and (z,y) € f implies © = z.

Let A and B be sets. A function f : A — B which is onto its codomain B
and is one-to-one is called a one-to-one correspondence (or bijection).

Let function be a f from A to B and let C' C A. The restriction of f to
Cis flo = {(z,9) | (v.y) € f and z € C}.

Let f be a function from A to B, f: A — B. If X C A, then the image
of X or image of the set X is f(X) ={y € B |y = f(z) for some z € A}.
If Y C B, then the inverse image of Y is f~1(Y)={z € A| f(x) e Y}.
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Review Exercises

1.

10.

. Assuming the equation f(z) =

Which of the following relations on the set A = {a,b,c,d} are func-
tions? For those relations which are not functions, indicate why they are
not functions

a. f={(a,0),(c,d)}

b. g={(a,a),(bc),(c,a),(d,b)}

C h:{(a’ b),(b,C),(C, )’(dva’)a(aa C)}

d. k= {(a’a b)v(ba C),(C, )a(da d)}

e. £={(a,b),(b,c),(c,d),(d,a)}

a. Which functions in Exercise 1 are onto?

b. Which functions in Exercise 1 are one-to-one?

c. Which functions in Exercise 1 are one-to-one correspondences?

2+ 9

3 defines a real-valued function of
72 —

a real variable, determine the domain and range of f.

. Prove that the relation g = {(z,y) € R x R | 22 = ¢?} is not a function

on R.

. Let f : R — R defined by f(x) = —2? +12. What are the pre-images of

47

. For the given pairs of functions f and g, determine

(i) Dom(g) (i) Rng(f) (iii) fog (iv) Dom(fog) (v) Rng(fog)
a. f= {(a’ b)’(b’a)’(cac)}’ 9= {(aac)’(b’a)}
b. f: R — R defined by f(x) = —22 +1,

g: R — R defined by g(z) =22 — 1

. Let A be a nonempty set. Suppose R is a function and an equivalence

relation on the set A. What is the function R?

. a. Give an example of two functions f and g such that fog=go f.

b. Give an example of two functions h and k such that h ok # ko h.

. Give two different pairs of functions f and g such that

a. (fog)=+2x -5 b. (f og) = cos|3z + 2|

Classify each of the following functions as (i) onto, (ii) one-to-one,
(iii) a one-to-one correspondence, or (iv) none of these.

: R — R defined by f(z) =3z —4

: R — R defined by f(x) =222 +1

:R — [1,00) defined by f(x) =222+ 1

: (—00,0] — [1,00) defined by f(z) = 222 + 1

: R — R defined by f(x) = tanx

: (—7/2,7/2) — R defined by f(x) = tanx

a
b
c.
d.
e
f
g : (—00,0) — (0, 00) defined by f(x) = 1/z>

- e s s
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11.

12.

13.

14.

15.

16.

17.

Introduction to Mathematical Proofs

h. f:(—00,0) — R defined by f(z) = 1/2?

i. f:R — R defined by f(z) = e2*

j- f:R — (0,00) defined by f(z) = e**

For each one-to-one correspondence found in Exercise 10, write an ex-

pression that defines the inverse function, f~!.

Give an example of functions f and g such that f o g is a one-to-one
correspondence, but neither f nor g is a one-to-one correspondence.

Let A C Randlet f: A — R be as defined below. Determine two
different sets A so that f|4 is one-to-one. Choose the sets to be as large
as possible.

2
a. f(z) = m
Let f : (0,00) — [—1,1] be defined by f(z) = sin(lnz). Write an
expression for f~1(z).
Let A ={1,2,3,4},let B = {a,b,c,d, e}, and let f: A — B be defined
by f={(1,e),(2,¢),(3,a),(4,e)}. Determine
a. f({1,3}) b f7'({a.bc}) e fTH{2.41) A f(FTH({B.de}))
Let f: R — R be defined by f(z) = |z — 2| 4+ 3. Calculate
a. f((=2,5]) b f((=2,-1) U (3,6)) c. f71([0,2))
d fH[4,7) e. fTH(f((=1,3))) £ f(F7H(=1.5])

Let h be a function on some set S. Prove that if A o h is a one-to-one

b. f(z) = cotx

correspondence, then A is a one-to-one correspondence.

More Challenging Exercises

18.

19.

20.

21.

22.

Let A be a nonempty set. Suppose R is an equivalence relation on A,
and suppose R is a function on A. What function is R?

Suppose f is a function from A to B and g is a function from B to C.
Prove the following.

a. If f is onto and g is not one-to-one, then g o f is not one-to-one.

b. If f is not onto and g is one-to-one, then g o f is not onto.

Let R be a relation from A to B, S be a relation from B to C, Rng(R) =
Dom(S) = B, and S o R be a function from A to C. Prove that S is a

function from B to C' and give an example to show that R need not be
a function.

Let A, B, and C be sets. Prove if f : A°™ B, g: B— C, h: B — C,
and go f = ho f, then g = h.

Let A, B, and C be sets. Proveif f: B C,g: A— B, h: A — B,
and fog= foh, then g =nh.



23.

24.

25.

26.
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Let f be a function from A to B, let g be a function from C to D, and let
E =AnNC. Prove that f U g is a function from AU C to BU D if and

only if f|g = ¢g|&.

Let f: A — B and Rng(f) = C. Prove that if f~! is a function, then

flof=1Isand foft=1Ic.

Two functions f and g are inverse functions if and only if

(1) fog=liomy and go f= Iljom(s)-

When (1) is true, we say that g is an inverse of f and f is an inverse of

g. A function f is invertible if and only if an inverse function g exists.

Prove that every invertible function has a unique inverse function.

Let f be a function from X to Y. Prove the following.

a. The function f is one-to-one if and only if f~!(y) contains at most
one element for every y € Y.

b. The function f is onto if and only if f~!(y) contains at least one
element for every y € Y.

c. The function f is a one-to-one correspondence if and only if f~1(y)
contains exactly one element for every y € Y.

In Exercises 27 through 30 a statement and a proof? are given.

For each exercise do the following.

a.

b.

C.

27.

28.

29.

Determine if the given statement is true or false.

If the statement is a theorem, determine if the proof? is valid.

If the given statement is false, provide a counterexample.

Statement. Theorem? Proof?

Statement: The function f : R x R — R defined by f(z,y) = 4z + 5y
is onto.

Proof? Suppose (z,y) € R x R. Then z € R and y € R. Since 4 € R
and 5 € R, 4z € R, by € R, and 4z + 5y € R. Consequently, the
function f is onto.

Statement. Theorem? Proof?

Statement: The function f : R — R defined by f(z,y) = 2x—3 is one-to-
one.

Proof? Let 7 and x2 be real numbers and assume f(x1) = f(x2). That
is, assume 2x1—3 = 2z2—3. Then 2z = 2x5 and 21 = z3. Consequently,
f is one-to-one.

Statement. Theorem? Proof?

Statement: Let f, f~1, and g be functions on A. Prove f~1o(gof) =g.
Proof? It follows from theorems we have proved that

flo(gof)y=f"o(fog)=(f"of)log=Iaog=y.
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30. Statement. Theorem? Proof?
Statement: If f: A — B and C C A, then f~1(f(C)) C C.
Proof? Suppose ¢ € f~1(f(C)). By definition of f=1, f(c) € f(C).
Hence, ¢ € C and f~1(f(C)) C C.



Chapter 6

Mathematical Induction

In this chapter, we examine Peano’s fifth axiom, also known as the Axiom
of Induction, and explore the consequences of this axiom. Among the con-
sequences are four versions of the Principle of Mathematical Induction, the
Well-Ordering Principle for the set of the natural numbers, and the Funda-
mental Theorem of Arithmetic. It is difficult, if not impossible, to determine
when the very first proof by induction was employed. In 1202, Leonardo
Pisano Bigollo (1180-1250), also known as Leonardo of Pisa and after his
death called Fibonacci, used induction in his Book of the Abacus to prove
6(124+22+3%2+---+n?) =n(n+1)(n+n+1). In 1321, Levi Ben Gershon
(1288-1344) completed The Art of the Calculator in which several proposi-
tions were proven using mathematical induction. In 1654, the French mathe-
matician Blaise Pascal (1623-1662) gave the first definitive explanation of the
method of mathematical induction. However, the name “mathematical induc-
tion” was not associated with this method of proof until August De Morgan
(1806-1871) published his article on “Induction (Mathematics)” in the Penny
Cyclopaedia of 1838.

6.1 Mathematical Induction

In Chapter 2, we stated the axioms P1-P5, which the Italian mathematician
and logician Giuseppe Peano (1858-1932) used in his axiomatic development
of the set of natural numbers. The following axiom, called the Axiom of
Induction, is a rewording of Peano’s fifth axiom, P5.

Axiom of Induction If § C N satisfying the two properties

(1) 1e8S

(2) forallneN, ne S=n+1€S5,
then S = N.

The Fundamental Theorem of Mathematical Induction, stated be-
low, follows immediately from the Axiom of Induction.

For each n € N, let P(n) be a statement which is either true or false but
not both.

231
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Let S ={n € N | P(n) is true}.
If (i) 1€ S and
if (ii) forallneN, ne S=n+1€S5,
then S = N. (That is, for all n € N the statement P(n) is true.)
Example 6.1.1 illustrates how to use the Fundamental Theorem of Math-
ematical Induction to prove for all n € N that the statement P(n) is true.

Notice in this example, we first prove that (i) 1 € S and then we prove that
(ii) for any n € N, if n € S, thenn+1 € S.

1
Example 6.1.1 Prove for allm € N that 14+2+---+n = %
1
Proof: Let P(n) be the statement 1 +2+---+n = nin+1) and let

S ={neN | P(n)is true}.
(i) Remark: First we prove that 1 € S. For n = 1, the left-hand side
1(1+1) 2

of the statement P(1) is 1 and the right-hand side is — =5 = 1.

Consequently, P(1) is true and 1 € S.
(ii) Remark: Next, we prove that forn € N, ne€ S =n+1¢€ 5. Let
n € N and assume that n € S. Hence, P(n), which is
nin+1)
2
is assumed to be true. The statement P(n + 1), which we must prove to be
true using (1), is

(1) 142+ +n=

1 1)+1 1 2
(2) 1424 4ntme1)=0F )((T;Jr )+1) _(n+ )2(’” )
Grouping the summands on the left-hand side of (2) as shown below and then

substituting from (1), we find

n(n+1)

2
—(n+1) (ngl) :—(n+1)2(n+2).

1+24+---4+n)+(n+1)= +(n+1)

That is, if (1) is true, it follows that (2) is true and therefore n+ 1 € S.

Since the hypotheses (i) and (ii) of the Fundamental Theorem of Mathe-
matical Induction are true, the conclusion S = N is true. Consequently, the

1
statement P(n) is true for all n € N—that is, 1 + 2+ ---4+n = nin+1) for

alneN. N
Instead of defining S to be the set of all natural numbers n such that

the statement P(n) is true, proofs by mathematical induction are usually
presented in the following logically equivalent, but less formal, form.
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The Principle of Mathematical Induction For each n € N, let P(n)
be a statement which is either true or false but not both.

If (i) P(1) is true and

if (ii) for all n € N, P(n) is true = P(n + 1) is true,

then the statement P(n) is true for all n € N.

Step (i) above is called the basis step or initial step and step (ii) is called

the inductive step. The hypothesis of the inductive step, “P(n) is true,” is
known as the inductive hypothesis.

Imagine that each statement P(n) is a domino in a chain of dominoes. In
the induction step, step (ii) of mathematical induction, we are proving that
if one domino in the chain, P(n), is knocked over, it will knock over the next
domino in the chain, P(n + 1). When dominoes are set up so that when
one domino falls, the next domino in the chain will fall, none will fall unless
the first domino, P(1), falls. This is why we need the basis step in a proof
by mathematical induction. The basis step, step (i), ensures that the first
domino will fall, while the inductive step, step (ii), ensures that all dominoes
after the first domino will fall.

The next example shows how to use the Principle of Mathematical Induction
to prove for all n € N that the statement P(n) is true.
n(4n? —1)

Example 6.1.2 Prove for alln € N that 12+3%+- - -+(2n—1)? = 3

Proof: Let P(n) be the statement
4n? — 1
(1) 12+32+~~~+(2n—1)2:%.

(i) For n =1, the left-hand side of the statement P(1) is 1 and the right-

hand side is
1(4(1)* = 1)

3

1-
_3
3

So, P(1) is true.

(ii) Let n € N and assume that the statement P(n) is true. That is, for
n € N assume that (1) is true. The statement P(n + 1) is the statement

2 (1 DEE+1’ —1)

124324+ 4+ 2n—12+2(n+1)-1) 3

Substituting (1) into the left-hand side of P(n + 1), we obtain

(2) 12432+ +2n—-124+2(n+1)-1)%2=
n(4n? — 1) Jr3(2n+1)2 B
3 3 N
An® —n+12n%2+12n+3 - An® +12n%2 + 11n+ 3
3 o 3 '

12432+ -+ (2n— 1)+ (2n+1)2 =
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Expanding the right-hand side of P(n + 1), we find
(n+1)(4n+1)2-1) (n+1)(4n®+8n+3)
(3) =
3 3
-~ an® +12n2 +11n + 3
= 3 .

Because the right-hand sides of (2) and (3) are equal, it follows from the
Principle of Mathematical Induction that for all n € N,

an? —1
12482 g (2n 12 = P 1) ”3 ) m
Some statements @Q(n) are false for some or all n = 1,2,...,n9 — 1 but
are true for all n = ng,ng + 1,.... The generalized principle of mathematical

induction stated below can be used to prove statements of the form “For all
n € N with n > ng, the statement Q(n) is true.”

The Generalized Principle of Mathematical Induction For each
n € N, let Q(n) be a statement which is either true or false but not both.

If (i) Q(no) is true and
if (ii) for all n € N with n > ng, Q(n) is true = Q(n + 1) is true,
then for all natural numbers n > ng, the statement Q(n) is true.

It is easy to see that the principle of mathematical induction and the gener-
alized principle of mathematical induction are logically equivalent by setting
P(n) = Q(n+mng — 1) for all n € N. In the next example, we demonstrate
how to use the generalized principle of mathematical induction.

Example 6.1.3 Prove for all n € N with n > 5 that 2" > n?.
Proof: Let Q(n) be the statement 2" > n?.
(i) For n = 5, we have 2° = 32 > 25 = 52, so the statement Q(5) is true.

(ii) Assume for n a natural number greater than or equal to 5 that the
statement Q(n) is true—that is, for n € N and n > 5 assume that (1) 2" > n?.
We must now prove the statement Q(n + 1) is true. Thus, given (1) is true,
we must prove that (2) 27! > (n + 1)2. Multiplying equation (1) by 2, we
find

(3) 2.2m = 2"l 5 9n2,

If we can show for n > 5 that 2n? > (n + 1)?, we are done. Assume that
(4) n > 5. Multiplying (4) by n, we find n? > 5n. And multiplying (4) by 3,
we find 3n > 15. Consequently, for n > 5 we have

2n% = n?4n? > n?+5m = n?+2n+3n > n*+2n+15 > n?+2n+1 = (n+1)2%
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EXERCISES 6.1

In Exercises 1-12 use the Principle of Mathematical Induction to

prove the given formula.
1. 14345+--+(2n—1)=n?
2. 1+54+9+ -+ (@4n—-3)=2n?—n
1 —pntl
3. Forre R and r # 1, 1—|—T‘—|—r2—|—~~~r”:17
—r
nin+1)2n+1)
6
5. 1+21 422 4...42n"l=02n 1
n%(n +1)?
4

4, 12422432 4+... 4 n?2=

6. 13+254+3%4...+nd =

D(n +2
71242348 4+ +nn+1)=nFDOE2

=(1+2+--+n)?

3
YL S I S
1-2 23 3-4 nn+1) n+1
0. L4 Ly Ly ! =
3.4 4.5 56 (n+2)(n+3) 3(n+3)
1 2 3 n 1
TR T A PO § T (RS O
(2n

|
11. 2:6-10---(4n—2) = ~—~
n

12. Forallz,y € R, 2"t -yt = (z —gy)(a" + 2" Ly + - +ay" L +9y7)

Hint: o2 — yn+2 = l'n+1(l‘ _ y) + y(l,n+1 _ yn+1)

In Exercises 13—21 use the Generalized Principle of Mathematical

Induction to prove the given statement.
13. 3" > n?

14. 4" > n3

15. 13422433+ +n3<n? forn>2
16. 13+22 432 +..-+n3 < %4 forn >3
17. n! > 2" forn >4

18. n!'>n? forn>4

19. (n+1)!'>2"" forn>5

20. n3 <n! forn>6

21. 2" >nd forn > 10
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22. Prove De Moivre’s Theorem: For all n € N and for 6 any real number,
(cosf + isin0)™ = cosnd + isinnb.

Hint: You will need to use these facts: i? = —1, cos(A + B) =
cos A cos B — sin Asin B, and sin(A + B) = sin A cos B + cos Asin B.

6.2 The Well-Ordering Principle and the Fundamental
Theorem of Arithmetic

Three consequences of the Axiom of Induction are the Fundamental The-
orem of Mathematical Induction, The Principle of Mathematical Induction,
and the Generalized Principle of Mathematical Induction. Another important
consequence is the Well-Ordering Principle for the natural numbers, which we
now prove by contradiction using mathematical induction.

The Well-Ordering Principle Every nonempty subset of natural numbers
has a least element.
Proof: Let T # () be a subset of N. Suppose T' does not have a least element
and let S =N —-1T.

(i) Since 1 is the least element of N and since T is a subset of N with no
least element, 1 ¢ T. Consequently, 1 € S.

(ii) Suppose n € S. It follows from the definition of S that n ¢ T. Also, no
natural number k less than n is in 7T'. For if any natural number or numbers
less than n were in T', then T would have a least element. Since n ¢ T' and no
k less than n is in T', n + 1 ¢ T'; otherwise, n + 1 would be the least element
in T. Hence, n+ 1 € S. By the Principle of Mathematical Induction, S = N
and consequently T' = ). Contradiction. B

We devote the remainder of this section to proving the Fundamental The-
orem of Arithmetic. First, we restate the definitions of a divides b, prime
number, and composite number. Then, we state and prove some facts we
need in order to prove the Fundamental Theorem of Arithmetic.

Let a and b be integers. The number a divides b if and only if there exists
an integer ¢ such that ac = b. If a divides b, then we also say a is a factor
of b and b is divisible by a.

A prime number (or simply a prime) is a natural number greater than
one which is divisible only by itself and one.

A composite number (or simply a composite) is a natural number
greater than one which is not a prime number.

The natural number 1 has special status among the natural numbers. It
is not a prime number and it is not a composite number. All other natural
numbers are either prime or composite but not both. Observe that 1 and a
divide the natural number a, since 1la = a and that the only natural number
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which is a factor of 1 is 1 itself. Notice that if the natural number a # b divides
the natural number b, then 1 < a < b. For if ac = b and a # b, then the
natural number ¢ > 1. Multiplying this inequality by a, we have b = ac > a.
It follows directly from the definition of composite that the natural number
n is composite if and only if there exist natural numbers a and b such that
n =ab where 1 <a <nand 1<b<n.

We use the Well-Ordering Principle in the following example.
Example 6.2.1 Prove for all n € N that 3 divides n® — n.

Proof: Suppose there is an m € N such that 3 does not divide m® — m. By
the Well-Ordering Principle there is a least element, call it s, such that 3 does
not divide s — 5. Since 3 divides 13 —1 = 0, s > 1. The natural number
s — 1 is less than s, so 3 divides [(s — 1)3 — (s — 1)]. Also, 3 divides 3(s* — s).
Hence, 3 divides the sum

[(s—1)*—(s—1)]+3(s*—s) =5°—35*+35—1—s+1+3s* —3s = 5" —s.
That is, 3 divides s® — s. Contradiction. H

The greatest common divisor of two nonzero integers is defined as follows.

Let a and b be two nonzero integers. The natural number d is the greatest
common divisor of a and b, denoted by ged(a, b), if

(i) d divides both a and b and
(ii) every divisor of both a and b is a divisor of d.

In Theorem 6.1 we prove that two nonzero integers a and b always have a
greatest common divisor. It is easy to prove that the greatest common divisor,
if it exists, is unique. Suppose, to the contrary, there exist two distinct natural
numbers d and d’ satisfying the definition of the greatest common divisor. By
part (ii) of the definition, d divides d’ and also d’ divides d. Therefore, since
d and d’ are natural numbers, d = d'.

In order to prove the existence of the ged(a,b), we need the concept of a
linear combination of a and b.

Let a and b be two integers; then any integer of the form ax + by where x
and y are integers is a linear combination of a and b.

The following theorem establishes the existence of the ged(a, b) and provides
a representation for it.

Theorem 6.1 If a and b are nonzero integers, then the least natural number d
which can be expressed as a linear combination of a and b is the ged(a, b). That
is, if d = ged(a, b), then there exist integers 1 and y; such that d = ax1 + byy
and d is the least natural number which is expressible in this form.

Proof: Let S = {az +by | x,y € Z and ax + by > 0}. Since a and b are
nonzero integers, a? + b? > 0 and S # (. By the Well-Ordering Princi-
ple, S has a least element, say, d = as + bt. We claim d = ged(a,b). By
the division algorithm, there exist integers ¢ and r such that (1) a = dg+r
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where 0 < r < d. Assume that 0 < r < d. Then from (1),
r=a—dg=a— (as+bt)g=a—asq—btq=a(l — sq) + b(—tq) € S.

This contradicts d is the least element of S. Consequently, » = 0 and from
equation (1), a = dg—that is, d divides a. A similar argument shows d divides
b also. By definition and our previous uniqueness proof, d is the gcd(a,b). N

The next lemma appeared in Euclid’s Elements and is known as Euclid’s
Lemma.
Euclid’s Lemma: If a and b are two nonzero integers and if p is a prime
which divides ab, then p divides a or p divides b.
Proof: Suppose p does not divide a. Since the only factors of p are 1 and p
and since p does not divide a, the greatest common divisor of p and a is 1. By
Theorem 6.1 there exist integers « and y such that 1 = ax + by. Multiplying
this equation by b, we obtain b = abx 4 bpy. Since p divides ab, p divides the
right-hand side of this equation. Hence, p divides b. W

The following lemma is a generalization of Euclid’s Lemma.

Lemma 6.1 For a natural number m > 2, if p is a prime, if a1, ao, ...,
am are all nonzero integers, and if p divides the product aias - - - a,y,, then p
divides a; for some i € {1,2,...,m}.

Proof: Remark: We prove this lemma using the generalized principle of
mathematical induction on m.

(i) For m = 2, this lemma is true, since it is Euclid’s Lemma.

(ii) Suppose this lemma is true for some k > 2. That is, assume if p is a
prime which divides ajas - - - ag, then p divides a; for some ¢ € {1,2,...,k}.
Let a1, ag, ..., apy1 be nonzero integers and let p divide the product
ajag -+ -agy1. Define b = ajag---agx. By Euclid’s Lemma p divides b or p
divides apy1. If p divides b, then by the induction hypothesis p divides a;
for some i € {1,2,...,k}. Hence, p divides a; for some i € {1,2,...,k+ 1}.
Consequently, the lemma is true for k + 1.

Hence, by the generalized principle of mathematical induction, Lemma 6.1
is true for all natural numbers m >2. N

In many cases, the assumption that a statement P(n) is true for a natural
number n does not easily lead to a proof that the statement P(n+1) is true. In
this instance, it is prudent to use one of the following two forms of induction.

The Second Principle of Mathematical Induction For each n € N let
P(n) be a statement which is either true or false but not both.
If (i) P(1) is true and
if (ii) for all n € N, P(1), P(2),..., P(n) are true = P(n+ 1) is true,
then the statement P(n) is true for all n € N.

Notice in the second principle of mathematical induction the induction hy-
pothesis of the principle of mathematical induction “P(n) is true” has been

replaced by the “stronger” hypothesis “P(1), P(2),..., P(n) are true.” For
that reason, the second principle of mathematical induction is often called
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The Principle of Strong Induction. We obtain the following generalized
second principle of mathematical induction from the generalized principle of
mathematical induction by making a similar change in the induction hypoth-
esis.

The Generalized Second Principle of Mathematical Induction For
each n € N let Q(n) be a statement which is either true or false but not both.

If (i) Q(no) is true and
if (ii) for all n € N with n > ny,

Q(no), Q(ng +1),...,Q(n) are true = Q(n + 1) is true,
then for all natural numbers n > ng, the statement Q(n) is true.

Example 6.2.2 Use a, the Well-Ordering Principle, and b, the Principle
of Strong Induction, to prove that every natural number n > 2 has a prime
factor.

a. Proof: Let n € N and let n > 2. If n is a prime, then n is a prime factor of
n. If n is a composite number, then n has factors in addition to 1 and n. By
the Well-Ordering Principle, there is a smallest factor q. Either ¢ is a prime
or ¢ is a composite. Suppose ¢ is a composite; then ¢ has a divisor d and
1 < d < g. Since d divides ¢ and g divides n, d divides n. This contradicts
the definition of ¢, because d < q. Hence, q is a prime.

b. Proof: Let n € N and let n > 2. Let P(n) be the statement “n has a
prime factor.”

(i) P(2) is true, because 2 is a prime factor of 2.

(ii) Assume for all n € N with n > 2 that the statements P(2), P(3), ...,
P(n) are true. Remark: We must show that the statement P(n + 1) is true.
The number n + 1 is a prime or a composite number. If n 4+ 1 is a prime,
then P(n+ 1) is true, because n + 1 is a prime and a factor of n+ 1. If n 41
is a composite number, then n + 1 has a factor d in addition to 1 and n + 1
and 1 < d < n+ 1 and by assumption P(d) is true. Therefore, d has a prime
factor and since d divides n + 1, n + 1 has a prime factor. That is, P(n + 1)
is true. W

We will use the generalized second principle of mathematical induction in
proving the Fundamental Theorem of Arithmetic, which is also known as the
Unique Factorization Theorem.

Fundamental Theorem of Arithmetic Every natural number greater
than one is a prime or can be written uniquely as a product of primes except
for the order in which the prime factors are written.

Proof: Let Q(n) be the statement “For n € N and n > 2, n is a prime or a
product of primes.”

(i) For n = 2, the statement Q(2) is true, because 2 is a prime.

(ii) Assume that for n € N and n > 2, Q(2), Q(3), ..., Q(n) are true. If
n + 1 is a prime, then the statement Q(n + 1) is true. On the other hand,
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if n 4+ 1 is a composite, then there exist natural numbers a and b such that
n+1=abwherel <a<n+1and1l<b<n+1—thatis, n+ 1= ab where
2 <a<nand?2<b<n. By the induction hypothesis, Q(a) and Q(b) are
true. Therefore, n + 1 is a product of primes and Q(n + 1) is true.

Consequently, by the generalized second principle of mathematical induc-
tion, every natural number greater than one is a prime or can be written as a
product of primes.

Remark: We prove the uniqueness part of this theorem using the generalized
second principle of mathematical induction as well. For eachn € N andn > 2,
let S(n) be the statement “If n = p1ps---p,. = q1q2 - - - g5 where p1,pa, ..., Dy,
and q1,q2,...,qs are primes with p; <py <---<prand ¢g < g2 < -+ < g,
then r =sand p; =¢; fori =1,2,...,r.

(i) Since 2 is a prime, its only factorization is 2 = 2. Hence, S(2) is true.
(ii) For n € N and n > 2 we assume the statements S(2), S(3), ..., S(n) are
true and we assume n + 1 has two different factorizations into a product of
primes. Thus, we assume n + 1 = p1ps---pr = q1q2 - - - qs Where p1,pa, ..., Dy
and q1,q2, ..., qs are primes with p; <py <---<pr,and ¢y < g2 < -+ < gse
By the trichotomy law either p; < ¢1 or p1 > q1. We assume p; < ¢g1. (The
proof for the case p; > ¢; is the same as the proof which follows if p and ¢ are
interchanged and r and s are interchanged throughout.) By Lemma 6.1, since
p1 is a prime and n+1 = p1(p2 - - - pr) = q1¢2 - - - g5, the prime p; divides g; for
some j € {1,2,...,s}. Because p; and g; are both primes, we have p; = g;.
Since ¢1 < g; for all j € {1,2,...,s}, the prime ¢; < p;. Since we assumed
that p; < ¢1, we conclude that p1 = ¢ andn+1=pips---pr =qiq2---qs =
p1q2 - - -qs. Cancelling p1, we have m = py---p, = q2---qs < n+ 1. The
statement S(m) is assumed to be true by the induction hypothesis; therefore,
r=sand p; =¢q; fori e {2,3,...,r}.

By the second general principle of mathematical induction, S(n) is true for
alln e Nwithn>2. R

Next, we consider a few finite sets of prime numbers. First, we let [} =
{2,3} and compute N; = 2-3+ 1 = 7, which is a prime. Then, we let
Fy, ={2,3,7} and calculate No =2-3 -7+ 1 = 43, which is a prime. Finally,
we let F3 ={2,3,7,43} and find that N3 =2-3-7-434+1 = 1807 = 13- 139.
From these calculations, we see that if F' = {p1,p2,...,px} is a finite set
of prime numbers, then the natural number N = p; - po---pr +1 > 1 and
N may be a prime number or a composite number. Notice that the unique
factorization of N3 has prime factors 13 and 139 and that neither of these two
primes appears in the set F3. Euclid (c. 300 B.C.) may have been the first
person to prove that there are an infinite number of prime numbers. The proof
of this theorem is by contradiction and employs the Fundamental Theorem of
Arithmetic (the Unique Factorization Theorem).
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Theorem There are an infinite number of prime numbers.

Proof: Suppose, to the contrary, that there are a finite number of prime
numbers and let F' = {p1,p2,...,px} be the set of all prime numbers. Let
N = p; -pa---pr +1 > 1. By the Fundamental Theorem of Arithmetic
either N is a prime number or NV is a composite number. Suppose N is a
prime. From the definition of N, it follows that N > p; foralli=1,2,... k.
Consequently, IV is not in the set F, which is a contradiction. Next, suppose
that N is a composite number. Then N has a prime divisor p; € F', since F'
contains all of the prime numbers. Because the prime p; divides N, p; divides
N — (p1 -p2---px) = 1, which is a contradiction. H

Now, we examine a class of problems for which the generalized second
principal of mathematical induction is an appropriate method of proof. A
sequence of real numbers is a function from N into R. For each n € N,
let @, = f(n). The value z,, is called the nth term of the sequence f. We
will denote the sequence by < z,, >52;, or simply < z,, >. Often a formula
is given for the nth term—for instance,

1" sinn
Ty, = 2n + 3, xn:u, or Ty = .
n n

Sometimes a sequence is defined recursively. For example, z; = 1, 9 = 2,
and x, = 3x,_1 — 2x,—2 for n > 3. In this case, the first two terms are given
explicitly and the remaining terms are defined in terms of the two immediately
preceeding terms. The following example illustrates how to prove a result
when a sequence is defined recursively.

Example 6.2.3 Let < x,, > be the sequence defined by =1 = 1; zo = 2; and
for n > 3, defined recursively by z,, = 3x,-1 — 22, 2. Find a formula for the
nth term, z,, and prove that the formula is correct.
Solution
The first few terms of the sequence are x1 =1, x5 = 2,
x3=3x3—221=3(2)—2(1)=6-2=4
x4 =3x3—2292=23(4)—2(2)=12—-4=38
x5 =3x4 — 223 =3(8) —2(4)=24-8=16
From the first five terms of the sequence, it appears the formula for the nth
term may be x, = 271
(i) Using this formula, for n = 1 we find 21 = 217t = 2% = 1 and for n = 2
we obtain zs = 227! = 2. So the formula is correct for n =1 and n = 2.

(i) For k = 1,2,...,n, we assume that 2z = 2¥~!. We must now show that
Tpir = 207TD=1 = 27 From the recursive definition for z, and the inductive
hypothesis, we find
Tpy1 = 3xp—22,_ 1 = 327" 1—2.2(0=D—1 — 3.9n—1_gn—1 _ gn—1(3_1) = 2»,
Hence, by induction, z,, = 2"~! for all natural numbers. W



242

Introduction to Mathematical Proofs

In this chapter, we stated the Axiom of Induction, a version of Peano’s fifth
axiom. Then we stated and discussed the following theorems.

1. The Fundamental Theorem of Mathematical Induction

S Ot W N

. The Principle of Mathematical Induction

. The Generalized Principle of Mathematical Induction
. The Well-Ordering Principle

. The Second Principle of Mathematical Induction

. The Generalized Second Principle of Mathematical Induction

Theorems 1 through 6 are all logically equivalent. Although we did not prove
this fact, we did show that (1) = (2) < (3) and (2) = (4). The proof of
(5) & (6) is similar to the proof of (2) < (3).

EXERCISES 6.2

1.

For the given pairs of integers a and b, (i) express a and b as a product
of primes, (ii) find the ged(a, b), and (111) find integers x and y such that
ged(a, b) = ax + by.

a. 112 and 320 b. 2387 and 7469

c. -4174 and 10672 d. 23.3%.5%2.7and 24.32.5. 72

. Two integers a and b are relatively prime if and only if ged(a, b) = 1.

a. Show that if @ and b are relatively prime there exist integers x and y
such that ax + by = 1.

b. Show that 4 and 7 are relatively prime.
c. Find two distinct pairs of integers « and y such that 4z 4 7y = 1.

d. Prove that every integer n can be written as n = 4z’ + 7y’ for
appropriately chosen z’ and /.

. a. Let a and b be nonzero integers and let D = ged(a,b). Prove that if

a =da’ and b = db’, then d divides D.

b. Let a and b be nonzero integers and let d = ged(a,b). Prove that if
a =da’ and b= dV, then gcd(a’, V') = 1.

c. Let n € N. Prove that ged (na,nb) =n - ged(a, b).

. Prove for all natural numbers n that 2 divides n? + n.

5. Prove for all natural numbers n that 9 divides 4™ + 6n — 1.

. Use the Well-Ordering Principle to prove for all natural numbers n that

5 divides 8™ — 3.

. Let n be a natural number and let x1, xo,...,x, be any real numbers.

Prove for all n € N that |x1 + x2+ -+ zp| < |z1] + |22 + - + |20



10.

11.

12.
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. Let the sequence < x,, > be defined by z1 = 1; 2 = 3; and for n > 3

defined recursively by x, = 2x,_1 — x,—2. Find a formula for the nth
term, x,, and prove that the formula is correct.

. Let the sequence < x,, > be defined by z; = 1; 2 = 4; and for n > 3

defined recursively by z, = 2x,-1 — ,—2 + 2. Find a formula for the
nth term, z,, and prove that the formula is correct.

Let the sequence < z, > be defined by z; = 1; 2 = 3; and for n > 3
defined recursively by x,, = 3z,_1 — 2z, 2. Find a formula for the nth
term, x,, and prove that the formula is correct.

Let the sequence < x, > be defined by z; = 1 and for n > 2 defined
recursively by x, = /b + x,_1. Prove that 2 < z,, < 3 for alln € N.

Let the sequence < x,, > be defined by x1 = 1; 3 = 2; and for n > 3
defined recursively by x,, = (x,—1 + ©p—2)/2. Prove that 1 < z, < 3
for all n € N.

More Challenging Exercises

13.

14.

15.
16.

17.

Use the Well-Ordering Principle to prove for all natural numbers n that
8 divides 52" — 1.

Prove the following statements for all natural numbers n.

a. 5 divides n® — n.

b. 11 divides n'! — n.

c. for p a prime p divides n? — n.

Use the Well-Ordering Principle to prove that v/2 is irrational.

Use (i) a principle of mathematical induction and (ii) the Well-Ordering
Principle to prove the following statements.

a. For all n € N, 3 divides 4™ — 1.

b. Foralln € N, 1+5+9+ -+ (4n — 3) = 2n? — n.

c. For all n € N, 6 divides n® —n.

The first ten numbers in the Fibonacci sequence are F} = 1, Fp = 1,
Fs =2 Fy =3, F5s =5, Fg = 8, Fy = 13, F3 = 21, Fy = 34,
F19 = 55. The recursive definition for this sequence is F; = 1, Fy = 1,
and F,, = F,,_1 + F,,_o for n > 3.

a. For all n € N prove that F,, < 2™.

b. For all n € N prove simultaneously that F3, is even, F3,41 is odd,
and Fsp,40 is odd. (Hint: For all n € N, let P(n) be the statement
“F3,, is even and both F3, 41 and F3,49 are odd.”)

c. Prove for all n € N that Fy + Fo +---+ F,, = Fj,40 — 1.
d. Prove for all n € N that F,, 16 = 4F,+3 + F),.
e. Prove for alln € N that F2 + Ff + -+ F? = F,F41.
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18

19.

20.

21.

22.
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. Let < F,, > be the sequence of equations
Ei:24+34+4=1+8
Ey: 5+6+74+84+9=8+427
Es: 104+11+12413+144+15+16 =274 64
a. What is the equation F,? FE5?
b. Write a formula for F,,.
c. Prove that F,, is true for all n € N.

Let n be a natural number and let Ay, As, ..., A, be any sets. Prove for
alln € N that (A; UAU---UA,) =A1NnA,n---NA,.

Let Py, Py, ..., P, be n distinct points in a plane such that no three
points are collinear. For any n € N determine the total number of line
segments joining all pairs of points. Use induction to prove that your
answer is correct.

The sum of the measures of the interior angles of a triangle is 180°.
Prove for all natural numbers n > 3 that the sum of the measures of the
interior angles of a convex polygon with n sides is (n — 2) - 180°.

Prove Bernoulli’s Inequality (due to Jacob Bernoulli (1654-1705)) which
states “For every real number x > —1 and for every natural number n,
1+z)">14+nz”

In Exercises 23 and 24 a statement and a proof? are given. For
each exercise do the following.

a. Determine if the given statement is true or false.

b. If the statement is a theorem, determine if the proof? is valid.

C.

23.

24.

If the given statement is false, provide a counterexample.

Statement. Theorem? Proof?
Statement: For all n € N, 7 divides 9" — 2™.

Proof? Let P(n) be the statement “7 divides 9 — 2™.”

(i) For n = 1, the statement P(1) is “7 divides 9! — 21" which is true.
(ii) Let n € N and suppose that P(n) is true. Because P(n) is true, 7
divides 9" — 2". The statement P(n + 1) is “7 divides 97! — 2n+1.”
Calculating, we find 9"+1 — 271 = (9 = 2)(9" — 27) = 7(9" — 27).
Therefore, 7 divides 9"+! — 27*! and by the Principle of Mathematical
Induction for all n € N, 7 divides 9™ — 2".

Statement. Theorem? Proof?
Statement: For all n € N, 7 divides 9" — 2™.

Proof? Suppose there is a natural number m such that 7 does not divide
9™ —2™. By the Well-Ordering Principle there is a least natural number
s such that 7 does not divide 9° — 2°. The natural number s > 1, since
for s =1, 9% — 25 = 9! — 2! =9 — 2 = 7, which is divisible by 7. The
natural number s — 1 < s and therefore 7 divides 9°~! — 2°~!. Since
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9(95—1 — 2571) is divisible by 7 and 7(2°7!) is divisible by 7, the sum
9(9°1 =27 1) 4 7(2571) = 95— 9. 2514 7. 2571 =95 —2.95-1 = g5 _ 95
is divisible by 7. Contradiction.

The statement “All cats are the same color” is false. What is the easiest
way to prove that the statement is false? Below is an invalid proof of the
statement “All cats are the same color.” Where is the error in the proof?

Invalid Proof: Obviously, in every set which contains exactly one cat, all
cats are the same color. Suppose in every set of n cats that all cats are
the same color. Consider any set of n + 1 cats. If we remove one cat,
we have a set with n cats and all the cats are the same color. Now,
consider a set of n cats obtained by removing a different cat from the
set of n + 1 cats. In this set of n cats, all cats are the same color.
Consequently, in the set of n+ 1 cats, all cats are the same color. So, by
the Principle of Mathematical Induction all cats are the same color.






Chapter 7

Cardinalities of Sets

Study of the concept of infinity dates back to the Greek philosopher Zeno
of Elea (c. 450 B.C.). However, the modern era of the study of infinity was
begun by the Italian physicist and mathematician Galileo Galilei (1564-1642).
In 1638, Galileo published a Dialog Concerning Two New Sciences. His pri-
mary goal in Dialog was to establish the Copernican heliocentric theory of the
solar system over the accepted and church supported Ptolemaic geocentric
theory. For this, Galileo was charged with heresy by the Inquisition, forced
to recant, and spent the last eight years of his life under house arrest. In
Dialog, Galileo also discussed the concepts of infinite and infinitesimal. He
observed that the set of natural numbers, N, properly contains the set of
perfect squares, S = {1,4,9, 16, ...}, and that there are an infinite number of
elements in both N and S. He concluded that there were as many elements
in S as in N. However, Galileo believed this conclusion was absurd, since this
would mean it was possible to apply the terms “equal to,” “greater than,”
and “less than” to infinite quantities. In 1691, the English mathematician
Edmond Halley (1656-1742) published an article in the Philosophical Trans-
actions of the Royal Society titled “On the Several Species of Infinite Quantity
and the Proportions They Bear to One Another” in which he suggested that
the phrases “twice as infinite” and “one-fourth as infinite” might be meaning-
ful. In other words, Halley was suggesting that infinite quantities might have
different “sizes” and be “comparable.”

In 1873, Cantor wrote a letter to Dedekind in which he stated he had proved
there is a one-to-one correspondence between the set of natural numbers and
the set of rational numbers and in which he speculated on whether there
was a one-to-one correspondence between the set of natural numbers and the
set of real numbers. A few days later, Cantor wrote to Dedekind stating
there was no one-to-one correspondence between the natural numbers and
the real numbers. In 1874, Cantor published these results in Crelle’s Journal
in the article “On a Property of the Real Algebraic Numbers.” Prior to this
publication, all infinite collections were thought to be “the same size.” That
is, prior to Cantor’s work, orders of infinity did not exist. Crelle’s Journal is
the common name for the Journal for Pure and Applied Mathematics. It is
one of the most famous mathematics journals in the world and was founded
by August Crelle in 1826.

247
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7.1 Finite Sets

What property do the sets A = {e,m,4,v/2} and B = {#,*,$,@} have in
common? Clearly, they are not equal, and neither is a subset of the other.
However, they do have the same number of elements. To verify this fact, you
would probably count the number of elements in A by associating e with the
number “1,” associating 7 with the number “2,” i with “3,” and /2 with “4,”
and conclude “A has four elements.” In the same manner, you would count
the elements in B and conclude “B has four elements.” Then since A and
B both have four elements, you conclude A and B have the same number of
elements. When two sets are finite and the number of elements in both sets is
“small,” counting the number of elements in each set and deciding if the two
numbers are the same or not is an appropriate technique for determining if the
two sets have the same number of elements or not. However, when the number
of elements is “large” (and you are apt to lose count) or the sets are infinite,
a different technique is needed to decide if the two sets have the same number
of elements or not. Let f be the one-to-one correspondence from the set A
onto the set B defined by f = {(e, #), (7, %), (1, $), (v/2,@)}. This one-to-one
correspondence pairs each element of the set A with exactly one element of the
set B. Thus, to determine if sets A and B have the same number of elements
or not, we do not need to know the number of elements in the sets. All we
need do is determine if there is or is not a one-to-correspondence from A onto
B. (Observe that there are 24 distinct one-to-one correspondences from A
onto B, so a one-to-one correspondence which shows two sets have the same
number of elements is not unique.) The formal definition of set equivalence
follows.

Two sets A and B are equivalent, denoted by A ~ B if and only if there
is a one-to-one correspondence from A onto B. When set A is not equivalent
to set B, we write A % B.

Instead of saying A is equivalent to B, we may say (i) A and B have the
same cardinality, (ii) A and B are numerically equivalent, (iii) A and B
are equinumerous, or (iv) A and B are equipotent.

Theorems 7.1, 7.2, and 7.3 are general theorems about set equivalence and
apply to both finite and infinite sets. As you might easily anticipate, the next
theorem states that set equivalence is an equivalence relation.

Theorem 7.1 Set equivalence is an equivalence relation.

Proof: Reflerive: For any set A, the identity function I4 is a one-to-one
correspondence from A onto A, so A ~ A.

Symmetry: Suppose A ~ B. By definition, there exists a one-to-one corre-
spondence from A onto B; call it f. By Theorem 5.10, the function f~! is a
one-to-one correspondence from B onto A, so B ~ A.
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Transitivity: Let A, B, and C be sets such that A ~ B and B ~ C. By
the definition of set equivalence, there exists a function f: A *! B and there

onto

exists a function g : B X €. By Theorem 5.7, the function go f: A 22 C, so
onto onto
A~C.

Since ~ is reflexive, symmetric, and transitive, ~ is an equivalence relation.

The next theorem states if sets A and C are equivalent and sets B and D
are equivalent, then the Cartesian products A x B and C x D are equivalent.

Theorem 7.2 Let A, B, C, and D be sets such that A ~ C and B ~ D,
then A x B~ C x D.

Proof: Since A ~ C, there exists a function f : A 12 C, and since B ~ D

there exists a function g : B 22 D. Define (f x g) : Ax B — C x D by
(fxg)(a,b) = (f(a),g(b)). We claim f % g is a one-to-one correspondence from
Ax B onto C'xD. To prove the function f x g is one-to-one, we assume (a1, b1),
(az,b2) € A x B, and (f x g)(a1,b1) = (f x g)(az,b2). Thus, by definition
of f % g, we have (f(a1),g(b)) = (f(aa), g(b2)). Hence, f(a1) = f(az) and
g(b1) = g(bz). Since f and g are both one-to-one functions, a; = as and
by = by. Consequently, (a1,b1) = (ag,bs) and the function f X g is one-to-
one. To prove the function f x ¢ is onto, suppose (¢,d) € C x D. Since the
functions f and g are both onto, there exists an a € A such that f(a) = ¢ and
there exists a b € B such that g(b) = d. The ordered pair (a,b) is an element
of A x B and by definition, (f x g)(a,b) = (f(a),g(b)) = (¢,d). Thus, the
function f x g is onto and f X g is a one-to-one correspondence from A x B
ontoCxD. N

The following theorem states “If A and B are equivalent sets, if C' and D
are equivalent sets, if A and C are disjoint sets, and if B and D are disjoint
sets, then the sets AU C and BU D are equivalent sets.”

Theorem 7.3 If A, B, C, and D are sets with A~ B, C ~ D, ANC = (),
and BND =0, then AUC ~BUD.

Proof: Since A ~ B there exists a one-to-one correspondence f from A onto
B. And since C ~ D there exists a one-to-one correspondence g from C onto
D. Define fug: AUC — BUD by

oo ={I el

Remark: To prove f U g is a one-to-one correspondence from A U C onto
BU D, we must prove fUg is a function with domain AU C and range BU D.
Then we must prove f U g is one-to-one.

Since f and g are functions, f, g, and f U g are relations. To prove f U g is
a function, suppose (z,y) € f Ug and (z,2) € fUg. Since ANC = (), either
(i)zeAandax ¢ Cor (ii)xr ¢ Aand x € C. If x € A and z ¢ C, then
y=(fUg)(z) = f(z) =z, because f is a function. If z ¢ A and = € C, then
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y=(fUg)(z) =g(x) = z, because g is a function. In both cases, y = z and
therefore f U g is a function.

Suppose z € AU C. Since ANC = (), either (i) z € A and x ¢ C, and
consequently (f Ug)(x) = f(x) or (ii) z ¢ A and x € C, and consequently
(fUg)(z) = g(x). In both cases, z € AUC implies € Dom(f U g)—that is,
(1) AUC C Dom(fUg). Now suppose & € Dom(fUg). By definition of fUg,
we have € Dom(f) = A or z € Dom(g) = C. Hence, x € AU C. Therefore,
(2) Dom(fuUg) C AUC. Tt follows from (1) and (2) that Dom(fUg) = AUC.

Next suppose y € BU D. Since BN D = (), either (i) y € B and y ¢ D or
(ii) y ¢ B and y € D. In case (i), since y € B and since f is a function from
A onto B, there exists an z € A such that y = f(x) = (fUg)(z). In case (ii),
since y € D and since g is a function from C onto D, there exists an = € C
such that y = g(x) = (f U g)(z). Hence, for every y € B U D there exists an
x € AU C such that (f Ug)(x) = y. Therefore, the function f U g is onto.

To prove the function f U g is one-to-one, we assume z,y € AU C and
(fUg)(x) = (fUg)(y). There are four cases to consider. (1) If z,y € A,
then (fUg)(z) = f(z) = (fUg)(y) = f(y), and because f is a one-to-one
function, x = y. (2) If 2,y € C, then (f U g)(z) = g(z) = (f U g)(y) = 9(v),
and because g is a one-to-one function, z = y. (3) If x € A and y € C, then
(fUg)x) = f(z) = (fUg)(y) = g(y). But f(z) € B and g(y) € D, which
contradicts the hypothesis BN D = (). (4) As in case (3), the case y € A and
x € C contradicts the hypothesis BN D = (). It follows from cases (1)—(4) that
z,y € AUC and (fUg)(z) = (f Ug)(y) implies x = y. Hence, the function
f U g is one-to-one, and therefore f U g is a one-to-one correspondence from
AuConto BUD. R

For each k € N, we define Ny = {1,2,3,...,k}. The elements of the set
Ny, are the numbers we would normally use to count the elements of any set
with exactly &k elements. Consequently, the collection of sets {INy | k& € N}
serves as our standard of measure for finite sets, as indicated by the following
definitions.

A set A is finite if and only if A =0 or A ~ Ny for some k € N.
A set is infinite if it is not finite.

The cardinality of a finite set A is denoted by |A|. By definition, the
empty set is finite, and the cardinality of the empty set is |f] = 0. If A ~ Ny
for some k € N, then the cardinality of A is |[A| = k. Since the identity
function I, is a one-to-one function from Ny onto N, the cardinality of the
set Ny, is k—that is, |Ny| = k.

Theorems 7.4 through 7.11, which concern finite sets, may appear to be
obvious; however, we want to state and prove these theorems from the defini-
tions given above to convince ourselves that the concept of cardinality for a
finite set coincides with our idea of the number of elements in the set. Also,
this will allow us to compare and contrast the results we obtain for finite sets
with the results we obtain for infinite sets in the next two sections. Usually,
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those results are very different.

Theorem 7.4 Any set B which is equivalent to a finite set A is a finite set
and |B| = |A].
Proof: Let A be a finite set and let B ~ A.

Case 1. If A=), then |A| = 0 and there exists a one-to-one correspondence
f : B — . Since the codomain of f is the empty set, Dom(f) = § = B.
Hence, B is finite and |B| = 0 = | A|.

Case 2. If A # (), then A ~ Ny, for some k € N and |A| = k. Since
B ~ A, A ~ Ny, and ~ is transitive, B ~ Nj. Therefore, B is finite and
|IB|=k=1]4]. 1

Theorem 7.5 The cardinality of a finite set A is unique.

Proof: If A = (), then by definition |}] = 0. By way of contradiction, suppose
there exists a nonempty, finite set A such that |A| = m, |A| = n, and m # n.
Since |A| = m, we have A ~ N,,, and since |A| = n, we have A ~ N,,. Since
~ is an equivalence relation, N,,, ~ N,,, which implies by Theorem 7.4 that
IN,,,| = |N,,|. Hence, m = n, which is a contradiction. W

Theorem 7.6 If A is a finite set and x ¢ A, then AU {z} is a finite set and
|[AU{z}| = |A| + 1.

Proof: Case 1. If A=, then |A] =0 and AU {z} = {z}. Since {z} ~ Ny,
Hz}=1and [AU{z}|={z}|=1=0+1=|A] +1.

Case 2. If A # (), then A ~ Ny, for some k € N and therefore |A| = k. Since
A ~ Ny, there exists a one-to-one correspondence f: A — Ny. Let g be the
function from A U {z} to Ny defined by

_Jf®), ifteA
9(t) = {k+1, it t=a
Remark: We now prove g is a one-to-one correspondence. First, we prove
g is a one-to-one function. Let ¢1,t3 € AU {x} and assume t; # to. There are
two cases to consider.

Case (i) If t; and t3 are both elements of A, then since f is a one-to-one
function f(t1) # f(t2), which implies g(t1) # g(t2).

Case (ii) If t3 = z, then g(t2) = k + 1. Since t; # t3 = x, we conclude
t1 € A. Hence, g(t1) = f(t1) € Ng. Since g(t1) € Ny and g(t2) = k + 1,
g(t1) # g(t2).

In cases (i) and (ii), t1 # t2 implies g(¢t1) # g(t2). Consequently, g is a
one-to-one function.

Remark: Next, we prove g is onto. Suppose m € Ny1. Either m € Ny or
m = k+ 1. If m € N, then since f : A — Ny, is onto, there exists a t € A
such that f(t) =m =g(t). fm=k+ 1, thent =z and g(x) = k+1=m.
Thus, g is onto.

Consequently, g is a one-to-one correspondence from A U {x} onto N1,
AU{x} ~ Ngy1, and |[AU{z}| = |Ngp1|=k+1=]4]+1. N
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Theorem 7.6 says adjoining one “new” element to a finite set increases the
cardinality by one. The following theorem says any subset of N,, is a finite
set and has cardinality less than or equal to n.

Theorem 7.7 If A C N, then A is a finite set and |A| < n.

Proof: Remark: We prove this theorem by induction. Let P(n) be the
statement “If A C N,,, then A is a finite set and |A] < n.”

(1) If A C Ny, then either A =0 or A =N;. If A =0, then A is finite and
|A] =0 < 1. If A = Ny, then A is finite and |A| = 1. Consequently, P(1) is
true.

(2) Let k € N and assume P(k) is true. Suppose A C Ny4i. Then A —
{k 4+ 1} C Ny and by the induction hypothesis, (*) A — {k + 1} is finite
and |A — {k + 1}| < k. There are two cases to consider: (i) k +1 ¢ A and
(ik+1€ A (1) Ifk+1¢ A, then A—{k+1} = A and from (*) A is finite
and [A|<k<k+1 (i) Ifk+1€A, then A=(A—-{k+1})U{k+1}. By
Theorem 7.6, since A—{k+1} is a finite set and since {k+1} ¢ (A—{k+1}),
(A—{k+1})U{k+1} = Aisafiniteset and |[A| = |[A—{k+1}|+1 < k+1.
In both cases, P(n + 1) is true. Hence, by mathematical induction, for all
n € N, if AC N, then A is a finite set and |A] <n. N

Theorem 7.8 If A C B where B is a finite set, then A is a finite set and
| Al < |BJ.

Proof: Let B be a finite set and let A C B.

Case 1. If A=), then A is a finite set and |A| =0 < |B|.

Case 2. Suppose A # ). Since A C B, the set B # () and there exists a k € N
such that B ~ Nj. That is, there exists a £ € N and there exists a one-to-one
correspondence f : B — Ny. The restriction of f to the set A, f|4, is a one-to-
one function from A onto f(A). Therefore, A ~ f(A). By Theorem 7.7, since
f(A) is a subset of N, f(A) is a finite set and |f(A)| < k. By Theorem 7.4,
because A ~ f(A), which is finite, A is finite and |A| = |f(4)| <k. N

Theorem 7.8 says if A is a subset of a finite set B, then A is finite and the
cardinality of A is less than or equal to the cardinality of B. The following
theorem says if A and B are finite sets which are disjoint, then AU B is a
finite set whose cardinality is equal to the sum of the cardinality of A and the
cardinality of B.

Theorem 7.9 If A and B are finite sets and if AN B =0, then AUB is a
finite set and |AU B| = |A| + | B|.

Proof: Suppose A and B are finite sets and AN B = (. If A = (J, then
AUB = B is finite and |[AUB| = |B| =0+ |B| = |A| + |B|. If B = 0, then
AUB = Ais finite and |[AUB| = |A| = |4+ 0 = |A|+|B|. Soif Aor B
is the empty set, AU B is a finite set and |A U B| = |A| + | B|. Now suppose
A # () and B # (). Since A and B are finite sets, there exist m,n € N such
that A ~ N,,, and B ~ N,,. Let M = {m+1,m+2,...,m+ n}. Define
h:N, — M by h(x) = m+x. The function h is a one-to-one correspondence.
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(Verify this.) Hence, N,, ~ M and by transitivity of set equivalence B ~ M.
By Theorem 7.3, since A ~ N,,,, B~ M, ANB =0, and N,, N M = 0,
the set AUB ~ N,, UM = N,,4,. Furthermore, since A ~ N,,, since
B ~ N, since AU B ~ Ny,1,, since |A| = m, and since |B| = n, it follows
that [AUB|=m+n=|A|+|B|. R

Theorem 7.6 says adjoining one “new” element to a finite set increases the
cardinality by one. The following theorem says removing one element from a
nonempty, finite set decreases the cardinality by one.

Theorem 7.10 If B is a finite set and if « € B, then B — {z} is a finite set
and |B —{z}|=|B| - 1.

Proof: Because x € B, the set B — {z} is a proper subset of B. By The-
orem 7.8, since B is finite, the set B — {z} is finite. Let A = B — {z}. By
Theorem 7.6, since © ¢ (B — {x}), the set AU {z} = (B —{z})U{z} =B
has cardinality |[A U {z}| = |A| + 1—that is, |B| = |B — {z}| + 1. Hence,
|B—{z}|=|B|—-1. N

The following theorem characterizes finite sets.
Theorem 7.11 A finite set is not equivalent to any of its proper subsets.

Proof: Let B be a finite set and assume A is a proper subset of B. Since
A C B, there exists an element © € B—A. Hence, z € B and by Theorem 7.10,
the set B — {«} is finite and |B — {z}| = |B| — 1. Since z € B — A, the set
A C B —{z} and by Theorem 7.8, A is finite and |A| < |B —{z}| = |B| — 1.
Consequently, |A| < |B|. By the contrapositive of Theorem 7.4, we see that
AxB. 1

The contrapositive of Theorem 7.11 is “If a set is equivalent to one of its
proper subsets, then it is an infinite set.” This statement is a characterization
of infinite sets.

EXERCISES 7.1

1. Which of the following sets are finite?
a. The set of all hairs on your head.
. The set of all hairs on all the heads of all of the people on Earth.
. The set of natural numbers.
. The set of all prime numbers.
. The set of all composite numbers.
. The set of all words in the English language.

. The set of all words in all languages ever used on Earth.

= 0/® - 0 &0 T

. The set of all integers which satisfy the equation x2 +4 = 0.
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2. Give examples of sets A, B, C, and D such that
a. A~ B, C~D, ANC=0and AUC £ BUD.
b. A~B,C~D,BND=0and AUC « BUD.
c. How do these examples relate to Theorem 7.37

3. Let A and B be sets. Prove that if A is an infinite set and if A C B,
then B is an infinite set.

4. Let A and B be sets. Prove the following statements.
a. If A is a finite set, then AN B is a finite set.
b. If AU B is a finite set, then A and B are finite sets.
c. If AN B is an infinite set, then A and B are infinite sets.
d. If A is an infinite set, then A U B is an infinite set.

5. Let E be the set of even natural numbers. Prove that £ ~ N.

6. Prove that if A is a finite set and B is an infinite set, then B — A is an
infinite set.

7. Give an example of finite sets A and B such that |AU B| # |A| + | B].

8. Let A and B be finite sets. Prove that A U B is a finite set and that
|AUB| =|A|+|B|—-|ANB.

9. Prove by mathematical induction that if Aj, Ao, ..., A, are finite sets,
then (J;_, A; is a finite set.

10. Let A be a set and let = be an object. Prove that A x {x} ~ A.
11. Prove that if A and B are two sets, then A x B ~ B x A.
12. Prove that if (A — B) ~ (B — A), then A ~ B.
13. a. Prove that for all m,n € N, the set N,,, x N, is finite.
b. Prove that if A and B are finite sets, then A x B is a finite set.

7.2 Denumerable and Countable Sets

Theorem 7.11 states “A finite set is not equivalent to any of its proper
subsets.” The contrapositive of this statement is a theorem as well and pro-
vides us with a method for proving a set is infinite. Theorem 7.12 is the
contrapositive of Theorem 7.11.

Theorem 7.12 If a set is equivalent to one of its proper subsets, then it is
an infinite set.

The first infinite set we will discuss is the set of natural numbers. Let E
denote the set of even natural numbers. That is, let E = {2,4,6,...}. Clearly,
FE is a proper subset of the natural numbers and the function f : N — F
defined by f(n) = 2n is a one-to-one correspondence from N onto E. (Verify
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this fact.) That is, N ~ E. By Theorem 7.12, since E C N and since N ~ E,
the set N is an infinite set.

To “count” the number of elements in a nonempty, finite set, we find an
equivalence with Ny for some k£ € N. We call the cardinality of a finite set a
finite cardinal number. Because ) C Ny C No C - C N, CN,;; C---.
The finite cardinal numbers have the same order relation as the natural
numbers—namely, |0] < |[Nij| < |[Ng| < --- < |Ny| < |Np41] < -+- or
0<1l1<2<---<n<n+1<---. Infinite sets which are equivalent to the
set of natural numbers, and thereby “counted” by the natural numbers, Can-
tor called countable or denumerably infinite. Because finite sets are countable
and can be assigned a number, it is appropriate to assign a number to the set
of natural numbers (and to all sets equivalent to the set of natural numbers).
No natural number can be used for the this purpose, because each natural
number is a finite cardinal and is assigned to finite sets. To represent the car-
dinality of infinite sets it was necessary to create a new collection of cardinal
numbers called transfinite cardinal numbers. Because Cantor realized ad-
ditional transfinite numbers other than the one for the set of natural numbers
would be required and because he suspected an infinite number of transfinite
cardinal numbers would be required, Cantor designated the number Ny (read
“aleph-null,” “aleph-naught,” or “aleph-zero”) to be the cardinality of the
natural numbers. That is, by definition |N| = ®y. Thus, the order of the
transfinite cardinals anticipated by Cantor was Ng, Ny, Rg, .. .. The letter N is
the first letter of the Hebrew alphabet. We now present the following formal
definitions.

The cardinality of the set of natural numbers, N, is |N| = X,.

A set A is denumerable or countably infinite if and only if A ~ N.
A set is countable provided it is finite or denumerable.

A set which is not countable is uncountable.

Theorem 7.13 The set of integers, Z, is denumerable and |Z| = Rg.
Proof: Let f:Z — N be the function defined by

2n, ifn>0
f(n) =
1—-2n, ifn <0
In Exercise 1, you are asked to prove f is a one-to-one correspondence from
Z onto N. Once proved, Z ~ N and |Z| = Rg. That is, the set of integers is
denumerable and has cardinality Xg. W

Recall that Theorem 7.6 says “If A is a finite set and = ¢ A, then A U {z}
is a finite set and |[AU {z}| = |A| + 1.” That is, if an element which does not
belong to a finite set is adjoined to the set, then the cardinality of the new set
is equal to the cardinality of the original set plus one. Contrast Theorem 7.6
for finite sets with the following theorem for denumerable sets. This theorem
says if an element is adjoined to a denumerable set, the cardinality of the new
set is the same as the cardinality of the original set—mnamely, Ng.
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Theorem 7.14 If A is a denumerable set, then A U {z} is a denumerable
set.

Proof: Let A be a denumerable set. Then there exists a one-to-one corre-
spondence f : N — A. There are two cases to consider. (1) If z € A, then
AU{z} = A, which is denumerable. (2) If x ¢ A, define g : N — AU {z} by

x, ifn=1
9(n) = {f(n 1), ifn#1
The function g is a one-to-one correspondence from N onto AU {z}. (You
are asked to prove this in Exercise 2.) Since N ~ AU {z}, the set AU {z} is
denumerable. MW

The previous theorem shows that one property of cardinal arithmetic is
Ny + 1 = Ng. The next theorem states that for any n € N, Ng +n = Ng.

Theorem 7.15 If A is a denumerable set and B is a finite set, then AU B
is a denumerable set.

Proof: The proof of this theorem is by mathematical induction and you are
asked to provide the proof in Exercise 3. W

The following theorem states that the union of two disjoint denumerable
sets is a denumerable set. The associated cardinal arithmetic is Ny + Ng = Ng.
Theorem 7.16 If A and B are denumerable sets and AN B = (), then AUB
is a denumerable set.

Proof: Let A and B be disjoint denumerable sets and let f : N — A and
g : N — B be one-to-one correspondences. Define h: N — AU B by

1
f(”; ) if n is odd

n . .
9(3) if n is even
In Exercise 4, you are asked to prove h is a one-to-one correspondence from

N onto AU B, which proves that AU B is a denumerable set. B

Compare Theorem 7.16 and Theorem 7.9 and observe the difference in the
result obtained for finite sets (Theorem 7.9) versus the result obtained for
denumerable sets (Theorem 7.16).

h(n) =

Theorems 7.14, 7.15, and 7.16 tell us how to add some cardinal numbers.
Theorem 7.14 essentially says Ng + 1 = Ry. Theorem 7.15 says for alln € N
Ng + 717 = Ng. And Theorem 7.16 says provided sets A and B are disjoint,
denumerable sets then Ng+ Ry = Ry. The well-known German mathematician
David Hilbert (1862-1943) invented “Hotel Infinity” to illustrate these three
theorems. Hotel Infinity has an infinite number of rooms numbered 1, 2,
3,4, ..., . (Theorem 7.16) One day all the rooms were occupied and one
more guest arrived. Although there was no vacancy, the manager found a
room for the new guest by moving each occupant of each room to the room
whose number was one higher than before. That left room 1 available for
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the new guest. (Theorem 7.17) The following day, a finite number, n, of new
guests arrived. In order to make room for the new occupants, the manager
moved each occupant of each room to the room whose number was n more
than before. Then the new guests moved into rooms numbered 1, 2, ... | n.
(Theorem 7.18) On another day, all of the residents of another infinite hotel
decided they wanted to move to Hilbert’s Hotel Infinity. The manager made
room for the new guests by moving the current guest in room n to room 2n.
That is, the manager moved the current guests into the even numbered rooms
in Hotel Infinity. Then he moved the infinite number of new guests into the
odd numbered rooms of Hotel Infinity.

Theorem 7.17 The Cartesian product N x N is denumerable.

Proof: Claim: The function f : N x N — N defined by f((m,n)) =
2m=1(2n — 1) is a one-to-one correspondence from N x N onto N. To prove
f is one-to-one, we assume f((m,n)) = f((r,s)). Hence, 2" 1(2n — 1) =
2771(2s — 1). The natural numbers 2n — 1 and 2s — 1 are both odd and it
follows from the Fundamental Theorem of Arithmetic that 2™~ ! = 2"~! and
2n — 1 = 2s — 1. Therefore, m = r and n = s. Consequently, (m,n) = (r, s)
and f is one-to-one. To prove f is onto, we assume x € N. It follows from
the Fundamental Theorem of Arithmetic that z = 2™~ 1¢ where m € N and
q is an odd natural number. Since g is odd, there exists an n € N such
that ¢ = 2n — 1. If 2 is odd, then z = 2°(2n — 1) = f((1,n)), whereas, if z
is even, z = 2™~ 1(2n — 1) = f((m,n)). Hence, f is onto and a one-to-one
correspondence from N x N onto N. That is, N x N ~ N and so N x N is
denumerable. W

The previous theorem illustrates that in cardinal arithmetic Ry - Rg = Ng.

Theorem 7.18 If A and B are denumerable sets, then Ax B is a denumerable
set.

Proof: By Theorem 7.2, since A ~ N and B ~ N, the set A x B ~ N x N.
From Theorem 7.17, we have N x N ~ N, so by transitivity of set equivalence
Ax B~ N and A x B is denumerable. W

Theorem 7.19 Every infinite subset of a denumerable set is denumerable.

Proof: Let B be an infinite subset of a denumerable set A. Since A ~ N,
there exists a function f : A — N which is a one-to-one correspondence
from A onto N. The restriction of f to the set B, f|p, is a one-to-one
correspondence from B onto f(B). Thus, B ~ f(B). We now define a
function g : N — f(B) inductively. The set f(B) is a subset of the natural
numbers. Since B is an infinite set and f(B) ~ B, the set f(B) is infinite
and therefore nonempty. By the Well-Ordering Principle, f(B) has a least
element; call it g(1). For each n € N, the set f(B) — {g(1),9(2),...,9(n)} is
nonempty, because f(B) is infinite. Let g(n 4+ 1) be the least element of the
set f(B)—{g(1),9(2),...,g9(n)}. To prove g is one-to-one, we assume p,q € N
and p < q. Then g(p) € {g(1),9(2),...,9(qg — 1)}, but g(p) is not. Hence,
g(p) # g(q) and g is one-to-one. To prove g is onto, we assume r € f(B)
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and there are m natural numbers less than r in f(B). By definition of g,
r = g(m + 1). Therefore, g is onto and a one-to-one correspondence from N
onto f(B). By transitivity, N ~ f(B) ~ B and B is denumerable. B

Our immediate goal is to prove the set of rational numbers is denumer-
able. First, however, we prove that the set of positive rational numbers is
denumerable.

Theorem 7.20 The set of positive rational numbers, denoted by Q%, is
denumerable.

Proof: We define the set of positive rational numbers by
+_ (P _
Q" = {a | p,q € N and ged(p, q) =1}

Consider the function f : QT — N xN defined by f(E) = (p, ¢). The function
q

f is one-to-one but not onto, since (2,2) € N x N but % ¢ QT. However, the
restriction of f to Q% is a one-to-one function from Q% onto f(QT). That
is, QT ~ f(QT). Since N C QT, the set Q7 is an infinite set and by set
equivalence so is f(Q"). By Theorem 7.19 because f(Q™) is an infinite subset
of N x N, a denumerable set, f(QT) is denumerable and by set equivalence
Q7 is denumerable also. W

Theorem 7.21 The set of rational numbers is denumerable.
Proof: Let the negative rational numbers be defined by
- _yy P, P +

Q ={-,1,€Q}
By definition, Q= ~ Q7 and, therefore, Q™ is denumerable. By Theo-
rem 7.14, the set Q~ U {0} is denumerable. By Theorem 7.16, since Q™
is denumerable and (Q~ U{0}) N QT = 0, the set Q = Q- U {0} U QT is
denumerable. W

The relationships between countable sets, finite sets, and denumerable sets,
and several specific sets are shown in the Venn diagram of Figure 7.1.

Countable Sets

Finite Sets Denumerable Sets
1) Ny N Z Q
N3 x Nj NxN ZxQ

Figure 7.1: Finite, denumerable, and countable sets.
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EXERCISES 7.2

1. Prove that the function f defined in the proof of Theorem 7.13 is a one-
to-one correspondence from Z onto N.

2. Prove that the function g defined in the proof of Theorem 7.14 is a one-
to-one correspondence from N onto AU {z}.

3. Prove Theorem 7.15 by mathematical induction. (Hint: Let P(n) be
the statement “If A is a denumerable set and if B is a finite set with
|B| = n, then AU B is a denumerable set.” The statement P(1) is true
by Theorem 7.14.)

4. Prove that the function h defined in the proof of Theorem 7.16 is a one-
to-one correspondence from N onto A U B.

5. Prove that the following sets are denumerable.
a. F* ={4,812,16,...}
b. F={...,-16,-12,-8,-4,0,4,8,12,16,...}
c. G={n|n e N andn > 100}
d. H={m |meZand m< —50}
e. N—{1,3,5,7,9}
6. Give an example of two denumerable sets A and B such that A # B and
a. AU B and AN B are both denumerable.
b. AU B and A — B are both denumerable.
¢. AU B is denumerable and A — B is finite but not empty.

7. Prove that if A is a denumerable set and B is a finite subset of A, then
A — B is denumerable. Compare this theorem with Theorem 7.10.

8. Let A; and A be denumerable sets. Prove that A; U Ay is denumerable.

9. Let Ay, As,..., A, be denumerable sets. Prove that the set U?:l A; is
denumerable.

7.3 Uncountable Sets

Every real number can be written as a decimal expansion with an infinite
number of digits to the right of the decimal point. Every irrational number
has a unique decimal expansion which is nonrepeating. Every rational number
has a repeating expansion. However, some rational numbers have two different
decimal expansions. For example, 1/4 = 0.250000--- and 1/4 = 0.249999 - - -.
If a rational number has two different decimal expansions, one ends with an
infinite string of zeros and the other ends with an infinite string of nines. We
will say a real number is in normalized decimal form if it does not end
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with an infinite string of nines. Therefore, 1/4 = 0.250000 - - in normalized
decimal form. By making this choice for the decimal representation of real
numbers, we have guaranteed the following statement is true: “Every real
number can be written uniquely in normalized decimal form.” Hence, two
real numbers written in normalized decimal form are equal if and
only if in each position of their decimal expansion their digits are
identical.

Thus far, we have seen examples of finite sets, denumerable sets, countable
sets, and infinite sets, but we have not exhibited an uncountable set. In the
following theorem, we prove the open unit interval (0, 1) is an uncountable
set. The method of proof employed in this theorem is due to Georg Cantor
and is called Cantor’s diagonal argument.

Theorem 7.22 The open unit interval (0,1) is an uncountable set.

Proof: The set S = {%, %, %, ...} is an infinite subset of (0,1); therefore,
(0,1) is an infinite set. (See Exercise 8 of Section 7.2.) Consequently, (0, 1)
is denumerable or uncountable. We will show by contradiction that (0, 1) is
uncountable. Assume (0, 1) is denumerable. Then there exists a one-to-one
correspondence f : N — (0,1). We list all of the real numbers in (0,1) in
normalized decimal form as follows:

f(l) = 0.a11a12a13014015 - - -

f(2) = 0.a21a22a23a240a25 - - -

f(3) = 0.a31a32a33a340a35 - - -
(4)

fl4

0.a41a42043044045 - - -

f(n) = 0.04110120n30p40n5 - - -

Observe that the jth decimal digit of the ith real number f(¢) is a;;. We will
now show how to construct a real number b = 0.b1babsbybs - - - in (0, 1) which
does not appear in the list f(1), f(2), f(3),.... We want to choose the digits
b so that by # agr and b # 9. We choose by # agi to ensure b differs from
f(k) in the kth decimal digit. We choose by # 9 to ensure we do not create a
decimal number which ends with an infinite string of nines. For each k € N,

define
by — 2, 1fakk7é2
P74, ifage =2

By our choice of the digits by, the number b = 0.b1b2b3bybs - - - is a real number
expressed in normalized decimal form which is in the interval (0, 1) but which
does not appear in the list f(1), f(2), f(3),.... Therefore, the function f is
not onto, which contradicts f being a one-to-one correspondence from N onto
(0,1). Remark: The choice of the digits 2 and 4 in the definition of by is
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arbitrary. Any other two distinct digits neither of which is 9 would suffice.
|

The open unit interval (0, 1) is our first example of an uncountable set. We
will define the cardinality of (0,1) to be c. Just as the sets Ny, for k € N are
our standards for measuring finite sets and N is our standard for measuring
denumerable sets, the interval (0, 1) is our standard for measuring uncountable
sets.

The cardinality of the set (0,1) is |(0,1)] = c.

A set A is uncountable and has cardinality c if and ounly if A ~ (0, 1).

The next theorem states that every finite interval is uncountable and has
cardinality c.

Theorem 7.23 For a,b € R with a < b, the open interval (a, b) ~ (0,1) and
|(a,b)] = c.

a . .
is a linear

Proof: The function f : (a,b) — (0,1) defined by f(z) = z—

function from R onto R restricted to the domain (a,b); therefore, f is a
one-to-one correspondence from (a, b) onto (0,1). M

Since ~ is an equivalence relation, it follows that for a,b,c,d € R with
a < b and ¢ < d the open intervals (a,b) and (c, d) are equivalent and have
cardinality c. The following theorem states that the set of real numbers is an
uncountable set and has cardinality c.
Theorem 7.24 The set of real numbers R is uncountable and |R| = c.

Proof: The function g : (=%, %) — R defined by g(x) = tanz is a one-to-one
correspondence from the interval (—%, ) onto R. Since (0,1) ~ (=3, 3) by

the transitivity of ~, we have (0,1) ~ R. Consequently, R is countable and
by definition |[R|=c¢. N

The set of real numbers is referred to as the continuum. For this reason,
the cardinal number c is called the cardinality of the continuum.

By Theorem 7.21 the set of rational numbers is denumerable and by Theo-
rem 7.24 the set of real numbers is uncountable. The following theorem proves
that the set of irrational numbers is uncountable.

Theorem 7.25 The set of irrational numbers is uncountable.

Proof: By definition, the set of irrational numbers is the set H = R — Q.
The set {n + /2 | n € N} is an infinite subset of H. Hence, H is an infinite
set, and consequently H is either denumerable or uncountable. Suppose H is
denumerable. By Theorem 7.21, Q is denumerable. Since Q is denumerable,
since H = R — Q is assumed to be denumerable, and since Q N (R — Q) = 0,
QU (R — Q) = R is denumerable by Theorem 7.16. But this contradicts
Theorem 7.24. Hence, the set of irrational numbers is uncountable. W

The relationships between countable sets, finite sets, denumerable sets, infi-
nite sets, and uncountable sets and several specific sets are shown in the Venn
diagram of Figure 7.2.
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Countable Sets Infinite Sets

Finite
Sets
Ny

Uncountable

Denumerable
Sets

N Z Q
NxN ZxQ

0
N3><N5

FIGURE 7.2: Finite, denumerable, countable, infinite, and uncountable
sets.

We may compare cardinal numbers using the following definitions. Let A
and B be sets.

|A| =|B]| if and only if A ~ B.

|A| #|B| if and only if A 4 B.

|A| <|B| if and only if there exists a one-to-one function f from A to B.

|A| < |B| if and only if |A| <|B| and |A|# |B|.

By definition, |A| < |B| if there exists a one-to-one function from A to B
but no one-to-one function which is onto B. For example, for all & € N,
INk| < |NJ, since the function f : Ny — N defined by f(x) = x is one-
to-one from N to N but there is no one-to-one function from Nj onto N.
Furthermore, [N| < |R| or Xg < ¢, because the function g : N — R defined
by g(x) = x is one-to-one from N to R but there is no one-to-one function
from N onto R.

So far, we have seen only two different transfinite cardinal numbers, Xy and
c. Some questions which arise quite naturally are “Are there more transfinite
cardinal numbers?”, “If so, what are they?”, and “How many are there?” The
next theorem, which Georg Cantor proved, is known as Cantor’s Theorem and
answers all of these questions. Recall that the power set P(A) of a set A is
the set of all subsets of A.

Cantor’s Theorem If A is a set, then |A] < |P(A)].

Proof: Let A be aset. If A= (), then P(A) = {0}, and |A| =0 < 1 =|P(4)|.
For A # (), we must show (i) |A] < |P(A)| and (ii) |A| # |P(A)|. To prove
(i) we must show there exists a function f : A — P(A) which is one-to-one.
We define f : A — P(A) by f(z) = {«}. Suppose f(xz1) = f(xz2). Then
{z1} = {x2}, which implies z; = x2. Consequently f is one-to-one. We prove
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(ii) by contradiction. Suppose there exists a function g from A onto P(A).
Let S={x € A| x ¢ g(x)}. Since S C A, we have S € P(A) and since g is
onto P(A) there exists some y € A such that S = g(y). Either (1) y € S or
(2 ¢S
MWIfyeS={zxcA|z¢gx)}, then y ¢ g(y) = S. Contradiction.
2)Ify¢ S={reAlx¢g(x)}, then y € g(y) = S. Contradiction.
In either case, there does not exist a y € A such that g(y) = S. Therefore,
there is no function g from A to P(A) which is onto. Consequently, there
is no one-to-one correspondence from A onto P(A) and A 4 P(A). Hence,

[ Al # [P(A)] and |A] < [P(A)].

One consequence of Cantor’s Theorem is |N| < |P(N)|. Since P(IN) con-
tains the infinite subset {{1}, {2}, {3},...}, the set P(IN) is an infinite set.
And since |[N| < |P(N)], the set P(N) is uncountable. Because P(N) is a set,
P(P(N)) is a set. A second consequence of Cantor’s Theorem is |[P(IN)| <
|P(P(N))|. In this manner, we can generate a denumerable collection of
cardinal numbers with the properties Xg = |N| < |P(N)| < |[P(P(N))| <
|P(P(P(N)))| < ---. Thus, there are infinitely many transfinite cardinal
numbers and their is no largest cardinal number.

About 1880, Georg Cantor asked the question “Is there a cardinal number
which lies strictly between Ry and c?” Stated in terms of the set of real num-
bers, this question is “Does there exist an infinite set of real numbers which is
not equivalent to the set of natural numbers and which is not equivalent to the
set of real numbers?” Cantor conjectured the answer to both of these ques-
tions is no. This conjecture became known as the continuum hypothesis,
which can be stated as follows.

Continuum Hypothesis There is no set X such that 8y < |X]| < c.

Cantor and other leading mathematicians tried to prove or disprove this con-
jecture with no success. A generalization of this conjecture is called the gen-
eralized continuum hypothesis. This conjecture states that there is no
cardinal number which lies strictly between a transfinite cardinal number a
and 2¢. Stated more formally, the conjecture is

Generalized Continuum Hypothesis For any transfinite cardinal num-
ber a there is no cardinal number z such that a < x < 2°.

At the International Congress of Mathematicians held in Paris in 1900,
the famous German mathematician David Hilbert (1862-1943) presented a
list of twenty-three important unsolved problems. At the top of the list was
the continuum hypothesis. In 1931, the Austrian mathematician Kurt Godel
(1906-1978) proved that any consistent axiom system includes true, unprov-
able statements. In 1940, Godel proved if a contradiction were to arise by
assuming the axioms of set theory and the continuum hypothesis, then the
contradiction could be deduced from the axioms of set theory alone. Thus,
Godel showed the continuum hypothesis was independent from the axioms
of set theory and assuming either the continuum hypothesis or its negation
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would result in a consistent axiom system provided the axioms of set theory
themselves are consistent. In this sense, the continuum hypothesis is an un-
decidable statement. In 1963, the American mathematician Paul J. Cohen
(1934- ) proved that neither the continuum hypothesis nor the axiom of
choice can be proved from the axioms of set theory.

In 1895 and 1897, Cantor published his last two works on set theory. In
1895, he used the axiom of choice to prove if A and B are sets such that
|A| < |B|and |B| < |A|, then |A| = | B|. At that time, the axiom of choice was
somewhat controversial. So in 1896, Ernst Schréder (1841-1902) proved the
same result without using the axiom of choice. Independently, while attending
Cantor’s seminar at Halle in 1897, Felix Bernstein (1878-1956) also proved
this result without employing the axiom of choice. The following theorem,
which we ask you to prove in Exercise 13, is called the Schr6der—Bernstein
Theorem or the Cantor—Schréder—Bernstein Theorem.

Schréder—Bernstein Theorem Let A and B be sets. If |A| < |B| and
(B < |A, then |A| = |B|.

The Schroder—Bernstein Theorem can be used to prove two sets are equiv-
alent when it is difficult to produce a one-to-one correspondence between the
two sets, for example, to prove |(0,1)| = |[0,1)| and, therefore, (0,1) ~ [0,1).
We first note that the function f : (0,1) — [0,1) defined by f(z) = z is
a one-to-one function, so (1) [(0,1)] < |[0,1)|. Then, we observe that the
function ¢ : [0,1) — (—1,2) defined by g(x) = x is one-to-one. Hence,
[[0,1)] < [(-=1,2)]. But since (—1,2) ~ (0,1), we have |[(—1,2)] = [(0,1)].
Thus, (2) [[0,1)| < [(—1,2)] = |(0,1)|. Consequently, from (1) and (2) by the
Schréder—Bernstein Theorem |(0,1)| = [[0,1)| and therefore (0,1) ~ [0, 1).

Recall for a finite set A with |A] = n elements, the number of elements
in the power set of A is |P(A)| = 2™. For any infinite set A with cardinal
number |A|, we define the number of elements in the power set of A to be
|P(A)| = 241, Since |N| = Ry, by definition the cardinality of the power set
of N is |P(N)| = 2%, We now use the Schréder—Bernstein Theorem to prove
[P(N)| =2% =c=R|.

Theorem 7.26 c = 2%,

Proof: Let I = [0,1). We have just shown that |I| = c. First, we define a one-
to-one function f from P(N) to I. For each set A € P(N), let z = f(A) € I
be the real number whose decimal expansion x = 0.d1d2ds . . . is defined by

dr — {O, ifn¢g A
PTL ifne A
(You should verify f is one-to-one.) Since f : P(N) — I is one-to-one,
(1) |[P(N)| < |I]. Next, we define a one-to-one function g from I to P(IN).
If z € I and z has binary expansion = 0.b1b2bs ..., then g(x) € P(N) is
defined to be the set g(x) = {n € N | b, = 1}. (You should verify g is one-to-
one.) Since g : I — P(N) is one-to-one, (2) |I| < |P(N)|. It follows from (1)
and (2) by the Schréder-Bernstein Theorem that |I| = |[P(N)| or ¢ = 2%0.
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EXERCISES 7.3

1. Prove that both of the following functions are one-to-one correspondences
from (0, 1) onto R. Consequently, each of these functions can be used to
provide an alternate proof of Theorem 7.24.

a. h(z) = tan (7r (x — %)) b. h(z) = if:i

2. Prove that if A is an uncountable set and if B ~ A, then B is uncount-
able.

3. Prove that if A is an uncountable subset of B, then B is an uncountable
set.

4. For each of the given sets find a one-to-one correspondence from the set
onto R. This proves that each of the given sets has cardinality c.
a. (0,00) b. (a,00) for any a € R c. R—{0}
d. R—{a} foranya € R
5. Let A, B, and C be nonempty sets. Prove that
a. If |A| = |B| and |B| = |C|, then |A| = |C].
(Transitivity of = for cardinal numbers)
b. |A| <|A| (Reflexivity of < for cardinal numbers)

c. If |A| < |B] and |B| <|C]|, then |A] < |C|.
(Transitivity of < for cardinal numbers)

d. If A C B, then |A| < |B].

e. |[ANB| <|B]

f. |A| <|A x B|

g. f AC BC(C and |A| = |C|, then |A| = |B|.

6. Use = and < to order the following lists of cardinal numbers.
a. [P(R)|, {0}, [R[, [0, [P(P(R))], 1Ql, IR—-Q], [N, |(0,3)],
10,3}, 110, 3]], (0, 00)]
b. ¢, [R—{0}], |Q—{0}[, [Z2—{0}], [R-Q, [R-Z[, |Q-Z,
IR, [Z], 1Qf, Ro
7. Use the Schroder-Bernstein Theorem to prove the following.
a. If A, B, and C are sets with |A| < |B|, |B| < |C], and |C] < |4],
then A~ B ~ C.
b. RxR ~R.
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More Challenging Exercises

8.

10.

11.
12.

13.

Let A, B, and C be finite sets. Prove that AU B U C is a finite set and
prove that |[AUBUC| = |A|+ |B|+|C|—|ANB|—-|ANC|—|BNC|
+AnBNC|.
. Prove that the function f : N x N — N defined by
. i+7—2)i+5—1 .
PP SNSE IV SN
is a one-to-one and onto function.
For every natural number n > 2 let A, Ao, ..., A, be denumerable sets.
For every n > 2 prove that A; x As X --- x A, is a denumerable set.
Let A and B be disjoint sets. Prove that |P(AU B)| = |P(A) x P(B)|.

Give an example which shows that the set of real numbers, R, can
be partitioned into

a. a denumberable number of uncountable sets.

b. an uncountable number of countable sets.

Complete the following proof of the Schroder-Bernstein Theorem:

Let A and B be sets. If |A| < |B| and |B| < |A|, then |A| = |B|.

Proof: We assume that A and B are disjoint sets. If they are not disjoint,
then the sets A* = A x {0} and B* = B x {1} are equivalent sets that

are disjoint. Since |A| < |B| there is a function f : A2 B and since
|B| < |A| there is a function g : Bt A. To prove that |A| = |B|, we

need to find a function h: A 1! B. Notice, if f is onto, then we can let

onto

h = f, whereas, if g is onto, then we can let h = g7*. So, assume that
neither f nor g is onto. Let S = Rng(g) C A. The function g : B — S
is a one-to-one correspondence as is the function g=!: S — B.

1

We recursively define a sequence of sets Ay, As, As, ... which are all
subsets of A as follows:

A =A-8.
Forall n € N, Ans1 = g(f(4n)) = {9(f(a)) |a € A}.

Then we let X = U,enA, and W = A — X. By definition A= X UW
and X N W = (). Next, we define the function h : A — B as follows.

_ fla), ifae X
h(a) = {gl(a), ifaeW

Observe that the function h is well-defined. For every a € A, if a & S,
then a € A; C X, whereas, if a € W, then a € S and g~!(a) is defined.
Figure 7.3 should help you visualize the sets and functions.
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A B
FIGURE 7.3: Sets X, Y, W, Z and the functions f and g.

To complete the proof, you must do the following.

A. Show that the function h is one-to-one. To do so, assume that
a1 and ag are elements of A and that h(a1) = h(az). Then prove
that a; = ag. There are two cases to consider. Case 1: a; € X and
Case 2: a1 € W.

B. Show that the function h is onto. Suppose b € B. Then g(a) € A
and either g(b) € X or g(b) € W. Consider these two cases separately.






Chapter 8

Proofs from Real Analysis

Real analysis is the study of real numbers, sets of real numbers, and func-
tions on sets of real numbers. In this chapter, we study sequences of real
numbers and their properties.

8.1 Sequences

Sequences play an important role in mathematics. In calculus, you un-
doubtedly discussed sequences of real numbers prior to studying series. In the
broadest sense, a sequence is a function whose domain is the set of natural
numbers. For example, a sequence can be a sequence of sets, a sequence of
intervals, a sequence of functions, and so forth. In this chapter, we devote our
attention to sequences of real numbers.

A sequence of real numbers is a function from the set of natural numbers
to the set of real numbers.

Thus, a sequence of real numbers a : N — R is a function which assigns to
each natural number, n, a unique real number a(n). It is customary to denote
the general term or nth term of the sequence by a,, instead of a(n).

We will represent a sequence by ai,az,: - ,an, - or < ap >, or simply
< ap > . Sequences are usually defined (i) by listing the first few terms and
assuming the pattern continues indefinitely, (ii) by giving an explicit formula
for the general term, or (iii) by recursion. The following is an example of
defining the same sequence by these three different methods.

1+ (=)™
(1) 071,0,1,0,1,“- (11) an:%

(iii) a1 =0 and a, =a,—1+(—-1)" for n>2

It is important to understand the notational difference between the sequence
< ap, >, and the range of the sequence {a,}$2,. For example, if
ay, = cos(nm/2), then < a, >22,=0,-1,0,1,0,—1,0,1,--- while {a,}32, =
{0,—1,1}. In this instance, the sequence < a, > is a countably infinite
ordered set, while the range {a,} is a finite set with three elements.

269
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Consider the sequence <%> =1, %, %, %, %, %, ---. It appears that as n gets

very large, the general term a,, = % approaches the value 0, although no term
in the sequence is ever 0. On the other hand, the sequence <w> =

0,1,0,1,0,1,--- does not approach any value as n gets very large, because
successive terms continue to alternate between 0 and 1. The terms in the
sequence <%> get smaller with each successive term. That is, for all n € N,
we have a,+1 < an, because 0 < 1 and n € N implies 0 < n < n + 1, which

implies 0 < %H < % If we choose a positive value, say € = .05, how far out

in the sequence <%> must we go before % < .057 Solving the last inequality

for n, we see for n > 20 we have % < .05. Since 0 < ap4+1 < ay, foralln € N

and since % < .05 for n > 21, we have 0 < % < .05 for all n > 21. Notice that

for n > 21, the set {%}20221 is a subset of the interval (0,.05)—that is, all of

the elements of the set {%}20221 are within .05 of 0.

As we have seen, as n gets large some sequences approach a real value while
others do not. We now give a formal definition of convergence for a sequence
of real numbers.

A sequence < a, > of real numbers converges to a real number A if
and only if for every € > 0 there exists an N € N such that for every n € N
if n > N, then |a, — A| <e.

The number A is called the limit of the sequence and usually we write
lim,, o a, = A or a,, — A to denote that the sequence < a,, > converges to
the limit A.

If a sequence < a,, > does not converge, we say the sequence is divergent
or “the sequence diverges.”

In the definition of convergence of a sequence, the real number € > 0 is
the error tolerance and the natural number N, which usually depends on
the choice of ¢, tells us how far out in the sequence we must go in order to
guarantee that for all n > N the distance between a,, and A is less than e.

Let ¢ be a real constant. The constant sequence c, ¢, ¢, - - - converges to the
limit ¢. To prove this, let € > 0 be given. Choose N = 1. Then for all natural
numbers n > N, we have |¢ — ¢| = 0 < e. It follows from the definition of
convergence that lim, ... c=c.

Now let us use the definition of convergence to prove that the sequence
<%> converges to 0. Our reasoning and “scratch work” for the required
proof proceeds as follows. Given any real number € > 0, we must deter-

mine how to choose a natural number N such that if n > N, then ’% — O’ < e.
First, we notice that if n > N > 0, then % > % > (0. Consequently, if n > N,

then ’% — O’ = % < % and % < €, provided N is any natural number greater
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than % By the Archimedean Property of the real numbers, there always exists
such an N. Thus, our theorem and proof that lim,, . % = 0 reads as follows.

1

Theorem 8.1 The sequence <E> converges to 0.

Proof: Let € > 0 be given. By the Archimedean Property of the real numbers,
there exists a natural number N > % Foralln > N,

1

n

1 1 1
=< —<e Hence, lim — =0. &
n N

n—oo n

——0

n

1 ’ B

Example 8.1.1 a. Estimate the limit of the sequence whose general term is
- 3n? 4+ 1
245

Qp

b. Prove the estimate is correct.

Solution
a. Calculating the value of a,, for n = 10, 100, and 1000, we find

301 30001
= — =~ 1.468292 =——~14
a10 505 68292, aiopo 50005 99675

.. _ 3000001
10007 5000005

(The symbol = is read “is approximately.”) Based on these calculations, our
estimate for the limit of the sequence is 1.5 = 3/2.

~ 1.499997.

b. Scratch Work: Given € > 0, we must determine a natural number N
such that if n > N, then

n?+1 3 -
- —| <e.
n2+5 2
Calculating, we find
3n2—|—17§76n2—|—2—6n2—15 - 13 <£
2n2 +5 2| 2(2n% 4+ 5) ©2(2n2+5) T 4n?’

1 1 1 1
Ifn>N>O,thenN>E>Oandm>F. Hence, for n > N,

1 oL Te 2 =° 22
(1) 2n24+5 2 4n? < 4N2 ’

3n?+1 3’ 13 13
< <€

13
provided N is chosen so that el < €. Solving this last inequality for N, we
13

see that (1) will be satisfied by any natural number N > "

€
2
1
sno 1 — reads as follows.

Our proof that lim, 2+ E = 3
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Proof: Let € > 0 be given. By the Archimedean Property of real numbers,
/1
there exists a natural number N > 4—3 For alln > N,

€

n2+1 3 < —13 < 13 < 13 < 13 <
_— — = — < —<e
2n24+5 2 2(2n2 +5) 2(2n%2 +5)  4n? ~ 4N?Z
n>+1 3
Hence, lim,, .~ % =3

How do we prove a sequence diverges? First, we write the definition of con-
vergence more symbolically, so it will be easier to negate and write correctly
in English. The symbolic definition of convergence is

(2) nlLII;Can =A& (Ve>0)3N e N)(Vn e N)[(n > N) = (|la, — A] <¢)].

Recalling that the negation of the statement P = @ is =(=PV Q) = PA(—Q),
we negate (2) and obtain the following definition:

(3) lim an # A (3e > 0)(YN € N)(Fn € N)[(n > N) A (Jan — 4] > o)].

Statement (3) says “The sequence < a,, > does not converge to the limit A if
and only if there exists a positive real number, €, such that for every natural
number, N, there exists a natural number n > N and |a, — A] > €” In
the next example, we use this statement to prove that a particular sequence
diverges.

Example 8.1.2 Prove that the sequence whose general term is

(-

an 5 diverges.
Solution
Scratch Work: Let A be any real number and suppose lim,, o a, = A.
The terms of the sequence are 0,1,0, 1, - --. Since the distance between the two

values 0 and 1 is 1, we choose € = 1/2. (Any value of € less than 1/2 will work
as well.) We must show for any A and any N € N there is an n > N for which
|a, — A| > 1/2. We will break the proof into two parts. In the first part, we
will assume A > 1/2; while in the second part, we will assume A < 1/2. When
A >1/2 and N is any natural number, we choose n to be any odd natural
number greater than N. Then a, = 0 and |a,—A| = |0—A4| = |A| = A > 1/2.
When A < 1/2 and N is any natural number, we choose n to be any even
natural number greater than N. Then a, = 1. Since A < 1/2, we have

1
0 < 1 — A and, therefore, 1 <1— A. Hence, [1— A| > 3

4+(=D"
2

The following is a proof that the sequence < > diverges.

1+ (~1)n

Proof: Let A be any real number and let a,, = . Choose € = 1/2

and let N be any natural number. Suppose that lim,, .., a, = A. We divide
the proof into two cases.
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Case 1. If A > 1/2, we choose n to be any odd natural number greater than
N. Then a,, = 0 and |a, — A| = A > 1/2. Hence, lim,, .o a, # A, if A > 1/2.

Case 2. If A < 1/2, we choose n to be any even natural number greater
than N. Then a, = 1. Since A < 1/2, we have 0 < 1 — A and therefore
1 <1— A Hence, |1 — A| > 1/2. Thus, lim, o an, # A if A< 1/2.

2

The following theorem states that the limit of a convergent sequence is
unique.

1+ (—=1)"
Therefore, the sequence <L> diverges. W

Theorem 8.2 If a sequence converges, its limit is unique.
Proof: Remark: As with most uniqueness theorems, we assume there are
two distinct objects which satisfy the specified condition and then reach a
contradiction. We prove this theorem by contradiction. Assume there is a
sequence < a, > and two real numbers A and B such that A # B, a,, — A,
and a, — B. Since A # B, we have |A — B| > 0. Let ¢ = |A — B|/3. Since
an — A, there exists an N7 € N such that n > N; implies |a,, — A] < €. And
since a,, — B, there exists an No € N such that n > Ny implies |a,, — B| < e.
Let N = max{N;, No}. Then by the triangle inequality, for n > N we have
|A—B|=|A—-an+a, —B| <|A—ayp|+|a,— B] <e+e=2|A— B|/3.
Since |A — B| > 0, we have proven 1 < 2/3. Contradiction. Consequently, if
a sequence converses, its limit is unique. W

For obvious reasons, the next theorem is called the “squeeze” or “sandwich”
theorem for sequences. This theorem permits us to determine and prove the
limit of some sequences without appealing to the definition.

Theorem 8.3 If < a, >, < b, >, and < ¢, > are sequences such that
anp < by, < ¢, for all n € N and if lim, . a, = lim, .o ¢, = L, then
lim,, oo b, = L.

Proof: Let € > 0 be given. By the definition of convergent sequence, there
exists an N € N such that for all n > N, we have |a, — L| < e and |¢,, — L| < €

or
(4) L—e<ap<L+4+e and (5) L—e<c,<L+e.

From the left inequality of (4), the hypothesis a, < b, < ¢, for all n € N,

and the right inequality in (5), we have for alln > N
L—e<a,<b,<c,<L+e.

Thus, n > N implies |b, — L| < € and by definition lim, oo b, = L. W

We can use Theorem 8.3 to determine the limit of the sequence

< cos(n2n—|— 2n) >

without having to use the definition of convergence to prove the result. Since
the range of the cosine function is [—1, 1], we have —1 < cos(n? + 2n) < 1.
Dividing by n > 0, we find
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_ (12
-1 < cos(n® + 2n) < l
n n n
-1 242
By the “squeeze” theorem with a,, = — — 0, with b, = w, and
n n
1
with ¢, = — — 0, we conclude
n
2
b, — cos(n® + 2n) o

n

We need the following boundedness definitions for sequences. Notice the
similarities in these definitions and the definitions for bounded sets.

Let < a, > be a sequence of real numbers.

The sequence < a, > is bounded above if and only if there exists a real
number U such that a,, < U for all n € N.

The sequence < a, > is bounded below if and only if there exists a real
number L such that L < a,, for all n € N.

A sequence < a, > is bounded if and only if there exists a positive real
number M such that |a,| < M for all n € N.

For instance, the sequence 0,1,0,1,--- is bounded above by 1 (and any
larger real number), it is bounded below by 0 (and any other smaller real
number), and it is bounded by 1 (and any larger real number). The sequence
2,1,4, %, 8, %, 16, %, -+ is not bounded above and therefore it is not bounded;
however, it is bounded below by 0. The sequence %, -1, %, -2, %, -3, %, SR
bounded above by 1; it is not bounded below; and, hence, it is not bounded.
And the sequence 1, —-1,2,-2,3,—3,--- is not bounded above or below.

The next theorem states that every convergent sequence is bounded. The
number 1 used for € in the proof is arbitrary—we could use any other positive
real number.

Theorem 8.4 Every convergent sequence is bounded.

Proof: Let < a, > be a convergent sequence with limit A. Letting e = 1
in the definition of convergence, there exists a natural number N such that
la, — A| < 1 for all n > N. Because ||a,| — |4]|| < |a, — 4], for all n > N we
have ||an| —|A|| < 1, which implies for all n > N that |a,|—|A| < 1 and hence
lan| < 14 |A|. Let B = max{|a1], |as],...,|an]|,1+ |A|}. Then |a,| < B for
all n € N. That is, the sequence < a,, > is bounded. W

Stated in the more usual “if ..., then ...” form, Theorem 8.4 says “If a
sequence converges, then it is bounded.” The contrapositive of Theorem 8.4
is the theorem which says “If a sequence is not bounded, then the sequence
is not convergent.” Consequently, we have a valuable method which does not
involve the definition of convergence for showing that a sequence does not
converge. For example, we know from the contrapositive of Theorem 8.4 that
the sequences < logn >, < n >, < n? >, and < 2" > do not converge,
because they are not bounded.
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EXERCISES 8.1

1. Write an expression for the general term of each of the given sequences.

4 6 8 10 12 357911
35T 0 I 216810

e gt bt Lo 13355

’ 2767247 1207 3’57797 117

o 1 72 § 7i 3 ¢ 7sin3 sin b 7sin7 sin 9 7sin11
27 5°8 11714’ ’ 4797 167 257 36 7

2. For n € N, what is {3sin () }? For n € N, what is (3sin (2T) )?

3. Estimate the limit of the sequence whose general term is given and then
prove the estimate is correct using the definition of convergence.

3—3
a. ap, =—7+ — b. a, = r
n n
o a _ 6n-—3 d a _n—7
ST oan 44 S Tn45
3n?+1 n
€. an:m f an:4

o/n+2 B [, 1
g. an—4\/ﬁ+7 h. a,=n 1+n 1

4. For the following sequences, which are defined recursively, (i) give an
explicit formula for the nth term, (ii) estimate the limit of the sequence,
and (iii) use the definition of convergence to prove your estimate is

correct.

a. a; =1, an:an,1—|—2n71 forn > 2
Ay

b. a1 =1, a,= forn>2
n
n—1a,_

c. a; =2, an:M forn >2

n

5. Give an example of a sequence of negative numbers which converges to
a nonnegative number.

6. Prove the sequence < (—1)" > diverges.

7. a. Give an example of two sequences < a,, > and < b,, > which diverge,
but the sequence < a,, + b, > converges.
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10

11.

12.

13.
14.

15.

16.

17.
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b. Give an example of two sequences < a,, > and < b,, > which diverge,
but the sequence < a,b, > converges.

. Give an example of two sequences < a,, > and < b,, > such that a,, — A,
b, — B, and a, < b, for all n € N, but A is not less than B.

. Prove that if a,, < b, for all n € N and if a, — A and b, — B, then

A< B.
2 1
VB shsy 30

. For n € N,
a. What is lim,, o b,,? b. Why?

For n € N,
1 sin —
1 < n <1
6n2 ( )
2n |1 — cos —
sin —
a. What is lim,, o —”1? b. Give reasons why.
2n (1 — cos —)
n

For n € N,
1 1 9 1 1
- < 1-—- - <=
2 24z~ ( o8 n) 2
- 9 1 .
a. What is lim,, ,oon* (1 —cos—|? b. Give reasons why.
n

Prove that a,, — 0 if and only if |a,| — 0.
a. Prove that if a, — A, then |a,| — |A].

b. Give a counterexample to the following statement: “If |a,| — |A],
then a,, — A.”

For each given sequence, determine if the sequence is bounded above,
bounded below, or bounded.

@ G () (5))
e 2 A A S

Prove that if the sequence < a,, > is bounded and if the sequence < b,, >
converges to zero, then the sequence < anb, > converges to zero.

Given that the sequences < a,, > and < b,, > are both bounded. Prove
that the sequences < a,, +b,, >, < a, —b, >, and < a,b, > are bounded.
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8.2 Limit Theorems for Sequences

As the expression for the general term of a sequence becomes more com-
plicated, it becomes more difficult to prove what the limit of the sequence is
from the definition. Consequently, it is important for us to prove some theo-
rems about limits which will allow us to calculate limits more easily. The next
four theorems contain some basic results regarding the relationship between
limits and algebraic combinations of sequences. Each proof of a theorem will
require using the triangle inequality, as do many proofs in real analysis. Re-
call the triangle inequality says “For real numbers x and g, the inequality
|z +y| < |z|+ |y| is valid.”

The first theorem we prove states “The sum of two convergent sequences is
a convergent sequence, and the limit of the sum of the sequences is the sum
of the limits of the sequences.”

Theorem 8.5 If the sequence < a, > converges to A and the sequence
< by, > converges to B, then the sequence < a,, + b,, > converges to A + B.
Scratch Work: To prove a, + b, — A + B, we must prove that for
every € > 0 there exists a natural number N such that if n > N, then
|(an + bn) — (A + B)| < e. From the hypotheses of the theorem, we know
(i) for every €1 > 0 there exists a natural number N7 such that n > N;
implies |a, — A| < €
and
(ii) for every es > 0 there exists a natural number Ny such that n > Ny
implies |b, — B| < €.
It follows from (i) and (ii) that by making N; sufficiently large, we can make
|a, — A| as small as we like and by making N» sufficiently large, we can
make |b, — B| as small as we like. We must use this information to make
the quantity |(a, + bn) — (A + B)| < e. Thus, we need to be able to rewrite
|(an + bn) — (A + B)| in terms of |a, — A| and |b, — B|. Rearranging terms
and using the triangle inequality, we find
|(an +bn) — (A+ B)| = |(an — A) + (bn — B)| < [(an — A)| + |(b, — B)|.
Given € > 0, if we choose €1 = ¢/2 and €2 = ¢/2, then there exists an N; such
that n > N; implies |a, — A| < €¢/2 and there exists an Ny such that n > Ny
implies |b, — B| < €/2. Choosing N = max{Ny, Nz}, we have for n > N both
lan, — A| < €/2 and |b, — B| < €/2; therefore, |(an + by) — (A+ B)| < e.
Remark: We could have selected €; < €/4 and €3 < 3¢/4 or any other
combination for which €¢; 4+ €5 < € and proved the result. The following is our
proof of Theorem 8.5.
Proof: Let € > 0 be given. Since a,, — A there exists a natural number Ny
such that n > Ny implies |a, — A| < €¢/2. Since b,, — B there exists a natural
number N3 such that n > Ny implies |b, — B| < €/2. Let N = max{Ny, Na}.
For n > N, we have
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€

(@n+b) —(A+B)| = [(an—A)+(n—B)| < (an—A) +|Bu—B) < S+5 =¢.
|

By mathematical induction, Theorem 8.5 can be extended to the sum of
any finite number of sequences.

The proof of the next theorem is very similar to the proof of Theorem 8.5.
You are asked to prove this theorem in Exercise 1. The theorem says “The
difference of two convergent sequences is a convergent sequence, and the limit
of the difference is the difference of the limits.”

Theorem 8.6 If the sequence < a, > converges to A and the sequence
< b, > converges to B, then the sequence < a,, — b,, > converges to A — B.

As we might anticipate, the product of two convergent sequences is a con-
vergent sequence, and the limit of the product is the product of the limits.
We now state and prove this theorem.

Theorem 8.7 If the sequence < a, > converges to A and the sequence
< by, > converges to B, then the sequence < a,b, > converges to AB.

Scratch Work: As in the proof of Theorem 8.5, by choosing N sufficiently
large we can make both |a, — A| and |b,, — B| as small as we want. Given any
e > 0, we must determine how to choose N large enough so that
|anby, — AB| < e. Thus, we need to discover how to rewrite |anb, — AB|
in terms of |a, — A| and |b, — B|. A technique that is sometimes used in
analysis is to subtract and then add the same quantity to an expression. In
this case, we can subtract and add either Ab, or a,B to a,b, — AB. We
subtract and add Ab,, and use the triangle inequality to obtain

(1) lanby, — AB| = |apb, — Aby, + Ab, — AB| = |(a, — A)b, + A(b,, — B)|

< lan — Allbn| + | Allby, — BY.
Since b,, — B, the sequence < b,, > is bounded by Theorem 8.4. Thus, there
exists a positive real number M such that |b,| < M for all n € N. Given

e > 0, we choose N; sufficiently large so that |a, — 4| < ﬁ for n > Nj.
Then the first term on the right-hand side of (1) satisfies

€

n— Allbn| < =M = €/2.
Jan = Allba| < 5=M = ¢/ E
Given € > 0 we would like to choose N3 large enough so that |b, — B| < M;
however, A could be zero and we are not allowed to divide by zero. So, instead,

we choose Ny sufficiently large so that |b, — B| < 5 for n > N,. This

€
(|4l +1)
choice will ensure that the denominator is nonzero and that the second term
on the right-hand side of (1) satisfies
€
For N sufficiently large, both terms on the right-hand side of (1) are less than
¢/2 and |anb, — AB| < e. Hence, our proof of Theorem 8.7 reads:

< €/2.
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Proof: Let ¢ > 0 be given. Since b, — B, the sequence < b, > is
bounded by Theorem 8.4. Thus, there exists a positive integer M such that
|bn] < M for all n € N. Since a, — A, there exists an N1 € N such that

la, —A| < ﬁ for n > N;. Since b,, — B, there exists an Ny € N, such that

€
by — Bl < —— 1 Ny. Choose N = max{Ny, No}. F N,
\ ‘<2(\A\—|—1) orn > Ny oose max{Ni, No}. For n >
|anb, — AB| = |anby, — Aby, + Ab, — AB| = |(an, — A)by, + A(b, — B)|
€ €

<lan — Al|bn| + |A||br, — B| < =—=—M + |A| =————

€ €

<§+§—E. |

By mathematical induction, Theorem 8.7 can be extended to the product
of any finite number of sequences.

We would like to prove a theorem about the quotient of two convergent
sequence which essentially says “If the sequence < a, > converges to A and

a
the sequence < b, > converges to B, then the sequence <b_n> converges to

n
A77

a
5 However, this statement is false, because the sequence b_n> is not
n

defined unless b, # 0 for all natural numbers and because B is not defined
unless B # 0. So we must include the conditions b,, # 0 for all n € N and

bn bn
use Theorem 8.7 about the product of two sequences to prove our quotient
theorem, provided we can prove the following lemma.

1
B # 0 in the hypotheses of our theorem. Because dn _ an (—), we can

Lemma 8.1 If b, # 0 for all n € N and if the sequence < b,, > converges to
1 1
B # 0, then the sequence <b_> converges to 5
Scratch Work: For e > 0 we must determine how to choose a natural number
N such that for n > N,

1 1

< o B —bn
— - = € T
B

b, B

‘bn_B‘
<€

by ~ballBl T

Since b, — B, by choosing N sufficiently large, we can make the quantity
|b,— B| as small as we like. The quantity | B| which appears in the denominator
is not zero, but we must be certain the quantity |b,,| which also appears in the
denominator is bounded away from zero. That is, we must show there is some
M > 0 and some Ny € N such that |b,| > M > 0 for all n > N;. Since B # 0
and b, — B, there exists a natural number Ny such that |b, — B| < |B|/2 for
n > Nj. Since by the triangle inequality

B
Bl = |B — bo+ ba| = |(B = bn) + bal < 1B ba)| + bn] < L4 b,
2
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B
we have for n > Nj that 0 < % < |bn|. Given any e > 0, since b, — B, we

can also choose a natural number Ny such that for n > N,

e[ B?
b, — B| < .
bn — B| < =3

The proof of Lemma 8.1 reads as follows.

Proof: Let ¢ > 0 be given. Since B # 0 and since the sequence < b, >
converges to B, there exists an Ny € N such that |b, — B| < |B|/2 for
n > N;. Because

|B|

B = 1B by + bl (B = b) 4 [l < 2
B
we have for all n > N; that 0 < % < |bp|. Also since < b,, > converges to
B, there exists an Ny € N such that for n > Ns

e[ B?
b, — B| < .
bn — B| < =3

+ [bal,

Choose N = max{N7, No}. Then for n > N,

€| B
1 1| |B=by| |bp—DB| |b,— B 5 Honeo, L, 1
—_—— — | = = —_ €. i
bo BT 0B | llBT T IBL T TBP e Hewe, -t B
2 2

The next theorem follows easily from Lemma 8.1 and Theorem 8.7.

Theorem 8.8 If b, # 0 for all n € N, if the sequence < b,, > converges to
B # 0, and if the sequence < a, > converges to A, then the sequence <Z—n>

n

converges to A/B.
1
e

n 1 n 1
converges to A and since Z— =a, (b_)’ the sequence <Z—> = <an (b_)>

1 A
converges to A (E) =3 by Theorem 8.7. W

The next example illustrates how to use Theorems 8.5 through 8.8 to cal-
culate a limit.

Proof: By Lemma 8.1, the sequence 5 ) converges to Since < a, >
n

Example 8.2.1 Calculate
. 24 3n—4n?
lim ——————.
n—oo 5nd 4+ 6n2 — 7
Solution
The general term of this sequence is a rational function of n. The highest
power to which n appears in the numerator and denominator is p = 3. So, we

1 1
multiply both numerator and denominator by — =3 and obtain
n n
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1 2 3
—_4An3) [ —
(2+3n 4n)(n3) n3_|_n2_4

1\ 6 (a
(MLMM—U(?) 5t ———
n n

n3

Applying Theorems 8.5 through 8.8 and taking limits, we find

1
. _ 3 .
94 3n — An? limy, 00 {(2 + 3n —4n?) (ng)}

lim =
n— oo 3 2 _ 1
on’ 4 6n? — 7 lim, oo [(5113 +6n2 —7) (_3)}
n
2 3
B hmnﬂoo(ng + 5 4)
o 6 7
limy—oo(5 + = — —)
n o n

2 3
lim,, oo — + lim,, 00 — = lim,, .o 4
n n

lim,, o0 b + lim,, o 9 — lim,, 13

n n
_0+40-4 -4
S 54+0+0 5

EXERCISES 8.2

1. Prove Theorem 8.6.

In Exercises 2—7, use Theorems 8.5 through 8.8 to prove the given

statement.

2. If the sequence < a, > converges to A and k is any real constant, then
the sequence < a, + k > converges to A + k.

3. If the sequence < a, > converges to A and k is any real constant, then
the sequence < ka,, > converges to kA.

4. Let < a, > and < b, > be sequences. If < a, > converges and
< an + b, > converges, then < b,, > converges.

5. The sum of a convergent sequence and a divergent sequence is a divergent
sequence.

6. If the sum and the difference of two sequences converge, then both
sequences converge.

7. Let < a, > and < b, > be sequences. If < a, > converges to A # 0

and < a,b, > converges, then < b,, > converges.
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8. If the sequence < a, > converges to A, then the sequence < b,, > where
by, = (an41 + anyo + -+ -+ agp)/n converges to A.
9. If a,, > 0 for all n € N and if the sequence < a,, > converges to A > 0,
then < \/a, > converges to VA, A
apn —

Hint: If A > 0, then \/a, — VA= —2 — .
( v NGRS

10. Calculate the limit of each of the following sequences.

An? +2n+1 b An? +2n+1
3n? -1 ' 3n3 -1

e (1[5  (3e1)

e. <vVn+5—yn> f. <vn?®+n—n>
n 1

Sk rvea B e

n

11. Given that the sequence < a,, > converges to A and the sequence < b,, >
converges to B, find the limit of the sequence

3a, + 2nb,
5n+1 '

8.3 Monotone Sequences and Subsequences

In this section, we define monotone sequences and subsequences. We prove
that every bounded monotone sequence converges—our first theorem which
allows us to prove a sequence converges without knowing the limit in advance.
We prove that if a sequence converges, then every subsequence converges to
the limit of the sequence. And we prove that if two subsequences converge to
different limits, then the sequence diverges. Next, we show that every sequence
of real numbers has a monotone subsequence. Finally, we state and prove a
classical and fundamental theorem of real analysis—the Bolzano—Weierstrass
Theorem.

A sequence < a, >22; of real numbers is monotone increasing if and
only if a,, < an41 for all n € N.

A sequence < a, >22; of real numbers is monotone decreasing if and
only if a,, > a,4+1 for all n € N.
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A sequence < a, > is monotone if it is either monotone increasing or
monotone decreasing.

The sequences < n >, < 1,2,2,3,3,3,4,4,4,4,--- >, < 4,4,4,--- >, and
< 107% > are all monotone increasing sequences, and the sequences < —n >,
< —1,-1,-2,-2,-3,-3,-- >, < 4,4,4,--- >, and < 10+ L > are all
monotone decreasing sequences. The sequences < n >, < 1,2,2,3,3,3,--- >,
< —n >, and < —1,—1,—-2,-2,—-3,—-3,--- > are unbounded and diverge,
while the sequences < 4,4,4,--- >, < 10 — % > and < 10 + % > are all
bounded and converge. These results are not coincidental, as we shall see
when we prove the Monotone Convergence Theorem.

Earlier, we mentioned that one property which distinguishes the ordered
field of rational numbers from the ordered field of real numbers is the prop-
erty of completeness. This property is used to prove many fundamental
theorems of real analysis. Sometimes the property of completeness is called
the Axiom of Completeness or the Completeness Axiom, although it is actu-
ally a theorem which was proved independently in 1872 by both Dedekind and
Cantor. Dedekind used cuts to prove the theorem, while Cantor used Cauchy
sequences.

Completeness Property of the Real Numbers Every nonempty sub-
set of real numbers which is bounded above has a least upper bound.

The completeness property is an existence theorem which says that given
a nonempty set S of real numbers which is bounded above there exists a real
number which is the least upper bound for S. Geometrically, the complete-
ness property says there are no “holes” in the real number line. Furthermore,
the completeness property could be stated in terms of sets which are bounded
below as follows: “Every nonempty subset of real numbers which is bounded
below has a greatest lower bound.” These two statements are equivalent be-
cause if S is the nonempty set which is bounded below, then —S is a nonempty
set which is bounded above and by the completeness property has least upper
bound m. Hence, —m is the greatest lower bound for S. So either statement
may serve as the completeness property for real numbers. We will need the
completeness property in order to prove the monotone convergence theorem.

Theorem 8.9 The Monotone Convergence Theorem A monotone
sequence is convergent if and only if it is bounded.

Proof: Suppose that < a,, > is a convergent monotone sequence. Since the
sequence is convergent, it is bounded by Theorem 8.4.

Now suppose that < a, > is a monotone increasing sequence which is
bounded. Let S = {a,, | n € N}. Since S is a nonempty set, by the complete-
ness property there exists a greatest lower bound; call it A. We will prove the
sequence < a, > converges to A. Let € > 0 be given. Since A — € is not an
upper bound for S, there exists an N € N such that A — e < an. Because
the sequence < a, > is monotone increasing and A is an upper bound for S,
we have for all n > N
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A—e<an<ap, <A< A+e
Hence, |a, — A| < € for all n > N and, therefore, lim,, o a, = A. R

The proof for the case in which the sequence < a,, > is monotone decreasing
and bounded is similar.

In order to use the definition of convergence to prove that a sequence con-
verges, it is necessary to know the value of the limit in advance. However, it is
often difficult or impossible to determine the value of the limit of a sequence.
The monotone convergence theorem allows us to prove that a sequence con-
verges without finding its limit, but we must be able to prove that the sequence
is monotone and bounded.

Example 8.3.1 Define the sequence < a, > recursively by a; = 1 and
Gny1 =2+ a, forn > 1.

a. Show that the sequence < a,, > is bounded.

b. Show that the sequence < a,, > is monotone.

c. Find lim,, .o ay,.

Solution
a. Calculating the first few terms of the sequence, we find

as =2+ 1 =3~ 1.7320508
as = V24 /3 ~ 1.93185165
aqs =

\/2+ V2 + V3~ 1.98288972

a5_\/2—|— 2+ /24 V3 ~ 1.99571785

Based on our calculations, it appears the sequence is monotone increasing
and is bounded above by 2.

We prove by induction that a, < 2 for all n € N. Let P(n) be the
statement “a, < 2.” The statement P(1) is 1 < 2, which is true. Now,
we assume that P(n) is true for some natural number n. That is, we assume
that a, < 2. Then from the recursive definition a,+1 = v2+a, <
V2 +2=+/4=2. Hence, P(n+ 1) is true and by induction a,, < 2 for all
n € N.

b. Next, we prove by induction that a, < a,y1 for all n € N. Let Q(n)
be the statement “a, < a,+1.” The statement Q(1) is a1 < ag or 1 < V3,
which is true. Now, we assume that Q(n) is true for some natural number
n. Thus, we assume that a,, < ap41. Adding 2 to this inequality, we get
0<2+a, <24 ay41, because a,, > 0. Taking square roots and using the
recursive definition, we find

an+1 = \/2 +a, < \/2 + ant1 = Ap2-
Thus, the statement Q(n + 1) is true and by induction a, < a,41 for all
n € N. That is, the sequence < a,, > is monotone increasing.

[\
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c. By the monotone convergence theorem, lim,, .- a, = A. Squaring the
recursive formula yields a2, = 2 + a,,. Taking the limit as n approaches
infinity, we find that A must satisfy the equation A% = 2+ A. Solving the
quadratic equation 42 — A — 2 = 0 yields A = —1 or A = 2. Since < a,, >
is an increasing sequence and a; = 1, the limit of the given sequence is
A=2. 1

Let < a, > be a sequence of real numbers. By deleting a finite number of
terms from < a,, > and leaving the remaining terms in the same relative order
as the original sequence, we obtain a new sequence which is called a subse-
quence of < a, >. Notice we could delete no terms, in which case we would
have the original sequence. That is, the sequence < a,, > is a subsequence of
itself. By deleting an infinite number of terms from the sequence < a,, > so
long as an infinite number of terms still remain, we also obtain a subsequence
of < a,, >. The following is a formal definition of a subsequence.

Let < a, >52, be a sequence of real numbers and let < n; >72, be any
sequence of natural numbers such that n; < ny < ng < ---. The sequence
< an, >72, is a subsequence of the sequence < a, >>2 ;.

By induction on k, it follows from the definition of a subsequence that
ng > k for all K € N. When ni = k for all k € N, we obtain the original
sequence.

Example 8.3.2 The sequences

1\~ 1111 1\* 111
a7 = Sy v 7.2 :1a_a_a_a“'a and
2k/,_, 24768 k? /.4 4°9°16
1\~ 1111
<2_k>k_1 =513 are all subsequences of the sequence
1 (oo}
LA I I
n/. 4 2°3°4

1
Observe that the sequence <—> converges to 0 as do all of the subsequences
n

) () (&)

Example 8.3.3 The sequence

<M>OO =0.1,0.1,---
2 ) ) ) )

n=1

diverges, but the subsequence

<1 + (—1)2k—1

:anaoaoa'“
2 >k—1
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converges to 0 and the subsequence

<ﬂ>°" 1111
2 k=1

converges to 1.

In Example 8.3.2, the original sequence converged to 0 as did all three
subsequences we examined. In Example 8.3.3, the sequence diverged, but we
found two convergent subsequences—one converged to the limit 0 while the
other converged to the value 1. The next theorem pertains to these results.

Theorem 8.10 Let < a, > be a sequence of real numbers.

(i) If the sequence < a,, > converges to A, then every subsequence converges
to A.

(ii) If the sequence < a, > has two subsequences which converge to different
limits, then the sequence < a,, > diverges.

Proof: (i) Suppose < a, > converges to A and let < a,, > be any subse-

quence of < a, >. Since a,, — A, given any € > 0 there exists an N € N

such that n > N implies |a, — A| < €. Since for all k& € N, we have ny > k.

Therefore, |a,, — A| < € for k > N. Hence, by definition of convergence, the

subsequence < a,, > converges to A.

(ii) Our proof is by contradiction. Let < a,, > and < a,, > be subse-
quences of the sequence < a, > and suppose that a,, — L and a,, — M
where L # M. Assume the sequence < a,, > converges to A. Either L or M
is not A because L # M. Therefore, < a,, > has a subsequence that does not
converge to A, which contradicts (i). H

The sequence < n > is monotone increasing and so is every subsequence.

1
The sequence <— is monotone decreasing and so is every subsequence. The
n

sequence
21314151
R AU A A
is divergent, but it has a monotone increasing subsequence
2345
R I

which converges to 1 and it has a monotone decreasing subsequence

1111
ORI
which converges to 0.
The sequence
<bn>:1929139g49§~~
R A S

diverges and has a monotone increasing subsequence
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< b2k71 >= 1a2a3a4a“'

which diverges and a monotone increasing subsequence

1 2 3
< bop >=19, 95, 95, 91,

which converges to 10.

The following theorem is a constructive theorem. The proof of this theorem
contains an algorithm for constructing a monotone subsequence for any given
sequence of real numbers.

Theorem 8.11 Every sequence of real numbers has a monotone subsequence.

Proof: Let < a,, > be an arbitrary sequence of real numbers. Define S to be
the set of natural numbers

S={neN|a, is alower bound for the set {an+1,an+2,an+3, - }}.

Either S is an infinite set or S is a finite set.

Case 1. Suppose S is an infinite set. Testing each natural number n in order,
we generate the sequence of indices contained in S and the associated terms of
the sequence such that n; < ng <ng <--- and ap,; < ap, < apy, < ---. The
subsequence < a,, >p2; constructed in this manner is a monotone increasing
subsequence of < a, >.

Case 2. Suppose S is a finite set. Let N be any natural number that is an
upper bound for the set S. For any n; € N such that ny > N, we haven; ¢ S,
SO Gy, is not a lower bound for the set {an,+1, an,+2, n,+3, - - }. Hence, there
is a natural number no > n; such that a,, < a,,. Continuing in this manner,
we generate a sequence of indices and associated terms of the sequence such

that n1 < ng < m3 < --- and an, > an, > any > ---. Therefore, the
subsequence < ay, >72; is a monotone decreasing subsequence of < a, >.
|

We now state and prove the Bolzano—Weierstrass Theorem. This theorem
was first stated and proved by Bernard Bolzano (1781-1848) in 1817. How-
ever, his proof of the theorem was lost. This theorem also seems to have been
known by Cauchy. About fifty years after Bolzano proved the theorem, it
was re-proved by Karl Weierstrass (1815-1897), who is known as the father of
modern analysis. The Bolzano—Weierstrass Theorem is a fundamental result
in real analysis.

Theorem 8.12 The Bolzano—Weierstrass Theorem Every bounded
sequence of real numbers has a convergent subsequence.

Proof: Let < a,, > be a bounded sequence of real numbers. By Theorem 8.11
there exists a monotone subsequence < a,, >. The sequence < a,, > is
bounded, because it is a subsequence of the bounded sequence < a, >. By
the Monotone Convergence Theorem (Theorem 8.9) the subsequence < ay,, >
converges. W
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EXERCISES 8.3

In Exercises 1-6, give an example of a sequence with the specified
properties.

S Ut e W N

. The sequence is bounded, but it is not monotone.

. The sequence is monotone, but it is not bounded.

. The sequence is neither bounded nor monotone.

. The sequence is convergent, but it is not monotone.
. The sequence is monotone, but it is not convergent.

. The sequence is neither convergent nor monotone.

In Exercises 7-12, prove that each sequence is monotone and
bounded. Then find the limit of the sequence.

7.
8.

10.

11.
12.

13.

14.

15.

a1 =1and apy1 = (an, +5)/4 for n > 1.

1
a1 =2and ap41 =2 — — forn > 1.

1
ag=2and ap41 =2— — forn > 1.

an
an, 1
a1:2andan+1:7+— forn > 1.
Qp
(Hint: From 0 < (z — y)? = 2% — 2zy + ¢, it follows that

zy < (2® +4%)/2.)

a; =4and a,11 =6 +a, forn > 1.

a1 =1 and an41 = /3 + 2a, for n > 1.

Let 0 < a1 < by and define ani1 — vanbn and byt — @
n > 1. Prove that the sequences < a,, > and < b,, > converge and their
limits are the same.

for

For n € N, let a,, = (-1)"(3 — E)
n

. Write a formula for the subsequence < asg, >.
. What is lim,, ., a9, 7

a
b
c. Write a formula for the subsequence < asy,_1 >.
d. What is lim,, oo a9,_17

e

. What can you say about the sequence < a,, >7
nw
Let < a, > be the sequence whose general term is a,, = 2 cos -5 Find

three subsequences of the sequence < a, > that have different limits.
What are the limits? Does the sequence < a,, > converge or diverge?
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16. Give an example of a sequence with the specified properties.
a. The sequence has subsequences with limits v/2, e, 7, and v/11.
b. The sequence is unbounded and it has a convergent subsequence.
c. The sequence has no convergent subsequence.
17. For each of the following sequences, find the monotone subsequence
generated by the algorithm given in the proof of Theorem 8.11.
a. 2,1,0,1,2,1,2,3,2,3,4,3,4,5,- - -

bo—11,0L 1121314
223311455

8.4 Cauchy Sequences

In order to use the definition of convergence of a sequence to prove that
a particular sequence converges, we must know the limit of the sequence.
However, we can prove that a monotone sequence converges without knowing
its limit by simply proving the sequence is bounded. A large number of
sequences converge which are not monotone. Consequently, we would like a
condition for convergence which does not require the sequence to be monotone
and which does not require knowing the limit of the sequence in advance.
Such a condition does exist. It is called the Cauchy criterion in honor of
the French mathematician Augustin-Louis Cauchy (1789-1857). Cauchy is
the second most prolific mathematician in history—second only to Euler.

By definition of convergence, a sequence < a,, > converges to the limit A,
provided for all n sufficiently large (n > N) all of the terms a,, are close to A
(that is, |a, — A| is small). If for n sufficiently large all of the terms a,, are
near A, then for n,m > N all of the terms a,, and a,, are near one another
(that is, |an — am| is small). Hence, we have the following definition of a
Cauchy sequence.

A sequence < a,, >7° ; of real numbers is a Cauchy sequence if and only

if for every € > 0 there exists a natural number N such that for all n,m > N,
if n,m > N, then |a, — an| < €.

Our first theorem states that all convergent sequences are Cauchy sequences.
Theorem 8.13 Every convergent sequence is a Cauchy sequence.

Proof: Let < a,, > be a sequence of real numbers that converges to the limit
A. Let € > 0 be given. Since a, — A, there exists an N € N such that if
n > N, then |a, — A| < €/2. For n,m > N, we have by subtracting and
adding A and then using the triangle inequality
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lan — am| = lan — A+ A —ap| = |(an — A) + (A — an)]
€
2
Hence, the convergent sequence < a,, > is a Cauchy sequence. B

€
§\an—A\—|—\am—A\<§+ =e.

The next theorem states that Cauchy sequences are bounded—as are con-
vergent sequences.

Theorem 8.14 Every Cauchy sequence is bounded.

Proof: Let < a,, > be a Cauchy sequence. Choose ¢ = 1. Since the sequence
< an > is Cauchy, there exists an N € N such that for n,m > N we have
|an —am| < 1. Since N+1 > N, it follows that |a, —an+1| < 1 for allm > N.
Because ||an|—|anit1]|| < |an—an+1], forallm > N we have ||an|—|ant1]| < 1,
which implies that |a,| — |anyy1| < 1 and hence |an| < 1+ |an41]- Let
B = max{|ai|,|azl, ..., |an|,1 + |an+1]}. Then |a,| < B for all n € N and
the Cauchy sequence < a,, > is bounded. W

The following theorem says if a Cauchy sequence has a convergent subse-
quence, then the Cauchy sequence converges to the limit of the subsequence.

Theorem 8.15 If < a, > is a Cauchy sequence of real numbers and if the

subsequence < a,, > converges to A, then the sequence < a, > converges
to A.

Proof: Suppose that < a,, > is a convergent subsequence of the Cauchy
sequence < a, > and suppose a,, — A. Since < a,, > is a Cauchy sequence,
there exists a natural number N such that |a,, — a.,| < €/2 for all n,m > N.
Since an, — A, there exists a natural number K such that |a,, — A| < €/2 for
k> K. Let M = max{N, K}. Choose nj such that & > M. Then n; > N.
Hence, if n > M, then by the triangle inequality

€

€
‘an_A‘:‘an_ank‘Fank_A‘g‘an_ank‘+‘ank_A‘<§+2

= €.

Consequently, the Cauchy sequence < a,, > converges to A. W

In the next theorem, we use the Bolzano—Weierstrass Theorem and Theo-
rems 8.14 and 8.15 to prove that every Cauchy sequence converges.

Theorem 8.16 FEvery Cauchy sequence of real numbers is a convergent
sequence.

Proof: Let < a, > be a Cauchy sequence of real numbers. By Theo-
rem 8.14, the sequence is bounded. By the Bolzano—Weierstrass Theorem
(Theorem 8.12), the Cauchy sequence has a convergent subsequence. By
Theorem 8.15, the Cauchy sequence is a convergent sequence. W

Theorems 8.13 and 8.16 can be combined into the following single theorem.

Theorem 8.17 A sequence of real numbers converges if and only if it is a
Cauchy sequence.
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Provided we can prove a sequence is a Cauchy, we can prove the sequence
converges without knowing the limit of the sequence. In Example 8.4.1, we
prove a sequence converges by proving the sequence is Cauchy.
3n+4

n

Example 8.4.1 Prove the sequence < a, > = < > is a Cauchy

sequence and therefore it is convergent.

Solution

Scratch Work: Let € > 0 be given. We must show how to choose a natural
number N such that |a, — am| < € for all n,m > N. Assume for definiteness
that n < m. We want to select N so that for m >n > N,

3n+4 3m+4’ B ’6mn+8m6mn8n

2n 2m dnm
8m—mn| _2m 2 2
=— < —=—-—< =<e
dnm nm n N

Hence, we choose N to be any natural number greater than 2/e.
+4

n

3
So our proof that the sequence < n > is a Cauchy sequence is as follows.

Proof: Let € > 0 be given. Choose N to be any natural number such that
N >2/e. Then for allm >n > N,

‘an_am‘: >

2<2<
=_—< —=<e
n N

3n+4  3m+4|  2lm—n| < 2m
2n 2m T nm nm

+4

n

3n
Thus, the sequence < > is a Cauchy sequence and it is convergent. Bl

EXERCISES 8.4
1. Give an example of a sequence that is monotone but not Cauchy.
. Give an example of a sequence that is Cauchy but not monotone.

. Give an example of a sequence that is bounded but not Cauchy.

=W N

. Use the definition of Cauchy to prove that the sequence

< >= rn
n == n+4

is a Cauchy sequence.






Chapter 9

Proofts from Group Theory

The branch of mathematics which examines, compares, and contrasts
algebraic structures is called abstract algebra. Topics from abstract algebra
appear in many other branches of mathematics, because much of contempo-
rary mathematics is algebraic in nature. In this chapter, we will introduce and
briefly study one of the more fundamental algebraic structures—the group.

9.1 Binary Operations and Algebraic Structures

When we add two real numbers a and b, we perform the operation of
addition and denote the resulting real number by a + b. Likewise, when we
multiply two real numbers, we perform the operation of multiplication and
denote the resulting real number by a - b, or simply, ab. The operations of ad-
dition and multiplication both assign to an ordered pair (a, b) of real numbers
a unique real number—namely, a + b and a - b, respectively. These operations
are examples of binary operations, which we now define formally.

Let S be a nonempty set. A binary operation on S is a function from
S xS tolS.

We usually denote a binary operation on the set S by o, +, -, or x and call
the operation multiplication or addition even when the operation has nothing
whatsoever to do with multiplication or addition. If the image of the ordered
pair (a,b) € S x S under the operation o is ¢, instead of writing o((a,b)) = ¢
we write a o b = ¢. Also, we often omit the operation symbol o and just write
ab = ¢ when it is clearly understood what operation we are using.

An algebraic structure is a nonempty set S, a nonempty collection of
operations on S, and a collection (which may be empty) of relations on S.
For example, the set of integers Z under the usual operation of addition is an
algebraic structure which we denote by (Z,+). The set of real numbers, R,
under the operations of addition, +, and multiplication, -, and the relation
less than, <, is an algebraic structure called an ordered field and is denoted by
(R, +, -, <). The set of complex numbers, C, under + and - is an unordered
field and denoted by (C,+,-). Let A be a nonempty set and let P(A) be

293
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the power set of A. The power set P(A) under the operation of union, U,
under the operation of intersection, N, and under the operation of difference,
—, are all algebraic structures. That is, (P(A),U), (P(A),N), and (P(A4), —)
are all algebraic structures. However, (N, —) is not an algebraic structure
since subtraction, —, is not a binary operation on the set of natural numbers
(because, for example, 4,7 € N but 4 — 7= —3 ¢ N). Let + represent the
operation of division. The structure (R, <) is not an algebraic structure, but
(R —{0},+) is. Why?

An algebraic structure (S, *) may satisfy all, some, or none of the following
special properties.
Let (S, %) be an algebraic system. Then
G1. Associativity: (.59, *) is associative if and only if (x xy)*xz =z * (y* 2)
forall z,y,z € S.

G2. Existence of an Identity: (5, *) has an identity element (or simply
an identity) if and only if there exists an e € S such that xxe = exx =
forall z € S.

G3. Existence of Inverses: (S,x) has inverses if and only if S has an
identity element e and for each element x € S there is an element y € 5,
called the inverse of z, such that zxy =y *x =e.

G4. Commutativity: (S, x) is commutative if and only if xxy = y*a for all
x,y €S.

Several comments are in order. When (S, %) satisfies the associativity prop-
erty, G1, we may write x x y x z without any parentheses because (z *y) * z =
x* (y*z) = x*y=z. Thatis, as long as the factors x, y, z appear in the same
order and (S, x) is associative, we may write (x xy) *x z, T * (y * 2), or T*y* 2
interchangeably. When (.9, *) is not associative, there exist some elements
x,y,z € S for which (z+y)*2z # xz*(y*2z). Two elements z,y € S are said to
commute if xxy = yxx. Property G2 says if (5, ) has an identity element e,
then e commutes with every element x € S and furthermore x xe = exz = x.
A structure (S, %) cannot satisfy property G3 unless it satisfies property G2.
When (5, *) satisfies properties G2 and G3, then every element « € S has an
inverse y with which it commutes and = *y = y * x = e. Observe if y is an
inverse of z, then x is an inverse of y—that is, inverses occur in pairs. When
(S, %) satisfies property G4, every element in S commutes with all elements

inS.

Example 9.1.1 The set of integers with the usual operation of addition,
(Z,+), satisfies properties G1 through G4. Property G1 is the associative
law of addition for the integers—mamely, (a +b) + ¢ = a + (b + ¢). The
identity element is 0, since a +0 =0+ a = a for all « € Z. For a € Z, the
additive inverse is —a € Z and a + (—a) = (—a) + a = 0. Property G4 is the
commutative law of addition for the integers—that is, a +b = b 4 a for all
a,beZ.
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Example 9.1.2 The structure (N, +) where + is addition for the natural
numbers satisfies properties G1 and G4, but it does not satisfy properties G2
and G3. Property G2 is not satisfied because 0 ¢ N. And property G3 is not
satisfied, because (N, +) has no identity element—that is, property G2 is not
satisfied.

Example 9.1.3 The set of integers under the usual operation of subtrac-
tion, (Z, —), does not satisfy any of the properties G1 through G4.

Example 9.1.4 The set of rational numbers with the usual operation of
multiplication, (Q, -), satisfies properties G1, G2, and G4. However, (Q, )
does not satisfy property G3, because 0 € Q has no inverse. That is, there is
no element b € Q such that 0-b=0-0=1.

Example 9.1.5 The structure (Q — {0}, -) satisfies properties G1 through
G4. The identity is the element 1, and for every a € Q — {0} the inverse is
the rational number 1/a.

Example 9.1.6 Let S = {p, ¢, 7} and let x be the binary operation defined
on S by zxy =y for all z,y € S. For arbitrary z,y,z € S, (x*y)*z = z and
x*(y*z) =y*z=z Hence, (S,x) is associative. In order for an element
e € S to be the identity of (S, *), we must have zxe =exz =z for allz € S.
However, by definition of *, for every element e € S and arbitrary x € S
such that x # e, we have z * e = e # x. Hence, (5, *) has no identity, and
consequently no element of S has an inverse. Also (S, *) is not commutative,
since for x # y, we have z xy = y and y x x = x—that is, z * y # y x x for

Example 9.1.7 Let S = NU{0} and let o be the binary operation defined

on S by aob=|a—0|forall a,be S. The structure (5, o) is not associative,
because

(203)04=|2—-3|od=|—-1|lod=104=|1-4|=|-3]=3
but

20(304)=20[3—4|=20|—1|=201=2—1]=1]=1.
The element 0 € S is the identity, because a 0 0 = |a — 0] = |a| = a and
Oca=1]0—a|l=|—a|=aforalla € S. Each element in S is its own inverse
since aoa =|a—a| =10 =0foralla € S. Let a,b € S; since |a —b| = |b—al,
we have aob=|a —b| = |b—a| =boa. Hence, (S5,0) is commutative.

If S is a finite set, then the order of the algebraic structure (S, o) is the
number of elements in S, which is denoted by |S|. When S is infinite, we
say (S, o) has infinite order. For structures with small finite order, it is often
convenient to represent the binary operation with a table called a Cayley
table or operation table. The table is named in honor of the English
mathematician Arthur Cayley (1821-1895). In 1849, Cayley published two
important articles on abstract groups in which he defined an abstract group
and used a table to display group multiplication. In 1854, Cayley proved
every group can be represented as a group of permutations. A Cayley table
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for the structure (5, *) of order n is an n x n array of products such that the
product z * y appears in row x and column y. For example, let S = {a,b, ¢}
and let * be the operation defined by Table 9.1. We see from this table that
axa=c a*xb=a, axc=>b, and so forth. Notice that the row labels in
the left-hand column and the column labels across the top of the table are
arranged in the same order—namely, a, b, c. By constructing Cayley tables in
this manner, we can check easily for commutativity. When the Cayley table of
a structure is symmetric with respect to the main diagonal, which extends
from the upper left corner to the lower right corner of the body of the table,
the structure is commutative. That is, when the entry in the (z, y) position is
identical to the entry in the (y, z) position for all z,y € S, then the structure
is commutative. Due to the symmetry of Table 9.1, (S, %) is commutative.

Table 9.1
* | a b ¢
a c a b
b a b c
c b c a

To find the identity element of a Cayley table, if there is one, we look for a
row label in which the entries of the row match the column labels. Then, we
check the column with the same label as the row label to see if the column
entries match the row labels, or not. From Table 9.1, we see that the element
b is the identity, because the entries of row b are a, b, ¢ and the entries of
column b are a, b, ¢ also. The left-inverse of an element y, if there is one,
is the element x which satisfies x * y = e where e is the identity. To find
the left-inverse of the element a in Table 9.1, we search through the column
labeled a for the entry b—the identity. From Table 9.1, we see c¢xa = b, so ¢ is
the left-inverse of a. The right-inverse of an element y, if there is one, is
the element z which satisfies y* z = e. To find the right-inverse of the element
a in Table 9.1, we search through the row labeled a for the entry b. Since b
appears in the column labeled ¢, we have a*c = b, and therefore ¢ is the right-
inverse of a. Because the left- and right-inverse of a are both ¢, the element
¢ is the inverse of a. We see from Table 9.1 that the element b has inverse b
and the element ¢ has inverse a. Thus, (.5, *) satisfies property G3. To prove
(S, %) defined by Table 9.1 is associative, we must verify for all possible 27
triples (x,y, z) that (x *y)* z = x % (y* z). This is tedious to do by hand, but
easy to do by computer. In order to show some structure is not associative,
it is sufficient to find a single triple (z,y, z) for which (x xy) * z # x * (y * 2).

The operation o of Table 9.2 is not associative, because (aoa)ob =bob=c
but ao(aob) =aob=">. The identity is the element c¢. The element b is the
left-inverse of a and b, the element ¢ is the left-inverse of ¢, the element a is
the right-inverse of b, the element b is the right-inverse of b, and the element
¢ is the right-inverse of ¢. Consequently, a has no inverse, b is the inverse of
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b, and c is the inverse of ¢. Thus, (S, 0) does not satisfy property G3. The
operation o is not commutative, because aob =05 but boa = c.

Table 9.2 Table 9.3
ol a b ¢ + | b c
a b b a a a c b
b c c b b c b a
c a b c c b a c

The operation + of Table 9.3 is not associative since (a +b)+c=c+c=c
but a + (b + ¢) = a+ a = a. There is no identity element, and consequently
there are no inverses. However, the operation + is commutative, because the
Cayley Table 9.3 is symmetric with respect to the main diagonal.

The following theorem states that an algebraic structure can have at most
one identity.
Theorem 9.1 Let (S, *) be an algebraic structure. If (S, *) has an identity,
it is unique.
Proof: Assume to the contrary that (5, *) has two distinct identity elements
e and €’. By the definition of an identity, for every a € S, (1) axe =e*xa=a
and (2) axe’ = ¢ *xa = a. In equation (1), we let a = ¢’. The right-hand
side of the resulting equation is (3) ex ¢’ = ¢'. Letting a = e in equation (2),
we obtain (4) e x ¢/ = e. It follows from (3) and(4) that ¢ = e, which is
a contradiction. Thus, if an identity of an algebraic structure exists, it is
unique. W

An algebraic structure which is associative and has an identity is called a
monoid. The following theorem states that if an element of a monoid has an
inverse, then the inverse is unique.

Theorem 9.2 Let (S, x) be an associative structure with identity e. If a € S
has an inverse, then the inverse is unique.

Proof: Suppose that (S, ) is associative with identity e and suppose that
there exists an a € S and elements z,y € S such that x and y are inverses of
a and x # y. Since x and y are inverses of a, (5) a*xx =e and (6) y*a = e.
Multiplying equation (5) on the left by y yields (7) y* (axz) = y+*e =y. By
associativity of * and equation (6), we have (8) y*(a*xx) = (y*a)*x = exx = .
It follows from (7) and (8) that y = x, which is a contradiction. W

EXERCISES 9.1

1. In each part of this question, a set is specified and an * is defined on
that set. Determine whether * is a binary operation on the specified set
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or not. For those * which are not binary operations, explain why they
are not.

. Set N where « is defined by x xy = x/y.

. Set N where * is defined by = *x y = V.
Set N where * is defined by = x y = zy.

. Set N where * is defined by zxy = x + y.

Set Z where * is defined by z xy = 22y — = + 1.

. Set Q where x is defined by = xy = x/y.

. Set Q — {0} where * is defined by = xy = x/y.

. Set QT, the set of positive rational numbers, where * is defined by
THRY = \/TY.
j. Set RT, the set of positive real numbers, where * is defined by

THRY = \/TY.

2. Which binary operations found in Exercise 1 are associative? Which are

commutative? Which have an identity? What is the identity?

a
b
c.
d
e. Set N where x* is defined by = xy = |z — y|.
f.
g
h

—

3. Answer the following questions for the Cayley Tables 9.4 through 9.7.
a. Is the operation associative?
b. Is the operation commutative?
c. Is there an identity element? If so, what is it?
d. List elements which have inverses and their inverses.

Table 9.4 Table 9.5 Table 9.6 Table 9.7
ol0 1 4]0 1 x| 0 1 #]10 1
0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 1 1 0 1 0 1 1 1 1

4. Construct the Cayley table for the set S = {—1,0,1} under the usual
operation - of multiplication.

a. Is the operation - associative?

b. Is the operation - commutative?

c. What is the identity element?

d. Which elements have inverses and what are they?
e. Does this structure satisfy property G37

9.2 Groups

Recall that a polynomial of degree n in one variable x is a function of the
form p(z) = anz™ + an_12" "t + -+ a1x + ap where n is a positive integer,
Gpy Ap—1, - - -, 01, ag are real numbers, and a,, # 0. The linear equation axz = b
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where a and b are both positive could be solved algebraically and geometri-
cally by civilizations which existed prior to recorded history. Approximately
2000 B.C. the ancient Babylonians knew how to solve the quadratic equa-
tion az? + bz + ¢ = 0 algebraically by both the method of completing the
square and by substitution into the quadratic formula. They could solve cer-
tain special cubic equations as well. About 1515, the Italian Scipio del Ferro
(ca. 1465-1526) discovered the algebraic solution of the cubic equation of the
form 23 + bx = c¢. He did not publish his result, but revealed its solution to
his pupil Antonio Maria Fior. In 1535, Niccolo Fontana (1499-1557) claimed
to have solved algebraically the cubic equation of the form z3 + az? = c.
(Fontana was also known as Tartaglia (the stammerer), because of a saber
wound he received when he was only thirteen years old at the hands of the
French in the 1512 massacre at Brescia.) Fior believed Fontana was sim-
ply bragging and challenged Fontana to a public contest. Fontana accepted
the challenge, and a few days before the contest he discovered how to solve
cubic equations of the type Fior could solve. Knowing how to solve both
kinds of cubic equations, Fontana triumphed completely. However, Fontana
did not publish his methods of solution. In 1539, Girolamo Cardano (Cardan)
(1501-1576), an unscrupulous man who practiced medicine in Milan, met with
Fontana, who revealed his methods of solution to Cardan under a pledge of
secrecy. In 1540, Zuanne de Tonini da Coi proposed a problem to Cardan
which required the solution of a quartic equation. Cardan was unable to solve
the equation, but gave it to his student Ludovico Ferrari (1522-1565). Fer-
rari solved the problem and in the process showed how to reduce the solution
of all quartic equations of the form z* 4 px? 4+ gz +r = 0 to the solution
of a cubic equation. In effect, Ferrari solved the general quartic equation
x4 4 azd +bx? + cx +d = 0, since it reduces to 2* + pz? + gz +r = 0 by means
of a simple linear transformation.

Prior to 1545, mathematicians accepted only positive real numbers as roots
of polynomial equations. In his Ars Magna, which was published in 1545,
Cardan accepted negative real numbers as roots of polynomials and used the
square root of negative numbers in computations. He demonstrated that both
x = 5—+/—15 and x = 5++/—15 were solutions of the equation x?+40zx = 10x.
Cardan included Fontana’s solution of the general cubic equation and Ferrari’s
solution of the general quartic equation in Ars Magna. Thus, Ars Magna
contains the first published solution of both the general cubic equation and
the general quartic equation, although neither was the work of the author.

In his Arithmetica Philosophica of 1608, Peter Roth (1580-1617) appears
to be the first writer to explicitly state the Fundamental Theorem of Algebra,
which says that an nth degree polynomial has n roots. The first rigorous
proof was given by Gauss in 1799. Later, in 1849, a simpler proof was given.

The Italian physician and mathematician Paola Ruffini (1765-1822) was
the first person to claim that a polynomial of fifth degree could not be solved
algebraically. In 1799, he published unaccepted proofs that the roots of fifth
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and higher degree polynomials cannot be written in terms of their coefficients
using radicals and the standard operations of arithmetic. Furthermore, in
this article Ruffini introduced groups of permutations. Disappointed by the
reaction to his proofs, Ruffini published additional proofs in 1803, 1805, and
again in 1813. In 1824, the Norwegian mathematician Niels Henrik Abel
successfully proved the result. In 1832, the French mathematician Evariste
Galois (1811-1832) gave the first definition of a group; however, it did not
appear in print until Joseph Liouville published Galois’ papers fourteen years
later in 1846. The first abstract definition of a group was given by Cayley in
1854. The term “group” became the accepted standard terminology in 1863
when Camille Jordan wrote a commentary on Galois’ work.

A group is a nonempty set G with a binary operation o that satisfies the
following three properties:

G1. Associativity: (G, o) is associative. That is, (xoy)oz = z o (yo z2)
for all z,y,z € G.

G2. Existence of an Identity: There exists an identity element e € G.
That is, there exists an e € G such that roe=eox =z for allx € G.

G3. Existence of Inverses: Every element 2 € G has an inverse 7! € G.
That is, for all x € G there exists an 27! € G such that z 0 z7! =

z lox=e.

To prove that a structure (G, o) is a group, we must verify (i) the set G is
nonempty, (ii) the operation o is a binary operation from G x G to G, and
(iii) properties G1, G2, and G3 are all satisfied. When it is clearly understood
what operation is associated with the group, we usually denote the group
(G, 0) by just G.

If a group G has property G4—that is, if ab = ba for all a,b € G, then
we say the group is an abelian group in honor of Niels Abel. A group is
nonabelian if there is some pair a,b € G such that ab # ba. The structures
(Z,4), (Q,+), (R, +), and (C,+) are all abelian groups. In each group, 0 is
the identity and the inverse of a is —a. The structure (N, +) is not a group,
because there is no identity element. The structure (Z,—) is not a group,
because the operation — is not associative. The structures (Q,-) and (R, )
are not groups, because the element 0 has no inverse. However, (Q — {0}, ),
(Q*, ), (R—{0},-), and (R",-) are abelian groups.

Let Z, = {0,1,...,n—1}. For n > 1, (Z,,+) where + denotes addition
modulo n is an abelian group. The identity element is 0, and for m € Z,
and m # 0 the inverse of m is n — m. The group Z,, is called the group of
integers modulo n. The structure (Z,,-) where - is multiplication modulo
n is not a group for any n, because the element 0 has no inverse.

It follows from Theorems 9.1 and 9.2 that a group has a unique identity
and each element of the group has a unique inverse. The following theorem
says the left and right cancellation laws hold in any group.
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Theorem 9.3 Let G be a group. Then the left and right cancellation laws
hold in G. That is,

(1) Left Cancellation Law: For every a,b € G, if ab = ac, then b = c.
and

(2) Right Cancellation Law: For every a,b € G, if ba = ca, then b = c.
Proof: Remark: We will prove (1) and leave (2) for you to prove as an
exercise. Suppose that G is a group; that a,b,c € G; and that (3) ab = ac.
Since a=! € G, we multiply both the left side and right side of equation (3)
on the left by a~! and use the properties of associativity, inverse, and the
identity e, to obtain

(4) ail(ab) = (aila)b =eb=>b and (5) ail(ac) = (aila)c =ec=c.

It follows from equations (3), (4), and (5) that b = a=!(ab) = a~!(ac) = c.
|

For a finite group G, it follows from the left cancellation law that no element
can occur more than once in any row a of the Cayley table for the group. Also,
since a(a='b) = b for every a,b € G, every element b occurs exactly once in
every row a. In a like manner, it follows from the right cancellation law that
every element occurs exactly once in every column a of the Cayley table.
Hence, we have the theorem: If G is a finite group, then every row and every
column of the Cayley table for the group is a permutation of the elements of
the group. The converse of this theorem is false. In the exercises, we will ask
you to provide an example to prove that the converse is false.

The next theorem says the inverse of the inverse of an element in a group

is the element itself and the inverse of the product of two elements of a group
is the product of the inverses of the elements written in reverse order.
Theorem 9.4 If G is a group and a,b € G, then (6) (a=)™! = a and
(7) (ab)~t =b"tat.
Proof: Let G be a group and let @ € G. Since a™ € G is the inverse of
a, we have (8) aa™! la = e where e is the identity of G. Because a
satisfies equation (8), the property of the unique inverse of a~!, it follows
that (a= 1)~ =a.

Let G be a group and let a,b € G. Since a,b € G, we have ab € G and
(ab)™' € G. The element (ab)~! is the unique element x € G such that
(9) (ab)z = x(ab) = e. We claim z = b~ta~!. Substituting z = b~ta~! in
the left-hand side of equation (9), we find by associativity, definition of the
inverse, and definition of the identity that

(ab)z = (ab) (b~ a™) = ((ab)b ™ Va™' = (a(bb™))a™t = (ae)a™ =aa™" =e.
Likewise, substituting for z = b=*a~! in the center expression of equation (9),
we see

z(ab) = (b~ ta ™ H(ab) = (b~ 'a Ha)b = b (a ta))b=(b"re)b=b""b=c.
1

1

= a

Hence, ¢ = b~ ta~
inverse of ab. M

satisfies equation (9) and, by definition, b=ta~! is the
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The following theorem states that linear equations in one variable with
coefficients from a group G have a unique solution which is an element of the

group.

Theorem 9.5 Let G be a group. If a,b € G, then there is a unique z € G
such that (10) az = b and there exists a unique y € G such that (11) ya = b.

Proof: Remark: We will prove equation (10) has a unique solution and let
you prove equation (11) has a unique solution in the exercises. Let e be the
identity of the group and let a—! be the inverse of a. Consider z = a~'b € G.
We have (12) az = a(a™'b) = (aa=1)b = eb = b. From equation (12), we see
that = = a~1b is one solution of the equation azx = b.

Suppose x1 and x2 # x1 are both solutions of (10) axz = b. Thus, ax; = b
and axry = b. Consequently, ax; = axs and by the left cancellation law

x1 = To, which contradicts x3 # 1. So, £ = a~'b is the unique solution of
(10) az=b5. N

EXERCISES 9.2

1. Which of the following algebraic structures is a group?
a. (S,-) where S is the set of rational numbers in the interval (0, 1] and
- is the usual operation of multiplication.
b. (T,-) where T is the set of irrational numbers in the interval (0, 1]
and - is the usual operation of multiplication.

c. (U,0) where U = {1, 2,4} and o is multiplication modulo 5.

d. (U, ) where U = {1,2,4} and * is multiplication modulo 7.

e. (V,+4) where V = {0,2,4} and + is addition modulo 6.

f. (W,0) where W = {1,3,9} and o is the operation of multiplication
modulo 10.

g. (E,+) where E is the set of even integers under the operation of
addition.

h. (O,-) where O is the set of odd integers under the operation of
multiplication.

i. (X,%) where X = Q — {1} and * is the operation defined by
axb=a+b—ab forall a,b e X.

j- (Z,0) where o is the operation defined by a ob = a + b+ 1
for all a,b € Z.

2. For those structures of Exercise 1 which are not groups, explain why they
are not groups.
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. For those structures of Exercise 1 which are groups, answer the following

questions:

a. What is the identity of the group?

b. What is the inverse of each element of the group?
c. Is the group abelian?

. Prove the right cancellation law. That is, prove that if G is a group, if

a,b,c € G, and if ba = ca, then b= c.

. Give an example of an algebraic structure (G, %) in which G has three

elements, each row and each column of the Cayley table for G under
the operation * contains each element of G exactly once, but G is not a

group.

. Complete the partial Cayley tables given in Tables 9.8 and 9.9.
Table 9.8 Table 9.9
ol abecd +x|1 2 3 45 6
a b 1 4 6
b b 22 3 4
c| d b 3 42
d a 4 5 1 3
5|5 4 3 1
6 5

. Let G be a group and let aq,asq, ..

a. What is the identity element of each group?
b. Is the group abelian?

. Let G = {e,a,b,c} be a group such that a> = b? = ¢ = e where e

is the identity. Construct a Cayley table for G. Is G abelian?

. Let G be a group with identity e. Prove that if a? = e for all a € G,

then G is abelian. (Hint: See Exercise 7.)

.,an € G. Prove by mathematical
induction that (ajas---a,)™' =a,;'---a; a;* for alln € N.

Let G be an abelian group and let a,b € G. Prove by mathematical
induction that (ab)™ = a™b™ for all n € N.

Prove that if G is a group and if a,b € G, then there exists a unique
y € G such that ya = b.

Let G be a group and let a,b,c € G. Prove that each of the following
equations has a unique solution z:

(ii) (iii)
Prove that G is an abelian group if and only if (ab)™ = a=1b~! for all
a,bed.

Prove that G is an abelian group if and only if (ab)? = a?b? for all
a,bed.

(i) abzx=c axrb=c alra=c

A square array of real numbers (a Z) is called a 2 x 2 matrix. Addition

of 2 x 2 matrices is defined by
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a1 b 4 a2 ba\ (a1 +ax by +bo
C1 d1 C2 d2 o c1 + co d1 + d2
and multiplication is defined by
ay by a2 ba\  [aiaz +bicz  aiby + bids
C1 d1 C2 d2 B ciaz + d102 Clbz + d1d2 ’
Let Mo denote the set of all 2 x 2 matrices with real entries.

The structure (M 2, +) is an abelian group.
a. What is the identity of this group?

cd
c. Prove that (M2, +) is abelian.

b. What is the inverse of (a b)?

The structure (Mz2,-) where - denotes matrix multiplication is not a

group, because the matrix (8 8) has no inverse. The determinant of

the matrix A = (z Z) is the real number det A = ad — be. The set of

all 2 x 2 matrices with real entries and nonzero determinant

GL(2,R) = {(‘; Z) ] a,b,¢,d € R and adbc;«éO}

is a nonabelian group under the operation of matrix multiplication.

d. Verify that the product of two matrices in the set GL(2,R) is a 2 x 2
matrix and is in GL(2,R).

e. What is the identity element of GL(2,R)?

f. Prove that the inverse of the matrix A = (ZL Z) in GL(2,R) is the
matrix
d —b
e det A det A
—c a
det A det A

g. Prove that GL(2,R) is nonabelian by displaying two matrices A and
B in GL(2,R) such that AB # BA.

The set G = { (Z Z) ‘ a€Rand a # O} is a group under matrix multi-

plication.

a. What is the identity of this group?

b. What is the inverse of each element in the group?
c. Is the group abelian?
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9.3 Subgroups and Cyclic Groups

An algebraic structure (5,#) often has embedded within it one or more
algebraic substructures (7', ) with the same operations and relations as the
original structure. These substructures can be useful in describing the original
structure. For (T, *) to be a substructure, it is necessary that the operation
be a function from T« T to T'. That is, the restriction of the binary operation
* to the set T' must also be a binary operation. This property is called closure
and is defined as follows.

Let (S,*) be an algebraic structure with binary operation * and let T' be
a subset of S. The set T' is closed under the operation x* if and only if
zxyeT foral z,yeT.

The two statements “T" is closed under *” and “x is an operation on T will
be used interchangeably. For example, the algebraic structure (R, +), the set
of real numbers under the operation of addition, is closed under the operation
+ as are all of the substructures (Q,+), (Z,+), (N,+), and (A, +) where
A={-1,0,1}.

Many times a group has embedded within it one or more groups. These
groups are called subgroups.

Let (G, o) be a group and let H be a nonempty subset of G. The structure
(H, o) is a subgroup of G if and only if (H, o) is a group.

To verify a nonempty subset H of a group (G, o) is a subgroup of G, we must
prove (H, o) is closed under the operation o and (H, o) satisfies properties G1
through G3.

Let (G, o) be a group with identity e. By definition, the group (G, o) is a
subgroup of itself and it is easy to verify that ({e}, o) is a subgroup of G. The
subgroup ({e}, o) is called the identity subgroup or trivial subgroup of
G.

We can prove a subset H of the group (G, o) is not a subgroup of G by
showing that one of the following three things is true.

1. Show that H is not closed under the operation o. That is, we find two
elements x,y € H such that xoy ¢ H.

2. Show that H has no identity element.

3. Show that some element in H does not have an inverse which is in H. That
is, we find an element z € H such that =1 ¢ H.

Consider the group (Z,+). The set of odd integers, O, is not a subgroup
of (Z,+), because (i) the sum of any two odd integers is an even integer,
because (ii) (O, +) has no identity element, and because (iii) no element of O
has an inverse since O has no identity. That is, (O, +) fails to be a subgroup
of (Z,+) not for just one of the reasons listed above, but for all three reasons.
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The following theorem states two basic results common to all subgroups—
namely, the identity of a subgroup is the identity of the group and the inverse
of an element in a subgroup is the inverse of the element in the group.

Theorem 9.6 Let (G,0) be a group with identity e and let (H,o) be a
subgroup of G. Then (i) e € H and (ii) if x € H, then the inverse of x in H
is the inverse of x in G.

Proof: Suppose that the identity of the subgroup H is the element i. Then
(1) i0i =1i. Since e is the identity of G, (2) e 0oi = 4. From (1) and (2), it
follows that i o7 = i = e 0 4 and by the right cancellation law i = e.

Let x € H and suppose that the inverse of x in H is z. That is, suppose
that (3) z oz =zox =e. Since x € H, the element z € G and its inverse in
G is 271, which has the property (4) zox™! =271 oz = e. It follows from
(3) and (4) that x 0 2 = z oz~ ! and by the left cancellation law that z = 271,
|

The next theorem is an excellent example of the purpose of some theorems—
to reduce the effort necessary to verify a fact. Theorem 9.7 greatly reduces the
amount of work required to prove that a particular set is a subgroup of a given
group. Using the definition of a subgroup to prove that a set is a subgroup
is often very tedious and laborious. Theorem 9.7 states two necessary and
sufficient conditions for proving that a subset H of the group (G, o) with
identity e is a subgroup of G. The first condition is that H is nonempty. This
condition is usually easy to prove and is often verified by proving e € H. The
second condition is that if a,b € H, then a o b= € H. It is normally easier
to prove that a o b~! € H than it is to prove both that H is closed under the
operation o and that if x € H, then z~! € H.

Theorem 9.7 Let (G, o) be a group with identity e and let H be a subset of
G. The algebraic structure (H, o) is a group if and only if (i) H is nonempty
and (ii) if a,b € H, then aob™! € H.

Proof: First, suppose that H is a subgroup of G. Because H is a group,
e € Hand H # (. Let a,b € H. By the existence of inverses property
b~! € H and by the closure property for H, we have aob™! € H.

Now suppose that H # () and that (5) a,b € H = aob~! € H. We must
prove that the properties G1 through G3 are true for H and that H is closed
under the operation o.

G1: Let z,y,z € H. Since H C G, z,y,z € G and since G is associative,
(xoy)oz=uazo(yoz). Thus, (H,o) is associative.

G2: Since H # (, there exists some z € H. Letting a = z and b = z in
equation (5), we see that zoz™1 =¢ € H.

G3: Suppose that y € H. Choosing a = e and b = y in equation (5), we find
that eoy ! =y~ ! € H.

Closure: Let z,y € H. We just showed that y~! € H. Letting a = x and
b=y~ ! in equation (5), we see that z o (y~*)~! = x oy € H. Therefore, H
is closed under the operation o.
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Since H is a subset of G; since H is closed under o; and since (H, o) satisfies
properties G1, G2, and G3; (H,0) is a subgroup of G. W
Example 9.3.1 Let (G, *) be an abelian group with identity e. Prove that
the set H = {z € G |x xx = e} is a subgroup of G.
Solution

Remark: We will use Theorem 9.7 to establish H is a subgroup of G.

First, we observe that H is nonempty, because e x e = e. Therefore, e € H.
Next, we suppose that a,b € H. From the definition of H, (6) a x a = e and
(7) bxb=e. To prove a*b~! € H, we must prove (a* b~ 1) * (axb~1) =e.
Since G is associative,

(8) (axb Hx(axb ) =(axb " Hxa)xb = (ax (bt xa))xb L.

Since G is abelian, b=! x a = a * b~1. Substituting for b=! * a in equation (8),
we see by associativity and equations (6) and (7) that

(axb ™V x(axb™ ) =(ax(axb))xb' = ((axa)xb" ) xb~!
=(exb Db t=b"txb = (bxb) =t =
Hence, by Theorem 9.7, H is a subgroup of G. W

The next theorem is also very useful in proving a subset of a group is a
subgroup.

Theorem 9.8 Let G be a group with identity e and let H be a nonempty
subset of G. The set H is a subgroup of G if and only if H satisfies the two
properties:

(i) Closure: If a,b € H, then ab € H.

(ii) Existence of Inverses: If a € H, then a™! € H.

Proof: Suppose that H is a subgroup of G. By definition of a group, H is
closed under the operation on the group. Thus, property (i) is satisfied. Also
by Theorem 9.6 part (ii) since H is a group, every element in H has an inverse
which is an element of H. Therefore, property (ii) is satisfied.

Now, let H be a nonempty subset of the group G which satisfies properties
(i) and (ii). By property (i), the set H is closed under the operation on the
group. The associativity property, G1, is proved as in the proof of Theo-
rem 9.7. Since H # (), there exists some x € H. By property (i), 271 € H
and by property (i), xz=! = e € H. Thus, H contains the identity element of
G and xe = ex = z for all z € H. Consequently, property G2, the existence of
an identity property, is satisfied. Property (ii) is property G3, the existence
of inverses, which by hypothesis is assumed to be true. Therefore, H is a
subgroup of G. W

Example 9.3.2 Let (G, *) be an abelian group with identity e. Prove that
the set H = {x*z | x € G} is a subgroup of G.

Solution

Remark: We will use Theorem 9.8 to establish H is a subgroup of G.
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To prove property (i) of Theorem 9.8, we assume that axa, bxb € H. Then
by definition of H, we have a € G and b € G. Since G is a group, a * b € G.
Since the operation x* is associative and commutative (because G is abelian),

(axa)*(bxb)=((a*xa)*b)xb=(a*(axb))*b
=(ax(bxa))xb=((axb)*xa)*xb= (axb)x* (axb).
Hence, by definition of H, we have (a*b)*(axb) € H. Therefore, property (i)
of Theorem 9.8 is satisfied.

To prove property (ii) of Theorem 9.8 is true, we assume that a xa € H.
By definition of H, we have a € G. Since G is a group, the element a = € G
and by closure a~! ! ¢ G. By Theorem 9.4, the inverse of a * a is
(axa)™' =a ' xa~t, which is an element of H since a=! € G.

* a

Because H under the operation * satisfies properties (i) and (ii) of Theo-
rem 9.8, the algebraic structure (H, %) is a subgroup of G. W

We now introduce exponential notation for elements in a group. Let G be
a group with identity e. For a € G define a° = e, a! = a, and for n € N
recursively define a”™! = a™a. Since a € G, we have a™! € G and for n € Z
and n < 0, we define a® = (a=1)~". Then for m,n € Z, we have the familiar
rules of exponents:

ama" =a™™" and (a™)" =a™".

We can prove the inverse of a™ is (a™)~! = a™". Furthermore, it is true that
(ab)™ = a™b™ if and only if G is abelian.

The following theorem is useful in proving that a nonempty, finite subset
H of a group G is a subgroup. Using Theorem 9.9 to prove that a nonempty,
finite subset is a subgroup is usually much easier than using either Theorem 9.7
or Theorem 9.8 to prove that a nonempty, finite subset is a subgroup.

Theorem 9.9 Let H be a nonempty, finite subset of a group G. If H is
closed under the operation on G, then H is a subgroup of G.

Proof: The hypothesis of this theorem is property (i) of Theorem 9.8. Thus,
in order to prove this theorem, we need to prove only property (ii) of Theo-
rem 9.8—namely,if a € H, then a=' € H. Solet a € H. If a = e, the identity
of G,then a™' = e = a € H. Now, suppose a € H and a # e. Consider the set
P ={a,a? a3,...} of positive powers of a. Since H is assumed to be closed,
each element of P is in H. The set P is finite because the set H is finite.
Therefore, there are positive integers i and j such that ¢ > j and a* = a.
Multiplying the last equation on the right by a=7, we see that a’~7 = e. Be-
cause a # e, we have i —j > 1 and i —j — 1 > 0. Therefore, o’ 7~ € P.
Furthermore, a*~77la = aa* 7' =a*J =e. Hence, a* 7" '=a"tcP. A

For example, the nonempty, finite subset H = {—1,1} of the infinite
abelian group (Z — {0}, ), where - is the usual operation of multiplication,
is a subgroup of Z — {0} by Theorem 9.9 because (—1) - (-1) = 1 € H,
(-<1)-1=-1€H,and (1)- (1) =1€ H.
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The proof of Theorem 9.9 provides us with a method for producing sub-
groups of a group by generating subsets which consist of powers of the elements
of the group. We formalize this result in Theorem 9.10.

Theorem 9.10 Let G be a group and let a € G. Then (a) = {a" | n € Z}
is a subgroup of G.

Proof: Remark: We use Theorem 9.7 to prove that (a) is a subgroup of G.
(i) The set {a) is nonempty, because a € (a).

(i) Let a™,a™ € (a). Then a™(a™)"! = a™a™™ = a™ " € {(a).

So by Theorem 9.7, (a) is a subgroup of G. W

We now define a cyclic subgroup generated by an element a, a cyclic group,
and a generator of a group. Let a be an element of a group G. The cyclic
subgroup generated by a is (a) = {a" | n € Z}. A group G is called a
cyclic group and a is called a generator for G if there exists an a € G such
that (a) = G.

The next theorem states that “Every cyclic group is abelian.” The con-
trapositive, which is logically equivalent, says that “If a group is not abelian,
then the group is not cyclic.” The contrapositive of Theorem 9.11 is often
used to show that a particular group is not cyclic.

Theorem 9.11 If G is a cyclic group, then G is abelian.

Proof: Let a be a generator for the cyclic group G. If z,y € G = {(a), then
there exist integers m and n such that x = @™ and y = a”. Multiplying and
using the properties of exponents, we find

ry=a"a" =a™"" =" = a"a™ = yux.
Hence, the group G is abelian. W

Let a be an element of a group G. The order of a, denoted by |al, is the
order of the cyclic subgroup (a) generated by a. That is, |a| = | (a) |.

Let us examine the group (U, *) where U = {1,3,7,9} and x is multipli-
cation modulo 10. The order of the group is |U| = 4. The element 1 is the
identity of the group. The subgroup generated by the identity is always the
set containing only the identity. In this example, (1) = {1} and |1| = 1. Since
3V =1,31=3,32=3%x3=9,and 3> = 32%x3 = 9% 3 = 7 (mod 10),
the cyclic subgroup generated by 3 is (3) = {1,3,9,7} = U. Therefore, U is
a cyclic group and 3 is a generator for the group. The element 7 is also a
generator for the group, because 70 =1, 7' =7, 72 = 77 =9 (mod 10), and
7 =72%7=9%7= 3 (mod 10). Calculating powers of 9, we find 9° = 1,
90 =9,92=9%9 =1 (mod 10), and 93 =92 %9 = 1% 9 = 9. So the cyclic
subgroup generated by 9 is (9) = {1,9} and the order of 9 is |9 = 2. Summa-
rizing, we have |1| = 1, |3| =4, |7| = 4, |9] = 2, and |U| = 4. This example
illustrates that the generator of a group is not unique. What relationship, if
any, do you notice between the order of the elements of the group and the
order of the group?
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Now consider the group (Z4, +) where + is addition modulo 4. The Cayley
table for (Z4,+) is displayed in Table 9.10. The identity for this group is
the element 0, so the subgroup generated by 0 is (0) = {0} and the order of
the element 0 is |[0] = 1. Because the Cayley Table 9.10 is symmetric, the
group (Zg4,+) is abelian. Next, we calculate the subgroups generated by the
nonidentity elements using Table 9.10.

For the element 1, we have 1=1,14+1=2, (14+1)+1=2+1=3, and
(1+1)+1)+1=34+1=0. So (1) ={1,2,3,0} = Z4 and |1| = 4. Hence,
(Z4,+) is a cyclic group with generator 1.

For 2, wehave 2 = 2,242 =0, (24+2)+2=0+2 =2, and ((2+2)+2)+2 =
2 + 2 = 0. Therefore, (2) = {2,0} and |2]| = 2.

For 3, we have 3 = 3,343 =2, (343)+3 =243 =1, and ((3+3)+3)+3 =
14+3= 0. Thus, (3) = {3,2,1,0} = Z and |3| = 4.

Summarizing, (Z4,+) is a cyclic, abelian group of order 4 with generators 1
and 3 and |2| = 2. What relationship, if any, do you notice between the order
of the elements of the group and the order of the group?

Table 9.10 Table 9.11
+] 01 2 3 @l 01 2 3
00 1 2 3 001 2 3
1|12 30 1|10 3 2
2|12 3 0 1 2123 01
31301 2 313210

The Cayley table for the Klein 4-group is shown in Table 9.11. The group
is abelian, because the table is symmetric. The identity is the element 0,
(0) = {0}, and |0| = 1. Calculating, from Table 9.11:

For 1, wehave 1©1=0,(1®1)®1=0® 1= 1. Hence, (1) ={0,1} and
1] = 2.

For 2, we have 2@ 2 =0, (2@ 2)®2 = 0® 2 = 2. Therefore, (2) = {0,2}
and |2| = 2.

For 3, we have 3¢3 =0, 3®3)®3 =043 = 3. Thus, (3) = {0,3} and
13| = 2.

Since no element of the group is of order 4, the Klein 4-group is not cyclic.
Consequently, the Klein 4-group is an example of an abelian group which is
not cyclic.

Theorem 9.12 tells us how to calculate the finite order of an element of a
group and how to write the cyclic subgroup generated by the element.

Theorem 9.12 Let G be a group with identity e and let a be an element of
G of order n. Then n is the smallest positive integer such that a™ = e and
{(a) ={e,a,a?,...,a" 1}

Proof: Because the element a has finite order n, the cyclic subgroup (a) is
finite. Therefore, the powers of a cannot all be distinct. Hence, there exist
some integers ¢ and j such that ¢ > j and a* = @’. Multiplying on the right
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by a=7, we have a’a™? = a’a~7 or a7 = e for i —j > 0. Thus, a? = e for the
positive integer p =4 — j. Let P = {q € N | a? = e}. Since P is nonempty
(because p € P), by the Well-Ordering Principle there exists a least positive
integer m € P.

The elements e, a, a?, ..., a™ ! are all distinct. For if a” = a® and
0<s<r<m,then a™®=eand 0 < r — s < m, which contradicts m is the
least element of P.

By definition (a) = {a' | t € Z}. Let t € Z. By the division algorithm,
there exist integers k and ¢ such that ¢ = km + | where 0 < [ < m. Hence,

at = a*mt = (a™)*a! = efal = ea' = a' where 0 < 1 < m. That is, every
element in (a) has the form a” = e, a', a?, ..., a™!. Since we have already
proven these elements are distinct, (a) = {e,a,a? ...,a™ '} and n = m by

definition of the order of a. W

Example 9.3.3 Let M = {1,3,5,9,11,13} and let x denote multiplication
modulo 14. Given that (M, ) is a group, find the order of the element 9 and
the cyclic subgroup (9).
Solution

The identity of the group is 1. Computing successive powers of 9, we find
99 =1,9' =9, 92 =11 (mod 14), 9 = 1 (mod 14). Hence, by Theorem 9.12
the order of 9 is |9] = 3 and the cyclic subgroup generated by 9 is < 9 > =
{99,992} = {1,9,11}. W

EXERCISES 9.3
1. Is (N, +) a subgroup of (Z,+)?
2. Is {0, 2,4} a subgroup of (Z7,+)?
3. Is {1,2, 4} a subgroup of (Z7 — {0}, -)?
4

. Give an example of a group G and two subgroups H and K of G such
that H U K is not a subgroup of G.

5. Prove that if H and K are subgroups of a group G, then H N K is a
subgroup of G.

6. Prove that if {H | A € A} is a family of subgroups of a group G, then
(xea H is a subgroup of G.

7. Prove that if H is a subgroup of the group K and if K is a subgroup of
the group G, then H is a subgroup of G.

8. The center, Z(G), of a group G is the subset of G whose elements com-
mute with every element of G. Symbolically,

Z(G)={g € G| gr =xg for all z € G}.
Prove that the center of a group G is a subgroup of G.
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Find the center of the group whose Cayley table appears Table 9.12.

Table 9.12
* 01 2 3 4 5
0|0 1 2 3 4 5
1/1 2 0 5 3 4
212 0 1 4 5 3
313 4 5 0 1 2
414 5 3 2 0 1
5|5 3 4 1 2 0

Find the center of the group whose Cayley table appears in Table 9.13.

Table 9.13
01 2 3 4 5 6 7
0|0 1 2 3 4 5 6 7
111 2 3 0 6 7 5 4
212 3 0 1 5 4 7 6
33 0 1 2 7 6 4 5
414 6 5 7 0 2 3 1
55 7 4 6 2 0 1 3
6|6 5 7 4 1 3 0 2
717 4 6 5 3 1 2 0

Let a be a fixed element of a group G. The centralizer of a in G,
C(a), is the subset of G whose elements commute with a. Symbolically,
C(a) = {g € G | ga = ag}. Prove that the centralizer of a in G is a
subgroup of G.

Let a be any element of a group G. Prove that the center of G is a
subgroup of the centralizer of a in G. That is, prove that Z(G) is a
subset of C'(a) for every a € G.

Let H be a subgroup of a group G and let a be a fixed element in G.
Prove that K = {a~'ha | h € H} is a subgroup of G.

Find the order of each element in the following groups.

a. (Z,4) b. (Z¢, +) where + denotes addition modulo 6

c. Table 9.12 d. Table 9.13.

Find one cyclic subgroup and one noncyclic subgroup of the noncyclic
group represented by Table 9.13.



Appendix

Reading and Writing Mathematical
Proofts

During semesters I teach a course that includes mathematical proofs, several
students usually ask the following questions:

1. “How do I learn to read mathematical proofs?”
and

2. “How do I learn to write mathematical proofs?”
The short answer to first question is “You learn to read proofs by reading many
well-written proofs by several different authors.” And, the short answer to the
second question is “You learn to write proofs by reading well-written proofs,
by emulating them when you write your own proofs, and by having other
people read your proofs and criticize them constructively.” The remainder of
this appendix is devoted to the long answers to these two questions.

Reading Mathematical Proofs

When you begin to read a proof, you need to have paper and pencil available
in order to make notes and verify computations. First, you need to identify
the hypotheses and conclusions of the theorem. Then, you may wish to make
a quick first reading of the entire proof to see what methods the author em-
ployed in proving the theorem and to determine what definitions and theorems
are used in the proof. You should write down complete statements for the
definitions and theorems that appear in the proof. During the first reading
of the proof, you should not attempt to verify the logic used and you should
not carefully check the computations made. After you have looked up and
learned the definitions and theorems of the proof, you should read and verify
the proof line-by-line. You must provide justifications and perform compu-
tations that the author has omitted either on purpose or by mistake. Even
when a mathematical proof is well-written, reading the proof may still be a
slow process. Furthermore, reading a proof that is poorly written is usually
very difficult and exceedingly frustrating. Reading a proof may be difficult
(1) because the order in which the steps of the written proof are presented
does not correspond to the order in which the original proof was developed,

313
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(2) because the author does not tell you explicitly what proof techniques he
is using, (3) because all justifications are not provided, or (4) because what
should have been presented in several different steps in the proof has been
combined into one single step.

Writing Mathematical Proofs

A mathematical proof is a convincing argument which combines elements of
the English language, logic, and mathematics. It is not possible to give a recipe
or prescription for writing a clear, informative, and interesting proof. Every
written proof is a communication between the author and the reader, and
therefore its effectiveness depends upon the skills, temperament, taste, and
knowledge of both the author and reader. Since most mathematical writing is
factual, the simple declarative sentence is the best means of communication
in a proof.

English Usage. Writing is more difficult than speaking, because the tone
of your voice helps you make your meaning clear when you speak. When
writing a proof use correct diction, grammar, punctuation, and spelling. Write
correctly, carefully, and clearly. Write simple prose. Start every sentence with
a capital letter and end it with a period, question mark, or exclamation point.
When possible, write two short sentences instead of one long, convoluted
sentence. Use the active voice instead of the passive voice. That is, write
“We have observed that ...” instead of “It has been observed that ....” The
word “we” is often used in order to avoid using the passive voice. Also, when
writing mathematical proofs, articles, books, and so forth, use the word “we”
instead of the word “I.” The word “we” refers to the author(s) and the reader
working together as a team to prove a theorem or learn a fact.

Mathematical Usage. Mathematics is symbol-oriented and has a lan-
guage of its own. Therefore, mathematical writing is a combination of English
words and mathematical symbols. Always strive to use the words of logic and
mathematics correctly. The purpose of using good mathematical language is
to make it easy for the reader to understand a mathematical document. The
author’s aim should be to anticipate difficulties the reader may encounter and
to alleviate them. A good approach when preparing a written mathematical
document is to pretend that the document is to be read aloud. The basic aim
in writing a mathematical proof is to communicate a newly discovered fact.

Symbol usage. Starting a sentence with a mathematical symbol is discour-
aged. For instance, writing: “(S, o) is a cyclic group” is discouraged. Instead,
write “The group (5, o) is cyclic.” Rewrite the sentence “z? — 3z + 2 = 0 has
two distinct real roots” as “The equation 22 — 3z +2 = 0 has two distinct real
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roots.”

A mathematical symbol represents a word or phrase. For example, it
is possible for “=" to mean (1) equals, (2) is equal to, (3) be equal to, or
(4) which is equal to. Thus, we could write

“Hence, x = 0.” which may be read “Hence, = equals zero” or “Hence, x is
equal to zero.”

“Let * = 0,” which may be read “Let x be equal to zero.”

“Then 22 + 3?> = y? = 1,” which may be read “Then z squared plus y
squared equals y squared which is equal to one.”

Do not combine English words and mathematical symbols improperly. In-
stead of writing “Every even natural number > 2 may be written as a sum
of two prime numbers” you should write “Every even natural number greater
than 2 may be written as the sum of two prime numbers.” The sentence “The
equation (x — 1)(x —2) = 0 implies z = 1 or 2” is not written correctly. It
should be written as “The equation (z—1)(z—2) =0 impliesz = 1 or x = 2.”

When possible, symbols that are not a part of a list should be separated by
words. For example, instead of writing “The sequence a,, n < mis...” write
“The sequence a,, where n < m is ....” And, instead of writing “In addition
to 1, 2 is a root of the polynomial 22 — 3z 4+ 2 = 0” write “In addition to 1,
the number 2 is a root of the polynomial 22 — 3z +2 = 0.”

Display important mathematical expressions, long expressions, and multi-
level expressions on a line by themselves. The following two expressions are
displayed.

(22 — 3)3 = (22)% — 3(22)%(3) + 3(22)(3%) — 3% = 823 — 3622 + 5da — 27

1
g
€
2
T+ —
T

When a displayed expression will be referred to later, give a reference number
to the expression. The reference number may appear at the left margin or
right margin of the line on which the expression appears. For example,

(1) (22 —3)® = (22)® — 3(22)%(3) + 3(22)(3%) — 3% = 82 — 3622 + 54w — 27

When mathematical expressions are joined by equal signs or inequalities, it
is good idea to display them on more than one line and align the equal signs
and inequality symbols as illustrated below:

(2) (22 — 3)% = (22)% — 3(22)%(3) + 3(22)(3%) — 3°
= 8% — 3627 + bdx — 27

When a long inequality or equation such as (2) is written within the text and
not displayed and when it is necessary to break the expression at the end of a
line, the expression should be broken after one of the relation symbols =, <,
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<, >, or > or after one of the operation symbols + or —. That is, equation (2)
should be written in line as (22 — 3)% = (22)% — 3(22)2(3) + 3(22)(3%) — 33 =
823 — 3622+ 542 — 27 or it should be written as (22 —3)3 = (22)3 —3(22)%(3) +
3(27)(3%) — 3% = 823 — 3622 + 54z — 27.

Developing a Proof and Writing It. The goal of mathematics is to
seek truth. Usually, this is done by formulating a conjecture or having one
presented to you. Your task is to decide if the conjecture is true or false. If
the conjecture is false, then your task becomes one of constructing a coun-
terexample. If you are successful in constructing a counterexample, then you
may want to return to the original conjecture to determine if you can modify
it and make it a true statement. You can often do this by adding one or
more hypotheses or by making the conclusion weaker. Once you have con-
structed a statement that you believe to be true, your task is to prove it is
true. In Chapter 2, several methods for proving theorems were presented and
discussed. Suppose you want to prove the theorem “If A, then B.” First,
look up and then understand all of the definitions which appear in A and B.
Locate and copy any theorems that have A as hypothesis and any theorems
that have B as conclusion. It is possible, but not too likely, that you will find
two theorems: “If A, then C” and “If C, then B.” In this case, your proof
is simply: A implies C' and C implies B; therefore, A implies B by transi-
tive inference. If this does not happen, your time is not wasted, because you
will have seen proofs of A implies X for different statements X and proofs
of Y implies B for different statements Y. Thus, you will have seen some
techniques that may help you start your proof and some techniques that may
help you end your proof. To begin the development of your proof, write the
hypotheses on separate lines at the top of a piece of paper. Then write the
definitions of the terms that appear in the hypotheses. After each hypothe-
sis and definition write formulas and equations that are associated with the
hypothesis and definition. These formulas and definitions will give you some
idea of how to start your proof. The theorems and proofs you looked up ear-
lier may give you some different ideas of how to start your proof also. At the
bottom of the page, write the conclusion of the theorem. Immediately above,
write the definitions that appear in the conclusion. Above that, write the
formulas or equations that are associated with the conclusion and definitions.
Next, you try to develop the logical thread of the proof by moving forward
from the hypotheses as much as possible and backwards from the conclusion
as much as possible. The object is to alternate moving forward and backward
logically until you arrive at the same statement located somewhere in the
middle of the proof. If you do not succeed, it may be necessary for you to
apply this proof-development technique to a different kind of proof—a proof
by contraposition, a proof by contradiction, a proof by cases, etc. Once you
have developed a sequence of statements, each of which is deducible from its
predecessor or from some known theorem, that extends from the hypotheses
to the conclusion, you have a first, rough draft of your proof. You should put
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your proof away for awhile. Then later reread the proof very carefully and
make changes that will improve it.

Now that you have a proof, you must write it for others to read. When
writing a proof, you must keep in mind the knowledge and mathematical ma-
turity of your readers. You cannot communicate effectively with your readers
until you know who they are. In your case, your proofs should be written for
your instructor, but they should be written at a level that your classmates
can understand. The first proofs you write should contain more detail and
justification than the ones you write later. It requires practice and experience
to know what you may omit and what you should not omit. Your rough draft
is an outline of your proof and is probably arranged in the order in which you
want to present the proof. However, you should never be satisfied with your
first draft as your final proof. The next step is to add more English to the
proof, being sure to follow the rules cited above. Next, type your proof and
reread it. As you read, be sure to challenge every word, phrase, sentence, and
paragraph. Did you choose the best possible words? Is there some verbiage
that can be removed? Are the sentences presented in the best order? Are the
paragraphs organized properly? Be certain that the statements of the proof
follow logically from one another. Read your proof aloud to yourself. Does
it sound right? Continue to rewrite the proof again and again until you are
totally satisfied with the result. Then have someone else read the proof and
constructively criticize it. Then rewrite the proof one final time.

The following is an example of developing a proof and then writing it. The
theorem and proof are relatively simple, but they should provide you with
an idea of how the proof writing process goes. Suppose that a homework
assignment is to prove the theorem “The product of an even integer and an
odd integer is an even integer.” First, we rewrite the theorem as a logically
equivalent conditional statement, so that we may more easily identify the
hypotheses and conclusion. A logically equivalent form of the theorem is “If
m is an even integer and n is an odd integer, then the product mn is an even
integer.” We write the hypotheses at the top of a piece of paper and the
conclusion at the bottom. Then we add definitions under the hypotheses and
above the conclusion as shown below.

Hypothesis: m is an even integer.

Remark: In a proof, you should not start a sentence with a symbol; however,
this is “scratch work,” so no one will see it except you.

Definition: An integer is a member of the set Z ={...,-2,—-1,0,1,2,...}.
Definition: m is an even integer if and only if there exists an integer j such
that m = 2j.

Hypothesis: n is an odd integer.

Definition: n is an odd integer if and only if there exists an integer k such
that n =2k + 1.
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Remark: 1t is very important that the symbol k used in defining n is different
from the symbol j used in defining m. When the original definitions of even
and odd integers were given, it was permissible to use the same symbol in
both definitions. However, the simultaneous definition m = 2j and n = 25 —1
implies n = m — 1. That is, n is one less than m instead of an arbitrary odd
integer.

Remark: An alternate definition someone might use for an odd integer is
n = 2k —1. When you are reading a proof, be sure you know and understand
the author’s definition of an entity.

*k

Definition: The product mn is an even integer provided mn is an integer and
mn can be written as mn = 2¢ where £ is an integer.
Conclusion: The product mn is an even integer.

Next, at location * we compute the product mn and use the associative law
of multiplication for integers to obtain

mn = (27)(2k + 1) = 2[j(2k + 1)].
Letting ¢ = j(2k + 1), we see that mn = 2¢.

We note that mn is an integer, because by hypothesis m and n are integers
and because the integers are closed under multiplication.

Also, we observe that ¢ = j(2k 4+ 1) is an integer because j and 2k +1=n
are integers and the integers are closed under multiplication.

We now have a rough draft of our proof, and we need to write it for others
to read. We start by typing the word “Theorem” at the left margin followed
by the original statement of the theorem. Then, we skip a line and type the
word “Proof:” followed by our proof. Here is our completed theorem and
proof.

Theorem The product of an even integer and an odd integer is an even
integer.

Proof: We prove this statement by proving the logically equivalent statement:
If m is an even integer and n is an odd integer, then the product mn is an
even integer. Assume that m is an even integer. Then by definition, there
exists an integer j such that m = 2j. Assume that n is an odd integer. Then
by definition, there exists an integer k such that n = 2k + 1. Computing mn
and using the associative law of multiplication for integers, we obtain

mn = (25)(2k +1) = 2[j(2k + 1)] = 2¢ where ¢ =j(2k +1).

Because m and n are integers and because the integers are closed under multi-
plication, mn is an integer. Because j and 2k+1 = n are integers and because
the integers are closed under multiplication, ¢ = j(2k + 1) is an integer. Since
mn = 2¢ and £ is an integer, the integer mn is even by definition.
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As you write a proof, you need to keep your reader informed. At the
beginning of a proof, you should tell the reader what proof technique you
will use unless the proof is a direct proof. If the proof is a direct proof, you
may just assume the hypothesis. For various types of proofs of the conditional
statement “If A, then B” here are some examples of a few sentences you might
use to start a proof.

Direct Proof
Proof: We assume A.

Proof by Contraposition

Proof: We prove this theorem by proving its contrapositive. That is, we
prove that if =B, then —=A. Assume —B.

Proof by Contradiction

Proof: We prove this statement by contradiction. Assume A and —B.
or

Proof: We assume, to the contrary, that A and —B.

Proof by Cases
Proof: We prove this theorem by considering three cases.

Proof by Induction

Proof: We prove this result by mathematical induction. Let P(n) be the
statement .. ..






Answers to Selected Exercises

Chapter 1

Exercises 1.1

The following sentences are statements: 1, 7, 8, 10.
11. The number v/2 is not rational. Or, the number V2 is irrational.
13. 7>5
15. Not every even integer greater than two can be written as the sum of
two prime numbers.
17. a. 1. =1 2. TA(=I) 3.TANI 4. IANT 5 TA(-I)
17. b. 1. ABC is not a triangle.
. ABC is a triangle, or ABC is isosceles.
. ABC is not a triangle, and ABC is not isosceles.
. It is not the case that ABC is a triangle and ABC is isosceles.
. ABC is not a triangle, or ABC is not isosceles.

T W N

Exercises 1.2

1. F 3. T 5 T 7. F 9. T 11. T 13. T
15. a. T b. The truth value is the same as the truth valueof R. ¢. F
17.

P PAP
T T
F F
Therefore, P AP =P
19.
P Q PAQ PA(PVQ)
T T T T
T F T T
F T T F
F F F F
Therefore, PA (PV Q)=P
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21.
P Q R PAQ (PAQ) AR
T T T T T
T T F T F
T F T F F
T F F F F
F T T F F
F T F F F
F F T F F
F F F F F
P Q R QAR PA(QAR)
T T T T T
T T F F F
T F T F F
T F F F F
F T T T F
F T F F F
F F T F F
F F F F F
Therefore, (P A Q) AR=P A (QAR)
23.
P 1Q | -Q | PA(=-Q | =(PA(=Q)
T T F F T
T F T T F
F T F F T
F F T F T

There are no tautologies and no contradictions.

25. Let R be the statement Q V (= Q) and let Sbe P A (= (Q V (= Q))).

P 1Q | -Q | Qv(-Q | R S
T | T F T F | F
T F T T F | F
F | T F T F | F
F F T T F | F

The statement Q V (= Q) is a tautology and the statements = (Q V (= Q))
and P A (= (Q V (= Q))) are both contradictions.
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27. Let S be the statement Q V (= R), let U be the statement
(P A (QV (= R)), let V be the statement (= P ) V R, and
let W be the statement (P A (Q V (= R)))V ((-= P)V R).

P Q R - P - R S U v W
T T T F F T T T T
T T F F T T T F T
T F T F F F F T T
T F F F T T T F T
F T T T F T F T T
F T F T T T F T T
F F T T F F F T T
F F F T T T F T T

The statement (P A (Q V (= R))) V ((= P) V R) is a tautology.

29. I do not sweeten my tea with sugar, and I do not sweeten my tea with
honey.

31. I drink my coffee with sugar, or I drink my coffee with cream.

33. I go to the opera, or I do not go to the theater.

35. (= P)AQ 37.PAQ 39. P 41. exclusive 43. exclusive

45. Let R be the statement (P V Q) A (= (P A Q)).

PvQ | -(PAQ)

CECRER=1E
SRS RN
CESRERS

CRSRERCE

L

(PVQ)A(=(PAQ))=PVQ

Exercises 1.3

In Exercises 1 through 8, let H denote the hypothesis, C denote
the conclusion, CS denote the conditional statement, and N denote
the negation. As usual, T denotes true and F denotes false.

1. (1) H: New York is on the East Coast. C: Los Angeles is on the West
Coast.
(2)HisT,CisT, and CSis T
(3) N: New York is on the East Coast and Los Angeles is not on the West
Coast.
3. (1) H: The number /2 is irrational. C: The number 7 is rational.
(2)HisT,CisF,and CSis F
(3) N: The number /2 is irrational and the number 7 is not rational.
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11.

13.

15.

17.
23.

25.

27.

Introduction to Mathematical Proofs

(1) H: 2 < 3. C: 23 > 32

(2)HisT,CisF,and CSis F

(3) N: 2 < 3 and not 23 > 32.

(1) H: 23 > 32. C: 2 < 3.

(2)HisF,CisT,and CSis T

(3) N: 22 > 32 and not 2 < 3.

Converse: If Los Angeles is on the West Coast, then New York is on the
East Coast.

Inverse: If New York is not on the East Coast, then Los Angeles is not
on the West Coast.

Contrapositive: If Los Angeles is not on the West Coast, then New York
on the West Coast. is not on the East Coast.

Converse: If the number 7 is rational, then the number /2 is irrational.
Inverse: If the number /2 is not irrational, then the number 7 is not
rational.

Contrapositive: If the number 7 is not rational, then the number /2 is
not irrational.

Converse: If 23 > 32, then 2 < 3.

Inverse: If not 2 < 3, then not 23 > 32.

Contrapositive: If not 23 > 32, then not 2 < 3.

Converse: If 2 < 3, then 23 > 32,

Inverse: If not 22 > 32, then not 2 < 3.

Contrapositive: If not 2 < 3, then not 23 > 32.

T 19. F 21. Qis T and Ris T.

P Q [ PAQ | P=(PAQ)

T T T T

T F F F

F T F T

F F F T

Pl Q | PAQ | PAQ =P

T T T T

T F F T

F T F T

F F F T
(P A Q) = P is a tautology.
P Q PvQ PAQ (PVQ)=(PAQ)
T T T T T
T F T F F
F T T F F
F F F F T
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29. Let R be the statement (Q A (P = Q)) = P.

P Q P=Q QAP =Q) R
T T T T T
T F F F T
F T T T F
F F T F T
31.
P | Q PVQ (PVQ) <P
T T T T
T F T T
F T T F
F F F T
33.
P Q P=Q Q=P P=Q) < Q=P
T T T T T
T F F T F
F T T F F
F F T T T

35. (" P)VQVR B37.PA((-Q)VP) 39. (-PVQ)A(-QVP)

Exercises 1.4

1. Let R be the statement P = ( = Q),
let S be the statement (P A Q) A (P = = Q),
let U be the statement P A (= Q)
and let V be the statement ([P A Q) A (P =-Q)]= P A (=Q)).

PAQ

CECREREIES
RS RO RS o)
o>

J
HmE s
I
eslies e lies M R E))
=SSl le sl N
S

PAQ, P=-Q .. PA(—-Q)is avalid argument.
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3. Let S be the statement (P A Q) A (R =P ),
and let U be the statement (P A Q) A(R=P )] = (QVR).

PAQ | R=P QVR

=3

sl e e N N N N N e
HHHHE"HAE 30
HHTEHT"H ™S
sl Mo s s M N N R )

eSS liesBiesles Bl W
SmEmEaaa

CESRSRS TR

eI

PAQ, R=P .. QV Risa valid argument.

5. Let S be the statement P = Q,
let U be the statement Q = R,
let V be the statement (P = Q) A (Q = R) A (- Q),
and let W be the statement [(P = Q) A (Q = R) A (&

4
T
=

J

HemBasma|a
il
HHEmE SRS o
HHEaEREE T <
SmamaEEE|g| o

D E |
HaaHEE"ES 0
S |
I

I

P=Q, Q=R, =Q .. = Risan invalid argument.

7. PisTand Qis T. 9. PisF,QisF, and Ris T.
11. Valid, rule of disjunction
13. Valid, rule of conjunction
15. Valid, rule of detachment
17. Valid, rule of contrapositive inference
19. 2. rule of conjunctive simplification
. rule of conjunctive simplification
. rule of disjunction
. rule of transitive inference
. rule of conjunctive simplification
. rule of detachment
. rule of conjunctive simplification
. rule of conjunction

21.

0 N O Ui W



23.

© 00 N O Uk W N

—_ =
= O

25. A ..

27. E

1.

[\

3.
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. definition of implication
. definition of implication
. rule of substitution

. associative law for disjunction

. rule of substitution
. associative law for disjunction
. definition of implication
. rule of substitution

. definition of implication

. commutative law for disjunction

B=A
1. A premise
2. -BVA 1, rule of disjunction
3. B=>A 2, definition of implication
ANF . EVF
EAF premise
E 1, rule of conjunctive simplification
EVF 2, rule of disjunction

2. J= (KAL) .. J=K

P 0=

J= (KAL)
-JV(KAL)
(=JVK)A (=] VL)
-JVK

J=K

3. PVQ) =R .. P=R

N W=

(PvQ) =R
-(PVQ)VR

~(PV Q) = (-P) A (-Q)
(=P)A(=Q)) VR
(=P) VR) A ((=Q) VR)
-PVR

P=R

premise

1, definition of implication

2, distributive law for disjunction
3, rule of conjunctive simplification
4, definition of implication

premise

1, definition of implication

a De Morgan law

2,3, rule of substitution
distributive law for disjunction

5, rule of conjunctive simplification
6, definition of implication
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33, V=W, VVW ..

wo
ot

w
=

39.
41.

43.

O NG D=

S

—_

3

N O WD =

I=(E=A), “AAI ..

L RNDO WD
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V=W
-VVW
VVW

(=VVW)A (VVW)

(-V)AV)VW
(=V)AV=f
fVW

W

W

premise

1, definition of implication
premise

2,3, rule of conjunction
distribution law for disjunction
law of the excluded middle
5,6, rule of substitution

7, a contradiction law

VB)=(=C), BVC, BV(=-A))=D, A.. =BVvVD

A
AVB

(AVB) = (-C)
-C

BvC

B

BV (-A)

(BV (-A)) = D
D

(-B) vD

AM)=V, TVA ..

TVA
AvT

A =-(-4A)
-(-A)VT
-A=T
(TAM) =V
~(TAM)VV

premise

1, rule of disjunction

premise

2,3, rule of detachment

premise

4,5, rule of disjunctive syllogism
6, rule of disjunction

premise

7,8, rule of detachment

9, rule of disjunction

S A= ((AM)VV)

premise

1, commutative law for disjunction
double negation law

2,3, rule of substitution

4, definition of implication
premise

6, definition of implication

-(TAM)=((-T)Vv (-M)) a De Morgan law

(=T) v

-A= ((-M)VV)

(—M)) vV
(=T) Vv ((=M) v V)
. T = ((-M)VV)

7,8, rule of substitution

9, associative law for disjunction
10, definition of implication
5,11, rule of transitive inference

- E

A=B B=-C C=-D, B=-E, - D=F, (-E)V(-F)

~“ E=-AVC
I AVC), MVvS)=C, SA—-A .. C I
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Exercises 1.5

L{2} 3.{..-8, 4048,...} 5.{...,1,2,3,4}

7.{1,2,3,4,.
11.
13.
15.
17.
19.
21.

23.
25.
27.
29.
31.
33.
35.
37.

} { 3’ _2’ -1 }
I(x) = E(x)) False
( I(z) = -R(z)) False
(Hz € U)(I(z) A —-R(z)) True
(3z € U)(R(x) AL(x)) True
(Vz € U)(R(z) = —I(x)) False
Let Nx denote the negation of statement .
N11. Some isosceles triangles are not equilateral triangles.
N12. Some equilateral triangles are not isosceles triangles.
N13. Some isosceles triangles are right triangles.
N14. No isosceles triangles are equilateral triangles.
N15. All isosceles triangles are right triangles.
N16. No right triangles are equilateral triangles.
N17. No right triangles are isosceles triangles.
N18. Some equilateral triangles are right triangles.
N19. Some right triangles are isosceles triangles.
N20. Some equilateral triangles are not isosceles triangles.
There exists a natural number = such that 2z > 0. True
There exists a natural number z such that 2z < 0. False
There exists a unique integer x such that 22 = 0. True
There exists a unique integer x such that 22 = z. False
There exists a unique real number x such that x = V7. True
(Vz € N)((x is a prime) = (z is odd)) False
(2 € N)((z is even) A (x is a prime)) True
Let Nx denote the negation of statement .
N22. (3z € R)(2z < 0)
N23. (Vz € N)(2z <0)
N24. (3z € N)((x is a prime) A (z is even))
N25. (Vz € N)(2z > 0)
N26. (3z € N)((x is a prime) A (z # 2) A (x is even))
(
(

(Ve eU
VreU

~— — — —

(
(
(
(

N2T. (V2 € Z)((2? £ 0) V (3y € Z)((4? = 0) A (y # 7))
N28. (Vz € N)((x is not a prime)V(z is even)V(Jy € N)((y is a prime)A

(y is not 0dd) A (y # 7))

N29. (Var € Z)((a® # )V (3y € Z)((y* = ) A (y # 7))
N30. (Vo € R)((e* # 1)V (3y € Z)((e¥ = 1) A (y # 2)))
N3L. (Vz € R)(( # VT) V (3y € Z)((y = VT) A (y # 2)))

N33. Some primes are not odd.

N34. No primes are even.

N35. For all natural numbers either = is odd or x is not a prime or
there exists a natural number y # = which is an even prime.
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N36. There does not exist a unique smallest natural number.
(Im € N)(Vn € N)(m >n) False

(Vm € N)(Vn € N)(m >n) False

(Vo € Z)(Fy € Z)(x = 2y) False

(Fz € Q)(Vy € Q)(x +y =0) False

(Ve Q)(3ly € Q)(x +y=0) True

( (

( (

Ve R
Vr € R

(x>0)= (3ne N)(% < x)) True

)
J(Vye R)(VzeR)((z <y) = (x+2 <y+2) True

Review Exercises

Sentences 3 and 4 are statements.
7. The number 7 is not rational.
9. It is not cloudy and the sun is not shining.
11. 243=4and 5+6 #7
13. I finish my homework and it does not rain but I do not play tennis.

15. a.
b.
C.

O o A

17.

If you are old enough, then you may vote.

If the gasoline engine is running, then there is fuel in the tank.

If you may run for the United States Senate, then you are at least
thirty-five years of age.

. If there is a garden, then there is rain.

. If a triangle is equilateral, then the triangle is isosceles.
. If yesterday is Thursday, then today is Friday.

. Converse: If you may vote, then you are old enough.

Inverse: If you are not old enough, then you may not vote.
Contrapositive: If you may not vote, then you are not old enough.
Converse: If there is fuel in the tank, then the gasoline engine is
running.

Inverse: If the gasoline engine is not running, then there is no fuel in
the tank.

Contrapositive: If there is no fuel in the tank, then the gasoline engine
is not running.

. Converse: If you are at least thirty-five years of age, then you may run

for the United States Senate.

Inverse: If you may not run for the United States Senate, then you are
not at least thirty-five years of age.

Contrapositive: If you are not at least thirty-five years of age, then you
may not run for the United States Senate.

Converse: If there is rain, then there is a garden.

Inverse: If there is no garden, then there is no rain.

Contrapositive: If there is no rain, then there is no garden.

. Converse: If the triangle is isosceles, then the triangle is equilateral.

Inverse: If a triangle is not equilateral, then the triangle is not isosceles.
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Contrapositive: If the triangle is not isosceles, then the triangle is not

equilateral.
f. Converse: If today

is Friday, then yesterday is Thursday.

Inverse: If yesterday is not Thursday, then today is not Friday.
Contrapositive: If today is not Friday, then yesterday is not Thursday.
Arguments b and c¢ are valid.

a. = PVv-Q
d. P/\(Q\/R)
(Va)(M(z) =
(J2)(M(z) A
(Flz € R)(Vy
a.P | P

P(z))
( )

P

~(PAQ) 41—

sz)(x+y=x)

b. PVQAPVR
e. PA=Q

c. (PVvQ)
f. P
25. (Vz)(M(z) = - P(z))
29. (VxeZ)3y e Z)(x+y
33. 0 (- PA-Q)

. (PLP)1(QlQ)

0)

QLFELQ

PlQ

CECREREIE
CEER= P
S|

(P=Q) =-(Q=P)

Construct a truth table or a valid logical argument.

a. 2 and 5 b. 6

Hamilton and Jefferson join our club.

49. (ii.) a and ¢

Chapter 2

Exercises 2.1

1.
9.
7.

No
No
. Theorem 2.1;
. 3, 4, substitution;
. Zb; 2. 73;
7. 5, 6, substitution;
. 8,9, substitution;
L Zvy 20711, 3.
. 3, 4, substitution;
. b, 8, substitution;
. 11, 12 substitution

No
m=1n=2p=3
2. 711;

3.1,

3. No Yes No No
3. 1, 2, substitution;
6. Z11

2, substitution; 4. Z3; 5. Z11;
8. 3, 7, substitution; 9. Z10;

11. definition of subtraction

1, 2, substitution 4. Theorem 2.1;
6. 729; 7.74; 8.6, 7, substitution;
10. Z4; 11. 9, 10, substitution;

14. Theorem 2.6.

4. 17;

6. Z3;

12. 711;
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Exercises 2.2.1

1.

11.

13.

15.

17.

Assume m is an even integer. By definition of even, there exists an integer
k such that m = 2k. Adding 1, we find m +1 = 2k + 1. Hence, by
definition m + 1 is odd.

. Assume m is an odd integer. By the contrapositive of Theorem 2.9, m?

is an odd integer. By Exercise 2, m? + 1 is an even integer.

. Let m and n be even integers. Then there exist integers r and s such that

m = 2r and n = 2s. The integer m +n = 2r 4+ 2s = 2(r + s). Since r + s
is an integer, m + n is even.

. Assume m is an even integer and n is an odd integer. Then there exist

integers k£ and ¢ such that m = 2k and n = 2¢ + 1. Hence, m +n =
2k +20+1 = 2(k+¥) + 1. Since k + ¢ is an integer, m + n is an
odd integer.

. We prove this theorem by proving its contrapositive—namely, if m + 1

is an odd integer, then m is an even integer. Since m+ 1 is assumed to be
odd, there exists an integer k such that m+1 = 2k + 1. By a cancellation
property of addition (Theorem 2.6), m = 2k and m is even.
We prove this theorem by proving its contrapositive—namely, if neither
m nor n is even (that is, if m and n are both odd), then mn is odd. Since
m and n are both odd, there exist integers r and s such that m = 2r 41
and n = 2s + 1. Computing, we find

mn=2r+1)(2s+1) =4rs+2r+2s+1=22rs+r+s)+ 1.
Since the integers are closed under the operations of addition and multi-
plication, 2rs + r + s is an integer, and therefore mn is odd.
We prove this theorem by proving its contrapositive—namely, if it is not
the case that either m and n are both odd integers or m and n are both
even integers, then m + n is an odd integer. Assume m is odd and n is
even. Then there exist integers k and ¢ such that m = 2k + 1 and n = 24.
Hence, m+n = 2k+1+4+2¢ = 2(k+¢)+1. Since k+/ is an integer, m+n
is an odd integer.
We prove this theorem by contradiction. Suppose mn is an odd integer
and not both m and n are odd. Since m and n are not both odd,
at least one is even. For definiteness, suppose m is even. Then there exists
some integer k such that m = 2k. Multiplying, we find mn = (2k)n =
2(kn). Hence, mn is even, which contradicts the assumption that mn is
odd.
We prove this theorem by contradiction. Suppose m —n is an odd integer
and m+n is an even integer. Since m—n is assumed to be odd, there exists
an integer k such that (1) m —n = 2k 4+ 1. And since m + n is assumed
to be even, there exists an integer ¢ such that (2) m +n = 2¢. Adding
equations (1) and (2) yields (m —n) + (m + n) = (2k + 1) + 2¢. Hence,
2m =2k + 1+ 20 =2(k+¢) + 1, which is a contradiction, since 2m is an
even integer but 2(k + £) + 1 is an odd integer.
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Exercises 2.2.2

1. Proof: We prove this theorem by considering two cases.

Case 1. Assume n is an even integer. Thus, there exists an integer k
such that n = 2k. Consequently, n(n + 1) = 2k(2k + 1) = 2(k(2k + 1)).
Since k(2k + 1) is an integer, n(n + 1) is even.

Case 2. Assume n is an odd integer. Hence, there exists an integer ¢
such that n = 2¢+ 1. Consequently, n(n+1) = (20+1)((20+1)+1) =
(20+1)(20+1)+20+1 =402 +40+1+420+1=2(20>+3(+1). Since
20?2 + 3¢ + 1 is an integer, n(n + 1) is even.

3. Proof: We prove this theorem by cases.
Case 1. Assume m is an even integer. Thus, there exists an integer k

such that m = 2k. Hence, m3 +m = (2k)3+2k = 8k3+2k = 2(4k> + k).
Since 4k3 + k is an integer, m® + m is even.

Case 2. Assume m is an odd integer. Then there exists an integer
¢ such that m = 2¢ + 1. Therefore, m® + m = (20 + 1) + 20+ 1 =
8034+ 1202 +60+1+20+1 = 2(403 4+ 60> +4+1). Since 46> +602 +40+1
is an integer, n(n + 1) is even.

5. Proof: Let m be an odd integer. By definition of odd, there exists an

integer r such that m = 2r + 1. We prove this theorem by cases. First,
we assume 7 is an even integer, and then we assume r is an odd integer.
Case 1. If r is an even integer, then there exists an integer j such that
r = 2j. Thus, for r even, m = 2r +1 = 2(2j) + 1 = 45 + 1 for some
integer j.
Case 2. If r is an odd integer, then there exists an integer s such that
r=2s+ 1. Hence, for rodd, m=2r+1=2(2s+1)+1=4s+2+1=
4(s+1) — 1. Since s is an integer, j = s+ 1 is an integer, and for r odd,
m=4j— 1.

7. Proof: First, we prove if m? is an odd integer, then m is an odd integer.
We prove this statement by proving its contrapositive—namely, if m is
even, then m? even. Thus, we assume m is even. Hence, there is an
integer k such that m = 2k. Consequently, m3 = (2k)3 = 2(4k3) and m3
is even. Next, we prove if m is odd, then m? is odd. Suppose m = 2¢+1
where ¢ is an integer. Then m?® = (204 1)3 = 83 + 1202 + 6/ + 1 =
2(463 + 602 4 3¢) + 1. Since 4¢% + 6/* + 3( is an integer, m® is odd.

9. Proof: We prove this theorem by cases.
Case 1. Suppose m is an odd integer. Then there exists an integer k
such that m = 2k + 1. Computing, we find 7m —4 =72k + 1) —4 =
2(7k + 1) + 1. Since 7k + 1 is an integer, 7m — 4 is odd. We also find
5m+3=>502k+1)+ 3 =2(5k +4). Since 5k + 4 is an integer, 5m + 3
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is even. Hence, if m is an odd integer, then 7m — 4 is odd if and only if
5m + 3 is an even integer.

Case 2. Suppose m is an even integer. Then there exists an integer ¢
such that m = 2¢. Computing, we find 7m — 4 = 7(2¢) = 2(7¢). Hence,
7Tk — 4 is an even integer. Also, 5m + 3 = 5(2¢) +3 = 2(5¢ + 2) + 1.
Thus, 5m+ 3 is odd. Consequently, if m is an even integer, then 7m —4
is odd if and only if 5m + 3 is an even integer.

Proof: Suppose to the contrary that (1) 111 = p + ¢ + r, where p,
q, and r are even integers. Then there exist integers j, k, and ¢ such
that p = 2j, ¢ = 2k and r = 2¢. Substituting into (1), we find
111 =25+ 2k +20 = 2(j + k+ £). Since j + k + £ is an integer, 111
is an even integer. This contradicts the fact that 111 is odd, because
111 =2(55) + 1.

Proof: Suppose to the contrary that there exist integers m and n such
that 4m + 6n = 9. Using the distributive property of multiplication,
we see that 9 = 2(2m + 3n). Since 2m + 3n is an integer, 9 is even.
However, this contradicts the fact that 9 is odd, because 9 = 2(4) + 1.

n=3 17 m=-3, n=1 19.2=00rz=1

Proof: Suppose there exist two distinct multiplicative identities 1
and 1* for the set of integers. Thus, for all integers m, (1) 1m =
m and (2) 1*m = m. Letting m = 1* in equation (1), we obtain
(3) 1(1*) = 1*, and letting m = 1 in equation (2) yields (4) (1*)1 = 1.
By the commutative property of multiplication 1(1*) = (1*)1. Hence,
from (3) and (4), 1* = 1(1*) = (1*)1 = 1. Consequently, the multiplica-
tive identity for the set of integers is unique.

Proof: Let x be any real number. Adding y to both sides of the
equation x?y = x —y, we obtain (1) 22y +y = x or (z2+1)y = . Since
2?2 + 1 # 0, a solution of (1) is y = x/(z? + 1). Suppose there exists a
distinct second solution y*. That is, suppose (2) z2y* + y* = x. From
(1) and (2) it follows that x%y* +y* = 22y +y or (22 +1)y* = (22 +1)y.
Since 22 +1 # 0 by the left-hand cancellation property of multiplication
for real numbers, y* = y.

Proof: Our proof is by cases.

Case 1. Let n be any even integer. Then there exists an integer k such
that n = 2k. The integers k — 1 and k + 1 are unequal and (k — 1) +
(k+1)=2k=n.

Case 2. Let n be any odd integer. Then there exists an integer ¢ such
that n = 2¢+ 1. The integers ¢ and £+ 1 are unequal and £+ (£ +1) =
20+1=n.
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27. Proof: Let n and m be any integers. Since the integers are closed

29.

31.

under the operation of subtraction, k = n—m is an integer and m+k =
m+ (n—m)=n.

Proof: We prove this theorem by contradiction. Let m be any odd
integer and suppose (1) m = p + q + r where p, ¢, and r are even
integers. Thus, there exist integers ¢, j, and k such that p = 2¢, ¢ = 27,
and r = 2k. Substituting into equation (1), we find m = 2i + 25 + 2k =
2(i+j+k). Consequently, m is even, which contradicts our assumption
that m is odd.

Proof: We prove this theorem by cases.
Case 1. Let m be any even integer. Then there exists an integer k such
that m = 2k. Hence, m? = 4k? and 4 divides m?. That is, for m even,
m? divided by 4 has remainder 0.
Case 2. Let m be any odd integer. Then there exists an integer ¢ such
that m = 2¢ + 1. Hence,
m? = (204+1) =40 + 40 +1=4(* +0) + 1.

Thus, when m? is divided by 4, the remainder is 1.

Consequently, when m is any integer and m? is divided by 4, the
remainder is 0 or 1.

Exercises 2.2.3

Counterexample: Let a« = 1, b = 3, and ¢ = 4. Then a is odd,
a+b=c,and b is odd or c is even.

Counterexample: Let a = 2 and b = —2. Then in the set of integers
a divides b, since a(—1) = b; b divides a, since b(—1) = a; and a # b.

Counterexample: Let a = 6, b = 3, and ¢ = 4. Then a = 6 divides
bc = 12, but 6 does not divide b = 3, and 6 does not divide ¢ = 4.

Proof: Suppose a divides b — ¢ and a divides ¢ — d. Then there exist
natural numbers k£ and ¢ such that ak = b — ¢ and af = ¢ — d. Adding
these two equations, we find ak+al = (b—c)+(c—d) or a(k+£) = b—d.
Since k + ¢ is a natural number a divides b — d.

Counterexample: 2+ 3 +4 = 9.

Exercises 2.2.4

1.

a. 14.-12=168=8-21 b.6:35=210=14-15 «¢. 6-35=15-12
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Proof: Let & and < be any rational numbers. By definition of addition

for the rational numbers, the commutative property of multiplication for
the integers, and the commutative property of addition for the integers,
a ¢ a-d+b-c d-atcb cb+d-a c _a

v 99T T vd  C  abv  adbv ad%%

Proof: Let - and < be any rational numbers. By the definition

c
b’ d’
of addition for the rational numbers, by the definition of multiplication
for the rational numbers, by the left and right distributive property
of multiplication over addition for the integers, by the associative and
commutative properties of multiplication for the integers, and by the
definition of addition and multiplication for the rational numbers, we
have

a cey_a c-f+d-e :a~(c~f+d~e)
po(iog) =5 () -
:a~c~f—|—a~d~e®§:(a'c)'(b~f)+(b~d)~(a'e)
b-d-f b (b-d)-(b-f)

a-c a-e a _c a _e

_<bd>@(hf)_<b®d>@(b®f)
Proof: Assume to the contrary that there exists a rational number
p = a/b such that a and b have no common factors and p? = (a/b)? =
a?/b? = 3. Multiplying the last equation by b*, we have (1) a? = 3b°.
Hence, 3 divides a?. Either 3 divides a or 3 does not divide a. Assume 3
does not divide a; then by the unique factorization theorem (The Funda-
mental Theorem of Arithmetic) a = £2"23°5"5 ... where na, ns, - - - are
whole numbers. Hence a? = 2272305275 ... —that is, 3 does not divide
a?. Consequently, 3 divides a. Therefore, there exists an integer k such
that a = 3k. Squaring, we have (2) a? = 9k%. Substituting (2) into (1),
yields 9k? = 3b2. Dividing this equation by 3, we find 3k2 = b2. Hence,
3 divides b? and by the argument above 3 divides b. Consequently, a
and b have the factor 3 in common, which is a contradiction.

Proof: Assume to the contrary that (1) a = v/3 ++/5 is rational. Since
a is rational, a - a = a? is rational. Subtracting v/3 from equation (1),
we obtain (2) a — /3 = /5. Squaring (2) yields (a — v/3)? = (V/5)?
or a®> — 2v/3 + 3 = 5. Solving for a? yields a® = 2v/3 + 2. Thus, a? is
irrational, which is a contradiction.

Proof: We prove the contrapositive: “If z # 0 and y # 0, then xy # 07
by contradiction. Hence, we assume x # 0 and y # 0 and xy = 0. Since
every nonzero real number 2 has a multiplicative inverse ! with the
property that = !z = 1, multiplication of the equation zy = 0 by z~!
results in 27 (zy) = (z7 o)y = ly = y = 2720 = 0. That is, y = 0,
which contradicts the hypothesis y # 0.
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Proof: We prove this theorem by contradiction. Suppose z is irrational,
y is rational, and = +y is rational. Since the rational numbers are closed
under subtraction, (z +y) —y =+ (y —y) =  + 0 = z is rational.
This contradicts the hypothesis that x is irrational.

Proof: This theorem is the contrapositive of property Q1.

Proof: We prove this theorem by contradiction. Hence, we assume
x is irrational, y # 0 is rational, and xy is rational. Since y is ratio-
nal and y # 0, there is a rational number y~! with the property that
yy~! = 1. Because the rational numbers are closed under multiplication,
(zy)y~' = z(yy~') = 1 = x is a rational number. This contradicts the
hypothesis z is irrational.

Proof: Let z be any rational number, let y = x/2 + /2, which is ir-
rational, and let z = /2 — V2, which is irrational. Then = =y + 2.

Review Exercises

1.

1. = is reflexive 2. Definition of subtraction 3. Substitution of
2 into 1 4. Z7 5. Substitution of 4 into 3 6. Theorem 2.3
7. Substitution of 6 into 5 8. Definition of subtraction 9. Sub-
stitution of 8 into 7

a. Proof: We prove this theorem by proving its contrapositive. Let m
be an even integer. Then there exists an integer k£ such that m = 2k.
Squaring, we obtain m? = (2k)? = 2(2k?). Thus, m? is an even integer.
Consequently, we have proven the theorem “If m is an even integer, then
m? is an even integer.” Therefore, its contrapositive is a theorem also.

b. Proof: We prove this theorem by proving its contrapositive—namely,
“If either m is even and n is even or m is odd and n is odd, then m —n
is even.” We prove this result by cases.

Case 1. Assume m and n are both even integers. Then there exist
integers k and ¢ such that m = 2k and n = 2¢. Subtraction results in
m —mn =2k —2¢ =2(k —¢). Since k — ¢ is an integer, m — n is an even
integer.

Case 2. Assume m and n are both odd integers. Then there exist
integers k and ¢ such that m = 2k 4+ 1 and n = 2¢ 4+ 1. Subtraction
results in m —n = 2k + 1) — (20 + 1) = 2(k — ¢). Since k — ¢ is an
integer, m — n is an even integer.
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a. Proof: We prove this theorem by cases.

Case 1. Assume m is an even integer. Then there exists an integer k
such that m = 2k. Computing, we find m(m + 3) = (2k)(2k + 3) =
4k? + 6k = 2(2k? + 3k). Because 2k? + 3k is an integer, m(m + 3) is an
even integer.

Case 2. Assume m is an odd integer. Then there exists an integer ¢ such
that m = 2¢+1. Computing, we find m(m+3) = (20+1)((2(+1)+3) =
(2041)(20+1)+3(20+1) =4 + 40+ 1+ 60+ 3 =42+ 100 + +4 =
2(20% + 50 + 2). Because 202 + 5/ + 2 is an integer, m(m + 3) is an even
integer.

a.n=1 bm=2n=1 c. k=1,m=2,n=0

d. For z > 2, the real number y = —z/(x — 2) is negative, because the
numerator is negative and the denominator is positive. The following
computation proves y satisfies the equation (1)  + zy — 2y = 0:

rt+zy—2y=c+(x—-2y=z+(x—-2)[-z/(r—2)=x—2=0

To prove y is the unique solution of = + xy — 2y = 0, suppose y* # y
satisfies (2) x + xy* — 2y* = 0. It follows from (1) and (2) that x + xy —
2y = x + xy* — 2y*. Subtracting = and factoring, we obtain (z —2)y =
(x — 2)y*. Because, © — 2 # 0, y = y* and the solution of (1) is unique.

a

a. Proof: Using the triangle inequality, we find
[zl =lz+y—yl=lz+y) + =yl <lz+yl+[-yl =z +y[+ [yl
Hence, |z] —[y| < |z +y].

b. Proof: From 11a we have (1) |z| — |y| < |z — y|. Interchanging = and
y, we get (2) |y| — |z| < |y — 2| = [z — y|. Multiplying (2) by —1
yields (3) || — |y| > —|z — y|. Combining (1) and (3), we find
—lz —y| < |z| = ly| < |z —yl|. Therefore, [|z| - |y|| < |z —yl.

c. For all real numbers z, y, z, by the triangle inequality

=zl =z -y + -2 <]z -yl +|y—z|

@) —z  (4) [z]

The statement is true. The proof is invalid.

Proof: Since the square of any real number is greater than or equal to

zero, (z —1)? > 0. Squaring, we find 22 — 2z +1 > 0. And adding 2z, we

obtain #? + 1 > 2z. Dividing by = > 0, we see that

241 1
Tt =x+ - >2.

€T €T
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Chapter 3

Exercises 3.1

1' a7d’e 3' a’ d7f7g’h7 i’j7m7o7q7r7t
5. Proof: (i) Let € C. Factoring, we find 22> — 1 = (z — 1)(z + 1) = 0.
Hence, the elements of C' are the integers —1 and 1. Since | — 1| = 1,
1€ D and since [1| =1, 1 € D. Therefore, C C D.
(ii) Let n € D. Since n is an integer and [n| =1, n=—1orn = 1.
Substituting the real number z = —1 into the expression z? — 1, we see
(-1)2-1=1-1=0,s0 —1 € C. Likewise, substituting z = 1 into
22 —1yields12—1=1—-1=0,s01¢& C. Hence, D C C.
SinceCC Dand DCC,C=D.
7.
U U U
@) !
9.2 1, 2" —1, 272
11. a. 0 b. 0, {1}, {2} ¢ None d. 0
13.a. A={1}, B={1,2},C={1,3} b. A={1}, B={l, } C = {3}
c. A={1}, B={1},C={1} d. A={1}, B={2}, C={1,3}
e. A={1}, B={{1}},C = {1}
£ A={1}, B={{1}L1},C = {{1},2}
Exercises 3.2
Loa {1,2,4) b. {2,a,¢} c. {a,e,0,1,4}
d. {1,2,4,a,e} e. {0} f. {2}
g {2} h. {1,2,4,a,¢} i 0
jo A{L2,4,a,e,0}=U k. {0,2,4} L {0}
m. {a,e,0}=A n. 0

3. a.B b.F' ¢ BNF d BNF e FNB f BNFNT
g. BNFNT

5. Proof: Let A be any set and let © € AN U. By definition, x € A and
x € U. Therefore, (1) ANU C A.
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13.

15.

17.
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Let z € A. Since U is the universe, z € U. Hence, x € ANU and
therefore (2) A C ANU. It follows from (1) and (2) that ANTU = A.

Proof: Let A be any set of the universe U. By the definition of
complement,

A={zxeU|z¢gA}={xecU]|~(zec A}
and by double negation
(AY ={zeU|-(~(zx€A)}={zeU|ze )} =A

Proof: Let x € A. Then x € Aor x € B. That is, x € AU B. Hence,
ACAUB.

Proof: First, assume A C B and suppose © € AU B. Hence, x € A or
x € B. If z € A, then x € B, since A C B. In either case, x € B and
(1) AUBC B.

By Exercise 9, (2) BC AU B.

Consequently from (1) and (2), if A C B, then AU B = B.

Next, assume A U B = B. By Exercise 9, A C AU B = B. Hence, if
AUB = B, then AC B.

Proof: Assume A C B. Let x € B’. Then x ¢ B. By Exercise 8b
of Exercises 3.1, z ¢ A and, therefore, z € A’. Consequently, if A C B,
then B’ C A'.

Now assume B’ C A’. By the first part of this proof, (4")" C (B’).
And by Exercise 7, (A’) = A and (B’)’ = B. Hence, if B’ C A’, then
ACB.

Consequently, A C B« B’ C A'.

Proof: Assume A = B. Then AUB = BUB = Band ANB =
BN B = B. Therefore, if A= B, then AUB = AN B.

Next, assume AU B = AN B. First, suppose € A. Then by definition,
x € AUB and since AUB = ANB, x € B. Hence, (1) A C B. Likewise,
x € B implies © € A; therefore, (2) B C A. From (1) and (2) it follows
that A = B.

a. Proof: Let A be any set and assume B C C. Suppose z € AU B.
Then z € Aor z € B.

(1) Ifx e A, thenz e AUC.

(2) If x € B, then x € C since B C C. Hence, x € AUC.
Consequently, if A is any set and B C C, then AUB C AUC.

b. Proof: Let A be any set and assume B C C. Suppose x € AN B.
Then z € A and x € B. Because x € B and B C C, z € C. Hence,
x € ANC. Consequently, ANBC ANC.
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19. Proof: Assume A C C and B C D and let z € AUB. Either (1) x € A

21.

or (2) z € B.

Case 1. If x € A, then since ACC,z€ C and x € CUD.

Case 2. If x € B, then since BC D,z € D andxz € CUD.

In either case, AUB C CUD.

Proof: Let z € B. Since ANB =10, ¢ A. Thus, z € A’. Since
C C A and z € A’ by Exercise 8b of Exercises 3.1, ¢ C. Because

x € B,x € AUB and because AUB C CUD, x € CUD. Since
x€CUDand ¢ C,x € D. Thus, BC D.

Exercises 3.3

1.

Proof: By Theorem 3.5, X —Y = X NY’. Thus,
(ANB)—C=(AnB)NnC'=An(BNC")=An(B-0C).

Proof: Taking the intersection of A — B and AN B, we find
(A—B)U(ANB)=(AnB)YN(ANB)=ANn(B'NnB)=AnN0H=0.
Hence, the sets A — B and AN B are disjoint.

Proof: Assume AN B = ). By Exercise 2, A = (A— B) U (AN B).

Since ANB =0, A=A — B. Likewise, B = (B — A)U (BN A) and
since BNA=ANB=10,B=B - A.

Proof: By Theorem 3.5, X —Y = X NY’. Thus,
(A-C)—(B-C)=(ANnC)—(BnC")=AnC)n(BnC"Y

=(ANnCHN(B'UC)

[(ANCYNBTU[(ANC)NC)|

[AN(C'NnBHU[AN(C'NCO)]

=[AN(B' NnCHU[AN(]

[(AnB)YnC) U

=(ANB)-C=(A-B)-C

a. Proof: AANAB=(A-B)U(B-—A)=(B-—A)U(A-B)=BAA.

b. Proof: Let t € (AAB)AC =[(AAB)—-CJU[C —(AA B)]. Then
Hze[(AAB)—Clor (2) z € [C — (A A B)]. We consider these two
cases separately.

Case 1. Suppose z € (AAB)—C. Thenxz € AAB = (A-B)U(B—A)
and x ¢ C. There are two subcases to consider.

Case 1. a. Suppose ¢ € A — B. Then z € A and = ¢ B. Since
r€Aande ¢ Bandax ¢ C,x ¢ BAC but z € [(A— (BAC)], and



342

Introduction to Mathematical Proofs

therefore z € AN (BAC)=[A— (BAC)|U[(BAC)— A]. Thus, in
case la, (AAB)ACCAA(BACQC).

Case 1. b. Suppose x € B— A. Then z € B and x ¢ A. Since x € B
andz ¢ C,x € B—C andzx € BAC = (B—C)U(C—B). Furthermore,
sincex ¢ A,z € (BAC)—Aandze €e AAN(BAC)=[A—(BAC)U
[(BAC)— A]. Hence, in case 2b, (AAB)ACC AA (BACQC).

Case 2. Suppose z € C — (AAB). Thenz € Candx ¢ AAB =
(A—B)U (B — A). There are two subcases to consider. Either
a.r€ ANBorb.ze (AUB) =A'NPB.

Case 2. a. Suppose x € AN B. Then x € A and z € B. Since x € B
andz e C,e ¢ BAC=(B—-C)U(C— B). In addition, since = € A4,
x€[A—(BAC)|andz € [A—(BAC)U[(BAC)—A] = AA(BAC).
Thus, in case 2a, (AAB)ACCANAN(BAC).

Case 2. b. Suppose v € AN B’. Then x € A’ and z € B’. Thus,
x ¢ Aand z ¢ B. Sincex € C and z ¢ B, z € (C — B) and
xre€ (B-C)U(C—-B)=BAC. Sincex ¢ A,z € (BAC)—-A
and x € [A—(BAC)U[(BAC)— A = AA(BAC). Hence, in
case 2b, (AAB)ACC AN (BAC).

Consequently, by cases (AAB)ACCAA(BACQC).

To complete the proof of this theorem, one proves by cases that
AN(BAC)C(AAB)AC.

c. Proof: Let A be any set. By definition,
ANDP=(A-D)U@-A)=AU0=A.

d. Proof: Let x € AN(BAC). Thenz € Aand x € BAC =
(B-C)U(C—B). Thus, x € Aand (1) x € B—C = Bn<C’ or
(2) x € C — B=CnB'. We consider these two cases separately.

Case 1. Suppose x € A, v € B, and x ¢ C. Then x € AN B
and © ¢ ANC. Hence, z € [(AN B) — (AN ()], and therefore
z€[(ANB)— (ANC)U[(ANC)—(ANB)=(ANB)A(ANC).

Case 2. Suppose x € A, v € C, and x ¢ B'. Then z € ANC
and © ¢ AN B. Hence, z € [(ANC)— (AN B)], and therefore
z€[(ANB)— (ANC)U[(ANC)—(ANB)|=(ANB)A(ANC).
Consequently, AN (BAC)C (ANB)A(ANC).
Next, let z € (ANB)A(ANC)) = [(ANB)—(ANC)U[(ANC)—(ANDB)].
There are two cases to consider.
Case 1. Suppose z € [[ANDB) — (ANC)]. Then x € AN B but
z ¢ ANC. Sincex € ANB,z € Aand x € B. Sincex ¢ ANC
and x € A, x ¢ C. Since x € Band z ¢ C, z € B— C, and therefore

x € BAC = (B—-C)U(C — B). Furthermore, since x € A,
x € AN(B AC). Hence, in this case, (ANB)A(ANC) C AN(BAC).
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Case 2. Suppose z € [(ANC)— (AN B)]. Then z € AN C and
z ¢ ANB. Sincex € ANC,z € Aand z € C. Since z € A and
x¢ ANDB, z ¢ B. Since x € C and z ¢ B, v € C — B, and therefore
x € BAC = (B—-C)U(C—B). Thus, in this case, (ANB)A(ANC) C
AN(BAC).

Consequently, (ANB) A (ANC)CAN(BAC).

In conclusion, since both AN (BAC) C (ANB)A (AN C) and
(ANB)A(ANC)CAN(BAC),AN(BAC)=(ANB)A(ANCOC).
e. From the definition of symmetric difference, we find
(1) ANA=(A-—AUA-A)=0ubd=0.

Then it follows from parts b, (1), a, and ¢ that
AN(AAB)=(AANA)AB=0AB=BA)=B.
Hence, X = A A B is the solution of the equation A A X = B.

Proof: Assume A and B are nonempty sets and assume Ax B = Bx A.
Let a € A and let b € B. Then (a,b) € A x B= B x A. Hence, a € B
and b € A. Thus A C B and B C A. Consequently, A = B.

Next, assume A = B. Then by substitution of B for A and A for B,
Ax B=DBxA.

a. The given statement is false. Let A = {a}, B = {b}, and C = 0.
Then Ax C =B xC =0 but A+# B.

b. Proof: Let A and B be any sets and let C # ().

Case 1. If A =), then AxC = )xC = ). By hypothesis AxB = BxC.
So, Bx C =1{. Since C # 0, B=0 and A = B.

Case 2. If B=0,then AXxC=BxC =0xC =1. Since C # (),
A=0and A= B.

Case 3. Suppose A and B are nonempty sets. Let a € A and ¢ € C.
Then (a,c) € Ax C = B x C. Hence, a € B and A C B. Next, let
be Bandd € C. Then (b,d) € BxC = Ax C. Hence, b € A and
B C A. Because AC Band BC A, A= B.

Proof: We prove this theorem by cases.

Case 1. Suppose A = . Then A x (BNC) =0 x (BNC) = 0,
AxB)NAxC)=0xB)Nn@xC)=0N0 =0, and consequently
Ax (BNC)=(AxB)N(AxC).
Case 2. Suppose B=10. Then Ax (BNC)=Ax(0NC)=Ax0 =10,
(AXB)N(AxC) = (Ax0)N(AxC) = 0N(AxC) = 0, and consequently
Ax (BNC)=(AxB)Nn(AxC).
Case 3. Suppose C =(). Then Ax (BNC)=Ax (BN0)=Ax0 =70,
(AxB)N(AxC) = (AxB)N(Ax0) = (AxB)N) = 0, and consequently
Ax (BNC)=(AxB)Nn(AxC).
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Case 4. Assume A# 0, B # ), and C # . Then
(a,0) e Ax (BNC) & (ae A)A[be (BNC)]
Sae A)N[(be B)A(be O)]
S(ae ANDeB)N[(ae A)A(be )]
< [(a,b) € (A x B)] Al(a,b) € (Ax C)]
& (a,b) € [(Ax B)Nn (A x ()]
Therefore, A x (BNC)=(Ax B)N(AxC).

19. Proof: We prove this theorem by cases.

Case 1. Suppose A = @; then (Ax B)N(C' x D) = (lx B)N(C x D) =
IN(CxD) = P and (ANC)x(BND) = (INC)x(BND) = dx(BND) = 0.
Hence, (Ax B)N(C x D) =(ANC) x (BND,).
Case 2. Suppose B = {); then (Ax B)N(C x D) = (
IN(C'x D) = and (ANC) x (BND) = (ANC) x (0ND
Hence, (Ax B)N(C x D) =(ANC) x (BUD,).
Case 3. Suppose C' = ); then (Ax B)N(C' x D) = (A x ) (0 x D) =
(AxB)ND = 0 and (ANC)x(BND) = (AN0)x (BND) = 0x(BUD) = 0.
Hence, (Ax B)N(C x D) =(ANC) x (BND).
Case 4. Suppose D = (; then (Ax B)N(C'x D) = (A
(AxB)N0 = 0 and (ANC) x (BND) = (ANC)x (BN0)
Hence, (Ax B)N(C x D) =(ANC) x (BND).

Case 5. Assume A# 0, B#0,C #0,and D # (). Then
(z,y) € (Ax B)N(C x D) < [(z,y) € Ax B]A[(z,y) € C x D]
ANyeB)AN(xeC)N(ye D)
A)N(z e C)N[(ye B)A(y € D)
€ceANC)AN(ye BNnD)

& (z,y) € (ANDB) x (B x D)
In all cases, (A x B)N(C' x D)=(ANC) x (BND,).

Ax0)N
)=

x B)yn(C
= (ANC) x

S
S

[(
(x
(x

21. Proof: Suppose (a,b) = (¢,d). Then
{{a} {a,b}} = {{eh {e a1 & ({a} = {e}) A ({a.b} = {.d})
S (a=c)A(b=4d)
That is, (a,b) = (¢,d) if and only if a = ¢ and b = d.
23. a. {z|—4<z<2} (—4,2)
b. {z| - 1<z <1} (—1,1]
c. {z] —4<a} (—4, 00)
d. {1y {1}
e. {zjlz<—-lor2<ux} (—o0, —1] U [2, 00)
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f.{z]z<1} (—00,1)
g {r|l<z<2} (1,2)
h. {z| —4<x <1} (—4,1)

Exercises 3.4

1. a. {3,4,6,8,5,9,7,11,12}  b. {8}

3 a {2,3,4,56} b, {3,4} c. {1,7} d. {1,7}
e. {1,2,5,6,7} f. {1,2,5,6,7} g. {2,3,4,5,6} h. {3,5}
i. {2,4,6,3) j. {2,3,4,6}

5. a. A5 b. A10 C. A1 d. AG e. N— A1 f N —A5

7. a. (i) [1,00) (i) 0 b. (i) [1,00) =N (i) 0
c. )R (i) (-1,1)  d. (i) (~1,2) (ii) (0,1)
e. (i) (~1,1) (i) (0,1) £. (i) [0,2) (ii) [0, 1]

9. Proof: There are two cases to consider: F = () and F # 0.

Case 1. If F =0, then |J,.; Bi =0 and |J,;c;(AN B;) = . Hence,
An((UB)=4n0=0=JAnB)).
i€l iel

Case 2. Suppose F # () and let z € U.

€ AN (Uer Bi)
S (e AN (zeUyer Bi) Definition of intersection
< (xe A)N[(Fiel)(z € B;)]  Definition of |J,.; Bi
& (Fiel[(x e A)A(x € B;)] A theorem for quantifiers
S (Fiel(ze ANDB) Definition of intersection
< x el (AN B;) Definition of |J;.;(AN B;)

11. a. (A1 UAQ) n (B1 UB2 UBg) =
[(A1 U As) N By U [(Ay U As) N Ba] U[(A; U As) N Bs] =
(A1NB1)U(A2NB1)U(A; NB2)U (AN Ba)U(A; N B3)U(AsNBs) =

U?:1 (U?:1 (Ai N Bj))

b. U?:1(U;11(Ai N B;)) C. UjeJ(UiGI(Ai N B;))
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13. a. Proof:
r€eB-— UiEI A;

S (reB)N(xr ¢ Ujer Ai) Definition of complement
< (x e B)A[=(Fi € I)(z € A;)] Definition of union
S (xeB)N[(Viel)(x ¢ Ai)] A negation theorem for quantifiers

< (Vie[(r € B)A(x ¢ A;j)] A theorem for quantifiers

& MViel)(xe B-A4;) Definition of complement
& Ner(B—4) Definition of intersection
b. Proof:

z€B—Nics Ai
& (x € B)A(x ¢ Ner Ai) Definition of complement
< (x e B)AN[-(Vie I)(x € A;)] Definition of intersection
S(xeB)AN[(Fiel)(x ¢ A;)] A negation theorem for quantifiers
& FieD[(zeB)A(z ¢ A)] A theorem for quantifiers
S (Fel)(zreB-4;) Definition of complement

< Uer(B—4) Definition of union

Review Exercises

1. b, d

3' a” d’ e’ g’ i’j

5. a {3,526} b0 c U d 0 e {360 fC g {2}
ho {1,3} i {4,7} ] {(3,1),(3,3),(3,6),(5,1),(5,3),(5,6)}
k. {(1,3),(1,5),(3,3),(3,5),(6,3),(6,5)} 1 {(3,2),(5,2)}

9. a. A1 b @

11. fA=0orB=0or C=0,then CC ANB & C C Aand C C B. So,
suppose A, B, and C are nonempty sets.
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Assume C C AN B and let = be an arbitrary element of C. Since

CCANB,xz€ Aand x € B. Therefore, C C A and C C B.

Assume C C A and C C A and let x be an arbitrary element of C'.

Since C C A, x € A and since C C B, x € B. Hence, z € AN B and

CCANB.
13. a. and b. Let A ={1,2}, B={1,3}, and C = {1}.
c. Let A={1,2} and B = {1}.
d. Let A=D = {1} and B =C = {2}.
e. Let A=C = {1} and B = {2}.
f. Let A= {1}, B= {2}, and C = {3}.
15. a. Proof:

(z,y) e(ANB)xCsrxecAandze BandycC
< (z,y) € Ax Cand (z,y) € BxC
< (z,y) € (Ax B)N (B xC)

b. Proof:

(z,y) e (AUB)xC o rxcAUBandyecC
S(xedandyeC)or(ze€ Bandyel)
& (r,y) € AxCor (x,y) € BxC
& (z,y) € (AxC)U (B xC)

. Proof: Let (z,y) € (A xC)— (B x()). Then (z,y) € A x C,

which implies that © € A and y € C. Also, (z,y) ¢ B x C. Since
y € C, it follows that x ¢ B. Because x € A and z ¢ B,
x € (A — B). Furthermore, since y € C, (r,y) € (A — B) x C.
Hence, (Ax C)—(BxC))C(A—B)xC.

17. The statement is false. Counterexample: A = {1}, B = {1,2}, and
C = {2}.

19. The statement is false. Counterexample: A = {1} and B=C =D = 0.
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Chapter 4

Exercises 4.1

11.

13.

a. {(1,0),(2,a),(3,a)}

b {0,{(1,0)},{(2,0)},{(3,0)},{(1,a), (2,0) },{(1, @), (3,a)},
{(2,a),(3,a)}, A x B}

c. 8

{(2,2),(2,6),(2,12),(3,6),(3,12),(4,12)}

a. {¢,b,3,2,a} b. {1,3,¢e,b, f,6}

c. {(1,¢),(3,b),(e,3),(b,2),(f,a),(6,0)} d. S

a. {(5,4),(3,2)} b {(1,4)} ¢ {(22),3,3)} d {(1,1),(2,2)}

e. 0 f. 0 g. {(4,5),(2,3)} h. {(4,3),(3,2)}

a. {(z,y) |y is the paternal grandfather of z.}

b. {(x,y) |y is the paternal grandmother of z.}

c. {(z,y) |y is the maternal grandfather of x.}

d. {(x,y) |y is the mother of a brother of x.}

e. {(z,y) |y is the uncle of z on the mother’s side of the family.}

f. {(z,y) |y is the father of a sister of x.}

g. {(z,y) |y is the aunt of = on the mother’s side of the family.}

h. {(x,y) |y is the mother of a sister of x.}

a. Let R={(1,2)} and S = {(3,4)}. Then So R =0, Dom(So R) = 0,
Dom(R) = {1}, and Dom(R) € Dom(S o R).

b. Let R ={(1,2)} and S = {(3,4)}. Then So R={), Rng(So R) =0,

Rng(R) = {2}, and Rng(R) Z Rng(S o R).

Exercises 4.2

1.

T1. Proof: z <0 < x — 0 is positive. < x is positive.

T3. Proof: Let z,y € R. Then y — 2 € R and by axiom O1, exactly
one of the following statements is true:

(1) y —x =0, in which case x = y.



Answers to Selected Exercises 349

(2) y — x is positive. Thus, by T1,0 <y — z and = < y.

(3) —(y — z) is positive. Hence, by T1,0 <z —y and y < x.

T5. Proof: By definition, z < 0 & 0 — x = —z is positive. <
x is negative.

T7. Proof: By T5, since z < 0 and y < 0,  and y are negative, and
therefore —z and —y are positive. By axiom O3, (—z)(—y) = zy is
positive. Consequently, by T1, zy > 0.

T9. Proof: By T3 with x = 0 and y = 1, exactly one of the following
statements is true: (1) 0 =1, (2) 0 < 1, or (3) 1 < 0. Clearly, (1) is
false. Suppose (3) is true. By T7 with z =y =1,1-1=1 > 0, which
contradicts Theorem T3, because 1 < 0 and 1 > 0 are both true.

T10. First, we prove two lemmas.

Lemma 1. Let z and y be real numbers. If x > 0 and y < 0, then
zy < 0.

Proof: Since y < 0, by T5, y is negative and by definition —y is positive.
Since z > 0, by T1, z is positive. By axiom O3, z(—y) = —(zy) is
positive. Thus, by definition, xy is negative and by T5, zy < 0.

Lemma 2. Let z be a real number. If z > 0, then L > 0.
z

Proof: By T3, exactly one of the following is true: (1) = 0,

IS

z

1 1 1
(2) — < 0,0r (3) 0 < —. Because z - (—) =1 # 0, statement (1)
z z
1 1
is false. Suppose — < 0. Then, by Lemma 1, (—) -z =1 < 0, which is
z z

1
false by T9. Hence, 0 < —.
z

Proof of T10: Assume 0 < z < y. Because 0 < x and 0 < y, = and
y are positive and by axiom O3, zy is positive. Hence, by T1, zy > 0

1
and by Lemma 2, — > 0. Since y > 0, by Lemma 2, (4) 0 < —. Since
Ty Y
1
x <y, wehave y—x > 0. Because — > 0andy—z >0, —(y—x) > 0.
Ty Ty

1 1 1
That is, — — — > 0 and (5) — > —. It follows from (4) and (5) that
Y T Y

SHEE N

0< l <

Y
T11. Proof: Since x < y, y — x is positive. By T1, z is positive
because 0 < z. By axiom O3, (y — )z = yz — xz is positive, and by T1,
yz —xy > 0. Hence, yz > xz and zz < yz.

T13. Proof: Assume z < y. Then y —x > 0. Since —(—y) = y, by
substitution —(—y) —x = (—z) — (—y) > 0. Hence, —y < —z.
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T15. Proof: Since z < w, w —z > 0. And since z > 0, z(w — 2) =
xw —xz > 0. Therefore, (1) xz < zw. Since z < y, y —x > 0, and since
w> 0, (y —x)w = yw — zw > 0. Hence, (2) zw < yw. It follows from
(1) and (2) by T2 that zz < yw.

Because zw < yw, yw —xz > 0. Since z > 0 and w > 0, zw > 0

1
and by Lemma 2 in the proof of T10, — > 0. Multiplication and
Zw
Y

1
cancellation yields — (yw — zz) = Y I Therefore, .Y
2w z w wo oz

T17. Proof: Assume x < y and y < z. Since x < y, either z < y or
x =y. And since y < z, either y < x or y = . There are four cases to
consider.

Case 1. Suppose ¢ < y and y < z. By T2, x < z. This is a contradic-
tion.

Case 2. Suppose z < y and y = x. By substitution x < z. This is a
contradiction.

Case 3. Suppose z = y and y < x. By substitution x < z. This is a
contradiction.

Case 4. Suppose x =y and y = . Then x = y.

Consequently, if x <y and y < z, then = = y.

T19. Proof: Assume z < y and z < 0. Since = < y, either z < y or
T =y.

Case 1. Suppose z < y. Then y — x > 0 and since z < 0, (y — x)z =
yz — xz < 0. Therefore, yz < xz.

Case 2. Suppose x = y. Then xzz = yz.
From cases 1 and 2, it follows that if z < y and z < 0, then yz < zz.
Greatest Least

Least Greatest Lower Upper
Element Element Bound Bound

V2 e V2 e

a.

b. 5 -3 5
c. -7 -7

d. 5 —4 5
e. —4 —4 3
f. —v50 V50
g. 3 2 3
h. 1 3 1 3
i. -2 3/2 -2 3/2
je -2 3/2 -2 3/2
k. 3 3 6
1. 1 6 1 6
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Proof: We prove this theorem by contradiction. Assume S is a non-
empty set of real numbers with greatest lower bound m and suppose
there exists an €; > 0 such that for every x € S, * > m + ¢;. Hence,
m 4+ €1 is a lower bound for S and since €; > 0, m + €1 > m. Therefore,
m is not the greatest lower bound for S. Contradiction.

Exercises 4.3

1.

a. transitive b. symmetric c. symmetric d. reflexive, symmetric,
and transitive e. reflexive, symmetric, and transitive

) Dom(T;) Rng(T;)
1 {1,2,3,4} {2,3,4,5}
2 A A
3 A A
4 A A
5 {2,3,5} {2,3,4,5}
c. T ={(1,2),

(1,3), (1,4),(1,5),(2,3), (2,4),(2,5), (3,4), (3,5), (4,5)}

Tr = {(1,1),(1,2),(1,3),(1,4), (1,5),(2,2),(2,3),(2,4),(2,5), (3,3),
(3,4),(3,5), (4,4), (4,5), (5,5)}

T3 = {(1,1),(2,2), (3,3),

Ty = {(1,1)(1,2), (1,3), (1,

T5 ={(2,2),(2,4),(3,3), 5

d. T} is transitive.

,(1,5) (2,2),(2,4),(3,3), (4,4), (5,5)}

/\)—ﬁ/\

T is reflexive and transitive.

T35 is reflexive, symmetric, and transitive.
Ty is reflexive, symmetric, and transitive.
T5 is transitive.

e. T3 and Ty are equivalence relations on A.

Proof: Assume a € A. Since a® > 0, (a,a) € P and P is reflexive on A.
Assume (a,b) € P. Then ab > 0. Since multiplication is commutative
in the set of real numbers, ba > 0 and (b,a) € P. Hence, P is symmetric
on A. Assume (a,b), (b,c) € P. Then ab > 0 and bc > 0. By axiom O3,
ab®c > 0. By T8, b2 > 0 and by Lemma 2 in the proof of T10, 1/6% > 0.
By T11, (ab®c)/b? = ac > 0. Hence, (a,c) € P and P is transitive on A.
Since P is reflexive, symmetric, and transitive on A, P is an equivalence
relation on A.
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Proof: Suppose x € Z. Since the sum of two odd integers is an
even integer and since the sum of two even integers is an even integer,
(z,z) € R. Assume (z,y) € R. Then by definition of R, z + y =y + =
is even. Hence, (y,z) € R. Assume (z,v),(y,2) € R. Then = + y and
y + z are even integers. Adding, we find z 4+ 2y 4 z is an even integer.
Since 2y is an even integer, and since the difference of two even integers
is even, (x +2y+2) — 2y = x + z is even and (z, z) € R. Consequently,
R is an equivalence relation on Z.

Proof: Let € Z. Then ¢ — 2 =0=3-0. Hence, (z,z) € T and T is
reflexive. Suppose (x,y) € T. By definition of T, there exists a k € Z
such that x —y = 3k. Multiplying this equation by —1 and rearranging,
we find y — x = 3(—k). Since —k € Z, (y,x) € T and T is symmetric.
Suppose (x,¥), (y,z) € T. Then there exist integers k and ¢ such that
x —y =3k and y — z = 3¢. Addition yields (z —y) + (y — z) =3k + 3¢
or x —z = 3(k+¢). Since k and ¢ are integers, k + ¢ is an integer,
(z,2) € T, and T is transitive. Therefore, T' is an equivalence relation
on Z.

Proof: Let x € N. Since 22 = 22, (z,2) € V. Suppose (z,y) € V.
Then 22 = y?. Since equality is a symmetric relation, y?> = 22 and
(y,x) € V. Suppose (x,9), (y,2) € V. Then 22 = y? and y? = 22. Since
equality is a transitive relation, 22 = 22 and (x, 2) € V. Therefore, V is
an equivalence relation on N.

Proof: Let (a,b) € A. Since multiplication is commutative on the set
of integers, ab = ba and ((a,b), (a,b)) € X. Therefore, X is reflexive
on A. Suppose ((a,b),(c,d)) € X. Then ad = be. Since equality is a
symmetric relation, bc = ad and since multiplication is commutative,
cb = da. Therefore, ((¢,d),(a,b)) € X and X is symmetric. Assume
((a,b), (c,d)) € X and ((c,d), (e, f)) € X. Then ad = bc and cf = de.
Multiplying the first equation by f and multiplying the second equation
by b, we find adf = bcf and bef = bde. Hence, adf = bde. Dividing by
d # 0, we obtain af = be. Hence, ((a,b), (e, f)) € X and X is transitive.
Consequently, X is an equivalence relation on A.

Proof: Let (a,b) be an element of the equivalence relation E~1. Then
(b,a) € E. Since F is an equivalence relation, by symmetry, (a,b) € E.
Hence, E~! C E. Next, let (a,b) € E. Then (b,a) € E~'. Since E~!
is an equivalence relation, by symmetry, (a,b) € E. Hence, E C E~L.
Since ET'CFEand ECEY E-1=FE.

a. Proof: Assume R and S are reflexive relations on the set A and let
x € A. Since R is a reflexive relation on A, (x,z) € R and since S is a
reflexive relation on A, (z,x) € S. Therefore, (z,z) € RNS and RN S
is a reflexive relation on A.
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b. Proof: Assume R and S are symmetric relations on the set A
and let (z,y) € RN S. Hence, (z,y) € R and (x,y) € S. Since
R is a symmetric relation, (x,y) € R implies (y,2) € R and since
S is a symmetric relation, (z,y) € S implies (y,x) € S. Therefore,
(y,2) € RNS and RN S is symmetric.

c. Proof: Assume R and S are transitive relations on the set A and
let (z,v),(y,2) € RNS. Hence, (z,y),(y,2) € R and (z,y), (y,2) € S.
Since R is a transitive relation, (z,¥), (y,2z) € R implies (z,2) € R
and since S is a transitive relation, (z,y), (y,z) € S implies (z,z) € S.
Therefore, (z,2) € RN.S and RN S is transitive.

d. Proof: Assume R and S are equivalence relations on the set A.
Then R and S are reflexive, symmetric, and transitive relations on A.
By parts a, b, and ¢ above RN S is a reflexive, symmetric, and transitive
relation on A. Consequently, RN S is an equivalence relation on A.

Exercises 4.4

11.

a. la] = [c] = {a, c}, [b] = [e] = {b, e}, [d] = {d}, [e] = {e}

b. {{a,c}, {b, e}, {d},{e}}

a. E={ne€Z|niseven} b.O={n€Z|nisodd} c {E,O}

a. [(2,3)]lr={(z,y) e RxR|y=x+1}. Theliney=2x+1 in the
Cartesian plane.

b.For r € R define L, = {(z,y) e RxR |y=z+r}. P={L, |r € R}
is the partition of R x R corresponding to the relation 7'

D=2 (2){[0]}
Do={..,-4,-2024,..}, [1]={..,-5-3-1,1,3,5,..}

0 =1{..,-6,-3036..3 [1]=1{.,-5-2147..1}

2] = —4,-1,2,5,8,..}  (2){

4 ={...,-6,-1,4,9,14,...} (2) {[0], [1],[2], [3], [4]}
a. FE={ne€Z|niseven} b.O={neZ|nisodd} c {E 0}

Proof: For n € Z let I,, = [n,n+1). To prove P ={I, | n € Z} is a
partition of R, we must prove

(1) Forn € Z, I,, # 0.
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2

(2) If I,,, I, € P, then either I, = I,, or I, N I, = 0.
(3
(

UnGZ =R.

1) By definition, n € I,, and therefore I,, # 0.

(2) Assume I, I,;, € P. Then either n = m or n # m. If n = m, then
I, = I,,. So, suppose n # m and assume that I, N I,, # (). Without
loss of generality, we may assume that n < m and that x € I, N I,,.
Since x € I,,n <z <n+1andsince x € I,,, m < x <m+ 1. Since
n<m,n<m<x<n+1, and consequently there exists an integer m
between the consecutive integers n and n + 1, which is a contradiction.

—_ — — ~—

(3) Let © € R. By Theorem 4.9, there exists a unique integer n € Z

such that n <z <n+ 1. Hence, x € I,, and |, .4 In = R.

13. Proof: Let S, = {(z,y) e Rx R | n—1< /22 +y? < n}. To prove

15.

17.

P ={S, | n €N }is a partition of R X R, we must prove

1) For n € N, S,, # 0.

2) If S,,, S;n € P, then either S, = S, or S, N S, = 0.

3) Unen Sn = R x R.

1) Let n € N. Then (n —1,0) € S,, because n —1 = +/(n — 1)? 4 02.

(2) Assume S, S,, € P. Then either n = m or n # m. If n = m, then
Spn = Sm. So, suppose n # m and assume that S, NS, # 0. Without
loss of generality, we may assume that n < m and that (z,y) € S, NSy,.
Thenn—1< /22 4+9y?> <nand m—1< /22 + y?> < m. Since n < m,
n—1<m—1<+/x?+ y? <n. That is, there exists an integer, m — 1,
between the consecutive integers n — 1 and n, which is a contradiction.

(
(
(
(

Proof: First, suppose [a]g = [b]g and let « € [a]g. Then (a,z) € R.
Since [a]gr = [b]r, © € [b]g and (b,x) € R. Because R is symmetric,
(x,b) € R, and because R is transitive, (a,b) € R.

Next, suppose (a,b) € R. By definition b € [a]g and by Theorem 4.14,
[b]r = [a]

Proof: We prove [a]g N [b} = = (a,b) # R by proving its contra-
positive: (a,b) € R = [a]g N [b]r # 0. By Theorem 4.15, (a,b) € R =
[a}R = [b}R Since a € [Q}R and [ } = [b}R, a < [b}R and [a]Rﬂ[b}R;«é @
And we prove (a,b) ¢ R = [a]gN [b]r = 0 by proving its contrapositive:
[algN[b]r # 0 = (a,b) € R. By Theorem 4.16, [a]gN[blr # 0 = [a]r =
[b]r- It follows from Theorem 4.15 that [a]r = [b]r = (a,b) € R.
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Review Exercises

1.

11.
13.

15.

Dom(R) = {a,b,1,z,3} Rng(R) ={2,1,¢,d,y}
R = {(2’ a)’ (1’ b)’ (C’ 1)’ (I’d)’ (y’ 3)}
T ={(z,y) | 3y + 2z =4}

a. WoX ={(z,y) |y=cos(lnz)} XoW ={(z,y)|y=In(cosz)}
b. Dom(W o X) = (0,00) Rng(W o X) = [~1,1]
Dom(XoW) = U, cz((4n—1)7/2, (4n+1)7/2) Rng(XoW) = (—o0,0]

a. not reflexive, not symmetric, transitive, and not an equivalence rela-
tion

b. reflexive, symmetric, transitive, and an equivalence relation

c. reflexive, not symmetric, not transitive, and not an equivalence rela-
tion
d. not reflexive, symmetric, not transitive, and not an equivalence rela-
tion

Proof: Assume R is a symmetric and transitive relation on A and
assume Dom(R) = A. Since Dom(R) = A, for every x € A there
exists some y € A such that the ordered pair (z,y) € R. Because R is
symmetric, (y, ) € R. Since R is transitive and because (z,y) € R and
(y,x) € R, we have (z,z) € R. Therefore, R is reflexive on A.

Proof: To prove R is an equivalence relation on Z, we prove R is
reflexive, symmetric, and transitive on Z.

Suppose n € Z. Then because n =n+5-0 and 0 € Z, the ordered pair
(n,n) € R and R is reflexive on Z.

Suppose m,n € Z and (m,n) € R. Then there exists a k € Z such that
n = m + 5k. Hence, m = n+ 5(—k). Since —k € Z, the ordered pair
(n,m) € R and R is symmetric on Z.

Suppose £,m,n € Z, ({,m) € R, and (m,n) € R. Since ({,m) € R,
there exists a k € Z such that (1) m = £ + 5k. Also, since (m,n) € R,
there exists a j € Z such that (2) n = m + 5j. Substituting for m in
equation (2) from equation (1), we find n = ({+5k)+55 = £+5(k + ).
Since k + j is an integer, (¢,n) € R and R is transitive on Z.
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17. Proof: First, we prove that if Ax B = B x A, then A =0, B = 0,
or A=B.If A= 0 or B =), we are done. So, suppose A # @ and
B # (. Let x be an arbitrary element in A and choose any element
y € B. The ordered pair (z,y) € AXx B = B x A. Hence, x € B and
A C B. Likewise, B C A and therefore A = B.

Next, we prove by cases that if A=0, B=0, or A= B, then A x B =
B x A.

Case 1. f A=0,then Ax B=0x B=0=Bx0) =B x A.

Case 2. f B=(,then Ax B=Ax0=0=Bx0) =B x A.

Case 3. f A=B,then Ax B=Ax A=Bx A.

19. Proof: Let x € A. Since R is reflexive, R(z) = x, and since S is reflex-
ive, S(xz) = z. Calculating, we find (R o S)(z) = R(S(z)) = R(z) = =.
Hence, Ro S is reflexive.

25. The statement is true, and the proof is valid.

27. The statement is true, but the proof is invalid.

Chapter 5

Exercises 5.1

1.

9.

a. {January, February, March, April, May, June, July, August, Septem-
ber, October, November, December}

b. {28,30,31}

c. (i) 31 (i) 28 (iii) 30

d. (i) February (ii) April, June, September, November  (iii) January,
March, May, July, August, October, December  (iv) None

b, ¢
c,d, e f, h
a. No b. Yes
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Domain Range
a. N {9}
b. N {n|n=m?->5and m € N}
c. Z The set of odd integers
d. Z — {3} Z — {6}
. Q Q
f. Q {s|s=4—r?andre Q}
g. R (2, 00)
h. R—{nn/2 | neZ} (—o0, =3]U[3,00)

a.2=8 b.32=9 c nY)"X)

a. (i) well-defined (ii) fog={(1,4),(2,1),(3,4)}
b. (i) not well-defined

(i) well-defined (i) (f o g)(n) = 2n — 17

(i) not well-defined

(i) well-defined (i) (f o g)(n) =n?+6

(i) well-defined ~ (ii) (f o g)(n) =7 — v/n + n?

(i) not well-defined

). Hence, on Dom(f Ng), f = g. Next, suppose (a,b) € fNg and
c) € fNg. Then (a,b) € f and (a,c) € f. Since f is a function,
c. Therefore, by the definition of a function, f N g is a function.

c.
d.
e.
f.
g.
Proof: Suppose (a,b) € fNg. Since f and g are functions, b = f(a) =
g(a
(a,

h—

Exercises 5.2

1.

a~B:{1’2’3}’ _{(’ )’(’1)’(’2)}
b. B:{LQ}’ _{(aal)’(b’ )’(C’ 2)}
c. B=1{1,2,3,4}, f={(a,1),(b,2),(c,3)}

d. B={1,2,3}, f={(a,1),(b,2),(c,3)}

a. A= {1}, B={a,b}, C ={z,y}, f = {(L,a)}, g = {(a,2), (b,y)}

b. A*{l} B={a,b}, C={z,y}, f ={(L,a)}, g = {(a, 2)}

c. A={1}, B={a,b}, C={z}, f ={(1,a)}, g = {(a, 2), (b, 2)}

d. A={1,2}, B={a}, C={z}, f = {(L,0),(2,a)}, g = {(a,2)}

e. A={1,2}, B={a,b},C={z}, f ={(L,a),(2,0)},9 = {(a,2), (b, )}
f. A={1}, B={a,b}, C={z}, f ={(1,0)}, g = {(a,2), (b, x)}

a. [2,00) b. [0,7] ¢ (—7/2,7/2) d.[-2/3,00)
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Proof: Assume f: A Band g : B C. And suppose there exists
a,b € A such that (g0 f)(a) = (g0 f)(b). Thus, g(f(a)) = g(f().
Since g is one-to-one, f(a) = f(b). And since f is one-to-one, a = b.
Therefore, g o f is one-to-one.
a. The solution of the equation m + 2 =1is m = —1 ¢ N. Therefore,
there is no natural number m which satisfies the equation f(m) =m +
2 = 1. Hence, f is not onto N.
b. The solutions of the equation m® + m = 1 are .6823278 ¢ N,
—.3411639 + 1.161541¢ ¢ N, and —.3411639 — 1.1615417 ¢ N. Thus,
there is no natural number m which satisfies the equation f(m) =
m3 +m = 1. Hence, f is not onto N.
c. For z € R, ¢ > 0, so there is no real number = such that e* = 0.
Hence, f is not onto R.
e. Since |z| > 0, there is no real number z such that || = —1. Hence, f
is not onto R.
g. Because Va2 — 3 > 0, there is no real number x such that va2 —3 =
—1. Hence, f is not onto R.
i. Since —1 < |sinz| < 1, there is no real number = such that sinx = 2.
Hence, f is not onto R.
k. For z € [-n/2,7/2], =1 < |sinz| < 1. Therefore, there is no real
number z such that sinx = 2. Hence, f is not onto R.
e. Since -2 € R, 2 € R, and f(—2) =|—2|=2= 2| = f(2), f is not
one-to-one.
f. Since —2€ R, 2€ R, f(—2) = |—2|—4=—2,and f(2) = [2| —4 =
—2 = f(-2), f is not one-to-one.
i. Since0 e R, 7 € R, f(0) =sin0 =0, and f(r) =sin7m =0 = f(0), f
is not one-to-one.
j- Seei.
n. Since (1,2) e Rx R, (2,1) e R xR, f((1,2)) = 2, and f((2,1)) =
2 = f((1,2)), f is not one-to-one.
a, b, c gk 15. e, i

Exercises 5.3

1.

Proof: Let a,b € R and assume f(a) = f(b). Then 3a —2 = 3b — 2,
3a = 3b, and a = b. Hence, f is one-to-one. Let b be in the codomain
R and let a = (b + 2)/3, which is in R. Calculating, we find f(a) =
3(b+2)/3—2=0b+2—2=b. Therefore, for every b in the codomain
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R there exists an a in the domain R such that f(a) = b and f is onto.
Since f is one-to-one and onto, f is a one-to-one correspondence.

The function f~!(y) = (y + 2)/3 is the inverse of f.

. Proof: Assume b € [1,00). Then b—1 > 0 and vb—1 > 0. So

a=—-vVb—1¢€ (0,0l and f(a) = (—vVb—1)2+1=b—-1+1=10
and f is onto [1,00). Next, assume there exists a, b € (—o0, 0] such that
f(a) = f(b). Then a®? +1 =b? + 1 and a® = b2. So either (1) a = b or
(2) a = —b. For a = —b and a,b € (—00, 0], the only solution of a? = b?
is a = b = 0. Therefore, @ = b and f is one-to-one. Thus, f is a
one-to-one correspondence.

The function f~1(y) = —/y — 1 is the inverse of f.

a. f7Hy) = (y —3)/(-2) g ' y) =(y+5)/4
b. (gof)(x) = =8z+7  (gof) " y) = (y—7)/(—8) = (f"tog "))

c. Yes

a. (0,00)
b. Let y € (0, 00). Theny>0,y—|—1>1>O,andx:%>0.
Y
Computing, we find
Yy
Y 14y Y
Xr) = = = = .
/) f(1+y) - Tvy-y '
1+y
Therefore, f is onto (0, 00).
1 T2

Let 1,22 € (0,1) and assume f(x1) = f(z2). Then RE )
1-— X1 1-— i)
which implies 1 — 122 = T2 — x122, which implies 1 = x5. Conse-

quently, f is one-to-one.

c. The function f~1(y) = Y is the inverse of f.

1+y

d. Let € (0,1). Then
1 1 s x o 1—=x _ T —
(Flof) @) = £ (@) = f (1_I)—1+1x -1 -
Hence, f~'o f = T,1)-
Let y € (0,00). Then

v

_ B _ - Y 1 +y Y _

(o r ) = 1 w) = £ () = = - -

1+y

Hence, fo f~' = I(g,00)-
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Define f by f(z) = x and g by g(z) = —x. Then the function (f+g)(z) =
f(z) + g(x) = 0 is not one-to-one and not onto and therefore not a one-
to-one correspondence. Furthermore, (fg)(x) = f(z)g(x) = —2? is not
one-to-one and not onto.

Assume go f = I4. By Theorem 5.12 since f is a one-to-one corre-
spondence from A to B, f~' o f = I4. Thus f~'o f = go f, which
implies (f~to f)o f~t = (f o f) o f~1. By associativity of composition
flo(fof/Y)Y=fo(fof ™). Hence f~lolg=golgand f~! =g.

When we assume f o g = Ig, the proof is similar.

a. f‘A = {(_2’ 12)’ (O’ 2)’ (1’ _3)’ (3’ _13)}
b. Rug(flj_2) = [13,12]

a. [0,1 b [-1,00 e [0,1]  d. [1,00)

Function

Domain Range Definition by Restriction

Tan

Cot

Sin Sin = sin \[7

[NE

5]

Cos Cos = cos (g,

Tan = tan \(

[E

)

4
2

Csc = CSC‘(—%,O)U

—~

0,

[E

)

Sec SCCZSCC‘[O,%)U(%,W}

Cot = cot | (g, )

Exercises 5.4

1.

3.

5.

a. {2} b {3}

a. {15, 75, 45,225,135, 675}

c. {z,y} d. 0 e {v,z,y,2} f {3,4,5}

b. {(1,1),(2,1),(1,2)}

a. Proof: By definition, f(0) = {y € B | y = f(x) for some z € 0}.
Suppose y € f(). Then there exists some x € ) such that y = f(x).
Since there are no z in the empty set, we have a contradiction. Hence,

there are no y € f(0) and therefore f(0) = 0.
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b. Proof: By definition, f ( ) ={z e A| f(z) €0} Slnce there are
no f(x) € 0, there are no x € f~1(0)—that is, f~*(0) =

c. Proof: The set f({z}) = {y € B | y = f(z) for some z € {z}}.
Since z is the only element in the set {} and since f is a function, the

only element in the set f({x}) is f(z). Thus, f({z}) = {f(z)}.

d. Proof: Let « € C. Since f(C) ={y € B |y = f(x) for some z € C}
and since x € C, it follows that f(x) € f(C). That is, z € C = f(z) €

f(C).

e. Proof: The set f~'(D) = {x € A | f(x) € D}. Consequently,
x € f~1(D) implies that f(x) € D.

f. Proof: The set f~1(D) = {z € A | f(z) € D}. Suppose f(x) € D.
Then, by definition of f=*(D), we have x € f~(D).

Proof: Assume that C C D and suppose y € f(C). It follows from
the definition of f(C') that there exists an = € C such that y = f(z).
By Theorem 5.16.d, = € C implies f(z) € f(C). Since C C D, we
have x € D and by Theorem 5.15.d, y = f(z) € f(D). Therefore,
f(C) C f(D).

Proof: Suppose x € C. Then by Theorem 5.16.d, f(z) € f(C ) In ad-
dition, by Theorem 5.16.f, x € f~(f(C)). Therefore, C C f~(f(C)).

Proof: Suppose y € f(f~1(E)). Then there exists an z € f~1(E) C
A such that y = f(x). Therefore, y € f(A) = Rng(A). Since z €
J7Y(E), by Theorem 5.16.¢, f(z) = y € E. Hence, y € f(A) N E and

fFHE) Cf(ANE
Now suppose y € f(A) N E. Hence, y € f(A), which implies there

exists an ¢ € A such that y = f(z). It follows from the definition of
J7Y(E) that x € f~1(E) and then byTheorem516ethaty—f( ) €

F(f7H(E)). Hence, f(A)NE C f(f~(E)).

Consequently, f(f~ ( )) = f(A) N E, because f(f~1(E)) C f(A)NE
and f(A)NE C f(f~1(E)).

Proof: Because f~!(B) = A by Theorem 5.15 and substitution,
[7HB-E)=f1(B) —fT1(B)=A- [T (E).

Proof Assume that f(f’ (E)) = Eforall EC B. Let y € B. For

= {y}, we have f( '({y})) = {y}. By Theorem 5.16.c, f~*({y}) =

{f Hy)y and F({F L ()}) = (£(F ()} Hence, F(£ ' ({y})) = {v} =
{f(f~Y(y))}. That is, for all y € B, we have f(f Y(y)) = y. Hence,

fof~t = 1Ip and by Theorem 5.14 the function f is onto.



362

17.

19.

21.

23.

25.

27.

29.

Introduction to Mathematical Proofs

Proof: By problem 9, C C f~(f(C)). Thus, to prove this theorem,
we must prove that if f is one-to-one, then f=*(f(C)) C C. Let z €
J71(f(C)). Then by Theorem 5.16.e, f(x) € f(C). Consequently, for
some ¢’ € C, f(x) = f(z'). Since f is one-to-one, 2’ = z and = € C.

Hence, f~(f(C)) C C and therefore f~(f(C)) = C.

Proof: By Theorem 5.17, f(CND) C f(C)N f(D). Therefore, we must
prove that if f is one-to-one, then f(C) N f(D) C f(C N D). Suppose
y € f(C)N f(D). Then y € f(C) and y € f(D). Hence, there exists
an x1 € C such that f(z1) = y and there exists an o2 € D such that
f(x2) = y. Thus, f(x1) = f(x2) and since f is one-to-one, z1 = ws.
Therefore, z;1 € CN D and y = f(x1) € f(C N D). Consequently,
#(C) N #(D) € f(CND).

Proof: By Theorem 5.16.d, z € C = f(z) € f(C).
S

So, assume f is one-to-one and suppose f(z) (C). By Theorem 5.16.f
there exists a z € f~1(f(C)) such that f(z) = f(z). Since f is one-to-
one, z = x. Also, since f one-to-one, f~*(f(C)) = C by problem 17.

Consequently, z € f~1(f(C)) = C.

Proof: Since f is one-to-one, f(A —C) = f(A) — f(C) by problem 20.
And since f is onto, f(A) = B. Therefore, f(A - C)= B — f(C).

Let A = {a,b}, B = {1}, C = {a,b}, D = {a}, and f = {(a, 1), (b, 1)}.
Then C — D = {b}, f(C — D) = {1}, and £(C) = {1} = £(D), so
F(C) — f(D) = 0. Consequently, f(C — D) = {1} #0 = f(C) — f(D).

Let f : R — R be defined by f(z) = 22 Let C = {3}. Then
F(C) = {9} and f7H(f(C)) = f71({9}) = {-3.3} # C.

Let A= {z}, B={1,2}, E= {2}, and f = {(2,1)}. Then E # 0 but
FUE) = 0.

Review Exercises

. not a function, Dom(f) # A

. function

oo

o

not a function, (a,b), (a,c) € h and b # c
d. function

e. function
Dom(f) = (=00, -3)U (-3,3) U (3,00) Rng(f) = (—o0,—1]U (1, 00)
+21/2
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R = I4, because for all x € A, we have (z,x) € R since R is reflexive.

a. (1) f(z) = vz, g(z) =22 -5 (2) f(x) = Ve -5, g(r) =2z
b. (1) f(z) =cos|z|, g(z) =3z+2 (2) f(x) =cosz, g(x)=|3z+ 2|

W) =@w+4/3 d fy=-V-1)/2

a f71 y) =
f. 7y = Tanil(y) = Arctan y i ) = %lny

a. A1 = (—00,3) A2 = (3, OO) b. A1 = (—TI',O) A2 = (O,Tl')

a {e,a} b {3,2) o {2,1,4)  d {e}

Proof: Since h o h is a one-to-one correspondence, h o h is onto. From
Theorem 5.4, if f and g are functions on S and if go f is onto, then g is
onto. Therefore, h is onto. Since h o h is a one-to-one correspondence,
hoh is one-to-one. From Theorem 5.6, if f and g are functions on S and
if g o f is one-to-one, then f is one-to-one. Therefore, h is one-to-one,
and consequently h is a one-to-one correspondence.

a. Proof: Since g : B — C is not one-to-one, there exists a by € B
and a by € B such that by # bs and g(b1) = g(b2). Since f : A — B
is onto, there exists an a; € A such that f(a;) = by and there exists
an ag € A such that f(az) = be. Because b1 # be and f is a function,
a1 # as. Hence, go f is not one-to-one, because a1 # as but (go f)(a1) =
(g0 f)(az).

b. Proof: Since the function f is not onto B, there exists a by € B such
that f(x) # by forallz € A. Let a be any element in A and let ba = f(a).
Clearly, by # be and since g is one-to-one, g(b1) # g(b2) = (g o f)(a).
The function g o f is not onto, because there is no x € A such that
(go f)(x) = g(b1).

Proof: Let b be an arbitrary element of B. Since f is onto, there exists
an a € A such that f(a) = b. Hence, g(b) = (go f)(a) = (ho f)(a) = h(b)
for all b € B. That is, g = h.

First, prove that if E = ANC = (), then fUg is a function with domain

AUC and
flz), ifze A

(fUg)(x) = {g(:z:), ifxeC

Then when E # ) write AUC = AU (C — E) and prove the stated
theorem.

Proof: Let f : X — Y be an invertible function. Suppose that g and
h are distinct inverses of f. By definition g and h are functions from Y
and X. Calculating, we find

h=Ixoh=(gof)oh=go(foh)=goly =g.
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27. The statement is true and the proof is valid.

29. The statement is false.

Counterexample: Let A = [0,00), f(z) = 22, and g(x) = 2z. Then

(g0 N)x) = 227 and £~ () = V&, So, (f* o (g0 f))(x) = VI =
V2z # g(x).

Chapter 6

Exercises 6.1

1. Let P(n) be the statement
(1) 1+3+45+-+(2n—1)=n%
(i) For n = 1, the left-hand side of the statement P(1) is 1 and the
right-hand side is 12 = 1. So, P(1) is true.

(ii) Let n € N and assume that the statement P(n) is true. That is, for
n € N assume that (1) is true. The statement P(n+ 1) is the statement
1+3+45--+2n—1)+2n+1)=(n+1)%

Substituting (1) into the left-hand side of P(n + 1), we obtain
M+3+5-+@2n—D]+2n+1)=n*+2n+1=(n+1)%
By the Principle of Mathematical Induction, for all n € N,
14+34+5+-+(2n—1)=n

3. Assume that r # 1 and let P(n) be the statement
1— ,r,n+1

1 1 24 =

(1) +r4ri4er T

(i) For n = 1, the left-hand side of the statement P(1) is 1 4+ and the
2

1—
right-hand side is 1 =1+ r because r # 1. So, P(1) is true.

(ii) Let n € N and assume that the statement P(n) is true. That is, for
n € N assume that (1) is true. The statement P(n+1) is the statement

1— ,r,n+2

L+r+r? 4"t =
1—r

Substituting (1) into the left-hand side of P(n + 1), we obtain
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17 n+1
(1_|_,r,_|_,r2_|_“.,r,n)_|_,r,n+1:++Tn+1
—-Tr
7 17,r,n+1_|_,r,n+1 _,r,n+2 B 177'n+2
1—r o 1—r

Hence, by Mathematical Induction, for r € R where r # 1 and for all
n € N, 1 — pntl
Lhr4r? 4 =

1—r

By induction, for all n € N,
124924324 ... 41pn2— n(n+1)(2n+1)
5 .

Let P(n) be the statement

(1) 1420422 4. pon-l=on .

(i) For n = 1, the left-hand side of the statement P(1) is 1 and the
right-hand side is 2! — 1 = 1. So, P(1) is true.

(ii) Let n € N and assume that the statement P(n) is true. That is, for
n € N assume that (1) is true. The statement P(n+ 1) is the statement
142422 4. g ontpon—ontl _q,

Substituting (1) into the left-hand side of P(n + 1), we obtain

M+2' 422 4. 42n 42 =2"—142"=2.2" — 1 =2"" |
By induction, for all n € N,
T+2' 422 4. gt =on 1,

Let P(n) be the statement

(i) For n = 1, the left-hand side of the statement P(1)is 1-2 =2 and
1(1+1)(1+2 1(2

the right-hand side is (1+ g( +2) = ( 3(3) = 2. S0, P

(ii) Let n € N and assume that the statement P(n) is true. That is, for

n € N assume that (1) is true. The statement P(n+1) is the statement

(1) is true.

1-242-343- 44 +n(n+1)+ (n+1)(n+2) = (n+1)(n;2)(n+3).

Substituting (1) into the left-hand side of P(n + 1), we obtain
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(1-242-34+3-4+--4nn+1)+n+1)(n+2)

:M+(n+l)(n+2)

3
:(nJrl)(nJrZ)(ngl): (n+1)(n+2)(n+3).

By induction, for all n € N,

1 2
1~2+2.3+3.4+...+n(n+1):w.

3
Let P(n) be the statement
1) gy ! =
3-4 4.5 5-6 (n+2)(n+3) 3(n+3)
1 1
(i) For n = 1, the left-hand side of the statement P(1) is 311 and
1 1
the right-hand side is = —. So, P(1) is true.
3(1+3) 127

(ii) Let n € N and assume that the statement P(n) is true. That is, for
n € N assume that (1) is true. The statement P(n+ 1) is the statement
1 1 1 1 1 n+1

34 25 56 Thrnmes)  m+3)n+d) 3n+d)

Substituting (1) into the left-hand side of P(n + 1), we obtain
1 1 1 1 1

34 45 506 (n—|—2)(n—|—3)} TR

_ n n 1 1 nJr 1
S 3n+3) (n+3)(n+4) n+3[3 n+4d

1 {n2—|—4n—|—3} n+3)n+1)  n+1
" n+3| 3n+4) | 3n+3)(n+4) 3(n+4)

Let P(n) be the statement

(1) 2.6.10...(4n—2):%.

(i) For n = 1, the left-hand side of the statement P(1) is 2 and the

2.1

( I ) = 2. So, P(1) is true.
(ii) Let n € N and assume that the statement P(n) is true. That is, for
n € N assume that (1) is true. The statement P(n+ 1) is the statement

(2n +2)!
(n+ 1)

right-hand side is

2:6-10---(4n —2)- (dn+2) =
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Substituting (1) into the left-hand side of P(n + 1), we obtain

[2~6~10~~-(4n—2)]-(4n+2):%~(4n+2):
(2n)! n+1  (2n+2)!

22 220+ 1)

n! n+1  (n+1)°

Let P(n) be the statement 3" > n2.

(i) For n = 1, the left-hand side of the statement P(1) is 3! = 3, the
right-hand side is 12 = 1, and 3 > 1. So, P(1) is true.

For n = 2, the left-hand side of the statement P(2) is 32 = 9, the
right-hand side is 22 = 4, and 9 > 4. So, P(2) is true.

(ii) Now, assume for n € N where n > 2 that the statement P(n) is
true. That is, for n € N and n > 2 assume that (1) 3" > n? is true.
The statement P(n + 1) is 3"t > (n + 1)2. Since n > 2, we have
n—1>1>0and 2n(n—1) > 2n >4 > 1. Hence, 2n? —2n > 1 or
(2) 2n% > 2n + 1. Multiplying (1) by 3 and using both (1) and (2), we
obtain
3" =3.3" >3 =n?+2m*>n?+2n+1=(n+1)>~
That is, for all natural numbers n > 2 the statement P(n + 1) is true.

Hence, by the Generalized Principle of Mathematical Induction, 3" > n?
for all n € N.

Let P(n) be the statement (1) 13 +23 433+ ...+ n3 < nt.
(i) The statement P(2) is 1% + 23 = 9 < 16 = 24, which is true.
(ii) Assume that for n € N and n > 2 the statement (1) is true. The
statement P(n+1)is 134+234+3%3+.--+n3+(n+1)* < (n+1)%. From
the results of Exercise 6,
5 _ (n+D*(n+2)?
= 1 )
For n € N, we have n < 2n, which implies n+ 2 < 2n 4 2, which implies

(n+2

2
T) < (n+1)% Substituting the

(2) P42 43+ +n°+(n+1)

2
0< % < n+ 1, which implies

last inequality into equation (2), we obtain
PB+22 434+ +nP+ (n+1)° < (n+ D™

That is, P(n + 1) is true.

Hence, by the Generalized Principle of Mathematical Induction,

1P4+224+3 4. 4+n<ntforn>2
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Let P(n) be the statement (1) n! > 2™.

(i) For n = 4, we have 4! = 24 > 16 = 2%. Therefore, P(4) is true.

(ii) Assume for n € N and n > 4 that the statement (1) is true. The
statement P(n + 1) is (n + 1)! > 2" Since (n + 1)! = (n + 1)n!, it
follows from (1) that (n+1)! > (n+1)2". Since n > 4, we have n+1 > 2
and (n+1)! > 22" = 271 Hence, the statement P(n + 1) is true.

Hence, by the Generalized Principle of Mathematical Induction, n! > 2"
for n > 4.

Let P(n) be the statement (n + 1)! > 273,
(i) For n =5, we find (5+ 1)! = 720 > 256 = 2%. Hence, the statement
P(5) is true.
(ii) The statement P(n + 1) is (n + 2)! > 27T, Assume for n € N and
n > 5 that (1) (n + 1)! > 273 is true. From the definition of factorial
and the inequality (1), we obtain

(n+2)!=n+2)(n+1)! > (n+2)2""3 = p2n T3 4 ontd 5 ontd
Consequently, by the Generalized Principle of Mathematical Induction,
(n+1)! > 2"*3 for n > 5.
Let P(n) be the statement 2" > n3.

(i) For n = 10, we have 20 = 1024 > 1000 = 103. So, the statement
P(10) is true.

(i) The statement P(n+ 1) is 2" > (n + 1)3. Assume for n € N and
n > 10 that (1) 2" > n? is true. For n > 10, we have 9 > n, which
implies 9n? < n3, which implies n® + 9n? < 2n3. So for n > 10, it
follows that

(n+1)2=n>+3n*+3n+1<n®>+3n*+3n+3
<n®+3n2+3n+3n=n>+3n2+6n
< n®+3n? 4 6n% =n?+ 9In?
<2 <2.2" =2t

Hence, the statement P(n + 1) is true and by mathematical induction,
2" > n3 for n > 10.

Exercises 6.2

1.

a. (1)112=2%.7,320=26.5 (i) 16 (ii)z=3,y=—1

b. (i) 2387 =7-11-31,7469 = 7-11-97 (i) 77 (i) 2 = —25,y =8
c. (i) —4174 = —2-2087, 10672 =2-23-29  (ii) 2

(iii)  — —2319, y = —907

d. (i) 28-32.5.7=12520 (iii) z = -9, y = 29
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a. Proof: Since D = ged(a,b), by Theorem 6.1 there exist integers x
and y such that (1) D = az + by. Substituting for a and b in (1), we
obtain D = drx + dsy = d(rz + sy). Hence, d divides D.

b. Proof: Since d = ged(a,b), by Theorem 6.1 there exist integers
x and y such that (1) d = ax + by. Substitution for a and b yields
da'z + db'y = d. Cancelling, we find o’z + 'y = 1 and therefore
ged(a’, b)) = 1.

c. Proof: Let D = ged(na, nb) and let d = ged(a, b). By the definition of
the greatest common divisor, d divides a and d divides b. That is, there
exist integers a’ and b’ such that a = da’ and b = db’. It follows from
part b that ged(a’,b’) = 1. Substituting, we have D = ged(nda’, ndb’).
By part a the natural number n divides D and d divides D. Since a’

and b’ are relatively prime, they have no common factor other than 1.
Hence, D = nd. That is, ged(na, nb) = n ged(a, b).

Proof: For all n € N, let P(n) be the statement 9 divides 4™ + 6n — 1.

(i) Forn =1,4'4+6-1—1=9, which is divisible by 9. So, P(1) is true.

(ii) Let n € N and assume that P(n) is true. That is, assume that 9

divides 4™ + 6n — 1. Hence, there exists an integer m such that 4™ +

6n — 1 = 9m. Solving for 4™, we find 4™ = 9m — 6n + 1. The statement

P(n+1) is 9 divides 4" ™! + 6(n + 1) — 1. Calculating, we find

4" 4 6n+1)—1=4-4"4+6n+6—-1=49m —6n+1)+6n+5

=36m—-24n+44+6n+5=36m—18n+9
=9(4m —2n+1).

Since m and n are integers, 4m — 2n + 1 is an integer and 9 divides

P(n+1). It follows by mathematical induction that P(n) is true for all

n € N.

Proof: For all n € N let P(n) be the statement
[z1+ 22+ @] < o] + 22| 4+ A+ |zl
(i) For n = 1, P(1) is the statement |z;| = |z1|, which is true. (Observe
that for n = 2, the statement P(2) is |21 + z2| < |x1| + |z2|, which is
the triangle inequality.)
(ii) Let n € N and assume that P(n) is true. That is, assume that
21+ 22+ o+ @] < @] + |z + -+ ]
is true. The statement P(n+ 1) is
[T1+ 224+ T+ o | S z] A+ [m2] + o+ 2] + 204
Grouping the first n terms in the absolute value on the left-hand side of
the inequality above and using the triangle inequality, we find

|1 +x2+ - 4 T+ Toga]| < (@1 F 22+ 2) F T
<l|zi+z2+ -+ zp| + [T
<za| + [w2| + - + |2p] + |20
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By mathematical induction the statement P(n) is true for all natural
numbers n.

Proof: (i) For n = 2, we calculate z2 = /5 + 1. Obviously, 4 < 6 < 9.
Taking square roots of this inequality, we obtain 2 < z5 = /6 < 3.

(ii) Let n be any natural number greater than 2 and assume 2 < x,, < 3.
Adding 5 to this inequality yields 7 < 5 + z, < 8. Taking square
roots, we obtain 2 < V7 < /5 + 2, < V8 < 3. Since z,4; is defined
recursively by x,11 = /5 + @n, we have 2 < z,41 < 3. Thus, by
induction, 2 < x,, < 3 for all natural numbers n > 2.

Proof: Suppose there is an m € N such that 8 does not divide 52 — 1.
By the Well-Ordering Principle there is a smallest natural number s
such that 8 does not divide 52° — 1. Since 8 divides 52 — 1 = 24 and 8
divides 5* —1 = 624, s > 2. Let k = s—1. Then 8 divides 5** —1. Thus,
there is a natural ¢ such that 52 — 1 = 8¢. Therefore, 52 = 8¢ + 1.
Calculating, we find

5291 = 520D 1 = 52.52F _1 = 25(8(41)—1 = 200/—24 = 8(25(—3).
Since 25¢ — 3 is an integer, 8 divides 52° — 1, which is a contradiction.
a. Proof: For all n € N, let P(n) be the statement F, < 2™.

(i) Since F1 =1 <2 =2' and F; = 1 < 4 = 22, the statement P(n) is
true forn =1 and n = 2.

(ii) Assume for some natural number n > 2 that Fy, < 2% for k =
1,2,...,n. Because F,, .1 = F,, + Fp,_1, F,, < 2", and F,,_; < 2"!, we
have F, 11 <27 +2771 <27 427 =2.2" = 2nFl

Therefore, by induction F;, < 2™ for all n € N.

b. Proof: For all n € N, let P(n) be the statement Fj, is even and
both F3,41 and Fj3,42 are odd.

(i) For n = 1, F3 = 2, which is even, Fy = 3, which is odd, and F5 = 5,
which is odd. So, the statement P(1) is true.

(ii) Suppose for some n > 1, the statement P(n) is true. The statement
P(TL + 1) is FS(n+1) = F3n+3 is even and both F3(n+1)+1 = F3n+4 and
F3(n41)+2 = F3n45 are odd. By the recursive definition of the Fibonacci
numbers:

(1) Because both F3,, 12 and F3, 11 are odd by the induction hypothesis,
Fsy 43 = F3nq2+ F3p41 is even.

(2) Because Fj,43 is even by (1) and because F3y,42 is odd by the
induction hypothesis, F3,+4 = F3n43 + F3nt2 is odd.

(3) Because Fip44 is odd by (2) and because F3,43 is even by (1),
F345 = F3p04 + F3pq3 is odd.

Hence, by induction, the statement P(n) is true for all n € N.
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c. Proof: For all n € N, let P(n) be the statement Fy + Fo + -+ F,, =
Fopo— 1.

(i) For n = 1, the statement P(1) is F; = F3 — 1. Since F; = 1 and
F3 =2, and 1 =2 — 1, the statement P(1) is true.

(ii) Suppose for some natural number n that the statement P(n) is true.
We must prove that the statement P(n + 1), which is

(1) P+ P+ B+ Fyy=Fhs—1,

is true. Grouping the first n terms on the left-hand side of (1) and
substituting, we find
(Fi+Fo+-Fp)+ Fop1 = (Foy2 — 1)+ Foga
:(Fn+2+Fn+1)_1:Fn+3_1

by the recursive definition for Fi, ;3.
Therefore, by induction, the statement P(n) is true for all n € N.
d. Proof: For all n € N, let P(n) be the statement Fj, ;¢ = 4F}, 45+ Fp,.

(i) The statement P(1)is F7 = 4F4+Fy. Since F; =13, Fy =3, F; =1,
and 13 = 4(3) + 1, the statement P(1) is true. The statement P(2) is
Fg = 4F5 +F2 Since Fg = 21, F5 = 5, F2 = 1, and 21 = 4(5) + 1, the
statement P(2) is true.

(ii) Suppose for some natural number n > 2 the statements P(k) are true
forall k =1,2,...,n. By the recursive definition for F(;,11)16 = Fryr,
by substitution from the true statements P(n) and P(n—1), and by the
recursive formulas for Fj, 14 and F), 41, we have

Fn+7:Fn+6+Fn+5:4Fn+3+Fn+4Fn+2+Fn71

=4(Fny3+ Fog2) + (Fn + Foo1)
= 4Fn+4 + Fn+1~

By induction, the statement P(n) is true for all n € N.

e. Proof: For all n € N, let P(n) be the statement

(1) FE+Fi+-- -+ F?=F,Fy1.

(i) For n = 1, the statement P(1) is FZ = F1F». Since Fy = 1, Fy = 1,
and 12 =1 -1, the statement P(1) is true.

(i) Assume for some natural number n that the statement P(n) is true—
that is, assume that the statement (1) is true. Grouping the first n terms
in the following equation and substituting from (1), we find

FE4+Fi 4+ Fi+F  =F+F+-+F)+Foy,
:FnFn+1 +F3+1:Fn+1(Fn+1+Fn)

- n+1Fn+2~
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Thus, the statement P(n + 1) is true.
Consequently, by induction, the statement P(n) is true for all n € N.

23. The statement is true, but the proof is invalid.

25. Let P(n) be the statement “All cats in every set of n cats are the
same color.” The statement is true only for n = 1. The “proof” of the
statement fails to prove the implication if P(1) is true, then P(2) is true.

Chapter 7

Exercises 7.1

a” b’ f’ g’ h

Proof: Our proof is by contradiction. Hence, we assume that the set A
is infinite, A C B, and the set B is finite. By Theorem 7.8, since A C B
and B is finite, the set A is finite, which contradicts the hypothesis A
is infinite.

Proof: Because the function f : N — E defined by f(n) = 2n is a
one-to-one correspondence, N ~ F.

Let A = {a,b} and B = {b}. Then |A| =2, |B| =1, and AUB = {a, b}.
So|AUB| =2but |[A|+|B|=2+1=3. That is, |[AUB| =2 # 3 =
|Al +[B|.

Proof: Let P(n) be the statement “If A;, As,..., A, are finite sets,
then |J}'_, 4; is a finite set.”

(i) For n = 1, the statement P(1) is “If A; is a finite set, then ngl A;
is a finite set,” which is true.

(ii) Suppose for some natural number n the statement P(n) is true. That
is, suppose that for some n € N the statement “If the sets Ay, Ag, ..., A,
are all finite, then the set U?:l A; is finite” is true. Let Ay, Ao, ..., Apy1
be finite sets. Then since the set U?:l A; is finite, since the set A, 1 is

finite, and since
n+1 n

U4 =J4)uan,
=1

i=1
the set U?;l A; is finite by Exercise 8. That is, the statement P(n+ 1)
is true.

Hence, by induction the statement P(n) is true for all n € N.
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Proof: If A or B is the empty set, then A x B = (), B x A = (),
and A x B ~ B x A. Assume neither A nor B is the empty set. For
(a,b) € A x B define f: A x B— B x Aby f((a,b)) = (b,a). Suppose
(a,b), (c,d) € A x B and that f((a,b)) = f((¢,d)). By definition of f,
(b,a) = (d, ¢), which implies b = d and a = ¢. Therefore, (a,b) = (¢, d)
and f is one-to-one. Suppose (b,a) € B x A. Then b € B, a € A, and
(a,b) € A x B. By definition, f((a,b)) = (b,a). Hence, f is onto and a
one-to-one correspondence from A x B onto B x A.

a. Proof: We define the function f: N,, x N,, — N,,,, by
f((&,7)) =n(i—1)+j.

First, we prove f is one-to-one by contradiction. Therefore, we assume
there exist (4, 7), (k,¢) € Ny, x Ny, such that (¢,7) # (k,¢) and

1) n(i—1)+j=n(k—1)+2

Since (i, j) # (k, ), either i # k or j # £. We consider these two cases
separately.

Case 1 Suppose i@ # k. Without loss of generality, we may assume
i < k. Subtracting the quantity ¢ 4+ n(i — 1) from (1), we obtain

(2) j—l=nk-1)—n(i—1)=nk—1i)>n(l)=n

because ¢ and k are both integers and ¢ < k. Equation (2) says the
difference between j and /¢ is greater than n. However j,¢ € N,, and
consequently their maximum difference is n — 1. Thus, we have a con-
tradiction, and therefore, i = k.

Case 2 Suppose j # £. It follows from (1) that n(i — 1) # n(k — 1),
which implies i # k. This again leads to the contradiction of case 1.

From case 1 and case 2, we see that the function f is one-to-one.

Next, we show that f is onto. Let k € N,y,,. By the Division Algorithm
for Integers, there exist unique integers ¢ and r such that (3) k — 1 =
ng + r where 0 < r < n. Choose (4) i = ¢+ 1 and (5) j =r + 1. Then
i € Ny, and j € N,,. From (4), (5), and (3),

f(G5)=n(t-1)+j=ng+r+1=k—-1+1=Fk
That is, f is onto.

Therefore, f is a one-to-one correspondence from N,,, x N,, onto N,,,.
Hence, N,,, X N,, ~ N,,,,. Consequently, |N,, x N,| = |N,,,| = mn
and the set N,,, x N,, is finite.

b. Proof: If A= ( or B=10, then A x B =0 and A x B is a finite
set. Suppose for some m,n € N that A ~ N,, and B ~ N,,. By
Theorem 7.2, A x B ~ N,,, x N,,. By part a, we have N,;, Xx N,, ~ N,
and by transitivity of ~, we have A X B ~ N,,,.



374

Introduction to Mathematical Proofs

Exercises 7.2

1.

5.

Proof: We prove that f is a one-to-one function by cases. Suppose n;
and ng are integers and for definiteness that n; < ns.

Case 1 If n; < ny <0 and f(n1) = f(n2), then 1 —2n; = 1 — 2no,
which implies n1 = no.

Case 2 If n1 <0< ng and f(n1) = f(n2), then 1 — 2ny = 2ny, which
implies n; + ny = 1/2. This is a contradiction, because the sum of two
integers is an integer.

Case 3 If 0 < n; < ng and f(n1) = f(n2), then 2n; = 2ng, which
implies n1 = no.

Consequently, the function f is one-to-one.

Suppose m € N. If m is even, then m = 2n for some n € N C Z. If
m is odd, then m — 1 is even and m — 1 = 2k for some k € N U {0}.
Therefore, m = 1—2(—k) where —k is a negative integer or zero. Hence,

f is onto, and therefore f is a one-to-one correspondence from Z onto
N.

Proof: Let P(n) be the statement “If A is a denumerable set and if B
is a finite set with |B| = n, then AU B is a denumerable set.”

(i) For n = 1, the statement P(n) is “If A is a denumerable set and if
B = {z}, then AU B is a denumerable set.” By Theorem 7.14, this
statement is true.

(i) Suppose for some natural number n the statement P(n) is true. Let
A be a denumerable set and let B be a finite set with |B| = n+1. Since B
has n+1 elements, B is nonempty and there exists some x € B. The set
AUB = [AU(B—{z})]U{z}. By Theorem 7.10, the set B—{z} is finite
and |B—{z}|=|B|—1=n+1—1=n. Hence, the set AU(B—{z})is
the union of the denumerable set A and the finite set B —{z}, which has
n elements. By the induction hypothesis, AU (B — {z}) is denumerable
and by Theorem 7.14, the set AU (B —{x})]U{z} is a denumerable set.
That is, the statement P(n + 1) is true and by induction the statement
P(n) is true for all natural numbers.

a. Proof: The set F'* is denumerable, because the function f : N — F'T
defined by f(n) = 4n is a one-to-one correspondence. You should verify
this fact.

b. Proof: Let F~ = {...,—12,-8,—4}. The function ¢ : N — F~

defined by g(n) = —4n is a one-to-one correspondence. By Theo-
rem 7.16, the set T U F~ is denumerable, since F'* and F~ are
denumerable and £ N F~ = (. Hence, by Theorem 7.14, the set

F = (FtUF~)U{0} is denumerable.
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c. Proof: The function h : N — G defined by h(n) = n + 100 is a
one-to-one function from N onto G. Verify this.

d. Proof: The function f : N — G defined by f(n) = =50 — n is a
one-to-one function from N onto H. Verify this.

e. Proof: The function g : N — N — {1,3,5,7,9} defined by
2n, ifn <5
f(n) = {n+5, ifn>6

is a one-to-one correspondence. Verify this fact.

7. Proof: Suppose to the contrary that the set A — B is not denumerable.
Thus, A — B is a finite set and by problem 8 of Exercises 7.1, since B
is a finite set, the set (A — B) U B = A is a finite set. This contradicts
the hypothesis that A is denumerable.

9. Proof: Let P(n) be the statement “If Aq, As, ..., A,, are denumerable
sets, then |J]_, A; is a denumerable set.”
(i) For n = 1, the statement P(n) is “If A is a denumerable set, then
U3:1 A; = A; is a denumerable set.” Obviously, this statement is true.
(ii) Suppose for some natural number n the statement P(n) is true. Let
Ajq, Aa, ..., Apy1 be denumerable sets. The set

n+1 n

U A =(JA) v

i=1
By the induction hypothesis, the set | J;_; 4; is a denumerable set and by

Exercise 8 the set (| J_; A;)UA,41 is denumerable. Thus, the statement
P(n+1) is true.

Hence, by induction the statement P(n) is true for all natural numbers.

Exercises 7.3

3. Proof: We prove this theorem by contradiction. Let A be an uncount-
able set and let A C B. Assume that the set B is a countable set. Since
B is countable, either (1) B is finite or (2) B is denumerable.

Case 1 By Theorem 7.8, since A C B and B is a finite set, the set A
is a finite set, which contradicts the hypothesis that A is uncountable.

Case 2 Since A is an uncountable set, the set A is an infinite set. By
Theorem 7.19, since A is an infinite subset of the denumerable set B,
the set A is denumerable, which contradicts the hypothesis that A is
uncountable.
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a. Proof: By definition, |A| = |B| implies A ~ B and |B| = |C| implies
B ~ C. By transitivity, A ~ C, which implies |A| = |C]|.

b. Proof: Since the identity function I4 : A — A is one-to-one, we
have |A| < |A].

c. Proof: Because |A| < |B|, there exists a function f : A B and

because |B| < |C], there exists a function ¢ : B =X C. The composition
go f:A— C is one-to-one; therefore, |A| < |C].

d. Proof: Let A C B. The function f : A — B defined by f(a) = a
is one-to-one. Hence, |A| < |B].

e. Proof: Since AN B C B, we have |AN B| < |B| by Exercise 5d.

f. Proof: Since B # (), there exists some b € B. Let the function
f:A— Ax B be defined by f(a) = (a,b). This function is one-to-one.
Therefore, |A| <|A x B.

g. Proof: By Exercise 5d, since A C B, we have |A| < |B|. Also since
B C C, we have |B| < |C| = |A] by hypothesis. Consequently, by the
Schroder-Bernstein Theorem |A| = | B].

a. Proof: By hypothesis |A| < |B| and |B| < |C|. So by Exercise 5c,
we have |A| < |C|. Also by hypothesis |C| < |A|. Hence, by the
Schroder-Bernstein Theorem, |A| = |C| and A ~ C. By hypothesis
|B] < |C|and |C| < |A]. So by Exercise 5¢, we have |B| < |A]. Also, by
hypothesis, |A| < |B| and by the Schréder-Bernstein Theorem, |A| =
|B] and A ~ B. Hence, A~ B~ C.

b. The function f : R — R x R defined by f(z) = (z,0) is one-to-
one. Hence, |[R| < |R x R|. The set R and the interval (0,1) both
have cardinality c. To prove that |R x R| < |R|, we prove that there
exists a one-to-one function from (0,1) x (0,1) into (0,1). For each

x € (0,1), let & be written in normalized decimal form. The function
g:(0,1) x (0,1) — (0,1) defined by

9((z,y)) = g((0.z12223 . .., 0.4192y3 . ..)) = 0.21Y1T2Y273Y3 - - -
is one-to-one. Hence, |R x R| < |R| and by the Schréder—Bernstein
Theorem |R x R| < |R| and R x R ~ R.

Define the function f: P(A) x P(B) - P(AUB) by f(X,Y)=XUY
and prove that f is a one-to-one correspondence.
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Chapter 8

Exercises 8.1

3.

2n + 2 2n+1
a. ap = b. ap =
2n+1 2n
1 -1)"
(-1" ”‘( - ))
c. ap = o d. a, = o — 1
_1\n+1 1\ o
o a, — (=)™ *in £ oa, — (—1)"sin(2n + 1)
3n—1 (n+1)2
a. lim, oo anp = —7

Proof: Let ¢ > 0 be given. By the Archimedean Property of real
numbers, there exists a natural number N > 1/e. For all n > N,

1 1 1 1
ooy <[~ < L <
1

Hence, lim, oo (=7 + —) = —7.
n

b. lim,, oo @y, = —3
Proof: Let ¢ > 0 be given. By the Archimedean Property of real
numbers, there exists a natural number N > 3/e. For all n > N,

3—3n+3n

n

< 5 <
=—-—< =<e
N

n n

’3371(3)’_’

3—3n

=-3.

Hence, lim,, .

c. lim,_,ca, =3

Proof: Let ¢ > 0 be given. By the Archimedean Property of real
numbers, there exists a natural number N > 15/(2¢). For alln > N,

6n —3 —6n —12 15 15 15

o+ 4 “mtd “m SaN ¢

6n — 3
2n—|—43‘_

6n—3

Hence, lim,, oo ——— =
2n+4
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d. lim,, o a, =5/7

Proof: Let ¢ > 0 be given. By the Archimedean Property of real
numbers, there exists a natural number N > 74/(49¢). For all n > N,

5n—7 5 35n — 49 — 35n — 25 74 74 79
— _| = = < — < —< €.
m+5 7 7(Tn+5) 49n +35  49n 49N
Hence, lim,, . E = §
m+5 7

e. lim, ,a, =1/2

Proof: Let € > 0 be given. By the Archimedean Property of real
numbers, there exists a natural number N > 1/1/(12¢). For all n > N,

n2+1 1 6n2+2—-6n2—1 1 < 1 < 1 <
_ |l = = €.
6nz2+1 2 12n2 + 2 12n24+2 ~ 12n2 = 12N2
n2+1 1
Hence, lim,, . % =3

f. lim, oo a, =0

Proof: Let ¢ > 0 be given. By the Archimedean Property of real
numbers, there exists a natural number N > 1/e. It can be shown by
induction that n < 4™ for all n € N. For all n > N,

Hence, lim,, .o, 47" = 0.
g lim, o a, =1/4

Proof: Let ¢ > 0 be given. By the Archimedean Property of real
numbers, there exists a natural number N > 1/(256¢2). For all n > N,

Vn+2 1 4yn+8—4yn—7
dyn+T7 4| 164/n + 28
1 1 1

= < <
16y/n+28 ~16y/n  16V/N
vn+2 1

Hence, lim,, . = —.

dyn+T7 4
h. lim, e a, =1/2

Proof: Let ¢ > 0 be given. By the Archimedean Property of real
numbers, there exists a natural number N > 1/(8¢). For all n > N,

1 1 1
n<\/1+—1>§—’\/n2—|—n—n—§
n

< €.
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2vn?24+n—(2n+1) 2vn?2+n+(2n+1)
2 2vn24+n+(2n+1)
4n2—|—4n—(4n2—|—4n—|—1)| 1 1
< —< -=<e€
4vn? 4 n+4n+2 8n 8

Hence, lim,, o a, = 1/2.

an = —1/n — 0, which is nonnegative.

a. Let a, = (=1)"*! and let b, = (—1)". The sequences < a, >
and < b, > both diverge; however, the sequence < a,, + b, >=< 0 >
converges.

b. Let < a, >=1,0,1,0,...and b, >=0,1,0,1,.... Then the sequence
< anb, >=0,0,0,... converges.

Proof: Our proof is by contradiction. Suppose that a,, < b, for all
neN, a, - A, b, » B,and A > B. Let ¢ = (A — B)/2 > 0. Since
an — A, there exists a natural number Ny such that |a,—A| < (A—B)/2
for all n > Nj. That is, for n > Ny,

A+ B A-B A-B
(1) TP _a- <an <A+ .
Since b,, converges to B, there exists a natural number Ny such that
|b, — B| < (A — B)/2 for all n > Nj. That is, for n > Na,

A-B A-B A+ B

Since a, < by, for all n € N, we have from equations (1) and (2) for
n > max (N7, Na) thatA

A+ B
2 )

<ap <b, <
which is a contradiction.
Let )
1 sin —
— bpy=———"1" and ¢, =1.
n

1 )
2n (1 — CcoSs —)
n

Since a, < b, < ¢, for all n € N, we have a,, <b,, < ¢, for all n € N.
By Theorem 8.3, since a,, — 1 and ¢,, — 1, we conclude b,, — 1.

a, =1

Proof: Suppose that a,, — 0 and let ¢ > 0 be given. Since a,, — 0,
there exists a natural number N such that if n > N; then |a,, — 0] < e.
Because ||an| — 0| = ||an| — |0]| < |an — 0], we conclude that if n > N,
then ||a,| — 0] < e. Therefore, lim,, o |an| — 0.

Now, suppose that |a,| — 0 and let € > 0 be given. Since |a,| — 0,
there exists a natural number N such that if n > N, then ||a,| — 0| < e.
Because |a, — 0| = |an| = |an| — 0 = ||an| — 0|, we conclude if n > N,
then |a, — 0] < e. Hence, lim,, o a, =0
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a. The given sequence is bounded above by 5, is bounded below by 0,
and is bounded by 5.

b. The given sequence is bounded above by 3, is bounded below by 0,
and is bounded by 3.

c. The given sequence is bounded above by 9/16, is bounded below by
—3/4, and is bounded by 3/4.

d. The given sequence is not bounded above, is not bounded below, and
is not bounded.

e. The given sequence is bounded above by 1, is bounded below by 0,
and is bounded by 1.

f. The given sequence is bounded above by 1, is bounded below by 0,
and is bounded by 1.

g. The given sequence is not bounded above, is bounded below by 0,
and is not bounded.

h. The given sequence is bounded above by v/2, is bounded below by 0,
and is bounded by v/2.

Proof: Suppose that < a,, > and < b, > are bounded sequences. By
definition, there exist positive real numbers A and B such that |a,| < A
and |b,| < B for all n € N.

(i) By the triangle inequality, for all n € N, we have
|@n +bn| < |an| + [ba| < A+ B.
That is, the sequence < a, + b, > is bounded.
(ii) Also, by the triangle inequality, for all n € N,
|an, — bp| = |an + (=bn)| < lan| +| = bn| = |an| + |bn] < A+ B.
Therefore, the sequence < a,, — b, > is bounded.

(iii) For all n € N, we have |apb,| = |an||bn] < AB. Therefore, the
sequence < a,b, > is bounded.

Exercises 8.2

1.

Proof: Let ¢ > 0 be given. Since a, — A there exists a natural
number Nj such that n > N; implies |a, — A < €/2. Since
b, — B there exists a natural number N, such that n > N implies
|br, — B| < €/2. Let N = max{Ny, No}. For n > N, we have

[(@n, —bn) — (A= B)| = |(an, — A) + (= (b, — B))|
<lan— Al+| = (bu - Bl < 5+ 5 =
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3. Proof: Assume that the sequence < a, > converges to A and
that k is a real constant. Since the sequence < k > converges to k,
the sequence < ka,, > converges to kA by Theorem 8.7.

5. Proof: Our proof is by contradiction. Assume that the sequence
< an > converges, the sequence < b, > diverges, and the sequence
< an + b, > converges. Since < a, > converges and < a, + b, >
converges, by Theorem 8.6 the sequence < (a, + b,) — a, >=< b, >
converges, which contradicts the hypothesis that the sequence < b, >
diverges.

7. Proof: Suppose that a, — A # 0 and the sequence < a,b, >
converges. Suppose that A > 0 and let ¢ = A/2 > 0. Since a,, — A,
there exists a natural number N such that for n > N, we have

O<§:A7§<an<A+§.

That is, 0 < a, for all n > N. Hence, the sequence < a, >>°
is a sequence for which a, # 0. Since the sequence < apb, > con-
verges by hypothesis, the sequence < anb, >>2 5 converges. By The-
orem 8.8, the sequence < anb,/a, >p y=< b, >>° 5 converges. The
sequence < b, > converges, because it only contains the finite number of
terms by, be, ..., by—1 preceding the terms of the convergent sequence
< by >22 . The proof for the case in which A < 0 is similar. Let
e = |A|/2 > 0 and proceed as above.

9. Proof: Suppose that a, > 0 for all n € N and that a,, — A > 0.
Let € > 0 be given. Since a,, — A, there exists a natural number N
such that |a, — A| < v/Ae for all n > N. Hence, for all n > N, we have

~ Van + VA
- ()

an — A < lan, — A <
Van + VA VA

[V — VA <

€.

That is, \/a, — VA,

11. 2B/5

Exercises 8.3
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7. Proof: We prove by induction that a,, < 5/3 for all n € N. Let P(n) be

11.

the statement “a,, < 5/3.” The statement P(1) is 1 < 5/3, which is true.
Now, assume that P(n) is true for some natural number n. That is, we
assume that a, < 5/3 for some n € N. From the recursive definition,
we have an+1 = (an, +5)/4 < (5/3 +5)/4 = 5/3. Hence, the statement
P(n+1) is true and a, < 5/3 for all n € N. That is, the sequence
< ay, > is bounded above by 5/3.

Next, we prove by induction that the sequence < a, > is monotone
increasing. Let Q(n) be the statement “a, < any1.” The statement
Q(1) is 1 < 3/2, which is true. Now, we assume that Q(n) is true
for some natural number n. That is, we assume that a, < a,41 for
some n € N. Adding 5 to the last inequality and then dividing by 4,
we obtain (an +5)/4 < (an+1 + 5)/4. From the recursive definition, it
follows that an,+1 < an42. Therefore, the statement Q(n+1) is true, and
by mathematical induction the sequence < a,, > is monotone increasing.
Hence, the sequence is bounded below by a; = 1.

By Theorem 8.9 (the monotone convergence theorem), the sequence
< an > converges to some real number A. Taking the limit of the
recursive definition of a,1 as n approaches infinity, we find A = (A +
5)/4. Solving for A, we obtain A = 5/3.

Proof: We prove by induction that a, > 1/2 for all n € N. Let
P(n) be the statement “a, > 1/2.” The statement P(1) is 2 > 1/2,
which is true. Assume that the statement P(n) is true for some natural
number n. That is, assume that a,, > 1/2 for some n € N. Therefore,
1>1/(2ay,) and —1/(2ay,) > —1. From the recursive definition, we see
that ap+1 =2—-1/(2a,) > 2—1=1 > 1/2. Hence, the sequence < a,, >
is bounded below by 1/2.

Now, we prove by induction that the sequence < a, > is monotone
decreasing. Let Q(n) be the statement “a,y; < a,.” The statement
Q(1) is as < a1, which is true, since a3 = 2 and ag =2 —1/4 = 7/4.
Assume for some natural number n that ap+1 < a,. Then 1/a, <
1/ap+1. Because ant1 > 1/2 > 0, we have —1/(2an4+1) < —1/(2ay),
which implies 2 — 1/(2an4+1) < 2 — 1/(2a,). Thus, from the recursive
definition a, 42 < a,+1 and the statement Q(n+1) is true. By induction,
the sequence < a, > is monotone decreasing and bounded above by
a] = 2.

By Theorem 8.9, the sequence < a,, > converges to some real number A.
Taking the limit of the recursive definition for a, 11 as n tends to infinity,
we find A satisfies the equation A = 2 — 1/(24) or 242 —4A +1 = 0.
Hence, A = 1 ++/2/2. Since 1/2 < a,, < 2 for all n € N, we conclude
A=1++2/2.

Proof: First, we prove that a, > 3 for all n € N. Let P(n) be the
statement “a,, > 3.” The statement P(1) is true, because a; = 4 > 3.
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Suppose for some natural number n that a, > 3. Adding 6 to this
inequality, we obtain 6 + a,, > 9, which implies a,11 = 6 + a, > 3.
Thus, the statement P(n + 1) is true. Hence, by induction, a,, > 3 for
all n € N and the sequence < a,, > is bounded below by 3.

Next, we prove that a, > a,41 for all n € N. Since a,, > 3, we have
an—3 > 0and a,+2 > 0. Therefore, 0 < (a,, —3)(a, +2) = a2 —a, —6.
Solving for a2, we find a2 > 6 +a,, which implies a,, > /6 + @, = apn+1
by the recursive definition. Therefore, the sequence < a,, > is monotone
decreasing and bounded above by a; = 4.

By Theorem 8.9, the sequence < a, > converges to a real number
A. From the recursive definition, we see that A satisfies the equation
A = 6+ A. Squaring this equation, we find A2 = 6 + A. Hence,
A2 —A—-6=(A-3)(A+2) =0and A =3 or A = —2. Since
3 < ay, < 4 for all n € N, we conclude a,, — 3.

Proof: Let P(n) be the statement “a,, < ant+1 < bpy1 < by.”

(i) The statement P(1) is a1 < ag < by < ay. Since a1 < by and a1 > 0,
we have a? < aib; and therefore, from the recursive definition,

(1) a1 < Vaib; = as.
Because a1 < by, we have

0< (ay —b)? = a% — 2a1by + b%.
Adding 4a1b1, we obtain

da1by < a% + 2a1b; + b% = (a; +b1)%

Taking the square root of both sides of this inequality and then dividing
by 2, we find v/ai1b1 < (a1 +b1)/2. That is,
(2) a2 < ba.
Since a1 < by, we have a1 + b1 < 2by, which implies
(3) b2 = (a1 +b1)/2 < by.
It follows from inequalities (1), (2), and (3) that a1 < ag < b < by.
Therefore, the statement P(1) is true.

(ii) Assume that the statement a, < ant1 < bpy1 < by, is true for
some natural number n. Since a,41 < bp4+1 and a,41 > 0 (because
0 < ay < anq1), we have a2, < an41bpq1 and therefore, from the
recursive definition,

(4) 41 < \V an+1bn+1 = Qp4-2-

Because ap41 < bp41, we have

0 < (ang1 — bnt1)® = ap g — 2ap41bnr +bo 4.
Adding 4a,11b,+1, we obtain

4an+1bn+1 < afH_l —+ 2an+1bn+1 —+ bi_,'_l = (an+1 + bn+1)2.



384

15.

17.

Introduction to Mathematical Proofs

Taking the square root of both sides of this inequality and then dividing
by 2, we find \/m < (@n+1 + bpt1)/2. That is,

(5) Apio < bn+2.

Since ant1 < bpy1, we have apq1 + b1 < 2by,41, which implies

(6) btz = (ant1 +bny1)/2 < bngr.

It follows from (4), (5), and (6) that ap+1 < apyo < bpy2 < bpi1.
Therefore, the statement P(n + 1) is true and, by induction, the state-
ment P(n) is true for all n € N.

Consequently, the sequences < a,, > and < b, > are both bounded be-
low by a; and bounded above by b;. The sequence < a,, > is monotone
increasing and the sequence < b, > is monotone decreasing. By Theo-
rem 8.9, we have a,, — A and b,, — B. Taking the limit of the recursive
equation b,+1 = (a, + by,)/2 as n approaches infinity, we obtain the
equation 2B = A + B, which implies A = B.

2 1

< Qgny1 > = < 2cos
<agn > =<2co8(2nmw) >=<2>— 2
<Qpia>=<2cos(2n+r >=<-2>— -2

The sequence < a,, > diverges.

a. 0,1,1,2,2,3,3,4,4,...  b.

| =
Wl
=

Exercises 8.4

1.

5 o V"

<n>

Chapter 9

Exercises 9.1

The following * are not binary operations.

a. Since 1,2€ N and 1 %2 = % ¢ N, * is not a binary operation.

e. Since 1 € N and |1 — 1] =0 ¢ N, * is not a binary operation.

g. Since 0,1 € Q and 1x0 = 1/0 is undefined, * is not a binary operation.
i. Since 1,2 € Qt and V2 ¢ QT, * is not a binary operation.
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3. Table 9.4 is associative and commutative. There is no identity element,
and therefore there are no inverses.

Table 9.5 is associative and commutative. The identity element is 0.
The inverse of 0 is 0 and the inverse of 1 is 1.

Table 9.6 is associative and commutative. There is no identity element,
and hence there are no inverses.

Table 9.7 is associative but not commutative. There is no identity ele-
ment, and hence there are no inverses.

Exercises 9.2

1' d? e’ g7 i’ j
3. d. (U,x) is an abelian group with identity 1. The inverse of 1 is 1, the
inverse of 2 is 4, and the inverse of 4 is 2.

e. (V,4) is an abelian group with identity 0. The inverse of 0 is 0, the
inverse of 2 is 4, and the inverse of 4 is 2.

g. (E,+) is an abelian group with identity 0. The inverse of each z € E
is —x.

i. (X, «) is an abelian group with identity 0. The inverse of each a € X

is —a/(1 — a).
j. (Z,0) is an abelian group with identity —1. The inverse of each a € Z
is =2 —a.
5. x| 0 1 2
0 1 0 2
1 2 1 0
2 0 2 1
The operation * is not associative, because (0 x0)*2 =12 = 0 and
0+ (0%2) =0x2=2. Also, there is no identity element.
7. |

0O oo O|*
o9 o|lo
>0 o ol
2 o 0o oo
O Q ST Ol6

This group is abelian.

9. Proof: Let P(n) be the statement “(ajaz---a,)" " =a;*---ay'a;

(i) For n = 1, the statement P(1)is a;' = a; ', which is true.

(ii) Assume for some natural number n that the statement P(n + 1) is

true. That is, assume that (ajaz---a,)" ' =a;t---ay'a;’ is true. For
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a,b € G we have (ab)™! = b=1a~! by Theorem 9.4. Hence, using the
induction hypothesis, we find

(araz---anani1) ' = ((a1a2- - an)ans1) "

1_ -1 -1 -1 -1
=0a,,10, " Gy a1 .

=a, 1 (araz---ay)”
Therefore, the statement P(n + 2) is true and, by induction, for all
n €N, (arag---an) ' =a;' a5 a;t.
Proof: Let e be the identity of the group G and let a~! be the inverse
of a. Consider y = ba~! € G. By associativity, we have ya = (ba=1)a =
b(aa™t) = be = b. Hence, y is one solution of ya = b. Suppose that y;
and y2 # y; are both solutions of the equation ya = b. Then y1a = y2a
and by the right cancellation law y; = y2, which contradicts y2 # y1.
Therefore, y = ba~! is the unique solution of ya = b.

Proof: First, we assume that G is an abelian group. Let a,b € G.
By Theorem 9.4, we have (1) (ab)™' = b~ta~!. Since G is abelian,
(2) b ta=! =a71b~L. From (1) and (2), we see that (ab)~! =a=1bp71.

Next, suppose that (ab)™! = a7'b7! for all a,b € G. Let e be the
identity element of G. Since a,b € G, the elements a=%, b1 a= b1
(ab)~! are elements of G. By definition of inverse (1) (ab)(ab)™! = e.
By hypothesis (2) (ab) ™! = a~1b~!. Substituting (2) into (1), we obtain
(3) (ab)a=tb™! = e. Multiplying (3) on the right by b yields aba=1b~1b =
eb or (4) aba™! = b. Then, multiplying (4) on the right by a, we obtain
ab = ba. Therefore, G is abelian.

00 —a —b

a (O O) b. ( d)

c. Proof:
al b1 + an b2 (a1 + ao b1 + b2
C1 d1 C2 d2 B c1 + co d1 + d2

o an + al b2 + b1 o an b2 + al b1
o co + 1 d2 + d1 o C2 d2 C1 d1

d. Let (‘“ bl) and (‘” b2) be in GL(2,R). Then
C1 d1 C2 d2

al b1 . an b2 [ ai1a2 + b102 a1b2 + b1d2
c1 dy cady)  \ciaz +dica  ci1bo + dids
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The determinant of the matrix on the right-hand side is
(araz + bica)(c1ba + dida) — (c1az + dica)(a1bay + bids)
= aia2bscy + ajasdida + bibacica + bicadida

—ajagbac; — asbicidy — arbacad; — bicadids
= (a1d1 — bic1)(azda — baca) # 0,
since a1d; — byc; # 0 and asds — baca # 0.

10
e.I—(Ol)

f. Verify that (1) AA~' = A"'A =1 and (2) det A~! # 0.

g. Let A= ((1) }) and B = ((1) }) Then

while

Exercises 9.3

1.
9.

11.

No 2. No 3. Yes

Proof: Let G be a group with identity e and let H and K be subgroups
of G. By Theorem 9.6, ¢ € H and e € K. Therefore, e € H N K and
H N K is a nonempty set. Suppose that a,b € HN K. Then a,b € H
and a,b € K. Since H and K are subgroups of G, the element b~' € H
and b~! € K by Theorem 9.6. Since H and K are groups, ab~! € H
and ab~! € K. Thus, ab~! € HNK and, by Theorem 9.7, the set HNK
is a subgroup of G.

Proof: By definition, H is a subgroup of the group (K, o) if and only if
H is a subset of K and (H, o) is a group. Likewise, K is a subgroup of
the group (G, o) if and only if K is a subset of G and (K, o) is a group.
Since H C K and K C G implies H C G and since (H, o) is a group,
(H, o) is subgroup of (G, o) by definition.

{e}  10.{0,1,2,3}

Proof: Let G be a group with identity e and let a be any element of
G. Since ea = ae, we have e € C(a), and therefore C(a) is nonempty.
Suppose that g € C(a). Then (1) ga = ag. Multiplying equation (1) on
the left by g—!, we obtain
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97 (9a) = (97 g)a=ca=a=yg 'ag.
Multiplying a = g~'ag on the right by g~!, we find

ag™' = (g ag)g = (g a)(gg™") = (¢ 'a)e =g 'a.

Therefore g=! € C(a). Now, suppose that g,h € C(a). Then ga = ag
and ha = ah. Computing, we find

(gh)a = g(ha) = g(ah) = (ga)h = (ag)h = a(gh).
Hence, gh € C(a) and, by Theorem 9.8, the set C'(a) is a subgroup of
G.

-1

Proof: Let G be a group with identity e and let a be a fixed element of
G. Let H be a subgroup of G and let K = {a'ha | h € H}. Since H is
a subgroup of G, the identity e is an element of H and a 'ea = e € K.
That is, K is a nonempty set. Suppose that b,c € K. Then there is
an hy € H such that b = a~'hia and there is an hy € H such that
¢ = a~'hga. Computing, we find
bt = (a " hia)(a thea) ™! = (a7 hia)(a™ hy ta)
=a 'hi(aa™Mhy a = a"H(hhy Ha.

Since hi,hs € H and since H is a group, hlhgl € H and therefore
bc~! € H. Hence, by Theorem 9.7, the set K is a subgroup of G.

Cyclic: € ={0,1,2,3} Noncyclic: N ={0,2,4,5}
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